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Preface

Quantum Mechanics, the new age science,
Has struck wonder since
With the superposition principle indeed
The cat could be half-alive or half-dead.

One more book on quantum mechanics! There are plenty of excellent textbooks on quantum mechanics 
in the market. Good lecture notes are available on the internet. Then, where is the need for another book 
on quantum mechanics? Every author feels that there is a lacuna that is not filled by the existing books 
and believes that his/her book will bridge this gap. Of course, this belief is likely to remain in the realms 
of wishful thinking.

This book has been written by a teacher, rather than by an expert on quantum mechanics. The jus-
tification for writing this book, as also its thrust centres on this point. I taught quantum mechanics for  
M.Sc students at RKM Vivekananda College, Chennai, for more than two-and-a-half decades. Quantum 
mechanics is very abstract and mathematical. It requires lengthy articulation on the part of a teacher  to 
clarify the subtleties of various concepts. Also, many students find it difficult to do all the mathemati-
cal manipulations themselves. During my lectures, I have often been requested by students as well as 
teachers to suggest a book where all the calculations can be found in detail. This book makes an attempt 
to provide all the calculations and explain the subtleties involved in a student-friendly way. However, 
learning quantum mechanics is not going to be easy even if one finds a book where all the calculations 
have been worked out in detail. The only way for a student to learn quantum mechanics is by working 
out all the details himself/herself. There is no shortcut or an alternative method other than working 
out the details by oneself. The student has to spend sufficient time to reflect on the nature of quantum 
mechanical ideas. Yet, students do require some help from the teachers or books and the degree of such 
help depends on the level of the student.

This book has been written with the average student in mind, who wants to understand and appreciate 
quantum mechanics. Therefore, it may sound too elementary and repetitive at some places. The book 
presents the mathematical manipulations in full detail while laying considerable emphasis on the con-
ceptual framework of quantum theory. 

I have tried to impress upon the reader that the world view generated by quantum mechanics is dras-
tically different from that of classical physics. The best way to appreciate the implications of quantum 
mechanics is to compare it with classical physics. Such comparisons have been provided throughout 
the book.

A number of topics such as optical theorem and Kramer’s relation have been presented in more depth 
than what is generally covered in a textbook at this level. Though these materials are available from 
other sources, they are not easily accessible to students, in general.
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xviii  Preface

The order in which the various topics are discussed is quite conventional. It is better to first get 
acquainted with Schrödinger equation and its applications to simple potentials in one dimension. This 
exposition can be followed by operator formalism. But even in the case of formalism, it is better to do it 
in the language of wave mechanics. Introducing Dirac’s abstract state-vector formalism after the expo-
sure of wave mechanics, helps students to grasp it better.

Classical physics is reviewed in Chapter 1. The evolution of major concepts of classical physics is 
presented in this chapter, without going into the historical accounts, with a view to prepare the reader 
to get a proper perspective on quantum mechanics. Feynman’s thought experiment on double slits is 
portrayed in detail. We use the words ‘particle’ and ‘wave’ to describe the physical entities in both 
macroscopic and microscopic world. However, their meanings are different. At the microscopic level, 
the objects exhibit non-classical particle and non-classical wave property. It is amazing to see how 
Feynman’s thought experiment brings out all the non-classical nature of wave–particle duality and the 
state of superposition.

In Chapter 2, Schrödinger equation and boundary conditions for the wave functions are developed. 
The concept of wave packet in the context of uncertainty relation is presented in detail. In Chapter 3,  
Schrödinger equations for different one-dimensional potentials are solved bringing out the conse-
quences of wave nature in the microscopic world. In particular, it delves into the non-classical aspect of 
the tunnelling phenomenon.

In Chapter 4, the mathematical background which is required to work on quantum mechanics is 
provided (in a minimal way). Its major stress is on the exposition of the Hilbert space structure of 
quantum mechanics, though it is an elementary account without any mathematical rigour. Chapter 5 
is devoted to the formalism of quantum mechanics. It brings out the significance of superposition in 
quantum mechanics and expounds on the uncertainty principle, the concepts of compatible observables 
and simultaneous measurements. It elucidates the quantum mechanical postulates and shows how all the 
postulates together imply a radical departure of quantum mechanics from classical physics. The contrast 
between classical and quantum physics is brought out in detail.

Chapter 6 is on the simple harmonic oscillator. Both wave mechanics and the ladder operator meth-
ods are spelt out. The coherent state is explained in detail. Chapter 7 dwells upon the orbital angular 
momentum. In Chapter 8, Schrödinger equation is applied to various three-dimensional potentials. The 
square-well potential and the hydrogen atom are presented in detail. There are two appendices: one on 
associated Laguerre polynomial and another on Kramer’s relation.

Chapter 9 takes a close look at Dirac’s abstract state vector formalism. The second part of this chapter 
focuses on symmetry and associated unitary transformation. We choose to work with active transfor-
mation. The concept of internal parity is developed at length. Chapter 10 develops angular momentum 
and deals at length with Clebsh–Gordan coefficients and their evaluation using various methods. The 
tensor operators have been presented at the introductory level. Chapter 11 stresses on the principle of 
indistinguishability and the consequences of this principle in statistical mechanics. The density matrix 
and its properties are analyzed in detail. 

Chapter 12 consists of two parts: In the first part, we consider an electron in the presence of con-
stant magnetic field. Next, we consider gauge invariance, which plays a major role in elementary par-
ticle physics. However, we restrict ourselves to the gauge invariance of Schrödinger equation only. The 
Aharonov–Bohm effect is presented. The second part of this chapter deals with two-state problems. 
There are a number of systems which are unrelated but their state space is two-dimensional. The fact 
that their state space is two-dimensional Hilbert space causes them to share certain common features 
irrespective of other details. Fluctuations in ammonia molecule’s configuration, magnetic resonance and 
neutrino oscillation have been considered here as systems illustrating the two-state problem.

A01_QUANTUMMECHANICS_3628_FM.indd   18 5/23/2013   8:11:49 PM



Preface  xix

Chapter 13 deals with approximations for solving time-independent Schrödinger equation. It exam-
ines the time-independent perturbation theory and variational method and describes the WKB approxi-
mation and its applications in a detailed manner. Chapter14 considers various types of approximation to 
solve the time-dependent Schrödinger equation with stress on the time-dependent perturbation theory 
and its applications. It also discusses the adiabatic theorem and the Berry phase at length. Chapter 15 
describes the scattering theory. A major part of this chapter is devoted to partial wave analysis. It also 
elaborates on the Born approximation.

Chapter 16 is on the relativistic wave equations. It explores Dirac’s negative energy sea at length 
though this idea has been superseded by the quantum field theory. The corrections to Bohr energy levels 
of hydrogen atom have been worked out using both Klien–Gordan equation and Dirac equation. Solving 
Dirac equation for hydrogen atom requires considerable manipulations and the chapter presents all cal-
culations in full detail.

I am indebted to Ramakrishna Mission Vivekananda College, Chennai, where I had taught quantum 
mechanics for about 25 years. Interactions with my former colleagues of physics department were 
indeed a pleasant experience. I also benefitted a lot from the department library. I take this opportunity 
to thank my colleague, K. Sethusankar, who was very helpful to me all these years. I am indebted to 
my former colleagues, R. Sudharsan and J. Segar, who went through the manuscript patiently. Their 
critical observations made me rewrite a number of sections with better clarity and rigour. I am grate-
ful to R. Sudharsan for proofreading all the chapters painstakingly with patience (The clerihew given 
above is by Sudharsan). I am obliged to Ganesh Rajkumar for helping me in software-related work.  
I thank my brothers and sisters for their support. I thank my wife R. G. Shanthi and my daughter  
M. Nithya Bharathi for their cooperation while I was writing this book.

V. Murugan
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Evolution of Physics: 
Classical to Quantum

A brief review of development of key concepts of physics is presented here. There is an evolution of 
ideas in our understanding of the nature of the physical universe. The conceptual frameworks in phys-
ics are continuously evolving. Even in modern physics, this evolution is taking place continuously. 
Our understanding of an electron has changed a lot in the last hundred years. The concept of photon 
has undergone a number of changes from the light quantum of Einstein. Tracing such developments 
in full details will be a big story by itself which is not our purpose. This chapter is restricted to a brief  
account of conceptual developments with an eye on quantum mechanics. Here, we concentrate on the 
basic concepts of Newtonian mechanics, development of wave theory of light, and atomic structure 
of matter. A rapid survey of early quantum theory, namely the theory from 1900 to 1925, is also pre-
sented. Finally, the uncertainty principle and wave–particle duality are presented in detail to highlight 
the radical departure of quantum physics from classical physics.

1.1 cLAssicAL mechAnics
The central equation of classical mechanics is Newton’s equation of motion.

 m d
dt

t
2

2
r f r= ( , )

This equation determines the position of an object r(t) at various instants of time for a given set of 
forces f(r,t) acting on the object. f(r,t) is the known quantity and r(t) is the unknown quantity in this 
equation. This is a second-order differential equation. The general solution contains the constants of 
integration which can be determined from the initial conditions of the object. By initial conditions, we 

mean the values of the position r(0) and the momentum p(0). (Instead 
of momentum, velocity also could have been chosen). Let us take a sim-
ple example to illustrate these ideas. Our example is a simple pendulum 
executing simple harmonic motion as shown in Fig. 1.1.

The forces acting on the bob are tension T and the gravitational force 
mg downwards as shown in the Fig. 1.1. So, we have

 m
d

dt
m

2

2

r
T g

( )t = +

1

mg

T

mg

T

Fig. 1.1 Simple pendulum
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2  Quantum Mechanics

Skipping the details which can be found in any textbook on classical mechanics, let us write the equa-
tion for small angles as given below:

 
m d x

dt
m

g
l

x

d x
dt

x

2

2

2

2
2

= −

= −w

The solution of this equation is x(t) = A cosw t + B sin w t.
The momentum p(t) is 

 p t m A t m B t( ) sin cos= − +w w w w

Here A and B are the constants of integration. To determine A and B we should know the initial condi-
tions, namely x(0) = x

0
, p(0) = p

0
. From the above equations, we get

 x t x t
p

m
( ) cos sin= +0

0w
w

wt

The time evaluation of the system is determined by the initial conditions. For a bob at rest in the 
equilibrium, we can give a gentle kick and make it oscillate. This corresponds to the initial condition 
x p mv0 0 00 0= = ≠  and  and the resulting solution is x t p m t( ) sin= 0 / w w . On the other hand, we can 
pull the bob to an extreme position x

0 
and withdraw our hold. This corresponds to the initial condition 

x
0
 ≠ 0 and p

0 
= 0 and the solution becomes x(t) = x

0 
cosw t. We can visualize many such situations. The 

lesson to be learnt from this example is that the forces acting on the object and the initial conditions 
together determine the particular trajectory of a particle.

Let us leave aside this example now. Newton’s equation of motion has been successfully applied to 
a wide variety of situations. For instance, its success in explaining the planetary motion is remarkable 
and it is able to account for the motion of the comets well. The motion of all the objects on the earth 
can be analysed successfully using Newton’s equation of motion. All of these applications of Newton’s 
equation of motion share some common features which lead to certain philosophical points of views. 
Let us summarize them as follows:

 1. Trajectory: The primary aim or utility of Newton’s equation of motion is to determine the posi-
tion of an object at all instants of time. The function r( )t  is known as trajectory of the object. This 
is also known as time evolution of the system. To determine the time evolution of a system, we 
should know all the forces acting on the system with the initial conditions r   p( ) ( )0 0and  .

 2. Determinism: Let us re-interpret the Newton’s equation of motion as follows: If we know the 
forces acting on the system and the initial position and momentum at t = 0, ( ( ) ( ))r p0 0and  , then 
we know the position and momentum of the object at all instants of time later. In other words, 
the position and momentum at all instants of time ( ( ) ( ))r   pt tand   are uniquely determined. The 
forces on the object and the initial conditions together leave no scope for randomness or indeter-
minism with respect to the motion of the object. So in a sense, the future of the system is deter-
mined completely once the force acting to the object and the initial conditions are fixed. This is 
known as determinism.

  In the case of simple pendulum these ideas can be explained as follows:
  Forces on the object: Tension T  and gravitational force mg.
  Initial conditions: x (0) = x

0
 and p (0) = p

0
.

  Position of the bob at any time t with: x (t) = x (0) cos
( )

sinw
w

wt + p
m

t
0
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Evolution of Physics: Classical to Quantum  3

  Therefore, the position of the pendulum cannot be anything other than that dictated by the expres-
sion for x(t).

   This kind of determinism is lost in quantum mechanics, which will be discussed in later chap-
ters. Just for the sake of completeness, it should be mentioned that recent developments (chaos 
theory) indicate presence of a new kind of indeterminism even in the case of classical mechanics. 
However, this indeterminism is different from the indeterminism of quantum mechanics.

 3. Causality: A related idea is the notion of causality. In a naive sense, for any event, there should 
be a cause. One expects identical causes to lead to identical effects. In Newtonian mechanics the 
causes are the forces and the effects are responses like accelerations. Let us express the principle 
of causality as follows: Identical systems under identical forces with identical initial conditions 
evolve in time identically. If they do not evolve in time identically then we have only randomness.

   Let us explain this idea again with the example of the simple pendulum. Let us consider thou-
sands of identical simple pendulums. The threads and the bobs are identical. The length of the 
pendulum in all the cases is 1 m. The forces acting on each bob are the same. All of them are 
 displaced by 5 cm from the equilibrium position at t = 0 and then dropped. So the initial condi-
tions are x

0
 = 5 p

0
= 0 for all pendulums. So they are identical in every respect. The time evolution 

for all the pendulums is determined by x(t) = 5cosp t So for all the pendulums, the positions of 
the bob are the same at any particular moment.

   Let us now do an experiment in which we measure the position of bobs of such pendulums, 
at a particular instant of time. Leave aside the experimental details like accuracy of the instru-
ments and other sources of errors. From our earlier analysis of motion of a pendulum, we should 
get identical experimental results for all such pendulums. For instance, at t = 1 sec, we should 
get only one experimental value namely x = -5 cm. This is the essence of causality in classical  
physics.

   Let us consider a different scenario in which we get a different kind of results. Instead of a 
single value, our experimental values are a collection of random values for the position of bobs, 
say ranging from -5 cm to 5 cm. For instance at t = 1 sec, suppose the experimental results look 
like this: x = -5 cm for some pendulums, x = 2.3 cm for some, and so on. This is a statistical dis-
tribution of values of position. What do we conclude from these experimental results? We have 
to bear in mind that for pendulums obeying Newton’s laws of motion, the experimental outcomes 
should be identical (only one value), provided the pendulums are identical in every respect. 
Taking this aspect into account, we can arrive at the following conclusions. If they obey Newton’s 
laws motion, then the statistical distribution of experimental results implies that the pendulums 
are not identical. If we still insist that the pendulums are identical in every respect then they don’t 
obey Newton’s law of motion. Perhaps they obey quantum mechanics!

1.2 Light
The study of nature of light is one of the most fascinat-
ing aspects in physics. It has a very long history. We have 
to start with Newton and Huygens. Geometrical optics 
was already well known at that time. It relies heavily on 
the rectilinear propagation of light. There were two theo-
ries for light in seventeenth century. They were Newton’s 
corpuscular theory and Huygens wave theory as shown 
in Fig. 1.2.

Fig. 1.2 Expression wave theory of light
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4  Quantum Mechanics

In Newton’s corpuscular theory, light is assumed to be made of small particles called corpuscles. The 
explanation of geometrical optics in terms of corpuscles theory is very simple. The concept of wave 
motion as such is not new at that time. Interference and diffraction are considered to be benchmark 
for any kind of wave motion. There cannot be a wave motion without these phenomena. The problem 
for wave theory of light is that interference or diffraction was not observed at that time (apart from 
Newton’s rings). Added to these factors, Newton’s monumental achievements lent strong credence to 
corpuscular theory. The supporters of corpuscular theory included eminent scientists such as Biot, 
Laplace, Poisson, and others. However, slowly more evidences for wave theory of light were emerg-
ing. One of the important developments in this direction is Young’s double-slit experiment in 1801. 
Getting interference fringes by combining light from two sources is not simple. It requires consider-
able skill. The coherence between the light waves from two sources is very important. The dimension 
of slit should be very small (fraction of a millimetre). Producing coherent light waves through double-
slit arrangement by Young was really ingenious.

The observation of Poisson spot was a major milestone in establishing the wave nature of light. 
When Fresnel submitted an essay on the wave theory of light in response to a competition announced 

by French Academy of Sciences to determine the nature of 
light, Poisson, one of the judges, wanted to disprove the 
wave nature of light. He deduced from Fresnel’s theory 
that wave nature of light would lead to a bright spot at 
the centre of the geometrical shadow behind the circu-
lar object (see Fig 1.3), which we do not get normally. 
However, another judge, Arago, performed an experiment 
for a 2 mm-wide-circular metallic disk and verified the 
existence of Poisson spot.

Many more such evidences for wave nature of light continued to emerge in the period between 1800 
and 1900. However, the strong evidence for wave nature of light came from a different route, namely 
Maxwell’s equations. Faraday introduced the concept of fields to describe the interaction between 
charges and currents. It was not clear, at that time, whether such entities really existed or not. In 
Faraday’s scheme, two charges q

1
 and q

2
 do not interact directly. The charge q

1 
creates a field in 

space around it, and the interaction is only between this field and charge q
2 
(A closer analogy will 

be the interaction between the sun and the earth. The earth does not directly interact with the sun. It 
interacts only with the gravitational field of the sun.) These ideas were not seriously taken initially. 
However, Maxwell took these ideas seriously and developed a set of equations, which are now known 
as Maxwell’s equations to determine electric and magnetic field for a given charge and current densi-
ties. One of the important consequences of Maxwell’s equations is that electric and magnetic fields 
can propagate in the form of wave motion even in the absence of charge density and current density. 
Maxwell found the velocity of this wave and the velocity of the light to be same. So, he identified light 
as electromagnetic wave, which was proved later experimentally by Hertz.

The immense body of knowledge (both experimental and theoretical) about light led to the follow-
ing understanding: The interference and diffraction experiments along with Maxwell’s equations show 
that light is a wave. The experimental evidence for wave nature of light was so strong that the wave 
nature of light was taken as irrefutable. As far as the energy of the light is concerned, it is assumed to 
be distributed over the wavefront, which continues to expand as it moves away from the source. For 
instance, 1 Joule of energy from a point source (which may be sodium light) is distributed over spheri-
cal surfaces of area 4pR2, and so when R becomes large, the energy on a small part of the spherical 
surface can become as low as possible, close to zero. For instance, the energy content of light, due to 

Fig. 1.3 Poisson spot
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this source, in 1 cm2 area of the wavefront at a distance of 5000 km is 3.4 × 10-19 J and at 7000 km is 
1.7 × 10-19 J. (Compare this with hn  = 3.4 × 10-19 J for sodium light.)

In hindsight, let us make the following observation: The source of light used in these experiments is 
very intense. If one describes light in terms of photons, the intensity of light from a sodium lamp will be 
of the order 1021 hn  per second where hn for sodium light is 3.4 × 10-19 J. With the technology available 
at that time, sources of intensity of only this order of magnitude can be produced. However, now the 
technology has changed a lot. So, today, we can raise a number of questions like whether it is possible to 
reduce the intensity of light indefinitely close to zero or is there a lowest value of energy beyond which 
light intensity cannot be reduced. (For instance, is it possible to have the sodium light of intensity less 
than 3.4 × 10-19 J/sec?). Will low intensity light also produce an interference pattern? If so, will there 
be any change in the interference pattern? Such questions were not even raised at that time. These are 
the questions which have become now very important in understanding the quantum theory of light.

1.3 Atoms
Between 1800 and 1900, a substantial body of knowledge about atoms was generated from the devel-
opments in chemistry. Number of phenomena in chemistry can be explained in a simple way using the 
concept of atoms. The kinetic theory of matter and the statistical mechanics developed by Boltzmann 
attempted to understand thermodynamics in terms of the properties of atoms.

It was realized that the atoms are so small that it is impossible to observe them directly. All the 
knowledge of atoms can be obtained only from the studies of properties of macroscopic objects. The 
standard technique is to propose certain models for the atoms and their interaction, and based on this 
model, the properties of macroscopic objects are derived which can be experimentally verified.

For instance, in kinetic theory of matter, the equation of state PV = n RT is obtained by assuming 
that the atoms are like billiard balls constantly moving and colliding with each other, obeying Newton’s 
equation of motion. For instance, for diatomic molecules, the ratio of specific heats C

p
/C

V
 is found to be 

1.4. This can be easily explained if we assume the shape of a diatomic molecule is similar to a dumbbell.
The recognition of this aspect will help us to appreciate quantum mechanics in a better way. The 

atoms in classical physics are very small indivisible objects obeying Newton’s laws of motion.

1.4 some views bAsed on cLAssicAL physics
It should be mentioned that the body of knowledge of the physical universe developed from 1600 to 
1900 is enormous compared to the knowledge development before 1600. This body of knowledge is 
more assured and justified. They cannot be thrown away like Aristotle’s theoretical understandings. 
This unprecedented success in physical sciences created many impressions in human mind.

The universe around us exists independent of us. There exists an objective reality whether we know 
it or not. The universe is knowable, though we do not know a lot. The universe is composed of matter 
and electromagnetic field filling the space. Matter is composed of atoms which are indivisible. The 
laws of physics are the same for all time and at all scale. The same laws of physics can be used to 
explain the motion of objects on earth, motion of stellar objects in macroscopic scale, and the motion 
of atoms in microscopic scale. All the motions are causally related. Identical objects under identical 
conditions behave identically. If we measure a property of identical systems in identical state, we 
should get identical outcomes. As far as measurement of a property of an object is concerned, the 
classical physics admits uncertainties. There are many sources of uncertainties like faulty instruments. 
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6  Quantum Mechanics

However, if one raises the question whether these uncertainties can be eliminated, the answer is that in 
principle there exists no limit to which it can be reduced. This is a hypothetical question and a hypo-
thetical answer. The reader should not mistake these views as some kind of declarations.

Before we conclude this brief review of classical physics, let us reiterate the two important catego-
ries of ideas. They are the concepts of particles and the waves.

particles
The moment we see the word ‘particle’ it is the image of a tennis ball or a bullet that comes to our 
mind immediately. They are objects of definite size and shape. They are localized lumps as shown in 
Fig. 1.4. Their discrete nature is reflected in the fact that they are countable (i.e. one ball, two balls,  
five balls, etc.).

Fig. 1.4 Particles and waves

waves
The moment we see the word ‘wave’, it is the image of expanding ripples in a pond of water that 
comes to our mind. It is an extended object occupying a large volume of space. The benchmark of 
wave motion is interference and diffraction phenomena.

There is no problem in deciding to which category a particular object belongs to when we see 
objects like ball or sea waves. We run into a serious problem when we deal with objects like atoms or 
light which cannot be observed directly but whose nature can be obtained only inferentially.

There were developments which challenged the well-established classical physics of which one of 
them led to the birth of quantum theory. So, our next task is to trace the developments which led to 
modern quantum physics. We begin with black body radiation.

1.5 bLAck body rAdiAtion
Any hot body emits electromagnetic radiations. When radiation is incident on an object it absorbs a 
part, transmits a part and reflects a part of the radiation.

Let al, rl, tl represent the fractions of light absorbed, reflected and transmitted where al + rl + tl = 1.  
For a black body, rl = 0, tl = 0, al = 1. Intuitively, a body which absorbs all the radiation incident on it 
will look black. However, the definition of a black body as an object for which al = 1 is more stringent. 
It is very difficult to produce such a perfect absorber. There was a necessity to find one such object, 
since Kirchhoff showed that the energy e Bl , emitted per unit second per unit area from such objects 
has an universal character. For a long time, how to produce such a perfect black body itself was a chal-
lenge since no black-coloured object behaves as a perfect absorber. It was Wien and Lummer in 1895 
suggested that a cavity with a small hole is a good model of a perfect black body.
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This model of black body has interesting consequences. The cavity and the radiation within the cav-
ity are very much similar to standard example of a thermodynamic system, say, a gas or air in a cylinder 
with piston. The fact that the radiation and the cavity walls together are in thermodynamic equilibrium 
leads to some general results which emerge as the consequences of the laws of thermodynamics. Let uv  
be the spectral energy density of the radiation inside the cavity at temperature T. From thermodynami-
cal considerations it can be shown that the spectral energy density is isotropic and homogeneous. It is 
independent of size and shape of the cavity. It is independent of the nature of the material of the wall. So, 
the black body radiation inside the cavity itself is a thermodynamic system by itself., It depends only on 
temperature. So, for black body radiation, we have u u Tn n= ( ). A number of other conclusions can also 

be reached based on thermodynamics. The total energy density is u( )T  defined as u(T) = u T dv ( ) n
0

∞

∫ .  

It can be shown that u T T( ) .= s 4  However, there is a limit beyond which thermodynamics alone is not 
sufficient. We cannot get the spectral distribution function u Tv ( ) from thermodynamics alone. But, 
even there, we have the following results from thermodynamics alone:

 1. The energy density of the black body radiation is maximum at a particular wavelength lmax . This 
depends on the temperature of the black body radiation. It can be established.

 lmax ConstT =

 2. The overall functional form of u T u T A f
Tn n n n( ) ( ) is = ( )3 .

  The exact analytical form of the function un (T ) can be obtained only from statistical mechanics 
by taking into account the nature of radiation and its interaction with matter. There are two dis-
tribution functions:

  Wien distribution function: u T ev
bv T( ) /= −av 3

 Rayleigh–Jeans distribution function: u T
c

k TBn
pn( ) = 8 2

3

Both these expressions worked partially. Wien’s distribution worked in the high-frequency range 
whereas Rayleigh–Jeans’ distribution worked in low-frequency range. Note that Rayleigh–Jeans’ dis-
tribution diverges as n increases. This is known as ultraviolet catastrophe, a term which was coined 
by Ehrenfest in 1911.

The correct expression was given by Planck. The Planck’s distribution is given by

u T
h

c eh k Tsn n

p n
( )

( )/
= ⋅

−
8 1

1

3

3

This expression becomes Wien’s distribution in the high-frequency limit and Rayleigh–Jeans’ dis-
tributions at low-frequency range. There is an interesting story of how Planck arrived at this expres-
sion. In Germany Otto Lummer and Ernst Pringshein performed the experiment to determine u Tn ( ).  
Simultaneously Rubens and Kurlbaum determined u Tn ( ) for various temperatures. Rubens and 
Kurlbaum told Planck their experimental results in a tea party (or in a private lunch hosted by Planck). 
The results agreed with Wien’s distribution and Reyleigh–Jeans’ distribution only partially. Planck 
spent rest of the day to guess the correct expression which he succeeded. He sent his formula (a guess 
work) to Ruben who two days later informed Planck confirming the fact that Planck’s formula fits very 
well with the experimental data.

Later on, Planck provided the theoretical basis for this formula. We know from Maxwell’s electro-
dynamics that the charges under the accelerated motion can emit electromagnetic radiation. Charges 
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8  Quantum Mechanics

can also be set into accelerated motion by absorbing energy from electromagnetic radiation. So, 
Planck assumed the cavity walls and the black body radiation together as a system of collection of 
harmonic oscillators and electromagnetic radiation in thermodynamic equilibrium. For such a system, 
the average thermal energy density r n( ),T  of the harmonic oscillators and the energy density of the 
u Tn ( ) black body radiation are related by

 u T
h

c
Tn

p n r n( ) ( , )= 8 3

3

So, rest of his calculations were reduced to determine the average thermal energy density r n( ),T  of the 
oscillations to fit his formula for u Tn ( ). His arguments are very involved and relied heavily on thermo-
dynamic relations. He obtained an expression for the entropy of the harmonic oscillators (using guess 
work again) which will lead to correct expression for r n( ),T . Now he tried to obtain correct expres-
sion from basic principles. He used Boltzmann’s definition of entropy S = k

B
lnW, where W is the number 

of microstates. In the process, he was forced to conclude that the required expression for entropy can 
be obtained provided an oscillator absorbs or emits radiation in terms of integral multiples of energy 
hn. So, an oscillator has to absorb or radiate energy h h hn n n, ,2 3 …. Planck wrote this paper in 1900.

Planck’s formula cannot be derived from any fundamental principles of classical physics. The real 
radical departure from classical physics is restricting the allowed values of the harmonic oscillator to 
a set of discrete values h h hn n n, ,2 3 …. Within classical physics, this restriction cannot be justified. 
Planck accepted this result reluctantly. He admitted the inevitability of this result. He did not try to 
give any physical significance of the discreteness of allowed energy values with regard to nature of 
either oscillator or electromagnetic field. However, he realized the revolutionary character of restrict-
ing the allowed energy values to a set of discrete values.

1.5.1 derivation of planck Formula
A more simple way of deriving Planck radiation is to use the lead given by Lord Rayleigh. We provide 
an outline of this derivation to bring out the enormous differences it has in the spectral distribution 
function due to discrete and continuous values of allowed energy of a mode.

As mentioned in the previous section, the black body radiation itself is considered as a separate 
thermodynamic system. The role of the cavity wall is restricted to confine the radiation to a definite 
volume V. The radiation is assumed to exist as standing waves. Each standing wave is termed as a 
mode. In classical physics, each mode can occur with energy En  ranging from 0 to ∞ (in principle). In 
fact, as a part of thermal system, the energy of each mode goes on fluctuating. So we can take only the 
thermal average energy of a normal mode. The average energy density u dn n  is 

 u d N d En n nn n=

Where N dn n  is the number of modes between n  and n n+ d  and En  is the thermal average energy 
of each mode. From classical electromagnetism, it can be shown that the number of modes N dn n  is 
given by 

 N d V
c

dn n
p n n= 8

3
2

Here V is the volume of the cavity. Let us discuss the calculation of En  in detail, for it brings the dif-
ferences En  due to discrete values and continuous values.
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1.5.2 Average energy of a mode
From statistical mechanics, we know that for a system in thermal equilibrium, the probability of the 
system to be in state of energy E is given is e ZE k TB− / /  where Z is the partition function. Using this result 
for black body radiation, we have the probability of a mode to have energy E is given by

 P E e
Z

E k TB

( )
/

=
−

Since E (in classical physics) can take any value from 0 to ∞, Z is given by Z e dEE k TB= −
∞

∫ /

0The average energy of the mode is

 
E EP E dE

Ee

e

k T

E k T

E k T

B

B

B

n = =

=

−
∞

−
∞

∞ ∫

∫
∫ ( )

/

/

0

0

0

Therefore, the spectral energy density of the black body radiation is

 u d N d k T
c

d k TB Bn nn n pn n= = 8 2

3
.

This is Rayleigh distribution. We have not got Planck’s distribution. Obviously, we have made some 
wrong assumptions in this derivation. The expression N dn n  

has been calculated using well-established 
Maxwell’s equations and so its validity is not to be disputed. The other possibility is to consider the 
expression for 

�
En . Then, we have to modify the expression for P(E). The key assumption here is that 

E can take any value from 0 to ∞. Instead of allowing E to take any value from 0 to ∞, let us restrict 
it to a set of values h h hn n n, ,2 3 …. Then the integrations in the expressions for the partition function 
and the average energy value become a summation.

 

e dE e

Ee dE E e

E k T E k T

n

E k T
n

E k T

n

B n B

B n B

−
∞

−

−
∞

−

∫ ∑

∫ ∑

→

→

/ /

/ /

0

0

and 

The probability of finding the normal mode in energy E
n 
= nhv is given by

 p e
Zn

E k Tn B=
− /

where now Z e E k T

n

n B= −∑ / .

The average energy 
�
En  is given by

 

�
E p E

E e

e

d
d

n n
n

n
E k T

n

E k T

n

n B

n B

n

b

= =

= −

∑
∑

∑

−

=

∞

−

=

∞

/

/

ln

0

0

 Z
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Here, Z e eh h= + + +− −1 2b n b n ...with b = 1
k TB

. This can be evaluated and 
�
En  is found to be

 

�
E h

e

u
c

h
e

h k T

h k T

B

B

n n

n n

n

pn n

=
−

∴ = ⋅
−

/

/( )

1
8

1

2

3

1.6 einstein’s Light quAntum
Einstein, in 1905, in his revolutionary paper titled On Heuristic Point of View about the Creation and 
Conversion of Light goes far beyond Planck. It is a reinterpretation of Planck’s work. Einstein makes 
a bold hypothesis that electromagnetic field itself is a collection of ‘energy quanta localized in space 
which move without being divided and which can be absorbed or emitted as a whole’. Light quanta 
are very much similar to indivisible atoms. Einstein used the word light quanta. It is in 1926, Lewis 
coined the word photon. It is worth quoting Einstein. 

‘The wave theory of light which operates with continuous function in space has been excellently justified 
for representation of purely optical phenomena, and it is unlikely ever to be replaced by another theory. 
One should, however, bear in mind that optical observations refer to the time average and not to the 
instantaneous values, and notwithstanding the explicit experimental verification of theory of diffraction, 
reflection, refraction, dispersion, and so on, it is quite conceivable that a theory of light involving the use 
of continuous function in space will lead to contradiction with experience, if it is applied to phenomena 
of creation and conversion of light. In fact, it seems to one that the observation on black body radiation, 
photoluminescence, the production of cathode rays by ultraviolet light can be better understood on the 
assumption that the energy of light is distributed discontinuously in space. According to the assumption 
considered here, when a light ray starting from a point is propagated, the energy is not continuously 
distributed over an ever-increasing volume, but it consists of finite number of energy quanta, localized in 
space, which move without being divided and which can be absorbed or emitted as a whole’.

This paper is mainly devoted to the question of nature of light. Only in the end, he derives the equation 
for photoelectric as evidence to this theory of light. He did not reject wave theory of light. It was not a 
theory going back to Newton’s corpuscles of light. Nevertheless, it has an element of visualizing light 
similar to indivisible atoms. The majority of scientific community did not subscribe to this view of a 
light at that time. The problem is how to reconcile Einstein’s theory with Maxwell’s electromagnetic 
wave theory which has worked very successfully. So, though Einstein’s credentials as an outstanding 
physicist were recognized, many scientists considered this energy of light quantum as a rare aberration 
on the part of Einstein.

In 1913, Planck Nernst, Rubens and Warburg wrote a recommendation letter proposing Einstein 
for membership in Prussian Academy and research professorship. While appreciating Einstein for his 
innovations in other fields, they considered his theory of light quanta as a rare aberration on his part. 
They lavishly praised Einstein for his contributions to physics but made the following remarks: ‘That 
he may sometimes have missed the target in his speculations as, for example, in his hypothesis of light 
quanta, cannot be held against him’.

In 1916, Millikan described Einstein’s light quantum hypothesis as follows: ‘This hypothesis may 
be called reckless, first because an electromagnetic disturbance which remains localized in space 
seems to be a violation of very conception of an electromagnetic disturbance, and second it flies in the 
face of the thoroughly established facts of interference’.
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In 1921, Einstein was awarded Nobel Prize for his explanation of photoelectric effect. In 1923, 
Millikan was awarded Nobel Prize for verifying Einstein’s photoelectric equation. Millikan writes as 
follows: ‘I spent ten years of my life testing that 1905 equation of Einstein and contrary to my expec-
tations, I was compelled in 1915, to assert its unambiguous experimental verification in spite of its 
unreasonableness since it seemed to violate everything that we know about the interference of light.’

Details of photoelectric effect and Einstein’s equations are not presented here as they can be found 
in any introductory text book on modern physics. In 1909, he published the paper on the fluctuations 
of black body radiation, in which he lays foundation for wave–particle duality. In 1917, he introduced 
the idea that a light quantum has linear momentum hv/c.

One of the most significant experiments in establishing the particle property of light is Compton 
effect. In Compton effect, there is a shift in wavelength of the x-ray when it is scattered by an electron. 
A simple analysis treats this process as a collision between electron and photon similar to the analysis 
of collision between billiard balls. Conservation of energy and momentum are used in a way just as we 
use them in classical mechanics. We have to calculate the total momentum and energy before impact 
and after impact. The momentum of the photon is taken to be hv/c. This simple analysis worked very 
well. After the discovery of Compton effect, the particle property of light was accepted.

1.7 duAL nAture oF Light: wAve–pArticLe duALity
All these experiments show that the nature of light is more complex than it was thought before 1900. 
From 1800 to 1900, the wave nature of light was established firmly. However, from 1900 onwards, par-
ticle aspect of light emerged. They are not the old Newtonian corpuscles. By now, it was established 
that there were phenomena like interference and diffraction which could be explained only in terms 
of wave property of light. There are other phenomena like photoelectric effect, Compton effect which 
can be explained only with particle property of light. One could not settle for either property at the 
cost of other. This is termed as dual nature of light or wave–particle duality.

1.8 mAtter wAves
In 1924, de Broglie came with an interesting proposal. He extended the dual nature of light to matter 
like electrons also. From chemistry and kinetic theory of matter, we get the picture that an atom is a 
miniature version of a classical tennis ball. With the discovery of electron and nucleons, the indivisible 
nature of atom is lost. Still, one believes that they will behave like particles. But de Broglie suggested 
that the matter also behaves like waves. This conclusion is based on philosophical consideration, 
namely nature loves symmetry. If light exhibits dual nature, why would not other particles in atomic 
world also exhibit dual nature? He suggested that the wavelength l of the matter wave is given by 

 l = h
p

The significance of dual nature of atoms or electrons lies in the fact they are also not as simple as they 
were thought to be before 1900. So, some experiments can be explained only by assuming matter like 
electrons are waves and some experiments can be explained by assuming that they are particles.

In the case of light, there is no single model of light to describe all the phenomena involving light. 
In the same way, in the case of electrons also (and for all matter particles), there is no single model that 
can explain all the phenomena. The wave property of electron was experimentally verified soon. We 
will discuss the matter waves and the wave–particle duality again at the end of this chapter.

M01_QUANTUMMECHANICS_3628_CH01.indd   11 5/20/2013   3:16:32 PM



12  Quantum Mechanics

1.9 vector Atom modeL
The discussion on the development of atomic structure departing from classical physics has to start 
with the discovery of electron. Rutherford’s a-particle scattering is the key experiment to bring the 
inadequacies of classical physics in the case of atoms. The experimental results of Rutherford can be 
explained only in terms of planetary model of an atom. The electrons are point particles revolving 
around the nucleus. However, this model violates classical physics. The next major development was 
Bohr model which is based on three basic assumptions:

 1. The electron moves in a circular orbit with nucleus at the centre.
 2. The orbits of the electrons are restricted to a group of orbits for which the angular momentum of 

the electron is l nh= /2p .
 3. Radiation is emitted (or absorbed) only when the electron jumps from one orbit to another orbit. 

The frequency of the emitted radiation is

 E = hn  = E
n
 - E

m

This model is very successful in explaining the line spectra of hydrogen atom. The significance of this 
model lies in the fact that its success is achieved at the cost of classical laws of physics. In classical 
physics, if an electron moves in a circular orbit, it has to lose energy by continuously emitting radia-
tion making the circular orbits untenable for electrons. However, Bohr simply asserts that the electron 
does not respect this law. The restriction on the orbits is not established from classical physics. Apart 
from these violations, all the other calculations are done using classical physics. So, it is some sort of 
tinkering work with respect to classical physics.

However, this model subsequently developed into vector model, which was quite successful in 
explaining a number of features of atomic structure. The existence of four quantum numbers, have 
been established. They are the principal quantum number n, orbital angular momentum quantum num-
ber l, azimuthal quantum number m

l
, and spin angular momentum quantum number m

s
. Vector atom 

model neatly explains periodic table.
One of the principles which worked well is Bohr’s principle of correspondence which establishes 

the connections between quantum physics and classical physics. In the large limit of a quantum num-
ber it is expected that quantum physics will give the same result as that of classical physics. Still, all 
these models are ad hoc in nature; there is no systematic account to describe all the phenomena at 
atomic level. It was realized that totally a new mechanics has to be developed instead of tinkering 
classical physics to describe the atomic structure.

1.10 birth oF quAntum mechAnics

matrix mechanics
In 1925, Heisenberg came with a new quantum mechanics. It is now called matrix mechanics. His 
reasoning was roughly as follows: We cannot determine the position or momentum of electron in an 
atom exactly. So, the classical description of a particle in atomic world is not possible. Therefore, let 
us try to formulate a new theory in terms of only observable quantities. So, corresponding to position 
x(t) in classical physics, Heisenberg produced a new quantity X

mn 
where m and n refer to atomic energy 

levels E
m 

and E
n. 

So, X
mn

 is a set of array of numbers which takes into account all the states. Similarly, 
he replaced classical momentum by a set of array of numbers P

mn
.
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Later this exercise was recognized as associating matrices with the dynamical variables x(t) and 
p(t). i.e. x(t) → X(t) and p(t) → P(t) where X(t) and P(t) are matrices. Since X and P are matrices, XP ≠ 
PX. In fact, it was shown that XP PX i− = �. Since the dynamical variables are replaced by matrices, 
this mechanics is called matrix mechanics.

wave mechanics
In 1926, Schrödinger came with wave mechanics. Unlike Heisenberg’s matrix mechanics, Schrödinger’s 
wave mechanics was based on differential equations, a familiar terrain. Both Schrödinger equation 
and Heisenberg’s matrix mechanics gave identical results when applied to problems like harmonic 
oscillator and hydrogen atom. Yet, they looked very different. Very soon, Schrödinger established the 
equivalence between wave mechanics and matrix mechanics.

Dirac came up with further clarification. He introduced the concept of abstract operators (q – num-
bers) and abstract state vectors and showed that matrix mechanics and wave mechanics are special 
cases of quantum mechanics based on abstract operators and abstract state vectors. The wave mechan-
ics, matrix mechanics, and Dirac’s abstract operator method form the main theme of this book.

1.11 heisenberg’s uncertAinty principLe
In 1927, Heisenberg came up with the uncertainty relation to bring out the limitations of the classical con-
cepts. In particular, Heisenberg argued that the process of observation itself disturbs the system; in other 

words we cannot measure any quantity without disturbing the system 
in the process. This led him to the uncertainty relations ∆ ∆ ∼x p h 
which implies that it is impossible to determine the position and the 
momentum of an electron simultaneously with any arbitrary preci-
sion. This has nothing to do with the limitations of the instrument.

Heisenberg illustrated how the uncertainty relation for posi-
tion and momentum arises using a hypothetical g -ray microscope 
which is schematically shown in Fig. 1.5. The lens and the elec-
tron together form a cone of angle 2a. Let us assume that the 
electron is at the focus. The g -ray illuminates the electron and 
gets scattered into the lens.

From physical optics we know the resolving power of this microscope is 

 ∆ =x l
a2sin

Our eyes do not react to g -ray and the visible light in the same way. If our eyes do respond in the 
same way, then we will see a small spot of width Δ x and conclude that the electron will be somewhere 
within this spot. The wave nature of light introduces this uncertainty Δ x in the measurement of the 
position of the electron.

 ∆x = l
a2sin

Now, let us study the same phenomenon using the particle property of light to determine the momen-
tum of electron. The g -ray has a momentum h cn /  or h/l . From conservation of momentum, the sum 
of momenta of g -ray and the electron are constant. The total momentum along x-axis is 

 P = Pg + P
e

2a

q
y

x

Fig. 1.5 g -ray microscope
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If we know Pg  exactly, we can determine P
e
 exactly. If we know Pg  only approximately, the momentum 

P
e
 can also be determined only approximately. If ∆pg  and ∆pe  are the uncertainties in the momenta of 

the photon and electron respectively, then we have

 ∆ ∆p pe r+ = 0

 or ∆ ∆p pe ~ .g

Let us determine the momentum of the photon atom along x-axis. Let the scattered photon enter 
the microscope at an angle q  as shown in Fig. 1.5. Unfortunately, when a photon is detected in the 
microscope, all that we can say is that it is a photon scattered at some angle q  between −a a and . 
Therefore, x-component of the photon momentum is some value between −h h/ sin and / sin .l a l a

 ∴ ∆ ∆p peg l
a= =2h sin

 ∆x = l
a2sin

 ∆ ∆x pe ~ h

Within quantum mechanics, the uncertainty Δ x and the uncertainty Δ p are defined in a different way. 
So, their interpretations differ from the above formulation of uncertainties. The uncertainty relations 
run through the quantum description of all phenomena.

There are other uncertainty relations also. The time–energy uncertainty relation is

 ∆ ∆E ht ∼
The interpretation of this relation is different from that of position and momentum. Here, Δt is the time 
taken to measure the energy of the system and ΔE is the resulting uncertainty in energy. The experi-
mental result of energy can be any number from E − +∆ ∆E E E/  to /2 2. 

The uncertainty principle has serious consequences. One of the consequences is ruling out the 
exact trajectory of a particle in the sense of classical physics. The idea of exact trajectory requires the 
knowledge of exact values of position and momentum at the same instant. If these quantities cannot 
be known without uncertainties there is no way of knowing the trajectory of the particle. So, there is 
no point in visualizing the orbit of an electron in an atom.

The second important consequence of the uncertainty principle is that it let Bohr to postulate the 
complementarity principle which states that it is impossible to observe the particle and wave proper-
ties simultaneously. The complementarity principle asserts that depending on the design of the experi-
ment, we can observe either wave property or particle property but not both. This is in a sense a veto 
statement. However, violations of this principle will not contradict the basic principles of quantum 
mechanics. The current experiments are consistent with principle of complementarity and with the 
advent of modern technology experiments are being done to test the complementarity principle.

example 1.1 Determine the de Broglie wavelength of neutron which moves with a velocity 210 m/sec.

solution: l l l
dB p mv

J= = = ×
×

=
−

− −
6 62 10

1 67 10 210
18 8

34

27 1
.

. .
..sec

kg m.s
Å

example 1.2 Consider a double-slit interference experiment for neutrons of de Broglie wavelength 
l

dB
= 18 Å. The width of each slit is 20 mm and they are separated by 100 mm. Determine the spacing 

between the minima of the intensity in the interference pattern. Give a sketch of the interference pat-
tern. Assume that the screen is at 5m away from the double slit.
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solution:
The width of the slit  a = 20 mm
Distance between the slits  d = 100 mm
Distance of the screen from the slits  d = 5 m 
De Broglie wavelength  l

dB
 = 18 Å

The intensity  I = I
0
cos2b sina

a( )2

Here, a p
l

b p
l

= =  and  a y
D

. .d y
D

 a p p= × ×
× ×

= × × × ′
× ×

= ′
−

−

−

−
20 10 20 10 m6

10

12

1018 10 5 18 10 5
0 007y

y
y

( )
.

µ

 b p= × × × ′
× ×

= ′
− −

−

10 10
18 10 5

0 03
6 6

10

0 10  in ( )
.

y
y

µm

The spacing between the minima is given by Δy = 104.04 m m.
The sketch of the intensity distribution is given in Fig. 1.6.
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Fig. 1.6 Intensity distributions for double-slit experiments

example 1.3 A 60 watt bulb emits green light of wavelength l = 5460 Å. How many numbers of 
photons are emitted per second?

solution: The number of photon emitted per sec is

 = =powerP
h

P
c

. .
n

l
l

 = 60 5460 10
6 62 16 3 10

16 5 10
10

34 8
19× ×

× × ×
= ×

−

−.
. secphotons
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16  Quantum Mechanics

example 1.4 In a double-slit experiment, the distance between the source of light and the screen is 
3m. Assuming that the source emits electrons at a constant rate, what is the maximum intensity pos-
sible so that only one electron is present at a time?

solution: Let L be the length between the source and the screen. Light takes a time t  to travel this 
distance. For only one photon to be present in the apparatus at a time, the time between the emission 
of two consecutive photons should be greater than or equal to t . So, the number of photons per second 
corresponding to this emission interval is 

 N c
L

= = = × =1 3 10
3

10
8

8

t
photons sec

1.12 mAtter wAve: experimentAL evidences
Wave property of light has been established very well between 1800 and 1900. It requires special efforts 
to observe the particle property of light. The reverse is true in the case of matter. The particle aspect of 
matter is well established. But it is very difficult to observe wave property of matter. The main problem is 
that the de Broglie wavelength is very small. It is of the order of few Å or much less than that. It is very 
difficult to do a single-slit or a double-slit experiment for waves with such a short wavelength. The slits 
widths should be very small. The preparation of such slits and the determination of the size of the slits 
are themselves challenging. The earliest experiment to establish wave nature of the electron is Davisson–
Germer experiment in 1927. The first double-slit experiment for electrons was performed by Jonsson in 
1961. Subsequently double-slit (and single-slit) experiments have been performed for neutron (Broglie  
wavelength lB � 18 Å), helium atom (l

B
 = 0.56 Å 1.03 Å), carbon-60 (l

dB
 = 2.5 pm). Poisson spot has 

been obtained for deuterium molecules (l
dB

 = 0.96 Å). We present on outline of some of these experiments.
In Davisson Germer experiment electron beam incident on a nicked crystal is diffracted in a way 

similar to x-ray diffraction by a crystal. The experiment is schematically shown in Fig. 1.7. The detec-
tor D is free to move around, and the intensity of the scattered waves in different directions can be 
measured. For a voltage of 54 V, there is a sharp increase in the number of electrons collected by the 

detectors at an angle 50º. We can use Bragg’s 
condition d sin q = l. For a nickel crystal  
d = 2.15 Å, q  = 50°. Therefore, we have

 l = 2.15 sin 50°= 1.65 Å

The de Broglie wavelength l
dB

 can also be cal-

culated l
dB

 = h/p = h
meV( ) /2 1 2

For 54 V, we get l
dB

=1.67°. This confirms the 
wave nature of electron.

claus Jönsson’s experiment (1961)
The double-slit experiment for the electrons was 
performed first time by Claus Jönsson. He got 
the images of the interference pattern for a mul-
tiple slits from a single-slit to five slits. He used 
50 keV electrons for which l

dB
 = 0.05 Å. The slit 

width is 0.5 m and the spacing between the slits 

q

15° 30° 45° 60° 75°

q

D

d

Fig. 1.7 Davisson–Germer experiment
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are 2.0 m. This work was reported in a German journal in 1961 and its 
translation appeared in American Journal of Physics in 1974. The inter-
ference pattern for single and double slits is shown in Fig. 1.8.

wave nature of neutron (1989)
Anton Zeilinger, Roland Gahler, C.A. Shull, Wolfgong Theimer and Walter 

Mampe reported the diffraction of neutrons by a single and double-slit arrangements. In the single-slit 
experiment, a slit of width 90 mm was used. The de Broglie wavelength l

dB
 is 19.26 Å (19.26 ± 0.70 

± 0 0. 2). The detectors were placed 5 m from the single slit. They have also reported for a single slit of 
width 23 mm. In addition to these experiments, they obtained the double-slit interference pattern for neu-
trons of wavelength l

dB
 = 18.45 Å (l

dB
= 18.45 ± 1.40 ±.02). The dimensions of the double-slit arrange-

ment is 21.9 - 104.1 - 22.5 mm (left slit-boron wire-right slit). Their experiments are shown in Fig. 1.9.

(a)
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Fig. 1.9 Single-slit and double-slit experiment for neutrons

Fig. 1.8 Interference 
pattern for electrons
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wave nature of helium (1991)
Double-slit experiment for helium atoms is shown in Fig. 1.10.
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Fig. 1.10 Double-slit experiment for helium atoms

O. Carnet and J. Mlynek in 1991 performed a double-slit experiment using metastable helium atoms. 
They allowed helium atom from an oven to pass through 2 mm wide slit in a thin gold foil. The beam 
from this slit was allowed to incident on a double-slit arrangement. Two slits width 2 mm separated 
by 8 mm were used to get interference pattern for helium atoms. They did the experiments for helium 
atoms with different wavelengths. The experimental details are as follows:

Oven temperature: 295 K de Broglie wavelength ldB = 0.56Å
Oven temperature: 83 K de Boglie wavelength ldB = 1 03. Å
For helium of atoms with l

dB
 = 0.56Å, the intensity of atom varies periodically with a period of 

Δ x = 4.5 ± 0.16 mm (Fig. 1.10b). The screen is at a distance L = 64 cm from the double slits.

diffraction of c-60 (1999)
Markus Arndt, Lucia Hackermuller and Klaus Hornberger observed the wave nature of buckmin-
sterfullerene C-60 molecules. This molecule is big in size and mass when compared to electron and 
proton. C-60 is a molecule consisting of 60 carbon atoms and their arrangement will make C-60 look 
like a football. Its mass is 720 atomic mass units, and its size is 1 nm. The carbon-60 was produced in 
an oven at 900 K as shown in Fig. 1.11.
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Oven

T = 900K 10µm 10µm
100nm

Diffraction grating
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photoionisation
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detection
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Collimation slits

1.25m1.04m

Fig. 1.11 Diffraction of C-60 molecule
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The most probable velocity is 220 m/sec, and the corresponding de Broglie wavelength l
dB 

= 2.5 pm 
(2.5 × 10-12 m). Note that l

dB
 is 400 times smaller than the size of C-60 molecule. They were allowed 

to pass through a grating whose grating element is 100 nm and the slit width is 50 nm. The central 
maximum and the first-order diffraction peaks were observed.

1.13  FeynmAn's doubLe-sLit experiment: exposition oF  
non-cLAssicAL nAture oF micro worLd

What is the nature of a photon? What is the nature of an electron? It is very difficult to answer such 
questions for any quantum object. Knowledge about these particles is continuously changing. Without 
going into more details, we bring the non-classical nature of quantum objects using hypothetical 
double-slit experiment. We use bullets and electrons as the incident particles as shown in Fig. 1.12. 
The main purpose of this hypothetical experiment is to highlight some features of quantum mechan-
ics. Only recently experiments have been done using single electron and single photon sources which 
confirm the quantum mechanical description of the objects like electron or photon.

A

A

B

B

A

B

A

B

PA/b

PA/e

PB/b PB/e

PAB/b

PAB/e

(i) Experiment # 1

(ii) Experiment # 2

(iii) Experiment # 3

Fig. 1.12 Hypothetical double-slit experiment for bullets and electrons
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To compare and contrast the classical physics and quantum physics we describe a set of double-slit 
experiments using bullets and electrons as the test particles. The bullet represents a classical particle. 
Let us assume they are indivisible. They have definite volume and mass. These features are described 
by the term localized lumps. When they hit the screen, they hit as localized lumps occupying small 
volume on the screen.

experiment 1
There are two slits A and B. They can be closed or kept open. In this experiment, slit A is open and slit 
B is closed. The bullets are fired in a random way. Correspondingly, the bullets are scattered from the 
slit A in a random directions. We can count the number of bullets detected at different points (loca-
tions) on the screen. Let n

T
 be the total number of bullets that hit the screen. n(x) is the number of 

bullets that hit the screen at point x. Then, P x n x nA b T/ ( ) ( ) /=  gives the probability of a bullet from slit 
A reaching the screen at x. P

A/b
(x) is shown in Fig. 1.12.

Now let us conduct a similar experiment with electrons. The moment we say electrons, the imme-
diate picture that comes to our mind is the miniature version of the indivisible bullet. Though the 
electrons are not visible to us, we imagine that they will be like small (almost point-like) bullets. This 
follows from the intuitive understanding of an electron. Let P

A/e
 be the probability of finding the elec-

tron from the slit A at x on the screen. P
A/e 

is very much similar to P
A/b

.

experiment 2
The second experiment is literally the same, except one change. Slit A is now closed and slit B is open. 
The probability distributions P

B/b
 and P

B/e
 for the bullets and electrons look alike.

These two experiments justify our picture of electron, namely they are point-like objects looking 
like mini bullets.

experiment 3
The results of the experiment 3 are mysterious. Now both slits A and B are open. The behaviour of 
bullet agrees with commonsense. Since the bullets are very small, they cannot go through both slits 
simultaneously. They have to go through either slit A or B. The two possibilities (or alternative as 
Feynman calls them) are mutually exclusive. Therefore, the probability distribution for the bullets is 

 P
AB/b

 = P
A/b

 + P
B/b

.

Now in the case of electrons, the results are entirely different. This resembles the intensity distribution 
of water waves. In fact, this distribution is independent of the nature of the wave. The distribution is 
I0

2 2 2cos [sin ]b a a/  where a p l q= a/ sin  and b p l q= d / sin  which can be obtained by superpos-
ing waves from slit A and slit B irrespective of the nature of waves (i.e. the waves may be sound waves 
or water waves or light waves or any other kind of wave). So, we conclude that the electrons behave 
like waves.

 P
AB/e

 ≠ P
A/e 

+ P
B/e

1.13.1 non-classical particle, non-classical wave
These three experiments taken together lead to contradictory conclusions about electrons. Judging 
by the first two experiments, we conclude that an electron is a point particle and judging by the third 
experiment alone we conclude that an electron is an extended object covering both slits. We don’t 
come across a macroscopic object which behaves in this way like electron.
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Consider the third experiment again. When an electron is detected, it is detected as a point-like par-
ticle. We don’t detect half of an electron or any fraction of an electron. The detected electrons on the 
screen form a set of discrete points, or they are always detected as a whole localized lump (full clicks 
as Feynman describes). So in this respect, they are similar to bullets; but their intensity distribution is 
similar to waves. So, all that we can conclude is that electrons behave like particles in some respect, 
but they are not classical particles. In the same way, though they behave like waves to produce inter-
ference pattern, this wave is a non-classical wave since the intensity of a classical wave distribution 
cannot be seen as a collection of localized lumps.

"which path" information and interference
Let us further investigate the experiment 3 again to bring out the non-classical nature of electron. The basic 
assumption behind the probability distribution P

AB/b 
for bullets is that a bullet goes through, either slit A or 

slit B (but not through both). Do electrons also go through either slit alone? Intuitively, the answer is yes. 
Since electrons are assumed to be small indivisible objects they cannot go through both the slits. Let us not 
trust our intuition. Let us decide to test which electron goes through slit A and which electron goes through 
slit B before they reach the screen to produce the interference pattern. In essence, we are attempting to 
determine the trajectory of the electrons. Is the trajectory of electron S-A-P (source S-slit A-point P on the 
screen) or S-B-P (source S-slit B-point P on the screen). To answer this question, all that we have to do is to 
devise an experiment, to watch the motion of electrons. Feynman in his book provides an elaborate discus-
sion on such imaginary experiments. Nothing prevents us from watching the electrons to determine the slit 
through which it emerges. But, we can do it only at the cost of interference. Using uncertainty principle (see 
Feynman) it can be shown that interference is now lost. The act of measurement produces a disturbance that 
changes the result, and hence, interference is lost. The whole exercise leads to an interesting conclusion. 
There are two alternatives available in this experiment for an electron: going through slit A (path S-A-P) 
or going through slit B (path S-B-P). If only one alternative is allowed, the interference is lost. If both 
alternatives are available to the electron, interference takes place. In other words, if we know the path of 
the electrons, the interference is lost. If we don’t know the path of the electron, then we have interference.

Knowledge of the path of the electron - No interference pattern
No knowledge of the path of the electron - Interference

With the development of new technology, experiments have been done to test these conclusions. All 
the experiments confirm this conclusion.

one electron After Another
Let us now turn to another class of experiments, which brings the non-classical character of a particle 
in atomic world again.

How do the electrons produce interference pattern? Do the electrons going through slit A and the 
electrons through the slit B combine to produce the interference pattern? To answer this question, let us 
decrease the intensity of the incident beam of electrons. Whatever be the intensity of the incident beam, 
an electron always exists as a single whole entity (the electron is indivisible). Reduce the intensity to such 
an extent that we have only one electron at a time in the whole apparatus. So, let us send one electron 
after another, let us visualize the following scenario. An electron from the source enters the double-slit 
arrangement and then it reaches the screen. Till then, the second electron is not produced. One can wait 
for some more time, and then another electron is produced. This procedure is repeated many times. 
Remember, this is a hypothetical experiment to illustrate the workings of quantum mechanics which leads 
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to the following results. Initially, the electrons will hit the screen in a random fashion. In a strange way, 
the electrons will not hit the regions of dark fringes. Electrons prefer to hit the regions corresponding to 
bright fringes. If we wait for a long time, a large number of electrons (through they hit the screen one by 
one) would have reached the screen. The surprising thing is that the interference fringes are slowly emerg-
ing. This is the familiar interference pattern. For electrons from slit A to combine with the electrons from 
slit B to produce interference, we should have at least two electrons at a time in the apparatus. But, when 
the intensity of incident beam of electrons is so weak that only one electron is present at a time in the 
whole apparatus, such a possibility is ruled out. So, what we observe is that a single electron goes through 
both slits (in a mysterious way beyond our comprehension) and interferes with itself. So, the interference 
fringes in the double-slit experiment are not due to interference between two sets of electrons, one set 
through slit A and another set through slit B. It is a consequence of each electron interfering with itself.

real Low-intensity experiments
Let us now discuss the actual experiments with low-intensity photons and low-intensity electrons. In 
1909, Taylor did the experiment, producing diffraction by needle using very low-intensity light. He 

first determined the diffraction pattern produced by a 
needle produced by an intense beam of light. Then he 
decreased the intensity of light. To get a good image 
in the film, exposure time increases as the intensity of 
light decreases. He reduced the intensity of light to a 
level which he estimated that only one quantum of light 
can be present at a time. He exposed the film for 2000 
hours and got the same diffraction pattern obtained for 
intense beam of light. So, we get the same diffraction 
pattern whether we send large number of photons at a 
time or one by one for a very long time.

In 1974, a research team led by Pier Giorgio Merli 
performed an experiment with very low-intensity elec-
trons. Akira Tonomura and his team at Hitachi, Japan 
also performed a double-slit experiment with very low-
intensity electron beam such that only one electron is 
present at a time in the whole apparatus. Without going 
into the details of the experiment, their results are pre-
sented in Fig. 1.13. One can see the randomness in the 
positions of the electrons initially in as shown in Figs 
1.13 (a) and (b). Only in Figs 1.13 (c), (d) and (e) the 
interference pattern is seen to emerge clearly.

1.13.2  explanation of double-slit 
experiment by wave mechanics

In wave mechanics, the wave function y  ( , )r t  describes 
the state of the system. If one asks ‘what is the posi-
tion of an electron at time?’ then the answer from 
quantum mechanics is very disappointing. There is no 
way of specifying the position of a particle as done in 

10 electrons

100 electrons

3000 electrons

20,000 electrons

77,000 electrons

Fig. 1.13 Buildup interference pattern for 
electrons
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classical mechanics. All that we can tell is the prob-
ability of finding the particle at a particular position r 
at the instant t. The probability of finding the particle 
in a volume d 3r is given by y y*( ) r r, ( , )t t d 3r (This 
description is true only in non-relativistic quantum 
mechanics. The position probability is not well defined 
in relativistic quantum field theory. It is very difficult 
to define position probability density for an electron or 
a photon in quantum field theory. We restrict ourselves 
to non-relativistic quantum mechanics.)

The wave functions y
A
 and y

B 
describe the waves 

describing the electrons from slit A and slit B, respec-
tively as shown in Fig. 1.14.

 y q w
A

i kr tf e� ( ) ( )1 −

 y q w
B

i kr tf e� ( ) ( )2 −

The wave function for an electron on the screen is 

 y  = y
A +yB

 = +− −f ( )( )( ) ( )q w we ei kr t i kr t1 2

 = +− −f e ei kr t ik r r( ) ( )( ) )q w1 2 11 (

 y q p
l

q2 2 22= 





f
d

( ) cos sin

This is the expression for classical wave. Now y 2
 is interpreted as the probability density for the 

electron to hit the screen at a pointer r. So, the observed intensity distribution of the electrons is 
consistent with the quantum mechanics. The positions at which the individual electrons hit the screen 
are random. If y 2

d 3r is zero, it is impossible to find the electrons at these points. These regions cor-
respond to destructive interference. If y 2

d 3r is 1, they correspond to definite events. For other values 
of probability, the electron may or may not hit at that point. When the number of electrons become 
large, a definite pattern will emerge.

1.13.3 superposition: consequences unique to quantum mechanics
The wave function y  = y

A
 + y

B
. is superposition of two states y

A
 and y

B
. Such superpositions are 

there also in classical wave theory. But, in quantum mechanics, superposition has non-trivial conse-
quences. A simple example will help us to understand the consequences of superposition principle. 
Let us consider an object which can spin either clockwise or anticlockwise about z-axis. Let us assume 
that no other rotation is possible. The corresponding state functions are given by y

clock
 and y

anticlock.

 y
clock

 → object spinning in clockwise sense

 y
anticlock

 → object spinning in anticlockwise sense 

We are familiar with macroscopic objects spinning either clockwise or anticlockwise. So y
clock

 and y
anticlock  

represent states which are familiar to us. But, in quantum mechanics, we have one more kind of state.

 y = y
clock

 + y
anticlock

r1

P

B
d

q

A
r2

Fig. 1.14 Double-slit experiment
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What is the spin of the object in this state? Does it spin clockwise or anticlockwise? (No other rotation 
is also permitted.) Quantum mechanics does not provide any answer to this question. (If one wants to 
dramatize this idea, consider a hypothetical example. Suppose the shape of an object is either square 
or circular. No other shape is possible.y

square 
describes the object in square shape; y

circular
 describes the 

object of the circular shape. Suppose the state of the object is y  = y
square 

+ y
circular

, what is the shape of 
this object? It is neither square nor circular; other shapes are not allowed. This state looks more mys-
terious when other possibilities which can be visualized by classical physics are ruled out.)

Now let us come back to the electron in the double-slit experiment. y
A 
represents an electron which 

goes through slit A. y
B

 represents an electron which goes through slit B. These are similar to our expe-
rience with classical objects. We can comprehend these two possibilities for electron though we may 
not ‘see’ them. However, what possibility does y = y

A 
+ y

B
 represent? There is no classical analogue 

corresponding to this state, allowing us to comprehend any possibilities which are within our experi-
ence. We have to proceed with this state as such without raising the question about the path of the 
electron. However, we can compute the probability of finding the electron at different positions on the  
screen.

What about the observation process to find out whether the electron goes through slit A? Suppose 
one finds that the electron has gone through A. This measurement process makes the wave function to 
collapse from y = y

A 
+ y

B
 to y

A
.

That is, detection of electron through slit A: y  = y
A 
+ y

B 
Collapse →  

y
A.

The corresponding probability density function becomes y A

2
.

 (i.e.) P
A/e

 = y A

2

The interference is lost.

1.14 pArticLes And wAves From quAntum FieLd theory
Let us conclude this chapter with a brief sketch of description of quantum objects within the frame-
work of quantum field theory. The extension of non-relativistic quantum mechanics to relativistic 
quantum mechanics brings quantum field theory. There are many reasons to go for quantum field the-
ory. The route for quantum field theory started with the quantization of electromagnetic field. When 
quantum mechanics was applied to electromagnetic filed, the concept of photons emerges naturally. 
This scheme has been extended to all the fundamental particles.

Let us briefly explain the framework of quantum field theory. What are the fundamental building 
blocks of the universe? First, it was thought that the indivisible atoms were the fundamental building 
blocks. Atom was found to be divisible in late nineteenth century. So, now particles like electrons 
and photons were considered as the fundamental objects. The advent of quantum field changed this 
picture. The quantum field theory changed the status of these elementary particles. The fundamental 
building blocks are now fields which fill the space. 

For each elementary particle type, there is an associated underlying field filling the space. So, we 
have electromagnetic field, electron field, muon field, up quark field, and so on. All of these fields fill 
the space. These fields are the basic objects of the quantum field theory. What about the particle prop-
erty and the wave property of photons, electrons, and so on? The particles are seen as the excitations 
of the respective fields. Their energy and momenta are h h hn n n, ,2 3 … and � �k k, , ....2  However, they 
are not like localized lumps in the sense of classical physics. The excitations belong to the entire field.  
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In that sense, they are like waves. But they are not classical waves. When there is an exchange of 
energy and momentum between the fields, the exchange takes place at a point in terms of discrete 
quanta of energy and momentum. So, an electromagnetic field absorbs energy h h hn n n, ,2 3 … from 
the electron field at a point. Similarly, the electromagnetic field emits h h hn n n, ,2 3 … at a point when 
it interacts with electron field.

What is the physical nature of the entity called photon? What is the physical nature of the entity 
called electron? How do they look like that? There is no simple answer to these questions. The photon 
of Einstein’s conception in 1905 paper (he did not use the term for photon) and the photon in quantum 
electromagnetic differ in a very subtle way. The theoretical developments and the advances in tech-
nology make the knowledge of these quantum objects more and more complex. There is a constant 
evolution in our understanding of photon and other particles.

We may not have a simple picture about a photon or an electron. But, we have a huge body of 
knowledge of their behaviour in a wide variety of circumstances. We have built a huge theoretical 
machinery to predict the possible outcomes which can be verified in laboratories. We have been very 
successful in manipulating electrons and photons to obtain a vastly superior and reliable technology.

The major part of this book is devoted to non-relativistic quantum mechanics. The electrons are 
seen as point particles whose dynamics is governed by the laws of quantum mechanics.

exercises
 1. Why do you need two initial conditions to describe the motion of an object in classical mechanics?
 2. In Hamiltonian formalism, what are the variables for which the initial conditions are needed?
 3. Why is it difficult to obtain Poisson spot?
 4. Is it necessary for a black body to be black-coloured object?
 5. What are the conclusions that can be reached by thermodynamic considerations in the case of 

black body radiation?
 6. How does the emissive power of an arbitrary object differ from that of a black body?
 7. What is meant by the statement that a good absorber is a good emitter?
 8. What is Einstein’s conception of light quantum?
 9. What is the principle of complementarity?
 10. Can complementarity principle be violated?
 11. What is the quantum mechanical explanation of the double-slit experiment?
 12. In the double-slit experiment, do the photons going through slit A and the slit B interfere?
 13. What is the significance of superposition principle in quantum mechanics?
 14. Consider a single-slit diffraction of neutrons of wavelength l

dB
 = 18 Å. The width of the slit is  

90 mm. The screen is 5 m away from the slit. Determine the spacings between the minima.
 15. A double-slit experiment is done with helium atoms of de Broglie wavelength l

dB
 = 1Å. The width 

of each slit is 2 mm. The distance between the slit is 8 μm. The screen is at 64 cm from the slits. 
Determine the spacing between the minima in the intensity distribution.
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Schrödinger Equation

Quantum physics provides the basis to understand the entire universe. The study of quantum mechan-
ics always begins with the non-relativistic quantum mechanics. The entire non-relativistic quantum 
mechanics centres around Schrödinger equation. The wide range of applications of Schrödinger equa-
tion is simply amazing. These include a number of different areas such as atomic physics, chemistry, 
and solid state physics. Schrödinger developed this equation in 1926.

How do we derive Schrödinger equation? The simple and straight answer is that Schrödinger equa-
tion cannot be derived or deduced from any other fundamental principles. However, one can pro-
vide a set of arguments leading to the formulation of Schrödinger equation. Each author develops 
Schrödinger equation in his or her own way. We have to bear in our mind that their derivations are 
textbook derivations and they do not refl ect the way Schrödinger obtained this equation. The best way 
is to take Schrödinger equation as one of the postulates of quantum mechanics. (See Chapter 5). Here 
we give a ‘derivation’ closely following I. Schiff.

2.1 derivation oF scHrödinger equation
Matter like electrons exhibit wave-like property in some experimental set up and particle-like prop-
erty in other experimental set up. This is the well-known wave particle duality that has already been 
discussed in Chapter 1. Now, let us concentrate on the wave nature of matter. If matter behaves like 
waves then they should have a wave equation. In the case of light, we know that the wave equation is 
given by Maxwell’s equations. In the same way, what is the wave equation for an electron or any other 
particle in atomic world?

From general considerations, de Broglie suggested that the frequency and wavelength of the matter 
wave for a free particle is given by, 

 E = hn and  l = h
p

 (2.1)

We can rewrite these equations in terms of the angular frequency w  = 2pn and the wave number 

k = 2p
l

. We have

 p h h k= = ⋅ =
l p

p
l2

2 �  (2.2)

and E h h= = ⋅ =n
p
pn w

2
2 �  (2.3)

2
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30  Quantum Mechanics

Equations (2.2) and (2.3) just relate the kinematical particle properties, p and E to the parameters l and 
n describing wave motion. This does not suggest any relation between E and p. For instance, in the case 
of a non-relativistic free particle, E p m= 2 2/  while for a relativistic free particle E p c m c= +( ) /2 2 2 4 1 2.  
Let us restrict ourselves to non-relativistic case. Then we have,

 p k E
p
m

k
m

= = = =� � �;  w
2 2 2

2 2
We have to find a wave equation (i.e. a differential equation) consistent with these relations. Let us start 
our exercise first, with an attempt to find out an equation for a free particle. The wave function repre-
senting a free particle can be taken as a plane wave function. The possible plane wave functions are 
	 y  = sin(kx - w t) (2.4)
	 y  = cos(kx - w t) (2.5)

 y w= −ei kx t( ) (2.6)

We should note that the interference and diffraction phenomena are due to superposition of two waves. 
If y

1
 and y

2
 are solutions of the wave equation, the existence of interference phenomenon requires that 

y  = y
1
 + y

2 
should also be a solution. This is possible only for a linear partial differential equation.

Assuming that the wave functions given in Equations (2.4), (2.5), and (2.6) represent a physical sit-
uation like an electron beam, we have to look for a linear partial differential equation for which these 
functions are solutions. Normally, a wave equation is not constructed by starting from a particular 
solution. For instance, in the case of a string, the wave equation is obtained by applying Newton’s sec-
ond law of motion for the propagation of a disturbance in the string. In the same way, Maxwell’s equa-
tions are the results of study of various electric and magnetic phenomena. In the case of Schrödinger 
equation, there is no way of obtaining it by studying a particular set of phenomena based on the force 
or interaction experienced by the particle. We try to construct an equation for which these functions 
are solutions. As an exercise in mathematics, in principle, we can obtain a number of partial differ-
ential equations for which these functions are solutions. Among these equations, it is the physically 
observable consequences resulting from particular equation that decides the correct choice of the 
equation. We have to bear these observations in mind when we derive Schrödinger equation.

Continuing our mathematical exercise of constructing a partial differential equation for which the 
functions in Equations (2.4), (2.5), and (2.6) are solutions, let us start with the standard well-known 
wave equation.

 1
2

2

2

2

2g
y y∂

∂t x
= ∂

∂
 (2.7)

Let us feed the wave functions (2.4), (2.5), and (2.6) in Equation (2.7) and for all the wave functions, 
we get (use Equations (2.2) and (2.3))

 − = −1
2

2

2

2

2g
y yE p

� �
 (2.8)

or g 2
2

2

2

24
= =E

p
p
m

 (2.9)

Can we accept Equation (2.7) with the choice g 2 2 24= p m/ ? We would like to have an equation where 
the coefficients in the partial differential equations do not depend on the physical quantities such as E 
or p. This consideration is necessary for the existence of superposition of waves of different E or p. So 
we would like to look for some other equations for which the coefficients of various terms will contain 
only parameters such as mass m, change e, and Planck’s constant �.
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Equation (2.8) suggests that our required differential equation should be such that the substitution 
of the wave functions (2.4), (2.5), and (2.6) in that equation should lead to the equation of the form

 E
p
m

y y=
2

2
 (2.10)

The RHS can be obtained from the second-order derivative with respect to x. The LHS is possible with 
only a first-order derivative with respect to time, provided we consider only exponential function (2.6). 
Obviously, the wave functions sin (px - Et)/� and cos (px - Et)/� will not lead to such an equation. 
This suggests the required differential equation of the form

 a y b y∂
∂

= ∂
∂t x

2

2
 (2.11)

On substituting the wave function y w= −ei kx t( ) in Equation (2.11), we get

 i E pa y b y
� �

= − 2

2
 (2.12)

The simplest choice for a  and b are a  = i� and b = −�2

2m
. So, the equation for a free particle is 

 i
x t
t m x

� �∂
∂

= − ∂
∂

y y( , ) 2 2

22
 (2.13)

How do we change this equation when interaction is introduced?
In classical mechanics, the force F(x, t) acting on the particle describes the interaction of the par-

ticle with another particle or the external world. Equivalently, the interaction can also be described by 
using the concept of the potential energy. Let us now choose potential energy V(x, t) as the quantity 
describing the interaction of the particle with its surrounding. The total energy E is given by

 E
p
m

V= +
2

2

Therefore, we have to modify the equation in such a way that when we put V = 0 it reduces to the Equation 
(2.13). The simplest way to modify the Equation (2.13) is to add Vy  to it. The resulting equation is

 i
x t
t m

x t
x

V x t x t� �∂
∂

= − ∂
∂

+y y y( , ) ( , )
( , ) ( , )

2

22
 (2.14)

This is the well-known Schrödinger equation describing a particle in one dimension. This can be eas-
ily extended to three-dimensional space.

 i
t

t m
t V t t� �∂

∂
= − ∇ +y y y( , )

( , ) ( , ) ( , )
r

r r r
2

2

2
 (2.15)

2.2 Hamiltonian operator
In quantum mechanics, one has to introduce a number of new concepts that cannot be deduced from 
classical mechanics. One such idea is to associate an operator (may be a differential operator or a 
matrix operator) to each dynamical variable. How do we deduce experimental results or some numbers 
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in a measurement process using such operators? This will be extensively discussed in Chapter 5. Right 
now, we can define two operators pop  and H

op 
corresponding to momentum and Hamiltonian. The 

momentum operator pop  is defined as

 pop i= − �Æ  

The Hamiltonian operator H
op

 is defined as 

 H
m

V top

op op=
⋅

+
p p

2
( , )r

 = − +�2
2

2m
V tÆ ( , )r

The energy operator E
op 

is defined as

 E i
top = ∂

∂
�  (2.16)

Therefore, the Schrödinger equation can be written as

 i
t

t H top�
∂
∂

=y y( , ) ( , )r r  (2.17)

or E t H top opy y( , ) ( , )r r=  (2.18)

2.3 Free-particle solution
The potential V(x, t) describes the interaction between the particle and its surroundings. For a free 
particle, V(x, t) = 0. Therefore, the Schrödinger equation for a free particle is

 i
x t
t m

x t
x

� �∂
∂

= − ∂
∂

y y( , ) ( , )2 2

22
 (2.19)

Let us assume that the solution is of the form

 y ( , ) ( )/x t Nei px Et= − �

(Note that we derived the Schrödinger equation using this function. Now, we work in the reverse way.)
LHS:

 i
t

x t i iE Ne Ei px Et� �
�

�∂
∂

= −( ) =−y y( , ) ( )/

RHS:

 − ∂
∂

= − ⋅





=−� �
�

�
2 2

2

2
2 2

2 2 2m x m
ip

Ne
p
m

i px Ety y( ) /

Since E p m= 2 2/  for a free particle, LHS = RHS
Therefore, the wave function describing a free particle is 

 y = −Nei px Et( )/�

In three dimensions, the free-particle Schrödinger equation is

 i
t

t
m

t� �∂
∂

= −y y( , ) ( , )r r
2

2

2
Æ  (2.20)

and the solution to this equation is

 y ( , ) ( )/r p rt Nei= ⋅ −Et �  (2.21)
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2.4 interpretation oF wave Function x (r, t)
Normally, in a partial differential equation for wave motion, the quantity y ( , )r t  stands for the fluc-
tuation of a physical quantity about equilibrium values. For instance, in the case of wave motion in a 
string, y ( , )r t  represents displacement of the string from the equilibrium as shown in Fig. 2.1.

Fig. 2.1 Waves in a string

Similarly, in the case of sound in air, y ( , )r t  represents fluctuations in pressure or density. In the case 
of a drum (or mirudhangam), y ( , )r t  represents the vibrations of a membrane. In electromagnetic 
wave, y ( , )r t  represents fluctuations in electric and magnetic fields. The question is, what is the physi-
cal property whose fluctuation is represented by y ( , )r t  in Schrödinger equation?

Schrödinger developed this equation in 1926 and was very successful in explaining the energy 
levels of hydrogen atom. However, very soon it was realized that it is difficult to interpret y ( , )r t  
as fluctuation in any physical property. It was Max Born, who gave the probabilistic interpretation 
of the wave function y ( , )r t . This is the standard interpretation of the wave function y ( , )r t  in non-
relativistic quantum mechanics.

max Born’s interpretation
The wave function y ( , )r t  is now interpreted as the probability amplitude and y y*( , ) ( , )r r rt t d 3  is 
interpreted as the probability of finding the particle in a volume d 3r centred around r at the instant t 
as shown in Fig. 2.2.

dx

x

x

y

z

r

d3 r

Fig. 2.2 (a) Interval dx at x (b) Volume d 3r centered at r
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In one dimension, y y*( , ) ( , )x t x t dx  is interpreted as the probability of finding the particle in the 
interval dx centred around x.

Note that there are three quantities. The wave function y ( , )r t  is probability amplitude. This can 
be a real number or a complex number. y y*( , ) ( , )r rt t  is the probability density and it is denoted by 
r( , )r t  or r y y( , ) *( , ) ( , )r r rt t t= . This has to be a real number. The probability of finding the particle 
in a volume d 3r centred around r is given by

 dP t t d t t d( , ) ( , ) ( , ) ( , )r r r r r r= = ∗r y y3 3  (2.22)

This has to be a positive real number between 0 and 1.
The probabilistic interpretation assumes that the particle to be indivisible point particle which 

implies that when a particle is detected it is detected as a whole though it is a random event. 

2.5 normalization oF wave Function
Let r( , )x t  be the position probability density for a particle. As mentioned above and shown in Fig. 2.3,  
the probability of finding the particle in the interval D	x

1 
around x

1 
is given by

P(near x
1
) = r( , )x t x1 1∆

Dx1

x1

Dx2

x2

Dx3

x3

Fig. 2.3 Particle near x1 or x2 or x3

Now, what is the probability of finding the particle near x
1 
or

 
x

2
? The particle cannot be found to be 

present simultaneously at both x
1
 and x

2
. In the theory of probability, these two events are referred to 

as mutually exclusive events. So the probability of finding the particle within the interval D	x
1
 near x

1 

or within the interval D	x
2
 near x

2 
is given by

 P(near x
1 
or near x

2
) = r( , )x t1 D	x

1 
+ r( , )x t2  D	x

2

Let us extend this idea further. The probability of finding the particle near x
1
 or x

2 
or x

3 
is given by

 P (near x
1
 or x

2
 or x

3
) = r( , )x t1 D	x

1 
+

 r( , )x t2 D	x
2 
+ r( , )x t3 D	x

3

Continuing this argument further, the probability of finding the particle near x
1 
or x

2 
or x

3
 or x

4
... is 

given by

 P (near x
1 
or x

2 
or x

3 
or x

4
…) = Σr( , )x ti D	x

i

If there is a particle, it should be found somewhere between x = -∞ and x = ∞. In probability theory, 
this event corresponds to a certain event. Therefore, the probability of finding the particle anywhere 
between x = -∞ and x = ∞ should be equal to 1.
 (i.e.) ∑r (x

i
,
 
t) D	x

i 
= 1

In the continuum limit, this result becomes an integral.

 (i.e.) r( , )x t dx =
−∞

∞

∫ 1 (2.23)

 y y*( , ) ( , )x t x t dx =
−∞

∞

∫ 1  (2.24)
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In three dimensions, we get 

 y y*( , ) ( , )r r rt t d 3 1=
−∞

∞

∫  (2.25)

Equations (2.24) and (2.25) are known as normalization conditions.
Is it possible to normalize any function? The answer is, obviously, that it is possible to normalize 

only some kind of functions through the condition (2.24) or (2.25). This can be mainly seen as follows:
The normalization condition is 

 y y y*( , ) ( , ) *( , ) .x t x t dx x t dx= =
−∞

∞

−∞

∞

∫ ∫ 2
1

The first thing to be noted is that the integrand y ( , )x t
2
 is always a positive real number. The general 

sketch of y ( , )x t
2
 is likely to be like the curves shown in Fig. 2.4 (a) and (b).

− ∞ + ∞

y (x, t )2

− ∞ + ∞

y (x, t )2

(a) (b)

Fig. 2.4 Sketch of |y	(x)|2

In Fig. 2.4(a), y ( , )x t
2
 approaches a constant value for large values of x, whereas in Fig. 2.4(b), y ( , )x t

2
 

approaches zero for large values of x. The integral y ( , )x t dx
2

−∞

∞

∫  is equal to the area under the curve 

y ( , )x t
2
 bound by x-axis extending from x = -∞ to x = ∞. If the limits of the integral are finite, then the 

area under this curve will be always a positive number. In the case of limits of the integral going to infin-

ity, one has to be careful. In this case, the area under this curve can be finite, provided y ( , )x t
2
 goes to 

zero at large values of x , that is, y ( , )x t
2→	0 as x →	±∞. In Fig. 2.4(a), y ( , )x t

2
 approaches a constant  

in the large x limit. As long as this constant is different from zero (even it may be a very small num-

ber) the area under this curve is infinite. On the other hand, in Fig. 2.4(b), y ( , )x t
2
 →	0 as x →	±∞. 

The area under this curve is a finite number (may not be equal to 1). More technically, one has to 

analyse the convergence of the integral y ( , )x t dx
2

−∞

∞

∫ . For a continuous function y (x, t), the integral 

y ( , )x t dx
2

−∞

∞

∫  converges to a finite number provided y (x, t) →	0 as x → ±∞ .

 (i.e.) y ( , )x t dx
2

−∞

∞

∫  is a finite number, provided y (x, t) →	0 as x → ±∞ (2.26)

This finite number need not be equal to 1. It is enough for the integral to converge to a finite number. 
In such cases, normalization can be done by introducing a suitable normalization constant.
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As an example, consider y a( )x x= −e 2. The normalization integral is y a( )x dx e dxx2 2 2

−∞

∞
−

−∞

∞

∫ ∫= =
p
a2

. Obviously, p
a2

 is a finite number, but it is not equal to one. Let us redefine the function y (x) 

as y a
p

a( ) .
/

x e x= ( ) −2
1 4

2  Now, y a
p

p
a

( ) .
/ /

x dx
2

1 2 1 2
2

2
1

−∞

∞

∫ = ( ) ( ) =

example 2.1 Normalize the wave function y (x) given by 

 y ( )
( )

x N
a x

=
+2 2

solution: The normalization condition is

 y y*( ) ( )
( )

.x x dx N
a x

dx
−∞

∞

−∞

∞

∫ ∫=
+

=
2

2 2 2
1

Put x = a tanq. Then limits of the integral changes to q p= −
2

 and q p=
2

.

 dx = a sec2q dq
	 \ (a2 + x2)2 = (a2 + a2 tan2q	)2 = a4(1 + tan2q	)2 = a4 sec4q

 ∴
+

= =
−∞

∞

∫ ∫N
a x

dx aN
a

d N
a

d
2

2 2 2

2

4
2

2
2

3
2

( ) ( )
cossec

sec

2

4
/

/
q
q
q q q

p

p

− −pp

p

/

/

2

2

∫

 = =N
a

2

3
1.p

 ∴ = ( )N a3 1 2

p

/

Therefore, the normalized wave function y	(x) is given by

 y
p

( )
/

x a
a x

= ( ) +
3 1 2

2 2
1

plane wave Function and normalization
Let us now try to normalize the plane wave function y ( , ) ( )/x t Nei px Et= − �  through the normalization 

condition y y* , ( , )( )x t x t dx =
−∞

∞

∫ 1 .

 y y* , ( , ) ( )/ ( ) /( )x t x t dx N e e dxi px Et i px Et=
−∞

∞
− −

−∞

∞
−∫ ∫2 � �

  = = ∞
−∞

∞

∫N dx2

Obviously, the plane wave function is non-normalisable through the normalization condition 

y y*( , ) ( , )x t x t dx =
−∞

∞

∫ 1.
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Later in Section 2.14 we will show that the plane wave function can be normalized by employing 
different normalization condition.

2.6 square integraBle Functions
A function f(x) is said to be square integrable if it satisfies the condition:

 f x dx( )2

−∞

∞

∫ < ∞ or f x f x dx*( ) ( )
−∞

∞

∫ < ∞  (2.27)

The meaning of the above statement is that the integral f x dx( )2

−∞

∞

∫  converges to a finite number.

 (i.e.) f x dx N( ) ,2

−∞

∞

∫ =  where N is a finite number. (2.28)

In three dimensions, f ( )r  is said to be square integrable if it satisfies the condition:

 f d( )r r
2 3

−∞

∞

−∞

∞

−∞

∞

∫∫∫ < ∞  (2.29)

or f d N( ) ,r r
2 3

−∞

∞

−∞

∞

−∞

∞

∫∫∫ =  where N is a finite number (2.30)

The fact that the integral | ( ) |f x dx2

−∞

∞

∫  should converge to finite number N imposes certain conditions 

on f (x). All the continuous functions f (x) which go to zero as x → ±	∞ are square integrable. However, 
this limiting behaviour is not necessary for a function to be square integrable. Within quantum mechan-
ics, we consider only the kind of square integrable functions which go to zero for large values of x.

So, in quantum mechanics, we choose only one kind of square integrable wave functions y ( , )r t  
for which

 y ( , )r t → 0 as x → ± ∞, y → ± ∞, z → ± ∞ (2.31)

Let us reiterate the significance of square integrable functions in quantum mechanics. There are many 
kinds of solutions to Schrödinger equation. Among these solutions, the only solution relevant to quan-
tum mechanics is square integrable functions. This is the consequence of the interpretation of the wave 
function as probability amplitude and y *y as the probability density for the position of a particle.

There are some set of functions which are widely used in quantum mechanics in spite of the fact 
that they are not square integrable. One such example is the plane wave function y ( , ) ( )/r t Nei px Et= − �

(or y = ⋅ −Nei Et( ) /p r � in three dimensions).

2.7 Bound and scattering states
What is the meaning of the boundary conditions

 y ( , )r t → 0 as x → ± ∞, y → ± ∞, and z → ± ∞?
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The fact that y ( , )r t  goes to zero at large r means that the probability density r( , )r t  becomes zero at 
large r and so the probability of finding the particle is zero at large r implying that the particles are 
confined to some finite regions. In other words, such states are bound states in the sense that a particle 
is bound to remain in a finite region. For example, consider the wave function for an electron obeying 
the boundary conditions (2.31) in the case of a hydrogen atom. The boundary conditions imply that as 
one moves away from the nucleus, the probability of finding the electron falls to zero. Obviously, the 
electron in the hydrogen atom is bound to the nucleus. Therefore, the wave functions which obey the 
boundary conditions (2.31) are known as the bound state wave functions.

On the other hand, ei kx t( )−w  represents free-particle solutions. They are not bound to any particular 
region. It is to be noted that the unbound states need not necessarily mean free-particle states. We 
can have unbound states even in the presence of potential V ( )r . It is possible to have solutions which 
behave like ei t( )k⋅ −r w  at large distances. Such a large r behaviour occurs, for instance, in the scatter-
ing theory. Such a wave function is called unbound or scattering-state wave functions.
So, we have two kinds of states in quantum mechanics:

Bound state:  y ( , )r t → 0  as x → ± ∞, y → ± ∞, z → ± ∞ (2.32)

Unbound or scattering state:  y w( , ) ( )r rt ei t→ ⋅ −k  as x → ± ∞, y → ± ∞, z → ± ∞ (2.33)

All the square integrable wave functions represent bound state and the non-square integrable wave 
functions represent unbound state.

2.8  admissiBility conditions on a wave Function in  
quantum mecHanics

The probability interpretation of y and the fact that y satisfies a partial differential equation together 
put some restrictions on y ( , )r t  to accept them as wave functions as allowed in quantum mechanics.

We have already seen that the probability interpretation requires the normalization of the wave 
function which in turn means that within quantum mechanics, only square integrable functions are 
accepted. Of course, free particle states and scattering states are exceptions to these requirements.

The probability interpretation further requires that the wave function y ( , )r t  to be finite and single 
valued and continuous. The fact that y y∗ ( , ) ( , )r r rt t d 3  represents the probability means that this 
quantity should be a number between 0 and 1. This is possible, provided that y ( , )r t  has a finite and 
unique value. If y ( , )r t  has a discontinuity at r,  as shown in Fig. 2.5, then it will not be well defined 
at r  and hence it cannot represent probability amplitude.

x0

y1

y2

x0

y (x)

(a) (b)

Fig. 2.5 Wave functions with discontinuities
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In Fig. 2.5(a), the function y (x, t) has a finite discontinuity at x = x
0
: y (x, t) does not have a unique 

value at x x= 0. If we go along the lower branch, y (x, t) becomes y
1
 at x

0
 and if we go along the upper 

branch y ( , )x t  becomes y 2  at x
0
. If one accepts this function as allowed function, then the probability 

of finding the particle is not unique at x
0
. Obviously, we would like to avoid such a situation. On the 

other hand, in Fig. 2.5(b) y (x, t) is discontinuous at x = x
0
 by becoming infinite making the probability 

to become infinite. We would like to avoid this kind of situation also. So, the probability interpretation 
requires that the wave function y ( , )r t  is single valued, finite, and continuous at all points.

This is also consistent with the fact that y ( , )r t  satisfies a partial differential equation. The 
Schrödinger equation has second-order partial derivatives in x, y, and z and a first-order derivative in 
time t. This is possible, provided y ( , )r t  and its first-order derivatives are differentiable. This implies 
the following:

 1. y ( , )r t  is single valued, finite, and continuous at all points.

 2. ∂
∂

∂
∂

y y
x y

,  and ∂
∂
y
z

 are single valued, finite, and continuous.

The second requirement depends on the behaviour of the potential V t(r, ). The potential V t(r, ) may, 
in general, be continuous or discontinuous function. If V t(r, ) is a continuous function then the second 
requirement follows naturally. If the potential V t(r, ) has discontinuity, then one has to see whether 
the function has a finite discontinuity or infinite discontinuity. If V t(r, ) has a finite discontinuity, the 
second-order partial derivatives δ2y (have) must also be discontinuous such that their discontinuities 
cancel the discontinuity arising from V t( , )r . If V t( , )r  has infinities like the delta function potential 
or the potential for a particle in a box, the second requirement breaks down.

Hence, the admissibility conditions for a wave function y ( , )r t  to accept it as an allowed wave 
function in quantum mechanics are the following:

 1. y ( , )r t  is single valued, finite, and continuous at all points  (2.34)

 2. The first-order derivatives ∂
∂

∂
∂

y y
x y

, , and ∂
∂
y
z

 are single valued, finite, and continuous at all 
points  (2.35)

 3. For bound states,

 y ( , )r t → 0  as x → ± ∞, y → ± ∞, z → ± ∞ (2.36)

If V t( , )r  becomes infinite at a point, then the second requirement breaks down at that point. These 
three conditions are also known as boundary conditions on y ( , ).r t  To analyse a physical situation 
using quantum mechanics, we have to solve the Schrödinger equation, subject to the boundary condi-
tions (2.34), (2.35), and (2.36).

2.9 conservation oF proBaBility
Let us reiterate again that in non-relativistic quantum mechanics, the time evolution of the wave func-
tion y ( , )r t  is governed by Schrödinger equation:

 i
t

t m
t t t� �∂

∂
= − +





y y y( , )
( , ) ( , ) ( , )

r
r r

2
2

2
Æ V r

The probability density r( , )r t  is given by

 r y y( , ) *( , ) ( , )r r rt t t=
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If there exists a particle, it should be found at some point in space.

 ∴ =∫ r( , )r rt d
Ω

3 1 or y y*( , ) ( , )r r rt t d
Ω
∫ =3 1 (2.37)

where W is the entire volume of the space.
Note that the LHS involves a function that depends on time, but the RHS is independent of time. 

The probability of finding a particle at some location in the entire space is always or the total prob-
ability is constant in time. So, the total probability r( , )r rt d

Ω
∫ 3  is said to be a conserved quantity. Our 

task is to prove that the time evolution of y ( , )r t  (as governed by Schrödinger equation) is such that 

the Equation (2.37) is true at all instants of time. Let us evaluate ∂
∂ ∫t

t dr( , ) .r r3

 ∂
∂

= ∂
∂∫ ∫t

t d
t

t t dr y y( , ) ( , ) ( , )r r r r r3 3

Ω Ω

*

 = ∂
∂

+ ∂
∂





∫ y y y y*

t t
d* 3r

Ω

Using Schrödinger equation and its conjugate, we get

 ∂
∂

= ∇ −





+ − ∇ +



∫t

t d
i m

V
i m

Vr y y y y y( , ) * *r r3
2

2
2

21
2

1
2

Ω
�

�
�

� yy *{ }∫
Ω

d3r

 = ∇ − ∇∫�
2

2 2 3

im
d( * *)y y y y

Ω

r

 = ∇⋅ ∇ − ∇∫�
2

3

im
d( * *)y y yy

Ω

r

Convert the volume integral 
Ω
∫  into the surface integral 

Σ
∫  where ∑ is the surface enclosing the volume W. 

 ∴ ∂
∂

= ∇⋅ ∇ − ∇∫ ∫
∑

t
t d

im
dr y y yy( , ) ( * *)r r r

Ω

3 3

2
�  (2.38)

We have to bear in mind that W is the whole space and so the values of x, y, and z on the surface ∑ 
is very large and hence y and y * are zero on the surface ∑. Therefore, the integrand is zero on the 
surface ∑, and hence the surface integral is zero.

 ∴ ∂
∂

=∫t
t t dy y*( , ) ( , )r r r

Ω

3 0  (2.39)

y y*( , ) ( , )r r rt t d
Ω
∫ 3  is independent of time, and hence the total probability is a conserved quantity.

equation of continuity
There are many ways to express the conservation of a quantity. One such method is to employ the 
equation of continuity which is widely used in branches like hydrodynamics or electrodynamics. 
Hence, let us derive the equation of continuity here to express the conservation of probability.
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Schrödinger equation and its conjugate are

 i
t m

V� �∂y y y
∂

= − ∇ +
2

2

2
 (2.40)

 − ∂
∂

= − ∇ +i
t m

V� �y y y*
* *

2
2

2
 (2.41)

(2.40) × y	* -	(2.41) × y gives

 i
t

i
t m m

� � � �y y y y y y y y*
*

* *
∂
∂

+ ∂
∂

= − ∇ + ∇
2

2
2

2

2 2

 or i
t m m

� � �∂
∂

= − ∇ − ∇ = − ∇⋅ ∇ − ∇( * ) [ * * ] [ * * ]y y y y y y y y y y
2

2 2
2

2 2

 

∂
∂

+ ∇⋅ ∇ − ∇ ∗ =

∂
∂

+ ∇⋅ =

t im

t

( * ) [ * ]y y y y y y

r

�
2

0

0or S
 (2.42)

provided, we identify r( , )r t  and S(r,t) as

 r y y( , ) ( , ) ( , )r r rt t t= ∗  (2.43)

and S( , ) ( )r t
im

= ∗∇ − ∇ ∗�
2
y y y y  (2.44)

This equation is very much similar to the equation of continuity in electrodynamics, ∂ ∂ + ∇⋅ =r t J 0,  
where r  is the charge density and J is the current density. r( , )r t  in Equation (2.44) is identified as 
the probability density and S( , )r t  is called the probability current density.

Have we derived or deduced Max Born’s probability interpretation? It is true that the expressions 
for r( , )r t  and S r( , )t  were deduced from Schrödinger equation. This is purely a mathematical exer-
cise. The equation of continuity occurs in other branches of physics also like hydrodynamics and 
electrodynamics. So, this equation does not necessarily imply any particular interpretation of r( , )r t .

By comparing with other fields, all that we can do is to interpret r( , )r t  as the density of some 
physical property and S as corresponding ‘current density’ for the flow of that physical property. So 
the question is: If r	(r,t) is to be interpreted as a density of a physical property, what is that physical 
property described by y	(r,t)? We cannot answer this question from the knowledge of other similar 
quantities in other fields. So, Born’s interpretation cannot be deduced as a natural consequence of 
equation of continuity.

However, the equation of continuity restricts the form of the expression for r( , )r t  in terms of y  
for a given differential equation.

conservation of probability and equation of continuity
The equation of continuity is

 
∂

∂
+ ∇⋅ =r( , )r t

t
S 0

The interpretation of this equation is simple and very much similar to the interpretation in the case of 
electromagnetic theory or hydrodynamics. Consider a small volume ∆t  in space. Then 

 
∂

∂
∆ = −∇⋅ ∆r t t( , )r t

t
S  (2.45)
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 ∂
∂

∆ = −∇⋅ ∆
t

t( ( , ) )r t tr S  (2.46)

r t( , )r t ∆  is the total amount of probability in volume ∆t  (similar to the quantity of water in a tank 
of volume ∆t ). ∂ ∂ ∆/ t t( ( , ) )r tr  is the rate of change of amount of probability in volume ∆t  (similar 
to rate of change of quantity of water in the tank). Conservation of probability means that this should 
be equal to net inflow of probability into the volume Dt  (similar to net inflow of water into the tank). 
Mathematically, from vector calculus, we know that ( )−∇⋅S∆t  represents the net inflow of probability 
into the volume Dt . So, the equation of continuity is another way of stating conservation of probability.

example 2.2 Obtain the probability density and probability current density for free particles which 

are described by fp p rr( , ) ( )/ .t Nei Et= ⋅ − �

solution: The probability density is r f f( , ) ( , ) ( , ) | |r r rp pt t t N= ∗ = 2  (2.47)

The current density is S = ∗∇ − ∇ ∗ 
�

2im
f f f fp p p p .

 = =| |N
m m

2 p pr  (2.48)

Note that the expression for r p/m is the current density or the flux corresponding to flow of particles 
in classical physics. Same interpretation is maintained in quantum physics also. For plane waves, S 
represents the flux of the particles if we interpret r  as number density of the particles. In the case of 
large number of particles, r  indeed can be interpreted as number density of particles.

equation of continuity in one dimension
The equation of continuity is of special interest to us, especially when one tries to apply Schrödinger 
equation for potentials in one dimension.

The equation of continuity is

 
∂
∂

= −
∂
∂

r
t

S
x

x  (2.49)

Probability current through the interval ab is shown in Fig. 2.6.

a b

Fig. 2.6 Probability current through the interval ab

Integrating both sides of the equation from x = a to x = b, we get

 
∂
∂

= −
∂
∂∫ ∫

r
t

dx
S
x

dx
a

b
x

a

b

or ∂
∂

= −
∂
∂∫ ∫t

x t dx
S
x

dx
a

b
x

a

b

r( , )

 = S
x
(x = a, t) - S

x
(x = b, t) (2.50)
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That is, rate of increase of probability within region ab

  = (current entering at x = a - current leaving at x = b) (2.51)

Suppose r (x, t) is independent of time. Then, we have

 
∂

∂
=r( , )x t

t
0  or ∂

∂
=∫t

x t dx
a

b

r( , ) 0  (2.52)

In such a case, the current entering is the same as the current leaving.

2.10 time-independent scHrödinger equation
Let the potential V t( , )r  be independent of time. Then V t V( , ) ( ).r r=

The Schrödinger equation now is i
t

t m
V t� �∂

∂
= − ∇ +





y y( , )
( ) ( , )

r
r r

2
2

2
.

Note that the wave function y ( , )r t  is still time-dependent even when the potential is independent 
of time. However, the time independence of the potential simplifies our analysis and leads to time-	
independent Schrödinger equation.

Let us write y ( , )r t  as

 y ( , ) ( ) ( )r rt T t u=
Then,

LHS: i
t

t
i

dT t
dt

u� �
∂

∂
=y ( , ) ( )

( )
r

r

RHS: − ∇ +





= − ∇ +





�
2 2

2
2

2

m
V t T t h

m
u V u( ) ( , ) ( ) ( ) ( ) ( )r r r r ry

Equating LHS and RHS, we get

 i u
dT t

dt
T t

m
u V u� �( )

( )
( ) ( ) ( ) ( )r r r r= − ∇ +





2
2

2

Dividing throughout by u( )r  T(t), we get,

 i
T t

dT t
dt u

h
m

u V u�
( )

( )
( )

( ) ( ) ( )= − ∇ +





1
2

2
2

r
r r r  (2.53)

Note that in Equation (2.53), LHS is independent of r and RHS is independent of time t and since they 
are part of an equation, both LHS and RHS are independent of time t and position vector r. Therefore, 
both LHS and RHS should be equal to a constant. Let us choose this constant as E. So, we have

 i
T t

dT t
dt u

h
m

u V u E�
( )

( )
( )

( ) ( ) ( )= − ∇ +





=1
2

2
2

r
r r r

 i
T t

dT t
dt

E�
( )

( ) =  (2.54)

and − ∇ +





=h
m

V u Eu
2

2

2
( ) ( ) ( )r r r  (2.55)
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Equation (2.54) can be re-written as

 dT
dt

iE T= −
�

 (2.56)

The solution of this equation is T(t) = e-iEt/.
Therefore the, solution y ( , )r t  is given by

 y ( , ) ( )/r rt e uiEt
E= − �  (2.57)

where uE ( )r  satisfies the equation

 − ∇ +





=�2
2

2m
V u E uE E( ) ( ) ( ).r r r  (2.58)

This equation is known as time-independent Schrödinger equation. This is the equation that is most 
widely used in non-relativistic quantum mechanics.

2.11 energy eigenstates and tHeir properties
Let us recall that the Hamiltonian operator H

m
V top = − ∇ +�2

2

2
( , )r . Obviously, the time-independent 

Schrödinger equation is

 H u E uop E E( ) ( )r r=  (2.59)

This is an eigenvalue equation. The eigenvalues are energies of the system. For a given Hamiltonian H
op

, 
one has to solve this equation to find out the energy eigenvalues and the corresponding energy eigenstates.

time evolution of energy eigenstates
The wave function y ( , )r t  satisfying the time-dependent Schrödinger equation is given by

 y ( , ) ( ) ( ) ( )/r r rt T t u e uiEt
E= = − �  (2.60)

where uE ( )r  is the energy eigenstate corresponding to the energy eigenvalue E. Let us assume that the 
system initially starts in uE ( )r .

 (i.e.) At t = 0, y ( , ) ( )r r0 = uE

Then y ( , )r t  and y ( , )r 0  differ only in phase factor e iEt− /� and therefore they represent the same physi-
cal state.

stationary energy eigenstate
The energy eigenstate of the time-independent Hamiltonian is known as stationary energy eigenstate. 
What is stationary here? For an energy eigenstate, the probability r (r, t) (given by Equation (2.61)) 
is independent of time. Furthermore, it can be shown (see Chapter 5) that for a collection of systems 
in which all the systems are in energy eigenstate, the expectation value of a dynamical variable A 
(provided ∂ ∂A t/  is zero) is independent of time. These are the reasons why the energy eigenstates of 
the time-independent Hamiltonian are known as stationary states. We have to recognize that the time 
independence of the Hamiltonian means that the system is left isolated. Therefore, if a system starts 
in a particular energy eigenstate and if the system is left isolated it will continue to remain in that 
same energy eigenstate. To change the state of the system from a particular initial energy eigenstate 
to another energy eigenstate we need to perturb the system, in which case the Hamiltonian is no 
longer time-independent. We will see in Chapter 13 that it is the time-dependent Hamiltonian which 
induces transition from one stationary energy eigenstate to another.
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interpretation of energy eigenstates
The interpretation of uE ( )r  follows from the interpretation of y ( , )r t . The time-dependent wave func-
tion for the stationary energy eigenstate is

 y E
iEt

Et e u( , ) ( )/r r= − �

The probability of finding the particle in a volume d 3r around r is given by

 y y∗ ∗=( , ) ( , ) ( ) ( )r r r r r rt t d u u dE E
3 3  (2.61)

Therefore, u uE E
∗( ) ( )r r  is the probability density for the position of the particle.

normalization of energy eigenstates
The normalization condition for y E t( , )r  is given by

 
y yE E

iEt
E

iEt
E

t t d

e u e u d

∗ =

∗ =

∫
−∫

( , ) ( , )

( ) ( )

r r r

r r r

3

3

1

1/ /� �

or u u dE E
∗∫ =( ) ( )r r r3 1  (2.62)

Obviously, the probability interpretation demands that uE ( )r  to be a square integrable function.

Boundary conditions for energy eigenstates
The boundary conditions for uE ( )r  are literally the same as the boundary conditions for y ( , )r t . 
Therefore, we have the following:

 1. uE ( )r  is finite, single valued, and continuous at all points (2.63)

 2. 
∂
∂

∂
∂

u
x

u
y

E E, , and 
∂
∂
u
z
E  are finite, single valued, and continuous at all points (2.64)

 3. For bound states

 u x y zE ( ) , ,r → → ± ∞ → ± ∞ → ± ∞0 as   (2.65)

The second set of boundary conditions is valid for both continuous potential V ( )r  and V ( )r  with finite 
discontinuities. However, this condition breaks down when the potential V(r) becomes infinite. 

example 2.3 Show that ∂ ∂u xE  is continuous at x  for a potential V(x), which is discontinuous at x  
with finite discontinuity as shown in Fig. 2.7.

V2

V1

x − e x + ex

Fig. 2.7 Potential with finite discontinuity 
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solution: 

 
− + =

= −

�

� �

2 2

2

2

2 2 2

2

2 2

m
d u
dx

V x u x E u x

d u
dx

mV x u x m E u

E
E E

E
E E

( ) ( ) ( )

( ) ( ) (( )x

Integrating between the limits x − e  to x + e , we get

 
d u
dx

dx m V x u x dx mE u x dxE

x

x

E E

x

x

x

x2

2 2 2
2 2

−

+

−

+

−

+

∫ ∫= −
e

e

e

e

e

e

� �
( ) ( ) ( )∫∫  (2.66)

Since u xE ( )  is continuous at all points, including x x= , the integral u x dxE

x

x

( )
−

+

∫
e

e

 goes to zero in the 

limit e going to zero. This can be seen easily as follows. In the range x − e  < x < x + e , we can assume 

that u
E
(x) does not vary much from u xE ( ) and so

 u x dx u x dx u x dx u xE

x

x

E

x

x

E

x

x

E( ) ( ) ( ) ( )
−

+

−

+

−

+

∫ ∫ ∫= = =
e

e

e

e

e

e

e2

Obviously, this integral goes to zero as e goes to zero. Then, Equation (2.66) becomes

 

du
dx

m u x V x dx m u x V x dx VE

x

x

E

x

x

E

x

x

−

+

−

+

−

= = +∫ ∫
e

e

e

e

e

2 2
2 2� �

( ) ( ) ( ) ( ) (xx dx

m u x V V m u x V V

du
dx

x

x

E E

E

)

( ) ( )

+

∫







= +[ ] = +( )

e

e e e2 2
2 1 2 2 2 1� �

xx

x

−

+

→ →
e

e

e0 0as

Therefore is continuous atdu
dx

x

As e →	0, RHS tends to be zero.

Note: When V1 or V 2  becomes infinite, 
du
dx

E  is not continuous at x .

example 2.4 Is y a( )x Ne x= −  an allowed wave function in quantum mechanics?

solution: We have to study the behaviour of this function for all values of x ranging from -∞ to ∞. The 
function is well behaved for all values of x. However, it becomes infinite at x = -∞. Therefore, this is 
not an allowed wave function.

example 2.5 Normalize the wave function y a( )x Ne x= − .

The wave function is sketched in Fig. 2.8.

Ne−a |x|

x

Fig. 2.8
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solution: The wave function y a( )x Ne x= −  can be written in a different but equivalent form as follows:

 

y a

a

a

( )x Ne x

Ne x

Ne x

x

x

x

= − ∞ < < ∞

=
− ∞ < <

< < ∞




−

−

 

  

     

0

0

The second form has the advantage that it can be integrated easily.

 

N e N e dx N e dx N

N

x e

x x x

x

2 2 2 2

0

2 2

0

2
1−

−∞

∞

−∞

−
∞

−

∫ ∫ ∫= + = =

∴ =

∴ =

a a a

a

a

a

y a( )

example 2.6 Is y a( )x e x= −  an allowed wave function in quantum mechanics?

solution: We have to check whether the wave function y a( )x e x= −  satisfies the boundary conditions 
given in (2.63) to (2.65).

The wave function y a( )x e x= −  is single valued and finite for all values of x. So, there is no prob-

lem with the behaviour of the y	(x). Next, let us study the behaviour of the derivative ∂ ∂y x.

 

y a

a

a

( )x e x

e x

e x

x

x

x

= − ∞ < < ∞

=
− ∞ < <

< < ∞




−

−

0

0

 

∂
∂

= ∂
∂ ( )

=
− ∞ < <

− < < ∞




−

−

y

a
a

a

a

a

( )x
x x

e

e x

e x

x

x

x

    

     

0

0

The sketch ∂
∂
y
x

 is given in Fig. 2.9.

a

−a
Fig. 2.9

The derivative ∂ ∂y x is discontinuous at x = 0.

Obviously, y a( )x e x= −  is not an allowed wave function in quantum mechanics.
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example 2.7 Normalize y ba( ) sinx e xx= − .

solution: The wave function y (x) is given by

 

y b
b
b

a

a

a

( ) sin

sin

sin

x Ne x x

Ne x x

Ne x

x

x

x

= − ∞ < < ∞

=
− ∞ < <

<

−

−

  

  

     

0

0 xx < ∞




 

∴ ∗ = = +
−∞

∞
−

−∞

∞

−∞

−∫ ∫ ∫y y b ba a a( )x x xx x( ) sin sin sx dx N e N e ex2 2 2 2 2 2

0

2 iin

sin

2

0

2 2 2

0

2

b

ba

x

xx

∞

−
∞

∫

∫











= N e

We have changed the variable from x to - x in the first integral to get the second integral.

 e x dx e x dx e x dxx x x2 2

0

2 2

0

2 2

0

a a ab b bsin sin ( )( ) sin
−∞

−

∞

−
∞

∫ ∫ ∫= − − =

 ∴ ∗ = − = −
+

−∞

∞
−

∞

∫ ∫y y b
a

a
a b

a( ) ( ) [ cos ]x x dx N e x dx Nx2 1
2

1 2 1
2

2
4 4

2 2

0

2
2 2









= −
+







N 2

2 22
1 1

1a b a/

example 2.8 Is y ba( ) sinx e xx= −  an admissible wave function in quantum mechanics?

The sketch of y (x) is shown in Fig. 2.10.

x

y

Fig. 2.10

solution: The wave function y (x) is given by

 

y b
b
b

a

a

a

( ) sin

sin

sin

x Ne x x

Ne x x

Ne x

x

x

x

= − ∞ < < ∞

=
− ∞ < <

−

−

   

    

    

0

    0 < < ∞


 x

The derivative ∂
∂
y
x

 is given by

M02_QUANTUMMECHANICS_3628_CH02.indd   48 5/20/2013   3:21:53 PM



Schrödinger Equation  49

 

∂
∂

= ∂
∂

− ∞ < < ∞

=
∂
∂

−y ba

x
N

x
e x x

N

x[ sin ]                            

xx
e x x

N
x

e

x

x

( sin )

( sin

a

a

b                             − ∞ < <

∂
∂

−

0

bb

a b ba

x x

N
e xx

)

sin

                               0 < < ∞









=
+ ee x x

e x e x

x

x x

a

a a

b
a b b b

cos

sin cos

            

         

− ∞ < <
− +− −

0

   0 < < ∞


 x

Both the functions e xxa bsin  and e xx−a bsin  and their derivatives are well-behaved and continuous 
functions. However, y ba( ) sinx Ne xx= −  changes from e xxa bsin  to e xx−a bsin  at x = 0. So, one 
has to verify the behaviour of y	(x) and ∂ ∂y / x  only at x = 0.

At x = 0, e x e xx xa ab bsin sin= =− 0. This can also be seen from the sketch of y (x) given in 
Fig. 2.10. So, the wave function y (x) is single valued, finite, and continuous for the entire range -∞ <  
x < ∞ including x = 0.

At x = 0, 
∂
∂

→y b
x

 from both left and right.

 
a b b b b

a b b b b

a a

a a

e x e x

e x e x

x x x

x x x

sin cos

sin cos

+  →(
− +  →

→

− − →

0

0 ))
Therefore, ∂

∂
y
x

 is finite, single valued, continuous in the entire range -∞ < x < ∞ including the point  
x = 0.

Therefore, y ba( ) sinx Ne xx= −  is an allowed function in quantum mechanics.

2.12 superposition oF energy eigenstates – time evolution
We can construct a new state f (r) which is a superposition of the energy eigenstates of time- 
independent Hamiltonian. The wave function f (r) is given by 

 f ( ) ( )r r= ∑ c un n
n

This state is not an energy eigen function of time-independent Hamiltonian. It is interesting to study 
the time evolution for the state y (r, t) under time-independent Hamiltonian for a system whose initial 
state is f (r). In other words we have

 y f( , ) ( ) ( )r r r0 = = ∑ c un
n

n

For any system, y (r, t) is determined from the Schrödinger equation

 i
t

t
H t�

∂
∂

=y y( , )
( , )

r
r

In the case of time-independent of Hamiltonian, the solution to the above equation can be formally 
written as

 y y( , ) ( , ) ( ) ( )/ / /r r r rt e e c c e uiHt iHt
n n

n
n

iHt
n

n

u= = =− − −∑ ∑� � �0
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e u it H it H it H uiHt
n n

− = + −( ) + −( ) + −( ) + ⋅⋅⋅






=

/ ( ) ( )�

� � �
r r1

2
2

3
3

11
2

2
3

3+ −( ) + −( ) + −( ) + ⋅⋅⋅






= −

it E it E it E u

e u

n n n n

iE tn

� � �
�

( )

/

r

nn r( )

 ∴ = −∑y ( , ) ( )/r rt c e un
iE t

n
n

n �

Neither y		(r, 0) nor y		(r, t) is an energy eigen function of time-independent Hamiltonian.
Note that in the case of continuous energy eigen values, we get

 
y f

y

( , ) ( ) ( ) ( )

( , ) ( ) ( )/

r r r

r r

0 = =

=

∫
∫ −

dE C E u

t dE C E e u

E

iEt
E

�

2.13 momentum operator and its eigenFunctions
We have discussed many roles played by plane wave functions in quantum mechanics. They are the 
wave functions describing the free particles. Now, let us see yet another important feature of plane wave 
functions in quantum mechanics. This time, it plays the role of eigenfunction of the momentum opera-
tor. Let us briefly look at the role played by operators and their eigenfunctions in quantum mechanics.

As we have noted in Section 2.3, the description of dynamical variables in classical mechanics and 
quantum mechanics are different. In classical mechanics, a dynamical variable is a function of posi-
tion and momentum. They are either simply some numbers or vector quantities. In quantum mechan-
ics, the concept of a dynamical variable is more involved and goes through many new theoretical 
ideas. Let us mention them briefly here.

 1. For each dynamical variable A, we associate an operator A
op

.
 2. Determine the eigenvalues and the eigenfunctions of the operator A

op
.

 A
op

 f
i
 = a

i
 f

i

  The list of all possible eigenvalues are {a
1
, a

2
, a

3
, …}.

 3. The results of measurement of a dynamical variable in any experiment will be one among the list 
of possible eigenvalues a

1
, a

2
….

This brief account is presented here for the sake of completeness. A full-fledged discussion on the 
dynamical variables is presented in Chapter 5.

To discuss the normalization of momentum eigenfunctions, we need one more idea, namely Dirac 
delta function d	(x - x′).

The Dirac delta function d (x - x′) is defined as 

 d ( )x x
x

x x
− =

∞ =
≠





′
′

0 ′
at x

if

such that d ( )x x dx− =
−∞

∞

∫ ′ 1  (2.67)
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This is not a mathematical function in the conventional sense of defining a function. The Dirac delta 
function and its properties are discussed extensively in Chapter 4. For our purpose, it is sufficient to 
know the following integral:

 e dk xikx =
−∞

∞

∫ 2pd ( )  (2.68)

2.13.1 determination of momentum eigenvalues
The eigenvalue equation for momentum is 

 p x p xop p pf f( ) ( )=  (2.69)

Here, p is the momentum eigenvalue and fp x( )  is the eigenfunction corresponding to the eigenvalue 
p. Since the momentum operator in one dimension is −i d dx� / , the eigenvalue equation is 

 − =i
d x

dx
p xp

p�
f

f
( )

( ) 

 
d x

dx
ip

xp

p

f
f

( )
( )=

�
  (2.70)

This is a linear differential equation, and its solution is given by

 fp
ipxx Ne( ) /= �  (2.71)

In three dimension, the momentum eigenvalue equation is 

 p r p rp pop  f f( ) ( )=

or  − =i�∇f fp pr p r( ) ( )

The solution to this equation is

 fp
p rr( ) /= ⋅Nei �  (2.72)

In solving the momentum eigenvalue equation, we did not get any condition that restricts it to some 
select values. Therefore, the eigenvalues p (or p) can take any value from -∞ to ∞.
Therefore, range of possible values of p

x
, p

y
 and p

z
 are

 - ∞ < p
x
 < ∞, -∞ < p

y
 < ∞, - ∞ < p

z
 < ∞ (2.73)

the wave Functions eip·r/ and ei(p·r-Et)/

Note that the function f p
p( ) /r r= ⋅ei � is the spatial part of the function y p

p p( , ) ( )/ / /r r rt e e ei Et i iEt= =⋅ − ⋅ −� � �.  
We will come across these functions repeatedly in various contexts. These functions occur so fre-
quently in quantum mechanics that it is better to summarize their important features.

 1. f p r( ) is a free-particle solution of time-independent Schrödinger equation and y p r( , )t  is a free-

particle solution for time-dependent Schrödinger equation

 
− ∇ =

∂
∂

= − ∇

�

� �

2
2

2

2
2

2 2

2

m
p
m

i
t

t m
t

f f

y
y

p p

p
p

r r

r
r

( ) ( )

( , )
( , )
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 2. Both f p
p rr( ) /= ⋅Nei � and y p

p rr( , ) /t Nei Et= ⋅ −( ) � are eigenfunctions of momentum and Hamiltonian 
operator.

 
p r p r r r

p r p r r

p p p p

p p p

op op

op op

H
p
m

H
p

f f f f

y y y

( ) ( ) ( ) ( )

( ) ( ) ( )

= =

= =

2

2
22

2m
y p r( )

 3. Both f p r( ) and y p r( , )t  are non-integrable. That is,

 

dxdydz d

dxdydz t t d

f f

y y

p p

p p

r r r

r r r

∗ → ∞

∗

−∞

∞

−∞

∞

−∞

∞

∫∫∫ ( ) ( )

( , ) ( , )

3

3

−−∞

∞

−∞

∞

−∞

∞

∫∫∫ → ∞

 4. Let us add one more observation. Both f p r( )  and y p r( , )t  satisfy not only Schrödinger equa-
tion but also a number of other equations such as Klien Gordon equation in relativistic quantum 
mechanics.

2.14 normalization oF momentum eigenFunction
We have already seen that the plane wave function is not normalisable through the normalization con-
dition f fp pr r r∗ =∫ ( ) ( )d3 1. We cannot discard these functions from quantum mechanics. They are the 
solutions to free-particle Schrödinger equation, and so they describe the state of a free particle. They 
also happen to be the eigenfunctions of the momentum operator that makes it all the more impossible 
to do away with plane wave functions from quantum mechanics. 

Let us recall that the normalization condition y y*( , ) ( , )r r rt t d3 1∫ =  or f fp pr r∗ =∫ ( ) ( ) 1 is the 

result of probabilistic interpretation of the wave function. If we cannot employ this normalization 
condition, can we employ different kind of normalization conditions which will make these wave 
functions to serve some other purposes in quantum mechanics?

Within quantum mechanics, we employ two methods of normalizations for momentum eigenfunc-
tions. They are called box normalization and delta function normalization.

2.14.1 Box normalization
To normalize the momentum eigenfunctions, a large volume, preferably a cube of side L, is consid-
ered. The integration limits are restricted to the size of this box. In addition, we demand the momen-
tum eigenfunction to obey the following boundary condition:

 y y y y( ) ( ) ( )x L y z x y L z x y z L x y z+ = + = + =, , , , , , ( , , )  (2.74)

This boundary condition is called periodic boundary condition. The normalization is now done 
through the requirement.

 f fp pr r r∗ =∫ ( ) ( )d3 1
volume
of the box

 i.e. dx dy dz d
LLL

000

3 1∫∫∫ ∗ = f fp pr r r( ) ( )  (2.75)
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What is the consequence of the periodic boundary condition?
Consider the boundary condition

 y y( )x L y z x y z+ =, , ( , , )

 Ne e e Ne e ei px x L i py y i pz z i px x i py y i pz z( ) / / / / / /+ =� � � � � �

This implies ei px L /� = 1

or 
p L

lx

�
= 2 p , where l = 0, ± 1, ± 2…

 ∴ = = ± ± ±p
l
L L L Lx

2
0

2 4 6p p p p� � � �
…, , , ,

In the same way, we get

and

 
p

L L L

p
L L L

y

z

= ± ± ±

= ± ± ±

0
2 4 6

0
2 4 6

, , , ,

, , , ,

p p p

p p p

� � �
…

� � �
…

The significant point is that the momentum p  is no longer a continuous variable. It is a set of discrete 
values.

 ∴ = + +2 ˆ ˆ ˆ( )lx my nz
L

p p  (2.76)

where l, m, n are set of integers.

 (i.e.) l, m, and n: 0, ± 1, ± 2, ± 3,…

The normalization is now done by

 

f f f fp p p pr r r r r∗ = ∗ =∫ ∫ ∫ ∫( ) ( ) ( ) ( )d dx dy dz d

dx

L L L

L

3

0 0 0

0

1
box
volume

∫∫ ∫ ∫ − ⋅ ⋅ = =

∴ =

dy dz N e e N L

N
L

L L

i i

0 0

3

3 2

2 2 1

1

p r p r/ /

/

� �

The normalized momentum wave function in a box normalization is

 f p
p r p rr( )

/
. /

/
. /= =1 1

3 2 1 2L
e

V
ei i� �  (2.77)

where V is the volume of the box, V = L3.

The normalized plane wave function is y p
p r p rr( ) ( . ) ( . ),t

L
e

V
ei Et i Et= =− −1 1

3 2/
/

1/2
/� � 

example 2.9 Show that f f dp p ppr r r∗ =∫ ( ) ( )′ ′d3  where d pp′  is given by d pp

p p

p p′

′
′.

=
=
≠





1 if

0 if
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solution: Let p and p′ be given by

 = + +�2
ˆ ˆ ˆ( )lx my nz

L
p

p

and 
2

ˆ ˆ ˆ( )l x m y n z
L

′ = ′ + ′ + ′p
�p

( p p= ′  means l = l′, m = m′ and n = n′).

 f fp p
p r p rr r r r∗∫ = ∫ = ∫ ∫− ⋅ ⋅( ) ( ) / /

′
′d

L
e e d

L
dx dy dzi i

L L L
3

3
3

3
0 0 0

1 1� � ∫∫ ⋅ ⋅− − −e e ei l l x L i m m y L i n n z L2 2 2p p p( ) ( ) ( )′ ′ ′/ / /

Consider the x-integral

 
1

2
0

2
2

0
L

dx e e
i l l

l l
L

i l l x L
i l l x L

L

∫ −
−

=
−

p
p

p
( ) /

( ) /

( )
.′

′

′
′ ≠provided

== 0

If l′ = l, the above integral is 1 1
0

2

L
dx e

L

i l l x L∫ − =p ( ) /

 ∴ = =
=
≠





∫ −1 1

00

2

L
dx e

l l

l l

L

i l l x L
l l

p d( ) /′
′

′
′

if

if

Similarly, we can prove that

 1 1

0

2

0

2

L
dy e

L
dz e

L

i m m y L
m m

L

i n n z L
n n∫ ∫− −= =p pd d( ) / ( )′

′
′

′  and /

 ∴ ∗ = ⋅ ⋅∫f f d d dp pr r r( ) ( )′ ′ ′ ′d ll mm nn
3

 = d pp′ (2.78)

2.14.2 delta Function normalization
The momentum eigenfunction is now given by

 f p
p rr( ) /= ⋅Nei �

 = Ne e ei p x i p y i p zx y z/ / /� � �  - ∞ < p
x
 < ∞, - ∞ < p

y
 < ∞, - ∞ < p

z
 < ∞

This is in contrast with box normalization where p
x
, p

y
, and p

z
 are discrete. There is no necessity for 

considering an arbitrary box of volume L3 in this procedure. The delta function normalization must 
satisfy the condition 

 f f dp pr r r p p∗ = −
−∞

∞

−∞

∞

−∞

∞

∫∫∫ ( ) ( ) ( )′ ′d3  (2.79)
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The reason for this choice of normalization will be explained in Chapter 5.

 

f fp p
p r p rr r r r∗ =

=

∫ ∫ − ⋅ ⋅
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The normalized momentum eigenfunction is
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�ei  (2.80)

example 2.10 Normalize the plane wave function using delta function normalization.

solution: The normalization of plane wave function is now done by demanding
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2.14.3 purpose of these normalizations
What is the purpose of these two normalizations? Why do we implement the periodic boundary con-
ditions in box normalization? The answer requires the understanding of concept of ‘complete set of 
orthonormal set of functions’ which will be discussed in Chapters 4 and 5. The set of all the eigen-
functions of a dynamical variable should form a complete set. This is one of the requirements in the 
structure of quantum mechanics. The concept of complete set of basis functions is a very important 
idea in quantum mechanics.

In the case of box normalization, restricting the limits of integration to a finite volume of the box 
is not sufficient to ensure the completeness of the basis functions. The periodic boundary conditions 
ensures that the momentum eigenfunctions form a complete orthonormal set, which means that any 
arbitrary wave function f ( )r  or y ( , )r t  can be written as

 f ( ) /r p
p

r= ∑ ⋅C ei p �

 (2.81)

or y ( , ) ( )/r p
p

p r pt C ei t= ∑ ⋅ −E �

Momentum eigenfunctions normalized through delta function normalization also form a complete set, 
which again implies that any arbitrary function y ( )r  or y ( , )r t  can be written as

or 

f
p

y
p
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( )

( , ) ( , )
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/
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r p p

r p

p r
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⋅C e d

t C t e
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3 2
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3 2

�

�

�

��d 3p
 (2.82)

Note the difference between (2.81) and (2.82). In both the cases, entire set of eigenfunctions are used. 
However, in (2.81) the summation is over all the discrete values of p. In (2.82), since p is a continuous, 
the summation over p becomes integration over p.

another method of normalization
Sometimes neither the box normalization nor the delta function normalization is used. This is due to 
the fact that our interest is not the expansion of an arbitrary function in terms of the basis functions.

For instance, in the scattering problems a better choice of normalization, that is, condition is 
| |N p m F2 / =  where F is the flux of incident number of particles.
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2.15 coordinate and momentum representation For a system
Let us consider Equation (2.82) in the context of the Schrödinger. In the second integral for y ( , )r t  the 
function C t( , )p  has to be found using Schrödinger equation and so it depends on the potential V(r,t). 
However, for free particles, C t( , )p  can be easily worked out and it is given by

 C t C e i E t( , ) ( ) /p p= − � (2.83)

example 2.11 Prove that C t C e i E t( , ) ( ) /p p= − � for free particles, in the expansion
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solution: The Schrödinger equation for free particles is given by
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Equating these two terms, we get
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Solving this equation, we get

 C t C e i E t( , ) ( ) /p p= − � (2.84)

Therefore, for a free particle,

 y
p

( , )
( )

( )
/

( )/r p pp rt C e di E t= ⋅ −∫1
2 3 2

3

�
�  (2.85)

Summarizing the above results, we have for free particles

   1. f
p

( )
( )

( )
/

/r p pp r= ⋅∫1
2 3 2

3

�
�C e di  (2.86)

   2. y
p

( , )
( )

( )
/

/r p pp rt C e di E t= ⋅ −( )∫1
2 3 2

3

�
�  (2.87)

Equation (2.86) is the familiar Fourier transformation equation. f ( )r  and C( )p  are Fourier transform 
pair. In subsequent discussion, we will concentrate on states described by f ( )r  and C( )p .
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2.15.1 momentum space
The wave function f ( )r  is a function of coordinate r. The same fact can be expressed in a different 
way. The wave function f ( )r  is said to represent the state in the coordinate space. The same thing can 
be said about C( )p . It is a function of p. Now, C( )p  is said to represent the same state of the system in 
momentum space. C( )p  is known as momentum wave function of the system.

2.15.2 interpretation of momentum wave Function C(p)
The functions f ( )r  and C( )p  are the Fourier transform pair. Knowledge of one function determines 
the other function. That is, f ( )r  determines C( )p  and C( )p  determines f ( )r . So, if f ( )r  is taken as 
the wave function, describing the state of the system in coordinate space, then C( )p  should also be 
considered as a function describing the same state in momentum space; The fact that they are Fourier 

transform pair suggests that C( )p  can be interpreted as probability amplitude and C C*( ) ( )p p  as 
probability density for momentum. C C d*( ) ( )p p p3  is the probability of finding the momentum value 
within a volume d3p centred around p as shown in Fig. 2.11.

px

py

pz

p

|C(p)|2d3p

x

y

z

r

|f(r)|2d3r

(a) (b)

Fig. 2.11 Probability density in coordinate space and momentum space

The momentum wave function C( )p  should also be normalisable to unity, 

(i.e.) C C d*( ) ( )p p p3 1=∫  (2.88)

Hence, C( )p  is also a square integrable function. Both f ( )r  and C( )p  are probability amplitudes. f ( )r  
gives the information on probability of finding the particle at a particular position r while C( )p  gives 
the information on the probability of finding the particle to have a particular value of momentum p.

example 2.12 C( )p  and f ( )r  are Fourier transform pair. Show that C( )p  is square integrable if f ( )r  
is square integrable.

solution: The fact that f ( )r  is square integrable means 

 f f*( ) ( )r r r∫ < ∞d3
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Since f ( )r  and C( )p  are Fourier transform pair,
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2.15.3 widths of Fourier transform pair e (r) and C(p)
The Fourier transform pair has an interesting property. Consider a wave packet f (x) and its Fourier 

transform C( )p  for which f ( )x
2
 and C( )p

2
 are as shown in Fig. 2.12 (they are simply some imagi-

nary sketches).

x1 x2 x p1 p2 p

|f (x)|2 |C(p)|2

Fig. 2.12 Probability density in coordinate and momentum spaces

| ( )|f x 2 is non-zero or significantly different from zero only in a small region x
1
x

2
. The Fourier trans-

form C( )p  is such that | ( )|C p 2  also has similar behaviour in the sense that it is non-zero or signifi-
cantly different from zero only in a small region p

1
p

2
. We may call x

2
 - x

1
 = D	x as width of | ( )|f x 2 and 

p
2
 - p

1
 = Dp as width of | ( )|C p 2 . It can be shown that Dx Dp ~ �.

It is generally true that for any wave function f (x) which is significant only in a small region D	x, its 
Fourier transform (or, more appropriately, the corresponding momentum wave function) is significant 
only in a small region Dp such that D	x Dp � �

example 2.13 Find the Fourier transform of f
a

( )x Ne
x= −

2
2

 and sketch the behaviour of f ( )x
2
  

and C( )p
2
.

solution:

 
f

f

a

a
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( )

x Ne

x N e

x

x

=

=

−

−

2

2 2

2

2
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The Fourier transform C( p) of f	(x) is given by

 C p Ne e dx N ex ipx p( )
( ) ( )/

/ /
/

= =− −

−∞

∞
−∫1

2 2
2

1 2
2

1 2
22 2 2

p p
p
a

a a

� �
� �/

The sketch of f ( )x
2
 and C( )p

2
 is given in Fig. 2.13.
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1

1−1−2−3−4 0

0

1/e
1/e2

p1 p2 p3 p4

Fig. 2.13 Sketch of |f	(x)|2 and |C (p)|2 (exp(-4x2) and exp(-p2/4))

What is the ‘width’ of these two functions?
It depends on how you define width of the function. It is not simple as shown in the Fig. 2.12.

 f
a

( )x N
e

x
2 2 1= = ±for   (Points x

2
 and x

3
)

 C N
e

p( )p
2 2

= = ±′ for a �   (Points p
2
 and p

3
)

If we define D	x and D	p as

 D	x = x
3
 - x

2
 and Dp = p

3
 - p

2
, then

 ∆ =x 2 1
a

 and ∆ =p 2 a �

	 \ Dx Dp = 4�
On the other hand, if we define

 D	x = x
4
 - x

1
 and Dp = p

4
 - p

1
, then

 ∆ ∆ = ⋅ =x p 2 2 2 2 8
a

a � �

The point to understand is that the width of a function is a little arbitrary, but the product of the widths 
of a function and its Fourier transform is approximately � or a multiple of �. Therefore, we can write, 
for all the reasonable definitions of widths

 D	x Dp ~ �

It is better to understand that Dx and Dp in the above expression are rough estimates. Note that since Dx 
and Dp are rough estimates, these quantities can also be estimated by considering f(x) and C(p) alone.
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2.15.4 uncertainties Dx and Dp
Let us ask the following questions: What is the position of the particle whose state function is f(x)? 
What is the momentum of such a particle?

Let us consider a wave packet for which | |f ( )x 2  and | |C( )p 2  are as shown in Fig. 2.12. We know 
that | |f ( )x 2 is the probability density for the position. For the wave packet shown in Fig. 2.12, | |f ( )x 2  
is zero for x outside the range x

1
x

2
 and so the particle will not be found outside this region. Within this 

region, where will it be found? In quantum mechanics, we can only tell the probability of finding the 
particle in any position x in this region. This implies that the particle is likely to be found at some point 
x within this range. We can, therefore, specify the position of the particle to be somewhere in the range 
bound by x

1
 and x

1 
+ Dx. So Dx is the uncertainty in the position of the particle. Similarly, we can only 

specify the momentum of the particle to be some value in the range bound by p
1
 and p

1 
+ Dp. So Dp is 

the uncertainty in the momentum of the particle.
Therefore, the Fourier transform properties imply that the product of uncertainties Dp and Dx obey 

the relation

 Dx Dp ~ � (2.89)

It is to be emphasized again, that Dx and Dp, as they occur here, are rough estimates of the uncertain-
ties from | |f ( )x 2 and | |C( )p 2 or f	(x) and C(p).

A much more rigorous and unambiguous definition of the uncertainties Dx and Dp is provided in 
Chapter 5. It is defined as follows:

Mean value or average value of

 x = <	x > = y y*( , ) ( , )x t x x t dx∫  (2.90)

The uncertainty D	x is defined by 

 ( ) *( , )( ) ( , )∆ = − < >∫x x t x x x t dx2 2y y  (2.91)

Similarly, the mean value of p is defined as 

 < > ∫p x t p x t dxop= y y*( , ) ( , )  (2.92)

 = −



∫y y

y
y*( , ) ( , )x t i

x
x t dx�  (2.93)

and the uncertainty Dp is defined by

 ( ) *( )∆ = − < >∫p p p dxop
2 2y y  (2.94)

With this definition, it will be shown in Chapter 5 that 

 ∆ ∆ ≥x p �
2

 (2.95)

It is the rough way of estimating the uncertainty in position and momentum, which is useful in many 
simple applications. For instance, in the case of hydrogen atom, the size of the hydrogen atom is 
approximately one Bohr radius which can be taken as the uncertainty in position of the electron. In the 
case of a particle in a box, we can take the length of the box as the uncertainty in the position.
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example 2.14: Find the momentum wave function for the state described by

 f ( )x =
− < <






1
2

0

a
a x a.

otherwise.

Estimate the uncertainties D	x, D	p and their product.

The sketch of f ( )x
2
 is given in Fig. 2.14.

x2

|f(x)|2

1/2a

−p�/a p�/a−a +a

|C(p)|2

Fig. 2.14 Sketch of |f(x)|2 and |C (p)|2

solution: The momentum wave function C(p) is given by

 
C p x e dx

a
e dxipx ipx

a

a

( )
( )

( )
( )/

/
/

/= = ⋅−

−∞

∞
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∫ ∫1

2
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2
1
21 2 1 2p

f
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2

2 1
1 2( )

sin
/p� �a p

pa

The sketch of C( )p
2
 is given in Fig. 2.14.

From the sketches of f ( )x
2
 and C( )p

2
, we can estimate the uncertainties D	x and D	p as

 
∆ ∆

∴ ∆ ∆ ⋅

x a p
a

x p a
a

∼ ∼

∼

2
2

2
2

and
p

p

�

�

 or D	x Dp ~ 4p	�.

appendix

wave packet
The concept of wave packet is not unique to quantum mechanics. It is a general property of wave 
motion like interference and diffraction, which are common to any kind of wave motion. The only 
requirement is that the wave motion is governed by a linear partial differential equation. We, therefore, 
first present here some general ideas regarding wave packet and discuss it in the context of quantum  
mechanics.
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simple Harmonic wave
The plane wave function f p

p rr( , ) ( )/t Nei Et= ⋅ − �  is a simple harmonic wave. Normally, it is written as 
Nei t( )k r⋅ −w , which may stand for a simple harmonic wave in any phenomenon. This wave is a mono-
chromatic wave extending from r = - ∞ to + ∞ (-∞ < x < ∞; -∞ < y < ∞; -∞ < z < ∞). It is an indefinite 
wave train, and in principle, occupies the entire space. Obviously, this is an idealization that cannot 
be physically produced.

phase velocity
The factor ( )k r⋅ −wt  represents phase of simple harmonic wave. It can be written as

 vˆ ˆ( ) ( )t t
k

k k t k k
 
 
  

⋅ − ⋅ −= ⋅ − =k r rr ww

where v /=w k  represents the velocity with which the simple harmonic wave or the plane wave front 
of the simple harmonic wave moves. This is known as phase velocity.

wave packet
This is constructed by superposing simple harmonic waves of different wave vector k . Therefore, the 
wave packet is represented by 

 y
p

w( , )
( )

( )
/

( )r k kk rt A e di t= ⋅ −∫1
2 3 2

3

For the sake of clarity, let us restrict our discussion to one dimension. The wave packet is given by 

 y
p

w(x t A k ei kx t d, )
( )

( ) ( )
/= −∫1

2 1 2 k

The significance of the wave packet lies in the fact that it is non-zero only in a small range of x values. 
Outside this range, the value of y   is zero. A typical wave packet is shown in Fig. 2.15. This is in con-
trast with a simple harmonic wave that extends from -∞ to ∞.

y

x

Fig. 2.15 A wave packet

We would like to have a travelling wave packet, travelling with a velocity c as shown in Fig. 2.16. (This 
is not the velocity of light.) The general functional form of such a wave packet is f(x - ct).
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At time t1

At time t2 : (t2 > t1)

Fig. 2.16 Wave packet at different instants of time

So, we would like to construct a wave packet given by

 y
p

w( , ) ( ) ( )( )x t A k e dk f x cti kx t= = −−∫1
2

How do we construct such a wave packet?
The fact that w  = w (k) (i.e. w  is a function of k) helps us to construct such a wave packet. Let us 

assume that a function A(k) is significant only for values of k near k = k
0
; that is, as we move away from 

k
0
, A(k) falls rapidly, as shown in Fig. 2.17.

k0

k

A(k)

Fig. 2.17 Wave packet centred at k = k0

In such a situation, we can write w (k) as 
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For the sake of simplicity, let us assume w (k) is given by
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Let us change the integration variable from k to k	′ = k - k
0
. Then, y	(x, t) becomes

 
y ww( , ) ( ) exp( )

(

x t e dk A k ik x t d
dk

e

i k x t

k

i

= −
















=

− ∫0 0

0

′ ′ ′

kk x t
gF x t0 0− −w u) ( )

 (2.96)

provided we define u
g
 as u w

g
k k

d
dk

=
= 0

This is known as group velocity. That is, this is the velocity with which the wave packet travels. Note 
that phase velocity is different from group velocity. Phase velocity is given by w /k  whereas group velocity  
is given by u wg d dk= / .

So far, our discussion about wave packet is general. We have obtained the expression (2.96) based 
on a number of approximations that may or may not hold in particular cases.

dispersion of a wave packet
Equation (2.96) gives the impression that once a wave packet is created, it will travel as a stable wave 
packet forever. This is not true. In the derivation of Equation (2.96) we have restricted ourselves to the 
first order in Taylor’s expansion. If we had included other terms also, this result will not hold good.

Normally, as time progresses, different components of the wave packet travel with different phase 
velocities, and so the wave packet will start dying down. As time progresses, its width will increase 
while its amplitude (height) will edecrease to zero. Ultimately, the wave packet will disappear. This is 
known as dispersion.

wave packet in quantum mechanics
What is the relevance of a wave packet in quantum mechanics? For a free particle, the simple harmonic 
wave Nei Etp r⋅ −( )/�  is a solution to Schrödinger equation. Since Schrödinger equation is a linear partial dif-
ferential equation, superposition of different simple harmonic waves is also a solution to the Schrödinger 
equation. This means that a wave packet is also a solution of free particle Schrödinger equation.

Can we use the concept of wave packet to claim that an electron is really a wave? A number of 
experimental phenomena suggest that it is almost a point-like object. Yet, if one wants to characterize 
an electron as a wave, it has to be modelled as a wave packet of very small size. The minimal require-
ment for such a claim is that the wave packet should not disperse into nothing as time progresses.

So, let us investigate the properties of a wave packet obeying Schrödinger equation. We closely 
follow Greensite here.

Schrödinger equation for free particle is 

 i
x t
t m

x t
x

� �∂
∂

= − ∂
∂

y y( , ) ( , )2 2

22

A plane wave function f pp( , ) ( ) / ( )/x t ei px Et= −1 2 1 2/ � �  is a solution to this equation. This is a simple 
harmonic wave of momentum p that can vary continuously from -∞ to ∞. So we can construct a 
superposition of all simple harmonic waves whose p values range from -∞ to ∞.

 ∴ = −∫y
p

( , )
( )

( )
/

( )/x t C p e dpi px Et1
2 1 2�

�
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Let us put t = 0. Then, we have

 y
p

( , )
( )

( )
/

/x C p e dpipx0 1
2 1 2

= ∫�
�

This is the well-known Fourier transform in mathematics. y	(x, 0) is the Fourier transform of C( p). So 
the knowledge of C( p) determines the wave packet at t = 0. We are interested in the reverse problem: 
Given a wave packet at t = 0, how does it evolve as time progresses? Or given y	(x, 0), how do you 
determine y	(x, t)?

The answer is very simple. From the Fourier transformation theory, we know that C( p) can be 
determined from the relation

 C p x e dpipx( )
( )

( , )
/

/= −∫1
2

0
1 2p
y

�
�

Once C( p) is determined (from the above equation) it can be used to determine y (x, t) using the relation

 y
p

( ) /x t C p i px
p t
m

,
( )

( ) exp
/

= −











∫1

2 21 2

2

�
�

Subsequent discussion on wave packet can be considered by taking a specific example of a wave 
packet. The general conclusion will be the same for other wave packets also. The standard textbook 
example is to choose a Gaussian wave packet as the initial wave packet and determine its evolution.

example 2.15
The wave packet at t = 0 is given by 

 y
s p

s( , )
/

/ /x e ex ip x0 1
2 1 4

22 2
0=

( )
− �

Determine y (x, t) which obeys free-particle Schrödinger equation.

solution: The normalization constant has been chosen such that y ( , ) .x dx0 1
2 =

−∞

∞

∫
The following result will be very useful in subsequent calculations.

 e dx ex x− +

−∞

∞

∫ =a b b ap
a

2 2 4/

C( p) is now given by

 
C p x e N e eipx x i p p( )

( )
,

( )/ /
/ ( )= =−

−∞

∞
− − −∫1

2
0

21 2 1 2
22 2

0

p
y

p
s

� �
�( ) / xx

p p

dx

N e

/

/

�

�

�

−∞

∞

− −

∫

= ⋅
( ) /

( )

2
2

1 2
2 22

0
2 2

p
p s s

 

y
p

p

( , )
( )

( ) exp

( )

x t C p i
px p t

m

N

= −













= ⋅

−∞

∞

∫1
2 2

2

1 2

2

� � �

�

/

22
2 2

2
2

0
2

2

2

ps
s

⋅ −
−

+ −



−∞

∞

∫ exp
( )p p ipx ip t

m
dp

� � �
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Let us change the integration variable from p to q, where q = p - p
0
. Then y x t,( ) is given by

 y
p

ps s
( )x t N q i q p x i q p t

m
d,

( )
exp

( ) ( )
= − +

+
−

+



2

2
2 2

2
2 2

2
0 0

2

� � � �
pp

−∞

∞

∫

 

y
p

ps s( , )
( )

expx t N it
m

q i
q

x
p

m
t i= − +( ) + −





+
−∞

∞

∫2
2

2 2
2

2

2
2 0

� � � �
pp x

p t

m
dp

x t N i p x
p t

m
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2

2
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2

2
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2
2

2
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o

o
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/
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=
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q

This is a Gaussian function whose amplitude decreases continuously as a function of time. In fact, the 
wave function will become zero for all x for large time t.

electron is not a wave
Let us conclude this section with a simple comment based on the above example. Since an electron 
exhibits wave properties in some experiments, can we consider electron as a wave? If it is a wave, 
the small size of the electron implies that it should be a wave packet. So, can we consider electron 
as a wave packet? The above example implies that if one starts with a wave packet at t = 0, the wave 
packet slowly dies as the time progresses. However, this result is not unique to Gaussian wave packet. 
It is true for any wave packet obeying free-particle Schrödinger equation. The inability to construct a 
stable wave packet means that an electron cannot be modelled as a wave packet.

exercises

 1. Give arguments leading to the development of Schrodinger equation.
 2. Is y (x, t) = A sin(kx - w t) a solution to Schrödinger equation?
 3. Is it possible to derive Schrödinger equation?
 4. What is the physical property whose fluctuations are represented by quantum mechanical wave 

function y ( , )r t ?
 5. What is the interpretation of the wave function y ( , )r t ?
 6. Why do we need to normalize the wave function y ( , )r t ?
 7. What is meant by conservation of position probability?
 8. Why should the position probability for a particle be conserved?
 9. Explain how the equation of continuity is a statement of conservation of position probability.
 10. Can we normalize the free-particle wave function through the normalization condition 

y y*( , ) ( , ) ?r r rt t d3 1=∫
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68  Quantum Mechanics

 11. What is meant by square integrable wave function?
 12. Is f ( )r k r= ⋅ei  a square integrable function?
 13. What are the boundary conditions for the wave functions describing bound state?
 14. How do we normalize a plane wave function?
 15. Distinguish between box normalization and delta function normalization of plane wave functions.
 16. Show that ei p r⋅ /�  is an eigenfunction of the momentum operator.
 17. What is meant by momentum wave function? How do you interpret it?
 18. Explain how one estimates the uncertainties from the wave function f	(x) and its Fourier transforms.
 19. Why do you call the eigenstates of time-independent Hamiltonian as stationary eigenstates?
 20. Determine the normalization constant of the wave function f a( )x Ne x= − 2.

 21. Show that e dx ex x− −

−∞

∞

∫ = ( )a b b a p
a

2 2 4
1 2

/
/

.

 22. Normalize the wave function f ba( ) cos .x Ne xx= −

 23. Is f ba( ) cosx Ne xx= −  an allowed wave function?
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Simple Potentials

Let us recall the Schrödinger equation and the associated boundary conditions which were discussed 
in Chapter 2. The Schrödinger equation in one dimension is 

 i
t m x

V t x t� �∂
∂

= − ∂
∂

+y y y( , ) ( , )x t x t
x

2 2

22
( , ) ( , )  (3.1)

When the potential is independent of time, the solution y (x, t) can be written as 

 y ( , ) ( )x t e u xiEt= − �  (3.2)

where u(x) is the solution of time-independent Schrödinger equation 

 − + =�2 2

22m
d u
dx

V x u x Eu x( ) ( ) ( ) (3.3)

There are two kinds of solutions: the bound state solution and the scattering state solution. These solu-
tions have to be obtained, subject to the following boundary conditions:

 1. u(x) is single valued, fi nite and continuous.  (3.4)

 2. The fi rst order derivative du
dx

 is single valued, fi nite and continuous. (3.5)

 3. For bound state solution,
 u(x) → 0 as x → ± ∞ (3.6)
For unbound states, the third boundary condition does not hold good.

For bound states, the normalization condition is u x u x dx∗ =∫ ( ) ( ) 1. (3.7)

For bound states, (3.3) is an eigenvalue equation with discrete energy eigenvalues. This equation has 
to be solved to get the energy eigenvalues E and the corresponding eigenfunctions. In the case of 
unbound states, the problem is essentially a scattering by a potential. This is very much similar to the 
case of light crossing a glass slab where the light (wave) is partially refl ected and partially transmitted 
at the interface as shown in Fig. 3.1(i). 

Incid
ent

Reflected

Transmitted

Medium 1

Medium 2

i

r r

r

t i

i

t

t

(i) (ii) (iii) (iv)

Fig. 3.1 (a) Light waves through slab (b) Scattering of matter waves by different potentials

3
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In the same way, incident matter waves (denoted by i) are partially reflected (denoted by r) and par-
tially transmitted (denoted by t) as shown in Fig. 3.1(b) by different potentials. This implies that some 
particles of the incident beam of particles are reflected and some particles of the incident beam are 
transmitted. So, we have to solve the Schrödinger equation for a beam of particles of a given energy 
E to describe the scattering by various potentials. The solution to the Schrödinger equation should 
describe the incident beam, the reflected beam and the transmitted beam together. The principal task 
of these problems is to get the reflection and the transmission coefficients for all these scattering 
processes.

3.1 Scattering StateS

3.1.1 Some Preliminaries
Normally, we consider an incident beam of particles moving from left to right. In principle, such an 
incident beam should be described by a wave packet f(x-v

g
t) travelling from left to right, and the time 

evolution of this wave packet should describe the scattering process. However, for the sake of simplic-
ity, the incident beam is described by the wave function.

 y w
in in in

i k x tA i p x E t A in in= − = −exp( ( )) ( )� e  (3.8)

This represents a beam of particles of momentum p kin in= � x̂ and energy E k min in= �2 2 2/  travelling 
from left to right. The reflected beam corresponds to a beam of particles moving from right to left, and 
so they are described by

 y w
ref ref ref

i k x tB ref ref= − + exp( )− =i p x + E t Be( ) � ( )  (3.9)

This represents a beam of particles of momentum p kref ref= −� x̂  and energy E k mref ref= �2 2 2/  trav-
elling left. The transmitted beam corresponds to a beam of particles travelling in the right, which is  
described by

 y w
tr tr tr

i k x tC tr tr= − − exp( )− − =i p x E t Ce( ) � ( ) (3.10)

This represents a beam of particles of momentump ktr tr= � x̂  and energy E
k

mtr
tr=

�2 2

2
.

For a beam of particles (may be incident or reflected or transmitted), the probability density r  and 
the flux of the beam is determined by 

 
∂ ∂ = = −  ∂ ∂ 

*
ˆ* and *

2
�
im x x

S
y yr y y y yx  (3.11)

For plane wave functions, we have y = −Nei px Et( ) ,�

 r = =− − −N e e Ni px Et i px Et2 2( ) ( )� �

  S = −− − − − −ˆ
( ) ( )( ) ( ) ( ) (x �
� �

� � �

2
2 2

im
N e

ip
e N e

ip
ei px Et i px Et i px Et i ppx Et−





) �

  = x̂ N
p
m

2
 (3.12)
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This agrees with the classical notion of flux of particles of velocity v and number densityr. All the 
particles within the volume rv cross the shaded area of unit cross-section in 1 sec.

rv

v

Fig. 3.2 Number of particles crossing unit area is rv

The reflection coefficient R is defined as 

 R = Flux of the reflected beam
Flux of the incident beam

 (3.13)

The transmission coefficient T is defined as 

 T = flux of the transmitted beam
flux of the incident beam

 (3.14)

With reference to the wave functions y
in
, y

ref
 and y

tr
, given in (3.7), (3.8) and (3.9), we get 

 R
B k m

A k m

B

A

k

k
ref

in

ref

in

= = ⋅
2

2

2

2

�

�
 (3.15)

 T
C k m

A k m

C

A

k

k
tr

in

tr

in

= = ⋅
2

2

2

2

�

�
 (3.16)

Since we are dealing with steady state situation, the factor e iEt− � or e i t− w  is normally dropped. So, in 
subsequent discussions, we will interpret eikx and e-ikx as follows:

 eikx→ A beam travelling in the positive x-direction. (3.17)
 e-ikx→ A beam travelling in the negative x-direction. (3.18)

3.1.2 Step Potential E < V0

E

0

V0

I II

Fig. 3.3 Step potential (E < V0)

The potential V(x) is given by

 V x
V

( ) =
<
>





0

0

x

x

0

0
 (3.19)

The time-independent Schrödinger equation is d u
dx

m E V x
2

2 2
2 0+ − =
�

( ( ))  (3.20)

M03_QUANTUMMECHANICS_3628_CH03.indd   71 5/20/2013   1:22:15 PM



72  Quantum Mechanics

Since V(x) is discontinuous at x = 0, the Schrödinger equation becomes

 
d u
dx

m Eu
2

1
2 2 1

2 0+ =
�

x < 0  (3.21)

 
d u
dx

m E V u
2

2 2 0
2 0II

II         + − =
�

( ) x > 0  (3.22)

This equation has to be solved subject to the boundary conditions (3.4) and (3.5), which lead to the 
equations
 u

I
(x) = u

II
(x) at x = 0 (3.23)

  
du x

dx
du x

dx
I II=  at   
( ) ( )

x = 0  (3.24)

Define k2 and a 2 as follows:

 k mE2
2

2=
�

 a m V E2
2 0

2= −
�

( ) (3.25)

Note that a 2 is a positive quantity. The Schrödinger equation becomes

 

d u
dx

k u

d u
dx

u

2
1

2
2

2
1
2

2

0

0

+ =

=

I

I
1I

                    

     

x > 0

- a                 x < 0

The solution to the above equation is

 u x
u Ae Be

u Ce De

ikx ikx

( ) =
= + <
= + >





−
I

II

        

       

x

xx x

0

0-a a

The large x behaviour of e-a x and e-a x are as follows:

 eax → ∞ as x → ∞ and e-ax → ∞ as x → -∞ 

Therefore, u
II
 → ∞ as x → ∞. The wave function should be finite at all points. So this is not an accept-

able solution. The only way to make this solution acceptable is to drop the term eax from u(x). This can 
be done by taking D = 0. Therefore, the acceptable solution is

u x
u

Ce x
( )

( . )
=

= <
=

−

I

II

          

          

Ae Be x

u

ikx ikx+
−

0 3 26
a            x >



 0 3 27( . )

Substituting u
I
 and u

II
 in the boundary conditions (3.23) and (3.24), we get 

 A + B = C and ik(A - B) = -aC

or 1+ =B
A

C
A

 and 1− = − ⋅B
A ik

C
A

a

Solving these two equations, we get

 

C
A

ik
ik

B
A

ik
ik

= −
−

= − +
−

2
a
a
a

and 
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The solution u(x) is 

 u x
Ae A ik

ik
e x

ikA
ik

e x

ikx ikx

ax

( ) =
− +

−
<

−
−

>









−

−

a
a

a

0

2 0
 (3.28)

Using (3.25), we get

 a 2 2
2 0 2 0

2 2+ = − + =k m V E E m V
� �

( )

Let us write (a + ik) as (a q2 2 1 2+ k ei) /

Then, we have a
a

q+
−

=ik
ik

e i2  and

 1 1
2 2 1 2a a

q

−
=

+ik k
ei

( ) /

The wave function u
I
 is given by

 u
I
 = Aeikx - Ae2iq e-ik x = Aeiq [eikxe-iq - e-ikxeiq] = 2 iAeiq sin (kx - q )

The wave function u
II
 is given by

 u iAk
k

e e iA e ei x i x
II   =

+
= −− −2 2

2 2a
qq a q asin

(Note that k
ka

q
2 2+

= sin )

The wave function u(x) can be rewritten as

 u x
N kx x

N e xx
( )

sin( )

sin
=

− <
− >



 −

q
q a

       

        

0

0
 (3.29)

The sketches of the function u(x) and u x( )
2
are given in Fig. 3.4.

u(x)

(a) (b)

|u(x)|2

Fig. 3.4 Sketch of u(x) and |u(x)|2 for step potential

The wave function u(x) as given in (3.26) and (3.27) lends itself to an easy interpretation.
A eikx: Wave function describing an incident beam of particles.
Be-ikx: Wave function describing a beam of particles reflected at x = 0
Ce-ax: A wave function in region II falling to zero rapidly
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The wave function (3.29) is the same as (3.28). The distinction between incident beam and the 
reflected beam is lost in the wave function (3.29). If one is interested only in the probability of finding 
the particle at some location, this function is sufficient.

reflection coefficient
Feeding the expressions Aeikx and Be-ikx for incident beam and the reflected beam, we get the incident 
flux J

i
 and the reflected flux J

r
 as 

 
J A k

m

J B k
m

i

r

=

=

2

2

�

�

Therefore, the reflection coefficient R is given by 

 R
J
J

B

A

ik
ik

k e

k e
r

i

i

i
= = = − +

−
= +

+
=

−

2

2

2 2 2

2 2
1a

a
a
a

q

q
 (3.30)

Obviously, all the incident particles are reflected.
The sketch of the wave function tells more than this ratio. The non-vanishing magnitude of the 

wave function in region II (x > 0) indicates that the incident beam can penetrate small distance in the 
right, and yet they return back.

comparison with classical Physics
Classically, the momentum of the particle is p = −[ ( )]2 1 2m E V . Let us recall the assumption that the 
energy of the particle E is less than V

0
. In the region I (x < 0), V = 0, and so the incident particle has 

momentum 2mE . In the region II (x > 0), for a particle with E < V
0
, 2m(E - V) is negative. Therefore, 

no particle can penetrate the region x > 0. This region is a forbidden region for the particle in classical 
physics. All the particles will reach x = 0, where they will be reflected back.

The solution to Schrödinger equation in quantum mechanics also leads to similar results but with 
some differences. Let us recall that the solution to the Schrödinger equation is 

 u
Ae Be x

Ce x

ikx ikx

x
=

+ <
>





−

−

0

0a

Remember that u x( )
2
 is the probability density. In the region x > 0, the wave function u(x) is not zero, 

and so there is a definite probability of finding the particle in the classically forbidden region. When 
we consider a beam of particles, it means that a part of the incident beam penetrates the region x > 0 
before returning back as the reflected beam of the particles.

example 3.1 Determine the flux density in the region II for the step potential.

Solution: In the region II, the wave function u
II
 = Ce-ax. The flux density is 

 

J x
im x x

x
m

C e e C ex x x

= −





= − − −− − −

ˆ *
*

ˆ ( ) ( )

�

�

2

2
2 2

y îy
î

y îy
î

a aa a a ee x−





=

a

0
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3.1.3 Step Potential E > V0

x

E

V0

Fig. 3.5 Step potential (E  > V0)

Again, consider the potential

 V x
V x

x
( ) =

>
<





0 0

0 0
 (3.31)

Now let E be greater than V
0
 i.e., E > V

0

The Schrödinger equation is

 

d u
dx

mE u x

d u
dx

m E V u x

2

2 2

2

2 2 0

2 0 0

2 0 0

I
I

II
II

+ = <

+ − = >

�

�
( )

Define k2 and b 2 as

 k mE2
2

2=
�

 and b 2
2 0

2= −m E V
�

( )

Then Schrödinger equation becomes

 
d u
dx

u
2

2
2 0I

I+ =a  (3.32)

 
d u
dx

u
2

2
2 0II

II+ =b  (3.33)

The solution to Schrödinger equation is

 u x
u Ae Be

u Ce De

i k x i k x

i x i x
( ) =

= + <
= + <





−

−

I

II

       

      

x

x

0

0b b

Let us now interpret the various terms in u
I
 and u

II
.

Aeikx A wave travelling from left towards x = 0, representing the incident beam.
Be-ikx A wave travelling from x = 0 towards x = -∞, representing the reflected beam.
Ceib x A wave travelling from x = 0 towards x = ∞, representing the transmitted beam.
De-ib x  A wave travelling from x = ∞ to x = 0. There is no such beam in our problem. So this term 

should be absent, and therefore, we have to set D = 0.
The solution to Schrödinger equation is

 u x
u Ae Be x

u Ce x

i k x i k x

i x
( ) =

= + <
= <





−
I

II

   

                

0

0b

 (3.34)

 (3.35)
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The boundary condition that the wave function u(x) and its derivative 
du x

dx
( )

 should be single valued 
implies 

 u
I
 (x) = u

II
(x) at x = 0 (3.36)

 
du x

dx
du x

dx
I II( ) ( )

=  at x = 0 (3.37)

These boundary conditions lead to the following equations:

 A + B = C and ik (A - B) = i b C
Solving these two equations, we get 

 C
A

k
k

B
A

k
k

=
+

= −
+

2
b

b
b

  and  

Therefore, the wave equations u(x) is given by 

 u x
A e A

k
k

e x

A k
k

e x

ikx ikx

i x

( )

( )

=
+ −

+
<

+
>










−b
b

b
b

0

2 0
 (3.38)

Feeding Aeikx for incident beam, Be ikx−  for reflected beam and Cei xb  for transmitted beam in the expres-
sion for flux, we get

Incident flux J A k
mi = 2 �

Reflected flux J B k mr = 2 �

and transmitted flux J C mt = 2 �b

The reflection coefficient R is given by

 R
J
J

B

A

k
k

r

i

= = = −
+







2

2

2b
b

 (3.39)

The transmission coefficient T is given by

 T
J

J

C

A

m
k m

k
k

t

i

= = ⋅ =
+

2

2 2

4�
�
b b

b( )
 (3.40)

Note that T R
k
k

k
k

+ = −
+

+
+

=( )
( )

( )
( )

b
b

b
b

2

2 2

4
1

Obviously, this reflects the fact that a single particle is either reflected or transmitted (‘either or’ in the 
mutually exclusive sense).

comparison with classical Physics
In classical physics, the momentum p of the particle is given by p m E V= −[ ( )] /2 1 2.

Region I: x < 0 V = 0 Therefore, the particle moves with a momentum p mE= 2 .
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Region II: x > 0 V = V
0
. The particle continues to move with a momentum p m E V= −2 ( ) .

So the beam of particles of momentum p mE= 2  from left reaches x = 0 and continues to move with 

momentum p m E V= −2 ( )  towards x = ∞. The whole beam is transmitted without being reflected.
In quantum mechanics, it is the wave function which describes the system, and u(x) is given by 

 u x
u Ae A

k
k

e x

u A k
k

e x

ikx ikx

i x

( )

( )

=
= + −

+
<

=
+

>










−
I

II

b
b

b
b

0

2 0

So, according to quantum mechanics, we get both reflected and transmitted beams. In other words, we 
get partially reflected and partially transmitted beams.

3.1.4 Square-well Potential - Scattering States
The potential V(x) is given by

 V x
x a

V a x a
( )

| |
=

>
− − < <





0

0

 (3.41)

E

a−a

−V0

0

Fig. 3.6 Square-well potential (E > 0)

For unbound or scattering states, the energy E should be greater than zero. So E > 0.
The Schrödinger equation is 

 

d u
dx

mE u x a

d u
dx

m E V u

2

2 2

2

2 2 0

2 0

2 0

I
I

II
II

           

  

+ = < −

+ + =

�

�
( )       

            III
III

− < <

+ = >

a x a

d u
dx

m u x a
2

2 2
2 0
�

Let us define k2 and a 2 as 

 k mE m E V2
2 2 0

2 2= = +
� �

and 2a ( )

The Schrödinger equation becomes

 

d u
dx

k u x a

d u
dx

u a x a

d u
dx

k u

2

2
2

2

2
2

2

2
2

0

0

0

I
I

II
II

III
III

+ = < −

+ = − < <

+ =

a

xx a>
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The solutions to these equations are 
 u

I
 = Aeikx + Be-ikx x < -a

 u
II
 = Ceia x + De-ia x -a < x < a

 u
III

 = Feikx + Ge-ikx x > a
Each term of the wave function is interpreted as follows:

Aeikx Incident beam travelling from x = -∞ to x = -a.
Be-ikx Beam reflected at x = -a travelling from x = -a to x = -∞.
Ceikx Beam travelling from x = -a to x = a.
De-ikx Beam travelling from x = a to x = -a.
Feikx Beam travelling from x = a towards x = ∞. This represents the transmitted beam.
Ge-ikx  Beam travelling from x = ∞ to x = a. In our problem, we don’t have such a beam. So this 

term should not be present in the wave function. Therefore, we set G = 0.
The constants A, B, C, D and F are determined from the boundary conditions and the normalization con-
dition. The single valuedness of the wave function u(x) and d dxu x( )/  lead to the following conditions:

 1. u
I
(x) = u

II
(x) at x = -a (3.42)

 2. 
du x

dx
du x

dx
I II( ) ( )

=  at x = -a (3.43)

 3. u
II
(x) = u

III
(x)  at x = a (3.44)

 4.  
du x

dx
du x

dx
II III( ) ( )

=  at x = a (3.45)

These boundary conditions imply

 Ae-ika + Beika = Ce-ia a + Deia a (3.46)
 ik (Ae-ika - B eika) = ia (Ce-iaa - Deia a) (3.47)
 Ceia a + De-ia a = Feika (3.48)
 ia (Ceia a - De-ia a) = Fik eika (3.49)

From (3.48) and (3.49), we get

 ia (Ceia a - De-ia a) = ik (Ceia a + De-ia a) 

Rearranging the terms, we get

 D Ce
k
k

i= −
+

2 a a
a

a ( )
( )

 (3.50)

Adding (3.46) and ((3.47)/ik), we get

 2Ae Ce
k

De
k

ika i a i a− −= +( ) + −( )a aa a1 1  (3.51)

Subtracting ((3.47)/ik) from (3.46), we get 

 2Be Ce
k

De
k

ika i a i a= −( ) + +( )− a aa a1 1  (3.52)

Let us now determine 1
R

,where R is the reflection coefficient.

 1
2

2R

A

B
= =Incident flux

Reflected flux
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Dividing (3.51) by (3.52), we get 

 A
B

e
Ce k De k
Ce k De k

Ce
ika

i a i a

i a i a

i

−
−

−

−

= + + −
− + +

=2
a a

a a

a a
a a

( ) ( )
( ) ( )

aa a

a a

a a
a a

a a
a a

a i a

i a i a

k Ce
k
k

k

Ce k Ce k
k

k

( )
( )

( )

( )
( )

(

+ + −
+ −

− + −
+ +−

3

3 ))

Dividing throughout both numerator and denominator by Ceiaa, we get

   

= + − −
− + −

=

−

−

e k e k
e k e k

i a i a

i a i a

2 2 2 2

2 2 2 2 2 2

2

a a

a a

a a
a a

a

( ) ( )
( ) ( )

(cos aa i a k k a i a k k
i a

− + + − + + −sin )( ) (cos sin )( )
sin

2 2 2 2 2
2 2

2 2 2 2a a a a a a a
a ⋅⋅ −( )a 2 2k

 

= − +
−

= = +−

2 2 2
2

1

2 2

2 2

2
2 2 2

a a a a
a a

a

k a i a k
i k a

R
A
B

e
kika

cos sin ( )
( )sin

( )) sin cos
( )sin

2 2 2 2 2

2 2 2

2 4 2
2

a a a
a a

a k a
k a

+
−

 = − +
−

= +
−

( ) sin
( ) sin ( ) sin

a a a
a a

a
a

2 2 2 2 2 2

2 2 2 2

2 2

2 2 2

2 4
2 2

1 4
2

k a k
k a

k
k 22aa

 ∴ =
+ −







R
k

k a

1

1 4
2

2 2

2 2 2 2
a

a a( ) sin
 (3.53)

transmission coefficient
The transmission coefficient T is given by 

 
T = Flux of the transmitted particles

Flux of the incident parrticles

= F
A

2

Dividing (3.51) by (3.48), we get

 

A
F

e
k

Ce k De k
Ce De k

Ce
ika

i a i a

i a i a

i a

2 1
2

1
2

= ⋅ + + −
+

=
−

−

−
a a

a a

a

a a( ) ( )
( )

(( )
( )( )a a a
a
a
a

a

a a

+ + − −
+

+ −
+



















=

k
Ce k k

k

Ce Ce
k
k

i a

i a i a

3

1
4aa

a a
a

a a a aa a

k
e k e k

k
k a i ki a i a[ ( ) ( ) ] [ cos ( )sin− + − − = − +2 2 2 2 2 21

2
2 2 2 aa]

 

T A
F

A
F

e

k
k k

ika− −= =

= + +

= +

1
2

2
2

2 2
2 2 2 2 2 2 21

4
4 2 2

1
a

a a a a[ cos ( ) sin ]

[

a a

(( ) sin ]a a
a

2 2 2 2

2 2

2
4
− k

k
a
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 ∴ =
+ −





T
k a

k

1

1
2

4

2 2 2 2

2 2

( ) sina a
a

 (3.54)

 

Note that R T
k

k a
k

+ =
+ −







+
+ −

1

1 4
2

1

1
22 2

2 2 2

2 2 2a
a a

a
( )sin

( )sin aa
a

a
k4

1

2 2







=

Let us recall that a 2
2 0

2= +m E V
�

( ) and k mE2
2

2=
�

. Using these definitions, we get 

 

R
E V

V a

T
V a

E V

=
+

+





=
+ +










1

1
4

2

1

1
2

4

0

0
2

0
2

0

( )
sin

sin
( )

a

a
and 










For large values of E compared to V
0
, the transmission coefficient approaches 1. Therefore, when  

E >> V
0
, most of the particles are transmitted.

transmission resonance
It is interesting to note that the transmission coefficient becomes 1 whenever 2aa = np. This can be 
easily seen from (3.54) Note that a 2 and k2 are very much similar to each other. Since k is a wave num-
ber, we can interpret a also as a wave number, provided we define a p l= 2 / e  where l

e
 is the effective 

de Broglie wavelength of the particle in the region -a < x < a. Then we have 

 2 2
2a p p
l

pa n
a

n
e

= ⇒ ⋅ =

Note that 2a is the width of the potential. Therefore, for transmission resonance,

 Width of the potential =
n el
2

So, as we change the energy of the incident particle, the transmission coefficient also changes. 
However, at some particular values of E, the transmission coefficient becomes 1. In other words, the 
interaction becomes completely transparent so that all the particles are transmitted. These are energy 
values such that the de Broglie wavelength l

e
 satisfies the relation le n a= ⋅2 2/ . This can be described 

as transmission resonance. In fact, this can be taken as a simple model, exhibiting the concept of trans-
mission resonance. Such a transmission resonance was first observed by Ramsauer and Townsend in 
the scattering of low energy electrons by noble gas atoms. (Note that the analysis of this phenomenon 
is much more complicated than this simple model.)
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3.1.5 rectangular Potential Barrier 0 < E < V0

E

a−a

V0

V

I II III

Fig. 3.7 Rectangular potential barrier 0 < E < V0

The potential V(x) is given by

 V x

x a

V a x a

x a

( ) =
< −

− < <
>







0

0
0  (3.55)

The Schrödinger equation is 

 

d u
dx

mE u x a

d u
dx

m E V u a x a

d u
d

2

2 2

2

2 2 0

2

2 0

2 0

I
I

II
II

III

+ = < −

+ − = − < <

�

�
( )

xx
m Eu x a

2 2
2 0+ = >
� III

Let us assume the energy of the particle to be E, which is less than V
0
. i.e., 0 < E < V

0
. Therefore, (E - V

0
)  

is negative. Taking into account of this fact, let us define a 2 and k2 as

 k m E m V E2
2

2
2 0

2 2= = −
� �

and a ( )

Note that a 2 is a positive real number. The Schrödinger equation becomes 

 

d u
dx

k u x a

d u
dx

u a x a

d u
dx

k u

2

2
2

2

2
2

2

2
2

0

0

0

I
I

II
II

III
III

+ = < −

− = − < <

+ =

a

xx a>

The solution to this equation is

 u
I
 = Aeikx + Be-ikx x < -a

 u
II
 = Cea x + De-a x -a < x < a

 u
III

 = Feikx + Ge-ikx x > a
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The wave function u(x) is interpreted in the same way as done in the case of square-well potential.
Aeikx  Incident wave function representing the incident beam of particles travelling 

from. -∞ to -a
Be-ikx Reflected wave function representing the reflected beam of particles.
Cea x and De-a x  They are well-behaved functions. They are finite and single valued within the 

range -a < x < a. Therefore, they are quantum mechanically allowed wave 
functions.

Feikx Transmitted wave function representing the transmitted particles.
Ge-ikx  Wave function describing the beam of particles travelling from x = ∞ to x = a. 

We are interested in knowing what happens to the incident beam of the parti-
cles from the left. We would like to know whether these particles are transmit-
ted beyond x = a. So, in this scenario, we should not have a beam travelling 
from right to left in the region x > a. Therefore, we set G = 0.

Therefore, the solution is 
 u

I
 = Aeikx + Be-ikx x < -a (3.56)

 u
II
 = Ceax + Be-ax -a < x < a (3.57)

 u
III

 = Feikx x > a (3.58)

The boundary condition that the wave function u(x) and its derivatives 
du x

dx
( )

 should be (single con-
tinuous valued) leads to the following conditions:

 u
I
(x) = u

II
(x)  at x - a (3.59)

 
du x

dx
du x

dx
I II( ) ( )

=  at x = -a (3.60)

 u
II
 (x) = u

III
(x)  at x = a (3.61)

 
du x

dx
du x

dx
II III( ) ( )

=  at x = a (3.62)

Substituting u
I
, u

II
 and u

III
 in these conditions, we get

 Ae-ika + Beika = Ce-a a + Dea a (3.63)
 ik(Ae-ika - Beika) = a (Ce-a a - Dea) (3.64)
 Cea a + D e-a a = Feika (3.65)
  a (Cea a - De-a a) = F ik eika (3.66)

Using (3.65) in (3.66), we get

 Ce De ik Ce Dea a a aa a a a

a
− = +− −( )

Rearranging the terms, we get 

 C De
ik
ik

a= +
−

−2a a
a

( )
 (3.67)

Adding (3.63) and ((3.64)/ik), we get 

 2 1 1Ae Ce
ik

De
ik

ika a a− −= +( ) + −( )a aa a  (3.68)
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Subtracting ((3.64)/ik) from (3.68) we get,

 2Be Ce
ik

De
ik

ika a a= −( ) + +( )−a aa a1 1  (3.69)

transmission coefficient
Let us determine the transmission coefficient T.

From (3.68) and (3.65), we get 

 2Ae
Fe

Ce ik De ik
ik Ce De

Ce ik
ika

ika

a a

a a

a
− −

−

−

= + + −
+

=
a a

a a
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 −
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a a

a a a
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ik Ce Ce
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e

a a

a a a

2

2





Dividing throughout by Cea a, we get 

 

2
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1
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2 2 2 2
2Ae
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e e
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a
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Now, consider A
F

2

 

A
F

A
F

e
k

k a k a

k
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2
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2 2
2 2 2 2 2 2 2

2

1
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2 4 2

1
4
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−

a
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1
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∴ The transmission coefficient T is given by

 T F
A k a

k

= =
+ +





2

2 2 2 2

2 2

1

1
2

4
( ) sinha a

a

 (3.70)

Similarly, we can calculate the reflection coefficient R, which is given by

 
R

B
A

=

=

Flux of the reflected beam
Flux of the incident beam

2

Using (3.68) and (3.69), we get

 
Ae
Be

ik e ik e ik
k e e

ika

ika

a a

a a

− −

−= + − −
+ −

[ ( ) ( ) ]
( )(

2 2 2 2

2 2 2 2

a a

a a

a a
a ))
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R B
A k
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2

2 2

2 2 2

1

1 4
2

a
a a( )sinh

 (3.71)

Classically, the transmission of a particle with energy E < V
0
 is not possible. In region I and III, the 

energy of the particle is E and the momentum is p mE= 2 . Such a particle can be present in either 
region I or region III. However, in region II, (E - V) is negative, which means that we cannot have a 
particle with E < V

0
 in region II. In fact, this is a forbidden region in classical physics. A particle with  

E < V
0
, coming from left can travel up to x = -a where it will be reflected. Transmission of such a 

particle to region III from region I is ruled out since it has to cross the forbidden region.
The quantum mechanical results differ from that of classical physics. The solution to Schrödinger 

equation leads to non-zero transmission coefficient. There is a definite probability that a particle with 
energy E < V

0
 travelling from left can be found to be present in region III. In fact, the particle can be 

found even in region II since the wave function is not zero in region II. This phenomenon is called 
tunnelling, which is unique to quantum mechanics.

3.1.6 tunnelling Phenomenon
Tunnelling is not unique to rectangular barrier potentials. It is present in a number of other situa-
tions. However, in all such situations, the tunnelling phenomena can be explained only in terms of 
quantum mechanics. So it is a unique consequence or feature of quantum mechanics. Since the tun-
nelling phenomenon takes place in a number of other situations, it is worthwhile to consider it in more  
detail.

Classically, the total energy E, the potential energy V(x) and the momentum p are such that the quantity  
2m (E - V(x)) should always be positive. So, in classical physics, we have two kinds of regions:

Classically allowed regions: A region in which (E - V ) is positive
Classically forbidden region: A region in which (E - V ) is negative
In tunnelling phenomenon, usually we have two classically allowed regions sandwiched by a clas-

sically forbidden region or a classically allowed region sandwiched between two classically forbidden 
regions. The phenomenon in which a particle travelling from one classically allowed region to the 
other region through a classically forbidden region is known as tunnelling.
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In the case of rectangular barrier, in region I and III, the quantity (E - V ) is positive, and so they are 
classically allowed regions. In region II, the quantity (E - V ) is negative and so this is a classically 
forbidden region.

Can a particle with E < V
0
, starting from left in the region I, be found in the region III? Classically, 

this is not possible. The particle will reach x = -a, where it will be reflected. To cross region II, it 
should have energy E > V

0
.

Train

Tunnel

Mountain

Rail track

Fig. 3.8 Tunnel through a mountain

This is very much similar to a train in the left side of the mountain as shown in Fig. 3.8. This train 
cannot reach the right side unless there exists a tunnel through the mountain.

The quantum mechanical analysis is entirely different. In quantum mechanics, the criterion for 
finding the particle in a region is not determined by the sign of (E - V ). The presence or absence or 
impossibility of finding a particle in a specific region is determined by the wave function y (x, t). So 
it is the solution to the Schrödinger equation which determines whether a particle will be found in a 
region or not. If y ≠ 0 in a region, there is a definite probability of finding the particle there. Only if 
y = 0 in a region, the particles cannot be present in that region. Note that in quantum mechanics, the 

momentum of the particle is not given by 2m E V( )− .

a Word of caution
The analogy between a mountain and the potential barrier should not be extended too far. Mountain 
is a physical object. The rectangular barrier V(x) as shown in Fig. 3.7 is a mathematical graph of V(x) 
vs. x, and it is not a pictorial representation of a real physical situation.The real situation may be like 
the one as shown in Fig. 3.9. 

Conductor Conductor

I IIIII

Insulator

Daughter nucleous

I II III

a particle

Fig. 3.9 Physical phenomena using tunnelling

In Fig. 3.9 (left figure), the gap between the two conductors may be filled by an insulator. The gap itself 
is an insulator. Normally, a continuous flow of current cannot be maintained because of the presence 
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of the insulator. However, if the width of the insulator is very small, quantum mechanical tunnelling 
process allows a continuous flow of current. This concept is used in scanning tunnelling microscope.

Fig. 3.9 (right figure) describes a particle decay process. The a decay is given by A
Z

A
ZX Y→ +−

−
4
2 a .  

Here X is the parent nucleus and Y is the daughter nucleus. To describe the emission of a particle, 
X can be thought of as Y within which a  particle as an entity is present which tries to escape from 
Y nucleus. So the volume of the daughter nucleus is region I, a classically allowed region. Region II 
is immediate outside of the daughter nucleus. This is classically forbidden region. Region III is clas-
sically allowed region. The reason for this classification for these regions are explained below. The 
emission of a particles is possible due to quantum mechanical tunnelling.

Scanning tunnelling Microscope
In 1981, Gerd Binnig and Heinrich Rohrer constructed a device called scanning tunnelling micro-
scope through which individual atoms can be located or manipulated. The operation of this device is 
based on tunnelling phenomenon.

Let us start with a simplistic analysis of a metal. The simplest model of a metal is that it is a 
periodic arrangement of atoms. The valence electrons, which are not attached to the atoms, are con-
fined to the metal but are free to move within the metal. These electrons constitute an ‘electron sea’. 
Application of quantum mechanics to the electron gas leads to the energy levels as shown in Fig. 3.10.
All the states whose energy is less than E

F
 are occupied (strictly speaking, this is true only at zero 

Kelvin). To lift an electron from the metal, one has to supply a minimum energy f to the electron 
inside a metal. f is called work function. All these results can be summarized in the potential energy 
diagram as a function of x as shown in Fig. 3.10 (top left).

The potential for an electron confined to the metal is shown in Fig. 3.10 (top right), which is a step 
potential similar to Fig. 3.3. (For region inside metal 1, x < 0; for region outside the metal 1, x > 0.) 
Generally, one expects an electron inside a metal to be confined within it. The wave function for an 

EF

Vacuum

EF

Vacuum

ff

EF

EF
Metal 1 Metal 2

Fig. 3.10 Energy level diagram for two metals with a gap
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electron for a step potential tells the other way. There is a definite probability of finding the electron 
outside the metal in the region x > 0. However, these electrons will not leave the metal.

Let us now bring another metal and keep it very close to it as shown in Fig. 3.10 (lower left). Now 
the potential energy for a system of two metals with a small gap between them is as shown in Fig. 3.10 
(lower right). Now there can be a flow of electrons from metal 1 to metal 2 due to tunnelling in spite 
of the presence of a gap (which acts as an insulator).

The scanning tunnelling microscope is very much similar to it. The schematic diagram of scanning 
tunnelling microscope is shown in Fig. 3.11. There is a probe, which is a thin needle with sharp tip 
over the sample metal. The needle never touches the surface. However, there is an electron flow from 
the sample material to the needle, and hence there is a current which can be measured. The circuit is 
schematically shown in Fig. 3.11. Note that it is the tunnelling phenomenon which is responsible for 
the flow of electrons from the sample surface to the probe.

Sample

Sample

Needle

1

Vacuum

S

Probe

EF

EF

f

eV

V

Fig. 3.11 Schematic diagram for scanning tunnelling microscope

` Decay
The a  decay is given by

 A
Z

A
ZX Y→ +−

−
4
2 a

For instance, the radioactive decay of 232
92 U  is given by

 232
92

228
90U Th→ +a

It is assumed that an a particle is formed from the nucleons in the parent nucleus 232
92 U. Now, the 

232
92 U can be considered as a bound system of a particle and 228

90 Th,  which leads to the following  
analysis:

The size of a nucleus can be calculated from the relations r r A= 0
1 3/  where r

0
 = 1.4 fm. For thorium 

nucleus, r = ( . ) ( ) /1 4 228 81 3fm fm� . Within this distance, the attractive nuclear force is the most domi-
nant which keeps all the nucleons bound together. The nuclear force has very short range, and so we 
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can take it to be absent beyond 8 fm. It is the electrostatic repulsion i.e., dominant force beyond 8 fm. 

The electrostatic potential energy V
Z Z

r
=

∈
1 2

04p

 = × × ×
× ×

=

−

−

90 2 1 602 10
4 8 85 10

260

19 2

12

( . )
.p r

r
 MeV

 in Fermi

All these details are brought out in the potential energy diagram as shown in Fig. 3.12.

a Particle of 5 MeV

100 MeV

260 MeV

r1

r1

r2

r2

r3

I II III

8 fm

Fig. 3.12 a  decay and tunnelling process

Let us do classical physics first. For distances less than r
1
, a particles can have 5 MeV. Once it comes 

out of the nucleus, there is no attractive nuclear force on it, and the only force is electrostatic repulsive 
force, which is so strong that the a particle has to move with very high velocity. For instance, the 
velocity of the a particle at r

3
 should be such that its energy is 100 MeV. Obviously, a 5 MeVa particle 

cannot be present here. As the a particle moves away from the nucleus, the repulsive force decreases, 
and only after r

2
 it is possible for an a particles to have 5 MeV. Therefore, regions I and III are classi-

cally allowed regions, and region II is classically forbidden region for 5 MeVa particle. Only quantum 
mechanics allows a 5 MeVa particle present inside the daughter nucleus to escape from the nucleus 
with the same energy to outside the nucleus. This is again a tunnelling phenomenon. The calculation 
of the transmission coefficient becomes much more complicated, which will be evaluated using WKB 
approximation later.

3.2 BounD State SolutionS

3.2.1 Parity
Before taking specific potentials and solving Schrödinger equation, let us introduce an important 
concept called parity. This is also called space inversion. The concept of parity is presented here in the 
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context of simple one-dimensional potential. This deals with how wave functions u(x) and u(-x) are 
related. Let us introduce an operator called parity operator P, which is defined as 

 Pu(x) = u(-x) (3.72)

eigenvalues and eigenfunctions of Parity operator
The eigenvalue equation of parity operator P is given by 

 Pf (x) = lf (x) (3.73)
But Pf (x) = f (-x) (3.74)

Consider P2f (x). Using (3.74), we get 

 P2f (x) = PPf (x) = Pf (-x) = f (x). (3.75)

But, from (3.73), we get

 P2f (x) = PPf (x) = Plf (x) = lPf (x) = l2f (x) (3.76)

Comparing (3.75) and (3.76), we have

  l2f(x) = f (x) or l2 = 1

  ∴ l = +1, -1. (3.77)

Eigenvalue k = 1; Even-parity Wave Function

 Pf (x) = 1 ⋅f (x)

But P(x) = f (-x).

  ∴l = 1 implies f (-x) = f (x) (3.78)

Such functions are called even functions of x or functions with even parity.

Eigenvalues k = -1. Odd-parity Eigenfunction

 Pf (x) = (-1)f (x)

But Pf (x) = f (-x)

  ∴f (-x) = -f (x) (3.79)

Such functions are called an odd function of x or a function with odd parity.

example 3.2 Determine the parity of (1) u(x) = x2 (2) u(x) = sina x.

Solution: The simplest way is to replace x by -x and see how these functions behave.

 1. u(x) = x2

 u(-x) = (-x)2 = x2 = u(x)

This is an even function or a function with even parity.
 2. u(x) = sina x

 u(-x) = sina (-x) = -sina x = -u(x)

∴ This is a function with odd parity.
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example 3.3 Determine the parity of u(x) = ea x.

Solution:
  u(x) = ea x
 u(-x) = e-a x

This is not an eigenfunction of parity operator. It is neither odd nor even.

example 3.4 Determine the parity of u(x) = A sina x + B cosa x.

Solution: Note that sina x is an odd-parity function and cosa x is an even-parity function.

i.e., sin a (-x) = - sina x cosa (-x) = cosa x
Let us now consider u(x) = A sina x + B cosa x.

  ∴u(-x) = -A sina x + B cosa x
This is neither even nor odd. Therefore, this is not an eigenfunction of parity operator.

Stationary eigenstates and Parity
Are the stationary eigestates of a time-independent Hamiltonian parity eigenstates?

The stationary eigenstates are energy eigenstates of the Hamiltonian operator.

 H x
p

m
V x

m
d
dx

Vop

op( ) = + = − +
2

2 2

22 2
( ) ( )� x

Changing variable x to -x, we get

 H x
m

d
dx

V xop ( ) ( )− = − + −�2 2

22

Is H
op 

itself symmetric with respect to parity transformation? i.e., whether H
op

(x) and H
op

(-x) are the 
same? They may be or may not be the same. It depends on V(-x). 

If V(-x) = V(x), H
op

(x) = H
op

(-x)

It can be shown that if H
op

(x) = H
op

(-x), the stationary energy eigenstates are also parity eigenstates. 
i.e., if V(-x) = V(x), then the stationary energy eigenstates are either even or odd function.

For V(-x) = V(x), u(-x) = ±u(x) (3.80)

This fact will be useful in determining the energy eigenstates. Note that there are many potentials 
which are not of the type V(-x) = V(x)

3.2.2 Particle in a Box
Let us now choose the potential for a particle in a box in a symmetric way as shown in Fig. 3.13.

a/2−a/2

I II III

∞ ∞

0

Fig. 3.13 Particle in a box (symmetric potential)
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The potential energy V(x) is given by

 V x

x a

a x a( ) =

∞ < −

− < <

∞

               

            

          

2

0
2 2

          x a>













2

 (3.81)

Since the potential V(x) is infinite in regions I and III, the wave function u(x) = 0 in these regions.
So we have

 

u x x a

d u
dx

mE u x

( )

( )

= ≤ −

+ =

0
2

2 0
2

2 2

                           

 

 

�
                      

                      

− ≤ ≤

=

a x a

u x

2 2

0( )          x a≥
2

 (3.82)

Defining, k mE2
2

2=
�

, the Schrödinger equation becomes

 
d u x

dx
k u x a x a2

2
2 0

2 2
( )

( )+ = ≤ ≤        −  (3.83)

It is obvious that V(-x) = V(x) or V(x) is symmetric about the origin. This implies that energy eigen-
functions u(x) should be either odd or even.

i.e., u(-x) = ±u(x) (3.84)

So to get the energy eigenvalues and the eigenfunctions, we have to find the solutions of the Equation 
(3.83) subject to the boundary conditions

 u(x) = 0 at x a= −
2

 u(x) = 0 at x a=
2

and u(-x) = ± u(x)

The general solution of the Equation (3.83) is 

 u(x) = A sin kx + B cos kx

The boundary condition u(-x) = u(x) demands that

 -A sin kx + B cos kx = A sin kx + B cos kx

This is possible provided A = 0.
Therefore, the even-parity wave functions are given by u(x) = B cos kx.
On the other hand, the boundary condition u(-x) = -u(x) demands that

 -A sin kx + B cos kx = -A sin kx - B cos kx.

  ∴B = 0

Therefore, the odd-parity wave function is u(x) = A sin kx
We have two sets of energy eigenfunctions, namely

 u(x) = B cos kx even parity

 u(x) = A sin kx odd parity.
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even-parity Wave Functions
The boundary condition u(x) = 0 at x a=

2
 demands that 

 u a B ka
2 2

0( ) = =cos

 ka n
2

1
2

= +( )p  or k n a= +( )2 1 p  n = 0, 1, 2, 3,..

The energy eigenvalues are

 E
m

n
a

= +�2 2 2

22
2 1⋅ ( ) p

 n = 0, 1, 2, 3,...

The list of energy eigenvalues are

 � � �2 2 2 2 2 2

2 2
3

2
5

m a m a m a
⋅ ( ) ⋅ ( ) ⋅ ( )








p p p, , , ...

odd-parity Wave Functions
The boundary conditions u(x) = 0 at x a=

2
 implies that

 u a A ka
2 2

0( ) = =sin

  ∴ ka n
2

= p  or k n
a

= 2 p  n = 1, 2, 3,...

The energy eigenvalues are

 E
m

n
a

= ( )�2 2

2
2⋅ p  n = 1, 2,...

The list of energy eigenvalues are given by

 � � �2 2 2 2 2 2

2
2

2
4

2
6

m a m a m a
⋅ ⋅ ⋅p p p( ) ( ) ( )








, , , ...

Taking into account both sets of energy eigenvalues, we can arrange them into a single set with energy 
eigenvalues in ascending order and their corresponding energy eigenfunctions.

 E
m a

u x B
x

a1

2 2

12
= ( ) =� p p

( ) cos  (3.85)

 E
m a

u x A
x

a2

2 2

22
2 2= ( ) =� p p

( ) sin  (3.86)

 E
m a

u x B
x

a3

2 2

32
3 3= ( ) =� p p

( ) cos  (3.87)

 E
m a

u x A
x

a4

2 2

42
4 4= ( ) =� p p

( ) sin  (3.88)
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 E
m a

u x B
x

a5

2 2

52
6 5= ( ) =� p p

( ) cos  (3.89)

 E
m a

u x A
x

a6

2 2

62
7 6= ( ) =� p p

( ) sin  (3.90)

The sketches of some of the eigenfunctions are given in Fig. 3.14.

−a /2 a /20

u1 = A cos px /a u2 = B sin 2px /a u3 = A cos 3px /a u4 = B sin 4px /a

Fig. 3.14 Sketch of wave functions for a particle in a box (symmetric potential)

example 3.5 Normalize the energy eigenfunctions of a particle in a box defined by − < <a x a
2 2

.

Solution: Even-parity wave functions: 

The even-parity wave functions u
n
(x) is given by

 u x

a

Bn ( ) cos
(=

                              0
2

2

          x < −

nn x
a

a x a+ < <1
2 2

0

)p
              

                           

−

               x a<












 2

The normalization constant B is determined by demanding

 u x dx( )2 1
−∞

∞

∫ =

 

B
n x

a
B

n x
a

d
a

a

a

a

2 2

2

2

2

2

22 1 1
2

1
2 1 2

cos
( )

cos
( )

/

/

/

/+ = + +





− −
∫ ∫p p

xx

B a B
n x

a
a

n
B a

a

a

= + + ⋅
+







= =
−

1
2

1
2

2 1 2
2 1 2 2

12 2

2

2
2

sin
( )

( )
/

/p
p

 ∴ =   B
a
2 .

The normalized even-parity wave function u
n
(x) is given by

 u x
a

n x
an ( ) cos

( )= +2 2 1 p
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Odd-parity wave function:
The odd-parity wave function is given by 

 u x

x a

A
n
a

a x

x a

a
n ( ) sin=

< −

− < <

>














0
2

2
2

0
2

2
p x

The normalization constant A is determined as follows.

 A
n x
a

dx A
n x
a

dx A a
a

2 2 2
2

2

2
1 1

4 1
2 2

1sin cos
/

p p= −





= =
−

    or    
aa

a

a /

/

/ 2

2

2

∫∫
−

   

 ∴ =A a
2

The normalized odd-parity wave function is

 V x
a

n x
an ( ) = 2 2

sin
p

example 3.6 Show that the energy eigenfunctions for a particle confined in a box defined by 
− < <a x a

2 2
 are orthogonal to each other.

Solution: Two functions f
n
(x) and f

m
(x) are said to be orthogonal to each other if they obey

 f f dm n mnx x dx*( ) ( )
−∞

−∞

∫ = 

The even-parity wave function u
n
(x) and the odd-parity wave function V

n
(x) are given by

 u x
a

n x
an ( ) cos

( )= +2 2 1 p

and V x
a

n x
an ( ) sin

( )= +2 2 1 p

In the context of our problem, by orthogonally we mean

 u x u x dx V x V x dxn n

a

a

mn n m

a

a

mn
*( ) ( ) , *( ) ( )

/

/

/

/

− −
∫ ∫= =

2

2

2

2

d d

and u x V x dxn m

a

a

*( ) ( )
/

/

=
−
∫ 0

2

2

 

u x u x dx
a

n x
a

m x
a

dxn m

a

a

a

a

*( ) ( ) cos
( )

cos
( )

/

/

/

/

= + +

− −
∫ ∫

2

2

2

2
2 2 1 2 1p p

== + + + −





−

∫ 1 2 2

2

2

a
n m x

a
n m x

a
dx

a

a

cos
( )

cos
( )

/

/ 2 2 p p
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 =
+ +

+ + +
−

−

− −

1
2 1

2 1
2

2

2

2

a
a

n m
n m x

a
a

n m
n m x

a
a

a

a
p

p p
( )

sin
( )

( )
sin

( )

/

/

/

⋅
22

2a /











 = 0 provided n ≠ m

When n = m, we know then u x u x dxn

a

a

n
*( ) ( )

/

/

−
∫ =

2

2

1

 ∴ =
−
∫ u x u x dxn

a

a

m mn
*( ) ( )

/

/

2

2

d

In the same way, for odd-parity wave functions, it is easy to check

  V x V x dxn

a

a

m mn
*( ) ( )

/

/

−
∫ =

2

2

d

Now consider  u x V x dxn

a

a

m
*( ) ( )

/

/

−
∫

2

2

 

u x V x dx
a

n x
a

m x
a

dx

a

n m

a

a

a

a

∗ = +

=

− −
∫ ∫( ) ( ) cos

( )
sin

/

/

/

/

2

2

2

2
2 2 1 2

1

p p⋅

ssin
( ( ) )

sin
( )

/

/ 2 1 2 2 1

2

2 m n x
a

m n x
a

dx
a

a + + + − −





−
∫ p p

 = −
+ +

+ + +
− −

− −


2
2 1

2 1
2 2 1

2 2 1
a

a
m n

m n x
a

a
m n

m n x
a

⋅
( )

cos
( ( ) )

( )
cos

( )p p



−a

a

/

/

2

2

 = 0 provided 2m ≠ 2n + 1

Consider the case when 2m = 2n + 1

 

V x V x dx
a

m x
a

m x
a

dx

a
m

n m

a

a

a

a

∗ =

=

− −
∫ ∫( ) ( ) cos sin

sin

/

/

/

/
2 2 2

1 4

2

2

2

2 p p

pp x
a

dx
a

a

−
∫

/

/

2

2

 =
−

1
4

4

2

2

a
a
m

m x
a

a

a

⋅
p

p
cos

/

/

 provided m ≠ 0

 = 0 provided m ≠ 0.

The minimum value of m is 1 for particle in a box. Therefore,

 u x V x dxn

a

a

m
*( ) ( )

/

/

−
∫ =

2

2

0
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3.2.3 Square-well Potential

−a

−a

−V0

a

a

Fig. 3.15 Square-well potential for bound states

The potential is given by 

 V x V

x a

a x a

x a

( ) = −
< −

− < <
>







0

0
0  (3.91)

We are looking for bound state solution for this potential. Therefore, the energy of the bound states 
should be such that -V

0
 < E < 0. i.e., E E E V= − < and 0.

The Schrödinger equation is

 
d u
dx

mE u
2

2 2
2 0I

I+ =
�

 x < - a

 
d u
dx

m V E u
2

2 2 0
2 0II

II+ + =
�

( )  -a < x < a

 
d u
dx

m E u
2

2 2
2 0III

III+ =
�

 x > a

Let us define a 2
2

2= − mE
�

 and b 2
2 0

2= − +m V E
�

( ).

Note that a 2 is a positive number since E is less than zero. Since V E V E V E0 0 0> − +, ( ) ( )  or is a 
positive number, b 2 is a positive number. The Schrödinger equation now becomes

 
d u
dx

u
2

2
2 0I

I− =a  x < - a

 
d u
dx

u
2

2
2 0II

II+ =b  -a < x < a

 
d u
dx

u
2

2
2 0III

III− =a  x > a

The solution to these equations are 

u
I
 = A ea x + B e-a x     x < - a

u
II
 = C cos b x + D sinb x - a < x < a

u
III

 = F ea x + G e-a x     x > a
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Consider the solution u
I
 in region -∞ < x < -a. As x → -∞, the function ea x goes to zero, but e-ax 

becomes infinite. Similarly, consider the solution u
III

 in the region a < x < ∞. As x → ∞, the function 
e-a x goes to zero, but ea x becomes infinite. So because of the boundary condition (3.6), the bound state 
wave function should go to zero as x → ±∞. This can be met if only we set B = 0 and F = 0. Therefore, 
the solution becomes 

 u
I
 = A eax x < -a (3.92)

 u
II
 = C cos bx + D sinbx -a < x < a (3.93)

 u
III

 = G e-ax x > a (3.94)

The potential energy V(x) is symmetric about x = 0; therefore, the solution u(x) should have definite parity. 

i.e., u(-x) = u(x) even-parity function
 u(-x) = -u(x) odd-parity function

even-parity Wave Function
From Equations (3.92), (3.93) and (3.94) we write u(-x) as

 u x

Ae x a

C x D x a x a

Ge x a

x

x

( ) cos sin− =
>

− > > −
< −







−a

a

b b

The condition that u(-x) = u(x) implies that 

 G = A and D = 0 

The solution now becomes 

 u
I
 = Aea x x < -a (3.95)

 u
II
 = Ccos bx -a < x < a (3.96)

 u
III

 = Ae-a x x > a (3.97)

The boundary condition demanding the single valuedness of the wave function u(x) and its derivatives 
du x dx( )/  at x a= −  leads to the following conditions.

 u x a u x aI II( ) ( )= − = = −  and 
du x

dx
du x

dx
x a x a

I II( ) ( )

=− =−

=

These conditions imply that

 Ae-a a = C cos b a (3.98)
  a Ae-a a = C b sin b a (3.99)

Using (3.98) in (3.99), we get

 a a = b a tan b a (3.100)

Note that.tan .b a ba a a= /  Since a and b are positive numbers, tanba is also a positive number. This 
implies that b a has to be in either first quadrant or third quadrant.

i.e., 2
2

2 1
2

n a np b p< < +( )  n = 0, 1, 2, 3,... (3.101)

To get the energy eigenvalue corresponding to even-parity solution, we have to solve the Equation 
(3.100) subject to the range of b a given in the inequality (3.101).
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We cannot get an algebraic expression for the solution of this equation. Only numerical solution 
is possible.

Before proceeding further, let us analyze the odd-parity solution.

odd Parity Solution
The odd-parity solution is generated by the condition

 u(-x) = -u(x) (3.102)

From (3.95), (3.96) and (3.97), we have

 u x

Ae x a

C x D x a x a

Ge x a

x

x

( ) cos sin− =
>

− > > −
< −







−a

a

b b

The condition (3.102) implies that G = -A and C = 0. Therefore, the odd-parity solution is given by

u x

Ae

D x

Ae

x a

a x a

x a

x

x

( ) sin

( . )

( . )

( .

=
−

< −
− < <

>





 −

a

b
a

3 103

3 104

3 1055)

The boundary condition demanding the wave function u(x) and its derivatives 
du x

dx
( )

 be single valued 
at x a= −  implies the following conditions.

At x a= −  u
I
(x) = u

II
(x) and 

du x
dx

du x
dx

I II( ) ( )
=  

 ∴ A e-a a = -D sin b a (3.106)
  a Ae-a a = D b cos b a (3.107)

Making use of (3.106) in (3.107), we get

  -a a = b a cot b a (3.108)

or cot b a
b

a = − a
a

 (3.109)

Since a and b are positive number, cot ba is a negative number. This implies ba has to be either in 
second quadrant or fourth quadrant.

i.e., ( ) ( )2 1
2

2 1
2

n a n+ < < +p b p  n = 0, 1, 2, 3,... (3.110)

To get the energy eigenvalue corresponding to the odd-parity solution, we have to solve the Equation 
(3.108) subject to the range of b a given in (3.110). Again, it is not possible to get an algebraic expres-
sion as the solution of this equation.
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graphical Solution
We can get a qualitative idea of the energy eigenvalues for different values of V

0
 from graphical solu-

tion. Let us introduce three new variables X, Y and Z as follows:

 X = b a Y = a a Z 2 = X 2 + Y 2

 Z X Y a mV a2 2 2 2 2 2
2 0

22= + = + =( )b a
�

To get the energy eigenvalues, we have to solve the following equations:

Even parity: Y = X tan X: 2
2

2 1
2

n X np p< < +( )

 X 2 + Y 2 = Z 2

Odd parity: Y = -X cot X: ( ) ( )2 1
2

2 2
2

n X n+ < < +p p

 X 2 + Y 2 = Z 2

In the graphical solution, the intersection of the two curves Y = X tan X and X 2 + Y 2 = Z 2 in the range   
2 2 2 1 2n X np p/ /< < +( )  will determine the energy eigenvalue corresponding to even-parity solution. 
The intersection of the two curves Y = -X cot X and X 2 + Y 2 = Z 2 in the range ( ) ( )2 1 2 2 2 2n X n+ < < +p p/ /  
will determine the energy eigenvalues corresponding to odd-parity solution.

The sketches of the three curves namely Y = X tan X, X 2 + Y 2 = Z 2 and Y = -X cot X are shown in 
Fig. 3.16. 

x

E1

E2

E3

2pp 3p
2

3p5p
2

p
2

0

1

2

3

4

5

6

7

8
y

Fig. 3.16 Square-well potential - Graphical solution for energy eigenvalues

For five different values of Z, the intersection of the circle X 2 + Y 2 = Z 2 and the curves Y = X tan X and 
the curve Y = -X cot X is shown in Fig. 3.16. The small dots ‘•’ represent the intersection between the 
circles X 2 + Y 2 = Z 2 and Y = X tan X, and they correspond to even-parity solutions. The small circles 
‘o’ represent the intersection between the circles X 2 + Y 2 = Z 2 and Y = -X cot X, and they correspond 
to odd-parity solution.

Note that in the range 0 2 22
0

2 1 2< ( ) <m V a/ /�
/ p , there is no odd-parity solution, and there is only 

one energy eigen state corresponding to even parity. In the range p p/ /2 2 0
2 2 1 2< ( ) <mV a �

/
, there 

are two energy eigen states: one solution corresponding to even parity and another solution cor-
responding to odd parity. The wave functions for both states are sketched in Fig. 3.16. In the range 
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p p< ( ) <2 3 20
2 2 1 2

mV a / /�
/

,  there are three energy eigen states. Two energy eigenstates are of even 
parity and one energy eigenstate is of odd parity.

We can easily determine the number of possible energy eigenvalues for a given V
0
 and a. It is 

important to recognize the number of possible energy eigenvalues are finite for a given V
0
 and a. In 

fact, it is obvious from the above discussion; for a given potential V
0
 which is such that 2 0

2 2 1 2
mV a /�( ) /

 
lies in the range between Np /2 and ( ) ,N +1 2p /  there are (N + 1) energy eigenvalues.

even-parity Wave Function u(x)
In the case of even-parity wave function, the constant A in Equations (3.95),(3.96) and (3.97) can be 
determined in terms of C using (3.98), and it is given by

 A = Cea a cos ba (3.111)
Therefore, the even-parity wave function is given by

u x

Ce a e

C x

Ce a e

x a

a x a

x a
n

a
n

x

n

a
n

x

( )

cos

cos

cos

=
< −

− < <
>



−

a a

a a

b
b
b

  

  





( . )

( . )

( . )

3 112

3 113

3 114

odd-parity Wave Function
The constant A in equation can be determined in terms of D using (3.106), and it is given by 
 A = -Dea a sinba (3.115)
Therefore, the odd-parity wave function is given by

 V x

D e a e

D x

D e a e

x a

a x a

x
n

a
n

x

n

a
n

x

( )

sin

sin

sin

=
− < −

− < <
>−

  

 

  

a a

a a

b
b
b aa






 (3.116)

These functions can be sketched easily. We have to bear in mind in which quadrant b
n
a lies. 

Correspondingly, the sign of coefficient of the exponential functions will become positive or negative. 
This is due to the fact cos b

n
a and sin b

n
a can become a positive or a negative number.

−0.5

−0.5

0

−1

0.5 1.5 2.521−1.5−2.5 −2 −1

0.5

1.5

1

0

y3

y2

x
a

f

Fig. 3.17 Sketch of bound state wave functions for a particle in square-well potential
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Particle in classically Forbidden region
We have already seen that the classically allowed region is when (E - V ) is positive in a particular 
region. In the case of square-well potential, for bound states, we have

  Region I E V E E− = = − ; E - V is negative; classically forbidden 

  Region II E V V E− = −0 ; E - V is positive; classically allowed

  Region III E V E E− = = − ; E - V is negative; classically forbidden 

So, according to classical physics, the particle should not be found in region I and III. In quantum 
mechanics, the wave function is non-zero (though exponentially falls to zero) in regions I and III. 
Therefore, there is a definite probability of finding the particle in regions I and III. So the particles can 
be found in these regions also.

example 3.7 Normalize the wave function for the bound state wave functions for a square-well  
potential.

Solution: The even-parity wave function is 

 u x

C e a e

x

e a e

x a

a x a

x
n

a
n

x

n

a
n

x

( )

cos

=
− < −

− < <
>−

  

 cos

 cos  

a a

a a

b
b
b

C

C aa







The odd-parity wave function is

 V x

D e a e

D x

D e a e

x a

a x a

x
n

a
n

x

n

a
n

x

( )

sin

sin

sin

=
− < −

− < <
>−

  

 

  

a a

a a

b
b
b aa







Condition for the normalization of even-parity wave function is u x dx( )
2

1=
−
∫
É

É

.

 

u x dx u x dx u x dx

C e ae

aa

aa

a

I II III( ) ( ) ( )

cos

2 2 2

2 2 2 2

1+ + =∫∫∫
−−

− É

É

aa b xx

a

a

a

a

a

xdx C xdx C e ae dx+ + =
−

−

−

−∫ ∫ ∫
É

a
É

ab b2 2 2 2 2 2 1cos cos

 

C e a e C
x

C e aa
x a

a

a

a2 2 2
2

2 2 2 2

2
1
2

2
4

a
a

ab
a

b
b

bcos
sin

cos
−∞

−

−

+ +





+ ee

C
a

a a a

x

a

−

−
=

+ +





=

2

2
2

2
1

1 1

a É

a

b
a b

b bcos
sin cos

Since tan b a
b

a = , we have

 sin b a
a b

a =
+2 2

 and cos b b
a b

a =
+2 2
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Making use of these relations, we get

 A a2 1 1
a

+( ) =

or A
a a

a
a a

a

=
+







=
+







=
+











a
a

a
a

a
1

1
1

1 1
1 1

1 2 1 2 1 2/ / /

⋅

In the same way, the normalization constant B for odd-parity wave function can be determined. B is 
found to be the same as A.

aPPenDix

Potentials and the choice of the coordinate Systems
To analyze a physical system using Schrödinger equation in non-relativistic equation, we employ a 
coordinate system to suit our convenience. This is possible since, in general, the physical results like 
energy eigenvalues or probability density should not depend on the choice of the coordinate system. We 
shall study this aspect in details in Chapter 9. Let us study the case of a particle in a box in this context.

In Section 3.7, we considered the particle in a box whose potential is

 V x

x a

a x

x a

a( ) =

∞ < −

− < <

∞ <













2

0
2

2

2
 (3.117)

It is very common to use the potential given below to consider the particle in a box.

 V x

x

x a

x a

( ) =
∞ <

< <
∞ >







for

for

for

0

0 0  (3.118)

Both potentials (3.117) and (3.118) describe the particle in a one-dimensional box of size a. The differ-
ence between them is that the potential (3.117) is an even function of x while the potential (3.118) is nei-
ther odd or even. This difference is due to the different choices in the coordinate systems. In the case of 
potential (3.117), the origin is at the centre of the box, while in the case of potential (3.118), the origin is 
at the left edge of the box. Let us verify that the potential (3.118) leads to the same physical conclusions.

I II III

0

∞

a

∞

Fig. 3.18 Particle in a box - asymmetric potential
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The Schrödinger equation is

 d u
dx

mE u
2

2 2
2 0+ =
�

 0 < x < a (3.119)

Since the potential V(x) is infinite in the regions I and III, we cannot find the particle in these regions. 
These conclusions imply that the wave function u(x) is zero in regions I and III.

i.e., u(x) = 0 for x < 0
 u(x) = 0 for x > a

So we have Schrödinger’s differential equation only in region II.

Define k mE2
2

2=
�

The Equation (3.119) becomes

 d u
dx

k u x
2

2
2 0+ =( )  

This differential equation has to be solved with the boundary conditions which arise from the require-
ment that the wave function u(x) should be single valued at all points.

i.e., u( )0 0=  and u a( ) = 0 

The solution to the equation is given by
 u(x) = A sin kx + B cos kx

The boundary condition u( )0 0=  implies that B = 0.

  ∴ u(x) = A sin kx.

The boundary condition u a( ) = 0 implies that

 u(a) = A sin ka = 0 or ka np or k
n

a
=
p

It is more appropriate to write it as k n
an = p

Then, the wave function u
n
(x) is 

 u x A k x A
n x

an n( ) sin sin= = p

The corresponding energy eigenvalues are given by

 E
k

m
n
man

n= =
� �2 2 2 2 2

22 2
p

the energy eigenvalues and the energy eigenfunctions
The energy eigenvalues and the energy eigenfunctions are given by 

 E n
man = �2 2 2

22
p  and u x

a an ( ) sin= 2 n xp

(See examples for the normalization constant.) Some of the energy eigenvalues and the corresponding 
energy eigenfunctions are listed below:

 n
ma

x
a a

= = =1
2

22 2

2 1        1E u
x� p p

( ) sin  (3.120)
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 n
ma

x
a a

= = =2
2

2
2

2 2

2 2        E u x� p p( ) sin 2  (3.121)

 n
ma

x
a a

= = =3
2

2
3

2 2

2 3        E u x� 9 3p p( ) sin  (3.122)

 n
ma a a

= = =4
2

2
4

2 2

2 4        E u x� 16 4p psin  (3.123)

The sketches of these eigenfunctions are shown in Fig. 3.19. Compare the energy eigenvalues in 
Equations (3.120) - (3.123) with those in Equations (3.85) - (3.90).They are exactly the same. Though 
the functional form of the eigenfunctions given in Equations (3.85) - (3.90) is different from those 
given in (3.120) - (3.123), their sketches in Fig. 3.14 and Fig. 3.19 are the same, and so they will lead 
to the same physical consequences. 

0

a /2

a /2

a /2

a /2

a /2a

Fig. 3.19 Sketch of wave functions for a particle in a box (asymmetric potential)

example 3.8 Normalize the eigenfunctions for a particle in a box.

Solution: The wave function for a particle in a box is u x A
n x

an ( ) sin= p

The normalization of u
n
(x) implies. u x dxn ( )

2
1=

−∞

∞

∫

 u x dx u x dx u x dxn n

a

n

a

( ) ( ) ( )
2

0
2

0

2
1+ + =

−∞

∞

∫ ∫ ∫

Since u
n
(x) is zero in both regions I and II, the first and the third integrals are zero. Therefore, we have

 u x dx A
n

a
dxn

a a

( ) sin= =∫ ∫1 1
0

2 2

0

      or    
p x

 A
n
a

dx a A
a

a
2

0

21
2

1
2

2
1 2−





= =∫ cos
p x

A =       or    

The normalized wave function is 

 u x
a

n x
an ( ) sin= 2 p
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example 3.9 Show that u x u x dxn m nm

a

*( ) ( ) =∫ d
0

 for a particle in a box where u x
a

n x
an ( ) sin= 2 p

 and 

 d nm

n m

i n m
=

=
≠





1

0

if

f

Solution:

 u x u x dx
a

n x
a

x
a

dx
a

n m x
an m

a a

*( ) ( ) sin sin cos
( )

cos
0 0

2 2 1
2∫ ∫= = − −p p pm (( )n m x

a

a +



∫ p

0

 = ⋅
−

− −
+

+





1

0
a

a
n m

n m x
a

a
n m

n m x
a

a

( )
sin

( )
( )

sin
( )p p

 provided n ≠ m = 0

Let us now consider when n = m. In that case, we have 

 u x u x dx u x dxn m

a

n

a

*( ) ( ) ( )
0

2

0

1∫ ∫= =

 
u x u x dx

m n

m nn m

a

mn

*( ) ( )
0

0

1∫ =
≠
=





=

if

if

d

exerciSeS

 1. A part of the incident beam is reflected by a potential. Is it a consequence of particle property or 
wave property?

 2. What is meant by classically allowed and classically forbidden region?
 3. What are the classically allowed and the classically forbidden regions for the following?

 (i) Step potential
 (ii) Square-well potential
 (iii) Rectangular barrier potential

 4. Show that there is a classically forbidden region for a decay.
 5. In a classically forbidden region, a particle cannot be present since p m E V= −2 ( )  is imagi-

nary. Yet quantum mechanics allows the particle in this region. How is this possible? Is there a 
contradiction?

 6. For a particle in a box, why are we not implementing the boundary condition ∂
∂

u
x

 is single valued 
and continuous at the edges?

 7. What is meant by translational invariance? 
 8. Two coordinate systems S and S′ are employed to obtain the wave function of a system. S′ is 

obtained from S by shifting the origin by x along x axis. How are the wave functions in the two 
coordinate systems related?

 9. A particle is bound to the square-well potential, and its energy eigenfunctions are given by u
n
(x). 

Change the coordinate system so that the particle is bound in the region 0 < x < 2a, and now the 
energy eigenfunctions are given by V

n
(x). Show that V

n
(x) = u

n
(x - a).
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 10. A particle is bound to a box in a region defined by 0 < x < a. Its energy eigenfunction is given by 
u

n
(x). Change the coordinate system where origin is at the midpoint of the box, and now its energy 

eigenfunctions are V
n
(x). Show that V x u x

a
n n( )

2
= +



 .

 11. What is meant by parity of the wave function?
 12. Does the wave function of a particle has definite parity for all potentials?
 13. Does the wave function of a particle depend on the coordinate system?
 14. A particle is confined to a box in the region 0 < x < a. Do the eigenfunctions have definite parity 

for such a particle?
 15. For a particle bound in a square-well potential, the width 2a and the potential V

0
 are such that 

2 0
2

2

1 2
m aV

�






/

 is 32. How many energy eigenstates are there? How many of them are of even par-

ity? What will be the sign of the coefficient of exponential function for these eigenstates?

reFerenceS

 1. S. Gasiorowicz, 1974. Quantum Physics, New York: John Wiley & Sons.
 2. P. M. Mathews and A. Venkatesh, A Text Book of Quantum Mechanics, New Delhi: Tata McGraw-

Hill Publishing Company Limited.
 3. B. H. Bransden and C. J. Joachain, 1989. Introduction to Quantum Mechanics. English Language 

Book Society. England: Longman.
 4. J. Greensite, Lecture Notes on Quantum Mechanics. http://www.physics.sfsu.edu/∼greensite/book.

pdf 
 5. Jimwiss, http://online.physics.uiuc.edu/courses/phys386/fall03/Lectures/tunnelling.pdf

M03_QUANTUMMECHANICS_3628_CH03.indd   106 5/20/2013   1:23:26 PM



Mathematical 
Preliminaries

4.1 LINEar VECtOr SPaCE
The concept of linear vector space is the backbone of quantum mechanics. The important feature of 
quantum mechanics is the principle of superposition. If y

1
 and y

2
 are two states of a system, then there 

exists a state corresponding to y  = c
1
y

1
 + c

2
y

2
, where c

1
 and c

2
 are complex numbers. It is the concept 

of linear vector space which expresses the idea of superposition. The simple concept of linear vector 
space is not suffi cient in quantum mechanics. The structure of quantum mechanics requires imposi-
tion of additional properties on linear vector space. More particularly, quantum mechanics requires 
the linear vector space to be Hilbert space. The simplest way of expressing the Hilbert space is that it 
is a linear vector space with an inner product.

First, let us review the basic ideas of linear vector space. Let us start with a collection of geometric 
vectors-quantities with direction and magnitude. The best examples are position vector, velocity vec-
tor, force vector and so on. If V1 and V2  are two vectors representing velocity, then we can defi ne a new 
vector c c1 2V V1 2+  which also represents another velocity vector V.

i.e., V V V= +c c1 21 2  (4.1)

Any vector V  can be expressed in terms of unit vectors i j k, and  as follo ws:

 V i j k= + +V V V1 2 3  (4.2)

For a given pair of vectors A B and , we can assign a number( , )A B . In vector algebra, the most useful 
way of assigning such a number is the usual dot product.

 (A, B) A B= ⋅ = AB cosq  (4.3)

Note that this expression is only a defi nition. One has to recognize the fact that there are many ways of 
assigning a number for any two vectors. However, within the vector algebra, the defi nition given in the 
Equation (4.3) is one of the most profi table defi nitions, especially in the context of classical physics 
and engineering. This defi nition satisfi es the following properties:

4
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A B B A

A B C A B A C

⋅ = ⋅
⋅ + = ⋅ + ⋅( )c c c c1 2 1 2

and A A A A A⋅ ≥ ⋅ = =0 0 0  with    imply   (4.4)

We have just summarized a few important properties of geometrical vectors in order to develop the 
basic concepts of linear vector space.

The next thing to do is to leave the fact that the vector is a quantity with magnitude and direction 
and concentrate on some abstract properties satisfied by the geometrical vectors. In particular, we have 
to focus on the ideas of closure property, linear combinations, basis, dimension, scalar product and so 
on, and we will extend these ideas to other mathematical objects.

In what follows, we present a brief introduction to linear vector space.
A linear vector space L is a collection of (or a set of) objects {f

1
,f

2
,f

3
,…} called vectors with an oper-

ation of addition, providing a rule to add two elements, and an operation of scalar multiplication, provid-
ing a rule to multiply a vector by scalar (real or complex number), which obey the following axioms:

 1. For every f
1 
and f

2
, which are elements of L, we can define an addition operator + such that

 f f f f f1 2 2 1+ = = +

  where f  should also be an element of L. This is called closure property.

 2. Addition is associative. f f f f f f1 2 3 1 2 3+ + = + +( ) ( )

 3. There exists an element 0 of L called a null vector such that

 f f f+ = + =0 0

 4. If c is a real or a complex number, then the multiplication of vectors by a scalar is distributive

   c c c( )f f f f1 2 1 2+ = +
 5. Multiplication of vectors by scalars is distributive with respect to scalars.

 (c
1
 + c

2
)f = c

1
f + c

2
f

 6. Associative property with respect to scalar multiplication: c
1
(c

2
f) = (c

1
c

2
) (f).

 7.  1∙f = f ∙1 = f
 8.  0 0 0⋅ = ⋅ =f f  (4.5)

It is very easy to see that all these axioms are satisfied by geometrical vectors V V V1 2 3, ,  … . In fact, 
these axioms have been formulated from the study of geometrical vectors. However, they are also 
satisfied by a number of other mathematical objects. This can be seen by the list of examples given 
below for such linear vector space.

Linear vector space of column vectors with two elements: 
The typical elements of this linear vector space are

 f f f1
1

1
2

2

2

=






=






=






a

b

a

b

a

b
, ....

where a, a
1
, a

2
,… and b, b

1
, b

2
,… are either real or complex numbers.

We can see that f f1 2
1

1

2

2

1 2

1 2

+ =






+






=
+
+







a

b

a

b

a a

b b
 which is again a column vector. So the closure  

property is satisfied.
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The null vector of this linear vector space is 
0

0







. It can be easily seen that

 
a

b

a

b

a

b







+






=






+






=






0

0

0

0

It can be multiplied by a real number like, say, 5.

 5
5

5

a

b

a

b







=






In fact, the verification of all these axioms by these sets of column vectors is trivial.

Linear vector space of continuous functions.

Let L = { f
1
(x), f

2
(x),…}

It is obvious to see that the sum of two continuous functions f
1
(x) and f

2
(x) is again a continuous function.

 f x f x( ) ( ) ( )= 1 2+ f x

If f(x) is the result of the addition, then f(x) is also a continuous function.
Again, it is very easy to verify that all the axioms of a linear vector space are satisfied by the set of 

continuous functions.

Linear vector space of polynomials of degree n
For the sake of clarity, we choose n = 2, that is, polynomials of degree 2. Then L is given by

 L a a x a x b b x b x= + + + +{ , , }1 2 3
2

1 2 3
2 …

It is obvious that the sum of two polynomial of degree 2 is again a polynomial of degree 2. Let f
1
 = a

1
 +  

a
2
x + a

3
x2 and f

2
 = b

1
 + b

2
x + b

3
x2. Then we have

( ) ( ) ( ) (a a x a x b b x b x a b a1 2 3
2

1

1 2 3
2

1 1 2

2

+ + + + +
=

+ + +
f f

� ��� ��� � ��� ��� bb x a b2 3 3
2

3

) ( )+ + x

f
� ������� �������

The null element corresponds to a = b = c = 0. It is easy to verify that all the axioms of a linear vector 
space are satisfied by the set of polynomials of degree 2.

Note: The term vector no longer refers to an object with magnitude and direction.

Any object which satisfies all the eight axioms of a linear vector space is called a vector.

Thus, a vector may be f f f=






= = + +
a

b
f x a bx cxor or etc( ) 2

Let us briefly explain the other concepts of a linear vector space. For a detailed discussion, the reader 
can refer to a book on linear algebra. The important concepts associated with a linear vector space are 
(i) linear combination (ii) linear independence (iii) basis (iv) dimension of a linear vector space and 
(v) complete set of linearly independent vectors.
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Linear Combination
If f

1
, f

2
,…f

n
 are elements of the linear vector space, then we can form a new vector f by

 f f f= +c c1 1 2 2... (4.6)

where c
1
, c

2
, c

3
,… are complex numbers.

This is called a linear combination of the vectors f
1
,f

2
,…f

n
.

Linear Independence
The vectors f

1
, f

2 
… are said to be linearly independent if it is not possible to find non-zero scalars c

1
, 

c
2
,… c

n
 such that the linear combination

 c c cn n1 1 2 2 0f f f+ + =....  (4.7)

The simplest example is the set { , , }i j k . Let us write the linear combination

 c c c1 2 3 0i j k+ + =

This is possible only if c
1
 = c

2
 = c

3
 = 0. Therefore, the vectors i j k, ,  are linearly independent.

Another example is {f
1
 = 1, f

2
 = x and f

3
 = x2}. The linear combination of these vectors is f  = a + bx +  

cx2. If we demand a + bx + cx2 = 0 for all x, the only possible solution is a = b = c = 0. Therefore, the 
set {a, x, x2} forms linearly independent vectors.

Basis
The linearly independent vectors e

1
, e

2
, e

3
,… e

n
 form a basis of a linear vector space provided any  

vector f  of the linear vector space can be expressed as a linear combination of the vectors e
1
, e

2
,… e

n
.

i.e., f = + + +c e c e c e c en n1 1 2 2 3 3 ...

For example 
0

1

1

0













and  are the basis vectors for the linear vector space of 2 × 1 column vectors. Any 

vectors 
a

b







 can be expressed as

 
a

b
a b







=






+






1

0

0

1

Dimension
A linear vector space L is said to be of dimension n if the maximum number of linearly independent 
vectors in that space is n.

Continuing the example of linear vector space of 2 × 1 column vectors, let us choose three vectors, 

say, 
1

0

0

1

2

3



















, and  for which we can find a linear combination with non-zero values for c
1
, c

2
 and 

c
3
 such that 

 c c c1 2 3

1

0

0

1

2

3
0







+






+






=
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i.e., one solution is c
1
 = c

2
 = c

3
 = 0; but there also exist solutions with c

1
 ≠ 0, c

2
 ≠ 0, c

3
 ≠ 0 (for instance,

( , , )c c c1 2 36 9 3= = = − .

Therefore, of the three vectors 
1

0

0

1

2

3



















, ,and  only two are independent.

Note that 
1

0

0

1













and  are not the only set of linearly independent vectors in L. We can form an 

infinite number of such pairs. For example, 
1

1

1

1





 −







and  are a pair of two linearly independent vec-

tors. Any vector 
a

b







 of L can be expressed as a linear combination of 
1

1

1

1





 −







and .

 
a

b
c c c a b c a b







=






+
−







= + = −1 2 1 2

1

1

1

1 2
 where  and ( )//2

However, of the four vectors 
1

0

0

1

1

1

1

1

















 −







, , ,and only two are independent. So the linear vector 

space of 2 × 1 column vectors is a two-dimensional linear vector space.

Complete Set
The set of n vectors {f

1
, f

2
,…f

n
} forms a complete set in a linear vector space L, provided they satisfy 

the following conditions:

 1. They are linearly independent.
 2. The dimension of the linear vector space is n.

This implies that any arbitrary vector y  of the linear vector space L can be expressed as linear com-
bination of f

1
, f

2
,…f

n
.

i.e., y f f f f= + + +c c c cn n1 1 2 2 3 3 ...  (4.8)

Now let us introduce additional structures to a linear vector space. Depending on the kind of additional 
structure imposed, a linear vector space can become a metric space, Banach space, Hilbert space and 
so on. From the point of view of quantum mechanics, we are interested in a particular kind of linear 
vector space called Hilbert space. This requires the introduction of new concept called scalar product.

4.1.1 Scalar Product
In the cases of geometrical vectors, we have already seen that a scalar product assigns a number for a 
given pair of vectors A B and  through the dot productA B⋅ = AB cosq . In the same way, the concept 
of scalar product has to be extended to other linear vector spaces. We have to bear in mind that the 
term vector is no longer restricted to quantities with direction and magnitude only. Let us introduce 
the following notation to denote a scalar product:

Instead of writing y f for the scalar product between two vectors y and f, we write it as (y,f). 
In general, the scalar product( , )y f  is a complex number. Mathematically, it is said that the scalar 
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product ( , )y f  maps the vectors y  and f  into a complex number. That is, it assigns a complex number 
for a given pair of vectors y  and f . This is shown in Fig. 4.1.

y

f

x

(y, f)

−ì

Im

Re

Complex plane

0

Linear vector space

Fig. 4.1 Scalar product as a mapping from a linear vector space to complex number

The scalar product between two elements y and f has to satisfy the following properties:

 
( , ) ( , )

( , ) ( , ) ( , )

y f f y
y f f y f y f

=
+ = +

*

c c c c1 1 2 2 1 1 1 2 2

 ( ( = 0y y y y y, ) , )≥ =0 0with implying  (4.9)

There are no special reasons to demand these particular conditions on a scalar product, except for the 
fact that in quantum mechanics, only this kind of scalar product is useful.

Example 4.1 Prove that (cf,y ) = c*(f,y ).

Solution: From the first and second conditions in the Equation (4.9), we have

 (cf,y ) = (y,cf)* = [c(y,f)]* = c*(f,y ).

So we have

 
( , ) ( , )

( , ) *( , )

f y f y
f y f y

c c

c c

=
=

 (4.10)

Norm of a Vector x
In analogy with geometrical vectors (where A A A⋅ = 2

), we define the norm of a vector y (we reiter-

ate again that y  is no longer an object with magnitude and direction) denoted by y  as

 y y y2 = ( , ) (4.11)

Orthogonality
Two vectors y and f are said to be orthogonal to each other if their scalar product

 ( ,y f ) = 0 (4.12)
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Scalar Product on Linear Vector Space of Continuous Functions
Let f ( )x  and y ( )x  be two functions which are continuous in the interval [a, b]. Then we can define 
the scalar product between f ( )x  and y ( )x  as

 ( , ) *( ) ( )f y f y= ∫ x x dx
a

b

Note that this definition satisfies all the conditions given in (4.9).

 

( , ) *( ) ( ) *( ) ( )
*

( , ) *

f y f y y f

y f

= =










=

∫∫ x x dx x x dx
a

b

a

b

Condition 11 is satisfied

( , ) *( )[ ( ) ( )]

*

y f f y f f

y

c c x c x c x dx

c

a

b

1 1 2 2 1 2 2

1

+ = +

=

∫

(( ) ( ) *( ) ( )

( , ) ( ,

x x dx c x x dx

c c
a

b

a

b

f y f

y f y f

1 2 2

1 1 2 2

+

= +

∫∫
) Conditionn 2 is satisfied

 Lastly,( , ) *( ) ( ) .y y y y= ∫ x x dx
a

b

Since the integrand y *(x)y (x) is always positive, if we demand (y,y ) to be zero, the only possibility 
is y (x) = 0 for all x in the interval [a, b].

Scalar Product on Linear Vector Space of Column Vectors

Let f  and y  be two column vectors given by f y=






=






a

b

c

d
, .and 

We can define the scalar product (f,y ) as (f,y)  =






= +f y† ) * * .= (a b**
c

d
a c b d

It is very easy to verify that this definition satisfies all the three axioms given (4.9).
Take the first condition:

 ( , ) * * ) ( * *)* ( * *)

*

( )* (f y y f y= (a c b d ac bd c d
a

b
+ = + =















 = = ,, )f * .

Let us check the second condition.

Let y f f=






=






=






a

b

e

f

e

f
, 1

1

1
2

2

2

and 
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Then c c c
e

f
c

e

f

c e c e

c f c f1 1 2 2 1
1

1
2

2

2

1 1 2 2

1 1 2 2

f f+ =






+






=
+
+







 

( , ) ( * *)

*( )

y f yc c a b
c e c e

c f c f

a c e c e

1 1 2 2
1 1 2 2

1 1 2 2

1 1 2 2

+ =
+
+







= + ++ +
+ = +

=

b c f c f

c c c c

c a b
e

f

*( )

( , ) ( , )

( * *)

1 1 2 2

1 1 2 2 1 1 2 2

1
1

y f y f y f y f

11
2

2

2

1 1 1 1 2 2 2 2







+






= + + +

c a b
e

f

c a e c b f c a e c b f

( * *)

* * * *

 ∴ + = +( , ) ( , ) ( , ).y f f y f y fc c c c1 1 2 2 1 1 2 2

Consider (y,y )

 
( , ) ( * *) * *y y y y= =







= +

= +

† a b
a

b
a a b b

a b
2 2

(y,y ) can be zero only if a = 0 and b = 0.

4.2 HILBErt SPaCE
A linear vector space with an inner product is called Hilbert space. Note that this is not the way the 
mathematicians define a Hilbert space. In mathematics, the Hilbert space is introduced in a complex 
way. First, metric space and Cauchy sequences in metric space are considered. Then, the Hilbert space 
is seen as completion (another mathematical concept) of metric space. This way of introducing Hilbert 
space is more meaningful in the context of infinite dimensional linear vector space. Interested reader 
can refer to a simple exposition of these concepts by C. I. Tan. 

In quantum mechanics, the stress is only on the inner product. Therefore, in quantum mechanics, 
both finite dimensional and infinite dimensional linear vector spaces with inner product are considered 
as Hilbert space.

4.2.1 Hilbert Spaces in Quantum Mechanics
Within non-relativistic quantum mechanics, broadly, we concentrate on the following three Hilbert 
spaces:

Hilbert Space of Bound State Wave Functions or Square Integrable Wave Functions
The Hilbert space L

2
(R, dx) is a collection of square integrable wave functions. It is a collection of 

wave functions which go to zero as x → ±∞. That is, if y ( )x is an element of L
2
(R, dx), then, we have

 y y( ) ( )x x x dx→ → ± < ∞∫0
2

as and∞
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The scalar product between two bound state wave functions f (x) and y (x) is defined as

 ( , ) *( ) ( )f y f y=
−∞

∞

x x dx∫  (4.13)

This can be extended to other higher dimensional configuration spaces. In three-dimensional space, 
the bound state wave function y (x, y, z) has to satisfy the boundary condition

 y (x, y, z) → 0 as x → ±∞, y → ±∞, z → ±∞

The scalar product between f y( ) ( )r r and is defined as

 ( , *( ) ( )f y f y) = ∫ r r rd3  (4.14)

In Cartesian coordinates,

 ( , ) *( , , ) ( , , )f y f y= ⋅ ∫∫∫ x y z x y z dxdydz
−∞

∞

−∞

∞

−∞

∞

 (4.15)

In spherical polar coordinates,

 ( , ) sin *( , , ) ( , , )f y q q q f q f y q f
pp

= ∫∫∫ r dr d d r r2

0

2

00

∞

 (4.16)

Hilbert Space of Square Summable Sequence l2

The elements of this Hilbert spaces are f  = (c
1
, c

2
, c

3
,…c

n
,…) such that c c cn1

2

2

2 2
1+ + + =� � . 

This sequences can be written as a column vector f =



















c

c

cn

1

2

�
.

The scalar product between f y=



















=



















c

c

c

b

b

bn n

1

2

1

2

� �
and is defined as

 ( , ) ( * * * *)f y f y= =



















† c c c c

b

b

b

n

n

1 2 3

1

2�
�

 = + + +c b c b c b c bn n1 1 2 2 3 3
* * * *�  (4.17)
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The simplest example is two-component spinor

 f y f y=






=






=






=
a

b

c

d

f

f

g

g
and or and 1

2

1

2

( )

( )

( )r

r

r

(( )
.

r







In the last case,

 

( , )

[ *( *( )]
( )

( )

f y f y=

=










∫

∫

† d

f f
g

g
d

3

1 2
1

2

3

r  

r) r
r

r
r

 = +∫ [ *( ) ( ) *( ) ( )]f g f g d1 1 2 2
3r r r r r

Another important Hilbert space in quantum mechanics is the Hilbert space of Dirac’s bra and ket  
vectors. This is the most widely used Hilbert space in quantum mechanics. We will discuss this Hilbert 
space in a later chapter.

4.3 OPEratOrS
It is an obvious fact that any operator acting on a mathematical object like wave function or a column 
vector produces a new function or column vector.

 A
op
y  = f

A
op

 is the operator acting on y  whose result is f .
In quantum mechanics, we require something more than the above equation for an operator. The 

Hilbert space operator A
op

 is defined by A
op
y = f, where both f and y should be the elements of the 

same Hilbert space.
For example, if A

op
 acts on y, which is an element of L

2
(R, dx) producing f, then f should also be 

an element of L
2
(R, dx).

i.e., A
op
y  = f

where f y( ) ( )x dx x dx
2 2

−∞

∞

−∞

∞

∫ ∫ and  should be finite.

The second requirement leads to the definition of domain of an operator. We will discuss this aspect 
of an operator briefly here.

Domain of a Hilbert Space Operator
Consider x

op
 operating on an element of L

2
(R, dx). x

op
 is defined as x

op
y = xy  (x).

From the definition of Hilbert space operator, we require y  (x) as well as x y  (x) be square integrable.

i.e., y y( ) ( )x dx x x dx
2 2 2< ∞ < ∞

−∞

∞

−∞

∞

∫ ∫and
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This implies that within L
2
(R, dx) only a subset or subspace will obey these two conditions.

For example, y ( )
( )

x
x a

=
+
1

2 2 1 2/
 is a square integrable function.

 y p( )
( )

x dx dx
x a

2

2 2
=

+
=∫∫

−∞

∞

−∞

∞

On the other hand, xy (x) is not a square integrable. This can be easily checked as follows: 

 x x dx x dx
x a

2 2 2

2 2
y ( ) =

+
−−
∫∫
∞

∞

∞

∞

 
1

2

2 2
2

2 2

2

−
+( ) = −

+

= − =
− − −
∫ ∫ ∫a

x a
dx dx a dx

x a

a
∞

∞

∞

∞

∞

∞

∞ ∞p

Obviously x
op

 is not defined for this function. The wave functions on which x
op

 can act form a subset 
of entire Hilbert space. The subspace for which x

op
 is defined is called the domain of x

op
. The domain 

of x
op

 is smaller than the entire Hilbert space L
2
(R, dx). 

So, for each operator A
op

, we have to specify the domain D(A) of the operator also.

D(A)

H

Fig. 4.2 H is Hilbert space and D(A) is domain of Aop. D(A) is a subspace of H

D(A) may be the entire space H itself or a proper subspace of H. Strictly speaking, a Hilbert space 
operator is a pair of (A

op
, D(A)). If B is another operator, the corresponding Hilbert space operator is 

(B
op

, D(B)). Two Hilbert space operators are the same if

 A
op
f  = B

op
f for all f e D(A) = D(B)

In this case, one writes A
op

 = B
op

.
For details, the reader can refer to a book on mathematical physics. (See Francois Gieres also.)

4.3.1 Linear Operator
An operator A

op
 is said to be a linear operator if it satisfies the following condition:

 A
op

 (c
1
f

1
 + c

2
f

2
) = c

1
A

op
f

1
 + c

2  
A

op
f

2
 (4.18)

This implies that  A
op

(cf) = cA
op
f (4.19)
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Example 4.2 Is A d
dxop =  a linear operator?

Solution: Let us check the condition (4.19).

 LHS RHS: ( ) ( ) : .A c d
dx

c c
d
dx

cA c
d
dxop opf f f f f= = =

Let us check the condition (4.18).

 

LHS

RHS

: ( ) ( )

:

A c c d
dx

c c c
d
dx

c
d
dx

c A

op

op

1 1 2 2 1 1 2 2 1
1

2
2

1

f f f f
f f

+ = + = +

ff f
f f

1 2 2 1
1

2
2+ = +

∴ =

c A c
d
dx

c
d
dxop

LHS RHS

Therefore, d
dx

 is a linear operator.

Example 4.3 Is the operator defined by A
op
y  = f 2 a linear operator?

Solution: Let us check the condition (4.19).

 LHS: A
op

(cf) = c2f 2 RHS: cA
op
f = cf 2.

Obviously, LHS ≠ RHS.
Therefore, A

op
 is not a linear operator.

4.3.2 adjoint of an Operator
For every linear operator, another operator called adjoint of A

op
, denoted by Aop

† , is defined by the 
relation

 ( , ) ( , ) ( , ) ( , )*f y f y f y y fA A A Aop op op op= =† †     or       (4.20)

where f and y  are elements of the Hilbert space H.
Note Aop

†  need not be the same as A
op

 itself. It is not even complex conjugate of the operator A
op

. 
One has to do a detailed calculation to find the adjoint of a given operator.

Example 4.4 Find the adjoint of A d
dxop =  where A

op
 acts on the elements of the Hilbert space of 

bound states.

Solution: Note that since f and y  are elements of the Hilbert space of bound states, the functions f (x) 
and y (x) are such that

 
f
y

( )

( )

x x

x x

→ → ±
→ → ±

0

0

as

as

∞
∞

M04_QUANTUMMECHANICS_3628_CH04.indd   118 5/20/2013   2:04:53 PM



Mathematical Preliminaries  119

 

( , ) ( ) ( )

[ ( ) ( )]
( )

( )

f y f y

f y f y

A x d
dx

x dx

x x
d x

dx
x dx

op =

= −

−

−
−

∫ *

*
*

∞

∞

∞
∞

∞∞

∞

∞

∞

∞ ∞ ∞ ∞

∫

∫= − − − −
−

f y f y f y* *
*

( ) ( ) ( ) ( )
d
dx

dx

But since f and y are bound state wave functions, the first two terms are zero.

 
∴ = − = −( )





= −( )



− −
∫ ∫( )

* *

,

f y f y f y

f y

, Aop

d
dx

dx d
dx

dx

d
dx

∞

∞

∞

∞

 = ( , )Aop
† f y

 ∴ = −A d
dxop

† .

In the case of Hilbert space of m × 1 column vectors, the linear vector space is a finite-dimensional 
linear vector space. In such cases, if A is the matrix operator, A† is the conventional Hermitian conju-
gate. This can be easily seen as follows:

Let y and f be

 y f=



















=



















a

a

a

b

b

bm m

1

2

1

2

� �

Let A be the m × m matrix operator. Then

 ( , )y f y fA Aop = †

where the dagger symbol indicates a Hermitian conjugate of the matrix. Let us recall that the scalar 
product between two column vectors y  and f  is y f†

 

( , )

( , ) ( ( )

( , ) ( , ).

y f y f
y f y) f y f y f
y f y f

A A

A A A A

A A

=
= = =

∴ =

†

† † † † † † †

† 

4.3.3 Self-adjoint Operator
A linear operator A is said to be self-adjoint or Hermitian if A† is the same as A itself.

Alternatively, a linear operator A is said to be self-adjoint if it satisfies the relation

 ( , ) ( , ) ( , ) ( , )f y f y f y y fA A A A= = ∗or  (4.21)
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Example 4.5 Prove that the momentum operator p i d dxop = − � / is a self-adjoint operator when it acts 
on the elements of Hilbert space of bound state wave functions.

Solution:

 

( , ) *( ) ( ) *( ) ( )

[

f y f y f yp x i d
dx

x dx i x d
dx

x dx

i

op = −( ) = −

= −

− −
∫ ∫� �
∞

∞

∞

∞

�� �

�

f y f y

f y f y

*( ) ( )]
*

[ *( ) ( ) *( ) ( )]

x x i
d
dx

dx

i

−∞
∞

−∞

∞

∞ ∞ ∞ ∞

+

= − − − − +

∫

ii
d
dx

dx�
f y*

−∞

∞

∫

Since f (x) and y (x) are bound state wave functions, both f (x) and y (x) go to zero as x → ±∞. 
Therefore, the first two terms are zero.

 
∴ = = −( )

=
− −
∫ ∫( )

*( )
( ) ( )

*

(

f y f y f y

f

, ( )p i
d x

dx
x dx i d

dx
x x

p

op

op

� �
∞

∞

∞

∞

,, )y

Therefore, p i d
dxop = − �  is a self-adjoint operator.

4.4 EIgENVaLuE EQuatION
For every linear operator A

op
, we can define an eigenvalue equation

 A
op
f

a
 = af

a
 (4.22)

Here a is called the eigenvalue and f
a
 is called the eigenvector or eigenfucnction corresponding to the 

eigenvalue a. Note that eigenvalues and the eigenfunctions for a given operator are not arbitrary. We 
have to solve the eigenvalue Equation (4.22) to get the eigenvalues and the corresponding eigenfunc-
tions for a given operator.

The list of all possible eigenvalues are called the eigenvalue spectrum of the operator A
op

. The 
eigenvalues may be discrete or continuous. If they are discrete, they can be enumerated as {a

1
, a

2
, 

a
3
,...}. For the same eigenvalue, if there exists more than one eigenfunction, such eigenvalue is called 

degenerate, and the corresponding eigenfunctions are called degenerate eigenfunctions.
Let us make the following observation from the point of view of quantum mechanics. Though the 

domain of the operator is restricted to a subspace of Hilbert space, its eigenfunctions need not be  
the elements of the Hilbert space. For instance, the eigenfunctions of the momentum operator are not the  
elements of Hilbert space of square integrable functions.

Eigenvalues and Eigenfunctions of a Self adjoint Operator
The eigenvalues of a self-adjoint operator are real, and their eigenfunctions are orthogonal to 
each other. We shall prove this result by considering a restricted case, namely distinct eigenvalues  
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and their eigenfunctions. However, this result is true, irrespective of the fact whether the eigenvalues 
are discrete or continuous and degenerate or non-degenerate.

Example 4.6 Prove that the eigenvalues of a self-adjoint operator are real and the eigenfunctions 
belonging to distinct eigenvalues are orthogonal to each other.

Solution: Let A
op

 be the self-adjoint operator. Therefore, A
op

 satisfies the relation

 (f, A
op
y ) = (A

op
f,y )

Let a
1
, a

2
, a

3
,…be the set of eigenvalues of the operator A

op
,
 
and the corresponding eigenfunctions are 

f
1
, f

2
,…f

n
.

 A
op
f

i
 = a

i
f

i
 and A

op
f

j
 = a

j
f

j

The definition of self-adjoint operator leads to the relation

 

( , ) ( , )

: ( , ) ( , ) ( , )

f f f f

f f f f f f
i op j op i j

i op j i j j j i j

A A

A a a

=

= =LHS

RHS :: ( , ) ( , ) *( , )A a aop i j i i j i i jf f f f f f= =

If the reader finds the above results difficult, he can work them in the Hilbert space L
2
(R, dx).

 

{( , ) * *

( , ) ( )* *

f f f f f f t

f f f f

i j j i j j T j i j

i i j i i j i

a a d a d

a a dT a

= =

= =

∫ ∫
∫ ff f t

f f f f

i j

j i j i i j

d

a a

* }

( , ) *( , )

∫
∴ =

 ( *)( , )a aj i i j− =f f 0  (4.23)

Case 1: i = j: The above equation becomes

 ( *)( , )a ai i i i− =f f 0

Since (f
i
, f

i
) cannot be zero (see (4.9)),

 a a a ai i i i− = =* *0 or

Therefore, a
i
 is a real number.

Case 2: a
i
 ≠ a

j

Then the Equation (4.23) becomes

 (a
j
 – a

i
) (f

i
, f

j
) = 0

Since (a
j
 – a

i
) cannot be zero, the only possibility is (f

i
, f

j
) = 0.

Orthonormal Eigenfunctions
In the previous example, note that (f

i
, f

i
) ≠ 0. This can be made to be equal to 1, by suitably re-defining 

f
i
. Therefore, without losing any generality, we can write

 (f
i
, f

i
) = 1 and (f

i
, f

j
) = 0 if i ≠ j
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Let us define Kronecker delta function d
ij
 as

 d ij

i j

i j
=

=
≠





1

0

if 

if 

Using Kronecker delta function, we can write

 (f
i
, f

j
) = d

ij
 (4.24)

The set of linearly independent functions f
i 
s is said to be orthonormal set if they satisfy (4.24). 

Therefore, the set of eigenfunctions of a self-adjoint operator forms an orthonormal set.

Complete Set
The eigenfunctions of a self-adjoint operator form a complete set. The meaning of this statement is 
that any arbitrary wave function in the Hilbert space can be expressed as a linear combination of this 
set of orthonormal functions. Let y  be any arbitrary wave function in the Hilbert space. Then we have 

 y f= ∑ cn n  (4.25)

This is very much similar to an arbitrary geometrical vector F i j k= + +F F F1 2 3 .  The component or coef-
ficient can be obtained by taking scalar product F with a basis vector. For instance, F

1
 can be obtained by

 F1 = ⋅i F

Going back to the Equation (4.25), now the coefficient c
m
 can be found to be

 cm m= ( , )f y  (4.26)

This can be easily checked.

 

( , ) ( , )

( , ) .

f y f f

f f d

m m n
n

n

n
n

m n n
n

mn

c

c c

=

= =

∑
∑ ∑

In the last summation cn
n

mn∑ d , only one term, namely the term with n = m, alone will survive. i.e.,

 c cn mn m
n

d =∑
 \ (f

m
, y ) = c

m

The formal mathematical treatment of Hilbert spaces concentrates considerably on the validity of the 
expansion of y  as a linear combination of the basis function as given in (4.25). Though we have used 
the analogy of geometrical vectors to explain the meaning of the Equation (4.25), in the case of infi-
nite dimensional linear vector space, things are not so simple, and the validity of the Equation (4.25) 
requires elaborate scrutiny.

4.5 DIraC DELta FuNCtION
There are many definitions of Dirac delta functions. Here we choose the simplest one, though this may 
not be mathematically satisfactory. 
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The Dirac delta function d (x) is defined as

 d ( )x
x

x
=

∞ =
≠





at 

at 

0

0 0
 (4.27)

such that d ( )x dx =
−∞

∞

∫ 1

In the above integral, it is enough to have the upper and lower limits on either side of x = 0 so that  
x = 0 is included within these limits.

i.e., d d
e

e

( ) ( )x dx x dx= =
−∞

∞

−
∫ ∫ 1

This delta function d (x) is said to be centred at x = 0. We can have a delta function centred at any point 
x = a. In such case, the Dirac delta function becomes

 d ( )x a
x a

x a
− =

∞ =
≠





at 

at 0
 (4.28)

such that d d
e

e

( ) ( )x a dx x a dx
a

a

− = − =
−

+

−∞

∞

∫∫ 1

We have a number of representations of Dirac delta function. One of the simplest representations of 
Dirac delta function is to consider ge(x, a) in the limit e → 0 where ge(x, a) is given by

 g x a
a x a

e
e e e

( , ) =
− < < + +






1
2
0  otherwise

ge(x, a)

a − e a + e x

1/2e

Fig. 4.3 ge (x, a) for different values of e

In the Fig. 4.3, ge (x, a) is sketched for different values of e. It is a rectangular box of width 2e  and 
height 1 2/ e  so that the area under the curve always is 1 for all values of e. However, as e goes to zero, 
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the width becomes smaller, and the height becomes larger. This is essentially the Dirac delta function, 
so we can define Dirac delta function as

 d
e e( ) ( , )x a g x a− =

→
Lt

0

Example 4.7 Prove that f x x a dx f a( ) ( ) ( ).d − =
−∞

∞

∫
Solution: This is one of the important properties of d (x - a). Consider the integral f x g x a dx( ) ( , )e

−∞

∞

∫ .

 f x g x a dx f x g x a dx f x dx
a

a

a

a

( ) ( , ) ( ) ( , ) ( )e e
e

e

e

e

e
= = ⋅

−

+

−

+

−∞

∞

∫∫∫  1
2

f (x)

a − e a + ea
(x)

Fig. 4.4

In the limit e → 0, the function f(x) does not change much from f(a) in the integration range a - e to  
a + e. Therefore, f(x) can be replaced by f(a) throughout this range of integration.

i.e., f x x a f x g x a dx
a

a

( ) ( ) ( ) ( , )d
e e

e

e

− =
→

−∞

∞

−

+

∫ ∫Lt
0

 = ⋅ = =
→

−

+

→
−

+

∫ ∫Lt Lt
e

e

e

e
e

e

e e0 0

1
2

1
2

f a dx f a dx f a
a

a

a

a

( ) ( ) ( )

 f x x a dx f a( ) ( ) ( ).d − =
−∞

∞

∫  (4.29)

In fact, this result itself can be taken as the defining property of Dirac delta function.

Example 4.8 By considering Fourier transform and its inverse, show that e dk x aik x a( ) ( ).−

−∞

∞

= −∫ 2p d
The Fourier transform and its inverse are given by
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 F k e f x dx f x e F k dkikx ikx( ) ( ) ( ) ( )= =
−∞

∞
−

−∞

∞

∫ ∫and 1
2p

Solution: Let us start with the inverse Fourier transform.

 

f a dke F k dke e f x dx dxika ika ikx( ) ( ) ( )= = =−

−∞

∞
−

−∞

∞

−∞

∞

∫ ∫ ∫1
2

1
2

1
2p p p

−−∞

∞
−

−∞

∞

−∞

∞

∫ ∫

∫











= −

dke f x

x a f x dx

ik x a( ) ( )

( ) ( )d

provided we make the following identification

 d
p

( ) ( )x a dkeik x a− = −

−∞

∞

∫1
2

 (4.30)

In three dimensions, we have d
p

( )
( )

( )r r kk r r− ′ = ⋅ − ′∫1
2 3

3e di  (4.31)

Example 4.9 Show that d d( ) ( ).− =x x

Solution: d
p

( )− = −

−∞

∞

∫x e dkikx1
2

On changing the variable k to ′k  = -k, we get

 d
p p

d( ) ( ) ( )
_

− = − ′ = ′ =′

∞

−∞
′

∞

∞

∫ ∫x e dk e dk xik x ik x1
2

1
2

 d d( ) ( )− =x x  (4.32) 

Example 4.10 Prove that Lt
e p

e
e

d
→ + +

=
0 2 2

1
x

x( )

Solution: One way of checking this result is as follows:

 As Ltx → ⋅ → ∞
→ +

0 1
0 2

,
e p

e
e

For other values of x, Lt Lt
e e

e
e

e
→ + → ++

= =
0 2 2 0 2

0
x x

 
Lt Lt
e ep

e
e p

e
e e

p
e
e
p

→ +
−∞

∞

→ +
−

−∞

∞

⋅
+

= ⋅ ⋅

= ⋅ ⋅ ⋅ =

∫ 0 2 2 0

11 1 1

1 1 1

x
dx xtan

.
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Alternative method: Consider the integral representation d
p

( )x e dkikx=
−∞

∞

∫1
2

 d
p p p

( )x e dk e dk e dkikx ikx ikx= = +
∞

−∞−∞

∞

∫∫∫1
2

1
2

1
2

0

0

 

The integral does not converge, so multiply each integrand by convergent factor. Multiply the inte-
grand in the first integral by eke (in this case, k varies from –∞ to 0, so e ek ke e= − ) and multiply the 
integrand in the second integral bye k− e . In the end, take e → 0 limit.

 

d
p pe

e e
e

( ) (x e e dk e e dk eikx k ikx k i= +








 =

→
−

∞

−∞
→∫∫Lt Lt

0
0

0

0

1
2

1
2

xx i k i x i k

i x i k

dk e dk

e
i x i

−

−∞

+
∞

→

−

∫ ∫+










=
−

e e

e

e

p e

) ( )

( )

(

0

0

0

1
2

Lt
)) ( )

( )





+
+

















−∞

+
∞0

0

e
i x i

i x i ke

e

Note as k → −∞, eikx eke → 0 and as k → ∞, eikx e-ke → 0. Therefore, we have

 
d

p e e

p
e
e

e

e

( )
( ) ( )

( )

x
i x i i x i

i
i x

=
−

−
+









=
+

=

→

→

Lt

Lt L

0

0 2 2

1
2

1 1

1
2

2 tt
e p

e
e→

⋅
+0 2 2

1
x

Properties of d function are listed below:

 1. d d( ) ( )ax
a

x= 1

 2. d d d( ) [ ( ) ( )]x a
a

x a x a2 2 1
2

− = + + −

 3. x x x′ = −d d( ) ( )

 4. d d( ( ))
( )

( )g x
g x

x x
i

i
i

=
′

−∑ 1

where x
i
 is the root of the equation g(x) = 0.

These properties are to be understood in the context of integration; that is, if the integrand in an 
integral contains the quantity in the LHS as a factor, it can be replaced by the corresponding quantity 
in RHS (which will not alter the value of the integral). This is illustrated in the following examples:

Example 4.11 Prove that d d( ) ( ).ax
a

x= 1

Solution: Consider the integral I f x ax dx=
−∞

∞

∫ ( ) ( ) .d

Put ax = y. The upper and lower limits of the integration depend on the sign of a.
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Case 1: a > 0; As x → -∞, y → -∞ and as x → ∞, y → ∞
Therefore, we have

 I f
y
a

y
dy
a a

f= 





=
−∞

∞

∫  d ( ) ( )1 0

But 1 0
a

f ( ) can be written as 

or 

1 0 1

1 0

a
f f x

a
x dx

f x ax dx f x
a

x dx a

( ) ( ) ( )

( ) ( ) ( ) ( )

=

= >

−∞

∞

−∞

∞

−∞

∞

∫

∫ ∫

d

d d

Since this equation is true for any arbitrary f(x), we can write

 d d( ) ( )ax
a

x a= >1 0

Case 2: a < 0; As x → ∞, y → −∞ and as x → −∞, y → ∞

 

I f x ax dx f
y
a

y
a

dy

a
f

y
a

y d

= = 





= − 





∞

−∞

−∞

∞

∫∫ ( ) ( ) ( )

( )

d d

d

 1

1 yy
a

f= −
−∞

∞

∫ 1 0( ).

− 1 0
a

f ( ) can be written as  − =
−

−∞

∞

∫1 0 1
a

f
a

f x x dx( ) ( ) ( ) .d

 ∴ = ⋅
−

<
−∞

∞

−∞

∞

∫ ∫f x ax dx f x
a

x dx a( ) ( ) ( ) ( )d d1 0

Note (-a) is a positive number. In fact, − =a a

 ∴ = <
−∞

∞

−∞

∞

∫ ∫f x ax dx f x
a

x dx a( ) ( ) ( ) ( ) .d d1 0

Since this equation is true for any arbitrary f(x), we can write

 d d( ) ( ) .ax
a

x a= <1 0

Combining the result of case 1 and case 2, we can write

 d d( ) ( ) .ax
a

ax a= 1 for all  (4.33)

Example 4.12 Prove that d d d( ) [ ( ) ( )].x a
a

x a x a2 2 1
2

− = + + −
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Solution: d (x2 − a2) has to be zero for all values of x, except x = -a and x = a.
This is schematically shown in the Fig. 4.5.

−a − e a − e a + e−a + e
−a 0 +a

Fig. 4.5

Since the integrand is zero in the ranges −∞ < x < −(a + e), (-a + e ) < x < (a − e) and (a + e < x < ∞),  
the integration in these ranges does not contribute to the integral.

 ∴ − = − + −
− −

− +

−
∫f x x a dx f x x a dx f x x a dx
a

a

a

a

( ) ( ) ( ) ( ) ( ) ( )d d d
e

e

e

2 2 2 2 2 2

++

−∞

∞

∫∫
e

In the range (-a - e < x < -a + e ), we have
as

 x → -a, d d[( )( )] [ ( )]x a x a a x a− + → − +2

But d d[ ( )] ( ).− + = +2 1
2

a x a
a

x a

 ∴ − = − +
− −

− +

− −

− +

∫∫ f x x a dx f x x a x a dx
a

a

a

a

( ) ( ) ( ) ( )( )d d
e

e

e

e
2 2  [ ]

 = − + = + =
− −

− +

− −

− +

∫ ∫f x a x a dx
a

f x x a dx
a

f
a

a

a

a

( ) [( ( )] ( ) ( )d d
e

e

e

e

2 1
2

1
2

(( ).−a

Similarly, in the range (a - e < x < a + e), we have

as x a→ d d[ ] [ ]( )( ) ( )x a x a a x a− + → −2

 ∴ − = − +
−

+

−

+

∫∫   [ ]f x x a dx f x x a x a dx
a

a

a

a

( ) ( ) ( ) ( )( )d d
e

e

e

e
2 2

 = − = − =
−

+

−

+

∫ ∫f x a x a dx f x
a

x a dx
f a

a
a

a

a

a

( ) ( ) ( ) ( )
( )d d

e

e

e

e

[ ]2 1
2 2

 ∴ − = − +
−∞

∞

∫ f x x a dx
a

f a f a( ) ( ) [ ( ) ( )]d 2 2 1
2

 = + + −
−∞

∞

∫ f x
a

x a x a dx( ) [ ( ) ( )]1
2
d d
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Since this equation is true for any arbitrary function f(x), we have

 d d d( ) [ ( ) ( )]x a
a

x a x a2 2 1
2

− = + + −

Example 4.13 Show that f x d
dx

x x
df
dx

x x( ) ( ) ( ).d d− ′ = − − ′

Solution: Consider the integral f x d
dx

x x( ) ( ).∫ − ′d

 f x d
dx

x x f x x x
df x

dx
x x dx( ) ( ) ( ) ( )

( )
( )d d d− ′ = − ′ − − ′ =

−∞

∞

−∞

∞

0
� ��� ��� ∫∫∫ ∫

−∞

∞

−∞

∞

− − ′df x
dx

x x dx
( )

( )d

Since the above result is true for any arbitrary function f x( ) we have,

 f x d
dx

x x
df
dx

x x( ) ( ) ( )d d− ′ = − − ′  (4.34)

ExErCISES

 1. Explain what is meant by linear independence.
 2. What is meant by scalar product in a linear vector space?
 3. Give the conditions to be satisfied for a scalar product.
 4. What are the differences between axioms for a scalar product defined in a linear vector space of 

geometrical vectors and the linear vector space in quantum mechanics?
 5. Explain what is meant by Hilbert space.
 6. Give the examples of Hilbert spaces that are used in non-relativistic quantum mechanics.
 7. Explain what is meant by domain of an operator in quantum mechanics.
 8. When are two operators said to be the same?
 9. Define a linear operator.
 10. Define the adjoint of an operator.
 11. Define the self-adjoint operator.
 12. Prove that ( ) .AB B A† † †=
 13. Define the Dirac delta function.

 14. Express 
3

5







 as a linear combination of basis vectors (i) e1

1

0
=







 and e2

0

1
=







 (ii) e1

1

1
=







 and 

e2

1

1
=

−






 (iii) e
i1

1
=







 and e
i2

1
=

−






 15. Which of the following operators is linear operator?

  (i) A
d
dxopf
f=

2

2
 (ii) A

d
dxopf
f= 





2

 16. Prove that xd ′(x) = -d (x),where the prime denotes differentiation with respect to x.

 17. Prove that d p
( ) sin .x x

xx
=

→∞
Lt  
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General Formalism

Quantum mechanics is radically different from classical physics. It cannot be derived from classical 
physics. The description of the state, the rules to calculate a physical quantity and the interpretations 
in quantum mechanics are absolutely different from classical physics. One has to start the study of 
quantum mechanics with the study of set of postulates, based on which the whole quantum mechan-
ics is developed. The validity of these postulates lies in the experimental verifi cation of the results 
deduced from these postulates. In this respect, quantum mechanics is an extraordinarily successful 
theory. Postulatory approach to a subject is not new to physics. All the branches of physics have to 
start with a set of few basic postulates. Special theory of relativity is the best example, which is based 
on two simple postulates. However, the postulates of quantum mechanics are not that simple like 
those of special theory of relativity. The number of postulates itself varies from author to author. The 
statement of each postulate is fairly complex. Each postulate has to be followed by an elaborate com-
mentary. Though the number of postulates varies from book to book, the sum total of all the postulates 
taken together should give the same amount of information. Here, we present seven postulates closely 
following Dicke and Wittki.

5.1 PoSTulaTES
Postulate P-1
The state of the system is described by a wave function y ( , ).r t

We have already seen the interpretation and properties of wave functions in Chapter 2. Here we 
briefl y recapitulate those ideas. The wave function y ( , )r t  does not represent fl uctuation in any physi-
cal property. The interpretation of the wave function y ( , )r t  was provided by Max Born. y ( , )r t  is 
interpreted as the probability amplitude, and | ( , )|y r t 2  is interpreted as the probability density for the 
position of a particle. The probability density r( , )r t  is given by

 r y y y( , ) *( , ) ( , ) ( , )r r r rt t t t= = 2
 (5.1)

The probability of fi nding the particle in a volume d3r  centred around r is given by 

 r y( , ) ( , )r r r rt d t d3 2 3=

5
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z

r

d3r

x

y

Fig. 5.1 Volume element d 3 r centred around r

We have already seen in Chapter 2 that the probability interpretation of y ( , )r t  leads to the condition 

 y y*( , ) ( , )r r rt t d3 1∫ =  (5.2)

Obviously, y ( , )r t  is a square integrable function. In the case of N particles system, the state of the 

system is described by y ( , , , ..., , ),r r r r1 2 3 N t  and it is again interpreted as the probability amplitude.

i.e., y y*( , ,..., , ) ( , , ..., , ) ...r r r r r r r r r1 2 1 2
3

1
3

3
3

N N Nt t d d d  (5.3)

represents the probability of finding a particle in a volume d3
1r  (centred around r1), another particle in 

a volume d3
2r  (centred in r2) … and so on.

Postulate P-2
If y 1( , )r t  and y 2 ( , )r t  represent the states of a system, then there also exists a physical state of a sys-

tem corresponding to y y y( , ) ( , ) ( , ).r r rt c t c t= +1 1 2 2

This is called principle of superposition. Some authors combine these postulates to give a single 
equivalent statement saying that to each system, we can associate a Hilbert space H, whose elements 
y (r, t) describe the state of the system. Let us recall that the essential features of the Hilbert space are 
(i) the closure property, that is, if y

1
 and y

2
 are elements of H, then c

1
y

1
 + c

2
y

2
 is also an element of 

H (ii) and the existence of the inner product (f, y ). The significance of the principle of superposition 
will be discussed later.

Postulate P-3
To each dynamical variable A, we associate a linear self-adjoint operator A

op
. The rule to assign a 

quantum mechanical operator is: If A is given by A( , )r p  in classical physics, then the corresponding 
quantum mechanical operator is Aop op op( , ),r p where r rop =  and pop ih= − ∇.

This rule to assign an operator requires more careful scrutiny. Let us make the following observations.

  1.  This rule of assigning an operator can become ambiguous. For instance, in classical physics, r p⋅  
and p r⋅  are the same. But in quantum mechanics, r ⋅ − ∇( )i�  and ( ).− ∇i� r  are different. In such 
circumstances, both combinations can be included. For instance, the operator corresponding to 
r p⋅  is given by 

 r p r p p r⋅ → ⋅ + ⋅1
2

( )op op op op  (5.4)

  2.  The operators A
op 

in quantum mechanics are Hilbert space operators; that is, in the operator state-
ment A

op
y = f, the wave functions y  and f  are elements of Hilbert space H.
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  3.  There are a number of dynamical variables which are unique to quantum mechanics. There is 
no classical analogue corresponding to them. For instance, spin angular momentum in quantum 
mechanics is different from that of classical physics. There is no classical analogue to quantum 
mechanical spin angular momentum. In such cases, the corresponding operators are obtained 
from other considerations.

In what follows, we give a list of some dynamical variables and their operators. 

Table 5.1 Some dynamical variables and their operators

Classical Quantum mechanical

1. Position r r rop = r ropy y=

2. Momentum p pop = − ∇i� pop iy y= − ∇�

3. Orbital angular momentum
L r p= ×

L r pop op op= × L iopy y= − × ∇�r

4. Kinetic energy T
p
m

=
2

2
T

mop
op=

p2

2
T

mopy y= ⋅ − ∇
1

2
2 2( )�

5. Potential energy V (r) V Vop = ( )r V Vopy y= ( )r

6. Hamiltonian H
p
m

= +
2

2
V ( )r H

p

m
Vop

op= +
2

2
( )r H

m
Vopy y y= − ∇ +

�2
2

2

How do we choose these operators? Dirac has given a condition called Dirac’s quantum condition, 
which provides a guidance to choose quantum mechanical operators. This condition necessitates to 
introduce the concept of commutation relation between two operators which play an important role in 
quantum mechanics.

The commutation relation between the operators A
op

 and B
op

 is defined as

 [ , ]A B A B B Aop op op op op op= −

Formally, we can equate the operator Copto the commutator [ , ]A Bop op  as follows. Consider the follow-
ing equation:

 A B B A Cop op op op opy y y− =

If this equation is true for an arbitrary function y , then, we can take

 [ , ]A B A B B A Cop op op op op op op= − =

Dirac’s Quantum Condition
The operators corresponding to the dynamical variables A and B are to be chosen such that the com-
mutator between A

op
 and B

op
 is i� times the Poisson bracket between them in classical mechanics.

i.e., [ , ] [ , ] .A B i Aop op PB= � B

where  [ , ]A B A
q p p

B
qPB

i i i i

A= ∂
∂

∂
∂

− ∂
∂

∂
∂







∑ B
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Dirac’s quantum condition itself can be taken as the second postulate. However, there are a number of 
restrictions on this condition. This condition provides only a guideline to choose the operator corre-
sponding to a dynamical variable. It does not tell what the operator is corresponding to the dynamical 
variable. In fact, there are many ways of choosing an operator for a dynamical variable. As an exam-
ple, consider the dynamical valuables x and p

x
. The Poisson bracket 

 
[ , ] . . .x p

px PB
x

x x

x x

y y

xx
x

p

p
x p

x
x
y

p

p
x
p

p

y
x= ∂

∂
∂
∂

− ∂
∂

∂
∂

+ ∂
∂

∂
∂

− ∂
∂

∂
∂

+ ∂
∂∂

∂
∂

− ∂
∂

∂
∂

=

z

p

p
x
p

p

z
x

z z

x.

1

The corresponding quantum mechanical operators x
op

 and (p
x
)

op
 have to be chosen such that 

 [x
op

, p
xop

] = i�

One choice is x
o p 

= x and p i
xxop = − ∂

∂
�

i.e., x
op
y (x) = xy (x) and p x i

x
xopy
y

( )
( )= − ∂

∂
�

Another choice is x i
pop = ∂

∂
�  and p

op 
= p

x

i.e., x p i
p

popf
f

(
(

)
)= ∂

∂
�  and p

op 
f ( p) = p

x 
f ( p)

Dirac’s quantum condition is true only when the dynamical variables are expressed in Cartesian 
coordinates.

Postulate P-4
Whenever a measurement of a dynamical variable A is made, the only possible experimental outcomes for 
any arbitrary state of the system are the eigenvalues of the corresponding quantum mechanical operator.

This postulate gives a prescription to determine the possible outcomes in an experiment. When an 
experiment is performed to determine the value of a dynamical variable, the possible outcomes are 
restricted to the list of eigenvalues of the corresponding operator. This result is true for any system. 
This implies that it is impossible to get any value other than a number in the list of the eigenvalues. 
Schematically, this postulate can be explained as follows:

Dynamical variable to be measured: A

System: any system

Quantum mechanical operator: Aop

Eigenvalue equation: A aop i i if f= .

Eigenvalue spectrum: { } { , , ,.........}a a a ai or 1 2 3

List of possible experimental outcomes: { }ai  or { , ,... }a a an1 2

Example 5.1 Z component of orbital angular momentum is measured for (i) a free electron and (ii) an 
electron bound to an atom. What are the possible experimental outcomes?

M05_QUANTUMMECHANICS_3628_CH05.indd   134 5/20/2013   1:48:28 PM



General Formalism  135

Solution: We have to use the postulates P-3 and P-4 to determine the possible experimental outcomes. 
We have to go through the following steps:

Step 1: Write down the expression for z component of angular momentum in classical physics.

 L xp ypz z y x= × = −( )r p

Step 2: Replace L
z
 by (L

z
)

op
.

 

( ) ( ) ( )L x p y p

i x
y

i y
x

z op op y op op x op= −

= − ∂
∂

+ ∂
∂

� �

Step 3: Find out the eigenvalues of this operator.

 L mzy y= l�

(Don’t worry about the specific form in which the eigenvalue equation is written.)
The calculations are done in Chapter 7. Here we quote only the end results. The list of the possible 

eigenvalues are

 { , , , , , }… � � � � � …− −3 2 0 1 2

Step 4: According to the postulate P-4, these are the only possible experimental outcomes. Therefore, 
whether it is free electron or an electron in an atom, the only possible values are from the list.

 { }ml�  or {... , , , , , , , ...}− − −3 2 0 2 3� � � � � � �

Postulate P-5
The eigenfunctions of a dynamical variable form a complete set.

i.e., A aop i i if f=

{f
1
, f

2
, f

3
,…f

n
,…} form a complete set. 

It is trivial to check this postulate in the case of finite-dimensional Hilbert space. If the number 
of eigenfunctions forms an infinite set, then, in general, it is not obvious that they form a complete 
set. For quantum mechanical systems, this postulate ensures the completeness of the infinite set of 
eigenfunctions.

The significance of the complete set of eigenfunctions lies in the fact that any arbitrary wave func-
tion y can be written as 

 y f= ∑ cn n

In general, the eigenvalues of an operator corresponding to a dynamical variable can be discrete and 
continuous. Let A be such dynamical variable, so the eigenvalue equation is 

 A ai i if f=  and A a a af f( ) ( )=
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The eigenvalues are given by

 { , , ...}a a a1 2 3  and { : }a a ∈�

In such cases, we can write

 y f f= + ∫∑ c c a a dan n ( ) ( )  (5.5)

The possibility that an arbitrary wave function y  can be written as (5.5) makes us to call this postulate 
as the expansion postulate.

When the eigenfunctions are orthonormal, we can write

 ( , )f f dn m mn=  and ( ( ), ( )) ( )f f da a a a′ = − ′

and c dn n= ∫f y t*  and c a a d( ) *( )= ∫f y t

Closure Relation for Complete Set of Functions
In the case of discrete eigenvalues, the complete set of eigenfunctions leads to the relation 

 f f dn
n

n
* ( ) ( )∑ ′ = − ′x x x x( )  (5.6)

In the case of continuous eigenvalues, the complete set of the eigenfunctions leads to the relation

 f f d*( , ) ( , ) ( )r r r ra ′ = − ′∫ a da  (5.7)

These two relations are known as closure relation.

Example 5.2 Obtain the closure relation for a complete set of eigenfunctions when the eigenvalues of 
a dynamical variable A are discrete.

Solution: Then, the eigenvalue equation is

 A
op
f

n 
= a

n
f

n
 (5.8)

The set of eigenvalues are {a
1
, a

2
,…a

n
,…} and the corresponding eigenfunctions are {f

1
,f

2
,f

3
,…f

n
,…}.

Since, by definition, the set of {f
i
} forms a complete set (no other eigenfunction linearly independ-

ent of these f
i
’s exists), we can write any arbitrary wave function y as 

 y f f y f= = ∑∑ cn n n n( , ) , since cn n= ( , )f y

 

∴ = ′ ′ ′ = ∗ ′∫∑ ∑
− ′

y f y f f f

d

( ) *( ) ( ) ( ) ( ) ( )

( )

r r

r r

n
n

n n n
n

dr r r r r3

� ��� ����
∫ ′ ′ y ( )r d 3r

Note that the structure of the above equation is very much similar to

 y d y( ) ( ) ( )r r r r r= − ′ ′ ′∫  d3

So, we get

 f f dn n
n

*( ) ( ) ( )′ = − ′∑ r r r r 
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Example 5.3 Obtain the closure relation for the complete set of eigenfunctions of A when the eigen-
values are continuous.

The eigenvalue equation is 

 Af (a) = af (a)

The orthogonality condition is 

 f f d*( ; ) ( ; )a a d a ar r r∫ ′ = − ′3 ( ).

From the definition of complete set of eigenfunctions (no other eigenfunction of A linearly independ-
ent of f ( , )a r exists), we can write any arbitrary wave function as

 y f( ) ( ) ( , )r r= ∫ c a a da

But c(a) is given by

 
c a a d

a a da d

( ) *( , ) ( )

( ) *( ; ) ( ) ( , )

= ′ ′ ′

∴ = ′ ′ ′

∫
∫
f y

y f y f

r r r

r r r r r

3

3  

 = ′ ′
−

∫ [ *( ; ) ( ; ) ] ( )
( )

f f y
d Ä

a a da dr r r r
r r

� ���� ����  3

Obviously, the above equation implies

 f f d*( , ) ( ; )a a dar r r r∫ ′ = − ′( )

Postulate P-6
The expectation value of a dynamical variable for an ensemble of identical systems, all of them being 
in the same state y, is given by

 〈 〉 =A
( , )

( , )

y y
y y

Aop  (5.9)

Generally, it is assumed that we are dealing with the normalized wave function, that is, we assume  
(y, y ) = 1. Therefore, 〈A〉 is given by 

 〈 〉 = = ∫A ( , ) *y y y yA A dop op
3r  (5.10)

The postulates P-5 and P-6 together have far-reaching significance in quantum mechanics. So let us 
combine these two postulates. For the sake of clarity, we restrict ourselves to discrete eigenvalues.

Let A be the dynamical variable and the eigenvalue equation 

 Af
i
 = a

i
f

i

Let us consider an arbitrary state of the system described by y. This need not be an eigenstate of A. 
Since y is arbitrary, from the postulate P-5, it can be written as

 y f= ∑ cn n
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Let us substitute this expression in Equation (5.8) to calculate the expectation value 〈A〉.

 

〈 〉 =

=




 ( )

∫

∑ ∑∫

A y y t

f f t

*

*

A d

c A c d

op

m m
m

op n n

 

=

=

∑∑∫
∑ ∫∑

c c A d

c c a d

m n m op
nm

n

m n
n

m n n
m

* *

* *

f f t

f f t

 

=

=

∫∑∑

∑∑

c c a d

c c a

m n n m n
nm

m n n mn
nm

* *

*

f f t

d

 = ∑∑ c c am n n mn
nm

* d

We have  n n n mn m mc a c ad =∑
 ∴〈 〉 = =∑ ∑A c c a c am m m

m
m m

m

* 2

Let us recall that y should be a normalized wave function

i.e., y y t* d =∫ 1

 y y t f f t*
*

d c c dm m
m

n n
n

∫ ∑ ∑∫=












 

=

=

∫∑∑

∑∑

c c d

c c

m n m n
nm

m n mn
nm

* *

*

f f t

d

 = = = =∑∑∑ ∑c c c c cm n mn m
mnm

m m
* *d 2

1

Now, we have two results

 cm
m

2
1=∑

and 〈 〉 = ∑A c am m

2
 (5.11)

In statistics, if x is a random variable and P(x
m
) is the probability of getting a value x

m
 for random 

variable x, then we have

 P xm
m

( ) =∑ 1

and 〈 〉 = ∑x P x xm m
m

( )  (5.12)
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As an example, consider the marks (the random variable x) obtained by 1000 students in a 
college. Let us say 60 students have 40 marks (x

1 
= 40), 240 have 50 (x

2 
= 50), 500 have 60 

(x
3 
= 60), 160 have 70 (x

4 
= 70) and 40 have 80 (x

5 
= 80). Probability of a student getting 40 

marks is 60/1000 i.e.,P x( ) .1
60

1000
=  Similarly, P x P x P x( ) , ( ) , ( )2 3 4

240
1000

500
1000

160
1000

= = =   

and P x( )5
40

1000
= . The average mark is given by

 Average mark Total mark
Number of students

=

 

= × + × + × + × + ×

= × + ×

60 40 240 50 500 60 160 70 70 80
1000

60
1000

40 240
1000

50 ++ × + × + ×

= + + +

500
1000

60 160
1000

70 70
1000

80

1 1 2 2 3 3P x x P x x P x x( ) ( ) ( ) PP x x P x x( ) ( )4 4 5 5+

Comparison of the set of the Equations (5.11) and (5.12) suggests that we can interpret cm

2
 as the 

probability, P(a
m
), of getting the result of measurement of A to be a

m
 when the system is in the state 

y f= ∑ cm m.

i.e., P a cm m( ) = 2

Note the statement of the postulate P-6. We have to first consider an ensemble or a collection of identi-
cal systems. All the systems are in the same state y. Still, when measurement of A is made on each 
system, we will get a statistical distribution of the experimental outcomes (the eigenvalues of A) a

1
, 

a
2
,…a

n
, instead of a single value. If one asks the question, what will be the result if the measurement 

of A be made on a single system, there is no definite answer. The answer provided by P-6 is that we can 
tell only the probability of getting the result of A to be a particular eigenvalue, say a

m
, is cm

2
. The term 

expectation value itself indicates the statistical character of quantum mechanics. There is a statistical 
distribution of experimental outcomes when the value of a dynamical variable A is determined for all 
the systems in spite of the fact that all the systems are identical in identical state. This clearly brings 
out the indeterministic character of quantum mechanics. We will comment on this aspect later in  
detail.

Result of Measurement of a When the System is in An Eigenstate
Suppose we consider a system in a particular eigenstate f

n
. Then the state function y is given by 

  y  = f
n

If we write y as y f= ∑ cm m , then all the coefficient c
m 

= 0, excepting c
n 
= 1.

 
i.e.,  

   

  
c

m n

m nm

mn

=
=
≠





=

1

0

d
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This implies that when a measurement of A is made on a system in state y  = f
n
, then the probability 

of getting the eigenvalue a
n
 is 1, whereas the probability of getting any other eigenvalue is zero.

 P(a
n
) = 1

and P(a
m
) = 0 if m ≠ n

Note that in probability theory P(a
n
) = 1 implies a definite and certain event. So, when we know the 

system to be in a particular eigenstate f
n
, we can boldly declare that the result of measurement of A 

will yield only a particular value, namely a
n
. Therefore, we have two kinds of states for a system. One 

is the eigenstate and the other is the superposition of eigenstates. The distinction between these two 
states with respect to measurement is summarized below.

Ensemble of Identical Systems, All of them Being in the Same State

 (a) State of each system: Superposition of eigenstates of A

 
Experimental outcomes of

measurement of A for all systems

a stati



sstical distributionof

eigenvalues of A





 (b) State of each system: Eigenstate of A

 
Experimental outcomes of

measurement of A for all systems

Identi



ccal outcomes for all the systems

No statistical distribution

;



Single System 

 (a) State of the system: Superposition of eigenstates of A

 
Experimental outcomes of

measurement of A for this system

Outcom



ee is uncertain or unpredictable

any eigenvalue is possible

;



 (b) State of the system: Eigenstate of A

 Experimental outcome of

measurement of A for this system

definit



ee outcome without uncert

only one particular eigenvalue is

, ;ainty

ppossible





Collapse of Wave Function
Superposition principle has more interesting physics than presented here. In fact, the superposition 
principle is something very special in quantum mechanics. Many of the philosophical problems in 
quantum physics centre around this principle.

A measurement of the dynamical variable A is made on a system which is in the state of superposition 

y f= ∑ ci i , and suppose one gets the value of A to be a
n
. What happens to the state of the system? The 

whole process of measurement is interpreted as follows in quantum mechanics: Before measurement, the 

system was in the state y f= ∑ ci i . The measurement process has changed the state from y f= ∑ ci i  to 
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a state y  = f
n
. This is termed as the collapse of the wave function y f= ∑ ci i  to the wave function y  = f

n
.  

The state of the system has now become y f= n immediately after measurement. So, the result of a 
measurement is the change of the state of the system from superposition to a particular eigenstate. If 
one measures A immediately, since the system is in y  = f

n
, the experimental value will be a

n
 again. 

Non-classical Character of Superposition States – Illustration Using Spin
To illustrate the quantum mechanical consequence of superposition of states, we consider the states of 
spin angular momentum. The reader who is not familiar with spin angular momentum can come back 
to this discussion after learning spin angular momentum in Chapter 10. The spin angular momentum 
operators are given by

 S S
i

i
Sx y z=







=
−





=
−







� � �
2

0 1

1 0 2

0

0 2

1 0

0 1

The eigenvalues of Sz are �/2 and −�/2,  and the corresponding eigenvectors are given by c ( )↑ =






1

0

and c ( )↓ =






0

1 .

 Sz c c( ) ( )↑ = ↑�
2

 and Sz c c( ) ( )↓ = − ↓�
2

The states c ( )↑  and c ( )↓  are called Z spin-up and Z spin-down states for the following reasons. 
Though it is not proper in quantum mechanics to visualize them as spinning objects, we can consider 
these states as follows:
c ( )↑  represents anticlockwise spin, so the spin angular momentum vector points up along Z axis. 

Similarly, c ( )↓  represents clockwise spin, so the spin angular momentum points down along the Z axis.

Example 5.4 Let the state of a spin system be given by y c c= ↑ + ↓0 8 0 6. ( ) . ( ). What is the prob-
ability of getting (i) spin up (ii) spin down along Z axis when Z component of the spin is measured?

Solution: Probability of getting spin up = 0.82 = 0.64
Probability of getting spin down = 0.62 = 0.36

Example 5.5 In the previous problem, on measuring Z component of spin, we get it to be �/2. What 
is the state of the system immediately after the measurement process? If, again, the Z component of 
the spin is measured, what will be the experimental outcome?

Solution: The measurement process changes the state y c c= ↑ + ↓0 8 0 6. ( ) . ( ) to the state c ( )↑ . So, 

immediately after the measurement, the state of the system is y = c ( )↑ .
When we measure the Z component of the spin again, the experimental outcome will be �

2
.

Example 5.6 Determine the average value of x component of spin when the system is in state (i) c ( )↑  
(ii) c ( )↓  

Solution: When the state of the system is in state c ( )↑

 〈 〉 = ↑ ↑ =












=S Sx xc c( ) ( ) ( )† 1 0
2

0 1

1 0

1

0
0�
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When the state of the system is in the state c ( )↓

 〈 〉 = ↓ ↓ =












=S Sx xc c( ) ( ) ( )† 0 1
2

0 1

1 0

0

1
0�

Example 5.7 Consider an ensemble of 1000 systems in which 640 systems are in state c ( )↑  and 360 
systems are in state c ( )↓ . Measure the X component of spin of each system. Determine the average 
value of X component of spin for the ensemble.

Solution:

 〈 〉 =
× 〈 〉 ↑ + × 〈 〉 ↓

=S
S S

x
x x640 360

1000
0

for state for statec c( ) ( )

Example 5.8 Determine the average value of X component of spin for an ensemble of 1000 systems 

in which all the systems are in the state y c c= ↑ + ↓0 8 0 6. ( ) . ( )

Solution:

 
y c c= ↑ + ↓ =







0 8 0 6
0 8

0 6
. ( ) . ( )

.

.

 〈 〉 = =












=S Sx xy y† ( . . )
.

.
.0 8 0 6

2

0 1

1 0

0 8

0 6
0 48� �

Now, let us ask the following question: What is the value of Z component of spin of a system whose state 
is y c c= ↑ + ↓0 8 0 6. ( ) . ( )? Can we claim that the the system in this state has a definite value for Z spin 
which is either �/2 or −�/2?. Examples 5.7 and 5.8 together rule out such a possibility. If we assume a 
system in state y c c= ↑ + ↓0. ( ) . ( )8 0 6  has definite spin, either �/2 or −�/2,  then in an ensemble 
of 1000 systems, roughly 640 systems will have Z spin up and roughly 360 systems will have Z spin 
down. The ensemble in 5.7 is such an ensemble for which 〈 〉Sx  is zero. In Example 5.8, we do not 
make any assumption of the value of Z component of spin, and in this case, 〈 〉Sx  = 0.48 �. The only 
difference between these two ensembles is that in the ensemble in Example 5.7, each system has a 
well-defined Z spin value, while in the ensemble in Example 5.8, there is no value for the Z spin for 
a system. The fact that they lead to different results for 〈 〉Sx  suggests these two ensembles are not 
equivalent. Therefore, it is not correct to claim that a system has definite eigenvalue either �/2 or 
−�/2,  for Z component of spin when the system is in the superposition state y c c= ↑ + ↓0 8 0 6. ( ) . ( ).  
However, after a measurement, the system has a definite value for Z spin.

So, we have three possible states in quantum mechanics. They are as follows:

 1. State c ( )↑  representing a system with Z component of spin �
2

. The classical analogue is an 
object spinning anticlockwise.

 2. State c ( )↓  representing system with Z component of spin − �
2

. The classical analogue is an 
object spinning clockwise.

 3. Superposition of eigenstates like y c c= ↑ + ↓0 8 0 6. ( ) . ( ). The Z component of the spin in this 
state is neither �/2 nor −�/2 (no other value is possible); it is undefined. There is no classical ana-
logue to this state of an object, so this state is not comprehensible with our experience in macro 
world.

Extending this discussion to a general system, we conclude that the value of a dynamical variable A is 
undefined when the system is in the state y f= ∑Cn n .
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Postulate P-7
The time evolution of the state of the system is determined by the Schrödinger equation

 i
t

t H top�
∂
∂

=y y( , ) ( , )r r

or i
t

t
m

t V t t� �∂
∂

= − ∇ +y y y( , ) ( , ) ( , ) ( , )r r r r
2

2

2
 (5.13)

We have already observed there is no way of deriving Schrodinger equation from any other fundamen-
tal principle. That is why this equation is given as a postulate of quantum mechanics.

All the postulates of quantum mechanics have been presented in full detail. In the rest of the chap-
ter, we will concentrate on some general aspects of quantum mechanics without going into the specific 
systems. These topics will complete the general formalism.

5.2 CommuTaTion rElaTion bETwEEn x and px

The operators for x and p
x
 are given by

 x
op 

= x and p i
xxop = − ∂

∂
�

For the sake of simplicity, let us drop the subscripts ‘op’.
For an arbitrary wave function y ,

 (xp
x
− p

x
x)y  = x (p

x
y ) − p

x
(xy )

 = − ∂
∂







− − ∂
∂( ) = − ∂

∂
+ ∂

∂
+ =x i

x
i

x
x i x

x
i x

x
i i� � � � � �

y y y y y y( ) .

Thus, we have

 (xp
x
 − p

x
x)y  = i�y

This equation is true for any arbitrary y. Therefore, we conclude 

 xp
x
 − p

x
x = i�

We have not proved Dirac quantum condition. The operators x and p
x
 have been chosen in such a way 

that it is consistent with Dirac quantum condition.

Example 5.9 Evaluate [x
i
, p

j
].

Solution: A more compact way of expressing the commutation relation among the three Cartesian 
coordinates x, y and z and the three corresponding momentum operators p

x
, p

y 
and p

z
 are to use the 

following notation:
Let us define x

1
, x

2
 and x

3
, p

1
, p

2
 and p

3
, as

 x
1
 = x, x

2
 = y, x

3
 = z

 p
1
 = p

x
, p

2 
= p

y
, p

3 
= p

z
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The operators p
x
, p

y
 and p

z 
can be written as 

 p i
xj

j

= − ∂
∂

�

Now we have

 

[ , ] [ ] ( )x p x p p x x i
x

i
x

xi j i j j i i
j j

iy y y y= − = − ∂
∂







− − ∂
∂








� �











= − ∂
∂

+ ∂
∂

+
∂
∂

=

i x
x

i x
x

i
x
x

i

i
j

i
j

i

j

ij

� � �

�

y y y

d y

i.e., [ , ]x p ii j ijy d y= �

Since this equation is true for any arbitrary y,

 [x
i
, p

j
] = i�d

ij

Example 5.10 Evaluate [x
i
, x

j
].

Solution: [x
i
, x

j
]y = [x

i 
x

j
− x

j 
x

i
] y  = 0

Since this equation is true for any arbitrary y, we write

 [x
i
, x

j
] = 0

Similarly, it can be easily shown that [ p
i
, p

j
] = 0.

We can summarize all the above commutation as follows:

 [x
i
, x

j
] = [ p

i
, p

j
] = 0 and [x

i
, p

j
] = i�d

ij
 (5.14)

This means that in any expression involving x, y and z and p
x
, p

y
 and p

z
, the ordering between x and p

x
, 

y and p
y
 and z and p

z
 have to be maintained as it is. Otherwise, other quantities can be flipped around. 

For instance, consider xp
y 
p

z 
y. Within this expression, the order p

y
y alone has to be maintained.

i.e., xp
y  
p

z  
y = xp

z  
p

y  
y = p

y  
xp

z  
y = p

y  
p

x 
xy = p

z  
p

y  
xy = p

z  
xp

y  
y

Example 5.11 Prove that

  1. [A, BC] = [A, B]C + B[A, C]

  2. [AB, C] = A[B, C] + [A, C]B

Solution:

  1. [A, BC ] = ABC − BCA = ABC − BAC + BAC − BCA
  = (AB − BA)C + B(AC − CA)

  = [A, B]C + B [A, C] (5.15)

  2. [A, BC ] = ABC − CAB

  = ABC − ACB + ACB − CAB

  = A (BC − CB) + (AC − CA)B

  = A [B, C] + [A, C]B (5.16)
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Example 5.12 Prove that [L
x
, L

y
] = i�L

z

Solution: The components L
x
, L

y
 and L

z
 are given by 

 L
x
 = yp

z 
− zp

y
, L

y
 = zp

x
 − xp

z
, L

z
 = xp

y
 − yp

x

 [L
x
, L

y
] = L

x
L

y
 − L

y 
L

x
 = (yp

z
 − zp

y
) (zp

x
 − xp

z
) − (zp

x
 − xp

z
) (yp

z
 − zp

y
)

  = yp
z  
zp

x
 − yp

z  
xp

z
 − zp

y  
zp

x
 + zp

y  
xp

z
 − zp

x  
yp

z
 + zp

x  
zp

y
 + xp

z  
yp

z
 − xp

z
zp

y

  = xp
y
 (zp

z
 − p

z
z) − yp

x
 (zp

z
 − p

z
z)

  = i� [xp
y
 − yp

x
] = i�L

z
 (5.17)

We have used the fact that in the second, third, sixth and seventh terms, the order of four quantities is 
immaterial, and these terms cancel among themselves.

Example 5.13 Evaluate [ f(x), p
x
].

Solution: Consider [ f
 
(x), p

x
] y

 [ f (x), p
x
]y  = [ f(x) p

x 
− p

x 
f(x)]y

 

= − ∂
∂







− − ∂
∂( )

= − ∂
∂

+ ∂
∂

+

f x i
x

i
x

f x

i f x
x

i
f
x

i f

( ) ( ( ) )

( )

� �

� � �

y y

y y (( )x
x

i
f
x

∂
∂

= ∂
∂

y

y�

i.e., [ ( ), ] .f x p i
f
xx y y= ∂

∂
�

Since this equation is true for any arbitrary y,

 [ ( ), ]f x p i
f
xx = ∂

∂
�  (5.18)

5.3 ComPaTiblE obSErvablES
Two dynamical observables A and B are said to be compatible if there exists a complete set of func-
tions which are eigenfunctions of both A and B. 

If {f
i
} are complete set of functions such that 

 Af
i
 = a

i
f

i
 and Bf

i
 = b

i
f

i

then A and B are said to be compatible.

Example 5.14 Prove that if A and B are compatible observables, then their operators commute.

Solution: We have to first note that in order to prove [A, B] = 0, we have to prove (AB − BA) y  = 0, 
where y  is an arbitrary function.
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Since A and B are compatible observables,

 Af
i 
= a

i
f

i
, Bf

i 
= b

i
f

i

Let us consider an arbitrary wave function y f= ∑ cn n

 

AB c AB c Ab c a b

BA c BA c Ba c a b

n n n n n n n n
n

n

n n n n n n n n n

y f f f

y f f f

= = =

= = =

∑ ∑∑
∑∑∑∑

n

 ∴ − = − =∑ ∑( )AB BA c a b c a bn n n n n n n ny f f 0

Since this equation is true for an arbitrary y,

 AB − BA = 0 or AB = BA.

Example 5.15 Prove that if A and B are two commuting operators, then they have a set of common 
eigenfunctions.

Solution: This is proved by considering two cases, namely in the first case, the eigenfunctions of one 
of the operators, say A, is non-degenerate and in the second case, it is relaxing this condition.
Case 1: The eigenvalues of A are non-degenerate.

The eigenvalue equation for A is 

 Af
i
 = a

i
f

i

 BAf
i
 = Ba

i
f

i 
= a

i
Bf

i

But since BA = AB, we have BAf
i 
= ABf

i

  \ ABf
i
 = a

i
Bf

i

i.e., Bf
i
 is an eigenfunction of a

i
. This implies that Bf

i
 and f

i 
have to be the same or at most they can 

differ by a multiplicative constant.

i.e., Bf
i 
= b

i
f

i

\f
i
 is common eigenfunction of both A and B.

Case 2: The eigenvalues of A are degenerate.
Consider the eigenvalue a, which is a-fold degenerate, that is, there exists a linearly independent 

eigenfunctions of A, corresponding to the same eigenvalue a.

i.e., we have  Af
j
 = af

j
 j = 1, 2, 3,… a

Note that any linear combination y f= ∑ d j j is also an eigenfunction of A corresponding to the eigen-
value a.

 
A A d d A d a

a d a

j j j j
j

j j

j j

y f f f

f y

= = =

= =

∑∑ ∑

∑

M05_QUANTUMMECHANICS_3628_CH05.indd   146 5/20/2013   1:48:59 PM



General Formalism  147

This implies that to prove the existence of a set of common eigenfunctions of A and B, we have to 
prove that it is possible to find a linear combination of f

i 
s, which is also an eigenfunction of B; in other 

words we have to find a set of r
1
, r

2
, … such that

 By  = by

where y f f f f= = + +∑ r r r rn n n n1 1 2 2 ...  (5.19)

Consider BAf

 BAf
j 
= Baf

j 
= aBf

j

But BAf
j 
= ABf

j

  \ A(Bf
j
) = a(Bf

j
)

i.e., Bf
j
 is also an eigenfunction of A with eigenvalue a. This implies that Bf

j
 should be a linear combi-

nation f
j
s, since, as we have mentioned earlier, any linear combination of f

j 
s is also an eigenfunction 

of A with eigenvalue a. Therefore, we can write

 B cj jk kf f= ∑  (5.20)

Let us write the eigenvalue equation for B as 

 By  = by

To make this discussion more transparent, let us assume a is three-fold degenerate eigenvalue, that 
is, there are three linearly independent eigenfunctions f

1
, f

2
 and f

3
, which have the same eigenvalue

i.e., Af
1 
= af

1
; Af

2 
= af

2
; Af

3 
= af

3

The meaning of (5.20) is 

 Bf
1 
= c

11
f

1 
+ c

12
f

2 
+ c

13
f

3

 Bf
2 
= c

21
f

1 
+ c

22
f

2 
+ c

23
f

3

 Bf
3 
= c

31
f

1 
+ c

32
f

2 
+ c

33
f

3 
(5.21)

The eigenvalue equation of B is (use (5.19))

 By  = by = b[r
1
f

1 
+ r

2
f

2 
+ r

3
f

3
] (5.22)

But By  = B[r
1
f

1 
+ r

2
f

2 
+ r

3
f

3
]

  = r
1
Bf

1 
+ r

2
Bf

2 
+ r

3
Bf

3

  = r
1
c

11
f

1 
+ r

1
c

12
f

2 
+ r

1
c

13
f

3 
+ r

2
c

21
f

1 
+ r

2
c

22
f

2 
+ r

2
c

23
f

3 
+ r

3
c

31
f

1 
+ r

3
c

32
f

2 
+ r

3
c

33
f

3

  = [r
1
c

11 
+ r

2
c

21 
+ r

3
c

31
]f

1 
+ [r

1
c

12 
+ r

2
c

22 
+ r

3
c

32
]f

2 
+ [r

1
c

13 
+ r

2
c

23 
+ r

3
c

33
]f

3 
(5.23)

From Equations (5.22) and (5.23), we get 

 r
1
b = r

1
c

11 
+ r

2
c

21 
+ r

3
c

31

 r
2
b = r

2
c

21 
+ r

2
c

22 
+ r

3
c

32

 r
3
b = r

3
c

13 
+ r

2
c

23 
+ r

3
c

33
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 b r r r r r r

c c c

c c c

c c c

( ) ( )1 2 3 1 2 3

11 21 31

12 22 32

13 23 33

=














or taking transpose

 

c11 12 13

21 22 23

31 32 33

1

2

3

1

2

3

c c

c c c

c c c

r

r

r

b

r

r

r



























 =













  (5.24)

This is the standard eigenvalue equation. By solving these equations, we will get a set of eigenvalues b 
as well as the corresponding eigenvectors. In our case, we will get the eigenvalues b

1
, b

2
 and b

3
. Thus, 

we can find a set of values for r
1
, r

2
,… satisfying the Equation (5.18) that is, we have 

 1. Ay
1 
= ay

1
, y

1 
= r

11
f

1 
+ r

12
f

2 
+ r

13
f

3

  By
1 
= b

1
y

1
 (r

11
, r

12
, r

13
) is the first eigenvector of Equation (5.24)

 2. Ay
2 
= ay

2
, y

2 
= r

21
f

1 
+ r

22
f

2 
+ r

23
f

3

  By
2 
= b

2
y

2
 (r

21
, r

22
, r

23
) is the second eigenvector of Equation (5.24)

 3. Ay
3 
= ay

3
, y

3 
= r

31
f

1 
+ r

32
f

2
 + r

33
f

3

  By
3 
= b

3
y

3
 (r

31
, r

32
, r

33
) is the third eigenvector of Equation (5.24).

Though we have explicitly demonstrated the existence of common eigenfunctions of A and B in a 
particular case where the eigenvalue a is three-fold degenerate, it is true for any arbitrary m-fold 
degenerate eigenvalue a.

5.4 unCErTainTy PrinCiPlE
We have already discussed the Heisenberg uncertainty principle in Chapter 1. Here, we establish the 
uncertainty principle in a more rigorous way. Let us consider an ensemble of identical systems in 
which all the systems are in the same state y.

Let A and B be two dynamical variables such that their commutation relation is given by

 [A
op

, B
op

] = i�C
op

The uncertainty ∆ A and the uncertainty ∆ B are defined through the relations

 (∆ A)2 = 〈(A
op 

– 〈A〉)2〉 (5.25)

and (∆ B)2 = 〈(B
op 

– 〈B 〉)2〉 (5.26)

For a system in the state y, 〈A〉 and 〈B〉 are given by

 〈 〉 = =∫ ∫A A d B B dop opy y t y y t* * .    and   

Let us define U
op

 and V
op

 as 

 U
op 

= A
op 

− 〈A〉 and V
op 

= B
op 

− 〈B〉
Then, the uncertainty relations (5.25) and (5.26) imply

 
( ) *

( ) *

∆

∆

A U d

B V d

op

op

2 2

2 2

=

=

∫
∫
y y t

y y t
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Note that since A and B are dynamical variables, A
op

 and B
op

 are Hermitian operators, which in turn 
imply that U

op
 and V

op
 are Hermitian operators. Let us recall that for any Hermitian operator P, we have 

 (y, Pf) = (Py, f)

or y f t y f t* ( ) *P d P d= ∫∫  (5.27)

Let us define a new function f as

  f = (U
op

 + ilV
op

)y

where l is a real number. Then, the integral I is defined as 

 I d= ∫f f t*

Since I can only be a function of free parameters in f, we can take I to be a function of l. i.e.,

 I I d= = ∫( ) *l f f t

Since the integrand f *f is always positive, I(l) has to be positive number.

i.e., I(l) ≥ 0

The equality I(l) = 0 implies f = 0. i.e.,

 (U
op

 + ilV
op

)y = 0 (5.28)

Let us evaluate I(l).

 

I d

U i V U i V d

U i V

op op op op

op

( ) *

[( ) ]*[( ) ]

[( *

l f f t

l y l y t

y l

=

= + +

= −

∫
∫

) ( oop op opU i V dy y l y t) ) ( )*] [( ]∫ +

 
= + +

−

∫ ∫[ ]* ( ) *

( ) * ( ) *

U U d V V d i

U V d V

op op op op

op op op

y y t l y y t l

y y t y

2

  (( )U dopy t∫





 (5.29)

Since U
op

 is an Hermitian operator, making use of (5.27), we can write the first term in (5.28) as 

 
[ ]*( ) * [ ]

*

U U d U U d

U d

op op op op

op

y y t y y t

y y t

∫ ∫
∫

=

= 2

The other integrals in (5.28) can be rewritten in the same way.

 
( ) * *

( ) * *

U V d U V d

V U d V U d

op op op op

op op op op

y y t y y t

y y t y y t

∫ ∫
∫ ∫

=

=
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and ( ) *( ) *V V d V dop op opy y t y y t∫ ∫= 2

Writing all these terms together in (5.29), we get

 
I U d V d i U V V U d

A

op op op op op op( ) * *( )

( )

l y y t l y y t l y y t= + + −

= ∆
∫ ∫ ∫2 2 2 2

2 ++ ∆ +l l2 2( ) [ , ]B i U Vop op〈 〉

We have, [U
op

, V
op

] = U
op

V
op 

− V
op

U
op

  = (A
op 

− 〈A〉) (B
op 

− 〈B〉) − (B
op 

− 〈B〉) (A
op 

− 〈A〉)

  = A
op

B
op 

− A
op

〈B〉 − 〈A〉B
op

 + 〈A〉〈B〉 − B
op

A
op

 + B
op

〈A〉 + 〈B〉A
op 

− 〈A〉 〈B〉

Since 〈A〉 and 〈B〉 are numbers, A
op

〈B〉 = 〈B〉A
op

, 〈A〉B
op 

= B
op

〈A〉 and 〈A〉〈B〉 = 〈B〉 〈A〉.
Therefore, [U

op
, V

op
] is given by

 [U
op

,V
op

] = [A
op

B
op − B

op
A

op
] = [A

op
, B

op
]

So, I(l) is given by

 I(l) = (∆ A)2 + l2(∆ B)2 + il〈[A
op

, B
op

]〉

Since I(l) is always positive, the minimum value of I(l) has also to be always positive for any y. The 
general form may look like the curves as shown in Fig. 5.2.

I(l) I(l)

lmin lminl l
or

Fig. 5.2 Sketch of i (l)

Let us, therefore, minimize I(l). The l
min

 is obtained by solving d
d

I
l
l( ) .= 0

 d
d

I B i A Bop opl
l l( ) ( ) [ , ]= + 〈 〉 =2 02∆

or lmin

[ , ]

( )
= −

〈 〉i A B

B
op op

2 2∆

The minimum value of I(l) has to be greater than or equal to zero as shown in Fig. 5.2.

 min I(l) ≥ 0 (5.30)
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i.e., ( )
[ , ]

( )
( )

[ , ]

( )
∆ ∆ ∆ ∆A

i A B

B
B i

i A B

B
op op op op2

2

2

2
22 2

+
−








+
−〈 〉 〈 〉








≥〈 〉[ , ]A Bop op 0

 ( )
[ , ]

( )
( )

[ , ]

( )
∆ ∆ ∆ ∆A

A B

B
B

A B

B
op op op op2

2

4
2

2

24 2
0−

〈 〉
+

〈 〉
≥

Multiplying throughout by (∆ B)2, we have

 
( ) ( ) [ , ] [ , ]

( ) ( ) [

∆ ∆

∆ ∆

A B A B A B

A B

op op op op
2 2 2 2

2 2

1
4

1
2

0

1
4

− 〈 〉 + 〈 〉 ≥

≥ − 〈 AA Bop op, ]〉2

This is the inequality for the product of uncertainties ∆A  and ∆B. In particular, the uncertainty rela-
tion for the position x and momentum p is given by

 ( ) ( ) [ , ]∆ ∆x p x pop op
2 2 21

4
≥ − 〈 〉

Now [ , ]x p iop op = �

Therefore,

 
〈 〉 = = =

∴〈 〉 =
∫ ∫[ , ] *[ , ] *

[ , ] ( )

x p x p d i d i

x p i

op op op op

op op

y y t y y t� �

�2 2 == −�2

Therefore, we have

 ( ) ( )∆ ∆x px
2 2

2

4
≥ �

or ∆ ∆x p ≥ �
2

 (5.31)

Example 5.16 Show that ( )∆ = − 〈 〉( ) = 〈 〉 − 〈 〉A A A A Aop
2

2
2 2

Solution:

 

( ) *( )

*[ ]

∆ = − 〈 〉

= − 〈 〉 − 〈 〉 + 〈 〉

= 〈

∫
∫

A A A d

A A A A A A d

A

op

op op op

2 2

2 2

2

y y t

y y t

〉〉 − 〈 〉A 2

Eigenstate and uncertainty
Note that the value of the uncertainty of a dynamical variable depends on the state of the system. 
There are a group of states for which the uncertainty of a dynamical variable A is zero. These are the 
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eigenstates of A. Next, consider the other type of states. Let the state of all the systems in an ensemble 

be y f= ∑Cn n , where fn  is an eigenstate of A with eigenvalue an. If one measures the dynamical 

variable A for each system in this ensemble, then the experimental outcomes will be a statistical dis-

tribution of eigenvalues of A, and hence the uncertainty ∆A for this state will be non-zero. In fact, it 
is very easy to calculate the uncertainty ∆A.

 ( )∆ = − ( )∑ ∑A C a C an n n n
2

2
2

2 2

We can use this expression for systems in eigenstates as well since an eigenstate is a special case of 
superposition of states. If the states of all the systems in an ensemble are described by a particular 

eigenstate, say fm,( ) ( ) ( )∆ = 〈 〉 − 〈 〉 = − =A A A a am m
2 2 2 2 2 0 . So we have

 ∆ ≠A 0  for superposition of eigenstates of A

 ∆ =A 0  for eigenstate of A

uncertainties and Experimental Errors
The uncertainties defined through the relations (5.25) or (5.26) are different from the experimental 
errors. The uncertainty defined through the relations (5.25) or (5.26) have nothing to do with details 
of instruments like least count. They arise due to intrinsic probabilistic interpretation of quantum 
mechanics. In principle, the uncertainty may even be greater than the least count of the instrument, so 
the uncertainty may be detected. (Least count may be 0.5 Å  while the uncertainty may be 2 Å ). There 
are many sources of experimental errors. Normally, the experimental errors will be large enough to 
wash out these uncertainties. The continuous improvements in technology will reduce the errors. 
However, the uncertainties can never be eliminated (see L. Ballentine).

Energy–Time uncertainty relation
The above derivation of the uncertainty cannot be used to obtain the energy–time uncertainty relation 
∆ ∆E t h∼ . Mathematically, we can have the commutation relation [ , ] [ , ]E t i t t i= ∂ ∂ =� �/  leading to the 
uncertainty relation ∆ ∆ ≥E t �/2. However, this argument is physically invalid. The reason is that time 
t is not a dynamical variable like position or momentum. It is a parameter like mass or charge in the 
theory. So, no operator can be associated with time. In fact, there can be no statistical spread for time 
similar to position or momentum. If one measures the energy of a system, we will get a statistical spread 
∆E in energy, depending on the time taken to measure the energy. The time taken to measure energy of 
the system is denoted by ∆t . The energy–time relation ∆ ∆E t h∼  will be derived later in Chapter 14. 
Note that the uncertainty in energy E is similar to the uncertainties in position or momentum. This arises 
from the fact that we can have a state that is a superposition of the energy eigenstates.(See Chapter 2.)

5.4.1 wave Function Corresponding to minimum uncertainty Product
It is obvious from the inequality given in (5.31) that the minimum value of the product ∆ x∆p is �

2
. i.e.,

 ∆ ∆x p = �
2
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The inequality (5.31) has become an equality.
Tracking back the inequality from (5.31), we observe that for ∆ ∆x p = �

2
,  we should have  

min I(l) = 0.

 min I(l) = (U
op 

+ il
min

V
op

)y = 0 (5.32)

But

 lmin

[ , ]

( ) ( ) ( )
=

− 〈 〉
∆

= −
∆

=
∆

i x p

p
ii
p p

op op

2 2 22 2 2
� �

Therefore, (5.32) implies

 x x i
p

p pop op− 〈 〉 + − 〈 〉( )





=�
2

02( )∆ y

Substituting−i d
dx

�  for p
op

, we get

 x x i
p

i d
dx

p x− 〈 〉 + − − 〈 〉











=� �
( )

( )
2

0
2∆

y

 � �2

2 22 2( ) ( )∆ ∆p
d
dx

x x
i p

p
y y y y= − + 〈 〉 + 〈 〉

Rearranging this equation, we get

 d p
x

p
x

i p
dx

y
y

= − ∆ + ∆ 〈 〉 + 〈 〉





2
22

2

2

2

( ) ( )
� � �

Integrating the above equation, we get

 ln
( ) ( )y

y 0

2

2
2

2

2

2= − + 〈 〉 + 〈 〉∆ ∆p
x

p
x x i p x

� � �

 
= − − 〈 〉 + 〈 〉 − 〈 〉[ ] + 〈 〉

= − − 〈 〉[ ] +

( )

( ) (

∆

∆ ∆

p
x x x x x

i p
x

p
x x

2

2
2 2 2

2

2

2

2 4 4
� �

�
pp

x
i p x)2

2
24

� �
〈 〉 + 〈 〉

 y y= − − 〈 〉





⋅ 〈 〉





〈0

2

2
2

2

2
4exp

( )
( ) exp exp

( )∆ ∆p
x x i

p
x

p
x

� � �
〉〉





2

Since exp /( )∆p x2 2 24〈 〉[ ]�  is a constant, it can be absorbed in the normalization constant N. i.e.,

 y = − − 〈 〉( ) 〈 〉−Ne
p

x x e
p xi( )∆ 2

2

2

� �

This is a Gaussian wave packet. So the wave function corresponding to ∆ ∆x p = �
2

 is a Gaussian wave 
packet.
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Example 5.17 Evaluate ∆ x and ∆ p for a system when its state is described by y a= −Ne x2.

Solution: 

Note: I e dxx( )b p
b

b= =−
−∞∫ 2
∞

 e x dx d
d

e
dI

d
x x−

−∞

∞
−

−∞

∞
−∫ ∫= − = − =b b

b
b
b

p b2 22 3 21
2

( )

Let us first calculate the normalization constant N.

 y y p
a

a
−∞

∞
−

−∞

∞

∫ ∫= = =* dx N e dx Nx2 2 22

2
1

 ∴ = ( )N 2
1 4a

p

The expectation value 〈x〉 is given by

 〈 〉 =
−∞

∞

∫x x x x dxy y*( ) ( )

 = = =−
−∞

∞
− −

−∞

∞

∫ ∫e xe dx e xdxx x xa a a2 2 22 0

The integral is zero since the integrand is an odd function of x in the interval (−∞, ∞).

 
〈 〉 =

= = = ⋅ ⋅

−∞

∞

−
−∞

∞
−

∫

∫

x x dx

N e x dx N Nx

2 2

2 2 2 3 2 2 22 1
2

2 1
2 2

1

y y

p a p
a

a

*

( ) /

22a

 = 1
4a

 since N 2

2
1p

a
=

 
〈 〉 = = −( )

= −

−∞

∞
−

−∞

∞
−

−
−∞

∞

∫ ∫

∫

p p dx N e i d
dx

e dx

N e i

op
x x

x

y y a a

a

*

(

2

2

2 2

2

�

��)( )− −a a2 2xe dxx

 = =−
−∞

∞

∫2 02 2 2i N e xdxx�a a

 
〈 〉 = = −( )

=

−∞

∞
−

−∞

∞
−

−
−∞

∞

∫ ∫p p dx N e d
dx

e dx

N e

op
x x

x

2 2 2 2
2

2

2

2 2

2

y y a a

a

* �

∫∫ − − +− −( )[ ]�2 2 22 42 2a aa ae x e dxx x

 First term = = ⋅ =−
−∞

∞

∫2 2
2

22 2 2 2 2 22a a p
a

aa� � �N e dx Nx
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 Second term = − = − ⋅ = −−
−∞

∞
−∫4 4 1

2
22 2 2 2 2 2 2 2 3 22a a p a a� �N x e dx Nax ( ) / ��2

 ∴ = ∆p2 2a�

 

∴ = 〈 〉 − 〈 〉 =

∴ = 〈 〉 − 〈 〉 =

=

( )

( )

( ) ( )

∆

∆

∆ ∆

∆ ∆

x x x

p p P

x p

x p

2 2 2

2 2 2 2

2 2
2

1
4

4

a
a�

�

== �/2

Example 5.18 The state of a particle in a box of length L is described by 

 y p= 2
L

n x
L

sin  n = 1, 2, 3, …

Calculate the uncertainty product ∆ x∆p.

Solution:

 

〈 〉 = ⋅ ⋅

= −





∫

∫

x
L

n x
L

x
n x

L
dx

L
x n x

L
dx

L

L

2

2
2

1
2

0

0

sin sin

cos

p p

p

 
= − = ⋅ =∫ ∫1 1 2 1

2 20 0

0

2

0L
xdx

L
x

n x
L

dx
L

x LL L L

cos
p

� ���� ����

 

〈 〉 =

= = −

∫

∫ ∫

x
L

n x
L

x
n x

L
dx

L
x

n x
L

dx
L

x

L

L L

2

0

2

2 2

0

2

0

2

2 1 1

sin sin

sin co

p p

p
ss

2n x
L

dx
p





 

= ⋅ −

= − − ⋅

∫1
3

1 2

3
1

2
2

2
2

3

0

2

0

2
2

0

L
x

L
x

n x
L

dx

L
L

L
n

x
n x
L

L
n

x

L L

L

cos

sin

p

p
p

p
ssin

2

0

0

n x
L

dx
L p∫
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= + ( ) −











+

 ∫L

n
x L

n
n x
L

L
n
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L

dx
L
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2

2
2

2
p p

p
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= −L L
n
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2 23 2 p
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p

L
n x

L
i d

dx
n x

L
dx

i n
L

n x
L

L L
= −( ) = −



∫ ∫2 2

0 2 0
sin sin sin co
p p p p

�
�
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n x
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dx
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= − −

∫

∫
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L
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L

dx n
L
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dx nL Lp p p p
sin cos pp 2
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∴ = 〈 〉 − 〈 〉 = − − = −
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∆

∆

x x x L L
n

L L L
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2 2 2
2 2

2 2

2 2 2

2 2

2 2

3 2 4 12 2p p

pp n
L

〉 =2
2 2 2

2
� p

 
∴ = −





= − =

( ) ( )∆ ∆x p L L
n

n
L

n n

2 2
2 2

2 2

2 2 2

2

2 2 2 2 2 2

12 2

12 2 4

p
p

p p

�

� � � 22

3
2−( )

 ∴ = −( )∆ ∆x p n�
2 3

2
2 2 1 2p

Note this is always greater than �
2

 for all n.

5.5 ComPlETE SET oF ComPaTiblE obSErvablES
What is the significance of compatible observables in the context of uncertainty principle?

Let us first start with a dynamical variable A and measure it, and suppose we get the eigenvalue 
a. If the eigenvalue a is non-degenerate, we know that the system is in the eigenstate f

a 
immediately 

after the measurement (Af
a
 = af

a
). On the other hand, if the eigenvalue a is m-fold degenerate, then 

the experimental result ‘a’ is not sufficient to determine the state of the system uniquely. Any linear 
combination of these m states would lead to the same experimental value a. We should have a method 
of determining other parameters to distinguish each of these m-fold degenerate states. In such a situ-
ation, the concept of compatible observables comes to our help.

The eigenvalue equation for A is given by

 A
op
f

a 
= afa a = 1, 2, 3,…m

Let us find a dynamic variable B such that [A
op

, B
op

] = 0. Since A and B are commuting operators, they 
have common eigenfunctions. Using the results of Example 15.5 we can construct a state y

ab 
such that 

 y fab n nc= ∑

 A
op
y

ab 
= ay

ab

 B
op
y

ab
 = by

ab
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We can construct m such linearly independent functions leading to m eigenfunctions of B with eigen-
values of b. Each of the m states is now specified by (a, b). If there are m non-degenerate eigenvalues 
for B

op
, then there is one-to-one correspondence between (a, b) and the eigenstatey

ab
; we have

 
( , ) ( , ) ( , ) ( , )a b a b a b a bm

ab ab ab abm

1 2 3

1 2 3

…
…y y y y

However, if B has also degenerate eigenvalues, the measurements of A and B are not sufficient to 
determine the state uniquely. We have to find another dynamical variable C such that A

op
, B

op
 and C

op
 

commute among themselves.

 [A
op

, B
op

] = 0, [A
op

, C
op

] = 0, [B
op

, C
op

] = 0

Now we can construct a linear combination of fas such that

 A
op
y

abc 
= ay

abc

 B
op
y

abc 
= by

abc

 C
op
y

abc 
= cy

abc

Now each state is specified by the set (a, b, c). We can continue this exercise by going to other opera-
tors D, E, F, M, …until we get a situation where there is a one-to-one correspondence between an 
eigenstate and the set of eigenvalues (a, b, c, d, …). That is, each set of eigenvalues (a, b, c, d, …) 
represents a non-degenerate state.

The set of all commuting dynamical variables is called complete set of compatible dynamical 
variables. Which plays an important role in specifying a quantum state. In fact, the study of a system 
begins with the identification of the complete set of compatible dynamical variables enabling us  to 
describe the state of the system. For instance, in the case of a hydrogen atom (non-relativistic, without 
taking into account electron spin) H, L

2
 and L

z
 form the complete set of commuting variables and so 

it is their common eigenfunctions that specify the state of the hydrogen atom.

Simultaneous measurement and Complete Set of Compatible dynamical 
variables
Let A, B, C,… form a complete set of compatible dynamical variables for a given system. Then the  
operators A

op
, B

op
, C

op
… commute among themselves. Let the eigenstate of the system be described 

by y
abc

… such that

 A
op
y

abcd
 = ay

abcd
…

 B
op
y

abcd
 = by

abcd
…

 C
op
y

abcd
 = cy

abcd
…

All the dynamical variables A, B, C,… can be measured simultaneously when the system is in this eigen-
state in the following sense. First let us measure A. Since y

abc
… is an eigenstate of A

op
 with eigenvalue a, 

the experimental outcome will be a, and the system will continue to be in the state y
abc

…. Immediately, 
let us measure B. Since y

abc
 is an eigenstate of B

op 
with eigenvalue b, the experimental outcome will be b.  

So A and B have been measured ‘simultaneously’. We can continue this procedure, and we can meas-
ure all the dynamical variables ‘simultaneously’ provided they are compatible.
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Quantum numbers and States
The eigenvalues of a dynamical variable are known as the quantum numbers. So let us concentrate on the 
quantum numbers corresponding to the complete set of compatible observables. The fact that y

abc
… is 

a non-degenerate eigenstate of A, B, C, … implies that there is one-to-one correspondence between the 
set of quantum numbers (a, b, c,…) and the eigenstate y

abc
…. Therefore, specifying a state by the set of 

quantum numbers (a, b, c,…) is equivalent to specifying the state by explicitly giving the eigenfunction 
y

abc
…. However, specifying the state by the quantum numbers (a, b, c,…) has more objectivity since 

these numbers are experimentally measurable whereas the wave function y
abc

… is not a measurable 
quantity. For instance, in the case of hydrogen atom, we have [H, L2] = 0, [H, L

z
] = 0 and [L2, L

z
] = 0. So 

for the hydrogen atom, the complete set of compatible observables are H, L2 and L
z
. The corresponding 

quantum numbers are n, l and m
l
. So we have the following correspondence:

(nlm
l
): (2 0 0) (2 1 0) (2 1 1) (21 − 1)

 y
200

 y
210

 y
211

 y
21 − 1

The explicit forms of the functions y
200

, y
210

, y
211

 and y
21 − 1

 are given in Chapter 7.

Simultaneous measurement of Position and momentum
Since [x, p

x
] ≠ 0, they are not compatible set of dynamical variables, so we cannot find eigenstate 

common to both x and p
x
. Therefore, x and p

x
 cannot be measured simultaneously. Depending on the 

way the state is prepared, we will get different kinds of statistical distribution (or the uncertainties).
Let us recall that (i) there is no uncertainty in A if the system is in the eigenstate of A and (ii) there 

is uncertainty in A if the state of the system is a superposition of eigenstates of A.
If the prepared state is a position eigenstate, then it will be a superposition of momentum eigenstates. 

There will be no uncertainty in position, but momentum is completely uncertain. If the prepared state 
is momentum eigenstate, then it will be superposition of position eigenstates. There will be no uncer-
tainty in momentum, but the position is completely uncertain. If the prepared state is the eigenstate of 
neither position nor momentum, then it can be expressed as a superposition of position eigenstates or as 
a superposition of momentum eigenstates. So there will be uncertainty both in position and momentum.

5.6 ConSTanTS oF moTion
In classical physics, A is a constant of motion if dA

dt
= 0. This condition reduces to 

 dA
dt

A H A
tPB= + ∂

∂
=[ , ] 0

where [A, H]
PB

 is the Poisson bracket.
In quantum mechanics, A is said to be a constant of motion if

 d
dt

A〈 〉 = 0 (5.33)

A
op

 may or may not have explicit time dependence. If A
op

 has explicit time dependence, then, ∂ ∂ ≠A top / 0. 
Even if A

op
 has no explicit time dependence, in the expectation value 〈A〉, the time dependence can 

enter through the wave function y ( , )r t .
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∴ 〈 〉 =

= +

+

∫

∫ ∫

∫

d
dt

A d
dt

t A t d

d
dt

A d A
d
dt

op

op op

y y t

y y t y y

y

*( , ) ( , )

*
*

*

r r

∂∂
∂
A

t
dopy t

From Schrödinger equation,

 

d
dt i

H
d

dt i
H

d
dt

A
i

H A d

p op

op op

y y y y

y y t

= = −

〈 〉 = − +∫

1 1

1
� �

�

o and
*

( ) *

( ) * yy y t

y y t

*

*

A
i

H d

A

t
d

op op

op

∫

∫+
∂
∂

1
�

 

= − +

+
∂
∂

=

∫ ∫

∫

∫

1 1

1

i
H A d A

i
H d

A

t
d

i
A H

op op op op

op

op

� �

�

y y t y y t

y y t

y

* *

*

* ( oop op op

opH A
A

t
d− +

∂
∂









) y t

 = +
∂
∂

1
i

A H
A

top op

op

�
[ , ]  (5.34)

For A to be a constant of motion,

 1 0
i

A H
A

top op

op

�
[ , ] +

∂
∂

=  (5.35)

In general, most of the basic operators in quantum mechanics have no explicit time dependence. In 
such cases, the condition for A to be constant of motion is 

 [A
op

, H
op

] = 0 (5.36)

For instance, the dynamical variables momentum pop  and angular momentum operator Lop  do not 
have explicit time dependence. Therefore, we have

 [p
op

, H
op

] = 0 ⇒ Conservation of momentum

 [L
op

, H
op

] = 0 ⇒ Conservation of angular momentum (5.37)

Example 5.19 Show that the angular momentum is conserved for a particle in central potential.

Solution: The Hamiltonian for a particle in central potential is

 H
p
m

V r= +
2

2
( )
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Consider the z component of angular momentum, L
z
, is given by

 L
z 
= xp

y 
– yp

x

(For the sake of clarity, the subscript op is omitted.)

 [ , ] , ( ) , [ , ( )]L H L
p
m

V r L
p
m

L V rz z z z= +





= 





+
2 2

2 2

To evaluate the commutation relations, we use [A, BC] = B[A, C] + [A, B]C and [AB,C] = A[B,C] + [A, C]B

 
L

p
m m

L p p p
m

L p L p Lz z x y z z x z y, [ , ] {[ , ] [ , ] [
2

2 2 2 2 2

2
1

2
1

2






= + + = + + zz z

z x x z x z x x

p

L p p L p L p p

, ]}

[ , ] [ , ] [ , ]

2

2 = +

 [L
z
, p

x
] = [xp

y
 − yp

x
, p
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Let us now evaluate [L
z
, V(r)]

 [L
z
, V(r)] = [xp

y 
− yp

x
, V(r)]

  = [xp
y
, V(r)] − [yp

x
, V(r)]

 
= + − −

⇓ ⇓
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y V
r

r
x

i x
y
r

V
r
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r

V
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�

�


= 0

 [L
z
, H] = 0

We can extend the same result for L
x
 and L

y
. i.e., [L

x
, H] = 0 and [L

y
, H] = 0.

Therefore, L
x
, L

y
 and L

z
 are constants of motion; i.e., angular momentum is a conserved quantity 

for a central potential.
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5.7 EhrEnFEST ThEorEm
Ehrenfest’s theorem states that the mean values of a dynamical variable evolve according to classical 
equation of motion. This statement requires further qualifications, which will be discussed later. We 
closely follow Gaziorowicz here.

The classical equations of motion are

 d
dt m
r p=

and 
d

F V
p

r r
dt

= = −∇( ) ( ).

In one dimension, these equations become

 dx
dt

p
m

=  and 
dp
dt

F x V
dx

= = − ∂( )

The Ehrenfest theorem states that in quantum mechanics,

 
d
dt

x
p
m

〈 〉 = 〈 〉

and d
dt

p V
x

〈 〉 = − ∂
∂

These two results can be easily proved.
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1
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�  (5.38)

Now consider d
dt

p〈 〉
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�  (5.39)
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The Equations (5.38) and (5.39) are almost similar to Newton’s equation of motion, and they compel 
us to conclude the position in classical physics as the mean value of position in the corresponding 
quantum version of the system. i.e., we would like to identify x

cl 
= 〈x〉. If we make such an identifica-

tion, Newton’s equation of motion should be

 d
dt

p
V x

x
V x

x
cl

cl

〈 〉 = −
∂

∂
= − ∂ 〈 〉

∂〈 〉
( ) ( )  (5.40)

However, this equation is different from the Equation (5.39). Let us determine the conditions under 
which we can write

 − ∂ 〈 〉
∂〈 〉

= − ∂
∂

V x
x

V
x

( )  or F(〈x〉) = 〈F(x)〉

Let us expand F(x) as

 F x F x x x F x
x x

F x( ) ( ) ( ) ( )
( )

!
( )= 〈 〉 + − 〈 〉 ′ 〈 〉 + − 〈 〉 ′′ 〈 〉 + ⋅⋅⋅

2

2

Taking the expectation value, this equation becomes

 〈 〉 = 〈 〈 〉 〉 + 〈 − 〈 〉 ′ 〈 〉 〉 + 〈 − 〈 〉 ′′ 〈 〉 〉 + ⋅⋅⋅F x F x x x F x
x x F x

( ) ( ) ( ) ( )
( ) ( )

!

2

2
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 = 〈 〉 = 〈 〉∫F x x x dx F x( ) *( ) ( ) ( )y y ,

since F(〈x〉) is a number and not a function of x.
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If the uncertainty (∆ x) is small, we can write

  〈F(x)〉 = F(〈x〉)

Under such conditions, we can identify x
cl 

= 〈x〉 and

 d
dt

p F x
V x

x
〈 〉 = 〈 〉 = − ∂ 〈 〉

∂〈 〉
( )

( )  (5.41)

This is an enormously useful result. There are a number of circumstances where we can use classical 
equation of motion to study the motion of subatomic particles like electron, proton, etc. This is pos-
sible if the uncertainty in x is very small.

5.8 ClaSSiCal PhySiCS and QuanTum PhySiCS
The key idea in postulates P-1 and P-6 is the concept of probability. The term probability implies that 
the experimental outcome of the measurement made on a single system is not unique or well defined. 
We may get any one of the possible value. There is no definiteness about the result.

In what follows, we use the relative frequencies of various outcomes to assign the number for the 
value for probability.

do we Get Probability in Classical Physics?
The answer is yes. We do employ the concept of probability in classical physics also. For instance, 
toss of a coin is an random event. The weather is another example where we describe everything in 
terms of probability.

Toss of a Coin
In the toss of a coin, the possible results or outcomes are either head or tail. We will not be able to 
tell what exactly will be the outcome in a single trial. When we make a large number of trials using 
the same coin or when we toss a large number of identical coins, we will get head for nearly half the 
number of trials and tail for nearly half the number of trials. Here, we have assumed the coins to be 
fair coins. If the coin is a biased coin, the probability of getting the head in a single toss will not be 
0.5, but some number between 0 to 1, say 0.3. In this case also, there is no way of predicting the result 
for a single trial. But if we consider a larger number of identical coins (for all which the probability of 
getting a head is 0.3 and tail is 0.7), we will get head nearly in 30% of the trials.

The important thing to recognize is that the moment we introduce the probability in our discussion, 
there is no way of predicting the results or outcome for a single system. Any possible outcome has to 
be accepted.

how do we Get Probability in a deterministic Classical Physics?
We know a tossed coin obeys laws of classical physics. If so, it should obey Newton’s equation of 
motion, and we should be able to predict the result of a single trial with 100 per cent assurance. Strictly 
speaking, there is no necessity to introduce the concept of probability in classical mechanics. If we 
know the forces acting on the coin and the initial conditions, we can make an assured prediction even 
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in the case of a single trial. Still why do we introduce the concept of randomness or unpredictability 
in the discussions of the outcomes of a toss? The catch lies in the fact that if we know fully the laws 
obeyed by the coin and the initial conditions, we can make exact prediction. The randomness in the case 
of coin is due to the fact that we do not have all the details about the coin. It may be the lack of knowl-
edge about the initial conditions - with what velocity the coin is flipped? – or the lack of knowledge of 
its interactions with the surrounding or the forces acting on it.. The same is true with the prediction of  
weather.

So in classical physics, randomness or unpredictability is introduced because full knowledge about 
the system is not available.

Probability in Quantum mechanics
First, let us try to understand the implication of postulate P-1. For the sake of illustration, let us con-
sider an ensemble of hydrogen atoms. That is, all the systems in the ensemble are identical. Let us 
further assume that all the hydrogen atoms are in the same state, say, the ground state, corresponding 
to quantum numbers n = 1, l = 0 and m

l 
= 0.

So we are considering a collection of identical system under identical conditions. Let us measure 
the distance of the electron from the nucleus for each of the hydrogen atom. Since we have a collection 
of identical systems under identical condition, we expect the outcome for all the hydrogen atoms to 
be identical. But postulate P-1 implies that we get a statistical distribution of values for the distance 
of the electrons from the nucleus.

An imaginary experimental outcome for the measurement of distance of electrons from the nucle-
ons will look as follows:

Table 5.2 An imaginary experimental outcome for the measurement of distance of electrons from the nucleons

Distance in Å 0.1 0.3 0.5 0.8 1.0 1.2 1.5 2.0 2.2

Number of hydrogen atoms 
all in the state
n = 1 l = 0 ml = 0

1120 1290 1350 1300 900 820 730 590 80

The significant point is that we are not getting the same value for all the hydrogen atoms in spite of 
the fact that they are in the same state; i.e., we get a statistical distribution of values in spite of the fact 
that the experiment is performed for identical systems under identical conditions. (We have reached 
the same conclusion as a result of Postulate P-6) This is in total contrast with classical mechanics.

So we have the following
Classical systems: Identical systems under identical conditions ⇒ identical outcomes
Quantum systems: Identical systems under identical conditions ⇒ outcomes are not identical

maximum information about the System
What is the source of this randomness? In classical physics, the randomness is due to lack of knowl-
edge about the system and the errors in the instruments. In quantum mechanics also, errors in the 
instruments and the observation process lead to randomness. But there is an additional source of the 
randomness which is not due to any fault in the instrument or some unknown factor. It is an intrinsic 
property of a quantum system at microscopic level.
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In fact, it should be noted that within the structure of quantum mechanics, maximum information about a 
system is contained in the wave functions. We cannot get any information more than that is given by y ( , )r t .  
This implies that the probabilities associated with a quantum system are intrinsic property of that sys-
tem within the structure of quantum mechanics. Lack of knowledge or errors in the instruments will 
worsen the situation and add further uncertainties or randomness.

loss of Concept of Trajectory
One of the consequences of probabilistic interpretation is the loss of the concept of trajectory.  
The trajectory or a particle is the lifeline of classical physics. The ultimate purpose of solving Newton’s 
equation of motion is to obtain the trajectory r( )t of the particle. The position r( )t  of a particle at dif-
ferent instants gives the trajectory of a particle. So the determination of the trajectory of the particle 
is the determination of position r at different instants of time.

In quantum mechanics, all that we can tell is the probability of finding a particle at r at the instant 
t. Since the position of a particle at any instant is unpredictable or random, there is no possibility of 
defining a trajectory of a particle in quantum mechanics.

Therefore, the Bohr’s model (the electrons moving in a circular orbit) or the Sommerfeld model 
(electrons moving in an elliptical orbit) are no longer valid. Once the concept of the trajectory is lost, the 
velocity and the momentum of a particle can no longer be defined as d t dtr( )/  and m d dtr/ . Yet in quantum 
mechanics, a particle has a property called momentum. It is not the same as the classical concept m d dtr/ .  
However, it is a property that can be measured with a suitable experimental arrangement. The velocity 
of a particle is given by the same expression p/m  both in classical and in quantum physics.

do we Employ the Concept of Trajectory for Subatomic Particles?
There are a number of circumstances where electrons are treated like a classical particle which has 
definite trajectory. Description of electrons or a proton or an antiproton in accelerators is one such 
example. We accept the fact that photons are travelling from the sun to the earth. In the case of cathode 
ray oscilloscope, the idea of trajectory is used to explain the behavior of the beam.

In all these cases, the Ehrenfest theorem comes to our help. If the uncertainty is very small, the aver-
age value evolves in time like a classical system. In such cases, the classical equations are sufficient.

In terms of the wave function, the concept which comes closest to trajectory of classical particle is 
the motion of wave packet. The wave function describing the state of an electron is the wave packet 
travelling as shown in Fig. 5.3.

At t1

At t2

Fig. 5.3 Wave packets at different instants of time

Even here, the electron can be anywhere inside the region enclosed by the wave envelope. We can 
approximately take the velocity of the wave packet as the velocity of the particle. This resembles the 
classical concept of the velocity of a particle.
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uncertainty in Classical Physics
Do we employ the concept of uncertainty in classical physics? The answer is yes. Within the theories 
explaining the physical phenomena, there is no place for uncertainty in classical physics. However, in 
experimental physics, we employ the concept of uncertainties.

For instance, we determine the value of acceleration due to gravity in an experiment. The final result 
will be expressed in the format g = ±9 81 2 m sec2. .0 0 (Don’t worry about the exact numerical value given 
here). If any dynamical variable Q is measured, the final result will be expressed in the format q  ±  d q,  
where d q is the uncertainty. What is the source of this uncertainty in classical physics? A full theory of 
error analysis is devoted to estimate d q in experimental physics. Leaving aside many details, we can say 
d q as the standard deviation obtained from the statistical distribution of values obtained from observation.

Let q
1
, q

2
,…q

n
 be the observed values of Q in n trials. Then the average value and the standard 

deviation are given by

 q q q q nn= + + ⋅⋅⋅( )1 2  

 d q q q q q n= − + − + ⋅⋅⋅[( ) ( ) ]1
2

2
2 1 2  (5.42)

The experimental value is quoted as

 q q q= ±d

The question is why we get a statistical distribution of q
1
, q

2
,… in the experiment, though the theory 

suggests a definite value. When a measurement is made, there is a large number of sources of error: 
the instruments may be defective, may not have the required least count, may not have been calibrated 
properly, etc. All these factors contribute to the fact that we are not getting the exact unique value for Q.  
Can we reduce this uncertainty d q? With the advent of new technology, can we make the measurement 
of Q more accurate so that d q becomes as small as possible? Can we make d q to be zero? This is a 
hypothetical question. Within classical physics, there is no restriction on the possible range of d q, and 
hence in principle, we make d q = 0. Note that this is also a hypothetical answer.

are the uncertainties in Classical and Quantum Physics the Same?
The uncertainty ∆q in quantum mechanics does not refer to the d q in the experimental physics. We 
have already seen that in any experimental measurement of a quantum system, we can only tell the 
probability of obtaining a particular eigenvalue. The statistical distribution of experimental outcomes 
is intrinsic to quantum mechanics. 

Going back to the discussion on the imaginary experiment of determining the distance of the elec-
tron from the nucleus of a hydrogen atoms, the table of experimental outcomes is a statistical distribu-
tion, and we apply the expression (5.42).

The existence of average and standard deviation has nothing to do with the distinction between 
classical and quantum physics. As long as a statistical distribution is there, we can define average and 
standard deviation. However, the reasons for the existence of the statistical distribution of experimen-
tal outcomes are different in classical and quantum physics.

ExErCiSES

 1. What is the difference between probability and probability density?
 2. Evaluate [ ( , , ), ].f x y z opp
 3. What is the significance of two commuting operators representing dynamical variables?
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 4. What is meant by a complete set of compatible observables? Why do we need them?
 5. A dynamical variable A has two eigenvalue a and −a; i.e., Af

1 
= af1 and Af

2 
= −af

2
. Consider a 

system whose wave function is f = 0.6f
1 
+ 0.8f

2
. When a measurement of A is made, what is the 

probability A to be (i) a (ii) −a (iii) what is the average value of A and (iv) what is the uncertainty 
in A?

 6. If A is dynamical variable such that A2 = I, evaluate (i) el A and (ii) eil A.
 7. If fn  is an eigenstate of the Hamiltonian H with energy eigenvalue E

n
, then show that 

exp( ) exp( ) .iHt iE tn n n/ /� �f f=
 8. Determine y (x, t) when y (x, 0) = [Σc

n
f

n
(x)] and when Hf

n 
= E

n
f

n.

 9. Show that momentum is conserved for a free particle with H p m= 2 2/ .

 10. Show that angular momentum is conserved for a free particle with H
p
m

=
2

2
.

 11. Show that e Be B A B A A B A A BA Al l l l l= + + + + ⋅⋅⋅[ , ]
!

[ ,[ , ]]
!

[ ,[ , ]]
2 3

2 3
 (take f e BeA A( )l l l=  and 

use f f f f( ) ( ) ( )
!

( ) ).l l l= + ′ + ′′ + ⋅⋅⋅0 0
2

0
2

 12. Prove that exp ( ) ( ),ia
p

f x f x a
�







= +  where p i d
dx

= − � .

 13. Obtain a general expression for d
dt

x〈 〉2  in terms of [x, H ].

rEFErEnCES

 1. R. H. Dicke and J. F. Wittki, 1960. Introduction to Quantum Mechanics. Reading Massachusetts: 
Addison-Wesley Publishing Company, Inc.

 2. P. M. Mathews and K. Venkatesan, 1976. A Textbook of Quantum Mechanics. New Delhi: Tata 
McGraw-Hill Company.

 3. S. Gasiorowicz, 1974. Quantum Physics. New York: John Wiley & Sons, Inc.
 4. J. L. Powell and B. Crasemann, 1961. Quantum Mechanics. Reading Massachusetts: Addison-

Wesley Publishing Company, Inc..
 5. L. E. Ballentine, 1998. Quantum Mechanics – A Modern Development., Singapore: World 

Scientific Co., Pvt, Ltd.

M05_QUANTUMMECHANICS_3628_CH05.indd   167 5/20/2013   1:49:42 PM



M05_QUANTUMMECHANICS_3628_CH05.indd   168 5/20/2013   1:49:42 PM



The Simple Harmonic 
Oscillator

The simple harmonic oscillator is one of the most important topics in quantum mechanics. The energy 
eigenvalues of a harmonic oscillator is E nn = +( / ) .1 2 �w  The energy levels are evenly spaced, and this 
result has enormous signifi cance. A number of physical systems, in the fi rst-order approximation, can 
be reduced to a collection of simple harmonic oscillators representing fl uctuations in various physi-
cal quantities. For instance, in quantum fi eld theory, fi elds become a collection of oscillators leading 
to the ‘emergence’ of ‘particle property’ of all quantum objects. In this chapter, we fi rst study the 
harmonic oscillator in wave mechanics. Then we study the harmonic oscillators in terms of abstract 
operators called ladder operators. It is this formulation of simple harmonic oscillator which makes 
harmonic oscillators as the most widely used object in diverse areas like lattice vibration, electromag-
netic fi elds, fl uctuations in magnetic dipole moments in solids and so on.

6.1 WAVE MEChANiCS

6.1.1 Schrödinger Equation and harmonic Oscillator
The classical Hamiltonian for a harmonic oscillator is

 H
p
m

m x= +
2

2 2

2
1
2
w  (6.1)

To make a transition to quantum mechanics, we replace the dynamical variables by their operators. In 
the coordinate representation, the position x becomes x

op 
= x, the momentum p becomes the operator  

p i d dxop = − � /  and the Hamiltonian H becomes H
op

 given by

 
H

p

m
m x

dx
m x

op

op

op= +

= − +

2

2

2

2

2
1
2

2
1
2

2

2
2 2

 
w

w�
m

d

The time-independent Schrödinger equation is given by

 − + =�2 2

2
2 2

2
1
2m

d u
dx

m x u Euw

6
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This equation can be rewritten as 

 d u
dx

m E m x u
2

2 2
2 22 1

2
0+ −( ) =

�
w  (6.2)

We are interested in determining the energy eigenvalues of the bound state solution of this equation. 
This implies that the above differential equation has to be solved subject to the boundary condition 
that u(x) being single valued and finite and in the large x limit, its behaviour is given by

 u (x) → 0 as x → ±∞ (6.3)

The fact that V x= 1 2 2 2/ mw  is symmetric about the origin implies that the energy eigenstate for the 
harmonic oscillator has definite parity. Therefore, the energy eigenfunctions have to be either even-
parity or odd-parity functions.

To solve this equation, let us go to a new variable r instead of x. The new variable r is defined by

 r = a x

where a  is an arbitrary constant that can be chosen in such a way that that differential equation in 
terms of r becomes simpler.

First, let us write the Equation (6.2) in terms of r. We have 

 ∴ + − ⋅ =a
r

w r
a

2
2

2 2

2 2

2

2

2
2 0d u

d
mE u m u
� �

Dividing throughout by a 2, we get

 d u
d

m u m u
2

2 2 2

2 2

2 4
22 1 0

r a
w
a
r+ E

� �
− ⋅ ⋅ =

Now let us choose  m 2 2

2 4

1 2

1w
a

a w
� �

= ( )or = m
/

 (6.4)

Let us define l as

 l
a w

= =2 2
2 2
mE E

� �
 (6.5)

Therefore, the Schrödinger equation becomes

 d u
d

u
2

2
2 0

r
l r+ − =( )  (6.6)

Let us try the solution u( ) .r r= e− 2 2/  L.H.S. of the Equation (6.6) = − + + −− − − −e e e er r r rr l r2 2 2 22 2 2 2 2 2/ / / / .  
This can become zero provided l = 1.

Therefore, e−r2 2/  is a solution to (6.6) corresponding to a special case of l. This suggests that we 
can write the solution to equation (for all values of l) as

 u e h( ) ( )r r
r

= −
2

2  (6.7)

This equation leads to 

 d u
d

e
d h

d
dh

d
h

2

2
2

2

2
2

2

2 1
r

r
r

r r
r

r r
r

= − + −





− ( ) ( )
( ) ( )  (6.8)
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Substituting this equation in (6.6) and factoring out e −r2 2/ , we get 

 
d h

d
h
d

h
2

2
2 1 0

( ) ( )
( ) ( ) .

r
r

r r
r

l r− + − =d
 (6.9)

This equation becomes Hermite’s differential equation, had it been 2n h( r) instead of (l - 1) h( r) in 
the last term. It will be shown that (l - 1) indeed is 2n, as a consequence of the boundary condition. 

One of the standard methods of solving a differential equation of this type is the series solution 
method. The solution h( r) can be written as

 h s
s

S( )r r= C
=

∞

∑
0

 (6.10)

The determination of the constants C
s
 amounts to determining the function h( r).

One of the boundary conditions for the harmonic oscillator wave functions is either u(-x) = u(x)
(even parity) or u(-x) = -u(x) (odd parity). Implementing this boundary condition, we get two kinds 
of series solutions.

Eve

Odd parity

n parity : ( ) [ ]

: ( )

u e C C C

u e

r r r

r

r

r

= + + +

=

−

−

2

2

2
0 2

2
4

4 …

22
1 3

3
5

5[ ]C C Cr r r+ + +…

Let us determine the coefficients C
s
.

Differentiating the expression (6.10), we get

 dh
d

C s d h
d

C s s C ss
s

s
s

s
s

s

r
r

r
r= = − =−

=

∞

=

∞

∑ ∑ −1

0

2

2
0

1 2     and     ( ) (( )s s

s

− −

=

∞

∑ 1 2

2

r

Substituting these expressions in (6.10), we get

 C s s s Cs
s

s s
s

s( ) [ ( )]− − − − =−

=

∞

=

∞

∑ ∑1 2 1 02

2 0

r l r  (6.11)

In the first term, put r = s - 2 \ s = r + 2 and r varies from 0 to ∞.

 C s s C r rs
s

s
r

r

r

=

−
+

=

∞

∑ ∑− = + +
2

2
2

0

1 2 1
∞

( ) ( )( )r r

Since r is a summation index, we can replace it by s in the RHS.

 C r r s sr
r

r
s

s

s
+

=

∞

+
=

∞

+ + + +∑ ∑2
0

2
0

2 1 2 1( )( ) ( )( )r r= C

Substituting this expression in (6.11), we get

 [ ( )( ) ( ( ))]C s s C ss s
s

s
+

=

∞

+ + − − −∑ 2
0

2 1 2 1 0l r =

Equating the coefficient of each power to zero, we get

 

C s s s C

C
s

s s
C

s s

s s

+

+

+ + − −

= − −
+ +

2

2

2 1 2 1

2 1
2 1

( )( ) [ ( )]

( )
( )( )

= l
l

or  
 (6.12)
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Alternatively, we can rewrite the second term in (6.11) as follows:

 [ ( )] [ ( ) ( )]

[ ( ) (

2 1 2 2 1

2 2

0
2

2

2s C r C

s

s
s

s
r

r

r− − = − − −

= − −

=

∞

−
=

∞
−∑ ∑l r l r

l −− −
=

∞
−∑ 1 2

2

2)]Cs
s

sr

 

Then Equation (6.11) becomes [ ( ) ( ( ) ( )) ]C s s s Cs s
s

s− − − − − =−
=

∞
−∑ 1 2 2 1 02

2

2l r

Equating the coefficient of each power separately to zero, we get

 C
s s

s
Cs s− = −

− − −2

1
2 2 1

( )
( ) ( )l

 (6.13)

Both Equations (6.12) and (6.13) are the recursion relations, and they are equivalent to each other. 
Equation (6.12) helps us to calculate C

s + 2
 from C

s
 and the Equation (6.13) helps us to calculate C

s - 2
 

from C
s
. Let us use the recursion relation (6.12).

So we have

 

even parity

odd parity

 :
( )

( )( )
, , ,

:

C
s

s s
C ss s+ = − −

+ +
=2

2 1
2 1

0 2 4
l

…

CC
s

s s
C ss s+ = − −

+ +
=2

2 1
2 1

1 3 5
( )

( )( )
, , ,

l
…

The boundary condition for the harmonic oscillator wave function is that as x → ±∞, u(x) → 0. So we have 
to determine how e −r r2 2/ h( ) behaves as r → ±∞. There is a standard method of studying the behaviour of 
an infinite series for large r. One has to first determine Lt

s s sC C
→∞ +2  for the given series. Then, compare 

this result with the limit Lt
s sC Cs→∞ +2  for a well-known series. From this knowledge, we can determine 

the asymptotic behaviour of a series. So let us consider the limit Lt
s s sC
→∞ +2 C  for the the above series.

From the Equation (6.12), we have

 Lt
s

s

s

C

C
s

s s→∞

+ → =2
2

2 2  (6.14)

Let us compare this with er2, which can be written as

 exp( )
!

. . .r r r r2 2
4

1
2

= + + + = ∑… Cs
s

provided C
s

ss = ( ) =1

2

0 2 4
!

, , ,…

 Lt
C

C

s

s

s

s s
s

s

+
( )
+





=
+( ) =

+( )
2 2

2
2

2

2
1

1

2
1

=
!

( )
!

!

!

 ∴ →
→∞

+Lt
s

s

s

C

C s
2 2  (6.15)
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Comparing the results (6.14) and (6.15), we conclude that the series h( r) behaves like er2 in the large 
r limit.

i.e., u e h e( ) ( )r r
r

r

r

= −

→∞
→

2 2

2 2

Obviously, this is not an acceptable solution in quantum mechanics. We would like to have a solution 
u( ) .r r→ → ∞0 as  The solution u e h( ) ( )/r rr= − 2 2  will go to zero for large r, if h( r) is a polynomial 
in r (a series with finite number of terms) instead of an infinite series. So we have to terminate the 
series suitably so that the infinite series becomes a polynomial of degree n, where n is finite.

This requirement can be implemented for both even parity and odd parity solutions by suitably 
choosing (l - 1) and the coefficients C

n
 as follows:

Even parity: Choose (l - 1) as   (l - 1) = 2n with C
n
 ≠ 0 and C

1 
= 0 for even n.

Odd parity:  Choose (l - 1) as   (l - 1) = 2n with C
n
 ≠ 0 and C

0 
= 0 for odd n.

From (6.12) for s = n, we have 

 C
n

n n
n n

n n
Cn n+ = − −

+ +
= −

+ +
=2

2 1
2 1

2 2
2 1

0
( )

( )( ) ( )( )
l

This will make C
n + 2

 = C
n + 4

 = C
n +  6 

 = … = 0.
For l = 2n - 1, h( r) will become
 h( r) = C

0 
+ C

2 
r 2 + C

4 
r 4 + …   even n

and h( r) = C
1
r + C

3 
r 3 + C

5 
r 5 + …  odd n.

The choice of choosing l - 1 = 2n makes the Equation (6.9) as Hermite’s differential equation, and 
the polynomial h( r) is, in fact, Hermite’s polynomial. Therefore, the energy eigenstates of harmonic 
oscillator are given by

 u N e Hn n n( ) ( )r r
r

= −
2

2  (6.16)

where H
n
( r) is Hermite’s polynomial, and N

n
 is normalization constant. Though H

n
( r) tends to infin-

ity for large r, the factor e−r2 2/  ensures u
n
( r) goes to zero as r → ∞.

Energy Eigenvalue
From the Equation (6.5), we know that the condition l - 1 = 2n implies

 
2 2 1

2 2 1

E n

E n
�

�
w

w

=

=

( )

( )

+

+
or more appropriately,

  E n nn = +( ) =�w 1
2

0 1 2, , ,...  (6.17)

The energy eigenvalues are discrete and evenly spaced. The corresponding eigenfunctions are 

 u x e H xn n

x

n( ) ( )= −
N

a

a
2 2

2

where a w= ( )m
�

1 2/

 (6.18)
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Normalization and Orthoganality
The normalization constants can be determined from

( ( ), ( ))

( ) ( )

u x u x

u x u x dx

N N e

n m nm

n m nm

m n
x

=

∗ =
−∞

∞

−
−∞

∫
d

d

a

or  

or  2 2
∞∞

∫ =H x H x dxn m nm( ) ( )a a d

In terms of r = a x, this condition becomes

 N N e H H dn m n m nm
−

−∞

∞

∫ =r r r r a d2 ( ) ( )  (6.19)

We can write this integral as

 I e H H d
N Nnm n m

n m
nm= =−

−∞

∞

∫ r r r r a d2 1( ) ( )  (6.20)

The standard method of establishing the orthonormality of the eigenfunctions for the harmonic oscil-
lator and the determination of the normalization constant N

n
 uses the generating function G( r, t) for 

Hermite’s polynomials, which is given by

 G t e
H

n
tt t n n

n
( , )

( )
!

r
rr= =− + ∞∑2 2

0=
 (6.21)

The coefficients of t nn / ! are the Hermite’s polynomials. For the sake of manipulation, let us again 

write the generating function as G( r, s) with s as a parameter.

 G s e
H s

m
s s m

m

m

( , )
( )

!
r

rr= =− +

=

∞

∑2 2

0

 (6.22)

Let us evaluate the integral e G t G s d−
−∞

∞

∫ r r r r2 ( , ) ( , ) . Making use of (6.21) and (6.23),

 e G t G s d e
H t

n

H s

m
n

n

n

m
m

m

−
−∞

∞
−

=

∞

∫ ∑=






r rr r r
r r2 2

0

( , ) ( , )
( )

!
( )

!
 

==

∞

−∞

∞

∑∫




0

dr  (6.23)

 =
=

e H H d
n m

t s
n m

t s I
mn

n m
n m n m

nm
m

−
−∞

∞

=

∞∞

=
∫∑∑ =r r r r2

00 0

1 1 1 1( ) ( )
! ! ! !

∞∞

=

∞

∑∑
n 0

But L.H.S. of (6.23) is also given by

 

e G t G s d e e e d

e

t t s s

t

−
−∞

∞
−

−∞

∞
− + − +

− +

∫ ∫=

=

r r r r

r

r r r r2 2 2 2

2

2 2( ) ( ), ,

(

 

22 2

2

2 2 2 2

2

+ − − +
−∞

∞

− − −
−∞

∞

∫
∫=

s t s st st

st t s

e d

e e d

r r

r

r

r

)

( )
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Change the integration variable from r to u where u = r - t - s. Then 

 e d e dt s u u− − − −
−∞

∞

−∞

∞
= =∫∫ ( )r r p2 2

 ∴ =

= =

−
−∞

∞

=

∞

=

∫

∑

 e G t G s d e

st
n

s t
n

st

n n n n

nn

r r r r p

p p

2 2

2 2

00

( ) ( )

( )
! !

, ,
∞∞

∑

 (6.24)

Comparing (6.23) and (6.24), we get

 

t
n

s
m

I s t
n

t
n

s m

n m

mn
mn

n n n

n

n n

n

m

m

! ! !

!
!

== =

= =

∑∑ ∑

∑ ∑

=

=

00 0

0 0

2

2

∞∞ ∞

∞ ∞

p

p
mm

s s

t
n

s m
m

mn
m

mn
n

m

n
n m

mn
mn

!

!
!

!

d d

p d

      use =






=

=

==

∑

∑
0

0

2

∞

∞

00

00

2

∞

∞∞

∑

∑∑=
==

t
n

s
m

m
n m

n
mn

mn
Imn

! !
!p d� ��� ���  (6.25)

This is possible, provided I nmn
n

mn= ! p d2

From (6.20), we get N
m

m m
=







a
p!

/

2

1 2

 (6.26)

Therefore, the normalized wave function is 

 u x
n

e H xn n

x

n( )
!

( )
/

=






−a
p

a
a

2

1 2

2

2 2

 (6.27)

Energy Eigenvalues and Their Eigenfunctions
Let us list some of the energy eigenfunctions below.

 

Energy                Wave function

           E u0 02
= =

�w a
p




= = ( )

−

−

1 2

2

1 1

1 2

2

2 2

2 2

3
2 2

2

/

/

e

E u xe

x

x

a

a
w a

p
a�          
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E u x e

E u

x

2 2

1 2

2 2 2

3 3

5
2 2

2 1

7
2

2 2

= =






−

= =

−�

�

w a
p

a

w

a
    

      

/

( )

aa
p

a a

w a
p

a

3
2 3

9
2 24

1 2

3 3 2

4 4

1

2 2





−

= =






−
/

/

( )x x e

E u

x

�      
22

4 4 2 2 24 12 3
2 2

( )a a
a

x x e
x

− + −

The sketch of these functions is given in Fig. 6.1.
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0.4

0.6

0.8

0

Fig. 6.1 Harmonic oscillator wave functions for n = 0, 1, 2, 3.(a = 1.0) 

6.1.2 Zero Point Energy
The energy of a simple harmonic oscillator is given by

 E nn = +( )1
2

�w  (6.28)

The lowest possible energy of a simple harmonic oscillator corresponds to

 E0 2
= �w

This is in contrast to classical physics where the minimum energy of the harmonic oscillator is zero, 
which happens when the particle is at rest, i.e., x = 0 and p = 0. It amounts to specifying both the 
position and momentum exactly; neither of which is possible in quantum mechanics. This will violate 
Heisenberg’s uncertainty principle. An exact location of a particle means D x = 0, which will make D p 
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very large, and hence the energy of the particle should become very large. A particle can be located 
only within a small range D x, which implies that there will be a spread of D p in momentum also. 
Consequently, the minimum energy D E cannot be zero.

It is an interesting exercise to estimate the zero point energy from the uncertainty principle.

Example 6.1 Estimate the lowest possible energy of a harmonic oscillator using the uncertainty rela-

tion ∆ ∆x p ≥ �
2

.

Solution: Classically, for the lowest energy, x = 0 and p = 0. Quantum mechanically, this is not possible. Let 
D x and D p be the spread in position and momentum around x = 0 and p = 0. The energy of the particle is 

 E
p
m

m x= +( )
( )

∆ ∆
2

2 2

2
1
2
w

From the uncertainty relation, we have ∆ ∆p
x

≥ �
2

 ∴ ≥ +E
m x

m x�2

2
2 2

8
1
2( )

( )∆ ∆w

From this relation, the uncertainty D x corresponding to the minimum energy E can be determined from

 dE
d x( )∆ = 0

−
∆

+ ∆ =

∆ =

∴ =
⋅

+ ⋅

2
8

1
2

0

2
2

8
2

1
2 2

2

3
2

2

2

�

�

�
�

�

m x
m x

x
m

E
m

m

m
m

( )

( )

min

w

w

w

w

or

ww
w= �
2

It is a coincidence that a rough way of estimating minimum energy yields the same value which is 
obtained by a long rigourous calculation.

6.1.3 Comparison with Classical Physics
The standard example of a harmonic oscillator is a simple pendulum or an object attached to a spring. 
It executes a simple harmonic motion described by

 x(t) = a sinw t

 v(t) = aw cosw t

 p(t) = maw cosw t

and E ma= 1
2

2 2w
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The velocity is maximum at x = 0 and minimum at the extreme points. The position of a particle is in 

the range − <2 22 2E m x E m/ /w w< . The points x E m= 2 2/ w  and x E m= − 2 2/ w  are known 

as the classical turning points for a particle of energy E executing simple harmonic motion.
We have already seen the difference between classical physics and quantum physics with respect 

to the possible lowest energy of a harmonic oscillator. In classical mechanics, the lowest possible 
energy of a harmonic oscillator is zero, in which case, the particle is at rest. In quantum mechanics, 
this condition violates the uncertainty principle. The minimum energy of quantum harmonic oscillator 
is �w / ,2  which is consistent with uncertainty principle.

There is another important difference pertaining to the position probability for a harmonic oscilla-
tor between classical and quantum physics. Though the position x(t) is deterministic in classical phys-
ics, we can still introduce the concept of probability of finding the particle in an interval dx around x in 
the following way (this is artificial). Let T be the period of the simple harmonic motion of the particle. 
Let the particle be between x and x + dx in the time interval between t and dt. Then the probability of 
finding the particle between x and x + dx can be defined as

 P x dx dt
T

( ) =

Since x = a sin w t
dx = aw  cos w t dt

 dt dx
a t

=
w wcos

 

∴ = =

=
−

=
−

  P x dx dx
T a t

dx
a t

dx
a x

dx

E
m

( )
. cos cos

( ) /

w w p w

p
p w

2

2
2 2

2 2 1 2

2
xx 2

1 2( ) /

The probability of finding the particle is minimum near the origin and maximum near the clas-
sical turning points. This can be compared with the quantum mechanical probability density 
P x dx u dxn( ) | ( ) | .= x 2  For the ground state, the quantum mechanical distribution differs completely 
from classical physics. For small values of n, they differ widely. But when n becomes very large, the 
probability distribution | ( ) |u xn

2  fluctuates rapidly as shown in Fig. 6.3, but the average value tends to 
be closer to classical probability distribution.

2E

mw2

2E

mw2

|un(x)|2

−

Fig. 6.2 u x0

2
( )  (solid curve) and classical P(x) (dashed curve)
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Fig. 6.3 Sketch of u x10

2
( )

Example 6.2 Evaluate the matrix element x
mn

 for harmonic oscillator where 

 x
mn 

= (u
m
, xu

n
)

Solution:

 

( , ) ( ) ( )

( )

u xu N N e x H x H x dx

N N
e H

m n n m
x

m n

n m
m

=

=

−
−∞

∞

−
−∞

∞

∫ a

r

a a

a
r r

2 2

2

2 ∫∫ H dn ( )r r

 =
N N

In m
mna 2

 (6.29)

where I e H H dmn m n= −
−∞

∞

∫ r r r r r2 ( ) ( )

To evaluate this integral, we again use the generating function for Hermite’s polynomials.
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e
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∞
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−∞

∞
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2

2 2  ( , ) ( , )
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∞
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∞
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∞

∫∑∑ H
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m
t s dn m n m

mn
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!

( )
!

r r r
r

00

 =
=

∞

=

∞

∑∑ t
n

s
m

I
n

mn

m

mn! !00

 (6.30)
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Put u = r - t - s
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∞
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=∫ 2 0, since the integrand is an odd function of u).
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 (6.31)

From (6.30) and (6.31), we get
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∴ =
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 if
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N N

I

m m n

m m n

n m
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a

a
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1 2
1 1

2
1

1
2

1

0

/

                   Otherwise














Example 6.3 Evaluate the matrix element xmn
2  for simple harmonic oscillator.

Solution:

 ( ) ( ) ( ) ( ) ( )x u x x u x dx N N e H x H x x dxmn m n n m
x

n m
2 2 22 2= ∗ =∫ ∫ −a a a
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= =−
−∞

∞
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N N
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In m
n m

n m
mna

r r r
a

r
3

2
3

2 ( ) ( )

where I e H Hmn m n= −
−∞

∞

∫ r r r r2 2 ( ) ( )

Consider the integral e G t G s d−
−∞

∞

∫ r r r r r2 2 ( , ) ( , )

 e G t G s d e e d e et t s s st−
−∞

∞
− − + − +

−∞

∞

∫ ∫= =r r r rr r r r r r2 2 2 22 2 2 2 2( , ) ( , ) −− − −
−∞

∞

∫ ( )r r rt s d2 2

Put u = r - t - s

 

e G t G s d e e u t s du

e e u

st u

st u

−
−∞

∞
−

−∞

∞

−

∫ ∫= + +

=

r r r r r2 2

2

2 2 2

2

( , ) ( , ) ( )

( 22 2 2

2 2 2 2

2 2 2

22 2

+ + + + +

= + + +
−∞

∞

−
−∞

∞
−

∫

∫

t s ut us ts du

e e u du e t s tst u u

)

( ss du

e s t s tsst

)

( )

−∞

∞

∫{ }
= + + +









2 2 2

2
2p p

But e G t G s d e H H t
n

s
mn m

n m

m

−
−∞

∞
−

−∞

∞

=
∫ ∫=r rr r r r r r r2 22 2( , ) ( , ) ( ) ( )

! !000

00

∞

=

∞

=

∞

=

∞

∑∑

∑∑=

n

n

m
mn

n

t
n

s
m

I
m

! !

= +
=

∞

=

∞

=

∞

+
=

∞

∑ ∑ ∑ ∑p d p d
2

2 2

0 0 0
2

0

n n

n

m

mn
m

m m

m

n

n m
n

t
n

s
m

m s
m

t
n

n
! !

!
! !

! ,

++ +
=

∞

+
=

∞ −

=

∞

=
∑ ∑ ∑p d p d2 2

0
2

0

1

0

n
n

n

m

m n
m

n n

n

m

mn
m

t
n

s
m

m t n
n

s
m

m
! !

!
! !

!,
00

2 22 2 2

∞

+ +

∑

= + +{ }t
n

s
m

n n m
n m

n
mn

m
n m

n
m n

Imn

! !
! ! !, ,p d p d p d

� ����������� ����������mn =

∞

=

∞

∑∑
00

 ∴ =

+( ) =

= +

= +
I

n n m n

n n m

m m n
mn

n

m

n

p

p

p

!

!

!

2 1
2

2 2

2 2

0

if

if 

if    

                                 Otherwise
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( )

( )

[( )( )]

[( )( )]

/

x

n
m n

m m
m n

m m
mn

2

2

1 2

2

1

2 1

1 2
2

2

3 4
=

+ =

+ + = +

+ +

a

a

if

if

//2

22
2

0
a

if

      Otherwise

m n= −















Example 6.4 Evaluate the matrix element 〈 〉p n  for a harmonic oscillator state u
n
.

Solution:

 

〈 〉p u x i d
dx

u x dx

pu x i d
dx

e
x

H x

n n n

n n

= ∗ −( )
= −

−








∫ ( ) ( )

( ) ( )

�

�
a

a
2 2

2






 
= − − +





= − −

− −

−

i xe H x e
dH
dx

i e xH

x

n

x
n

x

n

�

�

a a

a

a a

a

2 2 2

2 2

2 2 2 2

2 2

( )

[ ++ −2 1nH n ]

 

∴ = − ⋅ −

−

− −

−∞

∞

∫〈 〉p i N e H x x e H x dx

ni

n n

x

n

x

n( ) ( ) ( ) ( )�

�

2 2 2 2

2 2 2 2

2

a a
a a a

NN

N
N e H x N e H x

i x in

n

n
n

x

n n

x

n

nn

−

−
−

−
−−∞

∞

∫

= −

1

2
1

2
1

2

2 2 2 2

2

a a
a a

a

( ) ( )

� �
NN

N
u un

n
n n

−
−

1
1( , )

Both the terms are zero.

 ∴ =〈 〉p n 0

Example 6.5 Evaluate the matrix element 〈 〉p n
2 .

Solution:

 
〈 〉p u x d

dx
u x dx

p u x
d u
dx

n n n

n
n

2 2
2

2

2 2
2

2

= ∗ −( )
= −

−∞

∞

∫ ( ) ( )

( )

�

�

The Schrödinger equation is

 
− + =

∴ − = −

�

�

2 2

2
2 2

2
2

2
2 2 2

2
1
2

2

m
d u
dx

m x u E u

d u
dx

mE u m x u

n n n

n n n

w

w
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( ) ( ) ( )p u x mE u x dx m u x u dx

mE m x mE

nn n n n n n

n nn

2 2 2 2

2 2 2

2

2 2

= ∗ − ∗

= − =

∫ ∫w
w nn m

n

n
m

− +

= +

2 2
2

2 2

2 1
2

w
a

w

( )

( )
�

Example 6.6 Evaluate the uncertainty product D xD p for an arbitrary energy eigenstate u
n
 of a simple 

harmonic oscillator.

Solution: The uncertainty (D x)2 is given by

 
( ) ( )

( )

( ) ( )
( )

∆

∆

x x x
n

p p p
n

m

n n

n n

2 2 2
2

2 2 2

2 1
2
2 1

2

= 〈 〉 − 〈 〉 = +

= 〈 〉 − 〈 〉 = +
a

�ww

 
( ) ( )

( )

( )

∆ ∆

∆ ∆

x p
n

x p
n

2 2
2 22 1

4
2 1

2

= +

∴ = +

�

�
 

The ground state n = 0 corresponds to minimum uncertainty state.

Example 6.7 The wave function for a harmonic oscillator at t = 0 is given by

 y (x, 0) = C
0
u

0
(x) + C

1
u

1
(x)

Assume C
0
 and C

1
 to be real numbers. Show that the probability density y ( , )x t

2
 oscillates with a 

frequency w.

Solution: For a harmonic oscillator, y (x, t) is given by

 y y( , ) ( , ) ( ) ( )x t e x C u x e C u x e
iHt iE t iE t

= = +− − −
� � �0 0 0 1 1

0 1

  

Substituting E0 2
= �w  and E1

3
2

= �w , we get

 
y

w w

w
w

( , ) ( ) ( )

( )

x t C u x e C u x e

e C u x e C

i t i t

i t
i t

= +

= +

− −

−

0 0
2

1 1

3
2

0 0
2

  

 11 1
2 u x e

i t

( )
−





w

 y
w w w w

( , ) ( )x t C u x e C u e C u e C u e
i t i t i t i

2

0 0
2

1 1
2

0 0
2

1 1= +





+− − − −⋅
tt

2






 
= + + +
= + +

−C u C u C C u u e C C u u e

C u C u C

i t i t
0
2

0
2

1
2

1
2

1 0 0 1 1 0 0 1

0 0
2

1
2

1
2

02

w w

CC u u t1 0 1 cosw
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6.2 AbSTrACT OPErATOr METhOd
So far, the simple harmonic oscillator was analyzed in terms of Schrödinger wave equation. The 
energy eigenvalues and the eigenfunctions were obtained by solving the Schrödinger’s differential 
equation explicitly. The matrix elements like x xmn mn, ,2  the uncertainties D x and D p and so on were 
all evaluated using wave functions in the coordinate representation. There exists another method of 
studying harmonic oscillator, which does not require solving a differential equation or evaluation of 
an integral. This is called abstract operator or ladder operator method.

In using the Schrödinger equation, the operators x
op

 and p
op

 were taken as x xop =  and 
p i d dxop = − �( )./  In the abstract operator method, explicit form of the operators x

op
 and p

op
 is not 

used, and only the commutation relation [x
op

, p
op

] = i� is used. In fact, it is because of abstract operator 
method, harmonic oscillator finds its applications extensively in other fields.

Let us recall that the Hamiltonian of the oscillator is H = +
p

m
m xop

op

2

2 2

2
1
2
w .

This Hamiltonian along with the commutation relation [x
op

, p
op

] = i� are sufficient to determine the 
energy eigenvalues and other properties of a harmonic oscillator.

6.2.1 Ladder Operators a and a†

Let us introduce two new operators a and a† which are a combination of x
op

 and p
op

.

 a = C
1
x

op 
+ iC

2 
p

op

 a† = C
1
x

op 
- i C

2 
p

op

The standard choice is C m
1

1 2

2
= ( )w�

/

 and C
m2 1 2
1

2
=

( )
.

/� w
 so the operator a and a† are given by

 a m x i
m

pop op= ( ) +w
w2

1
2

1 2

1 2� �

/

/( )
 (6.32)

and a m x i
m

pop op
†

/

/( )
= ( ) −w

w2
1

2

1 2

1 2� �
 (6.33)

One cannot give any immediate rationale behind the choice of these coefficients accompanying x
op

 and 
p

op
. The only justification is that this choice leads to a very important commutation relation [a, a†] = 1. It is 

this commutation relation which forms the backbone of harmonic oscillator and its extensive applications.

Commutator [a, a†]
Let us evaluate the commutation relation [a, a†].

 

( ) ( )

( ) ( )

†[ , ] ,
2 2(2 ) (2 )

[ , ] [ , ]
2 2(2 ) (2 )

1 1 1
2 2

ipm i ma a x p x
m m

m i i mx p p x
m m

 
 = + −
  

 −= ⋅ + ⋅ 
  

= + =

w w
w w

w w
w w

� � ��

� ��

1/2

1/2

1/2 1/2

1/2

1/2

1/2 1/2
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i.e., [a, a†] = 1 (6.34)

Example 6.8 The operators a and a† are given by a = C
1
x + iC

2
 p and a† = C

1
x - iC

2 
p. Find the condi-

tions on C
1
 and C

2
, which lead to [a, a†] = 1

Solution:

 [a, a†] = [C
1
x + iC

2 
p,C

1
x - iC

2 
p]

 = C
1 
- iC

1
C

2
[x, p] + iC

2
C

1
[  p, x]

 = 2C
1
C

2 �  = 1

 ∴ =C C1 2
1
2�

Note that C m C m1
1 2

2
1 22 1 2= =w w/ and /(/� � ) /  satisfy this condition. Note both a and a† are dimen-

sionless quantities. 

6.2.2 Consequences of [a, a†] = 1

Number Operator

Let us define the number operator N as N = a†a (6.35) 

Let us now determine the eigenvalues of the number operator N. The eigenvalue equation is 

 Nu = lu

i.e., a†au = lu

Consider the scalar product of au with itself.

 (au, au) = (u, a†au) = (u, lu) = l(u, u) = l

For any state vector, the scalar product of it with itself is a positive number.

 (au, au) ≥ 0 \ l ≥ 0

i.e., the eigenvalues of the number operator are always positive.

a†-raising or Creation Operator
Let u be the eigenstate of the number operator with eigenvalue l.

i.e., Nu = l u

From this state, construct another state a†u. Now, consider Na†u.

 Na†u = a†aa†u

From a a† - a†a = 1, we write

 Na†u = a†(1 + a†a)u = +a u a a au
u

† † †

l
�

 = a†u + la†u = (l + 1)a†u
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This is a very interesting result. If u is an eigenstate of N with eigenvalue l, a†u is also an eigenstate 
of the number operator N with eigenvalue (l + 1); i.e., a† acting on u produces a new state for which 
eigenvalue of N increases by 1. So, a† is called raising operator. In quantum field theory, it is called 
creation operator. So we have 

u → eigenstate of N with eigenvalue l
a†u → eigenstate of N with eigenvalue (l + 1)

a – Lowering or Annihilation Operator 
From the state u, now construct another state au. Now consider Nau.

 Nau = a†aau

From a a†- a†a = 1, we get

 N au = (a a† - 1)au

 = − = − = −+a a au au au au au
ul

l l� ( )1

If u is an eigenstate of the number operator N with eigenvalue l, then au is also an eigenstate of  
N with eigenvalue of (l - 1); i.e., a acting on the state u produces a new state for which eigenvalue of 
N has decreased by 1. So a is called lowering operator. In quantum field theory, it is called annihilation 
operator. So we have 

u: eigenstate of N with eigenvalue l
au: eigenstate of N with eigenvalue (l - 1)

Lowest Eigenvalue of Number Operator
Let us start with the state u with the corresponding eigenvalue l. The operator a acting on u produces 
a new state with an eigenvalue (l - 1). Let a act on this new state. It should produce another state 
with eigenvalue (l - 2). Repeating this procedure, we can go on producing new states with eigenvalues 
(l - 1), (l - 2), (l -3) and so on.

State Eigenvalue of N

u l

au l - 1

a2u l - 2

a3u l - 3

� �

However, this cannot be repeated indefinitely since at some stage, we will get the eigenvalue of N to 
be a negative number. So by repeated application of lowering operator, we should reach a state from 
which it should not be possible for a to produce a new state. This is possible provided the sequence 
{l, (l - 1), (l - 2),...} ends in zero. i.e., the sequence should be {l, (l - 1), (l - 2),...,0}. This implies 
l should be a positive integer. (Otherwise, sequence will not end. For instance, suppose l = 1.2. Then 
au will have eigenvalue 0.2, a u2  will have eigenvalue -0.8 and so on.)
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So we should have a state u
0
 such that 

 au
0 
= 0

and so Nu
0 
= a†au = 0

To emphasize the fact that l is a positive integer, we replace it by letter n. Then we have

 Nu
n 
= nu

n
 (6.36)

 Na†u
n 
= (n + 1) a†u

n
 (6.37)

 Nau
n 
= (n - 1) au

n
 (6.38)

 au
0 
= 0 (6.39)

and Nu
0 
= 0 (6.40)

6.2.3 Energy Eigenvalues of harmonic Oscillator
From (6.32) and (6.33), we get

 ( ) † †1 2 1[ ] (2 ) [ ]
2 2op opx a a p m a a

m i
= ⋅ + = ⋅ −w

w
� �

1/2
1/2

Now let us write the Hamiltonian H in terms of a and a†.

 

2
2 2

† † 2 † †

1
2 2

1 1 1 1 2(2 ) [ ][ ] ( )( )
2 4 4 2

p
H m x

m

m a a a a m a a a a
m m

= +

= − ⋅ ⋅ − − + ⋅ ⋅ + +��

w

w w
w

 

(6.41)

 ( )† † † † 1[ 1] [2 1]
2 2 2

a a aa a a a a= + + = + = +� � �w w w

 = +( )�w N 1
2

Obviously, the Hamiltonian H commutes with the number operator N.

i.e., [H, N ] = 0 (6.42) 

Therefore, H and N together have common eigenstate.

Since Nu
n
 = n u

n

 Hu N u n un n n= +( ) = +( )1
2

1
2

�w  (6.43)

Therefore, the energy eigenvalues are

 E nn = +( )1
2

�w
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6.2.4 [a, a†] = 1 – Some Observations
It is significant to realize that the consequences (from (6.36) to (6.40)) of [a, a†] = 1 as listed in Section 
6.2.1. Have nothing to do with simple harmonic oscillators. They are the results of the commutation 
relation [a, a†] = 1. The existence of the number operator N and its eigenvalues, the properties of a and 
a† as lowering and raising operators and the existence of eigenstate u

0
 such that au

0 
= 0 and Nu

0 
= 0  

are all results that have nothing to do with simple harmonic oscillator. In fact, in the derivation of 
these properties from [a, a†] = 1, the simple harmonic oscillator Hamiltonian H p m m x= +2 22 1 2/ / w 2  
is nowhere used. All that matters is [a, a†] = 1. If, somehow, in a particular context, this algebra is 
obtained, then the rest of the results of section follow immediately. These results have to be interpreted 
in that particular context. For instance, in quantum field theory, N is interpreted as number operator cor-
responding to the number of particles; a and a† are interpreted as annihilation and creation operators.

Example 6.9 Show that † † 1[ , ( ) ] ( )n na a n a −=

Solution:

 † † † 1 † † 1 † † 1 † 1( ) ( ) ( 1)( ) ( ) ( )n n n n na a aa a a a a a a a a− − − −= = + = +

 † † † 1 † 1( ) ( ) ( )n n na a a a a a− −∴ = +  (6.44)

Using this equation, we can write 

 † 1 † † 2 † 2( ) ( ) ( )n n na a a a a a− − −= +  

Substituting this expression for † 1( )na a −  in the RHS of the Equation (6.44), we get

 † † † † 2 † 2 † 1 † 2 † 2 † 1( ) [ ( ) ( ) ] ( ) ( ) ( ) 2( )n n n n n na a a a a a a a a a a a− − − − −= + + = +

Using the Equation (6.44), we can write † 2( )na a −  as 

 † 2 † † 3 † 3( ) ( ) ( )n n na a a a a a− − −= +

Making use of this expression for † 2( )na a −  we get

† † 2 † † 3 † 3 † 3 † 3 † 3 † 1( ) ( ) [ ( ) ( ) ] 2( ) ( ) ( ) 3( )n n n n n na a a a a a a a a a a a− − − − −= + + = +

Repeating this procedure, we get

 † † † 1( ) ( ) ( )n n na a a a n a −= + .

This gives † † 1[ , ( ) ] ( )n na a n a −=  (6.45)

6.2.5 Construction of Energy Eigenstates Using Ladder Operators
Let us start with the ground state u

0
 which satisfies 

 au
0 
= 0

We can get eigenstates corresponding to higher energies using the raising operator a† as follows. a†u
0 
is 

an eigenstate with energy 3 2/ �w ; (a†)2u is an eigenstate with energy 5 2/ �w . Repeating this procedure, 
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we can  obtain eigenstates corresponding to any particular energy eigenvalue E nn = +( ) .1 2/ �w  Let u
n
 

be the normalized eigenstate corresponding to energy E nn = +( ) .1 2/ �w

†
0( )n

n nu C a u∴ =

where C
n
 is a constant of normalization.

 
† †

0 0

2 †
0 0

( , ) ( ( ) , ( ) )

| | ( , ( ) )

n n
n n n n

n n
n

u u C a u C a u

C u a a u

=
=

Let us now evaluate †
0( )n na a u . Using (6.45), we get

 
�

† 1 † 1 † 1 † 1 † 1 1 †
0 0 0 0 0( ) ( ) [ ( ) ] ( ) ( )

0

nn n n n n n n n n na a u a a a u a n a a au na a u a a au− − − − − −= = + = +

⇓

 
= = = − +− − − − − −na a u na a a u na n a an n n n n n1 1

0
2 1

0
2 21( ) ( ) [( )( ) († † †

��� ��
††

†

) ]

( ) ( )

n

n n

a u

n n a a u

−

− −= −

2
0

2 2
01

� ����� �����

Proceeding in the same way, we get

 †
0 0 0( ) ( 1)...1 !n na a u n n u n u= − =  (6.46)

 (u
n
, u

n
) = C

n
2n! (u

0
, u

0
) = C

n
2 n!

 ∴ =C
nn

1
1 2( !) /

\ The normalized wave function is given by

 †
0

1 ( )
( !)

n
nu a u

n
=

1/2
 (6.47)

Example 6.10 Show that a u n un n
† /( )= + +1 1 2

1

Solution:

 
a u a

a

n
u

n
a u

n
n u n u

n

n
n

n n

† †
†

†( )

! !
( )

!
( )!

= ⋅ =

= + = +

+

+ +

0
1

0

1 1

1

1 1 1  

Example 6.11 Show that au n un n= − 1.
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Solution:

 }{
†

† 1 † † 1
0 0 0

( ) 1 1( ) ( ) ( )
! ! !

n
n n n

n

a
au a u n a a a u n a u

n n n
− −= = + =

 = − =− −
n
n

n u n un n
!

( )!1 1 1  

Example 6.12 Evaluate †
0( ) .m na a u

Solution:
Case 1: m n= . From (6.47), we get † †

0 0 0( ) ( ) !m n n na a u a a u n u= =
Case 2: m > n. 

 † †
0 0 0( ) ( ) ! 0m n m n n n m na a u a a a u n a u− −= = =

Case 3: † 1 † 1 † 1 † 1 † 1
0 0 0 0 0( ) ( ) [ ( ) ( )  ] ( )m n m n m n n m nm n a a u a a a u a n a u a a u na a u− − − − −< = = + =

Proceeding in the same way, we get

 † †
0 0( ) ( 1) ( 1)( )m n n ma a u n n n m a u−= − ⋅⋅⋅ − +

Example 6.13 Evaluate x
mn

.

Solution: Note †1 ( )
2

x a a= +
a

 
† † †

0 0

( ) ( ) ( )
( , ) ,

! 2 !

m n

mn m n

a a a a
x u xu u u

m n

 +∴ = =   a

 

† † †
0 0

1 † † 1
0 0 0 0

1, , 1

1 1 1 (( ) ,( )( ) )
! ! 2

1 1 1 {( , ( ) ) ( , ( ) )}
! ! 2

1 1 1 1 { ! ! }
! ! 2

m n

m n m n

m n m n

a u a a a u
m n

u a a u u a a u
m n

n m
m n

+ +

+ +

= +

= +

= ⋅ ⋅ +

a

a

d d
a

 = ⋅

+ + =

= +









1
2

1
1 1

1

0

1 2

a

( ) /m m n

m m n

if

if

Otherwise

Example 6.14 Evaluate xmn
2 .

Solution: The matrix element xmn
2  is given by

 xmn m nu x u2 2= ( , )

The operator x is given by †1 ( )
2

x a a= +
a
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 2 † 2 † 2 † 2 † 2 †
2 2

1 1[ ( ) ] [ ( ) 2 1]
2 2

x aa a a a a a a aa∴ = + + + = + + −
a a

 

2 † 2 † 2 † †
0 02

† 2 2 †
0 0 0 02

1 † 1 †
0 0 0 0

1 1 1( , ) ( ) , ( ( ) 2 1) ( )
2! !

1 1 1 {( , ( ) ) ( , ( ) )
2! !

2( , ( ) ) ( , ( ) )}

m n
m n

m n m n

m n m n

u x u a u a a aa a u
m n

u a a u u a a u
m n

u a a u u a a u

+ +

+ +

 
∴ = + + −  

= ⋅ ⋅ + +

−

a

a

 =

−
= +

+
+

+ =

+

1
2

1
2

2

1
2

2

2
2

1
2

2 1

2

2

2

a

a

a

m
m m

m n

m

m m
m n

m

m

!
! ( ) !

( )!

!( )!

( )!

!

 

mm
m

m m
m n

!
!

! !
−









 =















0 Otherwise

 =

− = +

+ + + =

+ =

1
2

1 2

1
2

1 2 2

1
2

2 1

2
1 2

2
1 2

2

a

a

a

[ ( )]

[( )( )]

( )

/

/

m m m n

m m m n

m m n

    Otherwise0















Example 6.15 Evaluate p
mn

.

Solution: The matrix element p
mn 

is given by (u
m
, p u

n
)

The operator p is given by p
i a a= −�a ( )†

2

 † † †
0 0

1 1 (( ) ,( )( ) )
2 ! !

m n
mnp i a u a a a u

m n
∴ = ⋅ −�a

 

† 2 1 †
0 0 0 0

, 1 1,

1 1 {( , ( ) ) ( , ( ) )}
2 ! !

1 1 {[ ! ( 1)! ]}
2 ! !

1

1      1
2

0 otherwise

m n m n

m n m n

i u a a u u a a u
m n

i m m
m n

m m n

i m m n

+ +

+ +

= −

= − +

 = += − + + =



�

�

�

a

a d d

a
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Example 6.16 Evaluate pmn
2 .

Solution: The operator p2 is given by

 
2 2 2 2

2 † 2 2 † † † † 2 2[( ) ] [2 1 ( ) ]
2 2

p a a a a aa aa a a= − + − − = − − −� �a a

 2

2 2
2 † † † 2 2 †

0 0

2 2
1 † 1 † † 2 †

0 0 0 0 0 0 0 0

2 2

, 2 2,

1 1( ) ,(2 1 ( ) ) ( )
2 ! !

{( , 2 ( ) ) ( , ( ) ) ( , ( ) ) ( , ( ) )}
2 ! !

{2( 1)! ! ! ( 2)! }
2 ! !

m

m n
mn

m n m n m n n

mn mn m n m n

p a u aa a a a u
m n

u a a u u a a u u a a u u a a u
m n

m m m m
m n

++ + +

+ +

 
∴ = − − −  

= − − −

= + − − − +

�

�

�

a

a

a d d d d

 =

+ =

− −[ ] = +

−

( )

( )
/

2 1
2

1
2

2

2 2

1 2 2 2

m
m n

m m m n

m

�

�

a

a

                   

(( )
/

m m n+[ ] + =














1
2

2
1 2 2 2� a

Example 6.17 Evaluate the uncertainty product D xDp for an eigenstate u
n
 for a harmonic oscillator.

Solution

 (D x)2 = (u
n
, x2u

n
) - (u

n
, xu

n
)2

 (D p)2 = (u
n
, p2u

n
) - (u

n
, pu

n
)2

From the examples 6.13 – 6.16, we have

 (u
n
, xu

n
) = 0

 ( , )
( )

u x u
n

n n
2

2

2 1
2

= +
a

 (u
n
, pu

n
) = 0

 

( , ) ( )

( ) ( ) ( )

( )

u p u n

x p n

x p n

n n
2

2 2

2 2 2
2

2 1
2

2 1
4

2 1
2

=

=

+

∴ ∆ ∆ +

∴ ∆ ∆ = +

�

�

�

a

State Function in Coordinate representation from Ladder Operator Method
Let us start with the ground state wave function.

 a u
0
(x) = 0
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In the coordinate representation

 x x p i d
dxop op= = −and �

 
∴ = ( ) + −( )

= + = +





a m x i

m
i d

dx

x d
dx

d
d

w
w

a
a r

r

2 2

1
2

1
2

1
2

1 2

1 2� �
�

/

/
( )

where r = a x

 

∴ +





=

= − = −

d
d

u

du

d
u

du

u
d

r
r r

r
r r r

0

0
0

0

0

0( )

or  

On integrating, ln
u

N
0

0

2

2
= − r

 ∴ = −
u N e0 0

2

2r

The operator a†  is given by

 a m x i
m

p d
dop op

†
/

/( )
= ( ) − = −





w
w

r
r2 2

1
2

1 2

1 2� �

The higher energy states are given by

 †
0 0/2

1 1 1( ) .
2! !

n

n
n n

du a u u
dn n

 = = −  
r

r
 (6.48)

Consider 
d

d
e

r
f

r
−





2

2

 d
d

e e d
d

e d
dr

f r
r
f

r
r f

r r r

y

− − −





= − +





= − −





2 2 2

2 2 2 1( )
� ���� ���

= −
e
r

y
2

2

Next, consider d
d

e
2

2
2

r
f

r
−





2

 d
d

e d
d

d
d

e d
d

e
2

2
2 2 2

r
f

r r
f

r
y

r r r
− − −





= ⋅ 





= 





2 2 2

M06_QUANTUMMECHANICS_3628_CH06.indd   193 5/20/2013   3:01:14 PM



194  Quantum Mechanics

 = − −





= − −





− −
e d

d
e d

d

r r

r
r y

r
r f

2 2

2 2 2

2

1 1.( ) ( )

Extending this result further, we get

 

d
d

e e d
d

d
d

e

n

n
n

n

n

r
f

r
r f

r
r f

r r
− −





= − −





∴ −





=

2 2

2 2 1( ) .

rr r r
r

r

r
f

r
f

2 2 2 2

2 2 2 21 12( ) ( )− 





= ⋅ − 





− − −n
n

n
n

n

n
d

d
e e e d

d
e

Making use of this result in (6.48), we get

 u
n

e e d
d

e un n
n

n

n
= ⋅ − 





− −1 1
2

1
2

2 2
0

2

!
( )

r
r

r

r

2 2

 

= − ⋅










= ⋅

− − −

−

N

n
e e d

d
e e

N

n
e

n
n

n

n

n

0

2

2 2 2

0

2

1

2
1

1

2

2

!
( )

!

r

r

r r

r

r

2 2 2

2

22

0

2

2

1

1

2

2 2( )

!
( ).

( )

−

=

−

−

n
n

n

n n

e d
d

e

N

n
e H

H n

r r

r

r

r

r

� ���� ����

2
 (6.49)

6.3 COhErENT STATE
Coherent state in the case of a harmonic oscillator is one of the important concepts in quantum 
mechanics. It was first worked by Schrödinger to illustrate that there exist states of harmonic oscilla-
tor which oscillates like classical harmonic oscillator.

The simplest definition of a coherent state of a simple harmonic oscillator is that it is an eigenstate 
of the annihilation operator.

i.e., af = af

where a is the annihilation operator and a is the eigenvalue of a. So far, we have been using mw /�( )1 2/

as a. In this section, we are not taking a as mw /�( )1 2/
. a is now the eigenvalue of the operator a and, 

in general, a is a complex number.
There is another definition of coherent states of a harmonic oscillator; it is a state with minimum 

uncertainty product, i.e., any wave packet for which ∆ ∆x p = �/2 represents a coherent state. It hap-
pens to be true that such a wave packet executes a simple harmonic motion.

In general, at introductory level, there is always an emphasis on the development of a wave packet 
whose time evolution resembles like the motion of a classical harmonic oscillator.
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Change of Notation
Before proceeding further, let us mention the changes in the notation to be used in this section. Let us 
now define b as b w= ( )m /� 1 2/

. In the previous sections, the Greek letter a was used to represent this 
quantity. As mentioned earlier in this section, a is used as the eigenvalue of the annihilation operator 
a. So the harmonic oscillator wave function is given by

 u x
n

e Hn n n( )
!

( )
/

/=






−b
p

rr

2

1 2

22  where r b= x  (6.50)

Classical harmonic Oscillator
The classical harmonic oscillator is represented by

 x(t) = A cos w t

and p(t) = -mw A sin w t

So one will expect to find a wave packet for harmonic oscillator such that 〈 〉x t( )  and 〈 〉p t( )  are similar 
to the above functions. It is enough, even if the peak of the wave packet executes a simple harmonic 
motion.

The total energy of the classical harmonic oscillator is given by 

 E
p
m

m x= +
2

2 2

2
1
2
w

 or (p2 + m2w2x2) = 2mE

Dividing this equation by 2�mw ,

 
( )m x p

m
mE
m

E
2 2 2 2

2
2

2
w
w w w
+ = =

� � �

This can be rewritten as 

 ( )
( )

( )
( )/ /

m x ip
m

m x ip
m

Ew
w

w
w w

+ ⋅ − =
2 21 2 1 2� � �

 (6.51)

It is immediately obvious, 
m x ip

m
m x i

m
p

w
w

w
w

+ = ( ) +






( ) ( )/

/

/2 2 21 2

1 2

1 2� � �
 is the classical quantity corre-

sponding to the quantum mechanical annihilation operator a = m x i
m

pop op
w

w2 2

1 2

1 2� �( ) +








/

/( )
.

Let us now define a as

 a w
w

= +m x ip
m( )2�

  (6.52)

where x and p are numbers. Therefore, a  is a number. We have the following correspondence between 
classical physics.
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Classical physics Quantum mechanics

x xop

p pop

m x p
m
w
w
+ i

( ) /2 1 2�
a

m
x

i
m

pop op= 





+












w
w2 2

1 2

1 2� �

/

/( )

It is interesting to see the simple harmonic motion in phase space. If one plots p(t) against mw x(t), 
the simple harmonic motion is represented by a circle in phase space. On the other hand, we can go 

P

mwx

iP
a (t )

mwx

Fig. 6.4 Trajectory in phase space corresponding to simple harmonic motion

to a complex plane where mw x is along x axis and p is along imaginary axis. In this complex plane, 
a a w w( ) ( ( ) ( )) ( )t m x t ip t m= = + / 2�  traces a circle as time progresses.

So, in quantum mechanics, for a system in the eigenstate of the annihilation operator a, we 
would expect the expectation value of x and p, to exhibit a classical harmonic motion. Therefore, the 
immediate task is to find the eigenstate of the quantum mechanical operator a m xop= +(( ) )/w /2 1 2�   
( ( ) )/1 2 1 2/ �m ipopw  and analyze its properties.

Before proceeding further, let us study wave packet corresponding to the uncertainty product  
D x Dp again.

Minimum Uncertainty Wave Packet and Coherent State
In the derivation of the uncertainty relation ∆ ∆x p ≥ �/2, we define two operators U = x

op 
- 〈x〉 and V = 

p
op 

- 〈 p〉, and the wave packet corresponding to minimum uncertainty product is given by

 (U + ilV ) f (x) = 0  (6.53)

where l = − 〈 〉 = =i p
p p

x[ , ]
( ) ( )

( )x
2 2

2
2 2

2

∆ ∆
∆�
�

 (6.54)

Let x
0
 and p

0
 be the expectation value of x and p, i.e., 〈x〉 = x

0
 and 〈 p〉 = p

0
. Then, from (6.53), we get

 ( ) ( )
( )

( ) ( )x x x i
x

p p x− + − =0

2

0

2
0f f∆

�

 x i
x

p x x i
x

p xop op+





= +





2 22

0

2

0

( ) ( )∆ ∆
� �

f f( ) ( )  (6.55)
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Let us choose a particular width D x, namely 

( )∆x
m

2
2

1
2 2

= =
b w

�

This is the width of the ground state of harmonic oscillator. Substituting this expression in the  
Equation (6.55), we get 

 x i
m

p x i
m

pop op+( ) = +( )w
f

w
f0 0

Multiplying both sides by mw /
/2

2
1�( )  we get

 m x i
m

p x m x i
mop op

w
w

f w
w2 2 2 2

1 2

1 2

1 2

0 1� � � �( ) +






 = ( ) +

/

/

/

/( ) ( )
( )

22 0p x






f ( )

Or af (x) = af (x)  (6.56)

So the wave packet corresponding to minimum uncertainty product and width 2 2 1 2∆x m= ( ) /�/ w  is 
the eigenstate of the annihilation operator and hence such a wave packet represents a coherent state. 
It is to be noted that all such wave packets (and hence all the eigenstates of the annihilation operator) 
have the same width ( )∆x m2 21 2 2= =/ /b w�  (as that of the ground state of harmonic oscillator).

Ground State as Coherent State
Let us recall that ∆ ∆ =x p �/2 for ground state u0 .. It is a state corresponding to minimum uncertainty 
product. Therefore, ground state u e x

0
1 2 22 2= −( ) / ( )/b p b/  is a coherent state. What about other station-

ary energy eigenstates? We have already worked out D x D p for an arbitrary energy eigenstate u
n
,
 
and 

it is found to be 

∆ ∆x p n = +( )1
2

�

Obviously, none of the other energy eigenstates satisfies the minimum uncertainty product relation. 
Hence, it is not possible to use them as coherent states.

So if one constructs a coherent state which is distinct from the ground state, it will not be an energy 
eigenstate. Since all the energy eigenstates form a complete set, the coherent state can be expressed as 
a superposition of all the energy eigenstates.

Eigenstates of Annihilation Operator
The eigenvalue equation of the coherent state is

 af (x) = a f (x)

Note that a a≠ †. Therefore, a is not a Hermitian operator, and hence its eigenvalue can be a real or a 
complex number. So it is convenient to write the eigenvalue equation as

 af (x) = a eiqf (x) (6.57)
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Our interest is two-fold now: one is the determination of f (x) for a given a eiq and the other is to deter-
mine how this state evolves in time for a harmonic oscillator. In other words, let us choose y (x, 0) as

 y (x, 0) = f (x) (6.58)

The time evolution of this state is given by

 y y f( , ) ( , ) ( )x t e x e x
iHt iHt

= =− −
� �0  (6.59)

So we have to determine (i) f (x) and (ii) y (x, t).

determination of e (x)
The eigenvalue equation for the annihilation operator is 

 af (x) = a eiqf (x) (6.60)

To make a correspondence with the classical harmonic oscillator, aeiq may be written as

 a w
w

qe m x
ip

m
i = ( ) +

2 2

1 2

0
0

1 2� �

/

/( )
 (6.61)

At classical level, this represents a simple harmonic motion described by 

 x (t) = X cos (w t - q ) (6.62)

where X x p m= +( ) /
0
2

0
2 2 2 1 2w

This represents a vibrating particle which at t = 0 is at position x
0
 with momentum p

0
.

i.e., at t = 0, x (0) = x
0 
= X cosq (6.63)

and p (0) = p
0 
= mwX sinq (6.64)

From (6.63) and (6.64) A simple algebra will give the relation X x p m= +( )0
2

0
2 2 2 1 2w / . For such a clas-

sical harmonic oscillator from (6.61), (6.62), (6.63) and (6.64), we get the following relations which 
will be useful later.

 2
1 2

a w b= ( ) =m X X
�

/

 (6.65)

 2 0a q b q bcos cos= =X x  (6.66)

 2 0a q b q
b

sin sin= =X
p

�
 (6.67)

 2a w q b w qcos( ) cos( )t X t− = −  (6.68)

 2a w q b w q
b

sin( ) sin( )
( )

t X t
p t− = − = −
�

 (6.69)

Since the energy eigenstates u
n
(x) of a harmonic oscillator form a complete set, they can serve as a 

basis functions to expand f (x). Therefore, let us write

 f ( ) ( ),x C u x Cn n
n

n
n

= =∑ ∑with 
2

1
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Hence u
n
 (x) is given by

u x N e H x

a x C au x C n u x

n n
x

n

n n
n

n
n

n

( ) ( )

( ) ( ) ( )

/=

= =

−

=

∞

=

∞

−∑ ∑

b b

f

2 2 2

0 0
1 == −

=

∞

∑C n u xn n
n

 1
1

( )

Feeding this expression in Equation (6.60), we get

 C n u e C un n
i

n
n n

n

 −
=

∞

=

−








 =∑ ∑1

1 0

0a q  (6.70)

The first term can be rewritten as follows:

 C n u C n un n
n

n
n

n  −
=

∞

+
=

∞

∑ ∑= +1
1

1
0

1

Therefore, the Equation (6.70) becomes

 C n C e un n
i

n
n

+
=

∞

+ −  =∑ 1
0

1 0a q

Since the functions u
n
s are linearly independent, we can equate the coefficient of each term to zero.

 ∴ =
++C

e

n
Cn

i

n1
1

a q

Obviously C
n
, corresponding to this recursion relation, is given by

 C e
n

Cn

n in
= a

q

!
0  (6.71)

Since C
n
s are the coefficients of the basis functions in a linear combination, we have

 

C

n
C C

n
C e

C e C e

n
n

n n

2

2

0

2

0

2 2

0

2

0

2

0
2

1

12

2
2

∑

∑ ∑

=

∴ = = =

∴ = =− −

a a a

a
a

! !

or 

 ∴ = −

=

∞

∑f aa q

( )
( )

!
( )x e

e

n
u x

i n

n
n

2

2

0

 (6.72)

This can be rewritten as follows:

 

f
a b

p
r

a q r

a

( )
! !

( )

/

x e
e

n n n
e H

e e

i n

n
n=

( )
⋅







=

−

=

∞
−

−

∑
2 2

2

2

0

1 2

2

2

2  

−−

=

∞











⋅∑
r b

p
a q r

2

2

1 2

0 2
1

/

!
( )ei

n
H

n

n
n

 (6.73)
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We know the generating function for Hermite’s polynomials.

 G t e t
n

Ht t
n

n
n

( , )
!

( )r rr= =− + ∑2 2  (6.74)

Comparing (6.73) and (6.74), taking  as 
a qe

t
i

2





 , we get

 f a r b
p

a a rq q( ) exp expx e ei i= − −











− 





+





2 2
2 2

2 2 2
2

2






 

=






− − − +





=






b
p

r a a a r

b
p

q q

1 2
2 2 2

2

1 2

2 2 2
2

/

/

exp

ex

e ei i

pp (cos sin ) (cos sin )− − − + + +





r a a q q a q q r
2 2 2

2 2 2
2 2 2i i

Making use of the relation 1 + cos 2q = 2cos2q, we get 

 f b
p

r a q ar q a( ) exp cos cos exp sin
/

x i= 





− − +





−
1 2 2

2 2 2

2
2

2
2 qq a r q( )exp( sin )i 2

 =






−( ) − −b
p

a q ar q r a q
1 2

2

2
2 2 1

2
2

/

exp sin .exp( sin ).exp ( cos )i i 22( )
Making use of the relations ((6.66) and (6.67)) 2 2

2
0

0a q b a q
b

cos sin ,= =x
p

 and 
�

we write f (x) as

 f b
p

a q b
( ) exp sin exp exp ( )

/

x i ip x
x x=







−( ) 





− −
1 2

2 0
2

02
2

2�
22





Leaving aside the phase factor, we can write f (x) as

 f b
p

b
( ) exp( )exp ( )

/

x ip x x x=






⋅ − −





1 2

0

2

0
2

2
/�  (6.75)

This is Gaussian wave function centered around x
0
; i.e., a Gaussian function shifted by a distance x

0
 

from the centre.
The probability density f ( )x

2
is given by

 f b
p

b( ) ( )x e x x2 2
0

2= − −  (6.76)

This is the standard Gaussian distribution. It is almost the same as the probability density for ground 
state names u x0

2
( )  except for the fact that its peak is at x

0 
and has the same width 2/b  around x

0
. So 

it is a Gaussian distribution displaced by x
0
.
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−1 x0 − 1 x0 + 1
x0

|u0(x)|2 |e(x)|2

b
1
b b b

Fig. 6.5 Sketches of u x0

2
( )  and f( )x

2
 for coherent state

Note that it is not energy eigenfunction for harmonic oscillator.

Time Evolution of the Coherent State
The time evolution of the coherent state is given by

 y f( , ) ( )/x t e xiHt= − �

From Equation (6.69), we write y (x, t) as

 y aa
q

( , )
( )

!
( )/x t e e

e

n
u xiHt

i n

n
n= − −

=

∞

∑� 2 2

0

/

 = − −

=

∞

∑e
e

n
e u x

i n
i Ht

n
n

a
qa2 2

0

/ ( )

!
( )�

But e u x e u x e u x e e uiHt
n

i Ent
n

i n t

n
i t in t

n
− − − +( ) − −= = =/ /� �( ) ( ) ( )

1
2 2w w w (( )x

 ∴ = −

=

∞
− −∑y aa

q
w w( , )

( )

!
( )/x t e

e

n
e e u x

i n

n

i t in t
n

2 2

0

2/

 

= −

















−
−

−
exp

!

/

i
t

e
e e

n
e H

i i t
n

w b
p

aa
q w r

2 2
1

1 2

2
2 2

2

/

nn
n

i
t

e e G t t

( )

exp ( , )
/

r

w b
p

r
a r

=

− −

∑

= −











=

0

1 2

2 2

2

2 2

∞

with
aa

w b
p

r a a

q w

w

e e

i
t

e

i i t

i

−

−= −











− − −

2

2 2 2 2

1 2
2 2 2

2exp exp
/

( tt i te− − −+





q w qa r) ( )2

 

=






−





− − −b
p

w a w q a w q r
1 2

2

2 2
2 2

/

exp exp sin ( ) sin( )i
t

i t i t





− − − − + −





exp cos ( ) cos( )
r a a w q ar w q

2 2 2

2 2 2
2 2t t

M06_QUANTUMMECHANICS_3628_CH06.indd   201 5/20/2013   3:01:38 PM



202  Quantum Mechanics

 
=







− − − + −











b
p

w a w q ar w q
1 2

2

2 2
2 2

/

exp sin ( ) sin( )i
t

t t 

− − −





.

exp ( cos( ))1
2

2 2r a w qt

But we know from (6.68) that 2a w q b w qcos( ) cos( )t X t− = − . It is b  times the posi-
tion x(t) for a classical particle in simple harmonic motion. We also know that (from (6.69)) 

− − = − − =r a w q a b w qsin( ) sin( )t x t  (p(t)x)/� where p(t) is the momentum of the classical par-
ticle which is executing simple harmonic motion.

 ∴ =






− − −











y b
p

w a w q( , ) exp sin ( ) .exp
/

x t i
t

t i
1 2

2

2 2
2

ppx
X t

�






− − −( ).exp ( cos( ))1
2

2r b w q

Leaving aside the phase factors, we write y (x, t) as 

 ∴ =












− − −( )y b
p

r b w q( , ) exp exp ( cos( )
/

x t i
px

X t
1 2 2

1
2�

 ∴ =












− − −


y b
p

b w q( , ) exp exp ( cos( ))
/

x t i
px

x X t
1 2

2 21
2�




 ∴ =












− −( )y b
p

b( , ) exp exp ( )
/

x t i
p x

x xcl
cl

1 2

2
2

1
2�

 (6.77)

where x
cl
 is the classical position given by x

cl 
= Xcos (w t - q ) and p

cl
 is the classical momentum given 

by p
cl 

= -mw x sin (w t - q ).
This wave packet literally behaves like a classical harmonic oscillator. It is a wave packet centred 

about x
cl
(t); i.e., the position of the peak executes a simple harmonic motion.

The probability density | ( , )|y x t 2 is given by | ( , )| exp[ ( ( )) ]y b p bx t x x tcl
2 2 2= − −/ . It is a 

Gaussian distribution with a mean at x
cl
(t) = xcos (w t - q ). i.e., the mean of the Gaussian distribution 

executes a simple harmonic motion. Thus, we have constructed a wave packet executing simple har-
monic motion. The significance of this result can be realized only if we recognize the fact that the time 
evolution of this wave packet has been determined by the Hamiltonian of simple harmonic oscillator. 
Thus, we have succeeded in constructing a quantum state (which is the solution of time-dependent 
Schrödinger equation for harmonic oscillator) executing simple harmonic oscillations like a classical 
object. In addition, the product of uncertainties of position and momentum for this wave packet is �/2.  
So we have succeeded in constructing a coherent state for simple harmonic oscillator.

Example 6.18 Show that ∆ ∆ =x p �
2

 for the coherent state f  defined by af af= .

Solution: To calculate the uncertainty product ∆ ∆x p,  we make use of the following results:

 ( , ) ( , ) ( , ) ( , ) ( , ) ( , )y y y y y y y y y y y yA A c c c c= = ∗ =†
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For harmonic oscillator, we have

 = + = + + + = + + +2 2† 2 † 2 † † † 2 †1 1 1( ) ( ) ( 2 1)
222 2 2

x a a x a a aa a a a a a a
b b b

 = − = − + − − = − + − −2 2

22 2 2
† 2 † 2 † † † 2 †( ) ( ) ( 2 1)

2 22

� � �i
p a a p a a a a aa a a a a

b b b

 
∗ ∗

〈 〉 = + = + = +

= + = +

† †1 1 1( ,( ) ) [( , ) ( , )] [( , ) ( , )]
2 2 2

1 1[ ( , ) ( , )] [ ]
2 2

x a a a a a af f f f f f f f f f
b b b

a f f a f f a a
b b

 
∗

〈 〉 = + + + = + + +

= + +

2 22 † 2 † † 2 †
2 2

2
2

1 1[( ,( 2 1) ) [( , ) ( , ) ( , 2 ) ( , )]
2 2

1 (( ) 1)
2

x a a a a a a a af f f f f f f f f f
b b

a a
b

 

∗

∗

〈 〉 = − = −

〈 〉 = − + − − = − − −2

†

22 2
2 † 2 † 2

, ( ) ( )
2 2

, ( 2 1) [( ) 1]
2 2

� �

� �

i i
p a a

p a a a a

b bf f a a

b bf f a a











From the above calculations, we get

 ( ) ( )∆ = 〈 〉 − 〈 〉 = ∆ = 〈 〉 − 〈 〉 =x x x p p p2 2 2
2

2 2 2
2 2

1
2 2b

b
   and    

�

 ∴ ∆ ∆ = ∆ ∆ =( ) ( )x p x p2 2
2

4 2
� �or

Example 6.19 Show that e u e e ua a al l l l† †− −∗ =0
2

0

2

Solution: Making use of the result e e e eA B A B A B+ −[ ]= ⋅ ⋅ , 2

 e e e ea a a a a al l l l l l† † †[ , ]/− ∗ − ∗ − − ∗= ⋅ ⋅ 2

−− −

−

−− −

−

∗ ∗ ∗− = − = =

∗∗∴ =

∗ 
∗∗  = − + + ⋅⋅⋅ =

  

∗∗∴ =

=

† †

† †

2

†

2† †

2

2

2 2

0 0 0

2

2
0 0

2
0

[ , ] [ , ]

( )
Note that  e 1

2!

a a a a

a

a a a a

a

a a a a

e e e e

a
u a u u

e u e e e u

e e u

l
l l l l

l

l
l l l l

l
l

l l ll ll l

ll
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Example 6.20 Show that f l l= ∗−e ua a†

0 is an eigenstate the annihilation operator a with the eigenvalue l.

Solution:

 a a e ua a  f l l= ∗−†

0

 

a e u a e e u

a e u a a
a a

a a a

a

  

 

l l
l

l

l l l l

† †

† †
† †( )
!

( )

− −∗ =

= + + +

0
2

0

0
2

2
3

2

1
2

33

0

0
2

2

0
3

3

0

3

2 3

!

( )
!

( )
!

†
† †

+ ⋅⋅⋅





= + + + ⋅⋅⋅

u

aa u
a a

u
a a

ul l l

But we know that a(a†)n = (a†)na + n(a†)n – 1

 \a(a†)nu
0 
= n(a†)n – 1 u

0

 
∴ = + + + +





= +

ae u a a a
u

a

atl l l l l

l l

0

2 3 2 4 3

0
2

2
3

3
4

4

1

† † †

!
( )
!

( )
!

...

†† † †

!
( )

!
( ) ... †+ + +





=l l l l
2

2
3

3
0 02 3

a a u e ua

 ∴ = = =
=

− − −∗ ∗ae u e e u e u

a

a a a a al l
l

l l ll l lf
f lf

† † †

0
2

0 0

2

or 

ExErCiSES

 1. What are the boundary conditions on the wave functions for a simple harmonic oscillator?
 2. Why should the energy eigenstate of a harmonic oscillator have a definite parity?
 3. What is meant by zero point energy? How will you explain in terms of uncertainty principle? 

 4. What is the dimension of a w= ( )m
�

1 2/

?

 5. What is the dimension of r = ax?
 6. How do you implement the boundary condition of finiteness of the wave function when it is 

expressed in terms of a series for a harmonic oscillator?
 7. How does the polynomial (C

0 
+ C

2
 r 2 + C

4 
r 4) behave as r  → ∞?

 8. How does e C C C− + +r r r2 2
0 2

2
4

4/ ( ) behave as r → ∞?

 9. Why do you think that the solution e Cs
s

s

−

=

∞

∑





r

r
2

2

0

 diverges to infinity while e Cs
s

s

n
−

=
∑





r

r
2

2

0

 
goes to zero as r → ∞?

 10. Obtain the series for l = 7 using the recursion relation

    (i) C
s

s s
Cs s+ = − −

+ +2

2 1
2 1
( )

( )( )
l

  (ii) C
s s

s
Cs s− = −

− − −2

1
2 2 1

( )
( ) ( )l
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 11. Normalize the energy eigenfunction u(x) given by

  u x Ne xx( ) ( )/= −−a a2 2 2 2 24 2

 12. Show that u x N e u x N ex x
0 0

2
1 1

22 2 2 2( ) ( )/ /= =− −a aand . 2x are orthogonal to each other.
 13. Evaluate the matrix elements x

12
 and x

21
.

 14. Evaluate the matrix elements (x2)
00

, (x2)
22

, (x2)
02

 and (x2)
20

 of x
op

. ( ( ) ).Note mnx u x u dxm n
2 2= ∗∫

 15. Evaluate the matrix elements p
12

 and p
21

 of the momentum operator p
op

.

 16. Obtain u
2
(x) using † 2

0( ) / 2 (( ))a u xa , where u x e x
0

1 2
22 2( ) .

/
( )/a a p a= ( ) −/

 17. Determine [a, (a†)3].
 18. Determine

      (i) a3 (a†)3u
0

    (ii) a5 (a†)3u
0

  (iii) a3 (a†)5u
0

 19. The wave function f a( )x e x x= − −2
0

2 2( ) /  is written as f ( ) ( ).x C u xn n= Σ  Obtain the coefficients C
n
. 

 20. What is meant by coherent state?
 21. A ball in the simple pendulum executes a simple harmonic motion x(t) = A cos w t. Determine its 

trajectory in phase space.
 22. Explain how the classical variable a corresponding to the quantum mechanical operator 

m x ip

m

w
w

+
2 �

 

(where x and p are numbers) represents the trajectory of a harmonic oscillator in phase space.
 23. Obtain the coherent state wave packet corresponding a classical particle executing simple har-

monic motion such that

    (i) x p pcl cl( ) , ( )0 0 0 0= =
  (ii) x Acl ( )0 =  and pcl ( )0 0=
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Orbital Angular 
Momentum

The classical  angular momentum of a particle at r of the momentum p is given by L r p= × . In clas-
sical physics, this defi nition takes care of all the situations like the orbital motion of earth around the 
sun, the spinning motion of the earth around its own axis and so on. In quantum mechanics, there 
exists a corresponding operator L r pop op p= × o . However, this defi nition of angular momentum is not 
suffi cient to cover all the situations. Within quantum mechanics, there exists two kinds of angular 
momenta: orbital and spin angular momentum. Orbital angular momentum operator is defi ned as 
L r pop op p= × o . Spin angular momentum is defi ned later in Chapter 10. In this chapter let us concen-
trate on the properties of orbital angular momentum.

7.1 cOmpatiblE SEt OF angular mOmEntum OpEratOrS
The classical orbital angular momentum L is given by

 L r p= × = − + − + − = + +ˆ ( ) ˆ ( ) ˆ ( ) ˆ ˆ ˆx y z x y zyp zp zp xp xp yp L L Lz y x z y x x y z  (7.1)

Quantum mechanically, the corresponding operators are given by

 

( ) ( ) ( )

( ) ( ) ( )

( )

Lx op op z op op y op

op op x op op z op

z op

y p z p

L z p x p

L

y

= −

= −

== −x p y pop y op op x op( ) ( )

We will drop the subscript ‘op’ hereafter. Therefore, the quantum mechanical operators are given by

 L
yx =

∂
− ∂

∂






i z y
z

� ∂  (7.2)

 L
zy i x z

x
=

∂
− ∂

∂( )� ∂  (7.3)

 L i y
x

x
yz = ∂

∂
−

∂






� ∂  (7.4)

7
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We have already shown in Chapter 5 that L
x
, L

y
 and L

z
 satisfy the following commutation relations:

 

[ , ]

[ , ]

[ , ]

L L i L

L i L

L L i

x y z

y z x

z x y

=

=

=

�

�

�

 

 

 

L

L

Therefore, it can be easily checked that [ , ] , [ , ] , [ , ]L L L L Lx y z
2 20 0 02= = =L

Example 7.1 Show that [ , ]L Lz
2 0=

Solution:

 

[ , ] [ , ] [ , ] [ , ]

[ , ] [ ,

L L L L L L L L L L

L L L L L

z x y z z x z y z

x x z x

2 2 2 2 2 2= + + = +

= + zz x y y z z y

x y y x y x y

L L L L L L L

i L L i L L i L L i L L

y] [ , ] [ , ]+ +

= − − + + =� � � �x 0

So, of the four operators L2, L
x
, L

y
 and L

z
, we have the following pair of commuting operators: 

{ , },{ , } , .L L L L Lx y z
2 2  and { }L2  We can choose any particular pair from the above list. The standard 

choice of compatible observables are L2 and L
z
.

So our task is to find the eigenvalues and eigenfunctions common to both L2 and L
z
.

7.2  Orbital angular mOmEntum OpEratOrS in SphErical  
pOlar cOOrdinatES

z

0

f

q

P

rsinqsinf

rsinqcosf

x

y

rcosq

Fig. 7.1 Spherical polar coordinates

In spherical polar coordinate system, a point P is specified by three coordinates: r, q, and f  as shown 
in Fig. 7.1. The coordinates r, q  and f  have the following ranges: 0 ≤ r ≤ ∞, 0 ≤ q ≤ p, 0 ≤ f ≤ 2p.

The radius vector r  is given by

 r OP x y z= = + +x yˆ ˆ ˆz
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We have r2 = x2 + y2 + z2.
From Fig. 7.1, it is obvious that

 = = + +ˆ ˆ ˆsin cos sin sin cosr r rOP x y zr q f q f q

 x r= sin cosq f  (7.5)

 y r= sin sinq f (7.6)

 z r= cosq  (7.7)

From the above equations, we get

 r = (x2 + y2 + z2)1/2 (7.8)

 q = −cos 1 z
r

 (7.9)

and f = −tan 1 y
x

 (7.10)

The following relations are useful in obtaining the expressions for L
x
, L

y
 and L

z
 in spherical polar 

coordinates.
From Equation (7.8) we get

 ∂
∂

= ∂
∂

= ∂
∂

=r
x

x
r

r
y

y
r z

z
r

, , r  (7.11)

From the Equation (7.9) we get

 ∂
∂

=
+

∂
∂

=
+

∂
∂

= − +q q q
x

xz
x y r y

yz
x y r z

x y
( )

,
( )

,
( )

/ /

/

2 1 2 2 2 2 1 2 2

2 2 1 2

2
  

rr 2
 (7.12)

From the Equation (7.10) we get

 
∂
∂

= −
+

∂
∂

=
+

f f
x

y
x y y

x
x y2 2 2

,
2

 (7.13)

  L
x
 in spherical polar coordinates

 

L i z
y

y
z

i z r
y r y y

y

x = ∂
∂

− ∂
∂







= ∂
∂

⋅ ∂
∂

+ ∂
∂

⋅ ∂
∂

+ ∂
∂

⋅ ∂
∂







−

�

� q
q

f
f

∂∂
∂

⋅ ∂
∂

+ ∂
∂

⋅ ∂
∂

+ ∂
∂

⋅ ∂
∂















r
z r z z

q
q

f
f

 

= ∂
∂

− ∂
∂







∂
∂

+ ∂
∂

− ∂
∂







∂
∂

+ ∂
∂

− ∂
∂




i z r
y

y r
z r

z
y

y
z

z
y

y
z

� q q
q

f f





∂
∂









=
+

∂
∂

+
+

∂
∂







f

q f
i

y
x y

zx
x y

�
( ) /2 2 2 21 2

 = ∂
∂

+ ∂
∂







i� sin cot cosf
q

q f
f

 (7.14)
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  L
y
 in spherical polar coordinates

 

Ly i x
z

z
x

i x r
z

z r
x r

x
z

z
x

= ∂
∂

− ∂
∂( )

= ∂
∂

− ∂
∂







∂
∂

+ ∂
∂

− ∂
∂







∂

�

� q q
∂∂

+ ∂
∂

− ∂
∂







∂
∂









= − ∂
∂

+ ∂
∂







q
f f

f

f
q

q f
f

x
z

z
x

i� cos cot sin   (7.15)

  L
z
 in spherical polar coordinates

 

Lz = ∂
∂

− ∂
∂







= ∂
∂

− ∂
∂







∂
∂

+ ∂
∂

− ∂
∂




i y
x

x
y

i y r
x

x r
y r

y
x

x
y

�

� q q 


∂
∂

+ ∂
∂

− ∂
∂







∂
∂









= −
∂

q
f f

f

f

y
x

x
y

L iz � ∂
 (7.16)

  L2 in spherical polar coordinates

  Let us first evaluate Lx
2y , where y  is an arbitrary function of q and f . i.e., y  = y (q, f).

 

Lx xL Lx
2

2

y q f y

f
q

q f
f

f y
q

( , ) ( )

sin cot cos sin cot

=

= − ∂
∂

+ ∂
∂







∂
∂

+� qq f y
f

cos
∂
∂







  Similarly, Ly
2y q f( , ) is given by

 

Ly y yL L2

2

y q f y

f
q

q f
f

f y
q

( , ) ( )

cos cot sin cos c

=

= − − ∂
∂

+ ∂
∂







− ∂
∂

+� oot sin

( , )

q f y
f

y q f y
f

∂
∂







= − ∂
∂

Lz
2 2

2

2
�

  L2y (q,f) is given by

 

L L L Lx y z
2 2 2 2

2

2 2 2
1

y q f y q f

y
q q

y
f

q y

( , ) ( ) ( , )

sin
cot

= + +

= − ∂
∂

+
∂

+ ∂
∂

�
∂2

qq






 

= − ∂
∂

+ ∂
∂

+ ∂
∂







= − ∂
∂

�

�

2
2

2 2

2

2

2

1

1

c s
sin sin

sin
sin

o q
q
y
q

y
q q

y
f

q q
q ∂∂

∂






+ ∂
∂







y
q q

y
f

1
2

2

2sin
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Since this equation is true for any arbitrary y (q, f), the operator L2 is given by

 L2 2
2

2

2
1 1= − ∂

∂
∂

∂( ) + ∂
∂







�
sin

si
sinq q

q
q q f

n  (7.17)

7.3 parity
We have already seen what is meant by parity in one - dimensional problems. The same concept can 
be extended to wave functions in three  dimensional space. The parity operator P is defined as

 Py y( ) ( )r r= −

or P x y x y zy y( , , ) ( , , )z = − − −  (7.18)

The eigenvalue equation for the parity operator is

 Py ly( ) ( )r r=  (7.19)

It is easy to check that the eigenvalues l are ±1.

Example 7.2 Determine the eigenvalues of the parity operator P which is defined as Py y( ) ( ).r r= −

Solution: From the Equation (7.18), we get

 P P P2y y y y( ) ( ) ( ) ( )r r r r= = − =P  (7.20)

From the eigenvalue Equation (7.19), we get

 P PP P P2 2y y ly l y l y( ) ( ) ( ) ( ) ( )r r r r r= = = =

Comparing the last two equations, we get

 l2 = 1 or l = ±1 (7.21)

The eigenfunction corresponding to l = 1 is called even - parity function, and the eigenfunction cor-
responding to l = -1 is called odd - parity function.

 Py y y( ) ( ) ( )r r r= − =  ⇒even-parity wave function (7.22)

 Py y y( ) ( ) ( )r r r= − = −  ⇒odd-parity wave function (7.23)

Example 7.3 Show that the parity operator P and the orbital angular momentum operator L commute.

Solution: Let us note that for an arbitrary wave function y ( )r

 L r r ry y( ) ( )= − × ∇i�

Consider the action of ( )P PL − L  on an arbitrary wave function y ( ).r

 

( ) ( ) ( ( )) ( )

[ ( )] ( )

(

P P P P

i P i

i

L L r r L r

r r r r

− = −
= − × ∇ + × ∇ −
= − −

y y y
y y

L

� �
� rr r r r

r r r r

) ( ( )) ( )

( ) ( )

× −∇ − + × ∇ −
= − × ∇ − + × ∇ − =

y y
y y

i

i i

�
� � 0
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 ∴ − = ( ) ( )P PL rL y 0

This equation is true for an arbitrary wave function y ( ).r .
Therefore, P L L− =P 0

Or [ , ]P L = 0  (7.24)

Significance of [P, l] = 0
This commutation relation implies that the eigenfunction of angular momentum operator should also 
be the eigenfunction of the parity operator. In other words, the angular momentum eigenfunctions 
should have definite parity; i.e they should have either even parity or odd parity.

7.4 parity OpEratOr in SphErical pOlar cOOrdinatES
The parity transformation takes a point P to a new point P′ where the coordinates of P are (x, y, z) and 
the coordinates of P′ are (x′, y′, z′) = (-x, -y, -z). So, under parity transformation, we have

 x → x′ = -x

 y → y′ = -y

 z → z′ = -z

In spherical polar coordinates, the coordinates of P are (r, q, f) and P′ are (r′, q ′, f ′). What are the 
 relationships between these two sets of coordinates?

i.e. , under parity transformation

 r → ′r  = ?

 q →qÄ  = ?

 f → fÄ  = ?

We have to note the range of these coordinates 0 ≤ r ≤ ∞ ; 0 ≤ q  ≤ p ; 0 ≤ f ≤ 2p ; 0 ≤ r′ ≤ ∞; 0 ≤ q ′ 
≤ p ; 0 ≤ f ′ ≤ 2p.

It is obvious that r′ = (( ) ( ) ( ) ) ( )/ /′ + ′ + ′ = + +x y x y z2 2 1 2 2 2 2 1 2z 2  = r.

We have to work out the transformations for q  and f.

 x′ = -x ⇒ r rsin cos sin cosqÄ fÄ q f= −  (7.25)

 y′ = -y ⇒ r rsin sin sin sinqÄ fÄ q f= −  (7.26)

 z′ = z ⇒ r rcos cosqÄ q= −  (7.27)

From (7.27), we get

 cos cosqÄ q+ = 0  or 2
2 2

0cos cosqÄ q qÄ q+ =−
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or qÄ p q qÄ p q= − = +or  

Since, qÄ  is a number that has to be between 0 and p, we  take ′q  as

 qÄ  = p - q

Similarly the Equations (7.25) and (7.26) lead to

 cosf ′ + cosf = 0

and sinf ′ + sinf = 0

 
2

2 2
0

2
2 2

0

cos cos

sin cos

fÄ f fÄ f f p f fÄ p f

fÄ f fÄ f fÄ p

+ − = ⇒ = + = −

+ − = ⇒ =

′ or

++ = −f fÄ for

Obviously, only the solution f ′ = p + f satisfies both equations.
Therefore, in spherical coordinate system the parity transformation

 r → r′ = r (7.28)

 q →qÄ  = p - q (7.29)

 f  → f ′ = p + f  (7.30)

So, the parity operator in spherical polar coordinates is defined as

 Py (r, q, f) =y (r, p - q, p +f ) (7.31)

Example 7.4 Prove that the angular momentum operator L  and the parity operator P  commute 
where the parity operator P is defined as Py (r, q, f) =y (r, p -q, p + f ).

Solution: Let us consider (L
x
P - PL

x
) y (r, q, f)

where y (r, q, f)

 (L
x
P - PL

x
) y (r, q, f) = L

x
(Py (r, q, f)) - P(L

x
y (r, q, f))

 

= ∂
∂

+ ∂
∂







− ∂
∂

+i P r i P
r

� �sin cot cos ( , , ) sin
( , , )

cf
q

q f
f
y q f f y q f

q
oot cos

( , , )

sin ( , , ) cot cos

q f y q f
f

f
q
y p q p f q f

∂
∂







=

∂
∂

− + + ∂
∂

r

i

r

�
ff
y p q p f p f

p q

y p q p f p q p f

( , , ) sin( )
( )

( , , ) cot( ) cos(

r

r

− + − + ∂
∂ −

− + − − + ))
( )

( , , )∂
∂ +

− +

















p f

y p q p fr
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 =

∂
∂

− + + ∂
∂

− + − ∂
∂

i

r r r

�
sin ( , , ) cot cos ( , , ) sin ( ,f

q
y p q p f q f

f
y p q p f f

q
y pp q p f

q f
f
y p q p f

− +

− ∂
∂

− +

















=

, )

cot cos ( , , )r

0

i.e., (L
x
P - PL

x
) y (r, q, f) = 0

Since this equation is true for any arbitrary wave function y (r, q, f), we have

 [L
x
, P] = 0

In the same way, we can prove that the parity operator P commutes with L
y
 and L

z
.

7.5 EigEnvaluES OF l2 and lz

Note that the dimension of L  is [L] [MLT-1] = [M] [L2] [T-2] [T], which is the dimension of the prod-
uct of energy and time, and so its unit is Joule.sec. Within quantum mechanics, we have one constant 
namely � whose unit is also Joule.sec. Therefore, we can write the eigenvalue of L

z
 as m� where m 

is a constant which has to be determined by solving the eigenvalue equation. Similarly, we can write 
the eigenvalue of L2 as l�2 where l is a constant also which has to be also determined. So, we have

 L u u2 2( , ) ( , )q f l q f= �  (7.32)

 L u m uz ( , ) ( , )q f q f= �  (7.33)

or − ∂
∂

∂
∂( ) + ∂

∂






=� �2
2

2

2
21 1

sin
sin

sin
( , ) ( , )

q q
q
q q f

q f l q fu u  (7.34)

 − ∂
∂

=i
u

m u� �
( , )

( , )
q f
f

q f  (7.35)

The structure of these equations suggests that we can write

 u(q,f) = Q(q  ) F(f) (7.36)

Substituting the Equation (7.36) in (7.35) , we get

 − = =i d
d

m Aeim� �Φ Φ Φ
f

f for ( )  (7.37)

Since f is an angular variable, f as well f + 2p should represent the same angular position. Therefore 
the wave function at f and at f + 2p  should be the same.

i.e., F(f + 2p) = F(f)

 Ae Aeim im( )f fp+ =2  

 ∴ =eim2 1p

or m = 0, ± 1, ± 2, ± 3… (7.38)
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The eigenvalues of L
z
 are integer times �. As it stands now, m can be any integer ranging from -∞ to 

+∞, i.e., there is no upper limit or lower limit for m. We get restrictions on the possible values of m 
only on solving the Equation (7.34).

Before proceeding further, let us determine the normalization constant A. The normalization con-
stant A is determined by demanding

 Φ Φ*
0

2
2

0

2

1 1
p p

f f∫ ∫= =d A dor

Assuming A to be real number, we have

 A2⋅2p = 1 or A = 1
2p

 ∴ =Φ( )f
p

f1
2

eim

or more appropriately

 Φm
ime( )f

p
f= 1

2
 (7.39)

Example 7.5 Show that the eigenfunctions of L
z 
form an orthonormal set.

Solution: We have to show that (F
m
, F

n
) = d

mn
.

 

( , ) ( ) ( )

(

( )

( )

Φ Φ Φ Φm n m n

i n m

i n m

d

e d

e
n

= ∗

=

=
−

∫

∫ −

−

0

2

0

2
1

1
2

p

f
p

f

f f f

p
f

p

2

mm
n m

e
n m

n mi n m

)

[ ]( )

0

2

21
2

1 1 0

p

p

p

provided 

if 

≠

= −
−

= ≠−

If n = m, we know that (F
m
, F

m
) = 1

 (F
m
, F

n
) = d

mn

7.5.1 Solution F(p )
Substituting the function (7.39) in (7.34), we get

 − ∂
∂

∂
∂( ) −





=� �2
2

2
21

sin
sin

sinq q
q
q q

lΘ Θ Θm  (7.40)

Put cos q  = w

 ∴ −





+ −
−( ) = − ≤ ≤d

d
d
d

m
w

w
w

l
w

w( )1
1

0 1 12
2

2
Θ Θ  (7.41)

Since cos q  varies from -1 to +1, the range of w  is -1 to +1. Note, w  = ±1 are singularities for the 
above equation.

M07_QUANTUMMECHANICS_3628_CH07.indd   215 5/23/2013   9:47:50 AM



216  Quantum Mechanics

Let us write Q(q ) as ( ) ( )1 2−w wa h  where a is a constant which can be chosen in a suitable way to 
suit our convenience. On substituting this expression in the Equation (7.41) we get a new equation for  
h( )w  containing a term with singularity and with proper choice of a we can remove this term.

Now with Θ( ) ( ) ( )w w w= −1 2 a h ,

 
d

d
d
d

d h
d

a dh
d

a a

w
w

w
w

r
w

r
w( ) ( ) ( ) ( )1 1 2 2 1 12 2 1

2

2
2−





= − − + −+Θ

                               + − − −−4 1 2 12 2 2 1 2w w wa h a ha a( ) ( )

Substituting this result in and making use of the result 4a2w 2 = -4a2(1 - w 2) + 4a2 in (7.41) we get

 
( ) ( )( ) ( )( )1 2 2 1 1 4 1 1

4

2 1
2

2
2 2 2 2 1− − + − − − −

+

+ −w
w

w w
w

w wa a ad h
d

a dh
d

a h

a22 2 1 2 2 2 2 11 2 1 1 1 0( ) ( ) ( ) ( )− − − + − − − =− −w w l w wa a a ah a h h m h

Dividing throughout by (1 - w 2)a + 1 we get

 ( ) ( ) [ ]
( )

1 2 2 1 4 2 4
1

02
2

2
2

2 2

2
− − + − + − + −

−
=w

w
w

w
l

w
d h
d

a dh
d

a a h a m h  (7.42)

The last term is singular at w  = ±1. Therefore, this term should be avoided. We can remove this term 
by making 4a2 = m2

i.e. a
m

h hm m

= ±

∴ = − = −
= −

−

| |

( ) ( ) ( ) ( ) ( ) ( )

( )

| |/ | |/

2
1 1

1

2 2 2

2

Θ Θw w w w w w
w

2 or
−−| |/ ( )m h2 w

The second function is singular at w  = ±1.

Therefore, let us choose a = | |m
2

 ∴ = −Θ( ) ( ) ( )| |/w w w1 2 2m h  (7.43)

Therefore, the differential equation for h(w) becomes

 ( ) (| | ) [ | | ]1 2 1 02
2

2
− − + − − − =w

w
w

w
ld h

d
m dh

d
m m h2  (7.44)

Let us try the series solution

h Cs
s

s

( )w w w= − ≤ ≤
=

∞

∑
0

1 1

Substituting the series solution in Equuation (7.44) we get

C s s C s ss
s

s
s

s

s

( ) ( )

(|

− − −

−

−

=

∞

=

∞

∑ ∑1 1

2

2

0 0

w w

mm C m m Cs
s

s
s

s

s

| ) [ | | ]+ − + − =
=

∞

=

∞

∑ ∑1 2 0
0

2

0

w l w
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Let us the write the first term of the series as follows:

 C s C s s C s ss
s

s
s

s

s
s

s

s

( ) ( ) ( )( )s − = − = + +−

=

∞
−

=

∞

+
=

∞

∑ ∑ ∑1 1 2 12

0

2

2
2

0

w w w

Then, we have

 C s C m m m s s s ss
s

s
s

s
+

=

∞

+ + − − + + + + + − =∑ ∑2
0

2 22 1 2 2 0( )( ) [ | | | | ]s w w l

Equating the coefficient of of w s to zero, we get

 C
s m s m

s s
Cs s+ = + + + −

+ +2

1
2 1

( | |)( | | )
( )( )

l
 (7.45)

Let us study the asymptotic behaviour of this series. Let us evaluate Lt
s

s

s

C

C→∞

+ 2
.

For the recurrence relation (7.45), we have

 

Lt
s

s

C

s
m
s

s
m

s

s
s

s
s

s
→∞

+ =
+



 + +





+( ) +( )
= +

C 2

1 1
1

1 2 1 1

1

| | | |

|mm
s

m
s s s

m
s

| | |
.... ...

| |







+ +





− +( ) − +( )
= + −

1
1

1 2 1 1

1
2 2

 (7.46)

Let us compare this result with the asymptotic behaviour of the series expansion ( )1− −w 2 m . For posi-
tive m, we have

 ( )
( )

!
..............1 1

1
2

2 2 4− = + + + + =− ∑w w w wm
r

rm
m m

C

where

 Cr

m m m r

r
=

+ ⋅⋅⋅⋅⋅ + −( )
( )

( )

!

1
2

1

2

Then

 C
C

m m m r

r

r

m m m r
r

r

+ =
+ +( )

+( ) ⋅
+ + −

2
1

2

2
1

2

1
2

( )........

!

!

( )......... 11( )
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 =
+

+
=

+ − +

+
= + −

+

m

r

r m

r
m
r

r
2

2
1

2
1 1

2
1

1 1

2
1

In the large r limit, 
C
C r

r

r

+ = + −2 1
2 1( )m

This result is the same as the Equation (7.46). So the asymptotic behaviour of h( )w  as determined by 
the recursion relation (7.45) has the asymptotic behaviour similar to that of ( )1− −w 2 m. Therefore, the 
asymptotic behaviour of Θ( ) ( ) ( )/w w w= −1 2 2m h  is similar to ( ) /1 2 2− −w m  (for m > 0), which becomes 
infinite for w = ±1.

This will make Θ = −( ) ( )1 2 2w wm h  as unacceptable wave function in quantum mechanics. The 
best way to make Q(w) finite-valued wave function for the entire range -1 ≤ w ≤ 1 is to make the 
infinite series generated by the recursion relation (7.45) as a finite series.

i.e., Q should become

 Θ =
− + +
− + +

( ) ( .... )

( ) ( .

1

1

2 2
0 2

2

2 2
1 3

3

w w w
w w w

m
n

n

m

C C C

C C

even parity

.... )Cn
nw odd parity





i.e. h(w) should be a polynomial in w instead of an infinite series. 
How do you reduce the infinite series for h(w) as polynomial in w ?

Even-parity Solution
We would like to have an even-parity solution as follows:

 h(w) = C
0
 + C

2
w 2

 
+ …+ C

n
w n

This can be achieved by demanding

 l = + + + ≠ =( | |)( | | ), ,n m n m C Cn1 0 01

Odd-parity Solution
The odd parity-solution should be as follows:

 h(w) = C
1
w + C

3
w 3 + … + C

n
w n

This can be achieved by demanding

 l = + + + ≠ =( | |)( | | ), ,n m n m C Cn1 0 00

Note in both conditions, n and | |m  are integers, and so l is an integer. If we define

 l n m= + | |,  then l = l (l + 1) (7.47)
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This implies that l is always a positive integer. The Equation (7.47) can be used to get the allowed 
values for m. Since l n m= + | |,  then

 | | , , , .....m l n= − =n 0 1 2

For given l, what are the possible values m and n?

 
| |

| |

m l n

m l n

= =
= − =

for

for

0

1 1

Continuing further, we get

 | |m n l= =0 for

We cannot increase the value of n further, for it will make | |m  negative.

∴ | | , , , ...,m l l l= − −1 2 0

or m = ±l, ±(l - 1), ±(l - 2),…, 0 (7.48)

Therefore, the possible values of m for a given l are

 m = l, l - 1, l - 2, …, 1, 0, -1, …, -(l - 1), -l (7.49)

Eigenvalues of angular momentum
From (7.47) and (7.49), we find that the eigenvalue of the square of the angular momentum is l l( )+1 2�  
and the eigenvalue of Z component angular momentum is m�

The eigenvalue of L2: l l( )+1 2�  l = 0 1 2 3, , , ……

The eigenvalue of L
z
: ml� with ml  taking the values l l l l l, , , ..... ( ),− − − − −1 2 1

7.6 angular mOmEntum EigEn FunctiOnS
For l = l(l + 1), the differential equation becomes

 (1 ) 2( 1) ( 1) 02
2

2
2− − + + [ + − − ] =w

w w
d h

d

dh

d
m lm

lm lmm l l m h| | | |  (7.50)

7.6.1 Solution hlm for m ê 0 
Let us use the notation D f

d f
d

m
m

m
=
w

Consider the Equation (7.50) for m = 0.

 (1 ) 2 ( 1) 02 1/2
2

0
2

0
0- -w

w
w
w

d h

d

dh

d
l l hl l

l+ + =  (7.51)
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This is the well-known Legendre differential equation, and so

 h Pl 0 ( ) ( )w w= l

where P
l
 (w) is the Legendre polynomial.

Let us write Equation (7.51) on

 ( ) ( )1 2 1 02 2− − + + =w wD P DP l l Pl l l

Let us differentiate this equation m times. We use Leibnitz formula in this regard.

 
D uv C uD v C Du D v C D uD v C D u v

uD v mDuD

m m m m m m m m
m

m

m m

[ ] = + ⋅ + + ⋅

= +

− −
0 1

1
2

2 2

−− −+ −1 2 21
2

v
m m

D vD vm( )
!

...

 

∴ − = − + −

+ −

−D l D P l D D P mD D D P

m m
D

m
l

m
l

m
l[( ) ] ( ) ( )

( )
(

w w w2 2 2 2 2 1

2

1

1
2

1

2

 −−

= − − − −

−w

w w

2 2 2

2 21 2 1

)

( ) ( )

D D P

D D P m D D P m m D P

m
l

m
l

m
l

m
l

 D DP D DP mD D DP DD P mD Pm
l

m
l

m
l

m
l

m
l2 2 2 2 21w w w w= + = +−( )

Making use of these results in the Equation (7.51), we get

 (1 - w  2)D2DmP
l
 - 2w (m + 1)DDmP

l
+ [l(l + 1) - m(m + 1)]DmP

l
 = 0

Comparing this equation with  (7.50), we get

 h
lm

 = c.DmP
l
, where c is a constant. (7.52)

Let us now introduce the associated Legendre functions P
lm

 which are given by

 P
lm

 = (1 -w 2)m/2Dm
 
P

l
 m > 0 (7.53)

More explicitly, we have

 P D Plm
m m

l= −( )1 2 2w  (7.54)

The Legendre polynomial P
l
 is given by

 P
ll l

l l( )
!

( )w w -= 1
2

12D  (7.55)

 ∴ = − −+P
l

Dlm l
m l m l1

2
1 12 2 2

!
( ) ( )/w w  (7.56)

Obviously, Θ( )q  is constant times the associated Legendre function P
lm

.
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7.6.2 Solution for negative values of m
For positive values of m, the solution to the Equation (7.41) is found to be P

lm
 (w) and given by

 P l
l

Dlm l
m l m l( ) = 1

2 !
(1 ) ( )2 /2 2w w w− −+| | 1  (7.57)

What is the solution corresponding to negative values of m? The Equation (7.57) helps us to extend 
the solution to negative values of m. P

l m−
 is defined as

 P
l

Dl m

m
m

l
l l

− = ⋅ − −− −
| |

| |
| |

!
( ) ( )1

2
1 1 12 2 2w w  (7.58)

It is also written as

 P
l

D ml m l
m l m l

−
− −= ⋅ − − >1

2
1 1 1 02 2 2

!
( ) ( )/w w  (7.59)

Pl m−  in (7.58) and P
l-m

 in (7.59) refer to the same quantity.

For example, for m = 1, P
lm

 is given by

 P
l

Dl l
ll

1
2 1 2 21

2
1 1 11( )
!
( ) ( )/w w w= ⋅ − −+

and for m = -1, P
l-1

 is given by

 P
l

Dl l
l l

−
− −= ⋅ − −1

2 1 2 1 21
2

1 1 1
!
( ) ( )/w w

Is P
l-m

 as defined in (7.59) a solution to the Equation (7.41)?
It can be shown that P

l-m
 is constant times P

lm
. Therefore, P

l-m
 satisfies the Equation (7.41). In fact, 

P
l-m

 is given by

 P
l m
l m

P x ml m
m

lm− = − − >( )
( )!
( )!

( )1 0
+ 

 (7.60)

(See Example 7.15 )

7.6.3 normalization of Qlm

The normalized Q
lm

 is defined as 

 Θlm lN Plm m= ( )w

The normalization constant N
lm

 is determined by the condition

 Θ Θlm d∗ =
−
∫ lm w 1
1

1
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The normalization constant N
lm

 is found to be

 N
l l

l mlm = + ⋅ −
+







( ) ( )!
( )!

/
2 1

2

1 2
m

 (7.61)

The orthoganality relation for Q
lm

 is given by

 Θ Θ Ωlm l m ll mmd∗ =
−

′∫
1

1

′ ′d d  (7.62)

7.7  SphErical harmOnicS aS EigEnFunctiOnS OF  
angular mOmEntum

The full eigenfunction of the angular momentum operator is the product of Θlm ( )q  and Φ( ).f  Such 
functions are called spherical harmonics Y

lm
, which are defined as

 

Y

l l m
l m

lm
m

lm

m

( , ) ( ) ( ) ( )

( )( )!
( )!

( )
/

q f q f= −

= + −
+







−

1

2 1
2

1
1 2

Θ Φ

PP e

l l m
l m

P

lm

m
lm

im(cos )

( )( )!
( )!

( ) (c
/

q
p

p

f⋅

= + −
+







−

1
2

2 1
4

1
1 2

oos )q feim

 (7.63)

The spherical harmonics obey the orthoganality relation.

 

   Y Y d

d

lm l m

lm l m

*( , ) ( , )

( , ) ( , )sin

q f q f

q f q f q q
p

p

′ ′

′ ′

∫

∫=

Ω

Θ Θ
0 0

2
1

2

pp
f f

p

q f q f q q d

d d

∫

∫

− ′

′ ′ ′

′ ′

=

=

e e

d

im im

lm l m mm

ll mm

Θ Θ( , ) ( , )
0

sin

 (7.64)

One of the important properties of spherical harmonics is

 Y Yl m
m

lm− = −( , ) ( ) ( , )q f q f1 *

Let us list some useful recursion relations for Plm and Ylm

 ( )
( )

/
, ,1 1

2 1
1

2 1
2 1 2

1 1 1 1− =
+

−
++ + − +w P

l
P

l
Plm l m l m  (7.65)
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 w P
l

P
l m
l

Plm l m l m= − +
+

+ +
++ −

( ) ( )
, ,

m
l

1
2 1 2 11 1

 (7.66)

 sin
( )( )

( )( )
(

/

,q fe Y
l m l m

l l
Y

li
lm l m= − + + + +

+ +






++ +
1 2

2 1 2 3

1 2

1 1

−− − −
+ −





 − +

m l m
l l

Yl m

)( )
( )( )

/

,

1
2 1 2 1

1 2

1 1  (7.67)

 cos
( )( )

( )( )
( )(

/

,q Y
l m l m

l l
Y

l m l
lm l m= + + − +

+ +






+ + −
+

1 1
2 1 2 3

1 2

1

mm
l

Yl m

)
( )( )

/

,2 1 2 1

1 2

1l + −




 −  (7.68)

 sin
( )( )

( )( )
(

/

,q fe Y
l m l m

l l
Y

li
lm l m

−
− −= − + − +

+ −






−1 2
2 1 2 1

1 2

1 1

−− − −
+ −





 − −

m l m
l l

Yl m

)( )
( )( )

/

,

1
2 1 2 1

1 2

1 1  (7.69)

7.8 parity OF Ylm(p, e ) 

Let us consider the behaviour of the spherical harmonics under parity transformation.
Under parity transformation Ylm ( , )q f  changes to Y

lm
(p - q, p + f)

 
Y e

e

lm lm
m im im

m
lm

( , ) ( )( )

( ) ( )

p q p f p q
p

p q
p

p f− + = − − ⋅

= − − ⋅

+Θ

Θ

1 1
2

1 1
2

2 iimf

The transformation property of Q
lm

 can be obtained by considering Equation (7.56).
Under the transformation q p q q q w w→ − → − → −cos cos or

 

d
d

d
d

d
d

l m

l m

l m

l m

l m

l m
l l

l m
+

+

+

+

+

+
+

→ −

− − → −

+

w w

w
w

w

( )

( ) ( ) ( )/

1

1 1 12 1 2 2 mm
l m

l m
l

lm
l m

lm

d
d

( ) ( )

( ) ( ) ( )

/1 1

1

2 1 2 2− −

∴ − = −

+

+

+

w
w

w

p q qΘ Θ

 
Y e

Y

lm
l m

lm
im

l
lm

( , ) ( ) ( ) ( )

( ) ( , )

p q p q q
p

q f

f− + = − −

= −

1 1 1
2

1

Θ
 (7.70)

Therefore, the parity of the orbital angular momentum wave function is determined by ( )−1 l

So, for spherical harmonics, we have

 Even l even parity (7.71)

 Odd l odd parity (7.72)
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7.9 SkEtching OF SphErical harmOnicS 

list of Spherical harmonics

l m Ylm

0 0 Y00

1 2
1

4
= ( )p

/

1 1 Y ei
11

1 2
3

8
= ( )p q f

/

sin

1 0 Y10

1 2
3

4
= ( )p q

/

cos

1 -1 Y e i
1

1 2

1
3

8−
−= ( )p q f

/

sin

2 2 Y ei
22

1 2
2 215

32
= ( )p q f

/

sin

2 1 Y e i
21

1 2
215

8
= − ( )p q q f

/

sin cos

2 0 Y20

1 2
25

16
3 1= ( ) −p q

/

( cos )

2 -1 Y e i
2 1

1 2
15
8−

−= ( )p q q f
/

sin cos

2 -2 Y e i
2 2

1 2
2 215

32−
−= ( )p q f

/

sin

y

z

−y

x

−x

0
f

f = p

f = 0

q

f = p
2

f = 3p
2

x

y

0 ff = p

f = 0

f = p
2

f = 3p
2

Fig. 7.2 Variation of q  and f
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Ylm ( , )q f  is a complex function in q and f. So, we can plot | ( , )|Ylm q f 2. Alternatively, real and imagi-
nary part of Ylm ( , )q f  can be separately plotted.
q  is measured from z-axis, and f varies in the horizontal xy plane as shown in Fig. 7.2. For a given 

q and f, along the radial line, mark a point whose length is | |Ylm ( , )q f 2q  as shown in Fig. 7.4. 

f = p f = 0

| y lm
(q,

 0
)|2q

Fig. 7.3 | |Ylm
2 in polar coordinates

Obviously for the entire range of q  and f  namely 0 ≤ q  ≤ p, and 0 ≤ f  ≤ 2p, all such points together 
form a two-dimensional surface in three-dimensional space. Normally, a section of this surface in the 
zx plane is shown. The entire surface can be generated by rotating this curve about z-axis.

Same procedure can be adopted for the sketch of real part and imaginary part of Ylm ( , ).q f

l = 0

 Y0 0
1
4

( , )q f
p

=

For all the values of q and f, length of  | ( , )|Y0 0
2q f  is the same as 1 4/ p . As q  varies from 0 to p , | ( , )|Y0 0

2q f  
traces the right  semicircle for f = 0 and | ( , )|Y0 0

2q f  traces left semicircle for f p=  as shown in Fig. 7.4.

f = p

q = p

1
4p

q = 0

f = 0

Fig. 7.4 Sketch of | ( , )|Y00
2q f

Obviously, as f varies, this semicircle is rotated about z axis, and we get a spherical surface of  

radius 1 4/ p .
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l = 1, m = 0

 Y Y10

1 2

10
2 23

4
3

4
= ( ) =
p

q
p

q
/

cos | | cosor

Maximum value of | |Y10
2 is 3 4/ p  corresponding q  = 0 and q  = p. It slowly decreases as q  increases 

from 0 to p /2 And it becomes zero at q = 0 and subsequently increases to the maximum. 

q = p

q = 0

Fig. 7.5 Sketch of | |Y10
2

l = 1, m = é1

 | | | | sinY Y11 1 1
2 22 3

8
= =− p

q

For q  = 0, | |Y11
2 0=  and for q p

p
= =

2
3

11
2, | |Y

8
. The sketch of Y11

2
 is as shown in Fig. 7.6

q = p

q = 0

Fig. 7.6 Sketch of | |Y11
2

l = 2, m = é2

 | | | | sinY Y22
2

2 2
2 415

32
= =− p

q
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| |Y22
2  is zero for q = 0 and q =p  and has a value of 15

32p
 at q p=

2
.. The sketch of | |Y Y22

2
2 2

2or | |−  is 

shown in Fig. 7.7.

q = p

q = 0

Fig. 7.7 Sketch of | |Y Y22
2

2 2
2or | |−

l = 2, m = é1

 
| | sin cos (sin )Y Y21

2
2 1

2 2 2 215 8 15 2 2= | |− = =/ /p q q p q

| |Y21
2 is zero for q  = 0 and q p= /2. It has maximum value of 15/2p  for q p q p= =/ and /4 3 4.

So, at q  = 0, | | .Y21
2 0=  As q  increases, | |Y21

2 increases and reaches a maximum at q p= /4 and subse-
quently decreases to become zero at q  = p /2. Again, it increases to reach a maximum at q = 3p /4 and 
subsequently decreases to zero at q  = p

q = 0

q = p

Fig. 7.8 Sketch of | |Y21
2

l = 2, m = 0 

 | | ( cos )Y20
2 2 25

16
3 1= −

p
q
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The function has got maxima at q = 0, q p= /2 and q = p. The function is minimum for the value 
q  determined from the equation 3cos2q - 1 = 0 or q � 55°.

At q = 0, | | .Y20
2 5 4= / p  As q increases, | |Y20

2 decreases and becomes zero at q = −−tan 1 1 3 55/ � °.  
Subsequently, it increases a maximum value of 5 16/ p  at q = 0. It again decreases and becomes 
zero at q q= − °−tan 1 1 3/ or 125� . Subsequently it increases to 5 4/ p  at q = p. This is sketched in  
Fig. 7.9.

q = 0

q = p

Fig. 7.9 Sketch of | |Y20
2

7.10 raiSing and lOwEring OpEratOr
Consider two operators L+ and L- given by 

 L+ 
= L

x
+ iL

y
 (7.73)

and L- 
= L

x
 - iL

y
 (7.74)

These operators are known as raising and lowering operators for the following reasons. It can be 
shown that

 L Y l m l m Ylm l m+ += − + +( , ) [( )( )] /
,q f 1 1 2

1  (7.75)

and L Y l m l m Ylm l m− −= + − +( , ) [( )( )] /
,q f 1 1 2

1  (7.76)

When L+ acts on the state Ylm , the resulting state is constant times Yl m+1. i.e., it creates a new state 
whose m value has increased by 1. Therefore, L+ is called the raising operator.

L- acting on Ylm produces a state proportional to Yl m−1 (constant times Yl m−1). i.e., it creates a state 
whose m value has decreased by 1. So this is called lowering operator.

Note that the maximum value of m is l. So, when L+ acts on Yll, the result should be zero as can be 
seen from the Equation (7.75).

 L Y ll+ = 0  (7.77)

Similarly, the minimum value of m is -l. Therefore, when L- acts on Yl l−  the result is zero as can be 
seen from the Equation (7.76).

 L Yl l− − = 0  (7.78)
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7.10.1 L+ and L- in Spherical polar coordinates

 

L L iL

i i i

x y+ = +

=
∂

+ ∂
∂

− ∂
∂

− ∂
∂

� sin cot cos cos sin cot sinf
q

q f
f

q f
q

q f
f

∂





= − ∂
∂

+ ∂
∂







−i e ii� f

q
q
f

cot

Put w q= cos . Then, we have

 L i e ii
+

−= − ∂
∂

+
−

∂
∂







� f w
w

w
w f

( )
( )

/
/

1
1

2 1 2
2 21

 (7.79)

 

L L iL

i i i

x y− = −

=
∂

+ ∂
∂

+ ∂
∂

− ∂
∂







� sin cot cos cos cot sinf
q

q f
f

f
q

q f
f

∂


= ∂
∂

+ ∂
∂







−i e ii� f

q
q
f

cot

 

= − ∂
∂

+ ∂
∂







= − − ∂
∂

+
−

−

−

i e i

i e i

i

i

�

�

f

f

q
w

q
f

w
w

w
w

sin cot

( )
(

/1
1

2 1 2
2 )) /1 2

∂
∂





f

 (7.80)

Example 7.6 Show that L Y l m l m Ylm lm+ += − + +[( )( )] /1 1 2
1�

Solution: Note that Ylm ( , )q f  is given by

 Y N D elm
m

lm
m l m l( , ) ( ) ( ) ( )/q f w w

p
f= − − −+1 1 1 1

2
2 2 2 im

 ∴ = ⋅ − − +
− ∂







−+L Y i
N e

i Dlm
m lm

i

� ( ) ( )
( )

(
/

1
2

1
1

12 1 2
2 1 2

2
f

p
w w

w f
w∂ )) ( )/m l m l imD e2 2 1⋅ −+ w f

 

= ⋅ − − −[ ]⋅ −



+i
N e

i D D em im
i

m l m l im� ( ) ( ) ( ) ( )/ /1
2

1 1 12 1 2 2 2 2
f

f

p
w w w

++ − − −

+
−

−

+ +i D e

im

m l m l im( ) ( ) ( )

( )
.( )

/ /

/

1 1 1

1
1

2 1 2 2 2 1 2

2 1 2
2

w w w

w
w

w

f

mm l m l imD e/ ( )2 2 1+ − 



w f
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First and last terms cancel each other.

 

∴ = − ⋅ − − −+
+ + + + +L Y i

N
i D elm

m lm m l m l i m�( ) ( ) ( ) ( )( )/ (1 1
2

1 11 2 1 2 1 2

p
w w 11
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⋅ + +
+

+�

�

N

N
Y

l l m
l m

l m

l m

lm
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Y
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+

+

1 2 1

1

1 2

1

1 2
1

/

/[( )( )]�

Example 7.7 Show that L Y l m l m Ylm lm− = + − +[( )( )] /1 1 2

Solution:

 L Y i e i D Ylm
i

lm−
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∂

∂
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( ) ( )1

2 1 2 11
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2
1

f

p
w
w

w w  (7.81)

The associated Legendre function satisfies the following recursion relation (Butkov).

 P m P l m l m Plm lm lm+ −−
−

+ + + + =1 2 1 2 1
2

1
1 0( )

( )
( )( )

/
w w

w

Making use of this relation in (7.81) we get 

 L Y e
N

l m l m Plm
i m m lm

lm−
−

−= − − ⋅ + − +� ( ) ( ) ( )( )1
11

2
1f

p
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N
Y l m l mlm

lm
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1
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+

+ −
+ − +







+� ( )( )!
!

)!
( )( )!

2 1
2

2 1
2 1 1

1 2
l l m
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(
/

))( )l m Ylm− + −1 1
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M07_QUANTUMMECHANICS_3628_CH07.indd   230 5/23/2013   9:48:43 AM



Orbital Angular Momentum  231

7.11 EigEnStatES OF Lx and Ly

We have already seen that L
x
, L

y
 and L

z 
do not commute with each other. Therefore, Ylm cannot be an 

eigenstate of L
x
 or L

y
. However, from the structure of the commutation relation, it is obvious that the 

eigenvalues of L
x
 and L

y 
are also m� , where m = l, l - l, …, -l. So we can construct the eigenstate of 

L
x
 or L

y 
as a linear combination of the spherical harmonics Ylms.

So we have

 L l l2 21y yn nl l( )= + �  (7.82)

 L l l lxy n y nn nl l , , ...= = −� 1 −  (7.83)

where y nl m
m l

l

C Y=
=

−

∑ lm
 (7.84)

Similar results hold for L
y
 also.

Example 7.8 Construct the eigenstates of L
x
 for l = 1 in terms of the spherical harmonics Y Y Y11 10 1 1,  and −

Solution: Let y
ln be the eigenfunction of L

x
. 

i.e. L
x
y

ln = n �y
ln

Let us write y
ln as

 y nl c Y c Y c Y= + + − −1 11 0 110 1 1

L
x
 is given by L L Lx = ++ −

1
2

( ).

 L L L c Y c Y c Yx ly n = + + ++ − − −
1
2 1 11 0 10 1 1 1( )( )

= + + +− −
� � �
2 2 2

0 11 1 1 10 0 1 1c Y c c Y c Y( )  (7.85)

But Lx l ly n yn n= �  = + + − −n �[ ]c Y c Y c Y1 11 0 10 1 1 1  (7.86)

Comparing (7.85) and (7.86) we get

 1
2

1
2

1
2

0 1 1 1 0 0c c c c c c c= + = =− −n n n, ( ) , 1

In the matrix form, we can write the above equations as 

 

n

n

n

−

−

−









































=

−

1
2

0

1
2

1
2

0 1
2

0
1

0

1

c

c

c
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For the non-trivial solution of c
1
, c

0
,  and c-1

, the determinant should be zero

 ∴ −





− =n n n2 1
2

1
2 2

0

 n n n( ) , .2 1 0 0 1− = ∴ = ±

 n = = =−1
2 2

1
0 0

1c
c

c
c

 ∴ = + +





−y 11 0 11 10 1 1
1
2

1
2

c Y Y Y

 
c

c
c0

2

0
2 0

2

2 2
1+ + =

 ∴ =c0
1
2

 y 11
11

10 1 1
22

1
2

= + +





−

Y
Y Y  (7.87)

 n y= = − −  1 10 0 11 1 1: ( )c Y Y

Normalization leads to  1c = 1
2

 ∴ = − −y 10 11 1 1
1
2

( )Y Y  (7.88)

 n = − = − = −−1
2 2

1
0

1
0c

c
c

c

 ∴ = − + −





− −y 1 1 0 11 10 1 1
1
2

1
2

c Y Y Y

Normalization leads to 

 

c
c

c

c

0
2

0
2 0

2

0

2 2
1

1
2

+ + =

=

 ∴ = − + −





− −y 1 1 11 10 1 1
1
2

1
2

1
2

Y Y Y  (7.89)

Example 7.9 Calculate 〈L
x
〉 for an angular momentum state Ylm ( , ).q f

Solution:

 〈 〉L Y L Y dx lm x lm= Ω∫ *
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= + Ω

= − + + Ω

+

+ −

−

∫
∫

Y L L Y d

Y l m l m Y d

Y

lm lm

lm lm

* [ ]

*[( )( )] /

1
2

1
2

1

1
2

1 2
1

  llm lml m l m Y d*[( )( )] /+ − + Ω

=

−∫ 1

0

1 2
1

These integrals are zero due to orthoganality of the spherical harmonics.

   〈L
x
〉 = 0

Similarly, 〈 〉Ly = 0

Example 7.10 Calculate 〈 〉Lx
2  for a state Ylm ( , ).q f

 〈 〉L Y L Y dx lm x lm
2 2= Ω∫

 〈 〉L Y L L L L Yx lm lm
2 1

4
= + ++ − + −( )( )

 = + + ++ − + − − +
1
4

1
4

1
4

2 2( ) ( ) ( )L Y L Y L L L L Ylm lm lm

Let us write ( ) ( )L Y aY L Y bYlm lm lm lm+ + − −= =2
2

2
2

where a and b are constants which can be determined easily.
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y
) (L

x
 + iL

y
)

 = L
x
2 - iL

x 
L

y
 + iL

y 
L

x
 + L

y
2 + L

x
2 - iL

y
L

x
 + iL

x
L

y
 + L

y
2

 = 2 (L
x
2+ L

y
2) = 2 (L2- L

z
2)

    〈 〉L Y L L Y dx lm z lm
2 2 21

2
= − Ω∫ *( )

 = + − Ω = + −∫1
2

1 1
2

12 2 2 2 2Y l l m Y d l l mlm lm
*[ ( ) ] [ ( ) ] .� � �

Example 7.11 Calculate 〈L
y
2〉 for a given state Ylm ( , ).q f

Solution:

 L
i

L Ly = −+ −
1
2

( )
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L L L L L L L L L L L

L L

y
2 2 2

2 2

1
4

1
4

1
4

= − − = − + − +

= − +

+ − + − + − + − − +

+ −

[ ][ ] { ( )}

( ) ++ +

= + −

+ − − +
1
4

1
2

12 2 2

( )

[ ( ) ]

L L L L

L l l my〈 〉 �

Example 7.12 Determine the product of uncertainties D L
x
 D L

y
 for the state Yml ( , )q f .

Solution:

 
( )

[ ( ) ] .

∆ = −

= + −

L L L

l l m

x x x
2 2 2

2 21
2

1

〈 〉 〈 〉

�

 

( ) [ ( ) ]

[ ( ) ] /

∆ = 〈 〉 − 〈 〉 = + −

∆ = + −

∆

L L L l l m

L l l m

L

y y y

x

y

2 2 2 2 2

2 1 2

1
2

1

1
2

1

�

�

== + −

∴ ∆ ∆ = + −

1
2

1

1
2

1

2 1 2

2 2

[ ( ) ]

[ ( ) ]

/l l m

L L l l mx y

�

�

7.12  Orbital angular mOmEntum in quantum and  
claSSical phySicS 

We note that L
x
, L

y
 and L

z 
do not commute among themselves and so they do not have common eigen-

functions. This is summarized as follows:

 L Y l l Ylm lm
2 21= +( )�  L ll l

2 21y yn n= +( )l �  L l ll l
2 21f fm m= +( )�

 L Y m Yz lm lm= �  Lx l ly n yn n= �  Ly l lf m fm m= �

The fact that the operators corresponding to the three components do not commute among themselves 
makes the properties of angular momentum in quantum mechanics to be significantly different from 
that in classical physics. In classical physics, each of three components can be independently fixed. 
In quantum mechanics, depending on the choice of the basis functions, only one component is well 
defined. For instance, if we choose Ylm as the basis functions to describe a system, they are eigenstates 
of L

z 
but they are not eigenstates of L

x 
and L

y
. Therefore, only L2 and L

z
 have well-defined values. L

x
 and 

L
y
 do not have any definite value. What does this mean? When the system is in state Y lm, if one meas-

ures square of the total orbital angular momentum, the result will be l l( ) ;+1 2�  if one measures z com-
ponent of the orbital angular momentum, the result will be m� ; but if we measure L

x 
or L

y 
, the result 

can be any of the (2l + 1) possible values: l� , (l -1)� , …, -l�  since the functions Ylm are superposition 

of either y lm or flm
Y c Y dlm l lm l= =( )∑ ∑n

n
n m

m
my for . In fact , no value can be attributed for L

x 
or L

y
, 

before measurement, when the system’s state is a superposition of eigenstates of these observables. 
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If we try to construct a classical picture for L and L
z
, then L is a vector of length l l( )+1 �  and its 

z-component is L
z
= m�  = l� , (l - 1)� ,…,-l� . This result is shown in Fig. 7.10.

l�

−l�

(l − 1)�

−(l − 1)�

Fig. 7.10 Z component of angular momentum

Classically, the maximum value of L
z
 is L itself. Quantum mechanically, this is not possible. 

L l l= +( )1 � but the maximum value of L
z 
is l�. Classically, there should not be any difference in the 

behaviour of L
x
, L

y
 and L

z
. However, quantum mechanically, L

z 
is well defined but L

x 
and L

y
 are not well 

defined. In fact, if we go by the uncertainly relation,

 
( ) ( ) [ , ]

( ) ( ) [ ]

∆ ∆ ≥ −

∆ ∆ ≥ −

L L L L

L L i L

x y x

x y z

2 2

2 2 2

1
4
1
4

〈 〉

〈 〉

y
2

�

or ( ) ( )∆ ∆ ≥L Lyx m2 41
4

2 2�

∴ For a system in state Ylm ( , )q f

 ∆ ∆ ≥L m
x Ly

�2

2
 (7.90)

If we extend the classical picture further, one can picture this argument as the precession of angular 
momentum vector along z axis.

7.13 rigid rOtOr
Rigid rotor is a system of two particles separated by a fixed distance r

0
. It is called a rigid rotor because 

the distance between the particles is constant.
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The Hamiltonian of a rigid rotor due to rotational motion is

 H L
I

L
r

= =
2 2

2 2 0
2m

where r
0
 is the fixed distance separating the two particles and m  is the reduced mass.

The quantum mechanical Hamiltonian operator for the rigid rotor is

 H
L

op

p= o

r

2

2m 0
2

 (7.91)

The energy eigenvalue equation is

 H
L

rop

opc q f
m
c q f( , ) ( , )=

2

22 0

Obviously, c (q, f ) is the spherical harmonic Y
lm

(q, f )

 ∴ = +L

r
Y

l l
r

Yop

lm l

2

0
2

2

0
22

1
2m

q f
m

q f( , )
( )

( , )
�

m

Therefore, the energy eigenvalues of a rigid rotor are given by

 E
l l

rl = +( )1
2

2

0
2

�
m

 (7.92)

This is one of the important results in molecular spectroscopy. The significance of the rigid rotor 
model for a diatomic molecule can be seen as follows. The Hamiltonian for a system of two particles 
of masses m

1
 and m

2
, which interact through a central force, is given by

 
H

p
m

p
m

V

m m
V

= + + −( )
= − ∇ − ∇ + −( )

1
2

1

2
2

2

2

1
1
2

2

2
2
2

1 2

2 2

2 2

1 2r r

r r� �

In Chapter 8, it will be shown that this Hamiltonian can be split into two parts:

 H = H
cm

 + H
rel

H
cm 

describes the motion of the centre of mass whose coordinate is given by R r r= + +(m m m m1 1 2 2 1 2)/( ). 
H

rel
 describes the relative motion between the two particles. It depends on r r r= −1 2 .  H

rel 
is given by

 

H V r

r r
r

r
L

r
V r

rel = − ∇ +

= − ∂
∂

∂
∂( ) − +

�

�

2

2
2

2

2 2
2

2

2

2

2
1

2

m

m m

( )

( )
 (7.93)

In the rigid body approximation, the term L r2 22/ m  is replaced by L r2
0

22/ m  where r
0
 is the equilibrium 

distance between the particles.

 ∴ = +Hrel H r H( ) ( , )q f
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The structure of the Hamiltonian suggests that u r( , , )q f  can be written as u r R r( , , ) ( ) ( , )q f c q f=  so 
that E = E

r
 + E

rot

where

 − ∂
∂

∂
∂( ) +





=�2

2
2

2
1

m r r
r

r
r R r E R rrV ( ) ( ) ( )

and L
r

Erot

2

22 0m
c q f c q f( , ) ( , )=

So the rigid rotor approximation separates the rotational motion from the radial motion of the dia-
tomic molecule. In molecular spectroscopy, the important radial motion is the vibrational motion of 
the atom.

Example 7.13 Obtain Yll from the equation L Yll+ = 0.

Solution:

Y ell ll ll
il= N Φ ( )q f

L Y i e i N ell
i

ll ll
il

+ = − ∂
∂

+ ∂
∂







=� f f

q
q
f

cot Φ 0

∂
∂

−( ) =
q

ql llcot Φ 0  or ∂
∂

=
Φ

Φll
lll

q
q
q

cos
sin

d
l dll

ll

Φ
Φ

= cos
sin
q
q
q

On integration, we get

 
d l dll

ll
l

(ln ) (ln sin )

sin

Φ
Φ

=
=

q
qA

The constant A can be determined from the condition

 Φll d
2

0

1sinq q
p

=∫

Assuming A to be real, we get

 Φ ll
ld A d

2

0

2 2

1

1

1sin ( )q q w w
p

= −∫ ∫
−

 = + −
−
∫ A2

1

1

1 1( ) ( )w w wl l d
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Put 1 + w = t
  -1 - w = 2 - t

 ∴ + − = − = ⋅
+

− +
−

+

∫ ∫A d A t t dt A t
l

tl l l l
l

l2 2

1

1

0

2

2
1

0
21 1 2

1
2( ) ( ) ( ) ( ) |w w w AA l t

l
t

l
l2

1
1

0

2

1
2

+
−

+
−∫ ( )

( )

So we have,

 ( ) ( )2
1

21

0

2

0

2

1− =
+

⋅ ⋅ −+ −∫∫ t t dt l
l

t tl l l l

Proceeding in the same way, we get 

 ( )
( )( )..

2
1 2 2

0

2

2

0

2

− =
+ +∫ ∫t t dt l

l l
t dtl l l!

l

 

=
+ + +

=
+

∴ = − +

+ +2
1 2 2 1

2
2 1

2 1
2

2 1 2 1

2

l l

l

l
l l l

l
l

A
l

!
( )!

!

( )( )..( )
( !)

( )

2

++




1 2( )l!

1/2

The negative sign is included to make the solution spherical harmonic as defined in the section  
‘Spherical harmonics as eigenfunctions of angular momentum’.

 ∴ = − +
( )











+

Φ ll
l

ll

l

( )!
!

2 1

22 1 2

1/2

sin q

 Y
l

l
ell

l

l il= − +
( )













⋅
+

( )!
!

2 1

2
1
22 1 2

1/2

sin q
p

f

Example 7.14 Assuming Y ell
i= − 3

8p
q fsin  obtain Y10 and Y11 using the lowering operator L.

Solution:

 
L i e i

L Y i e i

i

i

−
−

−
−

= ∂
∂

+ ∂
∂







= −





⋅ ∂
∂

+

�

�

f

f

q
q
f

p q

cot

cot11
3

8
qq
f

q f∂
∂







sin ei

 
= ⋅

=−

�

�

3
8

2

211 10

p
qcos

L Y Y
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 ∴ = ⋅2 3
8

210� �Y
p

qcos

 ∴ =Y10
3

4p
qcos

 L Y i e ii
−

−= ∂
∂

+ ∂
∂







⋅10
3

4
� f

q
q
f p

qcot cos

 = −i e i� 3
4p

q fsin

But  L Y Y− −=10 1 12�

 ∴ =−
−Y e i

1 1
3

8p
q fsin

Example 7.15  Prove that

 P x
l m
l m

P xl m
m

lm− = − −
+

( ) ( ) ( )1
( )!
( )!

Solution: P
lm

(x) is given by

 P x
l

x D xlm l

m
l m l( ) ( ) ( )= ⋅ − −+1

2
1 1 12 2 2

!

Using Leibnitz rule, we have

 

D x D x x

C D x D x

l m l l m l l

l m
r

l m r l r l

r

l

+ +

+ + −

=

− = + −

= + −

( ) ( ) ( )

( ) ( )

2

0

1 1 1

1 1
++

∑
m  (7.94)

where the binomial coefficient is given by l m
rC

l m
r l m r

+ = +
+ −

( )!
!( )!

Note that Dl + m - r (x + 1)lDr(x - 1)l is not zero provided l + m - r ≤ l and r ≤ l.
Or equivalently r ≥ m and r ≤ l.

 ∴ + −
≠ ≤ ≤




+ −D x D x
m r l

l m r l r l( ) ( )1 1
0

0

if 

otherwise

Further, D x l
l r

xr l l r( ) ( )± =
−

± −1 1!
( )!  provided r ≤ l

Making use of these results in the Equation (7.94), r takes the values from m to l in the summation, 
and so we get
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l m l l m
m

l l m l l m
m

l l mx C D x D x C D x D x+ + +
+

− +− = + − + + −( ) ( ) ( ) ( ) (2
1

1 11 1 1 1 1)) ...

... ( ) ( )

( ) ( )

l

l m
l

m l l l

l m
r

l m r l r

C D x D x

C D x D x

+
+ + + −

= + −

+

+ + −

1 1

1 1 ll

r m

l

l m
r

r m
l r

r m

l

C l
r m

x
x l

l r

=

+ −
−

=

∑

∑=
−

+ −
−

!
( )!

!
( )!

( )
( )

1
1

 ∴ = ⋅ +
+ −

⋅
− −

+
=

−∑P
l

l m
r l m r

l
r m l r

xl m l
r m

l
r1

2
1 1

2

!
( )!

!( )!
!

( )!( )!
( )

( ) mm l rx( )− −1  (7.95)

Now consider Dl - m (x2 - 1)l.

 D x C D x D xl m l l m
s

l m s l s l

s

l m
− − − −

−

− = + −∑( ) ( ) ( )2 1 1 1

Put s + m = r
∴ r varies from m to l.

 

∴ − = + −

= −
−

− −
−

− −

=
∑D x C D x D x

l m
r m

l m l l m
r m

l r l r m l

r m

l

( ) ( ) ( )2 1 1 1

( )!
( )!(( )!

!
!

!
( )!l r

l
r

l
l r m

x xr l r m

r m

l

−
⋅ ⋅

− +
+ − − +

=
∑ ( ) ( )1 1  (7.96)

 

∴ = ⋅ − −

= ⋅ − ⋅ −

−
− −

−

P
l

x D x

l
x

D x

l m l

m
l m l

l

m l m

1
2

1 1 1

1
2

1 1

2 2 2

2 2
2

!

!

( ) ( )

( )
( 11

1

1
2

1 1
1

1 1

1 1

2

2 2
2

2

)
( )

( )
( )

( ) ( )

( )

l

m

l

m l m l

m m

m

x

l
x

D x
x

−

= ⋅ − ⋅ −
− −

= −

−

!

22
1 1

1
1 1

2 2
2

l

m l m l

m ml
x

D x
x x

⋅ − ⋅ −
+ −

−

!
( )

( )
( ) ( )

 P
l

x
l m

r m l r
l
r

l
ll m l

m
m

r m

l

−
=

= ⋅ − − ⋅ −
− −

⋅∑1
2

1
1 2 2( )

( ) /

!
( )!

( )!( )!
!
!

!
( −− +

+ −
+ −

+ − +

r m
x x

x x

l r l r m

m m)!
( ) ( )

( ) ( )
1 1

1 1

 
= − −

+
⋅ − +

−
( )

− −
( ) ( ) /1 1

2
1 2 2

2

m
l

ml m
l m

x
l m
r m

l

l r l r
( )!
( )!

( )!
( )!

!
( )!( ++

+ −

= − −
+

− −

=
∑ m

x x

l m
l m

P x

r m l r

r m

l

m
lm

)!
( )!
( )!

( ) ( )

( ) ( ) ( ( .

1 1

1 7from 995))

Example 7.16 For an atom interacting with electromagnetic field, the interaction Hamiltonian in the 
dipole approximation can be written as − ⋅ed r where d  is the electric field. Evaluate the matrix ele-
ment x

lm,l′m′, ylm,l′m′ and z
lm,l′m′. Hence obtain the selection rule due to dipole interaction.

Solution: The matrix elements are (x)
lm,l′m′, ylm,l′m′ and z

lm,l′m′ given by

 ( ) , ( , ) ( , )x Y xY dlm l m lm l m′ ′ ′ ′= ∗ Ω∫ q f q f

M07_QUANTUMMECHANICS_3628_CH07.indd   240 5/23/2013   9:49:21 AM



Orbital Angular Momentum  241

 
( ) , ( , ) ( , )

( ) , ( , )

y Y yY d

z Y zY

lm l m lm l m

lm l m lm l

′ ′ ′ ′

′ ′

= ∗ Ω

= ∗
∫
∫

q f q f

q f ′′ ′m d( , )q f Ω

In the spherical coordinates

 

x r r e e

y r
i

r e e

i i

i i

= = +

= = −

−

−

sin cos sin

sin sin sin

q f q

q f q

f f

f f

( )

(

1
2

1
2

))

z r= cosq

Using the recursion relations (7.67) and (7.69), we get

 

xY r e Y e Y

r

l m l m

l m
i

l m
i

l m′ ′ ′ ′ ′ ′

′ ′ ′ ′

= +

=
− + + + +

−

2

2

1 2

[sin sin ]

( )(

q qf f

))
( )( )

( )( )
(

/

,2 1 2 3
1

2 1

1 2

1 1l l
Y

l m l m
ll m′ ′

′ − ′ ′ − ′
′′ ′+ +







+ +
++ + ))( )

( )( )
( )(

/

,2

1 2
2 1 2

1 2

1 1l
Y

l m l m
l l

l m′ −1

′ − ′ ′ − ′
′ ′

′− ′






− + +
+

+

++






+ +
+





+3

1
2 1 2

1 2

1 1)
( )( )

( )( )

/

,Y
l m l m

l ll m′ ′−
′ + ′ ′ + ′

′ ′ −1 





















= ++ + − +

1 2

1 1

1 1 1 1 12

/

,

, ,[

Y

r a Y bY

l m

l m l m

′− ′−

′ ′ ′ ′ 11 1 1 1 2 1 1+ ++c Y c Yl m l m′ ′− ′− ′−, , ]

∴ = ∗

= ∗ +

∫

∫ + +

( ) ( , ),

,

x Y xY d

ra
Y Y d

rb
Y

lm l m lm l m

lm l m

′ ′ ′ ′

′ ′

q f Ω

Ω1
1 1

1

2 2 llm l m lm l m lm l mY d
rc

Y Y d
rd

Y Y d∗ + ∗ + ∗
− + + −∫ ′ ′ ′ ′− ′ ′−1 1

1
1 1

1
1 12 2, , ,Ω Ω ΩΩ∫∫

= + ++ + − + +

ra rb rc
l l m m l l m m l l m m

1
1 1

1
1 1

1
12 2 2

d d d d d d, , , , , ,′ ′ ′ ′ ′ ′′− ′ ′−1
1

1 12
+ −

rd
l l m md d, ,

Similarly, we find

 
( ) , , , , ,y

ra
i

rb
i

rc
ilm l m l l m m l l m m l′ ′ ′ ′+ ′ ′+= + ++ −

2
1 1

2
1 1

2

2 2 2
d d d d d ,, , , ,

, ,( )

l m m l l m m

lm l m l l mm

rd
i

z ra

′ ′ ′ ′

′ ′ ′ ′

+ − − −

+

+

=

1 1
2

1 1

3 1

2
d d d

d d ++ −rb l l m m3 1d d, , .′ ′

The matrix element for the dipole ed ⋅r is given by

 

Y e Y d

er
a b c

lm l m

x
l l m m l l m m

*

[ , , , ,

∫ ⋅

= + ++ + − +

d r ′ ′

′ ′ ′ ′

Ω

e
d d d d

2 1 1 1 1 1 1 11 1 1 1 1 1

2 12

d d d d

e
d d

l l m m l l m m

y
l l m m

d

ier
a

, , , ,

, ,

]

[

′ ′− ′ ′−

′ ′

+ −

+

+

−  ++ ′−1 ′+ ′ ′− ′−1 ′−1 2 1 2 1 1 2 1+ + ++b c dl l m m l l m m l l m md d d d d d, , , , , , ]

   ++ ++ −er a bz l l mm l l mme d d d d[ ], ,3 1 3 1′ ′ ′ ′
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Therefore, we have

 ( ) ,,e

l l

m m m mlm l md ⋅
≠

= ±
= = ±

=






r ′ ′

′ 1
′ ′

0
1

0

provided 

otherwise

In atomic physics l
f
 m

f
 refers to the final state of the atom, and l

i
m

i
 refers to the individual state of the 

atom. The dipole moment ed ⋅r induces an atomic transition from the state with l
if
 m

i
 to l

ff
 m

f
. So the 

matrix element of ed ⋅r is now written as

 ( ) ,,e

l l

m m m ml m l m

f i

f i f if f i i
d ⋅

≠
= ±

= = ±

=


r

0
1

0

provided 

otherwise

1







Therefore the selection rules are

 l l m m mf i f i i= ± = ±1 1, , .

 EXErciSES

 1. Evaluate (i) [L
x
, x] (ii) [L

y
, x] (iii) [L

z
, x] (iv) [L

x
, y] (v) [L

y
, y] (vi) [L

z
, z] (vii) [L

x
, z] (viii) [L

y
, z] 

(ix) [L
z
, z]

 2. Show that [ , ] [ ]L i2 r L r r L= × − ×�
 3. Evaluate (i) [L

x
, p

x
] (ii) [L

y
, p

x
] (iii) [L

z
, p

x
]

 4. Show that [ , ] [ ]L i2 p L p p L= − × + ×�
 5. Starting from Y

22
, obtain Y

21
, Y

20
, Y

2 - 1
 and Y

2 - 2 
using L- operator.

 6. Starting from Y
2 - 2

, obtain Y
2 - 1

, Y
20

, Y
21

 and Y
22

 using L+ operator.
 7. Obtain Y

l - l
 by solving the equation L Yll− = 0.

 8. Distinguish the angular momentum in classical and quantum physics.
 9. Construct the eigenfunctions of L

y
 in terms of the spherical harmonics.

 10. A system is in a state Y
lm

. What are the possible values of (i) z component of L (ii) x component 
of L.

 11. A system is in a state Y
2m

. When L
x
 is measured, what is the probability of getting L

x
 to be 

2 0 2� � � �, , , ?− −and
 12. Obtain the matrix elements (x2)

lm, l′m′, (y
2)

lm, l′m′, (z
2)

lm, l′m′, (xy)
lm, l′m′, (yz)

lm, l′m′, (xz)
lm, l′m′.
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 2. P. M. Mathews and A. Venkatesan, 1976. A Textbook of Quantum Mechanics. New Delhi: Tata-
McGraw Hill Publishing Company Ltd. 

 3. Eugene Butkov, 1968. Mathematical Physics: Massachusetts: Addison-Wesley Publishing 
Company.
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Time-Independent 
Schrödinger Equation 
in Three Dimensions

In this chapter, we consider a few simple potentials for which we determine the bound state, as well as 
the scattering state, solutions of the time-independent Schrödinger equation given by

 − ∇





=�2
2

2m
u Eu+V ( ) ( ) ( )r r r

Therefore, depending on the nature of the potential, we can employ either Cartesian coordinates or 
spherical polar coordinates or any other curvilinear coordinate systems.

8.1 PARTICLE IN A RECTANGULAR BOX
In one dimension, we considered a particle confi ned to a region 0 < x <	L.

We can extend this idea to three dimensions.
The potential V ( )r  is now given by

 V
x a y b z c

( )
; ;

r =
< < < < < <

∞




0 0 0 0

otherwise
 (8.1)

a

b

c

Fig. 8.1 Rectangular box potential

8
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Therefore, the Schrödinger equation is

 − ∇ = < < < < < <�2
2

2
0 0 0

m
u Eu x a y b z c( ) ( ) ; ;r r  (8.2)

We have to solve this equation, subject to the boundary condition

 y (0, 0, 0) = y (a, y, z) = 0

 y (x, b, z) = y (x, y, c) = 0 (8.3)

The Schrödinger equation now becomes

 − ∂
∂

− ∂
∂

− ∂
∂

=� � �2 2

2

2 2

2

2 2

22 2 2m
u

x m
u

y m
u

z
Eu  (8.4)

The structure of this equation suggests that u(x, y, z) can be written as

 u(x, y, z) = X(x) Y( y) Z(z) (8.5)

The Equation (8.4) now becomes

 − − − =� � �2 2

2

2 2

2

2 2

22 2 2m
d X
dx

YZ
m

d Y
dy

XZ
m

d Z
dz

XY EXYZ

Dividing throughout by X YZ, we get

 − − − =� � �2 2

2

2 2

2

2 2

22
1

2
1

2
1

m X
d X
dx m Y

d Y
dy m Z

d Z
dz

E  (8.6)

Let us write 2
2

mE
�

 as

 2
2

2 2 2 2mE k k k kx y z�
= = + +  (8.7)

The Equation (8.6) becomes

 1 1 1 0
2

2
2

2

2
2

2

2
2

X
d X
dx

k
Y

d Y
dy

k
Z

d Z
dz

kx y z+( ) + +





+ +( ) =

Each term has to be made separately to zero. Therefore, we have

 d X
dx

k Xx

2

2
2 0+ =  (8.8)

 d Y
dy

k Yy

2

2
2 0+ =  (8.9)

 d Z
dz

k Zz

2

2
2 0+ =  (8.10)

The boundary condition y (0, y, z) = y (a, y, z) = 0 becomes

 X(0) = X(a) = 0 (8.11)
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Similarly, the other boundary conditions lead to a new set of boundary conditions

 Y(0) = Y(b) = 0 (8.12)

 Z(0) = Z(c) = 0 (8.13)

Solutions to (8.8), (8.9) and (8.10), consistent with these boundary conditions, are

 X x k x k
n

a
nx x

x
x( ) sin , , ...= = =

p
1 2 3  (8.14)

 Y y k y k
n

b
ny y

y

y( ) sin , , ...= = =
p

1 2 3  (8.15)

 Z z k z k
n
b

nz z
z

z( ) sin , , ...= = =
p

1 2 3  (8.16)

Therefore, the energy eigenvalues and the energy eigenfunctions are given by

 u(x, y, z) = N sin k
x
x sin k

y
 y sin k

z
z (8.17)

 E
m

n
a

n

b
n
cn n n

x y z

x y z, , = + +








�2

2
2

2

2

2

2

22
p  (8.18)

The wave function u(x, y, z) can be normalized by demanding

 dx dz u x y z
ba c

dy
00

2

0

1∫∫ ∫ =| ( , , ) |

The normalization constant N is found to be

 N
abc

= ( )8
1 2/

The energy eigenfunction is

 u x y z
abc

n x
a

n y

b
n z

c
x y z( , , ) sin sin sin

/

= ( )8
1 2 p p p

 (8.19)

8.1.1 Particle in a Cubical Box
For a cubical box, a = b = c = L

Then, the energy eigenfunctions and eigenvalues become

 E
m L

n n nx y z= + +�2 2

2
2 2 2

2
p ( ) (8.20)

and u x y z
L

n x
L

n y

L
n z

L
x y z( , , ) sin sin sin

/

= ( )2
3 2 p p p

 (8.21)
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The energy levels are generally degenerate energy levels. Some of the energy levels and the corre-
sponding degeneracies are listed below:

Table 8.1 Some of the energy levels and the corresponding degeneracies

Energy (nx, ny, nz) Degeneracy

�2 2

22
3

m L
⋅ p (1, 1, 1) 1

�2 2

22
6

m L
⋅ p (1, 1, 2), (2, 1, 1), (1, 2, 1) 3

�2 2

22
9

m L
⋅ p (1, 2, 2), (2, 1, 2), (2, 2, 1) 3

�2 2

22
12

m L
⋅ p (2, 2, 2) 1

�2 2

22
14

m L
⋅ p (1, 2, 3), (1, 3, 2), (3, 2, 1), (2, 1, 3),(3, 1, 2), (2, 3, 1) 6

8.2 HARMONIC OSCILLATOR IN THREE DIMENSIONS
The Schrödinger equation for a harmonic oscillator in three dimensions (most general case) is

 − ∂
∂

+ − ∂
∂

+ − ∂
∂

+


� � �2 2

2 1
2

2 2

2 2
2

2 2

2 3
2 2

2
1
2 2

1
2 2

1
2m x

m x
m y

m y
z

m zw w w
m




=u x y z Eu x y z( , , ) ( , , ) (8.22)

Let us write u(x, y, z) as X(x) Y( y) Z(z). The Schrödinger equation becomes

− +





+ − +





� �2 2

2 1
2 2

2 2

2 2
2 2

2
1
2 2

1
2m

d X
dx

m x X YZ
m

d Y
dy

m y Y Xw w ZZ
m

d Z
dz

m z Z XY EXYZ+ − +





=�2 2

2 3
2 2

2
1
2
w

Divide throughout by X YZ and write E as E = e
1
 + e

2
 + e

3
. We now get

 

1
2

1
2

1
2

1
2

2 2

2 1
2

1

2 2

2 2
2

2X m
d X
dx

m X X
Y m

d Y
dy

m Y Y− + −





+ − + −� �w e w e





+ − + −





=1
2

1
2

0
2 2

2 3
2

3Z m
d Z
dz

m Z Z� w e
 (8.23)

Setting each term separately to zero, we get

 − �2 2

2 1
2

12
1
2m

d X
dx

m X X+





=w e  (8.24)

 − +





=�2 2

2 2
2

22
1
2m

d Y
dy

m Y Yw e  (8.25)
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 − +





=�2 2

2 3
2

32
1
2m

d Z
dz

m Z Zw e  (8.26)

It is obvious that we have

 e w e w e w1 1 1 2 2 2 3 3 3
1
2

1
2

1
2

= +( ) = +( ) = +( )n n n� � �, ,

 ∴ = +( ) + +( ) + +( )E n n n1 1 2 2 3 3
1
2

1
2

1
2

� � �w w w  (8.27)

The energy eigenfunction is

 u x y z N N N e H x H x Hx y z
n n( , , ) ( ) ( )(( ) ( ) ( )= − + +

1 2 3
2

1 1 2
1

2
2

2
3

2

2

a a a a a)/
nn x

3 3( )a  (8.28)

8.3 ISOTROPIC HARMONIC OSCILLATOR (CARTESIAN COORDINATES)
Let us consider a special case where the force constants k

1
, k

2
 and k

3
 are the same. This is known as iso-

tropic harmonic oscillator for which w
1
 = w

2
 = w

3
 = w. Therefore, the energy eigenvalues E is given by

 E n n n= + + +( )1 2 3
3
2

�w  (8.29)

The states are characterized by a set of three integers (n
1
, n

2
, n

3
). The sum n

1
 + n

2
 + n

3
 = n can be writ-

ten as n.

 ∴ = +( ) = + +E n n n n n3
2 1 2 3�w  (8.30)

The ground state corresponds to n
1
 = n

2
 = n

3
 = 0. Therefore, the ground state energy is

 E = 3
2

�w  (8.31)

So the ground state is non-degenerate; i.e., there is only one ground state with minimum energy 3 2/ �w. 
States with higher energies are degenerate. For instance, for n = 1, the possible values of (n

1
, n

2
, n

3
)  

are (1, 0, 0), (0, 1, 0) and (0, 0, 1). For n = 2, the possible values of (n
1
, n

2
, n

3
) are (2, 0, 0), (1, 1, 0),  

(1, 0, 1), (0, 2, 0), (0, 1, 1) and (0, 0, 2). It can be shown that for a given n, there are 1
2

1 2( )( )n n+ +  states.

Example 8.1 Show that for an isotropic harmonic oscillator, the energy level E = +( )n 3 2/ �w is 
1 2 1 2/ ( )( )n n+ +  fold degenerate.

Solution: For a given n, one has to find the total number of combinations of three integers n
1
, n

2
 and 

n
3
 such that n

1
 + n

2
 + n

3
 = n.
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For a given n, if one fixes n
1
 and n

2
, n

3
 naturally gets fixed. So this problem reduces to find in how 

many ways n
1
 and n

2
 can be varied consistent with a given n. Let us enumerate the possible values of 

n
1
 and n

2
 consistent with a given n.

Table 8.2 Counting the degeneracy

Values of n1 Possible values of n2 n1, n2, n3 Degeneracy

n 0 (n, 0, 0) 1

n - 1 1, 0 (n - 1, 1, 0), (n - 1, 0, 1) 2

n - 2 2, 1, 0 (n - 2, 2, 0),

(n - 2, 1, 1), 3

(n - 2, 0, 2)

n = 0 n, n - 1,…, 1, 0 n + 1

Total number of degenerate states D is given by

 D n n n= + + + = + +1 2 ...( ) ( )( )1 1
2

1 2

8.4 CENTRAL POTENTIALS: GENERAL PROPERTIES
If V(r, q, f ) is independent of q and f, then it is said to be spherically symmetric potential.

i.e.,  V(r, q, f ) = V(r)

Such potentials are called central potentials. To describe a particle in central forces, the best coordi-
nate system is spherically polar coordinates.

The Laplacian operator in spherical polar coordinates is given by

 ∇ ∂ ∂
∂( ) + ∂

∂
∂

∂( ) + ∂
∂

2
2

2
2 2 2

2

2
1 1 1 1=

∂r r
r

r r sin
sin

sinq q
q
q q fr

 (8.32)

The Schrödinger equation in spherical polar coordinates is given by

 − ∂ ∂
∂( ) + ∂

∂
∂
∂( ) + ∂

∂
�2

2
2

2 2 2

2

22
1 1 1 1 1

m r r
r u

r r
u

r
u

∂ sin
sin

sinq q
q
q q f




+ =V r u Eu( )

Let us recall that the angular momentum operator L2 is given by

 L2 2
2

2

2
1 1= − ∂

∂
∂

∂( ) + ∂
∂







�
sin

sin
sinq q

q
q q f

The Schrödinger equation now becomes

 − ∂
∂

∂
∂( ) −





+ =�
�

2

2
2

2

2 22
1

m r r
r u

r
L
r

u V r u Eu( )  (8.33)

It can be easily shown that for any central potential, the Hamiltonian commutes with L2 and L
z
.

i.e., [H, L2] = 0, [H, L
z
] = 0
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Example 8.2 Show that the Hamiltonian for central potential V(r) commutes with L2 and L
z
.

Solution:

 

H
r r

r
r

L
r

V r

r r r
L

= − ∂
∂

∂
∂( ) −





+

= − ∂
∂

+ ∂
∂

−

�
�

�
�

2

2
2

2

2 2

2

2

2

2
1

2
2

m

m

( )

22 2r
V r





+ ( )

 
H L

r m r r
L
mr

V r L

m r

, ( ),2
2 2

2

2 2

2
2

2 2

2 2
2

2

2

[ ] = − ∂
∂

− ∂
∂

+ +





= − ∂
∂

� �

�
m

22

2
2

2

2
2 2

2
2

2
− ∂

∂






+ 





+�
m r r

L L
mr

L V r L. , , [ ( ), ]

Since L2 depends only on q and f, each of the first two commutates with L2.

	 ∴[H, L2] = 0

In the same way, we can prove that [H, L
z
] = 0.

8.5 RADIAL EQUATION
The observables H, L2 and L

z 
together form a set of compatible observables. Therefore, these operators 

should have common eigenfunctions.
Let us recall that

 
L2 21Y l l Y

L Y m Y
lm lm

z lm l lm

( , ) ( ) ( , )

( , ) ( , )

q f q f
q f q f

= +
=

�

�

Therefore, the eigenfunctions of H can be written as

 u(r, q, f ) = R (r) Y
lm

 (q, f )

Substituting this expression in (8.33), we get

 − ∂
∂

+ ∂
∂( ) + +�2 2

2

2

22
2

2m r r r
R r Y L

mr
R r Y V r R rlm lm( ) ( , ) ( ) ( , ) ( ) ( )q f q f YY E R r Ylm lm( , ) ( ) ( , )q f q f=

 − ∂
∂

+ ∂
∂







+ + +� �2 2

2

2

22
2 1

2m r r r
R r Y

l l
mr

R r Y V r R rlm lm( )
( )

( ) ( ) ( )YY E R r Ylm lm= ( )

 − +





+ + + =� �2 2

2

2

22
2 1

2m
d R
dr r

dR
dr

l l
mr

R r V r R ER r
( )

( ) ( ) ( )

Note that R depends on E and l. So we can rewrite this equation as

 
d R

dr r

dR

dr
m E V r

l l
mr

R rEl El
El

2

2 2 2
22 2 1

2
0+ + − − +





=
�

�( )
( )

( )

Generally, quantum numbers n and l are used to specify the radial wave function instead of E and l. 
Therefore, the above equation becomes
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d R

dr r

dR

dr
m E V r

l l
mr

R rnl nl
nl

2

2 2 2
22 2 1

2
0+ + − − +





=
�

�( )
( )

( )  (8.34)

This equation is known as radial equation.

8.6 CENTRIFUGAL POTENTIAL
The radial wave equation looks like one-dimensional Schrödinger equation in an effective potential 
V

eff 
, which is given by

 V r V r
mr

l leff ( ) ( ) ( )= + +�2

22
1  (8.35)

If we try to understand V
eff 

(r) in terms of force and potential at classical level, we can write it as

 
F d

dr
V r L

mr

d
dr

L
mr

L
mr

m v r
mr

mv
r

= − +





− = = =

( )
2

2

2

2

2

3

2 2 2

3

2

2

2

The term mv r2 /  represents centrifugal force, and so L mr l l mr2 2 2 22 1 2/ /= +( )�  is interpreted as cen-
trifugal potential. It represents a repulsive interaction. Normally, V(r) is an attractive potential, and 
l l mr( )+1 22 2� /  is a repulsive potential. So the effective potential looks like the curve in Fig. 8.2, where 
r

1
 and r

2
 are the classical turning points.

l(l + 1)

r 2

r

E

V(r )

Veff

r1
r2

Fig. 8.2 Effective potential

8.7 RADIAL PROBABILITY DISTRIBUTION FUNCTION
We know that the probability of finding the particle in a volume d3r  centred around r is

 
P d u u d

u u r d dnl nl

( ) ( ) ( )

( ) ( ) sin

r r r r r

r r

3 3

2

= ∗
= ∗ q q f

 = | ( )| | ( , | sinR r Y r d dnl l m
2 2 2q f q q f)

M08_QUANTUMMECHANICS_3628_CH08.indd   250 5/23/2013   9:55:10 AM



Time-Independent Schrödinger Equation in Three Dimensions   251

Integrating over the solid angle dΩ,we get

 
P r dr d d Y R r r dr

R r r

nl lm nl

nl

( ) sin | ( , ) | | ( ) |

( )

=

=

∫ ∫q q f q f
p p

0

2 2 2

0

2

2 2ddr

 (8.36)

This term can be interpreted as probability of finding the particle between r and r + dr.
Since P d( ) ,r r3 1=∫  we get

 P r dr R r r drnl nl( ) | ( )|= =
∞∞

∫∫ 2 2

00

1 (8.37)

This is the normalization condition for the radial wave function.

8.7.1 Boundary Conditions for Rnl(r)
Let us recall that in one-dimensional Schrödinger equation, the boundary conditions on the wave func-
tion u(x) are determined by the requirement that the wave function should be single valued and finite 
at all points. This is necessary for probability interpretation and the normalization condition. For the 
radial wave functions also, we impose the same requirements. The normalization condition for R

nl
(r) is

 r R r drnl
2 2

0

1| ( )|
∞

∫ =

The convergence of this integral demands that rR
nl
(r) → 0 as r → ∞. It is to be noted that this is true 

for bound states.
There is one more boundary condition, namely the behaviour of the wave function near r = 0.
Let us write the solution R

nl
(r) as

 R r r f r r a r anl
s s

n
n

n

( ) ( ) ,= = ≠∑ with 0 0

Substituting this solution in the Equation (8.4) and then dividing by r s - 2, we get

 r
d f
dr

s r
df
dr

s s l l f r m r E f r m
nl

2
2

2 2
22 1 1 1 2 2+ + + + − +[ ] + −( ) ( ) ( ) ( ) ( )

� �22
2 0V r r f r( ) ( ) =

As r → 0, this equation becomes [ ( ) ( ] ( )s s l l f r+ − +1 1 0�

 [ ( ) ( )][ .....]s s l l a a r a r+ − + + + +1 1 00 1 2
2 �

 s s l l a( ) ( )+ − +[ ]1 1 00 �  (8.38)

Here we have assumed that r2V(r) → 0 as r → 0.
The Equation (8.38) can be rewritten as 

 (s - l ) (s + l + 1) = 0

	 ∴s = l or s = -(l + 1) (8.39)
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i.e., as r → 0, the solution R
nl
(r) behaves like r l or r-(l + 1). Obviously, the acceptable behaviour is r l as 

r → 0.
So the boundary condition for the radial wave function R

nl
(r) is

 1. R
nl
(r) is single valued, finite and continuous

 2. R
nl
(r) → r l as r → 0

 3. For bound states, rR
nl
(r) → 0 as r → ∞

8.8 RADIAL MOMENTUM IN QUANTUM MECHANICS
In classical mechanics, the radial momentum is the component of momentum along the radial direc-
tion. It is given by

 p
rr = ⋅ = ⋅r p r p  (classical)

In classical physics, r p
r

⋅  and p r⋅
r

 are the same. But in quantum mechanics, r/r and p are operators 

and they do not commute. Therefore, what is the correct expression for the operator p
r 
, whether p r⋅

r
 

or r p
r

⋅ ?

The standard way of defining p
r
 is

 p
r rr = ⋅ + ⋅( )1

2
r p p r  (8.40)

Example 8.3 Show that the radial momentum operator 1
2

1r p p r r p
r r r

i⋅ + ⋅( ) = ⋅ −[ ].�

Solution: Consider 1
2

r p p r
r r

⋅ + ⋅( )y , where y  is an arbitrary wave function.

 1
2

1
2

1
2

r p p r
r r r

xp yp zp p x
r

p
y
r

p z
x y z x y z⋅ + ⋅( ) = + + + ( ) + 





+y y y y[ ]
rr
y( )





Note     p x
r

i
x

x
r

i
r

i x
r

x
r

p

x

x

y y

y y y

( ) = − ∂
∂ ( )

= − + +

�

� �1 2

3

 
p x

r
i

r
i

y
r

y
r

p

p z
r

i
r

i z
r

z
r

p

y y

z z

y y y y

y y y y

( ) = − + +

( ) = − + +

� �

� �

1

1

2

3

2

3

 

1 1
2

3 1

1
2

2 2 2

3r
i

r
i

x y z
r r

p
rr

p r r p

r p p

⋅ = − ⋅ + + + + ⋅





∴ = ⋅ +

y y y y

y

� �
( )

⋅⋅( ) = ⋅ −[ ]r r p
r r

iy y1 �

Since this equation is true for an arbitrary function y, the operator p
r
 is given by

 p
r

ir = 1 [ ]r p⋅ − �  (8.41)
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Example 8.4 Show that p f r
d f
dr r

df
drr

2 2
2

2
2( ) ,= − +





�

where f(r) is an arbitrary function of radial coordinate r.

Solution:

 

p f r
r

i f r

f r xp f r yp f r zp f r

i x

r

x y z

( ) ( )

( ) ( ) ( ) ( )

= ⋅ −[ ]
⋅ = + +

= − ∂

1 r p

r p

�

�
ff r

x
y

f r
y

z
f r

z

i x
df
dr

r
x

y
df
dr

r
dy

( ) ( ) ( )
∂

+ ∂
∂

+ ∂
∂







= − ⋅ ⋅ ∂
∂

+ ⋅ ∂ +� zz
df
dr

r
z

i
df
dr

x x
r

y
y
r

z z
r

i r
df
dr

⋅ ∂
∂







= − ⋅ + ⋅ + ⋅





= −

�

�

 

∴ = − +





= − +





∴ = −

p f r i
df
dr

f
r

i d
dr r

f r

p f r d
d

r

r

( ) ( )

( )

� �

�

1

2 2

rr r
df
dr r

f r

d f
dr r

df
dr

+





+





= − +





1 1

22
2

2

( )

�

8.9 HAMILTONIAN IN TERMS OF RADIAL MOMENTUM
The Hamiltonian for a particle in spherical polar coordinates is given by

 H
m

V r= − ∇ +�2
2

2
( )

 = − + −





+�
�

2 2

2

2

2 22
2

m
d
dr r

d
dr

L
r

V r( )

 = + +
p
m

L
mr

V rr
2 2

22 2
( ) (8.42)

Here, we have assumed the potential to be central potential.

8.10 FREE PARTICLE IN SPHERICAL POLAR COORDINATES
The Hamiltonian for a free particle is

 H
m

= − ∇�2
2

2

 = +
p
m

L
m r

r
2 2

22 2
 (8.43)
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The energy eigenvalue equation is

 Hu(r, q, f ) = Eu(r, q, f )

The operators which commute with H are L2 and L
z
.

i.e., [H, L2] = 0, [H, L
z
] = 0, [L2, L

z
] = 0

Therefore, H, L2 and L
z
 have got the same eigenfunctions. Since the spherical harmonics Y

lm
(q, f ) are 

eigenfunctions L2 and L
z
, the wave function u(r, q, f) can be written as

 u(r, q, f ) = R(r) Y
lm

(q, f )

This leads to the radial equation

 

d R
dr r

dR
dr

m E
mr

l l R

d R
dr r

dR
dr

mE

2

2 2

2

2

2

2

2 2
2

1 0

2 2

+ + − +





=

+ +

�
� ( )

��2 2
1 1 0− +





=
r

l l R( )
 (8.44)

Since E k m= �2 2 2/ , we write the above equation as

 
d R

dr r

dR

dr
k

r
l l Rkl kl

kl

2

2
2

2
2 1 1 0+ + − +





=( )

Define r = kr

 
d R

d

dR

d
l l

Rkl kl
kl

2

2 2
2 1

1
0

r r r r
+ + − +





=( )
 (8.45)

This is a well-known equation whose solutions are spherical Bessel functions j
l
(kr) and Neumann 

functions n
l
(kr).

 ∴ = +R r A j kr B n krkl l l l l( ) ( ) ( )

Some of the spherical Bessel functions and Neumann functions are listed below:

 j kr kr
kr

n kr kr
kro o( ) sin ( ) cos= = −

j kr kr
k r

kr
kr

n kr kr
k r

kr
kr1 2 2 1 2 2

( ) sin cos ( ) cos sin= − = − −

 j kr
k r kr

kr
k r

kr n kr
k r kr

kr2 3 3 2 2 3 2 3
3 1 3 1( ) sin cos ( ) cos= −( ) − = − −( )3 −− 3

2 2k r
rsin k

The functions n
l
(kr) are not finite at r = 0. So we choose B

l
 = 0.

Therefore, the free particle wave function u
klm

(r, q, f ) is given by

 u
klm

(r, q, f ) = A
l
 j

l 
(kr)Y

lm
(q, f ) (8.46)
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8.10.1 Difference Between ei p ri
�  and jl(kr)Ylm(p, e )

Both eik r⋅  and j
l
(kr)Y

lm
(q, f ) are eigenfunctions of the Hamiltonian H m= − ∇�2 22/ . But they are 

eigenfunctions of two different sets of compatible dynamical variables. One set is { , }H p  and another 
set is { , , }.H L Lz

2  But p  and L2 do not commute with each other. So we have

 
pop

i i

i i

e e

He k
m

e

k r k r

k r k r

k⋅ ⋅

⋅ ⋅

=

=

�

�2 2

2

 
L j kr Y l l j kr Y

Hj kr Y k
l lm l lm

l lm

2 2

2

1( ) ( , ) ( ) ( ) ( , )

( ) ( , )

q f q f

q f

= +

=

�

� 22

2m
j kr Yl lm( ) ( , ).q f

eik r⋅  is an eigenfunction of momentum operator pop; but it is not an eigenfunction L2. Therefore, the 
state represented by eik r⋅  has a definite momentum, but it has not a well-defined angular momentum.

On the other hand, j
l
(kr)Y

lm
(q, f ) is an eigenfunction of L2 and L

z
; but it is not an eigenfunction 

of momentum operator pop. Therefore, the state represented by j
l
(kr)Y

lm
(q, f ) does not have a well-

defined momentum.
It can be shown that the plane wave function is given by e i j kr Y Yi l

l m
l lm k m lm

k ri = ∗∑4p q f q f
,

( ) ( , ) ( , )

where k = + +k k kk k k k ksin cos sin sin cosq f q f qx y zˆ ˆ ˆ. In the special coordinate system, where k is 
chosen along Z axis, we have

 
e i

l
j kr Y

i l

i kr l

l m
l l

l

cos

/

,

( )
( ) ( , )

( )

q p p q f= +





= +

∑

∑

4
2 1
4

2 1

1 2

0

jj kr Pl l( ) (cos )q

8.11 PARTICLE IN A SPHERICALLY SYMMETRIC BOX
The potential V(r) is given by

 V r
r a

( ) =
< <

∞




0 0

otherwise

i.e., the potential is zero for a particle inside a sphere of radius a but infinite outside the sphere. So the 
particle has to be confined to this region. The radial equation is

 d R
dr r

dR
dr

mE l l
r

R r r a
2

2 2 2
2 2 1

0 0+ + − +





= < <
�

( )
( )  (8.47)
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 R(r) = 0         r > a (8.48)

Let us define k2 as 2 2 2mE k/� =

The Equation (8.47) now becomes

 d R
dr R

dR
dr

k
l l

r
R r

2

2
2

2
2 1

0+ + − +





=( )
( )  (8.49)

This is the same as the Equation (8.45). Therefore, the solution is given by

 R r
A j kk r a

r akl
l l( )

( )
=

< <
>





0

0
 (8.50)

k is now not a continuous variable; k is restricted to a set of discrete values determined by j
l
(ka) = 0.

The wave function u(r, q, f ) is given

 u r
A j kr Y r a

r a
l l lm( , , )

( ) ( , )
q f

q f
=

< <
>





0

0
 (8.51)

Example 8.5 Determine the energy eigenvalue for a particle in a spherically symmetric box for l = 0.

Solution: The boundary condition for the radial wave function is j kal ( ) .= 0

 

j ka ka
ka

ka n n

E k
m

n
ma

nno

1

2 2 2 2 2

2

1 2 3

2 2
1

( ) sin

, , ...

,

=

∴ = =

∴ = = =

p
p� �   22 3, ...

Example 8.6 Show that the energy eigenvalue of a particle in a spherically symmetric box for l = 1 is 
determined by tan ka = ka.

Solution: The boundary condition for the radial wave function is

 j
1
(ka) = 0

 
∴ − =

∴ =

sin cos

tan

ka
k a

ka
ka

ka ka

2 2
0

The solution is provided by the intersection of the two curves

 y = ka and y = tan ka
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y = tan(ka)

y = tan(ka)

y = tan(ka)

y = ka

kap
2

3p
2

5p
2

p 2p

Fig. 8.3 Graphical solution for a particle in a spherically symmetric box

8.12 BOUND-STATE SOLUTION FOR SPHERICALLY SYMMETRIC POTENTIAL WELL
The spherically symmetric potential well is given by

 V r
V r a

r a
o( ) =

− < <
>





0

0

a r

−V0

Fig. 8.4 Spherically symmetric square well

For bound states, E is negative and | | .E V> 0

The radial equation is given by

 
d R
dr r

dR
dr

m V
l l

r
R r aI I

I

2

2 0 2
2 2 1

0 02+ + − + − +





= < <
�

( | | )
( )

E  (8.52)

 
d R
dr r

dR
dr

m E
l
r

R r aII II
II

2

2 2 2
2 2 1

0+ − + +





= >
�

| |
( )l

 (8.53)
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Let us define a	2 and b	2 as

 a b2
2

2
2

2 2
0= − =m V E E

� �
( | |) | |m

The radial equation becomes

 
d R dR

RI
I

2

2
2

2

1
0 0I

dr r dr
l l

r
r a+ + − +





= ≤ ≤2 a ( )
 (8.54)

 
d R
dr r

dR
dr

l l
r

R r aII II
II

2

2
2

2
2 1

0+ + − − +





= ≥b ( )
 (8.55)

Solution to Equations (8.54) and (8.55) is given by

 R j r r aI ll= ≤ ≤A ( )a 0  (8.56)

 R B j i r C n i r r aII l l l l= + ≥( ) ( )b b  (8.57)

For a bound-state solution, we would like to have the radial wave function to fall rapidly to zero for  
r > a. This behaviour is not reflected by j

l
(ib r) or n

l
(ib r) since they become infinite. A better solution 

reflecting this behaviour can be obtained by a linear combination j
l
(ib r) and n

l
(ib r). Such linear com-

binations are provided by Hankel functions hl
( )+  and defined as

 h j inl l l
( ) ( ) ( ) ( )+ =r r r+   and  h j inl l l

( ) ( ) ( ) ( )− = −r r r  (8.58)

Using the spherical Bessel and Neumann functions given in the Section 8.10, we can work out some 
of the spherical Hankel functions.

 h i e i
0
( ) ( )± ±= ± 





r
r

r  

(8.59)

 h i e i
1 2

1( ) ( )± ±= − ±





r
r r

r

 h i i e i
2 2 3

3 3( ) ( )± ±= ± − +





r
r r r

r  (8.60)

hl
( ) ( )± r  have the general form f e i( )r r± .

 ∴ =+ −h i r f i r el
r( ) ( ) ( )b b b  (8.61)

and h i r f i r el
r( ) ( ) ( )− =b b b  (8.62)

Obviously, its h i rl
( ) ( )+ b  reflects the required behaviour of the radial wave function. So we have

R r
A j r r a

B h i r r a
l l

l l

( )
( )

( )( )=
< <
>





+

a
b

0 (8.63)

(8.64)
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The single value of the radial wave function R(r) and dR r dr( )/  requires

 A j a B h i al l l l( ) ( )( )a b= +  (8.65)

 d
dr

A j r d
dr

B h i rl l r a l l r a( ) ( )( )a b=
+

==

These two equations can be combined to get the following single equation:

 1 1
j a

d
dr

j r
h i a

d
dr

h i r
l

l
r a l

l
r a( )

( )
( )

( )
a

a
b

b
=

+
+

=
=

 1 1
j a

d
d

j
h i a

i d
d

h
l

l
a l

l
i a

( )
( )

( )
( )

a
a
r

r
b

b
r

r
r a r b=

+
+

=

=  (8.66)

This equation is sufficient to determine the energy eigenvalues of bound states.

8.12.1 Special Case: l = 0 Bound-state Solution
This is the simplest case in determining the energy eigenvalue for a particle in spherically symmetric 
potential well.

For l = 0, the radial wave function R(r) is given by

 

R r A j r A
r

r
r a

R r B h i r
B

r
e r

I

II

( ) ( )
sin

( ) ( )( )

= = ≤ ≤

= = −+ −

0 0 0

0 0
0

0a a
a

b
b

b rr a≥

Making use of the Equation (8.66), we get

 
a a a

a
ba a a

a
a

cos sin
sin

− = − −1

 ∴ = −a a ba a acot  (8.67)

 
b a2 2 2 2

2 0 2
2

2

2 0

2 2

2

a a m V E m E a

ma V

+ = − +





=

� �

�

( | |) | |
 (8.68)

The Equations (8.67) and (8.68) are exactly the same as the equations determining energy eigenvalues 
of bound states with odd parity in the case of square well potential in one dimension.

Let us define X, Y and Z as X = a a, Y = b a and Z ma V2 2 2
02= /� . Then the Equations (8.67) and 

(8.68) become

 Y = -cot X

and X 2 + Y 2 = Z 2
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The solution is determined by the intersection of the curves in the first quadrants as shown in Fig. 8.5.

p
2

0

1

2

3

4

5

p 3p
2

2p aa

ba

Fig. 8.5 Spherically symmetric square well potential - bound-state solution for l = 0

The existence of bound states depends on the value of Z ma V= ( ) ./2 2
0

2 1 2/�  There is no bound state 
for Z value less than p /2. There is one bound state for p p/ /2 3 2≤ ≤Z . Other bound states can be 
determined in the same way.

8.12.2 Condition for the Existence of Bound States for Square Well Potential
Let us now investigate the conditions for the existence of bound states for square well potential as a 
function of potential depth V

0
. This result is important in the context of low energy scattering, which 

will be discussed in Chapter 15. For square well potential, the bound state energy is determined 
by the Equation (8.65). So, the existence of a solution to this equation implies the existence of the 
bound state. For instance, in the case of l = 0, this equation cannot be satisfied for values of V

0
 less 

than �2 2 28p / ma .We closely follow Gasiorowicz here.
First, let us consider the case of l = 0. From the graphical solution of the Equation (8.67) in Fig. 8.5, 

no bound state exists if K a mV a0 0
2 1 22= ( ) //�  is less than p /2. As V

0
 increases, we reach a threshold 

value of V
0
, determined by K a0 2= p / , at which the formation of a bound state is possible. For the value 

of V
0
 in the range p p/ 3 /22 0< <K a , there exists only one bound state. As V

0
 is increased further, when 

it reaches K a0 3= p /2 , the existence of second bound state becomes possible. Continuing in the same 
way, we get the threshold value of V

0
 for the nth bound state, which is determined by K a n0 2 1= −( )p /2.

Let us next consider the case l ≠ 0. When l ≠ 0, it is difficult to get an analytic expression which 
can be used to get the condition for the existence of the bound state. However, when the potential V

0
 is 

large, it is possible to get an approximate condition. This approximation depends on the use of asymp-
totic limit of jl ( ),r  which is valid for r � l. The asymptotic limit of jl ( )r  is given by

 j

l

l l( )
sin

r
r p

rr � →
−( )2
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d
d

j

l l

d
d

j

l l

l

r
r

r p

r

r p

r

r
r

r

r( )
sin

( )

>> → −
−( )

+
−( )

≈

2 2
2

cos

or  
cos −−( )

>>
l

l

p

r
r2 for  

Substituting these expressions in the Equation (8.66), we get

 a a p
b

b
r

r
r b

a a l
h i a

i a d
d

h
l

l
i a

cot
( )

( )−( ) − ≈+
+

=2
1 0

Note the second term does not depend on V
0
. When E  is much less than V

0
, the second term can be 

neglected.

 ∴ −( ) ≈a a pa a lcot
2

0

This is possible provided cot a pa l−( ) ≈
2

0

or a p pa l n− = +( )2
1
2

This is the condition for the existence of bound states for square well potential when aa l>>  and 
V E0 >> .

8.13 SCATTERING STATE SOLUTION FOR SQUARE WELL POTENTIAL
In the previous section, we considered the cases where E E= − | | in which | |E V< 0 was leading to the 
existence of bound states. Now let us consider E > 0. The solution to the Schrödinger equation no 
longer describes the bound state. In fact, it represents the scattering states.

The radial equation is

 
d R
dr r

dR
dr

mE m V
l l

r
R r aI I

I

2

2 2 2 0 2
2 2 2 1

0 0+ + + − +





= ≤ ≤
� �

( )

 
d R
dr r

dR
dr

mE l l
r

R r aII II
II

2

2 2 2
2 2 1

0+ + − +





= ≥
�

( )
 

(8.69)
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Let us define K  2 and k2 as

 
2 0

2
2

m E V
K

( )+
=

�
 and 2

2
2mE k

�
=

The Schrödinger equation becomes 

 
d R
dr r

dR
dr

K
l l

r
R r aI I

I

2

2
2

2
2 1

0 0+ + − +





= ≤ ≤( )
 (8.70)

 
d R
dr r

dR
dr

k
l l

r
R r aII II

II

2

2
2

2
2 1

0+ + − +





= ≥( )
 (8.71)

The solution to these equations are given by

 R A j Kr r aI l l= ≤ ≤( ) 0  (8.72)

 R C j kr B n kr r aII l l l l= + ≥( ) ( )  (8.73)

In anticipation of phase-shift analysis in scattering theory, we can define C Dl l l= cosd  and B Dl l l= sin .d

 ∴ = +R D j kr D n krII l l l l l lcos ( ) sin ( )d d  (8.74)

The importance of the choice of the constants given in the Equation (8.74) can be understood by con-
sidering the large r behaviour of j

l
 (kr) and n

l
 (kr).

 
j kr

kr l

kr

n kr
kr l

kr

l r

l r

( )
sin

( )
cos

→∞

→∞

 →
−( )

 →
−( )

p

p

2

2

 
∴  → −( ) + −( )



→∞R

kr
D kr l D kr l

II r l l l l
1

2 2
cos sin sin cosd p d p

orr R
kr

D kr l
II r l l→∞ → − +( )1

2
sin p d

 

(8.75)

The significance of these equation is discussed in Chapter 15.

8.14 TWO-PARTICLE SYSTEM IN A CENTRAL POTENTIAL
Let us consider a system of two particles of masses m

1
 and m

2
 interacting through a central potential. 

Our immediate interest in considering such a system is hydrogen or hydrogen-like atoms. In hydrogen-
like atoms, m

1
 and m

2
 represent masses of nucleus and electron. Two-body problem under central 

potential can be reduced to two single body problems.
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The Hamiltonian H for two particles in central potential is

 
H

p
m

p
m

V

m m
V

= + + −

= − ∇ − ∇ + −

1
2

1

2
2

2
1 2

2

1
1
2

2

2
2
2

1 2

2 2

2 2

(| |)

(| |)

r r

r r� �

 = − ∂
∂

+ ∂
∂

+ ∂
∂







− ∂
∂

+ ∂
∂

+ ∂
∂

� �2

1

2

1
2

2

1
2

2

1
2

2

2

2

2
2

2

2
2

2

22 2m x y z m x y z 22 1 2







+ −V (| |)r r  (8.76)

Let us define R  as the coordinate of the centre of mass. Let r be the relative coordinate of particle 2 
with respect to particle 1.

 
R

r r r r

r r r

=
+
+

=
+

= −

m m
m m

m m
M

1 1 2 2

1 2

1 1 2 2

2 1

Let us write R  and r as

 R i j k= + +X Y Z  and r i j k= + +x y z

So we have

 X
m x m x

M
Y

m y m y
M

Z
m z m z

M
=

+
=

+
=

+1 1 2 2 1 1 2 2 1 1 2 2, ,

 x = x
2
 - x

1
 y = y

2
 - y

1
 z = z

2
 - z

1

 

∂
∂ = ∂

∂ ⋅ ∂
∂ + ∂

∂ ⋅ ∂
∂ = ∂

∂ − ∂
∂

∂
∂ = ∂

∂ ⋅ ∂
∂ + ∂

∂ ⋅ ∂
∂

x
X
x X

x
x x

m
M X x

x
X
x X

x
x

1 1 1

1

2 2 2 xx
m
M X x

= ∂
∂ + ∂

∂
2

 

∂
∂

= ∂
∂

− ∂
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∂
∂

− ∂
∂







= ∂
∂

− ∂
∂

2

1
2

1 1

1
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2

2

2
1

22

x
m
M X x

m
M X x

m
M X

m
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m
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∂
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∂
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∂
∂
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Working out other terms also in the Equation (8.76), we get

 H
M X Y Z m m x y

= − ∂
∂

+ ∂
∂

+ ∂
∂







− +





∂
∂

+ ∂
∂

� �2 2

2

2

2

2

2

2

1 2

2

2

2

22 2
1 1 ++ ∂

∂






+
2

2z
V r( ) (8.77)

Let us define the reduced mass m through the relation

 1 1 1
1 2m

= +
m m

 (8.78)

 H
M

V rR= − ∇ − ∇ +� �2
2

2
2

2 2m
( ) (8.79)

Thus, the Hamiltonian splits into two parts: one part describing the motion of the centre of mass and 
the second part describing the motion of a single particle of reduced mass m in terms of relative coor-
dinate under central force.

 Hu E uT T T( , ) ( , )r r r r1 2 1 2=

where the subscript T refers to the total system.

 Hu
M

V r u E uT R T T T( , ) ( ) ( , ) ( , )r r r r r r1 2

2
2

2
2

1 2 1 22 2
= − ∇ − ∇ +





=� �
m

The structure of the Hamiltonian operator suggests that the wave function uT ( , )r r1 2  can be written as 
u u uT c E( , ) ( ) ( )r r R r1 2 =  with E E ET C= + .

 − ∇ ⋅ + − ∇ +



 =� �2

2
2

2

2 2M
u u u V r u u E uR C E E E C T C( ) ( ) ( ) ( ) ( ) ( )R r r r Rm (( ) ( )R ruE

Dividing throughout by u uC E( ) ( ),R r  we get,

 − ∇ −





+ ⋅ − ∇ +





1
2

1
2

2
2

2
2

u M
u E

u
V r u

C
R C C

E
E( )

( )
( )

( ) (
R

R
r

r� �
m

)) −





=E 0

Setting each term to zero separately we get,

 − ∇ =�2
2

2M
u E uR E C E( ) ( )R R  (8.80)

 − ∇ +





=�2
2

2m
V r u EuE E( ) ( ) ( )r r  (8.81)

The Equation (8.80) describes the motion of the centre of mass. This is a free particle equation whose 
solution is

 u
L

eC

i

( )R
P R

=
⋅1

3
2

�
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where P is the momentum of the centre of mass, and the energy E
C
 is given by E P MC = 2 2/ .

The total wave function uT ( , )r r1 2  is given by

 u
L

e uT

i

E( , ) ( )r r r
P R

1 2 3 2
1=

⋅
�

So solving time-independent Schrödinger equation for a two-particle system under central potential 
reduces to solving a single-particle equation for a particle of reduced mass m.

i.e., we have to solve the equation

 − ∇ +





=�2
2

2m
q f q fV r u r Eu rE E( ) ( , , ) ( , , )

8.15 RADIAL EQUATION FOR COULOMB POTENTIAL
The Coulomb potential between the changes Ze and -e is

 V r Ze
r

( ) = −
2

The single-particle equation now becomes

 − ∇ −





=�2
2

2

2m
q f q fZe

r
u r Eu rE E( , , ) ( , , )

where u rE ( , , )q f  is given by u r R r YE lm( , , ) ( ) ( , ).q f q f=
The radial equation for Coulomb potential is

 d R
dr r

dR
dr

E Ze
r

l l
r

R
2

2 2

2

2
2 2 1

0+ + +( ) − +





m
�

( ) =  (8.82)

The energy eigenvalue E may be greater than or less than zero. The case E > 0 corresponds to the 
scattering of electron by the nucleus due to Coulomb interaction. The case E < 0 corresponds to the 
bound state.

8.16 HYDROGEN ATOM
Here we concentrate only on the bound-state solution of hydrogen or hydrogen-like atom, for which 
energy eigenvalue should be less than zero.

i.e., E E= − | |

Therefore, the radial equation becomes

 d R
dr r

Ze
r

E
l l

r
R r

2

2 2

2

2
2 2 1

0+ + −( ) − +





=dR
dr

m
�

| |
( )

( )

M08_QUANTUMMECHANICS_3628_CH08.indd   265 5/23/2013   9:55:56 AM



266  Quantum Mechanics

Let us define r = a r.

 

a r
a
r r

m a
r

a
r

2
2

2

2

2

2

2

2

2

2

2 2 2 1
0d R

d
dR
d

Ze m E
l

R

d R

+ + ⋅ − − +





=
� �

| |
( )

dd
dR
d

Ze m E l l
Rr r r

m
ar a r2 2

2

2 2 2
2 2 2 1

0+ + − − +





=
� �

| | ( )

We can choose a  in a convenient way. The standard choice of a 2 is such that

 
2 1

42 2

m
a
| |E

�
=  or a m2

2

8= | |E
�

 (8.83)

The reason for the factor 1/4 is that it will make the asymptotic behaviour of R( )r  as e−r / 2 for large r.

Define l as  l mZ
a= 2 2

2

e
�

 (8.84)

Therefore, the radial equation becomes

 d R
d

d
d

l l
R

2

2 2
2 1

4
1

0
r r r

l
r r

+ + − + +





=R ( )  (8.85)

Let us study the asymptotic behaviour of R( )r . As r → ∞, the Equation (8.85) becomes

 
d R
d

R

R Ae Be

2

2

1
2

1
2

1
4

0
r

r r
r r

−

∴  → +→∞
−

�

( )

The boundary condition for the radial wave function to be acceptable for a bound state is R(r) → 0 as  
r → ∞. Therefore, we can choose B = 0.

This suggests R(r) as

 R e G( ) ( )r r
r

= −
2

Another boundary condition for the radial wave function is R l( )r r→  as r → 0. Therefore, we can 
write

 R e Fl( ) ( )r r r
r

= −
2  

(8.86)

 

dR
dP

e F l F dF
d

d R
d

e d F
d

l l l

l

( )r r r r
r

r
r
r

r

r

= − + +





= +

− −

−

2 1

2

2
2

2

2

1
2

ddF
d

l F l l ll l l l l

r
r r r r r( ) ( )− + + − + −( )





− − −2 1
4

11 1 2
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Substituting these two equations in the Equation (8.85), we get

 r
r

r r
r
l r2

2

2
2 1 1 0d F

d
l dF

d
l F+ + − + − + =[ ( ) ] [ ( )]

or r
r

r
r
ld F

d
l dF

d
l F

2

2
2 1 1 0+ [ ( ) ] [ ( )]+ − + − + =  (8.87)

Let us try the solution F Cr
r

r

( )r r=
=

∞

∑
0

Substituting this solution in the Equation (8.87), we get

 C r r l r r l Cr
r

r
r

r

r

[ ( ) ( ) ] ( )− + + − − + + =−

=

∞

=

∞

∑ ∑1 2 1 1 01

0 0

r l r

Let us put r - 1 =	s in the first term. Then we get

 

Cr
r

r
r

r

r

s

r r l r C r r l r

C

[ ( ) ( ) ] [ ( ) ( ) ]− + + = − + +

=

−

=

∞
−

=

∞

∑ ∑1 2 1 1 2 11

0

1

1

r r

++
=

∞

++ + + + = + + + +∑ 1
0

11 2 1 1 1 2 1 1[( ) ( )( )] [( ) ( )( )]s s l s C r r l rs

s
r

r

r

r r
==

∞

∑
0

(We have made use of the fact that the summation index is a dummy variable.)
The recursion relation becomes

 C r r l r C r lr r
r

r
+

=

∞

+ + + + − − + +{ } =∑ 1
0

1 2 1 1 1 0[( ) ( )( )] ( )l r

Equating the coefficient of  r r to zero, we get 

 C r l
r l r

Cr r+ = − + +
+ + +1

1
1 2 2
l

( )( )
 (8.88)

To check the convergence of the series, let us evaluate Lt /
r

C Cr r→ +∞ 1  and compare it with such limit of a 
well-known series.

 Lt
r

r

r

C

C

r

r r→

+ =
É

1
2

1
=

It is easy to check er  has the same behaviour for large r.

 

e C C
r

C
C

r
r r

r
r

r
r

r

r

r r r r r=

∴ 

1
2 3

1

1
1

1

2 3

1

+ + + + = =

= + = +

∑
+

! ! !

!
( )!

… with 

LLt
r

r

r

C
C r→

+ =
É

1 1
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Therefore, the series F Cr
r

r

( )r r=
=
∑

0

∞

 behaves like er  for large r.

Let us recall R rl ( )  is given by R e Fl
l( )r r

r

= −
2 .

 ∴ ∞∞R e el
l( )r rr

r
r

→
− → →2

i.e., Rl ( )r  diverges in spite of the presence of the factor e
−
r
2 . This divergence can be avoided if we 

have a finite series (i.e. a polynomial) instead of an infinite series for F(r). So we have to terminate 
the infinite series for F(r) at some term so that it becomes a polynomial. This can be implemented by 
demanding

 l = n, with n as an integer

Then C r l n
r l r

Cr r+ = + + −
+ + +1

1
1 2 2( )( )

When r becomes n-l- 1, C
r + 1

 and all the other subsequent coefficients become zero.
So the condition for terminating the infinite series is r = n - l - 1.
Since r has to be a positive integer, for a given n, l can take only some values; i.e., the only possible 

values consistent with n are 0, 1, 2, …, (n - 1).
So for a given n, we have different radial functions: R

n0
, R

n1
, R

n2
, …, R

n,n - 1
, 

The energy eigenvalue E is is determined from the Equations (8.83) and (8.84).

 l m
a

m

m
= = =

−
n

e e

E

2 2

8

2

2

2

2
1
2

Z Z
� � ( )

 (8.89)

 E
e

n
= − mZ

2 4

2 22 �
 (8.90)

or E
e

n
nn = − =mZ 2 4

2 22
1 2 3

�
…, ,  (8.91)

This is the same expression for energy values obtained from Bohr model. It is an unusual coincidence.
It is to be noted that quantum mechanical understanding of hydrogen atom is very much different from 

Bohr model. In Bohr model, the electron moves in a circular orbit of definite radius; i.e., the electron has a 
definite trajectory. We have already seen in Chapter 5 that quantum mechanics does not allow the concept 
of definite trajectory for a particle. So, in a sense, Bohr model is inconsistent with quantum mechanics.

8.16.1 q in terms Bohr radius a0.

 r a m m m= = −





= − −











r

E
r

Z e
n

r
8

8
22

1 2 2 4

2 2

1 2

� �

/ /
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 ∴ r m= 2 2Z e
n�

r  (8.92)

The Bohr radius a
0
 is defined as

 a
e0 2

= �
m

 (8.93)

In terms of Bohr radius,

 r a= =2 2
0 0

Z
na

r Z
nan;  (8.94)

8.16.2 Radial Wave Function
When l = n, the radial equation becomes 

 r
r

r
r

d F
d

l dF
d

n l F
2

2
2 1 1 0+ + − + − + =[ ( ) ] [ ( )]  (8.95)

The structure of this differential equation is the same as the differential equation for the associated 
Laguerre polynomial Lq

k , which is given by 

 x d
dx

L k d
dx

L k q Lq
k

q
k

q
k

2
1 0+ + − − − =( ) ( )x  (8.96)

The similarity between the two equations suggests that

 k + 1 = 2(l + 1) and q - k = n - (l + 1)

Or k = 2l + 1 and q = n + l (8.97)

 ∴ F Ln l
l( ) ( )r r= +
+2 1  (8.98)

The radial wave function R
rl
(r) is given by

 R r N e Zr
na

Lnl nl

Zr
na

l

n l
l( ) ( )= 





−

+
+0 2

0

2 1 r  (8.99)

The normalization constant N
nl
 can be determined by

 N Z l
nl na

n
n n l

= − 





− −
+







2 1
20

3 2

3

1 2/ /
( )!

[( )!]
 (8.100)
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8.16.3 Degeneracy
The wave function for the hydrogen atom is given by

 u r r Yulm nl lm( , , ) ( ) ( , )q f q f= R

 = ⋅






−

+
+N e Zr

na
L Ynl

Zr
na

l

n l
l

lm
o 2

0

2 1( ) ( , )r q f  (8.101)

The energy eigenvalues are given by

 E
Z

n

e
n

= − m
2 4

2 22 �
 (8.102)

Note that the energy eigenvalues depend only on n. But different sets of quantum numbers n and l rep-
resent different states. For a given n, we have a number of states having the same energy. These states 
are degenerate states corresponding to a given energy level E

n
. We can easily calculate the degeneracy 

for a given energy level.
For a given n, the possible values of l are 0, 1, 2, …, (n - 1). For a given l, there are (2l + 1) values 

of m. Therefore, the degeneracy for a given n is

 D l l
n n

n n
l

n

l

n

l

n

= + = + = − + =
=

−

=

−

=

−

∑ ∑ ∑( )
( )

2 1 2 1
2 1

20

1

0

1

0

1
2

8.16.4 Radial Wave Function from Associated Laguerre Polynomial
It is a simple exercise to construct the radial wave function for hydrogen-like atoms, which is given by

 R r N e L Zr
nanl nl

l
n l
l( ) ( ),= =−
+
+r r r

r
2 2 1

0

2with  (8.103)

So our task reduces to determining the associated Laguerre polynomial Ln l
l
+
+2 1( )r .

The generating function for Lq
k ( )r  is given by 

 ( ) ( )
!

( )( )− − =− − −
− ∑1 1 1 1k k k
s
s

q

q
ks s e s

q
L

r

r  (8.104)

Lq
k ( )r  can be obtained from the above equation. Alternatively, Lq

k ( )r  can be obtained from

 L
q

q k
e

d

d
eq

k
q

q

q k( )
!

( )!
[ ]r

r
rr r=

−
− −  (8.105)

Some of the radial wave functions are given in Table 8.3. The radial wave for atomic state is generally 
characterized by the quantum numbers n and l. In spectroscopy, states with different values of l are 
denoted by different letters like s, p, d, f … The choice of these letters are only by convention. The 
standard convention is as follows:

 l = 0 s

 l = 1 p
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 l = 2 d

 l = 3 f

 l = 4 g

So the radial wave functions are labelled by (n, l ). For instance, 3p means n = 3, l = 1.

Table 8.3 Some radial wave functions

n l Spectroscopic 
state

Rnl
q

1 0 1s R Z
a

e10
0

3/2

22= 





−
r r = 2

0

Zr
a

2 0 2s R Z
a

e20
0

21
2 2

2= 





− −
3/2

( )r
r r = Zr

a0

1 2p R Z
a

e21
0

21
2 6

= 





−
3/2

r
r

3 0 3s R Z
a

e30
0

2 21
9 3

6 6= 





− + −
3/2

( )r r
r r = 2

3 0

Z
a

1 3p R Z
a

e31
0

21
9 6

4= 





− −
3/2

r r
r

( )

2 3d R Z
a

e32
0

2 21
9 30

= 





−
3/2

r
r

R10

2.5

2

1.5

1

0.5

−0.5
a0 2a0 3a0 4a0 5a0 6a0 7a0

0

Fig. 8.6(i) Radial wave function R10 (a0 = 1)
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2a0−0.1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0

6a0 8a0 10a0 12a0 14a0 16a04a0

R20

R21

Fig. 8.6(ii) Radial wave functions R20 and R21 (a0 = 1)

8a04a0−0.05

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0

16a0 20a0 24a012a0

R30

R31

R32

Fig. 8.6(iii) Radial wave functions R30, R31 and R32 (a0 = 1)

−0.02

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

P10

2a0a0 4a0 5a03a0

Fig. 8.6(iv) Radial probability density P10 (a0 = 1)
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0.05

0.1

0.15

0.2

0.25

0

P21

P20

2a0 6a0 8a0 10a0 12a0 14a04a0

Fig. 8.6(v) Radial probability density P21 and P20 (a0 = 1)

8a04a0−0.02

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

16a0 20a0 24a012a0

P32
P31 P30

Fig. 8.6(vi) Radial probability density P32, P31 and P30 (a0 = 1)

These wave functions are sketched in Fig. 8.6. It can be generally seen that the wave function falls 
to zero after a few number of Bohr radii. The Bohr radius is a e0

2 2 0 53= =� /m . Å. For instance, the 
wave function R

10 
becomes very small at r = 3  ( )Å ∼ 6 0a . In region beyond this radius, it is almost 

impossible to find an electron. It can be seen that for larger n values, the wave function is significant 
for larger values of r.

8.16.5 Radial Probability Density
The radial probability density is given by 

 Pnl ( ) ( )r r R rnl= 2 2
 (8.106)

It can be conveniently written as

 P r
n a

Z
Rnl nl( ) ( )= 





2
0

2

2
2 2

4
r r  (8.107)
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The radial probability density for some of the states are listed in Table 8.4:

Table 8.4 Probability density for some states of hydrogen

n l Spectroscopic 
state

Pnl
q

1 0 1s P Z
a

e10
0

2( )r r r= 





− r = 2
0

Zr
a

2 0 2s P
a

e20
0

2 21
8

2( ) ( )r r r r r= 





− − r = Zr
a10

1 2p P Z
a

e21
0

41
24

( ) .r r r= 





−

3 0 3s P Z
a

e30
0

2 2 21
108

6 6( ) ( )r r r r r= 





− + − r = 2
3 0

Zr
a

1 3p P Z
a

e31
0

2 21
216

4( ) ( )r r r r= 





− −

2 3d P Z
a

e32
0

61
1080

( )r r r= 





−

The radial probability density function P rnl ( ) for these functions is sketched in Fig. 8.6.

Example 8.7 Determine the maxima and minima of the radial probability distribution function P
30

 (r).

Solution:

 P r Z
a

e Zr
a3 with 0

0

2 2

0

1
108

6 6 2
3

( ) ( )= 





− + =−r r r rr

The extreme values of P
30

(r) are determined by 

 dP
dr

dP
d

30 300 0= =   or   r
 

 

∴ − + =

− + + − + − + −

−d
d

e
r
r r r

r r r r r r r r

r[ ( ) ]

[ ( ) ( ) ( )

2 2 2

2 2 2 2

6 6 0

2 6 6 6 6 2 6 2 22 2 2

2 2 3

6 6 0

6 6 12 30 12 0

( ) ]

( )( )

− + =
− + − + − =

−r r
r r r r r r

re

The solution to quadratic equation are r = 1.27 and r = 4.73.
The solutions to cubic equation are r = 0.49, r = 2.79 and r = 8.72.
The corresponding values of r are determined from the relation r a r= 3 2 0/ .
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Substituting the values of these roots in P
30

, we get the following values:

r 0 0.49 1.27 2.79 4.73 8.72

r 0 0.74a0 1.91a0 4.19a0 7.1a0 13.08a0

P30 0 0 01 0. /a 0 0 04 0. /a 0 0 10 0. /a

Note the dimension of probability density. It has a dimension of inverse of length. P r drnl ( )  is the prob-
ability which is a dimensionless number.

Example 8.8 Calculate the probability of a 3d electron for hydrogen atom in the ranges 
1. 2. 3.0 3 3 9 4 9 120 0 0 0 0 0 0< < < < < < < <r a a r a a r a a r a.

Solution: The probability of finding the particle in a specific range a b< <r  is given by

 P a r b P r drnl nla

b
( ) ( )< < = ∫

A useful result in such calculations is 

 r r r r rr rn

a

b
n n n

b

a
e d e n n n n− − − −∫ + + − +[ ]= [ ( ) .... !]1 21

1. 0 0< <r a

The corresponding range in r  is 0 2
3

< <r .

 

∴ < < = =

=

∫∫
−

P r a P r dr P
dr

d
d

a

a
e

d nl nl

a

3 0 0

2

3

0

0

0

6

0

3

2

1

1080

0

( ) ( ) .

.

r
r

r rddr
0

2

3∫

 
= + + + + + +{ }
= ×

−

−

1
720

6 30 120 360 720 720

1 7 10

6 5 4 3 2
2
3

0

3

( )

. .

r r r r r r re

Other results can be worked out in a similar way

2. P a r a e dd3 0 0
6 3

2

3

2
3

1

720
3 39 10( ) .< < = = ×− −∫ r rr

3. P a r a e dd3 0 0
6

2

6
3 9

1

720
0 39( ) .< < = =−∫ r rr

4. P a r a e dd3 0 0
6

6

8
9 12

1

720
0 29( ) .< < = =−∫ r rr

8.16.6 rs
nl

Since we know the radial probability density function, we can determine rs
nl

 given 

 r r P r dr r R r r drs
nl

s
nl

s
nl= = ∫∫ ( ) ( )

2 2

00

ÉÉ
 (8.108)
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To calculate 〈 〉rs
nl ,  the following results are useful:

 1. Let us define an integral Iqr p
k

,  given by

 I e L L dqr p
k k

q
k

r
k p

, ( ) ( )= − −
∞

∫ r r r r r r1

0
 (8.109)

This integral has been evaluated in Appendix I of this chapter.
A special case is Iqq p

k
, , which is given by

 I q

C C
q p

q k
C C

q p
q

qq p
k

p p p p

, ( !)

( )!
( )!

( )!
(

=

+ −
−

+ −
−

− − − −

2

1
0

1
0

1
1

1
1

1 2+
kk

C C
q p
q k

C C
q

q k
p p p

p
p

p

−

+ + −
− −

+
− +

− − −
−

−
−

1

3
2

1
2

1
2

1
1

1
1

)!

( )!
( )!

...
!

( pp +

















1)!

 (8.110)

 2. A second useful relation is Kramer’s recurrence relation (see the appendix for proof ).

 s
n

r
a

Z
s r s l s r

a

Z
s

nl
s

nl
s

nl
+ 〈 〉 − + 〈 〉 + + − 〈 〉 =− −1 2 1

4
2 1

2
0 1 2 2 2 0

2

2
( ) [( ) ] 00  (8.111)

Example 8.9 Evaluate the normalization constant N
lm

 for the radial wave function for hydrogen atom 
given by 

 R r N e Lnl nl
l

n l
l( ) ( )= −
+
+r r

r
2 2 1

Solution: The normalization condition for R
nl
 is given by R r r drnl ( )

2 2

0
1=

∞

∫ . In terms of the variable 
r this condition becomes

 N e L
d

nl
l

n
l

n

2 2
1

2 1 2

0

2

3
1−

+
+

∞ [ ] =∫ r r r r r
a

. ( )  

This integral can be evaluated using the integral Iqr p
k

,  given in (8.110).
Let us define q and k as 

 q = n + l and k = 2l + 1

The normalization condition becomes 

N
e L d

N
I

nl

n

k
q
k

nl

n
qq
k

2

30

1 2 2

2

3 2

1

1

a r r r r

a

r
∞

− −∫ =

=

[( ( )]

,or   

M08_QUANTUMMECHANICS_3628_CH08.indd   276 5/23/2013   9:56:32 AM



Time-Independent Schrödinger Equation in Three Dimensions   277

Using the Equation (8.110), we get

 

∴ = +
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n
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11
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.[( )!]n n l+

 N Z
na

n l
n n lnl = − 





− −
+







2 1
20

3 2

3

1 2/ /
( )!

[( )!]

Example 8.10 Determine 1
r nl

for hydrogen atom.

Solution:

 

1 1 1 12

0

2

0 2
2

0r r
P r dr

r
R r r dr R d

nl
nl nl

n
nl= = =

=

∫∫ ∫( ) [ ( )] [ ( )]
ÉÉ É

a
r r r

NN
e L d

N
Inl

n

l
n
l nl

n
qq
k

2

2
2

0 1
2 1

2

2 1a
r r r r

a
r

É
−

+
+∫ = ⋅[ ( )] ,

Here q n l k l= + = + and 2 1. Using the Equation (8.110), we get

 

〈 〉 = ⋅
−









= − −
⋅

r
N

q C C
q

q k

n l
n

nl
nl

n

n

n

2

2
2 0

0
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2

1
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!
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Z
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= =

3
2

2
01 2

a

Example 8.11 Determine <r>
nl
 for hydrogen atom.

Solution:

 

〈 〉 = = =

=

∞∞ ∞

∫∫ ∫r r P r dr r R r r dr R dnl nl nl
n

nl( ) [ ( )] [ ( )]2

0

2

0 4
2 3

0

1
a

r r r

NN
e L d

N
Inl

n

l
n
l nl

n
qq
k

2

4
2

0 1
2 1 3

2

4 3a
r r r r

a
r−

∞

+
+∫ = ⋅[ ( )] ,
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Here q n l k l= + = + and 2 1. Using the Equation (8.110), we get
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Example 8.12 Evaluate <r2 >
nl
 for hydrogen atom using Kramer’s recursion relation.

 s
n

r a s r s l s r as
nl

s
nl

s
nl

+ 〈 〉 − + 〈 〉 + + − 〈 〉 =− −1 2 1
4

2 1 0
2 0

1 2 2 2
0

2( ) [( ) ] . Assume 〈 〉 = − +r
a

n l l0 2

2
3 1[ ( )].

Solution: Let us take s = 2.
Then we have

 

3 5 2
4

2 1 4 0
2

2
0 0

2 2 0

0

0

2
2

n
r a r a l r

r R r r

nl nl

nl
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〈 〉 = ∫
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É
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r R r r r dr
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n l l
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a
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〈 〉 = = − +
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2
3 1

3 3
2

2 2 0 2
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2 0
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É

55 1 3 1

2
5 1 3 1

2

2 0
2 2

2

n l l

r
a n

n l lnl

+ − +

∴〈 〉 = + − +

( )]

[ ( )].

Example 8.13 Evaluate 1
r nl

 for hydrogen atom using Kramer’s recursion relation. 

Solution: Choose s = 0. Then, Kramer’s relation becomes

 1 1 0
2

0
0n

r a
rnl

nl

− = .

Since we getr
r n anl

nl

0
2

0

1 1 1= =,

Example 8.14 Evaluate 1
2r nl

 for hydrogen like atom.

Solution: 1
2r nl

 is evaluated using Hellmann–Feynman theorem. A special technique is used to obtain 

the expression for 1
2r nl

. 
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The energy eigenvalue equation is

 Hu HR Y E R Y E unlm nl lm n nl lm n nlm= = =

 

Hu d
dr r

d
dr

L
r

Ze
r

R Ynlm nl lm= − +
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m m
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R Y H unl lm eff nlm
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22 1
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= =( )�
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EE un nlm

where Heff
 is

 H d
dr r

d
dr

l l
r

Ze
reff = − +





+ + −� �2 2

2

2

2

2

2
2 1

2m m
( )

The energy eigenvalue En is given by

 E u Hu d u H u dn nlm nlm nlm eff nlm= =∫ ∫* *3 3r r

The trick is to now use l  as a parameter and use the expression r n l= − −1 of Sec. 8.16. Here, r is not 
the radial coordinate but it is an integer.

 n r l= + +1

 ∂
∂ = ∂

∂ = ∂
∂∫ ∫

E
l l

u Hu d
l

u H u dn
nlm nlm nlm eff nlm
* *3 3r r

LHS:
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RHS:
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u
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l
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nlm

3 3r r+
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Consider the first two terms.

 ∂
∂ =

∂
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u
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H u d E
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l
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∂
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∂
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Adding these two terms we get
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l
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u
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We have 
∂

∂
H

l
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 ∴
∂

∂ = + = +∫ ∫u
H

l
u d u

l
r

u d
l

nlm
eff

nlm nlm nlm
* *3

2

2
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22 1
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( ) ( )� �
m m

11
2r nl

Equating LHS and RHS we get,

 m
m

Z e
n

l
r nl

2 2
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2 1
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1
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 1 2
2 1

2
2 12
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4 3
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3
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Z e
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Z
n l anl

=
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=
+

m
� ( ) ( )

8.17 ISOTROPIC HARMONIC OSCILLATOR IN SPHERICAL COORDINATES
We have already seen isotropic harmonic oscillator in the Section 8.3 in Cartesian coordinates. Let us 
work out the same problem in spherical polar coordinates. The Hamiltonian for isotropic harmonic 
oscillator is 

 
H

p
M

M x y z

p
M

M r

= + + +

= +

2
2 2 2 2

2
2 2

2
1
2

2
1
2

w

w

( )

So the isotropic harmonic oscillator has become a problem in central potential. Therefore, the 
Schrödinger equation is 

 − ∇ +





=�2
2 2 2

2
1
2M

M r u r Eu rw q,f q f( , ) ( , , )

Since u r( , , )q f  can be written as R r Yl m( ) ( , )q f , we get the radial equation as 

 1 2 1
2

1
2

0
2

2
2

2 2
2

2

r
d
dr

r dR
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M E M r
l l
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R r( ) + − − +





=
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�w ( )
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Let us define r a= r  where a is constant that can be chosen to suit our convenience.

 a
r r

r
r
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a r

a r
2

2
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2
2 22 1
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M
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�

�
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Dividing throughout by a 2, we get

 d R
d

dR
d

ME M l l
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2 4
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0
r r r a

w
a
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Let us now define a l and  as follows. a is chosen such that

 

M M

ME E

2 2

2 4
2

2 2

1

2 2

w
a

a w

l
a w

� �

� �

= =

= =

    or   

The radial equation now becomes

 d R
d

dR
d

l l
R

2

2
2

2
2 1

0
r r r

l r
r

+ + − − +





=( )
 (8.112)
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For large r, the above equation becomes 

 d R
d

R
2

2
2 0

r
r− �

Let us try e−r2 2 as a solution to the equation

 dR
d

e d R
d

e e
r

r
r

r
r r r

= − = − +− − −
2 2 2

2
2

2
2 2 2

 ∴ − = − −− − −d R
d

R e e e
2

2
2 2 2 2 2 2

2 2 2

0
r

r r r
r r r

�  for large r.

Therefore, the solution R (r) behaves like e−r2 2 for large r. For small r, the boundary condition 
demands R(r) behaves like r l. With these information, we write R( r) as 

 R h el( ) ( )r r r
r

= −
2

2  (8.113)

Let us change the variables from r and x  by the relation

 x r= 2

Then R(x  ) becomes R e hl( ) ( )/x x xx= − 2  (8.114)

Substituting (8.114) in (8.112), we get

 x
x

x
x

ld h
d

l dh
d

l h
2

2
3
2

1
4

3 2 0+ + −





+ − − =( )  (8.115)

This is almost similar to the Equation (8.93) for F(r) in the case of hydrogen atom.

Let us try the solution h Cs
s( ) .x x= ∑

Substituting this solution in the Equation (8.114), we get

 C s s l s C s ls
s s

s
s( ) ( )− + +( )
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1
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Consider the first term
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1
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+
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∞

∑ 1
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)]x
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− − −



{ } =+∑ C s s l s C s ls s

s
1 1 3

2
1 1

4
3 2 0( ) ( ) ( )l - x
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Equating the coefficient of x s separately equal to zero, we get

 C
s l

s s l
Cs s+ =

− − −

+ − −( )1

1
4

3 2

1 3
2

( )

( )

l
 (8.116)

Proceeding in the same way as in the case of hydrogen atom, we can show that the R(r) diverges if h(x) 
is given by infinite series. The only way of getting a finite, well-behaving solution is if we make the 

series as a polynomial is in x. This can be done by choosing 1
4

3 2( )l − − =l n′, where n′  is an integer.

i.e., 1
4

3 2( )l − − =l n′, n′  is an integer

 l = + +4 3 2n l′  (8.117)

∴	The energy eigenvalue E is given by 

 E n l= + +( )4 3 2
2

′ �w

 = + +( )2 3
2

n l′ �w

Comparing this equation with the Equation (8.30), we can identify n as

 n n l= +2 ′  (8.118)

This relation implies both n and l together, either odd or even. For a given energy level, l and n′ have 
to be such that the possible values of l are n n n, , .− −2 4…

 l
n n n

n n n
=

− −
− −





, , , ,

, , , ,

2 4 1

2 4 0

…
…

odd 

even 

n

n

Using (8.117), we get

 l = +2 3n

Feeding this expression in (8.115), we get

 x
x

x
x

d h
d
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d

n l h
2
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3
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1
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Let us recall that the equation for associated Laguerre polynomial is 

 x
d L

dx
k x

dL

dx
q k Lq

k
q
k

q
k

2

2
1 0+ + − + − =( ) ( )  (8.119)

Comparing these two equations, we can conclude that h(x) is Laguerre polynomial Lq
k , provided

 

k l q k n l

k l q n l

h Ln l

l
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 R r N r e L rnl nl
l

r

n l

l
( ) ( ) ( )=

−
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+
a a

a 2 2

2
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2

1
2 2 2  (8.120)

where N
nl
 is the normalization constant given by 
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 (8.121)

(Refer P. M. Mathews and A.Venkatesan)
If one is interested in determining the eigefunctions for a particular  energy eigenvalue, it can be 
evaluated directly using the recursion relation (8.116) and normalization. For a given n, the function 
h

nl
 can be found as follows. From (8.118), we have

 ′ = −n n l
2

The recursion relation is

 C s n

s s l
Cs s+ = − ′

+ − −( )1

1 3
2

( )

So, for a given set of n and l, first calculate ′ = −n n l /2. Then the series solution for hnl is given by 
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Normalization condition is
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2 1r dr nfor even
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c
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c
r

c
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rnl
l r n n n
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2 2 3

1

3 3 5

1

5 5

1

2 2

∞
− ′ ′ ′∫ + + +a a a a aa 





=
2

2 1r dr nfor odd

Here, the constants c
0
  and c

1
 have been absorbed in the normalization constant Nnl .

Example 8.15 Determine the wave function for an isotropic harmonic oscillator corresponding to the 

energy eigenvalue 3 2/ �w .

Solution: The wave function for the isotropic harmonic oscillator in the spherical coordinates is given by 

 y q f a q fa
nlm nl lm nl

l r
nl lmR r Y N r e h r Y= ( ) ( , ) ( ) ( ) ( , )/= − 2 2 2
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The quantum number corresponding to 3 2/ �w is n = 0. Therefore, we have ′ = =n l0 0, .

 ∴ = −
R N e

r

00 00

2 2

2
a

The constant N00  is determined from ( ) .N e r dr
r

00
2 2 2

0

2 2

1
−

∞

=∫
a

 ( )
/

/N N00
2

3 00 1 4
3 2

4
1 2p

a p
a= =      or   

 y q f
p

w w
000 1 4

3 4
2

00
2

2
( , , ) exp

/

/

r M M r Y= ( ) −( )� �

8.17.1 Degeneracy
The energy eigenstates of an isotropic harmonic oscillator are characterized by the set of three quan-
tum numbers: (n, l, m). So we have

 E nn l m, , = +( )3
2

�w Eigenstates:(n, l, m)

We have already seen that for a given n, the possible values of l are

 l
n n

n n
=

−
−





0 2 4 2

2

, , , ..., ,

,

even 

1, 3, 5, ..., odd 

n

n

The ground state has n = 0. This is a non-degenerate energy level with energy eigenvalue 3 2/ �w. The 
next energy eigenvalue is 5 2/ ,�w  corresponding to n = 1. For n = 1, the possible values of m are 1 1, ,0 − .  
So E1 5 2= / �w is three-fold degenerate. In general, for a given n, there are 1 2 1 2/ ( )( )n n+ +  degenerate 
states corresponding to different values of l and m. The degeneracy D can be calculated as follows:

Even n Odd n

l 2l + 1 l 2l + 1

0 1 1 3

2 5 3 7

4 9 5 11

: : : :

n 2n + 1 n 2n + 1

For even n, there are n +( )2
2

 possible values of l. The degeneracy D is given by

 D
n

n n n= + + + = + +1
2

2
2

1 2 1 1
2

2 1.
( )

.[ ] ( )( )
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For odd n, there are n +( )1
2

 the possible values of l.

The degeneracy D is given by

 D
n

n n n= ⋅ + ⋅ + + = + +1
2

1
2

3 2 1 1
2

1 2
( )

[ ] ( )( )

APPENDIX I

THE INTEGRAL Iqr p
k

,  FOR ASSOCIATED LAGUERE POLYNOMIALS

In calculating various matrix elements involving hydrogen or hydrogen-like atoms radial wave func-
tion R

nl
(r), we regularly come across the following type of integral Iqr p

k
, , which is defined as 

I e L L dqr p
k k

q
k

r
k p

, ( ) ( )= − −
∞

∫ r r r r r r1

0

From (8.110), we have

 

( ) ( ) exp
!

( ) ( ) exp

− − −
−





 =

− − −

− −

− −

∑1 1
1

1 1

1k k k
q

q
q
k

k k k

s s s
s

s
q

L

t t

r

rrt
t

t
q

L
q

q
q
k

1−




 = ∑ !

Making use of these two equations, we get

 
s t
q r

L L s t s t s
s

t
t

q r

q
k

r
k k k k k

! !
( ) ( ) exp= − − −

−
+

−( )





− − − −1 1
1 1

1 1 r ∑∑
rq

Multiply the above equation by e k p− − +r r 1  and integrate to get

 

s t
q r

L L e d

s t s t

q r

q
k

r
k k p

rq

k k k k

! !

( ) ( ) exp

− − +
∞

− − − −

∫∑∑

= − −

r r r1

0

1 11 1 −−
−

+
−

+











= − −

∞
− +

− − −

∫ r r rs
s

t
t

d

s t s t

k p

k k k k

1 1
1

1 1

0

1

1( ) ( ) −−
∞

− +− −
− −





∫1

0

1
1

1 1
exp

( )
( )( )
r r rst

s t
dk p

It is easy to show that 

 x e dx nn x
n

0
1

∞
−

+∫ =a

a
!

Using the above result, we have

 r r rk p
k p k pst

s t
d

s t− +
∞ + +

∫ − −
− −







= − −
−

1

0

1
1 1

1 1
1

exp
( )

( )( )
( ) ( )

( sst
k p

k p)
( )!+ + −1
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∴

= − −

− − +
∞

− − − −

∫∑∑ s t
q r

L L e d

s t s t

q r

q
k

r
k k p

rq

k k k k

! !

( ) ( )
(

r r r1

0

1 11 1
1−− −

−
+ −

+ +

+

s t
st

k p
k p k p

k p

) ( )
( )

( )!
1

1
1

Now, let us state another useful result.

 ( )
( )

!
( )!

!( )!
1 1

1
2

1
1

2

0

− = + + + + = + −
−

−

=

∞

∑x nx
n n

x
n

n
xn �

l
ll

l

 

∴

= − − +

∑∑ ∫ − − +
∞

− −

s t
q r

L L e d

s t s t k p

q r

rq
q
k

r
k k p

k k p p

! !

( ) ( ) (

r r r1

0

1 11 1 −− + + −
+ −=

∞

∑1
1

10

)!
( ) ( )!

!( )!
st k p

k p

l

l

l
l
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q r

I
st t s k pq r

qr p
k

rq

k p p

! !
( ) ( ) ( ) ( )!

!,∑∑ = − − + + −+ − −

=

∞ l

l

l
l

1 1 11 1

0
∑∑

 ∴ = × − − +
+ − −

I q r s t
st t s

k pqr p
k q r

k p p

, ! !
( ) ( ) ( )

!
(co.eff.of in

l

l
1 11 1

++ −






=

∞

∑ l
l

1
0

)!

Special Case Iqq p
k

,

 I q st
st t s k p

qq p
k q

k p p

, ( !)
( ) ( ) ( ) (= × − − + ++ − −

2
1 11 1

co.eff.of( ) in
l l −−






=

∞

∑ 1

0

!)
!ll

Using binomial theorem, we have

 

( ) ( ) ( ) ( )1 11 1 1

0

1

0

1 1

− − = − −

=

− −

=

−

=

∞

− −

−
∞

∑ ∑s t C s C t

C C

p p
l

l

l

p
m

m

m

p
l

p
m

p

(( )− +

=

∞

=

∞

∑∑ 1
00

l m l m

ml

s t

∴ − − + + −

=

+ − −

=

∞

− − + +

∑ ( ) ( ) ( ) ( )!
!

st s t k p

C C s

k p p

p
l

p
m

k l

l

l

l

l
l

1 1 11 1

0

1 1 tt
k p

k m l m

m

p

l

p + + +

=

−

=

−

=

∞ −
+ + −∑∑∑

l

l l
l

( )
!

( )!
1

1
0

1

0

1

0

We have to choose l, l and m such that

 k + l +	l = q, k + l + m = q or l = q - k - l, l = q - k - m 

This implies that l and m should be equal. Maximum value of l or m is (p - 1). Therefore, possible 
values of l and m are given

 (l, m): (0, 0), (1, 1), (2, 2),…, (p - 1, p - 1)
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1
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APPENDIX II

KRAMER’S RECURSION RELATION
Kramer’s recursion relation for hydrogen like atoms is given by

 
( )

( ) {( ) }
s
n

r a s r s l s a rs
nl

s
nl

s
nl

+ 〈 〉 − + 〈 〉 + + − 〈 〉 =− −1
2 1

4
2 1 0

2 0
1 2 2

0
2 2

where

 〈 〉 = =
∞ ∞

∫ ∫r r P r dr r R r r drs
nl

s
nl

s
nl( ) ( )

0

2

0

We closely follow the proof of this recursion relation given in Wikipedia.

The radial equation for hydrogen atom is 1 2 1
2

0
2

2
2

2

2
2

r
d
dr

r
dR

dr
E Ze

r
l l

r
Rnl

n nl







+ + − +





=m
m�

�
( )

Let us define c nl r( ) as

 R r
r

rnl
nl( )

( )
=
c

Substituting this expression in the above equation, we get

 
d

dr
E Ze

r
l l

r
nl

n nl

2

2 2 2

2

2

2 2 1
0

c m m c+ + ⋅ − +





=
� �

( )
 (8.122)

For hydrogen-like atom,

 
2

2
2

2

2 4

2 2 2

2

0
2 2

m m mE Z e
n

Z
a n

n

�
= − ⋅ = −

� �

and 
2 2

2

2

0

mZ e
r

Z
a r�

⋅ −=

For hydrogen atom, Z = 1. The Equation (8.122) now becomes

 
d

dr a n a r
l l

r
nl

nl

2

2
0
2 2

0
2

1 2 1
0

c
c+ − + − +





( ) =

 ∴ = + − +





d

dr
l l

r a r a n
nl

nl

2

2 2
0 0

2 2

1 2 1c
c( )

 (8.123)
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In terms of c nl ( ),r  we get

 〈 〉 = =
∞∞

∫∫r r R r r dr r r drs s
nl

s
nl

2 2 2

00

( ) ( )c

Let us consider the integral c
c

nl
s nlr

d

dr
dr

2

2
0

∞

∫ .Using Equation (8.123), we get

 c
c

c cnl
s nl s

nl nlr
d

dr
dr r

l l
r a r a n

dr
2

2 2
0 0

2 2
00

1 2 1= + − +





∞∞

∫∫ ( )
 (8.124)

 = + 〈 〉 − 〈 〉 + 〈 〉− −l l r
a

r
a n

rs s s( )1 2 12

0

1

0
2 2

 (8.125)

But the LHS of (8.124) can be evaluated directly.
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The first term is zero. So we have

 c
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(8.126)

Now consider the integral c
c

nl
s nlr

d

dr
dr.
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∞

∫
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nl
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nl nl
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The first term is zero.
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00
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Rearranging the terms in the above equation, we get

 ∴ = − 〈 〉−
∞

∫ c
c

nl
s nl sr

d
dr

dr s r
2

1

0

 (8.127)
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Consider the first term in (8.126).
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The first term is zero. So we have
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Using the Equation (8.123), we get

 − =
+

+ − +


∞
+∫

d

dr
r

d

dr
dr

s
r

d

dr
l l

r a r a n
nl s nl s nlc c c

0

1
2

0 0
2

2
1

1 2 1( )


∞

∫
0

c nl dr (8.128)

 =
+

− + − 〈 〉 + 〈 〉 − + 〈 〉





− −2
1

1
2

1 2
2

1 1
2

2

0

1

0
2 2s
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( )  (8.129)

We have made use of the Equation (8.127) to each term in (8.128) separately in arriving at (8.129).
Again making use of (8.127), we get the second term in (8.126) to be

 − − 〈 〉− −
∞
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Using (8.129) and (8.130) in (8.126), we get
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Equating (8.131) and (8.125), we get

 s
n

r a s r s l s r as s s+ 〈 〉 − + 〈 〉 + + − 〈 〉 =− −1 2 1
4

2 1 0
2 0

1 2 2 2
0
2( ) [( ) ]

For hydrogen-like atom, which has a nucleus of charge Ze, the above relation becomes

 s
n

r
a

Z
s r s l s r

a

Z
s s s+ 〈 〉 − + 〈 〉 + + − 〈 〉 =− −1 2 1

4
2 1 0

2
0 1 2 2 2 0

2

2
( ) [( ) ]

EXERCISES

 1. What are the boundary conditions for radial wave functions?
 2. How do you define radial momentum?
 3. Why do you need to define radial momentum p

r
 as p

r rr = ⋅ + ⋅( )1
2

r p p r ?

 4. Determine the maxima and minima of the radial probability distribution for P r20 ( ).
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 5. Calculate the probability of a 1s and 2p electron for hydrogen atom in the range
  (i) 0 < r < a

0
 (ii) a

0 
< r < 3a

0

 6. Evaluate 〈 〉r nl
2  using Kramer’s relation.

 7. Show that x e dx nn x
n

0
1

∞
−

+∫ =a

a
! .

 8.  What is the normalization condition for the radial wave function?
 9. What are the quantum numbers describing the energy eigenstate for a three-dimensional isotropic 

harmonic oscillator ? 
 10. Determine the wave function for isotropic harmonic oscillator corresponding to the energy eigen-

value 5
2

�w in spherical and Cartesian coordinate systems. Comment on the result.
 11. For the same eigenvalue of the isotropic harmonic oscillator, the wave functions in the spherical 

and Cartesian coordinate systems are different. How do you explain this difference?
 12. The differential Equation (8.95) for the radial wave function for hydrogen atom is not in the form 

of Sturm Liouville equation. Get it in the standard form of Sturm Liouville equation and hence 
get the orthoganality relation for the associated Laguerre Polynomials.
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Bra and Ket Vector 
Formalism and 
Symmetries

In the previous chapters, quantum mechanics, based on Schrödinger’s differential equations called wave 
mechanics, was discussed. Here the operators were differential operators like −i� d dx/  for momen-
tum or multiplicative factors like xn. This is not the only formulation of quantum mechanics. There is 
indeed another formulation of quantum mechanics called matrix mechanics in which all the dynamical 
variables are represented by matrices. For instance, the operators X

op
 and P

op
 are represented by infi nite 

dimensional matrices [x] and [ p] such that [ ][ ] [ ][ ] [ ]x p p x i− = � 1  where [1] is an infi nite dimensional 
unit matrix. In fact, matrix mechanics was developed by Heisenberg and others earlier to Schrödinger’s 
wave mechanics. The equivalence between these two formalisms was established long time back. 
Dirac (1939) developed a new mathematical language called abstract-state vector formalism, which 
is very general, and it is independent of specifi c representations like differential operators or matrix 
operators. Both these formalisms emerge as particular representations of Dirac’s abstract-state vector 
formalism.

9.1 Ket Vectors
We know that quantum states form a linear vector space. Dirac suggested that a new quantity called 
ket vector can be associated with each quantum state. The ket vector is written as | 〉 (part of bracket 
notation 〈 〉 ). The state vector is characterized by writing all the necessary information about the state 
of the system inside the ket symbol. For instance, suppose we want to describe the ground state of a 
harmonic oscillator. We can write the ket vector as 

 | ground state of harmonic oscillator〉

A better way of representing the ground state of harmonic oscillator is to write the ket vector as 

 E n= 1 or
2

0�w   | = 〉

We can adopt a still simpler way. It is simply written as 10 >.

9
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In the same way, the ground state of hydrogen atom can be written as | ground state of hydrogen   
atom 〉 or | .E = − 〉13 6 ev  or | , ,n ml= = 〉1 l 0 0=  or simply |100〉.

What do these ket vectors represent in concrete form? Can we take | 0〉 as a function like e x-a 2 2  or 
a column vector with some numbers? In Dirac’s ket vector formalism, the ket vectors | 0〉 or |100〉 do 
not represent any particular coordinate function or a column vector or a function of any other vari-
ables. They are simply taken as it is. So these vectors are taken as abstract vectors without assigning 
any specific (functional) form.

Obviously, one should form rules, notations and interpretations to manipulate such ket vectors 
consistent with the requirements of quantum mechanics. Note that in some books |y 〉 is identified as 
y (x) itself. This way of writing helps the students in handling the ket vectors initially.

All the ket vectors |y 〉, |f 〉 , | c 〉  are elements of the linear vector space H. They satisfy all the 
axioms of a linear vector space. So if |y 〉 is a state vector, c |y 〉 (where c is a complex number) is also 
a state vector. If |y 〉 and |f 〉 are state vectors c c1 2| |y f〉 + 〉  is also a state vector.

9.2 Bra Vectors
Along with the linear vector space of ket vectors, let us postulate one more linear vector space whose 
elements are another kind of vectors called bra vectors denoted by 〈y |. The introduction of the con-
cept of bra vectors requires the concept of the dual of a vector space. However, we will not present 
here the idea of the dual of a vector space. It is sufficient to say that under certain conditions, there 
exists a one-to-one correspondence between a ket vector |y 〉 and a bra vector 〈y |.

i.e., | |y y〉 ↔ 〈  (9.1)

Note that |y 〉 and 〈y | belong to two different linear vector spaces. Dirac calls them complex imagi-
nary of each other. They are known as Hermitian conjugate of each other.

i.e., | |y y〉 = 〈†  (9.2)

 ( | ) | *c cy y〉 = 〈†  (9.3)

9.3 scalar Product
Having defined two linear vector spaces of ket and bra vectors, we now define a product of these 
vectors and choose appropriate symbol to denote such a product. Let us recall that in the case of geo-
metrical vectors, we have two kinds of product between two vectors: scalar product giving a number 
and vector product yielding a vector. In the case of ket vectors and bra vectors, we have three kinds of 
products: scalar product, direct product and outer product.

The scalar product between a bra vector 〈f | and a ket vector |y 〉 is defined as

 〈 〉f y| →  a complex number (9.4)
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The scalar product between 〈f | and |y 〉 could have been written as ( |)〈f  ⋅ (| )y 〉  (similar toA .B ) or 
( |,| )〈 〉f y  (a symbol used for scalar product in Chapter 4). The notation 〈 〉f y|  is a much simpler nota-
tion. Whenever we see the notation 〈 〉f y|  we have to recognize that it is a complex number.

Of course, the concept of a scalar product is more than assigning a complex number for a given bra 
vector and ket vector. We have already discussed what is meant by a scalar product in the context of a 
linear vector space in Chapter 4. It is a rule to assign a number for the pair 〈f | and |y 〉 subject to the 
following conditions:

 1. 〈 〉 = 〈 〉f y y f| | * (9.5)

 2. 〈 〉 + 〉 = 〈 〉 + 〈 〉f y y f y f y| ( | | ) | |c c c c1 1 2 2 1 1 2 2  (9.6)

 3. 〈 〉 ≥f f| 0  with 〈 〉f f| = 0  implying |f 〉 = 0 (9.7)

Note that 〈 〉 = 〈 〉f y f y| | |C C . This follows from (9.6).

orthoganality
Once a scalar product is defined, we can define orthoganality between 〈f | and |y 〉 as 〈 〉f y| .= 0  i.e., 

〈f | and |y 〉 are orthogonal if 〈 〉 =f y| 0 .

9.4 aBstract oPerator
The important feature of an operator is that when it acts on an element of vector space, it produces 
another element. Let us define an abstract operator Â, which, when it acts on a ket vector, produces 
another ket.

i.e., ˆ |A y f〉 〉= |  (9.8)

Again it is to be noted that Â  is neither a differential nor a matrix operator. The reader may wonder 
how one can use such an operator which does not have any concrete form familiar to us. As we pro-
gress in this chapter, one can recognize that a number of important results can be obtained from such 
operators even if we are unable to visualize them in the familiar form.

differentiation of a Ket
Just as we differentiate a wave function, we can also differentiate (or integrate) a ket vector. For 

instance, d
dt

t| ( )y 〉 is defined as

 d
dt

t
t t t

tt
| ( )

| ( ) | ( )y y y〉 = + ∆ 〉 − 〉
∆∆ →

Lt
0

 (9.9)

However, this is only a formal definition. We cannot get a result like d dt t t/  sinw w w= cos . We may 
simply write d dt t/ | ( ) | ( )y f〉 = 〉t . Note that the differential operator d dt/  is not an abstract operator ˆ .A

The abstract operator Â  can act on both objects to the right and left of it.
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Let us consider Â  acting on |y 〉.

 ˆ |A y f〉 〉= |  (9.10)

Consider the scalar product between a bra vector 〈c | and the ket vector |f 〉 .

 〈 〉 = 〈 〉c f c y| | |Â  (9.11)

This structure suggests the following interpretation also.

 

′〈

〈 〉 = 〈 〉
|

ˆ| | |���A
c

c f c y  (9.12)

 〈 〉 = 〈 ′ 〉c f c y| |  (9.13)

provided we identify 〈 ′ = 〈c c| | A.̂ So we have 

 
ˆ | |

| ˆ |

A

A

y f

c c

〉 = 〉

〈 = 〈 ′

Thus, Â  can act on the ket from the right, and it can act on the bra from left.

linear operator
We will restrict ourselves to linear abstract operators. An operator Â  is said to be linear operator if it 
obeys

 ˆ( | | ) ˆ | ˆ |A c c c A c A1 1 2 2 1 1 2 2y y y y〉 + 〉 = 〉 + 〉  (9.14)

It implies that ˆ( | ) ˆ |A c cAf f〉 = 〉  (9.15)

9.4.1 outer Product of a Ket Vector and a Bra Vector
The outer product between a ket vector |f 〉  and a bra vector 〈y | is defined as |f 〉  〈y |. This is not a scalar 
number. To understand the nature of this product, let us put another ket vector | c 〉  to the right of | |f y〉 〈 .  
We get | |f y c〉 〈 〉.

Note 〈 〉y c|  is a complex number. So we can write the above expression as | | | |f y c y c f〉 〈 〉 〈 〉 〉��� ��� or 

 ∴ 〉〈 〉 = 〈 〉 〉 = 〉 | | | | |f y c y c f fc  (9.16)

where c is a complex number.
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The structure of this equation suggests that | |f y〉 〈  is an operator. When it acts on a ket | c 〉  it pro-
duces another ket |f 〉 . We can further test another property of an abstract operator in the sense it can 
act on a bra vector from the right. Let us put 〈c | to the left of | |f y〉 〈 .

 〈 〉 〈 = 〈c f y y| | |d  (9.17)

where d is a complex number.

It is easy to prove that ˆ |P = |f y〉 〈  is a linear operator.

 

ˆ (| | ) | | (| | )

| | | | ˆ | ˆ |

P

P P

c c f y c c

f y c f y c c

〉 + ′〉 = 〉 〈 〉 + ′〉

= 〉 〈 〉 + 〉 〈 ′〉 = 〉 + ′′〉

〉 = 〉 〈 〈 〉

= 〉 〈 〉 = 〉 〈 〉 = 〉

c

c f y c

f y c f y y c

ˆ ( | ) | | ( | )

| | | | | ˆ |

P c c

c c cP

 (9.18)

∴ 〉〈 | |f y  is a linear operator.

9.5 adjoint of an oPerator
Let Â  be a linear operator. Then, we have 

 ˆ | |A f y〉 = 〉  (9.19)

What is the operator that will produce 〈y | from 〈f |? i.e., we need an operator B̂  such that 〈 = 〈y f| | B̂.
Normally, we do not write a separate operator B̂  which may be the same as Â  or may be different 

from it. The standard notation is to write A † in the place of B̂ . So we have

 | |y f〉 〉= Â

 〈 〈y f| |= Â† (9.20)

Take another arbitrary ket | c 〉  and form a scalar product as given below:

 〈 〉 = 〉
〉

= 〈
〈

〉〈c y c f
y

f
y

c| | |
|

|
|

| *A A†ˆ ˆ

i.e., 〈 〉 = 〈 〉c f f c| | | | *A Âˆ †  (9.21)

In fact, this relation is taken as the definition of the adjoint of the operator Â.
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self-adjoint operator
A linear operator Â  is self-adjoint if its adjoint is the same as the operator itself.

 ˆ ˆ†A A=  (9.22)

 ∴ 〉 = 〉 ⇒ 〈 = 〈| | | |y f f yA Aˆ ˆ

 〈 〉 = 〈 〉c f f c| | | | *A Aˆ ˆ  (9.23)

This relation can itself be taken as the definition of a self-adjoint operator.

example 9.1 Prove that ( )†AB B A=ˆ ˆ ˆ† †̂

solution: Consider 〈 〉f y| | .ABˆ ˆ  This can be rewritten in two ways.

First, let us write | |c y〉 = 〉ABˆ ˆ . Then, using (9.20), we have 〈 = 〈c y| | ABˆ ˆ( )†

 ∴ 〈 〉 = 〈 〉 = 〈 〉f y c f y f| | | * | ( ) | *
〉c|

AB ABˆ ˆ ˆ ˆ †

Let us rewrite 〈 〉f y| |AB̂ˆ  in a different way. Let | ′〉f  and | ′〉y  be given by 

 | |′〉 = 〉f fA†ˆ  and | |′〉 = 〉y yB̂

Then we have

 〈 = 〈 ′f f| |Â  and 〈 = 〈 ′y y| |B̂†

 
∴ 〈 〉 = 〈

〈 ′

〉
′ 〉

= 〈 ′ ′〉 = 〈 ′ ′〉 = 〈f y f
f

y
y

f y y f y| | |
|

|
|

| | * |AB A B B�� AA†† | *f 〉ˆ ˆ ˆ ˆ ˆ ˆ
 

 〈 〉 = 〈 〉f y y f| | | ( ) | *AB AB †ˆ ˆ ˆ ˆ

 〈 〉 = 〈 〉 = 〈 〉

∴ =

f y y f y f| | | ( ) | * | | *

( )

AB AB B A

AB B A††††

† † †ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆˆˆ

9.6 Basis Vectors
The concept of basis vectors in a linear vector space has already been discussed in Chapter 4. The 
same ideas can be extended to Hilbert space of Dirac’s ket vectors.

Let {| }i〉  be a complete set of linearly independent vectors. Let us choose them as an orthonormal set.  
i.e., 〈 〉i j i j| = d . These sets of vectors are said to form basis vectors of the linear vector space.  
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This implies that any arbitrary vector |y 〉 belonging to the given Hilbert space can be expressed as a 
linear combination of these vectors. 

 | |y 〉 = 〉∑C nn
n

 (9.24)

eigenvalue equation
The eigenvalue equation is 

 ˆ | |A a a a〉 〉=

Here | a〉 is the eigenket corresponding to eigenvalue a. The eigenvalues may be discrete or continuous.
In the case of discrete eigenvalues, the eigenvalue equation can be written as 

 ˆ | | , , ,..A i a i ii〉 = 〉 =       1 2 3

example 9.2 Prove that the eigenvalues of a self-adjoint operator are real and the eigenkets belonging 
to distinct eigenvalues are orthogonal to each other. 

solution: The eigenvalue equation is 

 
ˆ | |

ˆ | |

A i a i

A j a j

i

j

〉 = 〉

〉 = 〉

The self-adjointness of Â  implies

 
〈 〉 = 〈 〉

〈 〉 = 〈 〉 〈 〉 = 〈

i A j j A i

i a j j a i a i j aj i j i

| | | | *

| | | | * | *or jj i a i ji| * * |〉 = 〈 〉

ˆ ˆ

 ∴ − 〈 〉 =( *) |a a i jj i 0

Case 1 i j=  ( *) |a a i ii i− 〈 〉 = 0

Since 〈 〉i i|  cannot be zero, ( *)ai i− =a 0 or ai = ai
*

∴ai is a real number.

Case 2 i and j are different.

 ( ) |ai ja i j− 〈 〉 = 0

Since ( )ai ja− ≠ 0, 〈 〉 =i j| 0

Without losing generality, we can have 〈 〉 =i i| .1

∴〈 〉 =i j i j| d
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9.6.1 complete set
The eigenkets of a self-adjoint operator form a complete set. Then they form a basis set for a linear 
vector space. This implies that any arbitrary state vector |y 〉 belonging to that linear vector space can 

be expanded as a linear combination of the eigenket | i〉.

 ˆ | |A n a nn〉 = 〉  n = 1, 2, 3…

 〈 = 〉∑y | |C nn

The coefficient Cn is given by C nn = 〈 〉|y

 ∴ 〉 = 〈 〉 〉∑ 
a complex number

| | |y yn n
n

���
 (9.25)

 = 〉〈 〉∑ | |n n
n

y

The structure of this equation suggests

 | |y y〉 = 〉Î

provided we identify the operator Σ | |n n〉 〉 as Î .

 ∴ = 〉〈∑ ˆ | |I n n  (9.26)

9.6.2 Projection operator
The operator | |n n〉 〈  is known as projection operator. Let us consider the effect of | |n n〉 〈  on |y 〉.

 P n nn | | |y y〉 = 〉〈 〉

 = 〉 〈 〉




∑| | |n n C mm

m

 = 〉〈 〉 = 〉 = 〉∑ ∑| | | |n n m C n C C n
m

m m mn n
m

d

i.e., P
n
 projects out the ‘components’ corresponding to the basis vector | .n〉

9.6.3 continuous eigenvalues
Let us now consider the eigenvalue equation.

 ˆ | |A a a a〉 = 〉  a a: − ∞∞ < <  (9.27)
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The completeness of eigenvectors | a〉 implies that any arbitrary state vector |y 〉 can be expressed as

 | | ( )y 〉 = 〉∫ da a C a

In analogy with the Equation (9.25), we have

 C a a( ) |= 〈 〉y  (9.28)

 ∴ 〉 = 〉〈 〉 = 〉∫ | | | |y y yda a a Î

provided we identify the identity operator I as 

 ˆ | |I a a= 〉〈∫ da  (9.29)

The normalization condition for the eigenvector | a〉  can be obtained from

 ˆ( ) | | |C a a a I= 〈 〉 = 〈 〉y y

 = ′〈 ′〉 〈 ′ 〉∫ da a a a| |y

 = ′〈 ′〉 ′∫ da a a C a| ( )

This suggests a a a′ = − ′d ( )a  (9.30)

The Equations (9.26) and (9.29) are known as resolution of the identity operator. It is to be noted that 
the above equations are true provided the set {| }n〉  or the set {| }a〉  forms a complete set.

For a dynamical variable Â  in general, the eigenvalue spectrum consists of the set of both discrete 
eigenvalues and continuous eigenvalues. In this case, all the eigenvectors, corresponding to discrete 
eigenvalues and continuous eigenvalues, together form a complete set.

Complete set of eigenvectors of Â  = eigenvectors corresponding to discrete eigenvalues + eigen-
vectors corresponding to continuous eigenvalues.

 ∴ 〉 = 〉 + 〉∑ ∫ | | ( ) |y C n C da an
n

a  (9.31)

9.7 Postulates of Quantum mechanics
Let us reformulate the postulates of quantum mechanics in the language of Dirac’s bra and ket vector 
formalism.

xM09_QUANTUMMECHANICS_3628_CH09.indd   299 5/24/2013   11:06:14 AM



300  Quantum Mechanics

P-1
The state of a system is described by state vector. |y 〉 and all the state vectors are the elements of 
Hilbert space.

This is consistent with principle of superposition. If |y 1〉 and |y 2 〉 represent two distinct states, 
then Hilbert space ensures that there exists a state | | |y y y〉 = 〉 + 〉c c1 1 2 2

.

P-2
To every dynamical variable A, an abstract self-adjoint operator Â  is associated with it. The operators 
x̂i and p̂ j are chosen in such a way that

 [ , ]x p ii j ij= �dˆ ˆ  i, j = 1, 2, 3 … (9.32)

This is known as quantum condition.
Dirac suggested a way to make a transition from classical mechanics to quantum mechanics. For 

classical mechanics, the Poisson bracket between the generalized coordinates and the canonically 
conjugate momenta is given as

 [ , ]q pi j PB ij= d

Dirac’s quantum condition is to elevate classical variables q
i
 and p j to operators q̂i  and p̂ j and replace 

the Poison bracket by the commutator whose value is i�.

 [ , ] [ , ]q p q p ii j PB ij i j ij= → =d d�ˆˆ

P-3
When a measurement of a dynamical variable A is made, the only possible experimental results are 
its eigenvalues.

P-4
The average value of a dynamical variable A for an ensemble in which all the systems are in the state 
|y 〉 is given by

 〈 〉 = 〈 〉A Ay y| |ˆ  (9.33)

Let us write |y 〉 as

 | |y 〉 = 〉∑Cn n

C
n
 is given by C nn = 〈 〉|y . Let us proceed in the same way as done in Chapter 5 to conclude | |Cn

2 is 
the probability obtaining the value of the dynamical variable A to be a

n
. Let us write P

r
(n, y ) for | |Cn

2.  
P

r
(n, y ) is the probability of obtaining the eigenvalue a

n
 on measuring A when the system is in state |y 〉 

i.e., P a nr n( , ) | | |y y= 〈 〉 2 . In the case of continuous eigenvalues, we write |y 〉 as | | |y y〉 = 〉 〈 〉∫ da a a . 
P a da a dar ( , ) | | |y y= 〈 〉 2  is now interpreted as the probability of obtaining the value of A to be in the 
range a and a + da (or in the interval da centred around a).
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interpretation of 〈 〉e x|
We have already seen the effect of measurement on the state of a system in Chapter 5. In the language 
of abstract-state vector formalism, we say that a measurement of a dynamical variable A causes the 
system to change its state from |y 〉 to the eigenstate | n〉 with a probability | |Cn

2. Therefore, C
n
 is 

interpreted as the probability amplitude for a system to make a transition from state |y 〉 to state | n〉 
in a measurement process. This interpretation can be generalized to a scalar product 〈 〉f y| , where 
the ket |f 〉 is an arbitrary state vector and it need not be a basis vector like | n〉. Note that, in general, 
〈 〉f y|  is a complex number. Now, 〈 〉f y|  is interpreted as probability amplitude for a system to make 
a transition from state |y 〉 to a state |f 〉 in a measurement process.

P-5
The time evolution of the state vector | ( )y t 〉 can be determined by the Schrödinger equation.

 i
t

t H t� ∂
∂ 〉 = 〉| ( ) | ( )y yˆ

where Ĥ  is the Hamiltonian operator.

9.8 rePresentations
In the case of geometrical vectors, V  can be represented in many ways. In terms of the basis vectors 

e e1 2,  and e3, we can write V  as

 V e e e= + +c c c1 1 2 2 3 3

The numerical values c c c1 2 3,  and   are the components of V  along the basis vectors e e e1 2 3,  and  and 
specifying the numerical values c

1
, c

2
 and c

3
 amounts to describing the vector V  completely. It is enough  

to write V  as ( , , )c c c1 2 3  or 

c

c

c

1

2

3













 . The column vector is said to represent Vwith respect to the basis

e e e1 2 3, .and 

It is to be noted that the numerical values of the components of a vector depend on the choice of basis  
vectors. Instead of e e1 2,  and e3, let us choose some other set E E E1 2 3, . and 

The same vector V  can be written as

 V E E E= b b b1 1 2 2 3 3+ +

In this case, the components ( , , )b b b1 2 3  or the column vector 

b

b

b

1

2

3













  is said to represent the same vector 

Vwith respect to the basis E E  E1 2 3, .and

This idea can be extended to Dirac’s bra and ket vectors.
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A representation and B representation
The term A representation means here that our choice of basis kets is the eigenkets of the operator A. 
So if we choose the eigenkets of the dynamical variable B as the basis kets, then such representation 
is called B representation.

a representation of state Vector
Let us choose the eigenkets of the dynamical variable A to represent the state |y 〉.

Let ˆ | |A i a ii〉 = 〉

In terms of the basis kets {| }i〉  let us express |y 〉 as

 | |y 〉 = 〉∑c nn
n

 with c nn = 〈 〉|y

The state vector |y 〉 in A representation is written as

 y
y
yA

c

c=
















=
〈 〉
〈 〉

















1

2

1

2

� �

|

|  (9.34)

a representation of the abstract operator F̂

Having represented a state vector |y 〉 in A basis, we can represent an abstract operator F̂  also in A basis.
Consider the following equation

 ˆ | |F y f〉 = 〉

The state vectors |y 〉 and |f 〉 are given by 

 

| |

| |

y

f

〉 = 〉

〉 = 〉

∑
∑

c n

d i

n
n

i
i

The A representation of |y 〉 and |f 〉 is given by

 y A

c

c=
















1

2

�
 and fA

d

d=
















1

2

�
 (9.35)

 ˆ | ˆ ˆ | |F FIy y f〉 = 〉 = 〉

 ˆ | | |F j
j

〉 〈 〉 = 〉∑ j y f
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Taking scalar product with 〈i |, we get

 〈 〉 〈 〉 = 〈 〉∑ i F j j i
j

| | | |y fˆ

We can write this equation as

 F c dij j i
j

=∑  (9.36)

provided we identify 

 ˆ= 〈 〉 = 〈 〉 = 〈 〉| | , | and |ij j iF i F j c j d iy f  (9.37)

This equation is a matrix equation as given below.

 

F F F

F F F

c

c

c

11 12 13

21 22 23

1

2

3

..

..

: : : ..

: : : ..

..

..

..

..



















::

:

:



















=



















d

d
1

2  (9.38)

Therefore, the representation of the abstract F̂  is a matrix operator.

9.8.1 change in Basis – transformation matrix
We will now investigate the relationship between two representations corresponding to dynamical 
variables A and B.

Let us consider two sets of basis vectors {| }ai 〉  and {| }bi 〉 . They are eigenkets of Â  and B̂, respectively.

 ˆ | | ˆ | |A a a a B b b bi i i j j j〉 = 〉 〉 = 〉 (9.39)

In A representation, the state vector |y 〉 and the abstract operator F̂  are represented as follows:

 y
y
y AA

a

a

a F a a F a

=
〈 〉
〈 〉

















=
〈 〉 〈1

2

1 1 1|

|

| |

     :

| |

F
22

2 2 2 2

〉
〈 〉 〈 〉










a F a a F a| | | |

: :

ˆ ˆ

ˆˆ

... ...

... ...

... ...










 (9.40)

The same state vector |y 〉 and the operator in the B representation are given as follows:

 y
y
y BB

b

b

b F b b F b

=
〈 〉
〈 〉

















=

〈 〉 〈 〉
1

2

1 1 1 2|

|

| | | | ...

�
F

...

| | | | ... ...

... ...

〈 〉 〈 〉



















b F b b F b2 1 2 2

� �

ˆ

ˆ ˆ

ˆ

 (9.41)
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Consider 〈 〉bi |y

 〈 〉 = 〈 〉 = 〈 〉 〈 〉∑b b I b a ai i i j j
j

| | | | |y y yˆ

 〈 〉 = 〈 〉∑b U ai ij j
j

| |y y  (9.42)

U
ij
 is matrix element of the matrix U, which is known as transformation matrix. It is easy to show that 

U is a unitary matrix.

 

( ) ( ) * | |

| |

U U U U U U b a b a

a b b

ik i j jk jk j i j k

i j j

j

ji

j j

= = = 〈 〉∗〈 〉

= 〈 〉 〈

∑ ∑ ∑
| |

|

a a I a

a a

k i k

i k ik

j

〉 = 〈 〉

= 〈 〉 =

∑
d

† †

ˆ

Therefore, U is a unitary matrix.
Now consider the relationship between F

A
 and F

B
.

 

[ ] | | | |

| | | |

FB ij i j i j

i j
kj

i k k

b F b b IFI b

b a a F a a

= 〈 〉 = 〈 〉

= 〈 〉 〈 〉 〈∑∑ bb

U F U U F U

j

ij A jk jk
kj

ij A jk kj
kj

〉

= =∑∑ ∑∑[ ] * [ ] ( )

ˆ ˆ ˆ ˆ

ˆ

†

In terms of matrix notation, the above equation becomes

 [ ] [ ]F B AU F U= †

So we have y yB AU=  (9.43)

 FB AUF U= † (9.44)

9.9 coordinate rePresentation
In the coordinate representation, the eigenkets of x̂ are chosen as the basis vectors.

The eigenvalue equation for the coordinate x is given by

 ˆ | |x x x x x〉 = 〉 − ∞ < < ∞       (9.45)

The eigenvalue x is a continuous variable and varies from -∞ to ∞. Therefore, the normalization con-
dition for the coordinate eigenkets is

 〈 ′〉 = − ′x x x| ( )d x  (9.46)
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state Vector |̀ Õ in coordinate representation
Let us consider a state vector |a 〉 . To get the coordinate representation of |a 〉, we have to determine 
the numerical value of the ‘components’ 〈 〉x |a  for all values of x. The components corresponding to 
various values of x, say x = x

1
, x

2
, x

3
 … may be written as column vector as given below:

 

〈 〉
〈 〉
〈 〉



















x

x

x

1

2

3

|

|

|

a
a
a

�

Note this vector should be infinite dimensional vector. Since x varies continuously from -∞ to ∞, 
numerical values of all the components of |a 〉 (corresponding to the basis vectors | x〉) can be written 
as ya ( )x . The component y a ( )x  is a number for each value of x. i.e., it is a function of x in the well-
known sense of calculus.

 ∴ = 〈 〉 −∞ < < ∞y aa ( ) :x x x x|        (9.47)

x̂  in coordinate representation
Let x̂ act on a ket |a 〉 to produce another ket | b 〉. The wave functions corresponding to the kets are 

given by ya ( )x  and y b ( )x .

 ˆ | |x a b〉 = 〉  (9.48)

i.e., y aa ( ) |x x= 〈 〉 and y bb ( ) |x x= 〈 〉

We know that in coordinate representation,

 x x xopy ya b( ) ( )=  (9.49)

What is the operator x
op

? Or how do we get x
op

 from (9.48)?

Taking inner product of the Equation (9.48) with 〈x |, we get 

 〈 〉 = 〈 〉x x x| | |a bˆ  (9.50)

Since 〈 = 〈 = 〈x x x x x x| | |ˆ  we write the Equation (9.50) as

 x x x〈 〉 = 〈 〉| |a b

 x x xy ya b( ) ( )=  (9.51)

Comparing the Equations (9.49) and (9.51), we get

 x x x xopy ya a( ) ( )=  (9.52)

Hence, xop is x in the coordinate representation.
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ˆ( )f x  in coordinate representation
Let us now consider f a x a x( 2ˆ) ˆ ˆx = + + ⋅⋅⋅1

2  and its coordinate representation f (x
op

).

Now consider ˆ | |x 2 a b〉 = 〉  (9.53)

The corresponding coordinate representation is

 x xop
2y ya b( ) ( )= x  (9.54)

From (9.53), we get 〈 〉 = 〈 〉x x x| | |2 a bˆ

We know that 〈 = 〈 = 〈x x x x x x| | |2 2 2ˆ

 ∴〈 〉 = 〈 〉x x x x| | |2 2a aˆ

 x x x2 〈 〉 = 〈 〉| |a b  (9.55)

Comparing (9.54) and (9.55), we get

 x x x xop
2 2y ya ( ) ( )=  (9.56)

This can be extended a general function ˆ( )f x

 f ( ˆ) | |x a b〉 = 〉  (9.57)

The corresponding equation in coordinate representation is 

 f x f x x xop(x )y y ya a b( ) ( ) ( ) ( )= =⋅  (9.58)

9.9.1 momentum operator in coordinate representation
Let us consider

 ˆ | |p a b〉 = 〉  (9.59)

In coordinate representation, the corresponding equation is 

 p x xopy ya b( ) ( )=  (9.60)

Or p x xop 〈 〉 = 〈 〉| |a b  (9.61)

Consider ˆˆ ˆ ˆxp px i− = �

 〈 − ′〉 = 〈 ′〉x xp px x x i x| | | |�ˆ ˆ ˆ ˆ  (9.62)

We have 〈 = 〈 = 〈x x x x x x| | |ˆ

xM09_QUANTUMMECHANICS_3628_CH09.indd   306 5/24/2013   11:06:37 AM



Bra and Ket Vector Formalism and Symmetries  307

and ˆ | |x x x x′〉 = ′ ′〉

Using these results in the LHS of the Equation (9.62), we get

 〈 − ′〉 = 〈 − ′〉 〈 ′〉x xp x x x x x p x| | | |pˆ ˆ ˆˆ ˆ

 ∴ − 〈 〉 = −′ ′ ′ˆ( ) | | ( )�x x x p x i x xd  (9.63)

The structure of this equation is similar to the Equation (4.34).

f x d
dx

x x
df
dx

x x x( ) ( ) ( ) ( )d d− ′ = − − ′

Let us choose f x( ) as f x i x x( ) ( )= − ′�

 ∴ − ′ − ′ = − − ′i� �( ) ( ) ( )x x d
dx

x x i x xd d

Changing the variable of differentiation from x to ′x , we get

 i x x d
dx

x x i x� �( ) ( ) ( )− ′
′

− ′ − ′d d= x  (9.64)

Comparing this equation with (9.62), we get

 〈 ′〉 = ′ − ′x p x i d
dx

x x| | ( )� dˆ  (9.65)

Now consider 〈 〉x p| |aˆ

 a a〈 〉 = ∫ ′〈 ′〉 〈 ′ 〉x p dx x p x| | | | |xˆ ˆ

 = ′
′

− ′





′∫ dx i d
dx

x x x� d ya( ) ( )

 = − ′ ′ −
′

′( ) − ′ ′−∞
∞ ∫i x x x i d

dx
x x x dx� �d y y da a( ) ( ) ( ) ( )

 = −i d
dx

� ya ( )x  (9.66)

So we have

 
〈 〉 = 〈 〉 =

− = 〈 〉

x p x p x x

i d
dx

x x

op| | | ( ) ( )

( )

a b y y

y y

a b

a b

   and

�

ˆ

 ∴ = −p i d
op �

dx
 (9.67)
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9.9.2 p̂ x| Õ  and æx p|ˆ

From the Equation (9.65), we have

 〈 ′〉 = − − ′x p x i d
dx

x x| | ( )� dˆ  and 〈 ′〉 = ′ − ′x p x i d
dx

x x| | ( )� dˆ

Since 〈 ′ 〉 = − ′x x x x| ( )d  these equations become

 〈 ′〉 = − 〈 ′〉x p x i d
dx

x| | |� xˆ  (9.68)

 〈 ′〉 = ′ 〈 ′〉x p x i d
dx

x x| | |�ˆ  (9.69)

The Equation (9.68) suggests 〈 = − 〈x p i d
dx

x| |�ˆ

Note that both −i d dx� /  as well as i d dx� / ′  are not abstract operators.

 ∴ ′ 〈 ′〉 = 〈 ′ ′〉( )i d
dx

x x x i d
dx

x� �| | |

Making use of this result in (9.69), we get

 ∴ 〈 ′〉 = 〈 ′ ′〉( )x p x x i d
dx

x| | | |�ˆ

This equation suggests ˆ | | .p x i d
dx

x′〉 = ′ ′〉�

So, changing the variable from x to ′x  in the above equation, we have

 ˆ | |p x i d
dx

x〉 = 〉�  (9.70)

and 〈 = − 〈x p i d
dx

x| | .�ˆ  (9.71)

The Equation (9.71) is the Hermitian conjugate of (9.70).

Let us reiterate again that i� d dx/  is not an abstract operator.
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9.9.3 ˆ( )f p  in coordinate representation

Consider ˆ | |p 2 a b〉 = 〉

 
〈 〉 = 〈 〉

〉

〈 〉=x p x p p x p| | | |
|

| |2 a a
c

c�ˆ ˆ ˆ ˆ

 ( )= − 〈 〉 = − 〈 〉ˆ| | |� �d di x i x p
dx dx

c a  (Using 9.71)

 = −( ) −( )〈 〉i d
dx

d
dx

x� �i |a  (Using 9.71)

 = −( ) 〈 〉i� d
dx

x
2

| .a

 ∴ 〈 〉 = −( ) 〈 〉 =x p i d
dx

x p xop| | | ( )2
2

2a a ya�ˆ  (9.72)

This reasoning can be extended to any function f p( )ˆ .

 ˆ( ) | |f p 〉 = 〉a b  (9.73)

 ˆ| ( ) | |x f p x〈 〉 = 〈 〉a b  (9.74)

In coordinate representation, this equation becomes

 f i d
dx

x x f i d
dx

x x−( )〈 〉 = 〈 〉 −( ) =� �| | ( ) ( )a b y ya b  or  

   ( )�ˆ( ) | | ( ) ( )df p f i x x
dx

〉 = 〉 ⇒ − =a ba b y y  (9.75)

ˆ ˆ( , ˆ)A x p
Let A(x, p) be the classical dynamical variable. In quantum mechanics, it becomes ˆ( ˆ, ˆ )A x p .

Now, we have

 ˆ ( ˆ, ˆ ) | |A x p a b〉 = 〉

 〈 〉 = 〈 〉x A x p x| ( , ) | |a bˆˆˆ

In coordinate representation, this equation becomes

 A op x i d
dx

x x, ( ) ( )−( ) =� y ya b
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In three dimensions, we have

 ˆ(ˆ, ˆ ) | |A r p 〉 = 〉ba  (9.76)

 〈 〉 = 〈 〉r r p r| ( , ) | |A a bˆ  (9.77)

or ˆ(ˆ, ˆ ) | | ( , ) ( ) ( )A A iopr p r r ra b y ya b〉 = 〉 ⇒ − ∇ =�  (9.78)

9.10 momentum rePresentation
In momentum representation, the eigenkets of momentum operator p̂ are the basis vector.

 ˆ | |p p pp p〉 = 〉 ∞ < < ∞−  (9.79)

The normalization condition for the eigenkets is

 〈 ′〉 = − ′p p p p| ( )d  (9.80)

Let us now try to find x
op

 in momentum representation.

 ˆ | |

ˆ| | |

x

p x p

〉 = 〉
〈 〉 = 〈 〉

a b
a b

 (9.81)

In momentum representation, we have

 x popf fa b( ) ( )= p  (9.82)

Let us consider �ˆˆ ˆ ˆ( )xp px i− =

 〈 − ′〉 = 〈 ′ = − ′p xp px p i p p i p p| | | ) ( )� �dˆˆˆ

We know that

 〈 = 〈p | |p p pˆ  and ˆ | |p ′〉 = ′ 〉p p p

 ∴〈 − ′〉 = − − ′ 〈 ′〉
∴ − ′ 〈 ′〉 = − ′

p xp px p p p p x p

p p p x p i p

| | ( ) | |

( ) | | (�d pp )

ˆ ˆ ˆ ˆ

ˆ

ˆ

Based on the same reasoning as done in the case of determination of the operator pop in coordinate 
representation, we get 

 〈 ′〉 = − ′ − ′p x p i d
dp

p p| | ( )� dˆ  (9.83)
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Let us now consider 〈 〉p x| |aˆ

 
〈 〉 = ′〈 ′〉 〈 ′ 〉

= ′ −
′

− ′





′

∫p x dp p x p p

dp i d
dp

p p p

| | | | |

( ) ( )

a a

d fa�∫∫

ˆˆ

 

= − − ′ ′ + ′ − ′
′

′

=

−∞
∞ ∫i p p p dp p p i d

dp
p

i d
dp

p

� �

�

d f d f

f

a a

a

( ) ( ) ( ) ( )

( )

 〈 〉 = 〈 〉 =p x p i d
dp

p p| | | , ( ) ( )a b f fa b�ˆ

 ∴ =x i d
dpop �  (9.84)

Just as we worked in the case of coordinate representation, we can work out A
op

 in the momentum 
representation.

 ˆ( ˆ, ˆ ) | |A x p a b〉 = 〉  (9.85)

 A x i d
dp

p p pop op =





=� , ( ) ( )f fa b  (9.86)

9.11 unitary transformations
Let us consider a general unitary transformation transforming all the kets of the Hilbert space as given 
below.

 | |′〉 = 〉a aÛ  and | |′〉 = 〉b bÛ  (9.87)

Under the unitary transformation, F̂  transforms to ˆ ′F . Let us assume F̂  transforms |a 〉 into | b 〉 and 
ˆ ′F transforms | ′〉a  into | ′〉b .

i.e., 
ˆ | | ˆ | |

ˆ ˆ | ˆ |

F F

F U U

a b a b

a b

〉 = 〉 ′ ′〉 = ′〉

′ 〉 = 〉

   and    

             (( ( . ))using 9 87

Multiplying both sides by U †, we get

  ˆ ˆ ˆ | | ˆ |†

ˆ

U F U F′ 〉 = 〉 = 〉
F

��� a b a

 ∴ ′ = ′ =ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †U F U F F UFU or  (9.88)
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The matrix element 〈 〉b a| |F̂  is invariant under the transformation | | |a a a〉 → ′〉 = 〉Û  and 
ˆ ˆ ˆ ˆ .†F UFU→  This can be easily seen as follows:

 〈 ′ ′ ′〉 = 〈 〉

= 〈 〉

b a b a

b a

| | | |

| |

F U UFU U

F

ˆ ˆ ˆ

ˆ

† †
 (9.89)

The norm of a vector |a 〉 is invariant under the unitary transformation | | |a a a〉 → ′〉 = 〉Û .

 〈 ′ ′〉 = 〈 〉 = 〈 〉a a a a a a| | | |U Uˆ ˆ†  (9.90)

The invariance of the norm of the state vectors | |f y〉 〉 and the invariance of the matrix element 
〈 〉f y| |F̂  (The kets |f 〉 and |y 〉 are arbitrary state vectors) under unitary transformation gives 
immense significance to unitary transformation in quantum mechanics.

9.12 time eVolution oPerator
The Schrödinger equation for the state vector | ( )a t 〉 is

 � ˆ| ( ) | ( )di t H t
dt

〉 = 〉a a  (9.91)

Time solution operator T (t, t
0
) is defined as an operator which takes the state vector |a ( )t0 〉  to | ( )a t 〉.

 ∴ 〉 = 〉| ( ) ( , ) | ( )a at T t t t0 0
ˆ  (9.92)

 〉 = 〉� � 0 0
ˆ| ( ) ( , ) | ( )d di t i T t t t

dt dt
a a

 ∴ i d
dt

T t t t H t� ˆ( , ) | ( ) ˆ | ( )0 0a a〉 = 〉

 = 〉ˆ ˆ( , ) | ( )HT t t t0 0a

 ∴ =i d
dt

T t t HT t t� ˆ ( , ) ˆ ˆ ( , )0 0  (9.93)

Note that the solution to (9.91) can be formally written as

 
�

0
0

ˆ ( )
| ( ) | ( )

iH t t
t exp t

 −
〉 = 〉 

 
a a  (9.94)

Obviously, the time evolution operator ˆ ( , )T t t0  is given by

 ˆ /T̂ (t ,t  ) = e0
0−iH(t−t ) � (9.95)
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Since Ĥ  is a self-adjoint operator †ˆ ˆ( )H H= , the time evolution operator ˆ ( , )T t t0  is a unitary operator 
which transforms the state | ( )a t0 〉 into the state | ( )a t 〉.

9.12.1 Pictures
The invariance of the matrix elements 〈 〉b a| |F̂  under unitary transformations | | , | |a a b b〉 → 〉 〉 → 〉U Uˆ ˆ

| | , | |a a b b〉 → 〉 〉 → 〉U Uˆ ˆ  and ˆ ˆ ˆ ˆ †F UFU→  gives us a tool to deal with the time dependence of the state vectors and 
dynamical variables in a convenient way. This idea leads to the concept of pictures. There are three dif-
ferent pictures: Schrödinger picture, Heisenberg picture and interaction picture. There exists unitary 
transformation which relates these pictures.

schrödinger Picture
The state vectors and the dynamical variable are denoted by | ( )a t s〉  and F̂s . The subscript S refers to 
Schrödinger picture. The operators F̂s  may or may not have time dependence. Generally, the operators 
are time independent. For instance, the position operator r̂, the momentum operator p̂ and the angular 
momentum operators ˆ ˆ ˆL = ×r p are time-independent operators. Let us assume that the Hamiltonian 
Ĥ  is time independent. The time evolution of the state |a ( )t s〉  is determined by

 � ˆ| ( ) | ( )s s s
di t H t
dt

〉 = 〉a a  (9.96)

 
ˆ

| ( ) | (0)
siH t

s st e
−〉 = 〉a a�  (9.97)

heisenberg Picture
Let us consider the matrix element ˆ( ) | | ( ) ,s s st F t〈 〉b a  where | ( )a s t 〉  and | ( )b s t 〉  are arbitrary state 

vectors. (The subscripts refer to Schrödinger picture.)

 ��ˆ ˆ/ /ˆˆ( ) | | ( ) (0) | | (0)s siH t iH t
s s s s s st F t e F e−〈 〉 = 〈 〉b a b a

This suggests a unitary transformation ˆ ˆ /U = eiH ts �  which transforms all the states | ( )a s t 〉 to | ( )a H t 〉 
which is independent of time. Here the subscript H refers to Heisenberg picture. The unitary transfor-
mation taking the state vectors and the operators from Schrodinger picture to Heisenberg picture is  
defined by

 �ˆ /| ( ) | ( ) | ( )siH t
s H st t e t〉 → 〉 = 〉a a a  (9.98)

and ˆ ˆ ˆˆ / ˆ /F F e F es H
iH t

s
iH ts s→ = −� �  (9.99)
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Let us first consider the time evolution of the state vector | ( )a H t 〉. Note that from (9.98), we have 
| ( ) | ( )a aH s0 0〉 = 〉 . Making use of (9.97), we get 

 ��ˆ ˆ/ /| ( ) | (0)s s
H s

iH t iH tt e e−〉 = 〉a a

 = 〉| ( )a s 0  (9.100)

So, in Heisenberg picture, all the state vectors | ( )a H t 〉 are independent of time.
Let us now consider the time evolution of the operator F̂H  corresponding to a dynamical variable.

 
dF
dt

d
dt

e F eH iH t
S

iH ts s

ˆ
ˆˆ / ˆ /=  

−� �

 = ( ) + +− −d
dt

e F e e F d
dt

e eiH t iH t iH t iH t iHs s s s s
s s

ˆ / ˆ / ˆ / ˆ / ˆˆ ˆ ( )� � � � tt iH t
F

t
es

s/ ˆ /
ˆ

� �∂
∂

−

 = −



 +− − −1

i
e F H e e H F e eiHst i st iHst

s s
iHst

s s
H

�
� � � �ˆ / / ˆ / ˆ /ˆ ˆ ˆ ˆˆ iiHst s iHstF

t
e

ˆ / ˆ /
ˆ

� �∂
∂

−

 

= −− − −1
i

e F e e H e e H eiHst
s

iHst iHst
s

iHst iHst
s�

� � � � �ˆ / ˆ / ˆ / ˆ / ˆ /ˆ ˆ ˆ iiHst i Hst
s

iHst

iHst s iHst

e F e

e
F

t
e

ˆ / ˆ / ˆ /

ˆ / ˆ /

ˆ

ˆ

� � �

� �

−

−







+
∂
∂

  

== − +
∂
∂







=

1

1

i
F t H t H t F t

F

t

i
F H

H H H H
s

H

H H

�

�

[ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )]

[ ˆ , ˆ ] ++
∂
∂







F̂

t
s

H

 (9.101)

It is very important to realize the significance of the time evolution of the dynamical variable F̂H . There 
is a close similarity between the equation of motion of a dynamical variable in classical mechanics and 
the Equation (9.101). In classical mechanics, the time evolution of a dynamical variable is determined 
by Poisson bracket. For the sake of clarity, let us list the equation of motion in classical mechanics and 
quantum mechanics.

 

dF
dt

F F
t

dF
dt i

F H

PB
PB

H
H H

= + ∂
∂( )

=

[ , ]

[ ,

H Classical Mechanics

1
�

]] +
∂
∂







F

t
s

H

Quantum Mechanics

So, if we do quantum mechanics in Heisenberg picture, the transition from classical mechanics to 
quantum mechanics is very simple and straightforward. Replace the Poisson bracket between the 
dynamical variable F and the classical Hamiltonian by 1/i�  times the commutation between the opera-

tor F̂H  and the Hamiltonian operator Ĥ H .
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i.e., [ , ] [ , ].F
i

F HPB H HH → 1
�

Of course, this prescription requires more careful consideration (see Merzbacher). 
It is important to recognize the difference between Schrödinger picture and Heisenberg picture.
In the Schrödinger picture, the state vector | ( )a t 〉 evolves in time, whereas the dynamical variables, 

in general, have no time dependence. In Heisenberg picture, the state vector does not evolve in time, and 
the time dependence has been completely shifted to the operator corresponding to a dynamical variable. 
For instance, the position operator x̂s and the momentum operator p̂s do not have time dependence. In 
Heisenberg picture, the position operator ˆ ( )x tH  and the momentum operator ˆ ( )p tH  are time dependent.

example 9.3 Show that �ˆ ˆ[ , ]H Hx p i=  where x̂H  and p̂H  are position and momentum operators in 
Heisenberg picture.

solution:

 ˆ ( ) ˆ ˆ ˆ ˆ ( ) ˆˆ ˆ† †x t Ux U p t Up UH s H s= =            

where x̂s  and p̂s  are position and momentum operators in Schrödinger picture. 

 ˆ ˆ ˆ ˆx p p x is s s s− = �

Multiply this equation from the left by Û  and the right by ˆ †U .

 

              ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

† † †

ˆ

Ux p U Up x U Ui U

Ux U

s s s s

s

xH

− =
+

�

� UUp U Up U Ux U is

p

s

x

s

pH H H

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

ˆ

†

ˆ

†

ˆ

†

� � � �− =

                              ∴ =[ ˆ , ˆ ]x p iH H �

example 9.4 Show that the angular momentum operator Lz  in Heisenberg’s picture is given by
ˆ ˆ ˆ ˆ ˆ,L x p y pz H H yH H xH= − .

solution: In Schrödinger picture, L
z, s

 is given by 

 L x p y pzs s ys s xs= −ˆ ˆ ˆ ˆ

 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

† † †

† †

UL U L Ux p U Uy p U

Ux UU p U

zs zH s ys s xs

s ys

= = −

= − ˆ̂ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

† †Uy UU p U

x p y p

s xs

H yH H xH= −

example 9.5 The Hamiltonian of a particle is given by ˆ ˆ
( ˆ)H = +p

m
V x

2

2
.

Show that ˆ
ˆ

x
p
mH

H=  and 
V x

x
H

H

( ˆ )
ˆ

= −
∂

∂
ˆHdp

dt
.
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solution: The Hamiltonian in the Heisenberg picture is given by

 

ˆ ˆ
( ˆ )

ˆ
ˆ ,

ˆ
( ˆ )

ˆ

H
p
m

V x

dx
dt i

x
p
m

V x

p
m

H
H

H

H
H

H
H

H

= +

= +





=

2

2

2

1
2�

 

dp
dt i

p
p
m

V x

i
p V x

V x

H
H

H
H

H H
H

ˆ
ˆ ,

ˆ
( ˆ )

[ ˆ , ( ˆ )]
( ˆ )

= +





= = −
∂

1
2

1

2

�

� ∂∂x̂H

example 9.6 Obtain ˆ ( )x tH  and ˆ ( )p tH  for a free particle.

solution: The Hamiltonian for a free particle is

 ˆ ˆ
H

p
mH
H=
2

2

 

dx
dt i

x
p
m

p
m

dp
dt i

p
p
m

H
H

H H

H
H

H

ˆ
ˆ ,

ˆ ˆ

ˆ
ˆ ,

ˆ

= 





=

= 





=

1
2

1
2

2

2

�

�
00

At 

∴ = =

∴ = +

= = = ∴

d x
dt m

dp
dt

x t A tB

t x x A x

H H

H

H s H

2

2
1 0

0 0

ˆ ˆ

ˆ ( ) ˆ ˆ

, ˆ ( ) ˆ ˆ ˆ   (( ) ˆ ( ) ˆ

ˆ ˆ ˆ ˆ ˆ ( )

t x tB

dx
dt

B
p
m

B
p

m

H

H H H

= +

= = ∴ =

∴

0

0
                 

ˆ̂ ( ) ˆ ( )
ˆ ( )

x t x
tp

mH H
H= +0

0

example 9.7 Obtain ˆ ( )x tH  and ˆ ( )p tH  for a simple harmonic oscillator.

solution: The Hamiltonian for a simple harmonic oscillator in Schrödinger picture is

 ˆ ˆ
ˆH

p

m
m xs

s
S= +

2
2 2

2
1
2
w
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In Heisenberg picture, it is given by

 ˆ ˆ
ˆH

p
m

m xH
H

H= +
2

2 2

2
1
2
w

 
dx
dt i

x
p
m

m x
p
m

H
H

H
H

Hˆ
ˆ ,

ˆ
ˆ

ˆ
= +





=1
2

1
2

2
2 2

�
w

 
dp
dt i

p
p
m

m x m xH
H

H
H H

ˆ
ˆ ,

ˆ
ˆ ˆ= +





= −1
2

1
2

2
2 2 2

�
w w

 
d x

dt m
dp
dt

xH H
H

2
21ˆ ˆ
ˆ= = −w

 
d p
dt

m
dx
dt

pH H
H

2

2
2 2

ˆ ˆ
ˆ= − = −w w

The solution to these equations is

 ˆ ( ) ˆ sin ˆ cosx t A t B tH = +w w

 ˆ ( )
ˆ

( ˆ cos ˆ sin )p t m
dx
dt

m A t B tH
H= = −w w w

At t = 0 ˆ ( ) ˆx BH 0 =

 ˆ ( ) ˆp m AH 0 = w

 ∴ = +ˆ ( ) ˆ ( )sin ˆ ( ) cosx t
m

p t x tH H H
1 0 0
w

w w

 ˆ ( ) ˆ ( ) ˆ ( )sinp t p t m x tH H H= −0 0cosw w w 

Note that in classical mechanics, the position q(t) and the momentum p(t) are given by

 q t
m

p t q t( ) sin cos= +1
0 0w
w w

 p t p t m x t( ) cos sin= −0 0w w w

where x
0 
and p

0 
are the initial position and the momentum of the particle.

interaction Picture
In the Schrödinger picture, the state vectors are time dependent and the dynamical variables and time 
independent. This is useful in doing non-relativistic quantum mechanics. In the Heisenberg picture, 
the time dependence is completely shifted to the dynamical variables. So the operator corresponding 
to a dynamical variable depends on both space and time coordinates. This fact is very useful in relativ-
istic quantum field theory, where the space coordinates and the time coordinates have to be treated an  
equal footing. Therefore, Heisenberg picture is very useful in doing relativistic quantum field theory.
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We have another picture called interaction picture which is useful to do perturbation theory. In this 
picture, both the dynamical variable and the state vectors are time dependent. But the time dependence 
is in such a way that the perturbation theory can be effectively done.

Let us write the Hamiltonian Ĥ  as

 ˆ ˆ ˆH H H= ′0 +  (9.102)

where Ĥ 0  has no time dependence and ˆ ′H  is the perturbation Hamiltonian which may be or may not 
be time dependent.

Let us denote the state vector by | ( )a I t 〉 and the dynamical variable by ˆ ( )F tI  in the interaction 
picture.

| ( )a I t 〉 is defined as 

 
�

ˆ
| ( ) exp | ( )os

I s

H t
t i t

 
〉 = 〉 

 
a a  (9.103)

ˆ ( )F tI  is defined as

 ˆ ( ) ˆˆ / ˆ /F t e F eI
iH t

s
iH tos os= −� �  (9.104)

The state vector | ( )a s t 〉  satisfies the Schrödinger equation

 ˆ ˆ| ( ) ( ) | ( )s os s s
di t H H t
dt

〉 = + 〉′a a�  (9.105)

From (9.103), we get 

 ˆ /| ( ) | ( )osiH t
s It e t−〉 =a a�  (9.106)

Making use of the Equations (9.106) and (9.105), we get

 i d
dt

e t H H tiH t
I os s I

os� �− 〉  = + ′ 〉ˆ / | ( ) ( ˆ ˆ ) | ( )a a

 ˆ | ( ) | ( )
ˆ /

| ( )

ˆ /H e t e i d
dt

tos
iHost h

I

t

iHost
I

s

−

〉

−〉 + 〉a a
a

� ��� ��� �� == 〉 + ′ 〉ˆ | ( ) ˆ | ( )H t H tos s s sa a

 ˆ | ( ) | ( ) ˆ | ( ) ˆ | ( )
ˆ /H t e i d

dt
t H t H tos s

iHost
I os s s sa a a a〉 + 〉 = 〉 + ′ 〉− � �

 ∴ 〉 = ′ 〉−e i d
dt

t H tiHost h
I s s

ˆ / | ( ) ˆ | ( )� a a

 � �� ˆ ˆ/ /ˆ| ( ) | ( )iH t iH tos os
I s I

di t e H e t
dt

−〉 = 〉′a a
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 = ′ 〉ˆ | ( )H tI Ia  (9.107)

where ˆ ˆˆ / ˆ /′ = ′ −H e H eI
iH t

s
iH tos os� �

 d
dt

F t
i

e H F e

e F H e
I

iHost
os s

iHost

iHost
s os

ˆ ( )
ˆ ˆ

ˆ ˆ

ˆ / ˆ /

ˆ /
=

−

−

1
�

� �

�+ iiHost

iHost s iHoste
H

t
e

ˆ /

ˆ / ˆ /
ˆ

�

� �












+
∂ ′
∂

−

  =
−

− −
1
i

e F e e H e

e

iH t
s

iH t iH t
os

iH t

iH t

os os os os

os�

� � � �ˆ / ˆ / ˆ / ˆ /

ˆ /

ˆ ˆ

�� � � �

�

ˆ ˆˆ / ˆ / ˆ /

ˆ /

H e e F e
e

os
iH t iH t

s
iH t

iH t

os os os

os

− −













+ ∂
∂tt

F es
iH tosˆ ˆ /− �

 
�

ˆ1 ˆ ˆ ˆ ˆ[ ] s
I OI OI I

I

F
F H H F

i t

 ∂
= − +  ∂ 

So we have

 i d
dt

t H tI I I� | ( ) | ( )a a〉 = ′ 〉  (9.108)

 d
dt

F t
i

F H
F
tI I OI
s

I

ˆ ( ) [ ˆ , ˆ ]
ˆ

= +
∂
∂







1
�

 (9.109)

The time evolution of the state is determined by the interaction Hamiltonian, whereas the time evolu-

tion of the dynamical variable ˆ ( )F tI  is determined by ‘free’ Hamiltonian.

example 9.8 Determine ˆ ( ), ˆ ( )x t p tI I  and ′H tI ( )  for a simple harmonic oscillator in interaction picture.

solution: The Hamiltonian for harmonic oscillator is 

 ˆ ˆ
ˆH

p

m
m xs

s
s= +

2
2 2

2
1
2
w

The free Hamiltonian Ĥ os and the interaction Hamiltonian ˆ ′H s  are

 ˆ ˆ ˆ ˆH
p

m
H xos

s
s s= ′ =

2
2 2

2
1
2

mw

In interaction picture, we have 

 ˆ ˆ ˆ ˆ ( )H
p
m

H xoI
I

I I= ′ =
2

2 2

2
1
2

         m tw

 d
dt

x t
i

x
p
m

p
I I

I Iˆ ( ) ˆ ,
ˆ ˆ

= 





=1
2

2

� m

 
dp t

dt i
p

p
m

I
I

Iˆ ( )
ˆ ,

ˆ
= 





=1
2

0
2

�
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 ∴ 
d x
dt

x A tBI
I

2

2
0

ˆ
ˆ ˆ ˆ= ⇒ = +       

 ˆ
ˆ ˆp m

dx
dt

mBI
I= =

 ˆ ( ) ˆx AI 0 =

 ∴ = +ˆ ( ) ˆ ( )
ˆ ( )

x t x t
p

mI I
I0

0

 ˆ ( ) ˆ ( )p t pI I= 0

 ′ =H m x tI I
1
2

2 2w [ ( )]

 = +





+





1
2

0
0

0
0

2m x t
p

m
x t

p
mI

I
I

Iw ˆ ( )
ˆ ( )

ˆ ( )
ˆ ( )

 { }2
2 2 2

2
1 ˆ ˆ ˆ ˆ ˆ ˆ( (0)) [ (0) (0) (0) (0)] ( (0))
2 I I I I I I

t tm x x p p x p
m m

= + + +w

9.13 sPace–time symmetries
There exists another type of transformation that arises due to space–time symmetry. Here, the changes in 
the system are with respect to space–time background. These changes are like shifting the system (trans-
lating the system) from one place to another or rotating the system as a whole from one orientation to 
another orientation and so on. The experimental outcomes are not expected to vary due to such changes 
imposed on the system. We have assumed that the space–time background, in which the apparatus exists, 
to be isotropic and homogenous. It means that the environment of the system is the same. For instance, 
translational symmetry means shifting the apparatus from one workbench to another workbench.

Let us see how this idea is implemented in quantum mechanics. In an experiment, the system S 
makes a transition from state |a 〉 to a state | b 〉. Let us now say, translate the system or rotate the sys-
tem. Let us now label the system as ′S . Let | ′〉a  and | ′〉b  are the states of ′S  corresponding to states 
|a 〉and | b 〉 of S. The space–time symmetry implies | | | | | | .〈 〉 = 〈 ′ ′〉b a b a2 2  Let us assume that there 
exists a transformation T̂  which transforms |a 〉 into | ′〉a  and |b 〉 into | ′〉b .

i.e.,  | | | |′〉 = 〉 ′〉 = 〉a a b bT T̂ˆ  (9.110)

There is a general theorem which states that the result | | | | | |〈 〉 = 〈 ′ ′〉b a b a2 2  implies T̂  is either uni-
tary or anti-unitary transformation.

 〈 ′ ′〉 = 〈 〉b a b a| |  Unitary transformation  (9.111)

 〈 ′ ′〉 = 〈 〉b a a b| |  Anti-unitary transformation  (9.112)
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The space–time symmetries of our interest here are translation symmetry in space and time, rotation 
transformation, space reversal or parity transformation and time reversal transformation. All these 
transformations, except time reversal transformation, are unitary transformations. The time reversal 
transformation proves to be anti-unitary.

9.14 inVariance of hamiltonian
Let us first determine the conditions under which the state vectors |a 〉 and ˆ |U a 〉 satisfy the 
Schrödinger equation.

 | |′〉 = 〉a aÛ

 i
t

H� ∂
∂ 〉 = 〉| |a aˆ

Multiply this equation from left by U .

 ∴ ∂
∂ 〉 = 〉i
t
U UH� ˆ | ˆ ˆ |a a

or i
t

U U H U U
H

� ��� � �� �� ���
∂
∂

〉 = 〉
′〉 ′ ′ 〉

ˆ | ˆ ˆ ˆ ˆ |
|

†

ˆ |

a a
a a

  

 ∴ ∂
∂ ′〉 = ′ ′〉i
t

H� | |a aˆ

This equation is the same as the Schrödinger equation provided

 ˆ ˆ′ =H H

Or ˆ ˆ ˆ ˆ†UHU H=

The Hamiltonian Ĥ  is said to be invariant under the symmetry operator Û  if

 ˆ ˆ ˆ ˆ†UHU H=  (9.113)

or ˆ ˆ ˆ ˆUH HU=  (9.114)

What is the significance of invariance of the Hamiltonian under a symmetry transformation Û ? 
First, let us consider the case in which the unitary operator Û  can be written as an exponential of 
Hamiltonian operators. 

i.e., ˆ ( ˆ ˆ ˆ ..)U ei s X s X s= + +1 1 2 2 3 3X +  (9.115)

where s
1
, s

2
 … are some parameters, and ˆ , ˆX X1 2… are Hermitian operators.

For the sake of simplicity, let us take Û  to be ˆ .ˆU eisX=
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Then ˆ ˆ ˆ ˆUH HU=  means 

 1
2

1
2

2 2 2 2
2+ + +









 = + + +




isX

is X
H H isX

is X
Hˆ ( ) ˆ

!
... ˆ ˆ ˆ ( ) ˆ

!
ˆ ...






This implies that ˆ ˆ ˆ ˆX H H Xn n n n=  for all n.

 ∴ =ˆ ˆ ˆ ˆXH HX  (9.116)

Let us recall from Sec. 5.6 (see Equation (5.34)) that A is a constant of motion if 
d A

dt
〈 〉 = 0.

 d
dt

A d
dt

A〈 〉 = 〈 〉a a| |ˆ

 �
ˆ1 ˆ ˆ| [ , ] | | |AA H

i t
∂= 〈 〉 +
∂

a a a a

If Â  does not have explicit time dependence, A is said to be a constant of motion or a conserved  
quantity if 

 ˆ ˆ[ , ] 0A H =  (9.117)

Comparison of (9.116) and (9.117) implies that there exists a dynamical variable X (note that X̂ is 
a Hermitian operator) which is a constant of motion if there is a symmetry represented by a unitary 
transformation. i.e., the invariance of the Hamiltonian Ĥ  under unitary transformations of the type 
ˆ ˆU eisX=  implies that there exists a conserved quantity.

In the subsequent sections, we will see that the unitary transformations corresponding to space–
time translation symmetry are as follows:

Translation symmetry in space:  ˆ ˆU ei= a.p/�

Translation symmetry in time:  ˆ ˆ /U eitH= �

Rotational symmetry ˆ ˆ /U ei= p i �J

There are symmetries for which Û  cannot be expressed in the Equation (9.115). But even in such case, 
the invariance of Hamiltonian has important significance. The fact that both |a 〉 and | |′〉 = 〉a aÛ  
obey Schrödinger equation has enormous significance. If there exists a physical state |a 〉 for a sys-
tem, then there also exists a physical state corresponding to | |′〉 = 〉a aÛ . This fact itself is taken as 
the exhibition of presence of symmetry of a physical property. Parity transformation is an excellent 
example in this respect. Parity transformation can be shown to be equivalent to mirror reflection. 
Experimental realization of a particular process and its mirror reflection are taken as conservation 
of parity. The reader can refer a good book on elementary particle physics for more details on parity.

9.15 actiVe and PassiVe transformations
There are two kinds of transformation related to space–time symmetries. They are active or passive 
transformations. In the active transformation, we work within the same coordinate systems, and we 
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effect the changes on the system like translating the system or rotating the system and so on. In the 
passive transformation, the system remains as it is, but the coordinate system is changed like translat-
ing the coordinate system or rotating the coordinate system. These transformations are equivalent to 
each other. We illustrate these ideas by taking some specific cases.

x

y

P

x
x ′

a

P ′

x ′x

y
S S′

y ′

x
x ′a

P ′

(a) Active transformation (b) Passive transformation

fig. 9.1 Translation symmetry

Fig. 9.1 refers to the translation symmetry. Fig. 9.1(a) represents the active transformation, and  
Fig. 9.1(b) represents the passive transformation.

In the active transformation, the coordinate system remains the same. The system as a whole has 
been shifted along x axis by a distance. The point P on the object has become P ′. So r and ′r refer to 
two different points with respect to the same coordinate system.

 x x aP P′ = +  or equivalently ′ = +x x a (9.118)

In the passive transformation, the coordinate system S has slided along x axis to become ′S . The same 
point P on the object has two different coordinates with respect to S and ′S . The coordinates x and ′x  
refer to the same point.

 
′ = −

′ = −

x x a

x x a

p p  (9.119)

Now consider another transformation, namely the rotation about z axis.

P

q

x

b

P ′

q x
x

x ′

y

r ′

y

x ′

y ′

y ′
r

(a) Active transformation (b) Passive transformation

fig. 9.2 Rotation about z axis
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Fig. 9.2(a) represents the active transformation, and Fig. 9.2(b) represents the passive transformation. 
In Fig. 9.2(a), the object is rotated by an angle q about z axis. The point P becomes ′P . So r and ′r  
refer to points P and ′P . The coordinate transformation is given by

 

′
′
′

















=
−























x

y

z

x

y

z

cos sin

sin cos

q q
q q

0

0

0 0 1 





 (9.120)

In passive transformation (Fig. 9.2(b)), the object remains in the same position. The coordinate system 
has been rotated. The vectors r and ′r  refer to the same point P. The coordinate transformation relat-
ing r and ′r  is given by

 

′
′
′

















= −
























x

y

z

x

y

z

cos sin

sin cos

q q
q q

0

0

0 0 1 




 (9.121)

We restrict ourselves only to active transformation in the following sections.

9.16 sPace translation
Let us assume the space, in which the object exists, is homogeneous. In such a space, we can place 
the system in any region, and the choice of the place of the system should not lead to changes in any 
experimental outcome.

ya(x) ya ′(x) = ya(x − a) 

x x + a

fig. 9.3 Wave function of the system displaced by a

Let |a 〉  and | ′〉a  be the state vectors when the system is at r and ′r .

 ′ = +r r a (9.122)

For the sake of simplicity, consider only one coordinate, namely x alone. Then | x〉 and | ′〉x  are the 
basis vectors describing the system at x and x + a. 

 ′ = +x x a (9.123)
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When we displace the system from its original position by a, the wave function also gets displaced by 
a as shown in Fig. 9.3. Therefore, the space translation invariance implies that 

 y ya a( ) ( )x x= ′′

 ∴ ′ = ′ −′y ya a( ) ( )x x a  (9.124)

Note that both ya ′ and ya  are functions of ′x . So, we can relabel this variable as x in the Equation 
(9.124).

 ∴ = −′y ya a( ) ( )x x a  (9.125)

In terms of Dirac’s ket vector formalism, we have 

 ˆ| | |Tx x a U x〉 = + 〉 = 〉 (9.126)

Multiplying by ˆ †U  from left, we get

 ˆ | |†U x a x+ 〉 = 〉

Replacing x by x - a, we get 

 ˆ | |†U x x a〉 = − 〉

 〈 = 〈 −x U x a| |ˆ  (9.127)

 〈 〉 = 〈 − 〉x U x a| | |a aˆ  (9.128)

But ˆ | |U a a〉 = ′〉  (9.129)

 ∴ = − =′ y y ya a a( ) ( ) ( )x x a U x  (9.130)

Our task now is to determine U. The standard technique in finding such a transformation is to determine 
U for infinitesimal value of parameter and use them to construct U for the finite value of the parameter.

Let us first shift the system by an infinitesimal displacement x . From the Equation (9.130), we have

 y y x y x
y

a a a
a

′ = − = −
∂
∂

( ) ( ) ( )x x x
x

 = − − ∂
∂( ) = −y x y y x ya a a a( ) ( ) ( ) ( )x i i
x

x x i p xx�
�

�

 = −





1 i p xx

x ya�
( ) (9.131)

We have got the transformation for the infinitesimal displacement x. Let us displace the system N 
times in the steps of x so that Nx = a. By making use of (9.131) for each step of x we get the trans-

formation for finite displacement a as follows:

Translation by x : y x ya a1 1( ) ( )x i p xx= −



�
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Translation by 2x :

 

y x y x x ya a1 a2 1 1 1( ) ( ) ( )x i p x i p i p xx x x= −





= −





−



� � �

== −





1
2

i p xx

x ya�
( )

Translation by 3x :

 

y x y x x ya a a3 2

2

1 1 1( ) ( ) (x i p x i p i p xx x x= −





= −





−



� � �

))

( )= −





1
3

i p xx

x ya�

Proceeding in the same way, after repeating N displacements of each of x = ( )a N/ , we get

 y x y ya a a′ →∞ →∞
−= −





= −( ) =( ) lim ( ) lim ( )x i p x i a
N

p x e
N x

N

N x

N

1 1
� �

iiapx x/ ( )�ya

y ya a′
−=( ) ( )/x e xiapx �  (9.132)

It is an interesting exercise to get the same result using ket vector formalism. In terms of ket vectors, 
the Equation (9.131) is written as

 〈 ′〉 = 〈 〉 − − ∂
∂( )〈 〉x x i i
x

x| | |a a x a
�

�

 = 〈 〉 − 〈 〉x i x px| | |a x a
�

ˆ

 ∴ ′〉 = 〉 − 〉 = −



 〉 | | | |a a x a x ai p i pxx� �

1ˆ ˆ

We can achieve the translation through a finite value a by repeatedly translating the system by x. 

Translation by x : | |a x a1 1〉 = −



 〉i px�

ˆ

Translation by 2x : | |a x a12 1〉 = −



 〉i px�

ˆ

= −



 −



 〉1 1i p i px x

x x a
� �

ˆ ˆ |

 = −



 〉1

2

i px

x a
�

ˆ |
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Translation by 3x : | |a x a 23 1〉 = −



 〉i px�

ˆ

 = −



 −



 〉1 1

2

i p i px x

x x a
� �

ˆ ˆ |

 = −



 〉1

3

i px

x a
�

ˆ |

Proceedings in the same way, after N repeated translations, we get ( ).N ax =

 | | |′〉 = −



 〉 −( ) 〉

→∞ →∞
a x a aLt i p Lt i a

N
p

N
x

N

N
x

N

1 1
� �

= ˆˆ

 = e ia px− 〉ˆ / |� a  (9.133)

Now we can determine y aa ′ = 〈 ′〉( ) |x x . Making use of (9.71), we have

 〈 = 〈 − −( )( ) = 〈 −−x e x ia i d
dx

x iapiap
x

x| | exp / | exp( / )/� � � �ˆ

 y a a aa ′ = 〈 ′〉 = 〈 − 〉 = 〈 − 〉( ) | | exp( ) | | exp( ) |x x x iap x iapx x/ /� �

Though exp ( )−iapx /�  is a differential operator, it is not an abstract operator, and so it can be pulled 
out in the last term of the above equation.

 〈 − 〉 = − 〈 〉x iap iap xx x| exp( / ) | exp( / ) |� �a a

So we have

 y ya a′
−=( ) ( )/x e xia px �  (9.134)

This can be extended to three dimensional displacement a. Let us displace the system from r to r a+ .

 | | |T Ur r a r〉 = + 〉 = 〉  (9.135)

 | exp( . ) |′〉 = − 〉a aia p / �

 ∴ − = − ⋅y ya a( ) ( )r a r
a p

e
i
�  (9.136)

where p = − ∇i�

example 9.9 Show that e u x u xiapx− = −/ ( ) ( )� a .

solution: We have 
−

= − −( ) = −
iap ia

i d
dx

a d
dx

x

� �
�( )

 e a d
dx

a d
dx

a d
dx

a d
dx

iapx− = −( ) = + −( ) + −( ) + −( ) + ⋅⋅⋅⋅⋅� exp
! !

1 1
2

1
3

2 3
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e u x d
dx

a d
dx

a d
dx

u
iapx− = + −( ) + −( ) + −( ) + ⋅⋅⋅⋅⋅







� ( )

! !
1 1

2
1
3

2 3

a (( )

( ) ( )
!

( )
!

( )

( )

x

u x a d
dx

u x a d
dx

u x a d
dx

u x

u x a

= − + − + ⋅⋅⋅⋅

= −

2 2

2

3 3

32 3

example 9.10 A simple harmonic oscillator is centred around x = 0. It is then displaced by a = 11/a , 
where a w= [ ] /m /� 1 2. How are the ground state wave functions of these two harmonic oscillators 
related? Sketch their wave functions.

solution: For the harmonic oscillator centered around x = 0, the ground state wave function is 

 u x e e0 1 4
2

1 4
21 12 2 2( )

/
/

/
/= =− −

p p
a rx

For the harmonic oscillator at x = 11/a , the ground state wave function is

 ′ = =− −( ) −
−

u x e
x

0 1 4

11 2

1 4

11
21 12

2 2

( )
/ /

( )

p p
a

a
r

e  

The sketches of u x0 ( ) and ′u x0 ( ) are given in Fig. 9.4.

−3 −2 −1 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

u0(x) u0(x − 11)

fig. 9.4 Wave functions of harmonic oscillators centered around x = 0 and x = 11. (a = 1) 

9.16.1 momentum as Generator for space translation
In group theory, any symmetry operation can be represented by an unitary operator.

 U e X= is  (9.137)

where s is some parameter and X is a Hermitian operator. X is said to be the generator of this 
transformation.

Comparing the Equations (9.136) and (9.137), we can interpret the momentum operator p ( p)op or ˆ  
as the generator for space translation symmetry. 
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9.17 time translation symmetry
The translation in time is very much similar to the translation in space. In space translation, we shift 
the system or the apparatus from one place to another. In time translation, the experiments are per-
formed at different instants of time. Obviously, the environment should be the same at the instants t 
and t +t . This means that we are dealing with a system whose Hamiltonian does not change with time.

Our analysis of time translation symmetry is the same as the space translation symmetry.

Let ′ = +t t t
Time translation symmetry means

 y ya a′ ′ =( ) ( )t t

 ∴ ′ = ′ −′y y ta a( ) ( )t t

ya  and ya ′ are functions of ′t . Let us now relabel this variable as t, and so both ya ′ and ya  are func-
tions of time.

 ∴ = −′y y ta a( ) ( )t t  (9.138)

Proceeding in the same way as done in the case of space translation invariance, we get

 | ( ) | ( )/′ 〉 = 〉a att e ti H �  (9.139)

 y y t ya a
t

a′ = − =( ) ( ) ( )/t t e ti H �  (9.140)

The Hamiltonian Ĥ can now be interpreted as the generator of time translation symmetry.

9.18 rotational inVariance
Rotational invariance implies that the experimental outcomes of a system do not change when we change 
its orientation. We assume the external environment is the same in both the cases. For the sake of simplicity, 
let us consider the rotation about z axis. We have already seen (see Fig. 9.2(a)) that the point P of the system 
changes to ′P  on rotating the system. The coordinate vector of points P and ′P  is denoted by r and ′r

 

′
′
′















−




























x

y

z

x

y

z

=
cos

sin

q q
q q

sin

cos

0

0

0 0 1



 r r′ =P R Pz ( )q  (9.141)

It is understood that in Equation (9.141), r rp   and ′p  refer to the column vectors 

x

y

z













  and 

′
′
′















x

y

z

.

The behaviour of the wave functions under rotational symmetry operations is more complex than 
the corresponding changes under space-time translation. It is the spin angular momentum which 
makes the transformation property of the wave function of a system under rotation symmetry opera-
tion more complex.

We consider here two kinds of systems: Systems with spin 0 and system with spin 1.
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9.18.1 systems with spin Zero
Let |a 〉 be the initial state of the system and | ′〉a  be the state vector of the rotated system. Let ya ( )r  
and ya ′ ′( )r  be corresponding state vectors describing the system before and after rotation. Rotational 
invariance implies that the physical properties should be the same in both states. This can be achieved 
by demanding

 
y y
y y
a a

a a

′ ′ =
′ = ′′

−

( ) ( )

( ) ( )

r r

r rRz
1

 (9.142)

In the Equation (9.142) both, ya  and ya ′ are functions of ′r . We can relabel this variable by r in the 
Equation (9.142)

 ∴ =′
−y ya a( ) ( )r rRz

1  (9.143)

where Rz
− = + + − + +1r e e e( cos sin ) ( sin cos )x y x y zq q q q1 2 3

 ∴ = + +′y y q q q qa a( , , ) ( cos sin , sin cos , )x x zy z y x y−  (9.144)

For infinitesimal values of dq  (cos ,sin )dq dq dq∼ ∼1  the Equation (9.144) becomes

y y dq dqa a′ = + − +( , , ) ( , , )x y z x x y zy

 

= +
∂
∂

−
∂
∂

= − −
∂
∂







y dq
y

dq
y

y dq y

a
a a

a
a

( , , )

( , , )

x

x

y z y
x

x
y

x y z i i
y�

� −− −
∂
∂

















= − −

=

y i
x

i xp yp

x y z

y x

�

�

y

y dq y

y

a

a

a

a ( , , ) [ ]

( , ,

x y z

)) ( , , )

( , , )

−

= −( )
i L x y z

i L x y z

z

z

dq y

dq y

a

a

�

�
1

We have obtained the transformation for rotation through an infinitesimal angle dq  about z axis. For 
the rotation through a finite angle q , following the same procedure as done in the case of translational 
invariance, we get

 y y ya
q

aa′
− −= =( ) ( ) ( )/r rR ez

i L1r z �  (9.145)

In terms of ket vectors, we have

 〉 = 〉ˆ| |zR Ur r
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Multiplying both sides by ˆ †U  we get ˆ | |†U Rzr r〉 = 〉

Or ˆ | |†U Rzr r〉 = 〉−1

 −∴〈 = 〈 1ˆ| |zU Rr r  (9.146)

 −∴〈 〉 = 〈 〉1ˆ| | |zU Rr ra a  (9.147)

Let us recall that 
′〉 = 〉 = 〈 〉 = 〈 〉′ ′ˆ| | ,    ( ) | ,    and  ( ) |U r r r ra aa a y a y a

 y y ya a a′
−= =( ) ( ) ( )r r rR Uz

1  (9.148)

By comparing the Equations (9.148) with (9.145), U is given by ˆ ˆ /U e i Lz= − q � . Note this is a differential 
operator since Lz  itself is a differential operator. The corresponding abstract operator is

 ˆ ˆ /U e i Lz= − q �  (9.149)

This can be extended to rotation about an arbitrary axis n by an angle q .
It is given by

 −〉 = 〉 = 〉ˆ. /ˆ| | |�iR U e n Lr r rq  (9.150)

 y y q ya a
q

a′ = =− −( ) ( ( ) ) ( ). /r LR en
i1 r rn �

Obviously, the orbital angular momentum operator L
op

 is the generator for the rotational symmetry 
transformation for spin zero particle.

9.18.2 rotational invariance and systems with spin
For non-zero spin angular momentum, the state vector has many components. For instance, a Dirac 
spinor describing spin 1/2 particles has four components. The spin 1 particle has three components. In 
general, the transformation of a multicomponent object is 

 y ya a′ ′ = ∑i p ij j p
j

R( ) ( )r r  (9.151)

where R
ij 
depends on the spin of the particle

The simplest case is ‘vector’ particle (for which the spin is 1), for which the matrix R
ij
 is given by

 Rij =
−













cos sin

sin cos

q q
q q

0

0

0 0 1

 (9.152)
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The wave function of this particle ya  is given by

 y
y
y
y

a

a

a

a

( )

( )

( )

( )

r

r

r

r

=
















1

2

3

 (9.153)

We find that proceeding in the same way as in the earlier sections, under rotational symmetry opera-
tions, the transformation for ya ( )r  is given by

 y ya ′ = −∑i ij aj z( ) ( )r rR R
j

1  (9.154)

For rotation by an infinitesimal angle dq ,

y
y
y

dq
dq

a

aÄ

aÄ

1

2

3

1 0

1 0

0 0 1

( , , )

( , , )

( , , )

x y z

x y z

x y z

















=





−




























−

−

−

y
y
y

a

a

a

1
1

2
1

3
1

( )

( )

( )

R

R

R

z

z

z

r

r

r

 =
















−
−































1 0 0

0 1 0

0 0 1

0 0

0 0

0 0 0

i
i

idq
ya

�
�

11
1

2
1

3
1

( )

( )

( )

R

R

R

z

z

z

−

−

−

















r

r

r

y
y
a

a

 = −





−



∑1 1

1

2

3

i i L

x y z

x y z

y
z z

dq dq
y
y
y

a

a

a

�
�

�

( , , )

( , , )

( , ,x zz)

















where Σ z  is given by

 =
−















∑ z

i

i

0 0

0 0

0 0 0

Spin angular momentum operator for spin 1 particle is given by Sz = �Σ z.

 

y
y
y

dq dq
ya

a

a

a′

′

′

















= −( ) −( )1

2

3

1

1 1

( )

( )

( )

( )r

r

r

r
i S i Lz z� �

yy
y
a

a

2

3

( )

( )

r

r

















 = − +





















1
1

2

3

i S Lz z
dq

y
y
y

a

a

a

�
( )

( )

( )

( )

r

r

r

 (9.155)
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Or simply,

 y dq ya a′ = − +





( ) ( ) ( )r r1 i L S
� z z  (9.156)

For finite angle q, this equation becomes

 y ya
q

a′
− +=( ) ( )( )/r re i L Szz �  (9.157)

This can be extended to the rotation about x axis and y axis. Let us define S
x
, S

y
 and S

z 
as 

S S Sx y y zx z= = =� � �Σ Σ Σ, and  .

 S i

i
xx = = −

















∑� �
0 0 0

0 0

0 0

 (9.158)

 S

i

i
y y

= =
−

















∑� �
0 0

0 0 0

0 0

 (9.159)

 S

i

iz z
= =

−















∑� �
0 0

0 0

0 0 0

 (9.160)

It is easy to check whether S
x
, S

y
 and S

z
 obey angular momentum algebra.

 [ , ] , [ , ] , ,S i S S S i S S S i Sx z y z xSy z x y= = =� � �   and [ ]  (9.161)

Furthermore, the eigenvalue of S 2 is 2�2 and the eigenvalues of S
z
 are +1, 0, -1. Therefore S

x
, S

y
 and 

S
z
 are interpreted as angular momentum operators. In the next chapter, we can see that S

x
, S

y
 and S

z
 are 

identified as spin angular momentum. There is no classical analogue to the spin angular momentum, 
and it is an intrinsic property of a particle in quantum mechanics in the sense that it is a property like 
charge or mass which cannot be taken away from the particle.

So the Equation (9.157) describes the effect of rotation about Z axis on the state vector of the sys-
tem.The rotation of the system about an arbitrary vector n by an angle q  is given by

 

y
y
y

y
y
y

a

a

a

q
a

a

a

′

′

′

− +

















=
1

2

3

1

2

( )

( )

( )

( )

( )
( )

r

r

r

r

r
n. SLe i

�

33 ( )r

















 y ya a

q

′ = − +
( ) ( )

( )
r r

n. L S
e

i
�

 = e i− q
ayn.J/ r� ( ) (9.162)

where J is the total angular momentum. Note that the total angular momentum operator J is the gen-
erator for rotational symmetry transformation for a particle with non-zero spin.
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example 9.11 Show that S
x
, S

y
 and S

z 
given in (9.158)-(9.162) satisfy the angular momentum algebra.

solution: Let as evaluate [S
x
, S

y
].

 [ , ]S S i

i

i

i

i

i
z x = −

































−�2

0 0 0

0 0

0 0

0 0

0 0 0

0 0

0 0

0 0 0

0 00

0 0 0

0 0

0 0

















−
































i

i

 =
−

−
















= =∑i

i

i i i Szz
�� �� �

0 0

0 0

0 0 0

.

The commutation relation [S
y
, S

z
] and [S

z
, S

x
] can be checked in the same way.

example 9.12 Show that S S S Ix y z
2 22 2 2= + + =S

solution:

 S i

i

i

i
x x
2 2 2

2

0 0 0

0 0

0 0

0 0 0

0 0

0 0

= = −
















−
















∑� �

 =
















�2

0 0 0

0 1 0

0 0 1

Similarly, we can find 

 S y
2 2

1 0 0

0 0 0

0 0 1

=
















�  and Sz
2 2

1 0 0

0 1 0

0 0 0

=
















�

 

∴ =
= +

∴ =

S I

S s s

s

2 2

2 2

2

1

1

�
�c c( )

example 9.13 Evaluate e S ei S i Sy y
x

− q q/ /� �

solution: Let us use the following formula to evaluate this expression:

 e Ye Y X Y X X Y X X X YX Xa a a a a− = + + + +[ , ]
!

[ ,[ , ]]
!

[ ,[ ,[ , ]]]
2 3

2 3
…

 

e S e S i S S i S S S

S S

i i

x y x y y x

y

Y Y

x

− = + −( ) + −( ) +
q q q qS S

� �
� �

…[ , ] [ ,[ , ]

[ ,

2

xx Z y z x

x Z y z

i S S i S S

S S i S S i S

] [ , ]

[ , ] [ , ]

= − − =

= − − =

� � �

� � � �

; 

; 

2

2 3 3 4
y SSx …
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Making use of these results we get

 

e S e S S S S S

S

i
x

i
x z x x

x

Y Y
z

− = − − + + +

= − +

q q q q q q

q q

S S/ /

! ! !

!

� � …
2 3 4

2

2 3 4

1
2

44 3

4 3! !

cos sin

+( ) − − +( )
= −

… …S

S S

z

x z

q q

q q

In the same way, we can evaluate

 e S e S S
i

z z x

Y Y− = +
q q

q q
S i S

� � cos sin

i.e., the operators S
x
, S

y
, and S

z
, themselves transform like a vector.

 
e

S

S

S

ei S

x

y
Y Y

z

−

















=
−







q q

q q

q q

/ /

cos sin

sin cos

� �i S

0

0 1 0

























∴ =−

S

S

S

e e R

x

y

z

i S
op

i S
y

y y
op

q q q/ / ( )� �S S 

9.19 Parity inVariance – sPace inVersion
Space inversion corresponds to inversion of the system about the origin. Space inversion is also known 
as parity transformation. Parity is one of the important concepts in quantum mechanics. For a long 
time, it was believed that parity is also conserved like conservation of linear and angular momentum. 
Conservation of linear and angular momentum emerges as a consequence of space-time symmetries. 
Parity or space inversion is also a space-time symmetry. So it is reasonable to expect conservation of 
parity also. Now, we know that parity is conserved in strong and electromagnetic interactions, but it is 
not conserved in weak interactions.

The concept of parity is non-trivial in quantum mechanics. In the case of angular momentum, we 
have two kinds: orbital and spin angular momentum. There is a classical analogue to orbital angular 
momentum, but there is no classical analogue to spin angular momentum. In the same way, in the 
case of parity also, there are two kinds of parities: spatial and intrinsic parities. The spatial parity 
has a classical analogue, but the intrinsic parity is unique to quantum mechanics. Before going into 
these aspects, let us first study the transformation relating a system and the corresponding inverted  
system.

Under space inversion, the point P becomes ′P . The position vectors P and ′P  are 

 
r r e e e

r r e e e e e e

p

p

x y z

x y z x y z

= = + +

= ′ = ′ + ′ + ′ = − − −
1 2 3

1 2 1 2 33Ä
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�������

−′     
     ∴ = −′     
     −′     

1 0 0

0 1 0

0 0 1

x x

y y

z z

 (9.163)

 =′r r and = ′r r  (9.164)

where  is the inversion matrix.
If we go by earlier experience in the consideration of space-time translation symmetry or rotation 

symmetry, we will write the transformation equation as follows:

 ˆ ˆ| | | |U U〉 = 〉 〉 = 〉′r r a a  

 y y ya a a′ = − =( ) ( ) ( )r r rU .

However, it turns out that these transformations are not sufficient to account for all phenomena involv-
ing elementary particles. So these transformations have to be modified by introducing a new factor hi.

 y hya a′ = −( ) ( )r ri  (9.165)

But  y ya a′ =( ) ( )r rU  (9.166)

 ∴ = −U iy hya a( ) ( )r r  (9.167)

hi is called intrinsic parity quantum number. The possible values of hi can be determined easily.
Let us invert the system twice. Then we have 

 
P Pinversion i version

inversion invers

n → ′  →
 → ′ = −

P

r r r iion → − ′ =r r
 (9.168)

The corresponding operations on the state vector will be as follows: 

Under the first inversion (from 9.165), y hya a( ) ( ).r r→ −i

Under the second inversion, we should get the wave function ya ( )r .

i e., hy hhy ya a ai i i( ) ( ) ( )− → =r r r

 
y hy h hy ya a a a( ) ( ) ( ( )) ( )r r r rinversion inversion → −  → =i i i

∴∴ = ∴ = ±h hi i
2 1 1.

 (9.169)

9.19.1 intrinsic Parity
It is to be noted that the structure of the Equation (9.167) has nothing to do with odd or even func-
tion of r. It relates two different states of a system. ya ( )r  and ya ′ ( )r  represent two different states. 
If ya ( )r  represents the state of the system, ya ′ ( )r  represents the state of the inverted system. If the 
wave function ya ( )r  is either odd or even, y ya a( ) ( )− =r r± . This equation is different from (9.169).
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As we noted earlier, there are two kinds of parity quantum number: intrinsic and spatial parity quan-
tum numbers. Different particles have different intrinsic parity quantum number. The value intrinsic 
quantum number (h

i
 is 1 or -1) is assigned for each particle in a way consistent with experimental 

observation. h
i 
for some particles are listed.

Particles hi

e − − −, , ; , ,m t nm tm me
1

e e
+ + +, , , , ,m t m tm m m -1

quarks :  u, d, s, c, b, t 1

anti quarks : , , , , ,u d s c b t -1

p n, 1

p n, -1

p p p+ − + −, , , , , ,0 0 0K K K K -1

g , W +, W -, Z, gluons -1

In addition to intrinsic parity, we have spatial parity as given below:

 y hy
h
ha a( ) ( )− =

=
= −





r rs

s

s

1

1

  even function 

    odd function
 (9.170)

 ∴ − =′y hhya a( ) ( )r ri s  (9.171)

For instance, consider the hydrogen atom. The parity of the system is 

 Π = −−h hie i
l

p ( )1  (9.172)

where h
ie- and h

ip
 are the intrinsic parities of the electron and proton, and l is the orbital angular 

momentum of the particle.

example 9.14 Assuming U I iy hya a( ) ( )r r= −  when U
I
 is the parity operator, show that U UI I

†r r.= −

solution: We know that r r r ropy ya a( ) ( )=

Multiplying the above equation by U I , we get

 

U U U U

U

I op I I I

I o

i i

r r r r

r

r r r

†

( ) ( )

( ) ( ( ))y ya

hy

a

h ya a− − −

=� �� �� � �� ��

pp I i i

I op I op

U

U U

†

†

( ) ( )hy h ya a− = − −

∴ = −

r r r

r r
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example 9.15 Show that U UI opopp pI
+ = − .

solution: We know that pop iy ya a( ) ( ).r r= − ∇�

Multiplying this equation by U I , we get

 

U U i UI op I I

ii i

p I U†

( ) ( )

( ) ( ( ))y ya

hy

a

h ya a

r r
r r− ∇ −

= − ∇� �� �� �� ��� �
�

���

U UI op I i i opp p† ( ) ( ) ( )hy h ya a− = − −r r

 ∴ = −U UI op opIp p†

9.19.2 conservation of Parity
Leaving aside gravitation, the basic interactions among the elementary particles are strong, electro-
magnetic and weak interactions. In the process or reactions governed by strong and electromagnetic 
interactions, parity is found to be conserved. i.e., initial parity and final parity will be the same. In 
weak interactions also, it was believed that parity is conserved. However, when q t−  puzzle was 
resolved, violation of parity in weak interaction was admitted. In fact, the famous experiment by Wu 
et al.in 1957 using the radioactive decay of Co-60 confirmed the violation of parity in weak interac-
tion. The reader can consult a good book on nuclear physics for parity violation. The q t−  puzzle is 
presented here to illustrate the application of the concept of intrinsic parity.

p – s  Puzzle
In elementary particle physics, in the 1950s, new particles were continuously being discovered. There 
were many misunderstandings which got clarified later. One such puzzle is q – t puzzle. Once, it was 
thought q and t  were two different positively charged spin zero particles. Now, we know that they are 
the same particle K+. It is the identification of q + and t + as K+ is the resolution of the q – t puzzle. To 
understand the q – t  puzzle, let us pretend that we do not know much about the q  + and t + particles.

The parity of q  + and t  + was to be determined from their decay products. It is found that 

  t  +→p + + p + + p - 

  q  +→p  0 + p +

p + and p 0 and p − are spin zero particles. Their intrinsic parity quantum number is -1. Assuming that 
the conservation of parity is valid in weak interaction (decay process), the intrinsic parity of t + is 
determined to be –1 and the intrinsic parity of q  + is determined to be +1.

i.e., h
i
 (t  +) = -1

  h
i
(q  +) = 1

What is the q  - t puzzle? The puzzle is that apart from the intrinsic parity h
i
 for all other parameters 

like charge, mass, spin and so on, q  + and t  + were identical suggesting q  + are t  + are the same particle. 
The only difference is the intrinsic parity quantum number. In fact, the resolution of this puzzle lies 
in the fact recognizing q  + and t +as the same particle. (Now it is identified as K+.). It has to be real-
ized that the determination of intrinsic parity of q  + and t  + was based on the conservation of parity. 
Hence, this puzzle suggests the violation of the conservation of parity. If one accepts the violation of 
the conservation of parity in weak interaction, the determination of intrinsic parity through different 
decay modes is not acceptable. The intrinsic parity of K+ is now found to be -1.
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example 9.16 The t  + and q  + particles decay as given below:

 
t p p p
q p p

+ + + −

+ +

→ + +
→ + 0

Assuming the conservation of parity, determine the intrinsic parity of t + and q  +.

solution: Let h p h p h p h t h qi i i i i( ), ( ) ( ), ( ), ( )+ + +−  and 0  be the intrinsic parties of p p p t+ − +, , ,0  and  

q  +, respectively. We know that 

 h p h p h pi i i( ) ( ) ( )+ −= = = −0 1

Let L
12

 be the relative orbital angular momentum of p +  and p 0 in the q + decay.

\ Parity of the decay products in q h p h p+ += −i i
L( ) ( )( )0 1 12

From the conservation of the angular momentum, we get L
12

 should be equal to the spin angular 
momentum of q  + which is zero.

∴ =L12 0

 ∴ = − = − − − =+ +h q h p h pi i i
L( ) ( ) ( )( ) ( )( )( )0 01 1 1 1 112 .

Next, let us consider t  + decay. Let l
12

 be the orbital angular momentum due to the relative motion 
between p + and p +. l

3
 is the angular momentum of p −  due to its motion relative to p −  and p +.

 

∴ = ⋅ ⋅ − ⋅ −
= − ⋅ − −

+ + + −h t h p h p h pi i i
l

i
l( ) [ ( ) ( ) ( ) ] [ ( )( ) ]

( ) ( )(

1 1

1 1

12 3

11 1 1

1 1

12 3

12 3

) ( )( )

( )( )

l l

l l

− −
= − − +

From the conservation of angular momentum, we know l
12

 + l
3
 should be equal to the angular momen-

tum of t  + which is zero.

i.e., l
12

 + l
3
 = 0

 ∴ = −+h ti ( ) 1

9.20 time reVersal
Time reversal is similar to space inversion. In space inversion, the system is inverted about the origin; 
i.e., the point P of the system goes to ′P  where r r′ = −P P. In the time reversal, t goes to ′ = −t t. We pro-
ceed in the same way as done in the case of space reversal or rotational transformation. In all the previ-
ous cases, our task is to determine the unitary transformation relating the states of the original system 
and the transformed system. In the same way, we would like to write the transformation equations as

 ˆ| ( ) ( )t t〉 = − 〉′ T |a a  (9.173)

Or y ya a′ = −( , ) ( , )r rt T t  (9.174)
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Can we get such transformation operator T ? Even if we get such operator, will it be unitary operator? 
To answer these questions, let us start with time reversal transformation in classical mechanics.

In classical physics, the position vector r, the momentum rector p = m d dtr  and the angular 
momentum L transform as follows:

 

r r

L L

→
→ −
→ −

p p

This can be seen as follows:

 r r( ) ( )t t→ −

 
p p r r

p

L L r p r p L

( )
( )

( )

( ) ( ) ( )

t d
dt

d t
dt

t

t t t

→ ′ = ′
′

= − − = − −

→ ′ = × = − − × − = − (( )−t

So we expect to retain this correspondence in quantum mechanics also.

 ∴ → ′ = −r r rop op opT T 1

 
p p p pop op op op

op op op op

T T

T T

→ ′ = = −

→ ′ = = −

−

−

1

1L L L L

Let us check whether these transformation equations are consistent with each other. Consider a com-
mutation relation [ , ] .x p ix = �

 xp p x ix x− = �

Introduce T on the left and T −1 on the right.

 

Txp T Tp xT Ti T

TxT Tp T Tp T TxT Ti T

x p

x x

x x

− − −

− − − − −

− =
− =

′ − ′

1 1 1

1 1 1 1 1

�

�

( xx xp x Ti T

i Ti T

) ( )( )− − ′ + ′ =
− =

−

−

�

� �

1

1

Obviously, a unitary operator cannot achieve this result. In fact, the structure of the equation is

 TcT c− = ∗1  (9.175)

where c is a constant. This, in turn, suggests that T should be an anti-linear operator. 

9.20.1 anti-linear operator
Let us recall that a linear operator T satisfies the conditions

 T C C C T C T( )1 2 1 2y y y ya b a b+ = +
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An operator T is said to be anti-linear if it satisfies the condition

 T C C C T C T( )1 2 1 2y y y ya b a b+ = ∗ + ∗  (9.176)

This implies TC C T= ∗  (9.177)

This suggests that we can write T as

 T = UK = KU (9.178)

where U is an unitary operator and K is an operator which complex-conjugates the wave function on 
which it operates.

i.e., Ky ya a= ∗  (9.179)

 ∴ = − = ∗ −′y y ya a a( , ) ( , ) ( , )r r rt T t U t  (9.180)

example 9.17 Show that the norm of a state vector is invariant under time reversal transformation.

solution:

 

            

            

y y y
y y y y

a a a

a a a a

′

′ ′

= =
∴ =

T UK

UK UK( , ) ( , )

      

                 

= =

= =

( , ) ( , )

( *, *) (

K U UK K Ky y y y

y y
a a a a

a a yy ya a, ) *

Since ( , )y ya a  is a real number,

 ( , ) ( , )y y y ya a a a′ ′ =

Note the scalar product between ya  and y b  is, in general, a complex number. Let ya ′ and y b ′ be  
given by

y y y ya a b b′ ′= =T T, , 

 

( , ) ( , )

( , ) ( , )

( , ) (

y y y y

y y y y

y y y

a b a b

a b a b

a b

′ ′ =

= =

= ∗ ∗ =

UK UK

K U U K K K

aa b b ay y y, ) ( , ).∗ =

†

9.20.2 condition for x` ′ (t) to satisfy schrödinger equation

 y y ya a a′ = − = ′( , ) ( , ) ( , )r r rt T t T t

Note T is an anti-linear operator that operates on the state vectors which are the elements of Hilbert 
space. T should be independent of time.

 T
t t

T∂
∂

= ∂
∂
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Since T is an anti-linear operator, TC C T= ∗ .  With their background information let us determine 

i� ∂
∂ ′t
ya

 
i

t
t i

t
T t

i T
t

t

� �

�

∂
∂

= ∂
∂

−

= ∂
∂

−

′y y

y

a a

a

( , ) ( , )

( , )

r r

r

  

= − ∂
∂

−( ) = ∂
∂ ′

′( )
= ′ = −

T i
t

t T i
t

t

TH t THT T

� �y y

y y

a a

a a

( , ) ( , )

( , ) (

r r

r r1 ,, )

( , )

( , )

′

= −

t

THT t

tyaÄ

y aÄ

r

r

� �� ��

1

∴ ′ya ( , )r t  satisfies the Schrödinger equation provided THT-1 = H. (9.181)

i.e., ya ′ ( , )r t  satisfies the Schrödinger equation if the Hamiltonian is invariant under time reversal 
transformation.

example 9.18 The plane wave function ya ( , ) ( )/r t Nei Et= ⋅ −p r � is a solution to the free-particle 
Schrodinger equation. Determine the corresponding solution ya ′ ( , )r t  under time reversal symmetry.

solution: Under time reversal symmetry, both ya ( , )r t  and y ya a′ = −( , ) ( , )r rt T t  satisfy the free-
particle Schrodinger equation

 i
t

t
m

t� �∂
∂

= − ∇y y( , ) ( , )r r
2

2

2

ya ( , ) ( )/r p r− = ⋅ +t Nei Et � is not obviously a solution to the free-particle Schrodinger equation. However, 

ya∗ − = − ⋅ +( , ) ( )/r p rt Ne i Et � is a solution to the above equation. Therefore,

 ya ′
− ⋅ + − ⋅ −= =( , ) ( )/ (( ) ) /r p r p rt Ne Nei Et i Et� �

ya ( , )r t  describes the state of the particle with momentum p. ya ′ ( , )r t  describes the state of the time 
reversed particle which now has a momentum −p.Time reversal invariance of the Schrodinger equa-
tion implies that if it allows ya ( , )r t  as a possible physical state, then a physical state corresponding 
to ya ′ ( , )r t  should also exist. 

9.20.3 t for spinless Particle
For spinless particle, the time-independent Hamiltonian H is

 H
p
m

V= +
2

2
( )r
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 THT T
p
m

T TV T− − −= +1
2

1 1

2
( )r

 
= +

= − ⋅ − + = + =

− − −1
2

1
2 2

1 1 1

2

m
T T T T TV T

m
V

p
m

V H

p p r

p p r

( )

( ) ( ) ( ) ( )r

\ The Hamiltonian H m V= − ∇ +�2 22/ ( )r  is invariant under time reversal transformation.
This implies that both ya ( , )r t  and ya ′ ( , )r t  satisfy the Schrödinger equation.

 i
t

t
m

V t� �∂
∂

= − ∇ +





y ya a( , ) ( ) ( , )r r r
2

2

2
 (9.182)

 i
t

t
m

V t� �∂
∂

= − ∇ +



′ ′y ya a( , ) ( ) ( , )r r r

2
2

2
 (9.183)

Change the variable t to –t in the Equation (9.182).

 − ∂
∂

− = − ∇ +





−i
t

t
m

V t� �y ya a( , ) ( ) ( , )r r r
2

2

2

Take the complex conjugate of this equation.

 ∴ ∂
∂

∗ − = − ∇ +





∗ −i
t

t
m

V t� �y ya a( , ) ( ) ( , )r r r
2

2

2
 (9.184)

Comparing the Equations (9.183) and (9.184), it is obvious that

 y ya a′ = ∗ −( , ) ( , )r rt t  (9.185)

 = − = −T t UK ty ya a( , ) ( , )r r  (9.186)

provided U = 1.
\For spinless particle T = 1⋅K = K

9.20.4 Particles with spin 1/2
For spineless particles, we evaluated T to be K. For particles with non-zero spin, T is not so simple. Let 
us evaluate T for spin 1 2/  particle. With respect to time reversal, the states and the operators transform as

 y ya a′ = −( , ) ( , )r rt T t  (9.187)

 TFT F− = ′1  (9.188)

For spin angular momentum, we have

 T TS S− = −1  (9.189)
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In the next chapter, we will see that for spin 1 2/ , the spin angular momentum operators S
x
, S

y
 and S

z
 

are given by

 S S
i

i
Sx y z=







=
−





=
−







� � �
2

0 1

1 0 2

0

0 2

1 0

0 1
,   and 

Consider the equation

 Sc c= ′

Taking complex conjugate, we get

 S∗ ∗ = ′∗c c

This equation can be obtained using K as follows:

 
KS K

KSK K K
S

c c
c c
c c

= ′
= ′−

′

1

* **

��� � �

Since K c c= ∗ and K ′ = ′∗c c , we get

 K KS S− =1 *  (9.190)

Let us rewrite the Equation (9.189) as

 
1 1 1

1 † 1 † 1 †

,  ,  

;  ;  

x x y y zz

x x y y z z

TS T S TS T S TS T S

UKS K U S UKS K U S UKS K U S

− − −

− − −

= − = − = −

= − = − = −

Making use of (9.189), we get

 US U Sx x
† = −  US U Sy y

† =  US U Sz z
† = −  (9.191)

These equations suggest U as the operator rotating S
x
 and S

z
 into –S

x
 and –S

z
, respectively while leav-

ing S
y
 unrotated. Therefore, we can take U as rotation about y axis by an angle p. In fact, we can check 

that U e i Sy= − p /� achieve these equations (see Example 13).

Therefore, for spin 1 2/  particles, T is given by

 T e K
i Sy

= −
p
�  (9.192)

eXercises
 1. Explain what is meant by Dirac’s ket vector and bra vector.
 2. How do you describe the state of the system in terms of Dirac’s ket vector?

 3. Can we write | /0 2 2 2〉 = −e xa  for harmonic oscillator?
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 4. Why do you call Dirac’s ket vector as abstract ket vector?
 5. How will you define the adjoint of an abstract operator Â ?
 6. What is Hermitian conjugate of |y 〉?
 7. Given a bra vector |y 〉 and a bra vector | ,f 〉  define (i) scalar product (ii) outer product
 8. Explain what is meant by decomposition of identity operator.
 9. What is meant by coordinate representation?
 10. In ˆ | | .p x i d dx x〉 = 〉� , can we write p̂ i d dx= � ?
 11. Show that the momentum operator in the coordinate representation is −i d dx� .
 12. What is the significance of unitary operators in quantum mechanics?
 13. Under unitary transformation, |a 〉 and | b 〉 become ˆ |U a 〉 and ˆ |U b 〉. If ˆ | | ,F a b〉 = 〉  show that 

F̂  becomes ˆ ˆ ˆ †UFU .
 14. Show that the matrix element 〈 〉f y| |F  is invariant under unitary transformation of the state 

vectors and the operators.
 15. Show that the norm of a state vector is invariant under unitary transformation.
 16. Show that the invariance of the Hamiltonian under unitary transformation leads to a conservation 

of a physical quantity.
 17. Define unitary transformation relating the states under parity transformation.
 18. Distinguish between intrinsic and spatial parity of a particle.
 19. Explain what is meant by q t−  puzzle. How is this puzzle resolved?
 20. What is meant by anti-linear operator?
 21. Why do we need time reversal symmetry operator to be anti-linear?
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Angular Momentum and 
Rotation Symmetry

In Chapter 7, we studied the orbital angular momentum L r p= ×  by considering its differential opera-
tors in coordinate representation. Here, we discuss one more kind of angular momentum called spin 
angular momentum, which does not emerge from r p× . It arises from the study of angular momentum, 
using the abstract operator formalism. However, there is another motivation to discuss angular momen-
tum operators in terms of abstract operators, which come from the consideration of rotational symmetry.

We have already seen that under rotational symmetry

 
−

→

〉 → 〉 = 〉i �/ˆ| | |i

R

U e J

r r

a a ap

where ˆ ˆ ˆ ˆJ J J Jx y z= + +x y z . The angular momentum operators ˆ , ˆ ˆJ J Jx y zand  obey angular momentum 
algebra

 = = =� � �ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] , [ , ] , [ , ]x y z y z x z x yJ J i J J J i J J J i J  (10.1)

In Chapter 7, this algebra was proved for orbital angular momentum operators. In this chapter, we 

take these commutation relations as the defi nition of angular momentum algebra. The operators 
ˆ , ˆ , ˆJ J Jx y zand  and hence Û  are abstract operators. We can have many representations depending on 

the choice of the basis vectors. The coordinate representation of these abstract operators becomes the 
differential operators for angular momentum operators L L Lx y z, and  given in Chapter 7. The coordi-
nate representation 		〈 〉r | ˆ |U a  is given by

 −〈 〉 = i
�ˆ| | ( )op
i

U e
L

r ray
p`

where L r p rop op op= × = − × ∇i�

In this chapter, we are interested in studying the consequences of the angular momentum algebra of 
the abstract operators ˆ , ˆ , ˆJ J Jx y zand  and this analysis is more general and brings a new and rich phys-
ics, which could not be obtained in coordinate representation. The set of Equations (10.1) is known 
as the angular momentum algebra. This algebra plus the fact that they are Hermitian operators are 
suffi cient to get a lot of results. A better representation for the angular momentum happens to be the 
matrix representation compared to the coordinate representation.

10
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10.1 EIGENVALUES OF Ĵ2 AND Ĵz

The first thing to be noted is that the three operators ˆ , ˆ ˆJ J Jx y zand  do not commute among themselves. 
There exists another operator ˆ ˆ ˆ ˆJ J J Jx y z

2 2 2 2= + +  which commutes with all the three operators.

 = = =2 2 2ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 0 [ , ] 0 [ , ] 0x y zJ J J J J J  (10.2)

Among the four operators ˆ , ˆ , ˆ ˆJ J J Jx y z
2 and , we have to select two operators which commute among 

themselves. The standard choice is Ĵ 2  and ˆ .J z  Since Ĵ 2  and Ĵ z  commute, they have common eigen-
states. So we have to determine the eigenvalues and eigenvectors of Ĵ 2  and Ĵ z .

Since � has the dimension of angular momentum, we write the eigenvalue equation of Ĵ 2  and Ĵ z  as

 ˆ | |J m m2 2l l l〉 = 〉�  (10.3)

 ˆ | |J m m mz l l〉 〉= �  (10.4)

At present, we do not know the possible values of l and m. To evaluate l and m, let us do some alge-
braic manipulations among the angular momentum operators. Let us define Ĵ+ and Ĵ − as

 ˆ ˆ ˆ ˆ ˆ ˆJ J iJ J J iJx y x y+ −= + = −  (10.5)

Let us evaluate the following commutation relations:

 
+ += + = �ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ]z z x yJ J J J iJ J  (10.6)

 
− −= − = −�ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ]z z x yJ J J J iJ J  (10.7)

 
ˆ ˆ ( ˆ ˆ )( ˆ ˆ )

ˆ ˆ ( ˆ ˆ ˆ ˆ )

J J J iJ J iJ

J J i J J J J

x y x y

x y x y y x

+ − = + −

= + − −2 2

 = + + = − +ˆ ˆ ˆ ˆ ˆ ˆJ J J J J Jx y z z z
2 2 2 2� �  

(10.8)

 
ˆ ˆ ( ˆ ˆ )( ˆ ˆ )

ˆ ˆ ( ˆ ˆ ˆ ˆ )

J J J iJ J iJ

J J i J J J J

x y x y

x y x y y x

− + = − +

= + + −2 2

 = + − = − −ˆ ˆ ˆ ˆ ˆ ˆJ J J J J Jx y z z z
2 2 2 2� �  

(10.9)

With these results, let us now determine the eigenvalues l and m.
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m2 Ä k
Let us consider 2ˆ| |m J m〈 〉l l  and 〈 〉l lm J mx| |2

 
〈 〉 = 〈 〉

= 〈 〉 =
�

� �

2 2

2 2

ˆ| | | |

|

m J m m m

m m

l l l l l
l l l l

where 

〈 〉

〈 〉 = 〈 〉

= 〈 〉 ≥

〉 = 〉

����� �����
2

| |

ˆ ˆ ˆ| | | |

| 0

ˆ| |

x x x

x

m J m m J J m

J m

f f

l l l l

f f

f l

Since 〈 〉 ≥f f| 0, let us say 2 2 2ˆ| |xm J m a〈 〉 = �l l

Similarly, we can write  〈 〉 = �2 2 2ˆ| |ym J m bl l

 〈 〉 = 〈 〉 = 〈 〉 =� �2 2 2 2 2ˆ ˆ ˆ| | | | |z z zm J m m J J m m m m ml l l l l l

 
∴〈 + + 〉 = 〈 〉

+ + =� � � �

2 2 2 2

2 2 2 2 2 2 2

ˆ ˆ ˆ ˆ| | | |x y zm J J J m m J m

a b m

l l l l

l

Since a b2 2+  is a positive quantity, we have

 m2 ≤ l (10.10)

Therefore, for a given value of l, the set of allowed m values is bounded.
Let m′ and m″ be the maximum and minimum values of m.

 m″ ≤ m ≤ m′ (10.11)

Ĵ m+ { Õk

Consider ˆ ˆ |J J mz + 〉l

Since ˆ ˆ ˆ ˆ ˆ ,J J J J Jz z+ + +− = � we have

 
ˆ ˆ ˆ ˆ ˆ

ˆ ˆ | ( ˆ ˆ ˆ ) | ( ) ˆ

J J J J J

J J m J J J m m

z z

z z

+ + +

+ + +

= +

∴ 〉 = + 〉 = +

�

� �   l l 1 JJ m+ 〉|l

So we have

 

ˆ | |

ˆ ˆ | ( ) ˆ |

J m m m

J J m m J m

z

z

l l

l l

〉 = 〉

〉 = + 〉






+ +

�

��� �� � � �� ��1  (10.12)
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The Equation (10.12) suggests that while |lm〉 is an eigenket of Ĵ z  with eigenvalue m� ,  the ket 
ˆ |J m+ l 〉 is an eigenket of Ĵ z  with an eigenvalue ( ) .m +1 �  Thus Ĵ+ acting on the eigenket |lm〉 pro-
duces an eigenket, for which the eigenvalue of Ĵ z  increases by 1. Therefore, Ĵ+ is called a raising 
operator. Let us consider the following equations:

 ˆ | ( ) |J m m mz l l+ 〉 = + + 〉1 1 1�  (10.13)

 ˆ ˆ | ( ) ˆ |J J m m J mz + +〉 = + 〉l l1 �  (10.14)

By comparing the Equations (10.13) and (10.14), we conclude ˆ |J m+ 〉l  is either |lm + 〉1  or some 
constant times |lm + 〉1 . We drop the bar over (m + 1), with the understanding that |l m + 〉1  refers to  
|lm + 〉1 .

 ∴ 〉 = + 〉+ +
ˆ | |J m C ml l 1

where C+ is a constant, which is yet to be determined.
For m m= ′, ˆ |J m+ ′〉l  cannot be C m+ ′ + 〉| l 1  since m′ is the maximum value of m.

 ∴ ′〉 =+
ˆ |J ml 0 (10.15)

Ĵ m− |k Õ
We now consider the relation

 ˆ ˆ ˆ ˆ ˆJ J J J Jz z− − −− = −�

 ˆ ˆ | ( ˆ ˆ ˆ ) | ( ) ˆ |J J m J J J m m J mz z− − − −〉 = − 〉 = − 〉l l l� �1  (10.16)

ˆ |J m− 〉l  is an eigenket of Ĵ z  with an eigenvalue of ( ) .m −1 �  i.e., Ĵ − acting on the eigenket |lm〉 pro-
duces an eigenket for which the eigenvalue of Ĵ z  has decreased by 1. Therefore, Ĵ − is called a lowering 
operator. Consider the following equations:

 ˆ | | ; ˆ ˆ | ( ) ˆ |J m m m J J m m J mz zl l l l〉 = 〉 〉 = − 〉− −� �1

These equations suggest

 ˆ | |J m C m− −〉 = − 〉l l 1  (10.17)

Since the minimum value of m is m″, ˆ |J jm− ′′〉 cannot be C jm− ′′ − 〉| 1 . Therefore,

 ˆ |J jm− ′′〉 = 0  (10.18)
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k = +′ ′m m( 1)

Making use of the Equation (10.15), we get 

 ˆ ˆ |J J m− + ′〉 =l 0

But ˆ ˆ ˆ ˆ ˆJ J J J Jz z− + = − −2 2 �

 
∴ ′〉 = − − ′〉 =

∴ − ′ − ′ ′〉 =
− +

ˆ ˆ | ( ˆ ˆ ˆ ) |

( ) |

J J m J J J m

m m m
z zl l

l l

2 2

2 2

0

0

�

�

or l = ′ ′ +m m( )1  (10.19)

k = -′′ ′′m m( 1)
Making use of the Equation (10.18), we get

 
ˆ ˆ |

ˆ ˆ | ( ˆ ˆ ˆ ) |

J J m

J J m J J J mz z

+ −

+ −

′′〉 =

′′〉 = − + ′′〉 =

l

l l

0

02 2 2�

 ( ) |l l− ′′ + ′′ ′〉 =m m m2 2 0�

 ∴ = ′′ ′′ −l m m( )1  (10.20)

From (10.19) and (10.20), we have

 

∴ ′ ′ + = ′′ ′′ −
′ + ′ − ′′ + ′′ =

′ + ′′ ′ − ′′ + =
′

m m m m

m m m m

m m m m

( ) ( )

( )( )

1 1

0

1 0

2 2

′′ = − ′ ′′ = ′ +m m m mor 1

The second solution is ruled out since the maximum value of m is m′. So the only possible solution is 

 ′′ = − ′m m

Let us call m′ as j

∴ ′ =m j  ′′ = −m j

Therefore, the possible value of m varies from −j to j.

i.e., −j ≤ m ≤ j

From (10.19), we write l = +j j( ).1
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Therefore, we can write |lm〉 as | jm〉. Then, we have

 

ˆ | |

ˆ | |

ˆ | ˆ |

J jj j jj

J j j j j j

J jj J j j

z

z

〉 = 〉

− 〉 = − − 〉

〉 = − 〉 =+ −

�

�

0

Consider the effect of ˆ ˆJ Jz −  on | .jj〉  

 ˆ ˆ | ( ) ˆ |J J jj j J jjz − −〉 = − 〉1 �

∴ 〉−
ˆ |J jj  is an eigenket Ĵ z  with an eigenvalue ( )j −1 � . By repeatedly using ˆ ,J −  we can get other 

eigenvalues which are given by

 j j j j� � � � �, ( ) , ( ) ,− − −1 2

So the possible values of m are as given below: 

 j j j j, ( ), ( )− − −1 2 �

There are ( )2 1j +  terms in the sequence. This can be seen in many ways. For instance, the above 
sequence is an arithmetic progression with initial term a j=  and common difference d = −1. If n is 
the number of terms in this sequence 

 j n j+ − − = −( )( )1 2

or n j= +( )2 1  (10.21)

Note that (2j + 1) is an integer. This is possible provided j = 0 1 2 1 3 2, , , ,.../ /  i.e., j can be either integers 
or half-integers. This result has to be compared with the eigenvalues for orbital angular momentum. 
The allowed values of j are only set of integers; i.e., j = 0, 1, 2,…

 ˆ | ( ) | , , , , ...J jm j j jm j2 21 0 1
2

1 3
2

〉 = + 〉 =�  (10.22)

 ˆ | | , , ...J jm m jm m j j jz 〉 = 〉 = − −� 1  (10.23)

C+ and C-
Let us determine the constants C+ and C− now.

 ˆ | ˆ | *J jm C jm jm J jm C+ + − +〉 = + 〉 〈 = 〈 +| and |1 1
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 2 2ˆ ˆ| | | | 1| 1 | |jm J J jm C j m j m C− + + +∴〈 〉 = 〈 + + 〉 =

But 2 2

2 2

2 2

ˆ ˆ ˆ ˆ ˆ| | | ( ) |

( )( 1) | ( )( 1)

| | ( )( 1)

z zjm J J jm jm J J J jm

j m j m jm jm j m j m

C j m j m

− +

+

〈 〉 = 〈 − − 〉
= − + + 〈 〉 = − + +

∴ = − + +

�

� �
�

By convention, both C+ and C− are chosen as a positive real number.

 ∴ = − + ++C j m j m[( )( )] /1 1 2 �  (10.24)

In the same way, C− can be evaluated as

 C j m j m− = + − +[( )( )] /1 1 2 �  (10.25)

So we have

 ˆ | ( ) |J jm j j jm2 21〉 = + 〉�

 ˆ | |J jm m jmz 〉 = 〉�

 ˆ | [( )( )] |/J jm j m j m jm+ 〉 = − + + + 〉1 11 2 �

 ˆ | [( )( )] |/J jm j m j m jm− 〉 = + − + − 〉1 11 2 �

Using these relations, we get

 

ˆ | ( ˆ ˆ ) |

[( )( )] |

[( )(

J jm J J jm

j m j m jm

j m

x 〉 = + 〉

=
− + + + 〉 +
+

+ −
1
2

1
2

1 11 2/ �
jj m jm− + − 〉







1 11 2)] |/ �

 
ˆ |

[( )( )] |

[( )( )] |
J jm

i

j m j m jm

j m j m jmy 〉 =
− + + + 〉

− + − + −
1
2

1 1

1

1/2

1/2

�
� 11〉









10.2 MATRIX REPRESENTATION OF ANGULAR MOMENTUM OPERATORS
Let us recall that a general vector |y 〉 can be expressed as a linear combination of the basis vectors. 
The eigenkets of the pair Ĵ 2  and Ĵ z  form a complete set, and so they can be considered as basis vec-
tors. So we have

 | | | ... |y 〉 = 〉 + − 〉 + − 〉C jj C jj C j jn1 2 1
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In matrix representation, y  is given by

 y =
















C

C
1

2

�

Now | jj〉 can be written as

 | | . | . | ...jj jj jj jj〉 = 〉 + − 〉 + − 〉0 1 0 2

 ∴ =



















y jj

1

0

0

�

 (10.26)

Similarly, we have

 ∴ =



















=























− −y yj j j j, ,, ...1 2

0

1

0

0

0

1

0
�

�

 (10.27)

There are (2j + 1) column vectors.
The matrix representation of any operator F̂  can be obtained as follows:

 

〉 − 〉 − 〉

〈 〉 〈 − 〉

〈

− 〉
〈

〈= 〈 − 〉 〈 − − 〉 − − 〉
−

� � �

| | 1 | 2

ˆ ˆ ˆ| | | | 1 | | 2 ...
|

|
ˆ ˆ ˆ1| | 1| | 1 1 || 2 ..













.
1

jj jj jj

jj F jj jj F jj jj F jj
jj

F jj F jj jj F jj jj F jj
jj

F̂  may be Ĵ 2  or Ĵ x or Ĵ y or Ĵ z  or any other combination of these operators.

In particular, Ĵ 2  and Ĵ z  are diagonal matrices. The elements Ĵ 2  and Ĵ z  are given by

 ′

′

′〈 〉 = +

′〈 〉 =

�

�

2 2ˆ| | ( 1)

ˆ| |

mm

z mm

jm J jm j j

jm J jm m

d

d

 

j j

j j

( )

( )

+ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
+ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

1

1

2

2

�
�

⋅⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ + ⋅⋅⋅
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

j j

j

( )1 2�
(( )j +

























1 2�

 (10.28)
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= +

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅
j j( )1

1 0 0

0 1 0

0 0 1
2�

⋅⋅⋅ ⋅⋅⋅
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

























1



 J

j

j

j

j

z =
−

−( )
−



















� �
� �

� �
� � � �

0 0

0 1 0

0 0 2

( )
 (10.29)

Example 10.1 Determine the matrices J 2, J
x
, J

y
 and J

z
 for j = 1.

Solution: For j = 1, these matrices have got the dimension 2j + 1 = 3. i.e., these matrices are 3 × 3 
matrices.

 

1

1

1

1

〉

〉


〉 
〉

2 2 2

2 2 2 2

2 2 2

            |11     |10  |1

ˆ ˆ ˆ|11 |11 |11 |10 |11 |1|11
ˆ ˆ ˆ|10 |10 |11 |10 |10 |10 |1

ˆ ˆ ˆ|1 1 |1 1 |11 |1 1 |10 |1 1 |1

J J J

J J J J

J J J

〉 〉 −

 〉 〉 〉 〉 〉 −〉


= 〉 〉 〉 〉 〉 〉 −
− 〉 − 〉 〉 − 〉 〉 − 〉 − 

 =
















2 0 0

0 2 0

0 0 2

2

2

2

�
�

�

 

 〉 〉 〉 〉 〉 − 〉
 

= 〉 〉 〉 〉 〉 − 〉 
 − 〉 〉 − 〉 〉 − 〉 − 〉  

ˆ ˆ ˆ|11 |11 |11 |10 |11 |1 1

ˆ ˆ ˆ|10 |11 |10 |10 |10 |1 1

ˆ ˆ ˆ|1 1 |11 |1 1 |10 |1 1 |1 1

z z z

z z z z

z z z

J J J

J J J J

J J J

 =
−

















�

�

0 0

0 0 0

0 0

 

+ + +

+ + + +

+ + +

 〉 〉 〉 〉 〉 − 〉
 

= 〉 〉 〉 〉 〉 − 〉 
 − 〉 〉 − 〉 〉 − 〉 − 〉  

ˆ ˆ ˆ|11 |11 |11 |10 |11 |1 1

ˆ ˆ ˆ|10 |11 |10 |10 |10 |1 1

ˆ ˆ ˆ|1 1 |11 |1 1 |10 |1 1 |1 1

J J J

J J J J

J J J

 =



















0 2 0

0 0 2

0 0 0

�

�
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Similarly, J
–
 is found to be

 J − =

















0 0 0

2 0 0

0 2 0

�

�

 J J Jx = + =
















+ −
1
2 2

0 1 0

1 0 1

0 1 0

( ) �

 J
i

J J

i

i i

i
y = − =

−
−

















+ −
1
2 2

0 0

0

0 0

( ) �

 J x =
















�
2

0 1 0

1 0 1

0 1 0

, J

i

i i

i
y =

−
−

















�
2

0 0

0

0 0

 J z =
−

















�

�

0 0

0 0 0

0 0

10.3 SPIN ANGULAR MOMENTUM
ˆ , ˆ , ˆ ˆJ J J Jx y z and 2 are abstract operators, and the ket vector | jm〉 is an abstract state vector. We can 
choose different sets of basis vectors to get different representations. We have already seen that if one 
chooses the position vector | r〉 as the basis vector, then 〈 〉r | jm  becomes 〈 〉q f, | ,lm  which are the 
spherical harmonies.

 〈 〉 = 〈 〉 =r| , | ( , )jm lm Y lmq f q f

On the other hand, we can choose the matrix representation. The operators J
x
, J

y
, J

z
 and J 2 are now 

independent of spatial coordinates.

 
J j j j

J m

jm jm

z jm jm

2 21 0 1
2

1 3
2

y y

y y

= + =

=

( ) , , , , ...�

�

J 2 and J
z
 are now matrix operators, and y

jm
 is a column vector. They can be now taken to represent a 

new kind of angular momentum called spin angular momentum. Spin angular momentum does not 
emerge from r p× . We cannot find a classical dynamical variable A( , )r p  representing angular momen-
tum such that the eigenvalues of the corresponding quantum mechanical operator are half integers. So 
there is no classical analogue to spin angular momentum. It is an intrinsic property of a particle since 
it cannot be removed or changed. For the sake of clarity, let us list all the possible quantum numbers 
of orbital and spin angular momenta.

 
l

s

: , , , , ...

: , , , , , ...

0 1 2 3

0 1
2

1 3
2

2
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Since spin angular momentum operator is a matrix operator, it commutes with many dynamical vari-
ables, including Hamiltonian, provided it contains only differential operators.

10.4 SPIN 1/2
Let us now consider particles with spin quantum number s = 1 2/ .

For spin 1/2 particle, there are two states: 1
2

1
2

 and 1
2

1
2

−

 

ˆ

ˆ

ˆ

S

S

S

z

2 2

2 2

1
2

1
2

1
2

1
2

1 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 1
2

= +( )
=

− = +( )

�

�

� −−

− = − −

1
2

1
2

1
2

1
2

1
2

1
2

Ŝz �

Pictorially, these two states 1
2

1
2

 and 1
2

1
2

−  can be described as shown in Fig.10.1.

S

S

−1/2

−1/2

1/2

1/2

(a) (b)

ˆ

ˆ

Fig. 10.1 Representation of spin = 1/2 states

Many times, especially in popular level books, ms = 1 2/  and ms = −1 2/  states of an election are visu-
alized as given in Fig.10.1(b). This picture is misleading since it presents electron as spinning object 
like spinning top or spinning earth. Quantum mechanics does not suggest any such picture. Quantum 

mechanics only says that an electron has two distinct states which are characterized as 1
2

1
2

 and 1
2

1
2

− .  
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However, visualization of spin /= 1 2  states as in Fig.10.1(b) is very much helpful. In fact, many times, 

the states 1
2

1
2

 and 1
2

1
2

−  are simply written as |↑〉 and |↓〉.

i.e., | ↑〉 =

↓〉 = −

1
2

1
2

1
2

1
2

|

The matrix representation of the state vectors and the abstract operators can be easily determined. The 

state vector 1
2

1
2

 can be written as

 1
2

1
2

1 1
2

1
2

0 1
2

1
2

= ⋅ + ⋅ −

 ∴ = ↑ =






y y1
2

1
2

1

0
( )  (10.30)

 

1
2

1
2

0 1
2

1
2

1 1
2

1
2

0

11
2

1
2

− = ⋅ + ⋅ −

∴ = ↓ =




−

y y ( )  (10.31)

The matrix representation for various operators is given by

 

                  1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

−

−

















The matrix operator S 2 is given by 

 S
S S

S S

2

2 2

2 2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

=
−

− − −













ˆ ˆ

ˆ ˆ





 =
+

+








 =











s s

s s

( )

( )

1 0

0 1
3
4

1 0

0 1

2

2
2

�
�

�

In the same way, we can work out S+  and S−, which are found to be

 S S+ −=






=






� �
0 1

0 0

0 1

0 0
and
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S
x
 and S

y
 are determined from S+ and S−.

 S S S S
i

S Sx y= + = −+ − + −
1
2

1
2

( ) and ( )

The matrices S
x
, S

y
 and S

z
 are given by

 S S
i

i
Sx y z=







=
−





=
−







� � �
2

0 1

1 0 2

0

0 2

1 0

0 1
, ,  (10.32)

Eigenvectors and Eigenvalues of Sx, Sy and Sz

It is easy to work out the eigenvalues and eigenvectors of these operators. The eigenvalues of each of 
these operators are ± /2.

Operators Eigenvalue Eigenvectors

Sx �/2 1
2

1

1






−�/2 1
2

1

1−






Sy �/2 1
2

1

i






−�/2 1
2

1

−




i

Sz �/2 1

0






−�/2 0

1






Example 10.2 Determine the eigenvalues and eigenvectors of S
x
.

Solution:

 

S

a

b

a

b

x c lc

l

l
l

=













=






−
−

=

�

�
�

2

0 1

1 0

2

2
0

/

/
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∴ = = ±













= ±






l l2 2 4 2

2

0 1

1 0 2

� �

� �

/ or /

a

b

a

b

Solving this equation, we get the eigenvector to be 
1

1







 and 
1

1−






. The normalized eigenvectors cor-
responding to the eigenvalues ms = ± �/2 are

 

m

m

s

s

=






= −
−







�

�

2
1
2

1

1

2
1
2

1

1

:

:

10.5 PAULI MATRICES
Let us define the three Pauli matrices s

x
, s

y
 and s

z
 as

 s s sx y z

i

i
=







=
−





=
−







0 1

1 0

0

0

1 0

0 1
, ,  (10.33)

The spin matrices S
x
, S

y
 and S

z
 are now given by

 S S Sx x y y z z= = =� � �
2 2 2
s s s, and    (10.34)

It is a customary practice to write the spin angular momentum operator as 

 S = �
2
r  (10.35)

Though s
x
, s

y
, and s

z
 are matrices, they are written with arrows like a geometrical vector. We can thus 

write r  as

 s s s s= + +ˆ ˆ ˆx y zx y z  (10.36)

Properties of Pauli Matrices

 1. s
x
, s

y
, and s

z
, are Hermitian matrices. It is easy to see that 

s s s s s sx x y y z z
† † †,= = =and 

 2. They are anti-commuting set of matrices. s
x
 s

y
 + s

y
 s

x
 = 0

	 s
x
 s

z
 + s

z
 s

x
 = 0 

	 s
y
 s

z
 + s

z
 s

y
 = 0
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 3. s s sx y zI I I2 2 2= = =, ,  

 i.e., s s sx y z
2 2 2

1 0

0 1
= = =







.

 4.	 s
x
s

y
 = is

z
; s

y
s

z
 = is

x
; s

z
s

x
 = is

y

 r ⋅ A :
 We can have a scalar product r  with a geometrical vector A .

 
⋅ = + + + +

= + +

ˆ ˆ ˆ ˆˆ ˆ( )( )x y z x y z

x x y y z z

x y z xA yA zA

A A A

A s s s

s s s

r

 

=






+
−







 +

−






=
−

+

0

0

0

0

0

0

A

A

iA

iA

A

A

A A iA

A iA

x

x

y

y

z

z

z x y

y y −−








Az

Example 10.3 Show that ( )( ) ( ).r r r⋅ ⋅ = ⋅ + ⋅ ×A B A B A Bi
where A  and B are geometrical vectors.

Solution:

 
A

B

= + +

= + +

ˆ ˆ ˆ

ˆ ˆ ˆ

x y z

x y z

A A

B B B

x y z

x y z

A

 

r r⋅ ⋅ = + + + +

= + +

A B ( )( )s s s s s s

s s s s
x x y y z z x x y y z z

x x x x y x y

A A A B B B

A B A B2
xx z x z y x y x y y y

y z y z z x z x z y z y z

A B A B A B

A B A B A B A

s s s s

s s s s s s s

+ +

+ + + +

2

2 zz zB

 
= + + + −

+ − +

( ) ( )

( ) (

A B A B A B I i A B A B

i A B A B i A B

x x y z z z x y z z y

y z x x z z x

s

s s  yy y xA B− )

Here, we have used the above property (4).

 ∴ ⋅ ⋅ = ⋅ + ⋅ ×r r rA B A B A BI i ( )

Normally, the unit matrix I is not explicitly written.

 ∴ ⋅ ⋅ = ⋅ + ⋅ ×( )( ) ( )r r rA B A B A Bi
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10.6 EIGENVALUES AND EIGENVECTOR OF S·n
Let n be an arbitrary unit vector given by n = + +ˆ ˆ ˆ .x y zn n nx y z

S n⋅  gives the projection of the spin in the direction of n.
The eigenvalue equation for S n⋅  is

 S n⋅ =c lc

Multiply the above equation by S n⋅  from the left.

But 

S n S n S n

S nS n n n

n n n n

⋅ ⋅ ⋅ = ⋅ =

⋅ ⋅ = ⋅ ⋅

= ⋅ + ⋅ × =

c l c l c
lc
�

�

� �

2

2

2 2

4

4

 r r

r[ ]I i
44

I

 
∴ =

= = ±

�

� �

2
2

2
2

4

4
2

I c l c

l lor /

Obviously, the projection of S along any arbitrary vector n is either /2 or – /2.
To determine the eigenvector, let us write

 S n n⋅ = ⋅ =
−

+ −












� �
2 2
r

n n in

n in n

z x y

z y z

 � �
2 2

1

2

1

2

n n in

n in n

x

x

x

x

z x y

z y z

−

+ −




















 = ±











It is a simple exercise to solve this equation. The eigenvectors are given below:

 

�

�

2
1

2

1

1

2
1

2

: ( )

( )

: ( )

y

y

↑ =
+





+
+















− ↓ =
+

n
n in

n

n

z
x y

z

z

1/2





−
−
+















1/2 n in

n
x y

z( )1

1

In spherical polar coordinates, we have 

 n n nx y z= = =sin cos , sin sin cosq f q f q.and

 

1
2 2

1
2 2

+





=
−





=

+ =

n n

n in e

z z

x y
i

1/2 1/2

cos ; sin

sin

q q

q f
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Making use of these results, we get the following eigenvectors (leaving aside a phase factor):

 y
q

q f
( )

cos
↑ =

















2

2
sin ei

 y
q

q f
( )

sin
↓ =

−

















2

2
cos ei

10.7 ROTATION MATRIX FOR SPIN 1/2 PARTICLE
We have already seen that if a system is rotated by an angle q about n, then the transformation of the 
wave function ya is given by

 y ya a′
⋅= eip J /�  (10.37)

In the case of spin 1
2

 particle, this equation becomes 

 y ya
q

a′
− ⋅= e i n S /�  (10.38)

Note that both ya	′ and ya are column vectors.

i.e., y yaÄ a=
′
′







=






a

b

a

b
and

For the sake of simplicity, consider the rotation about Z axis by an angle q.

 y y ya
q

a
q s

a′
− −= =e ei S iz z/ /� 2  (10.39)

It can be shown that

 e Ii
z

z− = +qs q s q/ cos sin2

2 2
 (10.40)

 ∴ = +( )y q s q yaÄ aI zcos sin
2 2

 (10.41)

Let us now rotate the system by 360° about Z axis. Physically, we will get back the system to the 
original orientation. So we expect the wave function of the rotated system also to return to the original 
wave function. However, for spin 1/2 particle, this does not happen.

 y y p s p y yaÄ
p

a a a= = + = −−e Ii S
z

z2 /� ( cos sin )  (10.42)
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Only a rotation of the system by another 360° brings the function to be the same. Physically, this 
property has no observable consequence, since wave functions which differ only by a phase factor 
describe the same state.

Example 10.4 Show that e Ii− ⋅ = − ⋅q q qn nS / cos sin ,�

2 2
r  where S  is the spin angular momentum 

operator for spin 1
2

.

Solution:

 

Since we have S

n

n S n

n

= =

= − ⋅

− ⋅ − ⋅

− ⋅

� �

2

1
2

2

2

r

r

r

r

, / /

/

e e

e i i

i i

i

q q

q q ++
−( )

⋅

+
−( )

⋅ +
−( )

⋅ +

i

i i

q

q q

2
2

2
3

2
4

2

2

3

3

4

4

!
( )

!
( )

!
( ) ...

r

r r

n

n n  

 

r r r
r r r
r r

⋅ = ⋅ ⋅ = =
∴ ⋅ = ⋅ = ⋅ = ⋅⋅⋅ =

⋅ = ⋅

n n n

n n n

n n

2 2

4 6 8

3

1

1

( )( )

( ) ( ) ( )

( ) (

n

)) ( )5 7= ⋅ = ⋅⋅⋅ = ⋅r rn n

 

e i ii− ⋅ = − ⋅ −
( )

+ ( ) ⋅ +

= −
( )

+
( )

q q
q

q

q q

n n nr r r/

!
...

! !

2

2

3

2 4

1
2

2
2 2

1 2
2

2
4

++



















− ⋅ −
( )

+



















...
!

...ir n q
q

2
2
3

3

 = − ⋅cos sinq q
2 2

I ir n

10.8 ADDITION OF ANGULAR MOMENTA
We have already seen that each particle has spin and orbital angular momenta. How to add these two 
angular momenta? Consider another system, say an atom. An atom has Z electrons, and so we have 
to add angular momenta of all the electrons to get the effective angular momentum of the atom. In 
general, angular momenta of the sub-parts of a system have to be added. How to add two angular 
momenta in a way consistent with quantum mechanics?

Let Ĵ1 and Ĵ 2 be two angular momenta to be added. First, we have to realize that the angular 
momenta Ĵ1 and Ĵ 2 act on different linear vector spaces. This is similar to the operators d dx/  and d dy/ .  
They operate on the functions of different variables. d dx/  operates on f(x), and d dy/  operates on g(y).

Suppose Ĵ1 and Ĵ 2 represent orbital and spin angular momentum, respectively; i.e., ˆ ˆJ L1 =  and 
ˆ ˆJ S2 = . It is obvious that their linear vector spaces are different. Both Ĵ1 and Ĵ 2 may be orbital angular 
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momenta; i.e., Ĵ1 1 1= ×r p  ˆ ,J 2 2 2= ×r p  where r1 and r2 are position vectors of particles 1 and 2. So we 

see again that Ĵ1 and Ĵ 2 act on two different linear vector spaces.
Let us write Ĵ  as

 ˆ ˆ ˆJ J J= +1 2 (10.43)

Ĵ1 acts on a linear vector space V1; Ĵ 2 acts on a different linear vector space V 2; what about ˆ ?J  Its vector 
space V3 is different from V1 and V2. In mathematics, there is a way of handling this type of problem. It 
needs tensor language in which the linear vector space of Ĵ  is a direct product of V1 and V 2. We will not go 
into such details. For our purpose, the fact that Ĵ1 and Ĵ 2 act on linear vector spaces has an important con-
sequence. Simply because they operate on different linear vector spaces, they commute with each other.

 ˆ , ˆJ J1 2 0  =  (10.44)

This is similar to the commutation between the operators d
dx

 and d
dy

.

Ĵ -Angular Momentum
Let us first show that J J J= +1 2 is also an angular momentum operator.

 

ˆ , ˆ ˆ ˆ , ˆ ˆ

ˆ , ˆ ˆ , ˆ

J J J J J J

J J J J

x y x x y y

x y x

  = + + 
=   +

1 2 1 2

1 1 1 2 yy x y x y z zJ J J J i J J  +   +   = +
0

2 1

0

2 2 1 2� �� �� � �� ��
�ˆ , ˆ ˆ , ˆ ˆ ˆ  = i J z� ˆ

Similarly, we can prove that 

 ˆ , ˆ ˆJ J i Jy z x
  = �  and ˆ , ˆ ˆJ J i Jz x y

  = � .

\ ˆ ˆ ˆJ J J= +1 2 is also an angular momentum operator.

Uncoupled Representation ˆ , ˆ , ˆ , ˆJ J J Jz z1
2

2
2

1 2

All these four operators commute among themselves.

 
ˆ , ˆ ˆ , ˆ ˆ , ˆ ˆ , ˆJ J J J J J J Jz z z1

2
2
2

1
2

1 1
2

2 2
2

10 0 0  =   =   =    =

  =   =

0

0 02
2

2 1 2
ˆ , ˆ ˆ , ˆJ J J Jz z z 

 (10.45)

Therefore, these operators have common eigenstates. These eigenstates form a basis for a representa-
tion called uncoupled or direct representation. The quantum numbers characterizing these states are 
j j m m1 2 1 2, ,  and . So these four quantum numbers can be written inside the ket. The basis kets of the 

uncoupled representations are written as | ;j m j m1 1 2 2 〉. In fact, | ;j m j m1 1 2 2 〉 is the direct product of the 
kets | j m1 1〉  and | .j m2 2 〉

 | ; | |j m j m j m j m1 1 2 2 1 1 2 2〉 = 〉 〉  (10.46)

 ˆ | ; ( ) | ;J j m j m j j j m j m2
1 1 1 2 2 1 1

2
1 1 2 21〉 = + 〉�  (10.47)
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 ˆ | ; ( ) | ;J j m j m j j j m j m2
2 1 1 2 2 2 2

2
1 1 2 21〉 = + 〉�  (10.48)

 ˆ | ; | ;J j m j m m j m j mZ1 1 1 2 2 1 1 1 2 2〉 = 〉�  (10.49)

 ˆ | ; | ;J j m j m m j m j mZ2 1 1 2 2 2 1 1 2 2〉 = 〉�  (10.50)

Coupled Representation: ˆ ˆ ˆ ˆJ J J Jz
2 2

1
2
2, , ,

 2 2 2 2 2
1 2

ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 0,  [ , ] 0,  [ , ] 0zJ J J J J J= = =

 2 2 2 2
1 2 1 2

ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 0,  [ , ] 0,  [ , ] 0z zJ J J J J J= = =  (10.51)

These four operators commute among themselves. Therefore, ˆ , ˆ , ˆJ J Jz
2

1
2  and Ĵ 2

2  have common eigen-
states, and these eigenstates form a basis for the representation called coupled representation. The 

quantum numbers of ˆ , ˆ , ˆJ J J2
1

2
2

2 and Ĵ z  should be used to describe these states. Therefore, the quantum 
numbers j j j1 2, ,  and m can be written inside the ket vectors | ; .j j jm1 2 〉

 ˆ | ; ( ) | ;J j j jm j j j j jm2
1 2

2
1 21〉 = + 〉�  (10.52)

 ˆ | ; | ;J j j jm m j j jmZ 1 2 1 2〉 = 〉�  (10.53)

 ˆ | ; ( ) | ;J j j jm j j j j jm2
1 1 2 1 1

2
1 21〉 = + 〉�  (10.54)

 ˆ | ; ( ) | ;J j j jm j j j j jm2
2 1 2 2 2

2
1 21〉 = + 〉�  (10.55)

Note that 2
1

ˆ ˆ[ , ] 0zJ J ≠  and 2
2

ˆ ˆ[ , ] 0zJ J ≠ . Therefore, m1 and m2 cannot be included in the list of quantum 
numbers used to describe the basis vectors in the coupled representation.

Example 10.5 Evaluate 2
1

ˆ ˆ[ , ]zJ J  and 2
2

ˆ ˆ[ , ]zJ J .

Solution:

 

2 2 2
1 1 2 1 2 1

2 2
1 1 2 1 1 2 1

1 2 1 1 2 1 2 1 2 1

1 1 2 1 1 2

1 2 1 2

2
1 1 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ 2 . , ]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [2 . , ]

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ . , ] [ , ]

ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ]

ˆ ˆ[ , ] 2(

z z

z z z

z x x y y z z z

x z x y z y

y x x y

z y x

J J J J J J J

J J J J J J J

J J J J J J J J J J

J J J J J J

i J J i J J

J J i J J i

= + +

= + +

= + +

= +

= − +

= − + 1 2 )x yJ J

�

�

�

�
Similarly, we have 

   [ ]ˆ ˆ , ˆ ˆ ˆ

[ ˆ ˆ , ˆ ]

J J J i J J i J J

J J J

z x y y x

z

1 2 2 1 2 1 2

1 2 2 0

⋅ = − +

∴ ⋅ ≠

� �
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So we have

 2 2
1 2

ˆ ˆ ˆ ˆ[ , ] 0,  [ , ] 0z zJ J J J≠ ≠

But  2
1 2

ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] 0z z zJ J J J J+ = =

10.9  NUMBER OF BASIS VECTORS IN COUPLED AND UNCOUPLED 
REPRESENTATION

Both coupled and uncoupled representations are the result of addition of angular momenta Ĵ1 and Ĵ 2.  
Therefore, the number of basis vectors in the coupled and uncoupled representations is the same.

In the uncoupled representations, the basis vectors are given by

 | ; | |j m j m j m j m1 1 2 2 1 1 2 2〉 = 〉 〉

It is obvious that there are ( )( )2 1 2 21 2j j+ +  basis states in the uncoupled representations.
In the coupled representation, the basis vectors are written as | ;j j jm1 2 〉. In a shorter notation, this 

can be written as | jm〉.

 | |j j jm jm1 2 〉 → 〉  (shorter notation) (10.56) 

For a given j, there are (2j + 1) states. The number (2j + 1) cannot be equal to ( )( )2 1 2 21 2j j+ + . This 
implies that for a given j1 and j2 , j cannot be a single value. j has to vary over a range from j

max
 to j

min
 

such that the sum of all the states for all the values of j is the same as ( )( )2 1 2 11 2j j+ + .

 ( ) ( )( )
min

max

2 1 2 1 2 11 2j j j
j

j

+ = + +∑  (10.57)

These two basis vectors are related by unitary transformation.
Let us recall |y 〉 can be written as

 | |y f〉 = 〉∑Cn n  with Cn n= 〈 〉f y|

In the place of | ,y 〉  let us write | ; ,j j jm1 2 〉  and in the place of | ,fn 〉  let us write | |j m j m1 1 2 2〉 〉.
The coefficient C

n 
is replaced by a complicated symbol C j m j m jm( ; )1 1 2 2  or 〈 〉j m j m j j jm1 1 2 2 1 2; | ; to 

include as much information as possible.

 |
;

y f〉 〉
j j jm

n

j m j m jm

n
j m j m

C

1 2 1 1 2 2
1 1 2 2

� �= ∑ |

 | ; ; | ; | ;
,

j j jm j m j m j j jm j m j
m m

1 2 1 1 2 2 1 2 1 1

1 2

〉 = 〈 〉∑
a number

� ���� ���� 22 2m 〉  (10.58)

In a more compact way, this can be written as 

 ∴ 〉 = 〈 〉 〉∑| ; | | ;
,

jm j m j m jm j m j m
m m

1 1 2 2 1 1 2 2

1 2 a number
� ��� ���  (10.59)
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The coefficients 〈 〉j m j m jm1 1 2 2; |  are called Clebsh–Gordan coefficients. There are many symbols 
used to write Clebsh–Gordan coefficients like C j m j m jm C m m jmj m j m

jm( ; | ) ; |;1 1 2 2 1 21 1 2 2
or or 〈 〉. We 

choose to write the Clebsh–Gordan coefficients as 〈 〉j m j m jm1 1 2 2; | .
In the same way, | ;j m j m1 1 2 2 〉 can be expressed as a linear combination of kets | jm〉.

 | ; ; | ; | ;j m j m j j jm j m j m j j jm
jm

1 1 2 2 1 2 1 1 2 2 1 2〉 = 〈 〉 〉∑

 or
a number

| ; | ; |j m j m jm j m j m jm
jm

1 1 2 2 1 1 2 2〉 = 〈 〉 〉∑� ��� ���  (10.60)

Obviously, 〈 〉 =j m j m jm1 1 2 2; |  〈 〉jm j m j m| ; *1 1 2 2 . In principle, the Clebsh–Gordan coefficient can be 
complex numbers. However, by convention, all the Clebsh–Gordan coefficients are chosen as real 
numbers 〈 〉 =j m j m jm1 1 2 2; |  〈 〉jm j m j m| ; .1 1 2 2

10.10 POSSIBLE VALUES OF j IN COUPLED REPRESENTATION
The angular momenta Ĵ1 and Ĵ 2 are added to give angular momentum Ĵ . Let us recall that 

 

ˆ | ( ) |

ˆ | ( ) |

ˆ |

J j m j j j m

J j m j j j m

J

2
1 1 1 1 1

2
1 1

2
2 2 2 2 2

2
2 2

2

1

1

〉 = + 〉

〉 = + 〉

�

�

jjm j j jm〉 = + 〉( ) |1 2�

We have already seen that the values of j vary from  j
max

 to j
min

. We have not yet determined the possible 
values of j in terms of j

1
 and j

2
.

In terms of the basis of uncoupled representation, | jm〉 is given by

 | ; | | ;jm j m j m jm j m j m
m m

〉 = 〈 〉 〉∑ 1 1 2 2 1 1 2 2

1 2

 (10.61)

Let us consider ˆ |J jmz 〉.

 ˆ | ( ˆ ˆ ) |J jm J J jmz z z〉 = + 〉1 2

 

LHS

RHS

= 〉 = 〉

= 〈 〉 〉 〉

=

∑
ˆ | |

; | | |

(

;

J jm m jm

m j m j m jm j m j m

z

m m

�

� 1 1 2 2 1 1 2 2

1 2

ˆ̂ ˆ ) |

( ˆ ˆ ) ; | | |

J J jm

J J j m j m jm j m j m

z z

z z
m m

1 2

1 2 1 1 2 2 1 1 2 2

1 2

+ 〉

= + 〈 〉 〉 〉∑
== 〈 〉 + 〉 〉∑ j m j m jm m m j m j m

m m
1 1 2 2 1 2 1 1 2 2

1 2

; | ( ) | |�
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Equating LHS and RHS, we get 

 ( ) ; | | ;
;

m m m j m j m jm j m j m
m m

− − 〈 〉 〉 =∑ 1 2 1 1 2 2 1 1 2 2

1 2

0�

Since each vector | ;j m j m1 1 2 2 〉  is a linearly independent vector, the coefficient of each term in the 
above summation is zero.

 ∴〈 〉 − − =j m j m jm m m m1 1 2 2 1 2 0; | ( )
a number

� ��� ���
 (10.62)

∴ Either 〈 〉 =j m j m jm1 1 2 2 0; |  or m m m= +1 2

If m m m≠ +1 2, the coefficient 〈 〉j m j m jm1 1 2 2; |  has to be zero. So the only coefficients which sur-
vive in the summation are such that m m m= +1 2.

This condition fixes the value for a given m
1
 and m

2
. However, the j value is not fixed uniquely. For 

instance a state, say | , ,m m1 22 0= = 〉  is associated with two states | ,j m= = 〉3 2  and | ,j m= = 〉2 2 . 
So, in general, any state | j m1 1〉| j m2 2 〉 can be associated with a number of state | , ,j m m m= + 〉1 2  cor-
responding to different values of j. The number of such possible states for a given m1 and m2 is known 
as multiplicity or degeneracy, corresponding to | j m1 1〉| j m2 2 〉.

Returning back to the Equation (10.62), we write it as

| ; | | ;jm j m j m jm j m j m
m

〉 = 〈 〉 〉∑ 1 1 2 2 1 1 2 2

1

 with m m m1 2+ =

 | ; | | ;jm j m j m m jm j m j m m
m

〉 = 〈 − 〉 − 〉∑ 1 1 2 1 1 1 2 1

1

 (10.63)

With these information, we can determine the possible values of j. 
Let us start with the maximum values of m

1
 and m

2
. Now we have m j1 1=  and m j2 2= . The cor-

responding direct product state in the uncoupled representation is | |j j j j1 1 2 2〉 〉.
There can be only one term in the RHS of (10.63) with | |j j j j1 1 2 2〉 〉.

 ∴ + 〉 = 〉 〉| , | |j j j j j j j1 2 1 1 2 2  (10.64)

The corresponding value of j has to be ( j
1
 + j

2
).

i.e., j j j= +1 2

This is the maximum possible value for j. It is easy to check this result (see Examples 10.6 and 10.7).

 ∴ = +j j jmax 1 2  (10.65)

ˆ | | ( )( ) | |J j j j j j j j j j j j j2
1 1 2 2 1 2 1 2

2
1 1 2 21〉 〉 = + + + 〉 〉�

This implies that the state | | | maxj j j j j j j j j j j1 2 1 1 2 2 1 2+ 〉 = 〉 〉 = = +  where   in the coupled representation is given by

 | | | maxj j j j j j j j j j j1 2 1 1 2 2 1 2+ 〉 = 〉 〉 = = +  where  
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Next, let us decrease the value of m
1
 or m

2
 of 1.

So we have two possible direct product states with the same m value:

 | |j j j j1 1 2 21− 〉 〉  and | |j j j j1 1 2 2 1〉 − 〉

The m value of these states is j
1
 + j

2
 − 1. Then a state in the coupled representation is given by

∴ + − 〉 = − 〉 〉 + 〉 − 〉| | | | |j j j c j j j j c j j j j1 2 1 1 1 2 2 2 1 1 2 21 1 1

What are the possible values of j? Both j j j= +1 2 and j j j= + −1 2 1 are consistent with RHS of the 
above equation.

So the possible values of j are j j1 2+  and j j1 2 1+ − .
Again decrease m

1
 or m

2
 by 1. So we have there possible direct product states with the same value for m.

| | ,| |j j j j j j j j1 1 2 2 1 1 2 22 1 1〉 − 〉 − 〉 − 〉  and | |j j j j1 1 2 22− 〉 〉

The m values for all these states are j j1 2 2+ − .
This means that we can have a state in the coupled representation given by

∴ + − 〉 = − 〉 〉 + − 〉 − 〉 + 〉| | | | | | |j j j c j j j j c j j j j c j j j1 2 1 1 1 1 2 2 1 1 2 2 3 1 12 2 1 1 22 2 2j − 〉

The value of j consistent with m = j
1
 + j

2
 − 2 are

j j j j j j j j j= + = + − = + −1 2 1 2 1 21 2, , 

Repeating this procedure, we can list all the possible values of j. They extend from j
max

 to j
min

. It can 
be shown that j j jmin | | .= −1 2  

The possible values of j are

 j j j j j j j j1 2 1 2 1 2 1 21 2+ + − + − −, , , | |…  (10.66)

It is easy to check j
min

 is | |j j1 2− .

Let us assume j j1 2> . Then, the possible values of j are claimed to be 

 j j j j j j j= + + − −1 2 1 2 1 21, ,...,  (10.67)

There are ( )2 12j +  terms in this sequence, or the number of possible values of j is 2 12j + . This can be 
seen in many ways. One way is to write the possible values of j as

j j j j j j j j1 2 1 2 1 2 1 21 2+ + − + − + −( ), ( ), ( ),... ( ) 

The quantities in the brackets are j j j2 2 21, ,...,− − . Obviously, there are ( )2 12j +  terms in the sequence 
given in (10.67).

Each j has ( )2 1j +  states in coupled representation. The total number of basis states should be 
( )( )2 1 2 11 2j j+ + . The total number of states N is given by

N j

j

j j j

j j

= + = +

=

= −

+

∑ ( ) ( )

(

2 1
2

2

1 2

2

1 2

No.of terms
First term ast termL

++
+ + + − +

= + +

1
2

2 2 1 2 2 1

2 1 2 1

1 2 1 2

1 2

)
[ ]

( )( )

j j j j

j j
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Example 10.6 Show that ˆ ( ˆ ˆ ) ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆJ J J J J J J J J J Jz z
2

1 2
2

1
2

2
2

2 1 1 2 1 22= + = + + + +− + − +

Solution:

 
ˆ ( ˆ ˆ ) ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

J J J J J J J

J J J J Jx x

2
1 2

2
1
2

2
2

1 2

1
2

2
2

1 2 1

2

2 2

= + = + + ⋅

= + + + yy y z zJ J Jˆ ˆ ˆ
2 1 22+

We have 

ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

J J J J
i

J J

J J J J

x y

x x

= +( ) = −( )
= +(

+ − + −

+ −

1
2

1
2

2 1
21 2 1 1

 and 

)) +( )
= + + + 

+ −

+ + + − − + − −

ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

J J

J J J J J J J J

J

2 2

1 2 1 2 1 2 1 2
1
2

2 11 2 1 2 1 2 1 2 1 2
1

2y yJ J J J J J J J Jˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ= − − − + + + + − − + − −

Making use of these results, we get

 ∴ = + + + ++ − − +
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆJ J J J J J J J Jz z

2
1
2

2
2

1 2 1 2 1 22

Example 10.7 Show that ˆ | | ( ) ( ) | |J j j j j j j j j j j j j2
1 1 2 2 1 2 1 2

2
1 1 2 21〉 〉 = + + + 〉 〉�

Solution:

 ˆ | | ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) |J j j j j J J J J J J J J jz z
2

1 1 2 2 1
2

2
2

1 2 1 2 1 22〉 〉 = + + + ++ − − + 11 1 2 2j j j〉 〉|

ˆ ˆ | | ( ˆ | ) ( ˆ | )J J j j j j J j j J j j1 2 1 1 2 2 1 1 1 2 2 2 0+ − + −〉 〉 = 〉 ⋅ 〉 =

ˆ ˆ | | ( ˆ | ) ( ˆ | )J J j j j j J j j J j j1 2 1 1 2 2 1 1 1 2 2 2 0− + − +〉 〉 = 〉 ⋅ 〉 =

ˆ ˆ | | | |J J j j j j j j j j j jz z1 2 1 2 2 2 1 2
2

1 1 2 2〉 〉 = 〉 〉�

∴ 〉 〉 = + + + + 〉ˆ | | [ ( ) ( ) ] | |J jj j j j j j j j j j j j j2
1 2 2 1 1

2
2 2

2
1 2

2
1 1 2 21 1 2� � � 〉〉

= + + + 〉 〉( ) ( ) | |j j j j j j j j1 2 1 2
2

1 1 2 21 �

Example 10.8 When two angular momenta Ĵ1 and Ĵ2  are added, the resulting angular momentum is Ĵ .
The possible values are 

j j j j j j= + + −1 2 1 2 1, , ..., min

Show that j j jmin | |= −1 2 .

Solution: Let N be the total number of states for all j values.

N j
j

j

= +∑ ( )
max

min

2 1

= + + + + − + + + +
= + + +

[ ( ) ] [ ( ) ] ... ( )

( ) [
min2 1 2 1 1 2 1

2 2 1 2
1 2 1 2

1 2

j j j j j

j j j11 22 2 1 2 1+ − + + + +j j] ... ( )min
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This is a sum of terms in arithmetic progressions. The first term is a j j= + +2 2 12 2 , the last term is 
l j= +2 1min  and the common difference is d = −2.

∴ = + − +
N

l a l a d
d

( )( )
2

This should be equal to ( )( ).2 1 2 11 2j j+ +

 ∴ =
+ + + + − − − −

−
N

j j j j j j( )( )min min2 2 2 2 2 1 2 2 1 2
4

1 2 1 2

∴ + + + − − − = − + +
= + +

( )( ) ( )( )

(
min min

min

j j j j j j j j

j j j
1 2 1 2 1 2

2
1 2

1 1 2 1 2 1

11 2 1 2 12
1 2

1 2
2

1 2

) ( )( )

( )

| |min

− + +
= −

∴ = −

j j

j j

j j j

10.11 CLEBSh–GORDAN COEFFICIENTS
The number of basis vectors in both coupled and uncoupled representations is + +1 2(2 1)(2 1)j j . 
Therefore, the transformation matrix relating the two bases is + +1 2(2 1)(2 1)j j  dimensional unitary 
matrix.

 | ; | | ;jm j m j m jm j m j m
mm

〉 = 〈 〉 〉∑∑ 1 1 2 2 1 1 2 2

21

 (10.68)

 | ; | ; |jm jm jm j m j m jm
mj

1 2 1 1 2 2〉 = 〈 〉 〉∑∑  (10.69)

Using the Hermitian conjugate of (10.68), we have

〈 ′ ′ = 〈 ′ ′ ′ ′〉 〈 ′ ′
′′

∑∑j m j m j m j m j m j m
mm

| ; | ; |1 1 2 2 1 1 2 2

21

Using the above equation and (10.68), we get

〈 ′ ′ 〉 = 〈 〉 〈 ′ ′ ′ ′〉 〈 ′ ′
′

∑j m jm j m j m jm j m j m j m j m j m
m

| ; | ; | ;1 1 2 2 1 1 2 2 1 1 2 2

2

|| ;

; | ; |

j m j m

j m j m jm j m j m j m

mmm

m

1 1 2 2

1 1 2 2 1 1 2 2

121

2

〉

= 〈 〉〈 ′ ′ ′ ′
′

′

∑∑∑

∑ 〉〉

= 〈 〉〈 ′

′ ′
′

∑∑∑

∑∑

d dm m m m
mmm

mm

j m j m jm j m j m j

1 1 2 2

121

21

1 1 2 2 1 1 2 2; | ; | ′′〉m

 

LHS =

∴ 〈 〉〈 ′ ′〉 =
′ ′

′ ′∑∑
d d

d d
jj mm

jj
mm

mmj m j m jm j m j m j m1 1 2 2 1 1 2 2

21

; | ; |  (10.70)

Similarly, using the Hermitian conjugate of (10.69), we can write 

 〈 ′ ′ = 〈 ′ ′ ′ ′ 〉〈 ′ ′

∴〈 ′ ′

∑∑
′ ′

j m j m j m j m j m j m

j m j m

j m
1 1 2 2 1 1 2 2

1 1 2 2

; | | ; |

; | jj m j m jm j m j m j m j m j m j
mjmj

1 1 2 2 1 1 2 2 1 1 2 2; | ; | ;〉 = 〈 〉〈 ′ ′ ′ ′ 〉 〈 ′ ′
′′

∑∑∑∑ mm jm

jm j m j m j m j m j m
mjmj

jj m

|

| ; | ;

〉

= 〈 ′ ′ 〉〈 ′ ′ ′ ′ 〉
′′

′ ′∑∑∑∑ 1 1 2 2 1 1 2 2 d d mm

mj

jm j m j m jm j m j m= 〈 〉〈 ′ ′ 〉∑∑ | ; | ;1 1 2 2 1 1 2 2
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〈 ′ ′ = 〈 ′ ′ ′ ′ 〉〈 ′ ′

∴〈 ′ ′

∑∑
′ ′

j m j m j m j m j m j m

j m j m

j m
1 1 2 2 1 1 2 2

1 1 2 2

; | | ; |

; | jj m j m jm j m j m j m j m j m j
mjmj

1 1 2 2 1 1 2 2 1 1 2 2; | ; | ;〉 = 〈 〉〈 ′ ′ ′ ′ 〉 〈 ′ ′
′′

∑∑∑∑ mm jm

jm j m j m j m j m j m
mjmj

jj m

|

| ; | ;

〉

= 〈 ′ ′ 〉〈 ′ ′ ′ ′ 〉
′′

′ ′∑∑∑∑ 1 1 2 2 1 1 2 2 d d mm

mj

jm j m j m jm j m j m= 〈 〉〈 ′ ′ 〉∑∑ | ; | ;1 1 2 2 1 1 2 2

But LHS = ′ ′d dm m m m1 1 2 2

 ∴ ′ ′ =∑∑ ′ ′jm j m j m jm j m j m
mj

m m m m1 1 2 2 1 1 2 2 1 1 2 2
; ; d d  (10.71)

The relations (10.70) and (10.71) are known as orthoganality relations for the Clebsh–Gordan coef-
ficient. The Clebsh–Gordan coefficients can be presented in the form of a matrix as shown below:

Table 10.1 Matrix representation of Clebsh–Gordan coefficients

m
j j j1 2+ =

m
j - 1

m
j - 2

î î î m
j-

| jj 〉 | j j − 〉1 | ,j

j

−
− 〉

1

1
| j j − 〉2 | ,j

j

−
− 〉

1

2

| ,j

j

−
− 〉

2

2

• • • | ,−
− 〉

j

j

m j j

j j j j

= +
〈

1 2

1 1 2 2; |

1 × 1

m j j

j j j j

j j j j

= + −

〈 −

〈 −

1 2

1 1 2 2

1 1 2 2

1

1

1

; |

; |

2 × 2

m j j

j j

j j

j j

= + −

〈 −

〈 − −

〈 −

1 2

1 2

1 2

2 2

2

2

1 1

2

; |

; |

; |

3 × 3 • • •
• • •

�
•
•
•

m j j

j j j j

j j j j

= − − +

〈 − + −

〈 − − +

1 2

1 1 2 2

1 1 2 2

1

1

1

; |

; |

•
•
•

•
•
•

•
•
•

m j j

j j j j

= − −

〈 − −
1 2

1 1 2 2; | 1 ×	1
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The orthoganality relation (10.70) indicates the orthoganality between the column vectors in the uni-
tary matrix. Similarly, the orthoganality relation (10.71) is the orthoganality relation between the rows 
in the unitary matrix.

10.12 RECURSION RELATIONS FOR CLEBSh–GORDAN COEFFICIENT
Let us consider | jm〉.

| ; | | ;jm j m j m jm j m j m
m m

〉 = 〈 〉 〉∑∑
1 2

1 1 2 2 1 1 2 2

Let Ĵ+ act on either side of this equation.

ˆ | ˆ ˆ ; | | ;J jm J J j m j m jm j m j m
m m

+ + +〉 = +( )〈 〉 〉∑∑
1 2

1 2 1 1 2 2 1 1 2 2

RHS = 〈 〉 − + + +∑∑
m m

j m j m jm j m j m j m j m
1 2

1 1 2 2 1 1
1 2

1 1
1 2

1 1 21 1; | ( ) ( ) | ;/ / � 22 〉

+ 〈 〉 − + + + 〉∑∑
m m

j m j m jm j m j m j m j m
1 2

1 1 2 2 2 2
1 2

2 2
1 2

1 1 2 21 1; | ( ) ( ) | ;/ / �

= +T T1 2

Consider the first term T1.
Define ′ = +m m1 1 1 ∴ = ′ −m m1 1 1

∴ = 〈 ′ − 〉 − ′ + + ′ ′
′

∑∑T j m j m jm j m j m j m
m m

1 1 1 2 2 1 1
1 2

1 1
1 2

1

1 2

1 1; | ( ) ( ) |/ / � 11 2 2; j m 〉

Since ′m1  is a dummy variable, replace it by m1.

∴ = 〈 − 〉 − + +∑∑T j m j m jm j m j m j m j m
m m

1 1 1 2 2 1 1
1 2

1 1
1 2

1 1 2

1 2

1 1; | ( ) ( ) | ;/ / � 22 〉

In the same way, T2  can be written as

∴ = 〈 − 〉 − + +∑∑T j m j m jm j m j m j m j m
m m

2 1 1 2 2 2 2
1 2

2 2
1 2

1 1 2

1 2

1 1; | ( ) ( ) | ;/ / � 22 〉

Now LHS is given.

LHS = − + + + 〉

= − + + 〈∑∑
( ) ( ) |

( ) ( )

/ /

/ /

j m j m jm

j m j m j
m m

1 2 1 2

1 2 1 2
1

1 1

1
1 2

�

� mm j m j m j m j m1 2 2 1 1 2 21; | | ;+ 〉 〉
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Equating LHS and RHS, we get 

( ) ( ) ; |/ /j m j m j m j m jm− + + 〈 + 〉1 2 1 2
1 1 2 21 1

 

= − + + 〈 − 〉

+ − + +

( ) ( ) ; |

( ) (

/ /

/

j m j m j m j m jm

j m j m

1 1
1 2

1 1
1 2

1 1 2 2

2 2
1 2

2 2

1 1

1 )) ; |/1 2
1 1 2 2 1〈 − 〉j m j m jm   (10.72)

We can obtain another recurrence relation using Ĵ− .

ˆ | ( ˆ ˆ ) ; | | ;J jm J J j m j m jm j m j m
m m

− − −〉 = + 〈 〉 〉∑∑1 2 1 1 2 2 1 1 2 2

1 2

Working in the same way as done for ˆ ,J+  we get 

( ) ( ) ; |/ /j m j m j m j m j m+ − + 〈 − 〉1 2 1 2
1 1 2 21 1

 

= + + − 〈 + 〉

+ + + −

( ) ( ) ; |

( ) ( )

/ /

/

j m j m j m m jm

j m j m

1 1
1 2

1 1
1 2

1 1 2

2 2
1 2

2 2

1 1

1 11 2
1 1 2 2 1/ ; |〈 + 〉j m j m jm  (10.73)

Both relations (10.72) and (10.73) are recurrence relations for Clebsh–Gordan coefficient. If we know 
the Clebsh–Gordan coefficient for one state corresponding to a angular momentum quantum number 
j, then the Clebsh–Gordan coefficients for all the (2j + 1) states corresponding to j. The given j can be 
obtaining using either (10.72) or (10.73).

Evaluation of the Clebsh–Gordan Coefficient
There are many situations when we require the knowledge of Clebsh–Gordan coefficients. With the 
help of the lowering and raising operators and orthoganality relations, we can evaluate the Clebsh–
Gordan coefficient. While using orthoganality relations, the signs of some Clebsh–Gordan coefficient 
will be arbitrarily chosen. So we have to follow certain conventions in fixing the sign of Clebsh–
Gordan coefficients, In addition, the Clebsh–Gordan coefficients obey a lot of symmetry relations 
which are useful in evaluating the Clebsh–Gordan coefficients. A complete analytic expression for 
Clebsh–Gordan coefficients is also available.

Some of the symmetry relations are given here (Alonso and Valk).

〈 〉 = − 〈 〉

= −

+ −j m j m j j j m j m j m j j j mj j j
1 1 2 2 1 2 3 3 2 2 1 2 2 1 3 31 1 2 3; | ; ( ) ; | ;

( 11
2 1
2 1

1

2 2

1

3

1

1 2

3 3 2 2 3 2 1 2) ; | ;

( )

/

j m

j

j

j
j m j m j j j m+

+

+
+







〈 − − 〉

= − jj j j m j m j j j m2 3
1 1 2 2 1 2 3 3

− 〈 − − − 〉; | ;

As an illustration, let us work out the Clebsh–Gordan coefficient for some simple cases. The following 
convention will be very much helpful to us:

For each angular momentum quantum number j, the Clebsh–Gordan coefficient

〈 − 〉j j j j j jj1 1 2 1  ; |  is a positive number.
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Example 10.9 Determine the Clebsh–Gordan coefficient when we add two angular momenta with 
quantum numbers j1 1 2= /  and j2 1 2= / .

Solution: The possible values of j are j =	1, 0. According to the phase convention, 1
2

1
2

1
2

1
2

11;  and 

1
2

1
2

1
2

1
2

00; −  are positive.

We have to bear in mind that m =	m
1 
+	m

2
.

We have four basis vectors in coupled representation. They are |11〉,|10〉,|1 1− 〉 and | 00〉. They can 
be written as follows:

11 1
2

1
2

1
2

1
2

11 1
2

1
2

1
2

1
2

10 1
2

1
2

1
2

1
2

10 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

=

= − − + −

; ;

; ; ;
22

10 1
2

1
2

1
2

1
2

1 1 1
2

1
2

1
2

1
2

1 1 1
2

1
2

1
2

1
2

00 1
2

1
2

1
2

1
2

00

−

− = − − − − −

= −

;

; ;

; 11
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

00 1
2

1
2

1
2

1
2

; ; ;− + − −

Let us remember that | ; | |j m j m j m j m1 1 2 2 1 1 2 2〉 = 〉 〉. It is obvious that 1
2

1
2

1
2

1
2

11 1; .=

i.e., 11 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

= =; .

ˆ | ( ˆ ˆ )J J J− − −〉 = +11 1
2

1
2

1
2

1
21 2

( ) ( )1 2 1 2

ˆLHS : |11 2

1 1 1 1 1 1 1 1 1 1 1 1ˆ ˆ ˆ ˆRHS : ( )
2 2 2 2 2 2 2 2 2 2 2 2

J

J J J J

−

− − − −

〉 |10〉=

+ = +

�

= − + −

= − + −

� �

� �

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

; ;

∴ = − + −

〉 = − + −

2 10 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

10 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1

� � �; ;

| ; ;
22

We can straightaway write

1 1 1
2

1
2

1
2

1
2

− = − −;
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Alternatively, we calculate ˆ |J − 〉10 .

ˆ | ( ˆ ˆ ) ; ( ˆ ˆ ) ;J J J J J− − − − −〉 = + − + + −

=

10 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1 2 1 2

(( ˆ ˆ ) ( ˆ ˆ )J J J J1 2 1 2
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

2 1
2

1
2

1
2

− − − −+ − + + −

= ⋅ − −� 11
2

2 1
2

1
2

1
2

1
2

= − −� ; .

∴ − 〉 = − −2 1 1 2 1
2

1
2

1
2

1
2

� �| ;

| ;1 1 1
2

1
2

1
2

1
2

− 〉 = − −

The states |10〉 and | 00〉 have to be orthogonal. So let us write

| ; ;00 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
21 2〉 = − + −C C

The orthoganality between |10〉 and | 00〉 is 〈 〉 =10 00 0| .

∴ + =
C C1 2

2 2
0 or C C2 1= −

The normalization condition is 
C C

C

1
2

2
2

1

1

1
2

+ =

∴ = ±

However, by phase convention, C1 is positive.

∴ =C1
1
2

 and C2
1
2

= −

∴ 〉 = − − −| ; ;00 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

So we have 

| ;

| ; ;

| ;

11 1
2

1
2

1
2

1
2

10 1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

00 1
2

1
2

1
2

1
2

〉 =

〉 = − + −

〉 = −− − −

− 〉 = − −

1
2

1
2

1
2

1
2

1
2

1
2

1 1 1
2

1
2

1
2

1
2

;

| ;
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The Clebsh–Gordan coefficients are

 

1
2

1
2

1
2

1
2

11 1

1
2

1
2

1
2

1
2

10 1
2

1
2

1
2

1
2

1
2

10 1
2

1
2

1
2

1
2

1
2

00

;

; ; ;

;

=

− = − =

−

  

== − = −1
2

1
2

1
2

1
2

1
2

00 1
2

   ;

The transformation matrix is given below:

Table 10.2 Clebsh–Gordan coefficients for j1 = 1/2 and j2 = 1/2 

{ Õ11 { Õ10 { Õ00 { - Õ1 1

1
2

1
2

1
2

1
2

;
1

1
2

1
2

1
2

1
2

; − 1 2 1 2

1
2

1
2

1
2

1
2

− ; 1 2 −1 2

1
2

1
2

1
2

1
2

− −;
1

Example 10.10 Determine the Clebsh–Gordan coefficient when two angular momenta of quantum 
numbers j1 1=  and j2 1 2= /  are added.

Solution: The possible values of j = 3
2

 and j = 1
2

.

So we have six states.

3
2

3
2

3
2

1
2

3
2

1
2

3
2

3
2

, , ,− −  and 1
2

1
2

1
2

1
2

, −

By phase convention,

11 1
2

1
2

3
2

3
2

;  and 11 1
2

1
2

1
2

1
2

; −  are positive.

3
2

3
2

11 1
2

1
2

3
2

3
2

11 1
2

1
2

3
2

1
2

11 1
2

1
2

3
2

1
2

11 1
2

1
2

10 1
2

1
2

3
2

=

= − − +

; ;

; ; ; 11
2

10 1
2

1
2

3
2

1
2

10 1
2

1
2

3
2

1
2

10 1
2

1
2

1 1 1
2

1
2

3
2

1
2

1 1 1
2

1

;

; ; ; ;− = − − − + − − −
22

3
2

3
2

1 1 1
2

1
2

3
2

3
2

1 1 1
2

1
2

1
2

1
2

11 1
2

1
2

1
2

1
2

11 1
2

1
2

1

− = − − − − −

= − − +

; ;

; ; 00 1
2

1
2

1
2

1
2

10 1
2

1
2

1
2

1
2

10 1
2

1
2

1
2

1
2

10 1
2

1
2

1 1 1
2

1
2

1
2

1

; ;

; ; ;− = − − − + − −
22

1 1 1
2

1
2

3
2

3
2

11 1
2

1
2

−

=

; .

; .
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3
2

3
2

11 1
2

1
2

3
2

3
2

11 1
2

1
2

3
2

1
2

11 1
2

1
2

3
2

1
2

11 1
2

1
2

10 1
2

1
2

3
2

=

= − − +

; ;

; ; ; 11
2

10 1
2

1
2

3
2

1
2

10 1
2

1
2

3
2

1
2

10 1
2

1
2

1 1 1
2

1
2

3
2

1
2

1 1 1
2

1

;

; ; ; ;− = − − − + − − −
22

3
2

3
2

1 1 1
2

1
2

3
2

3
2

1 1 1
2

1
2

1
2

1
2

11 1
2

1
2

1
2

1
2

11 1
2

1
2

1

− = − − − − −

= − − +

; ;

; ; 00 1
2

1
2

1
2

1
2

10 1
2

1
2

1
2

1
2

10 1
2

1
2

1
2

1
2

10 1
2

1
2

1 1 1
2

1
2

1
2

1

; ;

; ; ;− = − − − + − −
22

1 1 1
2

1
2

3
2

3
2

11 1
2

1
2

−

=

; .

; .

ˆ ( ˆ ˆ ) |

|

J J J− − −= + 〉

= 〉 − +

3
2

3
2

11 1
2

1
2

3
2

1
2

1
3

11 1
2

1
2

2
3

10 1
2

1
2

1 2

ˆ ( ˆ ˆ ) | |J J J− − −= + 〉 − + 〉










3
2

1
2

1
3

11 1
2

1
2

2
3

10 1
2

1
21 2

3
2

1
2

2
3

10 1
2

1
2

1
3

1 1 1
2

1
2

3
2

3
2

1 1 1
2

1
2

− = 〉 − + − 〉

− = − 〉 −

| |

|

Let us write 1
2

1
2

 as

1
2

1
2

11 1
2

1
2

10 1
2

1
21 2= 〉 − + 〉C C| |

This state is orthogonal to 3
2

1
2

∴ = ⇒ + =3
2

1
2

1
2

1
2

0
3

2
3

01
2

C
C  C

C
2

1

2
= −

The normalization condition is 

C C

C

1
2

2
2

1

1

2
3

+ =

∴ =

By phase convention, C1
2
3

=

∴ = 〉 − − 〉1
2

1
2

2
3

11 1
2

1
2

1
3

10 1
2

1
2

| |

By operating Ĵ − or 1
2

1
2

,we get

1
2

1
2

1
3

10 1
2

1
2

2
3

1 1 1
2

1
2

− = 〉 − − − 〉| |

The Clebsh–Gordan coefficients are given below:

11 1
2

1
2

3
2

3
2

1; =
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11 1
2

1
2

3
2

1
2

1
3

10 1
2

1
2

3
2

1
2

2
3

11 1
2

1
2

1
2

1
2

2
3

10 1
2

; ;

; ;

− = =

− =

   

      11
2

1
2

1
2

1
3

10 1
2

1
2

1
2

1
2

1
3

1 1 1
2

1
2

1
2

1
2

2
3

1 1 1
2

1
2

3
2

= −

− − = − − = −

− − −

; ;

;

  

33
2

1=

The transformation matrix is given below:

Table 10.3 Clebsh–Gordan coefficients for j1 = 1 and j2 = 1/2 

3
2

3
2

3
2

1
2

1
2

1
2

3
2

1
2
- 1

2
1
2
- 3

2
3
2
-

11; 1
2

1
2

1

11 1
2

1
2

; − 1
3

2
3

10 1
2

1
2

; 2
3

− 1
3

10 1
2

1
2

; − 2
3

1
3

1 1 1
2

1
2

− ; 1
3

− 2
3

1 1 1
2

1
2

− −; 1

Example 10.11 Obtain the Clebsh–Gordan coefficient for all the states belonging j = 2, resulting from 
the addition of angular momenta with quantum number j

1
	= 1 and j

2
	=	1.

Solution:

| ; | | ;

| ; | | ; ; | |

22 11 1122 11 11

21 11 10 21 11 10 10 1121 10

〉 = 〈 〉 〉
〉 = 〈 〉 〉 + 〈 〉 ;;

| ; | | ; ; | | ; ; |

11

20 11 1 120 11 1 1 10 10 20 10 10 1 1 1120

〉
〉 = 〈 − 〉 − 〉 + 〈 〉 〉 + 〈 − 〉〉 − 〉

− 〉 = 〈 − − 〉 − 〉 + 〈 − − 〉 − 〉
| ;

| ; | | ; ; | | ;

|

1 1 11

2 1 10 1 12 1 10 1 1 1 1 10 2 1 1 1 10

22 2 1 1 1 12 2 1 1 1 1− 〉 = 〈 − − − 〉 − − 〉; | | ;

Let us use the following recursion relation.

( ) ( ) ; |

( ) ( )

/ /

/ /

j m j m j m j m jm

j m j m

+ − + 〈 − 〉

= − + + 〈

1 2 1 2
1 1 2 2

1 1
1 2

1 1
1 2

1 1

1 jj m j m jm j m j m j m j m jm1 1 2 2 2 2
1 2

2 2
1 2

1 1 2 21 1 1+ 〉 + − + + 〈 + 〉; | ( ) ( ) ; |/ /
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Let us start with 〈 〉11;11|22

〈 〉 =11;11|22 1

Substituting the values m m m1 21 0 2= = =; ;  in the recursion relation, we get

( ) . . ; ; ;/2 2 1 11 10 21 0 2 12 10 22 2 11 11 221 2+ = × +

= 2

∴〈 〉 =11 0 11 1
2

; |

m m m1 20 1 2= = =; ;

( ) . . ; | . ; | ; |/2 2 1 0 121 2 11 1122 0 2 12 11221 2+ 〈 〉 = 〈 〉 + × 〈 〉

∴〈 〉 =10 11 21 1
2

; |

m m m1 21 1 1= = − =; ;

3 2 1 120 0 3 12 1 121 1 2 11 10 21. ; | . . ; | . . ; |〈 − 〉 = 〈 − 〉 + 〈 〉

∴〈 − 〉 =11 1 20 1
6

; |

m m m1 20 0 1= = =; ;

3 2 10 10 20 2 11 10 21 2 10 1121. ; | . ; | ; |〈 〉 = 〈 〉 + 〈 〉

∴〈 〉 =10 10 20 2
3

; |

m m m1 21 1 1= − = =; ;

3 2 1 1 1120 2 10 1121 0 3 1 1 12 21. ; | . ; | . ; |〈 − 〉 = 〈 〉 + 〈 − 〉

∴〈 − 〉 =1 1 1120 1
6

; |

m m m1 20 1 0= = − =; ;

2 3 10 1 12 1 2 11 1 120 2 10 10 20⋅ 〈 − − 〉 = 〈 − 〉 + 〈 〉; | ; | ; |

∴〈 − − 〉 =10 1 1 2 1 1
2

; |

m m m1 21 0 0= − = =; ;

2 3 1 1 10 2 1 2 10 10 20 2 1 1 1120⋅ 〈 − − 〉 = 〈 〉 + 〈 − 〉; | ; | ; |
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∴〈 − − 〉 =1 1 10 2 1 1
2

; |

m m m1 21 1 1= − = − = −; ;

1 2 1 1 1 1 2 2 2 10 1 1 2 1 2 1 1 10 2 1⋅ ⋅ − − − = − − + − −; ; ;

∴ − − − =1 1 1 1 2 2 1; .

Example 10.12 Obtain the general expression for the Clebsh–Gordan coefficient when two angular 
momenta of quantum numbers j

1 
and j

2
 = 1/2 are added.

Solution: The possible j values are j1 1 2+ /  and j1 1 2− / .

j m j m j m j m j m j m j m1 1 1 1 1 1 1
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

+ = − + − + + − + +; ; ; 11
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
21 1 1 1 1 1

;

; ; ;

−

− = − − − + + − −j m j m j m j m j m j 11
2

1
2

1
2

1
21m j m + −;

Let us simplify these equations as follows:

j m C j m C j m1 1 1 2 1
1
2

1
2

1
2

1
2

1
2

1
2

1
2

+ = − + + −; ;

j m C j m C j m1 3 1 4 1
1
2

1
2

1
2

1
2

1
2

1
2

1
2

− = − + + −; ;

Let us first consider the equation.
The normalization condition for this state is 

C C1
2

2
2 1+ = .

Let us recall 

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆJ J J J J J J J Jz z
2

1
2

2
2

1 2 1 2 1 22= + + + ++ − − +

ˆ ˆ ; ˆ ;J j m C J j m C J j m2
1 1

2
1 2

2
1

1
2

1
2

1
2

1
2

1
2

1
2

1
2

+ = − + + −

LHS = Ĵ j m j j j m2
1 1 1

2
1

1
2

1
2

3
2

1
2

+ = +( ) +( ) +�

Note that ˆ ˆJ J2 2
1
2

1
2

0 1
2

1
2

0+ −= − =

+ −

− +

= + + − + −

+ + + + − + + −

2 2
1 1 2 1 2 1 1 1 2 1

2 2
2 1 2 1 2 1 2 1 2 1

1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆRHS [ 2 ] ; ;
2 2 2 2 2 2

1 1 1 1 1 1ˆ ˆ ˆ ˆ ˆ ˆ[ 2 ] ; ;
2 2 2 2 2 2

z z

z z

C J J J J j m C J J j m

C J J J J j m C J J j m
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= + + +





− + − +( ) + +( )C j j m j m C j m j m1 1 1 1 1 1

1 2

1

1

1 1
4

1
2

1
2

1
2

1
2

1
2

( ) ;
/ //

;

( ) ;

2

1

2 1 1 1 2 1

1
2

1
2

1
2

1 1
4

1
2

1
2

1
2

1

j m

C j j m j m C j m

+ −

+ + − +





+ − + + +
22

1
2

1
2

1
2

1
21

1 2

1( ) − +( )





−j m j m
/

;

Let us equate LHS and RHS.

From the terms involving j m1
1
2

1
2

1
2

+ −;  we get 

j m C C j m1 1 2 1

2
2

1 2

1
2

1
2

0− +( ) − +( ) −





=
/

From the terms involving j m1
1
2

1
2

1
2

− ;  we get

 − +( ) −





+ + +( ) =j m C C j m1

2
2

1 2

2 1 1
1
2

1
2

0
/

 C
j m

j m
C2

1

1 2

1

1 2 1

1
2

1
2

=
− +( )
+ +( )

/

/
 (10.74)

The normalization condition is 

C C1
2

2
2 1+ =

Substituting the Equation (10.74) in the normalization condition, we get 

C
j m

j1
2

1

1

1 2
1
2

2 1
=

+ +

+

















/

C
j m

j1

1

1

1 2
1
2

2 1
= ±

+ +

+

















/

i.e., j m j m
j m

j1 1

1

1

1 2

1
2

1
2

1
2

1
2

1
2

2 1
− + = ±

+ +

+











;

/

 (10.75)

To choose the correct sign, let us consider the state j j1 1
1
2

1
2

+ +  which is given by

j j j j j j j j1 1 1 1 1 1 1 1
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

+ + = + +; ;
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∴ + + =j j j j1 1 1 1
1
2

1
2

1
2

1
2

1;

\ This is consistent with the choice of positive sign in (10.75) as can be easily checked below.
From (10.75), we have

j m

j

j j

j

1

1

1 2

1 1

1

1 2
1
2

2 1

1
2

1
2

2 1
1

+ +

+

















=
+ + +

+

















=

∴

/ /

jj m j m
j m

j1 1

1

1

1 2

1
2

1
2

1
2

1
2

1
2

2 1
− + = +

+ +

+

















;

/

From (10.74), we have

 j m j m
j m

j1 1

1

1

1 2

1
2

1
2

1
2

1
2

1
2

2 1
+ − + =

− +

+

















;

/

Similarly, the other Clebsh–Gordan coefficient can be calculated.

j m j m
j m

j

j m

1 1

1

1

1 2

1

1
2

1
2

1
2

1
2

1
2

2 1

1
2

1
2

1
2

− − = −
− +( )

+

















+ −

;

;

/

jj m
j m

j
1

1

1

1 2

1
2

1
2

2 1
− =

+ +( )
+











( )

/

These results are tabulated in a table.

Table 10.4 Clebsh–Gordan coefficients  〈 − 〉j m m m jm1 2 21; |j1 m −	m2; 
1
2

m2|jm〈 − 〉j m m m jm1 2 21; |  for j1 = j1 and ĵ2 =	1/2

m2→	

j↓

m

m m

2

1

1
2

1
2

=

= -

m

m m

2

1

1
2

1
2

= -

= +

1
2

j1 + j m

j
1

1

1 2
1
2

2 1

+ +

+

















/
1/2

1
2

2j1 1

j1 m − + 
 +
  

1
2

j1 −
1/2

1
2

j1 m − + −  2j1 1+
  

1/2

1
2

2j1 1

j1 m + + 
 +
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In the same way we can determine the expressions for C.G. coefficients in the additions of angular 
momenta corresponding to j = j

1
 and j = 1

Table 10.5 Clebsh–Gordan coefficients 〈 − 〉j m m m jm1 2 21; |j1 m −	m2; 1m2|jm〈 − 〉j m m m jm1 2 21; |  for j1 = j1 and j2 =	1

m2→	

j

m
m m

2

1

1
1

=
= -

m2 = 0
m1 = m

m
m m

2

1

1
1

= -
= +

j1 1+ ( )( )
[( )( )]

/
j m j m

j j
1 1

1 1

1 2
1

2 1 2 2
+ + +

+ +






( )( )
[( )( )]

/
j m j m

j j
1 1

1 1

1 2
1 1

2 1 1
− + + +

+ +






( )( )
( )( )

/
j m j m

j j
1 1

1 1

1 2
1

2 1 2 2
− − +

+ +






j1 −
+ − +

+






( )( )
( )

/
j m j m

j j
1 1

1 1

1 2
1

2 1

m
j j[ ( )] /
1 1

1 21+
( )( )

( )

/
j m j m

j j
1 1

1 1

1 2
1

2 1
− + +

+






j2 1− ( )( )
( )

/
j m j m

j j
1 1

1 1

1 2
1

2 2 1
− − +

+






−
− +

+






( )( )
( )

/
j m j m

j j
1 1

1 1

1 2

2 1
( )( )

( )

/
j m j m

j j
1 1

1 1

1 2
1

2 2 1
+ + +

+






10.13 TRANSFORMATIONS OF OPERATORS UNDER ROTATIONS
We have already seen under rotation transformation,

〉 → 〉 = 〉ˆ| | ( ) |U Ry y y′

and ˆ ˆ ˆ ( ) ˆ ˆ ( )†A A U R AU R→ ′ =  (10.76)

The unitary transformation ˆ ( )U R  is given by ˆ ( ) .ˆU R e i= − qn J/�.

ˆ ( ) ˆ ˆ ( )†U R AU R  may be Â itself. This need not be true for all operators. In general, one studies the 
transformation properties of a group of operators ˆ , ˆ ,...A A1 2  In such cases, ˆ ( ) ˆ ˆ ( )†U R AU R  may be a lin-
ear combination of the operators within this group.

The operators are now classified into different kinds based on the relationship between Âi  and 
ˆ ( ) ˆ ˆ ( )†U R A U Ri .

Scalar Operator
An operator Ŝ  is a scalar operator if it satisfies 

 ˆ ( ) ˆ ˆ ( ) ˆ†U R SU R S=  (10.77)

=ˆ ˆˆ ˆ( ) ( )U R S S U R

 ˆ ˆ. / . /ˆ ˆi ie S Se− −∴ =n J n J� �q q  (10.78)

This implies that = = =ˆ ˆ ˆˆ ˆ ˆ[ , ] 0,[ , ] 0,[ , ] 0x y zS J S J S J  (10.79)

These relations can be used to verify whether a particular operator is a scalar operator or not under 
rotation.
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A simple property of a scalar operator is that its eigenvalues are independent of the quantum num-
ber m. This can be easily seen as follows:

Since Ŝ  commutes with all the three angular momentum operators ˆ , ˆJ Jx y and ˆ ,J z  all the eigenfunc-
tions of Ŝ  should also be simultaneously the eigenfunction of ˆ , ˆJ Jx y and Ĵ z . This is possible only if the 
eigenvalue of Ŝ  is independent of m.

Let us elaborate this aspect further with Example 10.13. Let us characterize a state by a set of 
quantum numbers a, j and m, where a  is one or more number of quantum numbers which are different 
from j and m. Let the state |y f〉 〉and |  be given by

 | | | |y a f a〉 = 〉 〉 = ′ ′ ′〉jm j mand  (10.80)

Example 10.13 Show that 〈 〉a ajm S jm| |  is independent of m

Solution: One way of seeing this result is that the eigenvalue of S is independent of m since it com-
mutes with all the angular momentum operators J J Jx y z, and . Another way is to show that the matrix 
element 〈 〉a ajm S jm| |  is the same for different values of m. Let us evaluate 〈 + + 〉a ajm S jm1 1| | .

Note that J jm C jm j m j m jm+ +〉 = + 〉 = − + + + 〉| | [( )( )] |/1 1 11 2

Therefore | jm + 〉1  is given by

 | |jm
C

J jm+ 〉 = 〉
+

+1 1

Similarly, we have 〈 + = 〈 +
+

−jm
C

jm J1 1 1| |

Making use of these results we get

 〈 + + 〉 = 〈 〉
+

− +a a a ajm S jm
C

jm J SJ jm1 1 1
2

| | | |

Since S commutes with J+ and J−, we have J−S J+	=	S J−J+.

	
〈 + + 〉 = 〈 〉 = 〈 〉

=

+
− +

+
− +a a a a a ajm S jm

C
jm J SJ jm

C
jm SJ J jm

C

1 1 1 1

1

2 2
| | | | | |

++
+ 〈 〉 = 〈 〉

2
2C jm S jm jm S jma a a a| | | |

So, 〈 + + 〉a ajm S jm1 1| |  and 〈 〉a ajm S jm| |  are the same. Since it is true for any m, it is independ-
ent of m.

Example 10.14 Show that 〈 ′ ′ ′ 〉 = ′ ′ ′a a a d d daaj m S jm C j jj mm| | ( , ) .

Solution: Since [ , ]S J 2 0=  for a scalar operator S, we have

 
〈 ′ ′ ′ 〉 = 〈 ′ ′ ′ − 〉

= + − ′ ′ +
a a a aj m S J jm j m SJ J S jm

j j j j

| [ , ] | | ( ) |

[ ( ) (

2 2 2

1 1))] | |�2 0〈 ′ ′ ′ 〉 =a aj m S jm
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The matrix element 〈 ′ ′ ′ 〉 = ≠ ′a aj m S jm j j| | 0 if

In the same way let us make use of [ , ]S JZ = 0  for a scalar operator

 
〈 ′ ′ ′ 〉 = 〈 ′ ′ ′ − 〉

= − ′ 〈 ′ ′ ′
a a a a

a
j m S J jm j m SJ J S jm

m m j m
z z z| [ , ] | | ( ) |

( ) |� SS jm|a 〉 = 0

The matrix element 〈 ′ ′ ′ 〉 = ≠ ′a aj m S jm m m| | 0 if

With these results and the fact that 〈 〉a ajm S jm| |  is independent of m, it is obvious to write

 〈 ′ ′ ′ 〉 = ′ ′ ′a a a d d daaj m S jm C j jj mm| | ( , )

where C j( , )a  is a constant independent of m.

Example 10.15 Show that S ⋅ r
r

 is a scalar operator under rotation transformation. (Note S  is the spin 

angular momentum operator.)

Solution:

J L S= +

Let us evaluate the following commutation relations:

J
rx , ?S r⋅





=  J
ry , ?S r⋅





=  J
rz , ?S r⋅





=

S r⋅ = + +
r

S x
r

S y

r
S z

r
x y z

J S x
r

J S x
r

S J x
rx x x x x x, [ , ] ,





= + 





[ , ] [ , ]

, , ,

J S L S S

J x
r

L x
r

S x
r

x x x x x

x x x

= + =







= 





+ 





=

0

0

∴ 





=J
S

r
xx

x, 0

J S
y
r

L S
y
r

S S
y
r

S L
y
r

y
r

x y x y x y

y x

, , ,

,







= 





+ 





= 





+ [[ , ]S S i
S y
r

S z

rx y
z y= −









�
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Similarly, we have J
S z
r

i
S z

r
S y
rx

z y z,






= −








�

 ∴ ⋅





=J
rx , S r 0

Similarly, we can show that  J
r

J
ry z, ,S S⋅





= ⋅





=r r 0

∴ ⋅S r
r

 is a scalar operator under rotation.

Vector Operator
Let us now consider a set of three operators V

1
, V

2
 and V

3
. These three operators are said to be vector 

operators if they obey the following transformation law:

 
〉 → 〉

〉 〉〉 = 〉′ ′ ∑
ˆ| |

| | | |i i j j
j

U

V R V

y y

y y y y
 (10.81)

where R is the rotation matrix relating the coordinates of the vector r and ′r .

i.e.,  ′ =r rR

It can be shown that this definition leads to the following results:

= = − =

= = − =

� �

� �

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [ , ] 0

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [ , ] 0

x y z x z y x x

y z x y x z y y

V J i V V J i V V J

V J i V V J i V V J

 = = − =� �ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] [ , ] [ , ] 0z x y z y x z zV J i V V J i V V J  (10.82)

These relations themselves can be taken as a definition of vector operators.

Example 10.16 Show that the operators rop and pop  are vector operators under rotation.

Solution:

rop op op opx y z= + +ˆ ˆ ˆx y z

We now have a set of three operators: x
op

, y
op

 and z
op

.
It is easy to check the following commutation relations:

[ , ] [ , ] [ , ]

[ , ] [ , ]

L x L x i z L x i y

L y i z L y

x y z

x y

= = − =

= =

0

0

       

    

� �

�    

       

[ , ]

[ , ] [ , ] [ , ]

L y i x

L z i y L z i x L z

z

x y z

= −

= − = =

�

� � 0
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For instance,  [ , ] [ , ] [ , ]L y yp zp y z p y i zx z y y= − = − = �

\ x
op

, y
op

 and z
op

 form a vector operator.
In the same way, the operators p

x
, p

y
 and p

z
 together form a vector operator.

10.14 SPhERICAL TENSOR OPERATORS Tq
k

This classification emphasizes a different aspect of rotation transformation. The definition of spherical 
tensor requires the definition of rotation matrix Dm m

j
′ .

The unitary transformation corresponding to rotation is given by

 ˆ . ˆU e i= − q n J /�

We can build matrix representation of this operator. Let us choose the angular momentum state vectors 
| jm〉 as basis states to construct the matrices representing Û . There are (2j + 1) basis states, and so the 
matrices representing Û  are (2j + 1) dimensional. The rotation matrix Dm m

j
′  is defined as

 ˆ.ˆ| | | |j i
m mD jm U jm jm e jm−

′ = 〈 〉 = 〈 〉′ ′ n J /�q  (10.83)

Dm m
j
′  is ( )′m m th  the elements of the matrix e i− q n J. /�.
In the spherical tensors Tq

k , the indices k and q are very similar to j and m. The components of Tq
k  are

T T T TK
k

K
k

K
k

K
k

k

, , ....− − −

+

1 2

2 1( ) components
� ���� ����

For instance, a second-rank spherical tensor Tq
2  is given by a set of five operators.

T T T T T2
2

1
2

0
2

1
2

2
2, , , ,− −

A set of (2k + 1) operators forms a spherical tensor of rank k if it transforms as given below:

 ˆ ˆ ˆ ˆUT U T Dq
k

q
k

q q
k

q

† = ′ ′
′

∑  (10.84)

This definition leads to the following results:

 [ , ]J T q Tz q
k

q
k= �  (10.85)

 [ , ] [( )( )] /J T k q k q Tq
k

q
k

+ += − + +1 1 2
1  (10.86)

 [ , ] [( )( )] /J T k q k q Tq
k

q
k

− += + − +1 1 2
1 (10.87)

These results themselves can be taken as definition of spherical tensors of rank k.
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Example 10.17 Show that T x iy T z T x iy1
1

0
1

1
11

2
1
2

= − + = = −−( ), ( )and  form a spherical tensor 
of rank 1.

Solution: We have to verify whether the following results are true or not.

 

         [ , ] [ , ] [ , ]

[ , ]

J T T J T J T T

J T

z z z1
1

1
1

0
1

1
1

1
1

1
1

0

0

= = = −

=
− −

+

� �

                  

        

[ , ] [ , ]

[

J T T J T T

J

+ + −

−

= =0
1

1
1

1
1

0
12 2� �

,, ] [ , ] [ , ]T T J T T J T1
1

0
1

0
1

1
1

1
12 2 0= = =− − − −� �         

Let us evaluate [ , ].J Tz 1
1

[ , ] , ( ) [ , ] [ , ]

[ ]

J T L x iy L x i L y

x iy

z z z z1
1 1

2
1
2 2

2

= − +





= − −

= − + =� �TT1
1

The other relations can be evaluated in the same way.

Example 10.18 Show that the components T J iJ T Jx y z1
1

0
11

2
= − + =( ),  and T J iJx y− = −1

1 1
2

( ) 

form a spherical tensor of rank 1.

Solution: We have to verify whether the following relations are true or not.

          [ , ] [ , ] [ , ]

[ , ]

J T T J T J T T

J T

z z z1
1

1
1

0
1

1
1

1
1

1
1

0= = = −

=
− −

+

� �

00 2 20
1

1
1

1
1

0
1                

        

[ , ] [ , ]

[

J T T J T T

J

+ + −

−

= =� �

,, ] [ , ] [ , ]T T J T T J T1
1

0
1

0
1

1
1

1
12 2 0= = =− − − −� �         

Let us evaluate one relation

[ , ] , ( ) [ , ] [ , ]

(

J T J J iJ J J i J J

J

z z x y z x z y

x

1
1 1

2
1
2 2

2

= − +





= − −

= − +� iiJ Ty ) = � 1
1

Similarly, other relations can be verified.

Example 10.19 Show that the spherical harmonics Y
lm

 form a spherical tensor of rank l.

Solution: The spherical harmonics Y
lm

(q, f) are eigenfunctions of L2 and L
z
. But they can be also viewed 

as operators. When they act on arbitrary function f(q, f), it amounts to multiplying Y
lm

 and f(q, f).
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We have to verify

[ , ]

[ , ] [( )( )]

[ , ] [(

/

L Y m Y

L Y l m l m Y

L Y l

z lm lm

lm lm

lm

=
= − + +
= +

+ +

−

�

1 1 2
1

mm l m Ylm)( )] /− + −1 1 2
1

Consider [ , ]L Yz lm y , where y	 is an arbitrary function y	.

[ , ] [ , ]

( )

( )

L Y L Y Y L

L Y Y L

L Y Y L

z lm z lm lm z

z lm lm z

z lm lm z

y y
y y
y y

= −
= −
= + −YY L

m Y
lm z

lm

y
y= �

∴ =[ , ]L Y m Yz lm lm�

The other relations can be verified in the same way.

10.15 WIGNER–ECkART ThEOREM
Let |a jm〉 and | ′ ′〉a j m′  be two-state vectors of a system where a and a	′ stand for quantum numbers 
other than the angular momentum quantum numbers j and m. Wigner–Eckart theorem states that the 
matrix elements of spherical tensor Tq

k  between states |a jm〉 and | ′ ′ ′〉a j m  can be factored into two 
components: one component which depends only geometrical quantum numbers q, m, m′ and the 
other component which is independent of these quantum numbers. 

 〈 ′ ′ 〉 = 〈 ′〉〈 ′ 〉a a a aj m T jm jm kq j m j T jq
k k′ ′ ′ ′| | ; | || ||  (10.88)

where 〈 ′ ′〉jm kq j m; |  is the Clebsh–Gordan coefficient and ′ ′a aj T jk  is called reduced matrix 

element which is independent of angular momentum quantum numbers m, m′ and q. ′ ′a aj T jk  

is a symbolic representation of a factor of the matrix element which is independent of the quantum 
number m, m′ and q.

Before analyzing the matrix elements of spherical terms, let us consider the following relations:
J K J+ = ′

where J, K and ′J  are angular momentum operators.

ˆ | ( ) | ˆ | |

ˆ | (

J jm j j jm J jm m jm

K kq k k

z
2 2

2

1〉 = + 〉 〉 = 〉

〉 = +

� �            

11

1

2

2 2

) | ˆ | |

ˆ | ( ) |

� �

�

kq K kq q kq

J j m j j j

z〉 〉 = 〉

′ ′ ′〉 = ′ ′ + ′

           

′′〉 ′ ′ ′〉 = ′ ′ ′〉m J j m m j mz   ˆ | |�

The recursion relations (10.72) and (10.73) between the Clebsh–Gordan coefficients now become

 ( ) ( ) ; |

( ) ( )

/ /

/ /

′ − ′ ′ + ′ + 〈 ′ ′ + 〉

= + − + 〈

j m j m jm kq j m

j m j m j m

1 2 1 2

1 2 1 2

1 1

1 ++ ′ ′〉 + + − + 〈 + ′ ′〉1 1 11 2 1 2; | ( ) ( ) ; |/ /kq j m k q k q jm k q j m  (10.89)
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 ( ) ( ) ; |

( ) ( )

/ /

/ /

′ + ′ ′ − ′ + 〈 ′ ′ − 〉

= − + + 〈

j m j m jm kq j m

j m j m j m

1 2 1 2

1 2 1 2

1 1

1 −− ′ ′〉 + − + + 〈 − ′ ′〉1 1 11 2 1 2; | ( ) ( ) ; |/ /kq j m k q k q jm k q j m  (10.90)

Let us now take the commutation relation

 J T T J q Tz q
k

q
k

z q
k− = �

 
〈 − 〉 = 〈 〉

− − 〈 ′ ′ 〉 =

j m J T T J jm q j m T jm

m m q j m T jm

z q
k

q
k

z q
k

q
k

′ ′ ′ ′| | | |

( ) | |

�

00

 ∴〈 ′ 〉 = ′ = +j m T jmq
k′ | | 0 unless m m q  (10.91)

This is similar to the results of the addition of angular momenta J and K.
Now, let us consider the other commutation relations.

J T T J k q k q T

J T T J k q k

q
k

q
k

q
k

q
k

q
k

+ + +

− −

− = − + +

− = + −

( ) ( )

( ) (

/ /

/

1 2 1 2
1

1 2

1

qq Tq
k+ −1 1 2

1) /

These equations can be rewritten as follows:

 J T T J k q k q Tq
k

q
k

q
k

+ + += + − + +( ) ( )/ /1 2 1 2
11  (10.92)

 J T T J k q k q Tq
k

q
k

q
k

− − −= + + − +( ) ( )/ /1 2 1 2
11  (10.93)

From (10.92), we have

 〈 ′ 〉 = 〈 ′ 〉 + − + + 〈 ′+ +j m J T jm j m T J jm k q k q j m Tq
k

q
k

q′ ′ ′| | | | ( ) ( ) |/ /1 2 1 21 ++ 〉1
k jm|

The above equation becomes

 
( ) ( ) | |

( ) ( )

/ /

/ /

′ + ′ ′ − ′ + 〈 ′ ′ − 〉

= − + + 〈 ′

j m j m j m T jm

j m j m

q
k1 2 1 2

1 2 1 2

1 1

1 jj m T j m k q k q j m T jmq
k

q
k′ + 〉 + − + + 〈 ′ ′ 〉+| | ( ) ( ) | |/ /1 11 2 1 2

1

 (10.94)

From (10.93), we have 

〈 ′ 〉 = 〈 ′ 〉 + + − + 〈 ′ +− −j m J T jm j m T J jm k q k q j m Tq
k

q
k

q′ ′ ′| | | | ( ) ( )/ /1 2 1 21 −− 〉1
k jm|

The above equation becomes

 
( )( ) | |

( ) ( )

/

/ /

j m j m j m T jm

j m j m jm

q
k′ − ′ ′

′

′ + ′ + 〈 ′ + 〉

= + − + 〈 ′

1 1

1

1 2

1 2 1 2 || | ( ) ( ) | |/ /T jm k q k q j m T jmq
k

q
k〉 + + − + 〈 ′ 〉−

1 2 1 2
11 ′

 (10.95)

The Equation (10.91) and the comparison of (10.94) with (10.89) suggests the following relations.
There are three matrix elements in (10.94) and there are three Clebsh–Gordan coefficients in (10.89).
The factors accompanying these matrix elements and the Clebsh–Gordan coefficients suggest to make 
the following one to one correspondence between them.
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〈 ′ ′ 〉 ⇔ 〈 ′ ′〉

〈 ′ ′ − 〉 ⇔ 〈 ′ ′ − 〉

j m T jm jm kq j m

j m T jm jm kq j m

q
k

q
k

| | ; |

| | ; |1 1

  

 

〈 ′ ′ + 〉 ⇔ 〈 + ′ ′〉

〈 ′ ′ 〉 ⇔ 〈 + ′+

j m T j m j m kq j m

j m T jm jm k q

q
k

q
k

| | ; |

| | ; |

1 1

11 jj m′〉

Note the first relation comes from Equation (10.91).In fact , the four matrix elements differ from the cor-
responding Clebsh–Gordan coefficients only by a constant factor C and so they can be written as follows.

 

〈 ′ ′ 〉 = 〈 ′ ′〉

〈 ′ ′ − 〉 = 〈 ′ ′ − 〉

j m T jm C jm kq j m

j m T jm C jm kq j m

q
k

q
k

| | ; |

| | ; |1 1

〈〈 ′ ′ + 〉 = 〈 + ′ ′〉

〈 ′ ′ 〉 = 〈 ++

j m T j m C j m kq j m

j m T jm C jm k q

q
k

q
k

| | ; |

| | ; |

1 1

11 ′′ ′〉j m

Similarly, the comparision of (10.95) and (10.90) suggest

 

〈 ′ ′ + 〉 = 〈 ′ ′ + 〉

〈 ′ ′ − 〉 = 〈 − ′

j m T jm C jm kq j m

j m T j m C j m kq

q
k

q
k

1 1

1 1

| | ; |

| | ; | jj m

j m T jm C jm k q j mq
k

′〉

〈 ′ ′ 〉 = 〈 − ′ 〉−| | ; |1 1

All these relations are consistent with each other. Note that the constant C is independent of q, m and 
m′. Therefore, we can write this constant C as 〈 ′ ′ 〉a aj T jk|| || . This is a symbolic representation of the 
fact that 〈 ′ ′ 〉j m T jmq

k| |  is a factor which is independent of q, m and m′.

 ∴〈 ′ ′ 〉 = 〈 ′ ′〉〈 ′ ′ 〉j m T jm jm kq j m j T jq
k k| | ; | || ||a a

EXERCISES
 1. How does spin angular momentum differ from orbital angular momentum?
 2. Is the spin of electron similar to the spin of the earth?
 3. Can we describe the spin of the earth using r p× ?
 4. Can we describe the spin of the electron using r p× ?
 5. Show that s s s s di j j i ij+ = 2  
 6. Verify the relation s s d e si j ij ijk ki= + . Using this relation, prove that r r r⋅ ⋅ = ⋅ + ⋅ ×A B A B i A B
 7. In the matrix representation, we have J J Jx x y y z x= = =� � �Σ Σ Σ, ,  for spin 1. Can we write 

Σ Σ Σ Σi j j i ij+ = c ? The matrices Σ Σ Σx y z, and  are given by

  ∑ = −
















x i

i

0 0 0

0 0

0 0

,   ∑ =
−

















y

i

i

0 0

0 0 0

0 0

,   ∑ =
−















z

i

i

0 0

0 0

0 0 0
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 8. Evaluate e i− ⋅pS n where n is a unit vector.
 9. Why does spin angular momentum commute with all the differential operators?
 10. What is meant by Clebsh–Gordan coefficient?

 11. Construct Clebsh–Gordan coefficient for j1
1
2

=  and j2
1
2

=  using the recursion relations for 

Clebsh–Gordan coefficients (Equations 10.71 and 10.72).
 12. Verify the orthoganality relation for Clebsh–Gordan coefficients for j1

1
2

=  and j2
1
2

= .

 13. Using the Table 10.4, determine the Clebsh–Gordan coefficient for j1 1=  and j2
1
2

= .

 14. Prove that 
1/2

(2 )! !ˆ( )
(2 )!

m j m
J jj j j m

j m−
 = − − 

〉〉

 15. Prove that −
−

− =〉 〉 + 

1/2
(2 )!( )!ˆ( ) | |

( )!
j m j j m

J jj jm
j m

 16. What happens to the wave function of spin 1
2

 system when it is rotated through 360°?

 17. What is the significance of Wigner–Eckart theorem?
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Many-Particle Systems 
and Quantum Statistics

In this chapter, we discuss two important concepts related to many-particle systems. They are the prin-
ciples of indistinguishability and the density matrix. The principle of indistinguishability is special to 
quantum mechanics. It is because of this principle that we have to divide all the elementary particles into 
two categories: bosons and fermions. There are drastic differences in physical properties between macro-
scopic objects that are made of bosons and fermions. We fi rst discuss the concept of identical particles, 
principle of indistinguishability and their consequences. Then we introduce the concept of density matrix.

Density matrix is a general formalism suitable to study an ensemble of identical particles whose 
states may be the same or different. The density matrix is so general that the concept of state vector 
can be replaced by density matrix and the quantum mechanics can be formulated in terms of density 
matrices. However, only an outline of density matrix is presented here.

11.1 IDENTICAL PARTICLES AND INDISTINGUISHABILITY
Each particle has two kinds of properties: intrinsic and extrinsic. Extrinsic properties depend on the 
environment. Intrinsic properties are unique to the particles, and these properties cannot be removed 
from a particle. The intrinsic properties which are of immediate interest to us are mass, charge and 
spin. The concept of identical particles and the principle of indistinguishability also belong to the 
category of intrinsic properties.

Two particles are said to be identical if they have same charge, mass and spin. We can have identical 
protons, identical electrons, identical photons and so on. Obviously protons and electrons cannot be 
termed as identical particles since they differ in many respects including the mass.

In classical physics, though the particles are identical, they can be distinguished from each other. 
This is the most important aspect in the context of this chapter. How is this possible? One way of 
distinguishing them is to stick labels of #1 and #2 (or particle a and b or some names like Tom and 
Jerry). To say that these objects are distinguishable, their identities should be permanent; i.e., they 
should have same identities at all instants of time. So the stickers with #1 and #2 should survive long 
enough to recognize that these two objects are distinct, though they are identical. If we are unable to 
fi nd such stickers, then there is no point in labelling the particular object as #1 and #2. The question 
is, can we fi nd such stickers? The answer is ‘Yes’ in classical physics and ‘No’ in quantum mechanics.

To distinguish two particles in classical physics, there is no necessity to put stickers with labels #1 
and #2. Newton’s laws help us to label the particles based on their trajectories. Consider the positions 
and momenta of the two particles at time t and ′t . Let us fi rst determine the position and the momenta 

11
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396  Quantum Mechanics

of the two particles at time t. Our experimental result is: one particle with r p1 1 and another particle with 

r p2 2. Let us label the particle with r p1 1 as #1 and the particle with r p2 2 as #2. So we have labelled the 
particles as #1 and #2. These are their identities at time t. What about their identities at a later time ′t ?

At time ′t , measure the position and the momenta of the particles. The experimental result is: one 
particle with ′ ′r p1 1  and another particle with ′ ′r p2 2. What about their identities?

The answer depends on the theory. Using Newton’s law, let us determine the trajectory of both 
particles #1 and #2. Suppose we find from the theory that #1 at r p1 1 at time t would have evolved to 

′ ′r  p1 1  at later time ′t  and #2 at r  p2 2 at t would have evolved to ′ ′r  p2 2 at ′t . Comparing these theoretical 
predictions with our experimental results, we immediately conclude that the particle with ′ ′r  p1 1  is #1 

and the particle with ′ ′r  p1 2 is #2. So the particles retain their identities between t and ′t  and we have 

distinguished them. This is shown in Fig. 11.1.
Can we do the same analysis to particles like electrons in quantum mechanics?

r1′, p1′
r2′ , p2′

r1, p1

r2, p2
#2

#1
r1′

r2′
r1

r2

Fig. 11.1 Indistinguishability in classical and quantum physics

Within quantum mechanics, only the wave function y evolves; i.e., the wave function evolves from 
y ( , , )r r1 2 t  to y ( , , )′ ′ ′r r1 2 t . The wave function y  tells only the probability of finding a particle at posi-
tionr at time t. Suppose we find a particle at r1 and a particle at r2 at time t. Let us label the particle at 
r1 as #1 and the particle at r2 as #2. So we have given particular identities to each particle at time t. At a 
later time ′t , again we find one particle at ′r1  and another particle at ′r2 . In the absence of the trajectory, 
there is no way of telling whether the particle #1 has evolved from r1 to ′r1  or whether the particle #2 
has evolved from r2 to ′r1 . In the same way, we cannot tell which of the two particle has evolved to ′r2 .
So there is no point in labelling or giving identity to any particular particle as #1 or #2. This implies 
that there is no way of distinguishing these two particles.

The principle of indistinguishability is brought out in a more forceful way in the following thought 
experiment (Feynman).

D1
D1

D2

D2

#2

#2

#1

#1

Fig. 11.2 Particles from sources #1 and #2; D1 and D2 are detectors of electrons
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Electrons are from sources #1 and #2. They scatter each other, and in the end, they are detected by 
detectors D

1
 and D

2
. Suppose D

1
 detects one electron and D

2
 detects another electron. The question 

is, which electron was detected by D
1
? i.e., whether the electron detected by D

1
 is from source #1 or 

source #2. Fig. 11.2 gives both possibilities as seen by classical physics. By working backwards, we 
can determine the trajectory, and hence we can determine whether it is from source #1 or #2. But 
within quantum mechanics, there is no way of telling it since there is no concept of trajectory. So the 
two electrons do not have distinct identities, and here they are indistinguishable.

So far, our discussion highlighted the fact that there is no way of labelling a particular particle as 
#1, #2 … in a collection of identical particles. This idea has to be translated in a more technical lan-
guage within quantum mechanics of a multiparticle system. To accomplish this, we have to introduce 
a new concept called interchange symmetry or permutation symmetry.

11.2 INTERCHANGE SYMMETRY OR PERMUTATION SYMMETRY
Let us consider a collection of two identical particles having the same mass, charge and spin. For 
the sake of simplicity, let us consider a system of two particles. Their wave function is y ( ; )r r1 1 2 2s s .  
This can be simplified by writing y  as y (1, 2).

i.e., y y( , ) ( ; )1 2 1 1 2 2= r rs s  (11.1)

The interchange operator or permutation operator P
12

 is defined as

 P12 1 2 2 1y y( , ) ( , )=  (11.2)

Or P12y y( ; ) ; )r r r r1 1 2 2 2 2 1 1s s s s= (

i.e., all the variables describing the particle 1 particle 2 are interchanged.
At the outset, y ( ; )r r2 2 1 1s s  need not be the same as y ( ; )r r1 1 2 2s s . So let us denote it by ′y .

 ′ =y yP12  (11.3)

The interchange operator or the permutation operator has the following properties:

 1. P
12

 is a Hermitian operator.
 2. P

12
 is a unitary operator.

 3. P
12

 2  = 1 and so its eigenvalues are ±1.

Example 11.1 Prove that P
12

 is a Hermitian operator.

Solution: Let us take y y( , ) ( , )1 2 1 2= r r .

If P
12

 is a Hermitian operator, then it should satisfy the relation ( , ) ( , ).y f y fP P12 12=

 
( , ) *( ; ) ( ; )

*( ; ) ( ; )

y f y f

y f

P P d d

d

12 1 2 12 1 2
3

1
3

2

1 2 2 1
3

=

=

∫ r r r r r r

r r r r rr r1
3

2d∫
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Since r1 and r2 are dummy variables, we can relabel them as r2 and r1. i.e., wherever r1 comes, rewrite 
it as r2 , and similarly wherever r2 comes, rewrite it as r1.

 

∴ =

=

∫( , ) *( , ) ( , )

[ ( )]* ( ,

y f y f

y f

P d d

P

12 2 1 1 2
3

2
3

1

12 1 2 1 2

r r r r r r

r , r r r ))

( , )

d d

P

3
1

3
2

12

r r∫
= y f

∴ P
12

 is a Hermitian operator.

Example 11.2 Show that P
12
2 = I.

Solution:

 P
12
y (1, 2) = y (2, 1)

 P
12
y (2, 1) = y (1, 2)

  ∴P
12
2y (1, 2) = P

12
(P

12
y (1, 2)) = P

12
y (2, 1) = y ( , )1 2

  ∴ P
12
2 = I

Example 11.3 Determine the eigenvalues of P
12

.

Solution: The eigenvalue equation is

 P
12
y (1, 2) = ly (1, 2) 

Operate on both sides by P
12

. Using the eigenvalue equation, we get

 

P P P
I

12 12
2

2

1 2

1 2 1 2

1

�y l y l y

y l y
l

(1 2) (1 2)

or 

12, = , = ,

, ,
±

( )

( ) ( )∴ =
=

∴ PP P12 1y y y y(1 2) (1 2) or  (1 2) (1 2)2, = , , = − ,

11.3 INDISTINGUISHABILITY AND THE INTERCHANGE OPERATOR
What is the relationship between indistinguishability and the interchange operator? Indistinguishability 
is a concept related to identical particles, and it states that it is not possible to distinguish one parti-
cle from other particles and it is equivalent to telling that the interchange of two particles cannot be 
detected in any observation. Since it is impossible to distinguish two identical particles, a physical 
situation with particle #1 at r1 1s  and particle #2 at r2 2s  is the same as a physical situation with particle 
#1 at r2 2s  and particle #2 at r1 1s .

 # # # #1 2 2 11 1 2 2 1 1 at  and  at  at  and  atequivalentr r rs s s← →   r2 2s
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This is essentially the same as the invariance of identical particles under the interchange symmetry 
operation. So the principle of indistinguishability implies that

 | ( , ) | | ( , ) |y y1 2 1 22 2= P  (11.4)

and P
12 

A
op

(1, 2) = A
op

(1, 2)P
12

 (11.5)

where A is any possible dynamical variable. These requirements make it impossible to prepare any 
state of the system or make any measurement where it is possible to distinguish two particles.

The Equation (11.5) implies that the operators corresponding to a dynamical variable (any dynami-
cal variable) should be symmetric with respect to interchange of particles. Making use of the Equation 
(11.5), we have

 P A A Pop op12 121 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , )y y=

 LHS = Aop ( , ) ( , )2 1 2 1y  and RHS = Aop ( , ) ( , )1 2 2 1y

 ∴ =A Aop op( , ) ( , ) ( , ) ( , )2 1 2 1 1 2 2 1y y

Since this equation is there for any arbitrary wave function y (2, 1)

 A
op

 (2, 1) = A
op

 (1, 2) (11.6)

In particular, the Hamiltonian operator should be symmetric with respect to interchange of the particle 
coordinates.

i.e., H(2, 1) = H(1, 2) (11.7)

Since [P
12

, H ] = 0, both H and P
12

 should have common eigenfunctions; i.e., the eigenfunction of the 
Hamiltonian should be either symmetric or antisymmetric with respect to interchange of particles.

 Hy
s
(1, 2) = Ey

s
(1, 2) with y

s
(1, 2) = y

s
(2, 1) (11.8)

Or Hy
a
(1, 2) = Ey

a
(1, 2) with y

a
(2, 1) = -y

a
(1, 2) (11.9)

These results can be extended to a system with more than two particles. For a system of N particles, 
the interchange operator P

ij
 is defined as

 ′ … … … = … … …y y y( ) ( , )= , , , , , , , , ,P i j j iij 1 2  1 2  (11.10)

The principle of indistinguishability implies

 | ( , , , , , ) | | ( , , , , , ) |y y1 2 1 22 2… … … … … …i j P j iij=  (11.11)

 P
ij
 A

op
(1, 2, … , i, … j…) = A

op
(1, 2, …, i, …,  j…) P

ij
 (11.12)

The extension from two-particle case to three or more number of particles is more subtle than what is 
presented here (see Ballentine).
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11.4 SYMMETRIZATION POSTULATE
For a multiparticle system, the eigenfunction of an interchange operator is either symmetric or 
antisymmetric with respect to the interchange of the particles i and j. The symmetrization postulates 
generalize this idea to any state vector.

Any allowed state vector y
  
(1, 2, …, i, …, j…) has to be either symmetric (bosons) or antisym-

metric (fermions) with respect to interchange of any pair of particles i and j.

 y y y= =s si j j i( ) ( )1 2 1 2, , , , , , , , , , ,… … … … … …  (11.13)

 y y y= = −a ai j j i( ) ( )1 2 1 2, , , , , , , , , ,… … … … … …  (11.14)

The symmetric wave functions describe bosons, and the antisymmetric wave functions describe 
fermions.

From quantum field theory, it can be shown that the particles with integral spins (s = 0, 1, 2 …) 
are described by symmetric wave functions and particles with half integer spins ( , )s = 1 2 3 2/ / …  are 
described by antisymmetric wave functions.

11.5 BOSONS – CONSTRUCTION OF SYMMETRIC WAVE FUNCTIONS
Let us first consider a two-particle system and let us start with a multiparticle wave function y (1, 2), 
which is neither symmetric nor antisymmetric.

Now we can construct the symmetric wave function as follows:

 y y ys (1 2) (1, 2) (2, 1), = +1
2

[ ]  (11.15)

Next, let us considers three-particle case. Again, let us start with an arbitrary function y (1, 2, 3).Then, 
we can construct the symmetric wave functions as follows.

 
y y y y

y y

s ( , , ) [ ( , , ) ( , , ) ( , , )

( , , ) ( , , )

1 2 3 1
6

1 2 3 2 1 3 1 3 2

3 2 1 2 3 1

= + +

+ + +yy ( , , )]3 1 2
 (11.16)

This amounts to performing permutation of the particle coordinates. This can be generalized by to any 
number of particles.

 y ys
P

P(1 2 1, = , , ,… …)
!

(1 2 )
N

N∑  (11.17)

where P in the summation sign denotes permutations.

Two Non-interacting Bosons
The Hamiltonian for such a system is 

 H ( , ) ( ) ( )1 2 1 2= +h h  (11.18)
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Obviously, the Hamiltonian H (1, 2) is symmetric with respect to the coordinates of particles 1 and 2.
Let ua  and ub  be two distinct eigenstates.

 hu E u hu E ua a a b b b= =;  (11.19)

If the particles are distinguishable, each particle can be identified or labelled by specifying its eigen-
state. There are two such distinguishable states.

 y ya b b aI IIu u u u(1 2), = ; , =( ) ( ) ( ) ( ) ( )1 2 1 2 1 2  (11.20)

u ua b( ) ( )1 2  describes particle #1 in state ua  and particle #2 in state ub . This is different from ub (1) 

ua (2) which describes particle #1 in state ub  and particle #2 in ua . They are neither symmetric nor 
antisymmetric.

 Hu u E E u ua b a b a b( ) ( ) ( ) ( ) ( )1 2 1 2= +  (11.21)

 Hu u E E u ua b a b b a( ) ( ) ( ) ( ) ( )2 1 1 2= +  (11.22)

The symmetrized wave function is

 y a b a bs u u u u( ) [ ( ) ( ) ( ) ( )]1 2 1
2

1 2 2 1, +=  (11.23)

Note H E Es sy ya b( ) ( ) ( )1 2 1 2, + ,=  (11.24)

Three Non-interacting Bosons
The Hamiltonian for such a system is 

 H h h h= ( ) ( ) ( )1 2 3+ +  (11.25)

First, let us assume that one particle in ua , one in ub  and one in ug .
If the particles are distinguishable, then there are six distinct multiparticle states. They are

 

y y

y
a b g a b g

a b

I II

III

u u u u u u

u u

= =

=

( ) ( ) ( ); ( ) ( ) ( )

( ) (

1 2 3 2 1 3

1 3

      

)) ( ); ( ) ( ) ( ) ( )

( ) ( ) ( );

u u u u u

u u u

IV

V

g a b g g

a b g

y

y

2 3 2 2 1

2 3 1

     

  

=

=     y a b gVI u u u= ( ) ( ) ( )3 1 2

 (11.26)

All these six states are energy eigenstates with energy E E E E= +a b g+ . Principle of  indistinguishability 
makes all these sates to describe the same physical state given by

 y y y y y y ys I II III IV V VI( ) [ ]1 2 3 1
6

, , + + + += +  (11.27)

Note that Hy ya b gs sE E E( ) ( ) ( )1 2 3 1 2 3, , + , ,= +
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11.6 FERMION: CONSTRUCTION OF ANTISYMMETRIC STATE
Let us first consider a two-particle system. Let us start with a two-particle wave function y (1, 2), which 
is neither symmetric nor antisymmetric. We construct an antisymmetric wave function as follows:

 y y ya ( , ) = , ,1 2 1 2 (2 1)]1
2

[ ( ) −

It is obvious that y ya a( , ) ( , )2 1 1 2= −

Next, let us consider a system of three fermions. We start with a function y (1, 2, 3), which is neither 
symmetric nor antisymmetric. The antisymmetric function can be constructed as follows:

 
y y y y

y y

a ( ) [1 2 3 1
6

, , , , − , , , ,

, , + , , +

= −

−

(1 2 3) (2 1 3) (1 3 2)

(3 2 1) (2 3 1) yy (3 1 2)], ,
 (11.28)

It is easy to check that y a ( )1 2 3, ,  in (11.28) is antisymmetric with respect to interchange of the coor-
dinate of any two particles. For instance, y a ( )2 1 3, ,  is given by 

 
y y y y

y y

a ( ) [2 1 3 1
6

, , = , , , , , ,

, , + , , +

(2 1 3) (1 2 3) (2 3 1)

(3 1 2) (1 3 2)

− −

− yy y(3 2 1)], , = , ,− a ( )1 2 3

The signs of the second, third, and fourth terms of (11.28) are different from the signs of the last two 
terms. These three terms are obtained from y (1, 2, 3) by single permutation.

 y y( ) ( )1 2 3 2 1 312, , , ,P →

 y y( ) ( )1 2 3 1 3 223, , , ,P →

 y y( ) ( )1 2 3 3 2 113, , , ,P →

Each of the last two expressions in (11.28) requires two permutations to get them from y ( )1 2 3, , .

 y y y( ) ( ) ( )1 2 3 2 1 3 2 3 112 13, , , , , ,P P →  →

 y y y( ) ( ) ( )1 2 3 1 3 2 3 1 223 13, , , , , ,P P →  →

Terms obtained by single permutation have negative sign and terms with two permutations have posi-
tive sign. Therefore, each permutation accompanies a factor (−1). So, y

a
(1, 2, 3) can be written as
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 y ya
P

P

P( ) ( ) ( )1 2 3 1
6

1 1 2 3, , , ,= −∑  (11.29)

This can be generalized to N particle system 

 y ya
P

P

( )
!

( ) ( )1 2 3 1 1 1 2 3, , , , , , , ,… …N
N

P N= −∑  (11.30)

Non-interacting Fermions
For a system of two fermions, let us assume that one particle is in state ua and another particle is in 
state ub . If the two particles are treated as distinguishable, then we have two distinct states.

 y ya b a bI IIu u u u= =( ) ( ) ( ) ( )1 2 2 1,  (11.31)

The principle of indistinguishability reduces these two states to one state given by

 y a b a ba u u u u( ) [ ( ) ( ) ( ) ( )]1 2 1
2

1 2 2 1, = −  (11.32)

For a system of three fermions, let us assume that one particle in each of state ua , ub , and ug . If the 
three fermions are treated as distinguishable particles, then there are six distinct states given in (11.26).

The principle of indistinguishablity reduces these six distinct states to a single state given by

 

y a b g a b g

a b g

a u u u u u u

u u u

( , , ) [ ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) (

1 2 3 1
6

1 2 3 1 3 2

3 2

= −

− 11 2 1 3

2 3 1 3 1 2

) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

−

+ +

u u u

u u u u u u

a b g

a b g a b g

 (11.33)

Slater’s Determinant
It is easy to recognize that the wave functions for fermions can be written in the form of determinants.

 y a a

b b
a

u u

u u
( )

( ) ( )

( ) ( )
1 2 1

2

1 2

1 2
, =  (11.34)

and y
a a a

b b b

g g g

a

u u u

u u u

u u u

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 3 1
6

1 2 3

1 2 3

1 2 3

, , =  (11.35)
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So, for a system of non-interacting fermions, the antisymmetric wave functions can be constructed 
using determinants. Such determinants are known as Slater’s determinant. For a system of N non-
interacting fermions, Slater’s determinant is given by

 ya

a a a

b b b

l l

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

1 2 1

1 2

1 2

1 2

, , ,…

…
…

�
N

u u u N

u u u N

u u

=
N!

…… u Nl ( )

 (11.36)

11.7 PAULI’S EXCLUSION PRINCIPLE
Pauli’s exclusion principle says that at the most only one electron (fermions) can be found in a state; 
i.e., it is impossible for two electrons to be in the same state. This is a consequence of the fact that the 
wave functions for fermions should be antisymmetric.

Let us consider a system of two electrons. Let us start with two different states, assigning one state 
for each particle.

 y a b a ba u u u u( ) [ ( ) ( ) ( ) ( )]1 2 1
2

1 2 2 1, = −  (11.37)

Then, demanding two electrons in the same state makes ua and ub to the same.

 ∴ = − =y a a a aa u u u u( ) [ ( ) ( ) ( ) ( )]1 2 1
2

1 2 2 1 0,  (11.38)

This confirms Pauli’s exclusion principle. The same argument can be extended in N particle system. 
Start with N different single particle states ua , ub , …, ul, assigning one state for each of the particles. 
For fermions, the antisymmetric state is the Slater’s determinant. Demanding two electrons in the 
same state amounts to making two states, say, ua 

, and ub , to be the same; i.e., ub = ua. Then the Slater’s 
determinant becomes

 y

a a

a a

g g

l l

a
N

u u

u u

u u

u u

( )
!

( ) ( )

( ) ( )

( ) ( )

( ) (

1 1

1 2

1 2

1 2

1 2

…

… …
… …
… …

=

 

 

 

)) … … 

= 0  (11.39)

11.8 DISTINGUISHABILITY AS AN APPROXIMATION
Under some circumstances, even within quantum mechanics, a multiparticle system can be approxi-
mated as a collection of distinguishable particles. This happens when the particles are so far away 
from each other that the wave functions u ua b( ), ( )r r1 2 … are well separated from each other, and so 
there is no overlapping between them. This can be illustrated by considering a special case in which 
there is a system of two non-interacting particles that are separated as shown in Figs. 11.3 and 11.4.

M11_QUANTUMMECHANICS_3628_CH11.indd   404 5/23/2013   4:11:14 PM



Many-Particle Systems and Quantum Statistics  405

−2 −1
−0.2

0.2

0.4

0.6

0.8

1

0

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ua ub

Fig. 11.3 Wave functions of two far away particles
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ua ub

Fig. 11.4 Wave functions of two closer particles

ua(x) is centered around x
10

, and ub (x) is centered around x
20

. For instance, for the wave functions 

shown in the Fig. 11.3, x10 0=  and x20 12= . The antisymmetric wave function is

 y a b a b( ) [ ( ) ( ) ( ) ( )]1 2 1
2

1 2 2 1, = −u x u x u x u x

For any set of values (x
1
, x

2
), only one term will be significantly different from zero, and the other term 

will be zero. A simple mumerical example will help the reader. For instance, consider two pairs of 
values: (x

1 
= 1, x

2 
= 10) and (x

1 
= 10, x

2 
= 1).

 y a b a b( 1 )x x u u u u1 2 10 1
2

1 10 10 1= = −, = ( ) ( ) ( ) ( )

Non-zero zero
� �� �� � ��� ��













 y a b a b( ) ( ) ( ) ( ) ( )x x u u u u1 210 1 1
2

10 1 1 10= = = −,
zero Non-zero

� �� �� � ��� ��
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For any pair of values (x
1
, x

2
) 

 y a b a b( , ) ( ) ( ) ( ) ( )x x u x u x u x u x1 2 1 2 2 1 is  or  either  

as shown above.
So, for any pair of values (x

1
, x

2
), it is only a product of two single functions very much like a dis-

tinguishable systems. When they come near, there is an overlap of the two single particle state func-
tion as shown in Fig. 11.4, and so both terms in the antisymmetric wave functions are significant. For 
instance, consider the coordinates x x1 24 5= =,  .

 y a b a b( 4 )x x u u u u1 2 5 1
2

4 5 5 4= , == −( ) ( ) ( ) ( )

Non-zero Non-zero
� �� �� � ��� ��













So when the particles in a multiparticle system are so far away that there is no overlap between their 
single particle wave functions, they can be treated as distinguishable system. This is good approxima-
tion for such systems.

Example 11.4 The wave function for a system of two parties is given by

 y a b a b( ) [ ( ) ( ) ( ) ( )]1 2 1
2

1 2 2 1, = +u x u x u x u x

Here, u x
x a

a p
( ) exp

( )
/

=






− −





1
2

1 2
2

and u x
x b

x bb p
( ) exp

( )
[ ( ) ]

/

=






− −





− −1
8 2

4 2
1 2

2
2

(These are harmonic oscillator wave functions centered around x = a and x = b) 
Can we approximate them as distinguishable particles for

1. a = 0 b = 12 2. a = 4 b = 8

Solution:

 y
p

( , ) ( ( ) )
/ ( )

(

/

1 2 1
8

4 16 2
1 2

2

16

2
2

2 2
1
2

2
2 2

2
2

= ( ) ⋅ − − +− −
−

− −e e x e e
x x x

xx b x1
2 4 16 21

2− − −








) [ ( ) ]

For a = 0, b = 12, y (1, 2) is given by

 

y
p

( , ) [ ( ) ]
/

( )1 2 1
16

4 16 2
1 2

2 16 2
2

2
1
2

2
2= ( ) ⋅ − −





− − −e e x
x

x /

               + − −




− − −e e x
x

x
2

2

2
2

2 16 2
1

24 16 2( ) / [ ( ) ]
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The wave functions u xa ( ) and u xb ( ) are sketched in Fig. 11.5 for a = 0 and b = 12, and obviously, do 
not overlap. Therefore, the two particles can be approximated as distinguishable particles.

For a = 4 b = 8, y (1, 2) is given by

 

y
p

( , ) exp
( )

exp
( )

[ ( ) ]1 2 1 4
2

8
2

4 8 21
2

2
2

2
2= −

−





−
−





− −
8

x x
x





+ −
−





−
−





− −




exp
( )

exp
( )

[ ( ) ]
x x

x2
2

1
2

1
2

4
2

8
2

4 8 2

For these values of the parameters a and b, the wave functions u xa ( ) and u xb ( ) overlap as shown in  
Fig. 11.6. So they cannot be approximated as distinguishable particles.

1

0.5

−0.5

−1

−1−2−3−4
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ua ub

Fig. 11.5 Wave functions of two particles without overlapping

1

0.5

−0.5

−1

−1−2
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
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ub

Fig. 11.6 Wave functions of two particles with overlapping
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11.9 TWO-ELECTRON SYSTEM HELIUM
Let us consider a two-electron system as an illustration of non-trivial consequences of principle of 
indistinguishability. A simple example is helium atom.

The Hamiltonian for helium atom is

 H = + − − +
−

p
m

p
m

e
r

e
r

e1
2

2
2 2

1

2

2

2

1 22 2 | |r r
 (11.40)

 = +h h V( ) ( )1 2 12+  (11.41)

The interaction involving spins of the electrons has been neglected. Let us neglect the other interac-
tions further. Then it becomes

 H = +h h( ) ( )1 2  (11.42)

Since the Hamiltonian H is independent of spin of the particles, the wave function y ( ; )r r1 1 2 2s s  can be 
written as the product of space coordinate function and spin coordinate function.

 x b( ; ( , ( )r r r r1 1 2 2 1 2 1 2s s s s) = ,F )  (11.43)

Since the electrons are fermions, its total wave function has to be antisymmetric with respect to the 
interchange r1 1s  and r2s2.

 ∴y y( s s ) ( s s )2 2r r r r1 1 2 1 1 2; ;= a  (11.44)

i.e., y ya a( s s ) ( s s )2 1 2r r r r2 1 1 1 2; ;= −  (11.45)

Since the wave function y ( ; )r r1 1 2 2s s  can be written in the form given in the Equation (11.45), antisym-
metry requirement can be achieved by two methods.

 y ca s a( s s ) ( ) s s1 2r r r r1 2 1 2 1 2; , ( , )= Φ  (11.46)

 y ca a s( s s ) ( ) s s1 2r r r r1 2 1 2 1 2; , ( , )= Φ  (11.47)

In the Equation (11.46), Φs is symmetric with respect to interchange of space coordinates r1 and r2 , 
and c a is antisymmetric with respect to exchange of spin coordinates. In the Equation (11.47), space 
coordinate function Φa  is antisymmetric, and spin coordinate function c s is symmetric.

In general, states with symmetric space coordinate function are known as para states and states 
with antisymmetric space coordinate function are called ortho states.

11.9.1 Spin Wave Function
If s

1
 and s

2
 are the spin angular momenta of the two electrons, the total spin angular momentum s  is 

given by

 s s s= +
1 2

 (11.48)
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Instead of writing the spin states as 1
2

1
2

 and 1
2

1
2

− , we write them as a and b.

 

∴S S1
2

1
2

1

3
4

1 3
4

1

2
1

a a b b

a a

(1)    (1)

(1)       

2 2

z

= =

=

� �

�

( ); ( )

( );S    (1)

(2)    (2)

z

2 2

z

S

S S

S

1

2
2

2
2

1

2
1

3
4

2 3
4

2

b b

a a b b

a

=

= =

− �

� �

( )

( ); ( )

((2)        (2)z= = −� �
2

2
2

21a b b( ); ( )S

When S
1
 and S

2
 are combined, the quantum number s of the resultant angular momentum is s = 1 or  

s = 0. Let c
11

, c
10

, c
1-1

 be the states with s = 1 and c
00

 be the state with s = 0.

 c a a11 (1) (2)=  (11.49)

 c a b a b10 (1) (2) (2) (1)]= +1
2

[  (11.50)

 c b b1 1 (1) (2)- =  (11.51)

 c a b a b00
1
2

= [ (1) (2) (2) (1)]−  (11.52)

The states c
11

, c
10

, c
1-1

, are known as spin triplet and c
00

 is known as spin singlet.
Note that the pair a (1), b (1) and the pair a (2), b (2) belong to different Hilbert spaces. They can 

be written as follows:

 
a b a b( ) ; ; ( ) ;1

1

0

0

1
2

1

0

0

1
1 1 2

=












=












(1) (2)= =
22

The products in the Equations (11.49)–(11.52) are direct products of these spinors. For instance,

 a b( ) ( )1 2
1

0

1

0

1
1

0

0
1

0
1 2

=












=






























⊗



=



















1

0

0

0

The wave functions are now given by 

 y
c
c
c

a a=








−

Φ ( , )r r1 2

11

10

1 1

 triplet; para state (11.53)

 y ca s= Φ ( , )r r1 2 00  singlet; ortho state (11.54)
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For helium, if the Hamiltonian is given by H = h(1) + h(2), then both ortho state and para state have 
the same energy. The space symmetric Φs and antisymmetric Φa are given by in terms of hydrogen 
atom wave functions.

 Φs a n l m n l m n l m n l mu u u u, , ±( ) [ ( ) ( ) ( ) (r r r r r r1 2 1 2 2
1
2

=
1 1 1 2 2 2 2 2 2 1 1 1 11)]  (11.55)

 HΦ Φs a n n s aE E( , ) ( , ) [ ] ( , ) ( , )r r r r1 2 1 21 2 1 2c c= +1 2  (11.56)

 HΦ Φa s n n a sE E( , ) ( , ) [ ] ( , ) ( , )r r r r1 2 1 2 1 21 2 1 2c c= +  (11.57)

However, if we take into account of the interaction between the electrons by ′ =H e r2
12/ , then within 

first-order perturbation theory (see Chapter13),

 E
ortho

 = E
n1

 + E
n2

 + K + J (11.58)

and E
para

 = E
n1

 + E
n2

 + K – J (11.59)

where K = ∫ d d e
r

 
1 1 1 2 2 2

3
1

3
2 1

2 2

12
2

2
r r r ru un l m n l m( ) ( )  (11.60)

and J = d d e
r1 1 1 2 2 2 1 1 1 2

3
1

3
2 1 2

2

12
2r r r r r( ( )) *( ( )) * ( )u u u un l m n l m n l m n l22 2m ( )r1∫  (11.61)

The first term represents the well-known Coulomb interaction between the charge distribution r( )r1  
and r( )r2 .

 K = ∫ d d e
r

3
1

3
2 1

2

12
2r r r rr r( ) ( ) (11.62)

There is no classical analogue to the second term. It is known as exchange interaction. It is a conse-
quence of antisymmetrization of electron wave function.

11.10  INDISTINGUISHABILITY AND COUNTING MICROSTATE IN 
STATITICAL MECHANICS

One of the methods used to study a system of particles in statistical mechanics is to use the concept of 
microcanonical formalism, in which the system is isolated from the environment. The total energy E, 
the total number of particles N and the volume V of a system are fixed in this formalism. These are the 
thermo dynamical variables which describe the thermodynamic state of a system. In statistical mechan-
ics, we have two kinds of descriptions of the state of a thermodynamic system. They are known as mac-
rostate and microstate. The set of the thermo dynamical variables (E, N, V ) specifies the macrostate. On 
the other hand, a microstate corresponds to the specification of the multiparticle states of all the N par-
ticles. So the microstate can be written as y ( )1 2 3, , , ,… N . For a given macrostate, we can have a large 
number of microstates. Let Ω  be the number of microstates corresponding to a macrostate (E, N, V ). 
The entropy S for a given macrostate is given by

 S kB= ln Ω
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Our interest here is to understand the implications or the consequences of the principle of indistinguish-
ability in counting the number possible microstates W. For a given macrostate (E, V, N ), the values of 
W for the distinguishable particles and the indistinguishable particles are different. Within the class of 
indistinguishable particles, the values of W for bosons and fermions are different. So, for a given set  
(E, N, V ),

W for distinguishable particles ≠ Ω for bosons ≠ Ω for fermions
These differences have deep implications, and they lead to three kinds of statistical distributions in 

statistical mechanics.

 
distinguishable particles: Maxwell Boltzman distribution

Ind

–

iistinguishable:
Bosons Bose Einstein distribution

Fermions Fe

–

rrmi Dirac distribution–





These distributions will not be derived here. Our interest here is to demonstrate the implications of 
distinguishability and indistinguishability in counting the number of multiparticle states for a given 
number of particles. Let ns be the number of particles and gs be the degeneracy of the energy level. 
We are interested in determining the number of multiparticle states Ω( , ).n gs s

11.10.1 Case 1: Distinguishable Particles
The simplest case is to consider ns = 2 and gs = 2. The particles can be labelled as a and b. The states 
can be taken as ua  and ub . There are four multiparticle states, and they are given by 

 y a a1( ) ( ) ( )a b u a u b, =

 y a b2 ( ) ( ) ( )a b u a u b, =

 y a b3 ( ) ( ) ( )a b u b u a, =

 y b b4 ( ) ( ) ( )a b u a u b, =

In statistical mechanics, there is a simple method of writing these states, using a box for single particle 
states. They are written as follows:

 y a a1( ) ( ) ( )a b u a u b ab, = →

 y a b2 ( ) ( ) ( )a b u a u b a b, = →

 y a b3 ( ) ( ) ( )a b u b u a b a, = →

 y b b4 ( ) ( ) ( )a b u a u b ab, = →

This method of writing the multiparticle states simplifies the calculations. Let us ask the reverse 
question. How do we generate these multiparticle states? Let us start with the empty boxes .  

The box for the particle a can be found in two ways. They are a  and a . In each of these 
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arrangements, the particle b can be put in two ways. a  becomes ab  and a b . The 

arrangement a  becomes b a  and ab . So we have two ways of finding the box for each 

particle. The number of multiparticle states is given by 

 
Ω( , )n gs s= = =2 2  (2 ways of finding boxes (or states) for partticle a)

2 ways of finding boxes for b 2 42

×
= =( ) .

This reasoning can be extended to general cases to get 

 Ω( , ) ( )n g gs s s
ns=

Example 11.5 Write down the number of multiparticle states for three distinguishable particles a, b 
and c, assuming two states ua  and ub  are available to them.

Solution: Since two states are available, we should take two boxes . Let us put particle a in these 

boxes to get a  and a . In each of these arrangements, let us put particle b in two ways to get 

ab a b,{ } and b a ab,{ }. Now let us put particle c in each of these four arrangements 

to get abc ab c,{ }, ac b a bc,{ } , bc a b ac,{ }  and c ab abc, .{ }  

The corresponding multiparticle states are given below:

 abc a b c u a u b u c→ =y a a a1( ) ( ) ( ) ( ), , 

 ab c a b c u a u b u c→ =y a a b2 ( ) ( ) ( ) ( ), , 

 ac b a b c u a u b u c→ =y a b a3 ( ) ( ) ( ) ( ), , 

 a bc a b c u a u b u c→ =y a b b4 ( ) ( ) ( ) ( ), , 

 bc a a b c u a u b u c→ =y b a a5 ( ) ( ) ( ) ( ), , 

 b ac a b c u a u b u c→ =y b a b6 ( ) ( ) ( ) ( ), , 

 c ab a b c u a u b u c→ =y b b a7 ( ) ( ) ( ) ( ), , 

 abc a b c u a u b u c→ =y b b b8 ( ) ( ) ( ) ( ), , 

Thus, we have obtained all the eight possible multiparticle states.
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11.10.2 Case 2: Indistinguishable Particles – Bosons
The principle of indistinguishability reduces the number of microstates enormously.

Let us consider the above case, namely n gs s= =3 2, . Since there is no way of distinguishing the 
particles, there is no point in labelling the particles as a or b or c. When they were considered as dis-
tinguishable particles as in Example (11.5), there were eight distinct states. Now when they become 
indistinguishable, things begin to change. Consider, for instance, y y2 3,  and y 5 in Example 11.5. All 
these wave functions imply that two particles are in state ua  and one particle in state ub . For indistin-
guishable particles, these terms merge into one state, which can be written as 

 Φ2 1
1
3

, [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]= + +u a u b u c u a u b u c u a u b u ca a b a b a b a a

Note the change in notation. Φ2 1,  means a multiparticle state in which two particles in single particle 
state ua  and one particle in single particle state ub . In terms of the box notation, Φ2 1,  can be written 

as ii i

Φ2 1, → ii i

ii i = +

+

1
3

[ ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )]

u a u b u c u a u c u b

u b u c u a

a a b a a b

a a b

So ii i  represents a microstate where two particles in state ua  
and one particle in state ub . 

Proceeding in the same way, we write all the four possible microstates as given below:

3 particles in state ua: iii

2 in state ua  , 1 in state ub : ii i 

1 in state ua  , 2 in state ub : i ii 

3 particles in ub :   iii

In terms of boxes and dots, the above four microstates can be interpreted as follows. Look at all the 
four multiparticle states. There are two boxes separated by a partition and three dots. Consider the mul-

tiparticle state ii i . Interchange the order of the last dot and the partition to get a new multiparticle  

state iii . i.e., by permuting a dot and a partition, we have obtained a new multiparticle state. 
The four multiparticle states can be seen as a result of permutation of the dots and partitions. This idea 
can be generalized immediately. Take the dots and the partitions together as a single set of objects. (In 
our example, there are three dots and one partition, and so we have four objects). The number of dots 
plus the number of partition makes (g

s
 + n

s
 – 1) objects, where ns objects are dots and (g

s 
– 1) objects 

are partitions. The permutation of (g
s
 + n

s
 – 1) objects will result in (g

s
 + n

s
 – 1)! multiparticle states. 

Have we generated all the possible multiparticle states by permuting the (g
s
 + n

s
 – 1) objects? We have 
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to be a bit more careful. Consider a multiparticle state ii i i . By permuting third and fourth dots, 

we will not get a new state. Similarly, by permuting the two partitions, we will not get a new state. 
Therefore, the permutation among ns dots and the permutation among (g

s
 – 1) partitions do not lead to 

any new state, and therefore, their permutations lead to overcounting, which has to be avoided. In our 
example, there are four objects. (n

s
 = 3, g

s
 = 2) permutation of next four objects should lead to 24 mul-

tiparticle states, of which only four states are distinct. Each of these four distinct states is accompanied 
by six redundant states arising from permutation of three dots, and so we have 24/6 distinct multipar-
ticle states. Arguing in the same way, we get the number of distinct multiparticle states Ω( , )n gs s  as

 Ω ,( )
( )!

!( )!
n g

g n

n gs s
s s

s s

=
+ −

−
1

1
 (11.63)

11.10.3 Case 3: Indistinguishable Particles – Fermions
In the case of fermions, we have to take into account of Pauli’s exclusion principle. Since the particles 
are indistinguishable, we can replace them with dots. Each box (state) can accommodate either zero 
or one particle. For instance if n

s
 = g

s
 = 2, we have

 i i = −u a u b u b u aa b a b( ) ( ) ( ) ( )

If g
s
 = 4 and n

s
 = 3, then we have 

One particle in states ua 
, ub , ug i i i

One in ua 
, ub , ud i i i

One in ua 
, ug , ud i i i

One in ub , ug , ud i i i

Obviously, this process amounts to selecting ns boxes from available g
s
 boxes. Therefore, the number 

of possible multiparticle states is

 Ω( , )
!

( )! !
n g

g

g n ns s
s

s s s

=
−

 (11.64)

11.10.4  Factorization of Canonical Partition Function for Distinguishable 
Particles

In evaluating the canonical partition function in statistical mechanics, the property distinguishability of 
particles plays an important role. Let us consider a system of N particles in equilibrium at temperature. 

The state y j  of the system of N particles is given by 

 H a b E a bj j jy y( ) ( ), , , ,…… ……=
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The canonical partition function Z  for this system is defined as 

 Z e E

j

j= −∑ b

where the summation j is overall the possible multiparticle states of the system. This is true for distin-
guishable as well as indistinguishable particles. However, the system of non-interacting distinguish-
able particles is a special case since Z  becomes factorizable as explained below. Let the single particle 
state ua  be defined as 

 hu ua a ae=

For non-interacting distinguishable particles, Z  can be written as

 Z zN=

where z is given by  z e i

i

= −∑ be

Here the summation i is over all the possible single particle states. This factorization is true only for 
distinguishable particles. Similarly, the grand canonical partition function is factorizable only for free 
indistinguishable particles.

Example 11.6 Two single-particle states u1 and u2 of energy e1 and e 2 are available for three distin-
guishable particles a, b and c. Evaluate the canonical partition function Z  and show that it can be 
written as

 Z z e e= = +− −3 31 2( )be be

Solution: There are eight multiparticle states, and they are listed below:

 y e1 1 13= =abc E,with  y e e2 2 1 22= = +a bc E,with 

 y e e3 3 1 22= = +b ac E,with  y e e4 4 1 22= = +c ab E,with 

 y e e5 5 1 22= = +ab c E,with  y e e6 6 1 22= = +ac b E,with 

 y e e7 7 1 22= = +bc a E,with  y e8 8 23= =abc E,with 

Z e e e e
e

= + + +− − − − − − −

− −

3 2 2 2

3

1 1 2 1 2 1 2

1 2 2

be be be be be be be

be be
� ������� ������ � �����+ + +− − − − − −

− −

e e e
e

2 2 2

3

1 2 1 2 1 2

2 1 2

be be be be be be

be be
�� ������ +

= + + +
=

−

− − − − − −

−

e

e e e e

e

3

3 2 2 3

2

1 1 2 1 2 23 3

be

be be be be be be

b( ee be1 2 3+ −e )

Let us compare this expression for the canonical partition function for bosons. Note for bosons, the 
multiparticle states are as listed below:

 f e1 1 13= =iii ,with E  f e e2 2 1 22= = +i ii ,with E

 f e e3 3 1 22= = +ii i ,with E  f e4 3 23= =iii ,with E

Z e e e e= + + +− − − − − −3 2 2 31 1 2 1 2 2be be be be be be

Obviously, this term is not factorizable.
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11.11 DENSITY MATRIX
Let us now turn our attention to another concept called density matrix, which plays an important role 
in statistical mechanics. 

Let us consider an ensemble of particles. One type of ensemble is a collection of particles in which 
all the particles are in the same state. This is like a collection of people with the same height or weight. 
This is a rare type of collection. Normally, ensembles will look like a collection of people with dif-
ferent heights or weights. So, in general, the particles in an ensemble have physical properties whose 
values vary over a wide range. For instance, in the case of kinetic theory of gases, there is a statistical 
distribution of particles with different velocities: n

1
 particles with velocity v n1 2;  particles with veloc-

ity v2  
and so on. This statistical distribution is a result of different particles in different states.

But, within quantum mechanics, the sources of statistical distribution of experimental outcomes are 
twofold. One source is the statistical distribution of state of particles; i.e., n

1
 particles in state y

1
, n2 par-

ticles in state y
2
 and so on. The second source is inherent to quantum mechanics. Even if all the particles 

are in the same state y, there will be a statistical distribution of eigenvalues as experimental outcomes.
Based on the above considerations, we divide the ensembles of quantum particles into two kinds: 

mixed ensemble and pure ensemble.

Pure State
The ensemble is pure if every system (or every particle) is in the same state. The state of all such sys-
tems may be described by y f= ΣCn n .

Mixed State
The ensemble is a mixed ensemble if the states of different systems (particles) are different.

 n Cn n1
1 1 particles in state y f( ) ( )= ∑

 n Cn n2
2 2 particles in state y f( ) ( )= ∑

 �

This is illustrated schematically in Fig. 11.7.

All the systems
in state

y = ∑Cnfn

n3 iny (3)

n2 iny (2)

n1 iny (1)

Pure state Mixed state

Fig. 11.7 Ensembles of different kinds
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Can we write a single wave function for all the particles in a mixed ensemble?
If we consider a particular particle in this ensemble, we cannot tell its state (by specifying y  (i) or by 

specifying the set { }( )cn
i ). We can tell only the probability of finding the particle in states y  (i) (or the set 

{ }( )cn
i ). When we write a wave function for a system particle, it implies that we know all the possible 

information about the system. We cannot write a single wave function in this case since we lack some 
information for a particle in the mixed ensemble, and so we cannot write a definite set of coefficient 
{ }cn  representing all the particles in this ensemble.

11.12 PURE STATE DENSITY MATRIX
Let us first start with pure state ensemble. The state of each system in the ensemble is given by

 | |y 〉 〉∑= C nn

where the set {| }n〉  is the eigenkets of a dynamical variable A.
In matrix representation, the state vector y  is given by

 y =














C

C
1

2

�

The density matrix is defined by

 r yy= =














† ( * *..)

C

C C C
1

2 1 2

�
 (11.65)

 rmn m nC C= * (11.66)

In terms of Dirac’s ket vectors, the density operation r̂  is designed as

 ˆ | |r y y= 〉 〈  (11.67)

 r r y ymn m nm n m n C C= 〈 〉 = 〈 〉 〈 〉 =| | | | *ˆ  (11.68)

q Hermitian
The density matrix r  is a Hermitian matrix

 r yy y y yy† † † † † † †( ) ( )= = =  (11.69)

In terms of matrix elements,

 ( )* ( *)* *r rnm n m m n mnC C C C= = =  (11.70)

Tr (q) = 1

 Tr C C Cnn n n
n

n
n

( ) * | |r r= = = =∑ ∑∑ 2 1 (11.71)
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q 2 = q

 ˆ ˆ ˆ | | | | | ˆr rr y y y y y y r2 = = 〉〈 〉 〈 〉〈 ==  (11.72)

Therefore, the matrices corresponding to r̂2 and r̂  should be the same.

q-Non-negative
r̂  is non-negative definite, which means 〈 〉f r f| |ˆ  is always a positive number.

i.e., 〈 〉 ≥f r f| | 0ˆ

Let | | | * |f f〉 = 〉 〈 = 〈∑∑a n a mn mand

 

∴〈 〉 = 〈 〉

= 〈 〉 =

∑∑

∑ ∑∑

f r f r

r

| | | * |

* | | * *

m a a n

a a m n a a C C

m n
mn

m
m

mn n m n
mnnn

n n
n

m
m

m n
x

na C a C a C

∑

∑ ∑ ∑= = ≥* * *
2

0

ˆ

ˆ

ˆ

 (11.73)

Tr (q 2) = 1
Since  r r2 = , Tr Tr( ) ( )r r2 1= =  (11.74)

Expectation Values of F

 

〈 〉 = 〈 〉 = 〈 〉

= 〈 〉〈 〉 〈 〉∑∑

∑

F F F

n n F m m

C F C

mn

n nm m
m

y y y y

y y

| | | |

| | | |

*

1 1

nn
nm m n

mn

nn
n

F C C

F Tr F

∑ ∑∑
∑

==

= =

*

( ) ( )r r

ˆ ˆ ˆ ˆ

ˆ

 (11.75)

where F is a matrix operator

Diagonal Elements of q
The diagonal element rnn is given by

 rnn n n nC C C= =* 2

Therefore, rnn is the probability of obtaining the value an in a measurement of A.

M11_QUANTUMMECHANICS_3628_CH11.indd   418 5/23/2013   4:12:04 PM



Many-Particle Systems and Quantum Statistics  419

Expectation Value of the Projection Operator
The projection operator P̂i is given by

 

ˆ | |

( )

| ˆ ˆ | | ˆ | | ˆ |

P i i

P Tr P

n P n n P i i n

i

i i

i
n n

ni

= 〉 〈
〈 〉 =

〈 〉 = 〈 〉 〈 〉

=

∑ ∑
r

r r

d CC C C C Ci n i i i
n

* * | |= =∑ 2

 (11.76)

Time Evolution of Density Operator
The state vector | ( )y t 〉 is given by

 

| ( ) ( ) |

| ( ) | ( )

( ) | ( ) |

y

y y

y y

t C t n

i
t

t H t

i
t

t t H

n〉 = 〉

∂
∂

〉 = 〉

− ∂
∂

〈 = 〈

∑

ˆ

ˆ�

�

 

∂
∂

= ∂
∂

〉 〈 + 〉 ∂
∂

〈

= 〉 〈

t t
t t t

t
t

i
H t t

ˆ | ( ) ( ( ) |) | ( ) ( ) |

[ ˆ | ( ) ( ) |

r y y y y

y y1
�

−− 〉 〈

= − =

| ( ) | ˆ ]

[ ˆ ˆ ˆ ˆ ] [ ˆ , ˆ ]

y y

r r r

t H

i
H H

i
H

(t)

1 1
� �

 (11.77)

In the matrix representation, this result becomes

 
∂
∂

=r r
t i

H1
�

[ , ] (11.78)

Diagonal Matrix qd for a Pure State
Since r is a Hermitian matrix, it can be diagonalized by a unitary matrix U. The diagonal matrix is  
given by
 r r yy y yd U U U U U U= = =† † † †( )( )  (11.79)

Obviously, the elements of a diagonal matrix r
d
 will be the eigenvalues of the density matrix r. For 

pure ensemble, only one eigenvalue will be 1 and the remaining eigenvalues are zero.

 

0

1

0

i
i

i
i



























 (11.80)
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This can be seen as follows. The eigenvalue equation is 

 rc lc=

Consider r c2 .

 r c r rc l rc l c
lc lc

2 2= = =� �

But since r r2 = , we also have r c rc lc2 = = .

 lc l c l= ⇒ =2 0 1 or 

The fact that the diagonal elements of r
d
 are the eigenvalues of r and the fact that its trace is 1 together 

make all the elements of r
d
 to be zero except one element whose value is 1.

U transforms the basis states {| }un 〉  to a new basis state {| }vn 〉 . In the basis states {| }un 〉 , the state 
vector |y 〉 is a superposition of basis vectors | un 〉 given as 

 | |y 〉 = 〉∑C un n
n

 leading to r =

























C C C C

C C C C

1 1 1 2

2 1 2 2

* *

* *

iii iii

iii iii
i
i
i

i
i
i 



i.e., |y 〉. Now in the new basis {| }vn 〉 , the state vector becomes 

 | |y 〉 = 〉vn  leading to rd =



























0 0

0 1

0

0

iii iii
iii iii

i
i
i

i
i
i

If {| }un 〉  are the eigenvectors of a dynamical variable A, we can always find an operator ′A  for which 

| |v C un n n〉 = 〉∑  will be an eigenvector. Of course, ′A  is given by

 UAU A† = ′

Example 11.7 Obtain the eigenvalues of the density matrix for an ensemble of spin 1 2/  particles 
whose state vector is given by

 y c c= +
−

C C1 1
2

2 1
2

Solution: The density matrix r is given by

 r =










+
C C C C

C C C C
C C1 1 1 2

2 1 2 2

1
2

2
2 1

* *

* *
| | |   with  | =
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The eigenvalues equation is

 
| | *

*

C C C

C C C

1
2

1 2

2 1 2
2

0
−

−
=

l

l

    

       | |

 

(| | )(| | ) | | | |

(| | | | )

C C C C

C C
1

2
2

2
1

2
2

2

2
1

2
2

2

2

0

0

0

− − − =
− + =

− =

l l
l l

l l             or  l l l l( )− = ∴ = =1 0 0 1

11.13 MIXED STATE DENSITY MATRIX
The above formulation of density matrix for pure ensemble can be extended to a mixed ensemble. 
Let ni  be the number of particles in state | ( )y i 〉. If N is the total member of the particles in the mixed 
ensemble, then the density operator r̂  is defined as 

 ˆ ˆ ( )r r= 



∑ n

N
i i  (11.81)

 = 〉 〈∑ pi
i i

i

| |( ) ( )y y  (11.82)

where | |( ) ( )y i
n
i

n

C n〉 = 〉∑  (11.83)

Note that the different state vector | ( )y i 〉 need not be orthogonal to each other.

i.e., 〈 〉 ≠y y d( ) ( )|i j
ij (in general) (11.84)

pi can be taken to represent the fraction of the total number of particles in state | ( )y i 〉. pi can also be 
interpreted as the probability of finding the system in state | ( )y i 〉.

The matrix r
mn

 is given by

 

r r y y

y y r

mn i
i i

i

i
i i

i
i

m n m p n

p m n p

= 〈 〉 = 〈 〉 〈 〉

〈 〉 〈 〉 =

∑
∑

| | | | |

| |

( ) ( )

( ) ( )
m n

i

i
i m

i
n

i

i

pC C( ) ( ) ( )*∑ ∑=

ˆ

 (11.85)

 ( ) ( )† i i
i

i

p∴ = ∑r y y  (11.86)

It shares almost all the properties of the density for pure ensemble:
It is a Hermitian matrix and non-negative definite matrix.

 〈 〉 = 〈 〉 = 〈 〉∑ ∑f r f f r f f r f| | | | | |p pi i
i

i i
i

ˆ ˆ ˆ

Making use of (11.73), we get 

 〈 〉 = ≥∑∑f r f| | *( )p a Ci n n
i

ni

2

0ˆ
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Trq = 1

 Trr r= = = = =∑∑∑∑∑∑ nn n
i

n
i

i n
i

i
niinn

C C p C p( ) ( ) ( )* | |2 1

æ Õ =F Tr(F )q
The expectation value of F in state 〈 〉y ( )i  is given by 

 〈 〉 = 〈 〉F Fi i i( ) ( ) ( )| |y yˆ

This expectation value of 〈 〉F i( )  is the consequence of probabilistic interpretation intrinsic to quantum 
mechanics. The classical statistical average due to lack of information is given by

 

〈 〉 = 〈 〉 = 〈 〉

= 〈 〉 〈 〉 〈 〉

∑∑A p F p F

p m m F n n

i
i

i
i i

i

i
ii

n

y y

y y

( ) ( )

( ) ( )

| |

| | | |∑∑∑∑
∑∑∑= ∗

mi

mn i n
i

m
i

inm

F pC C( )

ˆ

ˆ

 = =∑∑ F Tr Fmn nm
nm

r r( )  (11.87)

The Equation Motion d dtq̂

 

d
dt

p d
dt

i
p H p

i
i i

i

i
i i

i
i

ˆ
(| |)

ˆ | | |

( ) ( )

( ) ( ) ( )

r y y

y y y y

= 〉 〈

= 〉 〈 − 〉 〈

∑
1
�

yy

y y y y

( )

( ) ( ) ( ) ( )

| ˆ

ˆ | | | | ˆ

i

ii

i
i i

i
i i

ii

H

i
H p p H

∑∑

∑











= 〉 〈 − 〉 〈1
� ∑∑









= 1
i

H
�

[ ˆ ˆ ],r

 (11.88)

Trq 2 for Mixed Ensemble
It is this property which is different from that of pure ensemble.

 

Tr Tr

p C C p C C

nm mn
mn

i n
i

m
i

i
j m

j
n

j

( ) ( )

*( ) ( ) ( ) ( )

r rr r r2 = =

=






∑∑

∑ **
jn

∑∑
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= 〈 〉 〈 〉 〈 〉 〈 〉

=

∑∑ ∑∑

∑
i j

i j
n m

i i j j

i

p p m n m ny y y y( ) ( ) ( ) ( )| | | |��� ��

� �� ��

∑∑ ∑∑
j

i j
n m

i j j ip p m m n n〈 〉〈 〉〈 〉〈 〉y y y y( ) ( ) ( ) ( )| | | |

Let us use Schwartz inequality now.

 〈 〉 ≤ 〈 〉 〈 〉y y y y y y( ) ( ) ( ) ( ) ( ) ( )| | |i j i i j j2

(This is similar to ( ) cosA Bi = ≤A B A B2 2 2 2 2q  in geometrical vectors)

 
Tr p p

Tr

i j
ji

r

r

2

2 1

≤

≤

∑∑
 

 (11.89)

Eigenvalues of Density Matrix for Mixed Ensemble
Since the matrix is non-negative definite, its eigenvalues are always positive.

 
ˆ | |

| ˆ | |

r c l c
c r c l c c l

〉 = 〉
〈 〉 = 〈 〉 =

Since 〈 〉c r c| | ≥ ,0ˆ  we conclude that l ≥ 0.
Let l

1
, l

2 
… be the eigenvalues of r. The two properties, namely l

i
 ≥ 0 and l

1 
+ l

2 
+ … = 1, imply 

0 ≤ l
1 
≤ 1, 0 ≤ l

2 
≤ 1, 0 ≤ l

3 
≤ 1…

Let us diagonalize the matrix r by a unitary transformation U.

 r r

l

ld U U S= =























†

1

2

�

Now U U U U U U dr r r r2 2† † †= =

 =























l

l

1
2

2
2

�
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Making use of the property TrU U Tr dr r2 2† = , we get 

 Tr Tr dr r l l2 2
1
2

2
2 1= = + + ≤( )…

Note: It is possible for Tr ( r 2) = 1 provided

 l l1
2

2
2 1+ =…

This is possible only when all the eigenvalues are zero except only one eigenvalue which is equal to 1.

i.e., l li j i= = ≠1 and   if   , ,0 j

This corresponds to a pure state.

Example 11.8 An ensemble consists of spin 1 2/  particles in the state 

 | . | . |y 〉 = ↑〉 + ↓〉0 8 0 6Z Z

Determine the density matrix r and hence compute 〈 〉Sx .

Solution:

 P
C C C C

C C C C
=

∗

∗








 =







1 1 1 2

2 1 2 2

0 64

0 48

0 48

0 64

*

*

.

.

.

.

 Sx x= =
















�
�

�2

0
2

2
0

s

 ∴〈 〉 =






































=S Trx

0
2

2
0

0 64 0 48

0 48 0 48
0

�

�
. .

. .
..96�

Example 11.9 Consider a mixed ensemble in which 64% particles are spin up and 36% particles with 
spin down along Z axis. Determine 〈 〉Sx .

Solution: The density matrices and combination of the density matrices corresponding to pure states 
| | |( ) ( )y y1 2〉 = ↑〉 〉 = ↓〉Z Z and |

 r r(1) (2) and =






=






1 0

0 0

0 0

0 1

 r r r= + =






p p1
1

2
2

0 64 0

0 0 36
( ) ( )

.

.

 〈 〉 =






































=S Trx

0
2

2
0

0 64 0

0 0 36
0

�

�
.

.
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Note that in the first ensemble, | . | . |y 〉 = ↑〉 + ↓〉0 6 0 6Z Z . In the measurement of Z component of 
the spin, probability getting +�/2 and −�/2 are 0.64 and 0.36. In the second ensemble also, the prob-
ability of getting of Z component of the spin as �/2and −�/2 are 0.64 and 0.36, respectively. Yet 
they describe different states. In one ensemble, 〈 〉 =Sx 0. ,96�  and in the second ensemble, 〈 〉 =Sx 0. 
We have already seen the significance of these two different situations when we discussed the non-
classical nature of superposition state in quantum mechanics (see Chapter5).

Example 11.10 Obtain the density matrix for a pure ensemble of spin 1/2 particles in the state.

y =










1
2

1

1
. Hence compute 〈 〉Sx  and 〈S

z 
〉.

Solution: The density matrix r is given by

 r yy= =






=






† ( )1
2

1

1
1
2

1 1 1
2

1 1

1 1

 〈 〉 = =
−











































=S Tr S TrZ Z( )r
�

�
2

0

0
2

1
2

1 1

1 1
0

 〈 〉 =










































=S Trx
1
2

0
2

2
0

1 1

1 1 2

�

�
�

Since 〈 〉 =Sx
�
2

, obviously y =










1
2

1

1
 is an eigenstate of S

x
.

 Sx x xf f( ) ( )↑ = ↑�
2

In this basis, y f f= ↑ + ↓C Cx x1 2  ( ) ( )

For y =






= =1
2

1

1
1 01 2, ,C C

 ∴ =






rd

1 0

0 0

11.14 SPIN DENSITY MATRIX
Consider a beam of spin 1 2/  particles in a mixed state. Since there are two basis vectors, the density 
matrix should be 2 × 2 matrix. From matrix theory, we know that any 2 × 2 Hermitian matrix can be 
written as a linear combination of the identity matrix and the three Pauli matrices s

x
, s

y
 and s

z
. Thus,

 

r s s s= + + +

=
+ −
+ −







C I C C C

C C C iC

C iC C C

x y z0 1 2 3

0 3 1 2

1 2 0 3
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Tr 2 1   r

r s s s

s s

= = ∴ =

= + + +

= + + +

C C

I C C C

I C C C

x y z

x y

0 0

1 2 3

1 2

1
2

1
2
1
2

2 2 2( 33 3s )

Instead if 2C
1
, 2C

2
 and 2C

3
, let us write them as P

x
, P

y
 and P

z
.

 ∴ = + ⋅r 1
2

( )I r P

It is easy to show that 〈 〉 = ⋅ 〈 〉 = 〈 〉 =S P S P S Px x y y z z
� � �
2 2 2

, .  and  

So P
x
, P

y
 and P

z
 can be interpreted as the components of the polarization vector P.

EXERCISES

 1. How do you define identical particles?
 2. What is meant by indistinguishability?
 3. Is indistinguishability the same as identical?
 4. Is indistinguishability unique to quantum mechanics?
 5. Is the concept of indistinguishability present in classical mechanics?
 6. Can we call proton and neutron as identical particles?
 7. Can we call electron and positron as identical particles?
 8. What is meant by interchange operator?
 9. Show that the interchange operator P

12
 is unitary operator.

 10. Is x
1 
p

2
 – x

2 
p

1
 an allowed operator in quantum mechanics? (Subscripts 1 and 2 refer to particle 1 

and particle 2.)
 11. By considering three-particle wave function y (1, 2, 3) = u

a
(1) ug (2) ub (3), show that P P P12 13 ≠ 13 12P .

 12. For the three particles, wave function y
s
 (1, 2, 3) given by (11.28). Show that P

12
 P

13 
= P

13
 P

12
.

 13. For a system of fermions, is it true that the operators corresponding to dynamical variable should 
be antisymmetric, i.e., is it true that A Aop op( ; ) ( ; )?r r r r1 1 2 2 2 2 1 1s s s s= −

 14. What is the significance of symmetrization postulate? 
 15. The single particle energy level e s is two-fold degenerate. Determine the number of multiparticle 

states for four distinguishable particles. If the two particles are indistinguishable, how many mul-
tiparticle states are possible? 

 16. Consider a system of two particles for which four states of energy e e e e1 2 3 4, ,  and are available to 
them. Determine the canonical partition function for the system, assuming the particles to be (i) 
distinguishable (ii) bosons and (iii) fermions.

 17. Show that Pauli’s exclusion principle is a consequence of antisymmetrization of a wave function 
of the multiparticle system.

 18. In a pure ensemble, the wave function of each particle is given by 

 y f f f= + +1
2

1
3

1
6

1 2 3
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   Obtain the density matrixr . Determine eigenvalues of the density matrix. Determine r 2. 
Diagonalize the matrix r .

 19. In an ensemble 60% of the systems are in the state y f f f= + +1 2 1 3 1 61 2 3  and 40% of 

them are in the state y f f f= + +1 3 1 3 1 31 2 3. Determine (i) r  (ii) r 2  and  (iii) the eigenval-

ues of r and r 2 .
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Electron in Magnetic 
Fields and Other 
Two-State Problems

We have already seen in the earlier chapters many problems for which exact solutions are available. 
In this chapter, we study some more exactly solvable problems. First, we consider the case of an elec-
tron in constant magnetic fi eld. Problems involving electron in constant magnetic fi eld are one of the 
simplest applications of quantum mechanics. For instance, if we consider orbital angular momentum 
alone, free electron in a constant magnetic fi eld is exactly solvable, leading to Landau levels. On the 
other hand, if one concentrates on spin angular momentum alone, the electron in a magnetic fi eld 
provides a simple model for the study of two-state systems.

Then, we consider gauge invariance in quantum mechanics. Though this principle is one of the 
major ideas in particle physics, here we restrict ourselves to Aharonov–Bohm effect, which brings out 
another important phenomenon where quantum mechanics and classical physics widely differ.

Next, we present the general analysis of two-state problems, which occur in wide variety of situations. 
In addition to the electron in a magnetic fi eld, we consider ammonia molecule and neutrino oscillation. 
Though these problems are totally disconnected, they share important features of two-state problems.

12.1 ELECTRONS IN CLASSICAL ELECTROMAGNETIC FIELD
We present here the important features of classical electromagnetism relevant to the study of an elec-
tron in constant magnetic fi eld. In classical electromagnetism, the electric fi eld E and the magnetic 
fi eld B are the basic quantities (SI units are used in this chapter). Maxwell’s equations determine E 
and B for a given charge density and current density. On the other hand, Lorentz force describes the 
effect of E and B on the motion of a charged particle. In addition to E and B, two more concepts, 
namely the scalar potential f and the vector potential A, are widely used in classical electromagne-
tism. They are related to E and B as follows:

 E A B A= −∇ − ∂ = ∇ ×f ∂
t

        (12.1)

In classical physics, we can study electromagnetism either using electric fi eld and magnetic fi eld or 
using the scalar potential and vector potential. But even in classical electromagnetism, Hamiltonian 
formalism can be done only using scalar potential and vector potential. So, in quantum mechanics, the 

12
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interaction between a charged particle and electromagnetic field can be described using only scalar 
and vector potential.

Note that for a given E and B, A  and f cannot be chosen uniquely. There are many sets of f and 
A, leading to the same fields E and B. This is expressed through a transformation called gauge 
transformation.

 f f f c→ ′ − ∂
∂=
t

 (12.2)

 A A A→ ′ ∇= + c  (12.3)

Both sets (f ,A) and ( )′ ′f ,A  lead to the same electric field E and magnetic field B.

 
′ −∇ ′ − ∂ ′

∂ = − ∇ ∂
∂ − ∂

∂ − ∂
∂ ∇

∇ − ∂
∂

E A A

A E

= ∇ +

= − =

f f c c

f

t t t t

t

 (12.4)

Similarly,

 ′ ∇ ′ ∇ ∇ ∇ ∇ ∇ ∇ × =B A A A A B= × = × ( + ) = × + × =c c  

We will discuss the significance of gauge transformation in quantum mechanics a little later. We can 
take advantage of this arbitrariness and choose a potential for a given B to suit our convenience. Our 
interest in this chapter is the electron in a constant magnetic field. The following potentials lead to 
constant magnetic field B:

 1. A r B A B= − × ∇ × =1
2

         

 2. A A z= ( ) ∇ × =− yB, ,0 0      B  

 3. A A z= ( ) ∇ × =0 0, ,xB B        

Let us summarize other important results of classical electromagnetism which are also relevant to  
this chapter.

The Hamiltonian H for a charged particle in an electromagnetic field E and B is given by 

 H = + +( )p A
r

- fq
m

V q
2

2
( )  (12.5)

Magnetic Moment
A charged particle of charge q and angular momentum L has a magnetic moment m given by 

 l = q
m2

L (12.6)

For an electron of charge -e, the magnetic moment due to orbital angular momentum is 

 l = − e
m2

L 
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The potential energy of a dipole in the magnetic field B is given by 

 V = −l ⋅ B (12.7)

Larmor’s Precession
A dipole of magnetic moment l  in a magnetic field B experiences a torque s l= × B .

 s l= d
d
L B
t

= ×  

A bar magnet in our laboratory is the simplest example of a dipole. If we place a bar magnet in a 
magnetic field, the torque on it tends to align it along the magnetic field.

In the case of a charged particle of angular momentum L, the torque induces a precessional motion 
of L or m around the field B.

This can be seen as follows:

 dL L B
dt

q
m

= ×
2

 

Taking scalar product with L, we get

 L L L L B⋅ ⋅ ×d
dt

d
dt

L
q
m

= = 



 =1

2 2
02( )  

Therefore, L2 does not change with time. Taking scalar product with magnetic field B, we get

 B
L

B L B L B⋅ = ⋅ = ⋅ × =d

dt

d

dt

q

m
( )

2
0







Therefore, the angle between L and B does not change with time. These two results imply that L or m 
precesses around L with a frequency known as Larmor’s frequency w

L
,
 
which is given by 

 w L
e
m

= B
2

 (12.8)

12.2 LANDAU ENERGY LEVELS
The concept of Landau levels serves as an important pedagogic tool in explaining quantum Hall 
effect. In solid state physics, Landau levels are used to explain de Haas-van Alphen effect in determin-
ing the Fermi surface. Landau levels are the energy levels of an electron in a constant magnetic field.

We consider a free electron subjected to constant magnetic field. We ignore the spin angular 
momentum here. The Hamiltonian for the electron of charge -e is 

 H = ⋅ +1
2m

e eop op( ) ( )p A p A+  (12.9)

The energy eigenvalue equation is 

 1
2m

e e u x y z u x y zop op( ) ⋅( )p A p A+ + =( , , ) ( , , )E  (12.10)

Let us choose the vector potential A  as A y= xBˆ . It is easy to check that ∇ × ( )xB Bˆ ˆ.y z=  
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The Hamiltonian is 

 = + + + 21 ˆ ˆ ˆ[ ( ) ]
2 x y zH p p exB p

m
x y z  (12.11)

This Hamiltonian commutes with p
y
 and p

z
.

i.e., [H, p
y
] = [H, p

z
] = 0. Since the eigenfunctions of the operators p

y
 and p

z
 are eik yy  and eik zz , we 

write u(x, y, z) as

 u x y z x e eik y ik zy z( , , ) ( )= f  (12.12)

The Schrödinger equation is 

 − −



 −













=� � �2 2

2

2
2 2

22
1

2 2m x m
i

y
exB

m z
u u∂

∂ + ∂
∂ + ∂

∂ E  (12.13)

 − ∂ −





−












� � �2 2

2

2
2 2

22
1

2 2m x m
i

y
exB

m z
x eik yy

∂
+ ∂

∂
+ ∂

∂
f ( ) ee E x e eik z ik y ik zz y z= f ( )  (12.14)

Note −



 =i

y
exB e k exB eik y

y
ik yy y� �∂

∂ + +
2

2( )  (12.15)

and − =� �2 2

2

2 2

2 2m z
e

k
m

eik z z ik zz z
∂
∂

 (12.16)

Making use of these results in (12.14), we get

 − � � �2 2

2
2

2
2

2
1

2 2m x m
k exB

m
k Ey z

∂
∂

+ + + =f f f f( )  (12.17)

This can be rewritten as 

 −






−





� � �2 2

2

2 2

2

2
2 2

2 2 2m x
m e B

m
x

k

eB
E

k
m

y z∂
∂

+ + = =f f f ef

 − −�2 2

2 0
2

0
2

2
1
2m x

m x x
∂
∂ + =f w f ef( )  (12.18)

where w 0 = eB
m

 and x
k

eB
y

0 = −
�

 and e = −E
k
m

z�2 2

2
 

The Equation (12.18) is the Schrödinger equation for harmonic oscillator of frequency w 
0
 and cen-

tered around x k ey0 = −� / B. Therefore, e is given by 

 e w= +( )n 1
2 0�  

Or E n
k
m

z= +( ) +1
2 20

2 2

�
�

w  (12.19)

The energy eigenfunction u(x, y, z) is given by 

 u N e H x x e en k k n

x x

n
ik y ik z

y z

y z
, ,

( )

( ))= −−
−a

a
2

0
2

2
0(  (12.20)

The energy levels (12.19) are known as Landau levels.
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12.2.1 Degeneracy
It is to be noted that though the energy eigenfunctions u

n
, k

y
 and k

z
 contain three quantum numbers 

n, k
y
 and k

z
,
 
the energy eigenvalues are independent of k

y
. This implies that the Landau levels are 

degenerate. The degeneracy or the number of degenerate states corresponding to a given Landau level  
( ( ) ),E n k mn k zz

= ++1 2/ /� �w 0
2 2 2  is determined by the boundary condition. It can be infinite or finite. 

For instance, in a solid of sides L
x
, L

y
 and L

z
, the degeneracy D is D

L L eBx y=
2p�

.

Example 12.1 Determine the degeneracy corresponding to the Landau levels for an electron in a solid 
of dimensions L

x
, L

y
 and L

z
.

Solution: The wave function of an electron in a solid corresponding to Landau levels is

 u N e H x x e en k k n

x x

n
ik y ik z

y z

y z
, ,

( )

( ))= −−
−a

a
2

0
2

2
0(  

The boundary condition for an electron in a solid is given by

 u x y L z L u x y zn k k y z n k ky z y z, , , ,( , , ) ( , , )+ + =  

This implies e e eik y L ik y ik Ly y y y y( )+ = =or 1  

Therefore, the allowed values of k y  are k n L ny y y y= = ± ± ±2 1 2 3p /   where , , ....
In general, ny  can take any value. However, there is an upper bound for the ny  values for an electron 

inside a solid. This is due to the fact that the harmonic oscillator part of the wave function is centered 
around x k eBy0 = −� /  and this has to be within the solid. This implies 0 ≤ ≤�k eB Ly x/ . Therefore, the 
maximum value of  is�k eB Ly x/  . So the maximum value of ny  is n L L eBy x y= /2p� . So the degeneracy 
is D L L eBx y= /2p�.

12.3 NORMAL ZEEMAN EFFECT
We now consider an atom in a uniform magnetic field B. The calculation is simplified if one ignores 
the spin angular momentum. In such cases, the effect of magnetic field is to lift (2l + 1)-fold degen-
eracy (corresponding to (2l + 1) values of m

l
), which causes a spectroscopic line to become three lines. 

This is known as normal Zeeman effect. The inclusion of spin angular momentum is more realistic, 
and it leads to anomalous Zeeman effect (see Chapter 13). Here we restrict ourselves with normal 
Zeeman effect, which occurs for atoms with total spin S = 0.

Since spin is not taken into account, the Hamiltonian is given by

 H
e

m
V=

+
+

( )
( )

p A
rop

2

2
 (12.21)

Let us choose the potential A  as

 
A r B

x y z

= − ×

= − + − + −

1
2

1
2

1
2

1
2

ˆ ˆ( ) ˆ( )( )zB yB xB zB yB xBy z z x x y

 (12.22)

It is easy to check ∇ ×× − =( )1 2/ r B B  (12.23)
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The energy eigenvalue equation is 

 1
2

2

m
e V u Euop( ) ( )p A r+ +



 =  (12.24)

Let us evaluate ( )p Aop e u+ 2  

 
( ) ( ) ( )p A p A p A

p p p A A p

op op op

op op op op

e u e u e u

u e u e u

+ + +

+ ( ) + +

2 = ⋅

= ⋅ ⋅ ⋅ ee A u2 2
 

 p A p A A pop op ope u e u e u⋅ = ⋅ + ⋅( ) ( )

But ( )p A Aop i⋅ = − ⋅ =� ∇ 0

We can check this result with A  given in (12.22).

 ∴ = ⋅( )p A A pop op ope u p u e u e A u+ + 2 +2 2 2 2

We can write the term A p⋅ op as

A p r B p p B L B⋅ = − × ⋅ = × ⋅ = ⋅op op op
1
2

1
2

1
2

r

 ∴ + = + ⋅ +( )p A L Bop ope u p u e e A u2 2 2 2u  

 
H

p
m

V e
m

e
m

B r

p
m

V e
m

B

= + + ⋅ + − ⋅

= + − ⋅ +

2 2
2 2 2

2 2
2

2 2 8

2 8

( ) ( ( ) )

( ) [

r L B r B

r Bm rr2 2− ⋅( ) ]r B

 (12.25)

If we choose B = Bz z , then the Hamiltonian H is

 H
p
m

V e
m

BL e
m

B x yz= + + + +
2 2

2 2 2

2 2 8
( ) ( )r  (12.26)

 H
p
m

V B
L e B

m
x yB

z= + + + +
2 2 2

2 2

2 8
( ) ( )r m

�
 (12.27)

where the mB  is the Bohr magneton given by mB e m= � 2  
Let us estimate the magnitude of the second and the third term. Take L

z 
as ml�. Substituting 

mB J T∼ 9 3 10 24 1. × ⋅− − , we get

 
m

mB z
l B

BL
m B B B

�
∼ ∼ × ∼9 3 10 1024 23. − −  (12.28)

where B is in Tesla.
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For the third term, we can replace x and y by a
0
, the Bohr radius.

 
∴ + × ×

× ×

− −

−
e B

m
x y e B

m
a

C m2 2
2 2

2 2

0
2

19 2 10 2

8 4
1 6 10 0 5 10

4 9 10
( )

( . ) ( . )
� �

331
2

31 210

Kg
B

B� −

 (12.29)

In terms of eV, the second term will be of the order 10-4 eV, which itself is very small, compared to the 
energy levels of an atom. (The ground state of hydrogen atom is -13.6 eV). The third term is much 
smaller, compared to the second term and so it can be safely ignored.

 ∴ = + +H
p
m

V
B

LB
z

2

2
( )r

m
�

 (12.30)

For central potential, L
z
 commutes with H. Therefore, the eigenfunctions of H p m0

2 2= + V(r) are 
also the eigenfunctions of H. Let y q fnlm r( , , ) are the eigenfunctions of H.

 H E L mnlm nl nlm z nlm l nlm0y y y y= =and �

 ∴ = = +H E E mnlm nlm nlm nl l B nlmy y m y( )B  (12.31)

In the absence of magnetic field, the energy Enl  is independent of the quantum number ml  and so each 
energy level is ( )2 1l + -fold degenerate. The presence of magnetic field splits each of this energy level 
into ( )2 1l +  closely spaced sublevels. The effect of magnetic field is to lift the (2l + 1)-fold degeneracy. 
This is illustrated by considering l = 2 and l = 1 states with possible transitions. The spacing between 
each subenergy levels corresponding to both l = 1 and l = 2 is the same.

l = 2

l = 1

2
1

1

n0 − ∆n n0 + ∆nn0

−1

−1

−2

0

0

Fig. 12.1 Normal Zeeman effect

The numbers of transitions are restricted by the selection rules ∆ ∆l ml= = ±0 1, .

 ∆n
m

= B B
�
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12.4 GAUGE INVARIANCE OF SCHRÖDINGER EQUATION
Let us now introduce the concept of gauge invariance in quantum mechanics. Gauge invariances play 
a major role in elementary particle physics. However, our interest here is to study the gauge invari-
ance of Schrödinger equation leading to an important phenomenon known as Aharonov–Bohm effect.

The Schrödinger equation for an electron in electromagnetic potential ( , )f A  is

 i
t

e
e

m
Vop� ∂

∂ +( ) =
+

+f y y y
( )p A 2

2
 

We saw that the electric field E and the magnetic field B are invariant under the gauge transformation.

 f f f c→ ∂
∂′ = −

t
 

 A A A→ ′ = + ∇c  

What about the Schrödinger equation? Let y transforms to ′y  describing the particles in potentials 
′A  and ′f . The invariance of Schrödinger equation under gauge transformation implies the following 

equations:

 i
t

e
e

m
Vop� ∂

∂ +( ) =
+

+f y y y
( )p A 2

2
 (12.32)

 i
t

e
e

m
Vop� ∂

∂ + ′( ) ′ =
+ ′

′ + ′f y y y
( )p A 2

2
 (12.33)

If both sets ( , )f A  and ( , )′ ′f A  describe the same physical situation, then y  and ′y  should describe 
the same state. This is possible provided y and ′y  are related by a phase factor. Therefore, ′y  should 
be given by

 ′ =y yxei t( , )r  (12.34)

Let us now verify whether y  transforms to ′y  as given in (12.34). Let us consider ( )i t e�∂ ∂ + ′ ′f y  
and /(( ) )p Aop e m+ ′ ′2 2 y .

 

i
t

e i
t

e e
t

e

e i
t

e e
t

i

i

� �

� �

∂
∂

+ ′( ) ′ = ∂
∂

+ − ∂
∂







= ∂
∂

+ − ∂
∂

−

f y f c y

f c

x

x ∂∂
∂






x y
t

 

( ) ( )

( )

(

pop
i

i

i
o

e i e e e

e i e e

e

+ ′ ′ = − ∇ + + ∇

= − ∇ + + ∇ + ∇
=

A A

A

p

y c y

c x y

x

x

x

�

� �

pp e e+ + ∇ + ∇A c x y� )
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( ) ( )p A p Aop ope e+ ′ ⋅ ′ ′+ y

 
= + + ∇ + + ∇ + ∇

= + + ∇ + ∇ ⋅ +

( ) ( )

( ) (

p A A

p A p

op
i

op

i
op

e e e e e

e e e e

c c x y

c x

x

x

p �

� AA + ∇ + ∇e c x y� )

Therefore, the Equation(12.33) reduces to Equation (12.32) if

 �
∂
∂

∂
∂

x c
t

e
t

= −  and �∇ = − ∇x ce

Or x c= − e
�

Thus, the Schrödinger equation is invariant under gauge transformation provided ′ = −y yce ie /� .
So the generalized gauge transformation is defined as

 f f f c→ ′ −= ∂
∂t

 (12.35)

 A A A→ ′ = + ∇c  (12.36)

 y y yc→ ′ = −e ie /�  (12.37)

These transformations make sure that both sets { , , }f yA  and { ′ = − ∂ ∂ ′ = + ∇f f c ct, ,A A  
′ = −y yce ie / }�  describe the same physical states.

12.5 AHARONOV–BOHM EFFECT
Aharonov–Bohm effect raised serious questions about the nature of electric and magnetic fields and 
the vector potentials. Within classical physics, electric field and magnetic field are considered as real 
physical entities. They were deliberately introduced for the sake of avoiding action at a distance con-
cept. A brief account of this concept is presented here.

In Newtonian mechanics, the general understanding is that physical contact between two objects is 
necessary for each object to act on the other. This is in agreement with everyday experience. The rail 
engine pulling the coaches is a best example. There was one exception to this scheme, namely gravita-
tional force between two objects. The sun and the earth are separated by a vast distance. The sun does 
not pull the earth through any physical contact. Such actions are called actions at a distance. Can we 
formulate the forces describing the gravitation also in such a way to avoid the action at a distance?

Let us come back to electromagnetism, which also faced similar situations. For instance, consider 
the Coulomb force between charges q

1
 at r1 and q

2 
at r2. Though there is no physical contact between 

the charges q
1
 and q

2
, the charge q

2 
experiences a force (action) q q r1 2

2/ . This is again an example of 
action at a distance. The concepts of electric and magnetic fields were introduced to avoid this possi-
bility of action at a distance (or non-local interaction as generally known today). In terms of fields, the 
charge q

1
 produces field E in the space around it, and E at r2 is given by E q r= 1

2/ . There is a contact 
between the field E and the change q

2
 at r2 , and so it experiences a force = = ( 2

2 2 1 ˆ/ )q q q rF E r. This is 
a simple account of the origin of fields in classical physics. Thus, in field theory, there is no action at a  
distance.
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r1

q1 q2

∼

r2

r

Fig. 12.2 Coulomb interaction between charges q1 and q2

We have already seen that in classical physics, the electric and magnetic fields are observable quanti-
ties, whereas the vector potentials are not measurable. Aharonov–Bohm effect challenges this simple 
picture. Consider a long, thin solenoid. When a current flows through the solenoid, magnetic field due 
to this current can be easily calculated. It is found that

 B = 0 Outside the solenoid

 B ≠ 0 Inside the solenoid

P

(i)

Path 1

Path 2

r0 r

(ii)

Fig. 12.3 (i) Solenoid (ii) Aharonov–Bohm effect

Consider a point P well outside the solenoid. Since P is outside the solenoid, magnetic field B is zero 
at P. However, the vector potential may be or may not be zero at P, depending on whether B is zero 
or non-zero inside the solenoid. If the potential A  is not zero, then it should be such that ∇ × =A 0. 
Obviously A = ∇c, where c ( , )r t  is an arbitrary function. Thus, we have the potential A at a point P 
outside the solenoid as given below:

 inside: B = 0; outside: B = 0, A = 0 (12.38)

 inside: B ≠ 0; outside: B = 0, A = ∇c (12.39)

Here, A  has to be such that A r⋅ =∫ d
C
� Φ, where Φ  is the flux enclosed by the contour C. Note that the  

vector potential A  can be arbitrary within gauge invariance. Let y ( , )r t  be the wave function of the 
electron at P corresponding to A = 0. Then corresponding to A = ∇c , the wave function ′y  at P is 
given by

 ′ = −y yce ie /�  (12.40)
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For a given A, c can be calculated easily.

 

A r r

r r
r

r

⋅ = ∇ ⋅ = ∂
∂ + ∂

∂ + ∂
∂ =

∴ = ′ ⋅ ′∫

d d
x

dx
y

dy
z

dz d

d

c c c c c

c A ( )
0

 (12.41)

where r0 is some arbitrary reference point, and the line integral is along an arbitrary curve connecting 
r0 and r.

 ∴ ′ = − ⋅ ′








∫y yexp ( , )ie d t

r
�

A r
r

0

r  (12.42)

So, a non-zero vector potential A  produces a phase factor for the wave function. Since the wave 
function is arbitrary up to a phase factor, in general, such phase factors need not be taken seriously. 
However, Aharonov–Bohm considered a physical situation in which this phase can lead to observable 
consequences.

Consider two beams of electrons: one beam travelling path 1 and another beam travelling path 2, 
both beams being well outside the solenoid. Since two beams travelling through different paths are 
combined, an interference pattern will be formed independent of the fact whether solenoid is present 
or not or whether a current flows through the solenoid or not. 

Let us recall that B = 0 outside the solenoid whether a current flows or not through the coil. Only 
inside the coil, B can be zero or non-zero, depending on whether a current flows or not.

The non-zero potential A  at r (see Fig. 12.3(ii)) along these two paths introduces phases for the 
two beams as can be seen in the following. The phases f

1 
and f

2
 for the two paths are given by

 f1

0

1

= − ′ ⋅ ′∫e d
�

A r r
r

r

path 

( )  for path 1

 

 f2
0

2

= − ′ ⋅ ′∫e d
�

A r r
r

( )
r

path 

 for path 2

For electrons along path 1, y yf1 1
1′ = ei  and for electrons along path 2, y yf2 2

2′ = ei . At r on the 
screen, they superimpose. 

 
∴ ′ = +

= + −

y y y

y y

f f

f f f

e e

e e

i i

i i

1 2

1 2 1

1 2

1 2[ ]( )

 f f2 1

00

− = − − ⋅ + ⋅














∫∫e d d
�

A r r A r r
r

r

r

r

( ) ( )′ ′ ′

path 2path 1
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 = − ⋅ + ⋅



















∫∫e d d
�

A r r A r r
r

r

r

r

( ) ( )′ ′ ′
0

0

path 2path 1

 = − ⋅ = −∫e d e

C
� ��A r r( ) Φ  (12.43)

where F is the flux of magnetic field enclosed by the contour C.

 ∴ ′ = + −y y yfe ei ie1
1 2( )/Φ �  (12.44)

The experiment is to start with zero B inside the solenoid. Since the electrons travel through two dif-
ferent paths, they will produce an interference pattern. The wave function on the screen is 

 y y y= +1 2 

This superposition produces a set of interference fringes on the screen. Now make B ≠ 0 inside the 
solenoid. The wave function on the screen now becomes 

 ′ = ′ + ′ = +( )−
y y y y yf

1 2 1 2
1e ei

ie
�

Φ
 (12.45)

The presence of the field inside solenoid produces a phase shift e/� Φ between the beams, and so 
the interference fringe pattern on the screen will shift as a whole. The resulting shift for the intensity 
distribution (graphical representation of the Equation (12.45)) in the case of double slit experiment is 
shown in Fig. 12.4.

The shift is known as Aharonov–Bohm effect. This shift is non-zero for any closed path provided 
non-zero magnetic flux is enclosed. So it is a topological phase.

Fig. 12.4 Shift in interference fringe due to B in the solenoid

Experimentally, such fringe shift has been observed. It is not easy to verify Aharonov–Bohm effect 
since it is difficult to produce magnetic field only in one region without a leakage of magnetic field in 
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the neighbouring region. In fact, this is cited as the reason for the skepticism towards the verification 
of Aharonov–Bohm effect. However, the experimental verification of Aharonov–Bohm effect is gener-
ally accepted today. (See R. G. Chambers (1960), A. Tonomura (1986)).

What do we conclude from such a result for the nature of electromagnetic field? Or how do you 
interpret Aharonov–Bohm effect?

If we analyze the Aharonov–Bohm effect in terms of the magnetic field, the presence of field in 
a region (within the solenoid) affects the behaviour of electrons in distant places (though there is no 
field in these regions). This is in contrast with our understanding on the physical nature of electromag-
netic fields in classical physics. 

There is a different interpretation of this effect. In classical physics, the magnetic field B is consid-
ered as real and observable quantity. The vector potential A is considered as a mathematical construct 
devised for the purpose of calculations. In quantum mechanics, it is the vector potential and not the 
magnetic field which enters into the calculations directly. In Aharonov–Bohm effect, it is the pres-
ence of A (though its value is determined by the value of B inside the solenoid) which determines the 
phase of the electron’s wave function. So Aharonov–Bohm effect is interpreted to imply that the vector 
potential A  is more fundamental than the magnetic field B. Of course, the vector potential A  is still 
arbitrary due to gauge invariance. It is the gauge invariant quantities which are important with respect 
to observation. So, in this interpretation, Aharonov–Bohm effect establishes the physical significance 
of the vector potential A  within the constraints imposed by gauge invariance. This interpretation also 
contradicts the view in classical physics on the physical nature of vector potential.

The reader can consult an advanced book for the interpretations like topological phase. Aharonov–
Bohm effect is one of the most extensively discussed topics in quantum mechanics.

12.6 TWO-STATE PROBLEM
Let us turn our attention to another set of phenomena involving systems with two-basis states. This 
class of phenomena is known as two-state problem. Let us consider a system for which the Hamiltonian 
is given by

 h h h= +( )r spin  

For such Hamiltonian, the spin dependent behaviour of the system is decoupled from the coordinate 
dependent part. So we can safely ignore the space coordinate part and consider the spin dependent part 
alone. The vector space of quantum mechanical states now becomes two-dimensional Hilbert space.

However, the two-state problem is not unique to spin systems alone. There is a large number of phenom-
ena which can be described using the two-basis states. For instance, ammonia molecule’s configuration 
(state of nitrogen) and neutrino oscillation have nothing to do with either spin or interaction with magnetic 
field, but their state vector spaces are also, under some circumstances, two-dimensional Hilbert space.

12.7 GENERAL ANALYSIS OF TWO-STATE PROBLEMS

12.7.1 Time-independent Hamiltonian
Let us consider a Hamiltonian whose eigenstates are | E1 〉  and | E2 〉 .

 
ˆ | | ; ˆ | |H E E E H E E E0 1 1 1 0 2 2 2〉 = 〉 〉 = 〉      (12.46)
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Let the initial state of the system | ( ) ,y 0 〉  be given by

 | ( ) | |y 0 1 1 2 2〉 = 〉 + 〉C E C E  (12.47)

This state evolves to | ( ) ,y t 〉  which is determined by the Schrödinger equation

 i
t

t H t� ∂
∂

| ( ) | ( )y y〉 = 〉0
ˆ

 | ( ) | ( )y yt e
i
H t

〉 = 〉− 0

0�

ˆ

 (12.48)

It is simple to see that 

 e E e EiH t iE t− −〉 = 〉ˆ / | |0 1
1 1

� �  (12.49)

and e E e EiH t iE t− −〉 = 〉ˆ / /| |0 2
2 2

� �  (12.50)

 
∴ 〉 = 〉 + 〉

= 〉 +

−

− −

| ( ) [ | | ]

|

/

/ /

y t e C E C E

C e E C e

iH t

iE t iE t

0

1 2

1 1 2 2

1 1 2

�

� � || E2 〉
 (12.51)

In terms of matrix representation, the Hamiltonian Ĥ 0 becomes a 2 × 2 matrix H
0
. Let us write the 

eigenvectors corresponding to |E1〉 and |E2 〉 as y (↑) and y (↓), or y (+) and y (-).

 H E H E0 1 0 2y y y y( ) ( ); ( ) ( )+ = + − = −  (12.52)

 ∴ = + + −y y y(0) C C1 2( ) ( ) (12.53)

 y y y( ) ( ) ( )t C e C eiE t iE t= + + −− −
1 2

1 2� �  (12.54)

Alternatively, the time evolution of the state y ( )t  can be determined in an easier way as follows:
Note that any 2 × 2 Hamiltonian matrix H

0
 can be written as a linear combination I, s

x
, s

y
 and s

z
.

i.e., H
0
 = aI + b s

x
 + cs

y
 + ds

z
. = + ⋅aI r n

Therefore, y ( )t  is given by

 y y y( ) ( ) ( )( ) / / /t e e eaI t at t= =− + ⋅ − − ⋅r rn n� � �0 0  (12.55)

These results for spin angular momentum in magnetic field hold good for other physical systems 
((nitrogen atom) in ammonia molecule, neutrino oscillation, etc.) for which the Hilbert space of states 
is a two-dimensional linear vector space. 

12.7.2 Time-dependent Hamiltonian
Let us next consider time-dependent Hamiltonian. Let us write

 ˆ ˆ ˆH H H= ′0 +  (12.56)
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where Ĥ 0 is time-independent and ˆ ′H  is time-dependent part. Let us choose again the eigenstates of 
Ĥ 0 as the basis states. Then we can write any arbitrary state vector | ( )y t 〉 as 

 | ( ) ( ) | ( ) |y t C t e E C t e EiE t iE t〉 = 〉 + 〉− −
1 1 2 2

1 2/ /� �  (12.57)

| ( )y t 〉 is determined by

 i
t

t H H t� ∂
∂

〉 = + 〉| ( ) ( ) | ( )y y0
ˆ ˆ ′  (12.58)

LHS:

 i
t

t i C e E C e E En
iE t

n n
iE t

n n
nn

n n� �
i

� �∂
∂

〉 = 〉 + 〉− −∑∑| ( ) | |y / /  (12.59)

RHS:

 

ˆ | ( ) ˆ | ( ) ˆ | ( )

|

H t H t H t

C e E E C en
iE t

n
n

n n
n

iE t
n

n

y y y〉 = 〉 + ′ 〉

= 〉 +− −∑ ∑
0

/� //�
′ 〉H En|

 (12.60)

Equating these two equations, we get

 
i C t e E C e En

iE t
n n

iE t
n

n n

n

�
i

� �∑ − −〉 = 〉( ) | |/ ∑  

Consider the equation for C1.

 i C e E i C e E

C e

iE t iE t

iE t

� �
i

�
i

�

�

1 1 2 2

1

1 2

1

− −

−

〉 + 〉
=

| |

               || |E C e EiE t
1 2 2

2〉 + 〉− �
 (12.61)

Taking scalar product with 〈E1 |, we get

Or 

i C e C e H C e H

C
i

C H C e

iE t iE t iE t�

�

i
� � �

i

1 1 11 2 12

1 1 11 2

1 1 2

1

− − −= ′ + ′

= ′ +[ ii E E t

i t

H

C
t

C H C e H

( ) ]

[ ]

1 2

12

12

1 1 11 2 12
1

− ′

= ′ + ′

�

i

�
w

 (12.62)

Similarly, C
i

2 is found to be 

 C
i

C e H C Hi t
i

�2 1 21 2 22
1 12= ′ + ′−[ ]w  (12.63)

Solution to these equations determines | ( )y t 〉.
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The above analysis suggests the following steps to analyze the two-state problems which involve time-
dependent Hamiltonian. 

 1. Determine the energy eigenvalues E
1
 and E

2
 for the given Hamiltonian H

0
 and the corresponding 

eigenstates y (+) and y (-).
 2. The wave function y ( )t  is given by y y y( ) ( ) ( ) ( ) ( ).‘t C t e C t eiE t iE t= + + −− −

1 2
1 2� �  

 3. Choose an initial state y ( )0  and write it as y y y( ) ( ) ( ) ( ) ( )‘0 0 01 2
1 2= + + −− −C e C eiE t iE t� � . 

Determine the coefficients C
1
(0) and C

2
(0).

 4. Determine C t1( ) and C t2 ( ) using the Equations (12.62) and (12.63).

Example 12.2 Prove that any 2 × 2 Hermitian matrix A can be written as A = aI + bs
x
 + cs

y
 + ds

z
.

Solution: The arbitrary Hermitian matrix A is written as

 A =








 =













a a

a a

a a

a a
11 12

21 22

11 12

12 22
*  

Since a
12

 is a complex number, it can be written as a
12

 = b - ic. a
11

 and a
22

 can be written as a
11 

= a + d 
and a

22
 = a - d.

 
∴ =

+ −
+ −











= + +

A
a d b ic

b ic a d

aI b c dx y z+ s s s
 

Example 12.3 Determine the eigenvalue of A given by

 A =
+ −
+ −











a d b ic

b ic a d
 

Solution: The eigenvalue equation is 

 

a d b ic

b ic a d

a d a d b c

a b c d

+ − −
+ − −

=

+ − − − − + =
− + + −

l
l

l l

0

02 2

2 2 2 2

( )( ) ( )

( ) 22 02

2 2 2 1 2 2 2 2 1 2

a

a b c d a b c d

l l
l

+ =
= + + + − + +( ) , ( )/ /

 

Example 12.4 Evaluate eir tr ⋅n . 

Solution:

 e ir t
r t ir tir tr r r r⋅ = + ⋅ − ⋅ − ⋅ +n n

n n
1

2 3

2 2 2 3 3 3( ) ( )
! !

…… 

Since ( )r ⋅ =n 2 1 we have

 
e r t i rt r t

rt i rt

ir tr r

r

⋅ = − +( ) + ⋅ − +( )
= + ⋅

n n

n

1
2 3

2 2 3 3

! !
... ...

cos sin
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12.8 MAGNETIC MOMENT AND SPIN
We have already seen that in classical electromagnetism, the magnetic moment due to orbital angular 
momentum is

 l = q
m2

L 

We would like to extend this idea to spin angular momentum also. Things are not so simple. In the 
case of electron, we would expect the corresponding magnetic moment to l = −( )e m/2 S. However, 
experimentally, it is found to be different from this expression. The magnetic moment of an electron 
due to spin angular momentum is generally written as

 l = −g e
ms 2

S  (12.64)

where g
s
 is known as gyromagnetic ratio or simply g factor. We can take g

s
 = 2, though the experi-

mental value g
s
 is little more than 2. Theoretically, one can calculate g

s
 from relativistic quantum field 

theory, which agrees well with the experimental value. For our purpose, we take g
s
 = 2.

For other particles like proton and neutron, the relationship between spin angular momentum and 
magnetic moment is more complex. As a general case, we write l  as

 l = −g S  (12.65)

12.9 PRECESSION OF SPIN ANGULAR MOMENTUM
In classical physics, if one places a dipole (moment) in a magnetic field, there is a torque on it. If the 
magnetic moment is l = −g S, the torque makes the spin angular momentum to precess around B 
with Larmor frequency w g= B.

In quantum mechanics, the corresponding result holds good for mean value of S. We will demon-
strate here that 〈 〉S  processes around B with Larmor frequency w g= B.

Consider an electron in a magnetic field B B= z . The Hamiltonian H
0
 is given by 

 
H g e

m

g e

m
BSS

S
z

z

0

0

2 2

2

= − = ⋅ =

=

l ⋅ B S B

�w
s

 (12.66)

where w 0 2= g eB mS /  (12.67)

The first step is to determine the energy eigenvalue and eigenvectors of H z0 0 2= (�w s/ ) . The  eigenvalues 
and the corresponding eigenvectors are given by

 E1
0

2

1

0
= ↑ =







�w
y; ( )  (12.68)

 E2
0

2

0

1
= − ↓ =







�w
y; ( )  (12.69)
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We are interested in determining the time evolution of an arbitrary state vector. So let us choose the 
eigenvector of S n⋅  (see Section (10.6)) as the state vector y (0) at t = 0, where 

 n = =( , , ) (sin cos ,sin sin ,cos )n n nx y z q f q f q

 ∴ =
















y
q

q f
( )

cos

sin
0 2

2
ei

Now, let us express y (0) as a linear combination of 
1

0







 and 
0

1







.

 ∴ =






+






y q q f( ) cos sin0
2

1

0 2

0

1
ei  (12.70)

The time evolution of y (t) is given by 

 

y q q f( ) cos sin

co

t e e e

e

iE t iE t i

iE t

=






+






=

− −

−

1 2

1

2

1

0 2

0

1
� �

ss sin

cos

( )q q

q

f

2

1

0 2

0

1

2

1 2

1







+
















=

−

−

e e

e

i E E t i

iE t

�

ssin ( )q f w

2
0ei t+

















 (12.71)

The expectation value of S
x
 is given by

 〈 〉S t S t t tx x x= =y y y s y† †( ) ( ) ( ) ( )�
2

 

 
= 













− +

+

�
2 2 2

0 1

1 0
2

2

0

0

cos sin
cos

sin

( )

( )

q q
q

q
f w

q w
e

e

i t

i t

















= +�
2 0sin cos( )q f w t

 (12.72)

Similarly, 〈 〉S y  and 〈 〉Sz  are found to be

 
〈 〉 = =

= +

+ +S t S t t t

t

y y yy y y s y

q f w

( ) ( ) ( ) ( )

sin sin( )

�

�
2

2 0

 (12.73)
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and  
〈 〉 = =

=

S t S t t tz z zy y y s y

q

† †( ) ( ) ( ) ( )

cos

�

�
2

2

 (12.74)

 
0 0ˆ ˆ ˆcos cos( ) sin sin( ) cos

2 2 2
t x t y z〈 〉 = + + + +S � � �q f w q f w q  (12.75)

y

x

B

〈Sz〉z 〈Sn〉

Fig. 12.5 Larmor precession

The average value 〈 〉 + 〈 〉S Sx yˆ ˆx y  traces a circle in x - y plane and so 〈 〉S  executes a precessional 
motion around B.

Example 12.5 An electron in a state of spin-up along Z axis is subjected to a magnetic field  
B = +B B0 1ˆ ˆz x . How does the state vector of the electron evolve in time t in the presence of the mag-
netic field? What is the probability of the electron to flip from spin-up state to spin-down state?

Solution: Let us write the magnetic field B as 

 = +ˆ ˆcos  sin  B BB z xq q  (12.76)

The Hamiltonian H
0
 is given by

 H g e
mS0 2

= ⋅S B  (12.77)

We can write B as B n= B  where 

 n = =( , , ) (sin , ,cos )n n nx y z q q0  

The Hamiltonian H
0
 becomes

 H g eB
mS0 2 2 2

= = =
−









S n.

cos sin

sin cos
n � i �w w q q

q q
r  (12.78)

where w = g e
m

BS 2  
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From Schrödinger equation, we have 

 y y w y( ) ( ) exp ( )/t e i
tiH t= = − ⋅





− 0 0
2

0� r n  

We know that

 exp cos sin− ⋅





= 





− 





⋅i
t t

I i
tw w w

2 2 2
r rn n  (12.79)

In our problem, the electron begins in a state with spin-up along Z axis. Therefore, y (0) is given by

 y ( )0
1

0
=







 y
w

w
w q q

q
( )

cos( )

cos( )
sin

cos sin

sin co
t

t

t
i

t=








 − 



 −

/

/

2

2 2 ssq
























1

0
 (12.80)

 =





 − 





− 


















cos sin cos

sin sin

w w q

w q

t
i

t

i
t

2 2

2





 (12.81)

The probability amplitude to get spin-down along Z axis is given by b y† , where b =






0

1
. 

 b y

w w q

w
† ( )

cos sin cos

sin sin

t

t
i

t

i
t

= ( )




 − 





− 





0 1
2 2

2
qq

w q



















= − 



i

t
sin sin

2
 (12.82)

Probability of getting spin-down is given by

 † 2( ; ) | ( )|P t t↓ = b y  (12.83)

Since we start with a system with spin-up at t = 0, P(↓;t) represents the probability for the system to 
flip from spin-up to spin-down, and so we can denote it as P(↑→↓).

 

† 2

2 2

1 22 2

( ) ( ; ) | ( )|

sin sin

( )
             sin sin

P P t t

t

E E
t

↑→↓ = ↓ =
=

−
=

�

b y
q w

q

 (12.84)

The probability for the flip of spin-up (along Z axis) to spin-down depends on the difference in energy 
levels of the two states.
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Let us write sin q  as

 sinq
w
w w

= =
+

=
+

=
+

B
B

B

B B

g e
m

B

g e
m

B B

S

S

1 1

0
2

1
2

1

0
2

1
2

1

0
2

1
2

2

2

 ∴ ↑→↓ =
+

+
P t( )

[ ]
sin

w
w w

w w
1

0
2

1
2

2 0
2

1
2

2
1 2

If q = p /2, w
0
 = 0, w  = w

1

 ∴ ↑→↓ =P
t

( ) sin2 1

2
w  (12.85)

 P
t

( ) cos↑→↑ = 2 1

2
w

 (12.86)

This is an interesting result. At t = p w p w/ /1 13, ... P(↓) = 1 and at t = 0 2 4, , ...p w p w/ /1 1  P(↑) = 1. 
Let us recall that if the probability for an event to occur is 1, then it is a certain or definite event. This 
means that the electron has spin-up (definitely) at the instants of time t = 0, 2 41 1p w p w/ /, ... and spin-
down (definitely) at the instants of time t = p w p w/ /1 13, ... This result is true for any magnetic field 
applied in the XY plane. So if an electron starts with Z spin-up, a magnetic field applied perpendicular 
to Z axis makes the Z spin to flip flop up and down periodically with a frequency p w/ 1 in time.

12.10 MAGNETIC RESONANCE
Now consider an electron in a magnetic field

 B z x y= + +B B t B t0 1 1ˆ cos ˆ sin ˆw w  (12.87)

The field B0 ẑ  creates two states with energies E E1 0 2 0= � �w w/ /2 = − 2,  corresponding to spin-
up and -down along Z axis. There is a resonance phenomenon in this case similar to the case of  
forced oscillation. Rabi used this phenomenon to develop a method called molecular method to deter-
mine the magnetic moment of the proton, neutron and nuclei. Let the particle start in spin-up state at 
t = 0. The field +1 ˆ ˆcos  sin  B t B tx yw w  causes the spin to flip between spin-up and -down state. Let us 
determine the probability for the spin to become spin-down, which becomes maximum at a frequency 
called resonance frequency w w= −( ) ( ( ))E E g e m BS1 2 0 02/ /� = = .

The Hamiltonian of the system is

 

H g e
m

g
eB

m
g

eB
m

t g
eB

m

S

S z S x S y

= ⋅

= ⋅ + ⋅ + ⋅ ⋅

2

2 2 2 2 2 2
0 1 1

S B

� � �s s w scos sinww

w s w s w w s w

t

t tz x y= + +� � �
2 2 20 1 1cos sin

 (12.88)
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where w 0 0 2= g eB mS  and w1 1 2= g eB mS . (12.89)

This Hamiltonian H can be written as 

 H H H= +0 ′

where H Z0
0 0

2 2

1 0

0 1
= =

−










� �w
s

w
 (12.90)

and ′ = +H t tx y

� �w
s w

w
s w1 1

2 2
cos sin

 =










−�w w

w
1

2

0

0

e

e

i t

i t
 (12.91)

Let y (↑) and y (↓) are the eigenstates of H
0
 with eigenvalues �w 0 2 and −�w 0 2.

 H0
0

2

1

0
y

w
y y( ) ( ); ( )↑ = ↑ ↑ =







�
   (12.92)

 H0
0

2

0

1
y

w
y y( ) ( ); ( )↓ = − ↓ ↓ =







�
   (12.93)

The state y (t) of the system is given by the Schrödinger equation

 i
t

t H H t� ∂
∂ = + ′y y( ) ( ) ( )0  

In Section 12.8, we have already seen that the solution for such Hamiltonian is given by

 y y y( ) ( ) ( ) ( ) ( )t C t e C t eiE t iE t= ↑ + ↓− −
1 2

1 2� �  (12.94)

We are interested in determining that the time evolution of the system where initial state is y (↑).

i.e., y y( ) ( )0 = ↑  

 ∴ C
1
(0) = 1 and C

2
(0) = 0 (12.95)

C
1
(t) and C

2
(t) are determined by solving the Equations (12.62) and (12.63) in Section 12.7.

To solve the equations, we require to evaluate ′ ′ ′ ′H H H H11 22 12 21, ,  and .
Making use of the Equations (12.91), (12.92) and (12.93),

 †
11 ( ) ( ) 0H H′ = ↑ ′ ↑ =y y

 †
22 ( ( ) 0H H′ = ↓) ′ ↓ =y y  
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 1†
12 ( ) ( )

2
i tH H e′ −= ↑ ′ ↓ =

� ww
y y

 1†
21 ( ) ( )

2
i tH e′ = ↓ ′ ↑ =

� ww
y H y

Substituting these matrix elements in (12.62) and (12.63), we get

 C i e C i e Ci t i t
i

1
1

2
1

22 2
12 0= − = −− −w ww w w w( ) ( )  (12.96)

 C i e C i e Ci t i t
2

1
1

1
12 2

12 0

i

= − = −− − − −w ww w w w( ) ( )  (12.97)

Differentiating the Equation (12.97) with respect to time, we get

 ��C i d
dt

e C i e
dC
dt

i t i t
2

1
1

1 1

2 2
0 0= − 





−− − − −w ww w w w( ) ( )  

Making use of the Equation (12.97) in first term and the Equation (12.96) in second term, we get

 �� �C i C C2 0 2 1
2

2 0+ − + =( )w w w  (12.98)

Similarly, for C
1
, we get

 �� �C i C C1 0 1 1
2

1 0− − + =( )w w w  (12.99)

Since C
1
 and C

2
 are related through the Equation (12.96), it is enough to solve either the Equation 

(12.99) or the Equation (12.98).
The Equation (12.98) is a second-order differential equation with constant coefficient. The auxil-

iary equation is

 a w w a
w

2
0

1
2

4
0+ − + =i( )  

Solving this equation, we get

 C t e A e A ei t i t i t
2

2
1

2
2

20 0
2

1
2

0
2

1
2

( ) ( ) / ( ) ( )= +


− − − + − − +w w w w w w w w/ / 
  

The boundary condition C
2
 (0) = 0 implies A

2 
= -A

1
. Therefore,

 

C t e A e e

i

i t i t i t
2

2
1

2 20 0
2

1
2

0
2

1
2

2

( ) ( ) ( ) ( )= −





=

− − − + − − +w w w w w w w w

AA e
t

i t
1

2 0
2

1
2

1
2

0

2
− − − +

( ) sin
[( ) ]w w w w w
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From (12.97), we have 

 

C t i e C
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e
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1
1

2

1
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0 0
2

2

4 2
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=
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−
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Boundary condition C
1
 (0) = 1 implies
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0
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1
2 1 22
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 (12.100)

 C t
i

e
t

i t
2

1

0
2

1
2

2 0
2

1
2

0

2
( )

( )
sin

( )
(= −

− +

− +
− −w

w w w

w w w
w w ) /  (12.101)

The probability of finding the particle in states y (↑) and y (↓) is given by |C
1
(t)|2 and |C

2
(t)|2.

 P C t
t

( ) | ( )|
[( ]

sin
( )

↓ = =
− +

− +
2

2 1
2

0
2

1
2

2 0
2

1
2

2
w

w w w
w w w

)
 (12.102)

and 

P P

t

( ) ( )

[( ) ]
sin

( )

↑ = − ↓

= −
− +

− +

1

1
2

1
2

0
2

1
2

2 0
2

1
2w

w w w
w w w  (12.103)

Remember that we have obtained this result by assuming C
1
(0) = 1 and C

2
 (0) = 0. i.e., we start with 

the system in state y (↑) at t = 0. Therefore, |C
2
(t)|2 can be interpreted as the transition probability to 

flip from spin-up to spin-down.

 P C t
t

( ) | ( )|
( )

sin
( )

↑→↓ = =
− +

− +
2

2 1
2

0
2

1
2

2 0
2

1
2

2
w

w w w
w w w

 (12.104)
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w0 w

 (i)

w = w0

w ≠ w0

P(↓)

t

 (ii)
Fig. 12.6 (i) Amplitude of the probability P( )↓  (ii) P( )↓  as a function of time

This expression reflects the behaviour of a resonance phenomenon with respect to variation in w  as 
can be seen in Fig. 12.6(i). The resonance occurs at w w= 0. The probability to flip from spin-up and 
spin-down varies periodically in time. The amplitude of periodic variation reaches a maximum at w = 
w

12 
= w

0
, the resonance frequency. 

i.e., � �w w12 0 1 2= −= ( )E E

At resonance frequency,

 P
t

( ) sin↓ = 





2 1

2
w

 (12.105)

 P
t

( )↑ = 





cos2 1

2
w

 (12.106)

where w1 12
= g e

m
Bs .  

If we choose the field strength and the dimensions of the apparatus such that w p1t = , then we can have 
maximum probability for the spin flip. Rabi (1939) employed three magnets and an radio frequency oscil-
lator in their experiment and determined the nuclear magnetic moments for lithium isotopes and fluorine.

Note that this resonance phenomenon is true for any particle with magnetic moment l = g S. For 
instance, in nuclear magnetic resonance, it is the proton which flips between spin-up and spin-down 
at resonance frequency.

12.11 AMMONIA MOLECULE
Ammonia is a molecule consisting of three hydrogen atoms and one nitrogen atom. The geometrical 
configuration of the molecule is a tetrahedron with nitrogen at one vertex and three hydrogen atoms 
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forming the base triangle. But what is the position of nitrogen with respect to the base triangle? Is it 
to the left or right of the base triangle as shown in Fig. 12.7? Each configuration is a mirror reflection 
of the other. There is no reason to choose a particular configuration. Once the position of nitrogen is 
fixed, a particular configuration has been chosen. This configuration cannot change on its own to the 
second configuration. But, in quantum mechanics, things are different. Describing the entire molecule 
in terms of Schrödinger equation for all the electrons and nuclei is very complex. Leaving aside all 
the complexities, if one is interested only in nitrogen with respect to hydrogen base, one can argue for 
a simple model of a particle in a simple double potential well.

H

H

H

H H

H

N

N

Fig. 12.7 Ammonia molecule

H

a b c d

H

H

N

N

N
H H

HH
N

N ′

N ′

H

V0

V0

H

II I III

Fig. 12.8 Potential V  and the ground-state energy levels for nitrogen

Let us first consider the ground state of the nitrogen from the point of view of classical physics. If N 
and N′ are the equilibrium positions they should represent the minima of a potential. This potential 
should have a barrier of height V

0
,
 
preventing the change of one configuration to another. This can be 

represented by a double-well potential as shown in Fig. 12.8. There are three regions. For energy E < 
V

0
, the regions II and III are classically allowed regions, and region I is a classically forbidden region. 

So, once a particle is in region II, it cannot move to region III.
The quantum mechanical description is based on solving Schrödinger equation for the particle in 

the double-well potential V. We can get the ground-state energy eigenvalues and eigenfunctions by 
numerical computation. Here, we quote only the end results (J.L. Basdevant and J. Dalibard (2002)). 
The ground state has two closely separated energy levels as shown in Fig. 12.9. The corresponding 
states y

s 
andy

a
 are symmetric and antis-symmetric wave function as shown in Fig. 12.7.
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a b c0
yS ya

yL yR

d a b c0 d

a b c0 d a b c0 d

Fig. 12.9 Wave functions ys, ya, yL and yR

Note that both y
s
 and y

a
 are the non-zero region I which is a classically forbidden region. The pres-

ence of non-zero wave function in this region corresponds to tunnelling phenomenon.
The wave functions y

s
 and y

a
 are eigenstates with E

s
 = E

0 
- A and E

a 
= E

0
 + A. We can form a 

superposition of these two states in two different ways as follows:

 y y yR s a= +1
2

( ) (12.107)

 y y yL s a= −1
2

( ) (12.108)

The sketches of y
s
 and y

a 
are shown in Fig. 12.7.

y
L
 is almost zero in region I and III, and so this represents the configuration of ammonia molecule 

with nitrogen at the left vertex. Similarly, y
R 
represents configuration with nitrogen at the right vertex. 

For a detailed numerical calculation, the reader can refer to Basdevant and Dalibard.
Here we follow a different route based on Feynman’s discussion in his famous book Feynman’s 

Lectures in Physics Vol. III. Feynman presents a set of plausibility arguments for the Hamiltonian 
matrix and establishes the existence of the states with different energy eigenvalues and finally demon-
strates the fluctuation between the two configurations.

Let |L〉 and |R〉 be the state vectors describing the left and right configuration. Let us write the 
general state vector |y 〉 as 

 | ( ) | ( ) |y 〉 = 〉 + 〉C t C t1 2R L  (12.109)

Further, let us assume that the system is in the state |R〉 at t = 0.

i.e., C
1
(0) = 1 C

2
(0) = 0 (12.110)
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The time evolution of the state vector |y (0)〉 is determined by the Schrödinger equation

 ˆ| (t) | (t)i H
t

∂ 〉 = 〉
∂

� y y  (12.111)

In terms of matrices, we have

 y ( )
( )

( )
t

C t

C t
=







1

2

 

and the Hamiltonian H is 

 
ˆ ˆ| | | |

ˆ ˆ| | | |

R H R R H L
H

L H R L H L

 〈 〉 〈 〉
=  

 〈 〉 〈 〉

Feynman does not solve the Schrödinger equation in any particular potential for this problem. He 
argues for the particular form of Hamiltonian from the general considerations. An outline of his argu-
ment is given here.

Let us start with the clues from classical physics. If we start with a particular configuration at t = 0, 
the molecule stays in the same configuration. In quantum mechanics, this corresponds to dealing with 
stationary eigenstates. So we have to assume H

RR 
≠ 0, H

LL
 ≠ 0. But H

LR 
= 0 and H

RL 
= 0. For stationary 

eigenstates C t e iH tRR
1( ) = − � and C t e iH tLL

2 ( ) = − � . Since each configuration is a mirror reflection, we 
expect H

RR
 = H

LL
. Let us take

 H H ERR LL= = 0 

However, we know that this cannot be the complete story in quantum mechanics. Unlike classical 
physics, in quantum mechanics, there is a non-zero probability of finding the particle in region I (a 
classically forbidden region). We expect this probability amplitude to be very small. So, it is not cor-
rect to make H

RL
 and H

LR
 to be zero. We take H

RL
 and H

LR
 to be a small non-zero number. Again, from 

symmetry considerations, we take 

 H
RL

 = H
LR

 \H
RL

 = H
LR

 = -A

where A is a small number compare to E
0
. So the Hamiltonian matrix is 

 H
E A

A E
=

−
−







0

0

 (12.112)

Since H is not diagonal, the state | L 〉 and | R 〉 are not energy eigenstates of the Hamiltonian.
The Hamiltonian can be diagonalized easily. The eigenvalue equation is

 
E A

A E
0

0

0
− −

− −
=

l
l

 

Or l = − +E A E A0 0,
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The corresponding eigenvectors are given below:

 E ES = −








0

1
2

1

1
A;  (12.113)

 E E Aa = +
−









0

1
2

1

1
;  (12.114)

The diagonalizing matrix U is given by

 U =
−











1
2

1 1

1 1
 

So we have

 ˆ | ( ) |H E As sy y〉 = − 〉0  (12.115)

Or ˆ | ( ) |H E Aa ay y〉 = + 〉0  (12.116)

The state vectors |R 〉 and |L 〉 are given by

 | [| | ]R s a〉 = 〉 〉1
2
y y+  (12.117)

and | [| | ]L s a〉 = 〉 〉1
2
y y−  (12.118)

Let us write |y (0)〉 as

 | | |y y y(0)〉 = 〉 + 〉d ds a1 2  (12.119)

where d
1 
and d

2
 are constants.

 ∴ 〉 = 〉 + 〉− − − +| | |( ) ( )y y y( )t d e d ei E A t
s

i E A t
a1 2

0 0� �  (12.120)

Now C
1
(t) and C

2
(t) are given by

 C t R t L1 2( ) | ( ) |= 〈 〉 = 〈 〉  and    y yC  

 
C t t

e e d e

s a

iE t iAt iAt

1

1

1
2

1
2

1
2

0

( ) | | | ( )

/

= 〈 + 〈





〉

= +− −

y y y

/ /� � �dd2[ ]
 

Similarly, we have

 C t e e d e diE t iA t iA t
2 1 2

0 1
2

( ) [ ]= −− −� � �  

From C
2
(0) = 0, we get d

1
 = d

2
.

M12_QUANTUMMECHANICS_3628_CH12.indd   457 5/23/2013   3:13:06 PM



458  Quantum Mechanics

From C
1
(0) = 1, we get d d1 2

1
2

= =  

 ∴ = −C t e A tiE t
1

0( ) cos� � (12.121)

and C t ie A tiE t
2

0( ) sin= − � � (12.122)

Let P(L) and P(R) be the probability of getting the configurations with nitrogen atoms in left vertex 
and right vertex respectively.

 ∴ = =P R C t At( ) | ( )| cos1
2 2

�
 (12.123)

and P( ) | ( )| sinL C t At= =2
2 2

�
 (12.124)

These two equations are exactly the same as P(↑) and P(↓) for an electron in a constant magnetic field 
B B= 1x̂  in Example 12.5 (Equations (12.85) and (12.86)) and for an electron at resonant frequency in 
the case magnetic resonance (Equations (12.105) and (12.106)).

 P R t
A A

( ) , , ...= =1 0 2  at  � �p p  

and

 P L t
A A

( ) , , ...= =1 0
2

3
2

  at  � �p p  

i.e., the nitrogen atom flips between the left vertex and the right vertex periodically in time. Assuming 
2A ~ 10-4 eV, we can work out this inversion frequency which is found to be n = 24 GH

Z 
(or l =1.25 cm).

12.12 NEUTRINO OSCILLATION
As one more example of two-state problem, we discuss the neutrino problem which brings out the 
salient features of the Hilbert space structure of quantum mechanics, especially choosing a basis to 
suit our convenience. Neutrino oscillation in details is too complex to be discussed in textbook at this 
level. We consider a simple model involving only two kinds of neutrinos with emphasis on the applica-
tion of two-state problem. (See a simple and lucid exposition of neutrino oscillation by Chris Waltham 
(2003)). It takes too long to provide background information on neutrino oscillation.

To explain the continuous b-ray spectrum of radioactive nuclei, Pauli postulated a new kind of 
chargeless particle called neutrino. The nuclear radioactive decay process is now understood as

 n p e e→ + +− n

 p n e e→ + ++ n

where ne and me  stand for electron neutrino and electron antineutrino (the second reaction takes place 
only when it is a part of the nucleus). Neutrinos interact only through weak interaction. This makes it 
very difficult to detect them. We now know that there are six leptons. They are electron e- and electron 
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neutrino ne, muon m- and muon neutrino nm , 
tau lepton t- and tau neutrino nt . There exists correspond-

ing six antiparticles e+ and m e , m + and nm , t + and mt . 
These particles are grouped into three generations:

First generation: 
ne

e −






 

Second generation: 
n

m
m

−







 

Third generation: 
n
t
t
−







 

The other term for generation is flavour (this term has more broader meaning in elementary particle 

physics). Similarly, antiparticles can be grouped into three generations: 
n e

e+






, 
n

m
m

+







, 
n
t
t
+







. The mass 

of the electron is m
e
 = 0.5 MeV; m mem � 200 ; mt � 3500me. Generally, it was believed for a longtime 

that the neutrinos are massless particles. However, neutrinos should have non-zero mass for neu-
trino oscillation. So the existence of neutrino oscillations implies that they have some non-zero mass 
though they may be very small. Each generation was assigned a lepton quantum member.

 
ne

e −






 : electron lepton number L

e
 = 1

 
n

m
m

−







 : muon lepton number Lm = 1

 
n
t
t
−







 : t  lepton number Lt  = 1

 
m e

e+







 : electron lepton number L
e
 = -1

 
m m
m +







 : muon lepton number Lm = -1

 
mt
t +







 : tau lepton number Lt = -1

In elementary particle reactions, these three quantum numbers were believed to be conserved individually.
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12.12.1 Solar Neutrino Problem
The concept of neutrino oscillation emerged as a solution to the solar neutrino problem. A brief 
account of solar neutrino problem is presented here. The interior of the sun is so hot that a number of 
nuclear reactions producing neutrinos are possible. Some of the reaction are given below:

 

p p H e

p p e H

Be e Li

B Be e

e

e

e

e

+ → + +
+ + → +

+ → +
→ + +

+

−

−

+

2

2

7 7

8 8

n
n
n

n

 

By 1960s, a good astrophysical model for the sun has been developed. Using this model, Bahcall 
estimated theoretically the solar neutrino flux to be 6 10× 6 2/cm /sec. In spite of this big number, it is 
very difficult to detect them since their interaction with the matter on the earth is very weak, and hence 
almost all of them simply pass through the earth without being detected. So it requires special effort 
to detect such neutrinos.

Raymond Davis constructed the first solar neutrino observatory deep inside a mine consisting of 
a huge tank filled with 100,000 gallons of cleaning fluid perchloroethylene, which contains 2 1030×  
chlorine atoms. The basic reaction is 

 ne n p e+ → + − 

This in turn leads to the reaction ne Cl e+ → + −37 38Ar . From the amount of argon atom collected, 
we can determine the solar neutrino flux. However, over a period of 30 years, the number of electron 
neutrinos detected is very less, and it is roughly only 30% of the neutrino flux computed theoretically. 
Same types of results have been obtained in other experiments also. So we always have

 n n ndetected theory  for  < e 

•	 Why do we need neutrino oscillation?
The resolution of this anomaly has led to a new phenomenon called neutrino oscillation, which has 
been experimentally observed. Let us recall that in the case of an electron in a magnetic field, the Z spin 
sate is a superposition of spin-up and spin-down states and consequently the Z component flip-flops 
between spin-up and spin-down states. Neutrino oscillation is a similar phenomenon. The flavour takes 
the role of the Z component of the spin, and so we now have a state which is superposition of differ-
ent flavour states. The effect of fluctuation in the flavour is more dramatic since changes in the flavour 
correspond to changes in identity as we know. We have to bear in mind that electron neutrino, muon 
neutrino and tau neutrino correspond to different flavours. In the neutrino oscillation, the neutrino fluc-
tuates from one flavour to another flavour as it travels. For instance, the source may produce an electron 
neutrino. As it travels, it will change its identity (flavour) to become moun neutrino. The switching 
between electron neutrino and muon neutrino may take place many times before they reach the detec-
tor. This creates a new possibility. Though a source produces an electron neutrino beam, by the time 
they reach the detector, a fraction of these particles would have switched to become moun neutrinos. 
So the number of electron neutrinos detected will be less than the computed number from the source.

The explanation of neutrino oscillation requires masses of the neutrinos to be non-zero. It further 
requires two kinds of eigenstates, namely flavour eigenstates and mass eigenstates.
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Flavour Eigenstates
There are three flavour eigenstates corresponding to the three kinds of neutrinos. They are |ne 〉 |nm 〉 
and |nt 〉 . These states have definite lepton numbers.

 | : ;n m te eL L L〉 = = =1 0 0   (12.125)

 | :nm m t〉 = = =L L Le 0 1 0   (12.126)

 | :nt m t〉 = = =L L Le 0 0 1   (12.127)

Mass Eigenstates
There are three distinct states |n1〉, |n 2 〉 and | ,n3 〉  each state representing particles with definite mass.

For a particle of mass m and momentum p, the energy E is given by

 E p c m c= [ ]2 2 2 4 1 2+ /  

Since neutrino mass is very small, we can write

 E pc m c
p c

pc m c
pc

= +





+1 1
2

2 4

2 2

1 2
2 4

/

�  (12.128)

For the sake of clarity, we consider only two neutrinos, namely ne and nm .
The mass eigenstates |n1〉 and |n 2 〉 satisfy the following equations:

 ˆ | |H pc
m c

pc
n n1

1
2 4

1
1
2

〉 = +





〉 (12.129)

and ˆ | |H pc
m c

pc
n n2

2
2 4

2
1
2

〉 = +





〉  (12.130)

There are two sets of basis states, namely the mass eigenstates {| ,| }n n1 2〉 〉  and the flavour eigenstates 
{| ,| }n nme 〉 〉 . We can choose any particular basis states to suit our experimental situation. It is the flavour 
eigenstates which are physically produced and physically detected in our laboratories.

Let us write the flavour eigenstates |ne 〉 and |nm 〉 as a linear combination of mass eigenstates |n1 〉 
and | .n 2 〉  

 | | |n n ne C C〉 = 〉 + 〉1 1 2 2  (12.131)

 | | |n n nm 〉 = 〉 + 〉C C3 1 4 2  (12.132)

The normalization relations 〈 〉 =n ne e| 1 and 〈 〉 =n nm m| 1 lead to the equations

 | | | | ; | |C C C C1
2

2
2

3
2

4
21 1+ = + =      | |  
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The orthoganality relation 〈 〉 =n nme | 0 leads to 

 C C C C1 3 2 4 0∗ + ∗ =  

These three relations can be satisfied if we write

 C
1
 = cos q, C

2
 = sin q, C

3
 = -sin q, C

4
 = cos q

i.e., | cos | sin |n q n q ne 〉 = 〉 + 〉1 2  (12.133)

 | sin | cos |n q n q nm 〉 = − 〉 + 〉1 2  (12.134)

q  is called mixing angle. The states |n1〉 and |n 2 〉 in turn can be written as 

 | cos | sin |n q n q nm1〉 = 〉 − 〉e  (12.135)

 | sin | cos |n q n q nm2 〉 = 〉 + 〉e  (12.136)

Let us assume that the source creates an electron neutrino at t = 0. Therefore, the state vector

 | ( ) | cos | sin |n n q n q n0 1 2〉 = 〉 = 〉 + 〉e  (12.137)

The time evolution of the state | ( )n t 〉 is given by

 | ( ) cos | sin |n q n q nt e eiE t iE t〉 〉= 〉 +− −1 2
1 2

� �  (12.138)

The probability of amplitude to get the state |nm 〉 is given by 〈 〉n nm | ( )t .

 

〈 〉 = − 〈 + 〈 〉

= − +−

n n q n q n n

q q
m | ( ) ( sin | cos |) | ( )

sin cos sin/

t t

e iE t

1 2

1 � qq q
q q

cos

sin cos [ ]

/

/ ( ) /

e

e e

iE t

iE t i E E t

−

− − −= −

2

2 2 11

�

� �

 (12.139)

Similarly, 〈 〉n ne t| ( )  is given by

 〈 〉 = +− − −n n q qe
iE t i E E tt e e| ( ) [cos sin ]/ ( ) /1 2 12 2� �  (12.140)

 
∴ 〉 = + 〉− − −| ( ) [cos sin ] |/ ( ) /n q q nt e eiE t i E E t

e
1 2 12 2� �

               + − 〉− − −e eiE t i E E t1 2 11/ ( ) /sin cos [ ] |� �q q nm
 (12.141)

Compare | ( )n 0 〉 and | ( ) .n t 〉  The state | ( )n 0 〉 is the flavour eigenstates corresponding to electron neu-
trino. So we start with an electron neutrino at t = 0. At a later time t, the state vector | ( )n t 〉 is a super-
position of two flavour eigenstates |ne 〉 and |nm 〉.

 
So if one tries to detect the neutrino, the result may 

be an electron neutrino or a muon neutrino. We can tell only the probability of detecting the electron 
neutrino or muon neutrino. The probability of getting the muon neutrino P( )nm  is given by 
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P e eiE t h i E E t( ) | ( )| sin cos

sin cos sin

( ) /n q q

q q

m = −

=

− −1 2 11

4

2 2 2

2 2 2

�

∆∆

∆

Et

Et
2

2
2

2 2

�

�
= sin sinq

 (12.142)

 ∆E E E
m c m c

pc
m m c

E
= − =

− −
2 1

2
2 4

1
2 4

2
2

1
2 4

2 2
�

( )
 (12.143)

where we have used the fact pc E� . 
Let us write D E as 

 ∆ ∆E m c
E

=
2 4

2
 

 ∴ → =P m c t
Ee( ) sinn n qm sin2 2

2 4
2

4
∆

�
 (12.144)

Since the mass of the neutrino is almost zero, we can assume that it travels with a velocity c. Let L be 
the distance travelled by the particle in time t. i.e., L ct� . 

 ∴ → = ∆P m c L
Ee( ) sinn n qm sin2 2
2 3

2
4 �

 (12.145)

0
0.2

0.4

0.6

0.8

1
P(ne)

P(nm)

Fig. 12.10 The probabilities P e e( )n n→  and P e( )n nm→

For a neutrino n , which starts as electron neutrino ne , the probability of detecting it as a moun neu-
trino nm  varies from 0 to a maximum value sin22q  periodically as a function of distance. Hence, this 
phenomenon is called neutrino oscillation.

The probability of finding the electron neutrino varies from 1 to a minimum value of cos22q. So if 
we are interested only in the number of electron neutrinos, only a fraction of the initial number will be 
detected as electron neutrino at a later time t.

We have presented the neutrino oscillation as an example for two-state problems. The real neu-
trino oscillation problem is more complex. The neutrino oscillations have been verified in a number 
of experiments, extensive literature or the experimental details and available. Though the concept of 
neutrino oscillation originated from the solar neutrino problem, it is true for neutrinos from any other 
source. For instance, neutrinos can be from the nuclear reactors or the cosmic ray reactions in the 
earth’s atmosphere. Neutrino oscillations have been verified for such neutrinos also.
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For the sake of completion, let us go back to solar neutrino problem. In the Sudbury Neutrino 
Observatory, three kinds of reactions were studied, of which one reaction involves the detection of 
neutrinos independent of flavour and another reaction involves the detection of electron neutrinos 
alone. The observational data from Sudbury Neutrino Observatory is in good agreement with the 
concept of neutrino oscillation. The detected electron neutrino flux was verified to be 34%, and the 
detected flux due to muon neutrinos and tau neutrinos were verified to be 66% of the solar neutrinos.

The total neutrino flux was found to be ( . . ( .) ( .)) sec,.
.5 25 0 16 100 13

0 11 6 2± ×−
+stat syst cm/ /  which has to 

be compared with theoretical prediction ( . . ) sec ( . . ) sec5 88 0 65 10 4 85 0 58 106 2 6 2± × ± ×/ / and / /cm cm  
calculated using two theoretical models.

EXERCISES
 1. The Hamiltonian for a charged particle is 

 H
p

V= +
2

2m
(r)

  What is the Hamiltonian for this particle in the presence of electric field E and magnetic field B?
 2. Why do we need vector potential A  and scalar potential f when we can do electromagnetism 

using electric field E and magnetic field B?
 3. What is meant by gauge invariance?
 4. What is the gauge transformation for the quantum mechanical wave function of a particle?
 5. Obtain the Landau level by choosing the vector potential A  as A = , ,( )−yB 0 0 .
 6. Obtain the Landau level when the vector A  is A r B= −1 2 × .
 7. What is meant by two-state problem?
 8. Mention some of the basis states to describe the states of a spin 1 2/  particle.
 9. What is meant by Larmor’s precession?
 10. An electron in the Z spin-up state is subjected to a constant magnetic field B z x y= + +B B B0 1 2ˆ ˆ ˆ . 

Determine the time evolution of the state of the electron and the probability of finding the elec-
tron in Z spin-down state.

 11. Give the justification for using double-well potential to describe ammonia molecule.
 12. Distinguish between mass eigenstates and flavour eigenstates.
 13. What is meant by neutrino oscillation?
 14. Can we have neutrino oscillation if the neutrinos are massless particles?
 15. Does neutrino oscillation conserve the flavour quantum members L

e
 and Lm?.
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Time-Independent 
Schrödinger Equation – 
Approximations

In Chapters 3, 6, 7 and 8, the Schrödinger equation was solved for a number of simple potentials. 
However, only in a very few cases, such exact analytical solutions for Schrödinger equations are avail-
able. For other potentials, we have to resort various kinds of approximations. For time-independent 
Schrödinger equations, broadly we consider three kinds of approximations: perturbation theory, vari-
ation method and WKB approximation.

A. Time-Independent Perturbation Theory
In perturbation theory, we split the Hamiltonian into two parts, H

0
 and lH′.

 H = H
0 
+ lH′ (13.1)

The Hamiltonian H
0
 is chosen in such a way that exact solutions are available for H

0
.

 H u E un n n0
0| |( )〉 = 〉  (13.2)

The eigenvalue equation for H is 

 H En n n| |y y〉 = 〉 (13.3)

Obviously, E E En n n= +( )0 ∆  (13.4)

and | | |y n n nu u〉 = 〉 + 〉∆  (13.5)

∆ E
n 
is the correction to energy eigenvalue En

( )0 , and | ∆un 〉 is the correction to the eigenstate | un 〉.
We consider the following two cases in perturbation theory:

 1. Non-degenerate perturbation theory to determine the correction to a non-degenerate eigenvalue 
En

( )0 .
 2. Degenerate perturbation theory to determine the correction to a degenerate eigenvalue.

13
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13.1 NON-DEGENERATE PERTURBATION THEORY
Let us write E

n 
and |y n 〉 as 

 E E En n n n= + + +( ) ( ) ( )0 1 2 2l l E �  (13.6)

 | | |y l y l yn n n nu〉 = 〉 + 〉 + 〉| ( ) ( )1 2 2 �  (13.7)

From the Equation (13.3), we get 

 
( )

0

(0) (1) 2 (2) (1)
0

ˆ ˆ( ) 0

ˆ ˆ( ) | | 0

n n

n n n n n

H H E

H H E E E u

′+ − =

′+ − − − 〉 + 〉 + =… …

l y

l l l l y

| 〉

 0
(0) (0) (1) (1)

0

2 (0) (2) (1) (1) (2) (2)
0

ˆ ˆ ˆ[ ] | [( ) | ( ) | ]

ˆ ˆ[( ) | ( ) | | ] 0

n n n n n n

n n n n n n

H E u H E E H u

H E E H E

− 〉 + − 〉 − − 〉′

+ − 〉 − − 〉 − 〉 + =′ …
l y

l y y y
 (13.8)

This is an expansion in terms of l. Equating the coefficients of different powers of l  separately to 
zero, we get 

 (0)
0

ˆ[ ] | 0n nH E u− 〉 =  (13.9)

 (0) (1) (1)
0

ˆ ˆ[ ] | ( ) |n n n nH E E H u− 〉 = − 〉′y  (13.10)

 (0) (2) (1) (1) (2)
0

ˆ ˆ[ ] | ( ) | |n n n n n nH E E H E u− 〉 = − 〉 + 〉′y y  (13.11)

 (0) (3) (1) (2) (2) (1) (1)
0

ˆ ˆ[ ] | ( ) | | |n n n n n n n nH E E H E E u− 〉 = − 〉 + 〉 + 〉′y y y  (13.12)

Consider the Equation (13.10). The unknown quantities in this equation are | ( )y n
1 〉 and En

( ) ,1  which are 
to be determined. The LHS of the Equation (13.10) is invariant under | | ,( )y n n nC u1 〉 + 〉  which can be 
verified easily.

 
0

(0) (1) (0) (1) (0)
0 0

ˆ ˆ ˆ( )(| | ) ( ) | ( ) |
0

n n n n n n n n nH E C u H E C H E u− 〉 + 〉 = − 〉 + − 〉�������y y

 (0) (1)
0

ˆ( ) |n nH E= − 〉y

Therefore, both the corrections | ( )y n
1 〉 and | |( )y n n nC u1 〉 + 〉 will lead to the same value En

( )1 .
The same reasoning can be applied for other equations. So, for a given En

r( ) , there is an element of 
arbitrariness in the correction terms | ( )y n

r 〉. This arbitrariness can be removed by a suitable condition 
which is chosen as 

 〈 〉 =un n
r| ( )y 0 (13.13)

i.e., all the correction terms for the wave function are orthogonal to | un 〉. This enables us to write

 | |( ) ( )y n
r

nk
r

k n
kC u〉 = 〉

≠
∑  (13.14)
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The exclusion of the term | un 〉 from the summation in the RHS ensures the orthoganality between 
| un 〉and | ( )y n

r 〉.

 ∴ 〉 = 〉 + 〉 + 〉
≠ ≠

∑ ∑| | | |( ) ( )y l ln n nk
k n

k nk
k n

ku C u C u1 2 2 …  (13.15)

This state is not normalized to unity. We will discuss the normalization later.

13.1.1 First-order Perturbation Theory
In the first-order perturbation theory, we restrict E

n
 and |y n 〉 to the first order in l .

 E E En n n= +( ) ( )0 1l  (13.16)

 | | |( )y ln n nk
k n

ku C u〉 = 〉 + 〉
≠

∑ 1  (13.17)

Taking the scalar product of the Equation (13.10) with 〈un |, we get

 (0) (1) (1)
0

ˆ ˆ| ( ) | | | |n n nn n n n nu H E E u u u H u〈 − 〉 = 〈 〉 − 〈 〉′y

The left-hand side of the equation becomes

 (0) (1) (0) (0) (1)
0

ˆ| ( ) | | ( ) | 0.n n n n n n nu H E u E E〈 − 〉 = 〈 − 〉 =y y

 ∴ = 〈 ′ 〉 = ′E u H u Hn n n nn
( ) | |1  (13.18)

To determine the wave function | ,( )y n
1 〉  let us take the scalar product of the Equation (13.10) with 〈uk|.

 (0) (1) (1)
0

ˆ ˆ| ( ) | | | |k n n n k n k nu H E E u u u H u∴〈 − 〉 = 〈 〉 − 〈 〉′y

 

LHS = 〈 − 〉

= − 〈 〉

=

u E E

E E u

E

k k n n

k n k n

K

| ( ) |

[ ] |

(

( ) ( ) ( )

( ) ( ) ( )

(

0 0 1

0 0 1

0

y

y
)) ( ) ( )− E Cn nk

0 1) 

where Cnk
( )1  is given by

 C unk k n
( ) ( )|1 1= 〈 〉y  

 ˆRHS | |k n knu H u H= −〈 〉 = −′ ′

 ∴ =
′

−
C

H

E Enk
kn

n k

( )

( ) ( )
1

0 0
 (13.19)

 ∴ 〉 = 〉 +
′

−
〉

≠
∑| |

( )
|

( ) ( )
y ln n

kn

nk n
ku

H

E E
u

k
0 0

 (13.20)
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Let us write the normalized wave function as

 | | |( )y ln n nk k
k n

N u C u〉 = 〉 + 〉










≠
∑ 1

The normalization of this wave function leads to the following equation. Let us recall that the normali-
zation of y f= ∑Cn

n
n  implies | |Cn

n

2 1∑ = .

 〈 〉 = +








 =

≠
∑y y ln n nk
k n

N C| | |( )2 2 11 12

However, consistency would require us to restrict 〈 〉y yn n|  up to order l since we have restricted E
n 
as 

well as |y n 〉 up to order l.

 ∴〈 〉 = =y yn n N| 2 1

Therefore, the normalized wave function in the first order is 

 | | |( )y ln n
k n

ku C unk〉 = 〉 + 〉
≠

∑ 1  (13.21)

13.1.2 Second-order Perturbation Theory
To find the second-order correction, take the scalar product of the Equation (13.11) with 〈un |.

 (0) (2) (1) (1) (2)
0

ˆ ˆ| ( ) | | ( |)nn n n n n nu H E u E H E〈 − 〉 = − 〉+′y y

The left-hand side of the above equation is given by 

 
(0) (2) (0) (0) (2)

0

(2) (1) (1) (1)

(1) (1)

ˆ| ( ) | | ( ) | 0

ˆ| | | |
0

ˆ ˆ| | | |

n n n n n n n

n n n n n n

n nk k nk n k
k n k n

u H E u E E

E u H u E

u H C u C u H u
≠ ≠

〈 − 〉 = 〈 − =

∴ = 〈 〉

〉

− 〈 〉′

= 〈 〉 = 〈 〉′ ′∑ ∑

�������

y y

y y

 = ′ =
′ ′
−

=
′
−∑∑ ∑

≠

C H
H H

E E

H

E Enk nk
nk nk

n kkk n

nk

n kk

( )

( ) ( ) ( ) ( )
1

0 0

2

0 0
 (13.22)

•	 Note that for the ground state En
( )0  is the lowest energy. Therefore En

( )2  is always negative for 
ground state.

The second-order correction to the wave function can be determined as follows:
Taking scalar product of the Equation (13.11) with 〈ul |, we get

 (0) (2) (1) (1) (1)
0

ˆ| ( ) | | | | | forl n n l n n l nu H E u E u H l n〈 − 〉 = 〈 〉 − 〈 〉 ≠′y y y
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The left-hand side of the above equation is given by 

 

(0) (2) (0) (2)
0

(0)(0) (2)
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( ) ]0 2
′ ≠  (13.23)

This wave function is not a normalized function. The normalized wave function can be obtained easily. 
The normalized wave function can be written as

 | | |( ) ( )y l ln n nk nk
k nk n

kN u C C u〉 = 〉 + +






〉










≠≠
∑∑ 1 2 2

The normalization implies

 N Cnk
k n

2 1 2
1 12+ + ⋅⋅⋅









 =

≠
∑l ( )

Since we are discussing second-order perturbation theory, we can take up to l 2 terms. Then we have
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 〉 + +



≠ ≠≠
∑ ∑∑| |( ) ( ) ( )y l l ln nk
k n

n nk nk
k nk n

C u C C1
2

2 1 2 1 22





〉










= 〉 + 〉 +




≠≠

∑∑

|

| | |( ) ( )

u

u C u C u

k

n nk k nk
k nk n

l l1 2 2
kk k

k n
nC un〉 − 〉

≠
∑l

2 1 2

2
( ) |
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Example 13.1 The Hamiltonian for an Harmonic oscillator is given by

 H
p
m

m x x= + +
2

2 2 4

2
1
2
w b

Taking b x4 as the perturbation, determine the first-order correction to the energy E nn
( ) .0 1

2
= +( )�w

Solution:

 ∆ = 〈 ′ 〉E n H nn | |

For Harmonic oscillator, ˆ [ ]†x
m

a a= ( ) +�
2

1 2

w

/

 ( )2
† 4| ( ) |

2nE n a a n
m

∴ ∆ = 〈 + 〉�b
w

Note that every operator a† acting on a ket | n〉 produces a new ket |n + 〉1  and every operator a operat-
ing on | n〉 produces a new ket | n − 〉1 . Consider an operator F̂consisting of m annihilation operators 
and n creation operators. Irrespective of the order of the individual operators,

 ˆ |F n m0〉 = − 〉Const |

 ˆ0 | | 0  Const 0 | 0F n m∴〈 〉 = 〈 − 〉 =  if n ≠ m

ˆ0 | | 0 0F∴〈 〉 ≠  only when F̂  consists of equal number of creation and annihilation operators.
The same result holds good for ˆ| |n F n〈 〉 also.
i.e., ˆ| | 0n F n〈 〉 ≠  only when F̂consists of equal number of creation and annihilation operators.

 † 4 2 †2 † † 2| ( ) | | ( ) |n a a n n a a aa a a n∴〈 + 〉 = 〈 + + + 〉

By considering the terms only with equal number of creation and annihilation operators, we have

 
† 4 2 †2 † † † †

† † † † †2 2

| ( ) | | | |   

                             || |

n a a n n a a n n a a a a a a aa

aa a a aa aa n n a a n

〈 + 〉 = 〈 〉 + 〈 +
+ + + 〈〈 〉

Let us recall that 

 〉   ;〉 = = +

〉 = 1 1

a n n n n n n

a n n n n a n n

†

†

| | | |

| | | |

+ +

〉        ;

〈 〈 +

− 〈 = 〈 −

1 1 1 1a

We have

 
† 2

2

( ) ( 1)( 2) 2

( 1)( 2) 2

a n n n n

n a n n n

= + + +

= + + +

| 〈

|〈 |〈

| 〈

 

2 †2

† † 2

|

| | ( 1)( 2)

|  |
n n

n a a n n n

n a a a a n n
〉

∴〈 〉 = + +
〈 〉 =���
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We have, a a n n n † ( )= +1 . Making use of the this equation, we get the following results:

 
∴ 〉 = + 〉

〉 = + 〉
〉 = + 〉

a aaa n n n n

aa a a n n n n

aa aa n n n

† †

† †

† †

| ( ) |

| ( ) |

| ( ) |

1

1

1 2

Using all these results, we get 

 
∴〈 〉 = ( ) + + + + + + + + −

=

n x n
m

n n n n n n n n| | {( )( ) ( ) ( ) ( )}4
2

2 2

2
1 2 2 1 1 1

3
2

b
w

�

bb
w
�

m
n n( ) + +( )2

2 1
2

.

Example 13.2 Consider a particle in a box of length L. Take the rectangular potential shown in the 
box as a small perturbation. Determine the correction to the energy levels for the particle in the box 
using the first-order perturbation theory.

0

V0

a L2a

Solution: The unperturbed eigenvalues and the corresponding eigenfunctions are given by

 E
m

u
L

n x
Ln n= =�2 2 2

2
2n p p

; sin

The perturbation ′H  is given by 

 ′ =
≤ ≤




H
V a x a0 2

0 otherwise

The correction to the energy is given by

 

∆ = 〈 ′ 〉 =

= =

∫

∫ ∫

E u H u u V u dx

L
V

n x
L

dx
L

V

n n n n n

a

a

a

a

a

a

| | *

sin

0

2

2

0
2

0

2
2 2 1

2
p

11
2

1
2

4 2
0

−





= − −











cos
n x
L

dx

V a
L n

na
L

na
L

p

p
p p

sin sin
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13.2 DEGENERATE PERTURBATION THEORY
In non-degenerate perturbation theory, the expression for the energy of the state |y n 〉 is given by

 
2

(0)
(0)(0)

ˆ| | kn
n n n n

k n n k

H
E E u H u

E E≠

′
= + 〉 〉 +′

−∑  (13.24)

For a non-degenerate energy level of Ĥ0, the expression for the correction to the energy level En
( )0  

is always finite. The second term is much less than the first, and the third term is much less than the 
second term. Only then, the perturbation theory is meaningful.

We will see soon that if we try to use this expression for degenerate energy levels, the third term 
becomes infinite. Obviously, we have to modify the expression for the correction to a degenerate 
energy level.

The expression was obtained by assuming the energy levels of the Hamiltonian H
0
 are non- 

degenerate; i.e., for each energy eigenvalue En
( )0 , there is only one eigenstate |un 〉. These eigenstates 

are chosen as the basis vectors for Hilbert space for the given problem, and so |y n 〉 is written as

 | |y n n nC u〉 = 〉∑
Let us now assume that some of the energy levels are degenerate. The eigenstates are now character-
ized by | ,una 〉  where a  = 1, 2, 3…

i.e.,  ˆ | | , .( )H u E un nn0
0 1 2a a a〉 = 〉 = …  (13.25)

The complete set of eigenstates is now given by 

 | ,| , ,| , ,| ,| , ,|
( ) (

u u u u u ur

E

n n ns

En

11 12 1 1 2

1
0

〉 〉 〉 〉 〉 〉…� ���� ���� … …
00)

,� ���� ���� …












Choice of the Basis States
The existence of a set of degenerate states offers a new flexibility. Let the set of states { , , ...}u u un n n1 2 3  
be a set of degenerate states corresponding to the energy level En

( )0 . In principle, they themselves can 
be taken as the basis states, or a linear combination of them also can serve as basis states. We can 
choose any set of degenerate states as the basis states to suit our convenience.

A simple extension of non-degenerate perturbation theory suggests that the set of states 

| ,| , ,| , ,| ,| , ,|
( ) (

u u u u u u

E
r

E

n n ns

n

11 12 1 1 2

1
0

〉 〉 〉 〉 〉 〉…� ���� ���� … …
00)

,� ���� ���� …
















 themselves may be chosen as the basis vectors.

 | |y a a
a

n n
n

C u〉 = 〉∑∑ n  (13.26)
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With this choice of basis vectors, the first- and the second-order energy Ena  is given by

 E E u H u
n H n

E En n
n nn n

a a a
a a

a a
= + 〈 ′ 〉 +

〈 ′ ′ ′〉
− ′′ ′≠

∑( )
( ) ( )

| |
| |

0
0 0

2

n n  (13.27)

Note that in the case of degenerate states, it is possible to have a and a ′ as different for the same n. In 
such cases, the denominator becomes zero, and so the third term becomes infinite. How do we avoid 
this problem?

Note that in the summation, the diagonal elements have been excluded. Let us now make use of this 
fact to avoid the third term in (13.27). For a diagonal matrix, all the non-diagonal elements are zero The 
standard method is to choose a new basis states (eigenstates of H

0
) for which the matrix H′ is diagonal.

i.e., if |Vna 〉 is new basis state, it should be such that

 (1)ˆ| |n n na nnV H V E′ ′ ′ ′′〈 〉 =a a aad d  (13.28)

i.e., ˆ | |( )H V E Vn n n′ 〉 = 〉a a a
1  (13.29)

Perturbation Theory in New Basis
For the sake of clarity, let us consider two-fold degenerate eigenstate of H

0
.

i.e., ˆ | | ˆ | |( ) ( )H u E u H u E un n n n n n0 1
0

1 0 2
0

2〉 = 〉 〉 = 〉  (13.30)

Let us write |Vn1 〉 and |Vn2 〉 as a linear combination of |un1 〉 and |un2 〉.

i.e., | | |V a u a un n n1 11 1 21 2〉 = 〉 + 〉 (13.31)

 | | |V a u a un n n2 12 1 22 2〉 = 〉 + 〉 (13.32)

Note that we have not introduced any change in the nature of the system for now also the energy 
level En  is two-fold degenerate with two linearly independent eigenstates. At present, the coefficients 
a a a a11 12 21 22, , and  in the linear combinations in (13.31) and (13.32) are arbitrary. We can choose them 
at our convenience a little later.

 ˆ | |( )′ 〉 = 〉H V E Vn n n1 1
1

1  (13.33)

 ˆ | |( )′ 〉 = 〉H V E Vn n n2 2
1

2  (13.34)

Let us take the scalar product of the Equation (13.33) with |un1 〉. Substituting (13.31) in (13.33), we get

 1 1 1 11 1 21 2

11 1 1 21 1 2

ˆ ˆ| | | ( | | )

ˆ ˆ| | | |

n n n n n

n n n n

u H V u H a u a u

a u H u a u H u

〈 〉 = 〈 〉 + 〉′ ′

= 〈 〉 + 〈 〉′ ′

 〈 〉 = 〈 〉 + 〈 〉u E V E u a u u a un n n n n n n n

a

1 1
1

1 1
1

1 11 1 1 21 2

11

| | | | | |( ) ( )

� �� ��
00

� ��� ���







 ∴ 〈 ′ 〉 + 〈 ′ 〉 =a u H u u H u E an n n n n11 1 1 2 1 21 1
1

11| | | | ( )a  (13.35)

M13_QUANTUMMECHANICS_3628_CH13.indd   475 5/23/2013   3:46:34 PM



476  Quantum Mechanics

Similarly, taking the scalar product of the Equation (13.34) with |un2 〉, we get

 a u H u a u H u E an n n n n12 22 1 2 2 2 1
1

22〈 ′ 〉 + 〈 ′ 〉 =| | | | ( )  (13.36)

The Equations (13.35) and (13.36) can be written as 

 
a H a H E a

a H a H E a

n

n

11 11 21 12 1
1

12 21 22 22

11

1
1

21

′ + ′ =

′ + ′ =

( )

( )

Or 
′ ′
′ ′



















 =











H H

H H

a

a
E

a

an
11 12

21 22

11

21

1
1

11

21

( )  (13.37)

Similarly, from the Equation (13.34), we get

 
′ ′
′ ′



















 =











H H

H H

a

a
E

a

an
11 12

21 22

12
2
1 12

2222

( )  (13.38)

These equations are eigenvalue equations of the matrix 
′ ′
′ ′











H H

H H
11 12

2221

. The eigenvalues En1
1( ) and En2

1( ) 

have to be determined. So both the Equations (13.37) and (13.38) can be put together by a single 
eigenvalue equation.

 
′ ′
′ ′



















 =











H H

H H

a

a
E

a

an
11 12

21 22

1

2

1 1

2

( )  (13.39)

Or 
′ − ′

′ ′ −
=

H E H

H H E
n

n

11
1

12

21 22
1

0
( )

( )
 (13.40)

This is the well-known secular equation. This can be extended to m-fold degenerate levels. For m-fold 
degenerate states,

 

′ − ′ ′
′ ′ − ′
′ ′ ′ −

H E H H

H H E H

H H H E

n

n

11 12 13

21 22
1

23

31 32

1

33

( )

( )

.. ..

.. ..

nn
( ) .. ..1

0

� � � � �

=  (13.41)

13.3 STARK EFFECT FOR HYDROGEN ATOm
The Stark effect is the splitting of the spectroscopic lines or splitting the energy levels in the presence 
of a constant electric field. We consider here the hydrogen atom in the presence of electric field d
along z axis.

i.e., e e= ẑ  (13.42)
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The dipole moment of an electron in a hydrogen atom is given by

 d = −e r

The potential energy of a dipole due to its interaction with electric field e  is 

 V e e e z= − ⋅ = ⋅ = ⋅ =d r r ze e e eˆ

The Hamiltonian for the hydrogen atom is now given by

 H
p
m

V r z

H

= + +
′

2

2
0

( )
� �� �� �e

H

e  (13.43)

First-order Correction to the Ground State
The ground state of hydrogen atom is a non-degenerate state. So we can apply first-order non- 
degenerate perturbation theory.

The ground-state energy E
1
 is

 E
e

1

42

22
= − mZ

�

i.e., H
e

0 100

2 4

2 12 00f mZ f= −
�

where u100 is the ground-state wave function corresponding to n l ml= = =1 0 0, , and .
The first-order correction is 

 ∆ = ∫E e z d1
1

100 100
3( ) f e f* r

The product u100 100
*  u  has even parity and the factor ee z has odd parity, and so the integral is zero.

 ∴ =∆E1
1 0( )  (13.44)

Therefore, the first-order correction to the ground-state energy due to Stark effect is zero.

Second-order Correction to the Ground State
The second-order correction to the ground state is 

 ∆ =
〈 ′ 〉

−≠
∑E

H

E E

nlm

nnlm
1

2 100

2

1
0 0

100

( )
( ) ( )

| |f f
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This is an infinite series. There are special methods to evaluate this series. For instance, we can use 
Dalgarno and Lewis method (see Mathews and Venkatesan), and it is found to be 

 ∆ = −E a1
2 2

0
29

2
( ) e  (13.45)

Correction to n = 2 Energy Level
This is one of the simplest examples to illustrate degenerate perturbation theory. There are four eigen-
states of H

0
 corresponding n = 2. They are | , , , | , | | .n l ml= = = 〉 〉 − 〉 〉2 1 1 210 21 1 200and  All these four 

states have the same energy E e2
0 2 4 28( ) = −mZ / � . The perturbing Hamiltonian is ′ =H e ze . The matrix 

elements are 〈 ′ ′ ′ ′ 〉n l m H nlm| | .
The wave function y nlm is given by

 y nlm a u a u a u a u= + + +−1 211 210 3 21 1 4 2002

The eigenvalues of the matrix ′H  are the first-order correction to the energy, and the corresponding 
eigenvectors give the coefficients ( , , , )a a a a1 2 3 4 . Consider the general matrix element 〈 ′ ′ ′ ′ 〉n l m H nlm| | . 
Since the wave function for the hydrogen atom is given by u r R r Ynlm nl lm( , , ) ( ) ( , )q f q f= , we have 

 e n l m z nlm e R r R r r dr d Y Yn l nl l m lme e q〈 ′ ′ ′ 〉 = ⋅ Ω′ ′

∞

′ ′∫ ∫| | * ( ) ( ) cos
0

3  (13.46)

The integrand in the angular part is given by

 Yl m lm′ ′
*  Ycosq

We know that 

 cos
/

q p= ( )4
3

1 2

10Y

 ∴ = ( )′ ′ ′ ′Y Y Y Y Yl m lm l m lm
* cos *

/

q p 4
3

1 2

10

The parity of this function is ( ) ( )− ⋅ −′+1 1l l . If l′ and l are the same, the integrand has odd parity and 
hence the integral is zero.

 ∴ Ω =∫ ′ ′d Y Yl m lm
* cosq 0 if l′ = l 

In order words d Y Y l lm mΩ = ′ = =∫ ′1 1 0 1* cosq since

and d Y Y l lΩ = ′ = =∫ 00 00 0 0* sincecosq
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This makes all the elements in the diagonal blocks H′ (nine elements in the 3 × 3 block and one ele-
ment in the 1 × 1 block) zero. So we have to evaluate two groups of elements (six elements):

 d Y Y d Y Ym mΩ = ( ) ( ) Ω =∫ ∫1 00

1 2 1 2

1 10
1

4
4
3

0* *cos .
/ /

q
p

p  if m ≠ 0

Therefore, there are only two non-zero elements, namely e ze 〈 〉210 200| |  and e ze 〈 〉200 210| | .
We have

 R Z
a

r Zr a
21

5 2
21

24
= ( ) −

/

e

and R Z
a

Zr
a

e Zr a
20

3 2
21

2
1

2
= ( ) −( ) −

/

 
∴ = ⋅ ⋅ ⋅ ( ) ( )

× −( )∞
− −∫

e z e Z
a

Zr
a

r e eZr a

e e
p

210 200 1
2

1
24

3
4

1
2

1 2 4

0

2 2

/

/ Zrr adr d d/ cos sin2 2

0

2

0

q q q f
pp

∫∫

 
= ⋅ −( )
= −

∞
−∫e

a
r
a

r e

e a

r ae
p

e

12
1 1

2

3

4
4

0

/

We have used the fact r e n an r a n−
∞

+∫ =/ ! .
0

1  Note that we have taken Z as 1 for hydrogen atom. All the 

matrix elements are presented in Table 13.1.

Table 13.1 Matrix H ′: 〈 ′ ′ ′ ′ 〉n l m H nlm| |n ′l ′m ′| H ′| nlm 〈 ′ ′ ′ ′ 〉n l m H nlm| |

| 211〉 | 210〉 | 21 1− 〉 | 200〉

〈211| 0 0 0 0

〈210 | 0 0 0 −3eae

〈 −21 1| 0 0 0

〈200 | 0 −3eae 0 0

The secular equation is

 

−
− −

−
− −

=

l
l e

l
e l

0 0 0

0 0 3

0 0 0

0 3 0

0
e a

ea

Or l = 0, l = 0, l = ± 3ee a.
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The eigenvectors are determined by the equation

 

0 0 0 0

0 0 0 3

0 0 0 0

0 3 0 0

1

2

3

4

−

−





































= ±
e a

e a

a

a

a

a

e

e

33

1

2

3

4

e a

a

a

a

a

e



















The eigenvectors are given below:

 l e l e=

−



















= −



















3

0

1

0

1

3

0

1

0

1

ea ea: ; :

The correction to the energy eigenvalue and the corresponding wave functions is given below:

 ∆E2
1 0( ) =  y 211 211= u

 ∆E ea2
1 3( ) = e  y 210 210 200

1
2

= −[ ]u u

 ∆ =E2
1 0( )  y 21 1 21 1− −= u

 ∆E ea2
1 3( ) = − e  y 200 210 200

1
2

= +[ ]u u

13.4 HYDROGEN ATOm – RELATIVISTIC EFFECTS AND LS COUPLING
Hydrogen atom is one of the best examples to illustrate the application of perturbation theory. We have 
already seen Stark effect in the case of hydrogen atom. In this section, we will see some corrections 
that are intrinsic to hydrogen atom. We will also describe hydrogen in an external magnetic field.

The simple Hamiltonian for hydrogen takes into account the electrostatic interaction between the 
electron and the nucleus. Number of corrections are required to describe hydrogen in a more realistic 
way. The major corrections are due to the H

r
 describing the relativistic effects and H

LS
 describing the 

spin-orbit coupling.
So we have

 H
p
m

Ze
r0

2 2

2
= −

If we include the relativistic correction and the spin-orbit coupling,

 H H H Hr LS

H

= +0

0

+
perturbations to 
� �� ��  (13.47)

 E E En n n= +( )0 ∆

where ∆ ∆ ∆E E En nr nLS= +
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In what follows, though we use the symbol m for the mass, it should be taken as representing reduced 
mass. Let us also recall the following expressions:

The fine structure constant is a = e c2 /�  and the Bohr radius is a me= �2 2/ .
In the following problems, we use two groups of commuting operators (i) H

0
, L2, S 2, L

Z
 and S

Z
 and 

(ii) H
0
, L2, S 2, J 2 and J

Z
. The corresponding eigenstates are | |nlm m nljml s j〉 〉and . So we have 

 

H nlm m E nlm m

L nlm m l l nlm m

S nlm

l s n l s

l s l s

l

0
0

2 2

2

1

| |

| ( ) |

|

( )〉 〉
〉 〉

=
= + �

mm s s nlm m

L nlm m m nlm m

S nlm m m

s l s

z l s l l s

z l s s

〉 〉
〉 〉
〉

= +
=
=

( ) |

| |

| |

1 2�

�

� nnlm ml s 〉

Similarly, we have

 

H nljm E nljm

L nljm l l nljm

S nljm s

j n j

j j

j

0
0

2 2

2

1

| |

| ( ) |

|

( )〉 〉

〉 〉

〉

=

= +

=

�

(( ) |

| ( ) |

| |

s nljm

J nljm j j nljm

J nljm m nljm

j

j j

z j j

+

= +

=

1

1

2

2 2

�

�

�

〉

〉 〉

〉 jj 〉

Depending on the choice of Hamiltonian, we can employ either of the two sets of eigenstates.

13.4.1 Relativistic Correction
The kinetic energy of an electron in the non-relativistic classical physics is 

 T
p
m

=
2

2

In relativistic classical physics, we have 

 E m c p c= [ + ]2 4 2 2 1 2/

The non-relativistic limit of this expression is

 
E mc

p c
m c

mc
p

m c
p

m c

= +

= + −

2
2 2

2 4

1 2

2
2

2 2

4

4 4

1

1
2

1
8













/

�

Therefore, the kinetic energy is 

 T E mc
p
m mc

p
m

= − −2
2

2

2 2

2
1

2 2
� 





 (13.48)
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Making a transition to quantum mechanics, we have

 T
p

m mc

p

mop

op op= −
2

2

2 2

2
1

2 2







So the Hamilton becomes

 H
p

m
Ze

r mc

p

m
op

H

op

Hr

= − −
2

2

2

2 2

2
1

2 2
0

� �� �� � ��� ���







 (13.49)

 = H
0
 + H

r

where H
mc

p

mr

op= − 1
2 22

2 2






 (13.50)

For hydrogen atom, let us write 
p

m
op
2

2
 as

 

p

m
H Ze

r

H
mc

H Ze
r

op

r

2

0

2

2 0

2 2

2

1
2

= +

= − +∴ ( )
H

r
 is independent of spin or orbital angular momentum, and so H

r
 is diagonal in both representations. 

Let us choose the states |nljmj 〉 as the basis states since they can be used in the case of spin-orbit cor-
rection also. Therefore, ∆Enr is given by

 
∆ 〈 ( )( ) 〉

〈

E nljm
mc

H Ze
r

H Ze
r

nljm

mc
nljm E

nr j j

j

= | − + +

= − |

1
2

1
2

2 0

2

0

2

2

|

nn n j
Ze

r
E Ze

r
nljm( ) ( ) |0

2
0

2
+ +( )( ) 〉

 

= − + +

= −

1
2

2

1
2

2
0 2 0

2 2 4

2

2
0 0

mc
nl E E Ze

r
Z e

r
nl

mc
E E

n n

n n

〈 〉| ( ) |( ) ( )

( ) ( ) ++ −2 1 1
2

12
2

2 4
2

Ze
r mc

Z e
rnl nl







Let us make use of the Equation (8.91) for En
0 and Examples 8.12 and 8.13 of Chapter 8 for 1

r nl

  

and 1
2r nl

 1
2r
Z

n anl

=  and 1
1
2

2

2

3 2r
Z

n a lnl

=
+( )
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Then, we have

 = − − + −1
2

1
2

2 1
22

0
2 2 2

2
2

2 2
2 4

2

32mc
E mc Z

n
Ze Z

an mc
Z e Z

a n l
n
( ) a





⋅ ⋅
++( )1

2

 = − −
+

+
E Z

n
n

l

n
( )0 2 2

2 1
2

3
4

a















 (13.51)

13.4.2 Spin-orbit Interaction

Fig. 13.1 Internal magnetic field due to orbital motion of electron

The orbital motion of an electron produces a magnetic field (Fig. 13.1). This is an internal magnetic 
field. There is an interaction between internal magnetic field due to orbital motion and magnetic 
moment due to spin angular momentum. This interaction is known as spin-orbit interaction.

The corresponding Hamiltonian is found to be

 H
m c r

dV
dr

Ze
m c rLS = 1

2
1

2
1

2 2

2

2 2 3
L S⋅ = ⋅L S  (13.52)

(The reader can find the derivation of this expression in any standard book on quantum mechanics.) 
The spin-orbit interaction is an intrinsic property of an electron in an atom.

Since J 2 and J
Z
 commute with L S⋅ , we will choose the basis states |nljmj 〉. In this basis, H

0 
as well 

as H
LS

 are diagonal.

 ∆ 〈 ⋅ ⋅ ⋅ 〉E nljm Ze
m c r

nljmLS j j= | |
2

2 2 32
1 L S  (13.53)

L S⋅  can now be written as

 L S⋅ = − −( )J L S2 2 2 2

 

∆ 〈 ⋅ 〉

= 〈 −

E Ze
m c

nljm
r

nljm

Ze
m c

nljm
r

J

LS j j

j

=
2

2 2 3

2

2 2 3
2

2
1

2
1
2

1

| |

| (

L S

LL S nljm

Ze
m c r

j j l l s s

Ze

j

nl

2 2

2

2 2 3
2

2 2

4
1 1 1 1

− 〉) |

[ ( ) ( ) ( )]= + − + − +

=

�

�
44

1 1 1 3
42 2 3m c r

j j l l
nl

( ) ( )+ − + −
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The possible values of j are j l1
1
2

= +  and j l2
1
2

= − .

 

∆
− +









E Ze
m c r

l j l

l j l
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=
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4
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1
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 (13.54)

DEnr + DEnLs

The total correction due to H
r
 and H

LS
 is given by 

 ∆ ∆ +( )
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E E
E Z
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+
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+

+
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forr j l= − 1
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 = −
E Z

n
n

j

n
( )

.
0 2 2

2 1
2

3
4

a
−

+( ) +















 (13.55)

This agrees well with non-relativistic approximation of the solution to the relativistic Dirac equation 
for hydrogen atom. Note that En

( )0  does not depend on l or m
s
 and so there is a degeneracy 2n2. H

r 
and 

HLS  together partially lift these degeneracy. However, the energy now depends on j.
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Example 13.3 Determine the energy splitting of the hydrogen atom corresponding to n = 3 due to H
r
 

and H
LS

.

Solution: For n = 3, values of l = 2, 1, 0. For l = 2, j = 5/2 or /3 2; for l = 1, j = 3 2/  or 1/2; for l = 0,
j = 1 2/ . So any three possible values of j are j s= 5 2 3 2 1/ / /, , . So the energy E3

0( ) is split into three 
levels. They are given below in Fig(13.2).

l = 2  j = 5/2 

n = 3, I = 2,1,0

l = 2, j = 3/2; l = 1, j = 3/2

l = 1, j = 1/2; l = 0, j = 1/2

2d5/2

2d3/2, 
2p3/2

2p1/2, 
2s1/2

Fig. 13.2 Energy splitting for hydrogen due to Hr and HLS

13.5 HYDROGEN ATOm IN mAGNETIC FIELD
Let us now place the hydrogen atom in a magnetic field B. The Hamiltonian H

B 
represents the interac-

tion of the electron with the magnetic field, and it is given by

 H e
mcB = +

2
2( )L S B⋅  (13.56)

Now we have three kinds of perturbation: H
r
, H

LS 
and H

B
. The Hamiltonian H

r
 and H

LS
 are intrinsic to 

hydrogen atom, and they are always comparable to each other. Therefore, they always occur as pair. On 
the other hand, H

B 
is under our control. So we can have H

B
 >> H

r 
+ H

LS
 or H

r 
+ H

LS 
>> H

B
 or intermedi-

ate strengths. The total Hamiltonian H is

 H H H H Hr LS B= + + +0  (13.57)

Depending on the strength of the external magnetic field B, we have different kinds of approximations. 
Let us first list the various possible approximations before considering them in detail. We consider 
here the following extreme limits:

Strong Field Approximation

 H
0
 >> H

B
 >> H

r
 + H

LS
 (13.58)

The effect due to H
B 
is so large compared to H

r 
+ H

LS
 that we neglect the effect of these Hamiltonians. 

As a first approximation, the Hamiltonian becomes

 ∴ H H H B= +0

Perturbation
�

The corresponding energy eigenvalue is E E En n nB= + ∆( ) .0
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Paschen Back Effect
Field B is not large enough to completely ignore H

r
 + H

LS
, and so their effect has to be included. Let 

us further assume that the correction due to magnetic field B is still larger compared to the correction 
due to H Hr LS+ . So we solve this problem in two stages:

First, we consider

 H H H B= +0

Perturbation
�  (13.59)

 E E En n nB= +( )0 ∆  (13.60)

Next, we take the term H
r 
+ H

LS
. as perturbation to this Hamiltonian.

 H H H H HB r LS

H HB

= + + +
+ 

0

0Perturbation to ( )
� �� ��  (13.61)

 ∴ = + ∆ + ∆ + ∆E E E E En n nB nr nLS( ) ( )( )0  (13.62)

Weak magnetic Field-anomalous Zeeman Effect
In this case, we consider a different situation where the effects of magnetic field B are small compared 
to H

r
 + H

LS
. Again, we solve the problems in two stages:

 H
0 
>> H

r 
+ H

LS 
>> H

B
 (13.63)

First, we consider

 H H H Hr LS

H

= + +0

0Perturbation to 
� �� ��  (13.64)

 E E E En n nr nLS= + ∆ + ∆( )0  (13.65)

Next, we take H
B
 as further perturbation.

 H H H H Hr s B

H H Hr s

= ( + + ) +0

0Perturbation to ( )+ +
�

 E E E E En n nr nLS nB= ( + + ) +( )0 ∆ ∆ ∆

13.5.1 Strong Zeeman Effect
As mentioned above, the correction due to H

B
 is so large compared to the corrections raising from  

(H
LS 

+ H
r
) that it can be neglected.

 H H H B= +o  (13.66)
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Since H eB
mc

L SB s z= +
2

2( ),  it commutes with L2, S 2, L
Z
, and S

Z
.

i.e., [H
B
, L

z
] = 0 [H

B
, S

z
] = 0

Therefore, we have to choose the states |nlm ml s 〉 as the basis states.

 
m mB

Z Z l s
B

l s l s

B
L S nlm m

B
m m nlm m

�
�

�
( ) | [ ] |+ = +2 2〉 〉  (13.67)

The Hamiltonian H′ is a diagonal matrix.

i.e., 〈 ′ ′ ′ ′ ′ 〉 ′ ′ ′ ′n l m m H nlm m B m ml s l s B l s nn ll m m m ml l s s
| [ ]| = +m d d d d2

 ∴ ∆ = +E m m Bnlm m l s Bl s
( )2 m  (13.68)

The Hamiltonian H′ does not lift the degeneracy completely. There are non-degenerate as well as 
degenerate states. 

Example 13.4 Enumerate the eigenstates of H
0 
+ H

B
 for a hydrogen-like atom for n = 3, l = 1.

Solution: The eigenstates of H
o 
are (2l + 1) (2s + 1) or six-fold degenerate for n = 3, l = 1.

_______________
2 3 1 1 1

2
mB l sB n l m m= = = =  ,

_______________
mB B 310 1

2

_______________
0 31 11

2
311 1

2
− −and

_______________
−m

B  
B 310 1

2
−

_______________
−2m

B  
B 31−1 1

2
−
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The matrix H′ is 

11
2

0 1
2

−11
2

1 1
2

− 0 1
2

− − −1 1
2

11
2

2mBB 0 0 0 0 0

0 1
2

0 mBB 0 0 0 0

−11
2

0 0 0 0 0 0

1 1
2

−
0 0 0 0 0 0

0 1
2

−
0 0 0 0 −mBB 0

− −1 1
2

0 0 0 0 0 −2mBB

13.5.2 Paschen-back Effect
The magnetic field B is such that the correction due to H

LS
 cannot be neglected and it is very small. So 

the Hamiltonian H
LS

 is considered as perturbation to H
0 
+ H

B
.

 ∴ = + + +H H H H HB LS r0

Unperturbed Perturbation
� �� �� � �� ��  (13.69)

 
∆ = 〈 ⋅ ⋅ 〉

= ⋅ 〈

E nlm m
m c r

Ze nlm m

Ze
m c r

m m

LS l s l s

nl
l s

| |

|

1
2

1

2
1

2 2 3
2

2

2 2 3

L S

LL S⋅ 〉|m ml s

L S⋅  can be written as 

 

L S⋅ = + +

= + + + − − −

=

+ − + − + − + −

L S L S L S

L S L L S S L L S S

z z x x y y

z z
1
4

1
4

( )( ) ( )( )

LL S L S L Sz z + ++ − − +
1
2

( )

 ∆ = 〈 〉 + 〈 ++ − − +E Ze
m c r

m m L S m m m m L S L S m mLS
nl

l s Z Z l s l s l

2

2 2 32
1 1

2
| | | ( ) | ss 〉{ }
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The second term is zero. Using the Kramer’s recursion relation (8.111), 1
3r nl

can be calculated, and 
it is found to be 

 1

1 1
2

3

3

3 3r
Z

n a l l lnl

=
+ +( )( )

Making use of this result, we get

 ∴ ∆ = ⋅
+ +( ) ⋅E Ze

m c
Z

n a l l l
m mLS l s

2

2 2

3

3 3

2

2 1 1
2

( )
�  (13.70)

Let us recall a
me

e
c

= =�
�

2

2

2

,a  and E mc Z
nn

( )0 2
2 2

2
1
2

= − ⋅ a

Then we have

 ∆ = −
+ +( )E Z

n
E

m m

l l l
LS n

l sa 2 2
0

1 1
2

( )

( )
 (13.71)

The energy E
n
 is given by 

 E E m m B E En n l s B LS r= + + + ∆ + ∆( ) ( )0 2 m

∆Er has already been determined in Section 13.4.1. Note that whether we use |nljmj 〉 or |nlm ml s 〉 as 
the basis states, ∆Er is the same. So we can take the same expression as given in (13.51) for ∆Er. 
Therefore, we have

 E E m m B Z
n

E m m

l l l

E Z
n n l s B

n l s n= + + − ⋅
+ +( ) −( )

( ) ( )

( )
( )

0
2 2 0 0 2 2

2
1 1

2

m a a
nn

n

l
2 1

2

3
4

−
+

+















 (13.72)

Example 13.5 Determine the energy eigenvalues and the corresponding eigenfunctions in Paschen-
Back effect for 3p levels of hydrogen.

Solution: There are six states. They are n l m ml s= = = = − −3 1 1 1
2

310 1
2

31 11
2

, , , , , ,  

311 1
2

300 1
2

− −,  and 31 1 1
2

− − . All these states have sameE3
0( ). They get correction due to H

B
 and 

H
LS

 and H
r
. They are shown in Fig.13.3 (Correction due to H

r
 is not shown.)
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HB HLS
State

ml ms

2mBB

−2mBB

mBB

−mBB

0

+0

+0

−a 2Z 2E3
(0)

18
1
2

1
2

1
2

−a 2Z 2E3
(0)

18

1
2

−

−a 2Z 2E3
(0)

18

1
2

1

0

1
2

0 −

1
2

− 1
2

−

3p

1
2

−1,

1
2

1,−

Fig. 13.3 Energy splitting of 3p level

13.5.3 Anomalous Zeeman Effect

Now we have H
o
 >> H

r
 + H

LS
 >> H

B 
(13.73)

In this case, the coupled representation is better choice; i.e., | nljmj 〉  are now more suitable basis. Both 
H

LS
 and H

B
 are diagonal in this representation.

The Hamiltonian H
B
 is 

 H e
mcB = +

2
2( )L S B⋅

The total Hamiltonian H can be now seen as 

 H H H H HL S r B= + +0 ⋅ +
Unperturbed

� ��� ���

�Perturbation

 (13.74)
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Since J 2 and J
Z
 commute with H

B
, | nljmj〉 serves as the basis states for H

B
 also. It can be shown that 

 
m

mB
J J Bjm g m B jm

�
( ) | |J S B+ ⋅ 〉 〉=  (13.75)

where g
J
 is Lande’s g factor (which is discussed below).

 ∴ ∆ 〈 + ⋅ 〉E nljm nljmB
B= | ( ) |
m
�

J S B

 = g m BJ J Bm  (13.76)

 ∴ ∆ ∆ ∆E E E H En n LS r B= + ( + ) +( )0

The energy splitting is shown in Fig. 13.4.

nl

1
2

j = l −

1
2

j = l +

mJ

Fig. 13.4 Energy splitting due to anomalous zeeman effect

13.5.4 Lande’s g Factor
The magnetic moments of an electron due to orbital and spin angular moment are given by

 lL
e
mc

= −
2

L  and ls s
e
mc

g= −
2

S  (13.77)

The total magnetic moment is 

 l l l= = −L s
e
mc

e
mc

+ + = − +
2

2
2

( ) ( )L JS S  (13.78)
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Note that lL  is in the direction of L and ls is in the direction of S but l is not in the direction of J. So, 

in general, l cannot be written as l = − e
mc

gJ2
J . However, with respect to states | jm〉, we can write

 l jm e
mc

g g jmJ
B

J= −− = 〉
2

J J
m
�

|  (13.79)

This can be established as follows. We closely follow here Davydov:
Let us first write l | jm〉  as 

 l | |jm jm〉 〉= ĜJ  (13.80)

where Ĝ is an operator which has to be determined.

 

ˆ ( ) ( )

( )

G

J

B B

B

J J J L S J L S S J

S J

⋅ = ⋅ = − + ⋅ = − + + ⋅

= − + ⋅

l
m m

m
� �

�

2

2

Now, J L S= +  or J S L− =

 
J S L

J S L

2 2 2

2 2 2

2

2

+ − =J S

J S

⋅

∴ ⋅ = + −

 

ˆ

( ) ˆ (

G J J S L

j j G j

B

B

J J⋅ 〉 





〉

+ 〉

| |

|

jm jm

jm

= − − + + −

= −

m

m
�

�
�

2
2 2 2

2

2

1 jj
j j s s l l+ + + + + − +

1
1 1 1

2
2)

( ) ( ) ( )





〉� | jm

 

∴ 〉 





〉ˆ ( ) ( ) ( )
( )

G
j j s s l l

j j

g

B

B
J

| |jm jm= − + + + + − +
+

= −

m

m
�

�

1
1 1 1

2 1

|| jm〉

 
∴ ⋅ 〉 ⋅ 〉

〉 〉 = 〉

l B J B| |

| | |

jm jm

jm jm jm

=

= =

ˆ

ˆ ˆ ˆ

G

GBJ GBm m BGZ J J� �

 = − 〉m B gJ
B

J�
�
m

| jm  (13.81)

 〈 ⋅ 〉jm jm| − =l B | m BgJ B Jm  (13.82)

The same result can be obtained using Wigner–Eckart theorem, which again indicates l  can be writ-
ten as l = −mB Jg/� J provided we consider the matrix element between states | jm〉.
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13.6 GROUND STATE OF HELIUm—FIRST-ORDER PERTURBATION THEORY

He

r1

r2

Fig. 13.5 Helium atoms

As an exercise in perturbation theory, let us now determine the ground-state energy of helium atom.
The Hamiltonian H for the helium atom is

 H
p
m

Ze
r

p
m

Ze
r

e

H H H

= − + − +
−

1
2 2

1

2
2 2

2

2

1 2
2 2

1 2

� �� �� � �� �� ���
r r

′

 (13.83)

 H H H H= + + ′1 2

Let us take H
0 
= H

1 
+ H

2
 as the unperturbed Hamiltonian and H′ is the interaction Hamiltonian.

 H
0
 = H

1
 + H

2 
(13.84)

The ground-state H
0
 is y ( ) ( , )0

1 2r r  and is given by

 y ( ) ( , ) ( ) ( )0
1 2 100 1 100 2r r r r= u u  (13.85)

where u
100

 is the ground state of hydrogen atom.

 − − = = −�2
2

2

100
2 2 2

1002
1
2m

Ze
r

u mc u∇





( )r Z a  (13.86)

where u R r Y100 10 100= =( ) ( ) ( )r q f,

 = 2 1
4

3 2

⋅ ( ) ⋅−Z
a

e Zr a
/

/

p
 (13.87)

Note that y ( ) ( , )0
1 2r r  is symmetric with respect to the exchange of coordinates. So if we include spin 

also, the spin wave function will be antisymmetric with respect to the exchange of particles 1 and 2. 
However, if H′ does not have spin-dependent term, the inclusion of spin in the wave function does not 
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have any significant effect. Since we restrict ourselves to electrostatic case alone, which has no spin 
dependence and so we are not including the, spin-dependent (singlet) wave function here.

 
H H u u

H u u u
0

0
1 2 0 100 1 100 2

1 100 1 100 2 100

y ( ) ( , ) ( ) ( )

( )

r r r r

r r

=
= [ ( )] + (( ) ( )r r1 2 100 2H u

 = − −1
2

1
2

2 2 2 2 2 2
100 1 100 2mc Z mc Z u ua a





( ) ( )r r  (13.88)

where m is the reduced mass and a is the fine structure constant a = e c2 /� . In the case of helium, 
1 1 1/ / /m M me= + .

where M is the mass of the helium nucleus and m
e
 is the mass of the electron. Therefore, m me�

and Z = 2 for helium nucleus.

 ∴  H E0
0

1 2 0
0 0y y( ) ( ) ( )( , )r r =  (13.89)

when E m c Z m c eV eVe e0
0 2 2 2 2 24 8 13 6 108 8( ) ( . ) .= − = − × − = −a a �

This is too high compared to the actual ground-state energy of helium atom. Let us now calculate the 
correction due to perturbation H′. From time-independent perturbation theory,

 ∆E H0
0 0= 〈 ′ 〉( ) ( )y y| | 

 

=

+
− −

1

1

1
2

1 2
2

2 1 2

00

6

2 2

1
2

1 2

p
r dr r dr d d Z

a

e e
r r

Zr a Zr a

Ω Ω ( )
×

∫∫∫∫
∞∞

/ /

[ 22
2

1 22+ −| |]r r
 (13.90)

To carry out dΩ
1
 and dΩ

2
 integration, we have to choose two z axes. Note that the choice of z axis is 

always arbitrary. So we choose one z axis for r
1
 integration and choose r

1
 itself as z axis for r

2 
integration.

 ∴ Ω
⋅

Ω∫∫ d
r r

d
r r r r2

1
2

2
2

1 2
1 2 2

1
2

2
2

1 2 2
1 2

1
2

1
2( ) ( cos )/ /+ −

=
+ −r r q

 = Ω∫ ∫sin
( cos )

q f
q

p p

2 2

0

2
1
2

2
2

1 2 20

2
1
2

d d
r r r r+ −

 (13.91)

Define u as u = cos q
2
.

 ∴
+ − ⋅

=
+ −

−
∫∫ d

r r
du

r r r r u
Ω2

1
2

2
2

1 2
1 2

1
2

2
2

1 21

1
1
2

2
2( ) [ ]/r r

p  

 = + + − + −2 2 2
1 2

1
2

2
2

1 2
1 2

1
2

2
2

1 2
1 2p

r r
r r r r r r r r( ) ( )/ /{ }  (13.92)
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Note that the square root of a quantity is always positive by convention. Therefore, ( ) /r r r r1
2

2
2

1 2
1 22+ −  

is either (r
1
 − r

2
) or (r

2
 − r

1
), depending on whether r r1 2>  or r r1 2< .

So

 
( ) /r r r r

r r r r

r r r r1
2

2
2

1 2
1 2 1 2 1 2

2 1 1 2

2+ − =
−       if 

      if 

>
− <





= −r r1 2 .

 
∆ ( )

Ω

−
−∫ ∫E Z

a
dr r dre dr r e

d
r r

Zr

a Zr a=
∞ ∞6

1 1
2

1

2

0

2 2
2 2

0

1
1 2

1

2

2

  /

. {(p rr r r1 2 1 2+ − | − |) }r∫
 (13.93)

There is no q f1 1 or  dependence in any of the factors in the integrand of (13.93). 

 ∴∫d Ω
1
 = 4p

 ∆ ⋅( ) + − −∫ ∫ −E Z
a

dr re dr r r r r r e
Zr

a Zr a= 8
−∞ ∞

1 1

2

0

2 2 2 2 1 2

0

2
1

2 /{( ) | |}  (13.94)

Let us split r
2
 integral into two parts.

 dr dr dr
r
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2 2

0

2

0

1

1

( ) ( ) ( )=
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∴r

1 
+ r

2
 – |r
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2
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2
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to ∞, r

2
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1 
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1
 – r

2
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2
 – r

1
. ∴ r
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2
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Therefore, r
2
 integral becomes

 dr r e r r eZr a
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These integrals are easy to evaluate.
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Here  b = 2Z
a

Substituting these results in (13.94), we get

 ∆E
b b b

b b= − − +−8 2 4 42
6

2 1
2 2

1

0
3 1

2
1 3

1 1e Z
a

r e dr re dr rr r( ) 




−

∞

∫   11 1

00

1e drr−b
∞∞

∫∫






 
= =

= = =

8 5
2

8 5
64 2

5
8

5
8

2 5
2 2

2
6

5 2
6 5

2 2 2

e Z
a

e Z
a

a
Z

Ze
a

e
a

e
a

( ) ⋅ ( ) ⋅ ⋅ ( )
⋅ ⋅(
b

)) = × =5
2

13 6 34. eV eV

Therefore, the energy of the ground state of helium in the first-order perturbation theory is 

 E eV= − + = −108 8 34 0 74 8. . .

The experimental value is −78.975 eV. So the result of the first-order perturbation theory is closer to 
the experimental value, but still the difference is substantial.

B. Variational method

13.7 LEAST UPPER BOUND FOR GROUND-STATE ENERGY
Another method of finding approximate solution to the time-independent Schrödinger equation is the 
variational method. This is a very useful method in quantum chemistry.

The time-independent Schrödinger equation is 

 Hf fn n nE=

We may not be able to get exact eigenvalue E
n
 and the corresponding eigenfunctions f

n
. Still, we know 

that these eigenfunctions f
n
s should form a complete set. Formally, this implies that any arbitrary 

wave function y can be expressed as a linear combination of f
n
s. Let us choose an arbitrary wave func-

tion y for which we can calculate 〈y | H |y 〉. The wave function y  is called the trial wave function.
As mentioned above, since f

n
s forms a complete set, let us write

 y f= ∑Cn n

The normalized condition 〈y |y 〉 leads to the condition

 | |Cn
n

2 1=∑

 

〈 〉 = 〈 〉

=

∑∑

∑∑

y y f f

d

| | * | |

*

H C C H

C C E

m n m n
nm

m n n mn
nm

 
=

= + + +

| |

| | | | | |

C E

E C E C E C

n n
2

0 0
2

1 1
2

2
2

2
2

∑
…
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Since E
0
 is a ground-state energy, all the other energy eigenvalues are greater than E

0
. i.e., E

0 
< E

1
, E

0 

< E
2
…

 ∴〈 〉 ≥y y| | | | | | | |H E C E C E C0 0
2

0 1
2

0 2
2+ + �

Or 〈 〉 ≥y y| |H E0  (13.95)

since | | | |C C0
2

1
2 1+ =⋅⋅⋅

So we can choose any arbitrary function and evaluate 〈 〉y y| |H . The ground-state energy E
0
 will be 

equal to or less than this number. We can make use of this fact to estimate the least upper bound for E
0
. 

The choice of the initial wave function is not arbitrary as it sounds. From physics considerations, we can 
choose an appropriate trial wave function, which is expected to give 〈 〉y y| |H , a value very close to E

0
.

In fact, a better way of doing this estimate is to choose an arbitrary trial wave function whose param-
eters can be varied. 〈 〉 =y y a a a| | ( , , ..., ),H E n1 2  where a

1
, a

2
 … are the parameters. Minimize this 

expression with respect to a
1
, a

2
 …

 ∂
∂

∂
∂

∂
∂

E E E

na a a1 2

0= = =…  (13.96)

Note that the variation method is not restricted to the estimation of ground state alone. This method 
can be extended to estimate the energy of the excited states also (see Mathews and Venkatesan).

We study the helium atom to illustrate the application of variational method.

13.8 VARIATIONAL mETHOD FOR HELIUm ATOm
The Hamiltonian for helium atom is

 H
p
m

Ze
r

p
m

Ze
r

e

H H

= − + − +
−

1
2 2

1

2
2 2

2

2

1 22 2

1 2

� �� �� � �� �� | |r r

where H
p
m

Ze
r1

1
2 2

12
= −

and H
p
m

Ze
r2

2
2 2

22
= −

If the last term is not present, then H will be a sum of two Hamiltonians for two non-interacting hydro-
gen atoms. In that case, the wave function of ground state will be 

 y 0 1 2 100 1 100 2( , ) ( ) ( )r r r r= u u

where u Z
a

e Zr a
100

3 2
2

1 2
1

4
( )

( )

/

/
r = ( ) −

p
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This suggests a simple choice for the trial wave function. Let us choose u u100 1 100 2( ) ( )r r  as the trial 
wave function with Z′ in the place of Z so that Z′ is the variation parameter. The trial wave function is 

 y
p p

( , )
/ / /

r r1 2

3 2
2

1 2 3 2
22 1

4
2 1

4
1 2= ⋅ ′( ) ( ) ⋅ ′( ) ( )− ′ − ′Z

a
e Z

a
eZ r a Z r a

11 2/
 (13.97)

Evaluate E Z H( ) | |′ = 〈 〉y y  for this trial wave function and minimize E (Z′) to estimate the ground-
state energy. Note that for actual hydrogen atom

with 

p
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r

u Z E Z u Z

E Z mc Z

2 2

100 0 100

0
2 2

2

1
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− =

= −
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a

Therefore, the trial wave function u Z100 ( , )′ r  satisfies
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= +u Z E Z u Z d r u Z
Z Z e
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From Chapter 8, we have

 1
r

Z
a

= ′

 ∴〈 〉 ′ ′ ′y y| = + − Ζ
H E Z

Z e Z
a1 0

2

| ( )
( )  (13.98)

Similarly, we have

 〈 〉 ′ ′ − ′y y| = +H E Z Z Z e Z
a2 0

2| ( ) ( )  (13.99)

 y ye u Z u Z e u Z u
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′∫ 1100 2
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This integral has already been evaluated in Section 13.6.
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E Z mc Z Z Z Z Z( ) ( )= − + − −1
2

2 4 5
4

2 2a  (13.100)

To minimize this equation, let us set dE
dZ ′

= 0.
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− −a  (13.101)

 
− ( ) −

∴ ≤

1
2

2 5 77 382 2
2

0

mc Z eV

E eV

a
p

− =

−

.  

           77.38 

This is to be compared with the experimental value −78.975 eV. Let us emphasize the meaning of 
inequality in (13.101). E

0
 is estimated to be less than or equal to −77.38 eV. Note that the variational 

method does not say that E
0
 is equal to −77.38 eV. This is the least upper bound as determined by this 

wave function.
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C. WKB Approximation

13.9 SLOWLY VARYING POTENTIAL AND WKB APPROXImATION
WKB method is yet another approximation to solve time-independent Schrödinger equation. The let-
ters WKB stand for Wentzel, Kramers and Brillouin. This method is used to determine the bound-state 
energies and the tunnelling transmission probabilities. The general potentials V(x) of interest for WKB 
approximation is as shown in Fig. 13.6.

I II III

x1 x2

I

II

III

x1 x2

(a) (b)

Fig. 13.6 Potentials with classical turning points

Both potentials share a common feature, namely that there are classical turning points x
1
 and x

2
. 

At these points, E = V(x), and so the momentum p x m E V x( ) [ ( ( ))] /= − =2 01 2 . These classical turn-
ing points separate the classically allowed and classically forbidden regions. For the potential in  
Fig. 13.6(a), regions I and III are classically allowed regions and region II is a classically forbidden 
region. For the potential in Fig. 13.6(b), regions I and III are classically forbidden regions, and region 
II is a classically allowed region.

It is for this kind of potentials the WKB approximations are widely used. We are interested in a 
particular kind of potentials which vary very slowly over a large distance. For a constant potential, the 
momentum p is a constant, and so the De Broglie wavelength l = h p/  is constant. When the potential  
V = V(x), a varying function, then the De Broglie wavelength is

 l( )
( ( )

x h
p

h
m E V x

=
−

=
2

 (13.102)

The De Broglie wavelength changes with distance. i.e., l = l (x). The WKB approximation relies on 
the fact that l (x) changes very slowly.

Let us further elaborate the variation of l (x) over a large distance. Let dl (x) be change in the 
wavelength over a distance l.

 
d d

dx

d d
dx

l l l

l
l

l

=

=
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Slowly varying De Broglie wavelength l means 

 d d
dx

l
l

l<< <<1 1 or 

The De Broglie wavelength l is given by

 l = h
p

 

d
dx

h
p

dp
dx

h
p

d
dx

m E V x

h
p

m V
x

l = − = − −

∂
∂

2 2
1 2

3

2[ ( ( )] /

=

Therefore, the condition dl
l

<< 1 implies that 

 m
p

V
x

�
3

1∂
∂

<<  (13.103)

This condition ensures that l( )x  varies slowly.

13.10 WKB EXPANSION
For a free particle, the wave function is u x Aei px( ) ,= �  where p is the momentum. In the case of con-
stant potential also, the free particle wave function is Aei px �, where p m E V= −[ ( )] /2 1 2 . This suggests 
that for slowly varying potential, u(x) can be written as

 u x AeiS x( ) ( )= � (13.104)

The Schrödinger equation is now written as

 d u
dx

p x
u x

2

2

2

2
0+ =( )

( )
�

 (13.105)

where p x m E V x2 2( ) ( ( ))= −  (13.106)

Substituting (13.104) in (13.105), we get

 dS
dx

p i d S
dx( )2

2
2

2
0− − =�  (13.107)

Let us expand S as a power series in �.

 ∴S S S S= + +0 1

2

22
� � � (13.108)

 ∴ 
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dx
dS
dx

dS
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2

2
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Squaring the above equation, we get
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From (13.108), we get
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Substituting this equation in (13.107), we get
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Equating the coefficients of different powers of � separately, we have

 
dS

dx
p x0

2

2 0






− =( )  (13.109)
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dx
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i
d S

dx
− =  (13.110)
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dx
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2

2
1

2
1

2

0

=
− 











 (13.111)

We have restricted up to 2 term. It will be shown soon that S x2 ( ) can be neglected for slowly varying 
potential, which essentially makes S x S x S x( ) ( ) ( )= +0 1� .

Solving the Equation (13.109), we get

 
dS

dx
p x0 = [ ( )] (13.112)

or S x p x dx
x

0 ( ) [ ( )]= ′ ′∫  (13.113)

The constant of integration can be taken care by taking suitable lower limit.
From the Equation (13.110), we get
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2
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 (13.114)
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We can rewrite the Equation (13.114) as

 
dS
dx

i d
dx

dS

dx
1 0

2
= 













ln

 ∴ = 





=S i dS

dx
i p x1

0 1 2

2
 ln ln[ ( )] /  (13.115)

Let us now evaluate S x2 ( ) from (13.111). From Equation (13.115) we get 

 
dS
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i
p x
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1

2
1=
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( )

From p2(x) = 2m (E − V(x)), we get

 
dp
dx

m
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dV
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= −  (13.116)
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Differentiating this equation (and using (13.116)), we get
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Substituting this expression in (13.111), we get
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Integrating this equation, we get
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Consider the second integral.
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dx

m
p

dV
dx

dx

S m
p

dV
dx

2 3

2

5

2

2

2 3

2
1
4

2 2
1
4

.

� � � mm
p

m
p

dV
dx

dx
2 3

⋅ ⋅



∫  �

The quantity m
p

dV
dx

�
3

 is dl
l

. For slowly varying potential, m
p

dV
dx

�
3

1<< . Therefore, �2

22
S  can be 

neglected.
So, in the WKB approximation, we have

 S = S
0 
+ S

1

 

∴ = ⋅

= ⋅

= ⋅ =

−

−

u x Ae e

Ae e

Ae e A
p x

iS iS

iS p

iS p

( )

[ ( )

/

/ ln

/ ln /

0 1

0

0
1 2

1
2

�

�

�

]] /
/

1 2
0eiS �

Note that  S x p x dx
x

0 ( ) ( )= ± ′ ′∫

Therefore, u(x) is given by

 u x A
p x

i p x dx
x

( )
[ ( )]

( )
/

= ± ′ ′








∫1 2

 exp 
�

The wave function depends on p(x), which is given by [ ( ( ))] /2 1 2m E V x− . Naturally, the wave function 
u(x) in the classically allowed region differs from the wave function in the classically forbidden region. 
So we have to consider the following two cases.

E > V Classically Allowed Region
The wave function u(x), in this region in WKB approximation, is given by

 u x A
p x

i p x dx
x

( )
[ ( )]

exp ( )
/

= ±
1 2 �

′ ′








∫
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E < V Classically Forbidden Region
The factor [ ( ( ))] /2 1 2m E V x−  is now imaginary.

i.e., p x i m V E( ) ( )= −2

The u(x) becomes

 u x A
p x

p x dx
x

( )
| ( ) |

( )
/

= ± ′ ′



∫1 2

1  exp 
�

In the denominator, the factor i will not make any difference, and so it is omitted.
Now we are ready to write the general expression for u(x).
The general expression for u x( ) is 

 u x
C
p

i p x dx
C
p

i p
x

x

( ) ( ) (
/ /

=
′

′ ′












′ − ′∫1
1 2

2
1 2

0

 exp +  exp 
� �

xx dx E V
x

x

) ′












>∫
0

   

Or equivalently, this can be expressed as 

 u x
C
p

p x dx
C
p

p x
x

x

( ) ( ) (
/ /

= ′ ′ +












′∫1
1 2

2
1 2

1 1

0

 sin +  cos 
� �

d ))dx
x

x

′ +












>∫ d
0

   E V

Similarly, we have

 u x
d

p
p x dx

d

p
p x

x

x

( ) ( ) ( )
/ /

= ′ ′












− ′∫1
1 2

2
1 2

1 1

0

 exp +  exp 
� �

ddx E V
x

x

′












<∫
0

   

Let us extend these results to the regions near the classical turning points x
1
 and x

2
 as shown in 

Fig. 13.7, which will be useful later.

I II

x1

E

V

Left-handed barrier

III IV

x2

V

Right-handed barrier

(a) (b)

Fig. 13.7 Potentials near classical turning points
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Left-handed Barrier
The barrier is to the left of the classical turning point x

1
 as shown in Fig.13.7. The regions I and II are 

classically forbidden and allowed regions. The general form of the wave functions in these regions is 
as follows:

 u
p

d p x dx d p x dx
x

x

I  exp  exp = ′ ′








 + − ′ ′∫1 1 1

1 2 1 2

1
| |

| ( ) | ( )
/ � �

||
x

x

x x
1

1∫





















<  (13.117)

 u
p x

c p x dx c p x dx
x

x

x

x

II = ′ ′ +








 + ′ ′ +∫1

1 2 1 2

1 1
[ ( )]

sin ( ) cos ( )
/

d d∫∫






















>x x1  (13.118)

Or equivalently

  u
p x

C i p x dx C i p x dx
x

x

x

II = ′ ′ ′








 + ′ ′ ′∫1

1 2 1 2

1
[ ( )]

exp ( ) exp ( )
/ � �

11

1

x

x x∫






















>  (13.119)

Right-handed Barrier
In Fig. 13.7(b), the barrier is at the right of x

2
. Region III and region IV are classically allowed and 

forbidden regions. The general forms of the wave functions are as follows:

 u
C

p x
p x dx

C
p x

x

x

III = − ′ ′ +








 + −∫3

1 2
4

1 2
1

2
[ ( )]

sin ( )
[ ( )]/ /�

b cos 11

2

2�
p x dx x x

x

x

( )′ ′ +








 <∫ b  (13.120)

Or equivalently 

 u
p x

C i p x dx C i p x d
x

x

III = ′ − ′ ′








 + ′ − ′∫1

1 2 3 4

2
[ ( )]

( ) ( )
/

exp exp
� �

′′






















<∫ x x x
x

x

2

2  (13.121)

 u
p x

d p x dx d p x dx
x

x

x

x

IV = 1 1 1
1 2 3 4

2 2
( )

exp ( ) | ( ) |
/ � �

′ ′








 + − ′ ′


∫ ∫





















>x x2
 (13.122)

13.11 CONNECTION FORmULAE
Normally, we will have solutions in different regions. Of course, there should be only one wave func-
tion from –∞ to ∞. This condition is achieved by matching the wave functions at the boundaries. 
However, this cannot be done in a straightforward way in the case of WKB approximation. Consider 
the regions I and II in the potential as shown in Fig. 13.7. Region I is a classically forbidden region, 
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and region II is a classically allowed region. The solutions in these regions are different. The constants 
C

1
, C

2
 and d

1
, d

2
 are such that u

I
(x

1
) = u

II
(x

1
). However, at x

1
, p x m E V( ) ( )1 2 0= =−  and therefore, the 

WKB wave functions u
I 
and u

II
 become infinite. Obviously, WKB solutions are valid only in a region 

far away from classical turning points (both for classically allowed and forbidden). Therefore, WKB 
solution is only an asymptotic solution in the place of an exact solution, so we have only incomplete 
information which make the matching of the wave functions difficult.

Still, we have to find a method of matching these asymptotic solutions in different regions.

Q
ywkB ykB

uwkB ukB

Px1

Fig. 13.8 Regions where yWKB and uWKB agree with each other (approximately)

Let us consider two potentials V x( ) and V x1( ) for which the solutions are u(x) and y (x).

 

d u x
dx

m E V u x

d x
dx

m E V

2

2 2

2

2 2 1

2 0

2

( )
( ) ( )

( )
(

+ − =

+ −

�

�

for whole region

y
)) ( )y x x= 0 1near

The reason for considering two different potentials will become clear soon. In fact, they are same near 
x

1
. The functions u

WKB
 and yWKB  represent the solutions to the above equations in the WKB approxi-

mations. Our strategy is to determine the coefficients in u
WKB

 using the coefficients in yWKB . In what 
follows, it emerges that both these WKB solutions have the same coefficients.

Let us consider two shaded regions centered around P and Q as shown in Fig.13.8. P and Q are far 
away from x

1
. They are sufficiently far away from x1 so that it is valid to use the WKB approximation 

for both u x( ) and y ( )x .
Let us choose V x1( ) as Taylor’s expansion of V x( ) near x1 in the left-handed barrier as shown in  

Fig. 13.8.
The Taylor’s expansion of V(x) near x

1
 is

 V x V x V
x

x x E A x x
x

( ) ( ) ( ) ( )= + ∂
∂

− = − −1 1 1
1

i.e., V
1
(x) = E – A (x – x

1
)

It is important to recognize the difference in the region of validity for u x( ) and y ( )x . The term valid-
ity here refers to meaningfulness of the wave function in the context of our problem. It is the potential 
V(x) for which we have to find the solution to the Schrödinger equation. For a given potential V(x), the 
solution u x( ) is meaningful over the entire region. Since the Taylor’s expansion is valid only for small 
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region around x1, the Schrödinger equation for V x1( ) as well as its solution y ( )x  are restricted to a 
smaller region around x1. Correspondingly, the ranges of the WKB solutions for these two potentials 
also differ, though both of them are valid only when they are far away from x1. The range of uWKB  is 
larger than that of yWKB . Since V x( ) and V x1( )  are the same near x1, the WKB solutions uWKB  and yWKB  
are also the same in a region called overlap region. This is shown as shaded region in Fig.13.8.

 ∴ uWKB WKB∼y  in the shaded region

Therefore, it is enough to determine the coefficients that occur in yWKB .

How to Determine the Coefficients in xWKB

The determination of the coefficients in yWKB  depends on the following observations. The advantage 
of the potential V x E A x x1 1( ) ( )= − −  is that the Schrödinger equation for this potential is exactly solv-
able. It is a superposition of Airy’s function A

i
(x) and B

i
(x). The general solution corresponding to the 

linear potential is

  y = aA
i
(x) + bB

i
(x)

Let us recall that P and Q are so far away from x1 that the WKB approximation is valid in regions 
near these points. Normally, the terms asymptotic limit of a function mean its behaviour in the limit 
x → ±∞ (or for large values of x). Though the points P and Q are not that far away, we take the func-
tion y ( )x  in these regions by its asymptotic form. So we approximate y ( )x  as follows:

 
y y
y y

( ) ( )

( ) ( )

x x P

x x Q

�
�

→ ∞
→ −∞

near

near

These asymptotic limits can be easily determined from the exact analytical solutions, namely Airy’s 
functions A xi ( ) and B xi ( ). By matching these solutions with the WKB solution yWKB , we can deter-
mine the coefficients in the yWKB .

Compare the asymptotic solution y (x → ∞) and y
WKB

 in the shaded region around P. Compare the 
asymptotic solution y (x → –∞) and y

WKB
 in the shaded region around Q. From these comparisons, we 

determine the coefficients of C
1
, C

2
, d

1
 and d

2
.

The same coefficients hold good for u
WKB

.

13.11.1 Exact Solution for Linear Potential and Its Asymptotic Limit
The Taylor’s expansion of V(x) near x

1
 is

 V x V x V
x

x x E A x x
x x

( ) ( ) ( ) ( )= + ∂
∂

− = − −
= 1

1 1

p2(x) is given by

 p x m E V mA x x2
1 12 2( ) ( ) ( )= − = −  (13.123)
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The Schrödinger equation is

 
d
dx

p x2

2

2

2
0

y y+ =( )
�

 
d
dx

mA x x
2

2 2 1
2 0

y y+ − =
�

( )  (13.124)

Define q x( ) as 

 q x mA x x( ) ( )
/

= ( ) −2
2

1 3

1�
 (13.125)

 dq mA dx= ( )2
2

1 3

�

/

Substituting these expressions in the Equation (13.124), we get

 
d
dq

q
2

2
0

y y+ =  

The solutions to this equation are the Airy functions A
i 
(−q) and B

i 
(−q).

 ∴ = − + −y ( ) ( ) ( )q a q qi i A bB  (13.126)

The asymptotic behaviours of A
i 
(−q) and B

i 
(−q) are given by

A q
q

q q

q

i ( )

( . )

| |

/ /
/

/ /

− →
⋅ −( ) → ∞

⋅

1 1 2
3 4

13 127

1
2

1

1 2 1 4
1 3

1 2 1

p
p

p

cos as

44
3 22

3
13 128 exp −( ) → −∞










| | ( . )/q q

B q
q

q q

i ( )
( )

( . )

|

/ /
/

/

− →
− ⋅ −( ) → ∞

⋅

1 1 2
3 4

13 129

1 1

1 2 1 4
3 2

1 2

p
p

p

 sin as

qq
q q

|
| | ( . )

/
/

1 4
3 22

3
13 130 exp as( ) → −∞










The asymptotic solution y ( )x  (13.126) is given by 

 y
p

p p( )
/ /

/ /x
q

a q b q→ ∞ = ⋅ −( ) − −( )





1 1 2
3 4

2
3 41 2 1 4

3 2 3 2 cos  sin    as q → ∞  (13.131)

 y
p

( )
| |

| | | |
/ /

/ /x
q

a q b q→ −∞ − −( ) + ( )





1 1
2

2
3

2
31 2 1 4

3 2 3 2 exp  exp  → ∞  as q −  (13.132)
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13.11.2 WKB Solution for Linear Potential
Case 1: x > x

1

From the Equation (13.123), we have

 x x
mA

q− = ( )1

2 1 3

2
�

/

 (13.133)

 p x mA
mA

q mA q2
2 1 3

2 32
2

2( ) ( ) ( )
/

/= ( ) =� �

 

p x
dx

mA
mA

q dq q dq

p x
dx

x

x

( ) ( )

( )
(

/ /
/ /

�
�

�
�

�

= ⋅( ) =

∴ ′ ′ = ′∫

2
2

1 3 1 3
1 2 1 2

1

qq dq q
q

) / /1 2 3 2

0

2
3

′ =∫

From the Equation (13.118), we have

 y dWKB sin +  cos = +( )C
mA q

q
C

mA q
q1

1 6 1 4
3 2 2

1 6 1 42
2
3 2

2
3( ) ( )/ /

/
/ /� �

33 2
1

/ +( ) >d x x  (13.134)

Case 2: x < x
1

From (13.125), it can be seen that q(x) is negative in this region. Let us define z(x) as

 z(x) = −q(x)

∴z(x) is a positive quantity for x < x
1
.

 p mA q mA z

p i mA z p mA z

2 2 3 2 3

2 3 1 2 1 3 1

2 2

2 2

= = −
∴ = ∴ =

( ) ( )

( ) ( )

/ /

/ / / /

� �

� � 22

 
since z x mA x x dx

mA
dz

p dx mA

( ) ( ),

| | (

/ /

= ( ) − = −( )
∴ ′ = −

2
2

2

2

1 3

1

2 1 3

�
�

�
��

�
�) / /

/ /
1 3 2 1 3

1 2 1 2

2mA
z dz z dz( ) = −

Making use of the fact that |q| = −q, we get

 
| |

( ) ( ) | |/ / / /p
dx z dz z q q

z

x

x

�
′ = − ′ ′ = − = − − = −∫∫ 1 2

0

3 2 3 2 3 22
3

2
3

2
3

1

 ∴ = +





<−y WKB
1

2 1 6 1 6 1

2
3

2

2
3

1

3 2 3 2

( ) | |/ /

| | | |/ /

mA q
d e d e x x

q q

�
 (13.135)
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Suppose we have the boundary condition that the wave function u(x) goes to zero to the left of the 
classical turning point. i.e., u(x) → 0 as x → –∞. This implies that as q → –∞, y →0∴d

2
 = 0.

 ∴ = → −∞−yWKB

q

mA q
d e q1

2
1
6

4 1

2
3

3 2

( )

| | /

�
as  (13.136)

Comparison of this y
WKB

 with the asymptotic behaviour in (13.132) implies

 b = 0 and 
d

mA
a1

1 62 2( ) /�
=

p
 (13.137)

For the wave function to the right of x
1
, x − x

1
 is positive, and so q is positive. Therefore, we have to 

match (13.134) with (13.131) (Take b = 0 in (13.131)). This implies that C
1 
= 0 and d p= − /4and

C
mA

a2
1 62( ) /�

=
p

.

  ∴C
2 
= 2d

1
 (13.138)

For left-handed barrier, we have C d C d1 2 2 10 0 2= = =, .and
So, as we mentioned earlier, the values of the coefficients C

1
, C

2
, d

1
, d

2
, and d hold good for the 

asymptotic solutions of u(x), which is a solution corresponding to a general potential V(x). So we 
conclude that for the boundary condition u(x) → 0 as x → −∞,

 1 2
1 2 1 2

1 1
| |

| ( ) |
[ ( )]

cos
( )

/ /p
p x

dx
p x

p x
d

x

x

x

x

exp 
′ ′









 → ′ ′∫ ∫� �

xx −











p
4

 (13.139)

This expression is known as connection formula.
There are four such connection formulae. For the sake of completeness, we give the list of all the 

formulae.

 1. Barrier to the left of the turning point x
1
.

 1 1 2 1
1 2 1 2

1
| ( )|

| ( ) |
[ ( )]/ /p x

p x dx
p x

p
x

x

 exp  cos 
� �

′ ′












→∫ (( )′ ′












∫ x dx
x

x

− p
4

1

 (13.140)

 − ′ ′












− ←∫1 1 1 1
1 2 1 2

1
| ( ) |

| ( ) |
[ ( )]/ /p x

p x dx
p x

p
x

x

 exp sin
� �

(( )′ ′ −












∫ x dx
x

x
p
4

1

 (13.141)

In the LHS, x < x
1,
 and in the RHS, x > x

1
.

 2. Barrier to the right of the turning point x
2
.

 2 1
4

1
1 2 1 2

1
| ( )|

| ( ) |
[ ( )]/ /p x

p x dx
p x

x

x

 cos  exp− ′ ′












←∫�
- p   − ′ ′













∫1

1
�

p x dx
x

x

( )  (13.142)

 1 1
4

1 1
1 2 1

22| ( )|
( )

( )
exp ( )

/p x
p x dx

p x
p x d

x

x
 sin − ′ ′ −





→ − ′∫� �
p ′′



∫ x

x

x

2

 (13.143)

In the LHS, x < x
2
 and in the RHS x > x

2.
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The presence of arrows indicates that the matching between WKB solution requires more care. We 
derived the connection formula (13.139) under a simple boundary condition, namely u(x) → 0 as x→ −∞,  
and so we assumed that only the exponentially decreasing function alone is present in the left of the 
turning point x

1
. The boundary condition for the wave function need not be so simple. For instance, 

in the second formula (13.141), we have exponentially increasing function in the left of x
1
. This term 

alone cannot be present in this region since the wave function will become infinite as x → –∞. There 
should be other terms also. It is such details that put restrictions indicated by the arrows for the appli-
cations of the specific correction formula.

13.12 BOHR-SOmmERFIELD QUANTIZATION RULE

V

E

p(x)

x x
x1 x1x2 x2

I III

II

Fig. 13.9 Potential V(x) and classical phase are for a particle of energy E

Consider a simple potential as shown in Fig.13.9, where x
1 

and x
2 

are the classical turning points. 
Regions I and III are classically forbidden regions. Classically, a particle of energy E executes a vibra-
tory motion between x

1
 and x

2
 and the phase space corresponding to the classical vibrating particle is 

shown in Fig.13.9.
Quantum mechanically, the wave functions are u

I
,
 
u

II
, and u

III
. The wave functions in regions I and 

III should behave like exponentially decreasing function.

 u
D

p x
p x dxI

x

x

= ′ ′












∫1
1 2

1

1
| ( ) |

| ( ) |
/

 exp 
�

 (13.144)

and u
D

p x
p x dxIII

x

x

= − ′ ′












∫3
1 2

1

2
| ( ) |

| ( ) |
/

 exp
�

 (13.145)

Therefore, the connecting formulae for the wave functions inside region II are as follows:

 D
p x

p x dx
D

p x
x

x

1 1 2
1

1 2
1 1 2

1
| ( )|

| ( )|
[ ( )]/ /

 exp  cos
�

′ ′












→∫   1
4

1
�

p x dx
x

x

( )′ ′ −








∫ p  (13.146)

 D
p x

p x dx
D

p x
x

x

2 1 2
2

1 2
1 1 2

2
| ( )|

| ( )|
[ ( )]/ /

 exp  co− ′ ′












→∫�
ss − ′ ′ −









∫1

4
2

�
p x dx

x

x

( ) p  (13.147)
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The single valuedness of the wave function in region II implies

 
D

p x
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D
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∫ p x dx

x

x
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4

2

Let us define q  as q p= − ′ −∫1
4

2
�

( )dx
x

x

. Then the above equation can be rewritten as
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 =∫ ∫p p DD cosq  (13.148)

where D
D
D

= 2

1

The argument of the cosine function in the LHS can be rewritten as 
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∫  (13.149)

Using the Equation (13.149) for the LHS of the Equation (13.148), we get
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The solution to this equation is
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From Fig.13.9, it can be seen that 

p x dx p x dx
x

x

( ) ( )′ ′ = ′ ′∫ ∫
1

2

1
2 �

 ∴ ′ ′ = +( ) = +( )∫ p x dx n n h( )� �2 1
2

1
2

p  (13.151)

This condition is known as Bohr-Sommerfeld quantization rule.

13.13  ENERGY EIGENVALUES OF BOUND STATES USING WKB 
APPROXImATION

Bohr-Sommerfeld quantization can be used to evaluate the energy eigenvalue of a bound state. The 
simplest case is harmonic oscillator. The energy of classical harmonic oscillator is given by
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13.14 BARRIER PENETRATION

V(x)

E

x
x1 x2

I IIIII

Fig. 13.10 Barrier penetration

We have already seen tunnelling phenomenon for rectangular potential for which exact solutions are 
available. For tunnelling involving other potentials, we have to resort to approximations. The most 
important application for WKB approximation is the tunnelling problem for an arbitrary potential. Let 
us consider the potential as shown in Fig. 13.10. Let E be the energy of the incident particle.

We have to solve the Schrödinger equation

 d u
dx

m E V u
2

2 2
2 0+ − =
�

( )

Regions I and III are classically allowed. The boundary conditions for this problem are as follows: 

 1. There should be a wave function representing particles travelling to the right
 2. There should be a wave function representing a linear combination of incident and reflected beams.

The barrier at x
1
 is a right-handed barrier (the barrier is at the right of the classical turning point x

1
). 

Therefore, in the WKB approximation, the solution uI  is given by 
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  (13.152)
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The barrier at x
2
 is a left-handed barrier.
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  (13.155)

Note that we have two terms (13.153) and (13.154) for the wave function in region II. The reason is 
that that we can obtain the WKB expansion using any classical turning point. We have used classical 
turning points x

1
for (13.153) and x2(13.154) as can be seen in the lower limits of the integrals in these 
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two expressions. The boundary condition for region III requires a travelling wave to the right. If the 
potential is constant, u

III
 will have the form eipx /� . This suggests C

6
 = iC

5
.

 ∴ = −( ) + −( )



∫ ∫u

C

p
pdx i pdxIII x

x

x

x
5

1 2
1

4
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cos sin
� �

′ ′p p

 = −( )∫
C

p
i pdx
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x
5

1 2 42
/

exp
�

′ p  (13. 156)

From the connection formulae (13.140) and (13.141) for the left-handed barrier at x2 , we have
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 (13.157)

The wave function in the region should be the same whether it is written as (13.153) or (13.154). This fact 

can be used to get C3 and C4 in terms of ′C3  and ′C4 ,
 
for which we need to get the integral 

x

x

2
∫  in terms of 

x

x

1
∫ .

We have 
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 (13.158)

Let us define Λ as 

 Λ = ( )∫exp 1
1
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Similarly,

 exp exp  −( ) = −( )∫ ∫1 1
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p dx p dx
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Therefore, the Equation (13.154) becomes 
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The barrier at x
1 
is a right handed barrier and so we use the connection formulae (13.142) and (13.143).

Therefore, C iC
C

1 5
52

2
   is and is 2( )− 
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Let us define f  as f p= − −∫1
41�

pdx
x
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To identify the factor representing incident beam, let us consider eif  and e i− f terms under constant 
potential.

 f p p= − − = − − −∫1
4 41
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pdx

p
x x
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Obviously, e i− f  represents the wave travelling from the left to the barrier. Therefore, we can write
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The transmission coefficient for the potential barrier is found to be 
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The dominant term in the denominator is Λ2. Therefore, we have
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 (13.163)
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13.15 ` DECAY AND WKB APPROXImATION
We have already seen the a  decay process as tunnelling phenomenon. The parent nucleus before decay-
ing is considered as a system consisting of the daughter nucleus, and the a  particle, i.e., the alpha par-
ticle is confined to move within the volume of the daughter nucleus. The strong interaction between the 
daughter nucleus and the alpha particle is restricted to a distance R, the radius of the daughter nucleus. 
Beyond R, the alpha particle experiences only Coulomb interaction Ze e r⋅ ′Z / , where Ze and Z′e are 
the charges of the daughter nucleus and the alpha particle, respectively. For an alpha particle of energy 
E, the regions I and III are classically allowed regions, and region II is a classically forbidden region.

Let R and r
0
 be the turning points, R is the nuclear radius and r

0
 is determined from the equation 

ZZ e r E′ =2
0/ .

E

R

I II III

r0

Fig. 13.11 Potential for a decay

The transmission coefficient T is given by
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To evaluate this integral, put r r= 0
2cos q

∴ 1 1 2
0

2

1 2

0 0
2

0

r
r d r d

r

R

r

(sec ) ( cos sin ) sinq q q q q q−





− = −

=

∫ ∫
/

 2

00
2

01 0[ cos ] sin cos− + = − +[ ]∫ q q q q qd r
R

r
 

M13_QUANTUMMECHANICS_3628_CH13.indd   518 5/23/2013   3:48:37 PM



Time-Independent Schrödinger Equation – Approximations   519

 

= − − 





− 

















− −r R
r

r

r
R
r

R
r0

1

0

1 0

0 0

1 2

0

1 2

1cos cos
/ / 





= 





− 





− 











−r R
r

R
r

R
r0

1

0

1 2

0

1 2

0

1 2

1cos
/ / /











The Taylor’s expansion for cos−1 x is
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Substituting the expression ZZ e E′ 2 /  for r0 in the above equation, we get
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where T
G
 is known as Gamow factor. T is the probability of a particle to be transmitted whenever it 

collides with the Coulomb barrier. This implies that if 1/T  collisions take place, the probability of an a 
particle coming out of the barrier is T T⋅1 1/ ∼ . Therefore, 1/T  collisions are required for the emission 
of an alpha particle. If n is the velocity of an a particle, then n /2R collisions will take place in 1 sec. 
Then, the time required to make 1/T  collision is 

 t
u

= ⋅1 2
T

R

where t  is the lifetime of the a  particle. It is given by

 t
u

pZZ= ⋅ − ′[ ]⋅ ′ 
2 32 22 2 1 2 2 1 2R exp ( ) exp/ /ZZ e R e E�
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 ∴ = − ′ + ′ln ln
( ) /

/t
u

p2 32
2

2 1 2

2

2

1 2

R ZZ e R ZZ e
E�

 = −
C

E
C1

1 2 2/

Experimentally, the functional form of this equation is found to hold good, though the numerical val-
ues of C

1 
and C

2
 obtained from the equations are not the same as the experimental value.

EXERCISES
 1. | un 〉 is an eigenstate of H

0
 with energy eigenvalue En

( )0 . Assume En
( )0  is non-degenerate. Do we 

need | un 〉 to be eigenstates of lH′ to do perturbation theory?
 2. In the previous question, suppose En

( )0  is degenerate. Why do we need the eigenstates of H0 to be 
eigenstates of l ′H  also?

 3. Show that the correction due to second-order perturbation theory for a non-degenerate ground 
state is always negative.

 4. Show that there is no shift in energy due to Stark effect for the ground state of hydrogen atom.
 5. Determine energy levels of a hydrogen atom when H

r
 and H

LS
 are included.

 6. What are the basis states suitable to describe the hydrogen atom when H
r
 and H

LS 
are included as 

perturbation?
 7. What are the suitable basis states to describe hydrogen atom when H e

mcB = − + ⋅
2

2( )L S S  is the 
perturbation?

 8. Determine the energy splitting for hydrogen atom corresponding to n = 1, 2 and 3 H
r
, H

LS
 and  

H
r
, + H

LS
.
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Time-Dependent 
Perturbation Theory

When the Hamiltonian is independent of time, one obtains the stationary state solution. The solution to 
the time-dependent Schrödinger equation in such cases is restricted to the dynamical phase factor e iE tn− /�. 
When the Hamiltonian becomes time dependent, the solution to the Schrödinger equation becomes 
more complex. In only a few cases, exact analytical solutions are available, and hence we have to 
resort to approximation methods as we did in the case of time-independent Schrödinger equation. 
Three kinds of approximations have been presented here. They are time-dependent perturbation 
 theory, adiabatic approximation and sudden approximation.

14.1 TIME-DEPENDENT PERTURBATION THEORY–BASIS
Let us write the Hamiltonian H as 

 H H H= + ( )0 l ′ t  (14.1)

where H
0
 is time-independent part and H′ is time-dependent part. Let us assume the exact analytical 

solutions are available for H
0
. Let { ( )}un r  be the eigenfunctions of H

0
.

i.e., H u E un n0 = n  (14.2)

The corresponding time-dependent part is given by

 fn iE t
ne n= ( )− /�u r  (14.3)

The wave function fn  satisfi es the Schrödinger equation

 i
d
dt

Hn
n�

f
f= 0  (14.4)

Both the sets {u
n
} and { }fn  form a complete set. Let y  be the solution to the time-dependent 

Schrödinger equation.

 i
d
dt

H H H�
y y l y= = ( + )0 ′  (14.5)

14
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Then y (t) can be written as

 y f= ( ) ( )C t tn n∑  (14.6)

The complete description of the state of the system is now given by C
n
(t) or more precisely by 

C t1

2

( )
( )C t

�













 .

The study of time evolution of the state, therefore, amounts to determine the function C
n
(t). So our 

task is to find the set {C
n
(t)} for a set of given initial conditions {C

n
(0)}.

i.e., for a given set 

C1

2

( )
( )
0

0C

�

















, what is the set 

C

C
1

2

( )
( )
t

t

�
















?

Let us start by substituting the Equation (14.6) in (14.5).

LHS: i
d
dt

i k
k

� � � � �y f f= +∑ ∑C C ik k
k

k
 (14.7)

RHS: ( + ) =0 0H H C H C Hk k k
k

l y f l f′ + ′∑ ∑k
k

 (14.8)

Equating these equations, we get

 �
�

Ck k
k

k k
ki

C Hf l lf∑ ∑ ′= 1  (14.9)

Taking scalar product with f
n
, we get

 �
�

Ck
k

n k k n k
ki

C H∑ ∑〈 〉 = 〈 ′ 〉f f l f f| | |1

Since 〈 〉f f dn k nk| = , we get

 �
�

Cn = 〈 ′ 〉∑1
i

C Hk n k
k

l f f| |  (14.10)

These are the sets of coupled equations. All that we have done is to convert the differential equation 
for y  into a set of coupled differential equations for C

n
(t).

To suit the perturbation theory, let us expand C
n
(t) as a power series in l.

 C t tn n( ) = ( ) ( ) ( )(0) (1) 2 (2)t C C C tn n+ +l l � (14.11)

Cn
k( ) is given by Cn

k

t

( ) 1
!

( )
=

=
k

d C t
dt

k
n
k

0
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Substituting the Equation (14.11) in (14.10), we get

 � � � �
�

�C C C C Cn n n
( ) ( ) ( )0 1 2 2+ + ′ + +∑l l l l l+ = 1 (0) (1) 2 (2)

i
H Cnk

k
k k k 

Equating the coefficients of different power of l, we get

 �Cn
( )0 0=  (14.12)

 i C Hk n k� �Cn
( ) | |1 = 〈 ′ 〉∑ (0) f f  (14.13)

 i C Cn k� �

� �

(2) = 〈 ′ 〉∑ (1) f fn kH| |  (14.14)

Given Ck
(0), the coefficient Ck

(1) is determined from the Equation (14.13). Knowing from C Ck n
(1) (2),  can 

be determined and so on. So, in principle, we can solve all the coupled equations. In practice, we will 
restrict ourselves to the first order.

The solution to the Equation (14.12) is very simple.

 C tn
(0) ( ) = const

The initial time may be chosen as t = -∞ or t = 0 or simply t
0
. Let us choose t = 0 as the initial time. 

Since Cn t(0) ( ) = const, we have

 C tn nC(0) (0)( ) = ( )0  (14.15)

Let us now consider C tn ( )  at t = 0.

 C C C Cn n n n( ) ( ) ( ) ( )0 0 0 0= + +(0) (1) 2 (2)l l �

terms due to interactioon
� ����� �����  (14.16)

Since t = 0 is chosen as the initial time, the perturbation itself starts at t = 0. Therefore, the terms due 
to interaction in (14.16) are zero.

 C C Cn n n
( ) ( ) ( )( ) ( ) ( )1 2 30 0 0 0= = == �  (14.17)

 ∴ =C Cn n( ) ( )( )0 00  (14.18)

Let us assume that the system starts in the initial state u
i
.

i.e., y f( ) ( )0 = i iu0 =  (14.19)
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C

n i

n in

ni

( )0
1

0
=

=
≠





=

 for  

 for 

d
 (14.20)

or     or C Cn ni n nit(0) (0)0)( ( )= =d d  (14.21)

14.2 TRANSITION PROBABILITY
Before going into the first-order perturbation theory, let us explain how the concept of transition 
probability arises in time-dependent perturbation theory. This is the most significant consequence of 
time-dependent perturbation theory.

Let us recall that y ( )r,t  is given by 

 y f( ) ( ) ( , ) ( ) ( )/r r r,t C tn=
n

n n
n

i E t
nt C t e un∑ ∑= − �

Now, by choice, we have assumed that the system starts in state ui ( )r  at t = 0.

and 

∴ = =

∴ =
=

∑y ( , ) ( ) ( ) ( )

( )

( )

r r r0 C u

C

C n i

n
n

n i

i

n

0

0 1

0 0

u

 if ≠

We know that | ( )| | | )/C t en n
iE tC t n2 2 or  ( ( ) − �  gives the probability of finding the system (which starts 

in state ui
 at t = 0) in state u

n
 at time t. Therefore, |C

n
(t)|2 is interpreted as the transition probability 

to make a transition from the initial state u ti ( )at 0 =  to a final state un ( );at t  i.e., the transition prob-
ability Pi n→  is given by P ni n C t→ = ( ) .

2

Note the difference between the time-independent and time-dependent perturbation theories. In 
time-independent perturbation, the eigenstates of both H

0
 and H = + ′H H0 l  are stationary eigen-

states. The effect of perturbation l ′H  is to produce the correction to the eigenvalue of stationary 
eigenstate of H

0
. In time-dependent perturbation theory, we get a transition from the eigenstate of H

0
 

to another eigenstate of H
0
.

14.3 FIRST-ORDER PERTURBATION
From the Equation (14.13), we have

 

dC

dt i
C t H

i
H

i

n
k

k
n k

ki
k

n k n

( )
( ) ( ) | |

| |

1
01

1 1

= 〈 ′ 〉

= 〈 ′ 〉 = 〈

∑

∑
�

� �

f f

d f f f || |′ 〉H if
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Integrating both sides, we get

 
dC t
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t ( ) ( )

| |
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1′
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′ = 〈 ′ 〉 ′∫ ∫dt
t

i
H dtn i
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0
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LHS = − =C t C C tn n n
( ) ( ) ( )( ) ( ) ( )1 1 10
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n n i

t

n
i t i t

i

t

n i

( ) ( ) | |
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1
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= 〈 ′ 〉

∫

∫ ′ − ′

�

�

f f

w w ddt ′

 = 〈 ′ 〉 ′∫1

0
i

e H dt
�

i t

t

n i
ni u uw | |  (14.22)

where w ni n i= [ ]E E− /�

Let us emphasize again that the transition probability P
i → n is given by

 Pi n nC t→ = ( ) ( )1 2

14.3.1 Second-order Perturbation
From the Equation (14.14), we have
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�
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1 1
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k

k

t

n k k

1
1

1

2 1
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1 1 1
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f f f 22 2 2

0

2

1

) | ( )| ( )′ 〉∫ H t t dti

t
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 = 〈 ′ 〉 〈 ′ 〉∫∑ ∫1
2

0

1

0

2
1 2

1

( )
| | | |

i
e u H u dt e u H u dti t

t

n k
k

i t

t

k i
nk ki

�
w w  (14.23)

14.4 PRINCIPLE OF DETAILED BALANCING
Let us recall that the system starts in state ui ( )r  at t = 0 and C tn

( ) ( )1  is the probability amplitude for the 
system to make a transition to the state un ( )r  at time t. So, let us write the Equation (14.22) as 

 C t
i

e u H t u dti n
i t

t

n i
ni

→
′= 〈 ′ 〉 ′∫( ) ( ) | ( )|1

0

1
�

w  (14.24)
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The transition probability from state ui ( )r  to final state un ( )r  is given by

 P t C ti n i n→ ( ) | ( )|( )= →l 1 2  (14.25)

Now let us consider the reverse situation. The system starts in state un ( )r at t = 0. The transition prob-
ability amplitude to make the transition to state ui ( )r  is given by

 C t
i

e u H t u dtn i
i t

t

i n
in

→
′= 〈 ′ 〉∫( ) ( ) | ( )|1

0

1
�

w  (14.26)

The transition probability Pn i→  is given by

 P C tn i n i→ →= l ( ) ( )1 2
 (14.27)

Since H′ is a Hermitian operator,

 〈 ′ 〉 = 〈 ′ 〉∗u H t u u H t un i i n| ( )| | ( )|

 

( ( )) | ( )| *( )C t
i

e u H t u dt

i
e

i n
i t

t

n i

i t

ni

in

→
− ′

′

∗ = − 〈 ′ 〉 ′

= −

∫1

0

1

1

�

�

w

w

00

t

i nu H t u dt∫ 〈 ′ 〉 ′| ( )|

 = − →C tn i
( ) ( )1  (14.28)

Therefore, we have

 P Pi n n i→ →=  (14.29)

Therefore, for a given Hamiltonian H′(t), the transition probability from the initial state ui ( )r  to the final 
state un ( )r  is the same as the transition probability from the initial state un ( )r  to the final state ui ( )r .

This result is known as the principle of detailed balance.

14.5 CONSTANT PERTURBATION
Consider a time-dependent perturbation H′ given by

 ′ =
≤
≥





H
t

V t

0 0

0

                     

                ( )r
 (14.30)
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The only time dependence is that it is switched on at time t = 0. Once it is switched on, H′ has no time 
dependence subsequently. H′ may be written as 

 ′H t= V ( ) ( )r q

where q ( )t  is a step function. 

 q ( )t
t

t
=

≤
≥





0 0

1 0
 

In the first-order perturbation theory,

 C t
i

H dt
i

e u V u dtn n i

t

i t

t

n i
ni( ) ( ) | | | ( )|1

0 0

1 1= 〈 ′ 〉 ′ = 〈 〉 ′∫ ∫ ′

� �
f f w r  (14.31)

Since V ( )r  is independent of time, the matrix element V u V uni n i= 〈 〉| ( )|r  is independent of time.
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2
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// )2 2

Note that C t C tn n( ) ( )( )= l 1  for n i≠ . We have already seen that the transition probability from state u
i
  

to state un is C tn ( )
2
. Therefore, the transition probability Pi n→  is given by

 P
V t

i n
ni ni

ni
→ = ⋅

l w
w

2

2

2

2

2
2�

sin
( )

/
/

 (14.32)

Let us sketch the function 
sin /2

2

2w
w

ni

ni

t
. In the limit t → 0, 

sin /
/

2

2

2 2

2
2

2
4

4
w
w

w
w

ni

ni

ni

ni

t t
t∼ = . The function is 

zero for 

 
w

p p pnit
2

2 3= , , ... (14.33)

M14_QUANTUMMECHANICS_3628_CH14.indd   527 5/23/2013   4:19:05 PM



528  Quantum Mechanics

A sketch of this function is shown in Fig.14.1.

4p
t

2p 4π
tt

2p

t2

4

t
p
t

0 p
t

Fig. 14.1 Sketch of 
sin /2

2

2w
w

ni

ni

t

This function has got a peak at w
ni
 = 0, and the central peak has a half-width 2p /t  (width at half  

the maximum). The transition probability is significant only in the range | |w p pni n it E t∼ − ∼2 2/  or  | | /E � .  
This has got an interesting interpretation. Let us define | |E En i−  as ∆ E and introduce the notation ∆ t for t.  
Then the expression | |E E tn i− ∼ 2p�/  becomes 

 ∆ ∆E ∼ 2p�
t

 (14.34)

 ∆ ∆E t ∼ �2p  (14.35)

∆ E is interpreted as the uncertainty in energy ∆ E, and ∆ t is the time for which the perturbation acts on 
the system, and the relation (14.35) is the well-known time energy uncertainty relation.

We have already seen the difference between this uncertainty relation and the relation ∆ ∆x p hx ∼  
in Chapter 4. Since x and p

x
 are dynamical variables, we can associate Hermitian operators with them, 

and it is the non-commutation between these operators which play an important role in establishing 
the concept of uncertainties for ∆ x and ∆ p

x
. But time t is not a dynamical variable. So though math-

ematically we can have the relation [ ] =t i t, ,� �∂ ∂/ i  this relation has no meaning in quantum mechan-
ics. So ∆ t cannot be interpreted as uncertainty in time.

Let us try to understand ∆ E. The system starts with a definite energy E
i
. So the initial state of the 

system is the eigenstate of H
0
. Due to the presence of time-dependent perturbation H′, the state of the 

system becomes a superposition of eigenstates of H
0
 at a later instant time t. So, with respect to H

0
,  

the energy of the system is uncertain. There is a definite probability that the energy of the system will 
be different from E

i
. So ∆ E can be interpreted as the statistical spread in the energy of the system 

resulting from the perturbation H′. However, ∆ t is not such a spread. ∆ t or, more appropriately, t is the 
time interval for which the perturbation has acted. As t increases, the width ∆ ∆E t∼ �2p /  decreases.

Finding the system in states with energies other than initial energy E
i
 is also sometimes interpreted 

as violation of the conservation of energy. Perturbation H′ is interpreted as the measurement process, 
and getting a value other than E

i
 looks like violation of conservation of energy. However, it is gener-

ally argued that if we include energy of the perturbation source also, there will be no violation of 
conservation of energy.
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14.6 FERMI’S GOLDEN RULE
The expression (14.32) for Pi n→  gives the transition probability for a transition from the initial state 
u

i 
to a specific final state un. Now, let us extend this discussion to consider the transition to group of 

closely spaced final states, for which the energy eigenvalues are centered around E
n
. The energy eigen-

values of this group of states are between E
n 
- ∆ and E

n 
+ ∆. Let us calculate the transition probability 

for the transition from state u
i
 to this group of states.
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1 2
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∑
Ei

2

2

�

This is a sum over discrete energy eigenvalues. If the energy eigenvalues are very closely spaced, we 
can replace the summation by integration. The standard technique is 

 P P Ei m i m→ →→ ∫∑ r( )m mdE  (14.36)

The Equation (14.36) can be explained as follows. Let us divide the energy range between En − ∆ 
and En + ∆ into many sub-intervals dEm. All the states within the energy range Em and E dEm m+  have 
almost the same values for Pi m→ . Therefore, the summation of Pi m→  for these states can be replaced 
by r( )E dE Pm m i m→ . The integral represents the sum over dEm , covering all the states within the range 
E

n
 - ∆ to E

n
 + ∆. The quantityr( )Em  is called density of states; i.e., r( )Em  is the number of states per 

unit energy range between Em and E dEm m+ . So r( )E dEm m gives the number of states between Em 
and E dEm m+ .
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 (14.37)

Let us further assume | | | |V Vmi ni
2 2�  and r r( ) ( )E Em n�  for all the states in the energy range 

( ) ( )E E En m n− ∆ < < + ∆ . So we can pull r( )En  and | |V ni
2 outside the integral 

 ∴ =

−





−→
−

P
V

E

E E
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E E
dEi n

ni
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∆∆

∆En +

∫  (14.38)
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The integrand (sin ( ) ) [( ) ]2 22 2E E t E Em i m i− −/ /� �  is significant only a small range and is zero practi-
cally outside the range E

n
 - ∆ < E

n 
< E

n
 + ∆. Therefore, we can make the limits of the integral from -∞ 

to +∞. i.e., dE dEmE

E

m
n

n

−

+

−∞

∞

∫ ∫∆

∆
�

 ∴ =
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We have to bear in mind that the integral (14.38) is significantly different from zero only for E
n
 ∼ E

i
, 

especially for large t. Therefore, write Pi n→[ ] as

 P V t Ei n ni n E En i
→ ≈

=[ ]
2 2p r
�

| | ( )  (14.39)

The transition probability to a group of final states is now proportional to time t, and so the transition 
probability per unit time is given by 

 W V Ei n ni n E En i
→ =[ ]

2 2p r
� ∼

| | ( )

This is known as Fermi’s golden rule.

14.6.1 Aliter
We can get the same results in a different way. Let us start with the expression 
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V t
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2
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 (14.40)

Let us write this expression as
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For very large values of t,
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where we have used the fact
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We have used the fact d d( ) | | ( )ax a x= 1/ . We have to note that this expression is zero when E En i≠  
and infinite at E

n 
= E

i
. This reflects the fact that we are using the Equation (14.40) beyond the range of 

its validity. Still this is a good approximation in view of the presence of Dirac delta function, which is 
meaningful only in the context of some integrals.

Indeed, such a situation arises when we consider the transition probability from initial state u
i
 to a 

group of closed, spaced final states.
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This is the same result as the Equation (14.40). We summarize all these relations below as they are 
very useful in the subsequent calculations:

 P
V

t E Ei n
ni

n i→ = −
| |

( )
l

p d
2

2
�

 (14.41)

 P
t

V Ei n ni n E En i→ =[ ] ( )| | ( )|
2 2p l r
� ∼  (14.42)

 W V E Ei n ni n i→ = −2 2p l d
�

| | ( )  (14.43)

 W V Ei n ni n E En i→ =[ ] | | ( )|2 2p l r
� �  (14.44)
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14.7 HARMONIC PERTURBATION
The general form of the Hamiltonian for harmonic perturbation is given by 

 †( ) ( )i t i tH V e V e−= +′ r rw w  (14.45)

Let us assume again that the system starts in the initial state u
i 
at t = 0.

 C Ci n ni
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In the first-order perturbation theory, 
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 (14.46)

Let us now calculate | ( )| .( )C tn
1 2

 ∴ = + + = + + +| ( )| ( * *)( ) | | | | ( * *)( )C t A B A B A B A B ABn
1 2 2 2

The term A is very small (almost zero), excepting in a small region around w wni � ; i.e., A is signifi-
cant only in the range w p w w p− < < +2 2/ /t tni . In this region, the second term B is almost zero. 
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Similarly, the term B is very small for all values of w
ni
, excepting when w wni ∼ −  or more specifically 

− − < < < − +w p w w w p2 2/ /t tni ni  and in this range, A is almost zero. Altogether, we have 
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∼          for other values of w ni














(We assume that there is no overlap between their two ranges.) Therefore | |( )Cn
1 2 is given by 
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Let us now consider these two extreme cases.

Case 1: w wni �

In this case,

 ( )E E E En i n i− +� � � �w wor

Obviously, the system in state ui  absorbs energy w from the source of perturbation and goes to state 
un. This corresponds to absorption process. In the case of an atom interacting with electromagnetic 
radiation frequency w, this represents absorption of photons. The transition probability for absorption 
process is 

 

P
V t

i n
ni ni

ni
→ =

−
−

| |
.
sin (( ) / )

( )/
l w w

w w

2

2

2 2
2�

 (14.47)

Case 2: w wni ′ −�
In this case,

 E E E En i n i− − −� � � �w w

The system in state ui  gives energy �w  to the source of perturbation and goes to state un. This cor-
responds to emission process. In the case of an atom interacting with the electromagnetic radiation, 
this represents the emission of photon of energy �w .
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P

t
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w w  (14.48)

Note that this explanation of absorption or emission in terms of photons does not emerge from 
non-relativistic quantum mechanics. It requires quantum field theory, though these explanations are  
obvious.

Working out the calculations in the same way as done in constant perturbation theory, we get the 
following results:

For absorption, 

 P t V E Ei n ni n i→ = − −2 2p l d w
�

�| | ( ) (14.49)

 P t V Ei n ni n E En i→ =[ ] | | ( )|2 2p l r w� � �+  (14.50)

 W V E Ei n ni n i→ = − −2 2p l d w
�

�| | ( )  (14.51)

 W t V Ei n ni n E En i→ +=[ ] | | ( )|2 2p l r w� � �  (14.52)

For emission,
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 † 22 | | ( )i n ni n iW V E E→ = − + �
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p l d w  (14.55)
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�2  (14.56)

14.8 ATOMS AND RADIATION – THREE KINDS OF TRANSITION
It is interesting to analyze the possible kinds of atomic transitions due to electromagnetic interac-
tions. From Bohr model, we have the following naive picture. To make a transition from state ui  to u

m
 

(assume E
m
 > E

i
), the presence of a photon energy �w = −E Em i  is necessary. This process is called 

absorption. On the other hand, if an atom in state u
m
 is left alone, it will make a transition to E

i
 by 

emitting a photon of energy �w . The absorption of the photon is induced absorption, and the emission 
process is spontaneous process.

Does non-relativistic quantum mechanics support this understanding? The non-relativistic quan-
tum mechanics rules out the possibility of spontaneous emission, but it introduces a new process 
called induced emission.
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Why is spontaneous emission not possible in non-relativistic quantum mechanics? If there is no 
electromagnetic field, there is no time-dependent perturbation. If there is no time-dependent perturba-
tion, the state of an atom is a stationary eigenstate, and so if an atom is left in state u

m
, it will continue 

to remain in the same state. On the other hand, the harmonic perturbation leads to both emission as 
well as absorption. This emission is induced emission due to harmonic perturbation of electromagnetic  
field.

What about spontaneous emission? There are induced emission as well as absorption as a result of 
electromagnetic radiation interacting with the atom. In addition to these two processes, spontaneous 
emissions do take place, but the non-relativistic quantum mechanics is insufficient to describe the spon-
taneous emission process. The explanation of spontaneous emission comes from quantum field theory. 
The atom lives for ever in a fluctuating background electromagnetic field. This field is not directly 
observable. However, its effect can be seen indirectly through processes like spontaneous emission.

14.9 ATOMS AND RADIATION – SEMI-CLASSICAL THEORY
The important application of harmonic perturbation theory is the study of interaction between elec-
tromagnetic waves and atom. We know that an atom absorbs and emits electromagnetic radiation. In 
fact, in Bohr model, the atom absorbs a photon of energy �w  and goes from the states of energies 
E

i
 to E

m
 with E

m
 = E

i
 + w. In the same way, the atom makes a transition from u

i
 to u

n
 by emitting a 

radiation of energy w (E
i
 = E

n
 + w). The description of electromagnetic waves in terms of photons 

requires quantum field theory, which makes electromagnetic field themselves as operators. Here, we 
treat electromagnetic waves as a classical vector function. So, in the description of the interaction 
between the atoms and electromagnetic waves, we use quantum mechanical formulation like opera-
tors, eigenvalues and wave functions for atoms while electromagnetic waves are treated as a classical 
physics variable. This treatment is called semi-classical theory.

14.9.1 Classical Electromagnetic Waves
Let us recollect some basic features of the electromagnetic radiation. We use four quantities namely 
A( , , , )x y z t  and f (x, y, z, t) to describe the electromagnetic radiation. The four quantities A

x
 (x, y, z, t),  

A
y
(x, y, z, t), A

z
(x, y, z, t) and f (x, y, z, t) are very much similar to the atomic state wave function 

y (x, y, z, t). Do we need four wave functions to describe electromagnetic waves? From classical elec-
tromagnetism, we know that only two quantities are required to describe electromagnetic waves. Use 
of four functions, therefore, creates a redundancy in the theory. How do we get rid of this redundancy?

The standard trick is to impose additional conditions on A and f such that we have got only two 
independent quantities. This process is known as gauge fixing. Without going into details, let us take 
the following conditions for our purpose.

 ∇⋅ = =A 0 0f

This is called Coulomb gauge (or radiation gauge).
The vector potential A  describing the electromagnetic wave of wave vector k  and frequency w is 

given by 

 A k r= ⋅ −2 0A d cos( )wt  (14.57)
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where e is polarization vector. The electric field E and the magnetic fields B are given below:

E = − = ⋅ − )

= 2 ⋅ − )
× = −2 (

1 2 0

0

0

c t c
A t

A k t

A

∂
∂

= ∇ ×

A k r

k r

B A k

w w

w

d

d
d

sin(

sin(

)) ⋅sin( )k r −wt

The radiation gauge condition is ∇⋅ =A 0.

 ∇⋅ = ⋅ − =A k k r2 00A t⋅d sin( )w

Therefore, the polarization vector d  is perpendicular to k ; the electric field E is along the direction of 
e  and perpendicular to k . The magnetic field B is perpendicular to both d  d an k.

The energy density of the electromagnetic wave is given by 

 
u

k A t

= +1
8
1

2 2

2
0
2 2

p

p
w

( )

sin ( )

E B

= ⋅ −k r

This is a fluctuating function, and experimentally, more relevant quantity is the average energy den-
sity, which is given by 

 u k A= 1
2

2
0
2

p

The corresponding energy flux is given by

 I uc c k A
c

A= = =
2 2

2
0
2

2

0
2

p
w
p

So far, we were concerned with monochromatic radiation. For our purpose, we consider an incoherent 
beam of radiation with a spread in frequencies. Let r w w( )d  be the number of modes between w and 
w + dw. The flux density corresponding to each mode is w p2 2 2A c0 / . Therefore, the flux density of the 
incoherent beam of radiation with frequencies between w and w + dw is

 I d
c

A d( ) ( )w w w
p

r w w=
2

0
2

2
 (14.58)

14.9.2 Transition Probability for the Atom
The Schrödinger equation for an electron in the atom is given by 

 i
t

e
c

m
V e�

∂ =
+

+y f y
∂

( )
−



















p A

r

2

2
( )

M14_QUANTUMMECHANICS_3628_CH14.indd   536 5/23/2013   4:19:34 PM



Time-Dependent Perturbation Theory  537

Let us first evaluate 1
2

2

m
e
copp A+( ) y

 

1
2

1
2

1
2

2

m
e
c m

e
c

e
c

m
e
c

op op op

op op op

p A p A p A

p p p

+ + +

+

( ) = ( )⋅ ( )
= ⋅ ⋅

y y y

y AA A p

p A p A A p

y y y

y y y

( ) ⋅





⋅ = ⋅ + ⋅

+ +e
c

e
c

A

e e

op

op op op

2

2
2

( ) ( )

But ( )p A Aop i⋅ = − ⋅ =� ∇ 0

 ∴ ( ) = ⋅





1
2

1
2

2
2

2

2
2

m
e
c m

p e
c

e
c

Aop op opp A A p+ + 2 +y y

Since we are using radiation gauge, f  = 0. Then, the Schrodinger equation becomes

 i
t

p
m

V e
mc

e A
m c

�
∂
∂







y y= + + ⋅ +
2 2 2

2 22
( )r A p

The last term is estimated to be very small. Therefore, we have

 
i

t
p
m

V e
mc

H H

�
∂
∂







′

y y

y

= + + ⋅

= +

2

0

2
( )

( )

r A p

where, H
p
m

V0

2

2
= + ( )r  (14.59)

and ′ =H e
mc

A p⋅  (14.60)

First, let us consider monochromatic radiation of frequency w. Then H′ is

 [ ]

0

0 ( )( )

†

2 ( ) cos( )

( )

( ) ( )

i t i t

i t i t

eH A t
mc
A

e e
mc

V t e V t e

⋅ − − ⋅ −

−

= ⋅ − ⋅′

= + ⋅

= +

k r k r

k r p

pw w

w w

w w

w

d

d

where V
A

mc
ei= ⋅⋅0 ( )w

k r pd  (14.61)

and V
A

mc
e i†

( )
= ⋅⋅0 w − k r pd  (14.62)
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From harmonic perturbation theory, we know that the transition probability rates W
i→n

 and W
n→i

 are 
given by 

 

2

† 2

2 | | ( ) Absorption

2 | | ( ) Emission

i n ni n i

n i ni n i

W V E E

W V E E

→

→

= − −

= − +

�
�

�
�

p d w

p d w

From the principle of detailed balance, we have 

 W Wi n n i→ →=

In the discussion of harmonic perturbation theory, we considered the transition probability from state 
u

i 
to a group of final states whose energy eigenvalues centered around E

n
. We assumed that harmonic 

perturbation is monochromatic. Now we are interested in a different scenario. We now consider two 
specific states of the atom, namely u

i
 and u

n
. However, the incident radiation is not monochromatic.  

The source now produces an incoherent beam with a spread of frequencies. To find the transition prob-
ability P

i→n
, we add the probabilities due to all the frequencies in the incoherent beam.

i.e., P Pi i n→ →= ∑n
w

 for each mode 

Normally, the frequencies of different modes are very close to each other, and so we can take w as 
continuous variable. And in that case, the summation over w becomes an integral. If r w( ) is the num-
ber of modes between w and w  + dw, then the transition probability per unit time, W

i→n
, is given by

 
W W V E E d

e
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i n n i ni n i→ →= = − −

= ⋅ 〈

∫
∫

2

2

2

2

2 2 0
2

p d w r w w

p w

�
�

�

| | ( ) ( )

( )| nn
i

i n ie u E E d| | | ( ) ( )k r p⋅ ⋅ 〉 − −d 2 d w r w w�

 
d w d w w w d w - w w

d w w

( ) ( ( )) ( )

( )
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From (14.58), we get 

 

A
I c

W
e

m c

I
u

ni ni
ni

ni

i n
ni

ni
n

0
2

2

2

2 2 2

2

4

( ) ( )
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|

w r w
w p
w
p w

w

=
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|| | |e ui

i
k r⋅ d ⋅ 〉p 2

 (14.63)
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14.9.3 Dipole Approximation
It will be interesting to estimate eik r⋅  for an electron in an atom. The average scale of the distance of 
an electron from the nucleus is few Bohr radius a. Therefore, we can replace e ei ikak r⋅  by . For optical 
region of electromagnetic spectrum, let us take l ∼ 5000Å.

 

ka a

e ika
ika

e

ika

ika

= ×

= + +

−2 2 0 5
5000

10

1
2

1

3

2

p
l

p� .

( )

Å
Å

�

�

�∴

This is known as dipole approximation. The reason for this terminology will become clear soon. Now 
the matrix element in (14.63) becomes 

 〈 ⋅ 〉 〈 ⋅ 〉u e u u un
i

i n i| | | |k r⋅ d dp p�  (14.64)

The operator d ⋅p can be expressed in terms of the Hamiltonian H and the position vector r.
Let us first evaluate [ , ].H r

 [ , ] [ , ] [ , ] [ , ]H H x H y H zr x y z= + +

[ ]H , x  is given by 

 

[ , ] ( ), ,

, ,

H x
p
m

V x
p
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x

p

m
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p

m
xx y

= +





= 





= 





+

2 2

2 2

2 2

2 2

r









 + 





= −

0

2

0

2
��� �� ��� ��

�p
m

x i
m

pz
x,

Evaluating other terms also in the same way, we get

 ∴ = − − − = −[ , ]H i
m

i
m

p i
m

p i
mx y zr x y z p� � � �p

 
∴ =

∴ ⋅ ⋅

p r

r

im H

im H

�

�

[ , ]

[ , ]d dp =

 
∴〈 ⋅ 〉 = 〈 ⋅ 〉 = 〈 ⋅ − ⋅ 〉

=

u u im u H u im u H H u

im E

n i n i n i

n

| | |[ , ]| | |

(

d d d dp
� �

r r r

−−
〈 ⋅ 〉 = 〈 ⋅ 〉

E
u u im u ui

n i ni n i

)
| | | |

�
d dr rw

 (14.65)

If -e is the charge of the electron and if we assume the nucleus is at the origin, then the dipole moment 
d r= −e .
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∴〈 ⋅ 〉 =

−
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⋅

u u
im

e
u u

im
e

n i
ni

n i

ni
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| | | |d d

d

r d

d

w

w
 (14.66)

where dni  is the matrix element of the dipole moment d.
The transition probability rate from state ui  to state u

n
 is

 W
I

ci n
ni

ni→ = ⋅
4 2

2
2

p w( )
| |

�
d d  (14.67)

14.10 SELECTION RULES
The matrix elements 〈 〉u uf i| |d ⋅d  is non-zero for a few pairs of states u

f
 and u

i
. Therefore, the transitions 

between only such pair of states are allowed. Other transitions are not allowed due to the matrix element 
〈 〉u uf i| |d ⋅d  becoming zero. These are called forbidden transitions. Therefore, the dipole matrix ele-
ment imposes certain conditions on the orbital angular momentum quantum numbers l

i
 and l

f  
, and the 

azimuthal quantum numbers m
i
 and m

f
 for a transition to be allowed. These are known as selection rules.

These selection rules can be obtained in many ways. Let us write d ⋅d as
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Making use of these relations, we get
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 (14.68)

The wave functions of the atom can be written as 

 

u R r Y u R r Yi n l l m f n l l m

fi

i i i i f f f f
= =

∴ ⋅ =

( ) ( )

( )

( , )   and ( , )q f q f

d d ee R r R r r dr d Y Y Yn l n l m l m m l m
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f f i i f f i i
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0

3
1

∞
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dΩ

 (14.69)
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Let us consider Y Ym l mi i1 . This is a basis vector in uncoupled representation. Let us recall that when two 
angular momenta of quantum number j

1
 and j

2
 are added, we can write

 | | ; | |j m j m j m j m j m m j m m
j

1 1 2 2 1 1 2 2 1 2 1 2〉⋅ 〉 = 〈 + 〉 + 〉∑

where 〈 + 〉j m j m jm m1 1 2 2 1 2; |  are the Clebsh–Gordan coefficients. Here, the two orbital angular momen-
tum quantum numbers are j

l 
= l

i
 and j

2
 = 1. The resulting angular momentum has quantum numbers l

i
 + 1,  

l
i
 and l

i
 - 1 provided li ≠ 0. So we have to consider two cases, namely l

i
 ≠ 0 and l

i
 ≠ 0 

Case 1:

 Y Y C Y Y C Ym l m l m m l m m l m mi i i i i i i i1 1 1 2 3 1= + ++ + + − +, , ,C  (14.70)

where C
1
, C

2
 and C

3
 are Clebsh–Gordan coefficients. The parity of Y Ym l m

l
i i

i
1

11 is ( )− +  and the parity of 
Yl m m

l
i i

i
,  is + −( ) .1  Since the functions in the LHS and RHS should have the same parity, C

2
 has to be zero.

 C
2
 = 0

 
∴ = +∫ ∫ ∫+ + − +Y Y Y d C Y Y d C Y Yl m m l m l m l m m l m l mf f i i f f i i f f i

∗ ∗ ∗
1 1 1 3 1Ω Ω, , mm

l l m m m l l m m mi

i

f i f i f i f

d

C C

Ω

= ++ + − +1 1 3 1d d d d, , , ,

 (14.71)

The integral is non-zero provided 

or 

l l m m m

l m m m

f i f i

f i f i

= + = +

= − = +

1

1

,

,l

Note that the possible values of m are ±1, 0.
Therefore, the selection rules are 

 l l m m mf i f i− = ± − = = ±1 1 0, ,

Case 2: l
i
 = 0

In this case,

 Y Yl mi i
= =00

1
4p

 
∴ ∗ =

=

∫ ∫Y Y Y d Y Y dl m m l m m

l m m

f f f f

f f

1 00 1
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1
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p
d d

 
i.e., 
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f i f i f i

= = = ±

∴ ⋅ ≠ − = ± − = ±

1 0 1

0 1 0

, , .

( ) , ,d d 11 0  for li ≠
 (14.72)

and l m lf f i= = ± =1 0 1 0, , for  (14.73)
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These are the selection rules for a transition to be allowed in the dipole approximation. The transitions 
for which the selection rules are not obeyed are termed as forbidden transitions. However, we have to 
bear in mind that these selection rules are consequences of the dipole approximation. If we include 
other terms in eik r⋅ , other transitions will become allowed. However, their strength will be very small 
compared to those allowed by dipole approximation.

14.11 EINSTEIN COEFFICIENTS
Much before the advent of quantum mechanics, as we know today, Einstein in 1917 arrived at the idea 
of induced emission by considering the thermodynamical equilibrium of black body radiation inside 
a cavity with the atoms constituting the cavity walls.

What do we mean by thermodynamic equilibrium between the atoms and radiation? Both the radia-
tion and the atoms are at the same temperature T; the number of atom in each state remains the same; 
the number of photons at a particular frequency remains the same. It has to be understood that all 
these conditions are dynamical. For instance, if we consider two specific states 1 and 2, the number of 
atoms which change from state 1 to state 2 should be the same as the number of atom which change 
from state 2 to state 1.

Let us consider two specific states 1 and 2. Since the atoms are in thermodynamic equilibrium, the 
numbers N

1
 and N

2
 are fixed. It is given by

 
N
N

e
e

E k T

E k T
2

1

2

1
=

−

−  (14.74)

The energy density of the radiation inside the cavity is

 u
c e k T

( )w w
p w= �

�

3

2 2 1−
 (14.75)

E1

Spontaneous
emission

A B B′

Induced
emission

Induced
absorption

E2

Fig. 14.2 Atomic transitions in a black body

An atom in state 1 can absorb a photon from the radiation inside the cavity and make a transition to 
state 2. This is induced absorption. An atom in state 2 can make a spontaneous transition to state 1 
by emitting radiation of energy �w . The atom does not need any photon from the radiation for this 
process. The atom in state 2 can also make transition to a state 1 by induced emission. This requires a 
photon from the radiation.
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Now, we would like to calculate ∆ N
1
 and ∆ N

2
. Here ∆ N

1
 is the number of atoms making a transition 

from state 1 to state 2 in one second. Similarly ∆ N
2
 is the number of atoms making transitions from 

state 2 to state 1 in one second. For thermodynamic equilibrium, ∆ N
1
 = ∆ N

2
.

Let A be the transition probability rate for spontaneous transition from state 2 to state 1.
Similarly B and B′ are the probability rates for induced emission and absorption, respectively. 

These coefficients are known as Einstein’s coefficients.
Let us now determine ∆ N

1
, the number of atoms per second which change from state 1 to state 2 by 

induced absorption. This number should be proportional to the number of atoms in state 1, the energy 
density of the radiation and the Einstein’s coefficient B′.

i.e., \∆ N
1
 = N

1
u(w)B′

Similarly, we have to determine ∆ N
2
. It is given by

  ∆ N
2
 = N

2
uB + N

2
 A

N
2
uB and N

2
 A correspond to induced emission and spontaneous emission, respectively. Note the 

absence of u in the second term. This is due to the fact that spontaneous emission independent of the 
cavity radiation.

Since ∆ N
1
 = ∆ N

2
, we have

 N
2
uB + N

2
A = N

1
uB′

 u(N
1
B′ - N

2
B) = N

2
A

∴ =

=

u
N A

N B N B
A B

N
N

B
B

A B

e B
B

kT

2

1 2 1

2

′ −
= ′

− ′
′

− ′

/

/
�w /

Comparing this expression with the Planck’s law given in (14.75), we get

 B = B′ and A
B c′

= �w
p

3

2 2

14.12 ADIABATIC APPROXIMATION
In time-dependent perturbation theory, the Hamiltonian H(t) is split into two parts, namely H

0
 and 

H′(t) where H′(t) is taken as the perturbation to the system, and the effect of H′(t) is to make a transi-
tion from one stationary eigenstate of H

0 
to another stationary eigenstate. Now, we discuss the adi-

abatic approximation to describe the system under different condition. In the adiabatic approximation, 
the Hamiltonian varies with time very slowly. In fact, we can consider systems where Hamiltonian 
depends on external parameters like magnetic field, which can be made to vary very slowly to make 
the adiabatic approximations valid.

The Schrödinger equation is 

 i
t

t
H t t�

∂
∂

=y y( )
( ) ( ) (14.76)
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More explicitly, we can write the Hamilton as H(R
i
(t)), where R

1
(t), R

2
(t)… are time-dependent parameters  

that occur in the Hamiltonian.

i.e., i
t

t
H R t ti�

∂
∂

=y y( )
( ( )) ( ) (14.77)

If the Hamiltonian is independent of time, the energy eigenstates of the Hamiltonian are stationary 
states, and the energy eigenvalues are independent of time as shown in Fig. 14.3. 

Ek

Em

En

Ek(t)

Em(t )

En(t )
t0tt  = 0

Fig. 14.3 Stationary energy eigenstates and instantaneous energy eigenstates

Under some conditions, even now it is possible to define instantaneous eigenvalues E
n
(t) and instan-

taneous eigenstates f
n
(t) given by

 H(t) f
n
(t) = E

n
(t) f

n
(t) (14.78)

We restrict ourselves to systems whose instantaneous eigenvalues E
n
(t) are as shown in Fig. 14.3, 

where they do not cross each other.

14.12.1 Adiabatic Theorem
Adiabatic theorem states that when the Hamiltonian varies slowly with time for a system whose initial 
state y (0) is f

n
(0), the state y (t) of the system evolves to the instantaneous eigenstate f

n
(t).

Let us elaborate this theorem. Let us assume that the instantaneous eigenstates {f
n
(t)} form a com-

plete set. Then, we can write y (t) as

 y fq( ) ( ) ( )( )t C t e tm
i t

m
n

m= −∑

where q
m
(t) is called dynamic phase factor given by

 qm m

t

t E t dt( ) ( )= ′ ′∫1

0
�

We have assumed the initial state as y (0) = f
n
(0). Let us write y (t) as 

 y f fq q( ) ( ) ( ) ( ) ( )( ) ( )t C t e t C t e tn
i t

n m
i t

m
m n

n m= +− −

≠
∑

Adiabatic theorem says that for a slowly varying time, we can approximate y (t) as

 y fq( ) ( ) ( )( )t C t e tn
i t

n
n� −  (14.79)
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Further, it can be shown that C t en
i tn( ) .( )� g

 ∴ −y fg q( ) ( )( ) ( )t e e ti t i t
n

n n�  (14.80)

What is the significance of adiabatic theorem?
First, note that the instantaneous eigenstates behave like stationary eigenstates. The expression 

y (t) in (14.79) almost looks like the time evolution of a stationary state, namely y ( ) .t e uiE t
n

n= − /�  This 
suggests that for a slowly varying time-dependent Hamiltonian, the solution to the Schrödinger equa-
tion is obtained by solving the corresponding time-independent Schrödinger equation, taking time t as 
one more parameter in the theory. Example 14.1 illustrates this aspect.

There is another important significant aspect which is of recent origin, namely Berry phase. There 
are two phase factors: g n t( ) and q

n
(t). The phase g n t( ) is called Berry phase and the phase q

n
(t) is 

called dynamic phase. Generally, such phase factors of a wave function are ignored as inconsequen-
tial. The phase factor g n t( ) was also ignored for a long time. However, Berry showed that this phase 
has observable consequences under some circumstances.

Here we shall establish the conditions under which the adiabatic theorem is valid and subsequently 
develop the concept of Berry phase. 

Example 14.1 A particle is confined to a box of length L(t) by the potential

 V t
x L

( )
( )

=
∞

< <







0 0   

otherwise

t

Determine the energy of the particle assuming the adiabatic theorem is valid. 

Solution: Since adiabatic theorem is valid, the problem is treated like solving time-independent 
Schrödinger equation, taking t as parameter. For stationary energy eigenstates, we have

 d u
dx

m u
2

2 2
2 0+ =
�

 0 < x < L

 u
L

n x
L

= 2 sin
p

 and E
m Ln = ⋅�2 2

22
p

Therefore, due to adiabatic theorem, we write the instantaneous eigenstate and the instantaneous 
eigenvalues as

 f p
n t

n x
L t

( ) sin
( )

=

and E t
m L tn ( )

( )
= �2 2

22
p

14.13 VALIDITY OF ADIABATIC THEOREM
Let the system start in state f

n
(t). i.e., y (0) = f

n
. The general expression for y (t) is 

 y fq( ) ( ) ( )t C t e tk
k

i
k

k= ∑ −  (14.81)
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q
k
 is given by q k k

t

E t dt= ′ ′∫1

0
�

( )

 
d

dt
E tk

k

q
= 1

�
( )

|C
k
(t)|2 gives the probability of finding the system in state f

k
(t). Therefore, |C

k
(t)|2 represents the transi-

tion probability, Pn k→ , from state f
n
 to f

k
. Let us now determine the conditions under which Pn k→

2
1<< .

 
i

d
dt

i C e C i e C ek
i

k k k
k

i
k k

i
k

k k k� � � � �y f q f fq q q= + − +− − −∑[ ( ) ]

 i
d
dt

i C e C i E t e C ek
i

k k k
k

i
k k

i
k

k k k� � �
�

�y f f fq q q= + −( ) +− − −∑[ ( ) ]1  (14.82)

 H t t C t H t t C t E t tk k k
kk

k k( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )y f f= = ∑∑  (14.83)

Equating (14.82) and (14.83), we get

 � �C e C ek
i

k k
i

k
kk

k k− −= −∑∑ q qf f

Taking scalar product with f
m
, we get

 � �C e C em
i

k
i

m k
k

m k− −= − 〈 〉∑q q f f|

 ∴ � �C C em k
i

m k
k

k m= − 〈 〉−∑ ( ) |q q f f  (14.84)

Let us rewrite this equation as

 � � �C C C em m m m m
k m

i
m k

m k= −〈 〉 − 〈 〉∑ −f f f fq q| |( )

≠

 (14.85)

Let us first evaluate 〈 〉f fm k| � . We have

 H t t E t tk k k( ) ( ) ( ) ( )f f=

Differentiating this equation, we get

 � � � �H H E Ek k k k k kf f f f+ = +

Taking scalar product with f
m
, we get

 〈 〉 + 〈 〉 〈 〉 + 〈 〉f f f f f f f fm k m k k m k k m kH H E E| | | | | |� � � �=
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Since k ≠ m, 〈f
m
|f

k
〉 = 0.

 ∴ 〈 〉 〈 〉( ) | | |E E Hk m m k m k− =f f f f� �

(We have used the fact 〈f
m 

|H = 〈f
m 

|E
m 

).

 ∴〈 〉 〈 〉f f f fm k
k m

m kE E
H| | |� �=

−
1  for m ≠ k  (14.86)

 � � �C C C e
E E

Hm m m m k
i

k m k m
m k

m k= −〈 〉 −
−

〈 〉−

≠
∑f f f fq q|

( )
| |( ) 1  (14.87)

Let us now evaluate 〈 〉f fm m| � . The normalization condition for f
m
 is

 〈 〉f fm m| = 1

Differentiating this equation, we get

 〈 〉 + 〈 〉f f f fm m m m| |� � = 0  (14.88)

Since 〈 〉f fm m| �  and 〈 〉�f fm m|  are complex conjugate of each other, we conclude that 〈 〉f fm m| �  is an 
imaginary number. Let us denote 〈 〉f fm m| �  by ia (t).

 ∴〈 〉f f am m i t| ( )� =  (14.89)

Let us define ′fm  and ′f fg
m

i t
me m= ( )  (14.90)

 ∴〈 ′ ′ 〉�f f f fg g
m m m

i i
me d

dt
e| = −

 = | + |〈 〉 〈 〉f f g f fm m m mi� �

 = +i t ia g( ) ( )� t  (14.91)

Choose g  in such a way that �g a= −  which makes 〈 ′ ′〉 =f fm m| � 0. Let us now change the basis set 

 { }fk  to { }′ =f fgk
i

ke m  (14.92)

Note that all the basis states have been multiplied by the same phase factor ei mg .

We have f fgk
i

ke m= ′− . (14.93)
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Substituting the Equation (14.93) in (14.81), we get

where 

y f fq g q g( ) ( ) ( ) ( ) ( )

( )

( )t C t e e t C t e t

C t

k
i i

k
k

k
i

k
k

k

k m k m= ′ = ′

=

− − − +∑ ∑
ee ti

k
k

k k m

k− ′ ′

′

∑ q f

q q g

( )

= +

 (14.94)

The summation over n in the above equation includes the state ′fm also. Therefore, in terms of the new 
set of basis states { ( )},′fk t  the Equation (14.84) becomes (note that we have 〈 ′ ′〉 =f fm m| � 0).

 � �C C em k
i

m k
k

m k= − −( ) |′ ′ 〈 ′ ′〉∑ q q f f

 = − −
≠

C C em m m k
i

m k
k m

m k〈 ′ ′ 〉 〈 ′ ′ 〉′ − ′∑f f f fq q| |( )�
��� ��

�

0

 = − −

≠

C ek
i

k m
m k

m k( ) |′ ′∑ 〈 ′ ′〉q q f f�

Let us drop the primes from this expression with the understanding we are working in the new basis.

 � �C C em k
i

k m
m k

m k= − 〈 〉∑ ( ) |q q f f−

≠

 (14.95)

 =
−≠

−
C t e

E E
Hk

k m

i

m k
m k

m k

( )
( )

| |
( )

∑ 〈 〉
q q

f f�  (Use (14.86))

 ∴ 〈 〉∫∑C t C t e
E E

H dtm k

i

m k
m k

t

k

m k

( ) ( )
( )

| |
( )

= ′
−

′
−

≠

q q
f f�

0m

 (14.96)

We are interested in estimating C
m
(t) for a system whose initial state is f

n
.

i.e., C
m
(0) = d

mn
 or C

k
(0) = d

kn

Let us make the following approximation in the RHS of the Equation (14.96): C
m
(t) ∼ C

m
(0) and 

q wm m

t
m

mE t dt
E t

t= ′ ′ =1

0
�

∼
�

( )∫  and let us further assume the matrix element 〈 〉f fm kH| |�  does not vary 

much in this time interval. Under these conditions, the Equation (14.96) becomes 

 C t H e dtm kn
k m mk

m k
i t

t

mk( ) | |= ′
≠

′d
w

f f w∑ ∫〈 〉1

0
�

�

 = 1

0
�

�
w

f f w

mn
m n

i t

t

H e dtmn⋅ 〈 〉 ′′∫| |
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 = −1 1
�

�
w

f f
w

w

mn
m n

i t

mn

H
e

i

mn

⋅ 〈 〉 ⋅
′

| |
( )

 = 1 2 2
2�

�
w

f f w
mn

m n mnH i t〈 〉| | sin /

 ∴ ∂
∂→P H

t
tn m

mn
m n mn�

�
4 2

2 4

2

2

w
f f wsin /  (14.97)

The maximum value of  sin2w
mt

t/2 is 1.
Therefore,

 P
tn m

mn
m n→ ≤ ∂

∂
4

2 4

2

� w
f fH  n ≠ m

If ∂ ∂H / t  is very small, the P
n→m

 is very small. So the condition for the adiabatic approximation is the 
time variation of the Hamiltonian should be very small. In other words, the Hamiltonian should be 
slowly varying with respect to time for adiabatic approximation. Let us make it more precise with the 
time scale available within the theory. Let us define T as T mn= 2p w/ .

Then we have

 1
2w

f f
p
f f

mn
m n m n

H
t

T H
t

⋅ ∂
∂

∂
∂

=

 ∴ ≤ ⋅ 〈 ∂
∂

〉→P T H
tn m

mn
m n

2
2

2

�w p
f f| |

or Pn m
m n

m nE E
T H

t→ ≤ ⋅ ⋅ ∂
∂

2
2

2

( )− p
f f  (14.98)

If the RHS is much less than 1, then P
n→m

 is much less than 1.

So if 2
2

1
2

( )E E
T H

tm n
n n−

<<⋅ ⋅ ∂
∂p

f f , then Pn m→ � 0

This is the condition for validity of adiabatic approximation.

14.14 ADIABATIC THEOREM FROM TIME-DEPENDENT PERTURBATION
It is very informative to obtain the adiabatic theorem from time-dependent perturbation theory.

Let us recall that H can be written as 

 H = H
0
 + lH′(t)

The wave function y ( , )r t  can be written as

 y w( , ) ( ) ( ) ( ) ( )
( ) /r r rt C t e u C t e um

iE t
n m

i t
m

m m= − −0 � =∑ ∑
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where H u E um m m0
0( ) ( )( )r r=

To the first order,

 C t C t C tm m m( ) ( ) ( )( ) ( )= +0 1l

Let us assume the initial state of the system to be y ( ) ( ).0 = un r  Then Cmn nm
( ) .0 = d

We know that C tmn
( ) ( )0  is given by

 C t
i

e u H u dt m nmn
i t

t

m n
mn( ) ( ) | |1

0

1= ≠
�

w ′∫ 〈 ′ 〉 ′

Integrating by parts, we get

 C t
i

e
i

H dt e u H
t

um

i t

mn
mn

t

mn

i t

t

m n

mn
mn( ) ( )1

0 0

1 1= ′′

� �
w

w

w w
⋅ ′ + ′ ∂

∂
′∫  (14.99)

Assuming u H
t

um n
∂
∂

′
 is very small, we can neglect the second term. Then 

 C t
i

e
i

u H um

i t

mn
m n m n

mn( ) ( ) |1 1= ⋅ ⋅ 〈 〉
�

w

w
′ | ≠

 ∴ ∑y l w( , ) [ ( ) ( )] ( )( ) ( )r rt C t C t e um m
i t

m
m

m= + −0 1  (14.100)

 = +−

≠

d lw w
mn

i t
m

i t

m nm
me C t e um m( ) ( ) ( )1 −∑∑







 r

Note e e e e ei t iE t i t i t i tmn m m n m nw w w w w− − −=
( )

/ ( )
0 � = −

Then

 y
lw( , ) ( )

| |
( )

( ) ( )
r r rt e u

u H u
E E

ui t
n

m n

n mm n
m

n=
′

−
−

≠

+
〈 〉





∑ 0 0  (14.101)

The quantity inside the bracket is very much like the wave function including the correction in the 
first-order time-independent perturbation theory. (The second term is the correction.) The only differ-
ence is that lH′ is time independent in the time-independent perturbation theory, whereas here lH′ 
depends on time. If we treat t as a parameter like mass m, then this function can be interpreted as a 
wave function in the first-order time-independent perturbation theory. Then, we have

 H u E un n n0
0= ( )  (14.102)

 [ ] ( )( )H H w E w E E wn n n n n n0
0+ ′ = = + ∆l  (14.103)

More appropriately, the Equation (14.103) can be written as (remembering t as a parameter)

 [ ( )] ( ) ( ) ( )H H t w t E t w tn n n0 + ′ =l
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or H t w t E w tn n n( ) ( ) ( ) ( )= t

 ∆ = ′E u H t un n n〈 〉| ( ) |l

These equations suggest that the state of the system goes from u
n
 at t = 0 to state w tn ( ) at time t. The 

energy eigenvalue goes from En
( )0  at t = 0 to E

n
(t) at time t.

The fact that E E En n n= + ∆( )0  suggests that the behaviour of E
n
(t) is very much similar to Fig. 14.3. 

These equations prove the adiabatic theorem. Further, it is instructive to get the condition for validity 
of adiabatic theorem. This amounts to investigating the conditions under which the second term in 
(14.99) can be neglected. Let us write y (t) as the Equation (14.100), without neglecting the second 
term in the Equation (14.99).

 

y
l w( )
| |

( ) ( )

( )

t u
u H u

E E
u en

m n

n m
m

m n

i t

w t

n=
〈 ′ 〉

−








≠
∑+ −

0 0

� ������� ������

�
 + ′ ′

′
′ −1

0
w

l w w

mn

t

m n
i t

m n

i t
mdt u H

t
u e e umn m∫∑ ∂

∂










≠

 = +
≠

w t dt e u H
t

u e ui
mn

t

i t
m n

m n

i t
m

mn m( ) l
w

w w

�
′ ∂ ′

∂ ′








∫∑ ′ −

0

 (14.104)

The second term represents the transition probability amplitude from u
n
 to u

m
. Obviously, 

 P
t H

tn m
mn

mn

mn
→ = ⋅ ∂ ′

∂( )1
22 4

2

2

� w
w

lsin  (14.105)

This is the same as the condition (14.97).

Example 14.2 An electric field is switched on at t = -∞ to a harmonic oscillator, which is in ground 
state at t = -∞. The interaction Hamiltonian is given by

 ′ = −H e xe te t
0

2 2/

 1. Determine the transition probability to other excited states at t = ∞ using the first-order time-
dependent perturbation theory.

 2. Determine the instantaneous energy eigenvalues.

Solution:

 1. The transition probability from the ground state to an excite state is given by

 P C tn n0
1 2

→ = ( ) ( )

 C t
i

e u H u dtn
i t

n
no( ) ( ) | |1

0
1= 〈 ′ 〉 ′− ′

−∞

∞

∫�
w
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where w
w w

wno
nE E n

n=
−

=
+( ) −

=
( )0

1
2 2

�

� �

�

 ∴ = 〈 ′ 〉 ′− ′

−∞

∞

∫C t
i

e u H u dtn
in t

n
( ) ( ) | |1

0
1
�

w

We can evaluate 〈 ′ 〉u H un | | 0  using the ladder operators. In terms of the ladder operators,

 ( )1/2
†[ ]

2
x a a

m
= +�

w

  \  2 2† /
0| | |( )|0

2
t

n nu H u u a a e
m

−〈 〉 = 〈 + 〉′ � t

w

Since a | ,0 0〉 =  we have

 
2 2† /

0 0| | | |0
2

t
n nu H u e u a e

m
−〈 〉 = ⋅ 〈 〉 ⋅′ � te

w

 = −e
m

en
te

w
d t

0 12
2 2� /

\ The matrix element 〈 ′ 〉u H un | | 0  makes only the transition to the first excited state as allowed transition.

 ∴ = − ′− ′

−∞

∞
′∫C

e

i m
e e dtt i t

1
1 0

2
2 2( ) /e

w
t w

�
�

Consider the term − ′ − ′t i t
2

2t
w  in the exponential function.

 − ′ − ′ = − ′ + ′ = − ′ + ′ −





−t i t t i t t
i t2

2
2 2 2

2
2

2 2 41 2
2 4t

w w t t
t

w t w t w( )
22 2

2 2 2 4
2

4

2 4

t

wt w t t= − ′ +( ) +





t i

 ∴ = ⋅ ′
− ′+



 −

−∞

∞

∫C
e

i m
e e dt

t i

1
1 0 2 4

2

2 2

2 2( ) /
e

w
wt

w t

�
�

 = ⋅ ⋅ −e

i m
e

e
w

p w t0 4

2
2 2

�
� /

 P
e

m
e0 1

2
0

2
2 2

2
2 2

→
−=

p e
w
t w t

�
/
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 2. The instantaneous eigenstate can be determined as follows:

 H t
p
m

m x e xe t( ) = + + −
2

2 2
02

1
2

2 2w e t

The corresponding time-independent Hamiltonian is 

 H
p
m

m x kx= + +
2

2 2

2
1
2
w

where k e e t= −e t
0

2 2 . Let us rewrite the Hamiltonian H as

 ∴ = + + +





− ⋅H
p
m

m x kx
x

k
m

m k
m

2
2 2

2

2

2 4
2

2

2 42
1
2

2 1
2

w
w w

w
w

 = + +( ) −p
m

m x k
m

k
m

2
2

2

2 2

22
1
2

1
2

w
w w

The energy eigenvalue of this Hamiltonian is 

 E n k
mn = +( ) −1

2
1
2

2

2
�w

w

The instantaneous eigenvalue E
n 
(t) is given by

 E t n
e

m
en

t( ) = +( ) − ⋅ ⋅ −1
2

1
2

2
0

2

2
2 2 2�w

e
w

t

And the corresponding eigenfunction is given by

 f a
w

a
wn n nt N x k

m
H x k

m
( ) exp= − −( )





−( )





2

2

2

22

14.15 BERRY PHASE
Let us go back to the Equation (14.81) or (14.94).

 y fq( ) ( ) ( )t C t e tm
i

m
m

m= −∑

From adiabatic theorem, we know that for a slowly varying Hamiltonian, the states of a system con-
tinue to evolve in the instantaneous eigenstate f

n
(t) if the system starts in the state f

n
(0). This amounts 

to dropping the second term in (14.85) for �C tm ( ).
So, in the adiabatic approximation, the equation for �C tm ( ) is given by

 � �C t C t u um m m m( ) ( ) |= − 〈 〉  (14.106)

 = −C t i tm ( )( ( ))a
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The solution to this equation is

 C t C e C em m

i t dt

m
i t

m

t

m( ) ( ) ( )
( )

( )=
∫

=
− ′ ′

0 00

a
g  (14.107)

Since  C
m
(0) = d

mn

 C t em mn
ir tm( ) ( )= d

or C t en
i tn( ) ( )= g

 ∴ −y fg q( ) ( )( ) ( )t e e ti t i t
n

n n=  (14.108)

Let us rephrase these results in such a way that it brings out the Berry phase clearly.
The slowly varying Hamiltonian H(t) is written as 

 H(t) = H(R
i
(t)) i = 1, 2, 3 … (14.109)

R
i
(t) are the parameters which can be varied very slowly. For the sake of clarity, let us restrict ourselves 

to three parameters. Therefore, 

 R( ) ( ) ( ) ( )t R t R t R t= + +1 1 2 2 3 3e e e  (14.110)

i.e., R( )t  is a vector in the parameter space.
The eigenvalue equation is

 H R t R t E R t R ti n i n i n i( ( )) ( ( )) ( ( )) ( ( ))f f=  (14.111)

The adiabatic theorem means 

 y
f
fq g

( )
( ( ))

( ( ))
t

R t

e e R t t
n i

i i
n i

n n
=

=
≠



 −

0 0

0
 (14.112)

where q n n i

t

E R t dt= ′ ′∫1

0
�

( ( ))

and g f fn n i n i

t

i R t R t dt= 〈 ′ 〉 ′∫ ( ( ) | ( ( ))� ′
0

 (14.113)

q
n
 (t) is called dynamic phase and g n t( ) is called geometric phase. In the case of stationary eigenstate, 

we have q q
n n

i i E tE t e en n= =− −/    or  /� �( ).

 

31 2

1 2 3

31 2
1 2 3 1 2 3

1 2 3

( ( ))

ˆ ˆ ˆ ˆ ˆ ˆ

n n n
n i

n n n

R n

RR Rd R t
dt R t R t R t

dRdR dR
R R R dt dt dt

d
dt

∂ ∂ ∂ ∂∂ ∂
= + ⋅ + ⋅

∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂   = + + ⋅ + +   ∂ ∂ ∂   

= ∇ ⋅

e e e e e e

R

f f f
f

f f f

f
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It is important to realize that the derivative as well as the basis vectors ê1, ê2 , ê3 are with respect to 
the parameter space; i.e., we associate a separate space for the variation in the parameters (Fig. 14.4).

R3

R1

e1

R2

e2
e3

ˆ

ˆ
ˆ

Fig. 14.4 Parameter space

 ∴ = 〈 ∇ 〉 ⋅∫g f fn n R n

t
i d

dt
dt|

0

R

 = 〈 ∇ 〉 ⋅∫i dn R nR

t
f f|

( )

( )

0

R
R  (14.114)

Consider a special case when the parameters return to the same values after a time interval T; i.e.,
R R( ) ( )T = 0 . In that case, the integral becomes

 g g f fn n T i d(C) ( )= = 〈 ∇ 〉 ⋅∫ m R nC
|� R  (14.115)

where C is a closed contour in the parameter space representing the time evolution of R( )t . The phase 
as given by (14.115) is a line integral over a closed contour in the parameter space, and it is called 
Berry phase.

This has a very interesting structure. This is very much similar to A rem d⋅∫� , where Aem is the vec-
tor potential in classical electromagnetism.

So g m can be written as

 g n n t d t= ⋅∫ A ( ) ( )R�
where An n R ni= 〈 ∇ 〉f f|

Note that though we use the symbol An here, it is not electromagnetic vector potential A . But it 
behaves likes electromagnetic vector potential.

As t changes, the value of the parameter changes, and so R( )t  traces a curve in the parameter space. 
At t = T, the parameter R( )T  comes back to initial print R( )0 . So R( )t  traces a closed loop C  in the 
parameter space. Since we have restricted the number of parameters to three, the parameter space is 
three. All the possible values of R( )t  together from a geometrical surface in the parameter space. This 
geometrical surface may be a plane or curved surface like sphere or a surface of any other shape. So 
the closed loop C lies on this surface. The value of A Rn t d( ) ⋅∫�  depends on the geometrical nature of 
surface in the parameter space. So Berry’s phase is a geometrical phase.

The Berry phase can be shown to be gauge invariant. We have obtained the expression for Berry 
phase using the eigenstates {f

n
(t)}. Had we chosen a different basis like { }′fn , will we still get the same 

Berry phase? This can be checked easily as follows. Let us consider the following transformation:

 f f fx
n n

i
nt e tn→ ′ =( ) ( )( )R  (14.116)
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This is obviously the well-known gauge transformation. Of course, we have to recognize that this 
gauge transformation also happens in parameter space.

The gauges transformation induces a transformation of A Rn ( ) as follows:

 A R A Rn n n ni( ) ( ) |→ ′ = 〈 ′ ′〉f f�

 ∇ = ∇R n R
i

ne nf fx′ ( ) ( )R R

 = ∇ + ∇i e eR n
i

n
i

R n
n nx f fx x( ) ( )( ) ( )R RR R

 ∴ 〈 ∇ 〉 = 〈 ∇ 〉 + ∇i iR n n R n R nf f f f x′ ′| | ( )R

 A A R′n n R n= + ∇ x ( ) (14.117)

  A R A R R R∴ = ′ ⋅ = ⋅ + ∇ ⋅ =∫ ∫ ∫g x gn n n R nc d d d c′ ( ) ( ) ( )� � �� ��� ���
0

The transformations (14.116) and (14.117) are the well-known pairs of gauge transformations. So the 
fact that ′g gn nC C( ) ( )=  means that g n C( ) is a gauge invariant quantity. i.e., Berry phase is a gauge 
invariant quantity. Therefore, the existence of Berry phase is independent of the choice of the basis. 
The consequence of this result is that Berry phase cannot be avoided by changing the basis states.

14.16 BERRY PHASE FOR ROTATING MAGNETIC FIELDS
This is the simplest example illustrating the non-trivial character of Berry phase. Consider a particle 
in the magnetic field B given by 

 
0 0 0ˆ ˆ ˆsin cos sin sin cos .B t x B t y B z= + +B u w u w u

 B B B Bx y z
2 2 2

0
2+ + =

r(t)J

Ω

Bz
Bz

Bx

By

By

Bx

Fig. 14.5 Parameter space for rotating magnetic field

The above equation is the equation of a sphere in the parameter space. (The parameters are B
x
, B

y
 and 

B
z
.) Therefore, as time progresses, B( )t  traces a circle as shown in Fig. 14.5. Let us choose the spheri-

cal polar coordinate r, u and f. It is to be emphasized that these are coordinates in parameter space: 

 R
1 
= r = B; R

2 
= u ; R

3 
= j = w t
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The Hamiltonian H t( , )R  is given by

 H t B
e

eB

i t

i t
( , )

cos sin

sin cos
R B= ⋅ =

−










−

l m
u u
u u

w

w0

The eigenvalues of this Hamiltonian are E(↑) = m
B
B

0
 and E(↓) = -m

B
B

0
.

 H t t B tB( , ) ( ; ) ( ; )R c m c↑ = ↑0

 H t t B tB( , ) ( ; ) ( ; )R c m c↓ = − ↓0

 c
u
u

u
uw j

( ; )
cos /

sin /

cos /

sin /
↑ =







=






t
e ei t i

2

2

2

2

 c
u
u

u
uw j

( ; )
sin /

cos /

sin /

cos /
↓ =

−





=
−





t
e ei t i

2

2

2

2

The operator ∇R
 in spherical coordinate (in parameter space) is given by 

 ∇ = ∂
∂

+ ∂
∂

+ ∂
∂R r r r

ˆ ˆ ˆ
sin

r u
u
f

u f
1 1

 
ˆ1ˆ( ; ) ( ; ) ( ; )

sinR t t t
r r

∂ ∂∇ ↑ = ↑ + ↑
∂ ∂

ju ccc
u u j

 = ˆ
sin

cos
ˆ

sin sin
u

u

u
j

u j u
j

1
1
2 2

1
2 2

1
0

2
r e r ii

−















+












 ∴〈 ↑ ∇ ↑ 〉 = ↑ ∇ ↑†( , ) | ( , ) ( ; ) ( ; )R Rt t t tc c c c

 2 ˆsin
sin 2

i
r

= u j
u

For our choice of magnetic field,

 ˆsind r d=R u jj

 ∴ 〈 ∇ 〉 ⋅ = − ⋅∫ ∫i t t d
r

r dR

c

c c u
u

u j
p

(↑ ) (↑ ), | ,
sin /

sin
sin� R

2

0

2 2

 = − = − −2 2 12p u p usin ) ( cos )( /

  ∴ = − −g p uC ( )1 cos

Note that g C  is independent T. It depends only on the geometrical property of parameter space. In fact, 

we can show that p u p(1− Ωcos ) = ∆1
2

 where ∆ Ω is the solid angle subtended at the centre by the 

part of the spherical surface for which C is the boundary.
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The dynamical phase q
n
(t) is given by

 q mn

T

BE t dt B T= − ′ = −∫1 1

0

0� �
(↑ ),

 ∴ ( ) (↑ )y cm q pB T e e ti B T iB, ,/ cos= − − −( )0 1�

Berry’s phase is not the only geometrical phase. There are a number of geometrical phases similar to 
Berry’s phase, and these phases have been experimentally observed.

14.17 SUDDEN APPROXIMATION
In the previous sections, we discussed the adiabatic approximation which is suitable for the systems 
for which the Hamiltonian is varying very slowly with respect to time. The time dependence in the 
sudden approximation refers to situation which represents the other extreme.

The Hamiltonian is H
0
 for t < 0, and the interaction is switched on at t = 0. The Hamiltonian changes 

very fast in a small interval of time t
0
, and it becomes ′H at t

0
 and remains the same after t

0
. So we have 

 H

H t

H t t t

H t t
i=

≤
≤ ≤

′ ≥







0

0

0

0

0( )  (14.118)

H
0
 and ′H are of our interest here.

0

H0

t0

Hi
H ′ H ′

H0

(i) (ii)

Fig. 14.6 Actual Hamiltonian and sudden approximation

The sudden approximation makes the following approximation for the Hamiltonian H.

 H
H t

H t
� 0 0

0

≤
′ ≥





 (14.119)

This looks valid approximation provided t0 is very small. Our task now is to make this statement more 
precise. Under what conditions the Hamiltonian given in (14.118) can be replaced by (14.119)?

First, let us analyze the evolution of the state under the Hamiltonian (14.119).
Let { }uk  and { }vn  be the sets of eigenstates of the Hamiltonians H 0 

and ′H .

 ∴ =H u E uk kk0
0( )

and ′ = ′H v E vn n n
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The general solution of the Schrödinger equation can be written as

 y
y

y
=

= ≤

′ = ≥









−

− ′

∑
∑

0

0

0

0

a e u t

c e v t

k
iE t

k
k

n
iE t

n
k

k

n

( ) �

�

Obviously, the coefficient {a
k
} describes the initial state and the coefficient {c

n
} describes the final 

state. Our interest always is to determine the transition probability from initial state to final state. 
Therefore, we are interested in determining c

n
 in terms of a

n
.

The wave function y (t) should be continuous at all times. Therefore, at t = 0, the wave function 
should be continuous.

i.e., y y0 0 0( ) ( )t t= = ′ =

 ∴ = ∑∑ a u c vk k n n
nk

 ∴ = 〈 〉∑c v a un n k k
k

|

 = 〈 〉∑ a v uk
k

n k|  (14.120)

Suppose the system is in state u
i
 at t = 0.

 \a
k
 = d

ki

 c v u v un k i n k n i
k

= 〈 〉 = 〈 〉∑d | |

This is the essence of sudden approximation. The transition probability P
i→n

 from the eigenstate u
i
 

before t = 0 to the eigenstate n
n
 after t = 0 is given by 

 P c v ui n n n i→ = = 〈 〉2 2
|  (14.121)

To determine the validity of sudden approximation, let us write the Hamiltonian as

 H

H t

H t t t

H t t
i=

≤
≤ ≤

′ ≥







0

0

0

0

0( )  (14.122)

Since we are interested only in estimating the validity of sudden approximation, let us take H
i
 also as 

constant in time. So we now have three sets of eigenstates: {u
k
}, {w

s
}, {v

n
}.

 

H u E u

H w E w

H v E v

k k k

i s s
i

s

n n n

0
0=

=
′ = ′

( )

( )
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The general solution y  is given by

 y

y

y

y

=

′

−

−

0

0

0

0

0

= ≤

= ≤ ≤

=

∑
∑
∑

k
k k

iE t

i
s

s s
iE t

n
n

a u e t

b w e t t

c

k

s
i

( )

( )

/

/

�

�

nn n
iE te t tn−














′ ≥/�
0

The continuity of the wave function at t = 0 implies

 y y0 0 0( ) ( )t ti= = =

 ∴ = ∑∑ a u b wk k s s

 ∴ = 〈 〉∑b a w us k s k
k

|  (14.123)

The continuity of the wave function at t
0
 implies that

  y
i
(t = t

0
) = y  ′ (t = t

0
)

 ∴ b w e c v es s
iE t

m m
iE ts m− − ′= ∑∑ ( )0

0 0� �

Taking scalar product with n
n
, we get 

 c e b v w en
iE t

s n s
iE tn s

i− ′ −= 〈 〉∑0 0� �|
( ) /

 ∴ = 〈 〉∑ ′ −c b v w en s n s
i E E tn

i
s| ( )( )

0 �

Making use of (14.123),

 

c a w u v w e

a v w w u

n k s k
ks

n s
i E E t

k
s

n s s k

n s
i= 〈 〉 〈 〉

= 〈 〉 〈 〉

∑∑
∑

′ −| |

| |

( )( )
0 �

eei E E t

k

n s
i( )( )′ −∑ 0 �

 (14.124)

If the exponential term has been 1 (or t0 0� ), then the summation over s becomes Σ | |,w ws s〉〈  which 
is an identity operator making c

n
 to be the same as (14.120). For very small t0 , we can write 

 e
i E E t

i E E t n s
i

n s
i( ) /

( )
( )′ − +

′ −( )
0 1 0� �

�

 

c v w w u a v w w u i
E E t

n n s s k k
sk

n s s k
n s

i

= 〈 〉 〈 〉 + 〈 〉 〈 〉
′ −







∑∑ | | | |

( )( )
0

� 

= 〈 〉 + 〈 〉 〈 〉
′ −









∑∑

∑ ∑∑

sk

n k k
k

n s s k
n s

i

sk

v u a v w w u i
E E t

| | |
( )( )

0

�
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The first term represents sudden approximation, and the second term is the correction to the sudden 
approximation.

The correction term can be written as

 

∆ = 〈
′ −

〉 〈 〉

= 〈
′ −

∑∑c v i
E E t

w w u

v i
H H t

n n
n s

i

s s k
sk

n
n

i

|
( )

| |

|
( )

|

( )

( )

0

0

�

�
ww w us s k

sk

〉 〈 〉∑∑ |

Since H′ and H are operators, we can take | | .w ws s〉 〈 = 1

 ∴ = 〈 ′ − 〉∆c v
it

H H un n i k| ( ) |0

�

The correction ∆cn can be estimated, and if ∆cn << 1, then the sudden approximation is valid. This is 
possible when t

0
 is very small.

Examples 14.3 Initially, the particle is confined to a box of size a in the ground state. The size of the 
box is suddenly extended to 2a. Determine the probability of finding the particle in the ground state 
and the first excited state.

Solution: The Hamiltonian H is given below: 

For t < 0, H
x a

0

0 0
=

≤ ≤
∞



 Otherwise

For t > 0, ′ =
≤ ≤

∞




H
x a0 0 2

Otherwise

 H u E un n n0
0= ( )

The eigenvalues and the eigenfunctions of the H
0
 are 

 E
ma

u a
n x

a
x a

n n
( )

sin
0

2 2

22

2 0

0
= =

< <




� p

p
    

 

Otherwise

The eigenvalues and the eigenfunctions of H′ are

 ′ = ⋅ =
< <

E
m a

v a
n x

a
x a

n n
�2 2

22 4

2
2 2

0 2

0

p
p

        
       

        

sin

                   Otherwise







The transition probability to make a transition from u
1 
to v

n
 is given by 〈 〉v un | .1
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〈 〉 =
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= ⋅ ⋅
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1 1
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∫
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=
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 〈 〉 =

〈 〉 =

v u

v u

1 1

2 1

4 2
3

0

|

|
p

The probability of finding the particle in ground state after t = 0 is

 P v u1 1 1 1
2

2
32

9→ = 〈 〉 =| | |
p

Example 14.4 A simple harmonic oscillator was subjected to an electric field suddenly at t = 0. 
Assuming the oscillator was in ground state when t < 0, determine the probability of finding the sys-
tem in the ground state after t > 0.

Solution: The Hamiltonian is given by

 H
H

p
m

n x t

H
p
m

m x e x t

=
= + ≤

′ = + + ≥









0

2
2 2

2
2 2

2
1
2

0

2
1
2

0

w

w e

The Hamiltonian H′ can be rewritten as

 ′ = + +( ) −H
p
m

m x e
m

e
m

2
2

2

2 2 2

22
1
2
w e

w
e
w

The ground state of H
0
 is 

 u x
0

1 2
2 2

2
=







−( )a
p

a
/

exp
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The ground state of H′ is 

 v x
e

m0

1 2
2

2

2

2
=







− +















a
p

a e
w

/

exp

The probability of finding the system in ground state V
0
 is given by

 P v u0 0 0 0
2

→ = 〈 〉| | |

 

〈 〉 = ⋅ − +













 ⋅ −( )
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∞
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∝
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−

∞

−

∞

∫

∫

⋅ − + +











= ⋅ −

∝

∝

exp

exp

2
2

2 2

2 4 22
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2

2
2

2 2

2 4
1
2

1
4

1
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x e
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e
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= ⋅ ⋅ −

exp

exp aa e
w

n a e
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2
2 2

2 4

0 0

2 2
2 2

2 4
1
2

e
m

u e
m

( )
∴ 〈 〉 = −( )| exp

Probability of finding the oscillator in an excited state is

 1 1 1
20 0

2 2 2 2

2 4
− 〈 〉 = − −( )v u e

m
| exp a e

w

EXERCISES
 1. What is the distinction between the time-independent and time-dependent perturbation theory?
 2. Why do you need gauge-fixing term for electromagnetic fields?
 3. What is meant by principle of detailed balance?
 4. In the inequality ∆ E ∆ t ∼ , can we define ∆ t as uncertainty in time?
 5. In what way the inequalities ∆ x∆ p ∼ and ∆ E ∆ t∼ differ?
 6. In deriving the uncertainly relation, we used the commutator [x, p] = i�. Why cannot we use 

[ , ]E t i= � to get the uncertainty relation ∆ E ∆ t ∼ ?
 7. The transition probability in the time-dependent perturbation theory under harmonic perturba-

tion is given by

 P
t

V E Ei n ni n i→ = − −2 2p l d w
�

�| | ( )

  When E En i= + �w , this becomes infinite. How do we justify this expression?
 8. What is meant by adiabatic theorem?
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 9. In the case of time-independent Hamiltonian, Hu E un n n=  and y ( , ) ( )/r rt e uiE t
n

n= − � . For time-
dependent Hamiltonian, can we write y ( , ) ( , )( )r rt e u tiE t t

n
n= − ?

 10. Under what conditions we can have instantaneous eigenstate?
 11. Can we define Berry’s phase for stationary states?
 12. Why do you call Berry’s phase as geometric phase?
 13. The frequency of a harmonic oscillator is changed from w  to ′w  suddenly at t = 0. The initial 

state of the harmonic oscillator is the ground state corresponding to �w /2. Determine the prob-
ability of finding the oscillator in (i) ground state (ii) excited state after t > 0.
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The Scattering Theory

The major source of knowledge about sub-nuclear world is through the scattering experiments. 
For instance, it is from Rutherford’s scattering experiments we got the planetary model for atoms. 
Scattering experiments play an important role in the development of elementary particle physics. Of 
course, they are in relativistic region, and it requires relativistic quantum fi eld theory. In this chapter, 
we present the scattering theory in non-relativistic quantum mechanics.

Diverse ideas are presented here, and hence, an outline of this chapter is given here. First, the scatter-
ing cross section is introduced, the boundary condition for the Schrödinger wave function is discussed 
and the relation between scattering cross section and scattering amplitude is developed. Then, the partial 
wave analysis is considered. The concept of phase shift d

l
  is introduced, and the relation between scatter-

ing cross section and phase shift d
l
 has been developed. Two expressions for d

l
 have been obtained: one 

in the form of integral and the second using the continuity of logarithmic derivative of the wave function.
Then, low-energy scattering is presented. We introduce the basic ideas of s-wave scattering, and 

these are illustrated using square well potential. Square well potential serves as the best pedagogic 
tool to present the major ideas of low-energy scattering, where it is enough to consider the scattering 
of partial waves corresponding to l = 0 case alone. The behaviour of phase shift d

0 
and the total cross 

section s
0
 for various depths of the square well potential V

0
 are considered in detail. The concept of 

resonant and non-resonant scattering is presented. Scattering length for different potential strength V
0
 

is considered. Finally, Breit–Wigner formula is established.
We next develop Born approximation for scattering amplitude, using Green’s function. It is applied 

to Coulomb scattering. The validity of Born approximation is considered for various potentials. We 
also obtain the fi rst-order Born approximation using time-dependent perturbation theory.

Last, we consider two distinct topics. The fi rst is the relationship for scattering cross sections in 
centre of mass frame and laboratory frame. The second is the scattering of identical particles, which 
takes into account the consequence of principle of indistinguishability.

15.1 SCATTERING CROSS SECTION

z

D

dΩ

q
0

Fig.15.1 A standard scattering experiment

15
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The standard scenario of a scattering experiment is shown in Fig.15.1. There is an incident beam of 
particles: there is a target and there is a scattered beam. We assume the incident beam to be a collec-
tion of non-interacting particles, i.e., there is no interaction among these particles. Initially, they are 
very far away from the target, and hence they behave like free particles. (Therefore, we can represent 
the incident particles by a plane wave function.) Once they are in the vicinity of the target, there is an 
interaction between the target and the incident particles, which results in the incident particles being 
scattered in all directions. After being scattered, the particles move very far away from the target to 
reach the detectors, where the influence of the target will not be felt by the scattered particles. (We 
assume that the interaction potential between the target and the incident particle is a short-range  
potential.)

Let ∆ N be the number of particles scattered per second into the solid angle ∆ Ω. We expect this 
number to be proportional to the solid angle ∆Ω and the flux of incident particles F (number of parti-
cles crossing per unit area per unit sec).

The standard way of writing ∆ N is 

 ∆ = ( )⋅ ⋅ ∆N
d

Fds
Ω Ω  (15.1)

Let us first establish that the quantity ds  has the dimension of area. A simple dimensional analysis 
will indicate this. Since ∆ N is the number of particles scattered in the solid angle ∆ N per second, 
[ ] .∆ = −N T 1  The dimension of the flux is [ ]L T− −2 1.

 
∴ ∆ = ⋅

= ⋅− − −

[ ] [ ] [ ]

[ ]

N d F

T d L T

s
s1 2 1

Therefore, ds  has the dimension of area, and hence it is called scattering cross section. The quantity 
ds
dΩ

 is called differential cross section. The total cross section s  is given by 

 s s= ⋅∫ d
d

d
Ω

Ω (15.2)

The unit used for s  is barn. It is defined as

1 barn = 10−28m2

Significance of dr
The Equation (15.1) can be rewritten as 

 

∆
∆Ω





=

=

N
Fd

 particles per second 

in the solid angle 

 

s

Numberr of  particles crossing

   the area  in 1secondds
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So ∆N  is the number of particles which cross the area ds  that are scattered into the solid angle ∆Ω. 
In other words, ∆N  particles crossing the area ds  have been removed from the incident beam. This 
picture is used both in classical and quantum physics. We have to bear in mind that the above equation 
is true for both classical and quantum physics. However, there is a subtle difference in the interpreta-
tion of ds in classical physics and quantum physics.

There are two kinds of quantities which have the dimensions of area. One is the geometrically 
measured area ∆a, located at a specific geometrical point atr. In spherical coordinates, it is given by 
r2sinq dq df, and in cylindrical coordinates system, it is given by s ds df . The other quantity is ds 
(which is also a function of q and f (or s and f  in cylindrical coordinates)), but it is calculated from 
the expression ∆N F/ . Are these two quantities one and the same? Are they related to each other? In 
classical physics, they are the same, and in quantum mechanics, they are different. 

Let us take Rutherford scattering as an example to bring the subtle difference between classical and 
quantum physics in scattering process.

The Rutherford scattering in classical physics is shown in Fig.15.2.

S

(a) (b)

∆a

ds

df

ds

∆Ω
qs

Fig.15.2 Rutherford scattering

S in Fig. 15.2(a) is the impact parameter. A circular ring of width ds is shown in Fig.15.2(b). ∆ a is a 
small area in this ring. The location of this area is specified by (z, s, f), and it is given by ∆ a = sdf ds. 
Using Newtonian mechanics, we can show that for all the particles which cross the area ∆ a, their tra-
jectories go through the region enclosed by the solid angle ∆Ω. i.e., all the particles which cross the 
area ∆a are scattered into the solid angle ∆Ω. Since all the particles crossing the area ∆a are scattered 
in the solid angle ∆Ω, we have 

 d as = ∆

 ∴ = ( ) which is calculated from ∆ ∆a d N
F

s

So, in classical physics, the scattering cross section is identified as the geometrical cross section at the 
location (z, s, f) or (r, q, f).
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Now let us turn our attention to quantum mechanics. Let us recall that in quantum mechanics, 
there is no concept of trajectory. Let us compare and contrast the answer to the following question 
from classical and quantum physics. In the case of particles crossing the geometrical area ∆ a (located 
at (z, s, f)), where do they end up? In classical physics, the existence of trajectories leads them into 
the solid angle ∆Ω. In quantum mechanics, we cannot tell whether these particles will be found in 
solid angle ∆Ω. We can tell only the probability of finding these particles in the solid angle ∆Ω. 
The particles crossing ∆a may or may not be found in the solid angle ∆Ω. Therefore, there is no rela-
tionship between the geometrical area ∆a and ds computed from ∆N F/ . They will not be the same 
even numerically. In fact, conceptually, they are different quantities.

Still, we associate a classical picture with the ds ( )= ∆N F/  in quantum mechanics also. It is inter-
preted as though all the particles crossing the area ds q f( ) are scattered into the solid angle ∆Ω.  
The quantity ds  is interpreted as an effective area presented by the target to the incident particles to 
be scattered out or removed from the incident beam.

Obviously ds, in quantum mechanics, is related to the probability of an incident particle being 
scattered into the solid angle ∆Ω. This can be seen as follows:

Let N particles cross an area A per second. Then the flux F is 

 F
A

= N  per second per unit area

\ ∆ N per sec in ∆Ω ⋅= N
A

ds  per sec

 = ( )N d
A

per sec s

The quantity d As /  is the fraction of an area which can be taken to represent the probability of an 
incident particle to be scattered in the solid angle ∆ Ω. This implies that though the quantity ds  is not 
probability by itself, it is a measure of probability.

In the case of a single incident particle, ∆ N represents the probability rate of a particle being scattered 
into solid angle ∆ Ω. The probability rate dW  is 

 dW  = Fds

We can formulate this equation in terms of the probability rate dWi f→[ ] in time-dependent perturbation 
theory as follows:

Let u
i
 represent the initial state of an incident particle and the state u

f
 represents the particle in the 

scattered direction. Scattering into solid angle ∆Ω means selecting directions that are within ∆Ω. So, 
from the point of view of time-dependent perturbation theory, the scattering process corresponds to 
transitions from state ui  to a group of final states { }[ ]u ∆Ω . Then, dWi→ ∆[ ]Ω  is the transition probability rate  
given by 

 dW F di→ ∆ =[ ]Ω s  (15.3) 
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15.2  SCATTERING AMPLITUDE AND DIFFERENTIAL SCATTERING  
CROSS SECTION

Incident beam
along z axis

Reduced flux
along z axis 

z axis 

uin

uin+ usc

Detectors

Fig.15.3 Scattering process in terms of wave mechanics

A general scattering process is shown in Fig.15.3. We have to describe this process in terms of wave 
mechanics as shown in Fig.15.3. We assume that the scattering process of our interest is a steady pro-
cess. There are a steady incident beam and a steady scattered beam. The steady state situation means 
that we can use time-independent Schrödinger equation. We have already seen such processes in 
one-dimensional potentials. For instance, in the case of barrier penetration by a rectangular potential 
barrier, a single wave function, which is a solution to the Schrödinger wave equation, describes the 
incident beam, the reflected beam and the transmitted beam. In the same way, we would like to have a 
single solution for Schrödinger equation which describes the process shown in Fig.15.3.

The time-independent Schrödinger equation is

 − ∇ +





�2
2

2m
V u Eu( ) ( ) ( )r r r=

We are looking for solutions reflecting the scattering process shown in Fig.15.3. In the vicinity of the 
target, we do not have enough details. But in the far-off regions, we should have an incident beam and 
a scattered beam. So we expect the wave function u( )r  to be composed of two parts: uin and usc  i.e.,

 u u ur in sc( )r →∞ → +  (15.4)

where uin describes the incident particles and usc  describes the scattered particles. Let us assume that 
the incident particles are moving along the direction of z. When they are far away from the target, we 
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can consider them to behave like free particles. To describe the free particles, we choose a plane wave 
function y

in
 given by

 y in
/= Nei kz Et( )− �

Since we are dealing with the time-independent Schrödinger equation, we omit the time-dependent 
part e iEt− � in the subsequent discussion.

 ∴ =u Ne Nein
ipz ikz/� =  (15.5)

where N is the normalization constant. In scattering theory, it is convenient to choose N such that the 
flux Fin  corresponding to uin is �k

m
.

The flux F
in
 is given by

F
im

u u c cin in in= ∇ −�
2

[ * . .]

= =� �
2

22 2

im
N ik N k

m
| | | |

∴ =| |N 2 1  or N = 1

This normalized wave function also corresponds to a number density of one particle per unit volume 
(the number density n uin= =| |2 1). We can employ other normalization constants also (in the previous 

chapters, we used N V= 1 1 2 3 2or ( ) /p� ) since the final result will be independent of the normaliza-
tion constant.

As we said earlier, the wave function near the target depends on V( )r , and it will be known only 
after solving the Schrödinger equation. However, we would like to have a general form or structure 
for the wave function at large r for all potentials. This is possible only if we consider short-range 
potentials. In the vicinity of the target, the wave function can have any arbitrary shape (determined by 
the nature of V ( )r ), but at large distances, they become spherically divergent wavefronts. Therefore, 
the square of the modulus of wave function (or intensity) representing the scattered particles at large 
values of r (irrespective of the potential) should fall off like 1 2/r . Therefore, the scattered wave should 
be proportional to e rikr / . So we write u( )r  as

 u e f e
r

ikz
ikr

( ) ( , )r  → + q f  (15.6)

f ( , )q f  is known as scattering amplitude. 

Obviously, the RHS is the asymptotic behaviour of the solution to the Schrödinger equation.
Where does the detail about V ( )r  enter here? It is the nature of V ( )r  that determines functional 

form of the scattering amplitude f (q, f).
Let us now determine the relationship between the scattering amplitude and the differential cross sec-

tion. To find such a relation, let us calculate ∆ N from Schrödinger equation. For large r, the wave func-
tion u

sc
 represents the scattered particles. The flux corresponding to the scattered wave is | |u Vsc

2  (note 
that this is good approximation in the scattering processes as shown in Fig.15.3. See Example 15.1). The 

flux of the scattered beam = = ⋅| |
| ( , ) |

u V
f

r
k

msc
2

2

2

q f � . This expression is radial flux. ∆ N is the number 
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of particles scattered into solid angle ∆ Ω per second. r2∆Ω is the area dS  of a small part of the spheri-
cal surface of the sphere of radius r. This surface dS subtends an angle ∆Ω at the centre of the sphere.

 

∴ ∆ = ×

=

N dS

f

R Areaadial flux of the scattered particles

| ( , )|q f 2

rr
k

m
dS

f

2

2

� particles per second per unit area ×





= | ( , )q f ||
r

k
m

r
2

2⋅ ⋅ ∆� Ω per second

But �k
m

 is the flux of the incident particles.

 
∴ ∆ =

∴ =

N f F

d
d

f

in| ( , ) |

| ( , ) |

q f
s q f

2

2

Ω
 (15.7)

So our task has become clear now. To describe a scattering process, we have to solve the Schrödinger 
equation

 − ∇ +





=�2
2

2m
V u Eu( ) ( ) ( )r r r  (15.8)

subject to the following boundary condition

 u e f e
rr

ikz
ikr

( ) ( , )r →∞ → + q f  (15.9)

The scattering problem reduces to the calculation of the scattering amplitude f (q, f) for a scattering 
process.

The general practice is to obtain the nature of the potential from the experimental results on cross 
section. So one has to develop different kinds of approximations so that they are suitable to extract 
as much information as possible about the system from the analysis of the experimental data on the 
cross section.

Example 15.1 Determine the probability current density for the scattered particles in spherical coor-
dinates represented by

 y q fsc

ikr
f e

r
= ( , )

Solution: The flux density jsc is given by

 j
im r r r

csc sc
sc

sc sc sc sc=
∂

∂ + ∂
∂ + ∂

∂ −�
2

1 1ˆ * ˆ *. ˆ *
sin

.ry
y

y q y y q fyp e cc
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In spherical coordinates, we have

 ∇ = ∂
∂







+ ⋅ ∂
∂







+y q f
q

q fsc

ikr ikr

r
f e

r r
f e

r r
ˆ ( , ) ˆ ( , ) ˆr p e1 1

ssin
( , )

q f
q f∂

∂






f e
r

ikr

 = − + ∂
∂

+ ∂ˆ ( , ) ˆ ( , ) ˆ ˆ
sin

r r  f ik e
r

f e
r r

f e
r r

fikr ikr ikr
q f q f

q q2
1 1p e

∂∂f
e
r

ikr

 j
im

f ik
r

f
r

f
f

r rsc = − + ∂
∂

⋅ +�
2

1 12
2

2

3 3 3
ˆ | ( , )| ˆ

| ( , )| ˆ * ˆ
si

r rq f q f
q

p e
nn

*
q f

f
f

c c
∂
∂

− ⋅







 = +
∂
∂

+ ∂
∂





�
2

2 1 2 1 2
2

2 3 3im
f ik

r r
f

f
r

f
f

ˆ
| ( , )| ˆ * ˆ

sin
*r

q f
q q f

p eIm Im




 = 





+ ( )�
2

2 1
2

2 3im
f ik

r
O

r
ˆ ( , )r | |q f

For large r, the terms of the order O r( )1 3/  are smaller than the radial component.

 
2

2

| ( , ) |
ˆsc

f kj r
mr

∴ ⋅��
q f

A. Partial Waves – Basics

15.3 PHASE SHIFT ANALYSIS
Let us consider the potentials which are spherically symmetric; i.e., V V r( ) ( ).r =  The Hamiltonian 
for such potentials commutes with L2; i.e., [ , ]H L2 0= . Therefore, we can write the general solution as 

 u R r Yl
lm

lm( ) ( ) ( , )r = ∑ q f  (15.10)

For a particle moving in the direction of z, the z component of the angular momentum is always 
zero; i.e., m = 0 in Y lm ( , )q f . This implies that Y

lm
 becomes Y

l0
. Note that Y l Pl l0 2 1 4= + / p q(cos ). 

Therefore, the Equation (15.10) becomes

 u a R r Pl
l

l l( ) ( ) (cos )r =
=

∞

∑
0

q  (15.11)

The potentials of our interest are short range. Let r
0
 be the range of the potential. Then V(r) rapidly 

falls to zero beyond r
0
.

 V(r) ~ 0 for r > r
0

Let us solve the radial equation in the absence as well as in the presence of the potential and compare 
their behaviour.
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Radial Equation for Free Particle
We have already studied the radial wave equation in Chapter 8. We briefly review them in the context 
of scattering theory. The radial equation for free particle is given by 

 1 2 1
0

2
2

0

2 2
0

r
d
dr

r
dR

dr
E l l

r
R rl

l

( )
( )( )

( )






+ − +





=m
�

 (15.12)

Define k2 as k
E2

2

2= m
�

, and let us write R r
rl
l( )
( )

0
0

( ) =
c

. Then, we get

 
d

dr
k

l l
r

l
l

2 0

2
2

2
01

0
c

c
( )

( )( )+ − +





=  (15.13)

The solution to the Equation (15.12) is

 R b j kr b n krl l l l l
( ) ( ) ( )0 = + ′  (15.14)

Since n
l
(kr) is singular at r = 0, Rl

( )0  is 

 R b j krl l l
( ) ( )0 =  (15.15)

Let us recall the asymptotic behaviour of j
l
 (kr) and n

l
(kr).

and 

j kr kr l kr

n kr kr l kr

R

l r

l r

l

( ) sin ;

( ) cos

(

→∞

→∞

 → −( )
 → − −( )

∴

p

p
2

2

00

0

2

2

)

( )

sin ;

( ) sin

r l

l r
l

b kr l kr

r
b

k
kr l

→∞

→∞

 → −( )
 → −( )

p

c p

Radial Equation in the Presence of V(r)
The radial equation in the presence of V(r) is given by 

 1 2 1
0

2
2 2

2 2r
d
dr

r
dR

dr
k V r

l l
r

R rl
l







+ − − +





=m
�

( )
( )

( )  (15.16)

Or 
d

dr
k V r

l l
r

l
l

2

2
2

2 2

2 1
0

c m c+ − − +





=
�

( )
( )

 (15.17)

The exact solutions can be obtained only when V(r) is known. However, the asymptotic behaviour can 
be studied. Since we are mainly concerned with the short-range potential, we have V(r) → 0 as r → ∞.
In the large r limit,
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d
dr

kl
l

2

2
2 0

c
c+ �  (15.18)

or c p p
l r

l lA

k
kr l B

k
kr l

→∞ → −( ) + −( )sin cos
2 2

 (15.19)

The phase angles and the constants have been chosen to make the comparison with the free particle 
solution c l

( )0 . The Equation (15.19) can be rewritten as 

 c p dl r
l

l

C
k

kr l
→∞ → − +( )sin

2
 

 = −( ) + −( )C
k

kr l C
k

kr ll
l

l
lcos sin sin cosd p d p

2 2
 (15.20)

We also have

 R
C
kr

kr l
l r

l
l→∞ → − +( )sin p d

2
 (15.21)

The same results could have been obtained from the Equation (15.16) by recognizing the fact V(r) → 0  
for r > r

0
 leading to the equation (see the Equation (8.75) in Section 8.13).

 1 1
0

2
2 2

2 0r
d
dr

r
dR
dr

k
l l

r
R r r rl

l







+ − +





>( )
( ) �  (15.22)

or R r C j kr C n kr r rl l l l l l l( ) cos ( ) sin ( )= − >d d 0  (15.23)

The Equation (15.23) becomes the Equation (15.21) in the large r limit.

Phase Shift
So we have 

 c p
l r

la
k

kr l( ) sin0

2→∞ → −( ) V(r) = 0

 c p dl r
l

l

C
k

kr l
→∞ → − +( )sin

2
 V(r) ≠ 0

In the asymptotic limit, the phase of the function c l
( )0  is ( )kr l− p /2  and the phase of c

l
 for a given 

potential V(r) is ( )kr l l− +p d/2 . So the effect of potential V(r) is to change the phase of the asymp-
totic solution from ( )kr l− p /2  to ( )kr l l− +p d/2 . Therefore, d

l
  is called phase shift.
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15.4 SCATTERING AMPLITUDE AND PHASE SHIFT
Let us now determine the scattering amplitude in terms of the phase shift. Let us recall the boundary 
condition for the wave function in the scattering theory is 

 u r e f e
rr

ikz
ikr

( , , ) ( , )q f q f→∞ → +  (15.24)

We also know that from the Equation (15.11) and the asymptotic form (15.21) of the radial wave function,

 u r
C

kr
kr l Pr

l

l
l l( , , ) sin cosq f p d q→∞

=

∞

 → − +( )∑
0 2

 (15.25)

Obviously the Equation (15.25) should be brought to the form of the Equation (15.24) to determine 
the scattering amplitude f (q, f).

Let us first concentrate on Equation (15.24). The plane wave function eikz can now be expressed as 
follows:

 e e l i j kr Pikz ikr

l

l
l l= = +

=

∞

∑cos ( ) ( ) (cos )q q2 1
0

 (15.26)

This is true for all values of r.
In the asymptotic limit, this equation becomes 

 

e l i kr l P

l i
ikr

ikz

l

l
l

l

l

 → + −( )⋅

= − +
=

∞

=

∑ ( ) sin (cos )

( )

2 1
2

2 1
2

0

0

p q

∞

∑∑ − −( ) −( )−





e e P
i kr l i kr l

l

p p
q2 2 (cos )

 (15.27)

This is a sum of infinite number of incoming spherical waves ( )e rikr− /  term  and outgoing spherical 
waves ( )e rikr /  term . Making use of the Equation (15.27) in (15.24), we get

 u
l i

ikr
e er

l

l

i kr l i kr l

( )
( )( )

r →∞
=

∞
− −( ) −( ) → − + −


∑ 1 2 1

20

2 2
p p


+ e

r
f

ikr
( , )q f  (15.28)

It is obvious that the coefficients of e rikr− /  are the same in both (15.27) and (15.28). The coefficients 
of e rikr− /  are different for Equations (15.27) and (15.28). The simplest way to take into account these 
facts is to write u( )r  as follows:

 u
l

ikr
i e S k el

l

i kr l

l

i kr l

( )
( )( )

( )r → − + −



=

∞
− −( ) −( )∑ 1 2 1

20

2 2
p p

 Pl (cos )q  (15.29)

This equation can be rewritten as 

 

u
l i

ikr
e e S k

l

l

i kr l i kr l

l( )
( )( )

( ( ) )r = − + − − −
=

∞
− −( ) −( )∑ 1 2 1

2
1

0

2 2
p p

ee P

e
l i
ikr

S k e

i kr l

l

ikz
l

l
l r

−( )

=

∞







= + + −∑

p
q2

2 1
2

1

(cos )

( )
( ( ) )

ii kr l

lP
−( )p q2 (cos )

 (15.30)
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Since, i el i l= p 2 , we get

 
u e

l
ikr

S k P e

e f

ikz

l
l l

ikr

ikz

( )
( )

( ( ) ) (cos )

( , )

r = + + −

= +

=

∞

∑ 2 1
2

1
0

q

q f ee
r

ikr
 (15.31)

Provided, we have

 f l f k P
l

l l( , ) ( ) ( ) (cos )q f q= +
=

∞

∑ 2 1
0

 (15.32)

where f k
S k

ikl
l( )
( )

=
−1

2
 (15.33)

What have we done so far? We have transformed the equation for f (q,f ) (Equation (15.24)) into an 
equation for f

l 
(k) or S

l 
(k). So, the determination of S

l 
(k) amounts to the determination of f (q,f ). We 

can determine S
l 
(k) by comparing the Equations (15.25) and (15.29).

From the Equation (15.25), we have

 

u
C

kr
kr l P

C

ikr
e

r
l

l
l l

l

l

i

( ) sin (cos )r →∞
=

∞

=

∞
−

 → − +( )
= −

∑

∑
0

0

2

2

p d q

kkr l i kr l

l

l
i

l r

l l

l

e P

C e

ikr

− +( ) − +( )

−

=

∞

−





=
−∑

p d p d

d

q2 2

2

(cos )

ee e e P
i kr l

i i kr l

l
l

− −( ) −( )−





p
d

p
q2 2 2 (cos )  (15.34)

Comparing the Equations (15.34) and (15.29), we get

and 

C e l i

S k e
l

i l

l
i

l

l

− = +
=

d

d

( )

( )

2 1
2

 (15.35)

Therefore, we have (from the Equations (15.32) and (15.33))

 f l
e

ik
P

l

i

l

l

( , ) ( )
( )

(cos )q f q
d

= + −
=

∞

∑ 2 1
1

20

2

 (15.36)

 = +
=

∞

∑ ( ) ( ) (cos )2 1
0

l f k P
l

l l q  (15.37)

where f k e
ikl

i l

( ) = −2 1
2

d

The scattering amplitude f (q, f ) can be written as 

 

f
l e e e

ik
P

l e

i i i

l
l

l

l l

( , )
( ) ( )

(cos )

( )sin

q f q

d

d d d

= + −

=
+

−

=

∞

∑ 2 1
2

2 1
1

l

ii
l

l

l P
k

d q(cos )

=

∞

∑
0
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Before determining the total cross section, let us complete this discussion by writing asymptotic form 
of the wave function Rl ( )r  using the Equations (15.23) and (15.35).

 R l i e j kr n krl
l i

l l l l
l→ + −( ) [cos ( ) sin ( )]2 1 d d d  for r r>> 0  (15.38)

This is a very useful result for later calculations. Note this is true for any short-range potential.

Total Cross Section
The total cross section s  is given by 

 
s q f

d d d

=

= + ′ +

∫
∑∑
′==

′
−

| ( , ) |

( )( )sin sin

f d

k
l l e e

ll
l l

i il

2

2
00

1 2 1 2 1

Ω

dd q q′ ∫l P P dl l
(cos ) (cos )’ Ω

 

= + ′ +
+′=

∞

=

∞

′
−∑∑ ′1 2 1 2 1 4

2 12
00k

l l e e
lll

l l
i il l( )( )sin sin .

( )
d d pd d dd

p d

ll

l
lk

l

′

=

∞

= +∑4 2 1
2

0

2( )sin

 (15.39)

In terms of  f
l 
(k), we can write s  as 

 s = +
=

∞

∑ ( ) | ( ) |2 1
0

2l f k
l

l  (15.40)

The structure of the scattering amplitude as well as the total cross section s is 
l =

∞

∑
0

. Obviously, they 

are sum of the contribution from each of l. This is the reason why this analysis is called partial wave 
analysis.

Optical Theorem
It is interesting to determine the forward scattering amplitude corresponding to q = 0.

Note  P
l 
(cos q  ) = P

l
(1) = 1

 

∴ = + +

= ⋅

=

∞

=

∞

∑

∑

f
k

l i

k
f

k

l
l l l

l

( ) ( )sin (cos sin )

Im ( )

0 1 2 1

4 0 4 1

0

0

d d d

p p
kk

l l( )sin2 1 2+ d

But the RHS is the total cross section s

 ∴ =s p4 0
k

fIm ( ).

The form of the Schrödinger wave function in scattering theory u u e uin sc
ikz

sc+ += . There can be 
interference between incident wave and scattered wave only in the forward direction behind the target. 
This interference corresponds to the reduction in flux along z axis behind the target. This reduction 
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should be the same as the number of particles crossing s (Fs is the total number of particles removed 
from the incident beam by the scattering process). So there should be a relationship between s and 
forward scattering amplitude. Optical theorem reflects this fact.

In Appendix I, this result is brought but more clearly.

Example 15.2 For elastic scattering, show that 

 f k e
ik k ikl

i

l

l

( )
cot

= − =
−

2 1
2

1d

d

Solution:

 

f k e
ik

i

ik
i

l

i
l l

l l

l

( )
cos sin

sin sin cos

= − =
+ −

=
− +

2

2

1
2

2 2 1
2

1 2 2

d d d

d d d ll

l l

l
l

ik
i

ik

ik
i

ik

−

= −
−

=
−

−

=
−

1
2

2 1
2

1 1 1

1

2

2

sin ( cot )

( cot )

d d

d
d

cosec

⋅⋅
−

+ −

=
−

( cot )
( cot )( cot )

cot

1
1 1

1

i

i i

k ik

l

l l

l

d
d d

d  (15.41)

This expression will be useful when we discuss the concept of scattering length.

15.5 NUMBER OF PARTIAL WAVES NEEDED
The expression for the scattering amplitude and the cross section as given in Section 15.4 is summa-
tion over infinite number of partial waves. If one has to evaluate all these terms, then the partial wave 
analysis will not be useful. One would like to restrict to few partial waves. In particular, we would like 
to describe situations where l = 0 partial wave is sufficient. A partial wave with l = 0 is called s wave. 
We are interested in determining the conditions under which the s wave scattering is enough.

We use a semi-classical argument to determine l
max

, the maximum value of l for which the partial 
waves are necessarily to be considered. Equivalently, we determine the conditions for the partial waves 
with l ≥ l

max
 to be ignored.

Ib

ro

Fig.15.4 L > pro are not scattered by a hard disk

Consider the classical scattering where the target is a hard disk radius r
0
 as shown in Fig. 15.4. Let 

A be the area of the incident beam of particles. A particle with an impact parameter b has an angular 
momentum L = pb. There is a maximum value of b equal to r

0
 beyond which the incident particles will 
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not be scattered. In terms of angular momentum, particles with L > L
max

 will not be scattered where 
L prmax = 0. Particles with L pr> 0  can be ignored as far as the scattering by the target is concerned.

This result can be taken over to quantum mechanics where the quantity r0 is now the range of the poten-
tial V(r). Taking the maximum angular momentum to be lmax� and the momentum to be p k= � , we have 

 l krmax� �= 0

or l krmax = 0\l ≥ kr
0
 ⇒ Partial waves with such l to be ignored.

Obviously for considering s wave alone, partial waves with even l = 1 have to be ignored.

  \ 1 0>> kr

Therefore, the condition for low-energy scattering (or for restricting our consideration to s wave scat-
tering only) is

or kr
0
 << 1 (15.42)

If the above condition is satisfied, it is enough to consider s waves alone. Such scattering is called 
low-energy scattering.

Example 15.3 Show that the condition for low-energy scattering is kr
0
 << 1 by considering the cen-

trifugal potential barrier.

Solution: The effective potential is 

 V r V r
l l

reff ( ) ( )
( )= + + ⋅1

22

2�
m

The general shape of Veff  is shown in Fig.15.5, which is a potential barrier. The barrier height increases 
as the orbital angular momentum quantum number l increases. For a given energy E, depending on the 
value of l, the barrier height of Veff  may be less than or greater than E. Let lmax be the maximum value 
for which the barrier height of Veff  is less than E. This means that for l l> max, the effective potential 
Veff  is greater than E for some range of r as shown in Fig.15.5.

l > lmax

l < lmax

l = lmax

V
d

E

ro

Vett

Fig. 15.5 Effective potential. Here r0 is effective range and d is the shortest distance
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A particle with energy E has to penetrate the potential barrier 
l l

r
( )+ ⋅1

22

2�
m

 to reach r
0
. Then only it can 

experience the potential V(r). For l > l
max

, the shortest distance, which the incident particle can reach, 

is d, which is determined by

 
l l

d
k( + ) =1

2 2

2

2

2 2� �
m m

or l
d

k l kd
2

2
2� � or  

For the particle to reach r0, the shortest distance d should be the same as r0. Therefore, for lmax , we 
have l krmax .� 0

Thus, if we have l >> kr
0
, such partial waves need not be considered. Therefore, if kr0 1<< , only s 

wave need to be considered.

Example 15.4 Assuming the range of interaction between neutron and proton to be r
0
 = 2 fm, estimate 

the energy range in the centre of mass frame for low-energy scattering.

Solution: For low-energy scattering kr
0
 << 1

 
2

1
22

1 2

0

2

2

m
m

E
r E

r�
�





<< <<
/

     or    
0

The reduced mass m is

 

1 1 1 1
1 67265

1
1 67492

10

1 05459 10

27 1

34

m
= + = +( ) ×

∴ << ×

−

−

m m
kg

E

p n . .

( . )22 27

15 2 13

1 1949 10
2 2 10 1 60219 10

× ×
× × × ×− −

.
( ) ( . )

MeV

or E << 10 MeV

15.6 INTEGRAL FORMULA FOR PHASE SHIFT cl

Let us get back to the radial equation for particle in the presence of V(r) and in the absence of V(r).

 
d

dr
k V r

l l
r

V rl
l

2

2
2

2 2

2 1
0 0

c m c+ − − +





= ≠
�

( ) ( )
( )  (15.43)

 
d

dr
k

l l
r

V rl
l

2

2
2

2

1
0 0

c
c

(0)
(0)( + ) =+ −





=( )  (15.44)

 c cl l
(0) (15.43) − × (15.44)×

 

c
c

c
c m c c

c
c

l
l

l
l

l l

l
l

d
dr

d
dr

V r r r

d
dr

d

(0)
(0)

(0)

(0)

( ) ( ) ( )
2

2

2

2 2

2− =
�

ddr
d

dr
r r V rl

l l l−










c
c m c c

(0)
(0)= ( ) ( ) ( )2

2�
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Integrating from 0 to r,

 c
c c

c m c cl
l l

l l l

rd

dr

d

dr
r r r V r dr(0)

(0)

− ( ) = ( ) ( ) ( )2
2

0

0
�

( ) ′ ′ ′ ′∫  (15.45)

Let us make r very large. 
For large r,

 
c p c p

c p

l
l l

l

l
l

b

k
kr l d

dr
b kr l

C

k
kr l

(0)
(0)

= −( ) = −( )
= −

sin ; cos

sin

2 2

2
++( ) = − +( )d

c p dl
l

l l

d

dr
C kr l; cos

2

Since c l
(0) and c

l
 appear in both LHS and RHS, the normalization constants will cancel, and so we 

can drop both b
l
 and C

l
.

In the large r limit, the LHS of the Equation (15.45) becomes 

 

LHS +

 

= −( ) −( ) − − +( ) −( )1
2 2 2 2k

kr l kr l kr l kr l
l lsin cos sin cosp p d p d p

      

RHS

=
−

= ′ ′ ′ ′ ′
∞

∫

sin

( ) ( ) ( )

d

m c

l

l l

k

r j kr kr V r dr
2

2
0

�

We have made use of the fact c l lrR r( ) ( ) ( ).0 0=

 

∴
−

= ′ ′ ′ ′ ′

= − ′

∞

∫
sin

( ) ( ) ( )

sin (

d m c

d m

l
l l

l

k
r j kr kr V r dr

kr j k
l

2

2

2
0

2

�

�
′′ ′ ′ ′

∞

∫ r kr V r drl

o

) ( ) ( )c
 (15.46)

Let as make a further approximation in which c
l
 (kr) is replaced by c l lkr rj kr( ) ( ) ( )0 =  in the integral 

in (15.46).

 ∴ = − ∞

∫sin [ ( )] ( )d m
l l

o

kr j kr V r dr
2

2
2 2

�
 (15.47)

Sign of Phase Shift
The sign of the phase shift depends on the nature of interaction namely, whether it is attractive or 
repulsive. The above equation can be used to determine the sign of the phase shift. In the integrand 
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of (15.47), the factor [rj
l
 (kr)]2 is always positive. For an attractive interaction, V(r) is negative, which 

makes the RHS positive. Therefore, d l is a positive number. In the same way, we can argue that for a 
repulsive interaction, d l is negative.

Positive d
l
 → attractive interaction

Negative d
l
 → repulsive interaction

15.7 EXPRESSION FOR cl USING LOGARITHMIC DERIVATIVE
We can get another general expression for phase shift d l for short-range potential. This time, we use 
the continuity of the function and its derivative. The potential V(r) is written as

 V r
r r a

r a
( )

( )
�
n <

>


0

V r( ) may be a square well potential or any other general short-range potential. 
Then we have two solutions: one solution inside the range a and the other outside the range a.

 
d

dr
k V r

l l
r

r al
l

2

2
2

2 2

2 1
0

c m c+ − − +





= <
�
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( )

 (15.48)
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r al
l

2 0

2
2

2
01

0
c

c
( )

( )( )+ − +





= >  (15.49)

Inside the region r < a, the wave function can be determined only if V r( ) is known. In the region r a> ,
we know that the asymptotic solution c l

( )0  is given by (see (15.23))

 
c

d d
l

o
l

o

l l l l l

r R

C r j kr n kr

( ) ( )

[cos ( ) sin ( )]

=
−

 

 =
 (15.50)

 
d
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C j n C rk j nl

l l l l l l l l l l

c
d d d d

( )

[cos sin ] [cos sin ]
0

= − + ′ − ′  (15.51)

where ′ = ′ =j
dj

d
d

dl
l

l
l( ) ( )r

r
c

c r
r

 and 

Since we have two solutions, we can match their logarithmic derivatives. First, let us evaluate the loga-
rithmic derivative for the solution corresponding to the region outside the range a.

 

1
0

0

c
c d

l

l l l l l ld

dr

j ka ka j ka n ka ka n ka
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( )

( ) [ ( ) ( )]cos [ ( ) (

=

=
+ ′ − + ′ ))]sin

( ) cos ( )sin

( ) ( ) [ ( )

d
d d

l

l l l l

l l l

j ka n ka

j ka ka j ka n ka k

−

=
+ ′ − + aa n ka

j ka n ka
l l

l l l

′
−

( )]tan
( ) ( ) tan

d
d

 (15.52)

Since we do not know V r( ), we cannot evaluate the logarithmic derivative for the wave function inside 
r a< . However, let us define lla as

 1 1
c

c
ll

l
r a

d

dr a
⋅  →→

l

 (15.53)
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Then we have, 

 1 1
0

0

c
c

l
l

l

r a

d

dr a( )

( )

⋅ =
= l

 (15.54)

 ∴ =
+ ′ − + ′

−
1
l

d
dl

l l l l l

l l la
j ka j n ka n

j n
( ) ( ) tan

tan
   

Rearranging the terms, we get 

Where 
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d
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l
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=
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1
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g
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l

l l l

l
l

l

) ( )
( ) ( )

−
′

=
−

g

g
l
l

 −

1

 (15.55)

Note that in the absence of knowledge of potential inside the range a, the quantity l
l
 or g

l
  is just an 

unknown factor in the Equations (15.53)–(15.55).

Example 15.5 Using the expression (15.55) for the phase shift d 0 , show that 

 lim cot
k effk r k

→
= − +

0 0
21 1

2
d

a

Solution: For small values of k, assume that g 0 can be written as 

 g g e0 0
20( ) ( )k k= +

From (15.55), we have

 cot
( ) ( )
( ) ( )

d
g
g0

0 0 0

0 0 0

=
′ −
′ −

kan ka n ka

kaj ka j ka

The functions j0 and n0 and their derivatives are given by

 

j j

n n

0 0 2

0 0

( )
sin

( )
cos sin

( )
cos

( )
sin cos

r r
r

r r
r

r
r

r r
r

r r
r

= ′ = −

= − ′ = + rr
r 2

where  r = ka
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Substituting these expressions in the Equation (15.55), we get

 

cot

sin cos cos

cos sin sin
d

g r r
r

r
r

r
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g r r
r

r
r
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0 2

0 2
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r d
g r r r r
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0

0

=
+ +

−





−

In the limit r → 0, restricting ourselves to r 2 terms
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r
r d
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+ −
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2 2
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1
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− −
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1
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1
3

1
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0

2

0 0
2

r

g r g g( ) ( )

Since we have assumed g r g er0 0
20( ) ( ) ,= +  we get

 lim cot ( ( ) ) ( ( ) ( ) )
k

ka k a
→

= − + + − + +
0 0 0

2 2

0 0
20 1

3
1 0 0 3d g g g e

 

lim cot
( ( ) )

( ( ) ( ) )
k

r

k
a

k a
→

= −
+

+ − + +
0 0

0

1

2
0 0

2

1
2

0 1
3

1 0 0 3d
g

g g e

a

� �� ��
eeff

� ����� �����

We can write this equation as 

 lim cot
k effk r k

→
= − +

0 0
21 1

2
d

a
The above expression was computed for an arbitrary short-range potential of range r

0
. The quantity 

g 
0
 depends on the potential V(r). The reason for the term 'the effective range' for the coefficient of k2 

will become clear if we compare the expression with the corresponding expression for square well 
potential of range a. See Example 15.8.

15.8 SCATTERING BY HARD SPHERE
This is one of the few problems, which is exactly solvable. The target is a hard sphere of radius R. This 
means the particle cannot be found inside the sphere. So the potential of hard sphere is 

 V r
r R

r R
( ) =

∞ ≤
≥



0
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Since the potential inside R is ∞, the incident particles cannot penetrate. Therefore, the wave function 
R

l 
(r) is zero inside R, and it is a free particles solution outside R.
Therefore, making use of (15.23), we can write 

 R r
C j kr n kr

r R

r Rl
l l l l l

( )
[cos ( ) sin ( )]

=
−





≤
≥

0

d d
            

From (15.35), we know that the constant C
l
 is given by

 C ei
l

ll i l= +( )2 1 d

Let us restrict ourselves to l = 0 case. The solution R
0
 is given by 

 R
C j kr n kr

r R

r R0
0 0 0 0 0

0
=

−




≤
≥[cos ( ) sin ( )]d d

            

So for r ≥ R, we have

 
R e kr

kr
kr

kr

e
kr

kr

i

i

0 = +





= +

d

d

d d

d

0

0

0 0

0

cos sin sin cos

sin( )

Matching the R
0
(r) at r = R, we get 

 R
0
(r) = 0 at r = R

 kR kR+ = = −d d0 00  or  

  \R
0
 = e-ikR sink (r - R)

In the low-energy limit, we assume kR << 1, and we restrict ourselves to l = 0 partial wave. Then the 
total cross section

 
s p d p

p

= ⋅

=

4 4

4

2
2

0 2
2 2

2

R k
k R

R

sin �
 (15.56)

pR2

pR2

4pR2

Fig.15.6 Scattering by hard disc

This is much greater than the geometrical cross section pR2 as shown in Fig. 15.6. So the target presents 
a large area 4pR2 to remove all the incident particles which cross this area. It is to be noted that the phase 
shift d

o
 is negative, confirming the fact that a repulsive interaction produces a negative phase shift.

The phase shift generally depends on the energy of the incident particles. For very low energies, the 
scattering cross section is independent of the energy.
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B. Low-energy Scattering – General Short-range Potential

15.9 PHASE SHIFT IN THE LOW-ENERGY APPROXIMATION
For a potential of range r

0
, low energy means the energy range is such that kr

0
 << 1. Consider the equa-

tion for d l given in (15.47).
For small values of kr, the function j krl ( ) obeys the following relation

 j kr
kr

l
kr krl

l

( )
( )

. . ( )
�

1 3 5 2 1
10+

<< <<       (15.57)

Since the range of the potential is r
0
, we can restrict the upper limit of the integral to r

0
.
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V r r
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r

 (15.58)

A similar result can be obtained from the Equation (15.55). Let us note

 n kr
krl l

( ) . . ( )
( )

= − … − +[1 3 5 2l 1 ] 1
1

 (15.59)

Making use of (15.57) and (15.59) in (15.55), we get
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l
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l

l

l
∼ 0

2 1

2
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1 3 5 2 1

1 1
1

+ ⋅ +
+

⋅
+ −

+








 (15.60)

15.10 SCATTERING LENGTH IN LOW-ENERGY SCATTERING
Two new concepts called scattering length and effective range are introduced in low-energy scattering. 
We concentrate here only on the concept of scattering length.

Let us recall that

 s p=
=

∞

∑ 4 2

0

| ( ) |f kl
l

Since we are dealing with low-energy scattering, it is enough to restrict l = 0 partial wave alone. In 
that case,

 s s p� 0 0
24= | ( ) |f k  (15.61)

From the Equation (15.41) (see Example 15.2),
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We have 

 f k
k ik0

0

1( )
cot

=
−d

 (15.62)

Scattering length a  is defined as 

 Lt
k

k
→

= −
0 0

1cotd
a

 (15.63)

This can be improved by next approximation 

 k r kcotd
a0

21 1
2

= − + eff

This relation has already been proved in Example 15.5. Let us concentrate on the Equations (15.62) 
and (15.63),

 
Lt

k
f k

→
=

−
= −

∴ =
0 0

0
2

1
1

4

( )
a

a

s pa
 (15.64)

To understand the significance of the scattering length, we have to compare the above expression with 
the cross section for the scattering by hard sphere of radius R.

The scattering cross section for the hard sphere is 

  s  = 4pR2

It is at r = R, the wave function R
0
(r) or c 0 ( )r  is zero. Can we interpret a as the distance at which the 

wave function R
0
(r) or c 0 ( )r  vanishes for the general potential V(r) also?

To answer this question, let us consider the asymptotic behaviour of c
0
(r) in the context of low-

energy scattering.
The radial equation for l = 0 wave is 

 1 2
0

2
2 0 2

2 0r
d
dr

r
dR

dr
k V r R







+ −





=m
�

( )  (15.65)

or 
d

dr
k V r

2
0

2
2

2 0

2
0

c m c+ −





=
�

( )  (15.66)

Here, R r
r

r0
0( )
( )

=
c

For large r, making use of (15.20), we have 

 c d d0 0 0 0 1( )      larger
C

k
kr kr kr krr l → + << <<[cos sin sin cos ]

Since kr << 1, we have 

 c d d0 0 0( ) [ cos sin ]r
C

k
krr

l
large → +

 = +
C
k

krl cos [ tan ]d d0 0  (15.67)
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c
0
(r) can become zero at r = a  if 

 ka + tan d
0
 = 0

or ka = - tand
0

or k cot d
0
 = - 1/a

So c 0 ( )r  becomes zero at r = a  if  k cotd
a0
1= −

However, one has to be careful in interpreting the Equation (15.67). It is an equation of limiting 
behaviour of c 0 ( )r  in the large r limit for very small values of k. Note that we did not determine the 
exact solution of (15.66) to get (15.67) as the limiting case. In fact, it is a solution to the Equation 
(15.66) (after dropping the terms k 2 and 2 2mV r( )/� )

 
d

dr

2
0

2
0

c
�  (15.68)

So it is an equation for the asymptote. (15.67) is the equation in r for a straight line. The r intercept 
of this straight line is 

 r
k

= = −a
dtan 0

The various possibilities for the wave function and their asymptotes are shown in Fig.15.7.

x0(r )

r

x0(r )

r

x0(r )

r

x0(r )

r

(a) (b)

(c) (d)   
Fig.15.7 Scattering amplitudes-different possibilities

The Equation (15.66) can be used to interpret the conditions under which these possibilities arise. The 
behaviour of c

0
 in Fig.15.7 (a) is possible if the interaction is attractive enough to form a bound state. 

We can substantiate this conclusion as follows. We have to bear in mind that a bound-state solution 
goes like e-kr with negative slope for large r. Let us come back to the Equation (15.66). In the case of an 
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attractive potential, V(r) is negative, which makes the solution c
0
 of the Equation (15.66) to concave 

downwards. The slope of c
0
(r) is negative, and so it can match a bound-state solution like e-kr. So if the 

attractive potential is strong enough, a bound state like Fig.15.7 (a) exists.
In Fig.15.7 (b) also, c

0
(r) concaves down, and so this case also corresponds to attractive potential. 

However, the attractive potential is not strong enough to form a bound state. Fig.15.7(c) represents a 
resonant scattering in which the scattering length becomes very large. In Fig.15.7 (d), c

0
 (r) concaves 

upwards, and so the potential V(r) has to be positive, which represents a repulsive potential. These 
ideas will be illustrated when we consider scattering by square well potential.

C.  Square Well Potential – Illustrative Example for  
Partial Waves

15.11 PHASE SHIFT FOR SQUARE WELL POTENTIAL
Square well potential is the best example to illustrate many aspects of low-energy scattering theory. It 
is a simple model to illustrate resonant and non-resonant scattering, the concept of scattering length, 
resonance, and bound-state formation. The real advantage is that exact solutions are available.

The square well potential is 

V r
V r a

r a
o( ) =

− ≤
≥





for

for0

The Schrödinger equation for l = 0 partial wave is

 
d

dr
E V r ain

o

2

2 2

2
0

c m c+ + = ≤
�

( ) in  (15.69)

 
d

dr
E r a

2

2 2

2
0

c m cout
out+ = ≥

�
 (15.70)

We use the following symbols:

For E

k
E

K
E V

k
V

>

= =
+

=

0

2 2 2
2

2
2 0

2 0
2 0

2

m m m
� � �

;
( )

; ;

a : scattering length

 
b mE

m

2
2

2 0
2

2
0

2
0

= − <

′ =
+

<

�

�

For bound state

For bound state

( )

( )
(

E

K
E V

E ))

The solutions c
in
 and c

out
 are given by 

 c
in
 = A sin Kr r ≤ a (15.71)

 c d dout        = + ≥
C

k
kr kr r a0

0 0[cos sin sin cos ]

 = +e
k

kr
i od dsin( )0  (15.72)

M15_QUANTUMMECHANICS_3628_CH15.indd   589 5/24/2013   12:23:27 PM



590  Quantum Mechanics

These solutions are exact solutions. The constants A, C k e ki
0

0/ or /d  do not play any role in our discus-
sion. The continuity of the wave function and its derivatives at r = a implies 

 1 1
c

c
c

c
in

in

out

outd
dr

d

dr
r a r a= =

=

 K Ka k kacot cot( )= +d 0

 tan ( )ka + =d 0
k
K

Katan  (15.73)

This equation can be rewritten as follows:

 
tan tan

tan tan
tan

ka

ka
k
K

Ka
+

−
=

d
d

0

01

Rearranging this equation, we get

 tan tan tan
tan tan

d 0 = −
+

k Ka K ka
K k ka Ka

 (15.74)

 =
−

+

k
K

Ka ka

k
K

ka Ka

tan tan

tan tan1
 (15.75)

The structure of this equation is very similar to tan ( ) tan tan
tan tan

A B− = −
+

A B
A B1

 provided we identify  
tan A as

or 

tan tan

tan

A k
K

Ka

A k
K

Ka

=

( )= − tan 1

Then, tan d
0
 = tan (A - B)

or d p0
1= n k

K
ka ka+ ( ) −−tan tan  (15.76)

This is a useful result. Let us go back to the Equation (15.74), which can be rewritten as

 tan
tan tan

tan .tan
d 0

1
=

−

+

ka
Ka

Ka ka

ka
Ka

Ka ka
 (15.77)

So far, no approximation has been done. Since we are interested in the low-energy scattering we have 
ka << 1. Therefore, the Equation (15.77) becomes 

 tan tand 0 = −ka
Ka

Ka ka

 = −( )ka Ka
Ka

tan 1  (15.78)
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We are interested in studying how d 0 and , hence, s 0  vary as the potential depth V 0 is varied. However, 
before considering such variation in V 0 , let us explain how the two kinds of scattering processes 
namely, resonant and non-resonant scattering emerge from (15.78). 

Resonant and Non-resonant Scattering
The value of tan d

0
 and, hence, d

0
 depends on the right-hand side of the Equation (15.78). This, in turn, 

depends on ka
Ka

 and tan Ka.

Note that K
V E

k k2 0
2 2 0

2 2
2 2= + = +
m m
� �

 (15.79)

In the low-energy scattering, k 0
2 is the dominant term. Therefore, ka

Ka
 is very small. 

If tan Ka is not very large, ka
Ka

Katan 1–





 will be very small so that we can make the approximation 

 tand 0 � asmall number

or tand d0 0�

We may also have a situation where in spite of the fact that ka Ka/ 1,<<  the quantity [ ]ka Ka Ka/  tan −1  
may not be very small.

If the potential V
0
 is sufficiently strong, the approximation tan d

0
 ~ d

0
 will break down. In fact, when 

Ka = p /2 , tan Ka and, hence, tan d
0
 become infinite, and d

0
 is now np /2. The scattering under this 

condition is called resonant scattering. On the other hand, for non-resonant scattering, the conditions 
should be such that d

0
 should be far away from np /2.

Having seen what is meant by resonant and non-resonant scattering, let us see how these scattering 
processes occur as the potential depth V 0 is varied.

Weak Potential – No Bound State – Non-resonant Scattering
The potential V

0
 is not strong enough to form a bound state consisting of the incident and the target 

particles, and so the final states of both incident particles and the target particles are scattering states. 
So it is now a non-resonant scattering.

Since tan Ka is greater than ka (see (15.79)), d
0
 is now positive, and it is in the first quadrant. For 

very weak potential, the RHS of (15.78) is very small, and so we can make the approximation tand
0
 ~ d

0
.

 ∴ −( )d 0 1= ka ka
Ka

tan  (15.80)

We can make a further approximation for low-energy scattering by replacing Ka by k
0
a

Ka k k a k a= +( )0
2 2

0�

 ∴ = −





d 0
0

0

1ka
k a

k a

tan
 (15.81)
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\ The total cross section is

 s p d p d0 2
2

0 2 0
4 4=
k k

sin �

 = −





4 12 0

0

2

pa
k a

k a

tan
 (15.82)

Since k
0 
a is independent of incident particle’s energy E, the total cross section s

0
 is also independent 

of the incident particle’s energy E. But it depends on V
0
. As V

0
 increases, the approximation tan d

0
 ~ d

0
  

breaks down.

Threshold Potential V0 for Bound-state-Resonant Scattering
As V

0
 increases further, tan ka Ka/  increases. When V

0
 reaches a value such that Ka = 2p d/ , tan 0  

becomes infinite and d p
0 2

= . Since sin2d
0
 is maximum for d p

0 2
= , the scattering cross section s

0 

becomes maximum.

 s p p0 2
2

2 2
4 4 1=
k

a
k a

=  (15.83)

Since ka << 1, s
0
 becomes very large now. The cross section now depends on the incident particles 

energy. What does it mean by Ka = p /2?  For low-energy scattering, Ka k a� 0 2= p / . We know that 
in the case of square well potential in three dimensions, it is not possible to have a bound state if V

0
 is 

less than a threshold value (see Section 8.12 in Chapter 8).
The threshold condition for the formation of the bound state k a0 2= p / . For k a0  close to p /2, we 

can show that a bound-state solution for the Schrödinger equation exists. 
This is called zero energy bound state since its energy is E = 0 - = -∆, where ∆ is very small. So in 

resonant scattering, the incident particle and the target particle together form a bound state.

Further Increase of V0: Ramsauer–Townsend Effect
As the depth of the scattering potential V

0
 increases further, the phase shift d

0
 becomes more than p /2.  

The scattering has now become non-resonant scattering. As we increase V
0
 further, d

0
 also increases 

further, and a new phenomenon takes place when d
0
 becomes p ; i.e., d p0 = . For this potential strength, 

tan tan ,d p0 0= =  and so the scattering cross section becomes zero. This means that there is a target 
present on the path of the incident particle and yet there is no scattering. This phenomenon is called 
Ramsauer–Townsend effect. What is the condition for Ramsauer–Townsend effect to takes place?

tan tand 0 1 0= −( ) =ka Ka
Ka

or tan ka Ka=  (15.84)

This happens when Ka = 4.493. This analysis of Ramsauer–Townsend effect requires a bit more care-
ful consideration. The zero scattering has been obtained by considering s-wave scattering alone. The 
other partial waves are also present, though their contribution is very small compared to s wave for 
total cross section in low-energy scattering. There will be some scattering from higher-order partial 
waves when d p0 = , and so, some scattering will take place even now. This will be reflected by the fact 
that the scattering cross section takes a dip and reaches a minimum value.
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The actual experiment demonstrating Ramsauer–Townsend effect is the scattering of electron by 
heavy inert gas atoms. In terms of theoretical model, square well potential is the simplest model 
exhibiting zero scattering.

Resonance Again – Second Bound State
As the depth V

0
 increases further when Ka reaches 3 2p / , the phase shift becomes d p0 3 2= / , and the 

scattering cross section becomes maximum. The condition Ka k a� 0 3 2= p /  corresponds to threshold 
potential V

0
 to form a second bound state.

All these results can be generalized to the following results:

 d p0 1= n ka ka
Ka

+ −( )tan  (n bound states) (15.85)

15.11.1 Behaviour of Scattering Length for Various Potential Strengths V0

So far, square well potential was used to explain resonant and non-resonant scattering in terms of the 
phase shift d

0
 and the corresponding scattering cross section s

0
. Now let us illustrate how the scatter-

ing length a changes as Ka changes.
Let us recall (from (15.71) and (15.72)) that the s-wave solution to Schrödinger equation for square 

well potential is given by

  c
in
 = A sin Kr r < a

 c d dout = +
C

k
kr kr0

0 0[cos sin cos sin ]  r > a (15.86)

c
out 

is written in a functional form which is true only in the asymptotic limit for a general potential 
V(r). But in the case of square well potential, this function is true for all r ≥ a; i.e., the exact solution 
and the asymptotic form are the same.

For low-energy scattering, 

 
ka kr

kr kr kr

<< <<
∴

1

1

.

cos sin� � and 

Then, c
out

 is now written as 

 
c d d

d d

out

C

k
kr

C

k
k r

= +

= +

0
0 0

0
0 01

[sin cos ]

sin [ ( cot ) ]

 (15.87)

In the low-energy limit, we have 

 k cotd
a0
1= −

where a is the scattering length.

 ∴ = −( )c
d

aout

C

k
r0 0 1

sin
 for r > a

Let us define f
a

( )r r= −1  (15.88)
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This is an equation for the asymptote for c out . We have obtained this equation by considering r > a. 
However, let us extrapolate this equation till one gets f (r) = 0. It is an equation of a straight line with 
r-intercept a. At r = a, f (r) = 0. Since we consider extrapolated function for f (r), a  may be negative 
or positive or even infinite.

Let us consider the scattering length for the following three cases namely, Ka Ka< =p p
2 2

,  and  
 Ka > p

2

Case 1:  Ka < p
2

The scattering process is now non-resonant scattering. d
0
 is positive, and hence, it is in first quadrant. 

Therefore, cotd 0 is positive, and hence, a is negative.

Case 2:  Ka = p
2

Scattering process is now resonant scattering. Now d p
0 2

= , and so cotd 0 0= . Therefore, a is infinite.

Case 3: Ka < p
2

The scattering has become non-resonant again. d
0
 is in the second quadrant. So cotd 0 is negative, 

which means a is positive.
These three cases are shown in Fig.15.8, in which c

in
 and f (r) are matched at r = a.

a

f(r)

a

Xin

f(r)

V0

V0 a

Xin

a

V0

a

Ka k a� 0

0

2

2

<

<

p

d p

;

   
 

Ka k a� 0

0

2

2

=

=

p

d p   
 

Ka k a� 0

0

2

2

>

>

p

d p

;

   

  c(r) = c
in
 = A sin kr f

a
= −( )const 1 r

Fig.15.8 Scattering length for square well potential c in  and f  is matched at r = a

Example 15.6 Show the condition for the existence of zero energy bound state and the condition for 
resonant scattering ( )d p0 2= /  are the same in the case of square well potential of depth V

0
.

Solution: By zero energy bound state, we mean that it is a bound state with energy E close to zero. We 
denote it by E = −0 .

i.e., E = = − ′∆−0
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The Schrödinger equation for zero energy bound state is

 
d

dr
m E Vin

in

2

2 2 0
2 0

′
+ + ′ =

c
c

�
( )   r ≤ a (15.89)

 
d

dr
m Eout

out

2

2 2
2 0

′
+ ′ =

c
c

�
 r ≥ a

Define ′ = + = − ′ +K m E V m V2
2 0 2 0

2 2
� �

( ) ( )∆

 b 2
2 2 2

2 2 2= − = =mE m E m
� � �

∆  (15.90)

 
d

dr
Kin

in

2

2
2 0

′
+ ′ ′ =

c
c  r ≤ a

 
d

dr
out

out

2

2
2 0

′
− ′ =

c
b c  r ≥ a

The solution to these equations is

  c  ′
in
 = A sin K′r r ≤ a

  c  ′
out

 = Be-b r r ≥ a

Matching the logarithmic derivatives at r = a, we have

 1 1
′

′
=

′
⋅

′

= =
c

c
c

c
in

in

r a out

out

r a

d
dr

d

dr

or K′ cot K′a = - b (15.91)

Since the binding energy E is very small, 

 ′ = 





K
V

k
2 0

2

1 2

0

m
�

/

=

 k
0
 cot k

0
a = -b (15.92)

 k k a0 02
tan p b−( ) = −

This represents the condition for the formation of a zero energy bound state.
For resonant scattering, k

0
a is very close to p /2 . i.e., the factor ( )p /2 0− k a  is a very small number, 

and so we have tan( ) .p p/ /2 20 0− −k a k a�

 ∴ ( ) =k k a0 02
p b− −

or k a
k0

02
� p b+

Therefore, the resonance condition k a0 2
= p  corresponds to zero energy bound-state formation.
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Example 15.7 Determine the binding energy of a zero energy bound state in terms of the scattering 
length a of zero energy scattering state for a square well potential.

Solution: There are two terms here: zero energy bound state and zero energy scattering state. Their 
energies are denoted as E = 0- and E = 0+.

Zero energy bound state: E = 0- = - ∆′
Zero energy scattering state: E = 0+ = ∆
Here ∆ and ′∆  are very small positive numbers. For bound states, we use the results of the previous 

example.
The Schrödinger equation for a scattering state is

 
d
dr

E V
2

2 2 0

2
0

c m cin
in+ + =

�
( )  r < a

 
d

dr

2

2 2

2
0

c m E cout
out+ =

�
 r > a

Here K E V V V2
2 0 2 0 2 0

2 2 2= + = + ≈m m m
� � �

( ) ( )∆

 ∴ = ∆K k k2
0

2 2
2

2
�

�
 and 

m

The Schrdinger equation becomes

 

d
dr

k r a

d

dr
k

d

dr
r a

2

2 0
2

2

2
2

2

2

0

0 0

c
c

c
c

c

in
in

out
out

out  or 

+ = <

+ = >�

Since ∆  is very small, we have neglected the term k 2c out in the second equation. We have already seen 
the solution to these equations, which is given by

  c
in
 = A sin Kr r < a

  c
out

 = B (r - a) r > a

Matching the logarithmic derivatives at r = a,

 K Kr
r

cot =
−
1
a

 (15.93)

Let us compare the wave functions inside r for the zero energy bound state and the zero energy scat-
tering state.

 
′ ′ −

+

c
c

in

in

A K r E

A Kr E

= =
= =

sin

sin

0

0

 ′ ′∆ ∆K m V K m V2
2 0

2
0

2 2= ( − ) = ( + )
� �

 and 
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Since ∆ and ∆′ are very small, ′K K� .

 ∴ ′ ′K K a K Kacot cot�

or −b
a

� 1
a −

 (See the Equations (15.91) and (15.93))

For large a, we write

 1
a
b∼  (15.94)

Let us recall that a  is the scattering length of the zero energy scattering state and b  is the width of the 
zero energy bound state which corresponds to resonant scattering.

Therefore, the zero energy scattering with large scattering length represents the resonant scattering 
corresponding to the zero energy bound state.

The bound-state energy is

 E = − ′∆ = −−0
2 2

2 2 2

2
= = − � �b

m ma
 (15.95)

This is an interesting result since it relates bound-state energy of the system consisting of incident and 
target particles with the scattering length of a scattered state near resonance phenomenon. A number 
of approximations have been made in deriving this relationship. So the validity of this relationship has 
to be addressed with care. For instance, consider the neutron-proton scattering. Deuteron is the bound 
state of the neutron and the proton. The experimental value of binding energy of deuteron is 2.22 Mev. 
The binding energy from the expression (15.95) is found to be 1.4 Mev (see Sakurai).

Example 15.8 Show that k akcotd
a0

21 1
2

= − +  for a square well potential, which has a zero energy 
bound state.

Solution: Let us go back to the Equation (15.73).

 K cot Ka = k cot (ka + d
0
) (15.96)

Let us summarize the results for zero energy bound states ((15.90) and 15.92)).

 E = −−0
2

2 2

= � b
m

and k
0
 cot k

0
a = -b (15.97)

As a first approximation, neglect ka in both sides of the Equation (15.96). Then, we have 

 k k a k0 0 0cot cot= d  (15.98)

 ∴ =k cotd b0 −  (use (15.92))

Let us improve this approximation by including ka also. The following result is useful in further 
manipulation.

 
cot( ) cot .

cot . ( cot )

q q q
q q

+ ∆ = ∆
= − ∆

−
+

 cosec

 

2

21
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LHS of (15.96):

 

cot( ) cot ( cot )

cot( ) cot co

ka ka

k ka k k a k a

+ = − +
+ = − −
d d d
d d

0 0
2

0

0 0
2 2

1

∴ tt cot

cot ( )

2
0 0

2 2

0
2 2

2

d d b

d b
b a

k k a a

k k a

� �� �� = − −

= − +  (15.99)

RHS of (15.96):
First let us define K 2 and K1

2 as 

 

K k k

K k

K K k K
k

K

K K

2 2= +
= −

= + + = +





0
2

1
2

0
2 2

2
1
2 2 2

1
2

2 2

1
2

1

1

1

b

b b+

∴ = + 11
2

1
2

2 2

1
2 1

2 2

1
1

1

⋅





= + ⋅ = +

=

k
K

K
k

K
K

Ka K a a

+ +

∴ +

b b e

e
e

� ��� ���

 (15.100)

Let us now evaluate K cot Ka.

 

∴ K Ka K K a K K a a K a

K

cot ( ) cot( ) ( )[cot ]

( )

= + + = + −
= +

1 1 1 1
2

1

1

e e e e
e

cosec

[[cot ( cot )]

cot [cot ( cot )]

K a a K a

K K a K a K a K a
1

2
1

1 1 1 1
2

1

1

1

− ⋅ +
= + +

e
e −

 

We have neglected the e 2 term here.
Let us take K k1 0� .

 K Ka k k a k a k a k a

k
k a k a

cot cot [cot ( cot )]� 0 0 0 0
2

0

0
0 0

1+ − +

− + − − −

e

b e b b
�

22

0
2k











Neglecting the terms 
b
k 0

 and k a
k0

2

0
2

b
 we have

 

K Ka k a

k a

cot

( )

�

�

− −

− − +

b e

b b

0

2 21
2

 (15.101)

Here we have used Equation (15.97) and e b= 1
2

2 2

0

k
k
+

We have used the Equation (15.97) and e b
∼ 1

2

2 2

0

k
k
+

.

Equating (15.100) and (15.101) (LHS and RHS of the Equation (15.98)), we get
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k a k k a

k a ak

cot ( ) ( )

cot

d b b b

d b b

a

0
2 2 2 2

0
2 2

1
2
1
2

1
2

1 1
2

− + = − − +

= − +

−

∴ +

= + aak 2

where 1 1
2

2

a
b b= +− a

This equation represents the general form of effective range r
eff

 for a short-range potential.

 k r kcotd
a0

21 1
2

= − + eff

where r
eff

 is the effective range of the potential.

15.12 BREIT–WIGNER FORMULA
In this section, we get an expression for total scattering cross section for resonant scattering. This 
expression is known as Breit–Wigner formula. In resonant scattering, a quasi-bound state of the inci-
dent and the target particles is formed. In nuclear reactions, they are known as compound nucleus. 
They are basically unstable states, and they decay exponentially. Naturally, such states are accom-
panied by a statistical spread in energy Γ, known as width. Breit–Wigner formula for the total cross 
section reflects these ideas well.

The effective potential V
eff

(r) is 

 V r V r
l l

reff ( ) ( )
( )= + +1 2

2 2

m
�

This is shown in Fig.15.9 in which the bound states and the quasi bound states are shown. The bound 
states have energy E < 0 (like E

1
 and E

2
 as shown in Fig.15.9), and quasi bound states have energy E > 0  

(like E
3
 and E

4
 as shown in Fig.15.9). Quasi bound states are not really bound states since the energy 

of the system is positive. Particles trapped in state of energy, say E
3
, are classically prevented from 

escaping the region I. Quantum mechanically, it can reach the region III by tunnelling phenomenon. 
A trapped particle inside the centrifugal barriers will remain there for a long time (within the atomic 
scale) but leaks to region III ultimately. So, in effect, the system behaves as a bound state, which has 
a definite lifetime t. This is known as resonance.

E2

E3

E4

I

E1

r

Veff

Fig.15.9 Bound states and quasi bound states
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Our interest on quasi bound states in scattering theory is resonant scattering. It is found that when the 
energy of the incident particle is close to the quasi bound state energy, the scattering becomes resonant 
scattering.

Let E
r
 be the energy at which the resonance occurs for lth partial wave. The corresponding phase 

shift d
l
(E

r
) is given by

 d p
l rE n( ) ( )= 2 1

2
+  (15.102)

 ∴ =cot ( )d l rE 0 (15.103)

For energies E closer to E
r
, let us make Taylor’s expansion around E

r
.

 

cot ( ) cot ( ) ( ) cot | ( ) cotd d ddl l r r l E Er r lE E E E d
dE

E E d
dE

= + − + −=
1
2

2
2

2
||

( )
( )

( )
sin

E E

r l
l

E E

r
l E E

r

r

r

E E
d E

dE

E E
d

=

=

=

= − ⋅

= − − ⋅ ⋅

− cosec2

2
1

d
d

d
d ll

E E
dE

r=

Note that sin2d
l
 = 1 at resonance. We can rewrite the above equation by defining a new quantity Γ l  as

 

d
dE

E

E E E

l
E E l

l
l

r

r

d

d

( )

cot ( ) ( )

=
=

= −

2

2

Γ

Γ
∴ −

The total cross section for lth partial wave is

 s p
dl

lk
l= ⋅ +

+
4 2 1 1

12 2
( )

cot

 = ⋅ +
− +

4 2 1
4

42

2

2 2
p

k
l

E E
l

r l

( )
( )

Γ
Γ

/
/

 

Let us recall that the cross section is related to transition probability from an initial state to a group 
of final states. In the resonant scattering, it can be shown that Breit–Wigner formula represents the 
probability rate for the transition from an initial scattering state to an unstable state, which decays 
exponentially (see Cottingham and Greenwood).

Example 15.9 For a square well of depth V
0
, show that the condition for resonance scattering of lth 

partial wave and the condition formation of the bound state corresponding to the given l are the same. 
Assume Ka >> l >> ka.

Solution: For a square well potential, exact solutions are available both inside and outside the range a. 
From Equation (8.72) we have.

 c l in l lA rj Kr r a, ( )= <

M15_QUANTUMMECHANICS_3628_CH15.indd   600 5/24/2013   12:23:52 PM



The Scattering Theory  601

Let us recall from Equation (15.53)

 1 1
l c

c

l l in

l in

r a
a

d

dr
= ⋅

=,

,

Substituting the expression for c
l,in

 we get

 1
l l

l l

l

j Ka Ka j Ka

j Ka
=

( ) ( )
( )

+ ′ 

In the low-energy scattering (ka << 1), from Equation (15.60) we have the expression for shift d
l
 given by

 tan
( ) ( )

[ ( )]
( )

d
l
ll

l
l

l

ka l
l

l
l

= +
⋅ ⋅ +

⋅
+ −

+








+2 1

2

2 1
1 3 5 2 1

1 1
1…

Substituting the expression for l
l
 in the above equation, we get

 tan
( ) ( )

[ ( )]
( ) ( )

(
d l

l
l lka l

l

lj Ka Kaj Ka

l
= ⋅ +

⋅ ⋅ ⋅⋅⋅ +
⋅

− ′+2 1

2

2 1
1 3 5 2 1 ++ + ′







1) ( ) ( )j Ka Ka j Kal l

For resonant scattering, d p
l =

2
 or tand l = ∞. So the condition for resonant scattering

 (l + 1) j
l 
(Ka) + Kaj′

l
 (Ka) = 0 (15.104)

For a deep well, we can take Ka large enough to consider the asymptotic form of j
l
(Ka).

Then we have 

 j

l

l ( )
sin

r
r p

r
�

−( )2

and

 j

l l l

l′ =
−( )

−
−( ) −( )

( )
cos sin cos

r
r p

r

r p

r

r p

r
2 2 2

2
�

Using these results in (15.104), we get

 

( )
sin cos

( )
sin

( )

l
Ka

Ka l Ka l

l
Ka

Ka
l

+ −( ) + −( ) =

+ + +


1
2 2

0

1 1
2 2

p p

p p− 


+ − + +





cos
( )

Ka
l 1

2 2
0

p p =

or 
( )

cos
( )

sin
( )l

Ka
Ka

l
Ka

l+ − +





− − +





=1 1
2

1
2

0
p p
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 tan
( ) ( )

.Ka
l l

Ka
− +





+1
2

1p
�

 ∴Ka
l l

Ka
− + = +( )−( )

tan
1

2
11p

Since Ka >> l, l
Ka
+1 is a very small number and

 tan
( )− +( ) = + +1 1 1l

Ka
n

l
Ka

np p�

or Ka n l� +( ) +1
2 2 2
p p

But this is the condition for the formation of bound states as we have already seen it in Section 8.12 
in Chapter 8.

D. Born Approximation

15.13  GREEN’S FUNCTION TECHNIQUE IN NON-RELATIVISTIC 
SCATTERING THEORY

We have seen that the scattering problem in non-relativistic quantum mechanics reduces to solving the 
Schrödinger equation.

 ∇ +( ) =2
2 2

2 2mE u mV r u
� �

( ) ( ) ( )r r  (15.105)

subject to the boundary condition

 u e
f

r
ei kz i kr( )

(
r → + q,f)

One of the methods of solving this problem is to convert this differential equation into an integral 
equation, which takes into account the boundary condition. The standard method is to use Green’s 
function technique.

The Schrödinger Equation (15.105) can be rewritten as 

 ( ) ( ) ( ) ( )∇ + =2 2k u U ur r r  (15.106)

where k
E

U r V r2
2 2

2 2= =m m
� �

 and ( ) ( )

The Green’s function of the linear operator (∇2 + k2) is given by

 ( ) ( , ) ( )∇ + ′ = − ′2 2k G r r r rd  (15.107)
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It is easy to check that the solution u( )r  in terms of the Green’s function G( , )r r′  is

 

u U u G d

k u k U u G

( ) ( ) ( ) ( , )

( ) ( ) ( ) ( ) ( ) (

r r r r r r

r r r

= ′ ′ ′ ′

∇ + = ∇ + ′ ′

∫ 3

2 2 2 2 rr r r

r r r r r
r r

, )

( ) ( ) ( ) ( , )

(

( )

′ ′

= ′ ′ ∇ + ′ ′

=

∫
∫

− ′

d

U u k G d

U

3

2 2 3

d
� ��� ���

rr r) ( )u

We have used the fact that ∇2 can operate only on functions of r.
Let u0 ( )r  be a solution to the homogeneous equation

 ( ) ( )∇ + =2 2
0 0k u r

The most general solution is

 u u G mV u d( ) ( ) ( , ) ( ) ( )r r r r r r r= + ′ ′ ′ ′∫0 2
32

�

In scattering theory, we choose u0 ( )r  to represent the incident beam. So u0 ( )r  is 

 u eikz
0 ( )r =

 ∴ = + ′ ′ ′ ′∫u e G mV u dikz( ) ( , ) ( ) ( )r r r r r r2
2

3

�
 (15.108)

Green’s Function for Scattering Theory
For a differential equation, different sets of boundary conditions lead to different solutions. In Green’s 
function technique, different sets of boundary conditions lead to different Green’s function. So, for a 
particular linear operator, we can get many Green’s functions, but we have to choose one among them 
which takes into account our boundary condition. In the scattering theory, we have to find the Green’s 
function G( , )r r′  of (∇2 + k2), which will lead to the solution

 u e f e
r

i kz
i kr

( ) ( )r → + q f,

It is not difficult to find such Green’s function. It is given by

 G eik
( , )

| |

| |
r r

r r
r r

′ = − − ′
− ′1

4p  (15.109)

For proof, see Appendix II.

Scattering Amplitude
The solution to Schrödinger Equation (15.108) is

 u e e mV u dikz
ik

( )
| |

( ) ( )
| |

r
r r

r r r
r r

= − − ′ ⋅ ′ ′
− ′

∫1
4

2
2

3

p �
 (15.110)
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Note that we have not really solved the Schrödinger equation. We have just converted a differential 
equation u( )r  into an integral equation for u( )r .

Let us write the second term as

 I e mV u d
ik

= − − ′ ⋅ ′ ′ ′
− ′

∫1
4

2
2

3

p
| |

| |
( ) ( )

r r

r r
r r r

�
Ω

 (15.111)

where Ω is a large region of space around the target as shown in Fig.15.10.

r′

Ω′

Ω

r

r ′r(  −   )

Fig.15.10 Integration region

We assume the potential to be short range. Though the integral extends over the entire volume Ω, V(r) 
is significant only in a small region Ω′ around the target.

 

∴ = −
− ′

′ ′ ′

−
− ′

− ′

− ′

∫I e U u d

e

ik

ik

1
4

1
4

3

p

p

| |

| |

| |
( ) ( )

| |

r r

r r

r r
r r r

r r

Ω

�
′′

∫ ′ ′ ′
Ω

U u d( ) ( )r r r3

From Fig.15.10, it is obvious

 | | [( ) ( )]

[ ]

/

/

r r r r r r

r r

− ′ = − ′ ⋅ − ′
= − ⋅ ′ ′

1 2

2 2 1 22r r+

 

⋅ ′ ′ = − +  
⋅ ′ − = − ⋅ = − ⋅′ ′  

�

1/22

2 2

2

21

ˆ1

rr
r r

r r r
rr

r r

r r r r r r

where r̂ is a unit vector. Since r̂ ⋅ ′r  is small compared to r, it can be neglected in the denominator.

 

I e
r

U u d

e
r

e U

ik r

ikr
ik

= − ′ ′ ′

= − ′

− ⋅ ′

′

− ⋅ ′

∫1
4

1
4

3

p

p

( )
( ) ( )

(

ˆ

ˆ

r

r

r

r

r r r
Ω

rr r r) ( )u d′ ′
′

∫ 3

Ω
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Since k r= k ˆ , we can write I as

 I e
r

e U u d
ikr

i= − ′ ′ ′− ⋅ ′

′
∫1

4
3

p
k r r r r( ) ( )

Ω

Since the integrand is zero outside the volume Ω′, we can replace the volume of the integration by Ω.

 ie �
′

∫ ∫
Ω Ω

 ∴ ( ) ( )
Ω

I e
r

e U u d
ikr

i= − ′ ′ ′− ⋅ ′∫1
4

3

p
k r r r r

or I e
r

e U u d
ikr

i= − − ⋅∫1
4

3

p
k r r r r( ) ( )

Ω

 (15.112)

(We have replaced ′r r by , since ′r  is only an integration variable, a dummy variable.)
The wave function u( )r  is given by

 u u e
r

e U u d
ikr

i( ) ( )r r r r rk r= − − ⋅∫0
31

4p
( ) ( )

Ω

 (15.113)

Obviously, the scattering amplitude f (q, f) is given by

 ƒ( , ) ( ) ( )q f
p

= − ⋅ ⋅− ⋅∫1
4

2
2

3e mV r u dik r r r
�

 (15.114)

Born Series
The Equation (15.113) is an integral equation for u( )r . The advantage of the integral equation is that 
we can employ an iteration produce to obtain the solution, which lends itself to an approximation.

Let us go back to the Equation (15.108).

 u u G U u d( ) ( ) ( , ) ( ) ( )r r r r r r r= + ′ ′ ′∫0
3  (15.115)

The zeroth-order approximation is

 u u( ) ( )r r= 0

We can improve this wave function by replacing u u( ) ( )′r r by 0  in the Equation (15.115).

i.e., u u G U u dI ( ) ( ) ( , ) ( ) ( )r r r r r r r= + ′ ′ ′ ′∫0 0
3  (15.116)

This wave function uI ( )r  can be improved further as follows:

 u u G U u dII I( ) ) ( , ) ) ( )r r r r r r r= + ′ ′ ′ ′∫0
3( (

 
= + ′ ′ ′ ′ +

′ ′ ′ ′′ ′′

∫u G U u d

G U G U

0 0
3( ) ( , ) ( ) ( )

( , ) ( ) ( , ) ( )

r r r r r r

r r r r r r uu d d0
3 3( )′′ ′ ′′∫∫ r r r

 (15.117)
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The wave function uII ( )r  can be improved further as follows:

 u u G U u dIII II( ) ( ) ( , ) ( ) ( )r r r r r r r= + ′ ′ ′ ′∫0
3

We can go on doing this procedure. In the end, we have

 

u u G U u d( ) ( ) ( , ) ( ) ( )r r r r r r r= +0 0
3

1zeroth order st order

� � �
′ ′ ′ ′∫ ����� �����

+

          G U G U u d( , ) ( ) ( , ) ( ) ( )r r r r r r r′ ′ ′ ′′ ′′ ′′ ′0
3rr r

r

⋅ ′′

+ ′

∫∫

∫∫∫

d

G

3

2nd order

          

� ���������� ����������

( ,rr r r r r r r r r r r) ( ) ( , ) ( ) ( , ) ( )U G U G u d d d′ ′ ′′ ′′ ′′ ′′′ ′′′ ′ ⋅ ′′ ′′′0
3 3 3 ++ ...

3rd order
� �������������� ��������������

 (15.118)

This is known as Born series. Born approximation consists of restricting the Born series only to few 
terms. Then we have

 zeroth order : ( )u0 r  (15.119)

 first order : ( ) ( , ) ( ) ( )u G U u d0 0
3r r r r r r+ ′ ′ ′ ′∫  (15.120)

 
second order : ( ) ( , ) ( ) ( )

( , ) ( ) (

u G U u d

G U G

0 0
3r r r r r r

r r r r

+ ′ ′ ′ ′ +

′ ′

∫
,, ) ( ) ( )′′ ′′ ′′ ′ ⋅ ′′∫∫ r r r r rU u d d0

3 3
 (15.121)

15.14 FIRST-ORDER BORN APPROXIMATION
Let us recall that the wave function u( )r  is (Equation 15.110)

 u u e U u d
ik

( ) ( )
| |

( ) ( )
| |

r r
r r

r r r
r r

=
− ′

′ ′ ′
− ′

∫0
31

4
−
p

The second term can now be interpreted as the deviation of the wave function u( )r  from the incident 
wave function, u0 ( )r . The deviation g( )r  is defined as

 g u u( ) ( ) ( )r r r= − 0  (15.122)

 | ( )|
| |

( ) ( )
| |

g e U u d
ik

r
r r

r r r
r r

=
− ′

′ ′ ′
− ′

∫1
4

3

p
 (15.123)

The deviation | ( )|g r  is very small, if

 | | << | |g u( ) ( )r r0

But | ( )| | |u eikz
0 1r = =
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Therefore, the deviation of u( )r  from u0 ( )r  is small provided

 | ( )|g r << 1

If g( )r << 1, then we can restrict ourselves to first-order Born approximation. In the first order, we have

 
u e e U u dikz

ik
( )

| |
( ) ( ) ( ( . ))

| |
r

r r
r r r

r r
= −

− ′
′ ′ ′

− ′

∫1
4

15 1100
3

p
from

�� e e
r

e U u dikz
ikr

i− − ⋅∫1
4

15 1130
3

p
k r r r r( ) ( ) ( ( . ))from

The scattering amplitude f (q, f) is

 ƒ( , ) ( ) ( )q f
p

= − − ⋅∫1
4

2
2 0

3e mV u dik r r r r
�

 (15.124)

Let us write u0 ( )r  as u e eikz i
0

0( )r k r= = ⋅

where k0 = kẑ

 ∴ = − − − ⋅∫f e mV di( , ) ( )( )q f
p
1

4
2

0
2

3k k r r r
�

 (15.125)

This is the expression for scattering amplitude in the first-order Born approximation.

Central Potential
Let us take the potential V to a central potential.

i.e., V = V(r)

Let us define K k k= − 0

 � � �K k k= − 0

�K is called momentum transfer See Fig. 15.11.

q

k

k0
Z axis

Fig.15.11 K k k= − 0  for elastic scattering

 
K k k

k k k

2
0 0

2 2
0
2
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2 2
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2

2

2 2 1 4

= − ⋅ − = + − ⋅

= + − ⋅ = − =

[( ) ( )]

( cos )

k k k k k k

k k q kk 2

2
sinq

 (15.126)
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= −
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∞

−

−

∞
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= −

�

�
2

VV r Kr dr( )sin  
0

∞

∫  (15.127)

Scattering Amplitude for Yukawa and Coulomb Potential
The Coulomb potential is

 V r ZZ e
r

( ) = − ′ 2

The Yukawa potential is V r e
r

r
( ) =

−l
. For our purpose, we can write Yukawa potential as

 V r ZZ e
r

e r( ) = − ′ ⋅ −
2

l

Let us first try to evaluate the scattering amplitude for Coulomb potential.

 f
k

r ZZ e
r

Krdr( , ) sinq f m= − ⋅ − ′( )∞

∫2
2

2

0
�

 = ′ ∞

∫2 2

2
0

mZZ e
k

Krdr
�

sin

The integrand is an oscillating function, and so the integral does not converge. The usual trick is to 
multiply the integrand by a convergent factor e r−l  and in the end make l → 0. But this is literally 
replacing Coulomb potential by Yukawa potential. So we write

 

f
ZZ e

K
Kre dr

ZZ e
K

ZZ e

p

r( , ) sinq f m

m
l

m

l= ′

= ′ ⋅
+

= ′

−
∞

∫2

2 1

2

4

2

2
0

2

2 2 2

2

�

�

22 2 2 2

2
sin q l+( )�

 (use 15.126)
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\ The scattering cross section is
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Yukawa potential

15.15 VALIDITY OF BORN APPROXIMATION
The Born approximation is valid if the deviation from the incident wave function is very small. We 
have already seen that the deviation g( )r  is given by
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For Born approximation to be valid,
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 (15.128)

The maximum deviation is expected to occur near the origin where the target particle is situated. 
Therefore, the condition for the validity of Born approximation is
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For a spherically symmetric potential, we have
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Yukawa Potential
The validity of Born approximation for Yukawa potential V

V e

r

r

=
−
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 is determined by computing 
| ( ) |g 0 .
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From integral calculus, we have 
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Let us first consider low-energy limit. For small values of k, tan ln .− ∼ +( ) ∼1
2

2

2

2
2 2 1 4 4k k k k
l l l l

 and  
Retaining terms up to k

l
, we have 
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 (15.132)

For low-energy scattering, the deviation from the incident wave function is independent of velocity or 
energy of the incident particle. V

0
 is supposed to be very small. V

0
 should be sufficiently weak enough 

not to form a bound state. If bound states are formed, Born approximation fails.

Let us now consider high-energy limit. When k is very large, ln .1 4 22

2
+( )k k
l l

�  ln  Compared to 

in 2k
l

, arc tan 2k /l  is small, and it can be neglected.
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 (15.133)

Here, v is the velocity of the particle �k/m . The larger the velocity, the smaller is the deviation from 
the incident wave. So Born approximation is a high-energy approximation.
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Square Well Potential
The validity of Born approximation can be determined by computing |g(0)| for square well potential.
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Let us consider low-energy limit first.
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Again, we find that the deviation |g(0)| is independent of velocity or energy of the incident particle. 
Let us now consider high-energy limit.
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All the other terms can be neglected compared to 2ka for large value of ka.
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 (15.136)

This is essentially the same as the condition for Yukawa potential. 

15.16  BORN APPROXIMATION FROM TIME-DEPENDENT  
PERTURBATION THEORY

Let us now obtain the scattering amplitude of first-order Born approximation from time-dependent 
perturbation theory. The derivation of scattering cross section from time-dependent perturbation the-
ory is more general. It is time-dependent perturbation theory which is more useful in scattering theory 
in quantum field theory.

Let us recall from the Equation (15.13) that the cross section ds  is

 d
F

Wis = ⋅ → ∆
1

[ ]Ω  (15.137)

where F is the flux of the incident particle and Wi→ ∆Ω[ ] is the transition probability rate for transition 
from an initial state i to a group of final states.
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From Fermi’s golden rule, Wi→ ∆Ω[ ] is

 W u H u Ei f i f→ Ω = ⋅ 〈 ′ 〉[ ] | | | | ( )∆
2 2p r
�

u
i
 and u

f
 are the eigenstates of the Hamiltonian H

0
, which represents the free particle in the scattering 

theory. The wave functions representing the initial and the final states are given by

 u
V

ei
i i( ) /r p r= ⋅1 �

and u
V

ef
i f( )r p r= 1 ⋅ /�

We have chosen the box normalized wave functions to describe the incident and scattered particle. The 
values of p

x
, p

y
 and p

z
 are now discrete and are given by 

 0
6

, , , , ...± ±2 4p p p� � �
L L L

±

Our first task is to determine the density of states r( );Ef  i.e., r( )E dEf f  is the number of states 
between E

f
 and E

f
 + dE

f 
. This amounts to counting the number of states in this range. Each state is now 

specified by a set of three numbers: (p
x
, p

y
, p

z
). They form a set of grid points in three-dimensional 

p-space.

−4p�
L

−4p�
L

−2p�
L −2p�

L

2p�
L

2p�
L

2p�
L2p�

L

4p�
L

4p�
L

6p�
L

px

py

Fig.15.12 Representation of state in p-space

For the sake of clarity, we just show the two-dimensional p-space in Fig.15.12. The shaded region is a 
square of area ( )2 2p �/L . Each square of this area contains only one grid point or state. Therefore, the num-
ber of states within the area A is A L( )2 2p �/ . Extending this idea to three-dimensional space, each cube 

of volume ( )2 3p �/L  contains one state. The number of states in volume ν
p
 is  n pp L( )2 3�/  or L

p

3

3 38p
n

�
.  

Let us determine the volume ν
p
 of our interest in scattering theory. The scattering states corresponding 
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to the particles travelling in solid angle ∆Ω are represented by the grid points within the correspond-
ing solid angle ∆Ω in p-space as shown in Fig.15.13. The number of states between p and p + dp in 
this cone is the number of grid points within a volume slice of length dp and cross section area p2dΩ.

Pz

Px

Py

O
∆Ω dp

Fig.15.13 Volume n b = p2dΩdp for state with momenta between P and p dp+

The number of states between p and p + dp is 

 g p dp
p d dp
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L p dpd( )
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= = ⋅

2

3

3

3
2

2 8
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 (15.138)

Number of states between E and E + dE is
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(We have used the relation p E= ( ) ./2 1 2m )
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Corresponding to the wave function u
V

ei
i i= 1 p r⋅ / ,�  the incident flux F is 
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The scattering amplitude f (q, f) is given by

 f
V

u H uf i( , ) | | | |q f m
p

= − ⋅ 〈 ′ 〉
2 2�

 (15.141)

The negative sign is chosen to match with the expression for f (q, f) in (15.125).
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which is the same as (15.125).

E. Lab Frame and Centre of Mass Frame in Scattering Theory

15.17  TRANSFORMATION FOR SCATTERING CROSS SECTIONS  
IN TWO FRAMES

The scattering theory process involves a two-particle system: an incident particle and a target particle. 
So the Schrödinger equation is

 − − +





=� �2

1
1
2

2

2
2
2

1 2 1 2 1 22 2m m
V ET∇ ∇ ( , ) ( , ) ( , )r r r r r ry y  (15.143)

Instead of r
1
 and r

2
, we employ two other coordinates namely, the centre of mass coordinate R and 

relative coordinate r, which are given by

 R
r r

r r r=
+
+

−
m m

m m
1 1 2 2

1 2
1 2  and =  (15.144)

It has been shown that in Chapter 8 the Equation (15.143) becomes

 − ∇ − ∇ +





= +� �2
2

2
2

2 2M
V u E E uR r cmm

( ) ( ) ( ) ( ) ( ) ( )r R r R rΦ Φ

where − ∇ =�2
2

2M
ER cmΦ Φ( ) ( )R R  (15.145)

and −





�2
2

2m
∇ + =V u Eu( ) ( ) ( )r r r  (15.146)

In scattering theory, the coordinate system based on r
1
 and r

2
 is called laboratory coordinate system. 

The coordinate system based on R and r are is centre of mass coordinate system. All the analyses of 
scattering theory in the previous sections were using the Schrödinger equation of the type (15.146). 
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Therefore, all the theoretical calculations in the previous sections have been done in the centre of mass 
coordinate systems where the centre of mass is at rest.
Consider the experimental situations, in which, the target is at rest. The centre of mass is moving, and 
so r

1 
and r

2
 are better coordinates in such situations. This is, of course, laboratory coordinate system. 

So we have two types of situations:
Theoretical calculations - Centre of mass coordinate system
Experiments - Laboratory coordinate system
Therefore, there is a necessity to find the relationship relating the values of scattering cross sections 

in two different coordinate systems.

V1L V2L = 0Lab

V1C V2C
CM

qL

V1L
′

V2L
′

qC

p − qC

V1C
′

V2C
′

Before scattering After scattering

Fig.15.14 Scattering process in lab and centre of mass coordinate systems

Let us first obtain some kinematical relations, which will be useful in relating the solid angle in the 
two coordinate systems. Let V V1 2L L and  be the velocities of the incident particle and the target parti-
cle in the lab coordinate system before scattering. They become ′ ′V V1 2L L and  after scattering.

The corresponding quantities in the centre of mass frame are V V1 2C C and  before scattering and 
′ ′V V1 2C C and  after scattering as shown in Fig.15.14.
The velocity of the centre of mass (as measured in the lab frame) is 

 V
V V V V

C
L L L Lm m

m m
m m

M
=

+ +1 1 2 2

1 2

1 1 2 2

+
=

V V1 2C C and  are the velocities of the particles 1 and 2 before scattering as measured in the centre of 
mass coordinate system. i.e., they are the velocities with respect to the centre of mass.

 ∴ = − = −
+
+

V V V V
V V

1 1 1
1 1 2 2

1 2
C L CM L

L Lm m
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m

m m mL L r
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 (15.147)
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 V V V V
V V

V2 2 2
1 1 2 2

1 2 2
C L CM L

L L
r

m m
m m m

= − = −
+
+

= − m

The momenta of the particles 1 and 2 in the centre of mass coordinate system are

 p V V1 1 1C C rm= = m

and p V V2 2 2C C rm= = −m

Therefore, the total momentum is zero in the centre of mass frame. Though we have derived these 
equations for the particles before scattering, these relations hold good after scattering also. Therefore, 
the total momentum p p p= + =1 2 0C C  always.

The total kinetic energy in the centre of mass frame is a conserved quantity.
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= | |
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So, in the centre of mass coordinate system, only the direction of the momentum changes after scat-
tering, i.e., the magnitude of the momentum before scattering and after scattering is the same. We will 
use this result to determine the geometrical relationship between qL  and qC .

Since the target is at rest initially, V2 0L =

 ∴
+

V
V

CM
Lm

m m
= 1 1

1 2

 (15.148)

Therefore, the direction of the velocity of the centre of mass is always along the incident direction of 
the beam.

Let us consider the velocities of the particles after scattering.

 
V V V

V V V

′
′

1 1

2 2

L C CM

L C CM

= ′ +
= ′ +

Since VCM  is parallel to the direction of the incident beam, only the parallel components of ′ ′V V1 1L Cand  
differ, while the vertical components of ′ ′V V1 1L Cand  are the same.

 
∴ ′ = ′ +
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Let us now determine 
V
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From (15.147) and (15.148), we have
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Since | | | |,′ =V V1 1C C  we have 

 ′ =V1
2

1
C CM

m
m

V

 ∴ =
+

tan
sin

cos
q

q

q
L

C

C

m
m

1

2

 (15.150)

The observer in the lab frame finds ∆ N particles per second to be scattered into the solid angle ∆Ω. 
This number should be the same with respect to an observer in the centre of the mass frame also. But 
the value of the solid angle for these ∆ N particles as measured by the observer in the centre of mass 
frame is ∆Ω

CM
, which is different from ∆Ω

Lab
.
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From (15.150), we can get 
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 If tan , sin ,cos .q q q= =
+
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Differentiating Equation (15.150) with respect to qL , we get
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Making use of the expression for cosqL we get
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 (15.152)

F. Identical Particles and Scattering Amplitude

15.18 SCATTERING CROSS SECTION AND INDISTINGUISHABILITY
If the incident and the target particles happen to be the same kind, the whole system is a system of 
identical particles. For instance, it may be a proton-proton or neutron-neutron scattering. The wave 
function describing such systems should take into account the symmetric or antisymmetric nature 
with respect to exchange of particle coordinates. 

Consider the collision of two identical particles A and A. 
In the case of indistinguishable particles, the wave function for the system is either symmetric or 

antisymmetric with respect to the exchange of particles.

 y
y y
y y

( , ) :
( , ) ( , )

( , ) ( , )
r r

r r r r

r r r r1 2
2 1 1 2

2 1 1 2

s s

a a

=
= −





Instead of r r1 2 and , we have been working in terms R r and , where  R
r r r r

=
m m

m m
1 1 2 2

1 2

1 2

2
+
+

=
+

 and 

r r r= −1 2 . Here R is the coordinate of the centre of mass and r is the relative coordinate.
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Under r r R R r r1 2↔ → −, , →  (15.153)

Therefore, for a symmetric wave function, we have

or 

y y
y y

s s

s s

( , ) ( , )

( , ) ( , )

r r r r

R r R r
2 1 1 2=
− =

 (15.154)

Similarly, for an antisymmetric wave function, we have 

or 

y y
y y

a a

a a

( , ) ( , )

( , ) ( , )

r r r r

R r R r
2 1 1 2= −
− = −

 (15.155)

Let us write y y c f( , ) ( , ) ( )r r r r R r1 2 1 2 as = ( )

Since R remains the same with respect to the exchange of particles 1 and 2, it is enough to consider 
f ( )r .

Let us recall that in spherical polar coordinates,

 r r→ − ⇒ → → − → +r r,q p q f p f,  (15.156)

The wave functions for bosons and fermions are

 y q p q
s

ikz ikz ikre e
f f

r
e= + + + −





−−( )
( ) ( )

Bosons (15.157)

 y q p q
a

ikz ikz ikre e
f f

r
e= − + − −





−−( )
( ) ( )

Fermions  (15.158)

The corresponding processes are shown in Fig.15.15.

A

A A

A

A A A A

(a) (b)

Fig.15.15 Scattering of identical particles

Suppose the upper detector detects A. Which A? Is it from right (Fig. 15. 15(a)) or is it from left (Fig. 15. 
15(b))? In classical physics, two identical particles are distinguishable with the help of trajectories. By 
tracing back through their trajectory, we can determine whether the particle A has come from left or right. 
These two processes are mutually exclusive. Therefore, the probability of A being from left or right is
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In the case of quantum mechanics, the particles are indistinguishable. From the final outcome, it is not 
possible to tell whether the process in Fig.15.15(a) or Fig.15.19(b) has occurred. We have to go back 
to the wave function which takes both processes into account.

The wave function is now given by 

 y q f p q p f= ± + ± − +−( ) [ ( ) ( , )]e e f f e
r

ikz ikz
ikr

,

The scattering cross section d
d
s
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The first two terms show the same result as it is based on classical physics in which the two parti-
cles are distinguishable. The second term is unique to quantum mechanics. It is due to interference 
between the two processes shown in Fig.15.15.

In partial wave analysis, the scattering amplitude for distinguishable particles is 

 f
k

l e Pi
l l

l

l( , ) ( ) sin (cos )q f d qd= +
=

∞

∑1 2 1
0

Note that P P Pl l
l

l(cos( )) ( cos ) ( ) (cos )p q q q− = − = −1

So we have f
k

l e P
l

i
l l

l( ) ( ) sin (cos( ))p q d p qd− = + −
=

∞

∑1 2 1
0

 = + −
=
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∑1 2 1 1
0k

l e P
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i
l

l
l

l( ) sin ( ) (cos )d d q

The scattering amplitude for indistinguishable particles is 

 f f
k

l e Pi

l
l l

ll( , ) ( , ) ( ) sin (cos )[ ( ) ]q f q f d qd± = + ± −
=

∞

∑1 2 1 1 1
0

For bosons, the partial waves of odd l do not contribute to the scattering amplitude. Similarly, even l 
partial waves do not contribute for fermions.
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Identical Fermions – Including Spin
So far, we have not taken into account the spin degree of freedom. When spin degree of freedom is 
included, the wave functions for the system itself become more involved. Let us consider the scatter-
ing of two spin 1 2/  fermions. This may be the case of electron-electron, proton-proton, or neutron-
neutron scattering. When angular momenta of quantum number s s1 21 2 1 2= =/   and  /  are combined, 
the resulting angular momentum is either s = 1 (triplet states) or s = 0 (singlet states). The wave func-
tion describing the system of the two functions is y a s s( ; ).r r1 1 2 2

 y ya as s s s( ; ) ( ; )r r r r2 2 1 1 1 1 2 2= −

Let us write the wave function y
a
 as

 y ca s s s s( ; ) ( , ) ( , )r r r r1 1 2 2 1 2 1 2= Φ

Now we have two possibilities.

and 

y c
y c

a t a

a s s

s s s s

s s s s

( ; ) ( , ) ( , )

( ; ) ( , ) (

r r r r

r r
1 1 2 2 1 2 1 2

1 1 2 2 1 2

=
=

Φ
Φ rr r1 2, )

The spin dependent wave functions c
t
 and c

s
 are symmetric and antisymmetric with respect to 

exchange of spin coordinates. The corresponding spatial wave functions Φ Φa s( , ) ( , )r r r r1 2 1 2 and  have 
to be antisymmetric and symmetric with respect to exchange of position coordinates. 

Therefore, we have the following results:

Triplet:
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Singlet:
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It is interesting to consider a special case, namely q p=
2

 for the case of scattering amplitudes which 
are independent of f.

For q p=
2

,

 d
d t

s
Ω( ) = 0

 d
d

f
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s
s p
Ω( ) = ( )4

2

2
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For a system of two particles, there are three possible values of m
s
 (± 1, 0), and there is one singlet 

states. So, in general, there are four possible spin polarization states. There are experimental situations 
where details of polarization of the incident and target particles are not involved. In such cases, we can 
take the statistical average of the cross sections given by 

 d
d

d
d

d
dt s

s s s
Ω Ω Ω

= +3
4

1
4( ) ( )

The above analysis does not take into account other details like spin-dependent interaction.

APPENDIX I

Optical Theorem
There is a relationship between the total cross section and the imaginary part of scattering amplitude. This 
is based on the fact that the number of particles scattered out of the incident beam is the same as the num-
ber of particles missing in the forward direction (in the direction of the incident beam) behind the target.

The wave function for the incident beam is 

 y in = eikz

The incident flux is F k m= � / , and so the total number of particles scattered out of incident beam is 

F k
m

s s= � . Therefore, behind the scattering target, there should be a depletion of these particles in 

the forward direction. To check this conclusion, let us consider the number of particles in the forward 
direction through an area A See Fig. 15.6. If the scattering target is not present, the flux in the for-

ward direction will remain unchanged; hence, the number particles crossing A should be �k
m

A . The 

presence of scattering target will change this number, and our task is to prove that the new number is 
� �k
m

A k
m T− s  explicitly using the Schrdinger wave function.

The outgoing scattered wave is 

 y q fout = +e f e
r

ikz
ikr

( , )

Z

A

q

Fig.15.16 Optical theorem

The outgoing wave function in the forward direction is 

 y out = +e
f

r
eikz ikr( )0
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Consider a region A in the plane at z axis. This area A subtends a small angle q  on the target.
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The outgoing flux is
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Since the term 
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eik x y z( ) ( )0 2 2 2+  itself is small, we can neglect the derivative of this term.
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 be the number of outgoing particle through area A.
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For large z, A will be sufficiently large enough to make the integral limits to extend from -∞ to ∞.
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where s p
T k

f= 4 0Im ( )  (15.159)

Let us reiterate that �k
m

A⋅  is the number of particles that would have crossed the area A in the absence 

of scattering and �k
m Ts  is the number of particles that have been removed from the incident beam. 

Obviously, this is the number of particles that have been scattered out of the incident beam.

In terms of probability, the probability current density for the particle along z axis is �k
m

 Behind the 

target, there is a reduction in the probability current along z axis by a factor − +2 0 2 2 2/z f eik x y zRe[ ( ) ].( )  

So the optical theorem is an expression of conservation of probability. This reduction can be linked 
to wave property of the matter. In wave mechanics, everything is discussed only in terms of waves. 
The reduction in intensity (| |y 2 1=  for incident beam) in the forward direction behind the target can be 
achieved by a destructive interference due to the superposition of the incident wave and the scattered 
wave. (Note that this is not total destructive interference to make the intensity zero.)

APPENDIX II

Green’s Function − − ′
− ′1

4p
eik r r

r| |r
There are many ways for obtaining Green’s function from the definition

 ( ) ( ) ( )∇ + − ′2 2k G r, r r r= d  (15.160)

We choose a particular method which uses the techniques of complex variable. This method illustrates 
how different boundary conditions lead to different Green’s function. This method will help us to find 
similar Green’s function in relativistic quantum field theory where it plays a major role. 

To evaluate G( ),r, r′  let us consider its Fourier transform g( ).s

 G g e di( )
( )

( ) (r, r s ss r r′ = ∫ ⋅ − ′1
2 3

3

p
)  (15.161)

The Dirac delta function d ( )r r− ′  can be written as 
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 d
p

( )
( )

( )r r ss r r− ′ = − ′∫1
2 3

3e di i  (15.162)

Substituting (15.161) and (15.162) in the Equation (15.160), we get
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Let us evaluate this integral in spherical polar coordinates. 
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Change the integration variable s to s′= -s.
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(We have used the fact that s′ is a dummy variable and so it is replaced by s in the last step.)
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This has a singularity at s = ±k. Let us evaluate this integral by making s a complex variable. s now 
becomes s s isR i= + , where s

R
 and s

i
 are real numbers. Then, the above integral becomes a contour 

integral.
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 s
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 =
−∫ − ′s

s k
e dsis

2 2� | |r r  (15.166)

We have to choose the contour in such a way that (i) the correct pole for our purpose is included and 
(ii) the line integral →∫ 0

Γ

 for large s. The convergence of the integral decides the curve Γ to be a 

semicircle in the upper half plane. This can be easily seen as follows:
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For large s on the contour Γ, the factor

 e si− − ′ → →∫| | .r r 0 0 and  so 
Γ

As far as the inclusion of the poles is concerned, we can include the pole at s k s k= = − or  or both. 
Each of these choice leads to different Green’s function and hence different solutions u( ).r

Im s

−k

k

−∞ ∞

r

Re s

Fig.15.17 Contour for Green’s function

It is true that there are many possible solutions for Schrödinger equation. But in scattering theory, we 
look for solutions which will lead to the asymptotic behaviour given in Equation (15.9). This criterion 
leads to the choice of contour shown in Fig.15.17, which includes the pole at s = k.

 G i s
s k s k

e ds
i s

( , )
( )( ) | |

| |
r r

r r

r r
′ =

+ − − ′
− ′

∫4 2p �

 = − ⋅
− ′

− ′1
4p

eik | |

| |

r r

r r
 (15.167)

EXERCISES
 1. What is meant by scattering cross section?
 2. What is the difference between cross sections in classical and quantum mechanics?
 3. Are the scattering cross section and the geometrical cross section the same?
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 4. The geometrical cross section of a nucleus is p r A0
2 2 3/ . Assuming r

0
 = 1.4 F and A = 197 for gold 

atom, estimate the geometrical cross section. Can scattering cross section be greater than this 
number?

 5. What is meant by optical theorem?
 6. How will you interpret optical theorem in terms of wave properties?
 7. What is meant by phase shift?
 8. What is meant by scattering amplitude?
 9. Is there a difference between scattering amplitude and scattering length?
 10. Does the radial wave function for s wave in the low-energy scattering become zero at r = a  where  
a is the scattering length?

 11. What is meant by resonant scattering?
 12. What is meant by zero energy bound state and zero energy scattering state?
 13. The interaction potential between the incident and the target particles is V r V e r a( ) .= −

0
22 2  Show 

that d
d
s
Ω

 is the first-order approximation in

 d
d

a V
e k as pm

Ω
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2 2 6
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2

4

2 2
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−

 14. The interaction potential between the incident particle and the target particles is 
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Relativistic Wave 
Equation

The Schrödinger equation is non-relativistic wave equation. Non-relativistic and relativistic domains are 
generally determined by the velocity of the particle. If n /c  is much less than 1, we call it non-relativistic 
domain, and if n /c  is closer to 1, then it is called relativistic domain. Within quantum mechanics, whether 
a system is non-relativistic or relativistic is determined by the fact that whether the non-relativistic 
Hamiltonian or relativistic Hamiltonian is quantized; i.e., whether the transition from classical 
mechanics to quantum mechanics is done through non-relativistic or relativistic Hamilton.

Irrespective of the velocity of the particle, there is a compelling necessity to combine quantum 
mechanics and special theory of relativity. This comes from the fact that all the laws of physics should 
be Lorentz covariant. This is a very strong requirement.

The non-relativistic quantum mechanics is based on a set of postulates. The special theory of rela-
tivity and the quantum mechanics have to be combined in a way consistent with those postulates. An 
attempt in this direction ended up with a set of relativistic wave equations and quantum fi eld theory.

In non-relativistic quantum mechanics, we have only one equation namely, the Schrödinger equa-
tion to determine the time evolution of the state y ( , )r t  of the system. In relativistic quantum mechan-
ics, we have many equations for y ( , )r t , each describing a particular category of particles depending 
on spin angular momentum. Let us mention here some of these equations.

 1. Klien Gordan (KG) equation for spin zero particles
 2. Dirac equation for spin 1 2/  particles
 3. Maxwell’s equation for photon

Here, we concentrate only on the Klien Gordan and Dirac equations. The Klien Gordan equation and 
the Dirac equation have been developed in this chapter in the same way normally presented in a text-
book at this level. First, the arguments leading to the formulation of the Klien Gordan equation and 
its ‘shortcomings’ are presented. Then, the Dirac equation is developed as an alternative to the Klien 
Gordan equation. This sounds as if the Klien Gordan equation is wrong. We have to mention that both 
the equations are valid equations, but they describe different kinds of systems, and both of them have 
to be reformulated in terms of quantum fi elds.

16.1 KLIEN GORDAN EQUATION
In non-relativistic quantum mechanics, the classical Hamiltonian H = +p m V2 2/  is the starting point. 
To make a transition to quantum mechanics, we write the wave equation for y  as 

 Ey  = Hy (16.1)

16
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where E is replaced by E i t= ∂ ∂� /  and H is replaced by H
op

, which, in turn, is obtained by replacing 
r by r and p by − ∇i� . The Hamiltonian operator H

op
 is given by H m V top = − +�2 22/ ∇ ( , )r . So the 

equation becomes

 i
t m

V t� �∂
∂

= − +





y y
2

2

2
∇ ( , )r  (16.2)

which is the Schrödinger equation.
Let us extend the same method to relativistic case also to obtain the relativistic wave equation. This 

is not a derivation but a set of arguments leading to the formulation of Klien Gordan equation. The 
classical Hamiltonian for the relativistic free particle is H c= +p m c2 2 2 4 . To make the transition to 
quantum mechanics, the wave equation is now written as

 Ey  = Hy

or i
t

c m c� �∂
∂

= − +y y[ ]2 2 2 2 4 1 2∇ /  (16.3)

What is meant by the operator in the RHS of the Equation (16.3)? What is the effect of this operator on 
a wave function (for instance, the effect of d dx/  on sin kx is to produce k cos kx)?. It is very difficult to 
interpret the partial derivatives inside a square root. To circumvent this problem, let us go to a different 
equation where partial derivatives inside a square root is not involved.

We can achieve this result as follows. In classical physics, we have

E 2 = p2c2 + m2c4

So the quantum mechanical wave equation is written as

E p c m c2 2 2 2 4y y= +( )

Replacing E by i
t

i� �∂
∂

−and byp ∇,  we get

or 

i
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i
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c i i m c
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� �

∂
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( ) ( )

[ mm c2 4 ]y  (16.4)

This is the well-known Klien Gordan equation. This equation can be rewritten in many ways. Dividing 
throughout by −c2 2� , we get

 1
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2
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�
 (16.5)
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16.2 FREE PARTICLE SOLUTION TO KG EQUATION
Having constructed a wave equation, we have to find the solutions describing different systems. The 
simplest system is the free particle, and so let us analyze the case of free particle using Klien Gordan 
equation. For free particles, the Klien Gordan equation is

 − ∂
∂

= − +� �2
2

2
2 2 2 2 4y y

t
c m c( )∇

We have to construct a solution which describes the free particle in a way consistent with the known 
physics. From physics considerations, we expect the free particle to have definite momentum p and 
energy E. Therefore, it should be an eigenfunction of momentum operator −i�∇. Then, y = −Nei Et( . )p r � 
will be the appropriate wave function to describe a free particle. This is also consistent with  
De Broglie wave property of a free particle. So let us try y = −Nei Et( . )p r � as a solution to the Klien 
Gordan equation. We have to check whether this function satisfies the KG equation.

LHS of KG equation

 − ∂
∂

= − −( )−� �
�

�2
2

2
2

2y
t

N e iEi Et( . ) /p r  = −E Nei Et2 ( . )p r /�

RHS of  KG equation

 ∇ ∇2 2y = −N ei Et( . )p r /�  = 





−N
i

ei Etp p r

�
�

2

( . ) /  = − −N
p

ei Et
2

2�
�( . )p r /

 ∴ − + = + −� �2 2 2 2 4 2 2 2 4c m c N p c m c ei Et∇ y y ( ) ( . )p r /

The wave function y = ⋅ −Nei Et( )p r /� is solution to the Equation (16.5) if LHS and RHS are equal.

 ∴ = +− −E Ne N p c m c ei Et i Et2 2 2 2 4( . ) ( . )( )p r p r/ /� �

This is possible provided E2 = p2c2 + m2c4.  Taking the square root of E2, we get E to be E p c m c= ± +2 2 2 4 . 

So, for a free particle obeying KG equation, we have two energy eigenvalues E p c m c= + +2 2 2 4  and 

E p c m c= − +2 2 2 4 .
Let us define E

p
 as E p c m cp = +2 2 2 2  where E

p 
is a positive quantity by definition. In terms of E

p
, 

the possible energy eigenvalues are E = E
p
 and E = −E

p
. So, for a free particle KG equation, we have 

two possible solutions:
Solution I: y I

/= −Nei E tp( . ) .p r �  This represents a particle with momentum p and energy E Ep= .
Solution II: y II

/= Nei E tp( . )p r+ � . This represents a particle with momentum p and energy E Ep= − .
The second solution represents a free particle with negative energy −Ep.

16.3 PROBLEM WITH NEGATIVE ENERGY SOLUTION
The negative value for energy of a free particle causes considerable difficulties. From the structure of 
quantum mechanics, we know that whenever we make a measurement of a dynamical variable A, the 
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possible experimental outcome has to be one among the eigenvalues of the operation A
op

. If the Klien 
Gordan is true for a relativistic particle, experimentally, we should observe a free particle with negative 
energy. But, experimentally, no such particle has been observed. Since no such particle is found experi-
mentally, the existence of negative energy solution poses a serious problem. We cannot simply dismiss 
the negative energy solution as unphysical. The structure of quantum mechanics does not have a provi-
sion to take some subset of the eigenvalues as physical and disallow remaining subset of eigenvalues as  
unphysical.

In fact, one cannot leave out any particular eigenstate since all the eigenstates are required to form 
a complete set. This is very much required, since any general solution to Klien Gordan equation can 
be expressed as a linear combination of eigenstates only if all the eigenstates of a complete set are  
available.

16.4 PROBABILITY INTERPRETATION AND KG EQUATION
In non-relativistic quantum mechanics, from the Schrödinger equation, we can derive the equation of 
continuity given by

 ∂
∂

+ ⋅ −





=
t mi

( * ) ( * *)y y y y y y∇ ∇ ∇�
2

0  (16.6)

This equation is a consequence of the fact that y  satisfies the Schrödinger equation.
The expression y  *y is interpreted as probability density r( , ).r t  This is consistent with (i) the 

mathematical requirement that the expression for the probability should always be positive and  
(ii) the requirement from the physics consideration that the total probability is a conserved quantity 

 y y t t* ( , )d P t d=( )∫∫ r  is independent time

In relativistic quantum mechanics, y  satisfies a different differential equation namely, KG equation. 
We would like to derive the equation of continuity as a consequence of KG equation and subsequently 
identify suitable mathematical expressions as the probability density r( , )r t  and probability current 
density S r( , )t .

The KG equation is

 − ∂
∂

= − +� �2
2

2
2 2 2 2 4y y y

t
c c∇ m  (16.7)

Its complex conjugate is 

 − ∂ ∗
∂

= − +� �2
2

2
2 2 2 2 4y y y

t
c m c∇ ∗ *  (16.8)

Multiply the Equation (16.7) by y  * and the Equation (16.8) by y  to get

 − ∂
∂

= − +�2
2

2
2 2 2 2 4y y y y y y* * *

t
c h m c∇  (16.9)
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and

 − ∂
∂

= −�2
2

2
2 2 2 2 4y y y y y y*

* *
t

c h m c∇ +  (16.10)

Subtracting the Equation (16.9) from the Equation (16.10), we get

 � �2
2

2

2

2
2 2 2 2y y y y y y y y*

*
[ * * ]

∂
∂

− ∂
∂







= −
t t

c ∇ ∇

Dividing throughout by −2 2imc �, we get

 � �
2 22

2

2

2

2
2 2

imc t t im
∂
∂

− ∂
∂







= −y y y y y y y y*
* [ * * ]∇ ∇

 � �
2 2

0
2

2

2

2

2
2 2

imc t t im
∂
∂

− ∂
∂







+ − =y y y y y y y y*
* [ * * ]∇ ∇

 � �
2 2

0
2imc t t t im

∂
∂

∂
∂

− ∂
∂







+ ⋅ − =y y y y y y y y*
* [ * * ]∇ ∇ ∇

This equation has the structure

 
∂
∂

+ ⋅ =r
t

∇ S 0

provided we identify r  and S as

 r y y y y
( , )

*
*r t

imc t t
= ∂

∂
− ∂

∂






�
2 2

 (16.11)

and S r( , ) [ * * ]t h
im

= −
2
y y y y∇ ∇  (16.12)

The second equation is exactly the same as the expression for probability current in non-relativistic 
quantum mechanics. This fact immediately suggests that the RHS of the Equation (16.11) to be inter-
preted as probability density.

However, this expression has two terms, of which one term is subtracted from the other. Depending 
on the values of the terms y y*∂ ∂/ t  and y y∂ ∂* ,/ t  the expression for r  may be positive or nega-
tive. Hence, r  is not a positive definite quantity. Since probability density has to be always a positive 
quantity, this expression cannot be interpreted as probability density.

In fact, for free particles, substitution of the wave function y = −Nei Et( . )p r /�  in the expression for r
leads to

 r = ( )


−− − − − −�
�

� �

2 2imc
Ne N iE e N ei Et i Et i Et( . ) ( . ) ( . )* *p r p r p r/ / // /� �

�
N iE ei Et−( ) 


−( . )p r

 = =�
�2

2
2

2
2

2imc
N iE N E

mc
| |

| |
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For positive energy particle E E p c m cP= = +2 2 2 4 , and r = N E mcp

2 2/  is a positive quantity.

For negative energy particle E E p c m cP= − = − +2 2 2 4 , and so r = − N E mcp

2 2/  is a negative 
quantity.

This brings the second problem of Klien Gordan equation namely, the expression for probability 
density is not consistent with the requirement that the probability density should be positive definite.

The problems regarding the existence of negative energy eigenstates for a free particle and the 
interpretation of the expression for r  are solved only in quantum field theory in which the negative 
energy particle is shown to be equivalent to positive energy antiparticle and r  is not interpreted as the 
probability density to find the position of a particle, but it is interpreted as the number density operator 
in Fock space for particle and antiparticles.

16.5 KLIEN GORDAN EQUATION AND HYDROGEN ATOM
Having analyzed the consequences of Klien Gordan equation for free particle, let us now get the 
bound-state energy levels for hydrogen atom. Let us recall that one of the successes of Schrödinger 
equation is the derivation of Bohr energy levels correctly. However, the fine structure of the hydrogen 
atom could not be accounted well. If the Klien Gordan equation works well for hydrogen atom, then 
we should get the Bohr energy level as well as the fine structure splitting of these levels correctly.

In the hydrogen atom, the electron is in the Coulomb potential due to charge Ze of the nucleus. The 
potential energy of the electron is given by V e Ze r Ze r= − = −( )( ) ./ /2

In non-relativistic quantum mechanics, the Schrödinger equation for hydrogen atom is 

 − −( ) =�2
2

2

2m
Ze

r
u r Eu r∇ Φ Φ( , , ) ( , , )q q

This equation has be solved subject to the boundary condition u(r, q, f). → 0 as r → ∞
Let us define the fine structure constant a as a = e c2 /� . From the Schrödinger equation, the energy 

eigenvalues of the hydrogen atom are found to be E mc Z nn = − 2 2 2 22a / .
Let us now solve Klien Gordan equation for hydrogen atom. The Klien Gordan equation for an 

electron of charge −e in the electromagnetic field is obtained by replacing E by E e+ Φ and p by 
p A+ e c/  in the free particle equation E p c m c2 2 2 2 4y y= +( ) .

In the operator form, this amounts to replace i t� ∂ ∂/  by ( )i t e� ∂ ∂ +/ Φ  and −i∇ by −( )i e
c

�∇ + A . 
So the Klien Gordan equation for hydrogen atom is

 i
t

e c i e
c

m c� �∂
∂

+( ) = −( ) +Φ ∇ +
2

2
2

2 4y y yA

For hydrogen or hydrogen-like atoms, A= 0 and Φ = Ze r/ . Therefore, we have

 i
t

Ze
r

c m c� �∂
∂

+( ) = −
2

2 2 2y y y∇ + 2 4  (16.13)

Let us write y  as

 y = e uiEt− � ( )r  (16.14)
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Then, LHS of the Equation (16.13) is

 i
t

Ze
r

i
t

Ze
r

e uiE t� � �∂
∂

+( ) ∂
∂

+( ) −
2 2

( )r  = ∂
∂

+( ) +( ) −i
t

Ze
r

E Ze
r

u e iEt� �
2 2

( )r

 = +( ) −E Ze
r

u e iEt
2 2

( )r �

RHS of the Equation (16.13) is 

 ( )− + −c u m c u e iEt2 2 2 2 4� �∇

Equating LHS and RHS, we get

 E Ze
r

u c u m c u+( ) = − +
2 2

2 2 2 2 4� ∇

Let us rewrite the above equation as

 ∇2u m c u
c

E Ze
r

u− + +( ) =
2 2

2 2 2

2 2
1 0

� �
 (16.15)

Let us write the solution u as

 u u r R r Ylm( ) ( , , ) ( ) ( , )r = =q q jΦ

Let us recall that

 L Y l l Ylm lm
2 21( , ) ( ) ( , )q j q j= + �

and

 ∇2
2

2
2

2 2
1= ( ) −
r

d
dr

r d
dr

L
r �

 ∴ = ( ) −∇2
2

2
2

2 2
1u
r

d
dr

r d
dr

u L u
r �

 = ( ) −1
2

2
2

2 2r
d
dr

r dR
dr

Y
RL Y

rlm
lm

�

 = ( ) − +1 1
2

2
2r

d
dr

r dR
dr

Y
l l

r
RYlm lm

( )
 (16.16)

Making use of the Equation (16.16) in the Equation (16.15), we have

 1 1
2

2
2

2 2

2r
d
dr

r dR
dr

Y
l l

r
RY m c RYlm lm lm( ) − + −( )

�
 + +( ) =1 0

2 2

2 2

c
E Ze

r
RYlm�
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Factoring out Ylm and rearranging different terms, we get

 1 1 2
2

2
2 2

2 2 4
2

2 2r
d
dr

r dR
dr c

E m c R EZe
c r

R( ) + − +
� �

[ ]  − + − =l l Z e c
r

R
( )1

0
2 4 2 2

2

�
 (16.17)

Let us define s as

 s s l l Z e
c

( ) ( )+ = + −1 1
2 4

2 2�
 (16.18)

The fine structure constant is a = e c2/� , and its value is 1 137/ . Therefore, s s r( )+1 2/  is almost same as 
the term l l r( )+1 2/  in the radial equation for hydrogen atom in the non-relativistic quantum mechanics. 
Therefore, s should be a positive quantity.

Let us rewrite the Equation (16.18) as

 s2 + s − l 2 − l + Z 2 a  2 = 0

This is a quadratic equation in s. Solving this equation, we get

 s l l Z= − ± + + −1 1 4 4 4
2

2 2 2a  
− ± + −1 2 1 4

2

2 2 2( )l Z a
 (16.19)

Since s has to be positive, we take only one root, and so we have

 

s Z l Z= − + + −[ ] = − + +( ) −





= −

1
2

1
2

2 1 4 1
2

1
2

2 1
2

1

2 2 2 1 2
2

2 2

1 2

( )l a a/
/

22
1
2

2
2 2

1 2

+ +( ) −





l Z a
/

 (16.20)

It terms of s, the Equation (16.17) is written as

 1 2 1
0

2
2

2 2 4

2 2

2

2 2 2r
d
dr

r dR
dr

E m c
c

EZe
c r

s s
r

R( ) + − + − +





=
� �

( )
 (16.21)

Note that for hydrogen atom, the bound state energy E is less than the free particle energy mc2. 
Therefore, (E2 − m2c4) is negative quantity.

Define r = c r where c is an arbitrary constant, which can be chosen to suit our convenience. Then, 
the Equation (16.21) becomes

 
c
r r

r
r r

c c
r

2

2
2

2 2 4

2 2

2

2 2

2

2
2 1d

d
dR
d

E m c
c

EZe
c

s s





+ − + − +



� �

( )


=R 0

Dividing throughout by c 2, we get

 1 2 1
2

2
2 2 4

2 2 2

2

2 2 2r r
r
r c rc r

d
d

dR
d

E m c
c

EZe
c

s s





+ − + − +



� �

( )
 =R 0 (16.22)
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Let us recall that the non-relativistic radial equation for hydrogen atom is 

 1 1
4

1
0

2
2

2r r
r
r

l
r r

d
d

dR
d

l l
R







+ − − +





=( )
 (16.23)

The Equation (16.22) will have exactly the same structure as that of the Equation (16.23), provided 
we have

 E m c
c

EZe
c

2 2 4

2 2 2

2

2 2
1
4

2− = − =
� �c c

land

So we have 

 c l
c

a
c

= − = =2 2 22 4 2 1 2
2

2 2� � �c
m c E EZe

c
EZ
c

( ) /   and    (16.24)

The Equation (16.22) now becomes

 1 1
4

1
0

2
2

2r r
r
r

l
r

d
d

dR
d

s s
p

R






+ − − +





=( )
 (16.25)

This equation has to be solved, subject to the boundary condition R (r) → 0 as r → ∞.
Working with a series of solution as done in the non-relativistic case, it can be shown that this 

boundary condition is satisfied, provided

 l = n′ + s + 1 with n′ = 0, 1, 2…

 = ′ − + +( ) −





+n l Z1
2

1
2

1
2

2 2

1 2

a
/

 = ′ + + +( ) −





n l Z1
2

1
2

2
2 2

1 2

a
/

 (16.26)

Expanding in powers of a, we can write

 l a= ′ + + +( ) −
+( )













n l Z

l

1
2

1
2

1
1
2

2 2

2

1 2/

 = ′ + + +( ) −
+( )

−
+( )

+











n l Z

l

Z

l

1
2

1
2

1
2 1

2
8 1

2

2 2

2

4 4

4
a a ....

 = ′ + + + −
+( ) −

+( )
n l Z

l

Z

l

1
2

1
2 2 1

2 8 1
2

2 2 4 4

3
a a
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 = ′ + + −
+( ) −

+( )
n l Z

l

Z

l
1

2 1
2 8 1

2

2 2 4 4

3
a a  (16.27)

Put n′ + l + 1 = n. The possible values of n are n = 1, 2, 3…

 ∴ = −
+( ) −

+( )
l a an Z

l

Z

l

2 2 4 4

3

2 1
2 8 1

2

 (16.28)

Let us rewrite this equation as follows:

where 

l a a a a= −
+( ) −

+( )












= − −

=

n Z

n l

Z

n l
n a b

a Z

n

1
2 1

2 8 1
2

1

2

2 2 4 4

3
2 4

2

( )

ll
b Z

n l+( ) =
+( )1

2 8 1
2

4

3
and

 (16.29)

From the Equation (16.24), we have

 l a
c

a2
2 2 2

2 2 2

2 2 2

2 4 2
4= =

−
E Z

c
E Z

m c E�
 

 ∴ + =E Z m c2 2 2 2 2 4 2( )a l l  (16.30)

or 

E m c
Z

m c
Z

E mc Z

2
2 4 2

2 2 2

2 4

2 2

2

2
2 2

2

1 2

1

1

=
+

=
+( )

= +( )−

l
l a a

l

a
l

/

 (16.31)

Let us now evaluate Z 2 2 2a l/  using binomial expansion up to the order a 4 . Using the Equation (16.29),  
we get

 

Z Z
n

a b

Z
n

a b a b

2 2

2

2 2

2
2 4 2

2 2

2
2 4 2 4 2

1

1 2 3

a
l

a a a

a a a a a

= − −

= + + + +

−( )

( ( ) ( ) ++ ⋅⋅⋅

= + + + + ⋅⋅⋅

= + + ⋅⋅⋅

)

( ( ) )Z
n

a b a

Z
n

aZ
n

2 2

2
2 4 2 4

2 2

2

2 4

2

1 2 3

2

a a a a

a a

 (16.32)

M16_QUANTUMMECHANICS_3628_CH16.indd   638 5/24/2013   11:27:14 AM



Relativistic Wave Equation  639

Using the Equation (16.32) in the Equation (16.31), let us write E as

 

E mc Z
n

aZ
n

mc Z
n

aZ
n

Z

= + +( )
= − +( ) +

−
2

2 2

2

2 4

2

1 2

2
2 2

2

2 4

2

2

1 2

1 1
2

2 3
8

a a

a a

/

aa a

a a a

2

2

2 4

2

2

2
2 2

2

2 4

2

2 4

4

2

1
2

3
8

n
aZ

n

mc Z
n

aZ
n

Z
n

+( ) + ⋅⋅⋅






= − − + + ⋅⋅⋅⋅( )
 (16.33)
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2 2

2

2 4

2

2 2 4

4
1

2 2 1
2
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a a a
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2
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+
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mc mc Z
n

Z mc
n

n

l

2 2
2 2

2

4 4 2

42 2 1
2

3
4

a a  (16.34)

The first term is the rest mass energy of the free electron. This is consistent with special theory of rela-
tivity. The next two terms are the consequences of interaction between the electron and the nucleus. 
The overall decrease in energy from mc2 indicates that a bound state has been formed.

The second term is exactly the same as the expression obtained in the non-relativistic case. The 
third term is proportioned to a a4 137( ),∼ 1/  and so it is very small compared to the second term. 
This is correction to the energy levels obtained in non-relativistic quantum mechanics. For a given n, 
this correction depends on l. The non-relativistic energy levels are spilt into fine levels as shown in  
Fig.16.1.

n = 3

n = 2

n = 1

Fig.16.1 Energy levels for hydrogen atom

The sub-levels lead to fine structure to the emission line spectrum of hydrogen atom, and this is 
experimentally observed. However, the agreement with experimental results is not exact. Though the 
existence of the fine structure is predicated by KG equation, there is a discrepancy in the energy level 
splitting between theory and experiment.
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16.6 MOTIVATIONS LEADING TO THE FORMULATION OF DIRAC EQUATION
When Klien Gordan equation was developed as an extension of non-relativistic to relativistic case, 
certain shortcomings were noted. So Klien Gordan equation was dropped and alternative relativistic 
equations were attempted. Today, we know that Klien Gordan equation is the correct equation to 
describe spin zero particles, and with the development of quantum field theory, there is no problem 
with KG equation. However, historically, Dirac formulated a new relativistic equation as an attempt to 
circumvent the problems of KG equation.

Let us, first, list the shortcomings of KG equation:

 1. The KG equation leads to a state of free particle with negative energy.
 2. The expression for probability density was not positive definite.
 3. When it was applied to hydrogen atom, we get the existence of fine structure. However, it was 

not an agreement in details, and there are discrepancies between theory and experiment for the 
splitting of energy levels.

The interesting thing is the comparison of the expressions for probability density arising from the 
Schrödinger and KG equations.

• The Schrödinger equation is

 i
t m

V t� �∂
∂

= − +y y y
2

2

2
∇ ( , )r

r y y y y y y= = −* [ * * *]      S
im
�

2
∇ ∇

• The KG equation is

 − ∂
∂

= +� �2
2

2
2 2 2 2 4y y y

t
c m c∇

r y y y y y y y y= ∂
∂

− ∂
∂







= −� �
2 22imc t t im

*
* [ * * *]           S ∇ ∇

In obtaining the expression for r  and S, same procedure was used in the Schrödinger and KG equa-
tions. By comparing the Schrödinger and Klien Gordan equations, one can immediately recognize a 
significant difference between them. The time derivative in the Schrödinger equation is first-order deriv-
ative, leading to positive definite expression y *y. The time derivative in the Klien Gordan equation is 
second-order, leading to positive indefinite expression for r . Dirac realized that a suitable relativistic 
wave equation should be first order in time derivative. But special theory of relativity demands that time 
and space coordinates occur in a symmetric manner. By this, it is meant that if the time derivative is first 
order, then the derivatives with respect to spatial coordinates x, y, and z should also be first order (note 
that in the Schrödinger equation, the spatial coordinate derivatives are second order). It should be men-
tioned that Dirac argued from different considerations that the wave equation for a quantum mechanical 
system be linear in ∂ ∂/ t; i.e., the general form of equation of motion for a quantum mechanical system 
should be i t H� ∂ ∂ =y y/  (see Dirac). So Dirac constructed an equation in the following form:

 E c mcy y b y= +` .p 2

or E Hy y=  (16.35)
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Dimensionally, each term has the dimension of energy. But `  and b are totally unknown quanti-
ties whose nature has to be determined from other physics considerations. By replacing E and p by 
i t i� �∂ ∂ = −/ and ∇, respectively, we get the well-known Dirac equation.

 i
t

i c mc� �
∂
∂

= − ⋅ +y y b y` ∇ 2  (16.36)

16.7 MEANING OR NATURE OF `  AND a
The Dirac equation is

 i
t

c mc�
∂
∂

= +y b y( . )` p 2

In terms of E and H, this equation is

 Ey  = Hy (16.37)

There are four quantities namely, a
x
, a

y
, a

z
 and b, which are to be determined. These four quantities 

cannot be the functions of coordinate x, y, z or t, and they cannot be functions of E and p also. If they 
depend on such variables, the Equation (16.36) will no longer be the equation for free particles, for 
the only potentials will be the functions of x, y, z, t or E and p.

This implies that these quantities are either numbers or matrices with constant numbers. In any 
case, they will commute with E i t i= ∂ ∂ = −� �/ and p ∇. We also have

 EE EH HE HHy y y y= = =

 ∴ =E H2 2y y

Consistency with special theory of relativity demands H 2 should be p2c2 + m2c4; i.e., the above equa-
tion should be the same as the Klien Gordan equation.

 − ∂
∂

= − +� �2
2

2 2 2 2 4y y y
t

c m c∇

i.e., H p c m c2 2 2 2 4y y= +( )  (16.38)

This equation can be used to determine the exact nature of the four quantities a a a bx y z, , .and

 LHS = H 2y

 = + + + + + +[ ][ ]c p c p c p mc c p c p c p mcx x y y z z x x y y z za a a b a a a b y2 2

 = [ + + +c p c p p c p p c mpx x x y x y x z x z x x

2 2 2 2 2 3a a a a a a b

 + + + +c p p c p c p p mc px y y x y y y z y z y y
2 2 2 2 2 3a a a a a a b

 + + + +c p p c p p c p mc px z z x y z z y z z y z
2 2 2 2 2 3a a a a a a b

 + + + + ]mc p mc p mc p m cx x y y z z
3 3 3 2 4 2ba ba ba b y
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 = + + +c p c p xy c p m cx x y y z z
2 2 2 2 2 2 2 2 2 2 2 4 2a a a b

 + + + +c p p c p px y x y y x x z x z z x
2 2( ) ( )a a a a a a a a

 + + + +c p p mc py z y z z y x x x
2 3( ) ( )a a a a a b ba

 + + + +mc p mc py y y z z z
3 3( ) [ ]a b ba a b ba y

RHS = + + +[ p c p c p c m cx y z
2 2 2 2 2 2 4 ]y

If LHS and RHS are to be equal, then it implies that

 ax y z
2 2 2 2 1= = = =a a b

 a a a a a a a a a a a ax y y x x z z x y z z y+ = + = + =0 0 0; ;  

 a b ba a b ba a b bax x y y z z+ = + = + =0 0 0; ;   (16.39)

Obviously, a
x
, a

y
, a

z
, and b  are either numbers or set of anti-commuting matrices. a

x
, a

y
, a

z
 and b  cannot 

be pure numbers. This can be easily seen as follows. The Equation (16.39) suggests a
x
 = +1 or −1, a

y
 =  

+1 or −1,a
z
 = +1 or −1 and b = +1 or −1. Suppose we choose a

x
 = +1. Neither a

y 
= 1 nor a

y
 = −1 will 

satisfy the relations between them in the Equation (16.39). In the same way, one can argue for a
x 
= − 1. 

So no combination of these numbers will satisfy the relation (16.39).
Next choice is a

x
, a

y
, a

z
 and b  are the set of anti-commuting matrices. If so, what is the order of 

these matrices and what are their elements? A number of general conclusions about these matrices can 
be reached using the anti-commutation relation (16.39).

Properties of `  and a
 1. Eigenvalues
 Consider the eigenvalue equation a

x 
c = lc.

 Multiplying both sides of the above equation by a x , we get

 a
x
a

x
c = a

x 
lc = la

x 
c = l2c

 Since a x
2 1= , a cx

2  becomes c  in the LHS.

 c  = l2c

 i.e., l2 = 1

 or l = ±1

 The same results hold good for other matrices. The eigenvalues of all the four matrices are +1 or −1.
 2. Traceless matrices
 Let us evaluate the trace of particular matrix, say a

x
.

 tr a
x
 = tr (a

x
b  2) (since  b  2 = I )
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 = tr (a
x
bb  )

 = tr (ba
x
b  ) (tr (AB) = tr (BA))

 = tr(−a
x
bb  ) (ba

x
 = −a

x
b  )

 = tr(−a
x
) (b  2 = I)

 ∴tra
x
 = 0 (16.40)

 We can extend this argument to all the matrices.
 3. Even-dimensional matrices
 Take any particular matrix, say a

x
. Diagonalize this matrix with the help of a suitable matrix S. 

The diagonal elements of the diagonal matrix will be the eigenvalues l
1
, l

2
…

 S Sx x
da = a

l
l
l

− =



















1

1

2

3

0 0

( )

...

... ...

...

�
� �

 From matrix theory, we know that tra
x
 = Sum of the eigenvalues of a

x
.

 i.e. l
1
 + l

2
 + … = 0

 But l
1
 = ±1, l

2
 = ±1, l

3
 = ±1…

 This is possible provided half the diagonal elements of a
x
(d) should be +1 and other half should 

be −1. This implies that a
x
(d) or a

x
 is even dimensional.

 The dimensions of a
x
, a

y
, a

z
 and b and can be 2, 4, 6…With these three properties, let us now try 

to construct them.

Are they 2 ë 2 matrices?
From angular momentum theory, we know that Pauli matrices s

x
, s

y
 and s

z
 are anti-commuting 2 × 2  

matrices. Suppose we choose a s a s a sx x y y z z= = =, , and . Now we have to find one more 2 × 2 
matrix b, which has to anti-commute with s

x
, s

y
, and s

z
. We can show that it is not possible to find 

such a 2 × 2 matrix. This can be easily seen as follows:
Let us choose

 b =






a b

c d
 

Then

 s b bsx x

a b

c d

a b

c d
+ =













+












0 1

1 0

0 1

1 0

 =
+ +
+ +







=






c b a d

a d b c

0 0

0 0
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 s b bsy y

i

i

a b

c d

a b

c d

i

i
+ =

−











+






−





0

0

0

0

 =
− −
− −







=






i b c i a d

i a d i b c

( ) ( )

( ) ( )

0 0

0 0

This is possible provided a = b = c = d = 0. Therefore, we will not be able to find a set four anti-
commuting 2 × 2 matrices.

4 ë 4 matrices
Next, we have to construct a set of 4 × 4 matrices, satisfying the anti-commutation relation (16.39)

In fact, we do find a
x
, a

y
, a

z
 and b  as

 a
s

s
a

s

s
a

s
sx

x

x
y

y

y
z

z

z

=






=








 =







0

0

0

0

0

0
,  , 

and b =
−







I

I

0

0

These are 4 × 4 Hermitian matrices. Note that there is no unique way of choosing elements a
x
, a

y
, a

z
 

and b. The following is another choice of these matrices:

 a
s

s
a a

s
s

bx
x

x
y z

z

z

I

I

iI

iI
=

−






=






=
−







=
−

0

0

0

0

0

0

0

0
, , ,





.

16.8 EQUATION OF CONTINUITY
Having constructed a new equation, we should check whether at least some problems of Klien Gordan 
equations have been solved. The simplest test is whether the expression for probability density is posi-
tive definite.

So let us derive the equation of continuity for a particle obeying the Dirac equation.
The Dirac equation is

 
i

t
c p c p c p mc

i
t

i c
x

i c

x x y y z z

x y

�

� � �

∂
∂

= + + +

∂
∂

= − ∂
∂

− ∂

y a y a y a y b y

y a y a y

2

∂∂
− ∂ +

y
i c

dz
mcz� a y b y2

 (16.41)

Taking Hermitian conjugate, we have

 − ∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂

+i
t

i c
x

i c
y

i c
z

mcx y z� � � �
y y a y a y a y b

† †
†

†
†

†
† † †2

 − ∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂

+i
t

i c
x

i c
y

i c
z

mcx y z� � � �
y y a y a y a y b

† † † †
†2  (16.42)
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Multiplying the Equation (16.41) by y  † from left and the Equation (16.42) by y  from right, we get

 i
t

i c
x

i c
y

i c
z

mcx y z� � � �y y y a y y a y y a y y by† † † † †∂
∂

= − ∂
∂

− ∂
∂

− ∂
∂

+ 3  (16.43)

and

 − ∂
∂

= ∂
∂

∂
∂

+ ∂
∂

+i
t

i c
x

i c
y

i
z

mcx y z� � � �
y y y a y y a y y a y y by

† † † †
†+ 3  (16.44)

Subtracting the Equation (16.44) from the Equation (16.43), we get

 
† †

† †
x xi i c

t t x x
∂ ∂ ∂ ∂   + ∂ = − +   ∂ ∂ ∂ ∂   

� �
y y y yy y y a a y  − ∂

∂
+ ∂

∂






i c
y yy y� y a y y a y†

†

 
†

†
z zi c

z z
∂ ∂ − + ∂ ∂ 

�
y yy a a y

This can be rewritten as

 † † †( ) ( ) ( )x yi i c i c
t x y

∂ ∂ ∂= − −
∂ ∂ ∂

� � �y y y a y y a y  †( )zi c
z

∂−
∂

� y a y

i.e., † †( ) .( )c
t

∂ = − ∇
∂
y y y y`

 † †( ) .( ) 0c
t

∂ = ∇ =
∂
y y y y`

 S c= y ay†

This equation has the form

 
∂
∂

+ ⋅ =r
t

∇ S 0

provided we identify r  and S as r  = y †y  and S = cy y.†`
Note that r  = y  †y  is always a positive quantity. Therefore, it can be interpreted as probability 

density.
So the Dirac equation gets over one of the problems of the KG equation. We should mention that 

this interpretation of wave function in the Dirac equation also runs into difficulty as will be shown later.

16.9 SOLUTION TO FREE PARTICLE DIRAC EQUATION
The free particle Dirac equation is

 i
t

c i mc� �
∂
∂

= − +y y b y` .( )∇ 2  (16.45)
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Since we are interested in the free particle solution, we expect the particle to have definite momentum 
and energy. The natural solution is y = −Aei Et( . )p r �. As in the case of the Klien Gordan equation, this 
is consistent with De Broglie wave concept.

Since `  and b are 4 × 4 matrices, the wave function should also be a four-component column vec-
tor. So the plane wave function has to be modified. This suggests that the solution to the free particle 
equation is

 y = −Au ei Et( ) ( . )p p r � (16.46)

Note that u( )p  has to depend only on momentum; otherwise, y  will not be an eigenfunction of 
momentum operator. u( )p  is a column vector with four rows; i.e., it is a 4 × 1 matrix. It is called 
spinor, and the reason for such term will become clear a little later.

We have to check whether the Equation (16.46) is solution to the Equation (16.45), and in the pro-
cess, we have to find u( )p  as well as energy eigenvalue E.

Substituting the Equation (16.46) in the Equation (16.45), we have the LHS given by

 i
t

i
t

Au e EAu ei Et i Et� � � �∂
∂

= ∂
∂

=− −y
[ ( ) ] ( )( . ) ( . )p pp r p r/ /

And RHS as

 c i mc c i Au e mc Au ei Et i` `⋅ − + = ⋅ − +−( ) ( ( ) ) ( )( . ) (� � �∇ ∇(y b y b2 2p pp r p/ .. )r−Et /�

 = ⋅ +− −c Au e mc Au ei Et i Et` p p pp r p r( ) ( )( . ) ( . )/ /� �b 2

Equating LHS and RHS, we get

 EAu e c Au e mc Au ei Et i Et i( ) .( ) ( ) ( )( . / ) ( . ) / ( .p p p pp r p r p r− −= +� �` b 2 −−Et ) /�

 ∴ = ⋅ +Eu c u mc u( ) ( ) ( )p p p p` b 2  (16.47)

This is energy eigenvalue equation. This can be written as

 ( ) ( )EI c mc u− ⋅ − =` p pb 2 0  (16.48)

Here I is 4 × 4 identity matrix. Note that the same letter I is used to denote both 2 2×  or 4 4×  unit 
matrix. The order of the matrix can be understood from the context.

Let us write I, a
x
, a

y
, a

z
 and b (all of them 4 × 4 matrix) in the block form as follows.

 I
I

I x
x

x
y

y

y
z

z

z

=






=






=








 =




0

0

0

0

0

0

0

0
, , ,a

s
s

a
s

s
a

s
s 

 and b =
−







I

I

0

0
 (16.49)

Each element here is 2 × 2 matrix. In particular, we have

 s s sx y z

i

i
=







=
−





=
−







0 1

1 0

0

0

1 0

0 1
,  and  (16.50)
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Let us write u( )p  also in the block form. i.e.,

 u
V

W
( )p =







 (16.51)

where V and W are column vectors (2 × 1 matrix) with two rows. They are called two-component spinors.
The Equation (16.48) now becomes

 
EI

EI

c

c

I

I
mc

V

W

0

0

0

0

0

0
2







−






−
−



























r
r

.

.

p

p
== 0

 
( ) .

. ( )

E mc I c

c E mc I

V

W

− −
− +



















 =

2

2
0

r
r

p

p

i.e., ( ) .E mc V c W− =2 s p  (16.52)

and ( ) .E mc W c V+ =2 s p  (16.53)

Multiplying the Equation (16.52) by E + mc2, we get

 ( )( ) . ( )E mc E mc V c E mc W+ − = +2 2 2r p

 = c c Vr r⋅p p.  (Use the Equation (16.53))

Let us make use of the identity

 ( )( ) ( )r r r⋅ ⋅ = ⋅ + ⋅ ×A B A B A Bi

We have 

 ( . )( . )r rp p = p2

Then, we get

 ∴ − − =( )E m c p c V2 2 4 2 2 0  (16.54)

The non-trivial solution is possible, provided

 E p c m c2 2 2 2 4= +

or E p c m c= ± +2 2 2 4  (16.55)

So, in the case of the Dirac equation also (like in the KG equation), we get two energy eigenvalues 

namely, E p c m c= + +2 2 2 4  and E p c m c= − +2 2 2 4 . Let us define E p c m cp = + +2 2 2 4 . Therefore, 
the energy eigenvalues are E Ep=  and E Ep= − . Note that one of the energy eigenvalues is negative 
value. We will see later Dirac’s interpretation of the negative energy solution.

Let us continue to find the eigenfunctions corresponding to these two eigenvalues.

M16_QUANTUMMECHANICS_3628_CH16.indd   647 5/24/2013   11:27:41 AM



648  Quantum Mechanics

Let us write the Equations (16.52) and (16.53).

 W
c

E mc
V=

+
r .p

2
 (16.56)

and V
c

E mc
W=

−
r .p

2
 (16.57)

Eigensolutions for E = Ep

Consider the solution given in the Equation (16.57).

 V
c

E mc
W

p

=
−
r .p

2

As p → 0, E p c m cp = +2 2 2 4  tends to mc2, and so the solution blows up. So this solution is not an 
admissible solution.

Next, consider the solution given in the Equation (16.56).

 W
c

E mc
V

p

=
+
r .p

2

As p → 0, E
p 
→ mc2, and the solution is well behaved in this limit. So this is an admissible solution. 

Since V is a two-component spinor, we can write V in terms of two linearly independent column 

vectors c
1
, and c

2
. One choice is c c1 2

1

0

0

1
=







=






 and . But these are not the only choices. Let us 

choose c
1
 and c

2
 such that c c c c1 1 2 2 1† †= =  and c c1 2 0† = .

Then, the eigensolutions corresponding to E Ep=  are

 y
c

cI =
+















−N c
E mc

e

p

i E tp

1

1
2

r . ( . ) /p p r �  (16.58)

and

 y
c

cII = N c
E mc

e

p

i E tp

2

2
2

r . ( . ) /p p r

+















− �  (16.59)

Eigensolutions for E = -Ep

Note that as p → 0, E E p c m cp= − = − +2 2 2 4  tends to −mc2. Now consider the solution given in the 
Equation (16.56).

 W
c

E mc
V

p

=
− +
r .p

2
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As p → 0, E
p 
→ mc2, and so this solution blows up in this limit. Hence, this solution is not an admis-

sible solution. Next, consider the solution given in the Equation (16.57). Substituting E = −E
p
 in this 

equation, we get

 V
c

E mc
W

p

=
− −
r .p

2

This function is a well-behaved function in the limit p → 0 or E mcp → 2 , and so this is an accepted 
solution. As in the earlier case, W is an arbitrary two-component spinor. So we can write W in terms of 
two linearly independent two-component spinors c1 and c 2. Therefore, the eigensolution correspond-
ing to E = − E

p 
is

 y

c

cIII
/

     

= −
+

















+N
c

E mc
e

p

i E tp
r . ( . )p p r

2

1

1
�  (16.60)

and y

c

cIV
/

     

= N
c

E mc
e

p

i E tp−
+

















+r . ( . )p p r
2

2

2
�  (16.61)

There are four linearly independent solutions for the free particle Dirac equation. How, are these four 
states distinguished?

Apart from Hamiltonian and momentum, we need to introduce one more operator namely, heli-
city operator to characterize these solutions. There are three commuting operators here. They are 

Hamiltonian Ĥ , momentum ˆ ,p  and helicity ˆ .Λ = ⋅ =
⋅

⋅






� �
2 2

0

0
¬ p

p

p

r
r

 Therefore, the eigenfunc-

tion should be eigenfunction of Ĥ , p̂ and Λ̂ . In the next section, we will show that �/2 ¬ ⋅ p  is the 
projection of spin along the direction p .Therefore, all the four solutions can be specified as follows:

 y
c

cI
/= ⋅

+















−N c
E mc

e

p

i E tp

1

2 1

r p p r( . ) �  momentum p, energy E
p
 and spin ↑ 

 y
c

cII
/= ⋅

+















−N c
E mc

e

p

i E tp

2

2 2

r p p r( . ) �  momentum p, energy E
p
 and spin ↓

 y

c

cIII
/

     

= − ⋅
+



















−N
c

E mc
e

p

i E tp
r p p r

2

1

1
( . ) �   momentum p, energy −E

p
, and spin  ↑
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 y
c

c
IV p

i E tN

c
E mc e p=

− ⋅
+















−

` p
p r2 1

2

( . ) /�  momentum p; energy −E
p
, and spin ↓

Normalization of Eigenfunction
The normalization of the Dirac spinor is done by demanding the condition that

 y y† d3 1r∫ =

Since Dirac spinor involves a plane wave function, the normalization can be done either by d function 

normalization y y d† dr p p∫ = −( )( )  or by box normalization y y† ,d3 1r∫ =(  where the volume of the 
integration is restricted to a box of side L).

For the sake of simplicity, let us adopt box normalization. Let us take any particular solution, say y I .
Then, we have

 y y y y† †∫ ∫∫∫=d dx dy dz
LLL

3

000

r

 =
+









 ×

+





∫∫∫ dx dy dz N
c

E mc
c

E mcp

LLL

p

2
1

1
2

000

1

1
2

c
c

c
c†

† .
.

r
r

p
p











− − −e ei E t i E tp p( . ) ( . )p r p r/ /� �

 = +
⋅

+








∫∫∫ dx dy dz N

c c
E mcp

LLL

2
1 1

1 1
2 2

000

c c
c s c†

† . .
( )
r p p

 = +
+









∫∫∫ dx dy dz N

c p
E mcp

LLL

2
1 1

1
2 2

1
2 2

000

c c
c c†

†

( )

where we have used the fact ( )( ) .r r⋅ ⋅ =p p p2  Note c c1 1 1† .=

 ∴ +
+









 = +

+








c c

c c
1 1

1
2 2

1
2 2

2 2

2 2
1†

†

( ) ( )
c p

E mc
p c

E mcp p

 =
+ + +

+
E mc E m c p c

E mc
p p

p

2 2 2 4 2 2

2 2

2

( )

 =
+

+
=

+
2 22

2 2 2

E E mc

E mc

E

E mc
p p

p

p

p

( )

( ) ( )
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 ∴ =
+∫ ∫∫∫y y†

( )
3 2

2
000

2
r N

E

E mc
dxdydzp

p

LLL

 =
+

=
+

=N
E

E mc
L

N E V

E mc
p

p

p

p

2
2

3

2

2

2 2
1

( ) ( )

 ∴ =
+

N
E mc

E V
p

p

( )2

2

It can be shown that the normalization factor N is the same for all the four solutions.

16.10 DIRAC’S INTERPRETATION OF NEGATIVE ENERGY STATES

Existence of Negative Energy States
There are four linearly independent solutions to Dirac’s free particle equation. Of these four solutions, 

two solutions represent states with positive energy E E p c m cp= = +2 2 2 4 , and other two solutions 

represent states with negative energy E E p c m cp= − = − +2 2 2 4 . Like the Klien Gordan equation, the 
Dirac equation also has negative energy solutions. In view of the fact that no free electron with nega-
tive energy has been experimentally observed, what does one do with negative energy states? It is not 
possible to discard negative energy states as unphysical and ignore them.

The Dirac spinors are 4 × 1 column vectors. Therefore, the linear vector space of the general solu-
tions of the Dirac equation requires four linearly independent solutions to form a complete set. If the 
positive energy spinors are accepted as an allowed solution, one has to necessarily accept the negative 
energy solutions also as allowed ones.

Dirac accepted the negative energy states as allowed states and came with an ingenious interpreta-
tion, which is presented below.

Instability of an Electron
If the negative energy states are allowed states, what are their consequences? Let us first start 
with the energy spectrum of an electron. There are two groups of states: one group of states with 

E E p c m cp= = − +2 2 2 4 . and another group of states with E E p c m cp= − = − +2 2 2 4 . Positive 
energy states start from E = mc2 and extend up to +∞. Similarly, negative energy states start from E 
= − mc2 and extend blow to −∞. This is shown in Fig.16.2.

Positive energy branch

Negative energy branch

}

}

É

−É

0

mc2

−mc2

Fig.16.2 Energy spectrum for dirac electron
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There are infinite number of states both in positive and negative energy branches. The two branches 
are separated by a gap 2mc2. To go from one negative energy state to a positive energy state, it requires 
energy more than 2mc2.

Let us start with an electron in a positive energy state. Since negative energy states are lower in 
energy, compared with this positive energy state, it will make a transition to negative energy state. The 
transitions will not stop, since infinite number of negative energy states is available for the electron. It 
can go on making transitions to lower and lower energy states. Thus, we can never find a stable positive 
energy electron even if it has a minimum energy E = mc2. So the existence of negative energy states 
means that no stable positive energy electron can be found. We do not find any such instability, and 
electron is a very stable particle. How do we resolve this contradiction?

Negative Energy Sea and Pauli’s Exclusion Principle
To avoid this instability, Dirac suggested that all the negative energy states are occupied by electrons. 
The infinite negative energy electrons together constitute negative energy sea. How is the instability of 
the electron prevented by the negative energy sea? Since the electrons are fermions, they obey Pauli’s 
exclusion principle, and so there can be only one electron in any state. Since all the negative energy 
states are occupied, a positive energy electron cannot make a transition to any one of the negative 
energy states, and hence its stability is assured.

Ground State – Unobservable Negative Energy Sea
In the Dirac’s interpretation, each positive energy electron is accompanied by a negative energy sea. The 
negative energy sea should have an infinite energy, infinite mass and infinite charge. Then, how can a 
single electron have a finite (though very small) mass, charge and energy? The answer to this question 
is based on defining a new ground state. The entire negative energy states constitute the ground state for 
an electron (see Fig.16.3). We have to conclude that the positive energy states are excitations over the 
ground state. The ground state itself may not be observed directly, but excited states and other deviations 
from the ground state should be observable. As an analogy, this concept is similar to the electrostatic 
case, where only the potential difference is measured, while the absolute potential is not measurable.

It is true that by postulating a new type of ground state for an electron, we are able to explain why elec-
trons with infinite energy, infinite mass and infinite charge have not been observed. It is further claimed 
that this ground state as such is not observable, but only the excitations are observed. If we stop here, this 
‘explanation’ does not explain much since it cannot be observed. However, if it leads to some consequences, 
which can be verified experimentally, then this particular type of ground state can be taken more seriously.

Though this ground state itself may not be directly observable, the deviations and the modifications 
of the ground state (if such a ground state exists) should lead to observable consequences, which can be 
verified experimentally. Indeed, we present some interesting consequences due to the changes introduced 
in the ground state. It should be mentioned that though we discuss this concept of ground state in detail 
here, it has been superseded by the quantum field theory, which provides a different kind of ground state.

16.11 OBSERVABLE CONSEQUENCES OF NEGATIVE ENERGY SEA

Antiparticle
One of the important observable consequences of Dirac’s interpretation of negative energy state is 
the emergence of a new concept called antiparticle. The concept of antiparticle is purely a quantum 
mechanical idea.
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The antiparticle of electron is positron, and let us explain how the concept of positron naturally 
emerges in the Dirac equation. Let E

0
 and Q

0
 be the total energy and charge of the ground state. Let 

us modify this ground state by removing an electron (of charge −e) from a negative energy state − | |E . 
The new state has energy E E0 − −( | |) and Q

0
− (−e); i.e., we have the following situation

 

Ground state                                 New State

                             One vacancy in ground state with eenergy

                                   

−
− −

E

E Q E E0 0 0, ( ( )),, ( ( )) Q e0 − −
 (16.62)

Ground state
(E0, Q0)}

mc2

−mc2

Fig.16.3 Ground state of dirac electron. Dots are electrons

The following analogy will be useful. Suppose the total energy and the charge of the negative energy 
sea are −100J and −100e (don’t worry about the numbers). By removing one particle from the nega-
tive energy sea, we have modified the ground state. The total energy of the new state is −99J and −99e. 
The new state is equivalent to adding a particle with energy 1J and charge +e to the ground state. The 
second column in the Equation (16.62) has ground state plus a particle with positive energy +E  and 
positive charge +e. This leads to the following interpretation.

mc2

Modified ground state
(E0 − (−E ) ), (Q0− (−e))

−mc2

Vacancy

mc2

−mc2

Ground state
Energy = E0, Charge = Q0 

−mc2

Ground state
(E0, Q0)

mc2

positron (+E, +e)

(i) (ii) (iii)

Fig.16.4 Positron state. Representations (ii) and (iii) are equivalents

A vacancy in the state of − | |E  in the negative energy sea is equivalent to the presence of a particle 
with positive energy | |E  and charge +e. If a particle has positive energy, it should be observable. Dirac 
originally tried to identify it as proton. Later on, it was identified as positron. It is called the antipar-
ticle of the electron.

So now the Dirac equation describes two kinds of particles: electron of mass m
e
 and charge −e and 

positron of mass m
e
 and charge +e. Within quantum mechanics, the description of positron of positive 
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energy | |E  is equivalent to the vacancy of state with − | |E  in the negative energy sea of electron. This 
is shown in Fig.16.4. We can describe the system in terms of an electron alone by taking the account 
of both positive and negative energy states or equivalently describe the system in terms of two posi-
tive energy particles namely, electron and positron. Quantum field theory clarifies this equivalence 
more precisely. A negative energy electron propagating backwards in time is equivalent to a positron 
propagating forward in time.

Pair Creation
One of the important consequences of negative energy sea is the existence of a process called pair 
creation. In this process, a photon creates a pair of positron e+ and an electron e−.

 g → e− + e+

(Actually this process is not allowed since conservation of energy and momentum together cannot be sat-
isfied. A related process is g + → + + ′− +nucleus nucleus X e e X .) This process has a very simple expla-
nation in terms of negative energy sea. Fig.16.5(a) is the ground state of negative energy, which itself is not 
directly observable. A photon of energy greater than 2mc2 interacts with one negative energy electron, moving  
it to a positive energy state, leaving a vacancy in the negative energy sea of negative energy electrons.

e−

(a) (b) (c)

Fig.16.5  (a) Unobservable ground state (b) Interaction of a photon with a negative energy electron  
(c) Positive energy electron and a vacancy in a negative energy state

This electron absorbs the photon, and its energy becomes positive, and hence it is observable. At the 
same time, the ground state is altered to a new state (Fig.16.5(c)), in which one negative energy elec-
tron is missing; i.e., there is a vacancy in the negative energy sea, which is equivalent to the presence 
of positive energy positron (see Fig.16.6). This is schematically represented by

 g  → e− + e+

(a) (b)

and

Fig.16.6 An electron, a positron and the ground state in the pair creation process. Equivalent to Fig.16.5(c)

This is consistent with charge conservation. The only necessity is that new particle called positron 
should exist. The charge before and after the pair creation is zero. 2mc2 is the minimum energy of the 
electron and the positron together, and so the photon should have the minimum energy 2mc2 for this 
process to take place. The same conclusion is reached from the energy-level diagram. Such a process 
has indeed been experimentally observed.
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Pair Annihilation
The reverse process of pair creation is pair annihilation. In this process, an electron e− and a positron e+  
annihilate themselves to produce a photon.

i.e., e− + e+ → g
Consider a pair of electron and positron. In the energy-level diagram, an electron can be represented 
by an occupied state (a dot in positive energy state), and a positron can be represented by an empty 
state (a circle) in the negative energy sea as in Fig.16.7.

Since one of the negative energy states is unoccupied, a positive energy electron can make transi-
tion to such state, bringing back the unobservable ground state. In effect, a positive energy electron as 
well as the altered negative energy states with a vacancy are lost. So we do not observe any particle: 
neither the electron nor the positron. This is precisely implied by the equation

 e− + e+ → g

(d)

mc2

g

−mc2

(a)

mc2

−mc2

(b)

mc2

−mc2

(c)

mc2

−mc2

Fig.16.7  (a) An electron (b) A positron (c) Pair annihilation as transition from positive energy state to a 
negative energy state (d) Photon and the electron ground state

It should be mentioned that the concept of assuming the Dirac’s negative energy sea as electron’s 
ground state is successful, in explaining the existence of antiparticle for an electron. This scheme 
will not work in the case of bosons since Pauli’s exclusion principle is not applicable to bosons, and 
hence it cannot be the mechanism to prohibit the positive energy boson from making transition to a 
negative energy state. However, this concept of ground state has been dropped now. The existence of 
the antiparticle has been formulated in a more general way for all the particles, including bosons in 
quantum field theory. 

Negative Energy Electron in Em Field – Justification for Positron Picture
Let us try to justify the equivalence between the positive energy positron state and the vacancy in the 
negative energy state by considering the Dirac equation for an electron in electromagnetic field ( , ).Φ A

The Dirac equation for an electron in the presence of an electromagnetic filed (Φ, A ) is

 i
t

e c i e
c

mc� �∂
∂

+





= − +( ) +Φ y y b y` . ∇ A 2  (16.63)

Consider a stationary state solution y ( ) ( )./r r= −e uiEt �  Then, the above equation becomes

 i
t

e e uiEt� �∂
∂

+( ) −f / ( )r

 = − +( ) +− −c i e
c

e u mc e uiEt iEt` . ( ) ( )� � �∇ A r r/ /b 2  (16.64)
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This equation becomes 

 ( ) ( ) ( . ( )) .E e u i c u e u mc u+ = − + +Φ r r A� ` `∇ b 2  (16.65)

Let us assume that effect of electromagnetic interaction is so small that the energy spectrum resembles 
very much like that of a free electron; a series of positive energy states separated by a gap exists; i.e., 
a positive energy branch and a negative energy branch exist.

The four matrices a
x
, a

y
, a

z
 and b are anti-commuting matrices. Let us choose a

x
, a

y
, a

z 
and b such 

that a a a a a ax x y y z z
* , * , *= = =  and b * = −b. One such choice is

 a
s

s
a a

a
ax

x

x
y z

z

z

I

I
=

−






=






=
−







0

0

0

0

0

0
, ,  b =

−






0

0

iI

iI
 (16.66)

Note that these four matrices are also anti-commuting matrices. Now let us consider a negative energy 
state with energy E E= − | | . Therefore, the Equation (16.65) becomes

 − = − + ⋅ + −| | ( ) .( )E u c i u e mc u e ur A` `�∇ b 2 Φ  (16.67)

Taking complex conjugate of this equation, we get

 − = ⋅ + ⋅ + −| | *( ) * ( *) * * * * *E u c i u e mc u e ur A` `�∇ b 2 Φ  (16.68)

Assume the potentials Φ  and A  are real, i.e., Φ Φ* =  and A*  = A .
Therefore, Equation (16.67) becomes

 − = ⋅ + ⋅ − −| | *( ) ( *) * * *E u i u e u mc u e ur A` `�∇ Φb 2

or | | *( ) ( *) * * *E u i u e u mc u e ur A= ⋅ − − ⋅ + +` `�∇ Φb 2  (16.69)

We can rewrite this equation as

 (| | ) *( ) * *E e u c i e
c

u mc u− = ⋅ − −( ) +Φ r A` �∇ b 2  (16.70)

A comparison of this equation with the Equation (16.65) suggests that u* is a solution of the Dirac 
equation for a positively charged particle of mass with positive energy | |E  in the presence of electro-
magnetic field.

So we have established that a state u( )r  of energy − | |E  for a particle of charge −e and mass m is 
equivalent to a state u *( )r  of energy | |E  of its antiparticle of charge e and mass m.

16.12  UNTENABILITY OF INTERPRETATION OF x IN THE  
NON-RELATIVISTIC SENSE

In the non-relativistic quantum mechanics, we can interpret y ( , )r t  as the wave function describing the 
state of a single particle and y y* , ( , )( )r r rt t d3  as the probability of finding the particle in volume d3r .  
Dirac’s interpretation of negative energy state with the help of the negative energy sea rules out the 
possibility of existence of a single isolated electron. Strictly speaking, to each positive energy electron, 
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we should associate a wave function y y= ( , , ...),r r r1 2  where r r1 2, ... are position vectors of the elec-
trons in the accompanying negative energy sea. This makes the interpretation of y  †y  as the probabil-
ity density questionable. This problem is resolved in quantum field theory, where y  †y  is interpreted 
as an operator in Fock space for the charge density, taking into account the particle and antiparticles.

16.13 SPIN ANGULAR MOMENTUM OF AN ELECTRON
In non-relativistic quantum mechanics, the Schrödinger equation describes particles only with orbital 
angular momentum. Within non-relativistic quantum mechanics, spin angular momentum has to be 
accommodated in an ad hoc way. The Schrödinger equation has to be modified to get Pauli equation, 
which describes a non-relativistic particle with spin.

Spin angular momentum naturally emerges from the Dirac equation. We know that angular momen-
tum is conserved quantity. Any theory has to accommodate conservation of angular momentum. One 
of the important requirements of a theory is that all the basic conservation laws like energy, momen-
tum and angular momentum have to emerge as a consequence of the theory. So if the Dirac equation is 
claimed as the equation describing electron, then one should get the conservation of angular momen-
tum as a consequence of that equation.

So our immediate task is to check whether the angular momentum is conserved for a particle 
described by the Dirac equation. Within the structure of quantum mechanics, a dynamical variable A 
is conserved if [A, H] = 0, provided A has no explicit time dependence.

Is Orbital Angular Momentum Conserved?
The operator for orbital angular momentum is 

 L r pop op op= ×

Let us check the z component of the orbital angular momentum, which is given by

 L
z
 = xp

y 
− yp

x

Note that here x, p
y
, y and p

x
 are operators.

The Dirac Hamiltonian for a free particle is

 H c mcD = ⋅ +` p b 2

 = + + +c p c p c p mcx x y y z za a a b 2

Let us evaluate [L
z
, H

D
].

 [ , ] [ , ]L H L c p c p c p mcz D z x x y y z z= + + +a a a b 2

 = + + +[ , ] [ , ] [ , ] [ , ]L c p L c p L c p L mcz x x z y y z z z za a a b 2  (16.71)

 [ , ] [ , ]L c p xp yp c pz x x y x x xa a= −  = −[ , ] [ , ]xp c p yp c py x x x x xa a  (16.72)

 [ , ]xp c p xp c p c p xpy x x y x x x x y− = −a a a  (16.73)
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In the RHS, only x and p
x
 are non-commuting; i.e., only their order in each term has to be preserved 

as it is.

 ∴ = − =[ , ] [ ]xp c p cp xp p x i cpy x x y x x x y xa a a�

This second term in the Equation (16.72) is

 [ , ]yp c p yp c p c p ypy x x x z z x x xa a a= −

All the quantities in the RHS commute among themselves, and so it is zero.

i.e., [ , ]yp c px x xa = 0

 ∴ =[ , ]L c p i c pz x x x ya a�  (16.74)

Next, let us evaluate [ , ].L c pz y ya

 [ , ] [ , ]L c p xp yp c pz y y y x y ya a= −

 = − = − +[ , ] [ , ]xp c p yp c p yp c p c p ypy y y x y y x y y y y xa a a a

 = − − =c p yp p y i c py x y y y xa a[ ] �  (16.75)

Working out in the same way, the third and the fourth terms in the Equation (16.71) can be shown to 
be zero.

 ∴ = −[ , ] [ ]L H i c p pz D x y y x� a a

 ∴[ , ]L Hz D ≠ 0 (16.76)

So if the Dirac equation is taken as the correct equation for electron, the orbital angular momentum 
is not conserved.

New Operator – Spin Angular Momentum
Let us now see how the spin angular momentum emerges naturally from the Dirac equation and 
restore the conservation of angular momentum in the theory. Classically, the angular momentum of 
any system has to be described by terms r p× . This is true whether the object is revolving about an 
axis or spinning about its own axis. If we restrict ourselves to the angular momentum r p×  alone, 
then the Dirac equation predicts violation of angular momentum. The surprising thing is that we can 
construct a new operator which behaves like the angular momentum. This new angular momentum is 
the spin angular momentum.

The spin angular momenta S
x
, S

y
 and S

z
 are defined as

 S i S i S ix y z y z x z x y= − = − −� � �
2 2 2
a a a a a a,    and     (16.77)

Note that these operators have neither r dependence nor p dependence. So there is no quantity in 
classical mechanics from which we can construct these operators. Spin angular momentum is unique 
to quantum mechanics. Before investigating their properties, let us check whether the spin angular 
momentum is conserved.
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Is Sz Conserved
Let us evaluate [S

z
, H

D
].

 [ , ] [ , ]S H S c p c p c p mcz D z x x y y z z= + + +a a a b 2

 = + + +[ , ] [ , ] [ , ] [ , ]S c p S c p S c p S mcz x x z y y z z z za a a b 2  (16.78)

In evaluating these commutation relations, we will make use of the following property: if A and B are 
anti-commuting matrices, flipping them will introduce a negative sign; i.e.,

 
AB BA

S c p i c pz x x x y x x

= −

= −





[ , ] ,a a a a�
2

 = − −i cpx x y x x x y
�
2

[ ]a a a a a a

Note that since a
x
 and a

y
 are anti-commuting matrices,

 a a a ax y y x= −

 ∴ = − = − =a a a a a a a ax y x x x y y x( )∵ 2 1

 ∴ = − − =[ , ] ( )S c p i cp cpz x x x y x ya a a� �
2

2  (16.79)

Next, let us evaluate [ , ]S c pz y ya .

 [ , ] ,S c p i c pz y y x y y ya a a a= −





�
2

 = − −
i cpy

x y y y x y

�
2

[ ]a a a a a a

Now we have a
y
a

x
a

y
 = −a

y
a

y
a

x
 = −a

x

 ∴ = −[ , ] .S c p i cpz y y y xa a�  (16.80)

Working out in the same way, we can show that the third and the last term in the Equation (16.78) are 
zero.

 [ , ] [ ]S H i c p pz D y x x y= −� a a  (16.81)

 ∴[ , ]S Hz D ≠ 0 (16.82)

So if we consider the spin angular momentum alone, it is also not conserved for a particle described 
by the Dirac equation. 
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Conservation of Total Angular Momentum
Now we have two kinds of angular momenta, neither of which is individually conserved.

Let us define the total angular momentum J by

 J L S= +

or J
z
 = L

z
 + S

z
 (16.83)

Let us check whether J is conserved. As mentioned earlier, it is enough to check whether J
z 
is conserved.

 [ , ] [ , ]J H L S Hz D z z D= +

 = +[ , ] [ , ]L H S Hz D z D

 = − + −i c p p i c p px y y x y x x y� �[ ] [ ]a a a a

 = 0 (16.84)

Therefore, the total angular momentum is conserved. So the conservation of angular momentum for a 
Dirac particle requires the existence of spin angular momentum.

Properties of Spin Operators
 1. First, let us check the operators S

x
, S

y
 and S

z
 satisfy the angular momentum algebra.

 Let us evaluate [S
x
, S

y
].

 [ , ] ,S S i i
x y y z z x= − −





� �
2 2
a a a a

 = −( ) −i
y z z x z x y z

�
2

2

[ ]a a a a a a a a

 = −( ) −i
y x z z x y

�
2

2

[ ]a a a a a a

 = −( ) − = −( ) −( ) −i i i
y x x y x y

� � �
2 2 2

2
2

[ ] ( )a a a a a a

 = i Sz�  (16.85)

 So S
x
, S

y
, and S

z
 satisfy the angular momentum algebra.

 2. S S S Ix y z
2 2 2

2

4
= = = �  (16.86)

 This can be easily checked.

 S i iz x y x y
2

2 2
= −( ) −( )� �a a a a

 = − = =� � �2 2 2

4 4 4
a a a a a a a ax y x y x x y y
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 3. Eigenvalues
 The eigenvalue equations for S2 and S

z
 are

 S s s2 21c c= ( )+ �

 and S mz sc c= �  (16.87)

 Since S S S Ix y z
2 2 2 21

4
= = = � ,

 we have

 S S S Sx y z
2 2 2 2 23

4
c c c= + + =( ) �  = +( )1

2
1
2

1 2� c  (16.88)

 Immediately, we identity that s = 1
2

.

 Starting from the Equation (16.87), we have

 S S S m m S mz z z s s z s( )c c c c= =� � �= 2 2

 But S Iz
2 21

4
= �  ∴ =1

4
2 2 2� �c cms

 or ms
2 1

4
=  ∴ = ±ms

1
2

 i.e., ms = 1
2

1
2

 or  (16.89)

 The spin quantum s is s = 1
2

 and z component quantum number ms = ± 1
2

.

 4. Matrix representation of S
x
, S

y
 and S

z

 Consider S
x

 S i i
x y z

y

y

z

z

= − = −
















� �
2 2

0

0

0

0
a a

s

s
s

s

 = −










i y z

y z

�
2

0

0

s s

s s

 = −






=






=i i

i
x

x

x

x
x

� � �
2

0

0 2

0

0 2

s
s

s
s

Σ

 where Σ x
x

x

=






s
s
0

0

 So we have

 Sx x
x

x

= =






� �
2 2

0

0
Σ

s
s

 (16.90)
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 Sy y

y

y

= =










� �
2 2

0

0
Σ

s

s
 (16.91)

 and Sz z
z

z

= =






� �
2 2

0

0
Σ

s
s

 (16.92)

Example 16.1 Show that

 ( )( ) ( )S S S⋅ ⋅ = ⋅ + ⋅ ×A B A B A Bi

Solution: We know that

 ( )( ) ( )r r r⋅ ⋅ = ⋅ + ⋅ ×A B A B A Bi

 (S S⋅ ⋅ =
⋅

⋅






⋅
⋅







A)( B)
A

A

B

B

r
r

r
r

0

0

0

0
 =

⋅ ⋅
⋅ ⋅







r r
r r

A B

A B

0

0

 =
⋅ + ⋅ ×

⋅ + ⋅ ⋅






A B A B

A B A B

I i

I i
2

2

0

0

r
r

( )

( )

 = ⋅ + ⋅ ×A B A BI iS .

Here I
2
 is 2 × 2 unit matrix and I is 4 × 4 matrix. Generally, I is not written in the final expression.

16.14 HELICITY OPERATOR
Let us introduce the concept of helicity, which is the projection of the spin angular momentum along the 
direction of the momentum. Classically, if S is a vector representing the spin angular momentum, then

 Λ = ⋅S p
p| |

Geometrically, this is shown in Fig.16.8.
In quantum mechanics, the helicity operator of an electron is defined as

 ˆ
| | | |

Λ =
⋅

=
⋅S p

p

p

p
op op�

2

S
 (16.93)

It is interesting to note that the spin angular momentum �/2Σ does not commute with the Dirac 

Hamiltonian H
D
, but ˆ

| |
Λ =

⋅�
2

S p

p
op  commutes with the Hamiltonian H

D
.

S

P

Fig.16.8 Projection of S along P
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i.e., �
2

0S, HD






≠  but �
2

0
S ⋅







 =

p
p

op

DH
| |

,  (16.94)

The commutation relation can be checked easily.
Let us first write H

D
 and Λ  in the matrix form.

 Λ =
⋅

=
⋅

⋅












� �
2 2

0

0

S p

p p

p

p
op op

op
| | | |

r

r

 ∴ − =
⋅

⋅ −


















⋅

⋅
Λ ΛH H

mc c

c mcD D

op

op

op

op

�
2

0

0

2

2| |p

p

p

p

p

r

r

r

r












 −
⋅

⋅












⋅
⋅

⋅ −


















r

r

r

r

p

p

p

p

op

op

op

op

mc c

c mc

0

0

2

2

 = 0

Eigenvalues of Helicity Operator

 Λy y ly= ⋅ =�
2 | |p

pS op

Since y is also an eigenstate pop , we can write p popy y=

 ∴ = ⋅ =Λy y ly�
2 | |p

pS

 ΛΛy y= 





⋅ ⋅�
2

2

| |
( )( )

p
p p  S S

 = �2

2
2 2

4 | |
| |

p
p y l y=

 ∴ = ±l �
2

 (16.95)

Sometimes Λ̂  is defined as ˆ
| |

.Λ = ⋅S p
p

 The advantage of this definition is that the eigenvalues are ±1.

Compatible Operators for the Dirac Equation
The complete set of compatible observables for the Dirac equation is momentum pop , Hamiltonian H

D
 

and the helicity operator Λ.

i.e., [ , ] [ , ] [ , ]p pH HD D= = =0 0 0Λ Λ  (16.96)
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Obviously, the quantum numbers which characterize the solution for the Dirac equation for free par-
ticles are the eigenvalues of momentum, Hamiltonian and the helicity.

Example 16.2 Show that for a Dirac electron, S n⋅  does not commute with free particle Hamiltonian 
HD unless n is a unit vector in the direction of momentum.

Solution:

 

[ . , ] ,S n n

n

n

p

p

H H

mc c

c mc

D D= ⋅





=
⋅

⋅






⋅
⋅ −




�

�

2

2

0

0

2

2

S

r
r

r
r




−
⋅

⋅ −






⋅
⋅















=
⋅

mc c

c mc

c

2

2

0

0

2

0

r
r

r
r

r r

p

p

n

n

n� ( )( ⋅⋅ − ⋅ ⋅
⋅ ⋅ − ⋅ ⋅







=
⋅ ×

p p n

n p p n

n p

) ( )( )

( )( ) ( )( )

(

c

c c

ci

r r
r r r r

r

0

2

0� −− ×
⋅ × − ×







p n

n p p n

)

( )cir 0

 

This is not zero unless n and p are parallel or antiparallel to each other.

Example 16.3 Determine the free particle Dirac spinors which are also the eigenstates of helicity 
operator.

Solution: Consider the positive energy eigenspinor given by 

 u N
E mcp

=
+















c
cr .p

2

The eigenvalue equation for the helicity operator is

 

Λu u

p

p

N
E mc

N

p

p

=

⋅

⋅

















⋅
+















=

⋅
l

c
c

c

� �
2

0

0
2

2

r

r
r

r
p

p
p

p

rr r r⋅ ⋅

+





















= ± ⋅
+













p

p
p

p
E mc

N
E mc

p

p

c

c
c

2

2
2
�

This is possible, provided we have 
r ⋅ = ±p

p
c c .
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It is easy to solve this equation. After some algebra, we find 

 c c1

1 2

2

1

2

1

2
=

+





+
+













 =

+





p p
p

p ip

p p

p p
p

z
x y

z

z

/ /

and 
22

1

−
−
+















p ip

p p
x y

z

16.15  MAGNETIC MOMENT OF AN ELECTRON DUE TO 
SPIN ANGULAR MOMENTUM

One of the remarkable successes of the Dirac equation is that it leads to correct value for the magnetic 
moment of an electron due to the spin angular momentum apart from a small correction. Let us recap-
ture some of our earlier discussions of the magnetic moment and the angular momentum in Chapter 
12. In classical electrodynamics, a charge −e with an angular momentum L has a magnetic moment 
l  given by

 l = − e
mc2

L

The same ideas can be extended to quantum mechanics. For an electron, we define the magnetic 
moment due to orbital angular momentum as

 lop op

op

B

ope
mc

e
mc

= = =− − −
2 2

L
L L�
� �

m

and m
m

z z op

z op B
z op

e
mc

L e
mc

L
L= = ⋅ =− − −

2 2,

,

,
�

� �

Extending the same considerations for magnetic moment, due to the spin angular momentum, we expect 

 lop op

op

B

ope
mc

e
mc

= − = − = −
2 2

S
S S�
� �

m  

 and m
z
 to be given as 

 m
z
 = −m

s
m

B

where ms = ± 1
2

However, this is not in agreement with experimental values, which are almost twice this value. So 
we have to come with new definition for magnetic moment due to the spin angular momentum. The 
magnetic moments lop  and lz op,  for the spin angular momentum are defined as

 lop s B opg= m 1
�

S  (16.97)

and lz op s B zg S, = − m 1
�

 (16.98)
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The experimental value for g
s
 is found to be g

s
 = 2.002. The Dirac equation leads to g

s
 = 2, and the 

remaining factors are accounted in quantum electrodynamics. But to obtain gs = 2 is itself a remark-
able achievement for any theory.

Let us now obtain the values of g
s
 from the Dirac equation.

For an electron in a magnetic field B, the Dirac equation is

 i
t

c e
c

mc�
∂
∂

= ⋅ +( ) +y y b y` p A 2

Again, let us consider the stationary state solution y ( , ) ( )r rt u e iEt= − /�

Substituting this function in the Dirac equation, we get

 Eu e c e
c

u e mc u eiEt iEt iEt( ) ( ) ( )r p A r r− − −= ⋅ +( ) +/ / /� � �` b 2

Factoring out e iEt− /�  we get

 Eu c e
c

u mc u( ) ( ) ( )r p A r r= ⋅ +( ) +` b 2

Let us write u
V

W
=







Then, we have

 E
V

W

c c
c

c c
c

mc

mc







=
⋅ +( )

⋅ +( )
















+
−







0

0

0

0

2

2

r

r

p A

p A





























V

W

 EV mc V c e
c

W= + ⋅ +( )2 r p A  (16.99)

and EW mc W c e
c

V= − + ⋅ +( )2 r p A  (16.100)

Rewriting these two equations, we get

 ( )E mc V c e
c

W− = ⋅ +( )2 r p A  (16.101)

and ( )E mc W c e
c

V+ = ⋅ +( )2 r p A  (16.102)

Now let us make the non-relativistic approximation. In the non-relativistic approximation, 

 E ∼ E′ + mc2

Then, (E − mc2) V ∼ E′V
and (E + mc2) W ∼ 2mc2W
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Now the Equations (16.101) and (16.102) become

 ′ = ⋅ +( )E V c e
c

Wr p A  (16.103)

and 2 2mc W c e
c

V= ⋅ +( )r p A  (16.104)

Substituting the Equation (16.104) in the Equation (16.103) for W, we get

 ′ = ⋅ +( ) ⋅ +( )E V
m

e
c

e
c

V1
2
r rp A p A  (16.105)

 = +( )⋅ +( ) + ⋅ +( ) × +( )1
2

1
2m

e
c

e
c

V
m

i e
c

e
c

Vp A p A p A p Ar  (16.106)

Consider the second term in the above equation.

 p A p A+( ) × +( )e
c

e
c

V

 = − +( ) × − +( )i e
c

i e
c

V� �∇ ∇A A

 = − +( ) × − +( )i e
c

i e
c

� �∇ ∇A AV V

 = − × − + × − × − ×i i V e
c

V i e
c

V i e
c

� � � �∇ ∇ ∇ ∇( ) ( )
2

2
A A A A V  (16.107)

The first two terms are zero. In the third term, we use ∇ ∇ ∇× = × − ×( ) ( ) .A A AV V V  
Therefore, we have

 p A p A+( ) × +( )e
c

e
c

V

 = − × + × − ×ie
c

V ie
c

V ie
c

V� � �( )∇ ∇ ∇A A A

 = − × = − × =ie
c

V ie
c

V� � ∵( ) ( )∇ ∇A B A B  (16.108)

Therefore, the Equation (16.105) becomes

 ′ = −( ) + ⋅ ⋅E V
m

e
c m

e
c

V1
2

1
2

2

p A B�r  (16.109)

Making of the fact that the spin angular momentum S = �
2
r ,  we get

 ′ = ⋅ −( ) + ⋅E V
m

e
c

e
mc

1
2 2

2
2

p A S B�
�

. .

 = ⋅ −( ) − ⋅1
2

2

m
e
c opp A Bl
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provided we identify the magnetic moment lop  as

 l = − ⋅2 mB . S
�

 (16.110)

This is the magnetic moment due to the spin angular momentum. Comparing the Equations (16.97) 
and (16.110), we get

 g
s
 = 2 (16.111)

16.16 HYDROGEN ATOM
In non-relativistic quantum mechanics, it is very simple to get the radial wave equation for hydrogen 
atom. In the case of the Dirac equation, we have to do a long background work to arrive at the radial 
wave equation. We, first, define a new operator K which commutes with the Dirac Hamiltonian and 
study its property in details. Next, we introduce parity operator. Then, we define radial momentum pr  
and radial matrix a r , and we get the Hamiltonian in terms of these quantities. The Dirac Hamiltonian, 
the K operator, the parity operator and the operators J 2  and J z  together form a set of compatible 
observables. This helps us to write general form of Dirac spinor for hydrogen atom and finally arrive 
at the radial wave equations. 

16.16.1 K Operator
To solve the Dirac equation for hydrogen atom, we have to define a new operator K operator. It is 
defined as

 K = ⋅ +( )S L � b  (16.112)

Why do we need do define a new operator? Let us recapitulate the salient features of solution to the 
Schrödinger equation for hydrogen atom in non-relativistic quantum mechanics. The Hamiltonian H is

 H
m

Ze
r

= − −�2
2

2

2
∇

This Hamiltonian commutes with L2 and L
z

i.e., [ ]H L, 2 0=  and [ , ]H Lz = 0

Therefore, the eigenfunction of H should also be the eigenfunctions of L2 and L
z
. It is important to 

note that ∇2 is given by

 ∇2
2

2
2 2

21 1= ∂
∂

∂
∂( ) −

r r
r

r r
L

�
 (16.113)

So the Hamiltonian can be written in terms of L2.

i.e., H
m r r

r
r r

L V r= ∂
∂

∂
∂( ) −





+�
�

2

2
2

2 2
2

2
1 1 ( )  (16.114)
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It becomes obvious now that the eigenfunctions of H are also the eigenfunctions of L2 and L
z
. The fact 

that H can be written in terms of L2 enables us to write u R r Ynl lm( ) ( ) ( , ),r = q j  where L u l l u2 21= +( ) ,�  
L

z
 u = mu and H

u
 = E

n
u. 

The Dirac Hamiltonian for hydrogen atom is

 H c mc V rD = ⋅ + +` p b 2 ( )  (16.115)

where V r Ze
r

( ) = −
2

It is easy to check that [H
D
, J 2] = 0 and [H

D
, J

z
] = 0. Therefore, the eigenfunctions of H

D
 should be the 

eigenfunctions of J 2 and J
z
. This demand is very much similar to non-relativistic quantum mechan-

ics. However, unlike non-relativistic case, we cannot write H
D
 in terms of J 2 (similar to the Equations 

(16.114) and (16.113)). So it becomes very difficult to construct an eigenfunction common to both H
D
 

and J 2. It is this difficulty which suggests a new operator K related to J 2 to be defined. The K operator 
should be as follows:

 1. [H
D
, K] = 0

 2. [K, J
z
] = 0

 3. H
D
 should be expressed in terms of K. (16.116)

Let us now try to ‘obtain’ the operator K. Let us recall that the spin angular momentum S is given by

 S = �
2
S  where S =

r
r
0

0







S2  is given by

 S S S Sx y z x y x
2 2 2 2

2
2

2
2

2
2

4 4 4
= + + = + +� � �S S S

 = 3
4

2� I  (since S S Sx y z I2 2 2= = = )

We know that

 S S S⋅ ⋅ = ⋅ + ⋅ ×A B A B A Bi ( )

Making use of this result, we get

 S S⋅ ⋅ + ⋅ ×L L L L= ΣL i2 ( )

 = − ⋅L L2 �Σ   (Since L L L× = i� )

or L L L2 2= ⋅ + ⋅( )S S�  (16.117)

Now J 2 is given by

 J L S L S L S2 2 2 2 2= + = + + ⋅( )

 = + + ⋅( )L L2 23
4

2
2

� �I Σ

 = + + ⋅L L2 23
4

� �S  (16.118)
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 = ⋅ + ⋅( ( ( . ))S SL L +) from2 22 3
4

16 117� �  (16.119)

Adding 1
4

2⋅�  to both sides, we get

 J 2 2 2 2 21
4

2+ = ⋅ + ⋅ +� � �( ) ( )S SL L

 = ⋅ +( )S L � 2

 = ⋅ +[( ) ]S L � b 2  since b 2 = I

K is defined as K = ⋅ +( )S L � b  and so we have

 K J2 2 21
4

= + �  (16.120)

It is obvious that K 2 commutates with J 2.
It can be shown that H

D
 can be expressed in terms of K.

Example 16.4 Show that the operator K = ⋅ +b ( )Σ L �  commutes with the Dirac Hamiltonian for a 
particle in central potential.

Solution: 

 K = ⋅ +b ( )Σ L �
 

∴ =
−







+
+







=
+

− −






K
I

I

I

I

0

0

0

0

0

0

r
r

r
r

.

.

.

.

L

L

L

L

�
�

�
�

 [ , ] [ ( ), ]H K mc V r KD = ⋅ + +c p` b 2

 = ⋅ + +[ , ] [ , ] [ ( ), ]c p` K mc K V r Kb 2

 [ ]c K c K cK` ` `⋅ = ⋅ − ⋅p, p p

 =
⋅

⋅










⋅ +
⋅ −











0

0

0

0

c

c

r
r

r
r

p

p

L

L

�
�−

 −
⋅ +

− ⋅ −










⋅
⋅











r
r

r
r

L

L

p

p

�
�

0

0

0

0

c

c

 =
− ⋅ ⋅ − ⋅

⋅ ⋅ ⋅










0

0

c c

c c

r r r
r r r

p L p

p L + p

�
�

 −
− ⋅ ⋅ − ⋅

⋅ ⋅ + ⋅









0

0c c

c c

r r r
r r r

L p p

L p p

�
�
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 =
− ⋅ ⋅ + ⋅ ⋅ − ⋅

⋅ ⋅ + ⋅ ⋅ + ⋅










0 2

2 0

c c

c c

( )

( )

r r r r r
r r r r r

p L L p p

L L L L p

�
�

 r r r r r r⋅ ⋅ + ⋅ ⋅ = ⋅ + ⋅ × + ⋅ + ⋅ ×p L L p p L p L L p L pi i( ) ( )

 = ⋅ + ⋅ + ⋅ × + ×p L p L p L L pir ( )

It is easy to verify that the first two terms are zero.
Let us now evaluate the x component of ( ) .p L L p× + × x

 ( )p L L p× + × = − + −x y z z y y z z yp L p L L p L p

 = − − −p xp yp p zp xpy y x z x z( ) ( ) + − − −( ) ( )zp xp p xp yp px z z y x y

 = − + + − +( ) ( )p y yp p p z zp py y x z z x = 2i px�

Similarly, evaluations of other components give

 r ⋅ × + × = + +( )p L L p 2 2 2i p i p i px x y y z z� � �s s s  = 2i�r .p

 [ , ]c K` ⋅p  =
− ⋅ − ⋅

⋅ + ⋅








 =

0 2 2

2 2 0
0

i i c c

i i c c

� �
� �

r r
r r

p p

p p

It is easy to evaluate the other two terms.

 [ , ]bmc K
mc

mc
2

2

2

0

0

0

0
=

−










⋅ +
− ⋅ −











r
r

L

L

�
�

 −
⋅ +

− ⋅ −










r
r

L

L

�
�

0

0

mc

mc

2

2

0

0
0

−








 =

 [ ( ), ]V r K = 0

 ∴ =[ , ]H KD 0 (16.121)

Example 16.5 Determine the eigenvalues operator K.

Solution: The eigenvalue equation is 

 Ky = ky

where y  is a four-component spinor.

 K 2y  = KKy  = K(ky)

 K 2y  = KKy  = K(ky ) = k22y
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But  
K J

K J

2 2 2

2 2 2

1
4
1
4

= +

∴ = +( )
�

�y y

 
= + = + +

= + +( ) = +( )
J j j

j j j

2 2 2

2 2
2

2

1
4

1 1
4

1
4

1
2

y y y y

y y

� � �

� �

( )

 ∴ = +( )k j2
2

1
2

 (16.122)

 ∴ = ± +( ) = ± ± ±k j 1
2

1 2 3, , �  (16.123)

Example 16.6 Determine the orbital angular momentum quantum numbers of upper and lower com-
ponents V and W of eigenvectors of K.

Solution: Consider the eigenvalue equation 

 K
V

W
k

V

W







=






�

The K operator is given by 

 K
I

= ⋅ +( ) =
⋅ +

⋅ +






r
r

r
L

L

L
�

�
�

b
           

                

 0

0

    

 

         

         

0

0

0

0−






=
⋅ +

− ⋅ −




I

r
r

L

L

�
�

 ∴






=
⋅ +

− ⋅ −


















 =K

V

W

V

W
k

r
r

L

L

�
�

�
   

              

0

0

VV

W











 r ⋅ + =LV V k V� �  or r ⋅ = −LV k V( )1 �  (16.124)

 − ⋅ − =r LW W k W� �  or r . ( )LW k W= − +1 �  (16.125)

The eigenvector of K should also be the eigenvector of J 2.

 ∴






= +






J
V

W
j j

V

W
2 21( )�

But J 2 2 2 2 22 3
4

= + + ⋅ = + + ⋅L S L L LS � �¬

 =
+ +

+

L L

L

2 2

2

3
4

0

0

� r .              

                            33
4

2� +















r .L
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∴






=
+ +

+ +

























 =J

V

W

V

W
2

2 2

2 2

3
4

0

0 3
4

L L

L L

� �

� �

r

r

.

.
 jj j

V

W
( )+









1 2�

 ∴ + +( ) = +L L2 2 23
4

1� � �r . ( )V j j V  (16.126)

and L L2 23
4

1+ +( ) = +� � �r . ( )W j j W  (16.127)

Eigenvalue l for V

Making use of the Equation (16.124) in the Equation (16.126), we get 

 L2 2 2 21 3
4

1V j j k V= + − − −





( ) ( )� � �

Using L2 V = l(l + 1)2V  in the above equation, we get

 

l l j j k

j j j

( ) ( ) ( )+ = + − − −

= + +( ) = +( )
1 1 3

4
1

1
4

1
2

2 2
2

2� �y y

Adding 1
4

 to both, we get 

 l l j j k2 21
4

1
2

+ + = + + −

or l j j k+( ) = + + −1
2

1
2

2
2

For k j= + 1
2

 l j j j j+( ) = + + − +( ) =1
2

1
2

1
2

2
2 2

 ∴ + =l j1
2

 or l j= − 1
2

For k j= − +( )1
2

 l j j j j+( ) = + + + +( ) = +1
2

1
2

1
2

1
2

2 2( )

 l j+( ) = +1
2

1 or l j= + 1
2
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Eigenvalue l for W

Working in the same way, we get

for k j l j= + = +1
2

1
2

,

and for k j l j= − +( ) = −1 1
2

1
2

, .

Summarizing, we have 

 K
V

W
k

V

W







=






�

 
L V l l V

l j k j

l j k j

2 21

1
2

1
2

1
2

1
2

= +
= − = +

= + = − +( )








( ) :�
for

for

 L W l l W
l j k j

l j k j

2 1

1
2

1
2

1
2

1
2

= +
= + = +

= − = − +( )








( ) :�
for

for
 (16.128)

16.6.2 Parity Operator
We have already seen the concept parity invariance in Chapter 9. Let us recall the space reversal of the 
coordinates is defined by

 r r r→ ′ = −

The invariance of parity transformation of the Dirac equation means that for every state y ( , )r t  sat-
isfying the Dirac equation, there exists a corresponding state ′ −y ( , ),r t  which also satisfies the Dirac 
equation. This implies that there should exist a transformation P  such that 

 ′ − =y y( , ) ( , )r rt P t

Finding such transformation amounts to proving the parity invariance of the Dirac equation. Here, we 
quote only the end result without giving the proof. The parity operator P is given by

 P t P t ty b y by( , ) ( , ) ( , )r r r= = −0  (16.129)

Normally, the determination of this operator is a part of the proof of covariance of the Dirac equation. 
Note that the effect of the operator P0 on y ( , )r t  is to replace r by −r in the function y ( , ).r t  

 P t t0y y( , ) ( , )r r= −

Our interest on this operator in this chapter lies with the fact that P commutes with the Dirac 
Hamiltonian for a particle in a central potential, and therefore, we have to choose that eigenstate of H

D
 

which is also an eigenstate of P.
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Example 16.7 Prove that P t P t ty b y by( , ) ( , ) ( , )r r r= = −0  satisfies the Dirac equation when y ( , )r t
satisfies the Dirac equation.

Solution: The Dirac equation for y ( , )r t  is

 i
t

t ic t mc t� �∂
∂

= − ∇ +y y by( , ) . ( , ) ( , )r r r` 2

Now operate P on either side of the equation.

 

i
t

t ic t mc t

i
t

t i

� �

�

∂
∂

= − ∇ +

∂
∂

= −

P P P

P

y y by

b y

( , ) ( . ( , )) ( , )

( , )

r r r

r

` 2

0 cc P t mc t

i
t

t ic

�

� �

b y b by

by b y

0
2

0( . ( , )) ( , )

( , ) .( (

`

`

∇ +

∂
∂

− = − −∇ −

r r

r

P

rr r, )) ( , )t mc t+ −2bby

Note that the effect of P0 is to change r rby −  in all the functions on which it acts, and so ∇ becomes 
−∇. Using the fact b b` `= − , we get

 i
t

t ic t mc t� � �� �� � � �� �� � �� ��
∂
∂

− = − ∇ − + −by by b by( , ) . ( , ) ( , )r r r` 2

Therefore, by ( , )−r t  satisfies the Dirac equation.

Example 16.8 Show that the parity operator defined by Py b y by( , ) ( , ) ( , )r r rt P t t= = −o  commutes 
with the Dirac Hamiltonian H c mc V rD op= ⋅ + +` p b 2 ( ).

Solution: The effect of P
o
 is to replace r  by −r in all expressions on which P

o
 acts.

i.e., P t toy y( , ) ( , )r r= −

 P t P i t i t to op o op( ( , )) ( ( , )) ( , ) ( , )p r r r p ry y y y= − ∇ = ∇ − = − −� �

Let us consider an arbitrary Dirac spinor y ( , )r t .

 

[ , ] ( , ) [ ] ( , )

[ . ( )] ( , )

H P t H P PH t

c mc V r P t
D D D

op o

y y
b b y

b

r r

p r

= −
= + +

−

` 2

PP c mc V r to op[ . ( )] ( , )` p r+ +b y2

 

= − + − + −

− − − −

c t mc t V r t

c t

op

op

`

`

. ( , ) ( , ) ( ) ( , )

( . ( , ))

p r r r

p r

by y by

b y

2

mmc t V r t

c t c top op

2y by

by b y

( , ) ( ) ( , )

( , ) ( , )

− − −

= ⋅ − + ⋅ −

r r

p r p r` `
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Since `  and b are anti-commuting matrices,

 
` `

` `

. .

[ , ] ( , ) . ( , ) . ( , )

p p

r p r p r

op op

D op opH P t c t c t

b b

y by by

= −

= − − − = 0

Since this equation is true for any arbitrary Dirac spinor y ( , )r t , we conclude 

 [H
D
, P] = 0

16.6.3 Radial Momentum Pr and Radial Matrix `r and Hamiltonian
Let us first define a

r
 and p

r
.

Since `  and r are commuting, the definition of the radial component of ` r  is straightforward.

 ` `. .r r=
r

 (16.130)

In the case of p
r
, in classical physics, p.r and r.p are the same. However, since they are non-commut-

ing operators in quantum mechanics, we define p
r
 as

 p
r rr = +( )1

2
p r r p. .  (16.131)

From the Example 8.3 in Chapter 8, we have

 p
rr = ⋅ −1 ( )r p �

Let us consider ( ) .` ⋅ −r 1  It is obvious ( ) ( ).` `⋅ = ⋅−r r1
2

1
r

 We can easily check this result.

 ( ) ( ) ( )( )` ` ` `⋅ ⋅ = ⋅ ⋅ = =−r r r r1
2 2

21 1 1
r r

r

Next consider ` `⋅ ⋅r p.

 
` `⋅ ⋅ = + ⋅ ×

= ⋅ + ⋅
r p r p r p

r p L

. ( )i

i

S
S

 (16.132)

From the definition of K
op

, we get 

 b ( )S ⋅ + =L � K

or S ⋅ + =L � bK  or S ⋅ = −L bK �

 ∴ ⋅ ⋅ = ⋅ + −` `r p r p i K( )b �  (16.133)
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Multiply this equation by 1
2r
` ⋅r  on either side.

 

1

1

2 2r r
i i K

r r
i

r
i Kr

` ` ` `

` ` `

⋅ ⋅ ⋅ = ⋅ ⋅ − +

∴ ⋅ = ⋅ ⋅ − +

r r p r r p

p r r p

[ ]

[ ]

�

�

b

b           Since 1 1

1

2r

p i
r

Kr r r

` `. .r r =( )
= +a a b

The Dirac Hamiltonian H
D 

is given by 

 H c p ic
r

K mc Ze
rD r r r= + + −a a b b1 2

2
 (16.134)

It can be shown that K commutes with H
D
.

Example 16.9 Show that [H
D
, K] = 0 where H

D
 is given by 

 H c p ic
r

K mc Ze
rD r r r= + + −a a b b1 2

2

Solution:

 
[ , ] [ , ] , [ , ] ,

[

H K c p K ic
r

K K mc K Ze
r

K

c

D r r r= + 





+ − 





a a b b

a

1 2
2

rr r r r r rp K c K p c p K, ] [ , ] [ , ]= +a a

 

[ , ]a r K r

r

=
⋅

⋅

















⋅ +
− ⋅ −











−
⋅ +

−

0 1

1 0

0

0

0

0

r

r

r
r

r
r

r

r

L

L

L

�
�

�
⋅⋅ −











⋅

⋅















L

r

r�

0 1

1 0

r

r

r

r

 =
− ⋅ ⋅ − ⋅ ⋅ − ⋅

⋅ ⋅ ⋅ ⋅ ⋅
















0 1 1 2

1 1 2

r r

r r

r r r r r

r r r r r

r L L r r

r L + L r + r

�

� 
 (16.135)

Consider 1 1
r r
r r r r⋅ ⋅ + ⋅ ⋅r L L r

Since L is an operator containing q and f only, r .L  and 1
r

 commute.
Therefore, we have 

 1 1

0 0r r
i[ ] [ ( )]r r r r r⋅ ⋅ + ⋅ ⋅ = ⋅ + ⋅ + ⋅ × ×r L L r r L L r r L + L r� �
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Consider the x component of r L L r× + × .

 
[ ] [ ]

[ , ] [ , ]

r L + L r× × = − + −

= + =
x z y y z

z y

yL zL L z L y

y L z L i x2 �

Taking into account the other components also, we get 

 

∴ ⋅ ⋅ + ⋅ ⋅ = + +

= − ⋅

1 2 2

2
r

i i x i i y i i yx y z[ ]r r r r

r

r L L r

r

s s s� � �

�

Using these results in the Equation (16.135), we get

 [a
r
, K] = 0

Let us evaluate [ , ]p Kr  next.

 [ , ] ( ), ,p K
r

i K
r

Kr = ⋅ −





= ⋅





1 1r p r p�

 = ⋅
⋅ +

− ⋅ −








 −

⋅ +
− ⋅ −









 ⋅

=
⋅

1 0

0

0

0
1

1

r r

r

r p
L

L

L

L
r p

r p 

r
r

r
r

r

�
�

�
�

⋅⋅ − ⋅ ⋅

− ⋅ ⋅ + ⋅ ⋅

















L L r p

r p L L r p

r

r r

1 0

0 1 1
r

r r

 

1 1 1

1
r r r

r
L Lx x y y

r p L L r p r p L Lr p

r p r p

⋅ ⋅ − ⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅

= ⋅ + ⋅

r r r r( )

[ , ] [ ,s s ]] [ , ]+ ⋅{ }r p s z zL

 

[ , ] [ , ]

[ , ]

[ , ] [

r p r p⋅ = ⋅
= + +

= +

rx x x x

x x y z x

x x x x y

L L

xp yp zp L

xp L yp

s
s

s s ,, ] [ , ]L zp Lx x z x+s

 

= + + +{ }
= − − +

s

s
x y x x y z x z z

x z y

y p L y L p z p L z L p

i yp i zp i

[ , ] [ , ] [ , ] [ , ]

[ � � �� �zp i xpy z+

=

]

0

Similarly, it can be shown [ , ] [ , ]r p r p⋅ = ⋅s sy y z zL L  = 0.

Consider 1
r

K Kra b ,





This commutator is zero since each factor separately commutes with K. i.e., 1
r , a

r
, and b commute 

with K.
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 ∴ 





=1 0
r

K Kra b ,

Similarly, it can be shown [bmc2, K] = 0 and −





=Ze
r

K
2

0,

 ∴ [H
D
, K] = 0

16.6.4 General Form of Spinor for Hydrogen Atom
For the Dirac Hamiltonian H

D
, the set of operators which commute with H

D
 are J 2, J

z
, K and P.

 [H
D
, J 2] = 0 [H

D
, J

Z
] = 0 [H

D
, P] [H

D
, K] = 0

 [J 2, J
Z
] = 0 [J2, P] = 0 [K, P] = 0

 [J
Z
 , K] = 0 [J

Z
 , P] = 0 (16.136)

Since the eigenvalue k is j +( )1
2

 or − +( )j 1
2

, only the quantum numbers n, j and m need to be considered. 

i.e., H
D
y

njm
 = E

n
y

njm

 J 2y
njm

 = j(j + 1)2y
njm

 J
z
y

njm
 = my

njm

For the sake of clarity, we will omit the subscripts n. Therefore, we have 

 J 2y
jm

= j(j + 1)2y
jm

 J
Z
y

jm
 = m y

jm

 K jjm jmy y= ± +( )1
2

�

 Py
jm

 = ly
jm

, with l = ± 1 (16.137)

We have already seen that for a given k, the upper component has one l value and the lower component 
has another l value. Therefore, we can write 

 y
y

yjm

jl m

jl m

=










1

2

( )

( )

r

r
 (16.138)

Since the potential is spherically symmetric, we can write the spinor as a product of radial and angular 
momentum functions. i.e., y

jm
 is written as 

 y
y

y
y

f

fjm

jl m

jl m
jm

jl m

jl m

v r

iw r
=









 = =











1

2

1

2

( )

( )

( )

( )

r

r
 (16.139)
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The value of l
1
 and l

2
 depends on the value of k. If we choose k j= +( )1 2/ , then l j1 1 2= − /  and 

l j2 1 2= + / . If we choose k j= − +( )1 2/ , then l j1 1 2= + /  and l j2 1 2= − / . This is also consistent with 
the fact J L S= +  or L J S= − . For a given value of j, the only possible values of l are j +1 2/  and j −1 2/ .

Let us consider the effect of P on y
jm

.

 

P P

I

I

jm jm

jl m

jl m

jl m

y b y b
y

y

y

= =
−

−













=
−











o

 

1

2

10

0

( )

( )

(

r

r

−−

−













=
−

− −













r

r

r

r

)

( )

( )

( )y

y

yjl m

jl m

jl m2

1

2

The parity eigenvalue has to be either +1 or −1.

i.e., Py
jm

 = y
jm 

or Py
jm

 = −y
jm

In the first case,

 P jm

jl m

jl m

jl m

jl m

y
y

y

y

y
=

−

− −













=












1

2

1

2

( )

( )

( )

( )

r

r

r

r

 y y y yjl m jl m jl m jl m1 1 2 2
( ) ( ), ( ), ( ),− = − = −r r r r

In the second case,

 P jm

jl m

jl m

jl m

jl m

y
y

y

-y

-y
=

−

− −













=









1

2

1

2

( )

( )

( )

( )

r

r

r

r 

 y y y yjl m jl m jl m jl m1 1 2 2
( ) ( ), ( ) ( )− = − − =r r r r

So if 

 Po jl m jl my ly
1 1

= ,  then Po jl m jl my ly
2 2

= −  (16.140)

In either case, they have opposite parity.

16.6.5 Radial Wave Equation
Let us use the Hamiltonian H

D
 given in the Equation (16.134) to develop the radial equations. Since  

[H
D
, K ] = 0, the operators H

D 
and K have common eigenstates.

i.e., H
D
y  = Ey  and Ky  = ky

 
∴ = + + −( )

= + + −

−

−

H c p icr K mc Ze
r

c p icr k mc Ze

D r r r

r r r

y a a b b y

a a b b

1 2
2

1 2�
22

r( )y
The ‘new’ Hamiltonian is 

 H c p icr k mc Ze
rr r r= + + −−a a b b1 2

2
�
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Note s
r
 and p

r
 commute with each other. This is due to the fact that s

r
 has no r dependence, whereas 

p
r
 contains derivative of r only. Therefore, we can write

 H cp icr k mc Ze
rr r r= + + −−a a b b1 2

2
�

To proceed further, let us write down the energy eigenvalue equation

 H E
jl m

jl m

jl m

jl m

y

y

y

y
1

2

1

2









 =









  (16.141)

From the Equation (16.139), we have 

 y jl m1
 = v(r) fjl m1

 (16.142)

and y jl m2
 = iw (r) fjl m2

 (16.143)

where fjl m1
 and fjl m2

 are the angular momentum parts.

 

∴








 =













H E
v r

i r

K

jl m

jl m

jl m

jl m

jl m

jl m

y

y

f

w f

y

y

1

2

1

2

1

2

( )

( )









 =









 =













k k
v r

i r

jl m

jl m

jl m

jl m

� �
y

y

f

w f
1

2

1

2

( )

( )

 cp cp
v

i
cr r

jl m

jl m
r

r

r

jl m

jl m

a
y

y
s

s

f

wf
1

2

1

2

0

0









 =















 = pp

i r

v rr

r jl m

r jl m

s w f

s f

( )

( )
2

1











It can be shown that (see Examples 16.9 and 16.10)

 
s y s w f w s f w f

s y s
r jl m r jl m r jl m jl m

r jl m

i r i r i r
2 2 2 1

1

= = = −

=

( ) ( ) ( )

and rr jl m r jl m jl mv r v r v r( ) ( ) ( )f s f f
2 1 2

= = −

 ∴








 =

−

−









cp cp

i r

v rr r

jl m

jl m
r

jl m

jl m

a
y

y

w f

f
1

2

1

2

( )

( )
 (16.144)

Similarly, we have 

 

icr K icr k
I

Ir

jl m

jl m

r

r

− −












=




 −







1 11

2

0

0

0

0
a b

y

y
s

s
�

yy

y

s
s

y

y

jl m

jl m

r

r

jl m

jl m

icr k

1

2

1

2

1
0

0











=




 −









− �
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 =
−







 =

−


− −icr k icr k

i r

v r

r jl m

r jl m

jl m

jl m

1 12

1

1

2

� �
s y

s y

w f

f

( )

( )







Therefore, the Equation (16.141) becomes

 

cp
i

v
ic k

r

i

v

mc E Z

r

jl m

jl m

jl m

jl m

−

−









 +

−









 +

− −wf

f

wf

f
1

2

1

2

2

�
ee
r

mc E Ze
r

v

i

jl m

jl m

2

2
2

0

0
01

2

( )
− + +( )





























=
f

wf

We can factor out fjl m1
 and fjl m2

 since they occur as multiplicative factor in all terms. Therefore, we have

 cp
i

v
ic k

r

i

v

mc E Ze
r

v

mc E Ze
r

i
r

−
−







+
−







+
− −( )

− + +( )
w w�

2
2

2
2
ww

















= 0  (16.145)

In spherical coordinates, 

 

∇ = ∂
∂

+ ∂
∂

+ ∂
∂

⋅ = − ⋅∇ = − ∂
∂

∴ = ⋅ −

e e e

r p r

r p

r

r

r r r

i i r
r

p
r

i
r

q fq q f
1 1

1

sin

� �

� == − ∂
∂

= − ∂
∂

+( )i
r

i
r r

� � 1

Therefore, from the Equation (16.145), we have 

 − ∂
∂

+( ) − + + − −( ) =i c
r r

i ic k
r

i mc E Ze
r

v� �1 02
2

( )w w  (16.146)

and − ∂
∂

+( ) − + − − + +( ) =i c
r r

v ic k
r

v mc E Ze
r

i� �1 02
2

( ) ( ) w  (16.147)

These equations can be written as 

 ∂
∂

+( ) + − − −( ) =
r r

k
r c

mc E Ze
r

v1 1 02
2

w w
�

 (16.148)

 ∂
∂

+( ) − − + +( ) =
r r

v k
r

v
c

mc E Ze
r

1 1 02
2

�
w  (16.149)

Let us write v r
F r

r
( )

( )=  and w ( )
( )

.r
G r

r
=

 ∂
∂

+( ) = − + =
r r

G
r r

dG
dr r

G
r

G
r r

dG
dr

1 1 1 1
2
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Similarly we have ∂
∂

+( ) =
r r

F
r r

dF
dr

1 1 .

Then, the Equations (16.148) and (16.149) become 

and 

1 1 0

1 1

2
2

2
2

r
dG
dr

k
r

G
r c

mc E Ze
r

F
r

r
dF
dr

k
r

F
r c

mc E Ze
r

+ − − −( ) =

− − + +(
.

�

� )) =G
r

0

or  dF
dr

k
r

F
c

mc E Ze
r

G− − + +( ) =1 02
2

�
 (16.150)

 dG
dr

k
r

G
c

mc E Ze
r

F+ − − −( ) =1 02
2

�
 (16.151)

These are the two radial Dirac equations for hydrogen atom.

16.6.6 Solution to Radial Equations
Let us first study the asymptotic behaviour of solutions to the Equations (16.150) and (16.151). As 
r→∞, we can drop the terms k

r
F  and Ze2/r. Therefore, we have 

 dF
dr c

mc E G− +1 02

�
�( )  and dG

dr c
mc E− −1 02

�
�( )  (16.152)

Differentiating the above equations, we get

 d F
dr c

mc E dG
dr

d F
dr c

mc E mc E F
2

2
2

2

2 2
2 21 1 0− + = − + −

� �
�( )

( )
( )( )  (16.153)

Let us define c , c1, and c 2 as 

 c c1

2

2

2
= + = −mc E

c
mc E

c� �
,  and c c c2

1 2

2 4 2

2 2
= = −m c E

c�

Then, the Equation (16.153) becomes

 d F
dr

F
2

2
2� c  

The solution of this equation is

 F = const e rc + const e r− c

We would like to have the solution which goes to zero as r → ∞. Therefore, we have 

As r → ∞ F(r) → const e r− c

and G(r) → const e r− c

This suggests F(r) and G(r) can be written as 

 F = e r− c  f and G = e gr− c
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Let us definer c= r. Then, the Equations (16.150) and (16.151) become 

 dF
d

k F Z G
r r

c
c

a
r

− − +





=1 0  (16.154)

 dG
d

kG Z F
r r

c
c

a
r

+ − −





=2 0  (16.155)

Let us try the series solution for these equations. F( )r  and G( )r  can be written as

 F e an
s n

n

( )r rr= − +

=

∞

∑
0

 (16.156)

and G e bn
s n

n

( )r rr= − +

=

∞

∑
0

 (16.157)

Substituting the Equations (16.156) and (16.157) in the Equation (16.154) and cancelling the factor 
e−r after effecting the differentiation, we get

 − + + − − −





=+ + − + + −

=

∞

∑ a a s n k b Z bn
s n

n
s n

n
s n

n
s n

n

r r
c
c
r a r( ) 1 1 1

0

0  (16.158)

The Equation (16.158) becomes

 
− −





+ + − − =− −
=

∞
+ − + −

=
∑ a b a s n k Z bn n
n

s n
n n

s n

n
1

1
1

1

1 1

0

0
c
c

r a r( ( ) )
∞∞

∑

Consider the terms involving r s+n and replace n by (n − 1) in the summation (the series now starts 
from n = 1).

 − −





= − −





+ +

=

∞

− −
=

∞
+ −∑ ∑a b a bn

s n
n

s n

n
n n

n

s nr
c
c
r

c
c

r1

0
1

1
1

1

11

Consider the second summation in the above equation and expand it by separating n = 0 term from 
the rest of the series.

 

[ ( ) ] [ ( ) ]a s n k Z b a s k Z bn n
s n

n

s+ − − = − −+ −

=

∞
−∑ a r a r1

0
0 0

1

                                                      + + − −[ ( )a s n k Z bn na ]]
n

s n

=

∞
+ −∑

1

1r

Making use of these results, we can write the Equation (16.158) as 

 [a
0
(s−k) −Za b

0
] r s − 1

 + − + + − − −







=− −
+ −

=

∞

∑ a s n k a b Z bn n n n
s n

n
1

1
1

1

1

0( )
c
c

a r
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Equating the coefficient of each power of r to zero, we get

 a s k Z b0 0 0( )− − =a  for n = 0 (16.159)

and 

 − + + − − − =− −a s n k a b Z bn n n n1
1

1 0( )
c
c

a  for n > 0 (16.160)

In the same way, from the Equation (16.155), we get

 ( )s n k a b Z a an n n n+ + − + − =− −1
2

1 0a
c
c

 for n > 0 (16.161)

and ( )s k b Z a+ + =0 0 0a  for n = 0 (16.162)

First, let us solve the equation for a
0
 and b

0
.

The Equations (16.159) and (16.162) form a pair of equations for a
0
 and b

0
, and the non-zero solu-

tion exists, provided

 
s k Z

Z s k

− −
+

=
a

a
0

or ( )( )s k s k Z− + + =2 2 0a

or s k Z2 2 2 2= −( )a

and s k Z= ± −[ ] /2 2 2 1 2a

The first term (n = 0) in the series solutions for F(r) and G(r) is e k z− −r ar ( ) /2 2 2 1 2  or e k z− −r ar/ ( ) / .2 2 2 1 2

As r → 0, the second solution diverges. Therefore, this solution is not considered. The first solution 
is a well-behaved solution. Let us note that the minimum value of k2 is 1 for which both the solutions 
v r F r r( ) ( )= /  and w ( ) ( )r G r r= /  will diverge as r → 0. However, in the calculation of matrix ele-
ments, this divergence goes away. Therefore, we choose 

 s k Z= + −[ ] /2 2 2 1 2a  (16.163)

Multiply the Equations (16.160) by c and (16.161) by c
1
 and subtract the second from the first:

(16.160) c − (16.161) c
1
:

 [ ( ) ] [ ( ) ]c ac c acs n k Z a s n k Z bn n+ − − = + + +1 1  for n ≠ 0  (16.164)

This recursion relation decides the series in the Equations (16.156) and (16.157). Let us study the 
convergence of these series.

We have 

 a
s n k Z
s n k Z

bn n=
+ + +
+ − −

( )
( )

c ac
c ac

1

1 1

As n→∞  a
n
n

bn n�
c
c

1  or a bn n�
c
c

1  (16.165)
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From the Equation (16.160), we have

As n→∞ − + −− −a na bn n n1
1

1 0
c
c

�

Using the Equation (16.165), we get

 − + −− −a na an n n1
1

1
1 0

c
c
c
c

. �

 a
n

an n� 2
1−

Similarly, we have b
n

bn n� 2
1−

If we make a series expansion for e2r  we get the same recurrence relationship. Therefore, both the series 

an
s n

n

r +

=

∞

∑
1

 and bn
s n

n
r +

=

∞∑ 1
 behave like e2r . Obviously, F e an

s n
n

= − +
=

∞∑r r
0

 and G e bn
n s

n
= − +

=

∞∑r r
0

 

diverge for larger r. This divergence can be avoided, provided we terminate the series for some value 
of n so that the infinite series becomes a polynomial of finite degree. Then, the multiplicative factor 
e−r will make F and G go to zero for large r.

Let us terminate the series by implementing the following condition.

 a
n′
 ≠ 0, b

n′
 ≠ 0 and a bn n′+ ′+= =1 1 0 for ′ ≠n 0

Let us put n = n′ + 1 in the Equation (16.160).

 − + + ′ + − − − =′ ′+ ′ ′+a s n k a b Z bn n n n( )1 01
1

1 1

c
c

a

Since we choose the boundary conditions a bn n′+ ′+= =1 1 0, the above equation leads to the following 
results.

 − − =′ ′a bn n

c
c

1 0 or a bn n′ ′= −
c
c

1  (16.166)

Now, put n n= ′  in the Equation (16.164).

 

[ ( ) ] [ ( ) ]

[ ( ) ]

c ac c ac

c ac
c

s n k Z a s n k Z b

s n k Z

n n+ ′ − − = + ′ + +

+ ′ − − −

′ ′1 1

1
1

cc
c acb s n k Z bn n′ ′







= + ′ + +[ ( ) ]1

or 

− + ′ − − = + ′ + +
− + ′ − − =

[ ( ) ] ( )

[ ( ) ]

c ac c c c ac
c ac c c

s n k Z s n k Z

s n k Z
1 1 1

2

1 1 1cc ac c
c a c c

( )

( ) ( )

s n k Z

s n Z

+ ′ + +
+ ′ = −

1 2

1 22

Squaring this equation, we get 

 4 2 2 2 2
1 2

2c a c c( ) ( )s n Z+ ′ = −
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or  
4 42 4 2

2 2
2

2 2 2

2 2

2 2 2 2 2 4

( )
( )

[( ) ] (

m c E
c

s n Z E
c

E s n Z m c s

− + ′ =

+ ′ + = + ′
� �

a

a nn )2

 

E
m c s n

s n Z
m c

Z
s n

E mc

2
2 4 2

2 2 2

2 4

2 2

2

2

1

1

= + ′
+ ′ +[ ] =

+ + ′






=

( )

( )
( )

a a

++
+ ′







−
Z
s n

2 2

2

1 2

a
( )

/

 (16.167)

We have to recognize the fact that this result is derived using the Equation (16.164), which is true only 
for n′ = 1, 2, 3….

From the Equations (16.156) and (16.157), we have for n′ = 0, F(r) = e−ra
0
 r s and G(r) = e−rb

0 
r s. 

Substituting these expressions in the Equations (16.154) and 16.155), we get

 

− −





+ − − =

− −





+

−a b a s a k Z b

b a b

s s

s

0
1

0 0 0 0
1

0
2

0

0
c
c

r a r

c
c

r

[ ]

[ 00 0 0
1 0s b k Z a s+ − =−a r]

Equating the coefficients of r s and r s−1 to zero, we get 

 − −





=a b0
1

0 0
c
c

 or 
a

b
0

0

1= −
c
c

 a s k Z b0 0 0( )− − =a  or 
a

b
Z
s k

0

0

=
−
a

 b s k Z a0 0 0( )+ + =a  or 
a

b
s k
Z

0

0

= − +
a  (16.168)

From these equations, we get 

 

c cZa
c c a

c c c c Za c
Z a c c

1

1

1 1 1

( )

( )

( )
( )

s k

s k Z

s k
s k

− = −
+ =
− = − = −

− +
� �� �� �

22
1 2

1
2

1 2

( ) ( )

( ) ( )

s k s k

s k s k

+ = − +

∴ − = − +

c c

c c c

Rearranging this equation, we get

 
s k

s mc
c

k E
c

( ) ( )c c c c1 2 1 2

22 2

+ = −

=
� �

 or E mc s
k

=
2

 (16.169)

Note that since E is positive, k has to be positive. So, on the other hand, in the expression for E in the Equation 
(16.167), k can be positive or negative. Therefore, from the Equations (16.167) and (16.169), we have 
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 E

mc s
k

k n

mc Z
s n

k n

=

= ′ =

+
+ ′







= ± ± ′ ≠
−

2

2
2 2

2

1
2

1 2 3 0

1 1 2

, ,

( )
,

�

�

for

a 00



















 (16.170)

In fact, if we put n′= 0 in the Equation (16.167), we get the Equation (16.169) (use the Equation (16.163)).

 E mc Z
s

mc s
s Z

mc s
k

= +





=
+

=
−

2
2 2

2

1 2 2

2 2 2 1 2

2
1 a

a

/

/( )

Let us expand the energy E in terms of a 2. In what follows, we make binomial expansion consistently 
retaining only up to order a 4.

 
s k Z k Z

k

k Z
k

Z
k

= − = −( )
= − −( )

( ) | |

| |

/
/

2 2 2 1 2
2 2

2

1 2

2 2

2

4 4

4

1

1 1
2

1
8

a a

a a

 = − −| |
| | | |

k Z
k

Z
k

1
2

1
8

2 2 4 4

3
a a  (16.171)

Note that we have used the result ( ) | | ./k k2 1 2 =

 s n n k Z
k

Z
k

+ ′ = ′+ − −| |
| | | |

1
2

1
8

2 2 4 4

3
a a

Let us define n as n n k= ′+ | |

The possible values of n′ are 0, 1, 2, …, and the possible values of n are 1, 2, 3 … (since | |k  has to be 
non-zero).

 

s n n Z
k

Z
k

n Z
n k

Z
n k

+ ′ = − − = − −





1
2

1
8

1
2 8

2 2 4 4

3

2 2 4 4

3
a a a a

| | | | | | | |

(ss n
n

Z
n k

Z
n k

+ ′ = − −





−
−

)
| | | |

2
2

2 2 4 4

3

2

1 1
2 8
a a

 = + + +





1 1
4

3
42

2 2 4 4

3

4 4

2 2n
Z
n k

Z
n k

Z
n k

a a a
| | | | | |

�

 

[ ( ) ]
| |

/

1 1 1

1

2 2 2 1 2
2 2

2

2 2
1 2

+ + ′ = + +











=

− −

−

Z s n Z
n

Z
n k

a a a/ �

++ + +





−
Z

n
Z
n k

2 2

2

4 4

3

1 2

a a
| |

/

�

M16_QUANTUMMECHANICS_3628_CH16.indd   688 5/24/2013   11:30:07 AM



Relativistic Wave Equation  689

 

= − − +





= − −

1 1
2

1
2

3
8

1 1
2 2

2 2

2

4 4

3

4 4

4

2 2

2

4 4

4

Z
n

Z
n k

Z
n

Z
n

Z
n

a a a

a a

| |
�

nn
k| |

−











3
4

�

Substituting this expression in Equation (16.170) we get

 

E mc Z
n

Z
n

n
k

mc Z
n

= − − −





+





= −

2
2 2

2

4 4

4

2
2 2

2

1 1
2 2

3
4

1 1
2

a a

a

| |
�

−−
+

−






























Z
n

n

j

4 4

42 1
2

3
4

a

The first term is the rest mass energy of the electron. The second and third terms are bound-state 
energy of the hydrogen atom. The second term is the same as the expression for Bohr energy level of 
hydrogen obtained in the non-relativistic quantum mechanics. The third term is the correction due to 
the relativistic quantum mechanics and is responsible for the fine structure. The fine structure as deter-
mined by this equation agrees well with the experimental values. This result is yet another success 
of the Dirac equation. Note that the correction to the Bohr energy level depends directly only on the 
quantum number j, and it is the same as the expression obtained in the time-independent perturbation 
theory due to relativistic correction and LS coupling.

16.6.7 Upper Component and Lower Component of the Dirac Spinor
For a given value k, the upper component and lower angular momentum eigenvalues are l

1
 and l

2
. So, 

strictly speaking, the orbital angular momentum quantum number cannot be used to characterize the 
hydrogen atom. However, it is customary to characterize the energy eigenstates using the angular momen-
tum quantum number of the upper component. One way of justifying this idea is that the upper component 
is numerically much larger than the lower component. From the Equations (16.168) and (16.171), we have

 
b

a
Z

s k
Z

k
0

0 2
1= −

+
− <<a a�

Similarly, 

 

b

a

mc E
mc E

n

n

= − = −

= − 





= − −
+







<<

c
c

c c
c

c
c

1

1 2
1 2

2

2

1

1 2
2

2
1

( ) /

/

Characterizing Eigenstates of Hydrogen Atom
We use the three quantum numbers n l j, 1 and  to describe the energy eigenstate of the hydrogen atom. 
The quantum numbers which directly enter the expression for energy are n and k. They are related by 
the expression
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 n n k= ′+ | |

or ′ = −n n k| |

Since n′ and n are integers, for a given n, the values of n′ and | |k  are restricted to select values. 
Correspondingly, possible values of j and l

1
 are also restricted. We illustrate these ideas by considering 

the following cases. We use the following notation nl j  to represent a state. (Here, l refers to l1 of the 
upper component of the Dirac spinor.)

Example 16.10 Determine the possible states of hydrogen for n = 1, 2 and 3.

Solution: It will be useful to recall the following results in determining the various possible states of 
the hydrogen atom.

Possible values of n′: n′ = 0, 1, 2,…
Possible values of n: n = 1, 2,…

Possible values of k
n k

n k
:

: , ,

: , , ,

′ = =
′ ≠ ± ± ±





0 1 2 3

0 1 2 3

�
�

Values of k and l:
  Positive     

Negative 

k k j l j l j

k k j

: ; ;

:

= + = − = +

= − +(
1
2

1
2

1
2

1
2

1 2

)) = + = −







 ; ;l j l j1 2

1
2

1
2

With these information, we can determine the possible states of the hydrogen atom.
Case 1:

 n = 1

 ′ = −n k1 | |

The only possible value is | |k = 1

 ∴ n′ = 0 when | | ;k k j j= = ∴ + = =1 1 1
2

1 1
2

    or 

Therefore, we have

 n = 1, j = 1
2

 and l
1
 = 0

The corresponding state is 1 1
2

s .

Case 2:

 n = 2

 ′ = −n k2 | |

The possible values of k are | |k  = 1, 2

 a) n′ = 1 when | |k  =1. The values of k are k = ± 1
 For k = 1, j j+ = ⇒ =1 2 1 1 2/ / . This in turn implies l j1 1 2 0= − =/
 For k = −1, − + = −( )j 1 2 1/  or j = 1 2/ ; This implies l j1 1 2 1= + =/
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 b) When | | ,k = 2  n′ = 0 ∴k = 2; j + =1 2 2/  or j = 3 2/ . This, in turn, implies l j1 1 2 3 2 1 2 1= − = − =/ / / .
 Therefore, for n = 2, there are three possible states:
 They are 

 
n j l s

n j l p

= = = ⇒

= = = ⇒









2 1
2

0 2

2 1
2

1 2

1 1 2

1 1 2

, , 

, , 
Same energy

/

/

.

.

 n j l p= = = ⇒2 3
2

1 21 3 2, , /

Case 3:

 n = 3

 ′ = −n k3 | |

The possible values | | , ,k = 1 2 3 or k = ± ±1 2 3, ,

 a) | | ; ;k k j j l j= = + ⇒ + = ∴ = = − =1 1 1
2

1 1
2

1
2

01    

 b) | | ; ;k k j j l j= = − ⇒ − +( ) = − ∴ = = + =1 1 1
2

1 1
2

1
2

11    

 c) | | ; ;k k j j l j= = ⇒ + = ∴ = = − = − =2 2 1
2

2 3
2

1
2

3
2

1
2

11    

 d) | | ; ;k k j j l j= = − ⇒ − +( ) = − ∴ = = + =2 2 1
2

2 3
2

1
2

21       

 e) | | ; ;k k j j l j= = ⇒ + = ∴ = = − = − =3 3 1
2

3 5
2

1
2

5
2

1
2

21   

Therefore, for n = 3, there are five states. They are 

 
n j l s

n j l p

= = = ⇒

= = = ⇒









3 1
2

0 3

3 1
2

1 3

1 1 2

1 1 2

, ,

, , .

/

/

 Same energy

 
n j l p

n j l d

= = = ⇒

= = = ⇒









3 3
2

0 3

3 3
2

2 3

1 3 2

1 3 2

, ,

, , .

/

/

 Same energy

 n j l d= = = ⇒3 5
2

2 31 5 2, , /
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The energy-level diagram can be drawn as follows:

n = 3

n = 2

n = 1

(i)

3p3/2, 3d3/2

3s1/2; 3p1/2

2s1/2; 2p1/2

3d5/2

1s1/2

n = 3, j = 5/2
n = 3, j = 3/2

n = 3, j = 1/2

n = 2, j = 1/2

n = 2, j = 1/2

n = 1, j = 1/2

2p3/2

(ii)

Fig.16.9 Hydrogen energy levels (not drawn to scales): (i) Bohr level (ii) Relativistic dirac equation

The spectral lines representing a transition from one Bohr level to another are actually closely spaced 
lines which require high-resolution instrument to resolve. The fine structure as calculated from the 
Dirac equation agrees well with the experiment. 

Example 16.11 Show that r .r
r

ajl m jl mf f
1 2

=  using the transformation property of these functions 
under parity transformation.

Solution: From the Equation (16.134), we have P jl m jl m0 1 1
f lf=  and P jl m jl m0 2 1

f lf= − . Now we have 

 
P

r r r
P

r

P
r

jl m jl m jl m jl m0 0

0

1 1 1 1

r r r r

r

⋅ = − ⋅ − = − ⋅ = − ⋅

∴ ⋅

r r r r r

r

f f f lf( )

ff l fjl m jl mr1 1
= − ⋅r r

∴ ⋅r r
r jl mf 1

 is an eigenstate of P
0
 with eigenvalue −l.

 ∴ ⋅ = × =r r
r

ajl m jl m jl mf f f
1 2 2

Constant  

Example 16.12 Prove that r ⋅r
r jl mf 1

 = -fjl m2
 and r ⋅r

r jl mf 2
= -fjl m1

.

Solution: Here, we closely follow Alonso and Valk. We have 

 
L l l l j

L l l

jl m jl m

jl m j

2
1 1

2
1

2
2 2

2

1 1

2

1 1
2

1

f f

f f

= + = +

= +

( ) ;

( )

�

�

       

ll m l j
2 2

1
2

;       = −

fjl m1
 can be constructed from spherical harmonics representing the orbital angular momentum and 

spinors representing the spin angular momentum.
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 f c cjl m l m l m
c Y c Y

1
1 1

1 1
2

1
2

1
2

2 1
2

1
2

1
2

= +
− + −

where c
1
 and c

2
 are the Clebsch–Gordan coefficients. In this case, we have l j1

1
2

= + or j l= −1
1
2

, and 
from Table 10.4 in Chapter 10, we get

 

c l m l m
l m

l

j m

1 1 1

1

1

1 2

1
2

1
2

1
2

1
2

1
2

2 1

1
2

1
2

= − − = −
− +

+

















= −
+ − +(

;

))
+( ) +( )

= − − +
+

1 2

1 2

1 2

1 2

2 1
2

1

1
2 2

/

/

/

/

( )
( )

j

j m
j

Similarly, 

 c l m l m
l m

l
j m

j2 1 1

1

1 2

1

1 2

1
2

1
2

1
2

1
2

1
2

2 1
1

2 2
= + − − =

+ +( )
+

= + +
+







;

/

/

Let us choose c 1
2

1
2

1

0
=







 and c 1
2

1
2

0

1−
=







 ∴ =
− − +

+
+ +

+

−

fjl m

l m

l m

j m
j

Y

j m
j

Y
1

1

1

1
2 2

1
2 2

1 2

1 2 1 2

1 2

1 2

( )
( )

( )
( )

/

/ /

/

/ ++















1 2/

Similarly, fjl m2
 can be written as 

 fjl m

l m

l m

j m
j

Y

j m
j

Y
2

2

2

2

2

1 2

1 2

1 2

1 2

=

+





−


















−

+

/

/

/

/






 r . cos sin

sin cos
r

r

e

e

i

i
=

−






−q q
q q

f

f

 r . cos sin

sin

( )
( )

/

/
r

r

e

e

j m
j

Y

jl m

i

i
f

q q
q q

f

f1

1
2 2

1 2
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EXERCISES
 1. Give the arguments leading to Klien Gordan equation. 
 2. Why is it not possible to ignore or discard the negative energy eigenstates?
 3. Obtain the equation of continuity ∂ ∂ + ∇ =r / t .S 0  for a free particle, obeying Klien Gordan  

equation. Explain the difficulty involved in interpreting r as the probability density.
 4. What are the shortcomings of Klien Gordan equation?
 5. Give the arguments leading to the formation of the Dirac equation.
 6. Why do we expect the time derivative in a relativistic wave equation to be first order?
 7. In the Dirac equation i /� ∂ ∂ = ⋅ +y b yt c mcop( ) ,` p 2  give the arguments to determine a and b.
 8. Show that b cannot be a 2 × 2 matrix which anti-commutes with the Pauli matrices s

x,
s

y
 and s

z
.

 9. What are the complete sets of compatible dynamical variable for the Dirac equation describing 
(a) free particle and (b) particle in Coulomb field.

 10. Explain Dirac’s interpretation of negative energy states for electrons.
 11. Explain the nature of the ground state in Dirac’s theory of an electron.
 12. Is it possible to extend Dirac’s concept of negative energy sea to bosons also?
 13. Explain the concept of helicity for a particle.
 14. Which of the following operators commutes with the Dirac Hamiltonian for a free particle: (a) 

�/2Σ z  and (b) S ⋅p pop /| |?
 15. Explain the nature of g

s
 in the expression for the magnetic moment of an electron due to the spin 

angular momentum.
 16. Give the arguments leading to the operator K to describe the Dirac equation for a particle in cen-

tral potential.
 17. Why do you need to define the radial component of momentum operator as p

r rr = + ⋅( )1
2

r p p r ?

 18. What are the quantum numbers used to specify the energy eigenstates resulting from the Dirac 
equation for hydrogen atom?

 19. How do you explain the use of the orbital angular momentum quantum number l in specifying 
the hydrogen atom in spite of the fact the energy eigenstates for the Dirac equation do not have 
well-defined l  values?
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z
 348

Eigenvectors of Sx, Sy, Sz 359
Einstein’s coefficients 543
Electron 1, 11–14, 16–18, 20–7, 29, 30, 38, 61, 

65, 67
Classical electromagnetic field 429
Magnetic moment 430, 431, 445, 449, 453, 

465, 483, 491, 665, 668
Energy eigenstates 44, 45, 49, 90, 100, 106, 152, 

173, 188, 197
Equation of continuity 40–2, 67, 632, 644,  

695
Schrödinger equation 13, 29–33, 37, 39–44, 

49, 51–2, 59, 65, 67, 69–75
One dimension 31, 34, 42, 51, 63, 69, 161, 

243, 259
Exchange interaction 410

F
Fermi’s golden rule 529
Fermi–Dirac distribution 411
Fermions 395, 400, 402–4, 408, 411, 414, 426, 

619–21, 652
Feynman’s Double Slit Experiment  20

Akira Tonomura’s low intensity experiment for 
electrons 23

Non classical particle and wave 20
One electron after another 22
Wave mechanical explanations 21
Which path information 20

Fields 4, 10, 25, 26, 33, 41, 184, 429–31, 433, 
435
Classical 1–3, 5–9, 11–15, 17, 19–27, 31, 42, 

50, 71, 74
Quantum 1–696

Flux 42, 56, 70, 71, 74, 76, 78, 79, 83, 438
Fourier transform pair – uncertainties 57–9
Free particle solution 574, 631, 646

Schrödinger equation 13, 29–33, 37, 39–44, 
49, 51–2, 59, 65, 67, 69–75

Z01_QUANTUMMECHANICS_3628_INDEX.indd   699 5/23/2013   3:00:48 PM



700  Index

G
Gauge invariance 429, 436, 438, 441, 464

Classical electromagnetic field 429
Schrödinger equation 13, 29–33, 37, 39–44, 

49, 51–2, 59, 65, 67, 69–75
Generators  328–9, 331, 333

Rotational symmetry—angular momentum  
322, 329

Space translation—momentum  324–5, 328–9
Time translation—Hamiltonian 322, 329, 336

Green’s function 602, 603, 624, 626
Scattering theory 262, 565, 567, 569–71, 573, 

575, 577, 579, 581, 583

H
Hamiltonian operator 31, 32, 44, 52, 90, 236, 

264, 301, 314, 321
Hankel functions 258
Harmonic oscillator 8, 13, 169–73, 175–85, 

187–9, 191–5, 197–9, 201–5, 246, 247
Abstract operator method 13, 184
Comparision with classical physics 74, 76, 

177, 74, 76, 177
Energy eigenvalues 44, 69, 91, 92, 99, 100, 

102–4, 169, 170, 173
Energy eigenfunctions 91–4, 103, 105, 106, 

170, 175, 245, 433
Isotropic—cartesian coordinates 247
Isotropic—spherical polar coordinates 280
Schrödinger equation 13, 29–33, 37, 39–44, 

49, 51–2, 59, 65, 67, 69–75
Zero point energy 176, 177, 204

Harmonic perturbation 532, 535, 538
Heisenberg’s g  ray microscope 13
Helicity 649, 662–4, 695
Helium 16, 18, 26, 408, 410, 493, 494, 496, 497

Time-independent perturbation theory 467, 
494, 550, 689

Variation method 497
Hermite Polynomial 173–4, 179, 200

Generating function 174, 179, 200, 270
Hilbert space 107, 111, 114–22, 129, 130, 132, 

135, 296, 297, 300
Square integrable wave functions 37, 38, 114
Square summable sequences 119, 121, 135

Hydrogen atom magnetic field 61, 166, 267, 276
Anomalous Zeeman effect 433, 486, 490,  

491
Paschen–Back effect 488–9
Strong field approximation 485

Hydrogen atom 12, 13, 33, 38, 61, 157, 158, 164, 
166, 265
Dirac equation 484, 629, 640, 641, 644, 645, 

647, 649, 651, 653
Energy eigenvalues 44, 69, 91, 92, 99, 100, 

102–4, 169, 170, 173
Energy eigenstates 44, 45, 49, 90, 100, 106, 

152, 173, 188, 197
General form of spinor 679
Hamiltonian 26, 31, 32, 44, 49, 50, 52, 68, 90, 

133
K operator 668, 669, 672
Klien Gordan equation 629–32, 634, 640, 641, 

644, 646, 651, 695
LS coupling 480, 689
Parity operator 89, 90, 211–14, 337, 668, 674, 

675
Radial momentum p

r
 and radial matrix a

r
  

668
Radial wave equation 250, 573, 668, 680
Relativistic correction 480, 481, 689
Stark effect 476, 477, 480, 520
Solution to radial wave equation 683
Spin–orbit interaction 483

Hydrogen atom, non-relativistic 61, 157, 281, 
286, 481, 484, 633 
Energy eigenvalue 44, 69, 91, 92, 97–100, 

102–4, 167, 169, 170, 173
Integrals for associated Laguerre polynomial 

268
Kramer’s recursion relation 287
Radial probability distribution 250, 274, 289
Radial wave equation 250, 573, 668, 680
Radial wave function 249, 251, 252, 256, 258, 

259, 266, 269–72, 276, 289

I
Identical particles 395, 397–9, 426, 565, 618, 619

Scattering amplitude 565, 569–71, 575–8, 
588, 603, 605, 607, 608, 611, 614

Z01_QUANTUMMECHANICS_3628_INDEX.indd   700 5/23/2013   3:00:48 PM



Index  701

Indistiguishability 395–9, 401, 403, 408,  
410–1, 413
Interchange operator 397–400, 426
Microstates 8, 410, 411, 413
Symmetrization postulate 400, 426

Interchange operator 397–400, 426

K
K operator 668, 669, 672
Ket vector 291–7, 299, 301, 303, 305, 307, 309, 

311, 313, 315
Klien Gordan equation 629–32, 634, 640, 641, 

644, 646, 651, 695
Free particle solution 574, 631, 646
Hydrogen 12, 13, 33, 38, 61, 157, 158, 164, 

166, 262
Negative energy 631, 632, 634, 640, 647, 

651–7, 695
Probability density 24, 25, 34, 37–9, 41, 42, 

45, 58, 59, 61
Kramer’s recursion relation 287

L
Lab frame 614, 615, 617
Lack of trajectory in quantum mechanics 165
Ladder operator 169, 184, 188, 192, 552

Energy eigenstates 44, 45, 49, 90, 100, 106, 
152, 173, 188, 197

Laguerre polynomial, associated 270, 282, 290
Generating function 174, 179, 200, 270
Integrals Iqr p

k
,  233

Landau levels 429, 431–3
Degeneracy 246, 248, 270, 284, 285, 369, 411, 

433, 435, 484, 487
Lande’s g factor 491
Larmor’s precession 431
Legendre Polynomial 220

Associated 25, 69, 109, 152, 165, 220, 230, 
269, 270, 282

Light 1, 3–6, 10, 11, 13, 15, 16, 20, 21, 23, 26, 
27, 29, 63, 69, 397
Einstein’s light quantum 10
Poisson spot 4, 16, 26, 27

Linear vector space 107–14, 119, 122, 129, 
291–3, 296, 298, 364, 365, 442, 651

Basis 7, 29, 56, 108–10, 122, 129, 198, 199, 
234, 296

Complete set 56, 109, 111, 122, 135–7, 145, 
156–8, 167, 197, 198

Linear combination 108–11, 122, 129, 146, 
147, 156, 157, 199

Linear independence 109, 110, 129
Scalar product 108, 111–13, 115, 119, 122, 

129, 185, 292–5, 301, 303
Low-energy scattering 565, 579, 580, 586, 

589–93, 601, 610, 627
Lowering operator 186, 228, 238, 350

M
Macrostate 410, 411
Magnetic moment 430, 431, 445, 449, 453, 465, 

483, 491, 665, 668, 695
Spin angular momentum  12, 133, 141, 207, 

329, 331–3, 335, 339, 343–4, 347
Magnetic resonance 449, 453, 458, 465
Matrix mechanics 12, 13, 291
Matrix representation of angular momentum 

operators 333
Matter waves 11, 69, 70
Matter waves-Experimental evidences 16 

Carbon molecules 16, 18
Claus Jönsson’ experiment for electrons 16
Davisson and Germer 16
Helium atoms 18, 26, 493
Neutron 14, 16, 17, 26, 426, 445, 449, 580, 

597, 618, 621
Max Born 33, 41, 131
Maxwell–Boltzman distribution 411
Measurement 5, 13, 22, 25, 32, 50, 134, 139–42, 

156–8, 163
Eigen state 99, 100
Superposition state 141, 142, 425
Simultaneous measurement of position and 

momentum 158
Microstate 8, 410, 411, 413

Bosons 395, 400, 401, 411, 413, 415, 426, 
619, 620, 655

Distinguishable particles 403, 404, 406, 407, 
411–15, 426, 618, 620

Fermions 395, 400, 402–4, 408, 411, 414, 
426, 619–21, 652

Z01_QUANTUMMECHANICS_3628_INDEX.indd   701 5/23/2013   3:00:49 PM



702  Index

Millikan 10, 11, 27
Momentum operator 32, 50–2, 68, 120, 141, 143, 

159, 205, 207, 208
Momentum representation 57, 310, 311
Momentum space 58, 59
Momentum eigen functions 219

Continuous eigen values 136, 299, 300
Discrete eigen values 136–7, 297, 299
Normalisation 35–38, 45, 50, 52–6, 66–9, 78, 

93–4, 101–4, 153–4, 173
Momentum representation 57, 310, 311

Dynamical variable ˆˆ( ,  )A x p  300
Position operator 313, 315

Momentum wave function 53, 58, 59, 62, 68,  
223

N
Negative energy sea 652–7, 695

Observable consequences 30, 439, 545,  
652

Negative energy 631, 632, 634, 640, 647, 651–7, 
695

Neumann function 254, 258
Neutrino oscillation 429, 441, 442, 458–60, 

463–5
Flavour eigenstates 460–2, 464
Mass eigenstates 460, 461, 464
Solar neutrino problem 460, 463, 464

O
Operator 13, 31, 32, 44, 50–2, 68, 89, 90, 108, 

116–22
Abstract 13, 108, 169, 184, 291–5, 300–3, 

308, 327, 331, 345, 347, 356, 358
Adjoint 118–22, 129, 132, 295–8, 300, 313, 

345
Anti-linear operator 340–2, 345
Identity 299, 345, 396, 425, 460, 560, 646, 

647, 661
Ladder operator 169, 184, 188, 192, 552
Linear 3, 11, 30, 51, 62, 65, 107–14, 117–20, 

122, 129
Lowering operator 186, 228, 238, 350
Number operator 185–8

Projection 298, 362, 419, 649, 662
Raising operator 186, 188, 228, 350, 375
Self-adjoint 119–22, 129, 132, 296–8, 300, 

313
Operators 13, 32, 50, 116, 117, 129, 132–4, 141, 

143–6, 149
Adjoint 118–22, 129, 132, 295–8, 300, 313, 

345
Domain 116, 117, 120, 129, 629
Hilbert 107, 111, 114–22, 129, 130, 132, 135, 

296, 297, 300
Linear 3, 11, 30, 51, 62, 65, 107–14, 117–20, 

122, 129
Scalar 108, 110–3, 115, 119, 122, 129, 185, 

292–5, 301, 303
Self adjoint 120
Spherical tensors 389
Vector 12, 13, 42, 43, 50, 63, 107–16, 119, 

120, 122
Optical theorem 577, 578, 622, 624, 627
Orbital Angular Momentum Eigenfunctions

L
x
 and L

y
 207–210

Negative m solutions 218
Normalisation 35–38, 45, 50, 52–6, 66–9, 78, 

93–4, 101–4, 153–4, 173
Orbital angular momentum 12, 133, 134, 208, 

234, 331, 335, 337, 339, 347
Eigen values 50

Orthogonality 112, 137
Outer product 292, 294, 345

P
Pair annihilation 655
Pair creation 654, 655

Parity in one dimension 210
Stationary eigen states 44, 90

Parity invariance 335, 674
Theta–tau puzzle 338
Unitary operator 313, 321, 328, 340, 341, 345, 

397, 426
Violation 10, 12, 14, 338, 528, 658

Parity operator 89, 90, 211–14, 337, 668, 674, 
675
Dirac equation 484, 629, 640, 641, 644, 645, 

647, 649, 651, 653

Z01_QUANTUMMECHANICS_3628_INDEX.indd   702 5/23/2013   3:00:49 PM



Index  703

Parity 88–95, 97–102, 106, 170–3, 204, 211–14, 
218, 223, 259, 321
Intrinsic parity 335–9
Spatial parity 335, 337, 345
Spherical harmonics 222–4, 231, 233, 238, 

242, 254, 390, 692
Spherical polar coordinates 115, 208–10, 212, 

213, 229, 243, 248, 253, 280, 362
Partial waves 565, 572, 578–80, 589, 592, 620

Number needed 578
Particle 1, 2, 4, 6, 11–14, 16, 20–7, 29–34, 

37–40, 42
Cubic box 244
Free particle in three dimensions—spherical 

polar coordinates 252
Rectangular box 123, 243
Spherically symmetric box 255–7

Particle in a box 39, 61, 90, 93, 95, 102, 104, 
105, 155, 473

Particles, Classical 416
Pauli matrices 360, 425, 643, 695
Pauli’s exclusion principle 404, 652, 655
Permutation operator 397
Perturbation theory 318, 410, 467–71, 473–5, 

477, 478, 480, 493, 494, 496
Degenerate 120, 121, 146–8, 156–8, 246–8, 

270, 284, 426, 433, 435
Helium 16, 18, 26, 408, 410, 493, 494, 496, 

497
Non-degenerate 121, 146, 156–8, 247, 284, 

467, 468, 474, 477, 487
Time-independent 43, 44, 49–51, 68, 69, 71, 

90, 169, 313, 342
Perturbation 318, 410, 467–75, 477, 478, 480, 

485, 486, 488, 490
Constant 1, 2, 5, 13, 16, 26, 30, 35, 40, 43
Harmonic 1, 8, 13, 63, 65, 169–85, 187–9, 

191–9, 201–5, 222–4
Time-dependent 44, 45, 51, 202, 442, 443, 

524, 526, 528, 544
Phase shift 440, 565, 572, 574, 575, 580–3, 585, 

586, 589, 592
Integral formula 580
Logarithmic derivative 565, 582, 595, 596
Low-energy 565, 579, 580, 585, 586, 589–93, 

601, 610, 611, 627

Non-resonant scattering 565, 589, 591–4
Resonant scattering 565, 589, 591–5, 597, 

599–601, 627
Square well potential, 260, 593, 597, 600

Pictures 313
Heisenberg picture 313–17
Interaction picture 313, 317–9
Schrödinger picture 313, 315–7

Planck’s law, derivation 543
Plane wave function 30, 36, 37, 50, 52, 53, 55, 

63, 65, 68
Normalisation 35–38, 45, 50, 52–6, 66–9, 78, 

93–4, 101–4, 153–4, 173
Positron 426, 653–5
Postulates of quantum mechanics 29, 131, 143, 

299
Complete set of eigen states 135–7, 145
Dirac’s quantum condition 133, 134
Dynamical variables and operators 133, 169
Eigen values and measurement 143
Expectation value of a dynamic variable 44, 

137
State of a system 300, 301, 410
Time evolution of the state 143, 301, 313, 314, 

319, 442, 456, 462, 464, 522
Potential barrier 81, 85, 517, 569, 579, 580
Principle of complementarity 14, 26
Probability amplitude 33, 34, 37, 38, 58, 131, 

132, 301, 448, 456
Probability current density 41, 42, 571, 624, 632
Probability density 24, 25, 34, 37–9, 41, 42, 45, 

58, 59, 61
Projection operator 298, 419

Q
Quantum field theory-particles and waves 25

R
Radial equation, non-relativistic 363–7

Coulomb potential 265, 608, 609, 634
Hydrogen atom 12, 13, 33, 38, 61, 157, 158, 

164, 166, 265
Radial momentum 252, 253, 289, 668, 676
Radial probability distribution 250, 274, 289

Z01_QUANTUMMECHANICS_3628_INDEX.indd   703 5/23/2013   3:00:49 PM



704  Index

Radial wave function 249, 251, 252, 256, 258, 
259, 266, 269–72, 276, 289
Boundary conditions 37–9, 45, 47, 56, 68, 69, 

72, 76, 78, 91
Normalization condition 35–7, 45, 52, 67, 69, 

251, 276, 283, 290, 299
Raising operator 186, 188, 228, 350, 375
Ramsauer – Townsend effect 592–3
Rectangular potential barrier 81, 569
Reflection coefficient 71, 74, 76, 78, 83

Rectangular potential barrier 81, 569
Step potential 71, 73–5, 86, 87, 105
Square well potential 259–61, 565, 582, 584, 

589, 592–4, 596, 597, 600, 611
Representation 10, 57, 85, 123, 126, 169, 184, 

192, 193, 291
A representation 85, 123, 169
Coordinate representation 169, 184, 192, 193, 

304–6, 309–11, 345, 347
Coupled 365–70, 372, 376, 441, 490, 522, 

523, 541
Momentum representation 57, 310, 311
State vector 13, 185, 291, 292, 298–303, 305, 

312–15, 317, 318, 321
Operator 13, 31, 32, 44, 50–2, 68, 89, 90, 108, 

116–22 
Uncoupled 365, 367–9, 372, 541

Resonant scattering 565, 589, 591–5, 597, 
599–601, 627

Rigid rotor 235–7
Rotation matrix for spin ½ 363
Rotation symmetry 329, 336, 347, 349, 351, 353, 

355, 357, 359, 361
Scalar operator 385–8
Vector operator 388, 389

Rotational invariance 329–31
Non-zero spin 331, 333, 343
Spin zero 330, 331, 338, 629, 640

S
Scalar product 108, 111–13, 115, 119, 122, 129, 

185, 292–5, 301, 303
Column vectors 108–11, 113, 119, 329, 354, 

363, 374, 647, 648, 651
Continuous functions 37, 49, 109, 113

Scattering amplitude 565, 569–71, 575–8,  
588, 603, 605, 607, 608, 611,  
614
Identical fermions 621
Identical particles 395, 397–9, 426, 565,  

618, 619
Scattering cross section 565–7, 569, 585, 587, 

592, 593, 599, 609, 611, 614
Lab and centre of mass frame  615
Significance 8, 11, 12, 26, 37, 63, 132, 135, 

137, 156
Scattering length 565, 578, 586, 587, 589, 593, 

594, 596, 597, 627
Scattering states 37, 38, 70, 77, 261, 591,  

612
Scattering theory 262, 565, 567, 569–71, 573, 

575, 577, 579, 581, 583
Born approximation 565, 602, 606, 607, 

609–11
Breit–Wigner formula 565, 599, 600
Cross section 565–7, 569, 571, 577, 578, 585, 

587, 592, 593, 599
Hard sphere 584, 587
Low energy 80, 565, 579–80, 585–6, 589–93, 

601, 610–1, 627
Optical theorem 577, 578, 622, 624,  

627
Partial wave analysis 565, 577, 578, 620
Phase shift 440, 565, 572, 574, 575, 580–3, 

585, 586, 589, 592
Square well potential 259–61, 565,  

582, 584, 589, 592–4, 596, 597,  
600, 611

Scattering wave 38, 69 
Boundary condition 37–9, 45, 47, 52, 53, 56, 

68, 69, 72, 76
Scattering 12, 37, 38, 56, 69, 70, 77, 80, 243, 

260–2
Non-resonant 565, 589, 591–4
Resonant 458, 565, 589, 591–5, 597, 599–601, 

627
Schrödinger picture 313, 315–7
Schrödinger equation 13, 29–33, 35, 37, 39, 40, 

44–45, 47, 49, 51
Schrödinger equation, derivation 13, 29–33, 35, 

37, 39, 40, 44–45, 47, 49, 51

Z01_QUANTUMMECHANICS_3628_INDEX.indd   704 5/23/2013   3:00:49 PM



Index  705

Selection rules 242, 435, 540–2
Self adjoint operators 119–22, 129, 132, 296–8, 

300, 313
Eigenvalues and eigenfunctions 89, 120, 208, 

454
Semi-classical theory for radiation 535
Slater’s determinant 403, 404
Solar neutrino problem 460, 463, 464
Space time symmetries 321–2, 335

Conservation of a dynamical variable 340
Parity or space reversal 321
Rotational symmetry 322, 329, 331–3, 347
Space translation 324, 325, 328, 329
Time reversal 321, 339–43, 345
Time translation 322, 329, 336

Spherical Bessel function 254
Spherical harmonics 222–4, 231, 233, 238, 242, 

254, 390, 692
Parity 88–95, 97–102, 106, 170–3, 204, 

211–14, 218, 223
Sketching 224

Spherical tensor operators 389
Spherically symmetric box 255–7
Spherically symmetric square well 257, 260

Bound states 38, 39, 45, 69, 96, 101, 118, 251, 
252, 257

Conditions for bound states existence 261
l = 0 bound state 259 
Scattering state solution 69, 261

Spin angular momentum 12, 133, 141, 207, 329, 
331–3, 335, 339, 343, 344
Dirac equation 484, 629, 640, 641, 644, 645, 

647, 649, 651, 653
Magnetic moment 430, 431, 445, 449, 453, 

465, 483, 491, 665, 668
Operator 13, 31, 32, 44, 50–2, 68, 89, 90, 108, 

116–22
Precession 235, 431, 445, 447, 464
Spin ½  331, 357, 363, 420, 425, 464, 629

Spontaneous emission 534, 535, 542, 543
Square integrable wave function 37, 38, 68, 114
Square well potential, one dimension 259–61, 

565, 582, 584, 589, 592–4, 596, 597, 600, 611
Bound state solution 69, 88, 96, 170
Scattering state solution 69, 261

Square well potential 259–61, 565, 582, 584, 
589, 592–4, 596, 597, 600, 611

Conditions for bound states 260–1
Illustrative example for partial wave analysis 

565, 577–8, 620
Non-resonant scattering 565, 589, 591–4
Ramsauer–Townsend effect 592–3
Resonant scattering 565, 589, 591–5, 597, 

599–601, 627
Scattering length 565, 578, 586, 587, 589, 

593, 594, 596, 597, 627
Validity of Born approximation 565, 609,  

611
Zero energy bound state 592, 594–7, 627
Zero energy scattering state 596, 597, 627

Stark effect 476, 477, 480, 520
State of the system 23, 44, 58, 131, 132, 134, 

137, 140–3, 151, 156–8
Collapse 25, 140, 141
Quantum numbers 12, 158, 164, 249, 270, 

290, 356, 365, 366, 376
Stationary states 44, 544, 564
Step potential 71, 73–5, 86, 87, 105

Scattering state solution E < V
0
  261

Scattering state solution, E > V
0
  261

Sudden approximation 521, 558, 559, 561
Superposition state 141, 142, 425

Consequences in quantum mechanics 24
Measurement results 166
Non classical nature-Illustration with spin 141

Symmetric wave function 400, 402, 404–6, 454, 
619

Symmetrization postulate 400, 426

T
Time evolution operator 312, 313
Time evolution 2, 3, 39, 40, 44, 49, 70, 143, 194, 

198
Superposition of energy eigen states 197,  

234
Time independent Schrödinger equation 43–4, 

51, 69, 71, 169, 243, 245, 247, 249, 251
Time reversal 321, 339–43, 345

Anti-linear operator 340–2, 345
Schrödinger equation 13, 29–33, 35, 37, 39, 

40, 44–45, 47, 49, 51
Spin ½ particle 331, 357, 363, 420, 425,  

464, 629

Z01_QUANTUMMECHANICS_3628_INDEX.indd   705 5/23/2013   3:00:49 PM



706  Index

Time reversal (Cont...)
Spin zero particle 331, 338, 629, 640
Transformation operator 340

Time-dependent perturbation theory 524, 565, 
568, 611
Born approximation 565, 602, 606, 607, 609–11
Constant perturbation 526, 534
First-order 20, 31, 39, 410, 469, 472, 473, 

477, 478, 493
Harmonic perturbation 532, 535, 538
Scattering cross section 565–7, 569, 585, 587, 

592, 593, 599, 609, 611, 614
Second-order 1, 31, 39, 451, 470, 471, 475, 

477, 520, 525, 640
Trajectory in classical physics 165
Trajectory in quantum physics 165
Transformation 57, 66, 90, 212, 213, 223, 303, 

304, 311–13, 320–5
Active and passive 322
Anti-unitary 320, 321
Unitary 304, 311–13, 320–2, 328, 339–41, 

345, 367, 372, 374, 385
Transition probability 452, 524–31, 533, 536, 

538, 540, 543, 551, 559, 561
Transmission coefficient 70, 71, 76, 79, 80, 83, 

84, 88, 517, 518
Rectangular potential barrier 81, 569
Square well potential 259–61, 565, 582, 584, 

589, 592–4, 596, 597, 600, 611
Step potential 71, 73–5, 86, 87, 105

Transmission resonance 80
Tunnelling phenomenon 84, 86–8, 455, 515,  

518, 599
Alpha decay  88, 105, 518
Scanning tunnelling microscope 86, 87

Two-state problem 429, 431, 433, 435, 437, 439, 
441, 443–5, 447, 449
Time-dependent Hamiltonian 44, 442, 545
Time-independent Hamiltonian 44, 49, 50, 68, 

90, 342, 441, 553, 564

U
Uncertainties 5, 6, 14, 61, 62, 68, 151, 152, 158, 

165
Uncertainty in classical and quantum physics 166

Uncertainty Principle 1, 14, 22, 148, 156,  
176–8, 204
Eigen state 99, 100
Energy time relation 152
Energy time uncertainty relation 152
Experimental errors 152
Minimum uncertainty product 152, 194, 196, 

197
Position and momentum 2, 14, 61, 158, 176, 

177, 202, 315
Position momentum uncertainty relation 152 
Superposition state 141, 142, 425

Uncertainty relation 13, 14, 148, 152, 177, 196, 
528, 563
Orbital angular momentum 12, 133, 134, 208, 

234, 331, 335, 337, 339, 347
Uncertainty 1, 13, 14, 22, 61, 148, 151, 152, 155, 

156
Harmonic oscillator 8, 13, 169–73, 175–85, 

187–9, 191–5, 197–9, 201–5, 246, 247
Minimum product wave function 194,  

196–7
Unitary transformation 311–13, 320–2, 339, 345, 

367, 385, 389, 423
Generators 328–9, 331, 333
Invariance of Hamiltonian and conservation 

321–2
Pictures 313
Space–time symmetries 320–2

V
Variational method 496, 497, 499

Degenerate 120, 121, 146–8, 156–8, 246–8, 
270, 284, 426, 433, 435

First-order non-degenerate 477
Helium 16, 18, 26, 408, 410, 493, 494, 496, 

497
Non-degenerate 121, 146, 156–8, 247, 284, 

467, 468, 474, 477, 487, 520
Second-order non-degenerate 478

W
Wave function 23–5, 30–4, 36–9, 43, 44, 46–50, 

52, 53, 55, 56
Admissibility 38, 39

Z01_QUANTUMMECHANICS_3628_INDEX.indd   706 5/23/2013   3:00:49 PM



Index  707

Boundary conditions 37–9, 45, 47, 56, 68, 69, 
72, 76, 78, 91

Collapse of wave function 140
Interpretation 10, 14, 33, 34, 37–9, 41, 42, 45, 

52, 58
Maximum information 164, 165
Minimum uncertainty product 152, 194, 196, 

197
Normalisation 35–38, 45, 50, 52–6, 66–9, 78, 

93–4, 101–4, 153–4, 173
Probability interpretation 38, 39, 41, 45, 132, 

251, 632
Wave mechanics 13, 23, 169, 291, 569,  

624
Wave packet 59, 61–7, 70, 153, 165, 194–7, 202, 

205
Wave particle duality 29
Waves in classical physics 535
Wigner–Eckart theorem 391, 394

WKB approximation 88, 467, 500, 504, 506–8, 
514, 515, 518
Alpha decay 88, 105, 518
Barrier penetration 515, 569
Bohr–Sommerfield quantization rule 512
Bound state solution 69, 88, 96, 170

WKB expansion 501, 515
Airy function 509
Connection formulae 506, 511, 516, 517
Left-handed barrier 505–7, 511, 515, 516
Linear potential 508, 510
Right-handed barrier 505, 506, 515

Z
Zeeman effect 433, 435, 486, 490, 491

Anomalous 433, 486, 490, 491
Strong 4, 88, 335, 338, 485, 486, 518, 589, 

591, 629
Normal 4, 8, 9, 30, 33–8, 45, 46, 48, 50, 52–6

Z01_QUANTUMMECHANICS_3628_INDEX.indd   707 5/23/2013   3:00:49 PM



Z01_QUANTUMMECHANICS_3628_INDEX.indd   708 5/23/2013   3:00:49 PM


	Cover
	Contents
	Preface
	1. Evolution of Physics: Classical to Quantum
	1.1 Classical Mechanics
	1.2 Light
	1.3 Atoms
	1.4 Some Views Based on Classical Physics
	1.5 Black Body Radiation
	1.6 Einstein’s Light Quantum
	1.7 Dual Nature of Light: Wave–Particle Duality
	1.8 Matter Waves
	1.9 Vector Atom Model
	1.10 Birth of Quantum Mechanics
	1.11 Heisenberg’s Uncertainty Principle
	1.12 Matter Wave: Experimental Evidences
	1.13 Feynman’s Double-Slit Experiment: Exposition of Non-Classical Nature of Micro World
	1.14 Particles and Waves from Quantum Field Theory
	Exercises
	References

	2. Schrödinger Equation
	2.1 Derivation of Schrödinger Equation
	2.2 Hamiltonian Operator
	2.3 Free-Particle Solution
	2.4 Interpretation of Wave Function Ψ (r, t)
	2.5 Normalization of Wave Function
	2.6 Square Integrable Functions
	2.7 Bound and Scattering States
	2.8 Admissibility Conditions on a Wave Function in Quantum Mechanics
	2.9 Conservation of Probability
	2.10 Time-Independent Schrödinger Equation
	2.11 Energy Eigenstates and Their Properties
	2.12 Superposition of Energy Eigenstates – Time Evolution
	2.13 Momentum Operator and its Eigenfunctions
	2.14 Normalization of Momentum Eigenfunction
	2.15 Coordinate and Momentum Representation for a System
	Appendix
	Exercises
	References

	3. Simple Potentials
	3.1 Scattering States
	3.2 Bound State Solutions
	Appendix
	Exercises
	References

	4. Mathematical Preliminaries
	4.1 Linear Vector Space
	4.2 Hilbert Space
	4.3 Operators
	4.4 Eigenvalue Equation
	4.5 Dirac Delta Function
	Exercises
	References

	5. General Formalism
	5.1 Postulates
	5.2 Commutation Relation between x and px
	5.3 Compatible Observables
	5.4 Uncertainty Principle
	5.5 Complete Set of Compatible Observables
	5.6 Constants of Motion
	5.7 Ehrenfest Theorem
	5.8 Classical Physics and Quantum Physics
	Exercises
	References

	6. The Simple Harmonic Oscillator
	6.1 Wave Mechanics
	6.2 Abstract Operator Method
	6.3 Coherent State
	Exercises
	References

	7. Orbital Angular Momentum
	7.1 Compatible Set of Angular Momentum Operators
	7.2 Orbital Angular Momentum Operators in Spherical Polar Coordinates
	7.3 Parity
	7.4 Parity Operator in Spherical Polar Coordinates
	7.5 Eigenvalues of L2 and Lz
	7.6 Angular Momentum Eigen Functions
	7.7 Spherical Harmonics as Eigenfunctions of Angular Momentum
	7.8 Parity of Ylm(θ, ø)
	7.9 Sketching of Spherical Harmonics
	7.10 Raising and Lowering Operator
	7.11 Eigenstates of Lx and Ly
	7.12 Orbital Angular Momentum in Quantum and Classical Physics
	7.13 Rigid Rotor
	Exercises
	References

	8. Time-Independent Schrödinger Equation in Three Dimensions
	8.1 Particle in a Rectangular Box
	8.2 Harmonic Oscillator in Three Dimensions
	8.3 Isotropic Harmonic Oscillator (Cartesian Coordinates)
	8.4 Central Potentials: General Properties
	8.5 Radial Equation
	8.6 Centrifugal Potential
	8.7 Radial Probability Distribution Function
	8.8 Radial Momentum in Quantum Mechanics
	8.9 Hamiltonian in Terms of Radial Momentum
	8.10 Free Particle in Spherical Polar Coordinates
	8.11 Particle in a Spherically Symmetric Box
	8.12 Bound-State Solution for Spherically Symmetric Potential Well
	8.13 Scattering State Solution for Square Well Potential
	8.14 Two-Particle System in a Central Potential
	8.15 Radial Equation for Coulomb Potential
	8.16 Hydrogen Atom
	8.17 Isotropic Harmonic Oscillator in Spherical Coordinates
	Appendix I
	Appendix II
	Exercises
	References

	9. Bra and Ket Vector Formalism and Symmetries
	9.1 Ket Vectors
	9.2 Bra Vectors
	9.3 Scalar Product
	9.4 Abstract Operator
	9.5 Adjoint of an Operator
	9.6 Basis Vectors
	9.7 Postulates of Quantum Mechanics
	9.8 Representations
	9.9 Coordinate Representation
	9.10 Momentum Representation
	9.11 Unitary Transformations
	9.12 Time Evolution Operator
	9.13 Space–Time Symmetries
	9.14 Invariance of Hamiltonian
	9.15 Active and Passive Transformations
	9.16 Space Translation
	9.17 Time Translation Symmetry
	9.18 Rotational Invariance
	9.19 Parity Invariance – Space Inversion
	9.20 Time Reversal
	Exercises
	References

	10. Angular Momentum and Rotation Symmetry
	10.1 Eigenvalues of Ĵ2 and Ĵz
	10.2 Matrix Representation of Angular Momentum Operators
	10.3 Spin Angular Momentum
	10.4 Spin 1/2
	10.5 Pauli Matrices
	10.6 Eigenvalues and Eigenvector of S·n
	10.7 Rotation Matrix for Spin 1/2 Particle
	10.8 Addition of Angular Momenta
	10.9 Number of Basis Vectors in Coupled and Uncoupled Representation
	10.10 Possible Values of J in Coupled Representation
	10.11 Clebsh–Gordan Coefficients
	10.12 Recursion Relations for Clebsh–Gordan Coefficient
	10.13 Transformations of Operators Under Rotations
	10.14 Spherical Tensor Operators Tq k
	10.15 Wigner–Eckart Theorem
	Exercises
	References

	11. Many-Particle Systems and Quantum Statistics
	11.1 Identical Particles and Indistinguishability
	11.2 Interchange Symmetry or Permutation Symmetry
	11.3 Indistinguishability and the Interchange Operator
	11.4 Symmetrization Postulate
	11.5 Bosons – Construction of Symmetric Wave Functions
	11.6 Fermion: Construction of Antisymmetric State
	11.7 Pauli’s Exclusion Principle
	11.8 Distinguishability as an Approximation
	11.9 Two-Electron System Helium
	11.10 Indistinguishability and Counting Microstate in Statitical Mechanics
	11.11 Density Matrix
	11.12 Pure State Density Matrix
	11.13 Mixed State Density Matrix
	11.14 Spin Density Matrix
	Exercises
	References

	12. Electron in Magnetic Fields and Other Two-State Problems
	12.1 Electrons in Classical Electromagnetic Field
	12.2 Landau Energy Levels
	12.3 Normal Zeeman Effect
	12.4 Gauge Invariance of Schrödinger Equation
	12.5 Aharonov–Bohm Effect
	12.6 Two-State Problem
	12.7 General Analysis of Two-State Problems
	12.8 Magnetic Moment and Spin
	12.9 Precession of Spin Angular Momentum
	12.10 Magnetic Resonance
	12.11 Ammonia Molecule
	12.12 Neutrino Oscillation
	Exercises
	References

	13. Time-Independent Schrödinger Equation – Approximations
	13.1 Non-Degenerate Perturbation Theory
	13.2 Degenerate Perturbation Theory
	13.3 Stark Effect for Hydrogen Atom
	13.4 Hydrogen Atom – Relativistic Effects and LS Coupling
	13.5 Hydrogen Atom in Magnetic Field
	13.6 Ground State of Helium—First-Order Perturbation Theory
	13.7 Least Upper Bound for Ground-State Energy
	13.8 Variational Method for Helium Atom
	13.9 Slowly Varying Potential and WKB Approximation
	13.10 WKB Expansion
	13.11 Connection Formulae
	13.12 Bohr-Sommerfield Quantization Rule
	13.13 Energy Eigenvalues of Bound States Using WKB Approximation
	13.14 Barrier Penetration
	13.15 α Decay and WKB Approximation
	Exercises
	References

	14. Time-Dependent Perturbation Theory
	14.1 Time-Dependent Perturbation Theory–Basis
	14.2 Transition Probability
	14.3 First-Order Perturbation
	14.4 Principle of Detailed Balancing
	14.5 Constant Perturbation
	14.6 Fermi’s Golden Rule
	14.7 Harmonic Perturbation
	14.8 Atoms and Radiation – Three Kinds of Transition
	14.9 Atoms and Radiation – Semi-Classical Theory
	14.10 Selection Rules
	14.11 Einstein Coefficients
	14.12 Adiabatic Approximation
	14.13 Validity of Adiabatic Theorem
	14.14 Adiabatic Theorem from Time-Dependent Perturbation
	14.15 Berry Phase
	14.16 Berry Phase for Rotating Magnetic Fields
	14.17 Sudden Approximation
	Exercises
	References

	15. The Scattering Theory
	15.1 Scattering Cross Section
	15.2 Scattering Amplitude and Differential Scattering Cross Section
	15.3 Phase Shift Analysis
	15.4 Scattering Amplitude and Phase Shift
	15.5 Number of Partial Waves Needed
	15.6 Integral Formula for Phase Shift δl
	15.7 Expression for δl Using Logarithmic Derivative
	15.8 Scattering by Hard Sphere
	15.9 Phase Shift in the Low-Energy Approximation
	15.10 Scattering Length in Low-Energy Scattering
	15.11 Phase Shift for Square Well Potential
	15.12 Breit–Wigner Formula
	15.13 Green’s Function Technique in Non-Relativistic Scattering Theory
	15.14 First-Order Born Approximation
	15.15 Validity of Born Approximation
	15.16 Born Approximation from Time-Dependent Perturbation Theory
	15.17 Transformation for Scattering Cross Sections in Two Frames
	15.18 Scattering Cross Section and Indistinguishability
	Appendix I
	Appendix II
	Exercises
	References

	16. Relativistic Wave Equation
	16.1 Klien Gordan Equation
	16.2 Free Particle Solution to KG Equation
	16.3 Problem with Negative Energy Solution
	16.4 Probability Interpretation and KG Equation
	16.5 Klien Gordan Equation and Hydrogen Atom
	16.6 Motivations Leading to the Formulation of Dirac Equation
	16.7 Meaning or Nature of α and β
	16.8 Equation of Continuity
	16.9 Solution to Free Particle Dirac Equation
	16.10 Dirac’s Interpretation of Negative Energy States
	16.11 Observable Consequences of Negative Energy Sea
	16.12 Untenability of Interpretation of Ψ in the Non-Relativistic Sense
	16.13 Spin Angular Momentum of an Electron
	16.14 Helicity Operator
	16.15 Magnetic Moment of an Electron Due to Spin Angular Momentum
	16.16 Hydrogen Atom
	Exercises
	References

	Index

