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Chapter 1

Introduction

Everyday experience is a helpful guide as we attempt to model the physical world
around us. For example, interpreting wave motion is aided by noting the movement
of a bobber on the ripples of a pond. Anticipating trajectories resulting from
colliding bodies may be facilitated from observation of a pool table cue ball.
Understanding action at a distance from a force field is furthered by participating in
a game of catch. With regard to the subject at hand, observing ocean water crashing
into a rock jetty, listening to sound echoing through a mountain valley, or locating a
penny on the bottom of a fountain provides a basis of comprehension for wave–
matter interaction.

By contrast attempts to phenomenologically model a chemical process in which
matter undergoes a transformation of constitution present daunting challenges.
Ignoring for a moment the fact that reaction rates commonly occur in a time frame
that render them humanly imperceptible, a more fundamental impediment is the
scale of matter dimensionally. We cannot ‘see’ the system interacting, we may only
verify the occurrence of chemistry from observing affects on its surroundings: heat
evolution, a phase change, a flash of light, a smell, a puff of smoke. In fact, the only
‘illuminating’ probe at these dimensions is a light wave. Suppose then that we are
somehow magically able to ride a light beam, as if it allows us to don nanoscopes for
the purpose of observing matter in action during a chemical process. Even with this
advantage, we would quickly find that attempts to utilize rules for cue balls or other
projectile motions do not apply. We would also learn the light itself is not just a
casual observer in this environment, but is an intimate part of the system dynamics.

Ultimately would come to the realization that an entirely new set of principles
and guidelines, far outside the box of those ingrained from familiar observation, are
required to correctly model and predict events. The approach taken here will then be
to review our understanding of the behavior of macroscopic matter. Particular focus
will be given to instances where the governing rules hold fast, and where there is a
disconnect. This is facilitated by reviewing experimental evidence that could not be
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explained away by accepted guidelines. We will then introduce the necessary
modifications to allow matter’s description at the atomic and molecular level.

While navigating this course, the advantage taken from tangible connection with
everyday experience must unfortunately be abandoned. We will in fact find it
necessary to incorporate some facets of our common understanding of wave
behavior into the model of matter. This seems counterintuitive. Even to the most
casual observer, there are obvious differences between matter and waves. Though
each takes a variety of distinguishable forms, matter and waves are ultimately
differentiated by a single criterion. Waves uniquely have the capability of occupying
the same space at the same time. For example consider four individuals simulta-
neously conducting two separate conversations as depicted in figure 1.1. Everyday
experience tells us that opposing pairs can communicate, even though sounds from
their voices are somewhere intersecting. In addition, light reflecting off any one of
them can be detected by the remaining three, even though these waves must also
inhabit the same space along their journey. This property, known as superposition,
allows waves to exhibit constructive and destructive interference, which for sound
results in phenomena such as piano chords and devices like noise-cancelling
headphones.

By distinct contrast, one of the two fundamental characteristics of matter is that it
‘takes up space’ (the other, according to any physical science primer, being that it
has mass. This is technically saying the same thing actually, but I digress…). Of
course the implication of matter occupying space is that it must exclude other matter
from that space. Despite this very fundamental of differences, matter and waves are
intimately related. Most waves are actually disturbances of matter. Sound, water,
and string waves cannot move through space without matter acting as a medium to

Figure 1.1. Superposition of propagating waves.
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enable their propagation. In fact for quite some time it was believed waves and
matter had an inextricable relationship. With Huygens’ introduction of the wave
theory of light, it presupposed the requirement of a support medium. The search
ensued for the so-called aether, until its existence was debunked as a result of
experiments performed by Michelson and Morley.

In contrast to other wave forms, electromagnetic radiation creates a disturbance
in space. This effect is described in physics as being generated by a field, or
interacting fields as is the case here. In fact, electromagnetic radiation prefers an
absence of matter. As evidenced by gazing upward towards the nighttime sky,
electromagnetic radiation continuously self-generates and propagates through space
when unimpeded by matter. When electromagnetic radiation of a particular type
does encounter matter it may pass through, be diffracted, refracted, reflected,
scattered, or absorbed. Matter and its interaction with light and other portions of
the electromagnetic spectrum is the basis of a wide variety of qualitative and
quantitative analytical chemistry techniques.

The arrival of spectroscopy as a characterizing tool for the composition of
substances was paralleled by the fundamental questions light–matter interaction
posed. By the late nineteenth and early twentieth centuries, instrumentation had
achieved levels of resolution revealing information that could not be explained by
contemporary theories. Attempts to formalize the mechanism of light–matter energy
transfer blurred their fundamental distinction. As an initial explanation, light waves
were re-imagined to possess matter-like characteristics. Eventually viewpoints
shifted to treating matter from a wave perspective. In this way many experimental
inconsistencies could be resolved. Ultimately, we should be resigned to the fact that
both light or matter can individually exhibit wave- or particle-like characteristics.
The circumstances dictating their behavior ultimately depend on the situation, but
invariably occur at the atomic and molecular level. Our purpose in subsequent
sections is therefore to take a nanoscopic view of matter behaving as a wave in order
to gain insight into its macroscopic properties.

As a prelude to the tale of matter and waves and its timeline, we must begin two
centuries beforehand, to properly acknowledge antecedent milestones. The eight-
eenth century is appropriately known as the ‘Age of Enlightenment’ or ‘Age of
Reason.’ With apology to the scientific and engineering accomplishments of the
period, an incredible array of mathematical techniques and advancements were
introduced by Gauss, Euler, Fourier, LaPlace, Maclaurin, LaGrange, Taylor,
Leibnitz, Bernoulli, Legendre, Newton and others. At the time much of this
probably seemed no more than academic indulgence with little or no connection
to the real world. However a century later these techniques were essential to
formulation of thermodynamics and electrodynamics by individuals including
Ampere, Faraday, Maxwell, Clausius, Joule, Helmholtz, Boltzmann, Thompson
(Lord Kelvin), and Gibbs.

These achievements marked a seminal moment in the annals of scientific
accomplishment. After a lengthy gestation, a coming of age was signaled. With
roots in human curiosity, fear, and superstition followed by a lengthy infancy of
straightforward phenomenological modeling, science now embraced a new,
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fundamental purpose. Interpreting the workings of the everyday world was no
longer the be-all and end-all. Scientists pushed the envelope of human experience to
dimensions beyond what could be seen by a telescope or microscope. The frontiers of
science were inextricably dependent on abstract mathematical techniques, culminat-
ing in more versatile, robust, and predictive scientific models. Theory now blazed a
trail for experimental investigation.

Throughout this time, both the interpretation of matter as well as the properties
and behavior of waves were thought to be on firm theoretical ground. However,
evidence which emerged in the late nineteenth and early twentieth centuries blurred
the lines between matter and waves. After much consternation, reflection, and
debate among scientists, a blended behavior of light and matter emerged known as
wave–particle duality. Much of the same mathematics, that by then had served
theoreticians so well for over a century, again proved crucial and indispensable.

Quantum mechanics, the consummation of wave–matter interaction, marked a
paradigm shift in more ways than the radical departure of its physics. It did not
congeal from the singular ruminations or epiphany of any one individual. Quantum
mechanics was an evolution of thought and philosophy coalesced from decades of
work, culminating from efforts of an unprecedentedly-large collection of vital
contributors. Previous landmark events in science could almost invariably be
attributed to efforts of a single individual. The global effort that quantum mechanics
represented was a testament to evolving human connectivity. By the twentieth
century, scientists were taking full advantage of information sharing from advances
in communication and experiencing an increased mobility attributable to ease of
travel.

Quantum mechanics refined our understanding of matter to the point that its
profound impact now demarcates the advent of ‘modern physics.’ Within a brief
period of time it reverberated across chemistry and molecular biology as well.
Subsequent to its introduction several of the leading scientists of the day, most
familiarly Einstein, took on worldwide celebrity status. Nobel prizes were awarded
to a variety of its principal contributors over a broad span of the twentieth century.
These include prizes in physics to Planck in 1918, Einstein in 1921, Bohr in 1922,
de Broglie in 1929, Heisenberg in 1932, Schrödinger in 1933, Pauli in 1945, and Born
in 1954. Awards for contributions of quantum mechanics in chemistry were given to
Pauling in 1954, Mullikan in 1966, and Pople and Kohn in 1998. Many other
recipients in both fields were either guided in their experiments or directly impacted
in their theoretical developments by quantum mechanics. It is somewhat unsettling
to read the press release accompanying Mullikan’s 1966 prize which points out the
overwhelmingly complex nature of the discipline, essentially stating that quantum
mechanics was inaccessible to the layperson. One of the main goals of this work is to
help allay such predispositions or trepidations.

To punctuate the human interest aspect, no other image heralds the arrival of
quantummechanics or underscores the collective effort behind it quite like figure 1.2,
a photograph of participants in the 1927 Solvay Conference. These invitation-only
events feature varying focus topics that to this day they are intermittently held in
Brussels, having been instituted by Belgian industrialist Ernest Solvay in 1911. The

What’s the Matter with Waves?

1-4



1927 meeting, fifth in the series, featured lectures and discussions focused on the title
subject: ‘Electrons and Photons,’ and a conference theme parallel to the topics of this
book. Lewis once wrote, ‘Science has its cathedrals, built by the efforts of few
architects and of many workers.’ The 1927 Solvay Conference validated one’s
standing as an architect to the sanctum of quantum mechanics. Essentially everyone
who was anyone relevant to its development was present, a contingent in some ways
analogous to the 1992 US men’s Olympic basketball ‘Dream Team.’ Even those
with no more than a passing knowledge of science will recognize several names.
Those with a passion for it should particularly appreciate the special nature of the
moment.

Figure 1.2. Participants of the 1927 Solvay Conference.
Row 1: I Langmuir, M Planck, M Sklodowska-Curie, H Lorentz, A Einstein, P Langevin, C Guye, C Wilson,
C Richardson
Row 2: P Debye, M Knudsen, W Bragg, H Kramers, P Dirac, A Compton, L de Broglie, M Born, N Bohr
Row 3: A Piccard, E Henriot, P Ehrenfest, E Herzen, T de Donder, E Schrödinger, J Verschaffelt, W Pauli,
W Heisenberg, R Fowler, L Brillouin
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Chapter 2

Motion in matter

We begin the study with a discussion of classical mechanics, developed using the
approach introduced by Hamilton. Similar to Lagrangian mechanics, it is a re-
formulation of the traditional Newtonian approach. In certain physical situations
these alternatives provide insight that Newton’s kinematics lack. Hamilton’s
formulation is of particular utility, as it lends itself seamlessly as we transition to
quantum mechanics. The central feature of this approach is the HamiltonianH. This
function contains information describing the energy content of a particle or system
of particles for all times. As is the case in most physical situations, the Hamilton can
be partitioned into kinetic (T ) and potential (V) energy components such that:

= +H T V (2.1)

Time evolution of a system’s ith particle is given by Hamilton’s equations:

= −∂
∂

p

t
H
q

d

d
(2.2)i

i

= ∂
∂

q

t
H
p

d

d
(2.3)i

i

In equations (2.2) and (2.3), p and q are the momentum and generalized position
coordinates, respectively.

We shall begin by considering two objects of mass m1 and m2 in motion through
space with trajectory vectors ⃗r1 and ⃗r2, respectively (see figure 2.1). We make the
assumption that the particles experience no external potential (V = 0). With
momentum defined as p = mv, the scalar kinetic energy of each particle is:

=
⃗

T
p

m2
(2.4)i

i

i

2
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Hamilton’s equations are consistent with the system’s kinematics. According to
equation (2.3), the velocity of each particle is:

= = ∂
∂

=v
r
t

H
p

p

m
d
d

(2.5)i
i i

i

This two body system has six degrees of freedom. Either particle can independently
translate in any of three Cartesian directions of motion: x, y, or z or, from the
perspective of spherical polar coordinate system, independently in components: r, θ, or
ϕ. We assume the motion of each mass is constrained by a binding force. Referring to
figure 2.1, three degrees of freedom describe the unit vector components of ⃗R for
translation of the center of mass M (= m1 + m2). The magnitude of ⃗R is determined
from the mass-weighted averages of ⃗r1 and ⃗r2:

⃗ = ⃗ + ⃗
+

R
m r m r

m m
(2.6)1 1 2 2

1 2

The remaining three degrees of freedom express components of ⃗r , the internal
motion vector (a chemist would call its magnitude the ‘bond length’). From figure
2.1, vector addition gives: ⃗ = ⃗ + ⃗r r r2 1 . When substituted into equation (2.6) with
rearrangement, ⃗r1 can be expressed in terms of ⃗r and ⃗R:

⃗ = ⃗ −
+

⃗r R
m

m m
r (2.7)1

2

1 2

Similarly, from figure 2.1 we note that: ⃗ = ⃗ − ⃗r r r1 2 . Substituting this into equation
(2.6) gives:

⃗ = ⃗ +
+

⃗r R
m

m m
r (2.8)2

1

1 2

Equations (2.7) and (2.8) are substituted into the kinetic energy expression:

⎡
⎣⎢

⎤
⎦⎥=

⃗
+

⃗
= ⃗ + ⃗

T
p

m

p

m
m

r
t

m
r
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2

d
d

d
d

(2.9)1
2
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2
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2
1

1
2

2
2

2

Expanding the dot products leads to:
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2

2
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2

Equation (2.10) is simplified by noting the cross-term derivatives involving ⃗r and ⃗R
cancel, and that:

μ
+

+
+

=
+

=m
m

m m
m

m
m m

m m
m m

1
2 ( )

1
2 ( )

1
2

1
2

(2.11)1
2
2

1 2
2 2

1
2
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2

1 2
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Equation (2.11) introduces the reduced mass of the two-body system μ, which can
alternatively be defined:

μ
= +

m m
1 1 1

(2.12)
1 2

Note from either equation (2.11) or (2.12), as: m1 → m2, μ → ½m1, and as m1 → 0,
μ → m1. Equation (2.10) expressed as a function of the center of mass M, the center
of mass vector ⃗R, the reduced mass μ, and the internal motion vector ⃗r is thus:

μ=
⃗

+ ⃗
T M

R
t

r
t

1
2

d
d

1
2

d
d

(2.13)
2 2

The interpretation of equation (2.13) is as follows. For a two-body system, three of
the six possible degrees of freedom result from changes in the Cartesian components
of ⃗R. This is the kinetic energy due to translation of the center of total mass M (and
inherently properties such as the kinetic temperature and pressure of a bulk sample
of these systems). The remaining three degrees of freedom are contributions to T due
to changes in the Cartesian directions of the internal motion vector ⃗r . It is even more
instructive when these degrees of freedom are connected to the rate of change of ⃗r ,
which occur in either one of two ways. If only the magnitude of ⃗r changes with time,
the internal motion vector is describing relative vibrationalmotion of the two bodies.
Alternatively, as the direction of ⃗r changes, the internal motion vector is undergoing
two-body rotational motion.

The six independent motions are now constrained to three assigned to translation
of the center of mass, and the three that remain representing one vibrational mode
(as ⃗r expands and contracts) and two degenerate rotational modes (as ⃗r changes
direction centered on one of the system’s two equivalent moments of inertia). The
latter three are independent of the translational degrees of freedom as is evidenced
by no change in the center of mass location during these internal motions. As a
matter of fact, the center of mass must be invariant to any purely rotational or
vibrational mode independent of the number of coupled particles in the system.
However, rotation and vibration are not strictly independent of each other.

Figure 2.1. Coordinate system of a two-body problem.
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Vibration results in a changing moment of mass inertia, which to maintain
conservation of angular momentum requires an accompanying change in angular
rotation speed. Although this complication can be addressed by perturbation theory
techniques, we currently hand-wave our way out of this dilemma by assuming a rigid
rotor approximation, wherein the scalar component of ⃗r does not change as it
changes direction (e.g. a rotating diatomic molecule with fixed bond length).

The reduced mass μ mathematically expresses the mechanics of a two-body
system as a one-body system. This simplifies the perspective of vibrational motion
from the change in distance between two masses m1 and m2 into the movement of a
single mass of value μ relative to an infinitely-massive fixed point. Likewise for
rotation, instead of thinking about the concerted rotational dance of m1 with m2, we
can picture mass μ moving circularly relative to an infinitely-massive fixed point in
space.
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Chapter 3

Vibrating matter

3.1 Classical vibration
For reasons more pedagogical than pedantic, we begin our discussion of coupled
mass motion by considering vibration. In fact, it was during attempts to mathemati-
cally model experimentally observed electromagnetic wave generation by vibrating
matter that irreparable flaws were exposed in the interpretation of wave matter
interaction. In addition solutions to the differential equations of a classically-treated
harmonic oscillator serve as a relatively straightforward introduction to many of the
mathematical techniques that will be required as we transition to quantum
mechanics.

The oscillator is constructed by attaching mass μ to an ideal spring, one which
suffers no dissipative loss of energy, that in turn is connected to an infinitely-massive
wall. As discussed in chapter 2, μ in this case is exactly m, the mass of the oscillator.
Using μ reminds us that the oscillator can indeed be a two-body system. When
stretched and released, μ executes 1-dimensional un-damped vibrational motion
such that both the amplitude and rate of oscillation are constant with time. This
constitutes a harmonic oscillator with a pattern of movement known as simple
harmonic motion. As un-physical as this may seem, it is exhibited by the nuclei of
molecules in a variety of modes. Harmonic motion is sustained by the driving force
of ambient temperature, and can be stimulated to different oscillations as matter
absorbs particular frequencies of electromagnetic radiation. Before we examine the
nature of this motion in molecules, it is instructive to first treat a model harmonic
oscillator classically within Hamilton’s framework. Our efforts will not be wasted
for two important reasons. First, the exercise will use many of the same mathemat-
ical approaches and defining terms that will arise in quantum mechanical systems.
More importantly, we will see there is an inconsistency to the energy distribution in a
classical oscillator compared to the energy of interaction between electromagnetic
waves and vibrating matter.
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The attached spring supplies a restoring force relative to the direction of motion of
the mass, according to the empirical rule known as Hooke’s Law:

⃗ = − ⃗F kx (3.1)x

The minus sign of equation (3.1) indicates the direction of the restoring force, hence
the acceleration experienced by the object, is in opposition to the mass displacement.
The scalar proportionality factor k is known as the spring constant, which by
dimensional analysis must possess units: N · m−1 or the SI form: kg · s−2. The
magnitude of k describes the spring ‘stiffness’. Equation (3.1) demonstrates that a
spring with large k requires a large applied force to achieve small displacement, while
a spring with small k will exhibit substantial displacement with small applied force.
In ballpark terms, a Slinky has spring constant of roughly k = 0.5 N · m−1, contrasted
by a car shock absorber with k ≈ 50 000 N · m−1. Bond strengths of molecules
are inferred from their gas phase spring constants (referred to by chemists as
bond force constants). Representative examples are provided by the relatively
weakly-bound hydrogen chloride (HCl): k = 480 N · m−1 in contrast to carbon
monoxide (CO): k = 1860 N · m−1.

The oscillator’s kinetic energy is related to the momentum of mass μ. Its potential
energy is dependent on the displacement of μ, and is symmetric independent of the
type of displacement (whether the spring is stretched or compressed). The system
Hamiltonian takes the following form:

= +H T p V x( ) ( ) (3.2)

From chapter 2, equation (2.2) relates the rate of change of momentum and
potential:

= −∂
∂

= − ∂
∂

p
t

H
x

V x
x

d
d

( )
(3.3)

Using the momentum expression p =mv, and Newton’s Second Law written in terms
of rate of change of momentum, we have:

= − ∂
∂

F
V x

x
( )

(3.4)

Equation (3.4) is true of any conservative force like an ideal spring, or a conservative
field, such as those generated by gravity, point charges, or magnets. Equation (3.1) is
inserted in equation (3.4), rearranged and integrated over definite limits to give:

∫= ′ ′ =V x k x x kx( ) d
1
2

(3.5)
x

0

2

The spring stores no potential energy at zero displacement (the bottom limit of the
left-hand side of equation (3.5) integrates to V(0) = 0), and at other values is
parabolic (see figure 3.1). The ‘steepness’ of the parabolic potential is directly
proportional to the spring constant k. Stiff springs exhibit sharply increasing
potential energy with displacement while floppy springs have relatively shallow
potential curves.
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An analytical expression for the displacement x is found by solving the differ-
ential equation that arises from applying Newton’s Second Law:

μ μ μ= = = =F
p

t
a

v
t

x
t

d

d
d
d

d
d

(3.6)x
x

x
x

2

2

and equation (3.1):

μ
= −x

t
k

x
d
d

(3.7)
2

2

Expressions in the form of equation (3.7), known as eigenvalue problems, play an
important role in applied physics and mathematics in general. Variable x, the
eigenfunction, is subjected to a mathematical action known as an operator, which in
this case is the process of taking a second derivative: td /d2 2. In fact, this action can be
viewed as sequential applications of a first derivative: =t t td /d d/d (d/d )2 2 . As seen in
equation (3.7), the operator acts on an eigenfunction, and returns the eigenfunction
along with its eigenvalue, in this case: μ−k / . Eigenvalue equations are central to
quantum mechanics, but as this example shows also have practical utility across
physics and applied mathematics.

The solution to equation (3.7) requires an eigenfunction which upon taking its
second derivative returns the negative of that eigenfunction. Both a real and
imaginary general solution can be proposed:

ω ω
=

+

+ω ω+ −
x

A t B t

Ce De

sin cos
or (3.8)

i t i t

The solutions in equation (3.8) include pre-factors A, B, C, and D that for now must
only meet two stipulations, they are: (1) time independent and (2) have dimension of
SI length units: m. The eigenfunctions also contain imaginary factor = −i 1 ,
and define a quantity known as the angular speed ω of the harmonic oscillator

Figure 3.1. The potential energy curve of a harmonic oscillator.
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(SI unit: rad · s−1). Inserting either of the solutions from equation (3.8) into equation
(3.7) shows the angular speed to be a function of the spring constant and the reduced
mass:

ω
μ

= k
(3.9)

The solutions in equation (3.8) can also be written in forms such as:
π π= +x A ft B ftsin 2 cos 2 with the definition of frequency f (SI unit: s−1 or Hertz):

π μ
=f

k1
2

(3.10)

The functions in equation (3.8) are the only valid solutions for eigenvalue equations
with an operator involving second differentiation. The exponential and trigono-
metric forms can be inter-converted by expanding each in power series, which show
that: θ θ= ±θ±e icos sini . Only the exponential forms would be valid for operators
involving first differentiation. We will later see these are required in certain quantum
mechanical cases, particularly for eigenfunctions of both linear and angular
momentum. But for now let us focus upon the real solution containing trigonometric
functions. Its form is a natural description of vibrating matter in a wavelike fashion.
It also seems that this solution is a combination of two independent sine and cosine
waves. To borrow a term from chapter 1, the general solution for vibrating matter is
a superposition of waves.

Further insight comes when the classical harmonic oscillator is treated as a
boundary value problem, where the solutions in equation (3.8) are subject to
constraints, known as boundary conditions. Let’s suppose that our experiment is
designed so that time measurement begins when the oscillator is in motion with the
spring neither compressed nor stretched, so that the vibrating mass is at zero
displacement. Mathematically this requires at t = 0 that x = 0. Because sin(0) = 0
and cos(0) = 1, the trigonometric function of equation (3.8) satisfies this boundary
condition only if B = 0 (and, if we were instead using the imaginary solution, both
C = D = 0). Under this constraint, the valid solution to the motion of the
harmonically oscillating mass reduces to:

ω=x A tsin (3.11)

The pre-factor A may now be given physical interpretation. It scales the sine
function beyond its maximum of +1 and minimum of −1. In fact, A is the amplitude
of the oscillating mass, or distance from the equilibrium position (x = 0) to the
turning points at maximum spring stretch (x = A) and compression (x = −A). On a
plot of the oscillator motion, A is the displacement to the positive and negative
antinodes of the sine curve.

Philosophically speaking, the problem’s general solution provided by equation
(3.8) is omnibus, serving the sole purpose of including every viable mathematical
solution to the problem. As long as we are not looking, equation (3.8) is throwing
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the kitchen sink at the problem in a superposition of states form. When boundary
conditions are applied, we are taking a peek, with a prejudice that a particular
outcome is expected. This causes the destruction of all other possibilities except the
most overwhelmingly-likely result. Based on our stipulated requirements, the sine
function survives as the only viable representation of the vibrating mass if it is to be
located at x = 0 when we start our clock. The coefficient B has no possibility other
than zero, to meet the constraint.

As a further example, consider the opposing captains of football teams meeting at
the 50-yard line for the pre-game coin toss. The referee places a coin on the knuckle
of his thumb, and flicks it into the air. As it flips over and over, it is in an
indeterminate state—a superposition of both heads and tails. Even when trapped on
his forearm with the downward-facing palm of his opposite hand, the coin remains
in a superposition of states. It is not until he lifts his hand revealing the coin that a
specific outcome is obtained. It would seem that events in the Universe are in some
way dependent on the action of human observation. A familiar euphemism to this
sentiment is the expression: ‘if a tree falls in the forest, does it make a sound?’

Philosophical issues such as this fueled a spirited and sometimes contentious
debate among some of the most influential physicists of the early 20th century.
Much of the discussion focused on the deeper significance of wavefunctions,
mathematical solutions containing information which determine probabilistic
outcomes in the physical universe. These expressions arise as solutions to the
differential equations describing the wave-like behavior of matter according to
the rules of quantum mechanics. An ‘un-observed’ wavefunction possesses
information for all states and possible outcomes, a condition known as quantum
superposition. The action of human observation (via measuring properties or
specifying boundary conditions) collapses the wavefunction to the state of most
statistically-likely outcome.

This concept, suggested by Bohr, Born, and Heisenberg, is known as the
Copenhagen Interpretation. Some scientists, often playing devil’s advocate,
proposed gedanken (thought) experiments to challenge this premise. The most-
familiar of these is ‘Schrödinger’s Cat’, where a feline is sealed in a box along with
a radioactive isotope. If the isotope decays it emits lethal radiation, however the
cat is in an indeterminate state of life or death unless the box is opened and the
outcome is physically observed. A less whimsical challenge was posed in the EPR
paradox (so-called after its authors Einstein, Podolsky, and Rosen) which
suggested the Copenhagen Interpretation could not justify the limits of accuracy
on measurable properties that two simultaneously-formed particles can possess
unless they have the ability to communicate information faster than the speed of
light. The particles are inextricably wed by what is known as quantum
entanglement.

So far we have studied the harmonic oscillator for the purpose of introducing
commonalities to the classical and quantum mechanical representation of matter,
and to point out some of the conundrums that interpreting matter from a wave
perspective introduces. We now look at the system energetics, which reveals an
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insurmountably fatal flaw in the classical representation of wave motion. Using
equation (3.11), the harmonic oscillator kinetic energy is:

μ
μ μω ω ω= = = =T

p x
t

A t kA t
2

1
2

d
d

1
2

cos
1
2

cos (3.12)
2 2

2 2 2 2 2

Here the final identity follows from inserting the definition of angular speed from
equation (3.9) into equation (3.12). Using equation (3.5) and equation (3.11) we can
also find an expression for the potential energy:

ω= =V kx kA t
1
2

1
2

sin (3.13)2 2 2

From simple trigonometric relations found in section B.2, the classical harmonic
oscillator has total energy:

ω ω= + = + =E T V kA t t kA
1
2

(sin cos )
1
2

(3.14)tot
2 2 2 2

The right-hand side of equation (3.14) is time-independent, so the total energy is
constant at all times. It is partitioned into kinetic and potential forms that have a
relationship expressed in the virial theorem, which states a system subjected to
potential of the form: = ⋅V r c r( ) n has time-averaged kinetic and potential energies
obeying:

= ⋅T n V2 (3.15)

Using equation (3.15) and equation (3.5), the harmonic oscillator has average
potential and kinetic energy related by: 〈 〉 = 〈 〉T V . Figure 3.2 plots two cycles of the
harmonic oscillator subject to boundary conditions x = 0 at t = 0. The process begins
by stretching the mass to store an arbitrary amount of potential energy according to
equation (3.5). While holding it stationary there is zero kinetic energy, so Etot = V.

Figure 3.2. Plots of kinetic, potential, and total energy for the first two cycles of a classical harmonic oscillator.
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The spring is released and the clock started when the mass is at its equilibrium
position (x = 0). At this point (see equation (3.13)), the spring stores no potential
energy so Etot = T and the system is at maximum velocity. As the mass drives past
equilibrium, the spring compresses as the system slows and its kinetic energy is
converted back to the stored form. This continues until all kinetic energy is
converted to potential at the negative turning point and the cycle repeats.

The total energy being a function of the square of the oscillator amplitude does not
clash with everyday experience. For instance, the energy (loudness) of sound is a
function of the sound wave amplitude (the degree of compression and rarefication that
the medium experiences). Another example is supplied by a pendulum, which uses
gravity to supply the restoring force instead of a spring. We can envision a child on a
swing, whose energy depends on the height she reaches above the ground at her
turning points. An additional conclusion drawn from equation (3.14) is that the
energy of the classical harmonic oscillator is continuous. Since the oscillator’s
amplitude A is allowed to take any real value desired (we can in theory pull the ideal
spring out to any distance we wish), the energy Etot can therefore have any real value.

3.2 Planck’s approach to vibration
Now that we have a clear picture of the behavior of classical oscillation within the
framework of Hamiltonian mechanics we turn to its shortcomings, particularly with
regard to the ability of charges in vibrating matter to produce electromagnetic
waves. If we enter this prejudiced by analysis of the last section, we would expect
from equation (3.14) that matter would generate light with energy related to the
magnitude of the oscillator force constant and the square of the oscillation
amplitude. It would also seem this energy would have a continuous range. Both
conjectures prove to be incorrect. The mathematics that resolved these issues posed
an even more intriguing question. Were the shortcomings attributable to our
understanding of waves or to our perception of matter?

At the turn of the 20th century, Rayleigh and Jeans used the results that we have
so far proposed—a continuous energy harmonic oscillator model—to describe
electromagnetic waves radiating from a black body. Their development relied
upon classical thermodynamic arguments. According to the principle of equipartition
of energy, temperature T produces an average energy of ½kT each for kinetic and
potential contributions to the oscillator energy. The physical constant k used here is
unfortunately not the spring force constant, but is now Boltzmann’s constant, the
ideal gas constant per particle (see the unit definitions of appendix A). The total
energy per unit area is either referred to as the black body energy density or the
spectral brightness (B). If the surface area is taken as the square of an oscillator’s
wavelength, then using λ = c/ν:

ν∝B kT
c

(3.16)
2

2

From dimensional analysis, B has units of N · m−1 (kg · s−2) which is the
dimensionality of an oscillator’s force constant (unfortunately also represented by
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the symbol k). Multiplying B by the dimensionality of square amplitude does in fact
give energy units as equation (3.14) stipulates. Equation (3.16) reproduces exper-
imental results very accurately at low frequency (long wavelength), but as is depicted
in figure 3.3 infinitely diverges beyond the visible range. Scientists therefore
melodramatically referred to this as the ultraviolet catastrophe.

Around about the same time (actually, a little before) Max Planck studied the
same problem but employed a statistical rather than classical thermodynamic
treatment. He required oscillator energies distributed in discrete, evenly-spaced
levels with values proportional to integer multiples of the frequency of oscillation:

ν= = …E nh n 0, 1, 2, (3.17)n

The proportionality constant h in equation (3.17) has units of angular momentum,
and is now known as Planck’s constant. This value, which turns out to be inherent to
all quantum mechanical phenomena, is often referred to as the quantum of action.

As we will ultimately learn in chapter 9, evenly-spaced vibrational energy levels
are only strictly valid for parabolic potentials like that shown in figure 3.2. Real
systems such as diatomic molecules have anharmonic potentials (see section 9.2) in
which subsequent energy levels become increasingly closer in energy until reaching
their dissociation limit. Typical spacing between vibrational energy levels is on the
order of 10−20 J. Although this seems an inconsequential if not negligible amount of
energy, it is actually intermediate in the quantum hierarchy. For instance, quantized
rotational level spacings are on the order 10−21 J, while electronic levels: 10−19 J.
Borrowing from statistical mechanics Planck’s oscillators are summed into a
vibrational partition function ZV in the following fashion:

∑=
=

∞
ν−Z e (3.18)

n 0

V nh kT

Figure 3.3. Comparing the Planck and Rayleigh–Jeans formulations of spectral brightness.
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The nth energy level is called a microstate of the system, and its exponential term
is a Boltzmann factor, representing the population of that state relative to the
zeroth-level state. As equation (3.18) shows, Boltzmann factors are summed to give
the partition function.

An analytical expression for the vibrational partition function results from
applying the power series expansion: + + … = −x x x1 1/(1 )2 with = ν−x e h kT/ :

=
− ν−Z

e
1

1
(3.19)V

h kT

In statistical mechanics, partition functions represent the number of microstates
available to be populated subject to available ambient energy kT. Using a typical
vibrational spacing of 10−20 J, we find from equation (3.19) that ZV(100 K) = 1.001,
ZV(300 K) = 1.10, ZV(1000 K) = 1.94, and ZV(2000 K) = 3.29. The take-home is
that at typical temperatures, only the ground vibrational state is significantly
populated. If instead the partition function is numerically summed using equation
(3.19) including only the first eight energy levels, we obtain: that ZV(100 K) = 1.001,
ZV(300 K) = 1.09, ZV(1000 K) = 1.93, and ZV(2000 K) = 3.11. Hence the
summations converge very rapidly when hν ≪ kT. The fact that only the first one
or two vibrational levels are significant contributors to ZV is also justification for
using a harmonic potential even for real systems at normal temperatures, as the
rapid convergence of the sum occurs before anharmonicities become of major
importance.

The energy contribution of the oscillators is found from the partition function
using the statistical mechanical recipe:

= ∂
∂

E kT
Z

Z
T

1 (3.20)
V

V
2

It should be noted that equation (3.20) is in actuality an eigenvalue equation:
ˆ =OZ cZ with operator: ∂ ∂T/ and eigenfunction: ZV. In a very short period of time
we have seen that eigenvalue problems have applications in classical mechanics and
statistical mechanics, and will soon enough be used in quantum mechanics as well.
From this perspective we can also think of a partition function as a thermodynamic
wavefunction. Using equation (3.19) and a little manipulation, it is straightforward
to verify that equation (3.20) has solution:

ν=
−

ν

ν

−

−E h
e

e1
(3.21)

h kT

h kT

Upon multiplying the numerator and denominator above by ν+e h kT/ . Planck’s
spectral brightness formula then results from dividing E by the oscillator surface
area:

ν∝
−νB

h
c e

1
1

(3.22)
h kT

3

2

As expected, this has the same dimensionality as equation (3.16).
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When Planck’s constant h was empirically-fit to experimental data, this expres-
sion was able to reproduce experimental spectral brightness of a black body radiator
for all frequencies. In the visible range and below, both Planck and the Rayleigh–
Jeans expressions mimic experiment. Although they appear to be significantly
different, it is easy to show that in these frequencies where hν ≪ kT that expanding
the exponential in a power series and neglecting terms quadratic and above, Planck’s
equation simplifies to the Rayleigh–Jeans form in equation (3.16).

Modeling oscillating matter to produce electromagnetic radiation by employing
energy proportional to oscillator frequency instead of amplitude conflicted with
classical interpretation. Planck’s bold assumption of discrete energy oscillators
would quickly be used by the physics community to resolve other troubling
experimental–theoretical discrepancies. His approach was seized upon by Einstein
to first interpret the heat capacity of low temperature solids. He then applied the
same approach to explain the photoelectric effect, the phenomenon of shining light
on a thin metal foil to cause the ejection of electrons. If electromagnetic radiation
interacts with electrons classically, light with energy proportional to wave amplitude
(as in equation (3.14)) would eject electrons after reaching a particular level of
brightness. It was experimentally determined that, independent of intensity, elec-
trons did not begin to be ejected until the light reached a threshold frequency, which
Einstein called the work function of the material. Increasing light frequency above
the threshold caused a linearly proportional increase in the kinetic energy of ejected
electrons. Much like he did in resolving the heat capacity issue, Einstein’s theoretical
model of the photoelectric effect made use of Planck’s expression for light energy of
equation (3.17).

A couple of decades later, Wolfers and Lewis coined the term photon for the
frequency-dependent packet of energy carried by light. According to equation
(3.17), a green light photon of wavelength 540 nm (frequency 560 THz) possesses
energy 3.7 × 10−19 J. It is no wonder this miniscule energy would be hard to detect,
and only tangibly influence matter of incredibly small mass or dimension. Light
intensity does play a role, but instead of proportionality to photon energy, it is to the
number of photons a light beam carries, hence the number electrons ejected, not their
energy. For instance a mole of green light photons have energy 220 kJ, which is the
same amount released upon complete combustion of 4 g (≈6 L) of methane gas.

One more point regarding the form of equation (3.17). It can equivalently be
represented using the speed of light and its wavelength as: E = hc/λ, but both c and λ
vary depending on the type of matter comprising the medium in which light
propagates. As electromagnetic radiation enters matter with index of refraction n,
its speed slows and its wavelength shortens according to the expressions c′ = c/n and
λ′ = λ/n. Even though these effects cancel and the photon energy is independent of
the medium, it is more satisfactory to express energy in terms of photon frequency,
which is invariant to the matter comprising a medium.

In summary, it now seems apparent that light (electromagnetic radiation in
general) packs energy proportional to its frequency not its amplitude. Furthermore,
this energy does not interact with matter continuously but in discrete bundles
referred to as quanta. In a variety of examples, with even more to come, modeling
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the interaction of matter and electromagnetic waves inevitably involves the quantum
of action h. These conclusions initially required our understanding of light to be
altered as it encountered matter. However, after a few decades quantum mechanics
would flip the perspective. As a consequence, matter exhibited properties previously
reserved for light waves. Ultimately, what would evolve is the concept of wave–
particle duality, in which the role of matter and waves depend on the situation and
method of observation.
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Chapter 4

Rotating matter

4.1 Analysis of classical rotational motion
Our focus switches to the internal motion caused by simultaneous changes in the
angular (not radial) displacement of matter, subject to maintaining its center of
mass. It is easy to envision that rotational motion at a constant speed is inherently
periodic. You need look no further than the phases of the Moon or the ocean’s tides,
the four seasons or circadian rhythms of life to appreciate this fact. As before, we
will begin the study of rotation by placing ourselves in the mindset of the physics
community at the turn of the 20th century. For simplicity we consider rotation with
no angular acceleration. The rotor is orbiting a central point at a fixed rate during
each of its cycles. It is in fact only then that the rotor is harmonically oscillating.

We begin by designing a system according to the discussion in chapter 2, with
mass μ rotating counter-clockwise in the 2-dimensional Cartesian x–y plane about
the fixed central point of the coordinate system origin (refer to figure 4.1). First note
that μ will remain in circular motion only if some contact force or field potential is
acting on the mass, otherwise it will fly off with linear kinematics. For example
throwing fast-pitch softball requires the pitcher to apply tension on the ball via her
arm during the wind-up. Similarly, a road exerts frictional force on the tires to cause
an automobile to execute a curve. The same effect can occur for non-contact forces,
such as satellites maintaining circular motion due to gravity, and the movement of
charged particles as a result of the influence of either electric or magnetic fields. The
mathematical development for atoms in chapter 11 will detail the nature of rotation
as related to a force which compels this motion.

The rotor has angular momentum: ⃗ = ⃗ × ⃗L r p with a z component of magnitude:

⎛
⎝⎜

⎞
⎠⎟μ= − = −L xp yp x

y
t
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x
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d
d

d
d

(4.1)z y x
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(this is in fact the only non-zero component of angular momentum in the system).
To solve the differential equation, it is much more convenient to employ a spherical
polar coordinate system as defined in figure 4.2, allowing Cartesian coordinates to
be transformed using the relationships: θ ϕ=x r sin cos and θ ϕ=y r sin sin . The
angular momentum in this representation is:

⎛
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⎞
⎠⎟

⎛
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⎞
⎠⎟

μ θ ϕ θ ϕ θ θ ϕ ϕ θ ϕ
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d
d

sin sin
d
d

sin sin cos cos
d
d

sin sin
d
d

sin cos
d
d

(4.2)
z

At first glance this does not seem convenient, but simplifications from this choice
result from two conditions inherent to the system design. First the rotor is confined
to the x–y plane, so the polar angle is a constant value of θ = 90° for all time.
Secondly, as discussed in chapter 2, we use a rigid rotor so that r is also fixed.
Imposing these conditions, combining terms, and a little trigonometry reduces
equation (4.2) to the following function of the radial distance r and the rate of
change of the azimuthal angle ϕ:

μ ϕ=L r
t

d
d

(4.3)z
2

We identify the moment of inertia I of the rigid rotor:

μ=I r (4.4)2

and also note the rate of change of the azimuthal angle ϕ is the angular speed of the
rotor. This name was previously associated with periodic vibrational motion in
chapter 3 and possesses the same units of rad · s−1, but in this instance is defined:

ω ϕ=
t

d
d

(4.5)

Figure 4.1. The rotational coordinate frame.
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Using quantities defined from equations (4.4) and (4.5), the rotor angular momen-
tum is:

ω=L I (4.6)Z

Equation (4.6) is formulated in much the same way as linear momentum p =mv with
I playing the role of mass and ω velocity. Just like its linear counterpart, angular
momentum is a conserved quantity. If r (hence I) is allowed to change, ω
compensates in the opposite sense to maintain the initial L value. For example, a
skater spins more rapidly when she tucks in her arms. We simplify our rotor problem
by imposing the rigid rotor condition for this reason.

If we further introduce angular acceleration α as the rate of change of angular
speed, we have a complete set of functions describing rotational kinematics that
bear a striking resemblance to their counterparts in the linear frame, including
rotational force, or torque: τ = Iα. Just as linear force is the rate of change of
linear momentum, for a rigid rotor (with implicit constant r) torque can be
expressed as:

τ = L
t

d
d

(4.7)

Before we moving on it is important to note since ω is free to take any value, the
rotor has continuous angular momentum.

A similar approach can be taken for the rotor’s kinetic energy in a 2-dimensional
Cartesian coordinate system:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟μ μ= +T

x
t

y
t

1
2

d
d

1
2

d
d

(4.8)
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Figure 4.2. The spherical polar coordinate system.
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Again transforming to spherical polar coordinates gives:
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Simplifying for a time-invariant r at a fixed polar angle of 90° gives:

⎛
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⎠⎟μ ϕ ω= =T r
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d
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2

(4.10)2
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2

It is noted that equation (4.10) is consistent in form with linear kinetic energy
=T mv1/2 2 where I plays the role of mass and ω velocity. In addition, we see by

comparing equations (4.10) and (4.6) that rotational kinetic energy can be expressed
in terms of angular momentum as: =T L I/22 . Equation (4.10) is also consistent with
the description of rotational motion in chapter 2 as a change in direction (via the
azimuthal angle) of the internal motion vector, not its magnitude.

Recalling results from chapter 3, a classical harmonic oscillator has kinetic,
potential, and total energies found to be directly proportional to the square of
amplitude of oscillation A (see equations (3.12), (3.13), and (3.14)) . From equation
(4.10) we see that T is directly proportional to I which, according to equation (4.4), is
directly proportional to r2. This radial distance plays the same role in a rotor as
amplitude of displacement in a vibrator, and as a consequence both show quadratic
relation to energy. Finally, it is important to note that equation (4.10) shows
rotational kinetic energy to be a continuous function, as μ, r2, or ω can each in
theory take any real value.

Referring again to figure 4.1, suppose a clock is started as μ rises above the
abscissa. It moves in a circular path of arc length s while sweeping out angle ϕ of
magnitude:

ϕ = s
r

(4.11)

If the mass continues until arc length s equals the circle’s circumference, angle ϕ
reaches 360°. Alternatively, the angle can be measured by inserting the definition of
circumference in equation (4.11):

ϕ π π= =r
r

2
2 (4.12)

Here we have introduced the connection between angular displacement in degrees
and its SI counterpart, the radian. As μ executes counter-clockwise circular motion,
figure 4.1 shows the angular displacement in radians for selected points of the first
cycle. The value of ϕ at those points on each subsequent rotational cycle is found by
adding an additional 2π per cycle.
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Suppose that the angular speed is set at a constant value of ω = π /4 rad · s−1.
Plotting the mass displacement above and below the abscissa against time generates
the curve shown in figure 4.3. The y-axis displacements at the ϕ values denoted in
figure 4.1 are included in figure 4.3. As we learned with vibrational motion in chapter
3, matter undergoing rotation has mathematical description that is also wave-like.
Furthermore, if the angular speed is constant, the motion of μ is periodic. If the time
axis were to be extended, the pattern for subsequent 2π, 4π… cycles of y displacement
would repeat every 8.0 seconds. This time interval is the period of rotation (T ), defined
as the time required to complete each cycle of motion. The period is calculated as the
angular displacement of a complete cycle divided by the constant angular speed:

π
ω

π
π

= =
⋅

=−T
2 2 rad

/4 rad s
8.0 s (4.13)

1

(It is an unfortunate consequence of convention that the symbol T is used to
represent temperature, a period of harmonic motion, and kinetic energy of a mass.)
Analogous to vibrations in chapter 3, the inverse of T represents the number of
rotational cycles completed per second, or frequency f:

ω
π

= = = =−f
T
1

2
0.125 s 0.125 Hz (4.14)1

Our previous discussion pointed out the striking similarities between equations for
rotational and linear kinematics, momentum, force and energy. We now show the
connection between angular and linear speed. We begin with a radial vector
extending from the coordinate origin to μ as in figure 4.1. This vector is expressed
in spherical polar coordinates as:

ϕ ϕ⃗ = ⃗ + ⃗r r i r jcos sin (4.15)

In equation (4.15) the x and y components of the unit vector assume polar angle θ
maintains a time-independent value of 90°. With help from equation (4.5), the linear
velocity is:

ω ϕ ω ϕ⃗ = ⃗ = − ⃗ + ⃗v
r
t

r i r j
d
d

sin cos (4.16)

Figure 4.3. Plot of the rotational motion of the rigid rotor.
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Figure 4.4 gives a detailed insight into the relationship between the radial vector ⃗r
and the linear velocity vector ⃗v . Examining the behavior of sine and cosine in each
quadrant, we see that the velocity vector is tangent to the circular trajectory and
perpendicular to the radial vector at all points of rotation. Linear speed is found
from the velocity vector magnitude to be:

ω ϕ ω ϕ ω= − + =v r r r( sin ) ( cos ) (4.17)2 2

which shows the tangential linear speed: v is directly proportional to both the
angular speed: ω and the rotational moment arm: r. For instance, all riders enjoying
a merry-go-round are moving at the same angular speed, as no-one is catching or
passing anyone else no matter how far out towards the edge they sit. However an
individual a distance r from the center of rotation would fly off the ride with ½ the
linear speed of a person out a distance 2r (because of the shorter moment arm, this
individual also possesses ¼ the rotational and linear kinetic energy).

We are now in position to examine the linear acceleration mass μ experiences,
known more formally as the centripetal acceleration. This is found from the rate of
change of equation (4.16). Using equation (4.5), along with the facts that the rotor is
moving: (1) at constant angular speed: ω and (2) with fixed radial distance: r leads to:

ω ϕ ω ϕ ω⃗ = ⃗ = ⃗ = − ⃗ − ⃗ = − ⃗a
v
t

r
t

r i r j r
d
d

d
d

cos sin (4.18)
2

2
2 2 2

Figure 4.4. Examples of relative orientation for the linear velocity and radial vectors at angles in each
Cartesian quadrant (using: r = 1 m and ω = 1 rad · s−1).
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Equation (4.18) illustrates the striking similarities between harmonic vibrational and
rotational motion. In fact the acceleration of the harmonic vibrator has this exact
same form, as can be seen from the second time derivative of equation (3.11).
Centripetal acceleration of a rigid rotor is directed in the direction opposite the
radial vector (see figure 4.1) and has magnitude:

ω ϕ ω ϕ ω= − + − =a r r r( cos ) ( sin ) (4.19)2 2 2 2 2

As Newton’s Second Law requires, centripetal acceleration is induced by a linear
centripetal force that constantly drags μ inwards towards it center of rotation. As is
true of all linear forces, centripetal forces cause acceleration along their direction of
action. Centripetal force is expressed in terms of linear speed by combining
Newton’s Second Law with the results of equations (4.17) and 4.19):

μ μ= = −F a
v
r

(4.20)
2

4.2 Bohr’s approach to rotation
About a decade after Planck, and subsequently Einstein, used vibrating matter with
a discrete, frequency-dependent energy distribution as a model of interaction
involving electromagnetic waves, Bohr adapted the same approach for the rotational
motion of an electron around a nucleus. This technique would not only prove
successful in explaining how the hydrogen atom interacted with electromagnetic
waves, but moreover was able to predict basic experimental properties of hydrogen
in the absence of light. With Bohr’s success, it became more apparent that
inconsistencies between theory and experiment with regard to interpreting light–
matter interaction were equally the fault of our perception of matter as it was with
waves.

Applying classical rotational mechanics to the behavior of electrons in atoms was
a particular source of consternation for early 20th century physicists. In 1909,
Rutherford, Geiger and Marsden conducted their famous ‘gold foil’ experiment,
designed to prove or disprove the ‘plum pudding’ model of the atom suggested by
rival Thomson (who is routinely portrayed in essentially all freshman chemistry texts
as ‘the guy who got it wrong’. This is a complete disservice to Thomson’s
experimental acumen. In 1897 his lab had discovered the electron, which proved
the existence of subatomic particles and motivated attempts to explain how neutral
matter could intrinsically contain both positive and negative charges). Rutherford
subsequently proposed the ‘planetary model’ in which atoms are envisioned as
massive, positively charged ‘nuclei’ (a term coined by Faraday in 1844, by the way)
orbited by significantly smaller negatively charged electrons confined to their
motions by Coulombic centripetal forces.

Although this was a reasonable explanation of experimental observation, the
planetary model suffered two fatal flaws. Even if moving at constant angular speed,
orbiting electrons are accelerated inward by their attraction to the nucleus. It was
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understood from electrodynamics that accelerating charges must emit electromag-
netic radiation, so all atoms—whether stimulated in some fashion or not—should
possess a characteristic, detectable light frequency. No such radiation could be
detected from un-perturbed atoms. Secondly, a radiating electron expends energy,
which should cause it to eventually spiral inward and crash into the nucleus.

In 1913, Bohr addressed these shortcomings by modeling a negative charge
orbiting a center of positive charge in the following fashion. He began with the
expression for Coulombic electrostatic force in the form:

πε
= −F

Ze
r(4 )

(4.21)
2

0
2

Equation (4.21) represents the charge on an electron by −e and the charge of an
arbitrary nucleus as +Ze, where Z is the number of protons, or atomic number of the
nucleus. It also contains the vacuum permittivity of space πε4 0 (see appendix A), a
quantity required for dimensional analysis in SI units. He then used equation (4.20)
to equate the centripetal force an electron experiences:

μ
πε

− = −v
r

Ze
r(4 )

(4.22)
2 2

0
2

Combining equations (4.4), (4.6) and (4.17) he expressed the angular momentum of
the electron in terms of its linear velocity:

μ=L rv (4.23)

and inserted this into equation (4.22):

μ πε
− = −L

r
Ze

r(4 )
(4.24)

2

3

2

0
2

Instead of assuming L was a classically-continuous function, Bohr chose the
approach of Planck and Einstein. He restricted angular momentum of the electron
to only integer amounts of the quantum of action h per each complete rotational
cycle of 2π radians:

π
= = …L

Nh
N

2
1, 2, 3, . (4.25)

In periodic systems, the quantum of action: h is often normalized per complete
angular cycle. This form of Planck’s constant takes the form: πℏ = h/2 . Bohr’s
expression thus becomes:

μ πε
ℏ =N

r
Ze

r(4 )
(4.26)

2 2

3

2

0
2
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This expression can be solved for the distance of an electron from the nucleus as a
function of energy level: N, atomic number: Z, and all other physical constants
collected together. Using these values from appendix A we obtain:

πε
μ

= ℏ = = × =−r
N

Ze
N
Z

a
N
Z

N
Z

(4 )
5.29 10 m 0.529 Å (4.27)

2 2
0

2

2

0

2
11

2

When determined for the lowest energy level (N = 1) for a single proton nucleus
(Z = 1), the value of r is the correct average distance between an electron and proton
in the hydrogen atom ground state. The collections of physical constants defined as
a0 is now known as the Bohr radius. (Please see appendix A if you are interested in a
discussion of the units used in atomic physics.)

The expression E = hν was not used in the derivation of equation (4.27). In other
words the Bohr radius is not a result of light acting as a particle, packing energy in
discrete photon bundles. It arises from treating electrons as possessing periodically
recurring, or wave-like, properties. Secondly, no additional parametric information
is needed to find the distance between an electron and proton than a collection of
fundamental constants of the Universe. Predicting the radius of a hydrogen atom
was not the only success of Bohr’s model. To calculate total energy, we first find an
expression for kinetic energy as a function of angular momentum in the following
fashion:

μ
μ

μ πε
= = ℏ = ℏ

ℏ
T

L
I

N
r

N e Z
N2 2 2 (4 )

(4.28)
2 2 2

2

2 2 4 2 2

4 4
0

2

The final identity arises from inserting r from equation (4.27). As for the potential
energy V, a formula is obtained from Hamilton’s equation from chapter 2 (equation
(2.2)) using Coulomb’s Law for electrostatic force between charged particles
(equation (4.21)). This same technique was done to find the harmonic oscillator
potential in equation (3.5). For a hydrogen atom the potential is then:

∫ πε
μ

πε
= − ⋅ = − = −

ℏ
V F r

Ze
r

Z e
N

d
(4 ) (4 )

(4.29)
2

0

2 4

0
2 2 2

where we have again used the definition of r from physical constants in equation
(4.27). A common denominator is found for equations (4.28) and (4.29). which are
then added to give the total energy:

μ
πε

μ
πε

= + =
ℏ

−
ℏ

E T V
e Z

N
e Z

N2(4 )
2

2(4 )
(4.30)tot

4 2

0
2 2 2

4 2

0
2 2 2

From equation (4.29) we note the potential energy is of the form: = ⋅ −V r c r( ) 1.
Then in accordance with the Virial Theorem (See chapter 3, equation (3.15)), the
above expression shows that 〈 〉 = −〈 〉T V2 . Simplifying equation (4.30) leads to:

μ μ
πε

μ
πε μ

= −
ℏ

= −
ℏ

= − ℏ = −E
e Z e Z

N
Z
N

e Z
N a

Z
N

E
2

2(4 )
1
2 (4 )

1
2

1
2

(4.31)htot

4 2 4 2

0
2 2 2

2

2

4

2
0

2

2

2

2

0
2

2

2
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The energy unit defined in equation (4.31) is known as theHartree, which is evaluated
using values found in appendix A: = × = = −−E 4.36 10 J 27.2 eV 628 kcal mol 1

h
18 .

Bohr’s approach was the first to demonstrate that atoms theoretically possessed a
discrete energy distribution. The presence of N quantizes energy levels, successively
increasing their energy (Etot becomes less negative with increasing N). The existence
of energy levels was verified through the observation of light emitted by a stimulated
atom. These spectra could be resolved into emission ‘lines’ occurring at very specific
wavelengths, as opposed to continuous emission bands. Arguably the most
significant achievement of Bohr’s atom was its ability to correctly reproduce the
emission spectra of hydrogen gas not only in the visible, but also in various regions
of the ultraviolet and infra-red as well.

Emission spectra can be calculated from the Bohr model and equation (4.31) by
finding the difference between energy levels:

⎛
⎝⎜

⎞
⎠⎟

μ
πε

Δ = −
ℏ

−E
Z e

N N
1
2 (4 )

1 1
(4.32)

2 4

2
0

2
2
2

1
2

Electronic transitions are induced either by absorption (N2 > N1) or emission (N2 <
N1) of electromagnetic energy according to what is known as the Bohr frequency
condition:

ν
λ

Δ = =E h
hc

(4.33)

Spectroscopists often rewrite the above as: νΔ = ˜E hc using wavenumbers: ν λ˜ = 1/
expressed in units of inverse centimeters (cm−1). This quantity represents the number
of complete waves which fit in a length of 1 cm. Using the Bohr frequency condition in
equation (4.32) gives the following expression for the transition between energy levels:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ν π μ

πε
˜ = − = −Z

e
h c N N

Z R
N N

2
(4 )

1 1 1 1
(4.34)2

2 4

3
0

2
1
2

2
2

2

1
2

2
2

Note in order that ν̃ have units of cm−1, c must be expressed in cm · s−1. Equation
(4.34) introduces the quantity R, known as the Rydberg Constant, which when
calculated from values in appendix A is: R = 109 700 cm−1.

Spectra for the hydrogen atom using equation (4.34) are remarkably accurate.
The model can be used to predict the energy required to remove an electron from its
ground state (N1 = 1) to the ionization limit (N2 = ∞), from which we obtain:

ν= ˜E hc = 13.6 eV. This is the well-known experimental ionization energy of atomic
hydrogen. In 1885, Balmer noted the wavelength of the four lines of hydrogen’s
visible emission spectrum could be empirically fit to the following expression:

⎛
⎝⎜

⎞
⎠⎟λ =

−
=B

n
n

n
2

3, 4, 5, or 6 (4.35)
2

2 2
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provided that the value B = 364.5 nm was employed. Balmer’s formula was only
capable of reproducing hydrogen’s emission spectrum in the visible range. In 1888
Rydberg was able to formulate a generalized expression for hydrogen in the form
shown on the right-hand side of equation (4.34), with the value Z = 1, and the
empirical constant R = 109,700 cm−1. He arrived at this number by fitting data, not
from first principle application of physical constants as was done by Bohr. Either
Rydberg’s or Bohr’s formula give the same results as equation (4.35) of Balmer when
N1 is set equal to 2. Equation (4.34) was also able to successfully predict hydrogen’s
ultraviolet (N1 = 1, N2 = 2, 3, 4…) and infra-red (N1 = 3, N2 = 4, 5, 6…) emission
spectra as well. Comparison of experimental emission spectra and values predicted
by Bohr’s model are provided in table 4.1.

Bohr’s model of the atom was a pivotal success to proponents of the new
quantum theory. However it lacks general applicability beyond one electron atoms.
It can be successfully applied to Li+2 or Au+78, but not to neutral He, let alone H2

+1.
It would be another decade before a more robust theory would be developed with
the capability to tackle such systems. These refinements are introduced in upcoming
chapters.

Table 4.1. Comparing hydrogen atom experimental emission spectral wavelengths to those calculated from
the Bohr model.

N1 N2 λ (theoretical) λ (experimental)1

Lyman Series (ultraviolet transitions)
1 2 121.57 nm 121.6 nm
1 3 102.57 nm 102.6 nm
1 4 97.254 nm 97.0 nm
1 ∞ 91.176 nm 91.2 nm
Balmer Series (visible transitions)
2 3 656.47 nm 656.3 nm
2 4 486.27 nm 486.1 nm
2 5 434.17 nm 434.1 nm
2 ∞ 364.70 nm 365.0 nm
Paschen Series (infra-red transitions)
3 4 1875.6 nm 1875.1 nm
3 5 1282.2 nm 1281.8 nm
3 6 1094.1 nm 1093.8 nm
3 ∞ 820.58 nm 822.0 nm
1

Taken from: Herzberg, Spectra of Diatomic Molecules, (1950) Van Nostrand Reinhold Co., New York, NY.
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What’s the Matter with Waves?
An introduction to techniques and applications of quantum mechanics

William Parkinson

Chapter 5

Translating matter

5.1 Analysis of classical translational motion
Logic may suggest this part of the story be told prior to treating vibration or rotation
but, in keeping with a theme of following the historic chronology of events, attention
now turns to translation of matter. It is not a radical departure to picture wave
character as matter rotates or vibrates. The periodic character of such motions
readily lend themselves to a wave treatment. From the point of view of everyday
experience, however, it seems unlikely that matter flying about would even be
suspected of harboring any semblance of wavelike behavior. In that regard it is not
surprising this is the last of matter’s properties where wave behavior was proposed.
It is therefore useful to study a case of matter in translation where we can take
advantage of knowledge gained from studying periodic motion.

As a model system, consider a string stretched to an extent that it experiences
some tension. The string has no particular defined length, but is attached at one end
to a mechanical device which displaces it above and below its equilibrium position
with a regular, repeating period T. This produces transverse wave motion in the
string, meaning its matter undergoes a y-direction disturbance that propagates in
the x-direction. Displacement of string particles in the vertical sense is described by
the dual function:

π
λ

= −y x t A x vt( , ) sin
2

( ) (5.1)

The mechanical oscillator is harmonic, producing a wave propagating at constant
velocity: v (SI unit: m · s−1), with displacement proportional to amplitude: A (SI
unit: m), and wavelength: λ (SI unit: m). When exploring vibration in chapter 3 and
rotation in chapter 4, the concept of wavelength did not play a significant role.
Here it carries more relevance. The factor π λ2 / scales the function, ensuring that
each wave has the same y-displacement every time an entire cycle of motion is
completed.
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Unlike harmonic oscillation of a vibrating mass (according to equation (3.11)),
matter displacement is now a function of two variables. To understand the nature of
this sine wave, consider tracking a particular positive antinode making its way down
the string. As time progresses, x increases proportionally, by an amount depending
on the constant: v, to remain at the antinode with value: y(x,t) = A. We must travel
down the string at the same velocity as the pulse to maintain our coordinate frame.
The expression: x − vt is constant, so when differentiated:

− =x
t

v
d
d

0 (5.2)

So that: =v x td /d is the phase velocity of the disturbance propagating through the
matter and down the string.

Because x must increase with time, it can also be concluded that equation (5.1)
describes a pulse travelling in the positive x-direction. If the wave were travelling in
the negative x sense, equation (5.1) would use the function: x + vt. Fixing the value
of t is the same as taking a snapshot of the string at a particular instant. The
disturbance is no longer travelling, the product: vt is simply a constant phase factor
shifting the sine wave origin, and we are just viewing matter displacement defining a
fixed waveform: y(x). Choosing a particular constant x value is equivalent to
focusing attention on a particular section of matter in the string and watching it
harmonically oscillate from positive to negative antinode: y(t) according to equation
(3.11). The fixed x-value is now acting as the phase constant, shifting the time at
which the oscillator passes through equilibrium during its period of motion. To
satisfy sticklers for mathematical rigor, there is one last detail about the form chosen
for equation (5.1). This function is valid for the displacement boundary condition:
y(0,0) = 0, or that the string is at its equilibrium position at the point where the wave
is generated when the clock is started. To include the possibility of any starting
point, the sine function should be the more general form: x− vt + ϕ. Finally note
that equation (5.1) can alternatively be expressed:

ω= −y x t A kx t( , ) sin ( ) (5.3)

by using the definition: π λ=k 2 / (SI unit: m−1) along with the relationship between
wavelength, frequency, and wave velocity: λ= ×v f , and the angular speed (see
chapter 4, equation (4.14)): ω π= f2 .

Analysis of the phase velocity is aided by figure 5.1, showing a perturbed arc
segment of length: l assumed to be travelling at a rate: v left to right down the string.
The segment has linear density: μl (SI units: kg · m−1), a measure of its mass to length
ratio. Each end of segment l is subjected to tangential tension F in opposed
directions. Tension is typically denoted T, but since that variable has already been
used three times: for symbolic representation of the period of harmonic motion, for
temperature, as well as for kinetic energy in the Hamiltonian, F will be used to avoid
any further confusion. In figure 5.1 the string disturbance is superimposed with a
circle to highlight its relation to rotational kinematics.

The string segment has equal and opposite horizontal tension components
(∑ =F 0x ), and reinforcing vertical tension components with total magnitude:
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( ϕ∑ =F F2 siny ). The angle ϕ is assumed small enough that the approximation:
ϕ ϕ≅sin is valid. Using this simplification and borrowing from chapter 4, equation

(4.11) with arc length: s = l/2 (refer to figure 5.1) gives a total force on the segment
of:

θ= = =F F F
l
r

F
l
r

2 2
2

(5.4)tot

Equation (5.4) represents the centripetal force experienced by the arc segment. This
segment has mass: m = μl · l, so we can again borrow from knowledge of rotational
motion gained in chapter 4, equation (4.20) to write:

μ
=

⋅
F

l
r

lv

r
(5.5)l

2

Equation (5.5) is solved for the phase velocity of the perturbation as it moves
through matter down the string:

μ
=v

F
(5.6)

l

The infinitesimal of kinetic energy in the horizontal direction can be determined
using equation (5.6) along with the definition of linear density:

μ= ⋅ = ⋅T l v F ld
1
2

d
1
2

d (5.7)x l x x
2

To examine how energy is distributed in a segment of matter during vertical
displacement, equation (5.3) is used. The kinetic energy is:

μ μ ω ω= ⋅ ∂
∂

= ⋅ −T l
y x t

t
l A kx td

1
2

d
( , ) 1

2
d cos ( ) (5.8)y l x l x

2
2 2 2

Figure 5.1. Force diagram for a disturbance of length Δl propagating through a string.
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Extracting the vertical potential energy requires a little more imagination. First note
a string segment undergoes extension in both dimensions:

⎛
⎝⎜

⎞
⎠⎟= + = +l x y x

y
x

d d d d 1
d
d

(5.9)2 2
2

For small values of x, the identity: + ≅ +x x1 (1 )1
2

2 2 2 can be used on equation (5.9)
to write:

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟≅ +l l

y
x

d d 1
1
2

d
d

(5.10)x

2

Since we are only concerned with extension in the y-direction: dly = dl − dlx, we use
equation (5.3) to find the potential energy pumped into the system during vertical
extension of the string segment:

⎛
⎝⎜

⎞
⎠⎟ ω= ⋅ = ⋅ ∂

∂
= −V F l F l

y x t
x

Fk A l kx td d
1
2

d
( , ) 1

2
d cos ( ) (5.11)y y x x

2
2 2 2

With the help of the relations: λ= ×v f and ω π= f2 along with equation (5.6) we
can write:

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

π
λ

ω μ ω= = =Fk F F
v

2
(5.12)l

2
2 2

2

so that

μ ω ω= ⋅ −V l A kx td
1
2

d cos ( ) (5.13)y l x
2 2 2

Comparing equations (5.8) and (5.13), kinetic and potential energy are equally
distributed in matter for every value of x and t in the vertical sense. Equation (5.8)
shows kinetic energy as a function of the time component of y-displacement.
According to equation (5.11) potential energy is dependent on y-displacement
relative to x. This is satisfying in the sense that we are commonly reminded potential
energy is energy of position. However potential energy can also be expressed as a
function of time by rearranging equation (5.2) to the form: dx = v · dt and
substituting into equation (5.11):

⎛
⎝⎜

⎞
⎠⎟ μ ω ω= ⋅ ∂

∂
= ⋅ −V F l

v
y x t

t
l A kx td

1
2

d
1 ( , ) 1

2
d cos ( ) (5.14)y x l x2

2
2 2 2

Note this is the same result obtained in equation (5.13).
The total energy can be found by summing kinetic and potential contributions,

but a more facile form of total energy is its average value. For each displacement
cycle (wavelength) or each time cycle (period), the average value of cos2 is ½. This
gives an average total energy of:
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μ ω= + = ⋅E T V l Ad d d
1
2

d (5.15)y y y l x
2 2

It is also possible to define an average energy density as the energy per string
segment:

μ ω¯ =E A
1
2

(5.16)y l
2 2

Equation (5.16) is reminiscent of the total energy expression found for harmonic
vibration in chapter 3. The connection can be further elucidated by noting from
equation (5.3) that matter in the string is undergoing a vertical acceleration of:

ω= ∂
∂

= −a
y x t

t
y x t

( , )
( , ) (5.17)

2

2
2

Equation (5.17) is very reminiscent to the equation of motion for harmonic vibration
in chapter 3. When compared to harmonic rotation, equation (5.17) is exactly of the
same form as centripetal acceleration (equation (4.18)). Each particle in the string is
undergoing simple harmonic motion as the transverse wave passes through.
According to equation (5.17), string matter is being accelerated in proportion to
its displacement, but in the opposite direction. However, equation (5.16) represents
the averaged total energy density over a completed cycle. Unlike the harmonic
vibrator, a translating string wave is not a conservative system where dT + dV is the
same dE for every time infinitesimal. A vibrating string does not exhibit alternating
opposite increasing and decreasing magnitudes for its kinetic and potential energy
distributions. To see this, consider vertical displacement of the string segment at its
turning points. At these antinodes matter has zero velocity so dTy = 0. At the same
time its instantaneous rate of change of y with respect to x is also zero (zero
tangential slope), so according to equation (5.11) it has dVy = 0 as well. When the
string segment passes through its equilibrium point, or at a node, it is at both
maximum velocity and y slope with respect to x, so has simultaneously maximum
values of dTy and dVy. Non-conservative behavior is possible because a cycle of
oscillation is not an isolated system, they each pump energy in and out of one
another, fueled by the mechanical oscillator at the end of the string.

Let us now change the dynamics of the propagating wave train. Instead of
allowing it to travel eternally in the positive x-direction, suppose it encounters an
attachment point to a wall, so that the string is of fixed length L. The point is ideally
rigid, which causes the disturbance to reflect. As the wave cycle hits the barrier, it
now propagates back in the negative x-direction. For the reflected wave:

π
λ

= − +y x t A x vt( , ) sin
2

( ) (5.18)

Notice for the term x + vt to remain constant requires negative values of x. A few
restrictions are assumed to be consequences of the reflection point. First it represents
a nodal point relative to the wave displacement. Secondly the wave experiences
phase reversal, or reflects with 180° change relative to the nodal point. This is the
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reason that a negative sign is included in equation (5.18). The polarity change is a
consequence of Newton’s Third Law. The string pulling up on the wall at the
reflection point causes a wall response of equal and opposite downward pull.
Finally, for simplicity we assume the situation is devoid of damping factors, so not
only does the disturbance propagate down the string with no loss of energy, but also
there are no frictional losses at the reflection point.

Reflected waves must have wavelengths that match with waves travelling in the
positive x sense, so that the nodal points of the two align and avoid destructive
interference. If both ends of the string are restricted to be reflecting nodal points,
resonance between waves of opposite polarity but equal wavelength can be
sustained. This creates what is known as a standing wave. Figure 5.2 shows the first
four possible resonating standing waves between two fixed points separated by a
distance L. The figure uses a solid curve to represent a wave travelling from left to
right, and a dashed curve for its opposite-polarity counterpart travelling from right
to left. When this phenomenon is observed in an actual string, the direction of
propagation is not discernible, and the string simply looks like a sequence of
stationary loops. To avoid destructive interference, only an integer number of loops
is possible for a sustainable standing wave. This creates an overtone series, where a
string of length L can have standing waves that fit the wavelength pattern:

λ = = …L
n

n
2

1, 2, 3, (5.19)n

Figure 5.2 shows the fundamental or first harmonic: λ1 with wavelength twice the
string length. It also displays the first three overtones known as the second (λ2), third
(λ3) and fourth (λ4) harmonics.

Figure 5.2. Wave patterns of the first four standing wave harmonics.

What’s the Matter with Waves?

5-6



Using equation (5.6) and the relation: λ= ×v f leads to an expression for the
frequency or pitch of a vibrating string:

μ
=f

n
L

F
2

(5.20)n
l

Equation (5.20) was derived by Marsenne, the 17th century physicist and music
theorist, as he investigated the behavior of stringed instruments. The driving force
behind string oscillation can be plucking as for a guitar, hammering in a piano, or
bowing as a violin. Of course the first two have several damping effects which cause
the tone to eventually die out, but the third is a driven sustainable oscillator. Actual
frequencies from stringed instruments are complex mixtures of many simultaneous
overtones resonating down the string. Equation (5.20) shows that low pitch sounds
are achieved by long, dense strings under little tension, with opposite parameters
generating high pitch sounds. A piano with a range of over seven full octaves,
requires a 27 increase in frequency, so not only is the length of its strings varied, but
also the linear density and tension as well. To accomplish this solely from string
length would require strings from 0.5 to 76 feet.

Although this discussion involved only transverse wave motion, a similar
development can be applied to matter undergoing longitudinal wave motion such
as sound. In this case, both the direction of propagation and matter disturbance
occur in the same direction and matter is disrupted by rarefication and compression
of air in pressure changes, rather than a travelling stretch.

5.2 de Broglie’s analysis of translational motion
From simple observation of its pattern, the periodic nature of matter during
vibration and rotation is very apparent. Macroscopic evidence of wavelike motion
in translating matter is much too subtle to discern, still this supposition was made by
de Broglie about a decade after the Bohr atomic model. The hypothesis of de Broglie
arises from the energy-momentum relation of special relativity:

= +E m c pc( ) ( ) (5.21)2
0

2 2 2

A photon has zero rest mass (m0 = 0) and possesses energy: E = hν (as seen in
chapter 4, equation (4.33)). In the case of electromagnetic radiation we employ the
more conventional representation of frequency, which uses the Greek letter nu: ν.
With these facts, the energy-momentum relation for a photon becomes:

ν=p
h
c

(5.22)

Inserting the frequency-wavelength relation: λ ν= ×c into equation (5.22) gives an
expression relating a photon’s momentum to its wavelength:

λ
=p

h
(5.23)
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In his 1924 PhD thesis, de Broglie conjectured equation (5.23) not only applies to
photons, but to matter as well. Legend has it that his graduate committee could not
fully interpret the work, and suggested it could be more critically assessed by
Einstein. When sent off to him Einstein responded in very short order, declaring
that de Broglie had ‘unraveled one of the secrets of the Universe’. Einstein’s
affirmation was all that the scientific community needed. Decades of ingenious
theoretical work and painstaking experimental effort, all intended to settle the
debate over the nature of matter—wave interaction, was now contained in a single
encompassing equation of elegant simplicity. The prevailing philosophy became
known as wave–particle duality, a conceptual marriage of phenomena of previously
disparate origin.

It is easy to see how deBrogie’s conjecture remained unbeknownst for centuries, in
particular with regard to everyday observation. For instance a baseball (weight
approx. 0.15 kg) travelling at 100 MPH has a de Broglie wavelength: λ = 1.1 × 10−34

m, which is certainly not going to throw off a batter. However, a 25 eV electron
moves at 1/100th the speed of light and has: λ = 2.4 Å, which is proportional to the
spacing between layers of an ionic crystal lattice. In 1913 Bragg and Bragg
demonstrated diffraction of x-rays, electromagnetic radiation with wavelength on
the order of magnitude as the spacing between crystal layers. When an x-ray beam
was directed upon an ionic crystal acting as a diffraction grating, it generated an
interference pattern. Between 1923 and 1927 Davisson and Germer performed
experiments in which x-rays were replaced by accelerated electrons passing through
an ionic crystal diffraction grating. The experiment generated an interference
pattern, corroborating de Broglie suggestion and the wave-like character of matter.
This historic experiment was conducted essentially 100 years after Young obtained
an interference pattern in his double slit experiment, which had conclusively verified
the wave-like character of light and Huygen’s Principle.

To see what the de Broglie relation says about translation, consider matter of
mass m confined to a 1-dimensional box of length L. It then possesses kinetic energy:

=T p m/22 . If it behaves with wave character the matter establishes a resonance
pattern in the box. It is assumed that only wavelengths described by equation (5.19)
are allowed, in order to reflect off the walls of the box without destructive
interference. Using equations (5.23) and (5.19) we find:

λ
= = = = = …E

p

m
h
m

h
m L n

h n
mL

n
2 2 2 (2 ) 8

1, 2, 3, (5.24)n
n

n

2 2

2

2

2

2 2

2

Equation (5.24) is one of the most celebrated results of quantum mechanics. It will
be derived in chapter 6 from a completely different approach for a particle moving in
a 1-dimensional box. In chapter 4, we saw how Bohr’s quantization of angular
momentum led to discrete energy levels in the one-electron atom. Here quantization
of energy arises from application of a discrete linear momentum, due to allowed half
integer wavelengths fitting the box dimension. The restrictions on wavelength create
energy levels for the wavelike particle instead of the expected continuous energy
distribution.
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As an addition confirmation of the de Broglie relation, consider rotation of an
electron around a proton. We assume it has a ground state (N = 1) wavelength equal
to the circumference of its orbit. Using chapter 4, equation (4.27) the hydrogen atom
has radius a0, we allow a wavelength for the hydrogen atom electron which fits the
circumference of its orbit according to:

λ π= a2 (5.25)0

Using this in de Broglie’s relation, equation (5.23), we find a linear momentum of:

= ℏ
p

a
(5.26)

0

The kinetic energy of a hydrogen atom electron obeying the de Broglie relation is
then:

μ μ
= = ℏ =T

p
a

E
2

1
2

1
2

(5.27)h

2 2

0
2

The total energy: Etot = T + V. Since the atom has a potential of the form:
V(r) = cr−1, the virial theorem (see chapter 3, equation (3.15)) shows the kinetic and
potential energy are related by: 2hTi = −hVi. Combining both forms gives a total
energy:

μ
= + = − ℏ = −E T V

a
E

1
2

1
2

(5.28)htot

2

0
2

which compared to chapter 4, equation (4.31) is the same as the kinetic energy of
Bohr’s ground state hydrogen atom electron.
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Chapter 6

Quantum translation

6.1 Stationary state wavefunctions
Alternative derivations of quantum effects exist, notably Heisenberg’s matrix
mechanics, Feynman’s path integral formulation, and Dirac’s generalized quantum
electrodynamics. This work follows the development attributed to Schrödinger in
1925. The cornerstone of quantum mechanics is the wavefunction Ψ r t( , ), an
eigenfunction to the quantum mechanical Hamiltonian. (For a discussion of
eigenfunctions, see chapter 3. Hamiltonians are discussed in chapter 2.) In this
case, the Hamiltonian is a linear partial differential equation known as the time-
dependent Schrödinger equation:

ℏ ∂Ψ
∂

= ˆ Ψi
r t
t

H r t
( , )

( , ) (6.1)

Equation (6.1) completely describes the time evolution of matter, whether in free
motion or bound by some potential. A caret accent signifies the Hamiltonian is a
mathematical operator to the wavefunction. It also contains imaginary factor

= −i 1 and the quantum unit of angular momentum ℏ, which is Planck’s constant
divided by 2π introduced in chapter 4. The scale of ℏ results in particularly marked
effects on matter of dimension or mass at the atomic or molecular scale. More
generalized forms of equation (6.1) are used in applications of other propagating
waves such as Madelung’s expression for hydrodynamics, non-linear optics and
acoustics, and the Navier–Stokes equation of general fluid dynamics.

According to classical mechanics, the time evolution of matter is completely
specified through knowledge of the system’s initial conditions, and applying
Hamilton’s equations of motion (or equivalently by applyting Newton’s Second
Law: F = ma). In quantum mechanics, the wavefunction describes the probabilistic
fate of matter. From it can be extracted the most statistically likely outcome to
physical stimuli but, unlike classical mechanics, the act of measuring one particular
property can possibly have an irrevocable affect on the value of a subsequent
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property. Schrödinger’s equation not only describes a system’s time evolution, but
also defines a valid wavefunction, because its mathematical construct is subject to
the Hamiltonian describing a physical situation.

Mathematics requiresΨ is an eigenfunction of Ĥ that depends uponV̂ , the potential
term which is part of ˆ = ˆ + ˆH T V . As in the classical case the quantum Hamiltonian
has a component describing kinetic energy, signified as operator: T̂ . Wavefunctions
must be simultaneous eigenfunctions of both, but the potential is the term which varies
fromphysical situation to situation. In fact, the discrete spatial and angularmomentum
distributions that uniquely characterize quantization are inherent constructs of well-
behaved solutions to eigenvalue problems containing a particular potential form.

Before delving into specific structures for the kinetic and potential energy
operators, assume for the moment that neither is time dependent: ˆ = ˆH r t H r( , ) ( )
only. A time-independent potential V̂ r( ) implies matter can only be influenced by
static electric or magnetic fields, so is not subjected to electromagnetic radiation. If
this is the case, the wavefunction can be expressed in product form:

ψΨ = Φr t r t( , ) ( ) ( ) (6.2)

and inserted into equation (6.1):

ψ ψℏ ∂Φ
∂

= Φ ˆi r
t

t
t H r r( )

( )
( ) ( ) ( ) (6.3)

Dividing both sides of equation (6.3) by the product wavefunction places the
differential equation into a form that has one side containing only t dependence,
while the other exhibits only r dependence. In this fashion, a separation of variables
has been accomplished:

ψ
ψℏ

Φ
∂Φ

∂
= ˆi

t
t

t r
H r r

1
( )

( ) 1
( )

( ) ( ) (6.4)

Since the two sides of equation (6.4) are equal, but are individually functions of
independent variables, each must be equal to a constant value which is both r and t
independent. Dimensional analysis shows this constant to have units of energy.
Setting the left-hand side of equation (6.4) equal to a constant specified as E then
rearranging leads to the eigenvalue equation:

∂Φ
∂

=
ℏ

Φt
t

E
i

t
( )

( ) (6.5)

Eigenfunctions of equation (6.5) have the form:

Φ = ℏt Ne( ) (6.6)Et i

where N is a time-independent constant. The right-hand side of equation (6.4) is set
equal to the same constant and rearranges to the familiar form known as the time-
independent Schrödinger equation:

ψ ψˆ =H r r E r( ) ( ) ( ) (6.7)

What’s the Matter with Waves?

6-2



Equation (6.7) is an eigenvalue equation with operator: Ĥ , eigenfunction: ψ r( ),
and eigenvalue: E. The ψ r( ) are eigenfunctions of a time-independent
Hamiltonian, valid when ˆ = ˆV r t V r( , ) ( ) only. The resulting time-independent
states are referred to as stationary states. The remainder of this book will focus on
stationary state quantum mechanics and properties of solutions to the time-
independent Schrödinger equation. Each eigenfunction to the stationary state
eigenvalue problem possesses a single, definite energy. Most often there will be a
collection of valid eigenfunctions to the same problem which collectively
represent a discrete, or quantized, set of energy levels—one for each of the
independent stationary state solutions to a given Hamiltonian. Transitions
between stationary state energy levels, in either emission or absorption processes,
require matter to emit or absorb photons of the correct frequency according to
the Bohr condition: νΔ =E h . Coupling stationary states ψ ψ→ ′r r( ) ( ) via electro-
magnetic radiation introduces time dependence to the potential V̂ r t( , ), resulting
in a superposition of time-dependent energy eigenstates Ψ r t( , ) allowing the
transition.

Valid wavefunctions are eigenstates of the Hamiltonian describing a particular
physical situation. There are additional mathematical requirements ψ must obey that
were first stipulated by Born. Over all space ψ must be: (i) single valued, (ii) finite, (iii)
continuous, and (iv) have a continuous first derivative. Examples of valid and invalid
wavefunctions are presented in figure 6.1.

6.2 Unconstrained one-dimensional translation
We will take an opposite tack from the classical story and begin by applying the
Schrödinger equation to the modes of motion matter undertakes while translating.
First consider the quantum mechanical motion of a free particle, one with motion
under the influence of no potential. We will not concern ourselves with how it got
into motion, we will simply accept that it will remain in that motion, according to
Newton, and translate in a straight trajectory. The coordinate system is aligned so
that motion is entirely along the x-axis. Since ˆ =V 0 the Hamiltonian is therefore:

Figure 6.1. (a) A wavefunction satisfying all of Born’s mathematical conditions. (b) Examples of wave-
functions which violate criteria (i)–(iv).
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= ˆ⌢
H T . Using the kinetic energy operator shown in table 6.1 the Schrödinger
equation is:

ψ ψ− ℏ =
m x

E
2

d
d

(6.8)
2 2

2

This is an eigenvalue equation very similar in form to the classical harmonic
oscillator problem discussed in chapter 3 (see equation (3.7)). As done there, valid
solutions come in a general imaginary form:

ψ = ++ −Ae Be (6.9)ikx ikx
1

as well as a real expression:

ψ = +C kx D kxsin cos (6.10)2

It should be verified by direct substitution into equation (6.8) that either solution
is an eigenfunction of the free particle Hamiltonian, with the definition of k (SI unit:
m−1):

=
ℏ

k
mE2 (6.11)

2

Although both ψ1 and ψ2 are mathematically valid energy eigenfunctions,
the typically preferred solution is an appropriate representative of free particle

momentum. Applying the momentum operator: ˆ = ℏ
p

i x
d

dx to equation (6.10)

gives:

ψˆ = ℏ −p
k
i

C kx D kx( cos sin ) (6.12)x 2

This shows a trigonometric solution is not a proper momentum eigenfunction.
The exponential solution is indeterminate to a definite momentum state because
equation (6.9) is a superposition of states, simultaneously representing translation
in both the positive and negative x-directions. Imposing a boundary condition that
the particle is moving +x collapses ψ1 to the specific case where coefficient A is some
(possibly complex) finite value and coefficient B = 0. The particle then has
momentum:

ψ ψˆ = + ℏ = +ℏ+p
ik
i

Ae k (6.13)x
ikx

1 1

If it instead is translating in the negative x sense, then A = 0, B ≠ 0, and the
momentum eigenvalue is: −ℏk.

Using the relation: θ θ= ±θ±e icos ( ) sin ( )i , the exponential wavefunction:
ψ = +Ae ikx

1 is a complex plane wave of amplitude A propagating in the positive
x-direction. The real part is a cosine function trailed by an imaginary sine
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component propagating with 90° phase difference. Either through rearrangement of
equation (6.11) or by solving the energy eigenvalue problem we find:

ψ ψ ψˆ = − ℏ = ℏ =+T
m x

Ae
k
m

E
2

d
d 2

(6.14)ikx
1

2 2

2

2 2

1 1

As to be expected, energy and momentum are related by: =E p m2x
2 . More

importantly, the only restrictions on k are that it is (a) positive and (b) real.
Assertion (a) is requisite for the particle to be translating in the positive x sense.
Assertion (b) is a consequence of both energy and momentum being measurable
quantities, so must therefore be represented by real numbers. There is no limitation
on the magnitude of k, meaning the energy and momentum of a quantum
mechanical free particle are both continuous quantities that in theory can take
any numeric value.

6.3 One-dimensional translation in a box
So far no restrictions are placed on translation of the quantum mechanical free
particle. In other words it has domain: −∞ ⩽ ⩽ +∞x . Suppose that instead of free
range it encounters infinite barriers at each end, which confines its motion to a fixed
region of space we will specify to be: ⩽ ⩽x L0 . Between these boundaries, it
remains independent of any potential. These are the conditions constraining a
particle in a 1-dimensional box. Within the box, the Hamiltonian is that of a free
particle, and the time independent Schrödinger equation is the same form as
equation (6.8). As a consequence equations (6.9) or (6.10) represent valid solutions
within the confines of the box, as well as the form in equation (6.11) for the value k.

Things get interesting when the superposition of states represented in the general
solutions are subjected to the boundary conditions of the box. Constraining the
particle to remain in the box at its left edge requires the wavefunction vanish at x =
0. From equation (6.9) the boundary condition: ψ =(0) 01 is only fulfilled if A = B =
0, eliminating the exponential form as a viable eigenfunction. From equation (6.10)
we see that ψ =(0) 02 requires: D = 0. We have collapsed the real trigonometric
particle in a box solution to: ψ = C kxsin . Confining the particle to the box at its
right edge further requires the wavefunction vanish at x = L. This can be satisfied by
setting C = 0, which does not accomplish anything but trivialize the solution. Instead
the boundary condition: ψ =L( ) 0 is fulfilled for a sine function creating a node at
the right box edge, which occurs whenever the product kL is equal to integer values
of π. As a result there are an infinite number of solutions, that satisfy the condition:

π=k n L. The particle in a box wavefunctions have general form:

⎜ ⎟⎛
⎝

⎞
⎠ψ π= = …C

n x
L

nsin 1, 2, 3, (6.15)n

Figure 6.2 displays plots of the first four particle in a box wavefunctions. Note the
boundary conditions create a zero amplitude nodal point at each barrier. The
wavefunctions in figure 6.2 bear a striking resemblance to the functions we
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encountered in chapter 5, the standing waves that are formed by an oscillating string
that reflects between two infinite barriers. You should refer to figure 5.2, and note
these classical waveforms have exactly the same structure as their quantum
mechanical counterparts. The main feature of either the classical or quantum
waveforms is a sequential increase in the number of nodes corresponding to the
integer value of n. In both cases, this simple integer is the central characterizing
feature of the solutions. As further systems are investigated, it will quickly become
apparent that, in spite of the complexity of the mathematics, quantum mechanical
wavefunctions are invariably subject to and dependent upon straightforward
elementary numbers. These values, which play basic roles in the energetics and
structure of quantum mechanical solutions, are known as quantum numbers.

Surprisingly, the particle in a box solutions are not eigenfunctions of either
position or momentum. This appears irreconcilable with the postulates of quantum
mechanics, which mandate the wavefunction possess all physical information
describing a system. It will take techniques introduced in the next chapter to see
how properties are extracted from wavefunctions.

Since the expressions in equation (6.15) solve the time independent Schrödinger
equation for this system, they are energy eigenfunctions. As was done for the free
particle, the energy of a particle in a box can thus be found by either substituting the
condition on k into equation (6.11), or through the eigenvalue problem:

⎜ ⎟⎛
⎝

⎞
⎠ψ π π ψ ψˆ = − ℏ = ℏ = = …T

m x
C

n x
L

n
mL

E n
2

d
d

sin
2

1, 2, 3, (6.16)n n n n

2 2

2

2 2 2

2

Simplifying equation (6.16) shows that the boundary conditions imposed on a free
particle confined to a restricted box of length L creates a discrete energy distribution
with energy levels given by:

Figure 6.2. Plots of the first four 1-dimensional particle in a box wavefunctions.
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= = …E
h n
mL

n
8

1, 2, 3, (6.17)n

2 2

2

Values for the first four energies are presented with the wavefunctions in figure 6.2.
It is noted that both the nodal structure and particle energy increases with

increasing quantum number n. Referring back to the previous chapter’s discussion of
translation, we there introduced a standing wave constraint (see chapter 5, equation
(5.19)) into the de Broglie relation (see chapter 5, equation (5.23)). The energy
determined in that case (see chapter 5, equation (5.24)) is exactly the same energy
expression as equation (6.17). In chapter 5 the energy was obtained by treating the
resonant wavelength of translation via the de Broglie relation as opposed to this case
where it is obtained via the Schrödinger equation. It is satisfying to see that both
approaches lead to the same conclusion.

PARALLEL INVESTIGATION: Verify that the wavefunctions: ⎜ ⎟
⎛
⎝

⎞
⎠χ π= C

n x
L

cos
2n ,

n = 1, 3, 5,… are eigenfunctions to the particle in a boxHamiltonian under the boundary

conditions:
⎪
⎪⎧⎨
⎩

=
∞ = −

− < <
∞ =

V x
x L
L x L
x L

( ) 0 with eigenvalues of: =E
h n
mL32

n

2 2

2
n = 1, 3, 5,…

6.4 Multi-dimensional translation in a box
Instead of a particle free to translate in a 1-dimension space, suppose it is in an
actual 2-dimensional box of length Lx and width Ly. Again the assumption is that no
potential acts on the particle within the box, but its edges form a confining,
inescapable barrier. Inside the box where the particle is potential-free, the eigenvalue
problem takes the form:

⎛
⎝⎜

⎞
⎠⎟ψ ψ ψˆ = − ℏ ∂

∂
+ ∂

∂
=H x y x y

m x y
x y E x y( , ) ( , )

2
( , ) ( , ) (6.18)

2 2

2

2

2

Any general motion in the 2-dimensional space of the box can be expressed as a
combination of independent motions along the Cartesian x and y directions. In other
words the Hamiltonian describing translation can be separated into individual terms
each dependent on a single variable:

ˆ = ˆ + ˆ = − ℏ ∂
∂

− ℏ ∂
∂

H x y H x H y
m x m x

( , ) ( ) ( )
2 2

(6.19)
2 2

2

2 2

2

The solution to a separable Hamiltonian is a separable eigenfunction expressed as a
product of functions, each dependent on a single variable:

ψ φ φ=x y C x y( , ) ( ) ( ) (6.20)

This assertion is apparent when equation (6.18), (6.19), and (6.20) are combined:
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φ φ φ φ φ φ∂
∂

+ ∂
∂

= −
ℏ

C y
x

x C x
y

y
mE

C x y( ) ( ) ( ) ( )
2

( ) ( ) (6.21)
2

2

2

2 2

Dividing equation (6.21) by equation (6.20) completes the separation of variables:

φ
φ

φ
φ∂

∂
+ ∂

∂
= −

ℏx x
x

y y
y

mE1
( )

( )
1
( )

( )
2

(6.22)
2

2

2

2 2

In equation (6.22), the right-hand side is a function of constants only. Since each
term on the left-hand side is an independent function of a separate variable, they
must each be equal to their own constants that are labeled Ex and Ey, subject to the
condition: E = Ex + Ey. The result is two independent equations:

φ
φ

φ
φ

∂
∂

= −
ℏ

∂
∂

= −
ℏ

x x
x

mE

y y
y

mE

1
( )

( )
2

1
( )

( )
2

(6.23)

x

y

2

2 2

2

2 2

Multiplying the top equation through by: φ x( ) and the bottom equation through by:
φ y( ) produces two independent particle in a box eigenvalue problems, subject to the
constraints: ⩽ ⩽x L0 x and ⩽ ⩽y L0 y, respectively. Boundary value problems in
this same form have already been discussed in section 6.2. Each has a solution of the
type presented in equation (6.15). Application of the two boundary conditions
φ = =x L( ) 0x or φ = =y L( ) 0y again restrict the solutions to integer multiples of π,
but require independent quantum numbers: nx and ny. The 2-dimensional particle in
a box wavefunction is then:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ψ π π

= = … = …x y C
n x
L

n y

L
n n( , ) sin sin 1, 2, 3, 1, 2, 3, (6.24)n n

x

x

y

y
x y,x y

The total energy is the sum of energies from the independent eigenvalue problems:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= + = … = …E

h
m

n

L

n

L
n n

8
1, 2, 3, 1, 2, 3, (6.25)n n

x

x

y

y
x y,

2 2

2

2

2x y

The energy representation is discrete, but now is a function of two quantum numbers
nx and ny. An interesting consequence results when the 2-dimensional space is a
square rather than a rectangle. Equation (6.25) shows that any two eigenstates of the
form: ≠n nx y have energy eigenvalues: Eij = Eji. These are known as degenerate
energy levels.

Figure 6.3 plots the first four particle in a 2-dimensional box wavefunctions for
the special case that: Lx = Ly = L. The perspective is such that you are looking down
on the box, with the wavefunction displayed via a contour plot of regions with equal
wave amplitude. Each antinode is indicated as being a 2-dimensional wave peak or
trough according to the sign at its vertex. The spacing between contour lines is an
indicator of the steepness of the wavefunction in that region. In figure 6.2, a
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1-dimensional particle in a box wavefunction ψn shows n � 1 nodal points of zero
wave amplitude. The 2-dimensional functions in figure 6.3 possess nodal planes,
which number nx−1 in the x-direction and ny−1 in the y-direction. Another notable
feature in figure 6.3 is the spatial relationship demonstrated by degenerate wave-
functions: ψ21 and ψ12. Rotating one by a 90° symmetry operation converts it into the
other. Degenerate energy levels are common occurrences across quantum mechan-
ics. Invariably, symmetry properties of wavefunctions and their energetic degeneracy
go hand in hand.

Separation of variables can be extended to free translation in a 3-dimensional
space in a straightforward fashion. Inside the region there is no potential, so the
system has Hamiltonian:

⎛
⎝⎜

⎞
⎠⎟

ˆ = ˆ + ˆ + ˆ = − ℏ ∇ = − ℏ ∂
∂

+ ∂
∂

+ ∂
∂

H x y H x H y H z
m m x y z

( , ) ( ) ( ) ( )
2 2

(6.26)
2

2
2 2

2

2

2

2

2

for a particle confined to the coordinates: ⩽ ⩽x L0 x, ⩽ ⩽y L0 y, and ⩽ ⩽z L0 z.
The Cartesian variables are separable, allowing a product wavefunction consisting
of three independent components. Applying boundary conditions that ψmust vanish
at the cube edges leads to the particle in a cube wavefunction:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ψ π π π=x y z C

n x
L

n y

L
n z
L

( , , ) sin sin sin (6.27)n n n
x

x

y

y

z

z
, ,x y z

nx = 1 ,2, 3, … ny = 1, 2, 3,… nz = 1, 2, 3,…

Figure 6.3. Plots of 2-dimensional particle in a box wavefunctions.
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with energy eigenvalues:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= + + = … = …

= …

E
h
m

n

L

n

L

n

L
n n

n

8
1, 2, 3, 1, 2, 3,

1, 2, 3,

(6.28)
n n n

x

x

y

y

z

z
x y

z

, ,

2 2

2

2

2

2

2x y z

Notice a cubic system with Lx = Ly = Lz presents a multitude of opportunities for
degenerate energy levels.

PARALLEL INVESTIGATION: Verify that the wavefunctions:
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟χ π π π= C

n x
L

n y

L
n z

L
cos

2
cos

2
cos

2n n n
x

x

y

y

z

z
, ,x y z

, are eigenfunctions to the particle in a

cube Hamiltonian under the boundary conditions:
⎪
⎪⎧⎨
⎩

=
∞ = −

− < <
∞ =

V x
x L
L x L
x L

( ) 0 and similar

forms for V(y) and V(z). Show that the eigenvalues are:
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟= + +E

h
m

n

L

n

L

n

L32
n

x

x

y

y

z

z

2 2

2

2

2

2

2

with quantum numbers of odd integers: nx = 1, 3, 5,… ny = 1, 3, 5,… nz = 1, 3, 5,…

Before moving on to see what quantum theory has to say about rotation and
vibration, let us take advantage of the relatively straightforward results presented in
this section. We now have a model for matter completely free to move within a
container, but from which it has no possibility of escape. The solutions turn out to
have a familiar sinusoidal form inherent to wave motion, in many ways similar to
the classical problem of standing waves on a vibrating string. In both cases, the
waves ‘fit’ the box with a requirement of nodal reflections at the barrier. The
properties of well-behaved quantum mechanical solutions require a discrete rather
than continuous energy distribution. In the next chapter we continue our inves-
tigation by applying the model to demonstrate some of the other important features,
techniques and oddities of quantum mechanics.
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Chapter 7

Interpreting quantum mechanics

7.1 The probability density
The wavefunction itself may in general be real, imaginary or a complex function of
both real and imaginary components. Of course physical properties must be real, so
a recipe is postulated in quantum mechanics for determining such values from any
wavefunction independent of its form. As mentioned previously, this process is
statistical in nature, performed via distribution theory. An illustrative example of
statistical averaging outcomes is supplied by the case of six students taking an exam,
and earning the following scores: 50, 62, 78, 78, 84, 92. The mean test score is
determined according to:

= + + + + +
avg

50 62 78 78 84 92
6

(7.1)

This can also be written:

= * + * + * + * + *avg
1
6

50
1
6

62
1
3

78
1
6

84
1
6

92 (7.2)

There is a probability of 1/6 (or a 1/6 chance) of obtaining the grade 50, 62, 84, or 92
and a probability of 1/3 (or 1/3 chance) of scoring 78. Another way to write this is:

∑=q P q q( ) (7.3)
i

i i

Here the average value 〈 〉q is obtained by summing the product of score qi with its
weight or probability P(q)i. The weighting factors fulfill the general requirement of
unit probability:

∑ =P q( ) 1 (7.4)
i

i
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Relating the above to outcomes in quantum mechanics requires transition from a
discrete to continuous distribution, or that summation becomes integration. In
addition, a quantum mechanical probability function must be postulated. This was
done by Born, who stated that the wavefunction had a probability density found
from its modulus square over all space. The Born Law (or Born Rule) is:

ψ ψ ψ= * =r r r P r( ) ( ) ( ) ( ) (7.5)2

where ψ(r)* is the wavefunction complex conjugate (found by changing the sign of
any imaginary component). The modulus square of any value is a real positive
number, no matter if the value itself is positive or negative, real, imaginary or
complex. Therefore the probability density of any wavefunction is a real, positive
quantity. Even for sinusoidal functions it is not only real but is also positive
everywhere in space.

As a mental picture of probability density, think of smashing a particle into an
infinite number of pieces which scatter throughout all space. In various regions
fragments aggregate to differing degrees, some places with none at all, some a sparse
distribution, while others amass a noticeably pronounced collection. Throughout
space, the relative consistency of fragment density represents the likelihood of the
particle being at that particular point. The particle is reconstituted only by gathering
all its components, an action equivalent to integrating the probability density. The
discrete probability constraint of equation (7.4) has thus been converted to
continuous form:

∫ ∫ψ τ ψ ψ τ= =*r r r( ) d ( ) ( ) d 1 (7.6)
2

The volume element in equation (7.6) has the following 3-dimensional Cartesian or
spherical polar forms:

∫ ∫ ∫ ∫ ∫ ∫ ∫τ θ θ φ= =
π π

−∞

+∞

−∞

+∞

−∞

+∞ ∞
x y z r rd d d d d sin d d (7.7)

0

2

0 0

2

There would also be a time dimension for non-stationary states. In addition, a
linearly independent non-classical spin coordinate must be included as well, an
aspect which will be explored in chapter 11. If the wavefunction represents a multiple
particle system there will be separate spin and spatial coordinates for each
component.

The need for square integrable wavefunctions to determine properties in quantum
mechanics has led to what is now referred to as Dirac notation. A so-called ‘ket’ is
used to represent a wavefunction in the form: ψ∣ 〉, and its complex conjugate is
depicted as a ‘bra’:

ψ ψ=* (7.8)

Symbolically attaching bra to ket mathematically implies an accompanying inte-
gration over all space. For example, expressing equation (7.6) in bra-ket notation:
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∫ψ ψ ψ ψ τ= =* d 1 (7.9)

Eigenfunctions to a particular Hamiltonian are very often adjusted to satisfy
equation (7.9), which is known as the normalization condition. This is accomplished
by multiplying an arbitrary wavefunction by a constant known as the normalization
factor N:

ψ φ= N (7.10)

Note that multiplying an eigenfunction by a constant does not alter its property of
being an eigenfunction. In general the normalization factor can be imaginary or
complex as well as real, so thatN should technically be complex conjugated for a bra
function. Applying the normalization condition equation (7.9) to equation (7.10)
allows the normalization factor to be determined:

φ φ
=

∣
N

1
(7.11)1/2

The prefactor C included in the solution of the 1-, 2-, and 3-dimensional particle in a
box wavefunctions found in chapter 6, equations (6.15), (6.24), and (6.26) can now
be replaced by a normalization constant. Imposing equation (7.9) on the 1-dimen-
sional particle in a box over the limits: ⩽ ⩽x L0 gives:

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∫ψ ψ π∣ = = =C

n x
L

x C
L

1 sin d
2

(7.12)n n

L
2

0

2 2

The right-hand side of equation (7.12) should be verified using the table of integrals
in appendix B. Note that the integral solution is independent of quantum number n,
or the same normalization factor applies to all functions. The normalized particle in
a box expressions are:

⎜ ⎟
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠ψ π=

L
n x
L

2
sin (7.13)n

1/2

PARALLEL INVESTIGATION: Verify the normalized form for particle in a
1-dimensional box wavefunctions have the form: χ∣ 〉 = π( )cosn 1/2L

n x
L

1
2

, n = 1, 3, 5, …
over the range: − ⩽ ⩽L x L.

Normalizing the 2-dimensional particle in a box requires a double integral over
independent variables x and y. To accomplish this we insert equation (6.24) into the
normalization condition from equation (7.11) and integrate over the limits of the
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separable area element: dx·dy. The two individual integrals each are of the same
form as equation (7.12):

⎜ ⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠
⎛
⎝⎜

⎞
⎠⎟

∫ ∫ψ ψ π π
〈 ∣ 〉 = =

=

C
n x
L

x
n y

L
y

C
L L

1 sin d sin d

2 2

(7.14)
n n n n

L
x

x

L
y

y

x y

, ,
2

0

2

0

2

2

x y x y

x y

This leads to normalized functions of the form:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ψ π π

∣ 〉 = = … = …
A

n x
L

n y

L
n n

2
sin sin 1, 2, 3, 1, 2, 3, (7.15)n n

x

x

y

y
x y, 1/2x y

where the box area is: A = Lx × Ly.

7.2 Eigenvectors and basis sets
The complete set of wavefunctions in equations (7.13) or (7.15) constitute a
1-dimensional array known as an eigenvector of elements. In addition to fulfilling
the normalization condition, any two elements of an eigenvector have an inner
product which obeys:

ψ ψ δ〈 ∣ 〉 = (7.16)i j ij

Equation (7.16) contains the Kronecker delta:

δ =
≠
=

i j
i j

0 if:
1 if:

(7.17)ij

The bottom condition says that individual eigenvector elements are normalized, or
exhibit unit probability when integrated over all space. The top condition states any
two elements are orthogonal to one another. Collectively, all elements of the
eigenvector form an orthonormal set. The orthogonality condition can be demon-
strated using any two elements ≠i j of the 1-dimensional particle in a box
eigenvector, for instance:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∫ψ ψ π π∣ = = ⋅

L
x

L
x

L
x0

2
sin

3
sin

4
d (7.18)

L

3 4
0

Referring to the list of standard integrals or using numeric software, it should be
verified that the integral on the right hand side is zero.

PARALLEL INVESTIGATION: Verify that the n = 1 and n = 3 wavefunctions of the
form: χ∣ 〉 = π( )cosn 1/2L

n x
L

1
2

, n = 1, 3, 5, … are orthogonal over the range: − ⩽ ⩽L x L.
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Orthogonal functions have zero net overlap with one another, meaning the
complex modulus product of amplitudes of orthogonal functions has zero net
coincidence when infinitesimally summed over all space. Equation (7.18) corrobo-
rates this statement mathematically, but it is instructive to investigate this concept
graphically. Figure 7.1(a) gives amplitude plots of the eigenvector elements ψ∣ 〉3 and
ψ∣ 〉4 over their domain: ⩽ ⩽x L0 . The figure is enhanced by placing a line through
the nodal points with labels indicating every quarter interval of the box. This plot
clearly shows the amplitudes of each have many regions of coincidence leading to
constructive interference of their wave forms. However in other areas the waves are
in opposite phase and exhibit destructive interference. Classical superposition of
these wave forms is performed a by adding amplitudes. For sound waves this would
for instance produce an acoustical beat pattern. In quantum mechanics the quantity
of interest is instead the amplitude product, which is displayed in figure 7.1(b).
Integration sums area under all curves. It is noted the product function in figure 7.1

Figure 7.1. Plot of the amplitude of individual eigenvector elements: ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ψ π∣ 〉 =

L
x

L
2

sin
3

3

1/2
and

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ψ π∣ 〉 =

L
x

L
2

sin
4

4

1/2
over the range: ⩽ ⩽x L0 . (b) Plot of the product amplitude ψ ψ∣ 〉〈 ∣4 3 over the range:

⩽ ⩽x L0 .
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(b) forms six distinct regions, three each being equal in area but opposite in sign.
Summing the net area under all portions of the curves gives visual confirmation of
zero net overlap between ψ∣ 〉3 and ψ∣ 〉4 .

An arbitrary set of eigenfunctions can be used to construct an overlap matrix
with elements:

ψ ψ= 〈 ∣ 〉S (7.19)ij i j

According to equation (7.16), an orthonormal set of eigenfunctions have an overlap
matrix equal to the unit matrix: S = 1. The overlap matrix is Hermitian, or self-
adjoint, meaning its elements obey the condition:

= *S S (7.20)ij ji

In the case of an orthonormal basis, Hermitian character of the overlap matrix is a
trivial result. Even for a set of non-orthogonal complex functions the overlap matrix
is often real, a result of complex conjugation of imaginary bra exponential
components and their subsequent multiplication to ket exponentials of the opposite
sign. However in general S can have complex elements.

Orthonormal eigenvector elements have no linear dependencies, and form a basis
which span a vector space. An arbitrary function ∣Φ〉 can be constructed from a
linear combination, or superposition, of basis set elements ψ∣ 〉j :

∑ ∑ψ ψ∣Φ〉 = ∣ 〉 = ′∣ 〉N c c (7.21)
j

j

j
j j j

The expansion coefficients cj in general may be complex, and are chosen to fulfill the
normality condition so that:

ψ ψ δ
=

∣ Φ∣Φ ∣
= =

∑ ∑ 〈 ∣ 〉
=

∑ ∑* *
N

c c c c

1
1

1 1
(7.22)

k j k jj k j k j k jk
1/2 1/2 1/2

where the last identity follows from the orthonormality of eigenvector elements
(equation (7.16)). Applying equation (7.17), the summation over k collapses to only
one non-zero term where j = k, and simplifies the expression to a single summation.
For a normalized composite wavefunction, the eigenvector expansion coefficients
are thus constrained to the condition:

=
∑ ∣ ∣

N
c

1
(7.23)

j j
2

1/2

As an example we will use the first four particle in a box wavefunctions to form
an arbitrary particle in a box eigenfunction. Let us suppose for demonstration
purposes that we wish this eigenfunction to contain: 5% ψ∣ 〉i , 40% ψ∣ 〉2 , 30% ψ∣ 〉3 , and
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25% ψ∣ 〉4 . (A general technique for finding the best-fit coefficients cj will be explored
in chapter 10.) This combination forms an un-normalized wavefunction:

ψ ψ ψ ψ∣Φ〉 = ∣ 〉 + ∣ 〉 + ∣ 〉 + ∣ 〉( )N 0.05 0.40 0.30 0.25 (7.24)1 2 3 4

Applying the normalization condition in equation (7.11) or (7.23) we find:

=
Φ Φ

=
+ + +

=N
1 1

(0.05 0.40 0.30 0.25 )
1.7817 (7.25)1/2 2 2 2 2 1/2

The normalized wavefunction is then:

ψ ψ ψ ψ∣Φ〉 = ∣ 〉 + ∣ 〉 + ∣ 〉 + ∣ 〉0.08 909 0.71 268 0.53 451 0.44 543 (7.26)1 2 3 4

Note that the coefficients maintain the correct percentage of each eigenfunction in
the expanded form, and that they now fulfill the condition:

∑∣ ′∣ =c 1 (7.27)
j

j
2

PARALLEL INVESTIGATION: Verify that the linear combination wavefunction:
∣Ω〉 that is 10% χ∣ 〉1 , 30% χ∣ 〉2 , 25% χ∣ 〉3 , and 35% χ∣ 〉4 has the normalized form:

χ χ χ χ∣Ω〉 = ∣ 〉 + ∣ 〉 + ∣ 〉 + ∣ 〉0.18732 0.56195 0.46829 0.655611 2 3 4 .

7.3 Projection operators
A useful tool for combination wavefunctions is the projection operator:

ψ ψˆ = ∣ 〉〈 ∣P (7.28)n n n

A set of n orthonormal eigenvector elements have n orthonormal projection
operators, which obey the condition:

ψ ψ ψ ψ ψ ψ δˆ ⋅ ˆ = ∣ 〉〈 ∣ 〉〈 ∣ = ∣ 〉〈 ∣P P (7.29)i j i i j j i j ij

Equation (7.29) shows that projection operators are idempotent:

ψ ψ ψ ψ ψ ψˆ = ˆ ⋅ ˆ = ∣ 〉〈 ∣ 〉〈 ∣ = ∣ 〉〈 ∣ = ˆP P P P (7.30)j j j j j j j i j j
2

As the name implies, when projection operator P̂j acts on a function expanded from
an orthonormal basis, it returns the weight of ψ∣ 〉j in the expansion. For example,

applying P̂3 to the function described in equation (7.26):

ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ ψ

ˆ Φ = ∣ 〉 ∣ + ∣ 〉 ∣
+ ∣ 〉 ∣ + ∣ 〉 ∣ = ∣ 〉

P 0.08909 0.71268

0.53451 0.44543 0.53451
(7.31)3 3 3 1 3 3 2

3 3 3 3 3 4 3
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Projection operator techniques can be applied to transform a collection of linearly
dependent functions into an orthonormal set. The method, like so many others in
quantum mechanics, is borrowed from linear algebra and is known as Gram–

Schmidt orthogonalization. Suppose there exists a set of normalized real functions
∣ 〉1 , ∣ 〉2 , ∣ 〉3 … with non-zero overlap. The first two can be made orthonormal in the
following fashion:

∣ ′〉 = − ˆ = − ∣N P N2 ( 2 2 ) ( 2 1 1 2 ) (7.32)1

Equation (7.32) is self-explicit: we are altering function ∣ 〉2 by projecting from it any
component of function ∣ 〉1 . The projection is weighted by integral 〈 ∣ 〉1 2 , which
measures their degree of coincidence through their overlap S12 as defined in equation
(7.19). From equation (7.32) it is apparent if S12 = 0, then ∣ 〉2 is already orthogonal
to ∣ 〉1 and ∣ ′〉 = ∣ 〉2 2 . The parameter N normalizes the new function, as defined in
equation (7.11). It is a little easier to follow if the probability density is formed from
the left-hand side of equation (7.32) and integrated to unit probability. Using the
fact that the functions are also real, we have:

= ∣ − ∣ + ∣N1 ( 2 2 2 1 2 1 2 ) (7.33)2 2 2

Since the original functions were normalized, N is thus:

=
− ∣

=
−( )

N
S

1

(1 1 2 )

1

1
(7.34)2 1/2

12
2 1/2

Notice the difference between equation (7.34) and equation (7.23) caused by
negative signs in the expansion. The functions ∣ 〉1 and ∣ ′〉2 are not only both
normalized, they are now orthonormal:

∣ ′ = ∣ − ∣ ∣ =N1 2 ( 1 2 1 1 1 2 ) 0 (7.35)

The same process is performed, projecting ∣ 〉1 from the rest of the set ∣ 〉3 , ∣ 〉4 , ∣ 〉5 …

The function ∣ ′〉2 is next projected out of ∣ ′〉3 , ∣ ′〉4 , ∣ ′〉5 …, for instance;

″ = ′ − ˆ ′ = − ∣ − ′ ′∣ ′′N P N3 ( 3 3 ) ( 3 1 1 3 2 2 3 ) (7.36)2

Note ∣ ″〉3 remains orthogonal to original function ∣ 〉1 :

∣ ″ = ∣ − ∣ ∣ − ∣ ′ ′∣ =N1 3 ( 1 3 1 1 1 3 1 2 2 3 ) 0 (7.37)

and is similarly orthogonal to ∣ ′〉2 . The Gram–Schmidt process is continued for the
remaining i > j elements from the set, until all are orthonormal. It is easy to envision
this in practice carried out by a computer algorithm.

PARALLEL INVESTIGATION: Verify that the normalization constant for ∣ ″〉3 has
the form: =

′ ′−
N

2 3
2 1/2S

1

(1 )
.
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7.4 Expectation values
Eigenfunctions to a particular Hamiltonian fulfilling Born’s criteria are postulated
to contain all information pertaining to the system they represent, hence can be used
to measure any characteristic physical property. An expectation value is a statisti-
cally extracted quantum mechanical measurement on the wavefunction which
returns the most-likely outcome (what you ‘expect’ to get) when evaluating a
particular property. A recipe for expectation values is concocted from the contin-
uous analogue to equation (7.3). It is represented in Dirac notation as:

∫
∫

ψ ψ
ψ ψ

ψ ψ τ

ψ ψ τ
=

ˆ

∣
=

ˆ*

*
o

O O d

d
(7.38)

The above applies to any wavefunction, but those that are normalized have
simplified expressions with denominators: ψ ψ〈 ∣ 〉 = 1. The bra and ket in the
numerator of equation (7.38) are connected by operator: Ô. A synopsis of important
quantum mechanical operators was provided in chapter 6, table 6.1.

It is required that observables are represented by real expectation values
(〈 〉 = 〈 〉*o o ). Because a wavefunction may be a superposition of states such as
equation (7.26), eigenvalues must also be determined from linear operators which
obey the requirement:

∑ ∑ψ ψˆ∣Φ〉 = ˆ ∣ 〉 = ˆ∣ 〉O Oc c O (7.39)
j i

j j j j

Finally, operators which return real eigenvalues must produce equivalent results
when acting on either the bra or ket function. In the general case, operation on the
bra side requires the adjoint operator ˆ†

O , and satisfies the criterion:

∫
∫

ψ ψ ψ ψ τ ψ ψ ψ ψ

ψ ψ τ ψ ψ

〈 ∣ ˆ∣ 〉 = ˆ = 〈 ∣ 〉 = 〈 ∣ ˆ ∣ 〉

= ˆ = 〈 ∣ 〉

* † *

† *
*

* *( )( )
O O o O

O o

( )d

d
(7.40)

i j i j ij i j j i

i j ji j i

If operators representing measurable properties generate real results, complex
conjugation in equation (7.40) would cause no change in either eigenvalue.
Equation (7.8) implies the residual overlaps are equal as well, meaning the operator
must exhibit self-adjoint, or Hermitian, behavior: ˆ = ˆ†

O O . A related consequence of
Hermitian operators is that their eigenfunctions form an orthonormal set, equation
(7.16): ψ ψ δ〈 ∣ 〉 =i j ij .

To draw a connection between the continuous averaging in equation (7.38) and
the discrete averaging of equation (7.3), suppose that ψ is an eigenfunction of Ô
returning eigenvalue o after operation. The eigenfunction ψ is also returned, which
then forms probability density ψ∣ ∣2 when multiplied by the bra function. Eigenvalue o
corresponds to xi in equation (7.3), with P(x)i being the probability density in that
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volume element. Infinite summation of all such products results in a weighted
average property over all space. Take the case of the energy expectation value for
our normalized particle in a 1-dimensional box wavefunctions. Over the limits of
the box dimensions energy expectation values have the general form:

⎜ ⎟ ⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∫

∫

ψ ψ π π

π π π

ˆ = − ℏ

= + ℏ = ℏ ⋅ =

T
m L

n x
L x

n x
L

x

n
mL

n x
L

x
n

mL
L h n

mL

2
2

sin
d
d

sin d

sin d
2 8

(7.41)
n n

L

L

2

0

2

2 2 2

3 0

2
2 2 2

3

2 2

2

Particle in a box wavefunctions have statistically-averaged energy expectation values
of the exact form of the energy eigenvalue found in chapter 6, equation (6.17). After
the operator extracts its eigenfunction, the unaltered probability density infinitely-
sums to unity because of normalization.

PARALLEL INVESTIGATION: Verify the expectation values: χ χ〈 ∣ ˆ∣ 〉 =Tn n
2 2

2
h n

mL32
for

wavefunctions of the form: χ∣ 〉 = π( )cosn 1/2L

n x
L

1
2

n = 1, 3, 5, … over the range:
− ⩽ ⩽L x L. It should now make sense why this wavefunction has ¼ the energy of
our original particle in a box wavefunction. The box length in the present case is double
the length of the original, and energy depends on the inverse square of the box
dimension.

Suppose equation (7.21) is used to construct a function from an orthonormal
basis of eigenvectors ψ∣ 〉j which are eigenfunctions to operator Ô with eigenvalues o.
The eigenfunction which is formed has expectation value:

∑∑ ∑∑ ∑∑ψ ψ ψ ψ δΦ ˆ Φ = ˆ = 〈 ∣ 〉 =* * *O c c O c c o c c o (7.42)
k j k j i j

j k i k j k k j k j k k jk

As before the Kronecker delta collapses the summation over j resulting in:

∑Φ ˆ Φ = ∣ ∣O c o (7.43)
j

j j
2

When the eigenvector elements are eigenfunctions of a particular operator, expect-
ation values computed for any wavefunction constructed from this set is a weighted
average of eigenvalues from elements of the basis. The similarity of equation (7.43)
to the discrete probability expression (equation (7.3)) should be noted, particularly
when the normality condition (equation (7.27)) is compared to equation (7.4). As an
example, consider the energy of our normalized expansion wavefunction which we
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formed from the first four particle in a box solutions (equation (7.26)). Using
equations (7.43) and (7.41), the expectation value is:

∑= Φ∣ ˆ∣Φ = =
=

E T c
j h
mL

h
mL8

7.7854
8

(7.44)
j 1

4

i ij
2

2 2

2

2

2

PARALLEL INVESTIGATION: Verify the expectation values: 〈Ω∣ ˆ∣Ω〉 =T 29.421
2

2
h

mL32
for the expansion wavefunction of the form: χ χ∣Ω〉 = ∣ 〉 + ∣ 〉 +0.18732 0.561951 2

χ χ∣ 〉 + ∣ 〉0.46829 0.655613 4 where the functions χ∣ 〉n have quantum numbers: n = 1, 3, 5,
… over the range: − ⩽ ⩽L x L.

Suppose instead that wavefunction ψ is a solution to a particular Hamiltonian of
the Schrödinger equation but is not an eigenfunction to some other operator, instead
upon its action returning a function altered in some way. An expectation value of the
property described by this operator can still be found. It results from an infinite
summation of the overlap created by the original bra and altered ket wavefunctions.
As an example, the normalized 1-dimensional particle in a box eigenvectors in
equation (7.13) are used to evaluate the position expectation value. First note that
no member of this eigenvector is an eigenfunction of the position operator: ˆ = ×x x .
Each returns an altered function of x rather than the original eigenfunction, yet the
position expectation value of a particle in a box can be calculated with the help of
integrals from appendix B:

⎜ ⎟⎛
⎝

⎞
⎠∫ π= =x

L
x

n x
L

x
L2

sin d
2

(7.45)
L

0

2

Equation (7.45) shows the average particle in a box position is independent of
quantum number n, or is the same for all eigenvector elements. Taking into account
the statistical nature of expectation values, it is not so surprising that the particle on
average is located in the middle of the box.

PARALLEL INVESTIGATION: Verify the expectation values: χ χ〈 ∣ ˆ∣ 〉 =x 0n n for the

wavefunctions: χ∣ 〉 = π( )cosn 1/2L

n x
L

1
2

with quantum numbers: n = 1, 3, 5, … over the

range: − ⩽ ⩽L x L. This makes physical sense given the box range. It also makes
mathematical sense because the integral being evaluated is an overall odd function
evaluated over symmetric limits. See section 4 of appendix B for a discussion of integral
symmetry.

Since the likelihood of being in box increment dx is given by ψ∣ ∣n
2 it is instructive

to view plots of this quantity, which is done in figure 7.2 for ψ∣ 〉1 and ψ∣ 〉4 over the
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range: ⩽ ⩽x L0 . These show that indeed ψ∣ 〉1 spends most of its time around the
center, in fact having maximum probability density exactly at that point. Eigenstate
ψ∣ 〉4 on the other hand has four evenly distributed regions of probability. Despite that
being its statistical average location, the node at =x L/2 means a particle described
by ψ∣ 〉4 in actuality is never at that exact point!

Probability density can be infinitesimally summed over any fraction of its space to
find the chance of a particle occupying that region. For instance, the integral:

∫ ψ∣ ∣ xd
L

n0

/4
2 gives the prospect of finding a particle in the leftmost quarter of the box.

It should be verified using integrals in appendix B or with numeric software that this
probability is 0.091 or 9.1% for ψ∣ 〉1 and 0.25 or 25% for ψ∣ 〉4 . Visual estimation based
on the plots in figure 7.2 corroborates these results.

Using a set of wavefunctions in an eigenvector it is possible to construct a
2-dimensional array of matrix elements to operator Ô.

ψ ψ= ˆo O (7.46)ij i j

Based on the arguments concerning equation (7.40), elements of this matrix must
obey the Hermitian property: oij = oji*. If all basis set elements are eigenfunctions to
this operator, the matrix that is formed will be diagonal. Off-diagonal elements are
possible if the operator alters the bra or ket function so that some net overlap of
functions now occurs over all space.

For example, consider matrix elements of the momentum operator ˆ = ℏ ∂
∂

p
i xx

constructed with the 1-dimensional particle in a box eigenvector of equation (7.13)
over the range: ⩽ ⩽x L0 . First consider an element along the matrix diagonal.

Figure 7.2. Plot of probability density: ψ∣ ∣n
2 for eigenvectors: ⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ψ π∣ 〉 =

L
x

L
2

sin1

1/2
and:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ψ π∣ 〉 =

L
x

L
2

sin
4

4

1/2
over the range: ⩽ ⩽x L0 .
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Applying the momentum operator to eigenvector ψ4, it should be verified that the
integral to be evaluated is:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∫ψ ψ π π π= 〈 ∣ ˆ ∣ 〉 = ℏ ⋅p p

iL
x

L
x

L
x

8
sin

4
cos

4
d (7.47)x

L

44 4 4 2 0

Since the prefactor is imaginary, the Hermitian property is satisfied only if the
integral in equation (7.47) is zero. This is verified using the table in appendix B. It is
also instructive to visually confirmed this by inspecting the product function:

⋅π π( ) ( )sin cosx
L

x
L

4 4 over the range: ⩽ ⩽x L0 , which is displayed in figure 7.3.

Again, an axis is provided through the nodal points to aid visualization. The
antisymmetric nature of the curve verifies zero overlap for this trigonometric
product.

Off-diagonal linear momentummatrix elements will now be both numerically and
graphically explored. Using the appropriate wavefunctions and operator, it is
straightforward to substantiate the results:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∫ψ ψ π π π= 〈 ∣ ˆ ∣ 〉 = ℏ ⋅ = − ℏ

p p
iL

x
L

x
L

x
iL

8
sin

3
cos

4
d 6.8571 (7.48)x

L

34 3 4 2 0

and

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟∫ψ ψ π π π= 〈 ∣ ˆ ∣ 〉 = ℏ ⋅ = + ℏπ

p p
iL

x
L

x
L

x
iL

6
sin

4
cos

3
d 6.8571 (7.49)x43 4 3 2 0

2

As required, the matrix elements show the property: p34 = p43*. For visual
demonstration, amplitude plots of the above sine-cosine products are provided in
figures 7.4(a) and (b). Although they are not exact mirror images, the area sum
under out of phase regions leads to their product amplitudes having opposing signs.

Figure 7.3. Plot of the amplitude product: ⋅( ) ( )sin cosx x4
2

4
2

over the range: ⩽ ⩽x L0 .
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PARALLEL INVESTIGATION: Verify the matrix elements: χ χ〈 ∣ ˆ∣ 〉 =x 0i j and

χ χ〈 ∣ ˆ ∣ 〉 =p 0i x j for the wavefunctions: χ∣ 〉 = π( )cosn 1/2L

n x
L

1
2

with quantum numbers: n =
1, 3, 5, … over the range: − ⩽ ⩽L x L. This makes physical sense given the box range,
and mathematical sense, because the integral the first integral is an even × odd × even
over symmetric limits, and the second is an even × odd function over symmetric limits
(see section B.4).

To further illustrate the utility of matrix elements, let us evaluate the expectation
value of position for our expansion wavefunction of equation (7.26). This is
accomplished as a sum of individual expectation values weighted by the expansion
coefficients:

∑∑ ψ ψ= Φ ˆ Φ = 〈 ∣ ˆ∣ 〉
= =

x x c c x (7.50)
j k1

4

1

4

j k j k

The right-hand side of equation (7.42) and equation (7.50) have the same form, but
the particle in a box wavefunctions are not eigenfunctions of operator: x̂. We

Figure 7.4. (a). Plot of ⋅π π π( )( )sin cos2L

x
L

x
L

8 3 4 vs. x over the range: . ⩽ ⩽x L0 . (b). Plot of
⋅π π π( ) ( )sin cos2L

x
L

x
L

6 4 3 vs. x over the range: . ⩽ ⩽x L0 .
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therefore cannot extract an eigenvalue, then take advantage of orthogonality and
use the Kronecker delta to collapse one of the summations as was done to arrive at
equation (7.43). We are forced to explicitly perform a double summation involving
several terms to evaluate this property. It is easy to envision this quickly becoming a
tiresome process as the size of the expansion set grows.

Despite these complications, the problem can be formulated in a concise, if not
elegant, fashion using techniques of linear algebra. Equation (7.50) is symbolically
represented in matrix form:

=x C XC (7.51)T

In equation (7.51), C is a 4 × 1 column vector with the normalized expansion
coefficients from equation (7.26) as elements. The matrix CT is the transpose of C,
which in general means the indices of all row and column elements are interchanged,
so the rows become columns and vice versa. It is in fact possible to construct n
independent orthonormal expansion vectors from a set of n particle in a box basis
eigenvectors, so in general there is possibly an n × n matrix of coefficients. In this
particular case however, CT is a 1 × 4 row vector. If the matrix contained complex
values, the elements would not only be transposed, but would necessarily be complex
conjugated as well. The combination of transposing and complex conjugating
matrix elements is frequently represented with a superscripted dagger:

=† *C C( ) ( ) (7.52)ij ji

Using this notation, Hermitian matrices satisfy the condition: M† = M. In equation
(7.51), X is a 4 × 4 matrix with elements: (X)ij = ψ ψ〈 ∣ ˆ∣ 〉xi j .

Matrix algebra has some commonalities with regular algebra. Matrices may be
added or subtracted, provided their dimensionalities are the same. A matrix may
also be multiplied or divided by a numeric or scalar quantity, as long as the same
operation is performed on all elements. It should be noted that multiplication of
matrices may be, but is not necessarily, commutative, or in other words it is possible
that: Q R ≠ R Q. Because of this it is very important to distinguish ‘left-multiplying’
from ‘right-multiplying’. A square matrix with non-zero elements along the
diagonal: (M)ii, and all others: (M)ij = 0, for i ≠ j is called a diagonal matrix. The
unit matrix: 1 is the special case of a diagonal matrix with all 1’s along its diagonal.
In general, all diagonal matrices commute with any matrix it can multiply. The rules
of matrix multiplication are very specific. For this operation the matrices must be
conformable, meaning their inner indices have the same dimension. In other words
the column length of the left matrix must match the row length of the right matrix.
The product then has dimensions matching the outer values of the matrices under
combination, or the number of rows of the left matrix and columns of the right. For
example, an element of the product: P = Q R is found using the recipe:

∑=P Q R (7.53)
k

ij ik kj

The multiplication procedure is thus the summation of products of the left-hand
matrix row elements multiplied by the right-hand matrix column elements. For those
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unfamiliar with linear algebra, figure 7.5 demonstrates this process for the row 1
column 1 element of a product matrix. The other elements of the product matrix can
be computed for your own practice. Matrix division is more appropriately described
as multiplication by an inverse. Multiplication of a matrix by its inverse is a
commutative process: M−1 M = M M−1 = 1.

We now are in ‘position’ to use equation (7.45) to evaluate the average location of
a particle described by our expansion wavefunction in a box of length L. The first
task is to evaluate elements: ψ ψ〈 ∣ ˆ∣ 〉xi j over the first four particle in a box
wavefunctions, then to perform the appropriate matrix multiplications with the
expansion coefficients. Because the particle in a box solutions are real functions, X is
symmetric, or Xij = Xji. In fact, since all numbers are real, complex conjugation has
no affect on the elements. Hence this matrix is Hermitian: X† = X. Note also that the
conformability of the triple matrix product in equation (7.51) is: (1 × 4) · ( 4 × 4) ·
(4 × 1) which indeed produces a 1 × 1, or single-valued result.

Equation (7.51) can be executed in one of two ways. Although matrix algebra
is not necessarily commutative it does always obey the associative property:
(Q (R S)) = ((Q R) S). For no particular reason, we choose to first left multiply
the property matrix by the transpose of the coefficients, or evaluate: Z = CTX. The
industrious reader can verify the matrices needed and their product is:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
=

− −
− −

− −
− −

= −

L L L
L L L

L L
L L

L L L L

Z [00.089 0.713 0.535 0.445]

0.500 0.181 0.0 0.014
0.181 0.500 0.195 0.0
0.0 0.195 0.500 0.199

0.014 0.0 0.199 0.500
[ 0.090 0.236 0.040 0.115 ]

(7.54)

The property is found by then using Z in a right multiplication by the coefficient
matrix, or 〈 〉x i= Z C:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
= − =x L[ 0.090L 0.236L 0.040L 0.115L]

0.089
0.713
0.535
0.445

0.233 (7.55)

If instead the calculation was begun by combining the two rightmost matrices: Z = X
C, the result would be a 4 × 1 column matrix which is the transpose of Z found in
equation (7.55). Left multiplication of this with CT would produce the same answer.

Figure 7.5. Performing a matrix multiplication.
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The result of equation (7.54) and (7.55) shows that a particle described by
equation (7.26) is found on average a little less than one fourth of the way into the
box. As visual verification, figure 7.6 provides an amplitude plot of our normalized
wavefunction expanded from the first four particle in a box solutions. As additional
verification, the function’s probability density can be summed for the left-hand
quarter of the box:

∫ Φ Φ* xd (7.56)
L

0

/4

Again, the system of equations to solve is: P = CT P C when cast in matrix form,
where P is the probability density matrix constructed from the first four particle in a
box wavefunctions over that range:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∫ π π=P

L
n x
L

m x
L

x( )
2

sin sin d (7.57)nm

L

0

/4

With this definition the matrix problem takes the form shown below. The actual
matrix product should be performed in two steps as was done in equations (7.54) and
(7.55). But for brevity we only display the result after both are completed:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
=

=

P [0.089 0.713 0.535 0.445]

0.0908 0.1501 0.1592 0.1200
0.1501 0.2500 0.2701 0.2122
0.1592 0.2701 0.3031 0.2572
0.1200 0.2122 0.2572 0.2500

0.089
0.713
0.535
0.445

0.7706

(7.58)

Notice that the 11 and 44 elements of the P matrix are values that were found in our
previous discussion of partial summation of ψ∣ ∣2. Equation (7.58) shows, according
to its probability density sum in that region, a particle described by equation (7.26)
has a 77.06% chance of being in the leftmost quarter of the box. Again figure 7.6
corroborates this assertion.

Figure 7.6. Plot of the expansion function: ψ ψ ψ ψ∣Φ〉 = ∣ 〉 + ∣ 〉 + ∣ 〉 + ∣ 〉0.08909 0.71268 0.53451 0.445431 2 3 4 with
ψ∣ 〉1 − ψ∣ 〉4 taken from the first four normalized particle in a box wavefunctions.

What’s the Matter with Waves?

7-17



In a similar fashion, the average momentum of Φi can be determined by solving
the system of equations: 〈 〉p i = CT p C. Equations (7.42) and (7.49) show the
derivation of matrix elements p34 and p43, respectively. In general the numeric values
of p form a 4 × 4 anti-symmetric matrix, and when the imaginary factor from the
momentum operator is included the matrix exhibits the Hermitian property: p† = p.
The interested reader should complete the evaluation of momentum matrix elements
and perform the triple matrix product to find an average momentum for ∣Φ〉 of:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=

− ℏ − ℏ

+ ℏ − ℏ

+ ℏ − ℏ

+ ℏ + ℏ

=

p

iL iL

iL iL

iL iL

iL iL

[0.089 0.713 0.535 0.445]

0 2.67 0 1.07

2.67 0 4.80 0

0 4.80 0 6.86

1.07 0 6.86 0

0.089
0.713
0.535
0.445

0

(7.59)

Despite the somewhat tedious effort that went into solving this problem, it is
nonetheless satisfying that this matrix product is zero. Recall that the functions
forming the basis of this expansion are not eigenfunctions of momentum and in fact
each have zero average momentum in the box. There is also a philosophical
requirement matching this mathematical result. Expectation values are required to
match real measurements. If this matrix product had produced an imaginary result,
it would be in conflict with the postulates of quantum mechanics.

A final point regarding the matrix formulation for calculating quantum mechan-
ical expectation values. Equations (7.54) and (7.55) represent a generalized recipe for
properties of wavefunctions expanded from a linear combination of basis functions.
It should be recognized that equation (7.43) represents a specialized case of the same
problem where the property matrix constructed from basis eigenfunctions is
diagonal. In this case orthogonality forces the off-diagonal elements to all be zero.
Equation (2.37) only applies when two criteria are met: (1) the basis set elements are
eigenfunctions of the operator representing the property being calculated, and (2) the
basis set elements form an orthonormal set.

7.5 The uncertainty principle
As matter moves through space, the classical description allows simultaneous
knowledge of its position, momentum, kinetic and potential energies at all times
during its trajectory, limited only by the accuracy of devices used to measure
properties. In quantum mechanics however, it turns out that certain physical
parameters have limitations on the precision to which they can simultaneously be
known. This limit may be beyond the capability of devices used to make their
measurement, however it inherently exists. In this instance, we say there is an
uncertainty inherent to their simultaneous measurement.
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Consider the action of two different quantum mechanical operators consecutively
acting on a wavefunction. If ψ∣ 〉 is a simultaneous eigenfunction of both Ô1 and Ô2, the
order of operation is irrelevant, because eigenfunctions o1 and o2 are constants so:

ψ ψ ψ ψ ψ
ψ ψ ψ

ˆ ˆ = ˆ = ˆ = = ˆ ˆ

= ˆ = ˆ =
O O O o o O o o O O

O o o O o o
(7.60)1 2 1 2 2 1 2 1 2 1

2 1 1 2 1 2

In mathematical terms, operators successively applied to a simultaneous eigenfunc-
tion of both exhibit the commutative property. In quantum mechanics, we define the
commutator, with the definition:

ψ ψˆ ˆ = ˆ ˆ − ˆ ˆO O O O O O[ , ] ( ) (7.61)1 2 1 2 2 1

If ψ∣ 〉is an eigenfunction of both operators:

ψˆ ˆ =O O[ , ] 0 (7.62)1 2

However, first applying an operator which alters the wavefunction in some way can
possibly, but not always, affect the action of the second. In this case the order of
operation can lead to different results when properties are evaluated.

Examples of commuting operators include those for position: x̂, ŷ, and ẑ.
Likewise, the three individual components of linear momentum commute among
each other. However, consider the action of any two of these along the same
coordinate direction, for instance:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

ψ ψ ψ

ψ ψ ψ ψ

ˆ ˆ = ℏ ⋅ ∂
∂

− ∂
∂

⋅

= ℏ ⋅ ∂
∂

− − ⋅ ∂
∂

= − ℏ

x p
i

x
x x

x

i
x

x
x

x i

[ , ]

(7.63)
x

The x values of position and linear momentum, and other pairs which do not
commute, are known as conjugate variables. With regard to angular momentum,
note that no individual component commutes with another, for instance using
operators from table 6.1:

⎜ ⎟

⎜ ⎟

⎡⎣ ⎤⎦
⎛
⎝⎜
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎞

⎠

⎟⎟⎟⎟⎟⎟
⎛
⎝⎜

⎞
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In 1927 Heisenberg showed that two conjugate variables p and q, which are
eigenvalues of operators: P̂ andQ̂ respectively, have an inherent limit to the precision
of their expectation values given by:

Δ Δ ⩾ ℏ
p q

2
(7.65)

We explore some ramifications of Heisenberg’s result in this section.
Earlier in chapter 6 we discussed the free particle, a system experiencing no

potential, with wavefunction described by equation (6.9). Translation in the
positive direction gives a solution: ψ = +Ae ikx. As shown in chapter 6, these
functions are eigenfunctions of momentum with eigenvalues: = ℏp kx , which is an
exact result with no variance in its measurement. The wavefunction has proba-
bility density:

ψ = = =− +x A e e A e A( ) ( ) (7.66)ikx ikx2 2 2 0 2

which is independent of x, or constant over all space. This means a free particle is
equally likely be anywhere, exhibiting no localization whatsoever. There is no
statistical precision in knowledge of position. According to equation (7.65), as the
degree of uncertainty in linear momentum decreases: Δ →p 0x , the uncertainty in
position becomes infinite: Δ → ∞x .

In probability theory, statistical variance is a measure of the spread of values from
the mean. In order to properly account for both positive and negative deviation, the
uncertainty in precision of a statistically-averaged value is found from its variance as
a root mean square:

Δ = −q q q (7.67)2 2

We can use these quantities to investigate consequences of the uncertainty principle
for conjugate variables such as position and momentum.

Consider uncertainty in the lowest energy one dimensional particle in a box
wavefunction: ψ1 given in equation (7.13). For these eigenfunctions, general forms
for expectation values position are given in equation (7.45) and momentum in
equation (7.47). The results were independent of quantum number n, with values:
〈 〉 =p 0x and 〈 〉 =x L/2. What remains to be determined are the following expect-
ation values unique to ψ1:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟∫ π

π
π

π
= = − = −

x
L

x
x

L
x

L
L L L L2

sin d
2

6 4
2 3

6
(7.68)

L
2

0

2 2
3 3

2

2 2 2

2

and

⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∫ ∫π π π π π= −ℏ = + ℏ = ℏ

p
L

x
L x

x
L

x
L

x
L L

2
sin

d
d

sin d
2

sin (7.69)x
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The position-momentum uncertainty in the lowest energy state of a 1-dimensional
particle in a box is then:

π
π

π πΔ ⋅ Δ = − − ⋅ ℏ − = − ⋅ ℏ

= ℏ

x p
L L L

L
2 3

6 4
0

6
3 2

1.1357
2

(7.70)
x

2 2 2

2

2 2 2

2

2

or 13.6% above the minimum uncertainty. It is left as an exercise to show that the
uncertainty in particle in a box eigenstate ψ2 is: ℏ1.6703 /2.

PARALLEL INVESTIGATION: Verify the uncertainty between position and
momentum is: Δ ⋅ Δ = ℏx p 1.1357x 2

for the wavefunction: χ∣ 〉 = π( )cos1 1/2L

x
L

1
2

with
quantum numbers over the range: − ⩽ ⩽L x L.

What’s the Matter with Waves?

7-21



IOP Concise Physics

What’s the Matter with Waves?
An introduction to techniques and applications of quantum mechanics

William Parkinson

Chapter 8

Quantum rotation

8.1 Circular motion: the particle on a ring
To review the classical physics of matter in circular motion, see chapter 4. For its
quantum mechanical representation we take the same approach as there, developing
it from the perspective of angular momentum. For circular motion, the vector
describing angular momentum is perpendicular to the plane of rotation, written
relative to the radial vector and linear momentum of the particle in the usual way as:

⃗ = ⃗ × ⃗L r p . If rotation is confined to the xy-plane the z-component of L is the only
non-zero value, and has quantum mechanical form that is a combination of position
and linear momentum operators:

⎡
⎣⎢

⎤
⎦⎥

⌢ = ˆ ⋅ ˆ − ˆ ⋅ ˆ = ℏ ⋅ ∂
∂

− ⋅ ∂
∂

L x p y p
i

x
y

y
x

(8.1)z y x

As was found to be the case in chapter 4, the development is facilitated by
transforming coordinate systems from Cartesian into the spherical polar frame.
This is accomplished using the relations (see figure 4.2)

⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

θ θ ϕ θ ϕ

θ ϕ

= = =

= + + = =− −

z r x r y r

r x y z
z
r

y
x

cos sin cos sin sin

( ) cos tan
(8.2)2 2 2 1 2 1 1

Expressions from section B.1 for derivatives of inverse trigonometric functions will
also be needed:

= −
−

⋅ =
+

⋅
− −y
x y

y
x y

y
x

d cos ( )
d

1

1

dy
dx

d tan ( )
d

1
1

d
d

(8.3)
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Coordinate conversion is accomplished by performing transformations of the
following type:

⎜ ⎟ ⎜ ⎟⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

θ
θ

ϕ
ϕ

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂x

r
x r x x

(8.4)
y z y z y z, , ,

with similar equations for ∂ ∂y/ and ∂ ∂z/ . Beginning with the radial coordinate r as
defined in equation (8.2) we find:

⎜ ⎟⎛
⎝

⎞
⎠ θ ϕ∂

∂
= + + ⋅ = =−r

x
x y z x

x
r

1
2

( ) 2 sin cos (8.5)
y z,

2 2 2 1 2

The final identity follows by substituting the spherical polar definition of x from
equation (8.2) into equation (8.5). Similarly the y dependence of r is:

⎛
⎝⎜

⎞
⎠⎟ θ ϕ∂

∂
= =r

y
y
r

sin sin (8.6)
x z,

Proceeding for θ we have:

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

θ∂
∂

= −
−

⋅ − =
+

⋅
x z r

zx
r x y r

zx
r

1

1 ( )

1
2

2 1

( )
(8.7)

y z,
2 3 2 2 2 3

Substituting definitions from equation (8.2) for x, y, and z, equation (8.7) simplifies
to:

⎜ ⎟⎛
⎝

⎞
⎠

θ θ ϕ∂
∂

=
x r

cos cos
(8.8)

y z,

In a similar fashion, we obtain:

⎛
⎝⎜

⎞
⎠⎟

θ θ ϕ∂
∂

=
y r

cos sin
(8.9)

x z,

Proceeding for ϕ we have:

⎜ ⎟⎛
⎝

⎞
⎠

ϕ∂
∂

=
+

⋅ − = −
+

⋅
x y x

y
x x y x

y
x

1
1 ( )

1

( )
(8.10)

y z,
2 2 2 2 2 2

Again substituting the spherical polar definitions and simplifying gives:

⎜ ⎟⎛
⎝

⎞
⎠

ϕ ϕ
θ

∂
∂

= −
x r

sin
sin

(8.11)
y z,

The motivated reader can verify that:

⎛
⎝⎜

⎞
⎠⎟

ϕ ϕ
θ

∂
∂

=
y r

cos
sin

(8.12)
x z,
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These transformations are combined:

θ ϕ θ ϕ
θ

ϕ
θ ϕ

θ ϕ θ ϕ
θ

ϕ
θ ϕ

∂
∂

= ⋅ ∂
∂

+ ⋅ ∂
∂

− ⋅ ∂
∂

∂
∂

= ⋅ ∂
∂

+ ⋅ ∂
∂

+ ⋅ ∂
∂

x r r r

y r r r

sin cos
cos cos sin

sin

sin sin
cos sin cos

sin

(8.13)

so that the z-component of angular momentum is:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

θ ϕ θ ϕ θ ϕ
θ

ϕ
θ ϕ

θ ϕ θ ϕ θ ϕ
θ

ϕ
θ ϕ

ˆ = ℏ ⋅ ⋅ ∂
∂

+ ⋅ ∂
∂

+ ⋅ ∂
∂

− ℏ ⋅ ⋅ ∂
∂

+ ⋅ ∂
∂

− ⋅ ∂
∂

L
i

r
r r r

i
r

r r r

sin cos sin sin
cos sin cos

sin

sin sin sin cos
cos cos sin

sin

(8.14)
z

In similar fashion to the classical investigation in chapter 4, this cumbersome
quantum mechanical expression simplifies nicely to a z-component of angular
momentum in concise form under the restrictions of constant radial component
and constant polar angle of 1.571 radians:

ϕ
ˆ = ℏ ∂

∂
L

i
(8.15)z

As discussed in chapter 4, the energy of rotation is: =E L I/22 , with moment of
inertia: I = μr2. For rotational motion confined to the xy-plane: =L Lz

2 2 only. The
time independent Schrödinger equation for a particle rotating in the xy-plane under
the influence of no external potential is therefore a function of the azimuthal angle:

ψ ϕ ψ ϕ
ϕ

ψ ϕ
ˆ

= − ℏ ∂
∂

=L
I I

E
2

( )
2

( )
( ) (8.16)z

2 2 2

2

This standard quantum mechanical problem is commonly referred to as the particle
on a ring. We seek eigenfunctions whose second derivative returns the eigenvalue:
− ℏIE2 / 2. This problem should be familiar by now, with solutions of either sine,
cosine or imaginary exponential form. In this particular case, it is typical to employ
wavefunctions that are also eigenfunctions of angular momentum. The preference is:

ψ ϕ = ϕNe( ) (8.17)imℓ

Prefactor N normalizes the function, determined by requiring the probability density
infinitely sums to unity over the range: ϕ π⩽ ⩽0 2 . Because the wavefunction is
imaginary, N is determined from the integral:

∫ ∫ ∫ψ ϕ ϕ ϕ ϕ π= = = = ⋅
π π

ϕ ϕ
π

− +N e e N N1 ( ) d d d 2 (8.18)im im

0

2
2 2

0

2
2

0

2
2ℓ ℓ

The normalized wavefunction is therefore: ψ ϕ π= ⋅ ϕe( ) 1/ 2 imℓ
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The parameter mℓ is of more immediate interest. Using equations (8.16) and
(8.17), we see that the energy of the particle on a ring has mℓ dependence:

= ℏ
E

m
I2

(8.19)m
ℓ
2 2

ℓ

This same result could equally be obtained via the energy expectation value:
ψ ϕ ψ ϕ〈 〉 = 〈 ∣ ˆ∣ 〉E T( ) ( ) over the range: ϕ π⩽ ⩽0 2 . From equation (8.15) we see

that angular momentum is also a function of this parameter:

ψ ϕ
π ϕ

ψ ϕˆ = ℏ ∂
∂

= ℏ
ϕ

L
i

e
m( )

1

2
( ) (8.20)z

im

ℓ

ℓ

Alternatively, the result from (8.20) can be found by evaluating: ψ ϕ ψ ϕ〈 〉 = 〈 ∣ ˆ ∣ 〉L L( ) ( )z z .
To understand why an eigenfunction with negative exponential was not considered
in the general solution, we allow the parameter mℓto take either positive or negative
values, giving angular momentum oriented along either the positive or negative
z axis. The two possibilities arise when a particle rotates in opposite directions.
Since mℓ appears as a squared factor in equation (8.19), both directions of motion
have the same energy, or are degenerate.

At this point there are no restrictions on the numeric values that mℓ can possess,
so that both angular momentum and rotational energy appear continuous. However
a suitable wavefunction must meet the stipulation that as it traverses the ring it does
not destructively interfere with itself. In order to fulfill this condition, its amplitude
must periodically align. In terms of angular displacement, the boundary condition to
be satisfied is: ψ π ψ± ⋅ =m( 2 ) (0)ℓ , for integer values of mℓ. To visualize this
restriction, think of the real component of the exponential represented in the
form: ϕ ϕ+m i mcos( ) sin( )ℓ ℓ . Focusing on the real component, it is then required
that ( π= ± ×mcos(0) cos 2ℓ ). As an alternative we can think from Bohr’s perspec-
tive of a well-behaved wavefunction. They are postulated to be single-valued, so the
particle on a ring must be at the same point in space every 2π radians. From either
perspective, the boundary condition is satisfied if mℓis restricted to values:

= ± ± ± …m 0, 1, 2, 3 (8.21)ℓ

The parameter mℓ is thus a quantum number. Angular momentum and energy
exist in quantized, or discrete, amounts. There are both positive and negative
allowed values of angular momentum, scaled by integer units of ℏ. The sign of mℓ

reflects opposing directions of particle rotation. Energy levels for the particle on a
ring are depicted in figure 8.1. Those above the zero-point are doubly-degenerate
since mℓ appears as a square in the energy expression.

The particle on a ring wavefunction contains much the same type of information
that we saw could be extracted from the particle in a box expression in chapter 7.
For instance, the likelihood that the particle be found in the third quadrant is
determined by evaluating:

∫ ∫π
ϕ

π
ϕ

π
ϕ π

π
π π

π
= = ⋅ = − =

π

π
ϕ ϕ

π

π
− +e e

1
2

d
1

2
d

1
2

3 2 3 2
2

0.25 (8.22)im im
3 2 3 2

ℓ ℓ
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Indeed the particle on a ring has 25% of being in any quadrant. In fact it has the
same probability of being in any arbitrarily chosen ring segment independent of mℓ

value. In chapter 7 we saw that the particle in a box had a likelihood of being in a
box segment which depended upon its quantum number n. An expectation value for
the most probable angular position can be determined by designing the operator:
ϕ ϕˆ = ×. Applying this to the normalized particle on a ring wavefunction we find:

∫ϕ ψ ϕ ϕ ψ ϕ
π

ϕ ϕ
π

ϕ π π= ˆ = = =
π

( ) ( )
1

2
d

1
4

2
0

(8.23)
0

2
2

Referring back to chapter 7, this is analogous to the particle in a box. The particle on
a ring on average is halfway around, independent of quantum number.

8.2 Spherical motion: the particle on a sphere
A particle confined to rotational motion on the surface of a sphere will now
experience a time independent Schrödinger equation in Cartesian form:

ψ ψ
ˆ

=L
I

x y z E x y z
2

( , , ) ( , , ) (8.24)
2

where: ˆ = ˆ + ˆ + ˆL L L Lx y z
2 2 2 2. Again, it will be advantageous to choose the spherical

polar coordinate frame. Since motion is now explicitly 3-dimensional, additional
components of angular momentum are required. Similar transformations to those

Figure 8.1. Energy levels of a particle on a ring.

What’s the Matter with Waves?

8-5



for L̂z result in spherical polar expressions for the other two angular momentum
components:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

ϕ
θ

ϕ θ
θ ϕ

ϕ
θ

ϕ θ
θ ϕ

ˆ = − ℏ ∂
∂

+ ∂
∂

ˆ = ℏ ∂
∂

− ∂
∂

L
i

L
i

sin cos
cos
sin

cos sin
cos
sin

(8.25)
x

y

The three independent components are combined via vector dot product to form the

total angular momentum: ˆ = ˆ + ˆ + ˆL L L Lx y z
2 2 2 2. After some manipulation this

quantity is expressed as:

⎡
⎣⎢

⎤
⎦⎥θ

θ
θ θ θ ϕ

ˆ = −ℏ ∂
∂

+ ∂
∂

+ ∂
∂

L
cos
sin

1
sin

(8.26)2 2
2

2 2

2

2

The L̂
2 operator is used in equation (8.24), solving the eigenvalue problem for

eigenfunctions of both the polar and azimuthal angle: ψ θ ϕ( , ). Following a tedious
separation of variables which is omitted here but can be found in a variety of
mathematical physics texts, eigenfunctions of the L̂

2 operator are identified.
Collectively the solutions are known as the spherical harmonics, introduced by
LaPlace in the 18th century. These versatile functions are applicable to a wide
variety of problems that possess spherical symmetry. Their utility spreads across the
disciplines of physics; not only to quantum mechanics but classical mechanics and
electrostatics as well.

As we learned from the 2- and 3-dimensional particle in a box in chapter 6,
separation of variables produces a product function of one term for each independ-
ent variable. In spherical harmonics, dependence on the azimuthal angle is expressed
in the familiar particle on a ring solutions: ϕeimℓ , containing the quantum number mℓ.
Polar angle dependence is characterized by trigonometric functions known as
associated Legendre polynomials. This requires an additional quantum number
symbolized as: ℓ, which recursively generates the spherical harmonic’s Legendre
polynomials. Acceptable solutions result when ℓ takes the integer values:

= …ℓ 0, 1, 2, (8.27)

The existence of ℓ creates a boundary condition which places upper limits on allowed
values for mℓ:

= ± ± … ±m ℓ0, 1, 2, , (8.28)ℓ

Spherical harmonics are symbolically represented by: θ ϕY ( , )ℓ
mℓ . Forms of spherical

harmonics for =ℓ 0 to =ℓ 3 are presented in table 8.1. These functions form an
orthonormal set over the polar range: θ π⩽ ⩽0 and the azimuthal range:

ϕ π⩽ ⩽0 2 . When evaluating properties over the entirety of their space, care
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must be taken in correctly expressing the angular integration element, which
includes a sine factor for projection of the azimuthal angle into the xy plane:

∫ ∫ ∫τ ϕ θ θ= ⋅
π π

d d sin ( )d (8.29)
0

2

0

Using equation (8.29), table 8.1, and integrals of section B.2, we see for instance the
θ ϕY ( , )2

0 function is normalized:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫ ∫θ ϕ θ ϕ
π

ϕ θ θ θ θ

θ θ θ

π

= ⋅ − +

= − + −

= − + =

π π
Y Y( , ) ( , )

5
16

d sin ( )[9 cos ( ) 6 cos ( ) 1]d

5
8

9
5

cos ( ) 2 cos ( ) cos ( )

2
0

5
8

18 20 10
5

1

(8.30)

2
0

2
0

0

2

0

4 2

5 3

and is orthogonal to for instance the θ ϕY ( , )1
0 function:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫ ∫θ ϕ θ ϕ
π

ϕ θ θ θ θ

θ θ

π

= ⋅ −

= − +

= − − − + − − =

π π
Y Y( , ) ( , )

15
8

d sin ( )[3 cos ( ) cos ( )]d

15
4

3
4

cos ( )
1
2

cos ( )

2
0

15
4

( 1) (1)
4

( 1) (1)
2

0

(8.31)

2
0

1
0

0

2

0

3

4 2

4 4 2 2

Table 8.1. Spherical harmonic expressions for =ℓ 0 to =ℓ 3.

ℓ mℓ θ ϕY ( , )ℓ
mℓ

0 0
π

1
2

1 0 θ
π

cos( )1
2

3

1 ±1 θ∓ ⋅ ϕ±
π

esin( ) i1
2

3
2

2 0 θ −
π

(3 cos ( ) 1)21
4

5

2 ±1 θ θ∓ ⋅ ⋅ ϕ±
π

ecos( ) sin( ) i1
2

15
2

2 ±2 θ ⋅ ϕ±
π

esin ( ) i2 21
4

15
2

3 0 θ θ θ− ⋅
π

(2 cos( ) 3 cos( ) sin( ))1
4

7

3 ±1 θ θ θ∓ ⋅ − ⋅ ϕ±
π

e(4 cos ( ) sin( ) sin ( )) i2 31
8

21

3 ±2 θ θ⋅ ⋅ ϕ±
π

ecos( ) sin ( ) i2 21
4

105
2

3 ±3 θ∓ ⋅ ϕ±
π

esin ( ) i3 31
8

35
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Energy eigenvalues for the particle on a sphere wavefunctions have the general form:

= + ℏ
E

ℓ ℓ
I

( 1)
2

(8.32)ℓ

2

For instance, applying equation (8.24) on the ℓ = 2, mℓ = 0 spherical harmonic
function, along with trigonometric identity A2.3.1 leads to:

⎡
⎣⎢

⎤
⎦⎥θ ϕ

π θ
θ
θ θ θ ϕ

θ

π
θ θ

π
θ θ ϕ

ˆ = − ℏ ∂
∂

+ ∂
∂

+ ∂
∂

−

= − ℏ −

= − ℏ − = + ℏ ⋅

HY
I

I

I I
Y

( , )
1
4

5
2

cos
sin

1
sin

(3 cos ( ) 1)

1
4

5
2

(6 sin ( ) 12 cos ( ))

1
4

5
2

(6 18 cos ( ))
2(2 1)

2
( , )

(8.33)

2
0

2 2

2 2

2

2
2

2
2 2

2
2

2

2
0

If instead, this value is determined as an expectation value, the eigenfunction would
be extracted from the eigenvalue and then using equation (8.32) we would find:

θ ϕ θ ϕ θ ϕ θ ϕˆ = + ℏ ⋅ = + ℏ
Y H Y

I
Y Y

I
( , ) ( , )

2(2 1)
2

( , ) ( , )
2(2 1)

2
(8.34)2

0
2
0

2

2
0

2
0

2

The spherical harmonic wavefunctions represent particles possessing total angular
momentum: + ℏℓ ℓ( 1) . It is important to notice that both the particle on a sphere
energy and total angular momentum depend on ℓ alone and have no mℓ dependence.
Since equation (8.28) gives the number of allowed mℓ values as a function of ℓ, the
particle on a sphere energy levels therefore exhibit a 2ℓ +1 degeneracy depicted
in figure 8.2.

As discussed for a particle on a ring, mℓ measures the z-projection of angular
momentum in units: = ℏL mz ℓ . Allowed values of mℓ (equation (8.28)), determine

Figure 8.2. Energy levels of a particle on a sphere.
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the degeneracy of a given orbital on each energy level. For a given ℓ, the Lz value can
take +ℓ2 1 possible orientations, commonly depicted by the vector picture shown in
figure 8.3. Using the approach taken in section 7.5 it is possible to show the
commutation relation: ˆ =L L[ , ] 0z

2 . Spherical harmonics are therefore simultaneous

eigenfunctions of both operators. The relationships: ˆ =L L[ , ] 0y
2 , and ˆ =L L[ , ] 0x

2

are also true. But chapter 7, equation (7.64) shows that individual components are of
angular momentum are conjugate variables which do not commute with one
another, so cannot be simultaneously measured. According to equation (7.65), if
〈 ˆ 〉Lz is known with no variance, it is impossible to determine 〈 ˆ 〉Lx or 〈 ˆ 〉Ly with any
certainty at all. This consequence is indicated by the precessing vector model of
angular momentum shown in figure 8.3(c).

Figure 8.3. (a) Vector picture of one-particle angular momentum for a p-type orbital ( =ℓ 1). (b) Vector picture
of one-particle angular momentum for a d-type orbital ( =ℓ 2). (c) Precessing vector picture of one-particle
angular momentum for a p-type orbital ( =ℓ 1).
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Chapter 9

Quantum vibration

9.1 Harmonic oscillation
The task of investigating quantum mechanical vibration benefits from a wealth of
information in chapter 3, a classical study of this motion. It may be helpful to review
that treatment or refer back when needed, as there are terms and concepts common to
both models. For the present study we take a familiar approach, introduced in chapter
2 and also used in chapter 3, by treating two vibrating objects as a one-body oscillator
characterized by reduced mass μ. The coordinate frame is aligned so the motion
occurs 1-dimensionally along the x-axis. As in chapter 3, we assume the mass
experiences restoring force: ⃗ = − ⃗F kx . There k was defined as the spring constant
with SI units: kg · s−2. That term in this context conjures an image of a nano-spring
attached to the mass. Although the name spring constant invokes a concept of some
merit, here we prefer k to be known as the force constant. Its origin is electrostatic not
mechanical, more correctly envisioned as a characterizing factor to the potential
gradient rather than spring stiffness (for mathematical confirmation of this assertion,
see section 9.2 and particularly equation (9.25)). Ultimately the magnitude of k is
indeed proportional to the strength of a chemical bond between two nuclei.

Equation (3.5) shows a recipe for determining the above-mentioned connection
between a 1-dimensional conservative restoring force and its potential. This is
expressed in quantum mechanical form by an operator equation:

ˆ = ˆV kx
1
2

(9.1)2

Equation (9.1) adds a layer of complication to the time independent Schrödinger
equation. The quantum mechanical investigations in chapters 6 and 8 had no terms
beyond a kinetic energy operator. The eigenvalue problem is now a differential
equation of the form:

⎛
⎝⎜

⎞
⎠⎟ψ ψ ψˆ = − ℏ + =H

m x
kx E

2
d

d
1
2

(9.2)
2 2

2
2
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Equation (9.2) shares mathematical similarities to the eigenvalue problem discussed
in section 8.2 for a particle on a sphere. In that case, the Hamiltonian contained no
explicit potential term, but the kinetic energy operator expressed in spherical polar
coordinates resulted in a differential equation with coefficients that are functions of
independent variable θ (see equation (8.26)). As was the case there, the differential
equation has a power series solution resulting in an eigenfunction formed from a
product of an exponential term and a polynomial. This time, however, the
exponential is of Gaussian form. In addition, the associated Legendre polynomials
used in chapter 8 are replaced by Hermite polynomials, symbolized: Hv(y).
Expressions for the first eight Hermite polynomials are presented in table 9.1.
Solution of the differential equation of equation (9.2) can be found in a variety of
mathematical physics texts. The resulting harmonic oscillator eigenfunctions have a
normalized form:

ψ = ⋅ = …−N H y e v( ) 0, 1, 2, (9.3)v v v
y 22

The prefactor Nv normalizes the functions:

⎜ ⎟⎛
⎝

⎞
⎠

α
π

=
⋅ !

N
v

1
(2 )

(9.4)v v 1 2

1 4

and the parameters y and α are given by:

α α μω= ⋅ =
ℏ

y x (9.5)

where ω is the angular speed, having SI units of rad · s−1 and defined in chapter 3,
equation (3.9):

ω
μ

= k
(9.6)

Table 9.1. The first eight Hermite polynomials.

v Hv (y)
†

0 1
1 2y
2 4y2− 2
3 8y3− 12y
4 16y4− 48y2 + 12
5 32y5− 160y3 + 120y
6 64y6− 480y4 + 720y2− 120
7 128y7− 1344y5 + 3360y3− 1680y

† α= ⋅y x α μω= ℏ2
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The parameter α has SI dimension: m−2. The oscillator frequency is typically
represented by the Greek symbol ν instead of f, and is determined by dividing the
angular speed by a complete oscillator cycle of 2π radians:

ν ω
π π μ

= = k
2

1
2

(9.7)

This is measured in SI units of s−1 or Hertz. The energy eigenvalues are expressed
using either the angular speed:

ω= + ℏ = …E v v( 1 2) 0, 1, 2, (9.8)v

or oscillator frequency:

ν= + = …E v h v( 1 2) 0, 1, 2, (9.9)v

As encountered for rotational motion, harmonic oscillator energy levels are
quantized by integer amounts, with solutions beginning at level zero. Unlike the
rotational case, the v = 0 solution has a non-zero value:

ω ν= ℏ =E h
1
2

1
2

(9.10)0

Equation (9.10) shows the harmonic oscillator zero-point vibrational energy, which it
is argued occurs as a consequence of the uncertainty principle (see section 7.5). The
implication is that the oscillator must remain in motion even in its definite state of
minimum energy, otherwise its position could be precisely determined along with its
conjugate momentum. Similar arguments are posed in the science of cryogenics as to
why absolute zero cannot experimentally be attained. Another distinctive feature of
equation (9.9) is the energy level spacing. All harmonic oscillator energy levels from
zero to infinity are separated by the same amount: ω νℏ = h . This fact was used in
section 3.2 to determine an expression for the spectral brightness of a black body
radiator.

Normalization of ψ0 is demonstrated using equations (9.3) and (9.4) along with
table 9.1. Integrating its probability density over the limits −∞ ⩽ ⩽ +∞x , we
obtain:

⎜ ⎟⎛
⎝

⎞
⎠ ∫ψ ψ α

π
= α

−∞

+∞
−e yd (9.11)x

0 0

1 2
2

The integration is performed on an even function over symmetric limits in equation
(9.11). According to section B.4, it therefore can be evaluated in the form:

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∫ψ ψ α

π
α
π

π
α

= ⋅ = ⋅ × =α
+∞

−e y2 d 2
1
2

1 (9.12)x
0 0

1 2

0

1 2 1 2
2

PARALLEL INVESTIGATION: Verify that v = 1 harmonic wavefunction is nor-
malized: ψ ψ = 10 0 over the range: −∞ ⩽ ⩽ +∞x .
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Plots of the first four harmonic oscillator wavefunction amplitudes in figure 9.1(a)
are characteristic in appearance for all higher order harmonic oscillator wave-
functions. Although integration extends to infinity, their amplitudes show that
the probability density of ψ0 to be very localized about the zero-point displace-
ment. For instance using a typical diatomic force constant such as that for Cl2 of
k = 329 kg · s−2 (= 0.211 au), we find using numerical software the ground state
oscillator has a 66.2% chance of being within a Bohr radius, or: ±a0 of x = 0. This
increases to 94.5% within ±2a0 and 99.6% within ±3a0.

PARALLEL INVESTIGATION: Verify that harmonic oscillator wavefunction: ψ1
has a 41% chance of being in the region of space: ⩽ ⩽ +∞a x0 .

According to appendix B, harmonic oscillator wavefunctions with even-ordered
Hermite polynomials must be orthogonal to those with odd order over all space
−∞ ⩽ ⩽ +∞x . In fact, all others also exhibit this property. For instance:

⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎛
⎝

⎞
⎠
⎤
⎦⎥

∫ ∫ψ ψ α
π

α

α
π

α π
α

π
α

= ⋅ −

= ⋅ ⋅ − =

α α
∞

−
∞

−x e x e x
1

2 2
8 d 4 d

1

2 2
8

4
4

1
2

0

(9.13)

x x
0 2

1 2

0

2

0

1 2

3 2

2 2

Figure 9.1. (a) Amplitude plots of the v = 0, 1, 2, and 3 harmonic oscillator wavefunctions. (b) Probability
density plots of the v = 0, 1, 2, and 3 harmonic oscillator wavefunctions.
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PARALLEL INVESTIGATION: Verify: ψ ψ = 01 3 over the range: −∞ ⩽ ⩽ +∞x .

The wavefunctions are eigenfunctions of the Hamiltonian defined in equation
(9.2). For instance, using ψ1 :

μ
α α α− ℏ + =α α α− − −

x
N x e kx N x e E N x e

2
d

d
[ (2 ) ]

1
2

(2 ) (2 ) (9.14)x x x
2 2

2 1
2 2

1
2

1 1
22 2 2

Differentiating and dividing through by ψ1 leaves an eigenvalue of:

α
μ

α
μ

= ℏ − ℏ +E x
k

x
3

2 2 2
(9.15)1

2 2 2
2 2

Substitution of equations (9.5) and (9.6) into equation (9.15) gives:

ω ω= ℏ = + ℏE
3
2

(1 1 2) (9.16)1

PARALLEL INVESTIGATION: Verify the expectation value:
ψ ψ ωˆ = + ℏH (1 1 2)1 1 for the normalized harmonic oscillator wavefunction ψ1
over the range: −∞ ⩽ ⩽ +∞x .

As further examples of harmonic oscillator expectation value problems, we now use the
ground state wavefunction ψ0 to calculate the uncertainty between linear position and
momentum. From equation (9.10), the minimum energy point of the harmonic oscillator
is not zero, but has a finite value in accordance with Heisenberg’s relationship. From the
variance recipe described in section 7.5, the oscillator has uncertainty between position
and momentum described by:

Δ ⋅ Δ = − ⋅ − 〈 〉x p x x p p (9.17)x x x
2 2 2 2

The integral required to evaluate average position is:

⎜ ⎟⎛
⎝

⎞
⎠ ∫ψ ψ α

π
= ∣ ˆ∣ = ⋅ =α

−∞

+∞
−x x x e xd 0 (9.18)x

0 0

1 2
2

The integral in equation (9.18) can be evaluated with numeric software to obtain
zero, but this conclusion can easily be drawn by noting that integration is performed
on an even × odd × even = odd function over symmetric limits. According to
section B.4, this integral must vanish. Likewise, the expectation value of linear
momentum is evaluated from:

⎜ ⎟⎛
⎝

⎞
⎠ ∫ψ ψ α α

π
〈 〉 = 〈 ∣ ˆ ∣ 〉 = − ℏ ⋅ =α

−∞

+∞
−p p

i
x e xd 0 (9.19)x x

x
0 0

1 2
2

which vanishes for the same reason as does equation (9.18).
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What remain to be determined are the expectation values of even × even × even =
even functions, which are done using integrals from appendix B:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∫ψ ψ α

π
α
π

π
α α

= ˆ = ⋅ ⋅ = ⋅ =α
+∞

−x x x e x2 d 2
4

1
2

(9.20)x2
0

2
0

1 2

0

2
1 2

3 2

2

Notice from equation (9.5) that the result of equation (9.20) has dimension m2, as
required. The remaining integral to evaluate is:

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

∫ ∫ψ ψ α
π

α α

α
π

α π
α

α π
α

α

= ˆ = − ℏ ⋅ − + ⋅

= − ℏ ⋅ − + = ℏ

α α
+∞

−
+∞

−p p e x x e x2 d d

2
1
2 4 2

(9.21)
x x

x x2
0

2
0

2
1 2

0

2

0

2

2
1 2

2
3 2

2

2 2

Checking the dimension of equation (9.21), we find: kg2 · m2 · s−2, as required.
Inserting equations (9.20) and (9.21) into equation (9.17) gives:

α αΔ ⋅ Δ = − ⋅ ℏ − = ℏ
x p 1 2 0 2 0

2
(9.22)x

2

or the minimum uncertainty between conjugate variables for the ground state
harmonic oscillator.

PARALLEL INVESTIGATION: Verify the uncertainty between position and
momentum of the first excited harmonic oscillator wavefunction: ψ1 is:
Δ ⋅ Δ = ℏx p 3 2x over the range: −∞ ⩽ ⩽ +∞x .

9.2 Anharmonicity
Applying the ideas of section 9.1 to molecules has severe limitations. The potential
of two nuclei vibrating about their equilibrium bond length: re, as in a diatomic, is
only parabolic at very small displacements. If we consider a parabola with its zero
point placed at re, we soon encounter problems at points r < re due to the increase in
steepness of the potential caused by internuclear repulsion. In addition at values r >
re, there eventually is bond breaking. To mimic this event, the potential should
approach zero as the nuclei asymptotically approach infinite separation, rather than
a potential exhibiting continued parabolic increase. To address these issues, the
potential can be expanded in a Taylor series about the point r − re:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟= + − +

!
− + ···

= =

V r V r
V r

r
r r

V r
r

r r( ) ( )
d ( )

d
( )

1
2

d ( )
d

( ) (9.23)e
r r

e

r r

e

2

2
2

e e
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The potential is adjusted with the first term in the expansion set at the origin so that
V(re) = 0. At the bottom of the well V(r) varies with r such that there is zero slope
with only upward curvature at the inflection point r = re. Therefore, through the
quadratic term the power series is:

⎛
⎝⎜

⎞
⎠⎟≈

!
−

=

V r
V r
r

r r( )
1
2

d ( )
d

( ) (9.24)
r r

e

2

2
2

e

Terms beyond second order in the power series expansion are called anharmonic
effects.Using equation (9.1), we can identify the force constant from equation (9.24):

⎛
⎝⎜

⎞
⎠⎟=

=

k
V r
r

d ( )
d

(9.25)
r r

2

2
e

Based on probability density plots of harmonic oscillator wavefunctions shown in
figure 9.1(b), we see the ground state to be highly localized about the point r = re. It
is thus anticipated the harmonic potential from equation (9.1) or (9.24) is reasonable
for the v = 0 wavefunction. However, effects due to inter-nuclear repulsion and bond
breaking become more important as the energy levels increase. Another approach to
incorporating anharmonic effects in the oscillator is to replace the parabolic
potential with one that more correctly mimics behavior at displacements away
from re. The most successful of these is the Morse potential:

= − − −V r D e( ) (1 ) (9.26)e
a r r( ) 2e

In equation (9.26) De is a parameter describing the well depth, alternatively
presented in units of Joules, kcal · mol−1, or cm−1 depending on the audience.
The parameter: a is:

⎛
⎝⎜

⎞
⎠⎟

μω=a
D2

(9.27)
e

2 1 2

Dimensional analysis shows a has units of: m−1 as required. The particular form of a
is judiciously chosen to correlate behavior of the Morse potential relative to the
standard harmonic oscillator potential. This can be seen if the exponential in
equation (9.26) is expanded in a power series, to obtain:

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟
⎞
⎠⎟= − − − +

!
− − ···V r D a r r a r r( ) 1 1 ( )

1
2

( ( )) (9.28)e e e
2

2

For small displacements: r − re only the first term in the expansion is important. We
can use equations (9.27) and (9.6) to give:

⎛
⎝
⎜⎜
⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟μω≈ − = −V r D

D
r r k r r( )

2
( )

1
2

( ) (9.29)e
e

e e

2 1 2 2

2
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This shows parameter a to be defined so that the Morse potential is harmonic
through first order in nuclear displacement.

It is possible to obtain analytic eigenfunctions to the Schrödinger equation’s
differential equation with the potential in equation (9.26) replacing a parabolic
potential in the Hamiltonian. Again a power series solution that is omitted here
results, with eigenfunctions containing an exponential instead of a Gaussian. The
solution also requires Laguerre polynomials rather than Hermite polynomials. Key
features of the Morse potential are presented in figure 9.2. To assist its interpreta-
tion, the Morse potential is overlayed with a parabola, reflecting the appearance of a
harmonic potential.

At distances: r < re where nuclear repulsion is expected to dominate, V(r) displays
an enhanced steepness in comparison to a harmonic potential. When r > re the
Morse potential also displays the proper characteristics with regard to bond
breaking. Another result of physical significance to the solutions is the number of
energy levels obtained, and their spacing. First there is a finite rather than infinite
number of bound state solutions. In addition, the energy levels are no longer evenly
spaced as was found in the harmonic oscillator case. In fact, there is a convergence of
the energy levels as the bond dissociation limit is met. The quantity D0 is the bond
dissociation energy measured relative to the zero-point vibrational energy. Eigenvalues
of the Schrödinger equation containing the Morse potential have the form:

ω ω= + ℏ − + ℏ = …E v v x v( 1 2) ( 1 2) 0, 1, 2, (9.30)v e
2

In equation (9.30) xe is a dimensionless parameter known as the anharmonicity
constant:

μω
ω= ℏ = ℏ

x
a

D2 4
(9.31)e

e

2

Figure 9.2. The Morse potential: = − − −V r D e( ) (1 )e
a r r( ) 20 is shown by the solid curve. The converging bound

state energy levels are depicted in the potential well. Overlayed with a dashed curve is the harmonic oscillator
potential: = −V r k r r( )

1
2

( )0
2.
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Equation (9.30) hints at a truncated power series expansion of a general solution.
Experimentalists are thus motivated to express the Morse potential in a generally
empirical form including further anharmonic corrections:

ω ω ω= + ℏ − + ℏ + + ℏ + ⋯E v v x v y( 1 2) ( 1 2) ( 1 2) (9.32)v e e
2 3
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William Parkinson

Chapter 10

Variational methods

10.1 Prologue
In 1930, Dirac published his landmark textbook: Principles of Quantum Mechanics.
With regard to the feasibility of quantum mechanics as a tool for routine application,
he stated:

The underlying physical laws necessary for the mathematical theory of a large
part of physics and the whole of chemistry are thus completely known, and the
difficulty is only that the exact application of these laws leads to equations
much too complicated to be soluble. It therefore becomes desirable that
approximate practical methods of applying quantum mechanics should be
developed, which can lead to an explanation of the main features of complex
atomic systems without too much computation.

The two most common and utile methods employed to address Dirac’s
concerns are variational and perturbative approaches. Each has distinct advan-
tages and particular applicability to certain quantum mechanical situations. In the
following, we examine the basic premise of the variational principle, along with a
few simple applications. See chapter 12 for an introduction to perturbative
approaches.

10.2 The variational principle
In chapter 6 we learned of the existence of the wavefunction Ψ0 that together with
Hamiltonian Ĥ in the time independent Schrödinger equation determine the ground
state energy of a particular system of interest:

ˆ Ψ = ΨH E (10.1)0 0 0
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In fact, as discussed in section 7.4, Ĥ is a Hermitian operator with an eigenvector of
orthonormal eigenfunctions Ψi having a discrete set of energy eigenvalues with the
property:

⩽ ⩽ ⩽E E E (10.2)0 1 2

The equal sign of equation (10.2) holds in the case of degenerate eigenfunctions. In
this instance with no loss of generality we assume the set is non-degenerate, so the
equal sign can be ignored.

Suppose an arbitrary function, called the trial wavefunction: Ψ̃ is formed as a
linear combination of the eigenvector:

∑Ψ̃ = Ψc (10.3)
i

i i

Using the projection operator technique (see section 7.3, equation (7.28)), equation
(10.3) is written:

∑Ψ̃ = Ψ Ψ Ψ̃ (10.4)
i

i i

Assuming the trial wavefunction is normalized, the variational principle states that
its energy obeys the condition:

Ψ̃ ˆ Ψ̃ ⩾H E (10.5)0

The equality in equation (10.5) holds only in the case: Ψ̃ = Ψ0 . To show this, we
begin with the normalization condition on the trial wavefunction, twice insert
equation (10.4), and use the orthonormality of the basis:

∑ ∑ ∑δ= Ψ̃ Ψ̃ = Ψ̃ Ψ 〈Ψ∣Ψ 〉〈Ψ ∣Ψ̃〉= Ψ̃∣Ψ 〈Ψ ∣Ψ̃〉= Ψ Ψ̃1 (10.6)
i j i j i, ,

i i j j i ij j i
2

As intimidating as the right-hand side of equation (10.6) may appear, it is merely the
sum of the squares of expansion coefficients, in accordance with the normality
condition of any function formed from an orthonormal basis (see chapter 7,
equation (7.27)). Referring there again, the energy of the trial wavefunction can
also be expressed by projection techniques:

∑ ∑Ψ̃ ˆ Ψ̃ = Ψ̃ Ψ 〈Ψ ˆ Ψ 〉〈Ψ ∣Ψ̃〉= Ψ Ψ̃H H E (10.7)
i j i,

i i j j i i
2

Assuming the basis is not completely degenerate, then each: Ei > E0 according to
equation (10.2). This means:

∑ ∑Ψ̃ ˆ Ψ̃ ⩾ Ψ Ψ̃ ⩾ Ψ Ψ̃ ⩾H E E E (10.8)
i i

i i0
2

0
2

0

where the final identity follows from equation (10.6). The equal sign in equation
(10.8) holds only in the case that Ψ̃ = Ψ0 .
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As a general rule, the variational principle is applicable whether or not elements of the
expansion eigenvector are eigenfunctions to the Hamiltonian. As an example, consider
the function ψ̃ as an approximation to the particle in a box wavefunction in the form:

⎛
⎝⎜

⎞
⎠⎟ψ̃ = −

L
xL x

30
( ) (10.9)

5

1/2
2

This is obviously not an eigenfunction of the kinetic energy operator: T̂ . The
prefactor in equation (10.9) ensures the function is normalized over the range:

⩽ ⩽x L0 :

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∫ψ ψ˜ ˜ = − + = − +

= =

L
x L x L x x

L
x

L
x

L
L L

L
L

30
( 2 )d

30
3 2 5 0

30
30

1

(10.10)

L

5 0

2 2 3 4
5

3
2

4 5

5

5

PARALLEL INVESTIGATION: Verify the factor: ⎜ ⎟⎛
⎝

⎞
⎠=N

L
15

16 5

1/2
normalizes the trial

wavefunction: χ̃ = ⋅ −N L x( )2 2 over the range: − ⩽ ⩽L x L.

To illustrate the variational principle, we evaluate the energy expectation value of the
wavefunction in equation (10.9):

∫

∫

ψ ψ˜ = ˜ ˆ ˜ =− ℏ − −

= ℏ −

E T
m L

xL x
x

xL x x

mL
xL x x

2
30

( )
d

d
( )d

30
( )d

(10.11)

L

L

2

5 0

2 2

2

5 0

2

Integration and simplification gives:

⎛
⎝⎜

⎞
⎠⎟ π

˜ = ℏ = =E
mL

L h
mL

h
mL

30
6

10
8

1.0132
8

(10.12)
2

5

3

2

2

2

2

2

This value is 1.32% above the energy eigenvalue E1 for particle in a box solution ψ1
(see chapter 7, equation (7.41)). Figure 10.1 compares amplitudes for both ψ1 and
ψ̃ over the range: ⩽ ⩽x L0 . We see this node-less function would not be an
appropriate upper bound to any of the higher particle in a box solutions.

PARALLEL INVESTIGATION: Verify the energy for the normalized trial wave-

function: ⎜ ⎟⎛
⎝

⎞
⎠χ̃ = −

L
L x

15
16

( )
5

1/2
2 2 is: ˜ =E

h
mL

1.0132
32

2

2
or 1.32% above the exact

solution for the lowest energy state: χ1 over the range: − ⩽ ⩽L x L.
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As a further example of its utility, consider the variational treatment of a
Gaussian function in the form:

ψ̃ = −Ne (10.13)cx2

as a trial wavefunction for solution to the ground state harmonic oscillator. This
problem was discussed in chapter 9, and possesses wavefunctions which are products
of a Gaussian function with a Hermite polynomial (see table 9.1). The oscillator
energy has the form:

ω
μ

= + ℏ = + ℏ = …E v v
k

v( 1/2) ( 1/2) 0, 1, 2, (10.14)v exact

where k is the oscillator force constant and μ the reduced mass. First consider the
normalization of the trial wavefunction over the range: −∞ ⩽ ⩽ +∞x . Since a
Gaussian is an even function (see section B.4), we find using integrals from section B.3:

∫ψ ψ π˜ ˜ = = = ⋅
∞

−N e x N
c

1 2 d 2
1
2 2

(10.15)cx2

0

2 22

from which we obtain: π=N c(2 / )1/4. Using the harmonic oscillator Hamiltonian
from chapter 9, equation (9.2), the trial energy is:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∫ψ ψ
π μ

π μ
π

μ
π π

μ

˜ = ˜ ˆ ˜ = ⋅ − ℏ +

= ⋅ ℏ − ℏ + = ℏ +

∞
− −E H

c
e

x
kx e x

c c c k c c k
c

2
2

2
d

d
1
2

d

2
2

2 2 4 2 16 2 2 8

(10.16)

cx cx
1/2

0

2 2

2
2

1/2 2 2 3 2

2 2

Figure 10.1. Comparing amplitudes of the exact particle in a box wavefunction: ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ψ π=

L
x

L
2

sin1

1/2
to the

approximate wavefunction: ⎜ ⎟⎛
⎝

⎞
⎠ψ̃ = −

L
xL x

30
( )

5

1/2
2 .
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Our task is to now find the best-fit parameter c. According to the variational
principle, the energy expectation value of trial wavefunction ψ̃ is greater than or
equal to, but not lower than, that for the ground state harmonic oscillator. In
mathematical terms, Ẽ is an upper bound to E exact. Since we are guaranteed to
never go below the exact energy, we are free to optimize c to produce the lowest
possible Ẽ . Considered as a continuous function, a plot of the trial energy versus c
is at a minimum when the tangential slope of this curve is zero, or when:

∂ ˜
∂

=E
c

0 (10.17)

We therefore use the result of equation (10.16) to find the optimum value of c:

μ
∂ ˜

∂
= = ℏ −E

c
k
c

0
2 8

(10.18)
2

2

from which: μ= ℏc k /2 . When this is inserted into the final identity of equation
(10.16) we obtain a trial energy of:

μ μ μ
˜ = ℏ

ℏ
+ ℏ = ℏE

km k

k

k
4

2

8

1
2

(10.19)
2

which is the exact ground state energy E0 for the harmonic oscillator according to
equation (10.14). Comparing with chapter 9, equation (9.5) we can now see that the
optimal value we have determined for the variational parameter is: α=c /2. It
should therefore be expected to obtain the exact ground state energy because we
variationally treated the exact wavefunction (see table 9.1). It is interesting to note
this result did not require solving a second-order differential equation with variable
coefficients, as does the harmonic oscillator eigenvalue problem.

PARALLEL INVESTIGATION: Verify the un-normalized trial wavefunction:
ψ̃ = −Nxe cx2 used with the harmonic oscillator Hamiltonian results in the same
best-fit variational coefficient found from equation (10.18): μ= ℏc k /2 and gives a
trial energy: μ˜ = ⋅ ℏE k3/2 / . This is the exact energy of the first excited state
oscillator: E1 because as table 9.1 shows, we are varying the exact first excited
harmonic oscillator wavefunction.

10.3 Determining expansion coefficients
The most common application of the variational principle is in the determination of
an optimal set of coefficients used as weighting factors for a basis set expansion of a
trial wavefunction:
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∑ ψΦ̃ = ∣ 〉
=

N c (10.20)
j

n

1

j j

Equation (10.20) contains N as a normalization constant. For simplicity in the
bookkeeping, we will assume both the expansion coefficients and eigenvector
elements are real. Using the expectation value recipe from chapter 7, equation
(7.38), the trial wavefunction has energy:

∑∑

∑∑

ψ ψ

ψ ψ

˜ = Φ̃ ˆ Φ̃
Φ̃ Φ̃

=

〈 ˆ 〉

〈 〉

= =

= =

E
H

c c H

c c

(10.21)i

n

j

n

i

n

j

n
1 1

1 1

i j i j

i j i j

The desired outcome is the same as for the harmonic oscillator example above, but it is
now necessary to find n best-fit coefficients to optimize the entire expansion. We now
have a multi-dimension variational problem, which assures that Ẽ is an upper bound
to E exact. We should keep in mind that Ẽ is an incredibly nuanced energy
functional. To graphically represent its dependence on the expansion coefficients
requires an n+1-dimensional plot. If we sat atop its highest vantage point and looked
out at the landscape, we might think we were viewing a mountain vista. The energy
surface is pock-marked by a wide array of dips and divots and mounds and mountains
as the trial energy rises and falls at the whim of the ci. There are many routes
downward to shallow basins and dales, what we would call local minima. In actuality,
we seek the deepest chasm, or global minimum. Let us choose to take one of the many
possible trails down, the quantity: 〈 ˜ 〉Eck

, which is how the trial energy varies relative to
the particular coefficient: ck. According to the plot of figure 10.2, the slice of the trial
energy curve that is singularly a function of ck is at a minimum when the tangential
slope of this curve is zero, or when:

∂ ˜

∂
=

E

c
0 (10.22)c

k

k

Our task is thus to partially differentiate equation (10.21) with respect to a single
coefficient ck. This has the effect of collapsing a summation down to only the term
containing that coefficient. From the fact that ∂ ∂ =c c/ 1k k and that all coefficients
and basis functions are real, we can interchange variables to give two equivalent
single summation terms from the differentiation of each double sum. Applying this
process to both the numerator and denominator of the expression, according to the
product rule, gives:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑

∑∑

∑∑

∑∑
∑

ψ ψ

ψ ψ

ψ ψ

ψ ψ

ψ ψ
∂ ˜

∂
= =

ˆ

〈 〉
−

〈 ˆ 〉

〈 ∣ 〉

=

= =

= =

= =

=

E

c

c H

c c

c c H

c c

c0

2

2 (10.23)
i

n

i

n

j

n
i

n

j

n

i

n

j

n
i

n
1

1 1

1 1

1 1

1

c

k

i i k

i j i j

i j i j

i j i j

i i k2
k
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Equation (10.23) is rearranged and simplified by inserting equation (10.21) back
into equation (10.23) and dividing out common terms. With a little effort the
resulting equation is:

∑ ∑ψ ψ ψ ψˆ =
= =

c H c E (10.24)
i

n

i

n

1 1

i i k i i k ck

The result in equation (10.24) must be repeated to optimize all remaining expansion
coefficients. This results in a system of n equations, one for each individual
coefficient, to be simultaneously solved. When this system is cast in matrix form,
matrix elements differ in location by their indexing coefficient k. As was found to be
advantageous in section 7.4, the complete system of equations is conducive to the
techniques of linear algebra, and is concisely expressed in matrix form:

=H C S C E (10.25)

Equation (10.25) is called the secular equation, in deference to its similarity in form
to equations derived for planetary motion. The adjective ‘secular’ has come to take
the meaning of describing the slow changes in relative motion between the planets
and the Sun, but the descriptor also carries non-religious connotations, perhaps in
reference to application of such equations to planets revolving about the Sun.

The Hamiltonian matrix in equation (10.25) is an n × n array with elements of the
form: ψ ψ= 〈 ˆ 〉HH( )ij i j . It is symmetric for real basis functions, but in general is
Hermitian. The S matrix also has dimension n × n, and has been previously defined
in section 7.2 as the overlap matrix: ψ ψ= 〈 〉S( )ij i j . It is also symmetric for real
functions and Hermitian for a complex basis. As defined in section 7.4, C represents
the coefficients, but now instead of being an n × 1 column, simultaneous
optimization of all coefficients makes it a square matrix of dimension n. We are
hence concurrently finding n of these n × 1 column matrices, each of which

Figure 10.2. Minimizing the energy of trial wavefunction Φ̃ with respect to expansion coefficient ck according
to the variational principle.
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represents a unique solution. There is a hierarchy of optimized energy states, with
the variational principle assuring all are upper bounds. Equation (10.25) also
contains the eigenvalue matrix: E. It is of the same dimension as the others, but is
in diagonal form. As is true of any diagonal matrix, it commutes with the S and C
matrices, so can be placed anywhere on the right-hand side of the equation.

Once H and S are constructed from a set of basis functions chosen to expand the
trial wavefunction, the task is determining eigenvalue matrix: E and expansion
coefficients: C. One approach is to rearrange the left-hand side so that the right-hand
side is the n × n null matrix:

− =H ES C 0( ) (10.26)

If both sides of equation (10.26) are left multiplied by the matrix: (H−ES)−1, we
obtain the unsatisfactory trivial solution: C = 0. This is not possible if the inverse of
(H−ES) does not exist. From linear algebra, a matrix has no inverse under the
condition that it has a zero determinant. Hence the energy eigenvalue matrix E can
be found from the known H and S matrices by solving the problem:

− =H ESdet( ) 0 (10.27)

Equation (10.25) is more commonly solved by matrix diagonalization. In this
fashion, both the eigenvalue and expansion coefficient matrices are simultaneously
determined. Suppose as a first example that the basis set is orthonormal. The overlap
matrix therefore takes the simplifying form: S = 1 so that equation (10.25) becomes:

=H C C E (10.28)

Left multiplying equation (10.28) by the inverse of matrix C results in:

==− −C H C C C E E (10.29)1 1

Because E is a diagonal matrix of the energy eigenvalues, the matrix product on the
left-hand side of equation (10.29) diagonalizes H. The basis functions we chose for
this problem form a real, symmetric Hamiltonian matrix. According to linear
algebra, there exists an orthogonal transformation which places a symmetric matrix
in diagonal form. In addition, an orthogonal transformation matrix obeys the
condition:

=−C C (10.30)1 T

In the general case of a Hermitian Hamiltonian matrix: H = H† linear algebra says
that it is diagonalizable by a unitary transformation matrix with the property: C−1 =
C†.

Equation (10.30) explains the implication of its name. Interchange of rows and
columns of C forms its matrix inverse, which in fact shows that the variational
expansion wavefunctions are linearly independent. Each of the n columns of C not
only represents a set of weighting factors to the n elements of the basis set, but also
collectively form a wavefunction that is both normalized and orthogonal to those
expanded from the other n−1 columns. As a matter of fact, equation (10.30) is a

What’s the Matter with Waves?

10-8



generalization of the condition we stated for our single row vector: CT and
single column vector C that was used in our expansion wavefunction of chapter 7,
section 7.4.

Suppose that elements of the basis set eigenvector are not orthorgonal, meaning
the overlap matrix: S ≠ 1 and equation (10.25) must be solved with no simplifica-
tions. To accomplish this, we first make use of the following transformations:

′ =
′ =

− −H S H S
C S C

(10.31)
1 2 1 2

1 2

/ /

/

These definitions allow equation (10.25) to be rewritten in the form:

′ ′ = ′H C C E (10.32)

PARALLEL INVESTIGATION: Verify that equation (10.25) is the result of inserting
equation (10.24) into equation (10.18).

Just as the original, the transformed Hamiltonian matrix of equation (10.31) also
has a symmetric form. As before an orthogonal transformation matrix: C′ results
from diagonalizing the reformulated Hamiltonian matrix: H′. If we use the fact that
the transpose of a matrix product is: (A B)T = BT AT, it follows in the case of a non-
unit overlap matrix that the coefficients and their transformed form have the
property:

′ ′ = = =C C C S S C C S C 1( ) (10.33)T T 1 2 T 1 2 T/ /

Practical aspects of solving a problem of this type involve forming matrices S1 2/ and
−S 1 2/ . This is accomplished by first diagonalizing the overlap matrix: S (which is

either symmetric or Hermitian, depending on the chosen basis), taking either the
square root or inverse square root of its diagonal elements, then using the
orthogonal (or unitary) transformation which diagonalized it to perform a back
transformation.

As a variational example, consider the four lowest energy particle in a box
solutions defined in chapter 7, equation (7.13), which we will use to find best-fit
wavefunctions to the time independent Schrödinger equation including a potential of
the form:

⎧
⎨⎪
⎩⎪

=
∞ ⩽
− < <
∞ ⩾

V x
x

k x L x L
x

( )
0

2 ( /2) 0
0

(10.34)2

At the boundaries, the potential is the same as the original particle in a box problem.
Within the box the particle now experiences a potential shown in equation (10.34).
The shape of V(x) is plotted in figure 10.3 and is in fact parabolic, reminiscent of the
harmonic oscillator potential discussed in chapters 3 and 9. Recall from there the
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parameter k is the spring constant (SI units: kg · s−2) which defines the potential’s
steepness. From equation (10.34) we note at the center of the box: =V L( /2) 0 and as
the the box edges are approached: → → → →V x V x L kL( 0) ( ) 1/2 2. In chapter 9
we learned the quantum oscillator has analytic wavefunctions of the form presented
in equation (9.3), and an exact energy given in equation (10.14).

First consider the lowest energy solution: ψ1 within the box. It now not only
possesses kinetic energy but is also subject to the modified potential of equation
(10.34). In this exercise we will express all matrix elements in atomic unit (see
appendix A). The values ℏ, m, and L (=a0) are therefore set equal to 1 au. For
reasons that come to light later, we choose a spring constant of: k = 200 au, which
corresponds to an unrealistic SI value of 3.13 × 105 kg · s−1. Using this in the
potential term of our model Hamiltonian, the lowest energy particle in a box
wavefunction then has energy expectation value:

∫ ∫π π π˜ = − ⋅ ⋅ + ⋅ ⋅ −

= + =

E x
d
dx

x x x x x
1
2

2 sin( ) sin( )d 2 400 ( 1/2) sin ( )d

4.9348 13.0691 18.0039 au
(10.35)0

1 2

2 0

1
2 2

In comparison, the ground state energy of the quantum mechanical harmonic
oscillator wavefunction with this particular force constant is (in atomic units):

= + =E k(0 1/2) 7.07106 auexact . It is obvious that our trial wavefunction is not
a very good approximation to the actual solution, so let us attempt an expansion of
particle in a box wavefunctions to make improvements.

Figure 10.3. Potential = −V x k x L( ) 2 ( 2)2used for variational treatment of particle in a box solutions as
approximations to the harmonic oscillator.
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PARALLEL INVESTIGATION: Verify the energy for the trial wavefunction (all

quantities in atomic units): ⎜ ⎟
⎛
⎝

⎞
⎠χ π˜ = x

cos
2

evaluated using the harmonic oscillator

Hamiltonian: ˆ = − +H
x

kx
1
2

d
d

1
2

2

2
2 and the force constant value: k = 200 au is

˜ =E 14.3028 au over the range: − ⩽ ⩽x1 1.

Instead of using only the lowest energy particle in a box wavefunction, suppose
we simultantaneously find four approximate solutions: Φi to the harmonic
oscillator Hamiltonian expanded from a basis of the four lowest-energy particle in
a box solutions ψi . The basis functions are orthonormal and the overlap matrix
constructed from them is: S = 1, so the simplified secular equations of equation
(10.28) are to be solved. Since four basis functions are used, the matrix equations
produces four orthonormal expansion wavefunctions with different weightings of
the basis functions. To facilitate the discussion we will partition the Hamiltonian
matrix into its kinetic and potential components: H = T + V. The basis functions
are eigenfunctions of the kinetic energy operator. According to the discussion in
section 7.4, the T matrix is therefore diagonal with expectation values given in
chapter 7, equation (7.41). The kinetic energy matrix expressed in atomic units is:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
=T

4.9348 0 0 0
0 19.7392 0 0
0 0 44.4132 0
0 0 0 78.9568

(10.36)

PARALLEL INVESTIGATION: Verify that the first four orthonormal trial wave-

functions: ⎜ ⎟
⎛
⎝

⎞
⎠χ π˜ = =n x
ncos

2
1, 3, 5, 7n form kinetic energy matrix (with all quantities

in atomic units):

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
=T

1.2337 0 0 0
0 11.1003 0 0
0 0 30.84251 0
0 0 0 60.45133

over the range: − ⩽ ⩽x1 1.

In equation (10.36) note the kinetic energy matrix element (T)44 = 78.9568 au for
ψ4 makes the magnitude selected for spring constant k = 200 au a bit more
understandable. Near the two extremes the box has potential: = ⋅V kL1/2 2 = 100
au. The potential must reach high enough to make sure all four basis functions
are ‘trapped’ within the well. As an additional argument, note that, as discussed in
chapter 9, the domain of the exact harmonic oscillator wavefunction is in actuality:
−∞ ⩽ ⩽ +∞x . Recall that our particle in a box well is at a maximum at: L = 0, falls
to zero at: L = a0/2, then is designed to parabolically approach the box wall at: a0. We
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are therefore expecting the oscillator to be within the region of space:
− ⩽ ⩽ +a x a/2 /20 0 . Using a diatomic molecular force constant such as that for Cl2
of k = 329 kg·s−2 (= 0.211 au), we can integrate the exact solution probability density
to find the likelihood of being within this range. For the exact ground state harmonic
oscillator we obtain a 36.2% chance of this localization, however with the steepness
changed to 200 au the probability correspondingly increases to a 99.2% chance.

Elements of the potential energy matrix have the form:

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠∫ π π= −V

L
k

n x
L

x L
m x

L
x( )

2
2 sin ( /2) sin d (10.37)mn

L

0

2

Again, these values will be represented in atomic units. With the help of mathe-
matical software the potential energy matrix is:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
=V

16.3363 0 18.9977 0
0 35.3341 0 22.5158

18.9977 0 38.8522 0
0 22.5158 0 40.0835

(10.38)

These are combined with equation (10.36) to form the Hamiltonian matrix:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
=H

21.2712 0 18.9977 0
0 55.0733 0 22.5158

18.9977 0 83.2654 0
0 22.5158 0 119.0403

(10.39)

PARALLEL INVESTIGATION: Verify that the first four orthonormal trial wave-

functions: ⎜ ⎟
⎛
⎝

⎞
⎠χ π˜ = =n x
ncos

2
1, 3, 5, 7n form a Hamiltonian matrix (with all quantities

in atomic units):

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
=

− −
− −

− −
− −

H

14.3028 15.19818 2.81448 0.98507
15.19818 42.18506 18.99772 4.25549
2.81448 18.99772 63.36528 19.70134
0.98507 4.25549 19.70134 93.3711

over the range:

− ⩽ ⩽x1 1. When forming the integrals, use the actual harmonic oscillator potential
from equation (9.1) and force constant k = 200 au.

The Hamiltonian matrix in equation (10.39) is diagonalized using mathematical software,
giving the following eigenvalues:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
=E

15.9126
47.9428
88.6240

126.1709

(10.40)
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The expansion coefficients for the four particle in a box wavefunctions are contained
in the columns of the orthogonal transformation which diagonalizes the
Hamiltonian matrix:

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
=

−

−

C

0.9624 0 0.2715 0

0 0.9533 0 0.3019

0.2715 0 0.9624 0

0 0.3019 0 0.9533

(10.41)

Note that the sum of the square of elements in any column is unity, or that each is
normalized. In addition, the dot product of any column with another is zero,
showing the vectors are orthogonal. The orthonormality of the expansion wave-
functions is succinctly demonstrated via the matrix product: CT C = 1. Inspecting
the Hamiltonian matrix in equation (10.39), we see values of zero for the 12 (or 21)
and 14 (or 41) elements. Since there is no coupling of basis function ψ1 to either
basis function ψ2 or ψ4 across the Hamiltonian, they do not mix together in any of
the expansion wavefunctions. Likewise, the lack of coupling in the Hamiltonian
matrix between basis function ψ2 with ψ1 or ψ3 precludes their interaction in any
of the Φi .

Employing an expansion of four particle in a box wavefunctions instead of a
single function lowered the ground state trial wavefunction energy from to 18.000 39
to 15.9126 au. When compared to the exact ground state energy: E0 = 7.071 106 au,
this is an improvement, but is still nothing to write home about. However, if you
have been following the parallel investigations for trial wavefunctions expanded
from a basis of cosine functions evaluated over the actual harmonic oscillator
Hamiltonian, we find the very satisfactory result presented below.

PARALLEL INVESTIGATION: Verify the Hamiltonian matrix from the previous

parallel investigation produces energy eigenvalues:

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
=E

7.07119
35.39218
64.77328

105.98758

for the first four

orthonormal trial wavefunctions: ⎜ ⎟
⎛
⎝

⎞
⎠χ π˜ = =n x

ncos
2

1, 3, 5, 7n over the range:

− ⩽ ⩽x1 1. The ground state energy of this trial wavefunction is: 0.000 13 au or
0.0018% above the exact ground state energy! As a matter of fact the other three
eigenvalues represent very reasonable upper bounds to exact harmonic oscillator states:
E2 = 35.355 34 au (in error by: 0.104%), E4 = 63.639 61 au (1.78%) and E6 = 91.923 88
au (15.30%). The expansion wavefunctions are shown in figure 10.4, and should be
compared to the exact harmonic oscillator wavefuntions in figure 9.1.
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Figure 10.4. The variational wavefunctions found as approximate solutions to the harmonic
oscillator. The basis function expansion coefficients are taken from the orthogonal transformation
matrix which diagonalizes the Hamiltonian:

Φ χ χ χ χ

Φ χ χ χ χ

Φ χ χ χ χ

Φ χ χ χ χ

∣ ˜ 〉 = ∣ ˜ 〉 + ∣˜ 〉 + ∣˜ 〉 + ∣˜ 〉

∣ ˜ 〉 = − ∣˜ 〉 + ∣˜ 〉 + ∣˜ 〉 + ∣˜ 〉

∣ ˜ 〉 = ∣˜ 〉 − ∣˜ 〉 + ∣˜ 〉 + ∣˜ 〉

∣ ˜ 〉 = ∣˜ 〉 − ∣˜ 〉 + ∣˜ 〉 − ∣˜ 〉

0.890 0.443 0.110 0.013

0.410 0.670 0.601 0.148

0.192 0.555 0.622 0.518

.060 0.216 0.490 0.842

0 1 3 5 7

2 1 3 5 7

4 1 3 5 7

6 1 3 5 7
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Chapter 11

Electrons in atoms

11.1 Rotational motion due to a central potential: the hydrogen atom
Both chapter 4 and chapter 8 employed a rigid rotor constraint, fixing radial
component r to describe rotational motion through angular variation. The resulting
models were expressed by tractable equations. Comparing equations (8.15) and (8.26)
shows how the kinetic energy terms for rotation become more unruly as we go from
the circular to the spherical case, as the number of independent variables increase
from only ϕ to both θ and ϕ . Transitioning to atoms requires a completely general
model of spherical motion with three independent degrees of freedom, whether
expressed in the Cartesian x, y, z or spherical polar r, θ, ϕ frame. Intuition suggests
we again take the spherical polar approach for electrons in atoms, but it should be
anticipated that increasing the particle’s degrees of freedom will again increase the
complexity of kinetic energy operator: T̂ . To further exacerbate the situation,
modeling a charged particle like the electron moving about a charged nucleus now
requires we also include a radially-dependent attractive electrostatic potential V̂ .

Recall the strategy employed in chapter 8. Kinetic energy of rotating particles was
introduced through angular momentum using: ˆ = ˆT L I2

2 . For atoms, it is advanta-
geous to return to the kinetic energy operator: μˆ = −ℏ ∇̂T /22 2 , and perform a series
of partial derivative conversions to transform variables of the del operator from
Cartesian to spherical polar form. Beginning with the definitions in chapter 8,
equation (8.2), the manipulations proceed in a very similar fashion to what was done
in section 8.1. This is left as an exercise to the motivated reader. After a few pages of
algebra, the differential operator for kinetic energy is:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥μ μ μ μ

ˆ = − ℏ ∇̂ = − ℏ ∂
∂

+ ∂
∂

+ ∂
∂

= − ℏ ∂
∂

+ ∂
∂

+ ˆT
x y z r r r r

L
2 2 2

2 1
2

(11.1)
2

2
2 2

2

2

2

2

2

2 2

2 2

2

The angular momentum operator: L̂
2 is defined in chapter 8, equation (8.26).

Comparing rotational kinetic energy operators from chapter 8, equations (8.15)
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and (8.26) to equation (11.1), we note the hierarchy of complexity as expressions
evolve from a function of the single variable ϕ to a complete function of variables
r, θ, and ϕ.

During the classical treatment of chapter 4, it was stated that a body undergoes
rotational motion only when acted upon by a central force. We could therefore
induce an electron into spherical motion by tethering it, or possibly placing a
massive body at the origin causing gravitational attraction. Of course a negatively
charged particle moves under the influencing force of Coulombic attraction to the
nucleus. Electrostatics described by a radial potential used in chapter 4, equation
(4.29) now quantum mechanically takes operator form:

πε
ˆ = −

ˆ
V r

Ze
r

( )
4

(11.2)
2

0

This has physical constants defined previously, with Z being the atomic number of
the nucleus and the inverse of the radial position operator: ˆ = ×r r . Application of
the operator in this case requires division instead of multiplication. The sign ofV̂ r( )
reflects the opposite magnitude of elementary charge for protons and electrons.

We seek eigenfunctions of the time independent Schrödinger equation:
ψ θ ϕ ψ θ ϕˆ =H r E r( , , ) ( , , ) with Hamiltonian: ˆ = ˆ + ˆH T V defined by equations

(11.1) and (11.2). As has proved successful time and again we try separation of
variables, with a product eigenfunction taking the form:

ψ θ ϕ θ ϕ= ⋅r R r Y( , , ) ( ) ( , ) (11.3)n ℓ
mℓ

Angular dependence in equation (11.3) is expressed through a spherical harmonic
(see section 8.2 and table 8.1). The product wavefunction is formed by multiplying

θ ϕY ( , )ℓ
mℓ by a so-called radial function: R r( )n .
Justifying variable separation in equation (11.3) requires arguments from section

7.5 involving commuting operators and simultaneously measurable properties.
Spherical harmonics are eigenfunctions of L̂

2 with dependence on polar angle θ

and azimuthal angle ϕ. Examining the commutation relation between: L̂
2 and the

hydrogen atom Hamiltonian: ˆ = ˆ + ˆH T V we find:

⎛
⎝⎜
⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥
⎞
⎠⎟μ μ

ˆ ˆ = − ℏ ∂
∂

ˆ + ∂
∂

ˆ + ˆ ˆ + ˆ ˆ =H L
r

L
r r

L
r

L L V r L[ , ]
2

,
2

,
1

2
[ , ] [ ( ), ] 0 (11.4)2 2 2

2

2 2

2

2 2 2

Recall from chapter 8, equation (8.26) that L̂
2 involves differentiation with respect

to θ and ϕ. The two leftmost terms of the right-hand side of equation (11.4) are
therefore zero. The third term involves an operator commuting with itself, which is
always true. Finally, the radial potential has no angular dependence, so the last
commutator of the right-hand side of equation (11.4) is also zero.

The operator for the z-component of angular momentum, L̂z from chapter 8,
equation (8.15), is solely a function of azimuthal angle ϕ. It was also shown in
section 8.2 that: ˆ ˆ =L L[ , ] 0z

2 . Similar to equation (11.4), it is straightforward to show
that: ˆ ˆ =H L[ , ] 0z as well. As a consequence of these facts, it will be possible to

What’s the Matter with Waves?

11-2



construct solutions to the central potential problem which are simultaneous
eigenfunctions of Ĥ , L̂

2, and L̂z.
Equation (11.3) is inserted into the time independent Schrödinger equation using

a Hamiltonian containing both equations (11.1) and (11.2). We then use the fact that
the spherical harmonics are eigenfunctions of L̂

2 to write:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

ψ θ ϕ
μ μ

μ μ

ˆ = − ℏ ∂
∂

+ ∂
∂

+ ˆ + ⋅

= − ℏ ∂
∂

+ ∂
∂

+ + ℏ +

× ⋅ = ⋅

H r
r r r r

L V r R r Y

r r r
ℓ ℓ

r
V r

R r Y ER r Y

( , , )
2

2 1
2

( ) ( )

2
2 ( 1)

2
( )

( ) ( )

(11.5)

n ℓ
m

n ℓ
m

n ℓ
m

2 2

2 2

2

2 2

2

2

2

ℓ

ℓ ℓ

The second and third lines of equation (11.5) are divided through by θ ϕY ( , )ℓ
mℓ ,

giving a differential equation in terms of the radial function:

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥μ μ

− ℏ ∂
∂

+ ∂
∂

+ + ℏ + =
r r r

ℓ ℓ
r

V r R r ER r
2

2 ( 1)
2

( ) ( ) ( ) (11.6)n n

2 2

2

2

2

When this is rearranged and expressed in atomic units (assuming me = μ, see
appendix A) and primes are used as indicators of derivatives with respect to r, the
resulting linear homogeneous second order differential equation is:

⎡
⎣⎢

⎤
⎦⎥″ + ′ + + − + =R r

r
R r E

Z
r

ℓ ℓ
r

R r( )
2

( ) 2
2 ( 1)

( ) 0 (11.7)n n n2

Table 11.1. Radial wavefunctions for n = 1 to n = 3.

n ℓ R r( )n
11

1 0 ⎛
⎝⎜

⎞
⎠⎟ ⋅ −Z

a
e2 Zr a

0

3 2
0

2 0 ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟− ⋅ −Z

a
Zr
a

e
1

2
1

2
Zr a

0

3 2

0

2 0

2 1 ⎛
⎝⎜

⎞
⎠⎟ ⋅ −Z

a
re

1

2 6
Zr a

0

5 2
2 0

3 0 ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟− + ⋅ −Z

a
Zr
a

Z r

a
e

2

3 3
1

2
3

2

27
Zr a

0

3 2

0

2 2

0
2

3 0

3 1 ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟− ⋅ −Z

a
Zr
a

Z r

a
e

8

27 6 6
Zr a

0

3 2

0

2 2

0
2

3 0

3 2 ⎛
⎝⎜

⎞
⎠⎟ ⋅ −Z

a
r e

4

81 30
Zr a

0

7 2
2 3 0

1 πε= ℏ =a
m e

(4 )
0.529Å

e
0

0
2

2
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We skip the rigors of solving this equation which, for those interested in
mathematical physics, can be found in a variety of sources. The R r( )n have a
mathematical form of exponentials multiplied by Laguerre polynomials. The first
several radial wavefunctions are presented in table 11.1. These are expressed using
the Bohr radius, a0, a quantity first encountered in chapter 4, equation (4.27).
Multiplying the radial functions by an appropriate spherical harmonic gives the
product wavefunctions of equation (11.3) which are simultaneous eigenfunctions
of: Ĥ , L̂

2, and L̂z.

11.2 Properties of the hydrogen atom solutions
Recalling from chapter 8, quantum numbers ℓ and mℓ arose in the spherical
harmonics as a consequence of the particle on a ring and particle on a sphere
solutions. Boundary conditions of the radial equations introduce a new dependence
requiring an additional quantum number:

= …n 1, 2, 3, (11.8)

Eigenvalues of the radial equation show how the bound state energy levels of a
hydrogen or hydrogen-like atom depend on this quantum number:

μ
πε

= −
ℏ

E
Z
n

e1
2 (4 )

(11.9)n

2

2

4

2
0

2

Using the definitions of the Bohr radius or Hartree energy unit, equation (11.9) is
written:

μ
= − ℏ = −E

Z
n a

Z
n

E
1
2

1
2

(11.10)n h

2

2

2

0
2

2

2

With the time independent Schrödinger equation written in atomic units and R1(r)
expressed similarly, we see the lowest energy Z = 1 radial wavefunction is a
satisfactory eigenfunction returning the appropriate eigenvalue:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

ˆ = − ∂
∂

− ∂
∂

− ⋅

= − + − ⋅ = − ⋅

−

−

HR r
r r r r

e

r r
e R r

( )
1
2

1 1
2

1
2

1 1
2

1
2

au ( )

(11.11)

r

r

1

2

2

1

First it is noted that the energy expressions of equations (11.9) or (11.10) are the
exact same result obtained by Bohr (see chapter 4) some two decades prior to the
general quantum mechanical formulation. His derivation modified a classically
rotating electron to the constraint that that its angular momentum values must be
integer multiples of ℏ. Recall that Bohr’s result was limited to one electron atoms. In
principle, the Hamiltonian of the Schrödinger equation can include terms that make
it generally applicable to a multi-particle system of any composition.
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The next point of importance is that the bound state energy levels are discrete
functions of the positive integer quantum number n. Because only the radial
components have n-dependence, the energy is therefore determined solely from
the radial wavefunction. However, as seen in table 11.1, the radial wavefunctions
themselves have parametric dependence on angular quantum number ℓ, which
becomes apparent upon inspection of equation (11.7). The probability density is
formed from the square of equation (11.3). Its integration over all space requires a
triple integral with the spherical polar volume element:

∫ ∫ ∫ ∫τ ϕ θ θ= ⋅ ⋅
π π ∞

r rd d sin ( )d d (11.12)
0

2

0 0

2

Expectation values involving the radial functions given in table 11.1 are evaluated
according to the recipe:

∫ˆ = ⋅ ˆ
∞

R r O r R r r r R r O r R r( ) ( ) ( ) d ( ) ( ) ( ) (11.13)n n n n
0

2

As an example, we take R2(r) for hydrogen (Z = 1) and the Hamiltonian, both
expressed in atomic units, then use integrals from section B.2 to find:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

∫

∫

ˆ = ⋅ ⋅ −

× − ∂
∂

− ∂
∂

− −

= ⋅ − + − = −

∞
−

−

∞
−

R r H R r r r r e

r r r r
r e

r r r
e r

( ) ( )
1
2

d (1 2)

1
2

1 1
(2 2)

1
2

7
8

3
8 32

d 0.125 au

(11.14)

r

r

r

2 2
0

2 2

2

2
2

0

2 3 4

PARALLEL INVESTIGATION: Verify that: (a) The radial wavefunctions are
normalized by evaluating: R r R r( ) ( )1 1 . (b) The radial wavefunctions are orthogonal
by evaluating: R r R r( ) ( )1 2 . (c) The energy expectation value:

ˆ = −R r H R r( ) ( ) 0.0556 au3 3 .

The results of equations (11.11) or (11.14) are values for bound state or negative
energy levels, being measured relative to the zero point of an infinitely-separated
proton and electron. The parametric role that ℓ plays in the form of R r( )n is verified
in table 11.1, which shows the radial functions take varying forms depending upon
their individual ℓ value. Introduction of n imposes a boundary condition that
modifies allowed values of ℓ compared to a particle on a sphere in section 8.2. For a
hydrogen atom, the allowed values of ℓ are now:

= … −ℓ n0, 1, 2, , 1 (11.15)
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Hydrogen energy levels exhibit a 2ℓ + 1 degeneracy, as do the particle on a sphere
energy levels depicted in chapter 8, figure 8.2. The values allowed for mℓ remain
those given in chapter 8, equation (8.28).

The quantum number n is known as the principal quantum number, not only
because it controls allowed values for ℓ and energy of a level (see equation (11.10)),
but it also parametrically determines the average radial distance of an electron
through Rn(r). The value ℓ, the angular quantum number, determines angular
characteristics including electron angular momentum of magnitude: + ℏℓ ℓ( 1) .
Spherical harmonics of a given ℓ value are referred to as orbitals. In fact, the angular
quantum number is also referred to as the orbital quantum number. It is common to
replace the numeric value of ℓ by its more familiar letter designation:

ð11:16Þ

The first four orbital letter designations pay tribute to the four Balmer series visible
emission spectral lines of the hydrogen atom. The letters represent the original
German names of the spectral lines, but the English adaptations amount to a
transition characterized by a narrow or ‘sharp’ line, another of highest intensity
designated the ‘primary’ line, a third appearing somewhat fuzzy or ‘diffuse’, and one
referencing the ‘fundamental’. Following the first four orbital descriptors, those of
sequential ℓ take letter designations in alphabetic order beginning with g (but
omitting j).

Quantum number n sequentially labels each energy level, and as equation (11.15)
shows, also allows the introduction of one new ℓ value per level. Hence each energy
level introduces an additional available orbital of increased angular momentum
proportional to: +ℓ ℓ( 1) . As a result, every energy level: 1→∞ possesses an s-type
orbital of zero angular momentum. Levels: 2 → ∞ include a p-type orbital with
angular momentum: = ℏL 2 , Levels: 3 → ∞ have a d-type type of angular
momentum: = ℏL 6 , etc. To differentiate between the various orbitals of the same
angular momentum, the principal quantum number is listed before the letter
designation such as: 1s, 2s, 3s, …

As discussed for a particle on a ring in section 8.1, mℓ measures the z-projection of
angular momentum in units: = ℏL mz ℓ . The name given to mℓ stems from the effect
of a static magnetic field on the magnetic moment of an electron, which causes splits
in degeneracy of orbitals of a given ℓ value. Atomic spectroscopy performed under
this condition, known as the Zeeman effect, will exhibit a fine structure caused by the
slight difference in energy levels due to orbitals lowered, raised, or unchanged in
energy upon interaction with the magnetic field.

Figure 11.1 displays amplitude plots of selected radial functions of hydrogen (Z = 1).
The first three s-type functions are displayed in figure 11.1(a)–(c). For clarity, each has
its own appropriate abscissa scaled in integer multiples of the Bohr radius a0 = 0.529 Å.
In addition to an asymptotic node, these show the hierarchy of n−1 radial nodes per
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function. Referring to table 11.1, R1s(r) has indeed has exponential form. The radial
node of R2s(r) can be determined by setting its Laguerre polynomial to zero:

− =r
a

1
2

0 (11.17)
0

which occurs at r = 2a0.

PARALLEL INVESTIGATION: Verify that R3s(r) has radial nodes at: r = 1.9a0 and
r = 7.1a0.

Figure 11.1(d) shows the radial amplitude plot of the three angular momentum
values allowed on energy level n = 3. The pattern displayed there is typical of all
energy levels. The highest angular momentum function (in this case R3d(r)) only
possesses an asymptotic node. Radial functions of decreasing angular momentum
sequentially add one radial node. In figure 8.3(d), R3p(r) has one and R3s(r) two
radial nodes.

The average distance from the nucleus to an electron is not described by its radial
amplitude, but as discussed in section 7.1, requires knowledge of its probability

Figure 11.1. Plots of various radial wavefunctions for hydrogen (Z = 1). (a) The 1s function. (b) The 2s
function. (c) The 3s function. (d) Plots of the radial wavefunctions for the three allowed angular momentum
values of n = 3.
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density. The symmetry of atomic systems mandates a spherical surface average
known as the radial probability density. This is constructed by multiplying the
wavefunction square modulus by a spherical shell volume element. Because radial
functions are real, this quantity is:

π ⋅r R r4 ( ) (11.18)n
2 2

Figure 11.2 contains selected radial probability density plots of hydrogen (Z = 1).
The first three s-type probability shells are displayed in figure 11.2(a)–(c). As in
figure 11.1, each has its own appropriate abscissa scaled in integer multiples of the
Bohr radius a0 = 0.529 Å. The shape of figure 11.2(a) shows the radial probability
density reaches a maximum. This function can therefore be used to find the inflection
point corresponding to the most probable radial distance: r*. To do so we use
equation (11.18) along with the function R1s(r) of hydrogen (Z = 1), and locate the
point of zero slope for the radial shell probability density:

⎡
⎣⎢

⎤
⎦⎥π π⋅ = = ⋅ ⋅ − ⋅− −

r
r R r

a
r e

r
a

e
d
d

(4 ( )) 0 4 4
1

2
2

(11.19)r a r a2
1s
2

0
3

2
2

0

20 0

Solving equation (11.19) we find:

* = =r a 0.529 Å (11.20)0

Figure 11.2. Plots of various radial shell probability densities for hydrogen (Z = 1). (a) The 1s function. (b)
The 2s function. (c) The 3s function. (d) Plots of the radial wavefunctions for the =ℓ 0 and =ℓ 1 angular
momentum values of n = 3.
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This of course is the result obtained by Bohr from his one-electron model.

PARALLEL INVESTIGATION: Verify that the n = 2, ℓ = 0 radial function of
hydrogen (Z = 1) has most probable radial distance: r* = 6a0.

If instead we determine the average distance to the electron in the hydrogen 1s
orbital, we use the expectation value recipe, which is done with the help of integrals
in section B.2 applied with the spherical polar radial integration element:

∫= ˆ = ⋅ = =
∞

−r R r r R r
a

r r re a( ) ( ) 4
1

d 1.5 0.794 Å (11.21)r a
1s 1s

0
3

0

2 2
0

0

PARALLEL INVESTIGATION: Verify for the n = 2, ℓ = 0 radial function of
hydrogen (Z = 1) has average radial distance: =r a5 0.

The skewed shape of the 1s radial shell probability density results in an electron
positioned on average 50% past the Bohr radius. Indicated in figure 11.2(a) are the
locations of both r* and r .

As was demonstrated for the 1-dimensional particle in a box wavefunction in
section 7.4, it is also possible to evaluate the probability density over fractions of the
radial interval to determine the likelihood of the electron occupying that region of
space. For instance, the probability of finding the 1s hydrogen electron somewhere
between the nucleus and the Bohr radius is:

∫ ⋅ =−

a
r r e4

1
d 0.323 (11.22)

a
r a

0
3

0

2 2
0

0

which is a 32.3% chance. Notice that equation (11.22) integrates only the probability
density multiplied by the radial integration element. If the probability density for the
1s electron is instead evaluated between a0 and ∞, the result is 0.677 or a 67.7%
chance, as anticipated.

PARALLEL INVESTIGATION: Verify for the n = 1, ℓ = 0 radial function of
hydrogen (Z = 1) that its electron has a 43.9% chance of being between a0 and 2a0.

The complete wavefunction is a product of a radial wavefunction and a spherical
harmonic which itself is an eigenfunction of both L̂

2 and L̂z with coordinates
expressed in the spherical polar frame. It is also possible to convert hydrogen atom
solutions into Cartesian form. Using chapter 7, table 7.1 and table 11.1 along with
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the spherical polar coordinate definitions given in chapter 8, equation (8.2), the n =
2, =ℓ 1, =m 0ℓ function converts to:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ψ
π

θ

π

= ⋅ ⋅

= ⋅ ⋅

−

− + +

Z
a

r e

Z
a

z e

1

4 2
cos ( )

1

4 2

(11.23)

Zr a

Z x y z a

2,1,0
0

5 2
2

0

5 2
( ) 2

0

2 2 2 1 2
0

Using language familiar to chemistry, this is the 2pz orbital.
Constructing other Cartesian orbitals requires linear combinations of angular

momentum functions, which has the added benefit of producing real functions
through the elimination of imaginary components. For instance, using tables 8.1 and
11.1 with equation (8.2), we take the combination:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

ψ ψ ψ

π
θ

π
θ ϕ

π

= ⋅ −

= ⋅ + ⋅

= ⋅ ⋅ ⋅

= ⋅ ⋅

ϕ ϕ

− +

− + −

−

− + +

Z
a

r e e e

Z
a

r e

Z
a

x e

1

2
( )

1

8 2
sin ( )[ ]

1

4 2
sin ( ) cos ( )

1

4 2

(11.24)

i i Zr a

Zr a

Z x y z a

2p 2,1, 1 2,1, 1

0

5 2
2

0

5 2
2

0

5 2
( ) /2

x

0

0

2 2 2 1 2
0

The imaginary exponentials of equation (11.24) were eliminated using:
ϕ ϕ= ±ϕ±e icos ( ) sin ( )i . In a similar fashion we find: ψ ψ⋅ + =− +i1 2 ( )2,1, 1 2,1, 1

ψ p2 y
. This can be continued to form a set of five real d functions and seven real f

functions. When these are applied as orbital representations in the description of an
arbitrary many electron atom, they are referred to as hydrogenic orbitals. It should
also be pointed out that alternate definitions of spherical harmonics exist in which
the functions with odd values of mℓ do not possess a phase factor, hence the signs on
hydrogenics in the above linear combinations are reversed.

PARALLEL INVESTIGATION: Verify that the linear combination:

ψ ψ ψ⋅ + =− + −
1 2 ( ) d3,2, 2 3,2, 2 3 x y2 2

Any wavefunction formed from a combination of eigenfunctions is itself an
eigenfunction of the Hamiltonian, and in fact has the same eigenvalue as the
original functions. To see this is the case, suppose we form a new function from a
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weighted combination of two functions which obey the conditions: ψ ψˆ =O a1 1 and

ψ ψˆ =O a2 2. It follows that:

ψ ψ ψ ψ ψ ψˆΨ = ˆ + = + = + = ΨO O c c ac ac a c c a( ) ( ) ( ) (11.25)1 1 2 2 1 1 2 2 1 1 2 2

Therefore, the energy eigenvalue of ψ p2 z
is the same as ψ p2 x

and ψ p2 y
, which are the

same as ψ s2 for that matter, and have value:

μ
πε

= −
ℏ

= −E
Z e Z

E
8 (4 ) 8

(11.26)h2

2 4

2
0

2

2

There is a trade-off to be considered when converting eigenfunctions of the central
potential problem to Cartesian form. A majority require taking linear combination
of some type to eliminate terms of the form: ϕ±e imℓ . A benefit is the accompanying
elimination of imaginary components to form a real wavefunction. A downside is
the resulting functions are no longer eigenfunctions of angular momentum. This is a
mathematical consequence, but is also an artifact of uncertainty. Combining
functions has altered the variance in average values of two conjugate variables.

11.3 Electron spin
Before moving to many-electron atoms, we must address another intriguing aspect
necessitated when describing physical phenomena through quantum mechanics.
This unfortunately has no classical analog, thus creates a situation where our ability
to make connection with the familiar is challenged. In addition to any angular
momentum a rotating particle experiences through the mechanisms we have already
discussed, subatomic particles—the protons, neutrons, and electrons which comprise
all matter—possess an additional intrinsic angular momentum. First proposed by
Uhlenbeck and Goudsmit, it is referred to as a particle’s spin. The name suggests a
classical connection to the effect resulting from a charge rotating on its own axis.
This motion would produce a magnetic moment, with opposing directions of
rotation flipping orientation of its north magnetic pole. Although this in some
way rationalizes spin characteristics of protons and electrons, a zero-charge neutron
also exhibits this phenomenon.

Particle spin arises naturally in Dirac’s development of quantum mechanics.
Throughout this book we follow the approach of Schrödinger and what is referred to
as non-relativistic quantum mechanics. As a result the existence of spin must be
postulated. We will further assume that spin and spatial coordinates are separable.
In the terminology of section 7.5 this means space and spin operators commute, so
our wavefunctions can be simultaneous eigenfunctions to both. This in general is not
the case for electrons in an atom, where cross-terms of the orbital and spin angular
momentum, familiarly known as spin–orbit interactions, make their individual
coordinates inseparable. These affects only become significant as the nucleus
becomes fairly large, so can be neglected for elements in the first few rows of the
periodic table.
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In the non-relativistic development, eigenfunctions and eigenvalues of spin
emerge from two sources of information. First, we interject results gleaned from
spatial angular momentum, the quantum mechanical study of orbital angular
momentum for a rotating object. Secondly, we apply the results of the 1922
experiment of Stern and Gerlach, which passed a low-intensity beam of silver atoms
through an inhomogeneous magnetic field. The beam was split into two bands,
suggesting two orientations of intrinsic or spin angular momentum. Applying
knowledge gained from section 8.2 spatial angular momentum has the possibility
of +ℓ2 1 orientations, a result of quantum number mℓ taking integer values from−ℓ
to +ℓ. Analogously, the two bands of the Stern–Gerlach experiment therefore result
from spin quantum number s = ½ producing 2(½)+1 = 2 orientations of spin
angular momentum. The z-component of spin angular momentum then has allowed
values: = − … −m s s s, 1, ,s . For spin quantum number s = ½, ms is thus limited to
the two integer values: +½ or –½. Particles with the above characteristics are known
as fermions obeying Fermi–Dirac statistics in particle physics. The three subatomic
particles: protons, neutrons, and electrons, demonstrate this behavior, along with
other particles including quarks and neutrinos.

We represent the two orientations of ms as being eigenvalues of two eigenfunc-
tions: α and β . These functions are normalized:

α α β β= = 1 (11.27)

and orthogonal:

α β β α= = 0 (11.28)

The spin wavefunctions thus form an orthonormal eigenvector. The volume element
of equations (11.27) and (11.28) is constructed via an abstract concept we will refer
to as the spin coordinate. It is now necessary to include spin in addition to three
spatial dimensions in the description of a stationary state system.

The spin eigenvectors defined in equations (11.28) and (11.29) in fact have no
need for a specific analytic form. The same is true for an operator representing the z-
component of a spin angular momentum. We simply require it exhibits the
properties:

α αˆ = + ℏS
1
2

(11.29)z

and

β βˆ = − ℏS
1
2

(11.30)z

Again, without substantiation, we introduce the operator Ŝ
2, which acts on the spin

eigenfunctions in analogous fashion to L̂
2:

α βˆ = ˆ = + ℏS S s s( 1) (11.31)2 2 2
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In keeping with the themes of section 8.2, we expect the total spin and spin
component operators to obey the commutation relations: ˆ ˆ =S S[ , ] 0z

2 , ˆ ˆ =S S[ , ] 0x
2 ,

and ˆ ˆ =S S[ , ] 0y
2 , meaning spin wavefunctions can be simultaneous eigenfunctions of

any two. However much like results from chapter 7, equation (7.64), it is expected
that: ˆ ˆ = − ℏ ˆS S i S[ , ]z y x, ˆ ˆ = − ℏ ˆS S i S[ , ]y x z, and ˆ ˆ = − ℏ ˆS S i S[ , ]x z y. Only one component

of spin angular momentum can be simultaneously measured with Ŝ
2.

The spin eigenfunctions are invariably chosen as eigenfunctions of Ŝ
2 and

component Ŝz, with spin angular momentum presented by a precessing vector
model as shown in figure 11.3. The representation is intended to emphasize there
cannot be simultaneous knowledge of the Ŝx or Ŝy components, just like the
portrayal of spatial angular momentum in figure 8.3(c). According to equation
(11.31) intrinsic or spin angular momentum vector has length: ⋅ ℏ3 2 . It is
projected along the z-axis by amounts: ± ⋅ ℏ1 2 according to equations (11.29)
and (11.30). In orbital energy diagrams of chemistry, the function α is commonly
designated by the symbol: ↑ and is referred to as the ‘spin up’ state as indication of its
magnetic north direction. The function β is then identified by: ↓ and is called the
‘spin down’ state, representing an opposing magnetic north.

The addition of spin has little impact on the discussion of section 11.1. Since
neither the kinetic energy or potential energy operators have terms involving
electron spin, The commutation relation ˆ ˆ =S H[ , ] 0

2 holds. Therefore, functions
of table 11.1 can be simultaneous eigenfunctions of energy along with spatial and
spin angular momentum. For a one electron atom, the only modification would be
to multiply any of the 1s, 2s, …. spatial wavefunctions by either the function α or
β . When this is done we form what is referred to as a spin–orbital. A large
collection of hydrogen atoms each have an electron with a 50:50 chance of being
either spin up or spin down. Despite its limited consequence for hydrogen, spin will
have profound influence on the many-electron case.

Figure 11.3. The precessing vector model of spin.
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11.4 Populating many-electron atoms
Electron occupation of a many-electron atom is conducted according to a few
ground rules. The first is the aufbau prinzip, which simply states the lowest energy
configuration is favored, formed by occupying the available electronic levels of
lowest energy. At this point electronic energy is solely determined by principal
quantum number n, so it would seem that electrons have a large number of equal
energy choices, based on the number of allowed orbitals and their degeneracies. We
will return to this point in a moment.

The second occupation rule is the Pauli exclusion principle, which asserts no two
electrons on the same atom can simultaneously possess the same four quantumnumber
values. Envisioning quantum numbers from the viewpoint of an electron behaving as a
particle, wemay think of them like spatial coordinates. The Pauli principle thus implies
matter occupies its own unique region of space. For example, two individuals
attending a football game can enter the stadium through the same gate, go to the
same section, and even climb to the same row so long as their seat numbers differ. If
instead we view from the perspective of waves, quantum numbers adjust each
electron’s phase so they do not exhibit interference. Based on the Pauli exclusion
principle, we conclude that the first energy level can hold two electrons, as the only
available orbital is the non-degenerate 1s which is further allowed a spin up and down
electron. On the second level there again is an s but now also a triply degenerate p set
with a total number of electrons capped at eight. Continuing this approach, energy
level three has maximum capacity: 18 electrons, level four: 32 electrons, etc.

Figure 11.4(a) depicts the distribution of available electronic orbitals based on the
one electron hydrogen atom solution of section 11.1. According to equation (11.9) or
(11.10), levels increase in energy (in fact, become less negative) as a function of n. On
each successive level there is an additional orbital available orbital of +ℓ2 1
degeneracy. The key feature of the hydrogen atom solution is that all orbitals of a
given n value possess the same energy independent of their angular quantum number
ℓ, magnetic angular quantum number mℓ or magnetic spin quantum number ms.

Although it is logical to interpret many electron atoms using the solution of
hydrogen, as we begin to populate electrons beyond the n = 1 energy level we
encounter major differences between this model and actual cases. On a given level,
the degeneracy between available orbitals with different ℓ values is broken. Reasons
behind this can be argued from a mixture of classical and quantum mechanical
concepts. Electrons in many-electron atoms experience Coulombic repulsive forces
due to one another. According to discussions in section 11.1, electrons on sequential
energy levels have the same increasing average distance from the nucleus. As a
result, electrons on the nth energy level are shielded or screened from the full nuclear
charge Z by electrons on the n − 1 n − 2, …. energy levels. Electrons populating
levels beyond n = 1 therefore experience an effective nuclear charge:

σ= −Z Z (11.32)eff

where σ is the screening constant for electrons on a particular energy level. Many
sources call this the shielding constant, but there is too close an association of that
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term to the magnetic field effect a nucleus experiences in a magnetic resonance
experiment.

Electrons possessing the same n but differing ℓ values have the degeneracy of their
energies broken by the presence of other electrons. This can be explained by
examining radial wavefunctions in table 11.1. Hydrogenics with the same n but
differing ℓ values have different radial distributions. A more revealing indicator is
the radial probability density plots for n = 3 hydrogenics displayed in figure 11.2(d).
Because their probability densities all reach their greatest maximum at the
same r value, electrons in 3s, 3d, and 3p orbitals have the same most probable
distance from the nucleus. Compared to the 3d, the 3p displays a second maximum
of lower probability at a distance closer to the nucleus. The 3p electron has a finite
probability of being at this location, allowing a penetration of the screening of core
electrons, thus lowering its energy. The 3s electron has a total of three maxima, and

Figure 11.4. (a) Energy diagram for the one-electron atom. (b) Energy diagram for the many-electron atom.
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enhanced penetration compared to either the 3d or 3p. As a result, in contrast to the
behavior of a single electron atom, orbitals of the same n but differing ℓ values have
the energy hierarchy: ns < np < nd < nf. This results in the familiar pattern of
electron population displayed in the periodic table of the elements, and demon-
strated in figure 11.4(b).

For computational purposes, hydrogenics represented by equation (11.3) and
table 11.1 were historically replaced by Slater Type Orbitals (STOs). They have
the normalized form:

ψ ξ θ ϕ=
!

⋅ξ
+

− −a
n

r e Y
[2 ]

[(2 ) ]
( , ) (11.33)n

n
n r a

ℓ
m0

1 2

1 2
1 ℓ0

Equation (11.33) contains quantities by now familiar such as principal quantum
number: n, and Bohr radius: a0. The exponential factor can be empirically para-
meterized based on the atomic system. It is often done so in the form:

ξ σ= = −Z
n

Z
n

(11.34)eff

where σ is the screening parameter from equation (11.32). Unlike the hydro-
genics of table 11.1, the radial functions employed by STOs are not orthogonal.
They do however form an orthonormal set based on the properties of either their
spherical harmonic function: θ ϕY ( , )ℓ

mℓ or their spin function. Their efficacy
comes in applications to many electron atoms through the exponential factor in
equation (11.34).

If desired, the radial components of STOs with different n values but the same ℓ
can be Schmidt orthogonalized using the procedure of section 7.3. For instance,
the n = 2 STO can be orthogonalized to the n = 1 function by applying the
projection:

Figure 11.5. Comparison of the original n = 2 Slater type orbital: 2 to a Schmidt orthogonalized Slater type
orbital: ′ = − −2 ( 2 1 1 2 ) (1 1 2 )2 1 2.
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′ = −
−

2
2 1 1 2

(1 1 2 )
(11.35)2 1 2

It is interesting to contrast amplitude plots of STOs and hydrogenics. Figure 11.5
shows the radial amplitude component of the n = 2 STO (labeled: 2 ). This should
be compared to the radial function: R2s(r) depicted in figure 11.1(b). As equation
(11.33) shows, STO 2 lacks the radial node of R2s(r) because it lacks a polynomial
form (see table 11.1). However, when the STO 1 is projected out, it now displays a
striking similarity to the R2s(r) hydrogenic.

11.5 Many-body wavefunctions
Let us now attempt to analyze a many electron atom from the mathematics of the
time independent Schrödinger equation. Solving the eigenvalue problem for a
Hamiltonian representing a collection of charged quantum mechanical particles
introduces the complexity of an increase in spatial coordinates that also now exhibit
interdependence. For instance, consider the simplest possible multi-electron atom,
helium. Using the coordinate system shown in figure 11.6, we can write the following
electronic Hamiltonian:

πε πε πε
ˆ = ˆ + ˆ = − ℏ ∇̂ − ℏ ∇̂ − − +H T V

m m
e

R
e

R
e

r2 2
2

4
2

4 4
(11.36)

e e

2

1
2 2

2
2 2

0 1

2

0 2

2

0 12

An immediate complication arises from the last term of equation (11.36), which
depends upon the coupled coordinates of both electron 1 and electron 2, while the
kinetic energy and nuclear attraction terms for each electron have separable
variables. In fact, it is possible to write the general equation for an n-electron atom:

∑
πε

ˆ = ˆ + ˆ + …+ ˆ +
<

H H H H n
e

r
(1) (2) ( )

4
(11.37)

i j ij

2

0

In equation (11.37), Ĥ (1) contains the kinetic energy and nuclear attraction terms
for electron 1 and has no dependence on the coordinates of the remaining n−1

Figure 11.6. Coordinate system for a helium atom.
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electrons. However, the summation in equation (11.37) includes n−1 terms for the
repulsion of electron 1 to all remaining electrons, which makes it impossible to
separate dependence of electron 1 from any of the others. Similar arguments render
all electronic coordinates interdependent.

A common approach across physics is to seek solutions to simplified model
systems, both to explore what information they can provide as well as to establish
starting points in a hierarchy of sophistication. As a first approximation to the
quantum mechanics of a system of like-charged particles, suppose for the moment
that all repulsive electrostatic effects are negligible or can in some way be measured
relative to one fixed point in space. The system constitutes a set of non-interacting
particles, with no correlation to their motion. Once an approximate form of this type
is found, the correct treatment can always be added back in as a perturbation, using
techniques described in chapter 12. By eliminating or parameterizing all electron–
electron repulsion terms in equation (2.37), the kinetic energy and nuclear attraction
terms for each particle are independent functions of individual coordinates. This
allows a separation of variables as was done for the 2-dimensional particle in a box
in section 6.3.

Let us assume we replace the electrons in our many-body problem by charge-less
masses tiny enough so that gravitation effects can be summarily ignored. It is possible
the system is under the influence of some type of potential, but let us further assume
any effect it has on each particle is separable. The n-particle Hamiltonian is now:

ˆ = ˆ + ˆ + …+ ˆH H H H n(1) (2) ( ) (11.38)

The n-particle many-body wavefunction can thus be expressed as a product of n one-
particle wavefunctions. If formed from a basis of orthonormal functions, it is
written:

ψ ψ ψ ψ… = ⋅ ⋅ …⋅n n(1, 2, , ) (1) (2) ( ) (11.39)

Using equations (11.38) and (11.39) with n = 2, the eigenvalue problem is:

ψ ψ ψ
ψ ψ ψ ψ

ˆ = ˆ + ˆ ⋅
= ⋅ ˆ + ⋅ ˆ

H H H

H H

(1, 2) ( (1) (2)) (1) (2)

(2) (1) (1) (1) (2) (2)
(11.40)

The final identity above follows from the fact that functions 1 and 2 have
independent coordinates. If ψ(1) and ψ(2) are eigenfunctions to their respective
Hamiltonians with eigenvalues E(1) and E(2) then:

ψ ψ ψ ψ ψ
ψ

ˆ = ⋅ + ⋅
=

H E E
E

(1, 2) (1) (1) (2) (2) (1) (2)
(1, 2) (1, 2)

(11.41)

In general, if the Hamiltonian can be written as a sum of Hamiltonians, the system
wavefunction is a product function and the total energy is a sum of individual
energies:

… = + + ··· +E n E E E n(1, 2, , ) (1) (2) ( ) (11.42)
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When evaluating an expectation value, the implication of separable electronic
coordinates is as follows:

ψ ψ ψ
ψ ψ ψ
ψ ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ ψ

… = ⋅ ⋅ …⋅ ˆ + ˆ + …+ ˆ
⋅ ⋅ …⋅

= ˆ …
+ ˆ … + …

= + + …+

o n n O O O
n

O n n

O n n
o o o n

(1, 2, , ) (1) (2) ( ) (1) (2)
(1) (2) ( )

(1) (1) (1) ( (2) (2) ( ) ( ) )

(2) (2) (2) ( (1) (1) ( ) ( ) )
(1) (2) ( )

(11.43)

n

Our product wavefunction resulted from a separation of variables by approximat-
ing a many-body problem of non-interacting electrons. Although this approach is
too drastic for most practical applications, it nonetheless retains widespread
acceptance for symbolically representing electron configurations in freshman
chemistry. Based on the aufbau prinzip, the Pauli exclusion principle, and the
screening/penetration effect, the many-electron configuration of, for instance iron,
is familiarly written:

1s 2s 2p 3s 3p 4s 3d (11.44)2 2 6 2 6 2 6

which we now recognize as being a product function of hydrogenic wavefunctions
for non-interacting electrons.

Although it is impossible to analytically solve the Schrödinger equation for an
atom or molecule containing two or more interacting electrons, numerical models
can approximate the exact solution to a high degree of accuracy. The most
popular of these is self-consistent field (SCF) theory. Also known as a mean field
theory, it was first developed and applied to product wavefunctions by Hartree.
His approach is a variational method (see chapter 10), finding an upper bound to
the exact electronic wavefunction by optimizing a basis of orthonormal spin
orbitals that are eigenfunctions of an approximate Hamiltonian of one-electron
operators:

⎛
⎝⎜

⎞
⎠⎟∑ ∑

πε
ˆ = ˆ = − ℏ ∇̂ − + ˆH H

m
Ze

R
v

2 4
(11.45)

i i

i
e

i
i

i

2 2 2

0

avg

In equation (11.45), the Hamiltonian for each electron is made separable from every
other by replacing the exact electron–electron repulsion by an average repulsion
experienced by electron i due to the presence of all others. The average potential is
the approximate repulsion an electron experiences due to the most likely location of
all others. It is logical to use probability densities to represent electron locations,
hence:

∫∑
πε

ψ
τˆ =

∣ ∣

≠

v
e

r4
d (11.46)

j i
i

j
j

avg
2

0

2
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Hence the repulsion an electron experiences is dependent on the manner in which the
orbitals describing its neighbors are constructed. The one-electron Hamiltonians are
therefore dependent on their own eigenfunctions. The equations are therefore non-
linear, and must be solved iteratively.

Figure 11.7 diagrams the SCF algorithm. It begins with an initial guess for the
total wavefunction. A product of basis set wavefunctions for non-interacting
electrons is one possibility. If this is the case, a matrix with elements constructed
from the one-electron Hamiltonians with no average electron repulsion potential.
Expansion coefficients for the basis functions are then determined using matrix
equations according to the variational recipes of section 10.3:

=H C S C E (11.47)

The total energy of the initial guess is found by summing eigenvalues of occupied
orbitals.

With coefficients from equation (11.47), the average repulsion v̂i
avg is constructed

for each one electron Hamiltonian Ĥi, giving a second Hamiltonian matrix to
diagonalize. When the ground state energy is determined from this step, it is
compared to the value from the previous diagonalization. If their difference is within
a desired tolerance, the wavefunction has been optimized and a self-consistent field
has been reached for the potential. If the energy is not adequately converged, the
most recent C matrix is used to form another v̂i

avg and Ĥi, and the process continues.
As an interesting historical note, Hartree devised this procedure prior to the
availability of computers. This would seem an impossible task without their number
crunching ability, however Hartree’s father was a retired accountant, inured to the
tedium of mountainous sets of numbers. He played the computer’s role, and was
invaluable to the successful optimization of the first SCF wavefunctions.

Figure 11.7. The algorithm for a self-consistent field method.
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In a system with n electrons, the energy eigenvalue of the nth occupied SCF
orbital is calculated relative to the average repulsion potential of the remaining n−1
occupied orbitals. In addition, the orbital energy of the first unoccupied, or virtual
orbital is calculated relative to the average repulsion potential of the n occupied
orbitals. As a consequence, Koopman’s Theorem states that the negative eigenvalue
(the sign is changed because it is negative for bound states) of the highest occupied
orbital represents the first ionization potential of the system, and the eigenvalue of
the lowest energy virtual orbital is the SCF electron affinity.

11.6 Antisymmetry
There yet remains one more complication inherent to a many-electron wavefunction.
The non-correlated electron product wavefunctions we have constructed made no
mention of any spin coordinate other than indicating the maximum occupation of a
degenerate set of orbitals. When spin is introduced to the product wavefunction, there is
an additional condition which must be satisfied. As previously mentioned, particles
possessing half-integer spin are classified as fermions. Amany-body system composed of
fermions must obey the spin statistics theorem first proposed by Fierz but reformulated
by Pauli. This states that fermions must be described by wavefunctions that are anti-
symmetric with respect to the permutation or interchange of any two particles:

ψ ψ… = −i j n j i n(1, 2, , , , ..., ) (1, 2, ..., , , ..., ) (11.48)

Equation (11.48) is equivalent to a 180° change in phase of wave amplitude.
Permuting particles does not affect the sign of any expectation value, which depends
upon a wavefunction’s probability density. This is the modulus square of the
wavefunction amplitude. Thus, reversing phase has no effect on this quantity, no
matter if it is obtained from a real, imaginary or complex wavefunction.

To satisfy the stipulation of equation (11.48), a many-electron wavefunction must
be antisymmetrized. For example, consider a system of two non-interacting
fermions. The total wavefunction must consist of both spatial and spin components
constructed so that equation (11.48) is satisfied. If the particles have opposing spins
the total wavefunction is constructed as a product of symmetric spatial and
antisymmetric spin wavefunctions:

ψ ψ ψ α β β α= ⋅ ⋅ ⋅ − ⋅(1, 2) (1) (2)
1

2
( (1) (2) (1) (2) ) (11.49)

The factor: 1 2 normalizes ψ (1, 2) . If the particles possess the same spin, the
spatial component carries antisymmetry:

ψ α α ψ ψ ψ ψ= ⋅ ⋅ ⋅ − ⋅(1, 2) (1) (2)
1

2
( (1) (2) (1) (2) ) (11.50)

PARALLEL INVESTIGATION: Verify that equations (11.43) and (11.44) exhibit the
property: ψ ψ= −(1, 2) (2, 1)
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For instance, the wavefunction representing spin state: ↑↓↑
1s 2s

would be:

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

ψ

ψ α ψ β ψ α ψ α ψ β ψ α
ψ α ψ β ψ α ψ α ψ β ψ α
ψ α ψ β ψ α ψ α ψ β ψ α

=

×
∣ 〉 + ∣ 〉
+∣ 〉 − ∣ 〉
−∣ − ∣ 〉〉

(1, 2, 3)
1

6

(1) (1) (2) (2) (3) (3 ) (2) (2) (3) (3) (1) (1)

(3) (3) (1) (1) (2) (2) (3) (3) (2) (2) (1) (1)

(1) (1) (3) (3) (2) (2) (2) (2) (1) (1) (3) (3)

(11.51)1s 1s 2s 1s 1s 2s

1s 1s 2s 1s 1s 2s

1s 1s 2s 1s 1s 2s

It is obvious that this procedure becomes unruly in very short order. Once again,
linear algebra supplies an answer, providing a matrix represention of the anti-
symmetrized wavefunction in the concise form of a Slater determinant. For instance,
a 2 × 2 matrix has determinant defined:

= −a b
c d

ad bcdet (11.52)

The determinant of any higher order square matrix is found using the reduction
formula:

= ⋅ − ⋅ + ⋅

= − − − + −

a b c
d e f
g h i

a
e f
h i

b
d f
g i

c
d e
g h

a ei fh b di fg c dh eg

det det det det

( ) ( ) ( )

(11.53)

Assuming a closed-shell (all paired electrons) n electron case, a Slater determinant is
then constructed from the recipe:

ψ

ψ α ψ α ψ α ψ α
ψ β ψ β ψ β ψ β
ψ α ψ α ψ α ψ α

ψ β ψ β ψ β ψ β

… =
!

…
…
…

⋮ ⋮ ⋮ ⋮
…

n
n

n n

n n

n n

n n

(1, 2, )
1

det

(1) (1) (2) (2) (3) (3) ( ) ( )

(1) (1) (2) (2) (3) (3) ( ) ( )

(1) (1) (2) (2) (3) (3) ( ) ( )

(1) (1) (2) (2) (3) (3) ( ) ( )

(11.54)

a a a a

a a a a

b b b b

z z z z

In equation (11.54): !n1 is a normalizing factor. The same approach may also be
applied to an open shell case, as is explored below.

PARALLEL INVESTIGATION: Verify by setting up the appropriate 3 × 3 determi-
nant that equation (11.45) is obtained.

The properties of linear algebra that determinants exhibit make them ideal for repre-
senting fermion wavefunctions. If two columns or rows of a matrix are the same, the
matrix has zero determinant:

= − =a a
c c ac cadet 0 (11.55)
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This is equivalent to making the spin and spatial wavefunctions of any two columns
of equation (11.54) into functions of the same electron coordinate. Doing so would
mean that two electrons simultaneously have the same four quantum numbers. This
is a violation of the Pauli exclusion principle. Secondly, consider the determinant of
the matrix below:

= −b a
d c

bc addet (11.56)

Compared to equation (11.52), the matrix in equation (11.56) has interchanged its
two columns. The calculations show the two matrices have determinants that are
opposite in sign. This is generally true for the determinant of a square matrix of any
dimension. In equation (11.54), interchanging two columns is equivalent to
permuting two electrons’ coordinates, which changes the wavefunction’s sign.

Relatively simple results are obtained when expectation values of one-electron
operators, such as kinetic energy and nuclear attraction, are evaluated for ortho-
normal spin wavefunctions expressed in a properly antisymmetrized form. Suppose
we construct the determinantal function: Ψ from orthonormal basis of functions:
ψi , and use it to determine a property from a sum of one electron operators as
represented by equation (11.38). The expectation value is:

∑ ψ ψΨ ˆ Ψ = ˆH H i( ) (11.57)
i

i i

This is the same result that was found for the simple product wavefunction in
equation (11.43). Now suppose an antisymmetrized product: Ψ′ is formed using the
same orthonormal basis, and only differs from Ψ by replacing function: ψi by: ψ∣ 〉j
for the third electron. The expectation value formed between these two determinants
is:

ψ ψΨ ˆ Ψ′ = 〈 ˆ 〉H H(3) (11.58)i j

The expectation value is now a single matrix element. If two determinants differ by
two or more basis functions, any expectation value over one-electron operators is
zero. These results are also obtained for simple product wavefunctions which ignore
antisymmetry that differ by one, two, or more basis functions.

It is also of interest to examine the properties of a two-electron operator, in
particular the electron–electron repulsion terms for a Hamiltonian of interacting
particles. Using the same definitions of determinants as was done for a one-electron
operator, we find:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

∫ ∫

∫ ∫
∑∑

πε πε

τ τ ψ ψ ψ ψ

τ τ ψ ψ ψ ψ
Ψ Ψ =

−

* *

* *

e
r

e r

r
4

1
2 4

d d (1) (1)
1

(2) (2)

d d (1) (1)
1

(2) (2)
(11.59)

i j

i i j j

i j j i

2

0

2

0

1 2
12

1 2
12
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The factor: 1 2 is included on the right-hand side to avoid double counting as the
sum runs over all basis functions. The interpretation of the top integral of the right-
hand side is straightforward. It is called a Coulomb integral and represents electro-
static repulsion of electron i’s probability density to that due to electron j. Again, this
term would arise in the exact same summation form if the wavefunction were a
simple product. However, the bottom integral of equation (11.59) does not arise for
the simple product. It is referred to as an exchange integral, and lacks a simple
classical interpretation. Its sign is opposite that of the Coulomb term, allowing
electrons with parallel spins to permute in an antisymmetrized wavefunction. For
completeness we also identify results for two determinants differing by a single basis
function:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

∫ ∫

∫ ∫
∑

πε πε

τ τ ψ ψ ψ ψ

τ τ ψ ψ ψ ψ
Ψ Ψ′ =

−

* *

* *

e
r

e r

r
4 4

d d (1) (1)
1

(2) (2)

d d (1) (1)
1

(2) (2)
(11.60)

k

i j k k

j k k i

2

0

2

0

1 2
12

1 2
12

and two determinants that differ by two orbitals:

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

∫ ∫

∫ ∫πε πε

τ τ ψ ψ ψ ψ

τ τ ψ ψ ψ ψ
Ψ Ψ″ =

−

* *

* *

e
r

e r

r
4 4

d d (1) (1)
1

(2) (2)

d d (1) (1)
1

(2) (2)
(11.61)

i j k l

i l k j

2

0

2

0

1 2
12

1 2
12

Determinants that differ beyond two locations lead to expectation values of zero.
The antisymmetry property for many-electron wavefunctions was implemented

by Fock into self-consistent field theory, as an improvement to the product
wavefunctions first numerically determined by Hartree. The method is now known
as the Hartree–Fock Self-Consistent Field (HF SCF) method.

11.7 Angular momentum in many-electron atoms
Consider a collection of k electrons, each possessing an individual spin angular
momentum of magnitude: s = +½. The spin of each can be represented by a vector
of magnitude: ∣ ∣⃗ = ⋅ ℏs 3 2 in accordance with the discussion of section 11.3. We
can then take a vector sum of all spins in the system:

∑⃗ = ⃗S s (11.62)
k

k

and determine its magnitude. In the case of any completely occupied orbital or set of
orbitals, the magnitude of the total spin vector must be:

∣ ∣⃗ =S 0 (11.63)

This is explained by referring to figure 11.3. Take a completely occupied set of p
orbitals for instance, which has three spin up α electrons with ⃗s having positive
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projection along the z-axis and three spin down β electrons with ⃗s having negative
projection along the z-axis. The vector sum of three parallel combined with three
antiparallel components is zero. We conclude that equation (11.63) holds for any
closed shell or completely occupied non-degenerate or degenerate set of orbitals.

For orbital occupations that are not closed shell, it is convenient to define a
total z-projection of angular momentum:

∑=M m (11.64)
k

S sk

This in fact is completely general, because equation (11.64) for any closed shell case
is zero. If we now consider the set of p orbitals occupied by two electrons of the same
spin, which must enter into two separate p orbitals of the degenerate set to satisfy the
Pauli exclusion principle. In this case the magnitude of the total spin vector is: S = 1.
If the two electrons were of the α type, we then have: MS = 1, but we have not
specified if the two electrons were both spin up or spin down. There should be no
preference for one over the other in the absence of some external field, so our model
should incorporate either case as an equal likelihood. Drawing on conclusions from
the one-electron case, we define allowed values of the z-projection of total spin
angular momentum to have allowed values:

= − … −M S S S, 1, , (11.65)S

with a total spin vector of magnitude: ∣ ∣⃗ = + ⋅ ℏS S S( 1) . Spin states belonging to
the same S value are degenerate, with the number of equal energy states known as
the multiplicity

+S2 1 (11.66)

The case of two electrons occupying a degenerate set of spatial orbitals has
multiplicity: 2 · 1 + 1 = 3, and is known as a triplet spin state. This would be
represented by the three possible orientations of combined z spin components:MS =
+1, 0, −1. A wavefunction for this state requires an antisymmetric spatial wave-
function, of the form we discussed in equation (11.50). This is multiplied by one of
three symmetric spin functions:

α α

α β β α

β β

+

(1) (2)
1

2
( (1) (2) (1) (2))

(1) (2)

(11.67)

In the normal case there are several different orbitals occupied. The multiplicity of a
many-electron atomic system is a product of the multiplicities of all its individual
occupied orbital types. Fortunately, all closed shells have 2(0) + 1 = 1 or singlet
multiplicity. Although partially filled orbitals can also form singlet spin states, a
wide variety of other spin states are common to atomic systems. The doublet is any
configuration with a lone unpaired electron, including the hydrogen atom. A quartet
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p state arises from the equivalence of four different spin orientations, which can be
symbolically represented:

↑ ↑ ↑ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓ (11.68)

A set of degenerate orbitals that are partially occupied can lead to a variety of spin
states, dependent upon the electrons having opposing ms values in the same orbital,
or entering into separate ones with arbitrary ms. From the many possibilities this
creates, the lowest energy spin configuration is given by Hund’s rule, which states
that maximum multiplicity is favored. For example, five electrons placed into a set
of d-orbitals are capable of generating a sextet, quartet, or doublet spin state with
five, three and one unpaired electron respectively. Hund’s rule states that the sextet is
lowest in energy, followed by the quartet, and the doublet is highest in energy.

PARALLEL INVESTIGATION: Verify that four electrons placed into a set of d-
orbitals generate a possible pentet, triplet, and singlet spin state.

Spatial angular momentum for a many-electron atom may be treated in the same
manner. A magnitude for the total orbital angular momentum vector is defined to
be: L, along with a combined z-component:

∑=M m i( ) (11.69)
i

L ℓ

The combined z-component is related to the total spatial angular momentum via:
ML = L, L−1, …, −L. In addition, we introduce a letter symbolic of total orbital
angular momentum in accordance with that which was done for one-electron orbital
angular momentum in equation (11.16), and simply replaces the lower-case
designations by upper case letters:

ð11:70Þ

As was found in the spin case, it is true that any degenerate set of atomic orbtals that
are completely occupied has: L = 0 and is designated as an S orbital angular
momentum state. It is a partially-occupied degenerate orbital which leads to a
variety of spatial angular momentum states. For instance, placing two electrons in a
set of d orbitals generates the possibility of a G, F, D, P, and S orbital angular
momentum states.
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PARALLEL INVESTIGATION: Verify that putting three electrons in a set of d
orbitals generates the possibility of an H, G, F, D, and P state

In either a single-electron or multi-electron case, electron spatial and spin angular
momentum can interact constructively or destructively, creating slightly altered
energies for atomic systems. When coupling the two forms, there is dependence on
the spin–orbit coupling that the system exhibits, which dramatically complicates the
issue. Here we will adapt the Russell–Saunders coupling scheme, in which spin orbit
effects are assumed to be small enough to be ignored. This is generally the case for
the first few rows of the periodic table. We will then introduce: J as a means to
measure the combination of spin and spatial angular momentum. Permitted values
of J are given by the Clebsch–Gordon series:

= + + − … −J L S L S L S, 1, , (11.71)

A singlet spin state of orbital angular momentum corresponding to S has J = 0, the
obvious case of no angular momentum to couple. In fact, according to equation
(11.71) any S type orbital state or singlet spin state posseses one value of coupled
angular momentum. A triplet P state on the other hand possesses J values, 2, 1,
and 0.

PARALLEL INVESTIGATION: Verify that a quartet D state has allowed values of
coupled angular momentum: J = 7/2, 5/2, 3/2, 1/2.

Information from spatial, spin, and coupled angular momentum culminates in a
term symbol, which uses a letter designation representing the total orbital angular
momentum, a left superscript describing spin multiplicity, and a right subscript
showing which particular J state is being referenced. For example, the state of no
net spin or orbital angular momentum has the term symbol: 1S0, while there are
four possible term symbols for the L = 3, S = 2 case each representing the various
ways in which the spin and orbital angular momentum interact. These are: 5F5,
5F4,

5F3, and
5F2.

PARALLEL INVESTIGATION: Verify the possible term symbols for the triplet D
state are: 3D3,

3D2, and
3D1.

The transitions which occur between electronic states in atomic spectroscopy are
described with term symbols. Using expectation values, a set of selection rules have
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been established to indicate which states are allowed to couple upon absorption of a
photon. These are:

Δ = Δ = ± Δ = ± Δ = ±
= → =

S L ℓ J
J J

0 0, 1 1 0, 1,
but 0 0 forbidden

(11.72)

The rule regarding spin reflects the fact that photons are spinless. The rules
governing orbital angular momentum ensure that absorbing a photon promotes
the electron from a degenerate set. As nuclei increase in Z value, there is a
breakdown of the Russell–Saunders scheme and selection rules in equation (11.72)
fail. In these cases, effects such as phosphorescence occur, which is a coupling
between singlet and triplet spin states.
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Chapter 12

Perturbation theory

12.1 Rayleigh Schrödinger perturbation theory
In the laboratory, atomic and molecular properties are extracted by applying
external probes, the most common of these being static electric or magnetic fields
or electromagnetic radiation. In theory, response of the system to these disturbances
can be calculated by collapsing the wavefunction to a particular eigenstate. To
induce this event, a quantum mechanical technique will be used which in spirit is
analogous to experiment. We will measure the response of the wavefunction to an
additional term, or perturbation to its Hamiltonian. For simplicity, we will begin
with a static, non-oscillatory external stimulus, and therefore present time-inde-
pendent perturbation theory.

The process begins by modifying the system’s original Hamiltonian Ĥ0 to
introduce some new effect:

λˆ = ˆ + ˆH H V (12.1)0

In equation (12.1), V̂ is now an operator representing an external perturbation
beyond the normal potential that the system experiences. This is a rather unfortu-
nate convention that is common to the development. Note this component is a
potential in addition to say, a conservative force field as for the harmonic oscillator
or the electrostatics of Coulombic attraction for the hydrogen electron, which are
effects implicitly included in Ĥ0. The value λ is an ordering parameter, which has no
physical meaning but plays a bookkeeping role as will be seen. Note that Ĥ0 has no
ordering parameter dependence so, as the subscript indicates, is known as the zeroth-
order Hamiltonian.

It is assumed there exists a complete orthonormal set of solutions to Ĥ0:

ˆ =H n E n (12.2)n0
(0)

with a lowest energy (E0
(0)) eigenfunction: 0 . The set comprises the unperturbed or

zeroth-order solutions, as categorized by the energy superscript. The system relaxes
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to the additional Hamiltonian term, producing a ground state response function:
Φ0 , which can also be expanded in a power series in the ordering parameter:

λ λΦ = + Φ + Φ + …0 (12.3)0 0
(1) 2

0
(2)

The ground state response function is specifically constructed to be intermediately
normalized to the zeroth-order unperturbed ground state:

Φ =0 1 (12.4)0

Multiplying equation (12.3) by ket: 0 and integrating, we use the normalization of
the zeroth-order ground state and equation (12.4) to conclude that:

Φ = Φ = …=0 0 0 (12.5)0
(1)

0
(2)

The perturbed ground state energy is similarly expanded:

λ λ= + + + …E E E E (12.6)0 0
(0)

0
(1) 2

0
(2)

All that now remains is to combine equations (12.1), (12.3), and (12.6) in an
eigenvalue equation: ˆ Φ = ΦH E0 0 0 :

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

λ λ

λ λ λ λ

ˆ + + λ Φ + Φ + …

= + + + … + Φ + Φ + …( )
H V

E E E

( ) 0 2

0
(12.7)

0 0
(1)

0
(2)

0
(0)

0
(1) 2

0
(2)

0
(1) 2

0
(2)

equation (12.7) is left multiplied by ket function 0 and integrated. Using the
consequences of intermediate normalization from equation (12.5), we gather surviv-
ing terms order-by-order in the parameter λ. The zeroth-order, or λ-independent
equation is:

= ˆE H0 0 (12.8)0
(0)

0

which is the unperturbed ground state energy. Only one non-zero term of ordering
parameter: λ1 is left on each side of equation (12.7), which gives the energy of first-
order perturbation theory:

= ˆE V0 0 (12.9)0
(1)

Equation (12.9) shows this energy to simply be the expectation value of the
unperturbed ground state wavefunction evaluated over the perturbing Hamiltonian.

The process of determining order-by-order expressions for the perturbed energy
can be continued to any λk desired. For instance, left multiplying equation (12.7) by
ket: 0 and imposing equation (12.5) gives the following expressions for the second-
and third-order energies by gathering terms in λ2 and λ3 respectively:

= ˆ Φ

= ˆ Φ

E V

E V

0

0
(12.10)

0
(2)

0
(1)

0
(3)

0
(2)
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To determine energy beyond order 1 requires a representation of the first- and
higher-order ground state response wavefunctions. These are expanded from the
complementary elements of the zeroth-order eigenvector, for instance the first-order
response function is:

∑Φ =
≠

c n (12.11)
n 0

n0
(1) (1)

with similar equations for any higher-order response function. The basis n
constitute an orthonormal set, so the expansion coefficients cn

(1) are related to the
response function Φ0

(1) in the following fashion:

∑ ∑δΦ = = =
≠ ≠

n c n k c c (12.12)
k k0 0

k kn k n0
(1) (1) (1)

Equation (12.12) uses the Kronecker delta defined in section 7.2. Equation (12.12)
allows us to write:

∑Φ = Φ
≠

n n (12.13)
n 0

0
(1)

0
(1)

Using the language of section 7.3, the above shows that expansion coefficients of the
response function are obtained by the projection operator: n n .

Expansion coefficients at arbitrary order k can be determined by again gathering
all terms of order: λk from equation (12.7). For instance for the first-order response
function:

ˆ Φ + ˆ = Φ +H V E E0 0 (12.14)0 0
(1)

0
(0)

0
(1)

0
(1)

This time however instead of multiplying by the zeroth-order ground state ket, we
left multiply equation (12.14) by an arbitrary member of the orthogonal comple-
ment: n and integrate giving:

Φ + ˆ = ΦE n n V E n0 (12.15)n
(0)

0
(1)

0
(0)

0
(1)

equation (12.15) is rearranged and inserted into equation (12.13):

∑Φ =
ˆ

−≠

n n V

E E

0
(12.16)

n 0 n
0
(1)

0
(0) (0)

Comparing equations (12.16) and (12.13) it is apparent that the first-order expansion
coefficients are:

=
ˆ

−
c

n V

E E

0
(12.17)n

n

(1)

0
(0) (0)

When equation (12.16) is inserted in the E0
(2) expression (equation (12.10)), we obtain:

∑=
ˆ ˆ

−
=

ˆ

−≠

E
V n n V

E E

V n

E E

0 0 0
(12.18)

n 0 n n
0
(2)

0
(0) (0)

2

0
(0) (0)

Equation (12.18) is referred to as a sum over states expression.
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PARALLEL INVESTIGATION: Verify from equation (12.7) that the response equa-
tion of order k = 2 is: ⌢∣Φ 〉 + ˆ ∣Φ 〉 = ∣Φ 〉 + ∣Φ 〉 +H V E E E 00 0

(2)
0
(1)

0
(0)

0
(2)

0
(1)

0
(1)

0
(2) . Next expand

the second-order response function in the form of equation (12.13), and left multiply the
above by: n to obtain an expression for the second-order expansion coefficients.
Finally, insert these into equation (12.10) to obtain the third-order Rayleigh–Schrödinger
perturbation energy:

∑ ∑=
ˆ ˆ ˆ

− −
−

̈

−≠ ≠( )( ) ( )
E

V n n V m m V

E E E E
E

V n

E E

0 0 0
(12.19)

m n n, 0 0n m n

0
(3)

0
(0) (0)

0
(0) (0) 0

(1)
2

0
(0) (0) 2

12.2 Applications of perturbation theory
In chapter 10 there are two examples of applying the variational principle on particle
in a box wavefunctions to obtain approximate solutions of the harmonic oscillator
problem. We will here look at these as an elementary example of perturbation
theory. The variational examples separately used sine and cosine trial wavefunc-
tions. For each, the zeroth-order Hamiltonian is the standard particle in a box
Hamiltonian containing only a kinetic energy term of the form:

μ
ˆ = − ℏ

H
x2
d

d
(12.20)0

2 2

2

which for the sine function over the limits: ⩽ ⩽x a0 0 has a zeroth-order ground
state (n = 1) energy in atomic units of:

μ
π= ˆ = = =E H

h n
a

0 0
8 2

4.93 au (12.21)0 0

2 2

0
2

2

The additional potential is treated as a perturbation, which in the instance of the sine
solutions was:

ˆ = −V k x a2 ( 2) (12.22)0
2

with a force constant: k = 200 au. The first-order perturbed energy is given by
equation (12.9), which expressed in atomic units is:

∫ π= ˆ = ⋅ ⋅ ⋅ − =E V x x x0 0 2 2 200 ( 1 2) sin ( )d 13.07 au (12.23)0
(1)

0

1
2 2

The harmonic oscillator perturbed energy through first-order for the sine function is
therefore: 4.93 + 13.07 = 18.0 au.

The cosine function over the limits: − ⩽ ⩽a x a0 0 has a ground state (n = 1)
zeroth-order energy of:
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μ
π= ˆ = = =E H

h n
a

0 0
32 8

1.23 au (12.24)0 0

2 2

0
2

2

The potential in this particular case has the form of the standard harmonic
oscillator:

=V kx
1
2

(12.25)2

Perturbation theory gives a first-order energy in atomic units of:

⎜ ⎟⎛
⎝

⎞
⎠∫ π= ˆ = ⋅ =

−
E V

k
x

x
x0 0

2
cos

2
d 13.07 au (12.26)0

(1)

1

1
2 2

Notice this is the same first-order energy obtained for sine function. The harmonic
oscillator perturbed energy through first-order for the cosine function is therefore:
1.23 + 13.07 = 14.3 au.

The perturbed energy in either form poorly reproduces the exact harmonic
oscillator energy of: k 2 = 7.07 au. A variational treatment of the problem,
particularly for the cosine function, is a much better approach in this instance. There
is also a sound mathematical argument for this discrepancy. A perturbation series,
like a power series, converges rapidly under the conditions that the perturbation is
small compared to the zeroth-order expansion point, or that:

ˆ ≫ ˆH V (12.27)0

A force constant of 200 au was purposely selected in chapter 10 to create a
sufficiently deep potential well so that the first four sine or cosine solutions were
subject to its influence.

As a second application, consider a perturbative expansion of the dipole operator:

ˆ = ⋅ ˆV e r (12.28)

where e is the unit of elementary charge and r̂ is the generalized position operator.
Consider this perturbation used to determine the electric field response of hydrogen.
The atom is exposed to static electric field components: ⃗Ei, where the subscript i
refers to orientation of the field along one of three possible Cartesian directions x, y,
or z. This induces a dipole moment μi⃗ in the system which, provided the field
strength is nominal, can be expanded in a power series:

∑ ∑μ μ α β⃗ = ⃗ + ⋅ ⃗ +
!

⋅ ⃗ ⋅ ⃗ + ⋯E E E
1
2 (12.29)

j j k,
i i ij j ijk j k0

In equation (12.29), μ ⃗ i0 is the field independent, or permanent, dipole moment of the
system along Cartesian direction i. The quantities: α β …, , are the polarizability,
first hyperpolarizability, etc. These are second-, third-, … rank tensors character-
izing the slope and curvature of the induced dipole moment. For atoms, or any
centrosymmetric molecular system for that matter, all odd-order terms in the
expansion vanish.
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The energy of the system is determined from:

∫ μ= − ⃗ ⋅ ⃗Ed (12.30)E

which upon inserting equation (12.29) gives the energy of response to the static
electric field:

μ α β= − ⃗ ⋅ ⃗ − ⋅ ⃗ ⋅ ⃗ − ⋅ ⃗ ⋅ ⃗ ⋅ ⃗ − …E E E E E E
1
2

1
6

(12.31)0 0E E

In equation (12.31), there are implied tensor products for the second and higher
order terms.

What we now do is use the electric field as the ordering parameter in equation
(12.31), and equate energy terms from perturbation theory at each order. A zero-
field integration limit produces the system energy in the absence of electric field,
which comparing to equation (12.8) is simply the ground state expectation value:

= Ĥ0 0 (12.32)0 0E

Referring to section 11.1, Ĥ0 can be found in equation (11.6). The zeroth-order
energy in atomic units is given by equation (11.10) and has the value:

= −0.500 au0E .
The permanent dipole moment for non-centrosymmetric systems is matched to

the term of equation (12.31) which is first-order in ⃗E , so is therefore calculated by
inserting equation (12.28) into equation (12.9). Below this is expressed in atomic
units (elementary charge e = 1):

μ = r̂0 0 (12.33)i i0

All components of this quantity are zero for the hydrogen atom, as is demonstrated
by using r cos θ for the spherical polar representation of the z-component along with
the Z = 1 1s hydrogenic expression from table 12.1. Applying the spherical polar
volume element, we then evaluate the following integral (shown in atomic units):

⎛
⎝⎜

⎞
⎠⎟∫ ∫ ∫π

φ θ θ θˆ = =
π π ∞

−z r e r0 0
1

d sin ( ) cos( )d d 0 (12.34)r

0

2

0 0

3 2

Comparing equations (12.31) and (12.18), components of the polarizability tensor
derive from the second-order perturbation expression when inserting the perturbing
operator in equation (12.28) (in atomic units):

∑α = − ⋅
ˆ 〈 ∣ˆ ∣ 〉

−≠

r n n r

E E
2

0 0
(12.35)

n 0

ij
i j

n0
(0) (0)

The polarizability is of particular interest where the perturbing field is of such small
magnitude that higher-order hyperpolarizability field effects are negligible. The
polarizability then represents the distortion of electron density surrounding an atom
or molecule. For a gas phase sample of randomly-oriented rapidly tumbling
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molecules the quantity of interest is the isotropic polarizability determined from the
trace average of the polarizability tensor. Spherical symmetry allows this quantity to
be evaluated as:

α α α α α= + + =1
3

( ) (12.36)xx yy zz zz

Let us evaluate equation (12.35) using: ψ=0 s1 . For the states n we choose the n
= 2 hydrogenics in their real form as presented in table 12.1. The energy

Table 12.1. Normalized real forms for hydrogenics from n = 1 to n = 3.

ψ∣ 〉1s
⎛
⎝⎜

⎞
⎠⎟π

⋅ −Z
a

e
1 Zr a

0

3 2
0

ψ∣ 〉2s ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟π

− ⋅ −Z
a

Zr
a

e
1

4 2
1

2
Zr a

0

3 2

0

2 0

ψ∣ 〉2px
⎛
⎝⎜

⎞
⎠⎟π

θ φ⋅ ⋅−Z
a

re
1

4 2
sin( ) cos( )Zr a

0

5 2
2 0

ψ∣ 〉2py
⎛
⎝⎜

⎞
⎠⎟π

θ φ⋅ ⋅−Z
a

re
1

4 2
sin( ) sin( )Zr a

0

5 2
2 0

ψ∣ 〉2pz
⎛
⎝⎜

⎞
⎠⎟π

θ⋅ −Z
a

re
1

4 2
cos( )Zr a

0

5 2
2 0

ψ∣ 〉3s ⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟π

− + ⋅ −Z
a

Zr
a

Z r

a
e

1

81 3
27 18 2 Zr a

0

3 2

0

2 2

0
2

3 0

ψ∣ 〉3px
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟π

θ φ− ⋅ ⋅−Z
a

Zr
a

re
2

81
6 sin( ) cos( )Zr a

0

5 2

0

3 0

ψ∣ 〉3py
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟π

θ φ− ⋅ ⋅−Z
a

Zr
a

re
2

81
6 sin( ) sin( )Zr a

0

5 2

0

3 0

ψ∣ 〉3pz
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟π

θ− ⋅ −Z
a

Zr
a

re
2

81
6 cos( )Zr a

0

5 2

0

3 0

ψ∣ 〉3dz2 ⎛
⎝⎜

⎞
⎠⎟π

θ⋅ −−Z
a

r e
1

81 6
(3cos ( ) 1)Zr a

0

7 2
2 3 20

ψ∣ 〉3dxz ⎛
⎝⎜

⎞
⎠⎟π

θ θ φ⋅ ⋅ ⋅−Z
a

r e
2

81
sin( ) cos( ) cos( )Zr a

0

7 2
2 3 0

ψ∣ 〉3dyz ⎛
⎝⎜

⎞
⎠⎟π

θ θ φ⋅ ⋅ ⋅−Z
a

r e
2

81
sin( ) cos( ) sin( )Zr a

0

7 2
2 3 0

ψ∣ 〉
−3dx y2 2 ⎛

⎝⎜
⎞
⎠⎟π

θ φ⋅ ⋅−Z
a

r e
1

81 2
sin ( ) cos(2 )Zr a

0

7 2
2 3 20

ψ∣ 〉3dxy ⎛
⎝⎜

⎞
⎠⎟π

θ φ⋅ ⋅−Z
a

r e
1

81 2
sin ( ) sin(2 )Zr a

0

7 2
2 3 20

1 πε= ℏ =a
m e

(4 )
0.529Å

e
0

0
2

2
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denominators of equation (12.35) are calculated in atomic units using chapter 11,
equation (11.10):

− = − =E E 0.500 0.125 0.375 au (12.37)n0
(0) (0)

The following results should be verified using wavefunctions from table 12.1 and the
Cartesian to spherical polar transformation: z = rcos(θ):

ψ ψ ψ ψ ψ ψˆ = 〈 ˆ 〉 = 〈 ˆ 〉 =z z z 0 (12.38)1s 2s 1s 2p 1s 2px y

What remains is the integral:

∫ ∫ ∫ψ ψ
π π

φ θ θ θ〈 ˆ 〉 = ⋅

=

π π ∞
−z r e r

1 1

4 2
d sin( ) cos ( )d d

0.7449 au

(12.39)
r

1s 2p
0

2

0

2

0

4 3 2
z

PARALLEL INVESTIGATION: Verify that the results: ψ ψ ψ ψ〈 ˆ 〉 = 〈 ˆ 〉 =z z1s 2p 1s 2px y

0.7449 au using wavefunctions from table 12.1 in an integral similar to equation
(12.39) using the operators: θ φˆ =x r sin( )cos( ) and θ φˆ =y r sin( )sin( ).

The sum over states expression therefore becomes a single term:

α = − ⋅
−

= − =2
0.7449

0.375
2.959 au 0.435Å (12.40)

2
3

For a discussion of unit conversion, see appendix A. Notice that polarizability has
volume dimensions. This corroborates with earlier discussion of α representing the
degree of electron density distortion experienced by an atom or molecule due to an
external field. This effect can of course arise by explicitly placing the system in such a
laboratory environment, but can also be induced due to the proximity of neighbor-
ing influences in a sample as a London dispersion force. The experimental polar-
izability of the hydrogen atom is 0.666 Å3, which shows the perturbation theory
result is of the correct order of magnitude, but is in error by 34.6%.

PARALLEL INVESTIGATION: Verify using the functions of table 12.1 that
including the n = 3 s, p, and d hydrogenics in the orthogonal complement n leads
to only one additional non-zero contributing term: ψ ψ〈 ˆ 〉 =z 0.2983 au1s 3pz

, and when
this is included in the sum over states, leads to a polarizability of: α = 3.359 au = 0.494 Å3,
which is in error by 25.8%.

The first hyperpolarizability should be zero by symmetry arguments, which can be
corroborated by examining the zzz component. This again simplifies greatly due to a
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large number of vanishing terms. Based on the results obtained during polarizability
calculation, the only possible contribution can come from:

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

β

ψ ψ ψ ψ ψ ψ
ψ ψ

ψ ψ

= − ⋅

〈 ˆ 〉〈 ˆ 〉〈 ˆ 〉

−
− ˆ ⋅

∣〈 ˆ 〉∣

−

z z z

E E
z

z

E E

6

( ) ( )

(12.41)

zzz

1s 2p 2p 2p 2p 1s

1 2
2 1s 1s

1s 2p

1 2
2

2
z z z z z

According to equation (12.34) the second term on the right of equation (12.41)
vanishes. In the first term the term yet to be evaluated can be done using table 12.1
(in atomic units):

⎛
⎝⎜

⎞
⎠⎟ ∫ ∫ ∫ψ ψ

π
φ θ θ θ〈 ˆ 〉 = ⋅ =

π π ∞
−z r e r

1

4 2
d sin( ) cos ( )d d 0 (12.42)r

2p 2p

2

0

2

0

3

0

5
z z

which shows the first hyperpolarizability to be zero as expected.

12.3 The resolvent operator
A more elegant development of perturbation theory results from using concepts of
section 7.3 to construct a projection operator known as the resolvent. In this
approach we will make many of the same assumptions of section 12.1. There still
exists an unperturbed ground state solution: 0 , and ground state response functions
to any order: Φ k

0
( ) can be expanded from a complementary set of zeroth-order

eigenstates. Defining the ground state projection operator:

ˆ =P 0 0 (12.43)0

we revisit the derivation beginning with the intermediate normalization condition in
equation (12.4). This is equivalent to:

ˆ Φ =P 0 (12.44)0 0

Higher-order corrections are projected from Φ0 using the zeroth-order orthogonal
complement projection operator:

∑ˆ =
≠

P n n (12.45)
n 0

n

An arbitrary energy parameter: E is now added to the Schrödinger equation:

+ ˆ Φ = + ΦH E( ) ( ) (12.46)0 0 0E E

In equation (12.46), Ĥ , Φ0 , and E0 are defined in equations (12.1), (12.3), and
(12.6) respectively. Choosing the energy parameter to be: E = E0 leads to what is
known as Brillioun–Wigner perturbation theory. If instead the parameter is set equal
to the unperturbed ground state energy:

= E (12.47)0
(0)E
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the development is then Rayleigh–Schrödinger perturbation theory from section 12.1,
and will in fact give results having the same appearance we have already encountered.
When this choice is made along with equation (12.1), we can rewrite equation (12.46) as:

− ˆ Φ = − + ˆ Φ( ) ( )E H E E V (12.48)0
(0)

0 0 0
(0)

0 0

equation (12.48) is now projected with the ground state orthogonal complement:

ˆ − ˆ Φ = ˆ − + ˆ Φ( ) ( )P E H P E E V (12.49)n n0
(0)

0 0 0
(0)

0 0

Operator P̂n commutes with the zeroth-order energy and, because it is formed from
its eigenfunctions, must also commute with the zeroth-order Hamiltonian. This
allows us to rewrite equation (12.49) in the form:

ˆ Φ = − ˆ ˆ − + ˆ Φ
−( ) ( )P E H P E E V (12.50)n n0 0

(0)
0

1
0
(0)

0 0

Equation (12.50) introduces the concept of an inverse operator. For instance, if there
exists operator: Ô to eigenfunction: ψk with eigenvalue: ok an inverse operator
exhibits the property:

ψ ψ− ˆ =
−

−c O
c o

( )
1

(12.51)k
k

k
1

Recall from section 7.3 that projection operators exhibit the idempotent property:
ˆ = ˆP Pn n

2
. This condition is applied to equation (12.50), and the idempotent property

produces a result written in the form:

ˆ Φ = ˆ − + ˆ Φ( )P R E E V (12.52)n mn0 0
(0)

0 0

Equation (12.52) introduces the resolvent operator:

∑ˆ = ˆ − ˆ ˆ = − ˆ
≠

− −( ) ( )R P E H P m m E H n n (12.53)
m n, 0

mn m n0
(0)

0
1

0
(0)

0
1

The resolvent is also referred to as the wave reaction operator. The orthogonal
complement is constructed from an orthonormal set of eigenfunctions to Ĥ0, so the
bra-ket inverse operation demonstrates the following behavior:

δ− ˆ =
−

=
−

−( )m E H n
E E

m n
E E

1 1
(12.54)

n n
mn0

(0)
0

1

0
(0) (0)

0
(0) (0)

which collapses one of the sums in equation (12.53), and simplifying it to the form:

∑ˆ = − ˆ
≠

−( )R n n E H n n (12.55)
( )

n 0

n 0
0

0

1

As a consequence of either equation (12.53) or (12.55) the state: 0 must be non-
degenerate to any member of its complement, otherwise the resolvent introduces a
singularity into the expressions.
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According to equations (12.3) and (12.13), the ground state response wave-
function can be expressed in terms of the orthogonal complement projection
operator (equation (12.45)) as:

Φ = + Φ + Φ + … = + ˆ ΦP0 0 (12.56)n0 0
(1)

0
(2)

0

Equation (12.52) is directly inserted into the right-hand side of equation (12.56):

Φ = + ˆ − + ˆ Φ( )R E E V0 (12.57)n0 0
(0)

0 0

Iteration of equation (12.57) in the following fashion gives an infinite-order
expansion of the ground state response function:

⎡⎣ ⎤⎦∑Φ = ˆ − + ˆ
=

∞

( )R E E V 0 (12.58)
k 0

mn
k

0 0
(0)

0

For instance, the first three terms are:

⎡

⎣

⎢⎢⎢
⎤

⎦

⎥⎥⎥

∑

∑

∑

Φ = + ˆ ˆ + ˆ − + ˆ ˆ + …

= +
ˆ

−

+
ˆ ˆ

− −

− −
ˆ

−
+ …

≠

≠

≠ ( )

( )

( )( )

( )

R V R E E V R

n n V

E E

m m V n n V

E E E E

E E
n n V

E E

0 0 0

0
0

0

0

(12.59)

( )

n

m n

n

0

, 0

0

n n n

n

n m

n

0 0
(0)

0
(1)

0
(0) (0)

0
(0) (0)

0
(0) (0)

0
(1)

0
(0)

0
0 (0)

2

When the perturbed Hamiltonian acts on this response function:

ˆ Φ = ΦH E (12.60)0 0 0

we left multiply equation (12.60) by: 0 and with equation (12.1) find:

= + ˆ ΦE E V0 (12.61)0 0
(0)

0

Using the sequencing of an ordering parameter, the energy at any order n > 0 can be
defined:

− = ˆ Φ −E E V0 (12.62)n n
0
( )

0
(0)

0
( 1)

into which equation (12.58) is inserted to obtain an order-by-order expansion that
takes the same form as, for example, equation (12.18).

It is of interest to closely examine the third-order perturbed ground state energy:

= ˆ ˆ ˆ ˆ ˆ − ˆ ˆ ˆE VR VR V E VR V0 0 0 0 (12.63)n m n0
(3)

0
(1) 2
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If this is expressed in terms of the first-order response function from equation (12.59) or
(12.16) it can be rewritten as:

= Φ ˆ Φ − Φ Φ = Φ ˆ − ΦE V E V E (12.64)0
(3)

0
(1)

0
(1)

0
(1)

0
(1)

0
(1)

0
(1)

0
(1)

0
(1)

This is a result which can be generalized for odd-orders of Rayleigh–Schrödinger
perturbation theory in which the kth order wavefunction can be used to determine
the (2k +1)-order energy. For instance, we see from equation (12.64) the third-order
energy from: Φ0

(1) , and equation (12.9) shows the first-order energy obtained from:

Φ = 00
(0) . The second term in the middle of equation (12.64) is called a

renormalization or exclusion principle violating term, and is a consequence of the
chosen intermediate normalization condition.

PARALLEL INVESTIGATION: Verify the fourth-order Rayleigh–Schrödinger
perturbation expression is:

∑ ∑

∑ ∑

=
ˆ ˆ ˆ ˆ

− − −
−

ˆ

−

−
ˆ ˆ ˆ

− −
+

ˆ

−

≠ ≠

≠ ≠

( )( )( ) ( )

( ) ( )
( )

( )

E
V k k V m m V n n V

E E E E E E
E

V n

E E

E
V m m V n n V

E E E E
E

V n

E E

0 0 0

2
0 0 0

k m n n

m n n

0
(4)

0
(0) (0)

0
(0) (0)

0
(0) (0) 0

(2)
2

0
(0) (0) 2

0
(1)

0
(0) (0) 2

0
(0) (0)

0
(1) 2

2

0
(0) (0) 3

k m n n

m n n

, , 0 0

, 0 0

One last comment about the first-order perturbed wavefunction. Algorithms for
its analytical determination were crucial to the efficacy of computational quantum
chemistry. There was a point in time where higher order molecular properties were
computationally determined by finding the ground state wavefunction relative to a
Hamiltonian like equation (12.1), in which the perturbing term is explicitly included
in the Hamiltonian in addition to any other potential in the zeroth-order
Hamiltonian Ĥ0:

λ ψ λ λ ψ λˆ + ˆ =H V E( ) ( ) ( ) ( ) (12.65)0

The energy is expanded in a power series:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟λ λ

λ
λ λ

λ
λ= +

!
∂

∂
⋅ +

!
∂

∂
⋅ + ⋯E E

E E
( )

1
1

( ) 1
2

( )
(12.66)0

2

2
2

Properties at a particular order were equated to a finite difference derivative, for
instance the first-order response energy would be found from:

⎛
⎝⎜

⎞
⎠⎟

λ
λ

λ λ
λ λ

= ∂
∂

≈ −
−

E
E E E( ) ( ) ( )

(12.67)1
2 1

2 1

A seminal point for computational chemistry came with the implementation of
analytical gradient techniques These are based on the Hellman–Feynman theorem,
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which describes the way in which energy eigenvalue: E of a system with
Hamiltonian: Ĥ and eigenfunction: ψ responds to perturbation: λ:

λ
ψ
λ

ψ ψ
λ

ψ ψ ψ
λ

∂
∂

= ∂
∂

ˆ + ∂ ˆ
∂

+ ˆ ∂
∂

E
H

H
H (12.68)

Comparison with equation (12.3) shows that:

ψ
λ

∂
∂

= Φ
λ→
lim (12.69)

0
0
(1)

so that analytical solution for Φ0
(1) via equation (12.16) becomes possible. A

particular perturbation of importance is the electronic energy response to nuclear
displacement. Implementation of such algorithms enable modern computational
chemistry programs to determine equilibrium molecular geometries and transition
states of concerted reactions.

12.4 Techniques for solving the sum over states equations
Before the advent of high speed computational methods, simplifications were made
to facilitate solution of the Rayleigh–Schrödinger perturbation expressions. Among
the more drastic is the average energy approximation, in which the energy difference
denominators between the ground state and orthogonal complement: −E En0

(0) (0) are
replaced by a single average value. Under these conditions, equation (12.18)
becomes:

∑≈ Δ ⋅ ˆ ˆ
≠

−E ab E V n n V( ) 0 0 (12.70)
n 0

a b0
(2) 1

To further simplify equation (12.70) the ground state wavefunction 0 is introduced
into the sum over states. This produces a projection operator of unique character:

∑ˆ =
=

∞

n n1 (12.71)
n 0

Consider the action of this operator on any eigenstate of the orthonormal set:

∑ ∑ δˆ = = =
=

∞

=

∞

k n n k n k1 (12.72)
n n0 0

nk

Equation (12.72) demonstrates that a complete set of orthonormal functions can be
used to form an identity operator. The sum in equation (12.71) is known as
resolution of the identity. Equation (12.71) is inserted into equation (12.70) giving:

≈ Δ ⋅ ˆ ˆ ˆ−E ab E V V( ) 0 1 0 (12.73)a b0
(2) 1

The summation in equation (12.71) contains the eigenstate: 0 , so equation (12.72),
shows that the identity operator: 1̂ has no effect on: 0 . The commutation relation:
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ˆ ˆ =V[1, ] 0 therefore holds (to review commutation relations, see section 7.5), which
allows us to write:

≈ Δ ⋅ ˆ ˆ ˆ = Δ ⋅ ˆ ˆ ˆ

= Δ ⋅ ˆ ˆ

− −

−

E ab E V V E V V

E V V

( ) 0 1 0 0 1 0

0 0
(12.74)a b a b

a b

0
(2) 1 1

1

so that the second-order energy can be approximated as an expectation value over
the ground state only. Taking this approach to determine the polarizability of
hydrogen requires evaluation of the following integral:

∫ ∫ ∫ψ ψ
π

φ θ θ θ= ⋅ =
π π ∞

−z r e r
1

d sin( ) cos ( )d d 1 au (12.75)r
1s

2
1s

0

2

0

2

0

4 2

PARALLEL INVESTIGATION: Verify using the result of equation (12.70) that the
experimental hydrogen atom polarizability of: α = 0.666 Å3 is reproduced using an
average energy denominator: Δ = −E 0.441 au, which is 17.6% higher than the
quantum mechanical difference between the n = 1 and n = 2 hydrogenic energy levels.

The average energy approximation is generally too drastic a simplification to be
used if any meaningful conclusions are to be drawn from perturbation theory. Let us
take some time to mention other approaches taken to solve the expressions. Ground
state perturbation theory energies beyond first-order require the orthogonal comple-
ment: n to ground state wavefunction: 0 as a means of expanding response
function: Φ k

0
( ) . The set: n make it possible to form energy denominators required

for all expressions beyond first order in a relatively straightforward manner. This is
because elements of the orthogonal complement: (i) are eigenfunctions of the zeroth-
order Hamiltonian: Ĥ0, and (ii) form an orthonormal set.

With these conditions in mind, we can therefore represent the sum over states
expressions in a matrix form. For the second-order energy, we write:

= −E ab V E V( ) (12.76)a
T 1

b0
(2)

If the orthogonal complement includes n eigenstates, then Vb is an n × 1 column matrix
of elements: ˆn V 0b , Va

T is a 1 × n row matrix of elements: V̂ n0 a , and E−1 is an n
× n diagonal matrix with elements: −E E1 ( )n0

(0) (0) . To review properties of matrices,
see section 7.4. In general, we should use Hermitian conjugate rather than transposed
vectors, but for real eigenstates: =†V Va a

T. In equation (12.76), the conforming matrices
of the triple product produce a (1 × n) × (n × n) × (n × 1) = 1 × 1 or numeric result. In a
similar fashion the third-order perturbation energy has matrix form:

= − ⋅− − −E abc E bV E V E V V E V( ) ( ) (12.77)a
T 1

b
1

c a
T 2

c0
(3)

0
(1)

Equation (12.77) uses many of the same conventions of equation (12.76). The matrix
product of the second term is multiplied by the scalar value: = ˆE b V( ) 0 0b0

(1) , and
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also involves a diagonal matrix of the square difference of energy eigenvalues:
−E E1/( )n0

(0) (0) 2. The first term includes: Vb, an n × n square matrix with elements:
ˆm V nb . Notice both matrix products in equation (12.77) conform so that the

overall result again is a 1 × 1 or numeric answer.
It is also possible that energy denominators may be constructed from a set of

functions which couple across the zeroth-order Hamiltonian, forming a non-
diagonal energy representation. In this case, the techniques of chapter 10 can be
employed to first diagonalize the energy representation. In the following we assume
these matrix elements to be formed from real wavefunctions, so that the energy
representation is a symmetric rather than Hermitian matrix. According to section
10.3, diagonalizing this matrix is accomplished by an orthogonal transformation:

=e C E C (12.78)T

The energy denominator: e−1 can then be formed by inverting the diagonal elements
of: e. It is then required that the following transformations be performed on the
column vector:

=v C V (12.79)b
T

b

and the row vector:

=v V C (12.80)a
T

a
T

These matrices are then used to evaluate the second-order energy in the exact same
way as equation (12.76):

= −E ab v e v( ) (12.81)a
T 1

b0
(2)

An interesting result occurs upon applying properties of the inverse of a matrix
product to equation (12.81). Suppose we perform a multiplication of three matrices
A B and C. The inverse of this product is:

=− − − −A B C C B A( ) (12.82)1 1 1 1

This can be argued from the fact that the inverse operation of putting on your socks
and shoes is taking off your shoes and socks, or can be proved in a straightforward
fashion by successive multiplication on the matrix product: P = A B C:

= = = = =− − − − − − − − − −P P C B A P C B A A B C C B B C C C 1 (12.83)1 1 1 1 1 1 1 1 1 1

Equation (12.78) is inserted into equation (12.81), and we use equation (12.82) to
give:

= = =− − − − − −e C E C C E C C E C( ) ( ) (12.84)1 T 1 1 1 T 1 T 1

The final identity in equation (12.84) follows from properties of orthogonal trans-
formation matrices (see section 10.3)). equations (12.84), (12.79), and (12.80) are
used in equation (12.81) giving:

= = =− − −E ab v e v V C C E C C V V E V( ) (12.85)ba
T 1

b a
T T 1 T

a
T 1

b0
(2)
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PARALLEL INVESTIGATION: Verify using the properties of orthogonal trans-
formation that the third-order Rayleigh–Schrödinger perturbation theory energy
can be expressed in equivalent diagonal and non-diagonal forms:

= − ⋅ = − ⋅− − − − − −E abc E b E bv e v e v v e v V E V E V V E V( ) ( ) ( )a
T 1

b
1

c a
T 2

c a
T 1

b
1

c a
T 2

c0
(3)

0
(1)

0
(1)

Equation (12.85) shows how a sum over states expression can be evaluated from a basis
of orthonormal eigenstates which are not eigenfunctions of the zeroth-order Hamiltonian
by matrix inversion rather than matrix diagonalization. A process such as this is referred
to as a direct method.

From linear algebra considerations, a non-diagonal solution of the sum over
states expression may not seem to have any advantage over the diagonal form.
Although a few transformation steps in equations (12.79) and (12.80) are avoided,
the non-diagonal solution still requires a matrix inversion, which in computational
terms is about the same computer time and space as a diagonalization. These issues
become prohibitive as the number of states in the orthogonal complement grow
substantially in an attempt to correctly represent the energy differences between
states. However, an algorithm can be applied to the matrix inversion problem which
makes it an overwhelmingly better option. This process is sometimes referred to as
the reduced linear equations method, but is more aptly called direct inversion in the
iterative subspace.

Suppose there exists a non-diagonal n × n symmetric matrix: X and a known n × 1
column matrix: Y which are required in an expression of the type:

=−X Y Z (12.86)1

as is required in equation (12.85). The task of interest is to find the n × 1 column
product matrix: Z, which can be determined without knowledge of the inverse
matrix if the following system of equations can be solved:

=X Z Y (12.87)

Column Z is approximated as a linear combination of columns:

∑= aZ z (12.88)
i

i i

with the matrix product definition:

=X z b (12.89)i i

so that:

∑= aX Z b (12.90)
i

i i
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Upon substituting equation (12.90) into equation (12.87), an expression for the variance
of the approximate solution is obtained:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑δ = − = − ⋅ +a a a aY b Y Y Y b b b2 (12.91)

i i i j,

i i i i i j i j
T T T2

2

Notice that the matrix multiplications in equation (12.91) are scalar products of
rows × columns.

The variance is minimized with respect to the column expansion coefficients:

∑δ∂
∂

= = − +
a

aY b b b
( )

0 2 2 (12.92)
ik

i i k
T T

2

Using the definitions:

= =P b b Q Y b( ) (12.93)ik i k k k
T T

the equation for expansion coefficients: ai is written in matrix form:

=Pa Q (12.94)

The best-fit coefficients are then determined from the matrix problem:

= −a P Q (12.95)1

It appears from equations (12.95) and (12.86) that one inversion problem has simply
been replaced by another. However, the dimensionality of equation (12.95) is that of
the number of expansion columns, rather than the dimension of the orthogonal
complement.

An excellent starting guess for the first expansion column is provided by dividing
column vector Y by diagonal elements of the inverse energy representation:

= ⋅−iz X Y( ) ( ) (12.96)ii i1
1

This is particularly effective because the matrix X is typically very diagonal
dominant. At each iteration, the value: δ2 from equation (12.91) is compared
against some predetermined tolerance. If this value is not satisfied, then the next
expansion vector: zk is supplied from its residuum:

∑= −
<

az Y b (12.97)
i k

k i i

During the process, the expansion vectors can be Schmidt orthogonalized (see
section 7.3) to eliminate linear dependencies. Typically, the process successfully
converges after a handful of iterations, so that the largest matrix to diagonalize is
order 10 × 10 or less. This is substantially smaller than the Terabytes of space
required in some instances.
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Chapter 13

Electrons in molecules

13.1 The simplest molecular model: a one-electron diatomic
Section 11.1 is a watershed of sorts. It details what may be argued to be the pinnacle
of success in quantum mechanics—analytical solutions of the one electron hydrogen
atom Hamiltonian. The excitement has waned by section 11.5, where it is learned
that introducing even one more electron to the central potential problem requires
either drastic approximate or numerical solutions of non-linear equations. In this
chapter, the complexity of a system is compounded by adding additional nuclear
centers to the many electron problem. We must again face the unsatisfactory fact
that major approximations and simplifications are needed to obtain solutions.

To appreciate the challenges posed by a molecule, consider the simple combina-
tion of atoms depicted in figure 13.1. This represents a heteronuclear diatomic
(nuclei labeled A and B), with two electrons (labeled 1 and 2) bonding them
together. The Hamiltonian for the four particles is:

πε πε πε πε πε πε

ˆ = − ℏ ∇̂ − ℏ ∇̂ − ℏ ∇̂ − ℏ ∇̂

− − − − + +

H
M M m m

Z e
r

Z e
r

Z e
r

Z e
r

Z Z e
R

e
r

2 2 2 2

4 4 4 4 4 4

(13.1)e e

2

A
A
2 2

B
B
2 2

1
2 2

2
2

A
2

0 1A

A
2

0 2A

B
2

0 1B

B
2

0 2B

A B
2

0 AB

2

0 12

Equation (13.1) has four negative potential terms describing attraction between
electrons and nuclei. There are also two positive terms representing nuclear–nuclear
and electron–electron repulsion. When used in an eigenvalue problem, equation
(13.1) produces an untractable differential equation, with complications additional
to those encountered in section 11.5. As we inevitably faced then, analytically
solving equation (13.1) requires assumptions, simplifications, or outright omissions.

As a first step towards rendering a solvable Hamiltonian, we employ the Born–
Oppenheimer approximation, which uses the large mass difference between electrons
and nuclei to allow neglect of nuclear kinetic energy terms. In other words, the
electrons instantaneously adjust to the nuclear positions. Along with eliminating the
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first two terms in equation (13.1), this also makes RAB a fixed value, this term is thus
a constant depending on a chosen location of the nuclei.

This is not enough to make equation (13.1) analytically solvable. We will simplify
matters even more by binding nuclei A and B with a single electron. In addition to
terms eliminated by the Born–Oppenheimer approximation, all terms referencing
electron 2 along with the electron–electron repulsion also vanish:

ˆ = ˆ +H H V (13.2)1 AB

The constant VAB represents parametric nuclear repulsion. With these choices the
Schrödinger equation is:

ˆ Ψ = ˆ + Ψ = Ψ + Ψ = + ΨH H V E V E V( ) ( ) (13.3)1 AB AB AB

The wavefunctions: Ψ are eigenfunctions of Hamiltonian: Ĥ with eigenvalues: E
that parametrically depend on the location of A and B through electron-nuclear
attraction terms, but not on the repulsion between A and B.

In other words, eigenvalue E is a scaled by constant: VAB. In fact, E is the same
eigenvalue and Ψ the same eigenfunction whether or not VAB is added. This is
apparent by comparing to the un-scaled eigenvalue equation:

ˆ Ψ = ΨH E (13.4)

Adding: ΨVAB to each side of equation (13.4) gives equation (13.3) only if both E and Ψ
are the same in both equations. We can therefore simply solve the one-electron
Hamiltonian equation for its energy then add in the nuclear repulsion term afterward.

A solution is proposed to equation (13.3) which uses a weighted combination of a
single function centered on each nucleus:

φ φΨ = +c c (13.5)A A B B

Figure 13.1. Coordinate system for a heteronuclear diatomic molecule.
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Equation (13.5) uses a linear combination of atomic orbitals. The function Ψ is
referred to as a molecular orbital. Collectively, the process is the LCAO MO
approximation. Equations (13.2) and (13.5) are used with the variational theorem
(see section 10.3) to determine the best fit coefficients through a secular equation:

— =H ES C 0( ) . (13.6)

Since our molecular orbital is an expansion given by equation (13.5), H and S are
therefore symmetric 2 × 2 matrices representing the Hamiltonian and overlap
respectively, E is a 2 × 2 matrix with energy eigenvalues along the diagonal, and C is
a 2 × 2 matrix of the best fit coefficients. What follows are three separate approaches
to solving this equation using either different assumptions or different method-
ologies. Each lends its own perspective to the problem, and gives insight to a general
picture of the molecular orbital approach.

Case 1: Solution of the secular determinant ignoring overlap. Using techniques
from section 10.3, we first note left-multiplying both sides of equation (13.6) by

− −H ES( ) 1 gives the trivial solution: =C 0 . To prevent this, −H ES( ) must have
no inverse, so therefore according to linear algebra has zero determinant:

α β
β α

− =
− −

− −
=

E ES

ES E
H ESdet ( ) det 0 (13.7)

A AB AB

AB AB B

Matrix element: SAB is an overlap integral introduced in section 7.2:

φ φ=S (13.8)AB A B

At first it might appear that orthonormality of basis functions means: SAB = δAB (the
Kronecker delta, see section 7.2), however keep in mind these orbitals are located on
different nuclei. This is a two-center integral. The value: αA is defined:

α φ φ= Ĥ (13.9)A A A

with a similar definition for αB. The value βAB is referred to as a resonance integral:

β φ φ= Ĥ (13.10)AB A B

As is in the case of overlap, resonance is a two-center integral.
Equation (13.7) is expanded and terms are collected in powers of E:

α α β

β α α α α β

− − − − =

= − + − − + −( )
E E ES

E S S E

( )( ) ( ) 0

(1 ) (2 )
(13.11)

A B AB AB
2

2
AB
2

AB AB A B A B AB
2

Equation (13.11) is a second-order polynomial in E, therefore its coefficients can be
inserted into the quadratic formula to find its roots. After cancellation of a few terms
we obtain:
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α α β

α α β α α β α α

=
+ −

−
±

− + + − +

−( )

E
S

S S

S

( 2 )

2(1 )

( ) 4 4 4 ( )

2 1

(13.12)

A B AB

AB
2

A B
2

AB
2

AB
2

A B AB AB A B

AB
2

If overlap is neglected, the roots of equation (13.12) simplify to:

α α α α β
= + ±

− +
E

2

( ) 4

2
(13.13)A B A B

2
AB
2

Figure 13.2 diagrammatically expresses this result. We see from the definition in
equation (13.9) that αA and αB represent the self-energies of orbitals centered on A and
B respectively. The first term of equation (13.13) is therefore the average of these
energies. The second term in equation (13.13) gives an amount by which the average
energy is either decreased or increased when atoms are combined in the molecular state.

For further interpretation, equation (13.13) is expressed in the form:

α α α α= + ± − ⋅ +E x
2

( )
2

1 (13.14)A B A B

with:

β
α α

=
−

x
4

( )
(13.15)AB

2

A B
2

The square root is expanded in a Taylor series:

+ = + − +x x x1 1
1
2

1
8

... (13.16)2

which is inserted into equation (13.14):

Figure 13.2. Molecular orbital energy diagram for a one-electron heteronuclear diatomic with zero overlap.
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟α α α α β

α α
= + ± − ⋅ +

−
−E

2
( )

2
1

1
2

4

( )
... (13.17)A B A B AB

2

A B
2

The energies of the molecular orbitals are then:

α
β

α α

α
β

α α

= +
−

−

= −
−

+

E

E

...

...

(13.18)
1 A

AB
2

A B

2 B
AB
2

A B

Arbitrarily making the assumption that: αA < αB, eigenvalue E1 is not only lower
than the average energy, it is in fact lower than αA. Occupying this orbital stabilizes
the molecular energy relative to either separated atom. If αA < αB, this also shows E2

to be higher in energy than αB, but this choice can be reversed with no loss of
consistency. Using αB < αA now makes E1 higher in energy than αA, and E2 lower
than αB. The molecular orbital pushed below the separated atoms is a bonding
orbital. The one higher in energy is destabilizing relative to the separated atoms, and
is therefore named an antibonding orbital.

Equation (13.18) also illustrates a key feature to interpreting the degree of
interaction of atomic orbitals as they combine to form a molecular orbital.
According to equation (13.18), the energy shift is a function of resonance integral:
βAB, thus this value in some way quantifies atomic interaction. In addition, the
denominators of equation (13.18) show as αA → αB, the degree of downward and
upward shift in bonding and antibonding orbital energies increases. This implies the
proximity of atomic orbital energy is inherently related to their interaction in
forming molecular orbitals. Of course, if they become too close in energy, the
denominators become too small, and the Taylor series expansion is invalid. That
aside, it is generally true that atomic orbitals close in energy (and also having the
proper symmetry) interact most effectively in molecular orbital formation. This
concept forms the essence of what is known by chemists as ligand field theory. An
energy diagram of molecular orbitals resulting from the atomic orbital interaction
picture is depicted in figure 13.2.

PARALLEL INVESTIGATION: Verify the following for a homonuclear triatomic
molecule with three bonded atoms at the corners of an equilateral triangle. Given that
each atom contributes one atomic orbital to the molecule, set up and symbolically
solve the secular determinant using the simplifications: (1) S values are zero, (2) all α
values are equal, and (3) all β values are equal. Use the substitution: α β= −x E( ) to
write the secular determinant in the form: x3 – 3x + 2 = 0. Factor this cubic polynomial
to find the orbital energies of the homonuclear triatomic are: E1 = α + 2β, E2 = α – β,
and E3 = α – β.
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Case 2. Solving the secular determinant for a homonuclear diatomic including overlap.
Let us return to equation (13.7), but this time using a homonuclear system with:
αA = αB = α. The secular determinant becomes:

α β
β α

α β
− −

− −
= = − − −( )

E ES

ES E
E ESdet 0 ( ) (13.19)AB AB

AB AB

2
AB AB

2

Rearranging and taking the square root of both sides gives:

α β= − = ± −( )E ES( ) (13.20)AB AB

When terms in E are gathered, we obtain two eigenvalues:

α β

α β

=
+
+

=
−
−

E
S

E
S

1

1

(13.21)
1

AB

AB

2
AB

AB

Given that integral: βAB is a negative quantity, E1 is then a bonding orbital with
energy below: α and E2 is an antibonding orbital raised above: α. Making the
reasonable assumption that ϕ are normalized functions, the two-center overlap thus
is restricted to values: ⩽ ⩽S0 1AB , as the atomic orbitals on each center go from no
to maximum coincidence. Including overlap, the denominators of equation (13.21)
show that E2 is raised in energy to a greater extent than E1 is lowered. This implies
the antibonding orbital is more antibonding than the bonding orbital is bonding.

Case 3. Optimizing the linear combination via matrix diagonalization.
Suppose we now minimize the energy of the linear combination by Hamiltonian

matrix diagonalization. For simplicity, we again take the homonuclear case with no
overlap of atomic orbitals:

α β
β α

=
−

−
E

E
H (13.22)AB

AB

Matrix elements of equation (13.22) are divided by: βAB. We then use definitions in
the form:

α
β

= − −
x

E( )
(13.23)1

1

AB

to write:

= −
−

x
x

H
1

1
(13.24)1

2

Equation (13.24) is inserted into equation (13.6). A diagonal matrix of x values is
factored out, and moved to the other side of the matrix equation:
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′ =H C XC (13.25)

Equation (13.25) uses the definition:

′ =H 0 1
1 0

(13.26)

Equation (13.25) is diagonalized by orthogonal transformation matrix C. Doing this
we find:

=
−

=
−

X

C

1 0
0 1

0.707 0.707
0.707 0.707

(13.27)

Using the diagonal elements of the X matrix expressed in the form of equation (13.23),
we obtain the eigenvalues: E1 = α + βAB and E2 = α − βAB, the same values in equation
(13.21) when SAB is set to zero. Because ′H is symmetric, C is an orthogonal
transformation matrix: =C C 1T , with two orthonormal column vectors. These are
used with basis functions: ϕi to form a bonding and antibonding molecular orbital:

φ φ φ φ

φ φ φ φ

Ψ = + = +

Ψ = − = −

0.707 0.707
1

2
( )

0.707 0.707
1

2
( )

(13.28)
1 A B A B

2 A B A B

PARALLEL INVESTIGATION: Verify the following for a homonuclear triatomic
molecule with three atoms bonded at the corners of an equilateral triangle. Set up the 3
× 3 Hamiltonian matrix using the simplifications: (1) S values are zero, (2) all α values
are equal, and (3) all β values are equal. Following equations (13.22)–(13.28), show the
diagonalization method gives the same eigenvalues as the secular determinant facto-
rization, and that the three molecular orbital wavefunctions are:

φ φ φΨ = + +0.577 0.577 0.5771 1 2 3, φ φ φΨ = − +0.638 0.760 0.1222 1 2 3, and
φ φ φΨ = + −0.509 0.298 0.8073 1 2 3.

In theory, the coefficients have values which can possibly range between: ⩽ ⩽c0 1,
as an orbital goes from no interaction to what can be described as the ionic case
where electron preferentially transferred to one atom over the other. As may be
anticipated for a homonuclear diatomic, the molecular orbitals are an equally
weighted combination of a basis function from each nuclear center. Bonding orbital:
Ψ1 is a constructive wave superposition and antibonding orbital: Ψ2 a destructive
superposition. Figure 13.3 shows a 2-dimensional amplitude plot for bonding
molecular orbital: Ψ1, by using hydrogenic 1s orbitals with Z = 1 (see table 11.1)
for basis functions: ϕA and ϕB. As nuclear separation decreases from 6.0 Ǻ to the
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experimental H2 molecular bond length of 0.74 Ǻ, there is distinct enhancement of
wave amplitude in the region between hydrogen atoms. Recalling that a particle’s
location is determined from the square amplitude, it is apparent that electrons in
bonding orbitals have enhanced likelihood of being between the nuclei, thereby
shielding their positive charge, and allowing a nuclear separation of 0.74 Ǻ. Figure
13.4(a) gives a 2-dimensional slice of amplitude for antibonding molecular orbital:
Ψ2. The phase difference between atomic orbitals creates a node in the bonding
region. The square amplitude plot of figure 13.4 (b) demonstrates the lack of electron
density between nuclei, resulting in nuclear repulsion and molecular destabilization.

According to equation (13.28) the homonuclear bonding molecular orbital can be
expressed in the form:

φ φΨ = +N( ) (13.29)1 A B

whereN is a normalizing factor. Assuming the ϕ are real and normalized, we obtain:

φ φ φ φ φ φΨ Ψ = = + + = +N N S1 ( 2 ) (2 2 ) (13.30)1 1
2

A A B B A B
2

AB

The bonding molecular orbital thus has normalization factor:

=
+

N
S
1

(2 2 )
(13.31)

AB
1 2

Beginning with the antibonding orbital in the form: φ φΨ = ′ −N ( )2 A B and proceed-
ing in a similar fashion, we obtain:

Figure 13.3. Amplitude cross-section of H2 bonding molecular orbital: Ψ1 = 0.707ϕA + 0.707ϕB as a function
of internuclear distance.
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′ =
−

N
S
1

(2 2 )
(13.32)

AB
1 2

If the two-center overlap is chosen: SAB = 0 as stipulated in case 3, the normalizing
factors in equations (13.31) and (13.32) are the exact values determined from the
variational solution shown in equation (13.28).

PARALLEL INVESTIGATION: Verify the following for a homonuclear triatomic
molecule with three atoms bonded at the corners of an equilateral triangle. Given that
each atom contributes a single atomic orbital, the bonding molecular orbital given by:

φ φ φΨ = + +N ( )1 2 3 has normalizing factor: =
+ + +

N
S S S

1
(3 2 2 2 )AB AC BC

1 2
, and

that this gives the same ground state wavefunction expansion coefficients as the
variational treatment provided that overlap is ignored.

13.2 The hydrogen molecule
Let us now use knowledge gained in section 13.1 to discuss a two-electron hydrogen
molecule. Beginning with equation (13.1), we again invoke the Born–Oppenheimer
approximation. To further facilitate its solution, we ignore the electron–electron
repulsion term. Equation (13.1) now simplifies to a separable electronic Hamiltonian
of non-interacting particles:

ˆ = ˆ + ˆ +H H H V (13.33)1 2 AB

Hamiltonian: Ĥ1 contains the kinetic energy and nuclear attraction for electron 1
only, while Ĥ2 expresses similar terms for electron 2. As was the case in section 13.1,
nuclear repulsion: VAB merely scales the total energy as a parametric addition to the
electronic energy.

Figure 13.4. (a). Amplitude cross-section of H2 antibonding molecular orbital. (b). Probability density cross-
section of H2 antibonding molecular orbital.
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Because the Hamiltonian is separable, the two-electron wavefunction can be
expressed as a product of two one-electron homonuclear diatomic cation wavefunctions,
like those described in section 13.1. Using equation (13.29) for the bonding molecular
orbital, we simply employ two hydrogenic 1s orbitals as basis functions:

Ψ = +1

2
(1s 1s ) (13.34)1 A B

The electronic wavefunction composed of two fermions must be properly anti-
symmetrized. This requires a Slater determinant (see section 11.6) to represent the
H2 molecular wavefunction:

α β
α β

α β β α

Φ

=
Ψ Ψ
Ψ Ψ

= Ψ Ψ −1

2
det

(1) (1) (1) (1)
(2) (2) (2) (2)

1

2
(1) (2)[ (1) (2) (1) (2)]

(13.35)

H

1 1

1 1
1 1

2

The factor: 1 2 in equation (13.35) normalizes the spin function in addition to the
normalizer included for Ψ1 in equation (13.34).

A problem with physical interpretation of the spatial wavefunction of equation
(13.35) is illuminated by expanding it and inserting equation (13.34):

Ψ Ψ

= + + +

(1) (2)
1
2

[1s (1)1s (2) 1s (1)1s (2) 1s (1)1s (2) 1s (1)1s (2)]
(13.36)

1 2

A A A B B A B B

The first and last terms of equation (13.36) place both electrons on either center A or
B, suggesting half the time H2 dissociates should produce H+ (a proton) and H−. It is
known experimentally that molecular hydrogen dissociates into two neutral hydro-
gen atoms. Wavefunctions which incorrectly represent dissociation are said to lack
size consistency.

One remedy to this situation is valence bond theory proposed by Heitler and
London. This representation, which actually predates molecular orbital theory, is
again a Born–Oppenheimer, non-interacting electron picture. Instead of a weighted
sum of one-electron functions like molecular orbital theory, the valence bond
wavefunction is a product of functions from each center. To keep the electrons
indistinguishable, the electron labels must be interchanged with a second product in
the spatial wavefunction. Including two-electron antisymmetry gives the following
valence bond wavefunction for the hydrogen molecule:

α β β αΦ = + ⋅ −N [1s (1)1s (2) 1s (1)1s (2)] [ (1) (2) (1) (2)] (13.37)BH A B A2

When equation (13.37) is expanded and terms are collected, it can be expressed in
the form of two Slater determinants:

α β
α β

β α
β α

Φ = −N Ndet
1s (1) (1) 1s (1) (1)
1s (2) (2) 1s (2) (2)

det
1s (1) (1) 1s (1) (1)
1s (2) (2) 1s (2) (2)

(13.38)H
A B

A B

A B

A B
2

A key feature of equation (13.38) is a correct dissociation of H2 into two neutral H
atoms. Equation (13.38) is known as a multi-determinant multi-configuration or
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multi-reference ground state electronic representation. Equation (13.35) uses a single
determinant, single configuration, or single reference ground state. The multi-
reference issue is also important in correctly representing atomic systems such as
beryllium, which cannot be successfully described without inclusion of 2p along with
2s character in the ground state wavefunction.

13.3 Practical information regarding calculations
In computational applications, valence bond methods and multi-reference calcu-
lations in general require a significant increase in computer resources and calculation
time. It is also hampered by the variability of selecting among the enormous number
of configurations that quickly become available as the size of a system grows. As a
result, single determinant ground state representations are by far more commonly
performed. It should also be noted the two-electron repulsion terms are not
summarily ignored as has been done in these examples, but are replaced by an
effective one-electron mean field repulsion: v̂i

avg as described for many-electron
atoms in section 11.5. The molecular orbital wavefunctions are then numerically
solved using the Hartree–Fock self-consistent field method. When the problem of
interest requires a multi-reference ground state representation, there is an additional
weighting coefficient for each determinant, which are then optimized in a variational
procedure known as a multi-configurational self-consistent field (MCSCF)
calculation.

There remains another hurdle inherent to numerical molecular calculations. When
making a choice for an atomic orbital representation to expand either a molecular
orbital or valence bond wavefunction, the hydrogenics (table 11.1) or Slater type
orbitals (equation 11.33) are not viable forms for analytic determination of two-center
integrals. Most commonly, basis functions are represented by Gaussian type orbitals
(GTO). Gaussian functions have distinct computational advantages with regard to
multi-center integral evaluation. This stems from the fact that Gaussians centered at
two different points in space have a product which is a Gaussian located at a third
point. The rnormalized 1s GTO is expressed in atomic units as:

⎛
⎝⎜

⎞
⎠⎟φ α

π
= α−e

2 (13.39)r
3 4

2

Those representing higher radial or angular momentum quantum numbers are
multiplied by polynomials in r as well as spherical harmonic functions (see table 8.1).
Coefficient α can be optimized by maximizing the spherical shell overlap between the
1s GTO and 1s (ζ = 1) Slater type orbital (STO):

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ∫π

π
α
π

= α
∞

− −S r e e r4
1 2

d (13.40)r r
1 2 3 4

0

2 2

PARALLEL INVESTIGATION: Verify that the overlap between an STO and GTO is
maximized with the coefficient: α = 0.271.
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Figure 13.5 shows plots of the amplitudes and probability densities of the ζ = 1 STO
and GTO using: α = 0.271. It is immediately apparent the GTO is deficient in
representing amplitude near the nucleus. It is said that GTOs lack the proper cusp
condition. To remedy this shortcoming, approximate Slater functions (designated an
STO-nG) are represented by linear combinations of Gaussians (known as primi-
tives). The weighting factors, or contraction coefficients, are found in a least-squares
fit rather than a variational procedure. Figure 13.6 compares plots of the optimized
single Gaussian (STO-1G) with a two and three Gaussian fit of the form:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

π

π

− = +

− =
+

− −

− −

−

e e

e e

e

STO 2G
2

[0.679(0.152) 0.430(0.852) ]

STO 3G
2 0.446(0.110) 0.535(0.406)

0.154(2.23)

(13.41)

r r

r r

r

3 4
3 4 0.152 3 4 0.852

3 4 3 4 0.110 3 4 0.406

3 4 2.23

2 2

2 2

2

A wide variety of more sophisticated options are available in quantum chemistry
computational packages. Basis set choice and design is both an art and a science.
Some terms commonly employed include: Minimal basis—use of one basis function
representing an atomic orbital per electron for each atom comprising a molecular
system. Double-, triple-,… Zeta—use of two, three, … basis functions per atomic
orbital. Split valence—use of one basis function per core orbital and multiple per
valence orbital.

13.4 Qualitative molecular orbital theory for homonuclear diatomics
The molecular orbital picture uses atomic orbitals local to each nucleus to construct
delocalized orbitals spanning the nuclear framework. Frequently, chemists employ a
qualitative molecular orbital approach reminiscent of the model used for electron
configurations in atoms. To designate wavefunctions, the Roman lettering system
used for atoms is replaced by the appropriate Greek letter. It is based on the
component of orbital angular momentum along the bond axis of the homonuclear
diatomic: +H2 , which if designated the z-Cartesian direction can be shown to have
allowed values: = ± ± …m 0, 1, 2,ℓ One-electron molecular orbitals are then given
the following assignments:

Figure 13.5. Comparison of STO and STO-1G amplitude and probability density shell.
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Furthermore, it is assumed that tightly-bound core orbitals remain localized on a
nuclear center and do not become involved in molecular orbital formation. As a
consequence, only valence electrons and orbitals are considered in the following
description.

Let us begin with figure 13.7, the simple example of a homonuclear diatomic
constructed from interaction between two 1s hydrogenics. According to equation
(13.28), the basis functions superimpose with constructive or destructive interference,
forming a bonding orbital now symbolized: σg and antibonding orbital denoted: σu.
Orbital shading indicates the bonding molecular orbital is node-less over the nuclear
framework, including the bonding region between centers. The difference in colors for
the antibonding orbital indicates a change in phase of wavefunction amplitude, and
includes a nodal plane in the region between centers. The orbital subscripts represent
their parity relative to inversion through the bond center point. That assigned ‘g’
(German for gerade) is even, or does not change sign upon inversion about this point
while ‘u’ (German for ungerade) is odd, showing a change in amplitude upon inversion.

Molecular orbital occupation is done in analogous fashion to the description of
section 11.4. According to the Pauli exclusion principle, the fermion character of
electrons permits a pair to occupy each molecular orbital so long as their spins
oppose. This along with the aufbau prinzip, and Hund’s rule (where required)
determine occupation in a molecular configuration. For example, the ground state
for H2 is achieved by representing its two electons in one of the following
expressions, depending on your taste: σg

2, σ1 g
2, or: σ1s g

2. To further aid interpretation,
the bond order (b.o.) is defined:

= ½ # —#− −b.o. ( bonding e antibonding e ) (13.43)

The hydrogen molecule for instance has: b.o. = ½ (2−0) = 1 or is singly-bonded.
Molecular orbital designations for the isoelectronic cases: +He2 or −H2 are σ σg u

2 1. A
problem is encountered for either the hydrogen molecule dianion or neutral diatomic
helium. In either case, the bond order is: ½ (2−2) = 0, hence molecular orbital theory

Figure 13.6. Comparison of STO, STO-1G, STO-2G, and STO-3G amplitudes.
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claims neither exists. This can be traced back to equation (13.21) and the ensuing
discussion explaining that orbitals of antibonding character are elevated above the
separated atoms to a greater extent than bonding orbitals are depressed. Indeed,
there is no experimental evidence of these species.

Moving to ⩾ℓ 1 orbitals, let us initially assume there is a sufficient energy gap
such that there is no interaction between orbitals with different ℓ values. However,
there are a multitude of possibilities for interactions of the p–p, d–d, and f–f type
between centers. Determining the coincidence of a p orbital centered on nucleus A to

one on B requires evaluating the overlap integral: ∫ τ=S d p pAB A B, but a qualitative

graphical argument can be done in its place. Consider the two-center overlap of a pz
centered on nucleus A with a py on nucleus B, depicted in figure 13.8. Integration
involves the infinite sum of product amplitude of the two functions. As figure 13.8
shows, the two orbitals exhibit two equivalent volumes of oppositely-signed product
amplitude, which when summed over all space amounts to zero overlap. A similar
argument can be made for homonuclear two center pz–px and px–py overlap, as well
that between d or f orbitals of differing Cartesian symmetry.

With the bond axis between centers taken along the z-direction, it is then apparent
that pz functions exhibit the greatest overlap, since they will have lobes in greatest
proximity. As figure 13.9 demonstrates these orbitals interact strongest, producing a
bonding σg and antibonding σu. The side-to-side orientation of the px and py allow
two regions of either constructive or destructive interference depending on ampli-
tude phase. These interaction regions appear both above and below the z-axis with
either bonding or antibonding character. The resulting molecular orbital is desig-
nated as: πu or πg, respectively. The two πu orbitals are lowered in energy by equal
amounts due to the enhanced electron density created between centers by p-orbital
overlap. In contrast, two degenerate πg orbitals are formed by destructively-
interfering p functions, creating a nodal plane perpendicular to the bond axis.

These orbitals are used to predict the valence molecular orbital configurations of
second row homonuclear diatomics. Let us first consider the straightforward case of
O2, F2, and Ne2, which have a large energy gap between 2s and 2p that results from
double occupation of orbitals from the p set. In this instance the orbital diagrams
from figures 13.7 and 13.9 simply stack on top of one another as depicted in figure
13.10(a). Using the aufbau prinzip and Pauli exclusion principle, the valence electron
configuration for O2 is: σ σ σ π π1 1 2 1 1g u g u g

2 2 2 4 2, with a bond order of: ½ (8−4) = 2.

Figure 13.7. Formation of homonuclear sσ orbitals.
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The predicted double bond is a familiar feature of oxygen from Lewis dot
representations in freshman chemistry.

PARALLEL INVESTIGATION: Verify that F2 has a bond order = 1, or single bond.

Applying Hund’s rule to the partially-occupied antibonding πg further suggests
oxygen has a triplet ground state. Oxygen is known to exhibit paramagnetic
character, a verification of this spin state. Molecular orbital theory also predicts

Figure 13.8. Graphical two-center overlap of a pz and py orbital.

Figure 13.9. Formation of homonuclear pσ and pπ orbitals.
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that Ne2 has zero bond order and therefore does not exist. There is in fact no
evidence of this diatomic.

Molecular orbital energy diagrams for boron through nitrogen are complicated
by a relatively small energy gap between 2s and 2p orbitals in these atoms. Since
Hund’s rule allows electrons to singly occupy degenerate p orbitals, the s–p gap is
low enough to allow s–p interaction during molecular orbital formation. Assuming a
z-bond axis, two center s and px or py overlap is zero for the same reasons described
in figure 13.8. Symmetry does allow s and pz interaction, however. The result of
mixing, as shown in figure 13.10 (b), is an elevation of the pσg to such an extent that
it is now higher in energy than the πu. For instance, the molecular orbital diagram
for N2 is: σ σ π σ1 1 1 2g u u g

2 2 4 2 with a predicted bond order of ½ (8−2) = 3, or triple bond.
The homonuclear diatomic model can be extended to transition metal d-type

orbitals. In this case there are five functions interacting on each center, producing ten
molecular orbitals. A bonding and antibonding σ of highest coincidence and thus
maximum interaction results from dz2 orbitals. The dxz and dyz form a degenerate
bonding and antibonding set of π functions. The symmetry of the dxy and −dx y2 2

orbitals produces a degenerate set of higher angular momentum molecular orbitals:
the bonding δg and antibonding δu. Figure 13.11 shows examples of d orbital
interactions and molecular orbital energetics. When forming a σ-type function,
atomic orbitals on different center overlap in one region of space. The π interaction
is characterized by two, and δ four distinct volumes of atomic orbital overlap. The
pattern of adding molecular orbitals with sequentially increasing orbital angular
momentum according to equation (13.42) continues upon mixing atomic orbitals of
higher ℓ value. For instance, f-orbital interaction produces a bonding and anti-
bonding σ, degenerate π, degenerate δ, now along with a degenerate ϕ set of
molecular orbitals.

Figure 13.10. (a) Molecular orbital ordering for atoms with large s–p energy gap. (b) Molecular orbital
ordering for atoms with small s–p energy gap.
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The total spatial and spin angular momentum is combined in a molecular term
symbol in a similar fashion to that which is done for atoms. Multi-electron spin
degeneracy is handled in the same way as described in section 11.7. The total
molecular orbital angular momentum is:

∑=M m (13.44)
i

ℓ ℓi

where the individual molecular orbital angular momenta are given in equation
(13.42). Non-degenerate σ orbitals contribute no orbital angular momentum to
the state, and, as is the case for atoms, a filled molecular orbital has cancelling
orientations of the z-component, and no net orbital angular momentum as well.
Once equation (13.44) is determined for each occupied molecular orbital, a
capital Greek letter designates the total multi-electron spatial angular momen-
tum. A left superscript gives the spin multiplicity, and a right subscript is used to
represent the overall product of inversion symmetry for all electrons. For
instance, H2 has: Σg

1 ground states, while a configuration such as: σ σ σ π1 1 2 1g u g u
2 2 2 1

would be: Πu
2 .

13.5 The Hückel method
A simplified molecular orbital approach was proposed to describe the delocalized π
systems of conjugated chain or aromatic ring molecules. This scheme involves a
truncated variational model problem, using a Hamiltonian that dramatically
simplifies the size of the matrix problem. A single Hamiltonian matrix element

Figure 13.11. Formation of homonuclear dσ, dπ, and dδ orbitals.
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describes the contribution of each π molecular orbital in the system. In addition,
there is a complete neglect of orbital overlap. Instead of analytically evaluating
matrix elements over the molecular Hamiltonian, diagonal elements are parametri-
cally assigned entries: α−E, reminiscent of the self-interaction integral from one-
electron molecular orbital theory (see equation (13.9)). In the same vein, nearest
neighbor interactions between bonded atoms in the extended π system are expressed
as parametric resonance integrals symbolized by: β (see equation (13.10)). All α
values are equivalent, to each other, with the same approximation for β values.
Members of the extended π system that are not directly bonded have Hamiltonian
matrix elements set equal to zero.

The simplest possible Hückel molecule is ethene: CH2CH2. The two carbon atoms
each contribute one orbital to the π system, giving a 2 × 2 Hamiltonian matrix. The
solution to this problem parallels the case for the hydrogen molecule ion in
equations (13.22)–(13.28). The ground state energy is determined by doubly
occupying two π electrons in the lowest energy ethene orbital: Etot = 2(α + β).
This quantity is used as a reference point to measure the degree of resonance
stabilization provided by a conjugated organic system. The ethene ground state
Hückel energy can be envisioned as the energy of an isolated π bond in an organic
molecule, thus providing a scale to determine the delocalization energy ε of an
arbitrary N electron π system. The recipe for this is:

ε α β= − +E N( ) (13.45)tot

Using for example four π electron in 1,3-butadiene, we obtain the Hamiltonian
matrix:

α β
β α β

β α β
β α

=

−
−

−
−

E
E

E
E

H

0 0
0

0
0 0

(13.46)

Following the development of equations (13.23)–(13.26), we arrive at the simplified
Hamiltonian matrix:

′ =H

0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0

(13.47)

Which is diagonalized by eigenvector matrix:

=

−
−

− − −
−

C

0.372 0.602 0.602 0.372
0.602 0.372 0.372 0.602
0.602 0.372 0.372 0.602
0.372 0.602 0.602 0.372

(13.48)
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with eigenvalues of the matrix:

=
−
−

X

1.618
0.618
0.618
1.618

(13.49)

When equation (13.49) is used with equation (13.23) the π orbital energies are: E1 =
α + 1.618β, E2 = α + 0.618β, E3 = α − 0.618β, and E4 = α − 1.618β. Doubly-
occupying the two lowest energy orbitals with four π electrons gives total energy: Etot

= 4α + 4.472β, and using equation (13.45) we obtain delocalization energy:
ε β= 0.472 . Column elements of the orthogonal transformation matrix given by
equation (13.48) are used to expand the four orthonormal π molecular orbitals.
These are qualitatively depicted with orbital phase only in figure 13.12.

PARALLEL INVESTIGATION: Verify the following Hückel delocalization energies
for linear conjugated organic molecules:

System 1,3,5-hexatriene 1,3,5,7-octatetrene 1,3,5,7,9-decapentene
ε 0.988β 1.516β 2.056β

As an example of an organic ring system, consider the Hückel Hamiltonian
matrix of cyclobutadiene. It is similar in appearance to 1,3-butadiene, differing by
only two additional resonance integrals:

Figure 13.12. Hückel π molecular orbital system for 1,3-butadiene.
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α β β
β α β

β α β
β β α

=

−
−

−
−

E
E

E
E

H

0
0

0
0

(13.50)

This system has eigenvector matrix:

=

−
−

− −
C

0.500 0.707 0 0.500
0.500 0 0.707 0.500
0.500 0.707 0 0.500
0.500 0 0.707 0.500

(13.51)

which diagonalizes ′H to give the matrix:

=

−

X

2
0
0
2

(13.52)

When equation (13.49) is used with equation (13.23) the π orbital energies are: E1 =
α + 2.00β, E2 = α, E3 = α, and E4 = α−2.00β. Doubly-occupying the two lowest
energy orbitals with four π electrons gives total energy: Etot = 4α + 4β, and using
equation (13.45) we obtain delocalization energy: ε = 0. The ring strain of this ring
system does not permit the correct orbital positioning to facilitate aromatic
character.

PARALLEL INVESTIGATION: Verify the Hückel delocalization energy for benzene
is: ε β= 2.000 and naphthalene is: ε β= 3.684

It is common practice to designate π molecular orbitals based on their symmetry
classification, using lower case point group irreducible representation labels based
on the transformation properties of that orbital. Identifying the D4h point group for
cyclobutadiene (see table 13.1), the four p-orbitals used in π formation can be
simultaneously manipulated according to operations of the group, with the sum of
the character of these operations forming a reducible representation:

D4h E 2C4 C2 2C2′ 2C2″ i 2S4 σh 2σv 2σd
4 0 0 0 −2 0 0 −4 0 2

Projection operator techniques are used to reduce this representation and find the
four π molecular orbital symmetry-adapted linear combinations. These are: a2u b1u,
and the doubly-degenerate eg. This reduction can be easily verified by referring to
table 13.1 to find the sum of these three irreducible representations. Using
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coefficients of column vectors in equation (13.51) to represent the phase of p-orbital
contribution to a particular π orbital gives pictorial representations shown in figure
13.13. Appropriate manipulation and comparison with table 13.1 confirms the
orbital with energy E1 has symmetry a2u, and that with E4 transforms as b1u.

To verify transformation properties of degenerate orbitals corresponding to E2

and E3, both must be simultaneously considered in the Eg irreducible representation.
To see how this works, we find 2 × 2 matrices that transform each orbital under
operations in the D4h point group. Referring to orbitals labeled in figure 13.12, we
find the following behavior for their simultaneous manipulation under each
operation, and the 2 × 2 matrix which achieves this:

σ

σ σ

→ × = → × =

→ −
−

× −
−

= −
−

′ → −
−

× −
−

= −
−

′′ → − × − = − → × =

→ − × − = − → −
−

× −
−

−
−

→ × = →
−

×
− −
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Figure 13.13. Hückel π molecular orbital system for cyclobutadiene.
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Characters of the Eg irreducible representation are found by taking the trace of each
of the above transformation matrices:

D4h E 2C4 C2 2C2′ 2C2″ i 2S4 σh 2σv 2σd
Eg 2 0 −2 0 0 2 0 −2 0 0

Hückel molecular orbital theory can also be applied to fullerene molecules such
as: C20. The molecule, shown in figure 13.14, possesses icosahedral symmetry. A p-
orbital on each carbon contributes to a delocalized π system. The Hückel approach
is applied following equations (13.22)–(13.26). Rather than show the 20 × 20
Hamiltonian or coefficient matrix, we cut right to results as depicted in figure 13.15.
The lowest energy eigenvalue represents a non-degenerate orbital of ag symmetry
with energy α + 3β. This is followed by a sequence of orbitals with high degeneracy.
Eigenvalue E2 is triply-degenerate, describing a t1u orbital with energies: α + 2.24β.
Next is a quintuple-degenerate hg orbital of energy: α + β. These orbitals are shown
in figure 13.16.

Before populating the orbitals of C20, we give mention to Hückel’s rule of
aromaticity. This states that monocyclic ring systems possessing 4N +2 pi electrons
exhibit unique stability and reactivity, and are collectively known as aromatic
molecules. Among these properties are equivalent C–C bond lengths for all ring
members, and a high resistance to electrophilic addition reactions in which double
bonds are broken and replaced by saturated single bonds.

The 20 π electrons of C20 do not satisfy the 4N +2 rule. However, the C20
+2

dication does with N = 4, as well as C20
−2 dianion, with N = 5. When equilibrium

geometry calculations are performed, three distinct bond lengths are found for the
neutral species. Similar calculation for the C20 dication however produce the same
C–C bond length for all pairs, whether a sophisticated or relatively low-cost
calculation is performed. This is encouraging, given that it is well known that
aromatic bonds are equivalent for all carbon atoms. Unfortunately, the C20

Table 13.1. The D4h point group.

D4h E 2C4 C2 2C2′ 2C2′′ i 2S4 σh 2σv 2σd
A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz

B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 – y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy
Eg 2 0 −2 0 0 2 0 −2 0 0 (Rx, Ry) (xz, yz)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z
B1u 1 −1 1 1 −1 −1 1 −1 −1 1
B2u 1 −1 1 −1 1 −1 1 −1 1 −1
Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y)
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Figure 13.14. The icosahedral fullerene: C20.

Figure 13.15. Hückel π molecular orbital system for C20
+2.

Figure 13.16. (a) The C20 ag orbital. (b). The C20 t1u orbitals. (c) The C20 gu orbitals.
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dianion again gives three distinct bond lengths, in contrast to predictions of the
4N + 2 rule.

As a possible alternative interpretion of Hückel’s rule, 4N + 2 π electrons is also
an appropriate occupation for energy levels of a particle on a ring model as
described in section 8.1.

= ℏ = ± ±E
m
I

m
2

0, 1, 2,... (13.53)ℓ
ℓ

2 2

Based on allowed values of mℓ, these orbitals have the same degeneracy as do the
Hückel rule. It is not a stretch of the imagination to envision this type of behavior
for electrons populating the delocalized π molecular orbitals of an aromatic
ring system. A particle on a ring model is not applicable to three-dimensional
fullerenes such as C20, however its spatial symmetry has similarities to the particle
on a sphere discussed in section 8.2. These solutions have energy levels and
degeneracies:

= + ℏ = …E
ℓ ℓ

I
ℓ

( 1)
2

0, 1, 2, (13.54)
2

Recalling from section 8.2, particle on a sphere energy levels of a given ℓ value
have degeneracy according to: = ± ± … ±m ℓ0, 1, 2,ℓ . The first is thus non-
degenerate, the second triply degenerate, and third quintuple degenerate (see
figure 8.2), which is the same degeneracy structure the C20 Hückel energy levels
exhibit in figure 13.15.

Considering the π electrons of neutral, dianion, and dication forms of C20, it is
noted that only the dication has the appropriate number to completely occupy either
the first three particle on a sphere energy levels. When the C20 orbitals are populated
with the 18 electrons of the dication, we find a total energy of: 18α + 29.44β and a
very large delocalization energy of 11.44β. It was previously noted the C20

+2 species
also has all equal bond lengths as is true of monocyclic aromatics, but is this a mere
coincidence? More evidence is supplied by computing electrostatic potential maps:
Vp for the three C20 systems. This quantity is defined as the energy of a positive point
charge located in space at point: p as it interacts with the nuclei and electrons of a
molecule. This quantity therefore takes the form of a Coulombic potential term over
the nuclei and molecular orbitals ϕi:

∫∑ ∑
πε πε

τ
φ φ

= −
*

V
Z e

R
e

r4 4
d (13.55)

a i j

nuclei

,

p
A

Ap

i j
2

0

2

0

Figure 13.17 compares electrostatic potential maps for the two cyclic hydrocarbon
hexagonal ring systems: benzene and 1,3-cyclohexadiene. Cyclohexadiene differs
from benzene by one of the three possible double bonding sites being saturated by
the addition of H2. The electrostatic potential map for these two shows a distinctly
even charge distribution predicted for the aromatic system. When similar charge
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distribution maps are prepared for C20 along with its dianion and dication, it is
evident that only the positively charged species, the one which has the π electron
system satisfying a particle on a sphere criterion, also exhibits electrostatic potential
of symmetric appearance.

Figure 13.17. Electrostatic potential maps for 1,3,cyclohexadiene (C6H8) and benzene (C6H6).

Figure 13.18. Electrostatic potential maps of C20 systems.
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Appendix A

Physical constants and units

A.1 Atomic units
In quantum mechanical applications, physicists frequently simplify things by
setting four of the most commonly employed physical constants each to values of
exactly 1: (a) elementary unit of charge e, (b) rest mass of electron me, (c) vacuum
permittivity 4πε0, and (d) Planck’s constant in the form angular momentum per
cycle πℏ = h/2 . Furthermore, in the system known as Hartree units, the nucleus is
taken to be infinitely massive compared to the electron so that according to
equation (2.12): μ = me = 1. In Hartree units the Bohr radius and Hartree energy
unit therefore have values a0 = 1 au and EH = 1 au. (The unit ‘au’ or ‘a.u.’ stands
for atomic units, not to be confused with astronomical units, for which the same
symbol is employed. The irony should not be lost, representing the smallest and
largest of dimensions with the same abbreviation.) Therefore, from equations (4.27)
and (4.31) of chapter 4 we find the proton–electron inter-atomic distance in the
hydrogen atom is: r = a0 = 1 au and its ground state (N = 1) energy is −0.5 au.
These equations also naturally define au to SI conversion factors for length (1 au =
5.29 × 10−11 m) and energy (1 au = 4.36 × 10−18 J).

Values in au for other common physical constants can be derived. For instance, in
Hartree atomic units, the time unit is defined from: ℏ E/ h, which gives an SI
conversion of: 1 au = 2.42 × 10−17 s. In chapter 12, we discuss the atomic
polarizability, which has SI units: C2 · m2/Eh. Conversion of this quantity to SI
units is accomplished as follows:

× · × ·
×

= × ⋅ ⋅

− −

−

− −

(1.60 10 C)
au

(5.29 10 m)
au

au
(4.36 10 J)

1.64 10 C m J

(A.1)
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When converted to cgs units by multiplication with 8.99 × 1015, the polarizability
unit is: 1 au = 0.147 (1024 cm3), which is equivalently: 1 au = 0.147 Å3.

The proton mass can be found from the ratio: mp/me, giving mp ≈ 1836 au.
Assuming an infinitely-massive nucleus results in a reduced mass of me and hence 1
in atomic units for the hydrogen atom, it also simplifies calculations relative to the
kinetic energy contributions of the nucleus to the total energy of an atom itself in
electronic structure calculations. To prevent any confusion quantities such as the
Rydberg constant are symbolized as: R∞ (for infinitely-massive nuclei) when it is
represented by its value in Hartree atomic units. In some applications, the Rydberg
constant takes the form:

=
+∞R R

m M
1

1
(A.2)M

e

Where M is the total mass of all nucleons in the nucleus (the correction term should
be recognized as a means to incorporate the correct two-body reduced mass
formula). The magnitude of this correction term is largest in the hydrogen atom
itself, for as the nuclear mass increases, μ → me. Using values from table A.1, the
reduced mass of the hydrogen atom is:

μ =
+

= × ⋅ ×
× + ×

= ×

− −

− −

−

m m

m m
(9.10939 10 kg) (1.67262 10 kg)
(9.10939 10 kg) (1.67262 10 kg)

9.10443 10 kg

(A.3)
e p

e p

31 27

31 27

31

which differs from the electron mass in the fourth significant digit.

Table A.1. Physical constants

Quantity Symbol Value

Planck constant πℏ = h/2 1.05457 × 10−34 J · s
h 6.62608 × 10−34 J · s

Mass of electron me 9.10939 × 10−31 kg
Mass of proton mp 1.67262 × 10−27 kg
Elementary charge e 1.60218 × 10−19 C
Vacuum permittivity πε4 0 1.11265 × 10−10 J−1 C2 m−1

Pi π 3.14159
Avogadro’s number NA 6.02214 × 1023 mol−1

Speed of light c 2.99792 × 108 m · s−1

What’s the Matter with Waves?

A-2



IOP Concise Physics

What’s the Matter with Waves?
An introduction to techniques and applications of quantum mechanics

William Parkinson

Appendix B

Calculus and trigonometry essentials

B.1 Differentiation
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B.2 Integration
Indefinite integrals
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Definite integrals
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B.3 Trigonometric identities

θ θ= ±θ±e icos sin (B.39)i

θ θ
θ

=tan
sin
cos

(B.40)

θ θ+ =sin cos 1 (B.41)2 2

θ θ= −
sin

1 cos 2
2

(B.42)2

B.4 Functional symmetry and integration
A function which obeys the condition:

− = −f x f x( ) ( ) (B.43)

is symmetric with respect to the origin of a Cartesian coordinate system and is
known as an odd function. One which obeys the condition:

− =f x f x( ) ( ) (B.44)

is symmetric with respect to the y-axis of a Cartesian coordinate system and is
known as an even function.

Any polynomial containing only positive or negative odd powers of x is an odd
function. Polynomials (or exponentials) with positive or negative even powers of x
(including zero) are even functions. Plots of the important trigonometric functions
show that sine is an odd function and cosine is even. Products of symmetric
functions have symmetry which obey:

× = × = × =even even even odd even odd odd odd even (B.45)

For instance, sin2(x) is an even function, but cot(x) = cos(x)/sin(x) is odd. Examples
of odd and even functions are presented in figures B.1 and B.2, respectively.

The symmetry of f(x) plays a critical role in its definite integral over the range:
− ⩽ ⩽ +a x a. The integration process involves infinite area summation. As is seen in
figure B.2, an even function or product of functions has a mirror image form about
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the y-axis. The area under the function’s curve has the same phase on both sides of
this axis. As a result, definite integrals of even functions obey the condition:

∫ ∫= ⋅
−

+ +
f x x f x x f x( ) d 2 ( )d ( ) even (B.46)

a

a a

0

As seen in figure B.1, odd functions or products which are overall odd have curves in
opposite phase with respect to the y-axis. Because of their asymmetry, these
functions have definite integrals which vanish over symmetric limits:

∫ =
−

+
f x x f x( ) d 0 ( ) odd (B.47)

a

a

These conclusions hold true for cases up to and including definite integration
between positive and negative infinity.

Figure B.1. Examples of odd functions.

Figure B.2. Examples of even functions.
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Index

A
Ampere, A: 1-3
Angular acceleration: 4-1, 4-3
Angular momentum: 2-4, 3-8

as a conjugate variable: 7-19
in atoms: 11-1–11-10
in classical rotation: 4-1–4-4
in Cartesian operator form: 6-5
in diatomic molecules: 13-2–13-3,
13-16–13-17

in 2-dimensional spherical polar form:
8-1–8-4

in 3-dimensional spherical polar form:
8-5–8-6

in many electron atoms: 11-24–11-28
in quantized energy levels: 8-8
in the Bohr atom: 4-8–4-9, 5-8
quantization of: 6-1–6-2
spin angular momentum: 11-11–
11-13

vector model: 8-9
Angular speed: 3-3–3-4, 3-6, 4-2–4-3,

4-5–4-7, 5-2, 9-2–9-3
Antibonding orbital: 13-5–13-9,

13-13–13-17
Antisymmetry:

in atoms: 11-21–11-25
in molecules: 13-10

Aromaticity: 13-17, 13-20–13-22, 13-24
Aufbau prinzip: 11-14, 11-19

B
Balmer Series: 4-10–4-11
Basis function: 7-18, 10-6–10-8,

11-20–11-24, 13-3, 13-7
Basis sets: 7-4–7-6, 7-12, 7-18,

10-5–10-9, 11-20, 13-12
Bernoulli, D: 1-3
Black body radiator: 3-7–3-11
Bohr, N: 1-4, 1-5, 3-5, 4-7–4-11, 5-8–5-9,

6-3
Bohr frequency condition: 4-10

Bohr radius: 4-9
Boltzmann: 1-3

Boltzmann constant: 3-7
Boltzmann factor: 3-9

Born, M: 1-4, 1-5, 3-5, 6-3, 7-2
Born–Oppenheimer approximation: 13-1
Brillouin, L: 1-5
Bragg, W: 1-5, 5-8

C
Center of mass vector: 2-2
Central potential: 11-1
Centripetal acceleration: 4-6–4-7
Centripetal force: 4-7
Clausius, R: 1-3
Commutator: 7-19
Complex conjugate: 7-2
Compton, A: 1-5
Conjugate variables: 7-20
Contraction coefficients: 13-12
Copenhagen interpretation: 3-5
Correlation: 11-18
Coulomb integral: 11-24
Coulomb potential: 4-9, 11-2
Curie, M: 1-5

D
Davisson – Germer experiment: 5-8
de Broglie, L: 1-4, 1-5, 5-7–5-9
de Donder, T: 1-5
Debye, P: 1-5
Degeneracy:

in atomic orbitals: 8-9, 11-6, 11-14
in many electron atoms: 11-15
in molecular orbitals: 13-17
in the particle in a box: 6-10
in rotational states: 8-8

Degrees of freedom: 2-2
Delocalization energy: 13-18
Destructive interference: 1-2, 5-6, 5-8,

7-5, 8-4, 11-27,13-7
Determiant: 11-22–11-23
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Diagonal matrix: 7-12
Dirac, P A M: 1-5, 6-1, 10-1, 11-11
Dirac notation: 7-8

E
Effective nuclear charge: 11-14
Eigenfunction: 3-3
Eigenvalue problem: 3-3
Ehrenfest, P: 1-5
Einstein, A: 1-4, 1-5, 3-5, 3-10, 4-7, 5-8
Electron correlation: 11-18
Electronic Hamiltonian: 11-1–11-5
Electrostatic potential map: 13-24
Energy level: 3-8
Euler, L: 1-3
Exchange integral: 11-24
Expansion coefficients: 7-6, 7-14, 7-22,

10-2, 10-5–10-9
Expectation value: 7-9

F
Faraday, M: 1-3
Fermi-Dirac statistics: 11-12
First-order perturbation theory: 12-2
Fock, V: 11-24
Force constant: 3-2
Free particle: 6-3
Frequency: 3-4
Fowler, R: 1-5
Fourier, J: 1-3
Fullerene: 13-22

G
Gauss, C: 1-3
Gaussian orbital: 13-11
Gibbs, JW: 1-3
Goudsmit, S: 11-11
Guye, C: 1-5

H
Hamiltonian: 2-1
Harmonic oscillator:

classical oscillator: 3-1–3-7
quantum mechanical oscillator:
9-1–9-6

Hartree, D: 11-19
Hartree energy unit: 4-10
Hartree–Fock method: 11-20
Heisenberg, W: 1-4, 1-5, 3-5, 6-1
Heisenberg’s uncertainty relation: 7-20
Helmholtz, H: 1-3
Henriot, E: 1-5
Hermite polynomial: 9-2
Hermitian operator: 7-6
Herzen, E: 1-5
Hückel method: 13-17
Hund’s rule: 11-26, 13-5
Hydrogenic orbitals: 11-10

I
Idempotent: 7-7
Identity operator: 12-13
Intrinsic angular momentum: 11-11
Inverse matrix: 7-16
Inverse operator: 12-10
Integral tables: B2 – B5
Intrinsic angular momentum: see Spin
Inverse matrix: 7-16

J
Joule, J: 1-3

K
Kinetic energy: 2-1
Kohn, L: 1-4
Koopman’s theorem: 11-21
Kramers, H: 1-5
Knudsen, M: 1-5

L
Langevin, P: 1-5
Langmuir, I: 1-5
LaGrange, J: 1-3
LaPlace, P: 1-3
LCAO: 13-3
Legendre, A: 1-3
Leibnitz, G: 1-3
Light wave: 1-1–1-3
Lorentz, H: 1-5
Lyman series: 4-11
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M
Maclaurin, C: 1-3
Many-electron atom: 11-14–11-24
Matrix; 7-15–7-18
Maxwell, J C: 1-3
MCSCF: 13-11
Molecular orbital: 13-1–13-11
Moment of inertia; 2-3
Momentum; 2-1
Morse potential: 9-7
Mullikan, R: 1-4
Multiplicity: 11-25

N
Newton, I: 1-3, 2-1, 3-2–3-3, 4-7, 5-6,

6-1, 6-3
Node: 3-4
Normalization: 7-3

O
Operator: 3-3
Orbital: 8-9
Orbital angular momentum: 11-5
Orthogonality: 7-4
Orthonormal: 7-4
Overlap integral: 7-5
Overlap matrix: 7-6

P
Particle in a box: 6-6
Paschen series: 4-11
Pauli, W: 1-4, 1-5
Pauli exclusion principle: 11-14
Period: 4-5
Perturbation theory: 12-1–12-13
Photon: 3-10
Pi electrons in conjugation: 13-17–13-19
Piccard, A: 1-5
Planck’s constant: 3-8
Planck, M: 1-4, 1-5, 3-8
Plane wave: 6-4
Planetary model: 4-7
Podolsky, B: 3-5
Polarizability: 12-5
Pople, J: 1-4

Potential energy: 2-1
Precession: 8-9
Probability density: 7-1
Projection operator: 7-7

Q
Quantization: 3-8
Quantum mechanical postulates: 6-3
Quantum mechanics: 1-4
Quantum numbers: 11-6–11-14

R
Radial wavefunction: 11-2
Rayleigh, W: 3-7
Reduced mass: 2-3
Richardson, C: 1-5
Rigid rotor: 2-4
Rosen, N: 3-5
RSPT: 12-1

S
SCF: 11-19
Schrödinger, E: 1-4, 1-5, 6-1
Schrödinger equation:

time-dependent form: 6-1
time-independent form: 6-2

Separation of variables: 6-2
Singlet spin state: 11-25
Slater determinant: 11-22
Slater type orbital: 11-16
Sperical harmonic functions: 8-6
Spherical polar coordinates: 4-2–4-3
Spin: 11-11–11-13
Spring constant: 3-2
Stationary state: 6-1
Stern–Gerlach experiment: 11-12
Superposition: 1-2

T
Taylor, B: 1-3
Term symbol: 11-27
Thompson, W (Lord Kelvin): 1-3
Translation: 5-1–5-4, 6-3–6-7
Trial wavefunction: 10-2
Triplet spin state: 11-25
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U
Uhlenbeck, G: 11-11
Uncertainty principle: 7-18

V
Variational method: 10-1–10-6
Verschaffelt, J: 1-5
Vibrational motion: 3-1–3-7, 9-1–9-6
Virial theorem: 3-6

W
Wave motion: 1-1–1-3
Wavelength: 3-7
Wilson, C: 1-5

Y
Young’s double slit experiment: 5-8
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