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Preface

In this final volume I have tried to present the subject of statistical mechanics
in accordance with the basic principles of the series. The effort again entailed
following Gustav Mahler's maxim, “Tradition = Schlamperei” (i.e., filth)
and clearing away a large portion of this tradition-laden area. The result is a
book with little in common with most other books on the subject.

The ordinary perturbation-theoretic calculations are not very useful in
this field. Those methods have never led to propositions of much substance.
Even when perturbation series, which for the most part never converge, can
be given some asymptotic meaning, it cannot be determined how close the
nth order approximation comes to the exact result. Since analytic solutions
of nontrivial problems are beyond human capabilities, for better or worse
we must settle for sharp bounds on the quantities of interest, and can at most
strive to make the degree of accuracy satisfactory.

The last two decades have seen successful and beautiful treatments of many
fundamental issues —1 have in mind the ordering of the states (2.1), properties
of the entropy (2.2), noncommutative ergodic theory (3.1), the proof of the
existence of the thermodynamic functions (4.3), and the mathematical
analysis of Thomas-Fermi theory (4.1.2), which provides an understanding
of the stability of matter. The day is surely not far off when most of the
remaining holes in the conceptual structure of quantum statistical mechanics
will have been filled in and the questions that are not satisfactorily answered
today will be added to the list of achievements.

The successful completion of this course of mathematical physics in a.
reasonable time required the fortunate conjunction of several circumstances.
As with volume III, I had active support from several collaborators, and in
particular I am greatly obliged to B. Baumgartner, H. Narnhofer, A. Pflug,
and A. Wehrl. Countless other colleagues have helped indirectly by coping
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vi Preface

w 1r other timwe-consuming duties for me. The English edition has again
gra’'» benetited jrom the critical reading of B. Simon. The working con-
diticris at the Uiniversity of \ ienna were invaluable for the completion of tnis
project cast but not least, the friciionless collaboration of Springer-Verlag
1m Vienna and my secretary and calligrapher F. Wagner enabled the books
to appear quickly and at a reasonable price.

I am aware that the uncompromising way of mathematical physics is
not the easiesi. Yet I feel that it has been one of the greatest intellectual
accomplishments of our era to cast the laws of Nature in a clear mathematical
form with rigorously deducible consequences. No amount of labor is too
high a price to have paid for this. Let me conclude by also acknowledging
and expressing my thanks to the reader who has borne with me to the end of
the course.

Walter Thirring
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Systems with Many Particles

1.1 Equilibrium and Trreversibility

Macroscopic bodies act in an irreversible and deterministic manner
in contrast with the reversible and indetermunistic character of the
underlving (an af quantum paysics. How can the apparent contra-
diction be understood?

We have learned 10 describe systems of finitely many particles wiih an
algebra .o/ of vbservables. and information about the systems wi. b a ste.e
on the algebra (cf. (f1}: 2.2.32); As our main goal is the study of 2veryday
matter, our framework wili ve that of nonrelativistic quantup: tucory. For
the purposes of conirast, nr of aiding intuition, we shali also have occasion
to call upon classicai mechanics, where states arz measures on phase space,
and extremal states are poini measures. In either framework time-evolution
can be represented as ar autemorphism a — g, for a € of in the Heisenberg
picture. If desired, time-dependerce can alternatively, in the Schrodinger
picture, be put upon the state: w - w,, such that w(a) = w(a,). I the aigebra
is Abelian (classical mechanics), then the point of an extremal state moves
along a classical trajectory in phase-space.

In our earlier experience systems of N particle are so complex for large
N that it becomes impossible to reach precise, quantitative conclusions. It
turns out. however, that the theoretical analysis again simplifies in the limit
N — 2. Many properties become independent of the exact number of
particles and other detaited characteristics of the physical system, somewhat
in analogy to what happens in the central limit theorem of probability theory.
This may secm peculiar at first: we have always had of = (), #a

1]
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1 Systems with Many Particles

separable Hilbert space, and time-evolution was given by a unitary group
on ). What, then, appears so special about a many-particle system? Just
that the information contained in a pure state about a many-particle system
is 8o overwhelming that it would be too ambitious to employ the whole of
@) for the observables. Actual measurements could never be made on
more than a few observables, so #(#) has to be cut down to size. For instance,
suppose that a device is only equipped to observe one particle at a time, and
is unable to detect correlations between particles. Then, rather than taking
the entire tensor product of the individual particles as the algebra of observ-
ables, it is reasonable to regard o as a single factor. Accordingly, many
states differing on #(5¢) reduce to the same state when restricted to . (The
classical situation is similar; the restriction of

w(q,....Ppw)
is

jd’qz s dqydpy .. dPpy WXy, ..., PN),

so whole cylindrical regions of phase-space reduce to a single restricted
staic.) As a consequence large portions of the space of states on () are
quite similar from the point of view of the reduced algebra . If, in the
Schrddinger picture, the state w, travels throughout the space of states, then
its restriction takes on a certain value with a very high probability, unless
prevented by some constants of the motion. This most probable state is called
the equilibrium state over /. ‘

The irreversible tendency toward equiﬁbrium has always aroused wonder,
especially as the basic equations of dynamics are invariant under reversal of
the motion (111: 3.3.18). We have even seen in classical mechanics that the
trajectory of any point on a compact energy surface returns arbitrarily close
to its initial position (I: 2.6.13). In quantum theory the Hamiltonian H of a
system confined to a finite volume has purely discrete spectrum. If ¢; and
|i> denote the eigenvalues and eigenvectors of H, then the time-dependence
of an observable a is given by

w(a) = }Z;,‘ cjc, exp(it(e; — &))lalk),

where the state w is represented by the vector ), ¢;|j>. The state w(a) is now
an almost-periodic function of ¢; if the sum is finite, and the ¢, are rationally
dependent, then it is actually strictly periodic. At any rate, to arbitrarily good
accuracy, w(a) again becomes nearly w(a) after some sufficiently long delay.
The trouble is that the recurrence times are so unimaginably long that they
have no physical relevance. Suppose, for instance, that there are N distinct
energy differences w,. The recurrence time can then be estimated as follows.
The factors exp(iw; t) can be pictured as N clocks with hands moving at N
different rates. The question is how long it takes for a certain configuration



1.1 Equilibrium and Irreversibility 3

of clock faces to reappear to within some angular accuracy A¢. The con-
figuration in the space of angles has measure (Ag;2r)", so the recurrence time
is on the order of (Ag,;2n) ™ "/w, where the reciprocal angular velocity 1/w
is an average of the 1/w;. Even for just N = 10, l/w = 1 sec.. and (Agp/2n) =
1/100, so that w, returns to w to within 1°, accuracy, the recurrence time is
1029 sec., which is much longer than the age of the universe.

The approach to equilibrium is connected to a loss of information; to be
more precise, information does not get lost, but only less accessible. We
have seen that when the wave-packet of a free particle spreads (III: 3.3.3),
Ax grows linearly with time, although the state remains pure and thus has
maximal information content. The observable with least deviation from the
mean is, however, not x(r) but x(0) = x(t) — pr.

This behavior can be seen even in classical motion if a minimal spread of
the support of the probability distribution function in phase space is hypo-
thesized to account for quantum effects. If, say, the initial probability density
p(p, q) is concentrated on a part of the energy shell {(¢; p)|p, < p < p,} and
is not pointlike. and it moves freely on a torus, then it eventually fills the
energy shell densely with a “fuzzy” distribution. Faster particles overtake
the slower ones, as bicycles racing in a stadium start packed closely together
but later draw apart and eventually spread around the whole track (see
Figure 1).

The ergodic hypothesis has figured importantly in the history of statistical
mechanics; it is the assumption that the trajectory of almost every point
winds densely around the energy shell in phase $pace, so that the time average
can be replaced with the average over the energy shell. On the one hand this
requires more than is necessary, since it suffices to fill a sufficiently typical
part of the energy shell, the average on which equals the average on the whole
shell for the reduced algebra of observables. On the other hand, although
macroscopic measurements last much longer than the collision time, they
last much less than the recurrence time, so one does not wait for the whole
energy shell to be sampled. We shall discuss examples in which the
equilibrium state is actually attained by the state in a reasonable time after
reduction to one particlé.

A pictorial description of the situation is as follows. The information
about a subsystem (i.e., the opposite of the entropy, to be defined later) as a
function on the space of states of the total system consists mainly of a plain
with few hills and still fewer mountains. The larger the total system, the
further apart the prominences. Even if a path begins on a peak. it soon
descends to the plain, and there is only the slightest probability that it will
ascend another mountain in any conceivable time. The time of descent to the
plain and the recurrence time are of completely different orders of magnitude.
It takes only the time corresponding physically to a few collisions to descepd
to a level near that of the plain, whereas the other mountains lie in the un-
fathomable distance. This means that equilibrium is reached long before the
immense recurrence time required to wind throughout the space of states;
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Figure 1 The motion of the density in phase space for a free particle on a torus.



1.1 Equilibrium and Irreversibility

generally, a path soon reaches states that can not be distinguished from
equilibrium because of the limits of our measuring abilities. Of course, there
is still the question of how one happened, at the beginning, to be at the top
of the mountain, but that brings up the one of how the current state of the
universe came about and is outside the scope of this book.

Another puzzle is the apparent causal behaviot that classical thermo-
dynamics prescribes for macroscopic bodies. According to the arguments
that have been advanced, one would rather suspect that the fluctuations of the
observables are increased by the loss of information. This is actually true for
microscopic variables like the positions and momenta of individual particles.
However, if only the so-called macroscopic observables are considered, that
is, roughly what was accessible to the more primitive experimental arts of an
earlier epoch, then deterministic features arise. Their origin is simply that
statistically independent quantities are being averaged: ifa = (1/N)} }., a;,
where w(a;a;) = w(a;)w(a;) for i # j, then

, N
(Ba)? = 3 [ (z (@ ak)) zkw<a,-)w(ao] - ¥ (80>

Thus Aa ~ N~ "2 and for sufficiently large N the deviations from the average
are negligible. We shall learn that in the quantum-theoretical formalism such
an a approaches a multiple of the identity operator as N — oo. The limiting
coefficient depends on the representation of the algebra.

Let us verify the phenomena described above in two explicitly soluble
models. Of necessity they will lack some of the complications arising in
reality, but they exhibit the important features. They are embryonic forms
of systems of fermions and bosons.

The Chain of Spins (1.1.1)

Let the algebra of observables’of the total system be generated by o

= 1,..., N, where each o is a copy of the usual Pauli matrices o. lnstead
of Cartesnan components we use ¢ = ¢°and 6* = (¢* + i0”)/2, which satisfy
the commutation relations

[6].0:] = d;0,. (1.1.2)

The chain is closed by the identification of 6;, y with @;, and the Hamiltonian
that determines the time-evolution will be assumed to be of the form

H=B Elp"aj + Z ZGjaj+n£(”). . (1.1.3)
j= n=1 j=1

The physical meaning of this is that the spins are coupled with magnetic
moments yu; to an external magnetic field B, and in addition there is an
Ising like spin-spin interaction with the nth neighbor. The strength &(n) of
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- this interaction is a function that can be specified later, and the periodicity

allows us to assume &n) = 0 for n > N/2. If the contributions to H are
denoted as in .

H=Hy+YH,, . - (1.1.9)

then the H, commute with one another and with the o;. They are therefore
constant in time, and the time-evolution of ¢* and ¢~ = (6*)* can be
calculated easily from the relationship

f@@)" =ac* f(o + 2), (1.1.5)
which follows from (1.1.2). We find

o (8) = (0, (1)* = 0, (0) CXP{Zfl[B#k + Y, enXOisn + Uk—..)]} y
= oy (0) exp(2ith,}) I (cos 2te(n) + 0y 4., sin 2te(n))(cos 2te(n)

N + io, _, sin 2tg(n)), (1.1.6)

where a(t) = exp(iHt)a exp(—iHt).

The time-evolution consists of Larmor precession in the external field and
a kind of diffusion along the chain due to the spin-spin interaction. Suppose
that the state at t = 0 is pure and has the form of a product, where the spins
have a 3-component s and 6,” has phase a,:

@O =5 (o7 O) = 1/T— 5 expliay) <n «,-> =1 <.

J

(1.1.7)
Then '
(o (1) = $/T = 57 expli(a + 2Bu)} 1 (1),
f(@ = ﬁz(cos 2te(n) + is sin 2te(n)). (1.1.8)

If N is finite, then fis almost periodic,and if N = 20, thenf(t) will generally
tend to zero as t — oo (supposing that &(n) tends to zero in such a way that
the infinite product makes sense). To make this more explicit, let us consider
the special casé s =0 and e(n) = 2"~ . If N = oo, then f satisfies the
equation

J@20

. (1.1.9)
cost

' o0
f(@©) = [Jcos 27" =

n=1
Since f is an entire function, this functional equation and the condition
f(0) = 1 determine f uniquely—differentiate (1.1.9) to get the Taylor series’
of f. Since the function (sin t)/t satisfies (1.1.9), it equals f. Hence, as N — x,
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the expectation value of ¢* approaches zero. For finite N it follows from
(1.1.9) that

t 2-%2

Therefore, as discussed earlier, the recurrence time 2" 2 :n grows exponentially
with N, while the time it takes to reach equilibrium is independent of N.

To summarize, we have ascertained that for N = x the initially pure
state of the algebra reduced to one spin tendsast — . to{o) = 5,{6*) =0
which corresponds to a mixture:

N2 o1 : ~-N277-1
k) = []cos 2-"r=°'"'[s'" 2 ] . (1.1.10)

exp( —no)
¢) = Tr(pe), e e tanh'y = s. 1.1.11
(a) (po) p= Trexp(—n0)’ 1 ( )
Even though the expectation values of the o, go to zero. their fluctuations
remain nonzero, since g, 6, = (1 + 0,) 2 is constant. The average magneti-
zation

1
Muy(1) = = Y 6 (D) (1.1.12)
N5 .

works differently. In the state (1.1.7) of our example, {M}) = s. whereas
(MY is O(N~'?), provided either that the initial phases are disordered or
that the o get out of phase after a while because the g, differ. The latter
situation can in fact be undone by a sudden reversal of B, in the spin—echo
effect. If N = x, the diffusion caused by suitable ¢(n) is irreversible, and
lim,_, {MZ(t)> = 0. At ¢ = 0 the fluctuations are O(N ~*'?) and remain at
this magnitude for all time: If ¢, (t)o () is calculated by multiplying together
two expressions of the form (1.1.6), then it should be recalled that ¢? = 1.
However, if the function &(n) falls off sufficiently rapidly with s, then the o2
terms make little difference for large k — k', and the argument given earlier
for the deviations of statistically independent quantities remains valid.

Chain of Oscillators (1.1.13)

Now represent the total system by positions and momenta g,...., qy,
Pi.-- -« px.suchthat [q;, p,] = id;,and let the time-evolution be determined
by

N
H= 3 Xpj + (q; = 95+ %) (1.1.14)
j=1

This Hamiltonian contains interactions only between nearest neighbors. and
the chain can be closed by the condition of periodicity g;. » = g, Pj+n = Pj-
The masses and force constants have been set to 1, which amounts to measur-
ing the tme in units of the natural period of oscvllauon The equations of
motion are

qj=pj»  bj=djr1 + di-1 — 24;. (1.1.15)
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With a periodic extension of the variables, $1s - -+ Ean» such that

S2n = Prs Snel = dne1 — Gno (1.1.16)
they are put into the form

Ej = gj‘-h] - &j-1- (1.1.17

The variables ¢, satisfy
‘:n-t-zN = éna Z éZn-rl = 0.
n

Recall that the Bessel functions satisfy the recursion formula J, =
(Ju-1 — Ju+1)/2;asaconsequence we see that the solution of the initial-value
problem is

) = X S0 n(2). (1.1.18)

k=-o

Remarks (1.1.19)

1. Since |J(2)| ~ |z/v|" as |v] = oo, the sum over k in (1.1.18) converges
for, say, bounded {£,(0)}.

2. If N < oo, then (1.1.18) still holds provided that &, . ,5(0) = &,(0).

Since the equations of motion are linear, the classical and quantum time-

automorphisms are identical.

4. There are still N constants of motion with the variables ¢:

w

a
I*= Zéléji-n- k=l,...,N.
i=1

With the auxiliary condition that ), ¢&,,,, =0, only N — 1 of the
constants are independent, and we find that E, Ipe1 =0.If N = 0, then
i, remains signihcant classically, provided that {&,} € I

In crder to have a useful framework for discussing the questions that will
arisc as in these two examples, it is convenient for technical reasons to make
use of the Weyl algebra (cf. (111, §3.1)). With one particle, the Weyl algebra
consists of the operators W(r + is) = exp(i(pr + gs)), r, s € R, along with
their linear combinations and norm-limits. A state on the Weyl algebra is
uniquely characterized by the function E(r, s) = {exp(i(pr + gs))). We shall
only concern ourselves with coherent states (I1I: 3.1.13), which are of the
form W(z'){u), where |u) is a Gaussian function, the width of which deter-
mines the ratio between Ap and Aq. Since

1 s2
ulW(r + is)|u) = exp[-—z (wr2 + -&;)],

it follows that '
R é? w a2 1
(Ap)* = — % In Elr.s:O = 2 (A‘))2 = 52 In Elr.:=0 = %
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The expectation value in the more general state W(z'){u) can be calculated
according to (III: 3.1.2; 1) as

WEWMWEIW(E ', = QujWi(= YWEW ()

w\We)luy »Xp[ Im(z*: — =¥z
d

!— t/ ‘2\\ . ) s

= eXpf — - \c)r L + i(rs --‘rs)]. (1.1.20;
L :

Thus. the quantities Ap and Aqg are the samc us witl: }i). but the expeciation

values of p and g ar¢ now s and —/".

Let us return to the issue of how the restriczion of thc many-particic state
to a subsystem evolves in iime. The operators exp(i(réy(t) + s¢,(2))], which
describe the momentum of a single particle and its position relative o 1ts
neighbor. are useful to this 2nd. Since [ 5(:). Z.(:]) = i, they form a Weyl
syst2m. A state characterized by

i X/ s2\
<exp[ z (~2nr + \,2,,,,.1? ) |> = pr[ 4 ‘; (('}I‘ + _’
n= -« n= -
+ i(rps, = r;sq)] (1.1.21)
i

can be regarded as the generalization of (1.1.20).

Remarks (1.1.22)

1. Theexponent on the left is a linear combination of p, and g, , as appropriate
for a Weyl system for several particles, yet the variables ¢;, and ¢,,.,
are not pairs of canonically conjugate variables. since [J;,. &,- 1§ # 0.
Thus (1.1.21) is not simply the tensor product of coherent states of a tensor
product of Weyl systems.

2. Thessignificance of (1.1.21) is once again that the variables {,, (resp. <yp4 37
all have deviation w and expectation values s, (resp. 1w and —r,).

With (1.1.21), the desired state on the one-particie system turns oui to be

E(r, s) = (exp(i(rép(t) + s&(0)))
= <exp(' Z [€200X(rd 2 + 3T 20— 1) + E2n+ 10N 3pey + 3]2'.):])>

= exp Z {—”(w(rJZn+5J2n 124 (W ey + 82,)? —)

n= -

1
+ sy (rd gp + ST 3p-y) —ir(r . + st,,)}. (1.1.23)
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The sums can be evaluated by recourse to the formulas

Z J2n(20) 304 (21) = l(50, +J f4)), jez, -

n=-

_2 J2ne 10 20414 £20) = $(60; — JA41)), C(11.29)
which are derived in Problem 2. Ast — oc, only the terms with j = 0 remain.
Moreover, it can be seen from the integral representations and the Riemann-
Lebesgue lemma that the contributions linear in the J, 8o to zero as t — 0.
In all, we get

= o

lim E(r, s) = exp[—% (w + )(r + sz)] (1.1.25)

Remarks (1.1.26)

1. The limiting state corresponds to the mixture E = Tr pW(2), p =
exp[ —n(p? + g}))/Tr exp[ —n(p? + ¢1)], coth n = (w + 1/w)/2 (Problem
3). As w — 1, that is, for minimal mean-square deviation, » — oc, and the
state becomes pure. With larger mean-square deviations, w # 1,
(w, + 1/w)/2 > 1, the limiting state is a mixture.

2. Whereas at t = 0 the ratio of Ap to Aq is w?, they become equal as t — oo,
i.e., their ratio, 1, becomes the one defined by H. This corresponds to equal
amounts of kinetic and potential energy.

3. The reason that the existence of the constants (1.1.19; 4) does not prevent
the onset of equilibrium is again the choice of the initial state. Of course,
equilibrium can not occur if the system starts off in an eigenstate of a
normal mode of oscillation.

These few remarks will serve as our first orientation to irreversible
phenomena. We have already studied an example of an irreversible phenom-
enon in volume II, the emission of light. It is always important to take the
limit N = = before t —» o, as in a finite volume the light returns to the point
of emission, and the behavior is almost periodic rather than irreversible.
The next section will deal with how the energy is affected by the first limiting
process.

Problems (1.1.27)

1. Calculate the entropy $(t) = —Tr p(?) In p(z) for one spin, where f'is given by (1.1.9).
2. Calculate Zf = J2a(x)J 20+ {x) and L < macd2ne 10X 2n 4 14 (%)
3. Show that 1he density matrix p has the property stated in (1.1.26; 1).
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Solutions (1.1.28)

I. Since Tr p(t) = 1. the density matrix is of the form p(7) = ! + ¢(t)- @ Lot (1) ==
fe(r)}, which < 4. The eigenvalues of p() are } + c(1). so

F+dty, T+t —ctt)y |- o)
S(r)=—-[—--é--ln 5 + 5~ In > b

Because Tro;o;=28,;. we find (1) =4¢6). and therefore (1) = (s2 +
(r - \")]"(l))' - Observe that f is not monotonic, and hence that § does not increase
moaotonically from 0 to its cquilibrium value,

(153 5 el 1)

- | L
exg[; (: - 7)] = Y 1)
Putting - = x + y yiclds

Z x4 ) = CXP[ (’ - )] ""‘p[g <’ B :)]

= (; NL(.\'))(Z :’.I,(,\')) z 1/ }: XMW x),
]

l-‘! n= - X

™)

soJUx b W)=Y, J(x)J;_a(¥). which 1s the addition theorem of Schlifli and
Neumann. Putting y = —x and changing j to —j then yields Y ,J (x)J,, {x) = 3,
and with y = x, there resolts

Y A o) = Y (= 1) e (x) = T f2X) = (= 1Y L2x),

trom which formulas (1.1.24) follow.

X

2 Trexp[~n(pi + ¢)] = Y exp(—n(l + 2m)]

n=0

and

-, Trexp[ —n(p* + 4]
(

. ¢t@
PPy = (— i (?3)5(’ $) =

lead to the result.

Tr exp{ —m(p? + ¢*)]

1.2 The Limit of an Infinite Number of Particles

The first issues to confront for large systems are what happens to
macroscopic properties like energy and volume as N — .

The models examined in§ 1.1 were only caricatures of reality. We shall now
determine the physical properties of large bodies. The first question is how
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the volume ¥ hasto vary as N — o, in order to ensure that the potential and
kinetic energies will be comparable in magnitude and that the interaction
* between the particles is correctly accounted for. In particular, when are E
and V normal, extensive quantities proportional to N? In order to fix our
ideas, we shall pay particular attention to certain special cases, large atoms
and, macroscopic or cosmic objects. The dominant force is then electrostatic,
except that in cosmic matter gravity also hag a decisive effect. Heuristic
arguments will sometimes be adduced in this section for guidancein finding
which quantities have limits as N — o0 in these systems.

Free Particles (1.2.1)

We begin with a consideration of noninteracting particles confined to a box
of side R. The energy consists of the quantum-mechanical zero-point energy
plus a thermal component proportional to the temperature T. As we are
only interested in the dependence on N for large N,weseth =k =m = 1.
As explained in (III: 1.2.11) the zero-point energy of a system of fermions is
~(Ap)? ~ (Ax)~2, where Ax is about RN~ 3, since the volume available
per fermion is only R3/N. We arrive at

N513

E=2re

+3NT. (1.2.2)

If the two contributions are to remain comparable as N — oo, and if T goes
as N' for some power ¢, then R must be ~N'3~%2 and EN~!~* will tend
to a limiting value. The type of interaction will determine the value of ¢ at
which the limit is nontrivial and thus of physical interest. For this to happen
the kinetic and potential energies have to remain of the same order of
magnitude. .

Bosons do not have the solitary temperament, so Ax may be set equal to
R. The energy is then on the order of

N
= 'iiz' + 3NT ’ (1.2.3)

E
If the two cuntributions are to have the same dependence on N and we make
T ~ N', then R~ N~%2 and E ~ N'*!, If it is insisted that T remain
constant and R ~ N'/3,then E ~ N, but the zero-point energy drops below
the thermal energy. The exact calculation for free bosons in fact reveals that,
with a fixed particle density and below a critical temperature, a certain
fraction A(T) > O of the particles are to be found in the ground state with
E, ~ N3, and thus N may be replaced with (1 — A(T))N. This makes this
usual limit also nontrivial.
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Large Atoms (1.2.4)

The Hamiltonian of a large atom (with e? = 1) is

N 512
H=3% ('pT—Z!xil") + X% =% (1.2.5)

which can, if one wishes, be confined in a box. Recall that in volume 111 we
figured out thatif T = 0and Z = N, the energyisabout N3'3/2R? — N2¢%/R,
which has a minimum about —4N7 3 for R ~ N~ '3, Therefore, 1n the limit
N - oo we should expect to set t = %. In §4.1 it will not only be proved that
these limits converge, but even that the Thomas-Fermi theory becomes
exact in that limit. The problem can thus be solved in the limit N — oc,
though the solution is not suitable for a direct numerical comparison of
theory and experiment. Since there are corrections of about N~!/3, 109
accuracy can not be expected for N < 10°. On the other hand, relativistic
effects become significant when N ~ 102 The kinetic energy is then ~N*3/R
and if Ze? > 1 the energy is no longer bounded below. Hence the picture
that emerges of a large atom is only an idealization, but at least one with
many instructive aspects.

Systems of bosons depend on N in a different way. They all settle into the
ground state, and with Z ~ N the radius goes as N ! and the energy as N3.
The limits of EN ™3 and N3p(xN) would be expected to exist, where p is the
one-particle density distribution. For thermal effects to remain significant,
T must be chosen ~ N2, This problem is mostly of academic interest, and the
convergence of the quantitics mentioned above has not yet been proved.

Jellium (1.2.6)

Like an atom, jellium consists of particles repelling one another with a
Coulomb force and immersed in the field of an external charge distribution.
The difference is that the charge distribution is not concentrated at a point,
but rather homogeneousiy spread with density ¢ through a box A (A will
also somctimes denote the volume of A). It can be regarded as a model of
highly compressed matter. with the homogeneous background charge
coming from fast-moving electrons, and the particles with explicit coordinates
being the nuclei. It is nevertheless often used to describe electrons in a metal,
although it is rather far-fetched to speak of the assemblage of ions as a
homogeneous background. The Hamiltonian is

al Ipiiz -1 u 5 3 -

H=Y -+ YIx = x|t = ¥ Ulx) + 5 | #xU, (127
i=1 i>] i=1 A

where U(x) = ¢, d°x/|x — x'|. For the system to be neutral, &), d°x = N.

The electrostatic energy of the background has been added in so that the
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potential energy will remain bounded below. by N(RN~13)"1 where R
is the linear dimension of A. The proof of this relies on the well-known fact
of electrostatics that the Coulomb repulsion.of two homogeneously charged
spheres is less than or equal to that of two point charges at their centers—the
inequality occurs when they overlap. Now imagine blowing the charged
particles up to homogeneously charged spheres of radius a, and let

4na®\ "2 d3x d3x’
( 3 ) J:x—dea :x _ xII = Uij(a)a

Ix' -x;l<a

g\ - (1.2.8)
(—ﬁ-) J. d*xU(x) = U{a).
3 Ix-xi}<sa
Then H may be written in the form
N IpJ? T N N ;
=Y 242 Y Uga) - Y Uga) +3J‘d3xU(x)
&2 "1k P 2
4 A 2
- —
+ Y (Uda) - U(x) - Z U@ + Y (I1x; = x;17' — Uifa)).
=t < (1.29)
Contribution « is positive, since it is of the form
dx dx’
X)
=] POR()

and 1/o has a positive Fourier transform. It is easy to show (Problem 1) that
B = —(2n/5)¢a*N, equality holding provided that all the spheres lie within
A, and y = (N/2)X(6/5a), the self-energy of homogeneously charged spheres.
As discussed earlier, 8 > 0. The lower bound — N((2n/5)¢a? + (3/5a)) is
optimized at a = (3/4n&)*’® = r,, which is precisely the radius at which the
sum of the volumes of the spheres equals that of A. This comiputation leads
to the

Lower Bound for the Energy (1.2.10)

N 2
. Iml 9N
HZ,._Z, 2 10r,

Remarks (1.2.11)

1. Nothing has yet been assumed about the shape of A or the statistics of the
particles. In particular, if A is spherical, then by Problem 2,

S Uy + 5 [ a0 < 2 Tl - 2
- L)+ 3 [ xU00 < s 2k - 55

where equality holds if x; € A for all i.
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2. Despite its great generality, the numerical accuracy of the bound (1.2.10)
is surprisingly good. If x; are the sites of a simple, face-centered, or body-
centered cubic lattice, computer studies have been made of the limit as
N — x of the potential energy over Nr; !, yielding respectively the values
—0.880, —0.895, and —0.896 [3].

Lower bounds for H depending on the particle statistics may be derived
from (1.2.10). The energy of free fermions is, as secn earlier, ~N*3 R? ~
Nr, *, and with the aid of the more precise proportionality factor,

81 '
H > NQ1r;2 =097 > —OII N forallr,e R*  (1.2.12)

for spin-} particles. Even if the volume and consequently r; are treated as
variables, the resultant lower bound is ~ N. We shall discover later that with
no more than first-order perturbation theory we can obtain an upper bound
not much different fiom (1.2.12): the Pauli exclusion principle makes the
electrons stay at a distance r, apart, and this correlation imitates the ener-
getically favorable configurations of (1.2.11: 2). Since the minimizing radius
r,does not depend on N, in thismodel E ~ N and R ~ N3 so the exponent
t of (1.2.1) equals zero.
A very different picture emerges of bosons. With the kinetic energy (1.2.3)
we find, ignoring precise coefficients, that
1.3 14
Nz._ﬁ_ (1.2.13)

s r

H>

r s

The minimizing r,is ~N~%2 andso E ~ N°°.

Remarks (1.2.14)

I. It is uncertain whether the lower bound ~N*®? displays the correct
dependence on N. Upper bounds obtained with trial functions include
more kinetic energy since the particles have to be correlated in order to
attain a suthiciently negative potential energy. Until recently it was only
possible to show that E < —¢N73 [1].

2. If the background charge is concentrated at discrete points of a lattice.
then trial functions can be thought up that show E < —c¢N>3, and thus
in this case the energy in fact goes as N* * [2].

3. So far only the electrostatic energy has been accommodated n the back-
ground. and minimized according to the density <. If the background
consists of electrons, then its zero-point energy must also be calculated.
In a jellium of deuterium atoms, which are bosons, the energy turns out
to be ~ N: The background density prevents them from collapsing, and
for fixed r, (1.2.13) is on the order of N.
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Real Matter (1.2.15)
Real matter consists of positive and negative point-particles interacting with
a Coulomb force, so

|p:1? ee;
H = — 2
Z . om, .Z.:jlxa =X (1.2.16)

for particles confined to a box of volume A ~ R3. We shall often particularize
to the situation wherein all negative particles are identical with m = je| = 1
and all positive particles are identical with mass M and charge Z. Provided
that Z is not so large that relativistic effects become significant, (1.2.16) gives
a reasonably accurate description of ordinary matter. We ‘therefore expect
to find that E ~ —N for R ~ N'/3,

The proof of this fact, known as the “stability of matter,” has to be deferred
to §4.3. At this point we shall make do with several

Remarks (1.2.17)

1. Roughly speaking, the difficulty is that the double sum for the kinetic
energy contains ~N? terms, so many cancellations are needed for the
result to be only ~ N. If, as in the gravitating system to be described
shortly (1.2.19), all the contributions are of like sign, then cancellations
certainly do not occur. Similarly, if the total charge Q = Y ;e;is ~N?/3*¢
and the system is restricted to a region of linear dimension R ~ N'/3, the
energy fails to be extensive. The electrostatic energy Q%/R is <N only if
Q < N2/3.

2. Even requiring that Q = 0 will not guarantee that |E| ~ N if all the
particles are bosons. To prove this, rewrite (1.2.16) (with M = Z = l) as

H = Z Ipl ‘2

N#

R AR

i>j a>p

- .Z"‘-‘ — XY : (1.2.18)

where N* = N~ for a neutral system. Now take the expectation value in
a state with ¥* @ ¥~, where W* are the trial functions that led to
E ~ —N7'5 for Bose-jellium. Although the particles are correlated, the
charge density is homogeneous, as for instance

d3x
AW - x--X:—“P+>=— J.'——_—'—-'
. < ' ?:l : | C; AlXi — x|

The last term in (1.2.28) is therefore equivalentto — Y, U(x;") = Z, U(x;)
+ 2(¢/2)f d*>xU(x), and there results the sum of the energles of the positive
and negative Bose-jéllia. The expectation value is consequently about
— N5, which is an upper bound to the energy by the min-max principle
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(II: 3.5.21). This “instability.” which corresponds to the ground-state
energy being nonextensive and the spatial contraction of many-particle
aggregates of charged bosons, does not imply that individual atoms con-
sisting of oppositely charged bosons would be unstable. A single, non-
relativistic atom of He* with its electrons subjected to Bose statistics (but
with their original mass and charge) would have the same ground-state
energy as real He*, since the two-particle ground-state wave-function is
symmetric in the spatial coordinates. The lesson here is that experience
with two-electron molecules is not a trustworthy guide to the problem of
the stability of matter: Since the Pauli exclusion principle makes no
difference, the two electrons might just as well be bosons, but a system of
many bosons would be unstable, whereas a many-fermion system is
stable.

. Since He? is just as stable as He®. stability is not a matter of the type of
statistics of one of the kinds of charge-carrier. Moreover, the relevant
energy is always measured in Rydbergs, using the electronic mass, so
matter should remain stable even in the limit of infinite nuclear masses.

. It could be argued heuristically that the potential energy should go as
—N*3R~1 since each charge sees an opposite charge at a distance
RN~ ¥ while charges further away should be screened. If this is added to
the kinetic energy N* 3R ~* of fermions or NR ™2 of bosons, the minimum
is respectively ~—N at R ~ NY3or ~ ~N¥3at R ~ N™'3,

. In relativistic dynamics the kinetic energy is ~{p| ~ 1/Ax, so the system
is softer. The heuristic arguments would evaluate the total energy of
bosons as ~N/R — e*N*3/R, which is unbounded below when N is
sufficiently large. Whereas nonrelativistic energies are always semibounded
for any fixed N, it may happen that the relativistic energy goes to — oo for
sufficiently large, but still finite, values of N.

. The instability of a Coulomb system of bosons has nothing to do with the
long range of the 1/r potential, but comes from its short-range features. If
the singularity is chopped off by changing the potential to V(x) =
(1 — exp(—pur))/r, the system of bosons also becomes stable: Since the
Fourier transform of V is

4’

T = o,
® = X 70

with |e;| = e, we find that

2

d*k
V=) eeVkx —X)=
e )= @’

N, __N,
> 2eV(O)—- 2eu,

N
V(k) Zexp(xk X))e; -—-;- Y ev(0)
i=1

so H is bounded below by —cN. It could be argued that nuclei have a
form factor, and that if u is taken as the reciprocal of the nuclear radius,
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then ¥ would be a more realistic pot‘entnal than 1/r. This would lead to a
simple proof of stability, but it misses the real point. Since the Rydberg,
which is measured in electronvolts (eV), is determined by the mass of the
electron, it is the kinetic energy of the electrons rather than the size of the
nuclei that matters most for stability. The lower bound from the size of
the nuclei alone would be ~ — N MeV. :

Cosmic Bodies (1.2.19)

The 1/r potentials in an object with gravitationally interacting particles are
all attractive, so the situation is drastically different. The ground state of the
Hamiltonian

2
Hg = Z le” _ YIx — x| (1.2.20)
i=1 2 i>j

goes as — N7/3 for fermions. By the now familiar argument, E ~ N%3/R? —
N?/R, which has its minimum value ~—N~7/3 for R ~ N~'/3, This can
easily be translated into an exact upper bound by the use of trial functions
localized in R®. Lower bounds are harder to come by, 'since energetically
more favorable possibilities have to be ruled out. In this case there is an easier
way: Write

H ZZ _Inl 5|x-xr‘=§;h (1.2.21)
€= AN -1 27T AT -

i=1 j#i
so that each h, is the Hatmltoman of an atom with electrons having no
Coulomb repulsion. Particle number i stands for the atomic nucleus, as it has
no kinetic energy, and the others are electrons, with mass N — 1 and potential
—Ix; — x;1” /2. According to (III: 4.5.15) it follows that b, > —cN*3, and
- indeed the result is a

N

Bound for the Energy of Gravitating Fermioas (1.2.22)
Hg> —cN3, ¢ =0(1).

Remarks (1.2.23)

1. Fermi statistics were not fully taken into account, since we have only anti-
symmetrized with respect to N — 1 particles when filling the energy
levels. Since complete antisymmetrization restricts the set of admissible
functions further, (1.2.22) is at any rate a lower bound. * °*

2. The limit as N ~ oo in this case exists with the scaling behavior ¢ = % of-

(1.2.1), as in (1.2.4). This does not mean that the limit with ¢ = % fails to
exist for ordinary matter, but only that it is trivial. The potential energy
goes to zero and the particles remain free.

3. If the particles are bosons, then they can all be put into the ground state,
and E ~ — N3, The radius of the ground state then goes as N~ 1.

4. The Hamiltonian (1.2.20) was for the discussion of electncally neutral
particles;.if they are instead charged, then x must be replaced with

N
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Kk — e;e;. If we bear normal matter in mind, the gravitational force comes
from the protonic mass, and in units where the mass of the proton is 1,

x/e* ~ 1073, Inequality (1.2.22) then a fortiori provides a lower bound,
since

a>1|x —le i>jlx(—xj|
— 2¢.e*N — 2cx2N"3,

The number of particles determines which N-dependence dominates.
Gravity begins to win out when N ~ (e?/x)*'2 ~ 10%4, which is about the
mass of Jupiter, and the energies of larger heavenly bodies are controlled
mainly by gravitation. A concrete consequehce is that the atoms get
squashed and turn into a plasma of nuclei and electrons. This inequality

provides a more rigorous foundation for the heuristic considerations of
(I1: 4.5.1).

DAL LTS DN

.

We shall see in §4.2 that the system (1.2.20) can be solved in the limit
N — o0, as the Thomas-Fermi theory becomes exact. Thomas-Fermi theory*
provides an idealization of stars, various corrections again being needed to
make it realistic. In particular, if N ~ 1037 relativistic effects become impor-
tant. As with atoms with Z > 137, the Hamiltonian is unbounded below,
which leads to a catastrophe. Nonetheless, Thomas-Fermi theory reflects the
thermodynamic properties of stars rather well.

This section concludes with Table 1 displaying the many pOSSIbllltles

Table 1 The N-dependence of the kinetic energy K and the potential energy V when
N is large.

K |4 len E(len)

Bose  NjR? ~N*3/R  N~'3 -N3B

 clectric Fermi NS*R® —N*YR N'* _N

Nonrelativistic 1

o N/R? —N¥R Nt _N?
| gravitational F ermi NYYR?  —NYR N-U3 N
N/R -N*3R 0 -
[ electric F ermi N*3/R - N4%3/R } 0 -0
Relativistic ¢ * oro or0
avitational N/R ~N’IR 0 -®
gr F ermi N“)R —-N*R 0 —®

t If R,,;, tends to + oo more rapidly than N'/3, then the kinetic energy per particle,
N'3/R, becomes arbitrarily small, eventually € m, and the system is nonrelativistic.
Hence R,,;, certainly can not increase faster than N'/3. Which energy breaks the stale-
mate depends on the strength of the charge. If Z < 137, the kinetic energy wins out, and
if Z > 137, the potential energy wins out.
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Problems (1.2.24) ¢
1. Calculate the § and y of (1.2.9).
2. Verify (1.2.11; 1).

Solutions (1.2.25)

1.

d3x da g J. s ” .
: dr dQr? dr dQY _— - fad
' L.,. Ix — x'| r _2; [r,.“ o -r+ 'M, 760 - r)] 3

Ixisea
YY) = f J" P dr r? dy (9"' n,8r- "’)(4 y

r
24° 2
= TS— (41!) B
B: d’xd’x'( : ; -"17)=I +I
Ixlss Ix -x| x| Ixlix'Ise Ixl<a
x'eA ix’|2a

The second integral equals 0, as can be seen by expanding |x — x'| ™! in spherical
harmonics. The first integral equals — (2na/SX4na®/3) if {x': |x’| < @} < A, and is
otherwise greater than or equal to this.

2. U(x) < —(3N/2R) + (N/2RX|x;|*/R?), equality holding for |x;| < R. The self-
energy of the background charge is 3N?/SR.

1.3 Arbitrary Numbers of Particles in Fock Space

The properties of large systems should not depend on the exact
number of particles, so it is convenient to use a’representation with a
variable number of particles.

We are used to dealing with atomic systems on J,, the n-particle Hilbert
space. As it is impossible to count the particles in a large system, it is con-
venient to regard the number N of particles as an observable capable of
assuming various values. Accordingly, we shall study Fock space

[ ]

‘#F = @.#,,, le"= n, (1-3.1)
n=0 .

as the foundation for later analysis. The space J#, is one-dimensional and

spanned by the vacuum vector |0). If the particles under consideration are

either all bosons or all fermions, then i, is either the n-fold symmetric or

totally antisymmetric tensor product of X, = L3(R3, d3x) with itself, which
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will be denoted #, @ H, ® - @I, or K\ AF, A--- A X, If £,
j=12,...,is a complete orthonormal set of functions on #,, then the
vectors | f;, ® f;, ® -+ ® f;,) or respectively | f;, A fj, A--- A f,) area
basis for o, In the latter case all the j, are to be taken different. For bosons
the same f’s can be collected together and written as | f Mooy I3, with
Yum, = N.The C* algebra generated on the individual #, of the boson Fock
space by the symmetrized Weyl operators '

Y, exp[i Z (re, >y + 5o, p,)],
n j :

where (n,, ..., n,) is a permutation of (1,.:.,n), will be called the Weyl
algebra, and is represented reducibly on s ,—all bounded functions of N
alone belong to the commutant of the representation.

The irreducible field algebra on ', turns out to be invaluable for the
many-body problem:

Definition (1.3.2)

Let |fy, f2,.. > =|/i® f2...), and define the creation and annihflation
operators a*(f) and a(f) by linear extension of
A 5o ST = Smj /M ST T (3 S50
+5mj;\/€] ;!:’f;t:—l’.“,f?:>+ tee
+ O /M ST 3., f7Y (for bosons),
a(f'.)lf}l At A Ln> = 6MJ|IL‘2 At A ﬁn> - 6"‘]2!]}1 A fla At A ft..>
+ -+ (=) Y Sfe o5 i) (for fermions),
a* )l S5y ST = Opj/my + LB, [ 3
+ Omip/M2 + LS B )+
+ O/ + LIS, L, Yy

k
+ (1 - Z‘Smj.)lfmf Me.ns S (for bosons),
=1

a* (SN, A A ;> =1fa A iy Ao A f;)  (for fermions),
and a(af + Bg) = aa(f) + Pa(g) for fand g € ¥ ,.

Remarks (1.3.3)

1. The prototypes of the a’s for bosons are the a and a* of a harmonic
oscillator (III: 3.3.5;2), and for fermions they are the matrices 6 of
(1.1.2). The formal analogy is not just superficial; the operators a(f)
show up when one quantizes coupled oscillators and then passes to a
continuous limit, in the procedure known as field quantization, or second
quantization.
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2. Formally, the a’s satisfy the commutation or anticommutation relations:
fa(f), a*@] = (f1g) (the scalar product on 5#,),
[a(f)a@] = 0 for bosons,
a(f)a*@) + a*@alf) = [a(f), a*@)]. = (f1g),
[a(f), a(g)]+ = O for fermions. L

Conversely, (1.3.2) can be derived from the commutation relations and
a(f)|0) = 0. The commutation relations are invariant under unitary
transformations of the f;» s0 (1.3.2) is independent of the choice of the
basis. In the spirit of the GNS Construction, vector states may be |dcnt1ﬁed
with operators:

e es S = (gt o)™ 2a%(f, ) ... a*(f,)™10),

or

[fi, Aoe A £ =a*(f}) ... a%(f,)]0).

3. Asin (III: 3.1.10; 2) the commutation relations reveal that the operators
a(f) are unbounded. To get a C* algebra, it is necessary to use the bounded
operators expli(aa(f) + «*a*(f))]; the algebra they generate is called
d'-

4. The anticommutation relations for fermion fields are the same as those of
a*, for which reason their a(f) are bounded: la(f)¥|? + a*(f)¥|? =
CFl@*(Na(f) + a(Na* (SN = (FINIYIA  so eI < IS
Because (0fa(f)a*(/)I0) = || S}, this means (a(f)| = (a*(f/)} =
|| f . The operators a(f) generate a C* algebra &/, which is the norm-
closure of the polynomials in a and a*.

S. It follows from Remark 4 that the mapping f — a*(f) is an isometric
homomorphism of the Banach-space structure of ), to that of /. (The
mapping f — a(f) is continuous but antilinear, that is, a(Af + ug) =
A*a(f) + u*a(g).) For every unitary transformation U € #(J,) thereis a
linear transformation a(f) — a(Uf), which can be extended to an auto-
morphism u:

u(a(fy) ... a(fi)a*(g,) ... a%(g)) =
= a(Ufy)...a(Uf)a*(Ug,)...a*(Ug). (1.34)

In particular, for every strongly continuous unitary group U(t) there is a
norm-continuous group of automorphisms 4, on & (i.e., the mapping
t - ufa) from R to #( ) is continuous in norm for all ). Therein lies a
difference from the Weyl algebra, for which, although the free time-
evolution expli(rp + sx)] — exp[i(rp + s(x + pt))]isstrongly continuous
in ¢, it is not continuous in norm. The time-evolution on &/, is also not
continuous in norm, so the property of continuity can not be expressed
without reference to a representation. In this regard the field algebra of
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fermions is much the nicer, owing ultimately to its being modeled on the

matrices
0 1 00
0 o) 1 0/

Fermion fields will consequently be preferred when investigating more
problematic cases.

6. The algebras o/ and 2/; may be thought of as constructed from local
algebras &/, , containing only those a(f') and a*(f) for which supp f < A.
Clearly, &/, c &/, when A c A’ Since ), is the norm-closure of
Unacrs LAA, d°x), o ¢ equals the norm-~closure of | Jycps & 5.

7. It is common for annihilation operators to be introduced at single points,
for which formally [a(x), a*(x')] = 63(x ~ x'), a(f*) = | d*xa(x)f(x),
a*(f) = j d3x'a*(x’) f (x"). Although a(x) is densely defined as an operator,
it is not closeable, so a*(x) exists only in the sense of a quadratic form and
not as an operator (Problem 8). The object a*(x) is called an operator-
valued distribution.

8. Since a annihilates a particle and a* creates one, the spaces 5, are not
invariant subspaces of Fock space. It can in fact be shown that &/ and
& g are irreducibly represented on ' (Problem 1). The algebra &/ is
said to be quasilocal.

Remark (1.3.3; 5) implies that such things as translations and free time-
evolution correspond to norm-continuous one-parameter groups of auto-
morphisms on /. The question arises as to whether they can be presented
as strongly continuous, one-parameter unitary groups on ). If the repre-
sentation called for is just like the GNS representation of (111: 2.3.9) with the
vacuum |0) as a cyclic. and also invariant, vector, then the answer is yes
(however, see Problems 6 and 7):

The Unitary Representability of the Automorphism (1.3.5)

Let u, be a group of automorphisms of a C* algebra o, w be an invariant state
(i.e., w(u,(a)) = w(a) for all g), and m,, be the representation constructed with w.
Then the group of automorphisms has a unique unitary representation U, on
the Hilbert space 3 ., such that

nua)) = U,n (@)U, ", u,Q=q, (1.3.6)
where Q is the cyclic vector.

Proof

If we let U n,(a)Q = n,(1,(a)), then the U, thereby defined satisfies the
stated requxrements It is unique, since if there existed another U with the
same properties, then it would follow that O,U;' —1)Q =0, U Ujte

n(.s7Y. Now, because Q 1s cyclic for n(), it separates n(a)’, and therefore
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U, Ut =1(k Problem 5). (Separating means that for a’ € n(), ajQd>=0
implies a’ = 0.) a

Remarks (1.3.7)

1. Ifthe group is topological and the realization as a group of automorphisms
is weakly continuous, then U, is strongly continuous,

I(U, - Dr (a2 = 2w(a®a) — w(a*u,@)) — w(u,(a*)a) - 0

as g approaches the identity.

2. Our representation of &y (1.3.2) is a =,, such that w(a) = {0]a|0) for
a € of . Therefore Q is the vacuum vector |0) ,and is invariant under the
transformations brought up in (1.3.3; 5). It follows that the Euclidean
group and free time-evolution can be represented by strongly continuous
unitary groups of operators on Fock space. They consequently have
self-adjoint generators (Problem 2), which are, however, not bounded.
Even the operators U, do not belong to &f;. To prove this fact we shall
make use of : : '

Definition (1.3.8)

The C* algebra obtained by closing the even polynomials in a and a* in
norm is denoted «of ;. The norm-closure of the polynomials having the same
number of a’s as a*’s in each summand is &fg.

Reﬁarks (1.3.9)

1. oy > oG © 5. In the Fock represeniation, A ={N} n Ap.
2. Because[ab,c] = a[b,c], — [a,c]+b =a[b.c] + [a,c]b, if de A ¢
andce F5, An A= then[d, c] =0.

Asymptotic Commutativity (1.3.10)

Let V(t) e #(L*R?) be a one-parameter, unitary group of operators with
absolutely continuous spectrum, such that V(t) — Oast — co,and letu,(a(f)) =
a(V(t)f). Then lim,_. ., |[a, u(b)]l| = O for all a € o and b € o ; this state
of affairs is described by saying that of ; is asymptotically Abelian with respect
tou,.

Proof
First note that [|[a(/), u(@*@))]+ | = I[a*(f), u(a@)]. = |(V()g] f)| O

as t — oo, If d is an even polynomial and c is any polynomial in a(f) and
a*(g), then with Remark (1.3.9; 2) it follows that the commutator’ vanishes
asymptotically. Because the algebraic operations are continuous in norm,
this extends to &/ and 5. 0
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Corollaries (1.3.11)

1.

Since the generators of the spatial translation group and the free time-
evolution have purely continuous spectrum, for them V(t) — 0. and the
appropriate commutators involving them go to zero.

The corresponding one-parameter groups of unitary operators on Fock
space, U, € Z(# ), can not belong to . Since every U, commutes with
N, it must belong to /g, and hence ||[U,, u,(a)]|| < ¢ for all e R*,
a € o ¢,and sufficiently large ". Note that U, U,.aU; ! — U,.aU;'U,| =
|U,aU; ! — ali which obviously can not be arbitrarily small for all . It is
even true that &/ N U,U, = U,.

Since ff is irreducible, o5 = B(H#f) (III: 2.3.4), so U, is certainly
attainable as the strong limit of elements of &/, or even &f.

Remarks (1.3.12)

l.

)

Since commuting observables are jointly diagonable, and hence can be
measured simultaneously, if V is a group of translations, this implies that
measurements separated by a large spatial distance do not interfere with
each other. The local character of the algebra is important for this, and it
does not apply to the Weyl operators, as expli(rp + sx)] and
lim,.. ., expli(r'p + s'(x + a))] do not commute. Even the bicommutant
oy in the Fock representation is not asymptotically Abelian—for instance,
the generators of the Euclidean group belong to the strong closure of .o/
and are constant with respect to the free time-evolution but do not
commute. Therefore A} is not asymptotically Abelian with respect to frce
time-evolution.

The point of (1.3.10) for the time-cvolution is that as time passes the
disturbance due te a4 measurement diffuses so widely that local observables
are not affected at much later times. This does not apply to the observabies
x and p, as p and ¥ + pt fzil to commute even at large . Observe that we
have as yet proved commutativity only for free time-evolution: the
question of whether it also holds for more realistic time-evolutions
remains open.

This phenomenon does not occur for compact groups like the rotations;
for them U is a sum of finite- 3imensional representations, for which it is
impossible that {' — 0.

Global Observables (1.3.13)

The pai’ticle-number operator N was defined in (1.3.1). It is unbounded and
thus ¢ @B(#5), which o of. Its domain of self-adjointness is

Dy = {vxoez//,@--@w.@mexp: Y n?y,l? < ao}

n=1
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Moreover, unitary gauge transformations U(a) = exp(iNa) € B(H ;) also
do not belong to <, but can be attained as strong limits of elements of of ;.
In the Fock representation, :

M

U(x) = s-lim exp(ia Y a"(f,)a(f,)).
M- Jj=1

where {f}} is an orthonormal basis. Although U(x) does not depend on the

basis, it can only be defined in certain representations. -

Remal:k (1.3.149)

Since N is conserved in all of the systems treated here, it is not physically
possible to measure the relative phase of states of different N. This means
that N creates a superselection rule in the sense of (I11: 2.3.6; 7), and the
algebra of observables should, properly speaking, be {N}' = of7. The
representation of this algebra on ¥, is reducible, as its commutant is
{N}" % {A-1}.

Observables at a Point (1.3.15)

One frequently considers the particle d;:nsity and current at 4 point,
p(x) = a*(x)a(x) = Y a*(fa(f) f 1 (X) fi(x),
1

)k

) = — 5= @ 0OVatx) ~ (Va*(atx)

=3 a'(f;)a(fk)(—l—. (f1X)Vfi(x) = (VST (x))ﬁ,(x))).
b 2mi

The £, in these formulas must be chosen as an orthonormal basis of C*
functions, in which case these¢ observables are densely defined as quadratic
forms. They are not, however, closeable: Their restrictions to ), are the
quadratic forms of

PN and 5 (F OV — (AN,

the former of which is recognizable as the prototype of this phenomenon as
encountered in (III: 2.5.18; 3). Matrix elements with, say, p(x) may be
understood as distributional limits of matrix elements of the bounded
operators a*(f)a(f) as f — 63(x). Similarly, the continuity equation ¢ +
V.5 =0 holds at least for matrix elements if, evolving freely in- time,

if = —Af/2m.
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Problems (1.3.16)

L.

W

Show that the representations of «f; and /5 on ¥#; are irreducible.

. Construct the generators of free time-evolution and of translation.

2
3
4

Find dense domains of definition for the quadratic forms p(x) and j(x).

. Define the number of particles in the volume V, N, = jy d3xp(x), as an unbounded,

self-adjoint operator.

. For of « #()) and Q € H#, show that Q is cyclic for & iff Q separates o'
. The mapping a — b: b(f) = a(f) + L(f)is an automorphism «; of the Bose algebra

whenever L is a linear, but not necessarily continuous, functional. Show that «, is
unitarily implementable on . i.e., thereexistsa U, € #()#;)suchthatl = UtU, =
U, U? and U a(f)U;' = b(f), iff L is continuous, which means that it can be
written as L(f) = (p| f) for some p € .

. Let B(f) = a(®f) + a*(Ff), ®, ¥ € B(#,), ® invertible. Show

(i) that @ — b is an automorphism of the Bose (resp. Fermi) field algebra if
OO* T WY* = | = OO F (¥*¥),
OV F WO = 0 = (Y*O) T P*O,
where ¥ = ¥*; and
(i) that it can be represented as a unitary operator on ¥ iff @'Y € €,(F)).

. Show that although the a(x) of (1.3.3; 7) is densely defined, it is not closeable, and

the domain of definition of its adjoint a*(x) contains only the zero vector.

Solutions (1.3.17)

Let b be an operator such that [b, a(f)] = [b, a*(f)] = O for all f € #;. From the
commutation relations of (1.3.3; 2) and a(f)|0)> = 0, it follows that {0|a(;)..
a(fu)ba*(g,) - .. a*(g,)10> = <0}b|0) - <Ola(f,) ... a*(g,)10), which implies that
{x]|bx> = ¢0|b|0>|x|1? on a dense set, and therefore b = {0|b|0) - 1.

. With Theoremi (1.3.5) and the fact that the 5, are invariant, by reasoning as in

(1.3.13) we find that the two generators are

M
s-lim ¥ | V300 - VS00a*(falf) dx

M-® ij
and
M
s-limi ¥ | V() fi(x)a(f) d°x,
M-® kj

where the strong limit is defined as in (III: 2.5.8; 3). Formally, these can be written as
§ @xVa*(x)- Va(x) and i {d’x a*(x)Va(x).

. For p(x), linear combinations of ﬂ_, a*(f)|0) with continuousJ;. For {(x), the f, have

to be continuously differentiable.
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4. Ny = Y ca*(fjda(f) fv d*x f3(x) fix), 0 < Ny < N, is a Hermitian operator on
Dy (1.3.13), and hence the domain of its Friedrichs extension contains D,,.

5. “If”: Let P be the projection onto the orthogonal complement of {a|Q)} for a € «.
Then Pe o’ and P|Q) = 0,s0 P = 0.
“Only if”: Let a’e o', a’|Q) = 0. Then a'a|R) = 0 for all a € &/, which implies
that a’ = 0 orr a dense set, so a’ = 0.

6. The mapping a — bis unitarily implementable on b iff there exists a vector |0,) € 5#;
such that b( 1)|0,> = Ofor allf € 5#,. It is clear that the existence of U implies that of
10> == U|0). On the other hand, the mapping

‘[_[l at|0> » ﬂl b?10,>,

where a; = a(f)), b; = b(f;), and {f;} is an orthonormal basis, defines a unitary
operator U, since this set of vectors is total. (Every vector is cyclic for an irreducible
representation.) If L is not continuous, then ker L is dense in #;, and therefore
a(f)|0,> = 0 for a dense set.of f’s. This implies that |0,) = |0) and thus that L = 0,
which is continuous. Therefore {0,) ¢ #¢. If, however, L(f) = (g| f), g € #,, it is
possible to choose f, = g/ligl. Because a exp[—a*ilgll] = exp[—a*llglKa — ligl),
the vector |0,> = exp[ —a}!gll}i0) formally satisfies b, }0,)> = (ax + &;,llgll)|0,) =O.
It is also normalizable provided that

© ]
o0 > ¢0lexp[ - llglla,] exp[ - lIglla}]I0> = ¥ g ligh?"n! = expligll*,
r=0 .
50 <0,10,> < oo if ligli2 < 0.

7. (i) In matrix notation, for b = ®a + Wa*, (i) must hold: 1 = [b,b*]; = ®O* F
WYW¥* and 0 = [b, b]; = ®¥* F Ya&”. Written as block matrices, this becomes

(0] b 4 o*  FW
P/ Ot/ ;\lj‘ 0" =1

For invertibility it is necessary that
o* ’;\P‘\)“ o v
Fer o Ly ore) T

which produces the second line of the conditious.

(i) The Fock vacvum |0,) satisfies 0 = (® 'b),|0,> = (a, + M,,a’)|0,>, where
M = @~ '¥. Because [a, a*Ma*] = 2Ma*, it can be written formally as |0,) =
¢ exp[ —a*Ma*/2]10). (Observe that by (i), M = M‘ (resp. M = —M*)) To
determine the'normalization constant ¢, we shall calculate

<0} exp{ —4aNa] exp{ —1a*Ma*]|0)

when M = + M‘, N = + N, [M, N*] = 0 and'M_and N are for the moment
real. They can then simultaneously be put into the normal forms

ny m,
n, m;
ny . my

\
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and respectively

n, my
-n, —-m,
"2 N mZ

—n, -,

with real, orthogonal transformations. The transformations preservc the commu-
tation relations of the field operators, so we may use this basis to calculate

n [} (n,m))" , -
<mexp[—7‘af] exp[—~2—a. ]no> "ZI Ty Ot = (1= mmy)

and, respectively, for fermions,

{0} exp[ —n,aya,] exp[ —m;ata3]l0> =1 + nym,.
Therefore,

~12
(Oiexpl ~ aNa]exp[ —3u*Ma*1j0) = [T (1 — nm;) ™12 == (Det( I M))

N 1
1,2
fi](l + mm) = (Det(,:, ‘;’)) ‘.

This can be continued analytically to complex matrix clements, and. in particular,

D our case.
. [ VAR
:C'i“(DCl( - i )) = |

The determinant is finite tor M = %, . Obscrve that in the case of bosons. @*® > 1,
and so @ = V(®*®) “ is always invertible. The result for fermions is valid for M
acting on either even or odd dimensional spaces.

and, respectively,

8. The dense domarit of defimtion of u(x) consists of vectors with continuous, bounded
1°s. For example, for fermions.

a(x)! ", A A _[;"> o f;Jx)' fj: A e A]’)" ’“(x)’ "“ }J A A .’."> + .-
il VARV ¢ 3T FRVNETEIANY /Y

‘The operator a(x) is not closeable. Suppose that f.(x') = exp[—Ix ~ x'}?A]; then

Lf.) —0as A— . buta(x)i f;> = |0) - 0. Formally, a*(x) creates a particle with

wave-function f(x’) = 8%(x — x'). Since this is not normalizable, a*(x) makes every

vector  f, A --- ~ f, > infinitely long.

1.4 Representations with N = o

Systems of N particle« are represented on u Hilberi space that is the
tensor product of N Hilbert spaces for single particles. The infinite
tensor product opens the door to the new mathematical features of
field theor; .
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* The scalar product on an N-fold tensor product of spaces »#, was defined
multiplicatively by

N

{x|x) = n (x;1x;), 1x> =1x1) @ [x2)...|x,), x; e, (141)

i=1

If N = oo, the vectors | x) that can be used in this formula are initially only
those for which the infinite product converges. The product might well
converge to 0 even though (x;|x;) > 0 for all i. In order to form the quotient
space with respect to the zero vectors, it will first be necessary to form the
equivalence class not only of vectors with some factor zero but also containing
the vectors for which the product

‘l-[l(xi [x:)
converges to zero. On the quotient space, (1.4.1) defines a separating norm,
s0 the space can be completed to a Hilbert space 5, with the linear structure
defined in the usual way.
This does not yet, however, suffice to define the scalar product of different
vectors | x)> and |y)>. Though only vectors such that (x;|x;) = (yly,) = 1 for
all i need to be considered, there are still two possibilities, namely )

) | fl. Iyl = ¢ > 0,
and
an [T 1Calydl = 0,

i=1

where — means unconditional convergence. In case (IT), [ 2, (x]y;) = O as
well, and the vectors may- be considered orthogonal. Possibility (I), on the
other hand, does not guarantee that [],(x;ly;) converges. If (x;ly) =
exp(i@;)|(x;]y,)|, then their product is said to converge if not only n; 1yl
but also 2,. | @;| converges. One now encounters the convention that vectors
may be deemed orthogonal whenever Y, |¢;| — o (case (I,)). Let us thus
agree on a

Definition of the Scalar Product (1.4.2)
{x|y) = ¢ provided that [] (x;ly) - ¢ # 0, (case (Ia));
i
{x]y> =0 provided that [] (x;ly) -0 (case (II), or in the
. ‘ -

divergent sense (I,)).
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Remarks (1.4.3)

1. Itis easy to see that the scalar product this defines on ¥ obeys all the rules
of the game.

2. The space #’, has been assumed separable, yet even if #, = C2, the larger
space J# is nonseparable. Let |n) € C* be defined such that (n|n) = 1,
(njo|n) =ne R’ n]* = 1,and |n) = [n) ® |n) ®.... Then {(n|n’) = |
if n = n’ and is otherwise 0, showing that there is an uncountable ortho-
normal system of vectors.

3. Possibilities (Ia) and (I) create equivalence relations between vectors,
because the convergence of [];(x;ly,) and [];(y:lz;) implies that of

i (x;12;), and, likewise, that of [ [; ](x;|y)| and [ ]; 1(y:|2;)| implies that of
i 1(x;1z;)| (Problem 2). It is accc rdingly necessary to distinguish between
strong (Ia) and weak (I) equivalerce classes:

da): [T iy > e # 0. (: [T Ixilyol » ¢ > 0.

The symbol ﬂ nieans that any finite number of factors 0 are to be left
out. The cquivalence classes span linear subspaces, so J# can be de-
composed into (uncountably) many weak equivalent classes, for which’
vectors of different classes are orthogonal. Each weak equivalence class
can be further decomposed into mutuclly orthogonal strong equivalence
classes. Since the latter differ only by phase factors within a given weak
equivalence class, they contain the same physical information.

Representations of & on Infinite Tensor Products (1.4.4)

For the reasons stated in §1.1 and §1.3 we shall be interested in the algebra
generated by the operators #(;). More precisely, let o/ be the algebra
generated by Z(#,)@1®1...,1® #(H#,)®1.... etc, and let &/” be
its strong (= weak) closure. The first thing to notice is that an element a of
& sends no vector of # out of its strong equivalence class; since other than a
finite number of entries there is always an infinite 1® 1 ® 1..., nothing
alters the convergence of n,f";, (x;|y:).- The representation of & on i is
consequently reducible to a high degree; every strong equivalence class is an
invariant subspace. The formation of the weak closure changes nothing, since
{x|a,y> = 0 for |x) and | y) in different equivalence classes, and if a, — a,
then clearly (x|ay)> = 0. Thus every strong equivalence class provides a
representation of & and of &#”, and it is a peculiarity of the infinite tensor
product that these representations are inequivalent so long as they arise from
different weak equivalence classes.

Example (1.4.5)

Return to the simple case of (1.4.3;2), and define 6;-n=o0;, and ¢} in
analogy with (1.1.2) such that ¢/ |n) = | —m), o/ )—m) =n), ofn)=_
o; | —n) = 0. Let o be the algebra generated by ¢;and 6f,j = 1,2,..., let
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*

n, be its representation on the strong equivalence class of |n), and define
o, = n (). The representation is constructed like the Fock representation,
the operators n,(6}) corresponding to creation and annihilation operators
and {n) to the vacuum: n(¢)(n) = Ofor all j. The vectors n,(o7; ... 0;,) 0>
are total for the (strong) equivalence class, and the representation &, is

irreducible (likéwise for o, a fortiori).

Remarks (1.4.6)

1. These representations of the ¢’s are always equivalent on finite tensor
products; the Hilbert space constructed with the GNS procedure contains
every vector |n'), in contrast to the infinite case, where the o’s never send
vectors out of equivalence classes, which, however, contain no vectors
|n') witha' # n. : '

2. The mean magnetization

N1
s= lim ) — ny(0;)
N—wo j=1"*

exists as a strong limit, so s € &,. As N — oo the commutator of this
observable with any element of the algebra goes to zero in the norm
topology, so s is in the center of ;. In any irreducible representation, s
must be a multiple of the identity, and is thus the same as n, its expectation
value in the state |n). If n # o', then n, and =, are inequivalent: If there
existed a unitary transformation U mapping the equivalence classes of n
and n' onto each other and such that Un_(c,-)U" = 7,(6;), then this
could be extended to a transformation of the strong closures &, and
o"., and when applied to s it would imply that UnU “V = o, This is
impossible, since two different multiples of the identity can not be unitarily
related.

3. On the space # there exists a unitary transformation sending |n) to |").
Let nj = My n,, MM’ = 1; then the transformation |n) — | Mn) (on every
factor of |n)) is clearly the unitary transformation that brings this about.
Upon restriction to an equivalence class, its action is

_Unn(aj)U_l. = m(0)M,;,

in contrast to the previous U. and so it creates an isomorphism between
n () and ().
4. Within a given representation the rotation

7a(0;) = T (0)M,;

represents an automorphism of the C* algebra generated by the o’s, and
as such it preserves norms. Yet it can not be extended continuously to the
weak closure. If there were such an extension, then n,-1 — n, M,; - 1, but
A-1is invariant under every automorpiism. Consequently, in the repre-
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sentation space of n, there exists no unitary transformation U - ‘n(o)U =
M j m,(0}), as it would extend to n (o7)". F ormally, it would turn |n) into
(">, but there is no vector [n’) in the representation space of m, (cf.
Problems (1.3.16; 6) and (1.3.16; 7)).

5. Let M(t) be a one-parameter group of rotations on R*-—for definiteness
about the 3-axis—and let U(t) be its representation on J as discussed in
Remark 3. On a formal level, } ;- , 63 could be regarded as the generator
of the group. The unitary operators U(t) map the equivalence class of
Im) into itself only if n points in the 3-direction, and in that casc the
restriction of U(t) to this equivalence class belongs to &7. Although it is
not possible to define ) <, o7 densely. 2, (5] ~ 1) is essentially self-
adjoint in the representation n, on the dense set specified in (1.4.5) and is
the generator of the rotations about the 3-axis. In other representations
there is no workable definition of this operator. as all its matrix clements
are infinite. It is natural to ask at this point what the generator of U(t)
looks like. It turns out, though, that U(t) has no generator: By Stone’s
theorem (III: 2.4.24) the existence of a gencrator is equivalent to strong -
continuity of L(t), but U(r) is not even weakly continuous, for if n does
not point in the 3-direction, then {n|U(t)|n) = 1ift = 0 and is otherwise
0. It is true that the mapping t — U(t) is weakly measurable, but the
generalization of Stone’s theorem for weakly measurable groups works
only on separable Hilbert spaces.

6. “Local” rotations of m spins are generated by 7,67 and always exist.

The representations of the ¢’s on the individual strong equivalence classes
studied until now have all been irreducible, and correspond to GNS con-
structions using a pure state (cf. (III: 2.3.10; 5)). We shall also see in (2.1.6: 5)
that mixed states likewise correspond to vectors in a larger Hilbert space on
which the algebra is represented reducibly. That space is the tensor product
of the irreducible representation space with another Hilbert space. The key
fact to bear in mind when constructing such representations of the a’s is that
the infinite tznsor product is no longer associative; for instance C* ® C* ®
'R  =CRCHIC*RCHIC*®CH@ - #C'R®C'D
C*®...: The vector

020 Dee 0o () (e (-

on the left has no counterpart on the right. For this reason we shall not simply
take the tensor product of the space examined in Example (1.4.5) with another
Hilbert space, but shall instead proceed as follows.

Thermal Representations (1.4.7)

If there is only one spin, i.e., & is generated by 1 and @, then the GNS represen-
tation using the state given in (1.1.11) becomes a reducible representation on
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C* n(f) =BCH®1, n6) =6 @1, (o) =1Q® A(C?, Z = n(A) N
() = {a-1}, .

1 1 1 +s 0 0 1 -5 .
2-fe (T (e ()= o<
(6> = (Q]eQ) = (0, 0, 5). '

Despite being reducible (&’ # {a-1}), this representation is a factor (its
center is Z = {a-1}). Accordingly, when passing to infinitely many spins we
consider the representation on C*® C*® C*® --- constructed with
QRL2PRNQ® .... We find, analogously, that ’

() = (BC)RDN R (BCHB®N®...,
(W) =(1QBCH)Q(1®BC) - + weak limits

n(s/)" is the weak closure of &, and Z = {a -1},

which is a reducible factor representation.

Remarks (1.4.8)

1. This representation is not equivalent to any of those found in (1.4.5); as
mentioned above, the vector Q ® Q ® 2 @ .. . has no counterpart in the
earlier representations =, since the corresponding functional in n, would
then be strongly continuous. The state defined by Q@ Q@ Q® ... on
oA.

(o), mX0j,-1y) ... (6, -m)) = s*nini ... n

is a (norm) continuous linear functional, and therefore extensible to the
whole C* algebra generated by o7, but it still need not be strongly con-
tinuous in a representation: For instance, in the representation using =,,

PN = i—Nl 1 + 0‘ ‘N
i=N 2

converges strongly to 1, but (Py> = ((1 + sn*)/2)" = 0 # 1. Recall thata

refinement of the topology on the range space or a coarsening of the

topology on the domain space may destroy the continuity of a mapping.
2. The fact that with only one spin, {(¢) = Tr & exp(—na,)/Tr exp(—nas),

might mislead one into thinking that for infinitely many spins, in the

notation of (1.1.1),

— _ exp(—n Zjaj)
What goes wrong is that
exp(—1 3 )-19))
Trexp(—n)-10))

=0 as N = oo.
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3. In the thermal representation (1.4.7) it is of course possible to write

{-> = Tr- Py, where Py, is the projection onto the cyclic vector, but
Po¢ A"

Decomposition of the Representations (1.4.9)

Because of the analogy between ¢* and the operators a and a* for fermions,
the phenomena we have discussed are also characteristic of systems of
infinitely many fermions. It is not so important that the ¢’s commute whereas
the a’s anticommute; the distinction can be gotten around with the right
transformation. For a system of bosons the individual factors of the tensor
product are already infinite-dimensional, which causes additional complica-
tions. In'either case there are a great number of inequivalent representations;
the uniqueness theorem (III: 3.1.5) for finite systems does not hold any
more. Thus it would be desirable to find a point of view that organizes them
somehow. The concept of a factor was introduced in (I1I: 2.3.4), as an algebra
with a trivial center, Z = {« - 1}.On a finite-dimensional space it amounts to
a direct sum of equivalent irreducible representations. The first step in any
decomposition is to collect the equivalent irreducible representations together
in factors and then write the whole representation as a sum of various factors.
In the finite-dimensional case this appears as shown in Figure 2.

It will be observed that the projections onto the space >, of the
irreducible representations belong to n(<#)’ and the projections onto the
spaces J¢; of the factors belong to the center. Both n(%/) and n(/)' map

X, *,

r— e’ ™~ A R
xu -*22 xlu ‘*21 x’zz
ny(of)

()
m): n, ()
2 ()
2 ()

Figure 2a The representation of & in matrix form.
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‘Kl . 8'3
N .
a5, a,;
an a;
a, a2
ay a2
az, az2
axr a2
ax az;
az, az2
n(A)': :
e
O
oy
a-
by, by
6| ok
0
by, b,,
a“,b“,...ec b“ . 022
‘*l -*’2
7 NS A
a
a
a
a
a
a
a
Z = n(A) (ALY
a
a .
a
a
b
- b
b b

Figures 2b, ¢ The representation of &' and the center Z in matrix form.
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; into itself. The elements of the center become multiples of the identity
when projected onto J;; they can assume different values only on different
;. The decomposition into factors is thus uniquely fixed by Z and conse-
quently by n(/). The further decomposition into irreducible representations
is not likewise fixed; some arbitrariness is connected with the spaces #;,. If,
for example, #',=#,,@C"' =, @€, @ H, ®e; D - DH,Qe,,
then the choice of the basis {e;} for C" remains free, since the space is the same
for every chaice of orthogonal basis. Different bases correspond to the
different maximally Abelian subalgebras of n(=#) that they diagonalize.

~ The passage to an infinite dimension requires the generalization of sums
to integrals. The spectral theorem (III: 2.3.11) states that a Hermitian
operator a € #(5¢) may be represented as a multiplication operator on some
space L2(du, Sp(a)). If there is degeneracy, then a spectral value a € Sp(a) is
associated not with a single complex number but with a many-dimensional
Hilbert space J,. If v(a) denotes the component of v € ) in I, then the
scalar product on # can be written as

(olw) = f du(@)(o()| wla)).

The action of a on v is (av)®) = av(a). The center Z = n(of) N n(f) is a
commutative algebra, and its elements may be simultaneously diagonalized.
and so any z € Z may bec written as (zvXa) = f(a)(a), where f assigns a
complex number to a. Any element a of & can then be represented by
[n(a)o](@) = m(a)o(a), m(a)€ B(H,), and b e () = (bvXa) = Ha)Aa),
b(a) € B(H,), [b(a), n(a)] = Oforalla € o/. In a finite number of dimensions
every ), can be written ), = # @ HP, n () = B(H) ® 1,m,and
b(a) is of the form 1, ® b, b € B(H''). This is as far as the finite-dimen-
sional analogy goes; it will not be possible to write every factor n, in the form
BH)® 1.

Classification of Factors (1.4.10)

We pause now to take stock of the factors, which will function as basic
building blocks. The possibility that comes to mind first for a preliminary,
rough classification is to define a trace. In (1II: 2.3.19) the trace was defined
as a mapping from & , , the positive operators, to R*, and it was extended to
a linear mapping from the trace class €,(5¢) to C. The trace is discontinuous
in all topologies weaker than the trace topology given by |i-|[,. It may even
occur that the only element of an algebra & in the trace class is the zero
operator, as for example with the factor #(5¢) ® 1, where 1 is the identity
on an infinite-dimensional space. In this case there is plainly the possibility
of defining a trace by ®a ® 1) = Tr, a, which has all the necessary proper-
ties. This observation suggests an abstract
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Definition of the Trace (1.4.11)

Let of . be the positive cone of a strongly closed algebra «f, i.e., a von
Neumann algebra. A trace is a mapping ®: of , - R* with the followmg
properties.

(i) ®(A1a, + A;a;) = 4,D(a,) + A,D(a;) fora,e o, and 4, € R*;
(ii) ®(a) = D(uau™?') for all ae & , and all unitary

ue .

The trage @ is said to be
£

faithful, if ¥(a) = 0Dandae o, <a =0;

finite, if ®(a) < o forallae A ., ;

semifinite, if for all a € &f , there exists a nonzero b < a such that
®(b) < 0,

normal, if for every increasing filter (see (III: 2.2.21)) F < of , with
supremum s, ®(s) = sup, ,r V(a).

Examples (1.4.12)

]

. ®(a) = O for all a € & , . The trace is unfaithful, finite, and normal.
. ®(0) = 0, P(a) = oo for all a # 0. The trace is faithful, not semifinite, and

normal (purely infinite).

. Let of be the n x n matrices and ®(a) = Tr a. The trace is faithful, finite,

and normal.

. o = B(H), H infinite-dimensional, and ®(a) = Tr(a). The trace is

faithful, semifinite, and normal.

. A = B(H,)DRKH,), Wa®b)=aTra+ pTrb, a and fe R*. The

trace is faithful only if « and B are nonzero and finite only if the J¢; are
finite-dimensional. In all cases it is semifinite and normal. (Note that
although @ is invariant under unitary transformations belonging to &
for a # B, it is not invariant under all unitary transformations in
B(H, D KH,))

Let o be the algebra of multiplication operators L*(R, du) on L%(R, du),
and ®(a) = jdp(x)a(x)p(x) for some non-negative, measurable p. If
p > 0 ae, then ® is faithful; if p e L'(R, dy), then @ is finite; and if
p < oo a.e., then @ is semifinite. In all cases the trace is normal.

. Let o be the algebra of multiplication operators I on 2, and ®(a) =

lim,., ., a; when the limit exists, and otherwise let the trace be defined by
linear extension with the Hahn-Banach theorem. The trace is finite and
neither faithful nor normal: If F = {(a;), where g, = 1 for finitely many i
and otherwise = 0}, then s = (a; = 1), and &(s) = 1, but ®(a) = O for all
aeF.
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Remarks (1.4.13)

1. Property (ii) may be replaced with (ii)': ®(aa*) = ®(a*a) for all ae
(Problem 3).

2. Itcanbeshown in generalthat {a € o/ , : ®(a) < =} consists of the positive
elements of a two-sided self-adjoint ideal .#¢, onto which ® can be ex-
tended as a linear form (also denoted ®). It is discontinuous in every
topology that is strictly coarser than the one defined by the norm lalle =
®((a*a)''?). All continuous linear functionals on .#, with thistopology are
of the form a — ®(ab),a € M4, b € o (Problem 4), and nonzero for b # 0.

3. Property (ii) implies for a € .#¢ and any unitary u € o that ®(ua) =
®(au). Moreover, since every element of o is a linear combination of
unitary operators, ®ab) = ®(ba),a € M4, b € A.

4. The requirement of normality originates in the theory of integration,
where monotonic convergence can be permuted with integration. The
trace can consequently be regarded as a generalization of the integral to
noncommutative integrands.

5. If ® is normal, then &/ may be written as &/ = o/, ® o/, ® o3, where
®, 4, is faithful and semifinite, ®,, =0, and ®,,, is purely infinite
(Problem $5). As we shall be interested solely in normal traces and shall
ignore the trivial cases of Examples 1 and 2, we may confine our attention
to faithful, semifinite traces.

The ordering of operators induces an ordering of traces, whereby ® < ¥
shall mean ®(a) < W¥(a) for all a e o, . For the ordering of the trace there
is a theorem on

The Form of a Dominating Trace (1.4.14)

Let ® and ¥ be normal, semifinite traces on a von Neumann algebra .«/. Then
® <V iff there exists be of N o', 0 < b < 1, such that ®(a) = P(ab) for
all a.

Proof

Let .#, be the ideal on which ¥ < oc, given the norm [a| = ¥((aa*)'/?).
The mapping a — ®(a) is then a continuous linear form on .#,,, and by
Remark (1.4.13; 2) it is W(ab) for some b € &. To prove that b € &#*, observe
thatforalla e #gandc e o,0 = ®(ac — ca) = WY(acb — cab) = ¥(a[c.b)),
s0, according to (1.4.13; 2), [c, b] = 0. O

Corollary (1.4.15)

Any two faithful, normal, semifinite traces on the same factor are proportional.
More specifically, if ®, and ®, are two such traces, then &, < ®, + P, and
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®, < ®, + ®,. Since the center of the factor consists of multiples of the
identity, ®; = A(®, + ®,),0 < 4, < 1,50 ®, = 1,4; '®,.

Because the trace is essentially unique on any factor, it may be asked
whether the trace of a projection is an integer ¢, which would allow a reason-
able definition of the dimension of the subspaces onto which they project.

The Types of Factors (1.4.16)
Factors of Type I

The range of the trace of the projections of factors of type I is ce Z*, and
they are of the form #(,#) ® 1, with ¥ separable, i.e., a sum of identical
copies of an irreducible algebra of operators. The traceis givenby®a ®@ 1) =
¢ Tr a, and if the dimension of S is n, then it is finite for n < oo and not finite
but only semifinite for n = co. This creates a distinction between subtypes
I,and 1.

Factors of Type II

On Factors of Type II there is a semifinite, normal, faithful trace the range of
which when applied to the projections is either [0, 1] or R*. Depending on
whether the trace is finite or only semifinite, one distinguishes between
subtypes II, and II . An example of type I, is the algebra of infinitely many
spins (1.1.2) represented with the GNS construction using the state
@: (1) = 1, (][] o)) = 0 ((1.4.8) with s = 0). This state has the properties
of a trace; commutativity (1.4.11(ii)) holds trivially, and this representation
is a factor. Since the factor is obviously not isomorphic to anything of the
form #(X) ® 1, n < o0, and the trace is finite, it must be of type II,. It is
reducible but not of type I, since it can not be written as a direct sum of
identical irreducible algebras. Type Il factors are of the form type I, ®
type II,, where the trace is defined multiplicatively on the tensor product.

Factors of Type III

They have no normal, faithful, semifinite trace. The infinite spin algebra
(1.1.2) again provides an example, this time with the GNS representation
using the state (1.1.11) with s # 0, in other words (1.4.8).

Remarks (1.4.17)

1. The type with the properties familiar from finite matrices is I, while types
I1and I1I are less intuitive. All three typés occur in the GNS representation
of the spin algebra with a state of the form (1.1.11), I, with s = 1, I, with
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o

s = 0, and Il with 0 < s < |. To the malicious delight of many mathe-
maticians the initial impression that type 11 is the rule for infinite systems
has panned out with the passage of time. Types [ and Il turn out to be
peripheral possibilities.

It was ascertained in (Ifl: 2.3.6; S) that factor representations with
maximally Abclian subalgebras are irreducible. As a result. representations
of types Il and 11 have no maximally Abelian subalgcbras.

If a factor includes an irreducible subreprescntation, then a semifinite,
normal trace can be defined on it, mapping the projections to a discrete
set of values, and it must thereforc be of type 1. It was remarked in
(I11: 2.3.10: 5) that the GNS construction yields an irreducible represen-
tation iff the state it builds on is pure. This means that no vector in the
Hilbert space of a representation of type II or I1I corresponds to a pure
state on the algebra.

. Any operator a of an algebra of type 111 is of course bounded, so Tr pa is

well defined for any p € % ,(#), only p can not come from the algebra,
which contains no element of a trace class (other than 0).

Let us end the section by recapitulating the physical significance of the

new mathematical phenomena that make an appearance in infinite systems.

Inequivalent Representations

Since vectors that differ globally are always orthogonal, globally different
situations lead to inequivalent representations. Within a given represen-
tation different elements of the algebra produce vectors that differ only
locally.

. Non-normal States

Expectation values with a vector of a different, inequivalent representation
constitutc a state on the algebra, but one that fails to be strongly con-
tinuous with respect to the original representation, and hence it is not
normal. They are representations of different global circumstances, and
thus assign different values to global obscrvables like densities, which are
only defined with strong limits.

Factors

Whereas n(.2/) describes microscopic observables, n(.%/)" covers macro-
scopic observables as well. Factors associate certain numerical values to
the global observables lying in the center n(./)" N n(%/)’ -~factors are the
macroscopically pure states. In factors, Khinchin’s ergodic-theorem
applies to them, stating that these global quantities exhibit no fluctuation.
Even if vectors of a factor are pure with respect to this subalgebra, they
may produce mixed states. The ground state is associated with type I,
finite temperaturc with type II1, and infinite temperature with type II.

Unitary Representation of the Time-Evolution
If the algebra changes globally as time passes. then a representation may
change at any moment into an inequivalent representation, and it is not
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possible to represent the time-evolution with a group of unitary trans-
formations within the representation. Yet if the representation is based
on a time-invariant state, then the other vectors of the .representation
differ only locally, and thus do not change in time, from the global point
of view. This establishes the possibility of a unitary time-evolution.

Problems (1.4.18)

o

Show that with vectors [x'"").....|x"™)and 4,,..., 4, € C, Definition (1.4.2) implies
that Y, , A* 4, (x?|x*) > 0. (Hint: it suffices to show this for the case where the
[x'"> are strongly equivalent. Prove that Y, , A*4, [T= 1 (x{"|x{*") = O for any N and
take the limit N = x.)

(i) Show that |x) and |y) are equivalent iff ;|1 — (x;]3;)| < x and weakly
equivalent Y, 11— Hx )yl < x

(i) Conclude from (i) that the string of 1> aieng 13D has all the properties of an
equivalence relation, namely reflexivity, symmetry, and transitivity. (Hint: use
the inequality |1 = (x{2)] < 4[I1 — (x|} + 1 = (y|2)I], which holds for
unit vectors. This 4 is a generous constant.)

(iii) Show that {x) ~ |») iff there exists a sequence {¢;} such that |\> ~ Iv)
[¥) = explio, )| ¥y) @ explioX{y2) @ ..

(iv) Show that _y, is also an equivalence relduon.

. Show that condition (ii) of the definition of the trace (1.4.11), i.e., ®a) = &(Ual ~!),

may be replaced with: ®(a*a) = ®(aa*®) for all a in a von Neumann algebra .«f.

. Show that for a faithful, normal, semifinite trace ®, all continuous linear forms on

u€.#q may be written as a — ®(ab) for some b e of. (Hint: use the inequality

|®(ab)| < N(labl) < lbld(|al).)

Show that with any normal trace ®. . can be written &/ = of , @ &/, @ o 5. Where
®,,, =0,®,,,is faithful and semifinite, and @, ,, is purely infinite. (Use the following
corollaries of von Neumann's density theorem (I1I: 2.3.24; 4):

(1) Let.# < .of be a strongly closed, two-sided ideal. Then .# contains a projection
operator P such that Pe.of n o' and P > Q for all projection operators
Qe . #.

(1) Let A" be a two-sided ideal and suppose a is in the positive part of the weak
closure of 4. Then there exists an increasing filter =.4"* having a for its
supremum.)

Solutions (1.4.19)

The n x » matrix.

AP L (P x)

™, (1) ") | y(m
Pty e (P X
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)

'

1s Hermitian and non-negative, and s thus a sum of projections. 1.¢.. matrices of the
form

( hthy ... hth,®

\hyhy ... hih, )

n
k) {
My = T hprhy,
1,51

This implies

-and

r4
Ryt
=
-

( m.x«ku) = T A-"{A E h:l‘h‘kl . hlinthlks >0,

L. Jdx

-.
>
~.
"
-

since

SRy = D__: A ...h{”’%’ >0.
Lk k
(i} follows from the theory of infinite products [12].

(ii) To prove the inequality. choose a basis for the subspace spanned by ix). |1). and
i2) such that they correspond to the vectors (x. £.0). (1, 0, 0) and (5. d. £). where
122 4+ 11 = 171 + |61 + 1e1? = 1. Then (x}v) = x*. (112) = 7. (x|2) =
v+ BRI — % - B < — oty 4+ (B8] < 211 — x| + 201 - ) +
=i - I‘,"‘)' T2l -2+l =y g 401 —al+ |1 =)
The reflexivity and svmmetry of the equivalence relation are trivial, and transi-
uvity follows from (i) together with the inequality.

(1ii) =: Choose ¢; = —arg(x;{1;)
< This is trivial.

(iv) follows from (ii) and (iii).

. (ii) = (1i'): With a polar decomposition. a = |’'|a}. where a*a = la|*> = V*¥|al.

ud® = b |alPV* Let. #g be the trace-class ideal: a € .o = a*a € . Hgand ua* € Ao
= Va*a e fg.since V = w-lim, , a(lal? + £)~! ? € o, which. with Remark (1.4.13:
3) implies ®(V*Va*a) = ®(Va*al’*).

(i) = (ii): Leta 2 0. ®(Ual’ " ') = &(Ua' %a' 2U*) = &a"2U*L'a' °) = ®a), and
every operator is a linear combination of positive operators.

. To prove the inequality. let a and b be non-negative. ®(ab) = ®(a’ *ba'’?) < b a).

since for any a and b. a' 2ba' * < a' 2iblla* 2. Thus |®(ab)|? < ®(|a*|ib])(|al{b*])
and is consequently < “[b]:®|a*|)iib*|1®(|al) = 1b42®(|a|)®. in which the
Cauchy-Schwarz inequality |®(ab)|? < ®(aa*YXP(bb*) (see (111: 2.2.20: 1)} was used
in the form |®(ab)|? = 1L |a}V|h1)|? (with the polar decompositions a = Ulal
and b =Uibl). This = |®(bl' *Ulay *lal' 2V [b]' ))? < &(|b]' 2Ulal' 2 x
lai' U b 2)- (b 2V*a]' *lat *VIb'Y) = O(1b|Uja|U*YX(VIbIV*|al) =
®(|h|la*i)P(|b*||al). Now let ab = W]abi: then ®(lab|) = &(W*ab) < iIbW*|| x
®(ia]) < b 'G(la!). The first part of the inequality follows from Id>(ab)| i™ab-1)}
< 1i@(labl) = ®(lab').

It is a corollary of the inequality that the normy of the mapping a — ®(ab) is [lbl'
This allows .o/ to be identified with a closed subspace of . #3. To see that o = .#§.
first suppose a €. # . Then the mapping ./ — C: b — ®(ab) is normal, entailing
ultrawcakly continuous (see (2.1.4)), which implies that for any a € .#¢.b — ®(ab) is
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ultraweakly continuous. Because of the incquality again, the norm of this mapping
is ®(|a]), which implies that .#¢ can be imbedded isometrically and isomorphically
in the predual 7, i.., the space of ultraweakly continuous linear functions. Thus
Mo < o,.Weshallseein(2.1.3)and (2.1.4)that ¢, = (), and €T = H(H). Since
o is ultraweakly closed, of | = 4 ,/6} with 6} = {pe%,: Tr pa = Ofor all a € o'},
so of = (¥,/€1)*. Therefore 4§ < (<,)* = .o, which implies . #§ = ..

Remark: # is dense in &, but not in general closed.

-5. For more about types I and 11, see Chapter 1, §3 of [4]). The set {u e .o * : ®{(a) = 0}
is the positive part of a two-sided ideal 4. Let .4 be the trace class, let . i and .4 be
the strong closures of . V" and .#, and P, and P, be respectively the largest projections .
they contain (see Corollary I). The Hilbert space »# can be decomposed as ) @
N, @ 3, where ), = P ¥, ¥, = (P, — P))NH, #; = (1 -~ P,)# in which case
o =, DA, D.ofy, Where .of; = o/, . since Pyand P, belong to .of N .«".

It is obvious that ®, 4 = 0. To see that @y, is semifinite, apply Corollary I1:
Letae.#*"', .4 ; then therc exists an operator b € .#*, b < a. such that &(b) > 0.
The remaining claims are trivial.



Thermostatics

2.1 The Ordering of the States

The heuristic concepts of purer and more chaotic states can be made
mathematically precise with reference to a lattice structure of the
classes of equivalent density matrices.

States are by definition (II1: 2.2.18) normed, positive linear functionals on
an algebra of of observables. If the dimension of the underlying space is
finite, o/ = #(C"), then all linear functionals are of the form &/ 3a —+ Tr pa
= (pla), pe B(C"), and B(C") is its own dual space. The inequality of
(1.4.18:; 4),

l(pla)| < fal lipl, llplly = Tr(p*p)*/? 2.1.1)
then holds, and is optimal in the sense that
sup |(pla)| = [all, sup [(pla)| = lipll;. (2.12)
Nolls=1 flall =1

If the dimension of J is infinite, the inequality applies initially to the
operators of finite rank (cf. (III: 2.3.21)), denoted & or &,, depending on
whether the norm || || or || ||, is used. In these topologies continuous, linear
functionals are of the form

£5a-Trpa with{pll, <
or

&,3a—- Trpa with |pf < oo.

45
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The linearity and continuity of the functionals thus defined are obvious,
and it can be seen as follows that all functionals with these properties are
“of that form. By ‘what was said earlier, a linear functional on & determines
the restriction of an operator p to any finite-dimensional subspace. To
guarantee that |(p|a)| < clla| for all ae & or |(pla)| < clall, for all ae &,,

- by (2.1.2) it is necessary to ensure that |jp||, or respectively ||pii is bounded.
If the spaces & and &, are now completed, becoming the Banach spaces
€ and €, of (I1I: 2.3.21), then their dual spaces are unaffected —the dual
spaces of a space and of a dense subspace are the same. The state of affairs
is analogous to that of [, {!, and =, the spaces of sequences (x;) satisfying
respectively lim,_. ., x; = 0, }; |x;| < 2, and sup; | x;| < x:

Duality for the Subspaces of :#(¥ ) (2.1.3)

€* =€, %Y = B(K¥), where € and B(¥ ) are given the norm | ||, and
€, the norm | ||,. These norms on %, and #(.#') produce the strong top-
ology on the dual spaces, as can be seen from a comparison of (2.1.2) with
(II1: 2.1.21).

The Banach space ¥ is thus not reflexive, so #(.¥')* is strictly larger than
€,. If a Banach space & is nonreflexive. then the same is true of *, £**,
etc.:Letae £** buta ¢ &. The functional w: ¢ + ~a — Adefined on {E + Aa}
can be extended continuously to &** by the Hahn-Banach theorem.
Therefore, w e #***, but w;, = 0. Hence %, and .#( ") are als-> not reflexive;
B(X)* is strictly larger than %,. All trace-class operators Jrovide linear
functionals on the bounded operators by a — Tr pa, and these lincar
functionals are even continuous if #(.#) is equipped with a weake: topoiuzy
than the one from || |i: If the neighborhood basis is defined b/

U, a) = {deB(KH):|Trplu — a’)| < &}, (2.14)

and p ranges only over &, then this is the weak topology. If p is allowed to
range over €, then it is known as the ultraweak topology, and is genuinely
finer than the weak topology but coarser than the || ||-topology. The linear
functionals a — Tr pa for pe€%, are. however, obviously continuous if
() has the ultraweak topology. These functionals have in addition the
property of normality (I1I: 2.2.21): the order of taking weakly continuous
linear functionals and suprema over bounded sets can be interchanged. since
by Vigier’s theorem (I11: 2.3.24; 11) the supremum is the limit of a strongly,
and therefore also weakly, convergent sequence. Since the weak and ultra-
weak topologies are equivalent on bounded sets, normality carries over to
“ultraweakly continuous, linear functionals. A somewhat deeper theorem
([4], 1, §4, Theorem I) states that thesc include all normal linear functionals
.on #(X'). We summarize by stating the
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Characterization of Normal States (2.1.5)

The following properties are equivalent for a state w on #(¥#):

(1) wis normal (I11: 2.2.21):
(i1) w is given by a density matrix p such that w(a) = Trpa,p > 0,Trp = 1;
(1ii) w is ultraweakly continuous.

Remarks (2.1.6)

1. The density matrices form a norm-closcd. convex subset of the unit sphere
of % ,, the trace-class operators with the trace norm |j {,.

2. If the system is classical. then instead of #(% ) there is an Abelian von
Neumann algebra. and we are familiar with the normal traces in the guise
of probability measures. Specifically. on the L’ functions on phase space
they are of the form p(p. y) d€A dQQ being Liouville measure (I: 3.1.2; 3),
pel'. p>0, _I' dQp = 1. Yet it may be that |p| = sup, . |p(p. )| £ 1:
Suppose that y, is the characteristic function of a set 4 such that (A4) =
f dQy, < 1: then an example is furnished by p = y,/Q(A).

3. All states constructed with a vector of ¥ are pure. normal, and even
weakly continuous --the density matrix for them is a one-dimensional
projection. Conversely, any one-dimensional projection yields a pure
state on ZB(X).

4. The spectrum of a density matrix is discrete, as it is in the trace class (and
hence compact). The sum of the eigenvalues p; is 1.

5. The density matrix can be thought of as a combination of the vectors that
diagonalize it, or as a pure state on a larger Hilbert space #°, = # ® ¥,
in which () is imbedded as #(#") ® 1. The vector of ), correspond-
ingtop = Zj Li>lp;is Z,- > ® 1D \/’;j (cf. (1.4.7)). If ¥ is separable,
then the weak topology on ., induces the ultraweak topology of #(X¥)
on B(¥)® L.

6. The normal states are weak-* dense in the positive unit sphere of
AB(H)* (see (I11: 2.1.19)), but arc a proper subsct rather than the whole
of it. Hence they are not also weak-* compact.

Traces offer many advantages for doing calculations, owing to the com-
mutativity property (1.4.13: 3). Inequalities for ordinary numbers often
extend to traces, even when noncommutativity prevents them from extending
directly to operators. Some of these inequalities will be used frequently
later, and so are listed below. It will always be assumed that whatever the
trace is taken of belongs to the trace class, though many of them have the
generalization that if the lesser side of an inequality becomes infinite, then -
so does the greater side. For greater flexibility general forms are presented,
while the name attached refers to the original version. The symbol Tr will
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always mean the trace on #(>¢). These inequalities apply trivially to factors
of type I, and many also apply to type II.

Basic Inequalities (2.1.7)

1. Peierls’s Inequality. Let k be a convex function from R to R* and {}i)}
be a not necessarily complete, orthonormal set. Then

Tr k(a) =sup ) k(<ila|i)).

Hid) o

2. Convexity. Let k be a convex function from R to R and 0 < ax < 1.
Then

Tr k(ag + (1 — a)b) < a Tr k(a) + (1 — &) Tr k(b).

3. The Peierls-Bogoliubov Inequality. Let k be a strictly monotonically
_increasing, convex, differentiable function R — R (and thus the inverse
function k~! exists), and suppose k/k’ is convex. Then

k~Y(Tr k(aa + (1 — a)b)) < ak~'(Tr k(a)) + (1 — a)k~'(Tr k(b)).
4. Monotony. If m is a monotonically increasing function R — R,
a 2 b= Trm(a) > Tr m(b).
5. Klein’s Inequality. Let f; g, and h be functions R — R such that for all
aeSpa,feSpb,and ¢, e R,
;c.f.(a)ga(ﬂ)h.(a) 20.

Then
Tr ; i fi(@)g(bhy(a) = 0.

6. Holder’s Inequality. Suppose that k, and k, are convex, strictly mono-
tonic functions R — R, the mapping (a, f) = k; '(a)k; '(B) is concave,
and )¢ has dimension N < 0. Then

'—l- Tr ab

_ 1 " 1
N < k; ‘(Tr—ﬁk,(lal))kz ‘(Trﬁk,(lbl)). |

. The Cauchy-Schwarz Inequality. | Tr(ab)?| < Tr a*abb®.

. Lieb’s Theorem. Let a and b be non-negative, a, b, c € #(F), and
0<a<1 Then the functions a— Trexp(c + Ina) and (a, b) —»
Tr a®cb! ~%c* are concave.

o0 3

Proof

1. By the spectral theorem and Jensen’s inequality, for any unit vector
1), Cilk(a)li) 2 k(<ilali)), and therefore ¥, Cilk(a)li) = ¥, k(ilali)).
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Equality holds if the |i) are eigenvectors of a. It suffices to take the
supremum over finite sets {{i)}.
2. Let |i) be the eigenvectors of aa + (1 — a)b. By Peierls’s inequality,

Tr k(ea + (1 — a)b) = Zk(a(ilali) + (1 — a)i]b}i))
< a;k«ilali)) + (1 —a) Z k(ilbli>)

< aTrk(a) + (1 — a) Tr k(b).
Note that the inequality k(za + (1 — 2)b) < ak(a) + (1 — a)k(b) can be

false in the sense of operator ordering.
3. If k/k' is convex. then for sequences of numbers {$,} and {y;},

k“(z k(B + 73 — a))) < ak” ‘(Z_ k(B.-)) +(1 - a)k” 1(2 k(y,-))
by Problem 2. Hence. as with Inequality 2,

k™ (Tr k(aa + (1 — a)b)) = k*‘(z k(adilali) + (1 — a)(ilbli)))
Sak"(z k((ilali)))

+( - a)k“(z k(<i|b|i>))

- < ak™ 1(Tr k(a)) + (1 — a)k~(Tr k(b)),

using Inequality 1 again.

4. If a > b, then the min—max principle implies for their ordered eigenvalues
that a, > b, so Y ;m(a)) 2 Y, m(b;). Once again, the inequality m(a) >
m(b) may fail for operators.

S. Let a; and b; be the eigenvalues of a and b, and ¢;; be the scalar product of
the eigenvectors of a with those of b. Then

Tr ; e fil@)gu(b)hy(a) = z IC.jlz ; ¢ filadga(bhy(a) 2 0.
ij

6. Let a; and b; be the ordered eigenvalues of |a| and |b|, and let |i}; denote
the eigenvectors of a. By the min-max principle (III: 3.5.21),

Trab = Cilalj>Glbli> < T (@ = aer) T <KklbI>
ij° i k=1

< Z (a; — a;. 1)"211’: = Z‘aab;-
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The inequality \

l N ;l N l N

N Z ki Yaks '(B) < k;l(ﬁ Z C,)k{'(-ﬁ Z ﬂi)’

i=1 i=1 i=1
for o = kl(a,-) and ﬂ, = kz(b‘)

.15 just the assumption of concavity.
7. By the Cauchy-Schwarz inequality (IEf: 2.2.20; 1) for states,

| Tr abab|* < Tr abb*a* Tr b*a*ab = (Tt a*abb*).

.The arder of the operations is important; it is not true in general that
Tr(ab)? < Tr a*ab*b.

8. The proof of this rather deep proposition in the noncommutative case
is too laborous to be repeated here —see [5]. a

Corollaries (2.1.8)

- 1. For any orthonormal system {|i)}, BF(H) = —In Tr exp(—BH)
S —In Y exp(— PGl H|i)).

2. The function H — Tr exp(— SH) is convex.

3. In fact, even H — In Tr exp(—BH) is convex, so F(H) is concave. By
recourse to (6/0a) Tr f(H + aV).-o = Tr Vf'(H), and the fact that F is
majorized by any tangent, oné finds that

F(Ho) + (V>u < F(Ho V) < F(Ho) + {V)p,, -

where {(a)y = Tr aexp(— BH)/Tr exp(— BH).

. Hl Z Hz QF(H]) 2 F(Hz).

.If k is convex, then Tr(k(a)— k(b) — (a — b)k'(b))>0, so
Tr(alna —alnb — (a - b)) 2 0, too. If fy(a) = [5da'g(a’) and f,(B)
= [§df'g™'(F), then by Young’s inequality, af < f,(a) + f»(B), and
therefore Tr ab < Tr fy(a) + Tr f5(b). In particular, if p and q are >1
and related by 1/p + 1/q = 1, and a and b are nonnegative, then Tr ab
< (/p) Tra® + (1/9) Tr b*. :

6. With k,(a) = a?, ky(f) = B*, Corollary 5 can be improved to Trab <

(Tr |a|?)'/?(Tr|b|9)'"s; since this no longer involves N, it also holds when
N = ¢o. By iteration, ,

bR -

I1a

[J
< n "ai"p"

P i=]

1 1 ‘
lall, = (Tr |a|?)!/?, where ) p=p PP2 L
i i

As p — o, |lall, = Hlall, so |Tr ab] < |la||Tr|b|; the trace class is a two-
sided ideal of B(#) (cf. (I11: 2.3.20; 3)).
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7. If a and b are Hermitian, then Tr(ab)? < Tr ab?, a = a*, b™' = b*:
ITr(ab)’| < Tra’. By iterating this, |Tr(ab)?*’| < Tr(abb*a*)?" ' =
Tr(la[?|b?|)*" "' < --- < Trlal*’|b|*". Because of the Trotter product
formula exp(a + b) = s-lim,, . (exp(a/n)exp(b/n))" (see (III; 2.4.9)),
| Tr exp(ea + Bb)| < Trlexp(aa)||exp(Bb)|, for «, B € C, and initially for
Hermitian operators of finite rank. It then extends to exp(xa + fpb) €
#,(3F), exp(aa) € B (), exp(Bb) € B() and thereby yields a general-
ization of Corollary 3 known as the Golden-Thompson-Symanzik
inequality [6], exp(—pB{V)y,) < Trexp[—B(H, + V — F(H,))] <
(exp(—BV)Dp,.

8. The tunction (a, b) = lim, ;o Tr(1/a)(a — @' ~*b*) = Tra(lna — In b) i
convex.

Our next task is to give the density matrices an ordering that indicates
which of two p’s corresponds to the more chaotic state. The ordering must
of course be independent of the basis, and so it can depend only on the
eigenvalues p,. If the eigenvalues are thought of as ordered by their magni-
tudes, then pure states are associated with sequences (1, 0,0, ...), i.e., with
the greatest possible first eigenvalue. Because Y 2, p; = 1, two density
matrices might not be strictly ordered by the natural ordering of Hermitian
operators. However, by the min-max principle (111: 3.5.21),

n
pin)= Y pi=supTre p,

i=1 >
which permits the following

Definition of the Ordering of the Density Matrices (2.1.9)

A density matrix p is said to be more mixed, or more chaotic, than p if g(n)
< p(n) for all n. In symbols, g > p (or p < p).

Remarks (2.1.10)

1. This clearly defines a preordering of the density matrices. i.e., p < p;
andif p € pand j < J, then p < p. If two density matrices are equivalent,
that is, p < 5 and p < p, then p; = j;, and so they are related by g =
VpV*. If the space is finite-dimensional, then ¥ can be chosen unitary,
and otherwise it is only an isometric mapping (Ker p)* — (Ker p)”;
if Dim Ker p # Dim Ker g, then it has no unitary extension.

2. If the equivalent density matrices are classed together, then (2.1.9) gives
the classes a lattice structure, characterized by the sequences of numbers
{p(n)}. The sequence {min(p(n), p(n))} yields the equivalence class of
the purest states more mixed than either p or 5. The concave hull of
max(p(n), p(n)) with respect to n characterizes thec most mixed states
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purer than either p or 5. The sequences thus defined are positive, increas-
ing, and concave inn,and tend to 1 as n — oo (or equal 1 when n = Dim ).
Their successive differences are therefore decreasing sequences of positive
numbers summing to 1, which correspond to an equivalence class of
density matrices. The lattice contains a class of purest elements, namely
the extremal states. If the dimension of J is finite, then there is also a
most mixed state with p = 1/Dim J, but if it is infinite, there is none.

3. The ordering and convexity are compatible on the space of states in the
sense thatif p < uandp < vthenp <au + (1 —a)vfor0 <a < I:

sup Trpe(apt + (1 — a)v) < asupTre p + (1 — @) supTre, v < p(n).
>, », >,

4. Since the operators p(n) are suprema of the weakly continuous functions
Tr,, p, they are weakly lower semicontinuous. Moreover, it will be
shown later (2.4.19; 1) that sequences of density matrices converging
weakly to a density matrix are convergent even in the trace norm. Hence
the maps p — p(n) are actually weakly continuous, and the limit belongs
to the same mixing class.

5. The ordering of the.density matrices is not total—for instance

1
2

Sl

4 and }
0

OO

are not related by it.

Examples (2.1.11)

1. In the Schrédinger picture the time-evolution of a system is given by
p = p, = U(t)pU (1), which shows that density- matrices remain in
their equivalence classes.

2. The time-average (1/T) {{ dtp, is more mixed than the original density
matrices. This operation involves combinations and weak limits, which
can only make density matrices more chaotic.

3. If the time-evolution of a density matrix is a linear transformation of the
cigenvalues, p(t) = M,(t)px(0), then for Tr p = 1 and p > 0 it must be
true that Y'; My = 1 for all k, and M, > O for all i and k. If, for finite
dimension N, it is also required that the chaotic state p, = 1/N be station-
ary for all i, then, moreover, Y, M, = 1 for all i. The matrix M is then
said to be doubly stochastic. Such matrices clearly form a convex set,
and are consequently convex combinations of the extremal elements by
the Krein-Milman theorem. The extremal elements have entries M, = 0
orl,andsol = Y, M, = Y, M, implies that each row and each column
has exactly one 1; this makes them permutation matrices, mapping any
p to an equivalent p. Therefore, p(t) = p(0), as p(z) is a convex combina-
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tion of p’s equivalent to p(0). This kind of time-cvolution thus increases
the mixing. Its differential version p(t) = Mp(0) is a master equation
pi = Yu Wilpy — pi). where W satisfies ¥ W, = Y, W,

4. If an observable has one-dimensional projections P;. then tho state is
immediately converted to p = Y ; P;pP; when the observable is measured.
Once it is perceived that the kth eigenvalue has been measured, p becomes
P,. The first stage of the measurement increases the mixing of the state,
p = p. This follows from the min-max principle: If P;}i> = !i), then

pn) = Y Cilpliy < p(n) = sup Try p.
i=1 >y

The second stage makes the state pure. This can be interpreted in that the
interaction with the measuring apparatus extracts information, which
unmixes the state upon transmission to the human mind.

5. The “coarse-grained™ density matrix p = Z,- P.2;, A; = Tr pP;, is more
mixed than Y ; P;pP; by Problem 1, and a fortiori j 2 p.

6. Supposc thai the function A is convex from R* to R* and k(0) = 0:
then clearly the smaller eigenvalues are suppressed to a greater degree
in k(p; In fact. p = k(p), Tr k(p) by Problem 3. and the resulting
states are purer. In particular. if k(x) = x*% B > f, then
exp(— PH)/Tr exp( — BH) » exp(— f'H): Tt exp(- f H). The physical sig-
nificance is that the mixing of the canonical density matrices is greater
at higher temperatures.

We have seen that convex combinations of UpU~! and weak limits
increase the mixing of p. This exhausts the possibilities:
Theorem (2.1.12)

p & p iff p is in the weakly closed convex hull of {UpU~'}.

Remark (2.1.13)

The weak closure of {ae B*(X), lial = 1} is {ae B"(KH), ia| < 1}
and density matrices may converge weakly to zero. This means that the
set of density matrices is not closed, which causes technical difficulties
in the proof, which is put off to Problem 4 for that reason.,

C oro'(lary (2.1.14)

If 5 = p. then for any coniex function k, Tt k(5) < Tr k(p).
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Proof

Ifp=Y,¢UpU'0<c <1,Y;c = 1,and the sum is finite, then by the
convexity inequality (2.1.7; 2), Tr k() < Y. ¢, Trk(U;pU[ *) = Tr k(p).
Moreover, p = Tr k(p) is weakly lower semicontinuous, so the limiting
case of an infinite sum is likewise bounded by Tr k(p). - O

Corollary (2.1.14) gives rise to the possibility of defining mappings of
the density matrices to the real numbers, monotonic with respect to the
ordering >, and so enables the degree of disorder to be measured. For
instance, if k(p) = p?, then Tr k(p) can equal 1 only for pure stam, and is
otherwise smaller. The next section will discuss some other properties
distinguished by the function —k(p) = —p In p used to define the entropy
For now, note that the converse of (2.1.14) is also true:

Theorem (2.1.15)
p & p iff for every convex function k, Tr k(p) < Tr k(p).

Proof

Because of (2.1.14), we need only show that if 5 ¥ p, then there exists a
function k such that Tr k() > Trk(p). Let m be the first integer such that
Pr+Pr+ -+ Bw>p1+ Pyt -+ pu, and let k(x) = (x — p,), When
X 2 P, and otherwise 0. Then k(p,) = p; ~ Pms - kK(Pw) = Pm — Pm =0
= k(Pp+1) = k(Pm+2) = -++. By assumption, p, + P+ -+ Pu-1 S
P+ Pyt o+ Pty SO P > Py, Which implies k(5) = p; — pm >0 for
all i <m. Therefore, Trk(p) =p, + P2+ -+ + pm— MPpu < Py + P2 +
vt P = mpy < Tr k(P). O

Since expectation values in mixed states are averages of different spectral
values, they do not reach the extremes of the spectrum so easily. This
observation creates a new way to define the ordering relationship.

Theorem (2.1.16)

@ prpe supTrUBU 'a< sup TrUpU 'a forallae#*(K),
Ue =UU -1 Ue .uu -1
(i) p2pe inf TrUpU 'a= inf TrUpU~'a forall ac B (X)
14

v
ve=U-t vr=U-t
Proof

See Problem 5. O
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Corollary (2.1.17)

Let(A,a)* = Tr pa® — (Tr pa)* = inf, Tr p(a — A)%. Thenp = pimplies that

lnf AUDU -1a 2 lnf AUpU" 1a for a" a.
U U

This means that if one is interested in the least deviation Aa of a within
the equivalence classes of p and g, then it is smaller for the state that is less
mixed.

The various aspects of the relationship can be summarized as follows:

Conditions for Density Matrices to be Compared (2.1.18)

The ordering relationship g > p is equivalent to each of the following:

(i) p(n) < p(n) for all n;
(ii) ﬁ = W‘lim, Zi Cix U",pu‘;l, Cl" > O, z,' C,‘, = 1, U,;l = U,*,;
(i) Tr k(p) = Tr k(p) for every concave function k;
(iv) Sup ~rr-1 < Sup -1 + -1 _
inf TrUpU ™ 'a < inf TrUpU 'a,ae #7(#), U U*.
v v

Problems (2.1.19)

1. Let P; be pairwise orthogonal projections of dimensions n; < 2 and Y, P; = 1.
Show that ¥, (1,n)P; Tr Pip 2 ¥, P,pP;.

2. Let A(x)>0. k"> 0. k" >0, k’k' convex. Show that the mapping (8,,..., 8,)
-k NYr. k() of R to Ris convex. (Hint: note that: (i) A mapping f(B,. ..., B.)
is convex if y"(0) > 0, where y is the function x(t) = f(By + wt,..., Bs + ust)
and (u,....,u,) and (B,...., B,) are arbitrary. (ii) If the function K(8)/d increases
monotonically, then K(}; ) = Y, K(8,). 6; > 0.)

3. Let k be a convex, monotonically increasing function, k(x) >0 for x = 0, and
k(0) = 0. Show that p > k(p), Tr k(p).

4. Show that p & p <> pe Conv{UpU - Ti%ek,

(i) Let X(p) = {a = 0:a is compact, and a, + --- + a, < p(n) for all n, where
a, are the eigenvalues in increasing order}. Show that ¥(p) is convex and weakly ~
compact.

(i) Let&(p) = {a€ X(p): %y = Pyy.v.sOn = Ppspyy =+ =001 = pforalli}.
Show that &(p) contains the extremal points of X¥{(p). =

(iii) Show that &(p) < {UpU ~'}vesk.

(iv) Finish the proof by applying the Krein-Milman theorem: Every compact,~
convex set equals the closure of the convex hull of its extremal points.

S. Prove Theorem (2.1.16).
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Solutions (2.1.20)

1. Let di(U) be the invariant measure on the compact group U(n), normalized to 1.
For all ae #(C"), Yic(1/n) Tra = | duUaU ", since the right side is invariant
under all U and hence proportional to {;c., and Tr [ dpUaU ! = Tr a. Similarly,

! i
~PTtPp+(1 - P)p(l ~ P) = fdupU,pU;’

= j dupU(PpP + (1 — P)p(1 — P)U; !,

if the operators U, vary over the unitary transformations of J¥ equaling 1 on
(1 — P)#. Therefore, (1/n)P Tr Pp + (1 — P)p(1 — P) > PpP + (1 — P)p(1 — P),
which proves the claim by iteration.

o

. (1) is trivial, and (ii) follows from
$4,2 4 =ak(58) > (Ta)ke (z s)k(z5) > (24) T ke
i ¢ i k i i k

Now let x(t) = k™'(Y k(B + u;t)). The function x(t) is convex iff x(t) = 0.
KGOPY = KGOPLL: utk"(8)] — K"()IT, u;k'(B)) (where y = (0),x" = 2"(O))
so it temains to show that [k'(x)]? ¥, u?k"(8) = k"()[Y; u;k'(B))*. By the Cauchy-
Schwarz inequality, [3; u,K(B)]? = [T ui /K" (B)/KBIK" (B < [T w2k (B)]
x [Z,. k'(B)*/k"(B)], and the desired inequality is certainly satisfied if Y(x) =
k() k"G) = Y k(B /k"(B) = Y w(B)). By (i), this is the case if K()/ increases
monotonically, where K is defined by J; = k(B,), K(5;) = ¥(B;). Finally, K(5)/6
increases monotonically <> k'2/kk” increases monotonically <> k/k’ is convex.

30<x< v, then x = (x/y)y + {1 — (x/»))0. and hence k(x) < (x/y)k(y), yk(x) <
xk(y). Consequently

ik(l’.‘) ipj“' i Pj Zipj( mlk(l’i)‘*‘ z k(ﬂ.‘))'

i=3 =1 j=m+1 ) i=1 i= i=m+1

ie.,

. fod -1 ®© -1
[k(Pn) + -+ k(pm)](zk(pi)) 2 [pl + -+ p.](lz pi) .

i=1 =1
Remark: If k is concave, then p < k(p)/Tr k(p).

4. (i) By (2.1.10; 3) the set X#(p) is convex. Moreover, &} + -+ + , = Sup,, Tre a

is weakly lower semicontinuous in a, so X' (p) is weakly closed and, since
flal} = &, < py = ol < Tr p = 1, also weakly compact. .

(ii) By considering all the possibilities, one realizes that it is possible to write any
acX(p)asap, + (1 — a)p,,0 < a < 1, with p,€ X(p), unless ae £(p).

(iii) Let a = Y7y ;I L, )<L i), p = ¥ pil2,0)<2, i|, where {|1,i>} and {{2,i}}
are iwo orthonormalsystems. Let U (2, 1) = |1, D, U)|l,n+ ) =|Ln+ [ -1)
for1 <i<l—1UlLi)={l,i)otherwise. a = s-lim,., U,UpU~'U .
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(iv) By the Krein-Milman theorem, X (p) = Conv &(a)* = Eo_nv{-l_-','b T 1yweak
(by (iii)), and g = H(p).1f p 2 p.

. 5. By a replacement of ¢ with a + #a} if necessary,  may be assumed positive. Then
Tr pa = sup, Tr p"™a, p™. where the p*" have the cigenvalues . p,. ..., p,. 0.0, ....
The changes of the orders of operation in what follows are justified for the p™.
and the suprema can also be interchanged:

(1) =:Let a; 2 2, > --- be the decreasing sequence of eigenvalues of @ and x . be
the upper boundary of a.ia) (to be understood in the scnse analogous to (111.
35210).Mp =Y p,liy<ii, then

Tr pa = Z ilatiy = (py — p)liai 1> = (p, — py){ K all) + Qja)2)) + - -
Slpy = pde +(pr =gl + 1)+ - = Xufln

and sup Tr UpU "'e = ¥ pia;.

Z Pidy = Py = Y+ (P + Py - a3) + -+ 2

S —a) + (P +pala:—a)+- -+, = ZP.‘"-‘-

<= : Choose an n-dimensional projection for a and use the min-max principal.

The proof of (ii) 1s similar.

2.2 The Properties of Entropy

The information about a svstem in a mixed state is incomplete. The
entropy is a measure of how far from maximal the information is.

In statistical physics, entropy is not an observable in the sense of an operator
on Hilbert space, but rather a property of the state of the system, measuring
the lack of our knowledge as expressed in the specification of the state. This
section will consider what sorts of conditions single out a particular measure
of this lack of knowledge and will see what conclusions can be drawn from it.

A primary requirement would be monotony with respect to the ordering
introduced in the preceding section (we consider only normal states). In
other words, a density matrix that is more mixed should have more entropy.
which we denote S: g > p = S(p) = S(p). This ieaves many possibilities open
for the definition; every monotonic function of the trace of a concave
function of p would satisfy this requirement (cf. (2.1.14)). A further reasonable
requirement is the additivity of the entropies of independent systems. If
their combination is represented on the tensor product of their Hilbert
spaces, this means

S(p' ® p") = S(p') + S(p"). 21)
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The two requirements together do not yet quite determine S uniquely. The
whole one-parameter family of .

a-Entropies (2.2.2)

S.(p) =

satisfy the general

a +
l—ah,lTrp’ ae R\ {1},

Properties of Entropy (2.2.3)

(i) 0 < Sy(p) < Indim H#;
(ii) p 2 p = S,(p) 2 S.(p);
(ii)) S,(p’ ® p") = Sa(p') + Sp");
(iv) If p = P/dim P, P = P?> = P*, then S,(p) = In dim P.

(In particular, S,(p) = 0 iff p is a pure state, and S,(p) = In dim X iff
p is the chaotic state 1/dim >#.)

Proof

(@) If «>1, then Y, pf < Qip) =1 and if a <1, then ¥, p; =1
< (i p))'"*. This shows the left side of the inequality, and the right
follows from (iv) and (ii).

(i) The function p*is concave for « < 1 and convex fora > 1. The logarithm
is monotonic, and the 1 — & accounts for the sign (see (2.1.18(iii)).

(iii) Tr(p’ ® p")* = Tr[(p)* ® (0")] = Tr(p')*- Tr(p")".
(iv) If n = dim P, then S,(p) = (1/(1 — 2)) In(nn™*). a

The entropy can be fixed uniquely by a more stringent assumption of
additivity (2.2.1), with which monotony emerges as a consequence rather
than a separate-axiom:

Characterization of the von Neumann Entropy (2.2.4)

The only entropy satisfying the following conditions is S(p) = —Trpln p

(1) S(p) is a continuous function of the eigenvalues of p;

(i) S((*) 2) =In2;

N
(i) If K =@ K. o=@ Pl =1
n=1

0<p, <. Trp,= L
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then. regardless of the dimension of #,, S(p) = Y., p.S(p,) + S(p).
where p is the diagonal matrix on C" having eigenvalues p,,.

Remark (2.2.5)

1. Since the representation should make no difference, S can only depend
on the eigenvalues. It certainly does not seem unreasonable to demand
continuity.

~2. Condition (i1) is a normalization.

3. If all the »¥, in condition (iii) have the same dimension and all p, are
equal, then ¥ = #; ® C", and (iii) reduces to (2.2.1). This generaliza-
tion of (2.2.1), wnich makes possible an inductive proof, has the following
interpretation: Suppose a system consists of two subsystems, one described
by C" and the other having several variants according to the position of
the state vector of the first in C", Then the entropy of the total system is
just the sum of the entropy of the first subsystem and those of the second.
averaged according to their probabilities.

4. The formula S = —Tr p In p can be justified in the spirit of Boltzmann
as follows. Let the state corresponding to g be realized as a vector of a
reducible representation of the algebra o of observables consisting of N
identical representations. The ensemble described by p can be thought of
as having been subjected to a sequence of N mcasurements, where p; is
N,:N. N; being the number of times the eigenvector e, has been measured.
The Hilbert space is # =@?}., ), where the spaces & ; are all identical
and are spanned by {e;}. The observables are represented as a direct sum
of N identical representations. With the use of doubled indices. this can
be written as #; =P, e, ;. A p of rank r and with p, = NyN,
i = 1....,r is represented by the vector

1
w:(e,_l + €).2 + - +€1.~. + €2 .8, +1 + -+ €3 N, N> + -

N\t

+ er.-\'x"-"z*"‘ +tNog+ 1 + e+ er.N)

of ¥ . If the e; are chosen from other spaces J# ;, the same state results.
and there are clearly W = N!/J]; N,! different vectors for the same p.
If the numbers N are large enough, thenln W x NInN - Y, N;In N, =
—NY,pilnp; so(1/N)In W — —Trpln p. Assuming that every vector
of ) is assigned the same probability, S turns out to be roughly the
logarithm of the probability of the configuration, and there is an identi-
fication: the most mixed state = the state of greatest entropy = the
most probable state.

5. S(p) = lim,_, S,(p), yet if the dimension is infinite, then S(p) may become
+ x. However, Properties (2.2.3) remain valid in this limit. and apply
to S as well.
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6. A particular consequence of (2.2.3(ii)) is that S(ap + (1 — ®)UpU~Y)
> S(p). More generally, (2.1.7; 2) implies that the mapping p — S(p) is
concave: S(apy + (1 — a)p,;) > aS(p,) + (1 — a)S(p,). This means that
the entropy of a mixed state is greater than the constituent entropies
weighted as in the mixing. If p = Y, papa, 0 < p, <1, Y, p, = 1, then
the inequalities

necessarily follow (Problem 4). They are optimal in the sense that equality
holds on the left if all p, are equal, and on.the right if all p, have disjoint
support, by (2.2.4(iii)).

7. Although by (2.2.3(iv)) all the S, are the same with the chaotic state,
with the canonical state p = exp(—p(H — F(B))), Trexp(—BH) =
exp( — BF(B)), they are different (Problem 6).

Proof of (2.2.4)

We write S(p,, pa, - ..) for S(p).

(a) Let o = C!. Then S(1) = 0, because on C2, S(p,, p;) = p,S(1) +
p25(1) + S(p,, p2).

(b) Let ) =C", f(n) = S(1/n, 1/n, ..., 1/n), and let n = m;m,. We write
C"=C"PC™ @ ---@ C™ and use (iii) with

l/m, .
N =my, p;=m;", pi = ,
l/m,

Smums) = my = f(m) + f(ms) = fom) + fma).

The solution of this equation is f(n) = C In n, and the normalization
(ii) makes C = 1. Other solutions are excluded by the.continuity require-
ment (Problem 1).

1 11 1
(C) f(M)=S(m,’;,...,;"—,;,...,;)
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This holds initially only for integers n and m, and then by continuity
holds generally, S(p,, p,) = -Y'%., p: In p;.

(d) The rest of the proof proceeds inductively: with C"*! = C"@® C,
Py =1=p,, p;=p,,

— Pn-1
S(P1, P2+ Puers ) = (1 = p,)S( — ...,l_p")+p,sm

+ S(l = Pns pn)

——Zp,ln —pnlnpn
j=1 Pn
—(1 = p)In(1 = p,) = = Y p;In p;. O
j=1

The Classical Entropy (2.2.6)

For a classical density p ,(x, p) on phase space the entropy would be defined
as — j dQp. In p,. This is not a priori positive-definite; for instance p,
= x(A)/Q(A)asin(2.1.6; 2) leads to — j' dQy In x = In Q(A), which is negative
if Q(A) < 1. It is easy to see that this entropy also depends on the measure
of volume in phase space. There are many ways to associate a density p,
with a density matrix p or vice versa.

The most useful such expressions are obtained with a method of A. Wehrl,
in which for a given density matrix p one calculates expectation values in
coherent states, and, conversely, a classical density is used to mix coherent
states. The coherent states W(z)|u) = |z) of (III: 3.1.13) can be generalized
for functions u that are even and normalized, but not necessarily Gaussian.
The state |z) has the wavefunction exp(ik - X)u(x — q) if z = q + ik e C**,
which is the phase space for N particles in a physical space of dimension d.
It is easy to check that z = {z|x|z) + i{z|p|z) still holds and that the
states are complete, | d*"z(2n)~"|z)(z| = 1.

The Density Matrix and the Phase-Space Density (2.2.7)

If to an N-particle density matrix p we associate the phase-space density
p(2) = (z|pl2), and to a classical density f(z) on phase space we associate
the density matrix py, = [ dQ, f(2)|z)<z|, dQ} = (2n)""d*"z, then

P20, Trp=1=0<p,@ <], f dQ poz) =

f=0, fdn,f(z) =1=20<p,<1, Trpg,=1. (228)



62

2 Thermostatics
Proof

Positivity is trivial, and the connection between the trace and the phase-
space integral follows from the n-dimensional version of a formula of

(II1: 3.1.14; 1):

1

]

[d0212> 21 = Tra = 3 ilali> = X [d0iitz) calalid

fdﬂf(zlalz).

Conversely, Tr | dQ, f(z)|z)<z| = ; [ dQYf(@)I<zliy|* = | dQ.f(2). since
{z|z) = 1. The denominator (2r)*" in dQ} reveals that the phase-space
volume is measured in units of h rather than # = h/2n = 1.

Inequalities for the Classical and Quantum-Mechanical Entropies (2.2.9)

(i) S(p) < —§ dQpc(2) In pei(z) = Sci(p);
(i) - ! dQ} f(z) In f(z) < S(pqu).

Remarks (2.2.10)

1. Inequality (i) implies that the p,, of (2.2.7) always has more entropy than
S(p). This classical entropy is therefore always positive; the density p,
defined in (2.2.7) can never be so concentrated as to make the classical
entropy negative, and indeed p, < 1.

2. It can also be shown that this classical entropy equals 1 if p is extremal,
and otherwise it is greater than 1 [32].

3. If a quantum-mechanical density is associated with a classical density f
by mixing the coherent states with f, then Inequality (ii) states that the
quantum-mechanical entropy is greater than the classical entropy. The
latter may even tend to — xc, for instance if f tends to a delta function.

4. Inequality (ii) shows that the continuous analogue of the last inequality
of (2.2.3; 6) is false: S(|z)<z|) = 0, and in this case the inequality goes
in the other direction, with the replacements p, = f(z), Y., — | d¥':

- f 4 f(2)In £(z) + J'dn:'f<z)8(|z><z|)ss( f dn;"f(z)lzle).

5. If the particles are identical, states must be either symmetrized or anti-
symmetrized according to the statistics. For bosons this is accomplished
most easily with the aid of the creation operator

a* = a*(explik - xJu(q — X)), |2y, ..., zy) = af ---a}|0),
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with which

1= (27;) J‘dZd 'dzdznlzh--"zn><zl’“"z"I'

n=0

So, with identical bosons, when the trace is taken the volume of the
classical phase space has to be divided by n!. The states are not yct normal-
ized to norm 1.

N P
o Tty 2y = S (2 )P [] <Zlzp) = De‘ AL
P i=1 et

where P,,..., P, is a permutation of 1,...,n, because the coherent
states are not orthogonal:

(Z'z) = J.d‘x explix - (k — k)Ju*(x — q)u(x — q).

These determinants and permanents crop up along with dQ) in the
calculations of expectation values, making them more laborious.

6. Since these inequalities are valid for coherent states with a great degree of
arbitrariness in u, they can be optimized by varying u.

Inequalities (2.2.9) will follow from a lemma of Berezin on the
Relationship between the Trace and the Phase-Space Integral (2.2.11)

Let K be a convex function and suppose a* = a. Then

(1) Tr K(a) = [ dQYK((zla|2));
(ii) j'dQ“K(f(z)) > Tr K(a), where a = { dQ)f(z)|z) (z|. K(a) € C'. and f
is a measurable function C* - R.

Proof

(1) As noted in the proof of Peierls’s inequality. {[K(a)|)> = K({{a|)) for
expectation values in an arbitrary vector, so

Tr K(a) = Jde(le(a)fz) > f«leK((zla{z)).

(ii) If |j) denotes an eigenfunction of a, then

Tr K@) = 3 K((laljy) = 3 K(fdfz;“f(z>|<zu>12)
J J
<y J‘in‘KZIDI’K(f(Z))
J

= f dQYK(f(2)). O
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Proof of (2.2.9)

The function x In x is convex, and for the concave function —x In x the
inequalities for convex functions are reversed. O

The addmvnty of the entropy when p = p, ® p, generalizes to an in-
equahty when p is not in the form of a product. To cover general p, and p,
requires the

Definition of Partial Traces (2.2.12)

Let 5 = #, ® #,. The partial traces Tr, and Tr, are defined by
Try.2a =), <jlalj> e B(#,,) for any ae¥,(#), where {|j>} is any
complete orthonormal set in 5§ 5.

A consequence of this is the

Subadditivity of the Entropy (2.2.13)

Let p,.2 = Try,, p. Then S(p) < S(p,) + S(p).

Remarks (2.2.14)

1. If p = p, ® p,, then p, 2 = Tr,,, p and by (2.2.3(iii)) equality holds in
(2.2.13).

2. The partial traces reproduce the reduced density matrices used in §1.1.
At that time we noticed that the reduction entailed a loss of information.
Inequality (2.2.13) indicates that there is less information in p; and p,
than in the original p.

3. If « # 1, then the a-entropies S, (2.2.3) are not subadditive (Problem 2).
It is consequently not necessarily true that p, ® p, > p.

4. Subadditivity allows axiom (iii) of (2.2.4) to be replaced [7] with
(iii ) S(p) = S(V*pV) for all isometries V; and
(iii (b)) S(p) < S(p,) + S(p,), equality holding iff p = p, ® p,.

Proof

By Klein’s inequality (2.1.7;5), Tralna — Tralnb > Tr(a — b). Put

a=pandb=p, ®p,andnotethatlnp, @ p,=p, @1 + 1 In p,.
O

Corollary (2.2.15)

Consider a sequence of ever larger systems on the tensor product ",
n=1,2,3,.... Suppose that the density matrices p, are compatible so that
when reduced to a subsystem they always become the density matrix of the
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smaller system: p,, =Tr,_,p,. m<n if 6, <~ —(1 M)Trp,Inp,. then
N, < ma, +(n - mao,. ,. In particular. o,, < ,. and hence the limits
hm, ., o, = inf, 6, rwst exist and be >0. Although the entropy itself
does mot tend to a Jimit as the size of the system gets arbitranly large. the
specific entropy does.

It will be asked by how far (2.2.13) misses equality. More precisely. it
might be supposed that the entropy of a united system is always greater
than that of any single one of its parts. Surprisingly, this is not necessarily so
with quantum statistics: p could be a pure state thus having entropy zero.
while the p, correspond to mixtures. This is the case that arose in the discus-
sion of the time-evolution in §1.1; the additional information contained in p
has to do with the correlations between the subsystems. The correlations
are preciscly pinned down in

Lemma (2.2.16)

Lev p be pure: then p and p, have the same spectrum with the same mniti-
plicities. except possioiy for an eigenvalue ut 0.

Proof
See Problem 3. O

Corollary (2.2.17)

if p is pure, then S(p,) = S(p,). Our information about the subsystems is
correlated, so they possess the same amount of disorder.
In this case. S(p) = S(p,) — S(p,); more generally there 1s a

Triangle Inequality (2,2.18)

1S(p;) — S(p;)l < S(p) < S(p,) + S(p3).
(Lieb and Araki [8]).

Remarks (2.2.19)

1. This inequality has no classical analogy: a counterexample is provided
by a p with §(p) < O but S(p,) = S(p,).

2. Even if the entropy of a subsystem can be greater than that of the whole
system, the triangle inequality reveals that it can not exceed the sum of
the total entropy and the entropy of the complementary subsystem.

3. Astonishingly, the classical entropy (2.2.9) of a quantum-mechanical
density matrix is monotonic; it is always larger for the whole than for a
part: S.(p) = Sc(p,). (For the proof see Problem 5.)
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Proof

According to Remark (2.1.6; 5), p may be regarded as a pure state p,,3
on a large Hilbert space ), ® ), ® »#;, for which p = Try p,,3. Let

P3 = Tty3 p123, p23 = Try py23; then by Corollary (2.2.17), S(p) = S(ps), .
S(p1) = S(p23). Because of subadditivity, S(p,) = S(p,3) < S(p3) + S(p2)
= §(p) + S(p,), and along with the same thing with 1 and 2 interchanged,
this yields the left inequality of (2.2.18). a

. An ideal measurement leaves the system in a pure state, reducing the

entropy to 0. For this reason, S(p) may be regarded as a measure of the
amount of information to be gained by an ideal measurement. The difference
S(p) — S(p,) specifies how much more information a measurement of the
total system can yield than-a measurement of a subsystem. Inequality (2.2.18)
bounds this relative information gain by S(p,):

1S(p) — S(pI < S(p2).

With quantum statistics the difference can be either positive or negative.
If p is pure, so that the greatest possible information about the total system
is available, but p, is a mixture, then more information can be obtained by
measuring the subsystem. On the other hand, there are some inequalities
for this entropy difference that are analogous to those of the classical entropy:

Inequalities for the Entropy Difference (2.2.20) .

" Let pyy3 be given on X, @ N, @ N, and p,; = Try p1a3, pr =Ty py2,
etc. Then

(i) S(p;2) — S(py) is concave in py,;
(i) S(py3) — S(p,) + S(p23) — S(p,) = O (Lieb and Ruskai [8]); and

(iii) S(p123) — S(P2) < S(p12) — S(p2) + S(p3z) — S(p2).

Remarks (2.2.21)

1. Proposition (i) implies that mixing increases the relative information gain.
In particular, the relative information gain is a monotonic function in p,,
with the ordering introduced in (2.1.9).

2. If Roman numerals are used to denote the systems cotrwpondmg to the

- Hilbert spaces J;, then Inequality (ii) implies that more information can

be obtained by measuring I U III and IL.UIII than I and IL If 5, is

one-dimensional, so S(p,) = 0 and S(p,3) = S(p;), then this proposition

reduces to (2.2.18).
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3. Inequality (iii) is subadditvity for the entropy difference. The information
content of ['w Il and I LI relative to II is greater than that of
1o Ty I relative to 11.

Proof

‘i) Let pyp = apiy + (1 — 2)pis, 91 = apy + (1 — a)p]. T

- 8(py2) + aS(py;) + (1 ~ a)S(qu) + S(p1) — aS(p1)"— (1 — 0)S(p}
= aTr; pialln py; — 0 piy — Inp, + Inpi]
+{ ~D)Try; p5:npy; —Inpis —lnpy +Inp}
= oA’ + {1 — A"
If a=—BH, - In Treap(--BH,} and b = — BV, then because of
¢2.1.2: 3) and Tr exp(a) = 1, exp(Tr b exp(a)) < Tr expfa + b), so with
a=1np\z,b =[], we ind exp(A) < Try, exp{ln py, — In py +in p%).
Therefore, with Lieb’s theorem (2.1.7; 8).
exp(aA’ + (1 - 2)A") < aexp(A’) + (1 - a)exp(A’)
% 2Tey, exp(in py; — In p, + In py)
+ 3 =) Trexp(ln py, — Inp, +innj)
< Tro.explnp,; — Inp, + In(ao)
+ 11 - A)In o)) = Tryaexp(ln pyg) = |
ii) Since pq anrd o can he =xpressed lineatly in py,5. part (i) mokes the
st side con@ne It py . The minimum s consequently attained when
v s mure, dhe v opet v 2217, in this case Stp.y’ = Sp,) and
‘ .:;_,) wo 80000 i the s ame ser.
CYRO08E A TG Y, w__ 2% %, suchthat Yiyn. o, 0., Von
{ovottory [ } L Spsr - Sp s s e e gd

o= Sleys o Mo T b <Ohy )

the e genernd map Wit - o lenris Masrions rRReCt soaem pLoneres

:‘_:‘\;“. \—?.:. e et . ," 2 TNET.s f’i""‘i ‘E«. _47;-\“,"§‘ CADVICAL BT
e provide 3degper Py s eni o for these slassteal dales,
' ".j Lo el as e ot 7o -.‘f“"'l‘uun s the
e veve Betropy {0027
. . — -
Watpy - Tooin s v poo i G (Ot !
Kl h(.n
ot IR
tripy o) , _
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Proof of the Properties of the Relative Entropy

(i) This was shown in the proof of subadditivity (2.2.13).

(i) Convexity follows from (2.1.7: 8) when x — 0. The function is lower
semicontinuous because S(a|p) can be written as the supremum of a
set of continuous functions (Problem 7).

(ii) Se®1t1p@®T)=Tryp@t[(np) @1 +1@Int
- (no)®1-1®In1)
= Tr; p(in p — In 6)Tr, T = S(a|p).

(iv) As in Problem (2.1.19; 1), write p, ® 1/d, = jdyb’sz{ !, d, =dim ¥,
and similarly for ¢. By (iii) and (ii), : :

1 -1
S(o11py) = S(a, ® 1o ®Z)

- J‘S(fdyUzaU;’[J.duUZpU;')

< f duS(U,aU5 U, pU5 ") = S(olp).

Since d, drops out of the expression, this proof for d, < oo extends to
the infinite-dimensional case. a

Remarks (2.2.23)

1. If o is the canonical density matrix ¢ = exp(— gH)/exp(— §F), and thejfree
energy is F = —p 'InTrexp(—pBH), then S(c|p) = B(Tr pH — F)
— S(p). If a free energy F(p) = TrpH — B~'S(p) is ascribed to p, then
S(e|p) = F(p) — F. The relative entropy S(o|p) measures the difference
from the canonical free energy F(o) = F, which always lies lower because
of (i).

2. By Property (ii), mixing and passing to limits bring the free energy closer
to the canonical free energy.

3. Property (iii) states that the difference from the canonical free energy is
the same for p, and p if there are two independent subsystems 1 and 2,
where p = p, ® p,,and p, is the canonical density matrix of system 2.

4. If a subsystem is weakly coupled, H,, = H, ®1, + 1, @ H,, ie,
exp(—f(H, — F,)) = Tr, exp(—p(H,, — F,,)), then its difference from
its canonical free energy is always less than that of the whole system. The
analogous argument for the entropy only leads to S(p,) < S(p) + Ind,,
which already follows from (2.2.5; 3).

A final matter to investigate is how sensitive S is to small changes in p.
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Theorem (2.2.24)

The mapping €7 - R*: p — S(p) is lower semicontinuous in the trace-norm
topology of €,.

Remarks (2.2.235)

1.

w

The set %, is topologized with the trace norm || ||,. If a sequence {py}
converges in this topology to p. then S(p) is at most limy. , S(pn).
However, we shall see in (2.4.19; 1) that for density matrices all topologies
between the trace topology and the weak topology are equivalent.
Continuity does not occur, because in every || [|,-neighborhood of p
there are density matrices with arbitrarily much entropy. This follows
directly from concavity,

1 / 1 1 1
S(ﬁ PN + (l - N)p) > N S(pn) + (l - N)S(p).

Let S(p) =0, and S(py) = N2; then S((1/N)px + (1 — 1/N)p) > N,

although
|ILPN+ ‘P_Pl
- [N

so the density matrices converge to p. The two terms in the expression
(1/N)py + (1 — (1/N))p, however, can not be comparable in the r2nse
of (2.1.9); that would contradict (2.1.10; 4), by which the limit of a
sequence of equivalent density matrices can not be purer than the elements
of the sequence.

The mappings ¥; — R : p - S,(p), « > 1 are continuous (see below).
By lower semicontinuity the sets S, = {p: S(p) < n} are closed. and by
Remark 2 they are nowhere dense. This means that the set { , S, of p’s
of finite entropy is of the first category. the topological analogue of a null
set. In this sense the entropy is almost always + oc.

Proof

Because Tr p* = {jip||2 < "pI*~ ! - |Ip|l,, the mapping of €, to R*: p — S,(p)
is continuous. As the supremum of a set of continuous functions, S(p) =
sup,>; S,(p} is lower semicontinuous. O

The failure of S(p) to be continuous does not diminish its usefulness. The

density matrices p of very large S have their eigenvalues p; spread so far
apart that the average of the energy diverges.
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The Continuity of the Eatropy at Finite Energy (2.2.26)

,J.&ppose that H 2 0 and Tr exp(—BH) < oo for some f > 0. If the density
matrices having Tr pH < oo are topologized with the norm |plg
= Tr p(1 + H), then S(p) is a continuous mapping €, — R*, where €

"= {pe¥€, iplg < <}

o .4~

Proof

According to Remark (2.2.23; 1), S(p) = (Tr(pH) — F) — S(o|p), where
o = exp(— BH)/exp(~ BF). The function Tr pH is continuous-in the || [4-
topology, and — S(¢|p) is upper semicontinuous, because the || | z-topology
is finer than the trace topology. Since S(p) is lower semicontinuous in the
trace-norm topology, it is also lower semicontinuous in || ||, and hence
continuous in || f4.

Problems (2.2.27)
)
1. (i) Show for the functions f(n) = S(1/n, ..., 1/n) that lim,., [f(n) — f(n — 1)]
= 0.

(ii) Conclude from (i) that the only solution of the equation f(mn) = f(m) + f(n)
1s of the form f(n) = C In n, supposing that S is continuous according to
2.2.4(1)).

2. For a # 1, show that the a-entropies S, of (2.2.2) are not subadditive.
3. Prove Lemma (2.2.16).
4 Show that (3, A,p) < T, 4,8(p) — Y AIn 2,4, > 0.3, 4 = 1.

5. Show that S.(p,) < S.(p) if H# = X, ® X, where X are one-particle Hilbert
spaces, particles 1 and 2 are distinguishable, p, = Tr, p, and S.,(p) is defined as in
(2.29).

9. Calculate S,(exp(—~fS{H — F(B)]), where exp(— fF(B)) = Trexp(-- fH)e

7 Show that S(a|p) is Jower semicontinuous. Hint: use
{i) S(a{p) = supo <a<; Si(alp), Sialp) = (1/AXS(Ap + (1 — A)o) — AS(p)
- (1 - 48(0) 2 0;
{ii) of 4 2 0 then Tra = sup, P,a, P,— 1, is an increasing sequence of finite-
dimensional projections; and
~ (iii) the operator inequalities (III: 2.2.38; 11),
;0 show that the function s(x) = —xIn x is concave for operators, ie.,
, WAa + (1 — )b) = As(a) + (1 — A)s(b)for all a, be B(X).

8. Prove the formula for the identity operator in (2.2.10; 5).
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Solutions (2.2.28)

1. (1) Letd, = f(n) — f(n — 1) and 4, = S(1/n, 1 — (1/n)). Because § is continuous,
4, = 0.

ll,. 1 + - dz
n

fn=D=dyy+ - +dy=>d, =0, +

,

A \
Z(nd,.-i—d,._, + -+ dy)= Y no,,

n=2 n=2
hi
Ta=yl

1 N=-1

NNCD Lo

Mz

na =d~—6~

idy = 01 < - ' | Sup o, +sup d, forall N > 2, which = limdy =0,
N - » n>JN
because sup, 9, < » and lim,. . 3, = 0.

(i) It suffices to show that m, ., f(n)/In n = f(ny)/ln ny (for any fixed ny > 2);
because 7 (n*) = kf(n) this implies that f(n) = (f(ne)/Inny)Inn for all n > 2.
Define g(n) = f(n) — (f{no)/In ny) In n;then it suffices to show that g(n)/in n — 0.
Let n=nno + 1), with 0 <1y < ny. Because g(ng) =0, g(n) = Yanle, +
g(n,no) where ¢, =gk + 1) — g(k)) =Y,& + g(n,). Now let n, = n,n,

i then g(n) = glns) + Y 7., Y050 &, 4, etc. After ko < In nfln ny steps,
n,m < n,,. and therefore g(n) = L & The sum has fewer than nyko summands,
and therefore lim g(»n) in n = 0. since ¢, — 0.

(35 ]

. Let # =C*®C? and p = (Pix. 1) Where pg ;= 51;‘5)‘1"&; rm=pq+ér,=
Pl—-q@)—& ra=(0-plg—& rp=(1-pX1 —¢q)+¢ with 0<p, g<1,
Py # 5. Since p is diagonal. this allows S,(p) to be read off with no further ado:
[{e=0.thenp = p, ®p..

P 0 0
P1=Trzl’=(0 I-p)’ Pz=Tl'|P=(q )

IfS,(p) were < S,(p,) + $,i.1,). then the function g(e) = (pg + €)* + (K1 —- q) — ¢)*
+((1 = p)g — &) + ((1 — p)(1 — yg) + ¢)* would bave an extremum at ¢ = 0, but
d'(0) #0if2 # 1.

Llet|xpe. ¥ @ H.1x> =Y, , il @Dk, where {Ii>,} and {|k),} are ortho-
normal sets in ¥, and .#. respecuvcly and p = |x)>{x|.

Tralx)<x}| = Try Y cachlidy 1 Gl ®1kD,, !

ijkl
= Y cachiizn il = ): I ADITTEI N
ijkl
which implies that the positive eigenvalues of Tr, | x) {x| are the same as those of the
po 8

matrix CC*, where C = (c;)). A similar argument shows that the positive eigenvalues
of Tr, {x> {x{ are the same as those of C*C and thus of CC*.

4. Let Ap, = u;; then the proposition is equivalent to S(},;a) < Y, S(a) for all
a;€ 6. Since In x is monotoric as an operator function (III:2.2.38; 11).if q, = O,
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thenin g; < In(}; a;), which implies a! *(In a,)a! 2 < a} %(In ) ; a;)a}’?, and therefore
Z( Tr(a;Ina) < Tr{(}; a) In(}; a}.

5. pi(@) = (zylpylgy) = Zi (2, ®eilplz, ®ed = (2, @ 2,lplz, ® 2,) = plz,. 2,).
since {e;} may be chosen to be an arbitrary basis. Therefore
S.(p) ~ Su(py) = Jdnfp(z,. 2,) ln(_p(_z,_!_) > 0.
0(zy, 2,)
’ . .
6. S, = e In Tr exp(—af(H — F(B))) = ;—E—l- [F(x8) — aF(B)).
Asa — 1,8 = dF(B)cB

7. (i) The function AS, is concave in 4, because

S(a(2y0 + (1 — 2))p) + (1 — a) (4,0 + (1 — A,)p))
> aS(4,0 + (1 = A)p) + (1 = D0 + (1 = 7)p).

d
S(alp) = i AS;li=0 = sup §;.

O<a<l
(ii) This is the pormality of the trace.

(iii) The operator concavity of —xInx = |§ (1 — x/(x + a) — x/(1 + a))ix is
equivalent to the operator convexity of 1/(x + 1), and it suffices to show con-
vexity with a = §:

. 1 1 1 4 1 1
< + - < + o
A+B)2+1724+1) 2B+1) A+1+B+1- A+1 B+1
’ 4
<>
B+D)V"(A+1DB+1)"+1
SB+D"HA+ DB+ D)2+ 1.

Since 4/(x + 1) < (1/x) + 1 for all xe R*, this is also valid for positive operators.
Therefore, (1/4)[s(Ao + (1 — A)p) ~ As(6) — (1 — A)5(p)] = O, which implies
S(a1p) = sup, supo <1<y (1/2) Tr P,{s(Ac + (1 ~ A)p) — 2s(a) ~ (1 — A)s(p)],
and s(p) is continuous in finite dimensions. This also provides a new proof of
the lower semicontinuity of S(p).

8. The right side of the equation clearly leaves the number of particles invariant. Hence
the formula is shown by

dz,---dz
(f,,....f,,lJ—N—';a—n—)ﬁdlz,,....z,,-)(z, ..... Zxlgy - gy

dz,---d N ,
Wl'fz—n_)’z"ﬁ nl Sz <ilge,)

=Y (xhF*?
r.Q

= ¥ [ Urlgod ——
PO i N!

=Y @ED I Silge) = {fus- s Sl -0 00D
» §

-
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2.3 The Microcanonical Ensemble

Insight into the ‘fundamental thermodvnamic laws is gained by
itcestiyaiing the chaotic state helovw the cnergy surtace.

Two truins of though? are usually followed to justify regarding the equilibrium
state as predominaung “or macroscopic systems. Like Boltzmann, one can
invesiigate the time-evoiation of a system and show (hat most states tend to
equilibrium. Alternatively, one can follow Gibbs and examine an ensemble
of identiul copies of the systen and identify states of scanty information
with equiibrium states The set of problems connected with the first pro-
cedure is the subject of the next chapter, while in this section we shall study
systems for which the only information concerns the energy. If it is known
that the energy does aot exceed some maximum value E, . then, as remarked
in {2.1.10: 2), the most mixad state contzining no further wnformation cor-
responds te the

Microcanonice! Density Matrix (2.3.1)

1 forx>0

o= L, ~ HY :m — H). )= .
1= O(E,, ~ HYTr &E, — H) O(x) {0 forx <0

where E,, > ¢; = the lowast eigenvalue of H. Its

Entrops and Average Fnergy (2.3.2)

Are
S=lnTrO(k, - H). E = expi - S)Tr H&(E,, — H).

-
\

Remarks 12.3.3)

1 ‘Thedisc onunuous furcticn & of a self~adjoin. operator 1s defined with the
spuvtral representation of rhe operator.

2. It 1s assumed that H 1s hounded below and that a¢,,(H) is empty. so the
traces in (2.3.2) are fnte.

3. The entropy S is a discontinuous function of E,,, and has no weli-defined
inverse. On the other hand, E may be construed as a function of §, as
shown in Figure 3. The fuaction E(S) increases monotonically.

4, By the min-max principle, E(S) is also given by E(S):=
exp( - S)inf,, Tr,, H, where 5, is an n-dimensional subspace of D(H)
and n = exp(S). It is consequently a concave function of all parameters
on which the dependence of H is concave.
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S E
In3+ p— L e
mn24 — . ﬂ_';ﬁ‘. —
N > - $ E, > t + E,
& & & L & & &
E
m > [
2 1
& 'S S
0 In2

Figure 3 The thermodynamic functions for a finite system.

5. By Property (2.2.3(iv)), all a-entropip‘s S, lead to the same S (2.3.2),
which can be identified as the entropy.of phenonemological thermo-
dynamics.

6. It will be seen shortly that in the systems under consideration here the
density of states increases so rapidly with the energy that in the limit of
an infinite system, any density matrix p ~ &E — H) — &E(l — ¢) — H)
yields the same entropy density for all ¢ > 0.

. The further properties of E(S) follow from the special form of the
Hamiltonian,

||'t |2

Z + z v(xl j),

i=1 2m; i>j
where v is assumed bounded relative to the kinetic energy. It will be most
convenient to deal with the quadratic form associated with Hy (cf. (II1: 2.5.18;
2)). The quadratic-form domain Q(Hy) consists of functions ¥ such that
Y. (1/2m) § 1Yy |? < oo and with some other restrictions from the boundary
conditions. The formula of Remark (2.3.3; 4) then holds with ) < Q(H).
The boundary conditions we shall choose are Dirichlet conditions on the
surface of a volume V < R3, which mean specifically that: o < L¥(V¥)
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and ¥ |ay v = 0. The Hilbert space o is LA(V") if the particles are distin-
guishabie. and if they are identical bosons or fermions, then . must be
restricted to functions of the appropriate symmetry. The energy can be
treated as a function of S, ¥, and N, and its dependence on V is described
by the following theorem.

Monotony of the Energy (2.3.4)

If V' >V, then
E(S, V', N) < E(S, V, N).

Proof

This follows from (2.3.3;4) because Q(H(V’)) > Q(H(V)), where = 1s
intended in the sense of the natural imbedding, i.e., functions ¥ such that
Ylpy = DaresettoOin V'\ V. ]

Subadditivity generalizes this monotony when particles in separated
volumes do not repel one another.

Subadditivity of the Energy (2.3.5)

VinVy, =@ and Xx; — x;) < 0 for allx,;e V,, x;€ V,, then
E(S; + S, ViUV, Ny + N,) < E(S,, Vi, Ny) + E(S,, V2, N,).

Proof

This again follows from (2.3.3; 4), since the right side results from taking
the infimum over a subspace of Q(H), which consists of tensor products of
exp(S,) vectors, for which N, particles lie within the volume V;, with
exp(S,) vectors having N, particles within V,. The tensor products have
to be symmetrized or antisymmetrized if there are Bose or Fermi statistics.
However, since symmetrization does not affect the expectation values of
(2.3.5) when the functions have disjoint supports, (2.3.5) is independent
of the statistics. a

The existence of limy ., E/V can be derived from the subadditivity,
‘though it is rather difficult to go beyond the restriction v < 0. This problem
will have to be investigated later for each of the systems discussed in §1.2,
and for now convergence will simply be assumed. The condition is satisfied
trivially for free particles (v = 0). To draw conclusions like those of (2.2.15),
assume that V is a cube, the volume of which will also be fearlessly denoted
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VeR". If eight cubes are packed together as a single cube of double the side,
then (2.3.5) implies

E(8S, 8V, 8N) < 8E(S, V, N). (2.3.6)
Assuming in addition that there exists 4 € R* such that .
Hy > -AN forallNeZ"*, (2.3.7)

the limit
lim S7VE(R'S. R EN) = inf8 "ER'S, ' V. &'N)

Py oy

exists. This allows the passage to an infinite system, for which the energy.
entropy.and particle densitics aredefined Oy F b = a5 1 = qand NV =

[ ]
The Thermocynamic Limit of the Energy Density (2.3.8)

aa. p) = in" 8 pEKep L 8p E 8

J v

Remarks (2.3 9)

1. Equ:uion'(l.l?” guarantces that ¢ > 50 the infimum always exists:
out (2.3.8}) 15 only of interest when there 12 a well-defined limit, for only
then 15 1t certain that the thermodynamic properties do not depend on
the exact number of particles. Even f the limit exists, as in the case of
(2.3.6), it does not guarantee that the resulting ¢ is nontrivial. if. say, the
particles can be distinguizhed (which does not invalidate the genera!
conclusions), then classically,

» - ; A \ F.‘a.\‘ 2 V\i
Sy = aN j Wo@(E. - Vil iim T
exptS) de x {d*p (L S el ) (N
and
E=q1. A
Therefore. as N - .,
E 3 .
g ) 0.
V  2me N*¢ 3 CXpaap

The familiar result obtains only with the replacement exp(S) —
(1/N ') exp(S) to account for the particles being identical. A later calcula-
tion of «f4. p) will reveal that (2.3.8) is ther not without content.

2: Though the result has been derived or's fc:r cubes. the limit clearly exists
for other shapes if they are not too different from cubes.
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3. Tne effect of dilatations on the kinetic energy (cf. (I11: 3.3.21; 8) and
(IIL: 4.1.4)) of free particles implies, moreover, that
E(S. V, N) = exp(27)E(S, exp(~37)¥, N).

Hence the one-parameter family of limits

lim § !~ 2NE(8*S, 81173, §*N)

Vo
exist {cf. (1.2.1)). Ordinarily. the limit is taken with 7 = 0, and quantities
proportional to N, like E, S, and ¥V, are described as extensive, while
N-indcpendent quantities like ¢, p, and o are called intensive. The existence
of some limit is important, for, whatever it may be like, it enables precise
prupositions to be formulated. In reality svstems are large but still
finite, but if a quantity converges as N — oo the limit may be expected
to be attained for practical purposes when, say, N = 10?4, Indeed, it
will be shown in realistic situations that the limit is sometimes attained
tc O(N ' ®), which is sufficient accuracy for macroscopic bodies. There
are various ways to interpret the limit N — 2. As has been done here, the
system may be thought of as becoming larger and larger, or, alternatively,
the atoms may be imagined smaller and smaller with their number in the
fixed volume of the container bemg increased at the same time.

Since monotony and convexily survive pointwise limits, there are the
following

Properties of the Energy Density (2.3.10)

For the function R* x R* - R*:q, p = &0, p),

(1) ¢ increases monotonicaily in o
(i) p 'l xp. p) increases monotonically in p:
1)« i contex tn (o, p):
(iv) mereoter. for free particles. e(a. p) = p° 3f(o p).

Proof

Praperty (i) holds as remarked in (2.3.3; 3), and Pioperty (ii) follows from
Theorem (2.3.4). From subadditivity (2.3.5).

e3(0, + 02),3(p; + 02)) < Heoyp) ¥ elo2, P2
which implies (iii), and (iv) foilows from (2.3.9: 3). .
Remarks (2.3 11)

1. Since N G.Z‘, Seln Z7, ¢ is at first defined only on the dense set for
which ap~! 1s a power of (In 2)/2, ze Z*. It extends continuously to R,
because monotony and concavity with the coefficient 4 imply uniform
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continuity. There are discontinuous functions that are concave with
coefficient 4, such as

X, X rational,
0, otherwise,

J(x) = {
for which the equation f(xx) = af(x) holds for all rational «. However,
this can not occur if the function is monotonic. The extension then in
addition satisfies the inequality

gaoy + (1 — d)o,, ap; + (1 — a)p,) < a&(0y, py) + (1 — W)e(03, p2)
forallzeR0<a < 1.

. Subadditivity (2.3.5) is sufficient but not necessary for Property (iii);
(2.3.5) may be violated if the interaction is partially repulsive, which is a
necessary assumption or Hy > —AN when the particles interact.
However, if the potential goes to zero rapidly enough at infinity, the
correction to (2.3.5) on any finite region is a surface effect, so the convexity
of the energy density is still guaranteed in the thermodynamic limit.
On the other hand, the special form (2.3.8) is crucial, and in §4.2 it will
be seen that convexity (2.3.10(iii)) is violated in gravitating systems,
although (2.3.5) is valid.

. Since the limiting function is continuous, Dini’s theorem ensures that
the monotonic limit (2.3.8) is uniform on compact sets.

. Let_H be defined so that inf ¢ = 0. Since ¢ is convex in o, unless ¢ = 0,
there exists a o, such that ¢ is strictly monotonic in ¢ for all ¢ > a,.
There is consequently an inverse function a(e, p) (see Figure 4), which is
concave and monotonically increasing Ir &.

. As long as ¢ is strictly monotonically increasing in ¢, the density matrices

p = ©(E, — H)exp(-S)

0o 1

¢ ‘ e

Op

Figure 4 The thermodynamic functions for an infinite system.
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-~

and
P> = (O(E,, — H) — O(E,, — V& — H))exp(—S,)

yield the same entropy densities in the limit ¥ — x :

fim le TH(O(E,, — H) — O(E,, — V'§ — H))

Vx

s

o(e, p) + lim (7 In(1 — exp[~V(o(5,p) —a(e = 8,p)]) = ¢

V=

This means that as N — > most of the states crowd just under the energy
surface with arbitrarily high density.

. For some systems o(¢) is constant for ¢ greater than some ¢,, in which

case p and p; may have different entropies. Consider for example N
spins in an external field ((1.1.3) with ¢ = 0). The density of states
(3/0E)exp[S(E)] is invariant uader ¢ — --» and thus an even function
in E. This makes Tr p, a decreasing function of E, when E,, + 0 > 0,
which is impossible for Tr p (see Figure 5); Definition (2.3.1) rules
negative temperatures out.

The number of energy levels below E,, is exp(Ng/p), which is immense
for macroscopic bodies, N ~ 10?4, 1t would never be possible to 1solate
the energy levels completely —their widths are on the order of (macro-
scopic time)™', which is much larger than their spacing. Systems will
later be idealized as infinite, having continuous energy spectra, which
comes closer to reality than does the fiction of a discrete spectrum.

After this first exposure to these ideas, et us consider two systems the

interaction between which is so weak that it can be negiected in comparison
with other energies. They are to be considered as parts of a larger system
with )¢ = ), ® M, H = H, + H,. The question is how the energy and
entropy are shared by the two subsystems. Even though H is & sum, the
microcanonical density matrix (2.3.1) is not n the form of a product
p = p, ® p,, and we will have to see how the entropy of this state can
nonetheless be additive for independent, macroscopic systeras. Assume to

de’

—— =]

J0E

Tr'p’ En

Figure S Inequivalence of the microcanonical ensembles for spins in a magnetic field.



80

2 Thermostatics

this end that the systems are large and that the sequence (2.3.8) converges
and has all the necessary kinds of continuity so that ¢ = E/V can be regarded
as a continuous variable for the purposes of integration and differentiation.
For the problem at hand and other estimates we shall need

Lemma (2.3.12)

Let a(2) < 0 and be concave on [0. 1], and a(l) = 0, — x© < 6(0) < 0: this
implies that o is nondecreasing and that there exists an &y, 0 < & < 1, such
that ¢’ = 6'(¢g) > 0. Then

i~ exp(—V!0(0)i)

V{a(0)i

1 — exp(—Veo o)

o
< L deexp(Vo(e)) < | — g0 + Vo'

Proof
By assumption (see Figure 6),

| (0 foreg<e<l
(1 =e@ < 0@ <) _ o for0<e=s, .

a(0)

[A%A

Figure 6 Bounds for the concave function o(¢).

Corollaries (2.3.13)

1. If ¢ is concave but not necessarily negative, then the formula

j”l-‘ de exp(Va(s)) = exp(Va) J“dchxp( V(o(e) — d)) with ¢ = max a(e)

asesd
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!‘.)

can be used instead, since — . < 5 < « uniess o = + . By an applica-
tion of the lemma. possibly after subdivision of the region of integration.
i *P
lim % in ' deViexpti mi) - 7Y = 4,
. b ~x v

Thas »nnly the maximum value of & contributes in tiie infinite limit:

) 1 rb
iim - In | Vdeexp(Va(s)) = sup a(e) = d(e,) = sup a(s).
V—-x Jy 2<eEh asr<h
Remark (2.3.11: 5) leads one to expect that E,, and E may become equul
for large systems. More preciselyv. i ¢ is concave in & do/de > U,
lim, . (E = E,)'V = 0. This follows becuuse E may be written as

E,, -
E = exp(—S:Tr HO(E,~ H) = " AEE [ ToO(E — Hyexp(~$)
Jo C
k.,
=E,~ | dE Tr@QE - Hiexp(-S).
40

With ¢, = | and E' = ¢V the lemma now implies that the last integral 1s
O(1), whereas E,, ~ V.

. We next caiculate exp(S(E)) = TrO(E - H, — H,.H;,>20, as V =

Vi + V, = x with V/V fixed. Because of the assumption of subadditivity,

oy, (E) = Tl/ InTr, Ve — H))
1

1s concave in ¢ «nd increases monotonically to a,(¢). Let E,[n] denote the
ordered sequence of eigenvalues of H,. If the entropies are considered as
functions of the maximum energy, which leads to the same function in the
limit V — . because of Corollary 2, then n may be identified with exp S,
and E,(S,) = E,[exp(S,)] becomes the function iniroduced in (2.3.3: 3).
With E = &V,

o(¢e) = lim Il;ln Tr&(E - H, - H)

V=
exp(S2E))
= lim f/—ln Y. exp(Sy(E — E,[n))).
V-+0 n=1

Now regard n as a continuous variable, and interpolate E,[n] linearly.
Since the integrand decreases monotounically. the sum ) P28 ... Jies
between [§®525" gn ... and [§PS2EN* 1 dn ... and the evaluation of the
error is unnecessary, since exp(S,(E)) ~ exp(10°3). With the variables
o, = (1/V3)In n, o(¢) can be-written as

l o 2(r) Vv VZ
lim = In [ Vydo,expl Vioy v {6 — —~&,(02) ) + Voo, |
V-2 V 0 V‘ V!
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Now note that ¢, + a — be,y(0,) is concave if b >0, g, y, is concave
and increasing, and that (concave, increasing) - concave = concave. This
allows the lemma to be applied, to show

. lf V V V K
o(e) = lim su [-—'a (—8——2—5 . )+-——2-o.
V- Osazsg;(g) Vv LV, v V1 2.Vz( 2) v 2

Vv, ( vV vV, ) v, ]
= sup |=-0,l5¢— ¢00,)) + 0,
OsazSaz(t)[V ! Vl Vl 702 |4 2
The interchange of the limit ¥ — o0 and the supremum is justified because
£,.v,(0,) increases monotonically in ¢, for all V,, and since o, y,(€)

likewise increases in ¢, it decreases in ¢,, and consequently the first term
in the brackets [ ] converges uniformly on compact sets to

vV v,
02 = 04\~ % € —782(0'2)
1 1

Although the concavity of o is preserved in the limit ¥ — oo, strict
concavity, which is needed to guarantee that the maximum is attained
at only one point, may break down. A lack of strict concavity means that
there is a phase transition, and will be examined in detail later. If, however,

o¢,) are strictly concave and continuously differentiable, then the result of
Corollary 3 can be improved upon and the additivity of the entropies
demonstrated.

Equilibrium Condition (2.3.14)

Let o(¢) = limy, _, o (}/V)) In Tr ©(V,&; — H;) be strictly concave and con-
tinuously differentiable,lim,_ o 6'(¢) = o andlimy_ , V;/V = a,a; + a; = 1.
Then

lim TI/— InTr ©(Ve — H, — H,) = o(¢) = ,0,(¢,) + a,0,(¢,),
V—-o

where ¢; are determined uniguely by

é 0
o€ + A€ = €, E 0,(¢y) = 3_82- o,(e2).

Remarks (2.3.15)

1. The energy densities can equally well be regarded as functions of the
entropy densities, which reformulates the equilibrium condition as
é

é
—&(0,) = — &(0 and a,0, + a,0, = 0.
20, 1(01) 30, 2( 2') 101 202
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2. Convexity of &) is equivalent to concavity of a(¢), which is equivalent
to the number of states below E,, not increasing faster than exponentially
with the energy. This is not a general property of quantum-mechanical
systems, and has to be checked in individual cases. A simple counter-
example is the hydrogen atom, for which E, ~ —1/n?, exp(S(E,)) ~ n°,
where n is the principal quantum number, and therefore

A2

E ~ —exp(—£9), %~§exp(—§$)>0. Z§_E~ —$exp(—4S5) < 0.
In such cases there may be many solutions of the equilibrium condition
(see Figure 7).

3. Condition (2.3.14) implies that the energy is apportioned between the
two systems so as to maximize the total entropy. From the point of view
of &(c) this means distributing entropy so as to mnimize the total energy.
As a consequence, the subadditivity inequality (2.3.5) becomes an equality
in the limit V — 0.

4. If ¢{0) € C?, then at the mininfum, &} /a, + &34, = 0, where &” = 9%¢jda>.
Then by Problem 4, at the minimum, 1/¢" = a,/¢] + a,/¢;. °

If the total system consists of a system immersed in a thermal reservoir,
then the system of interest is not affected by the fine details of the reservoir,
but only by ds,/d¢,, which not only determines do,/d¢,, but also equals
00/i«, because

d e 1 \
2 (0‘101(31(3)) + azdz(;; - ;} 51(9),’)

2 7

\

= G4eae) + 2 2 (@1(exf6)) ~ erN)

whe.e

£ oy \
eq(e) = o ;'\"1(3),
2 3

and the latter term vanishes because of {2.3.14) This is'the justification for

, '
62 el el

7

(] -
€, €, convex €, not convex

Figure 7 Umqueness of the equilibrium temperature.
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Definition (2.3.16)

The temperature is

Remarks (2.3.17)

1. The *emperature has the dimension of energy in units where Boltzmann’s
constant k is set to 1.

2. The temperature is always positive with the microcanonical p (2.3.1),
but p, gives the spin system of (2.3.11;6) a neg,atnve temperature at
E>0.

3. The concavity of ¢ means that the specific heat at constant volume,

dT)’l T

Vgl = = — = —— = —_——
i Al e (da Pejda?

is positive. In particular, by Remark (2.3.15; 4), the heat capacity (at
constant volume) C;. = V- 1/¢” of the total system is the sum of the heat
capacities V;-1/¢{ of the subsystems. The condition of stability &}/a,
+ &3/a, > 0 implies that two systems of negative specific heat can not
coexist in equilibrium. Heat transferred from the hotter system to the
colder one would make the hot one hotter and the cold one colder.
Large temperature fluctuations would arise, tnaking the situation unstable.
If only subsystem 1 has negative specific heat, while that of subsystem 2 is
positive, then the heat capacities must satisfy |C,| > C,: The transfer
of heat from 1 to 2 would warm subsystem 1 less than 2, so 2 would im-
mediately cool off by transferring heat back to 1, making the temperature
equilibrium between the subsystems stable. This means that the tem-
perature of a system of negative specific heat should be taken with a small
thermometer, and never with a large thermal reservoir.

Now allow the wall between the subsystems to be slowly moveable. The
energy as a function of V acts as a potential energy for the wall, just as the
electron energy acted as the potential for the atomic nuclei in the Born-
Oppenheimer approximation in volume III. Stable equilibrium occurs when
the total volume V is apportioned so as to minimize the energy. Let V, =
V - V,, and look for

ES,V,N, + Ny)= inf (E(S, ¥}, N))+ E;S—S,,V—V,,N))).
0s5,55
osV, sV

(23.18)

In the cases of interest here, E depends differentiably on V even for finite
systems, and E — oc if ¥ — 0. Hence the infimum is attained within the
interval 0 < ¥; < ¥, and is determined by the
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Equilibrium Condition (2.3.19)

For E of (2.3.18), the equilibrium volume V¥, satisfies
GE, _ OF,
v, ~ v,

Vi=V-v,

Remarks (2.3.20)

1. Because the energy is monotonic (2.3.4), with the boundary conditions
Yjav = 0, it follows that JE/V < 0, and so (2.3.19) definitely has a solu-
tion ¥,. At that minimum,

azEl azEZ azE -1 azEl -1 azEz -1
v Yz 20 (FV’) "(e_v?) * 577) -

2. With other boundary conditions it may not be true that dE/V < O.
For example, if a hydrogen atom is confined to a sphere on the surface
of which dy;py = 0, then E = E_ — ab' ~!/3, 50 E/0V > 0. This kind of
boundary condition can be approximately realized physically with a very
strong &' potential. The lesson of this is that it is necessary to verify the
hope that in infinite systems the pressure (see (2.3.21)) satisfies P =
—@E/3V > 0. It is not guaranteed that ¢2E/0V2 > 0 even with the
boundary condition ¥,y = 0. which makes the proof of the convexity of
&(a, p) all the more important for real matter.

3. Since OE/¢V |s = —OE;0S|, éS/2V |g, another interpretation of (2.3.19)
1s that the condition &(S,(E,, V,) + S,(E,, V — V,))/éV, = 0determines
V', ; that is, the volumes arrange themselves to maximize the total entropy.

and

Analogous to (2.3.16) is

Definition (2.3.21)

The pressure is P = —CE/AV. In the limit V — o it becomes
‘e de Jdo éa
P = "-8+P%+G’a~a— T(O’—b&*—pap).

Remarks (2.3.22)

1. For realistic systems it can be shown how the pressure defined in (2.3.21)
arises from the forces exerted by the system on the wall [9].

2. The equilibrium condition states that the pressures of the two subsystems
are equal, with the same value as the total system has.
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3. Remark (2.3.20; 1) implies for the compressibility
P .. 9% % , 0%t
x_..[vﬁ] e [ 2t v g0 22 4o =

" V2
K= —V- K, + 7 K,.

4. For the systems to be stable against displacements of their interface, their
volumes and compressibilities must be related by (i, V;)~! + (i, V5)~*
2 0. For reasons like those of (2.3.17; 3) it is not possible for two systems
of neghtive compressibility to coexist, because the pressure of one system
would increase with its volume and force that of the other one down. If
only subsystem 1 has negative compressibility, then a necessary con-
dition for stable equilibrium is ¥, > V, - k,/|x, I The increase of pressure
in subsystem 1 when it expands is then less than that of 2 when it contracts.
If V, is large enough in comparison with V,, then subsystem 2 undergoes
a large relative compression and exerts more pressure back on 1 than
1 exerts on 2. The volumes adjust in the other dlrectlon and stable
equilibrium is established. )

that

Consider finally what happens to the particle configuration if the sub-
systems can exchange particles to maximize the entropy. Formally, this
means that the Hilbert space is

N
‘# = @ *‘\".’ﬁ ® ‘#N;.Vz'
Ni=1
and the quantity to be calculated 1s
N

Te®E~H = Y exp(SIN Nexp(S(N — N;)).  (2322)

Inthe imit V -» 2, N = ~, V¥ - v, N,'V; = p,. if S is concave in N, then
arguments like those made cather yield
Cap) = sup  (x,6,(p;) + 2202(p2)) (2.3.24)

L3V T SY T

{f the functions ¢ {p,) are nice. we obtain the

Let n(p;) be strictly concave and continuously differentiable. Then ofp) =
a,7,(p) + ®264(p;). where p, are determined uniquely by the conditions
60, 60‘2

2 rapp,=p and ——=—.
1Py T X202 = op, _ 9p,
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Remarks (2.3.26)
4

1. For a given ¢ and a given p, the six variables ¢;, p;, a; satisfy the three
equations o,&; + ®,€; = ¢, 2,0, + %0, = p, , + &, = 1. The three
variations 6E, oV, and 6N corresponding to the equilibrium conditions
are not independent, because S(E, V,N) is of the special form
Va(E/V, N/V), and there is one equation too few to fix six variables.
Suppose for simplicity that the two subsystems are identical, ¢, = ¢, = o:
then because of the concavity, the maximum of a,0(e,, p,) + a,0(c;, p,)
is assumed when ¢, =¢, =¢, g, =p, = p, and a, =1 — a, is not
determined by (2.3.25) and can be specified arbitrarily. Equality of the
temperatures and the chemical potentials (see (2.3.27)) suffices to guarantee
that the pressures are equal. After the onset of equilibrium, the wall
allowing the exchange of energy and particles no longer exerts any force.
and can be placed anywhere.

2. It is still possible to minimize the energy instead of maximizing the
entropy. But this does not furnish a new stability condition, since if
Jd¢/0a > 0 the concavity of (¢, p) — a(e, p) is equivalent to the convexity of
(0, p) = &(o, p) (Problem 2). Besides ¢, > 0 and x > 0, this requires
that

F as ov

FEFE _(FE Y
8% av'? ’

or, in terms of the adiabatic expansivity

L)

2 ,
= - — a® > cpui/T.
VéT |y ’

L4
This amounts physically to the requirement of stability under a simul-

taneous change in the entropy and volume, related by

5§ O*E .. 3*E
Rt 12X esav’

The equilibrium condition (2.3.25) requires the chemical potentials

of the subsystems to be equal, if they are defined as with (2.3.26; 2) by
minimizing the energy:

Definition (2.3.27)

The chemical potential is
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Remarks (2.3.28)

1. The intuitive meaning of the temperature is the amount of energy it
would take to raise the system from the quantum number # to en (e =
2.718 - - -). Analogously, the chemical potential is the energy increase when
a particle is added to the system without changing ¥ or S.

2. Although T and P are always positive with the assumptions and boundary
conditions that have been postulated, 4 can in general have either sign.
Because the density of states increases with N, the e5th eigenvalue ay
decrease with N even if H > 0.

In phenomenological thermodynamics entropy increases if the energy,
volume, or particle number increases, according to the relationship
TdS = dE + PdV — udN. As we have seen, some of these differentials are
well defined only in the thermodynamic limit, and are theni considered as
intensive properties. For future convenience, we collect the

Interrelationships among the Thermodynamic Properties (2.3.29) .
d¢ " O¢ T do

I ap op’
o¢ Oe do do
P-——a+a§5+p5;—Ta—— 5——p$),
]! , 0% e ,0%k] !
= T[Za?} » FF [6 Gt dpda dp?

Gloss

The sense of the partial derivatives is that, of the two variables on which a
function has been regarded as depending, the one not written explicitly is to
be held fixed. In any doubtful case the fixed argument will be indicated
explicitly.

Remark (2.3.30)

Without knowledge of the Hamiltonian nothing can be said about the values
the thermodynamic functions can assume. In (2.3.11; 6) there was an example
in which ¢(a) was even bounded above. If the function &) is convex and
asymptotically linear, then there is a maximum temperature. This is quite
possibly the case realized in Nature, and T,,,, = 140 MeV. In a model to be
investigated shortly (2.3.32; 2), the function &(o) has a kink, so T skips over
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certain values. It depends on the system whether the minimum entropy o,
defined 1n (2.3.11; 4) equals zero as postulated in the third law of thermo-
dynamics. For instance, with a system consisting of N spins without energy
® a system with entropy Na, the total entropy divided by N equals ¢ + In 2,
and when ¢ — O the total entropy is the In 2 left over. It is true that the ground
state of this system is degenerate, but it is also easy to find examples with
nondegenerate ground states for which the third law fails, simply by taking
the previous Hamiltonian @ a one-dimensional system with a lower energy
level. The resulting ground state is simple, but that has no effect on what
happensas N — or.

It has been seen that the concavity of the function o(c, p) is at the root of
thermodynamic stability. Concavity is jeopardized when ¢ is maximized
with respect to all of its parameters—the supremum of a set of.concave
functions is not necessarily concave, in contrast to the infimum. However,
there is a useful

Lemma on the Envelope of a Set of Concave Functions (2.3.31)

If a(e, 2) is jointly concave in ¢ and a. then d(g) = sup, a(¢, 2) is concave in €.
Picture of the Proof

Think of the silhouette of a concave mountain slope and of a méuntain with
hollows.

Formal Proof if o(e, &) € C*(K)

With this assumption, the maximum is attained at a point a(s), 6(¢) =
a(c, a(€)), and

do(e)

0,6, 6(e) =0=>0, + —dTa"“ =0.
Then
dZ& — + daz(s) - 0,6¢0 32 — (a.n)z
de? = G Goea de B T 22 '

Since 6,, < 0 and 6,,0 ., — (0,,)* = 0. d*G/de* < 0. If o ,, = O, it follows
that o (¢, a(¢)) = 0, and therefore ¢, = o, < 0. (For the proof without
the assumption that o(e, x) € C2, see Problem 3.) (]

If the entropy is maximized with respect to parameters in the absence of
joint concavity, then thermodynamic stability may be lost, and it will be
necessary to reconsider the foregoing assumptions.
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Examples (2.3.32)

1. Model of a star

Consider N classical particles in a container V and attracting each other ’
panrwnse only within some V¥, < V. Suppose the potentials are constant *
in ¥, and ~ N~ to ensure that E be extensive.

Z |Pt|z - 2 Xvo(xL)Xvo(xj),

! i=1
1 forxe Vo
Iro(x) = {0 otherwise,
With indistinguishable particles, the' volume of phase space below the
energy surface,

exp(S(E, V, N))

N 1 N
=i J‘d” dwxe( 2 Pl + N "Eleo(xi)Xvo(xj))

i=1
n3N12 - 1 N 3N/2
= N!(3N)2)! J. d x(E + N E‘EIXVo(xi)Xvo(xj)) ’
‘...)>o
can be calculated exactly, because the integrand is piecewise constant.
Let N, be the number of the x; in V;. Then

exp(S) Vgnsmz <—V_ 5 1)N~No (E + N%/N)”’/z
(3N/2) ‘NESN85~2 Vo No!(N haad No)!
N .
we = Z exp(S(E9 V9 N’ NO))
No=1

Only the dependence on E matters, so let E=¢-N, p=N/V =1,
, No/N = &, (max(0, —¢))"/? < a < 1. Then it remains to evaluate

o(¢) = sup lim NS(Ne, N,N;aN) = sup o(s, @),
a N—-w

and with the help of Stirling’s formula,
o(c,a) = 3in(e + a?) —alna — (1 — a)in(1 — a) + F(1 — a) + constaut,

V .
— =1} 2.3.33
ln(Vo 1) ( )

A calculation of the derivatives yields

0, = %2, o,= 3“,+ln(£-—l)—l",

£+ T eta
s .. = —3a 3e — 3a? 1

(e +a®)? T e+rad) =T exadd  adl-o)



*.)!

Tt e Gmuin s acntaved on the cnrve

, 3
ay= =2t b oD
F—-%lax—~1)
and the ranges of values of the variables are such that ¢ + 2 > 0, so
oniy the branch of F > inil, 2 - 1) comes into consideration. Because

{e = e1(2))(& — &x(a)

O gy = = —-— wmmgpri—m—T s

-+ a?)a(l —a)

€.2 =§;( "‘?‘?-'I\/l -a\/l - lla,3)

o(e, 2) is concave in « except when ¢, < ¢ < ¢,. The sign of de/da =
— 7 ,./0 o, changes in the interval &; < € < ¢, so three values of a belong
to a single ¢, and the maximum needed is the greater of the two. Joint
concavity requires that

. 2
de—3u+4a?)

- (020" = 26 + o)l —a)

and implies ¢ > 3a — 4a?. If &) lies in this range of values, then the
system has positive specific heat, and otherwise not (see Figure 8). Indeed,

3a

T=c+o =T

behaves as a function of ¢ as shown in Figure 9. The physical significance
is that if energy is removed, the temperature falls until a certain fraction
of the particles reside in ¥;,, which causes the system to start heating back
up. If most of the particles are eventually in V;, then they behave normally
again. The system can be thought of as a normal system with

o(e, p) = p(3Ine — 3Inp)
put into contact with a peculiar system with
a(e, p) = p(3 In(e + p?) — $1Inp) -
If the energy is apportioned between them according to

o(e, o) = sup(3(a In(e, + a?) + (1 — a) In(e — &,)) ~ «F

—$(@lna+ (1 - a)n(l — a),
then tue entropy becomes exactly that of (2.3.33).

2. Model of a Ferromagnet
This problem is quantum-mechanical, but its analysis soon begins to
resemble that of Example 1, for which reason we shall boldly plunge on
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T(e) in Example (2.3.32; 1). ‘
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to the estimates without wasting time about epsilontic details. The
Hamiltonian of (1.1.3) is modn‘ied to

H = BZ <'>—~ S g0

{jl

which contains a magnetlc field in the z-direction and a spln—spm
interaction favoring parallel spins. The strength of the interaction
is the same for all pairs and must be ~1/N for H to be ~N. The mean
magnetization My can be introduced as before, H/N = BM§ — M, - My,
and it was shown in (111, §3.2) that the two parts of H can be diagonalized
simultaneously. If the eigenvalues of M’ are m, and those of My - M,
are m(m + 2/N),0<m< 1, —m < m, < m, then m, and m are always
multiples of 1/N spaced 2/N apart. To calculate Tr &E — H) it is also
nccessary to find the multiplicities of the eigenvalues: If m = 1, then all
spins must be parallel, and for one of these vectors, m, = 1. There are now
N vectors with m, = 1 —~ 2/N, corresponding to the N possible ways to
flip one spin. One of those possibilities has m = 1 (apply M~ to the
previous vector) and the others must have m = 1 — 2/N. The general
rule is that of the (¥) vectors with m, = 1 — 2r/N, (,¥,) of them have
m > 1 — 2r/N, and the remaining

N\ (N _N©WN-=-2+1

r r—1/" rIN=r+1)!
have m = 1 — 2r/N. This means that the number of vectors with the
eigenvalues (m, m,) is

' N{(Nm + 1) [ 2 2m
(N2YA —m)I(N2A+m + D! ol —m)Nm + 1

x exp{N[ln 2- ( *2' "’)1 (1 +m)— (l - "‘) In(l — m)]}.

The last step used Stirling’s formula x! ~ (x/eJ*./2nx, which is justified
only for m < 1 even when N > 1, but in the limit being taken the contri-
butions from the boundaries of the summation region are inconsequential.
Since the mtegrand is a continuous function, as N — oo the sum
Y o3™ _ _ . ---can bereplaced with the integral (N/2)? (sdmfm dm,- -,
and with ¢ = E/N this leaves -

2

Y dm m
om+ 1y 2n(1 — m?

x exp{N[ln 2 - (1 ’; '”) In(1 + m) — ( 5 "’) In(1 — m)]}

X J‘ " dm,®(c + m* — Bm,). (2.3.34)

exp(S(e)) = N¥2
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Figure 10 The region of integration in the m — m,-plane.

Therefore the domain # of integration is {(m,m,)):0 < m <1,
—m < m, < m}n {(m m,): m, < (¢ + m*)/B}. Theentropy S is obviously
even in B, so we may restrict consideration to B > 0 (see Figure 10).
Since the exponential function decreases rapidly with m, the appro-
priate generalization of Lemma (2.3.12) makes ¢ = limy. ., S/N sensitive

only to my = inf,, , .4 m (the exponent in (2.3.34) decreases monotoni-
cally in m):

2 B
my = 9(_8)(\/'»%'- E_E)a

6 =1In2—-310(—¢)[(1 + mo) In(1 + mg) + (1 = my) In(1 — my)], -

(2.3.35)

if e > — 1 — B, and is otherwise 0. Since o is concave but decreasing
in my, the concavity in ¢ remains to be verified:

_ do O(—¢) 14+ mg
' —- =
T = "= " Tom 2
1 _do__O(=¢)
T’  de* 8

§ B\ lemo 2
s ¢ 1—my (B4 —o)(1 —m)|

(2.3.36)
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[N

. e=-1-8B
Figure 11 The surface of states in T — ¢ — B-space.

In a lucky break, the positive term in the brackets [- - -] is always greater
than the negative one, and ¢, is always positive. If -1 > —1 — B <& <0,
then T increases continuously from 0 to co. The heat capacity c, increases
from 0 to a maximum value and then falls back to 0. If B =0, then T

. reaches the value 2 for £ = 0, at which c, has risen to 3. Afterwards, T
jumps up to oo and cy falls back to 0 (see Figure 11).

Thus if B=0 and T < 2, the thermal motion is no longer strong
enough to counter the ordering tendency of H, and a spontaneous
magnetization m, appears. As no direction is preferred, the thermal
expectation value | Tr pM | remains 0. We shall learn later that as N - oo,
the GNS representations of the ¢’s constructed with p become integrals
over all directions of thermal represéntations (1.4.7). If B > 0, then
Tr pM points in the z-direction, and m, grows smoothly from 0 to 1 as
T decreases.

The interactions in t,hesé examples could have been replaced with average
fields. This is typical of forces of long range like gravity. If the long-range
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forces neutralize each other—-for instance if they are electric—-then the
system is basically the sum of its parts, i.e., it can be decomposed into parts
in such a way that the entropy, energy, volume, and particle number are all
additive. In that case the maximum entropy is concave.

Thermodynamic Stability of Decomposable Systems (2.3.37)

For an arbitrary function o,

(e, p) = sup sup Y. ;0(¢;. p)).

n K, i=1

where

Kn = {(ai)’ (81')1 (pl)

is jointly concave in v two variables.

Proof

Let ¢ = ye' + (1 — )", p = 7p" + (1 — y)p". Divide (a;) into (;) and (o),
and take the supremunn over K,. and K,,..-: :

Y oi=7 ) & =¢, ) @pj= P'},
i=1

n” " "
Z a:.I = l _ y’ Za;re;l = 8”, Za;’p;’ = pu}‘
i=1 i=1 .

i=1

Kl' = {(a:)’ (8;), (p:)

K, = {(ai'), (e (P}

Since this is only a particular division,

(¢, p) = sup sup (}: a;o(e;, p) + ): a; o(e;, /)2’))

n'.n" Kn'. Kn”

= (', p') + (1 — y)a(e’, p"). O
Remark (2.3.38)

The construction (2.3.37) gives the concave envelope of o, but nothing
guarantees that & is strictly concave. If ¢ is linear, then 6 = o,and o is of the
form of Example (2.3.32; 1). The convex part of the curve gets bridged by a
straight line, as shown in Figure 12.

The function & is simply aa(e,) + (1 — @)o(e,) in the intervening region
where ¢ = ag, + (1 — a)e, for fixed ¢, and &,. An interpretation is that the
system consists of two phases in this region, having energies &. and ¢,,
and the temperature remains constant as the total energy varies, wkile the
proportions of the phases present change. This suggests a :
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¢y <0
A
7 A}
—+ : - e
1 &

Figure 12 The region of negative specific heat.

Rough Definition of the Thermodynamic Phases (2.3.39)

The extreme poinu of the concave function a(a; p) correspond to pure phases,
and in the regions of coexistence of more than one phase the function o is
not strictly concave.

Examples (2.3.40)

1. If the graph of o(¢, p) shows a belt-like region the curvature of ‘which
vanishes in only one direction, then two phases coexist in its interior.
The sides of the belt corrupond to pure phases and the end to a critical
point (see Figure 13):
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Figure 13 The region of coexistence of two phases.

2. In the usual solid-liquid-gas phase diagram, the triple point occurs in a

region at which the curvature of o(e, p) vanishes in both directions
(Figure 14):

coexistence of
solid and liquid

<+ critical point

coexistence of gas and liquid

[
[
[
solid [ gas
L
[

I coexistence of .
solid and gas

Figure 14 Regions of coexistence.

Remarks (2.3.41)

1.

The sum, in the sense of (2.3.37), of many copies of Example (2.3.32; 1)
produces a concave &, since the convex part lies below the phase-
transition line. Some concave pieces of the curve are also bridged over,
and are known as metastable phases, which arise in superheated stars and
supercooled gases. They have positive specific heats and are locally
stable (see Figure 15):

. Gibbs’s phenomenological phase rule states that whenever a material

has two coexisting phases, there is always a one-parameter family of
coexisting phases described by T(a} and u(«). Three coexisting phases
can only exist at discrete values of (T, ). This is exactly what went on in
(2.3.40; 1) and (2.3.40; 2), where the parts that are flat in one direction
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c stable

¢; > 0. metastable

¢, < 0, unstable

¢, > 0 metastable

Figure 15 Stability of the regions of (2.3.32; 1).

are two-dimensional, but is not a consequence of concavity alone; for
instance the function ¢ = —&Pp7% p > g 4+ 1 > 1, has a straight line
segment only if ¢ = 0, but is nonetheless concave in (g, p).

. A quadruple point of a substance would be a flat rectangle in the energy
surface. The nonexistence of quadruple points does not follow from
concavity, but amounts to the assumption that the flat pieces of the energy
surface form a simplex. If they do not form a simplex, then the ratio of the
phases in the mixture is not even necessarily determined by ¢ and p:

’

O D) =31 +3) =32 + 9).

1 4

At this point we have no arguments that would show that quadruple
points do not occur, and in fact 1t is easy to construct models with
quadruple points by taking the sum of two independent systems each of
which has a phase transition. We shali have to take the i1ssue up anew in
(3.212:2) ,
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Problems (2.3.42)

1. Show that if a(e, p) is concave. then (E, N. V) — S(E. N. ) is concave.
2. Show that for ¢ , > 0, a(e, p) is concave iff &(a, p) is convex.

3. Without assuming differentiability, show that if o(c. 2) is concave, then &(c) =
sup, o(s. 2) is concave.

4. Prove the relationship V/e” = V /ey + V,/e) of (2.3.15: 4).

Solutions (2.3.43)

1. For simplicity assume that ¢ is twice differentiable. Then
O e O —&0 ; — PO

2¢ . _ - -
b*s = vV O 900 €0.cp = PO pp

—€0, — PO —E0, — PO, ezp.u + 2£po',, + pzo.pp .
Observe that the concavity of S is equivalent to DS < 0, which means that D*¢ < 0

and det DS < 0. However, DS = 0 because the mapping 4 — S(AE, AN, iV) is
affine.

2. The function ¢ is concave iff the concave hull [ ={(x.52) =Y Adxi. yir 2
(. ynz)el 0 A4 <1, Y, 4 =1} of the graph T = {(x, &, p): x = o(¢, p)} lies
completely below I". However, looked at from the other side, I' is also the graph of the
inverse function &(c, p), except that “below ™ becomes “above " and vice versa.

3. Let ¢ = 3¢, + (1 — ¥)e2, and choose &, , so that sup, a(e;, @) = a(e; @), i = 1,2,
or at least comes arbitrarily close to equality.

sup o(, a) > o(ye, + (1 — Y)ez. y2 + (1 — Vay)

> y0(e,, 4,) + (1 — 1)ae,. %))
= y6(e,) + (1 — )d(e,).

4. (o)) = & Vo - Vo =08y = v_h 7 )r" =0} = y__&__
B W 7 A AN AL A A ETANA
L RN 2

_,1,2 S TP e I — -

£(0) = ey(0)) > ¢" = 0,8 = e ;
(@) = &0, D AR Y /i A T

2.4 The Canonical Ensemble

The Maxwell-- Boltzmann distribution arises from the state of a system
in contact witk a thermal reservoir. If the system is large. this staie is
indistimguishable froin that of the microcanonical ensemble.
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In the preceding section it was shown that the entropy of two large sub-
systems without interaction is additive. The entropy was always defined
with the microcanonical density matrix (2.3.1), but when the density matrix is
restricted to a subsystem,

Tr, &E — H, - H ;
o = ';rzg((s e :)) = exp(S(E — H,))/Tr, exp(S(E — H,)),

(24.1)

it appears quite different. It will now be shown that p, dues not depend on
the nature of the second system if it is infinitely large (a thermal reservoir).
We shall also find out that this so-called canonical density matrix is equiva-
lent to the microcanonical density matrix if the system is large. The con-
vergence of p, as the second subsystem becomes infinitely large is d&scnbed
by

Lemma (24.2)

Suppose that the concave, increasing functions (1/V)S(E) = 6,{E/V) and
their derivatives converge uniformly on some neighborhood of € = E/V to a
function a(¢) € C' and to 6'(¢). Then as V — o,
_ _exp[Voy((E — H,)/V)] exp(—H,0'(¢))
Pv = Trexp[Vo,((E — H,)/V)] ~Tr exp(— H,d'(¢))
in the trace norm, provided that exp( —H,d'(¢)) is of the trace class €.

Remarks (2.4.3)

1. Asin (2.3.13;2), E and E,, can be identified.

2. A priori, S(E) has been defined only for discrete values. We assume that
it can be interpolated with a concave, strictly increasing, continuously
differentiable function.

3. The facts g,,(H) = @& and H > 0do not suffice to make exp(—fH) € €, ;
Sp(H) could be Z* and the eigenvalues ne Z* could have multiplicity
n", More assumptions are needed than (2.3.3; 2).

4. The significance of the lemma is that temperature is the only propesty of
a reservoir in the infinitely large limit that enters into the reduced density
matrix. The reduced density matrix has the canonical form regardless
of the structure of the reservoir, when the energy of interaction can be

neg)ected
Proofof(2.4.2)
With Tr, &E, — H,) = exp(5,(E,)), Tr Q(E - H - Hy) =
f dE, exp(S(E — E,) + S,(E)))S(E,), py can be written as

exp{VoW(e — (H,/V)) — ou(e)]} .
IdEx exp{Sy(E)) + In 5\(E,) + VIow(e — (E,/V)) — ov(e)]}
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‘ S(e)

eTH €
vV

Figure 16 Estimating the slope of S(¢).

Because of concavity, if H, > 0, then H,a}(¢) < V[a(e) — ov(e — (H,/V)]
< Hyo(e — (H/V)) (see Figure 16).

The assumption that o converges uniformly then makes
Vioy(e — (H,/V)) — oy(¢)] converge uniformly to —H,d’(¢) on compact
sets in Sp(H,). Moreover, there exist V' and f# such that for all V > V',
there is an operator inequality, exp[V(o\ e — (H,/V)) — 6(€))]
< exp(—BH,). In the spectral representation of H,, exp[V(oy(e — (H,/V)
— 0€))] = exp(— H,a'(¢)) in the strong topology, by the Lebesgue domi-
nated convergence theorem. If the operator on the right belongs to €,,
then by the dominated convergence theorem again,

Tr exp[ — H,0'()] = j dE, exp[Sy(E,) + In Sy(E,) — E,0'()]

V-

o5 )

The proof is completed by appealing to the theorem (Problem 1) that strong
convergence of density matrices implies convergence in the trace norm. [J

Corollaries (2.4.4)

1. Since py converges in the sense of the strong topology of #(#)* (cf.
(2.1.2)), Trpya— Traexp[—B(H, — F)] for all aeB(H,), where
B = d'(¢), exp(— BF) = Tr exp(— BH,).

2. Because of Theorem (2.2.24), S(exp[ — f(H, — F)]) < lim, .., S(py).
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Recall that the microcanonical state is the most mixed state below E,,.
The canonical state instead satisfies

The Msximum Principle Tor-the Caponical Entropy (2.4.5)

Let p = exp(— BH)/Tr exp(— pH)and let p be any density matrix such that
Tr pH = Tr pH. Then S(p) 2 S(p).

Remarks (2.4.6)

1. Proposition {245y states that with a given avefage energy, the canonical
state has the greatest possible entropy. The proposition does not work for
all a-entropies S,, so it can not be lmproved to the statement that p > p.

2. According to inequality (2. 117; 2), since x -+ —x In x is strictly concave,
§ is a strictly concave functlon on the convex set of density matrices p
such that Tr pH = E. This means that the maximum is unique, and there
can not even be local maxima elsewhere.

3. Notall§,(p)areequal with thecanonical p: S, = B(F(af) — F(B))/a — 1).

4. This maximum principle is sometimes invoked as the motivation for the
canonical density matrix, without appealing to the microcanonical state.

5. The free energy satisfies the inequality F(5) > F(p) without the assump-
tion that Tr pH = Tr pH.

- Proof

Probosition (2.4.5) follows directly from Remark (2.2.23; 1). 0

The canonical partition function Z = Tr exp(—SH) is easier to work
with than the microcanonical partition function, because it does not irtvolve
discontinuous functions; if the dimension is finite, it is even an entire function
of p. If the dimension is infinite, then exp(— fH) is required to belong to
€., so the spectrum of H must be bounded below and extend to + .
This, however, means that exp(—pH) ¢ ¢, for § < 0, so the most that can
be hoped for is analyticity in C* = {x + iy: x > 0}. For the cases of interést,
there is in fact a proposition on

The Analyticity of the Partition Function of Finite Systems (2.4.7)

Let exp(—pHy)e €, for all B > 0 and suppose V is e-bounded with respect
to Hy, (cf. (III:34.1)). Then the mapping C x C* - C:(a, p) -
Trexp( —B(Hy + av)] is analytic, and (0/0x) Tr exp[—p(Hq + av))jg=0 =
=Tr pvexp[ -BH,].
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Remarks (2.4.8)

I

Since the operator H, + av is not normal when x is nonreal, the ex-
ponential function has to be defined. This can be done as in (2.1.8; 7)
or by integrating the resolvent,

dz  exp(—p2)
exp[—B(H, + av)] = [ i (Hy + a0 = 2)°

in which the integration contour runs through the region of analyticity
(cf. (II: 3.5.13)) so that the integral converges in norm.
The next task is to make sense of Tr exp[ — f(H, + av)] and show that it
belongs to €, for (a,f)eC x C*. If a, fe R x R*, then this follows
from Hy + av > Hy/2 — C(a), exp(—pBH,)e¥€,, and the observation
thatif 0 < a < be ¥, then ae¥,. If « and B are complex, then Corollary
(2.1.8; 7) can be appealed to for | Tr exp(aa + Sb)| < Tr |exp(aa)||exp(Bb)|.
with exp(a) and exp(b) Hermitian, and in particular | Tr exp[ —aH, — bv
+ i(cHy + dv)] < Tr exp(—aH, — bv) for all real a, b, ¢, and d.

. The proposition implies that the free energy F = —Tln z can have

singularities only at the zeros of Z. If (a, /)e R x R* then Z > 0, so F
is analytic in a neighborhood of R x R™. In addition, Corollary (2.1.8; 3)
states that —In Z is concave in (B, af)eR x R*, so F is concave in
(T, /T) (cf. (III: 3.5.24)). The equation dF/da = {v) generalizes the
Feynman-Hellmann formula (III: 3.5.19; 2).

Proof

See Problem 2. . O

Since the exponential function is convex, the free energy can be bounded

in terms of phase-space integrals by means of (2.2.11), and the upper bound
of (2.2.11) can be improved upon with Corollary (2.1.8: 7).

The Connection with the Classical Free Energy (2.4.95

Let

2z

H= Z Ipi)> + t(x),  exp(—pBF) = Trexp(—pH) < =,

and

dSNp N
expl —BF0] = [dx S0 exp[—ﬁ(_; Inl> + v(x))].
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Then
F,(v) < F < inf Fy(v),

where

v(Xx) = fd’”x’v(x’)lu(x - x)? + fd’"xl Vu(x)|?..

Remarks (2.4.10)

1. The function »(x) contains the interaction between the particles, as well as
a possible external field. It must even account for the box confining the
system, as the Hilbert space is L%(R3").

2. The propgsition shows that quantum effects can only increase the free
energy, either with a kinetic zero-point energy or a smeared-out effective
potential.

3. The particles have been assumed distinguishable; the modifications
needed for indistinguishable particles will be discussed below.

4. Countless attempts at expansions in # have been made in the literature,
but the results are not conclusive because rigorous bounds on the higher-
order contributions have not been obtained.

5. If h is not set to 1, the dimensionless volume in phase space becomes
d*Nx d®Nph~ 3N rather than d*¥x d3¥ph~3N.

Proof

The lower bound for F. By Corollary (2.1.8; 7),
Tr exp[— B(Ho + v)] < Tr exp(— BH)exp( — fv)

= [@xxl exp(— BHo) x> expk oo
and it was observed in (III: 3.3.3) that exp(—SH,) has the integral kernel
1 3Nj2 dSNp N 5
k0= (gg) " = [Gamen(-oZ,mr)

The upper bound for F follows immediately from (2.2.11), for {z|p{®|z)
= (Im z%) + | dx|Vu] 0

Example (2.4.11)

The one-dimensional harmonic oscillator; u(x) = exp(-bx’/2)/\‘/1_z, H=.
p2 + wzxz’ .

Tr exp(—BH) = 20 exp[ —pw(2n + 1)] = 1 jx:t(p;fgzﬂﬂ),

0, = oxt + )+ 2
u %)t ‘
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which has the minimum w?x?® + @ when b = .» Since

* dpdx !
[ "?'—“""P[ Bp* + w?x? = Sup

the bounds (2.4.9) yield the inequalities

exp(—o2) exp(—a/2) t _ .
- 5.1__ exp(-x)s;’ 1=20wpeR”.

" The interest in the bounds (2.4.9) is mainly academic, since the particles
in real physics are zither fermions or bosons. In addition to multiplying the
volume element of the phase-space integral by 1/N!, the generalization fo1
indistinguishable particles entails an effective interaction that vanishes
as mT —* =, and is repulsive for fermions and attractive for bosons.

Bounds on F for Indistinguishable Particles (2.4.12

-

Suppose that

1 N

H=5 .Z‘IP.‘IZ + u(Xp, - X
1

exp[ — BF (H)]= GOTNI fd’"x d*p exp[ —BH(Py, - - -, Pns X5 - - - » X)],

and that F (H) and F (H) equal — T In Tr exp(— BH), where the trace is taken
over the symmetric (resp. antisymmetric) tensor product of the one-particle
spaces. Then

Fy(H) < F{H) < F ((h + vp),

F.(H + vg) < Fg(H) < F(h),

where the function h(p;, x,) is the expectation value of H in the symmetrized
(resp. antisymmetrized) states of (2.2.10; 5):

{z4,...,2y|H|2Zy, ..., 2>

s ooy ZulZygy o2y

If the coherent states are chosen with u(x) = exp(—mT|x|?/2), then the
effective potentials are

h(zy....2y) = z; = X; + ip;.

— - X2 1
Tin2Y exp(~mT|x; — x,|*) ifsup Y exp( mTlxzi Xl ) < >
. i£k j i#j
Up =
oc ' otherwise;
and

- - 2
vg=—T Zexp( mT|x2‘ X! )
ik

.
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Proof

The lower bounds. For one particle in xspace (see (I11: 3.3.3)),

—Blnl? 32 _ JTY
<x|exp( A )r 'y = ("‘:) exp(_m_Tl’;_.xl),

so in the properly symmetrized or antisymmetrized basis, if there are N
particles, then

— 2 .
Xyyeoes x“exp(——%l—)lxl, S

_ 1 /mT\3N? —MTZ“‘.'-"PJZ
R e

The sum over permutations amounts to just a permanent or detérminant of
the form (z,,...,zy|z,,...,2y), by (2.2.10;5). It is therefore >1 or,
respectively, <1, since the length of a vector is increased or, respectively,
decreased when acted upon by a} with || || = 1:

lagl Y% = lagafl> = < | > £ <lata,> Z (| ).

For fermions, Det({z;|z;)) < 1, whereas for bosons the permanent has an
upper bound from Problem 4, Per(<z;1z,)) < exp[}., . |<z/1z>|]. The rest
of the proof is similar to that of the lower bound of (2.4.10):

Tr exp[ - B(H,, + v)] < Tr exp(—BH,) exp(— pv)

1
= N1@2m)*¥ J‘d?Nx d* pexp[—B(Ho(py, - - - » Pn) + (X4, ..., Xp))]

Per m 2
X Det (exp(-— 3 Ix; — x;l T))

< (2 TS f d*x d*"p eXp[ B(Ho(pl,...,p,.,) + Xy, ..., Xn)

r {exp(—L, AmT/D)x; - lez)})]‘

0

The upper bounds. Since the symmetrized and antisymmetrized coherent
states are not normalized,

Gy eor a2 20> = 102 = Sk (1l2) 2 1,

the normalization has to be accounted for in (2.2.11(i)):

Tr k(a) > f dQ,n(z )k(“'f(‘:')z))
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For bosons the inequality follows now from n(z) > 1. For fermions, with
u(x) = exp(—mT|x|?/4), it is necessary to estimate Det(1 + K), where :

K. = {exp( ~(mT/2)Ix; — x,lz) i#j
ij

0, i=j.
Since
1Kl <sup Y exv(— — 1% = x] )
j i#j
we find . .
In Det(<z;|z;>) = In Det(1 + K) = Trin(1 + K)
PN Vs ;o K|
—nngrK " STrKuz:o”_._2
1
<ln——Trk?
1 - K]
< In2TrK? for |K| <}
© otherwise.
Finally,
Tr K? = Y exp[—mT|x, — x;|*]. O
i#j

Remarks (2.4.13)

1. If min; ,|x x;l=b>0, then [K| = b 3P drr? exp(—r’mT/2)x
exp{ —mTb?/2), so vy can be replaced with a hard-core potential with a
radius depending on T and energy ~ N.

2. The ranges of the potentials vy and v, are approximately the thermal
wavelength, i.e., the wavelength of a particle with kinetic energy 3772,
so when the particles are about this close together, as in a degenerate
quantum gas, the bounds spread wide apart.

In closing, let us study the limit N — oo in the framework of the canonical
ensemble. Not only the reservoir but also the subsystem will be made
infinite at the same time, and we wish to know whether the free energy
dénsity F/V tends to a limit ¢. This should be the case whenever this limit
exists microcanonically. Then the issue is how to recover the microcanonical
quantities from knowledge of ¢:

Theorem (2.4.14)

Suppose that, with H >0, a,(¢, p) = (1/V)In Tr &(Ve — H) converges
uniformly on compact sets to a concave function o(g, p) and is bounded above
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by a function s(e, p) such that 0 = s(eo, p) = lim,. ., s{e, p)/e, when V is big
enough. Writing as usual f = 1/T, then .

lim (— %—ln Tr exp(-—ﬁH)) = inf(e ~ Ta(e, p)) = (T, p).

V—~wo

Remarks (2.4.15)

1. Since ¢ is concave, it has a right derivative,

¢ = lim(ofe + 6, p) — o6, P)) .
510 (5
The infimum is attained at the point &(T, p) for which ¢'(¢(T, p), p) = 1/T
(see Figure 17). If ¢' has a discontinuity, jumping over the value 1/7, then
&T, p) is the point at which the jump takes place. The usual thermodyna-
mic relationship (T, p) = &(T, p) — To(&«T, p), p) holds for the free
energy.
2. The function f¢ is a Legendre transform (£(0))(#) = inf, (Be — a(¢)).
The transformation & has the following properties:
(i) & - & produces the concave envelope of any function so S’ &
= 1 on concave functions;
(ii) % maps a linear piece of a concave function to the point of a corner
and vice versa;
(iii) ¥ maps the set of strictly concave, continuously differentiable
functions into itself. By Property (i),

a(e) = mf(ﬂs - .Sf’(a)(ﬂ)) = mf rp(T)

3. If a(e) is strictly concave and continuously dlﬂ‘erentnable, then by Problem
3 the limit ¥V — oo and the derivative by f can be taken in either order.

P o
a(e)
: a(e)
: !
| §
7l /1
| !
[ !
o | ¢ }
—— i \T_/ [
]

Figure 17 The geometric meaning of the free energy.
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The energy and entropy densities calculated with the canonical density
matrix arq

tim Tr 5 =P

J1
Jm VTrexp( ﬂH) _;}l-.maﬁ In Tr exp(— BH)
i,
z~---——=
=—Tar=9¢tTo

and

T [ exp(—BH) \
i (et oam) ~*

which are obviously identical to the microcanonical energy and entropy
densities. This fact is known as the equivalence of the ensembles.

4. The concavity of g in ¢ is a necessary condition for the ensembles to be
equivalent, since the specific heat in the canonical ensemble,

_3_8 ﬂz az
oT  V of?

is automatically positive by Corollary (2.1.8; 3).
5. The bounding function s is necessary to ensure that

lim sup(To, (¢, p) — &) = sup(Ta(e, p) — ¢);

V-o ¢

In Tr exp(— BH)

without it, Toy(e) — € = 1| — (1 — &/V)? is a counterexample.

(The assumption that H > 0 is a normalization.)

Proof
© 0
Tr exp(—BH) = f dE exp(—BE) 3E Tr &E - H)
0
=8 f: dE exp[ — BE + S(E))
= BV exp[— Vo T, p)]
) j " de exp[— V(e — Tov(e) — o),
0
where

ou(T, p) = i?f(s ~ Toe, p)).
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If V is taken large enough, then the infimum lies between 0 and ¢,: g9 —
To(eo, p) = 0. By assumption the functions oy converge uniformly on this
compact interval, so @(7, p) — ¢(T, p). A modification of Lemma (2.3.12)
shows that the contribution of the integral to ¢ is negligible in this limit. This
step uses the assumption to ensure that for all T > 0 the exponent is domi-
nated by —pBE for large E, so that the dominated convergence lemma
applies. O

Several general properties of the Legendre transform of o can be deduced
from those of the microcanonical energy density (2.3.10), and are listed
below:

Properties of the Free Energy-Density (2.4.16)

1. As the infimum of a set of linear functions, ¢(T, p) is-concave in T. If
H > 0, then (T, p) < 0, and ¢(0, p) = 0.

2. The function ¢(T, p) is convex in p, because f(x, y) being convex in
(x, y) implies that inf, f(x, y) is convex in y (see (2.3.31)).

3. p~1¢(T, p) is an increasing function of p, since Tr exp(—pH) is an
increasing function of ¥ when N and B are fixed.

4. T~'@(T, p) is a decreasing function of T, since for H > 0, exp(—BH)
is a decreasing function of §. '

Remark (2.4.17)

Although convexity survives the thermodynamic limit, the analyticity
(2.4.8; 3) of F is less hardy. The zeros of Z may approach the real axis as the
system is made infinite, causing discontinuities in the derivatives of ¢.
Example (2.3.32; 2) can be modified to a degenerate BCS model, with

N N
H=BYo - 1 Y (0;- 6, — o).
j=1 N .=
This Hatpiltonian has the eigenvalues N(Bm, — m(m + 2/N) + m?), and,
as in (2.3.34).

2 2
o(T,B)= inf (-—m2 + (m, + g) - %— - Ta(m)),

0sim.isms1

l_
a(m)=1n2—-l—;ﬂm(1 +,m)———2-ﬂln(1 — m).

The infimum with respect to m, is attained at max{ — B/2, —m}, assuming
B > 0. If m. = — B2, then setting the derivative by m to zero leads to the
equation

m(T) = tanh(z—mi(_D).
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T
A
m, = —nm(T, B)
2 ¢ = —Bm(T, B) — To(m(T, B))
B
m, = — —
2 T= T(B)
Bz
¢=-mT) - 7 To(m(T))
—>B
Figure 18 The free energy in Example (2.2.32; 2).
If m, = —m, then instead of this, the minimizing value is m(T, B) =

tanh(B/T). The two different possibilities give critical temperatures

_ {Bf/arctanh(B/2) if0 < B <2,
T4B) = {o if2 < B.

Figure 18 depicts ¢(T, B). The values of m and m, are continuous at the
transition point, but their derivatives are not. The function ¢ remains
continuous along with its first derivatives—the derivatives by m and m,
vanish—but the second derivatives of ¢( T, B) are discontinuous at T = T(B).
Such properties as the specific heat display the discontinuity characteristic
of a phase transition.

Problems (2.4.18)
1. Let p, and p be density matrices for which p, —~ p. Show that Tr |p, — p| =+ 0.

(Hint: use the following lemma: If p is a density matrix and Q a projection such tha
Tr pQ < & then for all a€ B(H), | Tr pQa < lall/e)
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2. Prove (24.7) by applying Hartogs’s theorem: If f(z,,2,) is separately analytic in
2, and z;, then it is jointly analytic. Also observe that the trace is a continuous
mapping €, — C, where €, has the norm |-||,.

3. Suppose @(e) is a sequence of concave functions converging pointwise to ¢(e).
Let ¢y.(c) and ¢y ; denote the right and left derivatives of ¢y(5), and likewise for
@,(€) and @i(c). Show that for all ¢,

@:(¢) s lim inf @} () < Lim sup @y, (¢) < @ife),

Ve Ve
and that if g and ¢ are differentiable at the point ¢, then lim ¢{{c) = ¢'(¢).
4. Show that |Per(z|z,)| < exp 3, , I<z,|m)|.

S. Find a function of x and y that is convex in each variable separately but not jointly
convex.

Solutions (2.4.19)

1. Lemma: p = Y ¢;lx,)(x,), wherec; 2 0, ¥, ¢; = 1, and {x;} is an orthonormal basis.
Then

TrpQ = Y cdx;1Qx) = ;c,"Qx,li’ <g,
]
ITr pQal = | cd@xlax)l < llall - ¥ cll@x)l < Hall\/e,

since by the Cauchy-Schwarz inequality,
’ 1/2 1/2 112
zCaHthll = 2\/C-¢||Qxiu\/a < (Z Cl“Qxlllz) (z CA) = (Zbi“Qxl“z) .
i i i i i
Proof of the proposition: For any finite-rank operator a. Tr p,a — Tr pa, and

Fr p1 —~ a) = Tr p(1 — a). Now let P be the projection onto the first N cigenvalues
of p and choose N such that Tr p(1 — P) < ¢&. Then

Tr(p, — p)a = Tr p(1 — P)a + Tr(1 — P)p,Pa + Tr(p, — p)PaP
+ T'r(PpP - pla.
Tr(p, — p)PaP < ¢|PaP| < &liall

for sufficiently large n, since all topologies are equivalent on the finite-dimensional
space P@(X)P, and Tr(p, — p)PaP - 0. |Tr(PpP — pla| < |aliTe( — P)p <
llall -&. Tr pf1 — P) = Tr p(1 — P) < ¢, which implies that for n large enough,
Tr pf1 — P) < 2¢. Hence, by the lemma,

|Tr p,(1 - Plal < \/2¢llal,
ITe(1 = P)p,Pal = |Tr p(1 — Pla*P| < \/2¢1la*P} < /2¢all.
Consequently, -
ITe(p, — plal < (2 + 2,/2¢)lall,
Trlp, — pl = sup |Tr(p, — plal < 26 + 2,/2¢.

llalis1
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2. Ule, B) = expl - B(H, + av)) €€,
{1) Anaiyticity (=complex differentiability) in 8.

,Uz.ﬁ+ﬂ)—b(a,b')
| 4

} + (Ho + av)U(a, ﬂ)“
1

| (U )~ 1 g
<[t e (9], o

as f =0, since U is a |-]-convergent integral of |-|-analytic functions and
therefore a |i-|-analytic mapping, C x €C* -+ &.
(i) Analyticity in a:

) 4
Ula + o', B) — U(a, f) = — o’ J- dtlU(a + &, B(1 — t)wU(a, 18),
o
Wi + 2. (1 = < el <B)lly, < U@ + o, B(1 - o)

R ] —

when $ < 1< 1. If 0 < t < 4, then the first factor has to be divided up. This
shows that the mapping C x C* - @,:(a, f) —= U(a, ) is analytic, and
therefore the mapping C x C* — C: (a, §) — Tr U(a, f) is analytic, because the
trace is continuous and linear 4, — C, and thus also analytic.

3. Concavity yields (/e ov(e + &) — @v(e)) S @v. L) S oy, () S (1/EXPule — €)
— ¢e)) for all ¢ > 0, and the statement follows from this wnth the limits
hm‘ '—0 hmy..n

x

Per(z/|z,) < Per{<{z/lz)| = Z n Kzlzppl s [] (1 + 1<z

an

< exp(‘Z! l<z‘Iz,>l).

0 -
S. f(x.y) = —xy. The Hesstan matrix (

- 0) is not positive.

2.5 The Grand Canonical Ensemble

The thermodynamic functions are easier to calculate explicitly if the
constraint of a fixed number N of particles is dropped. It is physically
realistic for a system coupled to a reservoir of particles.

This section will investigate the situation of a system with a reservoir with
which it can exchange particles as well as heat. As in (2.3.23), the underlying
Hilbert space is taken as

N
D Hv, ® Ku_nva

Ni=0
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and the Hamiltonian is
N
H = @ (H\(V,, N,) + Hy(V;, N - N))).

Nl-o

We consider the limit as N — o and ¥, -+ oo, and begin by collecting the
immediate generalizations of some of the results of §2.4. Proofs will not be
given, as they entail only slight modifications of the earliér ones.

Convergence of the Reduced Density Matrix (2.5.1)

Suppose that the concave, increasing functions

1 1 E, N,\

Fszz ©(E; — H;) A A Si:Ez, V2, Np) = 0}',(?:,“‘7:')

" and their derivatives converge uniformly on a neighborhood of ¢ =E, |V, and
p = N,/V, to ole, p), 00/0c, and 00/0p. Then with V=V, + V,, N =
N, + N,,

oo do
CXP[—Hl(Vh Nl)'a'e' - N, %] .

lim Trz G(E - H)_’ =
Tr, exp[—ﬂlm, NIT - N2

Vivw TTO(E — H)

in the trace norm.

Remarks (2.5.2)

1. The symbol Tr, denotes the trace in the second factor of

N

‘*’Nl.l’n ® xN—N.,Vp
N =0
so in the limit N — oo, H,(N,, V;) operates on Y ¥ .o, v, This
operator on the Hilbert space of an indefinite number of particles is most
conveniently written in terms of the field operators (1.3.2).
2. The values of u for which exp[ — B(H — uN)] € ¢, depend on the problem.
If, for instance,

~In Trye,, exp{—BH,(N)] > —chy,

then the trace exists whenever Re fu < —c.

Many of the results of §2.4 may be reformulated for the grand canonical
ensemble merely be replacing H with H — uN. An example is
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The Principle of Maximum Entropy (2.5.3)

Let p be a density matrix such that Tr pH = Tt pgc H, Tr N = Tr pgcN.
Then S(pgc) = S(p).

If system 1 is now taken infinitely large, presupposing the extensivity
following from H > —N,, then T/V times thé logarithm of the grand
canonical partition function has a limit, which may be identified as the
pressure, with reference to (2.3.29).

The Thermodynamic Limit (2.5.4)
If the assumptions of (2.4.14) are satisfied. then

lim Iln Tr exp[ — f(H — uN)}

V-w v
. T hd N
)
= sup(up — (T, p)) = P(T, p).
Remarks (2.5.5)

1. The supremum is attained where the right derivative
l:g)l (KT, p+8) — AT, p))5™" = y,

unless x4 is on an endpoint of the interval on which AT, y) is defined.
This means that with (2.3.29), u can be identified with

L

oc| _a| _ a0 _oel
ol oplr " Oplr dpir
Because
O¢ O¢ .
w-e=prsl +65—d'—e—P‘

the grand canonical partition function turns out to be exp(PV/T). We

shall also speak of P as the pressure when the system is finite, although it

does not exactly agree with the definition as the force per area on the wall.
2. As before, the ensembles are equivalent, on account of the identities

opP
P =

=T —
oulr ¢

T aT

To=¢—pp + P.

Observe that the grand canonical averages of N/V and Hy/V approach
p and ¢, and that the entropy density of pgc equals o.
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Properties of the Pressure (2.5.6)

.L The function (T, u) = P is convex, since it is the supremum of convex
functions.

2. The pressure increases with pu, since it is the supremum of increasing
functions.

3.)f H—uN 20, then T"'P'is an increasing function of T,. since
exp[ - B(H - uN)] is a decreasing function of B.

. The grand canonical ensemble is particularly useful for identical particles,
and allows the thermodynamic functions of bosons or fermions interacting
with an external field to be evaluated more explicitly. For this purpose, we
write the Hamiltonian and the particle number in terms of the field operators
(1.3.2) and our orthogonal basis {f,.}, as

A =3, ata [@x9720- 9110 + 7200703
= Y ata,(fulhlf,
N = z ata,, (2.5.7)

where h = |p|? + «(x) is the one-particle Hamiltonian, and a,, stands for
a(f,). If h has pure-point spectrum with eigenvalues ¢,,, and f, are taken as
the eigenvectors associated with &,,, then

Tr exp[—B(H — uN)] = Tr exp[—ﬂz a8 au(em — u)].- (258)

Takmg the trace leads to casily computed sums, since a*a has the eigen-
values 0 and 1 for fermions and 0, 1, 2, for bosons. In these cases, Pg
and P become

PHz) = —Pg(—2) = T Z In(1 + z exp(— Pen)), (25.9)

" wherez = exp(Bu)is known as the fugacity. When written in terms of the one-
particle Hamiltonian h = IpI? + V(x) and the trace tr on the one-particle

space L¥(R3),

The Pressure of Fermions or Bosons in an External Field (2.5.10)
becomes
R

PK(T,z) = ;tr lﬂ(l + zexp(—ph)) = —P(T, —2).
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Remarks (2.5.11) )

1. In the limit z = 0, PKT, z) = Py(T, z) = «(T/V) 3., exp(— Pe,), which
corresponds to very dilute matter, for which both Bose and Fermi
statistics become the same (Boltzmann statistics). .

2. If h>0 and exp(—ph)e€,, then the singularities of exp(P) occur
where z = —exp(fe,) < =1, m=0,1,2,.... The function exp(P) is
analytic in z until the singularities are reached, i.c., the power series in z
converges. The analytic function Pg(T, z) describes all three kinds of
statistics. Fermi statistics correspond to z = exp(u/T) > 0, Boltzmann
statistics to z — 0, and Bose statistics to —exp(eo) < z < 0(see Figure 19).

It is easy to calculate expeciation values as well as the partition function:
O’
exp[Blen — W] £ 1’
(25.12)

Since every one-particle vector | f ) € L%(R*) can be expanded in eigenvectors
of h, and when restricted to L%(R%), afa, equals P, = | £ { f|, the informa-
tion about the one-particle observables is contained in the

{aman) = Trapa, exp[—f(H — uN + PV)] =

Effective One-Particle Density Matrix (2.5.13)

One-particle expectation values are given by p, = (exp[f(h — u)] £ 1)}
with the formula {a}a,) = Tr p, P, = {(f|p,|f). The density matrix p,
has the properties
Trp, = N,
and
0<p < {l for fermions
=Pl =N for bosons.

disc of convergence

Bose Boltzmann Fermi

Figure 19 Singularities of P in the complex z-plane.
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Remarks (2.5.14)

1. The number N is defined by (¥, ata,.) = trlexp(B(h — p)) + 1]~ . If it
is preferred to deal with these more understandable variables' of the
canonical ensemble, then this can be taken as the equation determining .

2. Similarly, (H) = trp,h, etc. . ‘

3. If a reduced density matrix on the one-particlé phase space is defined
with coherent states (cf.(227) with (2.2.10; 5)), p(x,p) = {(a%a,) =
zlp,|2), then the properties of p, generalize as

e 43
f%‘%#p(x.p)ﬁv.

1 for fermions
0<p(x.p) < {N for bosons.

This shows that the exclusion principle of fermions has the effect of
reducing the maximum value N of p(z) allowed in quantum mechanics
tol.

As well as the one-particle observables, global properties like (H) and P
can be calculated with p,, and even the many-particle entropy can be expres-
sed in terms of p, :

The Effective Owe-Particle Eatropy (2.5.15)

VP
S(pec) = —Tr poc In pgc = -+ B<{H — uN>»

exp[Bfh — W] £ 1
= —tr[p, Inp, £ (1 F p,) In(1 F p,)].

= tr[iln(l texp[—Bh - w]) + B "o ]

Remarks (2.5.16)

1. The part in addition to the normal —tr p In p in S reveals that the many-
particle system has increased disorder. The addition shows up in the
entropy of a spin-4 density matrix,

S((’; lfp)= —plnp— (1= p)In(1 - p),
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where p is the probability for spin-up, and in the entropy of an oscillator,

1

sfa-0f ~* = —pinp+(1+p)in(l + p),

where

©

D 4
P =2 npp=1T

=0

X

is the expectation value of the number of phonons.
2. In accordance with the maximum-entropy principle (2.5.3), the one-
particle p; (2.5.13) is the p € €,(L*(R?)) that maximizes

ILTK= ~trlolnp + (1 ¥ p)In(1 F p) + pB(h — p)]

(Problem 4). Also, on a formal level,

0= — —— =pfh—pu+np, —In(1 F
T 3p -, B ) P1 ( £1)

= p, = [exp[Bth — W] £ 117

The density matrix p, describes the distribution of bosons or fermions.
Its significance is brought out most clearly in the classical limit.

Classical Bounds for the Pressure of Particles in External Fields (2.5.17)

With notation like that of (2.2.7), let

h = pl? + o(x) = f 0, f@I2><zl,  h() = <zlh|z),

p(z) = Tr ata, poc = <z|[exp[B(h — w)] F 117 |2> = <z|p,12),

where v is such that all expressions appearing are well defined. Then, with
z = q + ip, for bosons,

- j dQ, In(1 — exp[ — B(h(z) — W) < BP(B, WV
< — [0, 101 — expL—B(IpP + o@) - WD

BP(B. u)V < f ds, In(1 + p(z)),

.
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ﬁ and for fermions,
[ 40,1001 + exp—~Bebee) - D) < PGB, oV |
< { a0, 10 + el - 7@ - WD,
- = fd0,m0 ~ oo < pPe6, .
In analogy with (2.4.9), one gathers that

hq + ip) = [pF+ o4Q) + f V)2 &

and
f@+m = 1pP + 4@ - [IVuGoP? &
where '
0@ = [ slutx - QP
and

ox) = j' @Iy — OF &%
and u is an arbitrary vector of LA(R®) such zhat lull; = 1 and |Vuj, < co.

Proof

Bosons. The first two inequalities are the analogues of (2.4.12), where the lower
bound relies on (2.2.11) with the convex function x - —In(1 — exp(~x)).
The upper faflows from Corollary (2.1.8: 7) if it is borne in mind that h — u
must bepq‘aive.so lexp{ —(h — w1l < 1, and the series

it - exp[—h — wP = 3, SRL=0AR - 0]

a=1 n

converges in the norm §-|. It must even converge in ti:e norm |||}, since it
was assumed that —In(1 — exp[ — XA — u)]) € ¥, and the series is mono-
tomic. With recourse again to (2.4.9), cach term is bounded. by

- [ umenpl-npip? + V(@ - )

which also converges by assumption. Since all terms are positive, ), and
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§ dQ, can be interchanged. The final inequality follows from the concavity
of the function x — In(1 + x):

—<z|In(1 — exp[-- f(h — WD) |z) = <z|In(1 + p,)iz) < In(1 + (zlp,|2))
implies that

—trin(l — exp[—B(h — w)]) < J.dﬂ, In(1 + p(z)).

Fermions. The first two inequalities again come from (2.2.11) with the convex
function x — In(1 + exp(—x)), and the last one i8 a consequence of the
convexity of x - —In(1 — x). ' O

Remarks (2.5.18)

1. If x > 0, then (exp(x) + 1)~ ! is convex, and if x < 0, then it is concave.
For bosons, x > 0, and so

p(2) = <z|(exp[Bh — w)] — 1)"*|z) = (exp[B(h(z) — )] — 1)~ ".

The analogous inequality for fermions is true only if A — 4 > 0.

2. In Problem 3 it is shown that (z|(—A)|z) = {pf+ K, K = [ d°x|Vu(x)}?,
where z = q + ip, and on the other hand, — A = [ dQ(Ipf* ~ K)|z)<zl.
Similarly, (ziv|z) = | d®x|u(x — QI*u(x) = v(q), and v = | dd,v%(q)
x iz {zl, if u(x) = | d°qlu(x — q)[*v*(q). What goes on with the lower
bound is thus that the classical Hamiltonian h is increased by the kinetic
energy K of u, and the potential is smeared out by convolution with ju/|2.
With the upper bound the classical Hamiltonian is reduced by K and the
potential is unsmeared. If v is of slow enough variation that even for u
with small K, v'(q) is approxirhately equal to v.(q) = {z|v|z), then the
bounds draw close together.

3. In the very dilute limit of (2.5.11; 1) the bounds produce the classical
result, if the indistinguishablity of the particles is accounted for by a 1/N'!
in the phase space:.

vy & 1
(77 ) = &, 7 [ e o
x exp[—B(IPs 12 + -+ [pul® + (X)) + -+ + v(xy) — N}
= exp[exp(—B(F., — w))J,
so by (2.54),
_P?K = Id’x d®pexp{ —B(Ip1* + u(x) — w)] = N,

which is the ideal gas law. Unless exp(B(h — u)) 3 1, the statistics matter.
They are built into the bounds, but the indeterminacy relation forces the
bounds apart.
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4. In the classical limit, in which Inequalities (2.5.17) become equalities,
£1(%, p) = (exp[~B(IpP> + V(x) —- u)] £ 1)"! is the density on phase
space that optimizes

PV
F =560 - Kh - > = - [a0Lp,@ 1 py(2)

1 (1 F pi(2) In(1 F p,(2)) + p,(2)Bh(2) - u)}

. (Problem 4). :
5. 1f, more genérally, p is a density matrix of the many particle system on
Fock space, and

pr = f dQ, dQ, |z><{z'| Tr(pa}a,)

and
/2) = Tr(pata,) = (z|p,|2)

are the associated one-particle density matrix and density, then it follows
from (2.5.3) and (2.5.15) that

Sp)=-Trplnp< ~trfp, Inp, £ (1 F p,) In(1 F p))]

< - J dQ,[p(z) In p(z) + (1 F p(2)) In(1 F p(2))],

where the H in (2.5.3) is taken as the second quantization of (1/8)
x [{In(1 F p,) — In p,], and u is set to 0. The first inequality becomes an
equality with pgc, which is the density matrix of greatest entropy for a
given one-particle density matrix p,. The second inequality follows from
(2.2.11), since

x=~[xinx+ (0 F 00T x)

is concave with the upper signs for ¢ < x < i and with the lower signs for
x <0

The extent of the validity of the classical picture will be delineated through
a series of examples.

Free Bosons and Fermions in a Box with Soft Walls (2.5.19)

With a harmonic potential vi» = «”ixi“ the N-particle Hamiliopian i«

1 A J PN .

2 . P N “ . dg R ..!

H=73 (pr + o )xi*) = ), Ip] TEN S oixi— X, *1;'521 X -
N i=1 - Sl Y= :
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containing harmonic forces between the particles and a harmonic force
acting on the center of mass. As before (cf. (2.4.11) and (2.5.18; 1)), let z =
q + ik and u(x) = exp(—w|x|*/2): h(z) = k|*> + w?|q)* + 3w, f(jz|) =
k> + ©?|ql*> — 3w. Because

d3k a3
;f 5% In(! F exp[—B(Ik [ + w?lql® — w)])

(2n )’
CXP(Vﬂ.a)
-t )i vz‘ v
(2.5.17) implies
\ .
+ (., Y Fy(x(exp(B(u — 30)]) < In Tl'u exp[ - B(H ~ pN))
T Fuexplfe + 30))
_,(2 oy’ s(exp(p(n + 3w))),
(2.5.20)
where
F(x) = i x_:

The result can be calculated exactly in this case, since the eigenvalues are
&m = 30 + 2w(m; + my + m;), me(Z*)3 and so

F Y In(1 F exp[ - Blea — )]

(1 — exp(—2Bwv))™" -

= explvB(u — 3w
v=1

The bounds draw together to this value in the limit w — 0. This limit is

related to the limit ¥ — o0, since the average of, for instance, | x| is ~ i/w?.

Accordingly, we eliminate w in favor of the effective volume V = (nT)**/w?

and take the limit V' -+ oc. Then with z = exp(fu), (2.5.20) yields

5/2

PKT.2) = Fy(£2). (2.5.21

S

-8 Q312

Remarks (2.5 22)
1. As w — (), the potential v goes to zero pointwise, ané the density (2.5.14, 3}
on phase space rurn- into the weli-xknown Bose or Fermu distribution,
pix p o [explfliph — b 3 1]

z The energ,\ spectrum of thi cxamplc resembiles that Of a massless particle
mabos Doilx e 2Nk - (0P i papiiip = mnl,me(Z7).
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In the limit L — o, this E produces the same pressure up to a constant as
(m; + m; + m;3)w, when w is identified with #/L. Then

Py(T.z) = +T*F(+2)n>.
F
A Box with Hard Walls (2.5.23)

Now suppose that the potential v (x) > O is significantly smaller than 1/L2
for |x;| < L/2 but increases exponentially as soon as |x;| > L/2. Since
what happens should not depend on the precise form of v,, only certain
bounds will be imposed on v, . Because of the monotonic property, all the
steps up to (2.5.17) and (2.5.18; 1) proceed as before.t

72 o(x)o()e(2) < vi(x) < Y3 e(X)p(Me(z), 0<y- <7y,,

o(x) = exp(- ; L) cosh(cx),

@ 2
N2 f dx’ exp(—bx'?)p(x + x') = eXP(:—b)(O(x),
so for the other bound,
) 2
o(x) = J' dx exp(—bx'?) exp( - :—b)cp(x' + x)N?2,

The x-space portion of the calculation of Y&, (—1)**![exp(vBu)/v]
x { dQ, exp(—fvg(z)), where g(z) = f(z) or respectively h(z) (cf. (2.5.17)
and (2.2.11)), leads to

© 2 (® dv
dx exp(—B. cosh cx =-J
J.—cx: p( * ) cJi \/Vz—l

8:—0 2 |
= (In B + 0(1))

with B, =y, Bexp[+c?/4b — cL/2)), since it is being evaluated in the
limit V = L® — c0. If a sequence (v.(x)).- ., of wall potentials has bounds
of the above-mentioned form with ¢(L) = o(L) and In(By. (L)) = o{c(L)- L),
then

exp(—B: v)

2 1 c 2
zlnﬁz—l¢—2z—i—alnﬂ'yt

converges to 1 for both bounds. The p-integral is the same as in (2.5.19),
and so, finally,
$/2

T
Py(T,2) = % g3 Fan(2) (2.5.24)

t From this point until right before (2.5.24). + and — will indicate upper and lower bounds for
the potential due to the wall rather than Bose and Fermi statistics.
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Remarks (2.5.25)

1. This is the same result as that of summing over all the eigenvalues of a
free particle in a box with Dirichlet boundary conditions on -the wall
(Problem 5). The bounds (2.5.17) show that in very large part it is only
the total volume of V that matters, rather than its detailed form.

2. The nature of the wall is expressed by F;, in (2.5.23) and F, in (2.5.21).
For lower densities, z < 1, they coincide, as F, = z + 0(z3).

The Thermodynamic Functions of Free Particles (2.5.26)

All the thermodynamic functions can be obtained from P(T, z), so (2.5.24)
will allow the gaps left by (2.3.10) to be filled in, and the functions can be
written down explicitly. We shall investigate the limiting cases where z —» «c,
z—0, and z —» — 1, corresponding to the extremes of Fermi. Boltzmann,
and Bose statistics. The limits z — o0, — 1 are what is referred to as &
degenerate gas. By Problem 1, F has the asymptotic forms

/—“——~ —(@) + ¢+ D@
=0

~Fyp(~2) ———— z - 72.27%7

\
| WinalN \4/_ [2 (nz)% + = (ln 7)Y 2], (2.5.27)
K2 1 4

where (o) is the Riemann zeta function,

{(o) = 2 ——F,(l), 6eC, Reo> 1.

v=1V

The zeta function has an analytic continuation to the punctured complex
plane {oc € C|o # 1}. In the three limits,

* 3/2
/ Bose ST,,, K@) + ¢ — 1]
e 3/2

. 2
—5 t=(n 2)%2 4 1!4— (in z2)! 2], (2.5.28)-



128

2 Thermostatics

S0, writing

o
&g =" T’a—r"fP'(T 2) = §Py(T,2) = T Fya(22) g,

J1
Pp=2—= Pg(’[; 2) = -_}_.T3/2F3,2(;t;z)§;:-5—5

F ozT
T3/2 -
a'g = i W [§F5/2(iZ) - ]n ZF3/z(iz)]; (2'5'29)

to the lowest nonvanishing order,
T3/ 2

[_—‘—" ZCG) 82
Boltzmann T3/2

~ e Al £2:27)

3/2

= (]n 2)%? 4 1:18 (In2)~12  (2.5.30)

3/2
g 1
[ Boltzmann

T3I2
7 (3z2-zIn2)

1‘\
.When expressed in terms of the more intuitively appealing vanables pand T,

3i2 .
\F'"“' T n2n. (2.5.31)

Bose

— pT+ T5%((@) - {3)/8=*?
Boltzmunn ' .

P= %s =\ pT (“ideal gas™)
\rem  (6n20)"® (6n2p)"
' T A e
T3 /2
/___.—‘ %C(%) 1'3 7
/ Bolhzmann p81(3/2 T32 exp(S/2)

'0'=“—-—~’5P-0ln—7':57r“ﬂ P87

pami {_2 ©r3p)"3, (2.5.32)
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Remarks (2.5.33)

1. As z - 0, (2.5.32) gives the classical result (2.3.9; 1) with an additional
factor 1/N !in the volume of phase space. If V, denotes the volume available
in the one-particle phase space, and the 1/N! is incorporated into the

general definition, then
AN
S~y (h_’)

S v

N~ N

On the other hand, in configuration space and with units for which
h =m =1, (2.5.32) informs us that § ~ In VT%2%;N. Since T~ /2 equals
the thermal de Broglie wavelength 4 with these units, the following rule
of thumb applies to the entropy: Entropy per particle = In{volume of
phase space per particle, as measured in A3} = In{volume of configuration
space per particle, as measured in 13}.

2. Fermions have a zero-point energy E, = Ve, left over when T >0,
where ¢, = (6n2p)*/3/10n2, and a zero-point pressure 2¢,/3. Because

r o 4~ o)
G R

leads to

it is also possible to write

. (.z _,)"’ 2
€9 ,/10’

showing that the number M of states in the interval [E,, E] is

1/2
Mz exp{N(£ - 1) —2,"=}
E, N 10

For example, in an atomic nucleus the kinetic energy is E, = N - 20 MeV,
so with a fixed kinetic excitation energy 6E = E — E, the number

of states in the interval is ~exp 2./N./6E/20 MeV. If SE ~ 1 MeV,
then for N = 20 there are about 2, i.e., 7 or 8, states; whereas if N ~ 200,
then the number increases to about e®* ~ 0.5 x 10°. This is in agreement
with the experimental observation that the density of the energy states
of heavy nuclei is on the order of (eV)~ .

3. If the energy of the ground state is redefined to zero, then z must be less
than 1 for bosons—otherwise by (2.5.12) ny = {(a8ao) = 2z/(1 — 2) is
either infinite or negative. Because F3,(z) < {(3) when 0 <z < 1, it
follows from (2.5.29) that T > T, = (87> 2p/{(3)*’> On the other hand,
n, can be made arbitrarily big by taking z close enough to 1. The difficulty
with this is that the two limits z — 1 and ¥ — oo have to be taken jointly
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if the density has been fixed. If 2(V) = 1 — 1/p,V and T < T(p), then

TS/Z
P =po+ {3 307

-

TS T 1, :
P=t%={@) gy = lim I Tr exp[- = Hy = pT p)N)],

V-
with
lim u(T.p) =0 forall T < T(p),

Vo

T3/2
o = @) g

This shows that a nonzero fraction po/p = 1 — (T/T))*? of the particles
reside in the ground state and contribute nothing to the energy,
pressure, or entropy (provided H is replaced with H — E,). The number
of particles in the first excited state, n, = 1/(z™! exp(8/L?) — 1) ~ L?,
is rather large, but n,/V — 0. For similar reasons, the relative mean-
square deviation (An))%/{n,>* remains positive for n, as ¥V — oo, but
goes to zero for the higher states. The specific heat

is continuous at T, and dcy /AT is discontinuous (Problem 2). If T = T,
then the choice of p, has to depend on V.

4. The values u = Oand z = 1 apply to a situation where N is not conserved,
such as a gas of photons or phonons (cf. (2.5.22; 2)). It is easy to calculate
Tr exp(— BH) with the H-of (2.5.7). The pressure P = —¢, and

oP| _ _de
op|r op

so the compressibility is infinite. The system behaves much like a gas at
the condensation point, the vacuum state, i.e., no particles, being analogous
to the condensed state. It therefore has e =6 = P = V =0, and the
system can be compressed into the vacuum. The entropy density o is
then simply the quantity As/Av of the Clausius-Clapeyron equation which
simply assumes the form

=u=0,
T

ap| _
oT|, - :
Since P = — ¢, Theorem (2.4.14) implies that this equation holds identi-
cally. The quantities ¢/T ~ p ~ ¢ depend only on T and correspond to a

particle of energy T in each wavelength cube. Consequently, entropy =
particle number 2= energy/T.

o.
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Particles in a Magnetic Field (2.5.34)
The Hamiltonian was given in (III: 3.3.5; 3):
H = |p — eA|* = p} + 2eB(a*a + }).

The boundary conditions are that the wave-function must vanish at x; = 0
and x, = L, the 3-axis pointing along B, so the eigenvalues of p; are
am/L,m =1,2,3,.... The center X of the orbit is confined to |X|* =

* (2/eB)(g + %) < R? in the plane perpendicular to B, so the geometry is
cylindrical. The “wall potential” o0 - ©(|X|*> — R?) confining the particle is
not a multiplication operator by a real-valued function V'(x;, x,), but rather
a functiop of the operator

=3(x} + x3) + (Px + Pz) 'f' (lez - X))

representing the sum of a twg-dimensional harmonic oscillator in the
X, — x,-plane and the x,-component cf the anguiar momentum. The
construction of such a momentum-dependent wall potential will be left to the
ingenuity of the experimentalists. By (III: 3.5.3; 3), {X|? is quantized so that
g is a whole number, and a*a has the eigenvaluesn = 0, 1,2,... . AsL - =,

the sum Y X022 y'=_, " turns into

RzeB VeB
f dp3n Z f dpJ ’

n=0

where V denotes the volume of the cylinder. The classical bounds amount
to the replacement

0 @
Z - J. dn,
n=0 0

in which all magnetic effects are swept away. We have to resort to the exact
expression (2.5.9), with which the grand canonical partition functions
becomes

ﬁPg(z) = 2—B§ f dp, z In(1 F zexp[ - Bp? + eB(2n + 1))])
_ T3'2 (£2)” veBp
=1 g Z v>2 sinh veBp’

(2.5.35)

where the B in P denotes Bose statistics as usual and has nothing to do
F

with the magnetic field B. This reveals right away that, as in (2.3.33; 2),



132 . . 2 Thermostatics

an arbitrarily weak magnetic field ruins the phase transition of the Bose gas,
since for any T.

_ 0 _ T312 @® (iz)v eaﬂ

Pp=25:PPr=tgm L ST G vebp

can get arbitrarily big as z — exp(BE,) = exp(BeB). This happens because
the particles are free to move only parallel to B and are trapped jn orbits in
the direction perperidicular to B even though the radius of the cylinder goes
to infinity. The system acts as though confined to a cylinder only the length
of which tends to oo, and in one dimension there is no Bose condensation.
If the magnetic energy eB is much less than the thermal energy 7, then the
next correction to the foregoing result is ~ B2:

Ta/z 1 [feB\?
ﬂPg 3o [F s2(12) - ¢ (-;IT) Fyp(t z)]- (2.5.36)

If this is used to calculate the magnetization per volume in the limit B — 0
with T fixed, ! -

0Py

m= 58—5 = "7 .Zn (Xxpz - x,pl -— eB(x% + x%))>
particles

TSIZ eB

822 3T

then with (2.5.26) and the formula F,_(2) = (2(d/dz))"F (z) (see (2.5.20)),
its limits in the three extremg cases of the different statistics are

=7 Fya(£2) 25.37)

/_.2——; —eB - oo
St €B
\ T’
Femi B 6n2p), (2.5.38)

T 1272
Remarks (2.5.39)

1. The negative sign indicates diamagnetism, which is to be expected
quantum-mechanically: By Lenz’s law the classical orbits rotate in the
direction with negative L,. However, a current appears in the other
direction when particles bounce off the wall of the box (see Figure 20).

With classical statistics the circulating currents cancel out at every
point of the interior, leaving only a current circulating along the surface,



2.5 The Grand Canonical Ensemble ) 133

O
Figure 20 Classical trajectories of particles in a box with a magnetic field.

which is exactly compensated for by the “reflected” current, since the
partition function

Jd’x dp exp[—-Bip — AX)}?] = J‘d3x d*p exp(—BIp)?)

is completely independent of B. This means that if either p is fixed and
T - o or T is fixed and p — 0, then m tends to 0. Diamagnetism is
therefore a characteristically quantum-mechanical effect; if the sum
Y n=o is replaced with an integral (¢ dn, and 2n + 1 becomes 2n, which
is in essence the limit 4 — 0, then P becomes independent of B (a theorem
of Bohr and van Leeuwen).

2. In quantum theory, states with negative L, are energetically favored
(III: 3.3.21; 4), so a quantumn gas is diamagnetic. The reason that the
magnetization m of a completely degenerate Bose gas tends to oo is that
P fails to be analytic at z = 1, B = 0. This topic will shortly be discussed

" in more detail.

3. Since P depends only on R2L,

0 )

R5§P=2L5ZP’

i.e.. the pressure remains isotropic.

In order to make sense of the limit of degenerate Bose gas, let fu = In z,
and write

© Py _ T 2 exp[—pw(eB — p)] 2eBpv
vV o 8n¥ & v3? 1 — exp[ —2eBpv]’

_ T3 & exp[—pBv(eB — p)] 2eBpv
P = gor = v32 1 — exp[ —2eBpv]’

T3 &  exp[—pweB — )]
an®? &, V(1 — exp[ —2eBpv])?

x [1 — exp[—2eBpvI(1 + 2eBpv)], (2.5.40)
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without expanding in B. The convergence of the series for m and p in (2.5.40)
by domination for B > 0 with u fixed) implies that

lim m(T, 4, B) =0

B—++0

for all fixed 7 > 0 and u < 0. Yet if B — 0 with T fixed and u < 0 then all
the densities p are less than {(3)T%%/87%2, as in (2.5.33;3). If T < T(p)
(see (2.5.33; 3)), then the limits B+ 0 and u — 0 must again be appro-
priately coordinated. Since for B > 0 and for all values p >0 and T > 0
there exists a unique (T, p, B) < eB such that limy.., (T, p, B) = 0 for
T< Tﬁg)) and since the series for m + p from (2.5.40) also converges uni-
formly in B on an interval containing 4 = eB, the limit B — 0 can be taken
term by term. This yields

. ' 1 T \3?2
Ll_r: m(T, p, B) = —po = —p[ - (ﬁ;)) ]

provided that T < T (p) (cf (2.5.33; 3)). If T > T(p) then the limit is zero as
observed earlier.

Remarks (2.5.41)

1. The physical interpretation of this result is that in the limit B — 0 only
the particles in the ground state contribute to the magnetization. The
ground state has L, = —1, so for B = 0 the contribution to m is simply
the sum of L, over the particles in a unit volume in the ground state.

2. The notation B is perhaps misleading, since it stands only for the external
field and not for that due to the system itself. Actually, the field due to the
system has to be taken into account, as it screens B throughout the
interior of the system.

Black-Body Radiation in Partial (i.e., Anisotropic) Equilibrium (2.5.42)
If the particles are massless, as in (2.5.22; 2) and (2.5.33; 4), and they have a

density matrix like pgc but containing only states in a certain dilatation-
invariant part D of p-space, then we can still write

3
0 =T [ 50 - expl~plpID = —T*

where the constant ¢ depends on D (but not on T). It is then still true that

e=3P= -3¢ =3To = 3cT*
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A realistic example of this situation is sunlight falling on the earth, for which
essentially all'the p-vectors come from the direction of the sun. The constant
c is reduced by a factor ~ 1073, the solid angle subtended by the sun, in
comparison with the isotropic equilibrium value with D = R>. Once the
radiation is made isotropic without changing ¢ significantly by the time it
reaches the earth, T is lowered by a factor of about 107 %4, from ~ 6000° K
to ~300° K. At the same time, 6 = 4¢/3T is increased by this factor of 20.
It is consistent with an increase in the total entropy that this physical process
creates highly ordered structures with little entropy; their decrease of en-
tropy is nothing compared with the gigantic increase of the radiation entropy.
About '10?° photons per cm? arrive from the sun each minute, and this times
20 is the entropy increase/cm2-min. In an hour this comes to roughly the
total entropy of a cubic centimeter of matter for each square centimeter of
ground, so, for example, a newly planted forest could grow to a height of 10
meters over a summer without violating the second law of thermodynamics.
The sun thus expends entropy as well as energy. Although isotropic biack-
body radiation at 300 K would be just as energetic, the energy would be
unusable for the creation of life (as would be the case as the universe subsided
into heat death).

The grand canonical ensemble determines the expectation values of
field operators as well as the thermodynamic functions. Equation (2.5.12)
showed how to calculate quadratic expressions involving the field operators,
and quartic expressions for particles in an external field can easily be calcu-
lated in the same way,

<a:|aj*aj'am‘> = (5mm‘5jj' i‘ 6mj’6jm‘)(exp[ﬁ(cm - ﬂ')] ; 1)~l
x (exp[Be; — W] F 1)~
= {amany<afa;) + {ama;)<a}a,). (2.5.43)

Remark (2.5.44)

Ii the mean-square deviations of the occupation numbers are calculated in
this way, then

{(@ham)*> — {ahany? = <apan> (1 £ {anaw).

Independent particles would follow a Poisson distribution law w(n) =
exp(—n)a"/n! for which the mean-square deviation would equal the
expectation value of the occupation number. The deviation is greater
with Bose statistics and less with Fermi statistics, which can be interpreted
as meaning that bosons have a tendency to bunch up and fermions to keep
at a distance.

In elementary quantum mechanics a state was characterized by the
expectation values of the Weyl operators (cf. (I11: 3.1.2; 1)), and likewise
now the complete determination of the state requires the expectation value of,
say, exp(i [ d*x(a(x) f*(x) + a*(x)f(x))] for all fe C3(R®). The best way
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for this te be calculated in the grand canonical ensemble for particles in an
external field makes use of coherent states. In Problem 6 it is shown that

Tr exp[ — fwa*a] expli(a*a + ao*)]
Tr exp{ — fwa*a]

=exp[—la|’(l m-l)——)] if [a,a*] = 1.

Therefore:

The Grand Canonical State for Bosons in an External Field (2.5.45)

<exp[i % (ahan + a,.a:.)]> = exp[ 2 l“-lz( . &WEJ:E)]

Example (2.5.46)

-Free bosons in a cube of volume ¥ = L3, with periodic boundary conditions.
Let

* 3
ak) = J zm exp(— ik - x)a(x),

and

o= T L@k, Fk) = f &% explik- 9 f(%),

ke((2n/L)2)?
for f.€ L*(V). Then because o = |k|)?,

Cexpli(a} + ap)]) = exp[— Y . L73f (k)l’(

ke((ZuIL)Z)’

ST

A more convenient expression in the calculation of ordered products is
expli Y a% o] exp[i Y., ana2]. Its expectation values can be read off from
the formula exp(4 + B) = exp A exp B exp(4{ B, AJ), which holds provided
that (4, (4, B]] = [B, [4, B]] = 0, which in tlns case is in accordance with
the Weyl relations (1I1: 3.1.2; 1)

The Generating Function for Ordered Products 2547

<exp[i z a.:a..] exP[" z “-“3]> = “p[ 2ol S exp(ﬁs...) ]

= E(al ’ al )a
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which can be written

<exp(ia}) exp(ia;)) = exp(—<f1p1 /)

with the use of p, from (2.5.13).

The expectation values of polynomials in the field operators can be
obtained by differentiating the generating function by « or «*. Note that all
the factors within a given exponent of (2.5.47) commute, so nothing prevents
the exponential functions from being differentiated:

a Jd 0 d

. = (=P L
an, - an.a;, - a;,) = (=if 3a,,, oa,, Oa* 6a}'_E,, o
$=-0

=5_,Zﬁ__m___

where P stands for any permutation of (1, 2, ..., n).

We have been confronted again with a permanent, and it is easy to
understand that the analogous expression for fermions contains (~1)* and
thus involves a determinant. The —z in the denominator is also turned
into + 2z, but there are no other changes. Linear extension covers the cases of
expectation values of products of arbitrary a,, which are most conveniently
written in terms of the one-particle density matrix p,, as before:

The Grand Canonical Expectation Value of an Ordered Product (2.5.48)

<a?x v a;..an e a‘.') = 6--' B:‘((."xlplg.;))

This section will conclude with a further investigation into the thermo-
dynamic limit of the grand canonical state of a system of particles in an
external field. Such a state will exist under the circumstances in which p, ,
converges weakly, as for example with free particles, for which:

The Grand Canonical State of an Infinite System (2.5.49)

<071 T a;naﬂl a'n> = 6" PD?;((’;IPIQ;))-

_ Pk _7wp0:
<f|plg> = (2’03 exp(ﬁ'k,Z) ; :‘

where 8 > 0, and for bosons. 0 < - < 1, or for fermions, - > 0.

It was noticed in (2.5.33: 3) that with bosons at T < T, = (8a*2p/((3))*3,
the limits ¥ — ¢ and z — 1 have to be taken jointly in order to have a given
density p. This does not make the sum in (2.5.46) converge to the integral in
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(2.5.49); rather, if z=1— 1/p,V, then the term with k = 0 survives
separately:
1 L@ = (1/po V)

lim —
v-wo V seammzy EXpBIkI?) — 1 + (1/po V)

. &k 1jwp
Pl @F + G xp Bk = 1

This formula is justified if f € L3(R®) with compact support, which makes
f e L3(R* N C2(R?), so the integrand remains mtegrablc even at k = 0.
Therefore we have:

‘The Grand Canonical State in Bose Condensation (2.5.50)

lim {exp(iaf) explia )Dp,z=1-(1/p0¥)

V-
&k |f®P
(2n)® exp(BIk|?) — 1]

= exp[—polf ) -

Remarks (2.5.51)

1. If T < T, then the grand canonical state of the Bose field algebra differs
from the canonical state, which can be calculated as

. . ’ d’k k :
exp(iaf) exp(ia;)) = °"p[— J. 2n)° exp(llf;(k I)zl) - 1]

* 2r
x [ 52 expl2i/bo Re(7@) explio)
for T < T [13].

2. Other than for bosons at T < T,, the representations in the individual
factors are thermal (1.4.7). According to Remark (1.4.17; 1) the factors
are of type I1I in the infinite system. They form a reducible representation
n, the tensor product #, ® n, of two Fock-like representations of the
field algebra (cf. (1.4.7)):

(p)
nlay) = = ( ' )@1
o ‘ a\/¢ exp( - B(Ipl® — w)] + 1
. /*p) )
—lA - * = ],
) b ®"'(a Jexpl#ip? — w] F 1

. where a;N = (N + 1)a,. It is straightforward to verify that
<a;x Tt a;naln' o a'u'> = <Ql ® 02"[(0;1)' b n(ag.')lnl ® 02>
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. Forbosons at T < I 1hers is no {actor representation; the anajogue of the
mean magnetization s (1.46: 23 1s

ap = w-lim a,, where a} = -:7 f d3xa(x).
| 4

V-x

All bounded functions of g, lie in the center of the von Neumann algebra
(/). Now

| PN
@ - (57 (7@) “ee

so for instance {a,) = 0, {aga,> = po. Thus a, is not represented as a
multiple of the identity.

. The canonical state (2.5.51; 1) is an integral over states w,, for which the
exponent in the generating function

w,(exp(iAag) exp(iday)) = exp(2iA\/po cos @)
is linear in 4 € R. These states produce factor representations:
mo(a0) = v/ Po exp(—i¢) - 1.
. Ifaterm V¥af — \/}); exp(—i@))*(ay — /po exp(—ip)) with0 < a < 1
is added to the local Hamiltonian H,, then the k = 0 component of
BH, becomes BV*(af — /poexp(—ip))*(ay — J po exp( —ip)). As will
become more apparent below, the thermodynamic functions are un-

changed for all0 < T < T(p) in the limit V — oc if we set z(V) = | and
po = p(1 = (T/T(p))*?) (cf. (2.5.33; 3)). Because

Tr{exp[ - BV*(a% — \/po exp(—i@))*(ah — \/po exp( —ie))]
x exp(if (0)ah*) - exp(if *(0)ag)} )
= Trexp(— fV,al*agp) exp(if (0)ag*) exp(if *(0)ag)]
x exp(2i/po Re((0) exp(ip))
and

Tr[exp(— B¥ag *ag) - exp(if (0)ag *) - exp(if *(0)as)]
Tr exp(— BVZag*al)

- exp[-' 7@V + o(Vl)]

(sece Problem 6), in the limit V — oc the perturbed grand canonical
state reduces to w,, the integrand of the canonical state in the decom-
position (2.5.51; 1), since the contribution to the generating function
from the components of H, with k # 0 is not affected by the extra term.
Since the exponent in this generating function is linear in f(0) and /*(0),

Mw,(G0) = \/Po €XP(—ip)-1.



140 2 Thermostatics

This shows that w, is a factor state, and the density of the particles in the
ground state is represented by the (dispersionless) multiplication operator
Po - 1. Although the assumption that « > 0 is essential (the limit state is
not changed by perturbations bounded uniformly in V), the bound
a < 1 only serves to illustrate that a surface effect is enough to single out
any given pure phase from a mixture as the limit V' — oo is taken.

This example appears at first only academic from the physical point of
view. Since constant phases of the wave-functions are not observable pro-
perties, at least for free particles, the Bose algebra should be replaced with the
gauge-invariant subalgebra &, i.., the subalgebra invariant under the auto-
morphism induced by f — exp(ip)f. All the states w, are the'same on the
subalgebra, and the phase mixture of the ground state is not observable.
However, these phases do have experimental consequences in super-
conductors, in-the Josephson effect.

Problems (2.5.52)

1. Calculate the asymptotic forms of Fs,(z) (for z — 1 use zF(2) = F,_,(2), F(1) =
{(a)).-

2. Calculate the heat capacity per particle of an ideal Bose gas at constant density, as
well as its derivative by the temperature.

3. Verify (2.5.18; 2).
4. Show the maximum properties of (2.5.16; 2) and (2.5.18; 4).

5. Calculate Py and Pg for particles in a box. Show that the result agrees with (2.5.24)
in the limit V — co.

6. Calculate Tr expli(a*a + aa‘)j exp( —Ba*a)/Tr exp{ —Pa*al, assuming that
[a,a*] = 1.
Solutions (2.5.53)
@ P zv

. ¥4
1. 220:Fs5(2) =Y ;ﬁ~z+-2_s—/5+”'

v=1

2= 1: Fyp(@) ~ Fsp(1) + @ = DFya) + - = {@ + = XD + -
z—ooc;Lcta=lnz>0

.r) dt\/; In(1 + exp(—t + @) = J‘Q dt,/t + o In(1 + exp(—1t))
0 -a

= ; f: de(t + a)*3(1 + exp(s)) !

2 ya_ [fd@ =0 (odi + a)”’]
! _S[J:dt(a_‘) o l1+e + o 1+e

2 © de((t + a)** — |t - al”’)] o
=§[J:dt(a—t)”’+L T+ expld + O(exp(-a));
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because
o+ 0% — ja — ¢ — 3.a!/?| < 2429~ 112
and
® dree!
s T+ exp®) (1 = 2!~ (X (o)

with {(2) = x2/6, I'(2) = 1, it follows that

J‘ dt\/- tin(l + exp(—t + 2)) = §[2 3I12 4 gt/ ] + O(a” 1/2)‘

2.
T mF,,,(z), T> 'I;.ne 0<z<],
&= '
l .
%TSIZ 8132 C(i)v T<T,ie,z=1,
which implies
15 1 3,2 9 F35(2)
— . 2R 7 , .
: o 4 8277 512(2) 3F,.0) T>T,ie,0<z«<]l,
'y = im-— =
-oN 15 T3 |
" 4 8n%% (@ T<T,ie,z=1,

because of the formula F;,,(z) = 88%2pT %2 for T > T,. The function y is con-
tinuous at T= T, and equals (15/4)((3)/{(3) = 1.93, and as T — o, F(2) ~ z
~ 87%2pT 32, and .

15 2

4 snglzp T?z — g '? % i

With the expansion Fy;(z) = 2.363t>% + 1.342 — 2.612t — 0.730¢%...., where ¢t =
~In z, valid for z < 1, and the recursion formula

F,_y(exp(—1t)) = —(d/dt)F (exp(~1)),

there results

ORI B
0T/r-1.-0 \0T/rar,40 T~

N ———

Figure 21 Specific heat of an ideal Bose gas.
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3. If the ;va'v:e-function of |z) is exp(ik - x)u(x — q) with u real-valued, then (z| IpPlz>
=[d xl.alm(x =@ - Vu(x — @} = |k|]> + [d®x|Vu|®>. At the same time, the
_ ¢xpectation value of § dQ.|z) Czlik [ in a normalized y equals
[q’q d*k|k|?
I @ny?

J d*x d*x'Y*(x) exp(ik - X)u(x ~ @) exp(— ik - X)u(x' — Q(x’)
= f diq dPxV*(xu(x - @) - V(u(x — Q¥(x)) !

= [@xiwweor + [eqvuar

because the mixed terms drop out in the g integration. Therefore,

f a0, 12 Cz| k[ = [pf + f 49, |25 Ca| f &q|Vul.

4. Klein’s inequality (2.1.8; 5) with Kp)=phnp+ (1 Fp)iIn(l Fp), K'(p) =
—In(1/p ¥ 1) and § = [exp(B(h — p)) + 1] leads to

Tr{K(p) — K(P) + (p — P)(h — W] 2 0,
' proving (2.5.16;2). In the classical case, i.e. p=p(z), h=Mz2), p=p(2)= .
all being real,
K(p(2)) = K(P(2)) + (p(z) = D)Ph(z) = 1) 2 0
for all z, and consequently (2.5.18; 4).

5. Particles in a box. If the shape of the box is a parallelepiped withsides L,. L,,and L3,
and the wave-functions satisfy Dirichlet boundary conditions. then the eigenvalues
are .

mi omi m

e,,,=n2(——+-—+——-). meZ".
Ly L} L3

Consequently

ﬁVPg(z) =F i In(1 F z exp(— Be,).

and in the thermodynamic limit L, » x the sum over m; becomes L, - L, - Ly(2n)~?
x [&dife. ... 50
« o
PyT.z) = FT>?*(2n)"? J‘ dt\/; In(l F zexp(—1)) = £ T3? s Fs2(2).
F 0

6. Because exp A exp B = exp(A + B) exp(3[A4, B]) = exp Bexp 4 exp[A. B] for
[A, B] = c- 1, the coherent states (2.2.6) with |u) = ]0), a|0) = 0. can be written

|2) = exp(%) 10> exp(:—‘l-:—lz). )
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As in Remark (lII:3.1.14; 1), with exp(;ﬁa‘a)f(a‘)IO) = f(a* exp(—B)I0) it
follows that
Tr exp(xa®) exp( —a*a) exp(— fa*a)

1.2
f —— <0|exp( )exp( —u*a) exp( — fa*a) exp(aa®) exp( ‘/.)IO) exp( |2 I )

dz z* . NE —|z?
= .“?_.1_: <0} exp[a(\/i - )] exp[exp(-ﬂ)a (\/5 + a)]IO) exp( 3 )

dz [ |=|2
= |--exp| — -~ (1 —exp(~—p)) + exp(— ﬂ)(— (2% — za*) — Ialz)]
[ f

J2n
. 1
= Cxp[—l I xpl) -—]/(1 exp(—pB))
so by changing x to ix,

Cexpli(a*x + ax*)]) = {exp{aa® — a*a]) = {exp(aa®) exp(—x*a)) exp{—}|x|?)

) °""[‘ '“'2(1 P )]



3 Thermodynamics

3.1 Time-Evolution

Whereas small systems evolve almost periodically in time, large
systems appear chaotic and their time-evolution mixes the observables
thoroughly.

The framework for this discussion will be an algebra of of observables with a
strongly continuous time-automorphism and a time-invariant state p.
In the GNS representation the invariant state is made into a vector |£2),
and the time-automorphism is represented as a unitary group of operators
U = {exp(iHt)}, UI|Q) = |Q). The time-evolution then extends to the
weak closure &f”. If the representation is reducible, then it may occur that
U ¢ " evenif U 'ofU, = of. The von Neumann algebra

R={odUU), R=oA'NU,

generated by o and.U is known as the covariance algebra and will figure
prominently in what follows. If the only invariant elements of &f’ are of the
form a - 1, then it is all of B(H),as R’ = a-1 => R = R = BOK).

An initial orientation to the various possibilities -can be obtained by
looking at some

Examples (3.1.1)

1. Classical dynamical systems. The Abelian algebra o/ of C® functions
a(p, q) on the phase space T*(M) is a special case of the general schema.
If du is a probability measure on T*(M), then the elements ae of

144
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are represented as multiplication operators on the Hilbert-space.
L*(T*(M), d). The advantage of the Hilbert-space approach to classical
mechanics is that it ignores exceptional trajectories making up null sets.
If a time-invariant measure dy, such as the Liouville measure dg, - - - dpsy
is restricted to a time-invariant region Q of finite volume and normalized,
then the time-evolution a(p, q) — a(p(t), q(t)) is represented unitarily on
L*(Q, dy). 1t can be written formally as U, = exp(~iht), where h = iLy
is the Liouville operator (1:2.2.25; 1), and this unitary group of trans-
formations extends to the von Neumann algebra o&f” = L*(Q,du). Of
course U, does not belong to &”, which is maximally Abelian, &/" =
= Z. The algebra 2 is all of #(o¢) if and only if the system is ergodic,
for then the only time-invariant functions are constant almost everywhere,
and are thus the constant functions of L*(£, du).
2. A single spin in a magnetic field, cf. (1.1.1):

o = BC)={lo*}, p()= <( )‘ |< )>

U, = exp(iB(1 — o)t) A =2 =R = {1}, A" =

Observe that while there is only one invariant vector, there is a second
pure invariant state, {(3)|-{9.
3. A single spin in a magnetic field, in a thermal representation (1.4.7):

o ={,0,06}®1 p()=<Q||1Q),

1+s/1 1 1-5/0 0
o= 5 (0)e o) + 72 ()= ()
g =1® {1,111}, U, = exp(iB(t — o)t),

A=A, X={a1}, =10 {1, 1), #={l,0,6%" @ {1, 7}"
This factor representation on C* has a two-dimensional invariant subspace
and a five-dimensional manifold of invariant states. Two of thece are
pure states corresponding to noninvariant vectors. Notice that the formal
equation h = — Bg has to be normalized not only with a constant but
also by Bt € &, to ensure that U |Q) = [Q). With a different choice of the
basis for C*, Q can also be written as () ® (3), which makes the representa-
tion = of o/ somewhat more comphcated (cf. (2.5.51; 2)):

oty = [ et @1-(-17® L2,

1!(0’).._1+sd®1—-1®‘t +,/l—s‘{a'®t'+a*®r*}.

It is easy to verify the algebraic relationships

(e )n(e”) + n(e " )n(c*) = {l(o) n(oc*): =
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4. An infinite, interacting spin system. Consider the model of a ferromagnet
(2.3.32;?) in the limit N — oo. It is not hard to discover that the thermal
expectation values converge to those with the vector '

() e G+ () o ()5

as with-a type-III representation (1.4.7). The quantities
§= <0> = —mnh B.“ﬂ, B‘“ = B - 23,

are to be determined self-consistently, for the interaction can be written
as ..

lzc,-c, = lZ(a, —<6)- Y (8, — <8)) — 2{o)> ¥ o, + const.
Nl,] N i J i

If now N - oo, the first term on the right describes the fluctuations and
becomes negligible compared with —2¢¢)} 0,, and the commutators
of H approach those of By Y, 6;, Beye = —Z{0) (cf. (1.1.11)). The time-
evolution is accordingly. given by

U, = @ exp(iBdt; — o).
]

The Hilbert space & contains infinitely many invariant vectors, viz.,
all the ones that differ from Q in the rgplacement of finitely many factors
with an invariant vector from Example 3. Since B depends on B, the
time-automorphisms on representations with different g are different.
Therefore there is not any automorphism of the algebra ¢ generated
by the ¢’s on the sum of two representations with different 8. Although
an isomorphism of n(2f), as a subalgebra of #(#,), is given by

a (a(f)) = U+ Sin(at XUI )"
with
Uirir=Ul @ U, n=n,@ny,

. it is not an automorphism, since there are times ¢ at which o,(n(o)) #
n(2). The smallest subalgebra of #() for which («,), g becomes a group
of automorphisms ‘is clearly | J, a(n()). If B=0 and T <2, then
there is such a sum, or even an integral. There are nonzero solutions to the
equation B, = 2 tanh fB,,, but nothing favors any direction. Expecta-

tion values are averages over the unit sphere of expectation values with
B, = nB,,, by meang of which the representation takes on the form

nS) = S don (),
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where =, is specified by (1.4.7) with ¢ = (¢-n). The time-evolution on
n4() is the rotation ¢7%(t) = (exp(tR))*¢# having the matrix

0 ny —n,
R = Be" —ny 0 nyy.
n, —n, 0

However, as the strong limit of (1/N)Y )., 6;as N — oo, nis containcd in
n(=/)" and lies in the center of this algebra but is not a multiple of 1.
It is constant in time, and the n-dependent time-evolution of the a's can
be viewed as an automorphism of n()".

5. Free fermions. The algebra o is generated by the field operators a,
(1.3.2), and as in (1.3.3; 5) the free time-evolution

S(p) = exp(—ilpl*t) f(p) = f(p)

provides a group of automorphisms on &/:a, — a,,. The thermal state
(2.5.49) is clearly invariant in time and leads to a unitary time-evolution
U, = exp(—iHt). In order to tell the type of the representation, we can
write it in a form like the one in Example 3. Let |Q, ,) be two Fock
vacua and =, ,(a,) be the representations formed with |Q, ,>. Then
with the tensor product

19 =1Q,)> ® Q)

J(p)
=z, 1
wap=r (a<\/ 1 + exp(—B(lpl* - #)))) ®

/*®)
e on(e ))
P\F+ xpBinF - W)
where aN = (N + l-)a (cf. (l.3.l3)). It can be verified that

(a3, a},a,, - a,,> = {Qn(a},) - m(a} In(a,,) - 7, )R,

so this representation is equivalent to the thermal representation with'
_ infinitely many spins. Consequently, if T > 0, then it is a factor of type IIL
The local field operators in momentum space can be used to write H, as

Ho= [0 b (ru(a* @) © 1 — 1 ® nola* QMo

The operator a*a differs from the usual one not only in that the infinite
zero-point energy of field theory has been subtracted off, but also in the
removal of an operator of &".

we get

The Time-Evolution of Open Systems (3.1.2)

It seems illusory to consider every single local property of a large system 84
belonging to the algebra of observables. It is certainly true that practically
anything can be measured, but not all at once, and putting the system into &
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state that is dispersionless with respect to a maximally Abelian subalgebra
is actually impossible. In reality only fairly small subsystems get measured,
so it is of practical interest to divide the total system into the subsystem that
is observed, called an “open” system, and all the rest, acting as a reservoir.
Accordingly, let I = ¥ ® X, and let Tr**®, Tr%, and Tr® be the traces on
X, X;, and Hg. The time-evolution U, will mix 5 and %, so it does not
create an automorphism of #(s). However, if the initial state postulated -
can be factorized and written in terms of a density matrix p @ w, then a time-
evolution 7,: #(X;) — B(H;) can be defined for the open system in the
Heisenberg picture, or the dual time-evolution for the density matrices
1*: €,(;) = €,(Hs) can be defined in the Schrddinger picture. If .
a € (#5) ® 1, then the time-dependence of the expectation values can be
written as '

La()) = T *p ® w)U_(a ® 1)U, = Trpt(a) = Trst¥(p)a,
where by definition P
7(a) = T™*A @ w)U_,(a ® NU,,
) =T"U(p@®w)U._,. - . (3.1.3)
Note that the states transform with U* = U _, rather than U,.

Properties of the Time-Evolution of the Subsystem (3.1.4)

The operators 1, and t? are

(i) one-parameter, strongly continuous families of completely positive
linear mappings; '
(ii) not groups: 1, ° T,, # Ty, 4455
(iii) mot isomorphisms of the algebra: t(a - b) # 1,(a) - 7,(b).

Equality holds in (ii) and (iii) only if U, factorizes.

Gloss (3.1.5)

A linear mapping ®: B(F) — B(IF) is said to be a-positive if ® ® 1 acting
on B(HF) @ HC"): a ® M - ¥a) @ M is positive for all M e H(C"), ie,
it maps the cone of positive elements of #(¢) ® (L") into itself. The
mapping @ is completely positive iff it is positive for all n = 1, 2,....Itcan
be shown [14] that all completely positive mappings are obtained by taking
tensor products of positive operators, composing with unitary operators,
and then taking partial traces, just as in the construction of 7, and 7. The
completely positive mappings form a semigroup with respect to composition.
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Examples (3.1.6)

1.

The classical harmonic oscillator
The observables are chosen as the position coordinates g, so

Trs*’—-'[dpdq, Tr‘—-vfdp, Tr‘-»_[dq.

Let p(q) = n~ Y2 exp(—(g — gqo)?) be the probability distribution function
of the coordinates and w(p) = n~ Y2 exp(—(p — po)?) be that of the
momenta. The time-evolution of the total system, g(t) = qcost + psint,
p(t) = pcost — gsin t, induces

t(q) = qcost + pysint,

-1/2

*(p) = n~ 2 exp[—(q — qo COSt — po sin 1)?]

on the subsystem. However, 7, is not an isomorphism,
7(9%) = (gcost + pysint)? + 4sin?t # 1,(q)%,

since w is not free of fluctuations. The choice of equal widths for p and w,
as with quantum-mechanical coherent states, causes a rigid oscillation
of p. If, instead, «(p) = 8(» — p,), then there would be a periodic focusing
and defocusing of p,

exp[ —(q — go cos t — pg sin t)? cos™ 2 t]

* =
7 (p) Jrcost

. Quantum-mechanical coupled oscillators.

Let us return to the chain of oscillators (1.1.13) and take &, and ¢, as
the open system. Instead of the pure state (1.1.21), suppose the system is
in a thermal state

<exp[ ,=z-:w(£2"r + &ane 18..)]>

4
= exp[— ltanhg Z (r +sH)+i Z (A r;,s,,)J.

As in (2.5.53.6),

Tr exp[ ~n((p ~ P)* + (¢ — §)*)] expLi(pr + ¢s)]
“Trexpl—n((p - P + (g — D]

2, Q2
= exp[— r :s tanhg + i(pr + ('js)], 3.1.7)
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so this state is a Gibbs state with harmonic forces centered at s, —r.

Under the time-evolution (1.1.18), the expectation values of the Weyl
operators of the open system are

Cexp i(réo(t) + s¢,(1)) = eXP{Z {—itanhg (20 + 5T 2044)?
+ (M aney + 5J2)2] + isy(rd 2 + $J30-y)
- ir,',(rJz,,+ 1 + s.’;.)}}.

At time t the subsystem is in a state of the form (3.1.7) with

5o(t) = Y (n(0) 24(t) — ra(OW 20+ 4(1)),
ro(t) = Z(" WO 24(t) — 52(0) 2, (1))

The average values so(t), ro(f) move classically as in Example 1. They
converge to zero, but not monotonically.

3. Coupled spins
Consider spin 1 of the chain (1.1.1) as the open system and the infinitely
many others as the thermal reservoir. The coupling constants e(n) are
chosen as in (1.1.9). The initial state

p1 = 31 + o} exp(—ix) + o] exp(ia)),

‘o = [141 + o exp(—ia) + o exp(ia)),
k#1
((1.17) with s = 0) evolves as
sin®t

*(p) = 5(1 + 3 [o* exp(—i(a + 2Bt) + o~ exp(i(x + 28:)])

if N = oo. The state p oscillates as it approaches the equilibrium state
{-1as T - 0.

Remarks (3.1.8)

1. The failure of the time-evolution 7 or 7* to be a group is due to the effect
of the system on the reservoir and the reaction of the reservoir on the
system. The reaction influences the system at later times, so (9/0t)t*(p)
depends on t¥(p) not only for s = t but for all s < ¢, i.e., on its whole

~ history. The time-evolution of the density matrix of the reservoir can b
written down formally and substituted into the equation for (8/dt)r*(p).
The resulting master equation is an integrodifferential equation for p
iricluding the memory effects just mentioned.

2. The requirement of complete positivity of the time-evolution is not a
mere technicality but a genuine restriction, and it even has some experi-
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mentally verifiable consequences. For instance, its implications for the
motion of a spin in a thermal reservoir have been confirmed experi-
mentally [15].

The retrospective effects of (3.1.8; 1) disappear in certain limiting cases,
so the time-evolution t becomes a semigroup. The limits involve the time-
scale or the coupling constants. The most understandable case is that of a
simplified version of electrodynamic radiative reaction of volume II, §2.4.

Example (3.1.9)

Model of Brownian motion

We modify Example (1.1.13) to take a single harmonic oscillator in three
dimensions as the system and represent the rest of the system, functioning as a
reservoir, as a continuous scalar field ®(x). Suppose initially that the oscillator
is coupled to an averaged field | d*x®(x)c(x), ¢ € CF(R?), and later take the
limit ¢(x) - y6(x), y€ R. We shall study the quantum-theoretical time-
evolution from the outset; since the equations of motion are linear it agrees ,
with the classical time-evolution. If Q, P and ®(x), I1(x) are the canonically
conjugate coordinate and field variables, then the Hamiltonian is

HS = %(Pz + w(Z)QZ),

Hy =14 f dPx{TIX)? + Vo)),

H = J‘d3xc(x)d>(x)Q.

The resulting equations of motion,
62

(Erz _ A)d)(x, 1) = QM)

62
(5;2 " wg)g(z) = [#x00s, 00,

can be integrated immediately with Green’s formula (II: 1.2.36). This is
the trivial case of a scalar field on R?, so with the Green function

r—1)

4nr

D(x,t) =
(II: 2.2.7), the solution of the initial-value problem is

O(x, 1) = f d3x(O(x', 0)D(x — X', 1) + DX, O)D(x — X', 1)

3 ' ’ Y - :. ’ ’
+J.de‘odtD(x X', t — t)e(x)Q(t)



152 3 Thermodynamics

t- 2R ———— — - ——

. v J)
support of ¢(x)
Figure 22 The domain of influence of Feeciion-

for all t > 0, where & = d®/dt, etc. Hence the force exerted by the field
on the oscillator is

[42x00x, 16(%) = Fraa(® + Foagn 0,

Freaa(t) = f &x d*x'e(xXDX, 0)D(x — X, 1) + &X', )D(x — X, 1))

d3xd3x’

mc(x)c(x’)Q(t — |x = x'NO(t - |x — x'|).

Fruction(t)=

In the reaction force F o (t), Q(t') contributes only fort — 2R <t' <t
if c(x) = O for all x such that |x| > R (see Figure 22).

Now if ¢(x) — 2\/;y6(x) so R — 0, then the retrospective effects dis-
appear, and when the expansion

ot — |x —x'|) = Q) — | x—XIQ(t)+%Ix—XI’Q(t)-—---
is substituted into F ion »
Freaction (1) = 60°Q(1) - ¥*Q(1).

The quantity dw? is the formally infinite integral y? { (d°x d3x’/|x — x'|)
x 0(x)o(x’), so the limit ¢(x) — yd(x) must be taken jointly with a change in
wi. If@* = w? — dw?, then the equation of motion becomes

2

2 9 Y
(aTi +& + 2 E)Q(t) =Fraa®, T'=%, 120

For a thermal state with (®(x,0)) = (&(x,0)) = 0, {Feiaa(®)> =0, and
the time-evolution of the expectation value of Q for ¢t > Qs

Q1)) = exp(— l't)((Q(O))(cos wt + £sm wt) + <o Im “")
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provided that w? = @* — I'’? > 0. The expectation values of the canonical
variables ¢(Q(t)> and {Q(t)) then evolve according to a symplectic semi-
group,

sin wt

Q@) cos wt + gsin wt <Q0)>

= exp(—1TI?) 2 r .
<Ot - (w + z)—) sinwt cos wt — 5 sin wt | {<Q(0))

The time-evolution of an oper system is not generally a unitary trans-
formation of the density matrix, and so the entropy of a subsystem is not
necessarily constant. Nothing can be said a priori about the sign of the
change in entropy; the system might start off hotter than the reservoir
and lose entropy as the temperature equalizes. However, the relative entropy
introduced in (2.2.22) turns out to be a Liapunov function [16] for the
time-evolution (3.1.3).

The Decrease of the Relative Entropy (3.1.10)

For the time-evolution t* of (3.13),
Sz} )| 7*(p)) < S(alp).

Proof

With Definition (2.2.22) and the unitary invariance,
S(TrRU _,0 ® oU,|Tr*U_,p ® 0U,) € S(U_,0 ® wU,|U_,p ® oU)
=S@®wlp®w)LS@lp). O

Remarks (3.1.11)

1. The relative entropy is always positive, and in the special case of (2.2.23; 1),
it is B times the difference between the free energy of the state p and the
free energy at equilibrium. Its decrease reflects the tendency of the system
to equilibrium. .

2. Monotony in time cannot be claimed if t,,,,, # 7,,°7,. In Example
(3.1.9) friction returned the oscillator monotonically to its rest-point,
owing to the semigroup property, which was in turn a consequence of
the absence of retrospective effects. The general fact is

Monotony of the Relative Entropy with a Dynamic Semigroup (3.1.12)

If 1, 40, = T,0 7, forall t,and t; 2 O, then 1, is said to be a dynamical semi-
group. The function S(t¥(0)|t*(p)) is then a monotonically decreasing Junction

of t.
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Proof
This is a direct consequence of (3-.1. 10). (|
Remarks (3.1.13)

1. Because S(a}p) = 0, the limit of S(z*(a)|1¥(p)) as t —» 0 exists.

2. It cannot yet be claimed that the free energy approaches its equilibrium
value as t — o0; S(a/p) might stop at some positive value and never fall
to zero. .

3. The apparent asymmetry in the direction of time comes from the re-
quirement of (3.1.3) that the initial state factorizes. Starting at t < 0, the
later state at t = 0 is factorized, so the relative entropy increases.

4. If the dynamical semigroup is governed by a master equation of the type
of (2.1.11; 3), then S(p) increases monotonically.

That finishes the orientation toward various phenomena connected with
the time evolution. Let us now return to more global questions of time-
dependence. The problem, put concisely, is that a finite system the Hamil-
tonian of which has pure point spectrum {¢;} has observables whose expecta-
tion values <a(t)) = Y ; , a; exp(i(e; — €)t) are almost-periodic functions,
as superpositions of periodic functions. Only the average over time makes
sense; the time-limit exists only for‘infinite systems the Hamiltonians of
which have absolutely continuous spectra. Although in actuality only finite
systems come under observation, the recurrence times are so long that they
are indistinguishable from infinite systems within the times of relevance
to human beings. In any event, the first issue to settle is how to define the
time-average of a function f(t)e C(R), the set of bounded, continuous
functions on R. The obvious guesses would be

T ©
lim L dtf(t) or lim = dtexp(—elt|) f(¢),

T-02T Jor e=02J-o
but these limits do not converge for such functions as sin(In(}z| + 1)) € C(R).
Any suitable average would have to be linear, positive, and invariant under
displacements in time. Every invariant state on the C* algebra C(R) has
the right qualifications, and the existence of many invariant states on
C(R) means that there are many possible time-averages. There is thus
no question whether a time-average exists, but it is not unique.

The Time-Average of an Observable (3.1.14)

Let 1 be an average over C(R) and ¢t — a, be a weakly continuous mapping
R — #(¢) such that ||a,| < |la,l for all t. Then the average n(a) is defined
by

Cxin(@iyy = n((xlaly)) forallx,ye .
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Remarks (3.1.15)

1.

Since [n({x|a,[¥>)| < lIxIl - ¥} - aoll. this sesquilinear form dcfines a
bounded operator n(a).

2. In the Schrédinger picture, the average n(o) of a state ¢ on the algebra

1.

generated by the operators g, is defined by n(oXa) = n(o(a,)).

Examples (3.1.16)

If a, = exp(—iHt) = U(t), then n(U) = E, = the projection onto the
eigenvectors of H with eigenvector 0.

Proof

(1) <x|Eon(U)y> = n{Eox|U,y> = {x|Eqy) = Eqn(L’) = E,.
(i) <x|U(tom(U)y> = n{x[U(t + t5)y> = <{x|n(U)y)> =
Uto(U) =n(U) = Eon(U) = n(U) = E, by part (i). 0

= U(t)aU ~(t), where U(t) has pure point spectrum. If the projections
onto the eigenspaces are E;, then n(a) = Y, E;aE,.

Proof

Take matrix elements with the eigenvectors of H and note that
n(exp(iat)) = O for all » and all x € R different from 0. ]

. n(a,Ey) = EgaE,,since n(a, E,) = n(U(t)aE,) = EyaE,, as in Example 1.

Remarks (3.1.17)

1.

In these examples the concrete averages (1/,2T) [T rdtexp(iHt) and
(¢/2) [, dt exp(—¢|t]) exp(iHt) converge strongly (Problem 1). Hence
E, belongs to U” as well as U".

In the Schrodinger picture the time-average of a vector | x) is defined by
In(x)> = n(U(t)|x)>) = Eo|xD. It can be characterized as the vector with
the least norm in the convex hull of its trajectorv { U(¢)| x>, t € R} (Problem
2). It is not, however, true in general for the stiate o(q) = {x|a|x) formed
with |x) that n(eXa) = {n(x)la|n(x)).

. There is no definition of n(a) independent of the representation; since

limy_, (1/T) [§ dta, belongs only to the weak closure of the algebra,
n may send operators out of their C* algebra. Our representations will
usually be such that the time-automorphism a, can be implemented
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unitarily, and the image of E, will contain a' cyclic vector for . If the
averages n(a) belong to ", then they are determined uniquely by

.1 (T .17

n(a)E, Th_tz T J; dta,E, = ‘Il‘l-?:o T,[, U,aEy, = E,aE,,
since E, ¥ separates of’ (Problem 5). However, as will be seen in (3.1.22;
4), n(a) in general depends on the representation.

4. The time-average may be nonunique if f(t) converges, as t - + o0 and
t - — o, but to different values. This situation is familiar to us from
scattering theory. Whenever the time-average of a function f is unique,
it agrees with the “concrete average™

o

T
lim — I df@),  lim [ deexp(=eltl)f ().
- ).

row 2T im0 24
oreven

l T

lim & J' def ().

T-x T 0
These averages exist in classical ergodic theory, in which the Liouville
measure on phase space provides the invariant cyclic vector. Some
ergodic systems will be defined later, and for them E is one-dimensional,
projecting onto the cyclic vector. This projection is then constant on the
energy shell, so the time-average E,aE, equals the average over the energy
shell.

5. The point spectrum of H can be turned into a continuum by an arbitrarily
small perturbation, so averaging over time focuses unduly on the exact
form of H, since n is quite different depending on whether the spectrum
is pointlike or continuous: If in the spectral representation of H the
operator a on the subspace belonging to o, has a continuous integral
kernel, then 5 projects this part of a to 0, and by Remark 2 only its point-
spectrum part remains (cf. (I: 3.3.4; 6)).

6. Pure states of classical systems are points in phase space, and averages
over pure states are averages over classical trajectories.

7. 1f the spectrum of H is pure point and nondegenerate, then every normal,
invariant state can be written as the time-average of a pure state. Normal,
invariant states are of the form

o@) = Tekxlalxd, 06 s 1, ;é. =1, Hx) = glx);

SO

a(a) = {xin(@lx), x= ;\/c_;lxo.

Although the canonical state p = exp(—S(H — F)) is an average over
the trajectory of a pure state, it is certainly not true that every averaged
pure state is the canonical state.
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Our reasoning until this point has applied indifferently to all sorts of
quantum systems, but not all quantum systems exhibit thermodynamic
behavior. An isolated atom is rather like a frictionless perpetual-motion
machine; only large systems are dissipative. The concept introduced in
(1.3.10) of asymptotic commutativity turns out to be a useful characteristic
of dissipative systems. If the local observables are asymptotically Abelian
with respect to the time-automorphism «,, that means that local perturba-
tions dissipate through the system as time passes. Of course, this is possible
only if H has continuous spectrum, and hence only if the system is infinite.
We shall remain with Definition (1.3.10), although many of its consequences
can be derived with weaker assumptions. Definition (1.3.10) applies to a
system of free fermions, but it has not been possible to prove that even
weakened versions of it apply to more realistic, interacting systems. It is
trivial that classical systems are asymptotically Abelian, and (1.3.10) means
roughly that asymptotically Abelian systems behave classically”on a macro-
scopic time scale.

Properties of Asymptotically Abelian Systems (3.1.18)

Let of be an asymptotically Abelian C* algebra with respect to a group of
automorphisms a — a,, and let w be an invariant state having a representation
on a Hilbert space # with a cyclic vector |Q). Then, abbreviating o’ =
n (L), etc.,

1. the invariant elements of s/ belong to ' ;

2. the invariant elements of o’ lie in the center (i.e., # = A' " U’ = n(L’)
is a subalgebra of the center o' N "), and so R = n(HA");

3. Ea#"E, is maximally Abelian in Ey, X, where E, is the projection onto the
invariant vectors of X ; and .

4. if o produces a factor (i.e., the GNS representation n(f) and n (L)
constructed with the cyclic vector Q, generate all of B()), then

lim (o(a,b) — o(a,)a(b)) — 0,

t= o

even if o(a,) # o(a).

Remarks (3.1.19)

1. Neither E, nor E,of"E, necessarily belongs to &#”. Moreover, E,"E,
may fail to be an algebra, and the somewhat loose phrasing of Property 3
is intended to mean that the algebra generated by E, o#/"E, is the same as
its commutant.

2. The point of (3.1.18) is that invariant elements such as time-averages
and time-limits form an Abelian algebra, and thus equal its center.
Factor states are pure when restricted to the center, and are therefore
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characters (see Definition (III: 2.2.25)), which explains why they factorize
in time-limits and time-averages.

Proof

Y

. [a,b] = lim,, , [a,,b] = O for all invariant g€ o and all be .
. By Property 3, E,RE, = E,«"E, is maximally Abelian and so equal

to (Eo REGYE,. Since Eg€ R, (Eq RE,)Ey = E,R'E, [17], and therefore
E,REy = E|(R N~ R)E,. Since |Q) separates o', the equation Eqa'Ey =
ad'E, determines every a'€ & uniquely, so a'e #. However, # " & is
&N’ U, because U N o' = {1}.

. The sef' Eo o E, must be Abelian, as otherwise some commutator would

fail to vanish as t - +o0:
nla,, b] = 0= n,Eo@U,b — bU_,a)Ey = 0
= [EogaE,, EqbE,] = 0 foralla,be .
Hence E,o"E, = (Eq A E,)" is also Abelian, and in fact maximally

Abelian, as otherwise EqgaE, would be ~ 1 on a subspace of dimension
greater than one for all ae &, and |Q) = E,|Q) would not be cyclic.

. Forevery b € n,(of) there exist two operators b, and b, such that b, |Q,) =

b¥1Q,> =0 and b = 1(Q,|b|Q,) + b, + b,. This is obvious for finite
matrices: . '

A 0
A 0
= A + +10 /
A
0 .
b, + h,

b = i1 +

and it carries over to #()#). Then o(a,b) — a(a)o(b) = a([a,,b,)).
If o produces a factor, then b, can be approximated with a finite sum

Y d.d;, dien,(s), dien, (L),

i=1
and Y ; o([a,,d;]d;) tendsto 0 as t - + o by Definition (1.3.10). Although
the subalgebra of #(J#¥) generated by n,(2) U n () is only strongly

dense, operators with these properties can be approximated even in the
norm sense ([18], V.1.4), which justifies these conclusions. O

The set of invariant states is convex, so any invariant state is 2 convex

combination of the extremal points of the set or a limit of such combinations.
As the purest among the time-invariant states, the extremal elements deserve
a special term:
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Definition (3.1.20)
An invariant state is ergpdic, or extremal invariant, if it can not be written as
a convex combination of other invariant states.

Remarks (3.1.21)

1. In classical dynamics an invariant submanifold .4~ of phase space cor-
responds to an invariant state (= measure) u, = [];d¢’ A dpj,, which
is ergodic if 4" cannot be decomposed into invariant pieces with strictly
positive measures 4 .

2. A classical system is said to be ergodic if the surface of the energy shell
o(p, q) = 8(E — H(p, q)) exp(— S(E)) corresponds to an ergodic state.

3. Every time-invariant state is a sum or integral of ergodic states, so it is
tempting to interpret the ergodic states as the pure phases of the system.
Mixtures would then be incoherent superpositions in the sense of quantum
theory rather than coexisting, spatially separated phases. With any
reasonable definition of pure phases, the decomposition into ergodic
states should be unique, and the set of time-invariant states must be a
simplex. This is indeed the case for asymptotically Abelian systems,
which follows from the observation that #' = &' n {U,}’ is Abelian:
As was seen in (1.4.9) and (II1: 2.3.24; 2), every ‘Abelian subalgebra of </
corresponds to a unique decomposition of a state w; if {P;}, Y, P; =1,
are the orthogonal projections of this algebra, and

wya) = %&9 forallae &/,
w(P)

provided that w(P;) > 0, and is otherwise arbitrary, then w = z,- Aw;,
A; = o(P)and n, = @;n,,, where m,, acts on P; )#,. Now if w is invariant
and is to have a decomposition into other invariant states, then the
projections P; must belong to &' N {U,}', and in fact the extremal states
correspond to the minimal projections. Since &' {U,} < Z, the
decomposition into ergodic states is never as fine as the factor decompo-
sition. Hence if a factor representation is given by the invariant state w,
it is necessarily ergodic.

Ergodicity in fact singles out the desired properties. This is shown by the

Characterization of the Ergodic States (3.1.22)

Let .of be an algebra that is asymptotically Abelian in time, p an invariant
state on s/, and |Q) the vector of the state p in the GNS representation.
Then the following conditions are equivalent:

1. p is ergodic;
2. R = {a-1};
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PN wa

given any decomposition p =.{ ¢ du(a) and a u-measurable mean n, n(c) =
almost everywhere for u; :

. n(a) = 1. p(a) for all a e of and all invariant means 1,

HFHA)VNU = {a-1};

E, = |Q)Q|;

p is a unique, invariant, normal state on n ()" ;

n(p(ab,)) = p(a)p(b) for all a and b € of and all invariant means 1.

Remarks (3.1.23)

L.

N o

If the quantum system is finite, H has pure point spectrum, with eigen-
vectors {|x;>}. As we have learned, the invariant states are of the form
a-» z‘c‘(xilax‘), so the extremal invariant states are of the form a —
{x;lax;> and therefore pure. If the system is either infinite or classical,
then ergodic does not imply pure. For example, the state of free fermions
(2.5.49) produces a factor and is therefore ergodic, but &' is isomorphic
to o/ and thus different from {a - 1}. It will be discovered later that this
is the normal situation for equilibrium states.

. According to (III: 2.3.10; 5), Condition 2 means that p is a pure state on

R, and can also be written as # " ® = {a-1}; in particular, every
factor state is ergodic.

. Condition 3 can be sharpened for classical systems with Birkhoff’s

ergodic theorem, according to which almost every trajectory fills the
energy shell densely. In this case, with the decomposition into pure
states, the Cesaro mean exists; n(o) is u-measurable, and the order of 7
and { du can be reversed.

. By Condition 4 the time-average of operators in this situation is unique

and a multiple of the identity. More particularly, the classical time-
average of any set of positive p-measure is spread out over the whole
support of p. Hence the time-average of states with a density function
equals the equilibrium state. Since averaged observables are multiples
of the identity, they exhibit no deviation.

The implication of Condition 5 for classical dynamics is that if the system
is ergodic, then every measurable, time-independent function is constant
on the energy shell. Note that (of U o/')" might contain additional
time-invariant operators; for instance, for a factor this set is #()) and
therefore also contains U.

Condition 6 implies that 1 is a simple eigenvalue of U.

. By Condition 7, all the other eigenvectors of U lead to the same state as p.

Classically, the eigenfunctions ¢(p,q) must always have |@|* constant
independently of p and ¢. Thus ergodicity does not make it impossible
for the spectrum to be purely pointlike, but only prevents 0 from being a
degenerate eigenvalue of H. The extra word “normal” of Condition 7
is important. In Example (3.1.1; 5) of free fermions, equilibrium states at
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different temperatures from that of the specified representation are
invasiant in time, but not normal. This means classically that different
energy shells have disjoint support.

8. Condition 8 means that the autocorrelation function p(ab,) — p(a)p(b)
has time-average 0. Also. according to Condition 4 the expectation
values of operators in states of the form a}2) have the same time-averages
as those with the state p. Since the states a|Q) are dense, the time-average
of every normal state is p. This is a sort of converse to Condition 3. in so
faras n(e) = p for all ¢'s that are pure and normal (as states on 7, (.o/)").
It may happen that the set of such ¢’s is empty (cf. (1.4.17: 3)), and some
non-normal, pure states converging to something other than the equili-
brium state will make their appearance later.

Proof

l=2: Lette#,0 <1 < l:then the vector (Q,> associated with p in the
GNS representation is cyclic for # and thercfore separates #'.

With [Q,).
0 < |lt' Q1 = (Q,IQ,> =4 < 1.
so if
pi(@) = 5 (Q,[aQ,),
and

1

then p=4p, + (1 —A)p, has a genuine decomposition into
invariant states.

2=1: Let p=2Ap, + (1 —24)p;, where 0 < A< 1. Then according to
(I11:2.3.24;2) there exists a ten,(o/) such that 0 <t <1 and
pi(a) = (Q,11,>71(Q,|atQ,) for all aea/. If p, is invariant,
then ¢ is in &', and it follows from Condition 2 that p = p, =-p,.

2<4: A > {§(a): ae H}. (Cf. (3.1.18; 2).)

1 = 3: The state p = | o.du(6) is invariant in time, so p(a) = { du(o)n(o(a)).
Therefore p = {du(o)n(e), and, since p is an extremal invariant,
it equals the invariant state (o) almost everywhere in .

3= 1: Suppose that p is not ergodic. Then there exist invariant states
P, # py such that p =4p, + (1 —4)p,. This is a special case of a
decomposition with p; = n(p;) # p, so Condition 3 would be
violated.

2 <> 5: The invariant elements of . and &' compose #'.
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6= 1: Suppose that p =1p, + (1 — 1)p,; then by (I11:2.3.24; 2), p, is
of the form p,(a) = Q10,5112 |ar'?Q,) for ae o, and ¢
isinz () n U, if p, isinvariant. Condition 6 implies that | ¢!/ 205 o
1£2,), because |t'/2Q,) € Eo X, 50 p = p, = p,.

6= 8: n(p(ab) = mM<Q|aU,b|2)) = (Q|aEeb|N) = p(a)p(b).

7=>6: If there existed a second invariant vector ('), then all vectors
\/QIQ) + /1 — «|Q) for 0 < a < 1 would give rise to the same
state, but by Property (3.1.18; 3), since the algebra is maximally
Abelian on the subspace, this would mean that |Q) = |Q').

4=7and 8: w invariant = @ = ng(w) = R(w)a) = p(a).

8 = 4: From »([b,, c]) = Oit follows that p(ac)p(b) = n(p(ach,)) = n(plab,c)),
so the matrix elements of p(b) - 1 and n(b) are equal on a dense set.

O

Examples (3.1.24)

1. The oaly possible ergodic states on: classicaf systems are those con-
centrated on (E — H(p, ¢)); otherwise of would contain the additional
invariant F(H), contradicting Condition 4. Let us examine a chajn of N
coupled oscillators (1.1.14). The Hamiltonian can be written in terms of,
action and angle variables K, (see (I: 3.3.3) and (I: 3.3.14)) and ¢, € T
as s

N
H= 2 w‘K‘,

and the time-evolution is ¢; ~ @, + ;2. If N > 1, the state ~ E — H)
is not ergodic, although the state ~ []; (K, — c,) concentrated on T
is, provided that the angular velocities w, are rationally independent
(cf. (I: 3.3.3)). To understand why, observe that the operator h on L%(T¥)
introduced in (3.1.1; 1) arises when K| is interpreted as the displacement
operator, the eigenvalues of which are 2nn, ne Z. The spectrum of h
is therefore purely pointlike, with eigenvalues 27 ¥, w;n,. If the w, are
rationally independent, then the eigenvalue 0 (all n, = 0) is nondegenerate
and otherwise it is degenerate. According to (3:}.22; 6) this- is a criterion
for ergodicity. This example is also useful for illustrating the other
criteria. For instance, Condition 4 states that every invariant L* function
is constant almost everywhere on TV. Roughly .speaking, a function
assuming one value on half the trajectories and a different value on the
other half is not measurable.

2. Of the quantum-mechanical examples of (3.1.1), only the free fermions
(3.1.1; 5) fall within the category covered by (3.1.22), as the others are
not asymptotically Abelian. Since (3.1.1; 5) has a factor state, it is ergodic
according to Condition 5. If we go through the other criteria, we notice
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wat < oadndon & hotds 0 iz starmened form Hm, L 4 o, p(aby) = plaio(h)
tor aii w wnd e @l This miezis that nornal states approack p not oniv
1 il neadan, Gue ads aciualtiy i the lunit ¢ - 3 0. The sttuaiion > a5
desciibeu shiiait. iy Wiyl i, where the states converge to the equiltbrium
state.

£ven thongh Example 1 is ergedic. it does not exhibit the sort of benavior
appropriite ‘or a tpermodynamic sysiem. The time-evolution s a4 1.zid
displacemendt in TV, and this submanifold does not get thoroughty mixad.
States like those given by picces of T" do not converge as t — x : only their
means converge. Example 2 coniorms better to the notion of a thermodynan:ic
system, which suggests sharpening some of Criteria (3.1.22) as much as
possible, by replacing the time-avcrage with the time-limit.

Definition (3.1.25)

An invariant state on an asymptotically Abelian system is calied mixing iff
one of the following equivalent conditions is satisfied :

4. w-lim,., ; , 7(a) = 1 p(a) for all ae o (The weak limit is that of the
GNS represéntation);

6. U, =-= 2 |Q)(Q1:

8. lim,. , .. plab,) = p(a)p(b).

Remarks (3.1.26)

t. By Condition 4', every operator converges to its equilibrium value and
its deviation goes to zero. Hence, in the Schrédinger picture every normal
state approaches the equilibrium state p. In classical dynamics prob-
ability distributions of normal states are described by functions--i.e.,
not by é distributions—and so they spread out through all of p.
Criterion 6 is satisfied if the spectrum of U is absolutely continuous
other than the eigenvalue associated with |Q). In any case, |Q) must be
the only eigenvector. i
3. Concerning Condition 8, we have learned that for a factor the correlation
functions vanish automatically as ¢t — + co. Therefore, for factors ergodic
is equivalent to mixing. In general it is only true that mixing implies
ergodic. It is also not true to say that mixing implies a factor, since there
are classical mixing systems. However, it will be shown in the next section
that in quantum theory equilibrium states are mixing iff the algebra is a
factor. In the case of free particles with the spatial translations, as the
group of automorphisms with respect to which their algebra of observables
is asymptotically Abelian, this reasoning implies that the spatial correla-
tion function goes to zero for factors.

)
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4. If a state is a limit of pure states. then itis mixing: If alis pure and 6, = p

* then p(ab,c) - lims-*ao a(a,b,“c,) + lims*m O’(G,C,)G(b,+,) - p(ac)p(b) =
0.A pure state s a factor state, so (3.1.18; 4) applies, showing that p(ab, c) —»
p(ac)p(b). The converse is not true in general, since the pure states into
which p is decomposed need not converge as t » + o0. For example, the
pure states for classical systems are points in phase space, which will keep
moving forever. N

Proof of the Equivalence in (3.1.25)

8 <> p(ab,c) = p(alb,, c]) + placb,) - p(ac)p(b) <> 4',and p(a,b) = p(alU,b),
hence 6' <> §'. a

Classical systems that mix are of necessity complicated, and it requires a
rather demanding example to show that the concept of (3:1.25) is not empty:
(-

Motion on a Surface of Consunt,’Negative Curvature (3.1.27)

The ergodic system (3.1.24; 1) is not mixing; the spectrum of U, is purely
discrete. This agrees with the perception that displacements in T2 do not

mix its parts together:
7 v .
ﬁ
/ .

§/%
/, 27D

l H > >,

To produce mixing we need a somewhat geometrically irregular configura-
tion; fortunately, as will now be demonstrated, it suffices to have a surface of
constant negative curvature. The construction of the example makes use of
the following more abstract reformation of (3.1.24: 1). Treat R? as a two-
dimensional group and the trajectory as a one-dimensional subgroup, and
_consider its image in the quotient space T? = R?/Z2. Conservation of
angular momentum gets lost, and the trajectory can be dense in T2. The
present example will have an energy shell that is diffeomorphic to the
Lorentz group SO(2, 1), and the trajectory will be a one-parameter subgroup.
In order to destroy the other constants of the motion and have an energy
shell of finite volume, map the space to SO(2, 1)/.Z, where 2 is a discrete
subgroup of SO(2,1). The dynamics furnishes a unitary representation



3.1 Time-Evolution ’ 165

U, = exp(mt) of a one-parameter subgroup of SO(2, 1), but, unilike with R,
U has only absolutely continuous spectrum other than the point s, ..1d 80 the
system is mixing by (3.1.26; 2).

We reglize these ideas in a classical systém the Lagrangian of which is
quadratic in the velocities. The motion thus proceeds in the absence of -
forces, but the invariance under SO(2, 1) brings about some unusual signs.
The extended configuration space is the submanifold of R? for which

xix)=xt+xi-—x3=-nk (3.1.28)
If X denotes the derivative of x by the proper time t, then the Lagrangian
is ‘ :
L = §(x|%).
The constraint (3.1.28)_enters into the Euler-Lagrange equatnons through
a Lagrange multiplier,

% = Ax,, (3.1.29)

‘and there are the following constants:
(x|x) = -1, (x|x) =0, xjx) =1 (3.1.30)

(which normalize t). The three-dimensional manifold defined by the con--
stants corresponds to the energy shell (recall-that the-configuration space -
is two-dimensional and the phase space is four-dimensional), and on it is
the SO(2, 1)-invariant Liouville measure
;o dQ = dx BxH((x]x)0((x]|x) + DA(x]%) — )YO(x,).  (3.1.31)
Therq’ére also three constants associated with the angular momentum,
/
ll' = sflmxkx‘n’ (3132)

which are connected by an algebraic relationship,

() = —(xlx)EI%) =

One dimension is left for the trajectory. Because (/;|x) = O, the projection
of the trajectory onto configuration space is the intersection of the hyper-
boloid (3.1.28) with a plane passing through the origin and making an angle
less than 45° with the x,-axis (see Figure 23).

The energy is only apparently indefinite; x, can be eliminated, and then

L J’ff + X3 + (kx5 — %, %)%
x2+x:+1

describes motion in the x; — x,-plane without forces, but with a positive
effective mass that depends on the position.

The indefinite scalar product (-|-Y and consequently also the formalism
that has been developed are invariant ullder SO(2, 1). The group SO(2,1)
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Xg

trajectory

hyperboloid

'/ plane through the origin

-
~ X3

Figure 23 The trajectory in configuration space.

acts transitively on the energy shell (3.1.30), and every point can be written
{x,x} = {M(1,0,0), M(0, 1, 0)} "(3133)

for some M eSO(2,1). It is easy to see that M is determined uniquely,
and this creates the diffeomorphism between the energy shell and SO(2, 1)
that was mentioned above. Accordingly, every trajectory can be obtained by
making Lorentz transformations of the group generated by

cosht sinht O
M@) = |sinht cosht Of.
0 0 1

The most convenient construction of the discrete subgroup makes use of
the isomorphism between SO(2,1) and SL(2, R)/{1, —1}, since 2 x 2
matrices are easier to handle than 3 x 3 matrices. The source of this iso-
morphism, like that of SO(3) = SU(2, C)/{1, —1}, lies in the observation
that

(: ﬁ) eSL(2,R), ie,(apB,1,0)eR ad—pfy=1 (3134)

.
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produces the Lorentz transformation x — x’ by

Xy + X5 X} _ [ B\{xo + x X, a ¥
( X} x{,—x’z)*('y 6)( Xy Xo — X, J\B &/ (3.1.35)

It is necessary to take the quotient by the center {1, —1}, since the Lorentz
transformations corresponding to the matrix me SL(2,R) and —m are
the same. It is not hard to come up with discrete subgroups of SL(2, R), such
as

z = {(;‘ g) eSL(2, R): o, B, 7,6 integers}.

Now let us investigate the motion on the quotient space Q, = SO(2, 1)/2" ~
SL(2, R)/{1, —1}/Z. Unlike the case of T2, the quotient space is not a
group, since 2 is not a normal divisor, though for our purposes this does
pot matter. Thus Q, is the energy shell (3.1.30), on which points are identified
if they are transformed into each other by 2. For the trajectory this means
that if it goes out one end of the domain of periodicity it reappears at the
other. Conservation of angular momentum breaks down, leaving the
possibility that the trajectory fills Q, densely.

To get a clearer picture of Q, we have to find out what corresponds to
the square 0 < ¢,, @, < 1 of the earlier example, that is, a region containing
no points equivalent under 2, but for each boundary point of which there is
a z # 1 of & mapping it to another boundary point. The subgroup Z is
generated by the matrices

1 1 01

0 1) -1 0o/
the latter of which is the reflection (x,, x,) = (—x,, —x;). It is therefore
possible to restrict attention to the upper half plane {x, > 0} in configura-

tion space and choose a region symmetric about the x,-axis. The boundary
curves can be obtained by transforming the x,-axis with the matrices

o =)

of SL(2, R). They have the parametric representation

P Xo + X5 0
+ = xl' ' ’ ’
Xy Xo — X2

(1 2\ (V1+x3 +x, 0 10x>0'
=l 1 0 V1+xi=-x,)\+s 1727 °f
(3.1.36)

note that
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Figure 24

so x3 = +§(1/x} — 3x}). The projection of ©, onto configuration space

looks as depicted in Figure 24, where the lines A indicate the identifications.
The identification of the boundary points by (; 1) means that if the

trajectory leaves through one side, it reappears at the corresponding point

of the other side (see Figure 25).

Now we are in a position to verify that the measure of Q, with dQ (3.1.31)

is actually finite. This follows from

f P30[(%1)010[(%1%) — 1] = F(x, x) < %
and '
F(-1) fdaxé[(xlx) + 1] < oo,

where the integral runs over the region bounded by (3.1.36).

N\ A

~ -~

- -

Figure 25
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The time-evolution is controlled by the unitary group
6M
T

where the anti-Hermitian operator m is one of the gengrators of SO(2, 1).
If the other two generators are combined into m, = m, + m,, then m,
satisfy the commutation relations

U, = exp(mt),

mm,]=+m, and [m,,m_]=2m.
Note that in contradistinction to SO(3), this time (m.)* = —m,. This

fact will be crucial, since the generators of SO(3) fiave purely djscrete spectra.
Instead of SO"(f 1), let us now examine the simpler two-parameter subgroups

U .(a,t) = exp(am) exp(tm)
with the multnphcatron law

"0, 0U 4@, 1) = Usa + exp(0)a, t + 1),

" Because [m,,m._ ]=ui 2m, the operators U, 0) and U_(a,0) generate

the whole group, and U(t) = U, (0,t) = U_(0, ¢

- Next consider the representatlon (3.1.1;1) of classncal dynamics on

# = L¥Q,,dQ). Not just U,, but in fact all of SO(2,}) is represented

unitarily on J¢ by f (x) — f(Mx),and we shall now reduce this representation

according to the irreducible representations of the subgroups U,. We

start by observing that U ,(a,0) is a normal divisor, and the factor groups
U .(a,1)/U 4(a,0) are' isomorphic to R. Hence there are irreducible, one-

dimensional representations of the type

I: Ug(a,t) = exp(idt), i€R.
In addition it is readily seen that U, can also be represented on L%(R, dx)
by
II: [U.(a,W](x) = expliae(x + 1), ¥ L*(R,dx),
and similarly for U_. It can be shown [19] that these possibilities exhaust
the irreducible representations of-SO(2, 1), so, decomposmg into the irre-
ducible representations of U
L¥(Q,, dY= .V,* @:{,*mx’,“ @ ;.
On the subspaces J¥ ;; and & ;; the operator U(t) acts as a transia ..
L*(R, dx), and thus its spectrum is continuous. A discrete spectrum could

only be found on J#; N x’ 1 » but every vector  of # [ N X satishies the
equation

U.@,00 = ¥ = U_(a, 0.

Since U, (a,0) and U _(a, 0) together suffice to generate all of SO(2, 1), ¥ is
invariant under the action of every group element. Since the group acts
trapsitively on Qo, ¥ must be a constant. Becduse €, has finite measure,

any constant function belongs to L*(Q, d), so the situation is like that of
(3.1.26; 2). Unless the quotient by Z is taken, U has no point spectrum, as
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constant functions would not be integrable. In sum the argument is that the
system is mixing because the spectrum of U ccnsists of a single nondegenerate
eigenvalue 1 and an absolutely continuous portion. This is in contrast to the
motion on the torus, for which the spectrum of U, was purely discrete, and the
system was only ergodic, not mixing.

Example (3.1.37)

The quantum-mechanical example of an infinite system of free fermions was
seen to be mixing. Despite the absence of interaction, a local perturbation
spreads out to infinity through the diffusion of free wave-packets. From
among the characterizations of ergodic states (3.1.22), let us look in part-
icular at the third. 1t holds in the sharper form of (3.1.26;4); the grand
canonical state (2.5.49) is the time-limit of a pure state..The proof of this
fact uses the transformations

a-(f) = by(Bf) + b3(/1 — |1B1f*)
and :
a,(N) = by(B) — /T = 1BPS*). (3.1.38)
We have directly taken up the realistic case of spin-4 fermions, where 1 and |
indicate the direction of the spin that the field operator describes. In Fourier-
transformed space f is a function k — B(k): R? - {zeC:|z|* < 1}, and Bf

is the function (k) f(k). In x-space B is a convolution. It is straightforward
to verify that the d’s satisfy the usual commutation relations (1.3.3;2),

[a,(f), at(@)]. = [a,(f), a}(@}+ = (S19)
[af(f)9 at(g)]#- = [at(f)’ al(g)]+ = [af(f)a QT (9)]+ = [a;(f)a a‘(g)]+ =0,
(3.1.39)

supposing that the b’s satisfy the commutation relations. Clearly the a's
and the b's generate the same C* algebra. The expectation values of the a’s
in the Fock state |0) (1.3.2) for the b’s: b,(f)I0> = b (f)|0)> = 0, are

a*k
Olay(Nat@I0> = Olay(Nat@I0Y = |75 18MFF Mgl
- (0la,()a,@)10) = Pla,(fay(@)[0>

Bk o, T 18O
= | S*kg*k)pk)\/1 — (BRI

{0la,()ay(9)10> = <Olay(f)at(9)10> = 0. (3.1.40)

The state |0) was seen to be pure in (1.3.16; 1). Under the time-evolution
f(k) - exp(—it|k}|?)f(k), the quantity —(0}a,a;10> = (0}a,a,|0> goes
to 0 as t = + 20 by the Riemann-Lebesque lemma. If

Bk) = (1 + exp(—BCIkI* — )™,
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then in the limit t » + o0 the generalization of the state (2.5.49) for spin
4 is all that is left over.

Remarks (3.1.41)

1. The limit of a pure state is clearly not always an equitibrium state; other
functions could be chosen for f(k). '

2. Since the thermal representation of free fermions (3.1.1;5) is a factor
of type III, the pure state |0) associated with the thermal representation.
cannot be normal (cf. (1.4.17; 3)). Likewise, any other states of the latter
formed with different B(k) are not normal because of (3.1.22;7), even
though they are invariant.

3. The state given by |0) is not invariant in time, and in this representation
the time-evolution is certainly not a unitary group (cf.(l.3.l6;7_». If it
were, then the time displacement t,: a — a, would be weakly contingous
and hence extensible to n(=)”, which would lead to a contradittion:
o, is asymptotically Abelian with respect to the spatial translation’
T,, so in the representation with the translation-invariant staté |0), -
lim, ., T,a =1-{0]a]0) for all aeof,. Since T, commutes with
1,,it would follow that lim, . , T, t,(a) = 1-{0|4,|0) = lim,. 7, T(a) =
1-{0]a|0), which would then imply that the state {0|-|0> would be
invariant in time. ‘

Problems (3.1.42) "
1. (i) Prove von Neumann's statistical zrgodic theorem, (1/27T) [T rexp(iHt)dt — E,.
(Show that on all vectors of the iorm x = exp(iHs)y — y, y€ #, s€ R, we have
(1/2T) ﬂ, exp(iHt)x dt — 0. Let o, be the closed linear hull of these vectors,
and note that the same fact applies to all x € #,. Finally, show that #{ =
{x: exp(iHs)x = x for all s} = E )
(ii) Show similarly that (¢/2) {2, exp(—¢|t|) exp(iHt) dt — E,.

2. Show that in the Schrédinger picture the time-average of a vector x has the following
characterization: n(x) is the vector of least norm of the norm-closed, convex hull of
{U(t)x}, denoted . (Hint: sece the example given earlier for n(x) e X". Show (i)
that X" contains a unique vector ¢ of least norm; (ii) that { is invariant under all U(t);
and (iii) that X" contains no other fixed point.) '

o«

3. Show that Z = {a- 1} iff w(ab) = w(ayw(b) for all we #*, ae of, and be 2.

4. Show that for a classical system, if there exists a constant f(p, g) not of the form
«- 1, then p is not ergodic.

5. Show that a set E c J¥ is a totalizer for & iff E separates &". (Cf. (III: 2.3.4); a total-
izer is a set E such that oE is dense in o, and separating means that a'E = 0= ad’
=0)
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6. Boson states of the form (2.5.49) with { f|pg) = § d*kp(k) F*(k)j(k), 0 < p(k), arc
factor states and consequently mixing. Express such a state as a time-limit of a' pure
state (cf. (3.1.37))

Solutions (3.1.43)
1. (i) If x = exp(iHs)y — v, then

ﬂ% Lr exp(iHt)x dt!l = j%{

<‘-§‘-“—"1‘-0. :

v

T+s ’ ~T+s A
j exp(iHt)y dt — j cxp(iHr)ydt}l'

T -T

Because |[(1/2T) [T, exp(iHN dt|} < 1, this holds for all x € .
xXe N7 = (x|exp(iHs)y — y) = (exp(—iHs)x — x|y) =0 ~ forall ye ¥
<> exp(iHs)x = x forall s« Egx = x )
by the spectral theorem.
(ii) It suffices to‘show that ¢ j;" exp(—et)‘zv‘p(s‘l-lt) dt —» E,, which will follow if
S
N

& [& exp(—1tt) exp(iHt)x dt — 0 for vectors x = exp(iHs)y — ).
This integral equals -

& exples) .r exp( —',;:t) exp(iHt)y dt — ¢ f exp(—er) exp(iHt)y dt

0
= (exp(es) — )¢ J.x exp(—et) exp(iHt)y dt — ¢ Jq exp( —¢t) exp(iHt)y dt — 0,
s 0

since lle {§ exp(~—«t) exp(iHt)y dt|| < Ilyli~ -
2. (i) Let A = inf{|Ix|: xe X'}. There exists a sequence {x,} in X" such that |x,}! - A.
By the parallelogram law, )

X, ~ X 2 X, + X 2 L
5 "‘n __2-——u = §(||x,,il" + "xm"z)o

x, is a Cauchy sequence, so it has a limit . I [Ix{| = I{]l, then /

- 2 1} '

’_‘-”z_éu = HOxI? + 1) - 5‘?“ < 0, which implies that x = ¢. -

@ii) NUEKI = g = V@) = ¢.

(ni) Suppose that n is a second fixed point. For all ¢ > 0, there exist 2,,.... 2, and
Piueeesimsuchthat Y, 2, = 3, 2; = 1, with2;,2; 2 0, and there exist 1, ..., t,
andft,...,tysuchthatif V = 2, U(t)) + --- + 2,UQ,), and W = ,U(t) + - -~
+ 2, U(t,). then | Vx — ¢|| < ¢ and [|Wx — nli < &. However, then ‘

B —nt <IE - VWxlj + [VWx — nll = |WE — VWxil + |VWx — Vil
S UWIHIVX = &+ 1V | Wx — gl < 2, :

so0f=n
Remark: The strong and weak closures of a convex set are identical.
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3. = This part is trivial.
<: Let P, and P, be projections in &, such that P, L P,, and let w(-) = w(P.).
a;= Pia,b;= Pbfori=1201w=aw, + (I - a)w,,then

w(ab) = aw(a,)w(b,) + (1 — 2)w(a,)w(b,)
# (aw(a,) + (1 = a)w(ay))(aw(b,) + (1 — 2)w(b,)).

4. Let f(p, q) = inf(1,1f(p. q)|) (if necessary multiply f by a suitable constant to
ensure that f is not identically 1). Then dp is the sum of two invariant states,

dp =31 + f)dp + 3(1 - f)dp.

5. = letdes dE=0=ad4E =0=a =0 on a dense set, which implies that
a=0.
<=: Let E; betheorthi:gonal complement of /E. Then & E, = E | .so the projection
P, onto E, belongs to &7, but P, E = 0, so £ does not scparate .o

6. In a Fock representation of the free fields b, b(k)|0) = 0, write
ak) = /pK)b*(K) + /1 + p(K)b(k).
and
a*(k) = \/pk)b*(K) + /T + p(k)b(k).
These operators a likewise satisfy the commutation relations

a(k)a*(k’) — a*(k)a(k) = ok — k),

and
<Ola(kya*(k)10) = 5(k — & )p(k).
<Ola(k)a(k)10y = 8(k — k)\/p(k)\/1 + p(k).
Hence

Clay,a310).= [ akpto @030,

<0lay,a, 0> = f dk exp(2ilk20)/p0) T+ pK) F*K)F*(K):

this last integral goes to zero as ¢ - + by the Riemann-Lebesgue lemma, and
therefore its time-average is zero. The analogous fact holds for the higher correlation
functions, so the time-average of the pure Fock state |0) is of the form (2.5.49).

3.2 The Equilibrium State

In the course of time the Maxwell-Boltzmann distribution has proved
more and more fundamental, and has become deeply rooted in the
mathematical description of infinite quantum systems.
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With a certain normalization of H the canonical state has the form w(a) =
Tr exp(— fH)a, as we have seen. The appearance of the Hamiltonian H in
both the time-evolution and the state creates all sorts of important connec-
tions between them. To avoid technical complications at first we shall
concentrate only on the finite-dimensional case. The commutativity of the

trace gives rise to a symmetry between the representation of the algebra and
its commutant.

The GNS Representation of #(C") with a Faithful State 3.2.1)

Let of = B(C") be given the inner product {a| b) Tr a*b so that it becomes
a Hilbert space isomorphic to C, and define
n: o — B(C"): n(a)|b) = |ab),
7 o - BC): 1 (@)|b) = |ba*,
J:C" - C*:J|b) = 1b*).
Then ‘
(i) = is a factor represéntatién (*-isomorphism),
(ii) =’ is a *-antiisomorphism, i.e.,
w(ab) = v'(@w(b), w(ia)y=in'(a), w(a*) = (v'(a))*,
n'(a + b) = n'(a) + n'(b)) with n'(f) = H(A)';
(iii) the conjugate-linear operator J preserves norms and J: = l

(iv) Jn(J = 7'(A), In(H) = n(H);
(v) let w be a faithful state, that is, if a > 0, then w{(a) > 0, so by (2.1 S(n)),

w(a) = Tr pa = (/plal\/p), p >0, Tr p = 1. The vector 1\/p is
cyclic and separating for n and ', i.e., n(a)tf Y=0=ae 0 Hence the
GNS representation using w is unitarily equwalcnt tom.

Proof

The isomorphism and antiisomorphism properties are obuou:- ARy
i) P@r®)ic> = w@lbc) = |bea*) = n(b)wla)lc), dhd erdiore

7'(of) < #(s7Y. On the other hand, if B e n(f) fifen Bll) is |b*) for
some b e &/. Hence

Bla) = Br{a)|1) = n(a)B|1) = ﬂ(a)lb‘) = x(a)n’(b)(l‘) = n’(b)ta)
for alla& o, so B = n'(b) and n'(f) = o). '
(i) Let n(a) e o(ofy. Then by part (ii) it equals x'(b*) for some b. Hence

r(@)|c) = |ac) = n'(b*)Ic) = |cb), so ac =cb for all cesf; and
therefore a = b = a - 1. Thus n() is a factor.
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(iii) |J|ad}|® = Traa* = Tra*a = |||a)||?, and J? = 1 since b** = b.

(iv) Jn(a)J|b) = Jn(a)|b*) = J|ab*) = |ba*) = 7'(a)|b) = Jn(a)] =
n'(a) = n(a) = Jn'(a)J, because J? = 1.

(v) Since p ! exists, |a) may be written as |'b\/;;) = n(b)l\/;), b =ap~12
which shows that \/; is cyclic for z. If p; > 0 are the eigenvalues of p,
then in the diagonal representation of p,

In(a)i/pXI1? = Tr pa*a = ¥ playl? =0,
ik

which implies that a;, = 0, and similarly for ='. By (III: 2.3.10; 6) =, is
equivalent to . 0

Remarks (3.2.2)

1. An anti-isomorphism came up once before, in the reversal of the motion
(I11: 3.3.18), and J is like the conjugate-linear operator ©’ (3.3.19; 2).

2. The representation =, being a finite-dimensional factor of type I, is of the
form n(a) = a @ 1;¢n, 50 ™'(a) is 1)cn @ a*.

Consider next how to represent the time-evolution a — a, = exp(iht)
a exp(—iht). At first thought it might be represented by exp(in(h)t), but this

would not leave the cyclic vector l\/;_) > invariant. The correct way to proceed
is as in Example (3.1.1; 3).

The Time-Evolution on #(C") (3.2.3)

The unitary representation (1.3.5) of the time-evolution a — a, on the invariant
state a = Tr pa, p = exp(—ph),’ is given by U, = exp(—iHt), H = n(h) —
n'(h). It satisfies the following:

() JHJ = —H,JUJ = U,;

() U_ 2@/ = Jn(a*)l\/p;
(i) </pln@)n()l/p> = </pln(b)nla)l\/p).

Proof

It is immediately clear that exp(iHt)n(a) exp(—iHt) = n(a,). Moreover,
exp(iHt)|\/p)> = |exp(iht) exp(— ph) exp(—iht)) = |/p).
(i) This follows from (3.2.1(iv)). '
(i) U_yp2m(@)|\/p) = U_igala_exp(—Bh/2)> = |exp(—Bh/2)a) =
J|a* exp(—Bh/2)) = Jn(a*)|\/p).

iiii) Trexp(— ph)ab = Trexp(— ph)aexp(Bh)exp(— ph)b = Trexp(— ph)ba;,.
(0]
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Remarks (3.2.4)

1. The density matrix p was written simply as exp(— H) under the assump-
tion that h had been redefined by the addition of a multiple of the identity
so that Tr exp(—ph) = 1. This affects neither the time-evolution nor H.

2. Note that J does not reverse the direction of time. o

3. The operator p = exp(—h) is always positive. Conversely, if p > 0
(i.e, all eigenvalues p; > 0), then In p = —h is well defined. This shows
that groups of automorphisms and faithful states are bijectively related.
There is a special term for their relationship.

The Modular Automorphism (3.2.5) - 5,.»
For each faithful state w on #(C") there is a unique one-parameter group of
automorphisms 7,: a — a, such that

(i) wisinvariant in the sense that w(a,) = w(a). .
(ii) w satisfies the Kubo-Martin-Schwinger (KMS) condition, w(ab) =
w(ba,).
(iii) there exists an anti-isomorphism n,(af) = Jn,(of)J onto 7, () such
that

U_i2n(a)|Q) = Jn(a*)|2),

where | Q) is the cyclic vector and U, is the unitary operator representing
7, in the GNS representation with w.

If the dimension of the Hilbert space is now infiffite, but the state is still
given by a density matrix p = exp(— fh),.then there are a few technical
difficulties to clear up.

The Temporal Correlation Functions of Finite Quantum Systems (3.2.6)

If the time is made complex, then in general

a, iy = exp((ix — y)h)a exp(—(ix — y)h)

is unbotinded, and hence does not belong to the algebra. However, we shall
continue to use this notation, as this operator will never act on anything
outside its domain of definition.

(i) Continuity in the strip — 8 < Imt < 0. w(a,b) = (Q|aexp(—iHt)b|Q),
and if ¢ is complex, then by (3.2.3(ii)), b|Q) is in the form domain of
exp(yH) for y > —B. In a spectral representation it is apparent that the
vector exp(yH/2)b|Q) is norm-continuous in y, so p(a,b) is norm-
continuous in ¢.
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(i)

(iii)

(iv)

Boundedness in the strip —f < Imt < 0. Let H = n(h) — n'(h) as in
(3.2.3), so H|Q) = 0. Because

ax-H‘y = exp((ix - ))H)a CXP( _(ix - }')H),
[W(ay4iyb)1* = [<(Qa, exp(yH)bIQ) |
< {Qla, exp(yH)aX|Q>{Q|b* exp(yH)b|Q).

The function (Q|a exp(yH)a*|Q) is positive and, because
az
557 CQlaexp(H)a*|Q) = iH exp(yH/2)a*|Q))% = 0,

convex, achieving its maximum at y = 0 or y = —~ f. It is clear that
w(aa*) < |lall?, but even at the lower edge it is bounded, as shown by

w(a;p:2a% 15;2) = Trexp(— Bh) exp(Bh/2)a* exp(— Bh)a exp(Bh/2)
= Tr exp( — Bh)aa* < jia)?,

since Tr exp(— ph) = 1. Therefore
Iw(a,b)| < llal| Ibi for =B < Imt < 0.

Analyticity in the strip —f < Imt < 0. The function w(a,d) is not
differentiable on the real axis for generic a’s, but only for complex
times within the strip. The proof is similar to that of (2.4.7) and will
not be repeated here. The relationship w(ab) = w(ba;), named for
Kubo, Martin, and Schwinger, which follows from the invariance
of the trace, can be continued analytically to the strip: The functions
w(a,b) and w(ba,) are analytic respectively in —f < Imt <0 and
0 < Imt < B, where they satisfy the KMS condition w(a,b) = w(ba, . ;5),
which determines the value of w(a,b) at y = — ff as w(ba) (see Figure 26).
The physical significance of the KMS condition. For a finite system the
canonical state with p = exp(— BH) is not an eigenstate of the energy.
The modular Hamiltonian (also denoted H) has {Q) as an eigenvector,
HiQ) = 0. This operator H is not generally bounded below; however,
the KMS condition distinguishes positive energies because of the
positive sign of B. The energy spectrum of n(a){Q) for a = a*e
consists predominately of positive energies,

f(E) = {Q|n(a)é(H — E)n(a)|Q) = J. %exp(iEt)p(a,a)
- © d
= f ﬁcXP(iEt)p(aa,m)
-~ = exp(BEXQ|n(a)d(H + E)n(a) |,
and thercfore S
E
JE) _ expipr)

/(-E) -
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tplanc_
i Wba1y) = wa,h) - w(ba,) bounded
Ime=0
; wab) : wid,b)bounded

Figure 26 The connection between w(ba,) and w(a,b) on their domain of analyticity.

It is thus not possible to remove arbitrary amounts of energy from a
system in equilibrium, even though |Q) is not its ground state.

(v) Analytic operators. If the dimension of the space is finite, the mapping
t — a, is analytic, and thus so is t — w(a,b). If it is only known that & is
semibounded, this is not necessarily the case, and the question arises of

. which a’s are analytic in t. One way to construct such elements of o is
to average over time,

a(f) = f” dra(t)f ().

If the Fourier transform fe %2, and suppf < [—a,«], then f(¢) is
analytic and satisfies the estimate

116+ il < 2

The time-translate of a(f),

» wherey = 2m) 31l + 1771,)-

wasy = [ drawrse - o,

is then an entire function in ¢ such that ||z, , ;(a(f)) I_< nyllall expla|y!).
It is easy to see from the continuity of 7, that the set of of such regularized
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«'s (for vanable 1 and x} is dense in o in norn:. Within the set o it is
always possible to continue analytically with controlled growth.

If we now think about an infinite system, the density matrix

exp(— BH)/Tr exp(—~ BH)

no longer makes sense. However, the characterization of certain states made
in (3.2.5(i1)) may continue to work in the infinite limit.

Definition (3.2.7)

Given a C* algebra &/ with a continuous time-automorphism a — a,,
a state w on the algebra is called a KMS state with respect to temperature
1/ whenever the functions ¢t —» w(a,b) and t - w(ba,) can be continued
analytically to the strips —f < Im¢ < 0 and, respectively, 0 < Im¢ < §,
and are continuous on the closures of the strips, where they satisfy the
condition

W(al b) = W(bar + iﬂ)~

Examples (3.2.8)

1. Free fermions. The grand canonical state (2.5.49) is KMS with respect to
the combination of free time-evolution and gauge transformations,

tia, > ag,  f(k) = explit(|k)* — 9] f (k).
First, note that clearly

d*k
plasag,) = [G5T*W00) expl — f(IKI? = ]

1
"(' " explB(Ik[ — )] + l)

= P(a:af),
and likewise
. Pk 2 !
p(agafm) = ('2';)3] (k)g(k) exp[B(Ik|* — #)](exp[ﬁ(!klz -] + 1)
= playay).

(If f and g are arbitrary functions in L2, then in general f, and p(a,a})
have maximal analytic continuations only into the upper half-plane
{z = t + iy|y > 0},and p(a}a,,) only into the region {z = t + iy|y < B}.
However, if either f or § has compact support, for example, then the



180 3 Thermodynamics

maximal analytic continuation of any of the expressions above is in
fact an entire function.) The proof of the KMS property of p for arbitrary
elements of the algebra will not be given here, becausg of the amount of
combinatorics it requires. The gauge transforination miakes an appearance
because of the extension of the state to the whole field algebra. If one
deals only with the gauge-invariant algebra of observables o (1.3.14),
then the automorphism 7 does not depend on y, so at is |dent1cal to the
free time-evolution.

2. Free bosons. Let w, be the equnhbnum state of the field algebra of the
free Bose gas at temperature 1/f and density p (see (2.5.51;4)), which
appears as the integrand in the decomposition of the canonical limiting
state in (2.5.51;1). (The decomposmon is ‘nontrivial iff p > p(B)—see
also (2.5.33; 3)) The field algebra of the bosons is generated by the
operators

W, = exP[’(“f + af)]; W, W, = exp[ —ilm(f IG)]WJ+,,

and the free time-evolution of the observables will be extended to the_
field algebra by W, - W, ,

Ji®) = explit(Jk > — 1)1 (k).

(The quantity p = u(p) is a unique but not invertible function.) Then
A(f.g.t) = 0 (W, W,) is the continuous boundary value of an analytic
function of z =t + iy on the strip0 < y < 8, e R, viz.,

: 3 d3k e 1 i - K 7 ‘
,Z(f, g‘, Z) = CXP{— (—2;)3 [(If(l—‘)'z + |g(k)|1)(§+ exp[ﬂ(lklz — ”)] - l')
. .
+ f*(k)g(k) exp[iz(|k|* - u)](l + explB(kIZ — 0)] — 1)

+ §*(k) (k) exp[ —iz( [k *"](exp[p(m’ -m] - l)]

x exp{2i/p — PADOp — pB) Re[(F(®) + §(O) explio)]}.
and the KMS condition is satisfied: w(ab_,) = w(a,b) = w(ba,. i),

lim A(f,g,t + iy) = 0 (W, W,) = o (W, W, ) = A(g,f, —1)

y+p

= lim A(g, f, —t + iy).

y-‘d"o
It follows from p < p(f) that u(p) < 0, so in this sit ation f and g can
be arbitrary elements of L2. However, u(p) = O for all p 2> p(B), so w,
must be restricted, for example, to the algebra gel?erated by the W,
with e L' n L2 For general f and g it is not pdssible to extend Alf,g:2)
analytically beyond the strip described above. Hojever, if thc support
of either f or g is compact, then A(/, g, 2) is an entire/function of z.
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»

Properties of a KMS state w (372.9)

NANHAE WD~

A KMS state w is invariant in time.

When extended to n, ()", w remains KMS.

If w is faithful (as a positive functional), then n,, is faithful, and vice versa.
Z = n () " n(H) consists of time-invariant elements.

The KMS states for any fixed B form a weak-* compact, convex set.

If w is an extremal KMS state, then =, is a factor.

For any w, there exists a unique time-evolution under which w is a KMS
state.

Remarks (3.2.10)

1

2.

3.

o

According to (1.3.5), if w is invariant in time, then on n,, we can write
a_,= U,aU; !, and the time evolution, when cxtended to n{(H),
transforms this algebra intp itself: a, »a=>a,(—t) = U,a,U " -
U,aU 'en ()"
Of course, the extension of w to ()" with cyclic vector |Q) is w(a”) =
(Q|a"|2) for all a" € n,()". Property 2 means that this state is KMS
with respect to the time-evolution defined earlier on = (2)".
According to (III: 2.3.10; 3),
Kerw = {ae o : w(a) = 0}
>N = {ae.o:w(a*a) = 0}
o> Kern, = {ae o :w(b*a*ab) = 0 forallbe o},

and the statement that w is faithful means that 4" = {0}. Property 3 thus
means that if Ker n,, = {0}, then & = {0}, so [Q) is a separating vector
for n () n,(a)|2) # O for all n,(a) # 0. (Speaking field-theoretically,
no operator annihilates the vacuum.) If the algebra is simple, and hence
has only faithful representations, then all KMS states are also faithful,
If the system is asymptotically Abelian, then #' = Z. The center &
contains the macroscopic observables, which are therefore constant in
time in this case.

By Property 5, convex combinations and weak limits of KMS states
(at a given B) are KMS states.

In a finite system, with o/ = #B()), U, = exp(iHt), there is only one
normal KMS state. At ¢ = 0 the condmon is that

Tr pab = Tr pb exp(— BH)a exp(BH) = Tr exp(~ fH)a exp(BH)pb

for all b, which means that pa = exp(—pBH)aexp(fH)p for all a, so
exp(BH)p € ', and thus p = exp(—BH). Since the convex set of KMS
states is compact, any KMS state may be decomposed into extremal
KMS states. If the system is asymptotically Abelian, then according to
Remark 6 a decomposition into extremal KMS states is the same as a
decomposition int({ elements of the center (defined as a decomposition
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into factors (1.4.9)), which is the same as a decomposition into extremal
iavaniant states. In che characterization of ergodic states (31.22;2)
wi iearned that a factor tate is net decomposable into invariant states,
and thus a fortiori not decomposable into KMS states. Conversely,
it is now being claimed that it is always possible to decompose a KMS
state w further into other, extremal KMS states, if =z, is not a factor.
This means that the extremal KMS states are ergodic and, as factors,
even mixing. Since the decomposition by the center is unique, so is the
decomposition into extremal KMS states. Hence the set of extremal KMS
states is a simplex.

If the time-evolution is given, then there can be one or more KMS states
(see Problem 2). In contrast, by Property 7, if w is given, then there is a
unique time-evolution for which it is KMS.

Proof of (3.2.9)

1.

Let b = 1; the function p(a,) = p(a,.;s) can be continued analytically
to all of C and is periodic in Im ¢. Since it is bounded in a strip, it is bounded
throughout C and therefore constant. It follows that p is time-invariant.
This proposition follows from a more general one to be stated later
(3.2.13).

If ae A4, then w(a*a) = 0, which implies that for all b, w(ba) = 0 (by
Cauchy-Schwarz), which means that for all b and ¢, 0 = w(c_;3ba) =
w(bac), and therefore a € Ker x,,

Suppose ce 2:w(a,c) = w(a,”,c) As in Propo.‘tion 1, it can be con-
cluded tha* w(a,c) is constant in t. I a is replaced wi:h ab, it follows that
w(a,ch,) = {Q]aU,cU_,b|Q) is constant for all a and b, so c is constant.
Convexity is trivial. If w, converges in the weak-* sense to w, then for all
ae o, be o and t € C, the quantities w,(a,b) converge to w(a,b) and are
dominated by ny|a| (bl exp «|Im ¢|. Consequently, the limit is holo-
morphic throughout C and satisfies w(a,_;3b) = w(ba,). As in Problem 1,
this relationship remains valid for norm-limits of a’s in the strip 0 <
Imt < B, and can thus be extended to all of &/ (and, by Property 2,
to all of of”).

Unless =, is a factor, & contains a nontrivial projection P. Therefore w
can be decomposed into a combination of wy(a) = w(Pa)/w(P) and
w,(a) = w((1 — P)a)/w(1 — P), and both w, are KMS states: w(Pa,b) =
w(a, Pb) = w(Pba,, ).

. Suppose that 7, and 7, are distinct automorphisms under which w is a

KMS state. Then if a is entire with respect to t, and b is entire with respect
to %, it follows that

F(t) = w(T_(1(a))-b) = W(t()- 7)) = WED) - T 4(a)
= W(t,+1p(a) - Tr+i5(b)) = F(t + iB).

This fact implies that F is constant, so T and T have the same action on &
and hence on /. a
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The foregoing conclusions suggest an interpretation of the decomposition
into extremal KMS states as a decomposition of an equilibrium state into
its pure phases. Yet it will be apparent from examples that these pure phases
are not necessarily identical to physical phases. Property 6 together with
Remarks (3.1.26) ensures that these states have mixing properties, meaning
that lecal perturbations eventually die out, and equilibrium gets re-
established. The canonical states were characterized earlier as the states of
greatest entropy at a given energy, and the evolution towards them can be
thought of as a tendency toward greater entropy. On the other hand, if the
system is infinite, it is not the total entropy that is finite, but rather the average
entropy, which is unaffected by local perturbations. If a state is normal
when restricted to a local algebra (1.3.3; 6), then it is possible to define the
local entropy, which will then tend to its equilibrium value. It is not, however,
claimed that it increases monotonically to that value.

The diagram in Figure 27 collects together the various properties of
asymptotically Abelian systems in invariant states and shows their con-
nection with the timeé-evolution. It will be shown later (3.3.17) that the
spectrum of H is ordinarily the whole real line (— o0, c0). The spectral
properties stated then include the supposition that the systems that we shall
be concerned with have neither dense point spectrum nor singular continuous
spectrum.

1 is a simple eigenvalue,
- |Qonly and the rest of the spectrum
spectrum . .
of U cigenvalue withjé= g;;:lvy A is absolutely continuous
. |eigenvalue 1 on the unit circle

I N/ \\

state ==/ mixing |e= [ extremalKMS |

lati : -
o ions | L10¥@b)) = w@m(b) == | lim w(a,b) = wa)w(b)

covariancealgebra #:  [g _ (4.1
c Z;for KMS = & m

Figure 27 Implications among the ergodic properties.
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Examples (3.2.11)

1. Free fermions. Consider a system of n kinds of free fermions, described
by the field operators a, ;, @ = 1,..., n. The algebra &, of observables
will be taken to consist only of polynomials containing an equal number
of a, and af for any a, in accordance with Definition ¢1.3.8). In other
words it contains the densities and currents of the particles. The state
is taken as the product of the grand canonical states (2.5.49), i.e.,

GO RS WP TR TR 3 R AW PO R
az.ga.,ag,fi tee an.,u.) = n DCt(ﬂﬂP‘:f;),
a -

>k J*()gk)
(2n)° exp[B((Ik|*/2m,) — p)] + 1’
It is KMS with respect to the automorphism a, ; - a,, ;_«)»

it|k|
J = exp( 2 )f.-
Observe that for this automorphism of the algebra of observables there is
an n-parameter family of KMS states. They can be parametrized by the
chemical potentials u,, and, as factor states, they are extremal. A general
KMS state at a given B is an integral over them with some probability
measure on the y,, which corresponds to the mixture of phases posited
in the usual procedure known as Gibbs’s phase rule. As remarked in
(2.3.41), with a variable B and n types of matter having only one phase,
there is an n + 1-dimensional manifold of states. -~
2. Bose condensation.’ If p > p(B), then the canonical state (2.5. 51 1) may
be written as an integral {3* (dg/2m)w, over the factor states

wa(exp(ia¥) exp(ia,))

a3k k)|? . — ,
= exp[_ (2n)° exp(lﬂji(k |)2|) — + 21\/p_o Re(f(0) exp(up))].

These states are KMS with respect to the ttansformatxon fk) -
exp(i| k%) f k), and are consequently extremal KMS states. They describe
-the- coexistence of two phaSes, the normal phase with particle density
jd’k[exp(ﬂlkl’) —137%(2n)~2 and a condensed phase of density p,.
The latter phase. still depends parametrically on the argument ¢ of a,,
and so for fixed f there are two parameters, p, and ¢, to specify the extremal
KMS states. These extremal KMS states are not the same as the phases
of Gibbs’s phase rule. Although different phases of a substance are co-
existing if u = 0 and 0 < T < T, the condensed phase makes its appear-
ance not as a single, pure phase, but rather as combination of infinitely
many pure phases, differing in their values of the “hidden parameter” ¢,
which has no effect on the thermodynamic functions (2.5.33; 3). In this

S1rig) =
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way the decomposition into extremal KMS states is finer than the phase
decomposition of (2.3.39) into extremal points of the concave function
o(& p). If the field algebra is confined to its even part o/ (in the Fock
representation, &g = &5 N {N}'), then all the w, become the same
state. This is apparent when it is observed that gauge transformations
To: Wy = Wepieys transform the w, into one another: (w, o 1, XW,)
= We+4(W). The restriction to o/ y makes 7, theidentity,sow, = w4 4.
Recall that for asymptotically Abelian systems the decomposition into
extremal KMS states is unique according to (3.2.9; 6); the extremal states
form a simplex. In contrast, we were not able to adduce any theoretical
reasons for why the flat pieces of a(e, p) had the structure of a simplex.

3. A model of a ferromagnet. The time-evolution of Example (2.3.33;2)
was investigated in (3.1.1; 4). We found thatif B = 0and T < 2, it was no
longer an automorphism of the spin algebra of = {@;}, but rather of the
strong closure n(.«?)". The state

o¢'---om> = | dns"n,, ---n,,, s=tanh(2fs),
S:
is KMS with respect to this time-evolution. In each of the factors =, it is
a rotation about the axis n at angular velocity 4s. For example, if n points
in the z-direction, then ¢ *(t) = exp(—4ist)s* and

{+06) 1+s
2 2
l1~-s

= exp(4fs) 7

because s(1 + exp(4Bs)) = exp(4Ps) — 1. The individual factors =, thus
give rise to extremal KMS states, corresponding to spontaneous magnet-
ization in the direction n. Again, from the physical point of view this model
would be described as having one magnetized phase, whereas the de-
composition into extremal KMS states would distinguish among dif-
ferent directions of m, and treat magnetization in each direction as a
distinct phase. Notice that the phase transition at T = 2 is connected with
a change of the type of factor: if T < 2 the integral runs over factors of
type III, while if T > 2, the factors are of type II,.

(a7 05> = exp(4ps)<o~a*)

(%67 ) =

Remarks (3.2.12)

1. There are many different possible reasons for the existence of several
KMS states. One is that the center of the algebra of observables .of might
be nontrivial. Unitary elements of the center generate transformations,
which, like gauge transformations, leave each element of the algebra
invariant. Therefore it is possible to combine the action of these trans-
formations with that of time-evolution t and study the KMS states with
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* respect to the resulting automorphisms. When restricted to of, these
automorphisms are identical to the time-evolution, so all such states are
also 7-KMS for o (cf. Problem 2).

2. Many “degeneracies” of KMS states go away upon enlargement of the
algebra of observables. If in Example 1 the particle number is also aowed
to vary, for instance by a chemical reaction (1) = (2) + (2), then noneven
clements like a}a,a, are introduced into the algebra of observables.
They are not separately invariant under gauge transformations of the
different types of particles, but are invariant only under certain combina-
tions, e.g., if the generator of the transformation has the form 2N, + N,
in the Fock representation. Consequently, the KMS condition with the
free time-evolution makes the chemical potentials satisfy a linear equation
such as u; — 2u, = 0. Similarly, if two condensed Bose systems as in
Example (3.2.11; 2) are coupled, the relative phase ¢ becomes observable
(the Josephson effect).

3. It is possible that a symmetry is broken, which means that the extremal
KMS states v are not invariant under some group o of automorphisms
that commute with 7. This is illustrated in Example (3.2.11; 2) with the
gauge transformations and in (3.2.11; 3) with the rotations. If the sym-
metry is broken, then w o g, is once again 1-KMS; thus with continuous
groups there are even infinitely many KMS states.

4. The theoretica!l justification of Gibb’s phase rule for continuous systems
is still an open problem (cf. [20]).

5. So far we have been considering f as fixed. KMS states with different
P’s are disjoins, ie., if w = (wy, + wp,)/2, then 7, = m, @ m,,. In this
case the temperature S~' becomes an observable belonging to the
center of ().

As discussed in §1.1, the ergodic property of a system has been an impor-
tant ingredient of the justification of statistical mechanics throughout its
history. Even though today ergodicity is no longer viewed as the central
requirement, it can still be a noteworthy property of realistic systems, so it
can still be valuable to have a formulation of ergodicity for infinite quantum
systems. In a classical system, if there existed additional constants of the
motion beyond H, it would be impossible for the trajectory of almost every
point to wind densely throughout the energy shell. However, constants such
as momentum or angular momentum are infinite for infinite systems, so
ergodicity can not be defined as the absence of additional constants of the
motion. But recall that classically constants of the motion also generate
diffeomorphisms that commute with the flow of time (see I, §3.3). This pro-

* perty carries over to infinite systems, and even the notions of indecomposable
time-invariant surfaces and of dense trajectories have analogies.

In order to characterize ergodic systems, it is only necessary to generalize
(3.2.5) to infinite systems.
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Moduisr Automorphisins of 2 von "eumann Algebra (3.1

Let # be u vor. Neumann algebra of operutors on a Hiibert space X. For every
vector |() that is both cyclic and separating (i.e., # Q) = ¥, and if a|Q) = 0
for any a€ M, then a = 0), there exists a unique one-parameter group of
automorphisms a — t,(a) and a conjugate-linear operator J such tha:

(i) w(a) = {Q|alQ) is t-KMS (with = 1);
Gi) J2=1,J.4J] = &' and
Gii) U_;,a|Q) = Ja*|Q), where t(a) = U_,aU,.

Remarks (3.2.14)

1. The idea of the proof follows that of (3.2.3), but with additional technical
complications, for which reason the reader is referred to [21].

2. Properties (3.2.6) of the correlation functions hold also in the general case.
Specifically, (i) means that &f|Q) < D(exp(—H/2)), where U, =
exp{~iHt), from which it follows that &f|Q) < D(exp(—yH) for 0 <
y <4, and w(a®exp(—H)a) = w(aJ?a*) < |laf}>. The proofs of the
other properties can be repeated verbatim. '

3. It is clear that a further generalization to arbitrary C* algebras will not
work. The state in Example (3.2.11; 3) is obviously faithful on the o,
so it is a candidate for w. However, we have found that the related auto-
morphism under which w is a KMS state maps the C* algebra generated
by the o’s out of itself, leaving only the von Neumann algebra =, ()"
invariant.

4. Suppose that w is a KMS state on the algebra .of with respect to the time-
evolution t,. By Property (3.2.9; 3) the vector {Q) given in the GNS
representation r,, is cyclic and separates #,.(%f)", even if w fails to be
faithful, and the representation of t, is identical to the modular auto-
morphism.

Ergodic Quantum Systems (3.2.15)

Let t be the time-evolution under which the C* algebra f of observables is
asymptotically Abelian, and let I be the set of faithful states w with the pro-
perty that the normal extension of w to n (<f)" is also faithful. Then the fol-
lowing two properties are equivalent: '

(i) A state we T is ergodic if and only if it is an extremal KMS state; and
(ii) There is no we J such that its modular automorphism ¢ differs from
but {o,7] = 0.

If a system has these propcrties, we shall call it ergodic.
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Proof that (i) <> (if)

Not (ii) = not (i). Let w be the 0-KMS state. Since ¢ and t commute,
p = nfw o 1) is also 0-KMS, so our strategy will be to use it to construct a
t-ergodic state. Think of p as decomposed in two separate ways, on the one
hand into t-ergodic states and on the other into extremal 6-KMS states.
By Remark (3.2.10; 6) the latter decomposition is the same as the decom-
position into factors, whereas according to Remark (3.1.21;3) the 7-
ergodic decomposition is coarser than the factor decomposition. This
means that the t-ergodic components of p are combinations of extremal
o-KMS states, but not vice versa. Hence any such component is t-ergodic
but not t-KMS, since it is not possible for it to be KMS with respect to o
and t # o at the same time. ‘

Not (i) = not (ii). Suppose that w(a) = {Q|a|Q) is t-ergodic, and let o
denote the modular automorphism of = (sf) . Since w is invariant under ¢
and o, both groups have unitary representations on =,,. Let exp(iHt) and
exp(iGs) denote their representations. Since w is also 6-KMS, given any a
and be «,

(QIt(a)odD)|N> = (| b1(a)|1Q) = {Q|7_(b)a|R) = {Q|c_[a)r_ (b)),
S0

{N2|a exp( —iHt) exp( - G)biN) = {(Q]a exp(—G) exp(—iHt)b|Q).
Since the vectors of the form a|Q) are dense, it follows that [exp(—G),
exp(—iHt)] = 0, so [, 6] = 0. However, if w is not KMS with respect to ,
then the groups of automorphisms must be different, since w is KMS with
respect to 0. O

Remarks (3.2.16)

1. Unfortunately, no examples of ergodic quantum systems are known.
Although the grand canonical state (2.5.49) of free particles is mixing,
there are ergodic states that fail to be KMS: The momentum distribution
[exp(B(1k|? — u)) £+ 1]~ ! would just have to be replaced with some other
positive, integrable function. The state would then be time invariant and,
as a factor state, ergodic, but not KMS. The hope is that when interactions
are switched on, states of this kind will turn into equilibrium states (see
§3.3).

2. Property (3.2.15(ii)) forbids the existence of additional constants of the
motion. In finite quantum systems, in addition to the Hamiltonian H
there are also the constants of the form f(H). If H is nondegenerate, then
this accounts for all the constants, because {H}" is generated by f(H)
and the unitary transformations of the degeneracy space. If the system is
infinite, then H exists only in representations x,, of invariant states w,
and does not belong to 7,.(«). It can be shown [22] that only linear
functions f(H) produce automorphisms of (o). However, the function
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H — cH does nothing more than change the scale of time, and we consider
scaled time-evolutions as identicat

3. If particle numbers are conserved, then gauge transformations a -
exp(ia)a,, a € R, certainly commute with time-evolution, and the system
is not ergodic as defined by (3.2.15). Yet the corresponding KMS states
w are of the form (2.5.49) with infinite temperature but fu = 1,

&k TompK)

@)} e+1
The particle density in this state is infinite, w(a(x)a*(x)) = &0)/(1 + e),
however, so it is not of physical interest. This shows that in a nonergodic
infinite system it may happen that the states that are ergodic but not
KMS never actually occur, so the system behaves ergodically anyway.
On the other hand, there is no similar objection to this state on a lattice
system, for which k varies only over a compact region.

4. If an infinite system is homogeneous and isotropic, then translations and
rotations commute with 7. The KMS states of these automorphisms have
the same defect as that of Remark 3, that the local particle density is
infinite.

5. Since under the measurability assumptions of (3.1.22; 3) ergodic states
are time-averages of a pure state, the same will be true of the extremal
KMS states of ergodic systems. This is the fulfillment of the hope of

classical ergodic theory that the equilibrium state can be obtained as the
closure of a single trajectory.

W(afa:) =

system Finite, classical Finite, quantum- Infinite, quantum-
mechanical mechanical
There are no . " | There exists no KMS
additional constants a o such that o # 7,
state of the motion H is nondegenerate [5,7]=0
Microcanonical Ergodic Ergodic
Time-average of pure | Time-average of pure
states states
Not faithful Not faithful
Canonical Not ergodic Not ergodic
Time-average of pure
states
Faithful Faithful
Extremal Ergodic
KMS Time-average of pure
states
Faithful
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If we wish to conceive of ergodicity roughly as the absence of constants
of motion othes than f(H), then it is useful to make a table of the imphcations
-of this for equilibrium states of systems of various types. As can be seen
" Below, the KMS states of infinite quantum systems inherit the good pro-
perties of the canonical and microcanonical states of finite systems.

Problems (3.2.17)

1. Consider a sequence of states wy on a C* algebra of converging to w (in the weak-*
sease). Show that if the modular automorphism ty (a) is a norm-convergent
sequence in «f for all a€ &f and ¢ € R, then the 1y, converge to the modular auto-
nrorphism belonging to w.

>. Findan example of an algebra of = #(C*) such that some nontrivial automorphism
has many KMS states,

3. Construct the KMS states for translation and rotation of a system of free fermions.

4. Inbath classical and quantum mechanics, study the automorphisms of the anisotropic
oscillator H = }(p} + p} + wiq} + wiq?), with w,/w, irrational, that commute
with the time-evolution. Is the system ergodic?

Sohutions (3.2.18)
1. Consider the limits of the correlation functions wy(ty_(a(N, f))b), where

aN, f) = f drty, )£ (0),

and f is as in (3.2.6(v)), and let 7,(a) = lim vy, (a). The norm-limit of ty (a(N, f))
is tfa(f)) by the dominated convergence theorem, even for complex ¢, since
§17(t + iy)|dt < my exp(aly]). The first term of [w(t(a(f)b) — wx(z(a(f)b)]
+ walt(a(f) — v, (a(N, f))b) goes to zero because of the weak-* convergence
wy — w, and the second term goes to zero as a consequence of the norm-convergence
of a(N; f) to zero. Therefore, for all ae of and teC,

wx(tn.La(N, f))b) —= w(t(a(f))b).

These holomorphic functions converge pointwise and are uniformly bounded on
every compact set in C, because they are < [lal| llb{|ny exp(x|y|); the limit is therefore
holomorphic and identical to w(bz, . (a(f)))-

This means that the KMS condition holds for all a € &7, and of course boundedness
in the strip (3.2.6(ii)) is preserved in limits. Passing by norm-limits a, — a to general
aed,if —1 < Imt < 0, then w(t,(a,)b) converges uniformly to w(r,(a)b), which is
consequemly continuous on the strip and holomorphic in its interior.

It is trivial to see that the identity w(z,(a)b) = w(br,, (a)) continues to hold for
limits, as do the group property t,,, = 7, 7, and the invariance of w: w1, = w.
The GNS construction can now be carried out, so that t, is represented unitarily
onn,as U, If n(a,) converges weakly to b e n()", then U_,n(a,)U, converges
weakly to U_,bU, = 1,(b). Therefore 1, maps n(#)" into itself, and is identical
to the modular automorphism according to (3.2.9; 7) and (3.2.14; 4).
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2. Let &/ be spanned by (1,t)® (1,0,), and let the time-evolution be r%(t) =

exp(+ iwt)t*(0), with 1, and o; constant. For a given f the densny matrices of the
form

exp(—fBt; — agy) .

T Tr exp(—fry — aa;)
yield KMS states for all real «.
3. They have the same structure as in (2.5.49), with

&k JH&)g(k)
Jlp.g> = f(?i)s 1 + exp(k,)

for translations in the 1-direction. and

[t ar 3 L2000 J5Wmr)
0

Lm 1 +expm

for rotations about the 3-axis, where ﬁm denote the expansion coefficients of f in
spherical harmonics.

4. Classically, H; = }(p? + w}q?) are two mdependent constants of the motion, and
generate flows that commute with time-evolution. The system is not ergodicin the sense
of Table I. Quantum mechanically, H has the eigenvalues (n, + $w, + (n;, + Hw,
and is thus nondegenerate. All constants are of the form f(H), and the system is
ergodic in the sense of Table 1.

3.3 Stability and Passivity

The distinguishing feature of the equilibrium state is that it does not
change abruptly when subjected to a local perturbation. The second
law of thermodynamics can be proved in a version stating that a
system prevents energy from being extracted by a cyclic perturbation
only if it is in equilibrium.

The final part of the general theory that will be investigated will be the
influence of local perturbations on equilibrium. In the mathematical treat-
ment local perturbations play the role of the speck of dust invoked imr the
traditional theory of statistical mechanics to convert stationary states,
not yet in equilibrium, into equilibrium states. As a matter of fact, what makes
the KMS states special in the mathematical theory is that they have certain
stability properties—they change continuously when the Hamiltonian is
perturbed slightly. This is certainly not true of all stationary states, and can
even be used to characterize the extremal KMS states of an infinite system;
they are precisely the set of states that turn continuously into the unperturbed
states as a certain family of perturbations tends to zero. Mixed KMS states
represent quantum-mechanical mixtures of phases, and lead to a nontrivial
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center of the algebra. If an observable from the center is added to H, the time-
automorphism is unchanged, but the KMS states do change. Hence mixtures
of KMS states exhibit a kind of instability in that they do not remain un-
changed under the influence of a family ef perturbations moving spatially
off to infinity, and hence entering the center of the algebra.

A second important characteristic of KMS states is their passivity, which
is the requirement that the energy of the system at time ¢ can only have
increased if the IHamiltonian depends on time and has returned to its initial
form at time ¢. This condition also fixes the sign of  and means that no energy
can be removed from a KMS state having p > 0, just as a periodic process
can extract no energy from the ground state. This property does not consti-
tute a kind of stability, and sheds no light on why Nature chiefly produces
KMS states. However, it does show the most important empirically familiar
feature of equilibrium.

As usual, the study of a finite system will provide us with a first exposure
to the effects of perturbations. Its time-evolution will be caused by a self-
adjoint operator, which also determines the equilibrium state w by a,
= exp(iHt)a exp(—iHt), w(a) = Tr exp(— pH)a/Tr exp(—BH). If H is sub-
jected to a bounded, self-adjomt perturbation h, the effects can be written
down as norm-convergent series. A slmple generalization of (III: 3.4.10; 3)
shows that

exp(i(H + h)t)a exp(—i(H + h)t)
=a+ ) f dt, dt, --- dt,[hy, [hegs ..., [hy, a0,

w21 Josusn: - sust (33.1)

exp(— H — h) = R, exp(~-H), exp(—(H + h)/2) = S, exp(—H/2),
R,§l+ (-1 | dsy - dsyhy, - hy,,

a2l 0<31S ~SspsS 1

Sv= Y (-1 ds,---dsshy, - hy.  (332)

r>0 0<81S - S8ps$1/2

Remarks (3.3.3)

1. Initially, h,, is well defined only if h is analytic in time (3.2.6(v)), but since
such operators are dense in & in norm, the formulas it appears in extend
to & by continuity.

2. Inequalities (2.1.8: 3) and (2.1.8; 7) yield the estimates

- - T —H~nh
exp(— |kl SGXP( :;r:::((_:))h) < r';::ip(—m :

Tr R, exp(—H)
= Tr exp(—H) < min{||R,|l, lexp(—h)|i}.
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Equation (3.3.1) can now be extended to cover infinite systems, for which
H has continuous spectrum, as follows.

Perturbation of the Time-Evolution and KMS State (3.3.4)

Let a — a, be an automorphism of a C* algebra /, and let of be the sub-
algebra that is analytic in time and w be a KMS state. Assume § = 1. If
he o is self-adjoint, then a perturbed automorphism a — t(a) and per-
turbed state are defined by

t:(a) =a,+ z i dtl d‘z e 'dtn[hn! [hlgv cey [hi,.s at] "']1!

821 0SS Stu St

“w@aRy) _ w(Rta) _ w(StaSy)
wR) ~ WRY wR,) ’

where R, and S, are defined as in (3.3.2).

wya) =

Remarks (3.3.5)

1. The operator h exists as a local perturbation on a purely algebraic level,
whereas H exists only in certain representations. For that regson it is
not possible to define t}(a) simply as exp((H + h)t)a exp(—lql* h)).
As in (3.3.2), for finite times the sums converge in norm. e

2. If the system is asymptotlcally Abelian sufficiently strongly, then the

limits as t = 4 co of 7*¢ 12, exist. However, such a limit may fail to be
an automorphism; like the Mgller transformations it might not be sur-
jective. If it is surjective, its inverse transforms w into the perturbed state
"wy= lim wot%,07"
t+to

. See Problem 1 for the equivalence of the definitions of w,.

. (8/0t)(a) = 1}(0/38)a,|,=0) + iti([h, a)).

. The function &f — &/ h — t(a) is continuous for all teR and ae o,

if o/ has either the strong or the norm topology.

6. The state w, is KMS with respect to t* for § = 1: As shown by (3.3.1),
D(exp(— H — h)) = D(exp(— H)) in the representation using =,, and
because exp(H) = exp(H + h)R,, the domains of definition of exp(H + h)
and exp(H) are also identical. Hence for all a and be o,

w(R? exp(H + h)a exp(—H — h)b)

w»Hw

wy(th (a)b) = WRy)
is well defined. From (3!3.1) and the KMS condition for w,
W@ (@) = PR _ )

R '
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7. There is an analogue of the variational principle for the free energy,
which generalizes (2.1.8; 3) for infinite systems. It is a consequence of the
convexi€y of the function h - In w(R,), which can be proved as follows:
From Duhamel’s formula ¢cf. the proof of (III: 3.3.15)), N

d.. 5
-‘agxp(—(H + /aa))'

1 .
= —J‘ ds exp(—s(H + Aa))a exp(—(1 — s)(H + ia)),
o

it can be calculated that
. d !
T Rusilizo = [ WE(RY ds = waR),

The second part of the equality makes use of the invariance of w), under
t*, which follows from the KMS condition shown above. Likewise,

2 Res1dlimo = f ' dswath(@)R)
dlz h+24a/1A=0 o is ly

and

d? __ W(R, 4 2.)" W(Ry+ 20 \?
Z—A—i log W(R.+A.)Il=0 = W(Rh) - ( W(Rh) )

1
= fo dswi((@ — wy(@)thia — wy())).

In (3.2.6(ii)) it was seen that the integrands are positive. As in (3.3.3; 2)
this fact can be used to show that w(R,) > exp(—w(h)) > exp(— [|h|]).

If there is a bounded sequence of perturbations h™ all the commutators
of which with of tend to zero as n — oo, then the automorphism "
converges to the unperturbed automorphism because

124@) — gl < exp(2lhle) [o ICh, a1 ds.

This state of affairs can -arise, for instance, if the algebra is asymptotically
Abelian with respect to spatial translations. If A, denotes the region A
translated by na, a € R? and h® € o/, - is the corresponding trarislate of the
operator h, then |[A™, a]|| - 0, and consequently t’(a) — a,. The question
of whether the associated KMS states w,, likewise converge to the un-
perturbed w depends on whether the KMS states are extremal. This is
illustrated even in the finite-dimensional case by
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Example (3.3.6)

With the notation of (1.1.1), let o be generated by {1, ,, 6§, 0,}, and
suppose that these observables evolve in time into {1, o,, exp(F 2it)o{, 0,}.
This time-evolution has a unitary representation as U, = exp(it(c, + co,))
for all c e R, so there is a one-parameter family of KMS states with density
matrix p = exp{— (o, + uo,)), which is not extremal, because

0 0‘

1 0
exv(—ﬂuaz)—-exp(—ﬁu)l@‘o ° 00

+ exp(Bul ®

and exp(—fo,) @ (3 J) provides a KMS state.

Although adding h"™ = (1/n)o, + c'o, to the Hamiltonian leads to
the same time-evolution as n — o0, the KMS state is different. Only the
extremal KMS states provide two-dimensional representations, for which
this can not happen.

Infinite systems generically have the property known as

Spatially Asymptotic Dynamical Stability (3.3.7)

Let of be a quasilocal algebra and w be a locally normal KMS state on .
The state w is an extremal KMS state iff for each sequence h™ of perturbations
such that |h*™|| and |h{™| are bounded in n and 1" (a) — a, for all ac o, the
sequence w™ = w,w — W converges in the weak-* sense to w.

Remarks (3.3.8)

1. The assumption that s is quasilocal (1.3.3; 8) serves to guarantee the
existence of suitable sequences h™.

2. If o is also asymptotically Abelian in time, then the following propositions
are equivalent for KMS states (recall Figure 27):

(a) w is an extremal KMS state;
(b) =, is a factor;

(c) lim,.., w(ab,) = w(a)w(b);
(d) wye — w for all /™ as described in (3.3.7).

.

Proof

1. If w is extremal, then w'® — w: By assumption ||h{®| are bounded uni-
formly in' n, so the same is true of the norms of Ryw. Since, moreover,
w(Ry) = exp(— 1A™}), -

Ry
Pn = W(Rym)
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is a bounded sequence of operators. Bounded sequences of operatots are
weakly relatively compact ([33], VI; 9.6), and the set of states is weak-*
compact (III: 2.1.23; 2), so there is a subsequence h™, k€ §-< N. such
that w = lim w® and p = lim p, exist, and #(a) = w(ap).

The automorphisms converge by assumption, and by Problem (3.2.17; 1)
W is =-KMS. But this means that p belongs not only to n.X<f)" (by
construction), but also to n,(of) and thus belongs to the.center:

w(apb) = w(b_,ap) = w(b-;a) = w(ab) = w(abp)

and
w(apbc) = w(abpc).

However, =, is a factor, so p = 1, and smce #w = w is the only point of
accumulation it is the limit of w®,

2. Suppose now that wis not extremal. There is a nontrivial invariant element
z = z* in the center of n(«f)". By Kaplansky’s theorem [4] the unit
ball of &f is strongly dense in the unit ball of of”, so z belongs to the closure
of a bounded set of self-adjoint operators h of of. Because of the locahty
assumption the closure of <, |Q2) is a separable subspace of

H=oA|Q) =\, (A -R),

so J¥ is also separable. As a consequence the strong topology on bounded
sets of operators is metrizable, so z |s actually the limit of some sequence
h®in | ), o .Accordingto (3.3.4) 1! converges to t; = 1;. Asin (3.2.6(v))
p. can be constructed with the h®( 1), as they converge to z, = z(f) = 2,

just like A"™(f) and h""( f). By the dominated convergence theorem it
follows that .

lim R,,(..,U, = R, = exp(—2),

n-®
and therefore
w(exp(—z)a)
. Wexp(—2)
is a KMS state different from w. a

lim w“..,u,(a)

The next topic is that of stability properties that can distinguish the
extremal KMS states from other stationary states giving rise to factors. As
shown by (3.3.4), if there is an extremal KMS state, then for all h e o there
exists a state that is stationary under the time-evolution including h as a
perturbauon. and which transforms continuously into the unperturbed state
as h — 0. It is not obvious that such a “linear-response theory” is possible.
In fact, we learned (1, §3.3) that even in classical physics there are constants of
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motion that are not continuous in a parameter of the Hamiltonian. A
density in phase space that is a function of such a constant will be unstable
when perturbed, no matter by how little. This phenomenon is illustrated
in quantum mechanics by the trivial

Example (3.3.9)

X = C% H = 0e B(C?). Every density matrix p corresponds to a stationary
state, but with the perturbation h = n - ¢ the only stationary density matrices
are p = 1/2 + in-o, A < |n|/2. This shows that only the density matrix
p = 1/2 goes continuously into a density matrix that is stationary under all
possible perturbed time-evolutions.

The example illustrates that only density matrices of the form f(H),
“which are proportional to the identity in each degeneracy space of H, adapt
themselves well to arbitrary perturbations. Despite the possibility of
diagonalizing any stationary density matrix simultaneously with H, there is
no telling from stationariness alone how it might vary within a degeneracy
space. A requirement that two independent systems be stable would impose
an additional restriction on the function f such that w = f(H). The existence
of two subsystems shows up mathematically as a tensor product, so if
H=H,®1+ 1® H,, then we would require that f(H, ® 1+ 1 ® H,)
= f(H,) ® f(H,). Since H, and H, commute, both H; may be regarded as
ordinary numbers in their common spectral representation. Since the only
reasonable functions satisfying f(x + y) = f(x)f(y) are of the form f(x)
= exp(— Bx), we are led to the canonical density matrix, if the H; may have
arbitrary real spectral values. Since our infinite systems are asymptotically
Abelian with respect to translations, and thus come to resemble tensor
products of independent systems, it is a reasonable expectation that the
condition of stability for such systems characterizes the KMS states. It will
now be seen that this is the case, given some assumptions.

Local Dynamical Stability (3.3.10)

Suppose that the algebra o is asymptotically Abelian with respect to 1°,
and let w be a stationary factor state, and hence mixing. The question is
whether for any perturbed automorphism t* it is possible for there to be a
unique state w, that is invariant under t* and turns into w as h — 0. The
states
wy = limwor
t~ %o

are reasonable candidates for w,. If the limits exist, they would be¢ invariant
under 7. and the uniqueness of w, means that the limits are equal. If 7* is
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. expanded as in (3.3 4) and we use the invariance of w under z°, we obtain
the .

Stability Condition to First Order in £ (3.3.11)

If an invariant factor state w on an algebra & asymptotically Abelian in time
is stable against arbitrary perturbations in the sense stated above, then for
allhand ae o,

_ro dtw([h,a]) = 0.

Remarks (3.3.12)

1. The assumption that h € of means that we consider only local perturba-
tions. The requirement that o/ be asymptotically Abelian makes the
commutator [h,a,] vanish as t - +oo. Condition (3.3.11) requires,
roughly speaking, that w(i[h, a,]) is equally often positive and negative.

2. The physical significance of (3.3.11) is that to first order in h the scattering
transformation is the identity in the representation =,. This can be
interpreted as meaning that w is a locally perturbed equilibrium state
with respect to the time-automorphism t* and should become the equi-
librium state as ¢t = + oo, so thete is no net change between t = —
andt = + 0. In thekinetic theory of gases this is reflected in the argument
that collisions do not alter the equilibrium distribution.

Let us introduce the abbreviations

' Fa(t) = wiba) ~ w@)w(b)
and
_ Ga(1) = w(a,b) — w(a)w(b) (3.3.13)
in order to exploit (3.3.11) more fully.

Consequences for the Correlation Functions
Condition (3.3.11) makes
j di(F () — Guft)) = 0.

Under the assumptions of (3.3.10) we know that F and G tend to zero as
t - + oo. In order to ensure that this integral and others to follow make sense,
it will: be assumed that the correlation functions F and G are integrable in
time from — oo to + a0, at least foradense set¥ < &.Since they are bounded,
they belong.to all L(R) for 1 < p < co. The assumption holds, for example,
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for free fermions. It will also be assumed that the higher correlation functions
decrease rapidly enough for elements of & that integrals and limits may be
interchanged.

If the state is a factor state, then as u — + o, w(ab,c, d,,, ~ ¢, d,., ab,)
tends to w(ac,)w(b d,) — w(c,a)w(d,b). Therefore

[ atF0F a0 = 6l0Gatt) = 0

for all a,b,c, and de &. Similarly, from considering what happens to
w(lab,c,,d,e,+, fi+.)) asu — oc and as v = 0,

[ dHEOF ADFoD) = 660G = 0

for all a, b, ¢, d, e, and f e &. Because F and G belong to L', their Fourier
transforms F and G exist and are continuous. Then if a, b, ¢, d, e, and f € &,
the last three equations imply that

F ab(O) = Gab(o)a
[ 4P i) = [ dEGAEYG - B

and

j dE, dE, Fo(EYF A E — EYF [(~E')

= fds, dE, G (E)G (E' — E)G,(~E). (3.3.14)

We shall now see that these equations imply the KMS condition.

In order to arrive at the KMS condition in Fourier-transformed space,
F (E) = exp(BE)G ( F), information about the supports of F and G is
needed. It is at least clear that they are contained in the spectrum of H': Let
a, = U 'aU,, U, = exp(—iHr), writing H as in (1.3.5) in the representation
determined by w. Then

w(ba) = <b*Q| U, '|aQ),
so if E # 0, then ,
F.(E) = Fo dE)* = G, —E) = (b*QIE — H)aQ). (3.3.15)

This expression is to be interpreted in the spectral representation of H, in
which the functions depend continuously on E when a and b € . )
In order to draw more far-reaching conclusions from these relationships,
more information is needed about the energy spectrum. It would simply be
additive if the Harmiltonian were the tensor product of Hamiltonians of
independent systems: If H, and H, have eigenvalues ¢!" and e{?. then
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HY®1 + 1® H? has eigenvalues ¢{"’ + €2, This fact generalizes to an
infinite system provided that the system is asymptotically Abelian with
respect to an automorphism, such as the translations, that commutes with
the time-evolution.

The Additivity of the Spectrum of / (3.3.16)

Let H generate a time-evolution t on a factor state w, and suppose that the
system is asymptotically Abelian with respect to an automorphism ¢ such
that [0,7] =0 and woo = w. If H has the spectral values E, and E,, then
E, + E; also belongs to the spectrum of H.

Proof

Given any neighborhoods U, of E,, i = 1, 2, by assumption there exist f
such that

a0y = [ a1 %0,

where the Fourier transforms £; have their supports in U,. Since by Property
(3.1.18;4) |lo(a, )a,,|Q)||* approaches

las, 1D las, 102 # 0

as s — oo, there must be a sufficiently large s that this vector is nonzero.
. Since the vector is supported in E, + E, + U; + U, in the spectral rep-
resentation of H for all s, there are spectral values in every neighborhood of
E, + E,.Sincethe spectrumisclosed, E, + E; itself belongs to the spectrum.
i N . D

Remark (3.3.17)

If the system is asymptotically Abelian with respect to 7, then of course it is
possible to take t = 0. Since w provides a factor, according to Table I in
this case |Q) is the only eigenvector, and H has no eigenvalues other than 0.
Since the spectrum is additive, it is either 0 U [ +¢, + o) for some ¢ > 0,
or else (— oo, o). In the first case there is a ground state; we shall be con-
cerned only with the second possibility.

Derivation of the KMS Condition (3.3.18)

Let Eg be in the speétrum of H and f be a function of the kind described in
(3.2.6(v)) with f(Eo) = 1,supp f = I > E,. Then U, = | dif (t)U, # 0, and
there exists an a € & such that U aQ = a,Q # 0. The operator a, belongs
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to ¥ whenever a does, and the functions F and G constructed with a, are
also supported in /, because

F, (E) = J(E)F 4(E),

Go,s(E) = J(E)Gu(E).
Let b = af and shrink / down to E,; this makes F and G proportional to
&(E - E,). If we normalize so that

| 4P u® = wiatap - wapP =1,
and if

[ 4EG..AE) = wiayaf) ~ (w2 0
convergestosome ® e R (possibly after passage to some subsequence), then,
because of the continuity of F' and G, (3.3.14) yields

F.AEo) = ®G.(E,) forallcandde .

This also proves that ® may not be either 0 or 0. Since this is true for all
E, e Sp H = R, there exists a universal function ®(E) such that

It follows from (3.3.15) that
™(—E) = ®E) ! = O%(-E),

and the functional form then follows from the last equation of (3.3.14):

f dEdE'(1 — WEYNE' — EY)(— E))Go(E)C.AE — E)G,(—E) =0

implies that
WEYNE - EX(~E) =1 forall Eand E'¢R.
Because of the equation derived above this,
N(EYN—E) = ®E - E),
and since ® is continuous it therefore has the functional form
O(E) = exp(BE) for some fe K.

This éhows the KMS condition for the dense set &. However, since it can
be written with the aid of (3.3.15) in the form

<b*Q| f(— H)aQd) = <{a*Q| f(H) exp(— H)DQ)

for any bounded, continuous f(H), it clearly suffices to derive it on a dense
set.
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In sum, the foregoing argument has shown the

Equivalence of Dynamical Stability and the KMS Condition (3.3.19)

Suppose that the algebra of is asymptotically Abelian with respect to the time-
evolution and that w is a stationary state creating a factor representation. If
Jor all he o there exists a normal state w, for n ()" to first order in h,
such that w and w, are both stationary to first order under the perturbed time-
evolution, and if w has an absolutely integrable correlation function, then
either w is a KMS state, or else the spectrum of H is {0} u[+c, + ©), in
which case w is the ground state.

Remarks (3.3.20)-

1. It does not follow from this argument that 8 > 0. This fact did not even
emerge from our argument with the tensor product of finite systems.

2. It is hard to tell how much the result suffers from the sharpening of the
hypothesis of asymptotic commutativity. All the hypotheses are satisfied
by a system of free fermions, but with a Coulomb interaction it is not even
known if they hold in weakened forms. To a certain extent our assump-
tions about decrease at infinity and the interchangeability of limits belong
to the realm of unproven hopes.

3. This shows that stability to first order in h implies KMS. Conversely,
we have seen that KMS implies stability to every order in h, which means
that the higher orders contribute no new information in this respect.

Whereas all the perturbations considered until now have been indepen-
dent of time, we shall now turn our attention to perturbations h(t) depending
explicitly on time: they would be due to interference from outside the system.
The time-evolution will not have the group property, but it will still be a
one-parameter family of automorphisms. Let us, as usual, start by studying
finite systems, for which the automorphisms are implemented by the unitary
transformations

U= Texp[—i Jﬂ dr'(H + h(t'))] (3.3.21)
0

(cf.(111: 3.3.6)).

The most important quality of a passive state for our purposes will be
that a system in a passive statc will have gained energy when the perturbation
has been switched off.

The Passivity of a State (3.3.22)

Let us suppose that a finite system evolves under the influence of H + h(t),
where by definition h(0) = h(t) = 0. The Hamiltonian generates a unitary
time-evolution (3.3.21), so the change in energy from t =0 to ¢t = 7 in the
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state w i.g given by Tr pU HU ' — H). A state 1s said to be passive if the
change in energy is positive for all self-adjoint he #( #). i which case
TrpUHU ' 2 TrpHforall U = U* ™' € #(¥).

Examples (3.3.23)

1. The canonical density matrix. Let p = exp(—pH) Tr exp{ — BH) and
g = U~ 'pU. From (2.2.22(ii)) we know that

0<Tralno—Inp)=Trp ~a)np = - Tr(p — U 'pU)H,

so the system is passive.

2. Negative temperatures. Let p be as above, but 8 < 0. In order for
Tr exp(— SH) to be finite, H must be bounded from above: this wouid be
realistic for a spin system. The inequality is then reversed,

_Tr(p — U™ 'pU)H > 0, so the system is not passive.

Remarks (3.3.24)

1. If it is desired to keep the energy E = F + TS from increasing, the best
tactic is to keep S constant (when T > 0). Our unitary time-evolution
manages this automatically, and so the change in the energy E equals the
change in the free energy F. Since the free energy is minimized with the
canonical density matrix p, in the state p the only possibility is for E to
increase, so p is passive.

. Obviously, passivity requires the states of lower energy to be more densely
occupied. so that the system is ready to gain energy. This is not the case
when f <0, in which circumstances the system would prefer to give
energy away.

t9

The General Form of Passive Density Matrices for Finite Systems (3.3.25)

A density matrix p on a finite system corresponds to a passive state if and
only if

(i) [p. H]} = 0;and

(ii) if p; and e; designate respectively the ordered eigenvalues of p und H, then

(i ~ e)(pi = p) < 0.
Remarks (3.3.26)
1. The condition on the eigenvalues means that if the kth eigenvalue of

H is greater than the ith, then the kth eigenvalue of p must be less than
or equal to the ith. However, it is not necessary for p to be simply a function
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of H, since in a degeneracy space for which e, = ¢, it .may happen that
Py # Px. '

2. The physical implication of the monotony is that lower-lying states are
more densely occupied. On the other hand it implies nothing for the
values of p where H does not vary:

o))

(i) and (i) = passive <> Tr pH < Tr pUHU 1.

Let U be given in a matrix representation in the common eigenvectors of H
and p as U,. The matrix |U;;|? is doubly stochastic and therefore a convex
combination of permutation matrices or a limit of such matrices
(cf. (2.1.11; 4)). For any such matrix,

Tr pUHU ! = ‘Z.e,p. IU&l? = );cpZemp...
, i

where Z, cp=1,cp 2 0,and {P;} is a permutation of the ie Z*. If ¢; < ¢,
implies that p, > p,, then for any permutation, Y, ¢,0p, 2> Y, €;p; = Tr pH.
Passive = (i) and (ii). Suppose that Tr pUHU ! has its minimum at
U= 1l,andwriteU =1 + M, + M, + ---,where | M,|| < ¢ for sufficiently
small &. Then Tr pUHU ~! = Tr pH + Te([H, p]M,) + O(c?). The operator
M, only needs to satisfy the condition that M} = — M,, and since [p, H]
is anti-Hermitian, it must equal zero, as otherwise the energy could be
lowered. In order to prove (ii), choose' U to have the form

v ©s° sin ¢
~ \-sing cosg
on the subspace spanned by v, and v,, the eigenvectors with eigenvalues
e;, p; and e, p,. Then
Tr pUHU ™! — Tr pH = —(e; — &)(p: — ps) sin? @,
which is positive only if (e; — e,)(p; ~ o) < O. a

is passive.
Proof

In order to progress beyond the monotonic property to the statement
that the function is exponential we must investigate infinite systems. We
may either construct the infinite system by taking tensor products of copies
of finite systems or go directly to the analysis of some asymptotically Abelian
system. As before, the limiting case f = oo, i.., the ground state, would
require a special treatment, which we shall not go into. Assuming therefore
that g is finite, we can state the main proposition on the
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Passivity of Infinite Systems (3.3.27)

Within the set of faithful factor states w on a C* algebra with a time-automorph-
ism © and another automorphism commuting with t and under which w is
invariant and asymptotically Abelian, the passive states are precisely the KMS
states, for any § > 0.

Remarks (3.3.28)

1. Translations of a homogeneous infinite system commute with the time-

evolution. Since the local field algebra is asymptotically Abelian with

respect to translations, this theorem can be used even if it is not known
whether the time-evolution is asymptotically Abelian.

The sign of f is fixed by passivity, though of course its value is not.

. To ensure that H is well-defined, assume that the time-evolution can be
represented unitarily; then passivity is equivalent to the property that
w(U 'HU — H) > 0 for all unitary U € .

4. Since the condition for passivity is linear in w, the passive states form a
convex set. Passivity does not single out the extremal KMS states. We
shall consider only factor states, which can not be decomposed further, as
shown in §3.1.

w

Proof

Passive == KMS. If the condition of passivity for an infinite system is written
as W(UHU ~!) > w(H), and we choose U = exp(iea) for a self-adjoint, then
the first two terms of the expansion in powers of ¢ lead to

(i) w([a, H]}) = Ofor all ae &, and
(ii) w([a, [H,a]]) = Ofor allae «.

Equation (i) means that (d/dt)w(a,) = 0, so w is stationary. In order to deduce
the KMS condition from (ii) we employ the modular automorphism of
w—call its generator H. The KMS condition with respect to H can be used to
write (ii) as

0 < (Q|2aHa — Ha? — a*H|Q)
= (Q|2aHa — a exp(— H)Ha — aH exp(— H)a|Q)
= 2{QJaH(1 — exp(— H))a|Q).

In the last step we used the fact that [H, H] = 0, in accordance with our
assumption. Since the inequality holds for all a = a* € o, it follows that
H(1 — exp(— H)) = 0. This means that in the common spectral representa-
tion of H and H the spectrum is restricted to the hatched region of the
(H. H)-plane shown in Figure 28. Now the existence of the commuting,
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Figure 28 Possible location of the spectra of H and H.

asymptotically Abelian automorphisms comes into play. According to
(3.3.16), this implies that the spectrum is additive, i.e., if (h,, k,) and (h,, h;)
are in the spectrum, then so is (h, + h,, h, + h,). As a consequence the
spectrum can at most be on a line through (0, 0), so H = BH for some § > 0.
KMS = passive. Since x > 1 — exp(—

wUHU ") > w(UU ") — w(U exp(—H)U ™ 1)
=w(UU ) - wU 'U) =0. 0

Remarks (3.3.29)

1. The last inequality proved above is only the first of a whole family of
inequalities that the expectation values in KMS states satisfy, and which
completely characterize the KMS states [24]. They generalize trace
inequalities, which are not directly applicable to infinite systems, since
exp( — BH) is not trace-class.

2. Example (3.3.23;1) showed that for finite systems, passivity follows
from thermodynamic stability, or, in other words, from the minimum
property of the free energy. This fact generalizes to infinite systems, for
many of which the implication goes both ways, KMS <> thermodynamic
stability, for instance for lattice systems with finite-range interactions.
For these systems KMS is equivalent to global thermodynamic stability,
provided that only translation-invariant states are considered, and that
the free energy is interpreted as the free-energy density. However, for
systems with long-range forces there exist KMS states that do not mini-
mize the free energy; they are instead metastable, minimizing the free
energy only one some reduced set of comparison states. Since the fres
energy is a convex functiondl on the states, it can not have a relative
minimum on the set of all states that fails to be absolute.
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3. The state wg, ® wj, of two independent systems at different temperatures
T, > T, is KMS with respect to the automorphism generated by g,H,
+ B2H,. A perturbation h(t) can cause the temperatures to equalize,
and it may happen that the first system will have given up a positive
amount of energy AE, = E,(0) — E,(t) > 0 by the end of the period.
However, because the state is passive, §,AE, + B,AE, <0, and the
change in the total energy AE = AE, + AE, is bounded by AE/AE,
< (T, — T,)/T,. Since the total entropy.remains constant under the
unitary time-evolution, AE is the amount of energy provided by the total
system, and this inequality is Carnot’s classical bound on the thermal
efficiency.

Another way to characterize the KMS states of an infinite system is known
as reservoir stability, and it further justifies the physical interpretation of
as the reciprocal of the temperature. In outline it means that the KMS
states are precisely the states that are suitable for thermal reservoirs, allowing
the temperature 1/8 to be defined. A more careful formulation states that if
the reservoir is coupled to a finite system in the canonical state w, then in the
weak-coupling limit w is invariant under the resulting semigroups (ci.
(3.1.12)) for a reasonable class of couplings iff the reservoir is in a KMS
state [24].

Problems (3.3.30)

1. Show that w(R}a) = w(aR,) = w(SxaS,).
2. Estimate the length of time for which the *“linear-response theory” remains valid:
i.e, estimate

™a) - a, - if de,[h,,, a,] H
0

3. Use the methods of §2.1 to conclude from e; > ¢; = p; < p; that
Z €;p; < Z €pp,

for every permutation P.

Solutions (3.3.31)
1. Since H exists in the GNS representation with w, Equations (3.3.1) are applicable.
The invariance of Q holds also for complex z,
exp(zH)|Q) = |Q).  R,|Q) = exp(—H — h)|Q).
Now use the KMS condition for w in the form w(ab) = (Q|b exp(— H)a!Q>:
w(aR,) = (Q|R, exp(— H)a|Q) = (Q| exp(—H — h)aiQ) = w(R}a).
It is also true in this representation that S, exp(— H)S¥ = exp{—H — h), so

w(R¥a) = (Q|S, exp{— H)S}a|Q) = w(S}a$,).
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2. Apply Taylor’s formula || f(a) — f(0) — af"(O)Il < If} dC(1 — {)f"(al)a?] to f:
[0, 1] - B(#¥), « —» t™(a). According to (3.3.4), )

az -

el |- [aon 0]

Thisisalso true when a € [0, 1]; the only change when a > 0is that the time-evolution
a, h - a,, h, becomes a, h — t™(a), t*(h), which does not affect the norms. Conse-
quently the answer is that || --- || < (2t]/h][)?[\a}}/2. Recall that if || || is on the order of a
Rydberg, then t|h] € 1 when t < 10~'* sec. Therefore this a priori estimate
guarantees only that the linear approximation remains valid for times on the atomic
scale, and not for times measured in seconds. To go further would require knowing
that the commutators go to zero for longer than macroscopic times.
3. Order ¢, and p,; then

< 4¢2||h||?|all.

€11+ e, +e3p3+ - = (e, — e))py + (e2 — e3)(py + p2)
. +(es—e)py +pp+p3)+ .

All the summands are positive, and permuting the p; can at most make the summands
larger.
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4.1 Thomas-Fermi Theory

Among the best examples of large quantum systems are atoms and
molecules with highly charged nuclei. Classical features arise in the
limit Z - x, N -» ¢, except the! the Fermi statistics continue to
have an important effect.

Matter around us and within us consists of electrons and atomic nuclei,
which are governed by the laws of quantum mechanics. Relativistic effects
arise only in the fine details (cf. I11, §1). so the forces of primary relevance are
electrostatic and, for cosmic bodies, gravistatic (nonrelativistic). Moreover,
the precise nature of the atomic nuclei is of little consequence on the macro-
scopic scale, so they can be considered as point charges. In order to under-
stand the gross features of matter we shall study a Hamiltonian

M 2
_ {pil (e;e; — xm;m;)
Hima, = i=zl 2m; * igj I%; — xjf

@.1.1)

for ordinary matter. The first important issue to confront is that of why
macroscopic bodies behave classically; in what sense is the thermodynamic
limit N - oc equivalent to the classical limit # — 0? There are a variety of
ways to pass to the limit N -+ oo. In this section we begin by letting the nuclear
charge Z and the nuclear masses both tend to infinity, while continuing to
neglect gravity. This will permit a rather explicit mathematical treatment, as
the action is determined by an average field, and the single-particle model
becomes exact. The same will be true in §4.2 when we deal with cosmic
bodies, for which gravitation predominates. However, macroscopic bodies

209
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on the scale of humans are far from these limits: nuclear charges are for the
most part small, and yet gravitation is of little importance. In this intermedi-
ate range of normal matter it would be too much to hope for an explicit "
solution. Section 4.3 will discuss this case, but the results will be confined to
general existence theorems and rather crude bounds on the values of
observables of physical interest.

Let us consider now what happens to electrons in the field of fixed
point charges. In order not to be distracted from the most important facts
by physical constaats, we shall use units in which A =2n=e =k = 1, s0
that (4.1.1) becomes

The Hamiltonian for Normal Matter (4.1.2)

H~=i|p.-t’-§ 3‘:_5«__ ) :

+ O —
i=1 S x =Xl S5k - xl
yAY A N
+ —_+ W(x,).
P L
Remarks (4.1.3) .

1. The notation foliows that of (III: 4.6.9), that is, x; and p, are the position
and momentum of the ith electron, X, and Z, are the position and charge
of the kth fixed nucleus, N is the number of electrons, and M is the number
of nuclei.

2. The Hamiltonian H operates on an n-fold antisymmetrized tensor product
of L*{R*) ® C? = configuration space ® spin of a given electron. The
nuclear coordinates X; commute with everything, and are to be regarded as
ordinary 3-vectors of numbers. '

3. It is usually most convenient to study the many-particle system in the
framework of the field algebra (1.3.2). If a(x), a2 = 1,2, denote the
annihilation operators of electrons with spin up (x = 1) and spin down
(x = 2), then (4.1.2) reads

H=Y f d’x[Va‘(x) - Va(x) + § =4 + W(x))a‘(x)a (x)]
I ‘ ¢ (tzn {x — X, e

L[ o s G2(X)a3(X)a(Xay(x) z,2,
‘ *sz""d" IR Y A )
4. If the temperature is finite, then the attraction of the nuclei.is not strong
enough to prevent the electrons from escaping to infinity, and the system
.must be imagined confined to a box. The box can be repretented by a
potential W, adding a term Y, § d>xW(x)af(x)a,(x) to H. The wall
potential W will be chosen to be the v, of (2.5.23).

Mbst interesting systems are approximately neutral, so N is assumed to be
about Y., Z,. The thermodypamic limit N — oo can consist either in
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.

M - o or Z, — oc. For the moment consider the latter case; the limit
M — oc will be studied in §4.3. The first step is to bound the grand canonical
partition function in terms of the grand canonical partition function of a
theory with free electrons in an external field. This means that the bounds of
(I11, §4.5) for the energies have to be generalized for arbitrarily complex
systems at nonzero temperatures. After that we shall show that the upper
and lower bounds coalesce (when properly scaled) as Z, —+ oo, so the parti-
tion function can be calculated exactly in the thermodynamic limit, Finally,
the limit of the grand canonical state will be analyzed.

Upper Bounds for the Partition Function (4.1.4)

These correspond to lower bounds for the Hamiltonian like those derived in
(IIL: 4.5.20). The inequality (II1: 4.5.24), though, is not well suited to our
current purposes, and must be replaced with a variant, which will appear as a
by-product of Thomas-Fermi theory in (4.1.46; 2). In it the Coulomb
repulsion of the electrons is replaced by their energy in an external field:

N d’xn(x) 1 (d3x dx'
X —x"' > = — 3.68yN
1>jz=1l ' " cg:x 1% — x| "2 Ix — x| (MX) *
_3 [ s s
5 J'd xn>'3(x)

forall ;e R% y>0, neL'(R%):L*R%). (4.1.5)

This yields a bound on the. expression in (4.1.3; 3), whnch is quartic in the
a's,‘in tepms of a quadratic expression,

3 3
_2_ z dxdx =] 20080080 2 T [ rat(an

|x —

d’x’n(x’) d3x d’ ! '

x [I =% 3.68y] 3)ix n( "In(x) —«—jd’xn”’(x).
Consequently, H is bounded by a

Hamiltonian with an Effective Field (4.1.6)

Z,Z
H-uNzH, -C+ L
t§:|xk,"=xa|

where.

H, = ; fd’x{Va:(x) -Va(x) + a*(x)a(x)

Z dxn(x’ :
'x[ Z|x-kxt|*j ""‘x/l)+W(x) - 3ssy]}

' d3*x d3x’
—Ef,‘ 7 nG),
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and

=i 3,9, 5/3
C, .Syfd xn>3(x).

Remarks (4.1.7)

1. Although Inequality (4.1.5) holds for any n(x), the optimal choice identifies
it with the electron density. Thus the effective potential in the square
brackets [ - -] consists of the attraction to the nuclei, the repulsion from
other electrons, and the chemical potential. However, this interpretation
counts the electron repulsion twice, as in ), |X; — x,|™*. The last
term in H, corrects this overcounting.

2. The correlations among the electrons due to their Fermi statistics have
the effect of reducing their repulsion. Also, H, contains the self-energy of
the individual electrons. The constant C, and —3.68yN serve to control
any possible effect from these corrections.

The monotonic property (2.1.7; 4) translates (4.1.6) into an inequality
for the partition function. Then with the aid of the maximum principle of
(2.5.16; 2) the inequality can be expressed as the supremum of an expression
linear in n.

The Partition Function with an Effective Field (4.1.8)

E(H — uN) = TlnTrexp[—B(H — uN)] < _:_(H" e+ Y z@._“)

k>1 |xk - xll
Zkzl
< EH,) + C, —~ —
(H,) o 1 X - Xyl
Z(H,) = tr 2In(1 + exp(—Bh,)) + -;- J‘d“x a3x' 'ILS‘)—"—(:I)

= sup 2tr{T(—p, In p, — (1 = p;) In(1 — py)) — p,h,}

P
N % fd3* 23y "n(x)

Ix = x|’
Z d3x n(x’)
= |p|* - LI + W(x) — 4 — 3.68y.
hy = 1pl’ ;|x—‘xul x x|t WX~ H Y
Remarks (4.1.9)

1. The Hamiltonian h, of one particle in the effective field acts on the space
#, = LYR?). Spin is accounted for by the factor 2, and tr denotes the
trace on J,.
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2."As in Remark (2.5.16; 2), sup,, denotes-the supremum over one-particle
density matrices p, such that

0<p,<L2trp,=N= <Z Id’xa:(x)a,(x)>.

3. There exist ¢, > 0 such that k, > c,!p]* + W(x) — c,. This ensures
that tr In(1 + exp(—Bh,)) < co.

The next task is to optimize the upper bound. The infimum over n of
Z(H,) is in fact achieved. This is a consequence of the

Properties of the FMM:I Z(H,) (4.1.10)

The mapping n — E(H,) from A to R*, where A" is the real Hilbert space of
measurable functions R® — R finite in the norm

d3x d3x'n(x)n(x’)
2 - =
"n"c - <ntn>‘. I ‘x _ xll

is

(i) weakly lower semicontinuous;
(i) strictly convex; and
(iii) greater than 4||n| 2.

Proof

(i) In the second version Z(H,) depends on n through tr p,h, and {njj..
The norm is sup, ¢ 4. ywy.<1 <M 11D, and tr(p, § n(x’) d°x’/|x — x'|) is
weakly continuous for '

d3x, d°x,

eCy= ] —=
P M {Pn X, — X5

(xplpyIx ) <x2lpy|X2) < Me R+}-
The supremum is attained when p, = (exp(h,) + 1)~ !, which belongs
to some C,,. Hence sup,, may be written as supy g+ SUp,, ¢c,, - In this
way E(H,) is expressed as the supremum over continuous functions,
which is always lower semicontinuous.

(ii) This follows in the first version of Z(H,), when it is observed that
h — tr In(1 + exp(— Bh)) is convex, n — h, is linear, and n — ||n||? is
strictly convex.

(iii) This follows in the first form of Z(H,), since tr In(1 + exp(— ph)) = 0.

Corollaries (4.1.11)

1. Because of Property (iii), the infimum over n lies in a compact region where
fin]l. < C. Property (i) means that it is attained at some ny, which is
unique because of (ii).
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_B_ecause of the convexity, we know that the function R —» R*: ¢ —
E(H,, +,) has a right derivative everywhere, and the minimum is attained
at n, if,and only if

lirzl t"NEAH,y1n,) ~Z(H, ) 20 foralln, e 4.
'

Although convexity does not imply the existence of a derivative, analyticity

can be proved by a variant of Theorem (2.4.7). Granting that, the formal rules
for differentiating tr In(1 + A) are justified:

d*x'ny(x) ﬂ.
Ix = x'| exp(Bh,)+ 1

d
ZE" In(1 + exp(_ﬁhnoﬂu.))lrao = —tr

Therefore the minimum at n,, is characterized by

d*x’ d*x d*xX’ny(X) 1

m"o(x)"x(x)=2tr x| exph) + 1 for all n, € A.

If n, is made to tend to Ad(x — x,), then there results an equation for ny(x,).
Since the integral kernel K(x, x’) of (exp(Bh,) + 1)~ ! isanalyticfor x, x' # X,
even though Ad does not belong to A4; we have the

Existence of the Self-Consistent Field (4.1.12)

The equation

ny(x) = 2{x|(exp(fh,;) + 1)™*|x>

has a unique solution, which minimizes Z(H,).

Remarks (4.1.13)

1

Since 2{x|(exp(Bh,,) + 1)~ '|x) equals ¥, <a?(x)a,(x),,, it is the mean
electron density in the state determined by the one-particie Hamiltonian
[ .

The ease with which the existence of the solution of the generalized
Hartree equation (4.1.12) was proved depended on the wall potential W.
In an infinite space without W there fails to be a solution when N > ¥, Z,,
even at absolute zero temperature—the electrons escape to infinity, and
the infimum is never attained. This is a reflection of the general mathe-
matical fact that a strictly convex function need not achieve its infimum
on a noncompact region; for example 1/x never reaches the value 0
on [1, o).

. A convex function on a finite-dimensional space is continuous on the

interior of its domain of definition. This is not always the case when the
dimension of the space is infinite, and ||n||2 is in fact not weakly continuous:
The norms || ||, of the charge distributions ng(x) = R~ *2@(R — |x|) are
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all equal, but | d*xng(x) - 0 as R - 0. Consequently {ng|n). — 0 for all
n, if

_ [ d*x'n(x)
Va(x) = x — x|
Since the n’s such that ¥V, e L® are dense in A, ng -+ 0, even though
IIngll. # 0. There even exist convex functions that {ail to be lower semi-
continuous, for example the functional of (III: 2.1.15; 2). Of course the
function n — ||n}|? is continuous in norm, but this finer norm topology
can not be used, because we need the compactness of bounded sets.

€ L*(R3).

4. Atthe minimum (4.1.12), it is indeed true that n(x) > Oand { d*xn(x) = N

Lower Bounds for =(H) (4.1.14)

In (II1, §4.5) upper bounds on the energy were previded by the min-max
principle, the generalization of which for nonzeru temperatures is the
Peierls-Bogoliubov inequality (2.1.8; 3) with & = — F. Because

Z,Zz
H-gNv-§¢ 2 1.',,>
< ' kz;‘lxk—xl' ono

_ 1 3%
=Y 3 i L ((a:(x)a,,(x )ag(X)a (X)), ~ no(XIng(xN

wp 2y X —

d3 d3 ! .
—"——  <aFRX g = = Aln) < 0,

[’l

l’

where i = u - 3. 68), it 1mphes that

= - = - _Z___"Z‘
S(H - iN) 2 S(H,) + () ~ £ ot

When this is combined with (4.1.8), it yields

Two-Sided Bounds for = (4.1.15)

0 < A(no) < E(H — aN) +

Z,,Z,
SilX - X

-E@H,) < %’ f d3x n33(x).

Remarks (4.1.16)

1.

2.

This means that the true partition function exceeds the partition function
with an effective field by more than A4 but less than C.

In particular (4.1.15) states for the exchange energy that 0 < A < C. If
Z is large, then n, approaches the electron density in Thomas-Fermi
Theory, and we shall discover that [n*3 ~ Z7. If y is chosen
~(Z""*/N)'?, then C and the additional term 3.68yN in u becomes
~NY2Z7% Since H goes as Z7°%, if N ~ Z, then the relative error is
0(2‘2/3).
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The Classical Limit (4.1.17)

The next topic of study is the way in which Z(H,) approaches the classical
phase-space integral (2.5.17) as Z — co. According to the general considera-
tions of (1.2.4) the interesting limit would be expected to be that in which the
system shrinks as Z~ /3, Consider, therefore, a sequence of Hamiltonians
H, in which not only do the nuclear charges increase as Z, = Zz,,
Yx 2 = 1, z, fixed, but also the nuclear coordinates are scaled by changing
X, into Z~'/3X, and the wall potential varies at the same time:

Hy=Y Id’x[Va:(x) Va x)
M z
+ a:(x)a,(x) (--Zt;l l—x—:T:z—_ﬁa—l + Z43 MZ!NX))]
d*x d>x’ 22

=+ z'3,
Ix — x'| k§l|xk_xl|

+ % 5, Jae0apxiasx)a,x)

Hya=Y J' d’x{Va:(x) - Va,(x)

M d3 o
+ at0a | -23 st [

L 1x = X, Z7 13 Ix — x|
+ Z*P3(W(XZ'3) - p) - 3.68}’]}

1 d3x d*x’
2J)Ix-x|

n? = Z*n(Z">x).

nZ(x)n?(x’);

In order always to work in a fixed volume and see what happens in the
limit Z - co, use a canonical transformation to convert the electron
coordinates x into Z~'/3x and p into Z'/3p at the same time—this entails
a(x) = Z~V2a(Z~*x)) as well. Since the number of electrons also grows
as Z, the mean momentum of the electrons grows as Z>', and every kind of
energy per particle, such as T or y, will depend in the same way on Z. Thus
if we calculate Tr exp[ — Bz(Hz — puz N)] with B, = Z~4/3,and u, = Z**,
and scale n appropriately, we are led to tr In(1 + exp(—fh,)) with

d3*x'n(x")
Ix — x|

h. __2-213 .3—‘ E % + +W(x)-p
| | J ]x—le ’
and

u,=p+ 2743368y
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Observe that Z~!/3 occurs in the position of #, making the limit Z — oo
equivalent to the classical limit # — 0. Now use the bound (2.5.17) with

u3(x) = K exp(—xr)
8n '

The Fourier transform of this density is

4

Y R K
“®) = T er
Consequently { |Vu|? d®°x = x2,and if v = 1/r, then
1 exp(—«x
vq) = fd3xﬁ fux — @)I* = Pl —p(—q—q—) = 5 exp(—Kq) =~ = v(q)

The Classical Upper Bound (4.1.18)
Since 1/r can not be represented as a smeared potential, v* makes no sense.
Thus it is first necessary to remove v,, the short-range, singular part of 1/r,

and handle it separately. It can be neglected as xk —» oo, and if the smeared
remainder is unsmeared, we recover 1/r:

L v, +v, ()= 1
r r

Let h, be like the h, of (4.1.17), but with v, in place of 1/r. Then

h,=h,+V,,
d*q d°p z
hc = — g, , Z~2l3 2 _ 2\ l
d3xn(x) )
+ WII - by
Jamx TV@O-m

V= - z;v(x - X)+ jd’yn(y)v,(x -y
j
In the x-representation, |q, p) is

K3 1/2
(§7—;) ex“il)- X) exp(—xlx - ql)’

and we let W*(x) be the unsmeared wall potential W of (2.5.23). Convexity
can be appealed to to bound the influence of V,:
tr In(1 + exp(—ph,)) < tr In(1 + exp(— Bh,))
+ a~ ! tr[In(1 + exp(—B(h. + aV))))
— In(1 + exp(—Bh) foralla > 1.
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The number « will be plcked so large that the addition to the first term on the

right side goes away in the limit Z — oo. By (2.5.17), the second term is
bounded by

tr In(1 + exp(—ph,)) < d(;; ‘;,pln(l + exp[ B(Z"”(Iplz - x?)

B 2 d3xn(x) . )
2%t a-xt W“"“‘t)})
d*qdp T
=2 J.——a—(zq ) h'l(l + exP[ (lplz - ;N jjle
: P
d3x"(X) + W.(q) - ﬂy — 2—2/3"2)]).

lq — x|

The additional part containing ¥, can be taken care of because even for a

singular potential V(x) € L%3(R3) there is a bound of this form weakened
by a factor C = 7:

tr In(1 + exp[—B(IpI* + V(x))])
3
d(; ‘;q In1 +exp[—-A(Ip* + V(@)D (4.1.19)

The derivation of this formula is left for Problems 1 and 2. In this case it
leaves us with

tr in(1 + exp[ - B(h. + «¥))])

<c

. da 3
<cZ J' -(%tf’)-,-’f ln(l + exp[—ﬂ(lpl’ + W)
- Safity + - uia - x))

J. d’yn(y)( it (@ - 1o(q - y)) ~2Z "”x’)])-

It remains to be shown that a and x can be sent to infinity with Z in such a
way that the additions to the classical one-particle potential in the effective
field become negligible. To this end assume that W* tends to infinity outside
some compact set K containing the X, so rapidly that the contribution to the
integral over the complement CK is insignificant, that is, fx d°qln(---)
> fex d3q In(-- ) for aft @ > 0. Then it suffices to estimate the integral over'
K, which can be done in terms of the L? norms of the potential on K, i.e.,
VI, = (fx °q1 V@I, If |%]- = |x]6(-x), thea

T In(1 + exp(—x)y = |x]- + In(1 + exp(—x])) < Ix|- + exp(— |x]),
and if

.qeK_ = {qéKlV(q) < 0},
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then with & = |V(q)(7,

I= fo " de/oIn(1 + exp[—B(e + V@)D

< | dng/nBin = 11 1V@I + V@P" expl~BIV@lIn ~ 113,
and ifqe K, = {qe K|V(q) > 0}, then
1< [ Ciny/nv@¥ exsl-pr@@ + ).
Because |7 — 1] < n + i for all 3 > 0 and
L " de/z (1 + exp(—Be)) < BV2/A12,
ifX' =K, uK_, then

f g J: ds /e In(1 + expl—Ble + V(@)D
X
< | #q [ an/msv@ - -
K’ 0

+ (V@ exp[- IV @IIn — 1[]) + B~>" é

The required bound now follows from

] 1 0
J ds\/réexp(—y{e -1 < f deﬁ + '[ de(\/é + 1) exp(—17ye)
0 0 0
V. 3

- —1 —_—
$+y + 3577,
. for

[T e [ #qinat + expl~pe + Vi@
0 ] ¢
< f d%;[?-i VIS 4 2 VP2 4+ B3 V|2 + ﬁﬂ"”].
K
In the case at hand, since ||¥,}l, ~ '~ and

[exivea-pvpsavi, +@- DLy, p=h1,

or, respectively.

fd3x1V+ (¢ = DV,I12 < V|12 + Vo = 1IVI13,
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it follows that 1 + exp[ —fA(h. + aV;)] remains bounded in the limit as
a2 and k = 20 when « ~ k"5 If k goes as Z'37¢, 0 < ¢ < 4, then the cor-
rection Z ~ 23k to the kinetic energy tends to zero, and all corrections to the
classical one-particle phase-space integral with the effective field are smaller
than this quantity by a factor Z~''**** 3, The quantity . is no trouble at all,
since it approaches y, provided that yZ~ 43 — 0. Likewise, W*(q) and W,(q)
approach W(q) in the limit x — 0.

The Classical Lower Bound (4.1.20)
For the classical bound (2.5.17), the 1/r occurring in the classical phase-space
integral has to be replaced with v, = 1/r — v,. As before. convexity is useful

for estimating the influence of the v,, except that this time the convexity of
ffora >0,

f(0)-f
-1z 10 + 121
is used for the other sid€ of the equation. The result is
tr In(1 + exp(— Bh,))

d*qd’p — 2 23,2 _ W
>Z o ——In{l +exp| —BSIpIP + Z~ B, + W9

22/( =X - v(q — X,))

¢ [esmoof i - wa- )]))

3 3 .
>Z f‘i_‘l_d_p In{1 + exp[-—ﬁ{]pl2 + 27 =Y % :
T lq = X;i

@n)*

d*xn(x) 1
e wa -] (1+3)

- éln(l + exp[—ﬁ{!pi’ + Z7 23

=Y z0lq - X;|7! + av(q — X))
J

+ fd’xn(x)(lq - x|7' + av(q - X)) + W(q) - #;}])]

The integrals that show up are the same as for the upper bounds. so with
@ =k, k= 2" 0 < ¢ < 4, the correcuons 1o the classical expression
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vanish as Z — oo. The n(x) considered earlier was constant, while that
defined by (4.1.12) depends on Z. However, it is shown in Problem 4 that the
minimum values also converge, so our bounds prove the

Classical Limit of the Partition Function 4.1.21)

lim Z7'In Trexp[ —f(Z~*"*H, — uN)]

Z-x

= lim Z*In Trexp(~pZ™* *Hy,) — B T Baf__
Z~w i1 1 X = X

d’p d’q Z;
= ZJ In{1 + ex ( 2 - 4__
@y ( "[ ARl -2 0%
_n(y) )])
d3y + W(q) -
f Yia-yi @ -
iy Ll éjds
k>1 |xk - X 2 Ix
According to Remark (2.5.18; 4), the optimal density for this formula satisfies
i [oo{o{ir - T
n(x) = 2J“— ex 2oy -
(x) 2o | P B{ Ipl X=X

S
+fd"|q—y|+ (x) —w) +1 . (4.1.22)

3.
x_dy;l n(x)n(y).

Remarks (4.1.23)

‘1. The classical functional also has Properties (4.1.10), which ensure the
existence and uniqueness of a solution of (4.1.22).

2. As yet unproved conjectures [11] imply that Equation (4.1.19) holds even
with ¢ = 1. If that turns out to be true, then many of the proofs given
here can be simplified.

The Density in Phase Space (4.1.24)

Now that Z has been shown to converge, we can study the limiting behavior
of the expectation values of a suitable subalgebra of observables. The densities
on classical phase space would seem to be an appropriate subalgebra, since in
the classical limit Z — oc it ought to make sense to speak of position and
momentum simultaneously. As mentioned above (cf. (1.2.4)) position goes as
Z~ '3 while momentum goes as Z*/3, so the product of their relative mean-
square deviations would be expected to go as Z~ %%, and as Z — o the
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physics should become classical. This rather airS' argument can be made
" mathematically substantial, and we shall discover that in convenient units,
fermions distribute themselves in phase space according to

= 2 _ 2j dsx'.'(x) _ } ]-l
q, ) : [expﬁ{lp} ;Iq—x,|+ g T Y@k

Particularly interesting is the observation that fermions behave more classi-
cally than bosons. The latter have a —1 in the denominator, so p{q, p)
becomes negative when q = X, and thus can not turn ouit to be a probability
density on phase space.

To make the connection with (2.2.10; 5) we deﬁne creation and annihila-
tion operators at the point (g, p) in phase space, and choose u as a sufficiently
smooth, decreasing function such that juj, = 1, like the function of (4.1.17):

The Field Algebra on Phase Space (4.1.25)
The operators
g p:c = 2% f d*xa(x) exp(iZ*3p - x)u(Z(x — Z~'1*p)),

{<e<tut=u,
satisfy the commutation relations

[opie 8.6+ = bup [ 4% XUZ¥* - (p — POl — 279
X ll(x A 1/3 I)

If q = ¢ and p = p’, then the right side is 8,4, and otherwise it goes to zero as

Z - . Hence p,,, = Y, a3 5.40q,5:« are bounded above and below by

0< pgpS2 and generate an algebra that is Abelian in the limit Z — .
Defining dQ = d3q d°p/(2x)?, we calculate

[ 00y, F@ = 25 [ Pratmaozuzix - P

- x F(Z'3x") d*x’,

[ a1 = 27 3, [ extVan)- Vagn
+ ata, 2> [ Fyivig)
I dndey B "" £-z" Y J x X a0 XKl ~ X)

+2Z° MY fd’xa:(x)q(x)s_(()). (4.1.26)
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where F € L®(R®) and

[u(Z5(x — Q))Izlfl(lz‘(X'— Q) Z6t< 1 _
lq - q| Ix — x|

D<o (x—X)= fd3q d’q

Remarks (4.1.27)

1. As Z — oo, Z%|u(Z%(x — x"))|* approaches 8(x — x'). It is not hard to
convince oneself that when the classical Hamiltonian with p or p-p is
integrated, the result is H to order Z7/3,

2. For neutral states, i.e, Y, (N,> = Z, it follows that (j' dQpg.e> = 1.

The convexity of the partition function (2.4.7) can be used to calculate
an expectation value by allowing it to be written as the derivative of the
partition function by a perturbation parameter. We shall show that the
perturbed X still converges as Z — oo, which will simultaneously prove that
the foregoing results are stabie against small variations in H. The limit will
turn out to be likewise convex and differentiable in the perturbation param-
aters, so by Problem (2.4.18; 3) the limit of the derivative is the derivative of
the limit. Since our real aim is ¢o prove that the expectation value of Pa.»
approaches the Thomas-Fermi density and that the deviations of p, ,
vanish, we will perturb H both linearly and quadratically in p. To an accuracy
of Z~%3 we can by-pass the intermediate steps (4.1.15), so we shall not
require the more refined inequality (4.1.5). Thus we get by with a somewhat
simpler effective Hamiltonian.

The Perturbed Hamiltonian (4.1.28)
Z3
H). HZ + l Z7 3 fdeq pf(q’ P) + A‘Z (J.d(lpq .f(q9 P))
= f Py {Va;"(x) Vau(x) + at(x)a,(x)

x [‘ZZ Ix — Z 1/ 3x I + 2413(W(zll3x) I‘):I}

k=1
QI
4+ 23 [:ilQ dq 7 (Pa.p — 3n(q. PIN(Q, p)

oa

+ Zm(ln + lzg)J dQpg,, 1@, P) — Z7°A,4°/2,
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where A;€ R and fe Cy. We shall choose n(q, p) as {Pq.p> and let g =
§ dQn(q, p)f(q, p). With the idea of (4.1.24), because 0 < v.(X) < 1/]x],

H,—ZN -2y 24 _ g

k>1 lXt - x,l -
1 (d3x d*x’
"2 Ixx— x% a7 (x)ag(x)ag(x Ja,(x)
dQ 4oy
_ 27/3 Batsiuiiatedl _ , .,
lq—q| (Pq.p — tn(q, PI)N(Y, P)

+ 27’3 % (f deq.pf(qs P) - g)Z

Z7/3
z23 f dQ dQ(pq,, — M4, P)(Pq.p — NG, P))

X

1 ~ ] N
[Iq_q:i"'AZf(‘Isp)f(q’p)] 20“(0).

Remarks (4.1.29)

1. Since the Fourier transform in the g variables, f(k, p), decreases in k
faster than any power, |k|? + 4, f(k, p)f(k, p) is positive for sufficiently
small | 4, |. The expression in square brackets [- - -] is then of positive type,
and the inequality extends to the statement that

H), _ Z‘ISMN _ Z'I/3 .z ._ik.ﬁ"___. —_ Hl,n > _g‘v“(ﬂ).

k>m ka - xml Y
It is easy to calculate that v,,(0) ~ Z*, so the right side is dominated by
Z3, and in the limit as Z — oo,

ZTVE(ZTYPH, — pN) < Z7'E(Z*°H, ) - ¥ —Xim
k>m |xk - xml

2. According to (4.1.24),
where

3
0 = | (‘;n;Z 0 B

Therefore the Coulomb repulsion of the electrons in the Hamiltonian
H, ,of (4.1.28)is reduced by v, = 1/r — v,. As in (4.1.14) the Hamiltonian
H, , with v, in place of 1/r furnishes a lower bound for E. On the other
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hand, it was shown in (4.1.18) and (4.1.20) that the effect of v, on Z(H, ,)

was negligible as Z — o0. Moreover, |dQp, ,f(q,p) is the second

quantization of the one-particle operator | dQ|q, p><q, P| /(q. P), |19, P)

= exp(ip - x)u(x — q), the expectation value of which in the state |q’, p")

reduces to f(q’, p’) in the limit Z — oc. The generalization of (4.1.21) is
consequently

lim Z~'In Trexp{ —f(Z*3H, - uN)]

Z-

ol 12
= ZJ In{1 + exp| — 2 _
o’ Pl -AlIPF - 2Ty

d*qg'n,(q J)
AL L ‘(‘!) + W@Q) + 7@ P + Ag) — g2 — u)]}
lq —q| 2
1 (d3qd®q 2.2, )
+ Bl n ) Y . L - 4.1.30
ﬂ(2 = q] A@n,(q) gl X —X| ( )

where
d3
nyq) = f (27’)’3 n,(q, p),

- 2 Z d*q'ny(q)
%P = Z{CXP ﬁ[m 2%t =gl

A -1
+ W(Q) + f(q, p)(4; + 4,9, — 7’92 - #] + 1} ,

9= fdﬂnl(q, P /(g P)
and |4,] is sufficiently small.
Differentiation by 4, and A, at A, = 4, = 0 and an optimization of
f € C3(R®) reveal the
Convergence of the Expectation Values (4.1.31)

Tr(pg. s exp[—B(Z"**H, — uN)])
Trexp[Z~4'*H, — uN]

lim {py )z = lim

VAT -~

- 2 _ Zk

- foela{ior - T
e
44nQ) | yyq) - b = noa )
T @-—nu)|+ no(q, P)

lim <pq. P’ pq',p'>2 = no(q’ P)"o(q', P')

Z-®
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Remarks (4.1.32)

1. Since f is not arbitrary, but assumed in C3(R®), the limit converges only
in the sense of distributions. The C* algebra of, generated by the
“smeared” densities on phase space, p, = { dQg(q, p)p,, p, together with
theidentity becomes Abelian in the “ weak ” limit Z — o0. Hence, according
to the Gel'fand isomorphism (III: 2.2.28), if Z = oo, then &, can be
represented as the set of continuous functions on a compact Hausdorff
space. The space of characters of an Abelian C* algebra &, i.e., *-homo-
morphisms from &f to C, is the same as the set & of pure states and is a
compact Hausdorff space in the (relative) weak-* topology. With the
identification [a](w) = w(a) e C for all a € &f and w € &,  is equivalent
to the C* algebra of the continuous functions with the supremum norm
on the set &, given the weak-* topology. In our case, & = {ne L*(R®)|n
> 0ae, ||n|l, < 2}, with the weak-* topology with respect to the linear
functionals belonging to the predual L'(R®). (Since C3(R®) is dense
in L'(R%) in norm, the corresponding weak-* topologies agree on L *(R®).)
Since & is the intersection -of the cone of the functions that are non-
negative a.e., which is a weak-* closed set, with a multiple of the unit
cube of L®, it is weak-* compact. The Gel'fand isomorphism correlates
p, With the mapping [9,]1(n) = { ngdQ, and since [[0)] — [ps]liwo
< 2|lg — ¢'ll;» the completion contains for instance all p, such that
g € L(R®). The set of all states on the algebra is the weak-* closure of the
convex combinations of characters and can be represented as a set of
probability measures; pure states correspond to point measures. If the
state is mixed, a{ ), + (1 — a)} ),,, then the two-point function
can not be factorized:

a(;’:.l’:;);.. + (1 — @){pz,p:,0n, = any(2))n4(23) + (1 = 0)ny(z4)n5(2,)
= (a(p“),,' +(1 - o) <p:|>n3)(a<p:z>n|
+ (1 = a){p;,)n,) forallz,z,

= n,(z) = ny(z) forallz = (q,p).

Hence it follows from (4.1.31) that the limiting state is a character, and
consequently pure.

2. Although the system acts classically on a distance scale ~Z~ 113 jt
would be expected to behave like a free Fermi gas on the scale Z~ %/ ~ the
average distance between particles ~ reciprocal of momentum. If the
microscopic field operators

aB) =Z'a(Z"Pq + Z7¥%),  [a ), aF(®)]+ = 8§ - &)
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ace inroduced, it car be sesn from (4.1.31) that its expectation vaiuv
for free Fermions 1s

~ 43

J (—2;:)25 exp(i’ ‘ é)pq .

32

= .ﬂ_ex [ .(2243 — ’) T a*( ’ 4
ny *eLip (x ~ x') + §)ja .xt)a(x);t-—,,2
Z -1:3_12 ’ ~ 13412 3 3
x expl — 5 (Ix = Z7'°q)* + Ix" — 27 17q[*) [ d>x d’x

VA 1.13! 2 Z::z
= Jd’za:"(— g)aq+x(§)exp["2”3‘xi2 - —_Z—g—l{l 3

where the chemical potential is determined by the potential V(q) at the
point q, and we set ¢ = 4, u = n~ 3% exp( - |x|?/2).

d3
f (2'-’[% exp(ip ' g)pq.p

372

a3 . VA
= (52 explip- (22x - x) + la*(hax) 2

z ,
x exv[— 5 (Ix =271 + |x' - Z""ql’)] d*x d®’

[d’xa:ﬂ(— %)a,"(g)exp[—z"’lxlz - Z—;—;EE]%’:

v

Therefore

d’p exp(ip - §)(2m) ">
exp[B(IpI* — V(@)] + !

‘. AR . Z-u3EpR
3 E\} E\ (8
(et Jour)), = (o2 33)).
. - Z d3xng(x)
Vig) = — = + W(qQ) - u
@=-Iggr [t e

3. Results have also been obtained concerning the time-evolution in the
limit Z - « [26], but they have only been proved for regularized
potentials r, and not for 1.r, so they will not be presented here. At any
rate the time-evolution of w(a,). where the nonstationary state w has the
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same scaling properties as the grand canonical state p, is the free time-
evolution, as is that of p(a,b), when only the microscopic observables
(4.1.32; 2) are considered. The equation for the expectation values of the
macroscopic observables p, , is known as the Vlasov equation; it describes
a classical time-evolution according to

dn on oV on

@Y% a
where the potential itself depends on the particle density,
; 3.
Z, 'd°p’ n(q, p)
V(q) = — .
@ ;Iq - Xl (21:)3 lq-q']

Thomas-Fermi theory thus reduces the quantum-mechanical many-body
problem to the solution of the integral equation (4.1.22). Although (4.1.22)
is much simpler than the original Schrodinger equation, it can still be solved
with reasonable numerical effort and skill only in the radially symmetric
case. Despite that, some valuable relationships and properties can be ob-
tained just from the maximum property.

The Relationships among the Contributions to = (4.1.33)

Write
—lim Z7'E(Z"*PH, — uN) — ¥ 24
S Xe = Xl
) d*q d’p n(q,p), n(q,p) ( ngq, p) n(q, p))
= 22PN (-2
oo @0 {ZT[ 2 2=y T )
+ n( )( IR =Y —H
P —u+lp 2 a=X

1 (d%q d°p’ n(q, p) )}

- ~ + W
2) An)’ lq-q| @

=—-TS—-pA+K—-A+R+ W,

where

dqd’p - N
(2 )3 n(q! p) Zh-f?o Z

K is the kinetic energy of the electrons, A is the potential attracting the electrons
to the nuclei, and R is the interelectronic repulsion. Then for the values of u
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.

at which the infimum is attained as a minimum (at a given phase-space density
nO)’

(1) —3(TS + pA) + SK — 34 + 6R + 3W = 0; and
(ii) if an atom is isolated and in the ground state,ie, M =1, X, =0, W =0,
T = 0, then

—3ud + 3K - 24 + SR =0.

Proof

(i) Take the infimum over n’ of the form ny(g, ¥~ 'p). A change of the varia-
bles of integration p — y,p converts (4.1.33) into

—9ATS + pyh + A — W) + yiK + y5R.

This has its minimum at y, = 1 when condition (i) holds.
(ii) Now dilate q so that n(q, p) = no(y; 'q, p), and proceed as before; then

d
;{ﬁw—wb-hA+van—0
Y2

yields Relationship (ii). O

Corollary (4.1.34)

In case (ii) with u = 0, the three contributions to the energy stand in the
ratio

K:A:R = 3:7:1.
Remarks (4.1.35)

1. The dilatation required for (ii) affects the nuclear coordinates (other than
X, = 0) and the wall. The reason for setting T = 0 was to avoid problems
connected with the latter.

2. Since A, K, and R are positive, the second derivatives at 7 = 1 are auto-
matically positive.

3. If P=pu =0, then —Z becomes the minimum of the energy without
fixed particle number. We shall learn that the minimum is achieved by a
neutral system in Thomas-Fermi theory, and that in case (ii)

d*qd’p
J (2 )3 "0("’ P)

The comparison densities n(y~'q, p) and n(q,y~'p) correspond to

different numbers of particles, and the mystical numbers in (4.1.34)

reflect the stability of neutral atoms against spontaneous ionization.
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In the limit 70, the quantty texp[8(¢ — a)] + 1)"! apnroaches
Au — ¢). In that case W may he chaoven identically zero, and the int~gration
aver p becomes slementarv. The womputation yields

-

The Electron Density in Configuration Space (4.1.36)

- d.l 1

P(X)EJa—;‘)z;no(x.p)=§1—t;i0(x)+ﬂli’z. 2l = jzl€&X2),
~ A3 4

o =y - LA

TIx=X; ! -x’

The kinetic-energy density is

43
f s Pna(x. ) = 300 (x).

(Since the particles have spin 1/2, the factor (67%)%'3 of (2.5.32) has become
(3’!2)2/3.)
This reveals

The Range of Values of ; and ®(x)(4.1.37)

(1) u takes on the values — x < u < 0; and
(1i) @ takes on the values 0 < @ < oc.

Proof

We shall only demonstrate the impossibility of 4 > 0 and ® < 0; Problem 3
will assure us that a minimizing p exists for ali 4 < 0, and it can be seen
directly that ®(x) ranges over [0, ac) as x ranges over R3.

(i) Since p(x) must be integrable, ®(x) — 0 as |x} = c0. If u > 0, then p(x)
would have to approach u*2/3n? as x| — co. which would contradict
integrability.

(ii) Theset A = {x € R*: ®(x) < 0} is open and does not contain x;. Because
u < 0, the density p vanishes identically on A4, so A®(x) = 0 holds
throughout A. Since @ equals zero on the boundary of 4 and at infinity
and is harmonic, it would have to equal zero on A, because its maximum
would be attained either on dA or at infinity. However, this contradicts
the definition of 4, so 4 must be empty. : O

The quantity A = {d°xp(x) = lim,.,, N/Z, where N is the number
of electrons and Z is the sum of the nuclear charges, is more intuitively
understandable than u. By expressing the energy as a function of 4, we can
find the limits of the observables studied in (II1: §4.5).
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Properties of the Thomas—Fermi Functional at 77 = 0 (4.1.38)

Let
K(p) = §6 [ dxp*3(a,
d'xpix
Aoy = 2.7 .;r I}“—Lx_),f‘
RG> =5 [220% e
E(p) = K(p) - A{p) + Ri{p),
and

~

n
S, = {p: p(x) = &, ' () = A;, Yo~ L

v

Then E[4] = inf, .5, E(p) satisfies
. s o, 27
(i) E[4} = ““:f !\im\#, 0} — g + ..Z'z 1 )'_ i },

E.T)= lim Z -Tin Trexp{~-p(Z" *3H - uN)];
£
(ity CE/é2 = pif A< l.ana =Gi1f A > i:
(ii) E[A] is a nonpositive, conve ., decreasing function of 4; and
(iv) intheatomiccasez, = l.allothcr =, = Q. - 27 ®/ — E[A]Y2isa concare.
increasing function of A

Proof

(i) Observe first that E[A] is convex. since the convexity of E(p) as a
function of p means that Efad, + (1 — a)4,] < E(xp, + (1 — ajp,)
< «E[4,] + (1 — ®)E[4,], in which E[A] = E(p;). because ap, +
(1 — 2)py €84z, +11~22,- As remarked in (2.4.15; 2(1)). the Legendre
transformation ’

s B
~E. (4 0) = inf inf (E“” # *k,zmixk—xmn)

A peS,
can be inverted for the concave function -- E[4], yielding (i).
(ii) The formula dE/dA = u will follow from Property (i) once E[A] has been
shown to be differentiable. Let p; denote the minimizing p (4.1.36).
A calculation shows that

3
5 B + Nh=o = KA



232 4 Physical Systems

so E[(1 + 1)A] — E[A] < tud + o(r) and E[(1 — t)A] — E[A] < ~tud
+ o(t). In the limit t — 0, this becomes dE/dA = p. It remains to show
that l<l<pu<0and A =1=pu =0, which = 1 > 1. Note that ®
goes asymptotically as'(l — A)/r. If p were 0, then

1 — 2\32
p'l”( ) ,
r

which would not be integrable; thus 4 must be negative when 4 < 1.
When A > |, there is no minimum, since if there were, then ® would be
negative as r — oo, which is impossible because of (4.1.37). However, the
infimum has to be E(1), since for A > 1 and for any ¢ > 0 a p can be
constructed such that E(p) < E(1) + ¢; start with a p, with 1 =1
and compact support, and such that E(p,) < E(1) + &/2, and then let

1
AP=pr+ 0 keN,

where the characteristic functions y, satisfy y,p, =0 and Uy, =
k(A — 1) to ensure that p,€S;. Then [lp, — pl, = 0 for all p > 1,
and it is easy to verify that E(p,) — E(p,). This accords with the intuitive
feeling that a thin electron cloud at a great distance affects the energy
only slightly. It means that E[A] decreases while 0 < 4 < 1, and
becomes constant thereafter.

(iii) This follows from the proofs of (i) and (ii), since u < 0.

(iv) Make both of the scaling transformations of (4.1.33) simultaneously
and define

inf (K(p) — ZA(p) + 2R(p)) = Z* inf (K(p) — A(p) + %R(p»

PES; PESY

=27 2[ (%)

This is the infimum of a set of linear functions and consequently concave
in (Z, «). The condition that

a:‘. 62 62 2
2 et = (52&)
implies that 2" < f*%/f. so. _\//:7 is concave. Because f' = R(p) > 0,
the function f is increasing. With still another scaling transformation,
with p(x) = AF(A¥3x),
f(A) = inf (K(p) — A(p) + AR(p)) = A~ 13 ian(K(ﬁ) — A(p) + R(p))
PES, PES

= A"13E[A]. U
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The at first sight contradictory properties (iii) and (iv) determine the
form’of E[A] rather narrowly for an atom, making it almost linear:

Properties of f(1) = A~ '/3E{J] for an Atom (4.1.39)

1
(i)OSf'S—ﬁf;
Y 2f Y i
(“)“9'? Sf f‘
Proof

(i) This follows from E' < 0 and f* = A~%*R(p,) = R(p,) > 0, where p,
and p, are the minimizing densities of S, and S,.
(ii) This follows from E” > 0 and the concavity of —./—f . 0O

Consequence (4.1.40)

1. With the aid of the virial theorem, 2K = A — R, which follows from
(4.1.33) for any u, Property (i) may be rewritten as 7R(p;) < A(p,),
0 < A < 1. This generalizes Corollary (4.1.34), which held for A =1 =
u = 0, to the statement that 7R = A, provided that 0 < A < 1.

2. It is not hard to calculate analytically that f(0) = —0.572 and f'(0)
= 0.2424 (Problem 4); computer analysis of the Thomas-Fermi equation
has shown that f(1) is —0.384, and by (4.1.38(ii)) and (4.1.34), f'(1) =
—f(1)/3. Integrating Property (ii) leads to the bounds

max{—1" V€| f()|"2, =AD" - (1 = HIFO)'?} < — 1A

< minf - @11+ 352). - T4

(cf. (I11: 4.3.21)). The concave hull of the left side can be taken, in which
case the greatest difference between the bounds is <29 (see Figure 29).
Since this is already better accuracy than that of the Thomas-Fermi
theory itself, there is no point in making fancy numerical calculations

of E[1].
If from (4.1.36) we now deduce
The Thomas-Fermi Equatioa (4.1.41)

in the form

Ad(x) = —4nd3(x) + 4np(x) = -—41:53(x) + i | u+ Ox)133,
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-
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. Fm;e 29. Thebounds (4 1 40 2) fromthe concavity of f (.1) = A" “’E(.l). The ha;ched
“region is allowed .

0

then it reduces to /{x".= ¥*'*6(y) for: spherically symmetric, densitics,
with the substitution  |x| = r = {(3n/4)*/3, &(x) + u = x({)/r. Theidelta
function is taken care of by the boundary condition y(0) = 1. The second
boundary condition, required to make the solution unifte, ‘1¢ '{(doj @
which follows from | p < 1 with Gauss’s theorem. The functxon xis concave
and decreasing, and has the limiting forms

for u = 0. This means that for neutral atotis p behaves like r* 312 at small r,
and like r~° at large r. A numerical solution is shown in Figure 30. A compu-
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x = r(3n%p)*? as a function of { = n(4/3r)%3

0 =
Figure 30 The Thomas-Fermi density of an atom.

tation of the energy of the solution yields the value E(1) = —0.384, ie.,
—0.77 atomic units, or —20.7 eV.

The final proposition deduced from Thomas-Fermi theory will be that
there is no chemical binding, which means that actual chemical binding
energies must be smaller than the errors in the theory. In §4.3 it will be learned
that this theory with some constants changed gives a lower bound for
quantum-mechanical energies even for finite Z, and thereby leads to a simple
proof of the stability of matter. Finally, we shall obtain the long-deferred
proof of Inequality (4.1.5).

Monotony of the Thomas-Fermi Potential with Respect to the Nuclear
Charges (4.1.42)

Let ®, , and p, , be the solutions of the Thomas—-Fermi equation with u = 0
and nuclear charges z{}'?. If z{ > 2’ for all k, then ®,(x) = ®,(x) and
p1(x) = pa(x) for all x.

Remarks (4.1.43)

1. The normalization ), z{” = 1 has of course been dropped.

2. The condition u = 0 means | d’xpy(x) = Y, z¥ > [ d3xp,(x) = ¥ 22

3. This can be interpreted as showing how increasing all the nuclear charges
causes the configuration with lower energy to have a higher electron
density.

Proof

As in the proof of (4.1.37(ii)), let A = {xe R3: ®,(x) < ®,(x)}. Then 4 is
open and contains none of the X,, and on it Y(x) = ®,(x) — ®,(x) is
negative, continuous, and satisfies

Ayly= (@2 - @), <O
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Hence ¥ approaches its infimum on A either on the boundary or at infinity.
Since it then vanishes throughout A, the set A must be empty. O

The next fact to show is that molecular energies are always greater than
those of the isolated atoms. This will require the

Feynman-Hellmann Formula of Thomas-Fermi Theory (4.1.44)

Let E(Z) = inf,(K(p) — ZA(p) + R(p)). Then OE/OZ = — A(pz), where
Pz is the density that minimizes E(Z).

Proof

The function E(Z) is -concave, and its right and left derivatives are
lim, o (—A(pz4,)), another consequence of the interplay between the
ooncaVity of E(Z) and the convexity of tlie functional in the variable p as in
(4.1.38(ii)). Sinck; s shown in Problem 3, for any Z there exists a unique
minimizing p; on a certain compact set, the densities p, depend continuously
on Z. In fact the individual contributions to E(Z)are continuous in Z as well
as E(Z) itseff. ‘I‘herefore both the right ant the feft derivative comcndc with

- A(Pz) D

Let us now start treatmg Easa functnon of each of the nuclcar charg&s SO

. L p(!)
= 2 2/3 s/J _
E(zy,...,24) = :::g {%(31: ) f [ .Z-x 2 =X

.J‘P(X)P(N) %2 }
Ix -yl  SilX - X

and define
E(Z) = E(Zz,, Zz3, ..., Z2)),
E(2) = EZz,,...,2z,,0,0,..)),
Ex2) = ‘E(o 10,2z} 1, ., Z1n)

Letp = p;.,and ® 2 @, , be the solutnons of the appropnately subscnpted
Thomas-Fermi equations. Then

ﬁEl J { z; B dsxP(X)}
oz xz-:n?* Z:% X=Xl Jix=X|
' - Lz

’.Z:."‘ ,'i'i‘.("’“"’ "= x.u)’ |
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and likewise for E, . The difference between the energy of the total system and
the sum of the energies of the subsystems is easily found to satisfy

J
2"z .Z Z(D(x,) ~ ©y(xy) +k=§ (@) — (%) 2 0.

Since E and E, , become zero when Z = 0, this calculation proves the

Instability of Molecules in Thomas-Fermi Theory (4.1.45)

E(zh"-’zu) p- E(zia“-azj\) + E(zj+la ...,ZM)-

Remarks (4.1.46)
1. In the absence of nuclear repulsion the inequality is reversed; in that case

O0E OE 6E ; x) — p(x M x) — p(x
=1 ] k k=j+1 ] k
Although Thomas-Fermi theory predicts some attraction between the
nuclei, it is weaker than their Coulomb repulsion. It can even be shown
that if the nuclear coordinates are scaled by X, — RX,, then E is a convex,
decreasing function of R. Thus Thomas-Fermi theory predicts positive
pressure and compressibility. However, the molecular energy is not a sum
of pair potentials, but contains many-body potentials with alternating

signs [34].
2. An alternative version of this theorem reads
y o ah_ _p(x) 1 p(x)p(y)
a>.ixa XI’ X=X, 2JIx—yl

3
- 36m [ + T B

for all X, € R® and p € S. If K(p) is replaced with (1/y)K(p), then, because
of the way dilatations affect single atoms, E(z,) becomes yE(z,). The
computed value E(1) = —0.384 then leads to Equation (4.1.5), provided
that X, are ir..erpreted as the coordinates of the electrons.

3. The proof of (4.1.45) works the same way for a Yukawa potential
exp( ur)/r in place of l/r Because A exp(—ur)/r + 4nd3(x) =
u? exp(—pur)/r > 0, the argument with subharmonicity likewise works:
AY| = Y2 — @32 + p*}(®, — ®,) <O, which implies that 4 must be
empty.
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Problems (4.1.47) -

1. Let H = |p|* + V(x) act on .L*(R®), and assume that |V[_ € L¥*(R?) apd let ¢

bethenmmeeamvnluesofﬂ Use the. bound of Ghirardi and Rimini (III: 3531 ?)
to show that

Te .ls— — [exvemp

and derive Inequallty (4 1.19) from this fact.
2. Use Problem 1to prove the mequallty

T=Wi-F AWy 22 ( ) _[d’xp”’(x) ‘

for spin — 4 fermions, where
o) = N [dr - @y W o i 0o 2P,
. & N w e L .o,

abeingthespinindex.(ﬂint'usep”’asthepotentialinl’robleml)

3. Show that the sets S is {ptiL'ﬁL”3 p 20 lpl, SN, lplss < K}a:ecompnct
in the weak L*? topology, and that the functional § — R:

1) = 102" [ 200 - d’xp(x)():, =k +4)

&x d’x’ _ny
+
[ + B it
 has Propérties (4.1.10) if u < 0: It is
(i) weakly L%3 lower semicontinuous;
(if) strictly convex; and
@iii) = 33x*)*pl33 — 3B °Br)' 2 o133 + |ulbpl.

Conclude that the infimum is attained, and in fact precisely with the p of (4.1.36).

4. Solve the Thomas-Fermi equation without Coulomb repulsion, compare with
(I11: 4.5.9), and conclude-that the next correction is O(N®3). Use the solution to
calculate £(0) and £'(0) of (4.1.40; 2).

5. Minimize the functional

o [ g3 [P'x)2n d’.VP()')) 22y
E(p) f"‘( w ;ux-x.n”" 2 Ix +wlx:-":"

and use the result for a new derivation of (I1I: 4.5.24).

- pX)_ 1 (pxpy) 2[, N
Z %=X zzj',,_x‘,—g ,,‘_,,f;ffn’-—z-~

for ail X,e R®, pe L' A L2
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Solutions (4 1 48)

1 Let NV¥)denoté the mimber of eigenVatues less than or équaf to E According to

(I 3537,2).forallx >0,
Ve - [ {f
NI 9

a' :~~,a -12 al (‘ ‘2 1)‘)3]2
)= ol (w IE) ‘V_+2|_ LU

Y . \ 4
U 2| exp(—/2alx ~ v') x|
= — - ) Vy) + -
el EATH! ‘3‘“\21'. oy YW

2

TR 2'

e - fan
dn,, 2o
[]

The last step used Young’s inequality, ||/ (¢ « ghl, < ici], § f P, lgf; Now simply
think about what Ng(V) means (see Figure 31)

o y LI 2
Sletii= [ dav_wy sﬁjd%j i‘;(vm +§)
) 0 8n o 2

v &
4 ! } < . 2.
[ p— V 12
i35 | 4"IVO0l

If|V] L33 then the negative part of the spectrum of H 15 disorete, and we may
alst white * .

3 3
d(;‘n‘;,” 1Pl + V(I

;“"PIZ_-I- V(x)l- < ?nj:

AR

v N 1
The partition fugction can be bounded with the observation that

2
| I -

In(1 + exp(—BH)) = J.t dE\H — E|_$(1 + exp(fE)™' =

R ) llx d’p . s
tr In(1 + exp[—B(|p1* + V(X))]) < 4n -[—(_Z_K)T In(T + exp[—B(IpI* + V(x))])

1
«

Ng(V)
L P4 y‘

\ A - ! _rJ_ -3

j.__[ 2
t S 2

1

]

E,

‘£, E,
Figure 31 The dependence of the function Ng(V) on E

E, Es
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2. Let
p*(x‘) = N Z fdsxz dsXN‘%(xl' x20 . 13 xﬂv iq 12 Y . ,au)lz
a3 aN

be the densities of the electrons with spin +4and K = T(f p¥° + { p*3)" ! Because ’
of Problem 1 and the mm-max principle the lowest energy E, of the Hamiltonian

SK
H=Y (Ill.lz -5 . pY3(m) + m, - p’-”(X.)]),
-
where =, . are the spin projections, satisfies the inequalities

4 5K 52 5K )
- 1—5;(7) (fpi’+jp’.’)sEas<w!H|¢>=T——;(fpi’+fpi’)

This imphes that K > 3(37/2)? %, and then the convexity of the function x — x5 3
yields the inequality for p = p, + p_

3 Since
lpllss= sup [<plp>] and |pll, = sup [<plp)|
e Hsa=1 p"u.’;’hl:"
pllx =

are suprema over weakly continuous functions, they are weakly lower semicon-
tinuous, so S 1s weakly compact

(1) This proposition is equivalent to the statement that p, —~ p => hm ¢ (p,) = &(p)
First note that [Ip)l 5 1s weakly lower semicontinuous, 1 ¢, im|jp,lls s = fiplls 3
Moreover, im,. . | p,(1/1x]) = | p(1/|x{) If the potential 1/|x| 15 broken up
as 1/|x| = V, + V,, where V,e L% V,e L’ 3 < p < x, then by assumption
f paV,convergesto | pV, Sincesup, [|p.ll; < oo (byassumption {p,} 1s bounded
mn L'), p, = p 1n the weak topologies of all L* spaces with 1 < ¢ < %. This
follows from the density of L2~ L* in L® for s> %, 1/s+ 1/g=1, and
sup, ipally < oc, because {ipll, < llplslipl} ~* for 1/g = a/p + (1 — a)/r Hence
also | p,V, = | pV,, proving the convergence of the nuclear attraction Finally,
for the repulsion of the electrons we can write

Ix|

-+
A+l - bl

By Young's inequality, if ¥ 1s broken up as above and pe L', thenp+ V, € L% 2,
perV,el?. 3<p< o, so the mxed term on the rnght converges to
2i(p = 1,1x])ph,, while the first term 1s positive Therefore

oo ile] = o+ i

(n) p* 3 1s strictly convex, | p(1 |x}) 1s hnear, and

1
|((p, ~p)s —) (0n - p)h
1

2

dExp(x)ply) [k _ -,
J=em - < [ o,

¢ > 0, 1s strictly convex
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1y Ferr The RN Y

Fhepe  fofien thoundednes an S will require the following 1efinerents of our

earlier e+t mates Let R > O

(x) () &('x' — R)
1. = PN ’J‘ d3x 222 =2t
'fl 2R ) 1X] x SR X Ix| and f6x) 4ar

11 follows from

d3x d*
oy, (p(x}&(Ix! — R) = fONAY)O(lyl = R)*> f(y)) 2 0
. d*x d3
I, =
jmm f( XY,
and
d*x d* 1
[ e = 5
that
| d*x d*)
2 byl 3, AP 12 5
lylz2R

and by Holder’s inequality,

O(R 1xn||

-, < |[-———— 2 plls s = (642R) Shplls 5

I(z

If Rischosenas R = 3((87)2 " pis3) ',thenwith), z, < 1

&p) 2 337 2 ipr 33 - 33 °Bn)' 2lol3s + Y
Pryf !xx - X

and the function ax? — bx + c 1s bounded below on R for non-negative a, b,

and ¢

If u < 0, then because of (1) the infimum 1s attained for a p in the interior of
one of the compact sets S, and p must satisfy the Thomas-Ferm: equation
(41 36) by the same argument as in (4112) If u = O then there 1s also the
possibility that the infimum 1s attained on the boundary |lpfl, = N of every set
S In that event 1t would still satisfy the Thomas-Fermi equation with some u
as the Lagrange multipler for the constrant |p|j, = N However, if N >
Y.z <1 then there is no such solution, as otherwise ®(x) would be negative
for lacge |x|, contradicting (4 1 37(u)) Therefore, if ¢ = 0, then the infimum

still lies 1n the interior of some set §

4 Use units such that e = h = 2m = 1, and suppose there 1s spin Then

3 zZ
= | &3xl233r2)2 353 - <
E-jd x[5(3n) p rp]
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From the Thomas-Fermi equations,

V4 2312 32
Gnlp)ll3 +“=0=p=§-(——%) R “=.Z/R

zs 2 R 1 1 372 (ZR)3IZ N
N=——4 -13_" 2/3
e "J:, dr ( R) T R=NZaY,

3/2 6N
,.,,.,,zmﬁy afl )92,

52 1 %4
2 o — __\___
3 d’(w R)“ 3’

3INZ
E=-T= e —4@3)! 3Z3N"?  (1n units with 2m = 1, twice this if m = 1),

T= %Z’ 3

and

SO
10) = —3Q)' % = —9572,

dx dy dar s T -y (ZR)
1@ -—f pe)p(y) ()f\/(l ) Ld’ -

=024244, fZ=N=1
If we read the exact ground-state energy off from (HT 4513, then to o(N - 13),
. EscalErmms-tem = 1= NV

Thus the Thomas-Ferm: energy 1s below the actual ground-state energy
5 The density that mingmizes Eag |

2

H CXP(—[IIX—XJ’)
Po(”‘az};!z:, x—-X] ' °

with which

Nu Np
Eeo= o ;MQ(U, ;ﬁ:‘(;nﬂx,4 Fatt xpL-pX,; x4|,]) :

“top iy, em?
'wmw 1 thisreduces 1t {110 4% 24) ‘I thissvarlaf"FThomat: Féhf-fhéory the
' alestectit ¥loed otiates e atraetVesporenésn L@kt ury detwien the nucles,
<whidh 18 aBEWtakér than thes G}#ﬁoalombffepmltm .

4.2 Cosmic Bodies

The Thomas-Fermi theory of stars s thermodynamucally more

interesting thun that of atomss; SJM‘E.;I medzcls an unusual phase
transition
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In the year 1926 great discoveries about the laws of matter appeared in
rapid succession. Shortly after E. Schrodinger published the equationnamed
after him, E. Fermi discovered the distribution law (2.5.22; 1) -governing,
particles that satisfy the exclusion principle. This inspired L. Thomas’s
ingenious idea that the electron cloud of a large atom should satisfy cquation
(4.1.36) at T = Q. Then, still in the year 1926, R. Fowler realized that the
stability of cosmic matter is ensured by the zero-point emergy of the electrons,
and that a cosmic body is closely analogous to a “gigantic molecule in the
ground state.” Yet 1t has taken considerably longer to found this’ vision in
mathematics and derive everything from the Schrodinger equation. Today,
however, the derivation goes through without gaps, and the Thomas-Fermi
theory of atoms and stars is the only many-body problem with realistic
forces to have succumbed, in the approprlate thermodynamlc llmnt o,
mankind’s attempts at calculation.

Yet the zero-point energy guarantees stablhty only in so far as the speeds
of the electrons remain slow in comiparison with light.-If they enter the
regime of relativistic kinematics, for which the kinetic energy ~c|p|, then
the zero-poini energy goes as N(N/V)''3, whercas the gravitational energy
goes as —kN2/ V'3 If N > (km2)73? ~ 10°7, then the latter predominates,
and as V becomes smaller and smaller, the total energy goes to — oc. We shall
avoid this instability by remaining within thé¢ framework of nonrelativistic
kinemafics, considering only stars of masses somewhat smaller than that of
the sun. Then. acdording to the estimates (1.2.23; 3), if N > 10°¢, the mini-
mum energy océurs when' V'~ N~!. The sitﬁatlon is again like that of
Thomas-Fermi theory, which leads to the hope that the many-body problem
can be solved in the limit N » x with the Hamiltonian

p.it . ee; — Kmm; . _ ;
H = : ’, - (4.2.1)
,; 2m, ,; 1% — x| ¢

in thls limit the system becomes a highly compressed plasma, so the average
gravitational field wouild be expected to'be so dominant that the Thomas-
Fermi cquation is valid. Of course. the total charge of the system must be
zero, or, more exactly, the possible excess charge AQ is bounded by\
(AQ)?* < km2NZ,sofor gravity to predominate, AQ < 107 '°N . Indéed; these
conjectures can be derived mathematically fo{r( all three cnsemblps 7

« . P

L R folntgine
The Asympfatic Forms of the State Functions (4 2.2).

7 -

Let Hy, y be the Hgmxlzoman (4. 2 l) for N L posttu,e and N [a. negatwe fgrm;ons

of masses Ml 1, charges e, and e = —e,, and spin % ina vo(ym; V LQ& N.

denote the paxr(Nl,Nz) Then the limits . R T
E(N,.S', V) = llm /1 3 lnf TI‘,(“ Hiﬂ_l‘iV‘"

AW Hos

F(N, B, V) = —lim B 'A™ " In Tr exp(= A **H,x ; ). (42.3)

Paak 3
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exist. The grand-canonical function Z 1s not defined as in (4.1.8), as now the
finiteness of the sum ) requires a factor N ~%/3 1n the interactionand ¥ ~ N
[27] (see (4.2.10; 4)).

< With the solution of the Thomas-Fermi equation

d3 2 -1
pu(x) = 2 f (—2;’)35 [1 + exp(ﬂ(g’l + W(x) — ))] , (424)

oo = 3 [ ax 28 o), wp=12 @29

B YV Ix
J; d3xp¢(x) =N, a? (42'6)
these quantities are found to be

ENS V=3 | d’x{ip,(x)wxx)

|P|2/2M
FN,B. V) = { f d*x}p ()W,(x) + Np, — 2T f dx f s

x In{1 + exp| — lpl’
p ﬂ 2M a(x) - Ha ’ (4'2'8)
and

Sy, 43, B, V) = { f Pxyp OW,x) + 2T j Px j

2
b ln(l + exp[—ﬁ(g}:’!

@n)®

A}

. ForASeln Z*, s 1s an exp(AS)-dimensional subspace of

2. The thermodynamic limit has been taken 1n the sense discussed 1n (1.2.19),
16, E~ N3, VYV~ N"! S~ N, and T ~ E/S ~ N*3 The energies E
and F are accordingly neither per particle nor per volume; these specific
energies arid energy densities do not have thermodynamic limits.

3. Thequantity S = (E — F)isextensivefor f ~ N"*3andE — F ~ N3,

4. If one insists on the usual relationships E~ N, V~ N, S~ N, with T

constant, then according to (1.2.19) the interaction has to be taken as

Nmz xmm.

1>y /'

Gless (4.2.10)

—t
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This means that the system 1s imagined as getting larger and larger with
an ever weaker interaction, all such problems are mathematically
equivalent because of the scaling law of (1.2.1). Physically relevant systems
are large but fimite and have weak, but stitl nonzero, gravitational inter-
action. The question of how reasonable the thermodynamic hmt is depends
only on whether the physical object 1s sufficiently like the hmiting system.
If so, the convergence of the thermodynamic quantities (4.2.2) guarantees
that the relevant observables of the finite system will have values fairly
near those of the infinite 1dealization

5 Since p, 1s a strictly monotonic function of y,, the normalhization (4.2.6)
1s an implicit equation for u,

6 We shall soon discover that for certain values of §, N, and V there 1s
more than one solution of the Thomas-Fermi equations The question
of which solutions are the correct imits (4.2.3) 1s decided by the minimum
principles for the thermodynamic potentials (2.3.3; 4), (2.2.23; 1), and
(2 5 3), which survive the imit A — oo 1n the following manner (cf. (4.1.21)):
The functionals for energy, entropy, and the phase-space densities n, are

. , 4'pd®p’ kMM
B) = =33 f i aix T o o, ) S

p |pP?
+Zf \ Gn) 2M. n(x, p)

S(n) = -2 Z J‘d:‘

d*p
= | 3 2P
N,(n) = fd X Gn)® n,(X. p)

The correct Thomas-Fermi densities are those that minimize the energy
for given N, and S The vanational derivative with T and y, as Lagrange
multipliers leads to the Thomas-Fermi equations (4 2.4)-(4.2.7) again,
with

d*p
p:(x) = J.W n,(x, p)’

for the solution of

P
on(x, p)

However this equation 1s also satisfied by merely local extrema and by
saddle points At the minimizing density, E(n) = E(N,, N,, S, V).

7 The ensembles are equivalent only 1n the region where the convex hull
of the function E(S) 1s the same as E(S)

(E-TS+u Ny + u;N;) =0
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-8 We have written E and F -as functions of three variables: but 1t is clear
*-from:the definition that they depend on only two ratios. This is reflected
“mrthe Thomas-Fermi equatibn-by its scaling behavror when x — Ax..

s o . . '
. LM '

Pl'OOf '.“:, i

R

If lhe hoy forcc is grawtquon, asin a nculron star (¢ = 0) the nuthods of
'¥4.1 are appllcable the lower bouanor = is trivial, and lnequahty (Z18:3)
.¢an be used for the upper bound. Howe\er since it requires know[edge of the
expectation value of H. it is necessary to estimate the norm of the quantum
‘ﬂuctu‘mons If ¢ and « differ from zero the estimate is much more difficult
_than lhdt qf§4 1, and can not bg gngn m detail here. The slrdlq,\ 15 as follows.

L nﬁeguldr;zanon of the potentiat
:.Since oné. expects the motion -of the particles to be determined by an
‘ ,-a\zefage field, the.smgularipart of the 1.r potential should first be -cut off.
~i.. so that-the influence of'a neat-~by particle will not be stronger than that of
the average field. There are also good physicai grounds to nsist that the
important part of the pot?ntlax is its long range rather than the singularity,
as in reality the hmguldrm is smoothed out with some form factor. By
“long range” is meant a length comparable to the drameter of the star,
which shrinks to zero as 4 — » . Hence the cut-off length hus to be reduced
while A increases, or alterndtively one can work m the scaled system
(42 10; 4). It 1s thus useful to show that changing the potential by, say,
Lir = (1 = exp(— ! 35r)),r makes little difference for larges In comparison
with the main contnbullon to the energy, which is ~ N7 * This fact can
be shown by an argument similar to the estimate (1.2.21) and making use
of the bound (III: 4.5.15) on the number of bound states of a short-range
potential.
2. Replacing the potentlal with a step function

)

: Siﬁce Thémas-Fermi thebry is oriented toward free parucles in a-box.
““ftds usefut to divide the volume V'intd cells inside of which the potential
“#§'made constarit. Thé proof that changing the potential to a step function
has only a slight effect is trivial, since the continuous function
(1 — exp(—sr));r can be approximated uniformly on any compact set

by a step function.

3. Insertion of walls
In each of the cells of constant potential the Schrodinger equation reduces
to the force-free equation, 1f they are separated by impenetrable walls.
It is thus useful to shaw that inserting-walls will not alter thc result much.
It is clear that the effect will be to raise all the energy levels. The min-max
principle can be called upon to show that they do not rise by too much. The
presence of the walls means that the wave-funcuon vanishes at their
. positions; which costs. kinetic energy [t 1s possible to patch together
wave-functions for the system without walls so that they vanish at the
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positions of the wai s and the expectation value of the kinetic energy:in’
such a state 1s not inzreased by too much. It 1s important that the number
~-of walls"in this procedure remain ‘constant-in the limit N .« o so, thav
their effect can be ncglected in comparison with N’ 73, 4
4. Filling the boxes T Lnot
The foregoing manipulations ledve the parucl’es in separated boxes
., moving 1o constant potentials, which, howeyersdepend on the distribatian
: of thequiirticles- Ong now finds that the thesmodynamic functigns.of (4.2,2)
are dominated. by:the contrtbution frount a-<ertain -distributiom ef the
particles among: the. baxes. which . is- det.rgmined -by: a<self<consistent:
cquation, namely the Thomas Fermi equat on for the step potentlal wnth
walls. ‘ : T
5. Continuity of the Thomas Fermi L(.]UdllOl" e )
Since we wish to end up with the Thomas-Fermi equauon for a l/r
potential. we still need to show that the approximations madé above for
the 1 r potential do not change the energy of the solution much. Otherwise,
if the solution depended discontinuously;on the potential, it would be
worthless: the Thomas- Fermi equauom can not be solved analymally,,
and 'a numerical solution” on a computer 'dpproxitnates the potcnhal
by a step function. It is thus indispensible, but fortunately also possnble to
show that the Thomas-Fermi energy has the required’ continuity with
respect to the patential. , , O

The structure of the Thomas- Fermi equation is different for stars than
for atoms. The energy loses the properties of convexity and ‘weak- lowet
semicontinuity Consequently the solution is not guaranteed to be unique
and there is a possibility of a phase transition, which will be discussed at the
conclusion of this section. Meanwhile, we prepare by proving a general

'
’. t

Virial Theorem (4.2.11)

The pressure

-~
i

(‘1
RN A
7 FNB.9)

kinetic energy -

3 ‘P' .
Ee= TZJ. 4 J.(Mr) 1+ exp[’_ﬂ(lpl"/ZM + W(x) u)l’

and potential energy ; o , R

re

=3y (d’X%p,$X)%(X)

are connected by
3PV = 2E, + E,.
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Proof

We start by convincing ourselves of the usual thermodynamic relationships
oF
3N, = yu, and ﬂﬂ-E F, 4.2.12)

which follow directly from differentiating (4.2.8). For this purpose note that p
depends on f and N, and thus implicitly so does W, but that this dependence
does not show up when the Thomas-Fermi equations are satisfied. Next
rewrite (4.2.8) by integrating by parts in the variable p. Then
ot

®© © de e?
T Rl J; de\/z In(1 + exp[ - B(e + ©)]) = §ﬁJ; 1 + explfc + O

and we conclude that
F= 2 N, —3E, —E,. 4.2.13)

Finally, the dilatation relationship mentioned earlier implies that I-‘(N B, V)
= A""3F(AN, A"*38,A"'V) for all Ae R*.
With reference to (4.2.12), the derivative by A produces

0= —3F + Y Nu, — $(E - F) + PV,

which concludes the proof of the theorem when combined with (4.2.13). O

The local densities in phase space, .

ny(x, p) = 2[exx>(ﬂ(|p|2 + WE.(X) )) + 1]—1,

have the same significance as in §4.1. They are stationary solutions of the
Vlasov equation (4.1.32; 3),

S D - D I W =0 (@214
J apl l

In this equation quantum mechanics enters only through the imtial condition
Indx, p)| < 1.In fact, as a classical equation it 1s the basis of stellar dynamics
[35]. When reduced to configuration space, th¢ local densities describe the
hydrostatic equilibrium between the pressure of the matter and of gravita-
tion, in the spherically symmetric case. Since the fermions behave like free
particles on the mlcroscopic level, one would expect from (2.5.32) that

B tpI*/2M,
P(x) = $Ei(x) = 22 (21;)31 + exp[(|pFP/2M, + W(x) — p,)]

4.2.15)
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functions as the pressure, and n fact if (4.2.14) 1s multiphed by P:, Integrated
by d°p by parts, and one replaces p, - p; — (| pI3/3),, then

VP(x) = =3 p(x)VW/(x), (4.2.16)

which 1s the equilibrium condition mentioned above. If the geometry is
spherically symmetric, 1.c., V 1s a sphere of radius R and the local observables
depend only on |x| = r, then (4.2.16) can be written as the nonrelativistic

Tolman-Oppenheimer equation

d (M,
5 300 = - L 0,

M(r) = =Y (e,e5 — kM, M) f' dranrip(r)y  (4.2.17)
[ ] 0

(cf. (II: 4.5.11)). The electric and gravitational forces have been expressed in
terms of the charges and masses within the sphere.

The Connection between the Local and Global Pressures (4.2.18)
By integrating (4.2 17) by (4n/3) [§ drr® one gets

4n (R d
VEEW) - 4, = F [ 4E0)

- R
=Y ¢ =~ kM. M, f drranp,(r) Jqdr'r'247|:p,(r') = _E_",
a B 3 o 0 3

so with the vinal theorem (4.2.11) the thermodyramic pressure becomes
simply the local pressure at the boundary,

P = P(R).

We see that Thomas-Fermi theory, which begins with the Schrédinger
equation, leads eventually to the concepts of classical physics.

A more accurate evaluation of the state functions (4.2.2) requires
numerical solutions of Equations (4.2.4) through (4.2.6). In order to lend
more physical plausibility to those numbers, let us extend the intuitive
arguments of §1.2 to finite temperatures. Since the theory 1s only valid if
gravity 1s the dominant force, let us simplify by considering only one type of
neutral fermion such as neutrons (without nuclear forces). If there were
protons and electrons, then the former would provide most of the gravita-
tional force and the latter most of the pressure. This would increase all
lengths compared with a system of neutrons by a factor of the ratio of the
mass of the neutron to that of the electron, about 2000. Thus, if 10%7 neutrons
are found to have a radius of about 30 km, a similar system made of hydrogen
would have a radius of about 6000 km, 1.e., that of the earth or of a white
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dwarf We begm with the observation thatat a nomcm (met‘fdt ire’ tnerv k a

thermal contribution
.’1\1 2'\ 4 35 ‘
", . up(}\ ]

< . .
Lt . ’ sy

ny. addmon Lo 1he zero- pomt cmcrszy MNJV ) /\_t hggh wmpuu;ufcs ihs
1s gxactly the classicalexpression, b ord_et;tq snterpolute o, unermgGlde,
temperatures. we shall simply combine the, Zerg-poust-ongigy  with.¢he
classical expression. This turns out to approximuate theenery . of free formions
(2.5 32) to within about 20", It remdins 1o add in the ETaV1 itiona! energy
If the mass of the particles 1s 1. then up to geometric factors we get

% R E A\- 2.3 (l . : ) /25-‘) ‘\"\~ '
= .- - Xp . ,
A 20 PN N
in natural units. In checking 1he,p1upcrti'cs,@.j,lilt)‘gf;m\c; mxci;:canopxcal
energy densitv. it becomes readily apparent that.in agreement with ¢4.2.10. 4),

.\'31 =\

1o 'WJ:

s

3 R ..
p e = ;51"3(41 ¥+ ';#e\p(Qm’}p)}’ L KEA L e i

is independent of N onivif k ~ N =% Although . ihcreases as-a fuhcuon of

g, conditions (2.3.10(11)) and (2 3 10(11)) are not always saiisfied our ansatz
does not do justicc to the subadditivitv 12 3 5) The 1clison becdmes apparent
when 1t 1s observed that the pressure

' " CE| 2 /NS 3
P=—- -1 == (1+~ expf -+
cl [s. 3 \l -t .
AN? A . ‘
E —

p - ‘—1 3

consists of three parts, ficm the zero-point, thermal. and gravitational
energies. The first two are posiuve and the last one 1s ncgative. and may domi-
nate 1n the intermediate regime of average densities. However, a negative
pressure 1s physically impossible. the system does not adhere to the walls
and pull them inwatd. What happens 1s that the systém shrinks iself down
to such a small radius, ¥, = (\N*/ = 2E)", that 1t reaches P = 0. A better
ansatz consists 1n replacing ¥ with ¥}, in £ when P < 1,

E  (N\*Pf. 3 23S\ © - AN
R B el ) - (C - -©
N (V) (1 T3 eXp(s;\) . ) 24 xpms Ny - D)

125‘ \ ‘31'
©, =0+ 2+3cxp(i\ SRVt ))

\

The function ©, is also eanal (o O(+F « £\ 207 "y implving that if
the total energy 15 sufticient!sy neganive ithen the (ystomr conderses, intke a
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volume ¥,. As in Example (2.3.32, 1) this beings about’ a phase trdnsmon

S

~ ,E\‘lﬁv'g.l NV 5 I ) "E 7E 2 ‘
= (\ - (f'\) ot .\'“)0 * r N <;\-A ) ]6“
\ N 7

N

with negative specific hLdt The n.alculatmn § e
i e S -
3 3CE 3 /N 2-3 ("S g ERN T
T = g ;
2 208 oy 26’( ) P 3N ©- H
; (\;‘ SN ’N“%xp(zs/w / ,
; N ’eQ«f— Bexp(2S3N - 1) T S :

reveals that the classical fi‘nc’iir dependcnce_?‘| T on E becomes parabolic in
the condensation region .(see. flgure 32). The temperature begins:to rise
dgam as E decreases, and- dfterwards, when the sero-point energy gets
larger than the gravitational efiergy, it falls to zero. It 1s 1n fact observed
by astrophysicists that large-gaseous masses contract under the influence
of gmvny thereby heating. up,/,and Jradiating the gravitational energy that
has been set free. This act}vnv whlch indicates a range of values for which
S(E) is convex and henge mlcrocanomcally a negative specific heat, is a
direct consequerice 6f the virial theorem and the theorem of equnpa.rtmon
energy = —kinetic energy = —(3N/2) temperature. Yet this is true only
in the intermediate region, since it ignores the external virial (the pressure)
and the equipartition theorem is not valid for degenerate gases. This also
becomes'mslble in the computer solution of the Thomas-Fermi eduatlon
as shown m-Figures-33 and 34.-At-the sa?a}lei radius-R =30 km the zero-
pomt energy predominates’ and the star 4cts normally whereas an inter-
mediate region of negativé specific-heat sffows-up.at’R = 100 km.

This phenomenon can not arise in the canonical ensemble, so our next
topic will be what the situation is like 1in that ensemble. In the transition
reglon the Thomds Fermn equatnon has many solutnons ,for a gwen B. a.nd the

-3 ll:
':;u':m (Fatols DS S R S PR TN B TS SRR SO+ S AR TANY S B PP > '- A

e — e gt - TREERIETTUY, SN SRR Ce Y e ..
Lot R 1 DA L A .0 i Y S O N O R L R TR T S TR R o1

N 2
; ) ...;\_1\’ . - v . .
. . -\L. K . . L . . . -

‘Figure 32 The function T(E) fora cnncqatuai moac!
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Figure 33 Phase transition 1n E(f).

analysis leading to (4.2.2) shows that the right solution to choose 1s the one
with the smallest value of F. The existence of many different values of F 1n
this situation (for a fixed B) follows from the change in the sign of P =
—0F/oV (see Figure 35). The computed dependence of —F on f§ is shown
in Figure 36. If R = 100 km, then F has a sharp bend at some transition
temperature, 1n Figure 33 1t shows up as the hines that divide the surface E(f)
into two equal parts (Problem 1). At this transition temperature the system
1n the canonical ensemble rises from one branch of the curve to the other
The energy has a nonzero jump (~ 30 MeV per particle) at the transttion,
in the canonical ensemble the region of negative specific heat is bridged
over by a phase transition

Computers have also been used to solve for the local observable p(r),
which is shown 1n Figure 37 at various temperatures and with R = 100 km.
At the transition temperature 1/0.165 MeV an almost homogeneous density
becomes strongly concentrated at the center. The picture that emerges
1s of a star with a rather definite surface and a central density about 10°
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Figure 3¢ Convex region in S(E)

P = —9F/3V

1v

- r

Figure 35 Phase transition with negative pressure
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times the density of the atmosphere. At still lower temperatures the atmos-
phere also condenses, but it only increases the density of the star a tiny bit.
The radius of a neutron star is only 2bout 10 km atifoW:température, which is
why at first hardly any difference shows up in S in Figure 34 between the
systems at R = 30 km and at R = 100 km. Only after the transition energy
does the star spread out so as to make the entropy risg rapidly enough in a
box with R = 100 km that S(E) becomes no longer concave.
Another interesting lgcal observable is the degree ofidegeneracy

\ &mf*«\;_ p(r)

5 E, > (4.2.19)

B

For a classical gas ¢ is 1, and for a comp ely degenedate Fermi gas it is 0.
Figure 38 shows &(r) for R = 100 km and \arious tendperatures. It reveals
that the gas beqomes degenerate : after the phase transitlon Only the zero-
point energy of the fermions (~p ° ) can%withstand the gravitational
pressure (~p~*3),. while the classical pressyse is:weaker (~p~'). This
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Figure 37 The change 1p the density at a phase transition

means that the interior of the star 1s degenerate while the atmosphere remains
a classical gas

Problem (4 2 20) S R

Show that the reciprocal § of the transition temperature for the canonical ensemble
is determined by

E' "
=f “EBE) - B).  BE) = KEy) = .

J ! '

SUlitfon(4221) ’ !

e !

Smce'ﬁ JSJdE the <cnditish ivplrs .
W SED £ SE) - BB, — Eo) = BUFIES) - FEE) =0

A1 . the two branchés -of the_eurves F(E),cross, and the canonical ensemble always
aelects the lower $ranch,, o

1
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B =1165_ MeV~!
B = 0.05 MeV~!

N = 107 neutrons

N R = 100 km

¢(r)
B = 1165, MeV™!

L ]
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1 1l 1
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Figure 38 The change in the degree of degeneracy { at a phase transition.

4.3 Normal Matter

Although matter consisting of electrons and atomic nuclei exhibits
extremely varied and complicated phenomena, some of its essential
Jeatures can be deduced from the fundamental physical laws.

With the results of §4.1 we are now in a position to cope with a central
problem, the stability of matter. As discussed in (1.2.17; 2), it is essential
that the electrons follow Fermi statistics, though the statistics of the nuclei
should not matter. Moreover, it is the mass of the electron rather than the
nucleus that occurs in the basic Rydberg energy e*m?/2.-We shall therefore
assume that the nuclei are infinitely massive and use the Hamiltonian H
of (4.1.2); at any rate it provides a lower bound to (4.1.1) with x = 1. The
wall W can then also be dispensed with. The question to be confronted is
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whether a bound Hy > — AN can be found for fixed Z, but M and N — .
With this in mind, write (4.1.6) with y = W = 0 as

e b r Lt St SR
Zu».|z+ zl[ z“_fi_J,f:!;%(’;_)i]
+ z ,X.Z:Z‘X,i — 3.68yN
2 f:xd’l' n(xn(x’) — vf dxn(x) = H,. @.3.1)

The first step is to bound the kinetic energy by | p** with the inequality of
(4.1.47;2) and set n = p. This is a bound for every expectation value with
spin — 4 fermions, so, again with the aid of (4.1.46; 2), we obtain

YIHNYY 2 ¢ ((E) __)J"p,ms 3(x) — J.d3 ¥ Zn(x)

k=1 Ix — Xl

dsx d3 ’ 1
bl 1 aeEN
2 Ix — x'| (on(x) 2; ..l 68y
1 M
>-368(yN+— ' § 73 . N
(y +(31z/4)2/3 — 17 k;Z. )for i =1 (432)

If this is optimized in v, it shows the

Stability of Matter (4.3.3)
M Z7:3 1272
Hy> -208N[1 + (¥ —*—) ]
k=1 N

Remarks (4.3.4)

1. If there were g kinds of electrons instead of the two spin orientations,
then the right side would be multiplied by {g/2)?/*. Thus there is a bound
~ N*'3 independently of the statistics of the electrons.

2. The solution of the Thomas-Fermi equation describes a neutral system,
and accordingly the bound is MZ" 3 if all Z, equal Z = N/M. The
bound is certainly not optimal if N <« MZ, for one would expect
~ NZ2. However, (4.3.3) suffices for our purposes, as we are concerned
only with the neutral case.
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3 Inequality (4.1.47: 2) is presumably not opumdl on the right the constant
should be mcreased by a factor (2r,)°° s 2(37%)2 % If thas conjecture

were proved, then (4.3 3) would be lmprmed by the same factor, reading
H > 0385 Z Z(+ Oz, 7))
A1

If Z, — s tlns approaches the sum of the Thoras-Fermi energics of
the atoms Such an optimal mequality can in fact be proved, although
only i the form
\) -
H> -0383% Z0% + 0z, )
> Ao} N
[2%]. ’ ' U

4. Incquality (4 3.3) holds a foriior: “51 a sysiem in a finite volume

5. Since the kinetic energy of 1the nucler was not used, they mdy follow eﬂhcr
Bose or Fermi statistics. ‘ .

6. The important property of the € oulomb phienuat for smblllly 1s that Lor
15 a function of positive type. e & 2 0. The Yukawa poternal o(r) =
exp( - qr) v similarly  satistics f~ > 0. and stabifity can be proved
analogously In contrast the potentiai v(r) = (¢ + br) exp( - ) with
b > ap > 0. p > 0. which is even finite and of short range, does not
lead to stability for the Hamultoman Y3 |p,° + ¥, eieu(x, - x,).
cven for fermions: There is an'r, > 0 such that v(ry) > r(0) (this would
be impossibleif & > 0).so let us confine N, 2 positive and negative particles
“to separated balls of radius ro&, ¢ < 1. arrayed at a distance r, from
one another. Then the interaction between the balls, —e?r(r,)N?/4,
wins out over the respulsive cnergy of the like-charged particles within the’
balis. ~c3z'((‘ IN(N = 2) 4. and also wins out over the kinetic energy
~N%rgi)* as N - ». Thus the total energy goes to —x as — N2
v\hm N — x. This shows that the problem of the stability of shitter-
has nothing to do with the long range of the Coulomb potential. The
proof with the Yukawa potential 1s not any elmpler, in a way it 1s more
difficult. since stability with a Yukawa potential ‘immediately implies
stability with a Coulomb potential as remarked in (1.2.17; 5) the dif-
ference produces stability -but not vice versa. However, as we have just
seen, the 1r singularity 1s not the only danger for stability, even regular-
potentials v with energies ¥ _; ¢, v(x; — x;) that take on both signs
can lead to instability. This. shows the superficiality of ;the common,
opinign that stability is not a real physical problem, since actual potentjals
do not become singular. . L s

The Extensivity of the Volume (4.3.5) 8

IfH > —cNand thmxpectarmn value o) Hin g state is nonpositise, (H» < 0,
then no volumie Q < eN contains more than N(%c¢y Y(4e43m)? % parnicles.
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Proof

Let H = T + V. Since the energy is proportional to the mass in a Coulomb
system, $(T> < —(IT + V) < 2¢N. Then it follows from

3/3n 2;3 3
that ‘

, <3 3 3s . 25 574 23 3 s -
p(x) d'x < p”*d x d°x < 303n 4¢cN ) (eN)
0 e} Q NS .

|
g
)
w{o
~
~——
n
R
w! H
S =
S
[ ]
. 3

Remarks (4.3.6)

. If Qs a ball, then it 1s possible to derive bounds of the form (r'> > ¢N" 3,
in analogy with (111: 4.5.28). :
2. The material up to this point does not allow upper bounds of the form
~r ~ N'3 to be proved. Neutrality does not enter in an important way,
. and with an excess of electrons the Coulomb. potential would cause. the:
- system to- swell out to infinity. In other words. it has been proved that
matter is stable in the sense that.it does not implade, but-it might still
explode.

The Existence of the Themodv;l;lmic Functions (4.3.7)

We are now faced vuth the quesnon of how to define thé em.rgy densny
when N — » [30]. It clearly follows from (4.3.3) that (1 V)E(Va, V, pV) >
— p - constant for all ¥, and since it is easy to show that E‘} remains bounded
above. lim, ., (1'V)E(Va, V, pVycould be regarded as ¢(p, a) (by definition,
lim, ., a, = sup,inf,., a,). This cheap way out is physically unsatisfying,
however: one would hope that the limit exists and that the-energy density
becomes independent of:V as the system is made infinitely: large. This means
that the sequence should be proved monotonic, as was done in (2.3.6).
Unfortunately. the inductive procedyre followed there, of imagining each
cube to consist of smaller cubes, does not work in this case, since it 1s difficult to
estimate the Coulomb interaction between cubes.. Balls can-be.used instead
of cubes, however, as their interactions are as if'the charges were concentrated
at-their centers, according to a theoremr dating from Newton. In particufar.
if they are overall neutral. then they do not interact with charges placed
outside them:i Of course, spheres do nét fill space as densely as cubes, but
by the use of spheres of different radii the unfilled volume can be made
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arbitrarily small. The ~onvergence ;roof consequently proceeds by three
steps.

(a) We must first show that the interaction between the spheres is not positive,
in order to prove monotony.

(b) It must be shown that the radii of the balls can be chosen so that the
fraction of volume outside them goes to zero in the limit.

(c) Thedistribution of particles in this procedure must lead to a homogeneous
density in the limit.

‘l‘he,lnteg;action between Balls (4.3.8)

We consider

™M=

H =
i

2 il Zh -1
Ipl® - P + Y I% = x|

1 = i = Xy i>j

2,2, M ll’ul2
+ ¥
ugs Xy — Xil t2=:1 2M,

(4.3.9)

in a ball B, such that'y|,; = 0, and examine the neutral case with only one
kind of nucleus: N = MZ N, = N(1 + 1/Z) = the total number of particles.
The eigenvalues eV, N,), i = 1, 2,..., of H depend on the volume V of B
and on N,, and the microcanonical energy is given by

exp(S)

E(Sa V« ‘Nl) = exp(-s) Z el(Va Nl)a
i=1

where E and E,, have been identified in accordance with (2.3.13; 2). Now
put k disjoint balls B, of volumes V, into B,

X
B> |)B,,

a=1

and form a system of trial functions y; by taking tensor products of the
eigenfunctions of H,, defined as H for N, particles in B,:

Wi=wi‘®wiz®"‘®¢i.k

The trial functions then have to be antisymmetrized in the electron vartables
and either symmetrized or antisymmetrized in the nuclear coordinates,
depending on the nuclear statistics. Yet since ¢;, and ¢;, have disjoint
support, there are no cross terms in their interaction, and the expectation
values are the same as those with the unsymmefrized y;. (The subscript i
is to be treated as a multi-index i,,...,i,.) We always choose the first
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exp(S,) eigenfunctions of the operators H, (and denote the eigenvalues €.
SO ]
exp(S1)  expiSu)

DR

1=1 ix=1

where S = Y %_,S,, N =Y%_, N,,and N,/Z + | is an integer. Then each
B, can be filled with whole atoms, becoming neutral. As in (2.3.5), with the
min-max principle (III: 3.5.21),

exp(S) k exp(Sa)

ES.V,N) < exp(S) ) “¥ilHy;> = Z exp(=S,) 3 & (N, N)+ U
i=1

z=1 ig=1

E:(szs Vz~ 'N,a) + L:s (43.10)

]
M~

but this time there is an energy of the interaction between the balls,
exp(S,) explSy)

U= Y exp(=S,~Sp) ¥ Y Uy,

a>p iz=1 ip=1
Na Mg d¥x 3%y
. 2
Uiis = z Z €;j€m j Ix ——— Y (X5 ., XN.)|2|V’|',(.V1’ s YN
j=1tm=1 i Ym

Because of the spherical symmetry of B, and H,, the functions #;_ can
be ordered according to the eigenvalues /, of the total angular momentum
L, about the center of B,. The eigenvalues ¢, ; do not depend on the z-
component of the angular momentum (which has quantum numbers m,,
-, <m, <1), and

pu0 = T [ @ x e ke, xa) P

will be spherically symmetric if the sum runs over a full L-shell. If the limits
of summation exp(S,) corresponded exactly to full shells, then U would
equal zero by Newton’s theorem. It will now be shown that the partially
filled shells can be chosen to make U negative. Let y,, and v, be the indices
nearest to exp(S,) corresponding to filled shells, such that u, < exp(S,) < v,.
Thus

exp(S,) exp(Sg) expl(Sq) exp(Sg)
Z Z U'-lp = z Z U‘ﬂia ’
=1 ig=1 ia=pa ig=ug

and the interaction energy can be written as

exp(Sy) exp(S2) exp(Sk)
14 14
U=c Z Z e Z l-/.',_

h=py 2= ik = pi
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Weknow that ., '« oL - . EUREEL B U T 1 B Bt
A v vk - I
X Y AU,..p=0
e T L %% Mk
and since the eigenvalues e,, are degenerate if u, <1, <v,. 1t_1s possible to
) -
“stfectexp(s ‘i* r«,'i'ndices*f suchdwae -/ . -7 7 < 4 .wiw
PRAREE ORI i M ouna T i WAL O s' P T W R d
v2 vk exp(Sy) » '
e 1 S haf i IS O
ooy youtlled e
¢ ,“lz oo s B n=m )’
¢ \\ V9 ’ ,) §s 2 W * v
without changmg the ﬁrst sum 1n (4 3. 10) We now v proceed inductively and
choose exp(S,) — u, indices 1, such that "
! , 7 ()’ 1\
explS2) ==
i pJ L s I SO',' s 0o 5 o sy L
12= 42 it

L

and so forth, untl finally U < 0, This’provés the - < - i~

—
-

Mondtony of the Energy (43 11y ", = . 1 % )
If B { Sy BN, 23%:, Ny and NyfZ + 1 us. integral, S = 3 huh S,
~and E-s as defined in:(4.3 8), then i R PR B |
.o IS ST TR UL T e B
CoT TR SN E T EE NS e
x=1 I M - e

( a7
Remarks (4 3 12)
uImT e 'ﬁ: aré' req\ﬁx pnly {o Be d 9513 int; ; '3\:\7 ;/a \the,y dges got
" affect the vahlang of the ¢ equatl
2

but one, of 1 ‘the B_have | to, 'f)e’ s'{)hgrrc[a’l zimd etgctncalvly qe“‘ r.!«z'l |Bm
3 The thieorem Fof

one of themn 1 ne ¢a 5["; "Bé
affect 1t only by ensuring the existence of a bound on E/N.

1

“t

s regardless of the statistics of the parhcles whré‘ b

4 o«

The question of how completely B can bé filled by the B, 1s a purely

geometrical one It 1s answered by the , z 0
* i N PR [T s T

‘s s

Swiss Cheese Theorem (4 3 13Y ’ - T

Let R, = (1 + pYRy,peZ”, 1 + p 2 27, bethe radu of the balls of a given
size mdexed by jand let B,, be a‘Ball of sizem, Then [or atlm = 0, B,, contains
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the union from j = 1tom — 1 of v;disjoint balls of size j, where
3(m-j) m-j
,2a+p ( p ) eZ*.

! ) 1+p

Remarks (4.3.14)

1. This theorem makes more precise the fact, clear at the intuitive level,
that a large ball can be filled extremely well by smaller ones if their radii
are chosen suitably. The total volume of the small balls is

m-1 _ P -
% Rty =@ + (1 - (125)),

so that the unfilled fraction is only (p/(1 + p))®, which tends to zero as
m — oo.

2. Of course, the filling of a ball uses more small balls than large ones,
but the fraction of volume filled by the balls of size j is (1/pXp/(1 + p))*~,
as the larger balls are much more voluminous.

Proof
See Problem 1. ()

The Homogeneity of the Deasity (4.3.15)

The next step in §2.3 was to consider a sequence of larger and larger cubes,
all of which had the same entropy and particle density. Nothing like that is
possible in this situation, since to compensate for the gaps some of the
balls will have greater densities than the average density overall. Since the
unfilled volume gets smaller and smaller, however, it suffices to impose
relatively large densities on the balls of size 0 and assign equal densities to
all the others. Let us thus choose N /V, = p(p + 1) = pofora = 1,2,...,v,,
so for the balls of size 0, N,/V, = p for all & > v,. If p, is the density in a
ball of size j, and we let py,..., p, = p, then the p, satisfy a recursion
formula

m-1 R 3 -~ m=-1 m=J
P J;op“ j(R-. p\p+1 |4 ng +1 P
forallm > 1.

In the same way the entropy is distributed so that the entropy density
o, in the balls of size j satisfies
)"

lul-l P
Oo = -{-l)’ Oy =0Cr = c0o=0Co =0 = —~ a
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If Vo = 4nR3/3 and E; is the energy and ¢; the energy density of the balls of -
size j, then Proposition (4.3.11) specializes for this particular filling to

k-1
EiS, N) < 3 E{S,, Ny,
1=

: &(or, o) = [(1 + p)*Vo] 'E(S;, Ny )
. 1. k=t p k>4 -3g N
v S Vop ;go (1 ¥ ﬁ) 1+4+p) J(Sp 5

L4

1 k-1 p k—J
-5 (5) hewrd

This is a modification of (2.3.6) and similarly allows the convergence of
& = &4(a,, pi) to be démonstrateéd: There exist numbers b} < 0 such that

1% p )“"
=cy + - —1] &,
=G P;go 1+ p, !

The recursion formula has the solution

P ]

413

l £y k-1 13
T (eo +3 c,). (4316

/s

8,=C.+

Since the sequence {g,} is bounded from below, Y, c; must converge, so
lim,_ . ¢, = 0. Since ¢, — ¢, decreases moriotonicaily as a function. of &
by (4.3.16), & must tend to a limit. If k > 0, then all the densities had the
same-valaes (o, p), and we arrive at the

Existence of the Thermodynamic Limit (4.3.17)‘

For the H of (4.3.19), the limit o(g, p} = limy...., (1/V)E(aY, pV) exists.

4

Remarks (4.3.18)

1. The theorem has been proved for spherical volumes, but it generalizes
to other shapes with a rqasopable relationship between volume and
surface area.

2. Ajthough the theorem and proof are given here for strictly neutral
systems, it is clear that a small excess charge AQ can be allowed as long
as its electrostatic energy ~(AQ)?/V*/3 can be neglected in comparison
with E. ’

3. Although we have assumed there was only one kind of nucleus, the
case of any number of kinds of nucleus can be covered simply by gen-
crahizing the notation.
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4. Since ¢ — ¢, is a monotonic sequence, Dini’s theorem guarantees that
&, converges uniformly on compact sets in (g, p); to use this argument it
is necessary to extend the definition of the function &, , which was initially
defined for finite V on a discrete set, to make it continuous. The continuity
of & will follow from the convexity to be proved below.

5. The Hamiltonian (4.3.9) includes the kinetic energy of the nuclei. Strangely,
the existence of the thermodynamic limit (4.3.17) has not been proved in
the apparently simpler case where M, = 0.

The existence of the limit means that all systems characterized by N
have the same dependence on the averaged quantity ¢ provided that they are
large enough. But does the theory predict a reasonable dependence? The
temperature, pressure, specific heat, and compressibility should at least be
positive in accordance with our experience. The positivity of the temperature
and pressure are ensured by our definition of entropy and by the boundary
conditions. With the aid of (2.3.29), the positivity of the other observables
is a consequence of the convexity of the function (g, p) —.&(0, p), which,
however, does not follow directly from the definitions—recall that the
preceding chapter illustrated this with a counter example. Yet it is possible
to formulate a theorem on the )

Thermodynamic Stability of Coulomb Systems (4.3.19)

The mapping R x R* — R: (0, p) — &0, p) is

(i) convex;
(i1) nondecreasing in o,
(iii) bounded below by —cp for ce R™;
. (iv) such that p~'e(ap, p) is an increasing function of p.

" Proof

(i) Let p be an odd integer, so that v, = (1 + p)** /p*~/~1 is even for
0 < j < k — 1, and fill half of the balls of a given size with deasities
p, o (or, respectnvely, po = p(1 + p), ao = (1 + p)) and the other half
with p', o' (or, respostively, py = p'(1 + p), po = o’(1 + p)). Then,
since the energy is monotonic as in (4.3.11), )

1

-
3»(5'u P) S 20 (l _I:_ p) [efa;, p) + e}, PP,

1 &1 p k-3 o ’
7 () @+
’*”2p,,o(1+p) (@ + 9
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1 k-1 ) -J

which implies that
ei(o + 0, ¥p + p)) < H&(o, p) + &0, p))

as k — co. Now note that ¢ is monotonic in ¢ and p~'e(ap, p) is mono-
tonic in p, so according to (2.3.11; 1) ¢ is convex not just with coefficient
4 but with all ae{0, 1]. Hence it is continuous on the interior of R* x R*.

(ii) See Remark (2.3.3; 3).
(fii) This follows from the estimate (4.3.3) showing the stability of matter.
(iv) From the monotonic property (2.3:4) of the energy, OE/0¥ |s, n = const < 0.
g

Since ¢ has the right sort of convexity, one of the assumptions needed to
prove the'existence of the thermodynamic limit of the canonical ensemble is
satisfied. More information about the function &0, p) is needed to verify
the other hypotheses made in Theorem (2.4.14). In particular it needs to be
shown that ¢ increases rapidly enough with ¢ that the o, introduced in
(2.3.11; 4) is finite, and lim, ., ., ¢/0 = co. This is shown by the

Lower Bound for the Energy Density (4.3.20)

If H=H, =K +a),,,eelx, — x,|”' and ¢ are the corresponding
energy densities, then

2

20, p) 2 dzgf0,p) — T Jorall0< A <1,
where
c = 208(1 + Z°)2,
Proef

According to (2.3.3;4), ¢, is concave in «, and 8, = dgy + (1 — Aeyyy- ).
However, by (4.3.3), —cpa? is a lower bound for all p and ¢. O

Corollaries (4.3.21) -

1. Since it was shown in (2.5.23) that in the case of one kind of particle,
eo(0, p) = c'p*3 exp(26/3p), ¢’ > 0, is the limit as ¢ — oo, it follows that
ﬁmc-oopllud &o, p)/o = co.
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Even for a finite volume —cpa’ is a lower bound. which makes it easy
to verify that there exists a function s(¢, p) dominating & for all volumes,
and satisfying him, ., s/e = 0.

In (4.3.43;2) we shall find an upper bound on the ground-state energy
@ensity. of the form ¢,p%3 — ac,p*3. When combined with (4.3.20)
it vields an upper bound for the g, of (2.3.11; 4) at which &(o) starts to
move up.

This fact is not yet enough to ensure that thermodynamics works per-

fectly. Let us write down a

Thermodynamic Wish List (4.3.22)

AIE ol

o, =9.

Cefe0 g2, = 0.

lim, ., (Ce/éo) = x.

The function ¢ is continuously differentiable.

The function ¢ is strictly convex for large ¢ and is linear on certain interyals
in ¢ when ¢ is small.

Open Questions for the Wish List

L.

Statement 1 js a strong formulation of the third law of thermodynamics,
and is unproved for Coulomb systems. Although there is an upper bound
on g, in (4.3.21; 3), it is not sharp enough to show that oy = 0.

The second statement implies that the system does not fall into its ground
state if the temperature is higher than absolute zero, and our bounds are
likewisc too crude to prove it.

The third statement means that there is no maximum temperature,
and is proved by (4.3.21;1). '

Kinks in the graph of ¢ would correspond to “anti-phase-transitions”
at which either the temperature or the pressure shows a discontinuity
while the energy remains continuous. The specific heat and the com-
pressibility would be zero at such a point. Such things do not appear to
happen in reality, though the arguments we have made do not exclude
them.

1t is known empirically that there are no phase transitions at high temp-
eratures, only at low temperatures. However, this fact has not been
proved in the theory.

The equivalence with the canonical ensemble requires only the positivity

of the specific heat, which is guaranteed by (4.3.19). The assumptions of
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Theorems (2.4.14) are fulfilled because of (4.3.18; 4.), (4.3.19(i)),and (4.3.21; 2),
80 it leads to the

Thermodynassic Limit of the Canonical Ensemble (4.;.23)
The limit

lim (- S Te exp(-ﬂm) = inf(e ~ Tote, ) = &(T, §)

Vew

exists.

Remarks (4.3.24)

1. The properties of the free-energy density listed in (2.4.16) are aiso proved.

2. It is possible to prove the existence of the limit as ¥ — oo directly, but
that is not enough to show the equivalence with the microcanonical e
In particular it does not show that e is convex in o.

Finally, consider the grand canonical ensemble, supposing there are N,
electrons and N, nuclei with chemical potentials u, and g,. The function to
investigate is '

PCT, ) = lim 20 Tr expl—KH — N, — Nyw)]. (4329)
V-

One difficulty with (4.3.25) is that the trace contains the sum over all possible
numbers of particles, and not only the neutral configuration for which
N, = ZN;. Fortunately, it turns out that the non-neutral contributions
have such large Coulomb energies that they play no role. Stated without
proof [30], here is the resulting proposition on the

Thermodynamic Limit of the Grand Canonical Easemble (4.3.26)
The limit (4.3.25) exists, and
KT, po, 1) = sup u.p. + mpx =~ AT, p)),

Po,™ LPu
N. + N, 1
p= % = (1 + Z)p,.

Remarks (4.3.27)

1. Although the supremum is a priori over all density configurations, it is
attained in the neutral sector.
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o Bqughly speaking, to generalize this to cover arbitrarily many components
it is only necessarv to treat u and p as “isovectors.”

Bounds for ¢(o, p) (4.3.28)

‘The question that now arises is to what extent the qualitative propositions
that have been derived about (o, p) can be sharpened and made quantitative.
For instance, it would be desirable to find an upper bound to complement the
lower bound (4.3.20): upper bounds are always easy to discover, since with
- the min-max principle it is only necessary to devise some good trial functions.
In the limit p — 0 an obvious upper bound for the ground-state energy is the
sum of the energies of the individual atoms. If the density is finite, then one’
would think of using the ground state of the kinetic energy K in the variational

principle, and the result is the first-order perturbation-theoretic approxima-
vonto H, = K + aV. ‘

Remarks (4.3.29)

1. Itis impossible for the expansion in powers of a to converge in the thermo-
dynamic limit; if @ < O, then the electrons wouid attract one another,
as would the nuclei, whereas the auclei would repel the electrons. The
ground-state energy of fermions with an attractive 1/r potential goes as
— N3 and that of bosons goes as — N3 (see (1.2.22) and (1.2.23; 3)).
If a trial function is constructed witk all the electrons on one side of the
container and all the nuclei on the other, t.ien the expectation value of the
energy is greater than —N7/3 + N2/R - --N"'3, 50 E/N does not remain
bounded from below. Oa the other hand, the convergence of a series
in the limit N — o would imply that limy.. , E/N would be finite on
the whole disc of convergence, which would include some negative
values of a In fact the explicit calculation reveals that even the second-
order contribution becomes infinite as N — oo. Even so, the first-order
result is useful as an upper bound.

2. According to (III:3.5.21) the min-max principle applies to finite ¢
other than the ground state, but it is more difficult to calculate the micro-
canonical expectation values than the grand canonical cnes. Hence,
for nonzero temperatures it is better to use (2.1.8; 3) to bound the grand
canonical partition function with — P, < — P, + Tr Vpgc.

" The Ground State (4.3.30)

The simplest case is 7 = 0, so let us see how far we can get with the easiest
methods. Take the expectation value of (4.3.1) in the ground state of the
electrons; if they are confined in a box A with periodic boundary conditions,
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the ground state is a plane wave, producing a constant electron density p,.
If the nuclear charges are all Z and the nuclear masses are all y, that leaves

|’k| 2 d’xp,Z
H) = +2Z X, — X,I”
R P L I
1 [ &xd’ypl
2Jp Ix—-yl
- d3x d3yp
«(zme)+ (g [R5
<):|p.| Tix—xl™t -3 ) T
d3xp, 1 >
+ .
Z qlx —X,l Ix, ) & - 4.3.31)

The first lie of this equation is the Hamiltonian H; of jellium (1.2.6) in the
nuclear variables. If we therefore add the ground-state energy of jellium to .
the othér expectation values, we get an upper bound on the ground-state
energy of H, corresponding to a trial function consisting of the: tensor
product of the ground state of H, with the electron wave-function. The
zero-point energy of the electrons is the next term in (4.3.31), followed by
what is referred to as the exchange energy, and the final expectation value is
zero. By (2.5.32), if the spin is 4, the zero-point energy goes as

<‘2: B ) = Moo =N, = ()7 @)
P Pe f, ry = 4z 0, ’ oele
as N — o0, and with only a little difficulty the exchange energy can be cal-
cuiated as
1 (d3xd?x'p? N
—%x| ' = =) = —0458— 3.

<‘§j|x, b 91 3 == x| > 0.458 y (4.3.33)
(Problem 3). It expresses the effect of the correlations among the electrons
owing to their having to avoid each other to satisfy the exclusion principle.
The result is to lower the Coulomb energy in comparison with that of a
homogeneous charge distribution.

The Ground State of Jellinm (4.3.34)

As for H,, an upper bound can be obtained by using plane waves as trial
functions, for which .(H;) once again consists of zero-point energy and
exchange energy. A lower bound comes from the sum of the zero-point

energy and the minimum of the potential (1.2.10), and when combined they
bound E; according to

E_(ESES 22 0458 y
Wl T, SN 2w T, (4.3.35)
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if Z = 1 and the spin is {. If the density is large (v, - 0), then the bounds
are close together, but they spread out if the density is small. At smal} densities
it is better to array the nuclei on a lattice; give them wave-functions
~sin(rra)/r, where r is the distance from the lattice site if it is less than g and
otherwise let the wave-function be 0, and take a small enough that. the
wave-functions will not overlap, and will thiis be orthogonal. The most
convenient configuration is a body-centered cubic lattice, which ¢onsists
of two simpie cubic fattices, one of which has been displaced along a diagonail
s0 that its corners are at the centers of the other. If the density is 2; ie., the
lattice constant of the simple cubic lattice is 1, then @ must be I¢ss than
ﬁ/«t in order that the balls of radius a do not intersect; in terms of r,, the
distance between nuclei, :

8\ /3 ﬁ
as (—5-) Tl‘,. (4.3.36)

If the nuclei were concentrated at the poiuts of the lattice, then the Coulomb
energy per particle would be —0.896/r, according to (1.2.11;2). Provided
that they do not overlap, the repulsion between the nuclei will be the same
even if they are somewhat spread out. On the other hand, their interaction
(per particle) with the background would be affected by

P z-z:",J" LI TS N
2Ld" sin a/odrsm 2 20(3 5z - (4.3.37)

If this is added to the kinetic energy (n/a)? (for mass $), then the minimum

E_ (’_' _ i)“’,-a/z _ 0896 o _,, 089%
Y

$
T s

is attained when

e LA LN e 3 (A L\
2n*\3  2n? * 18x°\3 2n2

Condition (4.3.36) means that

83n*

——r 3 " = 4338
~489. sele

87

If r, is smaller, then @ must be taken as (8n/3)"3(ﬁ/4)r,, which costs
some kinetic energy, 12.75/rZ, and raises the Coulomb interaction above
that due to the background by 0.026/r,. The figures become more favorable,
however, when it is recalled that wave-functions of nuclei with opposite
spins do not need to be spatially orthogonal to avoid incurring exchange
energy. Suppose that the nuclei have spin 4, as with protons, and put nuclei
with spin up on one of the simple cubic lattices and nuclei with spin down on

¢
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the other. Then the spheres are /Rqussid only not to overlap with other
spheres on the same simple cubic lattice. This weakens the bound (4.3.36) to

8x\'3r,
“s (3‘) 2’

which weakens the lower bound cn r, (4.3.38) by a factor £, so
r, 2 275, (4.3.39)

and also diminishes the zero-point energy by 3 to 9.54/r? and increases the
interaction with the background by the same factor. The Coulomb repulsion
between neighboring nuclei decreases, but only by an insignificant amount
107 3/r, The net effect is to produce

Bounds on the Ground-State Energy of Spin -4 Jellium (4.3.40)

22 0458 .
S = - ()]
rl rl
2 _ 0.5 < E . 9.58 _ 0.85 " (i)
r» r, N = r? r,
1.15 089 .
< ;sﬁ - —r,_ ifr, > 275, (iti)

where e = 2u = 1. (See Figure 39).

Remarks (4.3.41)

1. The Jistance between particles as measured in Bohr radii with the appro-
priate mass is r,. If H, is the Hamiltonian of the nuclei, and the pressure
is not too huge, then r, is on the order of the ratio of the mass of the
nucleus to that of the elctron, which is at least 2000. This means that
(4.3.40(i)) will be the best of the bounds. If jellium is taken as a model of
electrons in a metal, then r, ~ 1, and (4.3.40(i)) is best.

2. There are conjectures that the transition from homogeneity to a lattice

" structure as r, increases is accompanicd by a phase transition. It is even

believed that the exchange energy, which favors parallel spins, causes

ferromagnetism. Despite the simple form of H; it has not been possible
to prove these speculations.

If we focus attention again on real matter, we must add the contribution
from the electrons to that of the protons. Observe first that for nuclei the
. parameterr, ~ p~ ¥/3/Bohr radius is increased by a factor uZ2, but at the same
time the energies in (4.3.40) are multiplied by uZZ. Since the zero-point
energy obtains an extra factor 1/, it can be neglected. For the densities of
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interest, r, > 275/uZ?, so (4.3.40(iii)) applies to nuclei. Of course, the trial
function with a homogeneous electron distribution is poor when Z is large, and
does not contribute the right dependence on Z. If Z = 1, our earlier results
on the energy per electron are only

Crude Bounds (4.3.42)

Refinements (4.3.43)

1. The lower bound. The Birman-Schwinger bound (III: 3.5.36) can be
improved with the methods of functional integration [31], sharpening
Inequality (41.47; 2) by a factor of 1.5. Then with (4.3.20), if the density is
finite, A is chosen optimally, and ¢, = 5.74p*, or equivalently Eo/N =
2.2/r2. there results

2. The upper bound. The ground-state energy in a box of volume ¥ is of the
form

E = V—2;’3f(vll3a).

The facts that dE/0V < 0 and 9%¢/dp* > 0 and the convexity in « are
expressed by the inequalities .

fix) 2 ; £x) and 6xf'(x) — 10f(x) < x¥"(x) < 0.

Since JE/dV < 0, a linear bound f(x)/f(0) <1 ~ yx for x > 2/y can
be improved by a parabolic bound f(x)/f(0) < —x%(y/2)>. By (4.3.43;1)
y~! =22/1.34, so if r,> 2y~! = 3.28, then f is less than —f(0)x*-

l.34/4(2.2)2‘ It follows that

E _ {22/} - 134)r,, ifr, <328
N = 1-0204, if r, > 3.28.

These bounds are far from satisfactory. Not only do they fail to allow
finer details to be discerned, but indeed they do not even prove that hydrogen
holds together at T = O rather than breaking up into separated atoms.
In these units the energy of a separated hydrogen atom is —{, i.e., less than
the upper bound, which only shows how large a territory still remains open
to exploration with exact methods in physics.
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Probiems (4.3.44)

1. Prove the Swiss cheese theorem (4.3.13): For any region A = R® and any real
number h let A, = {x& A:d(x, A) < h},ifh > 0and A, = {xe A*:d(x,A) < —h},
if h < 0, and denote the volume of A, by V(h, A).
Then prove the following two lemmas: (i) Suppose A is covered by closed cubes of
side [, the interiors of which do not intersect, and let 1: be the number of cubes entirely
contained in A. Tiien the volume of A not covered by these v cubes is at most
4N /3 A). (ii) Let B < R? be an open ball of radius R and y a number satisfying the
inequality R > 2,/3y 2 0. Then ¥(2,/3). B) < ¥(—2,/3). B) < S6nR%y/,/3. Finish
the proof of the them em by covermg B, with a cublc lattice of spacing 2R,, and in
each cube of the lattice place a ball of radius R,, then cover the balls with a cubic

lattice of spacing R,, etc. Use the lemmas to estimate v; and the fraction of volume
taken up bv the balls of size j.

2. Use Inequalities (111 4.5.24) and (4.1.5) to find a lower bound for the potential
energy of jellinm,

‘ 1
U= 2 ix, - %™ = Zjd"-"ﬂ(’&)!x -x!7h+

1k

and compare with (1.2.10). (Let p be constant in any ball.)
3. Calculate

< d3x d*v
lim V% i( |x--—x"‘-— —— p2 )Y
Ve v i;k ' k! 2,10 “‘.VI
if v is the ground state of a system of free electrons in a box of volume V. (The
momentum states in both spin crientations are occupied up to a maximum momen-
tum p such that p*/3n® = N/V = 3i4nr})

4. Verify that the concavity of E as a function of (1/m, a) is nG more severe a restriction
than the concavity of f in {4.3.43; 2).

Solutions (4.3.45)

1 ) If Ais covered by cubes of iength /, but all cubes intersecting A‘ are removed,
ther the uncovered portion of A is contained 1n A,_3. {Hence the number v,; of
cuhes ot: length 2/ that can be packed entirely into A is at least @2D73[V(A)
= b2y 3LATN

i) ¥¢ < h < R, then

. 4
V(h. B) = 47" [R* = (R - hY*) < V(~h,B) = —3’-' [(R +h)?® - R .

Tne lemma is then a consequence of the convexity of the function j(x) =
(! + &'~ 1 which implies that f(e) S £(0) + e[ f(1) — £(0)] = ¢[2° — 1]

= 7z
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Proof of the packing estimates. For simplicity assume that R, = 1, and let
v;= P/~ '(1 + p)*. If a unit ball is covered by cubes of length 2R, = 2(1 + p)~!,
then it contains v, cubes, as we shall show. If we then cover the unit ball with a
lattice of length 2R, then there are v, cubes contained in the unit ball and not
intersecting the first v, balls of size 1. The general fact will follow by induction.

“Therefore it needs to be shown that when the ball has been filled with smaller balls

up to size j, it is still possible to pack v,, , balls of radius R; .., into the remaining
space B — | J{., (balls of size k) = Q;:

4 J
V@) =T - EnR) = (p—{-—l) :

V(2/3R;s1,Q) < M,, defined as the sum of V(—2,/3R,.,, B) for all balls of
size <jand V(2,/3R,,,, B), where B is the unit ball. Because of (ii) and the
inequality 2./3R,+; < R;,

V(Z\/jku LS M S 5‘% Ry i1 + L wR])
oy 67
=@+p-2(@-D'0+pY "‘ﬁ’ﬁl-
Therefore it suffices to show that
(2R“l)3vlﬂ sy, - ﬁ,] s{v@Q) —- V(Z\/SR“.,, Q)]

ie.,

14p74p -2
1s§[p+1-14\/§—i%:(-’1——)]-

Since p~/(p - 2) < (p — 2), this reduces to
ls%[pﬁ-l—lk/i],

which is true when p + 1 2 27. The fraction of the volume taken up by the balls
of radius R, is

Pt
a+py -

which shows that the packing fills the gljginal ball exponentially fast.

2. From (II1; 4.5.24),

1/3
Uz -}[SnN’ d’xp’(x)] = —=1.35N/r,,

and from (4.1.5),

3 1/2
Uz -2[3.60N§ f pm] = —1.84N/r,.
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3. As N and V - oo, make the replacements
1 " d*k

-e

ind 72.13?
Vigs Jmsy25)°

rdx d*x’
ok) = VJ

exp[t (x — x)] - 4n/ Ikl’
to find that

Pk 4
2 k-0 = [ f G O ~ 408G - Ik - a)

|kisp
i&i<p 2 3 3
2 'dk p 3k k pp3
2 — — 4+ - ——
ndo 6|l 4 16p° “3xzd
N f9x\'*1 3 N 0458
V\4 r,dn V r,

In order to justify this formal calculation, make a convolution so that

k) = —— * F(k),

Ilrl2

where
F(k) = 1 f d*x d®x’ exp[ik - (x ~ X))
V xeV,x'eV

oL (sin k‘L/2)’ (sm ks 1./2)z (sin ks 1./2)2

L2 L2 L2

is the Fourier transform of the characteristic function of the box, and use Lebesgue’s

dominated convergence theorem to show that the integrals have the limits given
above.

4. With 1/m = v: E = vf(a/v),
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Observable at a point 26 Specific heat at constant volume 84
Occupation number 135 Spin

Open system 147 chain §, 31
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Spin (cont.)
echo 7
1n a magnetic field 145
Stabihty
condition 84, 86, 191, 198
of matter 16, 257
Star 19
Staustical ergodic ‘heorem 171
Subadditivitv
of the energy 75
of the energy difference 67
of the entropy 64
Sunhgh. 135
Symmetric tensor product 21

tcmperature 84

The mal

representation 33, 145
reservorr 83
Thermodynamic

bmt 76

observables 88

phases 88

stability 97

stability of Coulomb systems 265
Third law of thermodynamics 89
Thomas—Fermi

equation 233, 244

functional 231
Time-average 154

of observables 154
Time-evolution 144

sndex

Tolman-Opperheimict equation 249
Trace 37, 28

Tedsimtions 23, 25, 27

+ tiangle inequality for entropy 65
{Triple point 99

Ultraweak topology 46

Unitarily implementable 27

Unitary representability of
automorphisms 23

Vacuum vector 20

Vinal theorem 233, 247

Vlasov equation 228, 248

Von Neumann entropy 58

Von Neumann’s e 3odic theorem
171

Weyl
algebra 21
operators 21

Young's inequality 50

Zero-point
energy 129
pressure 129



