Introduction to Quantum
Mechanics

As thou knowest not what is the way of the spirit, . .., even so thou knowest not the works of God
who maketh all.

Ecclesiastes 11: 5.

Quantum mechanics determines the properties of physical systems such as atoms, molecules, condensed phase materials,
light, etc. It developed out of the failure of classical mechanics, i.e., the failure of Newton’s laws and classical electro-
magnetism, to properly describe such systems. The failure of classical mechanics is particularly acute for systems on the
nanoscale, hence the critical need for quantum mechanics in nanotechnology. But even for such macroscopic objects as
metal or semiconductor materials, classical mechanics fails in describing their electronic and physical properties because
the properties of the electrons in these systems is not properly accounted for.

In this chapter, we shall take the first steps in our study of quantum mechanics. We will treat a number of physi-
cal phenomena that cannot be described classically. These phenomena clearly show that a theory other than classical
mechanics is necessary for atomic and subatomic phenomena. We shall consider Energy Quantization, Blackbody Radi-
ation, Wave—Particle Duality, Angular Momentum Quantization, Quantum Mechanical Tunneling, and Quantum Entan-
glement in Sec. 1.1. Then, in Sec. 1.2, we present a brief overview of nanotechnology and information science, and
detail why quantum mechanics is so vital for these fields. Today we are able to manipulate matter, atom by atom, and
sometimes even electron by electron. But this ability is rather recent. Although it was dreamed of as early as the late
1950s,! it is only in the last several decades that this dream has become a reality. Nanoscience and nanotechnology are
the science and technology (and perhaps the art) of manipulating materials on an atomic and molecular scale. The hope is
that nanoscience and nanotechnology will evolve to the point that we will be able to build submicroscopic size devices,
and completely control the structure of matter with molecular precision, so as to build complex microscopic objects.
Information technology is also entering a regime where quantum mechanics plays a role. By information technology
we mean technology for managing and processing information. As computer memory and processor devices get smaller,
quantum mechanics begins to play a role in their behavior. Moreover, serious consideration is being given to new types of
information technology devices based upon quantum bits (quantum two-level systems) rather than normal bits (classical
devices that can be in either of two states typically called “0” and “1”). Such devices are inherently quantum mechan-
ical in their behavior. Although we are slowly improving our ability to manipulate matter at the atomic level, there is
a lot of room for improvement. The better we understand quantum mechanics, the better will be our ability to advance
nanoscience and nanotechnology. Section 1.3 introduces some of the most basic concepts of quantum mechanics, such as
the superposition principle of quantum states, operators that act on quantum states, the nature of measurement in quan-
tum mechanics, the concept of an entangled quantum state, and propagation of quantum states in time. Then we develop
the solution to a few simple one-dimensional quantum problems, including a particle in a box, reflection and trans-
mission, barrier penetration and 1D quantum tunneling, 1D bound states, resonance states, and the quantum harmonic
oscillator.

The Appendices are meant to help bring readers up to the knowledge level in mathematics required for understanding
quantum mechanics: appendices on linear algebra and Dirac notation for vectors in Hilbert space, some simple ordi-
nary differential equations, vector analysis, Fourier analysis and group theory are provided. If you find yourself having

I See, e.g., Nobel prize winner Richard Feynman’s 1959 lecture “There’s Plenty of Room at the Bottom” [17], in which he said, “The principles of
physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom. It is not an attempt to violate any laws; it is
something, in principle, that can be done; but in practice, it has not been done because we are too big.”
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trouble with the mathematics used in the ensuing chapters, you should refer to the appendices, and to the references
provided therein. Specifically, Appendix A on linear algebra and Dirac notation contains material that is directly relevant
and intimately connected with the formulation of quantum mechanics and should be studied before beginning Sec. 1.3
which presents some of the main concepts of quantum mechanics and Chapter 2 which presents the formalism of quan-
tum mechanics. Readers without any background in probability theory should consult a source containing at least the
rudiments of probability theory [12—16] before beginning Sec. 1.3.

Let us begin.

1.1 WHAT IS QUANTUM MECHANICS?

Classical mechanics is an excellent approximation to describe phenomena involving systems with large masses and
systems that are not confined to very small volumes (e.g., a rock thrown in the earth’s gravitational field, a system of
planets orbiting around a sun, a spinning top, or a heavy charged ion in an electrical potential). However, it fails totally at
the atomic level. Quantum mechanics is the only theory that properly describes atomic and subatomic phenomena; it and
only it explains why an atom or molecule, or even a solid body, can exist, and it allows us to determine the properties
of such systems. Quantum mechanics allows us to predict and understand the structure of atoms and molecules,
atomic-level structure of bulk crystals and interfaces, equations of state, phase diagrams of materials and the nature
of phase transitions, melting points, elastic moduli, defect formation energies, tensile and shear strengths of materials,
fracture energies, phonon spectra (i.e., the vibrational frequencies of condensed phase materials), specific heats of
materials, thermal expansion coefficients, thermal conductivities, electrical conductivities and conductances, magnetic
properties, surface energies, diffusion and reaction energetics, etc.

At around the turn of the twentieth century, it became clear that the laws of classical physics were incapable of
describing atoms and molecules. Moreover, classical laws could not properly treat light fields emanating from the sun or
from a red-hot piece of metal. The laws of quantum mechanics were put on firm footing in the late 1920s after a quarter
of a century of great turmoil in which an ad hoc set of hypotheses were added to classical mechanics in an attempt to
patch it up so it can describe systems that are inherently quantum in nature. We shall review the nature of the crisis that
developed in science at around the turn of the twentieth century in some detail to better understand the need for quantum
mechanics, i.e., the need to replace classical mechanics.

1.1.1 A BRIEF EARLY HISTORY OF QUANTUM MECHANICS

The history of the early discoveries that led to the development of quantum mechanics, and some of its early successes,
is summarized in Table 1.1. We shall discuss these discoveries in the beginning sections of this chapter, and throughout
this book. A rapid growth in the number of discoveries of quantum phenomena began in the mid 1930s, and continues to
this day.

1.1.2 ENERGY QUANTIZATION

In classical mechanics, a mechanical system can be in a state of every possible energy, with the proviso that the energy
is bounded from below by the minimum of the potential. Not so in quantum mechanics; only specific bound state energies
exist. Let us take the hydrogen atom as an example. The spectrum of the light emitted by an excited hydrogen atom is
shown in Fig. 1.1.2 As we shall see shortly, light can be described as being made up of particles called photons, and light
of frequency v is made up of photons with energy E = hv, where & is a dimensional constant called the Planck constant

2 The spectrum in the figure is plotted in terms of wavelength A rather than frequency. The wavelength and frequency of a photon are related by the
relation v = ¢/A, where ¢ is the speed of light in vacuum, ¢ =2.99792458 x 10% m/s.
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Table 1.1 The early history of quantum mechanics.

Year Discoverer Discovery

1888 Heinrich Rudolf Hertz Observation of the photoelectric effect

1896 Henrik A. Lorentz Explanation of normal Zeeman effect
Pieter Zeeman (splitting of spectral lines in a magnetic field)

1896 Antoine-Henri Discovery of penetrating radiation (radioactivity, « rays)
Becquerel

1897 Joseph John Thomson Discovery of electrons

1900 Max Planck Blackbody radiation law

1905 Albert Einstein Explanation of the photoelectric effect

1905 Albert Einstein Explanation of Brownian motion

1910 Max von Laue, Diffraction of x-rays from crystals; x-ray spectrometer developed
William L. Bragg
William H. Bragg

1913 Niels H. D. Bohr Bohr semiclassical theory of the quantization of energy levels

1914 James Franck Franck—Hertz experiment showed quantized atomic energy levels
Gustav Hertz

1922 Otto Stern Demonstration of atomic magnetic moments that give rise to
Walther Gerlach magnetic phenomena

1923 Arthur H. Compton Compton Effect (scattering of photons by free electrons)

1924 Louis-Victor de Broglie Wave—particle duality

1924 Wolfgang Pauli Postulated the existence of spin angular momentum

1925 Samuel Goudsmit Postulated that electrons have spin angular momentum
George Uhlenbeck

1925 W. Heisenberg Developed the matrix form of quantum mechanics

1926 Erwin Schrodinger Developed the wave equation for matter, i.e., the Schrodinger

equation

1925 Wolfgang Pauli Pauli exclusion principle for electrons

1926 Max Born Statistical interpretation of wave mechanics

1926 Llewellyn H. Thomas Thomas precession factor in the spin—orbit Hamiltonian

1926 Enrico Fermi Fermi statistics and Fermi distribution of fermions

(Continued)
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Table 1.1 (Continued)

Year Discoverer Discovery

1927 Clinton Davisson Electron matter-waves diffracting off crystals, confirming existence
Lester Germer of de Broglie waves

1927 W. Heisenberg Formulation of the uncertainty principle

1927 Paul A. M. Dirac Quantum theory of radiation

1927 Robert Mulliken Development of molecular orbital theory
Friedrich Hund

1928 Paul A. M. Dirac Relativistic theory of the electron — Dirac equation

1928 George Gamow Decay of nuclei via quantum tunneling of « particles proposed

1928 Chandrasekhara Raman scattering, i.e., inelastic light scattering observed in liquids
Venkata Raman

1929 W. Heisenberg General quantum theory of fields
Wolfgang Pauli

1930 Douglas Hartree The Hartree—Fock method (mean-field approximation to
Vladimir Fock many-body quantum mechanics)

1931 Maria Goppert-Mayer Calculation of two-photon absorption cross section

1932 John von Neumann Quantum theory put into operator form

1932 James Chadwick Discovery of the neutron

1934 Enrico Fermi Theory of weak interactions (beta decay)

1935 Albert Einstein, Boris Formulation of the EPR paradox
Podolsky, Nathan Rosen

with units J s in SI (International System of Units), 1 = 6.62606878 x 10734 Js. The energy of a photon emitted in the
decay of a hydrogenic state of energy E; to a state of lower energy Ey is equal to the energy difference E; — Ey,

hv = E; — E. (1.1)

Figure 1.1 shows a discrete spectrum, i.e., it is composed of well-defined frequencies. Hence, energies of the hydro-
gen atom are discrete. This discrete nature of the energies of an electron around a proton is not understandable from
a classical mechanics perspective, wherein states of the hydrogen atom should be able to take on all possible energy
values. The “quantization” of the observed energies as determined from the emission spectrum just doesn’t make sense
from a classical mechanics point of view. This situation of discrete energies exists not only for hydrogen atoms, but
for all atoms and molecules, and in fact for all bound states of quantum systems. This said, we further note that a
continuum of energies is possible for unbound states (in the case of the hydrogen atom, these correspond to states
where the electron is not bound to the proton — they are scattering states with positive energy, as opposed to the
bound states that have negative energy relative to a proton and an electron at rest and infinitely separated in distance.
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(a) ‘Ionization threshold 13.6 eV For bound states, the pOtential
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FIG 1.1 The emission spectrum of hydrogen. (a) Lyman, Balmer, Paschen, and Brackett
transitions in hydrogen. (b) Two views of the Balmer spectrum in hydrogen versus “ (A s
wavelength. The n’ — n transitions, where n, n’ are principal quantum numbers, are (pronounced “h-bar”) is Planck’s
called “Balmer” when n = 2. Balmer lines with n’ =3 are called «, 8 for ' =4, y for ~ constant divided by 27, h= 2}711 =
n' =5, etc. The H in Hy, Hg, etc., stands for hydrogen. 1.0545716 x 10734 Js.

The energies of the bound states
of a hydrogen atom are given (to an

2—’112, where the dimensionless constant « = 1/137.03599976 =

7.297352533 x 1073 is called the fine structure constant, m, is the mass of the electron, and n is an integer,n=1,2,...,
called the principal quantum number. The fine structure constant is given in terms of the electron charge (—e), %, and

excellent approximation) by the formula E,, = —a2(mec?)

. 2 . 2. . . . . .
the speed of light, ¢, by & = ;75— in SI units (¢ = 7 in Gaussian units — see Sec. 3.2.6 for a full discussion of atomic

units). It is a small number, since the strength of the electromagnetic interaction is small. The product of o and the rest
mass energy mec> (recall the famous Einstein formula E = mc? for the rest mass energy of a particle) sets the scale of
the hydrogen atom energies. The lowest energy of a hydrogen atom is obtained with n= 1, E; = —a%m,c?/2, and bound
states exist for every integer value of n (we shall consider the hydrogen atom in detail in Sec. 3.2.6 — here, simply note
that bound states of a hydrogen atom exist only at very special values of energy).

The quantized nature of atomic states was a complete puzzle at the turn of the twentieth century. After Rutherford
proposed a model of the atom wherein electrons orbit an atomic nucleus like planets round the Sun in 1911, he assigned
his graduate student Neils Bohr the task of explaining the empirical spectral behavior being studied by others with his
nuclear model. Bohr combined Einstein’s idea of photons that were used to explain the photoelectric effect (1905) (see
Sec. 1.1.7) and Balmer’s empirical formula for the spectra of atoms (1885) to produce a revolutionary quantum theory
of atomic energy levels. Bohr’s theory (1913) began with two assumptions: (1) There exist stationary orbits for electrons
orbiting the nucleus and the electrons in these orbits do not radiate energy. Electrons do not spiral into the nucleus (i.e.,
do not lose energy E via photoemission, as would be predicted by the Larmor formula, dE/dt = —(2¢?/3c)|dv/dt|?,
which says that the energy loss rate, dE/dt, is proportional to the square of the acceleration) because they have
quantized angular momentum. (2) Electrons can gain (lose) energy upon absorption (emission) of a photon, thereby
going to another orbit with higher (lower) energy. This energy change is quantized according to Planck’s relationship
hy = E,‘ — Ef.

In 1914, James Franck and Gustav Hertz performed an experiment that conclusively demonstrated the existence of
quantized excited states in mercury atoms, thereby helping to confirm the Bohr quantum theory developed a year earlier.
Electrons were accelerated by a voltage toward a positively charged grid in a glass tube filled with mercury vapor. Behind
the grid was a collection plate held at a small negative voltage with respect to the grid. When the accelerating voltage
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provided enough energy to the free electrons, inelastic collisions of these electrons with an atom in the vapor could force
it into an excited state, with a concomitant energy loss of the free electron equal to the excitation energy of the atom.
A series of dips in the measured current at constant volt increments (of 4.9 volts) showed that a specific amount of energy
(4.9 eV) was being lost by the electrons and imparted to the atoms. Franck and Hertz won the Nobel Prize in 1925 for
proving that energies of atomic states are quantized.

1.1.3 WAVES, LIGHT, AND BLACKBODY RADIATION

Isaac Newton thought light consisted of particles. These particles could bounce back upon reflection from a mirror or a
pool of water. But it became clear from the work of Christian Huygens (the Huygens principle — 1670), Leonhard Euler
(wave theory used to predict construction of achromatic lenses), Thomas Young (principle of interference® — 1801),
Augustin Jean Fresnel (partial refraction and reflection from interface — 1801), and Josef Fraunhofer (diffraction* grat-
ings — 1801) among many others, that light behaves as a wave and shows interference and diffraction phenomena. Optics
is integrated into electromagnetic theory, which is a wave theory. The wave equation in vacuum for electromagnetic
fields, i.e., electric fields E(r, f) and magnetic fields H(r, 7), is given by

, 192
(v - C—2§>E(r, =0, (1.2)

with an identical equation for the magnetic field H(r, 7). (Readers not comfortable with the Laplacian operator, V2, or
differential operators in general, please see Appendix C). These wave equations describe all propagation phenomena for
light in vacuum [18].

Solutions to (1.2) can be formed from plane waves,

E(r,1) = By, /&), (1.3)

which are solutions to (1.2) as long as k> = w?/c?, for any vector amplitude Ej ,, as can be easily verified by substituting
(1.3) into Eq. (1.2). Any superposition (i.e., linear combination) of these solutions is also a solution (just as a superposition
of water waves in a lake that originate from two people throwing a stone into the lake co-exist, and propagate through
one another), since the wave equation (1.2) is a linear equation. The waves in (1.3) are called plane waves, because their
wave fronts (the surface of points in physical space having the same phase) are planes perpendicular to the vector k. The
vector k is called the wave vector and the relation k% = w? / 2, which is required for (1.3) to be a solution to (1.2), is
called the dispersion relation; it relates the photon momentum 7k to the photon energy %o (as discussed below).
Blackbody radiation, the electromagnetic radiation of a body that absorbs all radiation that impinges upon it (and
therefore looks black at very low temperatures) could not be explained by electromagnetic theory at the turn of the
twentieth century. When matter is in thermal equilibrium with the electromagnetic radiation surrounding it, the radiation
emitted by the body is completely determined in terms of the temperature of the body. Such matter is called a blackbody,
and therefore the radiation is called blackbody radiation. In order to explain the spectrum of blackbody radiation, Max
Planck suggested the hypothesis of the quantization of energy (1900): for an electromagnetic wave of angular frequency
w, the energy of the radiation was taken to be proportional to 7iw. Einstein generalized this hypothesis to obtain a particle
picture of electromagnetic radiation (1905): light consists of a beam of photons, each possessing an energy 7w, and the
energy density is given by the product of the density of photons of angular frequency w times fiw. Einstein then showed
how the introduction of photons made it possible to understand the unexplained characteristics of the photoelectric effect
(see below). In 1923, Arthur Holly Compton showed that photons actually exist by discovering the Compton effect

3 Interference is the addition of two or more waves that results in a new wave pattern. The new wave, which also satisfies the wave equation, is the
superposition (see Appendix A.1.1) of the component waves. The superposition can be constructive, meaning the amplitude of the superposition is
larger than that of its individual components, or destructive, in which case their is cancellation of the component waves.

4 Diffraction is the change in the direction and intensity of a wave after passing an obstacle or an aperture.
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(the scattering of photons by free electrons). The scattering behavior showed that a photon had an energy E =#w and
a momentum p = (hw/c)u, where u is a unit vector in the direction of the propagation of the photon (for comparison
with matter-waves, see the discussion of de Broglie waves in the next section). The dispersion relation (i.e., the relation
between energy and momentum) for photons can therefore be written as linear relation,

E =pc. 1.4

The blackbody radiation law was developed by Max Planck in 1900. Let u,(T)dw be the mean energy per unit
volume in the frequency range between w and w + dw. Planck’s blackbody radiation law can be written as follows:

3 3 —_

uy(T) = % (kBTT) xx I (1.5) g\n T 15 v b v b b v by
e “T E o - (2.82,1.42) -
Here x is a dimensionless variable, x =hw/kpT, and f} =y - E
kg is the Boltzmann constant, kg =1.3806503 x —_ 7] : " :, [
10723 JK~!. The blackbody radiation law states g é-} 1 Pldan-S BldebOdy ~
. . ) TR = Radiation Law [
that the energy density per unit frequency is a o - R -
universal function of one dimensionless parame- c% lL . =
ter x, f(x) =x3/(¢* — 1). The factor (¢* — 1)~ @ - =
appearing on the RHS of Eq. (1.5) arises due to o T=ll.5— -
the Bose—Einstein distribution for integer-spin par- g S ] . -
ticles (in this case, photons). A plot of the func- "% £ ] Rayleigh- Wien tail F
tion f(x) =x3/(¢* — 1) versus x that appears on S = = Jeans =

the RHS of Eq. (1.5) is shown in Fig. 1.2. The § t‘? 0 BTN RES N A R N N
low frequency (x < 1) dependence of the Planck a 5 0 2 4 6 8 10 12

blackbody energy density goes as w?, as is clear x = halk HT

from expanding the exponent in the denominator

of Eq. (1.5), whereas the high frequency depen- FIG 1.2 Planck’s blackbody radiation law, Fx) =x3/(¢* — 1), where the
dence is exponential, u,(T) ~ exp(—x) for x> 1, dimensionless variable x = hiw/kpT.

as you will show in Problem 1.1. The high fre-

quency behavior (the exponential tail) is called the Wien tail, and was understood in terms of statistical mechanics
(the Boltzmann distribution). The low frequency limit of the blackbody spectrum, u,(T) ~ x> for x < 1, is known
as the Rayleigh—Jeans limit. The connection between the high and low frequency limits was not understood until the
ideas of Planck and Einstein were introduced at the turn of the twentieth century. The frequency at which u,(T) is a
maximum can be easily determined by setting the derivative du, (T)/dw equal to zero, and is numerically determined
to be wmax ~2.82 kpT /h. This result is sometimes called Wien’s formula or the Wien displacement law. You will derive
the Planck blackbody radiation law, Eq. (1.5), in Chapter 9, where you will multiply the following three factors to obtain
u,,(T): the energy of a photon of angular frequency w, hiw, the thermal occupation probability given by the Bose—Einstein
distribution, (¢* — 1), and the density of photon states per unit energy per unit volume, which is proportional to w?.

Problem 1.1
Expand Eq. (1.5) for x <« 1 and x > 1 to derive the Rayleigh—Jeans limit and the Wien tail.

The total energy density in all frequencies, u(T), is given by integrating Eq. (1.5) over frequency (i.e., over
xkpT/h). The integral can be evaluated analytically and one finds, u(T) =40 T*/c, where the constant o is given

2,4
by 0 = % =5.6697 x 107> ergs~ ! cm™2 K™, and is called the Stefan—Boltzmann constant. The T* temperature

dependence of the total energy emitted and the numerical value agree with experimental observations. The energy per
unit time per unit area, i.e., the intensity, emitted by the blackbody is given by I(T) = cu(T) /4 = o T*. Note that Planck’s
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constant is an integral part of the discussion of blackbody radiation. Even the Stefan—Boltzmann constant involves 7,
hence, arguably, involves quantum mechanics.

1.1.4 WAVE-PARTICLE DUALITY

In the previous section we discussed the fact that light can have both particle and wave properties. Figure 1.3(a) shows a
schematic representation of an experiment to look for the interference in the intensity of the light on a screen, a distance
d behind an opaque wall with two narrow slits cut into it is obtained when a monochromatic plane wave light field with
angular frequency o impinges upon the opaque wall. Such an experiment was first carried out with light by Thomas
Young in 1801. It seemed amazing at the start of the quantum era that mono-energetic particles show the same type of
interference pattern, but now it is well known that matter-waves (i.e., particles with mass, which also behave as waves)
can experience interference and diffraction just like light. We shall introduce these two concepts in this section. In what
follows, we consider only a scalar field (electric field of light is a vector field), as is the case for (spinless) matter-waves.

Waves in 3D emanating from a point have intensities that fall off as the inverse of the distance squared from the
source, 1/r? (since the surface area of a sphere is 477> and the integrated intensity is constant on the surface of a sphere,
no matter its size). In the Young double-slit experiment, each point along each slit serves as a source for light. The fields
from the two slits are to be added together coherently, and then the resulting field is squared to obtain the intensity. The
resulting intensity pattern has interference fringe patterns as is shown in Fig. 1.3(c).

Let us first consider the field emanating from two holes located at positions (0, 0, +a/2) before considering the Young
double-slit experiment in which light emanates from all the points along the slits {(0, y, +a/2)}. The intensity at a point
(d, 0, z) on the screen as a function of wall-to-screen distance d, the distance between the holes a, and the z coordinate,
1(d, z), is given by:
ik1~r1 eik2~r2 2
+
T r

Id,z)=C

(1.6)

Here C is a constant; since we calculate only the relative intensity, we do not need to determine C. The length of the
vectors ki and kjy is k=w/c (recall that the wavelength—wavenumber relation is A =2 /k), and the wave vector k;
points from the ith hole to the point (d, 0, z) on the screen, as shown in Fig. 1.3(a) with y taken to be zero because now we
are considering the case of two holes located at (0,0, =a/2). The distances r; and r; are the distances from the holes to
the point (d,0,7) on the screen, i.e., | =+/d? + (z — a/2)2, r» = /d? + (z + a/2)2. In order to evaluate the right hand
side (RHS) of Eq. (1.6), the arguments of the exponentials must be determined, and they are simply k; - r{ =kr; and
K; - 1o = kro. The intensity falls off with d as 1/d? at large d. Figure 1.3(b) shows the interference pattern obtained in the
calculated relative intensity at the screen as a function of z for two values of the distance between the slits, a = 100 and
533 um, when d = 1000 um and kd = 100. For a = 100, only a few interference fringes are seen, but for a =533, a dense
pattern is obtained. The intensity fall off with increasing z as can be seen clearly for |z| > a. If we neglect the difference
between r and r; in the denominators on the RHS of Eq. (1.6), and also in the exponentials, the intensity can be written
in the asymptotic form /(d,z) = d22f72 [1 4 cos((ka — K1) - r)]. Expanding the argument of the cosine for large d, i.e.,
d > a, z, the relative intensity can be written as I(d, z) = fTE [1 + cos(aksin )], where sinf ~ z/d.

Problem 1.2

Consider two fields emanating from points i = 1,2 in Fig. 1.3(a) with y =0, having field amplitudes,
Ei(r,t)= Eoéil_'rie_i‘”’ , where the wave vectors k; are in the direction from the points to (d, 0, z) on the screen.

(a) Show that I(d,z) = %Tg [1 4 cos(ak sin 6)] results from Eq. (1.6) when the screen is far away from the opaque

wall, d > a, z, where sin 6 ~ z/d.
(b) From the form of the intensity in (a), find the angles 6 for which the intensity vanish.
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FIG 1.3 Interference pattern in a Young double-slit experiment. (a) Schematic of the geometry of the double-slit setup. (b) Relative intensity
at the screen from two holes in the opaque wall situated at (0,0, £a/2) versus z for two values of a. (c) Relative intensity at the
screen from two slits in the opaque wall versus z for two values of a.
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Let us now return to the Young’s double-slit case. We can think of the slits as a continuous set of holes at (0, y, £a/2).
The distances r; and r, are given by r| =+/d? +y> + (z — a/2)%, ry =+/d*> + y?> + (z + a/2)2, and the electric field
arising at point (d, 0, z) is given by the integral over y of the electric fields from each of the “holes” running along the
slits. Hence, the intensity is given by

o
eiklrl eikzrz
Id,2)=C /dy( + )
r n

% aa.7

2
H" <km> +Hy) (kW)

where H(()]) is the first Hankel function of order zero (discussed in Appendix B). Figure 1.3(c) shows the intensity pattern
at the screen as a function of z for two values of the distance between the slits, a = 100 and 533. The intensity fall off

2

= Cr?

b}

with increasing z is now somewhat slower than in Fig. 1.3(b). Asymptotically, ,(,1)@ ) — ./ n% el¢—nm/2=1/4) and
{—>00

therefore the asymptotic intensity pattern for large d is given by 1(z,d) = % [1 + cos(aksin8)], where sin6 ~ z/d. The
1/d intensity dependence (rather than 1/d” as above) arises because the circumference of a circle of radius d is 27d.
Otherwise, the Young double-slit case is not all that different from the double hole case discussed above.

Another wave property of light is seen in the diffraction pattern of the light intensity from a single finite-width slit
(i.e., cover one of the slits in the Young double-slit experiment so the light can go through only one of the slits and look
at the intensity on a screen sufficiently far behind the opaque wall containing the single-slit). The intensity on the screen
a distance d behind the wall versus position x takes the form

I(x,d) =1y

. 2
A (siL3))’ 8

amd \ (kLyx/2d)2

where again k= w/c is the wave vector of the light, d is the distance from the opaque wall to the screen, and L, is the
width of the slit. The diffraction pattern from a rectangle of dimensions L, and Ly cut into the opaque wall is given by the
expression

. 2
Kooy — 1o KRL,L, (sin(kax/2d))2 <s1n2(kLyy/2d)> .

1672d2 \ (kLyx/2d) (KLyy/2d)?

The intensity pattern from a square aperture, L, = Ly, is shown in Fig. 1.4(a). One can also consider a hole of circular
aperture cut into the wall; Figure 1.4(b) shows the interference pattern from a circular aperture of radius « (i.e., a round
pinhole),

27,2 2
nd) = Io ak <2]1(kar/d)> ’

1672d? (kar/d)

where J| () is the Bessel function of the first kind of order unity. Again, a distinctive diffraction pattern is obtained. We
conclude from the interference and diffraction patterns in Figs 1.3 and 1.4 and the discussion of the previous section that
light propagation phenomena can be fully understood only by considering both the wave and the particle aspects of light.
This seems to be a paradox, but the paradox is resolved in terms of a fully quantum theory of light.

Today we know that beams of mono-energetic particles having mass (e.g., electrons, atoms, Cgo molecules, etc.) also
show interference and diffraction phenomena, just like light. In 1924, Louis de Broglie, as part of his Ph.D. thesis, recon-
sidered the theory associated with Compton scattering experiments and hypothesized that matter (specifically electrons,
but quite generally any matter), could exhibit wave properties. At that time, this “matter-wave” hypothesis sent a shock
wave through the scientific community. de Broglie showed that mono-energetic particles having a momentum p = mv
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propagating in the direction @
should behave as a wave with
wavelength XA specified by the
relation

p=—nu, (1.9)

where X is the wavelength of the
matter-wave. This hypothesis
justified Bohr’s assumption,
made in 1913, that electrons
maintained stable orbitals at
special designated radii and
did not spiral into the nucleus
because they had quantized
angular momentum (see next
section). In 1927, Davisson and
Germer designed an experiment
to measure the energies of
electrons scattered from a metal
surface. Electrons were accel-
erated by a voltage drop and
allowed to strike the surface
of nickel metal. The electron
beam scattered off the metal
according to the Bragg’s law
of scattering (see paragraph
below) that was already known
for scattering of photons off
crystals. This confirmed de
Broglie’s matter wave hypoth-
esis. In 1929, de Broglie was
awarded the Nobel Prize in
Physics for his discovery of the
wave nature of electrons. So,
we conclude that both particles
and light show “wave—particle
duality”.

Before concluding this sec-
tion, we mention one more
important wave phenomenon,
this time in the context of wave
scattering of light off a periodic
potential. The structure of crys-
tals is studied by x-ray diffrac-

(a) (b)

FIG 1.4 (a) Diffraction pattern from a square aperture in an opaque wall. (b) Diffraction pattern for
a circular aperture. The intensity patterns are measured on a screen sufficiently far behind

the wall.
(a) X-ray source Tonization
) chamber
;x"' 441 Collimating
\‘h' slits
Ve %
(b) Incident Diffracted
beam
a o

FIG 1.5 (a) Diagram of an x-ray spectrometer for investigating crystal structure. (b) Spectral
reflection by Bragg scattering. (Adapted from Pauling, General Chemistry [19].)

tion, a technique first developed by Max von Laue, William L. Bragg, and (his father) William H. Bragg, who developed
the first x-ray spectrometer around 1910. Figure 1.5(a) shows a schematic diagram of an x-ray spectrometer for investi-
gating crystal structure. The condition for Bragg scattering is that the path length difference between waves that scattered
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off two different atomic planes of atoms separated by a distance d in the crystal, 2d sin 6 [see Fig. 1.5(b)] equal an integral
multiple of the x-ray wavelength A,

2dsin€ = nh, (1.10)

ork-d =nm, where k = p/h = (27t /1) G. Then constructive interference of these waves result. The reason x-rays are used
is that the wavelength A of the light should be comparable to d so that condition (1.10) can be satisfied for small integers
n. This type of scattering off periodic structures is called Bragg scattering. It is the basis for much of our understanding
of crystal structure in solid-state physics. Not only x-rays Bragg scatter off crystals, but any wave with a wavelength
comparable to the crystal period as long as the wave interacts with the crystal, e.g., high energy electron beams (with de
Broglie wavelengths on the order of d), as we have seen in the previous paragraph.

1.1.5 ANGULAR MOMENTUM QUANTIZATION

Otto Stern and Walther Gerlach carried out an experiment in 1922 that showed that spin angular momentum is quantized.
This experiment is now known as the Stern—Gerlach experiment, and is depicted schematically in Fig. 1.6. They passed
silver atoms,’ through an inho-
mogeneous magnetic field, and

m&;@m Experiment ( 1 92 2) the resulting force deflected the

Ag atoms in an inhomogenous magnetic field atoms into two opposite direc-
Pate tions. We now understand the fact

that the deflection pattern had two
oppositely displaced components
(and no component which had
zero displacement), as indicating

' m \
7 a half-integer angular momentum
¢ -_—/. (in units of #, see below) of the sil-

top view ver atoms. The deflection depends
on the projection of the magnetic
moment (which is proportional to

. . . ) ) the angular momentum) of the
side view  atom on the magnetic field axis,
magnet cross section and only two projections are pos-
sible for spin 1/2 (projection 1/2

U(r) = - u*B(r), where u is the atomic and —1/2).
magnetic dipole moment measured A particle that possesses a
particle nonvanishing angular momentum,
F(r) =-0U(r)/dr = o[u*B(r)]/or A spatial also has a nonvanishing mag-
. distribution | netic moment, i, and the magnetic

position

energy Unag of such a particle in a

. . . 6
FIG 1.6 The Stern-Gerlach experiment. A beam of particles with magnetic moment g passes magnetic field H is given by

through an inhomogeneous magnetic field. A force on the particles results. Particles in
different spin states experience different forces. For spin 1/2 particles, a bimodal U mag = M- H. (1.11)
distribution of particle deflections is observed.

5 The ground state electronic configuration of silver atoms is, . . . 55 25 /2, meaning that a silver atom has zero orbital angular momentum but a total
angular momentum of 1/2.

6 Sometimes, Eqs (1.11) and (1.12) are written in terms of the magnetic induction field B. In Gaussian units, the B and H fields are equal in vacuum
(see Table 3.2), but in SI units, they have different units and magnitudes since B = joH, where 110 =47 x 1077 N A~2 is the permeability of free
space.
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The force on the particle is simply given by the gradient of this potential energy by
Frnag = ~VUnag = V(- H). (1.12)
The magnetic moment of a particle is known to be proportional to its angular momentum J,
oot (1.13)

Equation (1.12) states that when the magnetic field H(r) is inhomogeneous, the particle experiences a force. For example,
consider a magnetic field with a z component that depends upon z, (H(r)), = H,(z). The magnetic force in the z direction
is given by Frag; = 11, on

azz(Z). In classical mechanics, all possible angles 6 between the vectors u and H(r) are possible,

and the force depends on the angle, F,g, = (1 cos 9)%, so why should only two displacements corresponding to
two central values of the force be observed in a Stern—Gerlach experiment? According to classical mechanics, the atoms
should be deflected in a manner that depends on the angle between u and H(r), rather than having the bimodal deflection
actually observed. The answer to this question came only with the development of quantum mechanics. In quantum
mechanics, the projection of the angular momentum, and hence of the magnetic moment, on any axis (in this case, on the
magnetic field direction) is quantized. Therefore it cannot take on any arbitrary value; in the case of a spin 1/2 particle,
only two values of the projection are possible, 71/2 and —7/2. Moreover, the length of the angular momentum vector, |J|,
is found to be given by v/3/4 & for a spin 1/2 particle. This is all very strange and difficult to interpret for the classically
trained scientist! It will become clear, even simple, once we learn the quantum theory of angular momentum.

The angular momentum of silver atoms arises from the angular momentum (actually, spin) of the electrons comprising
the atom, but this connection of the angular momentum of the atoms with the spin of the electrons contained in the atoms
was not made until after 1925 when Samuel A. Goudsmit and George E. Uhlenbeck, under the guidance of their supervisor
Paul Ehrenfest at the University of Leiden, proposed that the electron has its own intrinsic spin angular momentum S and
intrinsic magnetic moment p. Some additional history of spin is discussed in the beginning of Chapter 4. A classical
analogy to the spin of an electron orbiting a nucleus in an atom is the rotation of the earth as it orbits around the sun.
The spin of the electron is like the spin of the earth around its axis (which takes 24 hours to complete a turn). In quantum
mechanics, apart from the spatial degrees of freedom of elementary particles, an inner degree of freedom called “spin”
exists. We say that a particle has spin s if it can have 25 4 1 projections of its spin on an external axis. For example, “spin
1/2” can be described by a two-dimensional vector where the two components are for spin-up and spin-down; i.e., the
spin states |1) and || ) can be represented by two-component vectors

)= ((1)) b= (?) (1.14)

Similarly, “spin 1” states can be represented by vectors of dimension 3, i.e., the projection of the angular momentum on
an external axis (say, the z-axis) can take the values +1, 0, and —1 (in units of 72), and these three states can be represented
by three-dimensional vectors, as will be discussed in Chapter 3.

Photons have an internal angular momentum that is associated with their polarization state. We know that light prop-
agating along a given direction, say along the z-axis, can be linearly polarized along a given axis perpendicular to the
z-axis. The polarized light along this axis can be decomposed into right and left circular polarizations. A right circularly
polarized photon has angular momentum given by 17 along its direction of propagation, whereas the angular momentum
of a left circularly polarized photon is —1%. So, not only matter-waves have a spin angular momentum, but light waves
also do, and this angular momentum is quantized in units of 7.

1.1.6 TUNNELING

In 1928, George Gamow proposed that some unstable nuclei decay via quantum mechanical tunneling of alpha parti-
cles, i.e., #He particles,’” out of the nucleus. The alpha particles penetrate through the nuclear Coulomb potential barrier

7 In the notation used here, the superscript, 4, is the number of nucleons and the subscript, 2, is the number of protons in the nucleus.
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(resulting from the combination of the attractive nuclear forces
and the repulsive Coulomb force — the remaining nucleus and
the alpha particle are both positively charged, hence, a repulsive
Coulomb potential exists between them, see Fig. 1.7), and manage
to leave the nucleus even though their energy is not sufficient to
classically surmount the barrier by a process called nuclear fission.
An analogy is a ball with an insufficient initial velocity (hence,
kinetic energy) to roll over a mound, yet having a finite probabil-
ity to make it over the mound. An example of alpha decay is the
process:
238U — Z*Th + JHe. (1.15)
Figure 1.7 schematically represents the alpha decay of a nucleus
in terms of a potential between the alpha particle and the remain-
ing nucleus, which includes the short-range attractive potential
between the alpha particle and the remaining nucleus, due to the
strong attractive nuclear force between nucleons in the nucleus,
and the long-range repulsive Coulomb potential between the alpha
particle and the remaining nucleus. The alpha particle tunnels out
of the nucleus through the repulsive Coulomb potential.
The phenomenon of quantum tunneling is used extensively

Energy
A
Coulomb barrier
alpha V(r) = (26)(2@)/}’
particle E = asymptotic
kinetic energy
El—e
=0 distance .

nucleus

FIG 1.7 Alpha particle decay of a nucleus. An alpha
particle, at the energy indicated, can tunnel out of
the nucleus and penetrate through the repulsive
Coulomb potential. The asymptotic kinetic energy
E of the alpha particle is indicated.

in nanotechnology. Here, we briefly mention only two applications: field-effect transistors and scanning tunneling
microscopy. At this point, these are applications that are difficult to describe, since we have not yet developed the back-
ground knowledge required; we nevertheless do so, simply to underscore the application to which quantum tunneling is

put in modern-day instruments.

Field-effect transistors are solid state devices made out of semiconductors; they were first envisioned by William
Shockley in 1945 and first developed based on Shockley’s original field-effect theories by Bell Labs scientist John
Atalla in 1960. Electrons emitted from the cathode pass through a potential barrier created and controlled by a vari-
able electric field. The electric field controls the shape and height of the tunneling barrier, and therefore the current
flowing in the transistor. Most field-effect transistors in use today are metal-oxide-semiconductor field-effect transis-
tors (MOSFETs). Figure 1.8 shows a schematic diagram of a MOSFET. They have four terminals, source, drain, gate,

and body. Commonly, the source terminal is con-
nected to the body terminal. The voltage applied
between the gate and source terminals modulates
the current between the source and drain terminals.
If no positive voltage is applied between gate and

1

source the MOSFET is nonconducting. A positive
voltage applied to the gate sets up an electric field
between it and the rest of the transistor. The posi-
tive gate voltage pushes away the holes (effectively
positively charged particles) inside the p-type sub-
strate and attracts the moveable electrons in the n-

ate
+ +g+ + +
source oxide drain
N | T N
P

type regions under the source and drain electrodes.
This produces a layer just under the gate insulator,
in the p-doped Si region, through which electrons
can propagate from source to drain. Increasing the
positive gate voltage pushes the holes further away

5

FIG 1.8 Schematic illustration of a metal-oxide-semiconductor field-effect
transistor (MOSFET). See text for explanation.
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FIG 1.9 Schematic representation of a scanning tunneling microscope (STM), an instrument for imaging surfaces at atomic resolution.
Reproduced from http://en.wikipedia.org/wiki/Scanning_tunnelingmicroscope

and enlarges the thickness of the channel. Based on quantum tunneling arguments (that will be elucidated in Sec. 1.3.11),
the current flowing between source and drain is expected to depend exponentially in the gate voltage.

Scanning tunneling microscopy (STM), invented in 1981 by Gerd Binnig and Heinrich Rohrer (Nobel Prize in Physics,
1986), is a commonly used technique for viewing surface structure of conducting materials on a nanoscale. It relies on
quantum tunneling of electrons from the atomically sharp voltage-biased microscope tip to the sample (or vice versa).
The current between tip and surface is controlled by means of the voltage difference applied between the tip and surface.
Without introducing a potential difference, there is a potential barrier for electrons to go between tip and surface (or vice
versa) and the current is exponentially dependent on the distance between probe and the surface. Controlling the potential
changes the potential barrier, hence the extent of the tunneling and thus the current magnitude. A 3D map of the surface
of a conducting material can be built up from STM measurements. Figure 1.9 shows a schematic diagram of an STM
apparatus. Insulators cannot be scanned by STM since electrons have no available energy states to tunnel into or out of in
the completely filled bands in insulators, but atomic force microscopes (see Sec. 1.2.1) can be used to look at the surfaces
of insulators.

1.1.7 PHOTOELECTRIC EFFECT

In 1888, Heinrich Rudolf Hertz carried out an experiment that kicked off the quantum revolution. He illuminated a
surface of a metal with narrow bandwidth (i.e., single frequency) ultraviolet light and the radiation was absorbed in the
metal. When the frequency of the radiation was above a given threshold frequency, vy (specific to the metal being used),
a current of electrons was produced. He measured the current as a function of the frequency of radiation, intensity of
radiation, and potential at which the surface of the metal was held relative to ground. Figure 1.10(a) shows a schematic
of the experiment and illustrates photons in a ultra-violet (uv) light beam impinging on the metal and liberating electrons
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that leave the metal: (1) without a potential
applied to the metal, (2) with a potential
drop between metal and electron detector,
and (3) with a potential barrier applied.
Fig. 1.10(b) shows the energy levels of
electrons in the metal, and the external
potential applied across the system. Hertz
found that no electrons were emitted for
radiation with a frequency below that of
the threshold vy, independent of the inten-
sity of the radiation. This result was not
understood, and could not be understood
based on the physics known at the time.
In 1905, Einstein proposed his explanation
of Hertz’s experiment; he was awarded
the Nobel prize in physics (1921) for this
work. Einstein explained that the light
photons in the beam have a characteris-
tic energy hv given by their frequency v,
where & is Planck’s constant. If the pho-
ton energy hv is larger than the work func-
tion W =hyg, defined as the difference
of the potential energy outside the metal
and the energy, EFr, of the highest state
populated by electrons in the metal [see
Fig. 1.10(b)], there will be electrons that
are ejected from the material. If v is too
low (below the frequency vg), there are no
electrons that are able to escape the sur-
face of the metal. Increasing the light beam
intensity does not change the energy of the
constituent photons (although the number
of photons will increase in proportion to
the light intensity), and thus the energy
of the emitted electrons does not depend
on the intensity of the incoming light. All
the energy of a photon must be absorbed
upon its absorption, and this energy is used
to liberate one electron from the metal, if
its energy is large enough; otherwise the
electron cannot get out of the metal. If
the photon energy is larger than the work
function of the metal, the liberated photo-
electron will have a maximum final kinetic
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FIG 1.10 Schematic representation of a photoelectric effect experiment. (a-1): Metal
surface subjected to a photon beam with photons of frequency v. (a-2):
Experimental setup with a potential drop between metal and electron
detector. (a-3): Experimental setup with a potential barrier between metal
and electron detector. (b) Metal-vacuum interface showing occupied
electron states in the metal, work function W, photon energy hv, and
maximum electron kinetic energy leaving the metal,

Exg=hv — W — (—eV).

energy as a free particle given by Exg = hv — W. However, if an external potential V is applied to the surface of the metal
relative to the anode that the free electrons strike, the maximum electron kinetic energy will equal Exkg =hv — W —(—eV).
Figure 1.11 shows the linear relation between the maximum kinetic energy of the electrons (measured in units of GHz,
the energy in Joules is given by E [J] =h [Js] xE [GHz] x10%), versus photon frequency. Note that in the units chosen,
the slope of the line in the figure is unity. The electron current versus frequency, the maximum electron kinetic energy
versus photon intensity, and the electron current versus photon intensity are shown in Figs 1.11(a—d).
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FIG 1.11 Photoelectric characteristics. (a) EKg versus v. (b) Electron photo-current versus v. (c) EKg versus intensity /. (d) Photo-current
versus /.

Hopefully, the discussion in the last few sections has given you a hint of some of the strange and wonderful phe-
nomena that occur in the quantum world. In the next section we discuss how quantum phenomena come into play in
nanotechnology and information technology.

1.2 NANOTECHNOLOGY AND INFORMATION TECHNOLOGY

Nanoscience and nanotechnology can be defined as the science and technology of manipulating materials on an atomic
scale. Nanotechnology is used to develop molecular devices such as molecular gears and other molecular machines,
nanometer-scale electronic systems, nanocomputers, quantum computers based on qubits (quantum bits), microscopic
size atomic clocks, and protein-based molecular devices. For the latter, it might be possible to exploit a host of examples
of natural self-replicating machines (e.g., bacteria, viruses) to make such devices efficiently and cheaply.
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Nanotechnology makes use of existing micromanipulation techniques, such as the scanning tunneling microscopy
(STM) and atomic force microscopy (AFM), deep ultraviolet lithography, electron beam lithography, focused ion beam
machining, nanoimprint lithography, atomic layer deposition, molecular vapor deposition, molecular beam epitaxy, and
molecular self-assembly techniques such as those employing diblock copolymers.? Although some of these techniques
were developed before the onset of the nano-era, they are all an integral part of the field. They will undoubtedly evolve
and improve, even as new techniques are developed. In recent years, the quest for new devices capable of manipulating
electron spins via magnetic fields, in a similar manner to electron charge controlled by electric fields, are beginning to be
developed; this new area is called spintronics. Conventional electronic devices rely on the transport of electrical charge
carriers — electrons or holes — in semiconductors (e.g., silicon). Exploiting the spin of the electron rather than (or in
addition to) its charge is expected to lead to a remarkable new generation of spintronic devices that will be smaller, more
versatile, and more robust than those currently used in silicon chips and circuit elements. Moreover, an electron spin
is a natural candidate for a qubit, and hence, spintronics might be the ultimate scientific basis for quantum information
devices. The main idea is that information can be stored in electron spins in a particular spin orientation (up or down),
and can then be carried along a wire, and eventually read at a terminal. Spin orientation of conduction electrons survives
for a relatively long time (nanoseconds, compared to femtoseconds for electron momentum decay). This makes spin-
tronic devices particularly attractive for memory storage and magnetic sensors applications, and, potentially for quantum
computing and quantum information, where an electron spin can serve as a qubit.

In Chapter 5 we take up the subject of information science and technology, first in a classical setting, and then in the
quantum information context. In Chapter 9 we introduce some of the important solid-state and condensed matter concepts
that are so important to nanotechnolgy, and in Chapter 13 we shall study Quantum Dots, Quantum Wires, Quantum Wells,
and Nanotubes. This section is meant only to briefly introduce these topics.

1.2.1 STM AND AFM MICROSCOPIES

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) are two of the important techniques used to
characterize surfaces of materials on a nanometer scale. We have already briefly discussed STM at the end of Sec. 1.1.6
(see Fig. 1.9 for a schematic of an STM setup) and we shall have more to say about it later in this chapter in Sec. 1.3.14.
For nonconducting materials STM cannot be used, since electrons cannot flow in insulators, as already discussed, but
AFM can. Gerd Binnig, Calvin Quate, and Christoph Gerber developed AFM in 1986. AFM measures the forces that
act between the tip and a surface, and uses this information to produce atomic-scale images of the surface. Mechanical
contact forces, long-range van der Waals forces, capillary forces, electrostatic forces such as the image-dipole force
between a charge and a surface, magnetic forces, Casimir forces (due to vacuum fluctuations — see Chapter 14), can be
measured by AFM, and in general, more than one of these forces contributes to the total force measured. An atomic
force microscope consists of a microscopic scale cantilever with a sharp tip to scan a surface, as shown schematically
in Fig. 1.12. The cantilever is typically silicon or silicon nitride and the tip is nanometer size. When the tip is brought
near a sample surface, forces between the tip and the sample deflect the cantilever in proportion to the force exerted on
it. The deflection can be measured using reflection of a laser beam from the top of the cantilever into a photodiode array,
or by piezoelectric probes. A feedback mechanism is employed to adjust the tip to sample distance to maintain a constant
force between tip and sample. AFMs can be operated in a number of modes, including static and oscillating cantilever
modes. In the latter, the oscillation amplitude, phase and resonance frequency are modified by tip—sample interaction.
The changes in oscillation with respect to the external reference oscillation provide information about the sample.

1.2.2 MOLECULAR ELECTRONICS

Nanoelectronics and molecular electronics are two rapidly developing research areas in nanotechnology. Electronic con-
duction in mesoscopic systems (“meso” comes from the Greek and means middle or intermediate, and refers here to
systems that are larger than atoms or molecules, yet smaller than micron scale systems) is now understood in terms of a

8 Block copolymers are molecules composed of long sequences (blocks) of monomer units, covalently bound together. A diblock copolymer is
composed of two unlike units, say A and B, bound together in the form ABABAB. ..
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general quantum scattering theory approach.
Feedback electronics The conductance (and hence the resistance)
of mesoscopic systems can be calculated in
terms of what are called Landauer formu-
las, named after Rolf Landauer who pioneered
the quantum scattering approach applied to
electronic conductance. Quantized conduc-
tance of electronic waveguide like mesoscopic
systems (i.e., “point contacts”) is now well
understood. The Coulomb blockade trans-
port regime wherein mesoscopic structures are
charged with a finite number of electrons and
their capacitance determines transport of fur-
ther electrons through the structures is also
well understood. When impurities or disloca-
tions or a random potential are present, local-
ization of the electron wave functions occurs
if the degree of randomness of the impurities
or defects is sufficiently large. Dephasing by
PZT scanner coupling to the environment is also an impor-
tant mechanism that affects electron transport.
Our knowledge of the interaction of atoms and
FIG 1.12 Schematic illustration of an atomic force microscope. Reproduced from  molecules with surfaces, and of the principles
http://en.wikipedia.org/wiki/Atomic_forcemicroscope of operation of scanning tunneling microscopy
and atomic force microscopy are crucial to fur-

ther progress in nano-electronics.

A basic building block of all electronics today is the transistor, a semiconductor device that uses a small amount of
voltage or electrical current to control a larger voltage or current. For example, a transistor can be used to set the voltage
on a wire to be either high or low, representing a binary 1 or 0, respectively. Transistors can have very fast response
(as fast as 10~!!'s, or 100 GHz), and are used in a very wide variety of applications: amplification, switching, signal
modulation, etc. Transistors are used for both digital and analog electronic circuits. Transistors govern the operation of
computers, TVs, cellular phones, and practically all other modern electronics. Two important types of transistors used
today are field-effect transistors (FETs), sometimes called unipolar transistors, in which an input voltage controls a output
voltage or current, and bipolar junction transistors (BJT), in which an input current controls an output current.

Molecular electronics involves the use of molecular building blocks for the fabrication of electronic components for
passive elements such as wires and for active elements such as transistors. The hope is that molecular electronics will
change the size scale of today’s electronic devices, which are on the order of micrometers, to that of tens of nanometers.
At such small scales, electronic transport should be described quantum mechanically, but the fact that the molecular
wires and transistors interact with the “outside world” makes this an open quantum system problem, which is also a
nonequilibrium problem since there is a potential across the molecular device and current flows through it. Such problems
are hard to treat, unless significant approximations are introduced, but methods are beginning to be developed for such
problems (e.g., time-dependent density functional theory).

" Photodiode

Laser beam
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Surface Tip

1.2.3 QUANTUM DOTS, WIRES AND WELLS, AND NANOTUBES

Most quantum mechanical-based devices require the confinement of electrons such that they are prevented from moving
in specified directions. If the number of these forbidden (or blocked) directions is three, two, or one, the system is said
to be zero-, one-, or two-dimensional, respectively. Such devices are called low-dimensional systems. Here we briefly
describe the most common devices realizing this important physics.
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A quantum dot is a mesoscopic device that confines electrons in a small volume in all three dimensions. It can be
attached to metallic electrodes and serve as an element in an electrical circuit. When an external potential is applied
across the dot, it serves as a gate controlling the number of electrons in the dot and the electron passage through the dot.
The device can be so effective that electrons can be added one by one, and for that reason, a quantum dot is sometimes
referred to as single electron transistor. Geometrically, a quantum dot is a zero-dimensional system. A quantum wire
confines the electrons in two directions; the electrons are free to propagate in the third direction, whose size is very
much bigger than the confinement size in the two confined directions. A nanotube is an example of a quantum wire. The
physics of interacting electrons in 1D is rather rich and exposes some spectacular phenomena referred to as Luttinger
liquid behavior. A quantum well effectively confines electrons to a plane; the confinement direction is so small that only
one mode in this direction can be populated. The study of electron properties in 2D systems (quantum wells), also expose
some spectacular phenomena, such as the quantum Hall effect which will be discussed in Sec. 9.5.8.

Figure 1.13 shows 0D, 1D, 2D,
and 3D structures made of carbon
atoms. The 0D case shows the car- Car'bon Allo tropes
bon fullerene molecule Cgy named
Buckminsterfullerene, “buckyball” (a) 0D (b 1D (c) 2D (d) 3D
for short, which is a naturally occur-
ring quantum dot (see also
Fig. 13.31). It was named after
Richard Buckminster Fuller, who
developed the geodesic dome (a
spherical shell structure based on
a network of great circles, i.e.,
geodesics). Its physical appearance

is like that of a soccer ball, except Buckyball Nanotube Graphene
its size is smaller by a factor of (1985) (1993) (2005)

about 107. This molecule was

discovered by Robert Curl, Harold FIG 1.13  Schematic illustration of 0D, 1D, 2D, and 3D quantum structures made of carbon
Kroto, and Richard Smalley (Nobel atoms.

Prize laureates in chemistry, 1996);

it is a prototypical quantum dot.

Another example of quantum dot systems are semiconductors grown using controlled solution precipitation methods. For
example, CdSe quantum dots of sizes in the range of 4-5 nm are relatively easy to grow. Upon illuminating such particles
with ultraviolet light, the particles fluoresce with wavelengths that depend sensitively on the size of the quantum dot.

Quantum wires and nanotubes [see Fig. 1.13(b)] can be conducting and can then be used as a conveyor of electrons.
It is possible to make quantum wires out of carbon nanotubes, but inorganic nanotubes can also be fabricated and even
DNA nanotubes have been produced. The radius of the wire determines the degree of confinement; the smaller the radius,
the more important the quantum effects in the wire. Nanotubes that are 10,000 times thinner than a human hair have been
made. Nanotubes is one of the hot topics in nanotechnology. An important spin-off of the fullerene research that led to the
discovery of the Cgp buckyball molecule are nanotubes based on carbon or other elements, e.g., WS, and MoS,. These
systems consist of graphitic layers wrapped into cylinders. Figure 1.13(b) shows a single-walled carbon nanotube, which
serves as a quantum wire and restricts motion of conduction electrons to be in the direction of the wire. They are only few
nanometers in diameter, but can be up to a millimeter long. Their properties (e.g., specific heat, heat transport, thermal
conductivity), synthesis, and characterization have been extensively studied.

Quantum confinement in quantum wells begins when the quantum well thickness becomes comparable to the de
Broglie wavelength of the carriers. Quantum wells can be formed using semiconductor structures that can be grown
by molecular beam epitaxy or chemical vapor deposition with monolayer thickness control. Moreover, the 2D sheet of
carbon known as graphene [see Fig. 1.13(c)] is another example of a quantum system confined to 2D.

Graphite
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1.2.4 BIO-NANOTECHNOLOGY

Bio-nanotechnology is an interdisciplinary field that deals with biological and medical applications of biomaterials, biosen-
sors, drugs and drug delivery systems. It also involves understanding the structure and function of biological devices at
the nanoscale, from the level of single molecules up to complex molecular machines. The latter important subtopic in
bio-nanotechnology involves molecular motors and intelligent molecular machines that can be applied to bio-sensing for
health care applications. If we learn to integrate electrical and optical biomolecules to produce active devices, networks
and bio-sensors, and develop the skills to produce DNA-based nanostructures and machines, the promise of designer-
devices tailored to specific tasks will be fulfilled, and the potential of bio-nanotechnology will come to fruition. As the
scale of such devices get smaller, classical descriptions fail and quantum mechanics is required. Although much of bio-
nanotechnology is adequately described by classical mechanics, many exceptions exist, e.g., the photosynthesis process
involves the absorption of a photon and the transfer of energy to an electron, a process that requires a quantum description.
Another possible example involves the folding of proteins which requires that the protein move from conformational local
minima of the multidimensional protein potential to one or a few lowest local minima: this process might involve quantum
tunneling over barriers on the potential, and this would occur in a dissipative and decohering environment.

1.2.5 INFORMATION TECHNOLOGY

Information science and information technology today encompass many aspects of computing, communications, data
storage and data security technologies. These involve networking, computer design, database and software design, cryp-
tography, hardware devices, etc.

There are many devices that are used today to create, transmit, transform, and interact with information in electronic
form. Understanding how such devices work requires knowledge of physics, including quantum physics. Moreover, quite
a few of these devices operate close to fundamental physical limits, including the quantum limit.

Information is physical; it is stored in bits (or qubits) that are physical, and is transported and communicated in ways
that directly involve physics. Even the measure of information (the determination of the amount of information contained
in a particular message or file) involves physical concepts. Bounds on information storage and information transfer are
determined by physical arguments. In short, information is part of physics (as much so as force or energy).

Until recently, only classical protocols for information storage, transfer, retrieval and processing were studied. But
slowly, the study of quantum information began in the middle of the twentieth century, and has blossomed into an
important branch of atomic, molecular, and optical physics. Quantum information was suddenly popularized by the
discovery of a quantum mechanical algorithm for factoring numbers by Peter Shor in 1997. If quantum computers capable
of running the Shor algorithm were available, the encryption systems (that are based on the RSA algorithm for factoring
large numbers) that we use to secure information in banking systems, and on the web, would be rendered useless. But,
what quantum mechanics takes away, it gives back; protocols that ensure information security by virtue of quantum
mechanical laws have been developed. Therefore, quantum information has become a very hot topic. We take up this
subject in Chapter 5.

1.3 A FIRST TASTE OF QUANTUM MECHANICS

We shall now begin to describe some of the most basic features of quantum mechanics so as to learn the language of quan-
tum theory. In so doing, we highlight the probabilistic nature of quantum mechanics, describe the superposition principle
of quantum states, discuss the operators that act on quantum states, detail the nature of the operators that can be mea-
sured, introduce the concept of an entangled quantum state, introduce the postulates of quantum mechanics, and describe
how quantum states develop in time (i.e., propagate). We then run through some of the simplest quantum paradigms:
one-dimensional quantum systems, a particle in a box and a particle in a piecewise-constant potential, quantum tunnel-
ing, and the quantum harmonic oscillator. These topics are treated here, in this introductory chapter, so the reader can
become acquainted with the basic quantum mechanical concepts before starting to deal with some of the more formal
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aspects of the theory, such as the uncertainty principle, the correspondence principle and mixed (impure) quantum states.
Appendix A, which introduces the mathematics of vector spaces, the notion of inner product and additional linear algebra
concepts, should be studied in conjunction with Secs. 1.3.1-1.3.6. Please turn now to Appendix A for a quick review of
linear algebra and Dirac notation. Then, continue reading this chapter. Furthermore, after you finish studying Chapter 2,
you may want to come back and re-read this first-taste material; it will then seem really easy!

Quantum mechanics is the best verified scientific theory we ever had; experimental measurements have verified the
theoretical predictions of quantum mechanics to unbelievable accuracy. Nevertheless, there are problems, like its incom-
patibility with general relativity. And there are conceptual issues regarding quantum measurement theory and decoherence
phenomena. These problems should be kept in mind. The reader should also keep in mind that scientific theories cannot
be proven right; they can only be proven wrong (if their predictions do not square with measurements).

1.3.1 QUANTUM STATES AND PROBABILITY DISTRIBUTIONS

States in quantum mechanics are denoted by vectors in a vector space (for a discussion of vector spaces, see Appendix A).
In what is now known as Dirac notation for vectors in a vector space, a state vector is denoted by the symbol | ), and
the state vector of a given state i is denoted by the symbol |¢/). In quantum mechanics, a specific preparation of a state
of a system does not explicitly determine the outcome of a subsequent measurement of the system, but rather only the
probabilities of the various possible outcomes. That is, the preparation determines the probability distributions for all
possible measurements that can be performed following the preparation.

For example, after preparing a spin 1/2 particle (e.g., an electron) in a given spin state, we can measure the spin
projection along a certain axis, say, the z-axis, using a Stern—Gerlach apparatus. If the particle is in spin state |1), and we
perform a measurement of its spin projection along the z-axis, we will get +1/2 (in units of 7) for the spin projection. If
the particle is in spin state || ), and we perform the same measurement, we will get —1/2 (in units of 7). However, as we
shall see shortly, if we perform a measurement on an arbitrary state of the electron and we get +1/2, this does not mean
that the state before the measurement was |1). It could have been the superposition state, e.g., |V) = «|1) + B]]) with
nonvanishing « and §, and lo|? + |8 |2 = 1. If this were indeed the state of the particle, and if we have many identical
copies of the particle in this state, and we perform a measurement on each one of them, we would measure +1/2 with
probability |«|?, and —1/2 with probability |]> = 1 — |«|?. In any case, if we measure +1/2, the state immediately
after the measurement is |1) (this is one of the postulates of quantum mechanics, as explained in Sec. 1.3.4). Below we
shall represent the states | 1) and || ) as the two-dimensional vectors ((1)) and ((l)) respectively. The superposition state

|[Y¥) = a|t) + B} ) will then be represented as a((l)) + ,3((1)) = (Z)

An observable is a property of the system that can be measured, hence every measurement of the system specifies a
given observable. The position, momentum, momentum squared, and energy of the system, are all examples of observ-
ables that can be measured, as is the projection of the spin of a particle on any axis. Observables are represented in
quantum mechanics by operators that operate on state vectors, as we shall see in what follows. The quantum state of the
system specifies the probability distributions obtained in all such measurements.

In a particular coordinate system with coordinates ¢, the state |ir) specifies a function ¥ (g) of the coordi-
nates, (q|¥) =v¥(q) [g could be three-dimensional for a system consisting of a single particle in three dimensions,
g=r=(x,y,7), or could in general be n-dimensional, e.g., n =3N for N particles in three dimensions]. The quantity
¥ (q) is called the wave function of the state ¥ in coordinate (configuration) space. It is the projection of the state |i)
onto |g) (which is the state with the particle located at position ¢). The quantity {(g|y) is a complex number and can
be viewed as a complex valued function of the coordinates g.° Moreover, the quantities (g|v) and (p|y) can be inter-
preted as the inner product of the state vector |¢) with state vectors |g) and |p), respectively, as explained in detail in
Sec. 1.3.8 entitled “Position and Momentum States, |x) and [p)”. When the wave function is properly normalized (see
next paragraph), the square of the modulus of this function determines the probability distribution of the state as a func-
tion of the coordinates, i.e., the quantity |y (q)|? dg is the probability that a measurement will find the system in the

9 As explained below, (g|v) is the wave function in position space, and the wave function in momentum space, (p|y) = v (p), can also be defined, and
is related to the wave function in coordinate space through a Fourier transform relation.
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element dg of configuration space about the point g, P(q) dg= |¥(q)|? dg. The probability of the possible outcomes of
any measurements can be calculated using the wave function ¥ (g), as explained below. If a particle has a spin, the full
wave function describing the state of the particle must also have a spin part; often it is possible to write the full wave
function as a product of a spatial wave function and a spin wave function (this will be detailed in Sec. 4.2).

In order to insure a probability interpretation of |1/|2, we can normalize the wave function ¥ to ensure that it has unit
length. Upon doing so, the wave function at position ¢ is given by W (q) = w, and therefore f |\Il(q)|2 dg=1,

(@) dg

as you can easily verify. This is what we mean by the wave function being normalized. The square of the length of the

state vector |y) is (Y |¥) = [ ¥*(q@)¥ (q) dg, since (Y |¢) = [dq(¥|q) (ql¥) because [ dqlqg) (gl =1 (this is a state-

ment of the completeness of the states |g)). The square of the length of |W), (V|W) = %mg , is unity (hence the length

ViI=V(¥W)=1).

Two state vectors |[¢1) and [¢p) (or two wave functions ) and V) are said to be orthogonal if
(Y1lyn) = f ¥ (@)¥2(q) dg = 0. For the discussion of the mathematics required to calculate the length of a state vector,
and the orthogonality properties of state vectors, see Appendix A.

The quantum mechanical state of a system, and therefore its wave function, can vary with time, i.e., the state |y)
depends on time, |1/ ()), and the wave function is a function of time, ¥ (g, ). If the wave function is known at some
initial instant, then it is in principle determined at every succeeding instant of time by the time-dependent Schrodinger
equation [as we shall see in Secs. 1.3.5 and 1.3.4, ih%l//(l‘) = Hr(t), where H is the Hamiltonian operator, or in Dirac

notation for state vectors, ih% Y () = H KAGNE

The superposition principle is valid in any linear mathematical construct, such as linear vector spaces and linear
differential equations. In optics, the superposition principle states that the sum of two optical waves is also an optical
wave. Interference phenomena in optics result due to this superposition. In quantum mechanics, it is the wave functions,
or the state vectors, that obey the superposition principle; arbitrary linear combinations of state vectors or wave functions
can be added to one another. Such linear combinations occur when the state of the system simultaneously “possesses”
two or more values for an observable quantity (e.g., a state having more than one value of the energy).

As an example, let us consider a hydrogen atom that was originally in its ground state, |Y/1) (i.e., its wave function
is the ground state wave function ¥1(g)), and in a given experiment, the atom suffers a collision so its state can change
to the excited state |y); let us assume that only these two states are populated in the experiment. When one repeats this
same experiment many times, one finds that there is a probability P; for finding the hydrogen atom in the ground state,
and a probability P, =1 — P; for finding it in a given excited state |y2). The probabilities, of course, depend on the
details of the type of collision, but the sum of the probabilities must equal unity, P; + P, = 1. In quantum mechanics,
one writes the state of the hydrogen atom after the collision as |Y) =c1|¥1) + c2|¥2), where |¢; |2=P; and |c3|2 = P2,
and the wave function of the hydrogen atom after the collision is written as { = c1v¥; + ca¥2. We say that the state of
the hydrogen atom after the collision, |1), is in a superposition of states |v1) and |yr) with probability amplitudes c|
and ¢, respectively. Alternatively, we say that the wave function of the hydrogen atom is in a superposition of wave
functions | and v, with probability amplitudes c{ and ¢, respectively. P; and P; specify the amplitudes ¢ and ¢, only
up to a phase. In quantum mechanics the amplitudes ¢; = |c;| ¢®® can be complex numbers; their phases are not specified
by their magnitudes. Hence, ¢ and ¢, completely specify the probabilities P and P;, but not vice versa. The possibility
of combining quantum states in coherent superpositions that are qualitatively different from their individual components
introduces a nonclassical nature to the concept of a state of a system.

As another example, consider the spin 1/2 particle case discussed at the beginning of this section, wherein the particle
can be in spin state |1) or in state || ) [another notation that is often used for the spin-up and spin-down states is |+) and
|—), respectively (moreover, several additional notations are also commonly used — see Sec. 4.2)]. Experimentally, it is
possible to put the spin 1/2 particle into a superposition state |) given by

V) =alt)+BIN)  lor [¥) =al+) + Bl-)],

1 0 o
or |1ﬁ)=a(0>+ﬂ<l>=<ﬂ), (1.16)
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with amplitudes « and g such that la]? + | ﬂ|2 = 1. This state |/) does not have a well-specified projection of angular
momentum along the z-axis. If a measurement is done to determine the projection of the angular momentum, the prob-
ability of finding the particle in spin-up, P13, is |a|?> and the probability P_ypis |B]%. That is, if measurements are
performed on identically prepared spin 1/2 particles, with all of them put into the state |1), the probability of measuring
spin-up will be P4 1/2 = o |2, and spin-down will be P_; r2=IB |2. In future chapters we shall see that any two-level sys-
tem can be mapped onto the spin 1/2 particle case, and vice versa, so this example is really no different than that in the
previous paragraph.

In classical optics, coherence refers to the condition of phase stability that is necessary for interference to be observ-
able. In quantum theory, the concept of coherence is related to the amplitudes c; of the basis functions ¢; used in describing
the wave function of the system in a coherent superposition,

v =Y cpi (or ) = Zci|¢i>> : (1.17)

and the necessity that they be well determined and stable. In other words, the amplitudes c; of the basis states |¢;) in the
expansion ) = ), cil¢;) should be completely determined (the mathematical definition of basis states and completeness
are discussed in Appendix A). [It is possible to put a system into an incoherent state, i.e., into what is known as a mixed
state, wherein the phases of the amplitudes are not well determined. We shall learn more about mixed states in Sec. 2.5,
and about decoherence processes that can cause incoherent states to develop in Chapter 17, linked to the book web page.]

One can ask whether it is possible to put a macroscopic system (or if you like, a macroscopic object) into a superpo-
sition state. In Schrodinger’s famous cat paradox, the question asked is whether one can put a cat into a superposition
state |V )cat = %(ll//a]ive) 4 |¥gead))- In this state, the cat is neither alive nor dead, but is in a linear combination of the

two (until we perform a measurement and collapse the cat’s wave function, see Sec. 1.3.4; if we find the cat to be dead,
we would be responsible for its death because we carried out the measurement). It turns out to be exceedingly difficult to
put macroscopic objects into such a superposition state (often called a Schridinger cat state because of decoherence, as
will be discussed in Sec. 5.4 and Chapter 17.

1.3.2 OBSERVABLE OPERATORS

A physical variable that can, in principle, be measured is called an observable. In quantum mechanics, observables are
represented as operators that are applied to state vectors (alternatively, to wave functions). Upon applying an operator O
to a state |y/) one obtains another state |¢): |¢) = (5|1//). Equivalently, upon applying an operator O to a wave function v
one obtains another wave function ¢: ¢ = Oy (see Sec. A.2 in Appendix A). The mean value (often called the average
or expectation value) of an operator O in a given state |) (wave function ) is given by

(O)y = (YIOIY) = /dq v (@) OV (g). (1.18)

The expectation value (¥|O)¥) is in general a complex number, but if the operator is an observable [i.e., if the operator
is Hermitian (sometimes called self-adjoint)], it must be real (measurable quantities must be real). When the system is
in state |1), the average over many measurements of a physically observable quantity corresponding to the operator O
should be compared with the theoretical value given by the mean value of O within the state vector |y, (|O[y). We
shall sometimes write (y|O|y¥) in order to simplify notation, i.e., we shall often leave off the hat in writing operators
when it is clear that we are talking about operators. We also sometimes blur the distinction between an operator that acts
on |v) in the vector (Hilbert) space and an operator acting on the wave function v (g) in coordinate (configuration) space.

An operator is said to be linear if it has the properties O(Y1 + ¥2) = Oy + OyYp and O(cy) =cOY, where ¥y,
Y2, and ¢ are arbitrary wave functions and ¢ is an arbitrary (real or complex) number. In Dirac notation, (5(|1p1) +
1)) = Olyr1) + Olyra) and O(c|yr)) = cO|y). If we expand the wave function ¥ in a set of basis states as in Eq. (1.17),
then Oy = Y, ¢;O¢; (in Dirac notation, @W) =3, c,-@|¢>,-)). The mean value (i.e., the expectation value) of O can
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then be easily expanded using the basis set expansion as follows:
WIo) = ke / dq 67 (@) O;(9). (1.19)
iy

For any operator O there are special functions, let us denote them as ¢;, such that when the operator acts on any one
of these functions, it simply returns the same function times a (in general, complex) number o;:

Ogj = 0j¢;, (or Olgy) = 0jl¢y)). (1.20)

These special functions are called eigenfunctions (eigen comes from the German word meaning self), and the numbers
o; are called eigenvalues. The eigenfunctions ¢; of the operator O are the solutions of the equation (1.20) where the
eigenvalues o; are the values of the constant for which this equation has solutions. For example, the eigenvalues and
eigenvectors of the z projection of the spin operator, S;, for a spin 1/2 particle are 0y =#/2 and 0, = —#/2, and |¢p1) = |1)
and |¢7) = |{), respectively. We have already seen that the states |1) and || ) are represented by ((1)) and ((1)) We shall see
in future chapters that the operator S, is represented by the matrix (%/2) ((1) _?), whose eigenvalues and eigenvectors are
as stated in the previous two sentences.

The eigenvalues of an operator corresponding to a real physical quantity, i.e., of an observable operator, and the mean
value of such an operator in every state |{), (W|(§|w), must be real. This imposes a restriction on the corresponding
observable operators. Operators that are Hermitian (self-adjoint) [see Appendix A, Eq. (A.40)] must have real eigenval-
ues, and it is a necessary condition that observable operators be Hermitian. In order to define a Hermitian operator, we
must first define the Hermitian conjugate of an operator. The Hermitian conjugate of an operator O, OF, is defined as the
operator that satisfies the following equation for any vectors |¢1) and |y):

Y2107 |yr1) = (Y1 10192)*. (1.21)

In wave function notation, (1.21) is [ dg ¥3(@)O™yr1(q) = [ [ dg ¥} (9)O¥2()]". An operator H is Hermitian if it is
equal to its Hermitian conjugate:

H="H" (1.22)
The eigenvalues {/;} of a Hermitian operator H are real, and their eigenvectors are orthogonal. That is,
Hei = higi, (or HIgi) = hildi), (1.23)
with A = h; (real eigenvalues) and
(Dild)) = /¢7(q)¢j(4) dg=0 ifi#}. 1.24)
These properties are proved in Sec. A.2 of Appendix A [see proof near Eq. (A.41)].

We shall see that operators in quantum mechanics can be represented by matrices. The Hermitian conjugate of a matrix
0, 0%, is defined such that

o' = (0", (1.25)
where O' indicates transpose of the matrix O, i.e., in terms of matrix elements,
(0“'). =0 (1.26)
i
A matrix H is Hermitian if
H'=H, ie, (H') =H}=H, 1.27)

)
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Not only are the eigenvalues {/;} of a Hermitian matrix H real, but its eigenvectors are orthogonal. That is,

Y Hug) = hig, (1.28)
I

where A; is real, ¢,Ei) is the kth component of the ith eigenvector (and corresponds to the state vector |¢;) in Hilbert space),

and ), ¢l(i)*q>l('/ ) = d;j (in Dirac notation, {(¢;|¢;) = ;). Here the eigenvectors have been normalized so that they are not
only orthogonal, but they are orthonormal.

Operators representing real physical quantities (observables) must be Hermitian. The definition of an observable oper-
ator is typically broadened in quantum mechanics to be any self-adjoint (Hermitian) operator on the quantum vector space
of states, without reference to whether it could, in practice, be measured.

The expectation value of a Hermitian operator O in state i [see (1.19)] is particularly easy to calculate when ¥ is
expanded using the eigenstates of O:

(WIOW) =) cie / dq $; (@) Oj(q) =Y _ cicjo; / dg 6} (@)dj(@) = Y _ Icil*o. (1.29)
ij ij i

Here we have used the orthonormality property f dq ¢7 (q)$;(q) =& j. For example, for the spin 1/2 particle example in
the superposition state (1.16), |{) =«|1) + B! ), the mean value of the z projection of the spin operator, S_, is given by
(W1S:v) = (@™ (1] + B*(IDSz(]t) + BIL)), which can be written as

h I3
wisan =5 (o 1) (o 5 ) (5) =5 [l - 167]. (130)

Since the states [1) and || ) are eigenstates of S, with eigenvalues oy = (1/2), 02 = (—1/2), and (¢;|¢;) = 6;, the inner
product in (1.30) is particularly simple to evaluate; this will be further detailed in Sec. 4.2).

1.3.3 QUANTUM ENTANGLEMENT

Entangled states of a system consisting of two or more particles are purely quantum in nature; no classical analog exists.
These specially correlated states have features that can be very disorienting if considered within the laws of classical
mechanics. We shall first explain what is meant by an entangled state, and then discuss the disorienting features of these
states.

An entangled multiparticle state is one that cannot be written as a product of single particle states. This feature of
quantum mechanics was originally called “Verschrinkung” (loosely translated as interconnection) by Schrddinger, and
it underlies some important relations between subsystems of a compound quantum system. Let us give two examples of
entangled states for two-particle systems.

The first example is the singlet spin-state for two spin 1/2 particles:

1
singlet) = — ( - ). (1.31)
|singlet) NG M) = 1))
Here, the left state refers to particle 1 and the right one to particle 2, i.e., |singlet) = % M) 1ly2 = ) 111)2). Clearly,

this state cannot be written as a product of single particle spin states in the form | x« )| x); it is a superposition of | x4 )| x )
and |xg)|x«) With a well-defined phase relation between them. The state of the first particle is entangled with that of the
second particle, and vice versa. In the case of (1.31), if the first particle is spin-up the second is spin down, whereas
if the first particle is spin-down, the second is spin-up. More generally, states of the form (c{[1)[{) + c2[4)[1)) with
nonvanishing coefficients ¢; and ¢, are entangled (typically, we consider normalized states so |c; |2 + |c2|2 = 1). Clearly
the triplet spin-state,

R
V2

[triplet) = —= (I ) + W) 1), (1.32)
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is also entangled. 10'If 2 measurement is performed on either the singlet or triplet, even after the spins are well-separated
in physical space, and particle 1 is determined experimentally to be in, say, state |1), particle 2 is in state || ) with unit
probability. Similarly, if 1 is in state || ), 2 is in state |1) with unit probability. Additional examples of entangled spin
states are % My + 1)), and, more generally, the states (d1|1) 1) + d2[) ).

It is important to stress the nonclassical nature of these states. Let us consider a particle of zero spin that is at rest
and disintegrates into two particles, which, by conservation of linear momentum go in opposite directions, each with
spin 1/2 so that the state of the two spin 1/2 particles is the spin singlet state. After the disintegration, we measure the
spins of the particles with two Stern—Gerlach apparatuses located on opposite sides of the initial particle at rest. Many
identical systems are prepared and the same measurement is performed on all of the identical systems. The probability of
measuring spin-up for particle 1 is 50%, but having measured spin-up, the probability of measuring spin-down for particle
2 is 100%. Moreover, if instead, we were to measure the spin of particle 2, the probability of measuring spin-up would
be 50%, but having measured spin-up for particle 2, the probability of measuring spin-down for particle 1 is 100%. This
type of behavior is not possible in a classical world. We shall discuss such nonclassical behavior further in Sec. 5.7 in
connection with an experiment suggested by Einstein, Podolsky, and Rosen; here we simply set the stage for the argument
that will be discussed there. The famous paradox involving entangled states, developed originally by Einstein, Podolsky,
and Rosen (EPR) in 1935 [20], criticized aspects of quantum mechanics, and highlighted the disorienting features of
entangled states. EPR tried to answer the question: “Can the quantum-mechanical description of ‘reality’ be considered
complete?,” where a “complete theory” is one that has the property that “every element of physical reality must have
a counterpart in the physical theory.” Reality (or realism) means that all measurement outcomes depend on preexisting
properties of objects that are independent of the measurement. The EPR argument about the incompleteness of quantum
mechanics was not, however, universally accepted. For example, Bohr viewed the EPR argument as a demonstration
of the inapplicability of classical descriptions to quantum phenomena. Today, most scientists accept Bohr’s view, but
Einstein was never convinced. In 1964, Bell investigated the EPR conclusion — that the quantum description of physical
reality is not complete — by using it as a working hypothesis and quantified the EPR idea of a deterministic world. In a
deterministic world, (1) measurement results are determined by properties the particles carry prior to, and independent
of, the measurement (this is what is called “realism”), and (2) results obtained at one location are independent of any
actions performed at space-like separation (this is called “locality” — the prohibition of any influences between events
in space-like separated regions). Recent experiments show that quantum mechanics does properly predict the results of
experiments that violate EPR’s criteria of reality and locality. We shall take up the EPR paradox and its generalization,
developed by John S. Bell, in Secs. 5.7-5.8. For the moment, we simply observe that the nature of entanglement is one
of the most nonclassical aspects of quantum mechanics.

Upon “throwing away” (i.e., determining not to measure) particle 2 of the singlet state, and probing (i.e., performing a
measurement on) the state of particle 1, having discarded particle 2, we find that it is not in a pure state, given by a wave
function, but rather it is in a mixed state with probability 50% for finding spin-up and 50% for spin-down. A mixed state
cannot be written in terms of a wave function (or ket state), but is specified by a density matrix. We will take up this topic
further in Sec. 2.5.

The second example of an entangled state is the spatial wave function

B(r1,r2) = C (M1 M2 4 M0 ), (1.33)

Again, this wave function cannot be written as a product of the form ®(ry,r2) = ¥ (r1)¥s(r2). Another way of writing
(1.33) is

|®) = C (IK)IK) + [K) k). (1.34)

The analogy with the triplet spin-state (1.32) is clear. Normalization of the wave function is determined by the coefficient
C, but it has no bearing on the entanglement of the two particles.

10 There are two more triplet states, [1)[1) and || )|{ ), that are not entangled; these states are called triplets because there are three states that have a
certain property in common, as discussed in Sec. 4.7.
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1.3.4 THE POSTULATES OF QUANTUM MECHANICS

Quantum mechanics can be formulated in terms of a few postulates, i.e., theoretical principles based on experimental
observations. The goal of this section is to introduce such principles. We shall state the postulates, first using Dirac
notation, and then restate them in terms of wave functions.

Postulates

1. At each instant of time, ¢, the state of a physical system is represented by a vector (sometimes called a ket) |y (¢)) in
the vector space of states.

2. Every observable attribute of a physical system is described by an operator that acts on the ket that describes the
system.

3. The only possible result of the measurement of an observable A is one of the eigenvalues of the operator A repre-

senting the observable. An observable must be represented by a Hermitian operator.

Since measurement results are real numbers, the eigenvalues of operators corresponding to observables are real.
The operator representing an observable is often called an observable operator, or observable for short. All eigenval-
ues of Hermitian operators are real, and their eigenvectors are orthogonal (and can be normalized), (¢;|¢;) = §;;.

4. When a measurement of an observable .4 is made on a generic state |y/), the probability of obtaining an eigenvalue
a; is given by [{¢;|V) |2, where |¢;) is the eigenstate of the observable operator A with eigenvalue a;.

The complex number (¢;|¥) is known as the “probability amplitude” to measure .4; as the value for .4 in the state
V).

5. Immediately after the measurement of an observable A that has yielded a value q;, the state of the system is the
normalized eigenstate |¢;).

With the system initially in state |1), measurement of an observable A collapses the wave function. If the result
of the measurement is a;, the wave function collapses to state |¢;).

“Collapse of the wave function” is the most controversial postulate. A viewpoint on this controversy will be
presented in Secs. 2.4 and 2.5.4.

There are several other formulations of the measurement postulates [the measurement operator formulation,
POVM (positive operator-valued measure) representation, etc.] but the present projective measurement formulation
is by far the most common.

6. The time evolution of the state of a quantum system is specified by the state vector |y (¢)) =U(t, to) | (f0)), where
the operator Uis unitary (L?Z:{ T=1), and therefore preserves the normalization of the associated ket, and is called the
evolution operator:

[ (1)) = U (t,10) 1Y (1)) - (1.35)

For a system with a time independent Hamiltonian H s U (t,10) = exp(—iI:I (t — to)/h). In general (i.e., even for time-
dependent Hamiltonians)

=HOU@, ). (1.36)

A1,
. (,0)

This is equivalent to saying that |y (f)) satisfies the Schrodinger equation, ih% [ (@)= H [ ().

7. The state space of a composite system is the tensor product of the state spaces of the constituent systems:

[V )N-particle = ), Capc 1) |B) ... 1C) . (1.37)
ap..C

The RHS contains the tensor product of N single-particle states, and the coefficients C are complex amplitudes such
that [) v_particle 1s normalized. Hence, the quantum mechanical vector space required for describing many particles
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is huge. Consider the size of the space for N spin 1/2 particles, where the size of the space for each particle is 2.
Each particle can be in an arbitrary superposition of two basis states, | 1) and | ), so the N-particle state can be
in an arbitrary superposition of 2V basis states. For N = 10 there are 2!0 = 1024 basis states, but for 100 particles,
2N 2 1.27 x 10 (and this without considering the positional degrees of freedom of the particles). The size of the
vector space grows exponentially with the number of particles!

Wave function form of the postulates

For the sake of emphasis, and to reinforce the relation between the vector space and wave function notations of quantum
mechanics, we restate the postulates in wave function notation.

1. At each instant of time, ¢, the state of a physical system is represented by a wave function that can be written in
coordinate space in the form v (x, £) (= (x|¥ (¢))), where x represents all the coordinates of the particles in the system.
2. Every observable attribute of a physical system is described by an operator that acts on the wave functions that
describe the system.
For example, the momentum operator can be represented by the operator, (/i) V,, and the position operator by x.
3. The only possible result of the measurement of an observable A is one of the eigenvalues of the operator A repre-
senting the observable.
Observable operators are Hermitian. All eigenvalues of Hermitian operators are real, and their eigenfunctions are
orthogonal:

(i19) = / dx 6 (DB () = 8.

4. When a measurement of an observable A is made on a generic wave function v (x), the probability of obtaining an
eigenvalue q; is given by |{¢:| V) |2 = deqb;‘(x)w(x)
with eigenvalue a;.

The complex number (¢;|1), is called the “probability amplitude” to measure a; in a measurement of A in the
state .

5. Immediately after measurement of an observable .4 has yielded a value a;, the system is in the state represented by
the normalized eigenfunction ¢;.

With the system initially in the state represented by the wave function v, measurement of an observable A col-
lapses the wave function. If the result of the measurement is a;, the wave function collapses to the normalized wave
function ¢;.

6. The time evolution of the state of a quantum system is specified by the wave function v (f)=
U(t, o) (to), for some unitary operator U called the evolution operator, which preserves the normalization of the
associated wave function. For a time independent Hamiltonian, U(z, tp) = exp(—iH(t — t9)/%). In general (i.e., for
time-dependent Hamiltonians), ih% = H®U(t, ty).

This is equivalent to saying that v () satisfies the Schrodinger equation, ih%l/f(l‘) =f v (1).

7. The wave function of a composite system is the sum of products of the wave functions of the constituent systems:

2, where ¢; is the eigenfunction of the observable operator A

YL Xn)Npartice = Y, Cap.ca(X1)Pp(x2) . . P (xn).
af...C

1.3.5 TIME-DEPENDENT AND -INDEPENDENT SCHRODINGER EQUATIONS

There is a significant difference in the way a state is propagated in time in quantum mechanics and in classical mechanics.
In order to describe the propagation in time of a quantum mechanical state, and also in order to better understand the
nature of a stationary quantum mechanical state (i.e., a quantum state that has a trivial time dependence corresponding
to a change of phase of the state with time), it helps to understand how a classical state is propagated in time. The
quantum propagation in time is described mathematically using the Hamiltonian, i.e., the “energy” operator. The concept
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of a Hamiltonian comes from classical mechanics. The reader who has not encountered the concept of a Hamiltonian in
classical mechanics might want to have a quick look at Secs. 16.1-16.7, linked to the book web page, before continuing
to read this chapter. This will build familiarity with the Hamiltonian, and will allow a better understanding of just how
different quantum and classical mechanics are.

In quantum mechanics, propagation in time of the wave function of the system, let us call it W (#) here, is given by a
wave equation, called the Schrédinger equation, which contains the Hamiltonian, H of the system. The Hamiltonian is
constructed by taking the classical Hamiltonian function H(p,r, ), where p and r are the momenta and coordinates of
the system (see Sec. 16.2), and turning it into an operator H, which acts on the wave function W (¢). The Schrodinger
equation is given by

ih%\y(z) = HY(1). (1.38)

[or, equivalently, ih%hll(t)) = |W(1))]. For a particle of mass m in a potential V (r, f), the Hamiltonian is H(¢) = % +

V(r, 1) [or equivalently, H (n = % + f/(t)]. We shall see in Sec. 1.3.6 that in classical mechanics, as well as in quantum
mechanics, the momentum is the generator of space translations (and the Hamiltonian is the generator of time transla-
tions). This property determines that the quantum mechanical momentum operator is given by p= (%V). (This result is
further supported by the analogy of the resulting wave equation for matter wave, the time-dependent Schrédinger equa-
tion, to the wave equation for light. The latter is second order in time, whereas the former is first order in time, yet the
nature of plane waves for free particles and plane waves for light in vacuum is strikingly similar, as we shall soon see,
and the nature of superposition of solutions for the two wave equations is completely analogous.) The time-dependent
Schrodinger equation takes the form'!
2
Y~ 9y v, (1.39)
ot 2m
Let us first consider the case of a time-independent potential. Then, it is possible to write the wave function as the
product of a spatial function and a time-dependent function W(r, ) = ¥ (r)¢(¢), as can be shown by the method of sep-
aration of variables. Substituting this product form into the time-dependent Schrédinger equation, dividing the resulting
equation by the product v (r) ¢ (#), and moving the parts of the resulting equation that depend on r and ¢ to opposite sides
of the equation results in the following expression:

—%Vzw(r) HVmY ) _ L 0e0/3t
¥ (r) YO

Hence, we can conclude that both sides of the resulting equation must be equal to a constant independent of r and ¢, since
a function that depends only on r cannot equal a function that depends only on 7 unless both functions are constants. Since
the units of both sides of the equation are energy, we will call the constant £. We now have the two equations obtained by
setting the LHS of Eq. (1.40) equal to E, and the RHS of (1.40) equal to E. We can integrate the equation for ¢ to obtain

& (t) = do exp(—iEt/h). (1.41)

The spatial wave function 1/ (r) satisfies the equation,

(1.40)

2
Iy vy = By, (1.42)
2m

which is called the time-independent Schriodinger equation.

1 To write the Schrodinger equation in curvilinear coordinates, see Sec. C.4 in Appendix C, and in particular see Eq. (C.53) to express V? in curvilinear
coordinates.
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For a vanishing potential, V(r) =0, it is easy to see by direct substitution that the plane wave, ¥ (r) = C, ePT/" where
Cp is some normalization constant (which may or may not depend on p), is a solution with energy E = p?/2m. The full

wave function is then given by the product form

. 2
W(r,1) = Cp e ®T/M= 550/ (1.43)
In analogy, the plane wave solution to the wave equation for light, Eq. (1.2), is
E(r,1) = Eg /70, (1.44)

where E(r, 1) is the spatially and temporally dependent electric field, Ex is a constant vector, and (1.44) is a solution
provided w = kc. The energy of the ‘photon’ corresponding to this field is E = iw = fikc, and its momentum is p = 7k.

In the previous paragraphs, we explicitly considered the case of a system consisting of one particle, but we could
have considered any number of particles, as long as the Hamiltonian is not explicitly time-dependent, and a similar result
would have been obtained. For example, the N-particle Hamiltonian for particles in an external potential U(r) interacting
with each other through an interaction potential V(r; — r;) is

N 2 N
_ Pi N -
H= ; [2m + U(r,):| +3 ,;»::1 V(r; —r)). (1.45)

The separation of variables method can again be used to write the wave function as the product of spatial and temporal
functions, W ({r;}, r) = ¥ ({r;})¢ (¢). The time-independent Schrodinger equation for the spatial wave function becomes

Hlﬁa(l‘l, rp,..., rN) = Eal/fa(rl, rp,... ,I'N). (1.46)
The eigenvalues E, and eigenfunctions ¥, (r1, 13, ..., ry) of this equation determine the time-dependent wave functions,
W, (ri,r,...,rN, 1) =Y (ry,ro, ..., ry) e Eat/h which are products of a function of {r;} and a function of ¢. Linear

combinations of these solutions are also a solution of the time-dependent Schrodinger equation (1.38); depending upon
initial conditions, a linear combination of solutions may be required. That is, if at time # = 0, the initial state is of the form
U(ry,ry,....,rn,00= >, ca¥u(r1,r2,. .., ry), then the time-dependent solution that satisfies this initial condition is

Y(ry,ry,..., Iy, 1) = Z Cq Yo(ry,ro, ..., TN) e iEat/h (1.47)
o

Problem 1.3

(a) Use the separation of variables method to show that a solution 1 (x, y) to the time-independent Schrodinger
equation [Hy(x) + Hy(y)]¥ (x,y) = EY¥(x,y) can be written as ¥ (x, y) = ¢(x)¢ (y) with ¢(x) and ¢ (y) satisfying
the equations, H, (x)@(x) = e@(x) and Hy(x)¢ (x) = € (x),if e + € =E.

(b) Generalize (a) to the case of a multidimensional Hamiltonian that is additive,

H(xy,x2,...,%) =Hy(x1) + - - - + Hyp(x).

Answer: (b) HY (x1,x2,...,%,) = E¥(x1,x2, ..., xn), (X1, .., %) =@1(X1) . .. on(x), E = €1 + - - - + &, and
Hi(xi)pi(xi) = €ii(x;)-
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1.3.6 MOMENTUM, ENERGY, AND ANGULAR MOMENTUM

In classical mechanics, the energy of a system is specified by the Hamiltonian (see Secs. 16.2 and 16.4), and therefore
it should come as no surprise that the energy operator in quantum mechanics is the Hamiltonian. Moreover, in classi-
cal mechanics, the Hamiltonian is the generator of time-translations, as it is in quantum mechanics (see below). Quite
generally, the space—time symmetries of displacements (i.e., translations), rotations and time-translations can be used
to derive the quantum mechanical operators for momentum, angular momentum, and energy, just as they are used in
classical mechanics to derive these classical quantities. These operators can also be obtained using wave—particle duality
arguments; the latter method is perhaps more intuitive, but less appealing.

For systems that are homogeneous, the state of the system must be invariant under displacement, i.e., under translation
of the system in space (or translation of the coordinate system used to describe the system). Similarly, systems that are
spherically symmetric are invariant under rotations. Furthermore, even if the system is not spatially homogeneous or
spherically symmetric, translating or rotating the system (or the coordinate system used to describe the system) does not
change it in any significant way as long as the system is not in an external potential. The same is true of any Galilean
transformation (i.e., translations, rotations, boosts of the system by a uniform velocity, or time-translations) applied to
the system (or of the coordinate system), as we shall see below. For each such space-time transformation there is a
corresponding transformation of observables and of state vectors, both classically and quantum mechanically.

Transformation operators in quantum mechanics must be unitary (or anti-unitary, as is the case with the time-inversion
transformation, but we shall not consider this case at present), U -1 — U, This requirement arises because a trans-
formation U which changes states, [yy) — [¢') = Ul|y), must keep inner products unchanged, (¢p|v¥) — (¢'|¢') =
({p|UNUY) = (¢|¥), hence UTU = 1. To determine how operators are affected by transformations, consider the trans-
formation of the state vector O|): Oly) — U(O|y)) = UOUTU|y), where we have inserted unity in the form utu
to obtain the last equality. Since this argument holds for any state vector |y), we conclude an opertor is transformed as
follows:

0 — 0 =vout. (1.48)

It is useful to incorporate the displacement parameter of the transformation within the symbol for the transformation
operator, e.g., if we translate the system by the vector R in coordinate space, the operator that represents this translation in
Hilbert space will be denoted as U(R). The translation of the coordinate of a particle located at r in configuration (coordi-
nate) space by the vector R will be denoted by 7 (R), i.e., 7 (R)r = r + R. Note that translation of the coordinate system
by R means that the particle coordinate goes to r — R, so translating the particle and translating the coordinate system are
very different operations. Note also the distinction between the operator that translates a coordinate of a particle, 7 (R),
and the operator that translates a state vector in Hilbert space, U(R).

If we first displace the system by R, and then carry out another displacement by R’, the resulting transformation
operator is given by the product U(R")U(R). But this resulting transformation is equivalent to a transformation by a
displacement R’ + R. Hence, we must have (at least up to a phase),

UR +R) = UR)UR). (1.49)

The group of displacements is abelian, i.e., UR')U(R) = U(R)U(R’). We mention parenthetically that rotational trans-
formations are not necessarily abelian (see below), but the group property that the product of two rotations is another
rotation does hold, i.e., the product of two rotational transformations of a state vector corresponds to another rotational
transformation.

A unitary operator U can be written in terms of a Hermitian operator K as follows: U(R) = ¢/X® In other words,
if U(R) is unitary, K(R) is Hermitian (and vice versa). It is easy to see that UU P =Ko=K = ¢iKe=iK =1, and
UTU=eK' ¢k = ¢=iK¢iK — 1. Moreover, from Eq. (1.49) we find that K(R’ + R) = K(R) + K(R)).

The inner product of the transformed state |y') = U(R)|y) with |r) yields the wave function (r|y’) = ¥/(r) =
(rlU(R)|y). Let us try to understand what this wave function is. First, we note that it follows from the definition of the
displacement operator U (R) that U(R)|r) = |r 4+ R), and by taking the Hermitian conjugate of this equation, (r + R| =
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(r]UT(R). But UT(R) is the inverse of U(R) (by the unitarity property), as is U(—R), hence U'(R) = U(-R). We
therefore find that (r + R| = (r|U(—R) and (r — R| = (r|U(R). Hence, (r|yy) — (r|y’) = (r|lUR)|¢¥) = (r — R|¢),
and therefore

Y(r) — ¥'(r) = (r]y") = (ffUR)|Y) = UR)Y () =y (r—R). (1.50)
Hence, ¢ (r — R) = UR) ¥ (r), from which we can easily surmise,
Y(r+R) = (r|U'R)|Y) = U 'RV () = URY (). (1.51)

An explicit construction of U(R) will now be presented.
Consider a system consisting of a single particle in 3D with wave function 1 (r), and apply an infinitesimal transfor-
mation of coordinates so that r — r + ér. Let us expand the wave function v (r + dr) about r:

Y@ +6r) =@ + VY -dr+-=[1+6r-V+---Jy@). (1.52)

Hence, the coordinate transformation, r — r + ér, leads to application of the operator [1 4 8r - V4 - - |, which, according
to the previous paragraph, is transformation operator U(—ér), so U(—dr) = [1 4 iér - (?V) /h+ - --]. Note that in the
second term we arbitrarily multiplied and divided by i# for convenience in the discussion that follows. The operator
U(—3r) is the transformation operator for translation of the wave function by —ér, not by dr, as explained in the previous
paragraph; hence U(ér) = {1 +i[—dr- (%V) /h]+- - - }. This infinitesimal displacement operator can be written in terms of
the infinitesimal Hermitian operator K = [—&r - (%V)/h] as follows: U(Sr) = ¢! K = il=8r-(4vy/m _ [1—idr- (?V)/h +
- -+ ]. Thus, the operator for translation by any coordinate R is

UR) = e RGVI/, (1.53)

To conclude, we have seen that

Y(r+R) = URY ) = REVy ), (1.54)

iR-(2V)/n

We say that the operator (%V) is the generator of the translations, and the operator e translates the wave function

by R. The operator (%V) is the momentum operator, as we shall see below.

Generators of Galilean Transformations

The direct connection of the generator of translations and the momentum can be understood in the broad context of gen-
erators of Galilean transformations.'> Quite generally, space—time symmetries include symmetry under transformations
comprised of rotations, translations, and transformations between uniformly moving frames of reference [21-24]. The
latter are Galilean (or relativistically, Lorentz) transformations that boost the velocities of one coordinate system relative
to another (or boost the velocity of a particle within a certain reference frame). If the velocity is small compared to the
speed of light, Lorentz transformations reduce to Galilean transformations. The set of all such nonrelativistic transfor-
mations (including translations, rotations, velocity boosts, and time-translations) are the elements of a group called the
Galilei group. Under a general Galilean transformation, the coordinate r and the velocity r transform as follows:

r>r=Rr—vi—R, r>r1r=Rr—v. (1.55)

Here v is a velocity boost vector, R is a displacement vector, and R is a 3 x3 rotation matrix.

12 Galilean transformations transform between the coordinates of two reference frames that differ by constant relative motion within the constructs of
Newtonian physics [21, 22]. Commonly, the definition of Galilean transformations is broadened to include not only velocity boosts, but also translations,
rotations, and time-translations. In the context of relativistic mechanics, Galilean transformations are replaced by Lorentz transformations [21-24].
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In classical mechanics, the generator of translations is the momentum p. Hence, by association with classical mechan-
ics, the operator %V that was derived above to be the generator of translations in quantum mechanics must be the
momentum operator P (see the discussion of plane waves in the next section to confirm this connection). The transforma-
tion operator U(R) that represents the translation of the particle by a vector R (or, if you like, translation of the coordinate
system by a vector —R) transforms the wave function v (r) to ¥ (r — R) = U(R)v (r) and transforms the operator T to
f — Ris given by UR) = PR/ je

Y@ —R) = PRAy () o BRMGPRIM 3 R (1.56)

Moreover, in classical mechanics, the generator of rotations is the angular momentum, J, the generator of boosts in
velocity is G = mr, and the generator of time-translations is the Hamiltonian, H [9, 24].

In order to cement (or at least reinforce) the connection between the operator %V, which is the generator of translations,
and the momentum operator, p, let us apply %V to a plane wave state. We do so in the next subsection, and then return to
Galilean transformations immediately thereafter.

Plane Waves

Plane waves are eigenfunctions of the momentum operator %V:

h
“VYE) = py). (1.57)

The eigenvalue of ?V appearing on the RHS of (1.57), is denoted p; we can denote the eigenfunction as p(r). The
solution to Eq. (1.57) is

Yp(r) = CePr/m, (1.58)

where C is a constant, as can be verified by direct substitution into Eq. (1.57).

Since ?V is the momentum operator P, the kinetic energy operator for a particle of mass m is % =— %Vz. The
plane wave function (1.58) is also an eigenfunction of the kinetic energy operator, with eigenvalue E = p®/2m. Thus,
E =p?/2m is the eigenvalue of the free particle Hamiltonian H= p?/2m, and the plane wave (1.58) is the eigenfunction
of the free particle Hamiltonian. The wave vector k = p /7 is related to the energy through the quadratic dispersion relation
E =1?k?/(2m). Clearly this is a very different dispersion relation than obtained for photons in Eq. (1.4).

Translation of a plane wave introduces an additional phase multiplying the wave function:
Yp( +R) = UCR) p(r) = &Py (). (1.59)

The phase of the phase factor on the RHS of (1.59) is the scalar product of the momentum eigenvalue p and the displace-
ment R.

The plane wave state (1.58) is not normalizable in the usual sense. In order to determine what kind of normalization
of plane waves is possible, it is useful to introduce the Dirac delta function. We shall do this immediately after the next
subsection.

As we shall see, plane waves are very useful in quantum mechanics; they are often used as basis functions with which
to expand wave functions.

Generators of Galilean Transformations Continued

Let us consider an infinitely small rotation, §¢ by the angle ¢ about a rotation axis ¢. The change in the coordinate
vector §r resulting from such a rotation is given by

dr=238¢ xXr. (1.60)
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The change in the wave function due to such an infinitesimal rotation is given by

Y(r+dr) =y +ér-Vy =y (r)+dp xr-Vy

= wmw%"’ : (rx (ﬁ) V>¢ = <1+i%‘"~L) v (1.61)
l

This infinitesimal rotation, when repeated many times, yields a finite rotation as specified below. Thus, the operator that
generates the unitary rotational transformation is the angular momentum operator L=r x p=r x (—if) V. We therefore
conclude that

¥ (Ryr) = U(=0)y (1) = &2y (n). (1.62)

The unitary operator for rotation by ¢ is
U(p) = ¢ 9L/M, (1.63)
and its power series expansion is e/ =1 — ip . L/h + - - -, where the first two terms on the RHS are sufficient

for very small ¢. Here Ryr is the rotation of the coordinate r by the angle ¢ about a rotation axis @, and U(e) is the
transformation of the state vector in Hilbert space due to the rotation. Note again the inverse relation that exists between
the effects of coordinate transformations on state vectors and transformations on coordinates. We will see in Sec. 3.3 that
the 3 x3 rotation matrix Ry = e~ L/ where L is the 3x3 representation of the angular momentum operator.

We should mention that rotational transformations about different rotational axes do not commute, e.g.,
R%Rwy #R(,,),R%. Moreover, different components of the angular momentum operator also do not commute, e.g.,
LyLy, # LyL,. Hence, the unitary transformation operators that correspond to rotations about different axes also do not
commute, e.g., Ux(¢x) Uy(¢y) # Uy(¢y)Ux(¢y), i.e., the order of rotations about different axes is important.

We will study rotational transformations at length in Sec. 3.3. The discussion here is only a preamble to the subject of
rotations and angular momentum.

Discussion of unitary transformations that boost the velocity of a particle by a certain velocity vector, and that accel-
erate a particle will be delayed until Chapter 2, Sec. 2.9.4, after we have developed some more expertise.

It is easy to determine the generator of time-translations by expanding the wave function v (¢ 4+ 6¢) in a Taylor series
about time :

Y+ 6t =) + (%1//) 8t+--- (1.64)
t

One of the postulates of quantum mechanics, see Sec. 1.3.4, which is essentially equivalent to the time-dependent
Schrodinger equation, is that the time evolution of a state vector is given by

Y(t) = Ut to) Y (to), (1.65)

where U is called the evolution operator, and

= HOU(t, ty). (1.66)

UL, 1
in U, to)
ot

Here H(t) is the Hamiltonian, which may or may not be dependent on time. Hence, using (1.65) (or using the time-
dependent Schrodinger equation), ¥ (t + 6t) =U(t + 5, H Y (1) =[1 — i w + - - 1Y (#). Thus, we see that the generator
of time-translations is the Hamiltonian. It is easy to verify by direct substitution into (1.66) that for a time-independent
Hamiltonian, H,

Ut tg) = e HE=10)/N, (1.67)

Clearly, the operator 1(¢,0) is the evolution operator from time ¢ = 0 to time ¢. The evolution operator satisfies the
condition, U(t; + 12,0) =U(t; + 12, t1)U(11,0), regardless of whether the Hamiltonian is time-dependent or not. For a
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time-independent Hamiltonian, U/(#;, ;) depends only upon the time-difference 7, — #1. Moreover, U(t, tp) is unitary, and
U(tg, UL, 19) = 1.

Note that, the relation that exists between the effects of coordinate transformations on state vectors and transforma-
tions on coordinates, Eqs (1.50) and (1.51), does not exist with regard to time transformations. Time appears only as
a parameter in the wave function, and this is different from the way that space variables are treated in nonrelativistic
quantum mechanics.

1.3.7 DIRAC DELTA FUNCTIONS

The Dirac delta function is defined such that it vanishes everywhere except at one point and there it is infinite, and its
integral equals unity. It can be defined as the limit of a normalized gaussian function as follows:

1
§(x) = lim ———e 22, (1.68)
00 /202

Mathematicians would say that the Dirac delta function is not a well-defined function, but rather a generalized func-
tion. The delta function §(x — x¢) is simply a shifted delta function that vanishes everywhere except at x = xp; clearly,

—(—xp)?
8(x —xp) = limgy 0 \/% e 22 . By definition of the delta function, the following integral, whose integrand contains
To
8(x — xp), depends only on the integrand at the point xg:
o0
/ dx g(x) §(x — x0) = g(x0)- (1.69)
—00

If g(x) = 1, the integral is unity; if g(x) = x, the integral equals x(3), etc.
The eigenvalue equation for the position operator, Xy (x) = xov (x), where x is the real eigenvalue, has the formal
solution,

Y (x) = 8(x — xo), 1.70)

i.e., ¥ (x) is the delta function centered at x.

Problem 1.4

(2) Show thatlim g+ + = =8(»).

(b) Show that lim,_, g+ 5 e F/€ =§(x).

Answer: (a) For x # 0, lim¢_,¢ ﬁ =0. For any value of €, % [ dx ﬁ =sgn(e). (b) 2‘—5 ffooo dxe /e =1.

Integrals of the form |’ fooo dx g(x)§(f (x)) can be evaluated easily by making a change of variables. Letting y =f(x), so
dy = (df /dx) dx and x=f "1 (y), where f~! is the inverse of the function f, we find,

7 d)
| dxssen = Z‘di

-1

g ), 1.71)

X=X;

where x; are the roots of the equation f(x) = 0. For example, f _OOOO dx g(x)é(ax) = |a|_1g(0). Another example involves
the following integral, with a > 0:

o0

2y ] L
/dxg(x)ﬁ(ax Yo) = 2@8<Vy0/a)+2\/c%g( Vyo/a).

—00




1.3 A First Taste of Quantum Mechanics 37

The derivative of a delta function, &’ (x), i.e., %8()6), is another generalized function related to the delta function. Its
behavior can be understood by considering f fooo dx g(x)8’(x), and integrating by parts to find

oo

/ dxg(x)8'(x) = — / dxg'(x)8(x) = —£'(0). (1.72)

—o0

Another related function is the step function, often called the Heaviside step function, ® (x) = int*  dx' §(x'); ©(x) = 0
forx < 0Oand ®(x) =1 forx > 0.
The 3D delta function, §(r) =§(x)(¥)é(z), is sometimes denoted by § G)(r). It has the following properties:

/ dr g(r) (ar) = |a| ™ g(0), (1.73)
/ dr g(r) §(ar — yo) = lal > g(yo/a). (174)
The 2D delta function can be used in two-dimensional integrals, e.g., it can be used to specify a specific solid angle, as in

32 (Rp — Rp), see below.
An important equation involving delta functions is

/ dr &K — 035k — K. (1.75)

[Typically, we shall not explicitly write out three-dimensional integrals but only use a single integral sign, just as we
have in (1.75).] To show that this equation is correct, multiply both sides of Eq. (1.75) by an arbitrary function f (k") and
integrate over K’ to obtain

/ dK' f(K) / dr & KT — 073 (k). (1.76)

The integral on the left hand side (LHS) of (1.76) can be computed by first doing the integral over k’ and noting that it
yields the Fourier transform of the function f, i.e., (1.76) becomes, after dividing the resulting equation by (277)3:

Q)32 / drf(r) 5T = f(k), 1.77)

where f is the inverse Fourier transform of f.'> The quantity on the LHS of (1.77) is, by definition, the Fourier transform
of f, denoted by f . We have thereby verified that (1.75) is valid.

Plane waves cannot be normalized to unit norm, but they can be “momentum-normalized” or “energy-normalized” or
“flux-normalized”. Since,

(Y 1¥p) = CyCp / dr @72/ = Cr Cp2h)*S(p — p), 1.78)
the delta function normalized plane wave state is taken to have normalization coefficient Cp:(Znh)’y 2 so
(Y| ¥p) =8(p — p') where

Yp(r) = (rp) = Qi) /2 P, (1.79)

13 The Fourier transform of a function f(x) in one dimension is defined as fol]ows:f(k) =) /2 ffooc dxf(x)eik". The inverse transform is defined as
f)=@m)~V2 [ dkf(k)e**. The three-dimensional Fourier transform of the function f(r) is defined as, f (k) = (27) /2 [°_ drf(r)e™™, and the
inverse transform is £ (r) = 2m) =/ [°_ dk f(k)e . See Appendix D and Refs. [25, 26].
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Often, the variable commonly used is not the momentum p, but rather the wavenumber k = p/#. Then the plane wave in
d-dimensions takes the form v (r) = (27) ~4/2 T
Let us explicitly consider plane waves in 1D. Normalization is then carried out in one dimension so that (v, |v,) =
2 72
8(p—p'). For an energy-normalized the plane wave, (V£ |¥g) = §(E — E') [note that §(£. — 5-) = %8(}7 —p))]. Hence,
the momentum and energy normalized 1D plane waves are given by

1 \2

Yp(x) = <ﬂ> er/n (1.80)
1/2 1/2

YE(x) = (%) (glh) ePr/h, (1.81)

respectively. These solutions can be written in terms of the wave number k = p/h. The wave function 1 (x) is normal-
ized so that (Y| ) =8(k — k) and the properly normalized wave function is ¥ (x) = (27)~1/2¢%x  Thus, the energy-
normalized 1D plane waves are flux normalized [this will be used in the discussion of the probability flux vector in the
paragraph containing Eq. (1.99)].

To energy normalize a 3D plane wave, note that

8 s
8(p_p/): p 217)

5(Rp — ), (1.82)

since [dpf(P)S(p —p')= [dpp* [dRpf(P)S(p — P') =f(P). The factor 1/p? on the RHS of (1.82) serves to canc;el

2 2 2
the p? in the volume element dp = pdpd €y Since §(4- — 5-) = 28(p —p), we see that §(p — p') = %#8(5—," -5)

3(S2p — Q). Hence, we conclude that Cg @, = (mp)]/2 Qrh) =32 ie.,
VEg, () = (mp)'/?2mh) 2P/, (1.83)

and, (Yo, [VEe,) =8(E — EN3D (R — @) = (m/p) 5(p — p).

1.3.8 POSITION AND MOMENTUM STATES, |x) AND |p)

The state vector |p) in Hilbert space for a particle with momentum p, is said to have position representation
Yp(r) = (r|p) = (27 h) 73/2 &®*/% (in 1D, v, (x) = (x|p) = (2w 1) ~1/2 ¢/P*/™). The state vector in Hilbert space for a parti-
cle located at coordinate x is |x) (and at coordinate r is |r)). Since the set of states {|x)} are complete, f dx |x)(x| =1, we
can use these states as a basis. Furthermore, the set of states {|p)} is also complete, so they too can be used as a basis.

Let us ask, what is (r|x)? To answer this question, we insert the unity operator, in the form 1 = f dp |p) (p|, between
the bra and the ket in (r|x),

(rlx) = f dp {xlp) (plx), (1.84)
and use (1.79) to obtain
(rlx) = Qrh) 3 / dp e T/ = §(r —x). (1.85)

Compare this with Eq. (1.70), the 1D case. We conclude that |x) is an eigenstate of the operator I with eigenvalue
x, I|x) =x|x), and (r|x) is the eigenfunction of the operator r with eigenvalue x, r{r|x) =x(r|x), and moreover (r|x)
vanishes unless r = x.

Similarly, by inserting the identity operator written in the form 1= f dr |r){r| into the middle of (p’|p), it is easy to
show that

(P'lp) =3(p — p). (1.86)
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The ket |p) is the eigenstate of the operator p with eigenvalue p, p|p) = p|p), and the braket (p’|p) vanishes unless p’ = p.

Problem 1.5

(a) Show that (x|x|x') =x8(x — x/).
(b) Show that (p|p|p’) =ps(p — p').
(c) Show that (p|X|x) = Qrh)~Y2 xerx/h,

1.3.9 EHRENFEST’S THEOREM

The time-dependent Schrodinger equation can be used to calculate time derivatives of expectation values of dynamical
variables, (O)(1) = (¥ (r,))|O|¥ (r,n)) = [ dr ¥*(r,)O¥(r, ). The time-derivative, %((’)), can be directly related to
the time derivatives of dynamical variables in classical mechanics (see Chapter 16, linked to the book web page). For
example, let us consider a single particle in an external potential, so H = % + V(r). The expectation values of the position
and momentum are (r) = f dr W*(r, H)rW(r, t) and (p) = f dr W*(r, 1)pWY (r, 1). We shall calculate the time derivatives of
these quantities, noting that only the wave functions in the expectation values vary with time. Using the time-dependent
Schrodinger equation we can express the time derivatives of the expectation values as follows:

d 1
a(r) = £<TH — Hr), (1.87a)
d 1
&m) = £<pH — Hp). (1.87b)

The expectation values on the LHS of (1.87) contain quantities called commutators. The commutator of operators A
and B is defined as follows:'*

[A,B] = (AB - BA) . (1.88)

The RHSs of Eqs (1.87) involve the commutators [r, H] and [p, H], respectively. These commutators do not vanish when

2
the Hamiltonian is given by g—m + V(r), as we shall soon see.

Problem 1.6

(a) Derive Eqs (1.87) using the time-dependent Schrodinger equation (1.38) and its complex conjugate,
—ih & W (1) = HV* ().
(b) Show that for any time-independent operator O, % (0) = % ([0, H]).

More generally, for a time-independent operator, O, (O) = %( [O, H]), whereas for a time-dependent operator, O(¢),

(1.89)

d 1 90(1)
50m) = %([O(t),H])+< ” >

14 1t is also common to define the anticommutator of A and B as {A, f?} = (AB + 3;1).
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To calculate the effect of an operator that is a commutator, [A,B], it is easiest to apply the commutator to a wave
function to determine what it does. For example, let us calculate [py, x] ¢ (r):

h
[Px, x] ¢ (X) = px(xP(r)) — xpy P(r) = 7 ¢(r). (1.90)

Hence [py,x]="/i, since (1.90) is true for any wave function ¢(r). Moreover, it is clear that this generalizes to
[pi,rj1="% 5.
As another example, let us calculate [p, H] ¢ (r):
[
[p.H]¢(r) = {(PZ* - *P) + (V) - V(I‘)P)} @ (). (1.91)

m  2m
The first term in the square parenthesis on the RHS of Eq. (1.91) vanishes, since the order of the operators can be
interchanged there, but the second term does not vanish since p (V(r)¢(r)) = (/i) [(VV) ¢ + VV ], and therefore the
second term on the RHS of Eq. (1.91) equals ? (VV) ¢. Hence, since this holds for any function ¢, we conclude that
[p, H] = (h/i) (VV). Now, let us calculate [r, H]¢(r):

P P’

[r,H]¢p(r) = :<r— — —r) + (rV(r) — V(r)r)} ¢(r). (1.92)
2m  2m
The second term in the curly parenthesis on the RHS of Eq. (1.92) vanishes, and the first term can be easily evaluated to
be (p/m)¢. Since this relation holds for any function ¢, we conclude that [r, H] = p/m.
We can now substitute the commutators that we have evaluated back into (1.87) to finally obtain:

a . _ (P

a(r> = ;, (1.933)
d = —(VV (1.93b)
E(P) = —( ). .

Equations (1.93) are called Ehrenfest’s theorem after the physicist and mathematician Paul Ehrenfest; they are very
similar to the classical equations of motion of Hamilton (see Sec. 16.2 which is available on the book web page), to the
extent that the quantity —(V V) appearing on the RHS of (1.93b) is interpreted as the average force on the particle. The
general form of Ehrenfest’s theorem can be stated as follows: the time derivative of the expectation value of a quantum
mechanical operator that is time-independent, i.e., does not explicitly depend on time, is equal to % times the expectation
value of the commutator of that operator with the Hamiltonian of the system (see part (d) of Problem 1.7).

Problem 1.7

(a) Complete the algebra to derive Eq. (1.90).

(b) Explicitly show that [r, H] =p/m for H = % + V(r).

(c) Redo the algebra to derive (1.87) to obtain the time derivative of the expectation value of an operatorA(t) that is
time dependent, i.e., calculate % (A(1)), to obtain the general form of Ehrenfest’s theorem.

Problem 1.8
Prove the following commutator identities:

(@) [A,Bl= —[BA.
(b) [A| + Az, B]=[A, B] + [A2, B].
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(c) [A1A2, Bl1=A1[A2, B] + [A1, B]A;.
(d) Provg thAe antigognmutator identities:
(1) {A,B}={B,A},
(2) {AlAz,B}—Al{Az B}+{A1 B}A27
(3) {A1A2, B} = Al{A2, Y+ {Al B}A,
(e) Prove the identity [A BC] {A B}C B{A C}.

Problem 1.9

Prove the following commutator relations:

@ [(po%31=2p
(b) [pr. ®*= 27’“.
© [P0 ®21=Z(pik + 3py) = 2 Q23pe + D).
(d) [rxp,r2]=0.

1.3.10 ONE-DIMENSIONAL WAVE EQUATIONS

If the motion of a particle depends on only a single coordinate, say x, the 1D time-independent Schrodinger equation is

221)0

—5 o H V@Y =Ey. (1.94)

For the 1D Schrodinger equation, it is useful to define the local wave vector K (x) by the relation K2(x)= 2—'” T(E—V(x)),

since then Eq. (1.94) can be put in the compact and simple form de — K?(x)y. This equation is a lD Helmholtz
equation.

Note that, if the potential for a particle in 3D is given by a sum of the form, V(r) =Vi(x) + V2(y) 4+ V3(2), the
time-independent Schrodinger equation separates so that the wave function is given by a product of wave functions,
¥ (r) = v¥1(x0)¥2(0)¥3(2), each of which satisfies a 1D equation, and the total energy is given by E=FE| + E» + E3.

Problem 1.10

Prove the statement above by writing the 3D time-independent Schrodinger equation and use the separation of
variables method (divide the equation by 1 (x)¥2(y)¥3(z), then separate the functions of the variables x, y and z in
the resulting equation).

Bound state solutions of a 1D potential are nondegenerate (only one eigenfunction has a given eigenenergy). To prove
2
this, assume the opposite; suppose 1 (x) and 1, (x) are two solutions with the same energy. Then ddx—"jz' /= & '/’2 /=

2 2
—K2(x), hence %”;wz — %1//1 =0. Integrating, we find %Iﬁz — %1//1 = constant (independent of x), and since, for

bound states 11 (00) = ¥ (00) =0, we find the constant equals zero and hence %\/f] d‘hz e 2, which can be integrated
to obtain y; = Cyp, where C is some constant. Thus, the two solutions are identical. (Note that this result is not applicable
to 1D on a ring of length L with periodic boundary conditions, since the bound state wave function need not vanish at
infinity.)
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For a potential that tends to finite limits as x — =00, it is easy to determine the asymptotic form of the wave function.
For energy E < V(—o0) and E < V(00), only isolated eigenenergies are possible, and the wave function must asymptot-
ically go to zero exponentially as x — = oo. The energy eigenvalues must, in general, be numerically determined by
integrating the Schr(jdinger equation from the left and from the right, and matching the logarithmic derivative of the wave
functions, dﬂ" ‘”) = dx V. /1 (x) at some intermediate value of x, say at x =xy,,. The isolated energies where this matching is
possible are the bound state energies.

Quite generally, the asymptotic form of the wave function for £ < V(00), is given by ¥ (x) == Cool ¥, where

o =+/|E — V(00)|/h, and, depending upon whether x — —oo0 is open,

C_ool—* for E < V(—00),

C—00 COS(K_oox + 6_o0) for E > V(—00), (1.95)

vx) —— {

X—>—00

where k_o =+/|E — V(—00)|/h and K_o, =+/E — V(—00)/h and §_ is a constant phase that is determined by the
boundary conditions.
If E> V(00), ¥ (x) —— coo cOS(KooX + 800), and Eq. (1.95) still applies as x — —oo.
X—> 00

The momentum and energy normalization of the 1D continuum wave functions have already discussed, see Eqs (1.80)
and (1.81). Bound state wave functions are normalized to unity, (Y |Y) = f dx [y ()2 =1.

1.3.11 PARTICLE-IN-A-BOX AND PIECEWISE-CONSTANT POTENTIALS

The solutions to the time-independent Schrodinger equation for a piecewise-constant potential are known analytically. It

is instructive to work out the solutions for such potentials, and we shall do so for the cases shown in Fig. 1.14. Matching of

the wave function at the discontinuities of the potential, and assigning the correct asymptotic forms of the wave function
are the two constraints that need to be implemented

The general solution to the equation, dx‘f = — K2y, for K2 =2m(E — V) /B> > Ois, ¥ (x) = Ae’®* + Be~K* and for

K2=2m(E — Vo) /h* < Ois, ¥ (x) =A'e"* + B'e **, where k2 =2m(Vy — E)/h*> > 0. The constant coefficients, A and

B, or A’ and B', are arbitrary and must be determined by matching the boundary and continuity conditions for the wave

function and its derivative, as explained below.

First consider the infinite

square well shown in Fig. 1.14(a).

@) V() () \j\(x) S(i]nce the potential is infinite out-

° side the well, the wave function

Vo must vanish outside 0 < x < L.

Inside the box, k> =2mE/ h2 >0,

0 L > X o and since the wave function must

vanish at the origin, we have

¥ (x) =A sin(kx). Moreover,

() V(x) (d V(x) since ¥ (L) = 0, we conclude that

A A only values of k=nm/L, where

Vo n=1, 2, ...are possible. Note

0 a > X that only nonnegative integers are

taken, since the negative integers

0 a X Y only change the sign of the wave

function, and therefore to not

FIG 1.14 Piecewise-constant potentials. (a) Infinite square well. (b) Square step potential. produce a different solution.

(c) Square barrier potential. (d) Finite depth square well. We shall normalize the wave

functions ¥ (x) =A sin(nwx/L)
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so that (Y |y) = fOL dx |1p()c)|2 =1, hence A = /2/L. Thus the bound state solutions are given by

Yn(x) = \/2 sin (WTX) . (1.96)

and the energy eigenvalues are

nkz  hrwin?
2m  2mI?

&

1.97)

n —

Problem 1.11

Consider the 1D time-independent Schrodinger equation with zero potential in the region 0 < x < L, with periodic
boundary conditions, ¥ (0) = v (L) and ¥’(0) = '(L). This corresponds to wrapping the line 0 < x < L into a ring
so that the points x =0 and x = L correspond to the same the point.

(a) Verify that i/ (x) = A ¢** + B e~ satisfies the Schrodinger equation.
(b) Show that either A or B should be zero.

(c) Find the values of k that satisfy the boundary conditions.

(d) Find the amplitude A that normalizes the wave function.

(e) Determine the probability of finding the particle between x and x + dx.

(f) Calculate the expectation values (x%) and (%).

2n%n?
mL?

Answers: (b) k=2mn/L. (c) A= 1/+/L. (d) P(x)dx=dx/L. () (x*) =L?*/3, (%) =

The solutions are plotted in Fig. 1.15 for the lowest three energy eigenvalues. The number of nodes in the wave
function ¥, (x) equals n — 1. The more nodes, the higher the energy because the kinetic energy (i.e., the second derivative
in the Schrodinger equation) increases as n”. The lowest energy solution (n=1) has finite energy 5~ L Clearly, the
discrete nature of the allowed energies and the minimum possible energy are very different from the cTasswal behavior
of a particle in a box (infinite square well) potential. The solutions with odd (even) n are symmetric (antisymmetric) with
respect to inversion about the center of the well, x — L/2 — —(x — L/2). This symmetry upon flipping in the sign of the
spatial coordinate is called parity, and results because the potential is symmetric under the inversion transformation. We
defer the consideration of parity symmetry [see the discussion near Eq. (1.109) and Sec. 2.9.2].

Problem 1.12
For a particle of mass m in a hard-wall box, 0 < x < L:

(a) Determine the expectation value (v, |x|v,).

(b) Determine the expectation values (V¥ |p|¥,) and (¥, |p2|1p,,).

(c) Find an analytic expression for the expectation value (| P2xp2 | V).

(d) For a particle in the ground state, find the probability of ﬁnding in the region 0 < x < L/3.

Answers: () (Vu|x|¥n) = L/2. (b) (Yulpl¥n) =0, (Yalp*|¥n) =
© (h nznZ) L (@) P=2 [ dx sin® mx/L ~ 0.1955.

2n2
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Next we consider scattering off the step poten-
tial shown in Fig. 1.14(b). The nature of a scatter-
ing problem is very different from that of a bound
state problem. Here the total energy E is given and
we seek reflection and transmission coefficients for
the scattering. We consider the scattering with inci-
dent wave from the left which has a reflected com-
ponent and a transmitted component if £ > V(. You
will be asked to consider the case where the incident
wave comes from the right in a problem below. We
denote the amplitudes of the reflected and transmit-
ted waves by r and t. Aside from an overall mul-
FIG 1.15 The three lowest energy eigenfunctions for a particle in a box tiplicative constant which has no physical bearing

(infinite square well) versus x. (see discussion of the probability current density
below), the wave function takes the form

T T[T T T[T T T T T[T T T T[T T

- 1 -5 . T T T I T T T I T T T I T T -I-
0 0.2 0.4 0.6 0.8
x/L

—_

R 4 e forx <0,

Yx) = { iKx forx = 0, (1.98)

where K2 =2m(E — Vo)/ 2. Despite the fact that the potential is discontinuous at x =0, the wave function and its first
derivative must be continuous [since the density and flux (see next paragraph) must be continuous]. Setting ¥ (07) =
¥ (0T), we find that r and ¢ satisfy the equation 1 + r = ¢, and setting %1//(0’) = %1//(0*) we find 1 —r= %t' hence

t= %K/k’ r= } +[I§7]§ Figure 1.16a plots the real and imaginary parts of the wave function for Vy/E=3/4,s0 K = k/2,

and the transmission and reflection amplitudes are t =4/3 and r = 1/3, respectively.

Problem 1.13

Consider the scattering off the step potential in Fig. 1.14(b) with incident wave from the right for £ > Vj. Take the
wave function to be of the form

f etk forx < 0,

’l//('x) = { —iKx + r/ ein fOI‘x > 01

(a) Determine the reflection and transmission amplitudes 7’ and 7.
(b) Show that 7 — 0 as E — Vo from above, and note how counterintuitive this is.
Answers: (a) ' = — K+k (b) K — 0as E — Vj, hence ¥ — 0.

K+k’

In order to better understand the nature of the reflection and transmission in this case, where the asymptotic momentum
is different as x — 00, we need to develop the concept of the probability flux vector, sometimes also called the prob-
ability current density. We shall do so here in arbitrary dimension, since the arguments here are dimension-independent.
Consider a specific region of coordinate space, V. Let us calculate the volume integral (in 3D or in 1D or arbitrary dimen-
sion d), |; vdr |y (r,n) |2, which is the probability of finding the particle in the region. The rate of change of this probability

is given by
d au* ih
a—fdr|w<r,t)|2=f ( LA —‘”) ’ fdr(w*vzw—vzw*m
t 2m
1% 1% 14

1)
=2’ dr v - (VY — (VY y),
m
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(a) 1.5 fbndb b bbb oo where we used the divergence theorem, Eq. (C.22), in the last equal-
_ . F ity. Since the region V is arbitrary, we conclude that
=
s on(r.t
E "D v e =0, (1.99)
‘g where n(r, ) = | (r, £)|? is the probability density and J is the prob-
E ability flux vector (sometimes called the probability current density),
‘15 7\\\\‘\H\‘\H\‘HH‘HH‘HH‘HH‘HH7 J(r,t) :Re[l/f*(r,t)gl/f(r,t)]
-20-15-10 -5 0 5 10 15 20 5 m
kx

= 5 AV D VY — VY @01y (). | (1100)

(b) 1.5 I Lo b b v Py |
— 1'07E i Equation (1.99) is the continuity equation, dn(r,t)/9t+V - J(r, 1) =0,
g which expresses the conservation of probability (and/or particle num-
El 0.50 E ber). Integrating (1.99) over a volume V, and applying the divergence
= 0.0] theorem (see Appendix C.3) to change the volume integral of the

’E 1 divergence of a vector into the surface integral of the vector gives,
s -0.504
o) 1. a
& -1.04 : = / drn(r,1) + % ds-J(r,1n) =0. (1.101)
- 1 -5 ! L ‘ L ‘ L ‘ LB ‘ L f V S

200 -5 10 kx - 0 > The rate of change of probability for the particle to be within the
volume V plus the net outward flux through the surface S surrounding
FIG 1.16 Real and imaginary parts of the wave the volume, §dS - J(r, 1), vanishes. The probability current density

function for the step potential shownin  ¢an pe rewritten as J(r, ) = Re(y*Vy) with the velocity operator
Fig. 1.14(b) with the stepatx = 0. () RHS is - g _ p/m= (1/i)V /m. This is probably the easiest way to remember

open [ in Eq. (1.98)] and K /k=1/2, and (b) . .
RHS is closed [ of Eq. (1.103)] and x/k =1, e probability current density.

Problem 1.14
(a) For ¢ (r,1) = Nel®T=o) calculate J(r, £) and (¥ ()] 5 [ (7).

2 2
_ G=hwt/m)® gt ;70

ia a
(b) For the wave packet, ¥/ (x, 1) = me 400 > 7 caleulate Jy(x, ) and (Y (1)| 2 [y ().

1
[27o2(]
Answers: (a) J(r,?) = /\%, W(m%h/f(t)) — /\%

_ (x—h»ct/m)2

220 (yr ()| 22y () = Tuc /.

e 1
(b) Jx(x, 1) =7, e 0] €

When applied to the scattering off the step potential in Fig. 1.14b, conservation of flux, § dS-J =0, gives the relation,

2
K |t|2 + k|r|2 =k, ie., W = 1. The probability current density in the incident wave is k x 1, in the reflected
wave is k|r|?, and in the transmitted wave is K|f|2. We define the transmission coefficient 7 of the particle as the ratio of

the probability current density in the transmitted wave to that in the incident wave,
K> K

T=—" =t 1.102
3 kll ( )
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Similarly we can define the reflection coefficient R as the ratio of the density in the reflected wave to that in the incident
wave. Hence, R=1-7=1— %ltlz. For the step potential in Fig. 1.14(b) with Vy/E =3/4, so K = k/2, the transmission
coefficient is 7 = 8/9 and the reflection coefficient R =1/9.

For the step potential of Fig. 1.14(b), but now for E < V), i.e., considering the case where the region x > 0 of the step
potential is classically forbidden, the wave function incident from the left must have a reflection probability |r|? equal to
unity, and the wave function in the classically forbidden region must decay away as x increases. The form of the wave
function is therefore given by

eR 4 e forx < 0,
te " ¥ forx > 0,

Yx) = { (1.103)

where k2 =2m(Vy — E)/h*. Equating the wave function on the two sides of x=0, we find 1 + r=t, and equating
the derivative on the two sides, we find 1 — r= (ik/k)t; hence = ﬁ and r= i:ﬁ;i Figure 1.16a plots the real
and imaginary parts of the wave function for Vy/E =6/3, i.e., k/k=1. The wave function decays very quickly in the
classically forbidden region; it falls to 1/e of its magnitude after a distance x=«"!. The reflection probability is, of
course, unity |r|> = 1 since all particles are eventually reflected by the barrier (i.e., all flux is reflected, despite the finite
probability of finding particles in the forbidden region near the barrier edge).

Let us now turn to the barrier potential in Fig. 1.14(c). We shall first consider the case when the energy is less than
the potential barrier height, E < Vj, and flux is incident from the left. The wave function with the right boundary
conditions is

e* 4 ekt forx <0,
Yx)y=1{A 6'1: +Be™™ for0<x<a, (1.104)
té for x > a.

Matching wave function and derivative at x =0, we obtain the equations, 1 + r=A + B,and 1 — r= %(A — B), and
at x=a we obtain, Ae“? + Be ¥4 =1e™*, and %(Ae"“ — Be *%) =e'*@ These four linear equations can be solved
for the four unknowns r, A, B, and r. We explicitly present the formulas only for the transmission and reflection
amplitudes:

. dje—kag (1.105)
T (=k2 4+ K2 + 2iki)e 4+ (k2 — k2 + 2ikic)e<e’ ’
k2 2\(ka _ ,—ka
&+ —e™ (1.106)

"T SRR + 2ike)ek + (2 — K2 2ikic)e—<

The transmission and reflection amplitudes satisfy the condition, 1712 + > =1. Figure 1.17(a) shows the wave function
for k/k=1/4 (E/Vo~0.9411) and a =3. The reflection and transmission coefficients, |t|> and |r|?, are plotted versus
energy (up to the barrier height) in Fig. 1.17(b). For small energies, the transmission is exponentially small. The ratio of

the transmission to reflection amplitudes is given by ¢/r= %e’”‘“, so if the factor e is taken out of the
ikx

transmission amplitude and is instead taken to multiply the plane wave factor ¢ in (1.104), the reflection and transmis-
sion amplitudes are 7 /2 out of phase. It should be mentioned for future reference that the phase of the transmission and
reflection amplitudes can be determined (i.e., can be measured) if interference experiments are carried out. Figure 1.17(c)
shows the wave functions for barrier penetration of a wide barrier and a narrow barrier.

For E > V{ (not shown in Fig. 1.17), the form for the wave function in the region 0 < x < ais given by ¥ (x) = A e’®* +
B e—in.
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FIG 1.17 (a) Real and imaginary parts of the wave function, v (x) versus kx, for the barrier potential in Eq. (1.104) with k /k=1/4
(E/Vp~0.9411) and a = 3. (b) Transmission and reflection coefficients \tl2 and |r|2 versus E/Vj. (c) Real part of the wave
function ¥ (x) versus coordinate x for barrier penetration of a wide and a narrow barrier (the imaginary part behaves similarly).

Problem 1.15
Calculate the reflection and transmission coefficients for the barrier potential in Fig. 1.14(c) for E > Vj.

212 o0 . .
Answer: |f|2 = =i |7|2 =1 — |¢|%. The transmission || versus energy can show oscillations, due

T 4R2K2+(k2—K?2)? sin? (Ka)’
to the sine function term in the denominator of the expression for |¢|2, similar to the oscillations in Fig. 1.19.

Bound States in a Potential Well

The finite well potential in Fig. 1.14(d) possesses at least one bound state, no matter how small the well depth, and as the
well depth increases, more bound states develop. Let us search for the bound state energy E that is negative. The wave
function outside the potential well must decay exponentially as x — —oo, and as x — +00, so we take the form of the
wave function to be:

Aer™ forx < 0,
Y(x) = { Be® + Ce &% for0 <x <a, (1.107)
De™"* forx > a.

where k =./2m|E]| /h2 and K =/2m(Vp — |E]) /h2. Matching the wave function and its derivative at x =0 yields the

equations, A=B + C, %A =1i(B — (), and matching the wave function and its derivative at x = a yields the equations,
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BelKa 4 Ce~iKa — pe=¥a K (BelKe — Ce=iKa@) = _ xDe~*4 These equations can be written as a matrix equation,

0

0
=10l (1.108)
0

Taw >

where the matrix M is a 4 x 4 matrix, whose determinant must be zero for there to be a bound state solution. Setting the
determinant of the matrix M equal to zero yields an equation for the bound state energies.

In order to simplify the calculation of the bound state energies and eigenstates, let us make use of parity symmetry
(symmetry under inversion of coordinates) to classify the eigenfunctions of the potential shown in Fig. 1.14(d). To do so,
let us shift the potential by —a/2 so that it is symmetric under inversion of the coordinates, x — —ux, i.e., V(—x) = V(x).
Then the wave functions must have a definite symmetry under this transformation of coordinates, as we shall now show.
Applying the inversion transformation P (i.e., the parity operator) to the Schrédinger equation, Hyr = Ev, to obtain
PHy = EP, inserting unity in the form P~!P between H and ¢ on the right hand side of the equation, PHP~! Py =
EPvr, and noting that PHP~! = H because the potential is symmetric, we find that both ¥ (x) and Py (x) =¥ (—x)
satisfy the same wave equation. Unless the wave function is degenerate (i.e., there are more than one solution of the
wave equation with the same energy), this implies that ¢ (—x) = 1 (x). Applying the parity operator again, we find that
€2 =1, hence, ¢ = =+ 1. Thus, all nondegenerate eigenfunctions are either even or odd under parity inversion. These wave
functions said to have even parity or odd parity. In our case, the even solutions are of the form

Aer forx < —a/2,
Bcos(Kx) for —a/2 <x<a/2,
Ae ¥ for x > a/2.

Yx) = (1.109)

Matching the even wave function and its derivative yields, Ae %42 = Bcos(Ka/2), kAe *%? = KBsin(Ka/2), hence
tan(Ka/2) = /K. (1.110)

The odd solutions are of the form

5...|...|...|...|...'5
] K/K’l - A forx < —a/2,
4] , B4 Y(x) = {Bsin(Kx) for —a/2 <x <a/2,
] [ —Ae™™*  forx > a/2.
= 3] ! Ea (1.111)
= ] / Y Matching the odd wave function and its deriva-
\E ] a=4 / r.2 tive yields, Ae %2 = — Bsin(Ka/2), kAe *%/? =
8 27 \ 7 -2 KB cos(Ka/2), hence
la=6 _wa=6 u
1+ a=1 _--~ -1 cot(Ka/2) = —« /K. (1.112)
:Afe—’ = -
01=" . 11— 0 No odd bound state exists unless Voa® > 2h%/(8m),
: . one bound state exists if nzhz/(Sm) < Vod® <
IEVV, 97212/ (8m), etc.
The transcendental equations (1.110) and (1.112)
FIG 1.18 Graphical solution of Eq. (1.110) for the even parity bound

state energies of a square well potential for three different
values of a: a=1, a=4, and a = 6. The function tan(Ka/2) is
drawn in various shades of blue for different a, and « /K is
drawn as a red dot-dashed curve. Solutions are indicated by
open circles.

must be solved numerically to obtain the eigen-
values for the even and odd solutions respectively.
Figure 1.18 shows the graphical solution of Eq. (1.110)
for the even bound states. The dashed curve shows
k /K versus E/Vy, and the solid curves plot tan(Ka/2)
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versus E/Vy for various values of a. The intersection point(s) of the dashed curve and the solid curve, indicated by
open circles, specify the bound state energy (energies). We used units where Vo =m =% =1, and we solved Eq. (1.110)
graphically for three values of a: a=1, a=4, and a = 6. For a =1 and a =4 there is only one bound state of even parity,
but for a =6, two bound state energies are obtained. As a is increased still further, more and more even bound states
will be obtained. A similar graphical solution can be implemented for (1.112) to find the odd bound state energies in the
square well potential.

Clearly, as Vy — o0, the solutions go to the even
and odd solutions of the infinite square well, and the
tunneling of the wave function into the classically for-
bidden regions becomes exponentially small.

The bound state energies for the square well poten-
tial in Fig. 1.14(d) and the transmission |72 ver-

[#12
bound states

[—

sus E/|Vyl|, with ,/2m|V0|/h2a=37t are shown in
Figure 1.19. The peaks in the transmission are reso-
nances (see Sec. 12.6 in the Scattering Chapter for a
complete discussion of resonances, but basically, the
idea is that the particle gets stuck in the well for a long
time at these energies), which appear at the energies of
the bound state levels of an infinite square well of the
same width.
square well with / 2m|Vp|/h? a= 3. The resonances in the In 1D (and also 2D, see Sec. 12.9.1) an attractive
transmission for £ > 0 are clearly seen. potential always has a bound state, regardless of how
small the well depth V or width a [see Fig. 1.14(d)].
To show this, consider a potential with well depth that satisfies Vo < %?/(ma?). The physical interpretation of this
condition is that the well depth is much smaller than the kinetic energy the particle would have if it were totally confined
in the well. Let us move the origin of the coordinate system to someplace near the middle of the well. We hypothesize
that the magnitude of the bound state energy, |E|, is much smaller than Vj; this will be confirmed by our result. Hence, we
neglect E on the RHS of the Schrodinger equation, d>v//dx* = %[V(x) — E]y, within the well. Integrating from —a/2

to a/2 we find,

|
T
1

b —

0 .
EIV,

FIG 1.19 Bound state energies, and transmission |t\2 versus E/|Vp| for a

a/2

4y
dx

_2m

=7 dx V(X)) (x), (1.113)

—a/2

where we have extended the integral from —oo to oo but the integrand vanishes beyond +a/2 since the potential
vanishes there. Without loss of generality, we can take the wave function to be unity within the well, and to be
of the form v (x) = e (o the right and left of the well, where thz/ (2m) = |E|. Substituting into (1.113) we find,
—2K = zh—'f ffooo dx V(x), hence

50 2
m
Bl = 55 / V) | . (1.114)
—00

In accordance with our hypothesis, the bound state energy is small, in fact, second-order small in the well-depth and
well-width.

2D and 3D Wells

The solution of the Schrédinger equation for piecewise-constant potentials in 2D (or 3D) can often also be obtained ana-
Iytically. Solutions to the Schrodinger equation in a potential that separates, e.g., V(x,y) = Vi (x)4 V2 (y), can be formed as
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products of the wave functions for the 1D potentials. For example, for the 2D infinite box potential, the solutions are given

2 2
bY Ynen, (6.0 =/ T L sm("*”) sm(n;‘m) and their energies are E;, ,, = K2 (k2 + k,%v)/(Z m) = 2m (% + %) For a

3D infinite box potential, the solutions are given by

8 . (mmx\ . [(nymy\ . [ nw
Yienyn, (X,Y,2) = LI sin < zx ) sin < )Ly ) sm( ZLZy> , (1.115)

and the energy eigenvalues are

X

72 "2
L Ly

X

+

Ny, Ny,Nz — L2

2m T 2m Z

RO+, +8k2)  m2g2 (2 nd 2
Ty Tl R Ty ) (1.116)

For Ly =Ly =L, =L, the lowest energy corresponds to ny =ny,=n,=1, i.e, E;11 = 3 ;‘ 722 (note that the »n; cannot

equal zero, for otherwise the wave function vanishes). The first excited state corresponds tony=n;=1 and ny =2 and

. . 2
the permutations of these quantum numbers, i.e., Ex 11 =E121=E112 = 62 L2

degenerate. The second excited state is also triply degenerate, Ex21 = Ex120=E122 =9 ;’; LZ .

A quantum well potential is one that confines particles, originally free to move in three dimensions, to two dimensions
so they are free to move only in a planar region, a guantum wire potential is one that confines particles to move only in
a line and confines them in the two orthogonal directions, and a quantum dot potential is one that confines particles in
all three directions so they are localized near a certain point. Semiconductor nanostructures that confines the motion of
conduction band electrons, valence band holes (missing electrons), or excitons (pairs of conduction band electrons and
valence band holes) in one, two or three dimensions can be readily fabricated. The Schrodinger equation for electrons
can be easily solved for such structures. For example, we shall do so for quantum wells and wires in Sec. 9.1.1, and for
spherical quantum dot structures in Sec. 3.2.2.

Hence, the first excited state is triply

Problem 1.16

(a) Calculate (an,ny,nz x|l/fnx,ny,nz>: (l/frz,(,ny,nZ |px|l/fnx,ny,nz>: (l/frz,(,ny,nZ |p)2¢|an,ny,nz)'
(b) Calculate (Wi, sy, [P |Vinyinyn.)-

(c) Calculate (wnx,ny,nz |x2 | an,ny,nz e
(d) For Ly =Ly,=L;=L, find the energy and degeneracy of the third excited state.

2
Answer: (a) (wnx,ny,nz Xwa,ny,nz) =L/2, (wnx,ny,nz |px|wnx,ny,nz) =0. (b) 2mEn,5,ny,nZ =n’n? <L2 + = %) (c)

(D E311=Ei31=E 3 =111

@n2n?—3)L2
6n2n?

2mL2

Tunneling Through a Double Barrier: Resonances

Let us now consider the potential in Fig. 1.20(a). This potential with L, — oo is similar to the potential in Fig. 1.14(d),
which has bound states. Therefore, it should come as no surprise that the transmission |¢|> has peaks at energies where the
potential with L, — oo has bound states [see Fig. 1.20(b)]. These peaks are called resonances; they are the quasi-bound
states that are vestiges of the bound states of the potential with L, — o0. The nature of these resonances is somewhat
different from those we encountered in Fig. 1.19; see Sec. 12.6 for a full discussion of resonances.
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FIG 1.20 Tunneling through barriers. (a) One-dimensional double barrier potential. (b) Transmission through the barriers versus energy. (c)
The potential with a bias voltage ¢ applied. (d) Schematic illustration of the current versus bias potential AV.

The potential in Fig. 1.20(a) is a simple model of a solid-state device composed of a multilayer structure formed by a
stacking of two semiconductor single crystal thin films of different composition or doping. The double barrier resonance
structure can be made of GaAs/GaAlAs layers in which an undoped GaAs is sandwiched between two potential barriers
of GaAlAs. The device is then connected to leads, and a bias potential AV = eg, where AV has units of energy and ¢ of
electric potential (volts), can be imposed across the device so that a current / flows. Figure 1.20(c) shows the potential
versus position. Experimentally one can measure the current versus voltage curve, I(¢) (from which the differential
conductance g = dI/dg can be determined). The current is due to electrons to the left of the double barrier that move
to the right provided the electrons are within a range of energies AV. The question of how the measured current can
be calculated from the solution of the Schrédinger equation will be addressed in future chapters, but here we note that
when the bias voltage is small, the conductance is directly proportional to the transmission coefficient. Figure 1.20(d)
schematically depicts the current expected through the device as a function of AV. The quasi-bound states in the well
affect the tunneling, and peaks in the current versus voltage result. The occurrence of peaks in the /(¢) curve indicate that
the differential conductance changes sign, being positive to the left of the peak and negative to the right. This property is
a key element in the quantum electronics device known as the resonant tunneling diode.

Metal-Vacuum and Semiconductor—Vacuum Interfaces

True metal-vacuum, semiconductor-metal or semiconductor—vacuum interfaces are not discontinuous. The potential
energy of the electrons change continuously over an interval whose dimensions are of the order of the interatomic
distances in the metal or semiconductor. The potential energy near the surface can be written approximately as

V)= — VW (1 e ")71, which approximates to the previously used discontinuous potential as a — 0. Figure 1.21
2 —
plots V(x) versus x. The solution of the Schrodinger equation, —%‘flx—f -V (1 + e/ “) ! Y = Evr, can be written in

terms of a hypergeometric function [see Eq. (B.33) in Appendix B] and the reflection probability can also be obtained
analytically. We shall not pause to do so here.

Electrons in metals can essentially be regarded as free particles. Consider a thin metal film grown on a semiconductor
surface. The free electrons in the metal film cannot escape the metal into air because of the work function and cannot
escape into the semiconductor if the band edge of the semiconductor is lower in energy valence band in the metal, i.e., if
the valence band in the metal is in the energy gap of the semiconductor. Figure 1.22 schematically shows the arrangement,
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the electron energy distributions in the metal and
semiconductor and the potentials that the elec-
trons experience in the vacuum, metal, and semi-
conductor. The electrons are confined perpen-
dicular to the surface to be within the metal.
This leads to a set of standing waves, allow-
ing only specific wave vectors in the perpen-
dicular direction (no such restriction exists in
the parallel direction and electrons are free to
propagate with any wave vectors in the paral-
lel directions). The electronic states form energy
bands, as shown in Fig. 1.22, one for each wave
vector allowed by the confinement. The energy
of the bands depends on film thickness, and
therefore thickness-dependent properties result.
For example, the work function can show an
oscillatory thickness dependence. The oscilla-
tions occur because the quantum well states shift
to lower energies as the film thickness increases.
At regular thickness intervals, new states become
populated as the state energies decrease with
increasing film thickness. But film thickness is
not a continuous variable; it varies in steps of
the thickness of a layer of metal atoms. If the
period of the oscillations is incommensurate with
the layer thickness, a beat period appears in trans-
port properties.

The idea of energy eigenvalues of a periodic
potential, such as a sinusoidal potential or a series
of square well potentials, that form energy bands,
as shown in Fig. 1.23 will be discussed at length
in Chapter 9. Any periodic potential, whether the
potential is in 1D, 2D, or 3D, will have eigenval-
ues that consist of bands, with band gaps between
the bands, as shown schematically in Fig. 1.23.

1.3.12 THE DELTA
FUNCTION POTENTIAL

Another simple model potential whose properties
can be solved analytically is the delta function
potential, V(x) = Vo (x). The potential strength
parameter Vo, which has units of energy times
length, can be either positive (repulsive potential)
or negative (attractive potential). Away from the
origin, the solutions to the Schrodinger equation,

n? d*y

T o A + Vod(x) ¥ = Ey,

(1.117)
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are plane waves, ek with k? = 2mE /h2 if E > 0, Energy bands
and e*** with «? =2m|E|/h* if E < 0 (for the case
when Vy < 0). At the origin, one can match the — S—

wave function and its derivative to the right of the
origin and to the left as follows: 0 5 10 15 20 25

Energy (arb. units)

Y (07) = ¥ (07) = y(0),

2mV,
':2 0%©).  (1.118)

FIG 1.23 Lowest lying energy bands of a one-dimensional potential.

¥'(07) =y’ (0") =

The latter equation follows by integrating the Schrédinger equation over a small region containing the origin, i.e.,

S de =2 sy — Ey =0] — — 2 [4/(07) — ¥/(07)] + Voy (0) =0. We shall consider two problems
€—>

with delta function potentials; a scattering wave impinging on a delta function potential from the left, and a bound state
problem in an attractive delta function potential.

For the scattering problem, let us take the wave function to be of the form ¥ (x) =™ + re=® for x < 0, and
— 4 ikx : : _ Sl N s 2mVy 1 _ imVg/k
¥ (x) =te"™ for x > 0. Matching gives 1 + r = ¢, and ik(1 — r) = t(zk + o E—— and r= TS
For the 1D bound state in an attractive delta function potential, the wave function takes the form v (x) =A ¢** for

~2
x < 0, and ¥ (x) =B e for x > 0. Matching gives A=Band E= — ';TVZO Only one bound state exists for the attractive

delta function potential in 1D, with energy E proportional to the square of the strength of the attractive potential.

). Hence, t =

1.3.13 WAVE PACKETS

We have determined the continuum wave functions for piecewise-constant potentials in Sec. 1.3.11. These wave func-
tions, V£ (x), are eigenstates of the Hamiltonian. But how are these wave functions related to classical motion of a particle
in these potentials? In order to obtain classical-like motion of a particle, we must start from a wave function of a form that
is perceptibly different from zero only in a very small region of space in order to mimic the characteristic of a classical
particle that is localized about a given point in space at a given time. Such a wave function is called a wave packet. We
can make such wave packets by taking superpositions of the energy eigenstates that we calculated above.

For example, suppose that at time 7 =0 our wave function takes the form ¥ (x, 1= 0) = A exp(— %)e"k", where xg
is a point very far to the left of a barrier potential centered near the origin. This initial wave packet is localized (centered)
around the point xo and has central momentum p = 7k, with a spread of momenta around this central momentum. The
initial state ¥ (x, 0) can be expanded in energy eigenstates (having the right asymptotic behavior, e.g., coming from the
left), ¥g(x), in the form ¥ (x,0) = f dE b(E)Ye(x), and the amplitudes b(E) can be ascertained by projection of this
initial condition onto g (x) to be given by b(E) = f dx j(x)¥ (x,0). The time-dependent wave packet is then given
by ¥ (x,1) = [dEb(E)Yg (x)e~*Et/h_This type of wave function expansion in terms of a superposition of eigenstates of
the Hamiltonian is very general. Given any initial wave packet at time ¢t =0, 1 (x, 0) = ¥o(x), the solution of the time-
dependent Schrodinger equation having this initial condition can be obtained as a superposition of eigenstates of the
Hamiltonian, ¢, (x), in the form, ¥ (x,£) = 3_,, by ¢m(x)e~Ent/" by finding the amplitudes b, such that at time 7 =0,
¥ (x,t=0) =o(x). If the spectrum contains both a discrete and continuous region,

Y1) =Y by pm(x)e Bt/ 4 f dE b(E) ¢r(x)e”E1M, (1.119)

Quite generally, this method can be used to form time-dependent wave packets in terms of basis states that are eigenstates
of the Hamiltonian (see Sec. 6.6, and particularly see Fig. 6.20) for an illustration of how a wave packet propagates as a
function of time.
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Problem 1.17
Consider the 1D Gaussian wave packet, ¥o(x) =N exp (—%) X moving in free space so H = p?/2m.
(a) Calculate (x);=0, (AX);=0,{P)r=0, (Ap):=0-

(b) Determine the Fourier transform of the wave packet, ¥ (k).
(c) Find an analytic expression for time-dependent wave packet, ¥ (x, ) = \/% f fooo dk g (k)e~@®1 with

W (x,1 = 0) = o(x) and o (k) = 2
(@ Calculate (x)s, (Ax)p.(p)is (AP)r.

Answers: (b) Yo(k) =N+/20 o (k=k)*

2
[271(7 ]1/4 (Xft'fzt/m) ik (x—hict/m)+ip(t)
©) ¥x, 0= N[ z(t)]1/4e el :
2
where 62(f) =% + i 2% and ¢ (1) = 2:12 £.

(d) () =twt/m, (Ax),=0\/1+ oo, (p)i =T, (Ap) =2

1.3.14 THE LINEAR POTENTIAL AND QUANTUM TUNNELING

Quantum tunneling can occur through regions where the potential energy is larger than the total energy E. We have already
seen an example of quantum tunneling through a piecewise-constant barrier potential in Sec. 1.3.11, where we learned

that the general solution of the Schrodinger equation for piecewise-constant potential Vo > E, ;’m ’flx;” + Vo = EVY, is

¥ (x) =aexp(kx) + bexp(—kx) where k = /2m(Vy — E)/h2 > 0.

Quantum tunneling through a region where the potential has a constant slope can be described in terms of well-known
functions called Airy functions (see [27]), i.e., the solution of the Schrédinger equation for a linear potential, V (x) = Fx.
is given in terms of Airy functions. A linear potential is experienced by a particle of charge g in a constant electric field,
&, where the constant 7 = — ¢& and the force F is F = — dV /dx = — F = g€. The Schrodinger equation takes the form

>y 2m
o h—z(}'x —E)y =0. (1.120)
By making the transformation z = ax + b with the coefficients a = CmF/HH3 and b= —QmF /WHVPE/F, Eq. (1.120)
takes the form
2
% =¥ (2). (1.121)
The general solution of this equation is given in terms of Airy functions [see Eq. (B.10)]: ¥ (2) =cAi(z) +
dBi(z). Figure 1.24 plots the Airy functions. The function Ai(z) decays exponentially in the -classically
forbidden region, z > 0, whereas the unction Bi(z) exponentially increases in this region. Both functions oscillate in
the classically allowed region (where E > V), z < 0. The asymptotic forms of these functions as z — £o00 is given in
Eqs (B.12-B.15). The magnitude of the oscillation in the classically allowed region decreases as |z|~!/#, and the functions
Ai(z) and Bi(z) are out of phase in this region. In the classically forbidden region Ai(z) decays exponentially as Ai(z) ~
o JEdz 2 _ e_;,3/2
The important experimental technique of scanning tunneling microscopy (STM) is used to view surfaces of conducting
materials at nanometer resolution uses tunneling of electrons from the surface of the material to the STM tip. Figure 1.25
shows the potential energy that an electron feels near the surface when a attractive potential is applied. This is a simplified
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1D view of the potential wherein we neglect the other
dimensions orthogonal to the tip to closest-contact-
point on the surface. The potential experienced by
electrons upon tunneling out of the conducting mate-
rial is due to the applied potential —efz, where £ is
the electric field strength, and to the attractive image
potential, Vimage(z), that results from the effective
polarization of the conductor due to repulsion of elec-
trons in the conductor near the tunneling electron,

[am—
()}

U

Ai(z), Bi(z)

2 .
Vimage (2) = — j—z. Hence, the total potential that an
electron in the region z > 0 experiences, V(z) =

O

—efz7 — Z—i, has a barrier that electrons with energy
equal to the Fermi energy Ef (the energy of the high-
est occupied state in a conductor) must overcome in
order to tunnel to the tip, as shown in Fig. 1.25. -10 -8 -6 -4 -2 0 2 4
We shall see in Sec. 7.2.1 that, to a good approx- Z

imation, the tunneling probability is proportional to

/ nE-V . .
‘ f Pz e (Z)]' where in our case the turning

point (defined as the coordinate position zy, at which

=
W
cpc g v by

=
W

FIG 1.24 Airy functions Ai(z) and Bi(z) versus z.

. W Energy
the potential V(z) equals the energy E), zip = ¢, and
the energy E=FEp. The quantity appearing in the
exponential of this expressinn is the local momen- Distance from surface, z
tum p(z) = +/2m[E — V(z)] divided by 7; so, to a good ———
approximation, the amplitude for tunneling is given by
. : : dw ~<._ total potential i tential
the exponential of — f dzp(z)/h, where the integral is image potentia
over the classically forbidden region of coordinates. A —e%/4z
w
~._ applied potential
1.3.15 THE HARMONIC OSCILLATOR ~ or
Let us consider the quantum mechanics of a parti- E
cle in a harmonic oscillator potential V(x)= %kxz, F Wieg
where k is the spring force constant that is related e WieE
to the frequency of the motion (see Sec. 16.1, linked metal vV P
; acuum
to the book web page) by the relation w=/k/m,
ie., V(x)= x . The time-independent Schrédinger  FIG 1.25 Electron tunneling from a metal surface in the presence of an
equation is external electric field £ that yields an applied potential —eEz
experienced by the electrons that tunnel into the vacuum
B2 42 1 region. See text for details.
—— — + —mw?x? E 1.122
mal T2 v =Ey. ( )

It is convenient to define new dimensionless variables; a dimensionless length variable y = x/l},, a dimensionless
energy variable £ = E/Ep, and a dimensionless momentum variable py = p,/pno and use these variables in considering
the quantum harmonic oscillator problem. Here, o, Eto, and ppo are the “natural” length, energy, and momentum values
that are determined by the harmonic oscillator potential in the system of units we are using. We shall employ the same
dimensionless variable approach for re-writing the quantum problem for any type of power law potential of the form,
V(x)= ijf , whether the power j can be a positive or negative integer (Coulomb potential, j = —1, van der Waals
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potential j= — 6, dipole—dipole potential, j= — 3). This is a valuable dimensional analysis technique that should be

learned once-and-for-all, so we will go through the technique in detail. We need to find the appropriate variables o, Epo,
2.2

and pro. To do so, let us first multiply Eq. (1.122) by (—2m/h?) to obtain (— — et 2’”E) ¥ =0. Since the first

term in the parenthesis has units of 1//2, each of the terms in the parenthesis must have the same dimension. By equating

the units of the first and second terms, we find that i =% 21, where [-] means “units of -”. Hence, we conclude

x%]

that [x] = lpo = mha’z = 2’" 2[E], we find

[E] = Eho = hw. The units of momentum are those of #/[x], since p = 7 ﬁ, 0 [p] = pho =1/ [x] = v/ hmw. We have thus
determined the parameters /o, Pho, and Epg:

mo”

h
lho =1/ —, Pho = Vhmw, En, = ho. (1.123)
me

The dimensionless units of length, momentum, and energy are therefore x/lh, p/pho and E/Eqe.
We can rewrite Eq. (1.122) using the dimensionless variables y=x/ly, and €& = E/Ep, by substituting x = ylp, and
E = Ehw to obtain,

1 d° 1,
(‘Ed?‘/’(” + 5 ) Vo) =EVO), (1.124)
or, upon rearranging,
d2
O+ (25 - yz) Y () =0. (1.125)

This is the time-independent Schrodinger equation for the harmonic oscillator in dimensionless units.
It is particularly easy to solve Eq. (1.125) for large y. Then, we can neglect 2€ in the second term on the LHS of

the equation, obtaining (;TZZ — 2)1//()1) =0. If we substitute ¥ (y) = exp(—y*/2), we can see that this is a solution,

since 1 can be neglected in comparison with y2 [note that ¥ (y) = exp(y2 /2) is also a solution, but the wave function
must remain finite for all x (since the probability is proportional to the absolute square of the wave function), so we
rule this wave function out]. Now, given the asymptotic form we have just found, let us try a solution of the form
v () =H(y) e:xp(—y2 /2) and find H(y). Upon substituting this form into Eq. (1.125), the equation we obtain for H(y) is

d*H dH
2y —1)H=0, 1.126
0 y a0 +B-1 ( )

where we have defined B = 2£. Let us find H(y) by assuming it can be written as a power series. Since the coefficient
of the term with the highest derivative is unity, it follows from the theory of differential equations that the solution of
Eq. (1.126) can have no singularities for finite y, and a power series solution has an infinite radius of convergence. Upon

o0 .

substituting the power series H(y) = )_ a;y into (1.126) and equating the coefficient of each power of y to zero, we
j=0

find the recursion formula aj;, = (HT(/-%ﬂl)af Hence, the series terminates if 8 =2n + 1 for some integer n. Moreover,

if the series does not terminate, the function H(y) diverges as & as y — Zo00. We therefore conclude that the energy
eigenvalues are given by E,, = (n + 1/2)hw with n an integer, and the functions H, (y) are polynomials of order n. These
polynomials are called Hermite polynomials, and the differential equation (1.126), with § =2n + 1 is called the Hermite
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differential equation. The properties of these polynomials are well known [27]. Their generating function is given by
oo t”
exp(—1* +21y) = ) " Hy (). 1.127)
= n!

The recursion relation for the Hermite polynomials are
2yH,(y) = Hu11(y) + 2nH, 1 (y), (1.128)

and
iH,,(y) = 2nH,_1(y). (1.129)
dy

The lowest few Hermite polynomials are: Ho(y) = 1, Hi(y) = 2y, Ha(y) =4y* — 2, H3(y) = 3y3 — 12y. One can readily

. . 2\ . o .
normalize the wave functions, ¥, (x) :NnH,,(ﬁ) exp | —25- ), i.e., find the normalization coefficients N, such that
0

212
ffooo dx |1ﬁ(x)|2 =1: N, = (z/22mn)~1/2, Upon converting back to dimensional variables, the normalized harmonic
oscillator eigenfunctions (which have dimension (length)‘l/ 2y are

mw 174 1 X X2
Yn(x) = <%> WH,(E) exp|:— (21%“))] , (1.130)

|Ex=(n+1/2)ho.| (1.131)

and the eigenenergies are

Figure 1.26 shows the six lowest eigenstate wave functions 1, (x) of the harmonic oscillator potential as a function of
X, superimposed over the harmonic potential with the x axes shifted to coincide with the energy E,, = (n 4+ 1/2)hiw. The
probability for finding the particle as a function of x is P, (x) = |1/, (x)|2. The eigenfunctions v/, (x) are not only normal-
ized, but they are orthonormal, {(Y,|¥y) = 0,,, because, as we shall learn in Chapter 2, eigenfunctions of Hermitian
operators are orthogonal. The solutions with even (odd) » are symmetric (antisymmetric) with respect to inversion about
the center of the well, x — —x. This parity symmetry upon flipping in the sign of the spatial coordinate results because
the potential is symmetric under the inversion transformation (see Sec. 2.9.2).

Problem 1.18

(a) Using the generating function (1.127), show that H,(y) = % exp(—t> + 21y) o
1=
(b) Confirm that Hi(y), H>(y), and H3(y) satisfy (a).
(c) Use the recursion relation (1.128) to determine H4(y) given H>(y) and H3(y) (see above).
(d) Confirm that your result in (c) satisfies (1.129).

The harmonic oscillator potential has only a discrete spectrum; no continuum exists. The bound-state energy eigen-
values are equally spaced, AE, = E, | — E, = hw, and the lowest energy eigenvalue is nonzero, Eg =hiw /2. Ey is called
the zero-point energy of the oscillator. The lowest energy wave function 19 has no nodes, the first excited state wave
function ¥; has one node, the second excited state has two nodes, etc.

The spatial probability distribution of the ground state wave function is

1 2 X2
P(x) = [P = (nlﬁ) exp [— (lﬁ )] . (1.132)
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2

L7272 where o is the width of the distribution.

2
Comparing with (1.132), we find that the spatial width o of the deg;ity for the ground state harmonic oscillator wave
function is such that

A normal Gaussian probability distribution is given by P(x) =

2
P(x) R (1.133)
A potential 2 2mo
; e N In other words, if we write the ground state har-
o £ § L n=5 monic oscillator wave function in terms of the

width of the density, o, we obtain

1 174 x>
n=4 Yn=0(x) = (27102) exp <_4<TZ> .

\// (1.134)

Wave functions allow us to calculate expec-
n=3 tation values of dynamical variables, O, by cal-
culating the expectation values (i.e., the diagonal

matrix elements),

n=

(VnlOlyYm) = /dx Y, )O0Yy(x).  (1.135)
=1 Moreover, the recursion relations (1.128) and
(1.129) can be used to obtain analytic expres-
A S sions for expectation values of the position
— —— i and momentum operators, and their powers. As
we shall see in later chapters, transitions from
X level n' to level n will involve matrix ele-
ments of various dynamical variables O of the
FIG 1.26  The lowest six eigenstate wave functions for the harmonic oscillator  form (v, |O|y,y) = f dx W;; (x)OYr,y (x). In Prob-
potential versus position x. lem 1.19 you are asked to calculate various
expectation values and matrix elements of pow-

ers of position and momentum operators.

We shall return to the harmonic oscillator problem in Sec. 2.7.2 where we solve it in an entirely different fashion,
using raising and lowering operators. This elegant and powerful matrix mechanics method is at the heart of quantum
mechanical treatments applied to solve numerous quantum mechanical problems. However, we need to develop additional
tools before presenting the matrix mechanics method, and that is done in Chapter 2.

 J

Problem 1.19

(a) Calculate (Wulx|¥n), (Ynlpl¥n)s (Wb 1¥n)s (Wnlp*¥n).

(
(b) Calculate (Y,|V (x)[v,) and (Wn|%|‘/fn)~
(c) Calculate (Yr|x|y,y) and (Y lpliy).
(d) Calculate Y (W, |x[v ) (W [x]1,) and show that it equals (Wl x2|Yrn).
(e) Show that Y, ((Wulx[v ) (Y [PIW5) — (Wl W) (W 1x19)) = 285

Answers: (a) (x) =0, (p) =0, for reasons associated with parity symmetry. The expectation value
(Wl X2 W) = %(n + 1/2), can be obtained using Eq. (1.128) by applying one power of x in x> =x - x to both [,,)
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and (Y| in the matrix element, and (i, |p2|1pn) =mhw(n + 1/2) can be obtained by applying Eq. (1.129) in the
same way.

®) (Wl V) [¥n) = (WI%I%) = 3ho(n +1/2).

(c) Using the recursion relation (1.128) and the orthonormality properties of the wave functions, we find,

(Unlx| ) =4/ % (ﬁ Sp+1 +/n+1 3n,n’—1)- Using the recursion relation (1.129) and orthonormality, we find
(Wnlpl ¥ = me | e (=) (VA 81 =/ 180-1).

59




The Formalism of Quantum 2
Mechanics

The first systematic formulation of the propositions and mathematical structure of quantum mechanics was set out by Paul
A. M. Dirac in his book entitled The Principles of Quantum Mechanics [5] in 1930, just 4 years after the Schrédinger equa-
tion was developed. This was quickly followed in 1932 by John von Neumann’s axiomatic formulation of the foundations
of quantum mechanics [28]. Quantum mechanics is couched in the language of linear vector spaces and in probability
theory. We shall assume that the reader is familiar with the material in the initial discussion of the structure of quantum
mechanics presented in Sec. 1.3, in the linear algebra Appendix A, and with probability theory.

This chapter begins in Sec. 2.1 with a short reminder of Dirac notation for vector spaces with an inner product, and
the completeness and orthogonality conditions in Hilbert space. Position and momentum representations are the focus
of Sec. 2.1.1. Basis-state expansion methods are treated in Sec. 2.1.2. The properties of Hermitian and anti-Hermitian
operators and compatible operators are considered in Sec. 2.2, and the uncertainty principle is explained in Sec. 2.3.
A discussion of measurements in quantum mechanics is presented in Sec. 2.4 (this topic is revisited in Sec. 2.5.4 using
density matrix language). The density matrix formulation of quantum mechanics is considered in Sec. 2.5. The Wigner
representation is discussed in Sec. 2.6, and Schrodinger and Heisenberg representations are formulated in Sec. 2.7. The
correspondence principle and the classical limit of quantum mechanics are considered in Sec. 2.8, and finally Sec. 2.9
takes up the topic of symmetry and conservation laws in quantum mechanics.

2.1 HILBERT SPACE AND DIRAC NOTATION

Quantum states are represented by vectors in a Hilbert space H, as defined in Appendix A. Dirac notation simplifies the
mathematical language required for handling manipulations in H. In Dirac notation, a quantum state ¥ is represented
by a ket vector |1) in the Hilbert space H. A Hilbert space is an inner product space that is complete and separable (in
quantum mechanics, an infinite number of states of a system can exist, and then the notion of separability is needed). For
any two vectors |y) and |y ), the inner product (x|y) is a complex number that specifies their overlap. The length of a
vector |) is given by /(¥|¥). A dual space of vectors can be defined; a vector (Y| in the dual space is called a bra.
If this paragraph is not clear to you, you should read (or reread) Appendix A before continuing.

In quantum mechanics, we assume that a complete basis of kets {|¢,)} exists. This is a general property of Hilbert
spaces. Hence, any ket can be written as a superposition (linear combination) of basis kets [see Eq. (2.2)]. The basis vec-
tors can be taken to be orthogonal (they are often taken to be eigenstates of a Hermitian operator, which are orthogonal).
Completeness and orthogonality (orthonormality) can be written as [see Eq. (A.32) in Appendix A]

[Z |¢n><¢n|} =1, (2.1a)

(dilgj) = dij, (2.1b)

where 1 is the unit operator in H. If H is infinite dimensional, the completeness relation should be understood as a limit
(see Appendix A). Any ket |¢/) can be expanded in terms of basis vectors,

W) = [Z |¢n><¢n|} W)= I¢n) (dul¥r). (2.2)
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A dual space vector (| is called a bra and “lives” in the space dual to the space of ket vectors. A bra (| can be
expanded as

4 [Z |¢n><¢>n|} = (VIbn) ($nl. 2.3)

n

where (2.3) can be obtained by taking the Hermitian conjugate of (2.2). The corresponding wave functions in position
space (see Sec. 1.3.8) can be written as

(xl9r) = (] [Z|¢n><¢n|}|w>=2<x|¢n (pulyr) = ch¢n<x> (2.4)
(Yrlx) = w[Zm ¢n}|x> D (Wl (Balx) =Y crr ), 2.5)

where ¢, = (¢,|¥). Equation (2.5) can be obtained by complex conjugation of (2.4) since (¥ |x) = (x|¥)* = ¥ *(x). Oper-
ators can be written in terms of basis vectors as matrices

A= [Z |¢n><¢n|} A [Z |¢m><¢m|} = 1¢n)Aun (Gul, (2.6)

where A, = (dm |A|¢,,) is the matrix representing the operator A in the basis {|¢n)}. Arbitrary matrix elements of opera-
tors can be calculated as follows:

(x|Aly) = X{Zm %}A[me} ¥)

= (XD Anm (D |¥) = XnAnmPm. 2.7)

In the last line of (2.7), we used Einstein notation, and therefore, the sums over m and n are implied by the repeated indices.
Using Einstein notation, (2.2) can be written as |{) = ¢, |¢y), With ¢, = (¢,|V), and similarly, (2.3) as (Y| = (¢nlc.

In order to elucidate Eqs (2.1) through (2.3), let us consider an example of a basis set for a two-level system, e.g., a
spin 1/2 particle. A set of basis vectors that span the Hilbert space are

1) =11) = (é) 92) =11) = (?) 28)

Hence,
sl = (o) 10 = (o). 29)
il = (7)o = (g 9). 2.10)
and (2.1) becomes
[Z |¢n><¢n|} = 161 (1] + |2} {dpa] = (1 O) (2.11a)

(1141) = (10) (é) =1, (gilga)=(10) (‘f) =0, et (2.11b)
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Equation (2.2) becomes

=Y et =c1 (é) o (?) = (2) @12)

where ¢; = (¢;|¥), and similarly, (2.3) takes the form

(Wl=Y crignl=ci (10)+ 5O 1) = (c} 3). (2.13)

A three-level system can be described similarly but with three-dimensional vectors, [y)F = (c’f 3 ci) (similar to the
algebra of three-dimensional coordinate vectors but where the vector components are complex, i.e., C> rather than R?).

The harmonic oscillator is another example; it is an infinite-dimensional vector space that is discrete (see Secs. 1.3.15
and 2.7.2).

Problem 2.1

(a) Write the arbitrary operator A as a matrix for a two-level system using Eq. (2.6).
(b) Write (Allﬁ))T in matrix notation for a two-level system.
Al Ail)

Answer: @ A= (2} ) GlynT = (¢ )
) Ay An ) P\An AL )

Problem 2.2

Write Eqgs (2.1) through (2.3) using a harmonic oscillator basis, retaining only the N lowest energy basis states.
Hint: |<i)j)Jr =(00...0100 ...0), where the 1 is in the jth column.

A word of caution is in order with respect to the lack of consistency in the literature, as well as in this book, in using
the hat notation for operators. Often, the hat is not explicitly used despite the fact that one is considering an operator; it
is simply implied.

2.1.1 POSITION AND MOMENTUM REPRESENTATIONS

The position space wave function, 1 (r), corresponding to a state [y) is given by ¥ (r) = (r|y); it is called the position
representation of state ) (see Sec. 1.3.8).

The same state can be represented in the momentum representation by the momentum-space wave function,
1/7(p) = (p|¥) (note that often the tilde is not written). By inserting a complete set of states {|r)} between the bra (p|
and the ket |/), i.e., by inserting the unity operator, 1= f dr|r) (r|, we can write ¥ (p) as follows:

v (p) = (ply) = /dr<P|r)(l‘|1/f)~ (2.14)

Using Eq. (1.79) to evaluate (p|r), (p|r) = (r|p)* = Qrh)~3/2e=Pr/" we find

U (p) = Q2rh) 32 / dr e PT/M oy (p). (2.15)

Thus, the momentum representation of the wave function, ¥ (p), is the Fourier transform (see Appendix D) of the position
representation wave function, ¥ (r). Often, one simply denotes ¥ (p) by the symbol ¢/ (p), despite the danger involved in
this notation. In 1D, Eq. (2.15) is given by ¥/ (p) = (pl¥) = Quh) Y2 [ dxe= P/t (x).
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In the position representation, the quantity (r|F|y) is simply equal to ry/ (r). In momentum space,
(pIFY) = / dr(plr)(x|F|y) = 2mn) >/ f dr ™M ey (r) = iV p i (p). (2.16)

Hence, the operator I in momentum space is i2Vp, and the operator g(f') in momentum space is g(ihVp).
In the momentum representation, the quantity (p|p|) is simply equal to pl} (p). In position space,

. . _ i ~ n
(rlply) = /dp(rlp)(plpll/f)Z(Zﬂh) 3/2/611'6 lp'r/hpW(p)Z;Vrlﬂ(r) (2.17)

That is, the operator p in position space is %Vr, as we already know from Chapter 1 (see Sec. 1.3.6). Note that py(r) can

be written as (r|p|y). Clearly, the operator f(p) in position space is f (%Vr)

2.1.2 BASIS-STATE EXPANSIONS

An important method for solving quantum problems, e.g., obtaining eigenvalues and eigenvectors of an operator (e.g.,
the Hamiltonian), is to expand the operator and the eigenvectors in terms of basis states {|¢;)}. This maps the original
problem onto a matrix eigenvalue—eigenvector problem. The matrix obtained for Hermitian operators by expanding it in
a basis is Hermitian. Therefore, its eigenvalues are real and its eigenvectors can be made orthonormal (see Sec. A.2 in the
Appendix). It is crucial to understand this method. The only approximation made using this method is that, in practice, it
is required to truncate the basis to a finite number of basis states. Numerically, it is easy to follow the convergence of the
eigenvalues to make sure that enough basis states have been taken.

Given the time-independent Scrodinger equation, H|yr) = E|y), one expands the state |/) in a set of orthonormal basis
states {|¢;)}, i.e., [¥) = ZJ- cjlg;), where ¢; = (¢;|), and orthonormality means (¢;|¢;) = J;;. Inserting the completeness
relation, Zj |¢;){@;| = 1, into the Scrodinger equation we obtain

H Z|¢j>(¢j| V) =El). (2.18)
J

Applying the bra {(¢;| from the left, we find the matrix eigenvalue equation,

> Hyjcj=Ec;, (2.19)
j

where Hj; = (¢;|H|¢;). We now truncate the number of basis states to NV states, so the Hamiltonian matrix {H;;} is of size
N x N (the only approximation made in this method). Convergence as a function of the number of basis states can and
should be checked by increasing the number of basis states taken and monitoring the convergence of the eigenvalues. The
eigenvalue E can be obtained by solving the determinantal equation, |H;; — E§j;| =0, thereby obtaining N eigenvalues
Er, k=1,...,N. Once the kth eigenvalue is known, the vector of amplitudes for the kth eigenvector |y) is obtained by
solving the linear set of equations, Zj H,;,-c;k) =Ex cl(k) , or, using a simplified notation,

N
> Hijcjp = Ex ci. (2.20)
j=1

The second index on the amplitudes c;; (which was written above as a superscript) is often written as a subscript [as in
(2.20)], and specifies that these are the amplitudes of the kth eigenvector |y ). The kth eigenvector |{) can be written as
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[V) = Z/- cjk|$;). Schematically, the eigenvalue—eigenvector problem of Eq. (2.20) is of the form

where the Hermitian Hamiltonian matrix is expressed in the basis {|¢;)}, i.e., H= {H};}. One obtains the eigenvectors by
solving the linear equations for the amplitudes cj; of all k. The methods of linear algebra for determining the eigenvalues
E} by solving the determinantal equation |H — E1| =0 and then solving the linear equations for the eigenvectors cj; are
discussed in detail in Sec. A.2 of the Appendix.

A judicious choice of basis states can often reduce the number of basis states needed in the calculation. If the Hamilto-
nian H is close to a zero-order Hamiltonian, Hy, with known eigenstates {|¢;)}, i.e., if H =Ho + V, with V “small”, then
the eigenstates {|¢;)} can be a good choice of basis states.

Problem 2.3

(a) Why is the relation Zj cj*kcjk/ = &k true for two distinct eigenvalues Ej and Ej, but not necessarily true for two
degenerate eigenvalues?

(b) Review the Gram—Schmidt orthogonalization scheme (Sec. A.1.1 of Appendix A) for orthogonalization that can
be used to make all eigenvectors of a Hermitian matrix orthogonal. That is, the eigenvectors for a degenerate
eigenvalue can be diagonalized using Gram—Schmidt scheme.

Answer: (a) See the proof in Sec. A.2.3 of Appendix A).

Note that the basis-set expansion method turns quantum mechanical calculations into matrix calculations. This method
was introduced by Werner Heisenberg and Pascual Jordan. The matrix representation of quantum mechanics is referred
to as Heisenberg matrix mechanics.

Basis-set expansion methods can also be applied to calculate the dynamics of quantum systems. Suppose we have
a system with a time-independent Hamiltonian H and the system starts off in a state that is not an eigenstate of the
Hamiltonian. We want to determine how the system evolves as a function of time, |W (¢)). The preferred basis set to use
for this problem is the set of eigenstates of the Hamiltionian, {|1;)}. Since this set is complete, we can expand the initial
state in terms of this set, and since the set is orthonormal, it is simple to calculate the b; amplitudes of the initial state,

WO) =Y bily), b= (| (0)). (2.21)
J

Furthermore, since we know the time dependence of the energy eigenstates, the time dependence of a superposition of
energy eigenstates is also simple,

(WD) =) be M yy). (222)
J

We will return to basis-state expansion methods to solve some problems where the Hamiltonian is time-dependent in
Secs. 6.6, 6.7, and 7.1.1.
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2.2 HERMITIAN AND ANTI-HERMITIAN OPERATORS

The importance of Hermitian operators as operators that can be measured, i.e., operators that can represent physical
observables, has already been noted in Sec. 1.3.2, and has been reinforced as part of the postulates of quantum mechanics.
Properties of Hermitian operators are reviewed in Appendix A; recall that there we defined the Hermitian conjugate of
an operator O, OF, via the relation between the matrix elements of O in Eq. (A.36). A Hermitian operator H{ was defined
so that H="H". Moreover, we defined an anti-Hermitian operator such that it satisfies the relation A= — A", Matrix
representations of Hermitian and anti-Hermitian operators yield Hermitian and anti-Hermitian matrices. The properties of
the eigenvalues and eigenvectors of Hermitian and anti-Hermitian matrices were discussed in Sec. A.2.3 of Appendix A.

In some cases, care must be exercised in forming a Hermitian operator from a classical observable. For example, if the
classical Hamiltonian of a system contains a term of the form p - r, this term is not a Hermitian quantum operator. The
appropriate Hermitian quantum operator is (p-r+r-p)/2, i.e., one must symmetrize the operator. For example, consider

the Hamiltonian for a charged particle in an electromagnetic field, H(r, p, t) = ﬁ (p - %A(r, t))2 + qo(r, t). In writing

(P — (g/c)A(r, 1)) as a quantum operator, one must properly symmetrize; the Hermitian quantum operator is given by
P’ — (/0P - A, D) + A, 1) - pI/2 + ¢ AP (x,1) /.

2.2.1 COMPATIBLE OPERATORS AND DEGENERACY

Two observables (i.e., Hermitian operators) are compatible if they share the same eigenfunctions (but they do not neces-
sarily have the same eigenvalues). Consequently, two compatible observables can be simultaneously precisely measured
(see the Uncertainty Principle in the next section). Two compatible operators Q and R can be put into the form:

Q = Z |Pn)qn (Pnl, (2.23)
R="I¢n)rnignl-

Compatible operators commute with one another. This is trivial to show using Eq. (2.23) and the orthonormality
condition for eigenvectors of Hermitian operators:

OR="Y"16n)qn(®nl Y _ 16m)rm{dml =D _ |¢n)qnrn{dnl =RO. (2.24)

For example, the momentum operator p and the Kinetic energy operator T= p?/2m are compatible, and the postition
operator T and the potential energy operator V(r) are compatible.

The converse is also true: any two commuting Hermitian operators are compatible, as we shall now show. Consider
two Hermitian operators (or matrices) Q and R and diagonalize them, so Q takes the form,

(g, V|Q|q,, V/> = qsqq/avv" (2.25)

The index v accounts for the possibility of degeneracy of the eigenvalues, where degeneracy means that two or more
eigenvectors of the operator have the same eigenvalues. Now, suppose the Hermitian operator (matrix) R commutes with
Q. Taking matrix elements of [Q, R] =0, we find:

(g, vIOR — ROIq, V") = (g — ¢) (g, vIRI¢', V) =0. (2.26)

For ¢ # ¢, we conclude that the off diagonal in “g” elements of R vanish, i.e., (g, v|R|¢/, V') :kf}%),z?qq/. We can now
diagonalize the vV’ blocks of R since this does not affect the rest of the matrix. Hence, the operators (matrices) Qand R
are now compatible.

The statement, two compatible operators have simultaneous eigenvectors, can be generalized to the case when we
have more than two mutually compatible operators,

[R1,R2]=[R1,R3]=[R2,R3]= ... =0. (2.27)
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Assume that we have found a maximal set of commuting observables, i.e., we cannot add any more observables to our list
of commuting observables appearing in (2.27). The eigenvalues of individual operators {R;} may have degeneracies, but
if we specify a combination of eigenvalues, (1,1, 7,2, 7133, - - -), then the corresponding simultaneous eigenvector of
R1,R2,R3, . .. is uniquely specified. We can use a collective index K = (ry; 1, 7n,.2, 733, - - -) to identify the eigenvector.
The orthogonality relations for |K) = |y 1, 74,2, . . .) are
(KIK') =8k g =8

) (2.28)

r"]v]’rn’],l rnz,ZsVn&,Q tet

and the completeness relation is

> IR (K| =1. (2.29)

K

2.3 THE UNCERTAINTY PRINCIPLE

Diffraction of light and particle waves cannot be reconciled with the idea that light or particles move in paths (well-
defined trajectories). Nevertheless, a measurement of the coordinates of a particle can always be performed with any
desired accuracy, at least in principle. In quantum mechanics, a (somewhat) localized particle can be described by a wave
function ¥ (r, ) (in Sec. 1.3.13, we used the term wave packet) that is a superposition (sum) over energies and wave
vectors as follows:

U (r,f)= f dk / dE ¥ (k, E) '&T=E/M (2.30)

The amplitudes lﬁ(k, E) can be viewed as the Fourier transform of ¥ (r, f) (see Appendix D). If one attempts to measure
the location of the particle at a given time, the resulting measurement can yield a result anywhere within the extent of
the wave function. It is, of course, more likely to find the particle in regions where the amplitude ¥ (r, 7) is large since
| (r, £)|? is the probability density function for finding the particle at position r at time . However, there is no theoretical
limitation in making the probability density as narrow as possible, so the position of the particle at a given time can
be very well specified. However, if the wave packet ¥ (r, ) is very well localized, then the amplitude ¥ (k, E) will be
delocalized in momentum space (note that the momentum is simply related to the wave vector, p = 7iK) so the product in
the uncertainty of the position and the momentum cannot be smaller than a certain value.

There is another way to view this uncertainty in position and momentum. If two observables are represented by
commuting operators, then one can measure the physical observables with simultaneously arbitrary accuracy. However,
if the operators do not commute, as is the case for x and p, (or y and py), then a simultaneous measurement will not be
exactly repeatable. There will be a spread in the measurement results, such that the product of the standard deviations
will exceed a minimum value. The minimum of the product of the standard deviations depends on the observables; more
specifically on the commutator of the observables. This is one way to state the Heisenberg Uncertainty Principle. We
shall prove the uncertainty principle in this section.

An uncertainty principle also exists for energy and time. We may wish to measure the energy E emitted during the
time interval At corresponding to an atomic process, e.g., the energy of an excited state that decays radiatively with a
certain lifetime. The minimum uncertainty in the electromagnetic wave energy, E, is then related to the time interval Az
and is given by

AE At=hAw At > 1)2.

This uncertainty is due to Fourier expansion [see Eq. (D.26) of Appendix D] of the wave function and is formally similar
to the uncertainty in position and momentum due to the Fourier expansion in Eq. (2.30). Note that ¢ is not an operator in
nonrelativistic quantum mechanics, so there is no commutator relation between E and ¢. Hence, at least at first sight, it
is different from the Uncertainty Principle for non-commuting operators, such as x and p, but in fact the two are related
[e.g., see Problem 2.4(d)]. We shall now take up the latter subject.
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The Heisenberg’s Uncertainty Principle states:

2

(2.31)

(A (AB)? = ‘@

Here, expectation values are calculated with some arbitrary state |y). To prove this inequality, we will need some math-
ematical machinery. One of the required ingredients is the Cauchy—Schwartz Inequality (sometimes called the Schwartz
Inequality),

(Plp)(EIE) = [(l&)I* . (2.32)

The proof of the Schwartz Inequality is given in Appendix A [see Eq. (A.9)]. Another ingredient is the following lemma.
Lemma: Leta =A — (A) and 8 = B — (B). Then [«, 8] =[A, B]. The proof of the Lemma is simple:

[a, 81 = (A—(A)) (B—(B)) — (B—(B)) (A—(A)
[a, B1=AB — (B)A — {(A) B+ (A) (B)
—BA+ (B)A+ (A)B— (A) (B)
[a, 8] =AB — BA=[A,B].
Now, with the definitions of o and 8, we have that
(AA)? =((A—(A)*) =(a®), (AB)* =((B— (B)*) =(B).
Hence,
(AA)? (AB)? = <a2><,32>.
That is, (AA)2 (AB)2 = (Y| |¥) (| B2|¥). Let us define the following kets,
) =aly) and [k) =B1Y) .

With these definitions, (AA)* (AB)® = ((¥]er) (|¥)) ((W|B) (1Y) can be written as (AA)* (AB)? = (jlj) (klk) >
| (j|k) |2, where the Cauchy—Schwartz inequality has been used [see Eq. (A.9) in Appendix A]. Thus,

(AA)? (AB)? > |(jlk)|?
i.e., (AA)? (AB)? = (Re((jlk)))? + (Im((jlk)))*.

Hence, clearly,
2

(| k) — (k1))

(AA)? (AB)* > (Im ((jlk)))? = ‘ 5

2

(Ulap [y) — (Y] Baly)

(AA)? (AB)? > :
2i

2
(AA)? (AB) > @

(1A, B]) |

(AA)? (AB)? > >

This completes the proof of the Uncertainty Principle.
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Applying the Uncertainty Principle to the operators x and pyx, we find [see Eq. (1.90) for the commutation relation]

([, px])
2

2
(AX)? (Apy)? = ‘ ‘ = (h/2)%. (2.33)

No matter what state the system is in, the product of Ax and Ap must be larger than or equal to 72/2. In particular, we can
calculate Ax Ap, for the ground state 1D harmonic oscillator wave function ¥ (x) = m exp(— 4’;—2). Then, it is easy

2 . L .. .
to show that (x) =0, (Ax)? =o2, (p) =0, and (Ap)2 = 4%, so the Gaussian wave function is a minimum uncertainty
wave function, i.e., the uncertainty is the minimum allowed by the Uncertainty Principle.

Problem 2.4
Consider the 1D Gaussian wave packet, ¥ (x) =N exp (—%) e,

(a) Determine the Fourier transform of the wave packet, 1/}0 (k).

2
(b) Find v (x, r) given the initial wave packet vo(x) and Hamiltonian H = g—rxn.
(c) Calculate (x);, (Ax);, (p):, and (Ap), for the wave packet in part (d).
(d) Determine the product (Ax);(Ap);.

Answers: Note that this problem is basically a repeat of Problem 1.17.

@ Yok =Nv20 e W%

(b) v (xt) =N% e
where 02(1) =02 + i2% and ¢ (1) = L L.

(©) (x)y="h«t/m, (Ax),:o\/%, (p)i =tic, (Ap)r = 2.

@ (AD(Ap)=1/1+ .

Problem 2.5

+ik (—Tuict/m)+iep (£)

For the free-particle wave packet 1 (x, ) you found in Problem 2.4(b), show that AEAt > %, where here we define

2 2
AE= (g—m) = %, and At is the time required for most of the wave packet to pass a fixed point xp.

2.4 THE MEASUREMENT PROBLEM

There appears to be a discrepancy associated with the relationship of the time evolution postulate and the measurement
postulates. In quantum mechanics, a pure state of a physical system is completely described by the wave function ¥ (or the
state vector |1)). |) yields information about the system by specifying the probabilities of the results of measurements
made on the system by a measurement apparatus. The time evolution postulate specifies the deterministic change of the
state of an isolated system with Hamiltonian H(#) according to the time-dependent Schrédinger equation,

Ay ()
ot

in

=H®)|y(@)). (2.34)

Consider an isolated system consisting of the subsystem to be measured plus the measurement apparatus. The measure-
ment postulates appear to specify a fundamentally different type of evolution for the state function of the subsystem
that is to be measured. The subsystem evolves discontinuously by measurement into one of the eigenstates ¢1, ¢2, . .. of
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the operator O that is being measured, so that the initial state ¥ is changed into one of these eigenstates, say |¢;), with
probability |{¢;|¥)|2. Are these two types of evolution consistent? Specifically, during the measurement process, can the
state of the whole system (subsystem and measurement apparatus) be described by deterministic evolution? If it can, why
is it necessary to invoke discontinuous evolution of the subsystem? If it cannot, then there are isolated systems that do
not obey the time evolution postulate. There have been many attempts to derive the measurement postulates from the
other postulates. To some extent, “the measurement problem” in quantum mechanics is still open and is an active field
of research. Nevertheless, there has never been a discrepancy between quantum mechanical results calculated using the
measurement postulates and experimental results.

Let us consider a simple example, or schematic illustration, of a measurement, viewed in a totally quantum mechanical
setting, where both the system being measured and the measurement apparatus are treated quantum mechanically. We
are given a two-level system (e.g., a spin 1/2 particle) that starts out in state |yo) =ag|?1) + bo|{) and an experimental
apparatus that starts out in a definite “ready to measure” pure state |A)o = |Ag). The meaning of pure state will be elabo-
rated below; for now, note only that we have assumed that the apparatus is initially in a specific quantum state that can be
described by a state vector (or, if you like, a wave function). The fundamental postulates of quantum mechanics specify
that the combined system-apparatus state evolves by unitary evolution. By measurement of the spin 1/2 system we mean
that, after the interaction of the spin with the apparatus, we are able to determine which spin state the system is in by exam-
ining the apparatus. The combined system-apparatus starts out in the initial state, |Wo) = |o)|Ao) = (aol?) + boll)) |Ao)-
By virtue of the unitary evolution postulate and the necessity that the state of the two-level system be determined by
examining the apparatus, the combined system must have evolved into the state,

) = (alt)|Ay) +BI)IAL)), (2.35)

where |A4) and |A}) are apparatus states that allow us to determine the state of the spin 1/2 system. If we find the
apparatus in state |A4), we know that the spin 1/2 system is in state |1), and if we find the apparatus in state |[A ), we
know that the spin 1/2 system is in state | |). But the probability of finding the apparatus in state |A4) on any given
realization of the experiment is |a|?, and the probability of finding the apparatus in state |A 1) on any given realization
of the experiment is |b|2. This is the quantum view of a measurement, wherein both the system being measured and the
measurement apparatus are treated as quantum systems. Note that the measurement problem remains; it has just been
pushed one step backward. Given (2.35) as the state of the total system after the measurement, the necessity for the
collapse (measurement) postulate still exists.

One of the factors that we have not considered in the example of the previous paragraph is that macroscopic systems
(such as most measurement apparatuses) are never isolated from their environments. Hence, they do not evolve according
to the Schrodinger equation, which is applicable only to a closed system, but suffer from the natural loss of “quantum
coherence” which can leak into the environment. A lot more will be said about the effects of decoherence in what follows,
e.g., in Sec. 2.5.4, we shall see how the measurement problem can be resolved (or at least ameliorated) by considering
decoherence via interaction with an environment. This will require us to use a density matrix formulation of quantum
states, a topic we take up now.

2.5 MIXED STATES: DENSITY MATRIX FORMULATION

The density matrix p of a pure state |W) is an operator defined by p = | W) (V|. For example, given a two-level spin system
in state |W) = (a|t) + b|)), the density matrix is given by

p = W)(¥|= (alt) + b)) (a" (1] + 5" (L)
= (ad 1) (1] +ab*|t) (L + ba™ [L) (1] + bb*[1)(L])

- (a ((‘)) +b (?)) (a* (10) +5* (0 1))

k b*
= (ZZ* Zb*)‘ (2.36)



2.5 Mixed States: Density Matrix Formulation 71

In the first line of Eq. (2.36), we used the definition of the density matrix as the outer product of a ket vector and a bra
vector (see Sec. A.2.1). In the second line, we simply opened the parenthesis. In the third line, we introduced the row
vector notation (i.e., the representation) in (1.14) for the kets |1) and || ) and took their Hermitian conjugates to form the
bra vectors that are represented by row vectors, to form the representation of the first line. In the last line, we multiplied
the row and column vectors to obtain 2x2 matrices and collected these to form one 2x2 matrix. The diagonal elements
of the density matrix are the probabilities of the up and down spin states, Py =aa* and P, = bb*, and the off diagonal
elements, p4,, =ab* and p| 4 = ba*, are called the coherences. They depend on the phase of the amplitudes a and b. We
shall have much to say about the physical interpretation and significance of the coherences in the chapters that follow.

The density matrix of a system in a pure state |W(¢)) at time ¢ is p(f) = |V (¢)) (W (#)|. The density matrix evolves
according to the Liouville-von Neumann equation,

a
ihgp(t) =[H(®),p (1], (2.37)

as easily verified by taking the time derivative of |W(#))(\W (¢)|. Clearly, from its definition, p(f) =U(t, O)p(O)Zf (,0),
where U(t, 0) is the evolution operator of Eq. (1.35).
A quantum system in an ensemble of pure states, |¢;), with probabilities p; > 0, is represented by the density matrix

p=Y pildidil, D pi=1 (2.38)

The density matrix is sometimes called the statistical operator, particularly in the context of statistical mechanics; some-
times it is called the density operator.

The density matrix has trace unity, Tr p =1, since Trp= Y, p; Tr |$;) (¢l = Y, pi, and the sum of the probabilities
must equal unity. The density matrix must be Hermitian, pT = p. Moreover, since the quantities p; are probabilities,
pi > 0. Hence, the expectation value of the density matrix for any arbitrary state |¢) is greater or equal to zero, i.e., the
density matrix is a positive operator. This is easy to show as follows:

(plply) = sz 0l6i) (¢ilp) = sz (plgi)|?

Positivity implies that the eigenvalues of the density matrix must be nonnegative. Any Hermitian positive operator having
trace unity can be written in the form ) ; A;|@;) (#i], where A; are real nonnegative eigenvalues with ) _; A; =1 and {|¢;)}
are orthonormal vectors. This is equivalent to saying that any Hermitian operator (matrix) can be diagonalized, and
furthermore, if positive, the eigenvalues are nonnegative.

Problem 2.6

(a) Prove that the eigenvalues of a density matrix must be nonnegative.
(b) Prove that the sum of the eigenvalues of the density matrix equal unity.
(c) Prove that the diagonal elements of a density matrix are nonnegative.

Problem 2.7
Consider a pure state, |¢p) = % (M‘) + e? |¢)).

(a) Write the density matrix py = |y )(dp| as a 2x2 matrix.
(b) Suppose ¥ is uniformly distributed over the interval [0, 277]. Write the mixed state density matrix

o= 271 fo dv py as a 2x2 matrix.
2

¢~ and [gg) = (alf) + be |4)).

(c) Find p= [do P(9)py if P(¥) =

]
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(63)

D=

1

© p= la|>  ab*e™”
P=\a*pev b2 )

Any mixed state at time =0, p(0), can be written in the form of (2.38), and evolves in time as

1 1 eiiﬁ -
Answers: (a) py = 5 ot .b)p=

PO =UL0)pOU (1,00 =Y pilh(1,0)|¢;) {ilUd (2, 0), (239)

where U(¢,0) is the evolution operator of the system. The density matrix in (2.39) satisfies Eq. (2.37).
If we perform a measurement corresponding to an observable .4 on the system with density matrix p, the expectation
value obtained is given by

(A) =Tr Ap. (2.40)

If the system is in state (2.38), we obtain (A) = ), p; (¢i|.Al¢;). Moreover, if |¢;) are eigenstates of the operator A with
eigenvalues A;, we find (A) = Y, p; A;. Hence, the probability of obtaining a measured value A; is p;.

A density matrix description of a subsystem is necessary when incomplete information regarding the whole system
results due to averaging over degrees of freedom not explicitly taken into account in the description of the subsystem.
That part of the whole system that will be fully described is called “the subsystem”, and that part associated with the
degrees of freedom that will not be explicitly treated is called “the bath” or “the environment.” This breakup of the whole
system into subsystem and bath is similar to that used in statistical mechanics. Averaging over the degrees of freedom
not explicitly taken into account results in a mixed state of the subsystem even if the whole system is in a pure state;
the subsystem can no longer be described in terms of a wave function. Such mixed states of the subsystem must be
described in terms of a density matrix [see Eq. (2.45)] and cannot be described by a pure state. The equation of motion
for the density matrix is called the Liouville-von Neumann equation or the Bloch density matrix equation because of its
similarity to the Bloch equation for spin systems. The density matrix formalism was developed independently by Lev
Landau and John von Neumann. We now take up this topic.

Reduction schemes for eliminating the degrees of freedom of the bath have been extensively studied (for details
see Sec. 17.3 on the book web page). For example, in the context of the interaction of light with matter, optical Bloch
equations for the density matrix describing the matter have become a standard method to determine the dynamics of a
system described by a finite number of states (e.g., the two-level system) that undergoes interactions with a bath composed
of many degrees of freedom. In the context of the optical Bloch equations, the modes of the radiation field participating
in spontaneous emission from the subsystem levels are adiabatically eliminated (i.e., are reduced out of the problem).
Elimination of the bath degrees of freedom leads to a density matrix to describe the ground- and excited-state populations
(diagonal elements of the density matrix) and coherences (off-diagonal elements of the density matrix) of the subsystem.

Readers familiar with statistical mechanics will recognize the density matrix of a (sub-)system in equilibrium with a
thermal reservoir at temperature 7,

pr=2""Y ey il z= ) e, 241
i J

where 8= (kgT)™', |y;) and E; are the ith energy eigenstate and eigenenergy and Z is the partition function,
Z= Zj e PEi =Tre=PH where H is the Hamiltonian. In position representation, py(r,r') =Z~! > e PE (r|yr) (Wilr'),
and the partition function can be written as Z=Tre 8
matrix can be written as

= [dr (r|pr|r) = [dr pr(r,r). Hence, the thermal density

—BH

Z

¢ . Z=TrefH, (2.42)

pr=



https://sites.google.com/site/thequantumbook/

2.5 Mixed States: Density Matrix Formulation 73

and the thermal average of an operator A is

TrAe PH 3 e PEi(y| Aly)
Tre—BH > e PE

(A r=Tr Apr = (2.43)

A useful observable operator is the projector (or projection operator)' onto a state, say 1Bj), Po; = 16j) (&l
For a mixed state that can be written as p= Y _; p; |¢;) (¢;], the probability of finding the system in state |¢;) is
(Py;) =Tt Py;p= > _; pi ($ilPy;|pi) =pj, i.e., the expectation value of Py, is just the probability of finding the system
in state |¢;). The probability of finding the system in an arbitrary state |1}) is given by

(Po)=>_pi(dilPsloiy="Y_pi l{il?). (2.44)

The reduced density matrix for a subsystem S of a physical system composed of subsystems S and B (the bath) is
defined by the trace over the bath degrees of freedom, i.e., by the partial trace,

ps =Trp psp. (2.45)

Here, Trp indicates a trace over degrees of freedom of the bath B, and pgp is the density matrix of the whole system. Even
if the whole system SB is in a pure state that can be described by a wave function, subsystem S (or subsystem B) cannot
in general be described by a pure state if subsystems S and B interact with each other, i.e., are entangled (see Sec. 1.3.3).
A mixed state representation in terms of the density matrix for subsystem S, pg, is necessary.

We now 1give three examples of density matrices. Consider first the singlet state that was introduced in Sec. 1.3.3,

|singlet) = 7 (M 1HY2 — )111)2), where particles 1 and 2 are spatially separated. Suppose we are not interested in

or cannot measure particle 2, perhaps because it has undergone some decoherence (it interacted with other degrees of
freedom that are not under control), but we are intensely interested in particle 1. The state of particle 1 is obtained by
taking the trace over particle 2 (in this case, we can call it the bath):

p1 = Trp {|singlet) (singlet|}

1
=5 D ol T2 = B2 Gitlatd = 1 (4 (th 1 e

1 1/10
=5(|¢><¢|+|¢><¢|>=5<01>, (2.46)

where the last equality is in the representation of the density matrix in the basis given by (1.14). The probability of finding
particle 1 in state spin-up is 50%, as is the probability of finding it in state spin-down, but particle 1 is not in a coherent
superposition of spin-up and spin-down; it is in a mixed state with no discernible amplitudes of spin-up and spin-down
(certainly no discernible phase to the amplitudes).

The second example involves the two-particle spatial wave function in volume V,

W(r, )= kory Koy K T eik'rz). 2.47)

i
———F— (e
V2(/V)?
Upon forming the density matrix for the system consisting of the two particles, and tracing over particle 2, we find

11 Py
p1="Try {|W)(V]} =V§(lk>(kl+|k)(k )- (2.48)

Hence, the system is in an “incoherent superposition” of the two momentum states with 50% probability for being in each
state.

! A projector, or projection operator, P, is an operator that is Hermitian and idempotent, P> = P. The eigenvalues of such operators are either 0 or 1.
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The next example involves the excitation of a ground-state hydrogen atom by a short pulse of unidirectional high
energy electrons with a probability distribution function P(E) for electron kinetic energy FE (the shorter the pulse duration,
the wider the distribution in energy). We chose the basis set for the hydrogen atom to be the energy and angular momentum
eigenstates, denoted by ¢; = 1, (r) (see Sec. 3.2.6). As a result of inelastic electron scattering by the hydrogen atom, the
hydrogen atom can be left in an excited state. The angular distribution of the scattered electrons after collision depends
on the final excited state Y, (r). The amplitude at time ¢ of state ¥, (r) produced by scattering an electron of initial
kinetic energy E that is scattered into a solid angle €2 is denoted as cg o nm(f) and the hydrogenic state created by the
electron scattering after the collision is

Veq(r,t) = Z CE,Qnim (O Ynim (T). (2.49)
nlm

The amplitude cg,q i, (¢) for scattering an electron of energy E so that it is scattered into a solid angle €2 can be calculated
using quantum scattering methods. If the scattering angle of the scattered electrons is not measured, i.e., is averaged over,
the state created by the scattering electrons is not a pure state; one must integrate over initial scattering energies and over
all final scattering angles to obtain the representation of the (mixed) state obtained for the hydrogen atom if the angular
distribution of the scattered electron is not measured:

ot r, ) = / dE P(E) / dQ o (r, )V o, 1). (2.50)

The expectation value of an operator O within the mixed state is given by

(0@) = /dEP(E)/dQ (VEQ(|OVEQ((D) = /dEP(E)/dQ

. (2.51)
> >k urin O CE L (®) O i
n'I'm’ nlm
where
Owrrn im = / dr’ / dr oy @) O 1) Y (1), (2.52)
The expectation value in Eq. (2.51) can be written as
(o) = / dr’ f dr O(r',v)p(r,r',n)=Tr [0 p(n)], (2.53)

where p(?) is the time-dependent density matrix of the hydrogen atom. In coordinate representation, it is given by

o, v, f) = /dEP(E)deZ Vg alr, t)\IJEQ(r’,t) = /dEP(E)/dQ
0 ceaumim ® hgum® Yuwrw (0) Yo, (F). (2.54)

n'l'm' nim

It is useful to define the density matrix elements, o,y i (2), such that

p(r, r, H= Z Z Pu'l'm’ ,nlm @ Vuwrm () W,}m (I‘/). (2.55)

n'lI'm' nlm

By comparing Eqs (2.54) and (2.55), we find that the density matrix elements o,y im(2) are given by

)On’l/m’,nlm(t) = /dE P(E) / d2 CEQunlI'm (t) CEQ,n]m(t)' (2-56)
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It is important to understand that the state ®(r,7) = [ dE P(E) [ d2 W o(r,t) does not properly describe the state of
the hydrogen atom after the collision with the electrons when the electrons have been scattered into various scattering
angles, and these angles have not been observed. Taking the expectation value of an operator O in such a state, i.e., (O(%)),
does not properly determine the expectation value of the operator O at time ¢. In the description of the hydrogen atom
used here, the free-electron scattering angle and energy have been “traced over,” i.e., averaged over, and the state of the
hydrogen atom is a mixed state described by a density matrix.

Problem 2.8

(a) Generalize the measurement postulates so that they apply to a system in a mixed state.

(b) Verify that the generalization reduces to the standard statement of the postulates when the system is in a pure
state, p = |W) (W|.

(c) Generalize the seventh postulate to a system in a mixed state.

Answer: (a) The first measurement postulate is generalized to the following:

When a measurement of an observable .4 is made on a mixed state described by a density matrix p, the probability
of obtaining an eigenvalue a; is given by Tr [|¢;) (@il p] = (@il p|di), where |¢;) is the eigenvector of the observable
operator A with eigenvalue g;. The second measurement postulate is generalized (trivially) to the following:
Immediately after measurement of an observable A has yielded a value a;, the system is in the pure state represented
by the normalized eigenfunction |¢;), i.e., the pure-state density matrix |¢;) (¢

(c) The state space of a composite system is the tensor product of the state spaces of the constituent systems:
PN-particle = PA ® P ® ... ® py. Examples will be discussed in Secs. 6.1 and 6.2.

Problem 2.9

(a) Determine the probability of finding the system in state |r) if the state of the system is given by the density
matrix p. Hint: use the projection operator Py = |r)(r|.

(b) Determine the probability of finding the system in state |p) if the state of the system is given by the density
matrix p.

(c) Calculate the expectation value of the projection operator P, = |¢) (¢|, using the position space representation.

Answer: (a) P(r) = Tr(pi’r) = Y (¢ilplr)(r|¢;) = (r|p|r), where the last step is perhaps easiest to understand by
using a position basis, [¢;) — [r'). (b) P(p) = (plp|p). (¢) (Py) =Tr pP, = [ drdr’ ¢(r)p(r,r)e* ().

2.5.1 MANY-PARTICLE SYSTEMS: CORRELATION FUNCTIONS

Let us now consider a system composed of many particles. For a pure state of an N-particle system, the coordinate-space
density matrix can be written as

PXLy e XN X sy Xy) = (XL XN DI X)) = W (s X)L Xy, (2.57)

where we use the usual abbreviation x = r, m; for space and spin coordinates. If no spin coordinates are required, we just
neglect my (i.e., no spin degrees of freedom are necessary). The expectation value of a general N-particle operator O is
given by

(0) :Tr@,o: /d)q/dxz.../debp(xl,xz,...,xN,xl,xz,...,xN)
(2.58)

:/d)q/dxz.../dew*(x1,x2,.‘.,xN)@W()q,xz,...,xN).
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More generally, for a mixed state of N-particles,

PXL, e ey XN X ooy X)) = (X1, - LN P1X, o Xy) (2.59)

= Zpilﬁi(xl, . ,XN)lﬂ;‘(x/],...,x;V).

Even in the more general case of a mixed state, the expectation value of a general N-particle operator O is still given
by the first line of Eq. (2.58). The operators that are typically dealt with in quantum mechanics are one- or two-particle
operators, and these operators can be calculated from reduced density matrices. The reduced single-particle density matrix
is defined as

,o(xl,x/l):N/dxz.../de,o(xl,xz,...,xN,x/l,xz,...,xN), (2.60)

where the factor N normalizes the reduced single-particle density matrix such that f dx1p(x1,x1) = N (rather than unity).
Similarly, the reduced two-particle density matrix is defined as

N(N — 1)
pZ(xl’XZ’x/l’x/z):f/d)@-~-/dep(xl’XZ,x&--~,xN,x/1,x/2,x3,-~-,xN)7 (2.61)

where N(N — 1)/2 is a convenient normalization. If the density matrix is a function of time, so are the reduced density
matrices. Moreover, unequal-time density matrices can be defined to generalize the equal-time density matrices, e.g.,
POL L XN N X e X ) = 300 Wiy (X1, 1) - gy Govs ty) U (x’l,t’l).- Y G Iy)-

The first-order spatial coherence, often called the first-order correlation function, is defined by

p(x,x)

V) n)’

where p(x,x’) is the single-particle density matrix and the density n(x) is given by the diagonal element of p(x,x’),
i.e., n(x) = p(x,x) is a measure of the visibility of interference between parts of the atomic gas coming from x and x’.
Furthermore, temporal coherence can be defined in terms of the first-order temporal correlation function,

gV x)= (2.62)

px,t,x,1)

VG, o, )’

gV )= (2.63)

The pair correlation function, g(z) (x1,x2), often called the second-order correlation function, is defined in terms of
the diagonal element of p (x{,x2,x],x}) as

2@ (x1.x2) = PZ(XI,X2,X1,X2)’ (2.64)
n(xp) n(xz)

where, clearly, n(x;) = p(xj, x;). For very large |x; — x3|,

¢, x) —— 1. (2.65)
[x1—xp|—00

Temporal pair correlation functions can also be defined in a similar fashion. The concepts of first-order correlation func-
tion and pair correlation function are very useful in studies of many-body systems. We shall have more to say about these
quantities in Chapter 14 on many-body theory. There, we shall come back to Eqs (2.62) and (2.64), analyze them, and
rewrite them in second-quantized language.
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2.5.2 PURITY AND VON NEUMANN ENTROPY

How can one decide whether a given density matrix represents a pure state or a mixed state? One measure, denoted the
purity of a state, is given by

P(p) =Tr p>. (2.66)

If the purity is unity, i.e., P(p) =1, the state is a pure state, and if P(p) <1, the state is a mixed state. Since a
density matrix is a positive Hermitian operator, it can always be put into the form p = ), pil¢:){(¢il, where p; are

real nonnegative eigenvalues with ) ; p;=1 and {|¢;)} are orthonormal vectors. Hence, Tr p:="Tr (Zl p,-|¢,-)(¢>i|)2 =

Tr (3, p7ie0) (i) = X2

If the sum is over only one state, the state is pure and the purity is unity, whereas if more than one state is present in the
sum, the state is mixed and the purity is less than unity. If Tr p*> = Tr p, the eigenvalues of p are 0 and 1. Since Tr p = 1, the
sum of these eigenvalues is 1. If the purity of the density matrix is unity, there is only a single eigenvector |¢) that satisfies
ple) = |p) and we can write p as p = |¢)(¢|. Thus, when diagonalized, the density matrix of a pure state takes the form

O 0 1 0 b 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 C
0 0.80 -

o= 1 . ] C
0 ~ 0.60 -

- V&) ] :
0 0 0.40 3

Another measure of whether a state is pure is the 0.20 ] L
von Neumann entropy of p defined as B n
S(p) = - Trp log p' (2.67) 0'0 ] T T T I T T T I T T T I T T T I T T T -

For the incoherent density matrix, p = ), pili){il, 0 0.2 0.4 p 0.6 0.8 1

we find S(p) = — >, pi log p;. For a pure state, only

one p; is non zero and it equals unity, so S(p) =0; FIG 2.1 The von Neumann entropy of a spin 1/2 incoherent density matrix,
for a mixed state S(p) > 0. Note that the von Neu- S(p)= —plogy p+ (1 — p) logy (1 — p)] versus p.

mann entropy is unitless (it does not have units of

thermodynamic entropy). The logarithm is typically evaluated in base 2 if one is considering spin 1/2 systems, so,
e.g., if pr=p2=1/2, S(p) =log,2=1. Figure 2.1 plots the von Neumann entropy of a spin 1/2 density matrix,
S(p)= —[plogyp — (1 — p)log,(1 — p)] versus p. The maximum entropy occurs for p = (1 — p) =1/2, where S =1,
and the entropy vanishes forp=0and p=1.

2.5.3 DISTANCE BETWEEN STATES

There are several ways to define the distance between two quantum states. One way is the trace distance:
1
D(p1. p2) = 5Trlp1 = pal, (2.68)

where, for an arbitrary matrix M, |M| is defined as the positive square root of M M, |M|=~'MTM 2 The trace distance
D(p1, p2) is a measure of the distance between density matrices, satisfying 0 < D < 1, and it yields a measure of the

2 MM is Hermitian, so it has a “full” set of eigenvalues A; and Tr [M|= Y, /%:.
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physical distinguishability of quantum states. A unitary transformation of the density matrices, p; — Up;U', does not
change their trace distance. As an example of the calculation of the trace distance, let us take a two-level density matrix

. o z x—1iy
casew1thp1_p_1+<x+l,y _Z>and

_ _ 8z  dx—1idy
pz—p+8p—p+(8x+i8y sz ) (2.69)

where this form is required so that p, remains a density matrix. Then, D(p1,02)=(1/2)Tr/8pTp =

(1/2)4/6x2 + 82 4 822 Tr 1 = \/6x2 + 8y? + 872,

Another distance measure between two quantum states is called the fidelity and is defined as

F(p1, p2) =Try/ p 2. 2.70)

This measure is also invariant under unitary transformations. For the above example, it does not produce a simple answer;
nevertheless, this measure has many of the nice features of the trace distance. As an example, suppose we take p; to be a
pure state, p; = |¥) (¥|, and py = p. Then,

F(p1, p2) =/ {¥lpl¥). 2.71)

Hence, the fidelity is the square root of the overlap of the pure state and the density matrix.

Problem 2.10

/2

Prove Eq. (2.71) by considering the matrix ,ol1 and showing that it equals p; for the case of p; = |¥) (V|.

2.5.4 THE MEASUREMENT PROBLEM REVISITED

Let us now revisit the measurement problem discussed in Sec. 2.4, armed with the density matrix formalism. We again
consider a two-level system in contact with a measurement apparatus, but now examine the effects of coupling of the
measurement apparatus to the environment. Macroscopic systems, even if they are small, are never isolated from their
environments, so if the measurement apparatus is a macroscopic system, we need to consider the effects of its coupling
to the environment. In the treatment here, we will closely follow Zurek [29].

A density matrix corresponding to the pure state in Eq. (2.35), |¥) = (aIT) |Ay) + bl) |A¢)), can be used to describe
the probability distribution over the alternative outcomes. The outcomes of the measurement can be made independent
of one another by taking the pure-state density matrix, opure = |W¥) (¥],

ppure = (alP)Ar) +bI)IAY)) (@ (MAL] + b7 (LA 1), (2.72)

and canceling the off-diagonal terms that determine the quantum correlations (i.e., the entanglement), so that a reduced
density matrix with only classical correlations emerges, we obtain:

Pdee = |al* 1) (M A (A4 + 1B (LA (A (2.73)

The decohered density matrix pgec is easier to interpret as a description of a measurement than ppye, although both
contain identical probabilities for finding spin-up or spin-down, because pge. does not have any quantum correlation
between the system and the apparatus; only classical type correlation is present. The density matrix (2.73) emerges from
(2.72) if we add an environmental variable to the description of the measurement process and trace over the environment
as follows.

We consider a quantum two-level system, the apparatus and the environment, where the environment is also a quantum
system. The combined (two-level-system)-apparatus environment starts out in the initial state, |Wo) = |v0)|Ao)|Eo) =
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(ao|t) + bold)) |Ao)|Eo), where |Ep) is the initial state of the environment and |Ag) is the initial state of the measurement
apparatus. We now parallel the treatment in Sec. 2.4. By virtue of the interaction of the two-level system and the apparatus,
and the unitary evolution postulate, Eq. (1.35), the combined (two-level-system)-apparatus subsystem evolves into the
pure state (a|1)|A4) + b|})|A})), so that

|Wo) = |¥) = (alt)lAr) +bIL)IAL)) |Eo). (2.74)

Following the first step of the measurement process, i.e., the evolution (2.74) that establishes a correlation between
the two-level system and the apparatus, or concurrent with it, the apparatus and the environment similarly interact and
become correlated:

W) = [W') =alt)|Ap)|Er) + bIL)IA)IE,). (2.75)

The apparatus-environment interaction has extended the correlation to the environment. When the state of the environ-
ment |E4), corresponding to the state |[A4) of the apparatus, and |E ), corresponding to the state |A ) of the apparatus
are orthogonal, (E;|E;) = §;;, the density matrix for the combined system-apparatus subsystem can be obtained by tracing
over the information in the uncontrolled and unknown degrees of freedom of the environment:

Tre(1W' ) (W] = lal* 1) (1 1A (A |+ 1B 1) (A AL T = paec- (2.76)

In contrast to the treatment in Sec. 2.4 using (2.35), here, using the density matrix in Eq. (2.76), the collapse postulate
is not necessary to describe the results of the experiment that measures the state of the two-level system. Invoking
decoherence of the apparatus due to its interaction with the environment, we have finessed the need for the collapse
measurement postulate.

For completeness, we mention that it is possible to do other types of measurements besides the projective measure-
ments discussed in the postulates. There are weak measurements, demolition measurements, POVM measurements (Posi-
tive Operator-Valued Measure), and von Neumann measurements.

2.6 THE WIGNER REPRESENTATION

The Wigner representation of the density matrix, W(p, r, t), provides information about the state of the system in phase
space, {(p, r)}. It allows both a position and a momentum view of the state of a system, in contradistinction to the wave
function representation in position space, ¥ (r), which provides information about the position distribution, or the wave
function representation in momentum space, ¥ (p), which yields the momentum distribution. The Wigner function for a
system with N degrees of freedom is defined in terms of the density matrix, p(¢), as>

Wp,r, 1) = k)N / du v/, (r - g,r n gz) Q.77

where the integral is over N coordinate dimensions, and all the vectors are N-dimensional (for n particles in 3D, N = 3n).
If the system is in a pure state, o = | ) (|, (2.77) takes the form

Wp,r, 1) = i)~V / du P/ (r — g t) " (r n gt) 2.78)

3 Eq. (2.77) can be written, W(p,r,1) = 2rh) ™ [ due®V(r — 3|p(@)|r + %).
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Defining the coordinate vectors R=r + u/2 and R’ =r — u/2, Eq. (2.77) can be written as

R+R , ,
w <p, %r) =Qrn)~N / d(R — R) PRV (R R, 1), (2.79)

where p(R’, R, 1) in the integrand should be expressed as a function of (R+R’)/2 and R—R’. W(p, R%R/, t) is a function
of the momentum variable p, the Fourier transform variable of the relative coordinate (R — R’), and the “center of mass
coordinate” Rcy = (R + R’) /2. The inverse transform required to obtain the density matrix o(R’, R, ) in terms of the
Wigner function is

. , R+R
o(R,R, 1) = / dpe*'l"“‘*R)/hW(p, J; ,z). (2.80)

Problem 2.11

Show that for a pure state, (a)_ W(p,r, 1) is real. (b) |W(p,r,0)| < (xh)~V, by defining the normalized wave
functions ¢ (u, ) = 2N/ 2e= W/ Ty (r — %, 7) and ¢ (u, 1) =2V 2y (r + %, t), writing the Wigner function as
W(p,r,1) = (h)~™N f du ¢y (u, )2 (u, 1) = (7h) ~N(¢1|$2), and using the Cauchy—Schwartz inequality, Eq. (A.9),
[(@112) 1> < (P1161) (B21¢2).

Integrating the Wigner function W(p,r, 1) over the momentum p, and making use of the equation [ dp e ipu/h —
(27 h)N 8 (u), yields the probability distribution for finding the system at coordinate r,

P(r,t)= / dpW(p,r,t)=p(r,r,1). (2.81)

Integrating (2.77) over coordinates r yields, after twice inserting a complete set of momentum states, f dp p){pl=1,
into (r — 3|p(#)|r + 5), the probability distribution function for finding the system at momentum p,

P(p,H)= / drW(p,r,t)=p(p,p,?). (2.82)

Integrating W(p, r, f) over both momenta and coordinates yields unity,
/ dp / darW(p,r,H)=1. (2.83)

Note from (2.83) that W has dimensions of [dp dr]~!; this accounts for the units of the factor of (27%)~" on the RHS
of the definition of the Wigner function (2.78). More explicitly, ¥ in the integrand of (2.78) has units [r]~1/2, so y*yr
has units [r]~! (as is clear from the equation, f dr y*yr =1). The factor Q@rh)~ in (2.78) guarantees that the units
of [dp [drW(p,r,1) are dimensionless and it equals unity. Unfortunately, the Wigner function is not a probability
distribution function (despite the fact that P(r, ) and P(p, ) are); it can be negative in regions of phase space, as shown
below.* It is sometimes called a quasi-probability distribution.

4 A quantity known as the Husimi distribution, a Gaussian smoothing of the Wigner function, is defined in a manner that guarantees it to be nonnegative,
and therefore, it can have a probability interpretation. But the Husimi distribution does not satisty relations (2.81) or (2.82). We shall not discuss the
Husimi distribution here; the interested reader is referred to Ballentine [9].
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As an example, consider the calculation of the Wigner representation of a pure-state Gaussian wave function,

V2 y 5
V()= Gromma € 7. We need to evaluate p(*3*, 7)) = ¥ (7)Y (*7):

X=y\ L (XY 1 p? —Gip?
Iﬁ< 2 >1p ( > )-(2n02)1/2e 602 ¢ 1602 |

The Fourier transform of this quantity is the Wigner function,

W(P,X)Z(Znh)”/dyeim'/hw(?) " <x+y>.

2

Note that the Fourier transform of a Gaussian is a Gaussian. You are asked to carry out this Fourier transform in Prob-
lem 2.12(a). Note also that in this case W(p, x) is nonnegative.

Problem 2.12

(a) Complete the calculation of the Wigner representation for the ground-state harmonic oscillator wave function
in 1D.

0P
(b) Calculate the Wigner function for the wave function ¥ (x) = Qro?)~V4e a2 elPox/M,

*Pz 2

P A
Answer: (a) W(p,x) = (nh);lez"P €27, where 0, =11/20.
—(p—pg) 7[)(7)(0(1)]2

(b) W(p,x) = (h) " le 25 o7 22

Problem 2.13

(a) Calculate the Wigner function for the two-particle entangled wave function ¥ (x, x2) = f dp 1= 2=%X0p —
28 (x1 — x2 — Xp).
2

(b) Calculate the Wigner function W(p1, pa, x1, x2) for ¥ (x1,x2) = ——— [ dp e 2 ga—n—x0)p,
[2na}

Answer: (2) W(p1,p2,x1,%2) = Qrh) 72 [ duyduy /P12 (xy —uy /2,50 — up/2) Y (x1 +ur/2,x2 + u2/2).
Now substitute the wave function to obtain W(py, p2, x1,x2) = (h)~2 f duyduy e P11tp212) § (5 — ur/2 —xy +

up/2 — x0) 8(x1 + u1/2 — xp — ua /2 — xp). The first delta function implies u; = 2(x; — x» — xp) + u2. Substituting
this value of u; into the integral yields W (p1, pa, x1,%2) =h =2 [ duy elP1Cx1—02=%0)+u2)+pael 5 %B(xl —x —xg) =
Th2eliP11—xn—x0) § (p1 + p2) §(x1 — x2 — xp). Alternatively, one could use the wave function

O (x1,x2) = 1727202 and finally do the integrals f dp ¢ (x1,x7). This is the way to proceed in part (b).

The Wigner representation of the density matrix for the pure state given by the sum of two Gaussians separated by a
distance 2c,

e 402 + e 402

V()=

=02 —(r+0)?
) (2.84)
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yields a Wigner function that is negative in some regions of phase space,

1 _(;22 7(xfc)2 7(x+c)2 ;,\2
Wp,x)=—F———Fe’? |:e 2027 e 207 4222 cos(20p)] , (2.85)
<1 + 672072)

where 0, =7/20. No matter how far apart the two
gaussians are, the Wigner function continues to be
negative near (p = £ 7-,x=0). Figure 2.2 plots the
Wigner function in (2.85) in phase space.

In analogy with the definition (2.77) of the
Wigner representation for the density matrix, the
Wigner representation for any operator A, i.e., the
Wigner transform of the operator whose position
representation is A(r, ', 1), is defined as

A,(p,r, 1) = fdueip'“/hA (r — g,r + g,t) .

(2.86)
o ) i . FIG 2.2 Wigner function W(p, x) of the sum of two Gaussians, Eq. (2.85),
This is almost identical to the definition of the with 2¢ = 3 Bohr and ¢ = 0.5 Bohr.

Wigner function in (2.77). The only difference is the

factor of (2r7) ™V this difference is necessary so that the units of the Wigner representation of operators come out rea-

sonably. For example, if we consider the operator V(r,r’) = (r|V|r') = V(r)§ (r — r’), we have that V,,(p,r) = V(r). As
2

another example, consider the Wigner representation of the kinetic energy operator T, (p|T|p’) = g—mé (p—p). In position

space,

72
/ dp P/,

2
(r|T|r'y = /dp/dp/ (rp) [;’718(1)—1)’)] P'Ir) fy

~@n)
2

Applying this expression to (r — %|T|r + %) and substituting into (2.86), we find T\, (p,r) = g—m. Thus, the Wigner

representation of operators having a simple momentum representation is also simple. Note that the Wigner representation

of an operator can be written [by twice inserting a complete set of momentum states, f dp |p)(p| =1, into (r— %IA(t) [r+

5) that appears on the RHS of (2.86)] as the Fourier transform of the momentum space representation of the operator as

follows:

/ /
Al 1,0 = Qi)™ / dp’ P/ (p -+, r) , 2.87)
Note that the Wigner representation of the density matrix is the Wigner function up to a constant,
pw (P 0)=Qrm) W (p,r.1). (2.88)

The average of a dynamical variable A(7) in the state specified by the density matrix p is given by (A) =Tr (p.A).
We can express this average in terms of the Wigner function W(p, r, t). To do so, let us first represent the trace of p.A in
position representation:

(A@) =Tr [p(DA)] = / dr / dr' p(r', D) A(r, 1, 1). (2.89)

We now express p(r',r, ) on the RHS of (2.89) using Eq. (2.80):

(AD) = / dr / dr’ f dpe*"l"“*")/hw(p, r“;r ,z) A, v, 1), (2.90)
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Rewriting this equation in terms of the variables R = rgr/ and u =r — r’ and renaming the integration variable R to be r,
we find

(A(n) = / dr / dp W(p,r,1) / due_ip'“/h.A(r—i- g,r— %r) (2.91)

Recalling the definition of the Wigner representation of an operator, Eq. (2.86), and using (2.88), we can write this
expectation value of the operator A(?) as

(A®M) = @) / dr / dp pw(p,x, 1) Aw(p, T, 1). (2.92)
By comparing (2.89) and (2.92), we conclude that,
Tr (AB):(Znh)_N/dr/dpAw(p, r,t) B, (p,r,1). (2.93)

The product of operators in the Wigner representation can be expressed as

N n ih N
[AB],(p, 1) = [A], (P, T) exp { A } [Blw(p. 1), (2.94)
where the differential operator A is
A=V, V.-V, .V, (2.95)

as you will show in Problem 2.14, and the gradient operators act to the left or to the right as indicated. The symmetrized
and antisymmetrized products are therefore given by

1 ~a an o h ~
51AB + BAly(p, 1) =[Al(p, 1) cos { EA} [Blw(p, 1), (2.96)
%[AB — BAl,.(p,r) = i[Al,,(p, 1) sin {gz\} (Bl (P, 1). (2.97)

We shall have occasion to use these results in studying the dynamics of the Wigner function and in deriving semiclassical
expressions for the Wigner function in the next subsection.

Problem 2.14

(a) Carry out the algebra leading to (2.87) by twice inserting a complete set of momentum states, [ dp [p)(p| = 1.
(b) Prove Eq. (2.94) by showing that [ du %/ (r — %IAEIr 44
= [dueP/h (r — %A + %> exp {%A} [ du’ ePv'/h <r - “7/ |B|r + “7/> , by inserting a complete set of states
on the LHS between A and B.

In order to find the dynamical equation for the Wigner function W(p,r,1) [or ow(P, 1, 1)), let us take the Wigner
transform (2.86) of the Liouville- von Neumann equation for the density matrix, ihd 5:0(0) =[H(?), p(t)]. When the Hamil-

tonian is given by H(p,r,1) = % + V(r,1), for either one particle in 3D or for an N-dimensional system, we obtain
ih%pw(p, r,t)=Tp — pT)w(P,r) + (Vp — pV),,. In Problem 2.15, you will show that

h
(Tp — pT)(p.¥) = % 2V (P, (2.98)
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The Wigner transform of (Vo — pV) does not yield a simple expression, so we shall simply leave it in symbolic form and
write the quantum Liouville equation as:

0 i
=BT + % Vet = = 2 (Vo = pV)u (P 0). (2.99)

The quantity (Vp — pV),, appearing on the RHS of (2.99) can be expanded in a power series in position representation:

(Vp — pV)u(p,1,1) = /duefp'“/hp (r _ g,r + gr) [V (r - g) —v <r+ g)]
= /dueip'“/hp <r— g,r+ g,t> —22 (UJ/‘Z)] (VoY V

odd j

Carrying out the integral over u yields,

ho V
(570)

(P10 - (Vo) V(D) | (2.100)

Vo= pVu(p.r = | -2
odd j

The RHS is an odd power series in 7, with lowest order term 2V p 0,,(p, T, ) - VV(r). Substituting only this lowest order
term into (2.99) yields,

a

S pu(prD) + % Vepw( 1. 1) + £ V(. x.1) =0, (2.101)
where the force is f= — V,V(r). This equation is called the Liouville equation [see Eq. (16.33) on the book web page].
It is also called the Viasov equation or the collisionless Boltzmann equation in fluid mechanics and plasma physics. Note
that 7 does not appear in this lowest order equation; Eq. (2.101) exactly describes how a classical gas moves in phase
space. The higher order terms in (2.100) give rise to quantum corrections of the equation of motion of p,,,.

Problem 2.15

Obtain (2.98) starting from

2 I . .
(Tp = pDw(p,1) = — I [ due® /" [(Viy(r = DWW (r+ ) — ¥ (r — 5)(Viy*(r + §))] by replacing Vi with
Vﬁ and integrating once by parts.

Problem 2.16

(a) Explicitly evaluate the first two terms in (2.100) for 1D.

(b) Evaluate —%(Vp — pV)w(p, x, 1) for the 1D harmonic oscillator potential V(x) = ’”T“’zxz for which only the j = 1
term in Eq. (2.100) contributes and obtain the equation of motion for p,, (p, x, f) [or W (p, x, f)]. Note that 7 does
not appear in the resulting equation of motion for the Wigner function for the harmonic oscillator.

(c) Verify that the solution to equation in part (b) is

ow(p,x, 1) =f(p* — m*@*x®, —o~ In(mawx + p) — 1).

(d) Find p,,(p, x, 1), given the initial condition,

_ 2 2
_p—p? X} . )

Pw (P, X,0) = ————————exp
" Qro}2mo2)l/? 207} 207
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Answer: (a) if [3ppw(p, 00 V() — L83 p(pax.1) 83 V(x)].

24 "p
(b) 0: 0y (p, x, 1) + (p/m) 0xpy (P, X, 1) = mw?x pow (P, X, 1).
(d) Write the initial density matrix in terms of the variables y = p* — m2w?x? and z= — w~! In(mwx + p) by solving

for p(y, z) and x(y, z), i.e., substitute p = %e“’z(e‘z“’Z +y),x= %e“’z(e_z“’z — ), into py,(p, X, 0). Then, substitute
7 — z — tinto p(y, z) to obtain p,,(y, z, t). Finally, reexpress the resulting expression for p,,(y, z, ) in terms of p and
x by letting y =p2 — m?w?*x* and z= — 0~ In(mawx +p).

Problem 2.17

(a) Verify that the solution to 9,0, (p, x, t) + %Bxpw (p,x,1) =0 is given by any function of the form
ow(p,x, 1) =flp,x — (p/m)t].

(b) Generalize part (a) to the 3D case, % ow(p,r, 1) + % - Veow(P, T, 1).

(¢) Find py,(p, x, 1), given the initial condition (2.102), and plot for two times.

)2 _ 2 )
Answer: (b) pu(p,x,0) =/Ip,x = (O/m)11. ) puP: 5D = oz exp[—@zﬁg) — = ].SeeFlg. 23.

_ ﬂ: _ =p/m?
FIG 2.3 Spreading in phase space of the solution to the Vlasov equation due to diffusion, py (p, x, ) = (2n(7p0x)*1 e e 20?
with ox =0p = 1. (a) =1 and (b) =2 (the wave packet is Gaussian and symmetric at t =0).

2.7 SCHRODINGER AND HEISENBERG REPRESENTATIONS

In quantum mechanics, there are several approaches for treating the time dependence of states (pure or mixed) and
operators. In the approach we have been using up to now, time dependence is carried by the state, i.e., in | (7)) for a pure
state and in the density matrix p(#) for a mixed (or pure) state. This approach is called the Schrodinger representation. In
it, a pure state evolves as the solution of the time-dependent Schrodinger equation,

[¥s (@) =U(1,0)[¥5(0)), (2.103)

—iHt/h

where the evolution operator for a time-independent Hamiltonian is U(z,0) =e
nian, the evolution operator U (, 0) is the formal solution of the equation,

or for a time-dependent Hamilto-

ih%u(r, 0)=H(®)U(,0), U(0,0)=1. (2.104)
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The density matrix evolves according to Eq. (2.39), i.e., ps(t) =U(t, 0)ps(OUT (1,0). ps(t) satisfies the equation of
motion, % ps(t) = ;Ti[H (1), ps(®)]. In the Schrodinger representation, the state of the system evolves in time, i.e., the
wave function s and the density matrix ps depend explicitly on time, and operators are usually time independent
[unless they depend explicitly on time]. When computing the quantum average at time ¢ of a time-independent operator
Ag, as in (2.40), the time dependence enters through the states, i.e., (A); = Tr Ag ps(t), which for a pure state reduces to
(A)r = (Ys (D) Asl s ().

In the Heisenberg representation, the time dependence is removed from the state and put onto the operators. The wave
function in the Heisenberg representation is given by

lyr () =U"1,0)|¥s5(0)) = ¥5(0)), (2.105)

and is therefore time independent. The density matrix in the Heisenberg representation is also time independent. To
determine how to write an operator in this representation, consider a state Ag(#)|¥s(¢)) in the Schrodinger representation
and transform it to the Heisenberg representation:

U (AsONYs(0)) =U  AsUU Ys(0) = An (DY (D)), (2.106)

hence,

A @) =U""(t,0) As()U(2,0). (2.107)

We inserted unity in the form 242/~ in the middle equation of (2.106), and in the last equation we used the definition of
|[YH () and thereby identified AH(Z) as the quantity shown in (2.107). The time derivative of A (7) can be calculated as
follows: d’jm u-! 8ASO)Z/I + U™ H()As(OU — LU~ As())H(H)U, i.e., after inserting unity in the form 42/~" into
the last two terms of the RHS of thlS equation,

AN _, 18 As)

U+ —[H, Au(t 2.108
2 o Ut [ H(D]. ( )
This equation is called the Heisenberg equation of motion for the operator Ag (¢). For an operator that is not explic-
itly time dependent, 3’46”,’(’) = h[H Ap(0)]. As is clear from (2.105), the time derivative of the wave function in the

Heisenberg representation vanishes, 3 [|1//H (1)) =0, i.e., |Yg) is time independent. The density matrix in the Heisenberg
representation, pg =U ~1(t,0)ps(DU(t,0) = ps(0), is also time independent, i.e., oy = 0. Expectation values are given
by (A); =Tr Ay (1) pn.
Using the Heisenberg picture, the equations of motion for the position and momentum operators are a;f’ =3 L H, ry)
dPH _

and = h[H pr]. Often the subscrlpt H 1S not exphcltly indicated. For the Hamiltonian H = 2m + V(r), we find the
Helsenberg equations of motion, ,) : =p/m, and 2 3 T = ‘”;ir) ; taking averages of these equations in the state |Vg), w

obtain Ehrenfest’s theorem, Eq. (1.87). These equations appear to be the classical equations of motion; the expectatlon

value of the first equation is 65? = (p)/m, which is exactly the classical equation of motion The expectation value of the

second equation is % = (3V(r)) whereas the classical equation of motion would be = z> = BV( ) . Expanding the
RHS of the former equation about (r) we find,

3{p) 8V( 82V(

= - = Z X — )G — (G)) + ... (2.109)

In Sec. 7.2.2, we shall analyze the difference between this equation and the corresponding classical equation.

5 An operator in the Schrodinger representation can be a function of time, so in general, we should write Ag (7).
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In either the Schrodinger or Heisenberg representation, the time derivative of the expectation value of an operator is

given by
d oA 1
— A=\ —+ z[AH . 2.110
7 Ak <( or Tl ])>t (2.110)
Specifically, in the Schrédinger representation, for a pure state,

d _ _ 0As 1 -

— = d : D) — = ,H > 1),

G, = [aruscn (55 + Lias ) wsio

and for a mixed state, % (A), =Tr (% + % [As, H 5]) ps(t). The Heisenberg representation expressions are also simple

to derive.
It is of interest to determine whether the analog of the virial theorem of Sec. 16.6.2 (see the book web page) is true in
quantum mechanics, i.e., whether

d . p2
E(r-p)_ <%>—(r-VV). (2.111)

By using (2.110), we see that %(r -p)= ([r-p,H]), for H= % + V(r), so for this type of Hamiltonian, the quantum

>\2m

oscillator Hamiltonians of Sec. 1.3.15, this is the case; hence Problem 1.19 could be easily solved using the virial theorem.

virial theorem is valid. Hence, for this type of Hamiltonian, whenever % (r-p)=0 <i> = (r - VV). For the Harmonic

Problem 2.18

(a) Show that [r - p, H] =0 yields % —r-VV=0.
(b) Show that % (r - p) = (V) /2 for a Coulomb potential.

Problem 2.19

Consider the evolution operator (¢, tp) and transform it using a time-dependent unitary operator S(z),
U(t, t9) — U (1, 19) = S(OUE, 10)ST (7). Using the definition of the evolution operator,
U'(t + dt, 1) = (1 — iH'()dt/h)U' (¢, 1p). Using this equation, show that

o . as
H (1) = rh?(u’)' =SHST + ihEST. (2.112)

2.7.1 INTERACTION REPRESENTATION

An intermediate representation that takes out the time dependence of part of the Hamiltonian from the state and puts
it into the operators is called the interaction representation. Breaking the full Hamiltonian of a system into two parts,
H(t) = Hy + H, (1), the state vector in the interaction representation is defined by

[y () =Uy (2,005 (0)), (2.113)
where

Up(t,0) = exp(—iHpt/h),

Uo(1,0)  —iH,
o, 0) _ lhOZ/l(t,O). (2.114)

at
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The time derivative of the state in the interaction representation is

alyr@) lHl 10

- g 2.115
o Vi), 2.115)
where
Hy (0 =Ug " (1.0 Hy (0o 1, 0) = &0/ Hy (1)~ 0t/ (2.116)
Problem 2.20
Do the algebra leading to Eq. (2.115).
Answer: Bl'lgt(’) MWS(I)) +Uy (, 0)3\1//s(t)
= uo—l (t,0) (% %‘*‘Hl)) [Ws(0) = lHot/hH] (0)e=HO/M |y (1)),

In order to determine how to write an operator in this representation, let us consider a state given by Ag(#)|¥s(7)) in
the Schrédinger representation and transform it to the interaction representation:

Uy ' AsO s (D) =Uy ' AsUolty ' 1¥rs (1)) = A9 (1),
hence,
Ar(t) =Uy P As(OUy = M0 Ag (1) e~ Ho! /M, (2.117)
The time derivative of A;(¢) can be calculated as follows:

aA[ (1) —u; 1 0As(?)
ot ot

U+ hu "HoAs(DUy — £u "Ho As(OUp.

After inserting unity in the form Uold, Uinto the last two terms of the RHS of this equation we obtain

A7) _y-! dAgs(1)

” Ry U0+*[H0,A1(t)] (2.118)

In the interaction representation, the density matrix evolves according to the equation,

) N
~p1()= #[Hl,l(l), (D], 2.119)

Expectation values are obtained as follows: (A); = Tr A; () p(2).
We delay the presentation of examples that use the interaction representation to future chapters.

2.7.2 HARMONIC OSCILLATOR RAISING-LOWERING OPERATORS

Using basis-set expansion, we can represent operators as matrices. For the harmonic oscillator problem, the eigenvalues
and eigenvectors of the Hamiltonian can be obtained analytically, so this yields an alternative method for solving the
quantum harmonic oscillator problem to that of Sec. (1.3.15). We shall develop this approach here.

In Sec. (1.3.15) we introduced harmonic oscillator units and obtained a dimensionless Hamiltonian written in terms of
a dimensionless coordinate y and a dimensionless momentum p:

H= % (p2 + yz). (2.120)
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Here the dimensionless momentum, p = %diy, and the dimensionless coordinate, y, satisfy the commutation relation

[y, p] =i, as can easily be checked by applying [y, p] to an arbitrary function f(y).® We are now going to define dimension-
less raising and lowering operators for the harmonic oscillator problem. The lowering (destruction) and raising (creation)
operators are defined as follows:

1 1
a=—@+ip), da=—@—ip). 2.121)
ﬁ(y p N
Note that the lowering and raising operators are non-Hermitian. Note also that we can invert the Eq. (2.121) to find
y=2)"Y2(@a+a") and p= — i(2)~"2(a — a¥). Let us motivate the definition of these operators. If p and y were not

operators, but c-numbers, we could write the Hamiltonian (2.120) as H = (p2 + yz) /2=0Q —ip)(y+ip)/2= (@ (a),
thus “factoring” the Hamiltonian. But since y and p do not commute, we shall see that H will not quite equal a'a.
Nevertheless, the introduction of these operators considerably simplifies the search for the eigenvalues and eigenvectors
of the Hamiltonian. It is easy to see from the commutation relation [y, p] =i, by direct substitution of the expressions of
y and p in terms of a and a, that the lowering and raising operators a and a' must satisfy the commutation relations,

[a,a’1=1, [a,a]l=0, [a',a']=0. (2.122)

In terms of these operators, the dimensionless Hamiltonian can be written as H = %(aTa + aa®), or, equivalently,
1
H= <aTa + 5). (2.123)

Hence, the eigenvalues and eigenstates of H are determined by those of the operator N = a'a. To calculate them, we shall
use the operator equations,

[N,al]= —a, [N,d'1=a", (2.124)

which can be easily proved using the operator identity, [AB, C] = A[B, C]+[A, C]B, along with the commutation relations
(2.122). Let us denote an eigenstate of N having eigenvalue v by |v), i.e., N|v) = v|v). Applying (2.124a) to |v), we obtain
the equation, Na|v) = (v— 1)a|v). Hence, a|v) is an eigenstate of the operator N with eigenvalue v — 1. Applying (2.124b)
to |v), we obtain Na'|v) = (v 4+ 1)a'|v). Hence, a'|v) is an eigenstate with eigenvalue v + 1. This is why a and a" are
called lowering and raising operators.

Problem 2.21

(a) Rewrite Eq. (2.121) in terms of the dimensional momentum and position variables p, and x, i.e., in terms of

2
operators py and x for which the dimensional Hamiltonian is H = % (% + ma)2x2).

a_\f e ( i px) (2.125a)
i |1 [fmo (1
a' = \/; 7 (x lmw px> . (2.125b)

(b) Using the commutation relation [x, p,] = i, show that the dimensionless raising and lowering operators in
Eqgs (2.125a) and (2.125b) satisfy the commutation relations (2.122). To do so, write x and p, in terms of a and
at by inverting (2.125a) and (2.125b) and substitute these expressions into the commutator.

Answer:

6 Explicitly, [y, plf () = Gp — p)f () = — lbﬁ% & 4 GfONI=if ().
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To determine v, we consider the square of the length of the state a|v), (wlahHav)) = wla’alv) = WIN) =v(v|v).
This quantity must be nonnegative, hence v > 0. By applying a repeatedly to |v), we obtain eigenvectors with eigenvalues
v,v—1,v—2,.... But this conflicts with the condition that these numbers must be nonnegative, unless the sequence
terminates with the value v=0. For v =0, a|v) =0, i.e., a|v) is the zero vector, and further applications of the lowering
operator again give the zero vector. Hence, the eigenvalues of the operator N are integers; the lowest integer is v =0 and
the eigenvector corresponding to this eigenvalue is denoted |0). The next lowest eigenvalue is v =1 and the eigenvector
corresponding to this eigenvalue is denoted |1). Thus, from now on, instead of using v to denote the eigenvalue and |v)
the eigenvector of the operator N, we shall use n and |n), N|n) =n|n).

We have already seen that atln) is proportional to |n 4+ 1), i.e., af|n) = Cyln + 1). To calculate C,, note that
|C,,|2 = ((nla)(a”n)) = <n|aa7|n) =m+1)n+1n+1)=m+1),ie., |Cy| =+/n+ 1. Arbitrarily choosing the phase of
C,, so that C,, is real, we obtain,

a'ln)=vn+1n+1). (2.126)
Similarly, considering a|n), we find
aln) =+/nln — 1), (2.127)

except if n =0 in (2.127), then the equation yields a|0) = 0. Iterating (2.126) yields,

(@’
|n) = |0). (2.128)
A/ n
Hence, the eigenvalue/eigenvector equation for the dimensionless Hamiltonian is, H|n) = (n+1/2)|n), or, more explicitly,
da+ ! ny=(n+ ! |n) (2.129)
2 B 2) " )

The eigenstates |n) are called number states, or sometimes Fock states after Vladimir A. Fock.
Taking the inner product of Eqs (2.126), (2.127), and (2.129) with |n’), we find the expressions for the matrix elements
of a’, a, and a*a in the number representation are as follows:

(Wla"|n) = vVn+ 18y i1, (2.130a)
('laln) =/néy p_1. (2.130b)
(n'\a*aln)y =ns,.,. (2.130¢)

The operator N = a'a is called the number operator and is often denoted by the symbol 7. The matrices representing
and 7 in the number representation are given explicitly by

0 /T 0 0 0000
0 0 V2 o0 ... 01 00

a=|0 0 o0 V3 .|, s=|0 020 (2.131)
0O 0 0 0 ... 000 3

The matrix representing a' in the number representation is simply the transpose of @ in (2.131) since & is real. The
Hamiltonian matrix representing the operator H = (n+ 1/2) is clearly diagonal (the half means half times the unit matrix
1), and the eigenvalues are simply the diagonal elements. Putting back the dimensions, H = hw (1 + 1/2).
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Problem 2.22

(a) Determine the matrices for x and p, in the number representation.

2
(b) Determine the matrices for x2, p2, and the harmonic oscillator Hamiltonian, H = (% AL mw2x2>, in the

number representation.
(c) Calculate (n|x|n), (n|p|n), (Ax)?, and (Ap)Z.

Answers: (a) x=,/%(a +ah) and p= — imw,/ ﬁ(d —a'), so

0 V1 0 0 ..
- Vi 0 V2 0 ..
= [ == 0 2 0 V3 .. , (2.132)
2Zmo | 0 0 /3 0 ..
0 VI 0 0
- -1 0 2 o ..
p=—imo)— | O V2 0 V3 .| (2.133)
2mw 0 0 _\@ 0

(©) (n|x|n) =0, (n|pjn) =0, (Ax)® = %(n + 1/2), and (Ap)? = mhw (n + 1/2).

The ground-state wave function in coordinate space, ¥ (x), can be obtained by representing the lowering operator in
the expression, (x|a|0) =ao(x) =0 (which you will better understand after doing Problem 2.23), using Eq. (2.125a),
which yields the differential equation,

B
—+ @x Yo(x) =0. (2.134)
dx h
The solution to (2.134) is
2
Yo(x) = Ao exp<— m;‘); ) (2.135)

1/4
and normalizing this wave function yields Ag = (%) . The excited-state wave functions in coordinate space, ¥, (x),

can be obtained as follows:

o — @ _[ e )| 0
Vn(x) = (x|n) = (x| N |0) = N (x0)
(mw>1/4 )

Th mew noa maox

In the Schrodinger representation, states evolve in time; application of the evolution operator to the harmonic oscillator
Fock state |n) gives

U(t,0)|n) = e~ 1H1/20t |y (2.137)



92 CHAPTER 2 The Formalism of Quantum Mechanics

So, as we have just seen, in position representation, v, (x) = (x|n), and the time-dependent wave function is given by
Yn(x, 1) = (x| (2, 0) ).

Problem 2.23
Prove that (x|a|0) = ayo(x) by carrying out the following procedure.

(a) Insert a complete set of states, f dy|y)(y|, between a and |0) on the LHS of the equation.

(b) Use the definition of a in Eq. (2.125a) in your result from (a).

(c) Insert a complete set of momentum eigenstates, f dp |p)(p|, into the matrix element (x|p|y) to the right of the
momentum operator in order to evaluate this matrix element.

Let us now write the equations of motion for the lowering and raising operators in the Heisenberg representation.
These equations of motion will be solved analytically. In the Heisenberg representation, the operators a and a' become
ag () = eth/hae—th/h and (JIT_I(I) — eth/haTe—iHI/h.

Bagt(t) = %[HH, ag(t)] = iw[a;{(t)ay(t), ag(]= —iwag (1), (2.1382)
da; - .
agt(l) — %[HH,a,'_](t)] = iw[aL(t)aH(t),aL(t)] = iwa;_,(t). (2.138b)

The solutions to these equations are
ap(t)y=ae "™, (2.139a)
aj, () =a'e®". (2.139b)

The Hamiltonian in the Heisenberg representation is not time dependent because of the cancellation of e’ and €' in
the product of the raising and lowering operators, Hy = ha)[a;{ Hag(t) +1/2]=hw (afa+1 /2).

In summary, we defined number states (i.e., Fock states), |n), in (2.128). Application of the raising and lowering oper-
ators to these states is detailed in (2.126) and (2.127). The Fock states can be used as a basis since they are orthonormal
and span the set of all states. They are one of the most useful basis sets for dealing with quantum many-body processes,
as detailed in Chapter 14.

This is the second time we considered the harmonic oscillator problem. The first treatment in Sec. 1.3.15 was car-
ried out using the Schrddinger wave function method; the treatment here used the Heisenberg matrix mechanics method
wherein operators are represented by matrices and state vectors in Hilbert space are represented by row vectors. The
first method involves solving the Schrodinger equation as a differential equation, and the second method involves diag-
onalizing the Hamiltonian matrix and thereby obtaining its eigenvalues and eigenvectors. In the particular case of the
harmonic oscillator, we were able to carry out the diagonalization to obtain the eigenvalues and eigenvectors analytically.
In general, once we obtain the Hamiltonian matrix, numerical solution to obtain the eigenvalues and eigenvectors is the
only option, and is carried out upon truncating the Hamiltonian matrix to a finite matrix.

2.7.3 COHERENT STATES AND SQUEEZED STATES

The concept of a coherent state was first introduced into quantum optics by Roy J. Glauber in 1963. One could argue that
the development of coherent states marks the birth of the field of quantum optics. Coherent states are a convenient tool
for describing a variety of phenomena, including the radiation emitted by a laser, improved measurement characteristics
of certain devices via squeezing so as to “beat” the uncertainty principle, and use in correlation spectroscopies, just to
mention a few applications.
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A coherent state |«) is defined as an eigenstate of the non-Hermitian annihilation (lowering) operator a,
ala) =o|a). (2.140)

Upon expanding the coherent state |«) in a complete set of Fock (i.e., number) states and using Eqs (2.128) and (2.137),
we find:

o¢] o0
= (Z |n><n|) )= In) <0 a>. (2.141)
n=0 n=0
Applying the operator j—% to |o) on the RHS of (2.141), we find
0 al
= (0]a) Z (2.142)
0

The matrix element (O|«) appearing on the RHS of Eq. (2.142) can be determined by imposing the normalization condi-

tion
_ (@h”
(afa) = (3 0<0|7f |o) ) (

to find |(0]a)|? = (anio |oz|2"/n!)7l = exp(—|a|2). Taking (O|a) to be real, we can write Eq. (2.142) as

) = (2.143)

jor) = 12 Z (2.144)
n=0 f
It is easy to see from (2.144) that the probability of finding the number eigenstate |n) in the coherent state |«) is given by
Py(er) =|(nler) 2 = el @ (2.145)
n.

Hence, the probability of finding n ‘photons’ in the coherent state is distributed in a Poisson probability distribution
function with mean |a|2.
The time evolution of a coherent state o) in the Schrodinger representation is obtained by applying the evolution
operator to the coherent state ) to obtain
o —iwt\n
U, 0) o) = o2 3 €D

——In). 2.146
2 ) (2.146)

Problem 2.24
Verity the following expectation values for the coherent state |cr).

@ (R)o = (ala’ala) = lal* = Y72 nPy.
Hint: One way to prove the last part of this relation is by inserting the identity
(Zi’,‘”o In)(n|) =1 into (c|a’ale).

(b) (1%)a = (ali*|o) = Y72 n* Py =ar (jor|? + 1).

© ((AR)?)g = (ali?|a) — (alfla)? = Itfflz, hence ((AR)?)q = (1)

(d) Prove that 7|a) =e —la?/2 Yorto n% |n).

(e) Use part (d) to prove Eq. (2.146). Hint: Use Eq. (2.137).
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Problem 2.25

Show that (a|e’) = exp(—|a|?/2 + a’a* — |@’|?/2) and that |(a]o’)|> = exp(—|a — o'|?).

Problem 2.26
mo x

(a) Write the equation (x|a|a) = o (x|a) as [\/; %(x DRl - aj| Yy (x) = 0, and solve this equation for the

. /4 _moo. [2hpaoy2a; /20y
coherent state wave function, ¥, (x) = (%) e~ 2 TV e ReO) Ty Gy max

(b) Show that for ¥/, (x) = 2 Re o and (p) = A/ 2mho Ima.

mw

The coherent states are complete (they can be used as a basis),
1 2
— | daja){a|=1. (2.147)
T

Here, the integral is over both real and imaginary parts of ¢, i.e., d*a = dagday so f d*a = ffooo dag ffooo daj. Note that
coherent states are not as simple to use as a basis as Fock states; they are overcomplete, as is clear from the nonorthogo-
nality you derived in Problem 2.25, so

la) = % / d*d |0y (o |o) = % / do' |’y exp(—|a|?/2 + o a — |17 /2). (2.148)

Thus, any pure state |y) can be expanded in terms of coherent states, |{) = ni f d*a|a) (o), and any density matrix
can be expanded as

p= %/dza P(a,a™)|a) (], (2.149)

where P(a, a*) is real and normalized, f PaPa,a*)=1.
Equation (2.144) can be written entirely in terms of raising operators that operate on the vacuum state by noting that

In) =a™|0)/+/n!:

2/ > (aahH)" 2 wat
jay=e 12N " j0) =712 e ). (2.150)
n!
n=0
It is often convenient to rewrite (2.150) in terms of the displacement operator
D(a) = exp(ad’ — a*a), (2.151)
by noting that, a|0) =0, hence,
1912 2" 10y — exp(—|a|?/2) exp(aa’) exp(—a*a)|0), (2.152)
and using the following identity for operators:
eATB) — A pBomIABI2 — BoAGABY2 if (A [A, B]] =B, [A, B]] =0. (2.153)

This latter result is known as the Baker—Hausdorff theorem (or the Campbell-Baker—Hausdorff theorem). Using (2.153)
and (2.152), (2.150) becomes

lee) = D()|0). (2.154)
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The operator D(«) is called a displacement operator because it displaces the vacuum state |0) to the coherent state |o)
(see Fig. 2.4).

Problem 2.27

(a) ForA=aa" and B= — a*a, show that [A, B] = |«/|?.
(b) Prove erd' —aa _ o=lal’/2 pad’ —aa using the Baker—Hausdorff theorem.

Problem 2.28

Let A and B be two operators that do not necessarily commute. Expand the function F(x) = exp(xA)Bexp(—xA) in
a series in x about x =0.

(a) Show that F'(0) =[A, B], F”(0) = [A, [A, B]], and F®™ (0) =[A4, . .., [A, B]] with n commutators appearing in this
expression.

(b) Substitute into the Taylor series to show that F(x) = B + x[A, B] + é—z, [A,[A,B]] + . ... This relation is called the
operator expansion theorem.

(c) Show that [exp(xA)B exp(—xA)]" = exp(xA)B" exp(—xA).

(d) Show that exp(xA)F(B) exp(—xA) = F(exp(xA)B exp(—xA)).

(e) Generalize (d) to show that for any operator G that has an inverse, GF (B) G~ '=F(GBG™)).

Problem 2.29

(a) Using the operator expansion theorem you derived in the previous problem, show that
exp(xN)a exp(—xN) = a exp(—x) and exp(xN)aT exp(—xN) = af exp(x).

(b) Show that exp(aaT)F(a, ah) exp(—aa*) =F(a—a,ab).

(c) Show that exp(—a*a)F(a,a’) exp(a*a) = F(a,a’ — a*).

(d) Show that e®@' —®*aF(q, at)e—@@ +%a — F(q — o, at — o*).

Squeezed States and the Uncertainty Principle

Let us consider two noncommuting Hermitian conjugate operators, X; and X» (e.g., x and p). The commutator of these
operators can be written as the product of i and another Hermitian operator that we call X3,

[X1, X2] =iX3. (2.155)

The Heisenberg uncertainty relation shows that the product of the uncertainties of two operators X; and X, satisfies the
inequality,

1
AXi AXy = EI(Xs)I, (2.156)

where AX =/(X?2) — (X)2, and the expectation values are calculated with a given state |1). A state |3) is called a min-
imum uncertainty state if AX| AX, = %|(X3) |, and it is called squeezed if the variance of one of its observable operators,
say AXj, satisfies

1
(AX1)? < S1(X3)1. (2.157)
Moreover, if, in addition,

1
AXy AXy = Z1(X3), (2.158)
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the state |) is called an ideal squeezed state. The quantum fluctuations of a squeezed state in one observable, say X,
are reduced below |(X3)|/2 at the expense of the fluctuations in the other observable.

Consider the Hermitian operators X| = %(a +a"yand Xp = %l.(a —a"). The commutator of these operators is given by
[X1,X2]=1i %, ie., X3= % is a constant. The Heisenberg uncertainty principle takes the form

1
AX1 AXy > 3 (2.159)

Now let us consider the expectation values of X; and X, and the variances AXl2 and AX% for the coherent state

|y = D(a)|0) defined in (2.154):

(@lala) = ((X1)q + i(X2)e) = (01D (0)aD(@)|0) =a, (2.160)

(a) Coherent states
X

\ Coherent state lo>

Im(a)1

Vacuum state I0>/‘

\ J Re(0) X

(b) Quadrature squeezed states
X2 Coherent squeezed state |, &>

Im(a)

Squeezed vacuum
state 1&>

: —> X
£=reif, with ezow Re(e)

(c) Number and phase squeezed states

X5
Number squeezed

state Phase squeezed

state
Im(a)+

Rotated squeezed a
vacuum state |&>

—— —> X
E=relb with 0 Re(ar)
O=tan-1[Im(c)/Re(a)]

FIG 2.4 Coherent states and squeezed states in phase space. (a)
Coherent state |0) and displaced coherent state |«),
(b) quadrature squeezed (i.e., position and momentum

squeezed) states, and (c) number and phase squeezed states.

Source: Band, Light and Matter, Fig. 9.9, p. 548

i.e., (X1)o =Re«a and (X3)y = Im «. Furthermore,

(@] AX? o) = (0| AX3]0) = —, (2.161)

A= =

(| AX3]ar) = (0| AX3]0) = —. (2.162)
Hence, the coherent states |o) (including |0)) are indeed
minimum uncertainty states. Figure 2.4(a) shows the
coherent vacuum state |0) and the displaced coherent
state |«); these wave packets are plotted in the X;-X»
plane.

Squeezed states offer the possibility of beating the
quantum uncertainty limit in measurements. Such states
can be generated using a nonlinear phase-dependent
interaction, as first observed by R. E. Slusher in an atomic
sodium gas experiments in 1985. Note that neither the
Fock state, |n), nor the coherent state, |«), are squeezed
states. For the coherent state AX; = AX, = 1/2, whereas
for the Fock state AX| = AX; = (2n 4+ 1)/2. A squeezed
state can be obtained from a coherent state by applying
the squeezing operator to it:

S(E) = /28" )2, (2.163)

This squeezing operator S(§) can be applied to either
the vacuum state |0) (which is a trivial coherent
state) or the coherent state |«), i.e., |£)=S5(£)|0) and
la, £) =S(§)|r). These “quadrature” squeezed states are
shown in Fig. 2.4(b). Quantum states can be number
squeezed or phase squeezed, as well as squeezed in
g or p (position or momentum). The latter are shown
in Fig. 2.4(b) and the former in Fig. 2.4(c). Number
squeezed states can be described as simply a rotation
of D(«)S(]€])|0) by angle 6 = arctan(Im(«) /Re(«)) and

phase squeezed states are obtained by an additional rotation of the number squeezed states by 7 /2. More information
about squeezed states can be found in Ref. [18], Chapter 9, and Ref. [30]. These references discuss how squeezing of
light beams can be implemented using nonlinear optics.
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Other types of coherent states and squeezed states, not associated with those of the boson creation and annihilation
operators of the linear harmonic oscillator, can be constructed. The best known example of such states is those associated
with the angular momentum operator J (see Sec. 6.1.9). Other examples of squeezed states are described in Refs. [31-33].

Problem 2.30
Using the operator X| =x= %(a +d), and X» =p= — imw,/ %(a —ah), sothat X3 = — i[X1,X2]= — T,
show that (a|ala) = (0|DT ()aD(@)|0) = / 52 ((X1) + iy/ 7= (X2)a) = & and (| AX? |or) = (0] AX}|0) = 7’72

2.8 THE CORRESPONDENCE PRINCIPLE AND THE CLASSICAL LIMIT

Although the rules of quantum mechanics are highly successful in describing microscopic objects such as atoms,
molecules, and even condensed phase systems such as crystals and metals, experiments show that macroscopic sys-
tems such as bicycles, spinning tops, soccer balls, etc., can be accurately described by classical mechanics. Nevertheless,
it seems reasonable that the ultimate laws of physics must be independent of the size of the physical objects being
described. Bohr’s correspondence principle was motivated by this belief, and it explains how highly excited objects
behave classically even though the underlying laws of nature are quantum mechanical. The correspondence principle,
first invoked by Niels Bohr in 1923, states that the behavior of quantum mechanical systems reduce to classical physics
in the limit of large quantum numbers. We should note that Bohr’s formulation of the correspondence principle is not
correct in general, and counterexamples have been found (e.g., highly excited rotational-vibrational states of diatomic
molecules close to the dissociation threshold).

A demonstration of how large quantum
numbers can give rise to classical behavior
is provided by the one-dimensional quantum <«+——— classical limit ——»
harmonic oscillator. The quantum mechanical
probability distribution function for finding a
particle at position x if it is in the nth eigenstate
of the harmonic oscillator is given by |y, (x) 12.
The classical probability distribution function
P.1(x) for finding a particle at position x can be
found as follows. The classical trajectory of
the particle is given by x(¢) =asin(wt + 6)
where the amplitude a is related to the par- T -
ticle energy E by E=mw?a*/2. Now, if the
phase angle 6 is randomly distributed, i.e., 0 :
P®)= (1)), we can calculate Py(x) by < % @
noting that Pgj(x) dx =P () dd = 2n)~" d6.
Since dx = acos(wt 4 0)dO = a[l — sinz(wt +
0)1Y2d0 = [a? — x211/2d6, we find

0.3 : . , }

o
N
T
1

30

P_(x) and ly(x)?
o
=
1l

FIG 2.5 The classical probability, Pej (x) = [ (a® — x2)]71/2, of finding the
particle at position x in a harmonic potential, and the probability of
finding a particle at position x in the nth eigenstate, Py (x) = [, (x) |2, for
n=30. Here, a is the classical turning point, i.e.,

Pa(x) = —. (2.164) E=mo*a®/2=ho(n+1/2).
mva

—Xx
Figure 2.5 plots Pj(x) and [y, (0)|? for n=30. Clearly, the two curves are similar. Moreover, the higher n, the better
the correspondence. Furthermore, if we take a superposition of several wave functions with quantum numbers n around
a central large quantum number (a wave packet), the correspondence becomes even better because the fast oscillations
seen in Fig. 2.5 average out.



98 CHAPTER 2 The Formalism of Quantum Mechanics

Bohr argued that classical physics does not emerge from quantum physics in the same way that non relativistic clas-
sical mechanics emerge as an approximation of relativistic mechanics at small velocities. Rather, classical physics exists
independently of quantum theory and cannot be derived from it. Moreover, the Bohr correspondence principle falls short
of describing how systems that are not very highly excited are well described by classical physics. So, how does classical
physics arise out of quantum physics? We will have a lot more to say about this subject in Chapter 17, linked to the book
web page.

2.9 SYMMETRY AND CONSERVATION LAWS IN
QUANTUM MECHANICS

Symmetry plays an important role in quantum mechanics. It simplifies the solution of quantum problems, such as the
hydrogen atom, it allows for the recognition of system properties, such as conserved quantities and invariances, and it
allows for the classification of molecules, crystals, and elementary particles. It even allows for the unification of the
fundamental forces, e.g., electromagnetism, electroweak, and the strong force.

In quantum mechanics, a symmetry operator O operates on states {|1)} in Hilbert space. Symmetries can be discrete,
like the spatial inversion symmetry, or continuous, like the rotations around an axis. An operator O that commutes with
the Hamiltonian, HO = HO, is conserved since the Heisenberg representation (2.108) [note that we are considering an
operator that is not explicitly time dependent] gives

99 _ Lino1=0. (2.165)
at h
Hence, the Hamiltonian and the conserved operator can be simultaneously diagonalized, and then the eigenfunctions of
the Hamiltonian are also eigenfunctions of O. More explicitly, using HO = HO, we find that if v, is an eigenfunction of
H belonging to eigenvalue E,, then (Ov,) is also an eigenfunction of H belonging to the same eigenvalue (see Sec. 2.2.1
on compatible operators):

H(OYn) = O(HYrn) = En(Oy). (2.166)

We have already pointed out some consequences of invariance in Sec. 1.3.6. Invariance of the Hamiltonian under
displacements necessitates that the momentum is a constant of motion. Invariance under time displacements implies that
the Hamiltonian is conserved, i.e., the energy of the system is conserved. Invariance under rotations requires that angular
momentum is a constant of motion (this topic will be considered at length in Chapter 3). An important theorem first
formulated by Emmy Noether shows that continuous symmetries are related to conservation laws.

In Sec. 2.9.1, we consider symmetry under exchange of particles; in Sec. 2.9.2, we discuss invariance under inversion,
which leads to conservation of parity; and in Sec. 2.9.3, we consider the symmetry known as time-reversal invariance. In
Sec. 3.6, we shall treat the consequences of symmetry on matrix elements of dynamical operators.

2.9.1 EXCHANGE SYMMETRY

In Sec. 8.2, we shall extensively treat invariance under exchange of identical particles, which requires symmetrization
of the wave function of identical bosonic particles (particles with integer spin), and the antisymmetrization of the wave
function of identical fermionic particles (particles with half-integer spin). The latter leads to the Pauli exclusion principle.
The Pauli exclusion principle, formulated by Wolfgang Pauli in 1925, states that a many-electron wave function must be
antisymmetric with respect to the interchange of any two electrons, and this ensures that only one electron can occupy
a given quantum state (and similarly for any many-fermion wave function). The treatment of fermion wave functions in
their antisymmetric form in terms of what is now called Slater determinants was developed by Paul A. M. Dirac in a
famous 1926 paper, where he writes:

An antisymmetrical eigenfunction vanishes identically when two of the electrons are in the same orbit. This means that in
the solution of the problem with antisymmetrical eigenfunctions there can be no stationary states with two or more electrons
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in the same orbit, which is just Pauli’s exclusion principle. The solution with symmetrical eigenfunctions, on the other hand,
allows any number of [particles] to be in the same orbit, so that this solution cannot be the correct one for the problem of
electrons in an atom.

The same symmetry occurs for all fermionic particles,
WXL, X0,y Xis ey Xy ooy XN) = — WXL, X2, 005 Xy e ooy Xy oo, XN, (2.167)

where x; = (r;0;) is the position and the spin projection of particle i. The statistical properties of systems composed of
fermions at low temperatures was studied by Enrico Fermi in 1926; it is known as Fermi—Dirac statistics. The statistical
properties of bosonic systems was developed by S. Bose and A. Einstein in 1924-1925 and is called Bose—FEinstein
statistics.

The Pauli exclusion principle is one of the most important principles in physics because it underpins many of the
characteristic properties of matter, from the large-scale stability of matter to the existence of the periodic table of the
elements. Figure 2.6 highlights some of the consequences of particle exchange symmetry. Identical boson wave functions
must be symmetric under the interchange of any two particles. Hence, identical bosons can occupy the same quantum
state. Identical fermion wave functions must be antisymmetric under interchange of particles, and therefore, fermions
cannot occupy the same state. The lowest energy state that can be formed with five fermions (say, five spin-up electrons)
is shown on the RHS of Fig. 2.6. One puts the fermions into the lowest level available, and once this level is occupied, no
additional identical fermions can be added to it. One “builds up” a multiparticle fermionic ground-state wave function by
adding particles to consecutively higher levels. This is called the aufbau (building up, in German) principle for construct-
ing multiparticle fermion ground-state wave functions. A complete discussion of identical particles will be presented in
Chapter 8.

Summarizing the symmetrization postulate for identical particles: for identical bosonic particle states, the wave func-
tion must be symmetric with respect to interchange of any two of them [leaves the wave function unchanged as in
Eq. (2.167) but without the minus sign], and for identical fermionic particle states, the wave function must be antisym-
metric with respect to all the particles so that interchange of any two of them changes the sign of the wave function [as
in Eq. (2.167)]. How this symmetrization is implemented will be discussed in Sec. 8.2.

Symmetry with respect to particle exchange

Bosons Fermions
FIG 2.6 The zero-temperature
w(x‘! ’XZ) B . w(XZ ,X1 ) w(x'l 'x2) . w(xz ’x1) occupation of
single-particle states for
Multiple state occupation possible Pauli Exclusion Principle bosons and fermions due to
: symmetry under particle
S.B 1924 W. Bg,gh, 1925 interchange. The wave
" (_)56’ 3 E. Fermi. 1926 function for identical
A. Emstem, 1924-5 P.A.M ,Q , 1926 bosons must be symmetric

under the interchange of
any two particles, whereas

| ] i f for identical fermions, it

—E F must be antisymmetric.

Therefore, bosons can
occupy the same quantum
state, whereas fermions
cannot.
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2.9.2 INVERSION SYMMETRY

Symmetry with respect to displacements and rotations yields the concepts of momentum conservation and angular
momentum conservation. Similarly, invariance under space inversion, i.e., the simultaneous change of sign of all the
spatial coordinates of the particles of a system, yields the concept of parity conservation. Unlike displacements and
rotations, parity is a discrete symmetry. Classically, invariance under inversion does not lead to a conservation law, in
contradistinction to the way that invariance under translations leads to conservation of momentum and invariance under
rotations leads to conservation of angular momentum. But quantum mechanically if the inversion (or parity) operator, P,
which inverts the system through the origin,

Py (r) =y (1), (2.168)
corresponds to a symmetry operation (commutes with the Hamiltonian),
d
iha—iD =[P,H]=0. (2.169)

We then say that parity is conserved.
The transformation of the following vector operators under inversion apply:

r—-r, p—~>—-p, J—1, (2.170)

ie, PrP = —r, PpP~! = — p and PJP~! =], where J is the angular momentum of the system [here J could be
the total angular momentum given by the sum of the orbital angular momentum L and the spin angular momentum S
(the internal angular momentum of particles), J=L + S, or it could be just the orbital angular momentum, or just the
spin angular momentum. These concepts will be explained in detail in Sec. 3.1]. The transformation law of the angular
momentum in (2.170) results since both r and p in L =r x p change sign upon applying an inversion transformation, so
L remains unchanged, and S and J must transform like L.

The eigenvalues of the parity operator are easy to find. Consider the eigensystem equation, Py (r) = &, (r), where
&p is the eigenvalue of the parity operator, and again apply the parity operator to obtain P2y (r) = 81%1/1(1'). Since P> =1,
we conclude that 81% =1, hence,

gp==* L (2.171)

Eigenfunctions with eigenvalue +1 are said to be even under parity and eigenfunctions with eigenvalue —1, odd.
The 1D and the 3D harmonic oscillator Hamiltonians, the hydrogen atom Hamiltonian, and any central-field Hamilto-
nian, etc., commute with the inversion operator. Hence, the eigenstates of these Hamiltonians are simultaneously eigen-

states of parity and are either odd or even under inversion. But a Hamiltonian such as % + Kx® does not commute with
the inversion operator P, and the eigenstates need not have definite parity. In solid-state physics, there are many crystal
structures that are not parity invariant.

The weak interaction of elementary particles, the interaction that is responsible for S-decay, is not invariant under
inversion, i.e., does not commute with P. In weak-interaction decay processes, final states that are superpositions of
opposite parity states can be created. As first predicted by T. D. Lee and C. N. Yang in 1956, the angular distribution
of decay products depends on pseudoscalars, such as S - p, where S is spin operator for the decaying particle, and are
odd under inversion. Lee and Yang won the Nobel Prize in 1957 for their work on parity violation in weak-interaction
processes.

2.9.3 TIME-REVERSAL SYMMETRY

The time-reversal transformation sends ¢t — —t, hence, it reverses the velocity of particles but does not affect their
positions. Classically, if r(#) is a solution to m:j?r(t) = — VV(r), then r(—7) is also a solution. Note that a dissipation
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term such as —y %r on the RHS of the equation of motion would make this untrue since this term changes sign under the
transformation. Moreover, a magnetic force term of the form (g/c) % x B would also violate this symmetry, unless B were
reversed, as it would be if the particles that create this field had their velocity reversed. The universe itself does not show
symmetry under time reversal, Today we know that the dynamical laws of nature may break time-reversal symmetry; the
weak force is known not to be time-reversal symmetric and kaon decay is an example of such time-reversal symmetry
breaking.

Time reversal (another name for this transformation is motion reversal) transforms dynamical variables as follows:

r—-r, p——-p J—-J 2.172)

ie., TrT ! =r, etc., where we have denoted the time-reversal operator by 7. If the time-reversal operator commutes
with the Hamiltonian of the system, it is a constant of the motion. By considering the Heisenberg equation of motion
for the time-reversal operator, ih%’ = H, for a Hamiltonian that commutes with 7, it appears that changing 7 to —7 is
equivalent to complex conjugation of the equation. Hence, perhaps we can use the operator of complex conjugation as
the time-reversal operator. Let us apply this guess for 7 to the Heisenberg equation of motion:

3
T (iha> T 'Ty =THT 'Tvy, (2.173)

where we have inserted unity in the form 7 ~!7 into the LHS and RHS of this equation. For a Hamiltonian that commutes
with 7', we have

3
— il (TY) = H(TY). (2.174)

since 7 (ih-2) T-' = —(ihd). If (Ty) = ¥*, Eq. (2.174) is automatically satisfied since it is simply the complex con-
jugate of the original time-dependent Schrodinger equation, so perhaps the time-reversal operator is just the complex
conjugation operator. We shall see in Sec. 4.4 that this is valid only when no half-integer spin degrees of freedom are
present.

The complex-conjugation operator, often denoted /C, is not a linear operator, but rather an antilinear operator [see
Appendix A, Eqgs (A.47) and (A.48), and the text associated with these equations for the properties of antilinear operators].
Not only is /C antilinear, it is antiunitary [see Eq. (A.48) and the surrounding text]. At this point, please read the paragraph
in Appendix A on antilinear operators, and then return here.

As we shall see, the time-reversal operator is of the form of a product of a unitary operator and the complex conjugate
operator, UK, where the unitary operator U/ is the unit operator for the spinless case. Applying such a transformation
operator to a state vector |{), we get |1/}) =UK]|Y). Applying the same transformation operator, U, to another such
state |£) to obtain the state |§ ), and forming (§ |1ﬁ), we find

EIW) = Ely)*. (2.175)

If a system is time-reversal invariant and i is a stationary wave function of the system, the time-reversed wave
function, 7y, describes a state with the same energy since H(7 ) =7 Hy = E(7 ). There are two possibilities: (1)
¥ and 7 are proportional to one another and describe the same state or (2) ¢ and 7 are linearly independent and
describe two degenerate states. In the former case, 7 = v, where t is the eigenvalue of the time-reversal operator, and
further application of 7 to 7y yields 72 =T (1) = t*T v = |7|?y. Clearly, for this nondegenerate and integer spin
case, 72 =1, since reversing the time twice does nothing, hence v = ¢ where ¥ is a constant angle. Moreover, energy
eigenfunctions g (r) that are nondegenerate are real (or, more generally, a real function times a phase factor independent
of position or momentum), as we can see by noting that ¥g(r) and ¥/ (r) represent the same state, hence, they must be
equal, up to a phase factor, Y5 (r) = eEvyrp(r). Thus, the wave function for a nondegenerate state is real (up to a constant
phase factor of magnitude unity).
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Consider the plane wave states Y (r) = (r|p) = (2m) 32T/ These states are degenerate and are therefore case (2)

states. Applying the time-reversal operator, 7 yrp(r) = w; (r) = 27) 32~ PT/h = ¥ _p(r). Note also that in momentum
space, 7 ¥ (p) = ¥*(—p) since

T|1//):T/dp Ip){plY) = /dp’l -y = /dplm(—PIl/f)*- (2.176)

This result can be easily seen to yield 7 |p) =| — p).

The nondegenerate case [case (2)] is not possible for particles with half-integer-spin angular momentum. We shall
explicitly consider the effect of time-reversal to these cases, e.g., for a spin 1/2 particle, in Sec. 4.4. We conclude the
discussion of time-reversal symmetry in this section by emphasizing that, quite generally, 7 = U/ K; for spin-zero particles,
U = 1. For particles with nonzero spin S, the wave function is a spinor with 2S+1 components and ¢/ is a (25+1) x (25+1)
matrix. We will determine this matrix in Sec. 4.4.

2.9.4 ADDITIONAL GENERATORS OF GALILEAN TRANSFORMATIONS

This section can be skipped on a first reading.
In Sec. 1.3.6, we discussed the generators for Galilean transformations of translations, rotations, and time translations.
Here, we return to consider boost and acceleration transformations.

The unitary transformation of a state that corresponds to a boost of the velocity V = 4&

. =@
is Uy =™ V/" ] e., the generator for velocity boosts is the quantum operator Q = mr (see Sec. 1.3.6). The operator Q

generates a displacement of the velocity in the sense [see Eq. (1.48)],

=r of a system by velocity v

A L (2.177)
or in momentum space,

imr-v/h —imr-v/h

e pe =p —my, (2.178)

in a fashion similar to p generating a displacement in coordinate space,’

PR WL L/LES (2.179)
Note that the boost generator Q commutes with the operator f, hence, so does the boost Uy,
R (2.180)

e

Note further that the boost operator changes the kinetic energy as follows,

2 2
oimrv/h P~ e imrv/h _ (p —mv)

, 2.181
2m 2m ( )

In order to better understand how a boost transformation works, let us apply Uy = e™*V/"

Yp(r, 1) = C ePT/hiEl/h,

to the plane wave state

UV‘/fp (l', [) — eiml‘-V/h Ceip-l‘/h—iEl/h — Cei(p+mv)<r/h—iEr/h. (2.182)
We conclude that the boost transformation operator Uy = ¢ ¥/ is a unitary operator that changes the momentum

of the state of the system from p to p 4+ mv (not p — mv). Since the kinetic energy of a plane wave '@+ T/% jg

7 Eqs (2.178) and (2.179) can be obtained by expanding the exponential operators e~P4/" and ¢/Pd/%

relations [p;, x;1= (1/)8;., e.g., e PV peP 4/ —p _j[p r] . d/h=r—d.

in a power series and using the commutation
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2
E = % =E +p- v+ mv?/2, we can write (2.182) as

i/ Yp(r.1) = o @VEmV? /2)1/h Vp-tmy (L, 1), (2.183)

We have used the fact that Yy ,y(r,1) =C el P+mV)t/h—iE't/h 1 obtain the final equality in (2.183). Similarly,

; . . ; 2 .
U_y=e7""" applied to p(r, 1) gives e vmy/2)t/n Yp—mv(r, ). These boosts affect the momentum (and velocity)
rather than the position.

The unitary transformation that boosts the velocity V= % =r of a state by velocity v and translates it by v? is

Ug = eltm—p0-v/n, (2.184)

The generator of this type of velocity boost is the operator G = mr — pt. The operator G generates a displacement in
velocity space in the sense,

eimG~V/h Vv e—iG'V/h =V — v, (2.185)

or in momentum space,

VMg oGV _ iy, (2.186)

and generates a displacement in coordinate space,
A L (2.187)

Note that Ug # ™ V/" ¢=P!'V/ since r and p do not commute. To transform the wave function v (r, ¢) into a frame
moving with velocity v and displaced by the vector vt, one applies Ug to the wave function.

If, in a coordinate system undergoing rotational acceleration, such as the coordinate axes rotating with the Earth, the
position, velocity, and acceleration of a particle is given by r, v=r, and a = v =, the velocity and acceleration of the par-
ticle in the space-fixed (inertial) coordinate systemis vgg = v+ R xrandag =a+ Q2 x v =a+2R@ x v+ L X (R X1).
Here, € is the angular velocity of the rotating coordinate system. There are, of course, consequences if we want to
describe the particle in the rotating coordinate system, e.g., the force in the accelerating coordinate system is given by
F=Fy — 2mQ x v—m® x (R x r), where F is the force in the space-fixed coordinate system, the last term in this
equation is the centrifugal force, and the next to last term is the Coriolis force. In quantum mechanics, the Hamiltonian
in a rotating frame of reference also includes extra terms, Coriolis and centrifugal terms. The transformation operator to
the rotating frame is given by Ug in (2.184) with a velocity vegr determined as follows. The velocity in the inertial frame
is Fgf = I + R X r, where € is the angular velocity, and € x r is the effective velocity of the rotating coordinate sys-
tem, Verr = £ x r. Hence, using (2.184), we find Ug (Vefr) = /6 Vert/T = oimr=p0-(@xn)/h — o =i (xxp)i/h and the rotating
frame,

V' (r, 1) =Ugy (r,) = e " FL My (x, 1). (2.188)

The (time-dependent unitary transformation) operator Ug = e~ "®14/" applied to the wave function gives the new wave

function in the frame undergoing rotational acceleration. As we shall learn in Sec. (2.7) [see Problem 2.19, Eq. (2.112)],
the Hamiltonian of the system in the rotating frame is given by

.. dUg
H'(r.1) = UGHUG + ih= SU¢ = UGHUG + 2 - L. (2.189)
Coriolis and centrifugal terms will in general be present in this Hamiltonian.
In the problem below, you will introduce transformations of the form r — r’ =r + £(¢) into the Schrodinger equa-
tion for general &(¢) and determine the solution in the transformed frame. Then you will compare your result with the
application of a unitary transformation of the wave function.
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Problem 2.31
(a) Consider the Schrodinger equation ih% = — %Vzw + V(r, ). Make the following transformation:
r—r=r+£G®), t—>1 =t
Consider explicitly the following three cases:
r>r=r+R, r—r=r+v, r—r=r+ar’/2

i.e., take the cases £(f) =R, &(r) = vt, and £ (¢) = ar® /2. Rewrite the Schrédinger equation using the variables r’

and ¢. After this transformation, you can change ¢’ back to ¢. Hint: Note that V =V’ and % =£.V + %, and
substitute these expression into the Schrédinger equation.
. . 7 J
(b) Write the wave function as v (r, £) = u(r’, £) ¢ 91 and choose

t
2 1 .
F,0=m/m [ —&-x'+ / E@ar”

Find the equation satisfied by‘u(r’ 0.
(c) Show that Ugy, with v(¢) = &(¢), is consistent with your results in (a) and (b).




Angular Momentum and
Spherical Symmetry

Rotational symmetry plays an important role in many physical systems, such as atoms, and more generally, spherically
symmetic systems (see Sec. 16.6). Just as linear momentum is conserved in homogeneous systems, angular momentum is
conserved in isotropic systems. In classical mechanics, one finds that a conserved quantity exists if a system is unchanged
upon rotation of the system in space; the conserved quantity is called the angular momentum, L. For a system of particles,
the total angular momentum is given by L= )", ro X Py, where « is a summation index over the particles in the system
[see Eq. (16.23) in Sec. 16.4]. Angular momentum is vital in treating such systems. But even in systems that are not
isotropic, it is often useful to expand the state of the system in a basis of states composed of eigenstates of angular
momentum. In this chapter, we study angular momentum in quantum mechanics.

We begin by introducing quantum mechanical angular momentum operators in Sec. 3.1. In Sec. 3.2, we discuss a
number of spherically symmetric systems, including the spherical quantum dot, the 3D harmonic oscillator, the Morse
Oscillator, the van der Waals and Lennard-Jones potentials, and the hydrogen atom. Then in Sec. 3.3, we establish the
connection between rotations and angular momentum. Section 3.4 shows how to add angular momentum in quantum
mechanics, Sec. 3.5 introduces tensor operators as well as vector and spinor fields, and finally Sec. 3.6 shows how
symmetry considerations can be employed to evaluate matrix elements of dynamical variables. The topic of angular
momentum for spin 1/2 systems is left largely to Chapter 4, and the dynamics of such systems is taken up in the first few
sections of Chapter 6.

We note parenthetically that the mathematical study of symmetry is embodied in the theory of groups, and the rotation
group is an important subtopic of group theory. We will refer to some group theory concepts in this chapter and others.
Appendix E summarizes topics in group theory that are useful for quantum mechanics, including the rotation groups (O3
and SU(2)), the permutation group, which will be used in discussing identical particles, and the point and space groups,
which are useful in treating crystals, solid-state physics, and diatomic and polyatomic molecules. The reader is advised
to look over this appendix to gain familiarity with the subject of group theory.

3.1 ANGULAR MOMENTUM IN QUANTUM MECHANICS

We have already mentioned angular momentum and its quantization in Sec. 1.1.5. Moreover, in Sec. 1.3.6, we showed
that angular momentum is the generator of rotations. Specifically, Eq. (1.63) specifies that the unitary rotation operator
for a single particle is expressible in terms of its orbital angular momentum operator,

L=rxp=rx (—ih)V. 3.1)
The cartesian components of the orbital angular momentum operator are

Ly=yp; —zpy, Ly=1zpx —xp;, L;=xpy— ypx, (3.2

which, when written in quantum mechanics as differential operators, take the form

a a
L= —in|y— —z2—|, (3.32)
9z ay
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0 0
L,=—ih|lz— —x—|, 3.3b
v = [Z ox xaz] (3.3b)

0 0
L,=—ih|x— —y—|. 3.3¢)

ay ax

The square of the angular momentum operator is

L*=L-L=L}+L +L. (34)

The components of the angular momentum operator do not commute with one another, e.g., [Ly, Ly] =ihL; (which is
sometimes written using the notation [L1, Ly] = ifiL3). The commutation relations for orbital angular momentum operators
can be written succinctly using the Einstein summation convention as

[Ll', Lj] =ih Eijk Lk, (3.5)

where g is the Levi-Civita symbol (also called the permutation symbol; see Appendix C), which has the properties
€123 = 1, an even number of permutations of the indices 123 in €133 also yields 1, an odd number of permutations of
the subscripts 123 yields —1, e.g., €132 = —1, and if any of the subscripts ijk are equal, then g;; = 0. The square of the
angular momentum operator commutes with each of the components,

[1%,L;]1=0. (3.6)

Problem 3.1

(a) Using the commutation relations of the position and momentum operators and the properties of commutators
derived in Problem 1.8, show that [Ly, Ly] = iAL,.

(b) Show that [L;, L;] = ihej L.

(c) Show that [L?,L;] =0.

(d) Show that the operator r x p is Hermitian if r and p are Hermitian.

To accommodate spin (i.e., internal) angular momentum as well as orbital angular momentum, we define the total
angular momentum operator J. Depending upon the system under study, the angular momentum may be just orbital in
nature, or just spin, or the sum of both orbital and spin. From the general invariance of isotropic systems, we know that the
generator of rotations for systems of particles with spin is the total angular momentum. We shall take up the study of spin
angular momentum in the next chapter. We posit that angular momentum is additive, e.g., the total angular momentum in
a system having both orbital (L) and spin (S) angular momenta is the sum of the two, J =L+ S,! and that the components
of J also obey the commutation relations

[J,',JJ'] =ih Eijk Jk. (3.7)

If the operator J is the sum of an orbital and a spin angular momentum, it acts in the Hilbert space H = Hgpace ® Hspins
which is a direct product of spatial and spin spaces. The elements of H are written as a sum of terms of the form
W) =|¥) ® |x), where |1) is a space ket and |x) is a spinor ket (often the ® will be omitted). The action of J on |W¥)
implies that L acts on |¢) and S acts on |x ). We shall often use the symbol J to denote an arbitrary angular momentum
operator since many statements regarding the properties of angular momentum operators are valid for L (orbital), S (spin),
and J (total) angular momenta.

! A more detailed account of angular momentum addition is presented in Sec. 3.4; see Eq. (3.148).
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Angular momentum is measurable, hence J is Hermitian, J =17, and the eigenvalues of J;, i = x,Y, z, are real. From
the commutation relations (3.7), it follows that the square of the angular momentum operator, J? =7 .J, commutes with
each of the components,

[J2,J1=0, (3.8)

just like in the orbital angular momentum case. Hence, there exists a complete set of common eigenvectors of J2 and any
one component of J. The component J, is usually chosen to have common eigenvectors with J2, and hence, the two can
be simultaneously diagonalized or, equivalently, they share a common set of eigenstates denoted as |fm) such that

JHB,m)=1B |B,m), (3.92)
J\B,m)=hm|B,m). (3.9b)

We shall discuss below an elegant technique enabling us to construct the states |8, m) as linear combinations of states
[Y) ® |x) € H. The quantum number m is often called the magnetic (or, particularly in the case of orbital angular
momentum, azimuthal) quantum number.

By taking the inner product of (3.9a) with |8,m) and using the relation J? :J% —l—Jy2 +Jz2, we find that

(B.m|J?| B, m) = (B, mlJ2|B.m) + (B.m|J2| B, m) + (B, m|JZ|B,m). Given that (B, m|J2|B,m) =((B,m|J})(Jx|B.m)) =0
since the inner product of a vector with itself cannot be negative, and similarly for J% we conclude that 8 > m2, i.e., for

a given B, there is a maximum (4+/8) and minimum (—/pB) value of m that is possible. To obtain the eigenvalues 8 and
m, it is convenient to introduce the raising and lowering angular momentum operators. We do so in the next subsection.

Problem 3.2

Show that an operator O that commutes with two components of the angular momentum operator also commutes
with the third component.
Hint: Consider the commutator [O, [J;, J;]].

Problem 3.3
Calculate the commutator [Jf, J:1.

Answer: [Jf,]z] = JilJx, Jo] + U, J U = —i(Uxdy + JyJ5).

3.1.1 ANGULAR MOMENTUM RAISING AND LOWERING OPERATORS
The angular momentum raising and lowering operators are defined as follows:
Jo=Jy—idy, Jp=Jx+ily. 3.10)

These relations can be inverted:

Jy+J- Jo—J_
sz;’ Jy=+T'

5 3.11)

Note that J4+ are not Hermitian; rather, Jl = J+. We can derive the following commutation relations using the commuta-
tion relations (3.7):

U Jpl=hiy, [J.J 1=—hl_, [Jy,J_1=2hl.. (3.12)
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Using (3.11) to express J, and Jy in terms of J and J_ and the commutation relations (3.12), it is easy to derive the
relations

Jd_+J_J
o “2L 2 (3.13a)
J=J 4T —hl, (3.13b)
P=J_Ji + I+ 0, (3.13c)

Applying (3.12a) to |8, m) and rearranging the resulting equation, we find
Sy |Bm) =nh(m+ 1) J4|B,m). (3.14)

Hence, J4 |8, m) is an eigenvector of J, with eigenvalue m + 1, J |8, m) = c|B, m + 1); J, raised the eigenvalue of the
ket |8, m) by one. This is why it is called a raising operator. Similarly, applying (3.12b) to |8, m) yields,

JJ_|B.m) =h(m — 1)J_|B,m). (3.15)

Hence, J_|B,m) is an eigenvector of J, with eigenvalue m — 1, J_|B,m)=c_|B,m — 1). This is why J_ is called a
lowering operator.
For a given 8, there is a maximum value of m = for which application of J onto |8, ) yields the zero vector,

J+1B.)) =0, (3.16)

because there is no state c | 8,j+ 1) with (j+1) > /B, as we have shown at the end of the previous subsection. Applying
J_ to (3.16) and using (3.13c), we find

J_J41B.J) = = J2 = 1|, j) =0. (3.17)
We conclude that
B=j(G+D. (3.18)
Similarly, there is a minimum value of m = for which application of J_ onto |8, ) yields the zero vector,
J-1B.,1) =0, (3.19
because there is no state c_|8,¢ — 1) with (¢ — 1) < —/B. Applying J to (3.19) and using (3.13), we find
JoJ_|B.1) = (J? _Jz2 + nJy)|B, 1) =0. (3.20)

We conclude that B+ ¢(—¢ + 1) =0, which together with (3.18) gives t = — j. The range of m is therefore given by
—j < m < j. Because the raising operator J increases the m (magnetic or azimuthal) quantum number in units of 1(%),
J+ applied consecutively to |j, —j) an integer number of times will lead to the state |}, j), we conclude that 2j must be an
integer, i.e., j is either an integer or a half integer. From now on, we denote the normalized angular momentum eigenstates
by |j, m), where J2|j,m) =h%j(j + 1)|j,m) and J.|j, m) = hm|j, m). The lowest value of j possible is j = 0, and for this
value of j, only m = 0 is possible. For j = 1/2, m can take on the values m = —1/2 and 1/2. Forj = 1, m can take on the
values m=—1,0, 1. For j = 3/2, m can take on the values m=—-3/2,—1/2,1/2,3/2, etc.

We can obtain the amplitude c_ defined immediately after Eq. (3.15) by the relation, J_|8,m) =c_|8,m — 1), by
multiplying the equations

J*'j’m>=C7|j’m_ 1>

(omly=cZ{j,m—1]|
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by one another to obtain (j, m|JyJ_|j,m) =c*c_ = le|?. Using J4+J_ = (J2—J22+hJZ), we find that |c_|? = (J,m|[j(j+
DR? — 12m? + 12ml]|j, m), ie., lc—|>=[j(j + 1) — m® + m]h?, or

le— P = +m)(j —m+ DI, (3.21)
Hence, we find that
J-ljsmy =/ +m)(=m+1) i |jm—1). (3.22)
Similarly, we can derive
Teljom) =/ =m)G+m+Dh|jm+1). (3.23)

Note that Eqs (3.22) and (3.23) can also be written as follows:

J_ljsmy=jG+ 1) —m@m—1)h|jm—1), (3.24a)

Joljvmy=jGi+1) —mm+ Dh |j,m+1), (3.24b)

Matrix elements of the angular momentum operators are now easy to compute:

Gom U_ljom) = 0/ G+m)G—m+ 1) 87 S 1, (3.25a)
(Jm sl jymy =1/ G = m) G+ m+ 1) 8 S m1, (3.25b)
(7 m'|J;) jym) = hm8j ; Sy m, (3.25¢)
(s m |2 jom) = B2 G+ 1) 8 j S m- (3.25d)

Figure 3.1 shows the (Jy/#) matrices for

j=0, 1‘/2, 1,3/2. T_h_e J_/h matrices are obtai_ned j’:O, m = o o
by taking the Hermitian transpose of these matrices , ,
i ; : =L m = 1lj=0 o 1
(but since the matrices are real, taking the transpose 2 2
is sufficient). The matrices for Jy, J, and J, are f% 0 0
g.iven explicitly, in the basis-set representation j’: 1om o= 1 i=12 {0 y2 o0
lj,m) for j=1, by: 0 0 042
s (010 s (0 =i 0 - 0 0 90
Jy=—|1 0 1}, Jy=—0]|i 0 =—il, j,=§ m = 3 j=1 03 0 0
\/i ﬁ 2 2
01 0 0 0 1i 0 04 0
1 0 O 1
-1 0o 0 O 3
L=nl0 0 o0 (3.26) 3 v
0 0 -1 5 0 0 O 0
j=3/2
The explicit representation of the basis states for
j=1is FIG 3.1 The matrices (J4 /%) in the basis-set representation |, m) for
j=0,1/2,1,3/2. The matrices (/— /h) are obtained by taking the
1 0 0 transpose. The matrices for Jy and Jy are obtained by adding
0] =I1,1), 1] =11,0), 0] =11,-1), (J+/h) and (J— /h) as per Eq. (3.11).
0 0 1

3.27)
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and an arbitrary linear combination of the basis states is given by

a 1 0 0
bl=al0]|+b|1]+c|0]=all,1)+b]1,0)+c]|l,—-1). (3.28)
c 0 0 1

Problem 3.4
Using the matrices in Eq. (3.26) for J = 1, show that

R+ I+ =0

S O =
S = O
—_ o O

3.1.2 ELECTRON SPIN: J=1/2

Systems with zero orbital angular momentum, L. = 0, can still have an internal angular momentum. It is customary to call
an internal angular momentum a spin angular momentum, or simply spin, and denote it by the symbol S. Hence, when
no orbital angular momentum is present, J = S. The best known example is that of electron spin, with j=1/2. The basis
states |j, m) = |%, :I:%) for spin 1/2 can be taken to be

1 11 0 I 1
=(o)=lzz) 10=(0) =[3) .

and an arbitrary linear combination |y ) of the basis states is given by

0= (1)< () () -

Such states are called spinors. It is useful to define the Pauli spin operators for j=1/2, 6;, where i =x, y, z, as follows:
S= a Equation (3.25) can be used to obtain explicit expressions for the matrices o representing the operators ¢ . These
2x2 Pauh spin matrices operate on spinors. The standard form for the 2x2 Pauli spin matrices is

0X=<(1) (1)) a}.=(? Bi), 0.= ((1) _0]). (3.31)

The raising and lowering spin operators are defined as S =S, + iSy =hoy and S_ =S, — iSy, =ho_, but the operator
S, = (h/2)o0;, hence

0 1 0 0 hoh(1 0
S+=ho+=h<0 0), S_ _ha__h< 0), Sz=§az=§<0 _1). (3.32)

Clearly, o4 (}) = (]) and o_ ((])) =(9), so o and o_ are the spin raising and lowering operators.

We will also use the matrices oy, oy, and o in discussing quantum gates since qubits, which are two-level quantum
systems, can be represented in the form (3.28), and therefore, transformations of qubits can be written in terms of the
Pauli spin matrices (see Sec. 5.2.3). In Secs. 3.3.2 and 4.2.2, we will discuss rotations of spins and thereby complete
the discussion of transformations of two-level systems started in Sec. 5.2.3. Moreover, Chapter 4 is all about spin 1/2
particles, and the first part of Chapter 6 discusses spin dynamics. Furthermore, any two-level system can be described in
terms of spin; in fact the language of treating the statics and dynamics of any two-level quantum system is the language
of spin, as will be explained in Sec. 6.1.

“12°2 27 2

! l>+b‘l —1> (3.30)
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Problem 3.5

(a) Find the eigenvalues of the J, matrix for angular momentum of 1/2 and 1.
(b) Find the normalized eigenvector with the highest eigenvalue of J,.

Answer: For j = 1/2, the eigenvalues are 71/2 and —7/2, and the normalized eigenvectors are: |xy1/2) = % (})

and |x_1/2) = % (_11> For j = 1, the eigenvalues are 7, 0, and —7; the eigenvector for 7 is

Nl— &‘»— =

3.1.3 ANGULAR MOMENTUM IN SPHERICAL COORDINATES

The components of the angular momentum operator L. defined in Eq. (3.3a) can be written as differential operators in

spherical coordinates using Eqs. (16.45) [r = /x2 +y% 4+ 72, ¢ = arctan(y/x), & = arccos(z/r), see file linked to
the book web page] to express the cartesian coordinates appearing on the RHS of Eqgs. (16.45) in terms of spherical
coordinates. Using the expression

a drd 00 0 a¢ 0

2 rf,me e 3.33
dx;  0x; Or + dx; 060 + dx; ¢ ( )
Problem 3.6
(a) Using the matrices in (3.31), show that 2 + S)Z, +82= %hz <(1) (1)>, Le., 82 =(1/2)(1/2 + DKL

(b) Find the eigenvalues and eigenvectors of the Jy, matrix for angular momentum of 1/2.

Answer: (b) For j=1/2, the eigenvalues are 72/2 and —7/2 and the normalized eigenvectors are:

1 1
[X+1/2) = % (—i) and [x_12) = % (z)

we obtain the derivatives with respect to the cartesian coordinates appearing on the RHS of (3.2), where Eqgs. (16.45) can
be used to obtain expressions for the derivatives of the spherical coordinates with respect to the cartesian coordinates in
Eq. (3.33). Carrying out the algebra, we obtain,

9

Lz: —lh%, (3'34)
d cos¢ 0

Lo=in (sing— 2], 3.35

o <Sm¢86’+tan9 a¢> (3-35)
d sing o

Ly=ii(—cosp— + 222 2 ) 3.36

y =t ( COS¢89+tan98¢> (3-36)

Using these expressions, we obtain the expression for the operators L =e.L, + e,Ly + e;L;, where e¢; is the unit vector
along the ith axis, and L2, in terms of spherical coordinates:

LP=1>4+1*+1*=—1 L9 (e jLLa—2 3.37)
Ty sin6 90 20 sin26 992 | ’


https://sites.google.com/site/thequantumbook/
https://sites.google.com/site/thequantumbook/
https://sites.google.com/site/thequantumbook/
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We would like to find the simultaneous eigenfunctions,Y},, (0, ¢), of the commuting operators 1% and L,,

L*Yi(0,9) =121+ 1) Y1 (0, ), (3.382)
LY, (0,¢) =hm Y}, (6, ¢), (3.38b)

that are properly normalized and complete:

1 2
/ dcosf / Ao Y5, (0,0)Yim(0, ) =81 1S s (3.39a)
—1 0
(o) 1
DY Y0, ¢)Yim(0,9) =5(cos 6 — cos0)5(¢' — ¢). (3.39b)
=0 m=—1

We do so in the next subsection. The normalized eigenfunctions Y;,(6, ¢) are called spherical harmonics because they
are the angular part of the solution to Laplace’s equation, V2f(r) =0, in spherical coordinates (the solutions of Laplace’s
equation are called harmonic functions).

3.1.4 SPHERICAL HARMONICS

We shall now discuss some basic feature of the spherical harmonics. Let us begin by considering an eigenfunction
of L, only, L,®,(¢) =hady(¢). Upon using the spherical coordinate representation of the operator L,, we obtain
—ih% Dy () =ha Dy (). We have not yet taken the magnetic (azimuthal) quantum number is an integer; we shall
rederive this condition from the continuity of the wave function below. The eigenfunction solution can be easily
obtained by solving the differential equation, and we find that &, (¢) =Ae*? . Normalization of &, takes the form,
0271 o foR (qb)l2 = 271|A|2 =1, so we take A = \/% and &, (¢) = \/%e"‘w. Periodicity of the function gives the condi-
tion, (¢ + 2m) = Oy (¢), which implies « =m =0, +1,£2,+3 . ... Hence, the angular momentum about the z-axis is
quantized in units of 7, and the possible results of a measurement of L, are 7 m. Summarizing, we have found that

L (@) =hm () (3.40)
and
() = —— €. (3.41)
NGz
Orthogonality of the eigenstates of L, is expressed in the form
21
/ d ,(9) P () = Syuns (3.42)
0

and completeness of the eigenstates requires that we can expand any function in these eigenstates, i.e.,
V(@) =D, anPm(¢), where the amplitudes a,, are given by a,, = 02” @: (D) (P)do.

Problem 3.7

(a) For a 2D geometry in polar coordinates, p, ¢, where x = p cos ¢ and y = p sin ¢, show that

2 (92 4 19), 1%
V_<6p2+p3p)+p2892'
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(b) Show that the solution to the Schrédinger equation in this geometry can be written as

V(0. 8) = 350 _ . Ru(0) D), Where @y, () are given in (3.41).
(c) Write the Schrodinger equation for R, (p) for an arbitrary potential V(p).

Answer: (c) [ s+ ;% =L M = *V(,O)] Riu(p) =

We now return to the -eigenvalues/vectors for L2, L%Y,,0,0)=011 + 1)Y5,0,¢), where L*>=

2 3 .
—n? [ﬁg’g (sin6 ) + ﬁ:ﬁ?] and seek a solution of the form Yy (6, $) = O (®) P(¢) = O (6) =e™?.

Upon substituting this form, we find that ®, satisfies,

1 9 9 1
6— | — ZH1d+1)|©,,00)=0. 3.43
|:sm0 06 <sm 89) sin29m i )] m(6) ( )

By defining the variable © = cos 6 and writing (3.43) in terms of u, we obtain the differential equation known as the
Legendre equation, whose solution is a well-known special function [27]:

d d®p, 2
a4 [(1 B Mz) 17(“)] n |:l(l+ 1) — (1&#)} O (1) =0. (3.44)

dn du

Here I=0,1,2,...and [ > |m|. For m=0, ©;,,=o(u) = P;(u), where P; is called the Legendre polynomial of order I,
the lowest few Legendre polynomials are as follows:

1
Powy =1, Pi=p, P(=50Gu"-1).
The generating function for the Legendre polynomials is

g =0 —2pr+7)"= ZPZ(M)I (3.45)

so clearly P;(u) = (1)~ 'd'g(uw, 1) /dt'|,—0. The Rodrigues formula, which allows for the calculation of the Legendre poly-
nomials via differentiation, is given by

1
Pz(u)—ﬁ< ) (=1, (3.46)

and the recurrence relation, which can be used to obtain higher order Legendre polynomials from lower ones, is given by

1
Pry() = = 1@+ Dp Pi(p) = [P ()] (3.47)

Problem 3.8

(a) Use (3.47) to find P3(w), given Py and P;.
(b) Use the generating function (3.45) to obtain P, (w). Hint: Differentiate twice with respect to ¢ and then set # = 0.

The functions ®j, for m # 0 are proportional to the associated Legendre polynomials, denoted by P}, ©,(u) =
Ny P}' (), where Ny, is the normalization constant, to be discussed shortly. The associated Legendre polynomials
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with m > 0 can be generated from the Legendre polynomials as follows:

Pﬂm=u—ﬁwm<i)waw>wm»o (3.48)
Substituting (3.48) into the LSH of (3.45) yields the Rodrigues formula for P;" forallm, -l <m <1
1 d I4+m
Ww=ﬁﬂ—MW%@> (u? =l (3.49)
The Legendre polynomials take the following values at u = =+ 1:
P()=1, P(—1)=(-1), P!()=P/"(-1)=0 ifm#0. (3.50)

Recurrence relations and the generating function for the P}" can be developed using (3.49). The associated Legendre
polynomials obey the orthogonality relations,

1
[ dnrpaorrn-
4

|
Miall’- 3.51)
(I—myl20+1"

Hence, properly normalized spherical harmonics are obtained with normalization constant, N, =
(—1)ym+m [(l—m)! 20+1 ]1/2.

+m' 2

QL+ 1) (I — m)!
it (I+m)!

1/2
Yim (0, ¢) = (=1t [ ] P'(cos§)e™. (3.52)

These functions are orthonormal, f02 T do f_ll dcosf Yl’/‘m/(e,d))Ylm(G,d)) =08118mm [see (3.39a)]. The orthonormality
can be expressed in terms of an integral over solid angles, d2 = sin 0d6d¢, as

/ ds2 Yy, (0,8)Yim(0,0) =81 18w m- (3.53)

Completeness of these functions, (3.39b), means that any angular function f(6, ¢) can be expanded in terms of the
spherical harmonics,

o0 1
FO.0)=">" amYm®,9), (3.:54)
[=0m=—I
where
mzﬂmm@www. (3.59)

The lowest few spherical harmonics are given by:

1 3 3 z
YOO(O’QS):«/TTT Y10(9’¢):”ECOS€:\/;;
3 3 ;
Y11(0,9)= —\lgsineexp(kp):_\/;@
5 2 5 32-r%
M@@ZIQQMQJ%:ETiri
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[15 . . [15 (xz + iyz)
Y21 (6,9) ==/ o~ sin6 cos 6 exp(ig) = — gTy

15 . , 15 (& —y* 4 2ixy)
Y2 (0, ¢) = \/; sin? 0 exp(2igp) = E(YTXY

Clearly, Y is a homogeneous function in x, y, z
of order [ [i.e., f(tx, ty, 1z) = tlf(tx, ty, tz)]. From
(3.52), we see that

Yim(0,9)=(-1"Y,,(0,9), (3.56)

which can be used to obtain Y>_; and Y>_, from
Y>1 and Yy, respectively, etc. Moreover, for
m=0and m=/I,

QI+ 1)

P(cosd)  (3.57)
4r

Yp©,9)=

and

Q1+ 121!

Yu(0, ) = (—1)" [ ] (sin@)! "%

4722 (1 !)2
(3.58)
From (3.50), we see that
Q2l+1)
Y1 (0,0) =/ ——8m0- (3.59)
4
FIG 3.2 Real linear combinations of the / =2 spherical harmonics. Figure 3.2 shows real linear combinations of

[ =2 spherical harmonics. In such visualizations

of the spherical harmonics, the distance from ori-
gin corresponds to magnitude (modulus) of the plotted harmonic. A nice visualization of the spherical harmonics is
available on the web:
http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D/java_script/SphericalHarmonics.html

Problem 3.9
Consider the wave function ¥ (¢) = #ﬁ[l + 2icos(3¢)].

(a) Normalize the wave function ¥ (¢).
(b) Find the amplitudes a,, in the expansion ¥ (¢) = anoz — 00 an®Pm(¢), where ®@,,(¢) are given in Eq. (3.41).
(c) If one measures L,, what are the possible results and their corresponding probabilities.

(d) Calculate the expectation value (L,) within the state .

Answers: (a) Normalized wave function ¥ (¢) =,/ é[l +2icos(3¢)]. (b) a0 =~/2/3, az3 =iv/2/3. (¢) 0, £3n
with Py, = |am|?. (d) (L;) =0.



http://www.vis.uni-stuttgart.de/~kraus/LiveGraphics3D/java_script/SphericalHarmonics.html
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3.2 SPHERICALLY SYMMETRIC SYSTEMS

We have already seen that the Hamiltonian for two particles interacting via a potential can be reduced to a Hamilto-
nian involving the center-of-mass motion and the relative motion. If the potential is spherically symmetric, the solu-
tion of the relative motion problem is best carried out in spherical coordinates. The relative kinetic energy operator,

2
T= p—; = ;‘—MVZ, where p is the reduced mass, is given in spherical coordinates in terms of the Laplacian,
1 92 L?
2 _
) 3.60
r 8r2 h2 72 ( )

So, the kinetic energy operator in spherical coordinates can be written as

. 2+L2 -1 97 L? 3.61)
Tou \'T O 2) T 2 rarzr w22 |’ )

where the radial momentum operator, p;, is

nio
pr=no- (3.62)

1181
an pr (rd )(rdr ) rar2 '

Problem 3.10

Prove that the Laplacian operator, V2, commutes with the angular momentum operators, L;.
Hint: Use Eqs (3.34) through (3.37) and (3.60).

The time-independent Schrodinger equation for the relative motion in a spherically symmetric potential becomes

192 2 2u
[r o2 s + rTZ(E - V(r))] Y (r)=0. (3.63)

The wave function ¥ (r) can be expanded in spherical harmonic functions,

Y @)=Y amRi(r)Yin(0, 9), (3.64)

Lm

and upon substituting into (3.63), we find that different values of / and m, i.e., different partial waves, do not couple with
each other, and the radial wave function R;(r) satisfies the equation,

[1 92 1(1+1)
r —

~o3 +—w mﬁ&m (3.65)

Since the radial wave function equation, (3.65), called the radial Schrédinger equation, does not contain the magnetic
(azimuthal) quantum number m, R;(r) does not depend on m. Substituting R;(r) = @ into Eq. (3.65) yields

92 l(l + 1)
a2

+ *(E V(r))]fz(r) (3.66)

The wave function ¥ (r) must be finite everywhere, including the origin, therefore R;(r) must be finite. Hence,
f1(r) must vanish at =0 at least as fast as r. Note that Eq. (3.66) is of the form of a 1D Schrodinger equation,
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[88% + ;—’;(E - Ul(r))] J1(r) =0, with an effective radial potential energy given by

2
Ui(r) =V(r) + w (3.67)
ur

The second term on the RHS of (3.67) is called the centrifugal energy. This 1D equation must be solved with the boundary
condition f;(0) = 0.
Let us consider the limiting form of f;(r) as r — 0 and as r — oo. For r — 0, we assume that lim,_,¢ V(r)r? =0, so

near the origin, Eq. (3.66) is well approximated by [% — ’“:g”] fi(r) =0, the other terms (the potential term and the

term proportional to k*f;) being small in comparison with the ones retained. The solution to this differential equation that
vanishes at r = 0 is

fitry=c¢; /" as r— 0. (3.68)

The probability of finding the particle between r and r+ dr is proportional to P2R(D|*dr= lfi(r) |2 dr, so near the origin,
the probability is proportional to #*+2, which becomes smaller the larger L.

The asymptotic form of f;(r) as r — oo depends upon whether we are dealing with a bound state or a scattering state.
Let us assume that the potential V(r) — 0 faster than 7~ as r — oo. For a bound state in the /th partial wave with energy
E < 0, the asymptotic solution to (3.66) is

_ [,
fi)=cie V ¥  asr— oo. (3.69)

Hence, the wave function decays exponentially at large r. The coefficient ¢; is determined by normalization,

/drr2|R1(r)|2= /dr P =1.
0 0

For a continuum state with energy E > 0, the asymptotic form of Eq. (3.66) becomes the free-particle radial Schrodinger
equation,

d? +1
-

fi + ki =0, (3.70)

where k% = %E The solutions to Eq. (3.70) are Riccati-Bessel functions, fl(kr) and n;(kr) [see Appendix B, Egs (B.25)

through (B.30)], so asymptotically,
fir) —— apjikr) + by iu(kr). @71

The Riccati-Bessel functions are given in terms of the spherical Bessel functions j;(z) and n;(z) as follows: }l ) =712
and n;(z) = zm(z) [27]. Figure 3.3 shows the regular and irregular Riccati-Bessel functions versus z for /=0, 1,2.
The spherical-Bessel functions can in turn be written in terms of the Bessel functions J;(z) and Nj(z) as follows:
J1@ = E12@mE) =/ EN12Q), 50 ji@) =/ is12(:), @) =/FNi11/2(2) (note that in the literature,
sometimes the Neumann functions n; and N; are denoted by y; and Y7, respectively). At small r,

. (kr)l-H

Jitkr) — m asr— 0, (3.72a)

Q-

i asr— 0, (3.72b)
"

ny(kry —> —
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(a)

FIG 3.3 (a) Regular, }l (2), and (b) irregular, 71;(z), Riccati-Bessel functions versus z for

1=0,1,2.

and the asymptotic forms of the
Riccati-Bessel functions at large r are

Ji(z) —— sin(z — I7/2),
r— o0

(3.73a)
n(z) = —cos(z — Im/2).
(3.73b)

Hence, the asymptotic form of f;(r)
for scattering states (E > 0) at large r
takes the form

fi(r) - Ay sinlkr — I /2 + 8;(k)].
3.74)

The scattering phase shifts §;(k) are important quantities and characterize the scattering. We will have a lot more to say

about them in Chapter 12.

Summarizing, the wave function for the relative motion in a spherically symmetric potential is given by

Y® =) > am

=0 m=—1

@ Yim (0, ¢),

3.75)

where f;(0) = 0. The amplitudes ay, depend on the initial conditions. For a bound state of a given angular momentum,
only one of these amplitudes is nonzero. For a continuum state of only one partial wave (e.g., [=m =0), only one of
these amplitudes is nonzero, but for an initial condition corresponding to a plane wave, many amplitudes a;; must in
general be included. As far as the center-of-mass motion, if there is no external potential present, then the center-of-mass
wave function, Wp(R), is a plane wave with center-of-mass momentum P and an expansion of the form (3.75) can be

made for Wp(R) as discussed in the next subsection.

Problem 3.11

(a) ¥ (r) = R(r)[cos O],

(b) ¥ (r) = R(r)[sin o1 cos(5¢) [Hint: see Eq. (3.58)],
(¢) ¥(r) = R(r)sinf sin ¢,

d ¢¥(@r) =gnNx+y+2),

() ¥(r) =g(r)(*+y> — 22,

L, = +1 are populated.

Determine the probability for measuring specific values of L% and L, given the following orbitals:

(f) ¥ (r) = R(r) cos @ sin ¢. [This is tricky. Hint: see Eq. (3.55). Just determine the lowest few L2]

Answers: (a) Note that [cos 8] = i I%Yzo + \/gYoo, so Poo =5/9,P0 = 4/9.
(b)Ps5=1.(c)P1g=1.(d) P11 =1/3,P1po=1/3,P1—1 =1/3.(e) P2o = 1. (f) Even powers of L2, and

Problem 3.12

A wave function ¥ (r) is an eigenfunction of eigenstate of L2 and L, with eigenvalues hzl(l + 1) and Am. Prove the
following expectation value expressions: (Ly) = (L) =0, (L)zc) = (L%) = %[l(l +1) — m?).
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3.2.1 ANGULAR MOMENTUM DECOMPOSITION OF PLANE WAVES

A momentum normalized plane wave state with momentum p is given by ¥p(r) = Qrh)—3/2 exp(ik - r) [see Eq. (1.79)],
where k=p/# is the wave vector, and the normalization condition is (¥ |¥p) =8(p" — p). The energy normalized

1/2
plane wave state is given by VEQ, ()= (%) Qrh)—3/2 exp(ik - r) [see Eq. (1.83)]. The plane wave could be for

the center-of-mass coordinate, in which case we would use the notation R for the center-of-mass coordinate, P for the
center-of-mass momentum, and Wp(R) for the momentum normalized plane wave state. If the potential for the relative
motion vanishes, the plane wave could be for the relative motion. In either case, it might be useful to decompose the plane
wave into angular momentum partial waves. The decomposition of a plane wave into spherical waves involves finding
the amplitudes ayy, in (3.75) so that

oo

exp(k - 1)= Y Y amjikr) V(0. 9). (3.76)

=0 m=—1

Here, the radial wave functions are the spherical-Bessel functions j;(kr). We know that both the plane wave exp(ik - r)
and ji(kr) Y;,,(6, @) are solutions of the Schrodinger equation for free particles, and both are also regular at the origin, so
it remains only to find the amplitudes a;,,; we shall see that they are given by

apm =471 Y}, (O, ), @3.77)

where 0k and ¢k are the polar angles of the wave vector k. Let us first consider the case where the wave vector is in the z
direction and (3.76) takes on the somewhat simpler form [see Eqs (3.59) and (3.57)],

exp(ikz) = Y _ i' 21+ 1)ji(kr)Pi(cos 0). (3.78)
=0

Equation (3.78) can be proven by multiplying the equation, exp(ikrcos6) = Y, ayjy (kr)Py(cos8) by Pi(cos @), inte-
grating over 6, and using the orthogonality of the Legendre polynomials, Eq. (3.51), to obtain:

1

: 2a;
dp 1P (n) = ———j (kr). 3.79
/ we () 21+1]z( r) 3.79)
—1

Now, let us integrate the LHS of (3.79) by parts to obtain

ikr _ ¢ 1\l ,—ikr
i/du eikrll«Pg(M) — [e ( 1) ¢ ] —0 (%) , (3.80)

_1 ikr ikr

Pi(pyetr ||

ikr

where we have used (3.50) to evaluate P;(£1), and we have indicated that the second term on the RHS of (3.80) goes to

Zero as riz at large r. The factor in square parenthesis on the RHS of (3.80) can be written as [e/*" — (—1)!e=*"] =

elr/2 [eik’ il /2 _ gikr +il”/2] =2i"*Vsin(kr — Im/2). Using the asymptotic form of the Riccati-Bessel function,

Jitkr) — W [see Eq. (3.73)], we finally obtain the following expression from (3.79):

2i sin(kr — In/2)  2a; sin(kr—Iw/2)

— (3.81)
kr 21+ 1 kr

That is, we have shown that a;=i'(2l + 1), as stated in Eq. (3.78). Hence, using (3.57), (3.78) can be written as
exp(ikz) = Z?io AT 2 ¥ 1)ji(kr)Y0(0, ¢). Moreover, for arbitrary vector k, Eq. (3.78) can be immediately gener-
alized to exp(ik - r) = Zfio i'(21 + 1)j;(kr)P;(ny - n), where ny is the unit vector in the direction of k and n is the unit
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vector in the direction of r. Using the addition theorem for spherical harmonics [25],

Pimgm) = — +1 Z Y, Ok, 1) Yin (60, ), (3.82)

we can obtain (3.76) and (3.77) from (3.78). Incidentally, a special case of the addition theorem for the spherical harmon-
ics obtained for /=1 is

cos(ng - n) = cos Gk cos 6 + sin bk sin O cos(¢px — @). (3.83)

Summarizing this subsection, we have found that plane waves can be expanded in terms of spherical harmonics as
follows:

Ji(kr)

Vv, O $1) Yim (6, 6), (3.84)

exp(ik - r)=4m Z it
Lm

where the Riccati-Bessel function }g(kr) satisfies Eq. (3.70).

3.2.2 SPHERICAL QUANTUM DOT

Let us consider bound states in a spherical quantum
dot. Initially, let us take the potential outside the dot to
be infinitely high, so the boundary condition at the dot
radius, rg4, is ¥ (rg) =0. The radial Schrédinger equa-
tion is (3.66), and the potential V(r) =0 inside the
spherical box, hence the regular solution that vanishes
at r=0 and at r=ry is fi(r) =j;(kr), where the only
allowed values of k are such that kry equals one of
the nodes z,; of the Riccati-Bessel function of order
I }[(Zn,l) =0, i.e., kpj=2zn1/ra (except for k=0). For
[l =0, fzzo(z) = sin(z), so z,0=nm and k,o=nm/ry.
Figure 3.4 plots the lowest energy eigenvalues E,; for
the lowest few values of n and / = 0 and [ = 1 versus r4.

If the potential V is finite for r>rg, then the
Schrodinger equation (3.66) in this region becomes

g b g b b

o
o
o

IS
—_
W

n,l

I
o
wn
S

e
=}

5 10 15 20
r, [Bohr]

Bound State Energies E /(h2n2/2m)
o
)
\\\\‘\\\\‘\\\\‘\\\\

7 I l+ 1 ) (V ) FIG 3.4 Bound-state energies |E, ;| of a spherical quantum dot for
2= =i — K2f; =0, where x2 = 205 > 0. The I =0and = 1 versus the quantum dot radius .

solution to this equation that decays with increasing r is

given in terms of the Riccati-Bessel function }Azf') (2) EZh;-H (z) [see Appendix B, Eq. (B.32)], with complex argument

—kr—ilm/2

z=xr. Asymptotically, fz}‘“ (ikr) —— e , i.e., it decays exponentially at large r. This function must be
r— o0

matched onto the solution jl (kr) for r < ry4 by setting the wave functions and their derivatives equal at r = r;. Matching

(dfi/dr)/fiat r=ra,

dji(kr) /dr _diP (k) fdr (385)
k| W Gen | '

yields an equation for the bound-state energies, E; of the /th partial wave bound states of the finite depth spherical quantum
dot.
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Unlike in 1D and 2D, where there is at least one bound state for any attractive potential, here there is a threshold
below which no bound state exists. To clarify this point, we consider s-wave bound states. Equation (3.85) takes the

form kcotkry = —k. Multiplying by r;, and defining dimensionless parameters ¢ = kry and y = ,/2/LV/h2rd, the
matching equation reads gcotg = —/y2 — ¢%. For y = /2 this equation has solution ¢ = /2, corresponding to
binding energy E; o = h’mn?/ (8,ur§). However, for y < /2, no solution exists. In terms of the original parameters, if

S,uVrﬁ / (n2h?) < 1, the potential is too weak to support a bound state. Note that the number of bound states depends
solely on y.

Problem 3.13

(a) Find the minimal value of y =y, for which there is a second s-wave bound state, and the binding energy of this
state for given r,; and u.

(b) Plot the function gcotg = —,/ y% — ¢? as function of g and find the binding energy of the first bound state for
y = y for given r; and .

Answer: (a) y, = 37/2. Ex0 = 91?2 /(Bur?).

(b) g1 =2.73, = Eip =h*(2.73)%/ur).

The spectrum of emitted radiation via spontaneous emission by electrons in the quantum dot is composed of transition
frequencies obtained when states |nlm) decay radiatively to lower lying states |n'l'm’). Transitions can occur if /' =1+ 1
or’ =1land m =m £ 1 or m’ = m. These selection rules for optically allowed transitions are similar to those for
hydrogenic optical transitions. Optically allowed selection rules will be discussed in Sec. 3.6.1.

3.2.3 THE 3D HARMONIC OSCILLATOR
mo? 2

The solution of the 3D harmonic oscillator with potential V(r) = =5~r can be obtained as a product wave function
W, nyn, = Yy, (X) w,,y (X)¥n, (z) with energy eigenvalues En nyn, = how(ng + ny +n; + 3/2) =hw(n + 3/2), where n =
ny+ny+n;. The problem can also be solved in spherical coordinates. For arbitrary partial wave /, the wave function takes

2
the form v (r) = WYW (0, ¢); fn then satisfies the equation %fn’l + i—‘; (En,l — % — %’2)]%,[ =0. The degree

of degeneracy of the nth level, d(n), is equal to the number of ways in which n can be divided into the sum of nonnegative

integers, d(n) = (n + 1)(n 4 2) /2. The effective radial potential is given by U;(r) = % + mT“’zrz. Asymptotically,
()= asr—0, £ exp | — r . (3.86)
" BT 2h/ (mw)

. . . 2
Based upon our knowledge of the 1D solutions, we can seek solutions of f;,; in the form f;, ;(r) = &,,(p) exp (—%),

where p = r/ly, is the dimensionless radius, and Iy, = / % is the harmonic oscillator length. &, ;(0) can be expressed

in terms of the generalized Laguerre polynomials which are specialized forms of the confluent hypergeometric functions
[27] [see also Appendix B, (Eq. B.36)]:

2
0
Fua(P) = Nigp' ' exp (—7) L2 (0), k= @m—1)2,

where Ny, is a normalizaion constant. The degeneracy d, of energy level E, = hw(n + 3/2) can be determined by noting
that for a given n, if we choose a particular ny, then ny + n, = n — ny. There are n — n, + 1 possible two-tuples {ny, n},
ny can take on the values 0 to n — ny, and for each n, the value of n; is fixed. Hence d,, = szzo(n —ny + 1). You are
asked to calculate the degeneracy in Problem 3.14.
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Problem 3.14

(a) Determine the degeneracies of the energy eigenvalues of a particle in a spherically symmetric harmonic
oscillator potential.

(b) Show that the lowest energy eigenfunction corresponds to an / = 0 function, and the second level to a set of
[ =1 functions.

Answer: (a) The degeneracy of the nth level with energy E, = hiw(n + 3/2) is the number of ways n can be divided
into the sum of three positive integral or zero numbers. From the discussion in the text, d, = Zn —on—ny+1) =
n(Zn _oD— Zn _ohx+1=m+1)(n+2)/2. The energy E, = hw(n + 3/2) can also be written as E, = hw
Qk+1+4+3/2), where 2k = n — I is the the number of zeros of the radial wave function Jn.1, where k can take on
values k =0, 1,2, . ... We can also calculate d,, using the spherically symmetric formulation, but we shall not do

so here.

3.24 THE MORSE OSCILLATOR

An important model potential that has the property of being finite asymptotically at large r, and having a harmonic
oscillator dependence near its minimum, is the Morse oscillator potential,

V(r)=D {1 — exp[—b(r — r.)]1}* — D. (3.87)

Here D is the well depth, i.e., the dissociation energy of a diatomic molecule having this potential, r, is the equilibrium
internuclear distance of the diatomic molecule, and b is a parameter that we will shortly relate to the vibrational fre-
quency of the potential. The potential can be expanded near the minimum of the potential at » = r,, where V(r,) = —D,
and the lowest order terms are V(r) =Db3(r — r.,)? — D. Hence, the harmonic frequency for motion near the min-

imum, o, is related to the coefficients in the Morse potential via the relation Db? = “;” e, b=,/ "2‘5 Figure 3.5

shows the Morse potential and its harmonic approximation near the minimum of the potential as a function of the radial
coordinate r.

For arbitrary partial wave /, the wave function takes
\\\\‘\\\\ \\\\‘\\\\ L1l \\\\‘\\\\‘\\\\ thefonnw(r)_@Ylm(G’¢);ﬁthensatiSﬁeStheequa_

\ i b=2
\

—
(e}

tion & f’ + (E - 1(1;117122# — V(r))f, =0. The effective

radial potentlal is again given by U;(r) =V (r) + b .

B 2ur?

] The bound-state wave functions behave asymptotically
B o as

] _ ZL\F

] fit) >l asr—0, fi(r) — e . (3.88)
Bl r— 00

Analytic solutions for the bound states the Morse poten-
tial exist for / = 0. The bound-state energies are

0 05 1 15 2 25 3 35 4 En,1:0=hw[(n+1/2)—xe(n+1/2)2]—D, (3.89)

rir, . . .
¢ where x, = Z—g is the dimensionless anharmonicity con-
FIG 3.5 Morse potential and its harmonic approximation near the stant; the highest bound state for [ = 0 corresponds to the
minimum of the potential as a function of the relative radial integer nmax = [a—1/2], where a = )ce_1 . For small anhar-
coordinate r. Source: Band, Light and Matter, Fig. C.1, monicity, x, < 1, the lowest eigenvalues are harmonic-

p- 606 oscillator-like, but as n increases, the spacing between
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eigenvalues decreases. The eigenfunctions for / = 0 are given by
fn,l=0 (r) = Nza—ne—z/2+br/2 Lia—Zn—l ), (3.90)

where N is a normalization constant, z= 2a e b= "and L%(z) is the generalized Laguerre polynomial [27], which is

the solution to the differential equation, x S+ @+ 1— z) & " + ny =0. We shall not pause to analyze the properties of
these eigenfunctions.

3.2.5 VAN DER WAALS AND LENNARD-JONES POTENTIALS

The long-range part of the ground-state potential between two atoms in closed-shell configurations is known as the van
der Waals potential named after the Dutch scientist Johannes van der Waals; its dependence on internuclear distance
ris V(r)= r(, with coefficient Cg > 0. It arises from an induced dipolar interaction between the ground-state atoms
(dipole-induced-dipole interaction), and it can be calculated via second-order perturbation theory (see Sec. 7.3.1). The
range of internuclear distances over which this interaction potential is valid is much larger than the internuclear distance
at which the electrons of each atom overlap. The wave function satisfying the time-independent Schrodinger equation for
the relative motion between the atoms is expanded as ¥ (r) = @ Yim (0, ¢), and fi(r) then satisfies the equation

d? 2uE I+ 1)  2uCe/H?
ol (“ (+ D) 2uCe/ )ﬁ:O. (3.91)

2 /6

It is convenient to define van der Waals (VdW) units as follows. The same method used to determine the units of length,
energy, and momentum as was used in Sec. 1.3.15 to determine harmonic oscillator units can be used here. The resulting
VdW unit of length is

Lyaw = (2 Co /W4, (3.92)

and the dimensionless coordinate is defined as y = r/ly4w. The VAW unit of energy is Eygw = H? / (2leV 4w) and the dimen-
sionless energy is defined as £ = E/E,q4y. The VAW unit of momentum is taken as 71/lyqw. Using these units, Eq. (3.91)

becomes
d? I(1+ 1)
3.93
e ( ¥ )ﬁ 399

The analytic properties of f; can be analyzed (and have
v e e b by e by gy been),butweShallnotpausetodoso.

15

7 E . C
103 V(r) = 1(1.|.1)/r2.1/;~6.|.C12/r12 E The Lennard-Jones potential, Vpj(r)= % — r—g,
E =2 E named after the British mathematician and physicist John
= 5'02 Clz =0.01 E Lennard-Jones, is often used as an approximate model
=008 N/ E for the isotropic part of a total (repulsion plus attraction)
2_5_05 E diatomic molecular potential as a function of internu-
;} 103 E clear distance; it is often called the 6—12 potential. The
= 15 3 E long-range attractive part of the Lennard-Jones potential
= E E is simply the VAW potential; the repulsive part of this

=~ 204 E - L.
E E potential does not accurately represent the potential in
25 E the inner internuclear coordinate region of real molecules

L [ L [ L [ L [ L . . . .
0 0.5 Ls ) 25 — it is only a convenient representation for a strongly
' r(VdW units) ' repulsive potential. The minimum of this potential is
2
at riin = (2C12/Ce)'/®, where V(rmin) = — 2= Fig-
FIG 3.6 Lennard-Jones effective potentials for / = 0, 1,2 versus the . . I l]il "2

relative coordinate . ure 3.6 shows the effective potentials U;(r) = 2r? +
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Cip

o S for I = 0, 1,2 versus r in van der Waals units with Cj2 =0.01, so the minimum of the potential for / = 0 is
potent1a] for [ = 0 s rmin = (2C12/Ce) /¢ = (0.02)'/6 ~ 0.521 VAW units.
Other potentials of the form V(r) = —C,,/r" are useful for describing interactions between atoms or between ions and

atoms. Dipole—dipole interactions yield the case n = 3, and ion interactions with an induced dipole gives n = 4. The length
and energy scales for V(r) = —C, /r" are
h2

Li=QuC,/mHY"=2  E, = il (3.94)
n

3.2.6 THE HYDROGEN ATOM

The center-of-mass Hamiltonian for a hydrogenic atom, with a nucleus of charge Ze and mass my, is H=
_ﬁvz _ Z€2 Mmemy

Mme~+my

The reduced mass u =

Geglr is approximately equal to the electron mass, m, (this is an excellent
Ze?

approximation since even for hydrogen my = mj, ~ 1836 m, ). The factor [47 £¢] in the Coulomb potential V(r) = — reolr
is required in ST units, but this factor should be replaced by unity in Gaussian units. The time-independent Schrodinger

equation is V2 (r)+ Zme ( + 4” ol ) ¥ (r) = 0. Substituting the wave function written as ¥ (r) = R;(r) Y1, (0, ¢), where

Ri(r)= il (r) , into the Schrodmger equation and using Gaussian units (setting [4mweg] = 1), we obtain the following equa-
tion for ﬁ

dzfl <2me IA+1) N 2m,Ze> 1>fl (3.95)

r? h

Before proceeding, we introduce atomic units (a.u.) since it is easier to analyze hydrogenic atom properties using
atomic units. We also take this opportunity to review SI and Gaussian units.

S1, Gaussian, and Atomic Units

The International System of Units (SI) is an MKS (meter kilogram second) system in which the fundamental unit of
current is called the Ampere (hence this system is also known as the MKSA system of units). An Ampere [A] is a unit of
current flow defined as the current, when flowing in each of two infinitely long, parallel wires of negligible cross-sectional
area separated by a distance of 1 m in vacuum, causes a transverse force per unit length of 2 x 10~7 newton/m to act
between the wires. The secondary unit of charge is known as a Coulomb; one Coulomb (abbreviated C) is equal to the
current obtained when one Ampere of current flows for one second. The charge of an electron is 1.602176462 x 1012 C.
The volt is a derived unit in terms of force per unit length per unit charge.

A system of units that is perhaps more suitable for microscopic problems involving electric and magnetic phenomena
is the Gaussian system of units. In this system of units, the unit of charge is called the statcoulomb; it is sometimes
called an electrostatic unit (or simply esu). One statcoulomb equals 1/(3 x 10%) C. Therefore, the charge of an electron
is 4.803204197 x 10~19 statcoulombs (esu). The statvolt is the unit of voltage, i.e., force per unit length per unit charge.
One statvolt equals 300 volts. Current is measured in units of statamperes; a current of one statampere means the flow of
one statcoulomb. The conversion from SI (MKSA) to Gaussian units is summarized in Table 3.1.

A convenient system of units for atomic and molecular physics is the atomic system of units (a.u.). In this system, the
unit of charge equals the absolute value of the electron charge, e =4.8032 x 1079 statcoulomb (esu) (= 1.602 x 10~
(), the unit of mass is the electron mass m, =9.109 x 10~28 g, and the unit of angular momentum is 72 = 1.054 x 107%7
erg s. Hence in atomic atomic units (a.u.), le| =1, m, =1, and 7= 1. An important dimensionless parameter in atomic,
molecular, and optical physics is the fine structure constant, o:

2 2
a=Y 27297352533 x 103~ 1/137 la=—5 in Sl units} . (3.96)
hc [4meglhic
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Table 3.1 Conversion Table from SI (MKSA) to Gaussian units. All factors of 3 (apart from exponents) should be replaced by
2.99792458, arising from the numerical value of the velocity of light. (See Jackson, Classical Electrodynamics [13].)

Physical quantity (symbol) SI Gaussian equivalent
Length (1) Im 100 cm

Mass (m) 1 kg 1000 g

Time (t) ls 1s

Frequency (v) 1 Hz 1 Hz

Force (F) 1 newton 10° dyne

Work [energy] (W [U]) 1 joule 107 erg

Power (P) 1 watt 107 erg s—1

Charge (q) 1 Coulomb (C) 3 x 10° statcoulomb (esu)

Charge density (p)

Cm™3

3 x 103 statcoul cm™3 (esu cm_3)

Current (I) 1 ampere (amp) 3 x 10° statampere (statamp)
Electric field (E) 1 volt m™! (1/3) x 10~4 statvolt cm™!
Potential (V) 1 volt 1/300 statvolt

Resistance (R) ohm (1/9) x 10" sem™!
Capacitance (C) 1 farad (C/V) 9 x 101 cm

Magnetic induction (B) 1 tesla 10* gauss

Magnetic field (H) 1 ampere m~! 47 x 1073 oersted

Intensity (I) 1Wm2 103 erg sTlem™2

This is the expansion constant employed in Quantum Electrodynamics, and since it is small, Quantum Electrodynamics
expansions converge quickly. In a.u., the speed of light in vacuum is approximately 137, i.e., ¢ & 137 [vg], where vy =
¢*/h is the Bohr velocity, as is evident by setting e and % equal to unity in Eq. (3.96). Hence, the atomic unit of velocity
is the speed of light divided by about 137. Moreover, the atomic unit of energy (the Hartree) is given by a?m.c?, i.e., the
product of the electron rest mass energy and the square of the fine structure constant.

Let us derive the atomic unit of length, also called the Bohr radius or simply the Bohr, ap, the atomic unit of energy,
also called the Hartree, Ey, and the atomic unit of momentum, pg, using Eq. (3.95). The units of the differential operator

2 . . . .. 2 .
4 appearing in the first term on the LHS of (3.95) is 1 /a%. The term containing 2mh(7226% must have the same units.

dr?

2

Hence, equating 1 /a(z) and ™ L (the charge Z is not included in determining the atomic unit of length — it has no units
he ao

and for hydrogen Z = 1, neither is the factor 2), we obtain

hz
mee?’

3.97)

apg =
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2m.E 2meZe? 1

Now, equating the term P with the term T We obtain
2 4
e mee
Ey=—=——=o’mc’. (3.98)
ag i

Since the units of momentum are those of ?%, we conclude that the atomic unit of momentum is

B omee?

po:%z h

(3.99)

Problem 3.15

(a) For the Hamiltonian H = — %V2 — C3/r® with a “charge dipole” —C3/r> molecular potential, find the

appropriate units of length, momentum, and energy in terms of  and C3 when C3 is given in units of
Hartree x aa. Express your answer in atomic units.

(b) For the sodium molecule, the long-range molecular Hamiltonian is H = — %VZ — Cg/r°, with
U =mNa/2 = 11.5 atomic mass units (amu) and C¢ = 1556 a.u. Find /4y and Eyqy in a.u. Note: 1
amu = 1822.889 m,.

Answers: (@) [y = 2(11/me)C3, p3 = [2(1/me) €3] ™! Es = g
(0) lyaw = CuCe/h*)/* =90.0 ag, Evaw =h%/ui%, ) =2.92 x 10~ Hartree.

vdw

A useful relation exists involving the fine structure constant and the three lengths: the Bohr radius, ag, the Comp-

ton wavelength divided by 27 (the de Broglie wavelength of an electron “moving at the speed of light”), A, = % ~

3.862 x 10~ cm, and the classical electron radius, r, = % ~2.818 x 10713 cm. The classical electron radius r, is

defined such that, if the electron charge was contained in a sphere of this radius, the electrical energy would be mc?, ie.,
mc* = e?/r,. The Compton wavelength and the classical electron radius will be useful quantities in discussing electron-
photon scattering (see Sec. 7.4.3). The relation is:

ap=—=—, (3.100)

or, a?ay=ar.=r,. Thus, ap=1 Bohr ~5.292x107° cm, A.~1/137[ap]=3.862x 10~!"" cm, and r,~
(1/137)% [ap] ~2.818 x 10~ 13 cm.

The atomic unit of electrical potential (¢ =gq/r) is e/ag, the atomic unit of energy (V =q¢ =q>/r) is €>/ag, and
the atomic unit of electric field (E=gr/r3) is e/a(z). In Gaussian units (and therefore atomic units), the units of mag-
netic induction B and magnetic field H are equal to that of electric field E. Hence, the atomic unit of B and H is e /a%.
The magnetic field in the rest frame of an electron due to a proton a distance 1 Bohr away and moving with veloc-
ity v (H=1 x er/r), with v orthogonal to r, is given by |B| = (v/c)(e/a(z)), which is approximately 1/137 in atomic
units of magnetic field if v is the Bohr velocity (since vo/c =~ 1/137). Numerically, one atomic unit of intensity is about
8.825 x 10'7 W/cm?.

The units of charge, mass, length, velocity, momentum, time, energy, electrical potential (energy/charge), frequency,
force, electric field, magnetic induction, magnetic field, intensity, and magnetic moment in atomic units are summarized
in Table 3.2.

Summarizing, the atomic units of length, energy, and momentum are:

1 h _ [regli?

Length unit = Bohr, ay = 1 =5292x10"11'm

a mec ™ 2,
Energy unit = Hartree, Ey = aZmec? = % =4360 x 10718 y=2721eV

2
Momentum unit, po = h/ag = 24 =1.993 x 1072+ Kg m/s
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Table 3.2 Atomic units (a.u.).

Unit [Name] Symbol and Gaussian Numerical value [Gaussian (SI)]
formula
Charge e 4.803204197 x 1010 statcoulomb
(1.602176 x 10719 C)
Mass me 9.10938188 x 10~28 g
Angular momentum h 1.0545716 x 10~27 ergs
2
Length [Bohr] ag= mhe2 5291772083 x 10~ cm
e

Velocity [Bohr velocity]

Vo =ez/h =ac

(1/137.036)c =2.1877 x 108 cn/s

Momentum [Bohr*l]

p0=meez/h

1.9926 x 10719 g cmi/s

Time

ap/vo :h3/mee4

24189 x 10717 5

Energy [Hartree]

ez/ao = mee4/h2

43590 x 10~11 erg

Electrical potential

e/ag :mee3/h2

0.09076 statvolt (27.210 V)

Frequency vo/ag = €2/ (agh) = mee®* /13 4.1341 x 1016 51
Force ez/a(% 8.2377 x 103 dynes
Electric field (E) e/ a(% = mges /h4 1.71510 x 107 statvolt/cm

(5.1453 x 10! v/m)

Magnetic induction (B)

(e/ad) =m?2e> /ni*

1.71510 x 107 gauss

(1715.1T)
: 2y 2.5 134 7
Magnetic field (H) (e/ao) =mgze’ /i 1.71510 x 10" oersted
(1.3648 x 10° ampere m_l)
Intensity (I) ce®Ja] 8.825 x 10%* erg s—! cm~2 (8.825 x 1017
W/em? = 8.825 x 1021 W/m?)
Electric dipole moment (p) eagp 2.5415 x 1018 statcoulomb cm

(8.4784 x 10730 C m) = 2.5415 Debye

Magnetic moment (1t()
Bohr magneton

o =eh/(2mec)

0.9274 x 10720 erg/gauss (1.40 MHz/G)

The radial Schrodinger equation with a Coulomb potential for f; is transformed to the following form in atomic units

(settinge=h=m,=1):
n? df;

2m, dr?

|

I+ D2 Ze?
H)e}ﬁ

2m,r?

-~ _E
"

1 d*f;

=0—- — ——=

W+1) =z
2r2 r

—7—4ﬁ=0

On the RHS of the latter equation, £ is in atomic units, i.e., £ = E/Ey, and r is dimensionless, i.e., is taken to be in atomic

units.
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The Coulomb Radial Wave Function
The radial wave function f(r) in a.u. satisfies the equation

1d*; Til+1) Z
212 r

22 ]f/ =¢&fi- (3.101)

Asymptotically, bound-state wave functions behave as follows:

fitr) = 't asr—0, (3.102)
filr) ——> eV, (3.103)

Given this behavior, we take the ansatz form, f;(r) = W (r) e~ V2HET where wy(r) is to be determined. The differential
equation for w;(r) obtained by substituting this form into (3.101) is

d? d
rd—f’ + [2(1 +1) =226 r)] % £ 2211 (Z = (I + 1)) w =0. (3.104)
T r

Let us assume that the function w;(r) can be expanded in a power series, w;(r) = ZZO:O agr®. Substituting this into
Eq. (3.104), we get

oo

3 [(k(k 1) 420k + DU+ D)ags + QZ — 242/ + 1 + 1))ak] 0.

k=0
Setting the coefficient of k equal to zero, we obtain the recurrence relation for the series,

g1 2[V21Elk+1+ 1) —Z]
ar  k(k4+ 1) +2(k+ DA+ 1)

In order for the series to remain finite at large r, it must terminate at some value of k. Termination is only possible if the
numerator on the RHS of (3.105) vanishes for some value of &, say kmax, Z = +/2|E|(kmax + [ + 1). Defining the integer
n=kmax + [ + 1, the condition for termination of the series [so the numerator on the RHS of (3.105) vanishes] becomes

(3.105)

72
2
The integers n and / must be such that kpax > 0, i.e., [ < n — 1. We conclude that the hydrogenic energy eigenvalues
depend only on n, which is called the principal quantum number, not on [ or m, and are given by

En=— (3.106)

72 o2 72 mget
2n? ag_ 2n2 K2

Entm=— (3.107)

(To be more exact, m, should be replaced by the reduced mass). Equation (3.107) is known as the Balmer formula.2 We
shall return to the spectrum of hydrogenic atoms shortly, after describing the wave functions.

The radial wave function depends on the quantum numbers n and [ and is given, in a.u., by R,;; =f,;/r = re=2r/ "W (r),
where wy,; (r) = Z,fo: 0 agr*, with (3.105) determining all the ax, except for the first value, ag, which will be determined by
normalization of the wave function. The function wy;(r), with r is in a.u., can be identified as a confluent hypergeometric

72a?

2 For comparison, the hydrogenic energy eigenvalues of the relativistic Dirac equation are E,, = mec? { 1+ }, where j is

n=j=1/2+(G+1/27 =2 7P
S~ St [n/(j+1/2) —3/4]+ .. } The first term is the rest mass energy,
the second term is the Balmer formula, and the last term incorporates the spin—orbit splitting that depends on j (see Sec. 4.5).

72a? VAP

the total electronic angular momentum. To order ot E, i~ Mec? { 11—
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function, wy(r) = 1F1(—n+1+1,2(1+ 1),2Zr/n) [see Appendix B, Eq. (B.36)], which is in fact an associated Laguerre

L21+1

wt1 (2Zr/n). The full wave function is given by

polynomial,

32 27r
Yim (®) =Ry () Yy (0, @), Ru(r) =(Z/ap)” “NuiF i % 5

2 (n—1-1! I —x/27 2041
M=\ g W= LI O

Since the spherical harmonics are normalized, normalization of the full wave function requires

o0

/dr rzRﬁl(r) =1.

0

The first few radial wave functions are (note that r is not in Bohr, i.e., we explicitly include ap):

Z\3/2
Rio(r) =2 (*) exp(—Zr/ap)
ao

(3.108)

(3.109)

(3.110)

SR
2= /3 \2ag ap

Z \*? Zr
Roo(r) =2 — 1
20() 2610) ( 2ag
4 Z \? (7r\?
Ryp(r)=— (= =
52(r) ﬂMw(&m) (%)
a2 [ 7\ Zr
Ra(=—" (=) (1-2-
9 3agp 6ag
Z \/? 27r
Ryo(n =2 — 1——
3agp 3agp

It

27%r?
27a}

(

Zr

ao

o
o
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FIG 3.7 Hydrogen radial wave functions R,,;(r) versus radial coordinate r.
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Figure 3.7 plots the lowest radial wave
functions versus r.

The total probability density
at point r is given by P(r)=
[Wnim (01> = Ry (1) | Yim 0, 9)1%,  and
the radial probability density, i.e., the
probability to find the electron in a
spherical shell between r and r 4 dr is

P(r)dr= / dQP(r) r* dr=r*R% (rdr.

6.¢
(3.111)

The expectation values of 7,
Wi (Vi) = [ dr rP+2R2 =
Jo~ drrPf2, for p equal to a positive
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or negative integer can be evaluated analytically, e.g.,

1 I+ 1
l ml i my =8y 18,0220 (14 L1 = EED Y, (3.112a)
o Z 2 n?
5 a0\ 37, W+1—-1/3
(nlm|Pnim) =n (z) (1+2[1 ——1). (3.112b)
(nlm|r~"nlm) = ——, (3.112¢)
n-aop
ZQ
(nlmlr2nlm) = ——————. (3.112d)
n3(l+1/2)ag
Z3
(nlm|r=3nlm)= (3.112¢)

I+ D1+ 1/)lay

Problem 3.16

(a) Without looking back at the chapter or the table above, write the atomic units of length, momentum, and energy
in terms of the constants 7, m,, e (and if you like, c).

(b) Determine the matrix elements (n’ I’ m’|H|n[m) where H is the hydrogenic Hamiltonian.

(c) What is the degeneracy of the levels with a given value of the principal quantum number 7.

(d) Calculate the matrix elements (' I’ m/|L2|nim), (' I m'|L*\nlm), and (0 I' m'|L.|n Lm).

Problem 3.17

The normalized wave function for the ground-state hydrogen-like atom (H, He™, Li*™, etc.) with nuclear charge Ze

is ¥ (r) = Ae~#”. Without looking back at the chapter:
(a) Find A in terms of 8.

(c) Find the energy E in terms of e, m,, i1, and Z.

© L2y ()2) =0, yields r,, = 9.

(b) Find 8 in terms of the fundamental constants e, m,, i, and Z.

(d) Find the expectation value of 7, (¥ |r|y), given [;° drrie /"= B;ﬁ
(e) Find the value of » with maximum probability of finding the electron.
3 2 2 2\ 2 2 4
Answers: (@) A=\/E" (b)) =21 = Z () E=E=—4 mc (27) = -2l (@) (Y lrly)= 3.

The spectrum of the hydrogen atom includes positive energy eigenvalues, where £ is continuous and extends from zero
to infinity. These eigenvalues are infinitely degenerate; to each value of £ there corresponds an infinite number of states
with different / from O to oo, and for any value of I, m= —1, ..., l. The radial eigenfunctions of the continuous spectrum
take the form Ry (r) = Ciy(kr) e | F; (i +14+1,2(1+ 1), 2ikr), where F is the confluent hypergeometric function and

E=k? /2 (in a.u.). Asymptotically, at large r,

1
Ry (r) — — sin (kr +
r

log 2kr

—lrr/2+al>,
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where the Coulomb phase shift, oy= argT'(l + 1 — %), and I' is the gamma function [27]. We treat scattering from a
Coulomb potential in Sec. 12.5.5.

W(r) and E, [Hartree]

continuum states n=4,d =16

0.0 ‘:in=3¢ﬁ=9

i —_— n=2,d =4

-0.50 n=1,d, =1
1.0 V(r)=-1/r
-1.5
T T T T I T T T T I T T T T I T T T T I T T T
0 5 10 15 20
r [Bohr]

FIG 3.8 Hydrogen energy levels plotted on the same scale as the Coulomb

potential. The degeneracy d, of the bound-state levels is specified.

The Hydrogen Atom Spectrum

We derived the bound-state spectrum of hydrogenic
atoms in Eq. (3.107), E, = Z2 € For the hydro-

1T T ag .
gen atom, Z = 1, these discrete bound-state energies

go up in energy from the lowest level corresponding

ton = 1, for which & = —%. The first excited level,
n=2, has & = —ﬁlﬁt, n=3has & = —ﬁ, etc.,

all the way up in energy as n — 00 to zero energy, as
shown in Fig. 3.8. States in the continuum exist for
E > 0, but we shall not discuss them at present (see
Sec. 12.5.5). For a given n, there are n values of /,
[=0,...,n—1.Foreach [, there are 2]+ 1 values of
m,m=—Il,—I+1,...,1—1,1l,1.e., the degeneracy of
the [ states is d; = 21+ 1. The degree of degeneracy d
of a hydrogenic bound-state level n is d,, = n2, with-
out consideration of spin degrees of freedom, which
doubles this number (see Chapter 4). The energy
levels E, versus [ and the degeneracy d; of the var-
ious [ levels are shown in Fig. 3.9. Note that the
degeneracy of the various / levels belonging to the
same n is special to hydrogenic atoms. This special
degeneracy can be traced back to the presence of an

additional conserved quantity in the Coulomb potential, the Runge—Lenz vector [see Eq. (16.79), linked to the book web
page]. Orbitals of other atoms, e.g., He, Li, Na, etc., do possess this additional degeneracy.

2En [Hartree]

'
—_

= =3 = ==; ==
n=3] —1 —3 —d=5
[n=2] —1 _d1=3
=11 —d=1
0 I 2 3 4
)

FIG 3.9 Hydrogen energy levels, E,, and the degeneracies d; =2/ + 1 of

the various orbital angular momentum / levels. The spin
degeneracy is 2 (spin-up and spin-down states are degenerate), but
it has not been indicated in the figure.

Excited states can decay to lower states via emis-
sion of photons. The photon frequency emitted in
the decay of state nlm to state n'I'n?/, if it can occur
(there are selection rules that restrict the transitions
that can occur radiatively; see Sec. 3.6.1) is equal
to vy = (E, — E,v)/h, which depends only on the
principal quantum numbers n and n’,

1 1\ me*
W)

(3.113)

¢ ) _En z?

A’ R 2

Ey

Vun' (:

The transitions to n' =1 are called Lyman transi-
tions. These transitions are all at very high energy;
the lowest of the Lyman transitions, n=2 —n=1,
is at 3/8 Hartree = 10.2 eV. Transitions to n’ =2 are
called Balmer transitions. These are at much lower
energies; Fig. 1.1 shows these transitions. Energy
levels and transition energies of atoms and atomic
ions are conveniently represented in Grotrian dia-
grams of the form shown in Fig. 3.10.


https://sites.google.com/site/thequantumbook/
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FIG 3.10 Grotrian diagram for hydrogen. The Lyman transitions are denoted by Ly, where o are greek letters in ascending order of energy,
4
the Balmer transitions are denoted Hy, etc. The ordinate scales are in eV, em™! ,and —y/R/v, where R= (1 /2)% =109677.6

em~! s the Rydberg constant (half a Hartree) and v is the transition frequency in units of cm™!. The values whose units are not
explicitly shown are wavelengths in Angstroms (10_10 m). Reproduced from Grotrian [35].

3.3 ROTATIONS AND ANGULAR MOMENTUM

We saw in Chapter 1 that translation operators are generated by the momentum operator p. For a plane wave, ¥ (r —
p—a) _pa ;pr . . _;pa
a)=e¢' # =e '%¢e T, and for an arbitrary wave function ¥ [see Eq. (1.54)], ¥ (r — a)=e ' * (r). We also saw

that rotation of a wave function by an angle ¢ about an axis ¢ is generated by the angular momentum operator J [see
Eq. (1.62)]. An arbitrary rotation of the wave function of a system is given by

YRopr) = U@y () = eI My (r) . (3.114)
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Step |
z z!

Step |l

FIG 3.11 Euler angles as conventionally defined in classical mechanics. In quantum mechanics, step II corresponds to a rotation by angle 8
about the y’-axis, rather than the x’-axis, as explained in the text.

Here i _,r is the rotation of the coordinate r by the angle —¢ about the rotation axis ¢, J is the total angular momentum
operator, and U(g) is the rotation operator that rotates the state by the angle ¢ about ¢. Rotating the wave function v (r)
by ¢ is equivalent to rotating the coordinate system by —¢.

A particular example of a rotation operator that rotates a wave function is the operator that rotates about the z-axis

¢Jz

by an angle ¢, U(Z, ) =e¢ "7 ; this operator is diagonal in the standard representation where J, is diagonal. Note that
the rotation operator that generates a rotation of a state (a wave function) by an angle ¢ about an axis n is a function of
both ¢ and the unit vector fi: U(n, ) = e~ whJ/h A unit vector is specified by two angles, so the rotation requires three
parameters (angles) to completely define the rotation. A common parameterization of rotations is via the three Euler
angles. This is the subject of the next subsection.

i

Problem 3.18
Prove that V? is invariant under rotations, i.e., under orthogonal transformations of the coordinate system.

Answer: There are many ways to prove this. Perhaps the easiest is to note that V2 = _h—zz’"p - p, and the scalar

product p - p is rotationally invariant. Another method is to express V2 in spherical coordinates using (3.60),
v2_19 ., L2
~ r a2 w2’

commutes with the angular momentum operators (see Problem 3.10), and are therefore rotationally invariant.

and note that each of the terms on the RHS of this equation is rotationally invariant, i.e, each

3.3.1 EULER ANGLES o, 8,y AND THE ROTATION MATRIX

Leonhard Euler defined a set of three angles to describe the orientation of a rigid body in a 3D space. A rigid body can
be subjected to a sequence of three rotations described in terms of the Euler angles, «, B, y, to orient the object in any
desired way. For the moment, let us consider a coordinate system Oxyz. The coordinate system can be oriented in any
desired orientation, in three steps, as follows. In step I of the sequence, rotate the coordinate axes around the z-axis by an
angle a. The resulting coordinate axes are called x’, ¥, and 7’ as shown in Fig. 3.11. Then, in step II, rotate the coordinate
system about the new x-axis, x’, by an angle 8. The new axes are called x”, y”, and 7”. Finally, in step III, rotate the system
about 7 by an angle y. The resulting coordinate system, Ox”y”’z"”, is oriented in a completely arbitrary way, depending
on the specific Euler angles «, 8, y, used in carrying out the sequence. In quantum mechanics, we use a set of three steps
that differs from that shown in Fig. 3.11, only in that the middle rotation is around the y’-axis by angle B, rather than
the x'-axis. This convention is used in quantum mechanics because rotation operators corresponding to rotations around
the y-axis are real, as opposed to rotation operators corresponding to rotations around the x-axis, which are in general
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complex, so rotation about the y-axis is simpler to handle (see next section). Hence, the operator Rg, that rotates a state
(or wave function) according to this sequence is given by

Repy =RyRpRe = e~ W i (BY) /N T B)/h 3.115)

The expression in (3.115) for the rotation operator is inconvenient since each of the three rotations is performed about an
axis belonging to a different coordinate system. It is possible to transform all the operators on the RHS of (3.115) to a
common coordinate system. Applying transformation (1.48) to Rg, we find Rg = U(Z, ) U(¥, B)U(Z, )", Similarly, Ry
can be written as

Ry =RpU(ze)U(z y)U(2.0) R}

Substituting these expressions into (3.115), we finally obtain, after some algebra, the following expression for R:

Rapy = e~z /h =iBJy/h =iy T[T (3.116)

Thus, the rotation operator R4g, can be obtained by first rotating about the original z-axis by an angle y, then rotating
about the original y-axis by angle $, and finally rotating about the original z-axis by angle «.

3.3.2 ROTATION AND D FUNCTIONS

Matrix elements of this rotation operator involving the angular momentum eigenvectors take the form,
(J 1| Ragy lim) =e~™ed ,(B)e™™ &, (3.117)
i.e., they are diagonal in j, as expected, where
d}y(B)={jml| e PN jm). (3.118)

The real functions d’]n + »(B) are called reduced rotation matrices, or simply d functions. It is convenient to define the

symbol Dfr{,)m(a By)= (jm/ | Rapy | m). This symbol is often called the rotation function, or rotation matrix. From the
definition of the rotation function as a matrix element, it is easy to show that

(D, @pn) =D~y —p —a. (3.119)

Furthermore, since the product of two rotations is also a rotation, it is clear that the product, Ry g, Repgy is also an
rotation operator, R g, obtained by composition of rotations, hence,

> D@ B YD, @By) =Dy " B"y"). (3.120)
n

Problem 3.19
Prove Eqs (3.119) and (3.120) using the definition of the rotation function.

Rotation functions can be used to rotate angular momentum eigenstates as follows:

Rapylim) =Y _ [ m){f m'| Rapy lim) = > |im'\DY) (@ py). (3.121)
,‘/ m/ m/
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Thus, rotation of an angular momentum eigenvector is reduced to matrix multiplication by a rotation matrix. For example,
rotating a spherical harmonic wave function using Eq. (3.121) and noting that Y;,,(6, ¢) = (6, ¢|lm), we obtain,

Rapy Yin(0,0) =Y Yir (0,$)D.) (o B ). (3.122)

m

Moreover, we know from (3.114) that Regy Yim(9, @) = Y[ (R(a B J/))’1 (6,¢)]. Taking 6 =0 and ¢ =0 and using

(3.59), we find
21+ 1 i
Yinl (e B y)™" (0.0)] =/ %D&(a BY). (3.123)

Hence, inverting the rotation in (3.123), we obtain

QI+1

Yim[R (e B 7)(0,0)] = o

D) (—y =B —a),

which is equivalent to Yy,,(8, ) =,/ % D((){,L(—y — B — a). Complex conjugating this equation and using (3.119),
we finally obtain

9 _ AT
DY @ By)=| T Yi (B, a). (3.124)

The d functions were first evaluated by Eugene P. Wigner by means of group theory (the rotation functions are some-
times called Wigner functions for this reason); Wigner obtained the expression:

(— 1)k(COS g)2j+m—m’—2k (sin g)m/—m+2k

&, (B =V(i+miG—miG+m)G—m) ; T T r———T (3.125)
These real functions satisty the following properties:
&, B)==0)""d (P, (3.126a)
&, B=d B =d, P, (3.126h)
&y ===, (B). (3.126¢)
For any j,
d, Qr)=(=¥d, ©)=(1)Ysyn. (3.127)

Aspects of group theory that are useful in quantum mechanics are reviewed in Chapter E of the Appendix. One of the
important results of group theory is the group orthogonality theorem. The group orthogonality theorem as applied to the
rotation functions reads,

. * o 87T2
/ d(cos B) da dy (Dg{n(aﬂy)) ij,fm,(a,sy)=ﬁaj, 8 St . (3.128)

Integration is over the Euler angles; the integral over § is similar to the integral over the angle 6 in spherical coordinates,
fll d(cos B) ..., and the integral over @ and y is from zero to 2. Eq. (3.128) shows that the d functions satisfy the
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orthogonality relation,
1

[ dos i, 51,80

-1

2
1o (3.129)

Explicit expressions for the case j=1/2 and j=1 can be easily obtained using either Eq. (3.129) or the properties
of the angular momentum operators. For j=1/2, the basis states are given by ‘% %2 %) = <(1)>, % - %) = (?), as
specified in Eq. (3.27). The d functions are given by matrix elements of the rotation operator e ~""™S, For the j=1/2
case, The formula e~(?/2ny0 — [cos(z?/ 21— sin(z7/2)ay] can be derived by expanding the exponential in a power
series and noting that oyoy, =1 [see Eq. (4.6)], hence ay’” =1 for even m and 0)" = oy, for odd m. An arbitrary rotation

y
operator about the unit vector n by an angle 9 for spin 1/2 states can be written as follows:

IS/ =igne _ 60(9/2)1 — isin(®/2)n - 6. (3.130)

Note that a rotation of a spin state by an angle of 27t about any axis multiplies the spin state by (—1). Writing an arbitrary
unit vector as n = (sin 6 cos ¢, sin @ sin ¢, cos 0), the 2x2 matrix n - ¢ appearing on the RHS of (3.130) takes the form

cos 6 e ®sing
n-o= <ei¢’ sinf —cos@ )’ (3.131)

and the general rotation operator is given by

cos 6 e sm@). (3.132)

—ivnS/h _ Loy .. '
e = cos(1/2) (0 1 ) isin(¥/2) <e’¢ sin®  —cosd
In particular, forn=y, i.e., ® = /2 and ¢ = 77 /2, we obtain the d function

) [ cos(?#/2) —sin(¥/2)
42 (@)= (sin(ﬂ/2) cos(9/2) ) (3.133)

(Sometimes the superscript of the d functions are put in parenthesis.) For j = 1, the basis states are the three component
vectors,

1 0 0
iLh=(o], no=|(1], 1L,-n=1_o}. (3.134)
0 0 1

For n = (sin 6 cos ¢, sin 6 sin ¢, cos 6), the 3x3 matrix n - L /7 that appears in the exponent of the rotation matrices is
given by

cos 6 \ifze”“i’ sin @ 0
n-L/i= | ¢ sing 0 ¢ Psing | (3.135)
0 %e"” sin 0 cos 6

Explicit expressions for the rotation functions for j = 1 can be obtained by exponentiating —i¥'n - L /. For rotation about
the y-axis by angle ¥,

<[

cos?(9/2) —d02  in?(19/2)

d(l)(ﬁ) — sin ¥ cos B __sin® ) (3.136)
: Qﬁ sin ¢ 2 V2
sin?(9/2) cos?(9/2)

V2
For arbitrary rotations of j =1 states, use Eq. (3.117).
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Problem 3.20

(a) Calculate ), m’ld,(,{;)m B
(b) Calculate Y, m?|d")) (B)%.
Hint: Take the expectation value of the operators J, and Jf with the state in Eq. (3.121) with a =y =0.

Answers: (a) Y., m'|d\) (B)>=mcos B, (b) X,y m2Id\]) (B)>=L1j(j + Dsin® B + m?(Bcos? B — D)].

Problem 3.21

(a) Show that it is impossible to rotate the state |1, 1) into |1, 0. Hint: Apply 4V in (3.136) to |1, 1).
(b) Show that the expectation value of the angular momentum operators in state |1,0) vanish, i.e.,
(1,0[Jx]1,0) = (1,0]Jy|1,0) = (1, 0]J;|1,0) = 0.

() Show that (1,0[R{, JxRapy[1,0) = (1,0/R}s JyRapy|1,0) = (1,0/RS 5 JRupy[1,0) =0.

3.3.3 RIGID-ROTOR EIGENFUNCTIONS

In this subsection, we shall show that the rotation functions Df,{’)m, (a B y) are eigenfunctions of the angular momentum

of a rigid body, where the angles «, 8, and y determine the orientation of the principal axes x"y' 7’ fixed in the body

relative to space fixed axes xyz. In fact, the rotation functions are eigenfunctions of J, J,=J - z, and Jy=J -7, with

eigenvalues j(j + 1)h2, mh, and m'h, respectively. Think of the rigid body as a spinning top, but the top may or may not

have cylindrical symmetry. If it has an axis of symmetry and the 7’ body-fixed axis is oriented in this direction, then J2,

Jz, as well as J are constants of the motion. If it does not, then J 2 and J, are still constants of the motion, but not J.
The rotational Hamiltonian for a rigid body is

N LN
H=-% J < 3.137
T 21 o (3.137)

where J =J - X/, and similarly for Jy and J,, and the quantities /v, I/, and I are the principal moments of inertia of
the body along the principal axes [21, 22].3 The Hamiltonian (3.137) is called the rigid-rotor Hamiltonian. The angular
momentum components Jy in the coordinate system rotating with the rigid body do not have the usual commutation
relations of the angular momentum components along space fixed coordinates because the axes change dynamically. Let
us evaluate the commutator, [Jy,Jy]=[J - ﬁ;,J . f(}], using the commutator identity, [AB, CD] = A[B, C1D + AC[B, D] +
[A, C1DB+ C[A, D]B. The position vectors X; commute with each other but do not commute with the angular momentum
operators. Indeed, we have the commutation relation [J;, xy] = iheyypxi . Had we been considering fixed unit vectors,
this commutation relation would not be relevant, but with the unit vectors along the body-fixed axes, we find, after using
the above commutator identity and doing a bit of algebra, that

[‘Ii/y ‘,j/] = —ihgi/j/k/,]k/, (3.138)

where an “extra” minus sign is present on the RHS of (3.138) relative to (3.7). This extra minus sign changes the sign of
some matrix elements.

3 The moment of inertia tensor is defined as L= f dr p(r)(rzzsij — x;xj), where p(r) is the mass density. The principal moments of inertia are obtained
by diagonalizing this tensor.
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Let us consider the rigid-rotor Hamiltonian for some limiting cases. For the case when all three principal moments of
inertia of the body are equal, Iy = Iy = I =1, the Hamiltonian corresponds to that of a spherical top and can be written
as

JZ

H=—.
21

(3.139)

Since J* = Jf/ +Jf,, +JZ2 =J? —I—J}z, +J22, the eigenvalues are Ej = ;121(2# The degeneracy of these eigenvalues is (2/41)2
since there are 2J + 1 values of J; and 2J + 1 values of J,; with the same value of J. Figure 11.8(a) in Sec. 11.4 shows
the spectrum of the spherical top Hamiltonian, while 11.8(b) shows the absorption spectrum for a thermally populated
molecule.

For the case where only two of the moments of inertia are the same, Iy = Iy # I, we have the symmetric top
Hamiltonian,
J? 1 1Y ,
H= + — JzZ. 3.140
21 <2sz 2IX/> z ( )

The eigenvalues of this Hamiltonian are

RIIJ+1) 11
Ejw=— |+ — - —)m)?|, 3.141
Jm 2[ I +<1z/ Iﬂ)(m)} ( )

where the eigenvalues of the operator J,s are 7um’. The degeneracy with respect to values of m’ of the spherical top is
now partly removed, but values of m’ differing only in sign have the same energy. These degenerate states have opposite
directions of the angular momentum relative to the axis of the top. Thus, the energy levels of a symmetrical top are doubly
degenerate if m’ # 0. Moreover, the 2J + 1 degeneracy associated with J, still exist.

The eigenfunctions of the symmetric top are the common eigenfunctions of the operators JZ, J;, and Jy. Using
Eq. (3.121), we can write the wave function of the state of the symmetric top described in terms of fixed coordinates
X,¥,%, |¥jm), in terms of the wave functions of states described in terms of the axes x',y,7 fixed in the symmetric top,

i.e., attached to the rigid body, |@; ), |¥jm) = S ) m )Dfr{,) (@ By). The Euler angle dependence of the wave function
is given by the rotation functions on the RHS of this equation. Moreover, if we want a wave function with well-defined
angular momentum component m’ along z/, |W;,,, ), then only that specific term in the sum on the RHS of this equation
is required:

W) = | ) DL (@ B ). (3.142)

Normalizing the wave functions such that f f d(cos B) da dy |\IJJ-,m’,n/|2 =1, determines the normalization coefficient,
and we obtain

82

[V ) = € T

(@)
D, (@ By), (3.143)

where the phase angle ¢ can be chosen arbitrarily.

When all the principal moments of inertia are different, Iv # Iy # I, i.e., the asymmetric top case, the eigenvalues
and eigenfunctions cannot be obtained analytically; numerical solutions of the secular equations for the eigenenergies and
linear equations for the eigenfunctions must be obtained. The eigenstates now do not have definite values of the quantum
number m’, hence, we seek eigenstates given by linear combinations of the form

Wim) =Y Cor | Wjm)- (3.144)
-
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Substituting into the Schrodinger equation, H|v; ) = Ej|/;m), and taking inner products with the states [W; , ;) yields

> (Y [ H ) — Eibyy i) € =0. (3.145)
7

The roots of the secular equation obtained from (3.145) are the energy eigenvalues of the asymmetric top, and then
(3.145) can be used to determine the amplitudes {c,/} that diagonalize the Hamiltonian.

The above discussion holds for either integer or half-integer angular momenta j, however, if no spin degrees of freedom
exist, only integer angular momentum can result. For molecules with unpaired electrons, or for deformed nuclei with an
odd number of nucleons, the angular momentum may be half integer.

3.4 ADDITION (COUPLING) OF ANGULAR MOMENTA

The states of two particles having angular momenta j; and j, can also be classified in terms of the resulting angular
momentum obtained upon adding the angular momenta of the particles, as will be shown here. The product state

V1joamima)=|jim1) ® |j2ma), (3.146)

is an eigenvector of J%l), Jz (1), Jé), J; o) with eigenvalues hzjl(jl + 1), hmy, hzjz(jz + 1), himy, but generally, it is not
an eigenstate of the total angular momentum squared, J*> =J Ol +11H®J (2).4 Our objective is to construct the
eigenfunctions of J% and J; using proper linear combinations of states |j; j» m| m2) defined in Eq. (3.146). Let us denote
the eigenfunctions of J? and J, composed of the two-particle states by |ji j» J M). The following constraints apply to the
quantum numbers J and M:

U1 —j2l =J < i1 +i2l, (3.147a)
M=m + my, (3.147b)

where |M| < J. Thus, the quantum numbers J and j;,j, are related by a triangle inequality, and the sum of the
z-components of the angular momentum, m; + mjy, is conserved. For example, if j; =2 and j, =3, the total angular
momentum can take on any of the following values: 2 + 3 =1, 2, 3, 4, 5. Furthermore, the z-component of total angular
momentum is fully determined by the sum of m; and ms.

Two simple examples clarify the addition of angular momentum. The two angular momenta J(1) and J) may corre-
spond to the orbital and spin angular momenta of a particular particle,

J=L+S=L®1+1®8S, (3.148)
or they may correspond to the spin of two different particles,
J=S1+$=S191+1Q8,. (3.149)

In the former case, the following commutation relations obtain [Jz, Lz] =0, [Jz, Sz] =0, [L2, Sz] =0, [JZ, Ji1=0,
[L%,L;]=0, [S?,S;]=0; in the latter case we have [J2,$2]1=0, [J2,53]1=0, [J2,551=0, [$2,53]1=0, [S2,S;1]1=0,
[S2,S:21=0.

We shall make extensive use of angular momentum coupling when discussing the states of multielectron atoms and
molecules, but also when discussing spin—orbit interactions and hyperfine interactions in atoms and molecules.

4 Each term in the sum is a tensor product of operators acting in the appropriate Hilbert spaces of particle 1 (left factor) and 2 (right factor). Similarly,
for the components, e.g., J; =J; (1) ® 1) + 1(1) ® J; ()



140 CHAPTER 3 Angular Momentum and Spherical Symmetry

3.4.1 CLEBSCH-GORDAN COEFFICIENTS AND 3 SYMBOLS

The set of all product states |jj j» my ma2) = |j; my)|j2 my) (see Eq. (3.146) forms a complete orthogonal basis in the
product Hilbert space H = H ® H; of particles 1 and 2. So is the set of all total angular momentum vectors |j; j» J M).
Hence, there is a unitary transformation relating the two bases, (actually orthogonal since it is real):

V12 M) = Z (J M|j1jamyma) |jy my)ljz2 ma), (3.150)
miymy

U1 Jj2 my ma) = Z(il J2 my may|IM)|jy j2 T M). (3.151)
M

The transformation coefficients, (J M|ji j» m1 mya), are called Clebsch—Gordan coefficients or vector coupling coefficients.
The meaning of (3.150) is that the state |j; j» J M) (which is an eigenfunction of J? and J,) is composed of a specific lin-
ear combination of states |j; m)|j2 my), where the coefficients of the linear combination are the Clebsch—Gordan (CG)
coefficients. These coefficients will be determined below. It will be convenient to call the quantum numbers of the total
angular momentum and its z-component, J and M, by the symbols j3 and m3 respectively. We will often shorten the nota-
tion by not explicitly indicating the j; and j, quantum numbers in the CG coefficients and writing only (j3 m3|ji jo m1 ma).
Eq. (3.150) then becomes, |j1j2j3 m3) = Y (j3 m3lj1ja m1 ma) |j1 m1)|j2 ma). The CG coefficients are constructed so as
mj

to be real,
(1J2 my ma|jz m3) = (j3 m3|j1 j2 my my). (3.152)

The orthonormality of the eigenfunctions |j; m1)|j> ma) and |j1 j» J M) leads to the orthogonality relations for the coeffi-
cients

Z (j3 m3lj1 jo m1 ma) (j1 jo my maljy ms) = 8.t O (3.153a)
mj mp
> G ja mi maljs m3) (js m3ljs j2 my m5) = Sy, it Sy (3.153b)

J3am3

Problem 3.22
Calculate all the CG coefficients ( m] 2m2| Lim ).

Answer: The singlet and three triplet states are given by,

The coefficients are obtained by applying the appropriate bra states ( 2m1m2| on the left and using the
orthogonality of these states. The nonzero values, using the shorthand notatlon, (é my 2 my|JM), are:
(333 §|11> (3 -13 ——|1 —h=1(335 —3110)=1/¥2.(; =53 3110)=1/V2,
(=0 0) _1/f - 11100)=-1/42.

Problem 3.23

Determine all possible angular and spin wave functions of a p electron in an atom having definite quantum numbers
J.M.
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Answer: For a p electron in an atom, we can have J = 1/2,3/2 and M = —J,—J + 1,...,J. There are six possible
wave functions,
1

(RllsIM) = Z Z (L gy IsIM) Yy (8) ),

my=—1 =— 2

where [ms; = | £ 1/2) are the spinors [1) and || ). After explicit computation of the C-G coefficients:

#1333) = ru@®It), #1133 = 3) = Vi B,
#1131 \fym(r)n +fY11(r)|¢

#143 — fylo(r)u +/Ira@m
@111 ——\/>Y10(r)|T +fYn(r)|¢
@il Ly = _\fyu(rm +leo(r)|¢
Problem 3.24

Express the state |%%) ® |10) in terms of the total angular momentum states |%%) and |%%).

Answer: This is the inverse operation of angular momentum addition.

1h e =,/235 + /4

The CG coefficients satisfy Eq. (3.147), i.e., |j1 —j2| < j3 <j1 +Jj2 and m3 =m + my. Moreover, ji + jo + j3 must
be an integer.

One can calculate the values of the CG coefficients by successive application of the lowering operator to Eq. (3.150)
with my =1, my =j3, j3 =j1 + j2, and m3 = j3. With these values, we have

=31+ M=+l jam =jim=jp)=+1

Applying the lowering operator J_ =J_ 1y 4+ J_(2) to Eq. (3.150) and using Eq. (3.24) yields an equation with m’s
lowered by one; the coefficients in this equation are the CG coefficients. Successively applying the lowering operator to
the resultant equations gives the CG coefficients (J = (ji + j2) M = m3|j1 jo m; my) for all values of M. One must then
find the CG coefficients for J = (j; +j» — 1) and M = J; this can be done by noting that |/ = (ji +j2— 1) M = (j1 +j2—1))
must be orthogonal orthogonal to |J = (j; + j2) M = (ji1 +j>» — 1)). In writing out the orthogonality relation, one uses
the phase convention that (JJ|j1j1j2J — j1) > 0O to determine the phase of the coefficients appearing in [J = (j; +
J2) M = (j1 +j2 — 1)). One then lowers the m quantum numbers by applying J_ =J_ (1) +J_ (2) to successively obtain all
the CG coefficients for the various values of M for this value of J, and one continues this procedure of orthogonalizing
and successively applying the lowering operator, until all the CG coefficients for a given j; and j, are determined. Giulio
Racah used this technique to obtain the following general formula:

s+ 1 Gzs+j1—j2) Gz —j1 +j2) ' G1 +j2 —j3) !
(1 +Jj2+j3 + D!

(j3 m3|j1j2 my ma) =\/

Gz —m3)! (3 +m3)!
(1 —mD!(G1 +m)!(jo — m2)!(j2 + mp)!
Z (=DM (i 4y —my — k) (i —my +k)!
3 —j1+i2 =R Gz +m3 —k) k! (k+j1 —jo —m3)!

3.154)
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The sum over k runs over all integers that do not lead to negative factorials. Computer codes to calculate the CG coeffi-
cients can be easily obtained.
A more symmetrical coefficient directly related to the CG coefficients, called the Wigner 3j symbol, or simply 3;j
symbol for short, is given by
Jioj2 g3\ (=1yretms .
<m1 "o _m3> = ——F—=(3m3lj1j2mm). (3.155)

V2j3 + 1
By using definition (3.155) of the 3j symbol, Eq. (3.150) can be written as

i — (_1yi—2tms o 172 J1 j2 J3 -
i1 j2j3 m3) = (=1 Qi+ Y <m1 - _m3> lj1 ja myma) | (3.156)
mipmy
where m3 =m| + my, |j1 —j2| < j3 <ji +j2, and the sum over magnetic quantum numbers involves m; = —j;, . . ., ji.

Note that we have used the shorthand notation |j; jo my mp) = |j1 m1)|j>» m2).
The 3j symbol vanishes unless m; 4+ my — m3 =0, (j1,;2,;3) form the sides of a triangle [i.e., satisfy (3.152a)], and
j1 +j2 +Jj3 is an integer. Furthermore, the 3j symbols satisfy the permutation symmetry,

JUJ2 03\ pyttis (2 0003 (3.157)
my mpy m3 my my m3 )’

i.e., they change sign when two columns are interchanged if j; + j» + j3 is odd, and they are invariant under cyclic
permutation of the columns. Moreover, the following symmetry exists when the magnetic quantum numbers change sign:

U Byt (2 003 (3.158)
—my —my —m3 my my m3 )’
A special case of the 3j symbols that is worthy of note is
ji j2 0 _ (=D
(ml - O) = ﬁ 8j1 j2Omy,—mo» (3.159)
which corresponds to the CG relation,
(=1

2j1 F1 8j|,i28m1,—m2~ (3.160)

(00lj1 j2 m1 mp) =

When j; =, this reduces to the simple relation,

(j j o) _ ey
m—m0 /2 1
which corresponds to the CG relation, (00]jjm — m) = (=1Y""/2j + 1).
Tables of CG coefficients can be found at http://www.en.wikipedia.org/wiki/Table_of_Clebsch-Gordan.

coefficients. A web CG calculator can be found at the URL, http://personal .ph.surrey.ac.uk/~phs3ps/
cgjava.html. A web 3j calculator can be found at http://plasma-gate.weizmann.ac.i1/3697.html.

Problem 3.25

For two particles, one of angular momentum 1 and the other of angular momentum 1/2 having z-projection of their
total angular momentum equal to M = 1/2, what are the states of total angular momentum J, [J, M = 1/2) that can
be obtained and what are amplitudes of the states |1, m;) and |1/2, ms) needed to make these states?


http://www.en.wikipedia.org/wiki/Table_of_Clebsch-Gordan_coefficients
http://www.en.wikipedia.org/wiki/Table_of_Clebsch-Gordan_coefficients
http://personal.ph.surrey.ac.uk/~phs3ps/cgjava.html
http://personal.ph.surrey.ac.uk/~phs3ps/cgjava.html
http://plasma-gate.weizmann.ac.il/369j.html
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Answer: |3/2,1/2) =\@|1, 1)]1/2,—1/2) + \/§|1,0)|1/2, 1/2),
|1/2,1/2>=@|1,1)|1/2,—1/2> - \/§|1,0>|1/2, 1/2).

Problem 3.26

(a) Show that (ji jo mi maljz m3) = (— 111273 (j ji my my |3 m3).
(b) Show (j1 j2m1 maljs ms) = \/ 35 (=11 7™ Gy jymy — m3ja — mo).

() Show (ji jomi maljz m3) = /33 (= 1Y ™2 (i3 jo — mymaljy —m).

3.4.2 CLEBSCH-GORDAN SERIES

Clebsch—Gordan coefficients can be used to obtain simple expressions for products of the rotation functions that were
introduced in Sec. 3.3.2. Upon application of the rotation operator Rqg, defined in (3.116) on Eq. (3.150) and using
(3.121), we obtain

D WUMID @ By)= Y UMlrzmim) Y lim)D) (@ By) Y lamy)D? @By).  (3.161)
M/

m Sy
mymy m1 m2

Again using (3.150) to express |J M’) on the LHS of (3.161) as a sum over states |j; m/ iz m/z), we find

Dipy(@Byy=" 3 (M ljrjammh) (I Mljrj2mm)DJ" (@By) D (@By). (3.162)

mmy mly,my
mymym )

Multiplying by CG coefficients and summing, this equation can be reexpressed as
i j . .. J
DY @BYIDJY (@ By)= Y {jrjamymolI M) rjamimal] M) Dy (e ). (3.163)
MM’

This equation, known as the Clebsch—Gordan series, can be expressed schematically as

DUV g pl2) — pliti2) g plitiz=0 q g plit—iDh, (3.164)
By multiplying Eq. (3.163) by (D)) )*, integrating over and using (3.128), we find
s

872 . .. .
/ d(cos p)dady (DY) )* DU (@By) D, (@ @ By) = gy Urjamh myliams) Grjomi maljsma). - (3.165)

Equation (3.163) can be used to find the product of two spherical harmonics by using (3.124) to express the rotation
functions in terms of spherical harmonics:

Z QCli+1DQRL+1)

I LM){l;1,00|L0)Y; ,a). 3.166
QLY ) (I b my ma|LM)(ly 1 00[LO) Y7, (B, ) ( )

Yl|m1 /3 O[) lem2

If we multiply (3.166) by YZ my and integrate, we obtain the following integral, which will be useful to determine matrix
elements of operators involving angular momentum:

21 1) (21 1
[ 49 ¥, 8.00 Yo (8.0 Vi (B0 = \/ 2 m malams) (1 200130). (3167)
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Problem 3.27
Write Eqs (3.162), (3.163), (3.165), (3.166), and (3.167) in terms of 3j symbols rather the CG coefficients.

3.5 TENSOR OPERATORS

A coordinate vector r = (x, y, z) = (x1, x2,x3) transforms under rotation of the coordinate system according to the trans-
formation rule, x; — x§ = ZJ- Njjxj. An arbitrary vector in 3D, V, transforms the same way. A second-rank tensor, 7j;,
transforms like the product of two coordinate vectors, x;x;, i.e.,

Tp= > NujTu. (3.168)
kl
Similarly for higher rank tensors,
k= RiuNRjm - R T (3.169)
im...n

A spherical vector operator (e.g., the position operator or the angular momentum operator), transforms under rotation
as fcq — 56; = ’Raﬁyfch ally => 7 ,%q/Dy ,)q .(Ol BY), Whe?e on the RHS the subscripts .are taken to be equal to =1 and 0,
not x, y, z. This concept will now be generalized. A spherical tensor operator of rank k is defined to be one that transforms
as

PSP 0 ()
Rapy Ty Reg, = Y T3'DY) (@ By). (3.170)

q

The rank £ is a nonnegative integer and ¢ and ¢’ are magnetic quantum numbers, so —k < ¢,q’ < k. For simplicity of
notation, we drop the hat for operators. Spherical tensors can be formed from products of vectors (see below); this spec-
ifies the relationship between spherical tensors Ték) and Cartesian tensors Tj;. k, as explained below. From the definition

of the rotation function, this can be cast in the form,
- k
RIPR™' =" T;/)(k qRlkq). (3.171)
q/
For infinitesimal rotation, R = e~ ®¢/" ~ 1 — i@ /h - J/h and (3.171) become
—id¢

—is
LT == Y T kg k), 3.172)

q

which must be true for any infinitesimal rotation. Hence, any tensor operator 7, ék) has the following commutation proper-
ties with the angular momentum:

Vs TP =V + 1) — q(g — D T;’jl, (3.173a)
. TP1=Vk(k+1) —qlg+ D T;’?l, (3.173b)
[J. TP =g h TP (3.173¢)

Spherical tensors T‘Ek) having the transformation properties specified above are called irreducible tensor operators
because they transform according to a given well-specified irreducible representation of the angular momentum. k is
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called the rank of the irreducible representation and g labels its components. The term irreducible comes from the theory
of group representations, a topic discussed in Sec. E.5.1 of Appendix E. Coordinate operators (r) and angular momen-
tum operators (L) transform as k = 1 tensors (i.e., as vectors or pseudovectors, respectively). The nine components of
the tensor operator Tj; of a general second-rank-tensor, written out as a column vector of dimension 9, transforms with
a 9x9 transformation matrix, i.e., as discussed in Appendix E, the set of these matrices forms a representation of the
rotation group of dimension 9. These tensors can be reduced into ones that transform as scalars (k = 0), vectors (k= 1),
and k = 2 irreducible tensor operators. These irreducible tensors are labeled T(O), {Tél)} with g=1,0,—1 and {Téz)} with
q=2,1,0,—1, 2. More explicitly, we can expand U;V; as follows:

UV

UiV, = 3 3.174)

UiV, — UV,  (UVi+UV; U-V

2 2 3
The first term transforms as a scalar under rotations, the second as a vector (it corresponds to the components of the
axial vector U x V), and the last term is a symmetric traceless tensor that transforms as {Téz)} with ¢=2,1,0,—1, —2.
Similarly, third and higher rank tensors can be broken down into their irreducible representations, e.g., the 27 components
of the tensor U;V; Wy give rise to one irreducible tensor of rank 3 (7 components), two of rank 2 (5 components each),
three vectors (rank 1 tensors having 3 components each) and one scalar (rank 0) [the scalar is (U x V) - W, the three
vectors are (U- V)W, (V-W)U, (W-U)V, and the three rank 2 components &;U;ViWj, i ViWiUj, £iiyUjWi V. We have
already encountered examples of irreducible tensors; the spherical harmonics Y, are tensors of rank /. They transform as
in (3.171) and satisfy the commutation relations (3.173).

The irreducible vector components of rank unity satisfying Eqs (3.171) and (3.173) are given in term of the Cartesian
components of the vector by’

1 1
Viil= — —=WV+iVy), Vo=V, V_i=—V,—iV,)). (3.175)
+ ﬁ X y z \/E X y
The scalar product of a vector with itself is given in terms of the irreducible vector components by V- V=—-V_V_; —

V_1V41 4+ Vo Vo, and more generally, the scalar product of two vectors is given by
U-V=—Uy Vo1 —U_1V41 + UpVp. (3.176)

The product of two irreducible tensors is not irreducible, yet it is easy to form an irreducible tensor from the product
of two irreducible tensors:

T (ki ko) = Y (kqlki k2 g1 g2)REV S (3.177)
q1.92

Here k can take on the values from |k; —kz| to k1 + k2 and ¢ = g1 + ¢». For example, if k| = kp =k, the resulting zero-rank
tensor is

k k
©) (=D —gpk) ®)
IO k)= == 3 (1) IRPSE)
o+ =,

For k =1, this is nothing but the inner product of the two vectors.

5 Note that Jy =Jy+iJyand J_ =J, — i)y, defined in (3.10), are not defined according to (3.175), but rather J = —\/EJH and J_ = «/EJ,I (ie.,

Jp=— %h— =- % (Jx+iJy)and J_y = %1_ = % (Jx — iJy)). This similarity of notation can lead to some confusion. Note also that the rank-one

tensors in (3.175) could be labeled V,;” with g= + 1,0, —1, according to the notation used above.
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Problem 3.28

Prove that the factors in the definitions for V; and V_; in (3.175) are required so that the commutation relations in
Eq. (3.173) are satisfied, given Vo = V.

Problem 3.29

The vector r expressed in terms of spherical coordinates is (x, y, z) = r(sin 6 cos ¢, sin 0
sin ¢, cos 0). Write r as a spherical tensor.

Answer: The spherical notation for a vector v as spherical tensor T;k) is

VSB = _%(Vx + ivy), V(_li = %(Vx — i), v(()l) = v,. Therefore, forr,

ri = —5sinfe® = JE (@), rC) = Lsinge™® = JE ¥ @), 1y’ = reosd = |/ Fr¥io(d).

Problem 3.30

(a) Find Téz) (k1 =1,k = 1) formed from the rank-one irreducible tensors R and 1.
(b) Show that the inner product of two vectors can be expressed in terms of irreducible representations,
0 1) (1
R-Soc7(1,1) =Y, ., 00/, 1, 1 ¢2)RE,) G-

0 1
Answer: (0) Ty = Y (1q1 —ql00)RY’s") = —= Y (DR

W __1gp.
Uy =—FR:S.

3.5.1 IRREDUCIBLE REPRESENTATIONS OF THE DENSITY MATRIX

As an example of the use of irreducible representations, let us consider the density operator (i.e., the density matrix)
p and expand it in terms of irreducible tensors. The density operator p is formed as the sum of products of a
ket and a bra, as evident from Eq. (2.38). We can use kets and bras that are state vectors that transform as a
given irreducible representation, i.e., we can use kets |oJM) and bras («’J'M’|, where @ and «’ indicate a set of
other quantum numbers that characterize the states. To form the density matrix, we need to take the outer product
of the ket and bra to get an operator, |aJM) («’J'M’|, but we want the resulting operator to transform as an irre-
ducible representation, similar to what we did in (3.177), where we multiplied jo‘) by S;l?) and then formed an
irreducible representation from the products. Here, the only caveat is that the ket and the bra are in different vec-
tor spaces; the ket is in the state-vector Hilbert space and the bra is in the dual space. This will introduce a slight
variation in the formation of the irreducible representation when compared to (3.177). The density matrix can be
written as,

J+J k
p=>">" leM)(@MlpldIM)(IM = Y > Y pP, 1, T) TP @, 1,)),  (3178)
oM o' I’ M’ a0 J,J k=|J-J'| g=—k

where in the second equality we defined the irreducible tensor basis functions

TW (.o 1.0 = Y (1) ™M (kqll ) M — M) [0IM) (T M|, (3.179)
MM
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and the coefficients ,oék) (a,a',J,J)=Tr [pT;k) (a,a',J,J)], s0

P @.a g )= Y (=1 M kgl I M = M) pasarr, (3.180)
MM

where we have used the notation pg .o yp = (@JM|ple’J’M’). In the Clebsch—Gordan coefficient, we took M’ — —M’
and added the factor (— 1)’M/ because the bra transforms as the complex conjugate of the ket [see Eq. (3.56)] and the
factor (—1)” is added by convention. Note that the zero-rank component is proportional to the trace of the density matrix,
,oéo) (o, 00, J, J) =8, (20 + 1)~1/2 > 1 Paimaim- It is clear that ,oék) can be rotated with a rotation matrix D;]f’)q, as in
(3.170).

Problem 3.31

(a) Substitute (3.179) and (3.180) into (3.178) to demonstrate that the last equality in (3.178) is correct.
(b) Show that Tr (T (o, ', 1)) TS0 (@, o/, J, )] = xS -
(c) Prove the following for matrix elements of irreducible tensor basis functions:

(M| T (a0, 0, 0) | T My = (= 1) M (kg7 ' M — M).

Figure 3.12 shows the density matrix components of an n =2
hydrogenic atomic state without including spin degrees of free-

dom. The four diagonal elements are the probabilities for occu- Pimm’

pation of states, Ppj, = Ppim,nim, but the off-diagonal elements I'=0 =1

provide additional information about the state of the n =2 man- I {
ifold. For the special case of coherent (i.e., pure) state of hydro- =0 | Popo | Popi  Paogo  Peopi

gen [see the discussion in the paragraph containing Eq. (2.49)],
V()= Zn,l,m CnimVYnim(©)s Puim = Puimnim = |Cnlm|2~ The off-
diagonal elements ©pp nrm =CnlmCZ,/m/ give information about Po1s0 | Ppip1  Ppopo  Ppopo
the alignment and orientation of the state as well as multipole
moments and time derivatives of multipole moments of the state
[36, 37]. But the multipole moments are a means of represent- I=1 | Pposo Ppop-1 Ppopo  Ppopi
ing the density matrix even for a mixed state. The components
of the density matrix can be represented in terms of irreducible
tensor components, as in Fig. 3.13, instead of being represented Pp1s0 Ppip1 Ppopo  Ppipi
as in Fig. 3.12. The orientation of the state is given by the rank-
1 tensors p‘V and the alignment by the rank-2 tensors p®. For
example, the orientation along the z-axis of the p state of hydro- ~ FIG 3.12° Components of the density matrix for an n =2
gen atom n = 2 manifold is given by atomic state.

<LZ> X P(g])(n, n,1, 1) 08 (pnpl,npl - /Onp—l,np—l)’ (3-181)
and the alignment of this manifold along the z-axis is given by
<3L§ - L2> & 1052) (n,n,1,1) x (pnpl,npl - 2,OnpOI,npO + pnp—l,np—l)- (3.182)

The dipole moment along the z-axis of the n =2 manifold is given by the s—p coherence ;50,0 i.€.,

(2) & Re pf " (1,1,0,1) & Re pns0 . (3.183)
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whereas the time derivative dipole moment along the z-axis of the n =2 manifold is given by
() o< Im pg” (1,10, 1) o< Im py1p0- (3.184)

The expectation values in (3.181 through 3.184) are
all independent properties of the n =2 atomic state
manifold. Moreover, multipole components with
| different ¢ are also independent. Clearly, higher n
P(l pOpDp?) p(Mp2)p3) pP@pB)p) manifolds have additional nonvanishing multipole
moments of L, r, and r.

Of course, for the case of a pure state, W(r),
F these multipole moment components are deter-
L mined by the complex amplitudes ¢y, for n=2.
P pMp@pGlp@pM p@pEp@®|  pp2) pB)pHp©) For example, dipole moment along the z-axis of

the n =2 manifold is given by the s—p coherence
Pns0,np0 = CnsOCZpO with n=2.

The symmetry properties of the density matrix
can help determine the optical characteristics of a
- sample. For example, the absorption and refractive
L index of a state of matter with a density matrix that
PG p@pEp@)| p(Mp@pG)p@pG)|p@p) p@pElp@pE)p(©) is symmetric around the direction of propagation
of a light beam will not depend on the polarization
of the light beam (as is the case if the wave vector
is propagating along the z-axis and only ¢g=0
components are present). The absorption and
FIG 3.13 Irreducible representations p;k) of the density matrix foran n=3  refractive index of a state of matter with a density

atomic state (an n =2 state can be obtained by eliminating the matrix that contains only a zero-rank tensor will be

[=2and ! =2 rows and and columns). The various ¢ optically isotropic.
components are not explicitly shown.

=0 ‘l=1‘ =2 ‘l=3 ‘
p(O p(l) p(z) p(3)

3.5.2 VECTOR FIELDS

Before introducing vector spherical harmonics and multipole expansions of a vector field (a set of vectors that depend on
spatial or momentum variables), let us consider how a vector field V(r) transforms under rotation. To do so, we expand
the vector field in unit vectors along a set of space fixed axes, e;, i=1,2,3,

V)= ) Ve, (3.185)
i
Rotating the vector field by an angle ¢ using the rotation operator )t = e ~#J/" = ¢~ L =198 '\e find
Vi = IS Viwe= Y (e LVim) (e Se), (3.186)
; -

1

where ¢~ LV;(r) = V;(%~'r). The two contributions upon rotating a vector field are (1) the variation of the field com-
ponents at different field points, induced by the differential operator ¢ - L, and (2) the change generated by ¢ - S due to
the reorientation of the vector field components when the field is rotated. The operator S is a 33 matrix for the spin-one
representation of the rotation group for the vector field. The spin part of the rotation can be represented as a cross product,
(¢ - S)e; = ¢ x e;. Taking the angle of rotation to be small, i.e., using ¢ =3¢, (3.186) becomes

V@)~ V() —i) [(8p - L) Vi(e + (3¢ x &) Vi(r)] . (3.187)

1
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In order to proceed, it is convenient to define the unit vectors e, e_, and e as:

1 1
e =———=(e,t+iey), ey=e, e_j=——=(e, —iey). (3.188)
+ \/E X y z «/E X y
For comparison, see (3.174). We can now define the vector spherical harmonics using the unit vectors defined in (3.188)
Y = S LM mg) Ve, . (3.189)
m,q

Clearly, we must have L=1[+1 or L=1. The set of 2L + 1 fields Yl(l?’l’l withM =—L, ..., L, L, transform under rotation
amongst themselves as components of a components of a tensor of rank L, i.e., they form a set that transforms as an
irreducible representation under rotations. They form a complete set of states for expanding the angular dependence of
vector fields and satisfy the orthogonality conditions

f a2 (Y1 0,0))* YE 0, ) = 81180 18w a1 - (3.190)
The vector spherical harmonics are useful in considering the solutions to the vector wave equation, (V2 + k>)A =0,

known also as the vector Helmholtz equation, where A can be either the vector potential, the electric field or the magnetic
field. We shall consider such solutions shortly.

Problem 3.32

(a) Show that Sey=+/2e,.
(b) Show that S_jeg = —+/2e_.
(c) Prove that J,r = (L, + S;) (xex + ye, + ze;) =0.

(d) Show that r can be written as r =,/ %” ry ,Yi—mem= —4r rY(()O)’l’1 ©, ).

3.5.3 SPINOR FIELDS

This subsection can be skipped until after reading Sec. 4.2.3.
The spinor spherical harmonics are the analogs of the vector spherical harmonics defined in (3.189). As we have
already seen and as we shall again take up in the Chapter 4 [see Eq. (4.12)], any spinor field can be expanded in terms

of the spin basis functions |%,ms = %) = (1)> and |%, ms = —%) =1 by multiplying the spinor basis function by

amplitudes that are functions of r to obtain the following ket in spin space:

3
wi= Y @ [ =10 (o) + v (7)) (3.191)
mg=—1

[S]

We can form an irreducible set of spinor spherical-harmonic fields as follows:

2 =D imyll g momg) [im) o) (3.192)

m,nmg

6 With this notation, the ket is denoted |u) = Y, [, )| X, mg).
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For a given /, j can take the values j =1+ 1/2. By evaluating the Clebsh—Gordan coefficients, we find

I—
(0, gl J=EDL/2 EVIEM 7 Y126, 9) (3.193)

) = .
mj
’ V2T \J1Fm+ % Yimp+172Y1mj—172(0, @)

(j..1/2)

The set of 2j + 1 spinor fields x; , with mj = —j, ..., j, transform under rotation amongst themselves as components
of a tensor rank j. The 1rredu01ble set of spinor fields form a complete set of states for expanding the angular dependence
of spinor fields,

(rlu) = Z im0 (P) X512 (6, ). (3.194)

/m/

Problem 3.33

(a) Determine the orthogonality properties of the spinor fields defined in (3.192).
(b) Expand the spinor plane wave function, KT Xm,) in the irreducible set of spinor fields.
(c) Use (3.84) for the plane wave and consider the quantity

Vit ®K) = [ 3 IMIL 1) YV ()] o) [DJMu;mmx) ;;,,(R)}, (3.195)

m'm, m

where the left bracket on the RHS of (3.195) is the spinor | X(j) b1/ 2(r)), which is an eigenfunction of J2 and J,.
Noting that the sum over J, M of the product of the Clebshs in (3.195) gives a 8, m;, section rule, we find

ik Li(kr)
T i, —dm 3 M Vit @0, (3.196)
UM

i, 1/2 1),0,1/2 i), 1/2 ),0,1/2
Answer: (@) (x, "2 )™ %) = [ s Go @) o Q) = 811878 -
J J )

3.54 MULTIPOLE EXPANSIONS

We have already encountered a multipole expansion when we expanded the plane wave in spherical harmonics [see
Eq. (3.84)] and multipole expansions of the density matrix [see Eq. (3.183)]. Another expansion in terms of multipole
moments that you may be familiar with from electricity and magnetism courses is the expansion of the Coulomb potential
in spherical harmonics,

1 4 L
|I’ _ r/| = Z 2041 [+1 Ylm(9 ¢ ) Ylm(g ¢) (3.197)
Lm

where r— =min(r, r’), and r- = max(r, ). Using (3.197), the potential due to a charge distribution, V(r) = [ dr’ “;(rrl,
can be written (for sufficiently large r) as

V=35 +1le o7 Yin(©, ), (3.198)

Lm
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where the tensor multipole moments of the charge distribution are given by

4
=] ﬁ f dr’ p() ' Yim (@', 8). (3.199)

Clearly, this can be generalized to the case of a discrete charge distribution, p(r') = ), ¢ié(r —r;), wherein the
multipole moments Qy, can be easily calculated by substituting this into the RHS of (3.199). Qpo = f dr' p(r'y=gq,
which is the charge of the system, the Qj,, terms are the components of the electric dipole moment [e.g., [e.g.,
Qo= f dr’ p(r') 7 =p,, where p is the electric dipole moment vector], the Oy, terms are the quadrupole moment
components [e.g., Oz = % [dr’ p(r') 372 — )], etc. Away from the region encompassing the charges, the potential
V(r) in (3.198) satisfies the equation, V2y =0.

The Coulomb energy of a charge distribution is given by U=, i |l‘l,’1iqi' =3 Z i ‘rq’ ; B For a continuous charge
distribution,
r r’ 1
/ / dr'ar 2220 ( )p ( ) _ / drp(®)V(r). (3.200)

But if we have two different charge distributions located far apart from one another, the Coulomb interaction energy of
these two distributions is given by

U= / / arar P 0P ) / dr pa(r) Vi (1), (3.201)

I —r]

where Vp(r) is the potential at position r due to the charge distribution pp. Expanding (3.201) in terms of multipole
moments and the coordinate r from one-charge distribution to the other, we obtain:

. . —_— . 2
Ur) = qaqb (3(pa r) (pp - 1) — (Pa - Pp)T ) L Z Qa,lleh,lm. (3.202)
r

)
1>2,m
A generalization of the multipole expansion of the plane wave, Eq. (3.84), which satisfies the Helmholtz equation,
(V2 + kz)wk(r) =0, is the multipole expansion of the vector Helmholtz equation, (V2 + k¥*)A =0. Plane waves are

expanded in terms of functions of the form ¢y, =4n ilj’g{# Yim (6, @); the solutions of the vector wave equation fall into
the categories of longitudinal, transverse electric and transverse magnetic solutions, which can be expanded in terms of
the following forms respectively:

Apy =V, (3.203a)
AS =V x Loy (3.203b)
A (3.203¢)
3.6 SYMMETRY CONSIDERATIONS
The matrix elements of a physical quantity O,
(VB OlYa,i) = / dryr (DO i(r), (3.204)

where the subscripts « and 8 distinguish different energy levels, and i and j refer to different states belonging to the same
degenerate level, which may vanish due to symmetry considerations. Rotating the states (or rotating the coordinates) can
help determine whether the matrix elements (3.204) vanish or not due to rotational symmetry. Moreover, other trans-
formations, such as inversion of the coordinates or time-reversal, can also help determine whether the matrix elements
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vanish for symmetry reasons. The mathematical language most helpful in this assessment is group theory (Appendix E),
more specifically, the irreducible representations of symmetry groups, which we will take up in Sec. E.5.1. However,
we have developed enough mathematical tools to begin discussion of the consequences of symmetry in the determina-
tion of whether matrix elements vanish. We shall now investigate what inversion, time-reversal symmetry, and rotational
symmetry can tell us about matrix elements of operators O that transform in specific ways.

3.6.1 SELECTION RULES

Selection rules determine whether a given transition is forbidden, on the basis of the symmetry of the initial and final
states and of the operator responsible for the transition. Selection rules can result due to various symmetry considerations,
including rotational invariance, inversion symmetry invariance (parity), time-reversal invariance, exchange symmetry,
etc.

Eugene Wigner was the first to employ group-theoretical considerations to interpret selection rules in spectroscopy
(1926-1927), starting first with atomic spectroscopy, but the approach was quickly extended to molecular and nuclear
spectroscopy. He invoked the transformation properties of energy eigenstates of the system with respect to operations that
leave the system as a whole invariant, such as space rotations, inversions, reflections, time-reversal, and permutations of
the electrons.

In what follows, we first consider parity and time-reversal selection rules and then introduce the Wigner—Eckart the-
orem for rotational invariance considerations. A general method of obtaining selection rules for arbitrary symmetry is
discussed in Sec. 11.6.

3.6.2 INVERSION SYMMETRY

As discussed in Sec. 2.9.2, the following vector operators transform under space inversion as follows:
r—>—-r, p—>—-p, J—>J (3.205)

What does the inversion operator do to the wave function of the hydrogen atom, Wy, (r)=
R (1Y, (0, ¢)? Transforming r — — r corresponds to r—r, 8 — T — 0 (e., cosﬂ — —cosf), and ¢ —> ¢ + 7.
Therefore, using (3.49), we find P}"(cos§) — (—I)HmP;”(cos 0), and ™ — (—1)"e™®_ hence, we conclude that

Pt (1) = (— 1) Y (1), (3.206)

i.e., the parity &, of the hydrogenic wave function ¥, depends only upon the angular momentum quantum number /,
Enim = (—1 )l-

Suppose ¢; and ¢y are parity eigenstates, i.e., P¢; = &;¢;, Por = er¢y. The matrix element (¢r|O|¢;) of an operator O
which commutes with the inversion operator vanishes if &r = —¢;. Similarly, the matrix element of an odd operator, i.e.,
one which anticommutes with the inversion operator, PO = —OP, vanishes unless &f = ¢;. The proof is simple:

(Br1O1¢i) = (pr P POPTIPIgy) = erei (prIPOP ™ ). (3.207)

Hence, if O commutes with P, the matrix element vanishes if &r¢; = —1, and if it anticommutes, it vanishes unless
erei=1.

For example, the operators r and p each anticommutes with the inversion operator, therefore the initial and final states,
¢; and ¢y, in the matrix elements of this operator must have opposite parity if the matrix element is nonvanishing. We
shall see in Sec. 7.4.2 that this implies that the initial and final states in electric dipole transitions must have opposite
parity. Another example involves the operator (p - A)(k - r), for electric quadrupole transitions, where A is the constant
part of the vector potential for light (see Sec. 7.4.2). This operator commutes with the inversion operator so the initial and
final states in the matrix elements of this operator must have the same parity if the matrix element is nonvanishing.



3.6 Symmetry Considerations 153

3.6.3 TIME-REVERSAL SYMMETRY

The time-reversal transformation sends t — —t, thereby reversing the velocity of particles but not affecting their positions.
It transforms dynamical variables as follows:

r-r, p—~>—-p, J—> -1 (3.208)

What does the time-reversal operator do to the wave function of the hydrogen atom, ¥, (r) = Rp(r) Yy, (6, ¢)? For a
wave function of a spinless particle, the time-reversal operator corresponds to the complex conjugation operator, K (see
Sec. 2.9.3), so

Kt (0) = Y, (1) = (= 1) Yras —m (1), (3.209)

i.e., the wave functions ¥, are not in general eigenfunctions of the time-reversal operator. Since analysis of time reversal
symmetry for systems having particles with spin is different from that for spinless particles, we postpone the discussion
of time reversal symmetry to Sec. 4.4, after gaining more familiarity with spinors. Here we simply quote some results
pertaining to restrictions dictated by time reversal invariance on matrix elements of operators. In analyzing the time
reversal properties of matrix elements of an operator O (not necessarily Hermitian), some of the arguments used in the
analysis of space inversion need to be modified because the time reversal operator 7 is antilinear and its action on bras
from the right is ill defined (Dirac notation was designed for linear operators, not antilinear ones). In order to avoid this,
it is useful to adopt a rule that antilinear operators act only on ket states (from the left) and not on bra states (from the
right). Thus, if A is an antilinear operator, we interpret its matrix elements (8|A|«) as (8](Ala)) and not as ({(B|A)|«). For
a given ket |«) we define |&) = 7 |o). Once the ket |@) is defined, we can define its dual vector {&/|. In Sec. 4.4, it will be
shown that: (1) If the Hamiltonian H is invariant under time reversal and a given eigenket |y,,) of H is non degenerate,
then the corresponding energy eigenfunction v,(x) = (x|i{,) can be chosen to be real. (2) The matrix element of O
between any two ket states |¢;) and |¢y) obeys the identity,

(Br1O1pi) = (G TOTT " |gy). (3.210)

As a special case, suppose that O is hermitian and has a definite parity 7o = =£1 under time reversal, 7 (’)77: -1 = 100.
Assume further, that |¢;) and |¢y) have definite parities t;, 77 = %1 under time reversal, |¢;) = 7;|¢;) and |¢y) = Ti|¢y).
Then,

(¢r101¢i) = TiTrT0 (il O'Idy) = TiTrTO (Y|OlD1)* . (3.211)

Thus, if the matrix element is real (e.g., if [¢y) = |¢;)), it will vanish unless 7;7y7o = 1. In general, nothing can be said
about matrix elements with states that are not eigenfunctions of the time-reversal operator.

3.6.4 WIGNER-ECKART THEOREM

The evaluation of matrix elements of tensor operators is greatly simplified by means of the results derived in Sec. 3.5.
These methods allow us to determine angular momentum selection rules for matrix elements, as summarized in what is
known as the Wigner—Eckart theorem, which fully determines the angular part of the matrix elements.

The matrix elements of a tensor operator between initial and final states with definite angular momentum have a simple

geometrical dependence on the magnetic quantum numbers. Let Ték) be a tensor operator of rank k and magnetic quantum
number ¢, and consider the matrix element (o’ j' m’ |T,5k) | jm), where « and &’ are possible additional quantum numbers

describing the states. T;k) |ajm) transforms under rotations as D® @ D). The irreducible components of Ték) |ajm) are
formed by taking linear combinations that form a specific rank K object having magnetic quantum number Q,

IBK Q)= (K Qlkjqm) T |ajm). (3.212)

q.m
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The inverse of this relation is

T lajm) =Y (K Qlkjqm) 18K Q). (3.213)
K.0

Taking the inner product with |a’j' m’), we obtain

(o j m | TP lajm) = (' j m'|BK Q) (K Qlkjgm). (3214
K.Q

The matrix element (o' m'|f K Q) vanishes unless j/ =K and m'=Q, i.e., (' j m'|B K Q) =const§yg8,/p, and the
constant is given the name (—1)2* (e’ j/||T® ||’ j), so we obtain

(o j m | TP jm) = (=1 (o J1IT® | j) (' Ik j gm). (3.215)

Note that the constant (o’ /'||T®||a ), called the reduced matrix element, is independent of m, m’ and g. Equation (3.215)
is called the Wigner—Eckart Theorem. It can be written in terms of 3j symbols using the definition in Eq. (3.155):

. N G VY NS
(o 1T e jm) = = e FIT Pt g ) (3216)

In summary, the angular momentum selection rules that are embodied in the Wignerd—Eckart theorem are:

Aj=j—/=0%l... £k j=]#0. g=m'—m.| (3.217)

The first equation is a consequence of the triangle inequality for (j,/, k), and the middle equation indicates that, although
Jj can equal j/, this is not possible if j = 0 (since k # 0). For the special case of dipole-allowed electromagnetic radiation
(see Sec. 7.4.2) selection rules, k=1, i.e., the tensor corresponds to a rank-one tensor (a vector), and Aj=0,=+1. For
electric quadrupole radiation, k=2 and Aj=0, +1, £2.

Problem 3.34

Prove that a system with the magnitude of the total angular momentum J equal to O or 1/2 cannot have an electric
quadrupole moment.

Let us consider some examples. When we compare Eq. (3.215) with the matrix elements of the spherical harmonics,

Eg. (3.167), i.e.,
x _ j@e+heL+n - /
/dQ Ylm(Q) Yim(2) Y (R2) = @l + 1) (ILmM|lI' m’) (ILOOI|I O)

we obtain the expression,

Q@I+ 1)L+ 1)

IY®p =
WNYOND =\ ===

(ILOO|I 0), (3.218)
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for the spherical harmonics reduced matrix element. As another example, consider matrix elements of the angular momen-
tum operator. By comparing

(o j m'|J | jm) =hm St im0y e (3.219)
with (3.215), we find the angular momentum reduced matrix element to be
@ J IV’ ) =1/j G+ D8 jbar a- (3.220)

A simple relation for matrix elements with j =’ of rank-one tensors, called the projection theorem, can be derived using
the Wigner—Eckart theorem:

(o jm'|J - Vieejm)
mEG+1)

(a/jm/|Vq|otjm) = (o/jm/|Jq|otjm). (3.221)

The angular momentum matrix element appearing on the RHS of (3.221) is determined using (3.220) to be
(@ jm/ |yl jm) =hJj(j+ 1) (f m'|kjqm). Note that the quantity hg;gj:g) appearing on the RHS of (3.221) is the com-
ponent of the vector V along the unit vector in the direction of the angular momentum vector. The proof of the projection
theorem goes as follows. Let us evaluate (o’ jm'|J - V|a jm) = Zq(—l)q(a’jm’|J_qVq|ajm) by inserting a complete set
of states between J_; and V,:

(o jm'|J - V| jm) = Z (DU jm|J_gle” j" m") (" ' m" |Vyla jm). (3.222)
qa’j"" m"”
The matrix element of J_ is diagonal in « and j, and the matrix element of V,, can be evaluated using the Wigner—Eckart
theorem to obtain:
(o jm|J - Viejm) ="y (=DI(m U_glim") Gm" | jgm) @ jlIVPllaj). (3223
qm//
By setting V=] in (3.223), the coefficient }_ .., (—1)7(jm'|J_gljm") (jm"|1jgm) on the RHS can be evaluated and we
find
(o jm|J - Vi jm) =1/j(G+ 1) (@ IV et ). (3.224)
By dividing the Wigner—Eckart equalities
o j ml [Vylajm) = (' m'|1jgm) & j1IVP ),
(o jm'|glajm) = (im'[1jgm) (@ jIlTV e,

one by the other, and using (3.224) and (3.220), we finally obtain the projection theorem result, Eq. (3.221). We will use
of the projection theorem in evaluating magnetic dipole moment g-factors in Chapter 4.

We shall delay the specification of the selection rules for spontaneous emission and for absorption for atoms to
Sec. 7.4.2 and for molecules to Sec. 11.6.

Problem 3.35
Calculate the reduced matrix element (1/2| lo M1 /2).

Answer: Use (1/2,1/2|o,|1/2,1/2) = 1, and note that in the language of spherical tensor operators
(1/2,1/2l0,11/2,1/2) = (1/2,1/2l0"11/2,1/2) = (111011 1)(1/2]16D|[1/2). Since the CG coefficient,
(3130133) = J=, we obtain, (1/2ll0V|11/2) = V3.
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Problem 3.36

Calculate the reduced matrix element (13||Y(12) ||l1) by letting m; = my = m3 = 0 in (3.167) and comparing with
(3.215).

Answer: In the notation of tensor operators, the LHS of (3.167) is written as (I3m3|Y},, |l1m1). Let
my; = mp = m3 = 0 on the RHS of (3.167) to obtain

(1301¥501110) = / SEFEED (1,1,00]130)% = (1112001130) (1311 Y| |1y).

Therefore, {13]|Y(2)||11) = / C4FDCEED (1, 1,00]130).

3.6.5 6j AND HIGHER COEFFICIENTS

In coupling three angular momentum states, we may use an uncoupled representation
i1 m1) 2 m2) |j3 m3), (3.225)

or one in which the vectors couple to a resultant total angular momentum J and z-component M, i.e., an eigenstate of
P =(i+j+ j2)2 and J, =j1; +j2, +j3;. These states are not unique, and a further quantum number is required. There
are three possibilities: we may couple j; and jp to form Ji,, then add j3 vectorially to give J. That is, first we couple j;
and jo,

G i2Miz) =Y ljimi)lja ma) (JiaMuzljy mi jo ma), (3.226)
my,my
and then couple J;, and js,
Ji2 J3
[(GuDdiIMy = > > (G M) j3ms) (JMiojsms|IM). (3.227)

Miyy=—Ji2 m3=—j3

There are two remaining alternatives, of which we explicitly present the one coupling j, and j3 to form J,3, then add j;
vectorially to give J, i.e.,

J1 J23
G Gaida)IMy = D~ > jim)|Gaj3)asMas) (jimi JosMas | IM), (3.228)
my=—j1 Maz=—J3
and then
() T12i3)IM) =Y 1Gs (23)023)IM){Girs (i3I 1 (Grja)T12i3)d). (3.229)
Ja3

The transformation coefficient ((ji, (j2j3)J23)J1((j1j2)J12j3)J) is a scalar and independent of M. Racah defined the W
function,

(1, Goia) o) 1(Grja)T12i3)) =/ 212 + Doz + D) W(j1 j2 I jas J12 J23), (3.230)

whose normalization was chosen to simplify its symmetry properties. Wigner defined the 6
symbol

{5; sz JZ} = (=YW o J 33012 J23), (3.231)



3.6 Symmetry Considerations 157

which has somewhat higher symmetry than the W function; it is invariant under interchange of any two columns and also
interchange of the upper and lower arguments in each of any two columns.
Web-based 6; calculators can be found at the URLSs,

http://plasma-gate.weizmann.ac.11/3697j.html
http://www-stone.ch.cam.ac.uk/wigner.shtml.

The number of possible coupling modes rapidly increases with the number of angular momentum vectors cou-
pled. Transformations between the various modes involve more complex coefficients, e.g., the coupling of four angular
momenta involves two resultant pairs of angular momenta, and the 9j symbol is defined in this connection. The interested
reader is referred to Refs. [38, 39].

As an example of the use of 6j coefficients, consider the matrix element of a tensor operator of orbital angular momen-
tum of a system, 7®, in which orbital and spin angular momentum, L and S, are coupled to obtain the total angular
momentum J in both the initial and final states. The reduced matrix element of the tensor operator T® can be worked
out in terms of a product of a 6; coefficient and the orbital angular momentum reduced matrix element of 7%:

(LSINT®NL'S'T') = 85 Deoupte (LITPIL'), (3.232)

where the line strength coefficient Deoypre 18

(3.233)

' LSJ
Deouple = (=D @+ D121 + DY 2{ } :

J kL


http://plasma-gate.weizmann.ac.il/369j.html
http://www-stone.ch.cam.ac.uk/wigner.shtml

Spin

The history of spin was briefly outlined in Sec. 1.1.5. Recall that in 1922, the Stern—Gerlach experiment showed that
silver atoms are separated into two components upon traversing an inhomogeneous magnetic field. In 1925, Goudsmit
and Uhlenbeck proposed that electrons have a spin of 1/2 (in units of #). About a year later, Pauli introduced a “two-
valued quantum degree of freedom” (i.e., spinors, see below). Pauli was skeptical about the assignment of a spin 1/2
to electrons until he learned of Llewellyn Thomas’s work (1926) that resolved a factor of two discrepancy between
experimental spin—orbit splitting results and Goudsmit and Uhlenbeck’s calculations. The discrepancy resulted because
account was not taken of the noninertial (accelerating) reference frame of an electron as it circles the nucleus. The factor
of 1/2 that resolved the discrepancy is called the Thomas precession factor (see Sec. 4.5). By 1927, it was pretty much
accepted that the electron has a spin of 1/2. In 1928, Paul Dirac developed the relativistic theory of the electron; the Dirac
equation (discussed in Sec. 13.6.3) correctly describes electron spin. The Thomas precession factor appears naturally in
the Dirac equation, as does the spin—orbit interaction, the Zeeman splitting in the presence of a magnetic field, and many
additional effects arising due to electron spin. It also paved the way to the understanding of the positron, the electron
antiparticle having electric charge +e and spin 1/2. Spin angular momentum exists for many elementary particles. In
1932, James Chadwick discovered the neutron; it too has spin 1/2. Otto Stern measured the spin of the proton in 1933 to
be 71/2, and I. I. Rabi measured it more accurately in 1934. The neutrino, the elusive particle that was postulated by Pauli
in 1930 to account for energy conservation in beta decay (and first detected in 1956), also has spin 1/2.!

In this chapter, we study electron (and nuclear) spin. Section 4.1 (re-)introduces spin angular momentum operators
and Sec. 4.2 defines spinors and spin-orbitals. Sec. 4.3 treats a charged particle with spin in a magnetic field, and Sec. 4.4
deals with the time-reversal properties of spinors. Spin-orbit and hyperfine interactions are discussed in Secs. 4.5 and 4.6.
In Sec. 4.7, we discuss the spin—spin interactions in singlet and triplet states. Finally, in Sec. 4.8, we consider magnetic
resonance. The material in this chapter will be heavily used in our discussion of quantum information in Chapters 5, 6
that treat many spin-related topics, including the Bloch sphere picture of spins, the density matrix description of spin
degrees of freedom, and the use of the spin formalism to treat arbitrary two-level systems (spin is the prototype two-level
system).

We note in passing that electron spin can be used in nanotechnology devices (although to-date, few do); this new
nanotechnology concept is called spintronics. In spintronic devices, one generates a current of spin-polarized electrons,
and one incorporates device elements that are sensitive to the spin polarization of the electrons, and perhaps also elements
that change the current of electrons depending on the spin state. For more on spintronics, see Sec. 9.7.

4.1 SPIN ANGULAR MOMENTUM

The commutation relations for angular momentum operators are [see Eq. (3.5)] [},-,jj] = iheijkjk, where g;j is the Levi-
Civita symbol (each of the indices i,j, k can take on the value 1,2, 3, or, if you like x,y, z) and Einstein’s summation
convention is used. Electron spin angular momentum operators satisfy the same commutation relations,

[S:, S;1 = iheSk. (4.1)

! Initially, it was thought to be massless, but we now know it has finite but extremely small mass.

Quantum Mechanics with Applications to Nanotechnology and Information Science 159
Copyright © 2013 Elsevier Ltd. All rights reserved. DOI: 10.1016/B978-0-444-53786-7.00004-6


http://dx.doi.org/10.1016/B978-0-444-53786-7.00004-6

160 CHAPTER 4 Spin

Just as for an eigenstate of angular momentum, j2 =1%j(j + 1), an eigenstate of spin with s = 1/2 has S2 =n2s(s + 1),
)
ie.,
§?=82+ 82+ 82=3/4)n1. 4.2)
In analogy with the general angular momentum case, see Eq. (3.10), we can define the spin raising and lowering operators,
Sy =8:+i8,, S_=8 —iS,. 4.3)

It is convenient to define dimensionless operators that have commutation relations similar to angular momentum
operators. For spin 1/2 particles, such operators are the Pauli spin operators, 6;, defined such that S; =ha;/2. These
operators obey the following commutation relations:

(61, 671 = 2iegyj O. “4.4)

In analogy with (4.3), the Pauli spin raising and lowering operators, 64 and 6_, are defined such that S’+ =ho64 and
S_=ho_,1ie.,
A~ 6,\: + l&y ~ OA'x - l&y
=, = 4.5
o4+ 2 0. 2 ( )

Problem 4.1
(a) Show that the Pauli spin operators obey the equation
60} = 8;j + igjj O. (4.6)
(b) Using the formula you proved in (a), prove that
(a-0)(b-6)=a-b+i(axbh)-a. 4.7)

(c) Show that 64 and 6 have the following anticommuter: {64,6-} = 1.
(d) Show that [6,6_]=o,. Note that the unit operator 1 multiplying &;; and a - b on the RHSs of (4.6) and (4.7)
respectively has not be explicitly written.

4.2 SPINORS

A spinor is a two-dimensional vector, (Z), with complex components a and b. Spinors were first applied in physics by

Wolfgang Pauli; the term spinor was coined by Paul Ehrenfest. The properties of spinors will be presented in this section.

A natural basis for the two component spinors is given by the vectors (é) and ((1)), so the general spinor (Z) can be

represented as (§) = a(g) + b((l)). By convention, (3) and ((1)) are denoted in any of the following possible ways:

mem=g=(p). w=m=xu=()). 48)

We shall see shortly that the spin operator S. has the 2x2 matrix representation, %((l) f;), which has eigenvalues £7/2.

The eigenvector of S. with eigenvalue 71/2 is the spin-up spinor |1) = ((l)), and the eigenvector with eigenvalue —#/2 is

the spin-down spinor || ) = ([1))? Clearly, these eigenvectors of the Hermitian operator S'Z are orthogonal, and are of unit

2 The unit operator on the RHS of (4.2) is sometimes not explicitly written but is implied.
3 The z-axis is often assigned arbitrarily, but if a static magnetic field is present, the z-axis is assigned to be along the field.
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length, as is easy to explicitly check. The orthogonormality relations of these spinors are as follows:

(ale) =1, (BIB) =1, (Bla) =0, («|B)=0. 4.9)

The first and third equations in (4.9), written in the form of two-component vectors, take the form

(ala) = (1 0) (é) =1, (Bla)=(01) (é) =0. (4.10)

It is important to note that a pure state |x) of any two-level system [e.g., a quantum bit (qubit), see Sec. 5.2] can be
represented as a spinor by a superposition of basis functions,

0) =) = la) = (O) =) =18 = (1) @.11)

Ix) = ala) + b|B) :a<(1)> +b<?) - (Z) 4.12)

The inner product of two arbitrary spinors |x1) and |x2) can be written as

ie.,

ai

(xalx1) =(a5 b3) (bl>:a§a1 + b3by. 4.13)

Hence, in order to normalize the spinor |x) = (Z) whose length squared is (x|x) =a*a + b*b, we can divide the spinor
by its length,

P L (“)
(xIx)2 (lal> + 1p1)12 \b )"
Note that a and b may be functions of a coordinate variable r and/or of time ¢. We shall make use of this possibility below
in constructing spin-orbitals. Most often one uses amplitudes a and b that are such that |a|> + |b|> =1, i.e., spinors are
taken to have unit length, (x|x) = 1.
Spinor matrix elements of operators can be written in the form

A * * A A a
(ralAlxn)= (a3 b2)<A; A;§><b:>, (d.14)

where the operator A has been represented as a 2x?2 matrix A acting in spin space. (see Sec. 4.2.1)

Problem 4.2
22,

An electron is in the spin state |x) = %IT) —

(a) Determine the probabilities to measure the electron in states |1) and || ).
(b) Calculate the expectation value (x|S;|x) using S, = %((1) _(])).

4.2.1 PAULI MATRICES

Since the spin of an electron can be represented as a spinor with two components, the spin operators S; (and the Pauli
spin operators 6;) can be represented as 2x2 matrices (see Sec. 3.1.2). Moreover, since the spin matrices must satisfy
the same commutation relations as the spin operators and since spin has the units of angular momentum, we can write
the 2x?2 spin matrices S; in terms of 2x2 dimensionless matrices o;, called Pauli spin matrices, as S; = (h/2)o;, where o;
satisfy the commutation relations (4.4). The following set of Pauli spin matrices satisfy the commutation relations for the
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Pauli spin operators (4.4) [see (3.31)]:

ax=<? (1)) ayz(? :f), ozz<é _01>. (4.15)

Problem 4.3

(a) Calculate the 2x2 matrices crxz, cryz, and ozz.

(b) Demonstrate that the 2x2 matrices, Sy =#oy/2, Sy =hoy/2, and S, =ho, /2 with the Pauli matrices given in
(4.15), satisfy the commutation relations (4.1).

(c) Show that the Pauli spin matrices oy, oy, and o, of (4.15) satisfy (4.4).

(d) Calculate the eigenvectors and eigenvalues of the matrices Sy Sy, and S;.

(e) The Pauli spin matrices are not unique in the sense that other sets of 2x2 matrices satisfy the commutation
relations (4.4). Show that a cyclic permutation of the Pauli matrices, 6 = 0y, 6y = 0, 6, = 0y, also satisfies
these commutation relations.

(f) Show that Tr 0i0j = 25,’j.

Answer: (a) 0} =07 =02 = ( (1) ?) (d) £h/2.

Problem 4.4

(a) Write out the 2x2 representations of the operators S =Sy + iSy and S_ =S, — iS).
(b) Show that S, when applied to the state |«) yields the zero state and when applied to the state |S) yields 7|«).

(c) Show thatoy = U";iq" = (0 1) il o = EE (0 0).

0 0 2 1 0
(d) Show that oﬁ =02 =0.

(e) Showthata+07=(1+0z)/2:<(1) 8>"LU+:(1_UZ)/2:<8 (1)>

0 1 0 0
Answer.(a)S+:h<0 0>,S_:h(1 O)'

Any Hermitian 2 x2 matrix A can be expanded using Pauli matrices,

A=col + Cj0j, (4.16)

where Einstein summation convention has been employed and the coefficients co, c1, c2, ¢3 (or co, cx, ¢y, ¢;) are real, and

the unit 2x2 matrix is 1= ((1) ?) Moreover, any non-Hermitian 2x2 matrix can be expanded in this way with complex
coefficients.

Problem 4.5

(a) Using Eq. (4.16), show that ¢ = % Tr[oA] and ¢y = % Tr[A].
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The spin operator in the direction of the unit vector n is n - S= gn - 0. Since, in spherical coordinates, n =
(sin 6 cos ¢, sin O sin ¢, cos 0), the 2x2 matrix n - S is given by

h h < cosf® e ®sind )

n-S=-n-o=7 €% sin6 —cos 6

> > 4.17)

Problem 4.6

(a) Calculate (t|n-o|1) and ({|n- o [1).

(b) Show that the eigenvalues of the 2 x2 matrix in (4.17) are +7/2 and calculate the eigenvector for eigenvalue
—n/2.

(c) Determine the probability that a measurement of the polarization along the n-axis will yield spin-down given
the state |1) polarized along the z-axis.

Hint: Calculate the projection of |1) on the eigenvector with eigenvalue —7%/2 that you calculated in (b), i.e.,
calculate |(Bnl1)|%. Answer: sin’(6/2).

Problem 4.7

(a) Find the eigenvalues and normalized eigenvectors of the matrix S, + S; = % ( } _11 >

(b) Find the spherical angles 6 and ¢ of n= (sin 6 cos ¢, sin 6 sin ¢, cos €) so that the matrix (Sy + S;)/ /2 can be
written as n - S and find the eigenvalues and normalized eigenvectors of nn - S.

1
. = - 1
Answers: (a) E1 =h/2 x V2, &= TN AT <ﬁ _ 1).

1
— — 1
E1=—h/2xv2, &1 [(V2+1)2+1]1/2 (—(ﬁ + 1))'
(b) 6 =7 /4 and ¢ = 0. The eigenvectors are identical to those in (a), and the eigenvalues are multiplied by 1/ V2.

—e ¥ sing
1+ cosé

e sing

The ei fn- ith ei lue 11
e eigenvector of n- o with eigenvalue 1 is (1 — cos 6

) and with eigenvalue —1 is < ) Normalizing the

eigenvectors, we obtain up to an arbitrary phase factor (e.g., ¢/#/2; see Problem 4.9),

_ (e cos(6/2) [ —e"%%5in(0/2)
lotn) —< i0/2 sin(8,2) ) . 1Bn) —< 0i0/2 cos(6/2) ) ) (4.18)

with eigenvalues 1 and —1 respectively. Any pure state of a two-level system, |x) =ala) + b|B8) = (Z), can be written as
the eigenvector |an) of some operator of the form n-S (or n-¢), with the appropriate unit vector n, having eigenvalue +7/2
(or +1). From (4.18), it is clear that the angles 6 and ¢ can be chosen so that a = e~/ cos(0/2) and b = ¢'*/? sin(0/2).

Problem 4.8

(a) Use the trigonometric identities cosZ(0 /2)=(1+ cos6)/2 and sin® (6/2) = (1 — cos8)/2 to obtain the
normalized eigenstates in (4.18).

(b) Given the spin state |oy), if the z-component of the spin is measured, what possible values can result in the
measurement?
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(c) What are the probabilities of obtaining the possible measured values?
(d) What is the expectation value of the operator S, in state |og)?
(e) If one measures n - S, what are the possible measurement outcomes and their probabilities?

Answer: (b) /2, —1/2. (c) P4 = cos®(0/2), P_ = sin%(0/2). (d) (h/2)[cos2(0/2) — sin®(6/2)]. (¢) h/2, P=1.

Problem 4.9

"% cos(0/2)
sin(6/2)

n = (sin 6 cos ¢, sin O sin ¢, cos ) = (x, y, 2).

e (cos ¢ — ising)/(1 + cosB)/2 _n—1/2 %
Answer: |oen)—( VT =cos0)/2 )-2 \/ll%z

Write the spinor |&y,) = ( ) in terms of the components of the unit vector

Let us consider a system consisting of two spin 1/2 particles in a two-particle state |W). It is sometimes relevant to
find the expectation value of a correlated measurement of the spin along one direction for one of the particles and the
spin along another direction for the other particle,

(W -01) (- 02) |¥). 4.19)

For example, consider the singlet state, |V) = % AMYHY = Y1) If we invoke the rotational invariance of the singlet

state, then without loss of generality, we can choose n; to be along the z-axis, and obtain for the singlet state,
1

(Wl(ny -o1)(m2 - 02)| W) = 3 [

In obtaining the last equality in (4.20), we used the fact that ({2|ny - 62|{2)=—ny - Z, {(12|m - 62|12 ) = ny - Z, and

that Z=n;. This result will be used in describing correlated measurements of the spin of two spin 1/2 particles in our
discussion of Bell inequalities in Sec. 5.8.

{2z - o2[{2) — (12Inz - 02|12)] = —ny - M. (4.20)

4.2.2 ROTATION OF SPINORS

As already discussed in Sec. 3.3.1, we can rotate the state |1) about the y-axis by an angle ¢ using the rotation operator
. a
e~ 7 a5 follows:

—idn,. < .. 1 cos(/2)
_ ivny — _ —
[9)=e Z|1) [cos(z?/Z) 1 —isin(¥/2) a_v] <0> (sin(0/2) . 4.21)
The formula e~/ 2™ — [cos(l‘/‘ /2)1 —isin(¥/2) (Ty] can be derived by expanding the exponential in a power series and
noting that 6,0y =1 [see Eq. (4.6)], hence, oym =1 foreven m and oy’" =0y for odd m. Eq. (4.21) can be easily generalized;
the rotation operator for spin 1/2 states about an arbitrary unit vector n by an arbitrary angle ¢ can be written as follows:

Un(9) = e~ PWS/M — o=1300 _ 06(19/2) 1 — isin(9/2)n - 0. 4.22)

Note that a rotation of a spin state by an angle of 27 about any axis multiplies the spin state by (—1).

Problem 4.10

(a) Prove that ¢?™% = cos® 1+ isin® n-o.
(b) Prove that ¢*th — ¢ [cosh(lbl) 1 + sinh(jb) l\)T(IT]
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The projector Py =|9) (| onto the state |#) defined in (4.21) can be determined using half-angle trigonometric
identities:

_l((l—i—cosﬁ‘) sin ¢

1 .
Py = > sin 9 (1 — cos 0)> = 3 (1+cos® o, +sinv oy) . (4.23)

This result generalizes easily; for a spin state corresponding to the spin pointing up along the direction 1, the projector
onto this state is given by

P = log) (o = % (1+a-0). 4.24)

We can calculate probability of measuring spin-up along the polarization direction 1 if the system is in an arbitrary spin
state |) as follows: (¥ |Paly) =3 (| (1+8-0) ) =1 (1 + (¥[d-aly)).

Let us now consider systems consisting of two spin 1/2 particles in a two-particle pure state . We can calculate the
joint probability of having the first particle in the up-state |, ) along polarization direction fi; and the second particle in
the up-state |er,) along polarization direction fip by evaluating the expectation value (¥|Py, Py, | V) as follows:

1
(W[Pn, Py W) = o [(W] (1 - 01) (02 02) W) + (W] (1 - 01) [)

+ (%] (2 02) |W) + 11. @.25)
In particular, for the spin-singlet state, |V) = % (M) — ) 1)), we can use Eq. (4.20) to obtain
1 N
(W [Py Py | W) = [1 — cos(6n,n,) ] = 5 Sin” 6y nz /2), (4.26)

where we have made use of a trigonometric half-angle formula to obtain the latter equality, and defined the angle Oy, .n,
whose cosine is nj - ny.

4.2.3 SPIN-ORBITALS

A spin-orbital u(x) is a spinor whose components depend upon the coordinate of the particle,

_ [ o1(r)
u(x) = (fﬂz () ) . 4.27)

Often (but certainly not always) a spin-orbital can be written in the form of a product of an orbital (a wave function that
is a function of coordinates) ¢ (r) and a spinor x (for convenience, we have not written the spinor using Dirac notation,
[x)), u(x) =¢(r) x. This is the case in (4.27) when ¢ (r) = a¢ (r) and ¢2(r) = b¢ (r). In any case, a spin-orbital u(x) is a
spinor, i.e., a two-component wave function. We use the notation that the variable x denotes not only the position of the
particle r but also the spin degree of freedom. As an example, consider the following spin-orbital in a central potential that
has well-defined principal quantum number 7, orbital angular momentum /, and magnetic (azimuthal) quantum number
my, as well as a well-defined projection of spin, denoted by the spin magnetic quantum number m:

Unimymy (X) = Rpi (1) Yim) (6, @) Xim, - (4.28)

This spin-orbital is a product of an orbital and a two-component vector (i.e., a spinor). Spin-orbitals will be used to treat
electronic structure (see Chapter 10) and spin-orbit coupling (see Sec. 4.5), which is an interaction occurring in atoms that
splits some atomic spectral lines, and which can be described in terms of the Hamiltonian, Hy, = £(r)L - S, where &(r)
depends only on the magnitude of r. Hy, must be added to the Hamiltonian H = T + V(r) to obtain the Hamiltonian for
an electron in a central potential. We shall soon show that [H,, [?] = [Hyo,J?] = [Hso, J.] = 0, hence the eigenfunctions
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of L - S, Upljm;> Can be constructed as linear combinations of the spinors upjmm, using the laws of angular momentum
addition,

nljmy =Y (s [jm;) iy, - (4.29)
mymg

Thus, while the spinor u;;,;m, can be written as a product of space and spin factors, Unljm, has space and spin parts
entangled [as in (4.27)]. This is a specific example of the fact that spatial and spin degrees of freedom of a single particle
can be entangled. The spinor representing such entanglement is of the form of a sum of products of spatial and spin
functions. The Schrodinger equation for the spin-orbital wave function uyjj,; is

1
[_EVE + V@) +&(0L- Si| Unljm; = Enlj Unijm; - (4.30)

The energy eigenvalue E,;; depends on a quantum number j representing the sum of the spin and orbital angular momen-
tum of the electron (see Sec. 4.5), and depends on m; if an external magnetic field is present. Spin-orbitals are often
eigenfunctions of Hermitian operators, and then an orthonormalality condition would apply,

() = / dx w (X, (x) = 8025 @.31)

e.g., for spinors that can be written as a product state, (W 1) |ttty ) = [dr ¢:'1’m; (X)Gpim, (r) (XméleS> =8yndyr;

Sm) my Sl my » but this holds even for the case of entangled spinors, as in the spinors of Problem 4.11(b). Spinor spherical
harmonics can be used as a basis in which to expand spin-orbitals [you may now go back and read Sec. 3.5.3].

Problem 4.11

(a) Find two one-electron eigenstates of the operator L, + S, for an electron in an L = 1 orbital with eigenvalue 7/2.
(b) Determine the linear combinations of the states in (a), which are eigenstates of J2=(L+S)%
(c) What eigenstate of the operator L, + S for an electron in a L =1 orbital has eigenvalue 3/2.

L-1) o5 w38 = hnn 5 -1+ 2o |44,

54 =21 |53 = 3110y |4 £). © See Problem 3.5 in Sec. 3.1.2.

Answers: (a) |1, 1)

4.3 ELECTRON IN A MAGNETIC FIELD

The magnetic energy U of a magnetic moment u in a magnetic field H is given by the expression U = —u - H (see
Eq. (1.11)). This magnetic energy is called the Zeeman energy, after Pieter Zeeman who won the Nobel prize in 1902 for
his studies of magnetism (along with Hendrik A. Lorentz), and the Hamiltonian is called the Zeeman Hamiltonian,

a2

The magnetic moment of an electron is the sum of its spin magnetic moment and its orbital magnetic moment, p.; = s+
p;. The spin magnetic moment of an electron, fi,, is given in terms of its spin S by the formula

S

Hy =g . (4.33)

where the quantity up is called the Bohr magneton, up = Z;hc.

The Bohr magneton is the only factor on the RHS of (4.33)
that has units; it has units of energy per magnetic field. In ST units, pup = 2% and is numerically equal to 927.400 899(37)
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x 10726 JT~L. The factor g is called the Landé g-factor or simply the g-factor of the electron (it is sometimes also denoted
by g, where the subscript s is for spin); it is dimensionless and is almost exactly equal to 2, g = 2.0023193043737(82).*
As noted in the footnote, sometimes the electron g-factor is taken to be negative, i.e., the minus sign in u, = —gupS/h
is incorporated into the g-factor. We do not do so here. The deviation of g from 2 is due to quantum electrodynamic
corrections (note the precision to which g is known) and is called the anomalous magnetic moment. One convenient
set of units in which to remember the magnitude of the Bohr magneton is 1.4 MHz/Gauss (more precisely, 1.39962
MHz/Gauss). The magnitude of the electron spin magnetic moment u, =—g upS/h is 1.4 MHz/G since g &~ 2 and
S/h=1/2; hence, the Zeeman energy of an electron with its spin aligned with a 1 Gauss magnetic field (a magnetic field
of 1 Tesla is 10,000 Gauss) is +1.4 MHz.
The orbital magnetic moment of an electron, g,, is given in terms of its orbital angular momentum L by

L

= —ns. 4.34)

Notice that the orbital g-factor is unity [and therefore has not been explicitly inserted into the RHS of (4.34)]. The spin
magnetic moment of the electron is in the opposite direction to the spin, and the orbital magnetic moment is opposite in
direction to the orbital angular momentum.

The Heisenberg equation of motion for electron spin is

S i igp

= — _[H,S]= S-H,S]. 4.35
” h[ 1 h [ ] (4.35)
Writing (4.35) in terms of components, % = —gupejxSkHj, and noting that the quantity on the RHS is a cross product,
we find

aS

E = —g/,LBS x H. (436)

This equation is called the Bloch equation for the electron spin. Making use of the definition of the electron magnetic
moment, p;,=—gupS/h, Eq. (4.36) can also be written as an equation of motion for the electron magnetic moment:

opg
at

Thus, both the spin of the electron and the magnetic moment of the electron precess around an external magnetic field.
The frequency of precession, called the Larmor frequency, is given by wg = gug|H].
For nuclei, the nuclear magnetic moment and nuclear spin are related by

aa

where the nuclear magneton is defined as puy = ﬁhc (in SI units puy = %) and I denotes the nuclear spin angular
P P

= —guppy X H. 4.37)

momentum (it is confusing that the symbols for the nuclear magnetic moment and the nuclear magneton are so similar,
but this is standard notation). Note that the proton mass M), appears in the expression for the nuclear magneton; nuclear
magnetic moments are therefore roughly 1000 times smaller than the electron magnetic moment. The quantity gy is the
nucleon g-factor; nucleon g-factors are of order of magnitude unity [e.g., the proton g-factor is g, = 5.585 694 713(46)
and the neutron g-factor is g, = —3.82608545(90)]. The Heisenberg equation of motion for a nuclear magnetic moment,
which is derived in a fashion analogous to (4.37), is

Iy
? :gNIJ,NILNXH. (4-39)
4 Often (4.33) is written as s = 8e B S/h where the electron g-factor g, = —g is negative, to conform with (4.38) which is used for all other particles

besides electrons. In any case, what is important to note is that the electron magnetic moment vector is opposite to the spin of the electron.
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Equation (4.39) is called the Bloch equation for the nuclear
magnetic moment. Clearly, the nuclear magnetic moment also
precesses around an external magnetic field, as illustrated in
Fig. 4.1. The Larmor precession frequency for nuclei is given
by wo =gnunH.

The magnetization M of a system containing magnetic
moments is the product of the density of the magnetic moments,
n, and the expectation value of the magnetic moment vector,
M=n(u), where (p) is the average magnetic moment of the
atoms in the system. For example, in a sample having nuclei
of density n, the nuclear magnetization is My = ngyun (1) /%,
whereas, for electrons in an s-state (I=0), the electronic mag-
netization is M, = —ngsup(S)/h where n is now the density
of electrons. Note that if either the density n or the expectation
value (@) has a spatial variation, so does the magnetization vec-
tor, M(r, 7). Using (4.36) or (4.39), we find that the Bloch equa-
tions can be written in terms of the magnetization vector as

oM M x H
_ x H,
P sH

(4.40)
where the sign on the RHS of (4.40) must be changed for the elec-
tronic magnetization. Hence, the magnetization precesses around
the external magnetic field.

Figure 4.2 shows the Zeeman energy of a spin 1/2 particle in
the presence of a static magnetic field. For an electron, the lower
state corresponds to my; = —1/2 and the upper state to my= +1/2,

FIG 4.1

Energy

FIG 4.2

CHAPTER 4 Spin

Precession of a magnetic moment g around a
magnetic field H.

E, = guH/2

E_=-guH/2

Zeeman energy levels of a spin 1/2 particle in a
static magnetic field H. The Zeeman energy
splitting, AEz, depends on the product of magnetic
field strength and the magnetic moment.

whereas for a proton, the lower state has m; = +1/2 and the upper state m; = —1/2. The energy splitting, AEz = guH,
for the electron is over 1000 times larger than for a proton or for other nuclei since the magnetic moment of an electron

is so much larger.

Problem 4.12

— —qu . _ _ kBHo _ __ KBHp
H=—p -H=-""2(0x+0)=-"7

(G 4)

(a) Calculate the eigenvalues and eigenvectors of H.

eigenvalues?

P+ — 2—4\/§’ P — 2+4\/§'

Answer: E+ = £ upHp. The unnormalized eigenvectors are |y )= (

For a spin 1/2 particle in a magnetic field H= % (1,0, 1), the Hamiltonian is

(b) If the particle is in state || ) (spin-down along z), what are the probabilities of measuring each of the energy

Hint: Square the projection of the initial state ((1)) onto the normalized eigenvectors to get the probabilities. Answer:

_\f?jL 1>’ )= <ﬁ1+ 1>.
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4.3.1 CHARGED PARTICLE IN A MAGNETIC FIELD:
ORBITAL EFFECTS

Many magnetic field effects on atoms and molecules are associated with spin, but orbital effects are also present. In
general, these effects need to be considered together. In this section we study magnetic field effects on atoms. Magnetic
field effects in condensed matter physics and in low-dimensional systems will be discussed in future chapters.

The Hamiltonian for a charged particle having mass m and charge ¢ in the presence of an electromagnetic field was
determined in Chapter 16 (see the book web page), starting from a Lagrangian formulation [see Eq. (16.95)]:

1 q \2
H=—(p-2a) +v. 4.41)
2m c
Here p = —inV is the momentum operator and V = g is the potential energy experienced by the particle (e.g., in the case

of an electron in an atom, V is the Coulomb potential), i.e., ¢ is the scalar potential and A is the vector potential. Within
the classical theory, all measurable quantities do not explicitly depend on the vector potential, but rather on the magnetic
field. This is not the case within the quantum theory, as we shall see in the discussion of the Aharonov—Bohm effect
in Sec. 9.5.2. In quantum mechanics, the vector potential takes on a “life of its own.” The first term in the Hamiltonian
operator, Eq. (4.41), can be expanded so that the Hamiltonian contains a linear and a quadratic term in the vector potential:

_ 1], g q ,.\>

H=— - 2p-aA+A-p+(14) |+, @.42)
2m c c

where the vector potential A(r, 7) is such that its curl yields the magnetic field, H=V x A (see the discussion in Sec. 9.5

and related material in Refs. [23, 34]). If we now add the spin degree of freedom of the particle by including the Zeeman
Hamiltonian (4.32), Eq. (4.42) becomes

1 2 s
He — pz_ﬁ(p.A+A-p)+(€A) YV _guso H 4.43)
2m c c h

The Hamiltonian (4.43) can also be obtained from the lowest order nonrelativistic reduction of the relativistic Dirac
equation for an electron (see Sec. 13.6.3) and yields,

. Oy [(P— (—e/)A(r,1))?
ih—

ar m + V() — pg - H(r, t):| w(r,1). (4.44)

It is of interest to write the Hamiltonian in (4.44) for the case of a constant, spatially homogeneous magnetic field H.
Then, the vector potential can be taken to be

1
A= Hxr, (4.45)

as can easily be verified by taking the curl of A. Substituting Eq. (4.45) into (4.43), we obtain, after some algebra (see
Problem 4.15),

p2 2
H= [2—+V(r)—(ﬂz+us)‘H+
m

(H x r)z]. (4.46)
8mc?
The third term in the square brackets on the RHS of Eq. (4.46) contains the interaction of the orbital magnetic moment
with the magnetic field, where u; = —ugL/h is the orbital magnetic moment and pp is the Bohr magneton [see
Eq. (4.34)], as well as the interaction of the spin magnetic moment with the magnetic field, u, - H. The last term in
the square brackets is quadratic in the magnetic field strength and is called the diamagnetic term since it gives rise to
diamagnetism (see Sec. 9.5.9).

For future reference, we mention that it is often convenient to write the Zeeman energy of an atom in a state |« LSJMj).
This is particularly true when spin—orbit interactions are included. The expectation value in state |« LSJM;) of the Zeeman
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Hamiltonian, Hzeeman = —(1; + &) - H, as:

(Hzeeman)aLsivMy = —{(; + m))arsiv, - H=grsjup(J)Lsim, - H. (4.47)

grsy is called the Landé g-factor; it can be determined by noting that
MUB MUB
g = —?(L +855) = —?[J + (gs — DS], (4.48)

and evaluating the matrix element (S)zs7y, by showing that it is proportional to (J) s/, as in Sec. 3.6.4.

Problem 4.13

Show that if the vector potential satisfies the “Coulomb gauge condition,” V - A = 0, then [p, A] = 0 and therefore,
P-A+A.p=2A-.p. Check if this always holds for a uniform field Hyp, which can be written in terms of the vector
potential A(r) =Hg x r/2.

Problem 4.14

(a) What are the energies of a spin-up and spin-down electron in a magnetic field of strength H = 0.1 Tesla. Give

your answer in GHz, using the fact that the Bohr magneton pup = % =13.9962 GHz/T.

(b) What are the energies of a spin-up and spin-down proton in a magnetic field of strength H = 0.1 Tesla. Use the
fact that the nuclear magneton uy = % =7.62 MHz/T, and the proton g-factor is g, =5.585.

Answers: (a) E;,,; = guupHmy, so E1/5 = 1.39962 GHz, E_;, = —1.39962 GHz. (b) E;; = —gpunmsH, so
E1/2 = —2.126 MHZ, E,1/2 = 2.126 MHz.

Problem 4.15
Carry out the algebra to go from (4.43) to (4.46) as follows.

(a) Expand (p — (—e/c)A(r, £))?, making sure to keep the order of (p and r) right, since they do not commute.
(b) Substitute for A using Eq. (4.45).

(c) Rewrite the expressions such as p - (H x r) as H- (r x p), by making use of the Levi-Civita symbol.

(d) Note that L=r X p, to finally obtain Eq. (4.46).

Problem 4.16

Use the relation o;0; = §;; + igjjx0% to show that

[o-(p—(q/0A)][o - (p—(q/c)A)] (p— (q/0)A)? _ ﬂa H
2m a 2m 2mc

We shall have more to say about orbital and spin magnetic field effects in Sec. 9.5, where we treat paramagnetic and
diamagnetic effects in atoms and solids, as well as transport properties of electrons and holes in the presence of magnetic
fields, but for the time being, we return to the topic of orbital and spin effects in the simplest atom, hydrogen, before
going on to describe spin—orbit and hyperfine effects in atoms.
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Hydrogen Atom in a Magnetic Field: Chaos

Upon application of a uniform magnetic field to a hydrogen atom, the nature of part of the spectrum changes dramatically
from that of the spectrum without such a field. The Hamiltonian for the hydrogen atom in a magnetic field shows classical
chaos (see Sec. 16.13 linked to the book web page), and the quantum spectrum reflects the nature of the chaotic classical
behavior. Taking the vector potential to be given by (4.45) and assuming that the nuclear mass is infinite (so as to finesse
any questions regarding the center of mass motion of the atom taken does not separate out) the Hamiltonian becomes

2 Z€2 62
H=2 2 BB e8) Ht 5 Hx ). (4.49)

2m, r h 8mc

With the magnetic field taken to be along the z-direction, we obtain
2 2 2
Ze m,
H=2 22 Vg yos)+ B (24, (4.50)
2m, r 2 8

where y =eH/(m,c) and Z =1 for a hydrogen nucleus. Clearly, there is cylindrical symmetry around the z-axis, so we

can write the wave function, W (r) = ¥ (p, 2)e™ x,,, and the Hamiltonian H in cylindrical coordinates, p = v/x2 + y2, z
and 6 = tan~! (v/x) [see Eq. (16.60)], where

PR+ p2 4 Ze> hy mey?
14 z
H(pp.pzr p.2) = e + — (m+2my) + ——p*.

2m, /p2 + ZZ 2 8

Here the constants of the motion are L, = im and S, = fim;. In atomic units, the dimensionless Hamiltonian takes the form

(4.51)

1/13d 3 3?2 m? z B B .,
H=—|==—=[0— —t+ = |-+ = 2mg) + —p°, 4.52
2<ﬁ8ﬁ<p85>+822+ﬁ2> R R X @2
3 3
where the dimensionless constant 8 = % = m;’:gg H is proportional to the magnetic field strength. The only exact con-

stants of the motion for the Hamiltonian in (4.52) are the energy, the orbital and spin angular momenta m and m;, and the
parity. The Hamiltonian is nonintegrable [for given values of m and my, the Hamiltonian in (4.51) is two dimensional and
there is only one constant of the motion, i.e., the energy — see Sec. 16.12.1 linked to the book web page] and the classical
trajectories are free to explore the
entire phase space on the energy

-5.0 ¢ .
shell. For low-lying energies or low @ (b) // i 7
field strengths (or both), the dynam- £ E /;////// /
ics is regular. However, for suffi- 2 8 52 / ///
ciently high energy or field strengths ‘-:9 g /// 7 ///
(or both), the classical dynamics is 3 ’;_;_54 / /
chaotic, i.e., above a certain value of g E,’ )
B (magnetic field strength), the phase W = w
space is classically chaotic for a given 0 L ——= i e 6 - 2 7
region of Rydberg states (see Fig. 4.3). Magnetic Field (10-atomic units) . Magnetic Field (105 atomic units)

The quantum problem was studied

by Delande and Gay in Ref. [40]. FIG 4.3 Calculated energy levels of a hydrogen atom versus magnetic field for Rydberg

They answered the question, how does states of the L; =0, even parity series. (a) Low-energy region where the energy

classical chaos manifest itself in the levels (quasi-)cross. The quantum eigenstates can be categorized by good quantum
. numbers. (b) High-energy region [note factor of 1/10 in energy scale relative to

quantum spectrum of eigenstates, and . o .

found th l-defined si (a)] where the classical dynamics is chaotic, the good quantum numbers are lost

ound that a well-de .ne signature and the energy levels strongly repel each other. The strong fluctuations in the
of chaos can be obtained from the

energy levels are characteristic of a chaotic behavior. (Figure provided by
quantum eigenstates by the resulting Dominique Delande)


https://sites.google.com/site/thequantumbook/
https://sites.google.com/site/thequantumbook/
https://sites.google.com/site/thequantumbook/

172 CHAPTER 4 Spin

fluctuations in the energy levels. “Upon increasing the energy, the calculated statistics of the eigenvalues as a function
of the magnetic field evolve from Poisson to Gaussian orthogonal ensemble according to the regular or chaotic character
of the classical motion” (we shall discuss this in Chapter 13).°> They numerically calculated a large number of energy
levels in the regular and the chaotic regimes and found that the energy levels repel each other, i.e., these are avoided
crossings. Figure 4.3 shows the energy levels of hydrogen as a function of the magnetic field strength. At low magnetic
field, Fig. 4.3(a), there are level (quasi-)crossings and it is easy to follow the eigenstates as a function of field strength. At
higher magnetic field strenghs, Fig. 4.3(b), the size of the avoided crossings increase and individual states progressively
loose their identities, i.e., the good quantum numbers are destroyed.

4.4 TIME-REVERSAL PROPERTIES OF SPINORS

We considered time-reversal for zero-spin systems in Sec. 3.6.3 where we showed that the time-reversal operator is an
antilinear operator (more specifically, an antiunitary operator), the properties of which are discussed in Appendix A. We
now generalize that treatment by determining the time-reversal operator for particles with spin.

We have seen in Sec. 2.9.3, Eq. (2.172), that angular momentum transforms under time-reversal as 7 J7 L ——
hence the spin angular momentum must as well:

7ST ' = —8S. (4.53)

In the standard representation, Sy is a real matrix, Sy is an imaginary matrix, and S is real [see Eq. (4.15)] for spin 1/2 and
Eq. (3.26) for spin 1]. Hence KS,/KC =Sy, KS,K = —S), and S K =S, where K is the antilinear complex conjugation
operator satisfying X ~! = K. Clearly, this is not the transformation required for time reversal.

To satisfy Eq. (4.53), we write 7 =U /K, where U/ is a linear operator and we require

USU™ "' = =S, us,u~'=s,, usuU'=-s.. (4.54)

Moreover, since the correct transformation of spatial variables is produced by the complex conjugation operator, &/ must
satisfy

urd'=r, upu~'=p. (4.55)

Hence, U affects only spin variables. Furthermore, it is clear from (4.54) that I/ corresponds to a rotation about the y-axis
by 180 degrees,

U=e TSN, (4.56)
and therefore, I/ and 7 are represented by (25 + 1) x (25 + 1) matrices, with
T=c"5"K, (4.57)

Equation (4.57) is valid for spin 1/2 as well as any finite-spin system. Hence, Eq. (4.57) specifies the time-reversal
operator, and it has the following transformation properties:

TrT '=r, Tp7'=—-p, TLT '=-L, 7ST!'=-S. (4.58)

Problem 4.17
Prove that I/ is unitary if 7 =K is antiunitary and K~! = K.

5 Although the Hamiltonian does not commute with 7", there is another antiunitary operator that does commute with the Hamiltonian. That is the reason
that the level spacing distribution is GOE and not GUE.
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Problem 4.18

Prove that one can write the time-reversal operator for a spin 1/2 particle as 7 = —io, K.
Answer: From Eq. (4.22), Un, () = cos(/2)1 — isin(z/2)oy, = —ioy.

Problem 4.19
Apply the time-reversal operator 7 to the spinor state v, (r)|x ), thereby generalizing (3.209).

Answer: T Y, (0)| x) =¥, (¥) [—ioy (Z*)] = D" (® <_b )

a*

If the Hamiltonian H and 7 commute, then the eigenstates |v/,,) of H and 7 |,,) have exactly the same eigenvalues
since applying 7 to both sides of the equation H|v,,) = E,,|¥,) yields H(T |Y,)) = E,(T |{,)). But are the states |v,,) and
T |,) in fact one and the same state? If the answer is yes, these two states can differ by at most a phase factor ¢'?. Then,

TW) = T(T|Ym) =T (€% W)) = e T ) = e (€% |Yn)) = [¥n).

This result is impossible for half-integer angular momentum particles, because then 772|,) = — |,,). Hence, for half-
integer angular momentum particles, |v,,) and 7 |y,) are distinct states that are degenerate. This degeneracy is called
Kramers degeneracy, named after Henrik Kramers. Thus, any system with an odd number of electrons is at least two-fold
degenerate.

However, the presence of an external magnetic field lifts the degeneracy, and the Hamiltonian then no longer commutes
with 7, i.e., time reversal is violated and 7H7T ~! = H. Specifically, the Zeeman term — g - H changes sign under time-
reversal, since g is proportional to S. Moreover, the vector potential terms p - A + A - p change sign under time-reversal,
since the direction of the momentum p is reversed. Hence, the Hamiltonian in Eq. (4.46) is not invariant under time-
reversal. Reversing the directions of u and p has the same effect as reversing the direction of magnetic field H, leaving
1 and p unchanged, so the relation

THH)T ' =H(-H), (4.59)

is formally correct. However, it should be stressed that the time reversal operator acts on the dynamical variables p and
p but not on the external fields.

Problem 4.20

Prove that the degree of degeneracy must be even if the Hamiltonian of a system is invariant under time reversal and
T2 |y) = —ly).

Answer: Consider an eigenstate |,), so H|Y,) = E,|V,). The state 7 |v,) is distinct from |1;,) but is degenerate
with it. The state 72|v,) = —|¥,) also has eigenvalue E,,, but it is the essentially the same as state |/,,) (not
distinct). The state 77 |y,) = —7 |1, also has eigenvalue E, but is essentially the same as 7 |1/,,), state

T*\Yr,) = [¥,), etc., for higher powers of 7. So, there are essentially only two distinct degenerate states arising from
any eigenvector via time-reversal invariance.

Time Reversal Invariance and Matrix Elements of Operators

Let us return to the analysis of the restriction posed on matrix elements of operators that are invariant under time reversal
that we began in Sec. 3.6.3. There we indicated that the operation of an antilinear operator on bras from the right is ill
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defined, therefore, 7 should be applied only on kets. Once a ket |&) = 7 |«) is constructed, the corresponding bra (&| is
uniquely defined. The technique for doing this takes into account the fact that an application of K on a real basis state |n)
leaves it intact. Expanding |a) in a complete real basis {|n)} we can write, |&) = T|a) = UK|a) = UK ), |n) (n|a) =
Yo lnlay UKy = Y, (nla)*Uln) = Y, (e|n)id|n). The corresponding bra for |&) can now be obtained easily, but we
will need the bra for the ket IB ),

1B) =Y (BImUln) = (Bl = (nIB)(nit" . (4.60)

n n

The inner product (B |&) is expressible in terms of the untilded kets |«) and |B),
(Blay = mlB)ml Uln)(ln) =Y (eln)(nlf = («B) = (Blo)* . (4.61)

Our next task is to relate the matrix elements of a given linear operator O (not necessarily hermitian) between barred and
unbarred states, avoiding an action of antilinear operators on bra states. The central identity proved below is,

(BOl) = (@|TOTT'|B) . (4.62)
The proof uses the result (4.61). Defining
ly)=0"18) & (v|=(BlO, (4.63)
we have,
(B1Ola) = (yla) = (@|p) = (@|TOY|B) = @|TO'T~'T|B) = @ TO'T~'(B) . (4.64)

This completes the proof. The difference between the action of unitary and anti-unitary discrete operations is now clear
by comparing with the example of applying the space inversion (parity) transformation P. Denoting P|«) = |&), we have
(action on bra states from the right is now permitted),

(BIOla) = (BIP~'POP~'Pla) = (@|POP~1B) . (4.65)

The significant difference is that 7 replaces the role of bra and kets. This is physically understood as follows: Matrix
elements are usually calculated between initial and final states, but since 7 reverses the time, it swaps the role of initial
and final states.

Time Reversal Invariance and Reality of Eigenfunctions

Consider a system whose Hamiltonian is invariant under time reversal, 7H7 ~'=H (no external magnetic field is
present), and let |v,) be a non-degenerate eigenstate of H. The corresponding configuration space wave eigenfunc-
tion, (r|y,) = ¥, (r) is real. Before presenting the proof we note that in this case there is no Kramers degeneracy. This
situation occurs not only for spinless particles, but also in electronic systems with an even number of electrons. In this
case r stands for the many-particle space coordinates (the spin content is encoded in the ket |v,,)). The proof of the
statement goes as follows. Applying 7 to H|y,) = E,|¥y,), and using the time-reversal invariance of H,

TH(T ' T)[Y) = HT [Yn) = TEnly) = E,T|Y) . (4.66)

Thus, |y,) and T |¢,) are two states with the same energy E,,, and since E, is non-degenerate, |v,,) and 7 |v,,) must be
the same state, up to a phase factor. The corresponding wave functions are, (r|y,) and (r|7|¥,) = (r|1/~/n) = (f'|1/~/,,) =
(r|yr,)*. The second equality is due to the fact that |F) = |r) while the third equality results from (4.61). We have shown
that v,,(r) = v¥,(r), i.e., the non-degenerate eigenfunctions can be chosen to be real.
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Problem 4.21

(a) Check the validity of the reality theorem for a free spinless particle of mass m moving on a ring of length L
subject to the the Hamiltonian H = —% ;—; whose wave function satisfies periodic boundary conditions,
vx+L) =vyQ).

(b) Consider a similar system as in (a) for a spin 1/2 particle. Check the validity of the Kramers theorem.

0 o . . 2 2 2
(c) Assume now that there are two electrons on the ring, with the Hamiltonian H = —;’—m % + ﬁ] +JS1 - So,
1 2

for J > 0, where the two electron wave function is required to satisfy periodic boundary conditions,
Y(x) + L,x2) = ¥ (x1,x2 + L) = ¥ (x1,x2). Determine the ground-state wave function and check its
degeneracy. Explain your finding within the Karmers theorem.

212
Answer: (a) Denote k,, = 2”T" n=0,1,2,.... The eigenvalues are E, = hzi" and the eigenfunctions are,
Wf x) = ﬁeiik"" . For n = 0 the eigenvalue Ey = 0 is non degenerate and the wave function ¥(x) = ﬁ is real.

For n > 0 the wave functions ¥ (x) belong to the same eigenvalue E,. The wave functions are not real but this does
not contradict the above theorem because E, is degenerate.

(b) The wave functions are 1//,31t (x,0) = 1/f,:lt (x) X0 Where 1/f,:lt (x) are defined in (a). The eigenvalue Ey is now doubly
degenerate, while eigenvalues E, with n > 0 are fourfold degenerate. Recall that Kramers theorem states that each
level is at least two-fold degenerate.

(c) The wave functions is a product of space part ¥ (x1,xp) and spin part xsys where S = S; + S, and

M = %[S] . + S2;]. In the ground-state the space part is symmetric and the spin part is a spin singlet (that is

. . . . 2
antisymmetric). Thus, the total wave function and total energy is, W (x1,x2, S, M) = % XS=M—=0, Eo = — %. The
ground-state is not degenerate but this does not contradict Kramer’s theorem because the number of electrons is

even.

4.5 SPIN-ORBIT INTERACTION IN ATOMS

The absorption and emission spectra of hydrogen atoms and alkali-metal atoms reveal spectral lines that are closely
spaced pairs of lines, called doublets. This splitting is called fine-structure splitting. It is due to spin-orbit interaction in
the excited states of the atoms between the electronic spin and the electronic angular momentum of the single unpaired
electron in the highest occupied orbital.

Before we model the spin-orbit interaction, we present some facts about the spin-orbit splitting of hydrogen and
alkali atoms. Let us first consider the 17.2 cm™! splitting of the 589 nm line of Na resulting from the 3p — 3s optical
transition, that arises due to the energy difference of the 3p2P3 ,2 and 3p 2p; /2 excited states.® Alkali spectra consist
of three distinct series, the principal series, the sharp series and the diffuse series. The strongest lines are those in the
principal series arising from np 2P, ,2 and np 2p; /2 transitions to the ground 28, /2 state. The splittings in this series
diminish with increasing n toward the np — 3s series limit as # — oo in all the alkali. The splitting between the np 2P, 2
and np2P;3 /2 states of Nais 5.6, 2.5 and 1.3 cm™! for n = 4, 5 and 6 respectively. The spin-orbit splitting increases with
increasing nuclear charge in the alkalis. The weaker sharp and diffuse series are also readily observed. The transitions
from ns 2, /2 states to the first excited 2p state form the sharp series and the transition from nd 2Ds /2,3/2 states to the
first excited 2P state form the diffuse series. These series converge to a common limit as n — oco. The splitting between

6 We are using standard atomic term symbol notation here. The 3p indicates an atomic orbital with n = 3 and [ = 1, and in the term symbol 25t1L;, the
superscript > indicates the total spin degeneracy, so 25 + 1 = 2 corresponds to a doublet state, the P indicates the total electronic orbital momentum,
L =1, and the subscript indicates the total electronic angular momentum J, which can be 3/2 or 1/2 here. See Sec. 10.3 for more on this notation.
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the 3d 2D5/2 and 3d 2D3/2 states of Na is only 0.1 cm~l. @ , (b)
The diffuse series have an additional close satellite line to 2£ WZf iDS/Z—‘,‘—
the red of the doublet, i.e., the red component of the doublet 12 L D3 o
is actually two lines, thereby causing their diffuse appear- H L
ance due to the splitting of the nd 2Ds /2 and nd 2Ds /2 states. } | | U
Figure 4.4 schematically shows the reason for the diffuse | | 2Py Lol
nature of the spectral lines originating from 2D — 2P tran- 25, ! P, !
sitions [in Fig. 4.4(b)], and for comparison, simple doublet
principal transitions 2p — 28 [in Fig. 4.4(a)]. B | P |

The Hamiltonian for the coupling of the electron spin D v b v

with an external magnetic field is H = —p, - H [see
Eq. (4.46)]. In th? .rest frame of. an elec.tron in orbit around and spectra. (a) Simple doublet in the 2P —» 28 principal
a nucleus, an additional magnetic field is present due to the transitions. (b) Compound doublet in the 2D — 2P
electric field E due to the charge of the proton in its rest diffuse transitions. Reproduced with permission from
frame (i.e., E = —VV(r), where the electrical potential of Wiley from Ref. [18], Fig. 6.2, p. 322.

the nucleus is V(r) =Ze/r, so E:Zer/rS). This electric

field is Lorentz transformed into a magnetic field in the electron’s rest frame (Ref. [24], Chapter 24). The magnetic
field Hyqq in the moving frame of the electron is given by

FIG 4.4 Comparison of the principal and diffuse series transitions

Hy=—~xE=-L xE (4.67)
C

mc

That is, the magnetic field that results in the electron’s rest frame from the transformed static electric field is given by
Eq. (4.67). Using this magnetic field in the expression H = —pu, - H, we obtain the spin—orbit interaction Hamiltonian
except of a factor of 1/2. The correct Hamiltonian is obtained by substituting the magnetic field in Eq. (4.67) into the
expression

Hso = —pt; - Haga/2. (4.68)

The reason for the additional factor of 1/2 was first explained by L. H. Thomas in 1926, and therefore, the precession
of an electron spin in the magnetic field caused by the moving nucleus is called Thomas precession. The factor of 1/2 is
due to the fact that the rest frame of the electron is not an inertial frame, hence, the Hamiltonian needs to be corrected to
account for the fact that the electron is in an accelerating frame. An electric field with a component perpendicular to the
electron velocity causes an additional acceleration of the electron perpendicular to its instantaneous velocity, leading to
a curved electron trajectory so the electron moves in a rotating frame of reference, and this provides additional electron
precession, so the net precession is half the naive result (see Ref. [34] for a classical derivation of the Thomas precession
factor of 1/2). In any case, the correct Hamiltonian is also obtained directly from the Dirac equation. After substituting
(4.67) into (4.68) and using E(r) = Zer/r>, we obtain:

H. P @er/P))2 ze hoy (4.69)
=, — X (Zer/r’) /2= ~0 - .
so=Hs " e 2m2c2r3 2
where we used u, = —gsup(S/h) ~ — nj—(h‘% and r x p = L. This spin—orbit Hamiltonian is often written in the form
L-S L-S
Hsozf(”)7, (Hso) nims = A 7, 4.70)

where £(r) = 2;‘32:;; is the spin—orbit coefficient of the electron (it has units of energy), and A = (§(r))n, is called
the spin—orbit coupling constant. It is easy to evaluate L - S by noting that the square of the total electronic angular
momentum, J=L 4+ S, contains the term L - S (see Problem 4.23). [This technique for evaluating a scalar product of

angular momentum vectors, such as L - S, will be employed again when we evaluate the hyperfine splitting in the next
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(a) Energies of 2P spin-orbit states (b) Magnetic field splitting of S-O states
Energy S-O State  Zeeman levels
Energy  S-O State (Multiplicity) P3p ___M=3

p @) P stat. A2 — u=ln

AL - 32 state { M=-3]

P state 0 (6) DA/ — %z _11/%2

DA/ =D Pip

Pip (2

FIG 4.5 (a) Spin-orbit splitting of a 2P state into 2P3 /2 and 2P] /2 states. (b) Zeeman splitting of the spin—orbit states.

section.] In order to find the spin—orbit splitting of two states, the difference of their spin—orbit energies must be taken, as
described in the next paragraph.

The magnitude of the spin—orbit coupling, (£ (r))nm, can be ascertained by noting that D m =23 ag 3 I+ DI+
1/2)1] for hydrogenic states [see Eq. (3.112e], where the Bohr radius ag = K2 /(me?), hence,

Z4a?(mc*a?)

A= = . 4.71
(&) nim n3(l+1)(l+1/2)l ( )

(mc*a?) is the atomic unit of energy (27.21 eV) and o &~ (1/137)2, so

Z4
Ax meV.
n(+ DI+ 1/2)1
Hence, the spin—orbit energy of level |n,j, [, s) is’
A

(Hso) njis = 5[](1 + D —=Id+1) —s@s+ DI 4.72)

The splitting of 2P states into 2P3 /2 and 2p, /2 spin—orbit states is given by

A (3 /(3 1/1
(Hsa)2py , —(Huo)2p, , = 5 {[5 (5 + 1) —1d+D -5 (5 + 1)]

R DN VO Rt (P | | BTy 2 =24 4.73
—[5(5+)—(+)—5(5+ )]}—5{[]—[—]}—5. (4.73)

Note that the average of the spin—orbit interaction over all spin-multiplet levels vanishes (see Fig. 4.5).

In the presence of an external magnetic field, the spin—orbit states split into 2j + 1 equally spaced levels with spacing
proportional to the magnetic field strength due to the Zeeman Hamiltonian (4.32). The details of the splitting are presented
in Sec. 7.3.1. Figure 4.5(a) shows the splitting of a 2P due to spin—orbit interaction, and Fig. 4.5(b) shows the Zeeman
splitting of these states.

Problem 4.22

Starting from the Zeeman Hamiltonian Hy, = —p, - H, derive Hy, = g;ﬁ‘ zz E - (p x o) for a moving electron in an
e
electric field.

7 1t is useful to compare this result with the energies in the footnote after Eq. (3.107).
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Hint: The effective H field felt by a moving electron is H = —v x E/c [or if we symmetrize,
H= %M(E x p — p x E)]. We should point out that a term, #V - E, should be added to E - (p x o) since it is of the

same order of magnitude. However, it does not involve ¢. This additional term is called the Darwin term; it
originates from a higher order term in the nonrelativistic reduction of the Dirac equation than those specified in
(4.43).

Problem 4.23

(a) Show that L -S=[J? — L% — 821/2, 50 (L - S)jis =1°[j(j + 1) — I(l + 1) — s(s + 1)1/2, where the total angular
momentum quantum number j is such that J 2— hzj( j+ 1). Hint: J2=(L+9S)>.

(b) Estimate the spin—orbit splitting of the 3p 2P3 /2 and 3p 2p, /2 states of Na. Compare your result with
the experimental value of 17.2 cm~! and consider possible reasons for the discrepancy.® Note that
1 eV ~ 8065 cm™!.

Problem 4.24

(a) Consider the 87Rb excited state . . . 4s23d'%4p05p 2P. (Only the single unpaired electron in the highest occupied
Sp orbital contributes to the angular momentum.) What are the possible values of the total electronic angular
momentum, J.

(b) Given the fine-structure splitting Hamiltonian, Hy, = AL - S/A2, with A = 4% THz for 8Rb, calculate the
spin—orbit energies of the J states you specified in part (a).

Answers: (a)J = 1/2,3/2.
() Eo() =5+ 1) =SS+ 1) = LIL+ D]=45J(j+ 1) —3/4 — 2]. So, E,(j=1/2) = —A = —43 THz,
E(j=3/2)=A/2=2% THz.

We have analyzed the spin—orbit coupling in hydrogen and in alkali atoms which have one electron in an unfilled
shell but delay consideration of spin—orbit coupling of multielectron atoms to Sec. 10.9. In multielectron systems, each
electron can interact with the magnetic fields generated by other moving charged particles. Hence, in Sec. 10.9, sums of
spin—orbit Hamiltonians, each of the form given in Eq. (4.70), will contribute to the spin—orbit energy of a multielectron
atom. Spin-orbit coupling plays important roles also in other systems, including molecular systems, nuclei, and solid-
state systems. In nuclei, spin—orbit coupling is responsible for the shell structure of nuclei where the excitation energies
of medium and heavy nuclei display a beautiful pattern of magic numbers. Spin-orbit coupling in solid-state physics leads
to a number of important effects including mixing of valence and conduction bands and heavy holes in semiconductors,
the Anderson transition in two dimensions, topological insulators, weak anti-localization and spin relaxation, etc. These
topics will be discussed in Chapters 9 and 13.

4.6 HYPERFINE INTERACTION

Examination of the absorption spectra of the alkali atoms under high resolution shows further structure (additional split-
tings) of spin—orbit lines due to the interaction of the spin of the outer electron with the nuclear spin. Only if the nuclear
spin is nonzero is there a splitting. It is much smaller than the fine-structure splitting of states with nonvanishing L
due to spin—orbit interactions. The interaction of the spin of electrons with the spin of the nucleus of the atom is called
the hyperfine interaction and the resultant splitting is called hyperfine splitting. For example, let us consider 2>Na. The

“ The reader is invited to read Sec. 71 of Ref. [2] entitled “Wave functions of the outer electrons near the nucleus”.
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nuclear spin of BNais I = 3/2, so the total angular momentum, F, of the 3s 281/2 statecanbe F = |J +1|,...,|J — I,
ie., F = 1or F = 2. The 3s 281/2 F = 1 and F = 2 states are split by 1712 MHz. As another example, the 21-cm
(1420 MHz) hydrogen line that is used so often to learn about the structure of the galaxy and of the universe is due to the
hyperfine splitting of the 1s Sy, F = 0 and F = 1 states.

Consider the interaction of two magnetic moments. A magnetic moment generates a magnetic field. The vector poten-
tial A(r) at space point r due to a magnetic moment g located at r =0 is

A(r) = [ZO] wx (=Vri = [%S] X/, @.74)

so the resulting magnetic field H(r) =V x A(r) is [23, 34]

8 3r(r-p) —r?
Hm =[] {u—é(rw W} 4.75)
4 3 r
The delta function term on the RHS of (4.75) arises because VZr—! = —478(r), which gives rise to the Fermi contact

hyperfine interaction (see below). The factor [ff—no], where 1o =4 x 107 N A~2 is the permeability of free space,
present in SI units but absent in Gaussian units [the square parenthesis is a reminder of its necessity in SI units]. The
magnetic Hamiltonian of two interacting magnetic moments, g and g,, that are not at the same position is given by
Hmag = —py - Hy, s0

o rH07 (3 1) (Mg T) = (B - m)P
Hinag = —[ 22| ( ) . (4.76)

I

Figure 4.6 shows four different configurations of dipole moments that are the same distance away from one another. The
lowest energy configuration is in (a), the next lowest is (b), then comes (c), and the highest is (d).

Problem 4.25

Given two spin-1/2 particles in states 'Q §> calculate

5[

Answer: S - [

1.4)] Note that S7 = + 85, 50 83 =83 + 83 + 28, - 5.

p3)[34)] =772 ]33)[ 3. 3]

Problem 4.26

Calculate the energies of the four dipole moment configurations of f; and ft, shown in Fig. 4.6, with
;1] = 2| = p and relative coordinate vector r of the same length in all configurations.

Problem 4.27

What is the form of the Hamiltonian in (4.76) if the magnetic moments are located at ry and r»?
Answer: Letr — r, —rj in (4.76).

(@) (® © (d)

* * * * <o o> FIG 4.6 Four configurations of two dipole
moments, in order of increasing energy.
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In considering the hyperfine interaction Hamiltonian Hne= — . -Hy, we recall that electrons in / = 0 states have finite
probability of being located at the nucleus, so the delta function term in the Hamiltonian (4.75) contributes. Moreover, for
=0 states, the expectation value of the 1/ terms vanishes. For aribtrary /, the hyperfine Hamiltonian Hps = — e - Hy
coupling the electron magnetic moment with the magnetic field generated by the nuclear spin is

4.77)

) (.2
th(l‘)Z[ 38 d-r)—(S-Dr :|}

(S-Ds(r) + [ 2
,

Mo ] (2pB) (8N 1N) {8l
4 n? 3

The delta function term on the RHS of Eq. (4.77) is called the Fermi contact term, named after Enrico Fermi who first
used it to calculate hyperfine splittings in 1930. Its expectation value is nonvanishing only for s-wave (I = 0) electronic
states since only these states have finite density at the origin. The order of magnitude of the expectation value of the
dipole—dipole 1/r° hyperfine interaction term for states with / # 0 is

2
m e m
— 7302 = 2 73a%m, .
M," " a M,

This is smaller than the expectation value of the fine-structure interaction (which also is proportional to 1/r3) by a factor
of me/(ZMp), i.e., by at least a factor of 1000. The contact term yields the following expression for the hyperfine energy
of s-wave (I = 0) electronic states:

m
(Huf)n1=0,s j=s.f = [E]

(Qup)(gnun) 8w

253D [¥ni=0.m=0(0)]*. (4.78)

In Problem 4.28, you will calculate S - I and find an expression for |, 1=0,,=0(0) |2 for hydrogenic atoms. Then you can
calculate (Hpf)p,1=0,s,j=s, and obtain a general expression for the splitting between f states with /=0.

Problem 4.28

(a) Calculate (S - I). Hint: Define F =S + I, and square both sides of this equation.

(b) Determine an expression for [, 1—0,,=0(0) 2 for hydrogenic atoms.

(c) Write out the Hamiltonian that couples the electron orbital magnetic moment with the magnetic field generated
by the nuclear spin, —u; - Hy, in terms of I and L.

(d) Why is there no contact term in the Hamiltonian of (c).

Answers: (a) (S-D) =R [FF+1) =SS+ 1) — I + 1)]/2.
(b) Using (3.108) and (3.109), ¥,,.0,0(0)=(Z/ag)>/* %L}Ll (O)ﬁ, where L! | (0)=n, hence

[Yni=om=0(0)1> = Z3/(main?).
(¢) Hie(r) = [£2] &n)enin) [3(L<r>(l-r)—(L-I)r2]
T .

72 o

Problem 4.29

(a) The nuclear spin of the 3’Rb atom is / =3/2. What are the possible values of the total atomic angular
momentum, F, of the .. .4s23d104p65s g ground state.
(b) Find energies of the 3’Rb ground-state hyperfine levels given the hyperfine Hamiltonian Hys = B%, where

B=3.4 GHz.

Answers: (a) F=1,2.
(b) Eng(F)=8[F(F+ 1) = S(S+ 1) — I + D] = 8[F(F + 1) — 3/4 — 15/4]. So, Exe(F = 1) = —1.25B = —4.25
GHz, Ene(F = 2) =0.75B =2.55 GHz.
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Figure 4.8 shows the fine and
hyperfine structure of 87Rb. The
hyperfine splitting of the ground-
state and the excited-state fine and
hyperfine splitting are not to scale.
The fine-structure splitting of the
excited state is much bigger than
the ground-state hyperfine splitting,
which in turn is much bigger than
the excited-state hyperfine split-
tings.

Upon applying Eq. (4.78) to
hydrogen, one finds that the split-
ting of the F =1 and F =0 hydro-
gen levels of the ground state is
1420 MHz (5.87 x 107¢ eV) cor-
responding to an emission wave-
length of 21 cm. See Fig. 4.7 for
a description of the F 1 and
F = 0 states participating in this
transition. This line has been exten-
sively used in astrophysical studies
to determine relative velocities of
different regions within our Milky
Way galaxy, as well as to deter-
mine the relative velocities of other

F =1 (excited) state

Magnet Magnetic .
Analogy Moments  Spins

A 3}4 §I=S
T,

Se,
I

Rl
Ls=1/2,mg=1/2

=172, mp=172)

Magnet Magnetic
Analogy Moments

—
21 cm hyperfine

transition

Electron Magnetic Moment, g, = -
Proton Magnetic Moment, Hp= 5.58 (eh/2M1,c) (Sp/h)

181

F = 0 (ground) state

Spins

il‘ei Se

S

v
S

1=1/2,mp =172

! 4
15=1/2, mg=-1/2)

2 (eh/2mec) (Se/h)

FIG 4.7 Hyperfine F =1 and F =0 states of the s 2S] /2 ground electronic state of hydrogen
and a magnet analogy to explain why the F =0 is the ground state. The spins and
magnetic moments of the electron and proton are shown schematically in both F =1
and F = 0 states. The magnetic moments are not drawn to scale; the magnetic moment
of the proton is smaller than that of the electron by a factor of about 1000. The F =1
state depicted here is the stretched state with Mg = 1. If no external magnetic field is
present, the three F =1 states (with Mg = 1,0, —1) are degenerate in energy. The
F =0 state is lower in energy than the F' = 1 states by 1420 MHz. Emission from the
F=1 — F=0yields a photon with 21-cm wavelength. Reproduced with permission
from Wiley from Ref. [18], Fig. 1.2, p. 13.

galaxies from ours, via the Doppler shift of the line. The hydrogen maser (Microwave Amplification by Stimulated
Emission of Radiation) operating on this transition is also used to check the variability of the lunar and earth secular
acceleration using satellite data. For additional discussion of hyperfine interactions, see, e.g., Bethe and Salpeter [4].

4.6.1 ELECTRIC QUADRUPOLE

HYPERFINE INTERACTION
Nuclei with nuclear spin greater than 1/2 can
have an electric quadrupole moment, i.e.,
Q= [drp@®r*Yy,, m = —2,...,2, where

o is the charge distribution of the nucleus [see
Eq. (3.199)], in addition to having magnetic dipole
moment. Only nuclei (or particles) with I > 1/2
possess quadrupole moments (see Problem 3.34).
The quadrupole moment of a nucleus interacts with
the quadrupole moment of the electronic charge
distribution [see Eq. (3.198)] and this results in an
additional contribution to the atomic energy. Such
couplings are also called hyperfine interactions. If
the total electron spin angular momentum vanishes,
the main hyperfine splitting of S=0 electronic
states arises from the quadrupole interaction of the
nucleus with the electrons. Tables of the electric
quadrupole moments of selected nuclei canbe found

| PN F=3
'266 MHz F=2
5P, T T36 MHz F=1
' T 2MHz F=
7 THz
1 o
3P 816 MHz
12 v =1
384 THz
377 THz
v F=2
58 ., 6.8 GHz
v F=1

FIG 4.8 Fine and hyperfine structure of 87Rb, which has a nuclear spin of

I=3/2. The energy level spacings are not to scale.
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on the web, and contributions to NMR spectroscopy due to electric quadrupole moments have been carefully studied.
We shall not pause here to study such effects in detail.

4.6.2 ZEEMAN SPLITTING OF
HYPERFINE STATES

In the presence of an external magnetic field H, the H Ground State Zeeman Splitting }m -1
hyperfine components with F =1 split into three s
Zeeman sublevels with M =0, 1. The F =0 state 201

is not split, but as we shall see, its energy changes 1:0_

at sufficiently large magnetic field strengths, i.e., at 00 T

field strengths where the Zeeman energy of the elec-
tronic spin moment in the external magnetic field,
—u, - H, is comparable to or larger than the interac- =
tion energy between nuclear magnetic moment and -0 M= i m=-1/2
electron magnetic moment. At very large magnetic ! ’
fields, when —pu, - H is much larger than the hyper- 12
fine energy, the states with m; = +1/2 having Zee- uoB (GHz) B=1000 Gauss
man energy —gsuoHmy are split by the hyperfine

coupling. This uncoupling of angular momentum by ~ FIG 4.9  Zeeman splitting of the ground state of hydrogen as a function of
the magnetic field at large magnetic field strengths is magnetic induction field strength.

called the Paschen-Back regime, or the strong field

AEh f=142O MHz

Energy (arb. units)

PSPPI EFEFET BT I I I I -
regime (see the large field regime in Figs 4.9 and 3.0 2’Na Ground State Zeeman Splitting :AA//IIF:_lz
4.10). For large magnetic fields, the Hamiltonian for 204 Faf=o " =1/2
1= 0 states, . EAr=1
1.0 o
wo1 Qup)(gnin) 8 2 S -
H= [ | T S Wn=on=o O (S - ) 8 00 :
— (ms+ py) -H, @79 5107 3
= ] :MF=—2
can be diagonalized in the |s,myg)|l,my) basis to -2.04 s
obtain the eigenenergies. The eigenenergies as a ] FM =0
B0 M =1

function of magpetl.c field strengthzz;)re sl?owp for the 0 20 40 60 80 100 120 140
hydrogen atom in Fig. 4.9 and for ~°Na in Fig. 4.10. B (mT)

For hydrogen, I=1/2, so ground electronic state

contains F =0 and F = 1 states, whereas for 22Na, FIG 4.10 Zeeman splitting of the 28, /2 ground state of 23Na versus

I=3/2 and the ground state contains F=1 and magnetic induction field strength. Reproduced with permission
F =7 states from Wiley, from Band, Light and Matter, Fig. 6.5, p. 336.

el

Problem 4.30

(a) Given your results in Problem 4.14, what is the Zeeman
energy of a ground-state hydrogen atom in the state 28 /2 |F=1,MFp = 1) state in a magnetic field of 0.1
Tesla (for the purpose of this question, neglect the all internal energies and only consider the Zeeman energy).
(b) Set up and solve the hyperfine plus Zeeman eigenvalue problem for the F = 0, 1 hydrogen ground electronic
states in the |F, MF) basis (which can be formed using the |s, m;)|I, m;) states) by constructing the 4 x4
Hamiltonian matrix for the sum of the Zeeman and hyperfine interactions and calculate the eigenvalues as a
function of magnetic field shown in Fig. 4.9.
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Answers: (2) Ep— 1 m; =1 = (Wp=1mp=1] — (g + ) - HIWp— 1, —1) = 1.39962 GHz + (—2.126)
MHz ~ 1.3975 GHz. (b) Letting us = g.itp=—gup, and writing the Hamiltonian
H = (J/M*)S 1) — B(usS; + wl) in the |[F,Mp) = |1,1),]1,—1),]1,0),10,0) basis,

J/4 — (us + pun)B 0 0 0
o 0 J/4+ (us + w)B 0 0
0 0 J/4  (us —pnB
0 0 (us —upB  —=3J/4

Now diagonalize the 2x2 matrix.

4.7 SPIN-DIPOLAR INTERACTIONS

The interaction of two magnetic dipole moments, | and p,, at r| and r is given by —u, - Hy (r), where r =r, —ry, and
the magnetic field H; (r) is given by Eq. (4.75). Hence, using (4.76), the spin-dipolar interaction potential is given by

po] Qup)*3(S1-1) (S2-1) =81 - Sor’
drl B2 r '
Note that we have not added the Fermi contact term [the first term on the RHS of Eq. (4.77)] here, but considered only the
long range part of the potential (if the particles are electrons, or are nuclei, the repulsive Coulomb potential will insure
that their wave function vanishes for zero distance between them).

It is of interest to calculate the spin-dipolar interaction energy of two spin 1/2 particles that are in a singlet and triplet
spin state given by

Ves(r) = —[ (4.80)

1
S=0,Ms=0)=— - 4.81
| s=0) NG AN = 1) (4.81)
and
1
| Mg = 0) NG D) + 1)) (4.82)

We can consider these particles to be electrons, but they can just as well be two spin 1/2 nuclei, or two spin 1/2 atoms. We
need to evaluate the matrix elements of this potential. To do so, we will use the expression S - Sy = [S%— (S% + S%)] /2=
[S2 — 3#%/2]/2. Hence,

3h2
St-Sa (M) =) = T DY =),

2

h

S-S (IMN) + 1)) = 7T UMY + 11D (4.83)

For simplicity, let us take the z-axis along the distance from one particle to the other. Then,

h2
S1-0)S2-0) (NN £ = —Zrz M) £ 1D - (4.84)
The matrix elements can now be easily evaluated. We find:
(§=0,Ms = 0|Vss(r)|S = 0,M5 = 0) =0, (4.85)
2 2
(S = 1. Ms = 0| Vss(r)|S = 1,Ms = 0) = [Z—O] Citn)” (4.86)
o4 r
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Thus, the spin-dipolar interaction energy of the singlet state vanishes and that of the triplet state [S=1,Ms = 0) is
repulsive and falls off as r—3.

Problem 4.31

(a) Calculate the spin-dipolar interaction energy for the triplet state |S = 1, Mg = 1) = |1)|1), where the z-axis is
taken along F.

(b) Explain the sign of the energy of the triplet state in part (a) and the triplet state |S = 1, Mg = 0) in Eq. (4.86).

(c) Find all the eigenvalues and eigenvectors of St - Ss.

Answers: (a) —[ff—#] (2;1,3)2%. (b) |1)171) is the lowest energy state, and |S = 1, Mg = 0) is an excited state. (c)

Eigenvalues are RS+ 1) —3 /21/2. See (4.83) for eigenvectors.

Problem 4.32

(a) Show that the operator Py = % + h%Sl - Sy = % + %01 - 0 exchanges (permutes) the spins of any spin wave
function involving the two spins 1 and 2, i.e., it is the permutation operator for spins.

(b) Show that the operator S = %(1 + Ppp) = % + hile -So = %(3 + 01 - 02) is a projection operator that projects
any two-electron spin state onto symmetric (“triplet”) states, in the sense that if S is applied to an antisymmetric
state such as |¥1)|¥2) — |¥2)|¥r1), it yields zero, and if applied to a symmetric state Y1) |v2) + [¥2)|¥1), it
yields the same state. We can therefore call the projection operator S by the name Pyiplet-

(c) Show that A= %(1 — Ppp) = % — hLle -S, = %(1 — 01 - 07) is a projector onto antisymmetric (“singlet”) states,
ie., AlY)[yn) = %(|1//1)|1//2) — [¥2)[¥1)). We can therefore call the projection operator A by the name Pgjpglet.

(d) Show that Pginglet + Prriplet = 1.

Comment: In Chapter 8, we shall use the symmetrization and antisymmetrization operators for two two-level
systems, S = %(1 + P1p) and A= %(1 — P12), respectively, where S + A =1, to properly symmetrize boson and
fermion wave functions.

Problem 4.33

(a) Express the projection operator P44+ = [11) (11| that projects onto the triplet state [1)[1) in terms of Pauli spin
matrices.
(b) Do the same for the triplet state || )|{ ).

Answers: Pyy = %(1 +0o)1(14+0)2,P ) = 411(1 —o0)1(1 —07)2.

The spin-dipolar Hamiltonian for a many-body spin system is given by the sum over all pairs of particles of the
Hamiltonian (4.80):

(4.87)

11107 @us)* =3 (Siry) (S -ry) —Si - Sjrj
[ 2 .

H=—2
2 L4x h2 rS

ij#i ij

Heisenberg Spin Hamiltonian

In the dipolar Hamiltonian (4.87), the energy depends on the relative orientation of the magnetic moments ;, t; and the
radius vectors r;; joining them. Consider atoms in a crystal lattice. When a pair of atoms are located at lattice points r;
and r;, we can form a scalar interaction of the form J(r;)S; - S;, where S; is the spin operator for the atom located at point
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r; and rjj = r; — r;. The physical origin of this interaction will be discussed in Chapter 9. It is not related to the dipolar
interaction, but, rather, to a combination of Coulomb repulsion between electrons and the Pauli exclusion principle. The
coefficient Jj;(r;) is called the exchange coupling or exchange integral. After integration over electron coordinates, the
resulting exchange coupling coefficients drop off rapidly (exponentially, not as 1/ r?j) with the distance r;; between atoms,
so often only nearest neighbor terms are kept. If J;; > 0, the interaction is called ferromagnetic, whereas if J;; <0, it is
called antiferromagnetic. A ferromagnetic interaction tends to align spins, whereas an antiferromagnetic interaction tends
to antialign them. For a lattice of magnetic atoms subject to a constant magnetic field, the Hamiltonian has the form,

H = —% Z]@/(l‘y’) S; - Sj — 8MUB Z H-S;. (4.88)
ij#i i
This is referred to as the Heisenberg spin Hamiltonian, which is often taken as the starting point for studying magnetic
phenomena in condensed matter physics. Moreover, often an anisotropic interaction is used to model ferromagnets, with
the z-component term S, ;S ;+1 having different strength, J; i+1- than the x and y-components; these are called anisotropic
Heisenberg spin Hamiltonians. More on the Heisenberg spin Hamiltonian is discussed in Chapter 9.
A simpler related model that can be easily solved in 1D is the so-called Ising model, named after Ernst Ising, uses
nearest neighbor terms in (4.88) and replaces the operators S; - S; by numbers S;S;, where S; and S; are taken to be either
+1 or —1, to obtain an expression for the energy

E=-1)_SS;. (4.89)
()

Here (i,j) indicates all nearest neighbor pairs. Such models have been extensively studied; the 1D model was solved by
Ising in 1925 and the 2D square-lattice version was solved by Lars Onsager in 1944. We shall not pause to consider such
problems here.

More general spin Hamiltonians that describe spin degrees of freedom in molecules and in solids can contain a large
number of terms, representing the Zeeman interaction of the magnetic moments of the electrons and the nuclei with an
external field, fine-structure level splitting due to indirect effects of the crystal field in solids, hyperfine structure due to
the presence of nuclear magnetic dipole, and electric quadruple moments in the central ion or ligand ions in a solid [41].

Problem 4.34
(a) Show that (4.88) with H= 0 can be written using (3.176) as
1
H= 3 ZJij(rij) (S+1,i8—1; + S—1,iS+1, — S0,:50,)- (4.90)
i
(b) Rewrite (4.90) in terms of S and S_ (recall their distinction from S; and S_1).

1 1
Answer: H = —— > Jij(ry) [§(s+,,»s_ j+S_iS+j) + So.So J] : (4.91)
ij#i

4.8 INTRODUCTION TO MAGNETIC RESONANCE

Magnetic resonance phenomena involve the absorption or emission of electromagnetic radiation by electrons or atomic
nuclei in response to the application of magnetic fields. Magnetic resonance phenomena include nuclear magnetic reso-
nance (NMR) as well as electron spin resonance (ESR), which is sometimes also called electron paramagnetic resonance
(EPR). Electron magnetic resonance was first observed by Y. K. Zavoisky (sometimes spelled Zavoysky) in experiments
on salts of the iron group of elements. Electron magnetic resonance (EMR) occurs only in elements with unfilled elec-
tronic shells (i.e., unpaired electron spin states). NMR was invented in 1946 by Edward Purcell and Felix Bloch and their
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colleagues. It has many important applications such as molecular structure determination, dynamical studies both in the
liquid and solid state, and magnetic resonance imaging.

At the simplest level, magnetic resonance phenomena can be understood in terms of a simple model with spins that
interact with an effective static magnetic field comprised of an external magnetic field together with the internal magnetic
field due to the presence of other nearby spins, and a radio-frequency (rf) electromagnetic field which can cause transitions
between states with different magnetic quantum numbers. In the presence of a static magnetic field, a single spin 1/2
system is split into two energies, as shown in Fig. 4.2 which shows the Zeeman energy splitting, AEz; = gyunHo, as
a function of magnetic field strength. In nuclear magnetic resonance experiments the external static and the rf fields are
used to control the spin degrees of freedom of the nuclei in atoms, molecules and condensed phase materials, whereas in
ESR experiments, electron spins are controlled. The Zeeman Hamiltonian for a single spin in the presence of a magnetic
field is H = —u - H(r), where H(¢) is the time-dependent magnetic field due to a static field along the z-axis and a rf
field along the x-axis, H(f) = Hyz + H| cos(w?)X, but sometimes (particularly in NMR imaging of humans) a circularly
polarized rf field of the form H(r) = Hyz+ H; {cos(wi)X+sin(w?)y} is used. The couplings between the spins in a material
should also be incoprorated into the model of magnetic resonance phenomena, for these couplings can give rise to shifts,
splittings, broadening and decoherence of the transitions that are studied. The spin-dipolar coupling Hamiltonian given
by (4.87) could be used for this purpose. But the simplest approach is simply to add a contribution to the magnetic field
felt by a single spin due to the other spins that are nearby. In liquids with low viscosity, spin-dipolar interactions are
rapidly averaged to zero because the directions f;; change rapidly as a function of time and the average of the spin-dipolar
Hamiltonian goes to zero as the averaging becomes rapid compared to the dipolar coupling energy scale. Nevertheless,
the fluctuations due to these interactions broaden the observed 1f transitions and, if the directions ;; don’t strictly average
to zero, slightly shift them as well. After excitation by an rf pulse, the spins, in turn, produce an rf signal, i.e., a time-
dependent magnetization of the sample produces an rf field, which can be measured and Fourier transformed to obtain
the frequency spectrum of the sample. The peaks in the spectrum, their splittings and their widths are signatures of the
spin states and their environment.

The NMR spectrum of the nuclei
with spin 1/2 that are commonly stud-
ied in NMR experiments, i.e., the spin AE7 = hv where v = gyuyHo/h

1/2 nuclei 'H, 13C, N, 1F, 3P, in
’ k ] k] ’ B - ] T
a constant static homogeneous mag-

13C 31p 9F 14
netic field of 1 T is proportional to | | | |
the g-factor of the nuclei, gy, and ‘ ! ! U
shown in Fig. 4.11. These spectral 0 107 172 v (MHz) 40427

peaks are nominally at frequencies

corresponding to the Zeeman split- FIG 4.11 Zeeman energy splittings, AEz = gy unHp, of the spin 1/2 nuclei g, Bc, 14N,

ting AEz of these nuclei divided by 19E 31p in a static magnetic induction field of Bg =1 T (the splittings are linear
Planck’s constant, v=AEz/h. The with By, so simply multiply the splitting shown here by the value of By in Tesla
actual location of the peak frequen- to obtain the splittings for arbitrary B(). The Landé g-factors of these nuclei are
cies of different NMR resonance sig- gp =35.585, 819p) = 5.2546, gpip = 2.2610, and g3 = 1.4044 respectively.

nals, Vexpt = AEz/h=gnunHocal/h,

depend on the local static magnetic field at the location of the nuclei, Hjoca, Which are the sum of the external mag-
netic field strength Hy and the internal induced magnetic field at the position of the nucleus in question resulting from
electron motion and the electron magnetic moments, Hiocal = Ho + Hinduced. 1.€., the resonance frequencies vexpr depend
on the environment of the nuclei. The spectrum is also influenced by quadrupole field strengths at the location of the
nucleus. Although the resonance signals of, say protons, at specific locations in different molecules are distinct and well
separated, an unambiguous frequency often cannot be directly assigned. Therefore, one often adds a standard com-
pound to the sample under study, and this compound acts as a well-defined reference signal. This added reference
sample should not interfere with the resonances observed for the molecules being studied (i.e., it should be an inert
material).
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4.8.1 THE ROTATING-WAVE APPROXIMATION

Let us consider the Zeeman Hamiltonian (4.32) for an NMR experiment with a static and an rf magnetic field, i.e.,
H = —p- (Hyz+ H| cos(w?)X), or, more specifically, for a spin 1/2 nucleus, H = —gu % - (HoZ+ Hy cos(w)X). In matrix
form, this becomes

h A 2 cos(wt)
H@® = 2 (ZQ cos(wt) —A ’ 4.92)
where
giHo guH,
A= , Q= . 4.93
n 2h 493)
We can break the Hamiltonian up into a zero-order term and a first-order term in €2, where the first order term originates
from the rf field,
/A O 0 2Q cos(wt)
H(t)—HoJrHl(t)_5 [(0 _A) + <2QCOS(M) 0 . (4.94)
The first-order term in the interaction representation (see Sec. 2.7.1), is
Hia(0) = M0 (1)~ H0/M, (4.95)
while the zeroth-order term in the interaction representation is simply Ho ;(f) = Ho. After some algebra, we find,
s nQ 0 2 cos(wr)e A 496)
H=— , , .
L 2 \2cos(wt)e'd 0
and using cos(wf) = (¢’ + e¢~i®") /2, we can approximate (4.96) as
o 0 ei(w—A)t
Hirrwa() ~ 5 (e_i(w‘A)’ 0 ) 4.97)

where we have dropped the quickly oscillating terms eTH@+A) This approximation is called the rotating-wave approxi-

mation (RWA), and it is an excellent approximation when w & A, since then the non-RWA terms oscillate with frequency
w + A, and therefore average out. If we take w = A in (4.97), the Hamiltonian reduces to (7£2/2)oy. If, at time =0, we
start in the lowest energy state (see Fig. 4.2), the probability of being in the excited state (say state b) oscillates in time,
Py(t) = | sin(2t/2) 12, i.e., the rf field transfers population from one level to the other in a periodic fashion. In Sec. 6.1.1,
we will calculate the population transfer when w # A.

We can also calculate the magnetization, defined as the product of the density times the expectation value of the
magnetic moment, M =n(u), by solving the time-dependent Schrodinger equation for the wave function v (¢) in the
interaction representation, within the RWA and then forming (y ()| | (¢)). The solution to the Schrodinger equation is
often carried out using time-dependent perturbation theory, see Sec. 7.3.3. We shall not pause to do so here; instead we
determine the magnetization M(¢) in a different way in Sec. 4.8.2. The time-dependent magnetization turns out to satisfy
the Bloch equation,

oM

a5 = yM x H(r). (4.98)
where we have defined y = gyuy. Before dealing with the dynamics of the magnetization, we take up the subject of
how the magnetization decays with time due to interaction of the spins with other degrees of freedom, so as to come into
steady state at long timescales.
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4.8.2 SPIN RELAXATION AND THE BLOCH EQUATION

Introducing a resonant or near resonant rf pulse disturbs the spin system from thermal equilibrium. In due course, equi-
librium is restored by a process known as spin relaxation whereby an exchange of energy occurs between the spin system
and the surrounding thermal reservoir. The equilibrium, without the presence of the rf field, is characterized by a magnetic
polarization with magnetization My = Moz directed along the longitudinal magnetic field, Hy = HoZ. The process of
restoration to this equilibrium magnetization is called longitudinal relaxation. Phenomenologically, the equilibration can
be described as follows:

M ! (M, — My) (4.99)
dt - T, z 0’ )
whose solution is, M, () = M,(0) e T 4+ My [1 — e~ "/T1], where Ty is known as the longitudinal relaxation time and
M,(0) is the initial value of the z-component of the magnetization. One might think that the lifetime of the transverse
magnetization, M, and M), is characterized by the same relaxation time. But the relaxation time for spins to come into
thermal equilibrium among themselves, T>, known as the spin—spin relaxation time is often significantly shorter than 77,
and in general, 7, < T;. The phenomenological equations for the transverse relaxation are
dM, 1 am, |

= ——Mx’ —_— = ——M . 4.100
dt T> dt T> 7 ( )

_ _
which have solutions M, (f) =M(0)e ™2, M,(t)=M,(0)e ™. Combining Eqs (4.99) and (4.100) with the Bloch equa-
tions [see (4.40)] we obtain,

X

M, (M, — M)
T '

4.101
T ( )

M, =yM x H), — s My=V(MXH)y_%’ M, =yM x H); —

Calculations using the Bloch equations can be carried out using either a circularly polarized rf field in the x-y plane (in
addition to a dc field in the z-direction), H(f) = HoZ + H}{cos(wt)X + sin(wt)y}, or a linearly polarized rf field along the
x-axis, H(r) = HoZ+ H1 {cos(wh)X. For simplicity, we assume that the rf field strength is small, yH; < T, ! The rf mag-
netization is then linear in Hy. For the linearly polarized rf field, one must make a rotating wave approximation to solve
for the rf magnetization in closed form. For the circularly polarized rf field, one must go into a reference frame rotating
with the field. In both cases, one obtains the following expressions for the rf magnetization M (in the circularly polar-
ized case these are components in the rotating reference frome) (see Abragam, Principles of Nuclear Magnetism [42]):

I T RN B R (woT?)(wg — w)T>

1 = 10F Mix(w) = xo 15
] Dy Tz_log ) 1+ (0 — w)2T5
3 . woT2
— ] 1 C Miy(w) = yo———=Hi1. (4.102)
M = 1y X0 2 111
~0.54 y, L=l I+ (@ — 00?13
§~ . - We have defined the parameters wyg =y Hy, w1 =y Hj, and
o E E we take Mo = xoHo. Figure 4.12 shows M () and My (w)
§ 04 b plotted versus (w — wg)T>. The Lorentzian form of Mj,
= . M - is familiar from near-resonance absorption phenomena (see
. y - Fig. 7.7) and the dispersion lineshape of Mj, is famil-
20.53— S V. A — - iar from the frequency dependence of the refractive index.

The full width at half maximum in frequency space is
Aw =T, ! The rf magnetic susceptibility can be defined as
Xoo = Mix/Hy (and xyx = Mjy/H; in the circularly polar-
ized case). The rate of work done on the spins by the rf field,
FIG 4.12 My and My, versus frequency. dE/dt = —M(f) - H(7), depends on the relative phase of the

-10 -5 0 5 10
(aywo)T2
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magnetization M(¢) and the rf field H; (7). If the magnetic moments responsible for the magnetization flip from the low
energy state along the static magnetic field to the higher energy state in the opposite direction, energy is transferred from
the field to the spins (absorption). In the opposite case, the work is negative and energy is transferred from the spins to
the field (induced emission).

Problem 4.35
Do the algebra leading to the RWA solution of Eq. (4.101) for a linearly polarized rf field.

4.8.3 NUCLEAR SPIN HAMILTONIAN

The magnetic moments of electrons produce a magnetic field that affects nuclear Zeeman energies. When an external
magnetic field Hy is applied to a medium, the actual magnetic field felt by a nucleus is therefore not just the external
magnetic field Hy but the field produced by neighboring magnetic moments, including electron and nuclear magnetic
moments. We now consider the nuclear spin Hamiltonian and then consider the chemical shift experienced by nuclei in
materials.

An atomic nucleus in its ground state with odd atomic number A = Z + N composed of Z protons and N neutrons
has a nonzero spin I, and the corresponding nuclear magnetic moment is uy = gyunI. The nuclear g-factor is a property
of the nucleus and can be either positive or negative. The corresponding Zeeman energy is Ez = —hgyunI;H, where
H is the local magnetic field strength, and the essence of NMR spectroscopy involves measuring the energy difference
AE = hwo = hgyunH for I = 1/2. Furthermore, nuclei with / > 1/2 interact with electric fields via their quadrupole
moments. The internal magnetic fields which contribute to the local magnetic field at the location of a nuclei arises from
the magnetic moments of nearby electrons and nuclei. Imagine a lattice occupied by identical nuclei located at sites R;.
The nuclear spin Hamiltonian is formally written as,

Hy = —gnpn Y | Holjz +Hilljccos ot + Ly sinwt] | + Ho Y TiojHo
- —— -

J Zeeman rf field J
chemical shifts
+ Y LIk + D ILDpke + Y LQul;  + ) LAS. (4.103)
j<k j<k j J

—— ——— ———— ———
scalar couplings  dipolar interactions ~ Quadrupolar interactions  Knight shifts
In addition to the nuclear Zeeman term and the interaction of the nuclear spins with the rf field (whose polarization was
taken to rotate), the Hamiltonian Hy contains:

* The chemical shift arising from the interaction of the nuclear spin with the magnetic fields due to the electrons in the
surrounding molecular orbitals. Here oj is the shielding tensor (see next section).

* The scalar coupling, namely, the indirect interaction of the magnetic moments of neighboring nuclear spins with one
another through the electrons in the bonds between them.

* The dipolar coupling due to the direct interaction of the magnetic moments of neighboring nuclear spins.

* The quadrupolar interaction of a nuclear spin with / > 1/2 with the surrounding electric fields.

* The Knight/paramagnetic shift is similar to the chemical shift but is due to the conduction electrons in metals or
unpaired electrons in radicals.

4.8.4 CHEMICAL SHIFTS

In molecules or in condensed matter (liquids or solids), nuclei are surrounded by electron clouds and neighboring nuclei
that produce an internal magnetic field at the position of the nuclei, in addition to the applied external fields. These
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internal fields are characteristic of the local electron environment. The principal influence of the surrounding electrons
is to produce a magnetic shielding of the applied magnetic field. The effect of the internal magnetic field is to produce
what is known as chemical shifts in the NMR signals. In other words, the internal field results in a Larmor precession
frequency, wo = gnuunH, that is slightly shifted, because the local field H is no longer just the external magnetic field,
but contains contributions from the chemical environment of the nucleus. Hence, chemical shifts depend strongly on the
environment and are typically of order of a few parts per million (ppm) in 'H NMR, but several hundred ppm in '>*C NMR
and 3'P NMR. The chemical shift in ppm is given by § = 10° X (1tmeasured — Mreference )/ reference- The distribution of proton
and carbon chemical shifts associated with different functional groups is shown in Figs. 4.13(a) and (b) respectively. The
ranges of the chemical shifts are only approximate and may not encompass all compounds of a given class. For the
proton shifts, the ranges specified for OH and NH protons are wider than those for most CH protons. This is due to
hydrogen bonding variations at different sample concentrations. Figure 4.14 shows the NMR spectrum of the ethanol
molecule, CH3CH,OH, which shows three chemically distinct hydrogen atom sites. Note the “intensity ratios” of 3:2:1
(the relative areas under the spectral peaks) corresponding to the number of protons in the group yielding the spectral
peak. The additional splittings are due to spin—spin interactions with neighboring groups of protons (e.g., the methylene
peak is split into a quartet by strong spin—spin interaction with the three protons of the methyl group). The proton
in the OH group does not split the signals from the other groups (presumably because it is labile and hops around
rapidly between ethanol molecules). In general, if a nuclear spin is coupled to n equivalent spin 1/2 particles, its peak
is split into an (n + 1) multiplet with peak intensities within the multiplets proportional to the binomial coefficients (':),
r=0,1,...,n. For example, the methylene protons can be exposed to the magnetic fields arising from the three methyl
group protons that could have spin configuration |111), or the three configurations with two up-spins and one down-
spin, or the three configurations with two down-spins and one up-spin, or ||, | | ). Hence, the splitting into four peaks with
ratios 1:3:3:1.

Problem 4.36

Explain why it is possible to predict the proton NMR spectrum without considering the coupling of the two CH,
protons with each other.

Answer: The coupling between the two CH; protons may be ignored because they are magnetically equivalent (i.e.,
they are the same isotopic species, there is a molecular symmetry operation that exchanges the two protons, and they
have identical spin-dipolar couplings with all the other spins in the molecule). Hence, they both get shifted in
exactly the same way as a result of their interaction, and no splitting results. The three CH3 protons are also
magnetically equivalent.

In solids, the environment of nuclei is rotationally anisotropic. Hence, shielding effects of the electron cloud
around the nuclei have a tensorial character, reflecting the possibility that the field applied in one direction, say z,
can result in an induced field along some other axis, say x. Thus, the Zeeman spin Hamiltonian should be general-
ized to Hz = —gnunljOjiHy, where the tensor Oj; depends on the symmetry of environment of the nucleus in the
solid.

4.8.5 FOURIER TRANSFORM NMR

NMR signals are often weak and in many cases are not substantially larger than the noise generated by the NMR spec-
trometer. An improvement in the ratio of the NMR signal to noise can be obtained by signal averaging over many
experimental measurements, taking advantage of the fact that the noise contribution is random and therefore averages
out. With n repetitions of the experiment, the signal will increase by n, whereas the noise will increase only by /7, i.e.,
the signal to noise will increase as n'/2. However, this repetition of the experiment costs time.
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FIG 4.13 (a) Proton chemical shift ranges and (b) carbon chemical shift ranges for samples in CDCl3 solution. The § scale is relative to
tetramethylsilane [Si(CHz3)4] at 8 = 0. (Reproduced with permission from Prof. William Reusch from
http://www2.chemistry.msu.edu/faculty/reusch/VirtTxtJdml/Spectrpy/nmr/nmrl.htm
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FIG 4.14 NMR spectrum of ethanol. The parameter § is the fractional deviation of the chemical shift measured in parts per million from that

of tetramethylsilane. (Reproduced with permission from Prof. S. M. Blinder from

http://demonstrations.wolfram.com/NuclearMagneticResonanceSpectrumOfEthanol)
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A cw NMR experiment requiring 1 Hz resolution over a 1000 Hz spectral width can require 1000 s to complete the
measurement of the spectrum. However, such an experiment can be completed in 1 s with pulsed NMR. In pulsed NMR,
short pulses of rf radiation with central frequency in the middle of the desired NMR spectral range are used, i.e., short
pulses of temporal width 7, and carrier frequency w in the center of the desired range are applied to the sample. A
frequency bandwidth Aw roughly equal to the inverse of the pulse duration, Aw ~ ‘L'p_l, is thereby obtained. Applying
such a pulse to a set of nuclear spins simultaneously excites all the NMR transitions within the bandwidth Aw centered
about the central frequency w. Detailed treatment of Fourier transform NMR and such topics as magnetic resonance
imaging (1D, 2D, and 3D Fourier imaging), solid-state NMR, and spin-echo techniques are outside the scope of this
book. The interested reader is referred to Refs. [42].



Quantum Information

What is information? We understand this concept intuitively, but it is difficult to define rigorously. We could simply
define information as a message received and understood or as a collection of data from which conclusions may be
drawn. Information has an important role in physics, like energy and momentum, but until recently, its significance in
physics was only alluded to through the concept of entropy.

Information Theory deals with the quantification of information and the methods for its efficient encoding for trans-
mission and its detection and error correction due to transmission and reception problems. The new fields of Quantum
Information and Quantum Computation (which can be considered a subfield of quantum information) are still in their
infancy, and many outstanding questions remain. The central idea is to replace the classical bit, which can take on one of
the two values, 0 or 1, by a quantum two-level system, described in terms of two orthonormal state vectors, |0) and |1),
which span a two-dimensional Hilbert space containing all possible linear combinations, a|0) + b|1), with a,b € C and
lal? + |b|> = 1. A few of the many fundamental questions related to quantum information are: How does nature allow
or prevent information from being expressed, manipulated, and secured? How does quantum mechanics affect informa-
tion processing? For example, how do the uncertainty principle and the measurement collapse postulate affect quantum
information processing? For quantum computing, what types of problems would a quantum computer be most useful at
solving (in comparison with a classical computer)?

The study of information and computation using physics began with the analysis of the thermodynamic costs of ele-
mentary information processing by Landauer, Keyes, Bennett, and others during the 1960s and 1970s [43]. In the early
1980s, Benioff [44] and Feynman [45] started considering whether computation can be carried out on the scale of quan-
tum physics (i.e., atomic length and energy scales), or, equivalently, whether systems that behave quantum mechanically
can be used as information processing systems. Today, quantum information and quantum computation are thriving fields.
The promise of fast algorithms within quantum computation, together with the practical implementation of concepts in
quantum information and quantum cryptography, has stimulated widespread interest [46, 47]. The field of quantum infor-
mation holds promise for a number of important applications. A short list includes quantum computing, protecting data
from duplication (counterfeit protection), transmitting data from one party to another so that the data cannot be read by a
third party (key distribution/cryptography), transmitting data from one party to another so that the receiver can be assured
that the data was not corrupted during passage through the channel (authentication), transmitting data from one party to
a second party so that a third party can later confirm that the second party did not alter it and that it was produced by
the first party (digital signature), dividing data among n parties so that no n — 1 of them can reconstruct data, but all n
working together can (secret sharing), and quantum money. To be more specific, we mention two applications of quantum
information. The security of today’s most common cryptographic systems used in banking systems, web browsers, etc.
relies on the difficulty of factoring large numbers. The Shor quantum factorization algorithm [48] running on a quan-
tum computer would compromise these systems because it turns factorization from a “hard” problem to an “easy” one.
Another important application of a quantum computer is to simulate quantum systems [45]. Computational resources
required for simulating quantum systems on classical computers grow exponentially with their size. Simulating a quan-
tum system using another quantum system (or a quantum computer) should alleviate the necessity of using inefficient
classically based simulation.

The topics presented in this chapter are not ordinarily treated in quantum mechanics courses and textbooks. However,
the evergrowing importance of quantum information, its popularity, its breadth of concepts, and the growing research
activity in this area during the past decade require exposing quantum mechanics students to this field.

This chapter starts with a brief review of classical information theory in Sec. 5.1, including the basic notions of a Tur-
ing machine, Shannon entropy, computational gates, classical cryptography, and computational complexity (readers well
versed in the classical information theory can move directly to Sec. 5.2). Section 5.2 discusses the fundamental concepts
of quantum bits (qubits), entanglement, Bell states, GHZ states, Schmidt decomposition, and mixed quantum states. This
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is followed by discussions of quantum gates and quantum circuits, which are then employed to treat such topics as dense
coding, data compression, quantum teleportation, and quantum cryptography. Section 5.3 focuses on quantum computing.
Several quantum computing procedures are analyzed, including the Deutsch, Deutsch-Jozsa, Grover, quantum Fourier
transform, and Shor factorization algorithms. This section concludes with a discussion of quantum simulations. Decoher-
ence is a major problem for quantum information processing and quantum computing, and this is the subject of Sec. 5.4.
As with classical information processing and classical computing, error correction is an important issue for quantum
information and computing; quantum error correction is considered in Sec. 5.5. Experimental systems that are promis-
ing candidates for realizing quantum information and computing protocols are discussed in Sec. 5.6. Finally, Sec. 5.7
introduces the EPR paradox, and Sec. 5.8 considers Bell inequalities.

5.1 CLASSICAL COMPUTATION AND CLASSICAL INFORMATION

The English mathematician, logician, cryptanalyst, and computer scientist, Alan Turing (1912-1954) was one of the
founders of computer science. He built on the work of Charles Babbage (1791-1871), who conceived of most of the
essential elements of a modern computer. Turing improved Babbage’s computational engine to obtain what is now known
as the universal Turing machine. Turing’s machine was not meant to be a practical computing device but rather a concept
of how computation can be performed; it clarified exactly what a calculating machine might be capable of [49]. The
Turing machine is conceptually rich enough to address sophisticated mathematical questions, yet, is sufficiently simple
to be subject to detailed analysis.

Alonzo Church’s formulation of a computer, intertwined with Turing’s, form a basis for the formal theory of computa-
tion known as the Church—Turing principle. It states that a Turing machine provides a precise definition of an algorithm,
or methodological procedure, by which every function that would naturally be regarded as computable can be computed.
A universal Turing machine consists of a string of data in the form of bits (strings of Os and 1s), often called a “tape,” that
can be moved back and forth over an active element known as the read/write “head” that also possesses a property known
as “state,” and a “program” that is a set of instructions. The tape is the computer’s storage medium, which can be used
for input and output. The head can write either O or 1 on the tape at the position right underneath it. A set of instructions
is supplied before the calculation begins, controlling how the head should modify the active tape data and move it. At
each step of the calculation, the machine may modify the active tape data below the head to be O or 1, change the state of
the head to be one of the states ¢, ..., g, and then move the tape one unit to the left or right. The states ¢y, ..., g, of
the head include two special states, g; and g, called the starting state and the halting state. The head starts off in state g,
and the calculation ends if the head enters state gj;. The Turing machine is the paradigm for investigating computability
and many other concepts in computer science.

In 1948, Claude Elwood Shannon introduced a basic concept in digital communication, as used in computers, opti-
cal and magnetic storage media, and telecommunication systems, thereby laying the foundation for information theory.
Building on Turing’s ideas for a model computer that uses data in the form of Os and 1s, he proposed to convert any
kind of input data (pictures, sounds, text, etc.) into a string of bits (0 and 1) that could be sent along a wire. The amount
of transmitted information is quantified in terms of the amount of disorder (i.e., entropy) contained in the data. Optimal
communication of data is achieved by removing all redundancy (i.e., reaching the limit wherein the data stream is a com-
pletely random string of Os and 1s). In addition to revolutionizing the field of communications, his information theory
had a major effect on such diverse fields as genetics, computer science, code breaking, and neuroscience.

5.1.1 INFORMATION AND ENTROPY

It is important to quantify the amount of information in a message, for a variety of reasons. This can be carried out using
Shannon’s information theory. Before doing so, let us describe the format of messages that are to be sent. Consider a string
(or sequence) of n symbols (x1, x7,...,x,) that needs to be transferred from a sender to a receiver. These symbols could
be composed from the English alphabet or the ASCII (American Standard Code for Information Interchange) character
set, or it could be composed of bits that can take on the values 0 and 1. The length of the message, i.e., the number n
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of symbols in the sequence, may take any finite value (two extremes would be a two-letter word or the Encyclopedia
Britannica), but we will assume that » is very large. Of course, each symbol may appear many times in a message. The
number of different possible symbols, m, is a property of the alphabet. For example, m = 31 for ASCII and m = 2 for
bits. The probability of appearance of different symbols in a given message is usually not the same. In a message written
in English, the number of letters e is usually larger than the number of letters z. When the message is very large, we may
speak of the probability of appearance of each symbol. Thus, in an English message, the probabilities of the appearance
of the different letters are p,, pp, - . ., whereas in a message composed of bits, we have just pp and p;. The collection
of different symbols (x,x2,...,x,), together with their probabilities (p1,p2,...,pnm), defines a classical information
source. For example, if we assume that the information source contains bits 0 and 1 with probabilities pg = 0.6 and
p1 = 0.4, a string of 1000 bits is generated by sampling randomly from the source. Of the 1000 bits, about 600 bits
should be Os and about 400 should be 1s. The occurrence of a given symbol x; in a string (x1, X2, . . . , X,) with probability
p(x;) in a message is referred to as an event. Thus, the appearance of each symbol 1 in the string of 1000 bits introduced
above is an event that occurs with probability 0.4.

Once a message is generated, it can be transferred from sender to receiver, and it is often desired to compress the
message. Data compression is a fundamental problem in information theory. Is it possible to transfer an n symbol message
in a form that employs less than n symbols? For example, there is a great deal of redundancy in English that can be
exploited for the purpose of compression; using shorter bit strings to represent high-probability symbols can cut down the
length of a message. This problem was solved by Shannon [50], who quantified the amount of information in a message as
the minimum communication resources needed to convey the message. This minimum is given by the Shannon entropy,
which will be discussed later on in this section. Before formulating Shannon’s analysis in Sec. 5.1.3, we need to clarify
the notion of information content.

Information Content

There is a certain amount of information obtained by observing the occurrence of an event having probability p. The
information, denoted as i(p), should be defined in terms of the probability p. There are several desired properties (or
axioms) to be satisfied by i(p), listed below, together with their motivations.

1. i(p) = 0 = Information is a nonnegative quantity.

2. i(p=1)=0 = If an event has probability 1, there is no information gained in its occurrence.

3. For two independent events, e; and e», appearing with probability p; and p», respectively, i(p1,p2) = i(p1) +
i(p2) = the information gained from observing two independent events is the sum of the two pieces of information.

4. i(p) is a continuous and monotonic function of p (0 < p < 1).

Problem 5.1
Show that (1) i(p?) = 2i(p) and (2) i(p*) = ki(p).

From these properties, it is clear that we can take

i(p) = —log,p (choosing the basis b is a matter of convenience). (5.1

Information Source and Random Variables

From the point of view of information storage and information transfer, all messages of length n containing symbols
from the same source [specified by its m distinct symbols and m probabilities (x;,p;), i = 1,2,...,m] are equivalent;
they have the same Shannon entropy (to be defined below). Thus, from an information storage and information transfer
point of view, it is immaterial whether a message of length n is composed of well-formulated English text or a sequence
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generated by random sampling of ASCII symbols with the same probabilities p,, pp, . . . as they appear in a meaningful
English text.

By using this equivalence, a discrete information source is modeled as a set of independent identically distributed
(i.i.d.) random variables X1,X3,...,X,. A random variable X; can be sampled to yield a symbol x; with probability
p(x;). In other words, the symbol x; is sampled with probability p(x;) = p;. It is assumed that sampling of a symbol
is independent of the previously sampled symbols. This is not always true; think of the combination of the letters “th”
appearing in English. Nevertheless, we shall make this assumption. Generalizations to treat the case of correlations
between symbols have been developed, but we shall not consider them here. We then have a probability distribution that
characterizes the discrete source, P(X1, X3, ...,X,) = P(X),

PX) = {p1.p2...-»pmds pUillxj<id) =pa) =pi, Y _pi=1. (5.2)
i=1

The first equality gives the probability of the symbols, the second equality is a statement of independence of the prob-
abilities, and the third equality is a condition required for probabilities. A string of n symbols (x1,x2, X3, ..., X,) (usually
with n >> m) generated by (sampled from) the source forms a message.

5.1.2  SHANNON ENTROPY

Suppose we have a discrete information source that uses a set of m distinct symbols (x1,x2,...,x,) from which we
sample a string of symbols of length n >> m with probabilities (p1,p2,...,pm). The corresponding information content
is [i(p1),i(p2),...,i(pm)]. What is the average amount of information we get from each symbol in the string? If we
observe the symbol x;, we will obtain i( p;) = — log p; information. In a long string of n observations, we should expect
to see ~ np; occurrences of x;. Hence, for n independent observations, we expect that, on the average, we will get the
total information,

(Tiotal) = Z(np,)logpl (5.3)
i=1

Thus, the average information obtained per observed symbol is

(I = Imtal Zp, log pi. (54)

A useful way to think about the average information is in terms of an expectation value. Let us denote the set of infor-
mation contents belonging to a discrete source X as I(X) = {i(p1),i(p2),...,i(pm)} and refer to it as the information
content of the source. The expectation value E[I(X)] is the Shannon em‘ropy,I

HIP(X)] = E[I(X)] = Zp,logp,, Zp,—l (5.5)

Shannon formulated his theory for a source of two symbols (m = 2), x; = 0 and x, = 1 with probabilities p(x;) = p and
p(x2) = 1 — p, respectively. In this case, the Shannon entropy is

Hip. 1~ pl = —[plogs p + (1 = p) logo(1 — p)1. (5.6)

The Shannon entropy H versus p is plotted in Fig. 2.1 (where it is denoted by the symbol S).

! Note the similarity of Shannon entropy [Eq. (5.5)] and von Neumann entropy of a density matrix, S(p) = —Tr p log, p defined in Sec. 2.5.2. If we
take a density matrix of the form p =}, |$;)pi(¢;l, the entropy is given by S = — 3, p;log, p;, which is clearly related to Eq. (5.5).
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Problem 5.2

(a) Prove that H(p, 1 — p) < 1 and that equality holds only for p = 1/2.
(b) Prove that H(p, 1 — p) is a concave function of p.

Hint: Show that H” < 0.

By using the entropy concept, Shannon was able to obtain important results regarding information storage and transfer
and laid the foundations for contemporary information, coding, and communication theory. He developed a general model
for communication systems and a set of theoretical tools for analyzing such systems. The basic model consists of three
parts: a sender (or source), a channel, and a receiver. It also includes encoding and decoding elements and noise within the
channel. The problems of data compression and noisy channels (see Sec. 5.1.3 below) are then addressed. In particular, it
was shown that information contained in a string of n symbols (bits in this case) can be compressed to nR bits and still be
completely recovered. Here, 0 < H(X) < R < 1 (recall that H < 1 as proved in Problem 5.2). In this sense, we speak of
reliable compression scheme, and R is referred to as the compression rate. This quantity will be employed in Sec. 5.1.3,
where we formulate Shannon noiseless channel encoding theorem.

Although Shannon demonstrated the possibility of information compression, explicit methods for doing so were only
developed much later. Numerous methods have been developed [51] (Chapter 20), including the Huffinan coding method,
which is an entropy coding that is commonly used in final stages of compression, the arithmetic coding method, which
is a variable-length entropy encoding used in lossless data compression that encodes a message into a single number
f, 0 < f < 1, and the Lempel-Ziv algorithm, which is a variable-to-fixed length coding method that is used in the
“compress” utility in Unix operating systems and in GIF image format files.

Properties of Shannon Entropy
Some properties of Shannon entropy for the general case (not necessarily for a source of bits) are listed below.

1. The Shannon entropy H(X) is a continuous function of p;. If all p; are equal, p; = --, then H is maximal.

2. The Gibbs inequality:

m’

1
H(X) <logm,with equality iff p;=—,i=1,2,...,m. (5.7)
m
3. H is monotonically increasing with m:
Hy(p ) <H 11 1 -n 1 1 1 5.8)
m\P1,P2s -+ -sPm) = Hpy m’m"“’m = Mp41 m+1,m+1’~--,m+1 . .

4. The “closeness” of two probability distributions, P(X) and Q(X), of the same random variable X can be measured by
their relative entropy defined by

p(xi)
q(x;)

= —H[P(X)] — ) _ p(x) log, q(x;). (5.9)
i=1

HIPX) || Q(X)] = Zp(xz) log,

5. The relative entropy is nonnegative, H[P(X) || Q(X)] > 0, with equality only for P(X) = Q(X). This follows from
the inequality Inx = log, x/In2 < x — 1 for all positive x, with equality if and only if x = 1. Rearranging the last
inequality yields —log, x > (x — 1)/In 2, and applying this inequality gives

N e 1o, 960 g7
HIP(X) || Q(X)] = gp(xl)logz )_IHZZp(x,[ (x,->]_°' (5.10)

Equality results only if p(x;) = ¢(x;) for all i.
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6. For two different random variables, X and Y, the information content associated with their joint distribution P(X,Y)
is given by the joint entropy,

HIPX, V) = =) > plxi,y)) logy p(xi, ). (5.11)
i=1 j=1

The joint entropy measures the information content in the pair (X, Y).
7. The conditional entropy of X knowing Y is defined by

m n
PXi» )
HIP(X|Y)] = HIP(X,Y)] — HIQ()] = — Y ° )" p(x;, y)) logy ——=~. (5.12)
i=1 j=1 907)
The conditional entropy is a measure of the uncertainty of X, given that we know the value of Y.
8. The mutual information content of X and Y measures how much information X and Y have in common:
H[PX) : Q(V)] = HIPX)] + HIOQ(Y)] — H[P(X, Y)]. (5.13)

Problem 5.3

Prove that H(X) < logm and that equality holds if p; = 1/m (note that this includes an answer to Problem 5.2 as a
special case).

Guidance: Show that H(X) — logm = "I pilog ;1- < 0.

Problem 5.4
Prove the following relationships.

(a) H[P(X): Q(Y)] = H[P(X)] — H[P(X|Y)].

(b) H[P(X) : Q(Y)] = H[Q(Y) : P(X)].

(c) H[P(Y|X)] = 0.

(d) H[P(X) : Q()] < H[Q(Y)].

(e) H[P(X) : Q)] =H[QM)]if Y = f(X).

(f) H[P(Y|X)] < H[Q(Y)] and therefore H[P(X) : Q(Y)] > 0.

5.1.3 DATA COMPRESSION

Now, we are in a position to discuss data compression. What is the minimum number of bits needed to store or send
a given piece of information? This is a fundamental question in information theory. Data compression, sometimes also
called source coding in computer science, is the encoding of information using fewer bits than in an unencoded repre-
sentation of the information. Many computer users employ the zip file format to compress files; also used are Huffman
coding, arithmetic coding, and the Lempel-Ziv algorithm, which are mentioned in Sec. 5.1.1. Data compression of classi-
cal information relies on the Shannon quantification of the amount of information in a message [50] and Shannon entropy,
which specifies the minimum number of bits needed to convey a message. It is summarized in Shannon’s noiseless chan-
nel coding theorem, formulated below. With the advent of quantum information theory, data compression also becomes
relevant for quantum information. The analogous analysis for quantum information is encoded in Schumacher’s noiseless
channel coding theorem (see Sec. 5.2.6).
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Data Compression in Classical Information Theory

Let us consider a string of n bits generated by (sampled from) a classical information source. We want to compress
it into a string of nR bits (0 < R < 1) and send it to a receiver for decompression, so that we fully retrieve the initial
information. In the following, we assume an information source composed of two symbols (bits) with the random variable
X = (X1, X>) determining a bimodal distribution p(0) = p and p(1) = 1 — p. The idea of classical data compression is
to distinguish between n bit sequences that are highly probable (referred to as typical sequences) and n bit sequences that
are not likely (referred to as atypical sequences). For large n, an n bit sequence has ~ pn 0 bits and ~ (1 — p)n 1 bits,
and with the i.i.d. assumption on the source, the probability for the occurrence of this sequence is

n
p&ix, o x) = [ [p) = pP (1 = p)" 7P~ 27O, (5.14)

i=1

where H(X) given in Eq. (5.6) is the Shannon entropy for this bimodal distribution. According to Shannon’s theorem
(formulated below), H(X) is the lower bound on the compression rate R. Hence, for every number R such that
0 < H(X) < R < 1, information encoded in an n bit sequence can be reliably compressed into a sequence containing
nR < n bits and then sent to a receiver for decompression and full recovery. Since H(X) is smaller the farther p is from
1/2, the compression becomes more and more effective as p is farther from 1/2. The fact that we need only nR bits to
achieve reliable data compression shows that of 2" possible n bit sequences, there are at most 2" typical n bit sequences
(appearing with high probability) and the rest are atypical.

Example: Suppose we have a message encoded in a string of 10° bits that need to be communicated. We want to reduce
the number of bits in a message, n — nR. If p = 1/2, the two possible outcomes, 0 and 1, occur with equal probability,
and each outcome requires one bit of information to transmit. To send the entire sequence, we will require one million
bits. Now, suppose the distribution is non-uniform, p # (1 — p), and for specificity, suppose p(1) = 1/1000. In a string of
10° bits, there will be about 103 1s. Rather than transmitting the results {x,} of each bit, we can just transmit the numbers
Is; the rest of the numbers are 0’s. Each 1 has a position in the sequence: a number between 1 and 10°. Specifying a
single position requires about 20 bits, hence transmitting 103 20 bit numbers exhausts all information content using only
around 2 x 10* bits. This already gives R = 2 x 10%/10° = 0.02.

Further improvement is achieved by noting that instead of encoding the absolute positions of the 1s, we can just
specify the distance to the next 1, which takes fewer bits. On the average, the distance between two 1s will be around 10°
positions (only rarely will the distance exceed 4 x 10? positions. Numbers in the range 1 to 4,000 can be encoded in 12
bits. Hence, a sequence of one million bits containing about 1,000 1s can be transmitted in just 12,000 bits, on average.
This already gives R = 1.2 x 10*/10° = 0.012. Shannon theorem asserts that a lower bound for R is R > H(X) =
—0.00110g,(0.001) — 0.999 10g(0.999) = 0.0114.

Problem 5.5

Work out the same procedure for p = 1/200 and compare your result for R with the Shannon bound.

The methods and techniques for designing an efficient compression algorithm will not be presented here. We end this
section by presenting Shannon’s theorem without proof.

Shannon’s Noiseless Channel Coding Theorem. Given a classical information source characterized by m i.i.d. random
variables X = {X;} whose entropy is H(X). There exists a reliable compression scheme of rate R > H(X) for the
information source, whereas for R < H(X), any compression scheme will not be reliable.

Error Correction of Classical Information. In classical information processing, data is transferred as a sequence of
bits, but given a data stream that is to be sent, the data is often broken up into bytes; 1 byte = 8 bits. To alleviate errors,
data is sometimes repeated or resent more than once. Error correction and detection are of tremendous importance in
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maintaining data integrity across noisy channels. An often-used form of error correction involves setting a parity bit. The
number of 1 bits in a block of data is counted and then a “parity bit” after the data block is set or cleared if the number of
1 bits is odd or even. The parity bit can be used to detect an error in the transmitted data, and if detected, the data can be
re-sent. Error correction is also a central issue in quantum information processing (see Sec. 5.5).

5.1.4 CLASSICAL COMPUTERS AND GATES

Classical computers operate on bits of Os and 1s. A (classical) gate is an operator acting on a given ordered sequence of
k bits (b1, by, . . ., by) (the input), which results in an ordered sequence of [ bits (81, 82, . .. B1) (the output), with k > [,

G(b1,by,....by) = B1,B2,...81, bi=0,1, Bi=0,1. (5.15)

The simplest gate is the NOT gate. It is a single-bit operation (k = [ = 1) negating the input bit, i.e., Oj; — 1oy and
lin = Oout (see Problem 5.17 and Table 5.1). There are several gates with k = 2 and [ = 1. The AND gate with k = 2 and
[ = 1 has 14y only if both the inputs to the gate are 1;,; if neither input or only one input to the gate is 1i, a Ogye Output
results. An OR gate has 14, if one or both input bits are 1;,; if neither input is 1j,, a Oy output results. The NAND gate
has output Ogy only if both the inputs to the gate are 1j,; if one or both inputs are Oy, a 1oy output results. Therefore,
it is called a NAND gate, which stands for (NOT x AND). Clearly, it is equivalent to using an AND and then a NOT
gate. A NOR gate has output 1,y only if both the inputs to the gate are 0;,. Tables 5.1-5.5 show the truth table for these
gates.

Table 5.1 NOT gate.
Input Output
1
1 0
Table 5.2 AND gate. Table 5.3 OR gate.
Input; Input, Output Input; Input, Output
0 0 0 0 0 0
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 1
Table 5.4 NAND gate. Table 5.5 NOR gate.
Input; Input, Output Input; Input; Output
0 0 1 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 0 1 1 0
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Problem 5.6

Show that the gates described above can be written in terms of the notation of Eq. (5.15) and denoting addition and
multiplication modulo 2 by @ and ®, as follows:

NOT gate: G(b) =b P 1

AND gate: G(by,by) = b ® by

OR gate: G(b1,b3) = b; ® b, ® b; @ by

NAND gate: G(b1,b2) =b; @by ® 1

NOR gate: G(b1,b2) = b1 @ by ® b1 ® b.

The controlled-NOT or CNOT (sometimes writ-

b b b, b, ten as C-NOT or as XOR) gate flips the second bit
: : b b if and only if the first bit is 1j,. It is an example of
2 2 aclassical gate with k = [ = 2. Figure 5.1(a) shows
P b P a schematic circuit for a CNOT gate; the control bit
A 3 % . .
b, @ beb, ) bebpeb,  xis not affected, whereas the y bit undergoes NOT
a 3

provided the x bit is turned “on.” Table 5.6 shows

FIG 5.1 (a) Schematic circuit for a CNOT gate. The control bit x controls the CNOT gate. Formally, it is written as,

the output of bit y. (b) The Toffoli gate, where the first two bits
control the output of the third bit. CNOT gate: G(b1,b2) = b1,b1 @ by.  (5.16)

Within the group of gates with k = [ = 3, an important reversible multiple input—output logic gate is the Toffoli gate,
which is sometimes called the “controlled-controlled-not” gate, introduced by Tommaso Toffoli in 1980:

Toffoli gate: G(b1,b2,b3) = b1,by,b1 ® by ® b3. (5.17)

If the first two bits are set to 1j,, this gate flips the third bit [see Fig. 5.1(b)]. Table 5.7 shows the input and the output
of a Toffoli gate. Any reversible function can be computed on a classical computer as a concatenation of the Toffoli gate
on different inputs. For example, the logical AND gate on b; and b, can be obtained if we input b3 = 0; the last bit will
contain b1 @ by @ 0 = AND(by, by). To implement the NOT gate on the third bit, set the first two bits to be 1.

The gates discussed above are implemented in classical computers and classical information processors. Over the past
50 years, there has been amazing growth in the power of computers using silicon-based integrated circuits. The rate of
this progress is summarized in “Moore’s law,” attributed to Intel co-founder Gordon Moore, which states that the power
of computational devices has roughly doubled every 18 months or increased 10-fold every 5 years. Unfortunately, this
growth rate may not continue for much longer, as this increase in computing power requires a corresponding decrease
in the size of the transistors on the chip, and this shrinking process cannot continue indefinitely since the transistors will
eventually reach the atomic size scale. It has been estimated that this limit will be reached by about 2012, and further
progress will require a conceptually different approach.

Table 5.6 CNOT gate.

Input; Input, Output; Outputy

—_—— O O
S = = O

0
1
0
1

—_—— O O
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Table 5.7 Toffoli gate.
Input; Input, Inputs Output; Output) Outputj
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

5.1.5 CLASSICAL CRYPTOGRAPHY

Cryptography (in Greek, “crypto” means secret and “graphy” means writing) is the study of secret writing. The art and
science of cryptography is concerned with developing algorithms to conceal the context of a message from all except
the intended recipient(s) and/or verification of correctness of a message received by the recipient (i.e., authentication
of the message and the sender). Cryptography has a 4000-year history. The ancient Egyptians enciphered some of their
hieroglyphic writing, Julius Caesar used a replacement algorithm that is now named after him to encode messages (see
below), certain words in the Bible are enciphered, the Enigma Rotor machine was a class of cipher machines that was
heavily used to encipher and decipher messages during World War II, and so on. A relevant modern example of a secret
communication you may wish to carry out is giving your credit card number to a merchant over the internet to make a
purchase, hopefully without any malevolent third party intercepting your credit card number. The way this is done is to
use a cryptographic protocol. Nowadays, cryptography is the basis of many technological solutions to communications
security problems arising in modern computer and information storage/retrieval networks. Cryptanalysis or codebreaking
are the principles and methods of transforming an unintelligible message enciphered by the sender back into an intelligible
message without prior knowledge of the encoding algorithm used for concealment.

The sender typically starts off with plaintext, i.e., the original intelligible message that he wants to send to the recipients
in such a fashion that others will not be able to decipher the message should it fall into their hands. Therefore, the
sender creates ciphertext, which is the transformed message that is unintelligible, using a cipher, i.e., an algorithm for
transforming the original plaintext into ciphertext by transposition, substitution methods, etc. In doing so, the sender uses
a key, which is a critical part of the algorithm of the cipher, that is known only to the sender and receiver(s). The sender
is said to encipher or encode the plaintext into ciphertext using a cipher and a key. The receiver must decipher or decode
the ciphertext back into plaintext using a cipher and a key if he has to understand the message. If P denotes the plaintext,
C the ciphertext, and let the symbol 7 (K) denote the family of invertible transformations that transform the plaintext into
ciphertext, i.e., given the cryptographic system, which depends on the key K, the processes of encryption and decryption
can be represented symbolically as:

C=T&P, P=T7T YK)0C. (5.18)

The cryptographic system (the family of transforms 7°) can be public or private, but the key K is secret. A private-key or
secret-key encryption algorithm is one where the sender and the recipient share a common but secret key K.

As an example of a cryptographic algorithm, let us consider the Caesar cipher that was referred to above. This is a
truly simple cipher. The algorithm is: replace each letter of a message by a letter at a fixed distance away from it in the
alphabet. For example, if we replace each letter by the sixth higher letter in the alphabet, we map the alphabet as follows:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

GHIUKLMNOPQRSTUVWXYZABCDEF

The encryption transformation is

T(K):i— i+ K(mod26),
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and the decryption algorithm is
T YK): i — i — K(mod?26),
where in our special case, K = 7. Thus,

“TCAME I SAW I CONQUERED”
is transformed into

“PJHTL P ZHC P JVUXBLYLK.”

To add complexity, one could also transpose the letters of the ciphertext, i.e., write the letters backward as

“KLYLBXUVJ P CHZ P LTHJ P”.

Cryptanalysis of the Caesar cipher can be carried out by trying the replacement of each letter by another letter. This leads
to 26! = 4.032914 x 10%° possibilities. Alternatively, if we know that the algorithm is a Caesar cipher, we need to try
only 26 possibilities.

One of the important tools in cryptanalysis is letter frequency analysis. Languages have a distribution of the frequency
of occurrence of letters that are not uniform. For example, the letter “e” in English is the most commonly occurring
letter. One can set up a table of frequency of occurrence of letters, of double letters (e.g., th, he, in, er) and triple let-
ters, and use these tables to analyze sufficiently long ciphertext. To do this, one compares the frequency of occurrence
of single letters, double letters, etc., that occur in the ciphertext with that of the language one believes the message
is in.

The one known truly unbreakable cipher was devised in 1918 by Gilbert Vernam and Joseph Mauborgne and is called
either a one-time pad or a Vernam cipher. The original design and the modern version of one-time pads are based on
the binary alphabet. The plaintext is converted into a sequence of Os and 1s, using some publicly known rule, e.g., the
ASCII binary-equivalent representation. The key is another sequence of Os and 1s of the same length or longer than the
plaintext. Each bit of the plaintext is combined with the respective bit of the key, according to the rules of addition in
base 2,ie.,0+0=0,0+1=1,140 = 1,and 1 + 1 = 0. Since the key is a random sequence of Os and 1s, the
resulting ciphertext is also random and completely scrambled unless one knows the key. The plaintext can be recovered
by adding the cryptogram and the key in base 2 and reusing the publicly known rule.

In the context of the alphabetic coding of

“I CAME I SAW I CONQUERED,”
one would need a one-time pad of at least 19 letters, chosen at random, to be added to the 19 letters of the plaintext
(modulo 26) to encrypt the message. This same one-time pad could then be used to “subtract” from the ciphertext to
obtain the original message.

One-time pads suffer from a serious practical limitation known as the key distribution problem. Potential users have
to agree secretly and in advance on the key, i.e., the long, random sequence of Os and 1s used to decipher the message.
Once this is done, the key can be used for enciphering and deciphering, even if the resulting cryptograms are publicly
transmitted. However, the key must be established between the sender and the receiver by means of a secure channel
(whatever that means—see below). Users that are far apart, to guarantee perfect security, have to already be in possession
of the cryptographic key, equal in size to all the messages they might later wish to send. Moreover, even if a “secure”
channel is available, this security can never be guaranteed. In principle, any classical private channel can be monitored
without the sender or receiver knowing that the eavesdropping has taken place.

So far, we have been considering private key cryptosystems, i.e., the two parties that wish to communicate share a
private key that only they know. A second type of cryptosystem is the so-called public key cryptosystem. Public key
cryptography does not rely on sharing a secret key in advance. Instead, the receiver of the message(s) simply publishes a
public key, which is made available to the general public. The sender uses this public key to encrypt a message and sends
it to the receiver. A third party cannot use the public key to decrypt the message because the encryption transformation
is chosen, so that it is extremely difficult to invert, given only knowledge of the public key. To make inversion easy,
the receiver has a secret key matched to the public key, which together enable him to easily perform the decryption.
The secret key is known only to the receiver. Public key cryptosystems solve the key distribution problem by making
it unnecessary for a shared private key to be distributed. An example of a public key cryptosystem is the RSA algo-
rithm developed by Ronald Rivest, Adi Shamir, and Leonard Adleman in 1997. The decryption stage of RSA is closely
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related to factorization (see http://en.wikipedia.org/wiki/RSA). The security of RSA arises from the fact
that with today’s factoring algorithms running on a classical computer, factoring is hard (see Sec. 5.1.6). However,
Shor’s factorization algorithm (running on a quantum computer) would make RSA virtually useless. This application of
quantum computers for breaking of public key cryptographic systems has made quantum computation a very attractive
subject.

5.1.6 COMPUTATIONAL COMPLEXITY

Computers are designed and used to solve many distinct kinds of problems using a large variety of calculation techniques;
some of these problems are computationally easy, whereas some are exceptionally hard. Computational problems can be
classified according to the difficulty of their solutions. In computer science, the notion of difficulty is rigorously defined
within the theory of computational complexity, which describes the scalability of algorithms that solve computational
problems. Specifically, as the size of the input to an algorithm increases, at what rates do the computing resources (run
time and memory requirements) grow.

An example of a computational problem that is (thought to be) computationally difficult is the factoring (or fac-
torization) problem: given an (odd) integer, determine its prime factors.> The factorization problem cannot be solved
efficiently by any known classical computing algorithm. The computational effort grows exponentially with the size of
the integer to be factored. Yet, within the theory of computational complexity, it has not been proved to be exponentially
hard. When Shor published his algorithm for factorization using a quantum computer in 1997 [48] (see Sec. 5.3.4), the
field of quantum computing was set ablaze. The hope that the nature of quantum computational complexity would be
different (better) than that of classical computational complexity was kindled. It is unclear whether this hope will come to
fruition.

In the theory of computational complexity, problems and algorithms are divided into complexity classes. Let us con-
sider decision problems that take some string as an input and require either YES or NO as an output. If there is an
algorithm that runs on a Turing machine, which is able to produce the correct answer for any input string of length L in at
most ¢ LX steps, where k and ¢ are some constants independent of the input string, then the problem is said to be solvable
in polynomial time and is in the class called deterministic polynomial time (P). The problems in this class can be solved
by a deterministic Turing machine in polynomial time. The class non-deterministic polynomial time (NP) consists of all
those decision problems whose solutions can be verified in polynomial time, i.e., problems in this class with the answer
YES (NO) have simple and fast proofs that the answer is indeed YES (NO). Yet, there is no efficient way to determine a
solution to such problems. In an equivalent but alternative definition, NP is the set of decision problems solvable in poly-
nomial time by a non-deterministic Turing machine.?> One of the most important open questions of complexity theory is
whether the complexity class P is the same as NP, or whether it is only a subset of NP, as generally believed. If the answer
to this equation is affirmative, then NP problems can also be computed in polynomial time. Finally, the class NP-complete
(NPC) includes the most difficult problems in NP. Class NPC is the smallest subclass of NP that could remain outside
P. A decision problem is in NPC if (1) it is in NP and (2) it is NP-hard, i.e., every other problem in NP is reducible to
it (reduction is a transformation of one problem into another problem). Then it is said to be complete for NP. In 1970s,
Stephen A. Cook, Richard Karp, and Leonid Levin proved that if an efficient algorithm for any NPC problem was found,
it could be adapted to solve all other NP problems, i.e., that all problems in NP would actually be in the class P. For
example, if we had a polynomial time algorithm for solving a problem in class NPC, we could solve all NP problems in

2 The fundamental theorem of arithmetic states that every positive integer greater than 1 has a unique prime factorization.

3 The term non-deterministic refers to a non-deterministic Turing machine. A deterministic Turing machine performs a given calculation with certainty,
but an element of randomness is present in a non-deterministic (or probabilistic) Turing machine. The machine can execute several operations with a
given probability for each. The need to modify the original Turing machine emerged when it was realized that numerous decision problems cannot be
solved with certainty in polynomial time but can be answered with high probability using the notion of randomized algorithms. This requires a simple
modification of the strong Church-Turing principle, so that it states that any algorithmic process can be simulated efficiently using a probabilistic Turing
machine.
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polynomial time. An example of an NPC problem is the “traveling salesman problem”: Given a number of cities located
on points in a map, what is the shortest round-trip route that visits each city exactly once and then returns to the starting
city? This question has immediate relevance to many optimization problems encountered in reality, but unfortunately, no
known polynomial time solution exists for this. As of today, an efficient algorithm for solving an NPC problem has not
been found, and many computer scientists believe that P % NP. Thus, only one hope remains for solving NP problems in
polynomial time and that is to broaden the scope of what we mean by a computer.

5.2 QUANTUM INFORMATION

Quantum information deals with information stored and manipulated subject to the laws of quantum mechanics. The
fundamental building block of quantum information is the two-level system called a quantum bit or gubit. In principle,
it is possible to use three-level quantum systems (sometimes called qutrits, see Sec. 6.2), or larger multilevel quantum
systems, instead of qubits, but most quantum information studies are carried out with qubits. In this section, we first
introduce the notion of qubit, discuss the fundamental concept of qubit entanglement and then introduce the operations
on qubits in terms of unitary transformations referred to as quantum gates. Finally, the concept of quantum circuits is
introduced.

5.2.1 QUBITS

The elementary information unit in classical computers is the bit, which can take a value of either 0 or 1. The quantum
analog of a bit is a two-state system called a quantum bit or qubit. A two-state quantum system is described in terms of a
two-dimensional Hilbert space H®, for which we can define an orthonormal basis consisting of two vectors, denoted by
|0) and |1) in Dirac notation and identified in two-component spinor notation as,

o=(g) w=(). (5.19)

) = al0) +|1) = (Z) (5.20)

An arbitrary qubit is any unit vector in H®,

where the complex numbers a and b are such that |a|> + |b|? = 1. A possible physical realization of a qubit as two-state
system is a spin 1/2 particle, wherein state |0) would be the up-state | 1) and state |1) would be the down-state | | ).
Analysis of two-level systems in quantum information often uses the same nomenclature as that of spin 1/2 particles.
However, note that numerous other physical realizations of two-state systems have been considered, including ultracold
atoms, ions, nuclei with spin 1/2 (in the context of NMR quantum computers), quantum dot systems, superconducting
quantum interference devices, etc.

Problem 5.7

(a) Using the fact that (0|0) = (1|1) = 1 and (0|1) = (1|0) = 0, show that the commutator
[10)(1], [1)(0] 1 = [0)(0] — [1)(1].

(b) Write the equation in (a) as a 2 x 2 matrix equation using the representation (5.19).

A quantum computer, or a quantum information processor, requires a large number of two-state systems. When the
system consists of n qubits, the corresponding Hilbert space is the tensor product H = @), HP (i), and a basis in H
consists of 2" vectors. In the present framework, qubits are distinguishable, i.e., they need not be symmetrized multi-qubit
states (but could be symmetrized), since we know which qubit is which. In the notation used in quantum information,
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a convenient basis, sometimes called the computational basis is

0)®]0)®...®|0)® |0)
0)R0)R®...®]0)® 1)
0)R0)R...®|1)®|0)

|0)®|1)®.:.®|1)®|1)

n :
NHe0®... 800 2" basis states. (5.21)

|1)®|1)®‘:.®|0)®|1)
MHele...e|1) ®|0)
MHene...e|l)e|1)

The ordering of these basis states from top to bottom in Eq. (5.21) is similar to the consecutive integers in binary
arithmetic. Each basis state |jija...jn—1jn), (Ji = 0,1) in Eq. (5.21) can be compactly represented by a ket |j)(j =
0,1,...,2" — 1) whose binary expansion is

) = 132" 02" 4 12V 1520 = L2 e tin)- (5.22)

In many quantum operations on qubits (e.g., in the quantum Fourier transform), the number j appears in arithmetic
expressions, and therefore, it is more convenient to use its decimal expansion. Nevertheless, since no confusion should
arise, we denote any n-qubit basis state in Eq. (5.21) either as |j), where 0 < j < 2" — 1 is a decimal number, or as
|j1j2 - - -Jn—1jn)> Where j; = 0, 1, taking into account the correspondence between them as specified in Eq. (5.22).

We can “run” algorithms using initial states, |W;,) € H, represented by tensor products of superposition of single qubit
states: |Win) = @', |xi), where | x;) is a superposition state of qubit i, | x;) = (a;|0;) + b;|1;)). If we denote the basis
states in Eq. (5.21) by |j1,j2,- . -,Jjn), an arbitrary (initial) state can be written in three equivalent forms,

1 2"—1 n
Win) = D &pjpjulite-ndn) = Y aili) = )(@l0) + bil1)). (5.23)
J1seein=0 Jj=0 i=1

The 2" amplitudes «;, j,.....j, can be determined in terms of the amplitudes {a;} and {b;} by equating the coefficients of
the basis states. The product form in Eq. (5.23) establishes the reason of why quantum computing has the power of
parallelism. By operating on initial superposition of states (a;|0) 4 b;|1)), algorithms run all initial starting combinations
of Os and 1s simultaneously. An example of an n-qubit unentangled state is the state having a superposition of equal 2"

coefficients «;, j,,.. j, in Eq. (5.23): J127 ZJII o in=0 li1>J2, - - - »Jn). This state is unentangled because it can be written

as a product of the form ®f’=1 (10y + |1)). An example of an n-qubit entangled state is [0)®" + |1)®” (see Sec. 5.2.2).

Problem 5.8

0

(a) Using the representation |0) = (é) and |1) = (1

), and the basis set convention (5.21), show that the two-qubit

basis is given by

0 0
me=[o]. mem=|[;]. mew=|7]. wem= (524
0

S O O =
— O O O

0

We will often use the notation |00), |01), |10), and |11) for these basis states.
(b) Write the three-qubit basis states as eight-dimension unit vectors.




5.2 Quantum Information 207

5.2.2 QUANTUM ENTANGLEMENT AND BELL STATES

Quantum entanglement for two-particle systems in a pure state was introduced in Sec. 1.3.3. It will be useful to redefine
it, so that the definition also applies to multiqubit states of the form (5.23), as a property of states in a product Hilbert
space. Moreover, it will be useful to redefine it for mixed states as well and for arbitrary n-level systems. First, consider
a product of two spaces H = H; ® Ha. A pure state |¥) € H is said to be entangled if it cannot be written as a single
tensor product of states |y1) € Hy and |yn) € Ho, i.e., |V) # Y1) ® |¥n). Rather, it must be written as a sum of such
products, for example, |V) = a|y) ® |V2) + blo1) Q |¢P2).

Quantum entanglement occurring in multipartite qubit states is a powerful computation and information resource. For
example, entanglement allows for dense coding of quantum information (see Sec. 5.2.5) and teleportation of quantum
information (see Sec. 5.2.7). One of the central questions in quantum information is how to quantify entanglement for
arbitrary n qubit states. For two-qubit pure states, there is a set of four maximally entangled states called Bell states
denoted as |BS) and defined as follows:

1 1

oty = —[|00 11)], |®7) = —[|00) — |11)], 5.25

|[®T) ﬁ[l )+ 11, |P7) ﬁ“ ) — 11)] (5.25a)
1 1

Uty = —J|01 10)], |¥™) = —[|01) — |10)]. 5.25b

[w) ﬁ[l )+ 110)], W) ﬁ[l ) — [10)] ( )

Clearly, Bell states cannot be written as a tensor product of single qubit states. In Sec. 5.2.3, we will present methods for
explicitly constructing Bell states.

The Einstein Podolsky Rosen (EPR) paradox [20], Bell inequalities [52-55], and many quantum information and
quantum computation algorithms use the Bell states extensively. Bell states and EPR concepts play an important role in
testing fundamental concepts in quantum mechanics. EPR and Bell inequalities will be discussed in Secs 5.7 and 5.8.

An important property of Bell states |BS) (and entangled pure states in general) is: When a pure state density matrix
pBs = |BS)(BS| is constructed from a Bell state, and is partially traced over (say) the second qubit, Trp [|[BS)(BS|] =
% [10){0] + |1)(1]], the result is an incoherent state (mixed density matrix). In the case of Bell states, the first qubit, left
after tracing out the second qubit, has 50% probability to be in either state |0) or |1).

The entangled pair of qubits in a Bell state could be spin 1/2 particles, where the state | |) can represent the qubit
|0) and | 1) can represent the qubit |1), or alternatively, the qubits could be photons, where a horizontal photon | <)
can represent the qubit |0) and a vertical photon | $) can represent the qubit |1) as shown in Fig. 5.17 in Sec. 5.6.5.
A method of entangling photons using degenerate down-conversion (degenerate difference frequency generation) will be
described in Sec. 5.6.5. All one-qubit unitary transformations can be implemented using beam splitters and phase shifters,
which will be described in Sec. 5.6.5. Moreover, beam splitters and phase shifters can be used to turn photons that are
entangled in one of the Bell states into one of the other Bell states. So, photons are viable qubits that can be used for
quantum information processing. The only problem is that photons do not interact (at least not in vacuum), so it might
appear that two-qubit controlled gates (see below) cannot be engineered for photons, and these are essential for universal
quantum computation (a universal set of gates are a set of gates such that any function can be computed using these
gates). It was shown that non-deterministic two-qubit controlled gates for photons can be engineered [56], as described
in Sec. 5.6.5.

An example of an entangled n-qubit state can be constructed using n photons in n different spatial modes (think
of photon modes as being specified by the wavevector k, such that photons in different modes correspond to photons
with different wavevectors). Since photons are bosons, their state vector must be symmetrized (see Chapter 8). Such
symmetrized states can be constructed by applying the symmetrization operator, S,* to the state |K;)1|Ka)2 ... [Kn)n:

1Ws) = Vn!S ki) ilka)a - .. [Kn)n [IKi)11k2)2 - .. (K + [K2)11K1)2 - - [Kn)n

1
~ !
4 K1 Kne1)2 - KD (5.26)

4 The symmetrization operator, S, [see Sec. 8.1, Eq. (8.7)], is the sum of all possible permutations of the n-qubits divided by n!. The additional factor of
Vnlin Eq. (5.26) is for normalization, as detailed in Sec. 8.6.
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There are n! terms in Eq. (5.26) corresponding to the n! permutations of the photons. One of the challenges of all-optical
quantum computing is how to engineer such states, but, as mentioned earlier, another challenge is how to construct
two-qubit gates for photons, since they do not interact in vacuum.

Problem 5.9
(a) Write the Bell states (5.25a) as four-component vectors using the notation of Problem 5.8.
(b) Write the density matrix for |®~) and |V ™) as 4 x