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Preface

In this third volume of A4 Course in Mathematical Physics 1 have attempted
not simply to introduce axioms and derive quantum mechanics from them,
but also to progress to relevant applications. Reading the axiomatic litera-
ture often gives one the impression that it largely consists of making refined
axioms, thereby freeing physics from any trace of down-to-earth residue and
cutting it off from simpler ways of thinking. The goal pursued here, however,
is to come up with concrete results that can be compared with experimental
facts. Everything else should be regarded only as a side issue, and has been
chosen for pragmatic reasons. It is precisely with this in mind that I feel it
appropriate to draw upon the most modern mathematical methods. Only
by their means can the logical fabric of quantum theory be woven with a
smooth structure; in their absence, rough spots would inevitably appear,
especially in the theory of unbounded operators, where the details are too
intricate to be comprehended easily. Great care has been taken to build up
this mathematical weaponry as completely as possible, as it is also the basic
arsenal of the next volume. This means that many proofs have been tucked
away in the exercises. My greatest concern was to replace the ordinary cal-
culations of uncertain accuracy with better ones having error bounds, in
order to raise the crude manners of theoretical physics to the more cultivated
level of experimental physics.

The previous volumes are cited in the text as I and II; most of the mathe-
matical terminology was introduced in volume 1. It has been possible to
make only sporadic reference to the huge literature on the subject of this
volume —the reader with more interest in its history is advised to consult
the compendious work of Reed and Simon [3].

Of the many colleagues to whom I owe thanks for their help with the
German edition, let me mention F. Ge?z‘tesy, H. Grosse, P. Hertel, M. and T.
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Hoffmann-Ostenhof, H. Narnhofer, L. Pittner, A. Wehrl, E. Weimar, and,
last but not least, F. Wagner, who has transformed illegible scrawls into a
calligraphic masterpiece. The English translation has greatly benefited from
the careful reading and many suggestions of H. Grosse, H. Narnhofer, and
particularly B. Simon.

Vienna Walter Thirring
Spring, 1981
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Introduction

1.1 The Structure of Quantum Theory

The structure of quantum mechanics differs startlingly from that of the
classical theory. In volume I we learned that in classical mechanics the
observables form an algebra of functions on phase space (p and g), and states
are probability measures on phase space. The time-evolution is determined
by a Hamiltonian vector field. It would be reasonable to expect that atomic
physics would distort the vector field somewhat, or even destroy its Hamil-
tonian structure; but in fact the break it makes with classical concepts is
much more drastic. The algebra of observables is no longer commutative.
Instead, position and momentum satisfy the famous commutation relations,

qp — pq = ih. (1..1)
Since matrix algebras are not generally commutative, one of the early
names for quantum theory was matrix mechanics. It became apparent in
short order, however, that the commutator (1.1.1) of finite-dimensional
matrices can never be proportional to the identity (take the trace of both
sides), so attempts were then made to treat p and g as infinite-dimensional
matrices. This proved to be a false scent, since infinite-dimensional matrices
do not provide an ideal mathematical framework. The right way to
proceed was pointed out by J. von Neumann, and the theory of C* and W*
algebras today puts tools for quantum theory at our disposal, which are
polished and comparatively easy to understand. There do remain a few
technical complications connected with unbounded operators, for which
reason the Weyl relation .
e'4gifrg st — Qlblp—a) (1.1.2)

(setting & = 1) is a better characterization of the noncommutativity.
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Admittedly, Schrodinger historically first steered quantum mechanics in
a different direction. The equation that bears his name treats p and q as
differentiation and multiplication operators acting on the Schridinger
wave-function y, which has the interpretation of a probability amplitude :
It is complex-valued, and |¥}? is the probability distribution in the state
specified by y. Superposition of the solutions of the equation causes proba-
bility interference effects, a phenomenon that can not be understood
classically at all. Later, y was characterized axiomatically as a vector in
Hilbert space, but the peculiar fact remained that one worked with a com-
plex Hilbert space and came up with real probabilities.

At long last the origin of the Hilbert space was uncovered. A state would
normally be required to be represented as a positive linear functional, where
positivity means that the expectation value {a?) of the square of any real
observable a must always be nonnegative. It turns out that to each state there
corresponds a representation of the observables as linear operators on some
Hilbert space. (It is at first unsettling to learn that each state brings with it
its own representation of the algebra characterized by (1.1.2), but it also
turns out that they are all equivalent.) The schema of quantum theory thus
adds no new postulates to the classical ones, but rather omits the postulate
that the algebra is commutative. As a consequence, quantum mechanically
there are no states for which the expectation values of all products are equal
to the products of the expectation values. Such a state would provide an
algebraic isomorphism to the ordinary numbers, which is possible only for
very special noncommutative algebras. The occurrence of nonzero fluctu-
ations (Aa)? = {a*) — (a)?is in general unavoidable, and gives rise to the
indeterministic features of the theory. The extremely good experimental
confirmation of quantum mechanics shows that the numerous paradoxes
it involves are owing more to the inadequacy of the understanding of minds
raised in a classical environment than to the theory.

Quantum theory shows us where classical logic goes awry; the logical
maxim tertium non datur is not valid. Consider the famous double-slit
experiment. Classical logic would reason that if the only and mutually
exclusive possibilities are “the particle passes through slit 1” and “the particle
passes through slit 2,” then it follows that “the particle passes through slit 1
and then arrives at the detector” and “the particle passes through slit 2 and
then arrives at the detector™ are likewise the only and mutually exclusive
possibilities. Quantum logic contests this conclusion by pointing to the
irreparable change caused in the state by preparing the system to test the
new propositions. The rules of quantum logic can be formulated just as
consistently as those of classical logic. Nonetheless, the world of quantum
physics strikes us as highly counterintuitive, more so even than the theory of
relativity. It requires radically new ways of thinking.

The mathematical difficulties caused by the noncommutativity have all
been overcome. Indeed, the fluctuations it causes often simplify problems.
For example, the fluctuations of the kinetic energy, the zero-point emergy,
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have the effect of weakening the singularity of the Coulomb potential and
eliminating the problem of the collision trajectories, which are so trouble-
some in classical mechanics. Quantum theory guarantees that the time
evolution can be continued uniquely from t = — oo to t = + oo for (non-
relativistic) systems with 1/r potentials. In a certain sense this potential
energy is only a small perturbation of the kinetic energy, and free particles
can be used as a basis of comparison. Calculations are sometimes much easier
to do in quantum theory than in classical physics; it is possible, for instance,
to evaluate the energy levels of helium with fantastic precision, whereas only
relatively crude estimates can be made for the corresponding classical
problem. .

1.2 The Orders of Magnitude of Atomic Systems

One can come to a rough understanding of the characteristics of quantum-
mechanical systems by grafting discreteness and fluctuations of various
observables onto classical mechanics. Their magnitudes depend on Planck’s
constant h, which is best thought of as a quantum of angular momentum,
since quantum-mechanically the orbital angular momentum L takes on only
the values th, [ = 0, 1, 2,.... Suppose an electron moves in the Coulomb
field of a nucleus of charge Z; then the energy is
2 2 2
Pr L Ze
E=2 4 = -2, )
m o Ty (12D
For circular orbits (p, = 0), quantization of the angular momentum means
that

Ph?:  Ze?
E() =55 ——. (12.2)
At the radius
Pt Pr, .
r——-——zez =—Z—, (1.2.3)

where r, is known as the Bohr radius, the energy is minimized, with the
value

2
E= - qpa=—f 5 = —%—(Rydberg =Ry) (1.24)

(Balmer’s formula). If / = 0, then we would find r = 0 and E = — o0, except
that the stability of the system is saved by the inequality for the fluctuations
Ap Aq = h/2, the indeterminacy relation, which follows from (1.1.1). This
makes (p2) > (Ap,)* =~ h*/r?, the zero-point emergy, and hence this part of
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the kinetic energy contributes as much as a centrifugal term with | = 1.
This argument actually gives the correct ground-state energy. The reasoning
is of course not a mathematically rigorous deduction from the indeterminacy
relation, as the average of 1/r could conceivably be large without Ar being
small. We shall later derive generalizations of the inequality Ap Ag > h/2,
which will justify the argument.
The virial theorem states that the velocity v of an electron is given classically

by

my® E Z%*m Zé?

= TEEamE T
The universal speed e?/his about 1/137 times the speed of light. As Z increases,
the nonrelativistic theory rapidly loses its accuracy. Relativistic corrections,
entering through the increase of the mass and magnetic interactions, are
~v?/c? ~ 107322, For small Z they show up as fine structure of the spectral
lines, but their effect becomes pronounced for heavy nuclei, and when Z is
sufficiently greater than 137 the system is not even stable anymore. The

relativistic kinetic energy is ./m*c* + p*c? — mc?, which for large momenta
grows only as cp = ch/r. Equation (1.2.2) is accordingly changed to

ch Ze* ch V4
E() ~ = - 2 2 (1 - m),' (1.2.5)

which is no longer bounded below when Z > 137. The question of what
happens for such large Z can only be answered in the relativistic quantum
theory, and lies beyond the scope of this book.

If a second electron is introduced to form a helium-like atom, then the
repulsion of the electrons makes it impossible to solve the problem ana-
lytically. To orient ourselves and to understand the effect of the repulsion, let
us provisionally make some simplifying assumptions. Since an electron
can not be localized well, we can suppose that its charge fills a ball of radius R
homogeneously. Such an electronic cloud would produce an electrostatic

potential
3¢ e [r\?
- =+ —[=}, r<
2R T 2R (R)’ r<R

R r>R

V(r) = (1.2.6)

i

(Figure 1). The potential energy of one electron and the nucleus is conse-
quently ZeV(0) = —3Ze%/2R. We can gauge the kinetic energy by reference
to the hydrogen atom, for which the following rule of thumb leads to the
correct ground-state energy: An electron cloud having potential energy
— Ze?/r, requires a kinetic energy h%/2mr}. We set the kinetic energy equal
to 9n2/8mR?, since R = 3r,/2 provides the same amount of poten‘ial energy.
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homogeneous
charge distribution
14 R
$ r
S
R
3e |
2R |

Figure 1 The potential of a homogeneous charge distribution.

If the second electron is also a homogeneously charged sphere coinciding
with the first one, then the electronic repulsion is

3
4nR?
Therefore we obtain the ratio

| Attraction of the electrons to the nucleus| 2. (3Z¢%/2R) _Z (1.28)
Repulsion of the electrons T 6e*SR 2 V7

and thus the total energy is

2

ane? [ arviy =2 1.2.7
ne? | r?dr (r)—SR. (1.2.7)
0

E(R) = kinetic energy + nuclear attraction + electronic repulsion
9k? 3Ze? 2
= 2'W—2‘-'2?‘(1 —‘S—Z‘). (1-2.9)
" This has its minimum at the value R = R, = Ry/(Z — %), where

2 2
E(R,;,) = —Ry- 222(1 - 5‘2’) . (1.2.10)

If Z = 2, then R,;, = SRy/8, and the energy has the value —2Ry %% =
—2Ry - 2.56. For such a primitive estimate, this comes impressively near to
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the experimentally measured —2Ry - 2.9, arid a helium atom is indeed only
about half as large as a hydrogen atom. Actually, however,evenif Z = 1 (H™)
the energy lies somewhat below — Ry while (1.2.10) gives only —43Ry. In this
case the picture of two equal spheres is not very apt, since the outer electron -
will travel out to large distances. Nevertheless, nonrelativistic quantum
mechanics describes these systems very well.

If there are more than two electrons, then some of them must have spins
in parallel, and Panli’s exclusion principle is of primary importance for
the spatial configuration of atoms; it says that no two electrons may have
the same position, spin, etc. An atom with N electrons and radius R has a
volume of about R3/N per particle. Electrons insist on private living quarters
of this volume, so Agq will be on the order of the distance to the nearest
neighbor, which is R/N'/3, This makes the zero-point energy of an electron
~h?N23/2mR?, as a rough approximation, and its potential energy
~ —e?Z/R. The minimum energy is attained at R, = h’N?3/me’Z,
making the total energy of all the ¢lectrons

E(Rmin) = — N3, (1.211)

2h?

The value R, is an average radius, which goes as N~ !/3 for N = Z, making
E ~ N3, Yet the outermost electrons, which are the important ones for
chemistry, see a screened nuclear charge, and the radii of their orbitals are
~h%/me®. Strangely enough, it is not yet known whether the Schrédinger
equation predicts that these radii expand, contract, or remain constant as
Z - oo. Their contribution of about 10 eV to the total energy (1.2.11), on
the order of MeV for Z ~ 10V, is rather slight, however.

Chemical forces also arise from an energetically optimal compromise
between electrostatic and zero-point energies. History has saddled us with a
misleading phrase for this,exchange forces. Let us now consider the simplest
molecule, H7, that is, a system of two protons and one electron. There is
clearly a negative potential energy if the electron sits right in the middle of the
line between the two protons. But is it possible for the electron’s potential
energy to be sufficiently negative to make the total energy less than that of H,
or would its wave-function be too narrow, giving it an excessive zero-point
energy? To be more quantitative about this question, let us again imagine
that the electron is a homogeneously charged sphere with the potential
(1.2.6). The radius R is chosen the same as for H, so there is no difference
between this zero-point energy and that of hydrogen. If, as with H, we put one
proton at the center of the cloud (Figure 2a), the potential energy is eV(0).
Taking the Coulombic repulsion of the protons into account, we note that the
second proton feels no potential as long as it is outside the cloud, but when it
comes to within a distance r < R its energy increases, because

2
V() + V() + fr— > ¥(0). (1.2.12)
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electron cloud
a b

Figure 2 Two electron distributions assumed for H;.

Hence there is no binding. However, if the two protons are placed dia-
metrically across the center of the electron cloud, at radius r (Figure 2b), then
the total potential energy ’ .

e? 3e? e\ [r\® é?
2V(r) + ’i; ="R + (—E)(:E) + 3 (1.2.13)

has the minimum

3¢? v 3€ ,
- —[R-2"1=- T 1.2 (1.2.14)

atr = 272/3. R, This is more negative than V(0), the energy with one proton
outside the sphere, by a factor 1.2, and so we expect H; to be bound. If the
total energy is now minimized with respect to R, then R, = R,/1.2 and
E(R,;,) = —(1.2)*Ry. The separation 2r of the protons at the minimum is
23R ;n = 1.57r,, which is significantly smaller than the experimental value
2r,. The binding energy ((1.2)> — 1)Ry also amounts to more than twice
the measured value, so the simple picture is not very accurate.

Finally, consider the molecule H,, again assuming that the H atoms are
spheres. If they do not overlap, then the electrostatic energy is twice that of a
single H atom, and the two separate atoms exert no force on each other.
As the spheres are pushed together, the energy first decreases, since the
repulsion of the electrons is reduced (the energy of two uniformly charged
spheres at a distance r < 2R is less than e?/r), while the other contributions
to the energy remain unchanged. In order to find out how much energy can
be gained by making the spheres overlap, let us superpose them and place
the protons diametrically across their center at a distance r. As with the
helium atom, the electronic repulsion is 6e2/5r, and hence the total potential
energy is :

6e2 e2r2 ez 682

Va,() = — =7 2-RT +5 +3x° - (1.2.15)
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The minimum at r = R/2 can now be compared with 2V(0):

R 2
V,,,(E) = —232%- L1. (1.2.16)

The minimum in R is now attained at Ry/1.1, and the corresponding inter-
protonic distance 3r,/2 - 1.1 = 1.36r, is in excellent agreement with the actual
distance. The resultant binding energy 2 Ry((1.1)*> — 1) ~ 5.7 eV is con-
sequently also fairly close to the measured energy of dissociation 4.74 eV.
Of course, it is necessary for the electrons in H, to have antiparallel spins, as
otherwise the exclusion principle would restrict the room they have to move
about in.

One lesson of these rough arguments is that delicate questions like that of
stability depend on small energy differences. It will require highly polished
calculational techniques to reach definitive conclusions.



The Mathematical Formulation
of Quantum Mechanics

2.1 Linear Spaces

There are many surprising aspects to the infinitely many directions in
an infinite-dimensional space. For this reason it is necessary to
investigate carefully which of the familiar properties of finite-dimen-
sional spaces carry over unchanged and which do not.

We begin by recollecting the basic definitions and theorems:

Definition (2.1.1)

A linear, or vector, space [ 5 v; over the complex numbers C 3 a, is a set on
which sums E x E - E: (v,u) » v + u = u + v and products with scalars
Ex C—E:(v,a) > av are defined so that a,(a,v) = (a;a,)v, a(v + u) =
av + au, | -v = v,and (a; + a,)v = a,v + a,0.

Examples (2.1.2)

1. Vectors in C".

2. Complex n x n matrices.

3. Polynomials in n complex variables.

4. C = the r-times continuously differentiable functions.
5. Analytic functions.

Etc. Sums and products with a are defined in the usual way.
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Remark (2.1.3)

A subset E, < E that is also a vector space is called a subspace of E. For
example, (2.1.2; 5) is a subspace of 4, and 3 is a subspace of 5. The quotient
space E/E, consists of equivalence classes of vectors whose differences are
elements of E,. In the absence of a scalar product there is no uniquely defined
decomposition of vectors v € E such that v = v, + v, with v, € E;. However,
if an E, is also specified so that E, + £, = E and E, n E, = {0}, then there is
such a decomposition with a unique v, € E, ; E is then the sum of E, and E,, and
£, is a complement of [, . General sums of linear spaces can be defined in the
same manner. According to the axiom of choice, it is always possible, by an
inductive argument, to find a Hamel basis {e,}, y € |, such that every vector
can be written uniquely as

v= ) we,, oeC

finite

Unfortunately, for infinite-dimensional spaces the set | is usually uncount-
able, and the Hamel basis is of little practical significance. The cardinality of
§ is known as the algebraic dimension of the space.

Definition (2.1.4)

A normal linear space is a vector space on which there is defined a porm
mapping E — R*, v — |lvl}, such that [lavll = |a| [lvll, v + ull < [[vll + {ul,
and |lv]| = 0iffv = 0.

Examples (2.1.5)

LE=C"3v=(vy,0;,..., ) "v"p = [Z?=l|vl|p]”,1 1<p<oo e =
max;|v;|.

2. E = n x nmatrices, m = (m;), [lm|| = (¥, ;Im>)"/* = (Tr mm*)*/2,

E = n x nmatrices, |m||? = supg,j,12=1 3¢ | 25 M) %

4. Polynomials P(z;) for z = (z,,...,2,) in a compact set K = C*, |[P| =
sup, x| P(z)|.

5. The r-times continuously differentiable functions f(z;) on K, | f] ="
sup, x| f(z)].

6. Given a measure u on K, it defines a norm || i, = [f dul f1]'%, 1 <
p < co0. (We use the word measure to mean positive measure.) L?(K, p) =

{f:01fN, < oo}

w

Remarks (2.1.6)

1. As p — o, the norm || f ||, approaches the norm of Example 5, which is
denoted by || fl -

2. If p is a sum of n point masses, then the space of Example 6 is the same as
that of Example 1. If n is infinite, it is denoted by /.
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3. As we see, different norms can be given to the same space, while, on the

other hand, a space must sometimes be restricted for a norm to be finite
on all of it.

Definition (2.1.7)

If a norm on E satisfies the paralielogram law |ju + v}|2 + |u — v[|2 =
2llull* + 2|jv))?, then E is a pre-Hilbert space. In that case there exists a
scalar product

ExE—-C:(u0)— (ujv)
= {(lu + ol® — flu — ol — iju + i) + illu - iv)?),
which has the properties

o2 = <vlv), (vju) = Culv)*, (v]au)
= av|u), Culv + w) = (u|v) + {ujw),
and (v|v) =0iffv = 0.

Examples (2.1.8)

Of Examples (2.1.5), the only pre-Hilbert spaces (for n > 1) are Example 1
with p = 2, Example 2, and Example 6 with p = 2.

Remasrks (2.1.9)

1. Only the length of a vector is defined on a general normed linear space;
on a pre-Hilbert space it is also known when two vectors are orthogonal.
Pre-Hilbert spaces therefore conform better to our geometric intuition;
by Problem 10, 2

() 1<ulvd| < Jull llv]l (the Cauchy-Schwarz inequality);
(i) Culv) = 0> lu + v|? = |u|? + |lv|? (Pythagoras’s law).

2. If E, and E, are two pre-Hilbert spaces, then E = &, @ E, can be made
into a pre-Hilbert space, the Hilbert sum, by setting ((u,, u,)|(v,, v;)) =
Cuy|vy) + uz|v,). The vectors of E; become orthogonal to those of
E, in the new space. Conversely, given a subspace E, c E and defining
B = {veE:(v|u) = OforallucE,},it follows that E, n E} = {0}. Itis
tempting to single £7 out as the complement of E,. However, it can happen
for infinite-dimensional spaces that £, @ Ef # E: Let €, = I? consist of
the vectors having only finite many nonzero components; then E; = {0}
but E, # I?. This is related to the fact, which we shall feturn to shortly,
that in infinitely many dimensions not every linear subspace is topo-
logically closed.
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3. The tensor product E; @ E; and the antisymmetric tensor product
E, A E, can be defined as for finite-dimensional spaces (I: §2.4), and tke
scalar product in these constructions is multiplicative: (v, ® v, |u;, ® u,)
= vy |u; v, |uy).

4. Iftwo norms satisfy ||- ||, < a||-|l, < b||-li, fora > 0,b > |, then they are
said to be equivalent. They clearly produce the same topology (see below).
Remarkably, all norms on finite-dimensional spaces are equivalent.

5. A mapping a:E — F satisfying |lax|| = [x|| for all x € E is called an
isometry. We shall reserve the term isomorphism of normed spaces for a
linear, isometric bijection.

6. Conversely, a scalar product {u|v) with the properties (2.1.7) defines a
norm |xf|2 = {x|x) that obeys the parallelogram law.

Although the dimension of the space has only played a secondary role in
the algebraic rules discussed above, infinite dimensionality disrupts the
topological properties. These properties can be studied by using the norm
(2.1.4), which induces a metric topology on a vector space with the distance
function d(u, v) defined as |ju — v|. The neighborhood bases of vectors
vek are {v e E: |Jv — v'|| S ¢}. Definition (2.1.4) guarantees that addition
and multiplication are continuous in this topology (Problem 3), i.e., the limit
of sums or products equals the sum or product of the limits. There remains one
obstacle to the use of the methods of classical analysis, in that not every
Cauchy sequence v, (i.e., for all ¢ —+ 0 there exists an N such that v, — v,[ < ¢
for all n, m > N) converges. In Example (2.1.5; 4), any continuous function is
a limit of a Cauchy sequence of polynomials. Thus there are Cauchy se-
quences that do not converge in this space. In order to exclude such difficulties
with limits, we make

Definition (2.1.10)

A normed space is complete iff every Cauchy sequence converges. A com-
plete, normed, linear space (resp. pre-Hilbert space) is a Banach (resp.
Hilbert) space.

Examples (2.1.! 1)

Of Examples (2.1.5), only 1, 2, 3, 5 with r = 0, and 6 are complete.

Remarkg (2.1.12)

1. It is crugial that the limit exists as an element of the space in question.
One can always complete spaces by appending all the limiting elements,
but this can occasionally force one to deal with queer objects. For instance,
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if the polynomials (2.1.5; 4) are completed in the norm of (2.1.5; 6), then
the resulting space LP(K, u) has elements that are not functions, but
equivalence classes of functions differing on null sets.

2. One does not naturally have a good intuition about the concept of com-
pleteness, since finite-dimensional spaces are automatically complete.
It should be distinguished from the notion of closure: Like every topo-
logical space, even an incomplete space is closed. It merely fails to be closed
as a subspace of its completion, which is then its closure; in other words,
it is dense in its completion.

3. Since convergent infinite sums are now defined and their limits exist,
it is possible to introduce smaller bases than the Hamel basis. A set of
vectors e,, y € 1 is said to be total provided that the set of its finite linear
combinations is dense in E. If | is countable, then E is separable (as a
topological space).

4. By the axiom of choice, the e, can even be chosen orthonormal in a Hilbert
space. If this has been done and v = Y, ¢,e,, ¢, = (¢, |v), then ||jv]|* =
Y.,e1lc,|?, and the Hilbert space can be considered as L(i, u), where
assigns every element of | the measure 1. If | is countable, then the Hilbert
space is isomorphic to an 2 space. If § is uncountable, then the countable
sets and their complements constitute the measurable sets, and the
resulting Hilbert space is not separable.

S. Every vector of a Hilbert space can be written in an orthogonal basis as a
convergent infinite sum, v = Z, e,{e,|v), and accordingly the sum
(2.1.9; 2) of Hilbert spaces can easily be extended to infinite sums (though
more care must be taken with the construction of infinite tensor products—
see volume IV). However, if one approximates a vector v with an arbitrary
total set {e;}, say v, = Y= c;e;, [v — vl < 1/n, then it may be necessary

~ to keep changing some of the ¢’s substantially as n — oo, and the ex-
pansion v = Y %%, c,e, may not exist. For instance, in I* the vectors

1 1
el = (l"z—io--'o’n_z’o’oy“')

n-th position
are total. If we expand v = lim,., v, =(1,4,...,1/n,0,0,...) then
v,= —€ —e, —--—e,_, +ne,. Thus v can be approximated
arbitrarily well by the e's, while the formal limit v = —e;, —e; — -+

+ coe,, does not make sense. In a general Banach space, where there is
not an orthogonal basis at one’s disposal, it is therefore unclear whether
there exists a basis in which every vector can be written as a convergent
sum. If there is a set of vectors in terms of which any vector can be written
as a convergent sum, we shall call it complete. These distinctions may be
somewhat unfamiliar, since for n vectors of C", linearly independent <>
total <> complete. In an infinite-dimensional space the implications go
only one way; an infinite set of linearly independent vectors need not be
total, and a total set need not be complete. For instance, {¢"* ne Z}
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is total and complete in L*((0, 2r), dx), but total and incomplete in the

Banach space of continuous, periodic functions on (0, 2r) with the sup-
norm.

Definition (2.1.13)

A linear functional w on a vector space E is a mapping E — C: v — (w|v)
such that (w|v, + v,) = (w|v,) + (w|v;) and (w]aw) = a(w|v), fora e C.

Examples (2.1.14)

In Examples (2.1.2) the linear functionals are

1. Scalar products with a vector.
2. Traces of the product of a matrix with some other matrix.

Linear functionals on the other examples include integrals of the functions by
distributions and many other things. (See (2.2:19; 3).)

Remarks (2.1.15)

1. The space of linear functionals on a vector space is called its algebraic dual
space. It has a natural linear structure, (w, + w;|v) = (w,|V) + (w;|v)
and (aw|v) = a*(w|v). The dual space of R" can be identified with R".
However, infinite-dimensional spaces are not algebraically self-dual, and
for that reason we introduce the abstract definition (2.1.13).

2. The concept defined in (2.1.13) is somewhat too general for our purposes,
since the mapping v — (w|v) is automatically continuous only for finite-
dimensional spaces (Examples 1 and 2). For example, consider I' =
{v = (vy, v, v3,...): vl = Y;|v;| < o} with Hamel basis

{e; =(0,0,...,1,0,...,0)},
augmented with some other vectors ¢, to take care of vectors with infinitely
many components. Every vector can be written as a finite sum, v =
Yi cinite Ci€i + Xy finite Cy€y. If we define (w|v) = Y2, ic;, which con-
verges because only finitely many c; are nonzero, then w is obviously a
linear functional, but it is not continuous. In fact, it is not even closed, i.c.,
there exists a sequence v, — 0 such that (w|v,) = 1 # (w|0) = 0;e.g., take

v, =(0,0,...,1/n,0,...).
n-th position

This phenomenon can be understood as meaning that the steepness of w
in the i-th direction is i; as i gets larger, it corresponds to a more nearly
vertical plane. The formal reason for it is again that infinite-dimensional
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spaces can have nonclosed linear subspaces. The kernel of w, defined as
{v: (w]r) =0}, is a subspace, and if w were continuous, it would be closed,
since it is the inverse image of the point zero. In this case, however, it
contains all finite linear combinations of the vectors

Unm =(01---a0a 1,0,, —-n/m,O,...),

“mth position' ‘m-th position

and it is thus dense in /'. It is desirable to exclude such pathologies, which
is the motivation for

Definition (2.1.16)

The linear space E’ of the continuous linear functionals of a Banach space
is called its dual space.

Examples (2.1.17)

As mentioned above, C" and the space of the n x n matrices are their own
duals. More generally, all Hilbert spaces are self-dual; by a theorem cf
Riesz and Fréchet [3] any continuous linear functional on J# can be written as
a scalar product v = {w|v) with a unique w = Z e,(wle,) € #. Generalizing
further, (L?(M, )y = LYM, p)for 1/p + 1/g = 1,1 < p < o0;and (L') =
L*, though, for infinite-dimensional spaces (L)’ is actually larger than L!.
The dual space of the continuous functions on a compact set, with the norm
sup; .x | f(2)] consists of the (not necessarily positive) measures on K.

Remark (2.1.18)

These statements depend critically on the completeness of the spaces. If we
consider, for instance, the pre-Hilbert space E of the vectors of 1> having
finitely many nonzero components, then (v) - )2, v/i is a continuous
linear functional that can not be written as {w|v) for w € E, since

(1,3,%..)¢E

The dual space E' is also a linear space, so the next task is to topologize it.

Definition (2.1.19)

The neighborhood bases of vectors w € E’ will be defined alternatively by
U, w) = {wek:|(w~wlv)| <e}, velE eceR™,
and by
Uw) = () U, w) (2.1.20)

flofi=1
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These produce respectively the weak * and the strong topology; the latter
is equivalent to the topology given by the norm

iwll = Isup [(wlv)i, (2.1.21)
llell=1
which makes £’ a Banach space (Problem 4). Its dual space is denoted E”,
and £” o E. If E” = E (identifying elements of E” with those of E under the
natural injection), then E is said to be reflexive.

Examples (2.1.22)

Spaces with E' = E, such as Hilbert spaces, are clearly reflexive. As shown
in Example (2.1.17), L? is reflexive if 1 < p < oo, but not if p = 1 or oo, since
£ can not be reflexive unless E' is.

Remarks (2.1.23)

1. It is also possible to topologize E weakly, by taking
U, (v)={veE:|wlv-v)<eweFE,ceR*}

It is a corollary of the Hahn-Banach theorem that this is a Hausdorff
topology. It is compatible with linearity in the sense that sums of vectors
and multiplication by scalars are continuous mappings.

2. Asitsname suggests, the weak topology is weaker than the strong topology;
in the weak topology the mapping w — ||w| is not continuous, but only
lower semicontinuous, as the supremum of continuous mappings. The
weakening of the topology produces additional compact sets: in an infinite-
dimensional Banach space the unit ball {v: {jv]| < 1} fails to be norm-
compact, but it is weak-* compact with respect to the space of which it is
the dual (if this predual exists). Hence, if the Banach space is reflective, its
unit ball is weak-*-eompact (cf. Problem 7).

3. The weak topologies do not have countable neighborhood bases, and they
can not be specified in terms of sequences; they require instead nets or
filters. This means that the concepts of completeness and sequential
completeness, and compactness and sequential compactness, are not
identical. Hilbert spaces are weakly sequentially complete, but not
weakly complete. Another inconvenience is that not every point of
accumulation is attainable as the limit of a convergent sequence (Problem
8). Fortunately, the bounded sets, i.e., {v: ||v| < M} in a Banach space with
a separable dual space are a metrizable space when weakly topologized.
For metric spaces the above notions coincide, and if only bounded sets are
considered, these complications can be ignored.

Linear functionals are a special case of linear operators:
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Definition (2.1.24)

We let Z(E, F) denote the space of continuois linear mappings of the Banach
space E into the Banach space F. If E = F, define #(E) = ."t’(E, E). The
elements ae .Q’(E F) are also called operdtors.

Exmples (2.1.25)

1. Z(§ C) =F.
2. #(C", C™) consists of the n X m matrices.

Remarks (2.1.26)

1. Z(E F). is a vector space, as () @,a)x = ) a,q;x for all o, C and
g, 4 F).

2. A linear mapping a is bounded iff it sends bounded sets to bounded sets,

* andthus |al| = = SUP 4 =g laxfis < co. For linear mappings the properties

* (i) continuous,
* (ii) continuous at the origin,
. - (iii) bounded
are all equivalent (Problem 11).
3. The transpose of a_ real, finite-dimensional matrix has an infinite-di-
" mensional generalization: a € Z(E, F) induces a mappmg a*:F-FE,
known as the adjoint operatot, since for y’ € F’ the mapping E — C by
x — (¥ |ax) is continuous and linear, and consequently it guarantees the
existence of exactly one x’ € £ such that (y’|ax) = (x'|x). Now define
* x' = a*y’ It is trivial to verify that the operator g* is linear, and it is
continyous in the norm topology (Problem 5).

There are several ways to topologize Z(E, F).

Definition (2.1.27)

The neighborhood bases of elements a € Z(E, F) can be taken alternatively
as !

Uy.sda) = {@:1(y|(a — a)x)| < &}
or

U, fa) = {d:ll(a — a)xls <&} = " ("\ U,.. da)
yii=1
or

U@ = () Uda)

lixlt=1
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The topologies are respectively called weak, strong, and uniform, and the
associated kinds of convergence will be denoted by —~, -, and = (elsewhere
often by w-lim, s-lim, and lim).

Remarks (2.1.28)

1. The uniform topology corresponds to the norm jja| = supy . i1=1 lax|g,
which makes Z(E, F) a Banach space (Problem 4).

2. Eventhough E and F are metrizable, the strong and weak topologies do not
have countable neighborhood bases (cf. Problem 9), and only their re-
strictions to norm-bounded sets are metrizable. They are compatible with
lincarity, but not with the algebraic structure; multiplication is not neces-
sarily a continuous mapping £ x £ — £. However, it is sequentially
continuous in the topologies #(&) (weak) x %(E) (strong) — #(E) (weak)
and #(E) (strong) x B(E) (strong) — #(E) (strong). Of course, multi-
plication in one factor alone is continuous in all topologies.

3. For reflexive Banach spaces E and F the adjoint operation (2.1.26; 3)
L F)>» L(F,E):a—a* is a continuous mapping in the norm
topology because [jaf| = [la*[, and it is obviously continuous in the weak
topology; yet it is not continuous in the strong topology. We shall later
become acquainted with examples for which Q, — Q but only Q* — Q*,

4. The origin of many of the technical complications of quantum mechanics
is that the norm topology of operators is too restrictive; one is often
interested in a limiting operator of a sequence or family of operators that
is not convergent in the norm topology. While weaker limits exist more
frequently, the algebraic operations ar¢ not always continuous in the
weaker topologies, so great care must be taken in passing to a limit.

S. If x, € a Hilbert space ¥ converges weakly to x € ) and lim,_ ., |x,|| =
x|, then the sequence is also strongly convergent: {x, — x|x, — x) =
ix,12 + lIx]I> = 2 Re{x,[x> — 0. Hence the strong and weak topologies
are equivalent for unitary operators. If unitary operators converge weakly
but not strongly, the limit will not be unitary.

Problems (2.1.29)

1. Show thai the space I® is not separable. (Hint: There exists an uncountable set of
elements 1, i € I, such that ||y;fj = 1 and |v; — vl = 1 whenever i # j.)

2. Show thal the usual operator norm for operators on a Hilbert space satisfies the
triangle inequality.

3. Prove the trniangle inequality for the spaces L?, p > 1. (Hin1: the inequality xy <

xPip + vt gfot x.y > 0and I:p + ljg = | implies Holders inequality, |{ fg du| <

§1/gldu < 1 /11, where (f1, = (1P du)"”. Next show that i f}l, =

SUP, fghq-1 ] |jy|du and conclude that [ f + gff, < [ f1, + [igll,. which is known
as Minkowski’s inequality.
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. Let Eand F be two Banach spaces. Show that the space of continuous linear mappings

E — F (with the uniform topology) is also a Banach space. Moreover, show that if
F is a normed space but not complete, then #(E, F) s likewise not complete.

. Let a:E — F be a continuous linear mapping of two Hilbert spaces. Show that

a*: F — [ is also continuous.

. Prove that on a Hilbert space E llax|| = [la*x(| = ||x|i for all x e E iff aa* = a*a = 1.

. Show that the unit ball in a separable Hilbert space J is weakly sequentially

compact. Conclude that the Hilbert cube < I: {v = (v,):|t,| < I/n} is even
strongly (=norm) compact.

. Show that an infinite-dimensional Hilbert space is not metrizable in the weak

topology. (Hint: Consider the vectors x, = (0,0...., \/;_1, 0,...)in (2 This set has a
point of accumulation at 0, but it contains no convergent subsequences, which is
impossible in a metric topological space.)

. Show thatin the weak topology, compactness does not imply sequential compactness

(except when the Hilbert space is separable).

Prove the Cauchy-Schwarz inequality |(v,|v,>| < |Jv;]lilvs]l. and show that
[<vytva) ] = livyll vy iff v, = zv, for some z € C (and v; # 0).

Show the equivalence of the properties of (2.1.26: 2).

Solutions (2.1.30)

Let v; be the vectors of the form (c,, ¢,, ..., C,,...) withc, = 1 or 0. This set has the
power of the continuum, and ||v;|| = sup|c,| = t (unless v; = 0) and ||t; — ol > 1,
unless all the coefficients of v; and v; are equal. If there existed a countable dense set
A < I®,then for all v, there would be an g, € A with ||v; — a;l < . Since |lv; — v;l| > 1,
the mapping v; — a; would be one-to-one, and the set of v; would have only the
cardinality of a subset of A.

la + bl = SUPyxy =1 llax + bxll < supy,, = lax|l + supy. - libx|} = Lali + (|b]l.

. The inequality is trivial for p =1, so assume p> 1. For t >0, t < t?/p + l}g

(proof: find the minimum of the function ¢(t) = t?/p — 1), and if t = x/y¥'* this
reads xy < x?/p + y%/q. Let fand g be two functions such that

fisrdu= [igrau=1.

Since

ffg du

Holder’s inequality is proven in this special case. The general case follows by
considering f/| f ||, and g/iig |, in place of fand g. Furthermore,
/1!

I, = flfyldﬂ with g = iz
p

. 1 1
< J.l fgldu and J.ljy|d;4._<_ [N)J‘I'””du*_(;_"lg’qd# =1,
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since

[FAH
g

j 1 foldp = =11, lghg = 10570002 = 1.

Hence

IS +0ly= sup [1(f+ obides < sup [ ifhid + sup [ighidu = 111, + b,

HAllg=1

. The vector-space properties are trivial. As for the norm, leta: € — F,

flaxi
hall =520 T
Then ||Aa|| = |A|llal and lla+ bll < llall +11b) as in Problem 2. Finally, [la =
0= |lax|| =0 for all xe E=ax = 0=>a = 0. As for completeness, let a, be a
Cauchy sequence; then a,x is also a Cauchy sequence in F for all x € E, and thus
there exists a limit lim a,x = ax € E. This mapping is linear and bounded (since
lla,)l < C < oo for all n, {a,x|| < Chxli, which implies flax[i < C||x}l), and fla — a,}f
= sup|lax — a,x|/l|x}| —= 0. The proof depends in an essential way on the complete-
ness of F. Remark: The Hahn-Banach theorem prevents Z(E, F) from being the
trivial space {0}.

. llall = sup llaxll = sup |{ylax>| = sup|<{a*y|x)| = [a®].
x|l =1 lixli=1,xeE
xe iyll=1,y6¥

(This is also true when E and F are only assumed to be Banach spaces.)

. aa* = a*a = 1 = (x|aa®x) = [la®x||? = (x|a*ax)-= fjax|? = ||x|*.

lax|i = x| = {(x]a®*ax) = (x|x) = a*a =],
and likewise
la*x)| = lix|l = aa* = 1.
(4¢ylax) = (x + yla(x + y)) — (x = y|a(x — y))
+ix + iyla(x + iy)) — iKx — iy|a(x — iy));
it therefore follows from (x|ax) = 0 for all x that {y|ax) =0 for all x and y, which
implies that a = 0.)

. Let {x,} beatotal orthonormal set. Since the matrix elements (x, | a; x,,) of a sequence

a, € 4()¥) are bounded in absolute value by [ x,|| Xl sups lla.ll, for every n and m
there is a point of accumulation a,,. Let us define a € #(¥) by ax,, = ), den X, and
note that a, — a, i.e., (y|a, x) = (ylax) for all y, x € I ; this is because for all ¢ > 0,
x and y can be written as Y g, ¢4 X, + 1 With |in]} < & and the convergence of the
finite sum follows by definition, so the convergence of general matrix elements is
shown to within arbitrary accuracy, since sup, la,|| < co. We next show that the
strong and weak topologies are equivalent otr the Hilbert cube: Let v — v,and for
any given ¢ choose rand N such that }' 52, ., 1/j* < eandifn > N then

Z [0 = o2 < &
=1

Y5 [ — v)|? < Se, and therefore v — v. The Hilbert cube is thus strongly
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sequentially compact and, since the strong topology on a Hilbert space is a metric
topology, also strongly compact.

8. A weak neighborhood of 0 has the form U = {x:|{v™'|x)| + [V |xD| + --- +
[<v®[x)| < €}. A neighborhood U necessarily contains some x,, as otherwise
1<) x D1 + - + 1<) x,)| > & for all n, which would mean that |o{"| + - +
o > ¢//n and Y2101 + -+ + )2 = oo, while, on the other hand, this
sum S IQ 1P + -+ + YL 1001%) < co. However, it is not true that there is an N
such that x, € U for all n > N. Despite the foregoing, there can not be a weakly
convergeént subsequence of x,, of x,; for consider the vector v whose n,o.-th com-
ponent is r and whose other components are all 0. Then (v|x,,) = \/;,( 1/r) if
k = 10/, and otherwise O; but n, > k = 1(V.

9. General theorems guarantee that the unit ball is always compact in the weak
operator topology. Let us now investigate the nonseparable Hilbert space o =
L*([0, 1, p), where u is the measure assigning every point the measure 1. All of the
multiplication operators multiplying any function'in »# by a function ¢,, a “saw-
tooth” function going linearly from O to | in each interval [k/10% (k + 1)/10%],
k € Z n [0, 10"), have norm 1. But, even so, for each subsequence ¢,_, there cxists a
point x at which ¢, _(x) diverges, and consequently the sequence of operatorsis -
not weakly sequentially compact.

10. Let v = v, exp(—iarg{v,|v;)). Then |{v,|v;)| = (v,|v}), and it fo ;)ws from
IHloglivy — toaliogh? = 2o, 12402l ~ 2logl valiv, Jvy) 2 0

that (v,|v3) < liv, [l 03l = flvsllflv,ii. There can be equality only if jlv,lle; ~
fvallv, = 0,ie., v, = zv, with z = {flv }l/llv, [ exp( —i arg{v, Jv,)).

11. (ii) = (iii): Property (ii) implies that for all  there exists « such that ||x|| < ¢ =
flax{| < & which implies ||al| = sup, =, lax|l/Ix}} < &/z, which = (iii).
(iii) = (i): For all 6 3 ¢ = &/|\all such that for all x’ € E,

fIx.— x'|| <e=flax — ax’|| < |lal| - |x — x')} < 6.
(i) = (ii) is trivial.

2.2 Algebras

C* and W* algebras are gene\'alization:s _¢;f algebras of matrices and |
functions. Their axioms are the basic algebraic and topological
properties of these familiar algebras.

Definition (2.2.1)

N

An algebra of is a vector space on which there is a mapping o x o — &,
called multiplication, having the properties -

a(b, + b;) = ab, + ab,, a(bc) = (ab)c,
a(ab) = aab, a,bb e, aeC.
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Additionally, we assume the existence of a umit, or identity, element 1 such
that a1 = 1 a = afor all a € o« if this element should ever be lacking, we
shall refer to o as an algebra without a unit. If ab = ba for all a and b € o,
then o is Abelian.

Examples (2.2.2)

Allof Examples (2.1.2) are algebras when multiplication is defined component-
wise for vectors, pointwise for functions, and in the usual way for matrices.
These multiplication rules make all of them Abelian except for the matrices.
The spaces L?, p < oo, are not generally algebras; for examples, x~ "2 ¢
L'([0, 1], dx) but x~* ¢ L'([0, 1], dx). The spaces [/’ are algebras, but they
have no unit if p < co. The space I° = {(v,, v;,...) € I®:lim;jv| =0} is a
subalgebra of !° without a unit.

Remark (2.2.3)

Every subspace of a vector space is the kernel of a homomorphism =, ie.,
it is n~(0). The kernels of homomorphisms of an algebra are only its
two-sided ideals, i.c,, subalgebras # — o for which a® c # and a c @
for all, a € o. The quotient space with respect to a two-sided ldeal is another
algebra, known as the quotient algebra.

Since we work with the field of the complex numbers, there is another
operation to axiomatize, complex conjugation: .

Definition (2.2.4)

A * algebra is an algebra on which there is a mapping *: of — &, called
conjugation, having the properties (ab)* ="b%*a®; (a + b)*® = a* + b*;
(za)* = a*a® fora € C;and a** = a. The element a® is known as the’ adjolnt
of a.

Examples (2.2.5)

If * is complex conjugation or, in the case of matrices, Hermitian conjuga-
tion, then all of Examples (2.1.2) except for the analytic functions are
* algcbras.

Remark (2.2.6)

. It is at this point that complex numbers first become impertant. Anyone
having philosophical objections to the occurrence of complex numbers in
what ultimately pertains only to real physical measurements can just as

" well represent i, the square root of — 1, as the real matrix

(1 o)
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or else postulate the existence of an abstract element I € & with the properties
I’=—-1,1*= —L'and la = al for all a.

Since matrices are the prototype-of a * algebra, its elements are often
referred to as operators, and the terminology follows that of matrices:

Definition (2.2.7)

a is normal iff aa* = a*a

a is Hermitian iff a = a*

ais unitary iffaa®* = a%a =1 .

a is a projectiont iff a = a* = a?
-a is positive iff a = bb* for some b
a is the inverse of b iffab = ba = 1.

Remarks (2.2.8)

" 1. The relationships among these sets of operators are depicted in the
diagram below:

normal -
unitary

Hermitian

. projection

positive

2. Although in a finite-dimensional space ab = 1 implies ba = 1, this is
not true in general. A counterexample is given by the infinite matrix

....................

Hence the property ab = 1 is not sufficient to make a the mverse of b.
The Definitions (2.2.7) easily imply the -

t In this book the word “projection™ will be understood as meaning “orthogonal projection.”
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Propositions (2.2.9)

.@Y '=a

2. (@) ' =b"'a™?

3. (a#)—l = (a~l)t .

4. The unitary elements form a subgroup of the group of invertible elements.

The next subject is the topology of the algebra, which must conform with

the algebraic properties discussed above. This will allow us to generalize
the analytic rules we are familiar with for matrices.

Definition (2.2.10)

A C?* algebra is at the same timc a * algebra and a Banach space, the norm of
which satisfies

(i) llabll < [laf {ibf
(i) fla*| = flaf
(iii) laa*|| = llall la*|
@(v) 1 = 1.

Examples (2.2.11)

Recall Examples (2.1.5):

1. This is a C* algebra only if p = oc, because (iii) is violated for smaller p.
2. This is not a C* algebra. For instance, if

{1 i e [ 2 i .. 5 3i
a—(o l)’ aa —(—i 1), aa*aa® =| .. L)

then [aa*||? = Tr ag*aa®* = 7 # |a)|*|ja*)|* = (Traa*)* = 9.
3. This is a C* algebsa, as in fact is the more general #(5¢) (2.1.24), ) a
Hilbert space, and with the norm of (2.1.28; 1), because

la*all =  sup  |(yla*ax}| = sup <{x|a*ax)
Ixil=1= 1y} hxl=1

sup |lax|? = lal)?,
Ixli=1

along with (i) and (ii), implies (iii).

. The space of this example is not complete.

. In this example the space is complete only if » = 0, in which case itis a C*
algebra.

6. L7is not an algebra for p < 0. If p = o0, it is a C* algebra.

wn &
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Remarks (2.2.12)

1. Properties (i) and (ii) guarantee that multiplication and conjugation are
continuous (Problem 3). Property (iii) roots the topology so deeply in the
algebraic structure that (algebraic) homomorphisms of C* algebras are
automatically continuous (Problem 2). Property (iv) is just a convenient
normalization.

2. It may happen that Property (iii) is satisfied by one norm and violated by
another, although both norms produce the same topology. This occurs in
Examples (2.2.11; 2) and (2.2.11; 3) as well as for the continuous functions
on [0, 1] with the norms || f|| = sup, (0, 13 | f(x)f and

Ifle = sup e} f(x)I,
xe(0,1]
which are related by || - | > || -II. = e~ ![| - [l. The norm || - || yields a C*
algebra, but || - ||, does not, since |j(e* — 1)|2 = (1 — 1/e)® < [I(e* — 1)?|, =
e + 1/e — 2. In such situations we shall always choose the norm that
satisfies (2.2.10)

3. C\{0} is an open set, and {ze C:|z| =1} and {ze C:Im z = 0} are
closed. Because both conjugation (*) and multiplication are continuous,
these statements have the generalizations that the set of invertible elements
of a C* algebra is open, and that the unitary and the Hermitian elements
form closed sets (Problem 4). Similarly, the sets of normal, positive, and
projection operators are closed, and hence norm-limits of these types of
operators are of the same types.

Given an operator g, it is always possible to get an invertible operator by
adding some multiple of the identity 1 to it.

Definition (2.2.13)

The resolvent set of ae of is {z€ C:(a — z)” ! exists}, and its complement
Sp(a) is known as the spectrum.

Examples (2.2.14)

The spectrum of a matrix consists of its eigenvalues, and the spectrum of an
ordinary function is its range.

Remarks (2.2.15)

1. In(2.2.13)it is essential that (a — z) ! exist as an element of &/, and not in
some other sense. Moreover, if & is a subalgebra of some other algebra &,
then one must specify whether (@ — z) ™! is to exist in &/ or #. Fortunately,
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if of is a C* algebra, then the inverse of a — z belongs to the C* algebra
generated by a (that is, the norm-closure of the polynomials in a and a*),
and so one need not specify which algebra the inverse belongs to.

2. 1f {z] > |la|l, then (z — a)~! can be expanded as a convergent series
271 Y 2uo (a/z), and therefore Sp(a) < {z€ C:|z| < fall}. In particular,
all elements such that |la — 1|| < 1 are invertible, The mapping C —
&f:z — (a — 2)” ! is actually analytic on the resolvent set, which is always
open, by Problem 7.

3. It is easy to show that Sp(a*) = Sp(a)* and Sp(P(a)) = P(Sp(a)) for
any polynomial P and a € «. This implies (Problem S) that the spectra of
the unitary, Hermitian, positive, and projection operators lie respectively
on the unit circle, the real axis, the positive real axis, and the set {0, 1}.
Ifthe operator is normal, the fact that the spectrum belongs to one of these
sets implies that the operator belongs to the appropriate class (2.2.7)
(Problem 5). ' .

4. As_the term “spectrum” suggests, the spectral values of an element
represent the values it can attain in a certain sense; we shall see in (2.2.31; 2)
that the convex combinations of the spectral values are all the possible
expectation values of the element (2.2.18). ,

Positivity is a useful property in analysis, and it provides an algebra with
an additional associative structure:

-

Definition (2.2.16)

The algebra o/ has a partial ordering a > b defined as meaning thata — b is
positive. '

Remarks .(2.2. 17)

1. Asremarked in (2.2.15; 3), positivity is synonymous with having a positive
spectrum. According to (2.2.15; 4) the sum of two positive elements is
positive, since expectation values are additive. Hence ifa > band b > ¢,
thena > c.Ifa.> 0and —a > 0, then a = 0, since 0 is the only Hermitian
element a with sp(a) = {0}. Thusa > band b > aimpliesa = b. Sinceitis
also true that a > q, the relationship > is a partial ordering. Since positive
operators are Hermitian, one might hope to extend the definition of > to
all Hermitian elements, but it fails to be a total ordering on this set:

Consider
10 00
(o 0) = (5 3)

which do not stand in this ordering relationship to each other.
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. Although it is true that > is compatible with the linear structure of o

in the sense that a, > b, = Y, a; > Y, b;, difficulties arise with products
because the product of two Hermitian elements is not generally Hermitian.
But even if it is, there remains the inconvenience that nequalities can not
be multiplied, a > b % a?> 2 b* (Problem 10). Yet inverses of ordered
positive operators have a definite ordering,a> b >0=>b"'>4a7' >0,
and as a consequence it is possible to show monotonicity of certain
functions of operators with respect to the ordering > (Problem 11).
Finally, note that a > b clearly impliés c*ac > c*bc for any c.

. The partial ordering is compatible with the topological structure; it

commutes with the taking of limits.

. Positivity is preserved by homomorphisms n: of — @ of C* algebras:

n(a*a) = n(a)*n(a) = 0, and therefore a > b = n(a) > n(b). Linear map-
pings of C* algebras do not generally preserve positivity.

" Définition (2.3.18)

A linear functional f is positive iff f(aa®) = 0 for all ae o. If, moreover,
S(1)*= 1, then f is called a state, and f{a) is the expectation value of a in
the state f.

Examples (2.2.1§)

1.

2.

Positive measures on function algebras are positive linear functionals.
Probability measures are states.

The mapping m — Tr pm on n x n matrices m is positive iff p is positive
in the sense that all of its eigenvalues are positive. If in addition Trp = 1,
then it is a state.

On the C* subalgebra {ve!®: lim,. v, exists} of I°, the functional f(v)
= lim;. o, v, is a state. '

Remarks (2.2.20)

1.

Definition (2.2.18) does not require continuity, i.e., the statement that there
exists M € R* such that | f(a)| < Mial|l for all a € o, because it follows
automatically. It is even true that |f(b*ab)| < |la|l f(b*b) and, as a
generallzauon of the Cauchy- Schwarz inequality,

[ f(b%a)* < f(b*b)S(a%a)

. (Problem 8). It is consequently always possible to normalize a positive

linear functional to be a state, for which || f|| = sup.e4 | f(@)|/lall = 1.

2. Convex combinations of states are states. States that can not be written

as convex combinations of other states are called extremal, or pure. In
Examples (2.2.19), integrals with delta functions and traces with one-
dimensional projections are pure states. A theorem of Krein and Milman

AN
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{1, 12.15] says that our naive idea of convex, compact sets is valid for
states; there must exist extremal points, and their convex combinations
are dense in the space of states. Choquet’s theorem allows any state to be
written as an integral over pure states, though the measure used is unique
only if the algebra is Abelian. For example, the state m — (1/n)Tr m of
n x n matrices can be written as (1/n)} 7., (e,|me,), where the ¢, are
any orthonormal system. The state m — {e,|me,) (no sum) is pure, so
there are many ways to write (1/n)Tr as a convex combination of pure
states. If the space of states is pictured as a ball, then the pure states will
constitute its surface. For Abelian algebras this ball becomes instead a
simplex, only the corners of which are extremal. The extremal points of
infinite-dimensional simplices may form a connected, closed set, like the
surface of a ball. For instance, consider the Abelian C* algebra of con-
tinuous functions on a compact set. The states are probability measures,
and the extremal states are Dirac é functions. They form a weak-* con-
nected, closed set (see (2.2.28)), though their convex combinations are
weak-* dense in the set of states.

3. There exist pure states for which the inequality | f(a)| < [la}| of Remark 1
becomes an equality. This can be seen as follows: Given any a € &/, one
can construct a state for which f(a*a) = ||a||2, by setting f(« + fa*a) =
« + Blla||? on the subspace spanned by 1 and a*a. It is easy to convince
oneself that this is a positive functional with f(1) = 1 and f(a*a) = ||a}|2.
According to theorems of Hahn and Banach and of Krein, the functional
can be extended to all of & (but not necessarily uniquely, of course).
Now let Z, be the convex set of states such that f(a*a) = Jjajj>. The
extremal points of Z, are pure, since if f, = Af; + (1 — 1);, 0 < i< |,
then we would find ||a||2 Mi(a*a) + (1 — A)f,(a*a), which implies that
f{a*a) = |la]|?, and f, would not be extremal.

4. Another blemish afflicting positive linear functionals is that the supremum
of linear functionals over many elements may not be the same as the linear
functional of the maximal element using the partial ordering >. For
example, if

o™ =(1,1,...,1,0,0,...) €,

P S
n-th position

then with the state of Example (2.2.19;3), f(v™) = 0, but with v =
sup, ™™ = (1, 1, 1,...), f(v) = 1. (Of course, v'™ » v.)

The states suffering these afflictions can be set aside by a

Definition (2.2.21)

An ascending filter F is a norm-bounded subset of o in which any two elements
are both exceeded (in the sense of >) by some element. The supremum sup F
is the smallest element of o/ witha < sup F for all a € F. A state fisnormal
iffsup,.r f(a) = f(sup F)for every ascending filter F.
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If the supremum always exists in .o/, and there are also sufficiently many
normalstates at hand, then the algebra has such nice properties that it merits a
special name.

Definition (2.2.22)

A W* algebra.is a C* algebra in which

(i) every ascending filter achieves its supremum in &/ ; and
(i1) for all nonzero elements a € &, there exists a normal state f with f(a) 0.

Examples (2.2.23)

Matrices are W* algebras, while the continuous functions on a compact set
< C" are not, because their supremum need not be continuous. The set of
bounded, measurable functions L*(K, d"x) is a W* algebra. We saw earlier
that it is a C* algebra, and (i) is satisfied since monotonic, bounded sequences
converge in L®. As for (ii), positive, normalized functions in L! < (L)
provide the required‘ normal states.

Remarks (2.2.24)

1. Although the W* property is defined with reference only to the ordering '
structure of the algebra, it will have both algebraic and topological
consequences.

2. Integration theory relies on classes of functions that allow the taking of
suprema. The permutability with integration is a fundamental character-
istic of measures, distinguishing them from such things as abstract
averages. With W* algebras much of measure theory can be generalized
to the noncommutative case.

3. In atomic physics we shall primarily be concerned with the W* algebra
(), and the reader interested only in these problems need not worry
much about the distinctions mentioned above. It is not until, the fourth
volume, Quantum Mechanics of Large Systems, that these notions will
become important in the limit of infinite systems.

Because C is such a trivial space, the homomorphisms of C* algebras into
it are particularly simple. They are only of interest for Abelian C* algebras,
for which they completely determine the algebra’s structure.

Definition (2.2.25)

Aa algebraic *-homomorphism y (i.e., y(xa + pb) = ax(a) + Bx(b), x(ab) =
x(a)x(®), and x(a*) = x(a)* for all a, b€ o and «, f € C) of an Abelian C*
algebra into C is called a character. The set of characters of o is'denoted
X().
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Examples (2.2.26)

1. The characters of the algebra of n x n diagonal matrices are the maps
Am: G = G, 1 $ m < n; but the state a —+ (e]ae) over this algebra is not
necessarily a character for an arbitrary unit vector e. .

2. The characters of the aigebra C(K) of continuous functions on a compact
set K = C"are of the form y,: f — f(z), ze K.

Remarks (2.2.27)

1. Since the algebraic relationships are preserved by y, the, existence of
(a — 2)" 'impliesthatof (x(a) — 2)~! l-lence, forallye X (d), x(a)e Sp(a).
and thus |x(a)| < |a]-

2. Since yx(a*a) = x(a)*x(a) = ]x(ail’ z 0 and x(1)=1, cvery character
is a state, which automaucally makes the mapping y: & — C continuous.
Indeed, every x is a pure state, since no convex combination a,x, + -
% X2» O<a;<1,a +a; =1,can be multnplncatnve (xy + a,xz)(a )
is at the same time (a,x,(a) + a;x2(a))? and a,x,(a?) + a; x2(a®). This
can only be true for all a € o if one a,x, vanishes. This shows that X(«f)
does not have a linear structure, but consists of the extremal points of a
convex set. The results of the following section will imply that X(.d)
contains afl pure states; they provide irreducible representations of <,
which are one-dimensional if thé algebra is Abelian, and therefore
characters.

3. The kernel {a € of: x{a) =0} is a closkd, two-sided 1deal of . Since C
has no proper ideals, the kernel is maximal in the sense that there are no
larger proper ideals contajning it. The converse of this statement is also
true: to every maximal ideal there corresponds a character. Thus charac-
ters, pure states, and maximal ideals are bijectively'related.

4. The set of characters X(of) has the weak-* topology as a subset of &,
Weak-* limits clearly preserve‘the algebraic characterization of X (&)
(for instance, x(a)— x(@) and x(b) = x(b) = x,(ab) = xu(@)x,(b) —
x(a)x(b)). Therefore X(=f) is a weak-# closed subset of the unit ball of o/’
and thus, according to Remark (2.1 23 2), weak-* compact. By deﬁmtlon
the mappings X (&) = C: y - x(a) are weak-* contmuous

Since .o is a subset of &", the elements a € of c;m bevonmdered as_
functions on X(&f), by setting a(y) = x(a) There is in fact'a complete,
correspondence:

The Gel'fand Isomorphism (2.2.28)

Any Abelian C* algebra o is isomorphic to the C* algebra of the continuous
functions C(X()): X(f) (with the weak-* topology) — C.
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Proof

The mapping of — C(X()): a — a(y) preserves all the algebraic properties
such as a,a,(x) = 2(a,a;) = x(a,)x(a;) = a,(x)a,(z). Since X(s#) contains
the pure states, Remark (2.2.20; 3) states that [la|| = sup, . x.nla(x)|, so the
norms of & and C(X(2)) are the same. It also follows from this that a(y) = 0
for all y = a = 0, and it only remains to show that < contains all the con-
tinuous functions on X(=f): A theorem of Weierstrass states that the poly-.
nomials in z € any compact set —C are dense in the continuous functions in
the supremum topology. Stone [1, 7.3] generalized this to the statement
that the norm-closure of any algebra of complex-valued functions with a
unit and such that for all y, # x, there is an f with f(x,) # f(x,) contains
all continuous functions, and the a(x) satisfy this requirement. Consequently
a — a(y) is a bijection, preserving the algebraic and topological structure.

O

Examples (2.2.29)

1. In Example (2.2.26;1), X() = { x4, %25---> X»} (With the discrete
topology),and C(X()) = {amm€C,m = 1,2,...,n: X, = a,, X} isthe
set of diagonal matrices. .

2. In Example (2.2.26;2), we already have a bijection between K and
X(C(K)), z = x,. According to (2.2.28) the bijection is in fact a homeo-
morphism if X(C(K)) is equipped with the weak-* topology.

Remarks (2.2.30)

1. The dual space of the continuous functions F is the space M(F) of (not
necessarily positive) measures. The following cotlection of continuous
mappings into C summarizes the various identifications:

o > X(o)

. E-4 C
X() CHAN =
CX () MECX(EN = o

2. These results for Abelian C* algebras provide convenient representations
of the normal elements a of any C* algebra, when one simply considers
the algebra generated by 1, a, and a*.

3. Theorem (2.2.28) holds a fortiori for Abelian W* algebras, which' can
also be represented as L™ functions on suitable measure spaces.
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Since algebras of functions are easy to manipulate, (2.2.28) has a number of

Corollaries (2.2.31)

1. The power series of z—(a(y) — 2) ! converges for all y € X(A4) provided
that z > sup, ¢ x.la(x)| = lla||. As we see, if a is a normal element of a
C* algebra, then the radius of convergence of the series for (a — z)7! is
exactly [ a||. (This may be false if a is not normal: (3 !)is invertible for all
z # 0, but |33l = 1.) The spectrum of a is precisely the image of X(4)
under a.

2. Continuous functions f(a) are defined on the range of the Gel'fand
isomorphism as f(a(y)), and they exist for all normal a in any C* algebra.
More specifically, a Hermitian element can be decomposed into a positive
and a negative part, and unique square roots can be taken of positive
elements. In a W* algebra, all the spectral projections 6(a — a), a € R,
exist for every Hermitian element, since a step function is the supremum
of continuous functions. It is always true that |l f(a)|l = sup,| f(a(x))| =
supasSp(a)lf(a)I'

3.. Hermitian elements can be characterized by — 1 < a/jlal| < 1,and positive
elements by |1 — a/[la||| < 1.

4. According the Remark (2.2.30; 1), the Gel’'fand isomorphism maps a state
w tema probability measure du,, on C(X()): w(a) = [y du(x)a(x) for
a normal. The pure states are the point measures du,(x) = 0(x — Xo)-
Xo € X (&), which = w(a) = a(y,). We again note that

flall = sup |a(x)| = sup {wm(a)l.

xeX(s) wpure

5. Since a maps the compact set X (&) continuously into the compact set
Sp(a), a(x) can be introduced as a variable of integration as in Corol-
lary 4, the integral being over the image measure dw = a(dy,):

C(X(o) —=— C(Sp(a)
. .
g(a(x) g(a)
it g(a(r)) = f dw(o)g(@).

2€ Sp(a)

X(s)

Thus every state w furnishes a probability measure on the spectrum of a
normal element a, such that f(a) = [,csp@ dW(@)a. For Hermitian or
unitary elements this becomes a measure on the real axis or, respectively,
the unit circle in C.
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The mathematical framework that we have developed will now allow
us to formulate the conceptual schema of quantum theory.

The Basic Assumption of Quantum Theory (2.2.32)

The observables and states of a system are described by Hermitian elements a
of a C* algebra &f and by states on of. The possible outcomes of a measure-
ment of a are € Sp(a), and their probability distribution in a state w is dw,
the probability measure induced on Sp(a) by w.

Remarks (2.2.33)

1. Since physical measurements are always real numbers, observables are
Hermitian operators, but they constitute a subalgebra (over the real
numbers) only if & is Abelian.

2. In classical mechanics the observables were a real function algebra, and
the spectrum of a function was its range. Assumption (2.2.32) generalizes
the classical schema only by not requiring commutativity.

3. In this volume the C*-algebra of observables will asually be #(o¥),
and we will need to consider only the normal states over #(J¢).

4. For Abelian algebras we learned that maximal ideal = character =
pure state = point probability measure. These states are nondispersive
for all observables, i.e., the mean-square deviation (A,(a))> = w(a?) -
w(a)? vanishes, If the algebra is noncommutative, nondispersive states
do not normally exist, since the operator inequality

a—w@) .b—-wb)\fa—wa .b—wb)
( Ada) ' TALb) )( Aa) | AD) )20

for an arbitrary state w implies the indeterminacy, or uncertainty, relation-
ship (by taking w of the inequality above):

w ab — ba
2i

A state that had no dispersion on any observable would yield zero for any
commutator [a, b] = ab — ba. The algebra of interest here will be & =
A(X¥), on which that is not possible for normal states; there are increasing

- sequences of projection operators having 1 for supremum, but for which
each one can be written as the commutator of two Hermitian operators
(Problem 9).

5. Althoughitis obvious how a function of one observable is to be measured —
take the function of the measured value of the observable—it is less clear
how to measure the sum or product of noncommuting observables. The
spectrum is certainly not just the sum or product of the original spectra;
we shall see that the spectra of xp, and yp, are both R, while their difference,
the angular momentum, has spectrum Z. That is, the only possible measured

< Au(a) A(b).
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values of the angular momentum are integers, whereas measurements
of x, y, ., and p,, or of the products xp, and yp, can yield any real numbers
whatsoever. This makes the algebraic structure of the observables rather
problematic, for which reason there have been attempts to find alternative
and more economically phrased axioms. Some of these will be discussed
shortly, and we shall see that they eventually lead back to the schema of
(2.2.32), which is our justification for imbedding the observables in 8 C*
algebra. '

It will not be possible here to unfurl the whole subject of the theory of
measurement, so we shall merely describe the bare mathematical structures
that havebeen proposed for the formulation of quantum theory..

Jordan Algebras (2.2.34)

If one tries to invent an algebra containing nothing but observables, then
one is confronted by the problem that, while sums of Hermitian elements are
Hermitian, the same is not true of products. The symmetric productac b =
(a + b)?> — a* — b? results in a new Hermitian element, and can be used as
an alternative binary relationship on an algebra of observables over R.
Abstracting from that the commutative and distributive laws for o, one can
formulate the rules of a nonassociative algebra. It turns out that modulo a
few topological assumptions, which are more or less convincing on physical
grounds, these Jordan algebras can be imbedded in #(o¢), wherebya- b =
ab + ba.

Propositional Calculi (2.2.35)

In a propositional calculus the only observables are known as the propesitions
p; € 2, which correspond to statements like “The particle is in region G,”
" and can be tested by experiments having only yes and no as possible outcomes.
The algebraic formulation represents the propositions as projection opera-
tors or, as above, the characteristic function of G for the statement just
mentioned. Algebraic operations are avoided in favor of lattice-theoretical
operations, which correspond to logical relationships and seem less burdened
with the problematics of measurement. Next one postulates a partial order-
ing for # with a maximal element 1 and a minimal element 0. In addition,
there are assumed to exist -

(l) inf{Pl»Pz,--npu}EplAPz’\"‘APm ‘ .
(“) sup{plv P2>- "'pu} EpPr.VDP2V -V Pps and
(i1i)) a complementation’: # -+ P suchthatp A p'=0,p" =p’,and p, = p, <>
Py S P>
From this it follows that (p, A p,) = p) v p3,and thusp v p’ = 1. The
connection with logic is that a larger proposition makes a weaker statement,
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i€, py < p, means thag p, = p,; and the proposition 1 is always true and 0
always false. Thus p; A p, (respectively p, v p,) is the weakest (strongest)
proposition that implies (is implied. by) both p, and p,. The pro.position
P A p’=0means that there are no true propositions that imply both p and p’;
a proposition can not be true at the same time as its complement. In
classical logic p' is the negation of p, p, A p, means both p, and p,,and P1 VP,
means either p, or p, {(or both).

From the algebraic point of view, 2 is the set of projections with the
ordering (2.2.16) and p’ = 1 — p. Classically, p; are the characteristic func-
tions of sets G, in phase-space (in which case p) corresponds to the comple-
mentary set CG,, p, A p, to the intersection, and p, v p, to the union,
of G, and G,). These facts can, of course, also be expressed in terms of alge-
braic operations, and in the noncommutative case the product of character-
isti¢ functions genetalizes to p; A p, = lim,_, p,(P2Py)

On Hilbert space #, the p, are projections onto subspaces 3#;, and p; are
projections onto the orthogonal subspacés ¢, p, A p, onto ¥, N X¥,,
and p, v p, onto the subspaces spanned by ), and J,.

Remarks (2.2. 36)

al. The algebraic realization of the propositidnal calculus will require the W*
property to make the lattice-theoretical operators properly definable.
All the projections then exist, as does the limit of the positive, decreasing

. sequence p,(p,p,)’, n —+ .

2. Characteristic functions x,;: R>I— 1, CI'-0, of observables are pro-
jections. x,(A) corresponds to the statement that some spectral valueae /
has been measured, and x,(A)’ means that the measured value is in CI.

3. In the commutative case the p, are realizable as characteristic functions x,,
and thedistributivelawp, A (p; v p3) = (py A P2) v (p; A p;)followsfrom’
the correspondence with the set-theoretical operations. They aré alge-
braically realized as follows: p; A py > xy X2, Pr V P2+ 2y + %2 ~
X1 X2, and the distributive law states that x, - (2 + X3 — X2 ¥3)=
X1X2 + XaXs = X1 X2* X1 - Xa- If py > p, for p, € B(HF), then p, ard p;
commute, and the distributive law holds on the propositional subcalculus
constructed from p,, p,, p}, and p3. However, it does not hold in general.

Example (2.2.37) . ’ o

With the Pauli spin matrices

0 1y/0 —-i\/t O .
N (I T T )

on ¥ = C?, we form the one-dimensional projections

1+0-n

Pa=—5 " ne®, (=1
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Their physical interpretation is the statement, “A measurement of @ in
the direction n definitely has the value 1.” For all n, # n,, p, A Pa, = 0.
Hence for different n;,

plx A (plj v pl;) = pl| A l = pI|’
but

(Pa, A Pay) V (Pu, A Pa)) =0V 0=0.

Hence, the classical conclusion: If the particle is in region G, and eitherin G,
or G, then it is either in G, and G, or in G, and G;, is invalid for non-
commuting observables. The proposition “The spin points in the direction
n; as well as in n,” is certainly false (p,, A p,, = 0). The complementary
statement is the tautology “The spin points in some direction,” and is the
most restrictive statement implied by both p,, and p,, (Pa, V Pa, = I). It
does not imply that one of the measurements of ¢ - n, or ¢ - n; yields the
value 1 with certainty, and thus p,, A (p,, v p,,) is to be read neither as
“The spin has the direction n, and a; or n;” nor as “ The spin has the direction
n; and mn, or n, and m;.” Therefore the classical distributive law fails in
quantum mechanics. 2

It turns out that, up to technical assumptions, any propositional calculus
in whith the distributive law holds on (py, p;, p}, p2) for p; 2 p, can be
represented as a calculus of projections on Hilbert space, and for this reason
the algebraic framework we have chosen seems to be the most appropriate
one for quantum mechanics.

Problems (2.2.38)

1. Show that the statement of (2.2.15; 2) is true.
2. Show that a *-homomorphism = of a C* algebra is continuous.

3. Show that multiplication is continuous (in both factors simultaneously) in a C*
algebra.

4. Prove (2.2.12;3).
5. Show that the statement of (2.2.15; 3) is true.

6. Consider a mixture of two states: Show that if w-= aw, + ({ —a)w,;, 0 <a <,
then (A,a)’ > 2(A. ** + (I — a)A,,a)?, and that equality holds iff wy(a) =
wy(a). IR NUEN

7. Show that the resolvent set 1s open and that the spectrum is not empty.
8. Prove the inequality of (2.2.20; 1).

9. Write the projection P, onto the subspace of /* spanned by he first n basis vectb;i as
i times the commutator of two Hermitian elements of #(/%). _

10. Find an example of 2 x 2 matrices for which 0 < a < b» a> < b% (Hint: a 2 0
ifa=a* Tra > 0,and Deta > 0.)
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11.

Let 0 < a < b. Show that (i) if a™! exists, then b~ < a™!; (ii) if In a exists, then
Ina < In b; and (iii) @’ < b" for 0 < y < 1. (Hint: Use

0 L4
bzazO:J. d,la(.l)(a+/1)“zf dAo(AXb + A)~' for 6>0.
4] ' (1]

It can even be shown that all functions f for which b > a > 0 implies f(b) < f(a)
are of this form.)

Solutions (2.2.39) N

1.

(@a—2)""'= —(1/2) 320 (a/2)", and the radius of convergence of this series is
exactly |z] = lim||a*||!/" = spr a (the spectral radius). It is always true that spra <
llall,and for normal a,spra = |afj because ||a’i| = lla|j?,etc. (cf. Corollaries (2.2.31; 1)
and (2.2.31; 2)).

. If (a — 2)~ ! exists, then so does (n(a) — z)~!, and consequently, by Problem 1,

(@)l < lla|l for Hermitian a, and in general [a(a)j® = fin(a*a)} < lla*all =
llali2. With the aid of Remark (2.2.17; 4), one can also argue as follows:

a*a < {ja})? - 1= n(a%a) < [ah*n(1) = fa(a)}* < llal*.

. |i(a + da)(b + 6b) — ab|| < ¢ for

ldall and |I6bll < (e + ((llaf + lll’ﬂ)ﬂ)’)”2 ~ (llalt + b2

. (@=68)"'=a'1-6-a") tea"!Y.(6-a'); this series converges for all &

with [j6)l < la”!|~*. The mappings a —+a®*a —aa®, a+a —a* a—+aa* - 1,

. a-a*a -1, and a - a® — a are continuous, and hence the inverse image of 0 is

closed in every case. The Gel'fand isomorphism allows positivity to be character-
ized by lall — [ {lal| =ali = Ofor Hermitian a(2.2.31; 3). This function is continuous
and thus the inverse imsdge of [0, o0) is likewise closed.

. Wtis trivial to see that Sp(a*) = Sp(a)*. Now suppose that P(a) — 1 = afli(a-4)

for 4, 4, and « € C. Then 1 € Sp(a) <> (P(a) — 4)~! does not exlstosome Ae Sp(a)

" A= P(i)e P(Sp(a))

aa‘=a‘a=l=||a||=||a"l|=l=>.Sp(a)C{zeC:|z|=l}.
a=a‘:m+|'l3eSp(a)¢va-0-'|'(ﬂ+/l)eSp(¢‘1+ﬁll):az + B+ A)?
< lla + id)? = {a% + A% < llaj? + A Jorall AeR=g=0.
a® —a=0a=a*:Sp(a® - a)=(Spa)* - (Spa) = 0,Sp(a) < {0, 1}.

If a = b*b, then the proof of the positivity of the spectrum is a bit more involved,
but it can be shown that it is possible to restrict to Hermitian b, for which positivity
follows from Sp b* = (Sp b)2. It follows from the Gel'fand isomorphism (2.2.28) that
the spectral properties of normal operators satisfy the various operator relationships,
since the corresponding facts for function algebras are obvious.

. (Awa)? — (A, a)" - (1 - a)A,,a)" = (x — a*)[wy(a) ~ wy(a)].
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. The resolvent set is open because of the convergence of

(@-2)""=(a—-2z)"Y (@-z2)"z - 2z)
n=0

for |z — zol < li(@a ~ zo)™ '~ "

If the resolvent sct were all of C, then (a — z)~! would be an operator-valued,
entire, bounded function, which would have to be constant by Liouville’s theorem
(cf. (7], IX.11).

. With the method of (2.1.29; 10) it can be shown that | f(a*h)|* < f(a*a)f(b*b).

Ifa > 0.then by (2.2.17: 2)and (2.2.31: 3) h*ab < llaib*b and f(b*ab) < ilal| f(b*b).
For arbitrary a, | f (bab*)|? < f(baa*b*)f(bb*) < laa*|| f(bb*)* = [lali*f(bb*)>.

Let

n-th position

e
0100

0
0 .. 0010
0 0 0 01

Then P, = [S,, S} = (i/2)[S, + S!, S, — SD].

S, =

\

o © O

. a > 0<> both eigenvalues > 0 <> the sum and product of the two eigenvalues >0,

ie, Tra > 0and Det a > 0. Now let

osa=(( )slt )on i

P A—ll
0

Det(b? — a?) = =1

= -(A-1P2<0=b*-d* 20

(i)0<a<b=0<b Mab V2 <1=1<b"a 'p"?=>b""' <a '
Gi) Inb—Ina=[SdA[(A +a)" — (A + b)),
(iii) {$dAA M@ +y) ' =const.-@”’ for O<y<l=a’2b""=a <P

2.3 Representations on Hilbert Space

Algebras of matrices are typical C* algebras, because any C* algebra
can be represented as an algebra of bounded operators on a Hilbert

space.

The concepts of linear functional and character are generalized in

Definition (2.3.1)

A

representation n of a C* algebra o is a *-homomorphism from & into

R(¥), that is, n(,a, + A,a,) = 4yn(a,) + A;7(a), n(a,a,) = ma,)n(a;),
and n(a*) = n(a)* for all ;e o and 4, € C. If n(a) # 0 whenever a # 0,
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then = is said to befaithful. Two representations n, and n, on ), and ), are
equivalent iff there exists an nsomorphlsm U: o, - #, such that n,(a) =
Un,(a)U ! forallae «.

Examples (2.3.2)

1. Matrix algebras represent themselves.

2. The continuous functions on a compact set K represent themselves as
multiplication operators on L2*(K,dyu) if one defines (n(a)p)x) =
a(x)p(x) foralla e of, ¢ € L?,and x € K. (||n(a)e]| < |all o).

Remarks (2.3.3)

1. It need not be required that n be continuous; it is automatically continuous
because of positivity (2.2.17;4):0 < a*a < |a||?-1 =0 < n(a*)n(g) <
lal?-1 = |i#(a)| < |laj. Note that [n(1)| =0 or 1, since [n(1)] =
In(1)*a(D)]l = I=(D]>

2. The kernel X =n"!(0) is a closed, two-sided ideal of «/. Faithfulness
of m means that ) = {0}, i.e.,, @ is injective. The positivity argument
of Remark 1 then also works for n~!: n(sf) - o, and therefore = is
faithful iff ||=(a)l| = |la|| for all ae of/. If o has no proper two-sided
ideals, it is said to be a simple algebra, and every nontrivial representation
is faithful. More generally, n is always a faithful representation of the
quotient algebra o//)¢. When topologized with the quotient norm,
defined as inf|la + b|| for be X, the representation of the quotient
algebra is faithful and forms a C* algebra [Bratelli and Robinson]. At any
rate, n(/) is itself a C* algebra, and hence it is a norm-closed subalgebra
of B(H).

Since n may fail to be either injective or surjective, the following termin-
ology for subalgebras of #() is convenient:

Definition (2.3.4)

Let 4 be a *-subalgebra of #(5¢). Then the *-subalgebra
={be B(H¥). ba=abforallae #}

13 its commutant.

M M = Z is its center.

If #4 < #',then 4 is Abelian.

If # = 4, then # is maximally Abelian.

If # = #", then # is a von Neumann algebra.
If 4’ = {A-1}, then .# is irreducible.

If = {A-1}, then #" is a factor.
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If 7 is a subspace of , then if 4 - ' 7, J is an invariant subspace;

if A - T isdensein o, J is a totalizer. If the totalizer 7 is one-dimensional,
then its vectors are said to be cyclic (with respect to .4).

Examples (2.3.5)

1.

Letting « and B take values in C or C3, some examples can be constructed
with the Pauli spin matrices (2.2.37):

() A={a-1+P-0}=4", # =2 = {a-1}). This is irreducible,
a factor, and non-Abelian. Every vector is cyclic, and there are no
invariant proper subspaces.

(i) # ={a-1+ Po,} =", A = K& = 2. This is reducnble, not a
factor, and maximally Abelian. (§) is cyclic only if a and b.are both
different from zero, while (§) and (2) are invariant subspacw

Gii) # ={a-1} =2 =4", H ={a-1+ P-6}. This is reducible,
a factor, and Abelian. There are no cyclic vectors, and every subspace
is invariant.

. L®(R, dx), considered as multiplication operators on L2%(R,dx), is

maximally Abelian. Every function in L? that is nonzero a.e. is a cyclic
vector. Functions that vanish on some interval ] c R are invariant
subspaces. L® is reducible, and not a factor.

Remarks (2.3.6)

L

The following thrée conditions for 1rreduc1b1hty are equivalent
(Problem 1):

G # =41
(ii) Every nonzero vector is cyclic.
(iii) There are no invariant proper subspaces.

. The direct sum n, @ =, and tensor product n; @ n, of two representa-

tions =, and =, are defined as for finite-dimensional spaces: If x = x, @
X, €, @ N, = H (respectively x, @ x, € ) ; ® ¥, = )), then

n(a)x = m,(a)x, @ my(a)x, = (respectively n(a)x, ® '”b(a)xz)

Sums of representations are reducible, and the X are mvanant subspaoes
The commutant obviously has the properties: ~

AN DO M=>Nc i,

(i) #" > H; o
Gii) (M N"AN)YDOMON',(MONY DM N..
Theseimply that 4" = #',since (A") = H' < (A')". It turns out that 4"
is the closure of . in both the strong and the weak topology (Problem 4).
Strongly closed *-subalgebras of #(¢) are the von Neumann algebras, and
a theorem of Vigier (Problem 11) states that they have the properties of
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Definition (2.2.22), i.e, they are W* algebras. Note that # N ' =
Al=>H VM =AY 4N H"={A-1}"=2-1, $0 that for a fac-
tor the center of 4" is trivial.

4. For finite-dimensional spaces, # = .#”,and .4 is

irreducible iff = #(C");
a factor iff = #(CN ® 1; _
Abelian iff all a € of are simultaneously diagonal; and

maximally Abelian iff to each pair of diagonal positions in the diagonal
representation there exist elements with different eigenvalues.

5. If A4 contains a maximally Abelian subalgebra A", then #' < A" =
AN < M,s0 Z = A In this case, being a factor is equivalent to being
irreducible, though in general irreducibility implies being a factor but
not vice versa.

6. # Abelian implies .# = 2, so Abelian factors have the trivial form
A-1

7. If a(sf) is reducible, then s = s* e (), s # A-1 is said to induce a
superselectian rule. The Hilbert space decomposes into subspaces that
are not connected by observables, and there exists a Hermitian operator s
that assigns different quantum numbers to the various invariant subspaces.
If n(o#) is a factor, then s does not belong to n(s/), and it is consequently
not an observable, but rather a kind of hidden variable. There is no
maximally Abelian subalgebra of n(d) because s could always be added
to any subalgebra.

In any representation =, every vector x € ), ||x[| = 1, produces a state
a - {(x|n(a)x), a € . We shall next show that, conversely, for every state
there is a representation in which it is of this form. Since algebras have a
linear structure, any a € & can be represented as an operator on a linear
space, namely the algebra itself, by b — ab, b € o. For a C* algebra, this
linear space will only be a Banach space, but a state provides the scalar
product needed to make the space a Hilbert space.

Lemma (2.3.7)

If w is a state, then & = {a € o :w(a*a) = 0}.is a closed, left ideal. The
scalar product (bla) = w(b*a) makes the quotient space A/ A a pre-Hilbert
space, and the canonical mapping sf — /A is a confinuous linear mapping
of o (as a Banach space) onto /[ A" (as a pre-Hilbert space).

Proof

That A is a left ideal follows from (2.2.20; 1), as w(a*b*ba) < ||b*b]|w(a*a),
and closure follows from continuity. The scalar product |} on /A
satisfies Postulates (2.1.7), and |(b|a)| = |w(b*a)] < |ib] llall guarantees
that the mapping is continuous. a
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Remarks (2.3.8)

1. Since |w(a)|* < w(a*a), the ideal & = Ker w = {a € of: w(a) = 0}. Thus,
in Example (2.3.5; 1) with w(-) = (§)(-)(¢), # = {(§ §)} and Ker w =
{3 D)o pyeC.

2. Despite the norm-completeness of &, the quotient <f/ 4" may fail to be a
Hilbert space. For example, let o be the continuous functions in x € [0, 1]
and w(a) = [} dx a(x); then & = {0}, but & is strictly smaller than its
completion L%([0, 1], dx).

3. Given the product of two algebras o and @, i.e, each element of the
product algebra is a linear combination of a;b; = b;a,, a, € o/, b; € B, the
Hilbert space constructed from a product state is the tensor product of
the two Hilbert spaces gotten from o/ and 4.

Definition (2.3.9)

The Gel’fand-Naimark—-Segal (GNS) representation n,, of &/ on #(5¢°), where
X is the completion of &f/A, corresponding to any state w is defined as the
continuous extension of n(a): b — ab,a € o, b € /A to all of H#.

Remarks (2.3.10)

1. The elements of &//A" are equivalence classes of objects of the form
b + n,ne A, though the mapping n,(a) is independent of the representa-
tive b, since A" is a left ideal (an € A").

2. The general fact about continuity (2.2.20; 1) can be seen directly: | n, (@)l =
SUD,pm=1 (W(b*a*ab))!’? < |la*al|’’? = ||a||. Hence =,(a) is a continuous
operator on &f/ 4", and has a unique extension to .

3. Ker n, = {a € of: w(b*ac) = Oforall b, c € o} is aclosed, two-sided ideal
contained in A", It reduces to {0} in the example of (2.3.8; 1), which shows
that the GNS representation may be faithful even if A~ # {0}. The
logical interrelationships are depicted below:

Ker w = linear space: wa) =0

A4~ = left ideal: w(a*a) =0

Ker n, = two-sided ideal: w(bac) = 0
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4. The vector corresponding to 1 € /A4 is cyclic.

5. m, is irreducible iff w is pure (Problem 2).

6. If, conversely, we have a representation n with a cyclic vector €, then it
defines a state w(a) = (Q[n(a)Q), and =,, is then equivalent to m. By the
axiom of choice, every representation is a sum of representations with a
cyclic vector.

7. Since for all a € o there is a state such that w(a*a) = |al?, it is always
possible to construct a faithful representation of any C* algebra, by taking
the sum of the representations for all possible w.

8. As we have seen, each vector Q in the Hilbert space corresponds to a pure
state, which corresponds to a ray in Hilbert space, i.e., {“€, « € R}. In
wave-mechanics, this fact shows up as the principle of superposition,
which states that the vector Q= a,Q, + a,Q,, |a,|> + |a,* =1
describes the quantum-mechanical superposition of the states Q, and Q,.
Yet Q contains information not contained in 2, and Q, taken separately,
namely the relative phase of the vectors Q, and Q,.

In order to study the form of the representation of Hermitian element a
in more detail, consider the restriction to the C* algebra generated by a.
By the axiom of choice, we can choose b; € J# such that ), = the comple-
tions of the sets of linear combinations of a"b;, n = 0, 1,... span all of .
Each 5, provides a representation of the (Abelian) C* algebra generated by
a, and has b, as a cyclic vector. By Corollary (2.2.31; 5), to the state

w;:wia") = <{b;|a"b;>

there corresponds a measure y; on Sp(a) such that wy(¢(a)) = | du(®)e(a).
Taking the norm-closure of the polynomials ngxt extends this to all con-
tinuous functions ¢ € C(Sp(a)); then the completibn with the w, norm extends
this to o#¢; = L2(Sp(a), du), on which n(a) acts as the multiplication operator
@(a) - a@(a), @ € Sp(a), @ € L*(Sp(a), du). The use of this notation yields

The Spectral Theorem (2.3.11)

For any given Hermitian element a € o/, every representation of & is equivalent
to a representation ¥ = @ X;, for which X¥;= L*(Sp(a), du;) and
n(a) \x,: (@) — ap(a). In this representation, a acts as a multiplication
operator.

Remarks (2.3.12)

1. Theorem (2.3.11) generalizes the statement that any finite-dimensional
Hermitian matrix is diagonable with a unitary transformation. Of course,
not all Hermitian elements of & are multiplication operators in this
representation unless o is Abelian.-

v
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2. Although we made use of the GNS representation, by Remark (2.3.10; 6),
the argument leading to (2.3.11) works just as well with any specified
representation.

3. Theorem (2.3.11) shows that any Hermitian operator of #(J#) can be
transformed unitarily into a multiplication operator.

4. The scaling ¢ —2"%¢ is an isomorphism L*(Sp(a), du,) - L*(Sp(a),
27" dy,); and hence S is also isomorphic to @@=, L*(Sp(a), 2™ " du,)
(assuming J¥ is separable). Furthermore, since the u, are probability
measures, ¥ is also isomorphic to L? of a finite measure space. Incident-
ally, this shows that the u, are not in any way fixed uniquely.

5. Theonly fact that has been used so far is that the algebra generated by a and

‘a* is commutative, so all the same statements can be made for normal
operators, except that Sp(a) would not be real, but just some subset of C.
If there are m mutually commuting operators a; = a}, then they can be
represented simultaneously as multiplication operators on L(R™, dpu).

Examples (2.3.13)

I. A Hermitiann x nmatrix a with eigenvalues ;. The space C" is isometric
to L¥(R, dy) with du(a) = Y., 6(a — a)da, (wlv) = Yiay who,,,

n
(wlav) = Y wayu,,.
(=1

2. (=0, ) = {(v,): ~0 < n < o}, where (av), =v,,, + v, is a
Hermitian operator € #(/?). In order to rewrite it as a multiplication
operator, map /*(— o0, o) onto L*([ —n, n], dx) by (v,) = ¥ 2 _ , v,€™;
then a becomes multiplication by e'* + e~** = 2 cos x. Next write

Lz([— n, 7[], dX) = Lz([-n’ 0]: dX) @ Lz([o’ 7[], dx)

and introduce the new variable n = 2 cos x, to make this isomorphic to

LY([-2,2)}, dy//4 — n*) @ L*([ -2, 2], dn/\/4 — n*). On this space a

has become the multiplication operator #.

We have found a representation on L%(Sp(a), du) of the C* algebra
generated by a, for which each element of the algebra corresponds to multi-
plication by a continuous function on Sp(a). The algebra does not, however,
account for all multiplication operators on L2(Sp(a), du), as they constitute
the much larger space L*(Sp(a), du) (Problem 5). Problem 4 shows that this
space is obtained by strong closure and also has a purely algebraic character-
ization, as the bicommutant n(a)”. By taking strong limits one obtains a
representation in which it is possible to describe the operator f(a) for f € L®
more explicitly.
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Once we know all the integrable functions of a Hermitian operator, and
in particular the characteristic functions, the explicit form of the operator
f(a) can be written down in terms of the

Spectral Family (2.3.14)

An element a = a* € of can be written as

a= J: dP,,(a)a, Pa(a) = O(a - a)9 e(x) = {(l), loj;;engfe

and given any f € L™,

s@= [ ar s

The set of projection operators P (a) is known as the spectral family of a.

Remark (2.3.15)

The construction of (2.3.14) is a generalization of the Stieltjes integral to the
case of operators. Just as for functions, it is defined as the limit of the sums

a= lim jzluau{ '[9(" "27*") 9( I;"HU_I))]
- fi[o(a+ ) - o(a+ S a- )]}

Vigier’s theorem (Problem 11) guarantees the existence of the strong limit,
since the sums are a bounded, increasing sequence of operators.

There are many different ways to classify the spectra of Hermitian opera-
tors. The classification we shall make uses the Lebesgue decomposition of a
measure on R; any measure is the sum of a part du,. = f(x)da, f > 0 and
locally integrable, which is absolutely continuous with respect to Lebesgue
measure da; a part du, concentrated on some separate points, du, =
da Z,, c,8(a — a,), @, € R; and a remainder dy,, the singular spectrum [2].
This last part is somewhat pathological (Problem 7) and will not occur in
any of our applications (though there exist one-electron band models with
du,). Each of the three pieces of the measure is concentrated on null sets with
respect to the others, and there is an orthogonal decomposition of L*(R, du)as

Lz(Ry d#) = Lz(Ra d"p) & LZ(R’ d“u) ® LZ(R9 d“s)

(Problem 6). By making the same decomposition of all the dy; of (2.3.11),
one can decompose the space # according to the properties of any normal
operator a into orthogonal subspaces invariant under a:
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Definition (2.3.16)

If the Hilbert space is decomposed as
N = fp @ '#at @ m’

as in Remark (2.3.15) for some normal g, then the point spectrum, absolutely
continuous spectrum, and singular spectrum of g are defined by the restrictions
of a to the subspaces,

o,(a) = Sp(ajwe, ), 0.(a) = Sp(ae,.)

and

as(a) = Sp(ajr).

Examples (2.3.17)

1. For the finite matrices (2.3.13; 1), du is a pure point measure, and ), =
#, = {0}, Sp(a) = 0,(a). |

2. Let a be multiplication by a on L?([0, 1], da). Then ), = ¥, = {0},
and Sp(a) = a,(a).

Remarks (2.3.18)

1. #, is the space spanned by the eigenvectors. To see this, consider
Y€ LA(R, du,) as above, so that y,(a,) = 1, but y,(a) = O for other a.
In 5%, Y.l = 1, but single-point sets have measure zero with respect to
du,. and dp,, §dpyal? = [ dpuly,l? = 0. Therefore y,€ ¥,, and
ay, = a,y¥,. The vectors y, form a basis for 5.

2. It is a natural question whether the decomposition of (2.3.16) depends on
the choice of 4, in (2.3.11). In fact the y; are unique up to the equivalence
relation yg; — y; f(a), f > 0and locally integrable, and equivalent measures
effect the same decomposition of X,

3. The sets 6,, 0,., 0, are closed, though they need not be disjoint, nor does
the Lebesgue measure of 6, or of g, have to be zero. Suppose, for example,
that a, is a numbering of the rational numbers between 0 and 1, and & =
L*([0, 1],da ), 8(x — a,)), and let a be the operator of multiplication by a.
Then # = &, and o, = [0, 1], because the spectrum is closed, but
almost no point of g, is an eigenvalue. (Le., the irrational points vastly
outnumber the rationals.) Many authors define g, as just as the set of
eigenvalues, which case 6, U a,. U o, may be different from Sp(a).

4. Theessential spectrum o, comprises all points of Sp(a) other than isolated
points of finite multiplicity, that is, having a finite-dimensional eigen-
space. There is no essential spectrum on a finite-dimensional space, but
in the infinite case every bounded Hermitian element has an essential
spectrum.
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5. Although there may not exist eigenvectors for every point a of g.,,, the
spectral representation contains sequences of functions that are more
and more spectrally concentrated near a. This idea can be used to prove
the following theorem: For all a = a* and o € Sp(a), there exists a
sequence {Yntoe1, W, =1, such that lim,., (@ — o)y, =0. ae
Ocs(a) <> there exists such a set of orthogonal vectors, or, equivalently, a set
of Y, that — 0.

The sum of the eigenvalues of a diagonable n x n matrix m is given by the
trace

n
Trm= _Zl<eilme,-), Ceile;y = 6.

i=
The trace is a unitary invariant, and hence independent of the basis {e;}.
If one attempts to define the trace of an element a € &/ in some representation,
the essential spectrum causes trouble. If the space is infinite-dimensional,
then the question of whether Y ; converges must first be grappled with. One
problem is that convergence in one basis does not necessarily imply con-
vergence in another, even if the eigenvalues tend to zero. For example, if
ae B(%)is

[0 1
1 0
0 3
a= } 0 )
0 4
10
then it has the absolutely convergent trace Y 2, |a;| = 0. Yet in a different
basis a has the form
[1 0 ]
0o -1
i 0
a= 0 -4 ,
4 0
U
L ' b

and Y, a; is only conditionally convergent, which means that it can be
rearranged (equivalent to a change of basis) so as to sum to any value
whatsoever, or to diverge. This lack of definition is avoided if the operator
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is positive. In that case the worst possibility is divergence, but aside from that
the sum has all the ordinary

Properties of the Trace (2.3.19)

The mapping m —» Trm = Y, e,|me,), fof {eile;> = by, sends the positive
=3
operators to R”, and for m; > 0,
(i) Tl‘(alml + azmz) = al Tr ml + az Tl‘ mz, a‘ € R+,
(ii) Tr U™ 'mU = Tr m, U unitary,
(lil) m, < m,; = Tr m, < Tr m,.
If my is not necessarily positive, but Tr {m;| < co, where |m| = (m*m)'/?,
then (i) and (ii) are still true, and moreover
@iv) Trim; + my| < Tr|m| + Tr|m,|,
(V) (Trimym,1)? < Trim,|* Trim,|?,
(vi) Tr ma = Tr am for all a € B(¥).

Proof

Properties (i) and (iii) are trivial. For the others, see Problem 10. (]

Remarks (2.3.20)

1. The unitary invariance (ii) implies that the definition is independent of the
choice of basis provided that Tr|m| < co.

2. On an infinite-dimensional space, the trace is an unbounded, positive
linear functional. This does not contradict Remark (2.2.20; 1), since the
trace is not finite on a whole C* algebra; for instance, Tr 1 = co.

3. For Property (iv) it was not necessary to assume that Tr |a| < oo, since
|Tr am| < {lalTr {m|. This can be shown most conveniently with a
polar decomposition m = V|m| (see [3], VIIL.9), where

VeV = |m|~ ! m|*[m|™!

is the projection onto the space perpendicular to the null space of |m|,
so | Vx| < |Ix]|l for all x € #, and

ITram| = |} C(Im|'?e;|aVIm|'?e)
i
<Y lall [l Im|'?ell* = llallTr [m|.
i
4. Most trace inequalities valid for finite-dimensional matrices can be
carried over to general Hilbert spaces, as will be discussed in the fourth

volume.t

t+ Quantum Mechanics of Large Systems.



2.3 Representations on Hilbert Space 49

S. The trace has several technical advantages over the operator norm,
which is only pasy to work with in the spectral representation. Suppose
K € L¥[R" x R", d"x d"x") is the kernel of a bounded integral operator on
LY(R", d"x), Y(x) = | K(x, xW(x")d"x". Its norm is difficult to compute,
while Tr K*K = | d"x d"x’ K*(x, x)K(x/, x), as can be seen by writing
the operator in a basis,

K(x, x) = ¥, K;jef(x)efx),
ij

TrK*K = Y KK, = f d"x d"x' K*(x, x')K(x', x).
ij

Since Tr|m| has the properties of a norm (2.1.4) by Property (2.3.19(iv)),
it is interesting to set the operators of finite trace aside in a separate category.
They bear a close resemblance to finite matrices.

Definition (2.3.21)

Let & « B() be the space of operators of finite rank, i.e., which map »# to a
finite-dimensional space. The completions of & in the norms [lal|, = Tr|al,
flali3 = Tr a*a, and lall, = |lall are denoted €, the trace class operators;
€, , the Hilbert—Schmidt operators; and %, the compact, or completely con-
tinuous , operators.

Examples (2.3.22)

In #(/?), the matrices with only finitely many nonzero rows or columns
belong to £. Diagonal matrices with eigenvalues «; belong to ¢, provided that
Yilayl < o3 to €, provided that Y ;j;}* < oo; and to € provided that
lim;.,a; =0

Remarks (2.3.23)

1. It follows from (2.3.19) that the || |/, are norms. By Remark (2.3.18; 5),
it is necessary to have g, = {0} for the trace to be finite, so the spectrum
is purely discrete. If a; > O are the eigenvalues of (a*a)'?, then we con-
clude from ¥, 0? < Y, ¢, Y a;that | |, < || l,forp >g,p,q=1,2,c0.
Hence a Cauchy sequence in || ||, is alsoonein || |, forp > g, so we have
the inclusions

Ecé,c€,c€cBOX)

2. Let a be an operator such that [lall, < oo (resp. |lall; < o) and «; are
the eigenvalues of (a*a)'/2. The truncated operators ay = PyaPy, where
Py is the projection onto the first N basis vectors, obviously belong to &
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and converge to a in the || [[, (resp. || [|;) norm. Hence the sets €, and
%, contain all operators with finite || ||, and respectively || ||, norm.
However, € is not all of B(5¢): |la|| is equal to sup;|a;|, and in this norm it
does not generally suffice to have |ja|| < oo for ay to converge in norm
to a. (A simple counterexample is a = 1.) The correspondence with the /?
spaces is: I = €; I' = €,; P = €,;1° > B(K).

. &isatwo-sided ideal of #(5¢), and this is also a property of its completions
%, since [labll, < min(llal [Ibll,, bl lall,), p = 1, 2, co.

. The essential spectrum of any operator of & is {0}. This property carries
over to all of ¥, and is a distinguishing characteristic of self-adjoint,
compact operators (Problem 9).

. An operator a € &€ sends a bounded set 4 € J to a finite-dimensional,
bounded sét, which is necessarily relatively compact. The image of a
bounded set remains relatively compact when one passes to the norm-
completion: any ¢ € € can be wr.tten as a + J, where a € & and for any
e> 0,6l < e/sup, g llvll,and c¥ is the relatively compact set a¥ added to
a set of diameter less than ¢. Relative compactness means that for any ¢
there exists a finite convering with balls of diameter less than ¢, and this is
also true of the image of ¥ under ¢ € €. This fact is the origin of the no-
menclature for €: compact operators carry bounded sets into relatively
compact sets.

. Completion of & in the strong topology yields all of 8(¢) (Problem 8),
but the strong topology is not strong enough for Properties (iv) and (v)
to car cver to #(X).

. B(X¥, .. not a separable topological space (see (2.1.29; 1)) while € is
separable when J is a separable Hilbert space. .

. The sets ¥, can be defined for

1<p<oo as {ae¥:|al, = (Tr(a*a)’?)'? < co}.

The %, are complete, normed algebras with Il 1, but are not C* algebras
(see (2.2.11; 2)). € is one, and B(H¥) is even a W*-algebra.

Problems (2.3.24)

1. Show that the three conditions of Remark (2.3.6; 1) are equivalent under the re-
striction that in Condition (iii) the word *‘subspace™ should be understood as
“closed subspace.”

2. Show that w is pure iff n,, is irreducible. (Hints: (i) w is pure iff for every positive
linear functional w, such that w; < w, w; = Aw for some A€ (0, 1]; and (ii) if
w, < w, then there exists a positive operator 1, € 7,(&f), with0 < 1o < 1, such that

w(b*a) = (n(b)Q)ton,(a)2).)
3. Show that Ker n, = {a: w(b*a*ab) = O for all be o}.
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4. Let o/(31) be a C* algebra of operators in #(J¥). Show that &” is both the weak
and the strong closure of «f. This is known as von Neumann's density theorem.
(The argument for why o/ “ is contained in the strong closure of & proceeds by the
following steps:

(i) Let x € o#. The projection P onto the closure of {ax: a € o/} belongs to ="

(ii) Let be o”. Then PJ#¥ is stable under b, and thus for all ¢ > 0 there exists an
a € o such that |bx — ax| < e.

(iit) It remains to be shown that finite intersections of neighborhoods of b of the
kind considered in step (ii) with various x; also contain elements of the strong
closure of o. To do this, take n nonzero vectors x,. x,, ..., x,, and consider the
representationnof L on ¥ @ ¥ @ --- @ K, Foranya, n(a) =a®@a®---
@ a. which is known as the amplification of a. n(b) € {n(a)}", and the same
argument as before, with x = x; @ x, @ - - - @x,, shows that there exists an
a€ .o such that Y7, (b — a)x;li* < €%)

S. Show that the strong closure of the operators acting on L%(R", d"x) by multiplica-
tion by continuous functions is L*. (Hint: If f € L=, consider the continuous
functions (p*fXx) = [ d"x’ p(x — x) f(x’) for p continuous and | p d"x = 1, and
then let p approach a delta function.)

. Show that the sum in (2.3.16) is orthogonal.
. Construct an operator with a purely singular continuous spectrum.

. Show that & is strongly dense in #(°). (Use the fact that every vector is cyclic for §.)

o 0 N

. Show that compactness of a Hermitian operator on an infinite-dimensional Hilbe.t
space is equivalent to: o, = 0, = (¥ and 6, = {0}.

10. Prove Properties (2 3.19).

11. Prove Vigier's Theorem: Every bounded, increasing filter F of operators has a
supremum s, i.e., there exists an operator s such that a < s for alla € F,and a < s’ for
allae F = s < s". The supremum s is unique and belongs to the strong closure of F.

Solutions (2.3.25)

1. (iii) = (i1): Suppose x #°'0. The closed subspace spanned by n(a)x, for a € &, is
stable for all n(a), and therefore identical to all of )¢.
(i1) = (ii1): Let »¥” be a nontrivial, closed, invariant subspace of # and let x € .
Since n(a)x € " for all a € of, ¥ ' must be dense, so K = K.
(1) = (ii): Let )¥' < X be stable and P be the projection onto . Then Pn(a)P =
n(a)P for all a€ &, so Pa(a*)P = n(a*)P for all a € &, which implies Pn(a) =
n(a)P, since n(a*) = n(a)*. Butthen P =0or L
(iii) = (i): If a € n(#), then a* € n(.of), and likewise for b =a + a* and ¢ =
i(a — a*). Hence all the spectral projections of b and ¢ also belong to n(./). This
means that a is a multiple of the identity, since every projection in n(<f)" defines a
stable, closed subspace.
Remark: It is also possible to show that for C* algebras conditions (i)-(iii) are
equivalent to algebraic irreducibility: The only invariant, closed or unclosed
subspaces are {0} and .»¥.
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Proof of Lemma (i): w is pure iff every w, < w is of the form Aw.

=: w=(w/w,(D)w (1) + (W — w)/(1 = wy(1)))(1 — w,(1)) is a convex com-
bination of two states unless w, = Aw. .

<:wisnotpureiffw = ow, + (1 — a)w,, Aw # w, S w.

Proof of Lemma (ii): The mapping (n,(b), ®.(a)) = w,(b*a) has a u\ique continuous
extension to a positive bilinear form on # x X, bounded by 1. Hence there exists an
operator t,, 0 < 1y < I, such that w,(b*a) = {n,(b)Q|t,n,(a)2). (This is a direct
corollary of the Riesz-Fréchet theorem (2.1.17), and is often referred to as the
Lax-Milgram theorem). The substitution a — ca yields

(mbtom (c)n, (@)D = w,(b*ca) = w,((c*b)*a)
={n,(c)*n,(b)RQUton,(a)2) = {(m,(b)Qn,(c)*ton,(a)) foralla,be S
= [to, n,(c)] = O0for all ce o = ty€n(H).

Proof of the theorem:

=: Let P be a projection operator € n,.(«/)". The mapping a = (PQ2|n(a)PQ) is a
positive linear functional <w, so (PQ|n (a)PQ) = A{Q|n (a)?), and if a is
replaced with b*a, then (Pn (b)Q|n (a)Q) = (An (b)Q|n,(a)2), which implies
that P = 4- 1, since Qis cyclic, and thus P = Q or 1.

<: Suppose 0 < w; <w. Then w,(a) = (Q|tyn,.(a)2) = AQ|n (a)), since
n.(&) consists only of scalars.

. w(b*ac) = O for all b, c € of = w(b*a*ab) = O for all b, using the substitution b* —

b*a*, ¢ — b. Conversely, w(b*a*ab) = Ofor all b = [w(b*ac)|* < w(b*b)- w(c*a*ac),
so w(b*ac) = 0.

Since multiplication is continuous in one factor in any topology, it is easy to see that
the strong closure of .o/, which is contained in the weak closure of ¢, is contained in
&". Thus it suffices to show that o < the strong closure of .

(i) Let ¥ = {ax:a = a*e A}. aX < X = aX < X, where X is the closure
of ¥ .Forany X € ), PaPx = aPx = aP = PaP = (PaP)* = Pa= [a,P]=0.

(ii) bPh=bP = Pb=>b ¥ <« X = bxe X. )
(i1i) Operators ton ¥ @ - - - @ X can be considered as matrices (t;;) the entries of
which belong to #(5), in which case (n(a)), = ady. ([t, n(a@)))ix = tua —
at;, . ie., {n(a)}’ consists of all ¢ such that ¢,, € o', and therefore n(b) € {n(a)}".

. Sinee’f and p‘f are bounded, it suffices to show that [[(f — p*f)¢ll; — O for the

dense set of ¢ € L® and of compact support K. On K, fis also € L2, and

IS = el < llellollf = P2

In Fourter-transformed space, ||f — p*f I3 = | dk| f(k)I*|1 = p(k)|> =0 if p(k)
tends monotonically to 1.

. Let a = | dP (a)a. To each vector x we can associate a measure du, = d{x|Py(a)x)

and construct ¥,. = {x:du, is absolutely continuous with respect to da} and
X, = {x:dp, is singular with respect to da}. These two subspaces are orthogonal:
Suppose x € ), and y € )#;; then there is a set M of Lebesgue measure zero on
which dy, is concentrated. With the notation P(M) = fudPJ@), (1 — P(M))y =0,
andso {x|y) = (x|P(M)y) = (P(M)x|y)> = 0. Now consider arbitrary x € #;du,
can be decomposed into a singular and an absolutely continuous part: du, =
di, + du’ . (Lebesgue decomposition;see[l, 13.18.7).) Therefore there exists another



2.3 Representations on Hilbert Space 53

set M of Lebesgue measure zero, on which dy is concentrated, and thus P(M)x € 5,
and (1 — P(M))x€ .. Since ¥, L ¥, and K, + K, =K, ¥ = K, D K,..
It is’ obvious that X, < H;and #, < #, On the other hand, if x € #; © ¥,
then x € J,,and the same argument as before shows that J#; = ¢, @ ¥#,.

7. Let f be the Cantor function. defined as follows: The Cantor set € in [0, 1] is the
complementof (4, ) U (4, 3) U 3, §) U (4, ) U ---. It is a closed set of Lebesgue
measure zero. Now let f = } on (4, ). § on (. $), 3 on (3, §), etc. (see figure below).
The function f increases monotonically and has a unique extension to a con-
tinuous function. Let a be the multiplication operator on »# = L({0, 1], d/)
defined by @(x) = x¢@(x). Then P (a)# = {¢:¢(x) =0 for x > a}, and if M =
[0, 1], then

1Pl = | o0t df
M
In particular, |P(%)ell2 = |lell%, and hence ), = {0}. The point spectrum is
empty, since f has no discontinuities, so [, ,-.,Iq;(x)l2 df = 0 when the integral is over

any one-point set {A}.

1 ¥ .

e
~
9
.
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.
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8. Let x and y € o#. The operator a: v — {x|v)y, which maps x to y, is of finite rank
and therefore compact. Thus every vector is cyclic for the compact operators.
Consequently, the compact operators forman irreducible C* algebra and are strongly
dense in #() by von Neumann’s density theorem.

9. g, © 0, and o,  d.,. It is not possible for each set to consist of one isolated
point, s0 ., = {0} implies 7, = 6, = &. Now let a be compact and 4 € o,,,(a). There
exists an orthonormal system {¢,} such that ji(@ — A)y,I = 0. The operator a
sends the bounded set {,} to a compact set, and hence {ay,} contains a strongly
convergent subsequence {ay,,}. This implies that A = 0, since no subsequence of
{,} isstrongly convergent.

0.s(a) = {0}: Let P, = P(c) — P,(—¢). Thendim(1 — P,) is finite for all ¢ > O,
s0 a, = [Z¥"dP(a)a + [, dP(a) is of finite rank, and a fortiori compact. Since
la — a,ll < 1/n,aiscompact.

10. (i) Tra=Y <elae) =Y lla"el? =Y ¥ (Uela'e)? = ;;I(qua“’em’
i i i A

(since all summands are nonnegative), which = Y, la'/?Ue, || = Tr U*aU.
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(iv) With the polar decompositions,
my + my = Ulm + m,l, my; = Vim,|, my; = Wim,|,

Trim; + my| = Z {ei|U*(my + my)e,) < Z (I<efU*VImy e |
X X

+ e | U*W myle>]) < Trimy| + Trim,|.

For the final step, choose the ¢, as the eigenvectors of {m, {and |m, |,and observe
that {|[V*Ue| < 1.

(v) The trace is a positive linear functional on the n x n matrices, and (v) holds for
matrices by (2.2.20; 1). Since each m; € €, can be written as a finite matrix
plus something of arbitrarily small | |, norm, (v) holds for all of €, by Remark
(2.3.20; 3): It can first be extended to m, € & and m, € €,, and then to both
m, €%,

(vi) This follows from (ii), because any a € #(5) 1s a linear combination of two
Hermitian elements, each of which is in turn a linear combination of the positive
elements |a| + a or of the unitary elements llall ~*[a % i(lla]l> — a?)*/?].

11. F1s weakly relatively compact, and hence the set (), f {b € F:b > a}*** is not
empty, but must contain at least one element s. This s > a for all a € F***, since
the weak topology can be defined with the seminorm {x|-x), and thus the weak
closure preserves the ordering. If the set (), -- - contained two elements s, # s,,
then there would exist some x € J# such that |(x|s,x) — (x|s;x)| = € > 0, as well
as a,, a, € F such that |(x]|s;x) — (x|a;x)| < &/2, i = 1, 2. But then there would
exist some c € F:¢ > g, and ¢ 2 a,, so that ¢ = [(x]|s;x) — (x|s;x)| < |(x]s;x) —
(x]ex)f + |(x]s2x) — (xlex)| < &/2 + €¢/2 = ¢, which leads to a contradiction.
The« remum s e F*"°¢ by the inequality

((b — a)x|(b — a)x) = ((b — @)'"*x|(b ~ a)**x) < (x|(b — a)x)"*?- |Ix| ib] >,

forallb>a>0.5 >aforallae F=s > a'foralla € F** which = s > s.

2.4 One-Parameter Groups

Just as in classical mechanics, quantum-mechanical time-evolution is
a one-parameter group. The group has a weaker sort of continuity than
norm-continuity, which shows up in the unboundedness of the gener-
ators.

The dynamics of a closed system can be described quantum-mechanically

by an equation of the form
d

/=4 (24.1)

where q is a time-independent operator. In this section we investigate the
circumstances under which the formal solution,

J@W=Uf0), U, =expla), (242)
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can be made sense of. In the applications f will be an element of a Banach
space on which a acts linearly. From (2.4.2) we can abstract certain de-
siderata for an actual solution:

Definition (2.4.3) .
A mapping R* — #(E):t - U,, is a one-parameter semigroup of operators
on the Banach space E iff

() Uysr,=U, -U,forallt,, t, >0,
(i) Uy = 1.

If |U,l <1 (respectively ||U,| = 1), then we speak of semigroups of
contractions (respectively isometries). If (i) and (ii) hold for all t € R for a
mapping R — %(E), then the semigroup is a group.

Remarks (2.4.49)

1. Since U,,U,, = U,,4,, = U,, U,,, all operators of a semigroup commute.

2. Groups of contractions are groups of isometries, since by definition
NUM < 1 forall teR, while | = [|[UU_J| < (UNl-fU_ll = (Ul > 1,
so |U,ll = 1. On a Hilbert space, isometric groups are unitary groups.
since for all x € ),

lxll = U~ 'Ux|l < 1Ux|l < llx}.

so U and U ! are both isometric <> U is unitary.

3. It is advisable to impose some continuity requirement on the mapping
R* — #(E), as some crazy functions R — R are known which are linear
but discontinuous. It only takes the weak topology on #(E) to guarantee
that the norms are uniformly bounded on an interval (Problem 1):
SUpo <4 lU I = M < co. It then follows from the group property that

Ul < M”forallt >0,
so we may restrict ourselves to the study of the contractions U, M ~*.

The strongest continuity property to require is that of the norm topology
on A(E). It infact implies analyticity.

Theorem (2.4.5)

For a semigroup, the following are equivalent:
(i) U, is norm-continuous;
@ii) lim, .o (U, — 1|| = 0;
(iii) 3a € A(E), such that lim,_ ¢ |[(1/tXU, — 1) — a|l = 0;
(iv) U, = Y20 a'(t"/n)).
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Because of (iv), we write U, = exp(at). The semigroup can be extended to a
group, in which case |U,l| < exp(llall|t])foralit e R.

Proof

It is obvious that (iv) = (i) = (ii) <= (iii) <= (iv), so it only remains to show
that (ii) = (iv). It follows from U(0) = 1 and norm-continuity at ¢-= 0 that

l T

- f dt U,

TJo
is close to the identity operator for small enough 7, and hence invertible.
Therefore

_U.-1 1.
Tt () de U,

is well defined for small enough 7. This a, does not actually depend on T,
because :

_Uui-1 _(Uz—l)(l+U,+---+U""l)—a
“WaU,” U +U +-+0H

Qe

Consequently, a,. = a, whenever 7’ is a rational multiple of t and, by con-
tinuity, for all t’. Since it is a constant, we may rename it a, and write

t
U,=l+afdsU,,
0

which leads to (iv) by iteration. Property (iv) implies the estimate |U,| <
exp(llall{¢]). a

Remarks (2.4.6)

1. The exponential boundedness is the quantum version of a classical state-
ment (I: 3.2.3; 6) for flows of bounded vector fields. Any faster growth, as
for example for particles reaching infinity in a finite time, would violate the
group structure.

2. It is of course possible for U, to grow more slowly (e.g., for a = (§ ),

exp(at) = 1 + at)oreven not at all (a = i(9 §),exp(at) = cost + asin ¢).

We have seen that to each a € #(E) there corresponds a U, and vice versa.
Now let us apply the methods of perturbation theory (I: §3.5) to the situation
confronting us to evaluate the change in U, ifay — ao + a,.
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Theorem (2.4.7)

Let U, = exp(aot), V, = exp((ap + ay)t), a; € B(E). Then
@) U, = Wl < [tlllallexp(|ti2llaoll + llay1));

and, on the other hand, for all A > |a,| + |a,|,
(i) Hayll < (laoll + AXNao + a,ll + A) [§ dte*|U, — V.

Remarks (2.4.8)

1. Statement (i) is the precise analogue of the classical bound (I: 3.5.4), and
(ii) says that any perturbation has a noticeable effect after a rather short
time.

2. Perturbation theory becomes quite inaccurate at large times, so it is not
well suited as a tool for the study of the limit ¢t — oo.

Proof

(i) If we integrate

d—djexp(ao tA)exp((ao + a)t(l — 1))
= texp(aotA)a, exp((ap + ayt(l — 1))
between 0 and 1, we obtain
1
U -V=t f dA Uja, Vi - »-
1]

With Theorem (2.4.5) this gives the bound (i).
(i) This follows from the identity

@
ay = (@ — A)f dt e~ (U, — VYA — ag — ay),
0

in which we have assumed that A > ||ao|l + lla, || = max{llaoll, llap + a, |}
$O as to be certain that the integral exists.

There are many ways to construct ¥, from U, and a,. These constructions
are subject to the complications typical of noncommuting operators.

Theorem (2.4.9)

Let a,(t) = exp(—apt)a, exp(aot). Then
(i) exp((@o + ay)t) = explaotX1 + 3.2 fodty---f5- dtyay(ty) - -ay(ty)
(the Dyson expansion).
(ii) exp((@o + a,)t) = lim,_. o(exp(aot/m)exp(a,t/n))"
(the Trotter product formula).
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Remarks (2.4.10)

1. The sum and limit as n —+ oo converge in the norm topology.

2. The Dyson expansion is identical to the classical formula (I: 3.5.7), and
(ii) also has a formulation for flows.

3. With the time-ordering symbol T, defined by

T(a(ty)a(ty) - - - a(t,)) = a(ti a(ts,) - - a(ts,),

where t;, > t;, > t;, = --- > t; , Formula (i) can be written as

exp(— ao Jexp((@o + a)t) = T exp( J:dt’a,(t’)) |
Proof
() 2 exp(~aqexpl(ao + 1)) = ay(0Jexp(—ao Jexp((do + a))
= exp{(ap + a))t) = exp(aot)[l + J:dtl a,(t)exp(—apt,)

x exp((ap + a,)t,)],
from which (i) follows by iteration.
(11) Let
S, = exp((ap + a,)/n), ~ T, = exp(ao/n)exp(a,/n)

n-1
S —Ti= Y SXS,— T)T» "L
m=0

Since for all k < n, both ||SX| and || Tl < exp(liaoll + lla,l),
1S5 = T3l < nliS, — Tllexp(liaoll + llayll).

However,
© 1 a, +a, m N @© _l_ ﬂ)_ m
15, = Tl = Zm—(—) (Zm())
{22 < —
x(mgom(")) Tont
sO

Iisn — Tall — 0. O
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Example (2.4.11)

Perturbation of the Larmor precession of a spin. Let a = io.and a, = igs,,
with the ¢’s from (2.2.37). Since (b - 6) = |b|?, it follows that

1
exp((ao + a))t) = cos t,/1 + g* + i(o, + go,) ———=sin /1 + g*.
/l 2

+9

This is an entire function of g for all ¢t € R, and (2.4.9(i)) is its Taylor series.
The latter is rather cumbersome, because the ¢t dependence is greatly affected
by g asit varies in C. Itis oscillatory if g is real, linear ifg = i, and otherwise
it grows exponentially.

We must next confront the physically important case where U, is only
strongly continuous. The integral (1/7) [§ dt U, will not converge uniformly
to the operator 1, and might not be invertible even for very small 7. If we
simply formally adopt the expression derived above for the generator

—1 T -1
a=U: [!'J‘dtul] ,
T T Jo

we find that it is not an element of #(E), but at least it is still true that g is
defined on a dense set of ¢ € E: The inverse must certainly exist on vectors
€ £ of the fornr-

U, -1

l T
¢=;fdtU,-<p, pef, >0 and ay = @
0

o

Since strong continuity means that (1/7) {5 dt U, converges to ¢ as © — 0,
every vector ¢ of £ can be approximated arbitrarily well by such a . On ¥
it is also true that

aaﬁ:limu"_l

weo h

'I’,

because

t t+h 4 h
(U,.—I)J'dtU,'—J. dtU,—fdtU,=(U,—l)fdtU,,
0 4 0 0

SO

U,—-1 U, -1
h ot

tdt -1 1 h
J‘O?U‘] E ods US'

Since the last factor converges strongly to 1 as h — 0, we make



60 2 The Mathematical Formulation of Quantum Mechanics

Definition (2.4.12)

The generator a of a strongly continuous semigroup U, is a linear mapping
D(a) — t for which the domain of definition

D(a)={¢e£:3umu""'

peo B

wsaw}

is dense in E. The image of D(a) is the range of a, Ran(a) = aD(a) < E.

Example (2.4.13)

E=Py=@,0,5...,0,..) Uy = (¢"v;, e¥",, ..., ",,...)is strongly
but not uniformly (=norm) continuous, ay = i(v,, 2v,,...,nv,,...).

D{a) = {welzz i |nv,|? < oo}
n=1

is dense in /2 but not equal to all of |2,

Remarks (2.4.14)

1. The condition of strong continuity may be weakened to weak continuity;
as for instance the strong and weak topologies are the same for unitary
operators on Hilbert space.

2. Furthermore, even weak measurability (i.e., t - (Y| U,¢) is measurable
for all ¢ and y € ) is equivalent to strong continuity for unitary
groups on separable Hilbert spaces . This is not true for nonseparable
Hilbert spaces: Let o = (P, #,, #, = € for all x e R, where the
uncountable sum is to be understood in the sense that only countably
many of the components ¥, of a vector ¥ are nonzero, and

12 =3 1Y,

If(U,¥)x =Y., thent — U, is a unitary group that is weakly measurable
but not weakly continuous: (Y| U,¥) = ||y||? for t =0 and is otherwise
nonzero for only countably many t’s. In this example, there exists no
generator of any kind.

3. In order for t = U, to be strongly differentiable, it is necessary for a to be
€ #(E) and D(a) = E. But then t — U, is in fact analytic and strong dif-
ferentiability is equivalent to the conditions of Theorem (2.4.5).

4. If a unitary group acts on a Hilbert space, ia must be Hermitian:

Kiaylo) = (Y liap> for ally, ¢ € D(a).
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This can be seen just as for finite matrices,

. JUy—1 . U_,—-1
(a¥lo) = hm< : ¢I<p> = llm<¢ ——"——¢> = —{Ylag),
a0\ h b0 h
the only additional complication being to worry about the domains.
Unitary semigroups can obviously be extended to unitary groups, even
if only strongly continuous.

If U, is only strongly continuous, then although D(a) is dense in ¥, it is
not all of M, that is, there are sequences ¢, € D(a) which converge, ¢, - ¢,
but the limit ¢ ¢ D(a). Yet if agp, converges to some Y € &, then ¢ € D(a)
and ¥ = d¢ (Problem 2). This property will be important later on, for which
reason we make the

Definition (2.4.15)

The graph I' of an operator a: D - E is I'(a) = {(y, 9) € D x E: ¢ = ay}.
If I'(a) is a closed subspace of E x E, a is said to be closed.

Examples (2.4.16)

1. E = L¥({0, 13, da), (a¥)(@) = (1/x)y(x) with the domain
D\(a) = {y e E: ¥y = 0 on some neighborhood of 0}.
The operator a is not closed, for consider , = « when « > 1/n and other-

wise ¥, = 0; then y, —» Y(a) = a and ay, — 1, but § ¢ D(a).
2. Let aand E be as in Example 1, but take

1
D,(a) = {w e E: L

Since D, contains all y for which ay € E, a is closed on D,.

3. Let ap = 1-9(3), D(a) = {p € L¥[0, 1] = A, da), ¢ continuous}. This
operator is not closed, since ¢, = exp(—(x — $)*n?*) - 0 because
l@all = O(1/n), but ag, = 1 4 0.

@

2
da < oo}

Remarks (2.4.17)

1. Note that I' is required to be closed in E x E and not in D x E. By this
definition with E = [0, oc), the mapping x = 1/x, D = (0, =), is closed,
while x = x, D = (0, o) is not.

2. Since the graph of a continuous mapping is always closed (Problem 4)
I"is closed in D x E whenever a is continuous. Hence a is closed iff D is
closed (and therefore equal to E).
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. Definition (2.4.15) is equivalent to the statement that D3y, -,

ay, - ¢ =y €D, ¢ = ay, and to the statement that D is complete in the
norm [[Y|l, = Iyl + llay| (Problem 3).

. If aD(a) is dense in E, then a~! is a densely defined operator, and it is

closed whenever a is, since I'(a~ ') = JI'(a), where J(x, y) = (3, x).

It might be imagined that whenever an operator is not closed, the domain
has merely been chosen too small, and that by taking the closure T of T’
in E x E one would get a closed operator. This does not always work,
as T might not be the graph of an operator. The trouble can be under-
stood with 6(x) = 1 for x > 0 and 0 for x < 0; the closure of the graph
assigns the two values 0 and 1 to the point x = 0. Itis also clear in Example
(2.4.16; 3) that making D(a) larger will not produce a closed operator.

The operator a: D(a) = E of (2.4.12) is a discontinuous mapping. Con-

tinuity of a linear operator is equivalent to continuity at any single point and
to boundedness. All of these conditions imply that there exists an M € R*
such that lay}| < M{ly| for all y € D(a). The connection between the notion
of continuity and the notions of closure and domain of definition is:

Theorem (2.4.18)

Any two of the three properties

(i) D(a) = E;

(ii) a is continuous; and
(i) a is closed
imply the third.

Proof

(1) A (ii) = (iii): Every graph of a continuous mapping is closed.

(i1) A (iii) = (i): This was explained in (2.4.17; 2).

(i) A (iii) = (ii): This follows from the closed-graph theorem [1, (12.16.1)],
which is rather profound and cannot be proved here. O

Corollaries (2.4.19)

2.

If an operator is closed but not continuous, it can not be defined every-

where.

If an operator is defined on all vectors and is discontinuous, then it is not
closed (cf. (2.1.15; 2)).

If an operator is continuous, then it can be extended to all of E, and it is thus
closeable.
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Since the difficulties attendant on the definitiont of a have to do with the
inversion of an operator, a reasonable expectation would be that the re-
solvent R, = (a — z)~! of the operator a ought to belong to #(E). If we write
formally that U, = exp{(at), then

- j dt e™"*U,.
V] .

In fact, for this formula there is a

Theorem (2.4.20)

Let U, be a strongly continuous contractive semigroup, with generator a.
Then for all z € C with Re z > 0,

- f dte U,
0

maps € into D(a). The resolvent satisfies (a — z)R, = 1and |R,|| < (Rez)™".

Proof

The statement about the norm follows from |U,|| < 1. If a operates after
R, then
, " )
aR, = lim R = Ilm — dt Ty, + — | dte”*U,.
h—0 h h—0 V]

The first term converges uniformly to zR,, and the second term converges
strongly to 1. ad

The problems that arise in physics usually go the other way: a is given
and one tries to find U,. It might be supposed that U, could be defined as
Y o (t"/n")a" but this often leads to disasters.

Example (2.4.21)

Let E = L?((0, 1), dx). Let us try to write the group of translations exp(itp)
as a unitary family of operators by using the generator p = —i(d/dx). So
that all powers of id/dx will be well defined and Hermitian, we choose D(p) =
C&(0, 1). These functions are supported within (0, 1), so

d dar d
<d R (p> forally, @ e D(‘-&-),

;,wt<p> =(—1)"<¢

and Y2, (t"/n'Xd"/dx") is formally unitary. Unfortunately, the analytic
functions on a complex neighborhood of (0, 1) for which this sum has a
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finite radius of convergence for all x € (0, 1) are not included in D( —i d/dx).
Moreover, it is impossible to construct a unitary, finite translation this way,
since it would have to translate part of the function out of (0, 1), and the
missing part would affect the normalization integral:

1 1
J‘ dx|y(x + )| = f dx|y(x)|*> + something unknown,
0 t

since Y(x) is not defined for 1 < x < 1 + ¢ (see Figure 3).

Likewise, the attempt to write U, = lim, ., (1 + at/n)" opens the question
of what D(a") are for all ne Z. However, the use of the resolvent integral
works without such difficulties, because it involves bounded operators
only. It turns out that the properties we have found of a characterize the
generators of semigroups; every such a determines a unique U,.

The Hille-Yosida Theorem (2.4.22)

Let a be a densely defined operator such that (@ — x)~ . & - D(a) is bounded
in norm as |l(@a — x)™ '] < |x~'| for all x > 0. Then there exists a unique
contractive semigroup U, satisfying

. Uy —
lim
neo B

¢ = ap forall ¢ € D(a)

Remarks (2.4.23)

1. It then follows from (2.4.20) that (a — z)~ ! exists for all z with Re z > 0,
and is bounded in norm by (Re z)~!. '

2. Since (a — x)~ ! is defined on all of E and bounded, it is closed by Theorem
(2.4.18). According to Remark (2.4.17; 4), a — x and a are then also
closed.

3. If (a — x)" ! is defined only on a dense subspace, but is bounded there by
|x~ 1], then it has a unique extension to all of E, and Theorem (2.4.22)
is still valid.

4. In the proof below we try to recover a from the resolvent by taking the
limit lim ., (—x — x*(@ — x)™"). It is also possible to work with
exp(at) = lim,., (1 — at/n)™".

Figure 3 Unitary representation of the translation on [0, 1].
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5. Vectors ¢ on which a”¢ is defined for all n and Y, t*[la"p||/n! converges for
It] < to > O are called analytic vectors, or entire vectors if t, = co. The
semigroup exp{at) is uniquely defined if a has a dense set of analytic
vectors.

Proof

Leta, = — x — x*(a — x)"'.Forallp € D(a),a,@ — apasx — oo (Problem
5). Consider the semigroup generated by a, € #(E). By Theorem (24.7),
since the semigroups generated by a,, and a,, commute, for all x, and x, > 0
and ¢ € D(a),

H(exp(ta,,) — exp(ta,)l0l < cli(a,, — a.)el.

Because the vectors a, ¢ converge as x — oo, the vectors exp(ta,)p form a
Cauchy sequence, which must always have a limit in a Banach space E. Call
the limit U, ¢. The operator U, can be extended uniquely to E, as the exp(ta,)
are uniformly bounded in x. To see that g is the generator of U,, take the
limit x — oo of

exp(a,tlp = ¢ + J‘ ds exp(a, s)a, ¢ for ¢ € D(a).
0

Uniqueness follows from

Wl - x)"p) = - fo “dtexp(—xnDWIUi@y

and the fact that the Laplace transformation is injective on the continuous
functions.

Corollary (Stone’s Theorem) (2.4.24)
The operator ia is the generator of a unitary group on a Hilbert space X iff

(i) <¥lap) = {ay|p) for all Y, p € D(a), and
(ii) (a £ i)D(a) = H#.

Proof

It only needs to be shown that (a — z)D(a) = ¥ for all z with Im z # O when
this holds for z = +i and that ||(@a — z)"!] < {Im z|~'. This is done in
Problem 6. - O
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Examples (2.4.25)

1. The a of example (2.4.13) obviously satisfies (i). It also satisfies (ii), since
forany ¢ = (v,,v,,...)€l?and z ¢ N,

vy v, Uy

<p=(a~z)“l//=(l
and (a — 2)p = ¥.

2. In the troublesome Example (2.4.21), (i) is satisfied, as a never sends a
vector out of D(a). Since CZ(0, 1) is not all of L%((0, 1), dx), (ii) is violated.
(—i(d/dx) — z)C(0, 1) is not even dense in L%(0, 1), since y = e** is
orthogonal to it: {§ dx e~ **(—i(d/dx) — z)p(x) = O for all ¢ € CF(0, 1).

..)eD(a)

-2'2-z2""n=-12z"

In later sections we shall consider under what circumstances formal
expressions for a can be interpreted so that the Hille- Yosida Theorem (2.4.22)
applies, and whether the perturbation-theoretic formulas (2.4.7) and (2.4.9)
also make some sense for only strongly continuous semigroups.

Problems (2.4.26)

1. Show that the norms ||U, || of a weakly continuous semigroup U, are bounded for ¢ in
some interval [0, 4]. Hint: argue as with the uniform boundedness principle.

2. Verify that if U, is strongly continuous, then (cf. (2.4.12))

U, -1
a= dl—j, D(a) = {(p €eE:lim—2—¢ cxists},
di xeo h

is a closed operator.

3. Show that an operator a on D is closed if D is complete in the norm [[¥|l, = ¥l +

layll.
4. Why is the graph of a continuous mapping E — E closed in E x E?
S. inyestigate the convergence of a, from the proof of (2.4.22).

6. Let a be a Hermitian operator. Show that the existence of (a + i)~ ' implies that of
(a — z)" ! for all zwith Im z 5 0, and that [(a — 2)" '] < [Im z|~'.~ . .

Solutions (2.4.27)

I. Let p(@) = supo<,<s I<¥IU, 0>}, fixing y for the moment. For any such ¢ and
¢ €k, p(¢) 1s the supremum of a continuous function on a compact set and conse-
quently finite, and the mapping ¢ — p(¢) is lower semicontinuous in the norm
topology. Moreover, p(¢; + @2) S p(¢) + p(¢2) and p(ag) = |alp(e). If p is
bounded on any closed ball, then it is bounded everywhere, because

K@ — @) < Mfor all o] < &= p(@) = @p(ﬁ) < lol
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Unboundedness of p on every ball would contradict lower semicontinuity: If p were
unbounded on the ball K,,_ |, then there would be ¢, € K, _, with p(®,) > n. Since p
is lower semicontinuous, there must exist a ball K, < K, containing ¢, and such
that p(e) > nfor all ¢ € K,. Since p must also be unbounded on the ball K,, K, must
contain a ¢,,, such that p(¢,.,) > n + 1 and another ball K,,, < K, such that
p(@) > n + forallp e K,,,. The closed balls K, > K, > -- - are weakly compact,
so there must exist some ¢ € (), K,. Then p(¢) would be greater than any n, which

" would contradict the finiteness of p(¢) for all ¢. Thus we conclude that o) <
M, lioll, and, using the same argument for y, that

sup |U,lf = sup sup [<¢|U,p>| < M.
0stsé H&H=: O0srsé
o=

2 Letg,— 9, a0, ¥:

Uy~ | o Up=1 1
lim =2 ¢ = lim lim =2 ¢, = lim lim - J.. U,aop,
h—0 h A=0 n—o h A=0 n—® h 1] M

1
=Iim;f.U.¢=¢=¢ema),a¢=¢-
o

k=0

3. Aset (o, ¥)in ¥ x K is closed provided that it is complete in the norm [l + |[¥|.
For a graph this norm is llo|l, = lle| + [ael.

4. Since |lagll < llall ll¢l, the norm (@l + |lagll is equivalent to ||¢|, and the graph is
closed if D(a) is closed.

S. For all ¢ € D(a),

lim(1 + x(a — x) )¢ = lim(@ — x)"'ap = 0.

X=* X=*®

But if the bounded operators — x/(a — x) converge on a dense set to 1, then they
converge to 1 on the whole space, so

lim(-x(a - x)"!ap) = lima, ¢ = ap

XxX=*a X
for all ¢ € D(a).
6. If a is Hermitian and Ran(a + i) = 5, then |(a + i)~ | < I, since (a + i) 'x =
y=lixi* = llayl* + 1yl? and

lylt? yh?
= Su <
xi? = P

sup
X
Hence

(@+i+2) ' =@+ 'Y @+

has radius of convergence 1. The operators a + 3i/2, a + 2i, etc., have the same
properties, and expansions around these points also converge up to the real axis,
s0 the open half-planes can eventually be covered by such discs. For the second part,
note that (@ + u + i) 'x = y, u, ve R, = [x]|? = (@ + wyl? + V*||yl* =
Iyl /1xI* < 1/0%
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2.5 Unbounded Operators and Quadratic Forms

' THe generators of strongly continuous unitary groups are self-adjoint
operators. Under the right circumstances, the domain of a formally
Hermitian expression can be chosen so as to make it self-adjoint.

Typically, a physicist is confronted with an unbounded Hermitian operator,
and an important question is in what sense does such an operator generate
a one-parameter group as the time-evolution. Since it is not always possible
in classical mechanics to generate a satisfactory time-evolution—vector
fields may fail to be complete, and a particle may reach infinity in a finite
time—one must be prepared for trouble when doing quantum mechanics.
Yet we shall discover later that the situation with 1/r potentials is much
better quantum-theoretically than classically, and that the rather annoying
question of the existence of collision trajectories in the classical three-body
problem will cause no difficulty in quantum mechanics.

. Our first task is to generalize the definition of the adjoint of an operator
(2.1.26; 3) to cover unbounded operators, so as to ensure that all self-adjomt
.operators on Hilbert space generate unitary groups.

Definition (2.5.1)

The adjoint operator a* of an unbounded operator a having a dense domain
D(a) in X is defined on the domain

D(a*) = {¢ € sup [<olap)|lyl™" < oo}
veD(a)
by the formula {p|ay) = {a*@|¥) for all ¥ € D(a), ¢ € D(a®).
If a = a*, then a is said to be self adjoint;
if a* = a**, then q is essentially self adjoint;
if a®* o aq, then a is Hermitian.

Thesymbol b > ameans that bis an extension of a: D(b) > D{(a)and b p(,)=a.

Remarks (2.5.2)

1. Since it is assumed that D(a) is dense, (2.5.1) defines a* uniquely.

2. Theq choice of the domain D for a fixes the domain of a*; if a*p € ),
thed ¥ — (a*@|y) is a continuous functional. D(a*) consists of all ¢
for which ¢ — {@|ay) is a continuous functional D — C: it is thus the
biggest possible domain.

3. If D(a®) is dense, then a** is defined uniquely, and q** o a. This is the
case for Hermitian operators, since D(a®*) > D(a), but in general D(a*)
need be no larger than {0}.
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4. If ais continuous, then D(a*) = . This accords with Remark (2.1.26; 3),
by which a: D — 3 induces the mapping a*: #* = ) — D* = & If, in
addition, D(a) = X, then the concepts of Hermitian and self-adjoint
become synonymous.

5. a « b=>a® > b*. In particular, a is Hermitian iff a* > a, which implies
that a < a** < a*; and a* is Hermitian iff a** > a*. Therefore, if a and
a® are Hermitian, then a* is self adjoint and a is essentially self-adjoint.
Moreover, if b is a Hermitian extension of a,a = b = b* < a*; then b is
determined by its domain, on which it must have the same action as a*.

6. If a is essentially self-adjoint, then a* = a** o a s the unique self-adjoint
extensionof a.a = b = b* = a* > b* = b** 5 g** = a*. The advantage
of speaking of essential self-adjointness is the flexibility it allows in the
choice of D{(a); a change in the domain D(a) can leave a essentially self-
adjoint, but it necessarily alters the statement that a = a*.

7. The graph I'(a*) (see (2.4.15)) can be described as follows: Let J be the
unitary operator (x, y) = (y, —x) on J¥ @ . Then I'(@*) = (JT(a))*
(Problem 3). Any subspace defined by orthogonality is closed, so a* is
always a closed operator. If a is Hermitian, then its closure is a**, since
J* = —1 and (J(JT*)! =T. Hence Hermitian operators are always
closeable, and we may assume them closed without loss of generality.

Examples (2.5.3)

1. Let us recall Examples (2.4.16; 1) and (2.4.16; 2). Define a, , = a with the
domains D, and D, . The operator a, is not self-adjoint, since it is not closed.
What is a} ? Its domain consists of all ¢ such that

1
sup [ da L p@p@ | [ aniwiarr
veD, YO 0 .

so (1/a)p*(x) must belong to L3([0, 1], da). Consequently D{(a,)*) =
D,, at = a, o a,, and we see that a, is Hermitian. It is also easy to see
that a, is Hermitian and thus, according to (2.5.2;5), self-adjoint:
a, © a} < a} = a,. This means that a, is essentially self-adjoint.

2. In Example (2.4.16; 3), D(a*) would be

-1/2
< o,

{(p € L¥([0, 1],dx): sup dx ¢(x) —— WG) }
¥ continuous “ W “
Since Y(3)/lly|l can be arbitrarily large, D(a®) is the subspace orthogonal to
the constant function, and is not dense.
3. Leta,:y(a) = i(d/da)y(x) = iy', with D(a,) = {y € HF = L3([0, 1], da): ¥
is absolutely continuous, y'€ ¥, and Y(0) = (1) = 0}. Absolutely
continuous functions are of the form

Y(a) = J:da' g(a’) + Y(0), with g integrable.
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For such fuﬂctions, y'=gae,so
- yY(0) = | do' Y'(a');
¥(a) — ¥(0) L o Y(a)

they are the functions for which integration by parts is justified. It is not
restrictive enough to have merely functions that are continuous and have
derivatives a.e. which are in L2; there are continuous, strictly monotonic
functions y for which ¥’ vanishes almost everywhere (cf. (2.3.25; 7)). The
boundary conditions ensure that g is Hermitian, for

%
labd =i | da 9°@) 1 V(@

*(@)Y(a)

1 1 d L]
o+ [ aa(i 5% 000 ¥ = cante)
forallp,y € D. (254)

They are too strong for self-adjointness, however, since (2.5.4) is also valid
without the requirement that y(0) = y(1) = 0. The other conditions are
clearly necessary, so D{(a®*) = {@p € #: ¢ is absolutely continuous and
¢’ € ). If we now calculate g**, we are again led to (2.5.4), though this
time it is necessary to reimpose the condition ¥(0) = y(1) =0 to make
|...|3 vanish. Therefore a** = g, so a must be closed. The adjoint a*
is a proper extension of a and thus definitely not Hermitian, as a** c a*.

4. Consider again a: Y(x) — ¥d/day(x), D(a) = {Y € 2 = L*([0, 1}, do): ¢
is absolutely continuous, /' € ), and Y(0) = y(1)e”’, y € R}. It follows as in
(2.5.4) that a is again Hermitian, but now |@*(a)¢(a)|§ = O requires that
@(0) = ¢(1)e”. Therefore D(a) = D(a*), and a is self-adjoint. This a is an
extension of the a of Example 3 for any y € R, so there is a one-parameter
family of extensions of that g, and in fact it-contains all possible self-
adjoint extensions. (See (2.5.12).) "

5. a: Y(a) = i(d/dayy(a), D(a) = {y € I = L*([0, ), do): ¥ is absolutely
continuous, ¥’ € #, and Y(0) = 0}. This operator is also Hermitian,
asit is easy to see that the upper limit contributes nothing upon integration
by parts (Problem 4), and the equation ’

(olap = j:da 0" = ig®OW(O) + f:da(i«p')'w 2 (aol¥

will hold provided that either ¢*(0) = 0 or (0) = 0. This means that
D(a®) lacks the condition y(0) = 0, and that a** = a. It is not possible
in this case to weaken the boundary condition to make a* = a.

6. a: Y(a) — i(d/da)y(a), D(a) = {Y € ¥ = L*((— oo, o) da): ¥ isabsolutely
continuous, and §’ € X#}. The operator is Hermitian since, asin Example 5,
there is no contribution from + oo to the boundary term of the partial
integration. In fact the operator is self-adjoint; there is no way to weaken
the boundary conditions for D(a*). It is clear on refiection that the
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difficulties in Example (2.4.21) or with a unitary translation on L2(0, o)

can not arise on L(— o0, o), and nothing prevents i(d/d) from being self-

adjoint. Moreover, @" is self-adjoint in this case on

n ! . !

D(@a") = {w eX:y,..., muj/ absolutely coptmuous, J-‘-‘i;‘” e.D(a)}.

If a is Hermitian but not self-adjoint, then it may have any finite number
of self-adjoint extensions, or an infinite number, or none at all. The adjoint a*
will not be Hermitian, and indeed it has complex eigenvalues. Returning to
Example 3 (respectively 5), exp(—iaz), ze C (resp. Im z < 0), is an eigen-
function of a* with eigenvalue z. In these cases every point of C (resp. the
lower half-plane) belongs to the point spectrum of a*. This behavior is
typical, as is shown by:

Theorem (2.5.5)

Let a be a closed, Hermitian operator. Then

(i) F, = (@ — z2)D(a) = (Ker(a* — z*)*(z=x+ iy, y #0) is a closed

subspace of #, and (a — z)™*: F, — D(a) is.a continuous bijection;

(ii) V:F_; > F;: ¥ —(a— iXa + i)~ 'Y is unitary,and 1 — V =2i(a + i) *:
F_, = D(a)is bijective,sothatay = i(1 + VX1 — V)~ 'y forally € D(a);

(iii) D(a*) = D(a) + F + Fyforallze C,Im z # 0;

(iv) if a is self-adjoint, then F, = ¥ for all z€ C, Im z # 0; and a is self-
adjoint if F, = X for some z € C with Im z > 0 and for some z with
Imz<0.

Remarks (2.5.6)

1. Since all Hermitian operators are closeable, we have considered only
closed operators a. If the assumption of closure were dropped, then
Propositions (i)-(iv) would hold for the closure a**. As a consequence, the
resolvent (a — z)~! of an essentially self-adjoint operator a is densely
defined, and, since it is bounded, it has a unique extension (a** — 2)"!
as a bounded operator defined on all of 5, (Recall Remarks (2.4.23).)

2. Vis known as the Cayley transform of a.

. 3. These propositions are depicted schematically in Figure 4.

Proof

(i) Because (@ — x — iyWiI* = li(a = xWI? + Iyl = y*I¥% the re-
solvent (a — z)~ ! is bounded, and by assumption I'(a — z) and thus also
I'((a — z)~ ") are closed, so it follows ‘from “Theorem~ (2.4.18) that
D((a — z)~ ') = F, is a Hilbert space, atid thus a-closed subspace of »#'.
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@+ !=1-1ey!

: ———
a+i a* +i

KOOSR
9,00, 0.6
00,0.0,4

LE

[ —_
Veato=—i)a+ ! a+i

Figure 4 Inthe top two figures, the decomposition on the left is not assumed orthogonal.
Although D(a) n F§; ={0}, D(a) & F,. The extension & a < 8 < a* and V" are
defined in (2.5~ .

Since {@|(a — ) = {(a* = z*)p|¥) for all ¢ € D(a®), ¥ € D{(a), F, is
orthogonal to the eigenvectors of a* of eigenvalue z*. As a Hermitian
operator, a cah not .have any complex eigenvalues. Hence g — z is
injective and, by definition, surjective as a mapping D(a) — F,.

(i) yeF_;e>y =(a + )@, p € D(a), and because [(a + ol = li(a - Dol,
the operators ¥V and V™! = (a + iXa — i)~! are isometric. From
¢ = (Y — V¥)Riandap = (¢ + Vy)/2,weconcludethat(l — V) =0,
and so (1 + VW = 0 and y = 0, Therefore 1 — V is invertible on F _,,
enda =i(l + V)1 - V)L
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(iii) Let y € D(a*) and write (a* + i} as a sum of vectors of F_; and F%;:
@* + Y = (a+ i + 2iy, neD(a), yxeF:, = Ker(a®* —i). Hence
2ix=(@*+i)x=>@*+ iy —n- x) 0, because g* ca=an =
a*n. Therefore y = n + x + o, Qe F# is the required decomposition of
any vector { of D(a*).

(iv) This follows from (iii), because if (2.4.27; 6) is generalized to unbounded
operators, we see that F, = o = F, = i for all z with Im z/Im z, > 0.

O

Example (2.5.7)

= i(d/da), D(a) as in (2.5.3;3)3¢; F_, 3 yta) = i(d/da + 1)¢(a) is or-
thogonal to Ker(a* — i) = {ce"}, since

1 .
j da e‘(d% + l)(p(a) = efp(l) — 9(0) =

0

o@) = —i j: da’ & ~4(a0),

so ¥ — (a + i)~ 'Y is continuous, and

(VXa) = ( (1- )¢(a) J' A [5(0 — ) — 20(a — @)e* ~TY(@)

= J; de'V(a, a')w(&')).

V is isometric on F_,, since [§ do’ V*¥(x, @ W(«, «”) = d(a — a”) — 2e***",

Remarks (2.5.8)

1. If a is not self-adjoint, then a — z: D(a) — X with Im z # 0 is still in-
Jective, but it is not surjective, while a* — z: D(a*) — J is surjective but
not injective. Consequently, Sp(a) and Sp(a*) each contain at least a
half-plane, if Definition (2.2.13) is carried over for the spectrum of un-
bounded operators.

2. If a'is self-adjoint, then V: ¥ — S is unitary, so the spectral theorem
extends to cover a. If du(0), 0 < 6 < 27, is one of the spectral measures
(2.3.14) for V:Sp(V) = {€"®}, (V¢¥X8) = €Y(6), then the multiplication
operator equivalent to a is a:y(0) = i(1 + €°)/(1 — €®)(0). We saw
earlier that V does not have the eigenvalue 1,so the measure of the point
0 = 0 is zero, and a is multiplication by an a.e. finite function. This form
of the spectral theorem for unbounded self-adjoint operators is as general
as possible. If 4 = cot 6/2 is introduced as a new variable, then L3([0, 2n],
du(6)) is mapped to L*((— 00, 00), du(4)), and a becomes multiplication by



74 2 The Mathematical Formulation of Quantum Mechanics

W expliaty r=0 exp(iat)y r=%-

Figure 5 Two unitary representations of the translation on [0, 1].

A. In analogy with (2.3.14), a m: y then be written as {*, A dP,, which ex-
tends Theorem (2.3.14) to unbounded self-adjoint operators.

3. We shall understand convergence of a sequence of self-adjoint operators
a, — a to mean that all sequences of bounded functions f of the a, con-
verge: f(a,)— f(a). It suffices to have convergence for either of the two
classes of functions f(a) = exp(iat) for all t € R and f(a) = (a — z)~ ! for
all z withIm z # 0.

4. By Stone’s Theorem (2.4.24), the self-adjoint operators are exactly the
class of Hermitian operators that generate unitary groups. For instance,
the a of Example (2. g 4) generates the group of translations

(exp(iatWXx) = ¥(x ~ 1)

and answers the question that arose in (2.4.21) about the effect of the
periodic boundary conditions: whatever is pushed past one end of the
interval reappears at the other end with some constant change of phase
(see Figure S):

5. A converse of Theorem (2.5.5) can also be proved (Problem 7): If V is an
isomorphism of a closed subspace F_ onto a subspace, such that 1 ~ V
is a bijection of F_ onto a dense subspace of &, then i(1 + VX1 — V)!
is a Hermitian operator.

6. The part of D(a*) not contained in D{(a) consists only of eigenvectors of
a® with complex eigenvalues. The sum in (iii) of (2.5.5) is of course not
orthogonal.

Because of these facts, the most important criterion for self-adjointness
is the absence of complex elgenvalues of a*. To pursue this subject further,
we make
Definition (2.5.9)

(m, n) = dim(Ker(a* F i)) = dim(F . {a))* are the deficiency indices of a.
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Examples (2.5.10)

1. ais essentially self-adjoint iff (m, n) = (0, 0).
2. In Example (2.5.3; 3), (m, ) =1, 1).
3. In Example (2.5.3; 5), (m, n) = (0, 1).

If one wishes to extend a Hermitian opératora = i(1 + V)1 — V) 'toa
self-adjoint operator @ = i(1 + UX1 — U)~! o q, then U must be a unitary
extension of V:F_,— F,,. It is clear that the extension. must map the
orthogonal complements Ker(a® ¥ i) unitarily onto each other, so U has
to be an orthogonal sum ¥ @ V' for some V" acting on the orthogonal com-
plements. This is possible only if F3, have the same dimension:

Theorem (i.;‘).ll)

A Hermitian operator a can be extended to a self-adjoint operator @ iff the
deficiency indices are equal. In that case, for every unitary mapping V'
Ker(a® —~ 1) —» Ker(a® + i) there exists a distinct extension

a=Kl+ V@V’)(l-—lVeV’)“.

Example(2.5.12)  » /

Let us return to (2.5.7), which has (m, n) = (1, 1): U(1, C) is multiplication by
a phase factor, so there exists a one-parameter family {a,} of self-adjoint
extensions of a. If V'e* = e' ~%¢", then U = V @ V' is defined on all of 5.
With the procedure we have described above, ¢ € D(a) is written in the form

@(@) = (U - 1))
. l l '
= - 1)(W(a) - €' J' do’ &Y(o) + e'c f de’ e"'l'(d))
0 (]

1
= -2 [lat (o) - e ['aw )

+ (' %" — e f lda’ e Y(a),
V]

where ¢ ([} da e** = 1, so ¢ satisfies the boundary conditions
e0) €**' -1 (e""— l)‘ - ( e—é* )‘
"\l

=

o(1) T e e ¢ — et
L
- (%%) = 10(0)] = @D,

which makes a; identical to the a of (2.5.3; 4).
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Remarks (2.5.13)

1. Theorem (2.5.11) reveals why it was not possible to weaken the boundary
conditions in (2.5.3; 5) to make a self-adjoint. In that example, m # n.

2. Although the deficiency. indices and extensions were defined with the
special values z = i, any other pair of complex conjugates z,z*,Im z # 0,
would have produced an equivalent definition.

3. If either m or n is zero, then the operator is maximal, i.e., it has no
Hermitian extensions. If m = n < oo, then every maximal Hermitian
extension is self-adjoint, and if m = n = co, then there are maximal
Hermitian extensions that are not self-adjoint.

4. If a Hermitian operator is real (see (3.3.19; 5)), that is, invariant under
i - —i,then m = n, and’it always has a self-adjoint extension.

The delicate attribute of self-adjointness is not even preserved by the
formation of linear combinations of operators. If a and b are self-adjoint,
then a + b (and ab + ba) may fail to be self-adjoint. The sum a + b is 8
priori defined only on D(a) n D(b), and ab + ba only on D(a) n D(b) n
aD(a) n bD(b), and these sets might not be dense. Even if the intersection of
the domains is dense in J, it might be too small for the sum to be self-
adjoint.

Example (2.5.14)

A 1/r* potential. Let H = K + V, K:y(r) = —(d*/dr*)(r): (K) =
{Y € #: Y’ is absolutely continuous, " € )#, and Y(0) = 0}, where ¥ =
L¥([0, o), dr); V:y(r) = (y/r*W(r), ye R: D(V) = {y € #: (1/r*} € H#}.
With the a of Example (2.5.3; 5), K = a*a, which is always self-adjoint. As in
Example (2.5.3; 1), V is likewise self-adjoint. However, D(H) = D(K) n D(V)
= {y e H#:{ is absolutely continuous and € ), " € H, and ¥(0) = y'(0)
= 0}, and as in (2.5.4) the boundary condition does not show up in D(H*):
D(H®*) = {y € #: {' is absolutely continuous and € J, and (—y" + wW/r?)
€ ). It is possible for D(H) to be a proper subset of D(H*), provided that
neither y” nor yy/r? is in X, but that their difference is, because of a cancel-
lation of the singularities at 0. In order to understand when this happens,
let us examine the solutions of the equation ¥, = (y/r? + i)y ;. The solutions
that decrease when r - o0 as ¥, ~ exp(—nr(l £ i)/ﬁ) are linear combina-
tions of r¥**1/2 y = _/y + 1/4, in the limit r — 0. These functions are square-
integrable only if v<l<y<3, so if y>3, then the deficiency indices
are (0, 0), and if y < 2, then they are (1, 1). In the latter case there is a one- .
parameter family of self-adjoint extensions, which append ¥, — exp(2id)y -,
S€eR, to D(H) so that H(Y, — exp(2id)y ) = i(y, + exp(2i6)y -). Even



2.5 Unbounded Operators and Quadratic Forms 77

if y =0, D(H) gets exp‘anded by the inclusion of exp(—r(1 + i)/ﬁ) -
exp(2id — (1 — i)/\/i). i.e, it can be characterized by the boundary con-
dition Y(0)/y'(0) = ﬁ/(cot(&) -~ 1). Since ¢ = yY/r in three-dimensional
polar coordinates, — A becomes 5*(x)¥/(0)/4x, so this extension corresponds
physically to the addition of a delta-function potential at the origin.

However, if b is small in comparison with a in a certain sense, then the
addition of b to a does not affect its self-adjointness.

The Kato—Rellich Theorem (2.5.15)

Let a* = a, b* > b, and D(b) > D(a), and suppose that there exist constants
0 <a< landf > 0suchthat |by| < allay| + Bliy| for all y € D(a). Then
a + b is self-adjoint on D(a). If a is essentially self-adjoint on D < D(a), then
soisa + b.

Proof

In the spectral representation of a (see (2.5.8; 2)) we discover that

l@tim)~'l<n~' and Ja(a +in)~!| <L

If n is large enough, then it follows that ||b(a +'in) ' <a + fn~! < 1,50
1+ b(a + in)~! is a bijection of #. Consequently (a + b + in)D(a) =
(1 + b(a + in)~"Xa £ in)D(a) s either all of # or dense in #, depending on
whether (a + in)D(a) is all of & or only dense. d

Remarks (2.5.16)

1. If b is bounded, then it is a fortiori relatively bounded, and a + b is self-
adjoint or essentially self-adjoint on D(a) whenever a is.

2. Since V'faz(l +8) 4 B*1 + 1/e) 2 a + B for all a, B, € > 0, Criterion
(2.5.15)isequivalentto [by|1? < a?flayli® + B2IYl|%,ortob? < a’a® + B2

3. For the statement about essential self-adjointness, « may be allowed
to be 1. .

4. For the physical systems that will concern us, b = a Coulomb potential
is bounded relative to a = the kinetic energy. The Kato-Rellich Theorem
is thus sufficient for our purposes to guarantee existence and uniqueness
of the time-evolution.

It sometimes happens that formal Hamiltonians are not even strictly
speaking operators, because they send every vector of ) out of . However,
knowledge of enough matrix elements is frequently sufficient to determine
the time evolution, even in the absence of a well-defined operator.
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Definition (2.5.17)

A quadratic form q is a mapping Q(q) x Q(q) - C: (@, ¥) = {plql¥),
where Q(q) is a dense subspace of # known as the form domain, such that
{®lql¥) is linear in Y and conjugate-linear in ¢. If WYliqled* = (plql¥),
then q is said to be Hermitian, and if (¢|q]@) > 0, it is positive. A positive
quadratic form q is said to be closed iff Q(q) is complete in the form norm
lel = <olqled + lol*.

Gloss

Conjugate-linearity means that {(ig|q|y) = A*{p|ql¥). If {p|qle) =
~Milp}%, then g is semibounded; equivalently, the form (plq,|y) =
{plql¥> + M{@|¥) is positive.

Examples (2.5.18)

1. Let g be a (densely defined, linear) operator. Then (¢, ¥) — {(@|a¥) is'a
quadratic form, and is Hermitian or positive iff a is. :

2. Suppose a self-adjoint operator a has been written in a spectral representa-
tion on @), L*(R, du,). Then <plqly) = ¥, |2, dp(@)ap2(@W (@) for
o, yeQa) = {{e:Y, =, du(@)|a|l{(2)* < o} is a Hermitian
form, which is closed if a > 0. Observe that Q(a) is different from D(a) =
{{e#:, [2o du(@)|al*|{.(a)* < 0}, butthat rather (@) = D(\/]al).

3. For o = L¥(R, da) > Q(q) = {y¥ € #: ¢ is continuous at 0}, the “delta
operator” {(@|q|¥) = @*(0OW/(0) is positive but not closed. The sequence
Y. = exp(—na?) - 0 in ¥ is also a Cauchy sequence in the form norm,
‘but without"a limit in Q(g): since the topology coming from | ||, is
finer than the one coming from | |, and the sequence tends to 0 in the
latter topology, the only possible limit in Q(g) would be 0. However,
because <¥,1ql¥,> = 1, the sequence does not tend to O in the || |,
topology, and this fact is not changed by an enlargement of Q(q). Hence
q is not closed, and in fact not even closeable.

Thus Hermitian forms, in contradistinction to Hermitian operators,
need not be closeable. However, if they are closeable, then they are always
the quadratic form of some self-adjoint operator. :

Theorem (2.5.19)

:If the form q is positive and closed, then it is the form of a unique self-adjoint,
positive operator.
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Proof

Consider Q(q) = ) as a Hilbert space with the scalar product <¢N’).
= {@l¥) + {@lq|¥). The resulting topology is finer than that coming
from (|), so the mapping Q(q) —» C:¢¥ — {@|¢) is continuous for all
@ € X. As in (2.1.17), there exists a unique x € Q(q) such that (@|y) =
{x|¥>,. This defines an injection c: # — B(g): ¢ = x = co. If we con-
sider c as a mapping ¥ — J, then it is Hermitian and bounded:

(@ley) = (cplc¥dq = (¥ lcp)q = (¥ le@d* = (col¥),

lell = sup eyl < sup |Ic¢||. sup [{c¥|@d |l = sup I|¥lp)I<L.
i e e

Note that ¢ is dense in Q(q) in the || ||, norm (i.e, {c@|¥), = {@l¥)
= 0 for all ¢ € ¥ =y = 0), and hence it is also dense in J# in the norm
I| |l. Therefore ¢! is densely defined, and since c, being a bounded, Hermitian
operator, is self-adjoint, ¢! is also self-adjoint on co# (Problem 10). The

operator ¢~! — 1 has the required property {(c™! — Do|¥) = (q:lqlw)
on thedomain c# < Q(q). For uniqueness, see Problem 8.

Example (2.5.20)
We attempt to make sense of d2/dx? + V(x) with ¥V(x) = A5(x) by extending
the operator H = —d*/dx* on D(H) = {y € L¥((— o0, o), dx): {' is abso-

lutely continuous, ¥"(0) € L, and y(0) = 0}. Thc Fourier transformation
makes H a multlphcatlon operator:

(HYXK) = K¥(k), D(H) = {weu(( , ), ) j' dk (kYR < oo,

f _:dk W) = 0}.

It is closed since the graph norm (2.4.17; 3)isequivalent to {1} = (¥ |¥)r =
[2 @k/20)|¥(k) (1 + k*), and

1
D(H) = {"’Exl iy < oo, <¢lmx> = 0}
and [|1/(1 + k*)|; < o0. Clearly,

D(H)+{E5—l_—;}, zeC - R*,
1 1
K-z ‘-7

(F l—kz

H.
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Therefore the deficiency indices are (1, 1), and there is a one-parameter
family of self-adjoint extensions. The domain D(H) is not complete in the
appropriate g-norm

Wiz = [ TR + k) = 1L+ gl;

v = o

its completion contains y’s which decrease only like |k|"! ¢ as k — oo:

29 = {'Il € L% [§lly < oo, J.j dk (k) = 0}.

This is a subspace of {y: {¥/[|, < o0} closed in the norm || I, because
T avwr= (o[ ) we |iia] -
—wo 1+ k%/, 1+ k|, /2’

therefore |, dky(K) is a continuous linear functional on Q(q) with the | llq
norm (unlike the | || norm). The injection c for the form q = k? with domain
Q(q) is determined by .

[k oraw = ' f " k(o) WRXL + k)

for all ¥ € Q(q), ¢ € K, cy € Q(q), which implies that

o) 1 (™ dk g(k)
1+ k2 1+k2)_omn 1 +k%

Hence ¢ sends (1/(1 + k?)* = {p:<{o|1/(1 + k?)) =0} to D(H) and
1/(1 + k%) to 1/(1 + k¥)? — 1/2(1 + k?) = x(k) ¢ D(H), which means that
cipoy = 1 + k* and ¢~ 'y = 1/(1 + k?). The domain of H is enlarged by
the inclusion of x, on which the extension does not act as k? (see Figure 6).

c: (k) -

K k4
1
L1
l 4
(z) - o) | Fa0
\ 3 >

L4

c

Figure 6 The domains involved in the extension of a quadratic form.
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Since the deficiency indices are (1, 1), the domain of any self-adjomt extension

is D(H) + some one-dimensional space, so D(H) + {x} is large enough to
be D(c™!). The operator ¢! — 1 s called the Friedrichs extension of H.

Remarks (2.5.21)
1. If we choose Q(9) = .{l#: ¥l < o0} = Q(g), then

D@ = {w: fdkw(k)(l + k)P < 00} < Q@

and 2! is just multiplication by 1 + k2, and thus different from ¢~ !, even
though 4,4, = g and both q and § are closed. In contrast, for self-adjomt
operators, a < & necessarily implies a = 4. %

2. If q arises from a positive operator a, {@|q|¥)> = {p|ay), then q is always
closeable to some § with Q(9) the completion of D(a) in the norm || ||,:
If {y,} is a Cauchy sequence with || ||, then it is also one wnth | 1 and
converges to some ¥ € ). To show that v eQ@andy, Iy ¥, note that
(@Y, = (a + Doly) = (a + Doly) = = (@Y, for all g€ D(a).
Since Q(§) is complete, it must follow that y, 1 Vs some V' € O(q), and we
see that (p|y — ¥'), = 0 for all ¢ € D(a). Since D(a) is dense in Q(g),
¥ must be the same as y'. This shows that every semibounded operator
has such a self-adjoint extension, known as the Friedrichs extension.

3, In x-space the functions (F,)* are of the form exp(—|x|(1 + i)/\/i)
The self-adjoint extensions append the functions Y = exp(—|x|(1 + i)/ﬁ)
—exp(2i6 — |x|(1 — i)//2) to D(H) (Problem 5). The functions ¥
satisfy lim, , o Y'(¢) — ¥'(— &) = W(0), A = (cot(8) — 1)/2, and so at x =0,

d2
(- o+ 4000 o) =

The form g defines the extension with 4 = oo, since x has a discontinuous
derivative at x = 0, but it vanishes at that point (| dk x(k) = 0).

4. Since the norm on Q(g) is weaker than the graph norm (2.4.17; 3) of H,
the closure in Q(g) produces an extension of the operator H, which is
closed in its graph norm.

5. Q(q) is closed with [ [, but it is not all of {y € #: WII, < o}

6. Whereas &(x) of Example (2.5.18; 3) is-not an operator, since its quadratic
form is not closeable, —d2/dx* + Ad(x) is an operator.

Problems (2.5.22)

1. Show that a,, of (24.16; 2) is closed.

2. Find an example of an operator on I* with D(a*) = {¢:|{¢lay)| < ¢ for all
Yy eDa) Yl =1} =0.
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. Show that I'(a®*) = (JI'(a))*.

. Show that a = a*® for the a of (2.5.3; 5).

. What are the other self-adjoint extensions of H in (2.5.20)?
. Determine the Friedrichs extension of H in (25.19).

. Prove the claim made in (2.5.8; 5).

. Show that the operator defined in (2.5.19) is unique.

W 0 N N e W

. Carry out the intermediate steps in the calculations of Examples (2.5.7) and (2.5.12).
10. Use the graph I'(a) to show that the inverse of a self-adjoint operator is self-adjoint

whenever it exists.
Solutions (2.5.23)
1.

2
da =0,

1 b
"’."'/’,;"'.""P”J; 'aw"f'

since it is
2

1 1
;W-;W. da

2 ll
da+f ‘—w.—-w
. la

<f

for all n = §} (1/a®)|¢1? da < |@|l?, ie., Y €D, and fi(1/a}y — ¢} = 0. Remafk:
The same argument works for any multiplication operator ¥(a) — f (a)do(a), which
is closed on the domain

{vel® fyel?}
2. Let a be given in a matrix representation as a,, = (1/n)i, and let D(a) be

{¢ = {¥1, ¥, .. .): only finitely many , are nonzero}.

1
supl<olaydl= sup Y @.-Y i, =0 forall gel*=D(a*)=0.
ivli <1 livlist = LA '

3. 'y is contained in the domain of a* if there exists a y* € o such that (ylax) =
(y*|x) for all x & D(a), and if there is such a y*, then a®y = y*. The equation
{ylax) = {y*|x) can be rewritten as {(y, y*)l(ax, —x))> = {(, y*)|J(x, ax)) =0,
ie., Na*) = (JINa))*

4. It only meeds to be shown that the upper limit contributes nothing to the integration
by parts, that is, ¢*(ap(a) = 0 as a — co. Since

: 7]
@ BW(B) - *(@W() = f [ @ W () + @* (@ W)l
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and because [. . .] € L}, it follows first that @*(a)¥(a) is a Cauchy sequence and hence
convergent, and secondly, because [© , da|@*(a}(a)| < oo, that the limit is0.

. Theorems (2.5.5) and (2.5.11) imply that every self-adjoint extension is of the form

ADE)={(y=n+¢— VoneDH),oeF}, Vanisometry F: - FL}, Ay =
Hn — ip + iV’'e. In our case, ¢ = 1/(k* + i), and the most general V' acts by
Vo = e™/(k? — i),

The form domain Q(H) of {@p|H|p) = [§ dr{¢'* + y9?/r?) contains the operator
domain Dg(H) of the Friedrichs extension. The functions ¢ of Q(H) must go to 0
faster than r'/? as r - 0, so that {$ dr|@|*/r* < co. Since functions of D(H®*) >
Dy(H) approach linear combinations of r*”* !/? in this limit, only r*** !/ js possible,
and that only if v is real, i.e., y > —1/4. Thus the Friedrichs extension amounts to
appending the linear combination y, — 2%y _, which behaves like r** 2 asr — 0.
H is in fact a positive form only until the point y = —1/4, since, by integration by

parts,
12 27172
I dr—=J' dr [J. dr ¢’ ] [I dr‘—p~]
-_-J. drgfsttj dr ¢
0 r 0

Equality holds for ¢’ = constant, which means ¢ = (const.)r, though at large r, ¢
must somehow go to 0. The large-r dependence can be arranged so that when
y < —14, the form H is no longer positive. For the other extension H; with D(H,) ¢
Q(H) we hane {¢p|H,9) # {@|H|p) = oo for all p € I(H,), ¢ ¢ Q(H).

. V¥ sends F _ to the dense subspace D, and the association given by

a:f=il-Vyg-1+"Vyg

is linear. As to whether the operator is Hermitian: It is necessary to show that

{f'lafy = (af'|fdforfand f' € D, ie.,
(+i(l = V)| + V)gd> =<1 + V)g'li(1 = V)g).
This is true because V is an isometry.

L (7" - DoY) = <{plqly) = aply) for all ¢, yeQ@)=a>c ' —1=

a = ¢! — 1,since the latter operator is self-adjoint, and consequently can not have
any proper, Hermitian extensions.

. Simple integration by parts.
10.

Let 3 = o @ & > T'(a) = (JT(a))*, and let U: I — I, (x, y) = (3, ). .
M@ ') = Ul(@) = I((a_)*) = UT@™ ) = (JUT@))* = UJT(@)* = Ula),
ie.,

M@ ") =T@"h@""M=a"'



Quantum Dynamics

3.1 The Weyl System

Phase space is the arena of classical mechanics. The algebra of
observables in quantum mechanics is likewise constructed with
position and momentum, so this section covers the properties of those
operators.

In classical mechanics, every function F on phase space generates a one-
parameter group of diffecomorphismg exp(tLyx,) (€ R and Ly, is the Lie
derivative with respect to the Hamiltonian vector field corresponding to F),
Similarly, we learned in §2.4 that in quantum theory every observable g is
associated with a one-parameter group of automorphisms b — exp(iat)b
exp( — iat). One of the basic postulates of quantum theory is that, in units with
h = 1, the groups generated by the Cartesian position and momentum co-
ordinates x; and p, of n particles (j = 1,..., n) are the same as classically, i.e.,
displacements respectively in the momenta and positions. Since x; and p,; do
not have bounded spectra, and hence can not be represented by.bounded
operators, it is convenient to consider instead the bounded functions

’ n n
exp(in,-s,) and exp(in,-r,), s;, 1, €R?,
=] Jj=1

so as not to have domain questions to worry about. The group of aufomor-
phnsms can be written in terms of them as follows:

84
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The Weyl Algebra (3.1.1)

The operators
. €xp (i’_gx, . s,) and exp(ijilp, . r,)
generate the Weyl algebra %~ with the multiplication law
exp(i!gp, -r ,)exp(ié:l X;'8 ,)exp(— i}gr, : p,)

= exp(i Y(x + r)-s,) foralls;, r, e R

J=1

Remarks (3.1.2)

1. To simplify the notation, we consider z; = r; + @, as a single vector in the
Hilbert space C**, with scalar product (z]z) = JZ’,‘=, z} - zj and volume
elementdz =d%, - - - d°, d%;, - - - d*s,. Then we define the Weyl operators
by

W(2) exp(— % i r,-s,)exp(i i r,-p,)exp(i Ys;- x,)
‘ j= j= TR
W*(-z) = W (-2)

The multiplication law (3.1.1) can then be written compactly as

W)W () = exp(% Im(zlz’)) W(z + 2').

This shows that products of W(z) can be written linearly in W(z), so the
algebra W  consists of linear combinations of the W(z).

2. We shall only be interested in representations for which z - W(z) is
strongly continuous, so that we can recover x and p from knowledge of
W(z). In the representations we shall use, | W(z) — W(Z')| = 2 whenever
z # z’. Norm continuity is impossible, as x and p are always unbounded.

3. The C* algebra gotten by taking the norm closure of %" is too small for
many purposes. In order toinclude all L* functions of x and p, it is necessary
to take the strong closure % . The question then arises whether the iso-
morphism mentioned above, of the canonical and unitary transformations,
can be extended to other coordinate systems involving L® functions of x
and p. One cause for concern is that because of the noncommutativity of

- observables, aclassical function f (p, x)doesnot havea uniquelydetermined
quantum mechanical version: Is the classical function p?x* to be px®p or
(»*x® + x°p?), which by formal manipulation of (1.1.1) equals —~3x +
px3p? It can even happen that the product of operators simply fails to be
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defined because of the lack of a domain of definition (cf. (3.1.10; 5)). We
shall not generally be able to settle the question of the proper quantum
mechanical operators associated with all classical observables and find
what groups they generate but shall instead consider successively more
complicated special cases.

For a better understanding of the possible representations of %, we con-
sider the

Mapping of L!(C>") into ¥~ (3.1.3)
Given a strongly continuous representation of W',

W, = J.dz f@QW()eWw

is well-defined for all f € L*(C?"), and:

() Wepg=W, + W,
(i) W§ =Wy, f(2) = f*(-2);
(iii) Wy., = W, W,,(f *9)(2) = [ dz’ f(z — 2)g(2)exp((i/2)Im(z] 2));
(iv) W, W(2)W;, = W, exp(—(z|2))for all ze Cc3n,
fo(2) = (2m) ™" exp(—((z|2)/4));
(v) The mapping L' — B(X): f — W, is injective;
vi) 1W< L f I

Proof

Since W(z) is strongly continuous, the integral is defined as a strong limit, but
will not necessarily be in the norm closure of #.

(i) and (ii) are obvious.
(iii) follows from (3.1.2; 1).

(iv) follows from (3.1.2; 1) and a Gaussian integral (Problem 5).
(v) If W, = 0, then for all z’€ C*"and g, he ¥,

0= (4 a1 W(-2WW >

- j dz f(@)exp(i Im(z]2))<g| W(2h).

Now choose h = W(z)™ g and observe that the Fourier transform of f
vanishes, and therefore so does f itself as an element of L.
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(vi) Since W(z) is unitary, | W(z)|l = 1 for all z€ C3", and

j dz f(2)W(z)

< J' 2| fW L. O

Consequences (3.1.4)

Property (iv) implies that W,, = W is a projection, and that %W, ) is

all of »#: The space orthogonal to it woul be invariant under %" and such

that W, would vanish on it, as {y| W, x> = (W, y|x)> = 0 for all x €N =

W,o y = 0. Thus in this subspace we would have a representation of %~ with
=0, which is impossible by Property (v). Therefore the subspace

W,o.f is a totalizer for %/, and in an orthogonal basis {u;} of W, ¥ with
W;,u; = uy, the representation has the form: _

<u1|W(Z)“k> = <“}[Wfo W(A"—)“’f.,“k)

This argument proves

The Uniqueness Theorem of Representations of W (3.1.5)

Every strongly continuous representation of ¥ is equivalent to a sum of cyclic
representations with

Cul Wiz = exp( (’"))

Remarks (3.1.6)

1. If »¢ is separable. then the sum is countable.
2. In the spectral representation of X, the operator W, projects onto

x?
u(x) = n” > CXP(— 2—2’-)

i

and
3n
(W) (x) = exp(i Z s,-(x, + %))u(x, +r)

(Problem 2).
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3. If the assumption of strong continuity is left out, then there are more
representations. Suppose X is as in (24.14;2), and that, as before,
(W(2)Y), = explis(x + r/2)W,,,. This constitutesanother representation
of %, op a nonseparable . It is definitely not equivalent to (3.1.5), since
exp(ixs) has a purely discrete spectrum, every ze C:|z| = 1 is an eigen-
value. In this example the operator p does not even exist.

4. There are inequivalent representations of %" for infinite systems (n = o),
in fact uncountably many of them, even on separable Hilbert spaces. (See
volume IV.)

5. If x-space is not infinite, but rather a torus (1: 2.1.7; 2), then there are
infinitely many inequivalent representations of the Weyl relations. In that
case exp(i Y J-; X,-8)) is an observable only if s,€(212)? and (3.11) is
valid only for these s;. The operator p is again formally the derivative
—i(d/dx), but, according to (2.5.3; 4) this has a one-parameter family of
self-adjoint extensions corresponding to the boundary conditions
Y(1) = e""%(0),0 < j < 2m,for Y € L3(0, 1) = L*(T*). Then —(d/dx) has
the eigenfunctions ¢ with eigenvaluesk = 2nu — j, u € Z. The representa-
tions are clearly inequivalent for different j and inequivalent to the rep-
resentation (3.1.5), where the spectrum s absolutely continuous rather than
pure point.

6. Theorem (3.1.5) gives what is known as a ray representation of R*, which
means that W(z)W(z') equals W(z + 2) up to a phase factor. It may seem
peculiar that the representatjon of %" is essentially unique, even though
every subgroup of R®* is an invariant subgroup (a normal divisor), and a
representation of any factor group is also a representation of R*. The state
of affairs can be understood as follows: for any r € R, the integral multiples
{nr}, ne Z, constitute a normal divisor of R, and ¢t — exp(2nit/r) is the
unique faithful representation of the factor group R/{nr}. Hence there exists
a one-parameter family of unfaithful representations of R, and every
(strongly continuous) répresentation is a sum or integral of them. However,
the Weyl algebra is simple—it contains no nontrivial subideal—so that
only the trivial representation fails to be faithful, and the irreducible
faithful representations are all equivalent.

The self-adjoint generators x; and p; can beé recovered from W(z) by
differentiation. Yet the problem remains of being precise about the com-
mutation relations (1.1.1), since unbounded operators do not form an algebra.
However, the fact that two operators commute can easily be interpreted in a
mathematically reasonable way:

Definition (3.1.7)

The statement that two unbounded, self-adjoint operators a and b commute
will mean that f(a)g(b) — g(b)f(a) = [f(a), g(b)] = O for all f and g€ L*.
We shall write this for simplicity as [a, b] = 0.
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Remarks (3.1.8)

1. For [a, b] to equal 0, it suffices that [exp(iat), exp(ibs)] = Oforall ¢, s € R,
or that [(a —2)~', (b —2)"'] =0 for all z,z’e C\R (Problem 6). A
consequence of (3.1.1) is thus that [x,, x;] = [p,, P;] = Ofor all &, j, and
[xi,p;] = Ofork # j.

2. The Gel'fand isomorphism (2.2.28) is still applicable to the C* algebra
generated by the bounded, continuous functions of such a and b, and it
provides a spectral representation in which both a and b are multiplication
operators. This is a generalization of the simultaneous diagonability of
commuting Hermitian matrices.

3. It is tempting to conjecture that [a, b] = 0 whenever

(1) there exists a dense domain D invariant under q and b;
(i) a and b are essentially self-adjoint on D; and
(iii) aby = bay for all Y € D.

This is false; see the counterexample of Problem 4.

To make sense of [x,, p;] for k = j, we need to find a D = D(x,) N D(p;)
such that x, D = D(p;) and p;D = D(x,). One such domain consists of the
vectors that belong to & in the x-representation, where & is the space of C®
functions that decrease at infinity along with all their derivatives faster than
any negative power of x. This space equals its Fourier transform &,and on &,
x: f(x) = xf(x), p: f(x) > —i(6/x) f(x), while on &, x: f(p) — i(8/0p) f (p)
and p: f(p) = pf (p). On & we can write

The Heisenberg Commutation Relations (3.1.9)

(x,‘pj - p,x,()l,b = iékjlﬁfor a” \lley.

Remarks (3.1.10)

1. The operators x and p are clearly Hermitian on &% with deficiency indices
(0, 0), and thus essentially self-adjoint.

2. Tt is a natural question whether all representations of (x,, p;,] = id,; on
dense domains D of essential self-adjointness lead to the Weyl relations
(3.1.1). The answer is no. Additional assumptions are needed, such as that
Z?Z, xz + Z,f'; 1 P beessentially self-adjoint on D. Otherwise, a variant of
Problem 4 would provide a counterexample. Another possible condition
is that [ ], (x, + i)(p, + i)D be dense in #.

3. It has already been noted that finite matrices can not satisfy (3.1.9). It is
likewise impossible to represent p and x with bounded operators of any
kind. Equation (3.1.9) also requires that x"p — px" = inx""!, so n|x"~!||
= [Ix"p — px"|l < 2|ix"|l - lipll, and thus |Ix!| - |pll > n'2 for all n.
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4. There are many inequivalent representations of x and p if we allow
matrices that satisfy xp — px = i on some dense domain by formal
manipulation; for instance,

[0
| 0 -1 -4 -4
1 0 -1 —4%
X ,  PETHL 0 0
4 i 4+ 1 o0
0 1 1 1 1 1]
101111
x,pl=-ill 1 0 1 1 1
1 11011
1 1110 1|

On D = {(v)€ [*: Y, v; = 0, with only finitely many v; # 0}, with these
matrices, [x, p] = i. This representation is not equivalent to the Weyl
representation: Sp(x) = Z*. The eigenvectors e, of x do not belong
to D, as otherwise there would be a contradiction, (e;|[x, pJe,) = 0 =
i(eley).

5. One might hope that the Poisson bracket { } of classical mechanics
goes over to the commutator in quantum mechanics not just for the
Cartesian coordinates p and x, but also for generalized coordinates
(cf. (3.1.2; 3)). Unfortunately, it does not. Consider p and x on the one-
dimensional torus (circle) T'; while x, 0 < x < 1, is not a global co-
ordinate, the equation {x, p} = 1 holds locally. Suppose that the quantum-
mechanical Hilbert space is # = L*(T"', dx). Then the formal equation
[x, p] = i makes no sense as an operator equation, since p is defined only
on'the absolutely continuous functions on T (which implies that (0) =
Y(1)), while x maps functions out of this subspace. If the matrix elements
are calculated with respect to the eigenfunctions ¥, = exp(2zinx), ne Z,
then

lplm> = nbym, Cnlxlmd = 2T (1 = 5) + 4o,

and if these matrices are multiplied, one finds (Problem 8) that [x, p] # i.
Hence (3.19) is not even valid in the sense of quadratic forms, so the
representations (3.1.6; 5) can not strictly speaking be characterized by
(3.19).

Following Remark (2.2.33; 3), the commutation relations (3.1.9) have as a
consequence the
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Indeterminacy Relations (3.1.11)

Ax; Ap, > 10y.

Remarks (3.1.12)

1. There are, of course, some domain questions to answer when Remark
(2.2.33; 3) is extended to unbounded operators; but assuming that there is
no real difficulty, (3.1.4) applies equally to all states, so there is no need for
an index on A,

2. A natural question is whether there can be equality in (3.1.11), and, if so, for
which states. The inequality of (2.2.33;4) is of the form {(a* — a*)
(@ — a)> > 0 for pure states, where we have let a = x + 2ip(Ax)? and
a = (x) + 2i{p)(Ax)*. Equality would require that the state | > be an
eigenvector of the (nonnormal) operator a with complex eigenvalue a. The
operators a are the annihilation operators that are so important in the
theory of many-particle physics.

In an x-representation (p = (1/i)(8/8x, | ) = ¥(x) € L3(R, dx)), the a’s can
be used according to (3.1.12; 2) to construct

States of Minimal Uncertainty, or Coherent States (3.1.13)

The equation

holds only for the states

— (x) = 2i{p)(Ax)?)?
w(X)=eXp[*- x x>4(Axl)<2p (ax )].

Remarks (3.1.14)

1. If Ax = },then we get the states W(z)|u) of (3.1.6; 2) with z = (x> + i{p),
which appeared in the GNS construction for the Weyl algebra. It follows
that linear combinations of states of minimal uncertainty are dense in J¢.
The additional parameter Ax occurring here provides a standard of
comparison between x and p, and was fixed earlier in the choice of f; . States
with different z are not orthogonal, even with the same Ax. There is, how-
ever, an analogue of the representation of the identity operator in an
orthonormal system:

1= ‘213 W) < | W(-2)
n
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This equation in fact holds for any normalized vector | Ye L! A L®
(Problem 7). The states W(z)| ) are thus not only total, but moreover
every vector can be written as an integral over them.

2. There is a strict inequality (Ax)*(Ap)? >  for impure states. Problem
(2.2.38; 6) showed that (Ax)? and (Ap)* for a convex combination of two
states are greater than or equal to the convex combinations of the two
(Ax)? and the two (Ap)? of the constituent states, and equality holds only if
the expectation values are the same in the two states. Since {p), (x), and
Ax = 1/2Ap determine a unique coherent state, any genuine mixture of
states will have Ax Ap > 1: If states are averaged with a weight p(1) > 0,

[aroam=1 wa@= (4100
o v
then

1 1
Ay x)(Byp)? = J; dA(A, X)) fo dA(A, pyPp(L)

2
> ( J'wl P)A, XA, p) >1

The last inequality is an equality only if A; x A, p = 4, and the second one
is an equality only if A,x = c A,p, so A;x = 1/2A,p is independent of A.
But the first one is an equality only if all {x), and {p), are the same; so no
genuine mixture makes all three equalities.

The Classical Limit (3.1.15)

Until now, we have taken the microscopic standpoint and set # = 1. In order
to see how the operators turn into ordinary numbers in the classical limit
h—0,let

a=xJ/h  p=pJ/h,  [xpl = ih.

If we used W(z/ﬁ) to cause a displacement by r/\/ﬁ (respectively s/\/ﬁ)
on L*(R, dx) (resp. L*(R, dp)) at the same time as we let # — 0, then we would
expect x,(resp. p,) to converge to r 41 (resp. s - 1). Indeed, the equation

W(zh~ "®exp(is(xp — r))W(—zh~"2) = exp(isx,)
can be derived from (3.1.2; 1). As  — 0, exp(isx,) = (exp(isx))‘/ﬁ -1, so
W(zh~ ')exp(isxy) W(—zh~Y/2) — exp(isr),

and analogously for exp(itpy). In the sense of (2.5.8; 3), the operators Wx, W ~!
and Wp, W ~! converge strongly to r and respectively s; the dilatation by
suppresses the fluctuations, and W translates the operators back to the proper
positions.

If the particles are indistinguishable, then only the algebra 4", of sym-
metric functions of the x, and p, is observable. This algebra has a reducible
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representation on %  -u: the unitary operator I, permuting the indices
1,2,...,n) to (ny, 7y, ..., m,), [Ix;,J17! = x,,, p,;I"* = p,, then com-
mutes with all observables. The set of permutations forms a representation of
the symmetric group S, If it is decomposed into its irreducible parts, then A/,
maps each part into itself, and there is a superselection rule (cf. (2.3.6; 7)).
Unless we restgict ourselves to the identical or alternating representation of
S,, the algebra 4", contains no maximal Abelian subalgebra, and the Il
become the hidden parameters mentioned in (2.3.6; 7). By definition they can
never be observed, but they decompose the Hilbert space since they do not
simply multiply by + 1. These superselection rules apparently do not exist in
Nature.

The identical (respectively alternating) representation of S, is obtained by
restricting the tensor product of the Hilbert spaces belonging to individual
particles to the symmetric (antisymmetric) subspace (cf. (I: 2.4.28)). As is well
known, the symmetrization or antisymmetrization of ¢ in the particle co-
ordinates leads to Bose-Einstein or respectively Fermi-Dirac statistics.
Relativistic quantum theory correlates these statistics with the spin of the
particle, but in the framework of nonrelativistic quantum mechanics it
appears as a special postulate:

The Connection between Spin and Statistics (3.1.16)

For a system of indistinguishable particles with integral (respectively half-odd
integral) spin, the representation must be restricted to the subspace of the
identical (resp. alternating) representation of S,,.

Problems (3.1.17)

l. Let .o = A(C?) ® #4(C?) = {6, ® 6,}". Construct a P such that Pe,P = o, and
P=pPt=P"

[35]

. Verify the x-representation of u (3.1.6; 2).

3. According 10 (2.4.23; 5), a dense set of analytic vectors determines exp(iat) uniquely.
and thus a Hermitian operator a defined on such a set is essentially self-adjoint.
Show that the analytic vectors for a = —i d/dx on the space L((— %0, =), dx) are
(complex-valued) real-analytic functions.

4. Let M be the Riemann surface ofV/E and ¥ = L3(M. dz = dx dy). Moreover, let the
operators @« = —i ¢/éx and b = ~i &/¢y be defined on D = {C* functions with
compact support not including 0}. Show that

(1) a and b are essentially self-adjoint;
(i) D is mapped into itself by u and b;
(i) aby = hay for all Yy € D;

but for the closures @ = a** and b = h**,
(iv) exp(iar)exp(ibt) # exp(ibt)exp(iat).
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S.
6.

7.

Verify (3.1.3(1v)).

Show that a sufficient condition for two operators to commute is that their ex-
ponentials or resolvents commute.

Verify (3.1.14; 1).

Solutions (3.1.18)

1.

2.

P=(l +e, 0,2
dJn dJn.
Wy, u = 'f(_z’n?_’ exp(— e + |s,|2)/4)exp(.' oo+ r,/z))

X exp(-— Z Ix; + r,Iz/Z)n""" =u
T

3. f ¢ € L? is an analytic vector, then y € (), D(a") < C*.

4.

(ir)"

n!

eY(x) = Y(x + 1) =} a"y(x).

The sum converges iff y is analytic.

Propositions (i) and (ii1) are obvious, as are a = a* and b < b*. As for essential self-
adjointness: Let D, < D be the set of all functions the support of which never contains
the x-axis on any sheet of the Riemann surface of \/ 2. D, is dense. The operators
U(1): Y(x, y) = ¥(x + t, y) are isometric and have dense ranges, so they have unique
unitary extensions, which are strongly continuous in t. U(t) is differentiable on D,,
and dU(t)/dt = ia,p_, 50 a|p, is essentially self-adjoint (cf. Problem 3), and therefore
so is a. The argument for b is similar; ib;, = dV(1)/dt, V(1): Y(x, y) = ¥(x, y + 1),
and D, = D is the set of functions the support of which never contains the y-axis on
any sheet.

(iv): Let ¢ be a function supported in the circle centered at (—4, —%) on the first
sheet and having some radius less than 4. Then U(1)V(1){ has its support on the first
sheet and V(1)U(1)¥ has its support on the second sheet, so U(1)V(1) # V(1)U(I).

. This calculation of a Gaussian integral will be entrusted to the reader.

. The von Neumann algebra & = {f(a): f € L™} is generated by

(1) the exponential functions exp(iat): If f € L, then the Fourier transform

J. S(t)expliat)dt € .

But the Fourier transformation is a bijection L' A L* —» L' n L=,and L' n L®
1s weakly dense in L*.
(11) the resolvents (a + x + iy) ™ ':

(a+x+iy) '+(@+x—iy) '=2a+xHa+x)?+ y.z)"
and

@+x+i)'—(@a+x—iy)"' = =2ipa + x)* + y) ',



3.2 Angular Momentum 95

and by the Stone-Weierstrass theorem, these functions generate all continuous
functions vanishing at infinity, which is also a weakly dense set in L. If there are
two algebras &/, and &, such that & = & and By = B, and for which [ o, #,]
= 0, then [/, 2] also = 0.

7. Let y(x) be |> in the x-representation. Then W(z)l? becomes e**Y(x + r) and
[ @z2mW@E)> (AW @) is ~
dsd
DL gonptx + H(x + e glxdix = [drigtx + IPole) = o).

This formal manipulation can easily be justified for instance if y € L' n L*.

3.2 Angular Momentum

In quantum physics, just as in classical physics, the angular momentum
L is the generator of the group of rotations. This group is compact, so
all of its irreducible representations are finite-dimensional. It is
possible, however, for L to be unbounded in a reducible representation.

In the earlier sections it was postulated that the group of canonical trans-.
formations in classical mechanics generated by p and x was represented in
quantum theory by exp(irp) and respectively exp(isx). The next most simple
group of transformations to study is the one generated by the angular
momentum L = [x x p]. Classically, L generates the point transformations

X = Mx, MM’ =L 3.21)

We consider here a single particle and use matrix notation; everything
factorizes for systems of many particles. In quantum theory it is more
convenient to work with the bounded Weyl operators, so we wish to find a
unitary transformation U for which

U 'W()U = W(Mz) 3.22)

(cf. (3.1.2; 1)). Such a transformation must exist, since the operators W(Mz)
also satisfy (3.1.2; 1), and all irreducible representations of those relationships
are equivalent. Following (3.1.6; 2) we can write (3.2.2) in the

Schridinger Representation for the Rotations (3.2.3)

The unitary transformation
(U¥)(x) = y(Mx)
produces the automorphism (3.2.2) of the Weyl algebra.
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Remark (3.2.4)

The operator U is not fixed uniquely by (3.2.3); e*U would do just as well for
any x € R. This, however, is the extent of the arbitrariness in an irreducible
representation of W(z), as U is determined up to a unitary element of the
commutant. Hence at this stage the U’s only constitute a ray representation of
0(3) [cf. (3.1.6; 5)]. Yet it is possible to show that every strongly continuous
ray representation of a compact group is derived from a representation of the
universal covering group (see Problem 5). The universal covering group of
0(3) is SU(2), which will be discussed in more detail later. The compactness is
essential: The Weyl system (3.1.1) provides a ray representation of R®",
which is its universal covering group, but it is not a representation in the
ordinary sensc.

The generators of the one-parameter subgroups of rotations about the
coordinate axes will be denoted L, as a vector operator. We begin the study of
the generators by determining a

Domain of Essential Self-Adjointness for L. (3.2.5)

The operator L. is essentially self-adjoint on the linear hull D of the vectors
? ki ykao ks
dl,‘=exp-——2-*—xlX2X3, k,~=0,|,2,....

Proof

D is dense (Problem 2) and obviously invariant under rotations. It is con-
venient to change to polar coordinates about the z-axis = the axis of rotation
to check the differentiability of U on D. It is then a question of showing that

2n

limdé-2| de|P(sin(¢ + 6),cos(¢ + 8))
é—0 0

— P(sin ¢, cos @) — 6P '(cos ¢, —sin @)|* = 0,

where P is a polynomial and P’ is its derivative. Since the integral is over a
compact set, its existence poses no difficulties. Taylor’s formula allows the
difference to be estimated with P”, which remains bounded in {0, 27]. Since
the integrand converges pointwise, differentiability follows from Lebesgue’s
dominated convergence theorem. Thus D is contained in the domain of the
generators. It remains to be shown that it is large enough for essential self-
adjointness. To this end, consider the finite-dimensional subspace D,
generated by {y, € D: k, + k, + k3 < k}, which is invariant under rotations
“and therefore represents the L’s by finite matrices. All vectors are entire for
finite matrices, so D is a dense set of cntire vectors. According to (2.4.23; 5), it
determines U uniquely, which means that L is essentially self-adjoint on D.
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The connection between U and L can be written explicitly as
U6¢ = exp(léL . e),

where e is a unit vector in the direction of the axis of rotation. In polar co-
ordinates it is apparent that —i(x /dy — y 8/0x) = —i 3/d¢p has the same
action as L, on ,, so on D,

L =[x x p]. a

Remarks (3.2.6)

1. Uisnot strongly differentiable on all of L%(R*)—e.g., not on exp( — |x|?/2)
O(|¢| — ),0 < a < n. Hence Lis unbounded in the representation (3.2.3).

2. Furthermore, D is invariant under x; and p;, which are essentially self-
adjoint on it (Problem 3). It is contained in the intersection of the three
distinct domains on which x, p, and L are self-adjoint.

3. The sets D, also consist of entire vectors for the operator |L|?> = L? +
L3 + L3, since there is no question that

o~ 2nt_n_
PN

converges for all t € C. According to (2.4.23; 5), this means that |L|? is
essentially self-adjoint on D.

The Commutation Relations of L (3.2.7)

Since L is the generator of the rotations, its commutators with other operators
tell how much they change under infinitesimal rotations. Thus, on D,

{(L,,V,) =ienV,.for V=L, x orp. (3.2.8)

These relations can be derived by differentiating (3.2.2) or directly from (3.1.9).
The operator |L|?, as a scalar, commutes with L:

[Ln,|LP)=0, m=123 (3.29)

These relationships are all initially valid on vectors of D, and can then be
extended to exponential functions in the sense of (3.1.7), since the vectors of D
are entire for L, |L|?, x, and p. In this extended sense, it is also true that

[L, |x]*] = [L, |pl*] = 0.

Parity (3.2.10)

The group O(3) has two separate parts, depending on whether Det M = +1.
The matrix M = —1 belongs to the component not connected with 1, and
can not be attained by letting one-parameter, continuous subgroups act on 1.
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The division of the group in two parts corresponds to the parity operator P
such that

P 'W(2)P = W(-2z).
The phase factor is fixed by the condition that
(PY)(x) = Y(—x), YeL¥R?),

so that we have P? = 1and P~! = P* = P. The parity operator changes the
sign of both x and p, and thus commutes with L:

PLP™' =L

Remark (3.2.11)

Just as with L, P can be constructed out of x and p (Problem 1). This is different
from classical mechanics, where although every one-parameter group of
canonical transformations has a function of x and p as its generator, the finite
canonical transformation x - —x, p — —p, has no infinitesimal generator;
it can not be reached by a continuous path from the identity.

The Spectrum of L (3.2.12)

Let us consider one of the components of L, say L,, and the Abelian C*
algebra £, generated by exp(iSL;). Because of the Gel'fand isomorphism
(2.2.28), every point of the spectrum corresponds to a character on #;. Since,
from (3.2.3), exp(2niL3) = 1, every character is of the form exp(iéL3) -
exp(imd), m € Z, and so the only possible spectral values of L; (or the com-
ponent of L in any other direction) are whole numbers. The construction
given below will show that all these possible values actually occur.

The Eigenvectors of L (3.2.13)

Different components of L do not commute with one another, so their only
common eigenvectors Y must be eigenvectors of their commutators with
eigenvalue 0. Since the commutator of any two orthogonal components of Lis
always the third component, Ly must equal 0, and ¢ is invariant under
rotations (Y(x) = ¥(r)).

However, [|L|? L] = 0 when acting on any vector, so it is possible to have
common vectors |I, m) of |L|? and Lj:

L3|l, m) = m|l, m), ILP21L, my = I(1 + D], m).

(letting the eigenvalues of |L|2 be I(I + 1), with the benefit of hindsight).
In order to discover the possible values of the new eigenvalue / > 0 and its
relationship to m, note that l(l + 1) must always be >m?, because
K, mLPL my = m? + K, mIL3|L m) + KL mIL3{L m) = (1 + 1) > m?.
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As already remarked, equality can only hold for L|I, m) = 0,ie.,l = m = 0.
Now, (3.2.7) may be rewritten as

[Ls,L:]= %Ly, Ly=0L,til,,
SO
LyLyllm) = (m % DL, |l m),
ILPL 4 |l m) = Il + DL, m).

Consequently L, |I, m) is a simultaneous eigenvector of L, and |L|?> when-
ever |l, m) is, and we may write

L.llm)=clllm+ 1), ceC.

Supposing that |/, m) have been normalized, the normalization constants ¢
can be calculated from the equation

IL? =L} ¥ Ly + Ly L;g
(Problem 4). The result is that

Lill,my = /I + 1) —mm + D|l,m+ 1.

In order not to violate the condition that m®> < I(I + 1), repeated applications
of L, must eventually yield 0, which can happen only if /€ Z*. It follows that
L. L1 =L_|l, —I>=0. A classical description of the action of L_
(respectively L.) is that the direction of the angular momentum vector is
changed while its length is held constant, and L, varies from a maximum
value / to a minimum —/ (respectively from the minimum to the maximum).
The eigenfunctions |[, m) constitute a 2] + 1-dimensional representation of
the algebra generated by L. The representation is irreducible, since every
vector is cyclic (2.3.6; 1). The operator L, can be used to construct |/, I, and
all the other eigenvectors of a given representation can be gotten by applying
L_toit.

The Eigenfunctions in the x-Representation (3.2.14)
To construct ]I, I) algebraically by applying operators to ]0,0), which
corresponds to a radially symmetric y(r), we rely on the equations
[Lj, x; £ ix;] = £(x, + ix,),
[Ly,x, +ix,] =0,
[IL)? = L3 — Ly, x, + ix,) = [L_, x, + ix,]L.,

(Problem 4), which imply that (x, + ix;)sends |, [)to |l + 1,1+ 1),upto
normalization. Hence,

[, m) = L'"™(x, + ix;)'|0, 0).
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In the Schrodinger representation (3.2.3), which gives the probability
measure d°x|y(x)|? on Sp(x), the vector |0, 0> depends only on the radius r,
and I, m) will have the form YJ'(6, o) f(r).

Simple Special Cases (3.2.15)

1. I = m = 0. This state is rotationally invariant, and the probability distri-
bution |¥(r)|? it corresponds to is spherically symmetric.

2 1l=4m=1|y(x)|>* ~ |x £ iy|* ~ sin? 6, and the 1-2-plane takes on the
characteristics of an orbital plane. .

3. 1=1,m=0.[y(x)|* ~ cos? 6, cofresponds to a superposition of orbits in
the 1-3 and 2-3-planes.

4. | = +m. |Y(x)|* ~ sin?'g, and the particle is strongly concentrated in the
1-2-plane for large .

Remarks (3.2.16)

1. It seems paradoxical that L, has a discrete spectrum while its constituents
x,p, and x, p, each have continuous spectrum. However, since they do not
commute, they can not possess precise values at the same time, and the sum
of separate measurements of the summands is not acceptable as a measure-
ment of an eigenvalue of the sum L,. By the axiom of linearity, it is
nonetheless possible to determine the average value of Ly by making
separate measurements of x, p, and x, p, on several identical copies of the
system. : .

2. The commutation relations (3.2.7) require a state that is nondispersive for

" L, and p to satisfy {|p|> = 0.

3. Notethat{l,m|L, ,|l, m) = 0,(AL, ;)* = (I(l + 1) — m?)/2.1tisbecause
of the quantum fluctuations of L, , that I(/ + 1) always exceeds m? unless
I = m = 0. There are nonzero quantum fluctuations even when m =
+1 # 0, though their value in that case is the least possible according to
(2.2.33;4) because [L,, L,] = iL,.

4. As in (3.1.13), it is possible to characterize the states of minimal indeter-
minacy of L, and L, as the eigenvectorsof L, — i(AL,/AL,)L,, because of
Remark (2.2.33; 3).

Spin (3.2.17)

Many particles, including electrons and protons, have an intrinsic angular
momentum S, known as the spin, in addition to their orbital angular momen-
tum L. The spin operators satisfy the commutation rules

£s;, S = igj S,
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and commute with x and p. The algebra of observables for particles with spin
is the product of the Weyl algebra and the spin algebra: According to (2.3.8; 3),
the Hilbert space of any representation is the tensor product of the Hilbert
space for the dynamical variables x and p and the Hilbert space for the spin
variables. More interestingly, the unitary operators exp(iS - €d) for electrons
and protons (or any particles of half-odd integer spin) are simply ray repre-
sentations of SO(3), i.e., according to (3.2.4), representations of the universal
covering group, )

Gloss (3.2.18)

SO(3), that is, the real 3 x 3 matrices M such that MM‘ =1, Det M = 1,
is connected as a topological space, but it is not simply connected. In other
words, there are paths in SO(3) that can not be contracted to a point without
breaking. To see why it is not simply connected, map the group space into a
ball in R? by associating a vector ed with any rotation, e specifying the axis of
rotation and é the angle. The angle may be restricted to the values0 < 6 < =,
but then diametrically opposed points must be identified. For example, to
rotate from O to 2z radians about the axis in the direction of e, first go from 0
to ne, which is equivalent to — e, and then return from there to the origin.
There is no way to shrink this path down to the point 0, though a path that
passed through the ball twice could be shrunk down. (See Figure 7.)

If the group space is doubled up like a two-sheeted Riemann surface, then it
becomes simply connected and homeomorphic to the group SU(2). This new
group comes into consideration as follows: For the spin matrices ¢ of

b T
I )

Figure 7 Homotopy of paths in SO(3).
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(22.37), — |v|* = Det v- e for any ve R®, and since any 2 x 2 matrix with
trace O can be written as v - @,

U"v,‘a,‘U = M“Ulak, UESU(Z), MGSO(3)

The homomorphism thereby set up from SU(2) to SO(3) is surjective but not
injective, and indeed Schur’s lemma shows that the identity in SO(3) cor-
responds to both U = +1. If M is the rotation ed, then it corresponds
to U = exp(ié(o - €)/2) (Problem 5), and letting é increase from 0 to 2z brings
onefrom1to U = —1. Problem $ also shows that SU(2) is simply connected,

and is thus precisely the desired two-sheeted universal covering group, so
SO(3) is isomorphic to SU(2)/{l, —1}.

The Spectrum of S (3.2.19)

The global properties are reflected in the spectrum. For SU(2) we only know
that

exp(4ni(S-e)) = 1

(47 rather than 2n), so the spectrum of any component may consist of both
whole and half-odd integer values. This statement is consistent with our
earlier construction of the representations, in which only 2/ + 1 was required
to be integral.

Representation of S (3.2.20)

Since |S|?> commutes with p and x, as do all the components of S, it is a
multiple of 1 in any irreducible representation. The experimental value found
for electrons and protons is 4 + 1) = 2. The appropriate construction of
a representation yields the matrices of (2.2.37):

e

(Problem 6). Thus for n electrons, the overall Hilbert space is the anti-
symmetric tensor product of the Hilbert spaces for the individual electrons,
each of which is a copy of L3(R?, d°x) ® C2.

Problems (3.2.21)

1. Construct an explicit representation of the parity operator (3.2.10). (Hint: write p in
the x-representation, decompose L%(R*,d*'x) as )., L*(R? d*x), introduce
polar coordinates on R, and see how P acts on the total set { f(r)YT'(6, ¢)}.)

2. Show that the ¥, of (3.2.5) are total in L*(R3, d°x).
3. Show that x and p are essentially self-adjoint on D (3.2.6; 3).
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4. Verify the facts stated in (3.2.13) and (3.2.14).
S. Show that

(i) SU(2) is simply connected ; and
(ii) every n-dimensional, continuous, unitary ray representation can be turned into
an ordinary representation by an appropriate choice of phase. It is nontrivial,
since there are irreducible ray representations of dimension greater than 1 for
Abelian groups: see (3.1.6; 6).
(iii) Find an irreducible ray representation of the (Abelian) Klein group of four.
using spin matrices. ’

6. Show that the construction carried out in (3.2.13) produces S = 6/2 on a two-
dimensional Hilbert space.

Solations (3.2.22)

1 X —X:r=rd-n—-60,¢—-n+ ¢,
)
FNY™B, 0) = f(NY(n — 8,7 + @) = (= DS (N6, ¢) = exp(in)) () V"8, );

which implies

P = exp(in(/L* +  — ¥)).
2. It suffices to consider the one-dimensional case. exp(—x?/2 + itx) is the strong limit
(s-lim) of exp(—x?/2) Y2, (itx)*/k!. Hence it follows from { ¢(x)exp(— x?/2)P(x)dx
= 0 that { @(x)exp(—x?/2 + itx)dx = O for all ¢, and therefore ¢(x)exp(—x?/2) = 0
ae,soq@ =0.

3. All vectors of D are entire vectors for x; and p;.
4. This merely requires some differentiation.

S. (i) Any matrix u € SU(2) is of the form

F4 2, 2 2 _
(—zg zf)' 2z,€C |z, + |z, = 1.
The latter condition can be written as D ¢, Ix,}* = 1 with z; = x; + ix,,
2, = X3 + ix4, % € R, which shows that SU(2) is homeomorphic (and diffeo-
morphic) to the 3-sphere S*. All n-spheres other than S', however, are simply

connected, as can be seen with the following argument: Let
Cit=x ()0 <t <1;k=1,2734;x(0) = x(1)

be a continuous, closed curve in S°. By the Weierstrass approximation theorem
there exist polynomials P,(t) such that [x,(t) — Py(t)| < ¢ for all k, ¢, P\(0) =
P.(1) = x,(0), and the curve C,:t — Py(t)/\/Y pi(t) is homotopic to the given
curve C for ¢ small enough. By a theorem of Sard the set of all points of the curve
C,, as a differentiable mapping, has measure 0. Hence it is not possible for it to
cover the whole 3-sphere. Therefore there exists a point p € $* not on the curve.
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Since $>\{p} is homeomorphic to R?, which is simply connected, C, can be
continuously contracted to a point.

(ii) Let u — U(u) be a unitary, n-dimensional ray representation of SU(2), so
U)U(v) = 5(u, v)U(uv) with |8| = 1. The associativity property implies that
o(u, v)0(uv, w) = &u, vw)d(v, w), and it is obvious that d(u, 1) = 6(1,u) = 1.
Since SU(2) is simply connected, ¥ Det U(u) is a well-defined number once
J/Det U(1) has been fixed. By scaling U(u) — U'(u) = U(u)/s¥Det U(u) one
obtains another ray representation with U'(u)U’(v) = §'(u, v)U’(uv). However,
since Det U’(u) = 1, this means that "(u, v) = 1 for all u and v, so 6'(u, v) = 1
due to the simple connectedness of SU(2).

(ini) Klein’s group of four contains four elements, e, a, b, and ¢, having the multiplica-
tion table

e | a b ¢

A ray representation can be obtained by settinge — 1.a —» g,,b - 6,,andc - 0,
(cf. (2.2.37)).

6. The two vectors |T) and |!) such that S, |]1> = S_]!> = O span the whole Hilbert
space, and the matrix elements can be calculated asin (3.2.13).

\
3.3 Time-Evolution

As in classical mechanics the quantum-mechanical Hamiltonian
generates the time-evolution, which is similar to its classical analogue,
except that the influence of the noncommutativity must now be taken
into account.

In the last two sections we have seen how to carry over the generation of the
groups of translations and rotations from classical mechanics to quantum
mechanics. We now attempt the same feat for the time-evolution with a
Hamiltonian H, and postulate a

Group of Automorphisms of the Time-Evolution (3.3.1)

The algebra of observables evolves in time accor&ing to

a(t) = exp(iHt)a exp(—iH1) = i (i)’

n=0 n!

adj(a) = a,  adyla) = [H,ad} '(a)), aed.

adi(a),
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Remarks (3.3.2)

L

Not every automorphism of a C* algebra has this kind of representation.
However, for our purposes, of = #()), for which every continuous,
one-parameter group of automorphisms of the Jordan algebra (2.2.34) (i.e.,
it must be linear and preserve the symmetric product o) can be represented
unitarily.

At this stage H is the classical Hamiltonian with p and g replaced by the
operators of the Weyl system. However, because they do not commute, H is
not uniquely defined, and in general even the question of a domain of
essential self-adjointaness is open. The systems we shall consider will not be
so problematic, and self-adjointness will be taken care of by the Kato-
Rellich theorem (2.5.15).

If a and H are bounded, then the series given in (3.3.1) converges because
lladi(a)ll < 2"||H|"|la| for all ¢, and ¢t — a(t) is continuous in norm. If H is
unbounded, then the time-automorphism is still strongly continuous when
exp(iHt) is, because

li(exp(iHt)a exp(—iHt) — a) il = |l(a exp(iHt) — exp(—iHt)a)y |
< la(exp(—iHt) — Y| + ll(exp(—iHt) — Day|.

However, da(t)/dt is not necessarily a bounded operator, and thus may not
belong to . It is initially defined as the quadratic form i{ H, a] with D(H)
for its form domain. If a is itself unbounded, then the question of domain
becomes more serious; under certain circumstances the Hermitian form
i[H, a] is not closeable, and can certainly not be the quadratic form of a
self-adjoint operator.

Let us next investigate in some detail the time-evolution that will later

serve as a standard of comparison.

Free Motion in Three Dimensions (3.3.3)

The Hamiltonian for a free particle is

Ipl?
H = 2m’

so in the spectral representation of the momentum H and its resolvent are

(HY)(p) = ! "" Ly@,  DyH) = (W LR, Ppy pPueL?),

2
(REW)(P) = 4o, w(z)w)(p)—exp(— Ly )wu»)

(|p|2/2m)
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It is often desirable to have expressions for these quantities in the spectral
representation of x, in which p is written as —i d/0x and the two representa-
tions are related by the Fourier-Plancherel formula: The Fourier transforma-
tion maps L*(R% d°p) n L'(R3 d%p) isometrically onto L2(R? d*x) N
L*(R?3, d*x). Since both sets are dense in L2, the Fourier transformation can
be extended to a unitary transformation L?> — L2. A calculation of the
appropriate Fourier integral shows that

(H)) = = 22 Y,

RENI® = 7= &x 'e""(""" P XD Doy, k= /o,

32 2
UEW)) = (5;2"%) fd’x' exp(m'—)w( )

(Problem 1).

Remarks (3.3.4)

1. The Hamiltonian H is self-adjoint on the set of Fourier transforms y of the
vectors Y of D ,(H), and essentially self-adjoint on the Fourier transforms
of the vectorsof any set D thatisdensein D ,(H)in the graph norm. Examples
of such states are the vectors of &, the coherent states, and the domain of
(3.2.5).

2. The vectors Y(x) € D,(H) have some continuity properties because the
integral kernel of the resolvent in x-space is so nice. Furthermore, variants
of Sobolev’s inequality show that functions whose derivatives have finite
L*-norms are bounded: Using the kernel for the resolvent we see that if
z= —a?,0eR", then

)| = I(R(IpI* + a*)(x)|

- f P °"”jn|i"‘ - XD om(HY) ) + a?y(x)]

< @milHY| + a*llyl)8na) =12,

by using the Cauchy-Schwarzinequality and the fact that |exp(— ar)/4nr||2
= 1/8na. One can also argue without using the kernel of the resolvent as
follows: By the Cauchy-Schwarz inequality,

2 3 -~
(Jioian) < [ [aor + 21608 9

1‘; ICmH + o?)|* forall aceR,
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which implies

-~ 2
ool < @ny> [#pli@) < L2 L2

/ 8na

< Iyl + 2m| Hy 1)

 8na

Thus the functions y(x) are bounded. Moreover, since |exp(ip- x) —
exp(ip- x')| < min{2, |p||x — x’|} < 2'7’|p|’|x — x'|" for all y€ (0, 1),

dpipl2t= .
W00 = )t < [TEEZ S (pl + aip)Ix - xT

S CIx — X @~ V22ml| Hy || + a3 2|y )
forall 7€(0,%).

So Y € D,(H)is in fact H5lder continuous with any exponent < 3. Stronger
properties such as C' can not be hoped for (in three dimensions), since if
¥ =r’, y >4, then y” € L? at small r but ¥'(0) = . But at any rate,
D(|pl?) = L*(R?).

3. The operator U(r) also has a continuous integral kernel, and its effect is
frequently to smooth functions. It describes how wave-packets damp out;
the fact that they damp out is expressed by the weak convergence of U(t)
toOast — + x0.Forexample,on the dense set of L' functions, | (U(t){)(x)|
< (2mt/m) >3 {iy|,. However, since U(t) is invertible, the time-reversed
motion is always possible.

4. The easiest way to see that H generates the classical time-automorphism
x = x + pt for m = 1 is to use the Weyl operators:

in2

cxp(fxs)cxp(— %,)exp(—ixs) = exp(_. ip_z_s)zt)

. s ' .

= exp(- ?)CXPGI(DS - %)) = exp(?)exp(ixs)exp(— %)
2

= exp<f1 (PS - %))exp(ixs) = exp(is(x + pt)).

This one-dimensional formula generalizes easily to vectors.

Most of the problems solved in introductory classical mechanics are also
pretty easy in quantum theory:

Examples (3.3.5)

1. Free fall. H = p?/2 + gx, L*((—oc, o), dx) > D = the linear hull of
{x" exp(— x2)}. In the spectral representation of p, in which x = i d/dp, H
can be defined as a self-adjoint operator on D(H) = {{(p) € L*(( — o0, ©),



108 : 3 Quantum Dynamics

dp): ¥ is absolutely continuous and (p?/2 + ig d/dp)y € L?}. On D,
i(H,x]=p and i[H,p] = —g, so X(t) = x + pt — gt?/2 and p(t) =
p — gt satisfy the same differential equations as x(t) and p(t). Since they
agree at t = 0 and the vectors of D are entire for them, it follows that
X(t) = x(t) and p(t) = p(t). The quantum fluctuations of these observables
satisfy

(Ax(1))* = Ax? + t3(Ap)* + t({xp + px> — 2{x)<{p)),
(Ap(1))* = Ap.

The damping out of the wavé-packet does not depend on g; the un-
certainty in p is constant while that of x grows linearly with Apt. The
spectrum of H is purely continuous, since on D(H) HyY = Ey reads

Hy = Eviig L) = (E-2
Y= ¢-tg‘7;l//(p)— =5 V),
which
o 3 .
=Y(p) ='c CXP(“‘ @—QL@) ¢ L*((— 0, ), dp).

2. The harmonic oscillator. H = (p? + w?x?)/2; D < L*((— oo, o), dx)asin
Example 1 is invariant under H, and by the same argument the classical
solution

x(t) = x cos wt + gsiﬁ wt,

p(t) = p cos wt — wx sin wt

again reproduces the correct quantum-mechanical time-evolution. The
mean-square deviations are easily shown to satisfy

1 . 1 .
(Ax(1))? = (Ax)? cos? wt + (Ap)? = sin? wt + =cos wi sin ot

x ({xp + px> — 2{x><{p)).

Wave-packets oscillate rather than decaying away. The last contribution
cancels out for coherent states (3.1.13); moreover, if Ax? = Ap?/w?, then
(Ax(t))? and (Ap(t))? are constant. H = w(a*a + 1/2), where

a = (wx + ip)Rw)~'"?

(cf. (3.1.12: 2)), has a pure point spectrum, since [a, a*] = 1 and [H,a] =
—aw(allactingon D),so HY = Ey = Hay = (E — w)ay.Since H > w/2,
there is a vector Y, such that ay, = 0, Hyo = (w/2)¥,, and Hy, =
oXn + $),. where ¥, = (a*)'(n!)”1?y,. In the spectral representation
of x, aRw)"? = (d/dx) + wx, Yo = exp(—x?w/2) (cf. (3.1.6;2) and
(3.1.12; 2)), and the ¥, span D completely. Because D is dense in ), H
is self-adjoint on D and o,(H) = o (H) = &. Yet o(H) is not determined
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by the motion in configuration space alone H= p,pz + Xx,x, produces
the same motion of the x; as H = (p} + p3 + x} + x3)/2, but o(H) = Z
and o(H) = Z*.

3. A particle in a homogeneous magnetic field. The nonrelativistic version of
the Hamiltonian (I: 5.1.9) with the magnetic field in the z-direction is

Ip—eAl  mix? 1 (p eB eB )
1

H= 2m - 2 X =— 2"2:!’2_“2-"1’173

= i[H, x], (A = —g(—xz, Xy, 0)).

Now the variables (x,, X,) and (X,, X,) = (x,/2 + p,/eB, x,/2 — p,/eB)
are canonically conjugate pairs like (x,, p,) and (x,, p,), sinceon D x D
as before, {x,, X,] = 1eB, [X,, X,] = l/ieB,and [%,, X,] = Oforallkand /.

Writing a = (%, + iX;)\/m/2w, @ = eB/m, we find that
2
=P * =
H 2m-+-(aa-+-§)a), la,a*] = 1.

The Hilbert space is a tensor product )#; ® X, ® )#,, corresponding
to the new pairs of conjugate observables, and H is the sum of the H of
Example 1 with g = 0, acting on the last factor, and the H of Example 2
acting on the second factor. The time-evolution is accordingly

D S ., .
x,(t) = X; ~ a(xz €os wt ~ X, sin wt),

- | ..
x,(1) = X, + P (X, cos wt + %, sin wt),

X3(l) = X3 + — p3

Thus the constants X function as the center of the orbit, and H, of course,
is independent of them. The operator x? + x3 therefore has an infinitely
degenerate point spectrum, as it involves only one pair of conjugate
variables. The operator H as a whole has continuous spectrum from w/2 to
0o, since it includes the kinetic energy in the 3-direction. As with the
harmonic oscillator, the zero-point energy w/2 arises from the inde-
terminacy relation (3.1.11), according to which

Ho~ 5 1097 + 0(Ax)] ~ 5 [4(,;,) wz(sz)]

has its minimum w/2 when Ax = (2w)~'/2. As in the classical case (see
(I: §5.1)) it is important to distinguish between the canonical angular
momentum L = [x x p] and the physical L = [x x mx]. The former
depends on the gauge, and is constant in the gauge chosen here. The
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physical angular momentum is independent of the gauge, but depends on
time. In a magnetic field the ground state has (01 L,|0) = —~ 1 (Problem4),
and for its orbit, Ax ~ (Ap)~! ~ w~!2. As in the classical case H is
invariant under translation combined with certain gauge transformations.
Radial motion in S states. Let H = —¥}d?/dr*) + V(r), where V and
V' e L®, and D(H) = {y € L¥[0, %), dr): ¥ € C!, ¥’ is absolutely con-
tinuous, ¥" € L%, and ¥(0) = 0}, making H self-adjoint according to
(2.5.14) and (2.5.15). The operator r:y(r) — ry(r) is seif-adjoint on
D(r) = {Y € L?: ry € L?}. Its rate of change # = i[H, r] is at first defined
as a quadratic form with the domain D(H) n D(r), and is a restriction of
the quadratic form associated with the Hermitian operator p, = —i d/dr.
D(p,) = {y € L>: ¢ is absolutely continuous, ¥’ € L2, and ¥(0) = 0}.
This is the operator studied in (2.5.3; 5). Thus Remark (2.5.13; 1) shows
that the time-derivative of a self-adjoint operator need not have any self-
adjoint extensions. An integration by parts reveals that the time-derivative
of the form p, is

® 1o S #3 __,l_ ”
o= [Tal(- 3w vl —ue 2 (<3 e )}

© av 1
= - [Carpewn I + 3w OP (a)
0 d" 2
This contains a noncloseable form in addition to the classical force, so

p, is not even an operator. Incidentally, (a) implies a relationship for the
eigenvectors y of H that will be important later,

< l > 5 W) (b)

In applications we shall require

The Unitary Time-Evolution of a Time-Dependent Hamiltonian (3.3.6)

The solution of

is

% U(l, lo) = -lH(t)U(t, to)., U(to, to) =1

Ut tg) =1 + Z(~i)"J. de, fldtz--~J‘Mdt,,H(t,)H(tz)mH(t,,)
n-<1 to to to

T[exp(——i f‘dl’ H(t’))]

]

(see (2.4.10; 3)).
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Remarks (3.3.7)

1. The operators U are not a one-parameter group, but it is still true that
Ulty, 1)U(ty, to) = Ult,, to)
(Problem 7).
2. If H(z) 1s a step function, H(t) = H;fort;_, <t < t;, then
U(ta, to) = exp(—iH,(t, — ty_y)) -+ -~ exp(—iH,(t, — t)).

The sum (3.3.6) converges strongly in this case if there is a domain of
entire vectors for all H;, which is invariant under exp(—itH;). Hence,
passing to the continuous case, a sufficient condition for the series (3.3.6)
to converge strongly would be the existence of a domain consisting of
entire vectors for all H(s), invariant under exp( — it H(s)), and on which H(s)
is continuous enough so that the integrals applied in (3.3.6) to vectors of
the domain can be strongly approximated by sums.

Examples (3.3.8)

1. An oscillator with a spatially constant but time-varying force f € CO(R).
H(t) = (p* + w?x?)/2 + xf(¢). Since the equations of motion are linear,

u@) = T[exp(—i f‘dt' H(t'))]
(V]

produces the classical solution
U~ OxU() = x cos t + L sin wt + &)
U~ Y(t)pU(t) = p cos wt — wx sin wt + =n(t),
ao:-iﬂm@nmpqux () = &Q).

Therefore the time-ordered product factorizes as
it(p? + w?x?)
2

Once again, the sum in (3.3.6) converges for all t on entire vectors for x, p,
and p? + w?x?, such as the coherent states.

2. An oscillator with a changing frequency. H(t) = (p? + w(t)*x?)/2, and the
solution of the linear equation of motion x = p, p = —w?(t)x is the linear
relationship

U(t) = exp( —-ipC(t))cxp(ixn(t))exp(— ) x a phase factor.

x(t) = Q;,()x + Q,,(t)p,
p(1) = Q5,(t)x + Q,(t)p,
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where in our notation the symplectic matrix Q € Sp, equals

T(exp(ﬂd"(;ag(z') l)))

The unitary transformation U(t) = T[exp(—i [} dt’H(t'))] that describes
this time-evolution can be decomposed into factors as before: Q € Sp, <>
Det Q = 1, so Q has three free parameters and can be written as the
product of the symplectic matrices

1.
COS vs ; Sin vs eﬂ 0
e -8

—vsinvs CoOS Vs

Since by Problem 8,
exp 22222 prexp( — ZLEL D) - (cxpip,exp-

up to a phase factor exp(ia),

U@) = eXp(id)CXp(— is(p2 + vzxz))exp(l'ﬂ(xp + px))l

2 2

It is not possible to write down the classical §X(t) for an arbitrary w(t), so
the functions v(t), s(t), and B(t) are also unknown. For sume w(t) a miracle
happens and (¢) is an elementary function; for instance for @, 7 € R,

_ _ 3 cl _ feos]_ (¢t + 1)?
“’")—““)‘“\/‘*W’ {s}={sm}“’ 2
) =

AN

s s
C+'_——2 —
@t @t
i 1 1
t+1 t+T s
t+t ——)c—-{t+ 1)+ s c——=
( 72 t+r> (( ) (T)‘tz(t-i-‘[)) T o1t + 1)

Remark (3.3.9)
The linear transformations of x and p leave the set K of states
: - 2
~exp<l(i2<1—Y)-), 0, 7eEC,Ima <0,

invariant: A transformation
x=Q,,x+Q,p+¢
p—=Qux+Qup+m ,
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changes (x — ap — y)|> = 0into (x — a’'p — y)|> = 0 with

. Qi +af,, Y + n(Q,, + a,,)
o =22 and ' = + 12 22
Q, + o, V=< Q) + aQ,,

and hence U| > can be written as ~exp(i(x — y)?/2«’). Although Im «
remains negative, Re a does not remain equal to 0. Since the latter fact
characterizes coherent states ¢3.1.13), linear transformations can affect the
degree of indeterminacy (cf. (3.3.5; 1)), and Gaussian wave-packets may
spread out.

If H is perturbed time-dependently to H,(t) = H + H'(t), then the eigen-
values of H, vary in time, since

\ .
H,(t) # U™ '()H,(0)U(1), U(t) = T[exp(—i Jdt' H,(I’))].
()

As time passes, the family of projections P,(t) onto the eigenvectors of H, is
more nearly transformed by U(t) into itself the more slowly /' varies in
comparison with the differences between energy levels. In other words, the
transition probabilities approach zero in the limit of slow variation of H,
even if the eigenvalues themselves change significantly.

Example (3.3.10)

Recall Example (3.3.8; 1) and suppose that

" 0

2 2
H(s)=%(p2+w2<x+{%))) /) 0<s<l1, feC.

The question is now whether the time-evolution according to H(t/7), 0 <
t < t, transforms the projection onto the ground state of H(0) into that of
H(1) as T — 00. The two ground-state eigenvalues are different, as the ground
states satisfy

2
HOIE®) = BB, Eol®) =5~ 2F,

o))
a(t) = U™ '(t)aU().

As we saw earlier, the time-evolution of a is then

t

Eo(—)> = (ip(t) + wx(1))

a(t)

T

a(t) = aexp(—iwt) — i J"dt’exp(—-iw(t - I'))f(g),
0
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or, after integration by parts,

S CXP( iwt)
w

a(t) = a exp(—iwt) —

1)

+ 21D f ds f(syexpliars).

If the Fourier transform of /', which occurs in the last term, is denoted f(w1),
then

a(t) + —= f( ) = exp(—iwt)(a + & +f(——wt))
w w
and, with (3.1.4),
S(w1)

2
2w )

If f € C", then f'(wt) = (") as © = c0; the smoother the perturbation, the
smaller the transition probability (cf. (3.3.7; 2)).

This behavior can be shown to occur more generally. Let H(s),0 < s < 1,
be a family of self-adjoint operators with a common domain D. An isolated
eigenvalue E(s) will be called regular iff P(s), the projection onto its eigen-
vector, is finite-dimensional and continuously differentiable in s, as is
(H(s) — E(s))~'(1 = P(s)). Under these circumstances, there is an

[<EQ)|E(1))| = CXP(—

Adiabatic Theorem (3.3.11)

The probability of transition from a regular eigenvalue with the transformation

o, = s far(2))]

goes as O(t ™) in the limit T — co.

Remarks (3.3.12)

1. By assumption E(s) is separated from all other eigenvalues by a nonzero
distance for all s, so there is no question of crossing of eigenvalues. It is
possible to show that the theorem remains valid when only a finite number
of crossings can take place.

2. The whole purpose of the domain assumptions is to ensure that U, is
defined ; they could be weakened in many ways.

3. Roughly speaking, the theorem states that in the limit,

t t\, -
H(;) - 2 E,-(;)U YO)P, U(t).
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Proof

Let
d
P = P(s): P’ = P=P = PP + PP=PPP = 0,= P = [[P, P], P).

Now write P(s) = W(s)W*(s), P(0) = W*(s)W(s) = W(0), where W(s)is an
isometry of the space of eigenvectors belonging to E(0) onto that belonging
to E(s). Then W(s) = P(s)W(s) = W(s)P(0), so W' = PPW + PW’ and
P'=WW*+ WW* = [P,PIWW* - WW*[P,P]l< W =[P, P]W,
which, because PP’"W = PP'PW = 0 from the result above, implies that
P(s)W'(s) = 0. The isometry W(s) describes how the eigenvectors of H(s)
twist around as functions of s, and this must be compared with the time-
evolution according to

V.(s) = T[exp( —it J ds'(H(s") — E(s’)))], (a)
0
where a convenient phase factor has been included. From V*' = itV*(H—E),

(H — E)P = 0, and the foregoing argument it follows that

(VW) = itV¥H — E)PW + V*W' = (it)"'V¥(H - E)"'(1.— P)W'
(b)
(writing H for H(s), etc.). Iif Equation (b) is integrated by parts, then

vaw() — P(0)

= (i1)” '{V:‘(H - E)"'(1 - P)W’

1 1 d
- f dsV*—(H-E)"'(1- P)W’)}.

0 ] ds
(©

Since it has been assumed that the eigenvectors remain at least some positive
distance apart, the operators (H — E)~'(1 — P)and (d/dsX(H — E)~ (1 — P))
are uniformly bounded in s. The operator {. ..} is then also bounded, and (c)
implies the adiabatic theorem

IW(1) = V(DPO)I = O(™"). a

The Classical Limit (3.3.13)

We saw in Examples (3.3.5; 1) through (3.3.5; 3) that the quantum-theoretical
time-automorphism for linear equations of motion is the same as the classical
one. The connection between classical and quantum dynamics is not so easy
in general, since it is possible that (p> = —{V'(x)> # —V({x)). Yet there
is hope that as # — O the fluctuations can be neglected, leaving the classical
time-evolution. In (3.1.15) we began with

W*(h~'2z)x, pW(h™'22) = (x, p) + "3, n), z=¢ +ix,
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in order to make the heuristic correspondence principle more precise. We
ought to be able to show that quantum time-evolution converts this to

W (h™Y22)x(2), pe))W (R~ 22) S U (e)x, pU (1)
+ h™V2(E@), n(t)),  z = &(0) + in(0),

where (£(2), n(t)) are the solutions of the classical equations of motion with
initial data (§(0), =(0)), and U, gives the time-evolution of the equations of
motion as linearized about the classical path (cf (3.3.8; 2)):

U, = T[cxp(—z f dt( + X V"(é(l ))))] (3.3.149)

In the classical limit (3.1.15) this indeed reproduces the classical trajectory
(), n(t)):
lim W*(h™ 22X (x)(1), pA(O))W(h™122) = (&(¢), n(2)).

L]

In other words, the diagram

lim W
L ]
x >
exp(—iHt) exp(tLy,,)
x(t) + §()
lim W

-0

commutes. The mathematically precise statement of this fact uses the Weyl
operators:

Theorem (3.3.15)

Let V € C*(R) and suppose that D(V) and D(|x*V"|) contain K, the set of

states |a}./n/—Im a exp(i(x — y)?/2a), a, y € C, and Im a < 0. Then for all t
for which the classical trajectory (§(t), n(t)) continues to exist,

li_r.r}’ W*h~ ”2z)exp(i % H,,) exp(i[r(x — 77 2E(@®) + s(p — &~ *n(1))])

h

in the strong operator topology. The U ; in this formula is defined as in (3.3. 14),
z = &0) + in(0), and H, = H(x,, py) is any self-adjoint extension of the
Hermitian operator (h/2)p* + V(h'/*x) on K.

X exp(—i 4 H.)W(h"”z) = Uy '(t)exp(i(rx + sp))U (1)
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Remarks (3.3.1¢)

1. Since H, is i real, Hermitian operator (see (3.3.19; S)), its deficiency
indices are equal, and thus it has self-adjoint extensions. Any of these
extensions serves to define exp(itH,/h); in the limit they are all equivalent.

2. If Hy/h is expanded around the classical trajectory in powers of x, — &(t),

Py~ n(z):%‘ + h™ 1V (hii2x) = ;.—1["_(2‘2 + V(c(z»]

+ B2 [n(t)Xp — h~'3n(t)
+ VI(EOXx — B V2EEN] + -
=h"'Ho + h™'2H, + H, + O(h'?),

then, in addition to H(t), which is a multiple of 1, there arises a linear
term H,(t) = h~V2(=(t)p + V'({(t))x). This is precisely the generator of a
displacement by h~'2(¢(t) — &(0)) and, in the momenta, h~'/*(n(r)
—n(0)). The left side of (3.3.15) can therefore be written

Un(t)* exp(i(rx + sp))Ux(t),
where

Uy = W“(h"”z)(T[exp(-—i Jth’(H;(t') + Ho(t')))]).
1]
. exp(- l—t?lH-') W(h™122).

The theorem thus states that in the limit A — 0, the time-evolution ac-
cording to Hy/h differs from that according to H, by a factor

U) =T exp( —1 f 'dt’ H z(t’)),
0 .

where W has been used to translate the starting point back to the origin.

Proof

In order to show that lim,_ o Uy(t) = U 1) on K, consider the operator

Uty to) = W(h-uzz)t(T[exp(-i J.”dt’H,(t’))]).
0
.exp(— &l;ht—"ﬁ)T[exp(—i J:odt'H,(l’))]

-W(h~ 1/zz)cxp(i f“dl' Ho(l’))
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as in (3.3.6), and compare it with

) 2 " o2
U(f], tO) = T[exp(_l J’ dll(% + 4 (é(zl )_)i_))].

The set K is invariant under all the unitary factors that arise except possibly
for exp( — itHy/h); however, since D(H,) = D(p?) n D(V) = K, the derivative
by t, in the identity

t, d
U61,0) = Uyt 0) = [ dto 2 Unler, 00Uk, 0)
0 lo
is justified on K. We find that

;;:—0 Ux(ty, to)U(tg, 0) = iUy(ty, ‘o){h—lv(c(fo) + h'%x)

= h™ 'V (&(to)) — h™ Y2V 7(&(to))
|74 2
- ._(_é(i%}u(to, 0).

Now, with Taylor's formula, I|{---}¥|, ¥ € K,is bounded by h''?||x*V"||, and
since the U, are unitary this goes to 0 as h'/2 - 0. a

Remarks (3.3.17)

i. The examples looked at earlier show that when V" > 0 the mean-square
deviations oscillate about the classical trajectory, when V" < O they are
exponential functions of time, and when V" = 0 they are linear in time.
This corresponds exactly to the behavior of densities of finite spread ac-
cording to classical stability theory.

2. Since h makes itg original appearance only in (h%/2m)A, the limit h — 0
can be reformulated as the limit m — co.

3. We have shown only that U, converges. The conjugation U — U* is not
strongly continuous but only weakly so, which implies only the weak
convergence of Uf. However, since the limit is unitary and the weak
and strong topologies are equivalent on the unitary operators, U} also
converges strongly. Finally, although the operator product is not strongly
continuous, it is strongly sequentially continuous, so the proof of (3.3.15)
goes through.

Classical trajectories generated by a Hamiltonian H(x, p) = H(x, —p)
satisfy x(~t; x(0), p(0)) = x(¢; x(0), — p(0)). Of course, x = x, p = —pis not
a canonical transformation, and it can not be generated by a unitary trans-
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formation in quantum theory either; such a transformation would contradict
{x, p] = i. The Weyl relations (3.1.2; 1) are nevertheless invariant under the

Antiautomorphism © of Reversal of the Motion (3.3.18)

O(a4 + BB) = a®(4) + fO(B), « BeC and A BeW,
O(4B) = O(B)O(4), O(W(z2) = W(—1z%).

Remarks (3.3.19)

1. © preserves the structure of the Jordan algebra, i.e., @(4 o B) = ©(A)o
©®(B), and causes the transformation O(x) = x, O(p) = —p. IfO(H) = H
and ©(A) = A, then O(A(t)) = O(exp(iHt)A exp(—iHt)) = exp(—iHt)A
x exp(iHt) = A(—1).

2. In the representation (3.1.4) for the W’s, © is equivalent with complex
conjugation to an operation ©' such that

O'(x4 + BB) = a*©’'(A) + p*O’'(B),
©'(AB) = O'(4)©'(B), O'(W(2)) = W(z*).

The operator ©' also leaves the Weyl relations invariant, and it is easy
to check that (z,|®(W(z2))|z,)> = (z,|0'(W(2))|z,)>*, where |z, =
W(z;)|u). Hence the matrix elements of Hermitian operators and con-
sequently of observables are the same with ©®' as with ®. A bijection
K: ¥ — X is usually defined by

K Zailzi> = Q(Z aiw(zl))|u> = Z‘:ai‘lzi‘

and is known as time-reversal. Note that

(2,1(K|z,)) = ul W(=z)W(zD)|u) = (ul W(-z5)W(z,)|ud*
= {(K|z2)|z;)*.

Since {z,|O'(W(2))|z,> = {z,]KW(2)K|z,), the operator O’ is equiva-
lent to this antilinear transformation of vectors.

3. Since ®(L) = —L, it would be reasonable to require that O(¢) = —o.
We see incidentally that time-reversible operators H = ©(H) must have
at least doubly degenerate eigenvalues in the presence of spin. If w is the
state associated with a certain eigenvalue of H, then the time-reversed
state w, defined by w,(a) = w(©(a)) is different from w, since for pure
states w(6) = —w,(6) # 0, although w(H) = w,(H).

4. It was possible to produce a spatial reflection with an element £ of #°
that commutes with H if H(x, p) = H(—x, —p), and thus  furnishes a
constant of the motion (see (3.2.10) and (3.2.11)). However, reversal of
the motion is not connected with a constant operator.
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5. Hamiltoniar.s that can be time-reversed in the sense of Remark 2 are real
differential operators, which always have equal deficiency indices (recall
(2.5.13; 4)). Hence, by Theorem (2.5.11), there are self-adjoint extensions,
which can be used to define a time-evolution. This is particularly interest-
ing, since classically the existence of collision trajectories can destroy the
one-parameter group of the time-evolution (cf. I: §4.5).

Problems (3.3.20)

1. Verify (3.3.3).

2. How do the coherent states (3.1.13) evolve in time with the motions of (3.3.3) and
(3.3.5;2)?

3. (i) Calculate the resolvent (H — z)~! for the H of (3.3.5; 1) as a Fourier integral, and
(1) show that o (H) is empty and ¢, = R.

(Hints: For (i) make the ansatz that
® dp' (* dA
w-we=[ L[ L kanwn
2mJ_A-z
and determine K so that
.d pt ) ""’ da
— 4 — - — K(A ') = - p).
(xgdp+ 3 z ._ol—zK( ,p.p) = 2nd(p — p)
For (ii) use the formula
. dz P n=1 s =1
P@ab)y=slim| —((H—-z—ie)"" = (H—-2z+ie)" '],
c-=0 Ya 2mi
where P(a, b) = % dPy(«), and P(a) is the spectral projection for H.)
4. Show that in (3.3.5; 3),

(i) the canonical angular momentum L, = [x x p]; is constant, but that the
physical Ly = [x x mx]; is not; and
(ii) <O|L;}0> = —1ifal0) = 0.

5. Show that the addition of any vector potential, even one depending on the position,
always causes an increase in the ground-state energy of a Hamiltonian given just an
ordinary potential. This accounts for diamagnetism in hydrogen and helium atoms.
(Actually, the statement can be generalized if the exclusion principle is taken into
account.)

6. Show that even if ¢ is an entire vector for a and b, it need not be an entire vector for
a+b. '

7. Prove the formula of (3.3.7; ).
8. Prove that in (3.3.8; 2), U(t) = exp(ia)exp( —is(p? + v2x2)/2)exp{iB(xp + px)).
9. Imterpret the adiabatic theorem for the soluble example (3.3.8; 2).
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Solutions (3.3.21)
A . S
i. (HyXx) = — m Y(x): this part is trivial.
R@EW: (R(2YXp) = 2m I—?'ﬁi—pii k? = 2mz.
REWY0 = T:f’f"' PPN exp(—ip- XWX’ dp
m (exp(ik]x - x']) ., .,
= | e
2
(UEW): (UEWXP) = exp( itlpl )w(p) = (UEWXX)

32 ]2
=(%) fdsx,exp(ﬂz__x_l_).,,(x,

2. For the free time-evolution, 1n (3.1.13), (xp + px) = 2{x){p)>. Thus A(x(1))* =
Ax? + 12 Ap? # 1/4A(p(1))?, and

= 2 4 42 Ap2)- 14 _(x - (x> = {p)? it )
¥(x) = (Ax* + 1* Ap”) CXP( WA + 1 AP - 5p) + iKPx

For the oscillator with w = 1, x is constant, so the wave-packets do not spread
themselves out to nothingness, and

(x — {x)cos wt — {p)sin wt + 2iAx}({p)cos wt — {xDsin wt))?
4 Ax? ’

3. () (H = 2)7"Wp) = (2, (dp'/2m) [, dA exp[—i(A(p — p')/g

= (p* = )69 W(PH)(A = 2).

Yi(x) = exp[ -

(ii) Ify € L', then

lim
]

3 _ 3
exp[ ((”g" )@ = ’)]w'(p)w(p')

(== =)
A—z—ie A—-z+ic

< lim fd’j' ‘”d""" 2L W

c=0

b-a
se22(f° |¢<p)1dp)

SYeH, =K, =X,

*dz "= dAdpdp’
KW 1P(a, bW = J’Z_zx.J dAdp dp’

2n

)2+£2

since the vectors y € L' are dense and J¥,, is closed.
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4. (l) [‘3 = (m(’-’/z)(if + ?2) - (m/zw)(if + i%) = [L.'h H] = Ov LJ = _(m(i% + i%)/
w) + m(X,x, — X,X,) is not constant.

(1) a]0) = 0= L,|0> =0, 1, 2,.... For the orbit with the smallest radius, i.e., the

least value of %} + X3, it is also true that (X, — iX,)[0) = 0, which implies that

CO0](X,%; — X2%,)]0> = 0= <0} L,|0) = — é <0|H]0) = ~1.

5. Let H,=(p + eA(x))*/2m + V(x) and ¥(x) = R(x)exp(iS(x)), R >0, S real.
YIH YD = Id“x(!VR + i(VS + eA)R|*/2m + R*(x)V(x))

> fd’x(VRz/Zm + R2V) > (R|Hy|R) > the ground-state energy with e = 0.

6. Let ¥ = L%((—x, 0),dx)3 y(x) = 1 when 0 < x < 1, and otherwise 0, and let
ay(x) = exp(x)P(x), by(x) = Y(x + 1) + Y(x — 1). b is bounded, so every vector
1s entire for it, and y is certainly entire for a since |a"y|| < exp(n). However,

n+ 1
Ia + BYI? = lab™l? > f exp(2x?)x > exp(2n?),

and ), exp(2n®)t"/n! diverges for all ¢ > 0.

7. Let V(1) = U(t, t,)U(t,, to) — U(t, ty). Then dV/dt = —iHV, which implies that
V(t) = 0, since V(t;) = 0.

8. #(px + xp) is the generator of the group U,:¢(x) — exp(f/2)¥(exp(B)x).
This follows from the identity i(xp + pxW(x) = 20 exp(B/2)y(exp(B)x)/0B\s=0,
which holds for entire analytic functions ¢. It implies that UgxU_g¢(x) =
U (x exp(— B/2)y(exp(—B)x)) = exp(B)xy(x), UgpU _p¥(x) = Ug(—iexp(—3p/2)
x y'(exp(— B)x)) = exp(— F)pY(x).

9. If t > 1, then H(1)|0) ~ («(t)/2)|0), and the classical invariant E/w becomes
constant.

3.4 The Limit r - + 00

If particles escape to infinity, their time-evolution approaches that of
free particles. In quantum theory this limit is achieved with great
topological finesse.

The eigenvectors of H, which span the subspace 5, of (2.3.16), are related
to classical trajectories that remain in compact regions indefinitely. The
expectation value of an observable in this case is an almost periodic function
Y.« explit(E; — E,)c;, for which the time-average exists, but the time-
limit does not. The operator exp(iHt) converges weakly on J,,, since in the
spectral representation < f |exp(iHt)g) = § dh exp(iht) f *(h)g(h) approaches
zero by the Riemann-Lebesgue lemma. There is, of course, no chance for the
unitary operators exp(iHt) to converge strongly to 0. In order to understand
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how some operator can converge strongly as t — + 20, it will be necessary
to go more deeply into the ideas introduced with Theorem (2.5.15).

Definition (3.4.1)

H' is said to be bounded (respectively, compact) relative to H, iff D(H’)
> D(H,) and the mapping H': Dr(H,) — ¥ is continuous (compact). The
space Dr(H,) is D(H,) topologized with the graph norm || ||y, (2.4.17; 3).

Remarks (3.4.2)

2.

Recall that continuous (respectively compact) linear mappings are those
that send bounded sets to bounded (relatively compact) sets.

Relative boundedness is equivalent to the existence of a constant M such
that |[H'Y| < M(|Hoyll + llyl) for all ¢ € D(H,). Relative compactness
in fact implies relative ¢ boundedness, which means that for all ¢ > 0
there exists an M such that | H'Y|| < el|Hoyll + Myl for all y € D(H,).
As the Kato-Rellich theorem (2.5.15) showed, this implies that H(a) =
H, + aH'is self-adjoint on D(H,). Moreover, the H, and H(a) norms are
then equivalent, so H' is also relatively compact with respect to all H(x).

)

X

. If ¢ is nonzero and outside the spectrum of H,, then for all x € ),

min{l,l%l}ﬂxll < min{l, |C|}( L +
1 _ H,

lcl
SIHO"C Ho Hy - ¢ ;+ l
<[+ +chi(Ho = o) M3t

which implies that the mapping # — Dy(Hg):y = (Ho — ¢)™ 'y is
continuous in both directions, and thus an isomorphism of these Hilbert
spaces. Hence boundedness (respectively, compactness) of the mapping
HHy - o)™

— ! ’
(’lu ) D'-(Ho) H N

continuous (resp . compact)

1
Ho"C

Ho

HO-C

X X

X X

‘HO—C

meomorphlc
is equivalent to the relative boundedness (compactness) of H'. It must
similarly be possible to extend the adjoint (Hy — ¢*)™ 'H\from D(H’) to
a bounded operator on ¥.

Examples (3.4.3)

1.

If two operators f and g commute, and thus have a common spectral
representation on ¥ = @ ; ), then g is bounded relative to f'if there
exists an M such that [g{a)| < M| f(a)| for all i and &, where g; and f; are
the multiplication operators on J;.
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2. Let H, be the Hamiltonian of free motion (3.3.3)and H’ be a multiplication
operator ¥(x) € L3(R?, d®x). If the calculation is done in x space, then
the Hilbert-Schmidt norm of V(H, — ¢)™ ! is

IWV(Ho — ¢)™ "l = Tr(Ho — )" 'V3(Ho ~ )"
= 1 43¢ 12 d’p .
= {d°x V4(x) W<oo for all —c e R*.

The operator V(H — c)~! is therefore in C, (see (2.3.21)) and conse-
quently compact. In fact any potential V that falls off faster thanr~%,¢ > 0,
at infinity and is not too singular at finite x is compact relative to H,
(Problem 2). Roughly speaking, compact operators fall off in all directions
in phase space, in both p and g.

Theorem (3.4.4)

Let V be compact relative to H and bounded, and let P, be the projection onto
the absolutely continuous spectrum of H. Then V,P,. approaches zero strongly
ast — + o0, where V, = exp(iHt)V exp(—iHzt).

Proof

Let c ¢ Sp(H), so that'for any ¢ we can write P,.¢ = (H — ¢)”'P,.¢. Then
IV;Pocoll = IV(H — c)™ " exp(—iHt)P, Y.

It was shown earlier that exp(—iHt)P,. —~ 0, and since V(H —¢)™'is a
compact operator it sends a weakly convergent sequence into a strongly
convergent one. O

Corollaries (3.4.5)

1. Functions that fall off as r ““ when r - o0 converge strongly to zero under
free time-evolution.
2. Because of the resolvent equation

(Ho+V=-2""'=Ho-2)"'(01 = V(Ho + V -2)7"), z¢R,

any F that is compact relative to Hy is also compact relative to Hy + V
provided that V is relatively bounded by H, + V, which is always the case
if V falls off as r ¢ and is thus compact relative to Hy. The time-evolution
with such potentials thus makes F(t)P,. — 0, where F is the characteristic
function of any finite region in configuration space. This can be interpreted
as meaning that the probability that a particle remains in the set given by
F vanishes at large times: {y,|Fy,> = |F(ew|> — 0 for all Y € P, 5,
t = + co0. In other words, the particle runs off to infinity. This distinguishes
the absolutely continuous sptctrum from the singular continuous
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spectrum; with the ldtter a particle keeps returning to near the origin
again and agam

Now that the connection with classical physics has been looked into, let
us proceed to find the quantum-mechanical analogies of the concepts of
(I: §3.4).

Definition (3.4.6)

The algebra o of the asymptotic constants is the set of operators a for which
the strong limits

a; = lim exp(iHt)a exp(—iHt)
t>t
exist. The limits themselves form the algebras o , , and we define t, as the
(surjective) homomorphisms &f — of 4 :1.(a) = ay.

Remarks (3.4.7)

1. Since the product is not even sequentially continuous in the weak operator
topology, the limit must be supposed to exist at least in the strong sense,
in order that o/ and of ; be algebras and that 7, be a homomorphism
between them. Norm convergence is too much to ask for, as it would
contradict the group structure of the time-evolution. If a, were a Cauchy
sequence in the norm || ||, then for all ¢ there would exist a T such that

la, — a,ll = lla — exp(i(t; — t,)H)a exp(—i(t; — t)H)] < ¢
foralle,,t, > T,

and this is possible only if a, is a constant.
2. It is immediately clear that & > {H}’, and since

a; = s-limexp(i(t + t)H)aexp(—i(t + 1)H) = exp(itH)a , exp(—itH)
t=two

forall te R,

&, < {H}. Since furthermore 74y, = 1, it follows that o, = {H}'
< &/, and 1, are endomorphisms.
3. Asexplained above, nothing converges on X ,; if P, is the projection onto
this subspace, then P,aP, belongs to &/ only ifitis in P,{H}'P,.
4. If particles escape to infinity, then their momenta p ought to become
nearly constant when they are far from any interaction. Consequently,
.a good candidate for an operator of &/ that is not in {H}' would be
(1 ~ P,)p(1 — P,), or, better, some bounded function of p rather than
p itself.
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If the time-evolution becomes asymptotically equal to that of H, then

it is a reasonable expectation that

Q; = lim Q) = lim exp(iHt)exp(—iHyt)
t+to

t-t

exists. This raises the question of

Topologies in Which the Limit lim, . , . Q(t) Might Exist (3.4.8)

1. Norm convergence.As remarked in (3.4.7; 1), there is no possibility of this
kind of convergence, since

€xt,) — Ut )l = llexp(iH(t, — t)) — exp(iH(t, — 1))l <&
forallt,,t, > T

implies that H = H,. Physically, this means that without reference to a
particular state, the times 1 oo are no better than any other times.

. Strong convergence. This allows the possibility that the limit Q; of the
unitary operators Xt) may not be unitary, since the equation £(¢)Q2*(t)
= 1 is not necessarily preserved in the limit: As the mapping a — a* is
only weakly continuous, strong convergence of the Q implies only weak
convergence for the Q*. A product sequence a,b, converges weakly to ab
if a,— a and b, — b. However, no statement can be made about the
existence or value of the limit of b,a,. The following example on {2 is
illustrative of the different kinds of convergence:

I
!
o)
r4
]

054
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The operator £1} converges only weakly, since v, = Q*(1, 0,0, ...) =

n
PR S—

©,0,...,1,0,0,...) = 0,while ||v,|| = 1foralln,sowv,# 0.In thiscase we
have 1 = QfQ, = Q*Q =1, but 1 = Q,QF A~ QQ* # 1. The situation is
the same for Q,, since they are strong limits of unitary operators. Al-
though Q% Q. = 1, since

(x| 0 x> = Qs x| = lim QAe)x||12 = |Ix]||2 for all x € #,
t=to

this only tells us that Q, Q% = Q,Q%Q, Q%, ie., that Q. Q% is a pro-
jection. It projects onto a subspace J# ; — J on which ) gets mapped
unitarily by Q, and which Q% maps back onto ) (see Figure 8). These
operators are related by Q%,,,, = Q3 e, . In analogy with (34.7; 2),
Q% exp(itH)Q; = exp(itH,)for all T € R, so H acting on S, is unitarily
equivalent to H, on J. Therefore the spectrum of H, is the same as a
part of the spectrum of H. If H, has only an absolutely continuous spec-
trum (H,: f(h) = hf (h) on any summand of the spectral representation),
and the eigenvectors of H are called | E;), then

(S lexplitHoJexp( ~tDIE:y = [duhexplieth — ENCS(IE 0
ast— +

by the Riemann-Lebesgue lemma. The bound states are thus in the kernel
of Q% . The strong convergence can be restated as: to every state ¢ € ¥
that evolves according to H,, there exists a “scattering state” ¢, = Q. ¢
such that the two states approach each other asymptotically:

lim flexp(iHt)exp(—iHot)p — ¥+ |

t=t o0

= lim |exp(—iHot)p — exp(—iHt)y .| = 0.
t-t o
3. Weak convergence . The norm |lall = sup. =, =1/{xlay>|, as the
supremum of weakly continuous functions, is weakly lower semicon-
tinuous, so in any event we know that | Q.| < 1. Since the unitary oper-
ators are weakly dense in the unit ball, this is apparently the most that can

’ X N

Q% not injective Q_ not surjective

Figure 8 The domains and ranges of Q* and Q.



128 3 Quantum Dynamics

be said. Weak convergence is not a very powerful property. The limit
could simply be zero, as happens for exp(itH,). If Q(t) converges weakly
but not strongly, then Q, can not be unitary.

4. Convergence of Q*. If Q(r) —» Q,, then we know that Q*(r) converges

weakly to Q%, and that Q% maps # ; unitarily onto »# and sends every-
thing else to 0. Since the weak topology and the strong topology are the
same for the unitary operators (2.1.28; 5), Q*(t) converges strongly to
Q% on ., and converges weakly to 0 on its orthogonal complement.
Strong convergence on J¥, means that to each scattering state
exp(—itH)Y, ¢ € ) 4, there exists a free state exp( — itH,)e that becomes
asymptotically equal to it.

Now that we understand something of the insidiousness of Hilbert space,

we can state our goals more precisely.

Definition (3.4.9)

(i) If exp(itH)exp(—itH,) converges strongly as t — + co, we say that the

Mgiller wave operators Q; = lim,_, ;. exp(itH)exp(—itH,) exist.

(i) If ¥, = Q, # = H#,, then Q, are said to be asymptotically complete.

Remarks (3.4.10)

1.

The meaning of asymptotic completeness is that other than the bound
states J¢,, every state approaches a free state as t - +00. A simple
classical example where this fails to be true has been provided by S.
Sokolov: an otherwise free particle with an effective mass .#(x) =
coth? x, H = p?/.#(x), and H, = p*. All incoming trajectories have a
dead end at the origin, and the set of scattering trajectories is empty
(cf. [4]). Pearson [4] has constructed a potential for which the analogous
thing happens in quantum mechanics.

Invariance under reversal of the motion (3.3.18) does not suffice to
guarantee that ), = »#_. We shall soon encounter many-channel
systems for which 3, # # _.

. Since

2 (1) = expGHOI(H — Holexp(—iHor) = OH 0}

Hl(t) = Cxp(!Hot)(H - Hokxp(_iuot),

Q. can also be written formally as

Q, = Tcxpj dt iH (¢),
(1]
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which, however, does not answer the question of the existence of the
infinite integral.

Sufficient Conditions for the Existence and Completeness of Q. (3.4.11)

Let H=Hy + V,/V = V/|V|"3, D(H) = D(H,), and let X, be the charac-
teristic function of an interval I = o(H,). If

sup(I/V 8(H — w)\/ VIl + I/V 8(H, - 0)/VI) < oo,

wel

then
xi(H)exp(iHt)exp(—iHot)x,(Ho) and x(Ho)exp(iHot)exp(—iHt)x(H)

converge strongly as t — + 0o,

Remarks (3.4.12)

1. In the case of a single channel, the spectrum normally has the properties
oac(HO) = IR+ = aac(H)s ap(HO) = GJ(HO) = as(H) = g) ap(H) c R™.

It is convenient for technical reasons to use the projections x; to exclude
the particles that move too slowly or too rapidly, by letting I = (g, 1/¢). If
the supremum over w €I is finite for all ¢ > 0, then it follows that
x:(H)exp(itH)exp(—itH,) converges on a dense set in Hilbert space, and
consequently on the whole space. Since f(H)Q = Qf (H,), we expect that

xr(H)exp(iHt)exp(—iHo)x(Ho) = Oforall I'n I = &

and this is indeed verified in Problem 3. This equation shows that
x(H)exp(itH)exp(—itHy)x(H,) has the same limit as

exp(itH)exp(—itHo)x(Ho),

s0 (3.4.10) in fact implies what is required in Definition (3.4.9), viz., that
exp(itH)exp(—itH,) converges on a dense set.
2. The operator \/V 8(H — w)ﬁ is to be interpreted as

1im—‘—ﬁ( ‘ ‘ )\/?,

e~ 27U H-w-i¢ H—ow+it

and this limit may exist even though (H — z)~! does not exist on the real
axis. We shall soon discover that even compactness may survive the limit
aselO.
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Proof

Let us make the abbreviations y; = y,(HoW, ¢; = x;(H)e. Then
lx:(HXexp(iHt,Jexp(—iHot,) — exp(iHt,)exp(—iHot))x (HoW |l

x,(H) J.udt exp(iHt)V exp(—iHyt)Y,

= sup ’ f "dt¢o | x(H)expHDV exp(—iHo 0,

lel=1
< sup | dtl/V exp(—iHt@,l - 1\/V exp(—iHo Wl
lleli=1 vy
12 12 1,2
< sup [f dtll\/l_/ exp(—th)(p,llz-f dtll\/Vexp(—-iHot)llz,IP] .
hell =11 0

To show convergence, it thus suffices to show that as t —+ + 0o, ¥, converges
in mean-square to zero (cf. (3.4.4)), whether it evolves in time according to
H, or to H. To perform the time-integration, we use the generalization of
Parseval’s formula,

[“anson =" s

for vectors in Hilbert space: .

j dtll\/V exp(—iHt)p,||> = 2n J' doll\/V 8(H — w)o|*.

Now note that for any positive operators a and b, Ii\/za(pll2 < u\/E\/Zuz

x |/ aol? = I/bay/bll - {plag), so:

2n f doll/V 8H — w)e;l?

<2 f " doll/V 5(H — o)(H)W/VI - <or 8H — w)or

< 2nsupl/V oH = o) /71 [ dwdenléH - o)y

wel

= 2nsupll\/V 8(H — w)\/Vlloil*.
wel
These relationships are still valid with H replaced by H,, and show that the
integral (> gets arbitrarily small as t; — oo, since the integral * , exists. This
implies the strong convergence of (t) as t - + co. (]
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Examples (3.4.13)

1. A separable potential. Let Hy = |p|?, (VoXx) = Ap(x) | d>x'p*(X)e(x'),
in which [dx|p(x)|? =1, [ d® x d® x'p(x)p*(X)/|x — X'| = M < o0,
infi,;2¢/1A(P)| > 0. Since P = V/Ais a one-dimensional projection,

(H-z27'"=(Ho~2""' - MHo - 2)"'P(H, — 2)"'D"'(2),
D2)=1+ATrP(Hy~z)"'P
and
P(H — z)™'P = P(H, — z)"'PD™'(2).

By assumption,
P(Ho - 2)"'P = f &plp@) (1B - 2)°

)exp(i\/zlx -x)

(x — x|

= [d’x d3x’ p(x)p*(x’

remains bounded by M for all \/; In addition, for all y > 0,

Im D+ i) = [Eplp o

> inf ZI P y
we,lﬁ(l’)l Ipl2er P (Ip12 — x)* + y?

is bounded below, uniformly in x € I. Then

o D)
sup|D 1 X + S SUp ———
supl D™ x + in)l < sup oy

is also finite in the limit y — 0, and

lim suplly/V(H — 2)"'/VI < co.

y—0 xel

2. Potentials r "' 7%,0 < ¢ < 1. In momentum space,
rt = fd’x exp(ik - x)r=7 = jk|"3*%4al(2 — y)sin(2 — y)=.

Consequently,

~

Te(/V §(Ho — o)/ V)" = J [14%: 8(Ipit* = )ipi - Pierl ™2

n
= w-n(l+r)/2 fndg'lm - n'_+ll-2+:’
i=1
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Yvhere by convention p, ., = p,,and d€, stands for the solid angle element
in the direction of the unit vector n; = p,/|p,|. Now,

fo; — w2 =201 —cos6), 6,=Am,n,,),

and
n
.l:l‘d'ni‘nl — g |72t
is smaller than c(¢) < oo for n > 2/e (Problem 5). Since || || < || |lns
supll\/_l7 &H, — w)ﬁll < sup @~ WA~y < oo,
wel wel

where we have taken I as a compact interval < R*. The Hélder continuity
of \/7 &H, — w)ﬁ in the norm | |, implies that the operator

\/E’-(Ho - x - iy)\/v remains compact in the limit y — 0 (see Problem
5). If from

JVH -2V
= V(H, - 2"V = JV(H - 2)"'V(H, - ' /V

we reason that

JVH = 2"\ JV = JV(H, - 2" /VA + |VIV3(H, - z)"\/f;)",
then we see that the operators \/V(H - 2) Y /Vand \/V(Ho - z)"ﬁ
differ only by the factor (1 + [V |Y3(H, — 2)~'/V)"". Since -

|VIV¥(H, ~ 2)"'/V

is compact and thus has a pure point spectrum with complex eigenvalues
Kk(z) the only possible accumulation point of which is zero,

I+ IVI¥3(Ho — 2)7/V)7 1 < supl(1 — k(2)) "}
i

The functions z — k;(z) are continuous, z - |V|"3(H, — 2)"'/V is
norm-analytic in C\R, and it can be continued to I < R. If the eigen-
functions decrease sufficiently fast at infinity, the values z;; for which k;
equals 1 are eigenvalues of H, because |V|'*(Hy — z) ' |V|"2y =0
implies that (Hy + V — 2)| V|~ !2¢ = 0. Hence, if |V |~!/2y € L2, then
z is an eigenvalue of H. A separate argument is necessary to exclude the
values k; = 1 for ze R*. Thus if I is any compact set in (0, o)\ {z;},
(3.4.11) is satisfied.

Remarks (3.4.14)

1. The analysis has been restricted to ¢ < 1 so that the singularity at r = 0
could not destroy the relative compactness of V. Since existence of Q
depends on the falling off of the potential as r — o, it is clear that it exists
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for all V falling off faster than 1/r, so long as the finite singularities are not
strong enough to wreck the self-adjointness [4].

2. If e =0, then V{/* ~ (pt)~'/2, which is not square-integrable in ¢, even
if p = 0 is excluded. This is to be expected, because Q, also fails to exist
classically for the 1/r potential (I: 4.2.18; 2).

3. If ¢ = 1, then the bound of II\/V 6(H, — w)ﬁ | is independent of w, so
the supremum over w in all of R would be finite. This may seem surprising,
since even in classical scattering theory the point p = 0 has to be removed,
since particles with p = 0 never escape. In quantum mechanics, the diffu-
sion of the wave-packets is enough to make {r,” %) square-integrable:
With free time-evolution, Ax? ~ Ax3 + t2/(Ax,)? (cf. (3.3.5; 1), and

@ @ t2 -72
j <mdt(r,") ~ f mdt(Axf, + Kg) ~ Ax37.
If y = 2, this is independent of Ax,, so the bound ought to be independent
of ¢ without the necessity of projecting out a neighborhood of p = 0.

4. If there are bound states imbedded in the continuum, then exp(itH,)
x exp(—itH) cannot converge strongly on them, and it is necessary to
project them out with a y;. With a potential r~?, 0 < y < 2, then by the
virial theorem to be proved in §4.1 they do not occur. This theorem states
that an eigenvalue of the energy equals (y — 2)/y times the expectation
value of the kinetic energy in the corresponding eigenstate. Since the latter
quantity is positive, all eigenvalues are negative. If a potential oscillates,
then Bragg reflection of waves can produce a bound state, even if in
classical mechanics it would be energetically possible for a particle to
escape. For example, the function

sin r

v = a+r—4sin2r

satisfies the equation

2
(— ‘% + V(r) — l)w(r) =0,
8sinr

(@+r—4sin2r
and it is thus an eigenfunction with eigenvalue E = 1 of a potential V,
|V(r)| < e min(1, 1/r), where ¢ can be taken arbitrarily small as a tends

to + 0. It can be shown that potentials that approach zero faster than 1/r
as r — oo have no positive eigenvalues ([3], §XIII).

€ L*((0, ©),dr), a>0,

V(r) =

)2 (sinr — (a + r)cosr),

Many-Particle Scattering (3.4.15)

Different groupings are possible in a many-particle system as the particles
go off to infinity, some remaining bound together while others get ever
farther away from them. Formally, the Schrodinger equation for N particles
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acts on a 3N-dimensional configuration space, and different ways of ap-
portioning the particles into clusters correspond to different regions in R3¥.
A given distribution of 1, 2, ..., N into disjoint subsets, such as (1, 2), 3),
4,5,6), ..., will be shorthand for the statement that particles 1 and 2 remain
bound together, 3 approaches infinity by itself, 4 through 6 are bound, etc.
Such a distribution is referred to as a channel. Pair potentials ¥;(x; — x,) do
not fall off in the directions where x; and x| are nearly equal, so the asymp-
totic time-evolution is not described by a unique Hamiltonian, but instead
depends on the channel, i.e., on the direction in which the state goes to
infinity. If we index the channels with 4 subscript «, then the interaction I,
between separate clusters goes to zero as t - + o0, and the time-evolution
approaches that of H, = H ~ 1I,.

Example (3.4.16)

Consider three particles, and suppose either that the center of mass has
been separated out or simply that one of the particles is infinitely heavy,
as an approximation to a nucleus K and two electrons e; and e,. Then the
appropriate configuration space specifies the relative motion of the two
coordinates x, and x, of the electrons, and there are four channels:
(KX ey Xe,). In this channel all the particles separate, and
lpsl® | P2l
=1+
2m;  2m,
breaks up into Hoand I, = V; + V, + V;,.
(K, e, Xe,). Particle 1 remains bound to the nucleus, while particle 2 escapes:
_Ip 2 ipl

- 2m1 + 2M2

+ Vi(xy) + Va(x3) '+ Vyp(x) = Xj)

H, + Vi(xy), Iy =V, + V.
(K, e;Xe;). The same, with particles 1 and 2 switched.
(K)(e,, ;). In this channel particles 1 and 2 remain bound together, which is
of course impossible for electrons, but would be realistic in the scattering of a
positron from a hydrogen atom. In this case,
Ip, 2 + |p.|?

2m| 2"]2

Once again, the existence of the Moller operators means that for each ®a
in which the clusters corresponding to a channel a are bound, and which
evolves in time by exp( —itH,), there is a state , evolving by exp(—itH) and
asymptotically approaching ¢,:

||exP( - l.Ht)'l’a - exp( —iH, t)(pa” - 0.

Completeness of the Maller operators means that ¢, (H) is spanned by
such ¥,’s. ’

H,, =

+ Via(x; = x3), I, =V +V,.
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The Mgller Wave Operators for Many-Particle Scattering (3.4.17)

If P, is the projection onto the part of #,.(H,) corresponding to the channel
a, then the Maller operators
Q,; = lim exp(iHt)exp(—iH,t)P,
t=ta
are said to exist whenever the strong limit exists. In that event, the operators
Q.: = Q,. Q¥ are projections, and asymptotic completeness means that

Z Qa:t X = xac(”)'

Remarks (3.4.18)

1. The operators P, can be written as tensor products of the projections onto
the bound states within the clusters of the channel and of identity operators
in the relative coordinates. For instance, in (3.4.16) the projection P, for
(K, e, Xe;)equals P, ® 1, where P, is the projection onto X (p}/2m + V}).
The projections for different o will not generally be orthogonal, since
they are related to different, and noncommuting, H,. Although

exp(itH)exp( —itH,)
converges on all of 5, this limit is not terribly interesting.
2. The equation Q*Q = 1 of (3.4.8; 2) has the generalization Q3,Q: =
8.5 P, (Problem 4). As a result, the Q, are orthogonal for different a:

- Q. Qﬁ:t =Q,; Q:tnpt Q;: = 6aﬁQ¢:t'
This is to be expected, since all the @, involve the same H and commute
with it:

exp(iHt)Q, + exp(— iHt) = exp(iHt)Q, + Q2 exp(—iHt)

= Qai exp(iHathP(_iHatm:t = Qa:t‘ I
The physical significance of this is that the wave functions exp(itH)Y.,
Ya = Q.+ ¢, turn into widely separated clusters after long times, so
vectors corresponding to different channels are orthogonal. Since they all
evolve according to exp(itH), this asymptotic orthogonality implies that
they are orthogonal at all times.

3. The projections P, and Q, are rather unwieldy. ), P, # P,, and it is
_ practically impossible to write Q, explicitly. That is why it is more con-
. venient to work with operators J,, which approach P, under the time-

evolution of H,, in place of the P, themselves. Then Q,, can be written as
the limit of exp(iHt)J, exp(—iH,t), since exp(iH,t)J, exp(—iH,t) = P,
implies that exp(iHt)J, exp(—iH,t) = Q,+ . In Example (3.4.16), electron-
hydrogen scattering, a good choice is

Ixq 1* + Ix,[* Ix, [* + [x,[*

J= ’ = ’
PTG+ I B 2T x xR+ X ®
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Ji12=0,Jg=1-J, = J,.If x, remains in a finite region and x, - oo,
then J, goes to 1 and J, goes to 0, and vice versa. J, becomes 1 only if
both particles go to infinity. It will be shown in §4.4 that this heuristic
argument can actually show strong convergence.

Criterion (3.4.11) for the existence and completeness of the Moller wave
operators does not work for many-body systems, because the pair potentials
V,;arenotcompact relative to H. It is possible to write them as tensor products
of a function of x; — x; and the unit operator in the other coordinates, but a
tensor product is compact only if both of its factors are compact. This is
where the functions J, introduced above can be of use, for they decrease
exactly in the directions in which I, is constant, making J, I, relatively
compact and the methods of (3.4.11) applicable. This can be stated as a simple

Criterion for the Existence and Completeness of Q, ;. (3.4.19)

Let J, be positive operators for which s-lim exp(iH,t)J, exp(—iH,t) = P,and
S« Jo = 1. If the strong limits of exp(iHt)J, exp(—iH,t) and
exp(iH,t)J, exp(—iHt)P,(H)

exist as t — + 00, then Q,; exist and are complete.

Proof

Since, by assumption, ||(exp( —iHt)P, — J exp(—iH,t))¥|—0 for all y €,
exp(iHt)exp(—iH,t)P, converges strongly just as exp(iHt)J, exp(—iH,t)
does and hence the latter operator converges to , ; . Then, since
(1- P2 =0, \
s-lim exp(iHt)J, exp(—iHt)P,(H) \
= s-lim exp(iHt)exp( — iH tXP, + (1 — P,))
x exp(iH,t)J, exp(—iHt)P . (H) = Q,.
Consequently,
Y Q, = s-lim exp(iHt) Y J, exp(—iHt)P,(H) = P,(H). a

Example (3.4.20)

In the three-body system (3.4.16) let V;, = 0 and suppose that ¥, and V, are
potentials such that the one-particle Meller operators w, and w, exist and
are complete. The J, have the following form in the different channels:
0O-channel. Under the time-evolution according to

_ImP | IpaP

HO Zml 2'”2 ’
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J, and J, converge stron_gly to zero: If x; = x; + p;¢, then
Ip:1* + Ip21*
1P + Ip21* + 2ipl®’

and this in turn approaches zero on the dense set of functions the support
of which does not contain p, = 0. Therefore

s-lim exp(iHt)J, exp(—iHyt) = s-lim exp(iHt)exp(—iHyt)
X exp(iHol)Jo exp( - iHot) = w1 ® w,

i=12

i

exists, and
s-lim exp(iHyt)J , exp(—iHt)P (H) = s-lim exp(iHyt)J o
x exp(—iHyt)exp(iHyt)exp(—iHt)P,(H) = o} @ w}.
1-channel. If particle 1 is bound, then

_ Ixy [* + [x;[*
L+ 1% 1+ Ix,0* + x|

1

approaches 1 under the time-evolution by

- Ipy + lp. I

2m1 2m2
since X, = X, + tp, and x, remains finite. If it is not bound, then by assump-
tion the time-evolution becomes free, and J, exp(—iH tW approaches
Jyexp(—iHyt)w? ® 1y, which goes to 0. Thus

s-lim exp(iH t}J, exp(—iHt) = P,

H,

+ Vi(xy),

and
s-lim exp(iHt)J, exp(—iHt) = w, ® 1 P,

The 2-channel works just like the 1-channel, and the 1-2-channel is empty.
We see that in this trivial case, Criterion (3.4.19) reproduces the earlier
results. We shall discuss more interesting examples later.

The operators 2, map the motion in channel a, i.e.,

a - exp(iH,t)a exp(—iH,t),

to the actual motion as described by exp(iHt). Specifically, they produce the
homomorphisms 7, introduced in (3.4.6), and they send {H,}  into &, .
All ae {H,) projected into channel a are in &,

14(Q.aQ,) = lim exp(iHt)Q,aQ, exp(—iHt)

t=+t o

= lim exp(iHt)Q, exp(—iH tXP, + 1 — Pa exp(iH,t)Q,

t+t o

. x exp(—iHt) = Q4 a0, . (3.4.21)
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The set of constants of motion {H,}’ will contain the relative momenta of the
individual clusters. They commute, and the vectors of their common spectral
representation, denoted |a, k), will be somewhat loosely referred to as
eigenvectors of the momenta. The vectors |a, k) are in the image of the
projections P, of (3.4.17). The wave operators Q,, transform |a, k) into the
eigenvectors of the asymptotic momenta |a, k, +) = Q.4 |a, k) in.such a
way that, as in Remark (3.4.18; 2),

o, k, £174(Q.aQ) |, k, +) = (&, k|PyaP,lo, k).  (34.22)

The states |a, k, + ) thus mean that the outgoing or, respectively, incoming
particles have momenta k, and the transition probability from one such
configuration to another can be measured macroscopically. As in classical
mechanics (I: 3.4.9), this is the purpose of

Definition (3.4.23)
Saﬂ = Q:+ Qﬂ -

is known as the S matrix in the interaction picture, and
S= Z Q,_QF,

is the S matrix in the Heisenberg picture.

Remarks (3.4.24)

1. The definition has been given in the form appropriate for a many-body
system. One-particle scattering can be considered as a special case with
only one channel

2. The action of the Q,, is depicted schematically in Figure 9:

Since Q,, Q2_|B, k, —)> = d,4la, k, + ), the transition probabilities can
be expressed in terms of S as follows:

Ca, k', + 1B, k, —> = o, K'| Sep| B, k> = (o, k', +|S|B, k, +).

The operator § is thus a unitary transformation on J,(H), whereas S,4
maps nonorthogonal subspaces on J isometrically onto one another.
Even so, S, is the more useful operator, since it is easier to make calcula-
tions with the states |a, k) than with |a, k, + ).

3. Evenifboth ), Q,_ and Y, Q,, equal P, it is still possible that Q,_ and
Q.. project onto different subspaces. For example, if a collision in (3.4.16)
results in ionization, then one goes from Q; to @,. This illustrates the
earlier remark that the mere existence of s-lim,, 4 , exp(itH)exp(—itH,)
does not guarantee that ), and J _ are equal. It does not contradict
invariance urder reversal of the motion, as the operator K of (3.3.19; 2)
just maps )¢ _ onto X, . -
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Qz. Q,-
- \ N\
Qi+ 1 / L Qo-
( %
‘ P, 4
Q2+ <
P O
P,
P,
%- OO 0.
V4
%
*, % X’y
— s >

Figure9 The domains and ranges of ¥, and £,_ in a system with several channels.

4. From exp(iHt)QQ,+ = Q,+ exp(iH,t) it follows that exp(iHt)S exp(—iHt)
=S and exp(iH,t)S,; exp(—iHgt) = S,5. The operator S does not in
general commute with all constants of the motion, but only with

ﬂ{H "n {HY

(cf. (I: 3.4.11; 1)).
5. IfKe{H,} and K = P,K, then by (3.4.21) Q,KQ, € &, and
K: =1:(0.K: Q) = Q1 KQZ: .
Hence S transforms K _ into K ,:
K,=Q,.,0"K_Q,_Q* =S*K_S.

For such observables, S gives the total change in time from ¢t = —o0 to
t = +oo0.
6. If there is only one channel, then

Sap = s-lim exp(iH, t)exp(— 2iHt)exp(iH 1)

[ Aad" o]

can be written as

Soo = Texp{_—_i f dt H'(t)}



140 3 Quantum Dynamics

(recall (3.4.10; 3)). The strong limit exists because exp(iH, t)exp(—iHt)Q
converges strongly and (1 — Q)exp(—iHt)exp(iHyt) tends strongly to
zero.

Scattering operators have been introduced by a comparison of the time-
evolution with free motion of the clusters, as suggested by our experience with
classical dynamics. It normally turns out, however, that S can be explicitly
calculated only with methods that eliminate the time-variable. Sectidns 3.5
and 3.6 will be devoted to stationary methods.

A

* Phoblems (3.4.25)

1.\Show that if H' is compact relative to H,, then for every ¢ > 0 there exists a & such
hat |H'Y| < e|Ho¥| + 8yl for all Y € D(H,). (Hint: a= H'(H, + i)~}
compact. Let P, = x,_, .(H,), and show (i) that |la(1 — P,)|| - 0 and (ii) that H'P,
“\\is bounded for all n.)

2 Show that V=r"%, 0 <e <2, i compact relative to H, = p (Show that
\‘r(V"’(H 4+ )WY < oforne Z*, n > 3e)
3. Let ¥ be compact relative to H,. Show that if P({) (respectively, Po(7)) is the spectral
projection for H (respectively, Hy) onto the interval 1, then
(1 — P(D)exp(itH)exp( —itHo)Po(I) = 0 as t— +o0.
4. Verify that Q¥ Q,; = J,, P, for the system of three particles (3.4.16).
5. et A(w) = /V&(Ho — w)/V, V ~ r~1~*(cf. (3.4.13; 2)). Show that (a) jA(@)l, <

cw™ "1 *%2 and (b) there existp > 0,8 > 0,and ¢ < oo such that | A(w) — A(w)|l, <
clw — WP forall |w — | < dand all n > 2/e. From these two facts conclude that

lim,.o /V(Ho — x — iy)™'/Ve&,.

Solutions (3.4.26)

1. (i) Let a, =2*(1 — Pa. lla(1 — P,)|i* = suplyy <1 <¥|a.¥). The mappings y —
{Y|a,y) are weakly continuous, because @, — 0 = ay; — 0, and

Y=Yl 1 P

is strongly continuous. It follows that the sets {y: {{'|a,¥) > C} are weakly
closed. If |la(1 — P,)||? were greater than C > O for all n, then the intersection of
the decreasing sequence of weakly compact sets {y: <¢|a,¥) 2 C, Y] < 1}
would not be empty, so there would exist ay such that |¢/]| < 1and (Y|a,¥) 2 C
for all n. This is impossible, since1 — P, — 0.

(ii) H'P, = a ", (« + i)dP, is the product of two bounded operators. Therefore,
if Yy € D(Hy) and n is sufficiently large, then

IHYll = lla(Ho + Wl
< lla(l ~ PXHo + iWll + |H'PYI < ell(Ho + iWI + IH'PIYI.



3.4 The Limitt — + oo 141

2. With (2.3.20; 5) and (3.3.3),
Te(VY¥(H, + c?)~ vy

= fd’xl co.d®x, V(x,) w

4n|x, — x,|
exp(—clx; — x5)) exp(—clx, — x,|)
x V(x o V(x) ————
(x2) 4rix, — x,| (xa) 4rn|x, — x,|
exp(~clys|) " exp(=clysl)
= | d%,...d%,V —_— V(y, +
J' Y1 Y V(1) )y, 01 +y2) anly,|

exp(—cly, + y3+ - + yl)

X Vg + ys 4 - +
Or+ s » anly, + ys + - + yal

The factor exp(—c|y;|) takes care of the convergence of the integral by dy, .. .dy,
at infinity, and the integral by dy, converges for

D™y +y207 i 4y + -+ p,075
provided that ne > 3. The singularities at finite points are harmless, as long as ¢ < 2.

3. Since the operators are bounded in norm by | for all ¢, it suffices to show strong con-
vergence on the dense set of ¢ € Po(I')o#, where I’ is contained in the interior of I.
On that set,

(1 = P(D)exp(iHt)exp(— iHo )P (1)@

1
= L dz(1 - P(l))exp(th)( )exp(—-iHot)Po(l)tp

Ho_z H—Z

1 1 I
=i fcdz(l - P(I)) =3 exp(iHt)V exp(—iHo t)Po(I) o Po(I')e,

where C is a closed path of integration encircling I’ but not cutting R\ (see figure):

I
I rl 1‘ - R
T L' TJ I
- y Ne
ll

This makes the operators.(1 — P()XH — 2)~! and (H, — 2)~'Py(I') uniformly
bounded on the path of integration. Theorem (3.4.4) then implies that the expression
above converges strongly to zero. (Recall that ¥V, - 0 and |q,ll = 1 for all n=
a,V,~0)

4. Ifa = B, then this follows from the strong convergence of the operators (see (3.4.8; 2)),
so it suffices to verify that

w-lim P,exp(iH,t)exp(—iHzt)Py = 0
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when a # f. There are essentially just two cases:
a=08=123:

exp(iHoexp(~i(Ho + Vp)t)Py— 0,

because

exp(ifp, Ptlexp(—i(ip, > + Vi(x)))P,(1) =0,
etc,, since P,(1) contains only the eigenfunctions y;, H,¢; = E;¥;, and

' exp(it(|p, I ~ E;)Y; — 0.
a=18=2:

P (Dexp(i(Ips I + Vi)exp(—ilp, 1) ® exp(i(|p, I*Dexp(—i(|p;|* + V:)1)P(2) = O
for the same reason as above. Similarly fora = 1, =3anda = 2,8 = 3.

S. In (3.4.13; 2), the integral over (S2)" is locally like an integral over R2". Since the
integrand depends only on the differences between the n;, and a 2(n — 1)-fold integral
over a homogeneous function of degree n(—2 + ¢) is finite whenever 2(n — 1) —
n(2 — €) > 0, it follows that ||4(w)ll, < o0 for n > 2/e. As a consequence, ||A(w) —
A(w')ll. 1s not only finite, but actually.goes to zero Holder-continuously as ' — w.
This guarantees the existence of the principal-value integral in

A(2) — A(x)
z-x

lim /V(Ho — x — iy)""/V = inA(x) + P Idz
y=-0

in the trace norm.

3.5 Perturbation Theory

Abrupt changes are the rule in infinite-dimensional spaces, but in
physics a central question is under what circumstances eigenvalues are
affected only slightly by perturbations.

Since most of the problems of physics can not be solved analytically, it is
the custom to approximate the solutions by carrying out Taylor expansions
about suitably chosen, soluble limiting cases. The perturbed Hamiltonian is
typically of the form H(a) = H, + aH’, which brings up the question of what
quantities are analytic in a, and for what range of values. Of especial interest
are the resolvent R(a, z) = (H(a) — z)~!, the isolated eigenvalues E,(a)
of H(x), and the projections onto them, which can be written

1
P(a) = — dz R(a, z), 3.5.1)
k 2mi Cx(@) )

where C,(a) is a closed path encircling E,(«) and no other points of Sp(H(«)).
Although H(a) is not diagonable for all complex values of «, for all a we
know (Problem 1).
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The Properties of the Projections (3.5.2)

(i) Py(x) = P¥(a®),
(i) PAa)Py(@) = 3, Py(a),
(iii) [Pw), R(a, 2)] = 0.
(iv) Except at the points a, where the eigenvalues E,(x) cross, the projections
Py(a) can be continued analytically in a such that dim P,(a)) = Tr Py(a)
is constant throughout the region of analyticity.

In most quantum mechanics books, operators are blithely manipulated
as if they were finite-dimensional matrices. In the same spirit, let us warm up
by discussing some finite-dimensional

Examples (3.5.3)

1. H(z) = (O g) Ey. 1(a) = ,0. R(a,z)=(‘/(°‘0" 2 0 )

—1/z
Pi(o) = (0 g) Py(o) = (g ‘l’)

2. H() = (0 0) Ey j(0) = R(x, 2) =_(l/(a0— 2) 1/z2(a - z))’

-1/z
0 -1
P(@) = ((‘) ‘(/,“), Py(@) = (0 l/“).

3. H(e) = ( 0 a)’ E, (@) = ala + 1), a.

R _ (W(a + 1) = 2) —af(a — zX (e + 1) — 2)
(@2) = 0 1/(@ — 2) ’

ro=(y ') P@=(g 7))

4. H(a) = (; g) E, (@) = 1 + /T + 4a),

1 -z -—a
R(“'~Z)=m<-a ! —-z)’

P (a)=ii(1+4a2)'“2(li\'l+4az e )
2 20 -1+ /1 + 4a?
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These examples exhibit the

Singularity Structure of R, E,, and P, in the Finite-Dimensional Case (3.5.4)

Let H(a) be a polynomial in «, and define E () as the poles (in z) of R(a, z).
(i) The function (o, z) = R(, z) is analytic except on | J, {z = E\(a)}.

(ii) The eigenvalues and projections E,(x), P\(«) are regular except at the
crossing points a,, at which the numbering of the eigenvalues changes.
(In Examples 1, 2, and 3, a, = 0, and in Example 4, a, = +if2.) At the
points a, the eigenvalues E, and projections P, may have algebraic
singularities (Examples 2, 3,4), but do not necessarily have them(1,2,and 3).

(iii) In any event, E,() is continuous in a. If E(a) has a branch point at a,,
then || Py(a)|| = oo as o — a, (but not conversely; see Example 2).

@iv) If|P(a)|l remains finite at o, then H(a,) is diagonable (but not conversely ;
see Example 3).

Proof

(i) The singularities of (H(x) — z)~! can only originate with zeroes in the
denominator [Det(H(x) — 2)] ™! = []i (Ex(@) — 2)~ .

(i) Det(H(@) — z2) = (—=2)" + (—z)""'P(a) + ---, where P, are poly-
nomials in a. Hence the E(a) are branches of the same algebraic func-
tions, and as such have the desired properties. As a complex integral of
the analytic function R(a, z), Py(«) is analytic unless the contour C gets
caught between two singularities, which can happen only at the points
a,. Since the integral (3.5 1) can be written in terms of the E, and poly-
nomials in a, the singularities at «, are at worst algebraic.

(iii) The continuity of E, foHows from theorems on algebraic functions,
and as a consequence, series expansions for the eigenvalues contain only
positive powers of (« — a,)!/™. Suppose that this were also.true for the
P,, so that || P,|| would remain bounded. By continuing the E,(a) along
acircle above a,, the E; having a branch point there are permuted so that
E, becomes E for some j # i. By (3.5.1) the same thing happens with the
P,, so the first terms of Py(a) = Py(a,) + (@ — a,)'™P{) + --. would
clearly have to satisfy P(a,) = P{a,).Since Pi(a,) = Pa,), P{a,)Pfo,)=
Pfa,)P{a,) = 0,and P}(a) =P {a,), this implies that P(a,) = Pfa,)=0.

(iv) H(x) is diagonable iff H(x) = Z, Ey(a)Py(a). If E, and P, are con-
tinuous, then this equation can be continued analytically to a,. O

Corollaries (3.5.5)

1. As long as H(x) remains nondegenerate, everything is analytic, and H
is diagonable.

2. If H(a) is Hermitian whenever a is real, and thus unitarily diagonable, then
IP,(2)]| = 1 on the real axis. Then it follows from (iii) that there can be no
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a, on the real axis at which E, has an algebraic singularity. This theorem,
due to Rellich, is not trivial, as it may at first look, since it does not extend

to the case of two parameters: The eigenvaluesa, + a, + \/2./aZ + a2 of

the matrix
o 2 1 + 0 1
1 o/ T2\ 2

have a branch point at a; = a, = 0.

3. All zeros of Det(H(x) — z) are eigenvalues, for which reason analytic
continuation of one of the E,(a) always leads to another eigenvalue.
This property is lacking on infinite-dimensional spaces. For instance,
the eigenvalues of the hydrogen atom go as the square of the charge of the
electron, and are thus entire functions in a. Yet they disappear when the
charge becomes positive; their analytic continuation is not an eigen-
value.

4. Although H(a) is an entire function, it may happen that a power series for
E\(a) in a has only a finite radius of convergence. However, because of
Corollary 2 the radius of convergence is necessarily greater than zero.

Let us now take up the question of how far these results carry over to the
infinite-dimensional case. The set of eigenvectors will no longer span the
whole Hilbert space, but instead there is the three-fold classification of spectra
(2.3.16). It turns out, rather discouragingly, that the classification of spectra
can be completely changed by arbitrarily small perturbations.

Theorem (3.5.6)

The operators with pure point spectra are norm-dense in the set of Hermitian
elements of ().

Proof

Given any a = a* € #()) written in the spectral representation (2.3.11),
X =@, ¥, q x, ¥(®) > ay(a), a€Sp(a). Define a, such that a, ,:
Y(a) = s,(a)y(a), where s,(x) =m/n for mn<x <(m+ 1)/n, neZ*,
me Z. Then |la — a,ll < 1/n, and Sp(a,) is the set of values of s,, i.e., {m/n:
m € Z}, which is purely discrete. ]

Remarks (3.5.7)

1. More particularly, the theorem states that any operator with pure
continuous spectrum can be converted into an operator with pure point
spectrum by the addition of an arbitrarily small perturbation. Con-
versely, there are operators with continuous spectra and arbitrarily small
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norm, like a,¥(a) = (1/n)sin a(a), for which |a,|| = 1/n. These can
convert the pure point spectrum of, for instance, the zero operator into
a pure continuous spectrum.

2. Theorem (3.5.6) can be strengthened to state that the addition of an
operator § with trace norm (2.3.21) Ioll, <& p>1, can render the
spectrum discrete. The theorem does not hold for p = 1;if Hy = |p|? and
|Ho — H|l; < o0, then the Meller operators exist, and H, and HP,, are
unitarily equivalent.

3. The proof also works for unbounded self-adjoint operators.

4. Note that the eigenvalues of s, have infinite multiplicity and hence belong
to the essential spectrum. Nevertheless, the spectrum consists of isolated
points, and the next theorem wiil show that a relatively compact per-
turbation can not change a continuous spectrum into isolated points.

The essential spectrum o.,, (2.3.18; 4) is less sensitive than the continuous
spectrum.

Stability of the Essential Spectrum (3.5.8)

If H' is compact relative to Hy, then 6.,(Ho + H') = 0.,,(H,).

Proof

The criterion-of (2.3.18; 5) for the essential spectrum can be reformulated as
follows: A € 6.(Ho) <> 3V, ¥l = 1, ¢, = 0, (Hy — A, — 0. By Defini-
tion (3.4.1), H'(H, — z)~ ! is compact for all z ¢ Sp(H,), so

(HO + H — A‘)wn = ("0 - 1)!/’. + H’(HO - z)_l(HO - zWu - 0’
since
(HO - z)'pn = (HO - A‘)wn + (A - z).l’n - 0,

and compact operators make weakly convergent sequences strongly con-
vergent. We can then conclude that A € o (Ho + H’), and switching H,
and H, + H' (cf. (3.4.5; 2)) yields the other direction of the theorem. O

Remarks (3.5.9)

1. The addition of a relatively compact potential produces only finitely
many bound states under E, < 0. A classical description would be that the
volume of the phase space under E, is finite for such systems (cf. (3.5.38; 1)).

2. Compactness is essential. The addition of the bounded operator a -1,
a € R, shifts the whole spectrum of any operator by a.

3. When applying this theorem, it should be remembered that if a is compact
and b is bounded, then ab is compact, but a ® b may not be.
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4. If a Hilbert-Schmidt operator is added as in (3.5.7; 2) to an operator,
changing a continuous spectrum to a purely discrete spectrum, then the
new eigenvalues must be dense in the continuum of the original operator,
since g.,, is unchanged by the addition of a compact operator.

As is reasonable, the shift in the spectrum by a when one adds « - 1 is as
great as possible with a perturbation by an operator of norm <a: '

Theorem (3.5.10)

If the distance from A to the spectrum of H, satisfies d(Sp(H,), A) > |H'|l,
then A ¢ Sp(H, + H').

Proof
The series
L T HG-H)'T
Ho + H —A H,-1,% 0
is convergent in norm, because [|(Ho — 4)™'||~! = d(Sp(H,), 4). O

However, if H' is unbounded, then the addition of «H’ can change any
kind of spectrum in any way, no matter how small « is.

Examples (3.5.11)

1. Hy = 0, H' = y(x) = xy(x) on L*((~ o0, ), dx). Sp(H, + «H’) = Rfor
a # 0, and {0} for « = 0.

2. Hy = —d*dx?, H' = ax*:0,(H,) = R*, a,(H,) = 6(H,) is empty.
Sp(Hy + aH') = \/E Useo {2n + 1}, 0, = 0, is empty if « >0, and
6.(Ho + aH') = R, 0, = 0, is empty for a < 0.

Most physically realistic perturbations are unbounded, so it may seem
hopeless to conclude anything about Sp(H, + aH’) from Sp(H,). Fortu-
nately, the relevant condition is not that H' be small, but only that it be
small in comparison with H,.

Theorem (3.5.12)

Let H' be bounded relative to H, (3.4.1) and H(x) = Ho + aH'. Then the
resolvent R(a, z) = (H(«) — 2)™ " is analytic in the variables (a, z) throughout
some region containing {0} x {C\Sp(Ho)}-
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Proof

If z ¢ Sp(H,), then H'(H, — z)~! is bounded, so the series
Y (H'(Hy — 2)7')
n=0

for the resolvent converges for all a small'enough. O

Remarks (3.5.13)

1. The more precise form of the region of analyticity depends on the par-
ticulars of the operators. If, say,

Sp(H,) = R*, [H'Y[ < aliyli + bliH¥,
then
IH'(Ho — 2)™ 'l S all(Ho — 2)™ ')l + bllHo(H, — 2)~*||

a blz{
(Imz| [Imz{

< for Rez >0,
and |H'(Hy — 2)™'|) < a/]z) + b for Re z <0, and so the series con-
verges for

-

alaf bia| 2, @laf
llm2l21~b2|a|2+ l—b2|a|2 |Re z| +l—_-b—§'la—'2‘, Rez>0,
ala|

2. Theconstants a and b of Remark 1 are not determined by H'. The constant
b cart be chosen smaller at the cost of increasing a. Hence it is difficult to
formulate general statements, as in (3.5.10), about how much the spectrum
is shifted.

The analyticity of the resolvent means that the results (3.5.4) about the
eigenvalues remain valid away from the essential spectrum (see Figure 10).

Theorem (3.5.14)

Let H' be bounded relative to H, Then the isolated eigenvalues of finite
multiplicity of H(a) = Ho + aH', as well as the projections onto their eigen-
vectors, are analytic in a in a neighborhood of the real axis.
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 plane bla|
alaj !
1-bla|
/

/

The region of analyticity in z
for a fixed a # 0

Figure 10 The region of analyticity of the resolvent.

Proof

For any isolated eigenvalue E(0) of H,, there exists a distance d € R* such
that the circle K = {z € C: |z — E(0)| = d} does not intersect the spectrum
of Hy. If ag ! = sup,.x |H'(Hy — z)™!||, then K x (—ay, ap) is within the
region of analyticity of the resolvent R, and P,(a) = (1/2mi) j',( dz R(z, @) is
analytic for |a| < a,. Since dim P,(0)# < oo, it follows that

Pyx)H(a) = Py(x)H(a)Py(a)

is an analytic family of operators of finite rank. In order to transform it into a
family of finite matrices, write

Py(a) = W(@)P,(O)W(a),
as in the proof of (3.3.11). As is easy to verify (Problem 4),
Wi@) = Py(a)[1 + P(OXPy(a) — P(0))P«(0)]™V2Py(0)

is a partial isometry and furnishes the desired transformation. If « is suf-
ficiently small, then [|Py(a) — P,(O)ll < 1, so the factor [...]”'? can be
expanded in a convergent series, making W analytic in a. Therefore

Py())H(@)Py(a) = Wi(@)Py Q)W (a)H(x)Wi(@)PL(O)W i (e)
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is unitarily equivalent to H,(x) = W !(a)H(a)W,(a), which is an operator of
finite rank acting on a space P,(0)J, which is independent of a. In other
words, it is a finite-matrix-valued analytic function in a. The propositions
(3.5.4) about polynomials H(x) are essentially unchanged for analytic
functions H(a)—algebraic functions merely become algebroid, that is,
locally algebraic, functions. O

The next subject is the derivation of explicit formulas for the change that a
perturbation H' causes in an eigenvalue. Let us assume that an interval of R
contains no essential spectrum, but only eigenvalues, and that the E,(x)
and their projections P,(a) change continuously with a. This is always the
case when H’ is bounded relative to H,, but may also happen otherwise.
Next, rewrite H(a)as H, + aPH'P + a(H' — PH'P), where P = P,(0)for the
k of interest. If E,(0) + aPH'P has been diagonalized, then the effect of
PH'P can be included in E,, so without loss of generality we may assume that
PH'P = 0. Since the eigenvector |a): (H(x) — E(a))]|a) =0, {aja) =1,
varies continuously with «, let |a) = cj0) + |L1), <O}L)> =0, |c|* =
1 — (1]1), which #0 for sufficiently small a. If this is substituted into the
eigenvalue equation and the component parallel and perpendicular to |0)
are separated, then

o(E(x) — E0))|0> = aPH'| L), P =]0)<0|, 3515
(Ho — E(@) + aP,H)| 1) = —caH'|0), P, =1-P.

This produces

The Brillouin—Wigner Formulas (3.5.16)

E(2) = E(0) — a?¢0|H'(H, — E(a) + «P, H'P,)"'H’|0),
|L) = —cu(Hy — E(a) + P, H'P,)"'H'|0),
¢"2 =1 + a*¢0|H'(H, — E(a) + aP H'P,)"*H’|0).

Remarks (3.5.17)

1. To ensure that the formal expressions make sense, we must assume that
|0> € D(H') and that (H, — E(x) — aP, H'P,)"" exists. If H' and con-
sequently P, H'P, is bounded relative to H, and E(a) is isolated, then
the series

(Ho — E@)™' . [aPLH'P,(Ho — E@)™'T"

n=0

converges on P, ¥ for a small enough, so (3.5.16) are well defined.
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2. The eigenvalue E(a) is determined implicitly by (3.5.16). An explicit
expression results from a comparison of the power series for both sides
of the equation in a. The first few terms are fairly simple:

Lowest-Order Perturbation Theory (3.5.18)

Up to O(a?),
E(a) = E(0) — «*{0|H'P,(H, — E(0))"'P, H'|0),
1> = a(H, — E(0))"'H’|0),

2
c=1- -“2— O|H'(Hy — E(0))"2H'|0).

Remarks (3.5.19)

1. An objective assessment of (3.5.18), which has been a daily tool for whole
generations of physicists, is that it is unsatisfactory in several respects. Its
shortcomings are that

(i) if H' is unbounded, it is not obvious that E(a) should be analytic
in a, and indeed it is not analytic in most of the standard examples of
perturbation theory—the anharmonic oscillator, Stark effect, Zeeman
effect, and hyperfine structure;

(ii) even if the radius of convergence p is greater than zero, the n-th
order terms gets so complicated for large n that it is not easy to find
out what p is;

(iii) even the condition that a < p does not guarantee that (3.5.18) will
be in close argeement to the true value. For example, the radius
of convergence of sin(100x) is infinite, but linear and parabolic
approximations are not useful beyond a short range. If we wish to
use (3.5.18), we ought to first show that the function E(a) does not
have such wild oscillations.

2. The terms linear in a do not appear in (3.5.16), because aPH'P was defined
away at the beginning. As a consequence, the Feynman-Hellmann
formula .

O0E
Sl = 0|H'|0>
A Ja=0

holds for nondegenerate eigenvalues. If the eigenvalues are degenerate,
one must first choose the right basis in the degeneracy space and be aware
that the numbering of the analytic functions E,(a) will not continue to
order them by their magnitudes. For example, the eigenvalues +a of

H(a) = o' = (: 8)
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are not the same as a{0| H’'|0) with the vector

10y = ((‘,)

and the lowest-eigenvalue E,(a) = —|a| is not differentiable at the point
a=0,

3. Formulas (3.5.16) do not assume analyticity. Even without analyticity,
(3.5.18) gives the correct asymptotic expansion under our assumptions:

E() - E(0) — «’¢0|H'P (H, ~ E(0))"'P, H'|0)
= «’(0|H'P.(Ho — E(0))” "(E(@) — E(0) + aP, H'P))
x (Ho — E(®) + aP, H'P\)"'H'|0) = O(a?),

and similarly at higher orders. However, in the absence of analyticity
perturbation theory may lead to nonsense. It may happen that the series
diverges for all a € R\ {0} although the discrete eigenvalues persist for
all a € R, or that the series converges, but to the wrong answer.

Examples (3.5.20)

1. H(@) = p* + x? + a?x5. Since the potential of this anharmonic oscillator
goes rapidly to infinity for all £ R as |x| — oo, the spéctrum remains
discrete (see (3.5.38; 1)). Yet R(a, z) is not analytic:

dR
- aaz =0
is unbounded, since || x*(p? + x2 — z)~'¢|| can get arbitrarily large.

2. H@) = p* + x* — 1 — 3ax? + 2ax* + a®x® = a*a, where a = ip +
x + ax>. It is clear that H(a) > O for all a € R, the eigenvalues remain
isolated for all a€ R, and o, (H(x)) = &J. However, the eigenfunction
expl —x2/2 — ax*/4) with the eigenvalue 0 belongs to

L*((— o0, o), dx)

onlv for @ > 0. Since perturbation theory produces an asymptotic series for
the ground state E(a), which equals 0 for all @ > 0, all the perturbation
coefficients must vanish. The series then also converges trivially for all
a < 0, although 0 is no longer an eigenvalue.

=(? +x? - 2)"'x%n? + x2 - 2)~ .,

More precise information about the positions of the eigenvalues can be
obtained with variational methods. They rely on the

Min-Max Principle (3.5.21)

Let H be self-adjoint and bounded from below, and let the eigenvalues be
E, S E; < Ey £ --- < Eg (counting multiplicity), where by definition all E,
lying above the bottom of the essential spectrum E aré set equal to E,
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" even if E, is not an gigenvalue. Let D, be an n-dimensional subspace of D(H),
let D} be its orthogonal complement in D(H), and let Trp_ be the trace in D,.
Then

f+j-1
Y E,= inf sup TrpH=sup inf Trp H, iandj=12,....
k=i Diej-1 DycDy+ g~ D¢-1 DycDi-,
Proof
See Problem 5. ]
Remarks (3.5.22)

1. In particular,Z’,,, {Y,|HY,) for any orthonormal system {y,} < D(H)is
always greater than the sum of the first j eigenvalues, counting the bottom
of a.,, as an infinitely degenerate eigenvalue. By the use of well chosen
trial functions y, provided with several parameters to adjust excellent
upper bounds on Y., E, can be obtained.

2. To get an upper bound for E, itself, take an orthonormal set {/,,...,¥,}
D(H). The greatest eigenvalue of any n x nmatrix {y,|Hy,) is > E,.

The astute reader will have realized from (3.5.18) that the second-order
correction (~a?) for the ground state is always negative. More generally,
(3.5.21) permits the proof of some

Concavity Properties of E,(x) (3.5.23)

Let H = Hy + aH', with D(H') > D(H,). Then Y)_, E ), j = 1, 2,.
are concave functions of .

Gloss (3.5.24)

Concave functions f : I — R are by definition those for which

(Za,xi)z }:a,f(x.), o 20, Za =1, x;el
i=1 i=1

The function —fis said to be convex. Concave functions f have the folowing
properties:

(i) fis continuous on the interior of 1, has right and left derivatives at every
point, and has first and second derivatives almost everywhere;
(ii) f” is a negative distribution (f" dx is a negative measure);
(jii) for x > 0, f(x) is concave iff xf(1/x) is concave;
(@iv) if f > 0 and 1/fis concave, then fis convex;
(v) If the functions f{x) are concave and a; > 0, then Y, «, f(x) is concave;
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(vi) If fi(x) is concave, then inf; f{x) is concave.
(vii) If the functions f; are concave and f', > 0, then f, ° f; is concave.

Proof

The expression YJ_, (y,|H(«)y,) is linear in a, so by Property (vi) its
infimum over the y, is concave. O
Remark (3.5.25)

It is necessary that D(H(a)) = D(H,), so that the infimum is taken over a
set independent of a. For instance,
Ey@)= inf <(y|H(y)
Hl¥s(@)=0
is not necessarily concave.

Although the min-max principle guarantees that E,(ax) lies below any
possible expectation value of H(a), it does not say how close to E, the
expectation value comes. People who make variational calculations normally
convince themselves that they come close by their faith in their pet trial
functions. There are, however, a few criteria with which to gauge the accuracy.

Weinhold’s Criterion of the Mean-Square Deviatioa (3.5.26)

There is a spectral value of H in the interval [(H) — AH, {H) + AH].

Proof

According to (3.5.21), there is a spectral value of (H — (H))* below
((H — {(H))*)» = (AH)?, and hence H has a spectral value nearer to {(H)
than the distance AH. _ O

Remark (3.5.27)

Criterion (3.5.26) can only be used after verifying that the eigenvalue in the
interval is indeed the one wanted. For instance, it produces a lower bound
for E, only if it is known that E, is greater than (H) + AH.

Duffin’s Criterion of the Local Energy (3.5.28)

Suppose that H = [p])? + V(x), D(V) o D(|p|?) has isolated eigenvalues E,.
The eigenvector Y ,(x): HY = E y, can be assumed to be nonnegative. If
Y(x) > 0 and E(x) = Hy(x)/y(x), then E, lies in the interval [inf, E(x),
sup, E(x)].
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Proof

Write y,(x) = R(x)exp(iS(x)), with R positive and S real (cf. (3.3.21; 5));
then

Wl HY,) = J’ dx(IVRX)P + RA(IVSG)P + V(x))

> jdx(lVR(x)lz + R?*V(x)).

For y, to have the lowest eigenvalue, S must be constant, and can be re-
defined as 0. This makes (Y, |y) > 0, and

Exl¥) = CHy ) = [dx g, 0wE) S oF B0 ulyy. O

Remark (3.5.29)

This criterion does not involve integrals as in the calculation of expectation
values, which is an advantage; but at least one of its error bounds is worse
than the correspondmg bound of (3.5.26) calculated with v:

(AH)? = f dX(E(x) — CHY)(x)?

< max{((H) — inf E(x))?, ((H) — sup E(x))z}.

If H is of the form |p|? + V(x), then, obviously, E, > —| V| . But even if
V - — oo somewhere, H may be bounded below. The uncertainty principle
leads one to believe that this should always be the case when V approaches
— oo more slowly than — 1/r2, which means that V is locally in L?, p > 3. This
is in fact the case, as shown by the

General Lower Bound (3.5.30)

In three dimensions,
Ip1? + V(x) 2 —c,IVIpP?*™>,  p>4
2p — 3\@P-2M2p=3(p _ ()2
— -7 47)" 220~ 3)
where the operator |p|* + V is defined by the Friedrichs extension (2.5.19).
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Proof

The ground state y satisfies the equation

v = [P - xvewe), G = 2B ﬁ Ix])

because G is the Green function for |p|> — E. Young’s and Hélder’s in-
equalities imply that if p > 1, then

Il
=

I¥lz < IGIIV Y12, +
\

We thus calculate that

_ 1
161, = 4 | [ ax SECRLEID)

x
Ix|?

|-
-

= |E|9™324 . gla=3Va. V(3 — g 4m)~ /.

Since this is finite up to the point p = 3 <> g = 3, it can be substituted into the
earlier inequality to get an upper bound on | E, | for the Friedrichs extension
with p > 4, ¢ < 3. The argument does not work for arbitrary definitions of
the sum of the operators |p|? and V; the deficiency indices may be nonzero,
and the lowest eigenvalue can be arbitrarily negative. (]

If H' is positive, then lower bounds for E, can be obtained from an eigen-
value problem restricted to some subspace (cf. (3.5.21) for contrast):

The Projection Method (3.5.31)

Suppose that H' > 0 and P = P* = P2, so that P(H")"'P is bounded and
invertible on PJ¥. Then the ordered sequence of numbers E{® such that H,|i) =
E{®|i> with P|i> =0 and E, for which the operator P{(H, — E;)"' +
(H')~ '} P has eigenvalue zero consists of lower bounds for the ordered sequence
of eigenvalues of Hy + H'.

Proof

For any projection Q, Q < 1, so (H')'?Q(H)"?> < H'. If we take Q =
(H)"V2p(P(H')"'P)~'P(H")"'/2, then Q is a projection, since Q = Q*
= 2, and there results H' > P(P(H')”'P)~'P. Therefore, by the min-max
principle, the ordered sequence of eigenvalues of

H, = Hy, + P(H) 'P)"'P
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consists of lower bounds for the eigenvalues of H = H,, + H',since H > H,,
and so all expectation values satisfy (Y|Hy) > (Y|H ¥). If |L) is an
eigenvector of Hy and P|L) = 0, then |L) must be one of the |i), and thus
E, is an eigenvalue of H,. If P|L) # 0, then we may write

P|L) = —P(H)"'P|),
which converts the eigenvalue equation into (H, — E,;){L) = P|), or
P|ILY = P(Hy, — E)~'P|) = —P(H')"'P|). O

Special Cases (3.5.32)

1. Let P = |x>{x| be one-dimensional, so the comparison operator is
P-{x|(Hy — E)™' + (H')" ). Since E{® are trivial lower bounds, we
need (ily) #£0,i = 1,2,...,n, in order to raise our estimates of the first
n eigenvalues. If we let

= an|i>, Z ,Ct|z =1,

i=1
then the problem becomes to solve the equation

2
;ET'»C'_L,;; + T et ilH) " ke, = 0.

Since (H')~! > 0, there is always a solution for E, between any E{® and
E{?,. No one-dimensional projection can raise an eigenvalue above the
next higher one. More specifically, E{” + (1|(H')"!|1)"! < E, < E{®
+ {1{H’|1), whenever the left side is <E{.

2. If welet [x) = c(Ho — EDIY), I¥] = 1, then we need to find the least
solution of

(Y|Ho — E, + (Ho — ELXH')"'(Ho — EDIY)
=< Y|H — E, — (H - E.XH) '(H - E)|y)> =0,
ie.,
EL = (YIHY) — WI(H — EXH)™(H — EDI¥).
IfE, < EY, then it will be a bound for E,, and
YIHY) = <YI(H ~ ELXH) " W(H — EDIY) < E; < (YIHIY,

provided that the left side is < E{”. In this case we are not confined to the
use of eigenvectors of H,, and may equip Y with some parameters to vary
and optimize the bounds. In addition, H can be written in various ways as
asumof Hyand H'. If we let H' ={(E, — E;) - 1 (why not, once we know
that E; < E,?), then

(WI(H - EL)E, — Ep) — (H - EL)*Y) =0,
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which yields Temple's inequality,

(AH)?
E, -~ (H)
If AH < E, — (H), this improves (3.5.26).

E, 2 E =<H) -

Once the E, have been localized, the question can be raised of how well
the trial function ¥ approximates an actual eigenvector | ). There is little
chance for a general pointwise bound, but the accuracy in the L? norm, i.e.,
in the mean-square sense, can be gauged in terms of inner products, for
which there are useful estimates.

Bounds for the Overlap Integral (3.5.33)

Let a constant be subtracted from H to adjust the lowest eigenvalue E, to 0,
and let | ) be its eigenvector. Then

(H)

2
R e _

 (H?)
where { ) is the expectation value in the state . (These bounds are due re-
spectively to Eckart ard to Farnoux and Wang.)

Proof

Right side: Hy is orthogonal to | ), so

L

2<1

Left side: Let P = 1 — | >< |. Then
QUIP(H — EPY) = CYIHY) = Ex(1 — [C 9)17) 2 0. .

Remarks (3.5.34)

1. Itis not difficult to improve these bounds [5]. They show that the relevant
facts for the accuracy of y in the L? sense are smallness of (H) — E, and
AH and a large isolation distance from E,.

2. The upper bound holds only for the eigenvector of the ground state E,,
though similar lower bounds hold for excited states.

The motivation for the concepts that have been developed is the study of
Hamiltonians of the form H = |p|?> + V, and we have assumed that there is
only a discrete spectrum under the continuum on R*. The final topic of this
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section will be bounds on the number of bound states below a given energy;
this in turn excludes g, from below such an energy. The discussion begins
with a lemma, which seems trivial for attractive potentials, but is surprising
for potentials that are partially repulsive.

Monotony of N(H) in the Coupling Constant (3.5.35)

Let H = |p}* + AV be such that o (H) is contained in R*, and let N(H) =
Tr ©(— H) be the number of eigenvalues less than zero, counting multiplicity.
Then N(|p|> + AV) is a monotonically increasing function of A for A > 0.

Proof
H, < H,= N(H,) > N(H,) and N(AH) = N(H)for all 4 > 0, so
N(p> + A, V) > N(%(Ipl2 + A, V)) = N(|p|>* + 4, V) forall A, = 4,.
2

a

The number of eigenvalues below —c?, i.e., N(H + c?), can be estimated
above by traces for potentials that are in some trace class relative to |pl?, that
is, by certain integrals.

The Birman—Schwinger Bound (3.5.36)

Let
Vi =1~ V(x), where V(x) < 0
WVi-= 0, otherwise.

Then forall p > 1,
N(IpI> + V + ) < [I(Ipl? + A7 VI_(pl* + )72

Proof

N(pl> + V + c) < N(Jp|* = |V]- + ¢?), and all the eigenvalues of
Ip|> — A|V]_ + ¢? are continuous, decreasing functions of A. Hence
N(|p)? = V|- + ¢?) equals the number of values of 4 for which Ipl2 —
A|V|. has the eigenvalue —c? (see Figure 11). Since |p|* + c? is invertible,
it follows from (|p|* — 4|V |- )¢ = —c?y that

1
(PP + )V (pl + ) Vo =70, o= (pI* + )"y
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—c \\\
Ey(%)

E;(4)

E

E\ (%)

Figure 11 The eigenvalues as functions of thegcoupling constant.

Thus N(|p|*> = |V]- + ¢?) = [the number of eigenvalues (1/4,) > 1 of the
operator (|p{* + ¢*)™"?|V|_¢|p)* + c*)™"/?]

s2(3)

= Tr[(Ipl® + )"V VI_(IpI* + )72 0O

Applications (3.5.37)
1. Bound S-states. If V is radially symmetric, then one can ask about states
of definite angular momentum !/, where one thinks of the appropriate

projection P, onto an angular-momentum subspace as included in V. The
operator Py(|p|> + ¢)~ P, has an integral kernel

R(r,r) = z};; [sinh rc exp(—r'c)®(r' — r) + sinh r'c exp(—rc)@(r — r)],

and, moreover, the bound involving p,
AR + )™ 2 VI_Upl? + 372, = Tr|VI_(Ip* + ¢»)7!
@ ®© _ —2
= J. dr|V(r)|_r*R(r,r) = J' dr|V(r)|- l_ﬂ’(__'f),
° 0 2c

may exist. For ¢ = 0, this reduces to Bargmann’s bound :

(The number of bound S-states of V(r)) < J. darr|V(@)|-.
(1]
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2. In our discussion of \free motion (3.3.3) in three dimensions, we saw that
the integral kernel of (|p|®> + c?)~! was exp(—c|x — x’'|)/4n|x — x'|,
which is infinite where x = x’. It is thus necessary to choose a larger
exponent p; with p = 2, we get the bound of Ghirardi and Rimini:

N(|p|2 + V+C2)S< ) J'd:! d3 ,lV(X)| IV(X)I-

- x'|?

- exp(—2c|x — x'|).

Remarks (3.5.38)

1. The classical analogue of N(|p|* + V) is the volume of phase space of
negative energy,

d>x d’p

1
Gy O - Ve = J[mwp_u.

As A — oo, N(|p|* + AV)in fact approaches this integral, as wil'be shown
in volume IV. For finite 4 the integral is a bound on N(|{p|* + AV), with
some weakened constant [25].

2. If the potential is radially symmetric, then it is possible to obtain a family
of bounds for N, the number of bound states of angular momentum |,

N < @ = 177'TCp)
'S @ TR

J drre*® Y \V()r, p=1L
(V]

These bounds are optimal in the sense that for all p > 1, there is a potential
V.., for which equality holds. By varying p, one can use this formula to
evaluate the number of bound states for most potentials to within a few
percent.

3. The moments of the eigenvalues can be read off from N by [6]

0
Z |E;]’ = Tr|H"®(~-H) = f_ dE|ETr & E — H)

J- dElEIy N(H E)-—yJ- dE|E|""'N(H - E).

Example (3.5.39)

The Yukawa potential, V(r) = —Aexp(—r)/r, 1 > 0 By (3.5.37; 1), the
number of bound S-states is at most j'o dr|V(r)|r = A. If we use the trial
function Y(x) = u(r)/r, u(r) = (4*/8m)"*r exp(—4r/2) in (3.5.28), then Hy /Y
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= —A*4 + A(1 — exp(—r))/r, so we get the bounds —A2/4 <E, <
—A%/4 + A.The expectation values of H = |p|* + V and H? in the state y are
A2+ 122 A? 3
H == = — —_—

and

M. 164+ 1202 8A
2 = __ —
WIHY) = 16[5 I+ 47 +2+a]’

1/ 2 \* 2+32
A"‘§(1+A) NVZ¥A

The min-max principle yields the upper bound {y/| Hy) for E,, and (3.5.26)
gives the lower bound (Y |Hy) — AH, once it is known that E, > (Y |HY)
+ AH. Because V > —A/r, E, > —A%/4n? (see §4.1); consequently, for
{Y|Hy) < —A?/16, we have definitely caught the eigenvalue E, between two
bounds. For A sufficiently large, the lower bound can be improved with
Temple’s inequality (3.5.32; 2), since (AH)*(E; — (H))™ ' = O(A™2). The
projection method can make use of the exactly soluble case H, = |p|*> — A/r
and H' = A(1 — exp(—r))/r, yielding

A2 [ e ¥ x A?
Ut S N 3 = —
H'™ ") = 3 J.o drr = 3.§0(1+")4

so —A%/4 + 2%/(3 + 2) < E,. The general bound (3.5.30)
© 2/(2p-3) — g)2Y3-@
E> -(J' dr rlel’) fO-a™ ° :3 @ - 1)
(1]

works only if p < 3, and thus never gives the actual asymptotic behavior
~A% as A - oo; for instance, with p = g = 2, we get —A*/16 < E,. (See
Figure 12)

<A723 + 2,

A
. s‘\
S
— Temple’s inequality S +6
-+~ inequality (3.5.28) S
\\\
~
SN
S S ~J3
~
~
~
~
~
N
S .
E, + + - + 4
-6 -5 -4 -3 =2 -1

Figure 12 Bounds for the ground state with a Yukawa potential.
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Problems (3.5.40)

l.
2.

Show that R(a, z) has simple poles at E,, and P,(a) = P#(a*), P{2)Py(a) = &4 P,(a).

Show that a is compact iff Y, —~ 0=>ay, -0 (Hint: for the “only if " direction, recall
that the strong and weak topologies are equivalent on strongly compact sets in
Hilbert space.)

. Show that if H' is compact relative to H,, then for all ¢ > 0 there exists a é such that

H'Y| < ellHow| + 3|yl for all y € D(H,). (The operator a = H'(Hy + i)~! is
compact. Let P, = y_, ,(H,), and show (i) that [la(1 — P,)| —= 0, and (ii) that
H'P, is bounded for all n.)

- Show that for |a|< 4, W(x) = P@)[1 + POXP() — PQ)P©O)]"'"*P(0), where W

is as in the proof of (3.5.14).

. Prove the min-max principle (3.5.21). (Use the unitary invariance of the trace and

note that Trp, p, = Trp, + Trp, for D, orthogonal to D, .)

. Give an example of a 3 x 3 matrix for which the value E; = supyy ;=1 E2(¥),

E,(¥) = inf g4y -0, 1o =1 {<@|Hep) is attained for some y other than y,, the ground
state.

Solutions (3.5.41)

Let P, be the projection onto the eigenvector for E,. The Laurent series of (H, — z)~*
is (E, — z)"'P, + (1 — P,) x analytic factors.

2niPy(a) = § dz R(a,2) = — ﬁ dz R(a, 2) = — § dz* R(a, z*)

- [§ dz R(a*, z)]'.

PP = @ri)* § f’_"’z - (R(@ 2) — R(@, 2)].
z .
i=k: @z @ni)-2 ||+ = Qni)~* ¢ dz R(a, 2).
Sk l j"' é(
Ci
ik (2ni)-2f[...=o.

¢ . Ca
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2. Lemma: Let K < 5 be strongly compact. If M < K is weakly closed, then it is also
strongly closed. Conversely, if M is strongly closed, then it is also strongly compact,
hence weakly compact, hence weakly closed. (See also Problem (2.1.29; 7).)

“only if”: Y, = 0 = ay, — 0= ay, — 0 because of the lemma and because {y,} is
bounded.

“if”: (Yp—=0=>ay, = 0) =¥, = ¥y =ay, > ay)

Now suppose X is a bounded set. To show that aX is strongly relatively compact, it

suftices for every sequence ay,, §, € X, to contain a strongly convergent subsequence.

The sequence ¥, contains a weakly convergent subsequence ¥, — ¢ = ay,, — ay.

3. (i) Leta, = a*(1 = Pa. lla(1 — P)}|? = sup;y; <1 <¥lay). If |- - -}* were greater

than some fixed positive C for all n, then the intersection of the decreasing se-
quence {y: (Y|a,¥) = C, |yl < 1} of weakly compact sets would be nonempty,
so there would exist a y such that ||y|| < 1 and {Y|a,¥) 2 C for all n. This is
impossible, since 1 — P, — 0.

(i) H'P, = a[", (« + iMP, s the product of two bounded operators. Consequently,
if y € D(H,), then for n sufficiently large, Y € D(H,),

IHYN = lla(Ho + Wil < fla(l — PXHo + Dyl + H' Pyl
< ell(Ho + Wil + [H'P 1.

4 |P@) — PO <1, [1>0, [IPo= P[] WW*=P[ ] '"?P[ ]°V?P=
PP[ 1P =P.W*W = Po[ J7V2P[ J7V3Po = [ 17'Po[ 1P, 1™ "2Py = P,.

S. We consider only the infinite-dimensional case, so H has arbitrarily many eigenvalues
greater than or equal to E,, ;_,. Let Hy; = E;y;, let B, ; be the subspace spanned by

Wi Vi Wi g-ah
Dj =D;nBy -, Dj=D;nB;, Df=D;nB;a,

and let d* be the dimension of Dj. In the trace
Trp,H = Trp; H + TrpgH + Trp: H

the first contribution lies between E, + E, + --- + E;-and E;_4- -, + E;_4- + -+
+ Ei' 1 the second between E‘ + El*l + cee + El',.‘o_l and E,-,j_,;o_| + E,~¢,'—‘0
+ -+ 4 E;y;-y,and the third is > E;, ,_,d*. Hence

sup Trp H2E +E+ -+ E,;-,

DyeDy -

(equality holds for D;, ;_, = B, ;,;-,); and

inf Trp, H<E +E. + - +E.;,

DJCDI 1
(equality for D,_, = B, ;_,).

6. H= );ew.—(lom

e

The general form of the ¢’s orthogonal to ¥ is ¢ = (a, €'®\/1 — 2|a|?, —a), with
Ja) < 4, and (p|Hp) = 2(1 — 22?) + (3 + 1)a? = 2for all .

S O -

00
2 0},
03
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3.6 Stationary Scattering Theory

An explicit formula for the scattering operator S is obtainable with
an Abelian limit, and analytical methods can be applied to it.

Historically, collision problems could be studied only with the methods of
wave mechanics, and not with those of matrix mechanics. It has thus come to
be believed that scattering theory should be thought of as concerning the
scattering of waves, and not of particles with observables x and p. More
recently, the connections between the two points of view have become better
understood, and as a result we shall be able to tie in directly with §3.4. Since
we have by now learned which mathematical pitfalls are dangerous and which
can be harmlessly circumvented, we shall indulge in formal manipulations
without always pausing to investigate the finer points of rigor.

The Mgiller operators were introduced as time-limits of Xt) = exp(iHt)
x exp(—iH,¢). If they exist, then a fortiori (Problem 1) the limit as ¢ | 0 of
e & dt exp(—et)(¢) exists (cf. (I: 3.4.18)), which is an operator that no longer
contains time explicitly. Since the integrand is an exponential function of ¢,
the t-integration looks trivial at first sight, but because H and H, do not
commute, it is not so simple. The difficulty can be eased with the partition of
unity 1 = (& dE &H, — E) given by the spectral representation of H,,
which we shall think of as | p|>. Then only the commuting variable E appears
in the integral of the final exponential function, exp(—iHot) = {§ dE
x exp(—iEt)(H, — E), and there is no further obstacle to the integration:

sl0

Q, = slim ef dtJ. dE exp(+it(H — E + ie)(Ho — E)
(4] (]

= s-lim + dE ig(H — E + ie)” ' §H, — E)

el 0 0
=1—s-lim | dE(H — E + ie)"'V 8(H, — E). 36.))
¢l 0 (1]
Remarks (3.6.2)

1. This means that Q, can be written in terms of the boundary values of the
analytic function z —» (H — z)" 'V on the branch cut R*. The V’s that
we shall deal with are mapped by this function into compact operators.
It will in addition be convenient to use the variable k = /E instead of
E to siniplify the integrals; the limits in Q, simply correspond to Im k | 0.

E piane k plane

o |

o, 1
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Under the right circumstances, the integrands can be contmued analyti-
cally across the real axis:

d3x d3x’
(dnlx — x'|)?
x V(x)V(x)exp(itk — k*)|x — x)

is finite even if Im k < 0, provided that V(x) falls off sufficiently rapidly.
If we write

1V, - ks =

Q, = s-lim 2k dk Q(ie F k)&(Ho — k?),

el 0 V]

then

Rk =1—-H-K) W=+ H, -k} 'V)!
= V—I/Z(l + IVIIIZ(HO _ kz)—lVIIZ)-llylllz

has only poles, at the points where the compact operator in the de-
nominator has the eigenvalue — 1. The branch-point in the variable E at

£ = 0 disappears in the uniformizing variable k.
2. It is customary in wave mechanics to work outside the space L? and use
plane waves ¢ = exp(ik - x) as eigenvectors of H,. When multiplied by
'Q, they are turned into eigenvectors of H: y, = Q. (k)e, which satisfy

the Lippmann—-Schwinger equsation

d’x=¢"(Ho—kzii5)_'V'/’p k = |k|,
because k) = (1 + (Hy — k*)"'¥)~'. In the x-representation, this
reads

a3x —ikix — x'
W:(x).—.exp(ik.x)_'f x e:i(‘:l_':,( x')

V(X)W 4 (x').

The new eigenvectors contain incoming, or respectively outgoing, spherical
waves in addition to the plane waves.

Example (3.6.3)

With the separable V of (3.4.13; 1), Q(k) = 1 — MH, ~ k*)"'PD~'(k), or,
written as an integral operator with a momentum-space kernel,

Ap*(p")p(p)

-1y -
-k FO

(wm—um=—L%MmW—v)

where now

d3 2
D(k)=|+,1'|‘|‘l,zlp(pz|2, Imk > 0.
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If, say p2 = M*/(|p)* + M?), M > 0, then D(k) = 1 + (A/4m)M2/(M — ik).
This function can be continued into the lower k-plane, equivalent to the
second sheet in E, though it no longer equals the integral there, but instead
develops a pole at k = —iM.

In the same way, the time-limit (3.4.24; 6) in S can be recast as an ¢ limit,
the only difference being that the partition of uhity is needed on both ends of
the expression:

E+ FE
2

S = s-lim sJ dE dE' 8(H, — E)exp( -—iz(H -
tl0 V]

- i) Jato - B

x —ie
=s-im | dEJE 6(H, — E -
o, Ho =B —E+E2 %

5(Hy — E). (3.64)

With the second iteration of the resolvent formula (suppose D(H) is D(H,)),
(H-2)"'=(Ho—2)""'=(Ho~2)"'[V = V(H —2)"'VI(H, — 2)""

and the limit

. —ie
lim

- — = 2ni §(E — E),
1o (E — E)/2 — ieX(E" — E)/2 — i)

there results

S = s-lim | dE{1 — 2ni 8(H, — E)Y[V — V(H - E — ie)"'V]}(H, — E).

el O 0

3.6.5)

(As usual, S is in the interaction representation.) In order to discuss (3.6.5),
we need another operator-valued analytic function of the uniformizing
variable k (see (3.6.2; 1)):
k) =VQ_(ky=V - VH — k¥)"'V
= VI/Z[I + IV'I/Z(HO - kZ)— 1 VIIZ]— 1 I V|1/2
={V"' 4+ (Hy— k¥ ]! = t*(—k*). (3.6.6)

The domains of definition, especially that of ¥ ™!, will have to be checked
later. AsIm k | O,

k) — £ (—k) = im[(H, — k* — ig)~" — (Ho — Kk + ie)" ']
sl 0

= 2ni 8(H,y — k?)
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in the sense of convergence of quadratic forms, and we get
1 — 27i 6(Hy — k¥t(k) = (t7 (k) — 27i 6(H, — k*)r(k) = t~ (= k)t(k):

The Spectral Representation of the S Matrix (3.6.7)

S = f 2k dk S(k)S(H, — k?),
0

S(k) = t~'(=k)t(k) = s-lim[ 1 + (H, — k* + ig)" V]

el O
[0 + (Hg — k* — ie)'V]~.

From tl{is there follow the

Unitarity Properties of the S Matrix (3.6.8)

(i) S(k)S(—k) = 1 on the domain of analyticity.
(ii) 6(H, — k?)S(k)* = S(—k)5(H, — k?) for k real.

Example (3.6.9)

Recall (3.6.3), with ¥V = AP. We find that t(k) = APD"! and S(k) = 1 —
2ni 8(H, — k*)APD~'. Since 8(H, — k*)P &(H, — k?) = 6(H, — k?)|p(k)|?
x (k/4n)P,, where P, is the projection onto the states of angular momentum
[LP? = I(I + 1), and D(k) — D(—k) = 2mi(k/4n)|p(k)|*, we find that

D(-k)

—_ ® - L2 7
s_L 2k dk 3(H, k)(Po o0

+1_Po).

Remarks (3.6.10)

1. Since [§, H,] = 0 it follows that even though S(k) maps functions off the
energy shell H, = k2, S(k)3(H, — k%) does not. The unitary relation
&(Ho — k')S(k)*S(kYS(H, — k) = 8(Ho — k*)8(k'* — k?) then holds
on the energy shell, and hence S(k) 3(H, — k?) can be writtent as
exp(2i 3(k))6(H, — k*), where 3(k) = &(k)* = —&(—k). Making use of
the spectral representation of H, = |p|?, we can write ¥ = L(R*, 2k dk)
® L*(S?,dQ), and the operator (k) maps the angular part L3(S2, dQ)
onto itself. The operator 6 = 6(\/170) then acts on all of o, and [, H,]
= 0. If V is spherically symmetric, {6, L] = 0, so (k) = Y, o(k)P,, for

t It is unfortunately traditional to use the same letter for the phase-shift d(k) and for Dirac’s
delta function. The reader should be alert for any possible confusion.
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0(k) € R. Then in the diagonal representation of |L|?, S becomes a multi-
plication operator in H,:

S = J " dk? 8(Ho — k¥exp(id(k)) = Y. j “dk? 5(H, — k2P, exp(id (k).
[} | [}

2. The unitarity of S implies the Low equation for t (as before, defined with

Im k ] 0):
t(—k) — t(k) = 2mVQ &(H, — k*)Q*V
= 2nit(k)}(Ho — k)t(—k), keR.

3. If the Lippmann-Schwinger equation (3.6.2; 2) is written as ¢_ = ¢
— (Hy — k*)~'t(k)@, and if we use @ = exp(ikm- x), k = kn, noting that
for |x| > |x'|,

exp(ik|x — x’})  exp(ikr) ex
r

- p(—ikn' - x'), n'
Ix — x'|

~ | %

then as |x| — oo, in the x-representation,

exp(ikr)

r

¥ -(x) = exp(ik - x) + Sf(k; n', m),

f(k;n',n) = —;—nl Id’x’ d3x” exp(—ika’ - x'){x’'|t(k)| x" Yexp(ikn - x").

The angular dependence fof the outgoing spherical wave is thus determined -
by ¢ in momentum space on the energy shell. Only this part of ¢ shows up
in exp(2ri&(k)) 6(Ho — k?) = (1 — 2ni &(H — k*)t(k))6(Ho — k2). In par-
ticular, if [t(k), L] = 0, then by comparing coefficients (Problem 6),

exp(2id(k)) — 1
2ik

Sf(k;n',n) = g<n’lP.In>

_y2 : L P,(cos O)explibk)ein 64K), 6 = A (u' m).

If the plane wave is expanded in spherical harmonics exp(ik - x) =
(exp(ikr) — exp(—ikr))/2ikr + ---, then _ becomes asymptotically
(exp(i(kr + &(k)) — exp(—i(kr + &(k)))/2ikr + - - -, which shows the signi-
ficance of 4 as the phase-shift of a spherical wave.

4. If there are several channels (see (3.4.24; 6)), then the generalization of
(3.6.5) is

© . | _
S = J; dE[&,, - 2mi 6(H, — E')(V, -V, H-F i V,)]b(H, E).
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We shall assume in what follows that V decreases fast enough at infinity
that the norm in (3.6.2; 1) remains finite for all k with Im k > x, < 0. Then
for such k,

Stk) = V=12D(—k)D MKV, D) = 1 + VY(H, — k?)" 1 V|2

is a meromorphic function taking values in #(3¢). Our next topic is

The Configuration of the Poles of S(k) (3.6.11)

The scattering operator S has a pole at any value of k at which either D(k) has
eigenvalue zero or D(—k) has a pole. Both poles and zeroes occur for —k*
whenever they occur for k. D(k) has no poles in the upper half-plane, but only
zeroes, and those are restricted to the imaginary axis.

As depicted in Figure 13, the terminology for these values of k is:

zeroes with Imk > 0 bound states
zeroes withImk < Qand Rek =0 virtual states
zeroes with Re k # 0 resonances
Proof

D(—k*) = KD(k)K is the time-reversed version of D(k) (cf. (3.3.19; 2)), so
the two operators have the same poles and zeroes. If 0 = D(k}y = ¥ +
VYYH, — E)"'V'%, then (Hy + V — E)p = 0, where ¢ = (H, — E)™!
x V2 If V decreases sufficiently fast, then ¢ is square-integrable whenever

k plane O = zero of D(k)

X = pole of D(k)
D
bound slates /q
"~
o

virtual states

Sas

Figure 13 The configuration of the poles and zeroes of D(k).

®) cs. O —» resonance




3.6 Stationary Scattering Theory ~§3F

¥ is, and for such potentials the equation for ¢ can be solved in L% ouly if
E < 0,ie.,for k purely imaginary. Complex zeroes and peles can appear afler
analytic continuation to the second sheet of E, which is the lower half-ptane

in k. O
Examples (3.6.12)

1. In Example (3.6.9) with p = M2/(|p]* + M?) as in (3.6.3),

(M — ikXM(1 + (A/4n)M) + ik)
(M + ikXM(1 + (A/dAm)M) — ik)’
The zero of D(k) at k = —iM(1 + (4/4n)M) is a virtual state if 1/4n >
—1/M, and a bound state if A/4n < — 1/M. The pole of D(k) at k = —iM
produces a pole of S at k = iM (on the first sheet of E at E = — M?),
2. The separable potential V = Ap - Pp interacts only with / = 1 states, and

the analogous calculation with P =|p>{p|, p(p) = M?*/(p* + M?)
results in : ) s

D(k) = 1 + Afd3p(|p|z

S(k) = P

[pI*M* B :'+i M*(M — 2ik)
—KXIpI* + MA)* T 8 (M — ik)?

The zeroes at

'l 1/2
k=—-iM|1 + — M3+ iM3 l+—']'-M’
8n 8n 8n

are virtual states if A > 0, resonances if —8n/M3 <1 <0, and if A <
—8n/M? there is one bound and one virtual state.

Remarks (3.6.13)

1. The poles of D(k) were originally called spurious poles, since it was
assumed that all poles of S(k) on the first sheet of E should correspond to
bound states. The poles of D(k) have no physical significance, and serve
only to show at what point analytic continuation makes the || ||, norm
in (3.6.2; 1) diverge.

2. S(k) is determined by the phase of D(k), and D approaches 1 at infinity in
the upper half-plane. If we normalize the §(k), defined in (3.6.10; 1) only
modulo =, by setting (0) = 0, then a well-known theorem of analytic
function theory implies that —&(c0) = n times the number of bound
states. The more general version of this fact is

Levinson’s Theorem (3.6.14)

Let V be compact relative to Hy, and suppose Tr|{(Hg — 2)™' — (H — 2)™|
< M(z), where M(z) < O(|z|"'"® as |z| > 0 and O(|]Imz|”'*%) as
Imz—>0,Rez>0,¢>0. Then 2n times the number of bound states equals
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i lim, ., ., In Det(S(k) — S(0)) = i lim,_, ,, Tr In(S(k) — S(0)) if 0¢ o,(H), so
that S(0) is well-defined.

Gloss (3.6.15)

In(1 + 4) = —Y 2 ,((—1)"/n)A" is defined for all A with |A4|| <1, and
Det(1 + A) = exp(Tr In(1 + A)) is defined for all 4 with |A|, < 0. In
generalIn(AB) # In A + In B,but Det(1 + AX1 + B) = Det(1 + BX1 + A)
for all A + B+ ABe ¢,, and = Det(1 + A)Det(1 + B) for all 4, Be ¥,
[16]. If A(z): C — €, is analytic, then it follows that in the domain of
analyticity

Tr Zd; In(1 + A(2)) = Tr(1 + A(2))"*4'(2).

Proof of (3.6.14)

Let Q.(E)=1+ (Ho — E t ie)” 'V, S(E) = Q.(E)Q-'(E). Although
(Ho — z)~ 'V is compact, it is not trace-class. However, dlﬂ'erences of two
such terms with different z are trace-class, since (H, — z,)"'V(H, — z,)"!
=[(Hy—-2,) ' = (H - 2,)"'][1 + (V - z, + z,XH, — z;)"']. This justi-
fies the following formal manipulations:

Te 2L InS(E) = Tr 0. Q3'1Q4 07" - 0,07'¢-0:"]
- THQ;'Q, - 02%0")
= Tr{[1 + (Ho — E + i)~ 'V}~ '(H, — E + ie)~2V
— (e —¢)}

| 1
=Tr[Ho—E+is_H—E+is—(eH—8)]'

If we do the integration over E, then

Tr In S(E) = Tr fdz((H — ) = (Hy — 2)°Y),
[

where C, the contour of the complex integration, is as shown below:

E plane
und states .
boun c E+ie
% :
| T T TTTTTTTTIOT T TN ITS.
 d
E—ie
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By assumption, the circle K:|z| = E can be appended to C, since the extra
contribution goes to 0 as E — co. In this limit C U K encircles all the poles of
(H — 2)™, but does not contain Sp(H,). The proposition then follows from
the residue theorem. O

Example (3.6.16)

In the case of the separable potential (3.4.13; 1),
Tr(Hy —2)"' = (H—2)"") = ATr(H, — 2)"'P(Hy — 2)"'D"(2)

=D"1(z) -;iz D(z).

In (3.6.3) we found that D(z) = 1 + (A/4n)M?*/(M — i\/;) for p¥(p) =
T M?(|p|* + M?)~ . Therefore

MZ
2f E M —i/2)"
and the assumptions of (3.6.14) are satisfied. In fact,
kM?A/4n
M*(1 + (A/4n)M) + k?

has the limits 6(0) = 0, 6(c0) =0 if 1 + (4/4n)M > 0, and &(0) = — = if
1 + (4/4n)M < 0. If, however, we pass to the limit M — o0, 110, so that
A, = M(1 + (A/4n)M) stays finite, then S(k) = (4, — ik)/(4, + ik). In this
case, (k) = —arctan(k/A,) varies between 0 and n/2 times signum 4,. For
A, < 0(a virtual state) as well as for 4, > 0(a bound state), (3.6.14) is violated,
since then D(o0) # 1.

The classical scattering transformation (I: §3.4) for, say, a particle in a
central potential in R2, is a canonical transformation that leaves p, and L
asymptotically invariant as r — oo, and as a consequence has an asymptotic
generator 24(p,, L):

.__D()_

d(k) = arctan

06 06

(r,8;p,,L)— (r Zap’, 6 ZaL,p,,L).
Thus the generator contains information about the scattering angle —2¢ 6/3L
and about — 20 8/0p,, the amount by which a particle evolving acc¢ording to
H outdistances one evolving according to H,. This distance corresponds to a
delay time 2(m/pXd4/dp,). Similarly, in quantum theory exp(—2i &(p))x
x exp(2i &(p)) = x — 20 6/ap, and the amount of delay can be generally
defined as follows.

The Moller transformations turn x into x, = lim,_ 4 ,(x(¢t) — tp(2)).
Classically this means that trajectories that become tangent to the actua}
trajectory as t — + oo are at x, when ¢t = 0. The time-delay is the difference
of the time the actual trajectory spends in a ball of radius R centered at the
origin and the time spent by these free trajectories, in the limit R — co.
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Suppose a trajectory enters the ball at — T_, leaves at T, , and that R is so
large that the motion is free outside the ball. Then

x(£Ty) = x4 + Typy,
and if this equation is multiplied by p. ., we find that
T +T |p+|\/ bz —X, P+ Ip |\/R2 bz + X_- l’—
) Ip.I? Ip-I?

where b, are the smallest distances the free trajectories come to the origin.

The times spent by the free trajectories in the ball are 2((/RZ — b2/|p. |),
so with R — o, the time-delay

D = time of actual trajectory — time of free trajectory
X -p- — X4 P+
Ip+ |

It turns out that there is a direct relationship between D and the S matrix and
the virial:

Definitions of the Time-Delay (3.6.17)

(1) D=0Q (I/Ip)x-p + p-xX1/2|p)Q*
=~ Q. (1/|pIXx-p + p- xX1/2|pDQ% ;
(ii) D = P,(1//H) |2 dt2V, + x,- VV)(1//H)P,;
(i) D = w-limg.., Q- §*, dr{exp(iH)O(R? — |x|*)exp(—iH1)
‘ —exp(iHo)O(R? — |x|?)exp( —iHt)}Q* ;
(iv) D= —iQ_S~! (Q dE 8(H, — EXOS(E)/OE)Q* ;

where Hy = |pl>/2and H = Hy + V.

Remarks (3.6.18)

1. Definitions (i) and (ii) are possible whenever scattering theory works,
i.e, for V falling offas r ~! ~*. In Definition (iv), however, it has so far been
shown that 8S/0E is well-defined only for r~* ¢ fall off.

2. Itis clear because of its classical meaning that D should be independent of
the choice of the point x on the trajectory. Therefore D should commute
with H. This follows formally from (i), since :

exp(iHt)D exp(—iHt) = |——| {(x +

f

-Q_l:fl{(x—pt)-p+p-(x pt)}—ﬁﬂ*

= D.
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However, D is different for different trajectories; llke S,itdoes not commute
with spatial translations.
3. For repulsive potentials ~r~",

D=Q- “\/_J. dt V() — f._

If v=2,then D =0. If v > 2, then D < 0. This means that the actual
trajectory spends less time in the ball than the straight trajectory does,
since its path is shorter. If v < 2, then D is positive, and the dominant
effect of V is to brake the particle. Note that from (iv), the phase-shift for
such potentials is a monotonic function of E.

4. In the wave picture an incident wave exp(—ikr) is turned into exp(i(kr
+ 2 &(k))). If we assume a wave-packet narrowly concentrated about k,
and expand (k) = d(kg) + (k — koX3d(ky)/Oke) + ---, then the co-
efficient of k becomes r + 2(d 6(k)/dk) instead of r. Thus the center of the
wave-packet is shifted from r = kot to r = ko(t — 2(38/0E)) after the
scattering.

S. If there are resonances at +k, — ib, then

(—k — k, + ibX—k + k, + ib)
(k — k, + ibXk + k, + ib)
Ignoring the slowly varying parts,

S(k) = x slowly varying factors.

b 1 1
akz In (k) = [(k “lE + 5 (k) +“'b"2]'

Ifb < k,, then there is a sharp maximum ~ 1/(bk,) at the resonance energy,
at which é(k) passes rapidly through 90°. For this reason 1/(bk,) can be
thought of as a lifetime, which can become so extremely long that there is
hardly any difference between resonances and bound states. This happens
for a particles radiating from nuclei.

6. If the potential is radial, then 2 §,(k) is the same as the classical generator
of the scattering transformation, and (3.6.17) reduces to the classical
formula.

The Equivalence of the Definitions of D

(i) = (ii): Introduce the generator G = (x - p + p - X)/2 of dilatations. On
the one hand

T
iP, —\/% J" dt exp(iH)[G, Hlexp(—iH1) —\/177 3

(exp(—iHT)G exp(iHT)

_.p“\/_

— exp(iHT)G exp(—iHT)) —— P,

/ﬁ
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and on the other this equals (see (3.3.20; 8))

T
P, ﬁ J' _de expGH)(x- VY - |pI2)exp(—iHt) \7% P

l T
= —4TP,. + P —-—-—J- dt exp(iH)}Q2QV + x-VV
ot Pu s | 1 cxpliteX )

1
-exp(—iHt) —= P,,.

NG
Now G = exp(—iH,t)G exp(iH,t) + T|p|*> and Pm(l/\/P_I)exp(zH'I')|p|2

x exp(— iHT)(l/\/— )P, — 2 as T — +00. Thus the equality of the two
expressions reduces to the equality of (i) and (ii) in the limit T — oo.

(i) <> (iv):

M=1a.

: (ffs"ff)
1 1 \/m

Q.

=§ Ho

S8, Gl ——=

Q% ,since [, Hy] = 0.
But
[G, 5] = z—f dE §(Hya~? ~ E)S(E)|.-,

=2 f dE &H, — E) —— as(E’

since the angular part of S(E) is unaffected by dilatations, so this means that
(1) = (iv).

(iii) < (iv): This equivalence can be shown with the same methods but is
slightly more involved. A proof will be sketched in Problem 2. O

The quantity related to S that is of interest in experimental physics is the
cross-section o. Following the classical theory (I: §3.4), we define the cross-
section as the number of particles scattered into a given solid angle per unit
area of incident particles. The momentum distribution of the incident
particles is described by a wave-function (k) in L3(R3, d*k/(27)?). In reality
a particle is never precisely aimed at the scattering target, but is rather a beam
with momentum concentrated near ko, while its width in x-space will be
macroscopic. The initial state is best described as a mixture

1 f d*ajexp(ia - K)p(k))<exp(ia - k)p(k)|,
F g
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letting @ have compact support containing k, = (0, 0, \/E ) and letting a =
(ay, a;, 0) be a translation in the plane of the impact parameter, which is
averaged over a surface F, the beam cross-sectional area. We next find the
probability of measuring the momentum of the outgoing state in some cone
C so far from k, that ¢,c = 0, and there is no danger of measuring an un-
scattered particle. In this computation the 1in S in (3.6.5) does not contribute,
and with ¢ = —2ni { dE 6(H, — E)t H, — E)p,t = —4nf, we obtain

Cn 0 [ [ arivaor = en” [#a [ ae

f dE 5(|k|*> — E)o(IK'|* — E)8n’f(k, k')8n’f *(k, k")0(|k"|* — E)
]

-exp(ik’ - a)p(k"Jexp(—ik” - a)p*(k").
To get o this has to be divided by the probability that the particle arrives
through a unit area, i.e., 1/F. Afterwards, we may let F become infinite, so
f d*a exp(i(k’ — k") - a) = (2n)? 6*(k, — k}), where L denotes the projec-
tlon into the 1-2-plane. Because 6%(k), — k')é(|k'|? — |k"|?) = 83k’ — k")/
k3 and [§ k* dkd(k? — |K'[*) = |k'|/2, we get
dk’3 1d
dg:dQJ' P K)P

If ¢ is narrowly enough concentrated about k, that we may set |k'|/|k}3]| to
1 and regard f(k, k') as a constant, then because of the normalization the
detailed form of ¢ becomes irrelevant, and we obtain a formula for the

Scattering Cross-Section (3.6.19)
o(k, ko) = | (K, ko)[*, awj&w&h)

Remarks (3.6.20)

1. We have considered the probability of measuring a momentum k as
t — 00. Since

x(t) pr)
sAim oy = Slm

(Problem 3), this equals the probability of measuring x in the same angular
direction.

2. The scattering amplitude fis also the coefficient of the asymptotic spherical
wave (3.6.10; 3). The complete wave-function |y _ |>, however, is not
asymptotically dominated-by | f|?/r?, but instead by |¢|? and an inter-
ference factor ~ 1/r.
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3. Welearned in (I1: §3.3 and 3.4) that the details of the exact wave-function v
are quite complicated. For instance, s, = | d°Q a does not simply describe
the shadow cast by an object, but rather refers to the asymptotic region
in which the shacjow dissolves (the Frauenhofer region of (II: 3.4.42)).

Properties of the Scattering Amplitude (3.6.21)

If k is real, then

(@) f(k;n',m) — f(k;m,0)* = (1/27) [ dQ" f(k; W, n") f(k; n, n")*ik;
@ii) f(k;n',m) = f(k; —n, —n’), provided that KVK = V;
(iii) f(k; ', n) = f(k; —n', —n), provided that PVP = V.

Time-reversal K and parity P were defined in (3.3.19; 2) and (3.2.10).

Proof

(1) This follows from (3.6.10; 2), since for real k, t(—k) = t(k)*.

@i1) If H and H, are invariant under K, then KSK = S*, and so Kt(k)K
= t(k)*. From the rules K? = 1, {(a|Kb) = (Ka|b)*, KpK = —p it
follows that <(n'|t¢(k)|n) = {n'|Kt(k)*K[n) = (—n'|t(k)*| —n)* =
{—n|t(k)] —n">. .

(iii) This proposition follows from Pt(k)P = t(k) and PpP = —p. O

Example (3.6.22)
With the separable potential (3.6.9), f(k; n’, n) = 4rdp*(kn’)p(kn)D ™ '(k).

This satisfies (i), and invariance under @' means that p*(k) = p(— k), which
implies (ii). Invariance under P means that p(k) = p(— k), which implies (iii).

Remarks (3.6.23)

1. If n=n’, then (i) becomes the optical theorem, o,(k) = 4n Im f(k; m, n)/k.
The information contained in the forward scattering amplitude includes
the total scattering cross-section.

(= )y 4=£)

n
reciprocity detailed balance - T

- D>
L

Figure 14 Scattering from a triangle.
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2. Proposmon (ii) goes by the name of recnproclty It states that if there is
invariance under @', then the reversed motion is also possible: a(k; n’, n)
= o(k; —n, —n).

3. Propositions (iii) and (ii) together imply that a(k;n’,n) = o(k;n, n’), which
is referred to as detailed balance. It is not valid for scattering from targets
that are not invariant under reflections (see Figure 14).

4. For radial potentials the expression for fin (3.6.10; 3) makes

0, = Z 0), Ul(k) = 2‘12—[ (2! + I)Sinz 6,(’().
]

The total cross-section is the sum of the contributions of all possible
definite angular momenta, each of which is maximized by the unitarity

bound
qs%m+u

This bound is attained at a resonance; for instance, with

ko + ib
exp(2id) = ———— >
the | contribution would be
4n b?
o=@ ey

This is four times the geometric area of a circular ring bounded by impact
parameters b, = l/k and b, , ,:

p 8% 21+ 1) = dnb?, , — b?).

The b, are the distances out from the center of the target at which the
particle has to be aimed in order to have angular momentum [ with linear
momentum k.

5. As k — 0 the unitarity bound diverges, and o, may become infinite. Yet
for most potentials 6, goes as k2'* ! as k — 0, so only | = 0 contributes to
g,. In terms of the scattering length a = —lim, ., do(k)/k = —f(0; n, n),

lim o,(k) = 4na’.
k-0

6. In classical physics potentials that extend to infinity, such as r~", always
produce infinite total cross-section, since no matter how large the impact
parameter b is, there is always a nonzero scattering angle ~b~". This is no
longer the case in quantum theory when the potential decreases faster than
r~2 (Problem 4). The classical argument breaks down because the in-
determinacy in the scattering angle should go as ™!, which eventually
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dominates the classical scattering angle. This sort of reasoning can not,
however, explain why the critical value should be . = 2; especially as it
depends greatly on the dimension (. = (1 + d)/2).

7. Although S is a continuous function of V in the strong topology (8], fis
not likewise continuous, since it involves matrix elements with plane
waves, which are not square-integrable. It can thus happen that the
forward scattering amplitude, and thus also g,, are finite for an r~2
potential cut off arbitrarily far away, but become infinite as the cut-off
goes to infinity, even though the potentials are arbitrarily close in norm.

It remains to discuss how f can be calculated explicitly or, if that is im-
possible, how to assess the accuracy of approximations to it. If two particles
interact through a radial potential, the problem is to solve an ordinary dif-
ferential equation, and &(k) can be found by numerical integration. When there
are more particles, however, we are confronted with a nontrivial partial
differential equation. It is therefore advisable to survey the more general
methods that are available. In the absence of better ideas, one frequently falls
back on a series expansion in V, called the Born approximation. The hope is
that at high energies, for which the kinetic energy overwhelms the potential
energy, the result becomes accurate. Whether the hope is fulfilled depends on
an

Error Estimate for the Born Approximation (3.6.24)

Let Ve L, so v, = |V|"? exp(ik - x) € L?. The n-th Born Approximation
S to f(k; o, m),

_f(u)(k; n', ll) = 47t<Uk'| V1/2| V|-—l/2 i (I Vn/zl(kz — HO)-lVUZ)mw*)

m=0
satisfies

LY

- Y L) 74 ey
[f(k;n',m)— f (k,n,n)!_ — 1Kl

f Px| V)],

where K = |V |Y*(H, — k¥)"!|V|Y2. Since
IK|I* < (Tr KK*KK*)

j“‘ d’x (x)exp(ik(lxl—-le—lxz—x3|+|x3—x4|—|x‘—x,|))
4n )‘ ! IX; — X5 | X5 — X3 X3 = Xq| [ Xg — X, |

= N(k)

goes to zeroas k — oo by the Riemann-Lebesgue lemma, for all n > 1 and
¢ > 0 there exists an energy great enough that | f — f ™ < e
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Remark (3.6.25)

If N(0) < 1 and the sign of ¥ does not change, then the Born approximation
converges for all k, since N(k) < N(0). This can only occur, however, when
there are no bound states (see §3.5). In essence, the power-series expansion
has a chance only if V is small or E large.

Example (3.6.26)

By setting D(k) to 1 in (3.6.9), one gets the first Born approximation. If, say,
p(k) = M?*/(k* + M?) as before, the function D becomes 1 + (4/4n)M?/

(M — ik), so0
PRYE M
2 _ -
1D =1 21:M2+k2(1+8n)'

When AM > 1, the error is on the order of one percent for k > M?2A.

If H > 0, it is straightforward to use the projection method (3.5.31) to
obtain a fairly accurate upper bound for ¢t — V at E = 0 with the inequality
H~' > P(PHP)™'P. If H has n bound states, then the correction to the first
Born approximation may be positive, or even infinite, when there happens to
be a bound state at E = 0. If the exact bound states were known exactly, the
negative parts of H ™! could be projected out. If they are only approximately
known, then the following lemma reduces the bound to the inversion of a
finite-dimensional matrix:

Lemma (3.6.27)

Suppose that an invertible, Hermitian operator a has n negative eigenvalues,
and is positive on the subspace perpendicular to their eigenvectors. For any
n-dimensional projection P such that Pa™'P < 0,a > P(Pa™'P)"'P.

Proof

If yea 'Ps#, then {xlajx) = {x|P(Pa™'P)~'P|x) follows trivially. If
xéa 'Px¥ and Q is the projection onto P U {x}, then we must have
Det Qa~'Q/Det Pa™'P > 0, as otherwise Qa™ 'Q would have n + 1 negative
eigenvalues (since Pa™ ! P has n, Qa™ ' Q has at least n). This would contradict
the hypothesis that a, and thus a~ !, have just n negative eigenvalues because
of the min-max principle. Since by Problem 8 the ratio of the determinants is
up to a positive constant equal to {x|alx) — {x|P(Pa”'P)”'P|x,. the
proposition follows. 0
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Corollary (3.6.28)

Let P be an n-dimensional projection. If H > 0, and PHP is invertible on
Py¥, then

IV = tlx> = x|[VP(PHP) 'PV ).

If H has n negative eigenvalues, but is otherwise positive, then this equation is
still true provided that PHP < 0.

Frequently one has intuitive feelings about what would constitute a good
approximation to t. These beliefs can be tested with

Kohn’s Variational Principle (3.6.29)

Let V, be a comparison potential for which it is possible to calculate t, =
V, — V(Hy + V, — E)" 'V, = V,Q,. This differs from the exact t as follows:

t(k) = t(k) + QFkXV — V)x(kK)
— QXY — VXH - k)~ (V — V) (k).

Remarks (3.6.30)

1. The operator identity (3.6.29) is easy to verify. Its advantage is that the
first correction can be calculated when the problem has been solved with
¥,, and only the second involves the resolvent of H. Since the second term
is quadratic in (V — V), there is hope that a good choice of ¥, makes it
small.

2. Ifitis known that H is positive aside from n bound states, then (3.6.27) can
be used in the last term for k = 0, to produce an upper bound for the
scattering length. If ¥, =0, Q, = 1, then it agrees with (3.6.28), which
shows that (3.6.28) can be improved on with a superior choice of V. If
V >0, then 0 < Hy < H,so 1/H < 1/H,,, from which we also obtain a
lower bound.

Example (3.6.31)

Let| ) = 1 be the vector (of L*®, not L?) of a plane wave with k = 0, and let
V be such that all inner products. of the form

1 1
= Ve ...V
i’ <’i"o f, |>

existand H > 0. Substituting|x) = |, P = Hg'V|>{|VH; *V|)>~|VHg'
into (3.6.28), we discover that (It(0)|‘> < b, — b3/(b, + b,). If V is approxi-
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mated with the separable potential V, = V|){|V|)>~!(|V,sothat(V — V)|>
= 0, then from (3.6.3),

Q0) = 1 — (by + by)™ " — VIX|V,
H,

__bhi
el T
_ - bl _l__ _ b2
= VX0)|) = b, + b, VHo Vi b, + 1, VI, -
bb; — b,b3
. _ _ 0155 102
<IQFOXV - V)Q0)]) b, F b))
In Problem 7 it is shown that the upper bound
efd < <1ul> + IQXOXV - V)Q0)])
— IKIQHOXV — V) v iS¢ v L 1y Ly,
<IQROXY = V) = VIV gV 4 V eV e V™

b _ (b3 — b3b,)b, _ (bybs — b3)?
b, + b, (b, + b,)? (by + b3Xb, + b,)?

is valid provi&ed that H > 0.If Visalso > 0, then there is a complementary
lower bound (cf. (3.6.30; 2),

b, (b3 — byb,)b, + b3 — 2b,b, by + bib,
b, + b, (b, + b))

= 1> + JQHOXV — WQO)])
T =RQFOXY - VOHG (Y - VRO < i)

These inequalities hold as well for potentials that do not lend themselves
easily to analytical or numerical methods. If V is specialized to the radial
case, say V = a if r < 1 and otherwise 0, then (|t}) can be calculated as
1 — a” Y2 tanh(«'/2) (Problem $5), which allows the calculation of all the
b, and thereby the bounds. At the radius of convergence « = n?/4 of the Born
approximation the accuracy is still measured in %,,, and they are acceptable
well beyond that point (see Figure 15).

Problems (3.6.32)

1. Show that ¥V(t) » V = V = slim, | o ¢ |& exp(—et)V(t)dt.

2. Show that w-limg_ g §% o, d1 t2(Q* 220 = x2) =0, if %, di(exp(-iH)Q_ —
exp(—iHyt))oll < oo for all @, on a dense set (xg = O(R? ~ |x|?)). Use the result to
show that (iii) <> (iv) in (386.17).
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Figure 15 Bounds and approximation for the scattering length of a spherical square-
well potential.

3. Let s-lim,_ 4 , P, = p: (in the sense of (2.5.8; 3)). Show that s-lim,_, ; ,, x(£)/|x(t)]
= +p,/|p: |, and conclude that lim, . ; , A(x(t)/IX(1)]) = A(p+/|P+ |)-

4. Suppose that as r — o0, the potential ¥ goes as Ar~27% ¢ > 0. Show that if k # 0 and
A is within the radius of convergence of the Born approximation, then ¢, < oc. (Since
¢, can be infinite only because of the sum over /, and the Born approximation becomes
exact for large I, the statement actually holds for all larger 4 as well. If V = A/r?,

S~ VP +A-1~2land Y. 2l + 1)sin? 8, ~ Y, 1/1 diverges logarithmically.)

S. Calculate the scattering length for the potential V(r) = A0(1 — r). (Write y(x) =
(g r)/NY7, u0) = 0.)

6. Calculate the normalization factors of the scattering ampliulxde in (3.6.10; 3).
7. Derive the upper bound of (3.6.31).

8. Let Q be the projection onto P¥ @ y, ¢ L Po#. Show that Det QbQ = (K¢ (b¥)
— {Y|bP(PbP)™'Pby)>)Det PbP, and use this fact to fill in the gap in the proof of
(3.6.27).

9. Calculate the generator 8(E, L) for the classical scattering transformation (I: 3.4.10; 2)
for the potential y/r?,and compare with the phase-shift 5,(E). What is the delay time D?
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Solutions (3.6.33)

L. If & > 0, there exists a t such that |(V — V())y| < & when t > t, 50 & [§ exp(—et)
x V(0)dt = ¢ [ exp(—et)V(0)dt + € [© exp(—etX V(1) — V)dt + € [® exp(—er)V dt,
and the first integral — 0 as ¢ | 0, the third equals V, and the second is bounded by
limsup, o lf - ¢l <.

2. Let §, = exp(—iHt)Q_ ¢ and ¢, = exp(—iHt)p. It must first be verified that the
expectation value with the state ¢ is integrable in time: |{y,|xz¥,> — <@ lxr0D| <
KO = @) lxr @Dt + KWl x(@r — ¥)>1 < 2Y, — @,ll, so by assumption the
integral [° _ dt is bounded, and indeed uniformly in R. By the dominated con-
vergence lemma, we may then interchange the integration {°, dt and the limit
R — o0, and the latter yields zero, since xg = 1 = Q* Q_.

Derivation of the formula for D. The equations Q, S = Q_ and %S = S can be
used to rewrite Dg, with D = limg . , Dg, as

« 0
Do= [ dteflS S —xd + | di 0 xa@ - ]
0 R

+ 8! f dt °[Q% xx Q. — x:1S.
0

As a consequence of the previous result, the last two summands approach 0 weakly
as R — cc. For the first integral we use the Fourier transform S(¢) of S(E), the part
of S on the energy shell, and write

S= f dt S(exp(itHy),  [S(t), Ho) = 0.

The last integral then becomes
s! f:dr J.jn dr'[0xx explit'Ho)S(t") - S(t)° exp(it’Ho)xr]
=85! der r dr[t%x S(t") — 3(e)t?, - xalexplit Ho)
=5 f "t j ) dr'[t%xg. S(t')Jexp(it' Ho)
) -

© 1
+ 8! j ar j dt 3(1')1%xx explit' Ho).
~-a 0

In the hmit as R — x, yz approaches 1 strongly, sc the first term goes to 0 and the
last approaches

w ® S(E
s f dr r3(t)explit Ho) = —iS™" J'o dE 8(H, — E) _5(17:—)

3. By assumption,
x(t) x(©0) 1

— = —" 4 - | dt'
t t tJo P()
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converges strongly to p., since s-lim,_ ,, a/t = 0 for every self-adjoint operator a,
and by Problem | the second term is p, . Hence the bounded functions x(t)/|x(r)|
converge strongly, which implies the convergence of the mean-square deviation of
bounded functions: a, = a = (|a;|) = [|a,I>I* - a]|1* = <|a*|).

4. By (3.6.24) we know that | f] < ¢} f| in the circle of convergence, so it suffices to
show that the total cross-section is finite in the Born approximation. This is

1P — k) &(Ipl* — k).

d.!
<exp(ik - x)|V 6(Ho — k*)V |exp(ik - x)) = I (21:),3

Since ¥ ~ |p — k|~ ' **, the angular part of the integral is finite (cf. (3.4.13; 2)).
5. The solution of the Schrodinger equation

(VAcosh /2) 'sinh JAr  r<i

+tanhﬁ_l r>1
/i

has to be compared with lim,_,(1/k)sin(kr + &(k)) when r > 1. The result is that
a = ~limy .o 8(k)/k = 1 — tanh(,/2)/\/A.
6. We have

“p?d 2pi {n’{t|n)
— z ! — — —
~2ni j G 2 5% = pxcnind i

; <n'| Py|n)(exp(2i &) — 1).

62
( i + V(r))u(r) 0:u(r) =

By the addition theorem for the spherical harmonics,

20 +
W'[Piiny = F Y7 ™(n)YT(n) = —4— P{cos 9),

0
f= (n I”" =) 21 + 1 exp(i d,)sin &, P(cos 0).
- i
7. H ' > P(PHP)"'P and P = H; 'VJ)(JVH&‘((IVHJ’VI))" together imply
UQHOXY = VIH™ 'YV — V)R0)[) > [IQFOXV — V)H, 'V >

x {(|VHg'(Ho + V)Ho 'V|>~".
8. (Det QbQ)™ 12 = n~ 2 (TTr_ o dx; exp(= Y7 ;-0 X;X;by), n = Dim P, bgo =

{¥Ibly). With the integration variables X, = x, + Xobgjcy, k=1,...,n, c =
(PbP)"!,

x;x;b; = kalbu + x3(boo — box Curbio)-
j

i,j=0 k.l=1)
The relationship between the determinants results from integration over x, and the
X,. If ¢ is not orthogonal to PJ¥, the ratio is simply changed by a positive factor,
since Det M'bM = Det b(Det M) The proposition then follows %ith b = a™!'and

¥ = ay.
9. &E.L)y=L-JL2+23,Qmé=1+}3-JU+H +2y=D=0



Atomic Systems

4.1 The Hydrogen Atom

The hydrogen atom is so simple that a complete mathematical analysis
can be made. This analysis was a watershed of atomic physics.

The quantum-mechanical treatment of the problem of two particles
interacting through a 1/r potential follows the outlines of the classical theory
(1: §4.2). It starts with the Hamiltonian

2 2 .
[+ 4
LI /1 . a=ee, @.1.1)
2m1 2m2 le—-x2|

which acts a priori on ¥ = ), ® #,, where 5, is the Hilbert space of the
i-th particle. The system can be decomposed into two independent parts by
the

Separation into Center-of-Mass and Relative Coordinates (4.1.2)

The unitary transformation

(xh x2 s pl* pZ) - (xcm’ X, pcm* p)s

_mlxl+m2XZ _ . _ .
Xem = m, + m, T X =X; — Xz, Pm = P1 + P2,

Pim; — Pam,

m; +m,

9

187
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changes H into H = H_,, + H,, where

_ [paml?
M

lpI® « mym
=-:l;;l- X M=m +my, m=—1"12

H =172
o m, + my’

H,

Remarks (4.1.3)

1. The Hilbert space can also be written as # = #,, ® X#,, where the
operators H,, and H, act nontrivially only on the factors ., and
respectively 5, .

2. The question of self-adjointness is answered by (3.3.4; 1) and (3.4.25; 2):
Since 1/r is compact relative to |p|?, H, is self-adjoint on D(|p}?), and
acss(Hr) = R".

3. The operator H,,, generates the free motion of the center of mass. The
invariance group is similar to that of the classical situation: The ten
generators of the Galilean group, H.,, Pcm: Kcm = Pcm?! — X.m M, and
Lm = [Xcm X Pcw), do not form a Lie algebra, since [p;, k] =i 6,;- M is
not a linear combination of them. If M is considered as an additional
element of the algebra of observables, then there is an 11-dimensional Lie
algebra o/..The center &' N of”, which consists of the functions of M
alone, creates a superselection rule (see (2.3.6; 7)), unless M is represented
as a multiple of 1. As in (I: 4.1.10; 3), the Galilean group is the factor
group by the center, and & produces only a ray representation of it. This
happens because p, and k., of course generate the transformations
Xm = Xow + 8 + vt and p., = P + Mv on RS, and, according to
(3.1.6; 5), the unitary operators W(z) give only a ray representation of R®.
This means that although

; 2
exp(iv - k.,) = exp(_—"%m—)exp( — X - YM)EXP(iPm * V1)

causes the transformation X, — X.,n + VI, Pom — P.m + MYV, the wave-
function gains an additional phase factor exp(—itM|v|?/2), which is,
however, not observable, since only relative phases can be measured.

The Hamiltonian H,,, was discussed in detail in (3.3.3), so we turn to H,.

The first fact we know is that o(H,,,) = a.,(H,) = R*,and the question arises
of whether ¢,(H,) < R~ (recall (3.4.14; 4)). This is answered by the

Virial Theorem (4.1.4)
If(H, — E) =0,y € ,, then
o

1
E=3 <~/f ;¢> = —=<{Y|Ho¥).
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Proof

The dilatation U such that U~ *(8) (x, p)U(B) = (exp(B)x, exp(—B) p), B € R,
which was used in (3.3.8; 2), acts on H, by U™ '(B)H, U(B) = exp(—28)H,
+ exp(— B)a/r, where H, = |p|?/2m. The equations

< (e;p(zmno + exp(B) > E)wluw)w> =0= <(H +2- E)ww(ﬂ)w>

L]

can be combined so that

- <('_13p_‘2-ﬁ—) Ho + '—'—3"(—‘8)3)4«|U(ﬂ)¢> —0 forall Be R\{0).

B B r
As B — 0, the left side converges to (2H, + a/r)y and the right to . Since the
convergence is in the strong sense, this proves (4.1.4). )]
Corollary (4.1.5)

Since Hy, > 0, if a < 0, then all the eigenvalues of H, are negative, and if
a > 0, then it has no eigenvalues.

Remarks (4.1.6)

1. The wusual argument, which runs that- 0 = {y|i{H,,x -pl¥) =
(Y|2H, + a/r|y) is not quite conclusive, since D(x - p) # D(H,), and a
priori it applies only to ¢ € D(H,) n D(x - p).

2. The analytic perturbation theory of §3.5 works without modification for
the negative eigenvalues. Thus an alternative argument using (3.5.19; 2)
would run: On dimensional grounds E(x) = ma?c for some numerical
constant c, and hence a dE/da = {a/r) = 2E.

3. The action of the dilatation also shows that if a < 0, then there must be
infinitely many eigenvalues accumulating at the point 0; given any
Y € D(H,), there exists 1, € R* such that

CU(wo [H, U(zo¥> |

Ipl? 1
= exp(—210)<¢ ;—m > +a exp(—10)<t/1 |; ¢> <0
If ¢ is compactly supported, then there exists a sequence 1, < 7, < 1;...,
for which the supports of U(t,)y are disjoint, so H, is a diagonal matrix on
the subspace spanned by the vectors U(t,)y. The claim then follows from the
min-max principle (3.5.21). :
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The next topic will be g ,(H,), and the last part of this section will be devoted
to o.,,(H,). Both discussions will make use of

Constants of the Motion (4.1.7)

Thecommutant {H,}' containsthevectorsLand¥ = 4[p x L — L x p] + max/r.
They are related by

(l) [H9 Lm] =0, [Lm’ Fl] = i&,,,,,F,,

(“) [Hs Fm] = 0’ [Fmv F!] = —Ziergmth
@iii) L-F=F.L =0,
(V) |FP? = 2mH,(IL]? + 1) + m2a2.

Proof

(i) This is because H acts as a scalar and F as a vector under rotations.

(i1) This is somewhat more subtle; the example of Problem (3.1.17; 4) leaves
doubts as to how to proceed. The equation [H, F,.] = 0 has to hold on
domains that are invariant under finite transformations to show that
[exp(iHt), exp(iFs)] = O(recall Definition (3.1.7)). Actually, by Problem
1 it suffices to show that (d/dt)exp(iHt)F exp(—iHt) = 0, which will be
done in Problem 2. The calculation of commutators involving F is often
easier when it is written as F = (i/2)(p, |L|*] + max/r.

(iii) It is clear that L-x = L-p = 0, since there are no products of non-
commuting observables. With (i) this implies (iii).

(iv) This requires some calculations, done in Problem 3. O

Corollary (4.1.8)

Special combinations of L and F, namely A, = (L, + F,// —2mH,)P/2 and
B, = (L, — F,/\/ —2mH,)P/2, where P = ©( — H,) is the projection onto the
functions of the negative spectrum of H,, satisfy the commutation relations
of two independent angular momenta:

[Ak’ AJ] = iekijnu [Bkv Bj] = iskijmv [Ak’ B}] = 0

They are, however, not independent, as

1 ma?
2 _BR = —P[- + — ). 4.19

|Af* = |B| P(4+8H,) 4.19)
According to the discussion of §3.2, |A|* and |B|? can have only the eigen-
values BB + 1), $=0,4, 1, 4,..., and by (4.1.9) their eigenvalues are the
same. Each eigenvector belongs to a (28 + 1)’-fold degenerate super-
multiplet, the members of which have the same eigenvalue for |A|* and IBJ?,
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but differ in their eigenvalues for A4, and B,. They are eigenvectors of H,, and
by (4.1.9) its eigenvalues obey Balmer’s formula,

mo®

Eo= o

n=2+1=123.... (4.1.10)

Remarks (4.1.11)

1. The operators A and B each satisfy the Lie algebra of O(3), which is
identical to that of SU(2). As there is no reason that only the representa-
tions of O(3) should arise, the values of # may be either integral or half-odd
integral.

2. Of course, L generates the algebra O(3) and has eigenvalues (! + 1), !
integral. If the eigenvalues of |F|? in (4.1.7(iv)) are expressed in terms of

nand |,
2
|F|2|> = m2a2<] u%il)l)

then it is apparent that / < n — 1. Hence for a given n, the values / can
assumeare0,1,...,n — 1.
3. Balmer’s formula shows why

K= -(Ho-2"' =,

Jr Jr

belongs to C,,(2.3.21) for p integral only if p > 4: As we saw in the proof of

(3.5.36), if z € R, then the eigenvalues 4, of K are the values of 1/]a]| for

which H, — |a|/r has the eigenvalue z. That being so, (4.1.10) makes
—2zA2 = m/(2n?), and the n-th eigenvalue has degeneracy n2. But then

z¢ RY,

(-]

IKIp = X n*2%

n=1

for p integral is finite only for p > 4.

Construction of the Eigenvectors of H, (4.1.12)

Since there is no difference in the algebraic situation, we can proceed as with
the eigenvectors of the angular momentum (3.2.13). In each supermultiplet
there is a state |) of greatest 4; and B;, so

A,D=B,1)=0sF,|)=L,[)=0, Fy=F,1iF;etc (4113)

The other states are then obtained by applicationsof 42 B ,0 < p,q <n— 1.
Since F, is constructed with x,, p,,! and observables that commute with

-

t These should be distinguished from the x,, p; . etc. of (3.4.6)..
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IL|?, it raises { by 1 (cf. (3.2.14)); thus if F, {> = 0, then |) already has the
greatest angular momentum possible in the supermultiplet. If an eigenvector
[n, [, m) i3 specified by its eigenvalues for H,, |L|?, and L,, then the original
basis state'is |Y = [n,n — 1, n — 1), and {n, I, m) = L' "F"= 14},

Eigenfunctions in the x-Representation (4.1.14)
\\
\

If we write

mox

F, = '(p+|L|2 - lL'2P+) +

and calculate the action of p, and x, on the clgenvecprs (up to a constant—
see Problem 4),

d |
ip+ln9 l’ l> = (E_ —;)ln’l+ l,l+l>,

—|n11> In, 1 + 1,1+ 1),

then Equation (4.1.13) becomes
d _
F+|n,n—l,n—l)=(—n(3;-—n l)+ma)|n,n—l,n—l)=0.

r

The solution is
[n,n—1,n—1)=cr" ! exp(mar/n)Y2-1(6, ¢),

which is in L2((0, o0), r? dr) ® L%*(S?) when « < 0, and is the original basis
vector of the supermultiplet.

Remarks (4.1.15)

1. The vector {n, n — 1, n — 1) has the maximal angular momentum and is
related to a classical circular orbit, whereas |n, 0, 0) corresponds to a
classical trajectory through the origin. However, in quantum theory the
latter vector is a spherically symmetric wave-function, since it distinguishes
no direction. :

2. The wave-function [n, n — 1, n — 1) decreases in r as exp(—r/nr,), where
ry = 1/jma| = 0.529 x 107 '°m,, but its maximum is attained at r =
n(n — r,. This is in accordance with the rough estimate (1.2.3) and the
virial theorem, which requires that {1/r) ~ n~2.

3. A calculation of the expectation values yields

{nyn — 1L, mjrin,n — 1,m) = ryn(n + 4),
(nyn — Lm|r2|ln,n — 1, m) = rin*(n + $)n + 1),
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which reveals that the relative mean-square deviation Ar/{r) = } /N 2n+1
vanishes in the limit n — co. The state |[n,n — 1,n — 1) gets concentrated
ever more strongly on a circle in the x — y-plane.

4. States of smaller /, and hence greater eccentricity, can be produced by
successive applications of F_ to [n,n — I, n — 1) as in (4.1.12), and an
example is computed in Problem 5.

We conclude the discussion of ¢, here and turn to o.,,. We begin with the
basic fact about this part of the spectrum.

The Absence of Singular Spectrum (4.1.16)

asin‘(Hr) = &, s0 0. (H,) = 0'“,(”,) = R".

Proof

If the dilatation used in the virial theorem (4.1.4) is continued into the complex
plane, then U(1), T € C, becomes unbounded, but is still defined on the dense
set D of analytic vectors (see (2.4.23; 5)). The action of U on H, canh be con-
tinued analytically, and

-1
<‘p'("r - Z)- llf’) = <U(t‘)¢|(exp(2‘t)H0 + exp(t)g - Z) U(t)w>’ [

for _
1€C, o, ¥ eD.

Since multiplication by the complex number e* does not affect the relative
compactness of a/r, we conclude that

ae,s(exp(Zt)Ho + exp(t) g) = O.(exp(21)H,) = exp(2T)R*.

The matrix elements of the resolvent in states ¢, € D can thus be continued
analytically from R* into the complex plane as far as e**R*, the rotated
positive axis (see Figure 16):

o(e*H, + e'afr)

R+

0.(e*Hy + e'afr)

ez'le

Figure 16 Spectrum of the dilated Hamiltonian.
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This implies the absence of a,;,,, since
{e|(®(H, — a) — O(H, — b))

= lim 2%:—' (p|(H, — z — i)™ — (H, — z + ie)" )y,

a,b > 0,is the integral of an analytic function and thus approachesOasa — b.
Since D is dense, o,,, contains no part concentrated on a set of Lebesgue
measure 0. O

Remarks (4.1.17)

1. Only the matrix elements with ¢ and ¢ € D can be continued beyond
R*; the analytic function C — #(#°): z —» (H, — z)~! is not continuable
past R", as the resolvent becomes unbounded there.

2. As regards the eigenvalues of finite multiplicity of H(t) = exp(2t)H, +
exp(t)a/r, they are also analytic in t; the difference H(t) — H(t — d) is
bounded relative to H(t) for é small enough, so the perturbation theory of
§3.5 is applicable. This implies that the eigenvalues E(t) of H(t) are inde-
pendent of t (as long as they persis1), since if 7 is real, H(t) and H, are
unitarily equivalent and therefore have identical spectra. But analytic
functions that agree on R are equal everywhere.

3. The eigenfunctions |t) = U(1)]0) of H(t) are likewise analytic in 7, which
implies that (d/dt)|t> — id|t) € L? if U(1) = exp(—i d 1), so |t) € D(d).
This justifies the formal proof (4.1.6; 1) of the virial theorem a postenon

4. In this simple case the integral kernel of the resolvent R, = (H, — z)~*
is known explicitly. In the x-representation it involves Whittaker functions

(9], [10]:
R (x,, X;) = (—w_)‘ (w,,. 1/2(—i\/;(’1 +r, + %, — x;1))

4n|x, — x,|

X Miv;llz(_'\/-;-(’l +r; — I%; — x;31))
=W 1o~ i/2(ry + 12 + 1%, = X))

x M, (=i/z(ry + 13 — %, — x,]))],

a m=1
4z’ '
In the p-representation this becomes

R,(p1, P2) = ‘H(,!;Z_—‘PL)

V=

(1 - p*)p? ]
(1 — p) z — Ips PXz = D) |
P " 4z

a

1
8z J;dpp [

Ipy — P2 —
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[9]). As we see, suitable matrix elements are analytic in z on a two-sheeted
Riemann surface, but have an essential singularity at z = 0. The proof
that was given for (4.1.16) can also be used in more complicated situations,
for which there is no explicit expression for R, .

In §3.4 we learned that g, is associated with the states for which the particle
escapes to infinity. Experience with the classical problem allows no hope
that the time-evolution approaches that of Hy, since x(t) — tp(t)/m ~ In t.
The operator exp(iH, t)exp(—iHyt) is not much good, either; it converges
weakly to 0 as ¢t — 0o. On the other hand, there again exist some useful

Asymptotic Constauts of the Motion (4.1.18)

Let P be the projection onto the vectors of o, (H,). Then (PpP, P(x/r)P, P(1 /})P)
€ o and s‘liml'-'tm (Pva P(x/r)P, P(l/r)P) = (pts ‘.’!‘_Pt/“’t ': O) (pt in the
sense of (3.4.6)).

.
\

" Proof

(i) Convergence of the Momenta. The claim will be proved only for a > 0;
the proof is more involved if a < 0, and the reader is referred to [11].
In the repulsive case the radial component of the momentum p, increases
monotonically and is bounded, so it is suitable as a Liapunov function. As
in classical mechanics (I:5.3.8), when H, is expressed in terms of p,,

it becomes
1 |LJ?
Hr 2 (pr Pr + ) + ;

(details in Problem 6, with a = 1). If LX(R3, d*x) is mapped unitarily to
L%(S2, dQ) ® L*([0, ), dr) by y — u/r, then p, becomes identical to the
operator p, of (3.3.5; 4). Let p,(t) as usual mean exp(iH, t)p, exp{—iH,t),
so that by (3.3.5; 4(a)),

I 1
< Y; u(rf) dtp Yy “(’)> I dr u*(ru(r )[ (IT-*-—)] —l (O]

Since ||p, |} < {¥|H, ), this means that r~2 is integrable in time, as is
to be expected from r ~ t:

f:“‘ EOM

Since this bound is independent of 7, given any € D(H,) and ¢ > 0,
there exists a T such that

fdt
T

2
< YIpAT) - pO)I¥) < 2MWIK¥iH, ¥ (a)

2

;(%:p <& (b)
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In order to avoid some technical difficulties caused by the presence of
unbounded operators, let us examine RpR, where R = (H, + ¢)” !,
ce R*. Now,

.(t) \
R R

Jrare[3m)]

d Rp,(t)R

SO

f dtiRp,(t)Rw “ = sup
r dt

llell=1

1
< su t{(R I—R >|
lIwIIBl T < ¢ r(t)? v
cod l 271/2 @ l 271/2
< su t|— R fdt —R
nougl[J; ¢ ] [r () d ]

1 R 271/2
< cons —
onst U TOl ] ’
where we have used (a). On account of (b), as T — oo this becomes
arbitrarily small, which implies the strong convergence of Pp(t)P. The
operator R maps the Hilbert space into D(H,), which is a domain of
essential self-adjointness for p(t) and p . Therefore p converges strongly
to p, on a domain of essential self-adjointness, and consequently strongly
in the sense of (2.5.8; 3) (see Problem 8).
(ii) Convergence of x/r and 1/r. The first of these has already been hand'ed in
Problem (3.6.32; 3), and the second follows from x(¢t)/t - +p,/m. O

Remarks (4.1.19)

1. Proposition (4.1.18) implies that all finite functions of these operators
converge to the same functions of the asymptotic constants (cf. (2.5.8; 3)).
As usual there are domain questions for unbounded operators. The
statement a,y — ay for all y € D, a dense set, does not suffice for a, — a.
To see this, suppose a and b are two different self-adjoint extensions of a
densely defined operator ¢, and set a, = b for all n, D = D{(c). Since
ap¢) = byp()» convergence is trivial, but finite functions of a and b may
genuinely differ. Only if D is a domain of essential self-adjointness for all a,
and for a can one conclude that a, — a (Problem 8).

2. In order that the Mgller operators still exist, H, might be modified
somehow depending on the p; but so as to describe the correct asymptotic
motion. The trouble is that any such H, depends on time explicitly, so
U? is not simply exp(—itHy(t)), and the time-evolution is not being
compared with a one-parameter groups of automorphisms. One pos-
sibility is U® = exp(—i(t|p|>/2m + ma(ln t)/|p|)), as exp(iH,t)U? in fact
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converges to the desired wave operator. Since the modified H, still
commutes with p, this also shows that the p(t) converge. We are, however,
less interested in pure existence theorems than in explicit computations,
so this line of reasoning will not be pursued further.

Corollaries (4.1.20)

1. Since H is constant, PHP = |p, |*/(2m) = |p- |*/(2m).

i ma
2 PFP = 4ps x L - Lx ps]+ 0% = 5o, ILF) £ TR

I |Pt|

The lesson of this is that the state of affairs concerning asymptotic con-
stants s just as in the classical theory (I: 4.2.21; 1). In order to find the analogue
of (1: 4.2.20) in quantum theory, it is only necessary to take some care with
the noncommutativity of the various observables. This being done, one
finds the

Connection between p, and p_ (4.1.21)

_ ILI2 + in — n? n
 =p —5———5+[p- xL-L _
=P iy T *P-h T T
LA +im+in-n® 1
p Vo T
Pma
(H,) = .
1 2mH,
Proof
20 F L, = ei}k[e]m(pm = Lnpa ¥)+ z'lpf]Lk
= —pfL? + pfLiL, — Lkpi Ly + 2n(F, ¥ npi*) 2"1!’:
= —2p{L? + 29F, - 29°p} + 2inpi*.
.Substitution for F from (4.1.20; 2) then proves the claim. O

' Remarks (4.1.22)

1. The first part of the formula is the analogue of (I:4.2.20), and follows
since p, is related to p_ by reflection through F (see (1:4.2.18; 1)).

.
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2. The connection between p, and p_ in the spectral representation of |L|?,
:,,, and H,P = |p,|*/2m, can be read off from the second part of the
ormula: ’

The Scattering Transformation (4.1.23)

_Td+ JILE + 1 + in(H,))
rd + JILP + 1 - in(H,)

connects the momenta p, and p_ by

p. =S7'p_S.

Proof o
Since S commutes with L, it can be written in the tensor-product representa-

tion of (3.6.10; 1), with the eigenvectors |, m) € L3(S2, dQ) of |L|* and L,, as
Sil, m) @ (k) = exp(2i6(k))|l, m) ® (k).

The component p; commutes with L, and H, and, like x, of (3.2.14), changes
I by 1. If we take the matrix element {! + 1, m|-{I, m) of the second form of
(4.1.21), then we find that

A+ 1L,mlpylbm)y 1+1—in
A+ Lmlps|Lm) 1+ 1+in

= exp(2i(6; — ;4 1))

Proposition (4.1.23) follows from this recursively, if we set exp(2idq(k)) =
(1 + in(k))/T(1 — in(k)) by convention. a

Remarks (4.1:24)

1. Asdiscussed in (I: 4.2.21), S is not determined uniquely by the conditions
S~ 'p_S = p, and S™'LS = L; the unitary elements of the commutant of
the algebra of formed from p_ and L remain unspecified. Note that {of}’
consists of functions of the energy, so this arbitrariness just corresponds
to a choice of d4(k). This amounts to an overall phase and has no effect
on the scattering cross-section for k # k’. On the other hand, the time-delay
is now infinite instead of 3(k)/dk?, because mx — pt ~ In tast — 0.

2. As ¢ - oo the phase-shift &, diverges as Y, (I + 1)™*. This is why we were
not able to normalize §,, to zero, but chose instead to fix é,. It thus happens
that J, violates the rule for the scattering phase-shift 6 and scattering
length a valid for short-range potentials,that V > 0 = § < 0 = a > Oand
V<0=6>0=a<0(see (3.6.5) and (3.6.23; 5)): If 4, were 0, then
6, would be negative for positive « and positive for negative a.
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3. The scattering transformation S does not commute with all the constants
of the motion (cf. (I: 4.21.4)). For instance, S~ 'FS = F — 2np, .

4. The scattering matrix has been calculated in the Heisenberg representa-
tion. In the interaction representation (see (3.4.23) and (3.4.24; 6)) Sy, is
related to it through Q* SQ_ = S,, and Q* H,Q_ = H,. In other words
So(,2 is obtained from S by the replacement of H, with Hy, or |p_ |* with
Ipl”.

5. Although Proposition (3.6.11) about the poles of S was derived only
under restrictive assumptions on V, it remains true that S contains the
information of Balmer’s formula: exp(2i §,(k)) has poles at k = —ime?/
(I + n),n, =1,2,.... They are in the upper half-plane if « < 0, in which
case the values of k2/2m are precisely the energies of the bound states.

Now that the phase-shifts , are known, let us recall the definition in
(3.6.10; 3) and calculate (Problem 7) the

Scattering Amplitude (4.1.25)

e R A+ T+ 1+in)
flsmio) = 3 = P'(°°so)[r(1+l-m) l]

i 4 \UMTU4im) 1o,
“ﬁ(m—nw’) ra—m 2k° @)

- Remarks (4.1.26)

1. The sum over I converges on the dense set of finite linear combinations of
T, for example, but is singular form = n'".
2. The first contribution to the scattering amplitude

S(k; 0, m) ~ (sin 6/2)7 2~ 2

is a well-defined distribution for allmand o’ € S2, and represents the unitary

operator S as an integral operator with a kernel. This fact is lost in the

Born approximation; the in disappears from the exponent, and f becomes

nonintegrably singular. As a whole, f remains singular even after sub-

traction of the delta function in the forward direction; it is a distribution
rather than an ordinary function.

3. The cross-section is the same as classically (I: 4.2.22),
k;n,n) =|f(k;n )] = T sint ]
o(k;n,n) =|f(k;n,n = 16 2m)? 5
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Problems (4.1.27)

L

00 N N n AW

Show that if a is self-adjoint and b is essentially self-adjoint on a domain D invariant
under all exp(iat),t € R,thenaand b = the closure of b in the sense of (3.1.7) commute
if exp(iat)b exp( —iat)y = by forally e Dand r e R.

. Show that

(i) D(F) o D(H,) N D (L?), where Dy, consists of the finite linear combinations
of the Y;
(i) F is essentially self-adjoint on b(H,) N D, (L?);
(iii) Forallpandy € D(H,) N D, (L?),d/dt{@|exp(iH,t)F exp(—iH,t){y> = 0.Use
Problem | to verify that (H, F] = 0.

. Verify (4.1.7(ii)) and (4.1.7(iv)).

. Compute the action of p, and p, on |I, m).

. Compute |2,0,0) = F4}2, 1,0) in the x-repre.scntation.

. Express |p|? in terms of p, = (1/rXx - p) — i/r, r,and |L|%.
. Calculate the sum over ! in (4.1.25).

. Show that if a, — ay for all Y € D, a domain of essential self-adjointness for all a,

and g, then a, — a in the sense of (2.5.8; 3).

Solutions (4.1.28)

1.

D(b) = {y': there exists a sequence ¥, € D such that y, — , and b,y converges}.
b expliat)y = exp(iat)by forall yeD=
b exp(iat)y = exp(iat)by  for all € D(b),
since b exp(iat)y, = exp(iat)by,,.
by, — by, exp(iat)by, — exp(iat)by, exp(iat)y, — expliat)ly,

and consequently b exp(iat)y, converges, which implies that exp(iat)y € D(b), and
b exp(iat)y = exp(iat)by. Let € be the finite linear combinations of exp(iat). Then
bey = cby for all ¢ € € and ¢ € D(B). Furthermore, let U = (b — iXb + i)~ '. Every
vector @ € ¥ is equal to (b + i)y for some Y € D(b); thus U = (b — i)y. cp =
b+ iy =0+ i)y, Up=(b - i)y =c(b - il =cUgp, so Uc = cU for all
¢ € €. Therefore every bounded function of b commutes with €.

() IF¥l < e I ILPpwll + c2lip¥ll + c3llyl for some c; € R*. Since p; changes
the angular momentum by 1, [[|LI>p;¥l| < cillp;¥ll < csC¥|PH,¥>'", and so
IF;9ll < oo for all y € D(H,) N Dy (IL1). .

(i) D(H,) A Dg(IL|?) contains the set {x§'x§'x$ exp(—[x|*/2), g =0, I, 2,...,
and finite linear combinations}, on which F is essentially self-adjoint.

|L|z X

W (N, Fum) = Cototia] %, ]+ “‘[’27’7]"“'» -°
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since [|L|%,r] = Oand D(|L[*/r?) > D(H,) N Dy, (IL{?). As a consequence, the
matrix elements\of F(t) and F(0) are the same with the vectors of

D(H,) ~ D, (ILJ).

- Therefore the uniqye self-adjoint extensions are the same, which is the criterion
for commutativity by Problem 1. ’

3. The commutation relations used below follow from [p, f(x)] = —i Vf(x),[x, f(p)]=
iV f(p), and the identities tab. c] = a[b, ¢] + [a, c]b and

[ab, cd] = ac[b, d} + alb, c}d + c[a, dlb + [a, c1db:
|F|2=([px L]—ip+"~'f—’f)~([px L]—ip+"'-;-“")
(because [p x L] = —[L x p] + 2ip).
p-lpxLl=[pxp)]-L=0[pxL]p=(-[Lxp]+2ip) p=2ilp}°
px L} x=(-[L xp]+2ip)-x =|L|* + 2ip-x,
x-[pxL)=[xxp]-L=|L]>
Ilp x L1 = |pPIL)* — (p-L)* = |p*|L}~

From these equations , {F|2 = [p2|L1® + 2{p)* + mx|L}*/r + 2ima(p - x)/r — |p/|?
—ima(p - x)/r + ma{L|*/r — ima(x/r - p) + m*2*.Since [x,p - x] = ixand [p- x, 1/r]
= ifr, the final result is that |F|? = |p)?|]L)® + |p}* + 2ma|L)*/r + 2ma/r +
m2a? = m®a?® + 2mH,(|L}? + 1). The commutation relations for the components of
F follow from the formula F = |p|>x — (p- x)p + 2max/r and the formulas given
above, as well as [x, |p]?] = 2ip, [p- x. Ip|*] = 2i|p|% [p, I/r] = ix/r3, [Ipt% 1/r] =
ix/r>-p + ip-x/r’,and x - p — p- x = 3i, which can be verified directly.

4. In the x-representation, d/0z = cos &d/dr) ~ (sin 0/rXd/d90). Because cos 0 Y, =
cY},,andsin @ Y} = [cY}, ,, and because of the analogous facts for 3/0x and 9/dy, we
find that ip,|n, I, [) = c(d/dr ~ I/r)in, 1 + 1, I> and

a |
ip.In, L) = C,(E' —;)In,l+ L1+ 1).

(The vector ip_|n, 1, I) is a linear combination of (/ér ~ Ifr){n, I + 1,1 — 1) and
@/or + (I + 1)/in, 1 ~ 1,1 = 1).)(See also (3.2.14).)

5.12,0,0) = (ma)**(t — (mar/Z))exp(—mar/Z)/\/%;.

6. First note that owing to the facts listed in Solution 3, p? is formally equal to p,, and

IL1? = X piX Pscitban = X7 IPI? + i(x-p) = (x - pX%-p),

so |pl> = p2 + |L|*/r%. If we now map L*(R? d°x) unitarily to L*(5%dQ)®
L*(R*, dr) by ¢ — u/r, then p, becomes the Hermitian operator —1i d/dr of Example
(3.3.5; 4). It fails, however, to be seif-adjoint; p* > p,, because D(p,) = {Y € L*: ¢ is
absolutely continuous, Y’ € L2, and ¢(0) = 0} = D(p?) = {¢¥ € L*: ¢ is absolutely
continuous, and Y’ € L2}. A more precise statement is that |p|* = p*p, + |L|*/r%.
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7. If t = cos O, then

(sin ©/2)= 2~ 2in 22"'(21 + DP(1) J (1 = 2)"=1p(2)dz.

=0

By recourse to Rodrigues’s formula we find that

1 1
s (14 in) -+ in) 1 =271 - 2)(1 + 2)'d
POt 1 XJ‘—l( 2) (1 -2)(1 +2)dz

_ 1 l‘(l+l+n1) —in+1 r(—m)r(l+l)

T2NTT( + i) *TU+i-in

—l r(l =i +1+in)__.
:q ra +i)F(+ 1 ~in)

and (sin ©/2) 227 = 3" (1/—inX2l + 1)exp(id,)P{cos ©), provided that &, is
chosen as 0.

8. Lety = (a+ )o.0€D.((a, + )" — (a+ )" "W = (a, + i) "(a - a)p — 0,since
l(a, + i)~ 'l < 1, and analogously if i — —i. However, (a + i)D is dense in I, so
(@, + i) 'Y - (ati)'ylorallye .

4.2 The Hydrogen Atom in an External Field

Experiments subjecting atoms to constant electric and magnetic fields
were indispensible to the understanding of atomic spectra. The effect
of weak fields is seemingly just a moderate shift in the energy levels,
but in fact the underlying mathematical problem is drastically changed.

The fields applied in laboratory experiments are usually weak in comparison
with atomic fields, and appear to have only slight influence on atomic
structure. In the other extreme, with the high magnetic fields B prevailing
on neutron stars, the radius (eB)”'/? of the lowest magnetic orbital (cf.
(3.3.5; 3)) can be smaller than the Bohr radius, and the atom contracts around
the magnetic lines of force. In very strong electric fields autoionization occurs,
and we shall see that even an arbitrarily small electric field destroys the
point spectrum of an atom. It is amusing that this problem was one of the
first successes of the perturbation theory developed in §3.5, despite its not
being applicable in the absence of a point spectrum. One of our goals will be
to find the sense in which perturbation theory is still asymptotically valid.
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We give the Hamiltonian (4.1.1) the perturbations of (3.3.5; 1) or (3.3.5; 3),
thereby obtaining the

Hamiltonians for the Stark and Zeeman Effects (4.2.1)

H,,-=l—;1—z+,—%+eEx,EHo+lH',

H.,='2L'Li+,—:—', H =x,, A=eE,

Ha=‘2—lm‘((l’1 +g‘2§x2)2+(P2‘%x1)2+1’§)+|z_l§"o+'{”',
Ho='£J—2+l—3—]-£2’%f.3, H = xi + x2, 1=e;:2,

L = [x x p]is the canonical angular momentum of (3.3.5; 3).

Since H' is not bounded relative to H,, the question of the self-adjointness
of H; and Hy must be confronted. Serious difficulties are not to be expected,
because quantum mechanics mollifies a 1/r singularity, and once something
has been done about the singularity at r = 0, a classical electron in these
potentials would evolve in a reasonable way and would not reach any
boundaries in a finite time. Roughly speaking, it could be argued that if there
is a ce R* such that |d/dt(|p|* + |xI})| < c(Ip|* + Ix|?), then |p(t)|* +
[x(2)]* < exp(ctX|p0)]?> + |x(0)}?®), so neither the momentum nor the
position coordinate could get unboundedly large in a finite time. The con-
dition that |N| < cN is equivalent to + N + c¢N > 0, and this argument can
be made precise with a lemma on

Self-adjointness on the Domain of Operators Bounded Exporentially in Time
4.2.2)

Let H be Hermitian and N > 1 self-adjoint with D(N) < D(H), and suppose
there exists ac € R* such that (Y|(+i[H, N] + ¢cNW> > Ofor all § € D(N).
Then H is essentially self-adjoint on D(N).

Proof

Recalling (2.5.10;1) weshall show that givenanyy e R*,if (o |(H t iy)y> =0
for all Y € D(N), then ¢ = 0. Specifically, that fact would imply that

0=2Im{p|(H £ iyY)N~'¢) = +2y(p|N"'¢) = (N7 '@|i[H,NIN"'¢),



204 4 Atomic Systems

which is consistent with the assumptions of the lemma and with y > ¢/2
only if ¢ = 0. As remarked in (2.5.13; 2), the conclusion then holds for alf
y€ER* a

Application (4.2.3)

Now let Ng 5 = H; 5 + w?|x}?, w € R and sufficiently large. They are self-
adjoint operators on D(|p|* + |x|?), because the other terms in Hp p are
bounded relative to these. Then note that

— Y LIy .
+i[Hg 5, Ng 5] = :tl[zm » 1% ] =3 ;(P ‘X + x-p) <CcNgp.
This leads to the conclusion that H; and Hg are essentially self-adjoint on
D(Ip? + ix[?).

The Hamiltonians of (4.2.1) thus determine the time-evolution uniquely;
however, there is such a vast difference between 4 = 0 and A < 0 that the
perturbation theory developed in §3.5 is deprived of its foundations. Moreovér,
at large distances a/r is insignificant compared with the external field, which
therefore controls the action. Suitable bases for comparison are thus free
fall (3.3.5; 1) for Hg and motion in a repulsive harmonic force for Hy with
A<0.

Existence of the Mgller Operators (4.2.4)

Let Hg(a) and H(a) be as in (4.2.1). Then
Q,; = s-lim exp(iHg, g(a)t)exp(—iHg, 5(0)t)

=+

exist for Hg if A # O and for Hg if A < 0.

Remarks (4.2.5)

1. As was discussed in §4.1, the Mgller operators do not exist if 1 = 0. The
external fields make the time-limit more tractable, because although 1/r
is not integrable in time when x —» x + pt, it is if x - x + pt + gt? or
x — x cosh(t) + p sinh(¢).

2. It follows from Q*H(x)Q = H(0) that H(a) has the same spectrum when
restricted to the range of Q as H(0). This shows that g,(Hg) = R if
A # 0and g,(Hg) = Rif A < 0. The unboundedness below is easy to see
using trial functions supported far away from the origin in regions where
the potential is very negative. It is clear from this why the analytic perturba-
tion theory of §3.5 is impossible.
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. Completeness of the Mgller operators Q, would imply that 0, =0y, =(.
Though this is the case, the proof is more difficult ; the mterested reader is
referred to [12].

Proof

As in (3.4.11), we begin by taking the time-derivative of Q(t), though we shall
require only the rough estimate

F dtllexp(iHt)V exp(—iHo )| = f ’ dt||V exp(—iHo W

® 172 172
S(J l+t2) (J de(1 +t’)[|Vexp(—uHot)¢((2) .

Since we are showing that a sequence of bounded operators converges
strongly, we may restrict to a total set, {§f = exp(— |x — X|?/2b?), X e R3,
b e R*}. In units where 2m = 1 and Ee = 2g, both Hg(0) and

exp(2itgx;)exp(—it’p; glexp(—it|p|?)

produce the time-evolution (x,, x,, X3; py, P2, p3) = (x; + pit, X2 + pat,
X3 + pst + gt?; py, p2, Py + 2gt); therefore their difference is only a multiple
of 1. By Solution (3.3.21; 2),

- — 2
(exp(—it|pPWXx) = [exp E(b—2‘~Tbx"_z—)](l + t2b= 4734,

while exp(— it?p, g) displaces x; by gt?, and exp(itgx,) drops out because it
commutes with V. Thus it remains to show that

3 _ I 2
I d(1 + ¢2X1 + t2b~ %)~ 32 J.d xexpszh‘:%(—t—)z'—) < oo,
(xl(t)’ xz(t), x3(t)) = (xlv x2’ x3 + gt ),

which follows from a simple change of variables (Problem 1). The proof for
Hy is very similar; it is only necessary to take the harmonic motion in
(3.3.21; 2) with an imaginary frequency. This makes X(t) = x cosh(vt), and
the convergence is even easier. O

The foregoing results show immediately that the resolvent

(Ho + AH' — 2)" 1, ze C\R,

is not analytic in 1 at A = 0, where H has been divided into H, and H’ as in
(4.2.1). Perturbation theory will thus fail to converge as an expansion in the
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external field. It is reasonable to wonder, however, whether the perturbation-
theoretic formulas still have some meaning or become pure nonsense.
Despite the lack of analyticity, we at least have

Strong Continuity in 1 (4.2.6)

The function A — (Hoy + AH' — z)7', for z€ C\R and H, and H' as in (4.2.1),
is a continuous mapping or: B() in the strong topology.

Proof

The resolvent equation
(Hy—2)"' —(Hy+ AH' — 2) ' = A(Hy + AH’' — 2)"'H'(H, — 2)!

obviously holds on (H, — z)D(|p|* + |x|?), since D(|p|*> + |x|*) = D(H").
The operator H,isessentiallyself-adjointon D(|p|? + |x|?), which means that
(H, — 2)D(|p)* + |x|?) is dense, because its closure is (Hy — z)D(H,),
which is all of .2 by (2.5.5). Since the resolvent is bounded by |Im z|~ ! innorm,
uniformly in A; the strong continuity in A follows from the strong continuity
on a dense set. O

Proposition (4.2.6) implies that as A — 0 any bounded, continuous func-
tion of Hy, + AH’ converges strongly to the same function of Hy. On the same
abstract level we can in fact state the following

Continuity Properties of the Spectrum (4.2.7)

(1) For all z € Sp(H,) there exists a z(A) € Sp(H, + AH’) such that
lim z(4) = z.

A0
(ii) For all a and b € R such that a < b and a, b ¢ 6,(H,), the projections
P..»(Ho + AH') converge strongly to P, y(H).

Remarks (4.2.8)

1. Proposition (i) means that the spectrum of the limiting operator can not
suddenly get larger. Example (3.5.11; 1) shows that it is possible for it to
contract suddenly from R to {0}. If H' were an analytic perturbation, then
norm continuity of the resolvent in A can be used to exclude this pos-
sibility.

2. If the interval (a, b) contains only one eigenvalue of H,, then (ii) implies
that P, ,(H, + AH’) converges to the projection onto the eigenspace of
the eigenvalue.



4.2 The Hydrogen Atom in an External Field 207

3. The requirement that a¢ g,(H,) is a necessary one; suppose, as in
(3.5.11; 1), that H, = 0 and H’ = x, as operators on L%((— o0, ), dx),
and let x o, ;) be the characteristic function of (0, 1). Then

Xo, n(Ax) = Po 1y(Ho + AH") = Py 5)(x),
but y,1)(0) = 0

Proof

(1) We shall show, equivalently, that (a, b) » Sp(H, + AH') being entpty for
all sufficiently small A implies that (a, b) N Sp(H,) is empty. By the
spectral theorem the latter statement is equivalent to

a+b b-a\"! V2
N(Ho— 5t 2) Sb-a
By assumption,

, a+b b—-a \/_
(Ho+).H +1i ) u )

2

for sufficiently small A. Since the operator norm is strongly lower semi-
continuous (|| - | = supjyy=1 Il - ¥l), R, = R, which implies that ||R|| <
lim inf | R, ||, from which the proposition follows.

(ii)) To generalize from convergence of continuous functions to that of
characteristic functions, recall that there exist continuous functions f, and

9n» 0 < .,;: S Xa,b) and Gn 2 X[a b}» such that f;u T x(a b) and gan[a b)
pointwise. Hence, by Problem 2, f(Ho) — x.»(Ho) and g,(Hq) -
Xia,5(Ho). Since aand b ¢ 6 ,(H,), P, 5)(Ho) = Pia,5(Ho), 50 X(a,5(Ho) =
Xia,5/(H o). This implies that for all  and ¢ there exist continuous functions
S £ Xa.py < Xiapy < gsuchthat ||(f(Ho) — g(Ho)W | < & Consequently,

1(Pa.s(Ho + AH") — P p(Ho)W ||
<I(Pq,0(Ho + AH') — f(Ho + AH )W
+ I(f(Ho + AH") — f(H)W I + (Pa.n(Ho) ~ f(H)WI
< Wg(Ho + AH") — f(Ho + AH)W||
+ I(f(Ho + AH") — f(H)W I + lI(g(Ho) — S(HWI
< ll(g(Ho + AH') — g(Ho)WIl + 20(f(Ho + AH') — f(HoW |
+ 2|l(g(Ho) — f(Ho)W/I

is arbitrarily small. 0

In the case we have been interested in, H, has a point spectrum, but
Proposition (4.2.7) does not guarantee that the point spectrum persists when



208 4 Atomic Systems

A is changed from 0. The point spectrum can not disappear without a trace,
however; instead, there is a sort of

Spectral Concentration (4.2.9)

Let E, be an isolated eigenvalue of H, of finite multiplicity and P, be the
associated projection. Suppose that Py H' P, exists and has eigenvalues E’; with
projections P;, Y ; P; = Py. Then for alle > 0 and n,0 < n < 2,

s-lim P(Eowls;-zA".Eo+A£;,+¢A")(H0 + AH’) = P;.
A-0

Remarks (4.2.10)

1. In the cases we have examined (4.2.1), the exponential fall-off of the
eigenvectors of H, makes them belong to D(H'), so the finiteness of Po H' P,
is clear.

2. Proposition (4.2.9) states that to order A%, n < 2, the spectrum shrinks
down around the eigenvalues predicted by first-order perturbation
theory. The proposition is easily generalized to higher order.

Proof

Let y; be one of the vectors spanning the range of P;, so Hoy; = Eo¥; and
H'Y; = E}y;. Then the y constructed by perturbation theory (3.5.18) is
undeniably an eigenvector of Hy + AH’ to O(42) (cf. (3.5.19; 3)):
||(Ho + AH' — Eo - AE}X"’; - )'(Ho - Eo)-l(H' - E;)'#,)Ilz
= 2*I(H' — EfXHo — Eo)™'(H' — E)y;li*.
(Recall that AE); was incorporated into Hy in §3.5.) Now, if 4;is the probability
measure associated with the vector (1 — A(H, — Eo) " '(H' — EDW; = ¥ [4),
the operator H, + AH’, and the interval
I{A) = (Eo + AE; — €A", Eq + AEj + €A"),

then we get the estimate

JIH — EXHo — Eo)™'(H' — EDY,I? = j dufh)h — Eo — AE})?

> 2420 f duh) = EA(1 — Py (Ho + AW
heIA2)

Because Y{(A) - ¥;, n <2, it follows that (1 — Py a(Ho + AH))WY; — 0.
Since the vectors ; span the range of P;, this implies the norm convergence
P;(Ho + AH')P; = P;. By (4.2.7(ii)), once 1(4,) no longer contains any-
thing but the eigenvalue E, + AEj, the projections P; ,,(Ho + AH') con-
verge strongly to P; ;,,(Ho) = P;. Therefore, if A < A¢, then

P’J(“(Ho + AH,) = Pl,(l)(HO + AH')P'/(lo)(HO + AH,) d P)- D
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At first sight, Theorem (4.2.9) appears without physical significance. For
instance, in the trivial example of (4.2.8; 3), perturbation theory does not
work, since 0 is an infinitely degenerate eigenvalue of Hy; with E, = E; = 0,
n < 1, Theorem (4.2.9) is still valid, yet nothing distinguishes the spectral
value 0 of the operator Ax. The experimentally: detectable consequences of
(4.2.9) are brought to light by consideration of the

Indeterminacy Relation of Time and Energy (4.2.11)
The probability that an initial state  is again measured at a later time ¢t is
[<Wlexp(—iHt} ). For this reason, w(y) =4[, dt|{ylexp(—iHt)?

is referred to as the lifetime of . If the support of y in the spectral representa-
tion of H is contained in the interval (E, — €, Ey + €), then () > 1/8ne.

Proof

As in the proof of (3.4.11), it follows from Parseval’s equation that t(y) =
{ (dw/am)|{Y|6(H — w)¥)|?, and then by the Cauchy-Schwarz inequality,

Eo+e 2
= ( f dooy|8(H — w)¢>)

Eo-t¢
Eo+e Eo+e
< j dw’f dody|6(H — wW)? = 8net(y). 0O
Eo—¢ Eo~¢

If a perturbed operator is strongly but not norm continuous, then an
eigenvalue E, may disappear into a continuum that springs into existence.
However, even if this happens, for small 4 the state ¥, has a long lifetime:

The Lifetimes of Eigenstates that have Disappeared into the Continuum (4.2.12)

With the assumptions of (4.2.9), for all € > O there exists a Ay > 0 such that
w(Y;) > 2/eA" for all ,0 < A < A,.

Proof

. . .\
Let y; = Py, ¥;. The strong convergence of the operator H(A) implies the
existence of a Ay such that ||y, — Yl = |(P1) — PY;ll < ¢/2 for all 4,
0 < A < A,. Therefore

E+eaA"
IWil? = J' Ao OH — o) 2 16

E-e

so this proposition follows from (4.2.11). O
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Now that the mathematical state of affairs is understood, let us return to the
physical problem and examine Hy = H, + AH'. The situation is only half
as bad as it might be, since the point spectrum is preserved for the physical
values 4 > 0; this follows immediately from the min-max principle, singe the
term linear in B, which was built into the H, of (4.2.1), is simultaneously
diagonable with L, (see (3.3.20;4)), and e2B*(x? + xz)/8m is a positive
perturbation. The number of eigenvalues of Hg under a given energy E is
therefore at most the same as the number of eigenvalues E) , = —(ma2/2n?)

— (eB/2m)l; of H,, under E. This argument leads straightaway to

Bounds for the Eigenvalues of Hy (4.2.13)

The lowest eigenvalue E,, of Hp, where 1 is a given eigenvalue of L,, satisfies

. eZ 2
E:?ll.l,.l; S Ll) s E;?l].l;.l; + _S_m— <13 + lv 13’ ’3,x§ + X%IIJ + ]v 131 13>;

HO‘"’ 17 13> = E:n?}.l;'ny Iv 13)'

Remarks (4.2.14)

1. These bounds show that the divergence of perturbation theory does not
diminish the usefulness of the linear formula for small B. It can in fact be
shown that the perturbation series is Borel summable [3].

2. The term a/r is compact relative to the rest of Hg (Problem 6), so the
essential spectrum of Hy begins at eB/2m > 0, as in (3.3.5; 3).

3. At this stage, (4.2.11) applies only to particles without spin. The presence
of spin adds a term BuS; to Hy, where for an electron the spin magnetic
moment p is 2-[1.0011596] - e/2m. The new term is simultaneously
diagonable with H,; as long as the relativistic spin-orbit coupling is left
out, the difference is a simple additive constant.

To finish the section off, we discuss the Stark effect in greater detail. As
we saw thatif E # 0, then o,(Hg) = Rand 0, (Hg) = o(Hg) = &, one might
well wonder how so many physicists have made successful careers measur-
ing and calculating the eigenvalues of Hg. The underlying reasons are some
nice

Stark-Effect Delicacies for Mathematical Connoisseurs (4.2.15)

(i) When E # 0, suitable expectation values of the resolvent (Hg — z)~!
have a branch cut along R~, and the poles of the resolvent when E = 0
move onto the second sheet when the field E is switched on.

(ii) The imaginary part of the position of the pole associated with the ground
state goes as exp{ —a’/6eE) as E — 0. The small imaginary part shows up
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as a long lifetime (4.2.12) and as a sharp resonance in the scattering
matrix (4.2.4), and hence as a long time-delay (3.6.17).

(iii) Perturbation theory leads to the correct asymptotic power-series for the
positions of the poles, all coefficients being integrals of real functions
and hence real. The imaginary part is invisible in perturbation theory,
since it goes to zero faster than any power of the applied field.

(iv) Since any reasonable procedure for resumming the perturbation series
will lead to something real, it can not give the exact position of the pole.
However, if one begins with a complex electric field E, Borel sums the
series, and then lets Im E tend to zero, the complex poles can be found
exactly.

The proofs of these mathematical facts can be found in [13]. The physics
underlying the complex poles is the quantum-mechanical tunneling effect,
by which an electron has some probability of reaching a position with large
— x5. If the field is not too large, then the time taken for the tunneling is so
long that the effect can be neglected in any conceivable experiment.

Let us next ascertain the energies at which the spectrum is asymptotically
concentrated. We shall not come up with any bounds for the (nonexistent)
eigenvalues.

First-Order Perturbation Theory (4.2.16)

The first step is to diagonalize H' in the degeneracy spaces of Hy. From(2.3.14)
and the conservation of L, we get

. < Lisixs|n, U 1) = 61y 1 e L G I, L F 1 1),

so int the sithplest cases H' looks as follows, represented as a matrix:

o, 1s 2 2p . Is--- y
ﬁ___hm ‘
. L 0 0 -1 0 F 0
nl vl
1s 0 12
2s 0 2,2
-1 (1.2) = <1,0,L1x3]0, 1. 2>
2p 0 1,2))] 22 (2,2) =<2,0,0/x,10, 1, 2>
1
3s 0
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This is diagonalized with the combinations

I+ )= (1//2)(20,0) + |2, 1,0):

2 2
Is + P - P
-1 1

1s

+ 2,2
2p -1

- -(22)

It is apparent that to first order in E, the values E, ; ;, are unchanged for
n = | and shifted by +eE(2,0,0|x,4|2, 1,0) for n = 2, l; = 0 (Problem 5).

Remarks (4.2.17)

1.

Unsophisticated feelings are vindicated in that, as with the Zeeman
effect, the first-order correction to the energy is just the field strength times
the dipole moment.

. This result seems to contradict a general theorem: The expectation value

of the dipole moment is zero in eigenstates of an operator that commutes
with the parity P. Proof: H|) = E|>=P|) = +|), so {|x3]) =
~{|Px3P|) = —{|x3]|). The explanation is that the conditions of the
theorem are incomplete; it must also be assumed that all the eigenvectors
with the same E have the same parity, which is not true in the Stark effect.
Relativistically, the S,,, — P3,, degeneracy is removed in the Dirac
equation and, moreover, the Lamb shift separates the P,,, and S,,,
levels. Then the theorem of Remark 2 applies, and, strictly speaking, there
is no linear Stark effect.

. Since the more precise formula for the splitting of the energies is

€24 "2' €2p + \/ (s" ; 62?)2 + (eE(2))?,

where the ¢’s are the eigenvalues for E = 0,and since &,, — &, is very small,
the splitting soon becomes virtually linear in E,
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Problems (4.2.18)

Show that (@ di(1+2)(1+12b7%)"¥2 [ (d3x/r)exp( — |x — X(t)|2/(b* + 12b~ ?)) < 0,
X(1) = (%,, X3, X3 + gt?).

. Show that if f(x) | f(x) = 0, then f, — f strongly as a multiplication operator.
. Calculate (n, I, I]x3 + x3|n,1,1;)> for n = 1 and 2.

. Find an example of projection operators P, converging strongly to P for which

dim P, = oo butdim P < «c.

. Calculate <2, 0, 0]x,]2, 1, 0).

. Let a;, be the restriction of an operator a to the part of the Hilbert space on which

{L31 < M. Show that Hy,p(x) is compact relative to Hp)p(x = 0).

Solutions (4.2.19)

First write r 2 as [§ ds exp( — sr?). The resulting Gaussian integrations over x,, x,,
and x, are easy to do by completing the squares in the exponents. To indicate how the
calculation then proceeds, consider, for simplicity, b = 1 — the calculation for b # 1
is similar. Then

o«
dt ® x?+ x3 4+ t?)?
I — == ds d’x exp(—sr’ - at (x:<+ 9 )
0O Vi+1tJo =3 1 4+1¢

J"’, dt J"’ ds
= const o :/1_4-7 o s+ (1 +t2)-|)3/z

g2t4 (l l ))
XTI FE T+ + )

where the square in the exponent was completed in the last step. The two remaining
integrations are easy to estimate if the domain of integration is divided into 0 < s,
t<});1<s,t < oo;and the rest.

2. By Lebesgue’s dominated convergence theorem, | du(x)|¢/(x)1*(f,(x) — f(x))* = 0.

3. In units where ma = 1,

1
{1,0,0) = —= exp(—r),
n

7
12,0,0) = ﬁ (1 - %)exp(—-r/Z),

2,1, £1) = -s—l—rexp(—r/Z)sin 0 exp(tie),
n

12,1,0) = l—rexp(—r/Z)cos 0,

4./2n

(cf. (4.1.27; 5)), ard the corresponding expectation values are 2, 28, 24, and 12.



214 - 4 Atomic Systems

4. Let P, be the operator in #(1%), represented diagonally with entries

0,0,...,0,1,1,...).
n
Then Tr P, = w0, but P, = 0.

5.¢2,0,0|x312, 1,05 = —4.

6. We shall show that the graph norm of Hg provides a finer topology on the subspace
whenx = 0,B > Othan whena = 0, B = 0. The rest of the argument is like the one for
the relative compactness when B = 0. First note thatif 2m = 1,

all(1pl* + Axt + x3) — whyy| + bly|
2 all(Ip)? + Mx3 + xHWI + (b — M)|yll,

and by use of the commutation relations,

VIR + Ax} + x3)%y> = WIIpI* + 2A(Ipl(x} + x3)|p| - 2)
+ A20x + x)) D 2 <Yl Iply> — Ay,

SO

all(ipl? + Axi + x3) = wLyyll + byl = alllplyll + (b — M ~ 23)|¥).

Since the norms al|Hgy|i + blly/|| are equivalent for all a and b > 0, the proposition
follows.

4.3 Helium-like Atoms

Although the Schrodinger equation for helium-like atoms is not
exactly soluble, it is possible to make statements about it with arbi-
trarily good accuracy. For that reason it has been a touchstone of
quantum mechanics.

The explanation of the spectrum of the helium atom was one of the early
successes of the new quantum theory, since the old quantum theory, which
was nothing more than classical mechanics boistered with ad hoc quantum
assumptions, was unable to cast much light on the problem. Even today, the
set of problems connected with helium must be reckoned among the brilliant
successes of mathematical physics. While Schrédinger’s equation can not be
solved for helium in terms of familiar functions, it is not only possible to
formulate valid general statements about the spectrum of the Hamiltonian,
but, indeed, the art of inequalities is so far advanced that rather exact bounds
are available for the eigenvalues.

When dealing with two or more electrons, one must bring the exclusion
principle into play. However, its importance will be limited in this situation,
because of the additional spin degree of freedom. Any orbital can be occupied
by two electrons, so long as their spins are antiparallel (a singlet state).
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Forces that do not affect the spin cause no transitions between states of
parallel (triplet) and antiparallel spin, so the spin part of the problem can be
dealt with separately. The orbital wave-functions may be either symmetric or
antisymmetric, and associated with either singlet or triplet spin vectors.

In addition to helium, we shall also be interested in theions H~,Li*,Be* *,
etc., the Hamiltonians of which are the same except that they have different
values of the perturbation parameter. Moreover, elementary particle
physics has created the possibility of replacing one e~ with a u~ or other
negatively charged particle, i.e., of varying the mass. We began the discussion
of hydrogen by introducing center-of-miass and relative coordinates. The
mass of the nucleus made its appearance in the latter part of the problem only
through the reduced mass, and the problem was otherwise the same as the
limit where the nuclear mass was set to infinity. As section 4.6 will be devoted
to the study of the nuclear motion, let us immediately pass to this limit. It
will remain to be determined how valid the results of this section are for
systems likee u*e” ore"e*e”.

Once the usual list of necessary remarks has been checked off, things will
progress rather rapidly to more detailed and less trivial matters. We start
with the

Hamiltonian of an Atom with Two Electrons (4.3.1)

1 1 1 1
H=——(pP + 2—Ze(—+——)+e2————-
zm(lpll Ip21) Ix f %z %y — %,

can be put into normal form with a dilatation p » Zme?p, x — (Zme?)™ 'x
and separation of the factors:
H(@) = HO) + aH' = Z % *m™'H = ¥(|p,)* + Ip:1?)
1 1 o 1

—_——— — _— o= —

Il Ix2l % - x|’ z

Remark (4.3.2)

The perturbation parameter a is not a continuous variable in reality, but it
can assume many different values, 1, 4, 4, 1, etc., corresponding to H™, He,
Lit,Bet*, etc. '

Since the potential energy is e-bounded relative to the kinetic energy
(see (4.4.5)), we know the

Domain of Self-Adjointness (4.3.3)

D(H) = (D(|p1*) ® C*) A (D(Ipl*) ® C)
< (LXR*) ® C?) A (LARY) ® C?).
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Gless (4.3.9)

The spin acts on the two-dimensional Hilbert space C2, so the Hilbert space
appropriate for an electron with spin is L2(R*) ® C2. As was mentioned in
(3.1.16), a system of two electrons is associated with the antisymmetric
tensor product A (recall (I: 2.4.38)) of two such spaces.

We now turn to the task of locating the continuous spectrum of H(a).

It turns out to be quite easy, because the perturbation is positive when a > 0
and could at most move the spectrum upward.

The Beginning of the Essential Spectrum (4.3.5)

O (H(@)) = 0. (H(0)) = [—4, o0).

Proof

As remarked in (2.3.18; 5), for all E € [ -4, c0) we must find an orthogonal
sequence ¥, with norms bounded away from zero such that (H — E), — 0.
Let ¢, be the ground-state wave-function |1, 0, 0> of (4.1.14), let R > 0, and
let x,(r) be a sequence of functions supported in (2"R, 2**!R) and such that
(Ipl?/2 — E — )x, » 0. (For instance, take X,(r) ~ exp(ikr)/r, k*/2 =
E + 1}, cut off outside (2"R, 2"* ' R) and smoothed out at the ends.) Then the
sequence ¥, = @,(x;)X,(X,) is as required, since

1
%, — X,

Vol ~ (2"R)" . O

»

Remarks (4.3.6)

1. The physical significance of the continuum starting at —14 is that one
electron stays put in the ground state while the other runs off to infinity.

2. Mathematically speaking, we see that the potential energy may fail to be
compact relative to the kinetic energy (it moves the essential spectrum)
even when it is relatively e-bounded.

The next topic is the point spectrum. It is clear that H is semibounded,
since H' > 0, s0 g,(H) = [— 1, o). It will also be shown that if « < I, then
there are infinitely many eigenvalues. This is to be expected on physical
grounds, since an electron at a large distance would not see a fully screened
nuclear charge, and it is known that an arbitrary weak 1/r potential has
infinitely many bound states. To prove it, it is necessary to find another infinite
set of orthogonal trial functions, with which H can be written as a diagonal
matrix with eigenvalues less than — 4, the bottom of the essential spectrum of
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hydrogen. We construct them by putting one electron in the ground state
@, of |p;1%/2 = 1/r, and pulling the other one far away:

S|
001) @ VO Hly(00) @ WD) = =+ el T3 — 19t

1
+ al@,(x,) ® Y(x,)| P [@1(x1) @ Y(x2)).
12
The repulsion of the first electron shows up for the other one as an effective

potential, which we expect to fall off as a/r, at large distances. Indeed, in
Problem § it is calculated as

1
@Ol = 2 - ae(-2(14 ) @
12 T2 r;
Consequently,
|Pz |2 l—-a _
HY)= -3 + Y(x2)| —5— . af 1 + - eXp( 2r)1Y(x,))-

Given disjointly supported functions y;, if k # j, then <o @ ¥;|Hlo ® ¥,
=0. By dilating and translating, we can arrange that

2
L A ( + })exp(—zrw» <0,

s0 (@ ® Y,;|H|¢ ® ¥) = &, b,, & < —4. This proves

The Infinitude of the Point Spectrum (4.3.8)

If a < 1, then H(x) of (4.3.1) has infinitely many eigenvalues below —4¥; the
bottom of its essential spectrum.

Remark (4.3.9)

Theexclusion principle was not m« 1tioned, because it still makes no difference.
If the two spin states are denoted | and |, then the state (1¢,(1) ® {¥(2) —
() ®1 (p,(2))/\/i leads to the same expectation value.

The virial theorem (4.1.4) made use only of the effect of dilatation on the
. kinetic and potential energies. The existence of more electrons does not
change this, so we likewise have a

Virial Theorem (4.3.10)

If (H@) - E) =0, then E= — (Y| TY)> = — 3¢ |1/ry + 1/ry — afri3|¥).
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Corollary (4.3.11)

H(a) has no eigenvalues E > 0.

Remarks (4.3.12)

1.

One might guess that there is a point spectrum only for E < —4. We shall,
however, discover eigenvalues embedded in the essential spectrum
between —4 and 0—in fact infinitely many if @ < 1. They correspond to
states whose decay is preve:ited by conservation laws for various quantum

‘numbers.
. We shall later rule out the existence of singular spectrum, so o consists

of o, between —1 and —4, both o, and o, between —4and 0, and only
o, above 0. ’

This delineates the rough features of the spectrum. Let us next take up

some finer details; since the eigenvalues of H(«) are analytic in &, we can start
with H(0) and track them as a is switched on.

" The Point Spectrum of H(0) (4.3.13)

Let ¢, | s be'the eigenfunctions |n, I, m) of (4.1.14) times spin eigenfunctions
(s = +3). Then

(Pnhll.nu.l‘”(pnz,lz,mz.sf’ - (pn;.lz.m;.s&"‘pll.ll.m.,:ﬁ”

is an eigenfunction of H(0) with eigenvalue — (ny? + n3 2)/2. It is 4nin3-fold
degenerate ifn, # n,,and 2n}(2n? — 1)-fold degenerate if n, = n,.

Remarks (4.3.14)

1.

2.

All states with n, > 1 and n, > 1 have energies > —4, and hence live
in the continuum beginning at —4.
The operator H(0) possesses a copious commutant,

{H©O)} o {L,,Fy,0,,L,,F,;,0,}.

These constants divide the spectrum and keep the discrete states from
decaying into the continuum.

. Parity (3.2.11) was not listed separately among the constants, since it can

be expressed with the angular momentum as in (3.2.22; 1). As states
evolve according to H(0), the parities of the individual electrons, P, =

(-4 I, = JL? + } — 4, are separately conserved. The total parity
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P=P,P, =(~1)"*" is not necessarily (—1), however, since L =
L, + L, can have any I such that }l, — I} <1<, + I,. There thus
exist .

States of Natural and Unnatural Parity (4.3.15)

If P = (— 1), then the state is said to have natural parity, and if P = (—1)'*?,
then it has unnatural parity.

Example (4.3.16)

If n, or n, equals 1, then I equals I, or I,, and the resultant state has natural
parity, (— 1) = (= 1)'or (= 1)'* = (—1)". Hence the isolated point spectrum
has natural parity. The first state with unnatural parity has |, = I, =l = 1,
P = +. The wave-function has the form (x;, A x;)f(r,,r;), and if n, =
n, = 2,the energy is —4. In the subspace of unnatural parity, the continuum
begins at E = —§,forn, = 2,n, = co.

Constants of the Motion when a # 0(4.3.17)

Ifa # O, then in addition to H, the quantities L, P, @, and @, are conserved.

Physical Consequences of Conservation of Parity (4.3.18)

1. Parity must now be listed separately, since it is independent of L. The
Hilbert space decomposes into subspaces of natural and unnatural parity,
which are not mixed by H(a). Hence discrete states of unnatural parity
continue to exist within the continuum of natural parity. Just as in (4.3.5)
the beginning of the continuum of unnatural parity at —$ is not affected
when a is switched on. Since the eigenvalue of unnatural parity at —4
varies continuously with a, it remains isolated from the continuum of this
part of the Hilbert space for a sufficiently small.

2. Eigenstates of H(0) with natural parity and energies E > —4 whena > 0
are not prevented from decaying into states with one electron in the ground
state and the other running off to infinity. This is observed as the Auger
effect.

3. States of unnatural parity are prevented from decaying to states with one
electron in the ground state and the other running to infinity, since the
final state would have natural parity. Conservation of parity likewise
prevents their creation by direct collisions of electrons with atoms. In
reality they are not absolutely stable, since they can decay by the inter-
actions neglected in H(x), for example by electromagnetic radiation. The
possible transitions are significantly slower than the Auger transitions.
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. Scattering theory reveals that there are many more consta