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Preface

In this third volume of A Course in Mathematical Physics I have attempted
not simply to introduce axioms and derive quantum mechanics from them,
but also to progress to relevant applications. Reading the axiomatic litera-
ture often gives one the impression that it largely Consists of making refined
axioms, thereby freeing physics from any trace of down-to-earth residue and
cutting it off from simpler ways of thinking. The goal pursued here, however,
is to come up with concrete results that can be compared with experimental
facts. Everything else should be regarded only as a side issue, and has been
chosen for pragmatic reasons. It is precisely with this in mind that I feel it
appropriate to draw upon the most modern mathematical methods. Only
by their means can the logical fabric of quantum theory be woven with a
smooth structure; in their absence, rough spots would inevitably appear,
especially in the theory of unbounded operators, where the details are too
intricate to be comprehended easily. Great care has been taken to build up
this mathematical weaponry as completely as possible, as it is also the basic
arsenal of the next volume. This means that many proofs have- been tucked
away in the exercises. My greatest concern was to replace the ordinary cal-
culations of uncertain accuracy with better ones having error bounds, in
order to raise the crude manners of theoretical physics to the more cultivated
level of experimental physics.

The previous volumes are cited in the text as land II; most of the mathe-
matical terminology was introduced in volume I. It has been possible to
make only sporadic reference to the huge literature on the subject of this
volume—the reader with more interest in its history is advised to consult
the compendious work of Reed and Simon [3].

Of the many colleagues to whom I owe thanks for their help with the
German edition, let me mention F. H. Grosse, P. Hertel, M. and T.
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Hoffmann-Ostenhof, H. Narnhofer, L. Pittuer, A. Wehrl, E. Weimar, and,
last but not least, F. Wagner, who has transformed illegible scrawls into a
calligraphic masterpiece. The English translation has greatly benefited from
the careful reading and many suggestions of H. Grosse, H. Narnhofer, and
particularly B. Simon.

Vienna Walter Thirring
Spring, 1981



Contents

Symbols Defined in the Text vii

Introduction I

1.1 The Structure of Quantum Theory
1.2 The Orders of Magnitude of Atomic Systems 3

2 The Mathematical Formulation of Quantum MechanIcs 9

2.1 Linear Spaces 9
2.2 Algebras 21

2.3 Representations on Hubert Space 38
2.4 One-Parameter Groups 54
2.5 Unbounded Operators and Quadratic Forms 68

3 Quantum Dynamics 84

3.1 The Weyl System 84
3.2 Angular Momentum 95
3.3 Time-Evolution 104
3.4 ± 122
3.5 Perturbation Theory 142
3.6 Stationary Scattering Theory 165

4 Atomic Systems 187

4.1 TheHydrogenAtom 187
4.2 The Hydrogen Atom in an External Field 202
4.3 Heliupi-Iike Atoms 214

V



vi Contents

4.4 Scattering Theory of Simple Atoms 244
4.5 Complex Atoms 260
4.6 Nuclear Motion and Simple Molecules 272

Bibliography

Index 297



Symbols Defined in the Text

p, q momentum and position coordinates
Schrodinger wave function

ft Planck's constant
L orbital angular momentum
I angular momentum quantum number
Z nuclear charge

Bohr radius (1.2.3)
Ry Rydberg (1.2.4)
E vector space (2.1.1)
C set of complex numbers (2.1.1)

II II norm (2.1.4)
p-norm (2.1.5:6)

LP(K, p) space of p-integrable functions on K (2.1.5; 6)
I' sequence space (2.1.6; 2)

scalar product (2.1.7)
e, basis vector (2.1.12; 3)
E' dual space to F (2.1.16)
2'(I., F) space of continuous, linear mappings from F to F (2.1.24)

space of bounJed operators on F (2.1.24)
adjoint operator for a (2.1.26; 3)

w-lim, weak limit (2.1.27)
s-lim, strong limit (2.1.27)
urn, norm limit (2.1.27)

sequence space (2.2.2)
Sp(a) spectrum of a (2.2.13)
a � b . partial ordering of operators (2.2.16)
X(d) . set of characters (2.2.25)

(&(a))2
= mean-square deviati'c (2.2.33; 3)
=

vii



Viii Symbols Defined in the Text

propositional calculus (2.2.35)
A P2 intersection of propositions (2.2.35(i))

Pi v P2 union of propositions (2.2.3501))
spin matrices (2.2.37)

it representation (2.3.1)
commutant (2.3.4)
center (2.3.4)

9(x) step function (2.3.14)
point spectrum (2.3.16)
absolutely continuous spectrum (2.3.16)

uAa) singular spectrum (2.3.16)
essential spectrum (2.3.18; 4)

Tr m trace of m (2.3.19)
trace-class operators (2.3.2 1)
Hubert—Schmidt operators (2.3.21)
compact operators (2.3.21)

I time-ordering (2.4.10; 3)
D(a) domain of definition of a (2.4.12)
Ran(a) range of a (2.4.12)
r(a) graph of a (2.4.15)
a b a extends b (2.5.1)

Q(q) quadratic-form domain (2.5.17)
Weyl algebra (3.1.1)

(z(z') scalar product (3.1.2; 1)
1, in> angular momentum eigenvectors (3.2.13)

circular components of L (3.2.13)
(derivationr (3.3.1)
projection onto the absolutely continuous eigenspace (3.4.4)

d algebra of asymptotic constants (3.4.6)
limit of an asymptotic constant (3.4.6)
homomorphism d (3.4.6)
Møller operators (3.4.7; 4)

P. projection for the channel with Ha (3.4.17)
channel decomposition of (3.4.17)

S2, S matrix in the interaction representation (3.4.23)
z) resolvent

Pk(ct) projection operator for the perturbed Hamiltonian H(a) (3.5.1)
t(k) t matrix
f(k; a, n) angular dependence of the outgoing spherical wave (3.6. 10;3)

D delay operator (3.6.17)
k0) differential scattering cross-section (3.6.19)

total scattering cross-section (3.6.19)
a scattering length (3.6.23; 5)
F Runge—Lenz vector (4.1.7)

generators of 0(4) (4.1.8)



Introduction

1.1 The Structure of Quantum Theory

The structure of quantum mechanics differs startlingly from that of the
classical theory. In volume I we learned that in classical mechanics the
observables form an algebra of functions on phase space (p and q), and states
are probability measures on phase space. The time-evolution is determined
by a Hamiltonian vector field. It would be reasonable to expect that atomic
physics would distort the vector field somewhat, or even destroy its Hamil-
tonian structure; but in fact the break it makes with classical concepts is
much more drastic. The algebra of observables is no longer commutative.
Instead, position and momentum satisfy the famous commutation relations,

qp — pq = ih. (1.1.1)

Since matrix algebras are not generally commutative, one of the early
names for quantum theory was matrix mechanics. It became apparent in
short order, however, that the commutator (1.1.1) of finite-dimensional
matrices can never be proportional to the identity (take the trace of both
sides), so attempts were then made to treat p and q as infinite-dimensional
matrices. This proved to be a false scent, since infinite-dimensional matrices
do not provide an ideal mathematical framework. The right way to
proceed was pointed out by .1. von Neumann, and the theory of CS and
algebras today puts tools for quantum theory at our disposal, which are
polished and comparatively easy to understand. There do remain a few
technical complications connected with unbounded operators, for which
reason the Weyl relation

= (1.1.2)

(setting Pi = 1) is a better characterization of the noncommutativity.
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Admittedly, Schrodinger historically first steered quantum mechanics in
a different direction. The equation that bears his name treats p and q as
differentiation and multiplication operators acting on the Scbrödluger
wire-function which has the interpretation of a probability amplitude:
It is complex-valued, and I is the probability distribution in the state
specified by i/i. Superposition of the solutions of the equation causes proba-
bility interference effects, a phenomenon that can not be understood
classically at all. Later, was characterized axiomatically as a vector in
Hubert space, but the peculiar fact remained that one worked with a com-
plex Hubert space and came up with real probabilities.

At long last the origin of the Hubert space was uncovered. A state would
normally be required to be represented as a positive linear functional, where
positivity means that the expectation value (a2) of the square of any real
observable a must always be nonnegative. It turns out that to each state there
corresponds a representation of the observables as linear operators on some
Hilbert space. (It is at first unsettling to that each state brings with it
its own representation of the algebra characterized by (1.1.2), but it also
turns out that they are all equivalent.) The schema of quantum theory thus
adds no new postulates to the classical ones, but rather omits the postulate
that the algebra is commutative. As a consequence, quantum mechanically
there are no states for which the expectation values of all products are equal
to the products of the values. Such a state would provide an
algebraic isomorphism to the ordinary numbers, which is possible only for
very special algebras. The occurrence of nonzero fluctu-
ations (&2)2 <a2) — (a>2 is in general unavoidable, and gives rise to the
indeterministic features of the theory. The extremely good experimental
confirmation of quantum mechanics shows that the numerous paradoxes
it are owing more to the inadequacy of the understanding of minds
raised in a classical environment than to the theory.

Quantum theory shows us where classical logic goes awry; the logical
maxim tertium non datur is not valid. Consider the famous double-slit
experiment. Classical logic would reason that if the only and mutually
exclusive possibilities are "the particle passes through slit 1 "and "the particle
passes through slit 2," then it follows that "the particle passes through slit I
and then arrives at the detector" and "the particle passes through slit 2 and
then arrives at the detector" are likewise the only and mutually exclusive
possibilities. Quantum logic contests this conclusion by pointing to the
irreparable change caused in the state by preparing the system to test the
new propositions. The rules of quantum logic can be formulated just as
consistently as those of classical logic. Nonetheless, the world of quantum
physics strikes us as highly counterintuitive, more so even than the theory of
relativity. It requires radically new ways of thinking

The mathematical difficulties caused by the noncommutativity have all
been overcome. Indeed, the fluctuations it causes often simplify problems.
For example, the fluctuations of the kinetic energy, the zero-point energy,
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have the effect of weakening the singularity of the Coulomb potential and
eliminating the problem of the collision trajectories, which are so trouble-
some in classical mechanics. Quantum theory guarantees that the time
evolution can be continued uniquely from t = — to t = + for (non-
relativistic) systems with l/r potentials. In a certain sense this potential
energy is only a small perturbation of the kinetic energy, and free particles
can be used as a basis of comparison. Calculations are sometimes much easier
to do in quantum theory than in classical physics; it is possible, for instance,
to evaluate the energy levels of helium with fantastic precision, whereas only
relatively crude estimates can be made for the corresponding classical
problem.

1.2 The Orders of Magnitude of Atomic Systems

One can come to a rough understanding of the characteristics of quantum-
mechanical systems by grafting discreteness and fluctuations of various
observables onto classical mechanics. Their magnitudes depend on Planck's
constant h, which is best thought of as a quantum of angular momentum,
since quantum-mechanically the orbital angular momentum L takes on only
the values lh, I = 0, 1, 2,.... Suppose an electron moves in the Coulomb
field of a nucleus of charge Z; then the energy is

L2 Ze2
E_2m+2,nr2 r

For circular orbits (p,. = 0), quantization of the angular momentum means
that

12h2 Ze2
E(r) = — —. (1.2.2)

At the radius
12L2 j2

where rb is known as the Bohr the energy is minimized, with the
value

(Ze2)2 m —Z2 e2 Z2
E= — , (1.2.4)

L 411 I I

(Balme!'s formula). If! = 0, then we would find r = 0 and E = — except
that the stability of the system is saved by the inequality for the fluctuations
Ap Aq � h/2, the Indeterminacy relation, which follows from (1.1.1). This
makes <pt> > (Ap,)2 h2/r2, the zero-point energy, and hence this part of
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the kinetic energy contributes as much as a centrifugal term with 1 = 1.

This argument actually gives the correct ground-state energy. The reasoning
is of course not a mathematically rigorous deduction from the indeterminacy
relation, as the average of hr could conceivably be large Ar being
small. We shall later derive generalizations of the inequality Ap Aq � h/2,
which will justify the argument.

The virial theorem states that the velocity v ofan electron is given classically
by

mu2 Z2e4m Z e2

2l2h2

The universal speed e2/h is about 1/137 times the speed of light. As Z increases,
the nonrelativistic theory rapidly loses its accuracy. Relativistic corrections,
entering through the increase of the mass and magnetic interactions, are

v2/c2 10 Z they show up as fine structure of the spectral
lines, but their effect becomes pronounced for heavy nuclei, and when Z is
sufficiently greater than 137 the system is not even stable anymore. The
relativistic kinetic energy is + p2c2 — me2, which for large momenta
grows only as cp ch/r. Equation (1.2.2) is accordingly changed to

(1.2.5)

which is no longer bounded below when Z> 137. The question of what
happens for such large Z can only be answered in the relativistic quantum
theory, and lies beyond the scope of this book.

If a second electron is introduced to form a helium-like atom, then the
repulsion of the electrons makes it impossible to solve the problem ana-
lytically. To orient ourselves and to understand the effect of the repulsion, let
us provisionally make some simplifying assumptions. Since an electron
can not be localized well, we can suppose that its charge fills a ball of radius R
homogeneously. Such an electronic cloud would produce an electrostatic
potential

3e e /r\2

V(r) =
— 2R +

, r R

(1.2.6)

r�R
(Figure 1). The potential energy of one electron and the nucleus is conse-
quently ZeV(O) = — 3Ze2/2R. We can gauge the kinetic energy by reference
to the hydrogen atom, for which the following rule of thumb leads to the
correct ground-state energy: An electron cloud having potential energy

— Ze2/rb requires a kinetic energy We set the kinetic energy equal
to 9h2/8mR2, since R = 3rb/2 provides the same amount of potenial energy.
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homogeneous
charge distribution

r

R

3e

2R

Figure 1 The potential of a homogeneous charge distribution.

If the second electron is also a homogeneously charged sphere coinciding
with the first one, then the electronic repulsion is

— fri dr V(r) = (1.2.7)

Therefore we obtain the ratio

Attraction of the electrons to the nucleus I — 2 . (3Ze2/2R) —
28)

Repulsion of the electrons 6e2/5R — 2 '

and thus the total energy is

E(R) = kinetic energy + nuclear attraction + electronic repulsion

9h2 3Ze2 2
(1.2.9)

'This has its minimum at the value R = = RH/(Z — where

E(Rmtn) = —Ry• 2Z2(1
—

(1.2.10)

If Z = 2, then = 5RH/8, and the energy has the value —2Ry =
— 2Ry• 2.56. For such a primitive estimate, this comes impressively near to

V
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the experimentally measured — 2Ry• 2.9, a helium atom is indeed only
about halfas large as a hydrogen atom. Actually, however, even if Z = 1 (Hi
the energy lies somewhat below —Ry while (1.2.10) gives only — flRy. In this
case the picture of two equal spheres is not very apt, since the outer electron
will travel out to large distances. Nevertheless, nonrelativistic quantum
mechanics describes these systems very well.

If there are more than two electrons, then some of them must have spins
in parallel, and Panli's pukiciple is of primary importance for
the spatial configuration of atoms; it says that no two electrons may have
the same position, spin, etc. An atom with N electrons and radius R has a
volume of about R3/N per particle. Electrons insist on private living quarters
of this volume, so will be on the order of the distance to the nearest
neighbor, which is R/N113. This makes the zero-point energy of an electron

as a rough approximation, and its potential energy
— e2Z/R. The minimum energy is attained at h2N2'3/nw2Z,

making the total energy of all the electrons

E(Rmjn)
— eZm

N'13. (1.2.11)

The value R,,,,,, is an average radius, which goes as N"3 for N = Z, making
E N"3. Yet the outermost electrons, which are the important ones for
chemistry, see a screened nuclear charge, and the radii of their orbitals are

Strangely enough, it is not yet known whether the Schrodinger
equation predicts that these radii expand, contract, or remain constant as
Z Their contribution of about 10 eV to the total energy (1.2.1 1), on
the order of MeV for Z 1W, is rather slight, however.

Chemical forces also arise from an energetically optimal compromise
between electrostatic and zero-point energies. History has saddled us with a
misleading phrase for this, exchange forces. Let us now consider the simplest
molecule, that is, a system of two protons and one electron. There is
clearly a negative potential energy if the electron sits right in the middle of the
line between the two protons. But is it possible for the electron's potential
energy to be sufficiently negative to make the total energy less than that of H,
or would its wave-function be too narrow, giving it an excessive zero-pgint
energy? To be more quantitative about this question, let us again imagine
that the electron is a homogeneously charged sphere with the potential
(1.2.6). The radius R is chosen the same as for H, so there is no difference
between this zero-point energy and that of hydrogen. H, we put one
proton at the center of the cloud (Figure 2a), the potential energy is eV(0).
Taking the Coulombic repulsion of the protons into account, we note that the
second proton feels no potential as long as it is outside the cloud, but when it
comes to within a distance r < R its energy increases, because

V(0) + V(r) + � V(0). (1.2.12)
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Figure 2 Two electron distributions assumed for

Hence there is no binding. However, if the two protons are placed dia-
metrically across the center of the electron cloud, at radius r (Figure 2b), then
the total potential energy

e2 3e2 /e2\/r\2 e2
2V(r) +

— —ï + +
(1.2.13)

has the minimum
22

——f— 1214

at r = 22/3 R. This is more negative than V(O), the energy with one proton
outside the sphere, by a factor 1.2, and so we expect to be bound. If the
total energy is now minimized with respect to R, then = RH/i.2 and
E(R.J.J.J) = —(1.2)2Ry. The separation 2r of the protons at the minimum is

= 1.574, which is significantly smaller than the experimental value
24. The binding energy ((1.2)2 — i)Ry also amounts to more than twice
the measured value, so the simple picture is not very accurate.

Finally, consider the molecule H2, again assuming that the H atoms are
spheres. If they do not overlap, then the electrostatic energy is twice that of a
single H atom, and the two separate atoms exert no force on each other.
As the spheres are pushed together, the energy first decreases, since the
repulsion of the electrons is reduced (the energy of two uniformly charged
spheres at a distance r <2R is less than e2/r), while the other contributions
to the energy remain unchanged. In order to find out how muèh energy can
be gained by making the spheres overlap, let us superpose them and place
the protons diametrically across their center at a distance r. As With the
helium atom, the electronic repulsion is 6e2/5r, and hence the total potential
energy is

e2r2 e2
(1.2.15)

a b
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The minimum at r = R/2 can now be compared with 2V(O):

= 1.1. (1.2.16)

The minimum in R is now attained at and the corresponding inter-
protonic distance 3rb/2. 1.1 = l.36rb is in excellent agreement with the actual
distance. The resultant binding energy 2 Ry((1.1)2 — 1) 5.7 eV is con-
sequently also fairly close to the measured energy of dissociation 4.74 eV.
Of course, it is necessary for the electrons in H2 to have antiparallel spins, as
otherwise the exclusion principle would restrict the room they have to move
about in.

One lesson of these rough arguments is that delicate questions like that of
stability depend on small energy differences. It will require highly polished
calculational techniques to reach definitive conclusions.



The Mathematical Formulation
of Quantum Mechanics

2.1 Linear Spaces

There are many surprising aspects to the infinitely many directions in
an infinite-dimensional space. For this reason it is necessary to
invest iqale carefully which of the familiar properties offinite-dimen-
sional spaces carry over unchanged and which do not.

We begin by recollecting the basic definitions and theorems:

Definition (2.1.1)

A linear, or vector, space E v1 over the complex numbers C is a set on
which sums E x E — E: (v, u) v + u = u + v and products with scalars
IE x C -. E: (v, x) —. civ are defined so that (ci1ci2)v, z(v + u) =
civ + ciu, 1• v = v, and (cii + ci2)v = ci1v + cx2v.

Examples (2.1.2)

I. Vectors in
2. Complex n x n matrices.
3. Polynomials in n complex variables.
4. C" the r-times continuously differentiable functions.
5. Analytic functions.

Etc. Sums and products with ci are defined in the usual way.

9
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Remark (2.1.3)

A subset 1E1 c E that is also a vector space is called a subspace of F.
example, (2.1.2; 5) is a subspace of 4, and 3 is a subspace of 5. The quotient
space consists of equivalence classes of vectors whose differences are
elements of IF1. In the absence of a scalar product there is no uniquely defined
decomposition of vectors v E IF such that v = V1 + v2 with v1 E F1. However,
if an IF2 is also specified so that 1E1 + = IF and F2 = {O), then there is
such a decomposition with a unique v2 e IF2; IF is then the sum ofE1 and IF2 ,and
IF2 is a complement of IF1. General sums of linear spaces can be defined in the
same manner. According to the axiom of choice, it is always possible, by an
inductive argument, to find a Hamel basis y 0, such that every vector
can be written uniquely as

v=
finite

Unfortunately, for infinite-dimensional spaces the set I is usually uncount-
able, and the Hamel basis is of little practical significance. The cardinality of
II is known as the algebraic dimension of the space.

Definition (2.1.4)

A normal linear space is a vector space on which there is defined a norm
mapping IF fr,v — such that = lvii, liv + ull � livil + Hull,
and lvii = Oiffv = 0.

Examples (2.1.5)

I. IE = = (v1, V2,...,Vn), Iit'iip = 1 � P <cc' =

2. IF = ii x n matrices, m = limil = = (Tr mm)"2.
3. F = n x nmatrices, ilmii2 =
4. Polynomials P(z1) for z = (z1,.. . ,;) in a compact set K C', IIP1I =

5. The r-times continuously differentiable functions f(z,) on K, 11111
lf(z1)I.

6. Given a measure p on K, it defines a norm Ill = [J dplfl"]", I �
p < CX). (We use the word measure to mean positive measure.)
{f: < cc).

Remarks (2.1.6)

1. As p cc, the norm Ill approaches the norm of Example 5, which is
denoted by Ill II

2. If p is a sum of n point masses, then the space of Example 6 is the same as
that of Example I. If n is infinite, it is denoted by 1".
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3. As we see, different norms can be given to the same space, while, on the
other hand, a space must sometimes be restricted for a norm to be finite
on all of it.

Definition (2.1.7)

If a norm on F satisfies the parallelogram law Ilu + vU2 + Ilu — vU2 =
211u02 + 2HvJl2, then £ is a pre-Hllbert space. In that case there exists a
scalar product

F x
ã<ffu + v112 — fju — v112 — ullu + 1v112 + iiu — 1v112),

which has the properties

IIvllh = <vIv> <vlu> = <ulv>*,

= + W> = <utv> + (ulw>,

and = Oiffv = 0.

£xamples (2.1.8)

Of Examples (2.1.5), the only pre-Hilbert spaces (for n> 1) are Example I
with p = Z 2, and Example 6 with p 2.

Remarks (2.1.9)

1. Only the length of a vector is defined on a general formed linear space;
on a pre-Hilbert space it is also known when two vectors are orthogonal.
Pre-Hilbert spaces therefore conform better to our geometric intuition;
by Problem 10,

(i) <UI v>I � hull lvii (the Caucliy—Sckwarz inequality);
(ii) <UI v) = 0 flu + v 112 = II u 112 + vfl2 (Pythagoras's law).

2. If 1E1 and are two pre-Hilbert spaces, then F [2 can be made
into a pre-Hilbert space, the Hubert sum, by setting <(u1, u2)i(v,, v2)> =
<u,iv,> + <u2(v2>. The vectors of become orthogonal to those of

in the new space. Conversely, given a subspace F, F and defining
(v e F: (vlu> = 0 for all u E it follows that Ff {0}. It is

tempting to single [tout as the complement ofF,. However, it can happen
for infinite-dimensional spaces that F, $ Ft F: Let F, c 12 consist of
the vectors having only finite many nonzero components; then Ft
but F, P. This is related to the fact, which we shall feturn to shortly,
that in infinitely many dimensions not every linear subspace is topo-
logically closed.
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3. The tensor product 0 E2 and the antisymmetric tensor product
IF1 A IF2 can be defined as for finite-dimensional spaces (I: §2.4), and
scalar product in these constructions is multiplicative: <v1 0 v2 ui 0 u2>
= <VIIUI><t)21U2>.

4. If two norms satisfy II � all 112 � b II IL for a > 0, b> I, then they are
said to be equivalent. They clearly produce the same topology (see below).
Remarkably, all norms on finite-dimensional spaces are equivalent.

5. A mapping a: IF —. F satisfying lIaxfl = Hxll for all x E F is called an
Isometry. We shall reserve the term Isomorphism of normed spaces for a
linear, isometric bijection. -

6. Conversely, a scalar product <UI v> with the properties (2.1.7) defines a
norm lix 12 <xix> that obeys the parallelogram law.

Although the dimension of the space has only played a secondary role in
the algebraic rules discussed above, infinite dimensionality disrupts the
topological properties. These properties can be studied by using the norm
(2.1.4), which induces a metric topology on a vector space with the distance
function d(u, v) defined as flu — vlI. The neighborhood bases of vectors
v IF are {v' e IF: Iv — v'IJ � Definition (2.1.4) guarantees that addition
and multiplication are continuous in this topology (Problem 3), i.e., the limit
of sums or products equals the sum or product of the limits. There remains one
obstacle to the use of the methods of classical analysis, in that not every
Cauchy sequence (i.e., for all e —'0 there exists an N such that liv, — � s
for all n, m> N) converges. In Example (2.1.5; 4), any continuous function is
a limit of a Cauchy sequence of polynomials. Thus there are Cauchy se-
quences that do not converge in this space. In order to exclude such difficulties
with limits, we make

DefinitIon (2.1.10)

A normed space is complete if every Cauchy sequence converges. A com-
plete, normed, linear space (resp. pre-Hilbert space) is a Banach (resp.
Hubert) space.

Examples (2.1.11)

Of Examples (2.1.5), only 1,2, 3, 5 with r = 0, and 6 are complete.

Remarks (2.1.12)

1. It is crucial that the limit exists as an element of the space in question.
One can always complete spaces by appending all the limiting elements,

this can occasionally force one to deal with queer objects. For instance,
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if the polynomials (2.1.5; 4) are completed in the norm of (2.1.5; 6), then
the resulting space L'(K, p) has elements that are not functions, but
equivalence classes of functions differing on null sets.

2. One does not naturally have a good intuition about the concept of com-
pleteness, since finite-dimensional spaces are automatically complete.
It should be distinguished from the notion of closure: Like every topo-
logical space, even an incomplete space is closed. It merely fails to be closed
as a subspace of its completion, which is then its closure; in other words,
it is dense in its completion.

3. Since convergent infinite sums are now defined and their limits exist,
it is possible to introduce smaller bases than the Hamel basis. A set of
vectors e 1 is said to be total provided that the set of its finite linear
combinations is dense in F. If I is countable, then F is separable (as a
topological space).

4. By the axiom of choice, the e, can even be chosen orthonormal in a Hilbert
space. If this has been done and v = c7e7, C7 = <e7Iv>, then 11v112 =

Etel Ic,12, and the Hubert space can be considered as L2(l, ii), where
assigns every element of I the measure 1. III is countable, then the Hubert
space is isomorphic to an ,2 space. If is uncountable, then the countable
sets and their complements constitute the measurable sets, and the
resulting Hilbert space is not separable.

5. Every vector of a Hubert space can be written in an orthogonal basis as a
convergent infinite sum, v = L e,<e7Iv>, and accordingly the sum
(2.1.9; 2)01 Hubert spaces can easily be extended to infinite sums (though
more care must be taken with the construction of infinite tensor products—
see volume IV). However, if one approximates a vector v with an arbitrary
total set say = liv — � 1/n, then it may be necessary
to keep changing some of the c's substantially as n -. and the ex-
pansion v = 1

cjej may not exist. For instance, in ,2 the vectors

e.tb po.lIion

are total. If we expand v = (1, f,..., 1/n, 0, 0,...) then
1),, = — — e2 — — + ne1. Thus v can be approximated
arbitrarily well by the e's, while the formal limit v = — e1 — e2 —

+ does not make sense. In a general Banach space, where there is
not an orthogonal basis at one's disposal, it is therefore unclear whether
there exists a basis in which every vector can be written as a convergent
sum. If there is a set of vectors in terms of which any vector can be written
as a convergent sum, we shall call it complete. These distinctions may be
somewhat unfamiliar, since for n vectors of linearly independent
total complete. In an infinite-dimensional space the implications go
only one way; an infinite set of linearly independent vectors need not be
total, and a total set need not be complete. For instance, 1)
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is total and complete in L2((0, 2ir), dx), but total and incomplete in the
Banach space of continuous, periodic functions on (0, 2ir) with the sup-
norm.

Definition (2.1.13)

A linear functional w on a vector space E is a mapping CE —. C: v —, (wlv)
such that (wIv1 + v2) = (wJv1) + (wIv2) and (wllxv) = for a E C.

Examples (2.1.14)

In Examples (2.1.2) the linear functionals are

1. Scalar products with a vector.
2. Traces of the product of a matrix with some other matrix.

Linear functionals on the other examples include integrals of the functions by
distributions and many other things. (See (2.2:19; 3).)

Remarks (2.1.15)

1. The space of linear functionals on a vector space is called its algebraic dual
space. It has a natural linear structure, (w1 + wily) = (w1lv) + (w2lv)
and = x*(wlv). The dual space of tir can be identified with
However, infinite-dimensional spaces are not algebraically self-dual, and
for that reason we introduce the abstract definition (2.1.13).

2. The concept defined in (2.1.13) is somewhat too general for our purposes,
since the mapping v -. (w v) is automatically continuous only for finite-
dimensional spaces (Examples 1 and 2). For example, consider i1
{v = (v1, v2, v3, . . .): lvii L1v11 < co} with Hamel basis

{e1 = (0,0,..., 1,0,...,0)},
,—ih position

augmented with some other vectors è1 to take care of vectors with infinitely
many components. Every vector can be written as a finite sum, v =

finite C1 e1 + ë,, If we define (w I v) = Ic1, which con-
verges because only finitely many c1 are nonzero, then w is obviously a
linear functional, but it is not continuous. In fact, it is not even closed, i.e.,
there exists a sequence —. 0 such that (w I 1 (w 0) = 0; e.g., take

n-hi position

This phenomenon can be understood as meaning that the steepness of w
in the f-th direction is i; as i gets larger, it corresponds to a more nearly
vertical plane. The formal reason for it is again that infinite-dimensional
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spaces can have nonclosed linear subspaces. The kernel of w, defined as
t': (w = 0), is a subspace, and if w were continuous, it would be closed,

since it is the inverse image of the point zero. In this case, however, it
contains all finite linear combinations of the vectors

Vnm (0, . . . , 0, 1, 0, . . , n/rn, 0,. .

is-lit position position

and it is thus dense in 1'. It is desirable to exclude such pathologies, which
is the motivation for

DefInition (2.1.16)

The linear space of the continuous linear functionals of a Banach space F
is called its dual space.

Examples (2.1.17)

As mentioned above, and the space of the n x n matrices are their own
duals. More generally, all Hubert spaces are self-dual; by a theorem ci
Riesz and [3] any Continuous linear functional on f° can be written as
a scalar product v —+ with a unique w = e .*'. Generalizing
further, (L"(M, it))' = p) for I/p + l/q = 1, 1 <p < and (L')'

though, for infinite-dimensional spaces (Lw)' is actually larger than L'.
The dual space of the continuous functions on a compact set, with the norm

)f(z)I consists of the (not necessarily positive) measures on K.

Remark (2. 1. 18)

These statements depend critically on the completeness of the spaces. If we
consider, for instance, the pre-Hilbert space F of the vectors of 12 having
finitely many nonzero components, then (vi) vt/i is a continuous
linear functional that can not be written as <wlv> for we IE, since

The dual space IE' is also a linear space, so the next task is to topologize it.

DefInition (2.1.19)

The neighborhood bases of vectors w e F' will be defined alternatively by

UV,E(w) {w' F': — < c), v e F, re

and by

= fl (2.1.20)
= I
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These produce respectively the weak * and the strong topology; the latter
is equivalent to the topology given by the norm

liwil = sup (2.1.21)

which makes F' a Banach space (Problem 4). Its dual space is denoted F",
and F" F. If F" = F elements of F" with those of F under the
natural injection), then F is said to be reflexive.

Examples (2.1.22)

Spaces with E' = (,such as Hubert spaces, are clearly reflexive. As shown
in Example (2.1.17), 1/is reflexive if! <p < but not if p = 1 or since
F can not be reflexive unless F' is.

Remarks (2.1.23)

1. It is also possible to topologize F weakly, by taking

= {v' E F: I(wlv — v')f WE E', c

It is a corollary of the Hahn—Banach theorem that this is a Hausdorif
topology. It is compatible with linearity in the sense that sums of vectors
and multiplication by scalars are continuous mappings.

2. As its name suggests, the weak topology is weaker than the strong topology;
in the weak topology the mapping w IlwII is not continuous, but only
lower semicontinuous, as the supremum of continuous mappings. The
weakening of the topology produces additional compact sets: in an infinite-
dimensional Banach space the unit ball {v: ((vII � I } fails to be norm-
compact, but it is weak-' compact with respect to the space of which it is
the dual (if this predual exists). Hence, if the Banach space is reflective, its
unit ball is weak-'-compact (cf. Problem 7).

3. The weak topologies do not have countable neighborhood bases, and they
can not be specified in terms of sequences; they require instead nets or
filters. This means that the concepts of completeness and sequential
completeness, and compactness and sequential compactness, are not
identical. Hilbert spaces are weakly sequentially complete, but not
weakly complete. Another inconvenience is that not every point of
accumulation is attainable as the limit of a convergent sequence (Problem
8). Fortunately, the bounded sets, i.e., (v: IIvfl � M} in a Banach space with
a separable dual space are a metrizable space when weakly topologized.
For metric spaces the above notions coincide, and if only bounded sets are
considered, these complications can be ignored.

Linear functionals are a special case of linear operators:
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DefinitIon (2.1.24)

We let .cf(E, F.) denote the space of continuoás linear mappings of the Banach
space F into the Banach space .F. If E = 1, define 2'(E, [). The
elements a e £9(E, F) are also called

'Examples (2.1.25)

t. 2'(F,C)=I'.
2. &(CM, C) consists of the n x m matrices.

Remarks (2.1.26)

1. 2(1, is a vector space, as (E for all E C and
2(1, F).

2. A linear mapping a is boanded 1ff it sends bounded sets to bounded sets,
and thus < For linear mappings the properties

(1) Continuous,
(ii) continuous at the origin,

(iii) bQunded

are all equivalent (Problem 11).
3. The transpose or real, finite-dimensional matrix has an infinite-di-

mensional generalization: a 2(1, F) induces a mapping a*: F' —, 1',
known as the adjolut operatof, since for / e F' the mapping I -. C by
x (y' ax) is continuous and linear, and consequently it guarantees the
existence of exactly one x' e I' such that = Now define

ay'. It is trivial to verify that the operator a Is linear, and it is
continUous in the norm topology (Problem 5).

There are several ways to topologize 2(1, F).

Definition (2.1.27)

The neighborhood bases of elements a .9'(E, F) can be taken alternatively

Uy.x,e(a) = {a': Ky'I(a — < E}

Ux.e(a) = {a': II(a — a')xiIF < = fl
Hy,II = I

(Je(a) = fl
jixil = 1
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The topologies are respectively called weak, strong, and uniform, and the
associated kinds of convergence wilt be denoted by—s., —', and (elsewhere
often by w-lim, s-Jim, and urn).

Remarks (2.1.28)

1. The uniform topology corresponds to the norm hail
which makes 2(LE, IF) a Banach space (Problem 4).

2. Even though IF and IF are metrizable, the strong and weak topologies do not
have countable neighborhood bases (cf. Problem 9), and only their re-
strictions to norm-bounded sets are metrizable. They are compatible with
linearity, but not with the algebraic structure; multiplication is not neces-
sarily a continuous mapping 2 x 2 2. However, it is sequentially
continuous in the topologies (weak) x. (strong) —p (weak)
and (strong) x (strong) (strong). Of course, multi-
plication in one factor alone is continuous in all topologies.

3. For reflexive Banach spaces E and F the adjoint operation (2.1.26; 3)
2(IE, IF) 2(F', FE'): a a* is a continuous mapping in the norm
topology because flail = Ila*hi, and it is obviously continuous in the weak
topology; yet it is not continuous in the strong topology. We shall later
become acquainted with examples for which —, Q but only Cr'.

4. The origin of many of the technical complications of quantum mechanics
is that the norm topology of operators is too restrictive; one is often
interested in a limiting operator of a sequence or family of operators that
is not convergent in the norm topology. While weaker limits exist more
frequently, the algebraic operations are not always continuous in the
weaker topologies, so great care must be taken in passing to a limit.

5. If a Hilbert space ..*° converges weakly to x e and =
lixil, then the sequence is also strongly convergent: — X> =
iix,,i12 + 11x1i2 — 2 —'0. Hence the strong and weak topologies
are equivalent for unitary operators. if unitary operators converge weakly
but not strongly, the limit will not be unitary.

Problems (2.1.29)

I. Show that the space is not separable. (Hint: There exists an uncountable set of
elements t'1, i e 0. such that = I and i j.)

2. Show that the usual operator norm for operators on a Hubert space satisfies the
triangle inequality.

3. Prose the triangle inequality for the spaces U, p � I. (Hint: the inequality xy �
+ v � 0 and l'p + l/q I implies Holders inequality, iJfq dpi �� j where (5 If Next show that =

supq jIfgfdp and conclude that 1Ff + � iifli,, + which is known
as Minkowski's inequality.
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4. Let IF and F be two Banach spaces. Show that the space ofconhinuous linear mappings
IF —, F (with the uniform topology) is also a Banach space. Moreover, show that if
F is a normed space but not complete, then 2'(IE, F) is likewise not complete.

5. Let a: IF F be a continuous linear mapping of two Hubert spaces. Show that
IF IF is also Continuous.

6. Prove that on a Hilbert space IF flaxil = iIaxii lxii for all xc IF 1ff aa* = a*a = 1.

7. Show that the unit ball in a separable Hubert space is weakly sequentially
compact. Conclude that the Hubert cube c 12: {v = � I/n) is even
strongly (E norm) compact.

8. Show that an infinite-dimensional Hubert space is not metrizable in the weak
topology. (Hint: Consider the vectors xn = (0,0 0,. ..) in ,2 This set has a
point of accumulation at 0, but it contains no convergent subsequences, which is
impossible in a metric topological space.)

9. Show that in the weak topology, compactness does not imply sequential compactness
(except when the Hilbert space is separable).

10. Prove the Cauchy-Schwarz inequality l<v1iv2>l � 11u1i1 iv2li, and show that
<v1 1v2>I iit'2I iffy1 = zv2 for some cC (and v, 0).

11. Show the equivalence of the properties of (2.1.26: 2).

Solutions (2.1.30)

1. Let v1 be the vectors of the form (c1, c2 ,,, . . .) with = I or 0. This set has the
power of the continuum, and jiv1Ii = sup jc,,l = I (unless 0) and hr1 — � I,
unless all the coefficients of v, and Vj are equal. If there existed a countable dense set
A c Awith ii", — � — v11� I,
the mapping .-. a, would be one-to-one, and the set of v1 would have only the
cardinality of a subset of A.

2. ia + bii = lax + hxFI � iiaxii + ihhxil = au + ulbii.

3. The inequality is trivial for p 1, so assume p > 1. For � 0, t � fP/p + I/q
(proof: find the minimum of the function q(r) = — r), and if r = this
reads xy < + Let fand g be two functions such that

= = 1.

Since

JlI9idiu and I.

Holder's inequality is proven in this special case. The general case follows by
consideringji /1, and g/igiq in place offand g. Furthermore,

= JiJgu(IP with g =



20 2 The Mathematical Formulation of Quantum Mechanics

since

JIfgldsu = 11111,, flgl) = if in: = 1.

Hence

sup 51(1+ � sup JifhIdii + sup flohIdsu = Jill!, + ugh,.
IkII,1 k I'

4. The vector-space properties arc trivial. As for the norm, let a: F F,

flax fi
((alt

x.( HX

Then IJAaII and Ila+ bit � flaH +flbfl as in Problem Finally, l(aO =
0 (taxi! = 0 for all x E F ax = 0 a 0. As for completeness, let a,, be a
Cauchy sequence; then a,,x is also a Cauchy sequence in F for all x e F, and thus
there exists a limit Jim a,x = ax e F. This mapping is linear and bounded (since
!ia,Ii C < for all it, fla,,xh! � which implies flaxfl � Cflxfl), and ffa — a,,(J

= supliax — a,,xh(./flxfl —.0. The prootdepends in an essential way on the complete-
ness of F. Remark: The Hahn-Banach theorem prevents g(E, F) from being the
trivial space (0}.

5. ((air = sup Ilaxil = sup I<ylax>I = sup I<ayIx>I =
JxII —1 lIxil —

IIpII

(This is also true when I and F are only assumed to be Banach spaces.)

6. aa = aa = 1 <xhaa'x> = ila'x02 (xlaax>= hiaxit2 = hIxhi2.

(taxi! = flxiJ = <xix> aa = 1,

and likewise

iha'xii = (x(f = 1.

(4<ylax> = <x + yla(x + <x — yIa(x —
+ i<x + iyla(x + ly)) — i<x — iy(a(x —

it therefore follows from <xlax> = Ofor all x that (yhax> = 0 for all x andy, which
implies that a = 0.)

7. Let (x,) be a total orthonormal set. Since the matrix elements (x,,l a sequence
E :4(.W') are bounded in absolute value by flx,(( flx,,j( ilaJ, for every it and in

there is a point of accumulation a,,,,. Let us define a E by ax,, a,,,x, and
note that a, i.e., —. (ylax) for all y, xc .*'; this is because for all a > 0,
x and y can be written as c,,x,, + ,7 with <a, and the convergence of the
finite sum follows by definition, so the convergence of general matrix elements is
shown to within arbitrary accuracy, since sup,, ila,,hi < 00. We next show that the
strong and weak topologies are equivalent on the HUbert cube: Let v,and for

1112 <aandifn > Nthen

E —

— < Sc, and therefore vt" —. v. The Hilbert cube is thus strongly
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sequentially compact and, since the strong topology on a Hubert space is a metric
topology, also strongly compact.

8. A weak neighborhood of 0 has the form U = (x:I<v"'Ix>t + I<v'2'Ix>I + +
s}. A neighborhood U necessarilycontains some as otherwise

+ + > r for all n, which would mean that + ... +
> and + + = while, on the other hand, this

sum + ... + < However, it is not true that there is an N
such that E U for all n > N. Despite the foregoing, there can not be a weakly
convergent subsequence of of for consider the vector v whose n10.-th com-

ponent is r and whose other components are all 0. Then = if
k = 10', and otherwise 0; but n& � k = 10'.

9. General theorems guarantee that the unit bait is always compact in the weak
operator topology. Let us now investigate the nonseparable Hubert spate $ =
L2([0, 1), jz), where is the measure assigning every point the measure I. All of the
multiplication operators multiplying any function q,,, a "saw-
tooth" function going linearly from 0 to I in each interval [kilo", (k + 1)110"],
k E Z L0, tO"), have norm 1. But, even so, for each subsequence there exists a
point x at which diverges, and consequently the sequence of operatorsis
not weakly sequentially compact.

10. Let v'2 = v2 exp( i arg<v1 u2>). Then J <v1 Ic2> I = <V1 an4

— Itv'2Hv1112 = 2Hv11121v'2112 — 211v,II liv i(vlJv'2> � 0
that � 11v111 = 11v111 11v216. There can be equality only if —

= 0, i.e., v1 = zv2 with z (Hv11/Hv2H)exp(—i arg<v1 1v2>).

II. (ii) (iii): Property (ii) implies that for all 6 there exists , such that <
IiaxiI <6, which implies Hall = SUP((XIIr iaxi/Iixll < 6/it, which
(iii) (1): For all 5 3 £ 5/hail such that for all x' e

lix. — x'il <e lax — ax'hi � Hall . Jx — xii � 5.

(i) _ (ii) is trivial.

2.2 Algebras -

C* and W* algebras are gene\ alizations of algebras of matrices and
functions. Their axioms are the basic algebraic and topological
properties of these familiar algebras.

Definition (2.2.1)

An algebra d is a vector space on which there is a mapping d x d —'
called multiplication, having the properties

a(b1 + b2) = ab1 + ab2, a(bc) = (ab)c,

a(ccb) = czab, a, b, b1 d, e C.
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Additionally, we assume the existence of a unit, or Identity, element 1 such
that a 1 = I a = a for all a e d; if this element should ever be lacking. we
shall refer to .1 as an algebra without a unit. If ab = ba for all a and b e d,
then d is Ahelian.

Examples (2.2.2)

All ofExamples (2.1.2) are algebras when multiplication is defined component-
wise for vectors, pointwise for functions, and in the usual way for matrices.
These multiplication rules make all of them Abelian except for the matrices.
The spaces U, p < x, are not generally algebras; for examples, x1'2
L1([Q, 1), dx) but x' L1([O, 1], dx). The spaces I' are algebras, but they
have no unit if p < The space 10 0) is a
subalgebra of without a unit.

Remark (2.2.3)

Every subspace of a vector space is the kernel of a homomorphism it, i.e.,
it is '(0). The kernels of homomorphisms of an algebra are only its
mo-sided Ideals, i.e:, subalgebras d for which

a e d. The quotient space with respect to a two-sided ideal is another
algebra, known as the quollcut algebra.

Since we work with the field of the complex numbers, there is another
operation to axiomatize, complex conjugation:

DellnItIon(2.2.4)

A * algebra is an algebra on which there is a mapping : d —. .1, called
conjugation, having the properties (ab) =b*a*; (a + b)' a +
(aa)* = for a C; and = a. The element a' is known as the adjoint
ofa. . •

Examples (2.2.5)

If * is complex conjugation or, in the case of matrices, Hermitian conjuga-
tion, then all of Examples (2.1.2) except for the analytic functiona are
* algcbras.

Remark (2.2.6)

It is at this point that complex numbers first become important. Anyone
having philosophical objections to the occurrence of complex numbers in
what ultimately pertains only to real physical measurements can just as
well represent i, the square root of — I, as the real matrix

(01
'i_I 0
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or else postulate the existence of an abstract element I e d with the properties
V = —1,1' = —1,andla = alforalla.

Since matrices are the prototype• of a * algebra, its elements are often
referred to as operators, and the terminology follows that of matrices:

DefinItion (2.2.7)

a is normal if aa = aa
a is Hermitlan if a = a
aisunltary if
a a projectiout if a = aS = a2

a
is the Inverse ofb iffab = ba = 1.

Remarks (2.2.8)

1. The relationships among these sets of operators are depicted in the
diagram below:

2. Although in a finite-dimensional space ab = 1 implies ba 1, this is
not true in general. A counterexample is given by the infinite matrix

00...
o 0 and b=a*10...

Hence the property ab = I is not sufficient to make a the inverse of b.
The Definitions (2.2.7) easily imply the -

tin this book the word "projection" will be understood as meaning "orthogonal projection."

01
00
00

0

0
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ProposItions (2.2.9)

1. — a
2. (ab)1 =b'a'
3. = (a1)5
4. The uniary elements form a subgroup of the group of invertible elements.

The next subject is the topology of the algebra, which must conform with
the algebraic properties discussed above. This will allow us to generalize
the analytic rules we are familiar with for matrices.

Definition (2.2.10)

AC5 algebra is at the same time a * algebra and a Banach space, the norm of
which satisfies

(1) labll � hail hlbil
(ii) 11a511 = Hall

(iii) llaa5 ii = Hall Ha* H
(iv) Jili = 1.

Examples (2.2.11)

Recall Examples (2.1.5):

I. This is a C5 algebra oàly if p because (iii) is violated for smaller p.
2. This is not a C algebra. For instance, if

/1 i\ 12 i\ (5 3i\
a

= i)' aa5
= i)' aa5aa5

= 2)'

then = Ti aa5aa5 = 7 = (Tr 9

3. This is a C5 algebra, as in fact is the more general (2.1.24), .*' a
Hubert space, and with the norm of (2.1.28; 1), because

hia5ahI = sup = sup <xlaax>
lxii 1 lxii I

= sup hlaxhl2 = Hall2,
iixll = 1

along with (i) and (ii), implies (iii).

4. The space of this example is not complete.
5. In this example the space is complete only if r = 0, in which case it is a C5

algebra.
t. not an algebra for p < If p = it is a C5 algebra.
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Remarks (2.2.12)

1. Properties (1) and (ii) guarantee that multiplication and conjugation are
continuous (Problem 3). Property (iii) roots the topology so deeply in the
algebraic structure that (algebraic) homomorphisms of C algebras are
automatically continuous (Problem 2). Property (iv) is just a convenient
normalization.

2. It may happen that Property (iii) is satisfied by one norm and violated by
another, although both norms produce the same topology. This occurs in
Examples (2.2.11; 2) and (2.2.11; 3) as well as for the continuous functions
on [0, 1] with the norms flf = lf(x)t and

II II . He � e111 . The norm II .1 yields a
algebra, but It does not, since II(ex — = (1 — l/e)2 � II(ex — =
e + lie — 2. In such Situations we shall always choose the norm that
satisfies (2.2.10)

3. C\{0) is an open set, and {zeC:IzI = 1) and {zeC:Imz = 0) are
closed. Because both conjugation () and multiplication are continuous,
these statements have the generalizations that the set of invertible elements
of a C algebra is open, and that the unitary and the Hermitian elements
form closed sets (Problem 4). Similarly, the sets of normal, positive, and
projection operators are closed, and hence norm-limits of these types of
operators are of the same types.

Given an operator a, it is always possible to get an invertible operator by
adding some multiple of the identity 1 to it.

Definition (2.2.13)

The resolvent set of a d is {z E C: (a — exists}, and its complement
Sp(a) is known as the spectrum.

Examples (2.2.14)

The spectrum of a matrix consists of its eigenvalues, and the spectrum of an
ordinary function is its range.

Remarks (2.2.15)

1. In (2.2.13) it is essential that (a — z) 1 exist as an element of d, and not in
some other sense. Moreover, if d is a subalgebra of some other algebra
then one must specify whether (a — z) - 1 is to exist in d or Fortunately,
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if d is a algebra, then the inverse of a — z belongs to the C* algebra
generated by a (that is, the norm-closure of the polynomials in a and a*),
and so one need üot specify which algtbra the inverse belongs to.

2. If (zj> then (z — a)' can be expanded as a convergent series
(a/zY', and therefore Sp(a) c {z e C: � Hal!). In particular,

all elements such that ha — 1 lJ < 1 are invertible, The mapping C —'d: z (a — z)' is actually analytic on the resolvent set, which is always
open, by Problem 7.

3. It is easy to show that Sp(a*) = Sp(a) and Sp(P(a)) = P(Sp(a)) for
any polynomial P and a E d. This implies (Problem 5) that the spectra of
the unitary, Hermitian, positive, and projection operators lie respectively
on the unit circle, the real axis, the positive real axis, and the set {O, 1).
If the operator is normal, the fact that the spectrum belongs to one of these
sets implies that the operator belongs to the appropriate class (2.2.7)
(Problem 5).

4. As the term "spectrum" suggests, the values of an element
the values it can attain in a certain sense; we shall see in (2.2.31; 2)

that the convex combinations of the spectral values are all the possible
expectation values of the element (2.2.18).

Positivity is a useful property in analysis, and it provides an algebra with
an additional associative structure:

Definltlôó(2.2.l6)

The algebra d has apartlal ordering a � b defined as meaning that a — b is
positive.

Remarks (2.2.17)

1. As remarked in (2.2.15; 3), positivity is synonymous with having a positive
spectrum. According to (2.2.15; 4) the sum of two positive elements is
positive; since expectation values are additive. Hence if a � b and b � c,
then a � c. If a. � 0 and — a � 0, then a — 0, since 0 is the only Hermitian
element a with sp(a) = {O}. Thus a � band b � a implies a = b. Since it is
also true that a � a, the relationship � is a partial ordering. Since positive
operators are Hermitian, one might hope to extend the definition of � to
all Hermitian elements, but it fails to be a total ordering on this set:
Consider

/1 0\ /0 0

o)
and

which do not stand in this ordering relationship to each other.
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2. Although it is true that � is compatible with the linear structure of .0
in the sense that � difficulties arise with products
because the product of two Hermitian elements is not generally Hermitian.
But even if it is, there remains the inconvenience that inequalities can not
be multiplied, a � b a2 � b2 (Problem 10). Yet inverses of ordered
positive operators have a definite ordering, a � b > 0 b1 � a1 > 0,
and as a consequence it is possible to show monotonicity of certain

• functions of operators with respect to the ordering � (Problem 11).
Finally, note that a b clearly implies cac � cbc for any c.

3. The partial ordering is compatible with the topological structure; it
• commutes with the taking of limits.
4. Positivity is preserved by homomorphisms ir: 0' —* of algebras:

n(aa) = lt(a)n(a) � 0, and therefore a � b � Linear map-
pings of C algebras do not generally preserve positivity.

DefinItion (2.2. IS)

A linear functional f is positive ifff(aa) � 0 for all a e .0'. If, moreover,
J(1)= 1, then f is called a state, andJ(a) is the expectation value of a in
the statef

Examples (2.2.19)

1. Positive measures on function algebras are linear functionals.
Probability measures are states.

2. The mapping m —.. Tr pm on n x i'z matrices m is positive if p is positive
in the sense that all of its eigenvalues are positive. If in addition Tr p = 1,

then it is a state.
3. On the C subalgebra {v exists} of functional f(v)

v, is a state.

Remarks (2.2.20)

1. Definition (2.2.18) does not require i.e., the statement that there
exists M e P' such that If(a)I <MIIaW for all a ed, because it follows
automatically. It is even true f(bab)I � IIallf(b*b) and, as a
generalization of the Cauchy—Schwarz inequality,

tf(b*a)12 � f(bb)f(aa)
(Problem 8). It is consequently always possible to normalize a positive
linear functional to be a state, = If(a)I/IIaII I.

2. Convex combinations of states are states. States that can not be written
as convex combinations of other states are called extremal, or pure. in
Examples (2.2.19), integrals with delta fundtions and traces with one-
dimensional projections are pure states. A theorem of Krein and Milman

\.
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[1, 12.15] says that our naive idea of convex, compact sets is valid for
states; there must exist extremal points, and their convex combinations
are dense in the space of states. Choquet's theorem allows any state to be
written as an integral over pure states, though the measure used is unique
only if the algebra is Abelian. For example, the state m — (1/n)Tr m of
n x n matrices can be written as where the e1 are
any orthonormal system. The state in <ek rne*> (no sum) is pure, so
there are many ways to write (1/n)Tr as a convex combination of pure
states. If the space of states is pictured as a ball, then the pure states will
constitute its surface. For Abelian algebras this ball becomes instead a
simplex, only the corners of which are extremal. The extreinal points of
infinite-dimensional simplices may form a connected, closed set, like the
surface of a ball. For instance, consider the Abelian C* algebra of con-
tinuous functions on a compact set. The states are probability measures,
and the extremal states are Dirac 5 functions. They form a
nected, closed set (see (2.2.28)), though their convex combinations are

dense in the set of states.
3. There exist pure states for which the inequality If(a)I � flafl of Remark 1

becomes an equality. This can be seen as follows: Given any a E d, one
can construct a state for whichf(a*a) = Dali2, by + IJa*a) =

+ fluIaII2 on the subspace spanned by 1 and a*a. It is easy to convince
oneself that this is a positive functional withf(1) = 1 and f(a*a) = hail2.
According to theorems of Hahn and Banach and of Krein, the functional
can be extended to all of d (but not necessarily uniquely, of course).
Now let be the convex set of states such that f(a*a) = hail2. The
extremal points of Z4 are pure, since iff = + (1 — 1)12, 0 < 1,
then we would find Dali2 = + (1 — which implies that
f(a*a) = hail2, andfe would not be extremal.

4. Another blemish afflicting positive linear functionals is that the supremum
of linear functionats over many elements may not be the same as the Jinear
functional of the maximal element using the partial ordering �. For
example, if

(1, 1,. . . , 1,0,0,.. .)
pozition

then with the state of Example (2.2.19; 3), = 0, but with v
(1, 1, 1,. . .), f(v) = 1. (Of course, 74 v.)

The states suffering these afflictions can be set aside by a

DefinitIon (2.2.21)

An ascending fflterF is a norm-bounded subset of d in which any two elements
are both exceeded (in the sense of �) by some element. The supremum sup F
is the smallest element of d with h � sup F for all a e F. A statef is normal
jffSUPaEF f(a) f(sup F) for every ascending filter F.
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If the supre mum always exists in d, and there are also sufficiently
normal states at hand, then the algebra has such nice properties that it merits a
special name.

DefinItion (2.2.22)

A W* algebra.is a C* algebra in which

(1) every ascending filter achieves its supremuin in d; and
(ii) for all nonzero elements a E d, there exists a normal

Examples (2.2.23)

Matrices are W* algebras, while the continuous functions on a compact set
c are not, because their supremum need not be continuous. The set of

bounded, measurable functions d"x) is a W algebra. We saw earlier
that it is a C algebra, and (i) is satisfied since monotonic, bounded sequences
converge in As for (ii), positive, normalized functions in L' c
provide the required normal states.

Remarks (2.2.24)

1. Although the W* property is defined with reference only to the ordering
structure of the algebra, it will have both algebraic and topological
consequences.

2. Integration theory relies on classes of functions that allow the taking of
suprema. The permutability with integration is a fundamental character-
istic of measures, distinguishing them from such things as abstract
averages. With W* algebras much ot measure theory can be generalized
to the noncommutative case.

3. In atomic physics we shall primarily be concerned with the W* algebra
and the reader interested only in these problems need not worry

much about the distinctions mentioned above. It is not fourth
volume, Quantum Mechanics of Large Systems, that these notions will
become important in the limit of infinite systems.

Because C is such a trivial space, the homomorphisms of C* algebras into
it are particularly simple. They are only of interest for Abelian C' algebras,
for which they completely determine the algebra's structure.

DefinItion (2.2.25)

ito algebraic '.homomorphism (i.e., x(aa + = + flx(b), =
and = for all a, b E d and a, e C) of an Abelian C'

algebra into C is called a character. The set of characters of d is. denoted
X(d).
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Examples (2.2.26)

1. The characters of the algebra ot n x n diagonal matrices are the maps
Xm —. I � m � n; bpt the state a <elae> over this algebra not
necessarily a character for an arbitrary unit vector e.

2. The characters of the algebra C(K) of continuous functions on a compact
set K c f(z), z K.

Remarks (2.2.27)

I. Since the algebraic relationships are preserved by the, existence of
(a — z) 'implies that — z) Hence, for all E X(d), Sp(a),
and thus Ix(a)I � hail. .

2. Since = = 0 and x(l) = 1, every character
is a state, which automatically makes the mapping x: .W —* C continuous.
Indeed, every is a pure state, since no convex combination +
22 X2' 0 <; < I, + = 1, can be multiplicative: + x2x2Xa2)
is at the same time + and 21X1(a2) +
can only be true for all a d if one vanishes. This shows that X(d)
does not have a linear structure, but consists of the extremal points of a
convex set. The results of the following section will imply that X(d)
contains all pure states; they provide irreducible representations of d,
which are one-dimensiollal if the algebra is Abelian, and therefore

3. The kernel {a E x(a) = 0)15 a closbd, two-sided ideal of d. Since C
has no proper ideals, the kernel is maximal in the sense that there are no
larger proper ideals containing it. The converse of this statement is also•
true: 10 every maximal iddal there corresponds a character. Thus charac-
ters, pure states, and Ideals ale

4. The set of characters X(d) has the weak-s topology as a subset of d'.
Weak- limits clearly preserve the algebraic characterization of X(d)
(for instance, L,(a) —, and —. y..jab) = —.

Therefore X(d) is a weak-? closed subset of the unit ball of d'
and thus, according to Remark (2.1.23; 2), compact. By definition
the mappings X(d) —. C: x -. X(a) are weak- continuous.

Since d is a subset of d cpn as
functions on X(d), by setting There is in fact complete
correspondence:

The GeI'fand Isomorphlsm (2.2.28)

Any Abelian C algebra d is isomorphic to the C algebra of the continuous
functions C(X(.W)): X(d) (with the weak- topology) —. C.
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Proof

The mapping .W —' C(X(d)): a —. preserves all the algebraic properties
such as a1a2(X) = = = Since X(.rI) contains
the pure states, Remark (2.2.20; 3) states that hail so the
norms old and C(X(d)) are the same. It also follows from this that a(s) = 0
for all x a = 0, and it only remains to show that d contains all the con-
tinuous functions on X(d): A theorem of Welerstrass states that the
nomials in z any compact set cC are dense in the continuous functions in
the supremum topology. Stone [1, 7.3] generalized this to the statement
that the norm-closure of any algebra of complex-valued functions with a
unit and such that for all X2 there is an f with contains
all continuous functions, and the a(X) satisfy this requirement. Consequently
a —' a(i) is a bijection, preserving the algebraic and topological structure.

C

Examples (2.2.29)

1. In Example (2.2.26; 1), X(d) = { (with the discrete
topology)and C(X(d)) C,m = 1,2,..., n: X,, —, is the
set of diagonal matrices.

2. In Example (2.2.26; 2), we already have a bijection between K and
z According to (2.2.28) the bijection is in fact a homeo-

morphism if X(C(K)) is equipped with the weak- topology.

Remarks (2.2.30)

1. The dual space of the continuous functions F is the space M(F) of (not
necessarily positive) measures. The following collection of continuous
mappings into C summarizes the various identifications:

X(d)d —'C

X(d) C(X(d)) c

C(X(d))
M(C(X(d))) c.

2. These results for Abelian C5 algebras provide convenient representations
of the nonnal elements a of any C5 algebra, when one simply considers
the algebra generated by 1, a, and a*.

3. Theorem (2.2.28) holds a fortiori for Abelian W* algebras, which can
also be represented as functions on suitable measure spaces.
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Since algebras of functions are easy to manipulate, (2.2.28) has a number of

CorollarIes (2.2.3 1)

1. The power series of z -. — converges for all E X(A) provided
that z > supZEX(A)Ia(1)I = tall. As we see, if a is a normal element of a
C' algebra, then the radius of convergence of the series for (a — z) 1 is
exactly (This may be false if a is not normal: is invertible for all
z 0, but = 1.) The spectrum of a is precisely the image of X(A)
under a.

2. Continuous functions f(a) are defined on the range of the Gel'fand
isomorphism asf(a(x)), and they exist for all normal a in any C' algebra.
More specifically, a Hermitian element can be decomposed into a positive
and a negative part, and unique square roots can be taken of positive
elements. In a W' algebra, all the spectral projections O(a — e R,
exist for every Hermitian element, since a step function is the supremum
of continuous functions. It is always true that If(a)Il =

Sp(a) I

3.. Hermitian elements can be characterized by — I � l,and positive
elements by — � 1.

4. According the Remark (2.2.30; 1), the Gel'fand isomorphism maps a state
w probability measure on C(X(d)): w(a) = jX(d) for
a normal. The pure states are the point measures. = — Zo).

Xo E X(d), which w(a) = a(X0). We again note that

llaH = sup Ia(x)I = sup lw(a)I.
Wpure

5. Since a maps the compact set X(d) continuously into the compact set
Sp(a), a variable of integration as in Corol-
lary 4, the integral being over the image measure dw =

C(X(d)) (1 C(Sp(a))

C

' g(a)

I I

J = fX(d) z€ Sp(a)

Thus every state w furnishes a probability measure on the spectrum of a
normal element a, such that f(a) = For Hermitian or
unitary elements this becomes a measure on the real axis or, respectively,
the unit circle in C.
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The mathematical framework that we have developed will now allow
us to formulate the conceptual schema of quantum theory.

The Basic Assumption of Quantum Theory (2.2.32)

The observables and states of a system are described by Hermitian elements a
of a C* algebra d and by states on d. The possible outcomes of a measure-
ment of a are E Sp(a), and their probability distribution in a state w is dw,
the probability measure induced on Sp(a) by w.

Remarks (2.2.33)

1. Since physical measurements are always real numbers, observables are
Hermitian operators, but they constitute a subalgebra (over the real
numbers) only if d is Abelian.

2. In classical mechanics the observables were a real function algebra, and
the spectrum of a function was its range. Assumption (2.2.32) generalizes
the classical schema only by not requiring commutativity.

3. In this volume the Ce-algebra of observables will nsually be
and we will need to consider only the normal states over

4. For Abelian algebras we learned that maximal ideal = character =
pure state = point probability measure. These states are nondispersive
for all observables, i.e., the mean-square deviation w(a2) —

w(a)2 vanishes. If the algebra is noncommutative, nondispersive states
do not normally exist, since the operator inequality

Ia — w(a) .b_— w(b)\/a — w(a) .b_—
II —l i�O

\ / \ /
for an arbitrary state w implies the Indeterminacy, or uncertainty, relation-
ship (by taking of the inequality above):

— ba) �
A state that had no dispersion on any observable would yield zero for any
commutator [a, b] ab — ba. The algebra of interest here will be

on which that is not possible for normal states; there are increasing
sequences of projection operators having 1 for supremum, but for which
each one can be written as the commutator of two Herinitian operators
(Problem 9).

5. Although it is obvious how a function of one observable is to be measured —
take the function of the measured value of the observable—it is less clear
how to measure the sum or product of noncommuting observables. The
spectrum is certainly not just the sum or product of the original spectra;
we shall see that the spectra of xp, and yp,, are both R, while their difference,
the angular momentum, has spectrum Z. That is, the only possible measured
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values of the angular momentum axe integers, whereas measurements
of x, y, and p,. or of the products xp,and can yield any real numbers
whatsoever. This makes the algebraic structure of the observables rather
problematic, for which reason there have been attempts to find alternative
an4 more economically phrased axioms. Some of these will be discussed
shortly, and we shall see that they eventually lead back to the schema of
(2.2.32), which is out justification for imbedding the observables in a C'
algebra.

It will no; be possible here to unflurl the whole subject of the theory of
measurement, so we shall merely,describe the bare mathematical structures
that proposed for the formulation of quantum theory.

Jordan Algebras (2.2.34)

If one tries to invent an algebra containing nothing but observables, then
one is confronted by the problem that, while sums of Hermitian elements are
Hermitian, the same is not true of products. The symmetric product a o b
(a + b)2 — a2 — b2 results in a Hermitian element, and can be used as
an alternative binary relationship on an algebra of observables over
Abstracting from that the commutative and distributive laws for o, one can
formulate the rules of a nonassociative algebra. It turns out that modulo a
few topological assumptions, which are more or less convincing on physical
grounds, these Jordan algebras can be imbedded in whereby a o b =
ab + ba.

PropositiondCakuli (2.2.35)

In a propositional calculus the only observables are known as the propositlois
p. E which correspond to statements like "The particle is in region G,"
and can be tested by experiments having only yes and no as possible outcomes.
The algebraic formulation represents the propositions as projection opera-
tbrs or, as above, the characteristic function of G for the statement just
mentioned. Algebraic operations are avoided in favor of lattice-theoretical
operations, which correspond to logical relationships and seem less burdened
with the problematics of measurement. Next one postulates a partial order-
ing for with a maximal element 1 and a minimal element 0. rn addition,
there are assumed to exist

(i) Pi A P2 A A

(ii) Th. V P2 v v
p A p' = 0, p" = p', and Pt �

From this it follows that A P2)' = p'1 v p v p' = 1. The
connection with logic is that a larger proposition makes a weaker statement,
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jj � means thaj Pi Pi; and the proposition 1 is always true and 0
always false. Thus Pi A (respectively Pt V P2) is the weakest (strongest)
proposition that implies (is implied, by) both Pi and P2• The proposition
p A p'= 0 means that there are no true propositions that imply both p and p';
a proposition can not be true at the same time as its complement. In
classical logic p' is the negation of p, Pi A P2 means both and P2, and Pi v P2
means either Pi Or P2 Lor both).

From the algebraic point of view, is the set of projections with the
ordering (2.2.16) and p' = 1 — p. Classically, p, are the characteristic func-
tions of sets G1 in phase-space (in which case p'1 corresponds t'o the comple-
mentary set C61, Pi A P2 to the intersection, and Pt V P2 to the union,
of C1 and G3). These facts can, of course, also be expressed in terms of alge-
braic operations, and the noncominutative case the product of character-
istic functions to Pt A p2 = p1(p2p1Y'.

On Hilbert space .*', the p are
projections onto
and onto the subspaces spanned by and t"2.

Remarks

The algebraic realization of the calculus will require the W
property to make the lattice-theoretical operators properly definable.
All the then exist, as does the limit of the positive, decreasing

• sequence Pl(P2PIr1 13 -.

2. Characteristic functions I —. 1, CI'—. 0, of observables are pro:
jections. corresponds to the statement that some spectral value a €1
has been measured, and xi(AY means that the measured value is in CI.

3. In the commutative case the are realizable as characteristic functions
and thedistributivelawp1 A V p3) = A p2)v (p1 A p3)fOllowsfroni
the correspondence with the set-theoretical operations. They are alge-
braically realized as follows: A V P2 + Xi —

and the distributive law states that + Xs — X2 ks)

commute, and the distributive law holds on the propositional subealculus
constructed from p's, and However, it does not hold in general.

Example (2.2.37)

With the Pauli spin matrices
I/o l\/o —i\/l 0

—1

on = C2, we form the one-dimensional projections

l+a'-n 3

2
In! =1.
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Their physical interpretation is the $tatement, "A measurement of e in
the direction a definitely has the value 1." For all n1 n2. A 0.
Hence for different

A v p,,) p• A 1 =
but

(p11, Ap.2)V(p_1 Ap•3)=OVO=O.
Hence, the classical conclusion: If the particle is in region G1 and either in G2
or G3 then it is either in G1 and G2 or in and G3, is invalid for non-
commuting observables. The proposition "The spin points in the direction
n2 as well as in 03" iS certainly false (p A 0). The complementary
statement is the tautology "The spin points in some direction," and is the
most restrictive statement implied by both p113 and p11 (p11 v 1). It
does not imply that one of the measurements of a . a2 or a . a3 yields the
value I with certainty, and thus p. A (p3 v p,,) is to be read neither as
"The spin has the direction a1 and a2 or n3"nor as "The spin has tfie direction
n1 and or n1 and a3." Therefore the classical distributive Law fails in
quantum mechanics.

It turns out that, up to technical assumptions, any propositional calculus
in the distributive law holds on (ps, P2' for � P2 can be
represented as a calculus of projections on Hubert space, and for this reason
the algebraic framework we have chosen seems to be the most appropriate
one for quantum mechanics.

Problems (2.2.38)

1. Show that the statement of(2.2J5; 2) is true.

2. Show that a -homomorphism of a C algebra is continuous.

3. Show that multiplication is continuous (in both factors simultaneously) in a
algebra.

4. Prove (2.2.12; 3).

5. Show that the statement of (2.2.15; 3) is true.

6. Consider a mixture of two states: Show that if aw1 + (I — a)w2, 0 <a < 1,

then � (1 — and that equality holds ill w1(a)
w2(a). - ..

7. Show that the resolvent set is open and that the spectrum is not empty.

8. Prove the inequality of (2.2.20; 1).

9. Write the projection onto the subspace of 12 spanned by,the first n basis as
i times the commutator of two Hermitian elements

of 2 x 2 matrices for which 0 � a � b a2 � b2. (Hint: a � 0
if a = a,Tra � 0,and Deta � 0.)
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11. Let 0 a b. Show that (I) exists, then b1 � a'; (ii) if In a exists, then
In a � In b; and (iii) a' � b' for 0 � y � 1. (Hint: Use

for

U can even be shown that all tunctionsf (or which b � a � 0 implies f(b) � 1(a)
are of this form.)

(2.2.39)

1. (a — = — (I/z) (a/zY', and the radius of convergence of this series is
exactly IzI limIja"ll" E spr a (the spectral It is always true that spr a �
Hall, and fornormal a,spra = 11a11 because 110211 Ha112,etc. (cf.Corollaries(2.2.31; I)
and (2.2.31; 2)).

2. If (a z)1 exists, then so does (x(a) — zig, and consequently, by Problem 1,
lIn(a)II afl for Hernutian a, and in general ff*(a)02 = ff*(ad)ff � IIaaO =

With the aid of Remark (2.2.17; 4), one can also argue as follows:

aa �
3. + öa)(b + öb) — abU <a for

flôaII and HöbIl < (a + ((haN + — (flqlt +llbi)/2.

with 11611 The mappings a—.a'a —aa, a-. a — a. a-. aa' —1,
a—.aa—1,anda-.a2 — aare continuous,and hence the image ofOis
closed in every case. The Gel'fand isomorphism allows positivity to be character-
ized by Hall — II 11a11-af( � Oforffermitiana(2.2.31; 3).Thisfimctioniscontinuous
and thus the inverse image of (0, Cl)) is likewise closed.

5. It is trivial to see that Sp(as) = Sp(a). Now suppose that P(a) — A = a (a —

for A, A, and a E C. Then A e Sp(a) (P(a) — does not exist A, E Sp(a)
A = P(A1) a P(Sp(a)).

= hIa'11= 1).

a = a: a + Sp(a) a + i(P + A) a Sp(a + IA) a2 ÷ + A)2

� (Ia + IA((2 = + A21l hall2 + A2 lorall = 0.

a2 — a = 0, a = a:Sp(a2 — a) = (Spa)2 — (Spa) = 0,Sp(a) (0,1).

If a bb, then the proof of the positivity of the spectrum is a bit more involved,
but it can be shown that it is possible to restrict to Hermitian b, for which positivity
follows from Sp b2 = (Sp b)2. It follows from the Gel'fand isomorphism (2.2.28) that

the spectral properties ofnormal operatorssatisfy the various operator relationships,
since the corresponding facts for function algebras are obvious.

6. (a — a2)[w1(a) — w2(a)]2.
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7. The resolvent set is open because of the convergence of

(a — (a — z0) — — z0r

for Iz — zol < fl(a —

If the resolvent set were all of C, then (a — would be an operator-valued,
entire, bounded functibn, which would have to be constant by Liouville's theorem
(cf. [7], IX.l 1).

8. With the method of (2.1.29; 10) it can be shown that If(a*b)12 � f(a*a)f(b*h).
ha � 0. then by (2.2.17: 2) and (2.2.31: 3) b'ab � and f(h*ub) � UaII f(btb).
For arbitrary a, If(bab*)12 � f(baab)f(bb) � = IIaII2f(bb*)2.

9. Let

n-th position

/0 0 . . 0 I 0 0

S.=1O 0 ... 0 0 1 0

* \oo...000I...
Then = [Se, Sfl + i(S,, —

10. a � 0 both eigenvalues � 0 the sum and product of the two elgenvalues � 0,
i.e., Tr a � 0 and Det a � 0. Now let

It 1\ IA 1\1)=b. A�I.

Det(b2 — a2)
A 1

—(A — J)2
—

II. (i) 0 <a � � I I �
b In a = fdA[(A + — (A + b)-1].

(iii) f dA A + y < I � � b7.

2.3 Representations on Hilbert Space

Algebras of matrices are typical C5 algebras, because any C * algebra

can be represented as an algebra of bounded operators on a Hubert
space.

The concepts of linear functional and character are generalized in

Definition (2.3.1)

A representation it of a C5 algebra d is a from d into
that is, + A2a2) A1it(a1) + A2it(a2), iz(a1a2) = ir(a5)ic(a2),

and it(a5) = ir(a)5 for all a e d and A. C. If ir(a) 0 whenever a 0,
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then it is said to be faithful. Two representations it1 and it2 on and are
equivalent 1ff there exists an isomorphism U: —' r2 such that ir2(a) =
Uit1(a)U' for allaEd.

Examples (2.3.2)

1. Matrix algebras represent themselves.
2. The continuous functions on a compact set K represent themselves as

multiplication operators on L2(K, dp) if one defines =
a(x)4,(x) for all a e d, e L2, and x e K. � Udil II p11).

Remarks (2.3.3)

1. It need not be required that it be continuous; it is automatically continuous
because of positivity (2.2.17; 4): 0 � a*a � 11a112• 1 0 � it(a*)ir(a) �
11a02 � Jail. Note that Ilir(l)ll = 0 or 1, since lln(I)tl =
lllr(1)*ir(1)D = lIir(1N12.

2. The kernel = '(0) is a closed, two-èided ideal of d. Faithfulness

of it means that = {0}, i.e., it is injective. The positivity argument

of Remark I then also works for n it is

faithful if lln(a)lJ = !lall for all a e d. If d has no proper two-sided
ideals, it is said to be a simple algebra, and every nontrivial representation
is faithful. More generally, it is always a faithful representation of the
quotient algebra d/.if. When topologized with the quotient norm,
defined as infila + bJJ for b e ir, the representation of the quotient
algebra is faithful and forms a C* algebra [Bratelli and Robinson]. At any
rate, it(d) is itself a algebra, and hence it is a norm-closed subalgebra
of

Since it may fail to be either injective or surjective, the following termin-
ology for subalgebras of is convenient:

Definition (2.3.4)

Let .4' be a of Then the *..subalgebra

.4" e ba = ab for all a e .4)

its commutant.

.4" .4' f is its center.
If .4' c .4", then .11 is Abelian.
If.4' = .4", then .4' is maximally Abellan.
If .11 = .4", then .4' is a von Neumann algebra.
If .4" = {A.• 1), then .4' is irreducible.
If = I), then .4" isa factor.
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If f is a subspace of then if .t. f c 3, S is an Invariant
if ...t 5 is dense in *', .9 is a totallzer. If the totalizer Y is one-dimensional,
then its vectors are said to be cyclic (with respect to ..t).

Examples (2.3.5)

1. Letting and fi take values in C or C3, some examples can be constructed
with the Pauli spin matrices (2.2.37):

(i) = + = .4" = = 1}. This is irreducible,
a factor, and non-Abelian. Every vector is cyclic, and there are no
invariant proper subspaces.

(ii) .t = I + = 4" ..t' = .# = This is reducible, not a
factor, and maximally Abeian. is cyclic only if a and 1,.are both
different from zero, while and are invariant subspaces.'

(iii) .A = 1} = = .4"", .4" = 1 + er). This is reducible,
a factor, and Abelian. There are no cyclic vectors, and every subspace
is invariant.

2. dx), considered as multiplication operators on L2(R, dx), is
maximally Abelian. Every function in L2 that is nonzero a.e. is a cyclic
vector. Functions that vanish on some interval I c R are invariant
subspaces. is reducible, and not a factor.

Remarks (2.3.6)

1. The following thróe conditions for irreducibility are equivalent
(Problem 1):

(i) 4'=L1.
(ii) Every nonzero vector is cyclic.
(iii) There are no invariant proper subspaces.

2. The direct sum and tensor product ® it2 of two representa-
tions and it2 are defined as for finite-dimensional spaces: If x x1

(respectively x1 ® x2 c 0 .*'), then

rc(a)x = ir1(a)x1 it2(a)x2 (respectively ir1(a)x1 0 ir2(a)x2).

Sums of representations are reducible, and the are invariant subspaces.
3. The commutant obviously has the properties:

(i)
(ii),4"..t;

These imply that .4"" = .4", since(_t")' c .4" c (4")". It tUrns out that
is the closure of 4' in both the strong and the weak topology (Problem 4).
Strongly closed
a of Vigier (Problem 11) states that they have the properties of
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Definition (2.2.22), i.e., they are algebras. Note that n
21 = {A. 1}' = {A• 1}" = Al, for a fac-
tor the center of 4" is trivial.

4. For finite-dimensional spaces, 4' = 4", and 4' is
irreducible 1ff =

afactoriff= I;
Abelian 1ff all a e d are simultaneously diagonal; and

maximally Abelian 1ff to each pair of diagonal positions in the diagonal
representation there exist elements with different eigenvalues.

5. If .11 contains a maximally Abelian subalgebra ..V., then 4" c .At' =
.K c 4', so Ji'. In this case, being a factor is equivalent to being
irreducible, though in general irreducibility implies being a factor but
not vice versa.

6. 4' Abelian implies 4' = so Abelian factors have the trivial form
A. 1.

7. If is reducible, then s = s 1 is said to induce a
superselection rule. The Hilbert space decomposes into subspaces that
are not connected by observables, and there exists a Hermitian operator s
that assigns different quantum numbers to the various invariant subspaces.
If it(d) is a factor, then s does not belong to n(d), and it is consequently
not an observable, but rather a kind of hidden variable. There is no
maximally Abehan subalgebra of ic(d), because s could always be added
to any subalgebra.

In any representation n, every vector x E lxii = 1, produces a state
a —' (x

I ir(a)x>, a e .W. We shall next show for every state
there is a representation in which it is of this form. Since algebras have a
linear structure, any a d can be represented as an operator on a linear
space, namely the algebra itself, by b -. ab, b e jd. For a C* algebra, this
linear space will only be a Banach space, but a state provides the scalar
product needed to make the space a I-filbert space.

Lemma (2.3.7)

If w is a state, then .K {a d: w(a*a) 0). is a closed, left ideal. The
scalar product <b I a> = w(b*a) makes the quotient space a pre-Hilbert
space, and the canonical mapping d —'

d a Banach space) onto d/.iV (as a pre-Hilbert space).

Proof

That is a left ideal follows from (2.2.20; 1), as w(a*b*ba) � IIb*bllw(a*a),
and closure follows from continuity. The scalar product on d/X
satisfies Postbllates (2.1.7), and I<bla>I = Iw(b*a)i � libil hail guarantees
that the mapping is continuous. 0
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Remarks (2.3.8)

1. Since tw(a)12 � w(a*a), the ideal K c Ker w = {a d: w(a) = 0). Thus,
in Example (2.3.5; 1) with w(.) = K= )} and Ker w =

2. Despite the norm-completeness of the quotient d/K may fail to be a
Hubert space. For example, let .Wbe the continuous functions in x [0, 1]
and w(a) = dx a(x); then K = {0}, but d is strictly smaller than its
completion L2([0, 1], dx).

3. Given the product of two algebras d and J, i.e., each element of the
product algebra is a linear combination of a, = ed, e the
Hubert space constructed from a product state is the tensor product of
the two Hubert spaces gotten from d and

Definition (2.3.9)

The Gel'fand—Naimark—Segal (GNS) representation iç of d on where
ir is the completion of d/K, corresponding to any state w is defined as the
continuous extension of b -+ ab, a e d, b d/K to all

Remarks (2.3.10)

1. The elements of d/}( are equivalence classes of objects of the form
b + n, n .A", though the mapping is independent of the representa-
tive b, since .A' is a left ideal (an e K).

2. The general fact about continuity (2.2.20; 1) can be seen directly:
(w(b*a*ab))h12 � = jJaJJ. Hence iç(a) is a continuous

operator on d/K, and has a unique extension to .*'.
3. Ker = {a e d: w(b*ac) = 0 for all b, c e d) is a closed, two-sided ideal

contained in K. It reduces to {0} in the example of (2.3.8; 1), which shows
that the GNS representation may be faithful even if K {0}. The
logical interrelationships are depicted below:

Ker w = linear space: w(a) 0

.4= left ideal: = 0

Ker = two-sided ideal: = 0
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4. The vector corresponding to 1 d/..4' is cyclic.
5. iç is irreducible if w is pure (Problem 2).
6. If, conversely, we have a representation ir with a cyclic vector a, then it

defines a state w(a) = I and is then equivalent to it. By the
axiom of choice, every representation is a sum of representations with a
cyclic vector.

7. Since for all a d there is a state such that w(a5a) = hail2, it is always
possible to construct a faithful representation of any C5 algebra, by taking
the sum of the representations for all possible w.

8. As we have seen, each vector in the Hubert space corresponds to a pure
state, which corresponds to a ray in Hubert space, i.e., a IR). In
wave-mechanics, this fact shows up as the principle of superposition,
which states that the vector + a2a2, had2 + 1a212 = 1

describes the quantum-mechanical superposition of the states and a2.
Yet 11 contains information not contained in and a2 taken separately,
namely the relative phase of the vectors and

In order to study the form of the representation of Hermitian element a
in more detail, consider the restriction to the C5 algebra generated by a.
By the axiom of choice, we can choose b1 E such that the comple-
tions of the sets of linear combinations of n = 0, 1,... span all of
Each provides a representation of the (Abelian) C5 algebra generated by
a, and has as a cyclic vector. By Corollary (2.2.31; 5), to the state

w1:

there corresponds a measure p, on Sp(a) such that w1(q(a)) = 5
Taking the norm-closure of the polynomials extends this to all con-
tinuous functions p C(Sp(a)); then the completlbn with the norm extends
this to .*'. = L2(Sp(a), dji), on which it(a) acts as the multiplication operator

q e L2(Sp(a), dji). The use of this notation yields

The Spectral Theorem (2.3.11)

For any given Hermitian element a e d, every representation of d is equivalent
to a representation ir = for which = L2(Sp(a), di,) and
it(a) ,.: ç,(a) —p a acts as a multiplication
operator.

Remarks (2.3.12)

1. Theorem (2.3.11) generalizes the statement that any finite-dimensional
Hermitian matrix is diagonable with a unitary transformation. Of course,
not all Hermitian elements of d are multiplication operators in this
representation unless d is Abelian.-
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2. Although we made use of the GNS representation, by Remark (2.3.10; 6),
(he argument leading to (2.3.11) works just as well with any specified
representation.

3. Theorem (2.3.11) shows that any Hermitian operator of can be
transformed unitarily into a multiplication operator.

4. The scaling ço —' is an isoxnorphism L2(Sp(a), —. L2(Sp(a),
and hence is also isomorphic to L2(Sp(a), djt.,)

(assuming is separable). Furthermore, since the are probability
measures, ..*' is also isomorphic to L2 of a finite measure space. Incident-
ally, this shows that the are not in any way fixed uniquely.

5. The only fact that has been used so far is that the algebra generated by a and
a* is commutative, so all the same statements can be made for normal
operators, except that Sp(a) would not be real, but just some subset of C.
If there are m mutually commuting operators = a7, then they can be
represented simultaneously as multiplication operators on L2(Rm, dp).

Examples (2.3.13)

1. A n n matrix a with eigenvalues The space C" is isometric
to dp)with d1u(ct) t5(cz — <wlv>

<wlav> =

2. 12(—co, cc) = —cc < 11 < cc}, where = + is a
Hermitian operator E In order to rewrite it as a multiplication
operator, map 12( — cc, cc) onto L2([ — it, it], dx) by (va) —

then a becomes multiplication by eix + e_" = 2 cos x. Next write

L2([ — iv, iv], dx) = L2([ — it, 0], dx) L2ff0, iv], dx)

and introduce the new variable = 2 cos x, to make this isomorphic to
L2([—2, 2], L2([ —2, 2], On this space a
has become the multiplication operator q.

We have found a representation on L2(Sp(a), dii) of the algebra
generated by a, for which each element of the algebra corresponds to multi-
plication by a continuous function on Sp(a). The algebra does not, however,
account for all multiplication operators on L2(Sp(a), dji), as they constitute
the much larger space dp) (Problem 5). Problem 4 shows that this
space is obtained by strong closure and also has a purely algebraic character-
ization, as the bicommutant n(a)'. By taking strong limits one obtains a
representation in which it is possible to describe the operatorf(a) forf e
more explicitly.
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Once we know all the integrable functions of a Hermitian operator, and
in particular the characteristic functions, the explicit form of the operator
f(a) can be written down in terms of the

Spectral Family (2.3.14)

An element a =

a
=

P0(x) = — a), 0(x) = if X > 0
— 0, otherwise,

and given anyf e

f(a)
= f

The set ofprojection operators Pa(ct) is known as the spectral family of a.

Remark (2.3.15)

The construction of (2.3.14) is a generalization of the Stieltjes integral to the
case of operators. Just as for functions, it is defined as the limit of the sums

a = urn [O(a — ®(a — _ 1))]

1))]}.

Vigier's theorem (Problem 11) guarantees the existence of the strong limit,
since the sums are a bounded, increasing sequence of operators.

There are many different ways to classify the spectra of Hermitian opera-
tors. The classification we shall make uses the Lebesgue decomposition of a
measure on R; any measure is the sum of a part = f(c)dcz,f � 0 and
locally integrable, which is absolutely continuous with respect to Lebesgue
measure a part dii,, concentrated on some separate points, =
dcL — ;), ; E R; and a remainder dpi, the singular spectrum [2].
This last part is somewhat pathological (Problem 7) and will not occur in
any of our applications (though there exist one-electron band models with

Each of the three pieces of the measure is concentrated on null sets with
respect to the others, and there is an orthogonal decomposition of L2(R, dp) as

d.i) = L2(R, L2(R,

(Problem 6). By making the same decomposition of all the dp1 of (2.3.11),
one can decompose the space according to the properties of any normal
.operator a into orthogonal subspaces invariant under a:
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Definition (2.3.16)

If the Hubert space is decomposed as

as in Remark (2.3.15) for some normal a, then the point spectrum, absolutely
continuous spectrum, and singular spectrum of a are defined by the restrictions
of a to the subspaces,

cr,,(a) = Sp(a1g), =

and

a3(a) =

Examples (2.3.17)

I. For the finite matrices (2.3.13; 1), djt is a pure point measure, and =
{O}, Sp(a) = a,,(a).

2. Let a be multiplication by on L2ff0, 1], dx). Then = = {O},

and Sp(a) aac(a).

Remarks (2.3.18)

1. .*°,, is the space spanned by the eigenvectors. To see this, consider
L2(R, dy,,) as above, so that = 1, but = 0 for other

In ar,, = 1, but single-point sets have measure zero with respect to
and = = 0. Therefore

a basis for
2. It is a natural question whether the decomposition of (2.3.16) depends on

the choice of 4u, in (2.3.11). In fact the p, are unique up to the equivalence
relation f > 0 and locally integrable, and equivalent measures
effect the same decomposition of

3. The sets a,,, a3 are closed, though they need not be disjoint, nor does
the Lebesgue measure of a,, or of a3 have to be zero. Suppose, for example,
that is a numbering of the rational numbers between 0 and 1, and .*° =
L2ff0, 1], da L — and let a be the operator of multiplication by
Then = and a,, = [0, 1], because the spectrum is closed, but
almost no point of a,, is an eigenvalue. (I.e., the irrational points vastly
outnumber the rationals.) Many authors define a,, as just as the set of
eigen values, which case a,, U a3 may be different from Sp(a).

4. The essential spectrum comprises all points of Sp(a) othet than isolated
points of finite multiplicity, that is, having a finite-dimensional eigen-
space. There is no essential spectrum on a finite-dimensional space, but
in the infinite case every bounded Hermitian element has an essential
spectrum.
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5. Although there may not exist eigenvectors for every point cx of the
spectral representation contains sequences of functions that are more
and more spectrally concentrated near cx. This idea can be used to prove
the following theorem: For all a = a
sequence = 1, such that IKa — = 0. cxe

there exists such a set of orthogonal or, equivalently, a set

of of a diagonable n x n matrix mis given by the
trace

Tr m = = ö.j.

The trace is a unitary invariant, and hence independent of 'the basis {ej.
If one attempts to define the trace of an element a e .cI in some representation,
the essential spectrum causes trouble. If the space is infinite-dimensional,
then the question of whether L converges must first be grappled with. One
problem is that convergence in one basis does not necessarily imply con-
vergence in another, even if the eigenvalues tend to zero. For example, if
aei(12)is

01
10

+0
01

then it has the absolutely convergent trace a different
basis a has the form

1 0

o —1 50
0 —5

and is only conditionally convergent, which means that it can be
rearranged (equivalent to a change of basis) so as to sum 1.0 any value
whatsoever, or to diverge. This lack of definition is avoided if the operator
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is positive. In that case the worst possibility is divergence, but aside from that
the sum has all the ordinary

Properties of the Jrace (2.3.19)

The mapping m —' Tr m = <e,Inse1>, for = sends the positive
operators to and for m, � 0,

(i) Tr m1 + Tr
Tr Tr U unitary,

(iii) m1

If mj is not necessarily positive, but Tr 1m11 < where ImI
then (i) and (ii) arestill true, and moreover

(iv) Trim1 + m21 � Trim1I + TrIm2I,
(v) (TrIm1m2I)2 �TrIm1l2TrIm2l2,

(vi) Tr ma = Tr am for all a

Proof

Properties (i) and (iii) are trivial. For the others, see Problem 10.

Remarks (2.3.20)

1. The unitary invariance (ii) implies that the definition is independent of the
choice of basis provided that Trimi <

2. On an infinite-dimensional space, the trace is an unbounded, positive
linear functional. This does not contradict Remark (2.2.20; 1), since the
trace is not finite on a whole C algebra; for instance, Tr I =

3. For Property (iv) it was not necessary to assume that Tr lal < since
ITT arni � ijaljTr Imi. This can be shown most conveniently with a
polar decomposition m = Vim j (see [3], VIII.9), where

= m1'tmI2ImI'
is the projection onto the space perpendicular to the null space of Imj,
so � for allxe.t", and

iTrami =

hail II ImI"2e1}12 IIahITr mu.

4. Most trace inequalities valid for finite-dimensional matrices can be
carried over to general Hubert spaces, as will be discussed in the fourth
volume.t

t Quantum Mechanics of Large Systems.
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5. The trace has several technical advantages over the operator norm,
which is only pasy to work with in the spectral representation. Suppose
K L2(RR x W', d"x') is the kernel of a bounded integral operator on
L2(R", d"x), —i 5 K(x, Its norm is difficult to compute,
while Tr K*K = 5

K*(x, x')K(x', x), as can be seen by writing
the operator in a basis,

K(x, x')

Tr K*K = = K*(x, x')K(x', x).

Since Trim) has the properties of a norm (2.1.4) by Property (2.3.19(iv)),
it is interesting to set the operators of finite trace aside in a separate category.
They bear a close resemblance to finite matrices.

Definition (2.3.21)

Let t c be the space of operators of finite rank, i.e., which map to a
finite-dimensional space. The completions oft in the norms hail Tr a

Tr a*a, and iaL are denoted the Pace class operators;
the Hubert—Schmidt operators; and 's', the compact, or completely con-

tinuous, operators.

Examples (2.3.22)

In the matrices with only finitely many nonzero rows or columns
belong tot. Diagonal matrices with eigenvalues belong to provided that

< to provided that < cx; and to provided that
= 0.

Remarks (2.3.23)

1. It follows from (2.3.19) that the
1 fly, are norms. By Remark (2.3.18; 5),

it is necessary to have = (0) for the trace to be finite, so the spectrum
is purely discrete. If; > 0 are the eigenvalues of then we con-� � q,p,q = 1,2,

Hence a Cauchy sequence in
1 hg is also one in for p � q, so we have

the inclusions

2. Let a be an operator such that halt1 < (resp. hail2 < co) and ; are
the eigenvalues of The truncated operators aN PNaPN, where

PN is the projection onto the first N basis vectors, obviously belong
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and converge to a in the II (resp. II 112) norm. Hence the sets and
contain all operators with finite

II II Ill norm.
However, %' is not all of II all is equal to sup, I and in this norm it
does not generally suffice to have Ilall < cc for aN to converge in norm
to a. (A simple counterexample is a = 1.) The correspondence with the 1"
spaces is: 11 ,2

#—'

3. is a two-sided ideal of its completions
since � min( flaIl lIblI flail,), p = 1, 2, cc.

4. The essential spectrum of any operator is {O}. This property carries
over to all of and is a distinguishing characteristic of seif-adjoint,
compact operators (Problem 9).

5. An operator a sends a bounded set to a finite-dimensional,
bounded set, which is necessarily relatively compact. The image of a
bounded set remains relatively compact when one passes to the norm-
completion: any c can be written as a + ö, where a e and for any
s> 0,11511 � Ilvll,and the relativelycompact set
a set of diameter less than Relative compactness means that for any e
there exists a finite convering with balls of diameter less than a, and this is
also true of the image of under c This fact is the origin of the no-
menclature for 'I: compact operators carry bounded sets into relatively
compact sets.

6. Completion of in the strong topology yields all of (Problem 8),

but the strong topology is not strong enough for (iv) and (v)
to car to

7. not a separable topological space (see (2.1.29; 1)) while %? is

separable when is a separable Hubert space.
8. The sets can be defined for

1 � p < cc as {a hail, = < cc).

The are complete, normed algebras with II but are not C* algebras

(see (2.2.11; 2)). is one, and is even a We-algebra.

Problems (2.3.24)

1. Show that the three conditions of Remark (2.3.6; 1) are equivalent under the re-
striction that in Condition (iii) the word "subspace" should be understood as
"closed subspace."

2. Show that w is pure itT it,., is irreducible. (Hints: (i) w is pure if for every positive
linear functional w1 such that w1 � w, w1 = Aw for some A. e (0, 1]; and (ii) if
w1 w, then there exists a positive operator t0 E iz,,.(d)', with 0 � o � such that

w(ba) =

3. Show that Ker ir = {a: w(b*a*ab) = 0 for all be d}.
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4. Let be a C* algebra of operators in Show that .W" is both the weak
and the strong closure of d. This is known as von Neumann's density theorem.
(The argument for why d' is contained in the strong closure old proceeds by the
following steps:

(i) Let x e K. The projection P onto the closure of (ax: a c d} belongs to d'.
(ii) Let b e d". Then P$" is stable under b, and thus for all > 0 there exists an

a e d such that Ibx —
(iii) It remains to be shown that finite intersections of neighborhoods of b of the

kind considered in step (ii) with various x also contain elements of the strong
closure of d. To do this, take n nonzero vectors x1, x2, . . . , and consider the

ea, which is known as the amplification of a. it(h)c {n(a)}, and the same
argument as before, with x = x1 x2 ® shows that there exists an
a E d such that. I(b — < c2)

5. Show that the strong closure of the operators acting on dxx) by multiplica-
(ion by continuous functions is (Hint: If consider the continuous
functions (p*fXx) f d'x' p(x — x')f(x') for p continuous and $ p = 1, and
then let p approach a delta function.)

6. Show that the sum in (2.3.16) is orthogonal.

7. Construct an operator with a purely singular continuous spectrum.

8. Show that is strongly dense in (Use the fact that every vector is cyclic for

9. Show that compactness of a Hermitian operator on an infinite-dimensional
space is equivalent to: 0ac = = 0 and = (0).

10. Prove Properties (23.19).

11. Prove Vigier's Theorem: Every bounded, increasing filter F of operators has a
supremum s, i.e., there exists an operators such that a � sfor all a F, and a s for
all a c F s � s'. The suprernum s is unique and belongs to the strong closure ofF.

Solutions (2.3.25)

I. (iii) (ii): Suppose x #0. The closedsubspace spanned by ir(a)x, for a ed, is

stable for all lt(a), and therefore identical to all ofK.
(ii) Let K' be a nontrivial, closed, invariant subspace of K and let x E
Since m(a)x E K' for all a e d, ..W' must be dense, so K' = K.
(i) = (iii): Let c K be stable and P be the projection onto K'. Then Pit(a)P =
ir(a)P for all a e d, so Pit(a)P = ir(a)P for all a C d, which implies Pir(a) =
ir(a)P, since = R(a). But then P = 0 or 1.
(iii) (i): If a £ ir(d)', then a and c =
i(a — a). Hence all the spectral projections of b and c also belong to n(d)'. This
means that a is a multiple of the identity, since every projection in defines a
stable, closed subspace.
Remark: It is also possible to show that for algebras conditions (i)—(iii) are
equivalent to algebraic irreducibility: The only invariant, closed or unclosed
subspaces are and K.
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2. Proof of Lemma (i): w is pure 1ff every w1 � w is of the form Aw.
w = (w1/w1(I))w,(l) + ((w — w1)/(1 — w1(I)))(l — w2(1)) is a convex com-

bination of two states unless w1 =
w w = + (1 — a)w2, Aw w1 � w.

Proof of Lemma (ii): The mapping (iç(b), —, wi(b*a) has a continuous
extension to a positive bilinear form on ..*' x ..*', bounded by 1. Hence there exists an
operator to, 0 t0 � I, such that w1(ba) = (This is a direct
corollary of the theorem (2.1.17), and is often referred to as the
Lax-Milgram theorem). The substitution a —' ca yields

= w1(bca) = wi((c*b)*a)

for all a, b c d
[ta, ir,,,(c)] = 0 for all cc d t0 c

Proof of the theorem:
Let P be a projection operator c The mapping a —'

I is a
positive linear functional �w, so <PQIir_(a)PtI> = a is
replaced with ba, then = < which implies
that P = 2. 1, since is cyclic, and thus P = 0 or 1.

Suppose 0 � w1 � w. Then w1(a) = = since
iç(d)' consists only of scalars.

3. 0 for all b, c e d = w(b*a*ab) = 0 for all b, using the substitution b —.

b*a*, c —. b. Conversely, w(baab) = 0 for all b = I w(bac) 12 � w(b*b) w(c*a*ac),
so w(b*ac) 0.

4. Since multiplication is continuous in one factor in any topology, it is easy to see that
the strong closure of d, which is contained in the weak closure of d, is contained in
d". Thus it suffices to show that d" the strong closure of d.

(i) Let = {ax:a = a*Ed}. ait' c =>aI 1, where I is the closure
= aP?=s'aP = PaP = (PaP)* =

(ii) bPb = bP = Pb bK c I='bxel.
(iii) Operators on *' can be considered as matrices the entries of

which belong to in which case = ([t, = r11,a —

alL, i.e., {ir(a)}' consists of all : such that Ed', and thereforeir(b) E

5. Sincef and p*f are bounded, it suffices to show that 1(1 — p*f)q,II -40 for the
dense set of and of compact support K. On K,fis also e L2, and

Il(f — paf)(pII � —

In Fourier-transformed space, If — p*i = Sd"klf(k)1211 — —i0 if p(k)
tends monotonically to I.

6. Let a = J To each vector x we can associate a measure = d<x I
and construct = {x: is absolutely continuous with respect to da} and

= {x: is singular with respect to These two subspaces are orthogonal:
Suppose x E and yc then there is a set M of Lebesgue measure zero on
which is concentrated. With the notation P(M) = 5M (1 — P(M))y = 0,

and so<xIy> = <xIP(M)y> = <P(M)xly> =
can be decomposed into a singular and an absolutely continuous part: =
d14 + (Lebesgue decomposition; see[l, l3.18.7].)Therefore thereexistsanother
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set M of Lebesgue measure zero, on which d4 is concentrated, and thus P(M)x E ,$°
and (1 — P(M))x E Since I ..*°,,. and .*' + =
It is obvious that ir,, and c On the other hand, if x e e
then x E Jt°,, and the same argument as before shows that =

7. Let f be the Cantor function, defined as follows: The Cantor set in [0, 1] is the
complement of(*, u 1) u .... It is a closed set of Lebesgue
measure zero. Now let] = on on on etc. (see figure below).
The function f increases monotonically and has a unique extension to a con-
tinuous function. Let a be the multiplication operator on .*" = L2((0, 1], dJ)
defined by q(x) x > and if M c
[0, 1], then

=

In particular, = and hence = (0). The point spectrum is
empty, sincef has no discontinuities, so dl = 0 when the integral is over
any one-point set (A}.

3/4

1/2

114

0 1/9 2/9 1/3 2/3 7/9 8/9 1

8. Let x andy e The operator a: v -. which maps x toy, is of finite rank
and therefore compact. Thus every vector is cj'clic for the compact operators.
Consequently, the compact operators form an irreducible C* algebra and are strongly
dense in by von Neumann's density theorem.

9. a, C It is not possible for each set to consist of one isolated
point, so ar,, = (0) implies = a, = 0. Now let a be compact and Ac ae,i(a). There
exists an orthonormal system such that I(a —. —' 0. The operator a
sends the bounded set to a compact set, and hence contains a strongly
convergent subsequence This implies that A = 0, since no subsequence of

is strongly convergent.
= {0): Let P, = P0(e) — — a). Then dim(1 — is finite for all > 0,

so = dP0(a)rx + is of finite rank, and a fortiori compact. Since
Ia — a,II � I/n,ais compact.

10. (ii) Tra = =
I I I

(since all summands are nonnegative), which = = Tr U*aU.
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(iv) With the polar decompositions,

m1+m2=UIm,+m21, m2=W1m21,

Trim1 + m2J = ><ejU(m, +m2)4>

+ I<e,IU'WIn,21eL>I) � TrImj + Trlm2i.

For the final step, choose the e1 as the eigenvectors of I m, I and m2 and observe
that � 1.

(v) The traceis a positive linear functional on the a x n matrices, and (v) holds for
matrices by (2.2.20; 1). Since each can be written as a finite matrix
plus something of arbitrarily small II norm, (v) holds for all by Remark
(2.3.20; 3): It can first be extended torn1 c and m2 and then to both
rn,2

(vi) This follows from (ii), because any a e is a linear combination of two
Hermitian elements, each of which is in turn a linear combination of the positive
elements I a ± a or of the unitary elements hail — '[a ± i( hail2 — a2)"2].

11. F is weakly relatively compact, and hence the set flacF {b F:b � a}1k is not
empty, but must contain at least one element s. This s � a for all a e since

the weak topology can be defined with the seminorm and thus the weak
closure preserves the ordering. If the set contained two elements s, s2,

then would exist some x e such that I(xis1x) — (xls2x)I = a > 0, as well
as a1, a2 eF such that I(xls,x) — (xla1x)I <a/2, I = 1, 2. But then there would
exist some cc F: c � a1 and c � a2, so that a = ((xls,x) — (xis2x)i � I(xlsix) —

(xlcx)I + I(xls2x) — (xlcx)I < €/2 + c/2 = a, which leads to a contradiction.
The' rLmum s C by the inequality

((b — a)x I (b — a)x) = ((b — J(b — a)312x) � (x I (b — a)x)''2 . II
libil 3/2,

for all h � a � 0. s' � a for all a F s' � a' for all a' c pWCJk which — s' � s.

2.4 One-Parameter Groups

Just as in classical mechanics, quantum-mechanical time-evolution is
a one-parameter group. The group has a weaker sort of continuity than
norm-continuity, which shows up in the unboundedness of the gener-
ators.

The dynamics of a closed system can be described quantum-mechanically
by an equation of the form

(2.4.1)

where a is a time-independent operator. In this section we investigate the
circumstances under which the formal solution,

f(t) = U, f(O), U, = exp(at), (2.4.2)
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can be made sense of. In the applicationsf will be an element of a Banach
space on which a acts linearly. From (2.4.2) we can abstract certain de-
siderata for an actual solution:

DefinitIon (2.4.3)

A mapping R — t —. is a one-parameter semigroup of operators
on the Banach space IE if

(i) = . for all � 0,

(ii) U0 I.

If � 1 (respectively H U,H = I), then we speak of semigroups of
contractions (respectively isometries). If (1) and (ii) hold for all t e R for a
mapping R —. then the semigroup is a group.

Remarks (2.4.4)

1. Since U11 U,2 = all operators of a semigroup commute.
2. Groups of contractions are groups of isometries, since by definition

IIU,II 1 for all LE yb'hile 1 = IILJ,CJ_,lI � iLJ,lI IIU_,il � 1,
so U,fl = 1. On a Hubert space, isometric groups are unitary groups.
since for all x E ..*',

ixll = It U — 'Uxfl � It Uxfl �
so U and U - are both isometric = U is unitary.

3. It is advisable to impose some continuity requirement on the mapping
as some crazy functions R are known which are linear

but discontinuous. It only takes the weak topology on to guarantee
that the norms are uniformly bounded on an interval (Problem I):
sup0 IU,JI = M < x. It then follows from the group property that

� M"° for all t � 0,

so we may restrict ourselves to the study of the contractions U, M-

The strongest continuity property to require is that of the norm topology
on It implies analyticity.

Theorem (2,4.5)

For a semigroup, the following are equivalent:
(i) U, is norm-continuous;

(ii) lim,.0 IlL', — 0;
(iii) 3a such that urn,...0 jI(l/tXU, — I) — all = 0;
(iv) U, =
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Because of (iv), we write U1 = exp(az). The semigroup can be extended to a
group, in which case If � exp(ifafl I all c R.

Proof

It is obvious that (iv) - (I) (ii) (iii) (iv), so it only remains to show
that (ii) (iv). It follows from U(O) = I and norm-continuity at t 0 that

U,

is close to the identity operator for small enough r, and hence invertible.
Therefore

Ut-i 1.
a,

di LI,

is well defined for small enough t. This a, does not actually depend on;
because

— 1 — (UT — lxi + U, + ... + Ur')
3flf

dt U, — fl, dt U,(1 + U, + ... + ')
— a,.

Consequently, a,. = a, whenever r' is a rational multiple of t and, by con-
tinuity. for all t'. Since it is a constant, we may rename it a, and write

= 1 + a fds U5,

which leads to (iv) by iteratjon. Property (iv) implies the estimate �
exp(fIaIIftI). 0

Remarks (2.4.6)

1. The exponential boundedness is the quantum version of a classical state-
ment (1: 3.2.3:6) for flows of bounded vector fields. Any faster growth, as
for example for particles reaching infinity in a finite time, would violate the
group structure.

2. It is of course possible for U, to grow more slowly (e.g., for a =
exp(ar) = I + at) or even not at all (a = exp(at) = cos t + a sin t).

We have seen that to each a there corresponds a U, and vice versa.
Now let us apply the methods of perturbation theory (I: §3.5) to the situation
confronting us to evaluate the change in U, if a0 a0 + a1.
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Theorem (2.4.7)

Let U, = exp(a0t), V, = exp((a0 + a1)t), a1 E i(E). Then
(1) lU, — V,ll � ltIlla1llexp(Itl(211a011 +

all A � llaolI + IIaiU,
(ii) l]ajll � (lIaoll + AXIPa0 + + — v111.

Remarks (2.4.8)

1. Statement (i) is the precise analogue of the classical bound (I: 3.5.4), and
(ii) says that any perturbation has a noticeable effect after a rather short
time.

2. Perturbation theory becomes quite inaccurate at large times, so it is not
well suited as a tool for the study of the limit t x.

Proof

(i) If we integrate

exp(a0tA)exp((a0 + a1)t(1 — A))

= zexp(a0tA)a, exp((a0 + a1)t(1 — A))

between 0 and 1, we obtain

Ur — V, = t f dA UA,al

With Theorem (2.4.5) this gives the bound (i).
(ii) This follows from the identity

a1 = (a0 — A) — V,XA — a0 — a1),

in which we have assumed that A � laoll + lla1Il � lao + a11l}
so as to be certain that the integral exists. 0

There are many ways to construct V, from U, and a1. constructions
are subject to the complications typical of noncommuting operators.

Theorem (2.4.9)

Let a1(t) exp(—a0t)a1 exp(a0t). Then
(i) exp((a0 + a1)t) = exp(aorXl + J'odt1 . •.flr'

(the Dy'son expansion).

(ii) exp((a0 + a1)t) =
(the 1}otter product formula).
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Remarks (2.4.10)

1. The sum and limit as n —, converge in the norm topology.
2. The Dyson expansion is identical to the classical formula (I: 3.5.7), and

(ii) also has a formulation for flows.
3. With the time-ordering symbol T, defined by

T(a(t1)a(t2) . - . . .

where � � t,,, � .. � ti,,, Formula (i) can be written as

exp( — a0 t)exp((a0 + a1 )t) = T exp(Jdt'ai(t'))

Proof

(i) exp(—a01)exp((a0 + a1)t) = a1(t)exp(—a0t)exp((a0 + a1)t)

exp((a0 + a1)t) = exP(aoO[l + fdtt a1(t1)exp(—a0t1)

x exp((a0 +

from which (i) follows by iteration.
(ii) Let

= + a1)/n),

T =
—

Since for all k � n, both and � exp(IlaolI + haul),

- — � — +

However,

II — 1;,1j =

=
n n

so

— T11 —, 0.
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Example (2.4.11)

Perturbation of the Larmor precession of a spin. Let a0 = and a1 = iga,,
with the a's from (2.2.37). Since (b .6) = lb12, it follows that

exp((a0 + a1)t) cos + g + i(c,, + gap)
2

sin + g
+ g

This is an entire function of g for all t e R, and (2.4.9(i)) is its Taylor series.
The latter is rather cumbersome, because the t dependence is greatly affected
by gas it varies in C. It is oscillatory ifg is real, linear if g = ± i, and otherwise
it grows exponentially.

We must next confront the physically important case where U, is only
strongly continuous. The integral (lit) dt U, will not converge uniformly
to the operator I, and might not be invertible even for very small t. If we
simply formally adopt the expression derived above for the generator

a
= 1 [!fdt

we find that it is not an element of but at least it is still true that a is
defined on a dense set of e The inverse must certainly exist on vectors
E of the form

=
—

f di Ii, . 4) E r > 0 and w/' =
tj0 I

Since strong continuity means that (lit) di U,p converges to as t — 0,
every vector q of can be approximated arbitrarily well by such a cu. On
it is also true that

ac// =
U,,— 1

because

pt pt+h ph

(U,, — 1)
J

di U,
= J

di U,
—

J di (U, — 1)
J

di U,,
0 t 0 0

so

U,, — I =
h t Lot

Since the last factor converges strongly to 1 as Ii —* 0, we make
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Dethiltion (2.4.12)

The generator a of a strongly continuous semigroup (I, is a linear mapping
D(a) CE for which the dom*in of definition

I .U,, 1

1

is dense in CE. The image of D(a) is the range of a, Ran(a) aD(a) c CE.

Example (2.4.13)

F = P, (v1, v2,. . . , v,,,. . .), (eItvi, e2itv2,. . . , . .) is strongly
but not uniformly (= norm) continuous, = i(v1, 2v2, . . . , .

D(a) {tii €12:

in 12 but not equal to all of 12.

Remarks (2.4.14)

I. The condition of strong continuity may be weakened to weak continuity;
as for instance the strong and weak topologies are the same for unitary
operators on Hubert space.

2. Furthermore, even weak measurability (i.e., t -. <v/i I U,co> is measurable
for all p and al") is equivalent to strong continuity for unitary
groups on separable Hubert spaces This is not true for nonseparable
Hubert spaces: Let = = for all x E R, where the
uncountable sum is to be understood in the sense that only countably
many of the components of a vector i/i are nonzero, and

=

If = + then t —' U, is a unitary group that is weakly measurable
but not weakly continuous: <i/il U,ç/i> = for t = 0 and is otherwise
nonzero for only countably many t's. In this example, there exists no
generator of any kind.

3. In order for t —' U, to be strongly differentiable, it is necessary for a to be
E and D(a) CE. But then t U, is in fact analytic and strong dif-
ferentiability is equivalent to the conditions of Theorem (2.4.5).

4. If a unitary group acts on a Hubert space, ia must be Hermitian:

<jai4'Ico> = for all p e D(a).
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This can be seen just as for finite matrices,

1

the only additional complication being to worry about the domains.
Unitary semigroups can obviously be extended to unitary groups, even
if only strongly continuous.

If U, is strongly continuous, then althougb D(a) is dense in it is
not all of .W', that is, there are sequences D(a) which converge, -÷
but the limit q D(a). Yet if converges to some E then p D(a)
and = aço (Problem 2). This property will be important later on, for which
reason we make the

Definition (2.4.15)

The graph r of an operator a: D -+ F is r(a) ((i/i, q)e D x F: p =
a closed subspace of F x F, a is said to be closed.

Examples (2.4.16)

1. F = L2([0, 1], = with the domain

D1(a) e F: = 0 on some neighborhood of 0).

The operator a is not closed, for consider ,/,,, = when > 1/n and other-
wise i/i,, = 0; then v,,, = and —, 1, but D(a).

2. Let a and F be as in Example 1, but take

I
1

2

D2(a) = e F:
J

— dcL <
I,.

Since D2 contains all i/i for which al/i [,a is closed on D2.
3. Let I D(a) = L2([0, 1] dix), q' continuous). This

operator is not closed, since exp(—(tz — f)2n2) 0 because
0(1/n), but = 1 74 0.

Remarks (2.4.17)

1. Note that F is required to be closed in IE x F and not in D x F. By this
definition with F = [0, ac), the mapping x —. 1/x, D (0, is closed,
while x —. x, 0 = (0, co) is not.

2. Since the graph of a continuous mapping is always closed (Problem 4)
r is closed in 0 x F whenever a is continuous. Hence a is closed ill D is
closed (and therefore equal to F).
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3. Definition (2.4.15) is equivalent to the statement that D 3 -s
—' (p tji e D, p = and to the statement that D is complete in the

norm = li/ill + (Problem 3).
4. If aD(a) is dense in F, then a' is a densely defined operator, and it is

closed whenever a is, since r(a- 1) = Jr(a), where J(x, y) = (y, x).
5. It might be imagined that whenever an operator is not closed, the domain

has merely been chosen too small, and that by taking the closure r of r
in F x IE one would get a closed operator. This does not always work,
as r might not be the graph of an operator. The trouble can be under-
stood with O(x) = 1 for x > 0 and 0 for x <0; the closure of the graph
assigns the two values 0 and Ito the point x = 0. It is also clear in Example
(2.4.16; 3) that making D(a) larger will not produce a closed operator.

The operator a: D(a) —' F of (2.4.12) is a discontinuous mapping. Con-
tinuity of a linear operator is equivalent to continuity at any single point and
to boundedness. All of these conditions imply that there exists an M e
such that < for all i/i e D(a). The connection between the notion
of continuity and the notions of closure and domain of definition is:

Theorem (2.4.18)

Any two of the three properties
(i) D(a) = F;

(ii) a is continuous; and
(iii) a is closed
imply the third.

Proof

(I) A (ii) (iii): Every graph of a continuous mapping is closed.
(ii) A (ill) (i): This was explained in (2.4.17; 2).
(1) A (iii) (ii): This follows from the closed-graph theorem [1, (12.16.1)],
which is rather profound and cannot be proved here. 0

Corollaries (2.4.19)

1. If an operator is closed but not continuous, it can not be defined every-
where.

2. If an operator is defined on all vectors and is discontinuous, then it is not
closed (cf. (2.1.15; 2)).

3. If an operator is continuous, then it can be extended to all of F, and it is thus
closeable.
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Since the difficulties attendant on the definition' of a have to do with the
inversion of an operator, a reasonable expectation would be that the re-
solvent R1 (a — z)' of the operator a ought to belong to If we write
formally that U, = exp(at), then

= — Jdt e_tzU,.

In fact, for this formula there is a

Theorem (2.4.20)

Let U, be a strongly continuous contractive semigroup, with generator a.
Then for all z e C with Re z > 0,

= — Jdt e'2U,

maps (E into D(a). The resolvent satisfies (a — z)R2 = I and iR!H < (Re z)

Proof

The statement about the norm follows from � 1. If a operates after

= hm
Uh —

R2
1 e Jdt + fdt

The first term converges uniformly to and the second term converges
strongly to 1. 0

The problems that arise in physics usually go the other way: a is given
and one tries to find U1. It might be supposed that U, could be defined as

but this often leads to disasters.

Example (2.4.2 1)

Let IF = L2((0, 1), dx). Let us try to write the group of translations exp(itp)
as a unitary family of operators by using the generator p = — i(d/dx). So
that all powers of id/dx will be well defined and Hermitian, we choose D(p) =

1). These functions are supported within (0, 1), so

= (— for all q

and (ta/n !Xda/dxn) is formally unitary. Unfortunately, the analytic
functions on a complex neighborhood of (0, 1) for which this sum has a
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finite radius of convergence for all xE(O, 1) are not included in D(—id/dx).
Moreover, it is impossible to construct a unitary, finite translation this way,
since it would have to translate part of the function out of (0, 1), and the
missing part would affect the normalization integral:

1.1

j dxkli(x + t)12
= J

dxIiJi(x)12 + something unknown,
0

since t4'(x) is not defined for I < x < 1 + t (See Figure 3).
Likewise, the attempt to write = (1 + opens the question

of what are for all n E Z. However, the use of the resolvent integral
works without such difficulties, because it involves bounded operators
only. It turns Out that the properties we have found of a characterize the
generators of semigroups; every such a determines a unique U1.

The Hille—Yosida Theorem (2.4.22)

Let a be a densely defined operator such that (a — x)': F D(a) is bounded

in norm as I(a — x a unique

contractive sernigroup U, satisfying

h

1

= aço for all q D(a).

Remarks (2.4.23)

1. It then follows from (2.4.20) that (a — z) 'exists for all z with Re z > 0,

and is bounded in norm by (Re z)
2. Since (a — x) 1 is defined on all of IE and bounded, it is closed by Theorem

(2.4.18). According to Remark (2.4.17; 4), a — x and a are then also
closed.

3. If (a x)' is defined only on a dense subspace, but is bounded there by

I x - then it has a unique extension to all of CE. and Theorem (2.4.22)
is still valid.

4. In the proof below we try to recover a from the resolvent by taking the
limit (—x — x2(a — x)'). It is also possible to work with
exp(at) = (1 —

I

Figure 3 Unitary representation of the translation on [0, 1].

0 1
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5. Vectors q, on which is defined for all n and L converges for
jtj < t0 > 0 are called analytic vectors, or eutire vectors if t0 oo. The
semigroup exp(at) is umquety defined if a hai a dense set of analytic
vectors.

Let = — x — x2(a — x)'. For all q e D(a), ç -+ aq as x (Problem
5). Consider the semigroup generated by a,, e By Theorem (2.4.7),
since the seinigroups generated by and commute, for all x1 and x2 > 0
and

— � —

Because the vectors converge as x -. the vectors exp(ta,)ço form a
Cauchy sequence, which must always have a limit in a Banach space E. Call
the limit q. The operator can be extended uniquely to F, as the
are uniformly bounded in x. To see that a is the generator of U,, take the
limit x of

e D(a).

Uniqueness follows from

— x)'q,> —

and the fact that the Laplace transformation is injective on the continuous
functions.

Corollary (Stone's Theorem) (2.4.24)

The operator ia is the genera for of a unitary group on a Hilbert space Jr
(i) = <a'frJ.p> for all E D(a), and
(ii) (a ± i)D(a) = Jr.

It only needs to be shown that (a — z)D(a) = Jr for all z with Im z # 0 when
this holds for z = ±i and that II(a — z)1jj � lImzl'. This is done in
Problem 6. . 0
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Examples (2.4.25)

I. The a of example (2.4.13) obviously satisfies (i). It also satisfies (ii), since
for any 11= (v1, v2,. . .) and

= (a — z) = (
Vt V2 .

e D(a)
2—z fl—Z /

and (a — z)(p =
2. In the troublesome Example (2.4.21), (i) is satisfied, as a never sends a

vector out of D(a). Since 1) is not all of L2((O, 1), dx), (ii) is violated.
(—i(d/dx) — I) is not even dense in L2(O, 1), since 11 = euxx is

orthogonal to it: dx e - izx(
— i(d/dx) — z)q(x) = 0 for all 1).

In later sections we shall consider under what circumstances formal
expressions for a can be interpreted so that the Hille—Yosida Theorem (2.4.22)
applies, and whether the perturbation-theoretic formulas (2.4.7) and (2.4.9)
also make some sense for only strongly continuous semigroups.

Problems (2.4.26)

1. Show that the norms of a weakly continuous semigroup are bounded for tin
some interval [0, ö]. Hint: argue as with the uniform boundedness principle.

2. Verify that if U, is strongly continuous, then (cf. (2.4.12))

dU I Uh1
a = —, D(a) = p exists

di h

is a closed operator.

3. Show that an operator a on D is closed if D is complete in the norm ll'frIL = lit/ill +
hat/ill.

4. Why is the graph of a continuous mapping F —. F closed in F x F?

5. Investigate the convergence of from the proof of (2.4.22).

6. Let a be a Hermitian operator. Show that the existence of (a ± i) 'implies that of
(a — z)' for all zw4th Im z O,and that il(a — z)'hI � him

Solutions (2.4.27)

1. Let p(q,) = fixing i/i for the moment. For any such t/' and
p a F, p(q,) is the supremum of a continuous function on a compact set and conse-
quently finite, and the mapping q. -. p(q) is lower semicontinuous in the norm
topology. Moreover, + p is
bounded on any closed ball, then it is bounded everywhere, because

hlq'il fsço\ p(Q0)+M
p(q'o — q) < Mfor all � = � iq'hl
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Unboundedness of p on every ball would contradict lower sesnicont.inuity: If p were
unbounded on the ball K, there would be q, e K, with p(q,,)> it. Since p
is lower semicontinuous, there must exist a ball K, c K,_1 Lontaining and such
that p must also be unbounded on the ball K,, K, must
contain a such that n ÷ 1 and another ball K,+

1 K,, such that
ii + 1 for all q e K,+ The closed balls K1 are weakly compact,

so there must exist some fl, K,. Then p(q) would be greater than any n, which
would contradict the finiteness of for all p. Thus we conclude that p(4,) <
M1 lq'II, and, using the same argument for that

sup'IIU,l = sup sup � M.

11,11 —

2. Let -. 04),, —,

Uk-I . . U,,-l ' . .

urn
h

= Jim urn
h

= lim bm j UkaQ,,
0

=lim_J
h

3. A set (q, in Jr x Jr is closed provided that it is complete in the norm + jlifl.
For a graph this norm is = 114)11 + IIa4,II.

4. Since IIa4,Ii � halt Iq'II. the norm 114)11 + Ila(pII is equivalent to 114)11, and the graph is
closed if D(a) is closed.

5. For all (p D(a),

lim(l + x(a — = Iim(a — = 0.

But if the bounded operators — x/(a — x) converge on a dense set to 1, then they
converge to I on the whole space, so

lim(—x(a — = IImaX4) 04)

for all q' a D(a).

6. 110 is Hermitian and Ran(a ÷ 1) = ir, then II(a + 1Y 'II � 1, since (a + i) 1x =
y 11x112 = IIayll2 + 11y112, and

lull2
1.

lxii , x

Hence

(a + i + z) ' = (a + (z(a + IY')'

has radius of convergence I. The operators a ± 31/2, a ± 21, etc., have the same
properties, and expansions around these points also converge up to the real axis,
so the open hall-planes can eventually be covered by such discs. For the second part,
note that (a + u + = y, u, vaR, 11x112 = II(a + u)y112 + v211y112 —

IIyii2/iixiI2 �
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2.5 Unbounded Operators and Quadratic Forms

The generators of strongly continuous unitary groups are seif-adjoint
operators. Under the right circumstances, the domain of a formally

expression can be chosen so as to make if seif-adjoint.

Typically, a physicist is confronted with an unbounded Hermitian operator,
and an important question is in what sense does such an operator generate
a one-parameter group as the time-evolution. Since it is not always possible

classical mechanics to generate a satisfactory time-evolution—vector
fields may fail to be complete, and a particle may reach infinity in a finite
time—one must be prepared for trouble when doing quantum mechanics.
Yet we shall discover later that the situation with hr potentials is much
better quantum-theoretically than classically, and that the rather annoying
queStion of the existence of collision trajectories in the classical three-body
problem will cause no difficulty in quantum mechanics.

Our first task is to generalize the definition of the adjçint of an operator
(2.1.26; 3) to cover unbounded operators, so as to ensure that all seif-adjoint
operators on Hubert space generate unitary groups.

Definition (2.5.1)

The adjolnt operator a of an unbounded operator a having a dense domain
D(a) in is defined on the domain

sup
I.

by the formula = <a*q,I for all D(a), ç D(a).
If a = a, then a is said to be self adjoint;
if a = then a is essentially self adjoint;
if a a,thenaisHermltian.

The symbol b a means that b is an extension of a: D(b) D(a) and = a.

Remarks (2.5.2)

1. Since it is assumed that D(a) is dense, (2.5.1) defines a uniquely.
2. choice of the domain D for a fixes the domain of if aço

,,Ii — (aq f i/i) is a continuous functional. D(a*) consists of all q'
for which -. is a continuous functional D-.C: it is thus the
biggest possible domain.

3. If is dense, then a** is defined uniquely, and a a. This is the
case for Hermitian operators, since ma) D(a), but in general D(a)
need be no larger than {O}.
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4. Ha is continuous, then D(a) = .*'. This accords with Remark (2.1.26; 3),
by which a: D —. *' induces the mapping a: .*' = .*' = Jr. if, in
addition, D(a) = .*', then the concepts of Hermitian and self-adjoint
become synonymous.

5. a c b a b*. In particular, a is Hermitian itT
a a c a; and a

is a
if a a a; then is

determined by its domain, on which it must have the same action as a*.
6. If a is essentially seif-adjoint, then a* = a a is the unique self-adjoint

extension of a. a b = b* a b b a. The advantage
of speaking of essential self-adjointness is the flexibility it allows in the
choice of D(a); a change in the domain D(a) can leave a essentially self-
adjoint, but it necessarily alters the statement that a = a*.

7. The graph r(a*) (see (2.4.15)) can be described as follows: Let J be the
unitary operator (x, y) —, (y, —x) on Jr Jr. Then (Jr(a))'
(Problem 3). Any subspace defined by orthogonality is closed, so a is
always a closed operator. If a is Hermitian, then its closure is a, since
J2 — 1 and = T. Hence Hermitian operators are always
closeable, and we may assume them closed without loss of generality.

1. Let us recall Examples(2.4.16; 1) and (2.4.16; 2). Define a1,2 a with the
domains 1) D2 . The operator a1 is not self-adjoint, since it is not closed.
What is or? Its domain consists of all such that

r1 j —1/2

sup
J

dx — j0 0

so must belong to L2([O, 1), Consequently D((a,)*) =
D2, a? = a2 and we see that a1 is Hermitian. It is also easy to see
that a2 is Hermitian and thus, according to (2.5.2; 5), self-adjoint:
a2 c a? c a? = a2. This means that is essentially seif-adjoint.

2. in Example (2.4.16; 3), D(a) would be

e L2([O, 1], dx): sup q(x) <cc . -

t. p contInuous fllfrII

Since ifr can be arbitrarily large, D(a*) is the subspace orthogonal to
the constant function, and is not dense.

3. Let : —. = with D(a1) = e Jr = L2([O, 1], 'Ii

is absolutely continuous, Jr. and = O}. Absolutely
functions are of the form

= fda' g integrable.
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For such functions, = g a.e., so

— = fd2'

they are the functions for which integration by parts is justified. It is not
restrictive enough to have merely functions that are continuous and have
derivatives a.e. which are in L2; there are continuous, strictly monotonic
functions for which vanishes almost everywhere (cf. (2.3.25; 7)). The
boundary conditions ensure that a is Hermitian, for

=

i
+ f — =

0 \dcl ,
for all q, i/s e D. (2.5.4)

They are too strong for self-adjointness, however, since (2.5.4) is also valid
without the requirement that i/i(O) = ,4'( 1) = 0. The other conditions are
clearly necessary, so D(a) = is absolutely continuous and
(p' E .*'}. If we now calculate a**, we are again led to (2.5.4), though this
time it is necessary to reimpose the condition i/'(O) = i/i(1) 0 to make

• vanish. Therefore a = a, so a must be dosed. The adjoint a*
is a proper extension of a and thus definitely not Hermitian, as a** c a.

4. Consider again a: i/'(tz) -. D(a) = {i/i e ..*' L2([0, 1), dix): i/s

is absolutely continuous, e and i/i(0) = ye R}. It follows as in
(2.5.4) that a is again Hermitian, but now = 0 requires that
q'(O) = q(1)d'. Therefore D(a) = D(a), and a is seli-adjoint. This a is an
extension of the a of Example 3 for any y E R, so there is a one-parameter
family of extensions of that a, and in fact it contains all possible self-
adjoint extensions. (See (2.5.12).)

S. a: —' i(d/dct)iji(ix), D(a) = e .*" = L2([0, dix): i/s is absolutely
continuous, i/i' e .*', and i/'(O) = 0}. This operator is also Hermitian,
as it is easy to see that the upper limit contributes nothing upon integration
by parts (Problem 4), and the equation

= I drx içoi/i' = iq,(O)i/'(O) + I =
Jo Jo

will hold provided that either = 0 or i/i(0) = 0. This means that
D(a) lacks the condition i/'(O) = 0, and that a = a. It is not possible
in this case to weaken the boundary condition to make = a.

6. a: ug(i(a) —. i(d/dct)i/i(tx),D(a) = {i/i e = L2((— x) dx): 4'isabsolutely
continuous, and i,/i' E .W'}. The operator is Hermitian since, as in Example 5,
there is no contribution from ± to the boundary term of the partial
integration. In fact the operator is seif-adjoint; there is no way to weaken
the boundary conditions for D(a*). It is clear on reflection that the
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difficulties in Example (2.4.21) or with a unitary translation on L2(O, co)
can not arise on L2( — co, co), and nothing prevents from being self-
adjoint. Moreover, d' is seif-adjoint in this case on

D(aN)

=
{ci, e .W': ',li,. ..

, i,1i absolutely continuous, ,/i D(a)}.

If a is Hermitian but not sell-adjoint, then it may have any finite number
of seif-adjoint extensions, or an infinite number, or none at all. The adjoint a*
will not be Hermitian, and indeed it has complex eigenvalues. Returning to
Example 3 (respectively 5), exp( — z z <0), is an eigen-
function of a with eigenvalue z. In these cases every point of C (resp. the
lower half-plane) belongs to the .point spectrum of a. This behavior is
typical, as is shown by:

Theorem (2.5.5)

Let a be a closed, Hermitian operator. Then

(i) F2 = (a — z)D(a) = (Ker(a — z))1(z = x + iy, y 0) is a closed
subs pace of.W, and (a — z) 1: F2 —' D(a) is.a continuous bUect ion;

(ii) — iXa + is unitary, and 1— V=2i(a+ IY':
F -' D(a) is bijective, so that act' = 1(1 + VXI — i/ifor all E

(iii) D(a) = D(a) + + all z E C, Im z 0;
(iv) if a is seif-adjoint, then F2 = for at! z C, Im z 0; and a is self-

if F2 = for some z C with Im z > 0 and for some z with
Imz<0.

Remarks (2.5.6)

1. Since all Hermitian operators are closeable, we have considered only
closed operators a. If the assumption of closure were dropped, then
Propositions (i)-(iv) would hold for the closure a. As a consequence, the
resolvent (a — z)-' of an essentially self-adjoint operator a is densely
defined, and, since it is bounded, it has a unique extension (a** z)

as a bounded operator defined on all of .*'. (Recall Remarks (2.4.23).)
2. V is known as the Cayley transform of a.
3. These propositions are depicted schematically in Figure 4.

(i) Because ll(a — x — iyW'112 = II(a— x)cliIl:i + � the re-

solvent (a — z)1 is bounded,, and by assumption F(a — z) and thus also
T((a — z) - 1) are closed, so it follows from (2.4.18) that
D((a — z) ')= is a Hubert artd thus aclosed subspace of Jr'.
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(a + j) 1 = (1 —
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Ft{

(1

{

D(a)

{

Figure 4 In the top two figures, the decomposition on the left is not assumed orthogonal.
Although D(a) D(a) The extension a, a c c a* and V are
defined in (25443w-

— = ((a
orthogonal to the elgenvectors of a of eigenvalue z. As a Hermitian
operator, a cah not have any complex eigenvalues. Hence a — z is
injective and, by definition, surjective as a mapping D(a) —' F,.

(ii) = (a + ço€D(a), because fl(a + = II(a —

the operators V and V1 = (a + iXa — are isometric. From
= — ÷ V*)/2,weconcludethat(1 — V)i,L' =0,

and so (1 + = 0 and = 0, Therefore 1 — V is invertible on F_1,
ionda=i(1 + V)(1 — V)-1.

ri
—I

0+1 0* + j

(a + iY' (1—

V i)(a + j)_1
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(iii) Let e D(a*) and write (aS + as a sum of vectors of F_1 and
(a + i)iji = (a + + E D(a), x E = Ker(a5 — 1). Hence
2iX = (a5 + i)x = (a + — — x) = 0, because a5 a =

Therefore ili = + x + 4', e Ff is the required decomposition of
any vector iii of 0(a5).

(iv) This follows from (iii), because if (2.4.27; 6) is generalized to unbounded
operators, we see that .*' .*' for all z with Im z/Im 20 > 0.

0

Example (2.5.7)

a = D(a) as in (2.5.3; 3)34'; = i(d/da + 1)q(a) is or-
thogonal to Ker(a — I) = since

5
dc* + ep(I) — 9(O) = 0,

= —,
Jo

so (a + i) is continuous, and

—
5

dcz'[tS(ri — — —

5 dtx'V(a,

V is isometric on F_1, since da' V(tz, tx'W(cz', a") = — a")

Remarks (2.5.8)

1. if a is not self-adjomt, then a — z: D(a) -+ with Im z 0 is still in-
jective, but it is not surjective, while a — z: D(a') .W' is surjectjve but
not injective. Consequently, Sp(a) and Sp(a) each contain at least a
half-plane, if Definition (22.13) is carried over for the spe6trum of un-
bounded operators.

2. If a is seif-adjoint, then V: *' — .*' is unitary, so the spectral theorem
extends to cover a. If dp(0), 0 � 0 < 2n, is one of the spectral measures
(2.3.14) for V: V) {e'i, (V*X0) = then the multiplication
operator equivalent to a is a: -.+ i(l + e'8)/(l — We saw
earlier that V does not have the eigenvalue 1,. so the measure of the point
O = 0 is zero, and a is multiplication by an a.e. finite function. ills form
of the spectral theorem for unbounded seif-adjoint operators is as general
as possible. If A = cot 0/2 is introduced as a new variable, then L2([0, 2itJ,

is mapped to L2(( — x), d1z(A)), and a becomes multiplication by
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'/f

Figure 5 Two unitary representations of the translation on [0, 1].

In analogy with (2.3.14), a y then be written as A dPA, which ex-
Theorem (2.3.14) to unbounded seif-adjoint operators.

3. We shall understand convergence of a sequence of self-adjoint operators
a to mean that all sequences of bounded functionsf of the a con-

verge: —i f(a). It suffices to have convergence for either of the two
classes of functions f(a) = exp(iat) for all t E R and f(a) (a — z)1 for
all z with im z 0.

4. By Stone's Theorem (2.4.24), the seif-adjoint operators are exactly the
class of Hermitian operators that generate unitary groups. For instance,
the a of Example (2.5.3; 4) generates the group of translations

= — t)

and answers the question that arose in (2.4.2 1) about the effect of the
periodic boundary conditions: whatever is pushed past one end of the
interval reappears at the other end with some constant change of phase
(see Figure 5):

5. A converse of Theorem (2.5.5) can also be proved (Problem 7): If V is an
isomorphism of a closed subspace F_ onto a subspace, such that 1 — V
is a bijection of F_ onto a dense subspace of .W', then 1(1 + —

is a Hermitian operator.
6. The part of D(a) not contained in D(a) consists only of cigenvectors of

a with complex eigenvalues. The sum in (iii) of (2.5.5) is of course not
orthogonal.

Because of these facts, the most important criterion for self..adjointness
is the absence of complex eigenvalues of a. To pursue this subject further,
we make

Dethddom(2.5.9)

(m, n) dim(Ker(a F i)) = dim(F±i(a))L are the de&Ie.cy Indices of a.

1 0 I
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Examples (2.5.10)

1. a is essentially scif-adjoint iff(rn, n) (0,0).
2. In Example (2.5.3; 3), (en, ) = (1, 1).

3. In Example (2.53; 5), (in, n) (0, 1).

If one wishes to extend a Hermitian operator a = 1(1 + V)(I — V)1 to a
self..adjoint operator a = 1(1 + UX1 — U)1 then U must be a unitary
extension of I': F_, —. It is clear that the must map the
orthogonal complements Ker(a* 1) unitarily onto each other, so U has
to be an orthogonal suni V V' for some V acting on the orthogonal com-
plements. This is possible only if have the same dimension:

Theorem (2.5.11)

A Herrnitian operator a can be extended to a s4f-adjoin: operator a 1ff the
deficiency indices are equal. In that case, for evePy unitary mapping V':
Ker(o —I) -. Ker(a + 1) there exists a distinct extension

Example'(2.5.12) /'
Let us return to (2.5.7), which has (in, n) = (1, 1): U(1, C) is multiplication by
a phase factor, so there exists a one-parameter family {a1} of seif-adjoint
extensions of a. If V V' is defined on all of Jr.
With the procedure we have described above, q, e D(a) is written in the form

((U — *)qiXx)

I ásl Is!
= (U — —

J
+ e2c J drx' e"4'((x')

= —2 fda' —

+ (e1 —

where c dci = 1, so q' satisfies the boundary conditions

— 1 fe' — 1 \ f e — \

/ Ai'l\\*=l!1!l

which makes identical to the a of (2.5.3; 4).
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Remarks (2.5.13)

1. Theorem (2.5.11) reveals why it was not possible to weaken the bounçlary
conditions in (2.5.3; 5) to make a self-adjoint. In that example, m

2. Although the deficiency. indices and extensions were defined with the
special values z = ± i, any other pair of complex conjugates z, z # 0,
would have produced an equivalent definition.

3. If either m or n is zero, then the operator is maximal, i.e., it has no
Hermitian extensions. If m = n < then every maximal Hermitian
extension is seif-adjoint, and if m = n = then there are maximal
Hermitian extensions that are not seif-adjoint.

4. if a Hermitian operator is real (see (3.3.19; 5)), that is, invariant under
I '—' — I, then m = n, and it always has a seif-adjoint extension.

The delicate attribute of self-adjointness is not even preserved by the
formation of linear combinations of operators. If a and b are self-adjoint,
then a + b (and ab + ba) may fail to be self-adjoint. The sum a + b is a
priori defined only on D(a) D(b), and ab + ba only on D(a) D(b) Ct
aD(a) bD(b), and these sets might not be dense. Even if the intersection of
the domains is dense in it might be too small for the sum to be self-
adjoint.

Example (2.5.14)

A hr2 potential. Let H = K + V, K: —' —(d2/dr2)i4c(r): D(K)
e .*': is absolutely continuous, e .*', and = 0), where ..*'

L2([O, co), dr); V: —. y R: D(V) = e Jr: e A").
With the a of Example (2.5.3; 5), K = aa, which is aLways seff-adjoint. As in
Example (2.5.3; 1), V is likewise seif-adjoint. However, D(H) = D(K) Ct D(V)
= e is absolutely continuous and A", e .*', and =
= 0), and as in (2.5.4) the boundary condition does not show up in D(H*):
D(H*) = e A": t/i' is absolutely continuous and A", and (—tji" + yi,li/r2)
e A"). It is possible for D(H) to be a proper subset of D(H*), provided that
neither çt'" nor is in A", but that their difference is, because of a cancel-
lation of the singularities at 0. In order to understand when this happens,
let us examine the solutions of the equation = (y/r2 ± ± . solutions

that decrease when r -. co as exp(—r(1 ± are linear combina-

tions of v = + 1/4, in the limit r—+O. These functions are square-
integrable only if v < so if y � then the deficiency indices
are (0, 0), and if y < then they are (1, 1). In the latter case there is a one-.
parameter family of seif-adjoint extensions, which append —

e to D(H) so that — = + Even
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if y 0, D(H) gets exp'anded by the inclusion of ezp(—r(1 + —

exp(2ic3 — — i.e., it can be characterized by the boundary con-
dition = ,.fl/(cot(b) — 1). Since 'I'/r in three-dimensional
polar coordinates, — becomes so this extension corresponds
physically to the addition of a delta-function potential at the origin.

However, if b is small in comparison with a in a certain sense, then the
addition of b to a does not affect its self-adjointness.

The Kato—Rellich Theorem (2.5.15)

Let a = a, b b, and 0(b) 0(a), and suppose that there exist constants
0 � a < 1 and fi � 0 such that lIb*II � + for all i/i e 0(a). Then
a + b is seif-adjoint on 0(a). if a is essentially seif-adloint on 0 c 0(a), then
so is a + b.

Proof

In the spectral representation of a (see (2.5.8; 2)) we discover that

II (a ± — � 'i' and ± iii)
'

H � 1.
is large enough, then it follows that llb(a � a + < 1, so

1 + b(a + is a bijection of Consequently (a + b ± =
(I + b(a ± 1Xa ± is either all of g or dense in .*', depending on
whether (a ± is all of *' or only dense.

Remarks (2.5.16)

1. If b is bounded, then it is a fortiori relatively bounded, and a + b is self-
adjoint or essentially self-adjoint on 0(a) whenever a is.

2. Since ,.jx2(1 + 8) 4- p2(1 + 1/c) � a + for all a, IJ, s > 0, Criterion� + � a2a2 +
3. For the statement about essential self-adjointness, a may be allowed

to be I.
4. For the physical systems that will concern us, b = a Coulomb potential

is bounded relative to a = the kinetic energy. The Kato—Rellich Theorem
is thus sufficient for our purposes to guarantee existence and uniqueness
of the time-evolution.

It sometimes happens that formal Hamiltonians are not even strictly
speaking operators, because they send every vector of out of .*'. However,
knowledge of enough matrix elements is frequently sufficient to determine
the time evolution, even in the absence of a well-defined operator.
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Definition (2.5.17)

A quadratic form q is a mapping Q(q) x Q(q) C: (q, 4,) — <pIqI4,>,
where Q(q) is a dense subspace of .*' known as the form domabi, such that
<(pIql4,> is linear in 4, and conjugate-linear in If
then q is said to be Hermitlan, and � 0, it is positive. A positive
quadratic form q is said to be closed 1ff Q(q) is complete in the form norm
lfrpJi = <(plqlq)> +JfrpII2.

Gloss

Conjugate-linearity means that If <q'Iqlq'> �
—MJJq,112, then q is semibounded; equivalently, the form <Q1q114,>
<q)q)4,> + M<qj4'> is positive.

Examples (2.5.18)

1. Let a be a (densely defined, linear) operator. Then 4')
is Hermitian Or positive if a Is.

2. Suppose a operator a has been written in a spectral representa-
tion on L2(R, Then (pJqI4,> = L for
4, 4, E Q(a) (Ce .*': < oo) is a Hennitian
form, which is closed if a � 0. Observe that Q(a) is different from D(a) =

E dz,,(tx) I 121 C.(x) 12 < 00), but that rather Q(a) = D(
3. For .*' = L1(R, Q(q) = {4, E 4' is continuous at 0), the "delta

operator" = q'(O)4,(O) is positive but not closed. The sequence
= -.0 in .*' is also a Cauchy sequence in the form norm,

but without"i limit in Q(q): since the topology coming from liii. is
finer than the one coming from If and the sequence tends to 0 in the
latter topology, the only possible limit in Q(q) would be 0. However,
because 1, the sequence does not tend to 0 in the
topology, and this fact is not changed by an enlargement of Q(q). Hence
q is not closed, and in fact not even closeable.

Thus Hermitian forms, in contradistinction to Hermitian operators,
need not be closeable. However, if they are closeable, then they are Riways
the quadratic form of some self-adjoint operator.

Theorem (23.19)

If the form q is positive and closed, then it is the form of a unique seif-adjoint,
positive operator.
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Consider Q(q) c *' as a Hubert space with the scalar product (cil4'>,
+ The resulting topology is finer than that coming

from <I), so the mapping Q(q) —. C: 4' —. (cip4'> is continuous for all
ci e As in (2.1.17), there exists a unique x E Q(q) such that <q'I4') =

This defines an Injection c: .*' -. Q(q): q, —, cqi. If we con-
sider c as a mapping

-.

then it is Hermitian and bounded:

<q'lc4'> = <CfP(C41)q = = <4'Icc'> = (ccil4'),

Ilcil sup IIc4'II � SUP lIC*Ilq = SUP l<C#I9>qI = sup
0*11—1
1,11,—i 1.1,—i

Note that c.*' is dense in Q(q) in the fi II, norm (i.e.,, <cço I 4'>4 = <cii 4')
=Oforallq,€.*'=4'=O),and henceitisalsodensein.*'inthenorm
1111. Therefore c 1is densely defined, and since c, being a bounded, Hermitian
operator, is seif-adjoint, is also seif-adjoint on (Problem 10). The
operator — I has the required property <(c' — l)ci14') =
on the domain c.*° Q(q). For uniqueness, see Problem 8. 0

Example (2.5.20)

We attempt to make sense of d2/dx2 + V(x) with V(x) = Aô(x) by extending
the operator H = —42/dx2 on D(H) = {4'€L2((—ao, cx)), dx): 4" is abso-
lutely continuous, 4'"(O) e L2, and 4'(O) = 0). The Fourier transformation
makes H a multiplication operator:

(H'frXk) = k24'(k), E'(H)
=

E L2((_ 00, oo), f dkik24'(k)12 <

4'(k) = o}.

Itisclosedsincethegraphnorm(2.4.17; 3)iscquivalentto E
(dk/2n)I4'(k)12(1 + k'), and

D(H) = {4' E lI4'IIr <cx, (4'
1 k4) = o}

and fll/(1 + k')IIr < 00. Clearly,

= k2
D(H) + {k2

1
z E C —

H* —
1

k2 — z
—

k2 — z
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Therefore the deficiency indices are (1, 1), and there is a one-parameter
family of seif-adjoint extensions. The domain D(H) is not complete in the
appropriate q-norm

= + k2) = +

its completion contains vi's which decrease only like Jk as k —'

Q(q)
=

E L2: < fdk i*(k) = o}.

This is a subspace of < closed in the norm II because

=
1 k2)4 and

01 + k2

therefore dkt/i(k) is a continuous linear functional on Q(q) with the II II,,

norm (unlike the II norm). The injection c for the form q = k2 with domain
Q(q) is determined by

f dk ço5(k)tj'(k) = f +

for all E Q(q), q' E .*', cço Q(q), which implies that

tp(k) I dk' (p(k')
cço(k)—. — i —1+k2 l+k'2

Hence sends (1/(1 + = {q: 1/(1 + k2)> = 0) to b(H) and

1/(1 + Ic2) to 1/(1 + k2)2 — 1/2(1 + k2) D(H), which means that
= 1 + k2 and c1x = 1/(1 + k2). The domain of H is enlarged by

the inclusion of x1 on which the extension does not act as k2 (see Figure 6).

Q(q)

C

Figure 6 The domains involved in the extension of a quadratic form.
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Since the deficiency indices are (1, 1), the domain of any self-adjoint extension
is D(H) + some one-dimensional space, so D(H) + {z} is large enough to
be D(c '). The operator — 1 is called the Frledrlchs extension of H.

Remarks (2.5.21)

1. If we choose Q(4) = < cx) Q(q), then

1) = + k2)12 < cx} c Q(4)

and r1 is just multiplication by 1 + k2, and thus different from c', even
though 4 are closed. In contrast, for seif-adjoint
operators, a a necessarily implies a = &

2. If q arises from a positive operator a, <q, jq = <q. Ia*>, then q is always
closeable to some 4 with Q(4) the completion of D(a) in the norm ii
If is a Cauchy sequence with II fig, then it is also one with ii ii and
converges to some To show that Q(4) and note that
<4'Rl'n>q = <(a + —, <(a + for all
Since Q(4) is complete, it must follow that .!LLt some Q(q), and we
see that <p1&/i — = 0 for all qi D(a). Since D(a) is dense in Q(q),
i./i mUst be the same as This shows that every semibounded operator
has such a seif-adjoint extension, known as the Frledrlchs extension.

3. In x-space the functions are of the form exp(— IxI(1 ±
The seif-adjoint extensions append the functions = exp( — jx +
—exp(21i5 IxKl — i)/.[2) to D(H) (Problem 5). The functions
satisfy — — s) = )4i(O), = (cot(S) — and so at x = 0,

(—
+ 2o(x)),fr(x) = 0.

The form q defines the extension with). = since has a discontinuous
derivative at x = 0, but it vanishes at that point (5 dk = 0).

4. Since the norm on Q(q) is weaker than the graph norm (2.4.17; 3) of H,
the closure in Q(q) produces an extension of the operator H, which is
closed in its graph norm.

5. Q(q) is closed with jig, but it is not all of .r: iIIfrtlq < CX)).

6. Whereas 5(x) of Example (2.5.1 8j) is.not an operator, since its quadratic
form is not closeable, — d2/dx2 + ).i(x) is an operator.

Problems (2.5.22)

I. Show that of (2.4.16,2) is closed.

2. Find an example of an operator with D(a) = <c for all
e D(a), thl'V = 1) = 0.
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3. Show that =

4. Show that a a' for the a of (2.5.3; 5).

5. What are the other self-adjoint extensions of H in (2.5.20)?

6. Determine the Friedrichs extension of H in (2.5.14).

7. Prove the claim made in (2.5.8; 5).

8. Show that the operator defined in (2.5.19) is unique.

9. Carry out the intermediate steps in the calculations of Exatnples (2.5.7) and (2.5.12).

10. Use the graph r(a) to show that the inverse of a self.adjoint operator is seif-adjoint
whenever it exists.

Soludosis (2.5.23)

1 '•' 1 daO,
a

since it is

,lj 2 2

� I da+J dct
a a

for all dz � i.e., ,JieD2 and — = 0. Remark:
The same argument works for any multiplication operator which

is closed on the domain

2. Let a be given in a matni representation as = (1/n)i, and let D(a) be

= . . .): only finitely many are nonzero).

Then

sup = forall 0.
II*IIsi •

3. y is contained in the domain of a' if there exists a y' A' such that (yjax> =
for all x D(a), and if there is such a y', then a'y = The equation

<yIax> = <y'Ix> can be rewritten as <(y, y)I(ax, —x)> = y')IJ(x, ax)> 0,

i.e., ha') = (Jfla))1i.

4. It only nends to be shown that the upper limit contributes nothing to the integration
by parts% that is, q'(cx$'(a) —. 0 as a co. Since

p

— ç'(a$'(a) = 5 fq'(a')4*"(a') +
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and because (. . j it follows first that is a Cauchy sequence and hence
convergent, and secondly, because dri I I < that the limit a 0.

5. Theorems (2.5.5) and (2.5.11) imply that every seif-adjoint extension is of the form
R: D(R) = = q + — V an isometry F- -. 11*
Hq — iço + iV'4,. In our case, q, = l/(k2 + i), and the most general acts by

e2t4/(k2 — I).

6. The form domain Q(H) of <4,1 HI 4,> J dr(ço'2 + yço2/r2) contains the operator
domain DF(H) of the Friedrichs extension. The functions 4, of Q(H) must go to 0
faster than r 0, so that JdrI4,12/r2 < Since functions of D(H)
D,(H) approach linear combinations of l/2 in this limit, only 1/2 possible,
and that only if v is real. i.e., > —1/4. Thus the Friedricb.s extension amounts to
appending the linear combination + — - , which behaves like 1/2 as r -.. 0.
H is in fact a positive form only until the point y — 1/4, since, by integration by
parts,

I
2 ' 1/2 21/2

[Jdr!i}

dr4,'2.
r

Equality holds for 4,' = constant, which means 4) = (const.)r, though at large r, (p
must somehow go to 0. The large-r dependence can be arranged so that when
v < the form H is no longer positive. For the other extension H5 with

# <q,IHI> = for all Q(H).

7. V sends F... to thIdense subspace D, and the association given by

is linear. As to whether the operator is Herinitian: It is necessary to show that
<f'Iaf> = <a!' If> forfandf E D, i.e.,

— V)g'I(l + V)g> = <(1 + V)g'Ii(I — V)g>.

This is true because V is an isometry.

8. ((c1 — = for all ,p, —1
= — I, since the latter operator is seif-adjoint, and consequently can not have

any proper, Herinitian extensions.

9. Simple integration by parts.

10.

r(a1) = = (Jur(0))1 = = LJF(a),

i.e.,

= =
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Quantum Dynamics

3.1 The Weyl System

Phase space is the arena of classical mechanics. The algebra of
observables in quantum mechanics likewise constructed with
position and momentum, so this section covers the properties of those
operators.

In classical mechanics, every function F on phase space generates a one-
parameter group of exp(tL5,) (t E R and is the Lie
derivative with respect to the Hamiltonian vector field corresponding to F),.
Similarly, we learned in §2.4 that in quantum theory every observable a is
associated with a one-parameter group of automorphisms b —. exp(iaØb
exp( — iat). One of the basic postulates of quantum theory is that, in units with
h = I, the groups generated bythe Cartesian position and momentum co-
ordinates and of n particles (j 1,. . . , n) are the same as classically, i.e.,
displacements respectively in the momenta and positions. Since and Pj do
not have bounded spectra, and hence can not be represented by.bounded
operators, it is convenient to consider instead the bounded functions

. Si) and ri), sj, rje (lv,

so as not to have domain questions to worry about. The group of auThmor-
phisms can be written in terms of them as follows: -

84
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The Weyl Algebra (3.1.1)

The operators

. si) and ri)

generate the Weyl algebra *' with the multiplication law

rJ)exP(i$.x1 . si)exp(_ itrj pj)

= e IV.

Remarks (3.1.2)

1. To simplify the notation, we consider Zj E rj + aLas a single vector in the
Hubert space C3", with scalar product (z I z') and volume
element dz = d3r1 . . d3r. d3s1 . d3sN. Then we define the Weyl operators
by

W(z) E exp(_ . . Pi)exP(i 8j' Xj)

W'(—z).

The multiplication law (3.1.1) can then be written compactly as

W(z)W(z') = Im(z I z')) W(z + z').

This shows that products of W(z) can be written linearly in W(z), so the
algebra IV consists of linear combinations of the W(z).

2. We shall only be interested in representations for which z —' W(z) is
strongly continuous, so that we can recover x and p from knowledge of
W(z). In the representations we shall use, II W(z) — W(z')II = 2 whenever
z Norm continuity is impossible, as x and p are always unbounded.

3. The C algebra gotten by taking the norm closure of IV is too small for
many purposes. In order to include all functions of x and p. it is necessary
to take the strong closure The question then arises whether the iso-
morphism mentioned above, of the canonical and unitary transformations,
can be extended to other coordinate systems involving functions of x
and p. One cause for concern is that because of the noncommutativity of
observables, a classical functionf(p, x)does not have a uniquely determined
quantum mechanical version: Is the classical function p2x3 to be px3p or
(p2x3 + x3p2), which by formal manipulation of (1.1.1) equals —3x +
px3p? It can àven happen that the product of operators simply fails to be
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defined because of the lack of a domain of definition (cf. (3.1.10; 5)). We
shall not generally be able to settle the question of the proper quantum
mechanical operators associated with all classical observables and find
what groups they generate but shali instead consider successively more
complicated special cases.

For a better understanding of the possible representations of 'W', we con-
sider the

Mapping of into 1 (3.1.3)
Given a strongly continuous representation of #',

wj. fdz f(z)W(z) E

is well-defined for allf e L'(C3"), and:

(i) W1÷9 = W1± 14's;

(ii) = Wj,f(z) = f*(_z);
(iii) = 14,(f *g)(z) = Jdz'f(z — z')g(z')exp((i/2)Im(zlz'));
(iv) W(z) W10 = W10 exp(—1(z(z)) for all ZE

f0(z) = (2ir) exp( — ((z I z)/4));
(v) The mapping L' —* f —' is infective;

(vi) lVj.ll � II f Iii.

Proof

Since W(z) is strongly continuous, the integral is defined as a strong limit, but
will not necessarily be in the norm closure of

(i) and (ii) are obvious.
(iii) follows from (3.1.2; 1).
(iv) follows from (3.1.2; 1) and a Gaussian integral (Problem 5).
(v)

o = $dz f(z)<gI W(—z')W(z)W(z')h>

= Jdz f(z)exp(i W(z)h>.

Now choose h = 'g and observe that the Fourier transform off
vanishes, and therefore so does f itself as an element of L1.
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(vi) Since W(z) is unitary, 3 for all z e and

fdz f(z)W(z) � fdz
I
f(z) III W(z)It.

Consequences (3.1.4)

Property (iv) implies that = is a projection, and that is
all of .ir: The space orthogonal to it would be invariant under and such
that W10 would vanish on it, as W,0x> (W,0ytx) = 0 for all x€
W10y = 0. Thus in this subspace we would have a representation of with

= 0, which is impossible by Property (v). Therefore the subspace
is a totalizer for and in an orthogonal basis {Uj} of W10.W' with

the representation has the form:

<Ui1 W(z)uk> <Uj(

= WfOuk>exP(_
(zlz))

= öik

This argument proves

The Uniqueness Theorem of Representations of W(3.1.5)

Every strongly continuous representation QJ is equivalent to a sum of cyclic
representations with

I •(zjz)

Reinarks(3.l.6)

1. if is separable. then the sum is countable.

2. In the spectral representation of x, the operator W10 projects onto

u(x) =

and

(W(z)u)(x) = si(xi + +

(Problem 2).
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3. If the assumption of strong continuity is left out, then there are more
representations. Suppose .*' is as in (2.4.14; 2), and that, as before,

= exp(is(x + This constitutes another representation
of W', op a nonseparable .*'. It is definitely not equivalent to (3.1.5), since
expQxs) has a purely discrete spectrum, every z E C: I z I = I is an elgen-
value. In this example the operator p does not even exist.

4. There are inequivalent representations of *" for infinite systems (n
in fact uncountably many of them, even on separable Hubert spaces. (See
volume IV.)

5. If x-space is not infinite, but rather a torus (1: 2.1.7; 2), then there are
infinitely many inequivalent representations of the Weyl relations. In that
case expQ E7-

1 sf,) is an observable only if s1 E (2nZ)3, and (3.1.1) is
valid only for these Sj. The operator p is aglain formally the derivative
— i(d/dx), but, according to (2.5.3; 4) this has a one-parameter family of
seif-adjoint extensions corresponding to the boundary conditions

= e 0 � j � 2; for e L2(0, 1) L2(T1), Then —(d/dx) has
= — j,1a Z.Therepresenta-

tions are clearly inequivalent for different j and inequivalent to the rep-
resentation (3.1.5), where the spectrum is absolutely continuous rather than
pure point.

6. Theorem (3.1.5) gives what is known as a ray representatkmof R6A, which
means that W(z)W(z') equals W(z + z') up to a phase factor. It miy seem
peculiar that the representation of # is essentially unique, even though
every subgroup of is an invariant subgroup (a normal divisor), and a
representation of any factor group is also a representation of The state
of affairs can be understood as follows: for any r e II, the integral multiples
{nr}, n e Z, constitute a normal divisor of R, and t —. exp(2nit/r) is the
unique faithful representation of the factor group R/{nr). Hence there exists
a one-parameter family of unfaithful representations of R, and every
(strongly continuous) representation isa awn or integral of them. However,
the Weyl algebra is simple—it contains no nontrivial subideal—so that
only the trivial representation fails to be faithful, and the irreducible
faithful representations are all equivalent.

The seif-adjoint generators and p1 can be recovered From W(z) by
differentiation. Yet the problem remains of being precise about the com-
mutation relations (1.1.1), since unbounded operators do not form an algebra.
However, the fact that two operators commute can easily be interpreted in a
mathematically reasonable way:

Definition (3.1.7)

The statement that two unbounded, seIf-adjoint operators a and b commute
will mean that f(a)g(b) — g(b)f(a) [f(a), g(b)] = 0 for all f and g E
We shall write this for simplicity as [a, bJ = 0.
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Remarks (3.1.8)

1. For [a, b] to equal 0, it suffices that [exp(iat), exp(ibs)] 0 for all t, SE 11,

or that [(a — z) 1, (b — z') 1] = 0 for all z, C\R (Problem 6). A
consequence of (3.1.1) is thus that [Xk, = [1¼, Pu = 0 for all k,j, and
[xk, Pj] = 0 for k J.

2. The Gel'fand isomorphism (2.2.28) is still applicable to the C* algebra
generated by the bounded, Continuous functions of such a and b, and it
provides a spectral representation in which both a and b are multiplication
operators. This is a generalization of the simultaneous diagonability of
commuting Hermit ian matrices.

3. It is tempting to conjecture that [a, b] = 0 whenever

(i) there exists a dense domain D invariant under a and b;
(ii) a and b are essentially seif-adjoint on D; and

(iii) abt,Ii = ba'i' for all e D.

This is false; see the counterexample of Problem 4.

To make sense of [xk, for k = j, we need to find a D D(xk) ri
such that XkD D(p,) and c D(xk). One such domain consists of the
vectors that belong to 50 in the x-representation, where 50 is the space of
functions that decrease at infinity along with all their derivatives faster than
any negative power of x. This space equals its Fourier transform 50, and on 5°,
x : f(x) xf(x), p: (x) —' — i(3/ôx)f(x), while on 9', x: f(p) —* i(a/op)f(p)
and p: f(p) —, pf(.p). On 5f we can write

The Heisenberg Commutation Relations (3.1.9)

(xkpj — pjxk)II' = iökJII'for all El/'.

Remarks (3.1.10)

I. The operators x and p are clearly Hermitian on 50 with deficiency indices
(0, 0), and thus essentially seif-adjoint..

2. It is a natural question whether all representations of [Xk, pu = on
dense domains D of essential self-adjointness lead to the Weyl relations
(3.1.1). The answer is no. Additional assumptions are needed, such as that

1 4 + be essentially seif-adjoint on D. Otherwise, a variant of
Problem 4 would provide a counterexample. Another possible condition
is that + l)(Pk + i)D be dense in

3. It has already been noted that finite matrices can not satisfy (3.1.9). It is
likewise impossible to represent p and x with bounded operators of any
kind. Equation (3.1.9) also requires that — pf = inx"', so
= — < . !IpII, and thus Itx!l . � n'2 for all n.
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4. There are many inequivalent representations of x and p if we allow
matrices that satisfy xp — px = I on some dense domain by formal
manipulation for instance,

0
0 —l —4

.1 0 —1
2 ,

1 0 —14410...
011 lii101111

1 1 1 111101111110!
On D = {(v) E 12: L v• = 0, with only finitely many vL 0}, with these

matrices, [x, p1 = i. This representation is not equivalent to the Weyl

representation: Sp(x) The eigenvectors ea of x do not belong
to D, as otherwise there would be a contradiction, (eLI {x, = 0 =
i(ekleb).

5. One might hope that the Poisson bracket { } of classical mechanics
goes over to the commutator in quantum mechanics not just for the
Cartesian coordinates p and x, but also for generalized coordinates
(cf. (3.1.2; 3)). Unfortunately, it does not. Consider p and x on the one-
dimensional torus (circle) T'; while x, 0 � x < 1, is not a global co-
ordinate, the equation {x, p} = 1 holds locally. Suppose that the quantum-
mechanical Hubert space is .*' = L2(T', dx). Then the formal equation
[x, p] = i makes no sense as an operator equation, since p is defined only

absolutely continuous functions on T' (which implies that =
i/i( I )), while x maps functions out of this subspace. If the matrix elements
are calculated with respect to the eigenfunctions = exp(2irinx), n 1,
then

<njpim> = flt5nrn, <njxjm>
= 2it(n — m)

(1 — &m) +

and if these matrices are multiplied, one finds (Problem 8) that [x, pJ I.

Hence (3.1.9) is not even valid in the sense of quadratic forms, so the
representations (3.1.6; 5) can not strictly speaking be characterized by
(3.1.9).

Following Remark (2.2.33; 3), the commutation relations (3.1.9) have as a
consequence the
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Indeterminacy Relations (3.1.11)

�
Remarks (3.1.12)

1. There are, of course, some domain questions to answer when Remark
(2.2.33; 3) is extended to unbounded operators; but assuming that there is
no real difficulty, (3.1.4) applies equally to all states, so there is no need for
an index on &

2. A natural question is whether there can be equality in (3.1.11), and, if so, for
which states. The inequality of (2.2.33;4) is of the form <(a*
(a — cz)> � 0 for pure states, where we have let a = x + 2ip(Ltx)2 and

= <x> + Equality would require that the state I> be an
eigenvector of the (nonnormal) operator a with complex eigenvalue The
operators a are the annihilation operators that are so important in the
theory of many-particle physics.

In an x-representation (p = e L2(R, dx)), the a's can
be used according to (3.1.12; 2) to construct

States of Minimal Uncertainty, or Coherent States (3.1.13)

The equation

=

holds only for the states

I (x — —
i/i(x) =

Remarks (3.1.14)

1. = 4,thenwegetthestates W(z)lu>of(3.1.6;2)withz = <x> + i<p>,
which appeared in the GNS construction for the Weyl algebra. It follows
that linear combinations of states of minimal uncertainty are dense in t°.

The additional parameter occurring here provides a standard of
comparison between x and p, and was fixed earlier in the choice off0. States
with different z are not orthogonal, even with the same There is, how-
ever, an analogue of the representation of the identity operator in an
ortho normal system:

1= j 2ir
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This equation in fact holds for any normalized vector
I

L' n
(Problem 7). The states W(z)I> are thus not only total, but moreover
every vector can be written as an integral over them.

2. There is a strict inequality (Ax)2(Ap)2 > for impure states. Problem
(2.2.38; 6) showed that (Ax)2 and (Ap)2 for a convex combination of two
states are greater than or equal to the convex combinations of the two
(Ax)2 and the two (Ap)2 of the constituent states, and equality holds only if
the expectation values are the same in the two states. Since <p>, (x>, and
Ax = l/2Ap determine a unique coherent state, any genuine mixture of
states will have Ax If states are averaged with a weight p(A) � 0,

f d). p(A) = 1, W(a) = fdA

then

�: J dA(Et2x)2p(a)J dA'(AA.p)2p(A')
0 0

� �
The last inequality is an equality only if A2x tt2p = and the second one
is an equality only if AAx c A2p, so AAx = is independent of A.
But the first one is an equality only if all <x>A and <P>A are the same; so no
genuine mixture makes all three equalities.

The Classical LimIt (3.1.15)

Until now, we have taken the microscopic standpoint and set h = 1. In order
to see how the operators turn into ordinary numbers in the classical limit
h 0, let

= pa = ps/k [xi, Pa] = ih.

If we used to cause a displacement by (respectively
on dx) (resp. L2(R, dp)) at the same time as we let h —' 0, then we would
expect Pa) to converge to r 41 (resp. 1). Indeed, the equation

— r))W( — zh — 1/2) = exp(isxa)

can be derived from (3.1.2; 1). As ?i —. 0, = —' 1, so

W(zI'F 1/2) exp(isr),

and analogously for In the sense of (2.5.8; 3), the operators W - 1

and w' converge stroàgly to r and respectively s; the dilatation by h
suppresses the fluctuations, and W translates the operators back to the proper
positions.

If the particles are indistinguishable, then only the algebra .A' of sym-
metric functions of the x, and p1 is observable. This algebra has a reducible
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representation on '%V u: the unitary operator fl, permuting the indices
(1, 2,..., n) to (it1, it2, ..., it,,), flx1fl = flp1FI' = then com-
mutes with all observables. The set of permutations forms a representation of
the symmetric group If it is decomposed into its irreducible parts, then
maps each part into itself, and there is a superselection rule (ci. (2.3.6; 7)).
Unless we ourselves to identical or alternating representation of
S,,, the algebra contains no maximal Abelian subalgebra, and the H
become the hidden parameters mentioned in (2.3.6; 7). By definition they can
never be observed, but they decompose the Hilbei't space since they do not
simply multiply by ± 1. These superselection rules apparently do not exist in
Nature.

The identical (respectively a'ternating) representation of S,, is obtained by
restricting the tensor product of the Hubert spaces belonging to individual
particles to the symmetric (antisymmetric) subspace (cf. (1:2.4.28)). As is well
known, the symmetrization or antisymmetrization of rçfr in the particle co-
ordinates leads to Bose—Einstein or respectively Fermi—Dirac statistics.
Relativistic quantum theory correlates these statistics with the spin of the
particle, but in the framework of nonrelativistic quantum mechanics it
appears as a special postulate:

The Connection between Spin and Statistics (3.1.16)

For a system of indistinguishable particles with integral (respectively half-odd
integral) spin, the representation must be restricted to the subspace of the
identical (resp. alternating) representation of S1.

Problems (3.1.17)

I. Let ® = fri ® Construct a P such that Pø1P = and

P = 1)4 = p- I.

2. Verify the x-representation of u(3.I.6; 2).

3. According to (2.4.23, 5), a dense set of analytic vectors determines exp(icu) uniquely.

and thus a Hermitian operator a defined on such a set is essentially self-adjoint.
Show that the analytic vectors for a = — I d/dx on the space L2(( — .x), dx) are

(complex-valued) real-analytic functions.

4. Let M he the Riemann surface of and = L2(M. dz = dx dr). Moreover, let the

operators a — I 73x and h = — I be defined on 0 = {CX functions with
compact support not including O}. Show that

(i) aand bare essentially seif-adjoint;
(ii) D is mapped into itself by a and h;

(iii) ahi,fr = for all t/i E D;

hut for the closures ö and h =

(iv) exp(ibz)exp(iãl).



94 3 Quantum Dynamics

5. Verify (3.1.3(iv)).

6. Show that a sufficient condition for two operators to commute is that their ex-
ponentials or resolvents commute.

7. Verify (3.1.14; 1).

Solutions (3.1.18)

I. P(1

2. WJ- U
=

+ + r,/2))

x exp(_ + = U.

3. If i/i e L2 is an analytic vector, then D(a") c

= ç(i(x + 1) =

The sum converges if cu is analytic.

4. Propositions (ii) and (iii) are obvious, as are a c a* and b c b*. As for essential self-
adjointness: Let D be the set of all functions the support of which never contains
the x-axis on any sheet of the Riemann surface of ,./z. is dense. The operators
U(r): iji(x, y) + t, y) are isometric and have dense ranges, so they have unique
unitary extensions, which are strongly continuous in r. U(t) is differentiable on
and dU(r)/dt = SO is essentially self-adjoint (cf. Problem 3), and theràfore
so is a. The argument for b is similar; ibiD = dV(t)/dr, V(i): cu'(x, y) —. y + t),
and D is the set of functions the support of which never contains the y-axis on
any sheet.
(iv): Let ct' be a function supported in the circle centered at on the first
sheet and having some radius less than Then U(1)V(l)i/s has its support on the first
sheet and has its support on the second sheet, so U(l)V(l) V(1)U(I).

5. This calculation of a Gaussian integral will be entrusted to the reader.

6. The von Neumann algebra d = {f(a): f E is generated by

(i) the exponential functions exp(iat): 1ff E L1. then the Fourier transform

ffO)exp(iat)dr E d.

But the Fourier transformation is a bijection L' 'm —. L' and 1) n
is weakly dense in V.

(ii) the resolvents (a + x +

(a+x+iv) +(a+x—iv) =2(a+xX(a+x)2

and

(a + x + iv) - — (a + x — iv) - = — 2iy((a + x)2 + y2) -
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and by the Stone—Weiersirass theorem, these functions generate all continuous
functions vanishing at infinity, which is also a weakly dense set in If there are
two algebras and such that = dand = and for which [d0,
= 0, then {d, also = 0.

7. Let be I> in the x-representation. Then W(z)
I

becomes + r) and
f (dz/2n)W(z) I> <I W'(z)q, is

f
dsdr + r)cfr*(x' + fdrhli(x + =

This formal manipulation can easily be justified for instance lit/i L' n

3.2 Angular Momentum

In quantum physics,just as in classical physics, the angular momentwn
I is the generator of the group of rotations. This group is compact, so
all of its irreducible representations are finite-dimensional. It is
possible, however, for L to be unbounded in a reducible representation.

In the earlier sections it was postulated that the group of canonical trans-
formations in classical mechanics generated by p and x was represented in
quantum theory by exp(irp) and respectively exp(isx). The next most simple
group of transformations to study is the one generated by the angular
momentum L = [x x p]. Classically, L generates the point transformations

x —' Mx, MM' = 1. (3.2.1)

We consider here a single particle and use matrix notation; everything
factorizes for systems of many particles. In quantum theory it is more
convenient to work with the bounded Weyl operators, so we wish to find a
unitary transformation U for which

U -' W(z)U = W(Mz) (3.2.2)

(cf. (3.1.2; 1)). Such a transformation must exist, since the operators W(Mz)

also satisfy (3.1.2; 1), and all irreducible representations of those relationships
are equivalent. Following (3.1.6; 2) we can write (3.2.2) in the

Sehrodinger Representation for the Rotations (3.2.3)

The unitary transformation

(UiIi)(x) =

produces the automorphism (3.2.2) of the Weyl algebra.
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Remark (3.2.4)

The operator U is not fixed uniquely by (3.2.3); would do just as well for
any 2 e IR. This, however, is the extent of the arbitrariness in an irreducible
representation of W(z), as U is determined up to a unitary element of the
commutant. Hence at this stage the U's only constitute a ray representation of
0(3) [cf. (3.1.6; 5)]. Yet it is possible to show that every strongly continuous
ray representation of a compact group is derived from a representation of the
universal covering group (see Problem 5). The universal covering group of
0(3) is SU(2), which will be discussed in more detail later. The compactness is
essential: The Weyl system (3.1.1) provides a ray representation of
which is• its universal covering group, but it is not a representation in the
ordinary sense.

The generators of the one-parameter subgroups of rotations about the
coordinate axes will be denoted L, as a vector operator. We begin the study of
the generators by determining a

Domain of Essential Self-Adjointness for L (3.2.5)

The operator I. is essentially scif-adjoin on the linear hull D of the vectors

= k1 = 0, 1, 2

Proof

D is dense (Problem 2) and obviously invariant under rotations. It is con-
venient to change to polar coordinates about the z-axis = the axis of rotation
to check the differentiabihty of U on D. it is then a question of showing that

Jim dcIP(sin(4' + + c5))
o-.o JO

— P(sin q,, cos p) — p, —sin p)12 = 0,

where P is a polynomial and P' is its derivative. Since the integral is over a
compact set, its existence poses no difficulties. Taylor's formula allows the
difference to be estimated with P", which remains bounded in [0, 2ir]. Since
the integrand converges pointwise, differentiability follows from Lebesgue's
dominated convergence theorem. Thus D is contained in the domain of the
generators. It remains to be shown that it is large enough for essential self-
adjointness. To this end, consider the finite-dimensional subspace Dk
generated by {t//k e D: k1 + k2 + k3 k}, which is invariant under rotations
and therefore represents the L's by finite matrices. All vectors are entire for
finite matrices, so D is a dense set of entire vectors, According to (2.4.23; 5), it
determines U uniquely, which means that L is essentially self-adjoint on D.
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The connection between U and L can be written explicitly as

U,,. = exp(u5L e).

where e is a unit vector in the direction of the axis of rotation. In polar co-
ordinates it is apparent that — i(x O/Oy — y 0/ox) = — I 0/&p has the same
action as

L = [x x p].

Remarks (3.2.6)

1. U is not strongly differentiable on all of L2(R3)—e.g., not on exp( — Ix ,2/2)

0(1 — 0 < < it. Hence L is unbounded in the representation (3.2.3).
2. Furthermore, D is invariant under and which are essentially self-

adjoint on it (Problem 3). It is contained in the intersection of the three
distinct domains on which x, p, and L are seif-adjoint.

3. The sets also consist of entire vectors for the operator ILl2 = +
+ since there is no question that

converges for all teC. According to (2.4.23; 5), this means that LI2 is
essentially self-adjoint on D.

The Commutation Relations of L (3.2.7)

Since L is the generator of the rotations, its commutators with other operators
tell how much they change under infinitesimal rotations. Thus, on D,

EL,,,, V,] = F. for V = L, x, or p. (3.2.8)

These relations can be derived by differentiating (3.2.2) or directly from (3.1.9).
The operator IL 12, as a scalar, commutes with L:

[Lm, ILl2] = 0, m = 1, 2, 3. (3.2.9)

These relationships are all initially valid on vectors of D, and can then be
extended to exponential functions in the sense of (3.1.7), since the vectors of D
are entire for L, ILl2, x, and p. In this extended sense, it is also true that
[L, Ix 121 = [L, p12] = 0.

Parity (3.2.10)

The group 0(3) has two separate parts, depending on whether Det M = ± 1.

The matrix M = — 1 belongs to the component not connected with 1, and
can not be attained by letting one-parameter, continuous subgroups act on 1.
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The division of the group in two parts corresponds to the parity operator P
such that

= W(—z).

The phase factor is fixed by the condition that

(P,1')(x) =

so that we have P2 = 1 and P1 = P' = P. The parity operator changes the
sign of both x and p, and thus commutes with L:

PLP' = L.

Remark (3.2.11)

Just as with L, P can be constructed out of x and p (Problem 1). This is different
from classical mechanics, where although every one-parameter group of
canonical transformations has a function of x and p as its generator, the finite
canonical transformation x —' x, p —' — p, has no infinitesimal generator;
it can not be reached by a continuous path from the identity.

The Spectrum of L (3.2.12)

Let us consider one of the components of L, say L3, and the Abelian C'
algebra £93 generated by exp(iöL3). Because of the Gel'fand isomorphisin
(Z2.28), every point of the spectrum corresponds to a character on £°3. Since,

from (3.2.3), exp(2itiL3) = 1, every character is of the form expQôL3) -+
e Z, and so the only possible spectral values of L3 (or the com-

ponent of L in any other direction) are whole numbers. The construction
given below will show that all these possible values actually occur.

The Eigenvectors of L (3.2.13)

Different components of L do not commute with one another, so their only
common eigenvectors must be eigenvectors of their commutators with
eigenvalue 0. Since the commutator of any two orthogonal components of L is
always the third component, 14' must equal 0, and is invariant under
rotations (iji(x) = 44r)).

However, [ILl2, L] = 0 when acting on any vector, so it is possible to have
common vectors I!, m> of IL 12 and L3:

L311, m> = mum>, lLl211, m) = 1(1 + 1)Jl, m>.

(letting the eigenvalues of ILl2 be 1(1 + 1), with the benefit of hindsight).
In order to discover the possible values of the new eigenvalue 1 � 0 and its
relationship to m, note that 1(1 + 1) must always be � m2, because
<I, m) = rn2 + <1, + <1, m> = 1(1 + 1) �
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As already remarked, equality can only hold for LI!, in> = 0, i.e., I = in = 0.

Now, (3.2.7) may be rewritten as

= ±L±, = L1 ± IL2,

so

L3L±Il,m> = (m ± 1)L±II,m>,

ILI2L±I!,m> = 1(1 +

Consequently L± 1, m> is a simultaneous eigenvector of L3 and ILl2 when-
ever I!, in> is, and we may write

L±Il,m> =cll,m± 1>, ceC.

Supposing that I I, in> have been normalized, the normalization constants c
can be calculated from the equation

(Problem 4). The result is that

Ljll,m>—..,/!(1+ 1)—m(m± l)lI,m± 1>.

In order not to violate the condition that m2 � 1(1 + 1), repeated applications
of must eventually yield 0, which can happen only if! e V. it follows that
L÷ I!, I> = L_ Il, —1> = 0. A classical description of the action of L_
(respectively is that the direction of the angular momentum vector is
changed while its length is held constant, and L3 varies from a maximum
value Ito a minimum —1 (respectively from the minimum to the maximum).
The eigenfunctions I!, m> constitute a 21 + 1-dimensional representation of
the algebra generated by L. The representation is irreducible, since every
vector is cyclic (2.3.6; 1). The operator L÷ can be used to construct I!, 1>, and
all the other eigenvectors of a given representation can be gotten by applying
L_ to it.

The Eigenfunctions in the x-Representation (3.2.14)

To construct II, I> algebraically by applying operators to 0>, which
corresponds to a radially symmetric we rely on the equations

[L3, x1 ± ix2] = ±(x1 ± ix2),

{L±, x1 ± ix2] = 0,

[ILl2 — — L3,x1 + ix2] = [L_,x1 + 1x2]L+

(Problem 4), which imply that (x1 + 1x2) sends f 1, 1> to I! + 1, 1 + 1>, up to
normalization. Hence,

Il,m> = + ix2)'IO,O>.
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In the Schrodinger representation (3.23), which gives the probability
measure d3xl'Ii(x)12 on Sp(x), the vector tO, 0> depends only on the radius r,
and I!, m> will have the form co)f(r).

Simple Special Cases (3.2.15)

1. 1 = m = 0. This state is rotationally invariant, and the probability distri-
bution it corresponds to is spherically symmetric.

2. 1 = ±m = 1. jx ± sin2 11, and the 1-2-plane takes on the
characteristics of an orbital plane.

3. 1 = 1, m 0. IiIi(x)12 cos2 6, cotresponds to a superposition of orbits in
the 1-3 and 2-3-planes.

4. 1 = ±m. sin210, and the particle is strongly concentrated in the
1-2-plane for large 1.

Remarks (3.2.16)

1. It seems paradoxical that L3 has a discrete spectrum while its constituents
x1p2 and x2p1 each have continuous spectrum. However, since they do not
commute, they can not possess precise values at the same time, and the sum
of separate measurements of the summands is not acceptable as a measure-
ment of an eigenvalue of the sum L3. By the axiom of linearity, it is
nonetheless possible to determine the average value of L3 by making
separate measurements of x1p2 and x2p1 on several identical copies of the
system. -

2. The commutation relations (3.2.7) require a state that is nondispersive for
L3 and pto satisfy = 0.

3. Notethat<l, mIL1 211, m> = 2)2 = (1(1 + 1) — m2)/2.Itisbecause
of the quantum fluctuations of L1,2 that l(1 + 1) always exceeds m2 unless

= m = 0. There are nonzero quantum fluctuations even when m =
±1 # 0, though their value in that case is the least possible according to
(2.2.33;4) because [L1, L2] = iL3.

4. As in (3.1.13), it is possible to characterize the states of minimal indeter-
minacy of L1 and L2 as the eigenvectors of L1 — because of
Remark (2.2.33; 3).

Spin (3.2.17)

Many particles, including electrons and protons, have an intrinsic angular
momentum S, known as the spin, in addition to their orbital angular momen-
tum L. The spin operators satisfy the commutation rules

= jEJkISg
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and commute with x and p. The algebra of observables for particles with spin
is the product of the Weyl algebra and the spin algebra: According to (2.3.8; 3),
the Hubert space of any representation is the tensor product of the Hubert
space for the dynamical variables x and p and the Hubert space for the spin
variables. More interestingly, the unitary operators exp(iS e(5) for electrons
and protons (or any particles of half-odd integer spin) are simply ray repre-
sentations of SO(3), i.e., according to (3.2.4), representations of the universal
covering group,

Gloss (3.2.18)

SO(3), that is, the real 3 x 3 matrices M such that MM' = 1, Det M = 1,

is connected as a topological space, but it is not simply connected. In other
words, there are paths in SO(3) that can not be contracted to a point without
breaking. To see why it is not simply connected, map the group space into a
ball in by associating a vector et5 with any rotation, e specifying the axis of
rotation and (5the angle. The angle may be restricted to the values 0 � (5 � it,
but then diametrically opposed points must be identified. For example, to
rotate from 0 to 2ir radians about the axis in the direction of e, first go from 0
to ire, which is equivalent to — ire, and then return from there to the origin.
There is no way to shrink this path down to the point 0, though a path that
passed through the ball twice could be shrunk down. (See Figure 7.)
If the group space is doubled up like a two-sheeted Riemann surface, then it
becomes simply connected and homeomorphic to the group SU(2). This new
group comes into consideration as follows: For the spin matrices of

Figure 7 Homotopy of paths in SO(3).

ire
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(2.2.37), — Iv 12 Det v for any v and since any 2 x 2 matrix with
trace 0 can be written as v

= MkLVIOk, UESU(2), MeSO(3).

The homomorphism thereby set up from SU(2) to SO(3) is surjective but not
injective, and indeed Schur's lemma shows that the identity in SO(3) cor-
responds to both U = ±1. If M is the rotation eâ, then it corresponds
to U = exp(15(q e)/2) (Problem 5), and letting ô increase from 0 to 2it brings
one from ito U = — I. Problem 5 also shows that SU(2) is simply connected,
and is thus precisely the desired twp-sheeted universal covering group, so
50(3) is isomorphic to SU(2)/{l, — 1}.

The Spectrum of S (3.2.19)

The global properties are reflected in the spectrum. For SU(2) we only know
that

exp(4ni(S e)) = 1

(4ir rather than 2it), so the spectrum of any component may consist of both
whole and half-odd integer values. This statement is consistent with our
earlier construction of the representations, in which only 2! + 1 was required
to be integral.

Representation of S (3.2.20)

Since SI2 commutes with p and x, as do all the components of S, it is a
multiple of 1 in any irreducible representation. The experimental value found
for electrons and protons is + 1) = The appropriate construction of
a representation yields the matrices of (2.2.37):

(Prob'em 6). Thus for n electrons, the overall Hilbert space is the anti-
symmetric tensor product of the Hubert spaces for the individual electrons,
each of which is a copy of L2(R3, d3x) 0 C2.

Problems (3.2.21)

1. Construct an explicit representation of the parity operator (3.2.10). (Hint: write pin
the x-representatlon, decompose L2(R3, d3"x) as d3x), introduce
polar coordinates on and see how P acts on the total set {f(r)Y7'(O,

2. Show that the i//k of (3.2.5) are total in d3x).

3. Show that x and pare essentially self-adjoint on D (3.2.6; 3).
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4. Verify the facts stated in (3.2.13) and (3.2.14).

5. Show that

(i) SU(2) is simply connected; and
(ii) every n-dimensional, continuous, unitary ray representation can be turned into

an ordinary representation by an appropriate choice of phase. It is nontrivial,
since there are irreducible ray representations of dimension greater than I for
Abelian groups: see (3.1.6; 6).

(iii) Find an irreducible ray representation of the (Abelian) Klein group of four.
using spin matrices.

6. Show that the construction carried out in (3.2.13) produces S = a/2 on a two-
dimensional Hubert space.

Solutions (3.2.22)

x—. —x:r—.r,O--+it — 6,q—. it +

so

f(r)Y,m(9, q,) — 9, it + q,) = (— q,) = exp(iitOf(r)17'(O,

which implies

P = + — 4)).

2. It suffices to consider the one-dimensional case. exp( —x2/2 + lix) is the strong limit
(s-lim) of exp( — x2/2) Hence it follows from q(x)exp( — x2/2)P(x)dx

= 0 that (q(x)exp( — + igx)dx = 0 for all t, and therefore qi(x)exp( — x2/2) = 0

a.e., so = 0.

3. All vectors of D are entire vectors for and p1.

4. This merely requires some differentiation.

5. (i) Any matrix ii e SU(2) is of the form

Z.EC,IZ1t2 + 1z212 I

The latter condition can be written as = I with z1 = x1 + ix2,

22 = X3 + ix4, Xk which shows that SU(2) is homeomorphic (and diffeo-
morphic) to the 3-sphere S3. All n-spheres other than S', however, are simply
connected, as can be seen with the following argument: Let

be a continuous, closed curve in S3. By the Weierstrass approximation theorem
there exist polynomials such that — Pk(t)I < e for all k, c, Pk(O) =

Pk( I) = x*(O), and the curve C1: t —* is homotopic to the given
curve C fore small enough. By a theorem of Sard the set of all points of the curve
C1, as a differentiable mapping, has measure 0. Hence it is not possible for it to
cover the whole 3-sphere. Therefore there exists a point p S3 not on the curve.
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Since S3\{p} is homeomorphic to which is simply connected, C1 can be
continuously contracted to a point.

(ii) Let u U(u) be a unitary, n-dimensional ray representation of SU(2), so
U(u)U(v) (5(u, v)U(uv) with = I. The associativity property implies that
(5(u, v)cS(uv, w) = ö(u, vw)(5(v, w), and it is obvious that ö(u, 1) = (5(1, u) = 1.
Since SU(2) is simply connected, U(u) is a well-defined number once

U(1) has been fixed. By scaling U(u) -.4 U'(u) one
obtains another ray representation with U'(u)U'(v) = ô'(u, v)U'(uv). However,
since Det U'(u) = 1, this means that ö'"(u, v) = I for all u and v, so ö'(u, v) = I

due to the simple connectedness of SU(2).
(iii) Klein's group of four contains four elements, e, a, b, and c, having the multiplica-

tion table

C a h c

Arayrepresentationcanbeobtainedbysettinge l.a — —,

(cf. (2.2.37)).

6. The two vectors and IL> such that ji> = S_ j> 0 span the whole Hubert
space, and the matrix elements can be calculated as in (3.2.13).

3.3 Time-Evolution

As in classical mechanics the quantum-mechanical Hamiltonian
generates the time-evolution, which is similar to its classical analogue,
except that the influence of the noncommutativity must now be taken
into account.

In the last two sections we have seen how to carry over the generation of the
groups of translations and rotations from classical mechanics to quantum
mechanics. We now attempt the same feat for the time-evolution with a
Hamiltonian H, and postulate a

Group of Automorphisms of the Time-Evolution (3.3.1)

The algebra of observables evolves in time according to

a(t) = exp(iHt)a exp( — iHt) = ad7,(a),
n=O fl.

a e d.
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Remarks (3.3.2)

I. Not every automorphism of a algebra has this kind of representation.
However, for our purposes, d = for which every Continuous,
one-parameter group of automorphisms of the Jordan algebra (2.2.34) (i.e.,
it must be linear and preserve the symmetric product a) can be represented
unitarily.

2. At this stage H is the classical Hamiltonian with p and q replaced by the
operators of the Weyl system. However, because they do not commute, H is
not uniquely defined, and in general even the question of a domain of
essential self-adjointness is open. The systems we shall consider will not be
so problematic, and self-adjointness will be taken care of by the Kato-
Rellich theorem (2.5.15).

3. If a and H are bounded, then the series given in (3.3.1) converges because� for all t, and t —, a(t) is continuous in norm. If H is
unbounded, then the time-automorphism is still strongly continuous when
exp(iHt) is, because

JI(exp(iHt)a exp( — iHt) — = exp(iHt) — exp( —
1

� ia(exp(—iHt) — + II(exp(—iHt) —

However, da(t)/dt is not necessarily a bounded operator, and thus may not
belong to d. It is initially defined as the quadratic form i[H, a] with D(H)
for its form domain. If a is itself unbounded, then the question of domain
becomes more serious; under certain circumstances the Hermitian form
i[H, a] is not closeable, and can certainly not be the quadratic form of a
seif-adjoint operator.

Let us next investigate in some detail the time-evolution that will later
serve as a standard of comparison.

Free Motion in Three Dimensions (3.3.3)

The Hamilton ian for a free particle is

2

2m'

so in the spectral representation of the momentum H and are

= = IpI2iI'eL2},

= (1p12/2'n) —
(Li(z),I,)(p) = exp(_

ipI2
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It is often desirable to have expressions for these quantities in the spectral
representation of x, in which p is written as — i and the two representa-
tions are retated by the Fourier—Plancherel formula: The Fourier transforma-
tion maps d3p) r' L'(R3, d3p) isometrically onto d3x) n

d3x). Since both sets are dense in L2, the Fourier transformation can
be extended to a unitary transformation L2 -+ L2. A calculation of the
appropriate Fourier integral shows that

(Ht/i)(x)
—

(R(z)*)(x) = f —x't)
ç/i(x'), k =

(U(t)iji)(x)
=

Jd3x'

(Problem 1).

Remarks (3.3.4)

1. The Hamiltonian H is seif-adjoint on the set of Fourier transforms of the
vectors t/i of and essentially self-adjoint on the Fourier transforms
of the vectors of any set D that is dense in in the graph norm. Examples
of such states are the vectors of .9', the coherent states, and the domain of
(3.2.5).

2. The vectors E have some continuity properties because the
integral kernel of the resolvent in x-space isso nice. Furthermore, variants
of Sobolev's inequality show that functions whose derivatives have finite
L2-norms are bounded: Using the kernel for the resof vent we see that if
z=

= I(R(1p12 +

= 5d3X'
exp(—alx —, x'I)

÷
4irlx — x

� +

by using the Cauchy—Schwarz inequality and the fact that exp( — 112

= One can also argue without using the kernel of the resolvent as
follows: the Cauchy—Schwarz inequality,

<
f1:12 +

= — Il(2snH + for all
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which implies

� (2it)_3/2 �
+

Thus the functions i/i(x) are bounded. Moreover, since exp(ip.x) —
exp(ip•x')I � min{2, plix x'I} � — all yE(O, 1),

d3
— *(x')I � JPP

2) (1p12 + — x's'

< C(y) Ix — x' + 3/2)11*11)

for all

So * is in fact Holder Continuous with any exponent <4. Stronger
properties such as C can not be hoped for (in three dimensions), since if
* = rI, y > 4, then E L2 at small r but *10) cc. But at any rate,
D(1pI2) c

3. The operator U(t) also has a continuous integral kernel, and its effect is
frequently to smooth functions. It describes how wave-packets damp out;
the fact that they damp out is expressed by the weak convergence of U(t)
toO as t ± cc. For example, on the dense set of L' functions, I (U(O*)(x)
� (2irt/m) However, since U(t) is invertible, the time-reversed
motion is always possible.

4. The easiest way to see that H generates the classical time-automorphism
x x + Pt for m = I is to use the Weyl operators:

/ ip2t\ . / i(p — s)2t
=

2

/ ip2t\ I. I s2\\ Iip2t\ . / ip2r
=

— -i-))
—i--

= exP(it(PS — = exp(is(x + pt)).

This one-dimensional formula generalizes easily to vectors.

Most of the problems solved in introductory classical mechanics are also
pretty easy in quantum theory:

Examples (3.3.5)

1. Free fall. H = p2/2 + gx, L2(( — cc, cc), dx) D the linear hull of
{f exp(—x2)}. In the spectral representation of p, in which x = I d/dp, H
can be defined as a seif-adjoint operator on D(H) {,Ii(p) e L2(( — cc, cr4,
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dp): i/i is absolutely continuous and (p2/2 + ig d/dp)ili e L2}. On D,
i{H, x] — p and I[H, pJ = —g, so x + pt — gt2/2 and
p — gt satisfy the same differential equations as x(t) and p(r). Since they
agree at = 0 and the vectors of D are entire for them, it follows that

= x(t) and p(t) = p(t). The quantum fluctuations of these observables
satisfy

= Ltx2 + + t(<xp + px> — 2<x>

Ap2.

The damping out of the wave-packet does not depend on g; the un-
certainty in p is constant while that of x grows linearly with apt. The
spectrum of H is purely continuous, since on D(H) Hi/i = Ei/i reads

d / 2\
Hi/i = Ecu: ig = —

which

— i/i(p) =cexP(-_ — cx),dp).

2. The harmonic oscillator. H =. (p2 + w2x2)/2; D c L2(( — Go, Go), dx)as in
Example 1 is invariant under H, and by the same argument the classical
solution

x(t)= xcOswt +

p(t) = p cos at — wx sin o.t

again reproduces the correct quantum-mechanical time-evolution. The
mean-square deviations are easily shown to satisfy

(L\x(t))2 = cos2 wt + — WI + cOS wt sin wt

x (<xp + px> — 2<x><p>).

Wave-packets oscillate rather than decaying away. The last contribution
cancels out for coherent states (3.1.13); moreover, = then

and are constant. H = + 1/2), where

a = (wx + ipX2wY"2

(cf. (3.1.12; 2)), has a pure point spectrum, since [a, a*] = I and [H, a]
—aw(allactingonD),SOHI/i = Ei/i Hail' = (E — w)at/i.SinceH � w/2,
thereis a vector such that ai/i0 = 0, Hi/i0 = (w/2)i/i0, and =
w(n + 4)iji,,. where i/in 112i/, In the spectral representation
of x, a(2w)"2 = (d/dx) + wx, i/i0 = exp(—x2w/2) (cf. (3.1.6; 2) and
(3.1.12; 2)), and the i/i,, span D completely. Because D is dense in H

is self-adjoirit on D and Cac(H) = 05(H) = 0. Yet a(H) is not determined
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by the motion in configuration space alone; 11 = p1p2 + x1x2 produces
the same motion of the x1 as H = 04 + + + but = Z
and o(H) =

3. A particle in a homogeneous magnetic field. The nonrelativistic version of
the Hamiltonian (1: 5.1.9) with the magnetic field in the z-direction is

if eB eBH=
2m = 2

= i[H, xj, (A = Xt, 0)).

Now the variables and = (x1/2 + p2/eB, x2/2 — p1/eB)
are canonically conjugate pairs like (x1, p1) and (x2, P2)' since on D x D
as before, = ieB, = 1/feB. and [ii, 0 for all k and 1.

Writing a = + w = eB/m, we find that

[a,a*]=1.
2m

The Hubert space is a tensor product ® ® corresponding
to the new pairs of conjugate observables, and H is the sum of the H of
Example I with g = 0, acting on the last factor, and the H of Example 2
acting on the second factor. The time-evolution is accordingly

x1(t) = — cos cot — sin cot),

x2(t) = + COS Cot + x2 sin cot),

x3(t) = x3 + t.

Thus the constants function as the center of the orbit, and H, of course,
is independent of them. The operator + therefore has an infinitely
degenerate point spectrum, as it involves only one pair of conjugate
variables. The operator H as a whole has Continuous spectrum from co/2 to

since it includes the kinetic energy in the 3-direction. As with the
harmonic oscillator, the zero-point energy w/2 arises from the inde-
terminacy relation (3.1.11), according to which

H + + co(Ax)]

has its minimum w/2 when ,&x = (2w) As in the classical case (see
(I: §5.1)) it is important to distinguish between the canonical angular
momentum L = [x x p3 and the physical L = [x x mx]. The former
depends on the gauge, and is constant in the gauge chosen here. The
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physical angular momentum is independent of the gauge, but depends on
time. In a magnetic field the ground state has <01 L7 10> = — 1 (Problem 4),
and for its orbit, 112 As in the classical case H is
invariant under translation combined with certain gauge transformations.

4. Radial motion in S states. Let H = + V(r), where V and
e and D(H) = e L2([0, cc), dr): e C', is absolutely con-

tinuous, i,1i' e L2, and = 0), making H seif-adjoint according to
(2.5.14) and (2.5.15). The operator r: ifr(r) —. is seif-adjoint on
D(r) = {ifr e L2: rçii E L2}. Its rate of change i[H, r] is at first defined
as a quadratic form with the domain D(H) D(r), and is a restriction of
the quadratic form associated with the Hermitian operator p, = — I d/dr.
D(pr) = L2: is absolutely continuous, e L2, and ij'(O) = 0).
This is the operator studied in (2.5.3; 5). Thus Remark (2.5.13; 1) shows
that the time-derivative of a seif-adjoint operator need not have any self-
adjoint extensions. An integration by parts reveals that the time-derivative
of the form p, is

i/i)
= J dr{(_ 11,11* +

(_ v"
+

= — J
dr 2

This contains a noncloseable form in addition to the classical force, so
fr, is not even an operator. Incidentally, (a) implies a relationship for the
eigen vectors of H that will be important later,

=

In applications we shall require

The Unitary Time-Evolution of a Time-Dependent Hamiltonian (3.3.6)

The solution of

U(t, t0) = —iH(t)U(t, ta), U(t0, t0) = 1

is

,.i -'
U(t, = 1 + j)fl

j dt,
J

dr2 ..
. J

H(t . .

to to to

(see (2.4.10; 3)).
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Remarks (3.3.7)

1. The operators U are not a one-parameter group, but it is still true that

U(t2, t1)U(t1, = U(r2,

(Problem 7).
2. If H(t) is a step function, H(t) = for t � then

= exp(—1H1(t1 — t0)).

The sum (3.3.6) converges strongly in this case if there is a domain of
enlire vectors for all which is invariant under exp( — itH,). Hence,
passing to the Continuous case, a sufficient condition for the series (3.3.6)
to converge strongly would be the existence of a domain consisting of
entire vectors for all 1-I(s), invariant under exp( — itH(s)), and on which H(s)
is continuous enough so that the integrals applied in (3.3.6) to vectors of
the domain can be strongly approximated by sums.

Examples (3.3.8)

1. An oscillator with a spatially constant but time-varying force f
H(t) = (p2 + w2x2)/2 + xf(z). Since the equations of motion are linear,

U(t) = T[exP(_i j'd:' H(r'))]

produces the classical solution

U1(t)xU(t) = x cos wt + sin wt +

U '(t)pU(t) p cos wt — oix sin wt + ir(t),

= — Jdt' sin (D(t — :')J(i'), =

Therefore the time-ordered product factorizes as

U(r) =
u(j2 +w2x2))

x a phase factor.

Once again, the sum in (3.3.6) converges for all c on entire vectors for x, p,
and p2 + w2x2, such as the coherent states.

2. An oscillator with a changing frequency. H(r) = (p2 + w(t)2x2)/2, and the
solution of the linear equation of motion x = p, = — w2(t)x is the linear
relationship

x(I) = cz11(t)x +

p(t) = + (�22(t)p,
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where in our notation the symplectic matrix e Sp2 equals

I Ict / 0 1

0

The unitary transformation U(t) = T[exp( — I dz'H(z'))] that describes
this time-evolution can be decomposed into factors as before: Q Sp2
Det a = 1, so () has three free parameters and can be written as the
product of the symplectic matrices

cosvs —sinvs Ip

I !ko
V Sin VS COS VS1

Since by Problem 8,

xP))(X P)exp(_ 1/3 (px
2

xP))
= (exp(fl)x, exp(—/3)p),

up to a phase factor

U(t) = exP(ix)exP(_
is(j'2 + V2X2))exp(1fl(XP+ Px))

it is not possible to write down the classical C1(t) for an arbitrary w(t), so
the functions v(t), 5(t), and /3(t) are also unknown. For co(t) a miracle
happens and fl(t) is an elementary function; for instance for r e

I 3 Ic) Icos) — (t + r)2
w(t) = (t +

— + t)2]2' lsinl'° 2

Q(t) =

S S

COT COT

1\ / — 1 \ t+r s
——---—-Ic—I(t+t)w+_ 2

t + rJ \ (ifl (t + r)j t cot(t + r)

Remark (3.3.9)

The linear tTansformations of x and p leave the set K of states

z y€ C, Im <0,

invariant: A transformation

x -+ + clI2P +

-. + cz22p +
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changes(x — — = Ointo(x — — = 0 with

adn — +

and hence can be written as —exp(i(x — Although Im
remains negative, Re does not remain equal to 0. Since the latter fact
characterizes coherent states (3.1.13), linear transformations can affect the
degree of indeterminacy (cf. (3.3.5; 1)), and Gaussian wave-packets may
spread out.

If H is perturbed time-dependently to H1(z) = H + H'(t), then the eigen-
values of H1 vary in time, since

r /
H1(t) U 1(t)H1(O)U(t), (.1(t) TI expf — I $ di' H1(t')

L \ 0

As time passes, the family of projections P1(t) onto the eigenvectors of H1 is
more nearly transformed by U(t) into itself the more slowly H' varies in
comparison with the differences between energy levels. In other words, the
transition probabilities approach zero in the limit of slow variation of H,
even if the eigenvalues themselves change significantly.

Example (3.3.10)

Recall Example (3.3.8; 1) and suppose that

feC1.

The question is now whether the time-evolution according to H(t/r), 0 �
t � t, transforms the projection onto the ground st8te of H(0) into that of
H( 1) as t —, The two ground-state eigenvalues are different, as the ground
states satisfy

H(s) I En(s)> = E0(s) E0(s)>, E0(s) = —

a(t) E (tp(t) + wx(t)) = —

a(t) =

As we saw earlier, the time-evolution of a is then

a(t) a exp(—iwt) — I f dt'exp(—iw(t —
0 t
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or, after integration by parts,

f(1) exp(—iwt)a(t) = aexp(—iwr) — + f(O)

exp(—iwt) C1

+ ds f (s)exp(zwrs).
(I)

If the Fourier transform off', which occurs in the last term, is denotedf'(on),
then

a(t) + = exp( — kor)(a + +

and, with (3.1.4),

J(E(O)IE(1)>I = exp(_

1ff e C", thenj'(an) = O(f") as —, the smoother the perturbation, the
smaller the transition probability (cf. (3.3.7; 2)).

This behavior can be shown to occur more generally. Let H(s), 0 � s � 1,
be a family of seif-adjoint operators with a common domain D. An isolated
eigenvalue E(s) will be called regular if P(s), the projection onto its eigen-
vector, is umnite-dimensional and continuously differentiable in s, as is
(H(s) — E(s)) '(1 — P(s)). Under these circumstances, there is an

Adiabatic Theorem (3.3.11)

The probability of transition from a regular eigenvalue with the transformation

U, T[exP(i

goes as O(r 1) in the limit r —'

Remarks (3.3.12)

I. By assumption E(s) is separated from all other eigenvalues by a nonzero
distance for all s, so there is no question of crossing of eigenvalues. It is
possible to show that the theorem remains valid when only a finite number
of crossings can take place.

2. The whole purpose of the domain assumptions is to ensure that is

defined; they could be weakened in many ways.
3. Roughly speaking, the theorem states that in the limit,

H(t) '(t)P1 U(t).
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Proof

Let

P = P(s): P2 = P P = PP' + PP PPP =0, P = P1, P].

Now write P(s) = W(s)W*(s), P(0) = Wt(s)W(s) = W(0), where W(s) is an
isometry of the space of eigenvectors belonging to E(O) onto that belonging
to E(s). Then W(s) = P(s)W(s) = W(s)P(0), so W' = PW + PW' and
P. = W' = {P', P1W,
which, because PP'W PP'PW 0 from the result above, implies that
P(s)W'(s) = 0. The isometry W(s) describes how the eigenvectors of H(s)
twist around as functions of s, and this must be compared with the time-
evolution according to

T[exP(_ it f ds'(H(s') —

where a convenient phase factor has been included. From = irV?(H— E),
(H — E)P = 0, and the foregoing argument it follows that

= — E)PW + = — E)'(l.— P)U"

(writing H for H(s), etc.). If Equation (b) is integrated by parts, then

— P(0)
'

d= (jt) — El 1(4 — P)W'
—

J ds ((H — E) '(1 — P)W')
ds

Since it has been assumed that the eigenvectors remain at least some positive
distance apart, the operators (H — E) 1(1 — P)and (d/dsX(H — 1(4 — P))
are uniformly bounded in s. The operator {. . .} is then also bounded, and (c)
implies the adiabatic theorem

IIW(l) — l'(l)P(O)H = O(t').

The Classical Limit (3.3.13)

We saw in Examples (3.3.5; 1) through (3.3.5; 3) that the quantum-theoretical
time-automorphism for linear equations of motion is the same as the classical
one. The connection between classical and quantum dynamics is not so easy
in general, since it is possible that <p5) = — <V'(x)) — V'(<x>). Yet there
is hope that as h -+ 0 the fluctuations can be neglected, leaving the classical
time-evolution. In (3.1.15) we began with

W*(!rU2zXx,p)W(h_Ih'2z) = (x,p)+ z = +
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in order to make the heuristic correspondence principle more precise. We
ought to be able to show that quantum time-evolution converts this to

W*(h "2zXx(t), p(t))WQr 1(tXx, p)U1(t)

+ h it(t)), z + iit(O),

where ir(t)) are the solutions of the classical equations of motion with
initial data ir(O)), and Uf gives the time-evolution of the equations of
motion as linearized about the classical path (cf. (3.3.8; 2)):

U1 + (3.3.14)

In the classical limit (3.1.15) this indeed reproduces the classical trajectory
7t(t)):

lim W*(h uI'2Z) = lr(t)).

In other words, the diagram

limW

- x_

exp(—iIit)

x(t) •
11mW

commutes. The mathematically precise statement of this fact uses the Weyl
operators:

Theorem (3.3.15)

Let V and suppose that D(V) and D(Ix3V'"I) contain K, the set of
states jcLi%Jlr/— Im exp(i(x — yE C, and Im <0. Then for all I
for which the classical trajectory n(t)) continues to exist,

iimW*Qr 1/2z)exp(i t — + s(p —

x exp(_i W(h"z) = + sp))Uj(t)

in the strong operator topology. The U1 in this formula is defined as in (3.3.14),
z = + tn(0), and = H(xA, is any seif-adjoint extension of the
Hermitian operator (h/2)p2 + V(htt2x) on K.
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Remarks (3.3.l(

1. Since is real, Hermitian operator (see (3.3.19; 5)), its deficiency
indices are equal, and thus it has seif-adjoint extensions. Any of these
extensions serves to define exp(itH,.Jh); in the limit they are all equivalent.

2. If HØJh is expanded around the classical trajectory in powers of xft —

— ir(t):f +
=

+

+ !r'2[7r(t)(p —

h +

?rtHO + + H2 + 0Q1112),

then, in addition to H0(t), which is a multiple of 1, there arises a linear
term H 1(t) — "2(ir(t)p + This is precisely the generator of a
displacement by — and, in the momenta, h"2Qr(t)
— ir(O)). The left side of (3.3.15) can therefore be written

UA(t)4 exp(i(rx +

where

= W(h- '(2z)(T[exP(_i ftdr(Hi(t)+

exp(._.

The theorem thus states that in the limit h —+ 0, the time-evolution ac-
cording to HJIJPt differs from that according to H1 by a factor

U1(t) = T — fdt'

where W has been used to translate the starting point back to the origin.

Proof

in order to show that = U1(r) on K, consider the operator

W(h 112z)*(T{exP( — i

f dt' Ho(z'))
10
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as in (3.3.6), and compare it with

T[exP(_i
+

The set K is invariant under all the unitary factors that arise except possibly
for since D(p2)n D(V) K, the derivative
by t0 in the identity

d
U(r1, 0) — 0)

= j — r0)U(t0, 0)
o dt0

is justified on K. We find that

U5(t1, 0) = to){!F' ÷ h"2x)

— — h 1/2

— V"Wt))x2}U(t 0).

Now, with Taylor's formula, . e K, is bounded by h112 11x3 and
since the VA are unitary this goes to 0 as Fill'2 0. 0

Remarks (3.3.17)

i. The examples looked at earlier show that when V" > 0 the mean-square
deviations oscillate about the classical trajectory, when V" < 0 they are
exponential functions of time, and when V" = 0 they are linear in time.
This corresponds exactly to the behavior of densities of finite spread ac-
cording to classical stability theory.

2. Since Fi makes original appearance only in (h2/2m)& the limit Fi —s
can be reformulated as the limit m —+

3. We have shown only that UA converges. The conjugation U is not
strongly continuous but only weakly so, which implies only the weak
convergence of However, since the limit is unitary and the weak
and strong topologies are equivalent on the unitary operators, also
converges strongly. Finally, although the operator product is not strongly
continuous, it is strongly sequentially continuous, so the proof of (3.3.15)
goes through.

Classical trajectories generated by a Hamiltonian H(x, p) = H(x, — p)

satisfy x( — t; x(0), p(O)) = x(t; x(0), — p(0)). Of course, x x, p -+ — p is not
a canonical transformation, and it can not be generated by a unitary trans-
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formation in quantum theory either; such a transformation would contradict
[x, p1 = 1. The Weyl relations (3.1.2; 1) are nevertheless invariant under the

Antiautomorphism 0 of Reversal of the Motion (3.3.18)

+ fiB) = ccO(A) + 130(B), cx, 13€ C and A, BE W,

0(AB) = 0(B)0(A), 0(W(z)) = W(_z*).

Remarks (3.3.19)

1. 0 preserves the structure of the Jordan algebra, i.e., 0(A o B) = 0(A)
0(B), and causes the transformation 0(x) = x, 0(p) = —p. If 0(H) = H
and 0(A) = A, then 0(A(t)) = 0(exp(iHt)A exp(—iHt)) = exp(—iHt)A
x exp(iHt) = A( — t).

2. In the representation (3.1.4) for the W's, 0 is equi%alent with complex
conjugation to an operation 0' such that

0'(czA + fiB) = cx*E)'(A) + fi*0'(B),

®'(AB) = 0'(A)O'(B), O'(W(z)) = W(z*).

The operator 0' also leaves the Weyl relations invariant, and it is easy
to check that <z1 = where zc>
W(z1) j u)'. Hence the matrix elements of Hermitian operators and con-
sequently of observables are the same with 0' as with 0. A bijection
K: —' is usually defined by

K =

and is known as time-reversal. Note that

<z21(K1z1>) = <uIW(—z2)W(zr)lu> <ujW(—zr)W(z1)Iu>t
=

Since <z210'(W(z))1z1> = <z2IKW(z)KIzi>, the operator 0' is equiva-
lent to this antilinear transformation of vectors.

3. Since 0(L) = — L, it would be reasonable to require that 0(a) = — a.

We see incidentally that time-reversible operators H = 0(H) must have
at least doubly degenerate eigenvalues in the presence of spin. If w is the
state associated with a certain eigenvalue of H, then the time-reversed
state w, defined by w,(a) = w(0(a)) is different from w, since for pure
states w(a) = — w,(a) 0, although w(H) = w,(H).

4. It was possible to produce a spatial reflection with an element of -

that commutes with H if H(x, p) = H(—x, —p), and thus furnishes a
constant of the motion (see (3.2.10) and (3.2.11)). However, reversal of
the motion is not connected with a constant operator.
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5. that can be time-reversed in the sense of Remark 2 are real
differential operators, which always have equal deficiency indices (recall
(2.5.13; 4)). Hence, by Theorem (2.5.11), there are self-adjoint extensions,
which can be used to define a time-evolution. This is particularly interest-
ing, since classically the existence of collision trajectories can destroy the
one-parameter group of the time-evolution (cf. 1: §4.5).

Problems (3.3.20)

I. Verify (3.3.3).

2. How do the coherent states (3.1.13) evolve in time with the motions of (3.3.3) and
(3.3.5; 2)?

3. (i) Calculate the resolvent (H — 'for the H of (3.3.5; 1) as a Fourier integral, and
(ii) show that o3(H) is empty and =

(Hints: For (i) make the ansatz that

(H —
= 5

K so that

(ig
+ ç —

$
K(A, p. p') = 2irö(p — p').

For (ii) use the formula

rb dz
P(a,b) = s-lim [(H — z — icr' — (H — z + iCY'],

2in

where P(a, b) = dP,,(x), and is the spectral projection for Ii.)

4. Show that in (3.3.5; 3),

(I) the canonical angular momentum = [x x is constant, but that the
physical L3 = [x x mi]3 is not; and

(ii) <OIL3 10> = —l ifalO> = 0.

5. Show that the addition of any vector potential, even one depending on the position,
always causes an increase in the ground-state energy of a Hamiltonian given just an
ordinary potential. This accounts for diamagnetism in hydrogen and helium atoms.
(Actually, the statement can be generalized if the exclusion principle is taken into
account.)

6. Show that even if is an entire vector for a and b, it need not be an entire vector for
a + b.

7. Prove the formula of(3.3.7;1).

8. Prove that in (3.3.8; 2), 11(t) = exp(i2)exp(—is(p1 + t2x2)/2)exp(ffi(xp + px)).

9. Interpret the adiabatic theorem for the soluble example (3.3.8; 2).
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Solutions (3.3.2 1)

(H,I'Xx) = — this part is trivial.
2m

R(z),Ii: (R(z).frXp) = 2rn k2 = 2mz.

2m Cexp(ip. x)
(R(z)c&Xx) =

J — k2
exp( — ip

x

2irJ Ix—x'I

it I p12(U(t)i/i): (U(t)ifrXp) = exp(_
2m

= (rny'2
1d3

/imlx — x'12)
x' exp(

j 2t

2. For the free time-evolution, in (3.1.13), <xp + px> = 2(x><p>. Thus =
+ il Ap2 .l/4A(p(t))2, and

( (x — — <p>r)2 I it
iJi1(x) = + t2 114

exp —
—

+

For the oscillator with O = 1, x is constant, so the wave-packets do not spread
themselves out to nothingness, and

[ (x <x>cos w — <p>sin an + 2uS.x2(<p)cos WI — <x>sin wi))2]
—

3. (i) (H — z) = dA exp[-.-i(A(p — p')/g

— (p3 — — z).

(ii) If*cL1,then

<P(a,b),,1,>I=jlimJ(IZ dAdpdp'
2n

— — (p3

( 1

.bdz dAdpdp<lim

2

I I2,t

since the vectors V are dense and Jt"1 is closed.
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4. (i) L3 = + — (m/2w)(*f + [L3,H] = O,L3 = +
w) + m(i1i2 — x2x1) is not constant.

(ii) aIO> = 0 L310> = 0, 1, 2 For the orbit with the smallest radius, i.e., the
least value of + it is also true that — = 0, which implies that
L310) = 0.

—1.

5. Let = (p + eA(x))2/2m + V(x) and = R(x)exp(iS(x)), R � 0, S real.
Jd3x(IVR + ,(VS + eA)R12/2m ÷ R2(x)V(x))

� f d3x(VR2/2m + R2V) � <RáHOIR> � the ground-state energy with e = 0.

6. Let iV = L2((— x,, x � 1, and otherwise 0, and let
ai/i(x) = exp(x2)i/i(x), bi,t'(x) = ,,ls'(x + 1) + *(x — I). b is bounded, so every vector
is entire for it, and is certainly entire for a since � exp(n). However,

,s+2

II(a + � IIab"iPII2 � j exp(2x2)dx � exp(2n2),

and diverges for all t > 0.

7. Let V(t) = U(t, t1)U(z1, — U(t, t0). Then dV/dt = —1HV, which implies that
V(r) = 0, since V(:1) = 0.

8. 4(px + xp) is the generator of the group U0: —,

This follows from the identity i(xp + px)*(x) =
which holds for entire analytic functions it implies that U0xU_,iJi(x) =
U0(x exp(— = exp($)xçli(x), U0pU,..pijs'(x) = U,(—i exp(—3fl/2)
x — fJ)x)) = exp( —

9. If t>> r, then H(r)I0> —. (w(t)/2)IO), and the classical invariant E/n becomes
constant.

3.4 The Limit t— ±0°

If particles escape to infinity, their time-evolution approaches that of
free particles. In quantum theory this limit is achieved with great
topological finesse.

The eigenvectors of H, which span the subspace .*',, of (2.3.16), are related
to classical trajectories that remain in compact regions indefinitely. The
expectation value of an observable in this case is an almost periodic function

k — Ek)]c,k, for which the time-average exists, but the time-
limit does not. The operator exp(ilit) converges weakly on since in the
spectral representation <f exp(iHt)g> = 5 dh approaches
zero by the Riemann—Lebesgue lemma. There is, of course, no chance for the
unitary operators exp(iHt) to converge strongly to 0. In order to understand
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how some operator can converge strongly as t ± x, it will be necessary
to go more deeply into the ideas introduced with Theorem (2.5.15).

DefinItion (3.4.1)

H' is said to be bounded (respectively, compact) relative to H0 if D(H')
and the mapping H': Dr(Ho) is continuous (compact). The

space D1(H0) is D(H0) topologized with the graph norm (2.4.17; 3).

Remarks (3.4.2)

1. Recall that continuous (respectively compact) linear mappings are those
that send bounded sets to bounded (relatively compact) sets.

2. Relative boundedness is equivalent to the existence of a constant M such
that � + for all ifr E D(H0). Relative compactness
in fact implies relative c boundedness, which means that for all r > 0
there exists an M such that � + for all e D(H0).
As the Kato—Rellich theorem (2.5.15) showed, this implies that =
H0 + cxH' is self-adjoint on D(H0). Moreover, the and norms are
then equivalent, so H' is also relatively compact with respect to all H(s).

3. If c is nonzero and outside the spectrum of H0, then for all x e

min{1.

:
HO— II

I

II)

H0 — c H0 — c — c

� [1 + (1 + —

which implies that the mapping D1-(H0): y —' (H0 — is

continuous in both directions, and thus an isomorphism of these Hubert
spaces. Hence boundedness (respectively, compactness) of the mapping
H'(H0 — cr':

' H -,

homeomorphic continuous . compact)

is equivalent to the relative boundedness (compactness) of H'. It must
similarly be possible to extend the adjoint (H0 — c*) 'H\from D(H') to
a bounded operator on .r.

Examples (3.4.3)

1. 11 two operators f and g commute, arid thus have a common spectral
representation on .*' = then g is bounded relative tofif there
exists an M such that < for all i and where are
the multiplication operators on
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2. Let H0 be the Hamiltonian of free motion (3.3.3) and H' be a multiplication
operator V(x) L2(R3, d3x). If the calculation is done in x space, then
the Hubert—Schmidt norm of V(H0 — 'is

II V(H0 — c) = Tr(H0 — c) 'V2(H0 — c) '

= fd3x V2(x)
c)2 <

for all —c e

The operator V(H — c)' is therefore in C2 (see (2.3.21)) and conse-
quently compact. In fact any potential V that falls off faster than r e

at infinity and is not too singular at finite x is compact relative to H0
(Problem 2). Roughly speaking, compact operators fall off in all directions
in phase space, in both p and q.

Theorem (3.4.4)

Let I' be compact relative to H and bounded, and let be the projection onto
the absolutely continuous spectrum of H. Then approaches zero strongly
as t ± where V, = exp(lHt)V — iHt).

Proof

Let Sp(H), so thatfor any we can write = (H — c) 'Pa'. Then
II I' (f = V(H — c) 'exp( — jj.

It was shown earlier that 0, and since V(H — c) ' is a
compact operator it sends a weakly convergent sequence into a strongly
convergent one. 0

Corollaries (3.4.5)

I. Functions that fall off as r_c when r converge strongly to zero under
free time-evolution.

2. Because of the resolvent equation

(H0 + V — z) = — z) 1(1 — V(H0 + V — z) '), z

any F that is compact relative to 11, is also compact relative to H0 + V
provided that V is relatively bounded by H0 + V, which is always the case
if V falls off as r - and is thus compact relative to H0. The time-evolution
with such potentials thus makes F is the characteristic
function of any finite region in configuration space. This can be interpreted
as meaning that the probability that a particle remains in the set given by
F vanishes at large times: -÷ 0 for all

± In other words, the particle runs off to infinity. This distinguishes
the absolutely Continuous from the singular continuous
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spectrum; with the latter a particle keeps returning to near the origin
again and again.

Now that the connection with classical physics has been looked into, let
us proceed to find the quantum-mechanical analogies of the concepts of
(1: §3.4).

Definition (3.4.6)

The algebra d of the asymptotic constants is the set of operators a for which
the strong limits

a km exp(ullt)a exp( — iHt)
±

exist. The limits themselves form the algebras .W±, and we define tj as the
(surjective) homomorphisms d —. d± : r±(a) = a±.

Remarks (3.4.7)

1. Since the product is not even sequentially continuous in the weak operator
topology, the limit must be supposed to exist at least in the strong sense,
in order that d and be algebras and that be a homomorphism
between them. Norm convergence is too much to ask for, as it would
contradict the group structure of the time-evolution, if a, were a Cauchy
sequence in the norm II It, then for all E there would exist a T such that

Ha,1 — a,211 = Ha — expQ(t2 — t1)H)a exp(—i(12 — t1)H)tJ � e
for all t1, t2 > T,

and this is possible only if a, is a constant.
2. It is immediately clear that d {H}', and since

a ± = s-urn exp(i(t + r)H)a exp( — i(t + r)H) = exp(irH)a ± exp( lvii)
I-.

for all t e R,

c {H}'. Since furthermore t±J(u}. = 1, it follows that = {H}'
c d, and are endornorphisms.

3. As explained above, nothing converges on lIP,, is the projection onto
this subspace, then P,,aP, belongs to d only if it is in

4. If particles escape to infinity, then their momenta p ought to become
nearly constant when they are far from any interaction. Consequently,
a good candidate for an operator of d that is not in {H}' would be
(1 — P,,)p(1 — P,,), or, better, some bounded function of p rather than
p itself.
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if the time-evolution becomes asymptotically equal to that of H0, then
it is a reasonable expectation that

= lim Q(t) lim exp(iHc)exp(—iH0t)

exists. This raises the question of

Topologies in Which the Limit urn,... ± Might Exist (3.4.8)

1. Norm convergence.As remarked in (3.4.7; 1), there is no possibility of this
kind of convergence, since

— — — t2)) — exp(iH0(t1 — t2))lI <
for all c1, t2 > T

implies that H = H0. Physically, this means that without reference to a
particular state, the times ± x are no better than any other times.

2. Strong coni'ergence. This allows the possibility that the limit of the
unitary operators Q(r) may not be unitary, since the equation
= I is not necessarily preserved in the limit: As the mapping a —. a* is
only weakly continuous, strong convergence of the CI implies only weak
convergence for the A product sequence aAbfl converges weakly to ab
if a and —, b. However, no statement can be made about the
existence or value of the limit of The following example on 12 is
illustrative of the different kinds of convergence:

a

1

1 1

I

I I

1 1

1 1

I I

1 1

1

I
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The operator converges only weakly, since 0, 0, ...) =
n

(0, 0,..., 1, 0, 0, ...) 0, while = 1 for all n, so v1 ,4 0. In this case we
/ have 1 = = 1, but I = 1. The situation is

the same for since they are strong limits of unitary operators. Al-
though (4 = 1, since

IIQ±x02 = Jim = 11x112 for all
t-.

this only tells us that = i.e., that ft±14 is a pro.
jection. It projects onto a subspace on which .*' gets mapped
unitarily by and which (4 maps back onto (see Figure 8). These
operators are related by = In analogy with (3.4.7; 2),
14 = exp(irH0) for all t R, so H acting on is unitarily
equivalent to H0 on Therefore the spectrum of H0 is the same as a
part of the spectrum of H. If H0 has only an absolutely continuous spec-
trum (H0: f(h) — hf(h) on any summand of the spectral representation),
and the eigenvectors of H are called I E.>, then

<1 = Jdiu(h)exp(it(h — E.))<f(h)IE,> —' 0

as t ±

by the Riemann—Lebesgue lemma. The bound states are thus in the kernel
of 14. The strong convergence can be restated as: to every state e .*'
that evolves according to H0, there exists a "scattering state" =
such that the two states approach each other asymptotically:

lim —

= Jim llexp(—iHot)q' — = 0.
-. ±

3. Weak convergence . The norm llaII = 11,1 = 1 1 <x lay> I. as the
supremum of weakly continuous functions, is weakly lower semicon-
tinuous, so in any event we know that fi < I. Since the unitary oper-
ators are weakly dense in the unit ball, this is apparently the most that can

I-. ±

=

=

±

=

not injective CL not surjective

Figure 8 The domains and ranges of and Q.
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be said. Weak convergence is not a very powerful property. The limit
could simply be zero, as happens for exp(itH0). If converges weakly
but not strongly, then can not be unitary.

4. Convergence of C�. If Q(t) —, then we know that Q*(t) converges
weakly to (4, and that (4 maps unitarily onto and sends every-
thing else to 0. Since the weak topology and the strong topology are the
same for the unitary operators (2.1.28; 5), f�(t) converges strongly to
(4 on and converges weakly 0 on its orthogonal complement.
Strong convergence on .r± means that to each scattering state
exp( — there exists a free state exp( itH0)ço that becomes
asymptotically equal to it.

Now that we understand something of the insidiousness of Hilbert space,
we can state our goals more precisely.

Definition (3.4.9)

(i) If exp(itH)exp( — itH0) converges strongly as t ± we say that the
MØIler wave operators = urn,.. ± exp(itH)exp( — itH0) exist.

(ii) If = then are said to be asymptotically complete.

Remarks (3.4.10)

1. The meaning of asymptotic completeness is that other than the bound
states every state approaches a free state as t -' ± A simple
classical example where this fails to be true has been provided by S.
Sokolov: an otherwise free particle with an effective mass .H(x) =
coth2 x, H = p2/,,#(x), and = p2. All incoming trajectories have a
dead end at the origin, and the set of scattering trajectories is empty
(cf. [4]). Pearson [4] has constructed a potential for which the analogous
thing happens in quantum mechanics.

2. Invariance under reversal of the motion (3.3.18) does not suffice to
guarantee that = We shall soon encounter many-channel
systems for which

3. Since

exp(iHt)i(H — H0)exp(—iH0t) =

H1(t) exp(iH0XH — H0)exp(—iHot),

(L can also be written formally as

= T exp ( dt iH1(r),
Jo
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which, however, does not answer the question of the existence of the
infinite integral.

Sufficient Conditions for the Existence and Completeness of (3.4.11)

LetH = H0 + V/JVI"2,D(H) = D(H0), and let x, bethe charac-
teristic function of an interval I c(H0). If

ö(H — + ii.JV ö(1i0 — <
we I

then

x1(H)exp(iHOexp( — iH0 and x,(H0)expOHo r)exp( —

converge strongly as t —' ± cx.

Remarks (3.4.12)

1. In the case of a single channel, the spectrum normally has the properties

= = = o,(H0) = c3(H) = 0' a,,(H) c

It is convenient for technical reasons to use the projections Xi to exclude
the particles that move too slowly or too rapidly, by letting I = 1/c). If
the supremum over co E I is finite for all e > 0, then it follows that
x1(H)exp(itH)exp( — itH0) converges on a dense set in Hubert space, and
consequently on the whole space. Sincef(H)C1 = we expect that

x1(H)exp(iHt)exp( — ill0 -+ 0 for all I' I = 0
and this is indeed verified in Problem 3. This equation shows that
x,(H)exp(itH)exp( — has the same limit as

exp(itll)exp( — itH0)xj(H0),

so (3.4.10) in fact implies what is required in Definition (3.4.9), viz., that
exp(itH)exp( — itH0) converges on a dense set.

2. The operator \/V ö(H — is to be interpreted as

.1 / 1 1 \-\H—w—ie H—w+ie/

and this limit may exist even though (H — z) 'does not exist on the real
axis. We shall soon discover that even compactness may survive the limit
as c 1 0.
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Proof

Let us make the abbreviations 'I', x,(Ho)iIi, ço1 x,(H)co. Then

II xi(HXexp(iHt i )exp( — ill0 t1) — exp(111t2)exp( — iH0

=
J

dt exp(iHt) V exp( — iH0 t).Ji,

= sup I
dt<ço

I x1(H)exp(iHt) V exp( — 1H0
•'ti

� sup exp( — iHt)tpiII exp( — iH0

I i'12 11/2
� sup Ij j1,11= 1L

To show convergence, it thus suffices to show that as t —. ± V, converges
in mean-square to zero (cf. (3.4.4)), whether it evolves in time according to

or to H. To perform the time-integration, we use the generalization of
Parseval's formula,

fdtIIf(t)112
= $

ILT(w)112,

for vectors in Hubert space:

exp(—iHt)p1112 = 2ir t5(H

Now note that for_any positive operators a and b, <
x = so:

2ir
5T

doII\/i2 —

� 2ir — . —

� 2ir ö(H — f'dw<4,iIo(H —

= —

(DEl

These relationships are still valid with H replaced by H0, and show that the
integral gets arbitrarily small as since the integral exists. This
implies the strong convergence of Q(t) as t ± x. 0
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Examples (3.4.13)

1. A separable potential. Let H0 = (VcoXx) = Ap(x) j d3xtp*(x1)p(x1),
in which J d3xlp(x)12 = 1, J d3 x d3 x'p(x)p*(x')/Jx x'I = M c
1nf1912€11,3(p)I > 0. Since P = VI). is a one-dimensional projection,

(H — = (H0 — — — z) tP(H0 — z) 1D t(z),

D(z) = I + A Tr P(H0 — z)

and

P(H — z) 'P = P(H0 — z) 'PD '(z).

By assumption,

P(H0 — zY'P = Jd3pI?i(p)12(1p12 —

= Jd3x d3x' p(x)p*(x')
xl)

remains bounded by M for all In addition, for all y> 0,

Im D(x + iy) =
(1p12 —x)2 + y2

� inf f 2 2 2
tp12e1 — x) + y

is bounded below, uniformly in x e I. Then

supID'(x + iy)l � sup
D(z)

2
Xe! Xe! m (z)I

is also finite in the limit y —' 0, and

Jim supll..JV(H — <CX).
y-.O

2. Potentials r 1
Q < & < 1. In momentum space,

= exp(ik . = — y)sin(2 — y)n.

Consequently,

— = — —

+rli2
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where by convention = p1, and stands for the solid angle element
in the direction of the unit vector p(/IpIJ. Now,

1n — n,÷ 1)2 = 2(1 — cos Os), 0. = 1),

and

ffldc�11n1 —

is smaller than c(€) < for n > 2/€ (Problem 5). Since fi,,,

(5(110 — � SUP W 112)W2)C(e) <
w€I WGJ

where we have taken las a compact interval c 1R4. The HOlder continuity
of (5(110 in the norm fi,, implies that the operator
..JV(H0 — x — remains compact in the limit y —. 0 (see Problem
5). If from

-
= \/17(H0 —

i.Jj7
— — z)

z) z) + I —
1,

then we see that the operators — z) and — z)

differ only by the factor (1 + I VI"2(H0 — z) Since

—

is compact and thus has a pure point spectrum with complex eigenvalues
ic1(z) the only possible accumulation point of which is zero,

1(1 + I V )"2(H0 — z) � — I.

The functions z -. K,(z) are continuous, z Vf"2(H0 — z) is
norm-analytic in and it can be continued to I IR. If the eigen-
functions decrease sufficiently fast at infinity, the values Zjj for which
equals I are eigenvalues of H, because I V1112(H0 — I) = 0
implies that (H0 + V— z)jV11"2u11 = 0. Hence, if then
z is an eigenvalue of H. A separate argument is necessary to exclude the
values K1 = 1 for Thus if! is any compact set in (0, c13)\(Zjj},
(3.4.11) is satisfied.

Remarks (3.4.14)

1. The analysis has been restricted to e < I so that the singularity at r = 0
could not destroy the relative compactness of V. Since existence
depends on the falling off of the potential as r it is clear that it exists
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for all V falling off faster than hr1 so long as the finite singularities are not
strong enough to wreck the self-adjointness [4].

2. If s = 0, then v:'2 (pt) 1/2, which is not square-integrable in t, even
if p = 0 is excluded. This is to be expected, because also fails to exist
classically for the 1/r potential (1: 4.2.18; 2).

3. Ifs = I, then the bound of ikJP ö(H0 — is independent of a, so
the supremum over w in all of would be finite. This may seem surprising,
since even in classical scattering theory the point p = 0 has to be removed,
since particles with p = 0 never escape. In quantum mechanics, the diffu-
sion of the wave-packets is enough to make <r,2> square-integrable:
With free time-evolution, A4 + t2/(Ax0)2 (cf. (3.3.5; 1), and

/ \—y/2

J j + —'

If y = 2, this is independent of Ax0, so the bound ought to be independent
of q without the necessity of projecting out a neighborhood of p = 0.

4. If there are bound states imbedded in the continuum, then exp(itH0)
x exp( — itH) cannot converge strongly on them, and it is necessary to

project them out with a x,. With a potential 0 < y <2, then by the
virial theorem to be proved in §4.1 they do not occur. This theorem states
that an eigenvalue of the energy equals (y — 2)/y times the expectation
value of the kinetic energy in the corresponding eigenstate. Since the latter
quantity is positive, all eigenvalues are negative. If a potential oscillates,
then Bragg reflection of waves can produce a bound state, even if in
classical mechanics it would be energetically possible for a particle to
escape. For example, the function

= sin r
L2((O, cx)), dr), a > 0,

a + r — sin 2r

satisfies the equation

(—
+ V(r) — l)ci,(r) = 0,

8sinr
V(r) =

2 (sin r — (a + r)cos r),
(a + r — sin 2r)

and it is thus an eigenfunction with eigenvalue E = 1 of a potential V,
I V(r) <€ min(1, l/r), where s can be taken arbitrarily small as a tends
to + It can be shown that potentials that approach zero faster than 1/r
as r —' cx) have no positive eigenvalues ([3], §XIII).

Many-Particle ScatterIng (3.4.15)

Different groupings are possible in a many-particle system as the particles
go off to infinity, some remaining bound together while others get ever
farther away from them. Formally, the Schrödinger equation for N particles
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acts on a 3N-dimensional configuration space, and different ways of ap-
portioning the particles into clusteis correspond to different regions in
A given distribution of 1, 2,..., N into disjoint subsets, such as (1, 2), (3),
(4, 5,6),.. . , will be shorthand for the statement that particles I and 2 remain
bound together, 3 approaches infinity by itself, 4 through 6 are bound, etc.
Such a distribution is referred to as a channel. Pair potentials — Xj) do
not fall off in the directions where and are nearly equal, so the asymp-
totic time-evolution is not described by a unique Hamiltonian, but instead
depends on the channel, i.e., on the direction in which the state goes to
infinity. If we index the channels with subscript then the interaction
between separate clusters goes to zero as t —' ± co, and the time-evolution
approaches that of HT H —

Example (3.4.16)

Consider three particles, and suppose either that the center of mass has
been separated out or simply that one of the particles is infinitely heavy,
as an approximation to a nucleus K and two electrons e1 and e2. Then the
appropriate configuration space specifies the relative motion of the two
coordinates x1 and x2 of the electrons, and there are four channels:
(KXe1Xe2). In this channel all the particles separate, and

H
=

+ + V1(x1) + V2(x2)'+ V12(x1
2m1 2m2

breaks up into H0 and = V1 + V2 + V12.
(K, e1Xe2). Particle 1 remains bound to the nucleus, while particle 2 escapes:

I 12 I 12
Pi i ;P21 TII I TI Tin1 = + — + 11 = '2 T '12
2m1 2m2

(K, e2Xe1). The same, with particles 1 and 2 switched.
(K)(e1, e2). In this channel particles 1 and 2 remain bound together, which is
of course impossible for electrons, but would be realistic in the scattering of a
positron from a hydrogen atom. In this case,

H12 = + + V12(x1 — x2), '12 = V1 + V2.
2m1 2m2

Once again, the existence of the Møller operitors means that for each
in which the clusters corresponding to a channel are bound, and which
evolves in time by exp( — itHj, there is a state evolving by exp( — itH) and

approaching

Iexp( — — exp( — —+ 0.

Completeness of the Møller operators means that is spanned by
such
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The MØHer Wave Operators for Many-Particle Scattering (3.4.17)

If Pa is the projection onto the part of (H) corresponding to the channel
then the MøIler operators

± = urn exp(iHt)exp( — jHa t)P2

are said to exist whenever the strong limit exists. Iii that event, the operators
are projections, and asymptotic completeness means that

= ..*'ac(H).

Remarks (3.4.18)

1. The operators P, can be written as tensor products of the projections onto
the bound states within the clusters of the channel and of identity operators
in the relative coordinates. For instance, in (3.4.16) the projection P2 for
(K, e1 Xe2) equals ® 1, where is the projection onto + V1).
The projections for different will not generally be orthogonal, since
they are related to different, and noncommuting, H2. Although

exp(itff)exp( — itH2)

converges on all this limit is not terribly interesting.
2. The equation = I of (3.4.8; 2) has the generalization =

&pP2 (Problem 4). As a result, the are orthogonal for different

Qa± Qp ± = ± &fl Q2±

This is to be expected, since all the Q2 involve the same H and commute
with it: -

exp(iHt)Q2 ± exp( — iHt) = exp(iHt)Q8 ± exp( iHt)

= iII2t)ex =
The physical significance of this is that the wave functions

turn into widely separated clusters after long times, so
vectors corresponding to different channels are orthogonal. Since they all
evolve according to exp(itH), this asymptotic orthogonality implies that
they are orthogonal at all times.

3. The projections P2 and Q2 are rather unwieldy. P2 and it is
practically impossible to write Q2 explicitly. That is why it is more con-
venient to work with operators J2, which approach P2 under the time-
evolution of H2, in place of the P2 themselves. Then can be written as
the limit of exp( exp( — iH2t)

iH2t) —' . In Example (3.4.16), electron-
hydrogen scattering, a good choice is

— + 1x214 — +
— 1 + x114 + 1x214 + 1x118'

2
1 + 1x114 + 1x214 + 1X21
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J12 = 0, Jo = 1 — — If x1 remains in a finite region and x2 —'
then J1 goes to 1 and J2 goes to 0, and vice versa. J0 becomes 1 only if
both particles go to infinity. It will be shown in §4.4 that this heuristic
argument can actually show strong convergence.

Criterion (3.4.11) for the existence and completeness of the Meller wave
operators does not work for many-body systems, because the pair potentials

are not compact relative to H. It is possible to write them as tensor products
of a function of xj — Xj and the unit operator in the other coordinates, but a
tensor product is compact only if both of its factors are compact. This is
where the functions introduced above can be of use, for they decrease
exactly in the directions in which is constant, making relatively
compact and the methods of(3.4. 11) applicable. This can be stated as a simple

Criterion for the Existence and Completeness of ± (3.4.19)

Let be positive operators for which s-tim exp( t) = and

L = 1. lIthe strong limits of exp(

exp( —

t and are complete.

Proof

Since, by assumption, II(exp( — — —
fi

—+0 for all
exp(iHt)exp( — t)P2 converges strongly just as exp(iHt)J,, exp( — t)
does and hence the latter operator converges to

(1 _A— I 1± —

s-lim exp(iHt)J1 exp( —

= s-tim exp(iHt)exp( — jH1tXPa + (1 — P2))

x exp(iH1 t)J2 exp( — =
Consequently,

= s-lim exp(iHt) exp( — =

Example (3.4.20)

In the three-body system (3.4.16) let V12 = 0 and suppose that and V2 are
potentials such that the one-particle Møller operators w1 and w2 exist and
are complete. The J1 have the following form in the different channels:
0-channel. Under the time-evolution according to

12 2
Pu P2

110
= 2'



3.4 The Limit -, ±

J1 and J2 converge strongly to zero: If x, —' x, + then

J
1P114+JP214
+ P214 ÷ t2)piI8'

i = 1,2

and this in turn approaches zero on the dense set of functions the support
of which does not contain = 0. Therefore

s-urn exp(iHt)J0 exp( — 1H0 t) = s-Jim exp(iHt)exp( — 1H0 t)
x exp(iH0t)J0 exp(—iH0t) =

exists, and

s-Urn exp(1H0 t)J0 exp( — = s-urn exp(iH0 t)J0
x = ®

1-channel. If particle I is bound, then

— 1x114 + 1x214
1 — + 1x114 + 1x214 + 1x118

approaches 1 under the time-evolution by
12 I 12

P&i iPzi= — + +
2m1 2m2

since x2 —. x2 + tp2 and x1 remains finite. If it is not bound, then by assump-
tion the time-evolution becomes free, and J1 exp( — iH1 tW' approaches
J1 ® Id', which goes toO. Thus

s-urn exp(iH1t).J1 exp(—iH1t) P1

and

s-Jim exp(iHt)J1 exp(—iH1t) = W2 0 1 P1

The 2-channel works just like the 1-channel, and the 1-2-channel is empty.
We see that in this trivial case, Criterion (3.4.19) reproduces the earlier
results. We shall discuss more interesting examples later.

The operators map the motion in channel i.e.,

a —' exp(iH2 t)a exp( — iH2 t),

to the actual motion as described by exp(iHr). Specifically, they produce the
homomorphisms introduced in (3.4.6), and they send {Hj' into
All a e {H2} projected into channel are in si,

lim exp(—zfft)
±

= urn exp(iHt)Qa exp( — + 1 — PJa
I—. ±

x exp(— iHt) = (3.4.2 1)
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The set of constants of motion will contain the relative momenta of the
individual clusters. They commute, and the vectors of their common spectral
representation, denoted k), will be somewhat loosely referred to as
eigenvectors of the momenta. The vectors k> are in the image of the
projections of (3.4.17). The wave operators transform k> into the
eigenvectors of the asymptotic momenta k, ±) k> in. such a
way that, as in Remark (3.4.18; 2),

±jr±(Q8aQa)I;k, ±> = (3.4.22)

The states k, ±> thus mean that the outgoing or, respectively, incoming
particles have momenta k, and the transition probability from one such
configuration to another can be measured macroscopically. As in classical
mechanics (1: 3.4.9), this is the purpose of

Definition (3.4.23)

C,
—

is known as the S matrix in the interaction picture, and

S =

is the S matrix in the Heisenberg picture.

Remarks (3.4.24)

I. The definition has been given in the form appropriate for a many-body
system. One-particle scattering can be considered as a special case with
only one channel

2. The action of the is depicted schematically in Figure 9:
Since + I fi, k, —> = k, +>, the transition probabilities can
be expressed in terms of S as follows:

+IfJ,k, —>= = +ISIP,k, +>.

The operator S is thus a unitary transformation on whereas
maps nonorthogonal subspaces on isometrically onto one another.
Even so, is the more useful operator, since it is easier to make calcula-
tions with the states Ia, k) than with Ia, k, ±>.

3. Even if both and L equal it is still possible that and
project onto different subspaces. For example, if a collision in (3.4.16)

results in ionization, then one goes from Q1 to Q0. This illustrates the
earlier remark that the mere existence of s-lime.. exp(itH)exp(—itH0)
does not guarantee that and are equal. It does hot contradict
invariance under reversal of the motion, as the operator K of (3.3.19; 2)
just maps Jr onto —
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S

Figure 9 The domains and ranges of and in a system with several channels.

4. From = it follows that exp(iHt)S exp(—iHt)
= S and exp(IH] exp( — t) = S does not in
general commute with all constants of the motion, but onjy with

fl {Hj' {H}'

(cf. (1: 3.4.11; 1)).
5. If K E {H2}' and K = then by (3.4.21) e d,

[P — 1I'l It P1 \ VCI*= —

Hence S transforms K - into K

K + = + K - - = S*K - S.

For such observables, S gives the total change in time from t = — to
t=

6. If there is only one channel, then

= s-!im t)exp( — t)

can be written as

SOO = TeXP{._1 H1(t)}

+

Q2+

Qo +

Qo-

Jtop
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(recall (3.4.10; 3)). The strong limit exists because exp(iH0 t)exp( — iHt)Q
converges strongly and (1 — Q)exp( — iHt)exp(iH0t) tends strongly to
zero.

Scattering operators have been introduced by a comparison of the time-
evolution with free motion of the clusters, as suggested by our experience with
classical dynamics. It normally turns out, however, that S can be explicitly
calculated only with methods that eliminate the time-variable. Sections 3.5
and 3.6 will be devoted to stationary methods.

l.\Show that if H' is compact relative to H0, then for every > 0 there exists a ö such� e D(H0). (Hint: a H'(H0 + i)1 is
compact. Let P1 = and show (i) that Ia(1 — PI)I) —. 0 and (ii) that H'P1

bounded for all n.)

2 Show that V = 0 < £ < 2, compact relative to = p2. (Show that
+ c2) V112)" < for n E > 3/i)

3. Let V be compact relative to Show that if P(l) (respectively, P0(I)) is the spectral
projection for H (respectively, H0) onto the interval I, then

(1 — P(I))exp(itH)exp(—itH0)P0(I) as t ±

4. Verify that ± P1 for the system of three particles (3.4.16).

5. A(w) ..,/iVo(H0 — V —, r -' - (cf. (3.4.13; 2)). Show that (a) <
cw + t)'2, and (b) there exist p > 0,5 > 0, and c < such that II A(w) — A(w')Il, <
nw — for all 1w — w'l <Sand all n> 2ft. From these two facts conclude that
lim,_0 — x —

Solutions (3.4.26)

I. (i) Let = .i(1 — P1)a. lIa(I — P1)112 = su The mappings
are weakly continuous, because — 0 0, and

P1),('>

is strongly continuous. It follows that the sets � C) are weakly
closed. If Ia(I — P1)112 were greater than C > 0 for all n, then the intersection of
the decreasing sequence of weakly compact sets � C, � 1)
would not be empty, so there would exist a i/i such thai II 1

� 1 and <'I' I a1 C
for all n. This is impossible, since I — P1 —. 0.

(ii) H'P1 = a (a + i)dP1 is the product of two bounded operators. Therefore,
if e D(H0) and n is sufficiently large, then

= Ha(H0 + O'I'H

� ia(1 — PNXHO + OcL'll ÷ � eII(Ho ÷ + IIH'P1I1
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2. With (2.3.20; 5) and (3.3.3),

Tr(V"2(H0 +

= f d'x1 . . .d3xNV(xl)
exp(—elx1 — x21)

— x21

x
— x,I) — x1l)

4,rlx2 — x,l 4nix. —

=

+yl
The factor exp( — ci I) takes care of the convergence of the integral by dy2 .. .

at infinity, and the integral by dy1 converges for

+ Y2 + +

provided that ne >3. The singularities at finite points are harmless, as long as a < 2.

3. Since the operators are bounded in norm by I for all t, it suffices to show strong con-
vergence on the dense set of e P0(I').*', where 1' is contained in the interior of I.
On that set,

(1 — P(l))exp(iHt)exp(—iH0t)P0(I)p

=
—

P
1_

z — if — jH0 t)P0(f)p

= — P(I))
1

exp(iHt)V exp( — iH0 t)P0(I)
H0 z

where C is a closed path of integration encircling I' but not cutting (see figure):

I

1'

This makes the operators .(1 — P(I)XH — z) and (Ho — z) 1P0(I') uniformly
bounded on the path of integration. Theorem (3.4.4) then implies that the expression
above converges strongly to zero. (Recall that 1 for all n

0.)

4. = fi, then this follows from the strong convergence of the operators (see (3.4.8; 2)),
so it suffices to verify that

w-lim r)cxp( — iH0 t)P, = 0
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when a fi. There are essentially just two cases:
a=O,fl'= 1,2,3:

exp(iH0 t)exp( — i(H0 + V,)r)P, —0,

because

exp(11p1 l2t)exp(—i(1p1 12 + 0,

etc., since 1) contains only the eigenfunctions 111 Ejl/Ij, and

exp(ir(1p112 —

a = 1, fi 2:

2 + V1)t)exp( — 12t) ® exp(i( 12t)exp( i( p2 12 + —0

for the same reason as above. Similarly for a 1, /J — 3 and a = 2, fi = 3.

5. In (3.4.13; 2), the integral over (S2)" is locally like an integral over R2N. Since the
integrand depends only on the differences between the and a 2(n — 1)-fold integral
over a homogeneous function of degree n(—2 + e) is finite whenever 2(n — 1)

n(2 — e) > 0, it follows that < for n > 2/s. As a consequence, IIA(o) —
A(w')111 is not only finite, but actually.goes to zero Holder-continuously as o' —. so.

This guarantees the existence of the principal-value integral in

iim.,JV(Ho — x — 1yy1,.Ji inA(x) + P fdz A(z) A(x)

in the trace norm.

35 Perturbation Theory

Abrupt changes are the rule in infinite-dimensional spaces, but in
physics a central question is under what circumstances eigenvalues are
affected only slightly by perturbations.

Since most of the problems of physics can not be solved analytically, it is
the custom to approximate the solutions by carrying out Taylor expansions
about suitably chosen, soluble limiting cases. The perturbed Hamiltonian is
typically of the form = + ccH', which brings up the question of what
quantities are analytic in and for what range of values. Of especial interest
are the resolvent z) (H(a) — the isolated eigenvalues
of H(a), and the projections onto them, which can be written

Pk(cc) —i— f dz R(a, z), (3.5.1)
2irz

where Ck(a) is a closed path encircling and no other points of
Although H(a) is not diagonable for all complex values of a, for all we
know (Problem 1).
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The Properties of the Projections (3.5.2)

= Pr(x*),
=

R(ct, = 0.

Except at the points where the elgenvalues cross, the projections
Pk(a) can be continued analytically in such that dim Pk(rz)Jt" Tr Pk(cc)
is constant throughout the region of analyticity.

In most quantum mechanics books, operators are blithely manipulated
as if they were finite-dimensional matrices. In the same spirit, let us warm up
by discussing some finite-dimensional

Examples (3.5.3)

1.

=
cx,O. R(a,z) = (l/(z_ z)

P1(0)
=

P2(x)
=

2.
=

E1 0. z) =
z) z))

=

1/x)
P2(ix)

=

3. H(ct) = 1)

),
= +

+ 1) — z) — + 1)—
R(cL, z) =

— a)

=
P2(a)

=
—

4. H(x)
=

1

4X2),

2z(z— 1)—a \—x I —zj

P1,2(a) = +
±

1.±
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These examples exhibit the

Singularity Structure of R, and Pk In the Finite-Dimensional Case (3.5.4)

Let be a polynomial in ; and define as the poles (in z) of z).
(i) The function (;z) —' R(c z) is analytic except on Uk {z

(ii) The eigenvalues and projections E5(x), are regular except at the
crossing points ;, at which the numbering of the eigenvalues changes.
(In Examples 1, 2, and 3, ; = 0, and in Example 4, ; = ±i/2.) At the
points ; the eigenvalues Ek and projections Pk may have algebraic
singularities (Examples 2,3,4), but do not necessarily have them (1,2, and 3).

(iii) In any event, Ek((x) is continuous in If Ek(cz) has a branch point at;,
then —' as — ; (but not conversely; see Example 2).

(iv) ff11 Pk(x) II remains finite at ;, then H(;) is diagonable (but not conversely;
see Example 3).

Proof

(i) The singularities of (H(cz) — z)1 can only originate with zeroes in the
denominator — z)J' = — z) '.

(ii) — z) = (—zr + + •••, where are poly-
nomials in Hence the are branches of the same algebraic func-
tions, and as such have the desired properties. As a complex integral of
the analytic function R(c, z), Pk(tx) is analytic unless the contour C gets
caught between two singularities, which can happen only at the points
;. Since the integral (3.5 1) can be written in terms of the Ek and poly-
nomials in ct, the singularities at ; are at worst algebraic.

(iii) The continuity of follows from theorems on algebraic functions,
and as a consequence, series expansions for the eigenvalues contain only
poaitive powers of — ;)hlm• Suppose that this were also.true for the
Pk, so that II would remain bounded. By continuing the Ek(c) along
a circle above ;, the Ek having a branch point there are permuted so that
E, becomes for somej i. By (3.5.1) the same thing happens with the
Pk, so the first terms of Pk(cx) = Pk(cz3) + — + ... would
clearly have to satisfy P1(;) = P/cc). Since Pt(;) = =

= 0, and = P/;), this implies that P1(;) = P/;)= 0.

(iv) is diagonable 1ff H(x) = If and Pk are con-
tinuous, then this equation can be continued analytically to;. D

Corollaries (3.5.5)

1. As long as remains nondegenerate, everything is analytic, and H
is diagonable.

2. If H(ct) is Hermitian whenever is real, and thus unitarily diagonable, then
IIPt(cx)II = I on the real axis. Then it follows from (iii) that there can be no
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on the real axis at which Ek has an algebraic singularity. This theorem,
due to Rellich, is not trivial, as it may at first look, since it does not extend
to the case of two parameters: The eigenvalues + ± + of
the matrix

/2 i\ /0 1

a branch point at = = 0.
3. All zeros of Det(H(x) — z) are eigenvalues, for which reason analytic

continuation of one of the Ek(a) always leads to another eigenvalue.
This property is lacking on infinite-dimensional spaces. For instance,
the eigenvalues of the hydrogen atom go as the square of the charge of the
electron, and are thus entire functions in Yet they disappear when the
charge becomes positive; their analytic continuation is not an eigen-
value.

4. Although H(x) is an entire function, it may happen that a power series for
in has only a finite radius of convergence. However, because of

Corollary 2 the radius of convergence is necessarily greater than zero.

Let us now take up the question of how far these results carry over to the
infinite-dimensional case. The set of eigenvectors will no longer span the
whole Hilbert space, but instead there is the three-fold classification of spectra
(2.3.16). It turns out, rather discouragingly, that the classification of spectra
can be completely changed by arbitrarily small perturbations.

l'heorem (3.5.6)

The operators with pure point spectra are norm-dense in the set of Hermitian
elements

Proof

Given any a = aS E written in the spectral representation (2.3.11),
= a',: -. Sp(a). Define such that

—' where = rn/n for rn/n � x <(rn + 1)/n, n e
m E 1. Then Ia — � 1/n, and is the set of values of;, i.e., (rn/n:
rn e 7L}, which is purely discrete. 0

Remarks (3.5.7)

1. More particularly, the theorem states that any operator with pure
continuous spectrum can be converted into an operator with pure point
spectrum by the addition of an arbitrarily small perturbation. Con-
versely, there are operators with continuous spectra and arbitrarily small
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norm, like = (1/n)sin for which = 1/n. These can
convert the pure point spectrum of, for instance, the zero operator into
a pure continuous spectrum.

2. Theorem (3.5.6) can be strengthened to state that the addition of an
operator ö with trace norm (2.3.21) < e, p> 1, can render the
spectrum discrete. The theorem does not hold for p = 1; if H0 = p12 and
11H0 — H111 < then the Møller operators exist, and H0 and are
unitarily equivalent.

3. The proof also works for unbounded seif-adjoint operators.
4. Note that the eigenvalues of have infinite multiplicity and hence belong

to the essential spectrum. Nevertheless, the spectrum consists of isolated
points, and the next theorem will show that a relatively compact per-
turbation can not change a continuous spectrum into isolated points.

The essential spectrum a,, (2.3.18; 4) is less sensitive than the continuous
spectrum.

Stability of the Emential Spectrum (3.5.8)

If H' is compact relative to H0, then + H') =

Proof

The criterionof (2.3.18; 5) for the essential spectrum can be reformulated as
follows: 2€ 3 = 1, 0, (H0 — -. 0. By Defini-
tion (3.4.1), H'(H0 — z) Is compact for all z Sp(H0), so

(H0 + H' — = (H0 — + H'(H0 — z) 1(JJo — -+ 0,

since

(H0 — = (H0 — + (A — zWi,, — 0,

and compact operators make weakly convergent sequences strongly con-
vergent. We can then conclude that A E + H'), and switching H0
and H0 + H' (cf. (3.4.5; 2)) yields the other direction of the theorem. 0

Remarks (3.5.9)

1. The addition of a relatively compact potential produces only finitely
many bound states under E0 <0. A classical description would be that the
volume of the phase space under E0 is finite for such systems (cf. (3.5.38; 1)).

2. Compactness is essential. The addition of the bounded operator a• 1,
e shifts the whole spectrum of any operator by a.

3. When applying this theorem, it should be remembered that if a is compact
and b is bounded, then ab is compact, but a ® b may not be.
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4. If a Hilbert—Schnudt operator is added as in (3.5.7; 2) to an operator,
changing a continuous spectrum to a purely discrete spectrum, then the
new eigen values must be dense in the continuum of the original operator,
since a compact operator.

As is reasonable, the shift in the spectrum by when one adds us as
great as possible with a perturbation by an operator of norm �

Theorem (3.5.10)

If the distance from A to the spectrum of H0 satisfies d(Sp(H0), A)> IIH'D,
then A Sp(H0 + H').

Proof

The series

1 1= [H'(A — H0) 1111

H0+11

is convergent in norm, because IKH0 — A)' 1 = d(Sp(Ho), A).

However, if H' is unbounded, then the addition of ciH' can change any
kind of spectrum in any way, no matter how small is.

Examples (3.5.11)

1. H0 = 0, H' çli(x) —. xifr(x) on L2((— x, x4, dx). Sp(H0 + xH') = R for

0,and{O)fora=0.
2. H0 = —d2/dx1, H' = xx2: = o3(H0) is empty.

Sp(H0 + = {2n ÷ 1), = a3 is empty if > 0, and
+ ciH') = R, ap = a3 is empty for <0.

Most physically realistic perturbations are unbounded, so it may seem
hopeless to conclude anything about Sp(H0 + cxH') from Sp(H0). Fortu-
nately, the relevant condi%ion is not that H' be small, but only that it be
small in comparison with H0.

Theorem (3.5.12)

Let H' be bounded relative to H0 (3.4.1) and = + oH'. Then the
resolvent z) (H(tx) — 'is analytic in the variables (cx, z) throughout
some region containing {O} x
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Proof

If z Sp(H0), then H'(H0 — z)' is bounded, so the series

— z)

for the resolvent converges for all small enough.

Remarks (3.5.13)

1. The more precise form of the region of analyticity depends on the par-
ticulars of the operators. If, say,

Sp(H0) = � +

then

flH'(H0 — z) � aII(Ho — U + — z)

a blzt
+ for Rez�O,

IImzl IImzI

and jH'(H0 — z) 1Jj � a/IzI + b for Re z � 0, and so the series con-
verges for

bjcl I
1 —

+
7i — b2Iczl2

+
—

Rez�0,

ajaIIzI� ,
I —

b of Remark 1 are not determined by H'. The constant
b cau be chosen smaller at the cost of increasing a. Hence it is difficult to
formulate general statements, as in (3.5.10), about how much the spectrum
is shifted.

The analyticity of the resolvent means that the results (3.5.4) about the
eigenvalues remain valid away from the essential spectrum (see Figure 10).

l'heorem (3.5.14)

Let H' be bounded relative to Then the isolated eigenvalues of finite
multiplicity of H(ct) = + czH', as well as the projections onto their eigen-
vectors, are analytic in in a neighborhood of the real axis.
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Proof

For any isolated eigenvalue E(O) of H0, there exists a distance d e + such
that the circle K = {z E C: Iz — = d} does not intersect the spectrum
of H0. If = SUPZEK HH'(H0 — z)111, then K x is within the
region of analyticity of the resolvent R, and Pk(ct) = (l/2iri) dz R(z, is
analytic for I I <un. Since dim Pk(O)*' < it follows that

Pk(cz)Hk(cL)

is an analytic family of operators of finite rank. In order to transform it into a
family of finite matrices, write

=

as in the proof of (3.3.11). As is easy to verify (Problem 4),

= + Pk(OXPk(cz) — Pk(O))Pk(O)] — "2Pk(O)

is a partial isometry and furnishes the desired transformation. If is suf-
ficiently small, then JlPk(a) — < 1, so the factor 1/2 can be
expanded in a convergent series, making W analytic in a. Therefore

PL(cx)H(cc)Pk(x)

z plane b(aI

b2Iat2

The region of analyticity in z
for a fixed a 0

Figure 10 The region of analyticity of the resolvent.
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is unitarily equivalent to Hk(cx) Wr(a)H(a)Wk(a), which is an operator of
finite rank acting on a space Pk(O))r, which is independent of a. In other
words, it is a finite-matrix-valued analytic function in a. The propositions
(3.5.4) about polynomials H(a) are essentially unchanged for analytic
functions H(a)—algebraic functions merely become algebroid, that is,
locally algebraic, functions. 0

The next subject is the derivation of explicit formulas for the change that a
perturbation H' causes in an eigenvalue. Let us assume that an interval of R
contains no essential spectrum, but only eigenvalues, and that the Ek(cc)
and their projections change continuously with a. This is always the
case when H' is bounded relative to H0, but may also happen otherwise.
Next, rewrite H(a) as H0 + ctPH'P + a(H' — PH'P), where P = for the
k of interest. If Ek(O) + ctPH'P has been diagonalized, then the effect of
PH'P can be included in so without loss of generality we may assume that
PH'P = 0. Since the eigenvector a>: (H(a) — E(a))Ia> = 0, <a'a> = 1,

varies continuously with a, let = dO> + 1..L>, <011> = 0, =
I — <1 I

I which 0 for sufficiently small a. If this is substituted into the
eigenvalue equation and the component parallel and perpendicular to JO>
are separated, then

c(E(a) — E(0))I0> = ctPH'II>, = I><
(H0 — E(a) + I> = —caH'IO), = 1 — P.

This produces

The Brlllouin—Wigner Formulas (3.5.l6)

E(a) = E(0) — a2<OIH'(Ho — E(a) +

II> = —ca(H0 — E(a) + 1H'JO>,

c2 = 1 + a2<OIH'(Ho — E(a) + aP.1.H'P1Y2H'l0>.

Remarks (3.5.17)

1. To ensure that the formal expressions make sense, we must assume that
10> E D(H') and that (H0 — E(a) — rxP1H'P1) exists. If H' and con-
sequently H'P1 is bounded relative to H0 and E(x) is isolated, then
the series

(H0 — E(a)) 1>[aP1H'Pj(Ho — E(a)) 1r

converges on P1.*' for a small enough, so (3.5.16) are well defined.
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2. The eigenvalue E(a) is determined implicitly by (3.5.16). An explicit
expression results from a comparison of the power series for both sides
of the equation in The first few terms are fairly simple:

Lowest-Order Perturbatiou Theory (3.5.18)

Up to O(x2),

E(a) = E(O) — x2<OIH'Pj.(Ho — E(O)) 'P1.H'IO>,

I> cc(H0 — E(O)) 'H'JO>,

c = 1
—
ç Ii'(H0 — E(O))2H'jO>.

Remarks (3.5.19)

1. An objective assessment of (3.5.18), which has been a daily tool for whole
generations of physicists, is that it is unsatisfactory in several respects. Its
shortcomings are that

(i) if H' is unbounded, it is not obvious that should be analytic
in and indeed it is not analytic in most of the standard examples of
perturbation theory—the anharmonic oscillator, Stark effect, Zeeman
effect, and hyperfine structure;

(ii) even if the radius of convergence p is greater than zero, the n-th
order terms gets so complicated for large n that it is not easy to find
out what p is;

(iii) even the condition that 4 p does not guarantee that (3.5.18) will
be in close argeement to the true value. For example, the radius
of convergence of sin(lOOa) is infinite, but Jinear and parabolic
approximations are not useful beyond a short range. If we wish to
use (3.5.18), we ought to first show that the function does not
have such wild oscillations.

2. The terms linear in do not appear in (3.5.16), because aPH'P was defined
away at the beginning. As a consequence, the Feyuman—Hellmann
formula

= <OIH'JO)

holds for nondegenerate eigenvalues. If the eigenvalues are degenerate,
one must first choose the right basis in the degeneracy space and be aware
that the numbering of the analytic functions will not continue to
order them by their magnitudes. For example, the eigenvalties ± of

= aH'
= (°
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are not the same as as(O I H' 10> with the vector

Jo>
= (i;),

and the E1(a) = is not differentiable at the point
a = 0.

3. Formulas (3.5.16) do not assume analyticity. Even without analyticity,
(3.5.18) gives the correct asymptotic expansion under our assumptions:

E(a) — E(0) — a2<OjH'P1(H0 — E(0)) H' 10>
= a2<OIH'P1(H0 — E(0)) '(E(a) E(0) + aP1H'P1)

x (H0 — E(a) ÷ 1H'iO> = 0(a3),

and similarly at higher orders. However, in the absence of analyticity
perturbation theory may lead to nonsense. It may happen that tile series
diverges for all a E R\{0} although the discrete eigenvalues persist for
all a e R, or that the series converges, but to the wrong answer.

Examples (3.5.20)

1. H(a) p2 + x2 + a2x6. Since the potential of this anbarmonic oscillator
goes rapidly to infinity for all aER as lxi the spectrum remains
discrete (see (3.5.38; 1)). Yet R(a, z) is not analytic:

(p2 + x2 — + x2 — z)1.
DCL

is unbounded, since 11x3(p2 + x2 — z) can get arbitrarily large.
2. H(cc) = p2 + x2 — 1 — 3ax2 + 2ax4 + cz2x6 a*a, where a ip +

x + ax3. It is clear that H(a) � 0 for all a E R, the elgenvalues remain
isolated for alt a R, and = 0. However, the eigenfunction
exp( — x2/2 — ax4/4) with the eigenvalue 0 belongs to

L2((—(x), cx)),dx)

on)" for a � 0. Since perturbation theory produces an asymptotic series for
the ground state E(a), which equals 0 for all a � 0, all the perturbation
coefficients must vanish. The series then also converges trivially for all
a � 0, although 0 is no longer an eigenvalue.

More precise information about the positions of the eigenvalues can be
obtained with variational methods. They rely on the

Mm-Max Principle (3.5.2))

Let H be seif-adjoint and bounded from below, and let the eigenvalues be
E1 � E2 � E3 � ... � (counting multiplicity), where by definition all Ek
lying above the bottom of the essential spectrum are set equal to
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even is not an Let D0 be an n-dimensional subspace of D(H),
let be its orthogonal complement in D(H), and let be the trace in
Then
i+J— I

inf sup TrDJH = sup inf TrD,H, I andj = 1,2
D1cD,+j—i

Proof

See 5.

Remarks (3.5.22)

1. In particular,
I Hip,,> for any orthonormal system c D(H) is

always greater than the sum of the flrstj eigen values, counting the bottom
of 0esa as an infinitely degenerate eigenvalue. By the use of well chosen
trial functions provided with several parameters to adjust, excellent
upper bounds on can be obtained.

2. To get an upper bound for itself, take an orthonormal set .. . c
D(H). The greatest eigenvalue of any n x n matrix is �

The astute reader will have realized from (3.5.18) that the second-order
correction (— for the ground state is always negative. More generally,
(3.5.2 1) permits the proof of some

Concavity Properties of (3.5.23)

Let H H0 + RH', with D(H') D(H0). Then j = 1, 2,.
are concave functions of ci.

Gloss (3.5.24)

Concave fimctionsf: I — are by definition those for which

� � 0, = 1 I.

The function —f is said tobe convex. Concave funetionsf have the following
properties:

(i) f is continuous on the interior of I, has right and left derivatives at every
point, and has first and second derivatives almost everywhere;

(ii) f" is a negative distribution (f" dx is a negative measure);
(iii) for x> 0, f(x) is concave iffxf(1/x) is concave;
(iv) iff> 0 and I/f is concave, thenfis convex;
(v) If the functionsj.(x) are concave and � 0, then is concave;
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(vi) 11f1(x) is concave, then inf1f,(x) is concave.
(vii) If the functionsf are concave and � 0, thenf1 of2 is concave.

Proof

The expression is linear in so by Property (vi) its
inhimum over the is concave. 0

Remark (3.5.25)

It is necessary that D(H(x)) = D(H0), so that the infimum is taken over a
set independent of For instance,

= inf
<*I*i(s)> 0

is not necessarily concave.
Although the mm-max principle guarantees that E1(u) lies below any

possible expectation value of H(x), it does not say how close to E1 the
expectation value comes. People who make variational calculations normally
convince themselves that they come close by their faith in their pet trial
functions. There are, however, a few criteria with which to gauge the accuracy.

Weinhold's Criterion of the Mean-Square Deviation (3.5.26)

There is a spectral value of H in thr interval [<H> — <H> +

Proof

According to (3.5.21), there is a spectral value of (H — <H>)2 below
<(H — (H>)2> = and hence H has a spectral value nearer to <H>
than the distance 0

Remark (3.5.27)

Criterion (3.5.26) can only be used after verifying that the eigenvalue in the
interval is indeed the one wanted. For instance, it produces a lower bound
for E1 only if it is known that E2 is greater than <H> +

Duffin's Criterion of the Local Energy (3.5.28)

Suppose that H = p12 + V(x), D(V) D(1p12) has isolated eigenvalues
The eigenvector i/i1(x): = can be assumed to be nonnegative. If

> 0 and E(x) then E1 lies in the interval E(x),
E(x)].
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Proof

Write = R(x)exp(iS(x)), with R positive and S real (ci. (3.3.21; 5));
then

= f dx(IVR(x)12 + R2(IVS(x)12 + V(x)))

� + R2V(x)).

For to have the lowest elgenvalue, S must be constant, and Can be re-
defined as 0. This makes > 0, and

= =

Remark (3.5.29)

This criterion does not involve integrals as in the calculation of expectation
values, which is an advantage; but at least one of its error bounds is worse
than the corresponding bound of (3.5.26) calculated with

=
5 dx(E(x) —

� — ml E(x))2, (<H> — sup E(x))2}.

If H is of the form I p12 + V(x), then, obviously, E1 � —. II V II But even if
V —. — x somewhere, H may be bounded The uncertainty principle
leads one to believe that this should always be the case when V approaches
— cx more slowly than — 1/r2, which means that V is locally in U', p > This
is in fact the case, as shown by the

General Lower Bound (3.5.30)

In three dimensions,

1p12 + V(x) � p >

2 — 3 —
2

= r
)

where the operator I p12 + V is defined by the Friedrichs extension (2.5.19).
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Proof

The ground state satisfies the equation

= f — x')V(x')ifr(x'), G(x) =
4ir XI

because G is the Green function for
I

— E. Young's and Holder's in-
equalities imply that if p � 1, then

� iIGIIqIiViIpIkfriIi, + = 1.

We thus calculate that

KI1q

= . . —

Since this is finite up to the point p = q = 3, it can be substituted into the
earlier inequality to get an upper bound on I E0 I for the Friedrichs extension
with p > q < 3. The argument does not work for arbitrary definitions of
the sum of the operators I p12 and V; the deficiency indices may be nonzero,
and the lowest eigenvalue can be arbitrarily negative. D

If H' is positive, then lower bounds for Ek can be obtained from an eigen-
value problem restricted to some subspace (cf. (3.5.21) for contrast):

The Projection Method (3.5.31)

Suppose that H' � 0 and P = = P2, so that 'P is bounded and
invertible on P.*'. Then the ordered sequence of nl4mbers such that H0 Ii> =

with = 0 and EL for which the operator P{(H0 — EL)1 +
(H')' )P has elgenvalue zero consists of lower bounds for the ordered sequence
of eigenvalues of H0 + H'.

Proof

For any projection Q, Q � 1, so (H')"2Q(H')"2 � H'. If we take Q =
(H') u2p(P(H') 1P) 'P(H') 1/2, then Q is a projection, since Q = Q

= Q2, and there results H' � P(P(H') 1P) 'P. Therefore, by the mm-max
principle, the ordered sequence of eigen values of

HL H0 + P(P(HY'P)'P
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consists of lower bounds for the eigenvalues of H = H0 + H', since H � HL,
and so all expectation values satisfy � If JL> is an
eigenvector of HL and = 0, then IL> must be one of the (I>, and thus
E1 is an eigenvalue of 11L• If PIL> 0, then we may write

PIL> —P(H')'P(>,

which converts the eigenvalue equation into (H0 — EL) (L) = Pt>, or

PJL> = P(H0 — ELY'PJ> —P(H'11P(>.

Special Cases (3.5.32)

1. Let P = Ix><xI be one-dimensional, so the comparison operator is
p. — EL)' + Since are trivial lower bounds, we
need 0, i 1, 2, . .. , n, in order to raise our estimates of the first
n eigenvalues. If we let

lx> = 1,

then the problem becomes to solve the equation

+ E cr<i((H')' 0.

Since (H')- > 0, there is always a solution for EL between any and
No one-dimensional projection can raise an eigenvalue above the

next higher one. More specifically, + <1 ((H') -' (1> � �
+ <1 (H' (I>, whenever the left side is �

2. If we let Jx> c(H0 —. = 1, then we need to find the least
solution of

— EL + (H0 ELXH')1(Ho —

EL — (H — ELXH'Y1(H — EL)JtI'> = 0,

i.e.,

EL — <tJiJ(H — —

If � then it will be a bound for E1, and

— <ifr((H — ELXH')1(H — � E1 �
provided that the left side is � In this case we are not confined to the
use of eigen vectors of H0, and may equip i/i with some parameters to vary
and optimize the bounds. In addition, H can be written in various ways as
a sum of H0 and H'. If we let H' = .(E2 — EL). 1 (why not, once we know
that EL < E2?), then

— ELXE2 — EL) — (H — EL)2 Iv'> = 0,
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which yields Temple's inequality,

If < — <H>, this improves (3.5.26).

Once the Ek have been localized, the question can be raised of bow well
the trial function approximates an actual elgenvector I >. There is little
chance for a general pointwise bound, but the accuracy in the L2 norm, i.e.,
in the mean-square sense, can be gauged in terms of inner products, for
which there are useful estimates.

Bounds for the Overlap Integral (3.5.33)

Let a constant be subtracted from H to adjust the lowest eigenvalue E1 to 0,
and let) > be its eigenvector. Then

where < > is the expectation value in the state (These bounds are due re-
spectively to Eckart ard to Farnouc and Wang.)

Right side: HiJi is orthogonal to) so

1< '1'>
2 <

I

—

Leftside:LetP= 1— >< j.Then

— E2)P*> = — E2(1 )( � 0.

Remarks (3.5.34)

1. It is not difficult to improve these bounds [5]. They show that the relevant
facts for the accuracy of iji in the L2 sense are smallness of <H> — E1 and

and a large isolation distance from E2.
2. The upper bound holds only for the eigenvector of the ground state E1,

though similar lower bounds hold for excited states.

The motivation for the concepts that have been developed is the study of
Hamiltonians of the form H = p)2 + V, and we have assumed that there is
only a discrete spectrum under the continuum on The final topic of this
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section will be bounds on the number of bound states below a given energy;
this in turn excludes from below such an energy. The discussion begins
with a lemma, which seems trivial for attractive potentials, but is surprising
for potentials that are partially repulsive.

Monotony of N(H) In the Coupling Constant (3.5.35)

Let H = p12 + AV be such that is contained in IV, and let N(H)
Tr O( — H) be the number of eigenvalues less than zero, counting multiplicity.
Then N(1p12 + AV) is a monotonically increasing function ofA for A.> 0.

Proof

H1 � H2 N(H1) � N(H2) and N(AH) = N(H) for all A > 0, so

N(1p12 + A1V) � + A211)) = N(1p12 + A2 V)foralIA1 � A2.

The number of eigenvalues below —c2, i.e., N(H + c2), can be estimated
above by traces for potentials that are in some trace class relative to 1p12, that
is, by certain integrals.

The Blrman-Schwinger Bound (3.5.36)

Let

— J—V(x), where V(x) <0
I

- — 1.°, otherwise.

Then for all p � I,

N(1p12 + V + c2) � IKIpI2 + c2)" 1/21 VI_(1p12 + c2)"

Proof

+ V + c2) � N(1p12 — I
+ c2), and all the eigenvalues of

vt2 — Al Vj_ + c2 are continuous, decreasing functions of A. Hence

N(IpI2 — + c2) equals the number of values of A for which 1p12 —

Al Vl_ has the eigenvalue —c2 (see Figure 11). Since 1v12 + c2 is invertible,

it follows from(1p12 — = .—c2,Ii that

(1p12 + + = = (1p12 +
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—C2

E2(A)

Figure 11 The eigenvalues as functions of constant.

A

Thus N(1p12 — I + c2) = [the number of eigenvalues (1/A,) � 1 of the
operator(Ipj2 + c2)"21V1..(1p12 + c2)112]

Applications (3.5.37)

/1 \P

= + c21"2}VI_(1p12 +

1. Bound S-states. If V is radially symmetric, then one can ask about states
of definite angular momentum 1, where one thinks of the appropriate
projection P, onto an angular-momentum subspace as included in V. The
operator P0(1p12 + c2) 1P0 has an integral kernel

R(r, r') [sinh rc exp( — r'c)8(r' — r) + sinh r'c exp( — rc)O(r — r')J,

and, moreover, the bound involving p,

IKlpl2 + c2y 1/21 Vl_(1p12 + c2y 1/211 = Irl + 1

= V(r)Ir2R(r, r) = fdrI V(r)1
1 — exP(2rc)

o o 2c

may exist. For c = 0, this reduces to Bargmann's bound:

(The number of bound S-states of V(r)) � r I V(r) I-.

N

E

E3(A)

E1(A)
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2. In our discussion motion (3.3.3) in three dimensions, we saw that
the integral kernel of (}p12 + c2)' was exp(—clx — x'I)/4nIx — x'I,
which is infinite where x = x'. It is thus necessary to choose a larger
exponent p; with p = 2, we get the bound of Ghlrardi sod Rimini:

+ V + c2)
(1)2

exp(—2cIx — x'I).

Remarks (3.5.38)

I. The classical analogue of N( I p12 + V) is the of phase space of
negative energy,

— V(x)) =

As A N(
I p12 + AV) in fact approaches this integral, as wiMbe shown

in volume IV. For finite A the integral is a bound on + AV), with
some weakened constant [25].

2. If the potential is radially symmetric, then it is possible to obtain a family
of bounds for N,, the number of bound states of angular momentum 1,

N, � p � 1.

These bounds are optimal in the sense that for all p � 1, there is a potential
I',,, for which equality holds. By varying p, one can use this formula to
evaluate the number of bound states for most potentials to within a few
percent.

3. The moments of the eigenvalues can be read off from N by [6]

0

o 0

= J N(H — E) = y J dEIEV'N(H — E).

Example (3.5.39)

The Yukawa potential, V(r) = —A exp(—r)/r, A > 0. By (3.5.37; 1), the
number of bound S-states is at most dr I V(r) r = A. If we use the trial
function /i(x) = u(r)/r, u(r) = (A3/8,r)"2r exp( — Ar/2) in (3.5.28), then
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— A2/4 + A( I — exp( — r))/r, so we get the bounds — A2/4 � E1 �
— A2/4 + A. The expectation values of H = + V and H2 in the state are

and

_______

A2
<,frIH,fr>=— =

4 (l+A)1

A4 16). + 12A2 8A 1

AH
If_A_\2 /2+3A

V2+A
The mm-max principle yields the upper bound for E1, and (3.5.26)
gives the lower bound — AH, once it is known that E2>
+ Because V> —A/r, —A2/4n2 (see §4.1); consequently, for

I HtJ.i> < — A2/I6, we have definitely caught the eigenvalue E, between two
bounds. For A sufficiently large, the lower bound can be improved with
Temple's inequality (3.5.32; 2), since — <H>)—' = O(A 2) The
projection method can make use of the exactly soluble case H0 = I p12 — A/r
and H' = A( 1 — — r))/r, yielding

-A,
,U'—l\ —— I d

e
— —' / — i I —r — k..' r

— e N=0 -r

so + )2/(3 + A) � E1. The general bound (3.5.30)

/ \2/(2,—3) f(3 —E� —(j drr2IVl") (p—i)2
/ P

works only if p < 3, and thus never gives the actual asymptotic behavior
as A for instance, with p = q = 2, we get � E1. (See

Figure 12.)

E,

Figure 12 Bounds for the ground state with a Yukawa potential.

— Temple's inequality
• inequality (3.5.28)

—6 —5 —4 —3 —2 —1

5

4
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Problems (3.5.40)

I. Show that R(a, z) has simple poles at El,, and = =

2. Show that a is compact if 0 -+0. (Hint: for the "only if" direction, recall
that the strong and weak topologies are equivalent on strongly compact sets in
Hubert space.)

3. Show that if H' is compact relative to H0, then for all e > 0 there exists a 5 such that
� c!IH0,IiII + for all i,ti E D(H0). (The operator a = H'(H0 + is

compact. Let P, = and show (i) that IIa(1 — 0, and (ii) that
H'PN is bounded for all n.)

4. Show that for 5, W
is as in the proof of (3.5.14).

5. Prove the mm-max principle (3.5.21). (Use the unitary invariance of the trace and
note that + TrDZ forD1 orthogonal to P2.)

6. Give an example of a 3 x 3 matrix for which the value E2 =
E2(tfr) = = Hq> is attained for some other than the ground
state.

(3.5.41)

1. Let be the projection Onto the eigenvector for El,. The Laurent series of(H0 — 2)_i
is — z) + (1 — x analytic factors.

= R(ci, z) = — R(n, z) — R(2, 2*)

= — [4dz R(x*, z)].

1' f dzdz'
= (2xi)2

—
, [R(n, z) — R(tz, z )].

ci z

= k:
ff... = (2,tiyt dx R(n, z).

i k: = 0. -



3 Quantum Dynamics

2. Lemma: Let K c .*' be strongly compact. If M c K is weakly closed, then it is also
strongly closed. Conversely, if M is strongly closed, then it is also strongly compact,
hence weakly compact, hence weakly closed. (See also Problem (2.1 .29; 7).)

"only if": 0 —0 —'0 because of the Lemma and because is

bounded.

"if": - 0 -.
a bounded set. To show that aX is strongly relatively compact, it

suffices for every sequence a strongly convergent subsequence.
The sequence contains a weakly convergent subsequence — -. açli.

3. (i) Let = a(1 — IIa(1 — = If Il- were greater
than some fixed positive C for all n, then the intersection of the decreasing se
quence � C, � I) of weakly compact sets would be nonempty,
so there would exist a such that � 1 and � C for all n. This is
impossible, since 1 — 0.

(ii) = a (a + i)dP3 is the product of two bounded operators. Consequently,
if ifr E D(H0), then for ii sufficiently large, D(H0),

IH"kII = IIa(Ho + � Ija(I — + +

� elI(Ho + +

4. IIP(a) — P(0)II < 1, [1 > 0, [ )P0 P0{ ]. WW = PC 31/2P =
PPO[ ]1P = P. WW = P0[ ]/2p0

= C J"2P0[ }"2P0 Po.

5. We consider only the infinite-dimensional case, so H has arbitrarily many eigenvalues
greater than or equal to j. Let ELI/i, let Be,, be the subspace spanned by

D =

and let be the dimension of D7. In the trace

Ttp H + TrvyH + Tr07 H

the first contribution lies between E1 + E2 + ... + and E,d- + +
+ E1 the second between + + + and -i-

sup � E, + £j+t + ... +

(equality holds for = J; and

inf Ir0111 � E, + E+1 + +

(equality for D._ = B1.

100
1 1H= 0 2 0,

003
The general form of the co's orthogonal to is = (a, — 21212, —ix), with

� and = 2(1 — 2 for all cx.
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3.6 Stationary Scattering Theory

An explicit formula for the scattering operator S is obtainable with
an Abelian limit, and analytical methods can be applied to it.

Historically, collision problems could be studied only with the methods of
wave mechanics, and not with those of matrix mechanics. It has thus come to
be believed that scattering theory should bethought of as concerning the
scattering of waves, and not of particles with observables x and p. More
recently, the connections between the two points of view have become better
understood, and as a result we shall be able to tie in directly with §3.4. Since
we have by now learned which mathematical pitfalls are dangerous and which
can be harmlessly circumvented, we shall indulge in formal manipulations
without always pausing to investigate the finer points of rigor.

The MØller operators were introduced as time-limits of = expQHt)
x exp( — 1H0 t). If they exist, then a fortion (Problem 1) the limit as e 0 of

e dr exp( — et)f2(t) exists (cf. (1:3.4.18)), which is an operator that no longer
contains time explicitly. Since the integrand is an exponential function of t,
the r-integration looks trivial at first sight, but because H and H0 do not
commute, it is not so simple. The difficulty can be eased with the partition of
unity I = J dE t5(H0 — E) given by the spectral representation of H0,
which we shall think of as Ii'12. Then only the commuting variable E appears
in the integral of the final exponential function, exp( — iH0 t) dE
x exp( — iEt)b(H0 — E), and there is no further obstacle to the integration:

= s-lime fdt f dEexp(±it(H — E ± — E)

±dEie(H—E±ieY'ö(Ho—E)
0

I — slim JdE(H — E ± 41 ö(H0 — E). (3.6.1)

Remarks (3.6.2)

I. This means that can be written in terms of the boundary values of the
analytic function z —' (H — z) - 'V on the branch cut Fl The V's that
we shall deal with are mapped by this function into compact operators.
It will in addition be convenient to use the variable k %fE instead of
E to sithplify the integrals; the limits in simply correspond to Im k 0.

E plane k plane
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Under the right circumstances, the integrands can be continued analyti-
cally across the real axis:

V"2 H k2y'V"2 2 — f d3xd3x'
11 ( o 112

— J (4ittx — x'D2

x V(x)V(x')exp(i(k — k*)Ix —

is finite even if im k <0, provided that V(x) falls off sufficiently rapidly.
If we write

siirn 2k dk 0(ie 1 k)b(H0 — k2),

then

I —(H — k2)'V (1 + — k2)'V)-'
+ 1V1112(H0 —

has only poles, at the where the compact operator in the de-
nominator has the eigenvalue — 1. The branch-point in the variable E at

0 disappears in the uniformizing variable k.
2. it is customary in wave mechanics to work outside the space L2 and use

plane waves = exp(ik x) as eigenvectors of H0. When multiplied by
they are turned into eigenvectors of H: = which satisfy

the Uppmann—Schwinger equation

k=ikI,
because 0(k) = (1 + (H0 k2) 'V) '. In the x-representation, this
reads

x)
fd3x' x'J)

The new eigenvectors contain incoming, or respectively outgoing, spherical
waves in addition to the plane waves.

Example (3.6.3)

With the separable V of (3.4.13; 1), 0(k) = 1 — A(H0 — k2) 1PD '(k), or,
written as an integral operator with a momentum-space kernel,

(p'10± — lip) = — J2k dk
(I

2

where now

D(k) = I + Im k > 0.
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If, say p2 = M > 0, then D(k) = 1 + (A/4ir)M2/(M — ik).
This function can be continued into the lower k-plane, equivalent to the
second sheet in E, though it no longer equals the integral there, but instead
develops a pole at k = — iM.

In the same way, the time-limit (3.4.24; 6) in S can be recast as an limit,
the only difference being that the partition of uhity is needed on both ends of
the expression:

S slirn JdE dE' ô(H0 —
E ± E'

— — E')dr

= slim J'dE dE' — E)
H — (E +E')/2 — •

— E'). (3.6.4)

With the second iteration of the resolvent formula (suppose D(H) is D(H0)),

(H — z)' = (H0 — z)' — (H0 — z)1[V — V(l1 — z)' VJ(H0 — z)1

and the limit

urn = 2iti ã(E E'),
((E — E')/2 — iaX(E' — E)/2 — iE)

there results

S = S-tim idE{1 — 2iri t5(H0 — E)[V — V(H — F — ie) V]}c5(H0 — E).

(3.6.5)

(As usual, S is in the interaction representation.) In order to discuss (3.6.5),
we need another operator-valued analytic function of the uniformizing
variable k (see (3.6.2; 1)):

t(k) V V

k2) 1Vu2]_ 11

= {V1 + (H0 — k2)']' = (3.6.6)

The domains of definition, especially that of V1, will have to be checked
later. As Im k 0,

t1(k) — t'(—k) = lim[(H0 — k2 — tg)1 — (H0 — k2 +

= 2iri ö(H0 — k2)
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in the sense of convergence of quadratic forms, and we get

I — i5(H0 — k2)t(k) = (t '(k) — 2iri t5(H0 — k2))t(k) = t — '(— k)t(k):

The Spectral Representatloii of the S Matrix (3.6.7)

S = f 2k dk S(k)5(H0 — k2),

5(k) = t1(—k)t(k) = s-Iim[1 + (H0 — k2 + ie)1V]

•[1 + (H0 — —

From this there follow the

Unltarlty Properties of the S Matrix (3.6.8)

(1) S(k)S( — k) = I on the domain of analyticity.
(ii) S(H0 — k2)S(k)* = S( — k)5(H0 — k2) for k real.

Example (3.6.9)

Recall (3.6.3), with V A?. We find that 1(k) = APD' and S(k) 1 —

2n15(H0 — k2)APD1. Since S(H0 — k2)PS(H0 — k2) = 5(H0 — k2)Ip(k)I2
x (k/4n)P0, where P, is the projection onto the states of angular momentum
LI2 = 1(1 + 1), and D(k) — D(—k) = 2iri(k/4it)Ip(k)I2, we find that

s = dk S(H0 — k2)(P0 + 1 —

Remarks (3.6.10)

1. Since [S, = Oil follows that even though S(k) maps functions off the
energy shell H0 = k2, S(k)o(H0 — k2) does not. The unitary relation
S(H0 — k'2)S(k')S(k)S(H0 k2) = S(H0 — k2)5(k'2 — k2) then holds
on the energy shell, and hence S(k) S(H0 — k2) can be writtent as
exp(21 5(k))S(H0 — k2), where 5(k) = = — b( — k). Making use of
the spectral representation of H0 = we can write Jr = 2k dk)
® L2(S2, and the operator 5(k) maps the angular part L2(S2, dQ)
onto itself. The operator 5 then acts on all of Jr. and [5, H0]
= 0. if V is spherically symmetric, [5, L] = 0, so 5(k) = S,(k)P,, for

t It is unfortunately traditional to use the same lettcr for the phase-shift ô(k) and for Dirac's
delta function. The reader should be alert for any possible confusion.
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R. Then in the diagonal representation of I S becomes a multi-
plication operator in H0:

s = fdk2 t5(H0 — k2)exp(2u5(k)) = ö(H0 — k2)P1 exp(2iô,(k)).

2. The unitarity of S implies the Low equation for I(as before, defined with
ImkjO):

t(—k) — t(k) = 2iriVcZo(H0 — k2)Q'V

= 2zit(k)ö(H0 — k2)t( — k), e a

3. If the Lippmann-Schwinger equation (3.6.2; 2) is written as vi... =
— (H0 — k2) 1t(k)ço, and if we use = exp(iki. x), k = kn, noting that
for xl lx'l,

— ii'
r r

then as lxi in the x-representation,

1)1, (x) = exp(ik. x) + exP(ikr)f(k. n', n),

f(k; n', n) fd3x' d3x" exp(—ikn' 'x')(x'it(k)Ix">exp(ikn .

The angular dependencef of the outgoing spherical wave is thus determined
by t in momentum space on the energy shell. Only this part oft shows up
in exp(2Riô(k)) b(H0 — k2) = (1 — 2ni — k2)t(k))ô(H0 — k2). In par-
ticular, if [t(k), L] = 0, then by comparing coefficients (Problem 6),

f(k; ii', n) = <n'lP,In>
exp(21ô,(k)) — 1

= 2! ± 1
P1(cos O)exp(ib,(k))sin ö1(k), 9 = 4 (n', n).

If the plane wave is expanded in spherical harmonics exp(ik. x) =
(exp(ikr) — exp( — ikr))/2ikr + ••, then - becomes asymptotically
(exp(i(kr + 5(k)) — exp( — i(kr + ö(k)))/2ikr + , which shows the signi-
ficance of ö as the phase-shift of a spherical wave.

4. If there are several channels (see (3.4.24; 6)), then the generalization of
(3.6.5) is

= — 2,ri — —
H —

— E).
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We shall assume in what follows that V decreases fast enough at infinity
that the norm in (3.6.2; 1) remains finite for all k with Im k > <0. Then
for such k,

S(k) = '2D(—k)D '(k)V"2, 0(k) = I + V112(H0 — k2) 'I
is a meromorphic function taking values in Our next topic is

The Configuration of the Poles of S(k) (3.6.11)

The operator S has a pole at any value of k at which either D(k) has
eiqt'nralue zero or D( — k) has a pole. Roth poles and zeroes occur for —
whenever they occur for k. 0(k) has no poles in the upper half-plane, but only
zeroes, and those are restricted to the imaginary axis.

As depicted in Figure 13, the terminology for these values of k is:

zeroes with Im k > 0 bound states

zeroes with Im k <0 and Re k 0 virtual states
zeroes with Re k 0 resonances

Proof

D(— k*) = KD(k)K is the time-reversed version of D(k) (cf. (3.3.19; 2)), so
the two operators have the same poles and zeroes. If 0 D(k)* = ci' +
V"2(H0 — E)' V"2çb, then (H0 + V — E)q 0, where q (H0 —

x V decreases sufficiently fast, then is square-integrable whenever

kplane O=zeroofD(k)
x = pole ofD(k)

bound slates

0 Q resonance

virtual states

polesxxi
Figure 13 The configuration of the poles and zeroes of 0(k).
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is, and for such potentials the equation for q can be solved if
E <0, i.e., fork purely imaginary. Complex zeroes and poles can appearafter
analytic continuation to the second sheet of E, which is the lower half-plane
ink. El

Examples (3.6.12)

1. In Example (3.6.9) with p = M2/(1p12 + M2) as in (3.6.3),

S(k) —
(M — ikXM(1 + (A/4ir)M) + ik)

— ° (M + ikXM(l + (A/4ir)M) —

The zero of D(k) at k = —iM(l + (A/4ir)M) is a virtual state if A/4ir>
— tIM, and a bound state if A/4it < — l/M. The pole of D(k) at k = —iM
produces a pole of S at k = iM (on the first sheet of E at E = — M2).

2. The separable potential V = Ap• Pp interacts only with I = I states, and
the analogous calculation with P = Jp>c(pJ, p(p) = M2/(p2 + M2)
results in

r i i2ai4 AA2(L4 1iPi 1

J (Ip12 — k2XIpI2 + M2)4 — 8ir (M — ik)2

The zeroes at

k = —iMfl + M3 ± +
L 8n \81r \ 8ir //

are virtual states if A > 0, resonances if —8,r/M3 < A <0, and if 1 <
— 8ir/M3 there is one bound and one virtual state.

Remarks (3.6.13)

1. The poles of D(k) were originally called spurious poles, since it was
assumed that all poles of S(k) on the first sheet of E should correspond to
bound states. The poles of D(k) have no physical significance, and serve
only to show at what point analytic continuation makes the If 112 norm
in (3.6.2; I)diverge.

2. S(k) is determined by the phase of D(k), and D approaches I at infinity in
the upper half-plane. If we normalize the 5(k), defined in (3.6.10; 1) only
modulo it, by setting 5(0) 0, then a well-known theorem of analytic
function theory implies that —S(co) = it times the number of bound
states. The more general version of this fact is

Levinson's l'heorem (3.6.14)

Let V be compact relative to H0, and suppose TrI(H0 — z) — (H — z)
� M(z), where M(z) < z — — as z I —' and 0(1 Im z + as
Im z 0, Re z> 0, c > 0. Then 2n times the number of bound states equals
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I limb... In Det(S(k) — S(O)) = I Tr ln(S(k) — S(O)) if 0 so
that S(0) is well-defined.

Gloss (3.6.15)

ln(l + A) is defined for all A with ffAfl < 1, and
Det(I + A) exp(Tr ln(l + A)) is defined for all A with hA < In
general ln(AB) In A + In B,but Det(1 + AXI + B) = Det(1 + BX1 + A)
for all A + B + and = Det(1 + A)Det(1 + B) for all A,
[16]. If A(z): C -. is analytic, then it follows that in the domain of
analyticity

Tr ln(1 + A(z)) = Tr(1 + A(z)) IAF(z).

Proof of (3.6.14)

Let = 1 + (H0 — E ± 1V, S(E) = Q+(E)Q: '(E). Although
(H0 — V is com'pact, it is not trace-class. However, differences of two
such terms with different z are trace-class, since (H0 — 1V(H0 —
= [(H0 — z1)' — (H — + (V + z2XH0 — This justi-
fies the following formal manipulations:

= Tr(Q1Q'+ —

= Trifi + (H0 — E + — E + ie)2V
(c 4-4 —e)}

1 1 1=Trl . — .[H0—E+w
If we do the integration over E, then

Tr ln S(E) = Tr fdz((H — zY — (H0 — z) I),

where C, the contour of the complex integration, is as shown below:

Eplane

bound states C E + Ic

;(
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By assumption, the circle K: z E can be appended to C, since the extra
contribution goes to 0 as E x. In this limit C u K encircles all the poles of
(H — zY but does not contain Sp(H0). The proposition then follows from
the residue theorem. 0
Example (3.6.16)

In the case of the separable potential (3.4.13; 1),

Tr((H0 — z) — (H — z) ') = A Tr(H0 — z) 1P(H0 — 'D '(z)

=

In (3.6.3) we found that D(z) = 1 + (A/4ir)M2/(M — for p2(p) =
M2(1p12 + M2)1. Therefore

0 1 A M2
-

and the assumptions of (3.6.14) are satisfied. In fact,

kM2A/4ir
= arctanM2(l + (A/4ir)M) + k2

has the limits c5(0) = 0, ô(co) = 0 iii + (A/4ir)M > 0, and ö(cx) = if
I + <0. If, however, we pass to the limit M —+ A 10, so that

E M( I + (A/4ic)M) stays finite, then S(k) = (A. — ik)/(A, + 1k). In this
case, ö(k) = —arctan(k/A,) vanes between 0 and it/2 times signum A,.. For
A, <0 (a virtual state) as well as for 2.> 0 (a bound state), (3.6.14) is violated,
since then D(x) 9& 1.

The classical scattering transformation (I: §3.4) for, say, a particle in a
central potential in is a canonical transformation that leaves p, and L
asymptotically invariant as r cx), and as a consequence has an asymptotic
generator 2t5(p,., L):

Pr

Thus the generator contains information about the scattering angle —28 ö/OL
and about —20 ö/Op,, the amount by which a particle evolving according to
H outdistances one evolving according to H0. This distance corresponds to a
delay time 2(m/pXt3t5/Op,). Similarly, in quantum theory exp( — 2i
x exp(21 5(,p)) = x — 20 ô/t3p, and the amount of delay can be generally

defined as follows.
The Møller transformations turn x into lime... — tp(t)).

Classically this means that trajectories that become tangent to the actual
trajectory as t ± cx are at when t = 0. The time-delay is the difference
of the time the actual trajectory spends in a ball of radius R centered at the
origin and the time spent by these free trajectories, in the limit R -+
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Suppose a trajectory enters the ball at — T_, leaves at and that R is so
large that the motion is free outside the ball. Then

= ±

and if this equation is multiplied by p÷, we find that

T÷ + T =

____—X+p+

+ + x
Ip+I

where b÷ are the smallest distances the free trajectories come to the origin.
The times spent by the free trajectories in the ball are — I).
so with R the time-delay

D time of actual trajectory — time of free trajectory

—x....p-—x#.p+
Ip+V'

It turns Out that there is a direct relationship between D and the S matrix and
the virial:

Definitions of the Time-Delay (3.6.17)

D = fL (l/IpI)(xp +
p + p

(ii) D = +
(iii) D = dt{exp(iHt)e(R2 — 1x12)exp(—iHt)

— exp(iH0t)O(R2 — * 12)exp( — iH0t)}
(iv) D = —iQ 1 r dE —

where H0 = 1p12/2 and H = H0 + V.

Remarks (3.6.18)

I. Definitions (i) and (ii) are possible whenever scattering theory works,
i.e., for V falling off as r1 In Definition (iv), however, it has so far been
shown that LIS/i3E is well-defined only for fall off.

2. It is clear because of its classical meaning that D should be independent of
the choice of the point x on the trajectory. Therefore D should commute
with H. This follows formally from (1), since

exp(iHt)D exp( — iHt) = f�+ {(x + pt) . p + p (x + pt)}

— {(x — pt) . p + p (x — pr)}

=D.
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However, D is different for different trajectories; likeS, it does not commute
with spatial translations.

3. For repulsive potentials

D = (2— v)P Jdt V(t)4z:Pac.

If v = 2, then D = 0. If v > 2, then D < 0. This means that the actual
trajectory spends less time in the ball than the straight trajectory does,
since its path is shorter. If v < 2, then D is positive, and the dominant
effect of V is to brake the particle. Note that from (iv), the phase-shift for
such potentials is a monotonic function of E.

4. In the wave picture an incident wave exp( — ikr) is turned into exp(i(kr
+ 2 (5(k))). If we assume a wave-packet narrowly concentrated about k0
and expand (5(k) = (5(k0) + (k — k0Xôo(k0)/8k0) + .., then the co-
efficient of k becomes r + 2(8 ö(k)/0k) instead of r. Thus the center of the
wave-packet is shifted from r = k0 r to r = k0(t — 2(0b/8E)) after the
scattering.

5. II there are resonances at ±k, — i/, then

(—k—k,+ibX—k+k,+ib)
S(k)

= (k — k, ± thXk + k, + ib)
x slowly varying factors.

Ignoring the slowly varying parts,

— In S(k)� - + b2 + (k±
If b 4 k,, then there is a sharp maximum 1/(bk,)at the resonance energy,
at which (5(k) passes rapidly through 90°. For this reason l/(bk,) can be
thought of as a lifetime, which can become so extremely long that there is
hardly any difference between resonances and bound states. This happens
for particles radiating from nuclei.

6. If the potential is radial, then 2 (5,(k) is the same as the classical generator
of the scattering transformation, and (3.6.17) reduces to the classical
formula.

The Equivalence of the Definitions of D

(i) (ii): Introduce the generator G E (x p + p . x)/2 of dilatations. On
the one hand

fTd( exp(iHz)[G, H]exp( — iHr)

(exp(—EHT)G exp(IHT)

—
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and on the other this equals (see (3.3.20; 8))

exp(iHtXx VV —

= + $ di + x VV)

Now G = exp(—iH0t)G exp(iH0t) +
T -. Thus the equality of the two

expressions reduces to the equality of(i) and (ii) in the limit T —.

(1) (iv):

(i) — — ( G — s 1

_____

G

= S '[S. G} since [S, H0] = o.

[G,S] =
0

a

since the angular part of S(E) is unaffected by dilatations, so this means that
(1) (iv).

(iii) (iv): This equivalence can be shown with the same methods but is
slightly more involved. A proof will be sketched in Problem 2. 0

The quantity related to S that is of interest in experimental physics is the
cross-section a. Following the classical theory (I: §3.4), we define the cross-
section as the number of particles scattered into a given solid angle per unit
area of incident particles. The momentum distribution of the incident
particles is described by a wave-function in L2(U13, d3k/(2it)3). In reality
a particle is never precisely aimed at the scattering target, but is rather a beam
with momentum concentrated near k0, while its width in x-space will be
macroscopic. The initial state is best described as a mixture

$
.
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letting p have compact support containing k0 = (0, 0, and letting a =
(a1, a2, 0) be a translation in the plane of the imp4ct parameter, which is
averaged over a surface F, the beam cross-sectional area. We next find the
probability of measuring the momentum of the outgoing state in some cone
C so far from k0 that = 0, and there is no danger of measuring an Un-
scattered particle. In this computation the I in Sin (3.6.5) does not contribute,
and with = —2iri f dE ö(H0 — E)t ö(H0 — E)4p, t = —4irf, we obtain

S
d3kIi/i(k)12

= Jd2a $d3k d3k' d3k"

fdE ô(1k12 — E)

exp(ik' a)p(k')exp( — ik"

To get a this has to be divided by the probability that the particle arrives
through a unit area, i.e., 1/F. Afterwards, we may let F become infinite, so
f d2a exp(i(k' — k") . a) = (2ir)2 — where ..L denotes the projec-
tion into the 1-2-plane. Because — k'Do(lk'12 — Ik"12) = ö3(k' — k")/
2k'3 and k2 dkô(k2 — Ik'12) = lk'I/2, we get

a d(1 = dc� l(p(k')I21f(k, k')12
(2ir) 1k31

If is narrowly enough concentrated about k0 that we may set 1k' 3/I to
I and regard f(k, k') as a constant, then because of the normalization the
detailed form of becomes irrelevant, and we obtain a formula for the

Scattering (3.6.19)

a(k, k0) = f(k, k0)12, = JdC�& a(k, k0).

Remarks (3.6.20)

1. We have considered the probability of measuring a momentum k as
t -. Since

x(t) . p(t)
s-urn = s-urn

Ix(t)I p(t43

(Problem 3), this equals the probability of measuring x in the same angular
direction.

2. The scattering amplitudefis also the coefficient of the asymptotic spherical
wave (3.6.10; 3). The complete wave-function however, is not
asymptotically dominatedby If 32/r2, but instead by 14' 2 and an inter-
ference factor hr.
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3. We learned in (II: §3.3 and 3.4) that the details of the exact wave4unction
cu

are quite complicated. For instance, a, = J d3Q a does not simply describe
the shadow cast by an object, but rather refers to the asymptotic region
in which the shadow dissolves (the Frauenhofer region of (II: 3.4.42)).

Properties of the Scattering Amplitude (3.6.21)

Ifk is real, then

(i) f(k; ii', n) — f(k; n, n')* = (1/2it) J f(k; n', n")f(k; n, nh')*ik;
(ii) f(k; n', n) =f(k; —n, —n'), provided that K VK =
(iii) f(k; n', n) =f(k; —n', —n), provided that PVP = V.

Time-reversal K and parity P were defined in (3.3.19; 2) and (3.2.10).

Proof

(I) This follows from (3.6.10; 2), since for real k, t(—k) = t(k)*.
(ii) If H and H0 are invariant under K, then KSK = S, and so Kt(k)K

= t(k)*. From the rules K2 = I, <aIKb> = <KaIb>*, KpK = —p it
follows that = <nIKt(k)*KIn> = <_nIt(k)*I =

(iii) This proposition follows from Pt(k)P =t(k) and PpP = —p. 0

Example (3.6.22)

With the separable potential (3.6.9), f(k; n', n) = '(k).
This satisfies (i), and invariance under 0' means that p*(k) p( — k), which
implies (ii). Invariance under P means that p(k) = p(— k), which implies (iii).

Remarks (3.6.23)

1. If a n', then (i) becomes the optical theorem, a1(k) = 4iv Im f(k; a, n)/k.
The information contained in the forward scattering amplitude includes
the total scattering cross-section.

)r tl(

In,detailed

Figure 14 Scattering from a triangle.

reciprocity
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2. Proposition (ii) goes by the name of reciprocity. It states that ii there is
invariance under 0', then the reversed motion is also possible: u(k; n', n)
= a(k; —ii, —ii').

3. Propositions (iii) and (ii) together imply that a(k; n', n) = a(k; ii, n'), which
is referred to as detailed balance. It is not valid for scattering from targets
that are not invariant under reflections (see Figure 14).

4. For radial potentials the expression forf in (3.6.10; 3) makes

a, = a,, a1(k) = (21 + 1)sin2

The total cross-section is the sum of the contributions of all possible
definite angular momenta, each of which is maximized by the unitarity
bound

4iz
I).

This bound is attained at a resonance; for instance, with

k—k0+ib
exp(2iö,) =

— lb

the I contribution would be

4,r b2
a1 = p(2l +

k0)2 + b2

This is four times the geometric area of a circular ring bounded by impact
parameters b, = I/k and b,

+ 1) 4it(bt+1 —

The b, are the distances out from the center of the target at which the
particle has to be aimed in order to have angular momentum I with linear
momentum k.

5. As k 0 the unitarity bound diverges, and a, may become infinite. Yet
for most potentials goes as k —÷ 0, so only 1 = 0 contributes to

a t50(k)/k —f(0; n, n),

tim a,(k) = 4xa2.
k-.O

6. In classical physics potentials that extend to infinity, such as r", always
produce infinite total cross-section, since no matter how large the impact
parameter b is, there is always a nonzero scattering angle b - This is no
longer the case in quantum theory when the potential decreases faster than
r2 (Problem 4). The classical argument breaks down because the in-
determinacy in the scattering angle should go as b', which eventually
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dominates the classical scattering angle. This sort of reasoning can not,
however, explain why the critical value should be = 2; especially as it
depends greatly on the dimension = (1 + d)/2).

7. Although S is a continuous function of V in the strong topology [8],f is
not likewise continuous, since it involves matrix elements with plane
waves, which are not square-integrable. It can thus happen that the
forward scattering amplitude, and thus also a,, are finite for an r2
potential cut off arbitrarily far away, but become infinite as the cut-off
goes to infinity, even though the potentials are arbitrarily close in norm.

It remains to discuss howf can be calculated explicitly or, if that is im-
possible, how to assess the accuracy of approximations to it. If two particles
interact through a radial potential, the problem is to solve an ordinary dif-
ferential equation, and c5(k) can be found by numerical integration. When there
are more particles, however, we are confronted with a nontrivial partial
differential equation. It is therefore advisable to survey the more general
methods that are available. In the absence of better ideas, one frequently falls
back on a series expansion in V, called the Born approximation. The hope is
that at high energies, for which the kinetic energy overwhelms the potential
energy, the result becomes accurate. Whether the hope is fulfilled depends on
an

Error Estimate for the Born Approximation (3.6.24)

Let V e L1, so Vk I V p1I2 exp(ik . x) eL2. The n-th Born Approximation
tof(k; ii', n),

n', n) = 4r<vk. I
V"2

I
yp— ylI2 I(k2 — H0) 1

Vk>

satisfies

If(k; a', n) — a', � V(x)I,

where K = 1VI1'2(H0 — k2)'IVI"2. Since

1K p4 � (Tr KK$KK*)

— ç4 d3x,
V(

—x21—1x2—x31+Ix3—x4l—1x4—x,I))

—

X1
x,—x211x2—x311x3—x411x4--xiI

N(k)

goes to zero as k by the Riemann-Lebesgue lemma, for all n � I and
e > 0 there exists an energy great enough that If — I
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Remark (3.6.25)

If N(O) < 1 and the sign of V does not change, then the Born approximation
converges for all k, since N(k) � N(O). This can only occur, however, when
there are no bound states (see §3.5). In essence, the power-series expansion
has a chance only if V is small or E large.

Example (3.6.26)

By setting D(k) to I in (3.6.9), one gets the first Born approximation. If, say,
p(k) = M2/(k2 + M2) as before, the function D becomes 1 + (A/4E)M2/
(M — ik),so

M3 I tM

When 1, the error is on the order of one percent fork> M2A.
If H � 0, it is straightforward to use the projection method (3.5.3 1) to

obtain a fairly accurate upper bound for t — V at E = 0 with the inequality
� P(PHP) 1P. If H has n bound states, then the correction to the first

Born approximation may be positive, or even infinite, when there happens to
be a bound state at E = 0. If the exact bound states were known exactly, the
negative parts of H -' could be projected out. If they are only approximately
known, then the following lemma reduces the bound to the inversion of a
finite-dimensional matrix:

Lemma (3.6.27)

Sup pose that an invertible, Hermitian operator a has n negative eigenvalues,
and is positive on the subs pace perpendicular to their eigenvecrors. For any
n-dimensional projection P such that Pa < 0, a � P(Pa 'PY 'P.

Proof

If XE a then <xlajx> = 'P) 'PIX> follows trivially. If

x a 'P.*' and Q is the projection onto PJf u {x}. then we must have
Del Qa - 'Q/Det Pa - 'P � 0, as otherwise Qa - 1Q would have n + 1 negative
eigenvalues (since Pa 'P has n, Qa 'Q has at least n). This would contradict
the hypothesis that a, and thus a ',have just n negative eigenvalues because
of the mm-max principle. Since by Problem 8 the ratio of the determinants is
up to a positive constant equal to — <xIP(Pa'PY1PIX>,..the
proposition follows. D
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Corollary (3.6.28)

Let P be an n-dimensional projection. If H � 0, and PHP is invertible on
P*', then

<xIV — tIx> � <XIVP(PHPY'PVIX>.

If H has n negative eigenvalues, but is otherwise positive, then this equation is
still true provided that PHP <0.

Frequently one has intuitive feelings about what would constitute a good
approximation to t. These beliefs can be tested with

Kobn's Variational PrInciple (3.6.29)

Let be a comparison potential for which it is possible to calculate t,
— L'(H0 + Vt — E) 'm This differs from the exact t as follows:

t(k) = t,(k) + c2'(kXV —

— r1"(kXV — VIXH — k2) '(V — V,)f1,(k).

Remarks (3.6.30)

1. The operator identity (3.6.29) is easy to verify. Its advantage is that the
first correction can be calculated when the problem has been solved with
V,, and only the second involves the resolvent of H. Since the second term
is quadratic in (V — V1), there is hope that a good choice of makes it
small.

2. If it is known that H is positive aside from n bound states, then (3.6.27) can
be used in the last term for k = 0, to produce an upper bound for the
scattering length. If V1 = 0, fl, = 1, then it agrees with (3.6.28), which
shows that (3.6.28) can be improved on with a superior choice of If
V � 0, then 0 � H0 � H, so 1/H � 1/H0, from which we also obtain a
lower bound.

Example (3.6.31)

Let I > = 1 be the vector (of not L2) of a plane wave with k 0, and let
V be such that all inner products of the form

exist and H >0. Substituting I = I P= H0' V I> <I VH12V I>
into (3.6.28), we discover that <It(0)I> � b, — + b3). If V is approxi-
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matedwiththeseparablepotential v, vi>- '<I V,sothat(V —
= 0, then from (3.6.3),

1 —(b,

<141> b, +-b2'

—
b,

p-!-
b2

VL>, -b,+b2 H0 b1+b2

<IQ"(OX V — V,)L11(O) I>
—

b,1

In Problem 7 it is shown that the upper bound

<It I> < <It, I> + <I Q'(O)( V — V)L1,(0)

ii__b,(:,b2
Vt>-'

— b, + b2 (b, + b2)2 — (b2 + b3Xb, + b2)2

is valid provided that H> 0. II V is also > 0, then there is a complementary
lower bound (cf. (3.6.30;

b, — + — 2b,b2b3 +
b1+b2 (b1+b2)2

= + <(fl"(OXV —

— — � <1t11>.

These inequalities hold as well for potentials that do not lend themselves
easily to analytical or numerical methods. If V is specialized to the radial
case, say V = if r < I and otherwise 0, then can be calculated as
1 — 1/2 (Problem 5), which allows the calculation of all the
b and thereby the bounds. At the radius of convergence = ir2/4 of the Born
approximation the accuracy is still measured in and they are acceptable
well beyond that point (see Figure 15).

Problems (3.6.32)

I. Showthat V(t)—. V =

2. Show that J°. di xRfL. — ZR) 0, if iJ°_ dt(exp( — —

< for all on a dense set (Za = ø(R2 — Use the result to
show that (iii) (iv) in 17).
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0.5

0.4

0.3

0.2

0.1

<ITI>

radius of convergence
of the Born approximation

Figure 15 Bounds and approximation for the scatterink length of a spherical square-
well potential.

3. Let p, = (in the sense of 3)). Show that
= I, and conclude that = I).

4. Suppose that as r —. x, the potential V goes as Ar2 e> 0. Show that jfk 0 and
A is within the radius of convergence of the Born approximation, then ô, < x. (Since
o can be infinite only because of the sum over!, and the Born approximation becomes
exact for large 1, the statement actually holds for all larger A as well. If V = Air2,

A — I A/I and L (2! + 1)sin2 I/I diverges

5. Calculate the scattering length for the potential V(r) = A8(1 — r). (Write =
(u,(r)/r) Y7', u(0) = 0.)

6. Calculate the normalization factors of the scattering amplitude in (3.6.10; 3).

7. Derive the upper bound of (3.6.31).

8. Let Q be the projection onto 1. Ps'. Show that Det QbQ =
— <*IbP(PbPY 1PbçL'>)Det PbP, and use this fact to fill in the gap in the proof of
(3.6.27).

9. Calculate the generator ö(E, L) for the classical scattering transformation (1: 3.4.10; 2)
for the potential y/r2, and compare with the phase-shift ö,(E). What is the delay timeD?

4th Born approximation
— upper lower bound

'

'I

'4

'4.
'4

3 4 5
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SolutIons (3.6.33)

1. Ifô >0, there exists a rsuch that II(V — v(.t.:J)cldI � ôwhen t �
x V(z)di = exp(—et)V(t)dt + c exp(—eXV(i) — V)dt + 5° exp(—ci)V di,
and the first integral —, 0 as 0, the third equals V, and the second is bounded by�

2, Let exp( — iHi)Q_ qi and q exp( — iH0 r)p. It must first be verified that the
expectation value with the state q. is integrable in time: — �

— + — � — so by assumption the
integral di is bounded, and indeed uniformly in R. By the dominated con-
vergence lemma, we may then interchange the integration di and the limit
R —' cx, and the latter yields zero, since XR — 1 = ci Q_.

Derivation of the formula for D. The equations S = (L and ;°S = S can be
used to rewrite DR, with D = limR.,, DR. as

DR
= J

di 'XRS — Xx} + j di — XR]
0

+ — XRJS.

As a consequence of the previous result, the last two summands approach 0 weakly
as R For the first integral we use the Fourier transform of S(E), the part
of S on the energy shell, and write

S
= J

di H0] = 0.

The last integral then becomes

S -' f di
5

d'[r?XR — exp(1i'HO)XR]

= s'

5

+ s Jdi exp(ii'H0).

In the limit as R —i approaches I strongly, so the first term goes to 0 and the
last approaches

= — iS' JdE ö(H0 — E)

3. By assumption,

= -tP + p(t')
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converges strongly to since a/t = 0 for every seif-adjoint operator a,
and by Problem I the second term is Hence the bounded functions
converge strongly, which implies the convergence of the mean-square deviation of
bounded functions: a = —' = <Ia2D.

4. By (3.6.24) we know that Ill in the circle of convergence, so it suffices to
show that the total cross-section is finite in the Born approximation. This is

<exp(ik V ô(H0 — k2)Vlexp(ik . x>> = i V(p — k)12 XlpI2 — k2).
(2ir)

Since V p — the angular part of the integral is finite (ci. (3.4.13; 2)).

5. The solution of the Schrodinger equation

/ a2
cosh sinh r � i

I — + V(r)lu(r) = 0:u(r) =/
1+ —1 r�l

has to be compared with Limk..O(1/k)sin(kr + ö(k)) when r> 1. The result is that
a tS(k)/k = I —

6. We have

(2ir) 4,r 4n

= ö,) — 1).

By the addition theorem for the spherical harmonics,

= = P,(cos 0),

= ô,P,(cos 0).

7. H -' � P(PHP) - and P = 'Vt>< I V j >) together imply
— — > —

x +

8. (Det QbQ) = 1)12 n = Dim P. b00 =
With the integration variables ; = + x0b0Jcfr, k 1 n, C =

(PbPy',

= + —

ij— 0 k.I= I

The relationship between the determinants results from integration over x0 and the
If is not orthogonal to P.$", the ratio is simply changed by a positive factor,

since Det M'bM = Det b(Det M)2. The proposition then follows %yith b = a and
I/i = ay.

9. ô(E, L)= L — +2y,(2/ir)ä1 = 1+ — = 0.



Atomic Systems

4.1 The Hydrogen Atom

The hydrogen atom is so simple that a complete mathematical analysis
can be made. This analysis was a watershed of atomic physics.

The quantum-mechanical treatment of the problem of two particles
interacting through a 1/r potential follows the outlines of the classical theory
(1: §4.2). It starts with the Hamiltonian

H = + +
a

, a = e1e2,
2m1 2m2 1x1 x21

which acts a priori on = ® where is the Hubert space of the
i-th particle. The system can be decomposed into two independent parts by
the

Separation into Center-of-Mass and Relative Coordinates (4.1.2)

The unitary transformation

(x1, x2; Pi' P2) (Xcm, x;

m1x1 + m2x2x,,= -, x=x1—x2; Pcm=P1+P2;
m1 + m2

— p1m2 — p2m1

187
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changes H into H = H,, + H,, where

Ipcrnl2 p12 m1m2
Hcm= , H,=—+—, M=m1+m2, m=

2M 2m xj m1+m2

Remarks (4.1.3)

1. The Hubert space can also be written as = ® where the
operators Hcm and H, act nontrivially only on the factors and
respectively

2. The question of self-adjointness is answered by (3.3.4; 1) and (3.4.25; 2):
Since hr is compact relative to H, is seif-adjoint on and

'7ess(IJ,)
3. The operator Hc,,, generates the free motion of the center of mass. The

invariance group is similar to that of the classical Situation: The ten
generators of the Galilean group, He,,,, Pcm, kcm Pcmt XcmM, and
Lcm = [xe,,, x pr,,,], do not form a Lie algebra, since [p,, = M is
not a linear combination of them. If M is considered as an additional
element of the algebra of observables, then there is an Il-dimensional Lie
algebra d. .The center d' ri d", which consists of the functions of M
alone, creates a superselection rule (see (2.3.6; 7)), unless M is represented
as a multiple of I. As in (I: 4.1.10; 3), the Galilean group is the factor
group by the center, and d produces only a ray representation of it. This
happens because and k,,, of course generate the transformations
Xcm xc,,, + a + vt and —' pc,, + Mv on R6, and, according to
(3.1.6; 5), the unitary operators W(z) give only a ray representation of R6.
This means that although

/-itMIvI2\
exp(iv . kc,,,) =

2
)exP( — ixc,,, . vt)

causes the transformation Xe,,, —, xe,,, + vt, p,, —' + Mv, the wave-
function gains an additional phase factor exp(—itMIvI2/2), which is,
however, not observable, since only relative phases can be measured.

The Hamiltonian He,,, was discussed in detail in (3.3.3), so we turn to H,.
The first fact we know is that O(Hcm) = = and the question arises
of whether c (recall (3.4.14; 4)). This is answered by the

Viria! Theorem (4.1.4)

If(H, — E)i/i = 0, e then

E
=

=
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Proof

The dilatation U such that U' (/3) (x, p)U(J3) = (exp(JJ)x, exp( — /3) p), /3 e
which was used in (3.3.8; 2), acts on H, by U '(fl)H, U(Ji) = exp(—2j3)H0
+ exp(—fl)a/r, where H0 = 1p12/2m. The equations

((exP(2fl)Ho + exp($) E)iIIJUCO)i1i) 0= ((H0 + —

can be combined so that

((1 + I

= 0 for aIlfl€ R\{0).

As /3 —, 0, the left side converges to (2H0 + cc/r)i/i and the right to Since the
convergence is in the strong sense, this proves (4.1.4). 0

Corollary (4.1.5)

Since � 0, if a <0, then all the elgenvalues of H, are negative, and if
a � 0, then it has no eigenvalues.

Remarks (4.1.6)

1. The usuaL argument, which runs that 0 = x p]ç('> =
+ is not quite conclusive, since D(x . p) 6 D(H.), and a

priori it applies only to i/i e 0(11,) D(x . p)
2. The analytic perturbation theory of §3.5 works without modification for

the negative eigenvalues. Thus an alternative argument using (3.5.19; 2)
would run: On dimensional grounds E(a) = mcr2c for some numerical
constant c, and hence a = <air> 2E.

3. The action of the dilatation also shows that if a <0, then there must be
infinitely many eigenvalues accumulating at the point 0; given any
i/s e D(H,), there exists r0 E such that

= qi) + ci exp(_ro)(i/f i/c)

II i/i is compactly supported, then there exists a sequence to <t1 < t2...,
for which the supports of U(t1)i/i are disjoint, so H, is a diagonal matrix on
the subspace spanned by the vectors U(t1)qi. The claim then follows from the
mm-max principle (3.5.21).
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The next topic will be and the last part of this section will be devoted
to Both discussions will make use of

Constants of the MotIon (4.1.7)

Thecommutanr{H,}'contaansthevectorsLandF = 4[p x L — L x p] + mrxx/r.
They are related by

[H, Lm] = 0, [Lm, F,] = iem,sFs,
[H, Fm] = 0, [Fm, F,] = — 2imH, L,,
L F = F L = 0,

Fl2 = 2mH,(1L12 + 1) +

Proof

(i) This is because H acts as a scalar and F as a vector under rotations.
(ii) This is somewhat more subtle; the example of Problem (3.1.17; 4) leaves

doubts as to how to proceed. The equation [H, Fm] = 0 has to hold on
domains that are invariant under finite transformations to show that
[exp(iHt), exp(iFs)] = 0(recall Definition (3.1.7)). Actually, by Problem
I it suffices to show that (d/dt)exp(iHt)F exp( — iHt) = 0, which will be
done in Problem 2. The calculation of commutators involving F is often
easier when it is written as F = (i/2)[p, IL 12] +

(iii) It is clear that L x = L• p = 0, since there are no products of non.
commuting observables. With (i) this implies (iii).

(iv) This requires some calculations, done in Problem 3. 0

Corollary (4.1.8)

Special combinations of L and F, namely Ak = + — 2mH,)P/2 and

Bk = (Lk — Fk/J— 2mH,.)P/2, where P — H,) is the projection onto the
functions of the negative spectrum of H,, satisfy the commutation relations
ol two independent angular momenta:

= [Bk, = [Ak, = 0.

They are, however, not independent, as

Al2 = 1B12 =
+ s-). (4.1.9)

According to the discussion of §3.2, Al2 and 1B12 can have only the eigen-
values fl(fi + 1), = 0, 4, 1, 4,..., and by (4.1.9) their eigenvalues are the
same. Each eigenvector belongs to a (2fi + 1)2-fold degenerate Miper-
multiplet, the members of which have the same eigenvalue for 1A12 and
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but differ in their eigen values for and B. They are eigenvectors of H,, and
by (4.1.9) its eigenvalues obey Balmer's formula,

(4.1.10)

Remarks (4. 1.11)

1. The operators A and B each satisfy the Lie algebra of 0(3), which is
identical to that of SU(2). As there is no reason that only the representa-
tions of 0(3) should arise, the values of/I may be either integral or half-odd
integral.

2. Of course, L generates the algebra 0(3) and has eigenvalues 1(1 + 1), 1
integral. If the eigenvalues of IF(2 in (4.1.7(iv)) are expressed in terms of
n and 1,

/ ,2 L1i1\
IFI2i> = —

' 2 Ii>,
U /

then it is apparent that 1 � n — 1. Hence for a given n, the values 1 can
assume are 0, 1, ..., n — 1.

3. Balmer's formula shows why

belongs to C,, (2.3.21) for p integral only if p � 4: As we saw in the proof of
(3.5.36), if z e R, then the eigenvalues A,, of K are the values of for
which H0 — I hr has the eigenvalue z. That being so, (4.1.10) makes
— = m/(2n2), and the n-th eigenvalue has degeneracy n2. But then

11K11

for p integral is finite only for p � 4.

Coustructkni of the Elgenvectors of H, (4.1.12)

Since there is no difference in the algebraic situation, we can proceed as with
the eigenvectors of the angular momentum (3.2.13). In each supermultiplet
there is a state I> of greatest A3 and B3, so

= B+I> = = L+I) =0, ± iF2,etc. (4.1.13)

The other states are then obtained by applications of A' B! , 0 � p, q � n — 1.

Since is constructed with x÷, ,t and observables that commute with

t These should be distinguished from the .etc. of (3.4.6)..
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it raises I by 1 (ci. (3.2.14)); thus if = 0, then already has the
greatest momentum possible in the supermultiplet. If an eigenvector
In, 1, m> specified by its eigenvalues for H,, and L3, then the original
basis I) In, n — 1, n — 1>, and 1, m> =

Elgeufunctions in the x-Representation (4.1.14)

If we write

2 2F+=—(p+ILI —ILl p÷)+
2

and calculate the action of p+ and x+ on the eigenvecçors(up to a constant—
see Problem 4),

=ln,I+ 1,1+ 1>,

then Equation (4.1.13) becomes

I I'd n—l\
F+ln,n — 1,n — 1> = 1—nt— — I + — 1,n — 1) =0.

r /
The solution is

In, n — 1, n — 1> = exp(mcs.r/n) 1:: (9, q'),

which is in L2((O, cx4, r2 dr) ® L2(S2) when <0, and is the original basis
vector of the supermultiplet.

Remarks (4.1.15)

1. The vector n — 1, n — 1> has the maximal angular momentum and is
related to a classical circular orbit, whereas )n, 0, 0> corresponds to a
classical trajectory through the origin. However, in quantum theory the
latter vector is a spherically symmetric wave-function, since it distinguishes
no direction.

2. The wave-function n n — 1> decreases in r as exp(—r/nrb), where
rb = l/fmaI = 0.529 x but its maximum is attained at r
n(n — l)rb. This is in accordance with the rough estimate (1.2.3) and the
virial theorem, which requires that <1/r> —'

3. A calculation of the expectation values yields

n — 1, mlrln, — 1, m> = Tbfl(fl +

n — 1, ,nlr2ln, n — 1, m> = + + 1),
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which reveals that the relative mean-square deviation
vanishes in the limit n —* x. The state In, n — 1, n — 1> gets concentrated
ever more strongly on a circle in the x — y-plane.

4. States of smaller I, and hence greater eccentricity, can be produced by
successive applications of F_ to In, n — 1, n — 1> as in (4.1.12), and an
example is computed in Problem 5..

We conclude the discussion of here and turn to 0ess We begin with the
basic fact about this part of the spectrum.

The Absence of Singular Spectrum (4.1.16)

= 0, SO -- =

Proof

If the dilatation used in the virial theorem (4.1.4) is continued into the complex
plane, then t C, becomes unbounded, but is still defined on the dense
set D of analytic vectors (see (2.4.23; 5)). The action of U on H, can be con-
tinued analytically, and

— z)tçIi) = +

e e D.

Since multiplication by the complex number et does not affect the relative
compactness of we conclude that

cYcss(exP(2r)Ho + exp(r) = =

The matrix elements of the resolvent in states q, D can thus be continued
analytically from into the complex plane as far as the rotated
positive axis (see Figure 16):

+

Figure 16 Spectrum of the dilated Hamiltonian.
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This implies the absence of since

— a) — 8(H, —

(1? dz
= tim J <q't((H, — z — — (H, — z ÷ ie)

a

a, b > 0, is the integral of an analytic function and thus approaches 0 as a —. b.
Since D is dense, contains no part concentrated on a set of Lebesgue
measure 0. [I

Remarks (4.1.17)

1. Only the matrix elements with p and D can be continued beyond
the analytic function C -. z —, (H, — z)' is not continuable

past DV, as the resolvent becomes unbounded there.
2. As regards the eigenvalues of finite multiplicity of H(r) exp(2r)H0 +

they are also analytic in t; the difference H(r) — H(r — ö) is
bounded relative to H(t) for ö small enough, so the perturbation theory of
§3.5 is applicable. This implies that the eigenvalues E(r) of H(t) are inde-
pendent of (as long as they persist), since if is real, H(r) and H, are
unitarily equivalent and therefore have identical spectra. But analytic
functions that agree on R are equal everywhere.

3. The eigenfunctions Jt> = U(r)I0> of H(t) are likewise analytic in t, which
implies that (d/dr)li> — idlr>eL2 if UCr) = exp(—idt), so It>eD(d).
This justifies the formal proof (4.1.6; 1) of the virial theorem a posteriori.

4. In this simple case the integral kernel of the resolvent R1 (H, — z)
is known explicitly. In the x-representation it involves Whittaker functions
[9], [10]:

x2)
1'(l — iv)

[W;,;112(—ç/Z(ri + r2 + lxi —

x M.,. 112( — Ljc(r1 + r2 — lxi — x2 I))

—W11,; + r2 + lxi — x21))

x + r2 — —

m=+.

In the p-representation this becomes

R1(p1, P2)
=

(1 (1 — p2)p2

F 2 (l—p)2(z—Ip1I2Xz—1p212)]2

— p 4z J
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[9]. As we see, suitable matrix elements are analytic in z on a two-sheeted
Riemann surface, but have an essential singularity at z = 0. The proof
that was given for (4.1.16) can also be used in more complicated situations,
for which there is no explicit expression for

In §3.4 we learned that is associated with the states for which the particle
escapes to infinity. Experience with the classical problem allows no hope
that the time-evolution approaches that of since x(t) — tp(t)/m In t.
The operator expQH,:)exp( — iH0t) is not much good, either; it converges
weakly to 0 as t —+ CX). On the other hand, there again exist some useful

Asymptotic Constants of the MotIon (4.1.18)

Let P be the projection onto the vectors Then (PpP, P(x/r)P, P( l/r)P)
ed and (PpP, P(x/r)P, P(1/r)P) = (p±' ±p±flp± 1,0) in the
sense of (3.4.6)).

Pronf

(i) Convergence of the Momenta. The claim will be proved only for x > •0;
the proof is more involved if x <0, and the reader is referred to [11].
in the repulsive case the radial component oI the momentum p. increases
monotonically and is bounded, so it is suitable as a Liapunov function. As
in classical mechanics (I: 5.3.8), when H, is expressed in terms of p,,
it becomes

H, = +
1142)

+
1

(details in Problem 6, with Cx I). If L2(R3, d3x) is mapped unitarily to
L2(S2, dQ) ® L2([O, cx), dr) by i/i u/r, then p, becomes identical to the
operator p, of (3.3.5; 4). Let P,(t) as usual mean exp(iH, t)p, exp( — IH, t),
so that by (3.3.5; 4(a)),

p ML)) = Jdr + 1(1 1)] +

Since � this means that r2 is integrable in time, as is
to be expected from r

T 2

$dt � — pAO)Iij'> � (a)

Since this bound is independent of 7', given any J)(H,) and £ > 0,
there exists a T such that

1
2

<E.
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In order to avoid some technical difficulties caused by the presence of
unbounded operators, let us examine RpR, where R = (H, + c) ',
c k4. Now,

Jd:
=

� -
IlwII=1 r r(t)

1
21/2

1
21/2

� sup
[5

dc Rço

L [5 dt if if ]
�

[5 dt if
R.1i

if ]
where we have used (a). On account of (b), as T —. cc this becomes
arbitrarily small, which implies the strong convergence of Pp(:)P. The
operator R maps the Hubert space into D(Hr), which is a domain of
essential self-adjointness for p(t) and Therefore p converges strongly
top± on a domain of essential self-adjointness, and consequently strongly
in the sense of (2.5.8; 3) (see Problem 8).

(ii) Convergence of x/r and hr. The first of these has already been hand!ed in
Problem (3.6.32; 3), and the second follows from x(t)/t —. ±p±/m. 0

Remarks (4. 1. 19)

1. Proposition (4.1.18) implies that all finite functions of these operators
converge to the same functions of the asymptotic constants (cf. (2.5.8; 3)).
As usual there are domain questions for unbounded operators; The
statement a dense set, does not suffice for

a and b are two different self-adjoint extensions of a
densely defined operator c, and set aa = b for all it, D = D(c). Since
aID(C) = convergence is but finite functions of a and b may
genuinely differ. Only if D isa domain of essential self-adjointness for all aN
and for a can one conclude that a (Problem 8).

2. In order that the MØller àperators still exist, H0 might be modified
somehow depending on the but so as to describe the correct asymptotic
motion. The trouble is that any such H0 depends on time explicitly, so
U? is not simply exp( — itH0(t)), and the time-evolution is not being
compared with a one-parameter groups of automorphisms. One pos-
sibility is U? = exp(—i(tIpI2/2m + mct(ln t)/IpI)), as exp(iH,t)U? in fact
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converges to the desired wave operator. Since the modified H0 still
commutes with this also shows that the converge. We are, however,
less interested in pure existence theorems than in explicit computations,
so this line of reasoning will not be pursued further.

Corollaries (4.1.20)

1. Since H is constant, PHP = Ip+ 12/(2sn) = I p... f2/(2m).

Ip±I Ip±I

The lesson of this is that the state of affairs concerning asymptotic con-
stants is just as in the classical theory (I: 4.2.21; 1). In order to find the analogue
of (1:4.2.20) in quantum theory, it is only necessary to take some care with
the noncommutativity of the various observables. This being done, one
finds the

Connection between p÷ and p.. (4.1.21)

+

— - 1

—I'k Ipk

Pmci

=

Proof

= ±
= + — ± F ±
= ± — ±

Substitution for F from (4.1.20; 2) then proves the claim.

Remarks (4.1.22)

1. The first part of the formula is the analogue of (1:4.2.20), and follows

since p - by reflection through F (see (1:4.2.18; 1)).
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2. The connection between p+ and p... in the spectral representation of IL j2,
L3, and H,P = p1j2/2m, can be read off from the second part of the
formula:

The Scattering TransformatIon (4.1.23)

s = + +

r'(4 + S/iLl + —

connects the momenta p.. by

=

S commutes with I, it can be written in the tensor-product representa-
tion of (3.6.10; 1), with the eigenvectors I I, m> L2(S2, dQ) of I LI2 and L3, as

SI1, m> ® q(k) = exp(2u51(k))l1, m> ® ço(k).

The component commutes with L3 and H, and, like x3 of(3.2. 14), changes
1 by 1. lfwe take the matrix element <1 + 1, 'nI . m> of the second form of
(4.1.2 1), then we find that

<1+ 1+1 —i,1= . = exp(2i(ö, — (51+1)).
<I + I1,m> 1 + 1 + 07

Proposition (4.1.23) follows from this recursively, if we set exp(2ib0(k)) =
r(1 + — 11(k)) by convention. 0

Kemarks (4.1

1. As discussed in (I: 4.2.21), S is not determined uniquely by the conditions
1p_S = p÷ and 1LS = L; the unitary elements of the commutant of

the algebra d formed from p... and L remain unspecified. Note that {d)'
consists of functions of the energy, so this arbitrariness just corresponds
to a choice of 60(k). This amounts to an overall phase and has no effect
on the scattering cross-section fork # k'. On the other hand, the time-delay
is now infinite instead of &5(k)/Dk2, because mx — pt in t as t —'

2. As t —, the phase-shift diverges as (1 + 1) '.This is why we were
not able to normalize (5,, to zero, but chose instead to fix It thus happens
that violates the rule for the scattering phase-shift band scattering
length a valid for short-range potentials, that V > 0 5 <0 a > Oand
V <0 5 > 0 a <0 (see (3.6.5) and (3.6.23; 5)): if were 0, then
5, would be negative for positive c and positive for negative
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3. The scattering transformation S does not commute with all the constants
of the motion (cf. (I: 4.21.4)). For instance, S'FS = F —

4. The scattering matrix has been calculated in the Heisenberg representa-
tion. In the interaction representation (see (3.4.23) and (3.424; 6)) S00 is
related to it through = S00 and fl H,(L = H0. In other words
S00 is obtained from S by the replacement of Hr with H0, or 1p with

1p12.
5. Although Proposition (3.6.11) about the poles of S was derived only

under restrictive assumptions on V. it remains true that S contains the
information of Balmer's formula: exp(2i ö,(k)) has poles at k = — ime2/

(1 + ti,), n, = 1, 2 They are in the upper half-plane if ci <0, in which
case the values of k2/2m are precisely the energies of the bound states.

Now that the phase-shifts ö1 are known, let us recall the definition in
(3.6.10; 3) and calculate (Problem 7) the

Scattering Amplitude (4.1.25)

f(k; =
21+ 1 ± I ±

— ( 4 1+ irs) ' ö2(n — n')
— 2k — .112/ r(1 — 2ik

Remarks (4. 1.26)

I. The sum over I converges on the dense set of finite linear combinations of
Y7', for example, but is singular for. = ii'.

2. The first contribution to the scattering amplitude

f(k; a',.) (Sin 8/2) 2 21q -

is a well-defined distribution for all a and ii' e S2, and represents the unitary
operator S as an integral operator with a kernel. This fact is lost in the
Born approximation; the disappears from the exponent, andf becomes
nonintegrably singular. As a whple, f remains singular even after sub-
traction of the delta function in the forward direction; it is a distribution
rather than an ordinary function.

3. The is the same as classically (1:4.2.22),

9
c(k; a, a') = I f(k; a, a') 12 = 1 6(k2/2m)2

Slfl
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Problenis(4.1.27)

1. Show that if a is seif-adjoint and b is essentially seif-adjoint on a domain D invariant
under all exp(ia:), t e R, then a and B the closure of b in the sense of(3. 1.7) commute
ifexp(iat)b e Dand tea

2. Show that

(I) D(F) D(If,) where Drj,, consists of the finite linear combinations
of the Yr;

(ii) F is essentially self-adjoint on D(H,) n
(iii) e D(H,) = 0.Use

Problem I to verify that [H, F] = 0.

3. Verify (4.1.7(u)) and (4.l.7(iv)).

4. Compute the action of and on I!, m>.

5. Compute 12, 0,0> = F3 12, 1,0> in the x-representation.

6. Express p12 in terms ofp, = (l/rXx . p) — i/r, r, and ILl2.

7. Calculate the sum over I in (4.1.25).

8. Show that if —' a,/, for all ,/, e D, a domain of essential self-adjointness for all a,,
and a, then a,, — a in the sense of (2.5.8; 3).

SolutIons (4.1.28)

1. D(B) {,ji: there exists a sequence ui,, eD such that uli,, -s and b,,çtr converges}.

b exp(iat).I/ = exp(iar)bi/i for all e D

b exp(iat)ui = exp(iaz)Bç& for all e D(b),

since b =

bufr,, exp(iaØbçfr,, —. exp(iat)&uJi,

ex e D(B), and

B = Let be the finite linear combinations of expQat). Then
bcui = cbu/i for all c e and E D(B). Furthermore, let U = (b — iXb + iv'. Every
vector q, e .*° is equal to (B + i)u' for some u/i e D(b); thus U(p (B i)u/i. cq =
c(B + = (B + i)ctJi, Ucq, (B — = c(B — = cUço, so Uc = cU for all
c Therefore every bounded function of B commutes with

2. (1) I1F1u/'ll � + c2llp1u/ill + c311u/'ll for some c, E Since Pj changes
the angular momentum by 1, � c4ljp,,/4 � c5(cfrIPH,tli>"2, and so

< for all u/i e D(Hr) iLl2)
(ii) D(H,) contains the set {xfI4243exp(__ x12/2), = 0, 1, 2

and' finite linear combinations}, on which F is essentially sell-adjoint.

(iii) (4(t)Ii[H, F&Ju/i(t)>
= + = 0,
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since [1112, r] = 0 and D(lLl2fr2) D(H,) As a consequence, the
matrix F(t) and F(0) are the same with the vectors of

\ D(H,) Dr,n(1L12).

Therefore the uniq\ie seif-adjoint extensions are the same, which is the criterion
for commutativity Problem I.

3. The commutation relations used below follow from [p. f(x)J — I Vf(x), [x, 1(p)] =
iVJ(p), and the identities tab, c] = a[b, c] + [a, c]b and

[ab, ed] -= ac[b, ii] + a[h, c]d + c[a, d]h + [a, c]db:

2 ,nax\ / max
Fl = l[P xL] — XL] — ip + —r/\ r

(because [p x 1] = —[L x p] + 2ip).

p[p x 1] = [p x pJL O,[p x L}p (—[Lx p] + 21p)p 2i1p12.

[p x L]x = (—[Lx p] + 2ip)x = 1112 + 2ip.x,

x[p x L]= [xx p]L =1Ll2.

x L]l2 = Ipl2ILI2 — (p•L)2 = 1p12 112.

From these equations, 1F12 = 1p12iLI2 + 21p12 + mczILl2/r + 2ima(p.x)/r — 1p12

— ima(p. x)/r + ma IL 12/r p) + m2x2. Since [x, p. x] = ix and [p. x, l/r]

= i/r, the final result is that Fl2 = Ip12 ILl2 + 1p12 + 2maJLJ2/r + 2rna/r +
m2a2 m2cz2 + 2mH,(ILI2 + 1). The commutation relations for the components of
F follow from the formula F = lpI2x — (p. x)p + 2maxJr and the formulas given
above, as well as fx, 1p12J 2ip, [p x, 1p12] 2ilpI2, [p. l/r] = ix/r3, l/r] =
ix/r3 . p + ip x/r3, and x p — p x = 31, which can be verified directly.

4. In the x-represenation, ô/(3z = cos O((3/ör) — (Sin O/rX(3/80). Because cos 0 =
c and sin 0 = Ic because of the analogous facts for (3/3x and (3/(3y, we
find that 41> = c(D/ôr — I/r)In,1 ÷ I, I> and

1(3 1\
ip+In,l,1> = cl— ——Iln,I+ 1,1+ I>.

\(3r r/

(The vector ip_ In, 1,!> is a linear combination of ()f(3r — 1/r)ln. 1+ I, 1— 1> and
(ä/(3r + (I + l)/r)ln, I — 1, 1 — 1).) (See also (3.2.14).)

5. 12,0,0> = —

6. First note that owing to the facts listed in So!ution 3, is formally equal to p,, and

lU2 = = lxl2lpl2 -4- i(x-p) —

so lpI2 = + 1L12/r2. If we now map unitanly to
dr) by iJi —' u/F, then p, becomes the Hermitian operatcir — I d/dr of Example

(3.3.5; 4). It Fails, however, to be p,, because D(p,) = EL2: is

absolutely continuous, L2, and = 0) D(p7) = €L2: is absolutely
continuous, and ti.' e L2}. A more precise statement is that 1p12 = + 1L12/r2.
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7. If i = cos 0, then

(sin 0/2)_22fh + l)P,Q) f(l —

By recourse to Rodrigues's formula we find that

J •.. =
— —

= (I — — z)'(l ÷ z)'dz

— I + I + + 1)
— 2'!! V(I + r(I + 1 —

= •—i r(i + I +
117 f(l I —iii)

and (sin 0/2) 2 = (1/ — + )P,(cos 0), provided that is
chosen as 0.

8. = (a + + —(0 + = (a, + iY'(a— a,)co -.O,since
I(a, + ly 'II � I, and analogously ii i —. —i. However, (a ± OD is dense in .*', so

(a, ± ± i)'I/lforalh/IE.*'.

4.2 The Hydrogen Atom in an External Field

Experiments subjecting awms to constant electric and magnetic fields
were indispensible to the understanding of atomic spectra. The effect
of weak fields is seemingly just a moderate sh(fE in the energy levels,
but in fact the underlying mathematical problem is drastically changed.

The fields applied in laboratory experiments are usually weak in comparison
with atomic fields, and appear to have only slight influence on atomic
structure. In the other extreme, with the high magnetic fields B prevailing
on neutron stars, the radius (eBYt12 of the lowest magnetic orbital (cf.
(3.3.5; 3)) can be smaller than the Bohr radius, and the atom contracts around
the magnetic lines of force. In very strong electric fields autoionization occurs,
and we shall see that even an arbitrarily small electric field destroys the
point spectrum of an atom. It is amusing that this problem was one of the
first successes of the perturbation theory developed in §3.5, despite its not
being applicable in the absence of a point spectrum. One of our goals will be
to find the sense in which perturbation theory is still asymptotically valid.
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We give the Hanultonian (4.1.1) the perturbations of (3.3.5; 1) or (3.3.5; 3),
thereby obtaining the

Hanilitonlans for the Stark and Zeeman Effects (4.2.1)

2m

H0 = IL +

eB

H' x3, A: eE,

H1
=

+ Tx2) + (P2
—

+ + + All',

1pj2 eB e2B2A=-.j_--.

= [x x p3 is the canonical angular momentum of (3.3.5; 3).

Since H' is not bounded relative to H0, the question of the self-adjointness
of and H1 must be confronted. Serious difficulties are not to be expected,
because quantum mechanics mollifies a hr singularity, and once something
has been done about the singularity at r 0, a classical electron in these
potentiali 'Wóüld evolve in a reasonable way and would not reach any
boundaries in a finite time. Roughly speaking, it could be argued that if there
is a CE such that $d/dt(1p12 + � c(1p12 + 1x12), then +
lx(t)11 � exp(ctXlp(0)12 + 1 x(0)12), so neither the momentum nor the
position coordinate could get unboundedly large in a finite time. The con-
dition that J'1 cN is equivalent to ± N + cN � 0, and this argument can
be made precise with a lemma on

Self-sd jotntness on the Domain of Operators Bounded Expo,MnlaHy in Time
(4.2.2)

H be I-f ermitian and N � 1 seif-adjoint with D(N) c D(H), and suppose
there exisis a c such that ± i[H, N] + > Ofor all i/i E D(N).
Then H is essentially seif-adjoint on D(N).

Proof

Recalling(2.5.l0; 1) weshall showthatgiven anyy E ± = 0

for all D(N), then q, 0. Specifically, that fact would imply that

0 = 2 Im<q,I(H ± iy)N 14,> = ±2y<41N '4,> — <N 'p(i[H, N)N
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which is consistent with the assumptions of the lemma and with y > c/2
only if p = 0. As remarked in (2.5.13; 2), the conclusion then holds for alt
yeRt 0

Application (4.2.3)

Now let NE.fl = HE,$ + w2 Ix 12, w fl and sufficiently large. They are self-
adjoint operators on D(1p12 + 1x12), because the other terms in HEB are
bounded relative to these. Then note that

NED] = 1*12] = f . x + x . p) < cN8,8.

This leads to the conclusion that and H8 are essentially self-adjoint on
D(1p12_+ 1x12).

The Hamiltonians of (4.2.1) thus determine the time-evolution uniquely;
however, there is such a vast difference between A = 0 and A <0 that the
perturbation theory developed in §3.5 is deprived of its foundations. Moreov&r,
at large distances is insignificant compared with the external field, which
therefore controls the action. Suitable bases for comparison are thus free
fall (3.3.5; I) for HE and motion in a repulsive harmonic force for H1 with
A <0.

Existence of the Mailer Operators (4.2.4)

Let and be as in (4.2.1). Then

= s-lim 8(x)t)exp( — lifE 1(0)t)

exist for A 0 and for A <0.

Remarks (4.2.5)

1. As was discussed in §4.1, the Møller operators do not exist if A = 0. The
external fields make the time-limit more tractable, because although hr
is not integrable in time when x x + p1, it is if x x + pt + gt2 or
x —. x cosh(t) + p sinh(t).

2. It follows from = H(0) that has the same spectrum when
restricted to the range of 11 as H(0). This shows that = if
A 0 and = if A <0. The unboundedness below is easy to see
using trial functions supported far away from the origin in regions where
the potential is very negative. It is clear from this why the analytic perturba-
tion theory is impossible.
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3. Completeness of the Møller operators ± would imply that a,, = 0.
Though this is the case, the proof is more difficult; the interested reader is
referred to [12].

Proof

As in (3.4.11), we begin by taking the time-derivative of(1(t), though we shall
require only the rough estimate

jexp(iHt)V exp(— iH0 t)iI' II = Jdt
1
V exp( — iH0 t)iIi

+ t2) (5
dt(1 +

Since we are showing that a sequence of bounded operators converges
strongly, we may restrict to a total set, = exp( — — x 12/2b2), x e
b E In units where 2m = I and Ee = 2g. both IIE(O) and

exp(2itgx3)exp( — 1r2p3 g)exp( — it p

produce the time-evolution (x1, x2, x3; Pi, P2' P3) —+ + p,t, x2 + p2t,
x3 + p3t + gt2;p1,p2,p3 + 2gt);thereforetheirdifferenceisonIyamultiple
of 1. By Solution (3.3.21; 2),

+

while exp( — it2p3g) displaces x3 by gt2, and exp(2itgx3) drops out because it
commutes with V. Thus it remains to show that

+ t2X1 + $
exp < Go,

= X3 + gt2),

which follows from a simple change of variables (Problem 1). The proof for
is very similar; it is only necessary to take the harmonic motion in

(3.3.21; 2) with an imaginary frequency. This makes = x cosh(vt), and
the convergence is even easier. 0

The foregoing results show immediately that the resolvent

+ AH' — z)1,z€

is not analytic in 2 at A = 0, where H has been divided into H0 and H' as in
(4.2.1). Perturbation theory will thus fail to converge as an expansion in the
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external field. It is reasonable to wonder, however, whether the perturbation-
theoretic formulas still have some meaning or become pure nonsense.
Despite the lack of analyticity, we at least have

Strong Continuity in A (4.2.6)

The function A —, (H0 + AH' — z) ',for z C\R and and H' as in (4.2.1),
is a continuous mapping on in the strong topology.

Proof

The resolvent equation

(H0 — z)' — (H0 + All' — z)' = A(H0 + AH' — z)'H'(H0 —

obviously holds on (H0 — z)D(lp12 + 1x12), since D(1p12 + 1x12) c: D(H').
The operator H0 is essentially seif-adjoint on D( I p12 + lxi 2), which means that
(H0 — z)D(1p12 + 1x12) is dense, because its closure is (Ho —
which is all of.r by (2.5.5). Since the resolvent is bounded by Im z — 'in norm,
uniformly in A follows from the strong continuity
on a dense set. Li

Proposition (4.2.6) implies that as A —, 0 any bounded, continuous func-
tion of H0 + AH' converges strongly to the same function of H0. On the same
abstract level we can in fact state the following

Continuity Properties of the Spectrum (4.2.7)

(i) For all z e Sp(H0) there exists a z(A) Sp(H0 + AH') such that

lim z(A) = z.

(ii) For all a and b e R such that a <b and a, b the projections
P(a b)(Ho + AH') converge strongly to P(a,

Remarks (4.2.8)

I. Proposition (i) means that the spectrum of the limiting operator can not
suddenly get larger. Example (3.5.11; 1) shows that it is possible for it to
contract suddenly from to {O}. If H' were an analytic perturbation, then
norm continuity of the resolvent in A can be used to exclude this pos-
sibility.

2. If the interval (a, b) contains only one eigenvalue of H0, then (ii) implies
that P(a,b)(HO + All') converges to the projection onto the eigenspace of
the eigenvalue.
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3. The requirement that a a necessary one; suppose, as in
(3.5.11; 1), that H0 = 0 and H' = x, as operators on L2(( — x), dx),
and let be the characteristic function of (0, 1). Then

X(o = 1)(H0 + AH') -+ P(Oa,)(X),

but X(o 1)(0) = 0.

Proof

(i) We shaH show, equivalently, that (a, b) r' Sp(H0 + All') being enlpty for
all sufficiently small A implies that (a, b) Sp(H0) is empty. By the
spectral theorem the latter statement is equivalent to

a+b .b—a\'
2 ) �(ba)•

By assumption,

(H ° 2 2 / (b—a)

for sufficiently small A. Since the operator norm is strongly lower semi-
continuous(II•lI = R,whichimpliesthat IRII �
lim inf II RAIl ,from which the proposition follows.

(ii) To generalize from convergence of continuous functions to that of
characteristic functions, recall that there exist continuous and

0 � � and g,, � XIa.b], such that I and j
pointwise. Hence, by Problem 2, —. x(Ø.b)(Ho) and -+

X(a,bj('1O) Since a and b P(0b)(Ho) = SO =
X(a, bI(Ho). This implies that for all and there exist continuous functions
I � b) � Xt0. bi � g such that 11(1(H0) — � s. Consequently,

IKP(a.b)(Ho + AH') —

� + AH') — f(H0 + AH'))iIiII

+ IKf(H0 + AH') — f(H0))ifrIl + H(1'(ab)(llO) —

f(H0 +
+ AH') — + jI(g(H0) — f(H0))i,1iII� + AH') — g(H0))t/iII + 211(f(H0 + AH') —
+ 211(g(H0) —

is arbitrarily small.

In the case we have been interested in, H0 has a point spectrum, but
Proposition (4.2.7) does not guarantee that the point spectrum persists when
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A is changed from 0. The point spectrum can not disappear without a trace,
however; instead, there is a sort of

Spectral Concentration (4.2.9)

Let E0 be an isolated eigenva!ue of H0 of finite multiplicity and P0 be the
associated projection. Suppose that P0 H'P0 exists and has eigenva!ues with

= P0. Thenforalle > < <2,

s-lim P(EO+AE;_ + AH') P,.
A-.0

Remarks (4.2.10)

1. In the cases we have examined (4.2.1), the exponential fall-off of the
elgenvectors of makes them belong to D(H'), so the finiteness of P0H'P0
is clear.

2. Proposition (4.2.9) states that to order < 2, the spectrum shrinks
down around the eigenvalues predicted by first-order perturbation
theory. The proposition is easily generalized to higher order.

Proof

Let be one of the vectors spanning the range of so = and
= EIIIJ. Then the constructed by perturbation theory (3.5.18) is

undeniably an eigenvector of H0 + AH' to 0(22) (cf. (3.5.19; 3)):

+ AH' — E0 — AEXIIIJ — A.(H0 — E0) 1(H' —

= ).411(H' — — E0)1(H' —

(Recall that 2E was incorporated into H0 in §3.5.) Now, if p, is the probability
measure associated with the vector(1 — A(H0 — E0) '(H' — E
the operator H0 + AH, and the interval

I/A) (Eo + 2E — cA", E0 + +

then we get the estimate

— — E0) 1(H' — = dp/hXh — E0 —

� f = — PIJ(A)(H0 +
hØlj(A)

Because -+ < 2, it follows that (I — + 0.

Since the vectors span the range of this implies the norm convergence
+ By (4.2.7(u)), once no longer contains any-

thing but the eigenvalue E0 + 2E, the projections + 2ff) con-
verge strongly to = Therefore, if A < then

PJJ(A)(HO + AH') = + AH') —,
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At first sight, Theorem (4.2.9) appears without physical significance. For
instance, in the trivial example of (4.2.8; 3), perturbation theory does not
work, since 0 is an infinitely degenerate eigenvalue of H0; with E0 = E1 0,

< 1, Theorem (4.2.9) is still valid, yet nothing distinguishes the spectral
value 0 of the operator Ax. The experimentally detectable consequences of
(4.2.9) are brought to light by consideration of the

Indeterminacy Relation of Time and Energy (4.2.11)

The probability that an initial state is again measured at a later time t is
For this reason, v(tfr)

is referred to as the lifetime oft/i. lithe support of i/i in the spectral representa-
tion of H is contained in the interval (E0 — e, + c), then r(t/s) �

Proof

As in the proof of (3.4.11), it follows from Parseval's equation that =
f(dw/4ir)f<tfr15(H — and then by the Cauchy—Schwarz inequality,

1 = ( f dco<t/clö(H —
\JEO -

pEo+s j.E0+c

� J dw'J — =
Eot Eo—t

If a perturbed operator is strongly but not norm continuous, then an
eigenvalue E0 may disappear into a continuum that springs into existence.
However, even if this happens, for small A the state has a long lifetime:

The Lifetimes of Elgenstates that have Disappeared into the Continuum (4.2.12)

With the assumptions of (4.2.9), for all e > 0 there exists a A0 > 0 such that
<A <

Proof

Let = The strong convergence of the operator H(A) implies tile
existence of a A0 such that lId', — = fl(FI(a) — Pj)t/'jII < e/2 for all A,
0 < A < Therefore

= J
— w)t/'i> � 1 —

SG this proposition follows from (4.2.11).
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Now that the mathematical state of affairs is understood, let us return to the
physical problem and examine H8 = H0 + AH'. The situation is only half
as bad as it might be, since the point spectrum is preserved for the physical
values A � 0; this follows immediately from the mm-max principle, since the
term linear in B, which was built into the H0 of (4.2.1), is simultaneously
diagonable with L3 (see (3.3.20; 4)), and + is a positive
perturbation. The number of eigenvalues of H8 under a given energy E is
therefore at most the same as the number of eigenvalues
— (eB/2m)13 of H0 under E. This argument leads straightaway to

Bounds for the Ligenvalues of (4.2.13)

The lowest eigenvalue E,3 oft!8, where 13 is a given eigenvalue of L3, satisfies

1.13.13 � � 1.13.13 + <13 + + + '3>,

!-10(n, 1, 13> = 1, 13>.

Remarks (4.2.14)

1. These bounds show that the divergence of perturbation theory does not
diminish the usefulness of the linear formula for small B. It can in fact be
shown that the perturbation series is Bore! summable [3].

2. The term is compact relative to the rest of H8 (Problem 6), so the
essential spectrum of H8 begins at eB/2m > 0, as in (3.3.5; 3).

3. At this stage, (4.2.11) applies only to particles without spin. The presence
of spin adds a term B4uS3 to HE, where for an electron the spin magnetic
moment p is 2. [1.0011596] . e/2m. The new term is simultaneously
diagonabte with 11o; as long as the relativistic spin-orbit coupling is left
out, the difference is a simple additive constant.

To finish the section off, we discuss the Stark effect in greater detail. As
we saw that if E 0, then = R and = UJHE) = 0, one might
well wonder how so many physicists have made successful careers measur-
ing and calculating the eigenvalues of HE. The underlying reasons are some
nice

Stark-Effect Delicacies for Mathematical Connoisseurs (4.2.15)

(i) When E 0, suitable expectation values of the resolvent (HE —
have a branch cut along R, and the poles of the resolvent when E = 0
move onto the second sheet when the field £ is switched on.

(ii) The imaginary part of the position of the pole associated with the ground
state goes as exp( — ri3/6eE) as E 0. The small imaginary part shows up
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as a long lifetime (4.2.12) and as a sharp resonance in the scattering
matrix (4.2.4), and hence as a long time-delay (3.6.17).

(iii) Perturbation theory leads to the correct asymptotic power-series for the
positions of the poles, all coefficients being integrals of real functions
and hence real. The imaginary part is invisible in perturbation theory,
since it goes to zero faster than any power of the applied field.

(iv) Since any reasonable procedure for resumming the perturbation series
will lead to something real, it can not give the exact position of the pole.
However, if one begins with a complex electric field E, Bore! sums the
series, and then lets Im E tend to zero, the complex poles can be found
exactly.

The proofs of these mathematical facts can be found in [13]. The physics
underlying the complex poles is the quantum-mechanical tunneling effect,
by which an electron has some probability of reaching a position with large
— x3. if the field is not too large, then the time taken for the tunneling is so
long that the effect can be neglected in any conceivable experiment.

Let us next ascertain the energies at which the spectrum is asymptotically
concentrated. We shall not come up with any bounds for the (nonexistent)
eigen values.

First-Order Perturbation Theory (4.2.16)

The first step is to diagonalize H' in the degeneracy spaces of H0. From (2.3.14)
and the conservation of L3 we get

<rt, 1, 13 1X3 In', 1', 13> = (5k, 1, 13 fl, 1 13>,

so ifl the cases H' looks as follows, represented as a matrix:

2P{ 0

35 0

,1',r Is 2s 2p

"3 0

—
3s

0 —l 0 0

13

Is 0

2s 0

—1

(2, 2)

(l.2)= <1,0,t,ix3lO,l.2)

(2,2) = <2, 0, 01x310, 1,2)
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This is diagonalized with the combinations

I ± > ± 12,1,0>):

2p 2pis + —

Is

+ (2,2)

2p —i

-(22)

2p I

It is apparent that to first order in E, the values EN,,,,, are unchanged for
n = I and shifted by ±eE<2 0, 01x312, 1,0> for n = 2,13 = 0(Problem 5).

Remarks (4.2.17)

1. Unsophisticated feelings are vindicated in that, as with the Zeeman
effect, the first-order correction to the energy is just the field strength times
the dipole moment.

2. This result seems to contradict a general theorem: The expectai ion value
of the dipole moment is zero in eigenstates of an operator that commutes
with the parity P. Proof: H = El> p1> = ± I>, so x3 I> =
— <IPx3 P1> = — <I I>. The explanation is that the conditions of the
theorem are incomplete; it must also be assumed that all the eigenvectors
with the same E have the same parity, which is not true in the Stark effect.

3. Relativistically, the S112 — P312 degeneracy is removed in the Dirac
equation and, moreover, the Lamb shift separates the and S112
levels. Then the theorem of Remark 2 applies, and, strictly speaking there
is no linear Stark effect.

4. Since the more precise formula for the splitting of the energies is

+ 52p ± 1(525 — +

where the s's are the eigenvalues forE = 0, and since — s2,is very small,
the splitting soon becomes virtually linear in E.
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Problems (4.2.18)

I. Show that dt(l + t2Xl + t2b4) 3/2 (d3x/r2)exp( — lx — E(t)12/(b2 +:2b 2)) <

= x2, X3 +

2. Show that f(x) f strongly as a multiplication operator.

3. Calculate <n, I, + xfln, 1, 13> for n = I and 2.

4. Find an example of projection operators P, converging strongly to P for which
dim P,, — but dim P <

5. Calculate <2, 0, 01x3 12, 1, 0>.

6. Let 01M be the restriction of an operator a to the part of the Hilbert spaceon which
iL31 � M. Show that HHIM(a) is compact relative to HBIM(a = 0).

Solutions (4.2.19)

I. First write r - 2
as f ds exp( — sr2). The resulting Gaussian inte&ations over x1, x2,

and x3 are easy to do by completing the squares in the exponents. To indicate how the
calculation then proceeds, consider, for simplicity, b = — the calculation for b 1

is similar. Then

I $
d3xexP(_sr2 — + (x3+ 912)2)

0 V?+i 1+1

(" di ds
= const J0

Jo S
1)3/2

I
2

— s(l + 12)

where the square in the exponent was completed in the last step. The two remaining
integrations are easy to estimate if the domain of integration is divided into 0 � s,
t � 1; 1 � s, 1< cx;and the rest.

2. By Lebesgue's dominated convergence theorem, — 1(x))2 —'0.

3. In units where ma = I.

11,0,0> = —exp(—r),

2,0,0> = —

12, I, ± 1> = r exp( — r/2)sin 0 exp( ± up),

12, 1,0> =

(cf. (4.1.27; 5)), and the corresponding expectation values are 2, 28, 24, and 12.
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4. Let PN be the operator in represented diagonally with entries

(0, 0, . . . , 0, 1, 1, . .

n

Then Tr P,, = but P. 0.

S. <2,0,01x312,l,0>= —i.

6. We shall show that the graph norm of HB provides a finer topology on the subspace
= 0,8> Othanwhenx = 0,B = 0.Therestoftheargumentisliketheonefor

the relative compactness when 8 0. First note that if 2m = I,

+ + — WL3)l/lIj +

� aII(jpJ2 + + + (b —

and by use of the commutation relations,

+ ÷ xI))2tli> = + 2A(JpI(xf + — 2)

+ + � —

so

+ + — + � + (b — M —

Since the norms a b > 0, the proposition
follows.

43 Helium-like Atoms

Although the Sc/irodinger equation for helium-like atoms is not
exactly soluble, it is possible to make statements about it with arbi-
trarily good accuracy. For that reason it has been a touchstone of
quantum mechanics.

The explanation of the spectrum of the heliunt atom was one of the early
successes of the new quantum theory, since the old quantum theory, which
was nothing more than classical mechanics bolstered with ad hoc quantum
assumptions, was unable to cast much light on the problem. Even today, the
set of problems connected with helium must be reckoned among the brilliant
successes of mathematical physics. While SchrOdinger's equation can not be
solved for helium in terms of familiar functions, it is not only possible to
formulate valid general statements about the spectrum of the Hamiltonian,
but, indeed, the art of inequalities is so far advanced that rather exact bounds
are available for the eigenvalues.

When dealing with two or more electrons, one must bring the exclusion
principle into play. However, its importance will be limited in this situation,
because of the additional spin degree of freedom. Any orbital can be occupied
by two electrons, so long as their spins are antiparallel (a singlet state).
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Forces that do not affect the spin cause no transitions between states of
parallel (triplet) and antiparallef spin, so the spin part of the,problem can be
dealt with separately. The orbital wave-functions may be either symmetric or
antisymmetric, and associated with either singlet or triplet spin vectors.

In addition to helium, we shall also be interested in the ions Li4 Be +
etc., the Hamiltonians of which are the same except that they have different
values of the perturbation parameter. Moreover, elementary particle
physics has created the possibility of replacing one e - with a - or other
negatively charged particle, i.e., of varying the mass. We began the discussion
of hydrogen by introducing center-of-mass and relative coordinates. The
mass of the nucleus made its appearance in the latter part of the problem only
through the reduced mass, and the problem was otherwise the same as the
limit where the nuclear mass was set to infinity. As section 4.6 will be devoted
to the study of the nuclear motion, let us immediately pass to this limit. It
will remain to be determined how valid the results of this section are for
systems like or ee4e.

Once the usual list of necessary remarks has been checked off, things will
progress rather rapidly to more detailed and less trivial matters. We start
with the

Hainiltonian of an Atom with Two Eleclrons (4.3.1)

H = + 1P2J2) — Ze2(j_1_-,+

can be put into normal form with a dilatation p —a Zme2p, x —a (Zme2) 'x
and separation of the factors:

= 11(0) + Z2e4mtH = + 1P212)

I I I
———--——+

lxii 1x21 IN1 — x21

Remark (4.3.2)

The perturbation parameter is not a continuous variable in reality, but it
can assume many different values, 1, 4, 4, etc., corresponding to W, He,

etc.
Since the potential energy is c-bounded relative to the kinetic energy

(see (4.4.5)), we know the

Domain of SeIf-Adjolniness (4.3.3)

D(H) (D(1p12) ® C2) A (D(!p12) ® C2) -

® C2) A ® Ci).
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Gloss &4.3.4)

The spin acts on the two-dimensional Hubert space C2, so the Hubert space
appropriate for an electron with spin is L2(R3) ® C2. As was mentioned in
(3.1.16), a system of two electrons is associated with the antisymmetric
tensor product A (recall (1: 2.4.3 8)) of two such spaces.

We now turn to the task of locating the continuous spectrum of H(cL).
It turns out to be quite easy, because the perturbation is positive when cx > 0
and could at most move the spectrum upward.

The Beginning of the Essential Spectrum (4.3.5)

= = [—5, co).

Proof

As remarked in (2.3.18; 5), for all E e [—4, co) we must find an orthogonal
sequence with norms bounded away from zero such that (H — —+ 0.
Let be the ground-state wave-function 11,0,0> of (4.1.14), let R > 0, and
let XM(r) be a sequence of functions supported in 1R) and such that

— E — 4)x,, —, 0. (For instance, take exp(ikr)/r, k2/2 =
E + 4, cut off outside (2MR, and smoothed out at the ends.) Then the
sequence is as required, since

D
— x21

Remarks (4.3.6)

1. The physical significance of the continuum starting at —4 is that one
electron stays put in the ground state while the other runs off to infinity.

2. Mathematically speaking, we see that the potential energy may fail to be
compact relative to the kinetic energy (it moves the essential spectrum)
even when it is relatively c-bounded.

The next topic is the point spectrum. It is clear that H is semibounded,
since H' > 0, so c [—1, co). It will also be shown that < I, then
there arc infinitely many eigenvalues. This is to be expected on physical
grounds, since an electron at a large distance would not see a fully screened
nuclear charge, and it is known that an arbitrary weak 1/r potential has
infinitely many bound states. To prove it, it is necessary to find another infinite
set of orthogonal trial functions, with which H can be written as a diagonal

with eigenvalues less than — 4, the bottom of the essential spectrum of
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hydrogen. We construct them by putting one electron in the ground state
of 12/2 — hr1 and pulling the other one far away:

= — j+
2 r2

+ x<q,1(x1) ® ®

The repulsion of the first electron shows up for the other one as an effective
potential, which we expect to fall off as at large distances. Thdeed, in
Problem 5 it is calculated as

= -f-— czexp(—2rz)(1 + (4.3.7)
r12

Consequently,

<H> = — +
I

— +

Given disjointly supported functions ,ji,, if k *j, then <q' ® *.,IHIco ®
0. By dilating and translating, we can arrange that

—

+
+ <0,

so 0 0 = < This proves

The Infinitude of the Point Spectrum (4.3.8)

If < 1, then H(x) of (4.3.1) has infinitely many eigenvalues below the
bottom of its essential spectrum.

Remark (4.3.9)

The exclusion principle was not rn itioned, because it still makes no difference.
If the two spin states are denoted I and j, then the state 0 —

0 leads to the same expectation value.
The virial theorem (4.1.4) made use only of the effect of dilatation on the

kinetic and potential energies. The existence of more electrons does not
change this, so we likewise have a

VIrlal Theorem (4.3.10)
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CoroLlary (4.3.11)

H(x) has no eigenvalues E � 0.

Remarks (4.3.12)

1. One might guess that there is a point spectrum only for E < —3. We shall,
however, discover eigenvalues embedded in the eSsential Spectrum
between and 0—in fact infinitely many if < 1. They correspond to
states whose decay is by conservation laws for various quantum
numbers.

2. We shall later rule out the existence of singular spectrum, so a consists
of between —1 and —4, both and between —4 and 0, and only

above 0.

This delineates the rough features of the spectrum. Let us next take up
some finer details; since the eigenvalues of are analytic in we can start
with H(0) and track them as is switched on.

The Point Spectrum of H(0) (4.3.13)

Let be' the eigenfunctions In, I, m> of(4. 1.14) times spin eigenfunctions
(s = ±3). Then

—

is an eigenfunction of H(0) with eigenvalue — + It is
degenerate # n2, and — 1)-fold degenerate 41n1 = it2.

Remarks (4.3.14)

1. All states with it1 > I and n2> I have energies � —i, and hence live
in the continuum beginning at —5.

2. The operator H(0) possesses a copious commutant,

{H(0)}' {L1, F1, Cl, L2, F2, C2)

These constants divide the spectrum and keep the discrete states from
decaying into the continuum.

3. Parity (3.2.11) was not listed separately among the constants, since it can
be expressed with the angular momentum as in (3.2.22; 1). As states
evolve according to H(0), the parities of the individual electrons, P4
(—I)", I, = — 4, are separately conserved. The total parity
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P P1P2 = is not necessarily however, since L
L1 + L2 can have any I such that — '21 � I � + 12. There thus
exist

States of Natural and Unnatural Parity (4.3.15)

If P = (— 1)', then the state is said to have natural parity, and lIP 1)If

then it has unnatural parity.

Example (4.3.16)

If n1 or n2 equals 1, then I equals 12 or and the resultant state has natural
parity,(— = (— l)'or(—l)" = (—1)'. Hence the isolated point spectrum
has natural parity. The first state with unnatural parity has 11 '2 = I = 1,

P +. The wave-function has the form (x1 A x2)f(r1, r2), and if n1
2, the energy is — In the subspace of unnatural parity, the continuum

begins at E for n1 = 2, n2 =

Constants of the Motion whena 0(4.3.17)

If a # 0, then in addition to H, the quantities L, and are conserved.

Physical Consequences of Conservation of Parity (4.3.18)

1. Parity must now be listed separately, since it is independent of L. The
Hubert space decomposes into subspaces of natural and unnatural parity,
which are not mixed by H(a). Hence discrete states of unnatural parity
continue to exist within the continuum of natural parity. Just as in (4.3.5)
the beginning of the continuum of unnatural parity at is not affected
when a is switched on. Since the eigenvalue of unnatural parity at —j
varies continuously with a, it remains isolated from the continuum of this
part of the Hubert space for a sufficiently small.

2. Elgenstates of H(0) with natural parity and energies E> —4: when a>
are not prevented from decaying into states with one electron in the ground
state and the other running off to infinity. This is observed as the Auger
effect.

3. States of unnatural panty are prevented from decaying to states with one
electron in the ground state and the other running to infinity, since the
final state would have natural parity. Conservation of parity likewise
prevents their creation by direct collisions of electrons with atoms. In
reality they are not absolutely stable, since they can decay by the inter-
actions neglected in H(a), for example by electromagnetic radiation. The
possible transitions are significantly slower than the Auger transitions.
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4. Scattering theory reveals that there are many more constants in the ab-
solutely continuous part of the spectrum, namely all the constants of H(0),
such as P1 and P2, after being transformed with the Møller operators.

We have seen that the perturbation with 0 has broken the immense
symmetry group of H(O) and has separated the highly degenerate unperturbed
states. Since H' is a positive perturbation, the eigenvalues are increasing
functions of The way they depend on it is roughly as depicted in the figure
below:

He

fl1 lj 113 '2

I t I

2 I I (—I)' —O:125i
continuumrorunnaturalparity

2 I 2 1 I + —0.25

I 0 I I (—I)' —0.5

:

To locate the eigenvalues as functions of more exactly, recall that not
only do they increase monotonically, but that, moreover, the sum of the first
n of them, n = 1, 2, 3,..., is also concave in by (3.5.23). We can even state a
more refined proposition on the

Concavity of the Elgenvalues (4.3.19)

Let be the sum of the n lowest eigenvalues in a subs pace of definite quantum

numbers. Then — ( — E(ct))"2 is con'kave in
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Proof

Write H + — a0(1/r1 + l/r2) + tx/r12. Then a dilatation
argument (cf. (4.3.1)) shows that E(rz, is of the form which is
concave not just in atone, but in The condition f" � 0 generalizes
to — � 0, which implies that 2ff" � (f')2, so

(— � 0. 0

Remarks (4.3.20)

1. Eigenvalues can cross at finitely many points, at which f may not be
differentiable. In such cases, it can be approximated arbitrarily well with

functions, which justifies the proof.
2. If m is not set equal to 1, then the theorem states that E is concave in the

three variables (1/rn, The dedicated reader may check that this
provides no new information.

CorollarIes (4.3.21)

1. Linear bounds can be improved by parabolic boinds. For instance, by
(3.5.32; 1), if(H0 — = 0, then

E1(0) + � � E1(0) +

the lower bound holding provided that

(E2(O) — E1(0))<0t(H')110>.

Since — ( — E1(ci))"2 is now known to be concave, the linear bounds
g(rL) � g(0) + ccg'(O), g imply:

E1(0)(l + � E1(0)(1 + <OIH iO>)2

2. Ifz1

< +
21—f(xj

so, if a) is the eigenvector such that (H0 + aH' — E1(a))Ia> = 0, then we
obtain bounds onf', and hence on the expectation value of H':

a

2
— 1E1(a)t) � f'(a) =

� —
a2 —
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AppLications (4.3.22)

1. The ground state of parahelium ((15)2): The vector 30> has the form
(fl. — where q1(r) = 2exp(—r), and E1(O) = —1,

E2(0) = —j. Problem 3 is to calculate that (03 1/r1210> and <01r1210)
Hence = and

/

—(1 —a.O.3152)2.

2. The ground state of orthohelium ((1 sX2s)):

0> = —

where q2(r) = exp(—r/2X1 — E1(0) = —j, = —L

-1 17 16

25 ii 212 5227

(see Figures 17 and 18), and

—
—

�
�

3. TheloweststatewithL = l,i.e.,(lsX2p):IO> = (U 4: jIXq,j(r1)q,2(x2) ±

q2(x) = Yi(8)r once again E1 =
£2 = —.L<01h/r1210>

<01r12 10> = 5.2449 4: 0.1366, (0.35471, 0.37372),

1 5 S / 0.16123\21 5 / 0.2091\2
mm1— —

—
}� —

—
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—0.6

—0.7

—0.8

—0.9

—1.0

He

Figure 17 Linear and parabolic bounds for (is)2 'S and (ls)(2s) 3S.

Remarks (4.3.23)

H

1. The rate of change at z = 0 is exactly <OIH'IO>, which shows that (lsX2s)
is the more energetically favorable state with ,, = 2. This is plausible,
since the s orbitals are more densely concentrated near the nucleus,
and are thus shielded less by the other electron. By first-order perturbation
theory the (!sX2p) state with spin I is favored (Hund's rule), since the
exclusion principle then makes the electrons avoid each other and feel less

—0.5
E C' + + + 8+ + + + Li4
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Figure 18 Linear and parabolic bounds for (ls)(2p) 3P and (ls)(2p) 1P.

Coulombic repulsion. Our bounds, however, are not yet precise enough
to prove this tendency for strictly positive

2. It is easy to see with <n, itrin, 1) = (3n2 — 1(1 + 1))/2 that the inequalities
<r><1/r> � 1 and <r12) � + r2> are not at all weak.

3. The main drawback of the results that have been presented is that the
lower bounds break down when E2. The discussion in (3.5.32; 1)
shows that only the use of many-dimensional projections can remedy
this.

E + B+ + + 8e1 + Li+ He

(ls)(2p) 'P
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Ground States with Two-Dimensional Projections (4.3.24)

1. Consider the two lowest parastates with = 0,

(15)2> = (Ii — 11) ®

l(lsX2s)> = — 11) ® (41(1)4)2(2) +

and calculate the matrices

( <(ls)21r121(ls)2> <(ls)2Iriit(lsX2s)>
k<(lsX2s)1r12 I(ls)2> <(lsX2s)1r12 I(lsX2s)>

— ( 2.1875 —0.6371\
—

— 0.6371 0.1706) = ML

/ <(Is)21_1._ I(IsX2s)>
r12 r12

_i_
<(lsX2s)I I(lsX2s)>

r12

— (0.625 0.1263\
— M

— 0.2318) =

The matrix

1E1(0) 0 \
0

+ czM

has eigenvalues

E
— Ei + £2 M11 + M22

I,2
2 2

C2 M22)2
+

= E1(O), £2 E2(0)), which, by use of ML and are respectively
lower bounds for the first two states, provided that they lie below E3(0),
and upper bounds. -

2. Problem 4 gives the analogous calculation for the other states looked at
in (4.3.22), with the 2 x 2 matrices of H' and 'for the states (lsX2s)
and (lsX3s) and, respectively, (IsX2p) and (lsX3p).
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Upper Bounds using Two-Parameter Trial Ftmctkms (4.3.25)

To comply wth the desire of the electron for more freedom of movement, it is
reasonable to use the functions exp(—yr1 — fir2) ± exp(—fir1 — yr2) and
Y1(l)r1 exp(—yrt — fir2) ± Y5(2)r2 exp(—fir1 —yr2) as trial functions for
the ground states with L = 0, 1 and S = 0, 1, and to minimize the expectation
value of H as /1 and y vary. The table below lists the optimal parameters as
functions of a. It makes it clear that the outer electrons come nearer to
escaping when the nuclear charge is smaller.

Variational Calculations

state s(L) (IsXls) 'S (IsX2s) 3S (ls)(2p) 3p (lsX2p) 1P
2 fi y 13 v P v P v

1. 0.283 1.039 0.000 0.000 0.001 1.001

0.75 0.452 1.070 0.094 0.129 0.999 0.123 1.001
0.5 0.588 1.085 0.161 Q.984 0:2:72 0.997 0.240 1.002
0.3333 0.695 1.097 0.202 0.979 0.361 0.994 0.322 1.003

0.25 0.754 1.108 0.222 0.975 0.400 0.993 0.366 1.003

0.2 0.769 1.082 0.232 0.970 0.424 0.992 0.392 1.001

Remarks (4.3.26)

1. Figures 1 9a, b, and c show the greater detail in the pictures that one
obtains with the use of two-dimensional projections and the variational
ansatz (4.3.25). The plot shows the root of the energy; it is apparent
that the experimental points lie close to he straight lines, and hence that
Proposition (4.3.19) is a nearly optimal c )ncavlty property.

2. The parabolic upper bounds (4.3.21) can also be obtained with this
variational argument, using exp( — in place of the ground state of
H0 and optimizing For the 1S state this leads to Zeff 1 5a/16,
which reflects the partial screening of the nuclear charge.

3. Our bounds are good enough to separate the states 3S, 3P, and 'F, which
are degenerate when a = 0, and to prove that Hund's rule orders them
correctly.

4. With more numerical effort and trial functions having several parameters
quite accurate upper bounds are obtainable. Temple's inequality (3.5.32; 2)
then provides complementary lower bounds. Pekeris and Kinoshita
used this technique to achieve a fantastic accuracy for the ground state.
For practical purposes the eigenvalue problem can be considered solved
up to a = (helium).

The foregoing results are still rather poor for a = 1, the negative hydrogen
ion H. We know that if a < 1, then there are infinitely many bound states
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(4.3.8), but if 1 we have as yet definitely found only one state of natural
parity with the improved upper bounds. What happens to the infinitely
many other states—do they move into the continuum when = 1, or remain
isolated? The former alternative has been proved recently by Hill [15].

Sound States for = 1 (4.3.27)

1

2 2p 1x11 1x2l x1 —x21

has exactly two nondegenerate elgenvalues jf .i 1. They develop continu-
ously out of the ground states for < 1 in the subspaces of natural and of
unnatural parity. If the ratio of the masses is sufficiently different from 1,
then disappears entirely.

Remarks (4.3.28)

1. We shall consider only the subspace of natural parity; the argument
can be extended to cover unnatural parity as well.

2. The case * 1 is realistic for the system Since the Bohr radius
of a muon is smaller than rB of the electron by the ratio of the masses,
a factor of 207, one would guess that it completely shields the proton,
and that the electron is no longer bound. We shall see that the failure
to bind happens for much less extreme mass ratios; yet it is difficuJt to
find the exact value of p at which o,, disappears.

3. The strategy of the proof is to find an operator HL � H for which it
can be shown that there is no (or only one) eigenvalue below the con-
tinuum at —4. More effort is required to show that there are no eigenvalues
in the continuum of the same quantum number, and that part of the
proof will not be given here. It necessitates verifying that such states
are unstable under the addition of H'; see [3] and (4.4.13; 3).

Proof

(i) it. Let us do the easy part first and show that there exist no bound
states if p> it. The ground state of H(0) has energy —(1 + p)/2, and
the continuum begins at —p/2. If particle 2—let us call it the muon—is
excited, then the energy of the state becomes,. at least —4(1 + p/4),
which is in the continuum as soon as p > 4. If P0 is the projection onto
the ground state exp(—pr2) of the muon, and P 1 ® P0, then
clearly

— — P — (1 — P).
2p r2 2 8
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As in (3.5.31) we now use the inequality

� P(Pjx1 —

from which it is easy to calculate

VL(rl)
= f d3x2 — x21]

= + _L — +
1)]

(4.3.29)

(Problem 3). Since

1 1 1

2 x1(
+

lxi — X2l 2'

we finally get

ToshowthatH � — hr +
First note that

1 1 1 11 i\1'

= r
+ 1

The Bargmann bound (3.5.37; 1) shows that there is no bound state if
2 fg) dr/(l + = < 1, that is, if the mass of the muon is
greater than it times the mass of the electron.

(ii) = 1. In this case the P used above, projecting onto wave-functions of
the form f(x1)exp(—izr2) does not do the trick, since exp(—r1)f(x2)
has just as low energy. Hence for two electrons it is preferable to use the
Hubert spaces of functions of the form

fj(x1, "2)'= (exp(—r1)f(x2) ± f(x1)exp(—r2))

IEL2(R'. (4.3.31)

As usual the arrows stand for the spin functions, and we may assume that
f is orthogonal to exp( — r) in The spaces are invariant
under operators of the form

h P0(t) 0 h(2) + h(1) ® P0(2) (4.3.32)
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(the argument of the operator indicates which factoç it acts The
space L2(R3) is mapped into and is mapped into
by (4.3.3 1) and (4.3.32) in such a way that

<1 iliã> = 2<(1 ± F0)f lh(l ± P0)g>. (4.3.33)

The procedure used in the first part of the proof can now be mimicked;
first project onto the union of the image spaces of the projections
and

= = rl21Po(2)VL(xl)r121'2,

where r12 x1 — x1
I
and VL is as in (4.3.29) with = 1. Following the

notation of (2.235) the projection onto the union will be called v
As we learned there,

� � � A

which can be rewritten for
though it involves lengthy expressions. Fortunately, for our purposes the
following inequalities are sufficient:

A +

V � + — — + +
(4.3.34)

This can be simplified with the observation that although and
do not commute, they have a common eigenfunction €L2(R6), i.e.,
when normalized,

x2) exp(—r1 — r2), =

Ibis function has eigenvalue —1 for the operator —

+ + Since it can be shown (Problem 2) that
in the other eigenvalues of the operator are positive, (4.3.34) leads to

� + — Ix><xI (4.3.35)

(from here on we work only in The projection method (3.5.31) then
shows that

� V � Po(l)VL(2) + Po(2)VL(l) —

(4.3.36)

The next thing to show is that there are no additional negative eigenvalues
of
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The operator H0 leaves the spaces invariant and acts on them as

I I
2 Ii 2 1 4

1±'

On the orthogonal complement of no electron is in the ground state,
so H0 > If are the projections onto then (4.3.36) allows us to
write

(1 8\

H0 + r12' � — +
+

— Pt).

Since > we have to verify that h — 1/r + VL(r) has only
one bound state, whereas (1 P0)h(1 — P0) has none. The first statement
can be proved analytically by noting, as in (i), that h � I p)2J2 —

2/r(1 + r)2, but making a more detailed calculation. As in the proof of
(3.5.36) we find the number of values A � 1 for which there is a e L2
satisfying

p12 11—1 1(1,+ 1)\

2 2 k r ar2 r2 ) r(1 + r)2

With the change of variables r = z/( 1 — z), = r'w(z), this becomes the
hypergeometric equation z(1 — z)w" + 2(1 + 1 — z)w' + 4Aw = 0, the
well-known properties of which include the requirement that A =
(n+21+ lonlyifn=1=0.
Hence there is at most one bound state. The proof for takes a longer
discussion, and can be read in [15]. 0

Remarks (4.3.37)

1. The proof for H - can be generalized for finite but large nuclear masses.
It is certainly not valid for all nuclear masses, as pe - p has many bound
states.

2. If Z> 1 < 1), then a muon in the ground state should effectively
reduce the nuclear charge at larger distances by 1, and the electronic
spectrum should be a Balmer spectrum with Z — 1 in place of Z, i.e.,

(1 — To show this mathematically, write

if lpz12\ 1 1 x
-I 1pd2 + —J —— — —+ —

2 rt

-- + (_
— — P)
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and choose large enough that + ci(VL(r) — l/r) just remains
�O. The value cqt1/p 1/ir of part (i) was improved to = in part
(ii), so

H� P)

Hence, for the state of the electron with principle quantum number n,

2
——fl-)

The upper bound results from the use of trial functions of form x
co(x1)exp(—4ur2). Since

)

Jd3x21x2 —

stays �1/r1,

ii ,,2 1—a
2 2

The right side then comes from the mm-max principle. If p —, 200, the
eigenvalues are estimated in this way to within a few percent.

For practical purposes the problem of finding the eigenvalues of H can be
considered solved; the next interesting question is 'what the eigenfunctions are
like. Proposition (3.5.33) produces narrow bounds in the L2 sense for good
trial functions, but we wish to answer qualitative questions about the electron-
cloud of the two-electron problem, and hope to do so with methods that
generalize for complex atoms. These questions concern the limits as r
and r —' 0, and are not only mathematically accessible, but also of interest
to chemists and nuclear physicists.

Ihe Asymptotic Behavior of the Electron Density (4.3.38)

For r> r0, a sufficiently large constant, the one-electron density of the

ground state, p(x1) = f x2)J2, satisfies Hoffmann—Ostenhof and
Morgan's inequality,

c - rt' — -' exp( — � � c + — — ekp( —

wheres1 = —E1 — landro <r < co,0 < c_ <c
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Remark (4.3.39)

The basic mathematical reason that the averaged eigenfunctions fall off
exponentially is as follows: The operator exp(is (x1 + x2)) generates the
transformation -.

p,

—' p, + s, H —, H + s. + p2)/m + 1s12/m
H,. Since the new term is bounded relative to + IpzI2, the family of
operators H, is analytic in the sense of (3.5.12). The eigenvectors p are
connected by (x1 + X2)), so

fd3xi d3x2 Iexp(is + x2)12 <

for all s e U, some complex neighborhood of the origin. Theorem (4.3.38)
shows in detail how the ionization energy determines the functional behavior
at large r.

The proof proceeds via two lemmas whith are of some independent
interest. We first generalize the fact used in the proof of (3.5.28) that the
kinetic energy of is dominated by the actual kinetic energy.

The Schrodinger Inequality (4.3.40)

where VL is as in (4.3.29), with ji = 1.

Proof

The Schrödinger equation

/1 1 1

+ — — — — ÷ =
r1 r2 r12,

implies that

Ep(r) = — p(r) — x2)

+ fd3x2 X2)(_ + X2),

where f (fag + g The Cauchy-Schwarz inequality can be used

in the equation = to show that, in the sense of
distributions,

—
— d3x2.
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Since = I + — = —

I d3x2 ÷ The last two terms are then �O by Cauchy—
Schwarz applied to IV1pI2 = 415 d3x2l2. Moreover, if + xVL(rl)

— then the operator inequality

1 1 1 1 1

+ — � — — + — ; +
2 r2 r12 2 r2

holds for the last term (see (3.5.31)); otherwise a two-dimensional projection
is called for. This implies that

(_E — — + — � 0.

Monotony of the Ground-State Wave-Function In the Potential and Sources
(4.3.41)

Suppose that f, g, V, and Ware nonnegative on a domain (2, that f and g are
continuous on fl, and that V � W, A � B. if � Vf + A and � Wg + B
onOandf� gon 3(2, all of (2.

Gloss (4.3.42)

It is assumed that f and g are continuous, so 4f and exist at least in the
sense of distributions. If (2 is not a bounded region, then it must be assumed
that f and g vanish at infinity. Although the source terms A and B do not
appear in the usual SchrOdinger equation, they will be needed below.

Proof

LetD {xe(2:g >f};onDwehaveA(g —f)� Wg— Vf+ B— A
In one dimension a function of positive curvature, i.e., a convex function,
attains its maximum at one of the end points. Likewise, a subharmonic
function F on lv', i.e., a function for which AF � 0, attains its maximum
on the boundary. Since continuity makes g = f on 3D, g can not exceed I
on D, and therefore D is empty. 0

Proof of (4.3.38)

(i) The upper bound. We know that VL> 1/r — 1/r3, and by (4.3.40),

/

u

and I = — + 1),
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then

—2k

1-f

Choosing 4$ 0 such that if r> r1, then

[j(J —1) ÷ + 0— 1)0 —

< (—
—

we can identify the function .J as the g of the subharmonic comparison
lemma (4.3.41). in addition, we have to take r0 = max{ —4$, r5, r2),
where r2 is thelargest root of = (1 — + Then the assump-
tions 01(4.3.41) are satisfied on = {r: r> r0), if we take

r0 p(r0)exp( r0)� — 1PP/To)

(ii) The lower bound. Let p(x) be the ground state of 1p12/2 — hr and be
the ground state of H(4.3.1). Since q' and ijs are nonnegative, the Cauchy-
Schwarz inequality implies that

0 � f(x1) Jd3xi x2) ..Jp(x1).

Now,

0 f d3x2 q(x2)(H — x2)

= (—
—! + +

q(x2)i/4X1,x2)

If is large, then we may estimate

f f— x2j

f(r1)

since .p exp( — r) and p remains bounded. Then with the upper bound
for we find that
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and the assumptions of (4.3.41) can be satisfied by taking g =
c' exp( 1(1 + fJr 1/2). a somewhat longer argument [24]
is needed to convince one that c" and fi can be chosen appropriately.
Since q > 0, f(x1) = 0 only if x2) = 0 for all x2. In particular, it
is not possible forf to vanish for all x1 El = (a, cx)), as ,11i would then be
0 on I x I and therefore on the domain of analyticity containing I x I.
Thus for all lxi I sufficiently large, f(x1) > 0, and we obtain a lower
bound of the same asymptotic form as the upper bound. DD

The next topic is the electron density near the nucleus. The equation
p(O) (l/2ir)<dV/dr> follows from (3.3.5; 4(b)) for a particle in a central
potential V, and a generalization of this equation would be worthwhile. The
probability that an electron remains at the nucleus is subject to a focusing
of the electronic waves at the origin, which is not easy to understand from the
particle point of view. For a convex potential like V = r2, dV/dr increases
with r, so p(O) is greater for the more highly excited states. Classically, a
lessened p(O) is to be expected for V = r2, since the particle flies through the
origin with a greater speed. If the potential is concave, like — hr. then the
ordering of p(0) accords with classical intuition.

Bounds for p(O) (4.3.43)

lE1 l(E2 — E1) + � p(O) �

where

p(O) = Jd3xi x2)12 53(x1),

P!2(°) = Jd3xi — x2),

= E111/1.

Proof

The upper bound (which holds for all eigenvectors). If u(%1, x2) =
r11/11(x1, x2), the Schrodinger equation becomes

— u + Wu = 0,
ar1

2 2a
W= — — — + — 2E.

r1
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Since

x2) u(x1,

p(O)

With the integration by parts in (3.3.5; 4),

p(O) = — f d3
f3U -2x2—r1 Wu
ar1

S

(2ir)
L Ii x1•(x1 —x2)= -
r1 r1fx1 — x2

Since J2 is symmetric in x, and x2, the latter term contributes negatively:

— Xj x2
+ !)(rlr2 — Xi x2)1qi1> � 0.

r2

The lower bound. This part of the proof requires a lemma:

A Bound on the Mean-Square Deviation (4.3.44)

<1I[a,[HaJ]Il>
2(E2 — E1)

where H Ii> = E1 II>, and it is assumed that the two lowest eigenvalues
E1 and E2 are that II) D(a), and is calculated with Ii>.

Proof

a(Ha — oH) 11> = — <ii (Ha — aH)a (1>

= <l(a(1 — 1l><1I)(Ha — oH)!!>

�(E2 — E1)(<lta2(1>— <1

If we now set a in the lemma, then

+ c/r12)j>
= <iPil2> = 1E11 �

2(E2 — E1)

2ir
— [i(O) —
— E2 —
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Remarks (4.3.45)

1. We calculated only the contribution from L = 0 to p(O) in (3.3.5; 4(b)), but
since I 12 — r2 for reasonable potentials, the term IL l2/r3 contributes
nothing in the case of a single particle.

2. If denotes the spherical average of p(r) at the nucleus, then its derivative
satisfies the cusp condition

= — 2p(O). (4.3.46)dr

This can be seen by multiplying the equation u" = Wu by and integrating
over and x2.

In the limit r —*0, the only contribution is — from W, yielding
(4.3.46). Hence we have the bounds..

� —E1)—2czp12(0).

The section closes with a discussion of more general expectation values
of r'. The first facts of interest are the

Mo.otoolc Properties of <av> (4.3.47)

If a is a positive operator, then the functions R -* v -. <a'>" increase
monotonically, and thefunctionsv — ln<a'> are concave.

This follows immediately from Holder's inequality when the expectation
values are written in a spectral representation. U

Remarks (4.3.48)

1. If the only available estimates for <a'> with certain values of v are not
very satisfactory, then (4.3.47) can help out by using better estimates for
other values of v and interpolating.

2. Often the calculation of expectation values of an operator can be reduced
to finding accurate bounds for some energy; for instance, if E(ft) is the
eigenvalue of H + fib, then <b> = ÔE(ft)/äfi. Since E(fi) is concave, bounds
on can be obtained from bounds on E(fi). In this way our knowledge
of gives us the expectation value of hr12. and thereby, with the virial
theorem, of = <1P212> = IEIand<1/r,> = <1/r2>.
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The line of reasoning indicated in Remark 2 will not bç pursued further,
as it soon leads to extensive computations. Instead, we only cite some
general inequalities for expectation values involving r and p. Since they
are simply variants of the indeterminacy relations, and the more detailed
form of the interaction does not enter, numerically they leave much to be
desired in our special cases.

Lower Bounds for (4.3.49)

v = 2: Since 1p12/2 + r2co2/2 � 3co/2. it follows that if w =
then <r2> � 9/4<1p12> and �

v = 1: p12/2 + gr � where c is the first of the Airy
function Ai(x),c = 2.338.... Then <r> � i.2446<1p12>"2.

v=—1:
v = —2: By(2.5.23;6),1p12/2 — 1/8r2 � 0, so �

Upper Bounds for <r'>" (4.3.50)

If we take a = x1rr' in (4.3.44), and note that in a rotationally invariant
state <a> 0 and [a, [H, a]] = IVaI2 = + q2), then
� (2.+ — E1)y Combining this with earlier results we
get some useful inequalities for integral values of v, —2 � v � 2:

v = 2: With q = I in the formula just derived,

<r2>"2 � —

v = 1: With q = <r> � I<1/r>(E2 — � — E1).
As an imprecise inequality is used twice, the result is very weak.

v = — 1: In the case of interest the virial theorem implies that <1/ri>� � 1E111(inatomicunits).
v = —2: With q = 0 in the formula, � (E2 —

The thrust of these inequalities is that an average of r can not get too small
without increasing the kinetic energy greatly, and it can not get too large wit h-
out reducing the spacing of the eigenvalues. If E1 and E2 are taken as known
for helium, then with the virial theorem the following bounds are found for

in atomic units, some of which can be improved with (4.3.48; 1):

v lower bound upper bound

2 0.88 1.408
1 0.73 2.535

—l 0.587 0.689
—2 0.293 1.150

By Corollary (4.3.21; 2), <l/T>1 0.61. These inequalities are too general

to be more precise; much greater numerical effort would be called for.
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Since <r2> is important for calculating p(O), we shall improve the result
for v = —2 with the aid of (2.2.33; 3). It follows from i'(ab — b'a> �
<a*a> + <b*b) with a = Pr + ic/r and b, ce R that

<r2>c(1 — c) + <r'>2bc — b2 — <1p12) � 0.

If this is optimized in b and c, then

<r_2>2 — + 4<r'>2<)p12> �

± — <r1)2/<lp$2>).

Then the virial theorem finally produces

Bounds for <r 2> given E1 '4.3.51)

Given two electrons and > 0,

<r_2> 21E11(1 ± — 1E11).

Problems (4.3.52)

1. Show that the operator with integral kernel p(x) x — x' I has only
one positive eigenvalue, and the rest of its spectrum is negative. (Hint: dominate
Ix — y as the integral kernel of a quadratic form by a form with kernel f(x)f(y).

2. Show that + has only one positive eigenvalue on the space
of symmetric functions, and conclude that ri,] � + —

3. Calculate <01 fIr12 10> and <01 10> in (4.3.21; 1). Note that the normalization of
q, 1(r) above did not contain the angular factor 1/

4. Calculate the 2 x 2 matrices and ML for (ls2p) and (ls3p) (see (4.3.24; 2)).

5. Calculate the screened potential of (4.3.7).

6. Show that for Coulomb systems <112> = 3E2 + <T2>, where Tand Vare respectively
the kinetic and the potential energy, and expectation values are taken with eigen-
vectors of H.

Solutions (4.3.53)

I. LeIf(x,y)=Sirfd3q(exp(iq.x)—
Then note that f(x, y) = 0, since &f(x, y) y) = f(0, y) = f(x, 0) = 0
and f(Ax, Ày) = Af(x, y). The integral is evidently the kernel of a positive form.
Consequently,

Ix — � Ix! +
r4(1 +Ixj)(l+lyI)—4(l —IxI)(l —lyl)

�4(1
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as a form inequality. The proposition then follows from the mm-max principle
applied to the operators obtained by multiplying on both sides by PVL.

2. The operator PO(l)VL(x2)rIZPO(2)VL(xl) + Po(2)VL(xl)rl2Po(l)VL(x2) = has
the expectation values

= 2 fd3x2 d3x'2 f(x2)KW(x2,

where

= 5 d3x1 x2),

and

K"1(x2, = —

provided that x2) = F(x2, xi). By problem 1, and thus each have
only one positive eigenvalue, and the same must be true of + Since

we know that the positive elgenvalue is 2 and that I x) is the associated eigenvector,
+ <21z><xI. The proposition then follows from

3. <01 I0> = 16 exp(—2r1)
r12

+ —

= 16 r1 exp(—2r1) r2 exp(—2r2) .
{ri. when r1 > r2

r1, when r2 > r1,

For <Olr,210> the i-integral is + — 2r1r2z)"2/2 instead of
+ —

4. =

l[<(ls2p) ± (2pIs)1r121(ls2p) ± (2pls)> ((ls2p) ± (2pls)1r121(ls3p) ± (3pls)>1

± (3pls)lri2I(ls2p) ± (2pIs)) <(ls3p) ± ± (3pls)>j

Symmetric:

[ 5.11 —1.771 10.21 0.02
M

= 12.58]'
M

— Lo.02 0.08

E1,2 =
— 517

± + 0.08) + — a20.0292,

E12 = —0.590 + tx0.145 ..ft—0.035 + a 0.061)2 + 0.00084.

Antisymmetric:

1 5.38 —1.65]
M

fo.194 0.025
M =

1.65 i2.64j' Lo.o25 0.082

E12 = —0.590 + a 0.138 F + a 0.056)2 + a2 0.00064.
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1
4ff2

5. — =
— j

dr1 + 4
J

exp(—2rjr1 dr1.
r2 o r2

6. It follows from V H — T that V = if the deviation is calculated in an eigen-
state of H. The proposition then follows from the virial theorem. \

4.4 Scattering Theory of Simple Atoms

After the point spectrum of two particles in a Coulomb field has been
analyzed, we are ready to study the continuous Its physical
sign can be understood by seeing how scattering theory applies
in this case.

The scattering of several particles is a set ofcomplicated diffraction problems
in with potentials falling off in some directions but not in others. Due
to the lack of simplicity the subject has long been used as a proving ground
for any conceivable assumption or approximation, the validity of which was
wholly obscure. Our first job will be to make physical sense of the continuous
spectrum. We have seen that the wave-functions of the bound states fall off
exponentially, making the particles localized near the nucleus. One would
expect that in the other states one or more particles are asymptotically free.
The first step in proving this is to show that there is no singular spectrum,
which is associated with particles that wander arbitrarily far away but
keep returning on occasion. The only known realistic examples
singular spectrum are some clever models due to D. B. Pearson in which
the potential consists of an array of barriers as for a band model, but for
which the allowed bands are Cantor sets, and the energy spectrum is R.
The potentials either extend to infinity or fall off very slowly, and one would
not expect any singular spectrum in scattering from an atom. In fact, it
does not exist for Coulomb systems [22].

We fiext wish to exclude the possibility, mentioned in (3.4.10; 1), of waves
entering the region of interaction, never to come out again. The relative
compactness of the potentials, which was a key fact in the proof of asymptotic
completeness for one-particle scattering, is now lacking. L. Faddeev was
the first to figure out how to group compact parts of the For
energies less than the ionization energy it is straightforward to prove exis-
tence and completeness of the Muller operators, yet above the ionization
threshold there is still no simple way to verify asymptotic completeness.

A physicist's work has only begun with the proof of existence of the wave-
operators; actual calculations of what can be measured are needed. What
accuracy can be guaranteed for the numerical results of various computa-
tions? The experience of volume H, §3.4, prepares us for the worst, as the
interference effects in diffraction problems get so complicated as to make a
mockery of mankind's calculating skills. In consequence it is all the more
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welcome to learn that the persistent efforts of L. Spruch, R. Blankenbecler,
R. Sugar, and many others in recent decades have led to operator inequalities
that bound the scattering parameters in many limiting cases with amazing
precision.

Let us start by bettering our understanding of and discovering the
fate of the discrete states of H0 that are embedded in the continuum. Our
earlier analysis made ready use of the compactness of the V(H0 — z)'
occurring in (H — = (H0 — z) 1(1 + V(110 — z) ', but, as already
mentioned, this fact breaks down for several particles interacting through
pair potentials. We therefore start by finding a representation of the resolvent
in which the effect of the interaction on the spectrum can be deduced with
arguments about compactness. We shall restrict ourselves to the 3-body
problem, though the method clearly generalizes to n particles.

If the potentials are relatively bounded, the resolvent can always be
expanded in a norm-convergent series,

3 3

(H(x) — z)1 =

R0 (T — z)', = v2 = — v3
r2 r12

T= + 1P212), (4.4.1)

with the proviso that d(z, Sp(T)) = d(z, = zl when Re z > 0 or
when Re z � 0 is large enough, for

rLROI/i � + � (6 ÷ a[d(z,

With only one electron all the summands other than the first, R0, were com-
pact. Since any norm limit of compact operators is compact, we concluded
that the essential spectrum remains unchanged. The situation at hand is
different, since the operators act on tensor products, and even though each
contribution is compact on one factor when ,t> 0, it is not compact on both.
In order to understand how the resolvent factorizes, write R0 as the norm-
convergent integral

R0 = Sc (+1p1 12 +
(4.4.2)

where the contour of complex integration is C = (R + ie) u (— w)

+is),0<s<IImzI.Then
1 ( 1 1 1

1 2

1
(4.4.3)

— z + (41P212 — Z +
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and the integrand is of the form compact ® bounded. Yet if there are two
different potentials, both factors become compact:

R 'R 1 1 1 1 1

1 1 1

(41P212 — z + — Z + (+1p212 — z +
(4.4.4)

This is also the case if r1 or r2 is replaced with r1 2• Hence, while the contribu-
tions to (4.4.1) having all y, equal are not compact, all the others are. There
is a graphical shorthand for the terms in (4.4.1), whereby electrons are drawn
as lines and interactions 1/r7 are drawn as wavy lines connecting electronic
lines if y = (12) and extending outward from electronic lines if y I or 2:

R0 RO±.RO
2

R0-!-R0
0 I

TI T2 r12

etc. The graphs of the products in (4.4.1) are the graphs of the factors joined
together, so the set of graphs contains the whole algebraic structure of the
operators. The noncompact operators are the disconnected graphs, which
means that the electronic lines are either not connected to one another or not
connected to the outside. The connected graphs, that is, the compact opera-
tors, are an ideal of the algebra. Thus, with the notation

= I + + I I +

= + + II +

the graphical representation of the resolvent equation is

R = + + 1J11 — 2

+ IJ± + - 2 - 2

—2
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The translation of this as formulas is known as the

Weinberg-Van Winter Equation (4.4.5)

R=D+JR,
/ 1

\-t / 1 \-' /D=IT——--zl +IT——--zl +(T+—--z
\ r1 / \ r2 / \
— 2(T—

/ \-'/ I x\ f 1
\_I/ j aJ=IT———zI (——+—J+(T—-——zl i——-+—

\ r1 / \ r2 \ r2 / r1 r12

/ 1 1 a
(—+—I—2(T—zY'(————+——

\ r2

1 \'/ I a=(T—z) —IT——---zI l——+—
T1 \ / \ 1'2 T12

11 1 \-'/ 1 a
l—-—+——r2\ r2 ,F \ r1 r12

a I a \_'/l 1
i—+—

r12 \ r2

Consequences (4.4.6)

As shown above, J is compact for d(z, R) sufficiently large. Moreover, its
compactness extends by analyticity to the whole region I

{ — 1/2n2) (Problem 3). This means that (1 — J(z)) has only isolated poles
of finite multiplicity in the region of analyticity, and the, only additional
singularities of R(z) = (1 — J(z)) - 'D(z) are those of D(z). This reasoning
leads to a result due to Hunziker, Van Winter, and Zhislin, generalizing
(4.3.5) for not necessarily positive a.

The HVZ Theorem (4.4.7)

(eu(11(Ct)) =
—

u (i' — I-) ceu (r +

Remark (4.4.8)

This result casts more light on Remark (4.3.6; 1). The essential spectrum
describes particles that escape to infinity, so begins at the various
ionization energies.
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In order to eliminate the possibility of we look at the H(cc) dilated
with a complex parameter t as in (4.1.16):

115(t) '(r) = exp(2r)T + exp(r)V,

— z) = (1 — J) 1D,

D = (exP(2r)T — e,1(t)
— +

—
—

+ (exp(2r)T + exi*r)
— — 2(exp(2r)T — z) ',

r12

• exp(2v)J'= (T — exp(—2:)z)' -1-- (T — exp(—r)

—

X (— — + +(T— —
\ r2 r2

(T — exp(—v)
—

(
!

+

+ (T — exp( — 2T)z)1 (r +
exp( — — exp( — 2t)z)

r12

(i.. +
(4.4.9)

The operator J is again compact, so (1 — J)1 affects only the point spectrum
of Hp). The essential spectrum originates from D, which, however, contains
only the sorts of expressions encountered in (4.1.16). Since

or(A®1+I®fl)=a(A)+a(B)

(see [3], section XIII.9) and

a(exP(2r)
— exP(T))

= J u exp(2r)W

(see (4.1.17; 2)),

+ P212) —
exP(v))

= U {.4 + exp(2
N�1

This means that the contiLuum starting at each energy — 1/2n2 gets swung
out into the complex plane by the dilatation (see Figure 20):
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As a consequence, the matrix elements of the resolvent in the dense set D of
entire vectors with respect to U(i) can be continued analytically past the
real axis, since it intersects only at U. {—1/2n2} u {0}. As in (4.1.16),
we conclude the

Abeence Of Singular Spectrum (4.4.10)

= so =
Because <U — 2(r*)q,

J
— z)1 U — '(t),/i> = I (H2(r) — z)' v'>, the

spectrum of H,(r) reflects the singularities that occur when matrix elements
of the resolvent are continued analytically. The next topic to investigate is
how the eigenvalues in the continuum of H0 move onto the second sheet of
z when the perturbation rL/r12 is switched on after this analytic continuation.
We start by noting the

Spectrum of 110(r) (4.4.11)

= c,,(H0(O)) = U { — —M � 1

= { —

+ exp(2r)k
+
} u {exp(2r)11 +

As to the eigenvalues of the non-Hermitian operator if Im exp(2r) <0,
then some of them may have negative imaginary parts. The argument of
(4.1.17), by which the eigenvalues were analytic in r and invariant for real;
and therefore constant, works only assuming that they remain isolated. But
0.. sweeps over the eigenvalues with negative imaginary parts as Im r —, 0,
invalidating the argument. In fact, eigenvalues U.. .� 2 { — 1/2n2 —

1/2m1} of H0(v) move to complex positions as is turned on with r
fixed, unless their movement is prevented by some selection rule. Since the

z plane

Figure 20 f2 + P212) — exp(t)/r1) when Im exp(21) <0.
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continuum of H0(r) swings out of the way, the elgenvalues are isolated
for Im r <0 and = 0, and lowest-order perturbation theory (3.5.18) can
be used to compute their displacement as aIr12 is turned on (the derivation
of the perturbation-theoretic formula (3.5.18) did not require the operator
to be Hermitian). As expected, the position of an eigenvalue is independent
of r, which merely specifies which complex half-plane the limit to real values
is to be taken from.

Perturbatloo Theory of the Complex Elgeniralues (4.4.12)

Let It> = U(t)I0> in the notation of (3.5.18), taking tO> and E(0)as the eigen-
vector and eigenvahie of H0(t). Then the eigenvalue of H2(r) is

E(a) = E(0) +
exp(r)

It> —
exp(r)

r12

— E(0))1P1
exp(x) It> + o(a2)

r12

= E(0) + 0>
— lim<0I P1(H0(0)

r12 r12

- E(0) — ie) 10> +
r12

Remarks (4.4.13)

1. To 0(a2), the imaginary part of is

Im E(a) = —ira2<OI t5(H0 — 10>,
r12 r12

a formula knoWn as Fermi's golden rule. Although this is certainly an
eigenvalue of for sufficiently large Im r, the Hermitian operator
H1(0), of course, has no complex eigenvalues. They only appear when
the matrix elements of the resolvent are continued analytically (see
Figure 21).

E(O)
x x x X X\

Figure 21 The motion of the eigenvalues of H,(t) for > 0.
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2. The interpretation of the poles as resonances is based on the lifetime
(4.2.11) as well as on the scattering operator V — V(H — E) - 'V. If is
small, they are the dominant contribution to the resolvent atE =
and in that case Im E(x) determines the probability of decay.

3. For the states of unnatural parity, H0(O) has no continuum in the subspace
of equal quantum numbers, so ö(H(O) — E0)P1 vanishes, and thus so
does Im However, for the other states, Im <0; this answers
the question that arose earlier about o,, (H(cz)) embedded in the continuum.
For sufficiently small x, it develops continuously out of the eigenvalues
— 1/2n2 — l/2m2 of H(0), which have Im = 0.

The next problem is to show that the vectors with
are scattering states, in order to be able eventually to calculate the relevant
scattering parameters with accuracies good enough for comparison with
experimental data. This is a formidable goal, so we shall content ourselves
with the simplest nontrivial situation, where an electron e scatters from
an atom consisting of a r and a p. We consider only energies less than
I KeV, so the muon remains in the ground state. If the energy is great enough
to excite the muon to higher bound states, then the calculation is quite similar
in principle, but much more complicated to write out. If the muon can be
ionized, then the ordinary Møller operators do not exist, and recourse must
be had to comparison with the kind of modified time-evolution of (4.1.19; 2).
The Coulomb field is screened only provided that the muon remains bounded.
Only then is the range of the interaction short enough for the scattering
theory to work. As in (3.4.16) we shall study the

Channel Hamiltonlan (4.4.14)

2

H— Pi P21

— 2 r1 r2 r,2'

2 1 2
Pt ' Pzi 11T,

2 r2 r12

forE<

Q1(E) O(E — H),

Iexp(—zr1) is the ground state of—i--— — —.
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This notation allows the principal result to be stated:

The One-Channel MOller Operators (4.4.15)

If E < —iz/8, then the operators

s-urn Q1(E)exp(iHt)exp(—iH1t)P1(E)
t-. ±

ane

s-urn P1(E)exp(iH1t)exp( —

exist and are complete,

— D (L\ tTh* —— • 1± '1± —

Remarks (4.4.16)

1. It is crucial that the effective interaction between e and jCp falls off
faster than l/r; if there were a nucleus of charge Z> I instead of p, it
would be necessary to choose

1P212 Z Z — 1
H1

s r1 r2

2. The scattering of from jrp is the same, with some changes of sign.
3. If the electronic spins are parallel, the scattering of e from a hydrogen

atom is complicated by the Pauli principle: Since H1 is not invariant
under permutation of the two electrons, exp(iHt)exp( — iH1t) does not
send the subspace of antisymmetric states to itself. It is necessary instead to
take the limit of ±
which is equivalent to an antisymmetrization of the scattering amplitude.

4. If the electronic spins are antiparallel, then H has a bound state, which
must be known precisely to calculate the scattering length; if there is an
eigenvalue at zero, the scattering length becomes infinite.

5. The S-matrix in the interaction representation, S11 = satisfies
the unitarity condition S?1S11 = = P1(E).

Proof of (4.4.15)

As in the proof of (3.4.11), we check whether

Q1(E)exp(iHt)11 exp(— iH1t)P1(E)

and

P1(E)exp(IH1t)11 exp( — iHt)Q1(E)
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are iñtegrable in time. The conditions of (3.4.11) for H and H1 have to be
met after multiplication by and, respectively, P1. so the supremum needs
to be taken only over

(i) ii ..J1 b(H1 — w).J1I1. For this part it is intuitively clear that
foro)< —ii/8,

— I + —
= —

and this is derived formally in Problem 1. With k2/2 = w + MI2, we find

Tr(,.f15(H1 —

Jd3xi — — x3) — x1),

where

1.
= sm kr

and

u(x) =

T —

The potential u is larger than the potential

V(x) = fd3x' I
4)(X')

i —
= + !)exp( — 2gw) (4.4.17)

(see (4.3.7)), which is the potential due to the proton shielded by the
muon-cloud. However, the dipole expansion 1/Ix — = 1/r

+ (x x')/r3 + shows that r2 as r We thus have a
one-body situation of the kind treated in (3.4.11). Since u has only a hr
singularity at the origin, (3.4.14; 1) shows that indeed

sup — ct)qJ10
01ff

(ii) sup II ö(H —

we!
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The resolvent still has the same structure as in (4.4.5) in the trivial
generalization to p> I, so

— z) = (I

and it is again a question of showing the boundedness of D(z)
and the compactness of ..j11 J(z)/ We already know this if z is
not real, and it only remains to see what happens for z e [— p12 + 5 ± is,

— S ± is] = 1,5> O,cjO.TheonlysingularpartofD(z)is

— + 1J2 — = ® —

—

+ (1 — l><J ® 1 +
—\2/1 r1 2 /

and in fact only the first term in this expression. If the muon is excited,
its energy becomes � p/S. and the second term is uniformly bounded
by 1/5 for all z €1. In part (i) we found that

is)1

is bounded (the proof also works for the term with p2 — z) replaced
— z)_1). Similarly, the only term in question in is

and in fact again only the contribution from the muon in the ground
state. To prove the compactness of

we argue as in (3.4.13). It is rather easy (Problem 2) to convince oneself
that K = —ü,) x

x2)) belongs to and is Hökfer continuous in w. This guaran-
tees the compactness of the operator in question for z = x + iy,

— p!2 <x <0, as y 0 (Problem 2). The points; at which J(z) has
eigenvalue 1 are eigenvalues of H with finite multiplicity. The associated
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eigenfunctions fall off exponentially (4.3.38), so is in The

operator ,j1 also has cigenvalue 1 1ff z equals one of the z,.
Since we know that there is no eigenvalue of H in the interval I,
(1 — J1J(z)/4J1)' is bounded uniformly on 1, and thus so is

sup ô(H —

Once it is known that the Møller operators exist, and hence that the
S-matrix is well defined, it becomes possible to calculate the scattering
amplitude of e from pp. This is a matter of finding the expectatiob value
of — 11(H — E)111 with E = —p/2 + k2/2 in the (unnormalizable)
state p(x1)expQk x2). Physical intuition says that the large mass of the
muon prevents an electron of low energy from having much influence on it.
As a consequence, the erectron should simply feel the familiar effective
potential V1 = 1 0 v, where v is as in (4.4.17). This feeling can at least be
tested by using V1 as the comparison potential in Kohn's variational principle
(3.6.29) and substituting for (li; setting k = 0 for this purpose, we get a

Variational Principle for the Scattering Length (4.4.18)

The scattering length is the expectation value of

T + i — V,)

x (H + —

i= v,—

mi2 n12Ii — — I r2 i
IAj tI r Yg

— — r
T T

in the state co(x1)® I.

Calculation of the Three Contributions to T (4.4.19)

(1) i. This amounts to the scattering of an electron by a short-range
potential V1. There is no interaction between the muon and the electron,
so everything factorizes. Since V1 is radially symmetric, 1 could be
evaluated numerically on a computer. However, it is hardly worth the
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trouble, since with the actual value p = 207, is such a small perturba-
tion that the first Born approximation a1 has an accuracy measured in

To see this, refer to (3.6.24) and calculate the quantity defined there,

11KV2 � IIvIIi Jd3xd3x'v(x)v(x')(4itlx —

— fd3k ff$(k)\2 2ir2

Iki

— [1k12 + 8p2J2 — 1 7

2J0 [1k12+41z2]4

since the Fourier transform of Iq,(x)12 is (1 + 1k12/4p2)2, so

(4p2)2

The scattering length a1 is thus equal to a3(1 ± HKII/(1 — IIKII))
= a5(l ± 0.002), and a calculation of yields

= —0.619 x 1013cm.

(ii) The term linear in — vanishes: Clearly,

® exp(1k x2)

= q(x1)®
—

—

and d3x1 x2) — is zero by definition. The we
have chosen is optimal in the sense that the difference between <T>
and <TI> is quadratic in —

(lii) To estimate the effect of (H + 1 in the last term, recall from §4.3
that H has no bound state, so H + p!2 � 0. Indeed, H dominated a
certain one-particle Hamiltonian with no bound states:

1

x (1 — P) = HL,

P= 14'><'PI®l.
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whereweusedlpj2/2— l/r� —1/2y+(l —y)1p12/2forO<y< I in
the last term. Let us finally choose y to optimize the bound. If a � b >0,
then a' � b' (2.2.38; Ii), so we arrive at the upper bound

(H
+

= —! + VL(r2))

j2 1

+(1—P)
2

P21

Zero would be a trivial lower bound for (H + ',but it is not good
enough to assess how much difference the correction to makes. For
this purpose we can use the projection methods of (3.5.31), and take P'
in (H + � P'(P'(H + p/2)P')1 F as the projection I p'> <c' I

® 1 with some p'. Then

\ 2 r1 r12/ 2

since

f
d3x'p(x')

J Ix—xl r

for any spherically symmetric p. Let P'( I — l/r1 )P' be 1". The
not exactly known resolvent is thus finally bounded by the following
one-particle operators:

21" 1 P 2 1—P
1P212 + H + /2 IpiI2/2 — 1/r2 + VL(rl)

+
1 — v P212 + ic2'

Pc'2=p+261, K2
1

Since V, has been chosen so that P(11 — V,)P = 0, only the last term
on the right contributes to T, and so the bounds on the scattering length
are

— flR(11 — �
� — IIP'R'(11

2 1/2

R'={112+12]

The term

V,' = ® (1 + .1 0
factorizes as (ground state of the muon) 0 (scattering wave-function
of the electron). The second factor can be evaluated by numerical
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integration of the radial Schrodinger equation, but once more it is
hardly worth the trouble, since the Born approximation 1 is quite
good. Specifically, the norm of in is

-2 1 f d3x' 3

Ix.—x'I

so — 1L = 0.001. As a consequence, can be
replaced with 1 in the following integrals to an accuracy on the order
of after which they are all elementary by Fourier transformation:

IIRU1 —

= J d3x1 d3x2 d3x'2

—V,(x2)
\ 1x2—x11

+
—

K2 12_ 2

,J (2,r)3 1k12 + K2 [ (1 + 1k12/4,t2)2

1 2

2 1

— 1 — y J (2ir)3 1k12 + K2 1k14 [. (1 + 1k12/4p2)4

The corresponding contribution to the upper bound is

Jd3xi d3x'1 d3x2 d3x'2 4'(xl)IP(xl)(_ +
x1

—

exp(—K'1x2
T

.±_ + 1 ,
—

2irIx2 — x21 1x1 —

If q,' is now chosen as (1 + — and the bounds are optimized
in and y, then there result the following

Bounds for the Scattering Length of e — (pp) (4.4.20)

The scattering length a = I Tqi)/4it satisfies

I 2\'
—0.70 x 13 cm =

a � —0.62 x 10- 13 cm.
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Remarks (4.4.2))

1. Although muonium is about rh/p 2.4 x cm. across, the
scattering length is smaller by a factor -1: The kinetic energy prevents
the wave-function from reacting much to a short-range potential. This
explains why muonium diffuses through matter without significant
interaction with the electrons.

2. The deviation from a, can be interpreted as a virtual excitation of the muon.
The lower bound shows that the ratio between the correction to a, and a,
goes toO as - 1/2 when

—* It is still on the order of 10% for the muon.
3. If k > 0, then (H — E)1 is no longer positive, and the resolvent must be

analyzed more carefully.

Problems (4.4.22)

1. Provethatö(lp112/211 — 1/r1 + 1P21 /2 — w) — — p/2)for
w < 3M/8 (see the proof of (4.4.15)).

2. Show that

K =
(IPiI2 + 1P212 — 2)_i 1

k,(x1)><q,(x1)I 0 ¶J1

belongs to 'e4 ifz <0.

3. Show that if 1(z) is an analytic family of operators on a connected, open region G
and 1(z) is compact in a neighborhood of z0 G, then 1(z) is compact for all z e G.
(Hint: the series expansion

is convergent in norm on a sufficiently small neighborhood of Show that all
V"(z0) are compact and use the method of overlapping discs described, for example,
in[17].

SolutIons (4.4.23)

1.

—
—

=

— (L)—

2. The operator is of the form

— co)...J11(x1, X2),

where ((Ipx + w)/2 — z) If z < 0, then this function is as
good as q,, since ü(x) = x')I has the same hr2 behavior as
u(x). Hence we conclude from (3.4.13; 2) that Tr(KK*)l <
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3. = (n!/2ni) (1(z)/(z — ') dz is the norm-limit of Riemanu sums of
compact operators and therefore compact, provided that C0 is a in the region
of compactness of z0. However, the power series converges on the largest circle
about z0 completely contained in the domain of analyticity G. Hence compactness
can be continued to the whole region G in analogy with analytic continuation
through overlapping discs.

4.5 Complex Atoms

The motion of the inner electrons in a large can be approximated
to within afew percent by motion in an averaged field.

The genuinely many-body problem that we shall discuss in much depth
is that of an infinitely heavy atomic nucleus of charge Z and N electrons. The
methods will be the same as those developed for helium, though the Pauli
exclusion principle will now emerge as the decisive fact. as the inter-
electronic repulsion can be neglected, these ideas lead to the familiar shell
structure of atoms, which is so evident in the periodic table of the elements.
To date it has not been possible to determine whether electronic shells are
also predicted by the Schrödinger equation including the effect of the electrons
on one another. A derivation would require extraordinarily tight upper and
lower bounds for the energy eigenvalues. It is easy to get upper bounds with
variational procedures, elementary calculations providing about 10%
accuracy and more elaborate ones attaining about I %. The methods that
have been presented for lower bounds break down, however, as the ground
state is pushed well into the continuum of H0 by the interelectronic repulsion,
though lower bounds with an accuracy of a few percent are obtainable with
another strategy. Unfortunately1 the accuracy is with respect to the total
energy, which goes as Z2N"3 eV, amounting to MeV for large atoms, while
the energy differences of importance for the shell structure and, for that
matter, all of chemistry are only a few eV. The required precision is Far too
great, so we shall have to make do with the qualitative traits of the spectrum,
which are due to various conserved quantities.

We follow the steps of §4.3.

The Normal Form If,, of the Hamiltoman (4.5.1)

N1
1

H — — Ze2> — + e2
1x11 ,>, —

can be transformed to Z2e4m1-IN, where

1 =H0+r.tH',
— Z

by a dilatation of the coordinates.
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Remarks (4.5.2)

1. The potential energy is once again £-bounded relative to the kinetic
energy, and H is seif-adjoint on the domain of the kinetic energy and
bounded from below.

2. The analysis of the resolvent in (4.4.5) can be adapted for the many-electron
Hamiltonian. All the connected graphs in the expansion of the resolvent
are compact, and the noncompact parts correspond to distributions of
the nucleus and electrons into groups within which the particles interact,
but which arc not bound together. The clusters determine where the
essential spectrum of the overall Hamiltonian begins, and if > 0,
Theorem (4.4.7) generalizes:

The HVZ Theorem (4.5.3)

MY2

The point spectrum also resembles that of (4.3.10) and (4.3.19); the effect
of dilatatior1s on the Hamiltonian implies the

of the Ground-State Energy (4.5.4)

The functions E1(ct) and also — 4J—E1(x) are concave in

The Virial Theorem (4.5.5)

If (H(s) — =0, then

E=

Remarks (4.5.6)

1. As before, it follows that there are no cigenvalues E � 0.
2. If is known, then (4.5.5) together with

1

'>JIxi—xJI

allows the expectation values of to be determined, tao.

It is furthermore true that positive ions and atoms have infinitely many -
bound states. Because of the symmetry requirements on the wave-function
the proof is more difficult than for helium.
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The Infinitude of the Point Spectrum (4.5.7)

If < 1/(N — 1), then has an infinite point spectrum.

Proof

We follow the time-honored recipe of the proof of (4.3.8), but this time the
exclusion principle comes into play. To take care of the symmetry, assume a
trial function

= ..., ..., Xx), rj Lxjl,

where is the antisymmetrized, normalized ground state of HN_i, with
energy EN_I. The symbol is used to indicate the absence of the coordinate
x,, which stands for both the spatial and the spin coordinates of the j-th
particle. For the present we assume only that E and q,,(r) 0 only for
n <r < n + 1, n = 1, 2 The .K is a normalization constant. Since H
is real, we may suppose that q and x are real:

N N

1)' 1)k

J
d3x1 .. . ...

j=i 1=1

The mixed terms like 5d3x1 ... ... X3,

xN) cause trouble. However, we know that the functions x fall off exponen-
tially, as the argument leading to (4.3.39) does not depend on the number of
particles: consider the group generated by exp(isr1); by analytic continuation,
for some ô > 0, . . ., for ails, lsI < ö. It then follows
that the mixed term is O(exp( — 2r 5)) as t —' because llexp( — �
exp(—nsr), and so = N + O(exp(—2r 5)). If is calculated
next, there are some more mixed terms:

112 1

O(exp(—2rt5)) + — + 1-

V(r1) = (N 1) Jd3x2 XN)l.
r12

Because of the exponential fall-off, V(r) = (N — 1)/r + O(exp( —2r 5)) as
r —, All told, if t is sufficiently large < l/(N — 1), then

EN_i + r_2(q, —(1 — c4N — 1))

x + O(exp(—2r 5)) < EN_i.
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Although the functions are not orthogonal, it is still true that <'f'RIWR.>
= + O(exp( — 2r They can thus be orthogonalized in the limit
t —. without affecting the inequality <HN> � EM_i. The off-diagonal
matrix elements <tPa I H,,, P ,> are all likewise O(exp( — 2vö)). If r is
sufficiently large, then for any n e there is an n-dimensional subspace
on which all eigenvaiues of "N lie below EN_ *bich proves (4.5.7) 0

Bound States within the ContInuum (4.5.8)

The continuous spectrum between EM_i and () usually has embedded
eigenvalues, of states whose decay is forbidden by conservation laws.
Consider as an example lithium, N 3. The ground state is the
configuration 2S The lowest state with spin is (ls)(2s) (2p), i.e., 4P,
which is well within the continuum of the states (ls)2(oos). Moreover, the
states of unnatural parity of the (ls)(2p)2 configuration are within the
continuum of the 2S' states. (The notation is (2S+

It would take us too far afield to go into great detail about the host of
energy levels. To gain an overview of the dependence of the energy on N, it is
most convenient to investigate the ground states of atoms with full shells.
They are milestones in the periodic table, and their theoretical analysis is
relatively straightforward.

Upper Bounds for E1(cx) Using Eigenfunctlons of H(0) (4.5.9)

The most primitive estimate is the expectation value of H in the ground state
of H(0), which is easy to find; the Balmer levels are simply filled up with the
available electrons in accordance with the exclusion principle. If the states
with quantum numbers (n, 1, s) are enumerated with the index j, then the
wave-function of the N noninteracting particles is

= }.._E(_1)PJ] (4.5.10)

where is a permutation of I ... N. Since the levels of energy — 1/2n2

are 2n2-fold degenerate, the eigenvalue of H(0) with this eigenfunction and
filled n-shells for n � n0 is

RO 2

E = — = —n0,

where

N =
+ + n0
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(see Problem (4.5.29)). The calculation of <II' H( requires in addition the
evaluation of

= N(N
—

2 rtz

1 Jd3xi d3x2

2 1x1 — x21

— (4.5.11)

The latter part of this, known as the exchange tenn, only occurs if and
have the same spin, since the scalar product includes the scalar product in
spin space as a factor. The exchange term is � 0 for all j and j':

,3lu xi U X2
I p(x)p(x2) � 0
j lx1 — x21

holds because the Fourier transform 1/2it2k2 of 1/Ixi is positive.
The exchange term was calculated for the simplest states in §4.3 and was

about 10% as large as the first term. If it is ignored when j j', then at any
rate there results an upper bound. The remaining term simplifies for closed
L-sheUs when it is noted that

1

±
4ir

(4.5.12)
lxi —x21 r2,r.om=_, r2 +

for r2 > r1, and otherwise r1 r2. Since -, is independent
of the angles, it is clear that the first contribution to the sum 1is spherically
symmetric, and when the angular integration is done, the term with 1 0 in
the decomposition (4.5.12) cancels out:

<'PIH'I'f'> � f d3x1 d3x2
j * j.

(ø(r1 — r2)
+

®(r2 — ri))

min{<*ii (4.5.13)
j * j'

Because of the virial theorem, = 1/n2,j = (ii, 1, 13, s), so

1N0 110

<'l'lH'l'l'> � — 2n22n'2 —a = 4 n'2
(fl ' fl ) n1

= + + + 2n0]
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(see the Problem). The net result is that

<'f'JHIP> � —n0 + + + + 2n0].

As N n0 = (3N/2)113 + 0(1), and = 0(1/N), then
/3\ 1/3 /

E � (1
—

+ 0(1). (4.5.14)

Because of (4.5.4), Equation (4.5.13) can be bettered with a parabolic bound,
as before, and since H' > 0, we obtain

Rough Bounds for EN for Neutral Atoms (4.5.15)

= N/Z = 1, then to 0(N"3) the lowest eigenvalue EN of HN is

EN
/3\1/3/ i\2

—

= —1.145 �
—

—

= —0.6439.

Remarks (4.5.16)

1. This eigenvalue EN is Z times the eigenvalue of the H of (4.5.1),
so the dependence on N and Z anticipated in (1.2.11) is verified.

2. An estimate O(N1"3) is useless for actual atoms, since the corrections
neglected in (4.5.14) with the of = (n')2 by n3/3 are still
about 50% for n0 = 10, which makes N = 770.

3. The estimate (4.5.13) is not very good for electrons within the same shell.
For instance, the right side is 1 for (is)2, while in reality the left side is
only (see (4.3.22; 1)). However, it is pretty accurate for electrons in
different shells; for (ls)(2s) it gives 0.25 instead of 0.2318. In all the error
is not so bad for large atoms, since it is the interaction between shells that
causes EN to be

4. If z is arbitrary, then the upper bound is — which
has the maximum 1/3 when Nz = 4. Thus a more favorable trial
function when N > 4Z/7 is the one having all additional elect.rons at
infinity with energy 0; with it, E/N113 � = —0.6978. According
to Thomas—Fermi theory (see volume IV) the correct asymptotic value is
—0.77.

E1(rx) Estimated with Trial Functions having Two Parameters (4.5.17)

In the effort to improve eigenvalue bounds, we recall .that the parabolic
bounds corresponded to the use of trial functions exp(id'r)'P with an optimized
dilatation parameter This takes the partial screening of the field of the
nucleus into account, which is clearly most significant for the external
electrons. It would thus make more sense to stretch the different with
different 'ri. Although this would ruin the orthogonality of the which



266 4 Atomic Systems

is essential for the calculation, it is still compatible with orthogonality to
dilate the with different 1 independently. In order to have more flexibility
in the choice of trial functions, let us use eigenfunctions of a Hamiltonian
containing an additional 1/r2 potential, since the eigenvalues are known in
that case. If the angular momentum is 1, we shall take

(1 + t5,)(1 + ô1 + I) ;H,———+
2r r

which has eigenvalues

= + I + 5, +

Later, ; and 5, will be optimized. The expectation values of hr and l/r2,
and therefore of I p12 can be calculated by taking derivatives of E by r and,
respectively, 5: with n + 1 + 1,

= r,(n + 5,)—2,

3. _31<IpIi=t,(n+S,)

To fill the shells in order, the sets of quantum numbers (n, 1, s) will be
enumerated with an indexj. Each i-shell must be filled with 21 + 1 or 2(21 + 1)
electrons to be spherically symmetric. In that case,

<H> = E v(n, (n + —

(n
(1

N(n, = 1(f)),
j. <j

where v(n, 1) is the occupation number, and 5, is allowed to vary only as long
as n + 5, is monotonic in j. The optimal value of <H> as a function of t is
attained when

1 v(n',I) /1= v(n,1)
(n + (n + 5,)3 — c5, + i +

i.e.,

1 1 1 — xN(n, 1)12 1 1) / + \1<H> — — E 1) (n + 5)2 (n + 5,)3 — ô, + I +
(4.5.18)

The optimization by 5, has to be done on a computer, and improves the result
of our earlier ansatz that 5, = 0 by several percent. The table given below
contains calculations of energies for several typical atoms, along with the
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screening Constants and the 5,. Note that because of(4.5.13), Formula
(4.5.18) 1. still a strict upper bound even for a spherical configuration plus
one more Olectron.

configuration
of non-filled

Z n-shells r0 t1 T2 t3

54

t4

55

by
(4.5, 18)

EN"3
by

Hartree-Fock

—0.03 —0.39
10 2s2p33p3 — — — — —0.524 —0.594

0.86 0.28

—0.01 0 —0.82
20 3d54d5 — — — —0.562 —0.620

0.94 0.69 0.17

—0.01 —0.11 0 0
40 3p6d104f" — — —0.591 —0.646

0.96 0.72 0.48 0.19

•—0.02 —0.09 —0.19 0 0 0
60 —0.607 —0.648

0.94 0.78 0.53 0.40 0.27 0.10

.—0.02 —0.17 —0.59 —0.86 0

80 4s'p6d'°f'45d5f'99 — —0.613 —0.656
0.94 0.73 0.41 0.20 0.06

Remarkably, this simple analytical ansatz arrives nearly within 10%
of the correct values. The road to greater precision is rocky, but the trip is
made easier by the reasonable assumption of a

SeIf-Coiisistent FIeld (4.5.19)

Hartree and Fock discovered one of the favorite methods for inventing good
trial functions. The first step is to take the infimum of <P HP> when P is
a product or determinantal trial function (4,5.10). The question immediately
arises of whether the infimum is actually a minimum, i.e., whether there are
minimizing If so, they satisfy the appropriate variational equations,

(H,pj(x) =

= —
+ —

=
fi3x'

=
Ix —
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where ejj are the Lagrange multipliers due to the orthonormalization. Since
H, is seif-adjoint, is a Hermitian matrix, and can thus be put into diagonal
form e1j = Hence we look for the N lowest eigenvalues of H,. If

1/N (positive ions and neutral atoms), then, as has recently been proved
in 1 18], minimizing solutions exist, but an analytical solution of this system
of nonlinear equations is hardly to be hoped for. An iterative procedure on a
eomputer is called for, and even if this also fails to find exact solutions,

is at least still an upper bound for the lowest eigenvalue. The pro-
cedure is unfortunately very cumbersome, especially because of the exchange
terms The upper bounds obtained are also shown in the table for
comparison. It is assumed that these values are within a few percent of the
exact values. Granting that accuracy, the product ansatz of (4.5.10) is not
at all bad, which suggests looking for lower bounds by using effective one-
particle potentials approaching the Coulombic repulsion of the electrons
from below. The principal theoretical shortcoming so far is the lack of a good
lower bound; great refinement of the upper bound does not help much. The
methods used in §4.3 are of no value because of the huge number of levels of
H(0). Some help is provided by the

Lower Bound for Interactious of Positive Type (4.5.20)

Let V(x) be a potential of positive type (i.e., with a Fourier transform V(k)� 0, V(0) <cx)), and suppose D(x) e L1(R3) so that t!i(k) exists.
Then

— xm)
$

+ NP(k)].

Proof

It follows from

IN
0 ö(x — xN) — p(x))V(x — ö(x' — xm) — p(x')

J \u1 /

that

N
— x,,) � j d3x p(x)V(x — x,,) — V(0)

,I>m n=1

— d3x' p(x)p(x')V(x — x').

Now set 'IJ(x) = 5 d3x' p(x')V(x — x'); the proposition then follows by
Fourier transformation. / El
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Remarks (4.5.21)

1. The significance of (4.5.20) is that a pair interaction is bounded by an
effective one-particle potential (1).

2. The degree to which 1 is arbitrary may seem surprising. A poor choice
of however, renders (4.5.20) a triviality, saying that something positive
is greater than something negative.

The Atomic Potential Bounded Below (4.5.22)

We have seen that a V of positive type can be estimated from below w,th
arbitrary one-particle potentials, at the cost of a constant. Since the Coulomb
potential becomes infinite at 0, it is first necessary to find a smaller function
finite at 0 and with a positive Fourier Eransformation;

V(x)
1 — exp( — iir) <L P(k) = ic2(k2 + p2)' (4.5.23)

will do. The effective repulsive potential

= fd3x'
n(x')

x

where n(x) is the electron density, should be fairly realistic and lead to the
best result. Then (transforming back to x-space),

H' � — d3x 'Z'(x)n(x) + fd3x n(x)2 + (4.5.24)

Since ,u appears only in the constants, it can be optimized immediately, so
we may set

r8 1U3
f d3x n(x)2]

As an analytically convenient approximation to n(x) we use the semi-
empirical expression (for N =

r + 2(9/2N)"3 N213 6(9/2N)"3
= NCr + (9/2N)"3]2' = 4nr[r+ (9/2N)113]"

1 321/3
{ } = N"3 + N513 (4.5.25)
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Although the Schrodinger equation can not be solved analytically with this
potential, the solution of a radial equation poses no difficulty for a computer.
The following one-particle levels are found for

n I H0

After these levels have been filled up, the
with the Hartree—Fock upper bounds as follows:

N

10 —0.761 —0.594
20 —0.730 —0.620
40 —0.715 —0.646
60 —0.712 —0.64S

80 —0.711 —0.656
(4.5.26)

(4.5.27)

1. This method works better for larger N. Indeed, one of the most important
results of Thomas—Fermi theory (see volume lV) is that the product
ansatz for the wave-functions in an averaged field becomes exact as N

2. The potential (4.5.25) guessed here is still not the best possible. If n(x)
= c exp(— 1.56r), then the lower bound one gets is —0.698 for Z = N =
36.

3. In volume IV, (4.5.24) will be recognized as a special case of a family
of inequalities of Thomas—Fermi theory. In this case all the inequalities
are, however, numerically about equally accurate.

4. Unlike the upper bounds, these lower bounds work just as well for the
individual excited states; the n-tb eigenvalue of the lower-bound Hamil-
tonian lies below the true n-tn elgenvalue.

1 0 —0.5 —0.395 —0.412 —0.436
2 0 —0.125 —0.112 —0.084 —0.083
2 1 —0.125 —0.103 —0.077 —0.079
3 0 —0.055 —0.097 —0.053 —0.036
3 1 —0.055 — —0.051 —0.034
3 2 — 0.055 — —0.051 —0.031
4 0 —0.031 — —0.051 — 0.028
4 1 —0.031 — — —0.028
4 2 —0.031 — — —0.028

resultant lower bounds compare
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5. The lower bounds depend critically on the form of P as an antisymmetrized
product, whereas the upper bounds can be improved significantly by the
use of linear combinations of determinants.

6. The bounds that have been derived reveal that the asymptotic value —0.77
is approached from above, but that the exact value is still not very close

—0.77 when N = 80.

7. The relativistic effects are comparable to the theoretical errors for heavy
elements. The experimental values lie within the bounds found here,
after relativistic corrections.

As to the properties of the electron density p(x), there is an immediate
generalization of the upper bounds as r -' and r 0 to the case of
N electrons. For the purposes of a qualitative discussion it suffices to have

In §1.2 it was explained why the average value of r should go as N 1/3• This
does not 'mean that heavier atoms are smaller than lighter ones. What is
perceived as the size of an atom is the diameter of the outermost electronic
orbital, whereas the mean value of r is dominated by the dense interior
electron-cloud. In order to see whether the conjecture of §1.2 is a rigorous
consequence of quantum mechanics, let us find some bounds for
If v = — 1, then the virial theorem yields

/1\-1 NZ

so if N = Z, then by (4.5.14),

(!) +

On the other hand, for fermions with spin

+O(N113)), p>o,

N(L)t (3pq)l'3 + O(N"3)).

2

2

= IEPII � + 0(N"3)),
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then

(1)-i � Nh13

The result, to O(N - 1/3), is that 0.436 � N 1/r> —1 0.716. The asymptotic
Thomas—Fermi value is If v = 2, then we obtain a tower bound by
filling up the harmonic-oscillator levels:

1
N 14/3

— + 1x112) � wN413 (1 + O(N 1/3))
4

N (3N)813 61'39N"3
32

N113<r2>"2 � 0.71 to o(N 1/3)

These rough numbers provide only an overview; for particular atoms one
can do much better with the more accurate values of (4.5.26) for E.

Problem (4.5,29)

Calculate i ii' for v = 1, 2, and 3.

Sohitlco (4.5.30)

As a consequence of the binomial theorem,

(n0 + — 1 = (v + +
(v

+ ... +
(v ÷ 1)

+

from which the individual sums can be determined recursively. The results are:

v= I: +

v = 2: + + n0),

v = 3: + + ni).

4.6 Nuclear Motion and Simple Molecules

The large masses of atomic nuclei make them move so slowly within
atoms and molecules that to a high degree of approximation they can
be treated as static centers of force.

In the previous sections atomic nuclei were considered as fixed centers of
force, but the validity of this approximation remains to be determined.
The question is of central importance in molecular theory, which, as we
shall see shortly, is based on the Born—Oppenheimer approximation (4.6.11),
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in which the nuclei are at first regarded as fixed while the electrons move in
the field of the static force centers. The energy of the system of electrons
then serves as the potential in which the nuclei move. The intuition behind
this approximation is that the light electrons move much more rapidly
than the heavy nuclei, so from the standpoint of the electrons the potential
is nearly static. Plausible as this may sound, it does not release us from the

-obligation to investigate whether this conceptual division of the action
actually follows from an analysis of the Schrôdinger equation of the whole
atomic or molecular system.

Separation of the Centerof-Mass of an Atom (4.6.1)

We shall initially continue to investigate the case of an atom with N electrons.
Let (r0, k0) and (r1, k1, . . . , be the positions and momenta of the
nucleus ofinass M and, respectively, the electrons of mass in. (The symbols
x1 are reserved for the relatiye coordinates below.) The kinetic energy is

ii. ,2 N IL 2
T + V

2M

In everything before now the limit 1/M —. 0 was taken. Yet it is not possible
to carry out any sort of perturbative expansion in tIM, at least directly.
if tIM = 0, then the states are infinitely degenerate, and if l/M <0, then
T is not even positive definite. Let us introduce center-of-mass and relative
coordinates x0 and x1, .. .,

/ N \
x0 (Mr0 + in )(M + Nm) ', x1 = r, — r0, I = 1, ..., N.

In order to calculate the momenta conjugate to these coordinates, write Tin
terms of the velocities:

2

m —
+ 1=1

The momenta are thus

3T &1 / N m
p0 = (M + Nm)10, —

in above, this yields the

Kinetic Energy in Center-of-Mass and Relative Coordinates (4.6.2)

M N
1Po' + PrPj

2(M + Nm) 2mM
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Remarks (4.6.3)

1. We see there are three terms, the kinetic energy of the center of mass with
the total mass; the kinetic energy of the electrons, with reduced masses
depending on the nuclear mass; and finally a correction on the order of
l/M, known as the Hughes—Eckart term. Since it is obviously bounded
relative to the second term, nothing prevents it from being handled with
analytic perturbation theory. Note, however, that it can be either positive
or negative.

2. Since the Hughes—Eckart term is not compact relative to T, it is a
reasonable question whether it influences the essential spectrum. We
have seen that without the correction the essential spectrum begins
at the lowest point of the spectrum of This is physically reasonable,
and is interpreted as the threshold of Ionization. Expressed differently,
we have proved that without the term on the order of 1/M, inf + VN)
= inf Sp(T + VN 1), where VN ...1 is the potential neglecting the last
particle. But this state of affairs should not be affected by the presence of the
Hughes—Eckart term. Indeed, the compactness of the individual terms
is not destroy,ed by a relatively bounded perturbation.

Estimate of the Effect of a Finite Nuclear Mass on the Energy Elgenvalues
(4.6.4)

Since the center-of-mass motion separates off, we consider only the relative
energy, which can also be written

Because mass has the dimensions of energy in units where h = e = I, and no
other constants encumbered with dimensions appear, the ground-state
energy must be of the form

The coefficient of 1/M in H, is positive, so! increases monotonically. Since E
must be concave in (1/rn, 1/M), it follows that

Ô2E ( a2E \2

ô(1/m)2 a(1/M)2 — �
so f" � 2(f1)2/f, and — 1/f is concave. Since f is negative, this is a stronger
concavity property than f" <0.

1 1 ÷f'(O)rn
— f(m/M) f(O) f(0)2 M'
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1(0)f I — (f'(O)/f(O))(m/M)
(4.6.5)

We use the inequality � N to bound f'(O): If the
expectation value of H is calculated in the ground state for m/M = 0, then
<L = E(m/M = 0) = As a consequence,

� � f(O)(1 — (4.6.6)

from which it follows that 0 � f'(O) � N f(0) I. With the aid of (4.6.5),
Inequality (4.6.6) is refined to

f(O) � I(i;)
1

(4.6.7)

Remarks (4.6.8)

1. If N = 1, this method improves the upper bound f(O)(1 — m/M) t',
f(O)/(l + m/M), which is the exact result for the correction due to the
reduced mass.

2. If N = 2 and Z = 1, then the upper bound is good enough to prove
the but not ofee4e. In that casef(0) is the energy
of — 0.528, and it would be necessary to have

—0.528 —0.5

1 + 2(m/M) < 1 + (m/M)'

i.e., m/M <0.06. It requires highly sophisticated trial functions to show
the existence of a bound state of e - e + e —.

3. For neutral atoms, M � N proton masses, and the correction for nuclear
motion is less than 0.1 % of the energy for M = co. This means that the
ratio of the nuclear velocity to the electronic velocities is O(m/M).

We now take up the problem with .K nuclei, the coordinates of which will
be written as capital letters. We first write down the

Molecular Hamiltonlan (4.6.9)

N.. 2 .k 2 N K
— Ps U

1=1 m k=1 k=1 t —

1 ZkZ,
V— Xj k<I It'k —

K p 2

k
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Remarks (4.6.10)

1. There are no new difficulties in verifying self-adjointness and semibounded-
ness.

2. The general conclusions that were drawn about the Coulomb potential
from its behavior under dilatations are still valid.

3. The motion of the center of mass will henceforth be considered as separ-
ated off.

The Hamiltonian (4.6.9) describes a fairly intractable many-body problem.
In order to be able to frame detailed propositions about it, we shall rely on
the extreme ratio of the masses, m/M,, <0.001, to break the motion into
that of fast electrons and slow nuclei. The expectation is that the nuclei
can be considered static for the motion of the electrons, so we next investigate
the accuracy of this description.

The Born-Oppenheimer ApproximatIon (4.6.11)

The first step is to find the energy cigenvalues X = (X1, ..., Xx),
of These become the potentials for the motion of the nuclei, so the next
step is to find the elgenvalues of

K
H,, +

The Accuracy of the Born-Oppenheimer Approximation (4.6.12)

Let E, be the lowest eigenvalue of H, 'P1(x) the ground state of and
that of H,,. Then, defining x = (x1,..., XN),

E11 � E1 cE11 +

Proof

The lower bound follows from the operator inequalities

K p

The upper bound. If 'I'x(x)'l?(X) is used as a trial function, then clearly the
expectation value of is E1(X) and, on the one hand, H,, produces E1,. On'
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the other hand, since the electron wave-functions depend on the nuclear
coordinates, the operator 1 also acts on

Pk'I'X(x$)(X) = _i[Px(x) +

When squared and combined with <E1(X)> the first term yielded E11, while
the second term is the in (4.6.12). Because of the normalization
of the mixed terms drop out when integrated by dSNx:

+
lPX(X)) = Jd3NxIPx(x)12 =

Remarks (4.6.13)

1. The only dependence on in the integral is that of 1. Provided that
this quantity remains finite as —' oo, the difference between the bounds
is {l/Ma}).

2. The vibrational energy of the nuclei is on the order of
= O(M 1/2) The Born—Oppenheimer approximation is thus accurate
enough that it makes sense to calculate this energy.

3. Rotational energy is inversely proportional to the moment of inertia,
so for the nuclei it is O(M; 1). This is comparable to the error of the
approximation, and it will thus not be possible to make any firm state-
ments about it.

We shall now survey some general properties of E(X).

Lower Bound: The Energy of the United Atom (4.6.14)

Disregarding the nuclear repulsion, E(X) has its infimum when = for
all i and k.

Proof

— tI 1=1 m 1 I; kl i<j

A' (N / 2aj'c'tPi
Z — Ix, — Ix, — x,I

A'

*= 1
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and the expression in the curly brackets { } is precisely the Hamiltonian of
an atom of charge Z. If its lowest elgenvalue is denoted E(N, Z), then

E(X)
k>I

+ E(N, Z).

Remark (4.6.15)

Proposition (4.6.14) means that the electrons would prefer the nuclei to
be all bunched together. To understand how molecules are formed it remains
to be determined where this attraction balances the Coulombic repulsion of
the nuclei.

The Effects of the Dilatation Group (4.6.16)

Let = RX1. Consider the coordinates X1 as fixed, so that the molecule
preserves its shape as it expands or contracts as R varies. if = T + V,
where T = I p1 12/2m, then the expectation values with the electronic wave-
function > such that > = E(R)I > satisfy

= —E(R) — R
E(R)

<V)=2E(R)+R

Proof

The operator is put into the form

= +

by a dilatation —. Rx1, R - 'p,, where V depends on x1 and X1, but
not on R. Hence E(R) is of the form (1/mR2)f(ctmR), where we will not bother
to indicate the dependence on By the Feynman-Hellmann Theorem
(3.5.19; 2), <V> = and <T> = E — <V> = 1/rn), which
shows (4.6.16). El

Remarks (4.6.17)

1. At the equilibrium position, where ÔE/OR = 0, the virial theorem for the
electrons as usual states that <V> = 2E = —2<T>. If L3E/I3R 0, then
the kinetic energy is less than IEI when is greater than 0, and vice
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versa. This agrees with physical intuition, according to which if R is too
small the kinetic energy of the electrons is too large.

2. A false argument for the formation of molecules is sometimes advanced,
that their greater volume allows some savings in the kinetic energy of
the electrons. It is certainly true that <T> < 1< V> 1/2 as R is decreased
from infinity to the region where > 0. However, <T> = El at the
equilibrium position, and is thus greater than in an atom if I El is to be
greater than the energy of the isolated atoms.

3. Of course, the virial theorem also holds for H as a whole. If << ) denotes
the expectation value in the ground state E1 of H, and denotes the
kinetic energy of the nuclei, then

1E11 = (T} + (Ti) < =

so

— (T>>> (T,).
This shows that the expectation value calculated in the Born-Oppen-
heimer approximation is within of the exact expectation value.

4. Since V is bounded relative to T, isolated eigenvalues are analytic in
Therefore f is analytic, so E(R) is analytic in R for R 0, provided that
the eigenvalues remain isolated.

Upper Bound to E1(R) (4.6.18)

Let R0 be the equilibrium position, i.e., .3E 1/aR IR Ro = Then for all R > 0,

n2/ p pIso, I
D

Proof

In the proof of (4.6.16) it was shown that E1 = (l/mR2)f(czmR), wberef was
some concave function by (3.5.23). Therefore R2E1(R) is concave in R, and
is always less than its tangent (see Figure 22):

R2E(R) � + (R — R1)(2R1E(R1) +

R and R1. Proposition (4.6.18) follows with R1 = R0.

Application to Dlatonile Molecules (4.6.19)

If there are two nuclei, R may be identified with X1 — X2 I, and the upper
bound for the nuclear motion is

P IPI2 R—R0\
H,, � + + E(R0) + 2

R
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Figure 22 E R2 in atomic units for H2.

where M = M1M2/(M1 + M2), and P is the momentum
conjugate to X1 — X2. Since the potential is a superposition of hR and i/R2
potentials, the Schrödinger equation can be solved analytically (Problem
(4.6.29)), producing the general inequality

E(R0)
E(R0) � E11 �

+ x +
1

where x = (4.6.20)

1. Since E0(R)j m and R0 m1, we see explicitly that — E(R0)
=

2. Inequality (4.6.20) is too general to be numerically accurate in special
cases. For instance, for and H2 it states that the zero-point energies
of vibration, E11 — E(R0), are less than 0.24 and, respectively, 0.49 eV,
whereas the observed values are roughly 0.14 and 0.26 eV.

As was shown in (46.14), E1(X) is always greater than the sum of the
ground.state energy of the united atom and the Coulomb repulsion of the

rb

Remarks (4.6.21)
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nuclei. The amount by which the ground state of a diatomic molecule can
exceed this lower bound can be estimated by a

Bosmd to E1(X) In terms of the Election Density (4.6.22)

Let p(x) be the electron density of the ground state of

HN.z=
1

,
m x, — xjI

and let E(N, Z) be the ground-state energy. For a diatomic molecule,

E(N, Z) � E1(R) —
Z1Z2

� E(N, Z) + z f d3x
—R r R

R = —

Proof

Consider as a function HR of the vector variable B = X1 — X2 and
average over the angle. This affects only the potential

Nf Z1 Z2 \
— Ijx, — R/21

+
I x1 + R/21)'

which is turned into the potential

Nz Hf1 1R
— — + z (— — — ri), R = =

R1 /
of a spherical shell of radius R/2 and charge Z. By the mm-max principle,
the expectation value of

f
in the ground state of HN.Z is an upper bound to E1(R).

Remark (4.6.23)

As R —* 0 the bound reduces to

E(N,Z)� E1(R)—
Z1Z2 E(N,Z)+
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\Thus, after the Coulombic term Z1Z2/R is subtracted off, the energy E(R)
approaches E(N, Z) with a horizontal tangent as R —, 0. This also follows
from the fact proved in [19] with a somewhat more difficult argument,
that, although E(R) is not analytic at R = 0, it is at least C2 there.

The rough outlines of the genera! features of the important observables
are now known. We shall conclude by working out some of the finer details
for especially simple molecules.

The Properties of E1(R) for (4.6.24)

= 2, N = 1, = Z2, and X1 — X2 = R, then H,, of (4.6.9) is unitarily
equivalent to where

21x—R/211x+R/21 R

If E1(R) is the lowest eigenfunction of H, then

(i) E1(R) — increases monotonically in R; and
(ii) R2E1(R) -- Rcc is concave and decreasing in R.

Proof

(ii) This follows from (4.6.16). Since H — x/R decreases as a function of

where f = R2 times the lowest eigenvalue of H — x/R.
(i) This is less trivial, and requires a variant of (4.3.4 1) for not necessarily

positive potentials:

Monotony of the Schrödlnger Wave-Function In the Potential (4.6.25)

Let () be an open set C R1', and

(i) f, g E C°(fl), g> 0,
(ii) f(x), g(x) as Jxf —.
(iii) f(x) � g(x) for all x e
(iv) 4f,AgeL1(Q),
(v) suppose that I'(x) < W(x) for all x e and that, in the sense of distribu-

tions, —Af + Vf � 0 and + Wg � 0.

Thenf(x) � g(x)forallxea
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Proof

To avoid some complications the proof will be sketched for sufficiently
nice g, f, and Let D {x e Q: g(x) > f(x)) as in the proof of (4.3.41).
Assumptions (1), (ii), and (iii) imply that g = fon DD. Becauseoi(i)and (iv),
with Green's theorem,

0< V)fgd3x � — = — f),

where ö/ôn is the derivative in the direction of the outward normal to 8D.
= and g > fonD, the differenceg — f can not increase in the

outward direction, so we conclude that D = 0. 0

The proof of (4.6.24) can now be completed. The operator H — c'/R is unitarily
equivalent to

h—

By the Feynman-Hellmann theorem,

= — - + y2 +

— R)[(x — R)2 + y2 +

x — x, y, z) — y, z)J

where is the ground-state eigenfunction of h and e1 = E1 — is its
eigenvalue. But now — x, y, z) � y, z) for all x > R, since the
assumptions of (4.6.25) are satisfied with C� = {(x, y, z): x > R}, f =
—x, y, z), and g = y, z): As in (3.5.28), i/i is nonnegative, and it can in

fact be proved strictly positive [3]. The functions f and g are equal on
= {(x, y, z): x = R}, and we take

W(x) — — —
— [(x — R)2 +y2 + z1112

— E1(R) +

and

V=
[(x — 2R)2±y2 + z2]h12 [(x — R)2 :y2 + z2]112

— E1(R) ±

acarly, W> Vfor all x > R. Therefore i3e1/äR � 0. 00
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Remarks (4.6.26)

1. With (4.6.16) it now follows that <V> — 2E1 � —ri/R for all R.
2. If H is of the form of (4.6.24), then

( R—2x R+2x
4 — R/2)2 + y2 + z2]312

+
[(x + R/2)2 + y2 + z2]312

x RI'> � 0
means that the electron prefers to be between the two nuclei.

3. It is certainly not true that all eigenstates are monotonic in the internuclear
separation. For example, as R —. cx the eigenvector with eigenvalue e2(R)
that becomes the 2p state when R = 0 is asymptotically

/ R\ / R\

up to normalization. The corresponding eigenvalue is that of the ground
state of the hydrogen atom, and thus the same as e2(0). Since e2(R) is not
constant, it is definitely not monotonic in R.

Bounds for E1(R) for (4.6.27)

The most convenient methods are the Rayleigh—Ritz variational principle
and Temple's inequality (3.5.32; 2). An accuracy of 0.1 % is attainable with
the trial functions

/ I= + )exp(—
—i---,),

1/ R R\
±

by adjusting the parameters and fi (see the table and Figure 23).

Remarks (4.6.28)

1. For lack of a better lower bound, the value —P0.5 + hR was used for the
energy E2(R) of the next higher gerade (even) state.

2. The bounds become inaccurate in the regime of large R. It can be shown
[20] that E1(R) goes asymptotically as —9/4R4 —. The expres-
sions for the gerade and ungerade states are the same to all orders in a
formal hR expansion; however, it is feasible to calculate the gap between
them [23).



4.6 Nuclear Motion and Simple Molecules 285

—1.7

ElLa � E1(R) � for 11

R

Temple Rayleigb—Ritz

ELLB a fi a

0.2 — 1.929 1.91 0.64 — 1.929 1.94 0.67
0.4 — 1.801 1.80 0.61 — 1.801 1.84 0.61

0.6 — 1.672 1.71 0.58 —1.67 1 1.75 0.57
0.8 — 1.555 1.62 0.55 . —1.554 1.67 0.54
1.0 —1.452 1.55 0.52 — 1.451 1.59 0.52

1.2 — 1.363 1.49 0.50 — 1.362 1.53 0.50
1.4 — 1.285 1.44 0.49 — 1.284 1.48 0.48

1.6 —1.217 1.40 0.48 —1.216 1.43 0.46

1.8 — 1.157 1.36 0.47 — 1.39 0.45

2.0 — 1.104 1.32 0.47 —1.102 1.35 0.45

UB:—1.1

—1.2

—1.3

—1.4

—1.5

—1.6

LB:

H< ><H>_E2

—1.8

—1.9

0.5 1.0 1.5 2.0

Figure 23 Bounds to E1(R) for
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3. Since the relativistic corrections approach the level of 0.1 %, it is not
worthwhile to pursue greater accuracy within the framework of the
Schrödinger equation.

4. The elgenvalues E, of can be calculated to arbitrary accuracy as a
continued fraction.

5. The increased density of states makes it more diflicult to obtain accurate
lower bounds when there are more electrons in the molecule. One first
needs a rough lower bound for E2 to get a better one for E1. It takes a
rather more laborious computation to reach the accuracy we have gotten

[21].

Problem (4.6.29)

Study the Schrodinger equation with II = 1p12/2 + — $/r.

Solution (4.6.30)

Replace/fr + 1) with /(/ ÷ I) + (cf. (I: 3.4.24; 6)).

Some Difficult Problems

I. invesugate the three-body Coulomb system with charges +, —, —, and masses m1,
m2, 1. For what region of the m1, m2-plane does there exist a point spectrum (ci.
(4.3.27))? In particular, is there a bound state H?

2. Two helium atoms attract with a Van der Waals potential, E1(R) — l/R6 as
R Find a lower bound to E1(R) with a flat enough potential minimum to show
that two helium atoms do not bind.

3. Find bounds br the imaginary parts of the resonances E of (4.4.13; 1).

4. Bound the scattering cross-section for e — H near the resonances (4.4.13; 1).

5. Prove asymptotic completeness for the scattering of e — H above the ionization
energy.

6. Study the monotonic properties of E1(R) — Z1Z2/R for complicated diatomic
molecules.

7. In what sense does the Born—Oppenheimer approximation converge? The operator
H —. He,, as —, but how does converge as R —. and to what?

8. The proof of (4.3.38) provides no numerical values for orr0. Find some.

9. The upper bound (4.3.43) for p(O) is the exact value if there is only one particle,
while the lower bound is too small by a factor With more electrons the upper
bound degrades somewhat and the lower bound gets much worse. Find better
lower bounds.
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