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Preface

In this final volume I have tried to present the subject of statistical mechanics
in accordance with the basic principles of the series. The effort again entailed
following Gustav Mahler's maxim, "Tradition = Schlamperei" (i.e., filth)
and clearing away a large portion of this tradition-laden area. The result is a
book with little in common with most other books on the subject.

The ordinary perturbation—theoretic calculations are not very useful in
this field. Those methods have never led to propositions of much substance.
Even when perturbation series, which for the most part never converge, can
be given some asymptotic meaning, it cannot be determined how close the
nth order approximation comes to the exact result. Since analytic solutions
of nontrivial problems are beyond human capabilities, for better or worse
we must settle for sharp bounds on the quantities of interest, and can at most
strive to make the degree of accuracy satisfactory.

The last two decades have seen successful and beautiful treatments of many
fundamental issues—I have in mind the ordering of the states (2. 1), properties
of the entropy (2.2), noncommutative ergodic theory (3.1), the proof of the
existence of the thermodynamic functions (4.3), and the mathematical
analysis of Thomas-Fermi theory (4.1.2), which provides an understanding
of the stability of matter. The day is surely not far off when most of the
remaining holes in the conceptual structure of quantum statistical mechanics
will have been filled in and the questions that are not satisfactorily answered
today will be added to the list of achievements.

The successful completion of this course of mathematical physics in a.
reasonable time required the fortunate conjunction of several circumstances.
As with volume III, I had active support from several collaborators, and in
particular I am greatly obliged to B. Baumgartner, H. Narnhofer, A. Pflug,
and A. Wehrl. Countless other colleagues have helped indirectly by coping
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duties for me. The English rdition has again
gT 1mm the cntical reading of B. Simon. The working con-

.ii the University of\ tenna were invaluable for thc completion of
hut not least, the fricLionless collaboration of Springer-Verlag

ii Vienna and my secretary and calligrapher F. Wagner enabled the books
to appear quickly and at a reasonable price.

I am aware that the uncompromising way of mathematical physics is
not the easiest. Yet I feel that it has been one of the greatest intellectual
accomplishments of our era to cast the laws of Nature in a clear mathematical
form with rigorously deducible consequences. No amount of labor is too
high a price to have paid for this. Let me conclude by also acknowledging
and expressing my thanks to the reader who has borne with me to the end of
the course.

Walter Thirring
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Systems with Many Particles

1.1 Equilibrium and Irreversibility

Macroscopic bodies cci in wi irreversible and deterministic manner
in con frost with rhe rerersible and indetermmisti character of the

of quantum physics. How can the apparent contra-
diction

We have learned Lo describe systems of finitely many partic!es
algebra .W ol observables. ,nforma(ion about the systems a SU.e it
on the algebra (ci. (Ill: L.2.32)'; As our main goal is the study of e'.eryday
matter, our framework wilt oe that of nonrelativistic quantuu theory. For
the purposes of contrast, or of aiding intuition, we shall also have oecasion
to call upon classicai where states measures on phase space,
and extremal states are measures. In either framework time-evolution

an automorphism a a, for a E d in the Heisenberg
picture. If desired, time can alternatively, in the SchrOdinger
picture, he put upon the state: w . w,, such that w(a1). the algebra
is Abetian (classical mechanics), then the point of an extremal state moves
along a classical trajectory in phase-space.

In our earlier experience systems of N particle are so complex for large
N that it becomes impossible to reach precise, quantitative conclusions. It
turns out. however, that the theoretical analysis again simplifies in the limit
N —+ Many properties become independent of the exact numbt'r of
particles and other detailed characteristics of the physical system, somewhat
in analogy to what happens in the central limit theorem of probability theory.
This may seem peculiar at first: we have always had d =
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separable Hubert space, and time-evolution was given by a unitary group
on .*'. What, then, appears so special about a many-particle system? Just
that the information contained in a pure state about a many-particle system
is so overwhelming that it would be too ambitious to employ the whole of

for the observables. Actual measurements could never be made on
more than a few observables, so has to be cut down to size. For instance,
suppose that a device is only equipped to observe one particle at a time, and
is unable to detect correlations between particles. Then, rather than taking
the entire tensor product of the individual particles as the algebra of observ-
ables, it is reasonable to regard d as a single factor. Accordingly, many
states differing on reduce to the same state when restricted to d. (The
classical situation is similar; the restriction of

fd3qi ... d3p2 . .. w(x1, PN),

so whole cylindrical regions of phase-space reduce to a single restricted
state.) As a consequence large portions of the space of states on are
quite similar from the point of view of the reduced algebra .1. If, in the
Schrodinger picture, the state W, travels throughout the space of states, then
its restriction takes on a certain value with a very high probability, unless
prevented by some constants of the motion. This most probable state is called
the equilibrium state over d.

The irreversible tendency toward equilThrium has always aroused wonder,
especially as the basic equations of dynamics are invariant under reversal of
the motion (III: 3.3.18). We have even seen in classical mechanics that the
trajectory of any point on a compact energy surface returns arbitrarily close
to its initial position (1: 2.6.13). In quantum theory the Hamiltonian H of a
system confined to a finite volume has purely discrete spectrum. If and

denote the eigenvalues and eigenvectors of H, then the time-dependence
of an observable a is given by

w(a) = —

3. k

where the state w is represented by the vector L if>. The state is now
an almost-periodic function oft; if the sum is finite, and the are rationally
dependent, then it is actually strictly periodic. At any rate, to arbitrarily good
accuracy, w,(a) again becomes nearly w(a) after some sufficiently long delay.
The trouble is that the recurrence times are so unimaginably long that they
have no physical relevance. Suppose, for instance, that there are N distinct
energy differences The recurrence time can then be estimated as follows.
The factors exp(iw3t) can be pictured as N clocks with hands moving at N
different rates. The question is how long it takes for a certain configuration
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of clock faces to reappear to within some angular accuracy The con-
figuration in the space of angles has measure so the recurrence time
is on the order of (&p/2irY where the reciprocal angular velocity 1/co
is an average of the 1/wi. Even for just N = 10, 1/w = 1 sec.. and =
1/100, so that w, returns to w to within 1 oo accuracy, the recurrence time is
1020 sec., which is much longer than the age of the universe.

The approach to equilibrium is connected to a loss of information; to be
more precise, information does not get lost, but only less accessible. We
have seen that when the wave-packet of a free particle spreads (III: 3.3.3),

grows linearly with time, although the state remains pure and thus has
maximal information content. The observable with least deviation from the
mean is, however, not x(r) but x(0) x(t) — pi.

This behavior can be seen even in classical motion if a minimal spread of
the support of the probability distribution function in phase space is hypo-
thesized to account for quantum effects. If, say, the initial probability density
p(p, q) is concentrated on a part of the energy shell {(q; p)1p1 � p � P2) and
is not pointlike. and it moves freely on a torus, then it eventually fills the
energy shell densely with a "fuzzy" distribution. Faster particles overtake
the slower ones, as bicycles racing in a stadium start packed closely together
but later draw apart and eventually spread around the whole track (see
Figure 1).

The ergodic hypothesis has figured importantly in the history of statistical
mechanics; it is the assumption that the trajectory of almost every point
winds densely around the energyshell in phase space, so that the time average
can be replaced with the average over the energy shell. On the one hand this
requires more than is necessary, since it suffices to fill a sufficiently typical
part of the energy shell, the average on which equals the average on the whole
shell for the reduced algebra of observables. On the other hand, although
macroscopic measurements last much longer than the collision time, they
last much less than the recurrence time, so one does not wait for the whole
energy shell to be sampled. We shall discuss examples in which the
equilibrium state is actually attained by the state in a reasonable time after
reduction to one particle.

A pictorial description of the situation is as follows. The information
about a subsystem (i.e., the opposite of the entropy, to be defined later) as a
function on the space of states of the total system Consists mainly of a plain
with few hills and still fewer mountains. The larger the total system, the
further apart the prominences. Even if a path begins on a peak. it soon
descends to the plain, and there is only the slightest probability that it will
ascend another mountain in any conceivable time. The time of descent to the
plain and the recurrence time are of completely different orders of magnitude.
It takes only the time corresponding physically to a few collisions to descepd
to a level near that of the plain, whereas the other mountains lie in the un-
fathomable distance. This means that equilibrium is reached long before the
immense recurrence time required to wind throughout the space of states;
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Figure 1 The motion of the density in phase space for a free particle on a torus.
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generally, a path soon reaches states that can not be distinguished from
equilibrium because of the limits of our measuring abilities. Of course, there
is still the question of how one happened, at the beginning, to be at the top
of the mountain, but that brings up the one of how the current state of the
universe came about and is outside the scope of this book.

Another puzzle is the apparent causal behaviof that classical thermo-
dynamics prescribes for macroscopic bodies. According to the arguments
that have been advanced, one would rather suspect that the fluctuations of the

are increased by the loss of information. This is actually true for
microscopic variables like the positions and momenta of individual particles.
However, if only the so-called macroscopic observables are considered, that
is, roughly what was accessible to the more primitive experimental arts of an
earlier epoch. then deterministic features arise. Their origin is simply that
statistically independent quantities are being averaged: if a = aj,
where = for i j, then

1

I
wf (ajaiJ) — w(aJ)w(ak) I =

L \J.k J.tc J j=1

Thus 1w N 12, and for sufficiently large N the deviations from the average
are negligible. We shall learn that in the quantum-theoretical formalism such
an a approaches a multiple of the identity operator as N x. The limiting
coefficient depends on the representation of the algebra.

Let us verify the phenomena described above in two explicitly soluble
models. Of necessity they will lack some of the complications arising in
reality, but they exhibit the important features. They are embryonic forms
of systems of fermions and bosons.

The Chain of Spins (1.1.1)

Let the algebra of observables'of the total system be generated by
j = 1,..., N, where each is a copy of the usual Pauli matrices Instead
of Cartesian components we use c and c± ± ia')/2, which satisfy
the commutation relations

= ±ójk2(7k.

[a7, = (1.1.2)

The chain is closed by the identification of Gj+N with and the Hamiltonian
that determines the time-evolution will be assumed to he of the form

N N-i N
• H=B . (1.1.3)

j=1 ,i"i J=I

The physical meaning of this is that the spins are coupled with magnetic
moments p, to an, external magnetic field B, and in addition there is an
Ising like spin—spin interaction with the nth neighbor. The strength s(n) of
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this interaction is a function that can be specified later, and the periodicity
allows us to assume = 0 for n> N/2. If the contributions to H are
denoted as in

. (1.1.4)

then the Hk commute with one another and with the o,. They are therefore
constant in time, and the time-evolution of & and a = (a+)* can
calculated easily from the relationship

-I- +f(cr)a = a f(a + 2),

which follows from (1.1.2). We find

= = a(O) exP{21t[Biz& + +

= fl (cos 2t2(n) + sin 2tE(n)

+ sin 2te(n)),

where a(t) = exp(iH)a exp( — iHi).
The time-evolution Consists of Larmor precession in the external field and

a kind of diffusion along the chain due to the spin—spin interaction. Suppose
that the state at r 0 is pure and has the form of a product, where the spins
have a 3-component s and has phase

= 5, = (n = <Ci>.

(1.1.7)

Then

= lv/1T? exp{i(; + 2tBpk))f2(O,
N'2

1(f) = fl(cos 2t.s(n) + is sin 2te(n)).

If N is finite, thenf is almost periodic, and if N = thenf (t) will generally
tend to zero as t —. (supposing that tends to zero in such a way that
the infinite product makes sense). To make this more explicit, let us consider
the special case $ = 0 and c(n) = If N = cx, then f satisfies
equation

f(r) = fJcos 2"r
=

Since f is an entire function, this functional equation and the condition
f(0) = I determinef uniquely—differentiate (1.1.9) to get the Taylor
off Since the function (sin t)/t satisfies (1.1.9), it equalsf. Hence, as N —*
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the expectation value of at approaches zero. For finite N it follows from
(1.1.9) that

= jicos 2"r = [sin
. (1.1.10)

Therefore, as discussed earlier, the recurrence time grows exponentially
with N, while the time it takes to reach equilibrium is independent of N.

To summarize, we have ascertained that for N = x the initially pure
stateofthealgebrareducedtoonespintendsasr s to<a> s,<ct> = 0,

which corresponds to a mixture:

= Tr(pa). = s. (1.1.11)
Tr exp( —

Even though the expectation values of the go to zero, their fluctuations
remain nonzero, since = (1 + ak). 2 is Constant. The average magneti-
zation

MN(O = (1.1.12)
k

works differently. In the state (1.1.7) of our example, = s. whereas

<Mi> is 2), provided either that the initial phases are disordered or
that the a while because the differ. The latter
situation can in fact be undone by a sudden reversal of B, in the spin—echo
effect. If N = x, the diffusion caused by suitable is irreversible, and

= 0. At ( = 0 the fluctuations are O(N12) and remain at
this magnitude for all time: If is calculated by multiplying together
two expressions of the form (1.1.6), then it should be recalled that a2 1.

However, if the function falls off sufficiently rapidly with ii, then the a2
terms make little difference for large k — k', and the argument given earlier
for the deviations of statistically independent quantities remains valid.

Chain of Oscillators (1.1.13)

Now represent the total system by positions and momenta q1
Pt PN,such that pj = ,and let the time-evolution be determined
by

H + (1.1.14)

This Hamiltonian contains interactions only between nearest neighbors. and
the chain can be closed by the condition of periodicity = q,, Pi+N =
The masses and force constants have been set to 1, which amounts to measur-
ing the time in units of the natural period of oscillation. The equations of
motion are

ci., = = + q_1 — (1.1.15)
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Wtth a periodic extension of the variables, such that

P,,, = —

they are put into the form

= — (1.1.17)

The variables satisfy

=0.

Recall that the Bessel functions satisfy the recursion formula =
— 1)/2;as a consequence we see that the solution of the initial-value

problem is

= (1.1.18)

Remarks (1.1.19)

1. Since I J,(z) z/v as -÷ the sum over k in (1.1.18) converges
for, say, bounded

2. If N < then (1.1.18) still holds provided that =
3. Since the equations of motion are linear, the classical and quantum time-

automorphisms are identical.
4. There are still N constants of motion with the variables

2A'

k 1,..., N.
j 1

With the auxiliary condition that = 0, only N — I of the
constants are independent, and we find that '2n+I = 0. If N = then
1k remains significant classically, provided that (4} E

in order to have a useful framework for discussing the questions that will
arise as in these two examples, it is convenient for technical reasons to make
use of the Weyl algebra (cf. (111, §3.1)). With one particle, the Wqyl algebra
consists of the operators W(r + is) = exp(i(pr + qs)), r, s E along with
their linear combinations and norm-limits. A state on the Weyl algebra is
uniquely characterized by the function E(r, s) <exp(i(pr + qs))>. We shall
only concern ourselves with coherent states (III: 3.1.13), which are of the
form W(z') I where I u> is a Gaussian function, the width of which deter-
mines the ratio between t.tp and Aq. Since

1 11 s2\1
<UI W(r + is)Iu> = exp[— +

—)j,
it follows that

d2 1

—
In E1,.,=0 = = In

=
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The expectation value in the more general state W(z')lu> can be calculated
according to (III: 3.1.2; 1) as

W(:)I W(:' in; = (n.j W( — :)l'V(z) W(:"t a>

= W(z)lu> —

= expi— -. + i(rs -- r's)1. (1.1.20)
L i

Thus. the quantities and &j are the same as wnh a>. but the
values of p and q now and — r'.

Let us return to the issue of how the of the state
to a subsystem evolves in time. The operators + 'shich
describe the momentum of a single particle and position its
neighbor. are useful to this end. Since I, they form a
system. A state characterized by

+ '2n+ =

+
—•

can be regarded as the generalization of (1.1.20).

Remarks (1.1.22)

1. The exponent on the left is a linear combination of and ,as appropriate
for a Weyl system for several particles, yet the variables and I

are not pairs of canonically conjugate variables, since - J 0.

Thus (1.1.21) is not simply the tensor product of coherent states of a tensor
product of Weyl systems.

2. The significance of (1.1.21) is once again that the variables
all have deviation w and expectation values (rcsp. 11w and —

With (1.1.21), the desired state on the one-particle system turns Out to be

E(r, s) +

= + + +

= exp
{_

+ + +

+ ± — + (Li .23)
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The sums can be evaluated by recourse to the formulas

= .J/4t)), j E 7L,

+/2t) = — (1.1.24)

which are derived in Problem 2. As t —, cc, only the terms withj = 0 remain.
Moreover, it can be seen from the integral representations and the Riemann—
Lebesgue lemma that the contributions linear in the 'k go to zero as t —
In all, we get

= (co + !)(r2 + s2)]. (1.1.25)

Remarks (1.1.26)

1. The limiting state corresponds to the mixture E = Tr pW(z), p
exp[ — + exp{ — ÷ coth = (co + l/w)/2 (Problem
3). As to 1, that is, for minimal mean-square deviation, cc, and the
state becomes pure. With larger mean-square deviations, to I,
(to + l/w)/2 > 1, the limiting state is a mixture.

2. Whereas at I = 0 the ratio of is to2, they become equal as t —, cc,
i.e., their ratio, 1, becomes the one defined by H. This corresponds to equal
amounts of kinetic and potential energy.

3. The reason that the existence of the constants (1.1.19; 4) does not prevent
the onset of equilibrium is again the choice of the initial state. Of course,
equilibrium can not occur if the system starts off in an eigenstate of a
normal mode of oscillation.

these few remarks will serve as our first orientation to irreversible
phenomena. We have already studied an example of an irreversible phenom-
enon in volume H, the emission of light. It is always important to take the
limit N —* cc before t -. cc, as in a finite volume the light returns to the point
of emission, and the behavior is almost periodic rather than irreversible.
The next section will deal with how the energy is affected by the first limiting
process.

Problems (1.1.27)

1. Calculate the entropy S(t) = —Tr p(z) In p(t) for one spin, wherefis given by (1.1.9).

2. Calculate and - J21,+

3. Show that the density matrix p has the property stated in (1.1.26; 1).
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Solutions (1.1.28)

1. Since Tr p(r) I. the density matrix is of the form p(f) c(,). r Let e(i) =
Ic(i)l, which � The eigenvalues of p(t) are ± c(t). so

ri + I c(1) I — e(t) I —S(t)=
2 + 2

In
2

Because we find cU) and therefore c(t) ±
(I Observe that/is not monotonic, and hence that S does not increase
moaotonicalh from 0 to its equilibrium '.alue.

Ii + s /1 + 1 — x /1 —
-• Ink-- 2) + ——i-

2 -

— 1)]

Putting: x ÷ y yields

+ t) = (r
—

I)]
(

—

I)]

= = j J,,(x)J,

so fAx = is the addition theorem of Schläfii and
Neumann. Putting v = —x and changingj to —j then yields ,(x)
and with F = x. there results

= = J_A2x)

from hich formulas (1.1.24) follow.

Tr + = 2n)]

and

4 Tr + q2)j

<p + q >
—

— —
' +

lead to the result.

1.2 The Limit of an Infinite Number of Particles

The first issues to confront for large systems are what happens to
macroscopic properties like energy and colume as N x.

The models examined I.! were only caricatures of reality. We shall now
determine the physical properties of large bodies. The first question is how
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the volume V has to vary as N —+ in order to ensure that the potential and
kinetic energies will be comparable in magnitude and that the interaction
between the particles is correctly accounted for. In particular, when are E
and V normal, extensive quantities proportional to N? In order to fix our
ideas, we shall pay particular attention to certain special cases, large atoms
andmacroscopic or cosmic objects. The dominant force is then electrostatic,
except that in cosmic matter gravity also a decisive effect. Heuristic
arguments will sometimes be adduced in this section for guidanceãn finding
which quantities have limits as N —' in these systems.

Free Particles (1.2.1)

We begin with a consideration of noninteracting particles confined to a box
of side R. The energy consists of the quantum-mechanical zero-point energy
plus a thermal component proportional to the temperature T. As we are
only interested in the dependence on N for large N, we set h = k = m 1.

As explained in (111: 1.2.11) the zero-point energy of a system of fermions is
where is about RN113, since the volume available

per fermion is only R3/N. We arrive at

E = + (1.2.2)

If the two contributions are to remain comparable as N and if T goes
as N' for some power t, then R must be N"3 t12, and will tend
to a limiting value. The type of interaction will determine the value of t at
which the limit is nontrivial and thus of physical interest. For this to happen
the kinetic and potential energies have to remain of the same order of
magnitude.

Bosons do not have the solitary temperament, so may be set equal to
R. The energy is then on the order of

E = + (1.2.3)

If the two cuntributions are to have the same dependence on N and we make
T N', then R N - ti2 and E N' If it is insisted that T remain
constant and R then E N, but the zero-point energy drops below
the thermal energy. The exact calculation for free bosons in fact reveals that,
with a fixed particle density and below a critical temperature, a certain
fraction 0 of the particles are to be found in the ground state with
E0 N"3, and thus N may be replaced with (1 — This makes this
usual limit also nontrivial.
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Large Atoms (1.2.4)

The Hamihonian of a large atom (with e2 = 1) is

I
12

H = — + — (1.2.5)

which can, if one wishes, be confined in a box. Recall that in volume 11! we
figured out that if T = 0 and Z = the energy is about —

which has a minimum about for R N 13 Therefore, in the limit
N we should expect to set t = In §4.1 it will not only be proved that
these limits converge, but even that the Thomas-Fermi theory becomes
exact in that limit. The problem can thus be solved in the limit N -.
though the solution is not suitable for a direct numerical comparison of
theory and experiment. Since there are corrections of about N - If 10%
accuracy can not be expected for N On the other hanô, relativistic
effects become significant when t'i 102. The kinetic energy is then N4' 3/R
and if Ze2 > 1 the energy is no longer bounded below. Hence the picture
that emerges of a large atom is only an idealization, but at least one with
many instructive aspects.

Systems of bosons depend on N in a different way. They all settle into the
ground state, and with Z N the radius goes as N and the energy as N3.
The limits of EN and N3p(xN) would be expected to exist, where p is the
one-particle density distribution, For thermal effects to remain significant,
T must be chosen —N2. This problem is mostly of academic interest, and the
convergence of the quantities mentioned above has not yet been proved.

Jellium (1.2.6)

Like an atom, jellium consists of particles repelling one another with a
Coulomb force and immersed in the field of an external charge distribution.
The difference is that the charge distribution is not concentrated at a point,
but rather homogeneously spread with density through a box A (A will
also sometimes denote the volume of A). It can be regarded as a model of
highly compressed matter. with the homogeneous background charge
coming from fast-moving electrons, and the particles with explicit coordinates
being the nuclei. It is nevertheless often used to describe electrons in a metal,
although it is rather far-fetched to speak of the assemblage of ions as a
homogeneous background. The Hamiltonian is

= N

+ —
—

U(xj + fd3xu(x). (1.2.7)

where U(x) = d3x'1 Ix — xj. For the system to be neutral, d3x = N.
The electrostatic energy of the background has been added in so that the
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potential energy will remain bounded below, by N(RN- 1/3)_ I, where R
is the linear dimension of A. The proof of this relies on the well-known fact
of electrostatics that the Coulomb repulsion.of two homogeneously charged
spheres is less than or equal to that of two point charges at their centers—the
inequality occurs when they overlap. Now imagine blowing the charged
particles up to homogeneously charged spheres of radius a, and let

I4ira3\2 d3xd3x'
5 ,

=
Jx—xiI�a X — X

(1.2.8)
f4ira\ 1
(—c--I I\ / 'Ix—xd�a

Then If may be written in the form

H=
i.j=1 i=1 2

p

— U(x1))— U11(a) + — —

i—I i

(1.2.9)

Contribution is positive, since it is of the form

dx dx'

J x —
p(x)p(x'),

and I/c has a positive Fourier transform. It is easy to show (Problem 1) that
fi � equality holding provided that all the spheres lie within
A, and)' = (N/2X6/5a), the self-energy of homogeneously charged spheres.
As discussed earlier, ö � 0. The lower bound — + (3/5a)) is
optimized at a = which is precisely the radius at which the
sum of the volumes of the spheres equals that of A. This coniputation leads
to the

Lower Bound for the Energy (1.2.10)

Remarks (1.2. 11)

1. Nothing has yet been assumed about the shape of A or the statistics of the
particles. In particular, if A is spherical, then by Problem 2,

—

U(x1) +
5

d3xU(x) � 1x112 —

where equality holds if E A for all I.
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2. Despite its great generality, the numerical accuracy of the bound (1.2.10)
is surprisingly good. If x1 are the sites of a simple, face-centered, or body-
centered cubic lattice, computer studies have been made of the limit as
N x' of the potential energy over Nr ',yielding respectively the values
—0.880, —0.895, and —0.896 [3].

Lower bounds for H depending on the particle statistics may be derived
from (1.2.10). The energy of free fermions is. as seen earlier, —N5 31R2
Nr 2 and with the aid of the more precise proportionality factor,

H � N( 1.1 2 — 0.9r') � — N for all e R + (1.2.12)

for spin-i particles. Even if the volume and consequently r5 are treated 'as
variables, the resultant lower bound is N. We shall discover later that with
no more than first-order perturbation theory we can obtain an upper bound
not much different from (1.2.12): the Pauli exclusion principle makes the
electrons stay at a distance r, apart, and this correlation imitates the ener-
getically favorable configurations of (1.2.11: 2). Since the minimizing radius
r3 does not depend on N, in this model E N and R N 13, so the exponent
t of (1.2.1) equals zero.

A very different picture emerges of bosons. With the kinetic energy (1.2.3)
we find, ignoring precise coefficients, that

N1'3 N
H � —i— — —. (1.2.13)

r; r

The minimizing is N23, and so E — N5

Remarks (1.2.14)

1. It is uncertain whether the lower bound displays the correct
dependence on N. Upper hounds obtained with trial functions include
more kinetic energy since the particles have to be correlated in order to
attain a sufficienLly negative potential energy. Until recently it was only
possible to show that E < —eN7'5 [1].

2. If the background charge is concentrated at discrete points of a lattice.
then trial functions can be thought up that show E < —eN5'3, and thus
in this case the energy in fact goes as N5 [2].

3. So far only the electrostatic energy has been accommodated m the back-
ground. and minimized according to the density If the background
consists of electrons, then its zero-point energy must also be calculated.
In a jellium of deuterium atoms, which are bosons, the energy turns out
to be N: The background density prevents them from collapsing, and
for fixed r5 (1.2.13) is on the order of N.
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Real Matter (1.2.15)

Real matter consists of positive and negative point-particles interacting with
a Coulomb force, so

H = ± L - (1.2.16)
m1 ,>, —

for particles confined to a box of volume A R3. We shall often particularize
to the situation wherein all negative particles are identical with m = lel =
and all positive particles are identical with mass M and charge Z. Provided
that Z is not so large that relativistic effects become significant, (1.2.16) gives
a reasonably accurate description of ordinary matter. We Therefore expect
to find that E —N for R N113.

The proof of this fact, known as the "stability of matter," has to be deferred
to §4.3. At this point we shall make do with several

Remarks (1.2.17)

1. Roughly speaking, the difficulty is that the double sum for the kinetic
energy contains —. N2 terms, so many cancellations are needed for the
result to be only N. If, as in the gravitating system to be described
shortly (1.2.19), all the contributions are of like sign, then cancellations
certainly do not occur. Similarly, if the total charge Q L e is N213 +

and the system is restricted to a region of linear dimension R N113, the
energy fails to be extensive. The electrostatic energy Q2/R is �N only if
Q � N213.

2. Even requiring that Q = 0 will not guarantee that I El N if all the
particles are bosons. To prove this, rewrite (1.2.16) (with M = Z = 1) as

H= L + L lxr —xfl1 + Lix: —xfl-'
i=1 2 i=1

—xL', (1.2.18)

where N + = N for a neutral system. Now take the expectation value in
a state with 'P + 0 'P , where are the trial functions that led to
E — N"5 for Bose-jelli.um. Although the particles are correlated, the
charge density is homogeneous, as for instance

=

The last term in (1.2.28) is therefore equivalent to — U(xr) -- U(x)
+ d3xU(x), and there results the sum of the energies of the positive
and negative Bose-jellia. The expectation value is consequently about
— N"5, which is an upper bound to the energy by the mm—max principle
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(III: 3.5.21). This "instability." which corresponds to the ground-state
energy being nonextensive and the spatial contraction of many-particle
aggregates of charged bosons, does not imply that individual atoms con-

of oppositely charged bosons would be unstable. A single, non-
relativistic atom of He4 with its electrons subjected to Bose statistics (but
with their original mass and charge) would have the same ground-state
energy as real He4, since the two-particle ground-state wave-function is
symmetric in the spatial coordinates. The lesson here is that experience
with two-electron molecules is not a trustworthy guide to the problem of
the stability of matter: Since the Pauli exclusion principle makes no
difference, the two electrons might just as well be bosons, but a system of
many bosons would be unstable, whereas a many-fermion system is
stable.

3. Since He3 is just as stablc as He4. stability is not a matter of the type of
statistics of one of the kinds of charge-carrier. Moreover, the relevant
energy is always measured in Rydbergs, using the electronic mass, so
matter should remain stable even in the limit of infinite nuclear masses.

4. It could be argued heuristically that the potential energy should go as
—N4'3R 1, since each charge sees an opposite charge at a distance
RN - "i. while charges further away should be screened. If this is added to
the kinetic energy N5 3R - of fermions or NR - 2 of bosons, the minimum
is respectively —N at R N"3 or —N513 at R N"3.

5. In relativistic dynamics the kinetic energy is 1/Ax, so the system
is softer. The heuristic arguments would evaluate the total energy of
bosons as N/R — e2N413/R, which is unbounded below when N is
sufficiently large. Whereas nonrelativistic energies are always semibounded
for any fixed N, it may happen that the relativistic energy goes to — for
sufficiently large, but still finite, values of N.

6. The instability of a Coulomb system of bosons has nothing to do with the
long range of the l/r potential, but comes from its short-range features. If
the singularity is chopped off by changing the potential to V(x) =
(1 — exp( — the system of bosons also becomes stable: Since the
Fourier transform of V is

—

V(k)
= 1k12(1k12+

0)

with = e, we find that

1
2 1N

V — Xj)
=

—
(2ir)

>

so H is bounded below by — cN. It could be argued that nuclei have a
form factor, and that if jt is taken as the reciprocal of the nuclear radius,



18 1 Systems with Many Particles

then V would be a more realistic potential than 1/r. This would lead to a
simple proof of stability, but it misses the real point. Since the Rydberg,
which is measured in electronvolts (eV), is determined by the mass of the
electron, it is the kinetic energy of the electrons rather than the size of the I
nuclei that matters most for stability. The lower bound from the size of
the nuclei alone would be — N MeV.

Cosmic Bodies (1.2. 19)

The hr potentials in an object with gravitationally interacting particles are
all attractive, so the situation is drastically different. The ground state of the
Hamiltonian

HG.= (1.2.20)

goes as — N713 for fermions. By the now familiar argument, E N513/R2 —
N2/R, which has its minimum value — N713 for R N - "i. This can
easily be translated into an exact upper bound by the use of trial functions
localized in Lower bounds are harder to come by, since energetically
more favorable possibilities have to be ruled out. In this case there is an easier
way: Write

N /i12 \ NLI — V VI i-11i_.— "N I' — ) 1*1 —
1=1 — f l=t

so that each h, is the Hamiltonian of an atom with electrons having no
Coulomb repulsion. Particle number i stands for the atomic nucleus, as it has
no kinetic energy, and the others are electrons, with mass N — 1 and potential
— — x31 1/2. According to (III: 4.5.15) it follows that h, � —cN4'3, and

- indeed the result is a

Bmmd for the Energy of Gravitating Fermlons (1.2.22)

HG> —cN713, c = 0(1).

Remarks (1.2.23)

1. Fermi statistics were not fully taken into account, since we have only anti-
symmetrized with respect to N — 1 particles when filling the energy
levels. Since complete antisymnietnzation restricts the set of admissible
functions further, (1.2.22) is at any rate a lower bound.

2. The limit as N -. in this case exists with the scaling behavior t = of
(1.2.1), as in (1.2.4). This does not mean that the limit with t = fails to
exist for ordinary matter, but only that it is trivial. The potential energy
goes to zero and the particles remain free.

3. If the particles are bosons, then they can all be put into the ground state,
and E —N3. The radius of the ground state then goes as N'.

4. The Hamiltonian (1.2.20) was for the discussion of electrically neutral
particles;. if they are instead charged, then K must be replaced with
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DC — If we bear normal matter in mind, the gravitational force comes
from the protonic mass, and in units where the mass of the proton is 1,
iqe2 10 36• Inequality (1.2.22) then a fortiori provides a lower bound,
since

IC

i>j lxi — XjI X1 — X,I

— — 2C1C2N7"3

The number of particles determines which N-dependence dominates.
Gravity begins to win out when N (e2/K)312 iOfl, which is about the
mass of Jupiter, and the energies of larger heavenly bodies are controlled
mainly by gravitation. A concrete is that the atoms get
squashed and turn into a plasma of nuclei and electrons. This inequality
provides a more rigorous foundation for the heuristic considerations of
(II: 4.5.1).

We shall see in §4.2 that the system (1.2.20) can be solved in the limit
N -+ co, as the Thomas-Fermi theory becomes exact. Thomas—Fermi theory'
provides an idealization of stars, various corrections again being needed to
make it realistic. In particular, if N 10" relativistic effects become impor-
tant. As with atoms with Z> 137, the Hamiltonian is unbounded below,
which leads to a catastrophe. Nonetheless, Thomas—Fermi theory reflects the
thermodynamic properties of stars rather well.

This section concludes with Table 1 displaying the many possibilities:

Table I The N-dependence of the kinetic energy K and the potential energy V when
N is large.

K V Rmin

Nonrelativistic

electric

{ gravitational

IBose
IFermi

iFermi

N/R2

N513/R2

N/R2

N513/R2

—AV"3/R

—N413fR

—N2/R

—N2/R

N"3
N113

N'
N113

N513

—N

—N3

—N213

Relativistic

electric

{ gravitational

(Bose
Fermi

t
I Bose

N/R
N413/R

N/R

N43/R

— N413/R

— N"3/R

}
— N2/R

— N2/R

0

0

or co

0

0

—

—

or 0

—

—

t If Rmj,, tends to + co more rapidly than Nt13, then the kinetic energy per particle,
N113/R, becomes arbitrarily small, eventually 4 m, and the system is nonrelativistic.
Hence Rm,n certainly can not increase faster than N Which energy breaks the stale-
mate depends on the strength of the charge. If Z < 137, the kinetic energy wins out, and
if Z> 137, the potential energy wins out.
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Problems (1.2.24)

1. Calculate the fi and y of (1.2.9).

2. Verify (1.2.11; 1).

Solutions (1.2.25)

v:f = Jr2 dr dflr'2 dr' — r) + — rI)]
2n 1

fri �a

= ff' r2 dr r'2 dr'(°<"r,
r)

+
®(i—

=

p:f I

— ,('I lx'l/ xis.

The second integral equals 0, as can be seen by expanding Ix — x'I' in spherical
harmonics. The first integral equals —(2xa2/5X4,ra3/3) if (x': Ix'( � a} A, and is
otherwise greater than or equal to this.

2. � —(3N/2R) + (N/2RX1x1I2/R2), equality holding for Ixjj <R. The self-
energy of the background charge is 3N2/5R.

1.3 Arbitrary Numbers of Particles in Fock Space

The properties of large systems should not depend on the exact
number of particles, so it is convenient to use &representalion with a
variable number of particles.

We are used to dealing with atomic systems on the n-particle Hilbert
space. As it is impossible to count the particles in a large system, it is con-
venient to regard the number N of particles as an observable capable of
assuming various values. Accordingly, we shall study Fock space

(1.3.1)

as the foundation for later analysis. The space is one-dimensional and
spanned by the vacuum vector If the particles under consideration are
either all bosons or all fermions, then *',, is either the n-fold symmetric or
totally antisymmetric tensor product of = L2(R3, d3x) with which



1.3 Arbitrary Numbers of Particics in Fock Space 21

will be denoted or A A lffj,
j = 1, 2,..., is a complete orthonormal set of functions on thea the
vectors 1)5, 1)2 ®•.. or respectively Ifh A fi2 A A are a
basis for .*',,. In the latter case all thejk are to be taken different. For bosons
the same f's can be collected together and written as I 7...., with

= N. The algebra generated on the individual of the boson Fock
space by the symmetrized Weyl operators

(r,,xj + S*iPi)}

where ..., ito) is a permutation of (I, . :. , n), will be called the Weyl
algebra, and is represented reducibly on .*',—all bounded functions of N
alone belong to the commutant of the representation.

The irreducible field algebra on .*'F turns out to be invaluable for the
many-body problem:

Definition (1.3.2)

Let Ifs, f2,...> 12. . .>. and define the creation and annihilation
operators a*(f) and a(f) by linear extension of

a(fm)1f7:,..., = f7,...,
LA f,t2—t

mJ2..J 21Jj,'Jj2
+ 17k_I> (for

A A = A A fj,,> A A •.. A fe,,>
+ + (— f,,_1) (for fermions),

. . ., = + 111111+1 jr,...,
+ 1117;, +

.4- fl's. +1>

k \
I 17:'..., 1 (for bosons),

1=1

A = Ifm A f,, A A IJM> (for fermions),

and + g

Remarks (1.3.3)

1. The prototypes of the a's for bosons are the a and a* of a harmonic
oscillator (III: 3.3.5; 2), and for fermions they are the matrices of
(1.1.2). The formal analogy is not just superficial; the operators a(f)
show up when one quantizes coupled oscillators and then passes to a
continuous limit, in the procedure known as field quantizatlon, or second
quantizatlon.
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2. Formally, the a's satisfy the commutation or anticommutaiion relations:

(a(f), a(g)]= (f)g) (the scalar product on

(a(f), a(,g)3 = 0 for bosons,

z(j)a(ij) + a*(g)a(f) (a(f), (fig),
(à(f), a(.g)] + = 0 for fermions.

Conversely, (1.3.2) can be derived from the commutation relations and
= 0. The commutation relations are invariant under unitary

transformations of the so (1.3.2) is independent of the choice of the
basis. In the spirit of the UNS Construction, vector States may be identified
with operators:

(ne! ... ne!) /a*(fj)II1 . ..

or

A A = .. a*(fjh)l0>.

3. As in (III: 3.1.10; 2) the commutation relations reveal that the operators
a(f) are unbounded. To get a CC algebra, it is necessary to use the bounded
operators exp[i(w(f) + x*a*(f))); the algebra they generate is called
d9.

4. The anticommutation relations for fermion fields are the same as those of
for which reason their a(f) are bounded: Jla(f)'Pfl2 + =

<PI(a(f)a(f) + a(f)a*(f))P> = (1 so � Hill.
Because <OIa(f)a(f)I0> = this means iia(f)Ii = (ia*(f)I( =
ii fit. The operators a(f) generate a C algebra dF, which is the norm-
closure of the polynomials in a and a*.

5. It follows from Remark 4 that the mapping f is an isometric
homomorphism of the Banach-space structure of dF. (The
mapping f a(f) is continuous but antilinear, that is, a(Af + pg) =
Aa(f) + jt*a(g).) For every unitary transformation U e there is a
linear transformation a(f) —, a(Uf), which can be extended to an auto-
morphism U:

u(a(f1) .. . ... =
a(Uf1)... a*(Ugj). (1.3.4)

In particular, for every strongly continuous unitary group U(t) there is a
norm-continuous group of automorphisms u, on dF (i.e., the mapping
t u1(a) from to is continuous in norm for all a). Therein lies a
difference from the Weyl algebra, for which, although the free time-
evolution exp[i(rp + sx)] exp[i(rp + s(x + pt))] is strongly continuous
in t, it is not continuous in norm. The time-evolution on d1 is also not
continuous in norm, so the property of continuity can not be expressed
without reference to a representation. In this regard the field algebra of
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fermions is much the nicer, owing ultimately to its being modeled on the
matrices

fo1\ (00
0•

Fermion fields will consequently be preferred when investigating more
problematic cases.

6. The algebras .cdF and sil8 may be thought of as constructed from local
algebras dA, containing only those a(f)and a*(f) for which supp A.

Clearly, dA c dA when A c A'. Since is the norm-closure of
U L2(A, d3x), equals the norm-closure of dA.

7. It is common for annihilation operators to be introduced at single points,
for which formally [a(x), a*(x')3 ö3(x — x'), a(f*) = J d3xa(x)f(x),
a*(f) = 5 d3x'a*(x')f(xI). Although a(x) is densely defined as an operator,
it is not closeable, so a*(x) exists only in the sense of a quadratic form and
not as an operator (Problem 8). The object a*(x) is called an operator-
valued distribution.

8. Since a annihilates a particle and a* creates one, the spaces are not
invariant subspaces of Fock space. It can in fact be shown that dF and

are irreducibly represented on (Problem 1). The algebra is
said to be quasilocal.

Remark (1.3.3; 5) implies that such things as translations and free time-
evolution correspond to norm-contiImous one-parameter groups of auto-
morphisms on dF. The question arises as to whether they can be presented
as strongly continuous, one-parameter unitary groups on If the repre-
sentation called for is just like the GNS representation of (III: 2.3.9) with the
vacuum 0> as a cyclic, and also invariant, vector, then the answer is yes
(however, see Problems 6 and 7):

The Unitary Representability of the Automorphism (1.3.5)

Let u9 be a group of a C* algebra d, w be an invariant stare
(i.e., w(u9(a)) = w(a)for all g), and it,, be the representation constructed with w.
Then the group of automorphisms has a unique unnary representation U9 on
the Hubert space such that

= Ugxw(a)U 1, (1.3.6)

where is the cyclic rector.

Proof

If we let U9 = u9(a))Q, then the U9 thereby defined satisfies the
stated requirements. It is unique, since if there existed another U9 with the
same properties, then it would follow that (U9 — 0, U9
ir(d)'. Now, because Q is cyclic for it(d) it separates lr(a)', therefore
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0,111;' 1 Problem 5). (Separating means that for a' E iz(d)', a' I Q) = 0
implies a' = 0.)

Remarks (1.3.7)

1. If the group is topological and the realization as a group of automorphisms
is weakly Continuous, then is strongly Continuous,

KU, — = 2w(a*a) — w(a*u,(a)) — w(u,(a)a) —, 0

as g approaches the identity.
2. Our representation of .1, (1.3.2) is a ir,, such that w(a) = <01 a 10> for

a E Therefore is the vacuum vector 10> ,and is invariant under the
transformations brought up in (1.3.3; 5). It follows that the Euclidean
group and free time-evolution can be represented by strongly Continuous
unitary groups of operators on Fock space. They consequently have
seif-adjoint generators (Problem 2), which are, however, not bounded.
Even the operators U, do not belong to To prove this fact we shall
make use of

Deftnltlo.(l.3.8)

The C* algebra obtained by closing the even polynomials in a and in
norm is denoted dG. The norm-closure of the polynomials having the same
number of a's as a*'s in each summand is

Reinarks(1.3.9)

1. d, In the Fock representation, dE = {N}' ri dF.
2. Because[ab,c} = — [a,cJ+b = a(b,c] + [a,c]b, if dedAG

and c e A = 0. then [d, c] = 0.

Asymptotic Commutativlty

Let V(t) E be a one-parameter, unitary group of operators with
absolutely continuous spectrum, such that V(t)0 as t —' and let u1(a(f))
a(V(t)f). Then lila, u(b)] II = Ofor all a E d0 and b d,; this state
of affairs Is described by saying that dG is asymptotically Abelian with respect
to -

First note that [a(f), u(a(g))] + Il = [a*(f), u,(a(g))] + = I (V(t)g 11)1 —' 0
as t —' If d is an even polynomial and c is any polynomial in a(f) and
a(g). then with Remark (1.3.9; 2) it follows that the commutator' vanishes
asymptotically. Because the algebraic operations are continuous in norm,
thiscxtendstod0andd,. EJ
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Corollaries (1.3.11)

1. Since the generators of the spatial translation group and the free time-
evolution have purely continuous spectrum, for them V(t) — 0. and the
appropriate commutators involving them go to zero.

2. The corresponding one-parameter groups of unitary operators on Fock
space, U: e can not belong to Since every U, commutes with
N, it must belong to &/E, and hence u,.(a):1ll < e for all
a and sufficiently large t'. Note that — 1U,11 =

Ii
1

— all which obviously can not be arbitrarily small for all t. It is
even true that .sIF (1 U,u, = u0.

3. Since is irreducible, = (III: 2.3.4), so is certainly
attainable as the strong limit of elements of d,, or even

Remarks (1.3.12)

1. Since commuting observables are jointly diagonable, and hence can be
measured simultaneously, if V is a group of translations, this implies that
measuremcnts separated by a large spatial distance do not interfere with
each other. The local character of the algebra is important for this, and it
does not apply to the Weyl operators, as exp[l(rp + and

exp[i(r'p + s'(x + a))] do not commute. Even the bicommutant
.W'. in the Fock representation is not asymptotically Abelian—for instance,
the generators of the Euclidean group belong to the strong closure of dF
and are constant with respect to the free time-evolution but do not
commute. Therefore is not asymptotically Abelian with respect to free
time-evolution-

2. The point of (1.3.10) for the time-evolution is that as time passes the
disturbance due to a measurement diffuses so widely that local observables
are not affected at much laer times. This does not apply to the observahies

and p. as p and v + pi fail to commute even at large r. Observe thai we
have as yet proved commutativity only for free time-evolution: the
question of whether it also holds for more realistic
remains open.

3. This phenomenon does not occur for compact groups like the rotations;
for them U is a sum of finite- liraensional representations, for which it is
impossible that L' 0.

Global Observables (1.3.13)

The operator N was defined in (1.3.1). it is unbounded and
thus dir,), which d,. Its domain of self-adjointness is
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Moreover, unitary gauge transformations U(ct) = E also
do not belong to dF, but can be attained as strong limits of elements of
In the Fock representation,

/ M

U(x) = s-urn exp( ict a*(f,)a(fj)),
j1 /

where is an orthonormal basis. Although does not depend on the
basis, it can only be defined in certain representations.

Remark (1.3.14)

Since N is conserved in all of the systems treated here, it is not physically
possible to measure the relative phase of states of different N. This means
that N creates a superselection rule in the sense of (Ill: 2.3.6; 7), and the
algebra of observables should, properly speaking, be {N}' = The
representation of this algebra on ..*°, is reducible, as its commutant is

# 1}.

Obsenables at a Point (1.3.15)

One frequently considers the particle density and current at a point,

p(x) = a(x)a(x) = E a(fJ)a(fk)fi(x)fk(x),

Xx) = — —

= a*(fJ)a(fk) (f7(x)Vfk(X) — (Vfi(x))f*(x))).

The f& in these formulas must be chosen as an orthonormal basis of C'
functions, in which case these observables are densely defined as quadratic
forms. They are not, however, closeable: Their restrictions to .*', are the
quadratic forms of

and —

the former of which is recognizable as the prototype of this phenomenon as
encountered in (III: 2.5.18; 3). Matrix elements with, say, p(x.) may be
understood as distributional limits of matrix elements of the bounded
operators a(f)a(f) as f —, ô3(x). Similarly, the continuity equation p +
V . j = 0 holds at least for matrix elements evolving freely in time,
Lf = —Af/2m.
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Problems (1.3.16)

1. Show that the representations of dF and d9 on are irreducible.

2. Construct the generators of free time-evolution and of translation.

3. Find dense domains of definition for the quadratic forms p(x) and j(x).

4. Define the number of particles in the volume V. = d3xp(x), as an unbounded,
seif-adjoint operator.

5. For d c and (1 e show that Q is cyclic for .W iff(� separates d'.

6. The mapping a b: b(f) = a(f) + L(f)is an automorphism a,. of the Bose aLgebra
whenever L is a linear, but not necessarily Continuous, functional. Show that a,. is
unitarily implementable on i.e., there exists a U,. e such that 1 = UZ UL =
UL Us,. and U,.a(f)UZ' = 6(f), itt L is continuous, which means that it can be
written as L(f) = for some pe

7. Let 6(f) = a('Df) + 1,9' n invertible. Show

(1) that a b is an automorphism of the Bose (resp. Fermi) field algebra if

pqi* = i = :4

4 = 0 = F

where 'P = and

(ii) that it can be represented as a unitary operator o'n .*',.. itt e

8. Show that although the a(x) of (1.3.3; 7) is densely defined, it is not closeable, and
the domain of definition of its adjoint a*(x) contains only the zero vector.

Solutions (1.3.17)

1. Let b be an operator such that [b, a(f)J = [b, a*(f)] 0 for alif e From the
commutation relations of (1.3.3; 2) and a(f)I0> = 0, it follows that <OIa(fj)
a(f,,,)ba*(g,). . . = (0)blO) <Ola(f1)... which implies that
<xlbx> = <OIbIO>11x112 on a dense set, and therefore b = <OlbIO> .1.

2. With Theorem (1.3.5) and the fact that the are invariant, by reasoning as in
(1.3.13) we find that the two generators are

Mr
s- lim

J
Vf7(x). Vfr(x)a*(fj)a(f4) d3x

i.j

and

s-urn i
J

Vf'(x)fk(x)a(fk) d3x,
&.j

where the strong limit is defined as in(lH: 2.5.8; 3). Formally, these can be written as

5 d3xVa"(x) . Va(x) and 1 5

3. For p(x), linear combinations of ft 10> with Forj(x), thefk have

to be continuously differentiable.
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4. N, is a Hermitian operator on
DN (1.3.13), and hence the domain of its Friedrichs extension contains DN.

5. "If": Let P be the projection onto the orthogonal complement of {aJQ>} for a d.
Then P d' and P = 0.
"Only if": Let a' ed', = 0. Then a

0 a dense set, so a' = 0.

6. The mapping a b is unitarily implementable on if there exists a vector lOb> c
such that b(f)IOb) = Ofor alIf E It is clear that the existence of U implies that of
lOb> U 10>. On the other hand, the mapping

flarlo>-4flbflOb>, -

where a, = a(fj), b, = and {f,) is an orthonormal basis, defines a unitary
operator U. since this set of vectors is total. (Every vector is cyclic for an irreducible
representation.) If L is not continuous, then kerL is dense in and therefore

= 0 for a dense setoff's. This implies that lOb> = lO> and thus that L 0,

which is continuous. Therefore fOb> JrF. If, however, L(f) = (g f), p it is

possible to choosef1 = g/flgfl. Because a =
— IlgiD,

thevectorlOb> = exp(—arflglf)lo>formallysatisfiesb&fOb> = (a& + '5k11$9ll)IOb>=O.
It is also normalizable provided that

<Olexp[—flglla1]exp[.-iIgIIaflJO> = = exp!fgfj2,

SO < if ugh <

7. (i) In matrix notation, for b = 4a + 'Pa', (i) must hold: 1 = [b, =
'I"!", and 0 = [b, H" 'P4'. Written as block matrices, this becomes

—

For invertibility it is necessary that

(1* 'P\
q,S'/

which produces the second line of the
(ii) The Fock vacuum lOb> satisfies 0 = 'h)kIOb> = (ak + where

M 1r "P. Because (a, a'Ma'] = 2Ma'. it can be written formally as lOb> =
c exp[—a'Ma'/2310). (Observe that by (i), M M' (resp. M = —. M').) To
determine the'normalization constant C, we shall calculate

<Olexp(—laNaj

when M = ± M', N — ± N', (M, N'] =0 and N are for the moment
real. They can then simultaneously be put into the normal forms

m1

( (
m2
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and respectively

/ ?ui \ /
I I I
I 112

.•.I \
with real, orthogonal transformations. The transfr'rmations preserve the commu-
tation relations of the field operators. so we may use this basis to calculate

r , r
I n1 I i in1 I (n1 in1)

= = (I — n,m1Y°2

and, respectively, for fermions,

= I n1in1.

Therefore,

= fl(l M)) I

and, respectively.

fl (1 + n1m1) =
M))i 2

This can be continued analytically to complex matrix elements, and. in particular,
in our case.

I.

The determinant is finite for .%f . Observe that in the case of bosons. � I.
and SO = is always invertible. The result for krmions is valid for M
;icting oo or odd dimensional spaces.

8. The dense domain of definition of a(x) consists of vectors with continuous, bounded
] 's. For example, for fermions.

A A = f,(x)l fi: — A A A +
I A

The operator a(x) is not closeable. Suppose that exp[ — x — x' then

0 as A 'x, but a particle with
wave-functionf(x') = — s'). Since this is not normalizable, makes every
vector A infinitely long.

1.4 Representations with N =

S3stern.s of N a Hubert space that is the

tensor product of N Hi/bert spaces single particles. The infinite
tensor pr 'duct opens the door to the new mathematical features
field theory.
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The scalar product on an N-fold tensor product of spaces was defined
multiplicatively by

N

= fl lx> = 1x1) ® 1x2)... x. (1.4.1)
i= I

If N = the vectors Ix> that can be used in this formula are initially only
those for which the infinite product converges. The product might well
converge toO even though 0 for all i. In order to form the quotient
space with respect to the zero vectors, it will first be necessary to form the
equivalence class not only of vectors with some factor zero but also containing
the vectors for which the product

fl(x1 I x.)

converges to zero. On the quotient space, (1.4.1) defines a separating norm,
so the space can be completed to a Hubert space *',with the linear structure
defined in the usual way.

This does not yet, however, suffice to define the scalar product of different
vectors Ix> and $y>. Though only vectors such that (x,jx1) = (y,Iy1) = 1 for
all i need to be considered, there are still two possibilities, namely

fl Rx,Iy,)I -+ c > 0,

and

fl —'0,

where —' means unconditional convergence. In case (II), i(x1 I —' 0 as
well, and the vectors may be considered orthogonal. Possibility (I), on the
other hand, does not guarantee that converges. If =

I I
then their product is said to converge if not only fl1 I I yg) I

but also I I
converges. One now encounters the convention that vectors

may be deemed orthogonal whenever —' (case (Ib)). Let us thus
agree on a

Definition of the Scalar Product (1.4.2)

= c provided that fl — c 0, (case (La));

<xly> = 0 provided that fl (x11y1) —, 0 (case (II), or in the

divergent sense (Ib)).



1.4 Representations with N

Remarks (1.4.3)

I. It is easy to see that the scalar product this defines on r obeys all the rules
of the game.

2. The space has been assumed separable, yet even C2, the larger
space is nonseparable. Let E C2 be defined such that (nm) = I,
(nlaln) = a e mi2 = 1, and In> = in)® In) ®.... Then <ala'> =
if n = a' and is otherwise 0, showing that there is an uncountable ortho-
normal system of vectors.

3. Possibilities (Ia) and (I) create equivalence relations between vectors,
because the convergence of and implies that of

11. and, likewise, that of fl1 and implies that of
I (Problem 2). It is acccrdingly necessary to distinguish between
strong (Ia) and weak (I) classes:

(Ia): fl' y,) —+ c 0, (1): fl' —' c > 0.

The symbol if nieais that any finite number of factors 0 are to be left
out. The equivalence classes span linear subspaces, so can be de-
composed into (uncountably) many weak equivalent classes, for which•
vectors of different classes are orthognal. Each weak equivalence class
can be further decomposed into lly orthogonal strong equivalence
classes. Since the latter differ only by phase factors within a given weak
equivalence class, they contain the physical information.

Representations of d on Infinite Tensor Products (1.4.4)

For the reasons stated in §1.1 and §1.3 we shall be interested in the algebra
generated by the operators More precisely, let d be the algebra
generated by 1 ..., 1 ..., etc., and let d" be
its strong (= weak) closure. The first thing to notice is that an element a of
d sends no vector of out of its strong equivalence class; since other than a
finite number of entries there is always an infinite I ® I ® 1 ..., nothing
alters the convergence of (x1 (y1). The representation of d on is
consequently reducible to a high degree; every strong equivalence class is an
invariant subspace. The formation of the weak closure changes nothing, since

= 0 for Ix> and in different equivalence classes, and if a,

then clearly <xjay> 0. Thus every strong equivalence class provides a
representation of d and of d", and it is a peculiarity of the infinite tensor
product that these representations are inequivalent so long as they arise from
different weak equivalence classes.

Example (1.4.5)

Returnto the simple case of (1.4.3; 2), and define = aj, and in
analogy with (1.1.2) such that u in) = I—n), tifl —n) = In), ti1n) =
crJ —a) = 0. Let d be the algebra generated by and = 1, 2,. .., let
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be its representation on the strong equivalence class of n>, and define
The representation is constructed like the Fock representation,

the operators corresponding to creation and annihilation operators
and to the vacuum: 0 for all j. The vectors Yj ...
are total for the (strong) equivalence class, and the representation

d afortiori).

Remarks (1.4.6)

1. These representations of the c's are always equivalent on finite tensor
products; the Hubert space constructed with the GNS procedure contains
every vector in'>, in contrast to the infinite case, where the a's never send
vectors out of equivalence classes, which, however, contain no vectors
In'> with n' n.

2. The mean magnetization
N1

s = urn
j=1 "

exists as a strong limit, so $ E As IV the commutator of this
observable with any element of the algebra goes to zero in the norm
topology, so s is in the center of In any irreducible representation, s
must be a multiple of the identity, and is thus the same as n, its expectation

in the state n)' If n n', then and ire. are inequivalent: If there
existed a unitary transformation U mapping the equivalence classes of n
and n' onto each other and such that Uir•(a1)U' then this
could be extended to a transformation of the strong closures and

and when applied to s it would imply that UnU1 = a'. This is
impossible, since two different multiples of the identity can not be unitarily
related.

3. On the space there exists a unitary transformation sending In> to In'>.
Let n, = MJk MM' = 1; then the transformation In) I Mn) (on every

factor of a>) is clearly the unitary transformation that brings this about.
Upon restriction to an equivalence class, its action Is

'• =

in contrast to the previous U. and so it creates an isomorphism between

it.(cl) and
4. Within a given representation the rotation

—.

represents an automorphism of the algebra generated by the a's, and
as such it preserves norms. Yet it can not be extended continuously to the
weak closure. If there were such an extension, then I —' Mkj I, but

I is invariant under every automorpiism. Consequently, in the repTe-
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sentation space of there exists no unitary transformation U =
as it would extend to Formally, it would turn fl> into

In'>, but there is no vector In'> in the representation space of (ci
Problems (1.3.16; 6) and (1.3.16; 7)).

5. Let M(t) be a one-parameter group of rotations on -—for definiteness
about the 3-axis—and let U(t) be its representation on as discussed in
Remark 3. On a formal level, could be regarded as the generator
of the group. The unitary operators U(t) map the equivalence class of
In> into itself only if n points in the 3-direction, and in that case the
restriction of U(t) to this equivalence class belongs to Although it is
not possible to define densely. — 1) is essentially self-
adjoint in the representation on the dense set specified in (1.4.5) and is
the generator of the rotations about the 3-axis. In other representations
there is no workable definition of this operator, as all its matrix elements
are infinite. It is natural to ask at this point what the generator of U(r)
looks like. It turns Out, though, that U(t) has no generator: By Stone's
theorem (Hi: 2.4.24) the existence of a generator is equivalent to strong
continuity of U(t), but U(t) is not even weakly continuous, for if n does
not point in the 3-direction, then <nI°U(t)In> = lift = 0 and is otherwise
0. It is true that the mapping t U(t) is weakly measurable, but the
generalization of Stone's theorem for weakly measurable groups works
only on separable Hilbert spaces.

6. "Local" rotations of m spins are generated by and always exist.

The representations of the a's on the individual strong equivalence classes
studied until now have all been irreducible, and correspond to GNS con-
structions using a pure state (cf. (III: 2.3.10; 5)). We shall also see in (2.1.6:5)
that mixed states likewise correspond to vectors in a larger Hubert space on
which the algebra is represented reducibly. That space is the tensor product
of the irreducible representation space with another Hilbert space. The key
fact to bear in mind when constructing such representations of the a's is that
the infinite tensor product is no longer associative; for instance C4 ® C4 ®
C4 ®. . = (C2 0 C2) ® (C2 ® C2) ® (C2 ® C2) ® ... ® C2
C2 ®...: The vector

I F/l\ f0\ f0\ Il\1 I 1/i\ f0\ f0\ fi\1

on the left has no counterpart on the right. For this reason we shall not simply
take the tensor product of the space examined in Example (1.4.5) with another
Hubert space, but shall instead proceed as follows.

Thermal Representations (1.4.7)

If there is only one spin, i.e., d is generated by I and then the GNS represen-
tation using the state given in (1.1.11) becomes a reducible representation on
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C4: 1, n(a) = a® 1, n(d)' = I® Z = n
n(d)'= {ot.1},

0<s<l,
<a> = = (0,0, s).

Despite being reducible (d' 1}), this representation is a factor (its
centet is Z = 1)). Accordingly, when passing to infinitely many spins we
consider the representation on C4 ® C4 0 C4 0... constructed with
(1 0.... We find, analogously, that

= 1)0...,
= (1 ® 0 (1 ® 0 . + weak limits

is the weak closure of d, and Z = • 1},

which is a reducible factor representation.

Reanarks(l.4.8)

1. This representation is not equivalent to any of those found in (1.4.5); as
mentioned above, the vector C� fl® ... has no counterpart in the
earlier representations since the corresponding functional in sr,, would
then be strongly continuous. The state defined by (10 ®... on
d.

is a (norm) Continuous linear functional, and therefore extensible to the
whole C* algebra generated by d, but it still need not be strongly con-
tinuous in a representation: For instance, in the representation using

1 +
iN

converges strongly to 1, but <PN> = ((1 + -. 0 1. Recall that a
refinement of the topology on the range space or a coarsening of the
topology on the domain space may destroy the continuity of a mapping.

2. The fact that with only one spin, <a> Tr a exp( — ,io3)fFr exp( —

might mislead one into thinking that for infinitely many spins, in the
notation of (1.1.1),

— T
—

<.> — r• p' p
— Tr exp( —

What goes wrong is that
..j VN

=s0 as N —ø
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3. In the thermal representation (1.4.7) it is of course possible to write
= Tr P0. where P0 is the projection onto the cyclic vector, but
d".

Decomposition of the Representations (1.4.9)

Because of the analogy between a and
the phenomena we have d'scussed are also characteristic of systems of

many fermions. It is not so important that the a's commute whereas
the a's anticommute; the distinction can be gotten around with the right
transformation. For a system of bosons the individual factors of the tensor
product are already infinite-dimensional, which causes additional complica-
tions. In either case there are a great number of inequivalent representations;
the uniqueness theorem (III: 3.1.5) for finite systems does not hold any
more. Thus it would be desirable to find a point of view that organizes them
somehow. The concept of a Lactor was introduced in (III: 2.3.4), as an algebra
with a trivial center, Z = a finite-dimensional space it amounts to
a direct sum of equivalent irreducible representations. The first step in any
decomposition is to collect the equivalent irreducible representations together
in factors and then write the whole representation as a sum of various factors.
In the finite-dimensional case this appears as shown in Figure 2.

It will be observed that the projections onto the space of the
irreducible representations belong to n(d)' and the projections onto the
spaces of the factors belong to the center. Both it(d) and ir(d)' map

Figure 2a The representation of .W in matrix form.
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Figures 2b, c The representation of d' and the center Z in matrix form.

a11
a11

a11
a11

a12
a12

a1 2

1

a21

a21

a21

a32
a22

a22

a22

11(d)':

alp,

0

b11

F1,

b21

b21

b22
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into itself. The elements of the center become multiples of the identity
when projected onto they can assume different values only on different
r1. The decomposition into factors is thus uniquely fixed by Z and conse-

quently by 7z(d). The further decomposition into irreducible representations
is not likewise fixed; some arbitrariness is connected with the spaces If,
for example, .r1 =.
then the choice of the basis {ej for remains free, since the space is the same
for every choice of orthogonal basis. Different bases correspond to the
different maximally Abelian subalgebras of ir(d)' that they diagonalize.

The passage to an infinite dimension requires the generalization of sums
to integrals. The spectral theorem (Ill: 2.3.11) states that a Hermitian
operator a e be represented as a multiplication operator on some
space Sp(a)). If there is degeneracy, then a spectral value Sp(a) is
associated not with a single complex number but with a many-dimensional
Hubert space If denotes the component of v E in then the
scalar product on can be written as

=

The action of a on v is = The center Z iv(d) is a
commutative algebra, and its elements may be simultaneously diagonalized.
and so any z Z may be written as = f(cz)v(ot), where f assigns a
complex number to Any element a of d can then be represented by

= ir3(a) E and h E ir(d)' =
[b(ci), = 0 for all a e d. In a finite number of dimensions

every can be written ® — ® and
b is the finite-dimen-

sional analogy goes; it will not be possible to write every factor in the form
I.

Classification of Factors (1.4.10)

We pause now to take stock of the factors, which will function as basic
building blocks. The possibility that comes to mind first for a preliminary,
rough classification is to define a trace. In (III: 2.3.19) the trace was defined
as a mapping from ,the positive operators, to and it was extended to
a linear mapping from the trace class to C. The trace is discontinuous
in all topologies weaker than the trace topology given by III. it may even
occur that the only element of an algebra d in the trace class is the zero
operator, as for example with the factor ® 1, where I is the identity
on an infinite-dimensional space. In this case there is plainly the possibility
of defining a trace by 'I'(a ® I) = Tr1 a, which has all the necessary proper-
ties. This observation suggests an abstract
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Definition of the Trace (1.4.11)

Let d÷ be the positive cone of a strongly closed algebra d, i.e., a von
Neumann algebra. A trace is a mapping ID: d.. with tbe following
properties.

(1) (D(21a1 + 22 a2) = 214)(a1) + ).2'D(a2) for e and E R4;

(ii) 4)(a) = for all aed.. and all unitary
U E 4'.

The trace ID is said to be

falhful,ifID(a)= Oandaed÷ = 0;
flalte,if4)(a)< co

for all a a nonzero b <a such that
4D(b)<oo;
normal, if for every increasing filter (see (III: 2.2.21)) F
supremum s, ID(s) = 4)(a).

Examples (1.4.12)

1. 4)(a) = 0 for all a e 4',.. The trace is unfaithful, finite, and normal.
2. 'D(O) = 0, ID(a) = oo for all a 0. The trace is faithful, not semifinite, and

normal (purely infinite).
3. Let 4' be the n x n matrices and 41)(a) = Tr a. The trace is faithful, finite,

and normal.
4. 4' .W infinite-dimensional, and 'D(a) = Tr(a). The trace is

faithful, semifinite, and normal.
5. 4' b) = c Tr a + fi Tr b, and /3 R4. The

trace is faithful only if and /3 are nonzero and finite only if the are
finite-dimensional. In all cases it is semifinite and normal. (Note that
although ID is invariant under unitary transformations belonging to 4'
for /3, it is not invariant under all unitary transformations in

6. Let 4' be the algebra of multiplication operators dp) on ds),
and ID(a) = J dp(x)a(x)p(x) for some non-negative, measurable p. If
p > 0 a.e., then ID is faithful; if p E L'(R, dp), then ID is finite; and if
p < 00 a.e., then 4) is semifinite. In all cases the trace is normal.

7. Let 4' be the algebra of multiplication operators on j2, and ID(a) =
a, when the limit exists, and otherwise let the trace be defined by

linear extension with the Hahn—Banach theorem. The trace is finite
neither faithful nor normal: If F = {(a1), where as = 1 for finitely many i
and otherwise = 0), then s = (a, = 1), and ID(s) = 1, but (b(a) = 0 for all
a F.
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Remarks (1.4.13)

I. Property (ii) may be replaced with (ii)': tb(aa*) = for all a d
(Problem 3).

2. It can be shown in general that {a d + : D(a) < cc } consists of the positive
elements of a two-sided seif-adjoint ideal onto which can be ex-
tended as a linear form (also denoted tb). It is discontinuous in every
topology that is strictly coarser than the one defined by the norm flail, =

12)• All continuous linear functionals on with thistopology are
of the form a —, a If,, b e d (Problem 4), and nonzero for b 0 0.

3. Property (ii) implies for a E and any unitary u d that =
'1(au). Moreover, since every element of d is a linear combination of
unitary operators, = 'b(ba), a e .11,, b d.

4. The requirement of normality originates in the theory of integration,
where monotonic convergence can be permuted with integration. The
trace can consequently be regarded as a generalization of the integral to
noncommutative integrands.

5. If 1' is normal, then d may be written as d = d1 ® d3, where
is faithful and semifinite, = 0, and is purely infinite

(Problem 5). As we shall be interested solely in normal traces and shall
ignore the trivial cases of Examples I and 2, we may confine our attention
to faithful, semifinite traces.

The ordering of operators induces an ordering of traces, whereby � 'P
shall mean b(a) � 'P(a) for all a E For the ordering of the trace there
is a theorem on

The Form of a Dominating Trace (1.4.14)

Let and P be normal, traces on a von Neumann algebra d. Then
b 'P if there exists bEd r, d', 0 <b � 1, such that tb(a) = P(ab) for

all a.

Proof

Let be the ideal on which 'P < cc, given the norm flail
The mapping a -+ D(a) is then a Continuous linear form on and by
Remark (1.4.13; 2) it is 'P(ab) for some b d. To prove that b d', observe
that for all a and c e d, 0 = 1)(ac — ca) = 'P(acb — cab) = 'P(a{c. b]),
so, according to (1.4.13; 2), b] = 0. D

Corollary (1.4.15)

Any two faithful, normal, traces on the same factor are proportional.
More specifically, if and are two such traces, then + and
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+ 'b2. Since the center of the factor consists of multiples of the
identity, = + 0 < < 1, so =

Because the trace is essentially unique on any factor, it may be asked
whether the trace of a projection is an integer c, which would allow a reason-
able definition of the dimension of the subspaces onto which they project.

The Types of Factors (1.4.16)

Factors of Type I

The range of the trace of the projections of factors of type I is c e Z and
they are of the form ® 1, with )t" separable, i.e., a sum of identical
copies of an irreducible algebra of operators. The trace is given by 0 1) =
c Tr a, and if the dimension of is n, then it is finite for n < and not finite
but only semifinite for n = This creates a distinction between subtypes

Factors of Type II

On Factors of Type ii there is a semifinite, normal, faithful trace the range of
which when applied to the projections is either [0, 1] or Depending on
whether the trace is finite or only semifinite, one distinguishes between
subtypes and An example of type is the algebra of infinitely many
spins (1.1.2) represented with the GNS construction using the state
D: 'D(1). = 1, 4V(fl = 0 ((1.4.8) with s = 0). This state has the properties
of a trace; commutativity (1.4.11(u)) holds trivially, and this representation
is a factor. Since the factor is obviously not isomorphic to anything of the
form 0 1, n < and the trace is finite, it must be of type III. It is
reducible but not of type I, since it can not be written as a direct sum of
identical irreducible algebras. Type factors are of the form type ®
type III, where the trace is defined multiplicatively on the tensor product.

Factors of Type III

They have no normal, faithful, semifinite trace. The infinite spin algebra
(1.1.2) again provides an example, this time with the GNS representation
using the state (1.1.11) with s # 0, in other words (1.4.8).

Remarks (1.4.17)

1. The type with the properties familiar from finite matrices is 1, while types
II and III are less intuitive. All three types occur in the GNS representation
of the spin algebra with a state of the form (1.1.11), with s = 1, with
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s 0, and 111 with 0 < s < I. To the malicious delight of many mathe-
maticians the initial impression that type III is the rule for infinite systems
has panned out with the passage of time. Types I and II turn out to be
peripheral possibilities.

2. It was ascertained in (IU: 2.3.6; 5) that factor representations with
maximally Abeliaii subalgebras are irreducible. As a result, representations
of types II and Ill have no maximally Abelian subalgebras.

3. If a factor includes an irreducible subrepresentation, then a semifinite,
normal trace can he defined on it. mapping the projections to a discrete
set of values, and it must therefore be of type I. It was remarked in
(111: 2.3.10:5) that the GNS construction yields an irreducible
tation if the state it builds on is pure. This means that no vector in the
Hilbert space of a representation of type 11 or Ill corresponds to a pure
state on the algebra.

4. Any operator a of an algebra of type 111 is of course bounded, so Tr pa is

well defined for any p E 1(X), only p can not come from the algebra,
which contains no element of a trace class (other than 0).

Let us end the section by recapitulating the physical significance of the
new mathematical phenomena that make an appearance in infinite systems.

1. Inequivalent Representations
Since vectors that differ globally are always orthogonal, globally different
situations lead to inequivalent representations. Within a given represen-
tation different elements of the algebra produce vectors that differ only
locally.

2. Non-normal States
Expectation values with a vector of a different, inequivalent representation
Constitute a state on the algebra, but one that fails to be strongly con-
tinuous with respect to the original representation, and hence it is not
normal. They are representations of different global circumstances, and
thus assign different values to global obscrvables like densities, which are
only defined with strong limits.

3. Factors
Whereas it(d) describes microscopic observables, covers macro-
scopic observables as well. Factors associate certain numerical values' to
the global observahies lying in the center it(d)" it(d)'-4actors are the
macroscopically pure states. In factors, Khinchin's ergodic theorem
applies to them, stating that these global quantities exhibit no fluctuation.
Even if vectors of a factor are pure with respect to this subalgebra, they
may produce mixed states. The ground state is associated with type 1,
finite temperature with type III, and infinite temperature with type H.

4. Unitary Representation of the Time-Evolution
If the algebra changes globally as time passes, then a representation may
change at any moment into an inequivalent representation, and it is not
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possible to represent the time-evolution with a group of unitary trans-
formations within the representation. Yet if the representation is based
on a time-invariant state, then the other vectors of the -representation
differ only locally, and thus do not change in time, from the global point
of view. This establishes the possibility of a unitary time-evolution.

Problems (1.4.18)

1. Show that with vectors Ixw> and A1,..., A,, e C, Definition (I.4.2) implies
that A7 � 0. (Hint: -it suffices to show this for the case where the

are strongly equivalçnt. Prove that f!j.. 1(xr � 0 for any N and
take the limit N x.)

2. (i) Show that ix> and are equivalent if Lii — (x1IyJI < x and weakly
equivalent if!, II — l(x1k1)I1 < Y.

(ii) Conclude from (I) that the of lv> has all the properties of an
equivalence relation, namely reflexivity, symmetry, and transitivity. (Hint: use
the inequality II — � 4[i I — (xi)')I + II — (yi:)l), which holds for
unit vectors. This 4 is a generous constant.)

(iii) Show that Ix> — I> if there exists a sequence such that fx)-. ly'>,

1y> ® cxp(hp2XIy2)®...
(iv) Show that is also an equivalence relation.

3. Show that conaition (ii) of the definition of the trace (1.4.11), i.e., 0(a) = 0(UaU
may be replaced with: 0(a*a) = 0(aa) for all a in a von Neumann algebra d.

4. Show that for a faithful, normal, semifinite trace iJ', all continuous linear forms on
a e . may be written as a 0(ah) for some b e d. (Hint: use the inequality� � ibIi0(IaD.)

5. Show that with any normal trace0. d can be written d = d3, where
0, is faithful and semifinite, and is purely infinite. (Use the following

coroUaries of von Neumann's density theorem (III: 2.3.24; 4):

(1) Let - H c d be a strongly closed, two-sided ideal. Then .11 contains a projection
operator P such that P e d .rl' and P> Q for all projection operators

Q E . (I.

(H) Let .'4 be a two-sided ideal and suppose a is in the positive part of the weak
closure of Then there exists an increasing filter having a for its
supremum.)

Solutions (1.4.19)

I. Then x is matrix.

. . . -
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is Hermitian and non-negative, and is thus a sum of prqiections. i.e.. matrices of the
form

j
. . .

This implies

x?1) =
'J=i

'and

= . .. � 0,

Since

.. = I! Q4' ... � 0.

2. (i; follows from the theory of infinite products [12).
(ii) To prove the inequality, choose a basis for the subspace spanned by ix). It), and

:) stich that they correspond to the vectors (x. fi. 0).(I, 0, O)and (7.6. t:). where

+ = ;'V + 1W + El2 = I. Then (xlv) = tv!:) = (xl:) =
+ ii — x: -—rôI � — + � 211 — + 211 — +

(I — !..1)12 �2(it —xi' + 1 7112)2

The reflexivity and symmetry of the equivalence relation are trivial and transi-
tivity follows from 4i) together with the inequality.

(Iii) ('hoose p, = — ,).

a: This is trivial.
(iv) follows from (ii) and (iii).

3. (ii) (iij): With a polar decomposition. a = Via!. where aa la!2 = VV!a12.
aa = I' ialiF*. Let .11, be the trace-class ideal: a e.il, = &a C and a& e

Va'a e .11,. since V = w-1im10 a(1a12 + t) 1 2
C il. which. with Remark(l.4.13:

3) implies 01 Vt Va*a) = 0(Vatavt).
(ii') (ii): Let a � 0. 0(UaU I) = 01Ua' 2a' = 01a12UtUal ') = 0(a),and
every operator is a linear combination of positive operators.

4. To prove the inequality, let a and & be non-negative. 0(ab) = 4D(a' 2ba"2) �
sinceforanyaandh.a' 2 a' 2!;bll& 2.Thusj(abfl2 � 01latIlbI4(Iallbtl)
and is consequently � = in which the
Cauchy-Schwarz inequality lO(ab)12 � 0(aat9(bbt) (see (III: 2.2.20: lfl was used

in the form I0(ab)12 = !0(UIaiI'lhl)12 (with the polar decompositions a = Ujaj
and h = Fib!). This = !0(lbl' a1' 2VIhV 2)12 � 011h1' 2UIal' x
;aj' 2U*IhIi 2). 0(jhj' 2VtlaI1 21a?' 2) = 0(IhI VIa! UtYP(VIbI k'tIaI) =
lMihliati)01lbtlIal). Now let ab = Wjabj; then 4'(Iabl) = 0(Wah) � lhW!I x
41(ial) � h 'S(lal). The first part of the inequality follows from I01ab)I j01ab.1)l
s I'0(lab9 = 011ah9.

It is a corollary of the inequality that the norm' of the mapping a —. 4'(ab) is !!b I'.
This allows .& to be identified with a closed subspace of. To see that d = .fl.
first suppose a 1. Then the mapping .il —. C: h —' 'V(ab) is normal, entailing
ultraweakly continuous (see (2.1.4)), which implies that for any a e .4.1' -. 0(ab) is
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ukraweakly continuous. Because of the inequality again, the norm of this mapping
is 4(IaI), which implies that .t, can be imbedded isometrically and isomorphically
in the preduat i.e., the space of ultraweakly continuous linear functions. Thus

We shall see in (2.1.3) and (2.1.4) that = and = Since
d is ultraweakly closed, .W,. = with {p e : Tr pa = 0 for all a e .cl},
so d = Therefore c = d, which implies = d.
Remark: is dense in but not in general closed.

5. For more about types I and II, see Chapter 1, §3 of [4]. The set {a e b(a) = 0)
is the positive part of a two-sided ideal 4. Let be the trace class, let - rand be

the strong closures of t' and and P1 and be respectively the largest projections
they contain (see Corollary I). The Hilbert space can be decomposed as

where (P2 — P1)JV, (1 — in which case

d = .cl2 .c13,where cl1,. since P2 belong to cl r. .cl'.
It is obvious that = 0. To see that is semifinite, apply Corollary II:

Let a E..N then there exists an operator be b � a. such that 0.

The remaining claims are trivial.
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2.1 The Ordering of the States

The heuristic concepts of purer and more chaotic states can be made
mathematically precise with reference to a lattice structure of the
classes of equivalent density matrices.

States are by definition (III: 2.2.18) formed, positive linear functionals on
an algebra d of observables. If the dimension of the underlying space is
finite, d = then all linear functionals are of the form .1 a -. Tr pa

(p Ia), p and is its own dual space. The inequality of
(1.4.18; 4),

i(pja)i � hail Hp111, 11pH1 = Tr(p*p)l2

then holds, and is optimal in the sense that

sup I(pla)I = flail, sup I(pla)l = 11ph11. (2.1.2)
IIpIItl

If the dimension of is inhlmte, the inequality applies initially to the
operators of finite rank (cf. (III: 2.3.21)), denoted depending on
whether the norm or is used. In these topologies continuous, linear
functionals are of the form

—, Trpa with Bp111.<

or

witbilpll<cx.

45
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The linearity and continuity of the functionals thus defined are obvious,
and it can be seen as follows that all functionals with these properties are

'of that form. By what was said earlier, a linear functional on f determines
the restriction of an operator p to any finite-dimensional subspace. To
guarantee that for all a or � for all a E
by (2.1.2) it is necessary to ensure that jpi or respectively is bounded.
If the spaces ê' and are now completed, becoming the Banach spaces

and of (III: 2.3.2 1), then their dual spaces are unaffected—the dual
spaces of a space and of a dense subspace are the same. The state of affairs
is analogous to that of 10, 11, and the spaces of sequences (x1) satisfying
respectively x L I xl < x, and sup, 1x11 <

Duality for the Subspaces (2.1.3)

= = where W and are given the norm and
the norm II These norms on and produce the strong top;

ology on the dual spaces, as can be seen from a comparison of (2.1.2) with
(III: 2.1.21).

The Banach space is thus not reflexive, so is strictly larger than
If a Banach spaces is nonreflexiye. then the same is true of f's, g**

etc.: Let a but a The functional w: e + ,.a —' A defined on (E + Aa}
can be extended continuously to by the Hahn-Banach theorem.
Therefore, we but 0. Hence and are a!s. not reflexive;

is strictly larger than All trace-class operators linear
functionals on the bounded dperators by a —' Tr pa. and these linear
functionals are even Continuous is equipped with a
than the one from If the neighborhood basis is defined

= ITt p(a — a')l < (2.1.4)

and p ranges only overt, then this is the weak topology, lip is allowed to
range over then it is known as the ultraweak topology, and is genuinely
finer than the weak topology but coarser than the Il-topology. The linear
functionals a Tr pa for p are, however, obviously continuous if

has the ultraweak topology. These functionals have in addition the
property of normality (111: 2.2.21): the order of taking weakly continuous
linear functionals and suprema over bounded sets can be interchanged, since
by Vigier's theorem (III: 2.3.24; 11) the supremum is the limit of a strongly,
and therefore also weakly, convergent sequence. Since the weak and ultra-
weak topologies are equivalent on bounded sets, normality carries over to

•ultraweakly continuous, linear functionals. A somewhat deeper theorem
([4], 1, §4, Theorem I) states that these include all normal linear functionals
on We summarize by stating the
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Characterization of Normal States (2.1 .5)

The following properties are equivalent for a state w on

(1) w is normal (III: 2.2.21):
(ii) w is given by a matrix p such that w(a) = Tr pa, p � 0, Tr p = 1;
(iii) w is ultrawcaklv continuous.

Remarks (2.1.6)

1. The density matrices form a norm-closed, convex subset of the unit sphere
of 4', 1,the trace-class operators with the trace norm 0

2. If the system is classical, then instead of there is an Abelian von
Neumann algebra, and we are familiar with the normal traces in the guise
of probability measures. Specifically. on the L functions on phase space
they are of the form p(p. q)Jc�, being Liouville measure (I: 3.1.2: 3),
p E L1, p � 0, .1 .= 1. Yet it may he that = SUPp.q Ip(p. q)j 1t 1:

Suppose that X4 is the characteristic function of a set A such that 11(A)

$ dl�YA < 1: then an example is furnished by p
3. All states constructed with a vector of are pure. normal, and even

weakly continuous--the density matrix for them is a one-dimensional
projection. Conversely, any one-dimensional projection yields a pure
state on ,M()V)

4. The spectrum of a density matrix is discrete, as it is in the trace class (and
hence compact). The sum of the eigenvalues is 1.

5. The density matrix can be thought of as a combination of the vectors that
diagonalize it, or as a pure state on a larger Hubert space .jr ® iv,
in which is imbedded as ® 1. The vector of g correspond-

ing top = Ij><j1p1 is j> ® (cf. (1.4.7)). is separable,
then the weak topology on ..Wg induces the ultraweak topology of

1.

6. The normal states are dense in the positive unit sphere of
(see (Ill: 2.1.19)), but are a proper subset rather than the whole

of it. Hence they are not also compact.

Traces offer many advantages for doing calculations, owing to the corn-
mutativity property (1.4.13: 3). Inequalities for ordinary numbers often
extend to traces, even when noncommutativity prevents them from extending
directly to operators. Some of these inequalities will be used frequently
later, and so are below. It will always be assumed that whatever the
trace is taken of belongs to the trace class, though many of them have the
generalization that lithe lesser side of an inequality becomes infinite, then
so does the greater side. For greater flexibility general forms are presented,
while the name attached refers to the original version. The symbol Tr will
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always mean the trace on These inequalities apply trivially to factors
of type I, and many also apply to type IL

Bask Inequalities (2.1.7)

1. Pelerls's Inequality. Let k be a convex function from R to R4 and
be a not necessarily complete, orthonormal set. Then

Ti k(a) sup k(<ifali>).

2. Convexity. Let k be a convex function from R to R and 0 � � 1.
Then

Trk(4xg +(1 — x)b)� xTrk(a)+(1 —

3. The Peierls-Bogoliubov Inequality. Let k be a strictly nionotonically
increasing, convex, differentiable function R —, R (and thus the inverse
function k1 exists), and suppose k/k' is convex. Then

(1 — x)b)) � cdc'(Tr k(a)) + (1 — x)k'(Tr k(b)).

4. Monotony. If m is a monotonically increasing function R —,

a b=Trm(a)�Trm(b).
5. Klein's Inequality. Let g, and h be functions R —, 8k such that for all

� 0.

Then
Ti � 0.

6. Holder's Inequality. Suppose that k1 and k2 are convex, strictly mono-
tonic functions R -' R, the mapping (ix, if) '(fi) is concave,
and A' has dimension N < Then

�
7. The Cauchy-Schwarz Inequality. tTr(ab)2 I � Ti aabb.
8. Lieb's Theorem. Let a and b be non-negative, a, b, c e and

0 � � 1. Then the functions a —* Tr exp(c ÷ In a) and (a, b) -.
Tr a'cb' are concave.

Proof

1. By the spectral theorem and Jensen's inequality, for any unit vector
11>, <ilk(a)li> � k(<fla)i)), and therefore � Lk((iIaIi>).
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Equality holds if the 11> are eigenvectors of a. It suffices to take the
supremuni over finite sets

2. Let be the eigenvectors of cia + (1 — ci)b. By Peierls's inequality,

Tr k(cza + (1 — cx)b) = k(ci<ilali> + (1 —

� + (1 —

� ciTrk(a) + (1 — ci)Trk(b).

Note that the inequality k(2a + (I — x)b) � cik(a) + (1 — ci)k(b) can be
false in the sense of operator ordering.

3. If k/k' is convex, then for sequences of numbers and {y,},

k - k(fl,ci + 71(1 — � - 1 + (1 — -

by Problem 2. Hence, as with Inequality 2,

+ (1 = + (1 — ci)<ilbli>))

� k(<ilali>))

+(I

� rzk'(Trk(a)) + (1 —

using Inequality I again.
4. If a � b, then the mm—max principle implies for their ordered eigenvalues

that a1 � b1, so L m(a1) � m(b1). Once again, the inequality m(a) �
m(b) may fail for operators.

5. Let a- and b, be the eigenvalues of a and b, and be the scalar product of
the eigenvectors of a with those of b. Then

Tr = I C,j 12 � 0.
k 1,1 &

6. Let a, and b, be the ordered elgenvalues of lal and Ibi, and let Ii> denote
the eigenvectors of a. By the mm—max principle (III: 3.5.21),

Trab = � — a,+1)

� —
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The inequality

k1 � k

• • for k1(a1) and k2(b1)

is just the assumption of concavity.
By the Cauchy—Schwarz inequality (III: 2.2.20; 1) for states,

ITr ababl2 � Tr abb*a* Ti b*a*ab = (Ir a*abb*)2.

.The order of the operations is important; it is not true in general that

Tr(ab)2 � Tr a*ab*b.

8. The proof of this rather deep proposition in the noncommutative case
is too laborous to be repeated here—see [5]. 0

CorollarIes (2.1.8)

1. For any orthonormal system {Ii>}, flF(H) —in Tr
� —InLexp(—fl(ilHIi>).

2. The function Ii -' Ti exp( — $H) is convex.
3. In fact, even H in Tr exp( — flH) is convex, so F(H) is concave. By

recourse to Tr f(H + = Tr Vf'(H), and the fact that F is
majorized by any tangent, one finds that

F(H0) + (V>8 � � F(14) + <V>fl0,

where (a>8 = Tr a exp( — exp( flH).
4. H1 � H2 F(H1) �
5. If k is convex, then Tr(k(a) — k(b) — (a — b)k'(b)) � 0, so

Tr(a in a — a in b — (a — b))> 0, too. If = dx'g(a') and f2(jJ)
= dfg'1(ft'), then by Young's inequality, � f1(x) + f2(fl), and
therefore Ti ab � Trf1(a) + Trf2(b). In particular, if p and q are � 1
and related by i/p + 1/q = 1, and a and b are nonnegative, then Ti ab
� (l/p) Tr a' + (1/q) Tr

6. With k1(a) = cx", = Corollary S can be improved to Ti ab �
(Ti since this no longer involves N, it also holds when
N = 00. By

fl � fl jja,$J,,1,
p

hail, = (Tr hal")", where =

p —, 00, flaIl, —. flail, so ITr abl � IlajiTribi; the trace class is a two-
sided ideal of (cf. (111:2.3.20; 3)).
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7. If a and b are Hermitian, then Tr(ab)2 � Tr a2b2, a = b ' = b*:
ITr(ab)21 <Tra2. By iterating this, tTr(ab)2"f �� � Because of the Trotter product
formula exp(a + b) = (see (ill; 2.4.9)),
(Tr + /3b) ( � Tr exp(w) ffexp(/3b) I. for /3 C, and initially for
Hermitian operators of finite rank. It then extends to exp(cca + fib)

exp(xa) exp($b) e and thereby yields a general-
ization of Corollary 3 known as the Golden —Thompson--Symanzik
inequality [6], exp(—fi(V>H0) � Tr exp[—/3(H0 + V — F(H0))] �
<exp(—fiV)>0.

8. The tunction (a, b) —. Tr a(ln a — In b) i'
convex.

Our next task is to give the density matrices an ordering that indicates
which of two p's corresponds to the more chaotic state. The ordering must
of course be independent of the basis, and so it can depend only on the
eigenvalues If the elgenvalues are thought of as ordered by their magni-
tudes, then pure states are associated with sequences (1, 0, 0, . . .), i.e., with
the greatest possible first eigenvalue. Because p = 1, two density
matrices might not be strictly ordered by the natural ordering of Hermitian
operators. However, by the mm—max principle (III: 3.5.21),

p(n) = sup

which permits the following

Definition of the Ordering of the Density Matrices (2.1.9)

A density matrix is said to be more mixed, or more chaotic, than p if
� p(n) for all n. In symbols, � p (or p � p3).

Remarks (2.1.10)

1. This clearly defines a preordering of the density matrices. i.e., p
and if p and � then p � $. If two density matrices are equivalent,
that is, p � and p. then p, = and so they are related by
VpV. If the space is finite-dimensional, then V can be chosen unitary,
and otherwise it is only an isometric mapping (Ker p)" (Ker a)-';
if Dim Ker p # Dim Ker then it has no unitary extension.

2. If the equivalent density matrices are classed together, then (2.1.9) gives
the classes a lattice structure, characterized by the sequences of numbers
(p(n)}. The sequence {min(p(n), yields the equivalence class of
the purest states more mixed than either p or The concave hull of
max(p(n), p5(n)) with respect to n characterizes the most mixed states
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purer than either p or sequences thus defined are positive, increas-
ing, and concave in n, and tend to I as n (or equal 1 when n = Dim
Their successive differences are therefore decreasing sequences of positive
numbers summing to 1, which correspond to an equivalence class of
density matrices. The lattice contains a class of purest elements, namely
the extremal states. If the dimension of is finite, then there is also a
most mixed state with p = 1/Dim but if it is infinite, there is none.

3. The ordering and convexity are compatible on the space of states in the
sense that if p and p v then p + (1 — for 0 � � I:

+ (1 — cc)v) � + (1 — � p(n).
A',

4. Since the operators p(n) are suprema of the weakly continuous functions
they are weakly lower semicontinuous. Moreover, it will be

shown later (2.4.19; 1) that sequences of density matrices converging
weakly to a density matrix are convergent even in the trace norm. Hence
the maps p —' p(n) are actually weakly continuous, and the limit belongs
to the same mixing class.

5. The ordering of the density matrices is not total—for instance

I + and

0/
are not related by it.

Examples (2.1.11)

1. In the Schrodinger picture the time-evolution of a system is given by
p -. p, U(t)pU 1(t), which shows that matrices remain in
their equivalence classes.

2. The time-average (lIT) dtp, is more mixed than the original density
matrices. This operation involves combinations and weak limits, which
can only make density matrices more chaotic.

3. If the time-evolution of a density matrix is a linear transformation of the
cigenvalues, Ma(t)pk(O), then for Tr p = I and p � 0 it must be
true that = 1 for all k, and M11, � 0 for all I and k. If, for. finite
dimension N, it is also required that the chaotic state = 1/N be station-
ary for all I, then, moreover, = 1 for all I. The matrix M is then
said to be doubly stocbastk. Such matrices clearly form a convex set,
and are consequently convex combinations of the extremal elements by
the Krein—Milman theorem. The extremal elements have entries Mil, = 0
or 1, and so I = Mi,, = M-,, implies that each row and each column
has exactly one 1; this makes them permutation matrices, mapping any
p to an equivalent p. Therefore, pQ) � p(0), as p(t) is a convex combina-
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tion of p's equivalent to This kind of thus increases
the mixing. Its differential version p(t) = Mp(O) is a master equation

= L — where Wsatisfies
4. If an observable has one-dimensional projections P1. then state is

immediately converted to /3 when the observable is measured.
Once it is perceived that the kth eigenvalue has been measured, p becomes

The fIrst stage of the measurement increases the mixing of the state,
� p. This follows from the mm—max principle: If 1>, then

/3(n)
=

� p(n) = sup p.

The second stage makes the state pure. This can be interpreted in that the
interaction with the measuring apparatus extracts information, which
unmixes the state upon transmission to the human mind.

5. Tlie "coarse-grained density matrix L = Tr pP1, is more
mixed than

1
by Problem 1. and a fortiori /3 � p.

6. Suppose thaz the function k is convex from to apd k(O) 0:
then clearly the smaller eigervalues are suppressed to a greater degree
in k(p) In fact. p � k(p),Tr k(p) by Problem 3. and the resulting
states are purer. in particular. if k(x) fi' > /1, then
exp( — exp( — f3H) exp( — fl'H)iTr exp( — I3'H). The physical sig-
nificance is that the mixing of the canonical density matrices is greater
at higher temperatures.

We have seen that convex combinations of UpU' and weak limits
increase the mixing of p. This exhausts the possibilities:

Theorem (2.1.12)

/3 p is in the weakly closed convex hull of t}.

Remark (2.1.13)

The weak closure of (a e = 1} is (a � 1).
and density matrices may converge weakly to zero. This means that the
set of density matrices is not closed, which causes technical difficulties
in the proof, which is put off to Problem 4 for that

Corollary 1.14)

if/3 p. i'hen for cone k, Tr k(/3) � l'r k(p).
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Proof

If,3 = � c• < 1,Lci = 1,andtbesumisfinite,thenby.the
convexity inequality (2.1.7; 2), Ti � Trk(p).
Moreover, p Tr is weakly lower semicontinuous, so the limiting
case of an infinite sum is likewise bounded by Tr k(p). - 0

Corollary (2.1.14) gives rise to the possibility of defining mappings of
the density matrices to the real numbers, monotonic with respect to the
ordering �, and so enables the degree of disorder to be measured. For
instance, if k(p) = p2. then Tr k(p) can equal 1 only for pure states, and is
otherwise smaller. The next section will discuss some properties
distinguished by the function —k(p) = —p in p used to define the entropy.
For now, note that the converse of (2.1.14) is also true:

Theorem (2.1.15)

� p every k, Tr � Tr k(p).

Proof

Because of (2.1.14),. we need only show that if p, then there exists a
function k such that Tr > Tr k(p). Let m be the first integer such that

Ii +P2
x � p,,,, and otherwise 0. Then k(p,) = Pi — pm, ..., = — 0

= k(Pm+j) = k(Pm+2) •... By assumption, + + + �
Pi + P2 + ... + Prn- j, so p3,,,> which implies = — p,,, > 0 for
all i�m. Therefore, Trk(p)=p,

0

Since expectation values in mixed states are averages of different spectral
values, they do not reach the extremes of the spectrum so easily. This
observation creates a new way to define the ordering relationship.

Theorem (2.1.16)

(1) j3 p sup Tr 'a � sup Tr UpU'a for all a e
U U

(ii) p inf Tr inf Tr UpU 'a for all a e
U U

Us=v..1 v*=U—I

Proof

See Problem 5.
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CoroLlary (2.1.17)

Let Tr pa2 — (Tr pa)2 = inf2 Trp(a — ))2• Then3 p implies that

� for alla.
U U

This means that if one is interested in the least deviation &i of a within
the equivalence classes of p and then it is smaller for the state that is less
mixed.

The various aspects of the relationship can be summarized a; follows:

Conditions for Density Matrices to be Compared (2.1.18)

The ordering relationship � p is equivalent to each of the following:

� p(n) for all n;
> 1, U' =

Tr � Tr k(p) for every concave function k;

Tr UpU 'a, a E U' =

Problems (2.1.19)

1. Let P, be pairwise orthogonal projections of dimensions n, < x and L P, = 1.
Show that (1;n)P1 Tr Pp P1 pP,.

2. Let ls(x) > 0. k' > 0. k" > 0, convex. Show that the mapping (fi, fin)

k of to R is convex. (Him: note that: (i) A mapping f(fi,, . . ., fi,,)
is convex if f'(O) � 0, where is the function x() = + u,t, . .., fi,, + u,,t)
and (u1. .. . , u,,) and (fi,,..., fi,,) are arbitrary. (ii) If the function K(ö)/ô increases
monotonically, then � ô, > 0.)

3. Let k be a convex, monotonically increasing function, k(x) � 0 for x � 0, and
k(O) = 0. Show that p � k(p),Tr k(p).

4. Show that � p jie Conv{ tJpL'

(1) Let = a is compact, and + ... + � p(n) for all n, where
are the eigenvalues in increasing order). Show that is convex and weakly

compact.
(ii) Letd(p)= {aE.K(p):;

Show that contains the extremal points of X(p).
(iii) Show that {UpU - I }WCak

(iv) the proof by applying the Krein- Milman theorem: Every compact, -
convex set equals the closure of the convex hull of its extremal points.

5. Prove Theorem (2.1.16).
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Solutions (2.L 20)

I. Let be the invariant measure on the compact group U(n), normalized to 1.
For all = since the right side is invariant
under all U and hence proportional to and Tr = Tr a. Similarly,

P Tr Pp + (1 — P)p(l — P)
= f -

= JdILPUP(PPP + (1 — P)p(1 — P))U,',

if the operators vary over the unitary transformations of equaling 1 on
(1 — P).*. Therefore, (l/n)P Tr Pp + (1 — P)p(1 — P) � PpP + (1 — P)p(1 — F),
which proves the claim by iteration.

2. (i) is trivial, and (ii) follows from

� � (z �

Now let X(t) k' + u11)). The function is convex 1ff x"(r) � 0.
= ,4k"(fl1)] — k"(x){Z, (where x f

so it temains to show that [k'(x)32 L u?k"($1) � By the Cauchy-

Schwarz inequality. = � IL
x [L and the desired inequality is certainly satisfied if� = L By (ii), this is the case if K(ö)/ö increases

monotonically, where K is dcfined by = k(fl,), K(i51) = Finally, K(ö)Jô
increases monotonically k'2/kk" increases monotonically k/k' is convex.

3. If 0 � x � y, then x = (x/y)y + I — (x/y))0. and hence k(x) � (x/y)k(,y), yk(x) �
xk(v). Consequently

p.,) �: k(p1)).
I I I I i=m+ I

i.e.,

\—3

+ ... + k(Pm)J ( k(p1)) � + ÷ p,,j

Remark: If k is concave, then p k(p)/Tr k(p).

4. (1) By (2.1.10; 3) the set Jt"(p) is convex. Moreover, + + ; =
is weakly lower semicontinuous in a, so iflp) is weakly closed and, since

= cc1 � p = 1, also weakly compact.
(ii) By considering all the possibilities, one realizes that it is possible to write any

a e ..*'(p) as cc < 1, with E unless a E 4'(p).

(iii) Let a p, JI, 1> <1, iJ, p E p1 12, 1) (2, ii, where (Ii, 1> } and (12, i>
are two orthonormal systems. Let U 12, 1) = 1, I>, U, Ii, n + 1> Ii, n + I
for I � I � I — I. U,Il,i) = 1> otherwise. a =
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(iv) By the Krein—Milman theorem, = COnV(L:PL. icweai.

(by (iii)), and e ii p.

5. a replacement of a with a + if necessary. a may be assumed positlsc. Then
Tr pa = Tr where the have the cigenvalues P 0. 0
The changes of the orders of operation in what follows are for the
and the suprema can also be interchanged:

(i) Let ... be the decreasing sequence of of a and be
the upper boundary of (to be understood n the sense analogous to (IJI.
3.5.21)). If p = then

— p2)<l

!i (p, — + — mX11 + ÷ = I
and sup Tr Upu - =

= — (Th + P2)(22 4-... +

� + (m ± — + . + =

Choose an n-dimensonal projection for a and use the mm-max principal.

The proof of (ii) is similar.

2.2 The Properties of Entropy

The information about a system in a mixed state is incomplete. The
entropy is a measure of how Jar from maximal the information is.

In statistical physics, entropy is not an observable in the sense of an operator
on Hubert space, but rather a property of the state of the system, measuring
the lack of our knowledge as expressed in the specification of the state. This
section will consider what sorts of conditions single out a particular measure
of this lack of knowledge and will see what conclusions can be drawn from it.

A primary requirement would be monotony with respect to the ordering
introduced in the preceding section (we consider only normal states). In
other words, a density matrix that is more mixed should have more entropy.
which we denote S: 5 p S(15) � S(p). This leaves many possibilities open
for the definition; every monotonic function of the trace of a concave
function of p would satisfy this requirement (cf. (2.1.14)). A further reasonable
requirement is the additivity of the entropies of independent systems. If
their combination is represented on the tensor product of their Hilbert
spaces, this means

S(p' ® p") = S(p') + S(p"). (2.2.1)
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The two requirements together do not yet quite determine S uniquely. The
whole one-parameter family of

s-Entropies (2.2.2)

S2(p) in Tr

satisfythe general

Properties of Entropy (2.2.3)

(i) 0 � S(p) � In dim
(ii) � p S1(13) �

(iii) S3(p' p") = S1(p') + S2(p");
(iv) If p = P/dim P, P = P2 = then = In dim P.

(In particular, = 0 1ff p is a pure state, and S1(p) = in dint ff
p is the chaotic state 1/dim

Proof

(i) If I, then L � = 1, and if < 1, then p, = I
12• This shows the left side of the inequality, and the right

follows from (iv) and (ii).
(ii) The function p2 is concave for < 1 and convex for 1. The logarithm

is monotonie, and the 1 — accounts for the sign (see (2.1.18(iii)).
(iii) Tr(p' 0 = Tr[(p')1 0 = Tr(p')2. Tr(p")2.
(iv) If n = dim P, then S2(p) = (1/(1 — tx)) 0

The entropy can be fixed uniquely by a more stringent assumption of
additivity (2.2.1), with which monotony emerges as a consequence rather
than a separateaxiom:

Characterization of the von Neumann Entropy (2.2.4)

The only entropy satisfying the following conditions is S(p) = — Tr p In

(i) S(p) is a continuous function of the elgenvalues of p;

(ii) = in 2;

0 <p1 � I. Tr p,, = 1.
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then, regardless of the dimension of 5(p) = p1S(p1) + S(p).
where p is the diagonal matrix on CTM having

Remark (2.2.5)

1. Since the representation should make no difference, S can only depend
on the eigenvalues. It certainly does not seem unreasonable to demand
Contifluit).

2. Condition (ii) is a normalization.
3. If all the in condition (iii) have the same dimension and all are

equal, then = ® and (iii) reduces to (2.2.1). This generaliza-
tion of (2.2.1), wiiich makes possible an proof. has the following
interpretation: Suppose a system consists of subsystems, one described
by CTM and the other having several variants according to the position of
the state vector of the first in CTM. Then the entropy of the total system is
just the sum of the entropy of the first subsystem and those of the second,
averaged according to their

p p can be justified in the spirit of Boltzmann
as follows. Let the state corresponding to p be realized as a vector of a
reducible representation of the algebra d of observables consisting of N
identical representations. The ensemble described by p can be thought of
as having been subjected to a sequence of N mcasurements. where p, is
N,:N. N being the number of times the eigenvector e, has been measured.
The Hubert space is .t = where the spaces are all identical
and are spanned by {e1}. The observables are represented as a direct sum
of N identical representations. With the use of doubled indices, this can
be written as e1,. A p of rank r and with p1 N1/N.

= 1, ... , r, is represented by the vector

—=(e11 + e12 + + e1 + + + +

+ + ... +

e, the same state results.
and there are clearly W N !/fl,N different vectors for the same p.
If the numbers N1 are large enough, then In W N in N — L N1 In N1 =
— N L p1 In so (1/N) In W —, —Tr p in p. Assuming that every vector
of .W is assigned the same probability, S turns out to be roughly the
logarithm of the probability of the configuration, and there is an identi-
fication: the most mixed state = the state of greatest entropy the
most probable state.

5. 5(p) = urn2... yet if the dimension is infinite, then 5(p) may become
+ 1. However, Properties (2.2.3) remain valid in this limit, and apply
to S as well.



60 2 Thermostatics

6. A particular consequence of (2.2.3(11)) is that S(xp + (1 — cv.)UpU I)� S(p). More generally, (2.1.7; 2) implies thit the mapping p —' S(p) is
concave: + (1 — � + (1 — This means that
the entropy of a mixed state is greater than the constituent entropies
weighted as in the mixing. If p = 0 PA � 1 p, 1, then
the inequalities

� 5(p) � ÷ In!
A A N

necessarily follow (Problem 4). They are optimal in the sense that equality
holds on the left if all are equal, and on. the right if all have disjoint
support, by (2.2.4(iii)).

7. Although by (2.2.3(iv)) all the are the same with the chaotic state,
with the canonical state p exp( — — F(fl))), Ti exp( — $H) =
exp( — flF($)), they are different (Problem 6).

Proof of (2.2.4)

We write S(p1, P2'• . .) for S(p).

(a) Let Then S(l) = 0, because on C2, S(p1, P2) = p1S(1) +
p2S(1) + S(p1,p2).

(b) Let .*' = f(n) S(1/n, 1/n,..., 1/n), and let n = m1m2. We write
CR = Ctm' and use (iii) with

•. I'

f(mIm2) = mz + f(m2) + f(m2).
m2

The solution of this equation is f(n) = C In n, and the normalization
(ii) makes C = 1. Other solutions are excluded by the continuity require-
ment (Problem 1).

N

/1 1 1 1 1

f(m) = SI—,---,...,——,—,...,—\mm mm

so by step (b),

In n\ n n I n\ f ii
SI—,l ——1= —— In—— (1 ——ilnil ——

mj m m



2.2 The Properties of Entropy

This holds initially only for integers n and m, and then by continuity
holds generally, S(p1, P2) p, In p1.

(d) The rest of the proof proceeds inductively: with = C.
1 Pn,P2 =

S(p1, P2'..., (I . . .
, +

+ S(l — p,)

=
Th In — In p,,

—(1 I — =
—

p1 In p1.

The Classical Entropy (2.2.6)

For a classical density p) on phase space the entropy would be defined
as in This is not a priori positive-definite; for instance
= X(A as in (2.1.6; 2) leads to — In x = in which is negative
if C1(A) < I. It is easy to see that this entropy also depends on the measure
of volume in phase space. There are many ways to associate a density

p or vice versa.
The most useful such expressions are obtained with a method of A. Wehrl,

in which for a given density matrix p one calculates expectation values in
coherent states, and, conversely, a classical density is used to mix coherent
states. The coherent states W(z)Iu> jz> of (III: 3.1.13) can be generalized
for functions u that are even and normalized, but not necessarily Gaussian.
The state z> has the wavefunction exp(ik x)u(x — q) if z = q + ik E
which is the phase space for N particles in a physical space of dimension d.
It is easy to check that z = <zlxlz> ÷ still holds and that the
states are complete, J = 1.

The Density Matrix and the Phase-Space Density (2.2.7)

If to an N-particle density matrix p we associate the phase-space density
= and to a classical density f(z) on phase space we associate

the density matrix Pqu = J f(z) I z> <z I, dfE - Ndd2N.. then

p � 0, Tr p = I 0 � � 1, = 1,

f � 0, = 1 : 0 � Pqu � I, Tr Pqu = (2.2.8)
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Proof

Positivity is trivial, and the connection between the trace and the phase-
space integral follows from the n-dimensional version of a formula of
(Iii: 3.1.14; 1):

I = = =

=

Conversely, Tr f(z) I z> <z I = j. I I i> 2 = dftf(z), since

I
= I. The denominator (21t)d in reveals that the phase-space

volume is measured in units of h rather than h = h/2,t = 1. 0

Inequalities for the Classical and Quantum-Mechanical Entropies (22.9)

(i) S(p) � In

(ii) —
f(z) In f(z) � S(pqu).

Remarks (2.2.10)

1. Inequality (i) implies that the 01(2.2.7) always has more entropy than
S(p). This classical entropy is therefore always positive; the density Pd
defined in (2.2.7) can never be so concentrated as to make the classical
entropy negative, and indeed � 1.

2. It can also be shown that this classical entropy equals 1 if p is extremal,
and otherwise it is greater than 1 [32].

3. If a quantum-mechanical density is associated with a classical density f
by mixing the coherent states with f, then Inequality (ii) states that the
quantum-mechanical entropy is greater than the classical entropy. The
latter may even tend to — • for instance if f tends to a delta function.

4. Inequality (ii) shows that the Continuous analogue of the last inequality
of 6) is false: S(Iz><zI) = 0, and in this case the inequality goes
in the other direction, with the replacements -. f(z), L —'

— In f(z) + I z> <z I) � I z>

5. If the particles are identical, states must be either symmetrized or anti-
symmetrized according to The statistics. For bosons this is accomplished
most easily with the aid of the creation operator

— x)), Izi, =
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with which

Jd24tzj - .. ., .. ., ;j.
So, with identical bosons, when the trace is taken the volume of the

classical phase space has to be divided by n !. The states are not yet normal-
ized to norm 1.

=

where P1, ..., is a permutation of 1,.. ., n, because the coherent

states are not orthogonal:

I

= exp[ix - (k — k')]u*(x — q')u(x — q).

These determinants and permanents crop up along with in the
calculations of expectation values, making them more laborious.

6. Since these inequalities are valid for coherent states with a great degree of
arbitrariness in u, they can be optimized by varying u.

Inequalities (2.2.9) will follow from a lemma of Berezin on the

Relationship between the Trace and the Phase-Space Integral (2.2. II)

Let K be a convex function and suppose a* = a. Then

(i) Tr K(a) � .1
(ii) J � Tr K(a), where a = J <zi. K(a) e C'. and 1

is a measurable function

Proof

(i) As noted in the proof of Peierls's inequality. <IK(a)I> � K(<IaI>) for
expectation values in an arbitrary vector, so

Tr K(a) = �
(ii) If jj> denotes an eigenfunction of a, then

Tr K(a) = K(<jlalj>) =
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Proof of (2.2.9)

The function x In x is convex, and for the concave function — x In x the
inequalties for convex functions are reversed. 0

The additivity of the entropy when p = Pi ® P2 to an in-
equality when p is not in the form of a product. To cover general Pi and P2
requires the

Definition of Partia' Traces (2.2.12)

Let .(' = ® The partial traces Tr1 and Tr2 are defined by
Tr12 a = <jlajj) for any a e where { IJ>} is any
complete set in

A consequence of this is the

Subadditivity of the Entropy (2.2.13)

Let Pl.2 = Tr2,1 p. Then S(p) � S(p1) + S(p2).

Remarks (2.2.14)

1. If p = P1 ®P2, then P1,2 = Tr21 p and by (2.2.3(iii)) equality holds in
(2.2.13).

2. The partial traces reproduce the reduced density matrices used in § 1.1.

At that time we noticed that the reduction entailed a loss of information.
Inequality (2.2.13) indicates that there is less information in Pi and P2
than in the original p.

3. If 1, then the a-entropies (2.2.3) are not subadditive (Problem 2).
It is consequently not necessarily true that Pi ® � p.

4. Subadditivity allows axiom (iii) of (2.2.4) to be replaced [7] with
(iii (a)) S(p) = S( V*p V) for all isometrics V; and
(iii (b)) S(p) � S(p1) + S(p2), equality holding if p = Pt 0

Proof

By Klein's inequality (2.1.7; 5), Tr a In a — Tr a In b � Tr (a — b). Put
a=pandb=p1®p2andnotetbatlnp1Øp2=lnp,®1+1®lnp2.

0
Corollary (2.2.15)

Consider a of ever larger systems on the tensor product
n = 1, 2, 3 Suppose that the density matrices are compatible so that
when reduced to a subsystem they always become the density matrix of the
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smaller system: = rn � n if —( I n)Tr In then
1- In In ,, � and hence the limits

ernst exist and he �O. Although the itself
does tend to a limit as the size of the system gets arbitrarily large. the
specific entropy does.

It will be asked by how tar (2.2.13) misses equality. More precisely. it
might be supposed that the entropy of a united system is always greater
than that of any single one f its parts. Surprisingly, this is not necessarily so
with quantum statistics: p could be a pure state having entropy iero.
while the correspond to mixtures. This is the case that arose in the discus-
sion of the time-evolution in .1; the additional information contained in p
has to do with the correlations between the subsystems. The correlations
are precisely pinned down in

Lemma 12.2.16)

Lei p he pure: then m and have the same spectrum with the stunt' nm/ti—
plicitie.s. ext ept br Wi at 0.

Proof

See Problem 3. 0

Corollary (22.17)

If p is pure, then = S(p2). Our information about the subsystems is
correlated, so they possess the same amount of disorder.

In this case. = S(p1) — S(p2); more generally there is a

Triangle Inequality (2.2. IS)

S(p1) — S(p2)i � S(p) � Sp1) ± S(p2).

(Lieb and Araki [8]).

Remarks (2.2.19)

I. This inequality has no classical analogy: a counterexample is provided
by a p with S(p) < 0 but S(p1) = S(p2).

2. Even if the entropy of a subsystem can be greater than that of the whole
system, the triangle inequality reveals that it can not exceed the sum of
the total entropy and the entropy of the complementary subsystem.

3. Astonishingly, the classical entropy (2.2.9) of a quantum-mechanical
density matrix is monotonic; it is always larger for the whole than for a
part: � (For the proof see Problem 5.)
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According to Remark (2.1.6; 5), p may be regarded as a pure state P123
on a large Hubert space 0 for which p = Tr3 P123• Let

= Tr12 P123' P23 = Tr1 P123; then by Corollary (2.2.17), S(p) = S(p3), '
S(p1) = S(p23). Because of subadditivity, S(p1) = S(p23) � S(p3) + S(p2)
= S(p) + S(p2), and along with the same thing with. 1 and 2 interchanged,
this yields the left inequality of (2.2. 18). 0

An ideal measurement leaves the system in a pure state, reducing the
entropy to 0. For this reason, S(p) may be regarded as a measure of the
amount of information to be gained by an ideal measurement. The difference
S(p) — S(p1) specifies how much more information a measurement of the
total system can yield than a measurement of a subsystem. Inequality (2.2.18)
bounds this relative information gain by S(p2):

— S(p1)J � S(p2).

With quantum statistics the difference can be either positive or negative.
If p is pure, so that the greatest possible information about the total system
is available, but is a mixture, then more information can be obtained by
measuring the subsystem. On the other hand, there are some inequalities
for this entropy difference that are analogous to those of the classical entropy:

Inequalities for the Entropy Difference (2.2.20)

Let P123 be given on ®.'r3, and P12 = Tr3p123, Pt Tr2p12,

Then

(I) S€o12) — S(p1) is concave in p12;
S(p13) — S(p1) + S(p23) — S(p2) � 0 (Lieb and Ruskai t8]); and

(iii) S(p123) — S(p2) � S(p12) — S(p2) + S(p32) — S(p2).

Remarks (2.2.21)

1. Proposition (i)implies that mixing increases the relative information gain.
In particular, the relative information gain is a monotonic function in P12
with the ordering introduced in (2.1.9).

2. If Roman numerals are used to denote the systems corresponding to the
Hilbert spaces then Inequality (ii) implies that more information can
be obtained by measuring I u III and ho III than I and II. If is

one-dimensional, so S(,p2) = 0 and S(p23) = S(p3), then this proposition
reduces to (2.2.18).
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3. hiequality (iii) is subadditivity for the entropy difference. The information
;ontent ef I u 11 and 111 u H relative to H is greater than that of
I U UI relative to II.

Proof

'i) Let P12 + (1 —. Pi = + (1 —. c44 Then

—. S(Piz) + + (1 — + S(,p1) (1 — x)S(p')

= P12 — in — in +

+ (1 —

If a — -• In Tr -- flH0) and 1, — flY, then because ef
2.1.8; 3) and Tr exp(a) I, exp(Tr b exp(a)) � Tr exp(a + b). so

—!np1
Therefore, with Lieb's theorem (2.1.7; 8).

+ (1 - ± (1 --
� .iTc12 exp(In P12 — lnp1 ±

+ exp(In P12 — ifl

I

in Pu3' part !mlkes the
anirnurn :s consequently attained when

is in this case Sip2) and

• a •.

Co' -

;) — •

-

.1; .
•

--C"

- -- •.. .•. . mcr,:7V ---'
• •,,_ f., a ;;ias3ical
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Proof of the Properties of the Relative Entropy

(i) This was shown in the proof of subadditivity (2.2.13).
(ii) Convexity follows from (2.1.7: 8) when 2 0. The function is lower

semicontinuous because S(afp) can be written as the supremum of a
set of continuous functions (Problem 7).

(iii) S(aøtlp®r) = Tr,2p®tf(lnp)® 1 + I ®lnt
— (In a) ® I — 1 0 In t]
Tr1 p(ln p — in c)Tr2 r = S(aJp).

(is) As in Problem (2.1.19; 1), write ® l/d2 d2 = dim *,
and similarly for a. By (iii) and (ii),

S(a1(p1)= S(ai e'-)

= i)

� =

Since d2 drops out of the expression, this proof for d2 < extends to
the infinite-dimensional case. 0

Remarks (2.2.23)

1. If a is the canonical density matrix a = exp( — flH)/exp( — fiF), and
energy is F= then S(oIp)=fl(TrpJj —F)
— S(p). If a free energy F(p) Tr pH — fi - 'S(p) is ascribed to p, then

= F(p) — F. The relative entropy measures the difference
from the canonical free energy F(a) F. which always lies lower because
of(i).

2. By Property (ii), mixing and passing to limits bring the free energy closer
to the canonical free energy.

3. Property (iii) states that the difference from the canonical free energy is
the same for Pi and p if there are two independent subsystems I and 2,
where p = 0 p2,and p2 is the canonical density matrix of system 2.

4. If a subsystem is weakly coupled, H12 H1 0 12 + 11 OH2. i.e.,
exp(—fl(H1 — F1)) Tr1 exp( —fJ(H32 —F,2)), then its difference from
its canonical free energy is always less than that of the whole system. The
analogous argument for the entropy only leads to S(p1) � S(p) + In d2,
which already follows from (2.2.5; 3).

A final matter to investigate is how sensitive S is to small changes in p.
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Theorem (2.2.24)

The mapping p —, S(p) is lower in trace-norm
topology

Remarks (2.2.25)

1. The set is topologized with the trace norm IL. If a sequence {PN)
converges in this topology to p. then Sip) is at most S(pN).
However, we shall see in (2.4.19; 1) that for density matrices all topologies
between the trace topology and the weak topology are equivalent.

2. Continuity does not occur, because in every
II H 1-neighborhood of p

there are density matrices with arbitrarily much entropy. This follows
directly from concavity.

+ (1 — �
+

(i —

Let S(p) = 0, and S(pN) = N2; then S((l/N)pN + (1 — 1/N)p) � N,
although

1 / 1\ 2

so the density matrices converge to p. The two terms in the expression
+ (I — (l/N))p, however, can not be comparable in the

of (2.1.9); that would contradict (2.1.10; 4), by which the limit of a
sequence of equivalent density matrices can not be purer than the elements
of the sequence.

3. The mappings —' p 1 are continuous (see below).
4. By lower semicontinuity the sets {p: S(p) � n} are closed, and by

Remark 2 they are nowhere dense. This means that the set (J,, S,, of p's
of finite entropy is of the first category. the topological analogue of a null
set. In this sense the entropy is almost always +

Proof

Because Tr = � IIpII the mapping of to p S8(p)
is continuous. As the supremum of a set of continuous functions, S(p) =

S2(p) is lower semicontinuous. 0

The failure of S(p) to be continuous does not diminish its usefulness. The
density matrices p of very large S have their eigenvalues spread so far
apart that the average of the energy diverges.
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The Continuity of the Entropy at Finite Energy (2.2.26)

that H � Oand < for some fi> 0. If the density
matrices having Tr pH < we topologized with the norm

Tr p(1 ÷ H), then S(p) is a continuous mapping -, R1, where
IIPIJH <

According to Remark (2.2.23; 1), S(p) = fl(Tr(pH) — F) — S(ajp), where
exp( — flhI)/cxp( — HF). The function Tr pH is continuous, in the IHI ir

topology, and —S(QIp) is upper semicontinuous, because the U llirtopology
is finer than the trace topology. Since S(p) is lower semicontinuous in the
trace-norm topology. it is also lower semicontinuous in and hence
continuous in 0 0

Probleme(2.2.27)

I. (i) Show for the functions f(n) S(1/n,..., 1/n) that ff(n) — f(n — 1)]
=0.

(ii) Conclude from (I) that the only solution of the equation f(mn) = f(m) + f(n)
is of the form f(n) = C In n, supposing that S is continuous according to
i 2.2.4(i)).

2. For 1. show that the i-entropies S, of (2.2.2) are not subadditive.

3. Prove Lemma (2.2.16).

4 Show that Asp,) � A1S(p1)
— L A1 In A1, A1 > 0. L = 1.

5. Show that � if ..*' = ® where J?. are one-particle Hubert
spaces, particles 1 and 2 are distinguishable, Pi = Tr2 p. and Sci(I') is defined as in
(2.2

Calculate S2(exp( — 1J[H — F(fl)]), where exp( — = Tr --

' Show that S(ojp) is lower semicontinuous. Hint: use

(i) S(crfp) = sup0 (1/AXS(Ap + (1 -- A)a) — AS(p)
—(1 —A)S(y))�0;

(ii) if u 0 then Tr a = P,a, —' I, is an increasing sequence of finite-
dimensional projections; and

(iii) the operator inequalities (III: 2.2.38; II),
show that the function s(x) — x In x is concave for operators, i.e..

+ (1 — A)b) � As(a) + (1 —

8. Prove the formula for the identity operator in (2.2.10; 5).
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Solutions (2.2.28)

1. (i) Let = 1(n) — f(n — I) and 5(1/n, I — (1/n)). Because S is continuous,
oil 0.

f(n— I)=d,,.1

d1, = =
— N (N — 1)

� -. + supO,, forallN =0,
f'v—l

because < x and = 0.
(ii) II suffices to show that urn8 - f(n)/ln n f(n0)/tn n0 (for any fixed n0 � 2);

because ,. (n&) = kf(n) this implies that 1(n) = (f(n0)/In n0) In n for all n � 2.
Define g(n) = f(n) — (f(n0)/ln n0) in n; then it suffices to show that g(n)/ln n —, 0.

Let n n1n0 + with 0 � � n0. Because g(n0) = 0, g(n) = +
g(n1n0), where ; g(k + 1) — g(k)) + g(n1). Now let n1 n2no

+ 1,: then q(n) = q(n.,) + etc. After k0 < in n/In n0 steps,
< and therefore q(n) The sum has fewer than n0k0 summands,

and therefore urn q(n) In a = 0. since 0.

2. Let ..W ® C2 and p (P1k where = r11 = pq + e, r12 =
p(1—q)—r., r21=(1—p)q—s, with O<p, q<1,
p. q Since p s diagonal. this allows S,(p) to be read off with no further ado:
L(r = 0. then p = ® P2.

m = Tr2 .' = Tr1 i

If were S,(p1) + S,i...). then the function g(e) (pq + + (p(l q)
+ ((1 — p)q — -t- ((1 — p)(l q) ± would have an extremum at s = 0, but
q'(O) 0 I.

Let Ix>eJV,®. . {Li>1} and {lk)2} areortho-
normal sets in and respectively, and p = lx><xI.

Tr2lx><x: = Tr2 ®lk)22<II
ijki

=
Ijki

which implies that the positive cigenvalues of Tr2 lx> <x are the same as those of the
matrix CC, where C = (c0). A similar argument shows that the positive
of Tr x) <x I are the same as those of C*C and thus of CC.

4. Let 21p, a1; then the proposttion is equivalent to S(EL a,) � for all
a1e"s1'. Since In x is monotonic as an operator function (111:2.2.38; � 0,
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then In a, < a), which implies a,' 2(ln a1)a1' � a 2(In L and therefore
Tr(a, in � a,)

5.

since {e,} may be chosen to be an arbitrary basis. Therefore

Sd(p) — = z2) � o.
p(z,, 72)

S.
=

in Tr exp( —afJ(H — FU3))) = — aF(/J)J.

As cc —' 1, S -.

7. (i) The function 25A is concave in because

+ (I — .a1)p) + (I — a)(A2r + (1 —� aS(.%,cr + (1 — + (1 — + (1 —

so

SA.
dA.

(ii) This is the pormality of the trace.
(iii) The operator concavity of —x In x = (1 — a/(x + a) — x,(l + cc))dx is

equivalent to the operator convexity of 1/(x + 1), and it suffices to show con-
vexity with a

1 1 1 4 1 1

2(B+1) A+1+B+1 A+l B+l
4

+ +

(B + + l) '(B + 1)1/2 + 1.

Since 4/(x * 1) � (1/x) + 1 for all xe this is also valid for positive operators.
Therefore, (1 (1 — A.)s(p)] � 0, which implies
S(oip) = SUPN sup0<2<, (I/A) Tr PN[s(Aø + (1 — 1)p) — Asfr) — (1 —

and s(p) is continuous In finite dimensions. This also provides a new proof of
the lower semicontinuity of S(p).

8. The right side of the equation clearly leaves the number of particles invariant Hence
the formula is shown by

=

=

= <fl,...,fNfgl,...,gN>.
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2.3 The Microcanonkal Ensemble

Jn.siuhz into the tundamental rhermodvnarnic laws Lv qained
the the enerqi

Two of thought are usually hliowcd tojustil\ regarding the equilibrium
as predominating macroscopic systems. Like Boltzmann, one can

the of a system and show that most states tend to
equilibrium. Alternatively, one can follow Gibbs and examine an ensembe
os copies of the system and identify states of scanty information
with equiiihrium states The set of problems connected with the first pro-
cedure is subject of the next chapter. while in this section we shall study
systems foi which the only information the energy. If it is known
that the does not exceed some maximum vaJue Em, then, as remarked
in 2), the most statc no furthei information cor-
responds R. tht

Microcanouic2l Density (2.3.1)

— H),Tr 0(Em — H). 0(x) — 11 for x � C)
forx<O

E,., � the eigenvalue of H. Its

Entrop' and Average

S In Tr - Hi. E = -. S)Tr H0(E,,, — H).

Remarks .3.3)

I disk ontmuous of a self-adjoin operator is defIne'i with the
representation of the operator.

2.. Ii is assumed that H is hounded below and that a,,1(H) is empty. so the
traces in (2.3.2) are

3. The entropy S is a discontinuous function of Em, and has no well-defined
inverse. On the other hand, E may be construed as a function of S. as
shown in Figure 3. The function E(S) increases monotonically.

4. By the mm—max principle, E(S) is also given by E(S)
exp( — H, where is an n-dimensional subspace of 0(H)
and n = exp(S). It is consequently a concave function of all parameters
on which the dependence of H is concave.
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Figure 3 The thermodynamic functions for a finite system.

5. By Property (2.2.3(iv)), all S2 lead to the same S (2.3.2),
which can be identified as the entropy.of phenonemological thermo-
dynamics.

6. It will be seen shortly that in the systems under consideration here the
density of states increases so rapidly with the energy that in the limit of
an infinite system, any density matrix p — H) — ®(E(1 — — H)
yields the same entropy density for all e > 0.

The further properties of E(S) follow from the special form of the
Hamiltonian,

where v is assumed bounded relative to the kinetic energy. It will be most
convenient to deal with the quadratic form associated with HN (cf. (111:2.5.18;
2)). The quadratic-form domain Q(Hw) Consists of functions such that

L J 12 < and with some other restrictions from the boundary
conditions. The formula of Remark (2.3.3; 4) then holds with c Q(HN).
The boundary conditions we shall choose are Dirichiet conditions on the
surface of a volume V c R3, which mean specifically that: .*' c L2(VN)
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and = 0. The Hubert space is L2( VN) if the particles are distin-
guishable, and if they are identical bosons or fermions, then .*' must be
restricted to functions of the appropriate symmetry. The energy can be
treated as a function of S. V, and N, and its dependence on V is described
by the following theorem.

Monotony of the Energy (2.

If V' V. then

E(S, V', iv) E(S, V, N).

Proof

This from (2.3.3; 4) because Q(H(V')) Q(H(V)), where .' is
intended in the sense of the natural i.e., functions /s sUch that

[I

Subadditivity generalizes this monotony when particles in separated
volumes do not repel one another.

Subadditivity of the Energy (2.3.5)

If V1 n V2 = 0 and v(x, — x1) � V2. then

E(S1 + S2, V1 u V2, N1 + N2) � EI(S1, V1. N1) + E(S2, N2).

Proof

This again follows from (2.3.3; 4), since the right side results from taking
the infimum over a subspace of Q(H), which consists of tensor products of
exp(S1) vectors, for which N1 particles lie within the volume V1, with
exp(S2) vectors having N2 particles within V2. The tensor products have
to be symmetrized or antisymmetrized if there are Bose or Fermi statistics.
However, since symmetrization does not affect the expectation values of
(2.3.5) when the functions have disjoint supports, (2.3.5) is independent
of the statistics. 0

The existence of E/V can be derived from the subadditivity,
though it is rather difficult to go beyond the restriction v � 0. This problem
will have to be investigated later for each of the systems discussed
and for now convergence will simply be assumed. The condition is satisfied
trivially for free particles (v = 0). To draw conclusions like those of (2.2.15),
assume that V is a cube, the volume of which will also be fearlessly denoted
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V R If eight cubes are packed together as a single cube of double the side,
then (2.3.5) implies

E(8S, 8V, SN) 8E(S, V, N). (2.3.6)

Assuming in addition that there exists A e such that

HN � —AN for all (2.3.7)

the limit

tim 8'l'. = inf8 8'N)

exists. This allows the passage to an infinite system, for which the energy.
entrupY. and particle densities are detiried F-. = I' = atid V 'V

I
The Thermodynamic Limit of the Energy Density

p) 8

Remarks t2.3

i. guarantees > so the infimum always
out (2.3.8) is only of interest when there a well-defined limit, for only
then is it certain 'hat the thermodynamic properties do not depend on
the exact numhcr of particles. Even the limit exists, as in the case of
(2.3.6), it does not guarantee that the resulting £ is nontrivial. if. say,
particles can h': distinguii,ed does not invalidate the genera!

then classicalh,

Jd3vpO(E.. -_ i... = 2

(3N12)!'

and

Therefore. as N

E 3
_; = - —- .

'1 —. 0.
I' -

The familiar result obtains only with the replacement exp(S)
(IIN!)exp(S) to account for the particles identical. A later calcula-
tion of i:('7. p) wilt reveal that (2.3.S is ther iiot without content.

2: Though the result has been derived 1-r cubes, the limit clearly exists
for other shapes if they are not too ditlerent from cubes.
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3. The effect of dilatations on the kinetic energy (ef. (III: 3.3.21; 8) and
(III: 4.1.4)) of free implies, moreover, that

E(S, V, N) = exp(2r)E(S, exp(—.3z)1', N).

Hence the one-parameter family of limits

urn 8"N)

exist (cf. (1.2.1)). OrdinarIly, the limIt is taken with r = 0, and quantities
proportional to N, like E, 5, and V. are described as extensive, while
ftv-indcpendent quantities p,and ciare called intensive. The existence
of some limit is important, for, whatever it may be like, it enables precise
propositions to be formulated. In reality systems are large but still
finite, but if a quantity converges as N —+ the limit may be expected
to be attained for practical purposes when, say, N = 1024. Indeed, it
will be shown in realisliè situations that the limit is sometimes attained
to O(N 16), which is sufficient accuracy for macroscopic bodies. There
are various ways to interpret the limit N —* x. As has been done here, the

may be thought of as becoming larger and larger, or, alternatively,
thc. atoms may be imagined smaller and smaller with their number in the
fixed of the container bemg increased at the same time.

Since monotony and convexity survive pointwise limits, there are the
following

Properties of' Energy Density (2.3.10)

For the function x -+ ci, p p),

t. increases Inonotonicaily in a:
(ii) ':( xp. p) increa ces in p:
('uI a: (a. p):

fret' particles. r(a. p) = p).

Property (I) holds as remarked in (2.3.3; 3). and Property (ii) follows from
Theorem (2.3.4). From subadditivity (2.3.5),

+ + p2)) � p1) P2))'

which implies (iii), and (iv) follows from (2.3.9: 3).

Remarks 2.3 ii)

1. Since N Z S in is at first defined only on the dense set for
which is a power c,f (In :)/2, z e r. It extends continuously to
because monotony and concavity with the coefficient imply uniform
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continuity. There are discontinuous functions that are concave with
coefficient such as

Ix, x rational,

tO, otherwise,

for which the equation f(cxx) = xf(x) holds for all However,
this can not occur if the function is monotonic. The extension then in
addition satisfies the inequality

£(w71 + (1 — + (1 — � + (1 — P2)

1.

2. Subadditivity (2.3.5) is sufficient but not necessary for Property (iii);
(2.3.5) may be violated if the interaction is partially repulsive, which is a
necessary assumption or HN � — AN when the particles interact.
However, if the potential goes to zero rapidly enough at infinity, the
correction to (2.3.5) on any finite region is a surface effect, so the convexity
of the energy density is still guaranteed in the thermodynamic limit.
On the othet hand, the special form (2.3.8) is crucial, and in §4.2 it will
be seen that convexity (2.3. 1O(iii)) is violated in gravitating systems,
although (2.3.5) is valid.

3. Since the limiting function is continuous, Dini's theorem ensures that
the monotonic limit (2.3.8) is uniform on compact sets.

4. Let.H be defined so that ml = 0. Since e is convex in unless 0,

there exists a such that is strictly monotonic in o for all >
There is consequently an inverse function p) (see Figure 4), which is
concave and monotonically increasing

5. As long as is strictly monotonically increasing in e, the density matrices

p = O(Em — H)exp(—S)

Figure 4 The thermodynamic functions for an infinite system.

'7



2.3 The Ensemble 79

and

Pa = (®(E,,, H) — O(Em — —

yield the same entropy densities in the limit N x:

tim In Tr(O(Em H) — O(Em — H))

= c(e, p) + urn ln(l — exp{— p) — a(E — ô, p))]) a

This means that as N - x most of the states crowd just under the energy
surface with arbitrarily high density.

6. For some systems c(e) is constant for greater than some in which
case p and may have different entropies. Consider for example N
spins in an external field ((1.1.3) with i: = 0). The density of states

is invariant a —, --p; and thus an even function
in E. This makes Tr p., a decreasing function of Em when Em + () >
which is impossible for Tr p (see Figure 5); Definition (2.3.1)
negative temperatures out.

7. The number of energy levels below Em is which is immense
for macroscopic bodies, N 1024. It would never be possible to isolate
the energy levels completely—their widths are on the order of (macro-
wopic timeY which is much larger than their spacing. Systems will
later be idealized as infinite, having continuous spectra, which
comes closer to reality than does the fiction of a discrete spcctrum.

After this first exposure to these ideas, 1et us consider two systems the
interaction between which is so weak that it can be neglected in comparison
with other energies. They are to be considered as parts of a larger system
with if = ® if = -i- H2. The question is how energy and
entropy are shared by the two subsystems. Even though H is a sum, the
microcanonical- density matrix (2.3.1) is not in the form of a product
p = p1 ® pi, and we will have to see how -the entropy of 'his state can
nonetheless be additive for independent, macroscopic systems. Assume to

Figure 5 inequivalence of the microcanonical ensembles for spins in a magnetic field.

Trp
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this end that the systems are large and that the sequence (2.3.8) converges
and has all the necessary kinds of continuity so that E/Vcan be regarded
as a continuous variable for the purposes of integration and differentiation.
For the problem at hand and other estimates we shall need

Lemma (2.3.12)

Li'; a(s) � 0 and be concave on [0. Ij, and a(1) = 0. — < o(0) < 0: this
that o is nondecreasing and that there exists an 0 < � 1, such

thai a > 0. Then

� I � I — C0 +
Jo

Proof

I —exp(--Ve0c')
Va'

By assumption (see Figure 6).

(1 —
I 0

—(c0 —

for e � 1
forO � C S

Corollaries (2.3.13)

1. If a is concave but not necessarily negative, then the formula
I.!.

I de exp( = exp(Vö) J — a)) with ö = max c(E)
Jo a

Figure 6 Bounds for the concave function a(*).
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can be used instead, since — < ö unless By an applica-
tion ofthe lemma, possibly after subdivision of the region ol integration.

I
•"

urn in — =

Thus 'nly the maximum value of contributes in the infinite limit:

I "
urn In I = sup = sup cm;).Vx

2. Remark (2.3A 1: 5) leads one to expect that F may become equal
for large systems. More precisely. ii ci is concave in dci/dc > U.
lirnv . (F — E,,j: V = 0. This follows because F may he written as

E = exp(—SiTr H). dE'E' Tr — H)exp(---S)
CE

= Em - IdE' Tr — H)exp(—S).

With = 1 and E' = el/ the lemma now implies that the last integral is
0(1), whereas Em V.

3. We next calculate exp(S(E)) = Tr O(E — H1 — H2). If � 0, as V
V1 + V2 x with V1/V fixed. Because of the assumption of subadditivity,

cii In Tr1 —-

is iii and increases to a1(e). Let E2[n] denote the
ordered sequence of eigenvalues of H2. If the entropies are considered as
functions of the maximum energy, which leads to the same function in the
limit V because of Corollary 2, then n may be identified with exp S,
and E2(S2) E2[exp(S2)] becomes the function introduced in (2.3.3: 3).
With E

= urn In Tr — H1 — H2)

1

urn in exp(S1(E — E2[n])).
ii=1

Now regard n as a continuous variable, and interpolate E2[n] linearly.
Since the integrand decreases monotonically. the cum lies
between dn and dn-•, and the evaluation of the
error is unnecessary, since exp(S2(E)) exp(1023). With Lhe variables

= (1/V2)ln n, a(c) can bewritten as

r' — e2 + V2a2].
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Now note that a2 -+ a — be2(a2) is concave if b � 0, G1y1 is concave
and increasing, and that (concave, increasing) o concave = concave. This
allows the lemma to be applied, to show

fl'1 Iv V2 \ V2
o(e)= tim sup — + -j7C2.

Vt /
[V1 Iv V2 \ V2

= sup — +\Vj V1 / V

The interchange of the limit V—p and the supremum is justified because
E2• y2(C2) increases monotonically in a2 for all V2, and since
likewise increases in c, it decreases in a2, and consequently the first term
in the brackets [ ] converges uniformiy on compact sets to

Iv V2

a the limit V —+ strict
concavity, which is needed to guarantee that the maximum is attained
at only one point, may break down. A lack of strict concavity means that
there is a phase transition, and will be examined in detail later. If, however,

are strictly concave and continuously differentiable, then the result of
Corollary 3 can be improved upon and the additivity of the entropies
demonstrated. *

EquAibrium Condition (2.3.14)

Let i.(e,) = (1/l') In Tr — H.) be strictly concave and con-
c. and 1'/V + = 1.

Then

in Tr 0(Ve — H1 — H2) o(e) x1a1(e1) + x2c2(e2),

where e, are determined uniquely by

a
+ = =

tiC2

Remarks (2.3.15)

1. The energy densities can equally well be regarded as functions of the
entropy densities, which reformulates the equilibrium condition as

—e2(a2) and + a2a2 = a.
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2. Convexity of s(o) is equivalent to concavity of c(e), which is equivalent
to the number of states below E, not increasing faster than exponentially
with the energy. This is not a general property of quantum-mechanical
systems, and has to be checked in individual cases. A simple counter-
example is the hydrogen atom, for which — 1/n2, exp(S(EJ) n3,
where n is the principal quantum number, and therefore

E —exp(—4S), 4exp(—4S) >0. <0.

In such cases there may be many solutions of the equilibrium condition
(see Figure 7).

3. Condition (2.3.14) implies that the energy is apportioned between the
two systems so as to maximize the total entropy. From the point of view
of s(a) this means distributing entropy so as o mrnirnize total energy.
As a consequence, the subadditivity inequality (2.3.5) becomes an equality
in the limit V—

4. If C2, then at the mininlum, � 0, where e" =
Then by Problem 4, at the minimum, lIe"

If the total system consists of a system immersed in a thermal reservoir,
then the system of interest is not affected by the fine details of the reservoir,
but only by 302/&2, which not only determines but also equals
eGJiJG, because

dl Ic
I

+ — o'2(e2(c))),

whc:e

C ct1= .
-z,

and the latter term vanishes because of (2.3.14) This isthe justification for

c2 not convex

Figure 7 Uniqueness of the equilibrium temperature.

Ci,62 convex
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Definition (2.3.16)

The temperature is

Remarks (2.3.17)

1. The empérature has the dimension of energy in units where Boltzmann's
constant k is set to 1.

2. The temperature is always positive with the micrc,canonical p (2.3.1),
but Pô gives the spin system of (2.3.11; 6) a negative temperature at
E>O.

3. The concavity of means that the specific heat at constant volume,

-i de T
V

d2e/da2

is positive. In particular, by Remark (2.3.15; 4), the heat capacity (at
Constant volume) = V 1/c" of the total system is the sum of the heat
capacities 1/er of the subsystems. The condition of stability
+ � 0 implies that two systems of negative specific heat can not
coexist in equilibrium. Heat transferred from the hotter system to the
colder one would make the hot one hotter and the cold one colder.
Large tempel ature fluctuations would arise, making the situation unstable.
If only subsystem 1 has negative specific heat, while that of subsystem 2 is
positive, then the heat capacities must satisfy (C1 > C2: The transfer
of heat from Ito 2 would warm subsystem 1 less than 2, so 2 would im-
mediately cool off by transferring heat back to 1, making the temperature
equilibrium between the subsystems stable. This means that the tem-
perature of a system of negative specific heat should be taken with a small
thermometer, and never with a large thermal reservoir.

Now allow the wall between the subsystems to be slowly moveable. The
energy as a function of V acts as a potential energy for the wall, just as the
electron ern'rgy acted as the potential for the atomic nuclei in the Born—
Oppenheimer approximation in volume III. Stable equilibrium occurs when
the total volume V is apportioned so as to minimize the energy. Let V2 =
V — V1, and look for

E(S, V, + N2) = inf (E1(S1, V1. N1) + E2(S — S3, V— V1, N2)).
�S

(2.3.18)

In the cases of interest here, E depends differentiably on V even for finite
systems, and E -. if V 0. Hence the infimum is attained within the
interval 0 < V1 < V. and is determined by the
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Equilibrium Condition (2.3.19)

For E of (2.3.18), the equilibrium volume V1 satisfies

5E1 —

avi — ov2

Remarks (2.3.20)

1. Because the energy is monotonic (2.3.4), with the boundary conditions
= 0, it follows that < 0, and so (2.3.19) definitely has a solu-

tion V1. At that minimum,

— — cE2

— v2=v—v,

and

/82E\1 (a2E\-'

2. With other boundary conditions it may not be true that t3E/ÔV < 0.

For example, if a hydrogen atom is confined to a sphere on the surface
of which dsJiie,, = 0, then E —

1/3, so c3E/ÔV> 0. This kind of
boundary condition can be approximately realized physically with a very
strong ö' potential. The lesson of this is that it is necessary to verify the
hope that in infinite systems the pressure (see (2.3.21)) satisfies P

� 0. It is not guaranteed that i?2EJIDV2 � 0 even with the
boundary condition = 0. which makes the proof of the convexity of
e(a, p) all the more important for real matter.

3. Since = another interpretation of (2.3.19)
is that the condition V1) + S2(E2, V — = 0 determines
V1 ; that is, the volumes arrange themselves to maximize the total entropy.

Analogous to (2.3.16) is

Definition (2.3.21)

The pressure is P In the limit V—i. it becomes

I

Remarks (2.3.22)

1. For realistic systems it can be shown how the pressure defined in (2.3.21)
arises from the forces exerted by the system on the wall [9].

2. The equilibrium condition states that the pressures of the two subsystems
are equal, with the same value as the total system has.
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3. Remark (2.3.20; 1) implies for the compressibility

I o"i - 2
-'

K

that

V2
IC

= IC1 ÷ IC2.

4. For the systems to be stable against displacements of their interface, their
volumes and compressibilitics must be related by (K1 + (K2 V2)1
� 0.for reasons like those of (2.3.17; 3) it is not possible for two systems
of nemtive compressibility to coexist, because the pressure of one system
would increase with its volume and force that of the other one down. If
only subsystem 1 has negative compressibility, then a necessary con-
dition for stable equilibrium is V1 � V2 The increase of pressure
in subsystem 1 when it expands is then less than that of 2 when it contracts.
If V1 is large enough in comparison with V2, then subsystem 2 undergoes
a large relative compression and exerts more pressure back on 1 than
I exerts on 2. The volumes adjust in the other direction and stable
equilibrium is established.

Consider finally what happens to the particle configuration if the sub-
systems can exchange particles to maximize the entropy. Formally, this
means that the Hubert space is

= ® .?1V2,
N1 =

and the quantity to be calculated

Tr e(E — exp(S(N1))exp(S(N — N1 )). (2.3.23)

In the limit V * p1,ifSisconcave in N, then
arguments like made cat her yiek1

a(p) sup + (2.3.24)

the functions are mee. we obtain the

Equilibrium Condition (2.325)

Let be strictly and continuously differentiable. Then o(p)
+ where p1 are determined uniquely by the conditions

± = p and -—- =
up2
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Remarks (2.3.26)

1. For a given e a given p, the six variables p., satisfy the three
equations + = cz1p1 + 22P2 = = 1. The three
variations ÔE, ö V, and 5N corresponding to the equilibrium conditions
are not independent, because S(E, V, N) is of the special form
Va(E/V, N/V), and there is one equation too few to fix six variables.
Suppose for simplicity that the two subsystems are identical, 01 = = a-:
then because of the concavity, the maximum of p1) + P2)
is assumed when = = = P2 =- p, and = 1 — is not
determined by (2.3.25) and can be specified arbitrarily. Equality of the
temperatures and the chemical potentials (see (2.3.27)) suffices to guarantee
that the pressures are equal. After the onset of equilibrium, the wall
allowing the exchange of energy and particles no longer exerts any force.
and can be placed anywhere.

2. It is still possible to minimize the energy instead of maximizing the
entropy. But this does not furnish a new stabiiity condition, since if
&/aa-> 0 the concavity p) p) is equivalent to the convexity of
(a, p) —* p) (Problem 2). Besides > 0 and K> 0, this requires
that

ä2E ( a2E \2

or, in terms of the adiabatic expansivity

l?V 2= -:-;j: L > KIT.

This amounts physically to the requirement of stability under a simul-
taneous change in the entropy and volume, related by

. a2E

The equilibrium condition (2.3.25) requires the chemical potentials
of the subsystems to be equal, if they are defined as with (2.3.26; 2) by
miniml2ing the energy:

Definition (2.3.27)

The chemical potential is

&
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Remarks (2.3.28)

I. The intuitive meaning of the temperature is the amount of energy it
would take to raise the system from the quantum number n to en (e
2.718 .. .). Analogously, the chemical potential is the energy increase when
a particle is added to the system without changing V or S.

2. Although Tand P are always positive with the assumptions and boundary
conditions that have been postulated, p can in general have either sign.
Because the density of states increases with N, the eSth eigenvalue may
decrease with N even if H � 0.

in phenomenological thermodynamics entropy increases if the energy,
volume, or particle number increases, according to the relationship
TdS = dE + PdV — As we have seen, some of these differentials are
well. defined only in the thermodynamic limit, and are considered as
intensive properties. For future convenience, we collect the

Interrelationships among the Thermodynamic Properties (2.3.29)

T—, p——T
op

/ £3t7 Oc\
Oc Op \ 06

T02e11 F 026 ,

Gloss

The sense of the partial derivatives is that, of the two variables on which a
function has been regarded as depending, the one not written explicitly is to
be held fixed. In any doubtful case the fixed argument will be indicated
explicitly.

Remark (2.3.30)

Without knowledge of the Hamiltonian nothing can be said about the values
the thermodynamic functions can assume. In (2.3.11; 6) there was an example
in which e(o) was even bounded above. If the function s(a) is convex and
asymptotically linear, then there is a maximum temperature. This is quite
possibly the case realized in Nature, and Tmsx = 140 MeV. In a model to be
investigated shortly (2.3.32; 2), the function e(o) has a kink, so Tskips over
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certain values. It depends on the system whether the minimum entropy
defined in (2.3.11; 4) equals zero as postulated in the third law of thermo-
dynamics. For instance, with a system consisting of N spins without energy
® a system with entropy Na, the total entropy divided by N equals a + In 2,
and when a —+ 0 the total entropy is the ln 2 left over. It is true that the ground
state of this system is degenerate, but it is also easy to find examples with
noiidegenerate ground states for which the third law fails, simply by taking
the previous Hamiltonian a one-dimensional system with a lower energy
level. The resulting ground state is simple, but that has no effect on what
happens as N —' c'.

It has been seen that the concavity of the function a(e,p) is at the root of
thermodynamic stability. Concavity is jeopardized when a is maximized
with respect to all of its parameters— the supremum of a set of. concave
functions is not necessarily concave, in contrast to the infimum. However,
there is a useful

Lemma on the Envelope of a Set of Concave Functions (2.3.31)

If a(L, is joinür concave in c and x. then o(c) = SUp2 x) is concave in z.

Picture of the Proof

Think of the silhouette of a concave mountain slope and of a mountain with
hollows.

Formal Proof if e C2(K)

With this assumption, the maximum is attained at a point ö(e) =
a(c, and

= 0 +
—i—

= 0.

Then

d2ö dc(c) —

= + a,2 —s--
= -.

Since 0 and — � 0. � 0. If a33 = 0, it follows
that aje, = 0, and therefore = � 0. (For the proof without
the assumption that a(e, e C2, see Problem 3.) 0

If the entropy is maximized with respect to parameters in the absence of
joint concavity, then thermodynamic stability may be lost, and it will be
necessary to reconsider the foregoing assumptions.
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Examples (2.3.32)

1. Model of a star
Consider N classical particles in a container V and attracting each other,
pairwise only within some c V. Suppose %he potentials arc constant
in V0 and —N ',to ensure that E be extensive.

N N

HN = E IPi I — Z

Xvo(X)

With indistinguishable particles, the volume of phase space below the
energy surface,

exp(S(E, I', N))

= $
d3Np (E —

1p11t +

3N/2
I N 3N/2

= N !(3N/2)! f d3"x(E + E

can be calculated exactly, because the integrand is piecewise constant.
Let N0 be the number of the in V0. Then

S) — (V \NNO (E +

N

N0 1

Only the dependence on E matters, so let E = e N, p = N/V = 1,

N0/N cc, (max(0, _e))h/2 cc � 1. Then it remains to evaluate

a(s) = sup hrn N, N; ctN) supa(c, cc),

and with the help of Stirling's formula,

cc) = 4 ln(c + cc2) — cc in cc — (1 — cc)ln(1 — cc) + F(1 — cc) + constaat,

F = — i). (2.3.33)

A calculation of the derivatives yields

ci
— — 3cc

\cc /
—4 —3cc 3-3cc2 1

= (c + cc2)2' (s + (s+cc2)2 — cc(1 —



I.

I

-—z2 1- —- -
F — — 1)'

4nd ranges of vaiues of the variables are such that + � 0, so
the branch of F > hi. 1, - comes into consideration. Because

—

32 1,
— 112/3

is concave in except when £2 <€ < The sign of =
— changes in the interval €2 <€ < so three values of belong
to a single €, and the maximum needed is the greater of the two. Joint
concavity requires that

2(afl)
= 2(e + — x)

and implies c � — If lies in this range of values, then the
system has positive specific heat, and otherwise not (see Figure 8). Indeed,

2
— F—ln(1/x—1)

behaves as a function of s as shown in Figure 9. The physical significance
is that if energy is removed, the temperature faIls until a certain fraction
of the particles reside in V0, which causes the system to start beating back
up. if most of the particles are eventually in V0, then they behave normally
again. The system can be thought of as a normal system with

p) = p(4 in s — 4 In p)

put into contact with a peculiar system with

a(s, p) = p(4 ln(€ + p2) — 4 in p) — Fp.

if the energy is apportioned between them according to

sup(4(xln(e1 + — a)In(€ —e1))—

then the entropy becomes exactly that of (2.3.3 3).

2. Model of a Ferromagnet
This problem is quantum-mechanical, but its analysis soon begins to
resemble that of Example 1, for which reason we shall boldly plunge on
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T

4

Cy(e)�O

Figure 9 T(s) in Example (2.3.32; 1).

C1-. 4I C1.�O
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to the estimates without wasting time about epsilontic details. The
Hamiltonian of (1.1.3) is modified to

H B
— l

j=1 i.j=1
which contains a magnetic field in the z-direction and a spin—spin
interaction favoring parallel spins. The strength of the inter4ction
is the same for all pairs and must be 1/N for H to be N. The mean
magnetization MN can be introduced as before, 11/N = — MN MN,
and it was showa in (111, §3.2) that the two parts of H can be diagonalized
simultaneously. If the eigenvalues of are and those of MN MN
are pn(n. + 2/N), 0 m 1, —m � m, then and mare always
multiples of 1/N spaced 2/N apart. To calculate Tr €i(E — H) it is also
necessary to find the multiplicities of the eigenvalues: If m =I, then all
spins must be parallel, and for one of these vectors, = 1. There are now
N vectors with = 1 — 2/N, corresponding to the N possible ways to
flip one spin. One of those possibilities has m = 1 (apply M to the
previous vector) and the others must have rn = I — 2/N. The general
rule is that of the vectors with = 1 — 2r/N, of them have
m> 1 —2r/N,andthereinaining

(N\ ( N \N!(N—2r+1)
krlkr—1) r!(N—r+1)!

have m = I — 2r/N. This means that the number of vectors with the
eigenvalues (m,

N!çNm+I) / 2 2m

((N/2)(1 — m)fl((N,2)(1 + m) + 1)! — m2)N m + I

x exP{N[In 2 — (1 m)l(l
+ m) —

(I
2

ln(1 — m)]}.

The last step used Stirling's formula x! which is justified
only for m < 1 even when N 1, but in the limit being taken the contri-
butions from the boundaries of the summation region are inconsequential.
Since the integrand is a continuous function, as N —. the sum

. can be replaced with the
and with c = E/N this leaves

exp(S(E)) = N312 $01
I sJ2irO — m2)

x 2
(1 ÷ m)

ln(1 + m) —
(1 rn)

ln(1 — m)]}

+ m2 — (2.3.34)
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m

Figure tO The region of integration in the m — mi-plane.

Therefore the domain of integration is {(ni, m2): 0 � m � 1,

—m � � m} {(m, me): � + m2)/B}. The entropySis obviously
even in B, so we may restrict consideration to B � 0 (see Figure 10).

Since the exponential function decreases rapidly with m, the appro-
priate generalization of Lemma (2.3.12) makes a = iimN -. S/N sensitive
only to m0 E m (the exponent in (2.3.34) decreases monotoni-
cally in m):

= — £
—

+in0)ln(i +m0)+(1 —m0)ln(l —m0)], -

(2.3.35)

if — I — B. and is otherwise 0. Since a is concave but decreasing
in m0, the concavity in remains to be verified:

T
da 0( — 1 + m0

— dE = 4(B2/4 — c)h12
in

— m0

1 d2a

T2c dc2 8

f (B2 \_3/2 1+m0 2
X

— €) — mo + (B2/4 — e)(1 —

(2.3.36)

B
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In a lucky break, the positive term in the brackets j..•] is always greater
than the negative one, and cy is always positive. If —1 > —1 — B � � 0,
then T increases continuously from 0 to 00. The heat capacity c,. increases
from 0 to a maximum value and then falls back to 0. If B = 0, then T
reaches the value 2 for = 0, at which cy has risen to Afterwards, T
jumps up to 00 and Cy falls back to 0 (see Figure 11).

Thus if B = 0 and T < 2, the thermal motion is no longer strong
enough to counter the ordering tendency of H, and a spontaneous
magnetization m0 appears. As no direction is preferred, the thermal
expectation value ITr remains 0. We shall learn later that as N —' 00,

the GNS representations of the a's constructed with p become integrals
over all directions of thermal representations (1.4.7). If B > 0, then
Tr pM points in the z-direction, and m0 grows smoothly from 0 to 1 as
T decreases.

The interactions in these examples could have been replaced with average
fields. This is typical of forces of long range like gravity. If the long-range

T

a = —1 — B

Figure 11 The surface of states in T — a — B-space.
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forces neutralize each other—-for instance if they are electric—-then the
system is basically the sum of its parts, i.e., it can be decomposed into parts
in such a way that the entropy, energy, volume, and particle number are all
additive. In that case the maximum entropy is concave.

Thermodynamic Stability of Decomposable Systems (2.3.37)

For an arbitrary function a,

S(e, p) sup sup p4),
'I

where

K,, = (es), (pj) = 1, = e, =

is jointly concave in r two variables.

Proof

Let ye' + (1 — p yp' + (1 — y)p". Divide (tx,) into and
and take ihe supremum over K,,. and K,,..:

K,, (ei), = y, xe.= e', cx p=

K,.. = 1 — y, = e", =

Since this is only a particular division,

sup sup + P1))

= p') + (1 — y)5(s", p").

Remark (2.3.38)

The construction (2.3.37) gives the concave envelope of a, but nothing
guarantees that a is strictly concave. If a is linear, then S = a, and a is of the
form of Example (2.3.32; 1). The convex part of the curve gets bridged by a
straight line, as shown in Figure 12.

function 5 is simply + (1 — in the intervening region
where e + (1 — for fixed and €2. An interpretation is that the
system consists of two phases in this region, having energies
and the temperature remains constant as the total energy varies, while the
proportions of the phases present change. This suggests a
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a

£

a

Rough Definition of the Thermodynamic Phases (2.3.39)

The extreme points of the concave function o(e, p) correspond to pure phases,
and in the regions of coexistence of more than one phase the function a is
not strictly concave.

Examples (2.3.40)

1. If the graph of p) shows a belt-like region the curvature of which
vanishes in only one direction, then two phases coexist in its interior.
The sides of the belt correspond to pure phases and the end to a critical
point (see Figure 13):

I
I

II

I

Cy <0

Figure 12 The region of negative specific heat.

C
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2. In the usual solid-liquid—gas phase diagram, the triple point occurs in a
region at which the curvature of p) vanishes in both directions
(Figure 14):

solid

Remarks (2.3.41)

critical point

coexistence of gas and liquid

Figure 14 Regions of coexistence.

1. The sum, in the sense of (2.3.37), of many copies of Example (2.3.32; 1)
produces a concave ö, since the convex part lies below the phase-
transition line. Some concave pieces of the curve are also bridged over,
and are known as metastable phases, which arise in superheated stars and
supercooled gases. They have positive specific heats and are locally
stable (see Figure 15):

2. Gibbs's phenomenological phase rule states that whenever a material
has two coexisting phases, there is always a one-parameter family of
coexisting phases described by and Three coexisting phases
can only exist at discrete values of (T, iz). This is exactly what went on in
(2.3.40; 1) and (2.3.40; 2), where the parts that are flat in one direction

Figure 13 The region of coexistence of two phases.

coexistence of
solid and liquid

liquid

gas

solid and gas
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C

Figure 15 Stability of the regions of (2.3.32; 1).

2

£

are two-dimensional, but is not a consequence of concavity alone; for
instance the function = — - q

p > q + 1 > 1. has a straight line
segment only if £ = 0, but is nonetheless concave in p).

3. A quadruple point of a substance would be a flat rectangle in the energy
surface. The nonexistence of quadruple points does not follow from
concavity, but amounts to the assumption that the flat pieces of the energy
surface form a simplex. If they do not form a simplex, then the ratio of the
phases in the mixture is not even necessarily determined by £ and p:

3 = +(I + 3) = + 4).

At this point we have no arguments that would show that quadruple
points do not occur, and in fact it is easy to construct models with
quadruple points by taking the sum of two independent systems each of
which has a phase We shah have to take the issue up anew in
(3.2.12: 2)

stable

,,////
> 0. metastable

///
<0, unstable

> 0 metastable

stable
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Problems (2.3.42)

1. Show that if p) is concave, then (E, N. V) S(E. N. I") is concave.

2. Show that for 0, a(s, p) is concave 1ff p) is convex.

3. Without assuming differentiability, show that if x) is concave, then =
aQ. is concave.

4. Prove the relationship VIE" = + 4).

Solutions (2.3.43)

1. For simplicity assume that a is twice differentiable. Then

—

D2S =

— pa pa e2p + +

Observe that the concavity of S is equivalent to D2S � 0, which means that D2a � 0
and det D2S U. However, D2S = 0 because the mapping A S(AE, AN, AV) is

affine.

2. The function a •is concave if the concave hull r = {(x, ;', z) = A1(x,, ;),
(x1.y1,:jeF, 0� A� 1, = I) of the graph r = lies

completely below r. However, looked at from the other side, r is also the graph of the
inverse function r.(a, p), except that below" becomes above" and vice versa.

3. Let E + (I — Y)&2, and choose so that sup, a(;, = o(c,. i = 1,2,

or at least comes arbitrarily close to equality.

SUp a(t, > + (I — ))c2, + (1 —

� + (1 —

= yö(E1) + (1 —

/Va — V1a , ,, / V V1 , , , V c'j
4. c1(o1) =

) =
— .-. aIp2 a1 =

+

V i:'; V V1 .V2
E'(c)= = = = +

2.4 The Canonical Ensemble

The Maxweil-- Bolr:mann distribution arises from the state of a .cvstem

in contact with a thermal rservoir. If the svsle'm ts larpe. stare i,c

indjslviQuishable from that of the mzcrocanonzcal ensemble.
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In the preceding section it was shown that the entropy of two large sub-
systems without interaction is additive. The entropy was always defined
with the microcanonical density matrix (2.3.1), but when the density matrix is
restricted to a subsystem,

p, = exp(S(E — H,))frr1 exp(S(E —

(2.4.1)

it appears quite different. It will now be shown that p, does not depend on
the nature of the second system if it is infinitely large (a thermal reservoir).
We shall also find out that this so-called canonical density matrix is equiva-
lent to the microcanonical density matrix if the system is large. The con-
vergence of p1 as the second subsystem becomes infinitely large is described
by

Lemma (2.4.2)

Suppose that the concave, increasing functions (1/V)S(E) and
their derivatives converge on some neighborhood of E/V to a
function a(s) E C' and to a'(s). Then as V —,

exp[Vo'v((E — H,)/V)] exp(—H,?(e))
Pv = Tr exp(—H1a'(e))

in the trace norm, provided that exp( —H 1d(c)) is of the trace class v',.

Remarks (2.4.3)

1. As in (2.3.13; 2), E and E_ can be identified.
2. A priori, S(E) has been defined only for discrete values. We assume that

it can be interpolated with a concave, strictly increasing, continuously
differentiable function.

3. The facts am(H) = 0 and H � 0 do not suffice to make exp( — e
Sp(H) could be I and the elgenvalues n e I' could have multiplicity

More assumptions are needed than (2.3.3; 2).
4. The significance of the lemma is that temperature is the only property of

a reservoir in the infinitely large limit that enters into the reduced density
matrix. The reduced density matrix has the canonical form regardless
of the structure of the reservoir, when the energy of interaction can be
neglected.

Proof of (2.4.2)

With Tr1 E)(E1 — H1) = exp(S1(E,)), Tr ø(E — H1 — H2) =

j dE1 exp(S(E — E1) + py can be written as

— (H1/V)) —

J dE, exp{S,(E,) + In S',(E1) + — (E,/V)) —
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r
= Ho

—

£

Figure 16 Estimating the slope of S(e).

Because of concavity, if H1 � 0, then � — — (H1/V):f
— (H1/V)) (see Figure 16).

The assumption that (/ converges uniformly then makes
— (H1/V)) — Oy(€)] converge uniformly to —H1ci'(e) on compact

sets in Sp(H1). Moreover, there exist V' and fi such that for all V> V',
there is an operator inequality, exp[V(or,(e — (H1IV)) —� exp(—/3H1). In the spectral representation of H1, (H1/V)
— -. in the strong topology, by the Lebesgue domi-
nated convergence theorem. If the operator on the right belongs to 'W1,
then by the dominated convergence theorem again,

Tr = JdE1 exp[S1(E1) + In S'1(E1) —

= urn fdE1 + in

The proof is completed by appealing to the theorem (Problem 1) that
convergence of density matrices implies convergence in the trace norm. D

Corollaries (2.4.4)

1. Since Pv converges in the sense of the strong topology of (cf.
(2.1.2)), Tr pya —' Tr a exp[—fl(H1 — F)] for all a E where

= Trexp(—flH1).
2. Because of Theorem (2.2.24), S(exp[—fl(H1 —F)]) �

S(s)

H
c—v
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Recall that the microcanonical state is the most mixed state below Em.
The canonical state instead satisfies

The Maximum P Caponical Entropy (2.4.5)

Let p = cxp( — flH)/Tr exp( — /IH)and let j5 be any density matrix such that
Tr = Tr pH. Then S(p) � S(j3).

Remarks (2.4.6)

1. tites that with a given aveiage energy, the canonical
state ipas the greatest possible entropy. The proposition does not work for
all or-entropies so it can not be improved to the that p �

2. According to ineqdality (2. 2), since x —x In x is strictly concave,
S is a strictly concave function on the convex set of density matrices p
such that Tr pH = E. This means that the maximum is unique, and there
can not even be local maxima elsewhere.

3. = — F(fl))/(c* — 1).

4. This maximum principle is sometimes invoked as the motivation for the
canonical density matrix, without appealing to the microcanonical state.

5. The free energy satisfies the inequality � F(p) without the assump-
tion that Tr g311 = Tr pH.

Proof

Proposition (2.4.5) follows directly from Remark (2.2.23; 1).

The canonical partition function Z Tr exp( — $11) is easier to work
with than the microcanonical partition function, because it does not iztvolve
discontinuous functions; if the dimension is finite, it is even an entire function
of (i. If the dimension is infinite, then exp( — flH) is required to belong to

so the spectrum of H must be bounded below and extend to +
This, however, means that exp( —(iH) for fi < 0, so the most that can
be hoped for is analyticity in C' {x + iy: x > 0). For cases of interest,
there is in fact a proposition on

The Analytlcity of the Partition Function of Finite Systems (2.4.7)

Let exp( — flH0) E for all fi > 0 and suppose V is s-bounded with respect
to H0 (cf (III: 3.4.1)). Then the mapping C x C: (i) -.
Ti exp[ —fJ(H0 + is analytic, and Ir exp[—fl(H0 + =
-Tr exp{—flH0J.
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Remarks (2.4.8)

I. Since the operator H0 + is not normal when is nonreal, the ex-
ponential function has to be defined. This can be done as in (2.1.8; 7)
or by integrating the resolvent,

dz
exp[—/3(H0 + av)] = I — —,

Jc 2iri (H0 + cw — z)

in which the integration contour runs through the region of analyticity
(cf. (III: 3.5.13)) so that the integral converges in norm.

2. The next task is to make sense of Tr exp[ — fi(H0 + av)] and show that it
belongs to for (z, fi) e C C If fiG R x R then this follows
from H0 + H0/2 — and the observation
that if 0 < a < be then a e If and /3 are complex, then Corollary
(2.1.8; 7) can be appealed to for I Tr exp(cxa + fib) I � Tr exp(lxa) II
with exp(a) and exp(b) Hermitian, and in particular I Tr exp[ — aH0 — by

+ i(cH0 + dv)] � Tr exp( — aH0 — by) for all real a, b, c, and d.
3. The proposition implies that the free energy F = — Tin z can have

singularities only at the zeros of Z. If /3) E x + then Z > 0, so F
is analytic in a neighborhood of R x 0V. In addition, Corollary (2.1.8; 3)
states that —In Z is concave in (/3, xfi)e R x F is concave in
(T, (cf. (III: 3.5.24)). The equation = <v> generalizes the
Feynman—Hellmann formula (Ill: 3.5.19; 2).

Proof

See Problem 2.

Since the exponential function is convex, the free energy can be bounded
in terms of phase-space integrals by means of (2.2.11), and the upper bound
of (2.2.11) can be improved upon with Corollary (2.1.8: 7).

The Connection with the Classical Free Energy (2.4.9)

Let

• N

H
=

p1 12 + v(x), exp( — fiF) = Tr exp( — $1-!) <

and

= pd2 + v(x))].
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Then

F �
where

= — + fd3Mx(vu(x)12.

Rejnarks(2.4.lO)

1. The function v(x) contains the interaction between the particles, as well as
a possible external field. It must even account for the box confining the
system, as the Hubert space is L2(R3N).

2. The proppsition shows that quantum effects can only increase the free
energy, either with a kinetic zero-point energy or a smeared-out effective
potential.

3. The particles have been assumed distinguishable; the modifications
needed for indistinguishable particles will be discussed below.

4. Countless attempts at expansions in h have been made in the literature,
but the results are not conclusive because rigorous bounds on the higher-
order contributions have not been obtained.

5. If h is not set to 1, the dimensionless volume in phase space becomes
d3"x d3ivph - rather than d31'x d3'1ph

Proof -

The lower bound for F. By Corollary (2.1.8; 7),

Tr exp[—fl(H0 + v)] � Tr

= f43Nx<xI exp(—PH0)Ix> exp(—$v(x)),

and it was observed in (III: 3.3.3) that exp( — flH0) has the integral kernel

1
N

K(x, x)
= = $

The upper bound for F follows immediately from (2.2.11), for (zJFpl2 Iz>
= (Im z2) + 5 0

Example (2.4.11)

The one-dimensional harmonic oscillator; u(x) = exp( — H
p2 +

Tr exp(—flH) = exp[—flw(2n + 1)) = 1 —



'ftc

wr1ich has -he minimum w2x2 w when h Since

dpdx
—,— + 2:3 -'i.

the bounds (2.4.9) yield the inequalities

exp( exp( —
2wfl E

• The interest in the bounds (2.4.9) is mainly since the particles
in real physics are either fermions or bosons. In addition to multiplying the
volume element of the phase-space integral by 1/N!, the generalization foi
indistinguishable particles entails an effective interaction that vanishes
as mT and is repulsive for fermions and attractive for bosons.

Bounds on F for Indistinguishable Particles (2.4.12)

Suppose that

H = Pu2 + xx),

=
Jd3Nx dSNp x1, . ..

and that F5(H) and FF(H) equal — T In Tr exp( — RH), where the trace is taken
over the symmetric (resp. antis ymmetric) tensor product of the one-particle
spaces. Then

� F,(H) � + V,),

FCI(H + VB) � F8(H) �
where the function h(p1, is the expectation value of H in the symmetrized
(resp. antisymmetrized) states of (2.2.10; 5):

h(z1, . ZN) / , Zj = +
., Z1,. . .,

If the coherent states are chosen with u(x) = exp( — mTf x 12/2), then the
effective potentials are

/ 2
2 . i —mTjx1 — XjI

T In 2 exp( — mT lxi — Xk ) if sup expt
21*k j ,#j \

otherwise;

—

u.k
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Proof

The lower bounds. For one particle in (see (III: 3.3.3)),

f—fl1p12\ , fmT\312 I—mTIx<xl
)
lx>

= u—) 2

so in the properly symmetrized or antisymmetrized basis, if there are N
particles, then

xNlexP(

= 1

E(±1Y — XP12)

The sum over permutations amounts to just a permanent or determinant of
the form <z1, . . . , ZN>, by (2.2.10; 5). It is therefore � 1 or,
respectively, � 1, since the length of a vector is increased or, respectively,

11111 = 1:

llaYl >112 = <Ia,aYl> = <I> ± <I>.
For fermions, Det(<zllzk>) � 1, whereas for bosons the permanent has an
upper bound from Problem 4, � l<zLlzk>I]. The rest
of the proof is similar to that of the lower bound of (2.4.10):

Trexp[—fl(H0 + v)] � Trexp(—flH0)exp(—fiv)

f ..., PN) + v(x1,

X
Det I — T))

� exP[_fl(Jio(Pi. ..., + v(x1, ..., XN)

— Xj12)

The upper bounds. Since the symmetrized and antisymmetrized coherent
states are not normalized,

Per
<Zl,...,ZNIZI,...,ZN>

the normalization has to be accounted for in (2.2.11(i)):

Tr k(a) �
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For bosons the inequality follows now from n(z) � 1. For fermions, with
u(x) exp( — mTl x 12/4), it is necessary to estimate Det( 1 + K), where

K
fexp(-.(mT/2)Ix,— Xj12), Iu_b, i=j.

Since

IIKII <sup exp(_ 1x1 —
j

we find

In = in Det(1 + K) = Tr ln(t + K)

/ �TrK2E II

- �;:21_1KTK2

Jin 2 Tr K2 for IlK II �
lao otherwise.

Finally,

Tr K2 = — 0
i*j

Remarks (2.4.13)

1. If mini,, — b > 0, then IlK II b3 drr2 exp( — r2mT/2)
exp( — mTb2/2), so can be replaced with a hard-core potential with a
radius depending on T and energy N.

2. The ranges of the potentials VB and are approximately the thermal
wavelength, i.e., the wavelength of a particle with kinetic energy -3T/2,
so when the particles are about this close together, as in a degenerate
quantum gas, the bounds spread wide apart.

In closing, let us study the limit N -. in the framework of the canonical
ensemble. Not only the reservoir but also the subsystem will be made
infinite at the same time, and we wish to know whether the free energy
density F/V tends to a limit q,. This should be the case whenever this limit
exists microcanonically. Then the issue is how to recover the microcanonical
quantities from knowledge of

Theorem (2.4.14)

Suppose that, with H � 0, p) = (1/V) In Tr 0(Ve — H) converges
uniformly on compact sets to a concave function or(s, p) and is bounded above
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by afiinctwn p) such that 0 = p) = s(c, p)/E, when V is big
enough. Writing as usual fi = lIT, then

bm (— In Tr exP(_$H)) — Ta(s, p)) 'p(T, p).

Remarks (2.4.15)

1. Since a is concave, it has a right derivative,

I
a' m lim(a(c + 5, p) — s(e,

The infirnum is attained at the point e(T, p) for which p), p) = I/T
(see Figure 17). II a' has a discontinuity, jwnping over the value l/T, then
s(T, p) is the point at which the jump takes place. The usual thermodyna-
mic relationship q,(T, p) = p) — Tcr(s(T, p), p) holds for the free
energy.

2. The function is a Legendre transform (2'(cr))(ft) = info (fl* — a(s)).
The transformation 2 has the following properties:
(i) 20 2 produces the concave envelope of any function so 2 e 2'

= 1 on concave functions;
(ii) 2 maps a linear piece of a concave function to the point of a corner

and vice versa;
(iii) 2 maps the - set of strictly concave, continuously differentiable

functions into itself. By Property (i),

a(s) = inf(fte — 2'(c)(fi)) =

3. If a(s) is strictly concave and continuously differentiable, then by Problem
3 the limit V — and the derivative by fi can be taken in either order.

Figure 17 The geometric meaning of the free energy.
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The energy and entropy densities calculated with the canonical density
matrix

H exp(—flH) .lim Tr
V Tr exp( =

— hm In Tr exp( — flH)

= _T2/j4=p+ Ta

and

T f exp(—f3H) \
exp( — PH)) = —

which are obviously identical to the microcanonical energy and entropy
densities. This fact is known as the equivalence of the ensembles.

4. The concavity of a in s is a necessary condition for the ensembles to be
equivalent, since the specific heat in the canonical ensemble,

=

is automatically positive by Corollary (2.1.8; 3).
5. The bounding function s is necessary to ensure that

urn p) — sup(Ta(c, p) —

without it, Tav(e) — = 1 — (1 — eV)2 is a counterexample.

(The assumption that H � 0 is a normalization.)

Proof

Trexp(—/JH) = I dEexp(—fiE) — H)

p dE exp{—PE + S(E)]

flVexp[—IiVçoy(T,p)]

x de — —

where

p) = — Ta1,(s, p)).
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If V is taken large enough, then the infimum lies between 0 and 8o: 8o —

p) = 0. By assumption the functions converge uniformly on this
compact interval, so p) -. p). A modification of Lemma (2.3.12)
shows that the contribution of the integral to is negligible in this limit. This
step uses the assumption to ensure that for all T > 0 the exponent is domi-
nated by for large E, so that the dominated convergence lemma
applies. 0

Several general properties of the Legendre transform of a can be deduced
from those of the microcanonical energy density (2.3.10), and are listed
below:

Properties of the Free Energy.Density (2.4.16)

1. As the infimum of a set of linear functions, q(T, p) is• concave in T. If
If � 0, then q(T,p) p) =0.

2. The function q(T, p) is convex in p, because f(x, y) being convex in
(x, y) implies that f(x, y) is convex in y (see (2.3.31)).

3. p 1ço(T, p) is an increasing function of p. since Tr exp(—$H) is an
increasing function of V when N and are fixed.

4. T p) is a decreasing function of T, since for H � 0, exp(—$H)
is a decreasing function of fi.

Remark (2.4.17)

Although convexity survives the thermodynamic limit, the anaLyticity
(2.4.8; 3) of F is less hardy. The zeros of Z may approach the real axis as the
system is made infinite, causing discontinuities in the derivatives of
Example (2.3.32; 2) can be modified to a degenerate BCS model, with

N N

H = — — —

j=1

This Hamiltonian has the eigenvalues — rn(rn + 2/N) + mi), and,
as in

/ B2
B) = mf + + — —

'-/
1+m 1—rn

o(m) = in 2
— 2

+
— 2

ln(1 — m).

The infimum with respect to is attained at max{ —B/2, —m}, assuming
B � 0. If = — B/2, then setting the derivative by m to zero leads to the
equation

m(T) =
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Figure 18 The free energy in Example (2.2.32; 2).

B

If = — m, then instead of this, the minimizing value is ,n(T, B) =
tanh(B/T). The two different possibilities give critical temperatures

(B/arctanh(B/2)

to
ifO < B < 2,

if 2 � B.

Figure 18 depicts q,(T, B). The values of m and are continuous at the
transition point, but their derivatives are not. The function remains
continuous along with its first derivatives—the derivatives by m and m,
vanish—but the second derivatives of B) are discontinuous at T = 1(B).
Such properties as the specific heat display the discontinuity characteristic
of a phase transition.

Problems (2.4.18)

1. Let p be density matrices for which p —

p is a density matrix and Q a projed ion such that
Tr pQ < s. then for aIlaEl(Ye°), hr pQaj <

T

2

m. = — -
2

—Bm(T,B)—

T=

B2
4, = —m(T)2 — — — T(7(m(T))

4
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2. Prove (2.4.7) by applying Hartogs's theorem: If f(z1, 22) IS separately analytic In
z1 and z2, then it is jointly analytic. Also observe that the trace is a continuous

-. C, where has the norm

3. Suppose is a sequence of concave functions converging pointwise to
1..et and denote the right and left derivatives of and likewise for

and Show that for all a,

4',.(€) � Inn inf � urn sup

q at the point a, then urn =

4. Show that JPer<z,1z5>I � exp

5. Find a function of x and y that is convex in each variable separately but not jointly
convex.

Sohitloss (2.4.19)

1. Lemma: p = where c1 � 0, c, = 1, and tx1} is an orthonormal basis.
Then

Tr pQ = <a,

ITrpQaI = hoff < hIaIk6,

since by the Caucby-Scbwarz inequality,

1)2 112 1/2

Z = � c1flQx1II2)
. (z Ci) =

Proof of the proposition: For any finite-rank operator a. Tr pNa -' Tr pa, and
•Fr p(l — a) Tr p(1 — a) Now let P be the projection onto the first N eigenvalues
ofpandchooseNsuchthatTrp(1 — P)

Tr p,(l — P)a + Tr(1 — P)p1Pa + Tr(p,, — p)PaP

+ Tr(PpP — p)a

Tr(pa — p)PaP < attPaPhI <aflalt

for sufficiently large n, since all topologies are equivalent on the finite-dimensional
spsce P1(A')P, and Tr(p1, — p)PaP 0. ITr(PpP — p)al � IahlTr(l - P)p <
hail . a. Tr p(I — P) Tr p(l — P) < a, which implies that for n large enough,
Trp,(l — P) < 2s. Hence, by the lemma,

Ti p1(l — P)ah <

Tr(1 — P)pNPaj Ti — P)aPl � �
Consequently,

hTr(p — p)aI <(2a +

Tr
I — = sup I Tr(p. — p)a I < 2a +
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2. fi) exp{ — + 2v))

i) Analyticity (=coinplex differentiability) in fi.

U a integral of 11.11-anilytic functions and
therefore a -analytic mapping, C x C —.

(ii) Analyticity in

U(a + a, — = f drU(z + u',fl(l

'(U(2 + — � 11(1(2 + fl(l —

x L � constant,

when � r � 1. If 0 � t then the first factor has to be divided up. This
shows that the mapping C x C' -' p) -. U(a, is analytic, and
therefore the mapping C x C -. C: (u, -. Tr U(z, is analytic, because the
trace is continuous and linear —+ C, and thus also analytic.

3. Concavity yields (lie'Xoy(e + e') — � � � —

— for all e' > 0, and the statement follows from this with the limits

N

S = fl � fl (1 ÷
p (l.J)

�
/ 0 —1\.

5. f(x. y) = —xy. The Hessian
o)

is not positive.

2.5 The Grand Canonical Ensemble

The thermodynamic functions are easier to calculate explicitly the
constraint of afixed number N of particles is dropped. It Esphysicaily
realistic for a system coupled to a reservoir of particles.

This section will investigate the situation of a system with a reservoir with
which it can exchange particles as well as heat. As in (2.3.23), the underlying
Hubert space is taken as

0
N, =0
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and the Hamiltonian is
N

H = N1) + H2(V2, N — N1)).
N1—0

and V2—'oo,andbeginbycollectingthe
immediate generalizations of some of the results Proofs will not be
given, as they entail only slight modifications of the earliór ones.

Convergence of the Reduced Density MatrIx (2.5.1)

Suppose that the concave, increasing functions

Ti2 0(E2 — H2) S2(E2, V2, N2)
2)

wad their derivatives converge un!formly on a neighborhood of s = E2/V2 and
p=N2/14 to a(e,p), and ôa/öp. Then with V=V1+V2, N=
N1 + N2,

F öa]

1'
Ti2 O(E — H)

— N1 —

TrO(E— H) —

in the trace norm.

Remarks (2.5.2)

1. The symbol Ti2 denotes the trace in the second (actor of

Ifpr,.v1 ®

N HI(N1, V1) operates on This
operator on the Hubert space of an indefinite number of particles is most
conveniently written in terms of the field operators (1.3.2).

2. The values of p for which exp[ — $(H — pN)J e depend on the problem.
If, for instance,

—In Tr,WN exp[—$H1(Nj)]> —cN1,

then the trace exists whenever Re fip — c.

Many of the results of §2.4 may be reformulated for the grand canonical
ensemble merely be replacing H with H — pN. An example is
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The Principle of Maximum Entropy (2.5.3)

Let be a density matrix such that Tr pH Tr Tr 13N = Tr
Then

If system I is now taken infinitely presupposing the extensivity
following from H> — then T/V times flit logarithm of the grand
canonical partition function has a limit, which may be identified as the
pressure, with reference to (2.3.29).

The Thermodynamic UmIt (2.5.4)

If the assumptions of (2.4.14) are satisfied. then

lim in
N-O

= sup(pp — p(T,p))= P(T,p).

Remarlca(2.5.5)

I. The supremum is attained where the right dethative
lim(p(T,p+5)-

unless p is on an endpoint of the interval on which P(T, p) is defined.
This means that with (2.3.29), p can be identified with

0PT 0Pr 8Pr
Because

va's

the grand canonical partition function turns out to be exp(PV/T). We
shall also speak of P as the pressure when the system is finite, although it
does not exactly agree with the definition as the force per area on the wall.

2. As before, the ensembles are equivalent, on account of the identities

C/Pr pIT (11 p

Ta=e—pp+P.
Observe that the grand canonical averages of N/V and HN/V approach
p and ; and that the entropy density of equals a.
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Properties of the PreNwe (2.5.6)

The function (7', gz) P is convex, since it is the supremum of convex
functions.

2. The pressure increases with p. since it is the supremum of increasing
functions.

3. If H — � 0, then T1P is an increasing function of
exp( — — pN)] is a decreasing function of fi.

The grand canonical ensemble is particularly useful for identical particles,
and allows the thermodynamic functions of bosons or fermions interacting
with an external field to be evaluated more explicitly. For this purpose, we
write the Hamilton an and the particle number in terms of the field operators
(1.3.2) and our orthogonal basis {f_}, as

H = Vf(x) + f(x)fi(x)v(x)J

N = (2.5.7)

w}Iere h = p12 + v(x) is the one-particle Hamiltonian, and a,,, stands for

a(f,,). If h has pure-point spectrum with eigenvalues s,,,, and are taken as
the eigenvectors associated with e,,,, then

Tr exp[—P(H — pN)] = Tr — az)]. (2.5.8)

Taking the trace leads to easily computed sums, since aa has the eigen-
valuesOand lforfermionsandO,1,2,...,forbosOflS.IfltheSeCaSeS,P,
and become -

= —.PB(—z) = ln(1 + z exp(—$c,,,)), (2.5.9)

where z exp(flp) is known as the fugacity. When written in terms of the one-
particle Hamiltonian h = 1p12 + V(x) and the trace tr on the one-particle
space L2(R3),

The Pressure of Ferunlons or Bosous In an External Field (2.5.10)

becomes

z) = tr ln(1 + z exp(—flh)) = —P3(T, —z).
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Remarks (2.5.11)

1. In the limit z 0, PF(T, z) = P5(T, z) = z(T/V)L which
corresponds to very dilute matter, for which both Bose and Fermi
statistics become the same (Boltzmann statistics).

2. If h � 0 and then the singularities of exp(P) occur
where z = < —1, m = 0, 1,2.... The fbnction exp(P) is
analytic in z until the singularities are reached, i.e., the power series in z
converges. The analytic function P,(T, z) describes all three kinds of
statistics. Fermi statistics correspond to z = exp(J4/T) > 0, Boltzmann
statistics to z -. 0, and Bose statistics to — exp(s0) < z <0 (see Figure 19).

It is easy to calculate expectation values as well as the partition function:

Tr exp[—fl(H — pN + PV))
= ±

(2.5.12)
Since every one-particle vector E L2(R3) can be expanded in elgenvectors
of h, and when restricted to L2(R3), equals P1 = the informa-
tion about the one-particle observables is contained in the

Effective One-Particle Density Matrix (2.5.13)

One-particle expectation values are given by Pi = (exp[fl(h — ± 11'
with the formula = Tr pIP1 = <1 IpiIf>. The density matrix Pi
has the properties

and
Trp3 = N,

for fermions
for bosons.

Figure 19 Singularities of P in the complex z-plane.

disc of convergence

Fermi
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Remarks

1. The number N is defined by <L,4a.,> = tr[exp(fl(h — p)) ± 1]'. If it
is preferred to deal with these more understandable variables of the
canonical ensemb4e, then this can be taken as the equation deteimining p.

2. Similariy, (H> = tr pSI,, etc.
3. If a reduced density matrix on the one-particle phase space is defined

with coherent states (cf. (2.2.7) with (2.2.10; 5)), p(x, p) = =
(zIp1Iz>, then the generalize as

t.d'xd3p
j (2,c)3

p(xp)=N,

and

(1 for fermions0 � p(x, P) � IN for bosons.

This shows that the exclusion principle of fermions has the effect of
reducing the maximum value N of p(z) allowed in quantum mechanics
tot.

As well as the one-particle observables, global properties like (H> and P
can be calculated with Pa, and even the many-particle entropy can be expres-
sed in terms of

The Effective Eatropy (2.5.15)

—Tr In = + —

= 4± ln(1 ± — ja)]) + fi
exp[$(h = ± 1]

= —tr[p1 In Pa ± (1 Pa) ln(1 P1)1.

Remarks (2.5.16)

1. The part in addition to the normal —tr p In p in S reveals that the many-
particle system has increased disorder. The addition shows up in the
entropy of a density matrix,

Ip 0\
1 — )

= —p In p — (1 — p) ln(1 — p),
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where p is the probability for spin-up, and in the entropy of an oscillator,

— x)( X

x2
+ (1 + p)ln(1 + p),

where

x
= =

is the expectation value of the number of phonons.
2. In accordance with the maximum-entropy principle (2.5.3), the one-

particle Pi (2.5.13) is the p that maximizes

—tr{olnp ±(1 F p)ln(1 Fp)+pfi(h

(Problem 4). Also, on a formal level,

vop0=
i

= [expjfi(h —p)] ± l]'.
The density matrix Pi describes the distribution of bosons or fermions.

Its significance is brought out most clearly in the classical limit.

Classical Bounds for the Pressure of Particles In External FIelds (2.5.17)

With notation like that of (2.2.7), let

h = pP2 + v(x) = h(z) = <zjhlz>,

p(z) = = <zI[exp[f3(h — p)] = <zIp1Iz>,

where v is such that all expressions appearing are well defined. Then, with
z = q + ip,for bosons,

— J
ln(1 — — em)]) � 14V

< In(1 — exp[—P(1p12 + v(q) —

i4V � ln(1 + p(z)).
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and for fermions,

f dci, ln(1 + exp[—mh(z) p)])

� f dci, ln(1 + —

dci, r- p(z)) � p)V.

In analogy with (2.4.9), one gathers that

h(q + Ip) 1p12+ + flvu(x)12 d3x

f(q + Ip) tpl2 + v(q) — $lVu(x)12 d3x,

where

v,(q) J v(x)fu(x — d3x

v(x) — q)12 d3q,

and u is an arbitrary vector of L2(R3) such jhat = I and HVuH2 <

Basoea. The first two inequalities are the analogues of(2.4. 12), where the lower
bound (2.2.11) with the convex function x -ln(1 - exp(—x)).

—

< 1,andtheseries

— czp(—fl(h — =
exp[—n$(h — iO)

I—i

converges in the norm it must even converge in the norm H hi, since it
was assumed that -hi(1 - ezp(—P(h — and the series is mono-

With recourse spin to (2.4.9), each is bounded. by

— + V(q) —

which also converges by assumption. Since all terms are and



2.5 The Grand Canonical Ensemble 123

can be interchanged. The final inequality follows from the concavity
of the function x -+ ln( 1 + x):

—<21 ln(1 — exp[--fl(h — p)])Iz> <zi ln(l + p1)Iz> � ln(1 + <zlpilz>)
implies that

tr ln(1 — exp[—I3(h — p))) � f dL1, ln(1 + p(z)).

Fennions. The first two inequalities again come from (2.2.11) with the convex
function x — ln( I + exp( — x)), and the last one is a consequence of the
convexity ofx -+ —ln(l —4 0

Remarks (2.5.18)

I. If x > 0, then (exp(x) ± l) is convex, and if x <0, then it is concave.
For bosons, x > 0, and so

p(z) <z (exp[13(h — p)] — l) 'Ii> � (exp[$(h(z) — —

The analogous inequality for fermions is true only if h — p > 0.

2. In Problem 3 it is shown that = K,K J d3xfVu(x)J2,
wherez = q + ip, and on the other band, —& = — K)Iz)<z$.
Similarly. <zlvlz> = d3xfu(x — v f
x jZ><Z1, if v(x) = — q)12v"(q). What goes on with the lower
bound is thus that the classical Hamiltonian h is increased by the kinetic
energy K of u, and the potential is smeared out by convolution with
With the upper bound the classical }Iamiltonian is reduced by K and the
potential is unsmeared. If v is of slow enough variation that even for u
with small K, vw(q) is appro*lthately equal to = then the
bounds draw close together.

3. In the very dilute limit of (2.5.11; 1) the bounds produce the classical
result, if the indistinguishablity of the particles is accounted for by a 1/N!
in the phase space:.

exp(ç)
= f 43x1 ...

x exp[ — $( I Pi 12 + I I + v(x1) + ... + V(XN) — Np))

exp[exp( — —

so by

P1' C 2= Jd3xd + v(x) — p)] = N,

which is the ideal gas law. Unless exptfl(h — p)) 1, the statistics matter.
They are built into the bounds, but the indeterminacy relation forces the
bounds apart.
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4. In the classical limit, in which inequalities (2.5.17) become equalities,
p) = (exp[--fl(1p12 + V(x) iOJ ± i) 'is the density on phase

space that optimizes

= S(p,) — fl<h — a>
— f In p1(z)

± (1 p,(z)) ln(l p1(z)) + p,(z)flQi(z) —

(Problem 4).
5. if, more genórally, p is a density matrix of the many particle system on

Fock space, and

p, = f d.a, dQ2 <z'I

and

p(z) = =

are the associated one-particle density matrix and density, then it follows
from (2.5.3) and (2.5. t5) that

S(p) —Tr p In p —tr[p1 In p, ± (I p,)In(1 Ps)]

— 5
in p(z) ± (1 p(z)) (n(1 p(z))],

where the H in (2.53) is taken as the second quantization of (i/fl)
x [In(1 p1) — In pi], and p is set toO. The first inequality becomes an

equality with which is the density matrix of greatest entropy for a
given one-particle density matrix The second inequality follows from
(2.2.11), since

x —' —[x In x ± (I ln(l x)J -

Is concave with the upper signs for 0 < x < I and with the lower signs for
X<O.

The eltent of the validity nf the classical picture will be delineated through
a series of examples.

Free Bosoas aDd Feridons In a Box with Soft (2.5.19)

With a harmonic t' xi', N..particle

H = L + = pj i- — +
— '
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containing harmonic forces between the particles and a harmonic force
acting on the center of mass. As before (cf. (2.4.11) and (2.5.18; 1)). let z =
q ÷ ik and u(x) = exp(—wlxJ2/2): h(z) = kj2 + + 3w, =

+ w21q12 — 3co.Because

— #0])

(2.5.17) implies
*

± (exp{/l(j.i 3w))) � In Tr8 exp[ — fl(H —

T3
±

(2w)3
F4( ± + 3w)]),

(2.5.20)
where

The result can be calculated exactly in this case, since the eigenvalues are
£m = 3w + 2w(m1 + m2 + m3), m and so

In(1 exp[ —

= ± (± I )'
- 3w))

[(1 —. exp( — ' —

The bounds draw together to this value in the limit cv —, 0. This limit is
related to the limit V —* x', since the average of, for instance, x is 11w2.
Accordingly, we eliminate cv in favor of the effective volume V = (irT)3jcv3
and take the limit V Then with z (2.5.20) yields

T512
z) = ± F4(±z). (2.5.21)

F olr

Remarks (2.5

1. As cv —, ii, the potential v goes to zero pointwise. and the density 14,3)
on phase space into the well-Known Bose or Fermi distribution.

p

2 The uf zhs example a rnasskss particle
L - . p ,r'L. rn
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In the limit L -. cc, this E produces the same pressure up to a constant as
(in1 + m2 + m3)w, when w is identified with ir/L. Then

P9AT.z) = ±T'F4(±z)it3.
F

A Box with Hard Walls (2.5.23)

Now suppose that the potential vL(x) � 0 is significantly smaller than i/L2
for x, <L/2 but increases exponentially as soon as I x1 > L/2. Since
what happens should not depend on the precise form of VL, only certain
bounds will be imposed on VL. Because of the monotonic property, all the
steps up to (2.5.17) and (2.5.18; 1) proceed as before.t

ço(x)p(y)(p(z) � � 0 < y- <y+,

q(x) = cosh(cx),

12 dx' exp( — bx'2)p(x + x') =

so for the other bound,
2

= 5
dx exp( — bx'2) exp( — + x)X2.

The x-space portion of the calculation of (.... +

x J diI2 exp( — where g(z) = f(z) or respectively h(z) (ci. (2.5.17)
and (2.2.11)), leads to

2
exp(—B±

C ..Jv —1

a.-.02/ I
=

with fi exp(±c2/4b — cL/2]), since it is being evaluated in the
limit V = I) cc. If a sequence (VL(X))L.... of wall potentials has bounds
of the above-mentioned form with c(L) = o(L) and = o(c(L).
then

2 1 c 2
1

converges to 1 for both bounds. The p-integral is the same as in (2.5.19),
and so. finally,

T32
z) = ± 3/2 F512(±z). (2.5.24)

8ir

t From this point until right before (2.5.24). + and — will indicate upper and lower bounds for
the potential due to the wall rather than Bose and Fermi statistics.
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Remarks (2.5.25)

1. This is the same result as that of summing over all the eigenvalues of a
free particle in a box with Dirichlet boundary conditions on the wall
(Problem 5). The bounds (2.5.17) show that in very large part it is only
the total volume of V that matters, rather than its detailed form.

2. The nature of the wall is expressed by F512 in (2.5.23) and F4 in (2.5.21).
For lower densities, z 4 1, they coincide, as = z + 0(z2).

The Thermodynamic Functions of Free Particles (2.5.26)

All the thermodynamic functions can be obtained from P(T, z), so (2.5.24)
will allow the gaps left by (2.3.10) to be filled in, and the functions can be
written down explicitly. We shall investigate the limiting cases where z
z 0, and z — 1, corresponding to the extremes of Fermi. Boltzmann,
and Bose statistics. The limits z —. — 1 are what is referred to as a.
degenerate gas. By Problem 1, F has the asymptotic forms

-
- + (z + 1

—F512(—z) z — z2.25'2

\
—

(In z)5'2 + (In z)12]. (2.5.27)

where is the Riemann zeta function,

= — CE C, Re a> 1.
V

The zeta function has an analytic continuation to the punctured complex
plane # 1). In the three limits,

3/2
+ (z —

P I T312 —5i2T3T\ )

(ln 2)3/2
+ ç (in z)' 2] (2.5.28)
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so, writing

=T2 1

z) = 4PB(T, z) =
8ir312'F 3TT

±T312F312(±z
•1

F azT F )8ir3/2'

T312
rJ8 ±

8ir312
— In zF312(±z)], (2.5.29)

F

to the lowest nonvanishing order,

T312

I T312
z(1 ± z• 2312)

T312 T312Fermi

—i- (in _)3/2 + (in z) (2.5.30)
6ir 48

T312

8ir312

I T3120=

T3'2
-' (In z)'12. (2.5.3 1)

IL

When expressed in terms of the more intuitively appealing variables p and T,

Bose
- pT + —

2 /P = £ = pT ("ideal gas")

Fermi (6it2p)513 (6m2p)13
-- +

24
T2,

T312

/ BoI,zmann T3,2 exp(5/2)
a = — in

T312
= In p8ir32

\

_________________

2 '1/3(óit . (2.5.32)
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Remarks (2.5.33)

1. As z —÷ 0, (2.5.32) gives the classical result (2.3.9; 1) with an additional
factor 1/N Tin the volume of phase space. If V, denotes the volume available
in the one-particle phase space, and the 1/N! is incorporated into the
general definition, then

1 VN

S

N

On the other hand, in configuration space and with units for which
= m = 1, (2.5.32) informs us that S — in VT3'2/N. Since T"2 equals

the thermal de Brogue wavelength A with these units, the following rule
of thumb applies to the entropy: Entropy per particle = ln{volume of
phase space per particle, as measured in h3} ln{volume of configuration
space per particle, as measured in A3}.

2. Fermions have a zero-point energy E0 = Vs0 left over when T —' 0,

where e0 and a zero-point pressure Because

T —
— eo)h/2

— 6Øt2p)116 '

it is also possible to write

(c \1/2 p2ir

showing that the number M of States in the interval EE0, EJ is

( IE \i/2 2ir

/ .jio
For example, in an atomic nucleus the kinetic energy is E0 N• 20 MeV,
so with a fixed kinetic excitation energy_5E = E — E0 the number
of states in the interval is —exp MeV. If ÔE 1 MeV,
then for N = 20 there are about e2, i.e., 7 or 8, states; whereas if N 200,
then the number increases to about e63 0.5 x i03. This is in agreement
with the experimental observation that the density of the energy states
of heavy nuclei is on the order of(eV)

3. If the energy of the ground state is redefined to zero, then z must be less
than I for bosons—otherwise by (2.5.12) n0 = z/(1 — z) is

either infinite or negative. Because F312(z) < when 0 < z < 1, it
follows from (2.5.29) that T> On the other hand,
n0 can be made arbitrarily big by taking z close enough to 1. The difficulty
with this is that the two limits z —, 1 and V —' co have to be taken jointly
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if the density has been fixed. If z( V) = 1 — V and T < then

T3/2
P = Po +

T r
urn LT J

with

lim p) = 0 for all T �

r3/2
c =

8ir312

This that a nonzero fraction Po/P = I — of the particles
reside in the ground state and contribute nothing to the energy,
pressure, or entropy (provided H is replaced with H — E0). The number
of particles in the first excited state, n1 = 11(1' exp(ft/L2) — 1) L2,
is rather large, but n1/V -. 0. For similar reasons, the relative mean-
square deviation remains positive for n0 as V co, but
goes to zero for the higher states. The specific heat

i3E
C,, =

V,N

is continuous at and 3c,,/aT is discontinuous (Problem 2). If T =
then the choice of Po has to depend on V.

4. The values = 0 and z = I apply to a situation where N is not conserved,
such as a gas of photons or phonons (cf. (2.5.22; 2)). It is easy to calculate
Tr exp(—/3H) with the H.of(2.5.7). The pressure P = —qi, and

op
0— ———

0PT "Pr
so the compressibility is infinite. The system behaves much like a gas at
the condensation point, the vacuum state, i.e., no particles, being analogous
to the condensed state. It therefore has e = a = P = V = 0, and the
system can be compressed into the vacuum. The entropy density a is
then simply the quantity of the Clausius-Clapeyron equation which
simply assumes the form

"P
= C.

Since P = —p, Theorem (2.4.14) implies that this equation holds identi-
cally. The quantities e/T p a depend only on T and correspond to a
particle of energy T in each wavelength cube. Consequently, entropy
particle number energy/T.
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Particles in a Magnetic Field (2.5.34)

The Hamiltonian was given in (III: 3.3.5; 3):

The boundary conditions are that the wave-function must vanish at x3 = 0
and x3 L, the 3-axis pointing along B, so the eigenvalues of are
izm/L,m = 1,2,3 The center x of the orbit is confined to =
(2/eB)(g + < R2 in the plane perpendicular to B, so the geometry is
cylindrical. The "wall potential" — R2) confining the particle is
not a multiplication operator by a real-valued function V(x x2), but rather
a functiqn of the operator

= + + + + —

representing the sum of a harmonic oscillator in the
x1 — x2-plane and the x3-component of the angular momentum. The
construction of such a momentum-dependent wall potential will be left to the
ingenuity of the experimentalists. By (III: 3.5.3; 3), x is quantized so that
g is a whole number, and has the eigenvalues n = 0, 1, 2,... As L —.
the sum into

2 '

dp3—Z-,,
./0 ltn=O h.it ,i=0

where V denotes the volume of the cylinder. The classical bounds amount
to the replacement

—.
dn,

in which all magnetic effects are swept away. We have to resort to the exact
expression (2.5.9), with which the grand canonical partition functions
becomes

/3P5(z) j dp3 ln(l z + eB(2n + I))))
F 0 ,i=o

— T312 (±z)' veB/3
2 5— ±

v512 sinh veBfl' .. . -
)

where the B in PB denotes Bose statistics as usual and has nothing to do
F

with the magnetic field B. This reveals right away that, as in (2.3.33; 2),
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an arbitrarily weak magnetic field ruins the phase transition of the Bose gas,
since for any T.

8 — T312 (±zTz P B ±
8ir3'2 v112 sinh veB/3

can get arbitrarily big as z -, exp4flE0) = exp(8eB). This happens because
the particles are free to move only parallel to B and are trapped jn orbits in
the direction perpendicular to B even though the radius of the cylinder goes
to infinity. The system acts as though confined to a only the Length
of which tends to and in one dimension there is no Bose condensation.
If the magnetic energy eB is much less than the thermal energy T, then the
next correction to the foregoing result is B2:

± — (2.5.36)

If this is used to calculate the magnetization per volume in the limit B 0
withTfixed,

/
m=__.'=!(

øeB •u
\panicl.s

p3,2 eB
(2.5.37)

then with (2.5.26) and the formula (z(d/dz)rF,(z) (see (2.5.20)),
its limits in the three extreme cases of the different statistics are

lose
—eB•co

eB

Frmi
— (2.5.38)

Remarks (2.5.39)

1. The negative sign indicates diamagnetism, which is to be expected
quantum-mechanically: By Lenz's law the classical orbits rotate in the
direction with negative L1. .However, a current appears in the other
direction when partièles bounce off the wall of the box (see Figure 20).

With classical statistics the circulating currents cancel out at every
point of the interior, leaving only a current circulating along the surface,
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Figure 20 Classical trajectories of particles in a box with a magnetic field.

which is exactly compensated for by the "reflected" current, since the
partition function

f d3x d3p — A(x)12] = fd3x d3pexp(—flfpI2)

is completely independent of B. This means that if either p is fixed and
T-'<x Or Tis fixed and then m tends toO. Diamagnetism is
therefore a characteristically quantum-mechanical effect; if the sum

is replaced with an integral dn, and 2n + 1 becomes 2n, which
is in essence the limit Ii -.0, then P becomes independent of B (a theorem
of Bohr and van Leeuwen).

2. In quantum theory, states with negative L2 are energetically favored
(III: 3.3.21; 4), so a quantum gas is diamagnetic. The reason that the
magnetization m of a completely degenerate Bose gas tends to is that
P fails to be analytic at z = 1, B = 0. This topic will shortly be discussed
in more detail.

3. Since P depends only on R2LI

=

i.e.. the pressure remains isotropic.

In order to make sense of the limit of degenerate Bose gas, let fljz = In z,

and write

2eB/3v-
— T312 exp[ — flv(eB — js)]

V — 8ir312 -

T3"2 — p)]

I —

2eliflv

1 — exp[—2eBflv]'

T312 exp[ — fiv(eB — /4)]
m = P + 4j312

v312(1 — exp[—2eBflv])2

x [1 — exp[ — (1 + (2.5.40)
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without expanding in B. The convergence of the series for m and p in (2.5.40)
domination for B > 0 with p fixed) implies that

urn m(T,p,B)=O

forall fixed T> Oand p <0. Yet ifB-.Owith Tfixedand p <Othenall
the densities p are less than as in (2.5.33; 3). If T � 1(p)
(see (2.5.33; 3)), then the limits B —' 0 and ii—' 0 must again be appro-
priately coordinated. Since for B > 0 and for all values p , 0 and T> 0
there exists a unique p(T, p, B) < eB such that lim1.0 p(T, p, B) = 0 for
T � and since the series for m + p from (2.5.40) also converges uni-
formly in B on an interval containing p = eB, the limit B —, 0 can be taken
term by term. This yields

km m(T, p, B) = Po
— ],

provided that T � 1(p) (cf. (2.5.33; 3)). If T � then the limit is zero as
observed earlier.

Remarks (2.5.41)

1. The physical interpretation of this result is that n the limit B 0 only
the particles in the ground state contribute to the magnetization. The
ground state has L1 —1, so for B = 0 the contribution to m is simply
the sum of over the particles in a unit volume in the ground state.

2. The notation B is perhaps misleading, since it stands only for the external
field and not for that due to the system itself. Actually, the field due to the
system has to be taken into account, as it screens B throughout the
interior of the system.

Black-Body Radiation in Partial (I.e., Anisotropic) Equilibrium (2.5.42)

If the particles are massless, as in (2.5.22; 2) and (2.5.33; 4), and they have a
density matrix like PGc but containing only states in a certain dilatation-
invariant part D of p-space, then we can still write

d3pq= TJ —exp[—aIptJ)= —cT4,
D

where the constant c depends on D (but not on T). It is then still true that

e=3P= —34,=ITa=3cT4.
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A realistic example of this situation is sunlight falling on the earth, for which
essentially all' the p-vectors come from the direction of the sun. The constant
c is reduced by a factor .-.' the solid angle subtended by the sun, in
comparison with the isotropic equilibrium value with D = R3. Once the
radiation is made isotropic without changing significantly by the time it
reaches the earth, T is lowered by a factor of about 10 from —6000° K
to 300° K. At the same time, a = is increased by this factor of 20.
It is consistent with an increase in the toial entropy that this physical process
Creates highly ordered structures with little entropy; their decrease of en-
tropy is nothing compared with the gigantic increase of the radiation entropy.
About 1020 photons per cm2 arrive from the sun each minute, and this times
20 is the entropy increase/cm2-min. In an hour this comes to roughly the
total entropy of a cubic centimeter of matter each square centimeter of
ground, so, for example, a newly planted forest could grow to a height of 10
meters over a summer without violating the second law of thermodynamics.
The sun thus expends entropy as well as energy. Although isotropic black-
body radiation at 300 K would be just as energetic, the energy would be
unusable for the creation of life (as would be the case as the universe subsided
into heat death).

The grand canonical ensemble determines the expectation values of
field operators as well as the thermodynamic functions. Equation (2.5.12)
showed how to calculate quadratic expressions involving the field operators,
and quartic expressions for particles in an external field can easily be calcu-
lated in the same way,

= (ämm'5jy ± iO] 1)

x — p)]
= <a'a,.> ± <a7am.>. (2.5.43)

Remark (2.5.44)

If the mean-square deviations of the occupation numbers are calculated in
this way, then

/1 * \2\ — / * \2 — /,,* +/ \ m ml — \ m mf\ —
Independent particles would follow a Poisson distribution law w(n) =
exp(—ñ)ti"/n! for which the mean-square deviation would equal the
expectation value of the occupation number. The deviation is greater
with Bose statistics and less with Fermi statistics, which can be interpreted
as meaning that bosons have a tendency to bunch. up and fermions to keep
at a distance.

In elementary quantum mechanics a state was characterized by the
expectation values of the Weyl operators (cf. (III: 3.1.2; 1)), and likewise
now the complete determination of the state requires the expectation value of,
say, exp[i $ d3x(ax)f*(x) + a*(x)f(x))] for all fe The best way
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for this to be calculated in the grand canonical ensemble for particles in an
external field makes use of coherent states. In Problem 6 it is shown that

Tr exp[—fiwaa] + atx*)]

Tr

1 (1 1 VI
= ÷

exp($w) — i)j [a. a*] = 1.

Therefore:

The Grand Canonical State for Bosoiis in an External Field (2.5.45)

(exp{i + = exP[_Z ÷ —

Example (2.5.46)

Free bosons in a cube of volume V = L3, with periodic boundary conditions.
Let

td3xa,(k)=
L...

and

a1 = J(k) fd3x exp(ik. x)f(x),
k e ((2g/L)Z)3

for fE L2(V). Then because co =

+ ap)]> = exp[_ IJ(k)12 + 2 )]•) — z

A more convenient expression in the calculation of ordered products is
exp[i s,,, exp[i Its expectation values can be read off from
the formula exp(A + B) = exp A exp B A]), which holds provided
that [A, [A, B]] = [B, [A, B]] =0, which in this case is in accordance with
the Weyl relations (III: 3.1.2; 1):

The Generating Function for Ordered PrOducts

Kexp[i cxp[i = exp[_.
— zJ
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which can be written

<exp(1a7) exp(ia1)> =

with the use of from (2.5.13).
The expectation values of polynomials in the field operators can be

obtained by differentiating the generating function by or Note that all
the factors within a given exponent of (2.5.47) commute, so nothing prevents
the exponential functions from being differentiated:

.+. a a a aa

—o—

Vj — z'

where P stands for any permutation of (1, 2, . .., n).
We have been confronted again with a permanent, and it is easy to

understand that the analogous expression for fermions contains 1)" and
thus involves a determinant. The —z in the denominator is also turned
into + z, but there are no other changes. Linear extension covers the cases of
expectation values of products of arbitrary as-, which are most conveniently
written in terms of the one-particle density matrix Pt. as before:

The Grand Canonical Expectation Value of an Ordered Product (2.5.48)

• . . . a,.> =

This section will conclude with a further investigation into the thermo-
dynamic limit of the grand canonical state of a system of particles iii an
external field. Such a state will exist under the circumstances in which
converges weakly, as for example with free particles, for which:

The Grand Canonical State of an Influlte System (2.5.49)

1a . . a • a — 0' f ,SDCI'C\'I

( 43k
<1 IPiY> = J exp(flIkl2fl:'

where $ > 0, and for bosons, 0 � <1, or for fermions,: > 0.
It was noticed in (2.5.33: 3) that with bosons at T <

the limits V -. x and z —, 1 have to be taken jointly in order to have a given
density p. This does not make the sum in (2.5.46) converge to the integral in
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(2.5.49); rather, if z 1 — i/Po V, then the term with k = 0 survives
separately:

urn
j'(k)12(1 — (1/Po V))

V — 1 + (1/Po V)

-. p 11(0)12 + f d3k 11(k) 2

J (2it)3exp(flIkl2) —

This formula is justified 1ff e L2(R3) with compact support, which makes
f e L2(R3) so the integrand remains integrable even at k = 0.

Therefore we have:

The Grand Canonical State in Bose Condensation (2.5.50)

urn <exp(ia7) exp(ia,)>,, =1— 1/poV)

2 C d3k /(k)12
3 — 1

Resarks (2.5.51)

I. If T < 7, then the grand canonical state of the Bose field algebra differs
from the canonical state, which can be calculated as

exp(ia,)> = exp[_
$ CX j

x Re(J(0) exp(1q))J
0

forT<
T < i, the representations in the individual

factors are thermal (1.4.7). According to Remark (1.4.17; 1) the factors
are of type III in the infinite system. They form a reducible representation
it, the tensor product it2 of two Fock-like representations of the
field algebra (ci. (1.4.7)):

lr(ar) = it1 (a (P)
®

\ F exp[ — $( 1 p12 — #01 ÷ 1/
/ /5(n)

+(_1)A®,r,(a*._===_- '
'.

.jexp[fl(1p12 — #0) 1J

where a1N = (N + 1)a,.. It is straightforward to verify that

(a7, .. . . . a,.> = <fl3 ® it(a,,.)1fl1 ®



The Grand
. 139

3. For bosons at < is representation; the of the
mean magnetization s (1.46: 2) is

a0 w-lim where f
All bounded functions of lie in the center of the von Neumann algebra
n(d)". Now

a "a
= (aj'*(o))

so for instance <00> = 0, = Po• Thus is not represented as a
multiple of the identity.

4. The canonical state (2.5.51; 1) is an integral over states w, for which the
exponent in the generating function

exp(iAa0)) = cos (p)

is linear in A E R. These states produce factor representations:

it,(a0) =

5. If a term — exp( — — exp( — iq)) with 0 < < 1
is added to the local Harniltonian then the k = 0 component of
flHF. becomes — — ,Jpoexp(—1p)). As wiil
become more apparent below, the thermodynamic functions are un-
changed for all 0 < T � 1(p) in the limit V -+ if we set z(V) 1 and
Po = p(l — (cf. (2.5.33: 3)). Because

— \'Po exp( —i(p))1

x *) .

= Ir[exp( —

x Re(J(0)

and

Tr[exp( . . exp(q*(O)4)]
Tr

= exp[_. +

(see Problem 6), in the limit V ci: the perturbed grand canonical
state reduces to we,, the integrand of the canonical state in the decom-
position (2.5.51; 1), since the contribution to the generating function
from the components of with k 0 0 is not affected by the extra term.
Since the exponent in thi3 generating function is linear inJ(O) and T*(0),

it0 (a0) =
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This shows that co, is a factor state, and the density of the particles in the
ground state is represented by the (dispersionless) multiplication operator
Po I. Although the assumption that 0 is essential (the limit state is
not changed by perturbations bounded uniformly in V), the bound

< 1 only serves to illustrate that a surface effect is enough to single out
any given pure phase from a mixture as the limit V —. is taken.

This example appears at first only academic from the physical point of
view. Since constant phases of the wave-functions are not observable pro-
perties, at least for free particles, the Bose algebra should be replaced with the
gauge-invariant subalgebra i.e., the subalgebra invariant under the auto-
morphism induced by f —, All the states co, are the same on the
subalgebra, and the phase mixture of the ground state is not observable.
However, these phases do have experimental consequences in super-
conductors, in the Josephson effect.

1. Calculate the asymptotic forms of F5,2(z) (for z —' 1 use = 1(z), F,(1) =

2. Calculate the heat capacity per particle of an ideal Bose gas at constant density, as

well as its derivative by the temperature.

1. Verify (2.5.18; 2).

4. Show the maximum properties of (2.5.16; 2) and (2.5.18; 4).

5. Calculate P9 and P, for particles in a box. Show that the result agrees with (2.5.24)

inthelimit V-.

6. Calculate Ti exp(i(aix + expi expt — assuming that

[a, ai = 1.

SolutIons (2.5.53)

zp zv
1. z —.0: z

z —. 1: F512(z) F512(1) + (z — 1)F512(1) + ... = + (z — +

z-.,cxLeta.lflz>O -

+ exp(—t + = ln(1 + exp(—t))

= + + exp(t)Y l

— — t)312 —
rdt(a — t)312

+
+

— 3 1)0 J0 1 + e' Jo 1 + e'

= — t)312 + f
dt((t

+
+
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because

i(a + t)312 — — ti3,2 —

and

Jo 1 + exp(t)
(1 —

with = ,c2/6, fl2) = 1, it follows that

+ exp(—t + 2)) + 21/2 +

1
T3'2F

F3,2(z)

4 8x312p
5,2(z)

4 F,,2(z)'

= 15T312

because of the formula F312(z) = for T> i. The function y is con-
tinuous at T = 7 and equals 1.93, and as T —, Fd,(Z) —, z

— 8x312pT_3'2, and

T312z

With the expansion F512(z) = 2.363t312 + 1.342 — 2.612: — O.730t2..., where t
—In z, valid for z 1, and the recursion formula

- 1(exp( t)) = — (d/dr)FAexp( — t)).

there results

2.
T> E. i.e., 0 < z < 1,

T� 1,

which implies

Cl,
Urn—

T>7,Le.,O<z< I.

T� 1,

ÔT ÔT/TTgfo

30

Figure 21 Specific heat of an ideal Bose gas.
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3. If the of Iz> is expQk x)u(x — q) with u real-valued, then (zJ
= I — — Vu(x — = 1k12 + S d3xlVuI2. At the same time, the

value in a normalized it/i equals

I (2n)3 $ d3x exp(ik. x)u(x — e) exp( —1k. x')i4x' —

= fdq — q)) . V(u(x — uJ*(x))

Jd3xIVt/4x)12 +

because the mixed terms drop out in the q integration. Therefore,

5 = p12 + fdqlvuJ2.

4. Klein's inequality (2.1.8; 5) with K(p) = p In p ± (1 4: p) ln(1 4: p), KIp)
— ln(1/p 4: 1) and = (exp($(h — ± fI' leads to

Tr[K(p) — K(15) + (p — — is)] � 0.

proving (2.5.16; 2). In the classical case. i.e.. p = p(z), Ii = h(:), 1i = =

all being real,

K(p(z)) — K(j3(z)) + (p(z) — 1(z))fl(h(z) — i) � 0

for all z, and consequently (2.5.18; 4).

5. Particles in a box. If the shape of the box is a parallelepiped with sides L1. L2, and L3,
and the wave-functions satisfy Dirichiet boundary conditions, then the eigenvalues
are

2/mI +
= it + + Li)' m, e 1

L1 2 3

Consequently

= 4: )n(l 4: z

and in the thermodynamic limit L1 —, x the sum over in, becomes L1 . L2 . L3(2xY2
x so

P5(T.:) = 4: ln(l z exp(—t)) = ± T312 F512(±z).

•4. Because exp A exp B = exp(A + B) exp B exp A exp[A. B] for
[A, B] = c. 1, the coherent states (2.2.6) with lu> = 10>, = 0. can be written

Iaz\
4
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As in Remark (MI: 3.1.14; 1), with exp(_pa*a)f(a*)IO> = f(a

exp( —

f exp( exp( — exp( —

=
exp(

e —

exp —

I exp(fI) —

so by changing to iz

<exp[i(a*2 + a2*)]) = <exp[2a* — = <exp(ia) j2 12)

1 11 1

exp(fl)—l
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Thermodynamics

3.1 Time-Evolution

Whereas small systems evolve almost periodically in time, large
systems appear chaotic and their time-evolution mixes the observables
thoroughly.

The framework for this discussion will be an algebra .1 of observables with a
strongly continuous time-automorphism and a time-invariant state p.
In the GNS representation the invariant state is made into a vector I(�>,
and the time-automorphism is represented as a unitary group of operators
U = {exp(iIft)}, U(12> = The time-evolution then extends to the
weak closure d". If the representation is reducible, then it may occur that
U d", even if 'dUe c d. The von Neumann algebra

{d u U)", = d' U',

generated by d and U is known as the covaiisnce algebra and will figure
prominently in what follows. If the only invariant elements of .1' are of the
form 1, then it is all of as I =

An initial orientation to the various possibilities can be obtained by
looking at some

Examples (3.1.1)

1. Classical dynamical systems. The Abelian algebra d of functions
a(p, q) on the phase space T*(M) is a special case of the general schema.
If dp is a probability measure on T(M), then the elements a d

144
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are represented as multiplication operators on the Hubert-space.
dM). The advantage of the Hubert-space approach to classical

mechanics is that it ignores exceptional trajectories making up null sets.
If a time-invariant measure djs, such as the Liouville measure dq1 •

is restricted to a time-invariant region Q of finite volume and normalized,
then the time-evolution a(p, q) —' a(p(t), q(r)) is represented unitarily on

dp). It can be written formally as U, = exp( — iht), where h =
is the Liouville operator (1:2.2.25; 1), and this unitary group of trans-
formations extends to the von Neumann algebra d" = dii). Of
course does not belong to d", which is maximally Abelian, d" =

= The algebra is all of ifand only if the system is ergodic,
for then the only time-invariant functions are constant almost everywhere,
and are thus the constant functions of djs).

2. A single spin in a magnetic field, cf. (1.1.1):

d = = {1, a, at)", p(.)
=

U, = exp(iB(1 — a)t)

Observe that while there is only one invariant vector, there is a second
pure invariant state, <(?)I t?>.

3. A single spin in a magnetic field, in a thermal representation (1.4.7):

d=

{1, r, tt}", U, = exp(iB(r —

= d, = 1}, = 10 {1, r}", {1, a, ® {1, t}".

This factor representation on C' has a two-dimensional invariant subspace
and a five-dimensional manifold of invariant states. Two of thece are
pure states corresponding to noninvariant vectors. Notice that the formal
equation h = — Ba has to be normalized not only with a constant but
also by Bred', to that = Ifi>. With a different choice of the
basis for C4, also be written as which makes the representa-
tion ir of d somewhat more complicated (cf. (2.5.51; 2)):

1 + —1 ®t1 — + +

It is easy to verify the algebraic relationships

±
=

= 0,
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4. An infinite, interacting spin system. Consider the model of a ferromagnet
(2.3.32 2) in the limit N —, It. is not hard to discover that the thermal
expectation values converge to those with the vector

®

® (1) s/iT + (0)

as witha type-Ill representation (1.4.7). The quantities

S = (El) = = B — 2s,

are to be determined self-consistently, for the interaction can be written
as

1 1

= — (J,>)Z(ej — (Gj>) — + const.
I.) "I J I

If now N -. the first term on the right describes the fluctuations and
becomes negligible compared with — 2(o>L a1, and the commutators
of H approach those of BCff = —Z(o> (cf. (1.1.11)). The time-
evolution is accordingly. given by

= —

J

The Hubert space W contains infinitely many invariant vectors, viz.,
all the ones that differ from in the rjplacement of finitely many factors
with an invariant vector from Example 3. Since depends on $, the
time-automorphisins on representations with different fi are different.
Therefore there is not any automorphism of the algebra d generated
by the a's on the sum of two representations with different /3. Although
an isomorphism of n(d), as a subalgebra of is given by

=

with

= It = it,1

it is not an automorphism, since there are times t at which x,(ir(d))
ir(d). The smallest subalgebra of for which (;) becomes a group
of automorphisms is clearly Ut If B = 0 and T < 2, then
there is such a sum, or even an integral. There are nonzero solutions to the
equation Bilf = 2 tanh but nothing favors any direction. Expecta-
tion values are averages over the unit sphere of expectation values with

= by means of which the representation takes on the form

= f
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where is specified by (1.4.7) with a (a. n). The time-evolution on
is the rotation = having the matrix

fO n3 —n2\

RBerr(fl3 0

\n2 —n1 0/
However, as the strong limit of as N —. n is contained in
ir(d)" and lies in the center of this algebra but is not a multiple of 1.
It is constant in time, and the n-dependent time-evolution of the a's can
be viewed as an automorphism of it(d)".

5. Free fermions. The algebra d is generated by the field opefators a1
(1.3.2), and as in (1.3.3; 5) the free time-evolution

1(e) -+ exp(—iIpI2t)f(p)

provides a group of automorphisms on d: a1 -. The thermal state
(2.5.49) is clearly invariant in time and leads to a unitary time-evolution
U, = exp( — iHt). In order to tell the type of the representation, we can
write it in a form like the one in Example 3. Let be two Fock
vacua and it1 2(a1) be the representations formed with

I 2>. Then
with the tensor product

=
we get

it(a(f)) = itj('a(
2\

I J*(p)
+ (— /

- \ \..Jt + exp($(1p12 —

where aN = (N + l)a (cf. (1.3.13)). It can be verified that

... =

so this representatiqn is equivalent to the thermal representation with'
- infinitely many spins. Consequently, if T> 0, then it is a factor of type ilL

The local field operators in momentum space can be used to write as

H, = 0 1 — 10 iv2(a*(p)a(p))}.

The oper.aior aa differs from the usual one not only in that the infinite
zero-point energy of field theory has been subtracted off, but also in the
removal of' an operator of d'.

The Time-Evolution of Open Systems (3.1.2)

It seems illusory to consider every single local property of a large system
belonging to the algebra of observables. It is certainly true that practically
anything can be measured, but not all at once, and putting the system into a
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state that is dispersionless with respect to a maximally Abelian subalgebra
is actually impossible. In reality only fairly small subsystems get measured,
so it is of practical interest to divide the total system into the subsystem that
is observed, called an "open" system, and all the rest, acting as a reservoir.
Accordingly, let .f = 0 and let TrS, and TrR be the traces on
.* and The time-evolution U, will mix and so it does not
create an automorphism of if the initial state postulated
can be factorized and written in terms of a density matrix p ® w, then a time-
evolution ;: can be defined for the open system in the
Heisenberg picture, the dual time-evolution for the density matrices

-, can be defined in the Schrodinger picture. If
a E ® 1, then the time-dependence of the expectation values can be
written as

(a(f)> ® w)U_,(a ® 1)0 = Tr5pr,(a) =

where by definition

;(a) 0 w)U_,(o 0

= Tr5U,(p 0 w)U_,. (3.1.3)

Note that the states transform with (J7 = ti.., rather than U,.

Properties of the Time-Evolution of the Subsyitem (3.1.4)

The operators t, and are

(i) one-parameter, strongly continuous families of completely positive
linear mappings;

(ii) not groups: o tt,+,2;
(iii) not isómorphisms of the algebra: b) r,(a)

Equality holds in (ii) and (iii) only if factorizes.

Gloss (3.1.5)

A linear mapping -, is said to be a-positive if 01 acting
on aØM-"V(a)®M ispositive for all i.e.,

it maps the cone of positive elements of .'i(.*") 0 into The
= 1,2,... .11 can

be shown that all completely positive mappings are obtained by taking
tensor products of positive operators, composing with unitary operators,
and then taking partial traces, just as in the construction of; and t. The

completely positive mappings form a setnigroup with respect to composition.
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Examples (3.1.6)

1. The classical harmonic oscillator
The observables are chosen as the position coordinates q, so

TrS+R -. fdpdq. TrR -, fdp. irs fda.

Let p(q) — 1/2 exp( — (q — q0)2) be the probability distribution function
of the coordinates and w(p) = exp(—(p — Po)2) be that of the
momenta. The time-evolution of the total system, q(t) = q cos t + p sin t,
p(t)= pcost — qsint,induces

r1(q) = q cos r + Po Slfl t,

= 12 exp[ —(q — q0 cos t — Po Sin

on the subsystem. However, ; is not an isomorphism,

;(q2) = (q cos t + Po sin )2 + sin2 t

since co is not free of fluctuations. The choice of equal widths for p and to,
as with quantum-mechanical coherent states, causes a rigid oscillation
of p. If, instead, w(p) = b(p — Po)' then there would be a periodic focusing
and defocusing of p.

*(
)

— exp[—(q — q0 cost — Po sin t)2 t]

—

2. Quantum-mechanical coupled oscillators.
Let us return to the chain of oscillators (1.1.13) and take and as
the open system. Instead of the pure state (1.1.21), suppose the system is
in a thermal state

+

= + + —

As in (2.5.53.6),

Tr exp[ — — + (q — exp[i(pr + qs)]
Tr exp[ — — 7)2 + (q — 4)2)]

I r2+s2 _-}
= exp[— + + qs)j, (3.1.7)
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so this state is a Gibbs state with harmonic forces centered at s', —r'.
Under the time-evolution (1.1.18), the expectation values of the Weyl
operators of the open system are

<exp + = + )2

+
1 + 5J2M)2] + +

— +

At time t the subsystem is in a state of the form (3.1.7) with

s'0(t) = — 1(t)),
I, .

= — —

The average values move classically as in Example 1. They
converge to zero, but not monotonically.

3. Coupled spins
Consider spin I of the chain (1.1.1) as the open system and the infinitely
many others as the thermal reservoir. The coupling constants are
chosen as in The initial state

= 1(1 + + o exp(zot)),

fl4{1
k* I

((1.17) with s = 0) evolves as

+ exp(—i(a + 2Bt) + exp(i(x + 2B03)

if N -+ The state p oscillates as it approaches the equilibrium state
T-.

Remarks (3.1.8)

I. The failure of the time-evolution r or t to be a group is due to the effect
of the system on the reservoir and the reaction of the reservoir on the
system. The reaction influences the system at later times, so
depends on ;(p) not only for s = t but for all s � t,. i.e., on its whole
history. The time-evolution of the density matrix of the reservoir can be
written down formally and substituted into the equation for
The resulting master equatios is an integrodifferential equation for p
iilcluding the memory effects just mentioned.

2. The requirement of complete positivity of the time-evolution is not a
mere technicality but a genuine restriction, and it even has some experi-
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mentally verifiable consequences. For instance, its implications for the
motion of a spin in a thermal reservoir have been confirmed experi-
mentally [15].

The retrospective effects of (3.1.8; 1) disappear in certain limiting cases,
so the time-evolution r becomes a semigroup. The limits involve the time-
scale or the coupling constants. The most understandable case is that of a
simplified version of electrodynamic radiative reaction of volume ii, §2.4.

Example (3.1.9)

Model of Brownian motion
We modify Example (1.1.13) to take a single harmonic oscillator in three
dimensions as the system and represent the rest of the system, functioning as a
reservoir, as a continuous scalar field Suppose initially that the oscillator
is coupled to an averaged field J c e C(OV), and later take the
limit c(x) —' yö(x), y E R. We shall study the quantum-theoretical time-
evolution from the outset; since the equations of motion are linear it agrees.
with the classical time-evolution, if Q, P and c1(x), fl(x) are the canonically
conjugate coordinate and field variables, then the Hamiltonian is

+

HR = fd3x{n(x)2 ÷

H' =

The resulting equations of motion,

— t) = c(x)Q(t),

(
+ =

can be integrated immediately with Green's formula (II: 1.2.36). This is
the trivial case of a scalar field on R', so with the Green function

D(x, t) =
ö(r— t)

(II: 2.2.7), the solution of the initial-value problem is

D(x, t) = O)D(x — x', t) + O)D(x — x', t))

+ Jd3x' f dt'D(x — x', t — t')c(x')Q(f')



152 3 Thermodynamics

t

(x,:)

t—2R ——

-J

support of c(x)

Figure 22 The domain of influence of

for all t > 0, where 4) = a4/3r, etc. Hence the force exerted by the field
on the oscillator is

t)c(x) = FrJeId(t) + (t),

= fd3x d3x'c(xX(x', O)D(x — x', t) + 4)(x', O)D(x — x', t))

(t) = 141 c(x)c(x')Q(: — lx — x'f)OQ — x — x'J).

In ihe reaction force (t), Q(r') cQntributes only for t — 2R � t' � t
if c(x) = 0 all x such that lxi> R (see Figure 22).

Now if c(x) -. so R —. 0, then the retrospective effects dis-
appear, and when the expansion

Q(r — lx — x'I) = Q(t) — lx — + 41x — —

is substituted into

(t) öw2Q(t) —

The quantity &o2 is the formally infinite integral y2 5 (d3x d3x'/ Ix — x' I)
x t5(x)ö(x'), so the limit c(x) yö(x) must be taken jointly with a change in

If (02 — then the equation of motion becomes

+ + = r =

For a thermal state with 0)> = (1'(x, 0)> = = 0, and
the time-evolution of the-expectation value of Q for t � 0 is

<Q(r)) = exp( — rt)(<Q(o)>(cos Ut + sin cot) +
sin cot)
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provided that w2 — > 0. The expectation values of the canonical
variables <Q(t)> and then evolve according to a symplectic semi-
group,

cos cot + sin cot
Sifl(Ot

= exp(—rt)
r2 r

— (co
+ —)

sin cot cos cot — — sin cot

The time-evolution of an open system is not generally a unitary trans-
formation of the density matrix, and so the entropy of a subsystem is not
necessarily constant. Nothing can be said a priori about the sign of the
change in entropy; the system might start off hotter than the reservoir
and lose entropy as the temperature equalizes. However, the relative entropy
introduced in (2.2.22) turns out to be a Liapunov function [16] for the
time-evolution (3.1.3).

The Decrease of the Relative Entropy (3.1.10)

For the rime-evolution of (3.13),

I
� S(o I p).

Proof

With Definition (2.2.22) and the unitary invariance,

® COU,ITrRU.,p ® oU1) ® ® wU,)

S(ci 0 wlp 0

Remarks (3.1.11)

1. The relative entropy is always positive, and in the special case of (2.2.23; 1),

it is $ times the difference between the free energy of the state p and the

free energy at equilibrium. Its decrease reflects the tendency of the system

to equilibrium.

2. Monotony in time cannot be claimed if o In Example

(3.1.9) friction returned the oscillator monotonically to its rest-point,
owing to the semigroup property, which was in turn a consequence of
the absence of retrospective effects. The general fact is

Monotony of the Relative Entropy with a Dynamic Semigroup (3.1.12)

If ;, = o for all t1 and t2 � 0, then is said to be a dynamical semi-
group. The function

I
is then a monotonically decreasing function

oft.
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Proof

This is a direct consequence of (3.1.10).

Remarks (3.1.13)

1. Because S(tijp) � 0, the limit of r"(p)) as t —' o exists.
2. It cannot yet be claimed that the free energy approaches its equilibrium

value as z -. S(G/p) might stop at some positive value and never fall
to zero.

3. The apparent asymmetry in the direction of time comes from the re-
quirement of (3.1.3) that the initial state factorizes. Starting at t < 0, the
later state at r = 0 is factorized, so the relative entropy increases.

4. lIthe dynamical semigroup is governed by a master equation of the type
of (2.1.11; 3), then S(p) increases monotonically.

That finishes the orientation toward various phenomena connected with
the time evolution. Let us now return to more global questions of time-
dependence. The problem, put concisely, is that a finite system the Hamil-
tonian of which has pure point spectrum {g,} has observables whose expecta-
tion values <a(O> = L. k aik — ;)t) are almost-periodic functions,
as superpositions of periodic functions. Only the average over time makes
sense; the time-limit exists only forinfinite systems the Hamiltonians of
which have absolutely continuous spectra. Although in actuality only finite
systems come under observation, the recurrence times are so long that they
are indistinguishable from infinite systems within the times of relevance
to human beings. In any event, the first issue to settle is how to define the
time-average of a function f(t) e C(R), the set of bounded, continuous
functions on R. The obvious guesses would be

1

urn
— J

dtf(r) or dtexp(—cItf)f(t),
-T

but these limits do not converge for such functions as sin(ln( I + 1)) e C(R).
Any suitable average would have to be linear, positive, and invariant under
displacements in time. Every invariant state on the C* algebra C(R) has
the right qualifications, and the existence of many invariant states on
C(R) means that there are many possible time-averages. There is thus
no question whether a time-average exists, but it is not unique.

The Time-Average of an Observable (3.1.14)

Let q be an average over C(R) and t —' a weakly continuous mapping
—, such that jIa,II � 11a011 for all t. Then the average ij(a) is defined

by

= for all
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Remarks (3.1.15)

I. Since � IIxII IIyiI HaoII. this sesquilinear form defines a
bounded operator

2. In the Schrodinger picture, the average i(") of a state a on the algebra
generated by the operators a, is defined by =

Examples (3.1.16)

1. If a1 = exp(—iHr) U(t), then = E0 the projection onto the
eigenvectors of H with eigenvector 0.

Proof

(i) = <xIE0y> E0q(U) = E0.
(ii) <xIU(to)P,(U)%'> = i,<xJV(t + to)y> =

= ij(U) = E0 by part (i).

2. = U(t)aU - 1(t), where U(t) has pure point spectrum. If the projections
onto the eigenspaces are then j(a) = L E1aE,.

Proof

Take matrix elements with the eigenvectors of H and note that
= 0 for all and all 2 different from 0. 0

3. = = ,i(U(t)aE0) = E0aE0,asin Example 1.

Remarks (3.1.17)

1. In these examples the concrete averages and
dt exp( — rD exp(iHt) converge strongly (Problem 1). Hence

E0 belongs to U" as well as U'.
2. In the SchrOdinger picture the time-average a vector ix> is defined by

In(x)> ,i(U(t)Ix>) = E01x). It can be characterized as the vector with
the least norm in the convex hull of its trajectory U(t) x>,r e (Problem
2). It is not, however, true in general for the state c(a) = <xlalx> formed
with x> that ,i(aXa) =

3. There is no definition of independent of the representation; since
belongs only to the weak closure of the algebra.

may send operators out of their algebra. Our representations will
usually be such that the time-automorphism ; can be implemented
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unitarily, and the image of E0 will contain a cyclic vector for d. If the
averages belong to d', then they are determined uniquely by

1
rT I= Jim

J
dta1E0 = urn

J
= E0aE0,

T-a) 0

since E0.W' separates d' (Problem 5). However, as will be seen in (3.1.22;
4), in general depends on the representation.

4. The time-average may be nonunique if 1(t) converges, as t -. + cc and
t —. — cc, but to different values. This situation is familiar to us from
scattering theory. Whenever the time-average of a function f is unique,
it agrees with the "concrete average"

Jim
— J

dtf(t), urn
j dt exp(—e$tI)f(t),

-T
or even

1
1.T

tim
— J

dtf(t).
T o

These averages exist in classical ergodic theory, in which the Liouville
measure on phase space provides the invariant cyclic vector. Some
ergodic systems will be defined later, and for them E0 is one-dimensional,
projecting onto the cyclic vector. This projection is then constant on the
energy shell, so the time-average E0 aE0 equals the average over the energy
shell.

5. The point spectrum of H can be turned into a continuum by an arbitrarily
small perturbation, so averaging over time focuses unduly on the exact
form of H, since is quite different depending on whether the spectrum
is pointlike or continuous: If in the spectral representation of H the
operator a on the subspace belonging to a41, has a continuous integral
kernel, then projects this part of a to 0, and by Remark 2 only its point-
spectrum part remains (cf. (I: 3.3.4; 6)).

6. Pure states of classical systems are points in phase space, and averages
over pure states are averages over classical trajectories.

7. If the spectrum of H is pure point and nondegenerate, then every normal,
invariant state can be written as the time-average of a pure state. Normal,
invariant states are of the form

o(a) = 0 � � 1, = 1, HI;> =
I I

= <xjq(a)lx>, x =

Although the canonical state p = exp( — — F)) is an average, over
the trajectory of a pure state, it is certainly not true that every averaged
pure state is the canonical state.
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Our reasoning until this point has applied indifferently to all sorts of
quantum systems, but not all quantum systems exhibit thermodynamic
behavior. An isolated atom is rather like a frictionless perpetual-motion
machine; only large systems are dissipative. The concept introduced in
(1.3.10) of asymptotic commutativity turns out to be a useful characteristic
of dissipative systems. If the local observables are asymptotically Abelian
with respect to the time-automorphism ;, that means that local perturba-
tions dissipate through the system as time passes. Of course, this is possible
only if H has continuous spectrum, and hence only if the system is infinite.
We shall remain with Definition (1.3.10), although many of its consequences
can be derived with weaker assumptions. Definition (1.3.10) applies to a
system of free fermions, but it has not been possible to prove that even
weakened versions of it apply to more realistic, interacting systems. It is
trivial that classical systems are asymptotically Abelian, and (1.3.10) means
roughly that asymptotically Abelian systems behave classicallron a macro-
scopic time scale.

Properties of Asymptotically Abelian Systems (3.1.18)

Let d be an Abelian C* algebra with respect to a group of
automorphisms a —' a,, and let w be an invariant state having a representation
on a Hubert space with a cyclic vector fl). Then, abbreviating d' =
iv,,,(d)', etc.,

1. the invariant elements of d belong to .sf;
2. the invariant elements of d' lie in the center (i.e., = d' U' =

is a subalgebra of the center d' d"), and so =
3. d"E0 is maximally Abelian in E0 where E0 is the projection onto the

invariant vectors of .*'; and
4. if produces a factor (i.e., the GNS representation iv,,(d) and lta(d)'

constructed with the cyclic vector Q, generate all of then

urn (or(a,b) — —p

t-. ±

even a(a,) c(a).

Remarks (3.1.19)

1. Neither E0 nor E0 d"E0 necessarily belongs to d". Moreover, E0 d"E0
may fail to be an algebra, and the somewhat loose phrasing of Property 3
is intended to mean that the algebra by E0 is the same as
its commutant.

2. The point of (3.1.18) is that invariant elements such as time-averages
and time-limits form an Abelian algebra, and thus equal its center.
Factor states are pure when restricted to the center, and are therefore
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characters (see Definition (III: which explains why they factorize
in time-limits and tnne-averages.

Proof

1. [a, b) [as, b] 0 for all invariant a ed and all b d.
2. By Property 3, E0d"E0 is maximally Abelian and so equal

to Since E0 e = [17), and therefore
E0 = ri Since

I A> separates the equation E0a'E0
a'E0 determines every a' e uniquely, so a' HQwever, is
d" \d' U', because U d' {1}.

3. The SCIb E0 dE0 must be Abelian, as otherwise some commutator would
failtovanisbast—'

bJ = 0 — bU_,a)E0 = 0

foralla,b€d.
Hence E0d"E0 = (E0dE0)" is also Abelian, and in fact maximally
Abelian, as otherwise E0aE0 would be 1 on a subspace of dimension
greater than one for all a e d, and = E0 I f�) would not be cyclic.

4. For every b e n6(d) there exist two operators b1 and b2 such that h2 I =
b = I<Q01b jL)1> + b1 + b2. This is obvious for finite

matrices:

A

:A

and it carries over to Then o(a,b) — a(a,)a(b) = b1]).
If i produces a factor, then b1 can be approximated with a finite sum

d1 n41(d), d

and tends toO as —' ± by Definition (1.3.10). Although
the subalgebra of generated by ltd(d)' is only strongly
dense, operators with these properties can be approximated even in the
norm sense ([18]. V.1.4), which justifies these conclusions. 0

The set of invariant states is convex, so any invariant state is a convex
combination of the extremal points of the set or a limit of such combinations.
As the purest among the time-invariant states, the extremal elements deserve
a special term:
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Dellnition (3.1.20)

An invariant state is ergodic, or extremal invariant, if it can not be written as
a convex combination of other invariant states.

Remarks (3.1.21)

1. In classical dynamics an invariant submanifold .A" of phase space cor-
responds to an invariant state (= measure) = fl, dq' A which
is ergodic if .iV cannot be decomposed into invariant pieces with strictly
positive measures

2. A classical system is said to be ergodic if the surface of the energy shell
p(p, q) ô(E — H(p, q)) exp( — 5(E)) corresponds to an ergodic state.

3. Every time-invariant state is a sum or integral of ergodic states, so it is
tempting to interpret the ergodic states as the pure phases of the system.
Mixtures would then be incoherent superpositions in the sense of quantum
theory rather than coexisting, spatially separated phases. With any
reasonable definition of pure phases, the decomposition into ergodic
states should be unique, and the set of time-invariant states must be a
simplex. This is indeed the case for asymptotically Abelian systems,
which follows from the observation that = is Abelian:
As was seen in (1.4.9) and (III: 2.3.24; 2), every Abelian subalgebra of d'
corresponds to a unique decomposition of a state w; if IPJ, L P1 = 1,

are the orthogonal projections of this algebra, and

ca1(a) = for all a

provided that w(P1) > 0, and is otherwise arbitrary, then (i) =
= co(P1) and = where acts on Now if U) is invariant

and is to have a decomposition into other invariant states, then the
projections P1 must belong to d' { U1}', and in fact the extremal states
correspond to the minimal projections. Since d' c the
decomposition into ergodic states is never as fine as the factor decompo-
sition. Hence if a factor representation is given by the invariant state co,
it is necessarily ergodic.

Ergodicity in fact singles out the desired properties. This is shown by the

Characterization of the Ergodic States (3.1.22)

Let d be an algebra that is asymptotically Ab9lian in time, p an invariant
stare on d, and the vector of the state p in the ONS representation.
Then the following conditions are equivalent:

1. p is ergodic;
2.
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3. given any decomposition p =. Jo dp(o) and a p-measurable mean = p
almost everywhere for p;

4. ,i(a) = 1 .p(a) for allaed and all invariant means
5. (.1 u d') U' 1};
6. E0 =
7. p is a unique, invariant, normal state on
8. = p(a)p(b) for all a and b E ci and all invariant means

Remarks (3.1.23)

1. if the quantum system is finite, H has pure point spectrum, with eigen-
vectors { }. As we have learned, the invariant states are of the form
a L so the extremal invariant states are of the form a
(x1

I
axe) and therefore pure. If the system is either infinite or classical,

then ergodic does not imply pure. For example, the state of free fermions
(2.5.49) produces a factor and is therefore ergodic, but d' is isomorphic
to .W and thus different from {x• 1 }. It will be discovered later that this
is the normal situation for equilibrium stateS.

2. According to (III: 2.3.10; 5), Condition 2 means that p is a. pure state on
and can also be written as ri = I); in particular, every

factor state is ergodic.
3. Condition 3 can be sharpened for classical systems with Birkhoff's

ergodic theorem, according to which almost every trajectory fills the
energy shell densely. In this case, with the decomposition into pure
states, the Cesàro mean exists; is p-measurable, and the order of
and J dp can be reversed.

4. By Condition 4 the time-average of operators in this situation is unique
and a multiple of the identity. More particularly, the classical time-
average of any set of positive p-measure is spread out over the whole
support of p. Hence the time-average of states with a density function
equals the equilibrium state. Since averaged observables are multiples
of the identity, they exhibit no deviation.

5. The implication of Condition 5 for classical dynamics is that if the system
is ergodic, then every measurable, time-independent function is constant
on the energy shell. Note that (d ti d')" might contain additional
time-invariant operators; for instance, for a factor this set is and
therefore also contains U.

6. Condition 6 implies that I is a simple eigenvalue of U.
7. By Condition 7, all the other eigenvectors of U lead to the same state as p.

Classically, the eigenfunctions .p(p, q) must always have constant
independently of p and q. Thus ergodicity does not make it impossible
for the spectrum to be purely pointlike, but only prevents 0 from being a
degenerate eigenvalue of H. The extra word "normal" of Condition 7
is important. In Example (3.1.1; 5) of free fermions, equilibrium states at
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i hat of the specified representation are
in time, but not normal. This means classically that different

energy shells have disjoint support.
8. C'o'ndition 8 means (hat the autocorrelation function p(ab1) — p(a)p(b)

has time-average 0. Also, according to Condition 4 the expectation
values o operators in states of the form a have the same time-averages
as those with the slate p. Since the states a I are dense, the time-average

every normal state is p. This is a sort of converse to Condition 3. in so
far as = p for all a's that are pure and normal (as states on
It may happen that the set of such a's is empty (cf. (1.4.17: 3)). and some
non-normal, pure States converging to something other than the equili-
brium state will make their appearance later.

Proof

I 2: Let t 0 < r < I: then the vector associaicd with p in the
GNS repiesentation is cyclic for sf and therefore separates Z.
With

0< = < I.

soif

p1(a) =

and

p2(a) = — forallaEd,

then p = 2p1 + (1 —A)p2 has a genuine decomposition into
invariant states.

2 I: Let p =2p1 + (1 —A)p2, where 0 < A < 1. Then according to
(Ill: 2.3.24; 2) there exists a t e such that 0 � t � I and
p1(a) = for all aed. If p, is invariant,
then r is in ..#'. and it follows from Condition 2 that

(Cf. (3.1.18; 2).)
1 3: The state p = 5 is invariant in time, so p(a) = $
- Therefore p = 5 and, since p is an extremal invariant,

it equals the invariant state q(a) almost everywhere in p.
3 1: Suppose that p is not ergodic. Then there exist invariant states

p1 such that p = Ap1 + (1 — This is a special case of a
decomposition with = p. so Condition 3 would be
violated.

2 5: The invariant elements of d and compose
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6 1: Suppose that p + (1 — A)p2; then by (111:2.3.24; 2), Pi is
of the form p3(a) = for a ed, and t
is in ri EJ, ifp1 is invariant. Condition 6 implies that t1121�,,>

because so P = Pi P2.
6 8: = = = p(a)p(b).
7 6: If there existed a second invariant vector then all vectors

+ for 0 � � 1 would give rise to the same
state, but by Property (3.1.18; 3); since the algebra is maximally
Abelian on the subspace, this would mean that ) = I

8 4: From ,([b,, c}) = 0 it follows that p(ac)p(b) = =
so the matrix elements of p(b). 1 and ,i(b) are equal on a dense set.

Examples (3.1.24)

1. The o.ly possible ergodic states arc thàêe con.
centrated on ö(E — H(p,q)); otberwiie d would contain the additional
invariant contradicting Condition 4. Let us examine a chain of N
coupled oscillators (1.1.14). The Haniiltonian can be written in terms of:
action and angle variables (see (I: 3.3.3) and (I: 3.3.14)) and e T'
as

N

Hc EwiK,,

and the time-evolution is -. + If N> 1, the state ö(E — II)
is not ergodic, although the state fl, — c,) concentrated on
is, provided that the angular velocities are rationally independent

(I: 3.3.3)). To understand why, observe that the operator h on L2(TN)
introduced in (3.1.1; 1) arises when K1 is interpreted as the displacement
operator, the egenvalues of which are 2itn, n e Z. The spectrum of It
is therefore purely pointlike, with eigenvalues 2n L w1n1. If the co1 are
rationally independent, then the elgenvalue 0 (all nj = 0) is nondegenerate
and otherwise it is degenerate. According to 6) this- Is a cnterion
for ergodicity. This example is also useful (Or illustrating the other
criteria. For instance, Condition 4 states that every invariant function
is constant almost everywhere on TN. Roughly .speaking, a (unction
assuming one value on half the trajectories and a different value on the
other haLf is not measurable.

2. Of the quantum-mechanical examples of (3.1.1), only the free fermions
(3.1.1; 5) fall within the category covered by (3.1.22), as the others are
not asymptotically Abeian. Since (3.1.1; 5) has a factor state, it is ergodic
according to Condition 5. If we go through the other criteria, we notice
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( dRlOfl p(abj
br u that or..tai states approach p not
in a.... t

the states converge to the equilibrium
state.

ever, though Example I ergedic. it ioes not exhibit the sort of ior
.1 system. The time-evoluton

displacemei1t in and this submanifold does not get thoroughiy rnix:d.
States like those given by pieces of do not converge as t —. their
means converge. Example 2 conforms better to the notion of a thermodynamic
system, which suggests sharpening some of Criteria (3.1.22) as much a;
possible, replacing the time-average with the time-limit.

DefinitIon (3.1.25)

An invariant state on an asymptotically Abelian system is called mixing if
one of the following equivalent conditions is satisfied:

4'. ± = I . p(a) for all a e d (The weak limit is that of the
GNS represàntation);

6'.
8'. p(ab,) = p(a)p(b).

Remarks (3. .26)

I. By Condition 4', every operator converges to its equilibrium value and
its deviation goes to zero. Hence, in the Schrodinger picture every normal
state approaches the equilibrium state p. In classical dynamics prob-
ability distributions of normal states are described by functions--i.e.,
not by ö distributions—and so they spread out through all of p.

2. Criterion 6' is satisfied if the spectrum of U is absolutely continuous
other than the elgenvalue associated with I Cl>. In any case, Q> must be
the only eigenvector.

3. Concerning Condition 8', we have learned that for a factor the correlation
functions vanish automatically as t —' ± Therefore, for factors ergodic
is equivalent to mixing. In general it is only true that mixing implies
ergodic. It is also not true to say that mixing implies a factor, since there
are classical mixing systems. However, it will be shown in the next section
that in quantum theory equilibrium states are mixing if the algebra is a
factor. In the case of free particles with the spatial translations, as the
group of automorphisms with respect to which their algebra of observables
is asymptotically Abelian, this reasoning implies that the spatial correla-
tion function goes to zero for factors.
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4. If a state is a limit of pure states. then is mixing: If pure and p
then p(abc) —. a(a1b5÷,c3) + — =
0. A pure state is a factor state, so (3.1.18; 4) applies, showing that p(ab, c) -+
p(ac)p(b). The converse is not true in general, since the pure states into
which p is decomposed need not converge as t -. ± oo. For example, the
pure states for classical systems are points in phase space, which will keep
moving forever.

Proof of the Equlvalenëe In (3.1.25)

8' = p(a(b,, c)) + p(acb,) —' p(ac)p(b) 4', and p(a,b) = p(aU,b),
hence 6' 8'. 0

Classical systems that mix are of necessity complicated, and it requires a
rather demanding example to show that the concept of (3:1.25) is pot empty:

Motion on a Surface of Constant, Negative Curiature (3.1.27)

The ergodic system (3.1.24; 1) is not mixing; the spectrum of ti is purely
discrete. This agrees with the perception that displacements in T2 do not
mix its parts together:

to 11 >10 >Fi

To produce mixing we need a somewhat geometrically irregular configura-
tion; fortunately, as will now be demonstrated, it suffices to have a surface of
constant negative curvature. The construction of the example makes use of
the following more abstract reformation of (3.1.24: 1). Treat R2 as a two-
dimensional group and the trajectory as a one-dimensional subgroup, and
consider its image in the quotient space T2 = R2/V. Conservation of
angtilar momentum gets lost, and the trajectory can be dense in T2. The
present example will have an energy shell that is diffeomorphic to the
Lorentz group SO(2, 1), and the trajectory will be a one-parameter subgroup.
In order to destroy the other constants of the motion and have an energy
shell of finite volume, map the space to SO(2, where is a discrete
subgroup of SO(2, 1). The dynamics furnishes a unitary representation
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U, exp(mt) of a one-parameter subgroup of SO(2, 1), but, unlike with
U has only absolutely continuous spectrum other than the point .. id so
system is mixing by (3.1.26; 2).

We realize these ideas in a classical system the Lagrangian of which is
quadratic in the velocities. The motion thus proceeds in the absence of
forces, but the invariance under SO(2, 1) brings about some unusual signs.
The extended configuration space is the submanifold of for which

(x$x)

x x the proper time t, then the Lagrangian
is

The constraint (3.1 enterS into the Euler—Lagrange equations through
a Lagrange multiplier,

= (3.1.29)

and -there are the following constants:

(xix) — 1, = 0, = 1

(which normalize t). The three-dimensional manifold defined by the con--

stants corresponds to the energy shell (recall -that. the—conliguration space

is two-dimensional and the phase space is four-dimensional), and on it is
the SO(2, 1)-invariant Liouville measure

dL1 + — 1)0(x0). (3.1.31)

also three constants associated with the angular momentum,

Ii = (3.1.32)

w'hjch are connected by an algebraic relationship,

(ill) = 1.

One dimension is left for the trajectory. Because = the projection
of the trajectory onto configuration space is the intersection of the hyper-
boloid (3.1.28)-with a plane passing through the origin and malüng an angle
less than 450 with the x0-axis (see Figure 23).

The energy is only apparently indefinite; x0 can be eliminated, and then

+ + (x1x2 — x2x1).

describes motion in the x1 — x2-plane without forces, but with a positive
mass that depends on the position.

The indefinite scalar product f5 and consequently also the formalism
that has been developed are invariant uiider SO(2, 1). The group SO(2, 1)
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acts transitively on the energy shell (3.1.30), and every point can be written

{x, x} = {M(1, 0, 0), M(O, 1, 0)) (3 1.33)

for some M E SO(2, 1). It is easy to see that M is determined uniquely,
and this creates the diffeomorphism between the energy shell and SO(2, 1)
that was mentioned above. Accordingly, every trajectory can be obtained by
making Lorentz transformations of the group generated by

cosht sinht 0
M(t) = sinh t cosh t 0

0 0 1

The most convenient construction of the discrete subgroup makes use of
the isomorphism between SO(2, 1) and SL(2, R)/{1, —1), since 2 x 2
matrices are easier to handle than 3 x 3 matrices. The source of this iso-
morphism, like that of SO(3) = SU(2, C)/{ 1, —1), lies in the observation
that

— = 1, (3.1.34)

///
////

x1

Figure 23 The trajectory in configuration space.
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produces the L.orentz transformation x -, x' by

(x'o + \ (x fl\(x0 + X2 x1 \j'a v\ (3 1 35)
— Xi — 5J

It is necessary to take the quotient by the center (1, —1), since the Lorentz
transformations corresponding to the matrix me SL(2, R) and —m are
the same. It is not hard to come up with discrete subgroups of SL(2, R), such
as

=
e SL(2, R): fi, y, ö integers}.

Now let us investigate the motion on the quotient space C�J = SO(2, 1)/S
SL(2, — 1)/S. Unlike the case of T2, the quotient space ji not a
group, since S is not a normal divisor, though for our purposes this does
not matter. Thus Q0 is the energy shell (3.1.30), on which points are identified
if they are transformed into each other by S. For the trajectory this means
that if it goes out one end of the domain of periodicity it reappears at the
other. Conservation of angular momentum breaks down, leaving the
possibility that the trajectory fills densely.

To get a clearer picture of we have to find out what corresponds to
the square 0 � Pi � 1 of the earlier example, that is, a region containing
no points equivalent under 5, but for each boundary point of which there is
a z # 1 of S mapping it to another boundary point. The subgroup S is
generatedby the matrices

/1 t\ / 0 1\
i)' k—i o)'

the latter of which is the reflection (x1, x2) (—x1, —x1). It is therefore
possible to restrict attention to the upper half plane {x2 > 0) in configura-
tion space and choose a region symmetric about the x2-axis. The boundary
curves can be obtained by transforming the x2-axis with the matrices

(1
\o 1

of SL(2, R). They have the parametric representation

h
0

—

( \ x1 x'0—x2

_(1 0 1 0\
— i/k o —

(3.1.36)
note that
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so x'2 = — The projection of onto configuration space
looks as depicted in Figure 24, where the lines A indicate the identifications.

The identification of the boundary points by means that if the
trajectory leaves through one side, it reappears at the corresponding point
of the other side (see Figure 25).
Now we are in a position to verify that the measure of with d12 (3.1.3 1)
is actually finite. This follows from

and

— 1] F(x, x) <

F(— 1) ÷ 1] <

where the integral runs over the region bounded by (3.1.36).

S .——'-. xI

— —

Figure 25
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The time-evolution is controlled by the unitary group

exp(mz), m =
(it

where anti-Hermitian operator m is one of the generators of SO(2, 1).
If the other two generators are combined into m± ± m2, then m±
satisfy the commutation relations

[m,m±) = ±rn± and [m÷,m_] = 2m.

Note that in contradistinction to SO(3), this time (mj)* = —m±. This
fact will be crucial, since the generators of SO(3) have spectra.
Instead of I), let us now examine the simpler two-parameter subgroups

t) =
with the multiplication law

= + exp(±t)a',t + t').
- Because jm + , m ] 2m, the operators U + 0) and U - (a, 0) generate

the whole group, and U(t) = =
- Next consider the representation (3.1.1; 1) of classical dynamics on

= dC'). Not just U1, but in fact all of 50(2, 1) is represented
on *' f(Mx), and we shall this representation

•
according to the irr&ducible representations of the subgroups We
start by observing that 0) ía a normal divisor, and the factor groups
U ± (a, t)/U 0) isomorphic to R. Hence there are irreducible, •one-
dimensional the type

I: t) = exp(W), AE R.

In addition it is readily seen that U ± can also be represented on dx)
by

II: [U ÷(a, tW'](x) = e dx),

and similarly for U_. It can be shown [19J that these possibilities exhaust
the irreducible representations of-S0(2, 1), so, decomposing into the irre-
ducible representations of U

=

On the subspaces and .*'j, the operator tJ(t) acts as a
L2(R, dx), and thus its spectrum is continuous. A discrete spectrum could
only be found on but every vector .*' satishes the
equation

= =

Since U _(a, 0) together suffice to generate all of SO(2, 1), is

invariant under the action of every group element. Since the group acts
transitively on (' must be a constant. Because has finite measure,
any constant function belongs to dfl), so the situation is like that of
(3.1.26; 2). Unless the quotient by is taken, U has no point spectrum, as
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constant functions would not be integrable. In sum the argument is that the
syslem is mixing because the spectrum of U consists of a single nondegenerate
cigenvalue 1 and an absolutely continuous portion. This is in contrast to the
motion on the torus, for which the spectrum of was purely discrete, and the
system was only ergodic, not mixing.

Example (3.1.37)

The quantum-mechanical example of an infinite system of free fermions was
seen to be mixing. Despite the absence of interaction, a local perturbation
spreads out to infinity through the diffusion of free wave-packets. From
among the characterizations of ergodic states (3.1.22), let us look in part-
icular at the third. it holds in the sharper form of (3.1.26; 4); the grand
canonical state (2.5.49) the time-limit of a pure proof of this
fact uses the transformations

= b1Q9f) + —

a1(f) = — — 113t2f*). (3.1.38)

We have directly taken up the realistic case of spin4 fermions, where and I
indicate the direction of the spin that the field operator describes. In Fourier-
transformed space /3 is a function k —' /3(k): UV —, {z e C: � l}, and hf
is the function J3(k)J(k). In x-space /3 is a convolution. It is straightforward
to verify that the a's satisfy the usual commutation (1.3.3; 2),

= =

[a1(J), a1(g)]+ = [a1(f), + = (f,)] = [a,(•f), = 0,

(3.1.39)

supposing that the b's satisfy the commutation relations. Clearly the a's
and the b's generate the same algebra. The eipectation values of the a's
in the Fock state (1.3.2) for the b's: = b1(f)IO> = 0, are

= f3 1/3(k))2! *(k)g(k),

=
1fl(kH2;

(OJa,(f)a1(g)IO> = = 0. (3.1.40)

The state was seen to be pure in (1.3.16; 1). Under the time-evolution

f(k) -+ the quantity goes

to 0 as t -. ± by the Riemann-Lebesque lemma. If

/3(k) (1 + exp(—$(1k12 —



3.1 Time-Evolution Ill

then in the limit t —' ± the generalization of the state (2.5.49) for spin
is all that is left over.

Remarks (3.1.41)

1. The limit of a pure state is clearly not always an equilibrium state; other
functions could be chosen for /3(k).

2. Since the thermal representation of free fermions (3.1.1; 5) is a factor
of type III, the pure state 10> associated with the thermal representation:
cannot be normal (cf. (1.4.17; 3)). Likewise, any other states of the latter
foimed with different jl(k) are not normal because of (3.1.22; 7), even
though they are invariant.

3. The state given by 0> is not invariant in time, and in this representation
the time-evolution is certainly not a unitary group (cf. (1.3.16; If it
were, then the time displacement a —, a would be weakly continUous
and hence extensible to n(d)", which would lead to a

is asymptotically Abelian with respect to the spatial translation
so in the representation with the translation-invariant stat* 10>,

= 1 <OjalO> for all a e de. Since T commutCs with
= 1. = =

1. <01 a 10>, which would then imply that the state <01.10> would be
invariant in time.

Problems (3.1.42)

1. (i) Prove von Neumann's statistical ergodic E0.
(Show that on all vectors of the x = exp(iHs)y — y, * se R, we have
(1/2T) expQHt)x dt 0. Let be the closed linear hull of these vectors,
and note that the same fact applies to all x Finally, show that .*'f =
{x: exp(iHs)x = x for all s} =

(ii) Show similarly that (s/2) exp( — £ It I) exp(sHt) d: —, E0.

2. Show that in the Schrodinger picture the time-average of a vector x has the following
characterization: is the vector of least norm of the norm-closed, convex bull of
{U(t)x), denoted (Hint: see the example given earlier for q(x) Show (i)
that .f contains a unique vector of least norm; (ii) that is invariant under all (/(t);
and (in) that X contains no other fixed point.)

3. Showthatl = 1}iffw(ab)= w(a)w(b)forallw€d,aed,andbef.

4. that for a classical system, if there exists a constant f(p, q) not of the form
1, then p is not ergodic.

5. Show that a set E is a totalizer ford ifIE separates d'. (Cf. (Hi: 2.3.4); a total-
izer is a set E such that dE is dense in and separating means that a'E = 0 a'

0.)
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6. Boson states of the form (2.5.49) with <flpg> = 5 0 � p(k). are
factor states and consequently mixing. Express such a state as a time-limit of a pure
state (cf. (3.1.37))

Solutions (3.1 .43)

1. (i) If x exp(iHs)y — y, then

T -T+s

f T
dtjj

=
exp(iHz)y dt

— f exp(iHt)y

.-. 0.
— T

Because f(112T) dtII � I, this holds (or a!1 x€

x for ails E0x = x

by the spectral theorem.
(ii) It suffices to show that a exp( — dr —, E0, which will follow if

a exp( — tt) exp(iHr)x dt —. 0 for vect&s x = exp(iHs)y — y.

This integral equals —

r
acxp(es)

J
exp(—a)exp(iHt)ydt — a exp(—at)exp(iH:)ydt

$

= (exp(cs) — I )a $ èxp( — at) exp(iJlr)y dt —
a

f exp( — Cr) expQHt)y dt 0,

since Ia 5 exp( —at) exp(iIit)y dtl! � iyit. —

2. (i) Let A = inf{ xe .K). There exists a sequence {x,J in such that A.

By the parallelogram law,

XflXM2 2

2 + 2
= + IIXNII ).

x, is a Cauchy sequence, so it has a limit If IIxfl = then

= +
— � 0, which that .x =

(ii) = =
(iii) Suppose that is a second fixed point. For all £ > 0, there exist i,, and

such that L = A � 0, exist t1,.. . ,

and ... * such that if V + + and W=_ + ..:,

+ then llVx — <a, and IIWx — <a. However, then

— d � — VWxII + )VWx — 'ill = — + hVWx —

� fWflVx — + VIIIIWx — < 2c,

so =
Remark: The strong and weak closures of a convex set are identical.



3.2 The Equilibrium State 173

3. This part is trivial.
Let P1 and P2 be projections in such that P1 1 P2. and Let = w(P,.).

w(ab) = + (1 — 2)w(a2)w(b2)

(1 — + (1 —

4. Let J'(p, q) = inf(l, jf(p, q)I) (if necessary multiply f by a suitable constant to
ensure that f is not identically I). Then d1' is the sum of two invariant states.

—J)dp.

5. Let a' ed'. a'E 0 a'dE = 0 a' = 0 on a dense set, which implies that
(I' 0.

Let be the complement of dE. Then dE1 the projection
P onto belongs to d, but E = 0, so E does not separate d'.

6. In a Fock representation of the free fields b, b(k)I0> 0, write

a(k) + + p(k)b(k).

and

a*(k) = +

These operators a likewise satisfy the commutation relations

— a(k')a(k) = —

and

= ô(k — k )p(k).

= — + p(k).

Hence

<i aj., I o,>..= f

<OIaj,ag,I0> = fdk +

this last integral goes to zero as t — ± 'x' by the Riemann—Lebesgue lemma, and
therefore its time-average is zero. The analogous fact for the higher correlation
functions, so the time-average of the pure Fock state 10> is of the form (2.5.49).

3.2 The Equilibrium State

In the course of time the Maxwell—Bol:zmann distribution has proved
more and more fundamental, and has become deeply rooted in the
mathematical description of infinite quantum systems.
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With a certain normalization of H the canonical state has the form .w(a) =
Tr exp( — /3H)a, as we have seen. The appearance of the Hamiltonian H in
both the time-evolution and the state creates all sorts of important connec-
tions between them. To avoid technical complications at first we shall
concentrate only on the finite-dimensional case. The commutativity of the
trace gives rise to a symmetry between the representation of the algebra and
its commutant.

The GNS Representatio4l of with a Faithful State (3.2.1)

Let d = be given the inner product <a = Ti a*b so that it becomes

a HUbert space isomorphic to and define

it(a)lb> = lab>,
I I *):,r(a)lb>=lba>,

J: —' =

Then

(I) it is a factor represEntation (-isomorphism);
(ii) E' is a * iuiisomorphism, i.e.,

it'(ab) = it'(a),r'(b), rc'(Aa) = Xit'(a), n'(a)
it'(a + b) ir'(a) + it'(b)) with it'(d) =

(iii) the conjugate-linear operator J preserves norms and J2 = 1;

(iv) Jit(d)J = n'(d), Jit'(d)J =
(v) let w be afaithful state, that is, a > 0, then w(a)> 0, so by (2.1.5(li)),

w(a) = Trpa p > 0, Tr p = 1. The vector is

cyclic and separatingfor it and il, .e., = 0 a= Hence the

GNS representation using w is unitarily equivalent to it.

Proof

The isoinorphism and antiisomorphism properties are

(ii) n'(a)it(b)lc> ,c'(a)Ibc) = lbca*> = ,t(b)ir'(a)Ic),
it(d)'. On the other hand, if Be it(d)' then 811> is

b ed. Hence

B Ia> Bn(a) Ii> it(a)Bj 1> n(a) I b'> z(a)i4b)I 1>

forailaEd,so(b)afldlt'(d)—*(.07.
(i) Let z(a) e by part (ii) It equals for some b. Hence

it(a)1 c> ac> n'(b) Ic) cb>, so ac cb for all c d, and

therefore a = b = 1. Thus t(d) is a factor.
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(iii) IIJla>112 = Tr = Tr a*a and J2 = I since b** = b.
(iv) Jiv(a)Jlb> = = JIab*> = iv'(a)Lb> Jiv(a)J =

ir(a) = Jir'(a)J, because J2 = I.
(v) Since exists, Ja) may be written as = b = 1(2,

which shows that is cyclic for iv. If p, > 0 are the eigenvalues of p,
then in the diagonal representation of p,

= Trpa*a = = 0,

which implies that aik = 0, and similarly for iv'. By (111:2.3.10; 6) iv,, is
equivalent to iv. 0

Remarks (3.2.2)

1. An anti-isomorphism came up once before, in the reversal of the motion
(III: 3.3.18), and J is like the conjugate-linear operator 0' (3.3.19; 2).

2. The representation it, being a finite-dimensional factor of type 1, is of the
form n(a) = a ® so n'(a) is ®

Consider next bow to represent the time-evolution a a, = exp(iht)
a exp( — iht). At first thougbt it might be represented by exp(iiv(h)t), but this
would not leave the cyclic vector I4> invariant. The correct way to proceed
is as in Example (3.1.1; 3).

The Time-Evolution on (3.2.3)

The unitary representation (1.3.5) of the time-evolution a —' a, on the invariant
state a—'Trpa, p = exp(—flh),'is given by U, exp(—iHt), H = it(h) —

ir'(h). It sattsfies the following:

(i) JHJ = —H,JU,J =
(ii) U_j,,3it(a)14> = Jit(a)14>;
(iii) I iv(a)iv(b) f = I

It is iinniediajely clear that exp(iHt)it(a) exp( — iHt) iv(a,). Moreover,

exp(iHt) 4> = I exp(iht) exp( — flh) exp( — iht)> = 14>.
(1) This follows from (3.2.1(iv)).

(ii) = U..,,,21a = exp(—flh/2)a> =
Jlaexp(—Ph/2)> Jm(a*)k/p>.

(iii) Tr exp( — flh)ab = Tr exp( — exp(flh)exp( — fih)b = Tr exp( —

0
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Remarks (3.2.4)

1. The density matrix p was written simply as exp(—$H) under the assump-
tion that h had been redefined by the addition of a multiple of the identity
so that Tr exp( — = 1. This affects neither the time-evolution nor H.

2. Note that J does not reverse the direction of time.
3. The operator p = exp( — h) is always positive. Conversely, if p > 0

(i.e., all eigenvalues p, > 0), then In p —h is well defined. This shows
that groups of automorphisms and faithful states are bijectively related.
There is a special term for their relationship.

The Modular Automorpliism (3.2.5) -

For each faithful state w on there is a unique one-parameter group of
automorphisms v,: a -. a, such that

(i) w is invariant in the sense that w(a,) w(a).
(ii) w satisfies the Kubo—Martln—Schwrnger (KMS) condition, w(ab) =

(iii) there exists an anti-isomorphism iv,(d) — Jirjd)J onto such
that

U - n(a)
J Q> = J,t(a*) Jo>,

where
I

is the cyclic vector and U, is the unitary operator-representing
; in the GNS representation with w.

If the dimension of the 1-lilbert space is now infiflite, but the state is still
given by a density matrix p = exp( — flh),. then there are a few technical
difficulties to clear up.

The Temporal Correlation Functions of Fhdte Quantum Systems (3.2.6)

If the time is made complex, then in general

exp((ix — y)h)a exp( — (ix —

is unbounded, and hence does not belong to the algebra. However, we shall
continueto use this notation, as this operator will never act on anything
outside its domain of definition.

(1) Continuity in the strip — � Im 0. b) = a exp( — I

and if I is complex, then by (3.2.3(u)), bIQ> is in the form domain of
exp(yH) for y � — In a spectral representation it is apparent that the
vector exp(yH/2)bfQ> is norm-continuous in y, so p(a,b) is norm
continuous in t.
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(ii) Boundedness in the strip —j3 � Im t � 0. Let H = n(Ii) — it'Qi) as in
(3.2.3), so H 1(1> = 0. Because

+ exp((ix — y)H)a exp( — (ix —

2 =

I I b" exp(yH)b

The function exp(yH)a* 112> is positive and, because

= jIlexp(yH/2)a*lQ>112 � 0,

convex, achieving its maximum at v 0 or y = — fi. it is clear that
w(aa*) � if aif2, but even at the lower edge it is bounded, as shown by

a! ip12) = Tr exp( — jih) exp(fih/2)a* exp( — j3h)a exp(f3h/2)

Tr exp( — JTh) = 1. Therefore

Iw(agb)l � Dali IIbIj for—fl � Irnt � 0.
(iii) Analyticity in the strip —fl < Im <0. The function is not

differentiable on the real axis for generic a's, but only for complex
times within the strip. The proof is similar to that of (2.4.7) and will
not be repeated here. The relationship w(ab) = named for
Kubo, Martin, and Schwinger, which follows from the invariance
of the trace, can be continued analytically to the strip: The functions
w(a,b) and w(ba,) are analytic respectively in —fl < Im 1 <0 and
o < Im t <fl, where they satisfy the K MS condition w(a1 b) = w(ba, +

which determines the value of w(a, b) at y = — fi as w(ba) (see Figure 26).
(iv) The physical significance of the KMS condition. For a finite system the

canonical state with p exp( — flH) is not an eigenstate of the energy.
The modular Hamiltonian (also denoted H) has I 11> as an eigenvector,

= 0. This operator H is not generally bounded below; however,
the KMS condition distinguishes positive energies because of the
positive sign of fi. The energy spectrum of it(a)112> for a = a*ed
consists predominately of positive energies,

f(E) (12Iit(a)ô(H — E)ir(a)IQ> =

5
exp(iEt)p(aa, +

= exp(/3E)<fll,r(a)t5(H + E),v(a)112>,
and thercfore —

f(E) = exp(flE).



3

t plane

w(ba) bounded

Imt=O

._

Figure 26 The connection between and w(ab) on their domain pf analyticity.

It is thus not possible to remove arbitrary amounts of energy from a
system in equilibrium, even though $fl> is not its ground state.

(v) Analytic operators. If the dimension of the space is finite, the mapping
t —' a, is analytic, and thus so is t w(a,b). If it is only known that h is
semibounded, this is not necessarily the case, and the question arises of
which a's are analytic in t. One way to construct such elements of d is
to average over time,

a(f) dt'a(t')f(t').

If the Fourier transform f and supp .1 [— then f(t) is
analytic and satisfies the estimate

I
f(x + Ly) I

�
y, where y = — 1/2(11! U1 + II!" II

The time-translate of a(f),

;(a(f))
= 5

dt'a(t')f(t' —

is then an entire function in (such that iryjIaII
It is easy to see from the continuity of; that the set d of such regularized
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us (for variable and is dense in d in norm. Within I he set d it is
always possible to continue analytically with controlled growth.

If we now think about an infinite system, the density matrix

exp( — flH)/Tr exp( — flH)

no longer makes sense. However, the characterization of certain states made
in (3.2.5(u)) may continue to work in the infinite limit.

Definition (3.2.7)

Given a algebra d with a continuous time-automorphism a a1,

a state w on the algebra is called a KMS state with respect to temperature
1/13 whenever the functions t w(a,b) and t w(ba1) can be continued
analytically to the strips — fi < Im t <0 and, respectively, 0 < Im t < f3,
and are continuous on the closures of the strips, where they satisfy the
condition

w(a1 b) = w(ba1

Examples (3.2.8)

1. Free fermions. The grand canonical state (2.5.49) is KMS with respect to
the combination of free time-evolution and gauge transformations,

aft, L(k) = —

First, note that clearly

p(a1 = exp[ — /3( k j2 —

/ 1

xii——
2\ — + 1

= p(aa1),

and likewise

= exp[fl( k 12 —
+

= p(a1a).

(1ff and g are arbitrary functions in L2, then in general and
have maximal analytic continuations only into the upper half-plane
{z t + iyly > 0), and p(aa11) only into the region {z = t + < fi).
However, if' either J or has compact support, for example, then the
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maximal analytic continuation of any of the expressions above is in
fact an entire function.) The proof of the KMS property of p for arbitrary
elements of the algebra will not be given here, because of the amount of
combinatorics it requires. The gauge transformation an appearance
because of the extension of the state to the whole field algebra. If one
deals only with the gauge-invariant algebra of observables (1.3.14),
then the automorphism v does not depend on so it is identical to the
free time-evolution.

2. Free bosons. Let w, be the equilibrium state of the field algebra of the
free Bose gas at temperature and density p (see (2.5.51; 4)), which
appears as the integrand in the decomposition of the canonical limiting
state in (2.5.51; 1). (The decomposition is nontrivial if p >
also (2.5.33; 3).) The field algebra of the bosons is generated by the
operators

W1 + a1)]; W1 = — z. lm(f W, +

and the free time-evolution of the observables will be extended to the
field algebra by W1 W1,,

= exp[it(1k12 — p)]J(k).

(The quantity p = p(p) is a unique but not invertible function.) Then
A(f. g, t) co,(W1 Wg,) is the continuous boundary value of an analytic
function of z = t + iy on the strip 0 < y < fi, e I, viz.,

I (d3k

________

A(f, g, z) j [11(k12 +
exp[fl(II — p)]

+ J*(k)j(k) exp[iz(1k12 — +
exp[fl(1k12 — P)1 — 11

+
P)J(exp[fl(1k12 p)] — 1)]}

x — Re[(J(O) +

and the KMS condition is satisfied: w(ab_,) = w(a1b) =

lit, A(f,g,t + iy) = o,(WgWj) = Wg,( WgW1 ,) = A(g,f, —z)

lim A(g, f, — t + ly).

It follows from p that p(p) <0, so in this f and g can
be arbitrary elements of L2. However, p(p) = 0 for all p � so
must be restricted, for example, to the algebra by the It',
with f V L2. For general f and git is not p6ssible to extend A(f, g;
analytically beyond the strip described above. However, if the support
of either for g is compact, then A(f,9, z) is an entire/function of z.
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Properties of a KMS state w (32.9)

1. A KMS state w is invariant in time.
2. When extended to w remains KMS.
3. If w is faithful (as a positive functional), then is faithful, and vice versa.
4. = it,4,(d)' consists of time-invariant elements.
5. The KMS states for any fixed fi form a weak..* compact, convex set.
6. if w is an extremal KMS state, then i-c,,, is a factor.
7. For any w, there exists a unique tune-evolution under which w is a KMS

state.

Remarks (3.2.10)

1. According to (1.3.5), if w is invariant in time, then on it,,, we can write
= 1, and the time evolution, when extended to ir,,,(d)",

transforms this algebra intç itself: a — t) Urcrn '
e it,,,(dy'.

2. Of course, the extension of w to with cyclic vector 11) is w(a") =
for all Property 2 means that this state is KMS

with respect to the time-evolution defined earlier on ir,,,(d)".
3. According to (111:2.3.10; 3),

Kerw = = 0}

(a .cl: = 0}

Ker it,,, = (a ed: w(b*a*ab) 0 for all be d}.

and the statement that w is faithful means that = {0}. Property 3 thus
means that if Ker = (0}, then = {O}, so j(1> is a separating vector
for 0 for all ,' 0. (Speaking field-theoretically,
no operator annihilates the vacuum.) If the algebra is simple, and hence
has only faithful representations, then all KMS states are also faithful.

4. If the system is asymptotically Abelian, then = The center f
contains the macroscopic observables, which are therefore constant in
time in this case.

5. By Property 5, convex combinations and weak limits of KMS states
(at a given fi) are KMS states.

6. In a finite system, with d = U, = exp(iHt), there is only one
normal KMS state. At t = 0 the condition is that

Tr pab = Tr pb exp( — fiH)a exp(flH) = Tr exp( — exp(/3H)pb

for all b, which means that pa = exp( — 13H)a exp(f3H)p for all a, so
exp(fJH)p e d', and thus p = exp( — j3H). Since the convex pet of KMS
states is compact, any KMS state may be decomposed into extremal
KMS states. If the system is asymptotically Abelian, then according to
Remark 6 a decomposition into extremal KMS states is the same as a
decomposition into elements of the center (defined as a decomposition
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into (1.4.9)), which the same as a decomposition into extremal
:haract of ergodic states 1.22; 2)

karru.d that a is not decomposable into invariant states,
and thus a fortiori not decomposable into KMS states. Lonversely,
it is now being claimed that it is always possible to decompose a KMS
state w further into other, extremal KMS states, if c is not a factor.
This means that the extremal KMS states are ergodic and, as factors,
even mixing. Since the decomposition by the center is unique, so is the
decomposition into extremal KMS states. Hence the set of extremal KMS
states is a sunpiex.

7. If the time-evolution is given, then there can be one or more KMS states
(see Problem 2). In contrast, by Property 7, if w is given, then there is a
unique time-evolution for which it is KMS.

Proof of (3.2.9)

1. Let b = 1; the function = can be continued analytically
to all of C and is periodic in Im t. Since it is bounded in a strip, it is bounded
throughout C and therefore constant. It follows that p is time-invariant.

2. This proposition follows from a more general one to be stated later
(3.2.13).

3. if a then w(a*a) 0, which implies that for all b, w(ba) = 0 (by
Cauchy-Schwarz), which means that for all b and c, 0 = =
w(bac), and therefore a e Ker

4. Suppose As in Propo 'ion 1, it can be con-
cluded thai w(ac) is constant in t. II a is replaced wth ab. it follows that
w(afcb,) = is constant for all a and b, so c is constant.

5. Convexity is trivial. If converges in the sense to w, then for all
a E ed', b e d and t e C, the quantities wn(a:b) converge to and are
dominated by iryflifl lbfl exp Ilm Cl. Consequently, the limit is holo-
morphic throughout C and satisfies = w(ba,). As in Problem 1,
this relationship remains valid for norm-limits of a's in the strip 0 �
Im t � fi, and can thus be extended to all of d (and, by Property 2,
to all of d").

6. Unless is a factor, contains a nontrivial projection P. Therefore w
can be decomposed into a combination of w1(a) w(Pa)/w(P) and
w2(a) = w((1 — P)a)/w(1 — F), and both w1 are KMS states: =
w(a, Pb) = +

7. Suppose that ; and are distinct automorphisms under which w is a
KMS state. Then if a is entire with respect to r, and b is entire with respect
to i, it follows that

F(t) — 1(r,(a)) . b) = w(r1(a) . = ; +

= w(; + . 1, + = F(t + ia).

This fact implies that F is constant, so r and have the same action on 1
and hence on d. 0
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The foregoing conclusions suggest an interpretation of the decomposition
into extremal KMS states as a decomposition of an equilibrium state into
its pure phases. Yet it will be apparent from examples that these pure phases
are not necessarily identical to physical phases. Property 6 together with
Remarks (3.1.26) ensures that these states have mixing properties, meaning
that local perturbations eventually die out, and equilibrium gets re-
established. The canonical states were characterized earlier as the states of
greatest entropy at a given energy, and the evolution towards them can be
thought of as a tendency toward greater entropy. On the other hand, if the
system is infinite, it is not the total entropy that is finite, but rather the average
entropy, which is unaffected by local perturbations. If a state is normal
when restricted to a local algebra (1.3.3; 6), then it is possible to define the
local entropy, which will then tend to its equilibrium value. It is not, however,
claimed that it increases monotonically to that value.

The diagram in Figure 27 collects together the various properties of
asymptotically Abçlian systems in invariant states and shows their con-
nection with the time-evolution. It will be shown later (3.3.17) that the
spectrum of H is ordinarily the whole real line (— cx). The spectral
properties stated then include the supposition that the systems that we shall
be concerned with have neither dense point spectrum nor singular continuous
spectrum.

I is a simple elgenvalue,

1 the unit circle

I

__

state [ ergodic r mixing] KMS

factor]

correlation = =

covariance algebra

Figure 27 Implications among the ergodic properties.
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Examples (3.2.11)

1. Free fermions. Consider a system of n kinds of free fermions, described
by the field operators = 1,..., n. The algebra of observables
will be taken to consist only of polynomials containing an equal number
of am and for any in accordance with Definition ('1.3.8). in other
words it contains the densities and currents of the particles. The state
is taken as the product of the grand canonical states (2.5.49), i.e.,

. ..

•
• = fl

— ( d3k

J exp[JJ((1k12/2m5) + l
It is KMS with respect to the automorphism am,fz -. a5,f(,),

jAt)

Observe that for thiè automorphism of the algebra of observables there is
an n-parameter family of KMS states. They can be parametrized by the
chemical potentials and, as factor states, they are extremal. A general
KMS state at a given fi is an integral over them with some probability
measure on the Pm, which corresponds to the mixture of phases posited
in the usual procedure known as Gibbs's phase rule. As remarked in
(2.3.41), with a variable fi and n types of matter having only one phase,
there is an n + 1-dimensional manifold of states. —

2. Bose condensation.If p > then the canonical state (2.5.51; 1) may
be written as an integral over the factor states

exp(ia1))

exi{_. exp—I +

These states are KMS with respect to the J(k)
exp(i 1k j2t)J(k), and are consequently extremal KMS They describe

- the- coexistence of two phases, the normal phase with particle density
Jd3k[exp(fl1k12) — and a condensed phase of density Po•
The latter phase. still depends parametrically on the argument p of a0,
and so for fixed fi there are two parameters, Po and (p, to specify the extremal
KMS states. These extremal KMS states are not the same as the phases
of Gibbs's phase rule. Although different phases of a substance are co-
existing if p = 0 and 0 < T < i, the condensed phase makes its appear-
ance not as a single, pure phase, but rather as combinatIon of infinitely
many pure phases, differing in their values of the "hidden parameter" p,
which has no effect on the thermodynamic functions (2.5.33; 3). In this
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way the decomposition into extremal KMS states is finer than the
decomposition of (2.3.39) into extremal points of the concave function

p). If the field algebra is confined to its even part (in the Fock
representation, dE dB (N}'), then all the w0 become the same
state. This is apparent when it is observed that gauge transformations

WI : transform the w, into one another: (w,, ° t,'XW,)
= w,+,.(W,). The restriction to dE makes the identity, sow, = w,÷,.
Recall that for asymptotically Abelian systems the decomposition into
extremal KMS states is unique according to (3.2.9; 6); the extrenial states
form a simplex. In contrast, we were not able to adduce any theoretical
reasons for why the fiat pieces of a(s, p) had the structure of a simplex.

3. A model of a ferromagnet. The time-evolution of Example (2.3.33; 2)
was investigated in (3.1.1; 4). We found that if B 0 and T < 2, it was no
longer an automorphism of the spin algebra d but rather of the
strong closure ir(d)". The state

= f s =

is KMS with respect to this time-evolution. In each of the factors it is
a rotation about the axis a at angular velocity 4s. For example, un points
in the z-direction, then a'(t) and

<1+a> 1+s + — +=
— 2 = 2

= = exp(4iIs)<o >

2'
because s( I ÷ exp(4fls)) = exp(4fls) — 1. The individual factors thus
give rise to extremal KMS states, corresponding to spontaneous magnet-
ization in the direction n. Again, from the physical point of view this model
would be described as having one magnetized phase, whereas the de-
composition into extremal KMS states would distinguish among dif-
ferent directions of a, and treat magnetization in each direction as a
distinct phase. Notice that the phase transition at T = 2 is connected with
a change of the type of factor: if T < 2 the integral runs over factors of
type HI, while if T> 2, the factors are of type III.

Remarks (3.2.12)

1. There are many different possible reasons for the existence of several
KMS states. One is that the center of the algebra of observables d might
be nontrivial. Unitary elements of the center generate transformations,
which, like gauge transformations, leave each element of the algebra
invariant. Therefore it is to combine the action of these trans-
formations with that of time-evolution r and study the KMS states with
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respect to the resulting automorphisms. When restricted to d, these
automorphisms are identical to the time-evolution, so all such states are
also r-KMS for d (ci. Problem 2).

2. Many "degeneracies" of KMS states go away upon enlargement of the
algebra of observables. If in Example I the particle number is also allowed
to vary, for instance by a chemical reaction (1) (2) + (2), then noneven
elements like a?a2 a2 are introduced into the algebra of obeervables.
They are separately invariant under gauge transformations of the
different types of particles, but are invariant only under certain coinbina-
tions, e.g., if the generator of the transformation has the form 2N1 + N2
in the Fockrepresentation. Consequently, the KMS condition with the
free time-evolution makes the chemical potentials satisfya linear equation
such as — 0. Similarly, if two condensed Bose systems as in
Example (3.2.11; 2) are coupled, the relative phase *p becomes observable
(the Josephson effect).

3. It is possible that a symmetry is broken, whicb means that the extremal
KMS states are not invariant under some group a of automorphisms
that commute with r. This is illustrated in Example (3.2.11; 2) with the
gauge transformations and in (3.2.11; 3) with the lithe sym-
metry is then w o a3 is once again r-KMS; thus with continuous
groups there are even infinitely many KMS states.

4. The theoretical justification of Gibb's phase rule for continuous systems
is still an open problem (cL (20]).

5. So far we have been considering fi as fixed. KMS states with different
are disjornt, i.e., if w = (w,1 + w,2)/2, then = it,2. In this

case the temperature becomes an observable belonging to the
center of

As discussed in §1.1, the ergodic property of a system has been an impor-
tant ingredient of the justification of statistical mechanics throughout its
history. Even though today ergodicity is no longer viewed as the central
requirement, it can still be a noteworthy property of realistic systems, so it
can still be valuable to have a formulation of ergodicity for infinite quantum
systems. In a classical system, if there existed additional constants of the
motion beyond H, it would be impossible for the trajectory of almost every
point to wind densely throughout the energy shell. However, constants such
as momentum or angular momentum are infinite for infinite systems, so
ergodicity can not be defined as the absence of additional constants of the
motion. But recall that classically constants of the motion also generate
diffeomorphisms that commute with the flow of time (see I, §3.3). This pro-
perty carries over to infinite systems, and even the notions of indecomposablc
time-invariant surfaces and of dense trajectories have analogies.

In order to characterize ergodic systems, it is only necessary to generalize
(3.2.5) to infinite systems.
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of 3. 3'

Let .4' be a von Neumann algebra ofoperators on a Ruben space .W. For every
vector I 11> thor is both cyclic and separating (i.e., .4' = and tf a Ifl> = 0
for any a .4', then a = 0), there exists a unique one-parameter group of
automorphisnis a -+ ;(a) and a conjugate-linear operator J such that

(1) w(a) is t-KMS (with = 1);
(ii) J2 1, JJ(J = A"; and
(iii) JO*If2>, where r,(a) U_,aLT,.

Remarks (3.2.14)

1. The idea of the proof follows that of (3.2.3), but with additional technical
complications, for which reason the reader is referred to [21].

2. Properties (3.2.6) of the correlation functions hold also in the general case.
Specifically, (iii) means that d Q> D(exp( — H/2)), where U, =
exp( — iHt), from which it follows that d c D(exp( — yH) for 0 �
y � and w(a5 exp(—H)a) w(aJ2a) � The proofs of the
other properties can be repeated verbatim.

3. It is clear that a further generalization to arbitrary C* algebras will not
work. The state in Example (3.2.11; 3) is obviously faithful on the a's,
soit is a candidate for w. However, we have found that the related auto-
morphism under which w is a KMS state maps the C* algebra generated
by the a's out of itself, leaving only the von Neumann algebra njd)"
invariant.

4. Suppose that w is a KMS state on the algebra with respect to the time-
evolution ;. 8y Property (3.2.9; 3) the vector given in the ONS
representation its, is cyclic and separates even if w fails to be
faithful, and the representation of; is identical to the modular auto-
morphism.

Ergodk Quantum Systems (3.2.15)

Let r be the time-evolution under which the C algebra d of is
asymptotically Abelian, and letf be the set offauhful states w with the pro-
perty that the normal extension of w to is also faithful. Then the fol-
lowing two properties are equivalent:

(i) A state w e f is ergodic tf and only jf it is an extremoJ KMS state; and
(ii) There is no w e .f such that its modular automorphism a differs from
but [a, rJ = 0.

If a system has these properties, we shall call it ergodlc.
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Proof that (I) (ii)

Not (ii) not (i). Let w be the o'-KMS state. Since a and r commute,
p o;) is also ei-KMS, so our strategy will be to use it to construct a
rergodic state. Think of p as decomposed in two separate ways, on the one
hand into r-ergodic states and on the other into extremal a-KMS states.
By Remark (3.2.10; 6) the latter decomposition is the same as the decom-
position into factors, whereas according to Remark (3.1.21; 3) the r-
ergodic decomposition is coarser than the factor decomposition. This
means that the t-ergodic components of p are combinations of extremal
a-KMS states, but not vice versa. Hence any such component is r-ergodic
but not t-KMS, since it is not possible for it to be KMS with respect to a
and r a at the same time.

Not (i) not (ii). Suppose that w(a) = is r-ergodic, and let a
denote the modular automorphism of irjd)". Since w is invariant under v
and a, both groups have unitary representations on it,,,. Let cxpQHt) and
exp(iGs) denote their representations. Since w is also o'-KMS, given any a
and be d,

= = <QIr_,(b)aIl)> =

<Qta exp(—IHt) exp(—G)bffl> = (flla exp(—G) exp(—iHt)blfl>.
Since the vectors of the form a (1> are dense, it follows that [exp( —

exp( — jilt)] = 0, so [i, a] = 0. However, if w is not KMS with respect to;
then the groups of autoinorphisms must be different, since w is KMS with
respect to a. 0
Remarks (3.2.16)

1. Unfortunately, no examples of ergodic quantum systems are known.
Although the grand canonical state (2.5.49) of free particles is mixing,
there are ergodic states that fail to be KMS: The momentum distribution
[exp(ft(1k12 — p)) ± 13-1 woukljusthavetobereplacedwithsomeother
positive, integrable function. The state would then be time invariant and,
as a factor state, ergodic, but not KMS. The hope is that when interactions
are switched on, states of this kind will turn into equilibrium states (see
§3.3).

2. Property (3.2.15(u)) forbids the existence of additional constants of the
motiOn. In finite quantum systems, in addition to the Hamiltonian H
there are also the constants of the form f(H). if H is nondegenerate, then
this accounts for all the constants, because {H}' is generated by f(H)
and the unitary transformations of the degeneracy space. If the system is
infinite, then H exists only in representations of invariant states w,
and does not belong to It can be shown [22] that only linear
functions f(lI) produce automorphisms of However, the function



3.2 The Equihbriwn Sia*c 189

H cH does nothing mote than change the scale of time, and we consider
scaled time-evolutions as

3. If particle numbers arc conserved, then gauge transformations
e R, certainly commute with time-evolution, and the system

is not ergodic as defined by (3.2.15). Yet the corresponding KMS states
w are of the form (2.5.49) with infinite temperature but 1,

* — fw(a1a5)
.1 e + 1

The particle density in this state is infinite, w(a(x)a(x)) = 5(0)1(1 + e),
however, so it is not of physical interest. Ibis shows that in a nonergodic
infinite system it may happen that the states that are ergodic but not
KMS never actually occur, so the system behaves ergodically anyway.
On the other hand, there is no similar objection to this state on a lattice
system, for which k varies only over a compact region.

4. If an infinite system is homogeneous and isotropic, then translations and
rotations commute with The KMS states of these automorphisms have
the same defect as that of Remark 3, that the local particle density is
infinite.

5. Since under the measurability assumptions of (3.1.22; 3) ergodic states
are time-averages of a pure state, the same will be true of the extremal
KMS states of ergodic systems. This is the fulfillment of the hope of
classical ergodic theory that the equilibrium state can be obtained as the
closure of a single trajectory.

system\\\
state

Finite, classical

There are no
additional constants

of the motion

Finite, quantum-
mechanical

'

H is nondegenerate

Infinite, quantum-
mechanical

There e;ists no KMS
a such that a #

r] = 0

Microcanonical

.

Ergodic
Time-average of pure

states
Not faithful

Ergodic
Time-average of pure

states
Not faithful

Canonical Not ergodic

Faithful

Not ergodic
Time-average of pure

states
Faithful

Extremal
KMS

Ergodic
Time-average of pure

states
Faithful
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If wish to of ergodicity roughly as the absence of constants
of motion othes thanf(H), then it is useful to make a table of the implications

:'of this for equilibrium states of systems of various types. As can be seen
the KMS states of infinite quantum systems inherit the good pro-

perties of the canonical and microcanonical states of finite systems.

Problems (3.2.17)

1. Consider a sequence of states WN on a CS algebra .1 converging to w (in the
scase). Show that if the çaodular automorphisin is a norm-convergent
isquence in .1 for all aQJi and t ER, then the converge to the modular auto-
morphism belong*ng to w.

Find an example of an algebra d *C') such that some nontrivial automorphism
hasrnany KMS states.

3. Construct the KMS states for translation and rotation of a system of free fermions.

4. In both claulcal and quantum mechanics, study the automorphisms of the anisotropic
Ii + + + with w1/w2 irrational, that commute

with the Is the system ergodic?

18)

1. Consider the limits of the correlation functions WN(rN ,(a(N, f))b), where

a(N, 1) f dtr,,,

and f is as in (3.2.6(v)), and let ;(a) = urn tN ,(a). The norm-limit of ,(a(N, f))
is by the dominated convergence theorem, even for complex t, since

J If(t + � xy The first term of [w(r,(a(f))b) — wN(;(a(f))b)]
+ wN(r.(a(J)) — f))b) goes to zero because of the weak- convergence

wN —' w, and the second term goes to zero as a consequence of the norm-convergence
of a(N; f) to zero. Therefore, for all a Ed and t e C,

-. w(r,(a(f))b).

These holomorphic functions converge pointwise and are uniformly bounded on
every compact set in C, because they are � Ia IL !IblLRy y ); the limit is therefore
holomorphic and identical to w(bt, +

This means that the KMS condition holds for all a E and of course boundedness
in the strip (3.2.6(il)) is preserved in limits. Passing by norm-limits a

a t � 0, then w(;(ajb) converges uniformly to w(;(a)b), which is
- consequently continuous on the strip and holomorphic in its interior.

It is trivial to see that the identity = continues to hold for
limits, as do the group property = and the invariance of w: w c r1 = w.

The (INS construction can now be carried out, so that ; is represented unitarily
on it.., as If converges weakly to be ir(d)", then U - converges

weakly to U ;(b). Therefore ; maps ii(d)" into itself, and is identical
to the modular automorphism according to (3.2.9; 7) and (3.2.14; 4).
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2. Let d be spanned by (1,r) ® (1, a3), and let the time-evolution be rt(t) =
exp( ± iwt)tt(O), with t3 and a3 constant. For a given the density matrices of the
form

— exp( — fit3 —

— Trexp(—$t3 —

yield KMS states for all real

3. They have the same structure as in (2.5.49), with

(d3k I<flp,g> = J I +exp(k1)

for translations in the 1-direction, and

I dr
"0 .m 1+expm

for rotations about the 3-axis, where i,,, denote the expansion coefficients off in
spherical harmonics.

4. Classically. H. = + are two independent constants of the motion, and
generate flows that commute with time-evolution. Thesystem isnot ergodicin thesense
of Table 1. Quantum mechanically, H has the eigenvalues (n1 + + (n2 +
and is thus nondegenerate. All constants are of the form f(H), and the system is
ergodic in the sense of Table I.

3.3 Stability and Passivity

The distinguishing feature of the equilibrium state is that it does no:
change abruptly when subjected to a local perturbation. The second
law of thermodynamics can be proved in a version stating that a
system prevents energy from being extracted by a cyclic perturbation
only (fit is in equilibrium.

The final part of the general theory that will be investigated will be the
influence of local perturbations on equilibrium. In the mathematical treat-
ment local perturbations play the role of the speck of dust invoked irr the
traditional theory of statistical mechanics to convert stationary states,
not yet in equilibrium, into equilibrium states. As a matter of fact, what makes
the KMS states special in the mathematical theory is that they have certain
stability properties—they change continuously when the Hamiltonian is
perturbed slightly. This is certainly not true of all stationary states, and can
even be used to characterize the extremal KMS states of an infinite system;
they are precisely the set of states that turn continuously into the unperturbed
states as a certain family of perturbations tends to zero. Mixed KMS states
represent quantum-mechanical mixtures of phases, and lead to a nontrivial
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center of the algebra. If an observable from the center is added to H, the time-
automorphism is unchanged, but the KMS states do change. Hence mixtures
of KMS states exhibit a kind of instability in that they do not remain un-
changed under the influence of a family of perturbations moving spatially
off to infinity, and hence entering the center of the algebra.

A second important characteristic of KMS states is their passivity, which
is the requirement that the energy of the system at time t can only have
increased if the Hainiltonian depends on time and has returned to its initial
form at time t. This condItion also fixes the sign of 13 and means that no energy
can be removed from a KMS state having 13 > 0, just as a periodic process
can extract no energy from the ground state. This property does not consti-
tute a kind of stability, and sheds no light on why Nature chiefly produces
KMS states. However, it does show the most important empirically familiar
feature of equilibrium.

As usual, the study of a finite system will provide us with a first exposure
to the effects of perturbations. Its time-evolution will be caused by a self-
adjoint operator, which also determines the equilibrium state w by a,
= exp(iHt)a exp( — lilt), w(a) = Ti exp( —13H)a/Tr exp( — IIH). If H is sub-

jected to a bounded, seif-adjoint perturbation h, the effects can be written
down as norm-convergent series. A simple generalization of (III: 3.4.10; 3)
shows that

exp(i(H + h)t)a exp(—i(H + h)t)

= a, + f
dt1 dt2 , [he, aJ...]],

(3.3.1)

exp( — H — h) = exp( H), exp( — (H + h)/2) = Sh exp( —

O�,j�

(3.3.2)
n�O

Remarks (3.3.3)

1. Initially, h is analytic in time (3.2.6(v)), but since
such operators are dense in d in norm, the formulas it appears in extend
to d by continuity.

2. Inequalities (2.1.8: 3) and (2.1.8; 7) yield the estimates

f—Tr exp( — H)h\ Ti exp( — H — h)� Tt exp(.—H) ) Tr exp(—H)

= TrRh exp(—H)
min{URhII,Ti exp(—H)
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Equation (3.3.1) can now be extended to cover infinite systems, for which
H has continuous spectrum, as follows.

Perturbation of the Time—Evolution and KMS State (3.3.4)

Let a -. a, be an automorphism of a C algebra d, and let A be the sub-
algebra that is analytic in time and w be a KMS state. Assume fi = 1. If
h e A is seif-adjoint, then a perturbed automorphism a -* and per-
turbed state are defined by

r'(a) = a, + f dt1 dt2 [h,2,.. ., a,]
•�1

'w(aR,J (SaSa)w,(a)'r' =
W(Ra) W(Rgb)

where Ra and are defined as in (3.3.2).

Remarks (3.3.5)

1. The operator h exists as a local perturbation on a purely algebraic level,
whereas H exists only in certain representations. For that it is
not possible to deane simply as expQ(H .+ h)t)a h)t).
As in (3.3.2), for finite times the sums converge in lorm.

2. If the system is asymptotically Abdlian sufficiently strongly, thin the
limits as of exist. However, such a limit may fail to be
an like the MøIIcr transformations it might not be stir-
jective. If it is surjective, its inverse transforms w into the perturbed state

bin
I-. *

3. See Problem 1 for the equivalence of the definitions of Wh.
4. = + a]).
5. The function d —' 4': h —, is continuous for all t e R and a ed,

if 4' has either the strong or the norm topology.
6. The state wh is KMS with respect to for 1: As shown by (3.3.1),

D(exp(—H — h)) = D(exp(—H)) in the representation using and
becauseexp(H) exp(H + h)Ra,thedomainsofdeflnition of exp(H + h)
and exp(H) are also identical. Hence for all a and be 4',

—

is well defined. From and the KMS condition for w,

= =
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7. There is an analogue of the variational principle for the free energy,
which generalizes (2.1.8; 3) for infinite systems. It is a consequence of the

of the function h -. In w(R,), which can be proved as follows:
From Duhamel's formula (cf. the proof of (111:3.3.15)),

xp(—(H + Aa))

=
— f ds exp(— S(H + Aa))a exp( —(1 — s)(H + ta)).

it can be calculated that

w(R,, + =
=

w(4(a)R,) ds = w(aRh).

The second part of the equality makes use of the invariance Of under
which follows from the KMS condition shown above. Likewise,

d2 Ill

j(4 0

f
and

Al ID V1 / ID(4

og h+Aa
— —

= f — — wh(a))).

In (3.2.6(u)) it was seen that the integrands are positive. As in (3.3.3; 2)
this fact can be used to show that � exp( — w(h)) � exp( — hi).

If there is a bounded sequence of perturbetions all the commutators
of which with d tend to zero as n -. ao, then the automorphism rr
converges to the unperturbed automorphism because

II — (4,11 � exp(211 hflt) f'ii [h, a, — j II ds.

This state of affairs can -arise, 'for instance, if the algebra is asymptotically
Abelian with respect to spatial translationt If denotes the region A
translated by na, a e Fl3, and e is the corresponding translate of the
operator h, then a)jI -.0, and consequently —, a,. The question
of whether the associated KMS states likewise converge to the un-
perturbed w depends on whether the KMS states are extremal. This is
illustrated even in the case by
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Example (3.3.6)

With the notation of (1.1.1), let d be generated by (1, 02), and
suppose that these observables evolve in time into { 1, exp( 02).
This time-evolution has a unitary representation as U, = exp(it(c1 + cc2))
for all c E R, so there is a one-parameter family of KMS states with density
matrix p = + which is not extremal, because

exp(—flpa2)

exp( — a KMS state.
Although adding = (1/n)c1 + c'c2 to the Hamiltonian leads to

the same time-evolution as n cc, the KMS state is different. Only the
extremal KMS states provide two-dimensional representations, for which
this can not happen.

Infinite systems generically have the property known as

Spatially Asymptotic Dynamical Stability (3.3.7)

Let d be a quasilocal algebra and w be a locally normal KMS state on d.
The state w is an extremal KMS state ¶for each sequence of perturbations
such that and are bounded in n and a e d, the

sequence w converges in the sense to w.

Remarks (3.3.8)

1. The assumption that .1 is quasilocal (1.3.3; 8) serves to guarantee the
existence of suitable sequences

2. If d is also asymptotically Abelian in time, then the following propositions
are equivalent for KMS states (recall Figure 27):

(a) w is an extremal KMS state;
(b)
(c)

w for all h°° as described in (3.3.7).

Proof

1. If w is extremal, then —' w: By assumption IhrlI are bounded uni-
forrnly in n, so the same is true of the norms of Since, moreover,

w(Rh(N,) � exp( —

—
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is a bounded sequence of operators. Bounded sequences of operators are
weakly relatively compact ([33], VI; 9.6), and the set of states is weak-s
compact (III: 2.l.23;2), so there is a subsequence ke I•c N. such
that = lim and p = urn exist, and w(ap).
The automorphisms converge by assumption, and by Problem (3.2.17 1)
W is r-KMS. But this means that p belongs not only to (by
construction), but also to and thus belongs to the. center:

w(apb) = w(b_,ap) = = w(abp)

and

w(apbc) = w(abpc).

However, it,,, is a factor, so p = 1, and since = w is the only point of
accumulation it is the limit of

w is not extremal. There is a nontrivial invariant element
z = in the center of By Kaplansky's theorem [4] the unit
ball of d is strongly dense in the unit ball of d", so z belongs to the closure
of a bounded of self-adjoint operators h of d. Because of the locality
assumption the closure of dA I is a separable subspacé of -

(A(n)-.R3),

so A' is also separable. As a consequence the strong topology on bounded
sets of operators is metrizable, so z is actually the limit of some sequence

in d . According to (3.3.4) converges to = r?. As in (3.2.6(v))
p1 can be constructed with the as they converge to = z(f) =
just like and By the dominated convergence theorem it
follows that

lirn = exp(—z),

and therefore

lim wa(N)(f)(a)
= w(exp(--z))

is a KMS state different from w.

The next topic is that of stability properties that can distinguish the
cxtremal KMS states from other stationary states giving rise to factors. As
shown by (33.4), if there is an extrenial KMS state, then for all h e d there
exists a state that is stationary under the time-evolution including h as a
perturbation, and which transforms continuously into the unperturbed state
as h —, 0. It is not obvious that such a "linear-response theory" is possible.
In fact, we learned (1, §3.3) that even in classical physics there are constants of
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motion that are not continuous in a parameter of the Hamiltonian. A
density in phase space that is a function of such a constant will be unstable
when perturbed, no matter by how little. This phenomenon is illustrated
in quantum mechanics by the trivial

Example (3.3.9)

= C2, H 0 e i(C2). Every density matrix p corresponds to a stationary
state, but with the perturbation h = n . a the only stationary density matrices
are p = 1/2 + tn a, A < iiI/2. This shows that only the density matrix
p = 1/2 goes continuously into a density matrix that is stationary under all
possible perturbed time-evolutions.

The example illustrates that only density matrices of the form f(H),
are proportional to the identity in each degeneracy space of H, adapt

themselves well to arbitrary perturbations. Despite the possibility of
diagonalizing any stationary density matrix simultaneously with H, there is
no telling from stationariness alone how it might vary within a degeneracy
space. A requirement that two independent systems be stable would impose
an additional restriction on the function f such that w = f(H). The existence
of two subsystems shows up mathematically as a tensor product, so if
H = H1 1 + 1 0 H2, then we would require that f(H1 0 1 + I ® H2)
= f(H1) 0 f(H2). Since H1 and H2 commute, both H, may be regarded as
ordinary numbers in their common spectral representation. Since the only
reasonable functions satisfying f(x + y) = f(x)f(y) are of the form f(x)

exp( — fix), we are led to the canonical density matrix, if the may have
arbitrary real spectral values. Since our infinite systems are asymptotically
Abelian with respect to translations, and thus come to resemble tensor
products of independent systems, it is a reasonable expectation that the
condition of stability for such systems characterizes the KMS states. It will
now be seen that this is the case, given some assumptions.

Local Dynamical Stability (3.3.10)

Suppose that the algebra d is asymptotically Abeian with respect to c°,
and let w be a stationary factor state, and hence mixing. The question is
whether for any perturbed automorphism it is possible for there to be a
unique state wh that is invariant under and turns into w as h —, 0. The
states

w±= limwov'
£ -. ±

are reasonable candidates for wh. If the limits exist, they would be invariant
under rh. and the uniqueness of means that the limits are equal. If is
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expanded as in (3.34) and we use the invariance of w under r°, we obtain
the

Stability Condition to First Order in h (3.3.11)

If an invariant factor state won an algebra d asymptotically Abelian in time
is stable against arbitrary perturbations in the sense stated above, then for
all h and a e 4',

5
dtw([h, = 0.

Remarks (3.3.12)

1. The assumption that h €4' means that we consider only local perturba-
tions. The requirement that 4' be asymptotically Abelian makes the
commutator [h, a] vanish as t ± Condition (3.3.11) requires,
roughly speaking, that w(i[h, as]) is equally often positive and negative.

2. The physical significance of (3.3.11) is that to first order in h the scattering
transformation is the identity in the representation This can be
interpreted as meaning that w is a locally perturbed equilibrium state
with respect to the time-automorphism tk and should become the equi-
librium state as t ± oo, so there is no net change between r = —

and t + In the kinetic theory of gases this is reflected in the argument
thatcollisions do not alter the equilibrium distribution.

Let us introduce the abbreviations

= — w(a)w(b)

and

- = — w(a)w(b) (3.3.13)

in order to exploit (3.3.11) more fully.

Consequences for the Correlation Functions

Condition (3.3.11) makes

$
— = 0.

Under the assumptions of (3.3.10) we know that F and G tend to zero as
t ± In order to ensure that this integral and others to follow make sense,
it will be assumed that the correlation functions F and G are integrable in
timefrom — to + oo,atleastforadensesetb" c d.Sincetheyarebounded,
they belong,to all L"(R) for I � p � The assumption holds, for example,
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for free fermions. It will also be assumed that the higher correlation functions
decrease rapidly enough for elements of ,9' that integrals and limits may be
interchanged.

If the state is a factor state, then as u —' ± — c,
tends to w(ac1)w(b d1) — b). Therefore

5 — = 0

for all a, b, c, and d E Similarly, from considering what happens to
as 11 x and as v —+

dt(Fda(t)Fcf(t)Fbe(t) — Gda(t)Gcf(t)Gbe(l)) = 0

for all a, b, c, d, e, and fe Because F and G belong to L1, their Fourier
transforms F and exist and are continuous. Then if a, b, c, d, e, and f E
the last three equations imply that

=

$
dEFQb(E)PCd( — E)

= 5
—

and

5
dE1 dE2 — E)Fej( —

= fdE1 — (3.3.14)

We shall now see that these equations imply the KMS condition.
In order to arrive at the KMS condition in Fourier-transformed space,

FUh(E) = E), information about the supports of F and is
needed. It is at least clear that they are contained in the spectrum of H: Let

= U1 = exp(—iIft), writing H as in (1.3.5) in the representation
determined by w. Then

w(ba,) = <b*f�j

so if E 0, then

= = = — H)afl>. (3.3.15)

This expression is to be interpreted in the spectral representation of in
which the functions depend continuously on E when a and b E

In order to draw more far-reaching conclusions from these relationships,
more information is needed about the energy spectrum. It would simply be
additive if the Harmiltonian were the tensor product of Hamiltonians of
independent systems: If and H2 have eigenvalues and then
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0 1 + 1 ® has eigenvalues + This fact to an
infinite system provided that the system is asymptotically Abelian with
respect to an automorphism, such as the translations, that commutes with
the time-evolution.

The Additivity of the Spectrum of H (3.3.16)

Let H generate a time-evolution r on a factor state w, and suppose that the
system is asymptotically Abelian with respect to an automorphism c such
that = 0 and wou = w. If II has the spectral values E1 and E2, then
E1 + E2 also belongs to the spectrum of H.

Given any neighborhoods U1 of I = 1, 2, by assumption there exist f1
such that

f #0,

where the Fourier transforms), have their supports in U1. Since by Property
(3.1.18; 4) approaches

#0
as s there must be a sufficiently large s that this vector is nonzero.
Since the vector is supported in E1 + E2 + U1 + U2 in the spectral rep-
resentatibn of H for all s, there are spectral vafues in every neighborhood of
E1 + E2. Since the spectrum is closed, + E2 itself belongs to the spectrum.

- 0

Reniark(3.3.17)

If the system is asymptotically Abeian with respect to r, then of course it is
possible to take r = a. Since w provides a factor, according to Table I in
this case is the only eigenvector, and H has no other than 0.
Since the spectrum is additive, it is either 0 [±c, ± for some c � 0,
or else (— oo, x). In the first case there is a ground state; we shall be con-
cerned only with the second possibility.

of the KMS (3.3.18)

Let E0 be in the spectrum of H and f be a function of the kind described in
(3.2.6(v)) withf(E0) = 1, supp I c I E0. Then U1 J dtf(t)U1 *0, and
there exists an a E 59 such that U1a() = a1Cl # 0. The operator a1 belongs
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to •99 whenever a does, and the functions P and constructed with a1 are
also supported in 1, because

Pa b(E) =

=

Let h and shrink I down to E0; this makes and proportional to
— E0). If we normalize so that

dEPa,a;(E) = — Iw(a1)12 = 1;

and if

= w(a,4) — Iw(a1)12 � 0

converges to some 'D e + (possibly after passage to some subsequence), then,
because of the continuity of P and (3.3.14) yields

PJE0) = for all c and d 9.
This also proves that 1 may not be either 0 or Since this is true for all
E0 E Sp H = there exists a universal function 4(E) such that

It follows from (3.3.15) that

cD(E)1 =

and the functional form then follows from the last equation of (3.3.14):

f dEdE'(l — tD(E)hii(E' — — 0

implies that

I

Because of the equation derived above this,

= — E'),

and since is continuous it therefore has the functional form

= exp(ftE) for some fl E

This shows the KMS condition for the dense set 9. However, since it can
be written with the aid of (3.3.15) in the form

=

for any bounded, continuous f(H), it clearly suffices to derive it on a dense
set.
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In sum, the foregoing argument has shown the

Equivalence of Dynamical Stability and the KMS Condition (3.3.19)

Suppose that the algebra d is asymptotically Abelian with respea to the time-
evolution and that w is a stationary state creating a factor representation. If
for all h e d there exists a normal state w1 for to first order in h,
such that w and w1 are both stationary to first order under the perturbed time-
evolution, and tf w has an absolutely integrable correlation function, then
either w is a KMS state, or else the spectrum of H is {0} u [±c,± x), in
which case w is the ground state.

Remarks (3.3.20)

1. It does not follow from this argument that fi > 0. This fact did not even
emerge from our argument with the tensor product of finite systems.

2. It is hard to tell how much the result suffers from the sharpening of the
hypothesis of asymptotic commutativity. All the hypotheses are satisfied
by a system of free fermions, but with a Coulomb interaction it is not even
known if they hold in weakened forms. To a certain extent our assump-
tions about decrease at infinity and the interchangeability of limits belong
to the realm of unproven hopes.

3. This shows that stability to first order in h implies KMS. Conversely,
we have seen that KMS implies stability to every order in h, which means
tnat the higher orders contribute no new information in this respect.

Whereas all the perturbations considered until now have been indepen-
dent of time, we shall now turn our attention to perturbations h(t) depending
explicitly on time; they would be due to interferenceTrom outside the system.
The time-evolution will not have the group property, but it will still be a
one-parameter family of automorphisms. Let us, as usual, start by studying
finite systems, for which the automorphisms are implemented by the unitary
transformations

U, =
5

dt'(H + h(tl))] (3.3.21)

(cf.(III: 3.3.6)).
The most important quality of a passive state for our purposes will be

that a system in a passive state will have gained energy when the perturbation
has been switched off.

The Passivity of a State (3.3.22)

Let us suppose that a finite system evolves under the influence of H + h(t),
where by definition h(0) = h(r) = 0. The generates a unitary
time-evolution (3.3.2 1), so the change in energy from t = 0 to t = z in the
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state w given by Tr — HI. A slate is said to he pas.sive if the
change in energy is positive for all seif-adjoint Ii E .W 'L m which case
Tr � Tr pH for all U = -' e

Examples (13.23)

1. The canonical density matrix. Let p = exp( —flH) Tr exp( and
U From (2.2.22(u)) we know that

0 Fr a — In p) = — a)ln p —fl Tr(;, — 'pU)H,

so the system is passive.
2. Negative temperatures. Let p be as above, but fl < 0. In order for

Tr exp(—flH) to be finite, H must be bounded from above: this would be
realistic for a spin system. The inequality is then reversed,
Tr(p — U - 1plJ)H > 0. so the system is not passive.

Remarks (3.3.24)

1. If it is desired to keep the energy £ = F + TS from increasing, the best
tactic is to keep S constant (when T> 0). Our unitary time-evolution
manages this automatically, and so the change in the energy £ equals the
change in the free energy F. Since the free energy is minimized with the
canonical density matrix p. in the state p the only possibility is for E to
increase, so p is passive.

2. Obviously, passivity requires the states of lower energy to be more densely
occupied. so that the system is ready to gain energy. This is not the case
when fi < 0, in which circumstances the system would prefer to give
energy away.

The General Form of Passive Density Matrices for Finite Systems (3.3.25)

A density matrix p on a finite system corresponds to a passive state and
only if
(i) [p. H] = 0; and

(ii) and designate respectively the ordered eigenva!ues of p and H, then

(e1 — ek)(pi Pk) � 0.

Remarks (3.3.26)

I. The condition on the eigenvalues means that if the kth eigenvalue of
H is greater than the ith, then the kth eigenvalue of p must be less than
or equal to the ith. However, it is not necessary for pto be simply a function
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of H, since in a degeneracy space for which e1 = ea it may happen that
Pt Pa•

2. The physical implication of the monotony is that lower-lying states are
more densely occupied. On the other band it implies nothing for the
values of p where H does not vary:

),
is passive.

(i) and (ii) passive Tr pH � Tr
Let U be given in a matrix representation in the common eigenvectors of H
and p as The matrix ,2 is doubly stochastic and therefore a convex
combination of permutation matrices or a limit of such matrices
(cf. (2.1.11; 4)). For any such matrix,

TrpUHU1 = Ee1paIIUaII2 =
l.a p

where = 1, Cp � 0, and {P4} is a permutation of the feZ4. lie1 <ea
implies that � pa, then for any permutation, L ejpp1 � L e1p1 = Tr pH.
Passive (i) and (ii). Suppose that Tr pUHU1 has its minimum at
U 1,andwrite U = I + + M2 + . . . ,where
small & Then Tr pUHU' = Tr pH + TrffH, p]M1) + 0(52). The operator

only needs to satisfy the condition that Mt = —M1, and since (p, H]
is anti-Hermitian, it must equal zero, as otherwise the energy could be
lowered. In order to prove (ii), choose U to have the form

cosq sin(p
cos4)

on the subspaoe spanned by v1 and the eigenvectors with eigenvalues
e1, and ea, Pa• Then

TrpUHU' — TrpH = -.-(e1 — ea)(pa — p,Jsin2 q,,

which is positive only if (ej — — � 0. 0
In order to progress beyond the monotonic property to the statement

that the function is exponential we must investigate infinite systems. We
may either construct the infinite system by taking tensor products of copies
of finite systems or go directly to the analysis of some asymptotically Abc.lian
system. As before, the limiting case = i.e., the gtound state, would
require a special treatment, which we shall not go into. Assuming therefore
that $ is finite, we can state the main proposition on the
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Passivity of Infinite Systems (3.3.27)

Within the set offaithfulfactor states w on a C* algebra with a time-automorph-
ism t and another automorphism commuting with r and under which w is
invariant and asymptotically Abelian, the passive states are precisely the KMS
states,for any fi � 0.

Remarks (3.3.28)

1. Translations of a homogeneous infinite system commute with the time-
evolution. Since the local field algebra is asymptotically Abeian with
respect to translations, this theorem can be used even if it is not known
whether the time-evolution is asymptotically Abelian.

2. The sign of fi is fixed by passivity, though of course its is not.
3. To ensure that H is well-defined, assume that the time-evolution can be

represented unitarily; then passivity is equivalent to the property that
w(U_tHU — H) � Ofor all unitary Ued.

4. Since the condition for passivity is linear in w, the passive states form a
convex set. Passivity does not single out the extremal KMS states. We
shall consider only factor states, which can not be decomposed further, as
shown in §3.1.

Proof

Passive KMS. If the condition of passivity for an infinite system is written
as w(UHU ')� w(H), and we choose U = exp(isa) for a self-adjoint, then
the first two terms of the expansion in powers of s lead to

(I) w([a, H)) = 0 for all a d, and
(ii) w([a, [H, a))) � 0 for all a d.

Equation (i) means that = 0, so w is stationary. In order to deduce
the KMS condition from (ii) we employ the modular automorphism of
w—caIl its generator H. The KMS condition with respect to H can be used to
write (ii) as

0 � <Qj2aHa — Ha2 —

= <f� f 2aHa — a exp( — fi)Ha — aH exp( — H)a I

= 2<flIaH(1 —

In the last step we used the fact that [H, H) = 0, in accordance with our
assumption. Since the inequality holds for all a = a* e d, it follows that
H(I — exp( — H)) � 0. This means that in the common spectral representa-
tion of H and H the spectrum is restricted to the hatched region of the
(H. 11)-plane shown in Figure 28. Now the existence of the commuting,
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asymptotically Abelian autbmorphisms comes into play. According to
(3.3.16), this implies that the spectrum is additive, i.e., if(h1, and (h2,
are in the spectrum, then so is + h2, )i + Ji). As a consequence the
spectrum can at most be on a line through (0,0), so fl = /JH for some 0.
KMS passive. Since x � I — exp(—x),

w(UHU') � w(UU') —
0

Remarks (3.3.29)

1. The last inequality proved above is only the first of a whole family of
inequalities that the expectation values in KMS states satisfy, and which
completely characterize the KMS states [24]. They generalize trace
inequalities, which are not directly applicable to infinite systems, since
exp( — flH) is not trace-class.

2. Example (3.3.23; 1) showed that for finite systems, passivity follows
from thermodynamic stability, or, in other words, from the minimum
property of the free energy. This fact generalizes to infinite systems, for
many of which the implication goes both ways, KMS thermodynamic
stability, for instance for lattice systems with finite-range interactions.
For these systems KMS is equivalent to global thermodynamic stability,
provided that only translation-invariant states are considered, and that
the free energy is interpreted as the free-energy density. However, for
systems with long-range forces there exist KMS states that do not mini-
mize the free energy; they are instead metastable, minimizing the free
energy only one some reduced set of comparison states. Since the free
energy is a convex functional on the states, it can not have a relative
minimum on the set of all states that fails to be absolute.

Figure 28 Possible location of the spectra of H and 71.
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3. The state wp1 ® w02 of two independent systems at different temperatures
T1 > T2 Is KMS with respect to the automorphism generated by 191H1
+ H2. A perturbation h(z) can cause the temperatures to equalize,
and it may happen that the first system will have given up a positive
amount of energy E1(0) — E1(t) > 0 by the end of the period.
However, because the state is passive, + fl2 � 0, and the
change in the total energy = ttE1 + AE2 is bounded by
� (T1 — T2)/T1. Since the total entropy remains constant under the
unitary time-evolution, is the amount of energy provided by the total
system, and this inequality is Carnot's classical bound on the thermal
efficiency.

Another way to characterize the KMS states of an infinite system is known
as reservoir stability, and it further justifies the physical interpretation of
as the reciprocal of the temperature. In outline it means that the KMS
states are precisely the states that are suitable for thermal reservoirs, allowing
the temperature to be defined. A more careful formulation states that if
the reservoir is coupled to a finite system in the canonical state w, then in the
weak-coupling limit w is invariant under the resulting semigroups (ci.
(3.1.12)) for a reasonable class of couplings 1ff the reservoir is in a KMS
State [24].

Problems

I. Show that = w(aRh) =
2. Estimate the length of time for which the "linear-response theory" remains valid:

i.e., estimate

— f f dt1 [h,1, a,1

3. Use the methods to conclude from e1 > p. � p1 that

e-p1 �

for every permutation P.

Solutions (3.3.31)

1. Since H exists in the GNS representation with w, Equations (3.3.1) are applicable.
The invariance of Q holds also for complex z,

= fl>. RhIf�> exp(—H —

Now use the KMS condition for w in the form w(ab) = lb exp( — H)a

= <QlRhexp(—H)alfl> = exp(—H — h)alfl> =

It is also true in this representation that Sh exp( — H — h), so

= exp(—H)S'aIQ>
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2. Apply Taylor's formula — 1(0) — � — to f:
[0, 1) -. According to (3.3.4),

= 2 5 dt2 5 dt1[h,,, a,]] �
This is also true when e (0, 1]; the only change when 0 is that the time-evolution
a, h a,, h, becomes a, h -, which does not affect the norms. Conse-
quently the answer is that II � (2tIlhII)2 I!aU/2. Recall that if lIhll is on the order of a
Rydberg, then tIIhtI 4 1 when t sec. Therefore this a priori estimate
guarantees only that the linear approximation remains valid for times on the atomic
scale, and not for times measured in seconds. To go further would require knowing
that the commutators go to zero for longer than macroscopic times.

3. Order and p1; thee

e1p1 + e2p2 + e3p3 + = (e1 — e2)p1 + (e2 — e3)(p1 + P2)

All the summands are positive, and permuting thecan at most make the summands
larger.
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4

4.1 Thomas—Fermi Theory

Among the best examples of large quantum sjsiems are atoms and
mo/ecu/es with highly charged nuclei. Classical features arise in the
limit Z —. c, N except liw! the Fermi statistics continue to
hare an important effect.

Matter around us and within us consists of electrons and atomic nuclei,
which are governed by the laws of quantum mechanics. effects
arise only in the fine details (cf. III, §1). so the forces of primary relevance are
electrostatic and, for cosmic bodies, gravistatic (nonrelativistic). Moreover,
the precise nature of the atomic nuclei is of little consequence on the macro-
scopic scale, so they can be considered as point charges. In order to under-
stand the gross features of matter we shall study a Hamiltonian

H — +
(e1e2 —

— 2m1 - —

for ordinary matter. The first important issue to confront is that of why
macroscopic bodies behave classically; in what sense is the thermodynamic
limit N —, equivalent to the classical limit h —' 0? There are a variety of
ways to pass to the limit N In this section we begin by letting the nuclear
charge Z and the nuclear masses both tend to infinity, while continuing to
neglect gravity. This will permit a rather explicit mathematical treatment, as
the action is determined by an average field, and the single-particle model
becomes exact. The same will be true in §4.2 when we deal with cosmic
bodies, for which gravitation predominates. However, macroscopic bodies

209
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on the scale of human.c are far from these limits: nuclear charges are for the
most part small, and yet gravitation is of little importance. In this intermedi-
ate range of normal matter it would be too much to hope for an explicit
solution. Section 4.3 will discuss this case, but the results will be confined to
general existence theorems and rather crude bounds on the values of
observables of physical interest.

Let us consider now what happens to electrons in the field of fixed
point charges. In order not to be distracted from the most important facts
by physical constants, we shall use units in which h = 2:n = e = k = 1, so
that (4.1.1) becomes

The Hamiltoelan for Normal Matter (4.1.2)

k=1 — i>j — x.,I

+ E +

Remarks (4.1.3)

1. The notation follows that of (LII: 4.6.9), that is, and are the position
and momentum of the ith electron, Xk and are the position and charge
of the kth fixed nucleus, N is the number of electrons, and M is the number
of nuclei.

2. The Hamiltonian H operates on an n-fold antisymmetrized tensor product
of ® C2 = configuration space 0 spin of a given electron. The
nuclear coordinates X1 commute with everything, and are to be regarded as
ordinary 3-vectors of numbers.

3. it is usually most convenient to study the many-particle system in the
framework of the field algebra (1.3.2). If ag(x), = 1, 2, denote the
annihilation operators of electrons with spin up = 1) and spin down
(ct 2), then (4.1.2) reads

H =
J

d3x[Va(x).
+

+

+ 1 d3x d3x' +
tx—x't

4. If the temperature is finite, then the attraction of the nuclei is not strong
enough to prevent the electross from escaping to infinity, and the system
must be imagined confined to a boz. The box can be repret.ented by a
potential W, adding a term L J d3xW(x)a(x)ae(x) to H. The wall
potential W will be chosen to be the VL of (2.5.23).

M6st interesting systems are approximately neutral, so N is assumed to be
about Z5. The thermodynanttc lunit N -. can consist either in
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M or Zk —' For the moment consider the latter case; the limit
M -+ will be studied in §4.3. The step is to bound the grand canonical
partition in terms of the grand canonical partition function of a
theory with free electrons in an external field. This that the bounds of
(III, §4.5) for the energies have to be generalized for arbitrarily complex
systems at Aonzero temperatures. After that we shall ihow that the upper
and lower bounds coalesce (when properly scaled) as -. sii the parti-
tion function can be calculated exactly in the limit, Finally,
the limit of the gran4 canonical state will be analyzed.

Upper Bounda for tbe Partition Fsmctlon (4.1.4)

These correspond to lower bounds for the Hamiltonian like those derived in
(III: 4.5.20). The inequality (111:4.5.24), though, is not well suited to our
current purposes, and must be replac*d with a which will appear as a
by-product of Thomas—Fermi theory in (4.1.46; 2). In it The Coulomb
repulsion of the electrons is replaced by their energy in an external field:

ix — � — 1 n(x)n(x') — 3.68yN
1=1 Ix,—xI 2

— ! $ d3xn513(z)

for all y > 0, fle L'(ft3) (4.1.5)

This yields a boun4 on the óxpression in (4.1.3; 3), which is quartic in the
a's, in tenns of a quadratic expression,

1 1

j —
�

J

[f - 3.68Y] - f p(x')n(x) - ! f d3xn513(z).

Consequently, H is bounde4 by a

Hamlltonlan with an Effective FIeld (4.1.6)

where
k>,IXk,— ,i

II,, f - Va2(x) +

1 d3xd3x'
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and

C, =
$

d3xn513(x).

Remarks (4.1.7)

1. Although Inequality (4.1.5) holds for any n(x), the optimal choice identifies
it with the electron density. Thus the effective potential in the square
brackets [...] consists of the attraction to the nuclei, the repulsion from
other electrons, and the chemical potential. However, this interpretation
counts the electron repulsion twice, as in I — The last
term in H, corrects this overcounting.

2. The correlations among the electrons due to their Fermi statistics have
the effect of reducing their repulsion. Also, H, contains the self-energy of
the individual electrons. The constant C, and — 3.68yN serve to control
any possible effect from these corrections.

The monotonic property (2.1.7; 4) translates (4.1.6) into an inequality
for the partition function. Then with the aid of the maximum principle of
(2.5.16; 2) the inequality can be expressed as the supremum of an expression
linear in n.

The Partition Function with an Effective Field (4.1.8)

— pN) Tin Tr exp[—fl(ff -1iN)] � — C, +

k>l "k 'N

= tr 2 ln(1 + exp( — + f d3x d3x'
n(x)n(x')

= sup 2 tr{T(—p1 in Pi — (1 — Pi) in(1 — Ps)) —

P1

+ d3x'
2)

= — + + W(x) — — 3.68y.

Remarks (4.1.9)

1. The Hamiltonian h, of one particle in the effective field acts on the space
= L2(R3). Spin is accounted for by the factor 2, and tr denotes the

trace on .*.
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2. As in Remark (2.5.16; 2), sup,,, denotes the supremum over one-particle
density matrices Pi such that

0 � Pi � 1,2 tr Pi = N (i fd3xaa'(x)aa(x)).

3. There exist � 0 such that hR � c1 fpf2 + .W(x) — c2. This ensures
that tr ln(1 + <

The next task is to optimize the upper bound. The infimum over n of
!(HR) is in fact achieved. This is a consequence of the

Properties of the Functional 3(H1,)(4.l.10)

The mapphzg n -. from to R where is the real Hubert space of
measurable functions QV —+ Rfinite in the norm

2 (d3x d3x'n(x)n(x')

is

IInItc = J Ix — x'I

(i) weakly lower semicorninuous;
(ii) strictly convex; and

(iii) greater than

Proof

(i) In the second version depends on n through tr and
The norm is and tr(p1 J n(x')d3x'/Ix — x'l) is
weakly continuous for

CM X2> <ME

The supremum is attained when Pi = + 1) which belongs
to some CM. Hence sup,,1 may be written as SUPM.R+ In this
way is expressed as the supremum over continuous functions,
which is always lower semicontinuous.

(ii) This follows in the first version of E(HR), when it is observed that
h —. tr ln(1 + is convex, n is linear, and n -. is
strictly convex.

(iii) This follows in the first form of since tr ln(1 + exp( — nh)) � 0.
0

Corollaries (4.1.11)

1. Because of Property (iii), the infimum over n lies in a compact region where
tin < C. Property (i) means that it is attained at some n0, which is
unique because of (ii).



214 4 Physical Systems

2. Because of the convexity, we know that the function 111 -+ r
has a right derivative everywhere, and the minimum is attained

at n0 only if

lim
t

Although convexity does not imply the existence of a derivative, analyticity
can be proved by a variant of Theorem (2.4.7). Granting that, the formal rules
for differentiating Ir ln(1 + A) are justified:

d C d3x'n1(x')tr ln(1 + = —tr
J lx — x'l + 1

Therefore the minimum at n0 is characterized by

d3'd3 ' 1

S
n0(x)n1(x') 2 tr 5 x x exp(fth,,0) ± 1

for all

If n1 is made to tend to &5(x — x0), then there results an equation for n0(x0).
Since the integral kernel K(x, x) of(exp(flh,,) + 1) is analytic for x, x' #
even though &5 does not belong to A' we have the

Existence of the Self-Consistent FIeld (4.1.12)

The equation

= + 1)'lx>
has a unique solution, which minimizes 3(HN).

Remarks (4.1.13)

1. Since + 1) 'fx) equals L it is the mean
electron density in the state determined by the one-particle Hamiltonian
hRO.

2. The ease with which the existence of the solution of the genera'ized
Hartree equation (4.1.12) was proved depended on the wall potenti*l W.
In an infinite space without Wthere fails to be a solution when N >
even at absolute zero temperature—the electrons escape to infinity, and
the infimum is never attained. This is a reflection of the general mathe-
matical fact that a strictly convex function need not achieve its infimum
on a noncompact region; for example 1/x never reaches the value 0
on [1, oo).

3. A convex function on a finite-dimensional space is continuous on the
interior of its domain of definition. This is not always the case the
dimension of the space is infinite, and un 1C2 is in fact not weakly continuous:
The norms IL of the charge distributions nR(x) = R 520(R — lxi) are
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all equal, but J d3xnR(x) 0 as R —, 0. Consequently I 0 for all
n, if

f E

Since the n's such that e are dense in .A' 0, even though
0. There even exist convex functions that fail to be lower semi-

continuous, for example the functional of (III: 2.1.15; 2). Of course the
function n — is continuous in norm, but this finer norm topology
can not be used, because we need the compactness of bounded sets.

4. At the minimum (4.1.12), it is indeed true that n(x) > 0 and 3' d3xn(x) = N.

Lower Bounds for (4.1.14)

In (III, §4.5) upper bounds on the energy were provided by the min-tnax
principle, the generalization of which for norzerc; temperatures is the
Peierls—Bogoliubnv inequality (2.1.8; 3) with E = —F. Because

(H —

— -
d3x d3x'

—

1 rd3xd3x'
- :,

J

—A(n0) <0,
X—Xi

where fl = — 3.68y, it implies that

ZkZI
— � + A(n0) —

k)', — "I
When this is combined with (4.1.8), it yields

Two-Sided Bounds for (4.1.15)

0 <A(n0) � — + — � f d3x

Remarks (4.1.16)

1. This means that the true partition function exceeds the partition function
with an effective fie'd by more than A but less than C.

2. In particular (4.1.15) states for the exchange energy that 0 � A � C. If
Z is large, then n0 approaches the electron density in Thomas—Fermi
Theory, and we shall discover that Jn5'3 Z713. If y is chosen

(Z7/3/N)hi'2, then C and the additional term 3.68yN in p becomes
N"2Z7'6. Since H goes as if N Z, then the relative error is

O(Z 2/3)
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The LIailt (4.1.17)

The next topic of study is the way in which approaches the classical
phase-space integral (2.5.17) as Z -. oo. According to the general considera-
tions of (1.2.4) the interesting limit would be expected to be that in which the
system shrinks as Z Consider, therefore, a sequence of Hamiltonians

in which not only do the nuclear charges increase as Zk = Zzk,
1, fixed, but also the nuclear coordinates are scaled by changing

Xk into Z 113Xk and the wall potential varies at the same time:

$
d3x[Va(x) Va5(x)

+ x —
+

+ $a:(xa(x
dXdX

+ IXk X,I

f d3x{Va(x). Vaa(x)

M f
+ lx —

+
—

- +Z"3(W(xZ"3) — p) — 3.68Y]}

I z

=

In order always to work in a fixed volume and see what happens in the
limit Z -. oo, use a canonical transformation to convert the electron
coordinates x into Z and p into Z'3p at the same time—this entails

a(x) Z "2a(Z as well. Since the number of electrons also grows

as Z, the mean momentum of the electrons grows as Z213, and every kind of
energy per particle, such as T or i, will depend in the same way on Z. Thus

if we calcdlate Tr exp[ — — N)] with I3z = and = Z"3p,

and scale n appropriately, we are led to tr ln(1 + cxp( — with

and

= Z2'3!p12
—

+ + Wx) —

p, = z + Z43 3.68y.
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Observe that Z'3 occurs in the position of h, making the limit Z oo

equivalent to the classical limit h -. 0. Now use the bound (2.5.17) with

u2(x) = exp(—Kr).

The Fourier transform of this density is

K4
u ( ) — (1k12 + K2)2

Consequently $ I Vu 12 d3x = ic2, and if v = 1/r, then

f d3x1!1 Iu(x —
— exp(—Kq)

— —

The Classical Upper Bound (4.1.18)

Since 1/r can not be represented as a smeared potential, v' makes no sense.
Thus it is first necessary to remove v,, the short-range, singular part of 1/r,
and handle it separately. It can be neglected as K and if the smeared
remainder is unsmeared, we recover 1/r:

1 1
= + v5, (vN)N =

Let be like the of (4.1.17), but with in place of 1/,. Then

= + i';,

= d3p p><qpl(z2/3(Ip12 —

Cd3xn(x)

+ i Iq — xl
+ Wu(q)

—

= — z1v3(x — + f d3yn(y)v1(x — y).

In the x-representation, I q, p> is

exp(ip• x) exp( — K Ix — q

and we let W
be the of V,:

tr ln(1 + � tr ln(1 +
+ tr[ln(1 + exp(—f3(h, + at')))
— ln(1 + exp( — for all � 1.
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The number will be picked so large that the addition to the first term on the
right side goes away in the limit Z oo. By (2.5.17), the second term is
bounded by

trln(1 + �
(

+ — K2)

d3xn(x) 1—
— + f Iq — xl

+ —

r d3q d3p I / 2= + CXPI._PtIPI
— —XII

+ f
1qX_

+ W"(q) — — Z_2/31C2)]).

The additional part containing V, can be taken care of because even for a
singular potential V(x) e L52(R3) there is a bound of this form weakened
by a factor C

tr ln(1 + exp[—fi(Ip12 + V(x))])

f
d3pd3q

ln(1 + + V(q))]). (4.1.19)

The derivation of this formula is left for Problems 1 and 2. In this case it
leaves us with

tr In(1 + + xV,)J)

� cZ fd3qd3p
+ exP[_fl(1p12 + WN(q)

— Zi(
1

+ — — X,))

+ f + — — Y)) — — z 213K2)]).

It remains to be shown that and K can be sent to infinity with Z in such a
way that the additions to the classical one-particle potential in the effective
field become negligible. To this end assume that tends to infinity outside
some compact set K containing the X1 so rapidly that the contribution to the
integral over the oomplment CK is insignificant, that is, d3q ln(•••)
> d3q ln(. . .) for afli > 0. Then it suffices to estimate the integral over'
K, which can bedone in terms o(the L' norms of the potential on K, i.e.,
H Vfl, — d3qI V(qW'W'. If lxl_ xlO(—x), then

ln(1 + exp(—x)) IxI_ + ln(1 + exp(— lxi))� jxj_ + exp(— lxi),
and if

qeK_ E <0),
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then with 6 =

ln(1 + exp[ — fl(g + V(q))))

< J
— I + 1 exp[—flI — 1

and ifqEK÷

j < f + 1)j

— fl� + I foralI,j � Oand

5
!n(1 + exp(—fl€)) <

ifK' K÷ uK..,then

5 d3q J
ln(1 + exp[ — +

< 5 d3q
5

— If...

+ I V(q)13'2 — 1 f]) + p312

The required bound now follows from

exp( — y f
6 — ii) � 501

+
5 d€(.,.J + 1) exp( —

= + +

• for

£ 5
d3q In(1 + exp[—/3(e +

� f + + $'1V1112 +

In the case at hand, since jf - 3/p and

fd3xlv + — � + — p =

or, I oecti veiy.

• fd3xv + (cz — +
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it follows that I + exp[ — fl(h, + I')] remains bounded in the limit as
and K zx when If K goes as Z'3 0 < then the cor-

rection Z to the kinetic energy tends to zero, and all corrections to the
classical one-particle phase-space integral with the effective field are smaller
than this quantity by a factor Z The quantity no trouble at all,
since it approaches provided that 7Z'3 0. Likewise, Wu(q) and W(q)
approach W(q) in the limit K -4

The Classical Lower Bound (4.1.20)

For the classical bound (2.5.17), the hr occurring in the classical phase-space
integral has to be replaced with = hr — t,. As before, convexity is useful
for estimating the influence of the v3, except that this time the convexity of
f for > 0,

f(—1) � f(O)
+ —

is used for the other sidd of the equation. The result is

tr ln(l +

� + exp[_fl{1p12 -F — +

—
q

— Xi))

+
1

— v3(q — x))}])

� [ln(1 + exp[_P{1p12 + Z2'3K2 —

td3xn(x) )1\f i

+ J jq —
+ W(q)

— + —

— !ln(1 + + Z2 3K2

— — + xv3(q — X1))

+ f
— + — x)) + —

The integrals that show up are the same as lot the upper bounds. so with
= K = 0 the corrections to the classical expression
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vanish as Z -+ The n(x) considered earlier was constant, while that
defined by (4.1.12) depends on Z. However, it is shown in Problem 4 that the
minimum values also converge, so our bounds prove the

Classical Limit of the Partition Function (4.1.21)

Jim z 1 In Tr exp[—/3(Z413H2 —
z-.

urn 'In Tr exp( —
—

k>I

= 2 ifl(i + —

C n(y)+Jdy1q_y1+W(q)_p

— k21 +
Id3xd3Y()(

')
k>lIXk—XzI

According to Remark (2.5.18; 4), the optimal density for this formula satisfies

CJp I // 2n(x)
= 2J — —

+ J d3v + W(x) — IL)) (4.1.22)

Remarks (4.1.23)

'1. The classical functional also has Properties (4.1.10), which ensure the
existence and uniqueness of a solution of (4.1.22).

2. As yet unproved conjectures [lfl imply that Equation (4.1.19) holds even
with c = 1. If that turns out to be true, then many of the proofs given
here can be simplified.

The Density in Phase Space (4.1.24)

Now that E has been shown to converge, we can study the limiting behavior
of the expectation values of a suitable subalgebra of observables. The densities
on classical phase space would seem to be an appropriate subalgebra, since in
the classical limit Z -+ x it ought to make sense to speak of position and
momentum simultaneously. As mentioned above (cf. (1.2.4)) position goes as
z 13 while momentum goes as so the product of their relative mean-
square deviations would be expected to go as z. 213 and as Z —, the
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physics should become classical. This rather ary argument can be made
mathematically substantial, and we shall discover that in convenient units,
fermions distribute themselves in phase space according to

p(q = —

q + J + W(a)
— ti}

+ 11_i.

Particularly interesting is the observation that fermions behave more classi-
cally than bosons. The latter have a —1 in the denominator, so p(q, p)
becomes negative when q = Xi,, and thus can not turn oUt to be a probability
density on phase space.

To make the connection with (2.2.10; 5) we define creation and annihilk-
tion operators at the point (q, p) in phase space, and choose u as a sufficiently
smooth, decreasing function such that 112 = 1, like the function of (4.1.17):

The Field Algebra on Phase Space (4.1.25)

The operators

= z3"2 f d3x;(x) exp(iZ2'3p. — Z "3p)),

<e = u,

satisfy the commutation relations

a..p.;p]+ = f d3x exp(iZZ3ex * (p — p'))u(x — "3q)

x u(x — Z' 13q').

if q q' and p = p', then the right side is and otherwise it goes to zero as
Z Hence a,,;aq,,;, are bounded above and. below by
0 � � 2, and generate an algebra that is Abelian in the limit Z

Defining d3q we calculate

$
= Z 1f$ —

- x F(Z"3x')d3x',

$
p =

$

+ f
fdfldfl' = x')a,(x')a(x)vJx —

+ z713 (4.1.26)
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where F e Lx(R3) and

0 � — x') Jd3q d3q' — 1

Iq—qI x—xI

Remarks (4.1.27)

1. As Z — x'))J2 approaches cS(x — x'). It is not hard to
convince oneself that when the classical Hamiltonian with p or p p is
integrated, the result is H to order Z7'3.

2. For neutral states, i.e., <Ne> = Z, it follows that <f dflpqp> = 1.

The convexity of the partition function (2.4.7) can be used to calculate
an expectation value by allowing it to be written as the derivative of the
partition function by a perturbation parameter. We shall show that the
perturbed still converges as Z —, which will simultaneously prove that
the foregoing results are stable against small variations in H. The limit will
turn out to be likewise convex and differentiable in the perturbation param-

so by Problem (2.4.18; 3) the limit of the derivative is the derivative of
the limit. Since our rea' aim :s prove that the expectation value of
approaches the Thomas—Fermi density and that the deviations of
vanish, we will perturb Ii both linearly and quadratically in p. To an accuracy
of Z2'3 we can by-pass the intermediate steps (4.1.15), so we shall not
require the more refined inequality (4.1.5). Thus we get by with a somewhat
simpler effective Harniltonian.

The Perturbed Hamiltonian (4.1.28)

HA + 5 dQpqpf(q, P) + (5
dflpq,pf

HA,, 5
d3x {va:(x). Va,,(x) +

x
x —

+ Z43(W(ZtI3x) —

i'dCZdQ± Z'
—

— s)

+ + A2g)J p) — g2/2,
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where E R and f€ C. We shall choose n(q, p) as <Pq,> and let g
p)f(q, p). With the idea of (4.1.24), because 0 � � 1/Ixi,

—. — —

1 rd3xd3x'=
J x —

df� dci'
— z713

q'j (Pq.p — p))n(q', p')

÷ (f dcipq,pf(q, p)

z7'3
> $ dci dcl'(pq,p — n(q, — n(q', p'))

+ p)f(q', P')] —

Remarks (4.1.29)

1. Since the Fourier transform in the q variables, J(k, p), decreases in k
faster than any power, 1k j2 + 22 j'(k, p)J(k, p') is positive for sufficiently
small 1221. The expression in square brackets [. .] is then of positive type,
and the inequality extends to the statement that

HA — Z"31.tN — Z"3 — �
It is easy to calculate that so the right side is dominated by
Z713, and in the limit as Z

Z'E(Z4'3HA — pN) � —

2. According to (4.1.24),

z'3 f dcl dci' =
5

d3x

where

n(x)
= $

n(x,

Therefore the Coulomb repulsion of the electrons in the Hamiltonian
HA.,, of (4.1.28) is reduced by = 1/r — As in (4.1.14) the Hamiltonian
HA,, with in place of hr furnishes a lower bound for On the other
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hand, it was shown in (4.1.18) and (4.1.20) that the effect of on
was negligible as Z —' Moreover, p) is the second
quantization of the one-particle operator dQ I q, p> <q, p1 f(q, p),

I
q p>

= x)u(x — q), the expectation value of which in the state p>
reduces to f(q', p') in the limit Z The generalization of (4.1.21) is
consequently

tim Z' lnTrexp[—fl(Z43H1 —

= 2
fd3q ci:!? ln{1 + exP[_P(1P12

— Iq —j

+ + W(q) + f(q, P)(2k +
.' Iq—qI

+
—

),
(4.1.30)

k>I lXk —

where

1' d3p

= J
p),

p) = 2{exP p11P12 —
zk

+ J Iq—q'l

2+ W(q) + f(q' + 22g2) —
—

+ i}'.

$
p)f(q,

and 221 is sufficiently small.

Differentiation by and at = 22 = 0 and an optimization of
fe reveal the

Convergence of the Expectation Values (4.1.31)

tim <Pq.p>Z tim
Tr(pq —

Tr —

= 2{exP[/3(1P12 —

+ + W(q) — + = n0(q,p),
..' Iq—q

tim <Pg. p' Pg. p)Z = n0(q, p)n0(q', p').
z-.
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Remarks (4.1.32)

1. Since f is not arbitrary, but assumed in the limit only
in the sense of distributions. The C' algebra generated by the
"smeared" densities on phase space, p, J dflg(q, P)P5P, together With
the identity becomes Abelian in the " weak" limit Z Hence, according
to the GeI'fand isomorphism (III: 2.2.28), if Z = then can be
represented as the set of continuous functions on a compact Hausdorif
space. The space of characters of an Abelian C* algebra d, i.e., '-homo-
morphisms from d to C, is the same as the set I of pure states and is a
compact Hausdorif space in the (relative) weak-' topology. With the
identification [a] (co) = w(a) C for all a e d and co El, d is equivalent
to the C5 algebra of the continuous functions with the supremum norm
on the set 4', given the weak-' topology. In our case, 4 = {n e Lc0(R6) In� 0 a.e., 2}, with the weak-' topology with respect to the linear
functionals belonging to the predual L1(R6). (Since is dense
in L'(R6) in norm, the corresponding weak-' topologies agree on
Since 4' is the intersection of the cone of the functions that are non-
negative a.e., which is a weak-' closed set, with a multiple of the unit
cube of it is weak-' comoact. The GeI'fand isomorphism correlates
p9 with the mapping [p9] (it) = J ng dQ, and since — II� — the completion contains for instance all p9 such that
g e L'(R6). The set of all states on the algebra is the weak-' closure of the
convex combinations of characters and can be represented as a set of
probability measures; pure states correspond to point measures. If the
state is mixed, ),,, + (1 — then the two-point function
can not be factorized:

+ (1 — = xn1(z1)n1(z2) + (1 —

= + (1 —

+ (1 — for all z1, z2

n1(z) = n2(z) for all z = (q, p).

Hence it follows from (4.1.31) that the limiting state is a character, and
consequently pure.

2. Although the system acts classically on a distance scale Z 1/3, it
would be expected to behave like a free Fermi gas on the scale the
average distance between particles — reciprocal of momentum. If the
microscopic field operators

= t'3q + = —
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introduced, it car be seen from tjldi expectation
for free Ferznions is

d3p

J
exp(ip

d3p Z'2
= J (2ir)3

exp[ip. (Z2 3(x — x') + a*(x)a(x)

F Z
x — Z

1
=

—

where the chemical potential is determined by the potential V(q) at the
point q. and we set £ = u = exp(— Ix 12/2).

C d3p

J

= exp[ip (Z23(x — x')+

x — + Ix' —

s 2

= —Z131x12 I
Therefore

f
d3p exp(ip.

— V(q))] + 1

= lim fd3x exP[_..Zh131X2 —

x <a:+x(_ / "o

Zk + W(q) —
iq—x!

3. Results have also been obtained concerning the time-evolution in the
limit Z .c [26J, but they have only been proved for regularized
potentials and not for I. r, so they will not be presented here. At any
rate the time-evolution of co(a1). where the nonstationary state co has the
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same scaling properties as the grand canonical state p, is the free time-
evolution, as is that of p(a,b), when only the microscopic observables
(4.1.32; 2) are considered. The equation for the expectation values of the
macroscopic observables p,,, is known as the Vlasov equation; it describes
a classical time-evolution according to

dn t3n OV8n

where the potential itself depends on the partible density,

Z ('
V( \ — i P

" .1 q—q'I•

Thomas-Fermi theory thus reduces the quantnm-mechanical many-body
problem to the solution of the integral equation (4.1.22). Although (4.1.22)
is much simpler than the original Schrödinger equation, it can still be solved
with reasonable numerical effort and skill only in the ;adially symmetric
case. Despite that, some valuable relationships and properties can be ob-
tained just from the maximum property.

The Relationships among the Contributions to (4.1.33)

Write

—urn z— pN) —

— f
n(q,p)

L 2 2 2 / 2

/ M

1 (d3q' d3p' n(q', p')
+

=

where

Cd3qd3p . N
= n(q, p) = urn

J

K is the kinetic energy of the electrons, A is the potential attracting the electrons
to the nuclei, and R is the interelectronic repulsion. Then for the values of
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at which the infimum is- attained as a minimum (at a given phase-space density

(1) —3(TS + pA)+ 5K — 3A + 6R + 3W= O;and
(ii) an atom is isolated and in the ground state, i.e., Al = 1, X1 = 0, W = 0,

T = 0, then

— 3jü + 3K — 2A + 5R =0.

Proof

(i) Take the infimum over n' of the form n0(q, y - 'p). A change of the varia-
bles of integration p —' converts (4.1.33) into

+ pA + A — W) + +

This has its minimum at = 1 when condition (1) holds.
(ii) Now dilate q so that n(q, p) = p), and proceed as before; then

— pA) — + = 0
Y2

yields Relationship (ii).

Corollary (4.1.34)

In case (ii) with p = 0, thc three contributions to the energy stand in the
ratio

K:A:R = 3:7:1.

Remarks (4.1.35)

1. The dilatation required for (ii) affects the nuclear coordinates (other than
X1 = 0) and the wall. The reason for setting T = 0 was to avoid problems
connected with the latter.

2. Since A, K, and R are positive, the second derivatives at = 1 are auto-
matically positive.

3. If 73 = p = 0, then —S becomes the minimum of the energy without
fixed particle number. We shall learn that the minimum is achieved by a
neutral system in Thomas—Fermi theory, and that in case (ii)

rd3qd3p
J (2it)3

n0(q, p) =

The comparison densities n(y 'q, p) and n(q, y 1p) correspond to
different numbers of particles, and the mystical numbers in (4.1.34)
reflect the stability of neutral atoms against spontaneous ionization.
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In the limit T—oO, exp[me — a)] + 1)-' approaches
— c). In that be and the

over p becomes clernernarv. yields

The Fiecfrcn in Configuration Space (4.1.36)

= 4V(x) +

The kinetic-energy density is

f p)

(Since the particles have spin 1/2, the factor (6it2)213 of (2.5.32) has become
(3n2)23)

This reveals

The Range of Values of p and V(x)(4.l.37)

(1) p takes on the values x <p � 0; and
(ii) tD takes on the values 0 < cc.

Proof

We shall only demonstrate the impossibility of ti> 0 and (1) <0; Problem 3
will assure us that a minimizing p exists for all p 0, and it can be seen
directly that '1(x) ranges over [0, as x ranges over

(1) Since p(x) must be integrable, I1)(x) —, 0 as jx) If p > 0, then p(x)
would have to approach p3'2/3 it2 as lxi which would contradict
integrability.

(ii) ThesetA {xe R3:4'(x)
;i <0, the density p vanishes identically on A, so &D(x) = 0 holds
throughout A. Since 'D equals zero on the boundary of A and at infinity
and is harmonic, it would have to equal zero on A, because its maximum
would be attained either on t3A or at infinity. However, this contradicts
the definition of A, so A must be empty. 0

The quantity A (d3xp(x) N/Z, where N is the number
of electrons and Z is the sum of the nuclear charges, is more intuitively
understandable than p. By expressing the energy as a function of A, we can
find the limits of the observables studied in (III: §4.5).
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Properties of the Thomas—Fermi Functional at T = 0 (4.1.32)

Let

K(p) =

A(p) = I
., —

1 i'd3xd3x'
R(p) =

j
E(p) K(p) — A(p) + R(p),

and

= p(x) � 0.
J

= Y 1.

Then = E(p) sat LSes

(i) — inf 0) — + >
•4 \

T) = tim Z Tin Tr exp[—/i(Z — MN)];

= p tf I � L ana = U I > i:
E[A.J is a nonpositive, coni.& decreasing Junction of 1; an4
inthe atomic case:1 = 0. - ElI])"2
increasing function of I

Proof

(i) Observe first that E{Al is convex, since the convexity of E(p) as a
function of p means that + (1 — � + (I

+ (1 — in which E[I,] = E(p1). because rip, +
(1 — i)A2 As remarked in (2.4.15; 2(i)). the Legendre
transformation

I
f

iz1
— Xml

pc.S,,,

can be inverted for the concave function -- E[.], yielding (i).
(ii) The formula dE/d2 will follow from Property (1) once E[l] has been

shown to be differentiable. Let p, denote the minimizing p (4.1.36.
A calculation shows that

± = jtl.
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so E[(1 + t)AJ — E[2J � tpA. + o(t) and E[(1 — r)A] — E[A] � —tpA
+ 0(t). In the limit r 0, this becomes dE/dA = IL. It remains to show
that A < 1 p <0 and 2 = I p = 0, which A. � 1. Note that D
goes asymptotically as(1 — 2)/r. If p were 0, then

— 2)3/2

which would not be integrable; thus p must be negative when A < 1.
When 2> 1, there is no minimum, since if there were, then 4D would be
negative as r which is impossible because of (4.1.37). However, the
infimum has to be E(l), since for A> 1 and for any c> 0 a p can be
constructed such that E(p) < E(1) + start with a p1 with A = 1

and compact support, and such that � E(1) + c/2, and then let

where the characteristic functions Xk satisfy XkPI 0 and !IXk III
k(1 — I) to ensure that 1¼ SA. Then — 0 for all p> I,
and it is easy to verify that E(p1). This accords with the intuitive
feeling that a thin electron cloud at a great distance affects the energy
only slightly. It means that E[AJ decreases while 0 < < I, and
becomes constant thereafter.

(iii) This follows from the proofs of (I) and (ii), since � 0.
(iv) Make both of the scaling transformations of (4.1.33) simultaneously

and define

inf (K(p) — ZA(p) + xR(p)) = Z2 inf (K(p) — A(p) + R(p))
peSj K-

This is the infimum of a set of Linear functions and consequently concave
in (Z, 4 The condition that

/f32\2

�
implies that 2f" � f'2/f. so. — is concave. Because 1' = R(p) > 0,
the function f is increasing. With still another scaling transformation,
with p(x) =

f(A) = inf(K(p) — A(p) + AR(p)) = ml — + R(15))
peS,

=
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The at first sight contradictory properties (iii) and (iv) determine the
form of E[A] rather narrowly for an atom, making it almost linear:

Properties off(A) = 1"3EIAI for an Atom (4.1.39)

(i) 0� 1'

Proof

(1) This follows from E' <0 and f' = A4'3R(pA) = R(pj > 0, where
and Pi are the minimizing densities of Sa and S1.

(ii) This follows from E" � 0 and the concavity of — 0

Consequence (4.1.40)

1. With the aid of the virial theorem, 2K = A — R, which follows from
(4.1.33) for any ji, Property (1) may be rewritten as
0 � A < 1. This generalizes Corollary (4.1.34), which held for A = I
p = 0, to the statement that 7R A, provided that 0 � A < 1.

2. It is not hard to calculate analytically that f(0) = —0.572 and f'(O)
= 0.2424 (Problem 4); computer analysis of the Thomas-Fermi equation
has shown that f(1) is —0.384, and by (4.1.38(11)) and (4.1.34), f'(l) =
—f(1)/3. Integrating Property (ii) leads to the bounds

—(1 — A)lf(0)112} � — If(A)I"2

� min{_ + — 11(1)11/2
7 2}

(ct (111:4.3.21)). The concave hull of the left side can be taken, in which
case the greatest difference between the bounds is <2 % (see Figure 29).
Since this is already better accuracy than that of the Thomas—Fermi
theory itseff, there is no point in making fancy numerical calculations
of E(2].

If from (4.1.36) we now deduce

The Thomas-Fermi Equation (4.1.41)

in the form

= —4ir53(x) + 4icp(x) = —4ir53(x) + lit +
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0.66 ''0.70 0.72

29. bounds (4.1.40; 2) concavity off(a) = a- '!3E(2).The hachcd
regionisallowed.

then it •reduccs to x3120(x) symmetric
with the substitution lxi = r = 4(x) + p = x(O/r. Thetdelta
function is taken care of by the boundary condition x(O) = 1. The second
boundary condition, required to make solutldn IS = p.
which follows from p � 1 with Gauss's theorem. The function is concave
and decreasing, and has the limiting

1 — 1.59C
x(C)

for p = o: This means that for neutral atofris p like r at small r,
and like r- large r. A numerical solution is shown in Figure 30. A compu-

0.74
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1

0

tation of the energy of the solution yields the value E(1) —0.384, i.e.,
—0.77 atomic units, or —20.7 eV.

The final proposition deduced from Thomas-Fermi theory will be that
there is no chemical binding, which means that actual chemical binding
energies must be smaller than the errors in the theory. In §4.3 it will be learned
that this theory with some constants changed gives a lower bound for
quantum-mechanical energies even for finite Z, and thereby leads to a simple
proof of the stability of matter. Finally, we shall obtain the long-deferred
proof of Inequality (4.1.5).

Monotony of the Thomas-Fermi PotentiaJ with Respect to the Nuclear
Charges (4.142)

Let and Pi.2 be the solutions of the Thomas—Fermi equation with p = 0
and nuclear charges 2) If � 42) for all k, then � tli2(x) and
p1(x) � p2(x)forallx.

Remarks (4.1.43)

1. The normalization = 1 has of course been dropped.
2. The condition p = 0 means = 4" J d3xp2(x) =
3. This can be interpreted as showing how increasing all the nuclear charges

causes the configuration with lower energy to have a higher electron
density.

Proof

As in the proof of (4.1.37(u)), let A {xe R3: 01(x) <12(x)). Then A is
open and contains none of the and on it 'b1(x) — is
negative, continuous, and satisfies

A i i — iLl <

x = r(3n2 p)2 as a function of

Figure 30 The Thomas—Fermi density of an atom.
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Hence r4i approaches its infimum on A either on the boundary or at infinity.
Since it then vanishes throughout A, the set A must be empty. 0

The next fact to show is that molecular energies are always greatçr than
those of the isolated atoms. This will require the

Formula of Thomas-Feral Theory (4.1.44)

Let E(Z) = — ZA(p) + R(p)). Then 8E/DZ = where
Pz is the density that minimizes E(Z).

The function E(Z) is concave, and its fight and left derivatives are
another consequence of the interplay between the

of E(Z)andfhe convexity of the variable pks in
(4.1.38(11)). Since;ds shown in Problem 3, forany Z there exists a unique
minimizing Pz ona certain compact set, the densities Pz depend continuously
on Z. In fact'the individual contributions to E(Z)arc continuous in Z as well
as itselL Therefore both the right and the left derivative coincide with
-A(pz). CI

Let us now start treating E as a function of each of the nuclear charges, so

..., = fps/3 — fp'5 Ix—Xd

I -( p(x)p(y) V

and define

E(Z) = E(Zz1, Zz2, .. ., ZZM),

E1(Z) = E(Zz1, ..., 0,0, . . .),

E2(Z) = E(O, . . . ,O, Zz,+1, ...,

Let p � P1.2 and � be the solutions of the appropriately subScripted
Thomas-Fermi equations. Then

43E z d3xp(x)

i 1. Zz'
= Jim (41(x) —

k1 %X&V
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and likewise for E2. The difference between the energy of the total system and
the sum of the energies of the subsystems is easily found to satisfy

ÔE OE M
— — =

— + — 2(q)) � 0.
k=) k=j+1

Since E and E1 become zero when Z = 0, this calculation proves the

Instability of Molecules in Thomas—Fermi Theory (4.1.45)

., � E(z1,..., + . . ., Zn).

Remarks (4.1.46)

1. In the absence of nuclear repulsion the inequality is reversed; in that case

c3E — f p1(x) — p(x) " f p2(x) — p(x)

Although Thomas-Fermi theory predicts some attraction between the
nuclei, it is weaker than their Coulomb repulsion. It can even be shown
that if the nuclear coordinates are scaled by X,, —* RXk, then E is a convex,
decreasing function of R. Thus Thomas-Fermi theory predicts positive
pressure and compressibility. However, the molecular energy is not a sum
of pair potentials, but contains many-body potentials with alternating
signs [34].

2. An alternative version of this theorem reads

�
S

— 1

5

— (3ir2)213 fps/3 + E(;)

for all e and pe S. If K(p) is replaced with (l/y)K(p), then, because
of the way dilatations affect single atoms, becomes yE(zk). The
computed value E(1) = —0.384 then leads to Equation (4.1.5), provided
that Xk are as the coordinates of the electrons.

3. The proof of (4.1.45) the same way for a Yukawa potential
exp( — jtr)/r in place ot hr. Because exp( — jtr)/r + 4iu53(x) =
p2 exp( — pr)/r > 0, the argument with subharmonicity likewise works:

14 = i74/2 — + — <0, which implies that A must be
empty.
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(4.1.47)

1. Let H = 1p12 + V (x) act on L2(R3), and assume that I L512(R3) let
be the negative elgenvalues ofH. Use and Rinlini (111:3.5.37;
to show that

4',

and derive Inequality (4.1.19) from this fact.

2. Use Problem 1 to prove the nequality

TE
�

f d3xp513(x)

for spin - fermions, where

being the spin index. (Hint: use p213 as the potential in Problem 1.)

3. Show K}arccojnpsct
in the weak L513 topology, and that the functional S R:

= f d3xp513(x) — f +

I d3xd3x'
+-5 , p(x)p(x')+ E

2 x—zI
has (4.1.10) ifp � 0: It is

(i) weakly lower semicontinuous;
(ii) strictly convex; and
(iii) � j(3*.2)213 + liii b'II

Conclude that the infimum is attained, and in fact preasely with the p of (4.1.36).

4. Solve the Thomas-Fermi equation without Coulomb repulsion, compare with
(111:4.5.9), and cønclude1hat the next correction is Use the solution to
calculate f(O) and f'(O) of (4.1.40; 2).

5. Minimize the functional

E(p) — f — + $ +

and use the result for a new derivation of (111: 44.24):

N f p(x) I (p(x)p(y) 2,r 1 pN
EIX.—x,I T

forallX,eR3,pEL* nL2.
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Solutions (4 1 48)

1 Let V) denoit the of less or dqual to E kceording to
(111 3537,2),foraII >0,

— I
I

2

2 L
(tpil

) ]

= (4,t)2
v) j,V(Y) +

1
r

2_

The last step used Young's inequality. if (t � iRlI1 Now simply

think about what NE(V) means (see Figure

=
5

'I - 1

lSir

If V]
2, then the negative part of the spectrum of H IS dsctete, and we may

alsd Mdc

TrlIp+ V(xYI_ � 4n 11p12
+

The parbtion can k bounded with the that

ln(l + exp(—flH))
= 5

dEf H —

d3xd3
tr ln(l + + V(XD))) � 4,t

5
+ exp[—ti(1p12 + V(x))J)

N)

I
1

E1 E2 E3

Figure 31 The dependence of the function NE(I,') on E
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2. Let

N d3xNllIl(xi,x2,.

be the densities of the electrons with spin ± land K = T(5 + f Because /
of Problem 1 and the mm-max principle the lowest energy E0 of the Hamiltonian

H (t.v12 — [it,,.,. p113(x) + it,, -

where it, are the spin projections, satisfies the inequalities

— + � r— (fp543 + fps_3).

This implies that K � ', and then the convexity of the function x x5
yields the inequality for p = p.,. + p

3 Since

UPlis 3 = sup and = sup Vp
lIP p

lIP lx

are suprema over weakly continuous functions, they are weakly lower semicon-
tinuous, so S is weakly compact

(1) This proposition is equivalent to the statement that Pa — p bin (ps) �
First note that is weakly lower semicontanuous, i C, lim IlPa IS 3 �
Moreover, 5 = 5 If the potential 1/Ixi is broken up
as I,IxI V1 + V2, where eL5 2 V2eL', 3< p � then by assumption
5 converges to 5 p Since (by assumption is bounded
in L'), p in the weak topologies of all V spaces with 1 <q � 4. This
follo$vs from the density of L5 2 L3 in L3 for s � 4, 1/s + 1/q = 1, and
SUJ),, < because iiPIIq � for lJq = a/p + (1 — a)/r Hence
also 5 112

5
p1'2, proving the convergence of the nuclear attraction Finally.

for the repulsion of the electrons we can write

* = — p) * —

+
—

By Young's mequality. if V is bToken up as above and pe L1,then p V1 L5 2,

p • I'2 C U. 3 <p � so the mixed term on the right converges to
• 1, , while the first term is positive Therefore

1!!!! (Pa * *

(ii) p5 is strictly convex, 5 p(I is linear, and

f
c > 0, is strictly convex



T ii 1h,'

Fhepr ken our
Let R '> 0

5
1

5
and

XI 4r

it follows from

d3x d3

5—--
(p(x)ê(Ixf — R) — — f(y)) � 0

x

I
= $I'yI

R

I ——--- p(x)p(y) — 1+ � — —*
R

1,1 � R

and by Holder's inequality.

� 2

= (64it2R)t 51'p115

If R chosen as R .= p then with L za � I

�
3Vp' — 3(4)5 b(87r)I 3IIpli +

—

and the function — + c is bounded below on R for non-negative a, b,
and t

If p <0, then because of (iii) the infimum is attained for a pin the interior of
one of the compact sets S, and p must satisfy the Thomas-Fermi equation
(4 1 36) by the same argument as in (4 112) If p = 0 then there is also the
possibility that the infimum is attained on the boundary = N of every set
S In that event it would still satisfy the Thomas-Fermi equation with some p
as the Lagrange multiplier for the constraint = N However, if N>
L; � I then there is no such solution, as otherwise 1(x) would be negative
for large xl, contradicting (4 1 37(n)) Therefore, if p = 0, then the infimum
still lies in the interior of some set S

4 Use units such that e = h = 2m = I, and '.uppose there is spin Then

E = f 3p513 —



242 4 Physical Systems

From the Thomas-Fermi equations,

2 23 Z3'2/1 1
32

R
1 1

3/2 N
N = 4,r r2 dr(_

— = 12
— R = N'

5 2 1
\312 6NZ

4 /1 1\52 V
I

j0 2

and

E = —T= = 3Z2N113 (munitswith2rn = 1,twicethisifm = 1),

so

f(O) = — )1 3 = —0572,

f'(O) I
(4)2

j•
—

2(ZR)3

=024244, ifZ=N=1
If we read the exact ground-state energy off from (frI 4

L JV I-I —

Thus the Thomas-Fermi energy is below the actual ground-state energy
5 The density that .&is

p2=
1 x -'

with which

—

19
i nuclei,

thd#

4.2 Cosmic Bodies
II

The Thomas—Fermi theory of stars is thermodynamically more
interesting than that of atoms; suiçe an unusual phase
transition
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In the year 1926 great discO%enes about the laws of matter appeared in
rapid succession. Shortly after E. Schrodinger published the
after him, E. Fermi discovered the distribution law (2.5.22; 1) governing,
particles that satisfy the exclusion principle. This inspired L. Thomis's
ingenious idea that the electron cloud of a large atom should satisfy cquation
(4.1.36) at T 0. Then; still in the year 1926, L Fowler realized that the
stability of cosn'iic matter is ensured by the zero-point energy of the electrons,
and that a cosmic body is closely analogous to a "gigantic molecule in the
ground state." Yet it has taken considerably longer to found vision in
mathematics and derive everything from the SchrOdinger equation. Today,
however, the derivation goes through without gaps, and the
theory of atoms and stars is the only many-body problem realistic
forces to have succumbed, in the appropriate thermodynamic limit,
mankind's attempts at calculation.

Yet the zero-point energy guarantees stability only in so far as the speeds
of the electrons remain slow in With they enter the
regime of relativistic kinematics, for which the kinetic energy c then
the zero-point energy goes as N(N/ V)"3. whercasthe gravitational energy
goes as If N > then the latter predominates,
and as V becomes smaller and smaller, the total energy goes to — We shall
avoid this instability by remaining within frainework, of nonralati'viStic
kinematics, considering only stars of masses somewhat smaller than that of
thesun. Then. agdording to the estimates (1.2.23; 3), if N > the mini-
mum energy when V N '. The again like that of
Thomas-Fermi theory, which leads to the hope that the many-body problem
can be solved in the limit N -' x with the Hamiltonian

(4.2.1)
2rn, — 1(jI

In this limit system becomes a highly compressed plasma, so the average
gravitational field would be expected to be so dominant that the Thomas—
Fermi equation is valid. Of course, the total charge of the system must be
zero, or, more exactly, the possible excess charge LtQ is boundedt,y.
(AQ)2 � so for gravity to predominate, < 10 thésé'
conjectures can be dçrived for. all, three

The Forms of the Stale Functions

Let v be the (42 1)'for N, apd negative
of masses e, and = and in a
denote the N2). Then the ,limits, •... ,. ,

1/) = urn inf HAt,

F(N, /3, V) = — lim /3 'In Tr exp(—flA4'3HANA (4.2.3)
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exist. The grand-canonical function is not defined as in (4.1.8), as now the
finiteness of the sum requires a factor N'213 in the Interaction and V N
[27) (see (4.2.10; 4)).

With the solution of the Thomas—Fermi equation

p2(x) = 2 [1 + e — + — (4.2.4)
2

= f
e8e, +

p0(x'), ; fi = 1,2, (4.2.5)
p s' 1x_x#1

I d3xp2(x) = N2, (4.2.6)
Jy

these quantities are found to be

E(N, 5, V) = f
+ 2 f

d3p

(2it)3 1 + + W2(x) —
(4.27)

F(N,$, V) = I + N8,u2 — 2T I d3x f d3p
t .Jv Jv

'x ln(1 + + — (4.2.8)

E(p1, P2' fi, V) = {f d3x $

x ln(1 + + W2(x) — (4.29)

G1 (4.2. 10)

1. For ASe In is an exp(AS)-dimensional subspace of
2. The thermodynamic limit has been taken in the sense discussed in (1.2.19),

i.e., £ Nm, V— N', S N, and E/S N413 The energies E
and F are accordingly neither per particle nor per volume; these specific
energies and energy densities do not have thermodynamic limits.

3. The quantity S = — F) is extensive for $ N - and E — F N713.

4. If one insists on the usual relationships E N, V N, S — N, with T
constant, then according to (1.2.19) the interaction has to be taken as

2/3 e,e, —

Ix, —
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This means that the system is imagined as getting larger and larger with
an ever weaker interaction, all such problems are mathematically
equivalent because of the scaling law of(1.2. 1). Physically relevant systems
are large but finite and have weak, but stiti nonzero, gravitational inter-
action. The question of how reasonable the thermodynamic limit is depends
only on whether the physical object is sufficiently like the limiting ystem.
If so, the convergence of the thermodynamic quantities (4.2.2) guarantees
that the relevant observables of the finite system will have values fairly
near those of the infinite idealization

5 Since p3 is a strictly monotonic function of the normalization (4.2.6)
is an implicit equation for p3

6 We shall soon discover that for certain values of N, and V there is
more than one solution of the Thomas-Fermi equations The question
of which solutions are the correct limits (4.2.3) is decided by the minimum
principles for the thermodynamic potentials (2.3.3; 4), (2.2.23; 1), and
(2 5 3), which survive the limit A -.+ in the following manner(cf. (4.1.21)):
The functionals for energy, entropy, and the phase-space densities; are

E(n) = — j dix'
d'pd3p'

n2(x, p)np('x',

+ p),

S(n) = —2 5d3X ln
+ —

N3(n)
= J

d3x n3(x. i)

The correct Thomas—Fermi densities are those that minimize the energy
for given N2 and S The variational derivative with Tand as Lagrange
multipliers leads to the Thomas—Fermi equations (4 2.4)—(4.2.7) again,
with

p3(x)
= 5

n2(x, p),

for the solution of

ôn2(x, p)

However this equation is also satisfied by merely loca' extrema and by
saddle points At the minimizing density. E(n) = E(N1, N2, S, V).

7 The ensembles are equivalent only in the region where the convex hull
of the function E(S) is the same as E(S)
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We have £ and F -as functions of three v-ariabtes: but it is clear
dcfinition'that'they depend on only two-ratios This is'retlected

its seating hehavicr wheti x

. '

If force is a neutron stir ( = 0) tli'e of
the is' trivial, and (2.1 8; 3)

can for Ijie upper since it knowledge bf the
value of H. it is necessary to estimate the norm ot'the quantum

fluctuations. If c and differ from zero the estimate is much more difficult
I, and can not bç ip detail here. The strateg\ is as follows.

I. of the -potential
one motion the particles to be determined by an

the I-r potentlalshould first be-cut off.
• - so that

the average field. There are also good grounds to insist that the
part of the potential is its long range rather than the singulaiity,

as in reality the is smoothed out with some form factor. By
"long range" is meant a length comparable to the d'ameter of the star,
which shrinks to zero as A . Hence cut-off length has to be
while A increases, or alternatively one can work in the scaled system
(4.2.10; 4). It is thus useful to show that changing the potential by, say,
hr (1 exp(— Ai 3sr)),rmakes difference for large sin comparison
with the thain to the' energy, which is This fact can
be shown by an argument similar to the estimate (1.2.21) and making use
of the bound (III: 4.5.15) on the number,of bound states of a short-range
potential.

2. Rep4cing the potential with a step function
Th'6mas—F&rthi the6ryls oriented toward free pàrtides in 'a -box.

thvldé ViritO' cells inside the
cotistañt. The proof that changing the potential to a step function

has only a slight effect is trivial, since the continuous function
(1 — exp( — sr))/r can be approximated uniformly on any compact set
by a step function.

3. Insertion of walls
In each of the cells of constant potential the Schrodinger equation reduces
to the force-free equation, if they are separated by impenetrable walls.
It is thus useful to show that inserting.walls will not alter the result much.
It is clear that the effect will be to raise all the energy The mm—max
-principle can be called upon to show that they do not rise by too much. The
pretence. of the- walls means thai the wave-function vanishes at their

which costs. kinetic energy It is possible to patch together
wave-functions for the system without walls so that they vanish at the
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positions the and the expectation value of the kinetic energysin
such a state is not increased too much. It is important that the number

this procedure ren limit
their effect can he neglected incomparison with jy7

4. HIling the boxes -

The foregoing 'leave the particl'e's' in separated boxes
moving in constant potentials.

1 of fiidS that
are dnmiuated. froitra ertuiti
particles among bones. which. is -by

namely the Thomas Fermi equat on for the step potential with

S. of the Thomas Fermi equation ' -

Since we wish to end up with the Thomas-Fermi equation for a hr
potential. we still need to show that the
the I r potential do not change the energy of the solution much. Otherwise,
if the solution depended discontinuously;on the potential, it would be
worthless: the Thomas- Fermi equations can not be solved analytically,
and a numerical on
by a step function. It is thus fortunàely alsO to
show that the Thomas—Fermi energy the required with
respect to the potential. 0

The structure of the Thomas- Fermi equation is different for stars than
l'or atoms. The emiergy loses the properties of conveiity and weak'
semicontinuity Consequently the sOlution is not guaranteed to be unique
and there a possibility of a phase transition, which will be discussed at'the
conclusion of this section. Meanwhile, we prepare by proving a general

Virial Theorem (4.2. 11)

'flu' pressure

p — F(N.

E -. V2 d3
- -

J,, 1 + —

and potential energy

=

are by

3PV = 2Ek + Ep.
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We start by convincing ourselves of the usual thermodynamic relationships

oF OF
and (4.2.12)

which follow directly from differentiating (4.2.8). For this purpose note that p
dcsonflandN,andthusimpljcjtlysodoes W,butthalthisdependence
does not show up when the Thomas-Fermi equations are satisfied. Next
rewilte (4.2.8) by integrating by parts in the variable p. Then

+ exp[—P(e + cY])=
1 + exp[fl(e+ c)]'

and we conclude that

F = — — (4.2.13)

Finally, the dilatation relationship mentioned earlier implies that V)
= 1r"3F(AN, A413fl, 2 1V) for all )

With reference to (4.2.12), the derivative by A produces

0=

which concludes the proof of the theorem when combined with (4.2.13). 0

The local densities in phase space,

= +
—

+ 11-i,

have the same sigrnflcance as in §4.1. They are stationary solutions of the
Vlasov equation (4.1.32; 3),

p) — p) . = 0 (4.2.14)

In this equation quantum mechanics enters only through the initial condition
n(; p) I � 1. In fact, as a classical equation it is the basis of stellar dynamics

[35]. When reduced to space, thç local densities describe the
hydrostatic equilibrium between the pressure of the matter and of gravita-
tion, in the spherically symmetric case. Since the fermions behave like free
particles on the microscopic level, one would expect from that

2 — 2 fd3p Ip12/2M2
P(x) = =

1 + + W((x) —

(4.2.15)
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functions as the pressure, and in fact if (4.2.14) is multiplied by integrated
by d3p by parts, and one replaces p, Pj (1p12/3)ö,j,then

VP(x) = — (4.2.16)

which is the equilibrium condition mentioned above. If the geometry i
spherically symmetric, i.e., V is a sphere of radi'us R and the local observables
depend only on lxi = r, then (4.2.16) can be written as the nonrelativistic
Tolaaa-Oppenheimer equation

d
r2

= — f (4.2.17)

(cf. (II: 4.5.11)). The electric and gravitational forces have been expressed in
terms of the charges and masses within the sphere.

The Connection between the Local and Global Pressures (4.2.18)

By integrating (4.2 17) by (4R/3) drr3 one gets

4ittR 3d
— = -- I drr

uT

ep M0 1R
, '2

j dr r 4irp,(r) = —,
-, 0 JO

so with the virial theorem (4.2.14) the thermodyflamic pressure becomes
simply the local pressure at the boundary,

P = P(R).

We see that Thomas-Fermi theory, which begins with the Schrödinger
equation, leads to the concepts of classical physics.

A more accurate evaluation of the state functions (4.2.2) requires
numerical solutions of Equations (4.2.4) through (4.2.6). In order to lend
more physical plausibility to those numbers, let us extend the intuitive
arguments of §1.2 to finite temperatures. Since the theory is only valid if
gravity is the dominant force, let us simplify by considering only one type of
neutral fermion such as neutrons (without nuclear forces). If there were
protons and electrons, then the former would provide most of the gravita-
tional force and the latter most of the pressure. This would increase all
lengths compared with a system of neutrons by a factor of the ratio o(the
mass of the neutron to that of the electron, about 2000. Thus, if 10" neutrons
are found to have a radius of about 30km, a similar system made of hydrogen
would have a radius of about 6000 km, i.e., that of the earth or of a white
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dwarf \Vc begin ith ohsers aliori that at temp Is a
thermal . -

in' addtion tc hit zero point ) '\t
the ci

shall simply combine
classical expression. This turns out to approxiniate the energ Lt rruons
(2.5 32) to thin about 20,, It in the energy
If the mass of the particles is then up to geoThetric get

=

in naturil In pi.pertiLs £23
energy density, it becomes readily apparent that. in agreement with 4).

= 1'3(i

is independent of V only if ie N 2 of
a, conditions (2.3.10(u)) and (2 3 I()(iii ) are not satisfied our ansatz
does not do justice to the tvk2 3 5) 1'lie i apparent
when it is observed that the pressure

?EI 3 12S -

P = — = (i
± 31 2

= —

consists of three parts. fitm the zero-point, thermal. aad gras itational
energies. The and the last one is heganve. and may domi-
nate in the intermediate regime average densities. Howewr, a negative
pressure is trñpossible. -the system does not' adhere to the walls
and pull them inwatd. What happens is thai the shrinks itself dOwn
to such a small radius, = that it reaches P = 0. A better

consists in replacing I' with in E when P < ii.

E /N\231 3 ,S\
+

2

3 - i) \

The function is also canal ,,.\ 2 21 implying that if
the total is sufficienil ihei the tntc. a



Example (2.3.32.
with negative specilic heat: The /

3 '2S\ /2T
2

/
/

_

2

+
—

that the classical dependence q( Ton E becomes parabolic in
the condensation region 32). the temperature begins to rise

as. £ decreases, and' when the zero-point energy gets
larger than the gravitational it/ails to zero. It is in fact
by astrophysicists that contract under the influence
of 1gravity. thereby the gravitational energy that

been set free. This a range of which
S(L) is convex and mibrocanonically a negative specific heat, is a
diçecL 61 the virial theorem and the theorem of equipartuion:
energy —kinetic energy = —(3N/2) temperature. Yet this is true only
in the intermediate region. since it ignores the external virial (the ptessure)
and the equipartition theorem is not valid for degenerate gases. This also

in the computer solution of the Thomas-Fermi
as .30 km the zero-
point energy predominates and the star acts normally, whereas an inter-
mediate region of negat = 100 km.

This phenomenon can not arise in the canonical ensemble, so our next
topic will be what the situation is like in that ensemble. In the transition

the has given fi.

. z

" — . ;J. : :

.,

2(. '.
Figure .32 The function rnodd
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£

in MeV

0

—10

—20

—30

analysis leading to (4.2.2) shows that the right solution to choose is the one
with the smallest value of F. The existence of many different values of F m
this situation (for a fixed follows from the change in the sign of P =
—aF/aV (see Figure 35). The computed dependence of —F on ft is shown
in Fjgure 36. If R = 100 km, then F has a sharp bend at some transition
temperature, in Figure 33 it shows up as the lines that divide the surface E($)
into two equal parts (Problem 1). At this transition temperature the system
in the canonical ensemble rises from one branch of the curve to the other
The energy has a nonzero jump 30 MeV per particle) at the transition,
in the canonical ensemble the region of negative specific heat is bridged
over by a phase transition

Computers have also been used to solve for the local observable p(r),
which is shown in Figure 37 at various temperatures and with R = 100 km.
At the transition temperature 1/0.165 MeV an almost homogeneous density
becomes strongly concentrated at the center. The picture that emerges
is of a star with a rather definite surface and a central density about 106

0.1

Figure 33 Phase transition in
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S

Figure 35 Phase transition with negative pressure

253

E

Figure 34 Convex region in S(E)



times the density of the atmosphere. At still lower temperatures the atmos-
phere also condenses, but it only increases the density of the star a tiny bit.
The radius of a neutron star is only about 10 km which is
why at first hardly any difference shows up in S in FIure 34 between the
systems at R = 30 km and at R = 100 km. Only after transition energy
does the star spread out so as to make the entropy risq rapidly enough in a
box with R = 100 S(E) becomes no longer co4cave.

Another observable is the degree olidegeneracy

(4.2.19)

For a classical gas is 1, and for a Fermi gas it is 0.
Figure 38 shows for R = 100 km and \arious It reveals
that the gas becomes degçnerate after the trans4tion. Only the zero-
point energy of the fermions p the gravitational
pressure while, the .classical This
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(gctn3)

rn8

40 60 80 r(km) 100

37 The change the at a phase transition

means that the interior of the star is degenerate while the atmosphere remains
a classical gas

Problem (4 2 20) —

Show that the reciprocal of the transition temperature for the canonical ensemble
is determInea

I'

0 fi(E1) = fl(E2) = p.

J

SbIàtfoii(42.21)

JS/dE, the implids

5(EI) S(E4_ — = F(E1)) 0

Al the two 4 ,cross. and the canonical ensemble always
(he lower
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Figure 38 The change in the degree of degeneracy at a phase transition.

4.3 Normal Matter

Although matter consisting of electrons and atomic nuclei exhibits
extremely varied and complicated phenomena, some of its essential
features can be deduced from the fundwnenial physical laws.

With the results of §4.1 we are now in a position to cope with a central
problem, the stability of matter. As discussed in (1.2.17; 2), it is essential
that the electrons follow Fermi statistics, though the statistics of the nuclei
should not matter. Moreover, it is the mass of the electron rather than the
nucleus that occurs in the basic Rydberg energy e4m2/2.-We shall therefore
assume that the nuclei are infinitely massive and use the Hamiltonian HN
of (4.1.2); at any rate it provides a lower bound to (4.1.1) with K = 1. The
wall W can then also be dispensed with. The question, to be confronted is

0 5 15 r(km) 20
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whether a bound — ,IN can be found for fixed 4 hut M and N -.
With this in mind, write (4.1.6) with = 13 = 0 as

N M

HN= —
1=1 i=i k=1 I

N N r Zk d3x'n(x')l+1�
.,1=1 L

zkz'
+

—
— 3.68yN

I fd3xd3xf —! f d3xn(x) H,,. (4.3.1)—— n(x)n(x)
2 Ix—x'I 5v_

a..

The first step is to bound the kinetic energy by S p5'3 with the inequality of
(4.1.47; 2) and set n = p. This is a bound for every expectatiàn value with
spin fermions, so, again with the aid of (4.1.46; 2), we obtain

3 '' '-ak�
— —) J

d3xn5 — fd
k1 — Xk

XL

1 rd3x d3x' I Z,Z,1,
— 3.68yN+ n(x)n(x) +

2J1x—x'I
U� —3.68('yN + 3) for = 1. (4.3.2)

—

If this is optimized in y, it shows the

Stability of Matter (4.3.3)

HN> —2.08N1 I + (

r / M 2]2

\k=IN)

Remarks (4.3.4)

1. If there were q kinds of electrons instead of the two spin orientations,
then the right side would be multiplied by (q/2)2"3. Thus there is a bound

N513 independently of the statistics of the electrons.
2. The solution of the Thomas—Fermi equation describes a neutral system,

and accordingly the bound is MZ7 if all Z,, equal Z = N/M. The
bound is certainly not optimal if N 4 MZ, for one would expect

NZ2. However, (4.3.3) suffices for our purposes, as we are concerned
only with the neutral case.
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3 Inequality (4.1.47: 2) is presumably not optimat on the right the constant
should he increased by a factor If this con

probed. then (4.3 3) he improved the same factor, reading

H + 0(ZL h))

If —. tins approaches the sum of ti'e Thothas—Fermi energies of
the atoms Such an optimal in fact be proved, although

in the form

H � + 0(4233))

[2X].
4. (4 3.3) holds i a a finite vohime
5. Since the kinetic energy of the nuclei was not used, they may follow either

Bose or Fermi statistics. . -,

6. The important property of the coulomb for stability is that
is a function of positive pe. i.e.. � 0. The potent ml i'(r) =

exp( — ar) satisfies > 0. and can he proved
analogously In contrast the t'(t-) = (a + hr) exp( - jir,i with
h > op > 0, p > 0. which is even finite and short range, does not
lead to stability for the Hamiltontan jpJ2 + ,e,e1v(x, -- xi).

for fermions: There is anr(, > 0 such that t'(r0) > r(0) (this would
he impossible if > 0). so, let us confine N1 2 positive and negative particles
to'separatcd balls of radius L 1. arrayed at a distance r0 from
one another. Then the interaction between the balls, —e2i'(r0)N2.4,
wins out the respulsise of the within the
halls, e2u(0)N(.V — 2) 4. and also wins out over the kinetic energy

.Y as 2\ . Thus the total energy goes to x as — N2
hen N x. This s that the problem of stability of

has nothing to do the long range of the Coulomb potential. The
proof with the Yukawa potential is not any a way it is more
difficult. since stability with a Yukawa 'ii'nmediately implies
stability with a Coulomb potent;al as remarked in 5) the dif-
ference produces stability -but not versa. However, as we have just
seen, the I r singularity is not the only danger for stability, even
potentials i, with energies Y , i'(x — that take on both signs
can lead to instability. ihis. shows the si,iperficiaiity of.1the common,

that stability is not a real physical sir cc actual
do not become singular. .

'

The Extensivity of the Volume (4.3.5)

1f H > — eN and thet xpecrwion t'aluc of H.in aMatei.s' <H> � 0,
then no rolunie Q contains more than \
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Proof

Let H = 1' + V. Since the energy is proportional to the mass in a Coulomb
system, � —<IT + V> � 2cN. Then it follows from

332/3
<T> �

that

fp(x) ci3x < (Jp5 d3x)
(J

d3x) �
/20� C)

Remarks (4.3.6)

1. IfQ is a ball, then it is possible to derive bounds of the form <r'> �
in analogy with (III: 4.5.28).

2. The material up to this point does not allow upper bounds of the form
r N1 tQ be Neutrality does. not enter in an important way,
and with an electrons the Coulomb. potential wculdcauscthe:
system to. swell out to infipity. In other words. it has, been that
matter is stable in the sense that..it does not might still
explode.

The Existence of the Thermodynamic Functions (4.3.7)

We arc now faced the question of how. defrne,tbe
when .\' . y [30]. It clearly follows from (4.3.3) that (I V)E(Va, V, pV) >

constant for all V. and since it is easy to show that EVremains hounded
above. (l'V)E(Va, V, as a) (by definition,
limb = sup,,. inf,, ,, an). This cheap way out is physically unsatisfying,
however; one would hope that the 'limit exists and that the.energy
becomes independent of ;V as the system large. This means
that the sequence should be proved monotonic, as was done in (2.3.6).

the inductive procedijre followed there, of imagining each
cube to consist of smaller cubes, does not work in this case, since it is difficult to

rheCoulomb interaction between can be.used instead
as their interactions are as if'the charges were

their centers, according to a dating from Newton. In particular.
if they are overall neutral, then they do Snot intei-act with charges
outside Of course, spheres do not fill space as dotisely as but
by the use of different radii the unfilled volume-can be made
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arbitrarily small. consequently proceeds by three
steps.

(a) We must first show that the interaction between the spheres is not positive,
in order to prove monotony.

(b) It must be shown that the radii of the balls can be chosen so that the
fraction of volume outside them goes to zero in the limit.

(c) The distribution of particles in this procedure must lead to a homogeneous
density in the limit.

The Interaction between Sails (4.3.8)

We consider

W

1=1 kI

k I k

in a ball B, such that = 0, and examine the neutral case with only one
kind of nucleus: N = MZ, N, = N(1 + LIZ) = the total number of particles.
The eigenvalues e1(V, N,), i = 1, 2, ..., of H depend on the volume V of B
and on N,, and the microcanonical energy is given by

exp{S)

E(S, V. N1) = exp(—S) e1(V, N,),

where E and Em have been identified in accordance with (2.3.13; 2). Now
put k disjoint balls

B

of trial functions by taking tensor products of the
eigcnfunctions of H2, defined as H for N2 particles in B2:

The trial functions then have to be antisymmetrized in the electron variables
and either symmetrized or antisymmetrized in the nuclear coordinates,
depending on the nuclear statistics. Yet since i',, and have disjoint
support, there are no cross terms in their interaction, and the expectation
values are the same as those with the unsymmetyized (The subscript i
is to be treated as a multi-index i1,..., We always choose the first
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exp(S2) eigenfunctions of the operators H3 (and denote the eigenvalues
SO

exp(S) expiSi) exp(Sk)

1=1 11=1

where S = N = and N3/Z + 1 is an integer. Then each
B2 can be filled with whole atoms, becoming neutral. As in (2.3.5), with the
mm—max principle (111: 3.5.21),

exp(S)

E(S, V, N) � exp(S) = N3) + U
1=1 3=1

k

= V3. N3) + U, (4.3.10)

but this time there is an energy of the interaction between the balls,

exp( — S3 —

i,=1 i,,=1

j . . . . . . ,Xj

Because of the spherical symmetry of B3 and H3, the functions can
be ordered according to the eigenvalues of the total angular momentum
L5 about the center of B3. The eigenvalues e3 do not depend on the z-
component of the angular momentum (which has quantum numbers m3,

'2 � m2 � 13), and

p3(x) = f d3x2 .. . (x, x2, . . .,

will be spherically symmetric if the sum runs over a full L-shell. If the limits
of summation exp(S3) corresponded exactly to full shells, then U would
equal zero by Newton's theorem. It will now be shown that the partially
filled shells can be chosen to make U negative. Let and v3 be the indices
nearest to exp(S3) corresponding to filled shells, such that � exp(S3) � v3.
Thus

cxp(Sp) exp(S,) exp(S,,)

=
i,.=1 1p1 'fiUfl

and the interaction energy can be written as
exp(51) Cxp(SkJ

U=c ...
ikPk

eye,,,

j>mIXjXniI
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We know tha& .

I

and since the eigenvalues e1, are degenerate if < � v2, itis possible to
that / / / ..L / -

•
4 t'ucci ,

V2 'k expiS,) , ., •I

-

4

LV

I .,
' f)J4) IC

without changing *fië first sum in(4 3.10) We inductively and
choose exp(S2) — p2 indices 12 such that

?,
expS2)

L ,( • . • 1z
12

and so forth, until finally U � 0, thc - -

Monófofty oI'&e (4 3 1 1

.If B +'i.'is. S S2,

and 8), then ;, I •. .

• •t
I I

4 ''
,2 —

Rem*rks (4 3 12)

t9
affect thc of 4

P P P7. P ,' ii ITP.. j
but S

one the(n need ncit i.,e
I' 4 I ' iV. " .

'3 The holds regardless ol the statistics of the paThcles, whicn can
affect it only by ensuring the existence of a bound on E/N.

The question of how B can bé by the B2 is a purely
geometrical one It is answered by the

_j_ I

Swiss Cheese Theorem (4 3 1

Let = (1 + pYR0, p I + p � 27, belhe radii of the bf us of a given
size indexed by j and let Bm be a m,-ThEn m> 0, Bm contains
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the union from.! = 1 tom — Iof v,disjoint balls ofsize j,where

Vj
= (1 +

P

Remarks (4.3. 14)

1. This theorem makes more precise the fact, clear at the intuitive level,
that a large ball can be filled extremely well by smaller ones if their radii
are chosen suitably. The total volume of the small balls is

= ((1 + PrRo)3(l
— (

P

)•'),J=o

so that the unfilled fraction is only (p1(1 + p))", which tends to zero as
m-.oo.

2. Of course, the filling of a ball uses more small balls than large ones,
but the fraction of volume filled by the balls of size j is (1/p)(p/(1 ÷
as the larger balls are much more voluminous.

Proof

See Problem 1. 0

The Homogeneity of the Demity (4.3.15)

The next step in §2.3 was to consider a sequence of larger and larger cubes,
all of which had the same entropy and particle density. Nothing like that is
possible in this situation, since to compensate for the gaps some of the
balls will have greater densities than the average density overall. Since the
unfilled volume gets smaller and smaller, however, it suffices to impose
relatively large densities on the balls of size 0 and assign equal densities to
all the others. Let us thus choose = p(p + 1) Po for 8 = 1,2.. . ,

so for the balls of size 0, N,JVC, = p for all v0. If p1 is the density in a
ball of size j, and we let pj, . . ., p1, = p. then the Pj satisfy a recursion
formula

= =
)M +

forallm� 1.
In the same way the entropy is distributed so that the entropy density
oj in the balls of size J satisfies

1m' I n
uo=o(P+l), ai=a2="=c_=a=—Laj

Pj-o +
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If V0 = and Is the energy and the energy density of the balls of'
size j, then Proposition (4.3.11) specializesibr this particular filling to

k—i

Ek(S, N) � Ej(SJ, N1)v1,
1=0

= [(1 + p)3kV0) — 1E&(Sk, Nk)

+

1k—1 k—i

.

This is a modification of (2.3.6) and similarly allows the convergence of
pitO be ddmonstratM: There exist � 0 suèh that

The recursion formula has the solution

I' k—I I

= C& + + c,). (4.3.16)
jzO /

Since the sequence is bounded from below, L Cj must converge, so
= 0. Since — Ck modotionicaffy .as a eCu

by (4.3.16), must tend to a limit. If k > 0, then all the densities had the
p), and we at the

limit (4.3.17)

For the H qe (4.3.19), the limit s(ci, p) exists.

(4.3.18)

1. The theorem has been proved for spherical volumes, but it generalizes
to other shapes with a reasopable relationship between volume and
surface area.

2. Although the theorem and proof are given here for strictly neutral
systems, it is clear that a small excess charge LtQ can be allowed as long
as its electrostatic energy can be neglected in comparison
with E.

3. Although we have assumed there was only one kind of nucleus, the
case of any number of kinds of nucleus can be covered simply by gen-
eralizing the notation.
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4. Since; — C1 is a monotonic sequence, Dini's theorem guarantees that
c1 converges uniformly on compact sets in (a, p);to use this argument it
is necessary to extend the definition of the function which was initially
defined for finite V on a discrete set, to make it continuous. The continuity
of E will follow from the convexity to be proved below.

5. The Hamiltonian (4.3.9) includes the kinetic energy of the nuclei. Strangely,
the existence of the thermodynamic limit (4.3.17) has not been proved in
the apparently simpler case where M1

The existence of the limit means that' all systems characterized by N
have the same dependence on the averaged quantity e provided that they are
large enougb. But does the theory predict a reasonable dependence? The
temperature, pressure, specific heat, and compressibility should at least be
positive in accordance with our experience. The positivity of the temperature
and pressure are ensured by our definition of entropy and by the boundary
conditions. With the aid of (2.3.29), the positivity of the other observables
is a consequence of the convexity of the function (Cl, p) —' .s(a, p), which,
however, does not fçllow directly from the definitions—recall that the
preceding chapter illustrated this with a counter example. Yet it is possible
to formulate a theorem on the

Thermodynamic Stability of Coulomb Systenis (4.3.19)

The mappingR x

(i) convex;
(ii) nondecreasing in o;
(iii) bounded below by — cp for c P
(iv) such that p - p) is an increasing function of p.

Proof

(1) Let p be an odd integer, so that Vj = (1 + p)2R J)pk 1 is even for
0 � j � k — 1, and fill half of the balls of a given size with densities
p, a (or, respectively, Po P(l + p), = a(l + p)) and the other half
with p', a' (or, respectively, = p'(l + p), P'o = o'(l + p)). Then,
since the energy is monotonic as in (4.3.11),

1
k—I / \k—j

P1) � f
p

Pj) + EAT;' p)],\L + P/

1
k—I / -

—
)

+ CT;),
+ Pi
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and

k—i / ,F I '

which implies that

+ + p'))

as k -, oo. Now note that e is monotonic in a and p 'e(ap, p) is mono-
tonic in p, so according to (2.3.11; 1) e is convex not just with coefficient

withaH 1]. Henceit iscontinuouson the interiorofR x.
See Remark (2.3.3; 3).
This follows from the estimate (4.3.3) showing stability of matter.

From the monotonic (2.34) of the energy, DE/ôflc,M � 0.
0

Since has the tight sort of convexity, one of the assumptions needed to
pro4ve theexistence of the thermodynamic limit of the canonical ensemble is
satisflód. Mbre infbrmatlon about the function to verify

the other hypotheses made in Theorem (2.4.14). In particular it needs to be
shown that e increases rapidly enough with that the a0 introduced in
(2.3.11;4) is finite, and e/a 00. This is shown by the

Lower Bosd for the EDergy Demlty (4.3.20)

If H = H, K + L > e, ej I — x, I1 and e, are the corresponding
energy densities, then

p) � p) — for all 0 2 < 1,

c = 2.08(1 ÷ Z213)2.

However, by(4.3.3), —cpa? 0

(4.3.21)

1. Since it was shown in (2.5.23) that in the ease of one kind of particle,
e0(a, p) = exp(2a/3p), c' >0, is the limit as a —. 00, It follows that

p)/o 00.
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2. Even for a finite %olume is a lower bound. which makes it easy
to verify that there exists a function p) dominating a for all volumes,
and satisfying = 0.

3. In (4.3.43; 2) we shall tind an upper bound on the ground-state energy
density. of the form c1p5 — When combined with (4.3.20)
it yields an upper bound for the of (2.3.11 4) at which starts to
move up.

This fact is not yet enough to ensure that thermodynamics works per-
fectly. Let us write down a

Thermodynamic Wish List (4.3.22)

1. Co 0.

2. L = 0.
3. —

4. The function is continuously differentiable.
5. The function t: is strictly convex for large a and is linear on certain intervals

in when ci is small.

Open Questions for the Wish List

1. Statement 1 is a strong formulation of the third law of thermodynamics,
and is unproved for Coulomb systems. Although there is an upper bound
on a0 in (4.3.21; 3), it is noi sharp enough to show that a0 0.

2. The second statement implies that the system does not fall into its ground
state if the temperature is higher than absolute zero, and our bounds are
likewise too crude to prove it.

3. The third statement means that there is no maximum temperature,
and is proved by (4.3.21; 1).

4. Kinks in the graph of e would correspond to "anti-phase-transitions"
at which either the temperature or the pressure shows a discontinuity
while the energy remains continuous. The specific heat and the com-
pressibility would be zero at such a point. Such things do not appear to
happen in reality, though the arguments we have made do not exclude
them.

5. It is known empirically that there are no phase transitions at high temp-
eratures, only at low temperatures. However, this fact has not been
proved in the theory.

The equivalence with the canonical ensemble requires only the positivity
of the specific heat, which is guaranteed by (4.3.19). The assumptions of
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Theorems (2.4.14) are fulfilled because of(4.3. 18; 4), (4.3.19(1)), and (4.3.21; 2),
so it leads to the

Thrmadym.mic of the Cano.Ical EmamI4e (4.3.23)

The limit

Urn
(_

Ti exi*_$H)) = inf(e — Ta(; p)) = p(T, p)

exists.

Remarks (4.3.24)

1. The properties of the free-energy density listed in (2.4.16) are also proved.
2. It is possibletoprovetheexistenceof thelimit as V—ioodirectly,but

that is not enough to show the equivalence with the microcanonical e.
In particular it does not show that eu convex in c.

Finally, consider the grand canonical ensemble, supposing there are N
electrons and N5 nuclei with chemical potentials and The function to
investigate is

P(T, urn !.h, Ti cxp(—$(H — — N5p5)]. (4.3.25)
V

One difficulty with (4.3.25) is that the trace contains the sum over all possible
numbers of particles, and not only the neutral configuration for which
N, = ZN5. Fortunately, it turns out that the non-neutral contributions
have such large Coulomb energies that they play no role. Stated without
proof [30], here is the resulting proposition on the

Thermodysak Limit of the Grand Canonical Fasemble (4.3.26)

The limit (4.3.25) exIsts, and

sup

N,+N5 I i\
p= v

Remarks (4.3.27)

1. Although the supremum is a priori over all density configurations, it is
attained in the neutral sector.
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2. Roughly speaking, to generalize this to cover arbitrarily many components
it is only necessary *0 treat p and p as "isovectors."

,BQunds for £(a, p) (4.3.28)

The question that now arises is to what extent the qualitative propositions
that have been derived about p) can be sharpened and made quantitative.
For instance, it would be desirable to find an upper bound to complement the
lower hound (4.3.20); upper bounds are always easy to discover, since with
the mm-max principle it is only necessary to devise some good trial functions.
In the limit p —* 0 an obvious upper bound for the ground-state energy is the
sum of the energies of the individual atoms. If the density is finite, then one
would think of using the ground state of the kinetic energy K in the variational
principle, and the result is the first-order perturbation-theoretic approxima-
uon to = K + aV.

Remarks

1. It is impossible for the expansion in powers of a to converge in the therino-
dynamic limit; if < 0, then the electrons would attract one another,
as would the nuclei, whereas the nuclei would repel the electrons. The
ground-state energy of fermions with an attractive hr potential goes as
— N"3, and that of bosons goes as —N3 (see (1.2.22) and (1.2.23; 3)).
If a trial function is constructed with all the electrons on one side of the
container arid all the nuclei on the other, the expectation value of the
energy is greater than —N"3 + N2/R -. E1N does not remain
bounded from below. On the other hand, the convergence of a series
in the limit N —. would imply that limN E/N would be finite on
the whole disc of convergence, which would include some negative
values of In fact the explicit calculation reveals that even the second-
order contribution becomes infinite as N Even so, the first-order
result is useful as an upper pound.

2. According to (111: 3.5.21) the mm—max principle applies to finite a
other than the ground state, but it is more difficult to calculate the micro-
canonical expectation values than the grand canonical ones. Hence,
for nonzero temperatures it is better to use (2.1.8; 3) to bound the grand
canonical partition function with — P � — P0 + Tr

The Groiad State (4.3.30)

The simplest case is T = 0, so let us see how far we can get with the easiest
methods. Take the expectation value of (4.3.1) in the ground state of the
electrons; if they are confined in a box A with periodic boundary conditions,
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the ground state is a plane wave, producing a constant electron density
If the nuclear charges are all Z and the nuclear masses are all p, that leaves

M i2
Psi v vi—i_VI—

— I i v'P 5

+
I f d3x

23A 1x:—)rt
/

— 1 d3xd3yp2i_...J
I A Ix Yl

/

(4.3.31)

The first Ithe of this equation is the Hamiltonian H, jellium (1.2.6) in the
nuclear variables. If we therefore add the ground-state energy of jellium to.
the other expectatioo values, we get an upper bound on the ground-state
energy of H, corresponding to a trial function consisting of the' tensor
product of the ground state of with the electron wave-function. The
zero-point energy of the electrons is the next term in (4.3.3 1), followed by
what is referted to as the exchange energy, and the final expectation value is
zero. By (2.5.32), if the spin is the zero-point energy goes as

(i = N

N a little difficulty the exchange energy can be cal-
ciilated as

—
—

= (4.3.33)

(Problem 3). It expresses the effect of the correlations among the electrons
owing to their having to avoid each other to satisfy the exclusion principle.
The result is to tower the Coulomb energy in comparison with that of a
homogeneous charge distribution.

The Groaad State of Jellium (4.3.34)

As for H,, an upper bound can be obtained by using plane waves as trial
functions, for which .(H,> once again consists of zero-point energy and
exchange energy. A lower bound comes from the sum of the zero-point
energy and the minimum of the potential (1.2.10), and when combined they
bound E, according to

2.2 0.9 2.2 0.458
(4.3.35)
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if Z 1 and the spin is If the denstty is large (r, i)), then the bounds
are close together, but they spread out if the density is small. At smal$ densities
it is better to array the nuclei on a lattice; give them

sin(Rra)/r, where r is the distance from the lattice site if it is less than a and
otherwise let the wave-function be 0, and take a small enough. that. the
wave-functions will not overlap, and will ttfüs be orthogonal. The most
convenient configuration is a body-centered cubic lattice, which Consists
of two simple cubic lattices, one cf which has been displaced along a diagonal
so that its corners are at the centers of the other. If the density is i.e., the
lattice constant of the simple cubic lattice is 1, then a must be than

in order that the balls of radius a do not intersect; in terms the
distance between nuclei,

a (4.3.36)

If the nuclei were concentrated at the points of the lattice, then the Coulomb
energy per particle would be —0.896/r3 according to (1.2.11; 2). Provided
that they do not overlap, the repulsion between the nuclei will be the same
even if they are somewhat spread out. On the other hand, their interaction
(per particle) with the background would be affected by

drr2 sin2 dr sin2 a2
—

(4.3.37)

If this is added to the kinetic energy (it/a)2 (for mass then the minimum

E 3\1/2
-32 0.896 -32 0.896=

—
r3 / — —— = '

is attained when

r i, r ii i
1a

— \3 2it2)j — r3
2ir2

Condition (4.3.36) means that

83ir4 3 1/3�
3(2it2

489. (4.3.38)

If r3 is smaller, then a must be taken as which costs
some kinetic energy, and raises the Coulomb interaction above
that due to the background by 0.026/r3. The figures become more favorable,
however, when it is recalled that wave-functions of nuclei wflh opposite
spins do not need to be spatially orthogonal to avoid iqcurring exchange
energy. Suppose that the nuclei have spin 4, as with and put nuclei
with spin up on one of the simple cubic lattices and nuclei with spin down on

q
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the other. Then the spheres are only not to overlap with other
spheres on the same simple cubic lattice. This weakens the bound (4.3.36) to

18R\'13r2

which weakens the lower bound on r1 (4.3.38) by a factor so

� 275, (4.3.39)

and also diminlihes the zero-pont energy by to and increases the
interaction with the background by the same factor. The Coulomb repulsion
between neighboring nuclei decreases, but only by an insignificant amount

The net effect is to produce

Boamds on the Ground-Stete Energy of Jeflium (4.3.40)

2.2 0.458
(1)

15

2.2 0.9 E 9.58 0.85
(ii)

r1 r, N r3

115 0.89� — — if > 275, (in)

where e = 1. (See Figure 39).

Remarks (4.3.41)

1. The distance between particles as measured in Bohr radii with the appro-
priate mass is if is the Hamiltonian of the nuclei, and the pressure
is not too huge, then r, is on the order of the ratio of the mass of the
nucleus to that of the elctron, which is at least 2000. This means that
(4.3.40(i)) will be the best of the bounds. If jellium is taken as a model of
electrons in a metal, then r3 1, and (4.3.40(i)) is best.

2. There are conjectures that the transition from homogeneity to a lattice
structure as ra increases is accompanied by a phase transition. It is even
believed that the exchange energy, which favors parallel spins, causes
ferromagnetism. Despite the simple form of t has not been possible
to prove these speculations.

If we focus attention again on real matter, we must the contribution
from the electrons to that of the protons. Observe first that for nuclei the
parameterr1 p "/Bohr radius is increased by a factor but at the same
time the energies in (4.3.40) are multiplied by pZ2. Since the zero-point
energy obtains an extra factor I/az, it can be neglected. For the densities of
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interest, i> 275/jtZ2, so (4.3.40(iii)) applies to nuclei. Of course, the trial
(unction with a homogeneous electron distribution is poor when Z is large, and
does not contribute the right dependence on Z. If Z 1, our earlier results
on the energy per electron are only

Crude Bounds (4.3.42)

E 2.2 1.34
-8.32

N r3 13

Refinements (4.3.43)

1. The lower bound. The Birman-Schwinger bound (III: 3.5.36) can be
improved with the methods of functional integration [31], sharpening
inequality (4,1.47; 2) by a factor of 1.5. Then with (4.3.20), if the density is
finite, A is chosen optimally, and = 5.74p513, or equivalently E0/iV =
2.2/ri. there results

2.2 5.5

r, r5

2. The upper bound. The ground-state energy in a box of volume V is of the
form

E =

The facts that 3E/i3V � 0 and a2s/op2 � 0 and the convexity in are
expressed by the inequalities

f(x) � f'(x) and 6xf'(x) — lOf(x) < x2f"(x) 0.

Since � 0, a linear bound f(x)/f(O) I — yx for x > 21'y can
be improved by a parabolic bound f(x)/f(O) � —x2(y/2)2. By (4.3.43; 1)

1 = 2.2/1.34, so if r> 2y' = 3.28, then f is less than —f(0)x2•
1.34/4(2.2)2. It follows that

E — 1.34/r3, if r5 < 3.28

N — 't—O.204. � 3.28.

These bounds are far from satisfactory. Not only do they fail to allow
finer details to be discerned, but indeed they do not even prove that hydrogen
holds together at T = 0 rather than breaking up into separated atoms.
In these units the energy of a separated hydrogen atom is — i.e., less than
the upper bound, which only shows how large a territory still remains open
to exploration with exact methods in physics.
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Problems (4.3.44)

1. Prove the Swiss cheese theorem (4.3.13): For any region A c R3 and any real
numberhletAh = A: d(x, N)<h),ifh {XEAC:d(x,A)� —h},
if h � 0, and denote the volume of by V(h, A).
Then prove the following two lemmas: (1) Suppose A is covered by closed cubes of
side 1, the interiors c.f which do not intersect, and let v be the number of cubes entirely
contained in A. Then the volume of A not covered by these cubes is at most

A). (ii) Let B c be an open ball of radius R andy a number satisfying the
inequality R � � 0. Then V(2v'3;, B) � B)� Finish
the proof of the theorem by covering with a cubic lattice of spacing 2R1, and in
each cube of the lattice place a ball of radius then cover the balls with a cubic
lattice of spacing R2, etc. Use the lemmas to estimate v, and the fraction of volume
taken up b" the balls of sizej.

2. Use Inequalities (111 4.5.24) and (4.1.5) to find a lower bound for the potential
energy ofjeUium,

U=

and compare with (1.2.10). (Let p be constant in any ball.)

3. Calculate

if is the ground state of a system of free electrons in a box of volume V. (The
momentum states in both spin orientations are occupied up to a maximum momen-
tum p such that p3/3n2 = N/V =

4. Verify that the concavity of E as a function of (1/rn, al is no more severe a restriction
than the concavity off in (4.3.43; 2).

Solutions (4.3.45)

1 ii) It A is covered by cubes of length 1, but all cubes intersecting
A the number v2, of

cutes of length 21 thai can be packed entirely into A is at least
—. 31. A)1.)

in) IIQ < h � R,then

V(h. B = —(R — h)3) < V(—h,B) = [(R + h)3 — IV).

The lemma is then a consequence of the convexity of the function j ('i)
(1 + & 1 wnich implies that f(c) � f(O) + 4f(l) — f(0)] — 1]
=
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Proof of the packing estimates. For simplicity assume that R0 = 1, and let

= 1(j + p)2i.lf a unit ball is covered by cubes of length 2R1 = 2(1 +
then it contains v1 cubes, as we shall show. If we then cover the unit ball with a
l&tice of length 2R3, then there arc v2 cubes contained in the unit ball and not
intersecting the first v1 balls of aim 1. The general fact will follow by induction.

•Therefore it needs to be shown that when the ball has been filled with smaller balls
up to sizcj, it is still possible to paCk v3÷1 balls of radius Rj.. into tberemainlflg
spaceB—

— — !

� Mi,, defined as the sum of B)for all balls of

size �j and B), where B is the unit bail Because of (ii) and the
inequality 2..flR1+1 <Ri,

fly) � � +

(p + p — 2)(,p — 1)'(l + p)-U+1)

Therefore it suffices to show that

� (V1 — Air1] — V(2..fiR1÷1, fl,)),

1 + 1—
+ pJ(p_ 2)]

Since pkp —2) � (p —2), this reduces to

I � (p + 1 —

which is true when p4- 1 27. The fractioa of the volume taken up by the balls
of radius is

which shows that the packing fills the orginal ball exponentially fast.

2. From (III; 4.5.24),

113

u � — 4sxNl
$

d3xP2(x)] = —

and from (4.1.5),

r
(1 � —2[3.68N fpsi3j — 1.84N/r,.
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3. As N and make the replacements

1 f d3k

v(k) f
Ixdx'

exp(k (a — x')] -. 4n/1k12,

to find that

— k') = f — IqI)O(p — 1k — qi)

2 t2' p3 1 3k k3 1 p3 p3
I dk—U——+—I=—--

'ti' 16p3J 3n2z4

N f9,r\13 1 3 N 0.458

In order to justify this formal cakulation, make a convolution so that

4n
v(k) = * F(k),

where

F(k) ! f d3x d3x' explik (x — a')]
zV, z.V

_3lsin k1Lp\2 (sin_k2L/2\2(sin_k3L/2\2II II
\ L/2 J\ L/2 /\ L/2

is the Fourier transform of the characteristic function olthe box, and use Lebesgue's
dominated convergence theorem to show that the integrals have the limits given
above.

4. With I/rn = v: £ =

I
E23= -1"

= — 4f", — =0.
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