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FOREWORD to the English-Language Edition 

What is Quantum Mechanics? A Physics Adventure is the English translation of Adventures in 
Quantum Mechanics (original title: .;. ~1Jl!f..0) ~~) which was first published in Japan in 1991. 
Like its predecessor, Who is Fourier? A Mathematical Adventure, which is now on sale in the 
U.S., it was translated from Japanese. Both books were originally written by students of the 
Transnational College of LEX, or TCL. The English editions were a cooperative effort between 
the TCL students and the translators in the U.S., and were produced in Japan. 

We are very thankful for the continued support we have received since 1991 from the readers 
of the original Japanese version of What is Quantum Mechanics? It has sold over 40,000 copies 
(as of September 1995) and has become a long running best-seller. The majority of our readers 
are in their 20's and 30's, with one quarter of the total consisting of students. In addition, the book 
has been well received by many high school teachers and university professors who have utilized 
it as supplementary reading for their classes. 

In a world where technological advances are happening at a rapid pace, people who have up 
until now not had as much as a hint of interest in quantum mechanics are beginning to discover 
and study it. One can see this increased interest just by browsing through the natural sciences 
section of major bookstores in Japan and counting the number of books related to quantum 
mechanics. Being chosen as one of the most sought after books on the subject by readers is an 
honor and has provided us with much confidence and support. 

The most unique aspect of this book, if it was summed up in a few words, would be the 
process by which this book was produced. In most cases, a person well versed in the sciences, 
such as a physics or mathematics professor, would be the author. This book, however, was written 
by a group of over 30 lively TCL students who took up the challenge to understand quantum 
mechanics. In addition, the first drafts of each chapter were written by those who least understood 
the subject when the project began. The joy was overwhelming when those who didn't understand 
suddenly did after repeated discussions with members in the same group. People who listened to 
the explanations of how these students came to understand were literally drawn into the 
presentations because of the happy and powerful mood in which they were conveyed. Another 
unique feature of this book is that it can be easily understood by any reader. Its step by step 
approach starts at the basics and leaves no stone unturned, down to the very last equation. 

This book is derived from the discussions of those students. We think that the reason why the 
original Japanese version was so well received was because it is easily understood and its 
inclusion of the basics lets even the least knowledgeable feel closer to the subject matter. Great 
care was taken to be sure that the happiness and power present in the original version was not lost 
in the process of translation. Our hope is that this can be conveyed to the readers of the English 
edition. At the same time, we also hope that you will enjoy the real experience of learning the 
equations. 

Lastly, we would especially like to thank Dr. Yoichiro Nambu, Professor Emeritus of the 
University of Chicago, who advised us, and his son, John Nambu, who did the translation work, 
for their invaluable help in producing the English edition. Many thanks to all the others who took 
the time to assist and support us. 

Of course, any errors in this work are strictly our responsibility. We hope that this book will 
bring forth many new acquaintances. 

January 1996 
Transnational College of LEX 
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FOREWORD to the Japanese-Language Edition 

Everyone had already gathered, hoping Hyon would say exactly that. 

This is Shibuya, a lively quarter of Tokyo and a 
popular haunt for crowds of young people. Moving 
past the big department stores and away from the 
energetic shopping streets, you find your way to 
Shoto, with its array of large private homes. There 
is a white, seven-story building at one corner. When 
you look up, bright blue and yellow jump out at you 
from the signboard on the middle section of the 

1/ 

building. You can be sure that at certain times, the place is aglow with the 
kaleidoscopic stir of people turning, twisting, hands and feet going up and 
down. Few can pass by without hearing music, laughter and all manner of odd 
sounds coming forth. 

Every day, this modest-sized building rings with the light steps of casual 
young people, smiling mothers with nursing babies, fathers in suit and tie, 
rambunctious children, bright-faced office ladies, and shuffling grandmothers 
and grandfathers. Not all of these people coming and going are Japanese -
quite a few are from other countries. 

This cheerful, unique place is the main headquarters of the Hippo Family 
Club, where their motto is "Let's speak in seven languages!" 

Do you know about the Hippo Family Club? 

WHAT IS HIPPO 
FAMILY CLUB? 
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1. Our favorite phrase is "Let's speak in 
seven languages", but in the last several 
years we have added new languages, and 
are currently acquiring eleven languages 
- Japanese, English, Korean, Spanish, 
French, Chinese, German, Italian, 
Russian, Thai and Malay - the natural 
way. 

3. We play tapes all the 
time - at home, inside 
the car, on the way to 
school or work, wherever 
we happen to be. Like so 
much background music, 
we constantly listen to 
cheerful songs and 
conversations in a 
multitude of different 
languages and hum these 
sounds to ourselves. 

5. As the name Family 
Club implies, people of all 
ages join, from babies, 
children and students to 
young, single working 
adults, fathers, mothers and 
grandparents. Anyone can 
participate no matter who 
they are. 

2. What is "natural learning"? 
We don't study so much as 
naturally grow fluent in a 
language, like a small child 
does. 

4. We don't do it alone, of 
course, in isolation. Groups of 
families gather together at 
"multilingual parks" called 
"Families" and sing, dance and 
practice saying the sounds and 
words heard on the tapes back 
and forth to each other. We all 
have a great deal of fun while 
chanting our new languages. 

6. Since we can go abroad to 
various countries on our 
homestay exchange programs, or 
host visitors from abroad at our 
homes, we can get to know 
people and their families from all 
over the world. 

f.!v-., For details, please call LEX AMERICA, 
~ .3 the North American headquarters of HIPPO! 
t;:7) Tel: (617)489-5800 c,aL e 

x FOREWORD to the Japanese-Language Edition 



Serving as the research division of the Hippo Family Club is the Hippo 
institute called the Transnational College of LEX (Tokyo, Japan), commonly 
known as TCL, for short. It takes up the entire second floor of the white 
building. At TCL there are no tests, and no grades or marks given. Classes are 
not divided by grade levels, and attendance is not taken. About fifty students 
are currently enrolled, from freshmen to experienced research students. They 
range from recent high school graduates to elderly grandmothers. 

~1?,., ?? 

" . '1@!" , , 
" ' 

" $ o 

What do they do at TCL? 

Studies center on treating language as a natural science. 

r---------------------~ I 8 At first, I had absolutely no idea what it meant to treat I 
I - - language as a natural science, either. The word "nature" evokes I 

• .!:... images like mountains and seas. So I could understand studying 
I ,\11' Dai,ll the earth and living things in the natural sciences. In physics as I 
I well, I could understand why things like how the planets rotate are I 
I questions for natural science, but as to why an apple falls from a tree, or I 
I why a ping-pong ball bounces or rolls - that was too much. How could I 
I these possibly be the objects of natural science, much less human I 

language ... ? 
I I 
I About the third year after I entered TCL, I finally grasped what it I 
I meant to treat language as a natural science. That's because I discovered I 

that language shares a trait found in other objects of natural science. That I 
I common trait is "repetition." To find a language by which we can explain 

things that occur repeatedly is the basis for natural science. I 

An apple falls from a tree. This happens 
repeatedly, every time an apple grows bigger and 
its stem weakens. No matter what sort of apple it 
may be, if the conditions are the same, an apple 
should fall in just exactly the same way. It never 
happens that one apple falls to the ground, while 
another apple climbs up the tree. In the language of physics, which uses 
equations rather than words, this predictable, regular occurrence is 
described by F = rna. 

Discovering these regularities is natural science. Human language 
also is a phenomenon of natural science. A baby born in Japan is 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
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B eventually able to speak Japanese, while a baby born in Luxembourg, 
B where four languages are used, is ultimately able to speak all four: 
; Luxembourgeois, German, French and English. Wherever a person is 
~ born, he or she will always develop the ability to speak a language as long 
w as there is a natural environment where that language is used. 
W Achieving language ability is a regular phenomenon throughout 
~ human history, so much so that we take it for granted. Just how and why 
I are people able to speak a language? There must be some principle, some 
I order at work here. Thus, at TCL, we treat the study of language as a 
I natural science and use various approaches to study the path by which 

languages are naturally acquired. 
L~~~~~ ____ ~~~~~ ___ ~ __ -

I see. What are those various approaches you use to pin 
down language? 

Look at the 
process by which 
toddlers acquire 
language. 

Close in on the 
phonemes of speech. 
Explore the mysteries 
of vowels and 
consonants and 
phoneme recognition, 
including things such 
as tone and rhythm. 

Uj.ansnatiOi\~ 
@onege 0' 

[Se~ 

Above all, we do it 
through Hippo's 
multilingual activities!! 
Once you have 
experienced them, you 
will see how adults and 
children alike can use 
the same path to learn 
how to speak. We're 
looking for a natural 
process of learning 
languages that will 
work for adults, too. 

How did the Japanese language form and 
develop? By reading and deciphering the 
very oldest extant texts - Kojiki, 
Nihonshoki, Manyoshu-we can find out 
a great deal about the principles behind 
language. 

Hltomaro's Coae 
~y '([jo3 .. u ,I'"l1LJra 

Ookrmi's Code 
by 'T'",,~ ~ .)rr _, J 

We musn't forget to mention the interesting and varied lectures at TCL by 
our senior fellows, all of them people at the top of their fields. TCL may be 
lacking in material resources, but when it comes to things to do, ideas that you 
want to follow, those it has in abundance. It's an interesting place to be! 

By all means, please come and pay us a visit at TCL. 
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N ow then, on that day something was in the air at TCL. "Big brother" Hyon 
had started talking about the "next adventure." 

Gosh, the Fourier adventure sure was fun! 

You bet it was! I never dreamed we could get into something 

We got hold of some terrific treasures during that adventure, 
didn't we? 

Setting out on the track of Fourier -
that adventure is a treasure in itself! 

During the course of our fieldwork on phoneme recognition, we came across 
a mathematical concept, called Fourier analysis, which is necessary for the 
analysis of the wave fonn of phonemes. I used to detest mathematics. After my 
second year of high school, I thought I was finally able to say "lIHi(zai-jian)," 
or "good-bye," to math. How amazing that after so many years, I should run 
into it again at TCL. But this time when math came back into my life, it was 
neither threatening nor incomprehensible. I recognized it as a beautiful 
language for describing nature. 

We all took up mathematics at TCL and at Hippo. That truly was an 
adventure as we went through the process of understanding the Fourier series 
together, reliving the experience of discovery while talking about it in front of 
others, and preparing a series of lectures based on this. All that is encapsulated 
in Who is Fourier? A Mathematical Adventure. 

8 
~ 
~ 

When I think that we have another wonderful adventure ahead, 
my heart starts pounding with excitement. 

Me too, but what kind of adventure is it this time? 

Good question. I was wondering about that, and so I asked you 
all to get together. 

So we're meeting to talk strategy. 
First off, what do you think, Hyon? 

WHAT'S NEXT? 
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Well, since it comes after Fourier, I think something like 
mechanics would be good, but what does everyone else think? 

Hyon continued speaking. 

I mean, if we take care of mechanics now we'll be in great shape, 
don't you think? 

Everyone remained silent. Feeling a little awkward, Hyon said, 

I really want to hear everyone's opinion. If there's anything at all 
you want to try, speak up. How about you, Furta? 

Called on first, Furta was a little flustered. 

~ -{ Umm, Jet's see,. . . ) 

Furta is always like this. Finally he seemed to have made up his mind, but 
his answer was halting. 

Well, urn ... What I would like ... 
I'd sort of like to do quantum mechanics ... Urn hmn. 

'~kuh?! Q--<jua--<luantum meChaniCS?) 

Without thinking, Hyon let out a great shout. And then he stammered, 

Heh heh, quantum mechanics, eh? Ha ha ha, I see. 

He was smiling uneasily. 
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~ {What about you, Hana?) 

Me? Oh, I want to do quantum mechanics too. 
I really admire all that Dr. Heisenberg did. 

, --<!: want to do quantum mechanics tooV 

J CMe,too~ " 

(Same goes for me(7 

o say quantum mechanics too i):--

How about that? Everyone spoke up, and they all wanted to do quantum 
mechanics. Hyon's smile became even more uncomfortable. 

Now look, I'd like to do quantum \ I / 

mechanics too, but do you realize ..... Quantum/' 

how difficult it is? EnvisiOltnsatarts ~rMeChaniCS 
stairway of mathematics. ~ 

with 1 + I, and then follows ~ 
subtraction, multiplication, division'_2 r=P

3X2 
+4 

algebra, differentials, integration, ~""~ 

matrices ... As you climb up higher 1+1 

and higher, there at the top of the staircase up above the clouds is 
quantum mechanics. Even smart people only get halfway up and 
then stumble and fall. Only a few are able to arrive at the top. 

\ 

Hearing this everyone started to look a bit troubled. Only Hyon was 
chuckling merrily to himself. Soon the chuckles rose into giggles, and then into 
loud and merry laughter. 

Okay, since everyone wants to do it, let's do quantum 
mechanics! Since we're doing it the Hippo way, it'll be possible 
to do it. Didn't we find that out with Fourier? 

Instead of climbing the stairway step by step from the very 
bottom, you can just hop on and start at any step. And rather than 
climbing from there, you go down. Climbing takes great effort 
and you quickly tire and stop, but going down is easy. If you start 
at the highest, most difficult step, you can then go down the rest 
in one breath. 
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It was just as Hyon said. We experienced that in Who is Fourier? A 
Mathematical Adventure. That is to say, we found that mathematics is a human 
language. 

Learning mathematics at school is exactly the same as learning English at 
school. You are taken forward step by step from the beginning levels, and when 
you stumble, that's when you stop. People who make their way up above the 
clouds in math are rare, when it is learned that way. It's just like English. Most 
people in Japan still can't speak English even after studying it for more than six 
years in the classroom. 

Babies and toddlers don't formally study languages, yet within only four or 
five years they are able to speak a language. And young children don't just 
learn their ABC's and then put them together one by one to finally speak a 
language. It's not as if they start to talk only using simple, discrete words. 
They don't do that because they are listening to and absorbing the speech going 
on around them, which is far from "simple." 

They hear complete strings of sentences spoken by adults and their elder 
brothers and sisters, and they begin to speak using rough, general sounds like 
Ah-Ah and Ooh-Ooh. They certainly do not start speaking just by adding more 
and more words. They hear the whole first and then tackle the parts, which is 
the way of nature. And the Hippo way. 

First we must seize the 
big wave of language, all at 
once. No matter how 
carefully we put together 
separate parts, the result is 
almost never a wave of real 
speech. Mathematics, too, is a 
human language, and we find 
that exactly the same principle 

The natural process of 
learning language 

FromthewhOle~~hebigWaVe 
to the parts ~~\\ ~ '---1( 

.J 
t 

The wave of a particular language 

holds true. If it did not, it probably would have been impossible for someone 
like me, who always got bad marks in high school math, to be able, after just 
one short month, to lecture on the Fourier series. 

The children, even three- and four-year-olds, enjoyed the Fourier adventure 
lectures. They astonished us with their sharp observations. That could never 
have happened if math weren't something natural to us. 

Everyone of us has learned to speak any number of foreign languages here 
at Hippo. We treat mathematics as just one more language that you can pick up 
by following nature. As long as we stick to natural processes, there is nothing 
more to hold us back. We can do it! 

That's right. Mathematics isn't intimidating to me, either. 
I can do it! 

Most likely I can do it, too. You just have to start by ,catching hold 
of the big wave all at once. Let's do it! 

Let's do it! It's the adventure of quantum mechanics! 
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By now everyone was totally inspired by happy anticipation. I was grinning 
through the strategy meeting from start to finish. It didn't bother us in the least 
to learn that quantum mechanics is considered exceedingly difficult. For us, 
there was not much difference between Fourier and quantum mechanics, mainly 
because we had absolutely no idea how difficult either was compared to the 
other. 

Hey, we did Fourier, so we can do anything! 

Unfamiliar things can be frightening. Yet we're undaunted by a whole new 
project. 

Let's do quantum mechanics! Let's do it! 
By the way ... what exactly is quantum mechanics anyway? 

That's the kind of place TeL is. But there was a reason that TeL students 
were so unanimous in wanting to do quantum mechanics, while knowing 
nothing about it. They wanted to understand what some of their friends had 
done. 

Although there are no entrance examinations at TeL, certain assignments 
must be tackled before entering. One is to wholeheartedly enjoy the 

activities at Hippo. The other is to read Physics and Beyond by Werner 
Heisenberg over and over. The book Physics and Beyond is something of an 
autobiography of a physicist named Werner Heisenberg. It is the grand drama 
of the emergence of a new physics called quantum mechanics, based on the 
work of Heisenberg and his colleagues. 

The thing is, it is impossible to sit down and just read it. When you try 
reading two or three pages, you start to feel sleepy! In short, it's an unspeakably 
difficult book for us. Being told to read it again and again, you begin to 
experience a feeling of hopelessness. 

But that's Hippo too. If you had to read through it and understand it 
perfectly passage by passage, page by page, you probably would never finish. 
Not in a lifetime. So, more experienced TeL students tell us, "Just plow 
quickly through the book." Even if you don't understand it, they say, just keep 
turning the pages until you finish it. And then you do it again, from the 
beginning. You repeat this many times over. 

You can't just listen to the Hippo multilingual tapes and understand them 
phrase by phrase. You listen to the whole tape, like background music. With 
time, some phrases gradually settle in your mind. That's because you're taking 
on a big wave. A book is like that, too. 

PHYSICS AND 
BEYOND 
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QUANTUM 
MECHANICS 
ADVENTURE 
PART I 

Now, when you begin to read Physics and Beyond that way, the parts that 
most people understand first have no relation to the substance of what we call 
quantum mechanics. When you read it several times, you at least begin to 
remember the names of people who appear in the book. And then as you look at 
the photographs, you start to think, "Good old Heisenberg is wonderful!" or "I 
love Hans Euler!" and start feeling as if you've become good friends with them. 
When you come across their names in another book or somewhere, you feel 
glad, like you've met a friend. At some point, the hero Heisenberg ends up an 
intimate friend of us all. 

His is the story of quantum mechanics, a new field that he and his 
colleagues struggled to develop. The beautiful sunrise he saw on Helgoland 
Island. I want to know about what he did, and to see a sunrise like that over 
Helgoland. If I could feel the happiness he felt. .. We can never meet 
Heisenberg, for he is gone, but we can get to know him through his writing. 

The most difficult parts of Physics and Beyond are those dealing with the 
content of quantum mechanics itself. If we trace the intellectual path that he 
followed, it seems reasonable that we will then be able to understand those 
parts. As we become more and more familiar with Heisenberg, we'll have a 
much better idea of what people are talking about when they discuss quantum 
mechanics. 

From the time we first encountered Physics and Beyond, 
it was inevitable that we would someday tackle quantum ::: 
mechanics. That time had now come. ,-

/ 

so we decided, just like that, to plunge into the adventure of quantum 
mechanics. We are going to stalk the trail of the physicists who formulated 

quantum mechanics: M. Planck, A. Einstein, W. Heisenberg, D.L.V. de Broglie, 
E. SchrOdinger, M. Born, and back again to Heisenberg. 

We decided to split up into groups, each taking one physicist. Everyone 
indicated which group they wanted. We determined that we could get through 
quantum mechanics in ten weeks. The lectures were to be given on Monday 
afternoons, and the groups would take turns making presentations of their 
selected topics. Done in this relay fashion, in ten weeks, after ten lectures, our 
adventure would end: Shinichiro Tomonaga's Quantum Mechanics I-II 
became our official guidebook to the adventure. Making that book our 
foundation, each group worked hard to prepare their material for their lecture 
presentation. 

When the adventure groups were formed, Hyon consulted some people who 
had already gone through the adventure of quantum mechanics. 

Quantum mechanics?! !! In ten weeks?!! 
Look, my friend, aren't you being a bit overconfident? 

XVlll FOREWORD to the Japanese-Language Edition 



They were seasoned veterans who had encountered the difficulties of 
quantum mechanics first hand. They had fought their way through quantum 
mechanics, and it had been a struggle for them. It was only natural that they 
should warn us off. 

To do the highest level of physics, quantum mechanics, with a band of 
complete novices who couldn't even handle derivatives and integrals very well, 
and in ten weeks no less, seemed a joke. To learn quantum mechanics, you have 
to know this, that and a dozen other things first; if you don't you'll get nowhere, 
or so they said. But if we believed that, we'd never get even close to quantum 
mechanics, not in a lifetime. 

No matter how famous or exceptional they were, when people told us, "To 
try quantum mechanics, that's pushing things!" we were unimpressed. 

C-{ Hey, this is Hippo! ) 

We all know from our own experience that by following the ways of small 
children, we can learn to speak even the most unfamiliar foreign language. In 
the course of about a year, I learned to speak Russian, a language I had never 
encountered before in my life. Of course, this was accomplished through the 
Hippo method of natural learning. 

But, come to think of it, I couldn't give you the Japanese equivalents for 
many Russian words, nor could I come up with the Russian for a number of 
Japanese words. Even so, I can still say what I want to in Russian. I think I 
speak like a two- or three-year-old Russian child. Yet children keep on picking 
up new words, one after the other, and so do I. Last week I knew more than I 
did two months ago; yesterday, more than last week; and today, more than 
yesterday. That's the way I've been learning to talk. At some point, my Hippo 
friends, who were listening to me, began speaking Russian themselves, too. 

You need to prepare yourself first, as if you had a big, empty vessel inside 
you. After that, you keep putting things in it, slowly filling it. You need that 
"vessel" in which to put all that you acquire. "Capturing the big wave" is filling 
that vessel with language. 

We knew from experience in the Fourier adventure that mathematics could 
also be done that way. Instinctively we knew it would work for quantum 
mechanics, too. I say "instinctively" because not a single student at TCL had 
any notion of what quantum mechanics was. 

I wasn't too concerned and remained nonchalant about it all, but it was quite 
different with Hyon. 

Let's do it, folks! 
We'll do quantum mechanics in ten weeks. We'll do it, by golly! 

Being told it was impossible, his eyes were burning with determination. 

FOREWORD to the Japanese-Language Edition xix 



QUANTUM 
MECHANICS 
ADVENTURE 
PART II 

So the TCL students listened to advice from wise experts and promptly 
forgot it as they set out on the adventure of quantum mechanics. 

Ten weeks later, we saw for ourselves the beautiful sunrise on Helgoland. 
Well, maybe it was not quite Helgoland, but wherever we saw that sunrise, it 
was as beautiful as the one Heisenberg saw. 

Catching the "big wave," we had pulled off our adventure in quantum 
mechanics. Once you capture the big wave, afterwards it's just a matter of 
filling in the details. The way we framed our original question was correct after 
all. Going a step further, we came close to seeing the sunrise as Heisenberg saw 
it on Helgoland, and we knew we were right. 

H alf a year later, we had completed a one-volume pilot text recording our 
adventure in quantum mechanics. Some of the expressions in it were 

rudimentary, but our narrative, told in beginners' voices, reflects our genuine 
enthusiasm for quantum mechanics. This book was going to be the guidebook 
for our next adventure. 

Listen, when should we set off on our 
next adventure in quantum mechanics? 

Even before we had time to catch our breath after completing the guide to 
our adventure in quantum mechanics, Hyon laid this new project upon us. 

Having gone to all the trouble of writing this guidebook, 
we simply couldn't have the adventure again without using it. 

We all started thinking. Everyone wanted to go off on another adventure. 
But at TeL, there were many other projects that we wanted to pursue, that we 
had to do. We couldn't just keep doing quantum mechanics. 

Shall we wait a bit before we do the next one? 

We talked and talked, and just as we were thinking maybe we should wait, 

someone suddenly shouted. 
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It was, actually, the Dean of TeL. Everyone's eyes became sharp and their 
faces turned white. We all gulped, for just then, after two hours of debating it, 
we were on the verge of coming to that very decision. 

So why did we waste the past two hours debating this? 

I can't have been the only one with that thought. Later we found out that 
the Dean had been catnapping through most of our discussion. 

And so, with a single whoop of the crane, a single call from the Dean, it was 
decided we would go on to further adventure in quantum mechanics. 

Anyone who has played computer games knows that as you clear one screen 
and go on to the next, new conditions enter in and it becomes increasingly 
difficult stage by stage. But that's what makes it interesting. When we came to 
the second stage of the adventure in quantum mechanics, there were new 
conditions for us, too. 

First of all, we would aim at reaching more people than just TeL students. 
Our Hippo colleagues who knew nothing about quantum mechanics were to 
participate in our lectures and serve as our test group. We would teach the 
fathers, mothers and children of Hippo. 

We had to cut down the time it took. In our flrst adventure, one lecture took 
almost ten hours. No one would be able to sit and listen for such a long time, 
except maybe TeL students. So we decided to put together two kinds of 
classes. They were: 

Adventure in Quantum Mechanics -
Monday, TeL Version (3:00-9:00 PM, ten meetings in all) 

Adventure in Quantum Mechanics -
Sunday Abridged Version (l :30-5:00 PM, four meetings in all) 

The Monday version went into detail and was made up mostly of TeL 
students, while the Sunday version was a more general, "big wave" class aimed 
at Hippo friends and presented by all of our groups in units of an hour and a 
half. Some beginning TeL students joined us, moreover. They had just entered 
and didn't even understand Fourier. Anyone with common sense would have 
said that bringing in rank neophytes that way was a preposterous notion. But 
we couldn't have cared less. 
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c -{ Hey look. this is HiPPO!) 

At most places, when you learn foreign languages, they put you into a class 
according to your ability. The assumption is that you can't expect people who 
have been at it for five years and complete beginners to be able to learn 
together. But things are done differently at Hippo. Here people aren't divided 
into classes. First-timers work together with those who have been attending for 
years. They do exactly the same things. 

That's natural here, for the Hippo Family is really like a neighborhood park 
where many languages fly about and mingle. Over there you see Hanako, who 
has been coming to play for quite some time now, and Taro, who just moved 
into the neighborhood the day before yesterday, playing together. In the Hippo 
Family, just like the park, no one is ever sent to a beginner's corner. They join 
right in with everyone else. 

When five-year-old Taro moved to America, he went out to the 
neighborhood parks and played happily with George and Mary. Just one year 
later, he is chattering away in English. And don't assume that after just a year 
Taro's English resembles a one-year-old's baby talk; he can speak English as 
fluently as an American child of six. Nature doesn't divide us into classes. 

That's why we aren't divided into classes at Hippo Family or at TeL. 
People who have just joined our group can learn from those who have been 
members for some time, and vice versa. At TeL, we don't think twice about 
doing quantum mechanics together with new students who don't even know 
Fourier. To us, it's natural, and fun! 

And so, together with our new companions, we set out on our second 
adventure in quantum mechanics. 
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INTRODUCTION 

THE GENERAL FLOW 

Now, before we put on the tapes of our adventure in quantum mechanics, 
let's go over our course. As your guide, I'll give you a broad idea of what we're 
getting into. 

DON'T BE TENSE. ABOVE ALL, RELAX!! 

Please think of this not so much as reading, but as viewing. While viewing, 
relax and enjoy yourself! 

INTRODUCTION THEGENERALHDW I 



Since this is a Hippo school, I thought it would 
".""., ...• """; focus on literary topics. Hippo does mostly 

iN language-related activities, doesn't it? How 
did we ever get into math and physics? On 

top of that, how did we end up becoming involved in 
something as difficult as quantum mechanics!? 

e 
math and physics either ... 

That's not true! 

It's not so hard. 

I was thinking I'd like to do research 
on language at TCl, but . .. 

Oscilloscope 

Loo~lng at the wave patterns 
made I1y sound, you can actually 

see words and other vocal 
sounds with your own eyes. 

Then came the Fourier series. 
Complex waves are aggregates of Simple waves. 

Follow along carefully, and 
without knowing It, you'll find 

that you've caught on. 

Without using the Fourier 
series, It was Impossil1le to 

I1reak the waves up. 

That's how things stood when we decided to do Fourier. 
And when we did . .. 

Mathematics turned out to be a language, too. 
Physics is another language that describes nature. 

A That was a DISCOVERY!! 

e As a small child grows, 
)) he or she learns to speak. 

L.... The natural way 

('1) ,~ At Hippo, we start speaking new 
1. JJJ~Jt~ languages like children do. That's why 
.......... we can speak so many languages in 

.I!:.~ ~ our happy Hippo family. 
~ V 

~atur~ 

If we observe 0 carefully, that little baby can 
8ab~ 

show us how language is acquired naturally!! 

{ At Tel, that's what we call 
the natural science approach 

to language acquisition. 

Mathematics and physics are no big deal at TCL. 

~ 
They're languages, too! And they're easy and fun! 

And something else ... 
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Quantum Mechanics 

In the beginning. your head 

spins with all the equations 

on the blackboard. 

But, 

Math is a language, too. Think of the 
math you're learning as just another new 
Hippo language tape. 

Even if you don't get all the 
From the whole f" t 't' h 'f to the parts The big wave mer pom s, I s enoug I you 1 ~ absorb the general flow. 

Gradually, as you listen again 
The wave ofa partiC!lar language and again, you will pick up 

even the finer points. 

Really, it's no different from learning 
by the other Hippo language tapes!! 

Well, that may be so, but. .. 

When you enter Tel, there's an assigned 
text called Physics and Beyond by Werner 
Heisenberg. You have to read it many 
times over. 
Heisenberg was one of the stars in the 
world of physics. 
We really wanted to know what Heisenberg 
had done. After we read his book, he felt 
like an old friend to us. u-

• • > 

To enjoy 

QUANTUM MECHANICS, 
first listen to 

THE OVERALL FLOW. 
DON'T WORRY ABOUT THE DETAILS. 

~ But. don't dismiss 

~ them entirely either. 

It's important 
to put quantum mechanics 
together with everything 

you've been doing at Hippo. 

Nonetheless, ifs e who's going to be giving a talk, 

and so you can't expect too much! 

Just relax and enjoy reading! 

With that, 

Vamonos!! 



G n Chapter' 

Around the end of the 19th century, there were two 
ways of speaking about things in the world of physics. 

1. Particles 0 
2. Waves f\/VVV\; 

There were a number of different ways to explain the 
movement of things, but they all came down to two types of 
explanations - particle explanations and wave explanations. 

Particles and waves are 
by definition different things. 

Particle 
You can throw It. 

Wave 
When you place your 

finger on the surface 

of water, a wave forms 

around It and gradually 

spreads. 

Waves are continuous. 

Particles hop, 
and they are discrete. 

o~o 

I \ I ,I " ' 
", ,-, ,-', ,,-, ftj . .:-7.. 

o d '0 0' '0 

I think waves are qreat. 

Which camp are you in, 

waves or particlesI' 

Everything could be described in terms of one or the 
other. The descriptions were like two different 
languages. There were no problems and peace reigned 
in the world of waves and particles. 

Happily, ~ 
happily "'-d 

A particle is a particle, and not a wave. 
A wave is a wave, and not a particle. 
The two were completely different. 

The end 

Now then. 

~ was thought to be waves, not particles. 
Ugh'-

Wave Interference 

A characteristic of waves Is that they 

expand and spread, and so If something 

Interferes and leaves two openings, the 

waves pass through lIoth openings and then 

come together again in a mixed pattern. 

Waves are aggregates, the sum of a numller 

of different waves. Some doulile when they 

comlline. Others cancel each other out when 

combined, like the sum of a + and a -. The 

result is O. 

~ interfered, so one concluded that LIGHT = WAVE 

~ 



About that time, some of the research being done on light 
involved a box made of iron or something similar. 

Inside, a vacuum was created, and the 

box was heated to a high temperature. 
As it got hotter, the inside of the box 
glowed. The energy of that light was 
investigated. 

To investigate ~,YOu have to look at the SPECTRUM. 
l.ig'O't 

Intensity U(v)dv 

Frequency v 

~ Do you I:.now what 
(J a spectrum is/' 

When you use a prism, the light of 
the sun breal:.s up into colors. You 
can see the different colors that, 
mixed together, mal:.e up sunlight. 

A spectrum shows the proportions 
in which those colors are mixed. 

Ex per i men t s were done, and spectra were identified. 

I Next ... 

You struggle to find some sort of equation that matches 
your experimental results. 

You see, in physics, you 

have to test ideas. So you 
do the experiments first, 
and the results suggest 
what laws might be at work. 

First the experiments! 
Actually trying it is 
crucial l You can't do 

physics without testing l 

Everyone went through much agony and frustration, 
and then Mr. M. Planck found: 

{ 
87TV2 hv 

U(v)dv = -- hv dv 
c3 ekT - 1 

Don't get too intent on the equation. 
It's less Intimidating If you 1001:. at It 
with one eye closed ... 

Wasn't that ~reat~ 

But. .. 

It's terrific that earnest Planck formulated this equation, but 
once he had it, even he wasn't sure what it really meant. 

In other words, when he formulated the equation, he did not 
think too mu~cb about its deeper significance. His immediate 

concern was to match experimental results. The finer 
shades of meaning were less important at that point. 

JA\\ Somehow that reminds 

~ me of Hippo. 



'1. y\IY\r(]ln Night after night, 
he thought about it. 

I mean, he couldn't maKe an equation 

and let it go at that, without Knowing 

what it really meant. 

He concluded that ... 

The energy of light is measured in 
integral multiples of hv, 

which is a specific number (h) 
multiplied by the frequency (v) of the wave. 

That is, its energy jumps by 
discrete amounts. 

But if that is so, a contradiction emerges. Precisely 
because light is a wave (remember wave interference!), its 
energy should therefore be continuous. 

~ 
A peculiarity of waves 

o~ 
<1C7~ Tough break, Mr. Planck. 

Oh. what in the world have I found here? 

I'll never figure this out 

The problem was that even though light comes in waves, 
r--- the values for its energy seemed to be 

an impossible thing - jumping, discrete values. 
~... ~... .... -" 

\ F \ , 

o 0' \0 0 

As a mathematical 
expression .. 

----~E = nhv (n = 0,1,2,3 .. · ) 
Energy • 

I 
I 
I 

This is not simply a lowercase h. 
It's called the "Planck Constant." 
6.63 x 10-34 (joule-second) 
Naturally, it's a value discovered by 
Planck. e If you can remember it, you'll really impres5 people! 

And then. 
"'- t.\nS("". 
t'-. '-~//) 

.~ THE GENIUS MADE HIS APPEARANCE!! 

~ 
Mr. Einstein said: 

~ "Light is a particle!" 

A particle that has energy h v. 

O While everyone else was trying to figure it out. a geniu5 spoke up, went 

•• beyond them all and settled everything It was 50mething 50 simple that 

o no one had even thought of it. It's an incredible quality. and an important 
one. 

Now that's what I call genius! 



But simply making a claim about something is 
NOT GOOD ENOUGH. 

Unless you can actually show experiments 
where light is acting like a particle ... 

•• unle55 you can prove that really i5 e No matter how good It may 50und, 

'-' the way nature act5, 

~ Heh heh heh then we can't take It a5 truth. 

~ There are such experiments ... 

PHOTOELECTRIC EFFECT 
COMPTON EFFECT , 

You know, you don't have to 

understand all the detall5. 

Something that could not be 
explained in terms of waves 

could be explained if you used the 
language of particles. 

~ The way we get 5unl1urned 15 one ca5e of the photon effect. 

l.} Ultraviolet ray5 contained in 5unlight are of high frequency 

Q (v 15 large). When v 15 large, hv i5 al50 large, meaning that 

the energy (E = nh v) 15 high. 

So when your face is struck by particles with high energy, 
you become sunburned. 

..••.•..... h v· '., . ,', you 5hould 5hade your5elf u5ing a para501 ~.</( If you don't want to get 5unburned, 

/~ that ultraviolet ray5 cannot penetrate . 

How about that! 

If 
\-\ght ~ artie;. 

~ is a ~ •• What Happens ••• 1 

WHAT HAPPENS IS QUITE STRANGE. 

Can you believe it, sometimes light is a particle; other 
times it's a wave. It's a pretty slippery notion. 

Waves and particles are absolutely 
incompatible. No matter how much they 
grow to like one another, they can't be 
together. 

What should we do ... 17 

Until now we have always used the language of particles and 
waves to talk about things, 

But maybe that's simply not possible ... 

What should we do ... !? 

I wonder if we need a new language ... 

H e on "0' ; : ; : ~, 0 ~ I don't under5tand at all. 
'iY7I-'t<:<1 tQ) tQ) 

.'i'..s.rt~. """ 

lin Chapter 2 

At the time of Einstein, there was another very peculiar 
discovery. It concerned atoms. When you break 

something up into smaller and smaller pieces, you end up with 
tiny particles. 



00 Then you reach a point where you cannot go any farther, 
and you are at the level of the atom. 
Of course, it's a kind of particle. 

But it was eventually found that 
the atom was made of yet smaller things. 

But because it was so small, it could not be seen, and it was 
difficult to determine the structure of the atom. 

When you can't see inside, what do you do? 

You sniff it. 
You try shaking it. 
You test its weight. 
You hold it up to the light. 

Etc. etc. 

You can do all sorts of things, can't you ... 

IA. Probably ... 
~ There are electrons spinning around a nucleus. 

o When electrons move, they emit light. 

t < That light can be observed. 

Its spectrum can be analyzed. 

Maybe the electrons and the 

nucleus behave like the planets 

rotating around the sun. 

But if we continue this line of thought, an electron can give off @ light only if it works hard, 

~ '0Q)-and that means that it 
"'",e~6 uses up energy. 

like doing e 

When that happens, the electron loses force. Because the 
charge of the electron is negative and the charge of the 
nucleus is positive, the electron is gradually attracted to the 
nucleus and the atom collapses. 

~ 
Flat as a pancake 

~ That means trouble. 
~ After all, if that were so, even a person would 

suddenly become flatter than a pancake whenever 
energy ran out. 

That never, ever happens!! 

I think that's the wrong idea ... 

That's right. 

It's a fact that atoms do not collapse, so let's 
revise our theory to show that they don't! 

A We need to make a substantive turnaround 

~ in our first premise. right? 



I'm not really sure, but ... 
Let's just settle it!! 

e,ctro 
o e"u-rotate about the nucleus, but 

they do not emit light. .. 

O Oh my, what a bold idea, but we all know that light has been 

•• actually observed. 
o 

~ 
@ 

- Bohr's hypothesis -

Inside an atom, there are 
orbits with fixed radii in 
which electrons rotate. 

And when an electron 
jumps from one orbit to 
another, it emits light. 

So if you think this way, our position is all right. 
We're into a new language for the atom. 

e Rightl That's the bottom line. Rigid ideas are no 

'. good. Flexibility - that determines the power 

'-./ of thought. 

I "'0 
-<,(''1 ,tj'N,ait ,;; $", 

. ~. fl'?,.- I have a question. 

Question 1. Why does an electron have to stay in 
a certain fixed orbit? 

Question 2. When does an electron jump? 

I don't know ... 
I noticed that too, and it puzzled me ... 
But in any case, an atom doesn't collapse into a 
pancake, and the light that is emitted from it has a 
certain fixed spectrum. 

Taking that into consideration, this is what we end up with. 

So you see, we need a special language for talking 
about atoms. 

f5J1 '7" I'll have Heisenberg think about the rest. 
.j 
'-

(J) Good idea. 

'. It's easier to understand something you're having 
'--' trouble with if you borrow everyone else's brains 

rather than grappling with it on your own. 
Thinking together, all sorts of ideas come up. 
Even listening to Hippo tapes, you get much more 

out of them when you listen with everyone else, 

instead of all by yourself. 

o /f:) At Tel, too, it's not about one person, a o~ putting everyone's heads together. 

~~ .. 
V That's why it's mterestmg. 

but 

At last ... 



o ~n Chapter 31 
,~e\selJ~ 

• "<;' -u~ ....... Suddenly, the young Heisenberg 
~ 0 makes his appearance. 

A mi me gusta 

tocar el piano y la 

frsica. 

No matter how long and 
hard you try, you can't see 
inside an atom. You can't 
know what's going on in 
there. 

So, as for these notions about orbits, 

let's just forget about them!! 

The problem is the spectrum of the light that the electrons 
give off. If I could only calculate and express it!" 

~ 
Building on the work of \0 <..' he struggled forward. 

tv. BO'<' 

U/ A FORCED BREAKTHROUGH!! 
" rt 

~ )~'-'7 (!) At times, hammering away at a breakthrough 
) " is the best way. Hey look, sometimes you 

have to go at it hand and fist. Rah-rahl 

Making skillful use of calculations done in physics thus far, 
Heisenberg was finally able to get his own calculations to 

work so he could express the spectrum of the atom. 

Furthermore, he formulated an equation just for that purpose. 

And how about thisl There was actually a branch of 

mathematics called matrix theory, and Heisenberg, 

without knowing of it, ended up reconstructing it all on 

his own. AMAZING, isn't it? 

I didn't know that mathematical theory was ever produced 
like that. But I suppose all of math actually was formulated 

in just the same way. 
That's how it was. 

Really! 

Mathematics is a drama too, isn't it ... ? 

And then. 
q = L Q(n; n - 7 )e i27Tv (n;n-T)t 

T 

This expresses the electron jumping 
from n-th orbit to (n-T)-th orbit. 

tau 

I'm thrilled!! 
I did it! 

With this, the spectra of the light emitted by the atom 
made perfect sense! 

~ That's great, but there's no room at all to think about 
~ the orbits in the atom, right? 

So we're not supposed to think about 
the inside of the atom? 

~ That is going too far. 

~ No matter how perfectly you can discuss the 
. ~ ." spectra, that alone doesn't mean that you 

()lJste\ shouldn't consider the inside of the atom. 

Hmm ... 



lin Chapter 4 

The nobleman de Broglie enters 
quietly on the scene. 

Ladies and gentlemen, 

1M 
We've thought of the electron as a .0 U IZI • 

qrtiC." 
Now, what if we thought of it as a ~ ? 

Ifrave 

After all, ~ too was considered as < particle. 

/;9 h '- wave. 

Do you rememl1er~ 

A~I9D You see, if you think of it as a (;/ \;::::7 ,then it is a 

matter of course that it can assume only fixed values. 

That is to say. 

With waves, 

~ one cycle is always a complete cycle. 

~ There are no in-betweens such 
as these, 

and, no matter what, 
you get values constituted ~ ~ ~ 
like this. 

If you think of electrons as a wave, 
anything you say about orbits is totally unrelated. 

"\ ne electron 
is a wave. 

c'est 6 
fw'J\J\J 
~ 

What, is he kidding? What 
does he mean, saying, 
"Don't think about the 
inside of the atom"? 

Good thought!! 
Let's tell Erwin 
about it ... 

Don't be ridiculous! 

Physics is about properly explaining things in nature. 
So if you tell me to give up midway and say okay, we'll 
just explain the spectra of light and let it go at that, we 

might as well give up on the whole thing right now. 

I won't allow it. 
I'm going to tell you precisely what's going on. 

Like it or not, you'd better listen. 

What great determination. ~ 



N 

There you have it! 

The 
electron 

is 
a wave! 

We'll start with that, that the electron is a wave. 

If~~ n Now, you can already imagine what a ~ 

is, so you can imagine the inside of the atom. 

~ ~ Ha ha ha ~ ~ Wow! I did It! 

It's important to be able to imagine something. 

And now, 
Get ready ... 

Scribble 5crlbble 5cribble 

~
_ With this equation, you can talk about 
- anything in the language of waves. Not 

'( • just electrons, but everything else, 
'-' too .. 

So I can even talk about me, myself, 

using the language of waves. 

My goodnessl 

In Chapter 5 I 

The thing is, ~ 

Schrodinger's equation 
expressing the energy 
of an atom 

--
Heisenberg's equation 

and expressing the energy 
of an atom 

AMOUNTED TO THE SAME THING. 

~':I gOSII!~ .~ 

That means you don't have to deal with Heisenberg's 
bothersome equation. It's unnecessary. If you stick to my 

equation, you won't need anything else. 

Heisenberg's equation 

and my equation are the 
same thing. 

~id itl 

~
' . In any event, Heisenberg's 

~: is sloppy. It doesn't give 
( ~ you an Image of what's 
o going on. 

I'll ask Weyl to finish 

off the equation. • • ~ 
I'll give It a shot. 

L. 

Oh well, sigh. 

I'll do it myself 

• 
But as it turned out . .. 

It's no good. 

It won't work. 

e After all, if you really want 

something done, you've got to 

~ do it yourself Right? 



I'm going to do it! 

Heisenberg's equation 

(_1 p02 + 1£ Q02)~ _ W~ = 0 
2m 2 

Schrodinger's equation 

::2 ¢(x) + 817 2 ; (~ - fh x2)¢(X) = 0 

If we can neatly change the form of this 

e ClacK clacK I7zzzzzz 
•• (Actually, what we have to 
'--" do 15 calculate everythlrll!.) 

If you take a close look, 

pO and~.!L 
2171 dx 

QOand x 

~ and ¢(x) 

Wand E 

These seem to 
correspond to 
one another. 

Okay, I'll give it all I've got! 

That's what I did. I threw myself into 
figuring out how to get rid of Heisenberg's 
equation. If I could use my equation to 

produce the values for every spectrum, in other words, to come 
up with what Heisenberg calculated by his equation, then my 
equation could stand alone, and my theory that the electron is a 
wave would have superseded Heisenberg's. 

I struggled with it for a long time, 
and I finally got rid of the matrices 

Hey, SCh that Heisenberg used. , rtY you re 50mething , e elSe!. 

\) really ·7 
-\ 0 til '-' 

1 ~rea " 
~'" 

The Schrodinger equation 

Perfected!! 

The calculations were exasperating, e That's magnificentl 

'-' but some interesting things came out of them. 

They had to do with the effects of language. 

In fact, in Schrodinger's equation, 

h ~ 'h' h . I . t e ~ Wit In a mat ematlca expression means 

It's ~ X or+ or+ or f O.6.Ddx 
called an 
operator. 

multiply add divide find the area 

In a word, do what's called for in a given operation. 
You can't do much with only this. 

But with ~ stuck on, you can do such-and-such an 
At/" '0<:-. Func\'\ 

operation and start calculating. 



For example, 

Operator - times 3 

;.' 

= 3.i 

When this happens, you can 
calculate for all sorts of 

values of x, right? 
At Hippo, what this amounts to is, 

For example, 
When you 00 to Mexico, 

Host tn 
Ol"~ 

A~""'...A 
QUlero~~ 
agua. S ~ 

> 

~~ ~ ",,'I;.. 
fJOJ 

When you can say only the 
few things you know, 
language is still in the state 
of being an operator. 

When a speaker successfully communicates to someone, then 
we can talk about meaning in language. 

When a connection occurs between people, the real meaning 
in language comes to life. 

That's how it is. 

Therefore, 
It's very important that there be a partner. 

Language grows in the space between 

one 0 and the o· 
.l>erso(\ lJe x\ 

Don't forget, after a", that 
the meaning of words has to do with 

the fact that they work. 

Even though she didn't under5tand Its meaning too well, 

when she used the word In5tlnctlvely, It worted very well. 

thinking that's what It meant, 

~ How interesting it is that so many things 
"(;J are just like language! 

I'm not afraid even of math now. 

About that time, 

",,{a la 
Tra W 

\'11-
Tra \~ "f'\ 

~f~ 
The merry 
Schr6dinger 
did it! 

~ 
Everythin~ in the world is 

a wave, a wave!! 
The electron is a wave. 

It is. It is! 
We don't need 
Heisenber~'s 

equation at all, at all. 
My equation compared to 

Heisenber~'s is so easy, so easy. 
Hurrah!! 



~O~OI 
WAIT A MINUTE!! 

Cool eyes (I) 1) surveyed the situation ... 

r------------------------------------------------------------------------------1 
Hey, Schro, since the wavef(cfJ) in your ! 
equation is a wave that can be imagined, i 
one ought to be able to know where and 
when it occurs. 
Nevertheless, when you try the various 
calculations, 10 and behold, you end up 
with 6, 9 or even more dimensionsl 

L __________________________________________________ .... 

'" ~ I / 
~~: L·· r-----So~--afteraii-this._;e're-bac-k-to------l 

6! the Heisenberg problem. i , , 
Darn! ! You can't maintain i 

i a visual image. i 
L ______________________________________________________ ............. _______ ... ___ .. 

W What in the world have I been doing ® up to now7 

was my starting point to be sure, but at some point, it 

turned into an incomprehensible "'~ 

WI guess my equation is still unfinished. 
-, However, it couldn't be entirely wrong! 

~ ~ (. Whichever one you choose, mine has got to be 
\ ~ - better than Heisenberg's. Anyway, the 

problems in mine will be solved in no time. 

But the problems were not solved. e Even with 5chrtJdinger's equation, 
the electron, in the end, remained a 

'--' mysterious, unknown thing. 

In Chapter 61 
\ \ 9 h t 

Is a particle or a wave? 

Even if you start with a 
particle --. an image cannot be sustained. 

wave --. an image cannot be sustained. 

Then what in the world 
\" 9 h t 

is ~? 

This is not the behavior 

( Of£;es(an~icles. 
ordinary ordinary 

In the end, I'd say this is about 
a wave of probability. 
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" .--Electron gun 

I 
I 
I 

When you shoot off an electron 
gun at a wall through a screen 
with two holes, and then see 
where and in what quantity 
the electrons strike the wall, 
you find that they form an 
interference pattern. 

This is a wave, isn't it? 

But the electrons also display particle-I ike 
characteristics as in the Compton effect. 

You really get the feeling that 
they're both particle and wave. 

~ ~ 
Still. .. 

If you think of It as probability, a wave of 
probability, then you can neatly explain 

everything. 

O Protlatlillty7 15 that when. for example. 

• • the chance of a 51x coming up on a die 15 

o ~. kind of like a prediction? 

That's right. That's right. 

So far the theories have been expressed in 
terms of probability. That's why it's not a 
question here of particle or wave. 

~U"·iS .. 6"~ 
'- /' <> Hey, I object to such a vague and 
r ~ " uncertain method of resolving this! 

It's true that when you apply the idea of probability, all of 
the numerical values and the phenomena are tied together. 
I don't dispute that. 

We had thought it was wave interference, 
and if we think of it as the interference of a 
probability wave, 
it will look as if the 
problem ~e away. 

perhap5 

It ha5 tleen 5ald that 

protlatlility exhltllt5 

Interference. 

But probability is a matter of approximation. 
Is it all right to settle for something that has 
accidentally ended up becoming a matter of 

approximation? 

~ Up until now, the question "Are light and electrons 

e 
particles or waves?" has kept everyone in a quandary. 

~ ~ 
Now Born says that it's neither wave nor particle, 
but a PROBABILITY WAVE, and that probability interferes 
and makes a wave-like interference pattern. 

Somehow. I feel like I've veen tricked. 

U Moreover,the electron can only be thought of as 
-;; ;; a particle. What's to become of the cloud chamber , 

o experiment? 



-~ 

eThe cloud chamber experiment? .. 

e A tlox Is prepared to allow fOG to fonn Inside. ThinGs are set up 
....:::;-:::-::;:.- so that electrons will tie emitted. After a while, electrons 

.-..:::-. spurt throuGh the fOG. At that time, tracl:s IIl:e the contrails 

of an airplane tlecome vlsltlle. 

This experiment was done to prove that 
the electron is a particle. 

HMMMM .. . 
THE YOUNG HEISENBERG 
THOUGHT AND THOUGHT. 

As Einstein would say ... 

It is the theory which 
decides what we can 
observe. 

Absolutely!! @ 
e We thought we were seeing electrons flying 

_...:-_ around inside the cloud chamber. 
:::::::.::..;"':- Actually, we might have been looking at 

particles of fog formed by the passing 
electrons. 

An ordinary wave ~ 

Ill:)))) 

When you use a hose, If 
you don't s~ueeze It, the 
water flow a5 It comes 
out Is atlout the tlreadth 
of the h05e Itself. 

, , 
, ' 

~;{~:~~~---
~ -----------. 

If you s~ueeze the end 
of the h05e, the w~r 
Goe5 shwee and 
spread5 out. 

When the hose width is large --+ the spread is small. 
When the hose width is small--+ the spread is large. 

orse rolatlonshlp, 

~ '5 ~\\ \\\V \s,,'t It? 

~\ .. 
@ That's true inside a CIO:d chamber, too. 

Enlarge 

a cloUd partIC/e. 

~ 
Cloud particle 

When the probability wave of 
the electron tries to spread, 
it strikes cloud particles. 
The width of the cloud 
particle is extremely large in 
comparison to the electron, 
and the spread is small. 



00 it 
becomes 

O'~d 40' 4'a'~O' 4'2" 
The end result is that it 

doesn't get very big. The 

spread doesn't fan out much. 

When When 
it it 
tries tries 
to to be 
be big .. 
big, 

big That's Why' 
It Ca 

looking like I tne OUt 
a rp1ane 

cOntr 
rl <Ills 

(Jf7 t ? . 

a Although it's a wave, it turns out to be a wave that \J doesn't spread!! 

This is. the famous. .. e 
UNCERTAINTY PRINCIPLE 

L1x. Llp ~ h 
x It's the PlancK constant! 

Delta (8 certain Width) 

LIKe a margin of error 

Can't we get rid of one 

or both widths" 

~ and('l8 "cannot be determined more 
L'gn'L ectrO 

precisely than within the width of h. Such light 

~ or electrons %~o,," are called QUANTA. 
LIQh'-

~Whee! 
Now that I think about it, and without even realizing it, 
I've set ~ inside the world of QUANTUM MECHANICS! 

foot 

U It turned out to be even more momentous. 

Until now, 

<J> (J> ----) 

there was a clear boundary 
between the act of looking 
and things that could be seen. 

Even so ... In the world of quanta, 

\t'& the 6erlln Walll 

I::;:::::: :j 
Well, of course! 

The condition of something appears differently 
depending on how it is observed. 
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In other words, 
as it's a matter of probability, 

I saw it! 

L+e ¥.tAl! 
She's 
.s'ingin~· 

iYa 10 he vlsto! 

A condition with several possibilities turns into a single condition. 

e· " ~.,., 
(/II. 

And after having seen it, you can say with confidence, 

"She's singing!" 

In classical mechanics, 

e Iookeda! 
-Oeop\e 

In quantum mechanics, 

Nature that hold5 human l:Ielnl:15 within It 

and tried to explain her 
from the standpoint of 
people looking in from 
the outside. 

can be talked about 
from both inner and 
outer vantage points. 

These two modes turned out to be decidedly different. 

M U if you think of it as 
,oartic\e 

~ if you think of it as ~ 
""ave 'VdV-

°0 

You can't think 
like that! 

~ Well. everyone. \.:J what do you thinK? 

Well ... 

EINSTEIN was furious. 

that unt\\ 
'lou sa'i. "t'S a 

usee \t, \ 
'10 ·\"t'i poss\\)\ \ 'u see \t, 

d 'l-Jhen '10 
an f. ct\\ 
\t'S a ,a 

That's outrageous! 
Nature is not fickle or vague. 

There has to be an overall order to it, 
completely apart from humans or anything else. 

I'll prove it to you! 

And so, he steadfastly refused to recognize the probability 
way of thinking. 



N o Well, it sure is odd ... O Even geniu5e5, when they get 

• involved in new ~aY5 of thin~ ing, 

'---' 50metime5 don t under5tand 

exactly what they're doing. 

Still, you have to admit that we can 
understand only the things that can 
be talked about and communicated 
through language. 

e But at Hippo ••. 

I Language I isn't something that comes to us from outside 

ourselves. 

language _ the Natural Human if there ever was one -e; Just like a baby 

If...... we go by what's happening within ourselves. 

Rather than classical mechanics, 
don't you think this is quantum mechanics? 

~ The world of quanta, ~ 
W considered in terms of ~ world, 

Ou{ 

isn't completely strange after all! 

~ ~----------~ 
q ",', ~ V q ~ b 

When you're riding on a train and feel 

50meone'5 gaze on you, you become a bit 

5tartled and feel 5elf con5cioU5. d • 

Maype a baby 5ing5 at home, but a bapy 

wouldn't just 5ing out if other people 

were around. 

t¥\ 5CjUlr", 

~~ ---------____ SCjUlr", 

~l::::.i' ---------- ~0 ":l Do •• ,. ",-.. (;) -------~, "'~ , 
\d rn ,---- d • 

When many people are watching, a baby 

can't help but peconne ten5e and 

fidgety. 

The act of watching changes the conditions. 

It appears as if looking at something 
CJ> ~ gives off some sort of energy. 

~, t~ 
e Comes LIttle Miss 5ee-cella\\ 

The distinct sounds of and the BIG WAVE 
each individual word 

If you try to zero in 
on each little sound, 

If you set your antennas 
only for the big wave, 

you won't piCK up 

the pig wave. 

you won't pick up 
the little 50unds. 

THAT'S THE UNCERTAINTY PRINCIPLE! 
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<!!)Howwasit? 

It get5 intere5ting when you think 

about and examine a variety of thing5. 

If you come acr055 50mething 

intere5ting, think about it! 

To conclude. 

We've touched on quantum mechanics ... 
I really want to know more about quantum mechanics ... 

Hippo is becoming more and more interesting ... 
I'm really beginning to think Tel is quite interesting ... 

It really gets interesting when 
you start to understand what 
you've striven to understand. 

What do you think? 

Actually, that's 

what I'm hoping for. 
Ha ha ha ... 

It's exactly the same as getting to know a language!! 

o Thanks for staying with us until the end. 

Thank you! 



CHAPTER 1 

Max Planck 
and 

Albert Einstein 

WHAT IS LIGHT? 

It's time to set out on our adventure in quantum mechanics! The first clues 
to quantum mechanics were found in the strange behavior of light. For many 
years, light was described as a wave until new experiments began yielding 
results, time after time, that could only be explained if light was a particle. Was 
light a particle, or a wave?? Physicists were to be caught up in a heated 
theoretical debate over this questionfor more than thirty years. 
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1. 1 GETTING STARTED 

'Heisenberg, Werner 
Karl 
[1901-1976] 

'Schrodinger, Erwin 
[1887-1961] 

We're off! 

~ It's time to set out on our adventure in quantum mechanics! Let's 
work together to make it an enjoyable one. 

Yay!!! 

~P~ o~~ ED 
First, though, what do you each hope to get out of this adventure? 

As for me, I'd like to know just what Heisenberg'S Physics and 
Beyond is really talking about. I think it would be a really powerful experience 
to be able to read the Heisenberg-Schrodinger debates with an understanding of 
quantum mechanics. 

~ I'd like to know how physicists discovered a language to describe 
quantum mechanics. One of our premises in our research at TCL is that human 
language is a natural phenomenon. Since language is a natural phenomenon, 
maybe it can be explained using the language of physics! After all, there must 
be some kind of order in it. 

~ Gee, everybody is thinking about something different. In my case, I 
don't know a thing about quantum mechanics, and I'll be lucky to feel even a 
little comfortable with it by the end of our adventure. 

~ 
'\Vc3 This is really basic, but quantum mechanics is a part of physics, right? 

From the very start, I've never been able to understand physics. Beginning in 
high school, I wondered why in the world I had to study physics! But since 
entering TCL and working with all of you, I've begun to catch on. Physics 
makes much more sense to me now. Can I tell you about it? 

24 CHAPTER 1 WHAT IS LIGHT? 



~ WHAT IS PHYSICS? <:) 
High school physics uses mathematical formulas to explain things such as, "How does a spring 

with a weight attached to it move?" or "How does a ball fall?" or "How do the planets move?" But 
we don't have to know those things to play catch and see the stars, right? So I used to think, "Why 
do we have to go to all the trouble of studying physics?" and "Why do we even have physics?" But 
recently it hit me. Maybe physics began like this. 

Once upon a time, there was fire ... 

Once upon a 
time, people 

came upon a fire 
that started by 

chance. 

They warmed 
themselves by the 

fire, maybe 
roasted some fish, 
and found that the 

fire was useful. 

But before long, it 
went out. 

They just 
couldn't forget 
how useful that 
fire had been. 

• .i.i.i",!,~.' 
~it . 

~l Starting another fire 

Unable to put the 
wonderful fire out 

of their minds, 
people didn't 

want to just wait 
for nature to 

produce another 
one. 

They tried to start 
their own fires. 

Then while trying 
out different 

ideas, they were 
able to start a fire 

themselves. 

So people could 
roast their fish 

again. 
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And they told everyone how. 

Anyone would 
want to know 

about something 
so useful. 

So, they showed 
other people how 

to start fires. 
They came, one 
after the other. 

As they made 
more fires, they 

began to 
understand its 

properties better. 

Gradually 
knowledge about 
fire spread and 
was passed on. 

For instance, how dry wood bums better, or 
how sparks are made by rubbing pieces of 
wood together, or how fire goes out when 
water is thrown on it. 

To us today, there is nothing mysterious about why fire bums, but long ago it was thought to be 
very strange. But because fire was so useful, people did their best to find out how to start it 
themselves. Through trial and error they discovered that, "If x and y are prepared, and z is done to 
them, then a fire will always start." It was a kind of natural law. 

I bet physics started from trying to explain familiar but unexplained occurrences like this. 

I realized that other natural phenomena, even if we don't pay much attention to them because 
we take them for granted, are also governed by natural laws. Today's physics must have come 
about as we gradually discovered and explained those laws. Physicists explain them using 
mathematical formulas instead of ordinary language. The formulas they use are a universal 
language that can be understood by people of all nations. When I realized this, I finally understood 
why, in high school physics, we studied the movement of a spring with a weight attached to it. 

\ \ I I / Super! 

\\I//. \\11/ 
~~ Clap clap clap ~~ 

lSS 

~====----------------==~ 
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-0 Since quantum mechanics is a part of physics, perhaps we can think 
of it in the same way as we regard starting fIres. Quantum mechanics is the way 
physicists, using the vocabulary of mathematical expressions, describe and 
explain the strange physical phenomena arising from quanta, or subatomic 
particles. 

; ~ Mathematical formulas are a universal language, after all. 

® All right! Let's get started on our adventure in quantum mechanics. - -- -/' 

When you hear the word "quantum" for the fIrst time, you probably wonder, 
"quantum"? 

~ "What's that?" ~ ~ 
A quantum is the smallest unit of which all matter is composed. 

If we take a substance and 
divide it into smaller and 
smaller parts, what happens? 

This question was already being asked by the ancient Greeks. At the time, 
something called an atom was thought to be the smallest unit of all matter. In 
recent years, experiments have confrrmed the existence of atoms, but scientists 
found that they could subdivide atoms into something even smaller. That 
smaller unit is a quantum. 

Quantum does not refer to only one thing, however. Matter is made up of a 
number of tiny units, including electrons, photons, protons and so on. Quantum 
is a general term applied to all such units. They are so small that, even with 
today's technology, we still cannot see them. 

Quantum mechanics uses mathematical expressions to describe how these 
invisible quanta behave in nature. 

But how can you describe something that you can't see? 
And how do we even know they exist, if we can't see them? 

How can we say, "It's invisible, but it exists"? 

WHAT'S A 
QUANTUM? 
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DESCRIBE 
SOMETHING WE 
CAN'T SEE?! 

Let's use an analogy to something familiar to get a general idea. Think about 
how someone can guess the contents of a gift package without opening the box. 

o You can infer several tbings from the box's size and weight. 

-®' Shake it and see what sound it makes! 

::;:;~ Smell it. 

We can hold it, shake it, and from the weight or 
the sound, imagine what the contents might be. 

It's true that we can't see quanta directly, but through experiments we can 
observe phenomena that are affected by quanta, i.e. the way the movement of 
electrons affects the movement of an ammeter. By closely observing such 
phenomena, physicists tried to describe and understand what these invisible 
quanta were. 

Actually, we often talk about things that we can't see and try to explain 
them. For example, when we are in a room and a door opens by itself, we say to 
ourselves, "It was the wind." Particularly in the areas of statistical mechanics 
and thermodynamics, physicists have made great discoveries by hypothesizing 
about tiny invisible particles or molecules. 

So now we can begin to understand what it means to describe something 
that is invisible. Physics is more than explaining why clearly visible things 
react in a certain way under given conditions. Even when something is 
invisible, it is possible to manipulate it and then observe the resulting 
phenomena. In this way, we can explain quite a bit about something we can't 
see. 

-®' So that's how quantum mechanics explains things. 

~ 
\iJ But what was it that got the whole field of quantum mechanics 

started? It must have been some strange, new phenomena that no one had ever 
observed before ... 

~ That must be it. And to explain them, physicists used the word 
"quanta." Through quanta, they were able to explain strange, new phenomena. 
Don't you think that is how they came to be explained? 
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Actually, that's not quite the way it happeaed. The original circumstances 
surrounding the advent of quantum mechanict CCBcemed something that was 
already believed to be thoroughly understood. 

'- \ I I ;' 

-LIGHT-

1v""'; 
We ordinarily live surrounded by light - sunlight, electric light, candlelight. 

We would not be able to see a thing without light, and a life without light is 
something that we cannot even imagine. That something so familiar should have 
been the beginning of quantum mechanics must be surprising to many people. 
For one thing, since we just said that quanta are invisible, you may be thinking, 
"Well, light is certainly visible, isn't it?" Of course we see light every day. But 
how many people can answer questions such as 

( What is the shape of light? :>-
or 

@ --{"HOW is light perceived by our eyes?) 

That's right! In fact, no one has seen the actual form of light. It is an odd 
thing; we see it and yet we don't see it. How was it explained by physicists 
before? 

B efore quantum mechanics was established, classical physics in the 
nineteenth century explained light as a wave. 

~ ,---~--~~----~--- ---/'" ....... 
They thought this because light INTERFERES. An example of 

interference that is familiar to everyone is the collision of two waves on the 
surface of water. We have said that the form of light itself cannot be directly 
observed. Nevertheless, by performing certain experiments, it is possible to 
observe signs that light is interfering. It has been shown that the manner in 
which light is transmitted follows the same patterns as waves in the sea. This 
was confirmed by the slit experiment, which was first performed in the early 
nineteenth century. 

WHATISTIDS 
THING CALLED 
LIGHT? 

LIGHT IS WAVE 
MOTION 
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1. 2 THE SLIT EXPERIMENT 

WHAT IS THE 
SLIT 
EXPERIMENT? 

I Young, Thomas 
[ 1773-1829] 

monochromatic light: light 
which oscillates at a certain 
frequency. 

WAVE 
INTERFERENCE 

I n 1807, an English physicist named Thomas Young performed the slit 
experiment. The equipment used in the experiment was something like this: 

S"I#I",1 
~= I Light source /' 

Slit #2 I 
Wall 

After passing through the slits, how will monochromatic light strike the 
wall? The purpose of the slit experiment was to study that question. The 
results of the experiment made it possible to confirm whether or not light was 
made up of waves. 

Before experimenting with light, let's first consider the phenomenon of wave 
interference using water waves, which we can see. 

As shown in the illustration, a board 
with two slits is placed in a tank of water. 

Next, a float in the water is vibrated at 
a fixed rate, forming waves. 

The waves pass though the slits and 
strike the wall opposite. 

What is the intensity of the waves as 
they strike this wall? The purpose of this 

We opserve the Intensity 
of the waves as they 

strike this wall. 

experiment is to discover the answer. '---_____ --Y 

~ ~ What is the intensity of a wave? ) 

The intensity of a wave is its strength as measured by its amplitude, that is, 
its height. The intensity of a tall wave is high; that of a low wave is low. 
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I get it! After all, the higher a 
wave is in the ocean, the more 
destructive power it has! 

To understand the results better, let's examine three separate cases. 

1. Only slit #1 open 
2. Only slit #2 open 
3. Both slits open 

1. Only slit #1 open 

2. Only slit #2 open 

3. Both slits open 

When a wave strikes the wall 
after passing through slit #1, its 
intensity is greatest at point A, 
directly opposite slit #1. This is 
because the farther a wave travels, 
the weaker it becomes. The intensity 

Intensity of the wave as it strikes the wall is 
shown in the graph on the left. 

Intensity 

This is similar to case 1. This 
time the intensity of the wave is 
greatest at point B. As the distance 
from slit #2 increases, the wave 
becomes weaker. 

Now what happens when we open both slits? 

Intensity 

What? Look at that complicated graph. The waves passing through slit #1 
and slit #2 are INTERFERING! 
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LET'S LOOK AT 
THE 
INTERFERENCE 
OF LIGHT! 

The radiating web of lines emerging from the slits is called an interference 
pattern. That pattern occurs because when two waves strike each other, there is 
a net effect. The waves either combine and grow stronger, or conversely, they 
cancel each other out. 

For example ... 

When the wave cycles coincide and are synchronous, their f\ <>.), (\ ~ I 
height (amplitude) is doubled. . V \J 

If the waves are half a cycle apart, they cancel each other out. ~ 
The result is exactly the same as if there were no waves at all. ~ 

Now let's look at light interference. At TeL we used a laser beam that emits 
monochromatic light to conduct the experiment. 

The experiment using a laser beam 

<Things to prepare> 

Laser beam projector 
(Battery powered, hand-held device) 

Glass slide with two slits 
(Soot is applied using a lighter, and two slits 

are scraped out using an X-Acto knife.) 

Okay, we're all set. Let's shine the laser beam on the glass slide! After 
passing through the two slits, how will the laser beam strike the wall? 
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<Experimental results> 

~'O\~\~b.. . . / 
'tI'(I~'O ('03" \ ,,-

-' ....... . -
«. I .. ,\/ "-

• ~L ... " .. m 

So is this interference? 
It's different from the previous graph! 

o d We can think of the brightness of light in the same way we thought of 
the intensity of water waves. If we express the dot pattern as a graph, the result 
is identical to the previous graph. 

-=::.. So light is a wave after all!! .::::::-

The results of the slit experiment confIrmed that light is a wave. Following 
Young's experiment, this wave theory of light was not questioned for nearly a 
hundred years. The theory of electromagnetics, completed by James Maxwell at 
about the same time, was a culmination of the theory light = waves. The new 
theory of electromagnetics seemed to be further proof that light is a wave. 

BUT! In December 1900, a single experiment shattered the seemingly 
unassailable argument that light is a wave. However, it was difficult to 
understand the meaning of the equations used to explain the experiment, since 
they had absolutely no connection with any theories known so far. With the 
results of this experiment in 1900, physicists had to go back to the drawing 
board and start over. This event was closely related to the birth of the quantum 
theory. 

IMaxwell, James Clerk 
[1831-1879] 
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1. 3 BLACKBODY RADIATION 

> H II 
MAX PLANCK 
APPEARED ON 
THE SCENE 

'Plank, Max Karl Ernst 
Ludwig 
[1858-1947] 

Just one test shook the underpinnings of the theory that light is a wave. It was 
called the "blackbody radiation" experiment. 

By the end of the nineteenth century, physics seemed to be in its final stages 
of development. At the time it was believed that there were no phenomena that 
could not be explained using classical theory - Newtonian dynamics or 
Maxwell's electrodynamics. Only the problems of blackbody radiation and the 
atom remained unsolved, and everyone assumed that it was only a matter of 
time before they too would be understood. 

Max Planck, who spent four years studying blackbody radiation, was born 
in 1858 in Kiel, Germany. For generations his family had been lawyers and 
theologians, and so it was not surprising that he was brought up to be very 
proper and conservative. It was said that Planck, known to be an orthodox 
disciple of classical physics, was drawn to physics by the law of the 
conservation of energy. 

After graduating from school with highest honors, the young Planck became 
a professor at Kiel University in 1885. He soon established himself as the 
leading authority on thermodynamics, but he had yet to make the great 
discovery that would set the world on edge. He plodded along in his research 
until, visited by fate, he solved the heretofore intractable problem of blackbody 
radiation. That achievement suddenly thrust him into the highest ranks of the 
world of physics. 

Ohmy ... ~ 
W 

Nevertheless, he was not satisfied with his results. The hypothesis he had 
constructed turned out to be an apparent anomaly that could not be explained by 
the classical theory that was the bedrock of his scientific assumptions. 
Disturbed by the implications of his work on blackbody radiation, he redid his 
calculations over and over again. Every time, the results pointed to the same 
hypothesis. It was the only possible explanation. 

No one, not even Planck himself, could have imagined that this would open 
the door to quantum mechanics. 
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The following experiment relates to blackbody radiation. A vacuum is 
created inside a box of iron or similar black metal. The box is then heated. 

The question is, can light be produced inside the box? If so, how? What kind 
of light will fill the box? 

There's nothing 
inside, not even air! 

If the box is heated to 40°C (about 104°F), what will the temperature be 
inside the box? 

There's nothing inside the box, so 
there will be no change. Right? 

What if there is water in the box? The water will draw heat from the box 
and its temperature will rise to 40°C. In other words, heat is conducted to the 
water. You're wrong if you think heat is not transmitted in a vacuum because 
there is no medium of transmission. Even in a vacuum, heat is transmitted. 

What transmits heat? LIGHT. 

Consider sunbathing. Between a person sunbathing on the earth and the sun 
pouring forth its warm light, there are about 150 million kilometers (93 million 
miles) of empty vacuum in space. Nevertheless, the sun is able to send plenty 
of heat to the earth. 

\ 
,,~-

- \!!:./-... 
I \ 

The blackbody radiation experiment may be better understood by thinking 
of an iron nail which glows when it is heated. At first, it will glow red. As the 
temperature is increased, the nail will begin to glow orange, gradually becoming 
"white hot." 

In the blackbody radiation experiment, an iron box, rather than a nail, is 
used. When the box is heated, it glows the same way that the nail did. Now, 
what happens inside the box when it glows? That's it! The inside of the box is 
filled with light. Just like the nail, the light inside the box changes colors 
according to the temperature of the box. In dealing with blackbody radiation, 
we are concerned with this relationship of light and temperature. That is to say, 

At various given temperatures, what 
sort of light will we find inside the box? 

We will determine this, and then explain the result. 
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THE SPECTRUM 
H ow can we precisely describe the light in the box? This can be simply done 

by measuring the spectrum. 

@-- -{ What's a "spectrum"? ) 

I:r!;) In a spectrum, we can find the characteristics of complicated light 
waves with one glance at a graph. Since a complicated light wave is made up of 
an accumulation of simple waves, by analyzing the quantities of the simple 
waves, it is possible to understand the larger, complicated wave. 

:~ Really? Come to think of it, light is a wave after all! Right? That's 
why its characteristics can be analyzed by measuring a spectrum. 

~ But what kind of graph lets you see these characteristics at one 
\V glance? 

Let's use the analogy of vegetable juice. (Some of you may have 
encountered this in our book Who is Fourier? A Mathematical Adventure.) 
Although companies A, Band C use exactly the same ingredients in their 
vegetable juice, their flavors are completely different. How does that happen? 

I know! The proportions of the ingredients are different! 

Exactly. Let us now look at the different quantities on a graph. 

Quantity ~o~ ~ r------ 0 

..... to .... m .... ato-~ .... "rro .... t-c ... ele'&'Ory-" 'JYpe tomato carrot celery .... to....lmu,a-to-cPJ.lrr'-ot-c..Lele.L.ry....l 

These are the graphs of spectrum. With this very useful technique, we can 
quickly see how all of the individual elements combine to form the whole. 

Right! We can see what makes up the 
taste of the juice at one glance! 

Okay, let's go back to the spectrum of light. Since light is made up of 
waves, we can show the distribution of the different kinds of waves in it with a 
graph recording the quantities of the various simple waves contained in that 
light. 
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Quantities of light waves? Gee, I don't quite get it. 

What we mean here by "light waves" is what we usually call color, and by 
;'quantity" we mean the brightness of light. Normally light is made up of many 
different colors subtly mixed together so that they appear to us as one color. 
Therefore, when we wish to describe light by measuring a spectrum, we show 
what colors and in what amounts they make up the light that we are 
examining. 

The way we do this is simple. We use a 
prism. Probably everyone has performed an 
experiment in grade school using a prism to 
break up light. When we pass sunlight 
through a prism, it breaks up into a pretty 
rainbow of seven colors: red, orange, 
yellow, green, blue, indigo and violet. The 
'rainbows' are spectra of light. 

-
We see the 

sunlight tlroken up. 

110ht " I I 

-0-
/' , 

I 

These beautiful gradations of color going from red to violet are, in a 
physical sense, the range of frequencies of individual light waves, and their 
brightness is related to the "intensity" of those frequencies. Although the sun's 
rays seem to be white, they are really composed of all the different colors mixed 
together in approximately equal proportions. Strictly speaking, the number of 
colors is infinite. 

But to us, because of our limited visual perception, we can distinguish only 
seven colors of light. 

Although we can observe spectra using only a prism, physicists use a device 
called a spectroscope to take more precise measurements. A spectroscope is not 
very complicated. In principle, it is identical to a prism, but it contains 
mechanisms that indicate the "frequency" and "instensity" of light in actual 
numbers. 
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WAVE FREQUENCY AND THE COLOR OF LIGHT 

There are many different kinds of waves, such as "tight waves" and "loose waves." Physicists 
use wave frequency as one way of distinguishing them from each other. 

Wave frequency is the number of cycles per second. 

Let's see frequency in a diagram. 

L\ L\ )t 

\J \J 
f\f\f\f\f\f\f\f\ 
V V V V \(V \(V ) t 

"Loose" or long waves = low frequency "Tight" or short waves = high frequency 

Wave frequency is usually represented by the symbol v (nu) in mathematical expressions. 

Oh, that means 
wave frequency. 

Now in the case of light waves, the frequency of the wave determines the color. We perceive 
differences in frequency as different colors. For instance, low-frequency light is reddish (v = 400 
trillion cycles per second) while high-frequency light is purplish (v = 750 trillion cycles per 
second). 

The visible spectrum, the range of colors that we normally see, is only a small fraction of all 
types of light. Some light is invisible to humans, such as X-rays and "(gamma)-rays, or infrared 
light and ultraviolet light. Radio and television waves are also invisible forms of light, the 
frequency of these waves being very low. For example, PM radio waves are between 81.3MHz 
(megahertz) and 82.5 MHz (1 Herz [Hz] = 1 cycle per second), and oscillate about 80 million times 
per second. Red light, on the other hand, oscillates about 400 trillion times per second. 
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W hat kind of light fills the box when we perform the blackbody radiation 
experiment? First let us examine the spectrum when the internal 

temperature is 4000°C. 

Intensity U( v)dv 

4000'C 

Frequency v 

The horizontal axis of the graph shows frequency, while the vertical axis 
shows intensity. In this spectrum, we see that at 4000·C, the waves are 
strongest at the point marked by the arrow. 

The frequencies with the highest intensities will 
determine the color. In other words, if the 
frequency marked by the arrow is that of blue light, 
then at 4000·C the light in the box will be bluish. 

This graph illustrates the same point as the 
one of vegetable juice we looked at earlier. 
The only difference is that since the 
frequency of light is infinitely variable, 
the graph is continuous! 

Because the light within the box changes according to temperature, its 
spectra also change. 

Intensity U( v)dv 

Frequency" 

WHAT IS THE 
SPECTRUM OF 
THE LIGHT IN 
THE BOX? 
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THE RAYLEIGH· 
JEANS THEORY 

IRayleigh, Lord John 
William StrufT 
[1842-1919] 

IJeans, Sir James 
Hopwood 
[1877-1946] 

As we perfonn the blackbody radiation experiment, a number of different 
spectra may be observed by varying the temperature. The problem is finding 
words to explain our experimental results. That is, 

Why does a particular spectrum 
exist at any given temperature? 

0/) 
o 

When we can answer that, we can explain the blackbody radiation 
experiment. 

j ohn Rayleigh and James Jeans, the stars of the physics world at the time, 
attempted to explain the experiment using classical theory. Because classical 

theory could explain the relationship of heat to light exceptionally well, they 
believed that it would work in this instance as well. 

In other words, they used classical 
theory as a matter of course. 

So, they derived the following mathematical fonnula to describe the spectra 
of the light in the box: 

81T v 2 

U(v)dv = --3 - kT dv 
c 

This formula is named the Rayleigh-Jeans law after its creators. Don't 
worry if all of these unfamiliar symbols seem confusing. It is not necessary to 
go into the details immediately. 

All this fonnula really describes is what the spectrum in the box will be at a 
given temperature. Rayleigh and Jeans assumed that the spectra obtained from 
the actual experiment would match this fonnula. 

BUT! Disaster struck. When the experimental results were compared to the 
results predicted by this seemingly ironclad fonnula ... 
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Intensity U(v)dv 

I 

~ 
Solid line: Rayleigh-Jeans 
Dotted line: Actual experimental results 

......................................................... 

.......... 

Frequency JI 

What? There was no way to tell that these two graphs were describing the 
same thing. The physicists of the time were deeply troubled. 

Classical theory had gone as far as anyone could take it, and so physicists 
naturally thought it would lead to perfect results. At the time, all other 
phenomena related to heat were explained by classical theory. Why didn't this 
one experiment fit? 

At this point, let's look at how Rayleigh and Jeans used classical rules to 
construct their formula. The classical law they used is expressed in the 

following equation: 

This law was discovered by the Austrian physicist, Ludwig Boltzmann, and 
is known as the law of equal distribution of energy. Let us look more closely at 
the symbols used in this equation. 

(£) Average energy over a period of time 

k Constant 

T Temperature 

This constant is called 
Boltzmann's constant and is equal 
to 1.38 x 10-23 Goule I kelvin). 

Because t and k are constants, this equation means that energy (E) is 

determined by the temperature T. 

THE LAW OF 
EQUAL 
DISTRIBUTION 
OF ENERGY 

IBoltzmann, Ludwig 
Eduard 
[1844-1906] 

'1oule" is a unit of energy. 
"kelvin" is a unit of temperature. 

CHAPTER 1 WHAT IS LIGHT? 41 



As T increases, ! kT increases. Conversely, as T decreases, -t kT 

decreases. Pretty simple, isn't it? When the temperature is high, so is energy. 
When it is low, then energy is also low. 

You say "energy," but 
the energy of what? 

According to Boltzmann, the answer is "molecules." Boltzmann started 
from the idea that everything in the world is made up of molecules, which are 
clusters of small particles. This idea proved especially powerful with regard to 
heat. Boltzmann believed that heat varies according to the movement of 
molecules. He was right, and this clarified many unexplained phenomena. 

The law of equal distribution of energy, however, was based on Newtonian 
dynamics. That is, in order to calculate the movement of molecules, Newtonian 
dynamics was applied to each molecule one by one. But there was a problem. 
The number of molecules in matter is absurdly large. It is not a matter of 100 
million or even a trillion. The number is far, far greater. 

How could the movements of such a huge number of molecules be dealt 
with one by one? You could spend a lifetime and still not get anywhere. Here 
is where statistics, the method used by Boltzmann, comes into play. Statistics is 
used to calculate such things as average test scores or the average height of 
students in a class. 

Using statistics, Boltzmann was able to successfully describe the 
movements of huge numbers of molecules. This is called statistical dynamics. 
The result was Boltzmann's formula: 

The left side of this equation, (E), is the molecular energy averaged over 
a given period of time. Because molecular energy, when analyzed closely, 
varies in value from moment to moment, looking at each change individually 
would be too difficult. Statistics is therefore used to derive average values, and 
thence the energy of a molecule. Here we must be careful to note that the 
energy of a molecule (E) refers not to a single molecule, but rather to a single 
degree of freedom possessed by the molecule. 

( Degree of freedom? 
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Degree .of freedom is a number that describes how freely something can 
move III space. 

To clarify this, let's consider the degree of freedom of a single-atom 
molecule as analogous to a moving ball. Let's see how many commands it 
would take to render a freely moving ball immobile, becoming immobile 
meaning the loss of freedom of movement. With a ball, it's easy to 
conceptualize, so let's try it. 

To begin with, a ball is completely free and we can move it in any direction. 
Now, let's give the ball a command. 

~ ....-{"oon't move up and dOWn!) 

A ball that had been moving freely should now begin to move as if it were 
rolling on a flat surface such as a table. 

The next command. 

~ ....-{"oon't move right or left!) 

Now it can only move backward and forward. 

( Don't move backward or forward'!)=- ~ 

Now the ball cannot move at all. 

Since these three commands caused the ball to stop moving, we can say that 
there were three directions of freedom. 

That is, there were three degrees of freedom! -©'", 
Configurations of molecules vary depending upon the number of atoms of 

which they are composed. For instance, biatomic molecules made up of two 
atoms are configured like iron alloys. When the number of atoms making up a 
molecule is three or more, the molecular configurations vary depending on how 
the atoms are linked together. A change in configuration causes a change in 
movement, and so it naturally follows that freedom of movement changes in 
value. Freedom of movement values are determined by the molecular 
configuration. 

Since the law of equal distribution of energy says that! kT of energy is 

applied to each degree of movement, it follows that in a molecule resembling 

the ball, ! kT of energy is applied to each of the three degrees of movement. 

The energy distributed is equal to: 

DEGREE OF 
FREEDOM 

A .11\-eo:.". 
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DOES A WAVE 
HAVE DEGREES 
OF FREEDOM? 

tm\ So, the law of equal distribution of energy has a lot to do with 
~ degrees of freedom! Understanding this is the key to. 

understanding energy. 

~ Yes, but we were talking about the degree of freedom, or freedom of 
movement, of single molecules, right? Light is a wave . 

- I I ..... 0 
./ What!? If that's the case, is there such a thing as freedom of 

movement of a single wave? 

In the case of waves, as opposed to wave cycles, we can't count them 
individually, and so we cannot use the same method of establishing degrees of 
freedom as we did with molecules. We need a new approach, one that is 
applicable to waves. But. .. what does a single molecule have to do with a 
wave? 

Since Boltzmann thought of matter as an aggregate of 
molecules ... I've got it! Simple waves, right? 

If the basic component of matter is a molecule, the corresponding 
component in waves is a simple wave. Likewise, if a piece of matter is the 
aggregate of a certain number of molecules, a complicated wave is the 
aggregate of a number of. simple waves. 

I get it! Finding the degree of freedom of a wave means 
counting the degree of freedom of single waves! 

With light, how many degrees of freedom does a single wave have? 

The answer is TWO. 

In the case of molecules, once they fly off, they're gone; but if a wave goes 
up, it must come down. That's what makes it a wave. Unlike molecules, a 
strong force operates on the matter which make up the waves to draw them 
back. That source comes from something known as potential energy (related 
to the position of matter). Although we could think of molecules, which just fly 
off, simply in terms of kinetic energy (related to the moment of matter), with 
waves we have to consider both potential and kinetic energy. Potential and 
kinetic energy each has its own direction, which means that waves have two 
degrees of freedom. 

A force actively tries to pull waves back. 

Molecules fly off. 
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-© So in the case of waves, the degree of freedom is always two. 

~ That means the distribution of energy for 'simple waves is always: 

(E) =2 X!kT 

=kT 

~ Okay, but if kT units of energy are always distributed among simple 
~ waves, won't the result be strange? A spectograph is a graph that 

shows the intensity of the light of each simple wave, that is, the energy of each 
frequency. We should thus get something flat like this, shouldn't we? 

-- --- It'5 truel \ I I / 

~~ 
Frequency p 

But that's not what really happens. In the case of one-dimensional waves, 
the result is in fact one straight line as shown above, but remember that light is a 
three-dimensional wave. Three-dimensional waves may be of the same 
intensity, but the frequencies vary so that there are places where they are more 
spread out and places where they are crowded or dense. 

Intensity 

Frequency v 

When we measure the energy of light using a spectroscope, the interval 
between waves is large enough so that we can measure the intensity of 
indi vidual waves. Studying light in our black box, however, the interval 
between waves is very small. So instead of being able to measure the energy of 
each wave individually, we can only determine the cumulative energy of a 
number of waves that are close together. 

NUMBER OF 
WAVES 
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In this case, when the waves are sparse, the energy measured by the 
spectroscope is low. When they are dense, the energy increases. So, we have to 
determine the "density" of waves of different frequencies. 

~ How do you detennine the density of waves? 

~ That's easy. Just count the number of waves within a certain band. g 

~ 
\d But because the density of waves varies according to their 

frequencies, we need to keep the band narrow in order to count accurately. 

That's right. Let the range equal dv. For each given frequency v, count the 
number of waves between v and v + dv. The density of one-dimensional waves 
does not vary with frequency; the oscillations come at equal intervals and so 
their spectrum is flat. But that is not true with three-dimensional waves, as we 
found in the blackbody radiation experiment. Instead of jumping ahead to three 
dimensions, it is simpler to start by looking at two dimensions. 

When the number of directions is two, the number of wave patterns multiply 
as frequency increases. 

Frequency in two dimensions as 

seen from the side 

Frequency v 

With three dimensions, the number of directions is three, greatly increasing the 
number of possible patterns. The density in this case has been calculated to be: 

81T V 2 
--dv 

c3 

c is equal to the speed of light. 

Let's see if I understand it. This means that within a certain 
narrow band dv, there are this number of simple waves, right? 

This equation shows that as the frequency of a wave increases, the density 
increases to the frequency of v to the power of two. 
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It's simple from here on. To find the energy as measured by a spectroscope, 
we simply do this: 

(the density of the wave) x (the energy of a single wave) 

We write the energy as measured by a spectroscope as U(v)dv. 

Because the energy of a single wave in classical theory is kT, if we write out 
the above formula as a mathematical expression we get: 

87T v 2 

U(v)dv = --3- kT dv 
c 

This describes the spectrum of light inside the box. 

We did it! We derived the Rayleigh-Jeans law! 

I I "-.'01 

o But wait a minute. When we used this formula, we arrived at 
something that barely resembled the spectra of blackbody radiation. 

~ Oh, that's right. But why? Our calculations were so careful. 

~ And there was no problem in our treatment of degrees of freedom ... 

cO Perhaps the law of equal distribution of energy was no good. Was 
there a problem with classical theory? 

That couldn't be. Until now, classical theory could account for everything 
in nature. - ----------

Naturally that's what the physicists of the time thought, or rather, what they 
assumed. At any rate, if the law of the equal distribution of energy proved 
unusable, then they would have no way to determine the spectra of blackbody 
radiation theoretically. They searched diligently for some delicate nuance in the 
workings of light that might have been overlooked. But that approach did not 
get them very far. 
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WIEN'SLAW 

'Wien, Wilhelm Carl 
Werner Otto Fritz Franz 
[ 1864-1928] 

I t was then that the German physicist Wilhelm Wien came up with a new 
equation for expressing the spectra of the blackbody radiation experiment and 

used it to create a new theory. Wien's theory was based on a method of using 
spectra at a given temperature to predict spectra at any other temperature. Using 
this ingenious method, he was able to derive a formula that could accurately 
predict, at any temperature, the spectra obtained as actual experimental results. 
According to Wien's theory, energy (E) distributed according to degrees of 
freedom varies not only with temperature T, but also with frequency v. 

(
The equation accepted until ) 
then to express the law of 

the equal distribution of energy 

(E) = kB; 
e T 

(Wien's law) 

If we rewrite the equation for an actual spectrum U( v)dv using his formula, 
we arrive at: 

U(v)dv = 817' v 2 kf3v dv 
!l!:... c 3 e T 

In this equation f3 is a constant. By assigning it a suitable value, the result 
should match the spectrum obtained experimentally. 

Now let's see if it agrees with the actual experimental results. 

Intensity U( II)dll 

Solid line: Wien 
Dotted line: Experimental results 

Frequency II 

When frequency v is high, Wien's formula matches the experimental results. 
But when the frequency v is low, his formula is a bit off. 

TOOt1~d! 
I I 

o 

It feels like we're just a step away. e"'tQ-•• (j 

r. 0 

Unfortunately, Wien's theory did not completely solve the problem of 
blackbody radiation. 
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The Rayleigh-Jeans law, based on classical theory, did not match the 
experimental results, and even after devising his own theory, Wien's 

equation produced matching results only at high frequencies. Physicists were 
forced to find a new law to replace Wien's. Bring on the new star of our show, 
MAX PLANCK! 

Planck had started working on the problem of blackbody radiation four 
years before. Though unconcerned with novel discoveries and new theories, the 
conscientious and industrious Planck hammered away at his research, always 
keeping in mind the failures of Rayleigh, Jeans and Wien. When looking at the 
spectra that resulted from work with the Rayleigh-Jeans and Wien's laws, 
Planck had an idea. 

Rayleigh-Jeans 

..................... 

". 

. ... 

87T v 2 

U(v)dv =--3 -kT dv 
c 

Wien 

i/··· .... ······ 

. ... 

87T v 2 ka .. 
U(v)dv =--!:!J:!l!....dv 

3 1k 
C e T 

What!? I thought the Rayleigh-Jeans's law made no 
sense, but look! When frequency v is very low, then it 
perfectly matches the experimental results! 

And the Wien's law works only when the frequency 
is high. Hmmm ..... yes! If I can somehow join these 
two equations together, there's a good chance I can 
explain the blackbody radiation spectra! 

This was the beginning of Planck's great leap forward. He worked night 
and day to try to combine the two equations. Then, while he was adjusting 
Wien's law, he succeeded! 

Here's the equation!! 

(E) = ~8v 
e T -1 

PLANCK COMES 
ON THE SCENE! 
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Planck discovered that the above equation could successfully predict 
distribution of energy with respect to degrees of freedom. By using this 
equation, the formula for spectra is as follows: 

81T V 2 kf3v 
U(v)dv =-- k dv 

C3 e T - 1 

cO Hey, didn't this equation come up before? 

~ You're right. It's a lot like Wien's law. Let's have a look and 
compare the two. 

1/ 
Wien's law--

1/ 
Planck's law --

81T V 2 kf3v 
U(v)dv =----dv 

k c3 e T 

81T v 2 kf3v 
U(v)dv =-- k dv 

c3 e T - 1 

Look! Planck's equation is the same as 
Wien's, except it has a -1 attached. 

Does this really describe blackbody radiation spectra? Let's draw a graph 
and see. 

Intensity U(v)dv 

\'1. ~\~5 perfectly! 

-@'~~ 

Frequency v 

As it happened, by simply attaching a -1 to Wien's equation, Planck came 
up with a perfect solution. One story has it that a student of Planck's asked, 
"Professor, won't it work if you just put a -1 in Wien's equation?" And so 
when he tried it, it worked perfectly. Despite this story, it seems more likely 
that the answer emerged out of Planck's tireless, persistent calculations. 
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( I made the calculations all by myself! )-. \@ ~lff 
Putting the question of how the equation was derived aside for the moment, 

if the equation is correct it should have the following properties. 

When the frequency is low, it transforms 
into the Rayleigh-Jeans law. 

When the frequency is high, it transforms 
into the Wien law. 

After all, when the frequency was low, the 
Rayleigh-Jeans law matched perfectly, and 
conversely when the frequency was high, 
the Wien law was perfect. 

Now let's see how Planck's equation behaves at high and low frequencies. 

L et's look at what happens to Planck's equation when the frequency is high. 
Will it really become the same as Wien's? 

(E) = 'tv 
e T -1 

Planck's law 
"'I-' 
when vis 

high 

(E) = k~ 
e T 

Wien's law 

It shouldn't be difficult to tum it into Wien's law. 
After all, Planck's equation is nothing but Wien's law 
with a -1 attached. 

The -1 is part of the denominator, so let's look only at the expression 

eI¥- - 1. When !3; is very large, what happens to the value of the expression 

eI¥- ? 

This is an exponential index, and so let's take 10" as an example and see 
what happens. 

DERIVING 
WIEN'SLAW 
FROM 
PLANCK'S LAW 
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DERIVING THE 
RAYLEIGH· 
JEANS LAW 
FROM 
PLANCK'S LAW 

For Ion . .. 

And when n = 100? 

when n = 1, 101 = 10 
when n = 2, 102 = 100 
when n = 5, 105 = 100,000 

1000000000000· .... 

You can't even write it! ~ 

In e~ -1. when v is very large, the quantity e~ is ridiculously big. With 

such a number, subtracting 1 makes almost no difference. So, when v is very 
large, we can pretty much ignore the term -1, thus: 

(E) = k~ 
e T 

Planck's law has been transformed into Wien's law. 

N ow let's look at what happens when frequency v is low. Here, Planck's 
equation should become the Rayleigh-Jeans law. 

Since the Rayleigh-Jeans law is a statistical law, 
we employ (E) = kT, right? Can we really get 
this out of Planck's equation? 

To transform it into the Rayleigh-Jeans law, we use a little trick. It's called 
the Taylor expansion. Most functions can be rewritten in the form of an infinite 
series. (See Chapter 4 for details.) 

f(x) = Co + C1x + C2X 2 + C3X 3 + .... 

For example, ifj{x) = e', using the Taylor expansion we get: 

x2 x3 
e"= 1 +x+-+-+···· 2! 3! 
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Looking at e"* in Plank's equation, if we take 8; to be x, we can rewrite 

it in the following way. 

The Rayleigh-Jeans law only applies if v is small. And if v is small, each 

value from (~.y/ 2! on, will be even smaller. Adding those values together 

would have almost no meaning. Therefore, they can be ignored and written in 
the following manner. 

Applying this to Planck's equation we get: 

Fantastic! It turned into the Rayleigh-Jeans law! 

All right, now that we know the equation is correct, all we have to do is 
present it at a conference! Impatient as he was, Planck methodically 

continued his preparations. 

First of all, let's try to write the equation a bit more elegantly. 

At this point, Planck combined the terms k (the Boltzmann constant) and 
f3 (the constant obtained by Wien) in a single constant h. This was to become 
the Planck constant that was to play a vital role in the building of quantum 
mechanics. The actual number is: 

h = 6.63 X 10-34 (joule· second) 

~ : Nearly equal 

THE BIRTH OF 
PLANCK'S LAW 
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Now, let's rearrange Planck's equation using h! 

(E) = 'tv 
e T -1 

+ -{ If h = kf3 ' then f3 = ~ ) 

(E) = ;:11 1 
ekT -

Planck announced his findings at a conference in the fall of 1900. Planck, 
an exceptionally late bloomer for a physicist, was forty-two years old when he 
made this great discovery. Afterward, this expression became widely used to 
explain the spectra of blackbody radiation, which it did extremely well, and it 
came to be known as Planck's law. 

( Great! You did it, Mr. Planck! 

But not everything had been explained. There was still an important 
problem left for Planck to solve. This was: 

Why does this equation describe blackbody radiation so well? 

Although he had constructed an equation that explained the experimental 
results, there was still no essential theory behind it. Only half the mystery was 
solved. If he failed to pursue this further, his discovery would forever be 
attributed to luck. True to his nature as a physicist, Planck tirelessly searched 
for a solution to the problem. According to Planck, these were the most strained 
weeks of his life. 
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A s he continued to make calculations, they allIed to the same conclusion. It 
simply didn't fit with what he believed had to be true. No one, including 

himself, could quite understand this. 

E = nh V (n = 0, 1, 2, 3· .• ) 

That was his conclusion. It doesn't seem important, but its implications 
were beyond imagination. If one were to interpret it literally, then the energy of 
light waves can only have certain fixed values. 

The left side E of the equation is the energy of light. The right side of the 
equation is an integral value which represents the various energy levels obtained 
by multiplying Planck's constant h by frequency v. Thus, according to this 
equation, the energy of light changes in incremental values of hv (0, lhv, 2hv, 
317 v) . .. and intermediate values such as 1.5hv or 0.2hv never arise under any 
circumstances. 

Such fixed differences in energy are known as "energy levels" 

Energy levels 

E=4hv 
E=3hv 
E=2hv 
E= Ihv 
E=O 

If we consider the characteristics of waves, this is definitely odd. One 
characteristic of waves is that 

Energy DC IAmplitudel2 

The energy of a wave is proportional to the square of the amplitude. 

Because the amplitude of a wave is its height at the crest, if a wave is high, 
its energy is high. Likewise, if a wave is low, then its energy is low. 

Of course. A tall wave like a tidal wave has 
enough power to wreck a house, but a wave 
one meter high doesn't have that kind of force. 

THE MEANING 
OF PLANCK'S 
FORMULA 
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Let's consider this in terms of the equation derived by Planck, E = nhv. 
According to Planck's equation, the energy of light is hv times an integer; in 
other words, it can only attain discrete and discontinuous values. In addition, 
the energy of a wave is determined by its amplitude. So ... FOR ENERGY 
LEVELS TO BE DISCRETE it must follow that THE AMPLITUDES OF 
WAVES MUST BE DISCRETE! 

" \ I 

~ 

Wrong! 

Wait a second. Now I'm getting confused! 
If the amplitude of a wave is discrete ... 

• • • 
• • 

• • 
• • 
• • • 

• • • 
• 

• 
• 
• 
• • 
• • • 

• 

That's not what a discrete amplitude is! 

The amplitude is the height at the crest of an oscillating wave. So even 
though we're talking about light waves, it shouldn't be any more difficult to 
understand. Light waves oscillate up and down exactly like any other kind of 
wave. 

The problem is that the amplitude of an oscillating light wave can only have 
certain given values. Although ordinary waves can have any amplitude, light 
waves alone cannot. That is to say, they cannot oscillate except at certain fixed 
amplitudes. 

You'll never find light 
waves with in-between 
values like this one! 

trouble. But in the case of light waves, we just have to accept "'r.'i 
If the amplitude is really discrete like that, we'd be in 11!Y\!Y\ o@ 

the notion of a discrete amplitude. If we don't, there is no way 
to explain blackbody radiation spectra. 
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so it was Planck's theory that gave birth to such incongruous results. Do we 
really have to use E = nhv to explain Planck's fonnula? Let's take a closer 

look. 

If E = nhv is correct, then we ought to be able to derive Planck's formula 
from it. 

(E) = ~v 
ekT - 1 Planck's formula 

This equation shows average energy over a given interval of time per degree 
of freedom. Thus, if E = nhv is really true, and if we use it to find the average 
values of a normally fluctuating source of energy, then we should arrive at 
Planck's formula. 

Let's see if that's true! 

Now, do you know how to find an average value? As an example, let's find 
the average number of cookies someone eats at tea time. ~ 

First, we record the number of cookies eaten at tea time every day for a 
week. If we take the total number of cookies eaten and divide that by the 
number of days in a week, seven, we arrive at the average number of cookies 
eaten per day. 

Let's assume that the number of cookies eaten by Mr. Planck was as 
follows: 

Sunday 2 

:& Monday 3 
Tuesday 2 .. ~ Wednesday 2 
Thursday 1 
Friday 3 Ilik e cook \e'b \ 

Saturday I 

Tabulating the number of cookies eaten that week, we find: 

The number of days when 1 cookie was eaten : 2 
The number of days when 2 cookies were eaten : 3 
The number of days when 3 cookies were eaten : 2 

Now, let's find the average value! 

Ix2+2x3+3x2=1±=2 
2+3+2 7 

DERIVING 
PLANCK'S 
FORMULA 
FROME=nhv 
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In other words, he ate an average of two cookies per day. 
When finding average values, we only need to know the total number of 

cookies eaten and the time frame in which they were eaten. It is not important 
to know on which days they were eaten. 

We can obtain an average value for the energy of light waves in the same 
way. 

To deal with light, all we need to know is the number of times a certain 
energy level occurs within a given period of time. This number has already 
been established using a statistical law, so we simply insert it into the equation. 
Then, all we need to do is add up the energy levels and divide by the time. 
Let's calculate this using the following formula. 

First, using the statistical law discovered by L. Boltzmann, we find the 
number of occurrences of a given energy level using: 

E 
peE) = A . e-If 

Translating this into a graph, we have the following: 

Number of occurrences 
The horizontal axis of the graph is energy. 

Energy 

The vertical axis of the graph is number of 
occurrences of given energy levels. 

The graph indicates that the higher the 
energy, the less frequently that level occurs. 

This is almost the same thing as saying, the higher you go, the thinner the 
air becomes. Let's look at an example from statistical dynamics. If we consider 
air to be a collection of small particles, we see that their energy increases as 
their distance from the earth's surface increases. But the number of particles 
with high energy is small, so the higher one goes, the fewer the number of 
particles there are. 

Using Boltzmann's expression, let's try adding up energy. First, remember 
that the energy of light is limited to the values 0, hv, 2hv, 3hv. .. Thus, the 
number of occurrences of given energy levels h v or 2h v is as follows: 

Energy 0 I hv 2 hv 3 hv 

Number of 
P (0 hv) P (1 hv) P (2 hv) P (3 hv) occurrences 

Thus, the sum of the energy levels is: 

Ohv . P(Ohv) + Ihll . P(lhv) + 2hll . P(2hv) + ..... 
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Dividing this by the sum of the number of occurrences, we get: 

Ohv . P(O) + Ihv . P(lhv) + 2hv . P(2hv) + ..... 
(E) = P(O) + P(1hv) + P(2hv) + ..... 

Now, let's rewrite the equation. 

hv {P(hV) + 2P(2hv) + 3P(3hv) + ..... } 

(E) = P(O) + P(1hv) + P(2hv) + P(3hv)· ... . 

Since P(hv) = A . e- z~ 

f!lf lsee. 
I I 
'-/ 

h v ( x + 2X2 + .... ) 
(E) - ..... * - 1 + x+ x2 + .... 

At this point, we use a little mathematical technique. This formula is useful 
in solving an infinite summation, or adding infinite numbers. 

a + (a + d)x + (a + 2d)X2 + (a + 3d)x3 • ••• = _a_ + xd 2 

1- x (1- x) 

Look cl U sing this, we rewrite the equation marked * ,\ I I try ose/Yand e- each term 

~ 
one by one. 

Comparing * with the above equation, we see )()( e 
that in the numerator, Jl I , 

a = 0 d = I I don't get It. () ~ 

and in the denominator, 
a=l d=O 

Now, we may rewrite * in the following way: 

hv x 
(E) = (I_X)2 =hv. x(l-x) = hv· x 

_1_ (I_X)2 I-x 
I-x 

= hv· x 
I-x 

? 

Hmhmm~ eg 
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X-I 
Now, multiplying by -1' we get x-

(E) _ hvx x- 1 

- (I-x)? 

= ----=,hc-=v~ 
x-I-l 

Finally, we convert x back to e- ~; : 

(E) = ~v 
ekT -1 

And we obtain Planck's law. 

'~ --c: Hey! We're back where we should be. ) 
Just as Mr. Planck said, if we think of energy as E = nhv, 
we really can describe the spectra of blackbody radiation! 

Looked at another way, the spectra of blackbody radiation take this form on 
the graph because the energy of light has fixed values and can be described as 
E=nhv. 

In other words, the Rayleigh-Jeans law failed to explain the spectra of 
blackbody radiation not because it was based on the statistical dynamics law of 
equal distribution of energy, but because the energy of light took these discrete 
values. 

The law of equal distribution of energy was originally based on the 
assumption that a body received energy continuously. It was not valid for 
discontinuous fonns of energy such as light. 

For the energy level of something to be discrete, it must receive energy in 
discrete bursts as well. So, there must be times when the energy being 
distributed is not all being received. For instance, let's consider energy at a 
level 200 x h, or 2ooh, in a box whose temperature is such that the energy will 
be distributed by light of all frequencies. Light at frequencies v = 1, v = 2 will 
have energy levels equal to nh and 2nh, respectively. The energy level 200h is 
divisible by either of these frequencies, and so all of the energy at the 200h level 
is distributed. But if frequency v = 3, it no longer divides evenly into 200h; 
only 198h of that energy is divisible by 3h, and so 198h is distributed while 2h 
remains. As the frequency increases, more energy tends to be wasted, and when 
the frequency v of light exceeds 200 and the energy level is higher than 200h, 
absolutely no energy is distributed. 
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This is what the spectrograph of the light from blackbody radiation shows. 
Beyond a certain frequency, the spectograph of that light suddenly becomes 
weak; for as the frequency increases, the graph approaches zero. This 
demonstrates that although energy is presumed to be evenly distributed, the 
energy of light, which can only have discrete values proportional to its 
frequency, approaches a condition where it cannot be received. 

Thus, if we consider the energy of light as a discontinuous value (E = nhll), 
the spectra of light from blackbody radiation do not appear to agree with the 
statistical dynamics law of equal distribution of energy. 

In fact, the fundamental discovery E = nhll could not be explained by 
Newtonian dynamics or by any other established form of physics. In physical 
theory until then, the energy of light waves was assumed to vary continuously; it 
was unthinkable that it should have discrete values. 

This is what Planck struggled with. He believed beyond a shadow of a 
doubt that 

But he had arrived at conclusions that denied the apparent infallibility of 
Newtonian dynamics. 

No matter how many times he redid his calculations, he found that the 
spectra for blackbody radiation could only be explained through the expression 
E = nhll. 

\ 
E=nhv 

"The energy of light can only have discrete values." 

~ Planck had no choice but to publish these results in a paper. At 
the end of it he added wistfully, "I hope, nevertheless, that we will 
find a solution using Newtonian dynamics." 

Planck was not alone; just about every physicist hoped the same thing. This 
problem was particularly unwelcome because it appeared just as physics theory 
appeared to be virtually complete. Partly because physicists resisted the 
implications, Planck's paper seemed to be largely ignored when it was 
published. That is, everyone saw but pretended not to see. 

BUT •.. 

In 1905, an unknown young man found an entirely new approach to the 
situation. Twenty-six-year-old Albert Einstein had appeared on the physics 
scene, and the physicists who had been ignoring Planck's discoveries found 
their escape routes blocked. They could no longer deny Planck's findings. 

I Einstein, Albert 
[1879-1955] 
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1. 4 LIGHT IS A PARTICLE!? 

EINSTEIN 
MAKES HIS 
APPEARANCE 

I t was about the time that Planck made the remarkably odd discovery that 
E = nh v, or that the energy of light had discontinuous values, when in a comer 

of the Swiss countryside, there was a young man employed at a patent office 
who was doing research in physics on the side. 

That man was Albert Einstein. 

A. Einstein 

There is probably no one who has not heard the name Einstein. Even 
among well-known physicists, his name stands apart from the rest. 

~ ~ Why does the needle of a compass always point in the same direction? 

Although it is said that this question led Einstein into the world of physics, it 
was the study of light that drew his interest. Not especially fond of school, nor 
favored with outstanding teachers, Einstein carried out his research completely 
on his own. Planck's paper with the astonishing discovery E = nhv caught his 
attention. Although other physicists ignored these findings, Einstein took a look 
and instantly realized, 

There's something here, no mistake about that. 

And so, in 1905 Einstein took everyone's breath away with a daring yet 
simple revelation that plainly explained just what Planck's discovery meant. It 
was written up in the paper, "The Photon Hypothesis," which ultimately led to a 
Nobel Prize. 

What is truly amazing is that in the same year, Einstein also published his 
"Special Theory of Relativity" and the "Theory of Brownian Motion," bringing 
to a total three papers of Nobel Prize caliber. His "Special Theory of Relativity" 
is particularly well-known, and is practically synonymous with his name. 
Everyone, even grade school students, has at least heard of it. With these three 
papers, the name Einstein immediately became known the world over. 
Overnight he rose from the status of an unknown young man to that of a great 
physicist. 
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~ Yes, yes, that's fine, but what was this bold revelation that took 

everyone's breath away? ®'" 
From the beginning we have assumed that since light produces interference 

patterns, it must be a wave. But Planck's explanation of the blackbody radiation 
experiment has shown that light waves are not like the ordinary waves that we 
know so well. 

The energy levels of light have discrete values! 

That must mean, then, that if light is a wave, the energy level of waves are 
discrete. At this point, Einstein began to think. 

The energy levels of waves only have 
discrete values!? Well, if light really is 
a wave, then something is wrong here. 

From there Einstein went back and examined things from square one. 

Once again Einstein tried to determine whether the energy of light really had 
the properties of a wave. As we saw earlier when discussing Planck's 

work, the energy of waves is determined by their amplitude. Written as a 
mathematical expression, this means 

-- '---~ ---- -
Logically, since the energy increases as the amplitude increases, if the wave 

energy is discrete, then the amplitude must be discrete as well. 

Planck was troubled by the fact that the equation he had discovered, 
E = nh v, suggested that the amplitude of light waves could only have discrete 
values. He couldn't understand how wave amplitudes could have anything 
other than continuous values. Thus, the light waves predicted by Planck's 
theory seemed strange - waves whose amplitudes could only have certain 
values. 

If light is no more than an odd kind of wave, then, for the time being, we 
should have no trouble considering it as a sort of cousin to a wave. But when 
Einstein reexamined the question carefully, it became evident that this was not 
the only problem. The new problem was related to THE TRANSMISSION 
OF ENERGY. If we think of how energy is transmitted, then the idea that light 
is a wave becomes truly nonsensical. 

THE ENERGY OF 
WAVES 
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EXPERIMENT 
OF THE LITTLE 
BOX 

To analyze the way in which energy is transmitted, 
Einstein tried a little mental test, based upon the 

blackbody radiation experiment. 

o 

d 
B 

b 

C 
Let's insert a little box b with a window inside the iron 

box B that we used in the blackbody radiation experiment. 
As B is gradually heated, light fills its interior. Because 
there are many different frequencies of light waves and 
they are interfering wildly, the energy level in the box is 
constantly fluctuating. In addition, waves are probably 
passing in and out through the window of little box b. 

How does the energy of light waves in the smaller box behave now? If they 
were ordinary waves, the energy level should vary continuously, along with the 
continually fluctuating wave amplitudes, gradually increasing and decreasing 
one step at a time. 

Energy 

o t (Time) 

The energy should fluctuate in gradual curves as shown above. But as 
Planck discovered, according to E = nhv, the energy of light waves could have 
only discontinuous values. Moreover, these discontinuous values took on h v 
values in integral multiples. 

This meant that the energy inside small box b fluctuated according to 
integral multiples of hv; it never assumed intermediate values. At one instant, 
the value might be hv; at the next, 3hv; and an instant later, zero. Therefore, the 
value must be changing at every instant. This being the case, the fluctuation of 
the energy in small box b 

Energy (hv) 

o t (Time) 

must be described by a stepped, rectilinear graph such as this. 

THIS IS REALLY STRANGE!! 
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At this time an eight-letter word that had been rolling around in the back of 
Einstein's brain popped up. 

@htI5 aJ) 
If light isn't a wave ... 

~ 

Por the transmission of light to have such an angular graph, the actual transfer 
of energy must take place in an instant. This means that light's energy must 

have a transfer vehicle in the form of a ball. What does that mean, a ball of 
energy? 

Just think of light as basically 
having a shape like a ball! 
Then it doesn't seem so odd! 

LIGHT IS NOT A WAVE. 
IT IS A PARTICLE THAT 

HAS ENERGY E = h v! 

Einstein had thought up something that shook the world of contemporary 
physics to its very roots. This idea fully explained Planck's discovery, and the 
fact that energy has discrete values becomes a matter of course. We just need to 
conceptualize the n in E = nhv as the number of "balls," or light particles. 

If we think of particles of light going in and out, it is clearer why, in the 
experiment with the small box, it was only natural that the energy in small box b 
fluctuated discontinuously. Because light particles are too small to see, we 
cannot say that only a portion of the particles went in at a time; the discrete 
jumping, in and out, occurred in an instant. Let's say that the energy of one 
light particle leaping into small box b is h V; of two particles, 2h v; of three 
particles, 3hv; and so on. When no particles leap in, the energy is zero. Stated 
simply, the fluctuation of light's energy takes a jumping form, its fluctuation 
being the effect of particles jumping in discrete amounts. 

LIGHT ISN'T A 
WAVE!? 
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B B B B 

b • b b • 

·c • ~ ·c 
• • • 

The little box is empty. One went in! Another went in! They all went out. 
E=O E=hv E=2hv E=O 

Energy 

3hv 

2hv 

lhv 

o tm~ 

When we thought of E = nhv in tenns of a wave, it just didn't make sense. 
If we think of it as a particle, however, it all becomes clear. 

........... ------ You figured it out! Great! - ~ 
::: That's our Einstein!! .::::: l0:.\0!) 

This is the famous Photon Hypothesis, "Light is not a wave. It is a particle 
that has energy E = hv". Still, it was only a hypothesis that had not yet been 
tested experimentally. The small box experiment was just a mental exercise 
perfonned in Einstein's head. With nothing more than that to go on, it would be 
hard to convince anyone of the idea that light was a particle. Such a claim 
would seem to lack common sense. In order to prove that light was a particle, it 
was necessary to obtain facts, namely experimental results that could only be 
explained in tenns of the particle hypothesis. At this point, Einstein began to 
look at all sorts of experiments concerning light. 

;} 
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1. 5 THE PHOTOELECTRIC EFFECT 

And then Einstein discovered an experiment whose conclusions could not be 
explained unless light was a particle! It was the test of the photoelectric 

effect and was designed to examine this phenomenon. It demonstrated that: 

"When high-frequency light hits a metallic substance, electrons fly off." 

The phenomenon was already known through experimentation, but no one 
could explain yet why it happened. It was the German physicist Philipp Lenard 
who thoroughly studied the photoelectric effect, and the results of his 
experiment were compiled and reported. First, let's see what this experiment 
involved. 

@ We're about to see why light is a particle. 

Experimental method 

1. As shown below, an apparatus is constructed 
with two metal plates placed facing each other. 
Through the action of the battery, electrons 
flow from the negative pole to the positive 
pole. The path ends, and the electrons stop at 
plate A. 

LENARD'S 
EXPERIMENT 

• Lenard, Philipp Eduard 
Anton 
[1862-1947] 
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2. Now, if we shine light on metal plate A, electrons receive energy from 
the light and begin to fly off from the surface. 

That's the photoelectric effect! 

3. The electrons that fly off are attracted to metal plate B. And then ... 
hey! Even though the plates are not connected, electrical current ends 
up flowing! 

4. In this experiment Lenard tried changing the intensity (amplitude) 
or the color (frequency) of light and then examined very thoroughly 
how the number of electrons that flew off, and the force (energy of 
a single electron) varied in response to these changes. 

Because we know the electrical charge (amount of 
electricity) of a single electron, we can find the number 
of electrons from the amount of electric current. 

The energy of one electron can be found by measuring 
the ability of an electron to pass between metal plates 
A and B against an electric potential difference. 



Let's now look at the experimental results! g 
The data was compiled into the table below. 

~ 
Number of Energy of 
electrons a single escaping 
escaping electron 

When the light is it increases! there is no change. intensified ... 

When the frequency there is 
it gets bigger! 

is increased ... no change. 

G(!1.Th 
I1t\.d I can't really understand what the experimental results mean just by 

looking at this table. 

~ I bet no one was able to explain it until Einstein figured it out. After 
all, if you think of light as a wave, these results seem very peculiar! 

F irst, let's see what problems the physicists of the time ran into when they 
looked at the experimental results. 

The photoelectric effect, when light was thought to be a wave 

~))) 
The electrons on a metal 
surface gain excess energy 
from being bounced around 
by light waves and fly off. 

Since we are thinking of light as a wave, 

The brightness The height of wave 
(intensity) of light ~ amplitude 

Frequency 
level 

The number of times a wave 
~ oscillates per unit of time WM 

High! 

Dark! 

Low! 

the brightness of light and its frequency have a given relationship as shown 
above. 

PHOTOELECTRIC 
EFFECT IF 
LIGHT IS A 
WAVE 
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With that in mind, let's see if we can explain the photoelectric effect. A 
wave of light may be difficult to imagine, but it is easy to understand if we think 
of an ocean wave instead. ---.......... ----

<Scenario 1> A giant wave rolls in, but it's all right! 
(As light is made brighter 4 the number of electrons breaking away increases) 

The waves are gentle, and a 
number of people are 

floating on the surface. 

The waves are getting 
bigger! Some people are 

sent flying! 

An even bigger wave comes, 
and now many people are 
sent flying! Hey, but isn't 

the energy of the people who 
were thrown off the same as 

it was before?! 

<Scenario 2> People are sent flying by little ripples! 
(As frequency is increased 4 they're tossed off with greater force) 

Many people are floating in 
the sea. 

A gentle but enormously 
high wave comes along. 

No one is sent flying. 

Here come some fine ripples. 
Huh?! 

A number of people are sent 
flying with great force! 

W Is this what happens if we think of the photoelectric effect experiment 
in terms of waves? 

cO This would never happen with waves in the ocean. 

Because the energy of a wave is proportional to its lamplitudel2, one would 
normally expect that if a big wave came along, the people (electrons) floating 
about would be tossed in the air with great force. In the photoelectric effect, 
however, no matter how strong the light becomes, the energy of the electrons 
that are thrown off is the same. Not only that, there is no way that people would 
be thrown forcefully into the air if many little ripples came along! The 
frequency should do no more than determine wave type, or color, and have no 
relationship to energy. 

,,/!!}) ~ Say, that's right! How strang0==-~ 
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Beginning with Lenard himself, no one could explain these results. No one 
doubted the idea that light was a wave. They thought that if they continued 
their research, eventually they would come up with a good explanation. 

There has to be something more going on 
with light waves. 

But then, along came Einstein. He worked his way toward a solution by 
reconsidering light and finding that LIGHT IS A PARTICLE! 

Let's look at the experimental results one more time, with the same 
assumption that underlay the little box experiment. That is, E = hv : light is 

made up of particles, each one having energy hv. 

Photoelectric effect if light is a particle 

Particles of light come flying 
along and collide with electrons 
on the surface of a substance. 
This bombardment eventually 
causes electrons to break away. 

Looking at it this way, the strength or intensity of light (in the case of light 
waves, its amplitude) is determined by the number of light particles. 

Because the energy of a single particle of light is determined by h v, as the 
number of particles increases, light becomes stronger. In that case, the 
experimental results make sense; the number of electrons that fly off increases 
as the light grows brighter, but the energy of each electron does not change! 

If many light particles come flying along, then many 0-

electrons get hit, and the number of electrons that fly off o~ ~-J J 
increases! 0 o-} 

~::Oj,,\lfo But in this case, since the energy of each light particle is fixed 
-=0 at hv, regardless of their number, the energy of each electron 

o 0 does not change! 

Also, since the energy of this light is equal to hv, the energy levels are 
determined by its frequency v (h is Planck's constant and is a fixed value). That 
is to say, if v becomes large, then the energy of each light particle also increases. 

LOOKING AT 
LIGHT AS A 
PARTICLE 
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And so, there is nothing peculiar about the experimental result that suggests 
when we increase frequency v of the bombarding light, the number of electrons 
that fly off does not increase, whereas the energy of each electron increases. 
When a light particle with a great deal of energy hits, it follows that an electron 
will fly off with much force. 

~ So if you think of light as a particle, it all makes perfect sense. Why 
didn't anyone think of this before? 

e It just goes to show how hard it is to reject what has been established 
as common sense. I think Einstein's greatness lies in his ability to think in new 
ways. 

This idea did more than just allow us to roughly determine what the energy 
would be; it let us precisely predict experimental results. 

The energy of the bombarding light is E = h v, v varying with the color of 
light. The electrons, having received all of this energy, fly off. However, since 
a small amount of that energy is spent in breaking away from the surface of the 
material, the energy of the electron actually is 

E =hv-cP 
(cP is the energy spent in breaking away) 

So this is what's known as 
the Einstein relationship. 

With this, Einstein was able to explain Lenard's experimental results 
beautifully! 
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For instance, in the case of violet light, the frequency of the color violet 

v = 0.8 X lOIS (l/sec) 

As Planck's constant is 

h = 6.63 X 10-34 (joule· second) 

in this case, the energy E of light is 

E = hv = 6.63 X 10-34 x 0.8 X lOIS 

= 5.3 X 10-19 (joule) 



We know from experiments that the energy E of escaping electrons is 

5 X 10-19 (joule) 

which is in agreement with the experimental results! 

The experimental figures are 
a little smaller, you know. 

Fantastic! Mr. Einstein, it's perfect! 

That's probably because 
of the bit of energy ¢ 
spent in breaking away. 

Thus, the photoelectric effect is much better described by using Einstein's E = hv. 

So we can't think of light as a wave! Light is a particle! 

\ I 

-@-
,. I " 

\ I 

-@-
,. I " 
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~--------------------

PHOTOELECTRIC EFFECTS AROUND US 

It is hard to believe that the photoelectric effect has much to do with us, but in fact we often 
experience it in everyday life. For instance, consider sunburn. Our bodies become sunburned if we 
spend even ten minutes under the hot summer sun. In the winter, however, no matter how much 
time we spend before a red-hot stove, we do not bum in the same way. The sun, so far away, burns 
our skin, and yet we are not burned by the stove which is so close by. Why is that? 

, I / 

-@-
/ I \ 

Consider the premise that light is a particle having energy hv. The major difference between 
the light of the sun and the light from the stove is frequency. Sunlight contains large amounts of 
high-frequency light, called ultraviolet light, while the light from the stove contains large amounts 
of low-frequency light, called infrared light. 

When we think of E = hv in terms of sunlight, with its large amounts of high-frequency 
ultraviolet light, we see that the energy level of each light particle is extremely high. When light 
particles with such high energy hit the atoms of our skin, the considerable energy transmitted to 
them causes the electrons in the atoms to break off with great force. When electrons fly out of our 
skin, a violent chemical reaction occurs; that is what we know as sunburn. 

On the other hand, the light from the stove contains large amounts of low-frequency infrared 
light, and the energy of each light particle is small. When this light strikes the atoms of our skin, 
the energy is too low to cause electrons to fly off, regardless of how many particles there are. That 
is why, no matter how much we warm ourselves by a hot stove, we never get sunburned. 

The photoelectric effect demonstrates the particle nature of light, and is something that 
concerns us all, not just physicists. It is the explanation for some of the phenomena occurring 
around us every day. 
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1. 6 THE COMPTON EFFECT 

I n 1923, eighteen years after the experiment on the photoelectric effect, 
another experiment was done that again confirmed the particle theory of light. 

This was called the Compton effect experiment. 

How do X-rays scatter after striking something? 

The American physicist Arthur Compton was able to answer this question 
by assuming that the particles of light were involved in spherical collisions. 

( I'm Compton. )- W 
Just like the experiment on the photoelectric effect, this one was already 

known, but because light had been considered to be a wave, it had remained 
unexplained for a long time. Compton thought about the photoelectric effect 
and wondered if the same thing would apply here in this experiment. He 
reexamined it with the assumption that light was a particle. 

~ Really! Light collides spherically. That's interesting. 

-@' But what are X-rays again? Do they have something to do with light? 

g Come on, don't you remember? They came up when we were 
discussing Planck's work. There are many different kinds of light. X-rays, 
ultraviolet rays and infrared rays are all invisible rays. X-rays have an even 
higher frequency than ultraviolet rays. 

~Oh,right. 

~ Okay, now let's get to the Compton effect. 

I Compton, Arthur Holly 
[1892-1962] 
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X-RAY 
DISPERSION IN 
THE WAVE 
THEORY OF 
LIGHT 

It was already known that when X-rays strike something, they scatter in 
every direction. The fact that they scatter is not strange, but the problem is 

"-....... 

Using monochromatic X-rays of a single frequency (that is, simple waves), 
we measure the frequency of the dispersed X-rays at various locations. We then 
compare these frequencies with the frequency of the X-rays at the time they 
were emitted. Surprisingly, we fmd that 

when they scatter after striking a surface, depending on 
their location, the X-rays have a lower frequency than 

they had when they were emitted! 

G(~ 
Cit.· 0 -{ Why is that surprising? ) 

At the time, it appeared that light had been perfectly explained using 
Maxwell's electromagnetics. The trouble was that there was no way Maxwell's 
theory could explain this experiment with X-rays. Going by the assumption that 
light is a wave, it would be absolutely impossible for the X-rays' frequency to 
decrease after being dispersed. 

L et's look at X-ray dispersion from the perspective of the wave theory of 
light. 

1. A wave of 2. It strikes a 3. The electrons in the substance 
X-rays comes substance. are shaken about and are 
along. emitted as spherical waves. 

This is X-ray dispersion as explained by Maxwell's electromagnetics. Since 
electrons emit light as their movement becomes more rapid, it follows that the 
electrons disturbed in this experiment ought to emit light as well. When the 
light spreads out into space in the form of spherical waves, these waves 
represent the dispersed X-rays. 
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To visualize these spherical waves spreading out into space, we need only 
recall the waves that were created when we moved a float up and down in a tank 
of water. 

Thinking about dispersed X-rays in this manner, 

1. The electrons that become agitated oscillate at 
the same frequency as the X-rays did at the time 
they were emitted. 

2. Because the X-rays are monochromatic, the 
electrons should naturally all have the same 
period of oscillation. 

3. Therefore, the spherical waves should always 
have the same frequency as the original X-rays. 

Thus, the experimental outcome that the frequency of dispersed X-rays is 
less than when the X-rays were emitted cannot be explained by the wave theory 
of light. 

cO You're right. It doesn't seem to make sense. 

e In the end, it was simply left unexplained. 

~ But then Einstein announced his photoelectron hypothesis, and 
Compton realized that if he used it in relation to the X-ray experiment, the 
problem might be solved. 

Okay, now let's examine the experiment on X-ray dispersion assuming, as 
did Compton, that light is a particle having the energy equal to hv. If we 
assume light is a particle, what happens to the X-rays as they scatter? 
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X-RAY 
DISPERSION IN 
THE PARTICLE 
THEORY OF 
LIGHT 

A ssuming light to be a particle, let's look at X-ray dispersion. 

1. Many particles of 2. They strike a 
light come flying substance. 
along. 

3. The particles of light 
strike electrons, which 
then fly off in all 
directions. 

This is X-ray dispersion assuming light is a particle. Put briefly, these are 
"spherical collisions," just like in billiards. Spherical collisions are explained 
by Newtonian dynamics, so in this case we can proceed as we did before. The 
only small difference is that the energy of a particle of light is E = h v. 

First of all, let's look at what happens if a light particle with energy h lJ 

strikes an electron. 

A particle with energy h lJ strikes an electron 
and sends it flying. 

As a result of this collision, the particle of 
light loses just the amount of energy that was 
gained by the electron when it was struck. 

" \ / 
That'5 billiard5! rfrt:\ 
~ 

light Electron 

-~>~O 0 
hv 

Electron o 

o 
light 

Right! I get it. In billiards, a ball's force 
also gets weaker after it hits another ball. 
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The bombarded electrons move because they have received energy from the 
light particles. In this case, the energy gained by the electrons is the same as the 
energy lost by the light particles. Expressing this as an equation, we get: 

original light 
energy = 

energy of light 
after impact + 

energy imparted to 
electron 

Hey, this is the law of the 
conservation of energy, right? 

Because the energy of a light particle is hv, let's apply it to the law of the 
conservation of energy. Because h is a constant, the energy of light can change 
only when its frequency v also changes. Thus, if we let VI equal the original 
frequency, and V2 equal the frequency after collision, we may rewrite the law of 
the conservation of energy like this: 

hVI = hV2 + (the energy of the electron) 

This means that, 

and we can derive this relationship. 

In other words. the 
frequency of light's energy 
after impact is less than its 
frequency before impact. 

So. if we assume light to be a particle, it makes sense that the frequency of 
the dispersed X-rays would be lower than when they were emitted. 

It's too good to be true! 

\ I I 

~ 
At this point, however, we have only proven that the reduction in frequency 

is to be expected if we assume light to be a particle. In fact, the experiment 
goes on to record that the frequency of the dispersed X-rays varies depending on 
their location. We must still make calculations and show that the results match 
up with actual experimental results. Only then can we say with certainty that 
the impact behavior of light is spherical, like balls. 

wow~ 
-@ ~Ifwe can do that, then it'll be perfect! ) 
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MOMENTUM OF 
LIGHT 

I n order to explain the phenomenon of spherical collisions, we first need to 
understand the concept of "momentum". Momentum, as it relates to 

particles, is shown by the following equation: 

p=mv 
momentum = mass x velocity 

Mass is the weight of an object at rest. Velocity describes how fast and in 
what direction that object is moving. Newton defined motion as an object 
(particle) moving at a given velocity. But the tenn "object" includes objects of 
varying weight, that is to say, mass. Therefore, although two objects may be 
traveling at the same velocity, if their masses are different, the force of their 
movement will differ as well. This "force of movement" is momentum. 
Momentum is determined by the relationship between a moving object's mass 
and its velocity. 

In spherical collisions, classical theory can determine the momenta of the 
balls after collision by knowing their momenta prior to collision and their angle 
of rebound. In other words, we are easily able to detennine the direction and 
speed of the two balls after impact. 

~ I get it! So in this experiment, we need to find the momentum of 
tI light, right? 

: ~ And then, after we make the calculations and they agree with the 
experimental results, we will have proven indisputably that light is a particle 
and that light particles really do behave like spheres when they collide. 

o Let's fmd the momentum of light! 

~ 
-~ Okay, we just need to use the equation "momentum p equals mass m 

multiplied by velocity v," right? 

~ What? Hold on a minute. The speed of light is 300,000 kmlsec 
(186,000 miles/sec), but what is the mass of light? 
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Exactly. For light, mass is a problem. Momentum, in Newtonian 
mechanics, is 

p=mv 

However, mass m is the "stationary mass", that is, the mass of something 
when it is at rest. One of the properties of light is that its velocity does not 
change, no matter where or when we measure it. Light always travels at 
300,000 kmlsec. If its velocity drops even a tiny amount, then it is no longer 
light. This means that no matter how sophisticated our instruments are, we will 
never be able to measure the mass of light at rest. 

According to Einstein's theory of relativity, 
the stationary mass of light is zero! 

Come to think of it, the spherical collisions described by classical theory 
referred to the velocity of two balls after impact, whereas the Compton effect 
experiment observed the frequency of dispersed light. In other words, we have 
to describe the momentum of light in terms of frequency. 

According to classical theory, momentum is expressed by 
p = mv, which is in terms of mass and velocity, right? 

In the case of light, we cannot find its momentum using established classical 
theory. We need a different method of determining it. 

You mean we're going to describe momentum as something other 
thanp =mv? 

cO Is that possible?? 

As a matter of fact, the momentum of light was described in relation to 
energy by Einstein in the following equation: 

p=~ 

In this famous equation, which appears in "The Theory of Relativity," E 
represents the energy of light, and c is the speed of light. In his theory of 
relativity, Einstein discovered that the momentum of light must be related to its 
energy. 
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Now, there is one more equation that we must bring in when we deal with 
the energy of light. Here it is: 

E=hv 

Because both of these equations contain E, the energy of light, all we have 
to do is substitute hv for E. By doing this, we can express the momentum of 
light in the following way: 

THE MOMENTUM OF LIGHT IS ITS ENERGY (hv) 
DIVIDED BY ITS VELOCITY (c)! 

Now we can see the relationship between the momentum of light and its 
frequency. If we use this relationship in our calculations and find that the 
frequencies of the dispersed X-rays match the experimental results, then we've 
got our answer. Let's compare the observed values and the theoretical values 
for X-rays when the angle of rebound is 90 degrees. 

Frequency observed experimentally . . . 4.5 X 1011 (l/sec) 

Frequency obtained through calculation . . 4.2 X 1011 (l/sec) 

cO Wow! They're almost the same! 

@ So this means we've proven that light collides spherically. 

I ' ,-' \ I I / /;~ , ~ 
, clap clap clap ~-;;~ 

After Compton explained the results of his experiment, Einstein's 
photoelectron hypothesis became more than just a hypothesis; it became a 
reality. Up until then, though light appeared to be a particle, all physicists could 
say with certainty was that 

"The exchange of energy is discontinuous." 

No one could say with absolute certainty that light was a particle. But this 
experiment, which explained the momentum of light particles, erased all traces 
of remaining doubt. 
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LIGHT HAS BEEN PROVEN 
CONCLUSIVELY TO BE A PARTICLE! 

~ OhW 



I 

ANOTHER WAY OF DESCRIBING 
THE MOMENTUM OF LIGHT 

We just represented the momentum p of light in the form 

p=h% Equation (1) 

Just for the record, let's represent it in another form. It is possible to rewrite this equation using 
wavelength A (lambda). Wavelength is. 

"the distance a wave travels in the space of one cycle." 

eA. 
73 "''"''-(One cycle) 

To find wavelength A for light. we divide the distance light travels in one second. 300,000 
kilometers, by the number of cycles per second. Written as a mathematical expression. we obtain: 

speed of light c 
A = frequency lJ 

Recall that we defined frequency as the number of times a wave oscillates per 
second. For example, if " = 5, that means that in one second the wave oscillates five 
times, and 300,OOOkml5 is the length of the wave. In short, this is how wavelength A can 
be determined. 

Because the term ~ in Equation (1) is the inverse of wavelength A. 

lJ _ 1 
c-A 

Placing it in Equation (1), we find we may rewrite Equation (1) as 

p= l!. 
A 

The momentum of light p is equal to Planck's constant h divided by wavelength A. 

I 

I 

I 

I 
I 
I 

~1 ~ 

~~~-------------------~ 
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1. 7 CLOUD CHAMBER EXPERIMENT 

I Wilson, Charles 
Thomson Rees 
[1869-1959] 

IBothe, Walther Wilhelm 
Georg 
[1891-1957] 

We have learned that the Compton effect can be explained using the same 
theory of spherical collisions that applies to objects we know such as 

billiard balls. According to this law, if we know the momentum of one of the 
two balls that collide, we can determine the momentum of the other ball. The 
Compton effect focused on the change in frequency of X-rays; the electrons that 
broke away were not considered. However, if we have information about the 
rebounding X-rays, we can fmd both the direction and velocity of the electron. 

o 
Electron 

If we could somehow observe the leaping electrons, and then show that their 
paths agree with those predicted by the Compton effect, that would be like 
gilding the lily. Compton's theory would be even more complete. Electrons are 
extremely small and cannot be observed directly. Since no one could see 
electrons when Compton announced his theory, he did not touch upon the 
electrons that broke off. But a few months later, two physicists, Charles Wilson 
and Walther Bothe, independently devised a method to perceive the movement 
of electrons with the naked eye! The results were amazing! They confirmed 
that electrons broke off exactly as Compton's theory had predicted. 

~ Fantastic! So Compton was perfectly correct. 

C((;y 
I I 

o But just how were electrons observed? As for light, all we need to do 
is observe frequency, but how can you see the movement of a single electron? 

In order to "see" electrons that cannot be observed per se, we use a CLOUD 
CHAMBER. 

This procedure was worked out by cleverly using the properties of fog. 
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~ What do you mean by the "properties of fog"? Fog is that wet, hazy 
thing that you often run into high up in the mountains, right? 

6f!iJ That's right. Fog occurs when air of high humidity is suddenly 
cooled, and the water vapor in the air condenses into little droplets of water. 
They form around particles of dust in the air. 

er 
~ I see. A cloud chamber is a box filled with fog, right? But how can 

you see anything, let alone an electron, in fog? 

Well, you don't actually see the electrons in the box. Normally what you 
see are the tracks left by the electrons in the fog, but in some instances ions 
(atoms to which electricity has been applied) play the part of dust. 

Here is how the cloud chamber works. A box that contains no dust is filled 
with water vapor and then suddenly chilled. In this supersaturated state, fog 
wants to form, but because there is no dust to form a core, there is no way it can. 
Now we let an electron fly. As the electron collides with atoms in the air, it 
strips electrons from the atoms, forming ions. Fog then forms around the ions, 
becoming a line of fog created by the ions (electrons) as they travel through the 
chamber. Their paths are thus clearly visible. 

In this way, Wilson and Bothe were able to observe in detail electrons 
thrown off during the Compton effect. If the electrons are thrown off with much 
force, their energy is high and their tracks are long; when there is little force, 
their tracks are short. By knowing how far an electron traveled, it is possible to 
calculate the energy with which it started. These calculations yielded results 
that closely agreed with Compton's. 

W Hey, that's interesting. So you can observe an electron's tracks. That 
I want to see! 

e You know, we actually tried the experiment at TeL. Let's take a look. 

CHAPTER 1 WHAT IS LIGHT? 85 



LET'S DO AN EXPERIMENT USING 
THE CLOUD CHAMBER! 

One day, students performed the cloud chamber experiment in the Hippo classroom at TCL. 
Finally we would be able to confirm the motion of electrons in the Compton effect with our own 
eyes! 

At TCL, we used a simple cloud chamber from a set of educational materials. The "cloud 
chamber" was a round container that could be held in the palms of two hands. As shown in the 
drawing below, instead of electrons, this set contained an alpha ray generator that emitted alpha 
particles. Since electrons and alpha particles are both quanta (particles smaller than atoms), they 

it will appear to be almost identical. 

I Cloud chamber I 

There'5 a hole here. 
We 5hoot our 

quanta through It. 

It'5 5mali enough to 
be held in the palm5 

of two hand5. 

I Alpha ray source I Bottom lid made of wood 

First, we drip alcohol on the upper part of a sponge that is 
inside the container. Because it vaporizes much more easily 
than water, it forms fog more readily. 

At the same time, we pack the bottom of the container with 
dry ice to cool it. 

When we shut the lid and wait, the alcohol vaporizes and 
steadily falls downwards. The bottom of the container is 
cooled, and the vapor tries to return to a liquid state. After a 
while, a fog of alcohol forms with dust as the core, and the fog 
subsides to the bottom. The container is then full of alcohol 
that cannot form a fog. 

"-....... -
86 CHAPTER 1 WHAT IS LIGHT? 

;:P 
a Alcohol 
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o 

A 5ponge i5 glued 
around the in5ide. 

Dry ice 



-------------------------
Now let's try emitting some alpha particles into the 

container! Put the outlet of the alpha ray source into the 
hole in the box. All right, here we go! 

It's easy to see if we tum off the lights in the room 
and shine a single spotlight on the cloud chamber. 

Because we weren't using the correct amount of 
alcohol, we had failure after failure at TeL. 

Just as we were about to give up ... we SAW it! 

~ 
~~~R 

-- *~\7 --- ;fjlJtfi{ / 

'20~ 
IfJllll 

~ 

We could clearly see the tracks of the alpha particles spurting with plenty of force, looking like 
the contrails left by airplanes. 

After so many failures, the room exploded with excitement when we finally saw them. 

So that's how you can see the tracks of electrons. Then you 
just have to observe the direction and the speed of the tracks. 
Whoever thought up this experiment was brilliant. 

The cloud chamber was the only way that the movement of electrons could be observed. Later, 
it was to play an indispensable role in nuclear physics research. 

------------------------
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1. 8 SO, WHAT IS LIGHT!? 

LET'S GO BACK 
ONE MORE 
TIME! 

~ well, I guess no matter how you look at it, light is a particle. 

~ Yes, and that cloud chamber experiment was really interesting. When 
I saw the tracks, which looked like airplane contrails, I got really excited. 

~ It was Compton's theory that enabled such a solid explanation. 
no matter what anyone thinks, light is indisputably a particle. 

Now, 

Light particles are so small we can't see them, but they move in exactly the 
same way as a rolling ball. 

e So now nobody has any objections to saying light is a particle. 

e Is that so? Have you all forgotten what we learned at the very 
beginning? Let's retrace our steps. 

Initially, physicists had described it as a wave 
because light was known to INTERFERE. 
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Let's confirm it with . 
the SLIT EXPERIMENT. 

....... .,,-- ....•.... -
./ '-
Light is a wave, after all! 

BUT! Through the blackbody radiation experiment, Planck 
discovered that light could not be explained if it were approached 
as an ordinary wave. 

~ 
-f E=nhv (v=O, 1,2,3···) 

The energy of light can only have discontinuous values! 

Einstein arrived on the scene! 

He discovered in a little mental exercise called the little box 
experiment that the results of the blackbody radiation test could be 
nicely explained by assuming that light is a particle! Following 
that, he brilliantly demonstrated with the experiment on the 
photoelectric effect that 

E=hv 

He demonstrated that light is composed of particles, each 
having energy h v. 

And then in the Compton effect experiment, we found that, 

-< o 

p= h% = ; 

How about that! We were even able to fmd the MOMENTUM 
involved in the particle theory of light. 
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SLIT 
EXPERIMENT 
FOR PARTICLES 

-®' See! No matter how many times we examine it, it appears in the end 
that light is composed of particles. 

~ But what happens to light in the slit experiment? This showed that 
light is composed of waves. Particles, after all, shouldn't display interference. 
Right? 

W Yes, but in the experiments on the photoelectric effect and the 
Compton effect, there is no choice but to think of light as a particle. 

~ So what approach should we take now? 

;~ I've got it! How about rethinking the slit experiment for particles? 
Then if we end up with the same patterns, we'll have to conclude that light is a 
particle. 

That's right. Let's try it! 

As we saw at the very beginning, when waves pass through two slits at the 
same time, the intensity of the waves when they arrive at the wall can be 

shown in the following diagram. 

Intensity 

If we try this using particles, what will result? In the case of waves, we 
examined their force at the time of striking the wall. Since a particle cannot be split 
into two, we will shoot them in succession using something like a machine gun. 
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The procedure is the same as it was for waves. We observe the three 
resulting patterns based on the following: 

1. Only slit #1 open 
2. Only slit #2 open 
3. Both slits open 

1. Only slit #1 open 

Number of pellets 

Although pellets strike the edges of slit #1 and substantially change course 
at times, most of them pass through the slit in a straight line from where they 
were fired, arriving at the wall in the vicinity of point A, as shown in the 
diagram. 

2. Only slit #2 open 

Number of pellets 

As in case 1, the most number of pellets arrive near point B, as shown in the 
diagram. \ I 

( Hmm, just like with the waves} e 
3. Both slits open 

\ 

eJro 
I I 

o 

I 
I 
I 

c r 
Number of pellets 

Hold on! It's totally different from what 
happened with waves! Why is that? 
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DEPARTURE TO 
A NEW THEORY 

When both slits are opened, cases 1 and 2 occur at the same time, so the 
result is a simple addition of graph 1 and graph 2. 

~ Think of it as adding the darkened portion of the graph to the dotted 
u'0i/ lines. 

With this experimental setup, the largest number of pellets arrive right in the 
middle near point C, but that can change depending upon the location of the 
slits. Nevertheless, the result is always the sum of I +2; no matter what happens, 
we never get an undulating graph like we did with waves. 

\ I 

Darn! So according to the slit 
experiment, light is a wave after all. 

Q h, my. We went to all the trouble of proving so neatly that light 
is composed of particles, each having energy E equal to h v, and 

now it doesn't look like our conclusion holds up anymore. 

~Ol W Look, don't you think it's strange when we really look at HE = h v"? I 
mean, while we say that light is a particle, there's a Hz!' in there. That v means 
frequency. What in the world is the frequency of a particle? 

~ You're right. If that's the case, even if we assume that light is a 
particle, we have absolutely no idea what kind of particle. 

,'\\'1//// 
X X - SO WHAT IS LIGHT!? - @ @ 

<n:r:D //1", 1 \\'" C::::) 

The physicists of the time were in a fix, just like we are now. In the slit 
experiment, the light that created interference patterns could not be thought of 
as anything other than a wave. However, Planck found that light waves could 
have only discontinuous energy levels, and Einstein and then Compton went on 
to prove that light could be nothing other than a particle. The Compton Effect 
experiment even went so far as to detennine the momentum of light particles. 
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So light pops up in one experiment as a wave, and as a particle in another 
experiment. But light never appears at the same time as both a wave and a 
particle. 

These terms "wave" and "particle" had very specific meanings in the world 
of physics. The reason is that physics up to then described everything in the 
world in broad terms of either particles or waves. 

The two had absolutely opposite properties, and so they were mutually 
incompatible. A particle could never act like a wave, and a wave could never 
behave like a particle. 

Physicists were troubled by these odd characteristics of light. At this time, 
when experiments on light were being carried out all the time, the famous Swiss 
physicist Max Born quipped, 

~/". 
1 ),.1 

~- d 
Max !:lorn 

on Monday, Wednesday and Friday, light is a wave; 
on Tuesday, Thursday and Saturday, it is a particle; 
on Sunday it rests, as the universities are closed and 
it does not have to serve as an experimental subject. 

Up until then, physicists explained the physical world using Newtonian 
dynamics and electromagnetics, but neither set of theories could explain the 
particle and wave aspects of light. Later, however, it was found that phenomena 
other than light were also unexplained by classical theory. There was the 
blackbody radiation problem, as well as the problem of the atom. 

Atoms were considered the smallest units of matter, but it was discovered 
that even atoms could be analyzed and separated into parts, namely electrons 
and atomic nuclei. The new questions concerned electrons and atomic nuclei, 
and their properties with regard to the atom. Yet no amount of investigation in 
these areas based on classical theory could yield consistent results. 

Then Niels Bohr appeared on the scene. In connection with the problem of 
the atom, he applied the term to describe the energy of light, E = h v, and was 
successful. With Bohr's discovery, physics entered a whole new phase. 

It was the birth of early quantum theory. 

In this, Planck's constant played a significant role. 

In fact, this constant h would become indispensable in understanding the 
quantum. At this stage, we still have not discussed the impact that the constant 
h was to have. It will become clear as we go along. What was in store was a 

IBorn,Max 
[ 1882-1970] 

IBohr, Niels Henrik 
David 
[ 1885-1962] 
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different sort of conclusion that could by no means have been understood in 
terms of the theories that dominated physics of the time. 

It became clear that Newtonian dynamics and electromagnetism were 
unable to explain quanta, and they eventually came to be known as something 
outdated called "classical physics." The new physics, quantum mechanics, was 
to become something to which many young, talented physicists would dedicate 
their lives. Just how will this new theory, quantum mechanics, which explains 
both light and the atom, unfold? 
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CHAPTER 2 

Niels Bohr 

EARLY QUANTUM THEORY 

Planck and Einstein opened the door to quantum theory. With others, they 
made it possible to study the electron, one of the parts that make up the atom. 
The behavior of electrons seemed very odd at first. Since it could not be 
explained by classical mechanics, it defied scientific understanding until 
someone was able to drive a wedge into the problem. That person was Niels 
Bohr. Let's take Bohr's bold and brilliant concept and see how it helped to 
unravel the perplexities of one strange phenomenon after another. 
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2. 1 SETTING OFF ON THE ADVENTURE 

~ Quantum mechanics? What's that? 

Ugh! It 50und5 complicated. ~ 

Some people have never heard of quantum mechanics before this, and others 
have heard of it but assume it has nothing to do with them. There are many 
levels of familiarity among us. A few probably have studied it but found it so 
difficult that they understood practically nothing. But that doesn't matter at all. 
If you are able to understand language, then you can participate in this 
adventure. 

In particular, if you have even once thought, "Just what is this world that we 
live in?" or "How amazing that people learn to speak a language!" that is 
enough. The term quantum mechanics is a guide word made up by natural 
scientists who set out on this journey a step ahead of us. They, too, wondered 
about the world, asking themselves, "What makes up the natural world?" When 
it comes to adventure, they have a lot of experience! 

Ifl!j But many mathematical expressions come up, right? 

~\l math! 

I won't be able to follow along. 

I'm no good at 

M 
W 

Don't worry. Mathematical expressions are a magnificent language that can 
express what makes up the natural world. 

~ Math - a language that expresses nature? 

Really? \jf 
This was a surprising new idea to me. I had never thought of math that way 

before. But having been told, I saw it was really true. Math is above all a 
language of international communication that people from any country can 
understand. Now does it seem a little more approachable? 
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Natural scientists are the same human beings we are. 
"That's right. What one person can understand, anyone can understand." 

We love learning languages, and math is a language, too. It's true! 

We think it's perfectly natural that children learn to talk; the math of 
quantum mechanics is also a natural phenomenon. At Hippo Family Club, we 
try to absorb language by learning the way small children do. As for finding out 
what makes up the natural world, we approach it like a treasure hunt! 

Doing quantum mechanics, you get the same feeling as when you are 
discovering a language, or when you meet people from other countries and 
begin to feel, "Hey, we're all on the same treasure hunt!" Although our lives 
and languages differ, we are all human beings. At fIrst glance things may look 
totally different, yet they behave in the same way. 

"Same" - it's a warm, comfortable word. Don't you agree? 

~ If we're all on a treasure hunt looking for the same thing, I guess we 
~ can do it together. 

I agree. 

Right! We can go any time. 
Let's set off on our adventure together! 
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2. 2 THE STRANGE BEHAVIOR OF 
ATOMS 

Prom here we enter the invisible world of ATOMS and ELECTRONS. The 
stage is set for Niels Bohr, who built the foundation for quantum mechanics. 

This foundation was later to be called early quantum theory. 

Until then physicists believed that they understood the laws governing the 
physical world. But when it came to light, they were puzzled. Light sometimes 
behaved like a wave, and at other times like a particle. Many physicists simply 
could not believe that this problem was beyond the reach of classical theory. 
Research by Planck and Einstein then opened the door to quantum mechanics. 
No one knew what kind of world would begin to unfold. Scientists later came 
to realize that a great event had occurred, one that would affect our entire way 
of thinking. Just what was about to happen? 

, / 

- -
Gleeful expectation 

Before introducing Bohr's work, let's go over the problems that remained 
unsolved while the atom was being studied. 

£]. 
V··p 
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molecules 
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@ 

atom 
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When a substance is broken down into smaller 
parts, there comes a point when it cannot be 
broken down any further. The ancient Greeks 
called the smallest unit they perceived an 
"ATOM." It took a great deal of research, but it 
was found that all known substances appeared to 
be composed of only several dozen different kinds 
of atoms. Moreover, it was known that when 
something is heated (when energy is applied), light 
is emitted. It was thus clear that ATOMS EMIT 
LIGHT. However, there was something very odd 
about it. 



As we saw before, after sunlight passes through a prism, a very pretty 
banded spectrum like a rainbow appears. 

This is a band spectrum. 

Red Yellow Green 

The differences in frequency appear 
as differences in color, right? 

Blue Violet 

"<re,quency II 

~
'.~' .. 
~"' .. :; 

......... ; 

~ A prism separates the components of mixed light. It's a very useful 
~ thing. 

When a substance (atom) is heated, however, it was found that it emits only 
CERTAIN FREQUENCIES OF LIGHT. 

Discharge tube 
containing hydrogen gas 

This is a line spectrum. ~-II i 

o In other words, the colors that are mixed together into light differ 
depending on the kind of atom. 

Right. For example, sodium is orange, hydrogen 
is pink, and so on. You are already familiar with 
some of them, such as the orange highway lights 
which are the light of sodium atoms. 

o Gee. 
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LIGHT EMITTED 
BY ATOMS 

IBalmer, Johann Jakob 
[ 1825-1898] 

The light that is produced is determined by the atom, and the same atom will 
always produce the same frequencies of light. Through a great deal of research, 
physicists were able to determine what kinds of light were produced by each 
atom, but it was not known why or how only certain frequencies of light were 
produced. 

I n 1885, Johann Balmer, a professor at a Swiss women's school, worked out an 
equation that described the relationship between the four visible wave lengths 

in the spectrum of hydrogen. That spectrum was something like this. 

I I III 1-+ i ~§Kt 
<D <2> @@ Wavelength A 

A stands for "angstrom," so named after the Swedish 
physicist and astronomer, A. J. Angstrom. 

o Balmer liked to amuse himself by taking four numbers and then 
finding an equation describing their relationship. 

While playing around with his four numbers, he found something interesting 
about the number 3645.6 A. Giving the symbol a that value, he worked out the 
following series: 

9 16 25 36 '5 a, 12 a, 2T a, 32 a 

If we analyze them further, we can find this rule: 

Putting it all together, we have Balmer's equation: 

(n = 3, 4, 5, 6) 

(a = 3645.6A) 

(a = 3645.6A) 

(a = 3645.6A) 

This was the initial discovery that there is a regUlarity in the spectra emitted 
by atoms! 
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J!'!!\ 
~ So a hobby of playing with numbers developed into a great discovery. 

Balmer's equation, however, only described the spectrum of hydrogen. 
Shortly thereafter, Johannes Rydberg found that Balmer's equation could also be 
expressed neatly in terms of frequency rather than wavelength, and he came up 
with an equation that matched the spectra of all atoms. 

Rydberg's Equation 

v = Rc 
(m +a)2 

Rc 
(n +b)2 

m R = 1.0973 x 10' cm-' is a constant found by Rydberg. 
constant, the equation matches the experimental results perfectly. 

By using this 

In this equation, n and m are constants, and n > m. The values a and b are 
constants that are determined by the type of atom. By putting together m, n, a, 
and b, one can identify all the spectra that are given off by an atom. For 
instance, although only four of the hydrogen spectra are visible, this equation 
lets us know that there are many, many more. Isn't that astounding? It's an 
equation that predicts things we can't even see! When a and b are both zero, the 
equation describes the spectra of hydrogen. 

The equation for the spectra of hydrogen 

v = Rc _ Rc (n > m) 
m2 n2 

~ When m = 2, this equation matches Balmer's equation perfectly. 

e~' Those who want to calculate this for themselves, please go ahead. 

Just as Rydberg's equation predicted, more and more invisible spectra were 
found as experimental technology improved. 

{fr Let's look at the spectra of hydrogen as an example. 

IRydberg, Johannes 
Robert 
[1854-1919] 
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ILyman, Theodore 
[1874-1954] 

IPaschen, Louis Carl 
Heinrich Friedrich 
[ 1865-1947] 

I Blackett, Patrie 
Maynard Stuart 
[1897-1974] 

The m in Rydberg's equation is an integer. The part corresponding to 111 = 1 
(ultraviolet series) was discovered by Theodore Lyman in 1906, and the part 
corresponding to m = 3 (infrared series) by Louis Paschen in 1908. That 
corresponding to m = 4 was found in 1922 by Patrie Blackett. Not surprisingly, 
they are called the Lyman series, Paschen series and Blackett series. 

Blackett series Balmer series 

I~I~ m 
y 1_ 11I~14' y 

Paschen series Lyman series 

•• • But, but, but. .. f{ a: How do these spectra come up? 
~n Just what is this? 

Although they could predict the spectra of atoms, neither Balmer nor 
Rydberg could explain why they occurred. 

~ 
V In physics, if questions like "Why?" and "By what means?" cannot be 

answered, it means that the phenomenon has not been explained. 

Because Rydberg's equation perfectly described the spectra of light from 
atoms, it ought to have been an important clue to understanding the atom. But 
actually it didn't work quite so well. 

In general, it was not known how or why the spectra 
emitted by atoms are line spectra, nor why they only 
appeared in certain predetermined places in relation to 
each other. Fourier had described light in terms of 
complicated waves (complicated waves are summations of 
simple waves, and the frequency of complicated waves is 
an integral multiple of fundamental frequencies), but his 
and Rydberg's equations looked very different. 

It takes the fonn of 0 - 0 
something minus something. 

Now, physicists could not account for the light emitted by atoms. Where 
did it come from? How was it emitted? They began to study it in earnest. 
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For hundreds of years the atom was thought to be the smallest unit that made 
up all matter. But around 1900, it was discovered that atoms were 

constructed of yet smaller particles, one of which was called the ELECTRON. 

~ I'm the one who discovered the electron, Joseph Thomson. Among 
other places, electrons are found in atoms. What is more, when electrons move, 
they emit light. In other words, the spectra of atoms are the light given off by 
electrons. 

a But exactly how are electrons contained within atoms? 

~ Starting with me, physicists asked those questions and began to think 
about the structure of the atom. 

Known facts about the hydrogen atom 

Atomic Mass: 1.673 x lO-z4 g 
Charge: neutral 
Size: lO-8 cm 

Electron Mass: 9.lO9 x lO-z8 g 
Charge: - e (negative charge) 

(ez= 23.04 x lO-ZOg·cm3 • sec-z) 

~ The size of the atom was determined by scientists. And the weight of 
an electron was calculated to be about 112000 of an atom - a great deal lighter. 

f1 tl Since the charge of an electron is negative, does the fact that an atom 
Ir./~ is neutral mean that there must be something that is positively charged 

inside an atom? 

~ Right! That is exactly what physicists were thinking. 
that atoms must be composed of: 

,--------------
1 

1 

1 

8 
A very light electron 

1 with a negative charge 

1 ' 
_____________ J 

8 : 
A substance with a positive : = 
charge that constitutes the 

1 remaining weight : 

+ 

, ________________ J 

They believed 

--------1 

: (j). : 
, 1 

, 1 

1 Atom 1 

1 1 1 _______ _ 

FIND THE 
STRUCTURE OF 
THE ATOM! 
One after another, 
difficulties arose 

I Thomson, Sir Joseph 
John 
[1856-1940] 

We use 'electrostatic system of 
units', (whose basic uni ts are 
'cm', 'g', 'sec') to make the 
formulas simple. 
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INagaoka, Hantaro 
[ 1865-1950] 

~ They thought it had to be like that. 

At that point, several physicists published models predicting the structure of 
the atom. Among them were two models that became particularly well known. 

o 0 
o 0 0 

o 0 00 
o 0 

The size of an atom 

Thomson model 

-watermelon model ~ 

Thomson thought up a model like this: 
Electrons are scattered about inside a substance 

with a positive charge. The whole resembles a 
watermelon. The reason for this arrangement of 
the electrons is that because they have a negative 
charge, if they are too close to one another. they 
repel each other. Thus, they are at rest in 
electrically balanced positions. buried within a 
positively charged substance and held in stable 
positions. The positive substance. furthermore. 
extends to become the size of the atom (lO-8cm). 

I get It! '~ 

Another model was formulated by Hantaro Nagaoka. 

Nagaoka model 

Saturn model ~ 

Nagaoka thought the structure of an atom was 
something like Saturn. In his model. the positively 
charged substance is concentrated in the center, and 
the negatively charged electrons are arranged 

t--Th- e -si-ze-o-f-an-a-to-m~1 around it. 

Because the Thomson model defmed the size of the atom more clearly and 
agreed with Maxwell's electromagnetics, it was generally accepted. 
Nevertheless, it was still only a hypothesis that had not yet been experimentally 
confIrmed. 
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Then, in 1911, Thomson's pupil ~ 
Ernest Rutherford appeared on the scene. ~ 

Rutherford performed an experiment to prove that the model of his teacher 
Thomson was correct. The experiment consisted of striking gold foil with alpha 
particles emitted by radium (which possesses a positive charge and a great deal 
of energy) and predicting the internal structure of the atom from the reactions of 
the alpha particles. 

Let's try to imagine what happened. 

In the Thomson model, because the positively charged substance extends 
throughout the dimensions of the atom, the positive charge is somewhat thinly 
spread. That is, the density of the charge is low. If you strike the positively 
charged substance with alpha particles, they should be able to pass through 
easily, but some of them may be deflected off their course. Because the mass of 
an alpha particle is approximately 7,000 times that of an electron, here we may 
ignore the influence of the electrons. 

rat 'if 

.... l Let's say the positively charged substance in ~~\:,-(?> 
an atom is sugar, and we want to discover whether the i\, ) 

sugar is cotton candy or hard candy. We'll make ouri •..• ('--~ 

;F£~~:;1~:~~::::r:!~F:~~;O:de~~. ::! , • 
Okay, let's try the experiment. 

Rutherford's experiment on the scattering of alpha particles 

gold foil 

O .... -:-:,; :;::: o :-:-:-:-:-:.. .. . . . .. . .. 
alpha' .. -: ::-.: 

radium particles 

gold foil 

D~ 

Almost all the particles 
passed through the gold 

foil as predicted. 

BUT 

Some alpha particles were 
deflected, at a probability rate 

of 1 in 20,000. 

IRutherford, Sir Ernest 
[1871-1937] 
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What? Alpha particles were being deflected at a probability rate of I In 

20,000?! 

Rutherford, who was convinced of the accuracy of the Thomson model, said 
about the experiment: 

"It was quite the most incredible event that had ever 
happened to me in my life. It was almost as incredible as if 
you fired a fifteen-inch shell at a piece of tissue paper and it 
came back and hit you." 

- From Ernest Rutherford by P. Kelman and A. H. Stone 

The supporters of Thomson's model were truly astonished. Going by the 
Thomson model, the probability of an alpha particle being deflected was so low 
as to completely rule out the possibility of its occurrence. 

The Thomson model was wrong! 

To account for the deflection of alpha particles, there had to be something in 
the center of the atom that was positively charged, into which almost the entire 
mass of the atom was squeezed. Rutherford called this the ATOMIC 
NUCLEUS. 

~ He was Thomson's pupil, but he ended up discovering his teacher's 
~mistakes. 

e Well, these things bappen. 

Now, an atom is made up of a nucleus and electrons. But 
what prevents the negatively charged electrons from being 
magnetically attracted to the positively charged nucleus? 
Without something to counteract this magnetic force 
(Coulomb force), the electrons would be drawn to the center 
and the atom would collapse. For instance, if we let the size 
of an atom be the size of a baseball stadium, then the atomic 
nucleus is smaller than a grain of sand on the mound. If the 
electrons are attracted to the atomic nucleus, then it would be 
like an atom the size of a baseball stadium shrinking down to 
the size of a grain of sand (Appendix 2). 

So, what keeps an atom from collapsing? The nucleus is heavy, and 
probably less mobile than the electrons. Therefore it's the electrons that have to 
be doing something. If the electrons had some force that counteracted the 
Coulomb force, they wouldn't be drawn to the nucleus, and the atom would 
maintain its size. 
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If you put a pinball in a bowl and tried to keep 
it from falling to the bottom, it would work if you 
just kept rotating the bowl, right? It's something 
like that. Whenever something revolves around 
something else a force operates to pull it inward. 
That force is called a "centripetal force." At the 
same time we can presume that another apparent 
force, a "centrifugal force" is pushing the object 
outward. Furthermore, we may presume that the 
balancing of these two forces assures that the 
object will revolve around the center in a stable 

orbit. In the case of an electron, the "centrifugal force" is the Coulomb force. 
The "centrifugal force" can be determined by the mass of the electron, its 
angular velocity, and the radius of its orbit. The size of the atom is determined 
by this path traced by the rotating electron. This path, and therefore the size of 
the atom, is determined by the Coulomb force as centripetal force and 
centrifugal forces (Appendix O. 

Following that line of thought, Rutherford created a model in which the 
electron rotated round and round at a distance where Coulomb force as 

centripetal force I-~: 1 and centrifugal force I mrw ~ I balanced out. 

The size of an atom 

RUTHERFORD'S ATOMIC MODEL 

A positively charged nucleus that holds 
almost all the weight of an atom is squeezed 
into the center of the atom, while the 
negatively charged electrons revolve around it. 

Rutherford finally hit upon what was going on inside the atom! 

Scientists could not see anything smaller than the atom, and so they created 
models, which they used in attempting to explain invisible phenomena. 

The model is complete! It would seem that we have established the 
structure of an atom, but this model has many features that do not make sense 
when it comes to explaining phenomena that we know. 

~ What do you mean? Didn't everything go well just now? What 
~happened? 

Everything in our world - human beings, chairs, desks- is made up of 
atoms. And atoms always maintain their size. Can you imagine waking up to 
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find yourself reduced to Imm in height? That could only happen in a science 
fiction movie! 

-I!JIIII ~. .:.:.:.:.:.: ... :.:.:.:.:.:.:.:.:.:.:.:.: ~ TllJgI ~.~~ 
~'.:.'::::;:'.'. That's pr~Vlou:fl 

Rutherford's model could not explain obvious phenomena like that. 
Maxwell's electromagnetics confinned, both in theory and through experiments, 
that when electrons accelerate, light is emitted. Circular movement also 
involves acceleration. (Appendix 1) 

In the Rutherford model, therefore, electrons would have to give forth light 
as they rotated. Since light was considered to be a wave according to Maxwell's 
electromagnetics, it was thought that the path of an electron as it rotated about 
the nucleus was transmitted as light. 

x 

But energy is lost as the electron rotates and gives off light, causing an 
imbalance in the Coulomb force and centrifugal force in the atom. The electron 
is pulled closer to the nucleus and is finally unable to rotate. In other words, the 
size of the atom is preserved by the rotation of the electron; without its rotation, 
the structure of the atom cannot be maintained. In fact, the principal reason that 
Nagaoka's model was not adopted was related to that point. 
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PROBLEM 1: THE SIZE OF TIlE ATOM CANNOT 
BE MAINTAINED 

R. How strange to imagine an atom collapsingl 

/!!)'We'd all be tired too, if 
we were running continuously. 
We'd run out of energy. 

When energy is supplied, an atom gives off light. But the frequencies of 
light that are emitted are fixed, depending on the type of atom. This is a fact we 
cannot explain. 

In Maxwell's electromagnetics, the light emitted by the rotating electrons 
appears as fixed line spectra. 

x 

$ /\ \ /\ 
\TV\} )t 

x 
Spectrum 

$ JAA(J(J(J 
) t 

\fVVVVV 
~ 

~ 

Frequency v 
x 

$ JnnnnAnnn 
VVVV\{VVVV ~ 

But if the size of the atom shrinks because of the emission of light by the 
electrons, the light emitted in that case 

Spectra 

1 i ) 1 1_ 
Frequency v 

would gradually change in frequency, as shown above. The spectra would move 
and could not form line spectra. 
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PROBLEM 2: THE SPECTRA EMITTED BY THE 
ATOM ARE INEXPLICABLE 

At this point let's admit defeat and, putting aside problems 1 and 2, let's 
assume that electrons continue to rotate, and that their spectra do not change. 
Still, we simply cannot get away from problem 3. 

PROBLEM 3: THE FREQUENCY OF THE LIGHT 
FROM ATOMS CANNOT BE EXPRESSED 
THROUGH FOURIER SERIES 

If we look at Rydberg's equation, which describes the line-up of 
frequencies, we see that it is not a Fourier equation as we know it. 

Fourier Series 

"Any repetitive wave, no matter how complex, is the sum of waves 
that are composed of integral multiples of fundamental frequencies." 

b. ~ A C\ Simple wave 
~q = V V 

Complicated wave + + 
f\f\f\f\ Simple wave V V \Tv 

+ + 
/\/J/J/\/J/\ 
V V \TV V\J Simple wave 

+ + 
nl\l\l\~l\l\~ 
\[vl) V \[vl) V Simple wave 

+ + 

q = L Q(n, 'T) ei21rv( •• T)I 

T 

Unlike the Fourier equation, this has the form of 0 - 0 
something minus something. 

It is not based on integral multiples of some fundamental frequency, nor is it 
an equation involving addition. 

To this point we have described waves entirely through Fourier math, 
but the frequency of light emitted by atoms has odd, discrete values and cannot 
be expressed using Fourier. Therefore this could not be explained by the 
physics in Rutherford's time. 

o They didn't know why this happens. 

There was yet another problem. The size of the atom was determined 
experimentally. But in the Rutherford model, the only fixed quantities were 
electrical charge e2 (g. cm3 • sec-2) and mass m (g). No matter how you 
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approached it, it was impossible to derive theoretically a simple value in 
centimeters that expressed the size of the atom. 

PROBLEM 4: A FIGURE IN CENTIM:ETERS 
EXPRESSING SIZE CANNOT BE DERIVED 

Thus numerous problems arose concerning the Rutherford model, causing 
Rutherford and other physicists to struggle for answers. They were trying to 
neatly explain the spectra produced by rotating electrons and why atoms do not 
collapse. It seemed that answers to both questions would explain the makeup of 
the atom once and for all, but it just didn't work out that way. 

~ What Rutherford discovered through experimentation did not agree 
with mechanics as it was understood at the time. 

Incidentally, Rutherford later gave up work on the structure of the atom and 
threw himself into research on the nucleus. 

~ A So what in the world is going on inside the atom??? 

Prior to the appearance of Bohr, this had been the tale of the physicists' 
adventure. 

2. 3 BOHR MAKES HIS APPEARANCE 

T he hero Bohr makes his appearance. Niels 
Bohr, a Danish physicist, was then 26. He 

was also conducting research on the atom in 
the same laboratory where Rutherford had 
studied. Bohr made important contributions to 
the description of the invisible world, and to 
full development of quantum mechanics. We 
cannot speak of quantum mechanics without 
mentioning him. 

Bohr always started by trying to see the workings of the natural world. That 
approach enabled him not only to build the foundations of quantum mechanics, 
but also to revolutionize science itself and the ways of thinking by which people 
describe the natural world. With Bohr as the pathfinder for Heisenberg and 
other young physicists, physics itself made great leaps forward. 

.Ill J T ·<l1jjiim~I.~J~ill~ll~ll!l~1~lfl~~ 

BOHR'S 
HYPOTHESIS 
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Bohr was thinking all the time, and was very involved in discussions of the 
problem areas of the Rutherford modeL What was the biggest problem? 

'/,' e-'- The biggest problem was explaining why atoms do not collapse. 
Since this self-evident fact could not be explained, it became apparent that 
perhaps there were problems with Newton's mechanics and Maxwell's 
electromagnetics. Perhaps classical theory was not defmitive, after all! 

My starting point was rather the stability of matter, a pure 
miracle when considered from the standpoint of classical 
physics. This cannot be explained by the principles of 
classical mechanics. 

In Newton's mechanics, an electron was considered a particle. Maxwell's 
electromagnetics theory regarded light as a wave. Neither of these theories gave 
an adequate explanation as to why the atom does not collapse. 

o To think: that they couldn't explain something so obvious! 

About that time, Bohr encountered the quantum theory of Einstein and 
Planck, who were gradually identifying the elements in that perplexing problem. 

Planck's energy d\ 
quantum hypotheSis ~ 

The energy of Ught has 
discrete values. 

E = nhv (v= 0,1,2,3 ... ) 

Einstein's light ~'L 
quantum hypothesis ~ 

Light is a particle 
with energy h v. 

E = hv 

In Einstein's quantum theory, light could not be thought of as a wave; 
instead, it was taken to be at times a wave, and at other times a particle. Further, 
this theory identified light as not just a particle but as a quantum. This theory 
could also explain the results of the blackbody radiation experiment, the photon 
effect and the Compton effect. These experiments indicated that Maxwell's 
electromagnetics, in which light is considered to be a wave, was not accurate. 
Here is where Bohr turned his attention. 

fiJl If the difficulties with Rutherford's model are to be resolved, then 
light cannot be thought of as a wave, can it? 

112 CHAPTER2 EARLY QUANTUM THEORY 



TO UNRAVEL THE MYSTERY OF THE ATOM BOHR DECIDED 
TO ADOPT QUANTUM THEORY. 

Bohr considered what would happen to the structure of the atom if light was 
treated as a quantum. 

BOHR'S ATOMIC MODEL 

Wn: Energy 

Applying Planck's formula E = nhv 
(the energy of light can attain only certain 
predetermined discrete values) to the 
atomic model, it follows that the energy of 
an atom can have only discrete values. 

According to classical theory, the energy 
of an atom is determined by the distance of 
the orbits of the electrons from the atomic 
nucleus. The fact that the energy of the atom 
can only have discrete values means that 
THE ORBITS OF THE ELECTRONS 
HAVE DISCRETE VALUES. 

As the distance of the electron's orbits from the nucleus increases, the 
energy of the atom increases proportionately. 

~ I get it. If the orbits are discrete, then the energy values are discrete also. 

g 
~, '- ~ When electrons follow a certain orbit, a certain fixed energy state 

exists. Let us refer to this state as a "stationary state." According to classical 
theory, when an electron moves it emits light. But in a stationary state no 
energy is spent, and the electron can keep rotating in the same orbit indefinitely. 
In that case, the electron will not be drawn to the nucleus, and the atom's size 
will be maintained. Thus, the fact that the atom does not collapse can be 
explained. 

o This lets us solve the first problem; we can now understand how the 
size of the atom can be maintained. 

F. Yes, but it's also true that electrons emit light, right? When and how 1;-\ do they do it? 

~ The light emitted is composed of PHOTONS! 

Let us recall Einstein's photon hypothesis. 
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n : nib orbit (integer) 
m : mlb orbit (integer) 
w. : the energy in the atom at 

orbit number n 

Units of light are quanta 
having energy of hv. The 
energy in the little box has 
discrete values. As photons go 
in and out of the little box, the 
energy in the little box 
changes. 

So it's all right to think of this little box as an atom? 

~ Right. Let's think about this together. 

If you replace the little box with the atom ... 

'~ fi]-
'" When the electrons inside the atom move from one orbit to another, or 

undergo transition, it is like photons moving in and out. 

When the electrons are in the outer orbits, the energy is greater. Then, when 
the electrons undergo transition to an inner, smaller orbit and the energy 
decreases, the excess energy is used and expended in the form of the photon's 
energy hv. Conversely, when an atom absorbs photons with energy hv, the 
electrons undergo transition to the outer orbits. 

With each transition, photons are either emitted or absorbed. At that time, a 
spectrum with frequency v, that is to say a line spectrum, appears. When we 
adapt Einstein's equation to Bohr's theory, we get this. 

~-- The electrons that were here 

in the next instant 

undergo transition to this orbit. 

Light particle (photon) 

Only one line appears. 
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To find the frequency, we solve for v. 

This is called Bohr's FREQUENCY RELATIONSHIP equation. 

P I see. According to Maxwell's electromagnetics electrons emit tight 
1J) ~\\ as they rotate. 

But according to Bohr's theory electrons emit light when they undergo 
transition from one orbit to another. 

That is to say, the basic concept itself has changed. 

But how does the transition itself work? 

fJ-'~ '- Even I don't know that! Ha ha ha. 
But didn't we explain the problems with Rutherford's model- the stability 

of the atom and the appearance of predetermined, fixed spectra - by applying 
quantum theory? You see, the important thing is to explain known facts. After 
all, we can't see inside the atom. Isn't it enough that we can explain those facts 
with this new atomic model? 

Let's summarize the Bohr hypothesis. 

Hypothesis 1 

The atom has certain STEPPED ORBITS, in which 
electrons rotate. At constant rotation, they do not emit light. 
We call such a state of energy a STATIONARY STATE. 

Hypothesis 2 

Electrons can undergo TRANSITIONS from one orbit to 
another by absorbing or emitting PHOTONS. 
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SOLVING THE 
PROBLEM 

GI Bohr composed these two hypotheses with the idea that light is a 
'iI quantum, but in doing so he appeared to have resolved all of the 

'- problems with the Rutherford model. 

The first problem with the Rutherford model, that the atom would not 
maintain its size if it were giving off light, was resolved by the statement that 
when the electrons remain in their orbits, no light is emitted. 

The second problem, that the spectra of atomic light could not be explained, 
was resolved by positing that when electrons undergo transition from one orbit 
to another, photons with energy hv are emitted, resulting in line spectra. 

The fourth problem was that the size of the atom in meters could not be 
derived. But Bohr adopted Planck's E = nhv. By virtue of the units of Planck's 
constant h ([hJ = kg m2 sec-I), it became possible to determine the size of the atom. 

In the ways described above, three out of four problems were solved. 

A Then what about the third problem, that the frequencies of atomic 
, ~ light cannot be expressed through Fourier math? 

'~ fi/-
v Since the emission of light could now be explained by quantum 

theory, Fourier math was no longer necessary. Bohr's frequency relationship 
became a new language for describing the light of the atom. 

Thus, Bohr ended up formulating an equation to express the light of an atom 
using quantum theory. But then, Bohr came across Rydberg's equation 
expressing the spectra of atomic light! 

This 15 .. ! 

Rydberg's equation 

v = Rc - Rc (n > m) 
m2 n2 

This expression describes 
the spectra of hydrogen 

Bohr's frequency 
relationship equation 

Wn WIll 
v=---

h h 
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The two equations have exactly the same form. Rydberg's equation neatly 
described the frequency distributions of the spectra of an atom. And Bohr's 
equation was the frequency relationship that he had derived from his own 
theory. It is said that this was the point when Bohr became convinced that his 
theory was valid. 

n Fantastic! It's so dramatic. 

If Bohr's theory was correct, then these equations should be equivalent. 
Bohr immediately took the two equations to see if they were equal. 

Both equations are in a form where v is determined by integers n and m. If 
we make the terms containing n equal to one another, we may find the energy w". 

If we change this into an = format, we obtain the following. 

Equation describing the 
energy levels of the 

hydrogen atom 

w =_ Rhc 
n n 2 

W(Energy) 

234 n(Orbit) 

This equation expresses the energy in the hydrogen atom at orbit number n. 
It appears that the energy level of the hydrogen atom works in a discontinuous, 
stepped form as shown in the diagram. 

Q]~~~ " 
" '-~ Energy levels increase in the outer orbits, but the differences in energy 

between adjacent orbits decrease. 

T he spectral series was determined by setting the value of m in Rydberg's 
formula. Considering m in terms of Bohr's theory, it then means the orbit to 

which the electron undergoes transition. Putting this into a diagram, we obtain 
the following. 

Ii¥Ji. 
WE'VE 
DISCOVERED 
THE MEANING 
OF THE SERIES! 
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IFranck, James 
[1882-1964] 

IHertz, Gustav Ludwig 
[1887-1975] 

) Balmer series 

~ 
\{f The movement of the electrons has become very concrete. We've 

taken one step into the world of the atom! 

, But wait a minute. Bohr used quantum theory in working out his 
ideas. Then he just went ahead and took his own hypothesis as a basis for 
adjusting Rydberg's equation and deriving the energies of electrons in a 
stationary state. But we do not yet know whether or not there are such 
stationary states with stepped values. 

Two people thought, "Let's try and confirm it right away!" They were 
James Franck and Gustav Hertz. They immediately performed an experiment 
and discovered that the stepped energy form was a reality. That was in 1914, 
the year after Bohr presented his atomic model. 

TeL Experiment Log 
Let us now tell you about Franck and Hertz's experiment which we 

performed at TeL. Professor Minami, a well liked senior fellow at TeL, 
normally pursues research on Electromagnetics, on topics such as auroras 
and plasma. Whenever he comes to TeL, he brings along some 
experimental equipment and performs experiments for us. His lectures 
are always delightful and interesting. 

On that day too, he taught the TeL students a new experiment, as he 
usually does. Without realizing it, we performed Franck and Hertz's 
experiment! This experiment involved shooting electrons into a glass 
pipe filled with hydrogen gas. 

I 18 CHAPTER 2 EARLY QUANTUM THEORY 



Gas 

Glass tube 

The hydrogen atom has several discrete energy levels WI' W2, W3 • •• 

Let us assume that the atom is now at its lowest energy state. 

If the electron has just enough energy to raise the energy state of the 
hydrogen atom by one level when striking it, the electron will pass that 
energy on to the atom, and will then leave with a lower level of energy 
than it had before striking. 

If the energy of the electron is not enough to raise the energy level of 
the hydrogen atom, the electron should not pass any energy on to the 
atom and the energy of the electron will remain unchanged. 

Case 1 
The hydrogen gas glows 

\ ~ .' ••. '. ' .. I / ...... " ....... " 
D~"O : hydrogen gas' . -

electron0 .. :- : -: . :- .. ~ "-

Case 2 
The hydrogen gas does not glow 

D ······· ........ 
~o······· ........ 

0·.·.·.·.·.· . !?" ,,' / ,\ \ .fJ Inside the atom ... ~ 
o_@) 

transition to 
an outer orbit 

transition to 
an inner orbit 

~ 
~"'OO i, ,"""'" 

weak electron 

no change 

The actual experiment is set up so that by changing the voltage 
between ® and ®, it is possible to regulate the speed of the electrons. 
When the speed of the electron is high, its energy is also high. 

When an electron, having left from ®, arrives at ©, the needle of 
the ammeter will quiver. Since ® is charged with +0.5 volts, unless the 
electron has enough energy to pass through ®, it will be seized by ® 
and the ammeter will not move. 
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I 
I 

, All right! Let's begin the experiment. 

We release electrons from @ and slowly increase the voltage. At a 
certain point the ammeter starts gradually rising. 

At this point, the electrons do not have enough energy to raise the 
energy level of the atom, and they strike the atom without releasing any 
energy, passing through ® to arrive at ©. 

We raise the voltage again. At the instant a certain voltage is attained, 
the current suddenly drops. 

_ We did it! That's just what we predicted. 

A(Amperes) 

r..o:;..--------~V(Volts) 
['?I 

An electron with a great deal of energy strikes the atom, passing on its 
energy and changing the atom's energy level from WI to W2• The electron 
loses energy and is seized by ®, and current can no longer flow. 
(Because some electrons reach © without striking any atoms, the current 
does not become zero.) 

""" Let's raise the voltage some more. The current is starting to 
~ rise again. 

A 

'-.\\\\J!!f: 
V 

~--------------~V 
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A 

~--------------~v 

~ Look! The current really can't flow when the voltage reaches a 
certain, predetennined level. 

The energy level of the atom was raised again. And with the excess 
energy, electrons are able to break through ® and arrive at ©. As we 
continued the experiment, we found our results could be graphed. 

A 

w::..--------~v 

It really is just as Mr. Bohr said. The energy levels of the atom are 
discontinuous and stepped. If we are this happy at our results, imagine 
the jubilant feelings of those who first performed the experiment. They 
won the Nobel Prize in 1925. Franck and Hertz were satisfied with the 
results which demonstrated that the energy level of the electron in the 
atom was, as predicted, stepped. And their results matched the energy 
levels derived by Bohr. 

~ One is reminded of Einstein's saying: "When one has a theory, 
one must first establish what can be observed." 

2. 4 EARLY QUANTUM THEORY 

N othing was left to daunt Bohr. There was no doubt that by hypothetically 
applying quantum theory, the nature of matter could be explained. Bohr 

worked on perfecting his theory. His research involved the equation expressing 
the energy levels of hydrogen atoms. 

.. \ I, 

Let us focus on the term£in this equation. 

THE 
CORRESPON· 
DENCE 
PRINCIPLE 
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R is a constant that was used by Rydberg in constructing his equation. It 
does not change regardless of the type of atom. This constant was derived 
experimentally, but it had not been explained theoretically. It would be useful to 
find out the identity of R. How can we find out what R is? 

At this point Bohr made a discovery that was to be a breakthrough in later 
enabling quantum mechanics to move ahead. When n is very large, the electron 
rotates in an orbit at the extreme outer edge. Since energy levels are 

proportional to - ~ , when n is very large, the difference in energy from one 
n 

orbit to the next nearly disappears. 

W(Energy) 

234 n(Orbit) 

When the difference in energy all but disappears, the energy levels are 
virtually continuous. In that case, although the electrons are in fact emitting 
light as they undergo transition from one orbit to the next, one could think as in 
classical theory that the electrons are emitting light as they rotate. This idea led 
to other possibilities. Classical theory posited integral values for the 
frequencies of light. When n is large, both Bohr's theory and classical theory 
give the same answers, even though the mechanisms they propose for emitting 
light are completely different. Using this fact, it was a matter of trying to derive 
R when n was very large. 

All right, let's see what happens to the frequencies in Rydberg's equation 
when n is very large! 

(,. 

Rydberg's equation 

1I =_ Rc + Rc 
n2 m2 

n + 1 
n 

/1-1 

",' 
- When the electrons are rotating in the extreme outer orbits as shown 

in the drawing, what happens to the frequencies of light that are emitted when 
electrons undergo transition from those orbits to orbits a little closer in? 

First, let us define m as referring to an orbit that is 'T (tau) levels inward from 
the orbit at level n. We can write it as m = n - 'T (n = 1, 2, 3 ... ). For example, 
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when m is two levels inwards from n, then l' = 2 and m = n - 2. By rewriting 
Rydberg's equation using n - Tin place of m. we can derive an equation that 
expresses the frequency v in terms of the stepped orbits T. 

v = - Rc + Rc ::r:::=: ~ 
n 2 (n - l' )2~t it so that m = n-:;,.; 

- RC( n 2 - 2n l' + l' 2) + Rcn 2 
= 

n2(n2 _ 2nT + l' 2) 

- Rcn2 + 2nT Rc - RCT 2 + Rcn2 
= 

2 

2RcT -I-Rc n -=<:efactOred ou~ 

(1'=1,2.3.···) 

""" We got it! ~ 
How about that! This equation shows us that we actually obtain frequencies 

that are l' multiples (integral multiples) of the fundamental frequency 2~c as 
n 

per classical theory. 

m In other words, Bohr's results do match classical theory when n is 
large. In cases when n is large, the value of frequency v is equal to the value of 
frequency v obtained in the classical theory. Let's think about how we can 
obtain frequency v using the classical theory. 

Frequency can be obtained by using the equation "Coulomb force = 
centifugal force" as mentioned in the beginning of this chapter. 

2 

e2 = mrw 2 (Coulomb force as centripetal force = centrifugal force) 
r 

The angular velocity w (omega) being w = 21TV, we use this relationship to 
find the frequency v and obtain the following. 
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This is the fundamental frequency v of classical theory from which we 
obtain multiples of T. 

Rydberg's equation for v 

when n is large 

v = 2~c T (T = 1,2,3 ... ) 
n 

The classical equation for v 

We have now completed the first step in finding R and found 2 equations 
that produce the same values for frequency v, although the method in which 
light was applied was completely different. Now, all that needs to be done to 
find R is to make them equal. 

I But it won't work Ibis way. 

Looking at the quantities in the two equations that are known and leaving 
out R, we have the integral constants 2, c, e, 4, 11', m and T. In other words, the 
frequency is determined in the Bohr theory by ORBIT n, and in classical theory 
by RADIUS r. Size is respectively determined by the differing properties 11 and 
r, respectively. Even if we make a simple equivalence, we cannot find R. We 
need to rewrite n and r in separate ways to find a corresponding factor. So, how 
should they be rewri~ten? The key to that lies in energy. n(ORBIT) and 
r(RADIUS) are determined by the amount of energy the electrons hold. If we 
rewrite portions of nand r to reflect the amount of energy, we can then make the 
two equations equal and find the value of R. 

,,~ Let's try it. 

When we rewrite the two equations with n and r in the form of energy, we 
get this. 

~-----------------, 
Energy as derived from 

Bohr's theory 

W =_ Rhc 
n n2 

J, 

n=jl~1 
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Energy according to 
classical theory 

e2 
W=--

2r 
J, 



Now, we're ready. Let's place the n from Bohr's theory into Rydberg's 
equation for v when n is large and the r from classical theory into the classical 
equation for v. Equalizing them we get: 

Bohr's equation = 

2Rc 'T 

(JWr 
= 

We rearrange and take out 'T. 

= 

2Rc I w It 
RhcJRhc n 

= 

2 IW It 
.J Rh 3c n 

= 

2 IW It 
.JRh3c n 

= 

2 = 

= 

~& Gotit! 

Classical theory equation 

2 
7T 2me4 

Factoring out I w. It 

We square and 

remover· 

If we do the calculating, we obtain the same value as the Rydberg constant. 

-~~~~-----------, 
Thy working it out for yourself! 

Circumference ratio: 7T = 3.142 

Electron mass: m = 9.109 X 10-28 g 

Electrical charge: e2 = 23.04 X 10-20 g cm3 sec-2 

Planck's constant: h = 6.626 X 10-27 g cm 2 sec-1 

Speed of light: c = 2.998 X 1010 em see-1 

I 
I 
I 
I 
I 

• 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L 

r----------------------------------------------------, 
Calculation area 

r----~---------... -----------, 
R=! i cm-1 , , '------------------_ ... _-----' 

Have you completed your calculations? Is your answer 
correct? R = 1.095 x lOs cm- l (exact value is 1.0973 x lOs cm- l ) 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

We've found that when we insert actual values, it works out, doesn't it? 
With this, the contents of the constant R, which had been a mystery, was 
revealed. Now let's try inserting the R derived from Bohr's theory into the 
equation for the energy level of the hydrogen atom. 

= 

Equation for energy levels 

21T 2me4 1 
W =- -

n h2 n 2 

We did it! We've actually managed to express the energy levels for the 
hydrogen atom perfectly using Bohr's theory! Fantastic! 

At this point, we must not forget that although we have created an 
equivalence between classical theory and Bohr's theory, their interpretations of 
the mechanisms of light production are completely different. And even though 
he understood that an atom could not be described using classical theory, Bohr 
happened to notice that the results corresponded for large values of n. In this 
way, he BORROWED THE LANGUAGE OF CLASSICAL THEORY and 
it worked. Bohr's approach may appear impetuous, but all of us take an 
"impetuous approach" when attempting to explain something completely new to 
people. 
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When we try to describe the taste of 
something that we are eating for the first time, 
most of us instinctively use comparisons. For 
example, "It's like chocolate, but it isn't sweet 
and it smells like roses ... " It is difficult to 
communicate in a way that others will 
understand if we don't use familiar references. 
Even if the taste of the thing is not conveyed 
very well, by offering them some clues people 
will form their own images and get some idea 
of the real thing. 

Bohr used classical theory as his familiar reference, incorporating its terms 
as he forged ahead into the unknown, newly unfolding quantum theory. The use 
of such references describes what was called the CORRESPONDENCE 
PRINCIPLE, which would assume a very important role in the development of 
quantum mechanics. With the condition that n is large, the answers yielded by 
Bohr's quantum theory and classical theory agreed, serving to affirm the place 
of the new theory. Bohr's quantum theory was not something that was 
completely apart from classical theory; it incorporated classical theory and in 
effect expanded the boundaries of what could be explained. 

quantum theory 

Because of Bohr's Correspondence Principle, the boundaries of what could 
be explained would expand yet further, opening up great, new possibilities. 

Full of spirit and bursting with energy, Bohr would continue 
to bound ahead in the research of quantum mechanics. (In 
particular Bohr's institute in Copenhagen, Denmark became the 
place where all young physicists went to try out new ideas.) 

By then, not only had Bohr extracted a body of facts concerning energy 
levels and frequencies from theory, he had also confirmed them 

experimentally. From there, drawing more and more information from his 
theory, he progressed toward the discovery of the quantum condition. Bohr 
wanted to investigate many, many other things. But by itself, the approach he 
used to that point was not adequate. So, Bohr constructed his third hypothesis. 

THE ROAD TO 
THE QUANTUM 
CONDITION 
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Hypothesis 3 

When electrons are rotating in their orbits (stationary state), 
they behave as classical theory predicts. 

But Mr. Bohr, you did say at the beginning that classical theory was 
wrong. 

If we don't leave well enough alone, we may find ourselves on the 
wrong road. So far the results have agreed with the experiments, but the pitcher 
can go to the well one time too many. 

@ No, no, what happens twice will happen again. 
will be fine. 

I'm sure everything 

Are you all aware that this hypothesis indicated some change in Bohr's 
thinking? Until now, when n was large, energy and frequency were the same in 
classical theory and quantum theory. But this hypothesis proposed that when 
electrons are rotating in their orbits without emitting any light, energy and 
frequency are the same as in classical theory, whether n is large or small. 

~II' Let's try and find the size of the atom by determining its radius! 
W~ 

m Radius? That's something new! 

That's true. Previously Bohr was dealing with orbit number n, but just now 
we made a correspondence between the orbits of Bohr's theory and the radii of 
classical theory, and we haven't yet explained anything about the radius 
according to quantum theory. Let's give it a try. 

When an atom is in a stationary state, the energy is the same in both 
classical and quantum theory, so we may equate the two equations. Let's 
modify them and find radius r. 
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Equation that expresses 
energy in quantum theory 

Equation that expresses 
energy in classical theory 

w=_£ 
2r 

(See Appendix 4) 

eo; We can make these two equations equal to each other and express 
them in terms of r. Let's try it! 

h2n2 2r 
21T 2me4 

= 
e 2 

e 2 h2n2 2r e 2 

= 2 21T 2me4 e 2 2 

h2 
n2 = r 

41T 2me 2 

.. We got it! This is the radius of the atom! tB'& 

When n = 1, this equation is known as the Bohr radius. 

Bohr radius equation 

h2 
a = -"'-::----::-

41T 2me2 

Keep at it! 

What this means is that, as in the diagram of the orbits of an atom, as n 
grows larger, the intervals between orbits grow larger in turn. 

When we make n in this equation equal to 1, the most stable condition, we 
can take that as the size of the atom. Let's try working it out! 
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~ From experiments we found that the diameter of an atom is about IO-x 

cm! 

A Will we really get that? If we do, then Hypothesis 3 must be true also. 

mo. First, let's just do our units! 

[h] = g cm2 sec-1 

[m] =g 

Let's put this in the previous equation! 
g2. cm4 • sec-2 

----"---~-___=_ = em 
g . g . cm3 • sec-2 

A.~ So the units agreed nicely, didn't they? JJf" What you said before about finding out the number of centimeters by 
putting in Planck's constant h was really true, wasn't it? 

~ Okay, let's do the quantities as well! 

h = 6.626 X 10-27 g cm2 sec-1 

1T = 3.142 

m = 9.109 X 10-28 g 

e2 = 23.04 x 10-20 g cm 3 sec-2 

, Let's try it for n = 1, the most stable condition. 

(6.626 X 10-27)2 = 0.5298 X 10-8 

4 X (3.142)2 x 9.109 X 10-28 x 23.04 X 10-20 

The radius of an atom is found to be 0.53 x 10-8 cm. The diameter is 
1.06 x 10-8 cm. 
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~ 
\j That's it, we got 10-8 cm! That matches the 

experimental value perfectly. This means Hypothesis 3 was 
right also, doesn't it? 

o Hmm ... 

~ What are you thinking? 

~e At the beginning there was the problem of size ~ it seemed that an 
atom's size could not be maintained. I can understand that the size of an atom is 
the size when it is the most stable. But since atoms have all kinds of orbits, 
doesn't it mean then, that there can be many different sizes? It still seems very 
strange to me. 

@ Yes, it's strange. But when n is equal to I, it matches the 
experimental value. I think that's good enough. It's all right, certainly for now. 

By using Hypothesis 3, the radius could also be determined. 
At this point, Bohr realized that he could easily find the angular momentum 

as well. 

e Here I go again with calculations! 

~ He did say we could find the angular momentum easily, but. .. 

~ What's angular momentum anyway? 

The angular momentum is the momentum of something rotating in a circle 
or an ellipse. In the case of a circle, the usual momentum mv is multiplied by 
radius r. (See Appendix 3) 

Angular momentum 
M=mvr 

M =mr2w 
~ ~ecause v = rw ) 

!~II. m:.: ... 
DISCOVERY OF 
THE QUANTUM 
CONDITION 
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This time let's proceed in the same way by making the equation for energy 
levels in Bohr's theory equal to the equation for energy in classical theory, and 
deduce the answer! 

Bohr's theory = classical theory 

What!? This time there isn't any M or mrv. It was easy last time 
because there was an r. Oh, dear! What are we going to do? 

~f Here's a good place to use the "Coulomb force as centripetal force = 
centrifugal force" formula that we used in making the model of an atom. That 
way we can gather all the components - m, r and w - that we need to find the 
angular momentum, so we're sure to get M. 

e2 
mrw 2 = rr (centrifugal force = Coulomb force as centripetal force) 

Centrifugal force 

We modify this slightly. 

If we place this term in the "Bohr's theory = classical theory" equation, we 
can easily obtain M. 

~ Now the numeral<lr on the right side resembles mr"" which equals M, 
right? So let's try rewriting it using M. Since M2 = m2r4 w2• 
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IW~ ~here were too many m's and r's, so they went into the denominator, 
tl;;J nght? 

Okay, now we can use the fonn M2. Let's try it! 

Then we substitute the tenn we found earlier 

into the equation 

Just keep on eliminating 
the numbers! 

.e We got it! The calculations were a bit long and bothersome, but what 
came out was so simple! 

, I I" 

, ~ :: I was amazed too when I first saw this. Even though we obtained the 
energy and the frequency and the radius before, it was astounding to see it come 
out so neat and clean this time. 
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ISommerfeld, Arnold 
Johannes Wilhelm 
[1868-1951] 

This equation contains no special number like m that changes depending on 
the type of atom. That meant it had to be a law that would apply to all 
phenomena relating to quanta. Thinking this, Bohr was OVERJOYED. 

All atoms behave according to the law 

M h 
211" n 

Bohr gave a name to this principle. It is 

BOHR'S QUANTUM CONDITION 

Up until this point Bohr had been building up his new theory by himself. 
Eventually, it was demonstrated that his theory corresponded with experimental 
findings. One more very important fact can be learned from this equation. That 
is that Planck's constant h is expressed in the simple form of angular momentum 
M multiplied by 27T, and that it has the same units as the angular momentum. If 
one knows that the constant h, which determines the discrete energy state of the 
atom, and the angular momentum are expressed in the same units, one also 
knows that the angular momentum helps determine the discrete energy state. 
Bohr was absolutely elated about what he had accomplished so far, and he went 
to show Arnold Sommerfeld. After looking it over, Sommerfeld said simply, 

Bohr, you're still pretty green. 

'1 
• ~ What is it? Why do you say that? 

'C 

Sommerfeld noticed that the equation M = 2~ n described angular 

momentum, and so it could only be applied to things moving in a circle or an 
ellipse. That's what was wrong. If the quantum condition was going to be a 
general physical law, it would have to be applicable to quanta moving in any 
manner. 

~ ~ After all, quanta don't only move in circles or ellipses. 

Bohr and Sommerfeld tried to think of something based on E = nhv that 
would allow for more and different kinds of movements. However, the equation 
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they came up with could only be used for simple harmonic oscillation. 

E: energy of light with simple harmonic oscillation 
v: frequency of light with simple harmonic oscillation 

Wanting to write v and E in a different form, the form of the relationship 
E = nhv was altered to obtain: 

E =nh 
v 

Okay, let's express E in a different form. That way we can use it for 
v 

any kind of motion. 

~ From here on, both equations and unfamiliar words will come up 
often, but if you look closely at them, you'll find that they're rather simple. So 
let's all do our best! 

fiJ All right, let's get to it! 

At this point Sommerfeld looked in his manual, which contained all sorts of 
equations, and found one that looked as if it might work. 

o What is it? What is it? 

It's the PHASE PLANE, ~ 

a, What's that? 

A Even if a difficult word comes up, don't worry about it. Sometimes 
you hear a word you don't know when you're listening to the news. But if you 
listen to the whole news broadcast, you at least get the general idea, right? It's 
the same thing with quantum mechanics. 

I Keep at it! Keep at it! 

Put simply, the phase plane describes the momentum and the position in one 
plane. Using the phase plane, simple harmonic oscillation will be expressed as 
ellipses. 
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1. We pull the weight out to a certain 3. 
position. 

q r . ) r ) 
q 

2. We release the load on the spring. 4. Now we have completed one cycle. 
We repeat this again and again. 

r ) 
q 

) 
q 

Sommerfeld noticed that E became the same as area J of the ellipse, and 
JI 

by equating the two he was able to describe the quantum condition for any type 
of movement. 

~ Is that true? 

~ All right, let's see if J really becomes E in the case of harmonic 
Q /b oscillation. v 

To begin, here is your basic information about ellipses. 

2 y2 
Equation describing an ellipse x 2 + 2' = 1 

a b 
Area of an ellipse J = 7r ab 

y 

b~ 
To find the area of an ellipse, we need to 

know@ili>andtili!§)on the phase plane. But 
right now we do not know what a and b in 
the equation for area are, so let's try and 
find them from the equation describing the 
ellipse above. If we put momentum and 
position in the places of x and y, we can 
form the equation for an ellipse. Let's try 
using momentum and position. 

-a 

-b 
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Now, first of all, the equation for energy for harmonic oscillation is: 

2 k 
E(p,q) = fm + '2 q2 

If we use this equation, momentum and position are included in it. Let's 
rearrange the equation to make the fonnula describing an ellipse, and then find 
the parts that correspond to a and b. 

They're beginning to look similar. 

o We did it! They're exactly alike! That is, we came up with 

a = ./2mE 

b=ff .f2mE 
q 

~6 Now that we know this, the rest is simple. All we do now is insert it 
into the equation for the area of an ellipse. So let's try it! 

Area of an ellipse 

J = '!Tab 
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So, we get 

J=J2mEI¥ 1T 

= 21TEIf 

The term If in this equation is very similar to the w of harmonic 

oscillation. w is the angular velocity and the speed of something when it goes o around and around. 

0, But wasn't w = Ir. ? 

e£ Exactly! That means that If = ~ . 

1:\ I see. Well, then, let's try putting in ~ . 

We insert If = ~ and obtain 

o Oh! I've seen that before. 2~ was v, so all we have to do is invert it 

and put it in like before. 

J=E1.. v 

We got it! We actually got J = ~! ~& 

J k h E'h' E h d d"h ust now we too tell 10 t e equatIon 1I = n an expresse It 10 t e 

form of J, writing 

J=nh 

By crossing out E and II from the equation E = nhv, we tried to create a 
quantum condition that could be used in a wider variety of cases. Now we've 
finished that equation! With this, the motion can be any motion, not just 
circular! 
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o We did it! It's a new quantum condition. 

~ But don't we want a term that's a bit better looking than "J"? 

~ Well, then, let's dress it up! 
o{) 

J was found by isolating one cycle of a repetitive movement and finding its 
area, and so ... 

f [ ]dq =nh 

What are we doing? We want to find momentum, so we insert p and obtain 

fPdQ=nh (n=l,2,3,4··· .) ~ 
PERFECTED EDITION OF 

THE QUANTUM CONDmON!! 

The quantum condition must be satisified by all quantum-related 
phenomena. It is, however, limited to iterative motion. 

Instead of using classical theory, by using the quantum theory principle that 
''the energy of light is discrete" as the basis for his hypothesis and atomic 
model, Bohr discovered a language that thoroughly explained the spectra of 
atomic light, the stability of the atom, and even the hitherto inexplicable discrete 
energy condition. 

\ " , ".. ~ 1,,-o • to Fan .... lc. Mr ~hrl! ~ A ~ 
And yet Bohr's new theory, quantum theory, was something anyone could 

handle, just by taking the old language of classical theory plus the quantum 
condition. 
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r------------------------------, 
To classical theory 

we add 
@e quantum conditiov 

V 
,,~ 

and we produce 
quantum theory! 

, \ , / 
....... ~ 

¢~ L ______________________________ ~ 

How wonderful! Now we are able to explain things we cannot even see. 
Just when it looked like peace had returned to the world of physics ... 

Qarta mrnureT>--G. ~ .. . . 
':;.;.;-. 

Jm A spectrum is not just a matter of frequencies; it is also important to 
@,l~ know how much light of each frequency is present, right? 

We can determine how much light of a given frequency is contained in a 
spectrum by reading the intensity of individual colors in a line spectrum. If a 
color in the line spectrum is deep, then it contains a large portion of light of that 
frequency (meaning the light is strong). Conversely, if the color is faint, the 
portion of light of that frequency is small (meaning the light is weak). 

Oh! That's right. .. 

Even if we know the components, it doesn't mean anything unless we know 
their quantities. 

When you make a curry. if you use the standard ingredients - meat, 
potatoes, carrots and curry powder - but you don't use standard quantities, 

(g) (g) 

this much or that much 

the result is totally different from what it usually is. That's right, we have to 
remember quantities. Bohr's new language only accounted for spectral 
frequencies. 
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2. 5 THEORETICAL INCONSISTENCIES 
AND METHODS OF SOLVING THEM 

So, all we've been doing up to now is making classifications ... 

There's no need to feel discouraged. Let's think. How can we find the 
intensity of light? 

o ~~~:'~nsity of light = lamplitudel' 

0m 
C\..:J Absolutely. But think again. What was intensity? It was the height 

of the light waves. That was an equation used in classical theory, where light 
was thought to be composed of waves. But light is ... 

A quantum particle! 0 
We can't use the language of light waves anymore because we are now 

thinking in quantum terms. According to classical theory, electrons gave off 
light waves simply by rotating in their orbits. It was thought that the motion of 
the electrons could be determined from the light waves, and that it was possible 
to find the amplitude of the light waves from the motion of the electrons. But 
electrons give off light quanta when they undergo transition inside the atom, so 
we cannot find the movement of the electrons in the same way we would using 
classical theory. Therefore, we cannot find the amplitude. 

~ What are we going to do? 

Well, since we know that a single light particle (photon) has energy 
h 1J, can't we count up the number of light quanta of a given frequency IJ that 
emerge, that is to say, the number of transition cycles? 

That's right! If we can determine how many particles emerge in a given unit 
of time, then we can find the intensity. 

THE INTENSITY 
OF LIGHT 
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'Ehrenfest, Paul 
[ 1880-1933] 

'Lorentz, Hendrik 
Antoon 
[1853-1928] 

intensity of light = number of transitions 

That's right. But we know nothing at all of the mechanism of transition. 
When, where and how transition takes place and light is emitted are anybody's 
guess. 

~ So we can't figure it out after all. 

In general, transition occurs when the electrons inside the atom move 
instantaneously from one stepped orbit to the other. No one understood how 
that could happen. As long as Bohr's theory contained this kind of nonsensical 
assumption, physicists thought, it couldn't possibly be very useful. One of his 
colleagues, physicist Paul Ehrenfest, wrote to another, Hendrik Lorentz: "I was 
disappointed with Bohr's Balmer formula. If he can achieve his purposes with 
that kind of work, I'll have to give up physics." 

Dark Faint 

III I~ 
Frequency v 

Looking at a spectrum, physicists could tell whether the colors of the lines 
were dark or faint. But without understanding how electrons undergo transition, 
it was impossible to express the intensity of light. Then Bohr thought of using 
probability to express the intensity of light - to describe it in terms of how 
easily an electron can undergo transition from one orbit to another. Then the 
intensity of light would be decided according to how high the level of 
probability of transition was. 

Intensity 

It looks like electrons can get here easily. 

And so forth 

t:] Somehow this feels a bit shaky. 

Well, it couldn't be helped. There was no other method to understand it. In 
any case, what matters is that the method produced results. Bohr reasoned that 
there might be a "certain quantity" that, if squared as in measuring the intensity 
of waves, would equal the probability of transition. 
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Classical theory 
intensity of light = lamplitudel2 

Quantum theory 
intensity of light = probability of transition = la certain quantityl2 

To think that the intensity of light can only be expressed in terms of 
probability ... 

Other physicists were not satisfied at all. Some were convinced that if only 
the mechanism of transition were understood, other answers would fall into 
place. They threw themselves into their research, wondering if there were some 
secret escape route from one orbit to another. But the mechanism of transition 
remained a mystery. 

II 
~@\l}fu 

""; But can't we just use the Correspondence Principle, like we've done 
up till now? 

Right! We're not empty-handed. We 'can find an answer using Bohr's 
Correspondence Principle. When the n in Bohr's theory is large, that is, when 
the electrons are rotating in the extreme outer orbits and their energy is very 
high, they expend some energy undergoing transition and emitting light, but this 
energy loss is very low. We can consider them to be giving off light as they 
rotate, with energy values comparable to those we get using classical theory. 

According to classical theory, light is composed of waves. Because a light 
wave goes around and around, it is a cyclical wave. Of course ... 

~ This can be expressed through Fourier math! 

Right! Now here's the Fourier series. 

q = L Q(n, 7) e i21r "In. T)t 

T 7 \ 
amplitude frequency 

A complicated wave is the sum of 7 

(integral) mUltiples of simple waves. 

By placing the equation for simple waves in correspondence with the 
equation for light emitted during a single transition, we can find the amplitude 
and the frequency. We can then deduce intensity by squaring the amplitude. 
That result will agree with Bohr's result for the times when n is large! That's 
how we'll do it! 

o But it will only work when n is large, right? 
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ROADTOA 
TRUE THEORY 
Pushing ahead 
with the 
Correspondence 
Principle 

Well, that's true. When n is small we do not have integral multiples, and as 
was discovered, the results do not match at all. But by forcing the situation, the 
answers do match to some extent, even when n is small. 

~ Like when? 

It seems to come out that way only when the amplitude is zero, that is when 
absolutely no transitions take place from one orbit to another. Maybe it's a 
pattern of transition. 

t.!) I dislike using terms like "more or less." They make me nervous. But 
I guess we can't describe everything. 

Though we've come this far, from here on the problem might be too much, 
even for Bohr's Correspondence Principle. 

T he physicists in Copenhagen, with Bohr at the center, were thinking hard. 
How were they to find a language to describe the new world of quanta? 

Let's go back to the beginning and retrace our steps. Bohr wanted to construct a 
language that could express the fact that the ATOM IS STABLE. As long as 
one thought in terms of classical theory, this could not be done. Then came the 
new quantum theory. It let physicists explain things about light that classical 
theory could not. 

Planck Einstein 

We adopted Planck's "The energy of light is an integral multiple of hz!' and 
Einstein's "Light is a particle (photon) with energy hv." 

And then we agreed that inside the atom were STEPPED ORBITS, and 
that the energy of the electron changed in discrete intervals. Thus, we could 
explain why the atom does not collapse. 

Furthermore, when n was large, the answers were exactly the same as in 
classical theory! On the basis of that fact, new mechanisms that were absolutely 
unknown before were successfully described using the language of classical 
theory. This process was called the CORRESPONDENCE PRINCIPLE, and 
supplied the parts that were missing in Bohr's theory. The results achieved 
matched experimental results again and again. Thus we have been guided this 
far by the Correspondence Principle. 

But there are still some things we don't know. 
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Why do we get only discrete energy? 

What are the mechanisms of transition? 

We've come this far without knowing anything about these two things. 

Bohr too had come this far, aware that he didn't have the answers. 

The quantum theory that Bohr introduced was derived from experiments, 
and so it was reliable. Nevertheless, it could not explain the workings of the 
atom. Without taking classical theory apart piece by piece, and producing an 
explanation through trial and error, nothing could be described. Worse, if we 
didn't proceed with quantum theory, we would not be able to produce a viable 
image of the atom. 

By attaching the quantum condition to classical theory as a sort of 
provisional measure, we have been content so far to express the new quantum 
theory in the language of classical theory. 

Classical theory Quantum condition 

F = mq + f p dq = nh = quantum theory 

continuous discrete discrete 

Bohr often spoke of the time when he realized, "When I say 'what people 
will understand,' I mean the same thing as what I know myself!" For Bohr, the 
most important thing was to describe the structure of the invisible atom using a 
language which was already known. It wasn't that Bohr was convinced that 
atoms have orbits, or even that he believed that transitions in a literal sense 
occurred. 

By describing the atom as having stepped orbits, Bohr provided us with the 
image of the atom familiar to us today. 

I hope that they describe the structure of the atoms as 
well, but only as well, as is possible in the descriptive 
language of classical physics. We must be clear that, when it 
comes to atoms, language can be used only as in poetry. The 
poet, too, is not nearly so concerned with describing facts as 
with creating images and establishing mental connections. 
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At this point we have two choices: 

1. Continue trying to discover a quantum theory that clearly 
describes the mechanisms of transition without using the 
quantum condition discovered by Bohr. That is, we will 
have found the answer when we can mentally picture the 
internal structure of the atom. 

2. Continue using the Correspondence Principle, since it has 
worked so well until now. In other words, rather than 
trying to discover the structure of the atom, continue 
trying to find the frequency and amplitude from the 
known spectra of an atom using Fourier math. 

o I like the first choice. It seems neat and clear. 

There may be people who think that way. But in that case, do the 
mechanisms of transition adhere to laws that we can understand? 

G I don't know. 

Indeed, nobody knows. Of course it's all right to keep thinking and trying. 
However, it may be that to try and understand is pushing things too far. It may 
be like trying to understand how Taro could be in Tokyo one moment, and in 
Mexico the next instant. 

While some physicists continued their research on the mechanisms of 
transition, Bohr and the Copenhagen group pressed on with the Correspondence 
Principle; that is, they came to believe that the only road to a true theory was to 
use the only language available for finding the intensity of light - Fourier math 
- to find the amplitudes and frequencies of the spectra. 

\f(\POrtql}t' 

Classical theory considered something to be known only when the logical 
path leading to the conclusion could be described. But from here on, something 
was considered known if the body of experimental results could be perfectly 
described, even if the path to the conclusion could not be described. 

One begins to wonder just what the word "know" means. 
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Bohr's young friend Heisenberg, upon learning about Bohr's thinking, asked 
a question that must have been on everyone's mind. 

"If the inner structure of the atom is as closed to 
descriptive accounts as you say, if we really lack a language 
for dealing with it, how can we ever hope to understand 
atoms?" 

Bohr hesitated for a moment, and then said: "I think we 
may yet be able to do so. But in the process we may have to 
learn what the word 'understanding' really means." 

Now that we've stopped trying to disclose the workings of transition, we no 
longer have to think about what is happening inside the atom. We just have to 
find the intensity of light, solving things just as we perceive them using a 
correspondence to Fourier's lamplitudel2 in the following form. 

The probability of transition when an electron emits light = la certain quantityf 
Let's start calculating and figure it out! 

LET'S PUSH ON WITH 
THE CORRESPONDENCE 

PRINCIPLE! 
t:t 
V 

You may wonder if this was a wise decision. At any rate, as Bohr was 
pushing on with the Correspondence Principle he became aware of something 
significant. It will become clear as we proceed. But first, let's work at making 
a correspondence between classical theory and quantum theory. 

Okay, I'm ready to begin! "" 
W 

First, let's look once again at the corresponding classical theory. 

Electrons emit light AS THEY REVOLVE! But they use up their energy in 
giving off light and are drawn to the nucleus. When the electrons are 

revolving in the extreme outer orbits, however, their energy is great, and even 
when they expend energy in emitting light, they have enough energy left to 
sustain a slightly smaller orbit of which the difference from the former orbit is 
hardly noticeable. Thus it seems that electrons emit light as they rotate. 

MECHANISMS 
BY WHICH 
ATOMS EMIT 
LIGHT IN 
CLASSICAL 
THEORY 
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ij : second-order differentiation 
of position q with respect to 
time. This is the same as 
acceleration a. 

The light that emerges in this case would be a periodic WAVE. Of course 
we can express that using Fourier. 

The Fourier equation in 
classical theory 

Any periodic complicated wave is the sum ... 
of waves with wave cycles that are integer _ 
multiples of fundamental frequencies. 

q = L Q(n, -r) e,"21TV(n.T)1 

T 

q: position of the electron 

round and round 

I 

... 

I 

Integral multiples 

I I I I I I I~ 
l' 1 t t J) 

Q(n, -r): the amplitude of the i h simple 
wave which is included in the 
complicated wave generated in 
the nth orbit. 

(n, 1) (n, 2) (n, 3) ........ (n, 1') 

e i211'v(n.T)I: the -rth simple wave which is 
included in the complicated wave 
generated in the nth orbit. 

IAmplitudel2 

;;;;~ll 
This neatly describes the frequency, amplitude and intensity. 

Intensity of light = lamplitudel2 

The sum q of simple waves according to the Fourier equation shows the 
position of the electron, which means that the direction in which the electron 
moved can be determined. 

That calls for Newton's equation of motion 

F=mq (q : position) 

With this equation, all the movements of the electron could be described. 

r----------------
I 
I 
I 
I 
I 
I 
I 
I 

Up until now we have been casually talking about the "old, classical" 
way of thinking, but in fact Newton's mechanics was truly spectacular. 
For three hundred years it described the movements of everything. 

the motion of planets 
or ... 

a rock thrown or ... the movement of a 
pendulum 

., 
I 

• • 
I 
I 
I 
I 
I 
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'ill" .' , 

It was Sir Isaac Newton who discovered that although these 
movements appear at first glance to be totally different, they are 
essentially the same phenomenon. 

Force = mass x acceleration 

F = m X q 

derivative with derivative with 
respecllo time respecllO time 

position q ---7 velocity q derivative ---7 acceleration ii 

As Newton thought about this force, he perceived ordered regularity 
in the motion of all things. If its position and velocity are known, the 
movement of any given thing can be described completely. Of course this 
law is still valid (that is, except when describing what goes on inside the 
atom). It is even used when we send rockets flying into space. 

I 
I INewton, Sir Isaac 

[1643-1727] 

i 
I 

• i 
I 

• i 

• L ________________ ~ 

When an atom undergoes a TRANSITION, 
it gives off PARTICLES of light! When 

a transition occurs from orbit n to orbit n - T, a 
certain fixed frequency of light is emitted. 
Those frequencies describe a discrete spectrum 
peculiar to the type of atom in which it occurs. 

n 

n-I 

n-2 

~--~--~------~P (n ; n - I) i (n ; n - 3) 
(n ; n - 2) 

The alignment of frequencies is shown by Rydberg's equation: 

v = - R~ + R~ (in the case of hydrogen atoms) 
n m 

Now the frequency is clear, but we don't know the intensity. 

But when n is large 

v = 2Rc T 
n 3 

, \ I I, 

When -;,;- is large 

So we get discrete frequencies in (integral) multiples of T! Let's make a 
correspondence between this and Fourier. Using the mechanisms of classical 
theory alone, we could not express this when n was small. So now let's rewrite 
the Fourier equation so that it relates to quantum theory. 

MECHANISMS 
BY WHICH 
ATOMS EMIT 
LIGHT IN 
QUANTUM 
THEORY 
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The Fourier equation for quantum theory 

Transition component = Q(n; n - T )e,'211'v(n; n - T)t 

(n; n - T) : when there is transition from level n to level n - T 

In classical theory, the light emitted by an electron was described as the sum 
of T (integral) multiples of simple waves, but in quantum theory only one 
frequency of light is emitted for a single transition. Therefore, the lineup of the 
spectrum does not need to follow integral multiples. We can make the 
correspondence with Fourier this way: 

"A single simple wave in classical theory" and "A single line spectrum from 
a given transition". 

Now we have an equation that will work when n is large and also when it is 
small. That lets us find the intensity as well as the frequency. 

intensity of light = number of transitions 
= probability of transition 
= la certain quantityl2 

The intensity of light according to quantum theory rules - that is, the 
number of electron transitions - can be found in the same way that classical 
theory finds the frequencies of simple waves, one by one, using Fourier math. 
This is the mechanism for the spectrum of the atom according to quantum 
theory! In quantum theory, the frequency of each individual line spectrum 
corresponds to a particular transition, so to sum them up has no meaning. 
However, if we try to use the Fourier equation in order to make the best of the 
Correspondence Principle, the resulting equation will not tell us anything about 
the position of the electron. In that event, the formula to describe the movement 
of something on the basis of knowing its position 

p 

F=mq 
ENDS UP BEING UNUSABLE I 

Bohr came to think of orbit n as something that described the position of an 
electron. That idea led him to describe the energy of an electron by using 
correspondence with energy that could be described using F = mq. In this way, 
he was also able to describe the frequency of light. At that time, he worked 
under the assumption that classical theory would be usable. But if the q found 
from the Fourier equation could not describe the position, then nothing could be 
said about its energy or frequency. Would this mean that everything we've done 
up to now has ended up being meaningless? 
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Without considering orbits, we cannot find the energy. 

That must have been why Bohr brought orbits into his theory. 

"If the spectra of atomic light can be expressed using Fourier math, by 
which we can find frequency as well as amplitude, let us be satisified that we 
have understood the atom, even if we can't envision its structure." 

It appears that Bohr actually felt this way. But this would mean the F = mq 
that he relied on so much would be useless. 

But hold on a second. ~ 

Come to think of it, we've been finding the intensity when n is large by 
taking the lamplitudel2 straight from the Fourier form as it was conceived in 
classical theory. 

q = L Q(n, 1') e i21/' v(n. T)t 

T 7 \ 
amplitude frequency 

In quantum theory this becomes 

q = L Q(n; n - 1') e i2 1/'v(n:n-T)t 

T 

With this equation, F = mq 
is right on target! 

Then F = mq is being 

used. 

~? What? What does that mean? 

When Fourier was considered in terms of classical theory, the position was a 
sum of integral mUltiples, and the movement of an electron was expressed by 
F = mq. When we thought of Fourier in terms of quantum theory, since the 
light given off by the atom was emitted during transition, we found that the 
Fourier equation would not work when describing the position of the electron. 
But for some reason, we could use it to find frequencies and amplitudes when n 
was large. 

Newtonian mechanics was never able to describe them when n was small, so 
Newton's mechanics was incomplete. But Newton's mechanics works well 
when n is large, so just as we rewrote the Fourier equation according to the 
mechanisms of quantum theory, we must also rewrite F = mq according to 
quantum theory. 
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WHAT! WON'T THE VERY 
MEANING OF F = mij CHANGE? 

If 

p 

To this point it seemed that we could not use F = mq without considering 
the orbits that corresponded to position. But, if the thing we describe using the 
Fourier equation has a separate meaning with no connection to the position of 
the electron, then we can proceed by changing the meaning of F = 111 q to 
correspond to the version of Fourier that we are now using. 

But we have ABSOLUTELY NO ASSURANCE that it is correct. 

In order to explain the workings of the atom, Bohr changed the form of the 
question. 

? ? 
In the invisible world, things we don't understand occur. ? 

Although classical theory could not describe what was inside the atom, it 
provided us with the only language we had to describe the physical world. So 
we borrowed the language of classical theory and described the inner workings 
of the atom as well as we could. Even if it couldn't describe the inside of the 
atom, classical theory (Newtonian mechanics) described the movements of 
everything else. It will probably continue to do so, for it is perfect as a theory. 
It is hard to believe that if some phenomenon comes along that doesn't fit into a 
theory, it is possible to add on just a few changes to solve the problem. But isn't 
it better to change our way of thinking itself, rather than adding on amendments 
bit by bit? 

The word "mechanics" refers to the new quantum theory, a theory 
that describes a world invisible to the naked eye. Is this really a completely new 
way of thinking? 

What if we could translate Newton's mechanics itself into the language of 
quantum theory? The foundations that we thought were crumbling might 
instead develop into something bigger and better. We simply don't know 
whether it will or not. After all is said and done, we can't see inside the atom. 
But wait. .. there is a way, right before our eyes. Shall we do it or not? That is 
the only question to consider. 
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If I were asked what was Christopher Columbus' greatest 
achievement in discovering America, my answer would not 
be that he took advantage of the spherical shape of the earth 
to get to India by the western route - this idea had occurred 
to others before him - or that he prepared his expedition 
meticulously and rigged his ships most expertly - that, too, 
others could have done equally well. His most remarkable 
feat was the decision to leave the known regions of the world 
and to sail westward, far beyond the point from which his 
provisions could have got him back home again. 

The adventure is gradually approaching a new climax. And the hero of this 
adventure, Bohr, is about to pass the baton to his young friend, Werner 
Heisenberg! We'd like you to stay and see what he presents. 

I Columbus, Christopher 
[1451-1506] 
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The classical world 
1M. 

quantum world Quantum Kid came across a "food" called F = //lij _ 

1M. 

One day, a road leading to 
the classical world was 
discovered_ He it back with him and tried eating it. 

But everyone said Then someone told him 

There was someone who had eaten F = mij _ 
That person was named Heisenberg_ 
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APPENDIX 
The mechanics used by Bohr 

Bohr tried to explain the atom using classical mechanics. Let us look closely at the tools he 
used when making a theoretical model of the atom. 

APPENDIX 1. CENTRIFUGAL FORCE 
AND CENTRIPETAL FORCE 

If you fill a bucket with water and spin it around hard enough, no water 
will spill out even when the bucket is sideways or upside down. When 
spinning the bucket, you need to hold on tightly to the handle. If you don't, 
the bucket will fly out of your hand. The circular movement of the bucket 
is caused by the pulling inward of the arm and is called the "centripetal" 
force. At the same time, there is an apparent outward force at work on the 
water within the bucket. This is called the "centrifugal" force. We may 
therefore presume that the two forces are equally balanced resulting in a 
stable circular orbit. There are two equal forces working in opposite 
directions! 

The force we apply by pulling is called 
centripetal force and the force that holds the water 
down toward the bottom of the bucket is called 
centrifugal force. First let's look at centripetal 
force. When we want to find a force, we can use 
the basic equation of Newtonian mechanics: 

F m a 
Force Mass Acceleration 

Let's call position x, 
velocity v and 
acceleration Q. 

The apparent 
force that holds 
the water down 

Two opposite and equal forces 

This means that when there is acceleration, there is also force. But when something spins 
around at a steady speed, can there be acceleration? For example, sometimes you go around on the 
exit ramp at an expressway interchange. What happens when you're in the car? 
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Acceleration is a change in velocity. Typically, velocity is expressed in terms of speed and 

direction. For example, "Our present velocity is southward at 50 kilometers an hour (about 30 
miles per hour)." As the car follows the curve on the exit ramp, it changes direction while running 
at the same speed. Since velocity is determined by direction and speed, in this case, although the 
speed does not change, the direction does, and so does the velocity. A change in velocity in this 
case is acceleration; in other words, acceleration does occur. 

Acceleration a is a differential of velocity v with respect to time t, and is written: a = ~~ 

Velocity v is a differential of position x against time t, and is written: v = : 

If we know the where's and when's, from those positions we can find the velocity, and from the 
velocity we can find the acceleration. Further, if the mass is known, then we can also determine the 
force. 

x 
position 

v 
velocity 

-4 a 
acceleration 

Let's leave the story of the expressway and continue with an example such as in the drawing 
below. If we express position x, y in terms of radius r and angle 8, we come up with: 

The angle 0 is: 

x= rcos 8 

y=rsinO 

o = w X t 
angle = angular velocity x time 

(The angular velocity describes how 
much an angle changes in one second.) 
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x = rcos wt 

The position x, y is: y = r sin w t 

First, let's FIND THE VELOCITY. 

Velocity Vx in direction x is a differential of position x with respect to time t: 

v = dxd = -rw o sin w t 
x t 

In the same way, in direction y, we make a differential of position y with respect to time t: 

Vy =: = rw cos wt 

Next, let's FIND THE ACCELERATION. 

Acceleration a is a differential of the velocity with respect to time t: 

dv 
a = _x = -rw 2 cos wt 

.t dt 
Listen, equations are nothing to 
worry about once you get used 
to seeing them. Keep at it! dv 

a = -d Y = -rw 2 sin w t 
Y t 

If the acceleration can be found, force F can also be found. 
For force PI: in direction x and force Fy in direction y, we use F = ma: 

F" = max = -mrw 2 cos w t 
F = ma = -mrw 2 sin w t 

Y Y 

We put these two forces together using the Pythagorean theorem: 

F2=F2+F2 
.t Y 

= m2r2w" cos2 w t + m2r2w 4 sin2 w t 

Factoring out m2r1w 4, we get: 

= m2rw "( cos2w t + sin2w t) ~ COS2W( + sin2 w( = 1) 

F2 = m2r2w " 
F = mrw 2 
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This is the centripetal force that pulls on the bucket. 
y 

Centrifugal force The centrifugal force is of equal magnitude and is directed 
outward. To the object in orbit, the inward centripetal 
force and the apparent outward centrifugal force seem to 
be in an eqUilibrium. 

, .( 
Centripetay 

force '" 

L-------------~--~x 

APPENDIX 2. ELECTRONS 
ROTATE AROUND THE NUCLEUS 

Through experimentation, Rutherford proved the existence of a 
nucleus at the center of the atom. The nucleus is at the center of the 
atom, and its size is much smaller than that of the entire atom, so unless 
there are electrons spinning around it, the size of the atom cannot be 
maintained. Thus, Rutherford's model of an atom consisted of electrons 
revolving around a nucleus. 

In the example of the spinning bucket, the bucket corresponds to 
a rotating electron, and the circular path it traces corresponds to the 
size of the atom. The fact that it is revolving means that to the 
electron in orbit, there seems to be an apparent centrifugal force. But 
since there is nothing tying the electron to the nucleus, wouldn't the 
electron end up flying off? What is pulling on the electron? Well, 
they're actually being drawn by this electrical force that we call 
Coulomb force. Having said that, it's time to talk about the Coulomb 
force. 
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Could something firm 
with a strong positive 
charge somehow exist? 

Centrifugal force 

See, it'll work if the 
Coulomb force as 
centripetal force and 
centrifugal force match 
up like this. 



COULOMB FORCE is electrical force. 

If you rub a sheet of plastic and place it close to the top of your head, your hair will be drawn 
toward it even though there is nothing between your hair and this sheet. Your hair is being drawn 
up by electrical force. Things can have either a positive or negative electrical charge. Positive and 
negative attract, so something with a positive charge will be attracted to something with a negative 
charge. Between things with like charges - positive and positive, or negative and negative - a 
repelling force is at work. Because the hair is drawn to the plastic sheet, that means that one has a 
positive charge and the other has a negative charge. 

¢(±) (±)O 
8o¢(±) 

¢88o 
It's like a magnet, isn't it? 

It was Coulomb who researched this electrical force. As a result, he discovered an equation 
that was able to describe the force of electrical attraction: 

( Note: 'electrostatic system of units' is used.) 

q describes the magnitude of the positive or negative charge, and r describes how far apart they 
are. 

F F 
@~ <?@ 

r 

In the case of the model of the hydrogen atom, the 
nucleus has a positive charge of +e, and the electron has a 
negative charge of -e. So placing them this way, 

Model of the hydrogen atom 

and inserting them into the Coulomb equation, we get: 

They are being attracted 

with a force of F = ~ ,-

This is the force that the nucleus 
exerts to pull electrons. 

That is, the nucleus is pulling the electron with a force equal to 

CHAPTER 2 EARLY QUANTUM THEORY 159 



-------------------------
When the force that tries to make the electrons flyaway (centrifugal force) is matched with the 

force that tries to hold them back (Coulomb force), the atom can maintain a particular size. We did 
it! We've now figured out one part of the atomic structure! 

But. .. there's a trap door under our feet. 

According to Maxwell's electromagnetics, an electron (something that has an electrical charge) 
gives off light when it revolves around the nucleus. By emitting light, the electron expends energy 
and loses vitality, causing an imbalance in the Coulomb force and centrifugal force in the atom. As 
a result, the electron is drawn toward the nucleus. 

~"'."' .... " .... , .' . ,,. " . . . ' · . • • I • • , .. . 
" . ............... 

The atom can't maintain its size like this, which means that the Rutherford model is no good 
anymore. 

Rutherford's pupil, Bohr, thought up a method to resolve this problem. It seemed preposterous, 
but Bohr decided to ignore Maxwell's electromagnetics and propose that no light was emitted even 
if there was rotation! Yet his preposterous idea enabled Bohr to explain various things about the 
workings of the atom. 

APPENDIX 3. ANGULAR MOMENTUM 

The Bohr-Sommerfeld quantum condition was in the form of the equation 

This equation was an extension of the equation 

angular momentum M = 2~ n 
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discovered by Bohr. The equation did not contain a single constant, such as e or m, that described 
the structure of a particular atom. Thus it can be considered an equation for a general condition 
that determines the discrete energy state of all types of atoms. In the equation discovered by Bohr, 
the discrete state was described by angular momentum M. 

Now, before we discuss angular momentum, let's start by discussing simple momentum. First, 
let's rewrite F = ma, a basic equation of Newton's mechanics. 

F=ma =m dv 
dt 

= jt (mv) Jm'\ That's ~asic, really ~asic! 
~J '\. It's the one we did ~efore! 

mV is the momentum, and the change in momentum over time is the force F. Angular 
momentum is angular, that is, when something is moving in a circle, it's the momentum of the 
angle, right? If that is the case, if we take a force suitable for circular motion and take a differential 
of it with respect to time, then we should have the momentum of circular movement or angular 
momentum. 

LINEAR AND CIRCULAR MOTION 

For linear motion, if we know location x at a certain time t, then we can find velocity v, 
acceleration a and force F. In the case of rotating motion, if we can find something that is 
equivalent to position x of linear motion, we should be able to find the angular momentum through 
correspondence. What corresponds to position x is angle e. Similarly we let angular velocity w 
correspond to velocity v, and angular acceleration au correspond to acceleration a. Putting it all 
together, we have the following: 

Linear motion Rotating motion 

Position x 8 Angle 

Velocity V= dx X c w = de G Angular 

dt dt velocity 

dv d 2x 
C 

dw d 2e Angular 
Acceleration a=-=- C a -----

dt dt 2 
c 

u - dt - dt 2 acceleration 

While we're at it, let's find out what we can substitute for force F and momentum p that we 
know from linear motion. 
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TORQUE 

Placing 8 in correspondence with x, let's try to find force F for circular motion that corresponds 
to force F for linear motion. That force is called torque. Let us assume that an object with mass 111 

shifts from point P to point Q within time L1t on a circle with radius r. 

When it is at point P, 
time is t 
position is x, y 
angle is fJ 

y 

When it shifts from the point P to point Q, the 
time increases by exactly L1t, so the time at point Q is 
t + L1t. As for the position, the respective coordinates 
increase by L1x and L1y, so the position of point Q is x 
+ L1x, y + L1y. The angle is fJ + L1fJ. 

L-~------~--~--~x 

And, as the time interval of the movement L1t becomes very small, L QPO gradually 
approaches a right angle. What happens if L QPO is a right angle? What happens is that{this angh!j 
becomes fJ. Thus, we may write L1x and L1y in the following manner using length PQ and angle 8. 

L1 x = -PQ sin 8 

L1 y = PQ cos fJ 

At this point, we may write length PQ using radius r and the 
change in L1fJ as 

We then obtain 

We also know 

PQ = r· L1fJ 

L1 x = -rL18 sin fJ 

L1 y = rLlfJ cos fJ 

sin 8 = ~ 
cos 8 = 1: 

And putting this into the equation for L1x and L1y, we get 

L1 x = -rLl8 ~ = -L18 y 

L1 y = rL18 1: = L18 x 
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Now let's finally use this to fmd the force in the case of circular motion. At this point, let's also 

apply the idea of "work." Work can be described as 

work = force x distance. 

For circular motion, it corresponds to 

work = (something corresponding to force) x angle. 

Let's pin down this thing that corresponds to force. 

Work, which acts with force F over the distance PQ is the sum of 
work that acts with force Fx over the distance L1x and 
work that acts with force Fy over the distance L1y. 

Putting this in an equation, we get 

Rewriting L1x and L1y, we get 

Extracting L1 e, we obtain 

F x PQ = ( Fy x - Fx y) x L1B 

Let's take a close look at this equation. 

1E-1< --~>I p 
.:1x 

F x PQ = (Fy x - Fx Y) x L1 B 

linear force x distance = circular force x angle 

Thus we were able to determine work for circular motion. That is to say, (Fy x - Fx y) is the 
force in the case of circular motion. This force is called torque. 
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ANGULAR MOMENTUM 

If we can find the force in the case of circular motion, the rest is simple. ~ 
That's because the angular momentum has a correspondence to Newton's ~I 
equation. 0. 

F=:r p 

torque = :r (angular momentum) 

If we can find a formula whose derivative turns out to be torque, we have found angular 
momentum. 

Let's try, M = mvy x - mvx y 

Taking the derivative of M with respect to time, we get 

1t M = 1t(mvy x-mvxY) 
dv, dx dvx dy 

=mTtx+mvy dt -m dt y-mvx dt 

= ma,. x-maxy 

= F"x-Fxy 

The derivative of M here is torque. Therefore M must be the angular momentum. 

angular momentum M = mvyx - mvxY 

Since the angular momentum changes over time relative to the torque (force in circular 
motion), when the torque is zero, the angular momentum is constant. That is, unless torque is 
applied, the angular momentum is maintained at a constant value. This is called the law of the 
conservation of the angular momentum. 

THE ANGULAR MOMENTUM IN THE CASE OF CIRCULAR 
MOTION 

The angular momentum that we just found is applied in general cases, and can naturally be used 
for elliptical orbits. Since Bohr believed that the electrons of a hydrogen atom rotated in a circular 
orbit, let's find the angular momentum for circular motion. 
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Expressing the circular orbit in tenns of radius r of the circle and angle e, in terms of x and y, 

we get 

x= rcos e 
y = r sin () 

Because there is rotating motion in a circular orbit, angle e changes 
relative to time t. Assuming that the rotation is at a constant angular 
velocity w, we rewrite it as 

() = w x 
angle angular velocity 

and we get 

x = rcos wt 

y=rsinwt 

Velocities Vx and V,. are 

vx = ~~ =-rw sin wt 

=-v sin wt 
dy 

Vy = dt = rw cos w t 

= V cos wt 

t 

time 

Using these in the equation for angular momentum, 

angular 
momentum M = mv,,x - mvxY 

= m(v cos w t)(r cos w t) - m(-v sin w t)(r sin w t) 

=mvrcos2 wt+mvrsin2 wt 

= mVr (cos 2 W t + sin 2 w t) 

)' 

-+--~~---+-+.r 

Velocity for circular orbits 

The length of an arc is found by 
using s = rO. But what happens when 
angle 0 changes relative to time? 
Let's describe the velocity along a 
circular orbit. 

In this equation 

r is constant and has no relation to 
time, so 

v = r dO 
dt 

However, ~~ expresses the 

change in angle 0 relative to time, and 
so it describes angular velocity w. 

We obtain the equation 

v=rw 

which means that the velocity along 
the circular orbit is the angular 
velocity multiplied by the radius. 

In other words, angular momentum can be expressed as M = mvr. Because mV is momentum 

p, the angular momentum for a circular orbit takes the form of momentum p multiplied by radius r. 
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APPENDIX 4. FINDING THE TOTAL 
ENERGY IN CLASSICAL THEORY 

Since the Coulomb force as centripetal force is equal to centrifugal 
force, we can write 

e 2 
"2=mrw2 
r 

And, since w = % ,we can rewrite this as 

Now, let's find the energy from this equation!! ~ 

Centrifugal force 

There are two kinds of energy, kinetic and potential, and total energy is the sum of the two. 

W(total energy) = K(kinetic energy) + V(potential energy) 

The fonnula for potential energy is 

Here force F is a Coulomb force, so 
. . e2 
msertmg -"2 for F, we come up with 

r 

2 

The potential energy is now V = - er 

While kinetic energy is expressed as K = t mv2 

the equation for the Coulomb force is e2 = m v 2 

r2 r 
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Because the Coulomb force and the 
centrifugal force act in mutually opposing 
directions, we place a minus sign in front of 
the Coulomb force. (See Appendix 1) 



Insofar as this resembles the expression for kinetic energy, let's rewrite the equation for the 
Coulomb force. 

Now put it in the same form! 

.lmv2 =£ 
2 2r 

We did it! We got kinetic energy. Once we have this, it's simple. Now all we have to do is add 
the two up. The total energy W is 

e2 e2 e2 
W=--+-=--

r 2r 2r 

This is the total energy! 

Then, giving it an absolute value, we obtain 

This is the total energy in classical theory. 

Gee, I'd like to know 
even more about 

classical mechanics. 
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CHAPTER 3 

Werner Heisenberg 

THE BIRTH OF 
QUANTUM MECHANICS 

Bohr had discovered a method for finding the frequency of atomic spectra, 
but no one had yet found a way to determine its intensity. Physicists were all 
keyed up, hoping for a breakthrough. At this point, it was the young Heisenberg 
who took the first steps that stretched the boundaries of knowledge; it was 
Heisenberg who sought out new possibilities for Newton s equation for motion 
F = mq. In this chapter, we are going to look at how matrix mechanics was 
developed. 

--. 
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t'\ 
l;P) 

----

Introducing the Cast 

-

All right, let's get started on our Heisenberg adventure! 
We'll begin as usual. Okay, what's the Heisenberg 
squad's objective? Let's say it all together on the count 
of three! One, two ... 

---Letls get the general idea! --
It,.,:;- .......... ~A~"" 

\I ,1 "0" "~" 

clap ~ Well done! 
clap -; ", You, too, Hyon. 

:. Say 5omethlng! ... 
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3.1 LET'S REVIEW 

, 'Quanta" refer to light or electrons that are invisible and behave strangely. 
So what are their mechanics? The field of quantum mechanics is on the 

\eading edge of the physical sciences. 

~"., 
~~erc~ 

!JO 
Natural science unveils the unchanging order of things that occur regularly 

in nature. At TeL, we consider language to have the same kind of underlying 
regularity. So we look at language, too, in terms of natural science. If we speak 
of an unchanging order in language, it means those rules of natural order that 
science tries to pin down. 

Qvery child learns to speak a language~ ~' 
At TeL we are trying to find the mechanisms that push us to acquire 

language. 
This is something I learned only recently. Until now, 

when someone talked about the order of language, I 
thought it meant that if it was Japanese, then it was the 
order of Japanese; if it was French, then it was the order 
of French. I thought the order of each language was 
different. After all, even the Japanese spoken in the 17th 
and 18th centuries during the Edo period is different from 
that of today. And almost nothing has been preserved 
exactly as it was from the speech of still earlier periods. 

I remember a time when, thinking along these lines, I 
couldn't understand what they were doing at TeL, but 
then I began to understand what "people acquire 
language" really meant. It is a rule of human life, and it 
doesn't change. When I realized this, I felt a wonderful 
sense of happiness. 

Now within the natural sciences, physics looks for the order in the 
movement of things. For example, 

-1l: , ' '" 
-?:@o" ,-" . 

-1<. ~ 
The movement of planets The movement of coffee molecules in a cup 

GETTING 
MENTALLY 
PREPARED FOR 
QUANTUM 
MECHANICS! 
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CONCERNING 
LIGHT 

It tries to find the laws governing order in the movement of things. 
Previously it was thought that the laws or rules in the movement of all things 
could be described using classical mechanics - Newtonian mechanics, 
Maxwell's electromagnetism. There was peace in the world of physics. 

But it eventually became clear that dassical mechanics could not describe 
the movement of those particles too small to be seen, such as photons and 
atoms. 

Since the ancient past, light had always been a puzzling phenomenon. As no 
one had actually been able to see the form of light, no one could really know 

what it was. Then in 1807 the British physicist Thomas Young tried the "slit 
experiment" with light. 

What's the slit experiment? 

I -

'~'~ 
·0 '. Well. well 

Intensity 

It is an experiment that shows when a wave passes 
through two slits, it exhibits interference patterns! 

Based on that knowledge, Young tried it with light. 

J • Light source -
~= BI ---I -• 

Intensity 

That's why light came to be thought of as something like 
a wave. 

Wow!! ~ 
~ ," 
~~ 
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But in 1900, Planck discovered that the energy of light only took values that 
were integral multiples of hv. 

<i;nhV(n ;0,1,2,3. J>--~: 

As long as light was thought to be a wave, there was no way this could be 
explained. 

\1 look .. 

~~IJy;'I\' ~ roo \ '/ 

• • 
"0" 

For instance ... 

It would be odd, no matter how you looked at it. The people around 
thought, 

with Planck's discovery. 

Next on the scene was Einstein, who looked at Planck's discovery and said, 
"Light is a particle-like thing that has energy equal to hv." 

Various experiments, like the ones for the photoelectric effect and the 
Compton effect, could not be explained unless light was thought of as being 
composed of particles. Experiments showed that light could sometimes be 
thought of as being composed of waves, and sometimes as being composed of 
particles. That much seemed undeniable, because the experiments had to be 
true. 

CHAPTER 3 THE BIRTH OF QUANTUM MECHANICS 173 



ABOUT ATOMS 

But it still didn't tell people what light really was. 

LIGHT < wave ......... interference 
particle ...... photoelectric effect, Compton effect 

Can something really be thought of as being both a wave and a particle? 

Unfortunately, that didn't seem possible to us. It was regarded as an 
impossibility to explain light using classical mechanics. Physicists began to call 
light, whose true character was unknown, "quanta". They excluded light from 
classical mechanics and tried to find other ways to describe it. 

Classical mechanics 

If you think about it, Einstein's 
equation E = hv is strange as well! 
Since the energy of a particle is tied 
with an equal sign to the frequency of 
a wave ... is a particle a wave?? 

I. The makeup of an atom 

Quantum mechanics 

At the time, an atom was thought to be the "smallest unit of matter," and 
research on it was being conducted parallel to the research on light. 

When you break something up into smaller and smaller pieces, you end up 
with an atom. 
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In the course of this research, however, certain experiments showed that 
atoms were made up of still smaller particles: 

• A heavy nucleus with a positive electrical charge 

• Light electrons with a negative electrical charge 

In addition, the size of an entire atom (about one angstrom = 10-10 m) 
was comparatively a great deal bigger than the nucleus and electron. 

Different atoms had different numbers of electrons inside. 

Number of 1 2 3 4 5 6 7 8 9 10 J 
electrons ... ( 
Chemical H He Li Be B C N 0 F Ne .. ~\ symbol 

Type of hydrogen helium lithium berylliuIT boron carbon nitrogen oxygen fluorine neon atom ... 

Taking all these things into consideration, let's think 
about the makeup of the atom. From here on we will be 
looking at the most simple kind of atom, the hydrogen 
atom. Nonnally EB and 8 attract each other, so that the 
negatively charged electrons are pulled toward the 
positively charged nucleus, drawing together as EEx3, 
and the size of the atom collapses. In order for the atom 
to maintain a size of about one angstrom, the electrons 
have to rotate around the nucleus. 

One Angstrom 

.... 18< >1", 
- 0 -
'" ... 

Rutherford's 
atomic model 

r 
I 
I 

---------------- ., 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• 
• 
• I 
I 
I 
I 

• I 

Experimental Corner! 

@ Okay, now let's try a little 
experiment! First, we take a ball from a pinball 
machine and a deep bowl. The pinball is the 
electron, and the bottom of the bowl is the 
nucleus. Now what can we do to keep the ball 
from veering toward the bottom of the bowl? 

pinball ,§, 

e, If you use cement glue to stick the ball to the side of the 
bowl away from the bottom, that should do the trick! 

~ 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L 

~ 
U Yup, that would work here, but suppose there wasn't any 

cement glue? 

~Ye5! 

©R I know! Let's tum the bowl around and around! 
That's it, right? 

\ \ I 

~ ~\ ~ Very good! Bull's eye! That's 
(.) J ~ I exactly like an atom. As long as there is this 

o rotating movement, the <:B and the 8 won't 
stick to each other and the size of the atom 
can be maintained at about one angstrom. 

r,';\'-: 
~ 

~ 
Right. .. 

II. The key to the search for the atom 

ill 
ill 

Scientists couldn't look inside the atom, but they found the crucial key to 
the makeup of the atom in ... THE SPECTRUM! 

Spectrum 

sparkle 

III 

~~ 
Prism 

When you put atoms inside a glass tube and apply energy by passing 
electricity through it, it glows. The color of this light, or spectrum, differs with 
each type of atom. 
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I 

II 

About Spectra! 

* The spectra of a mixed fruit drink 

Amount 
1(\ 

water 
tangerine 

strawberry 
apple 

banana 

L--------------I------IL-~ .... ~Ingredient 

eOJ) 'I 
The flavor of a mixed fruit drink is determined by the types of 

fruits used and the quantities of each kind of juice mixed in. A 
spectrograph is something that shows the proportional quantities. 
You can see it laid out at a single glance. 

* Spectra of light 

Intensity of light 
1(\ 

'---I ___________ ---IL-____ ...... ~ Frequency 

Red .... E=------~> Violet 

We perceive light as colors. Different frequencies of light 
appear as different colors. With respect to the amount of light, 
when the light is strong it is bright, and when it is weak it is dim. 
This is described in terms of intensity. The characteristics of light 
are determined by both frequency and intensity. 

The spectrum of the hydrogen atom 

I 
I 

I 
I 
I 
I 
I 
I 
i 
i 
i 
I 
I 
I 
I 

wJ 

I1II1II11111 I IIIIL§ 
Now there are two reasons why spectra may be considered the crucial key in 

the search for the atom. 
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1. A given atom will always produce a fixed spectrum; hydrogen atoms 
produce a hydrogen spectrum, helium atoms produce a helium spectrum, 
and so on. 

Speaking of which, natural science has to do with 
finding a regular, never-changing order in things, right? 

( San-chan 15 really somothln •... )- ®" 
2. Inside the atom there are only electrons and a nucleus. Because the 

nucleus is much heavier compared to the electrons, it is the electrons that 
are thought to move. Since the electrons produce the spectra, by 
investigating the spectra, one can discover the movements of the 
electrons. 

An electron 
moves like this. 

-Cause-

This spectrum 
is produced. 

I I" I --+v 

-Effect-

From a given cause will follow a given effect 
- that is called the law of causality. I seem to 
remember from Physics and Beyond that they 
thought of things that way in classical mechanics. 

~,... Right 
J '-

,~ <I 

..J 

It was Rydberg who succeeded in mathematically expressing the frequencies 
of these spectra. 

Frequency of the hydrogen spectrum 

Rc Rc 
11 = m2 - -;t2 m, n are integers (n > m) 

At that time no one, including Rydberg himself, knew the meaning of this 
equation, which matched the actual spectrum perfectly. 
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III. Problems in Rutherford's atomic model 

Now it was found that in order to consider the makeup 
of atoms, it was necessary to explain their spectra. 
Physicists tried to do this using Rutherford's model. 

There is a general law of classical mechanics that can 
properly explain both experiments and theory. 

Rutherford's 
atomic model 

Maxwell's Electromagnetics 

When something with an electrical charge 
moves in a circle, it gives off light. 

An electron, which has a negative charge 8 , gives off light as it rotates. 
What this means is: 

I" Light 

spin 

I Light 

(0- -+ 
We're stuck together! 

Therefore by rotating, the electrons lose energy and finally end up stuck to 
the nucleus. Although the electrons have to be rotating to keep the size of the 
atom constant, according to Maxwell's electromagnetics, if the electrons rotate, 
the atom winds up being unable to maintain its size! In this instance, the 
spectrum changes: 

~@J 
the frequency shifts 

I~I I 
,--. ..... 

II 

When this happens, the spectrum shifts moving toward the higher 
frequencies, which doesn't match the spectrum from experiments. 

? ??? ?? 

1~., '- 'At' . 
• II ., 

, '1 -

The spectra can't be explained. 

~ --<: We're In a ",u~h spot. ) 
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BOHR SHOWS 
UP 

I f the Rutherford model was correct, then the atom's spectra could not be 
explained. Experiments had confirmed both "the spectra" and that "the atom, 

with a EB nucleus and a e electron, maintains a certain size." So Bohr found it 
very strange that they could not be explained. 

It's not the experimental facts that are wrong, it's that 
Maxwell's electrodynamics can't be applied here. 
Maxwell's theory is based on the assumption that light is 
a wave. That's why it doesn't work for the spectrum. 

According to Einstein and Planck, you could account for light only by 
thinking of it as being sometimes a wave, sometimes a particle. Such an idea 
was unprecedented; they finally decided light was a "quantum" of unknown 
character and excluded it from classical mechanics. Bohr decided to see what 
would happen to the makeup of the atom if he tried thinking of light as a 
quantum. 

Planck's discovery Einstein's discovery 

E=hv ® ~ E = nhv (n = 0, 1,2, 3 ... ) 

The energy of light has discrete values. Light is a particle with energy h v. 

If we apply these to the inside of an atom ... 

1. Since the energy of light h~ \ I / / 
values, it follows that the energy of ---
the atom must also have discrete 
values. 

Quantum condition 

fpdq=nh 

(n = 1,2,3, ... ) 

2. When an electron makes the 
transition from an outer orbit to an 
inner orbit, the excess energy hv is 
emitted as light. 

Bohr's frequency relation 

Wn Wm ( ) 
V =--- n>m 

h h 

/ \ 

/ 
hv -
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Lo and behold, by thinking of light as a quantum, Bohr found it was 
possible to perfectly explain the conservation of the atom's size and the 
frequencies of its spectra. 

fall into the lap of the happy Bohr. 

Rydberg's equation for the spectrum 
of the hydrogen atom 

Rc Rc 
1/=---

m2 n2 

Rydberg's equation is a lot like Bohr's 
equation for the frequency relation! 

I wonder what 
It could lie, . , ? 

They are both in the form of "1/ (frequency) equals something," and both are 
stated in terms of the difference in value between two things (subtraction). The 
instant Bohr saw this equation, he was convinced that his theory was valid. 

Cit'S flawless! i)- fil.3 
Afterwards Bohr worked away steadily and finalized his theory, and met 

with great success. 

Bohr's theory was able to resolve previously problematic points, but two new 
ones arose. 

1. The mechanisms of electron transition were unknown. 
2. The intensity of the spectrum could not be explained. 

CONCERNING PROBLEM 1: TRANSITION 

r--------------, I On Transition I 
I Transition, in simple terms, is instantaneous relocation. Put I 

more simply, it's a warp. 

I I 
WARP ~'fiI.-

I oo~ fP) I 
I .~- I 
I A hippopotamoid (a character from the Hippo Tapes) who is in I 

New York in the next instant suddenly finds himself on the moon! 

L How in the world did he get there? .J --------------

PROBLEMS 
WITH BOHR'S 
THEORY 
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In other words, the route the electrons took when they underwent transition 
was unknown. It had been thought that if spectra could be explained, then the 
way electrons worked within an atom would be understood. But no matter how 
well Bohr's transition theory could explain spectra, the movements of the 
electron were still not known. 

What are we going to do? 
Don't we understand anything about the atom? 

? ? Ii· -'- ? , , . . 

Bohr, however, stood firm. 

It's not as if we don't know anything about the atom any 
more! Its just that now we can't imagine what's going on 
with the electron inside the atom! 

In this way, the electron joined the company of quanta. No one knew what 
their real nature was. 

Classical mechanics Quantum mechanics 

CONCERNING PROBLEM 2: SPECTRAL INTENSITY 

Bohr's theory was flawless with respect to spectral 
frequencies. However, there was no way to determine the 
intensity of those spectra. At the time, the rallying cry 
among Bohr's supporters was this: 

(LET'S FIND THE SPECTRAL INTENSITY I) 
V 

But the truth was that no .matter how much they may have wanted to 
determine spectral intensity, they could not come up with a method for doing so. 
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~Q;---CWhen you're in trouble, play INNOCENT!) 

Thinking along the lines of classical mechanics, if n were small (as in the 
case of the inner orbits), the electron would ultimately be drawn into the 
nucleus, and the atom would remain unexplained. Bohr, however, realized that 
when n was large (as in the case of the outer orbits), the atom could be 
explained nicely by either classical mechanics or by his own theory . 

• Thinking In Terms Of Classical Mechanics When n Is Large 

According to Maxwell's electromagnetics, the electron emits s 

light waves as it rotates. This thinking was not feasible when n ®f.,~ 
was small, as the atom would end up collapsing. However, when + .,:, 
n was large, one could suppose that the rotating electron would 
not be drawn into the nucleus even though it was losing energy. 

~}i When n is small, the electron is rotating in an inner orbit and its 
energy is small. Therefore, if it loses even a bit of energy by giving off light, it 
will end up falling inwards. When n is large, however, the electron is rotating in 
an outer orbit, and its energy is great. So even if it loses some energy while 
giving off light, it seems logical that it wouldn't fall inwards. 

d What? I don't quite get it. 

~- Isn't it something like this? Let's think of the energy consumed in 
giving off light as spending 1 dollar. Let's say then, when n is large, the energy 
of the electron is 1 million dollars; and when it is small, 1 dollar. One day, Hyon 
goes out to buy a 1 dollar can of soda. 

He goes out shopping. On the way, he ends up losing 10 cents. 

/' 

-
Now suppose ... 

alRRESroNDENCE 
PRINCIPLE 

CHAPTER 3 THE BIRTH OF QUANTUM MECHANICS 183 



If he only had 1 dollar to begin with, 
he would only have 90 cents left. 

~ 

And he would no longer be able to buy a 
can of soda. 

~
. 

_ ~oo~ ~ 10 cents (light) 

" ...... = 
/ :::- 999,999 dollars--

__ and 90 cents :: 

~-:.. Oh, I see. That's how it is. 

If he had a million dollars, he would still 

bavo 999,999 dt'" 7d 90 ~ 

r~ 
Lad/do / I adan /' 

r 

I dollar 

10 cents (light) 

= 
; 90 cents~ 

~ Hey, listen, isn't that like dirt in a bathtub? When you pull the stopper 
out of a tub, you get a whirlpool, right? And then the dirt floating in the tub 
goes round and round with it. When the dirt is some distance from the center of 
the whirlpool, it circulates slowly and doesn't get swallowed up as quickly. But 
when the dirt is near the vortex, it gets swallowed up-swish, swish-before 
you know it. 

I '. 

~I see, though it's a bil dirty! 

p 
p 

~"If you don 'I get it, try experimenting for yourself! 
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When n is large, we can think of the electron as spinning around in the same 
place. With this kind of movement, light waves become complex, iterative 
waves. 

~) ----<!peaking of complex. iterative waves .. .) 

0eY're the sum of simple waves!}- ~ 

~-(i-hat'S It. Manatsu. You've got it0 
Exactly! That's Fourier Series! 
The most important feature in Fourier series theory is that frequencies are 

integral multiples. 

C!)~ 
~ 

+ 
@A 1\ 
V~ 

+ 
@f\ /\ /\ 

\/\/V 
+ 

@f\ f\ f\ f\ 
V VV V 

, 

@ 

fJ.}/: p . Now what about the spectra that experiments produced? 

(UIL.....L...-UlL. _______ "--_.L....I..JJLI-+ v 

I I \ 
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®' How about that! When n is large, we have integral multiples! 

• f?!\"'''' I see. When n is large, things can be explained using classical 
H mechanics! 

Putting it into words, we get this: 

I I I 
t t t 

The frequency of a wave The frequency of a wave The frequency of a wave 
that rotates in orbit nand that rotates in orbit nand that rotates in orbit /I and 
makes one undulation makes two undulations makes three undulations 
each time around each time around each time around 

I, 

~- Egads! It's too long and difficult to express like this! 

Then let's try expressing it with these symbols: 

I I I 
t t t 

II (n, 1) II (n, 2) lI(n, 3) 

~ ~ ~ 

Because these values change according to the integral values I, 2, 3 and so 
on, let's replace the integers with T. 

Applying it generally, we can write v(n, T). 

• Thinking In Terms Of Bohr's Theory When n Is Large 

When the electron makes a transition from one orbit to another, it emits a 
light quantum that has an energy hv. When n is large, the difference in energy 
between one orbit and another is in stepped intervals, giving a way to explain 
the integral values in the spectra. Looking at it more closely, it's something like 
this. 
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0' 

Putting it into words, we get the following: 

The frequency of the light 
emitted when there is 
transition from orbit n to 

orbit 1l-1 

The frequency of the light 
emitted when there is 
transition from orbit n to 
orbit n-2 

The frequency of the light 
emitted when there is 
transition from orbit n to 
orbit n-3 

. This is even longer! Now let's express it using symbols. 

I I 
t t 

v (n; 1l-1) v(n;n-]) 

The semicolon in v(n; n - 1) 
means "from n to n - 1". 

v(n;n-]) 

Because these values change according to the integral values 1, 2, 3 and so 
on, let's replace them with T here too. 

Applying it generally we write v (n; n - T). 

Since we can use symbols to express both Bohr's theory and classical 
mechanics, let's write them together. 

Classical mechanics v (n, I) v (n, 2) v(n, 3) v (II, T) 

• • • . • • 

'-"h Bohr's theory v (n; n-I) v (n; n-2) v (n; n-3) v(n;n-T) 
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So we can say it using either the 
language of classical mechanics or the 
language of Bohr's theory!! 

When n is large, the frequencies of a given spectrum may be explained 
using either classical mechanics or Bohr's theory. 

• Thinking About the Intensity of Spectra 
" 

Next, we'll finally consider the intensity of 
spectra. which is so problematic. 

When n is large, we can use classical mechanics to find the amplitudes of 
simple waves, one by one. For the intensity of the spectrum, all we have to do 
is square those amplitudes. 

The intensity of a spectrum = lamplitudel2 

That's classical mechanics for you! 
It really can explain anything, can't it? 

( That's true)-x 
While we're at it, let's also express the amplitude as a symbol! Let's let the 

symbol for amplitude be Q. 

. . . . .. I 
~----~------~--------~----------~~v 

Q (n, 1) Q (n, 2) 

Think of it in the same 
way as frequency. 

Q (n, 3) 

Applying it generally, we write Q(n, T). 
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". 

h?: 
[J' Now I really want to find out what will happen to the intensity of the 

spectrum using Bohr's theory! 

:~(fJ Come to think of it, in the "photon effect experiment," Einstein 
discovered that if light is strong, that means there are many light particles; if 
it is weak, there are few light particles. 

~~ One light particle is emitted for each transition that takes place, so 
that the number of light particles is related to the number of transitions. 

~ So, if we put it all together, it looks like this, right? 

There is a single transition in many atoms, There is a single transition in some atoms, 
light is strong. light is weak. ------------------- -------------------

, 

~ 

hv hv.. -
I \ 

& But the problem is that we don't have a clue why transitions take 
place. If we don't know why transitions take place, there's no way we can 
know the number of transitions. 

" A"" In other words, we can't fmd spectral intensity! 

/ 
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lh\ 
~ Since there's nothing we can do about that, for the time being let's 

review the pros and cons of classical mechanics and Bohr's theory, and arrange 
them in an easy-to-understand table! 

frequency intensity 
,j"is"smaif ~"is"iarge" of light Each has its good and bad points. 

classical NO OK OK mechanics 

Bohr's OK OK NO theory 

~- According to this table, when n is large spectral intensity can be found 
by classical theory as the square of the amplitude of simple waves. But since 
light isn't composed of waves, what in fact was being found was the number of 
light particles. 

0' 
~ Does this mean that when n is large, we can find the number of 
transitions even without knowing what causes them? 

; eot@) Fantastic! We thought we couldn't, but we can, can't we? 

_ ,\~ That's right. Bohr's theory is able to find frequencies even when n is 
~ small. 

@: 

~ In that case, if we take classical mechanics in a broader sense and 
apply Bohr's theory to it, then won't we be able to find frequencies, as well as 
spectral intensities, when n is small? 

Ah~~ ~ That's right. Let's try it! 

~ Let's try it. Let's try it! 
I}ee heenee 

e4-If it works, then we'd have a theory of mechanics that can explain the 
quantum - a quantum mechanics! 
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The following sign was posted in Bohr's research institute: 

METHOD FOR CONSTRUCTING 
A NEW QUANTUM MECHANICS! 

U sing classical mechanics, we were able to find the number 
of transitions (spectral intensity) when n was big. By expanding 
classical mechanics and fiddling with it a bit, we look for a 
method of finding the number of transitions when n is small. 
This method is "quantum mechanics." 

Upon seeing this sign, the young physicists in Bohr's institute were inspired 
to work night and day. One of them was Heisenberg. But his great discovery 
would not follow until later. 

Since we're broadening classical mechanics, our new quantum mechanics 
should incorporate classical mechanics, not be completely separate from it. 

I love things like the principle of inclusion and 
it all looked pretty good to me. But I couldn't 
quite understand what it meant to make quantum 
mechanics by broadening classical mechanics. 
Then one day I ran across this sentence in a book 
that had absolutely nothing to do with quantum 
mechanics: "Although new ideas generally look 
new at first glance, they are in fact based on old 
things." I thought, "That's it!" If you think about 
it, everything'S like that. New car models are 
based on old models. You can't just go and make 
something completely new with nothing behind it. 

One reason for building the theory of quantum mechanics within the broad 
frame of classical mechanics is that we have to know how to use the classical 
mechanics paradigm to find the number of transitions when n is large. 
Otherwise we won't get anywhere. So, keeping this in mind, let's proceed! 
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3. 2 SOLVING HARMONIC OSCILLATION 
WITH CLASSICAL MECHANICS! 

B ut if we use classical mechanics to find the number of transitions when n is 
large for the spectrum of the hydrogen atom, the calculations are very 

difficult. Instead, let's just try solving for simple harmonic oscillation. 

~~ .... 
But first, a word to those who are worried about doing this. ~ -. 

r-------------------What is a simple harmonic oscillation? 

I Let's start with a spring, to which a weight is then 
I attached. We pull it downwards in the direction of the 
I arrows, let it go, and observe the way it bounces. 

I 
I 
I \\ 111 

A spring can make big bounces or 
little bounces. 

Big 
pounces 

Little 
pounce~ 

This is just like the way electrons 
in a hydrogen atom behave, rotating 
now in a small orbit, now in a large 
orbit. 

small 
orbit 

II 

large 
orbit 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

In a hydrogen atom, the electron's loss of energy and its 
subsequent transitions into smaller orbits correspond to the bounces 
of the spring as they gradually diminish in size. 

So what is this, an electron on the 
end of a spring? 

I Well, it's actually not a spring. A force similar to the force of a 
spring is acting on the electron. 

Ii 

1 

I ( Do you understand?}&~: L ___________ ~~~@, 
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I see. So the hydrogen atom and harmonic oscillation act basically the same. 
The important thing is how things behave. In this case, harmonic oscillation is 
enough for us to illustrate how electrons in the hydrogen atom behave. 

Let's get to our calculations! 

You usually won't hear wild cheering when the 
word "calculation" comes up. Most people would 
think, "Yuk!" Even I don't like them much. But let 
me tell you something. The equations here are long 
and sometimes a pain, but not so difficult. When you 
can work through them, you feel great, like you're 
really smart. These equations are long, but once 
you've learned one the rest can be learned easily, 
because they have similar forms. Even if you skip 
over the calculations for the time being, I hope that 
you will try to grasp their general meaning. What 
we're doing now is very important. 

In classical mechanics there is a very famous equation called Newton's 
equation of motion. 

L......-F __ m_ii-----ll ~ 
U sing this equation, 

~ 
~~ 

you can pinpoint where an 
object is, and when it is there. 

The ability to get this information is the very core of classical mechanics. 

F is the force that works on an object. 
m is the mass (weight) of an object. 
ij is the acceleration. 

In most cases, the force that acts on the object is easily found, and using that 
information in the formula above, you can figure out the acceleration. 

Acceleration is how an object changes its speed with respect to time. If we 
know the acceleration of something, then we can fmd its velocity, or speed. 

Velocity is how an object changes its location. If we know this, we can find 
out where a given object is and when. 

We know the 
acceleration ij! 

We know the 
velocity q! 

We know the 
position q! 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Think about what happens 
when you pedal a bicycle. 

If you push the pedals with tremendous force, what is the 
acceleration going to be? 

""'s ~ It's high! You're making the F in ~"~ >5/ 
~ F = mij greater, so the acceleration 

ij should be high. too. Right? " 

Exactly so. If the acceleration is high it means that the speed of 
the bicycle rapidly increases; that's exactly what will happen if you 
try it on a bicycle. See for yourself! Now, try pedaling with the 
same force as before, but this time you've got a sumo wrestler 
sitting on the back. What's the acceleration in this case? 

" '_::--

: The mass m in F = mij is much, ~ '-: : ~
,,' / 

~ much bigger, so the acceleration ij ~ 
goes way down. 

Bingo! Just one more. What happens when you take your feet 
off the pedals and the force is O? 8 <1> If the Fin F = mq is 0, then naturally the I;" 

~ s~ 

- I acceleration ij is also 0, so the bicycle IA:~' ~C'-(~ 
doesn't move. Right? 

" . 

Right. That's one answer, but there's another. When your 
bicycle is already rolling at a certain speed, what happens then if 
you take your feet off the pedals? 

~\Jt It keeps rolling at the same speed! 

~ 
~

n 
• ~ ,<V 

, . \::::: 

Exactly. You see how nicely we can describe the case of the 
bicycle using Newton's equation of motion. No matter what the 

I object, if we know the force applied to it, we can find the 

acceleration from F = mij. 
I \ I~ 
I!! ~-; ; ~ Oh, I see. m ~ 1\ ,... 

o 

L ______________ ~§ffi@m m;<,;,,,,,, .;;m,,;,;,;,;,', ;'''*~'~';'''''' 
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All right, now let's solve the problem of harmonic oscillation! When an 
electron is oscillating simply, we can find the m in F = mij (the mass of the 
electron) from experiments. But what about force in the case of harmonic 
oscillation? 

Let's see what happens when we pull on the 
spring! When we pull down on the spring, a force 
acting in the direction opposite to the direction of 
pulling tries to bring the spring back up. The more 
we pull, the greater that force becomes. The stiffer 
the spring, the greater that force is. Expressing 
this as an equation, we get 

F=-kq 

II 

a little 

q is the position of the spring (or the position of the electron) measured from 
its position at rest. k is a constant that expresses the stiffness of the spring; the 
larger k is, the stiffer the spring. The minus sign means that the direction of the 
spring's force works opposite to the force pulling. 

Now that we've found the force, let's substitute it in Newton's equation of 

motion F = mij. 

-kq = mij 

If we alter the equation slightly, it will be easier to use. 

This is the equation of motion for harmonic oscillation. Next we will work 
out the equation to find the position q of the electron. This will tell us where the 
electron is and when it gets there. 

Listen, wasn't it the number of electron 
transitions that we were trying to find? 

Right. But that's the same thing as finding the position of the electron. 
According to Maxwell's electromagnetics, light waves are emitted in 
accordance with the movement of electrons. When the electrons make big 
oscillations, the light waves are big. When the oscillations are small, the waves 
are small. We're talking about amplitude, of course. 
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When the oscillations of the electron are rapid and narrowly-spaced, the 
light waves become narrow. When they oscillate slowly, the waves are widely
spaced. Here we're talking about frequency. 

Therefore, if we know the position of the electron, then we also know about 

the light wave. ~ 

C:7 'tl \ !?let I ' 

tJ8I--( Now what about complicated waves? ) 

( They're the sum of simple waves!)--

Yes! As we said before, we can express this using Fourier series. 

So finding the position of the electron 
by solving the equation for motion, 

ultimately means t 
finding the amplitude Q(n, r) and the frequency v(n, r) 
for each individual light wave. Now, when n is big, the 
square IQ(n, r)f of the amplitude of the light wave is the 
number of electron transitions. 

OK! Let's try the calculations! First, we determine the symbols for 
expressing simple waves. 

--z::::::::;;:> 
C'\ C'\ 

'C7 'C7 
000 
VVV 
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· •. Q (n, l)e i2,,-v(n. 1)1 

• .. Q(n, 2)e i2 ".v(n.2)1 

· .. Q(n, 3 )e i2.-v(n. 3)1 

Q(n, r )ei2 ".v(n. T)t 



These equations look hard at fIrst glance, but some of them are familiar. 
here here 

J, J, ,----, 
I Q(n, 1) le i2 11' v(n.l) t 

: Q(n, 2) :ei2 11' v(n.2) t 

: Q(n, 3) :ei2 11' v(n.3) t 

I I. 
I I. 
I I' 

:Q(n, T) :ei2 11' v(n. T) 1 

'----' frequency 
amplitude 

Now this is a wave! 

Q The remaining e""" describes a simple wave. 

A complicated wave is the sum of simple waves: 

q = ... + Q(n, l)e,'21rV(ft.l)t ~ 
simple waveD 

+ Q(n, 2)e121TV(ft.2)t --------'----complicated wave + Q(n, 3)e12l1'v(ft.3)t 

It's a nuisance like this, so we write it with a I(summation). 

~I"-
~ 

The Equation For Complicated Light Waves 

q = 1: Q(n, T )e,'2l1'V(ft. T)t 

T=--

Imagine getting this equation in your repertoire 
and being able to reel it off whenever you wanted! 

Finally, we enter the equation for complicated waves which describes the 
position of an electron 

q = L Q(n, T )e,'2l1'v(n. T)I 

T 

into the equation of motion for harmonic oscillation 

and start crunching away at the calculations! 
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There is something called q in this equation. This is the second derivative 

of q with respect to time. First, let's see what happens to q. 

For the derivative of e with respect to time, the 
exponents come down just as they are and stay that way. 

So eMJO¢' becomes 
6000 e"OOO'! 

~ Let's add this 
~to our repertoire! 

q= L Q(n, T )ei27Tv (n. T)t 

T 

first derivative . ~'2 ( ) Q( ) i27Tv(n T)t ... q= ~ I 'lTV n TnT e . 
with respect to time T ' , 

second derivative 
with respect to time 

= L -41T 2v (n, T )2Q(n, T )ei27Tv(n. T)t 

T 

Into the equation for the motion of harmonic oscillation, 

~
And th~~::, 

'i' i" 

'-' 

we insert q and q: 

L -41T 2v (n, T )2Q(n, T )e i27TV (n. T)t + ! L Q(n, T )e i27Tv (n. T)t = O. 
T _ T 

m is the mass of the electron, and k is the spring 
constant. Both are fixed quantities already known 
from experiments. So, whether we use the expression 

or express it in terms of V as 

v =_1 fk 
21T V m 

it ends up being the same thing. 

198 CHAPTER 3 THE BIRTH OF QUANTUM MECHANICS 



We've got a lot of identical terms, so let's clean this formula up! 

neat! 

A 
~ 

Let's see what happens when this equation holds true, that is, when it equals O. 

In comparison to the equation for the sum of simple waves 

q = L Q(n, T )ei21TV(n, T)t 
T 

we get the amplitude: 

Now we have an equation that is the sum of simple waves with this new 
amplitudes. What do we need for simple waves to add up to a complicated 
wave with a value of O? 

~ Well, I don't know. 

{j} Suppose we take, say, apples, tangerines and strawberries and try to 
make some juice with no flavor? 

\~now!! 

~ Don't use any of them! 

That's right. The case of waves is the same; if you don't use anything, the 
value will be O. 

+ 

+ 

= 

CHAPTER 3 THE BIRTH OF QUANTUM MECHANICS 199 



In the same way, as long as the respective amplitudes of simple waves 

end up as 0 for 'T between - 00 and 00, the equation 

'to - ~ - , ..... 
(.' 
,. holds true. 

Got It!! 

417'2 {v 2_ v(n, 'T)2} Q(n, 'T) =0 

4*0 

The 417'2 in this equation absolutely cannot become 0, so either{ v2 -v(n, 'Ti} 
or Q(n, 'T) must be O. 

So now let's first consider when {v 2 - v(n, 'Ti} equals O! 

The constant v is determined by m and k. By comparison v(n, 'T) is "The 
frequency of a simple wave that rotates in orbit n and has 'T cycles per rotation." 

So, its value can vary indefinitely depending on 'T. That means for now we 
should stick to the case when 'T = 1, that is, 

Apart from the fact that the frequency v(n, 'T) is an integer multiple, nothing 
else is decided. Let's make some decisions now. 

v(n, 1) = v ~ 
, '" 
~' Huh 

Now when 'T is 1, the frequency v(n, 1) becomes 

so in this case the amplitude Q(n, 1) has a value other than O. 

Since we decided that {v 2 - v(n, 'T)2} was 0 when 'T = 1, it will naturally not 
be 0 for the cases 'T = 2, 3, 4, and so on. Therefore, when 'T = 2, 3, 4 ... , the 
amplitude Q(n, 'T) must always be O. 
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We did it! So now we've 
found the frequency and 
the amplitude, right? 

Yeah. But we're still 
only halfway there. 4,\ 

t:;jS19h 

Before, we decided that v(n, 1)2 = v 2• Clearly this will be true for v(n, 1) = v, 
but it also holds true for the case 

-v(n, 1) = -v. 

When this is squared, the result is the same v(n, 1)2 = V 2 as above. 
Therefore, we must think about what 

-v(n, 1) 

might be. 

. . . • • • 

v(n, -2) v (n, -1) o v (n, 1) v (n, 2) 

As we see from the chart, in classical mechanics the frequency v(n, T) has 
values of integer multiples. Therefore, 

v(n, 2) is v(n, 1) multiplied by 2, 
v(n, J) is v(n, 1) multiplied by J" and so on. 

It is the same when T is negative, so 

v(n, -1) is v(n, 1) multiplied by -1, 
v(n, -2) is v(n, 1) multiplied by -2, and so on. 

Therefore, -v(n, 1) and v(n, -1) are equivalent. 

-v(n, 1) = v(n, -1). w.aWlness - --~/ - ,..,.. ':":' -
" ...., - ...... 

Expressed generally, 

-v(n, T) = v(n, -T). 

We now know that when T is 1 and also when it is -1, the amplitude Q(n, T) 

has a value other than 0, and that for other values of 1', Q(n, 1') is o. 
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SUMMARY 

v(n, I) = v 

v(n,-I)=-v 

Q(n, I) :;e 0 
Q(n, -1):;e 0 

Q(n, 1') = 0 (1':;e ±I) 

Hey! , 

@~ I don't understand!! 

;<fD 
;-~ What!? What don't you understand? 

" I I ,-

~; 
Say,,· 

~ Just now we arbitrarily decided that when l' = 1 then the equation 
~ {v 2 - v(n, 1')2} = 0 holds true. In that case, I guess we could just as 

well have set l' equal to 2 or 3 or anything else. 

:'~~ 
;. 'r,.J'I That's a great question! It doesn't matter what the value of 1'is. 

Because we haven't determined the frequency, we can set it to whatever we 
please. It's just that 1 is simplest, so we made it 1. 

Let {v 2 - v(n, 1'i} = 0 hold for 1'= ±l. 

. . . 
v(n, -2) v (n, -1) o v (n, 1) v (n, 2) 

Then, when l' = 0, ±2, ±3, as indicated by the dotted lines, the amplitudes 
Q(n, 1') all become O. 

Now let the equation {v 2 - v(n, 1')2} = 0 hold for l' = ±2. 

• • • . . . 
v(n, -2) v (n, -1) o v (n, 1) v (n, 2) 

Doing so, the amplitudes for 1'= 0, ±I, ±3 ... all become O. Ultimately only 
two waves remain, and all other waves end up being O. It's the same whether 
the two remaining waves are l' = ±1 or l' =±2. The point is there's a "pair" of 
something. 
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~ @ Sure, I understand. 

Agreed! 

In that event, let's put the amplitude and the frequency that we found into 
the equation! 

q = L Q(n, T )e i2"v(n. T)I 

T 

We get: 

q = Q(n, l)e i2".vl + Q(n, _l)e-i2,",1 

This is the equation that describes the position of an electron at a given 
time! 

Uhh? 

~ Does this mean we've found the answer? 

-;S Yes. That's right. 

CJ>~ 
V Just now we found out that the amplitude Q(n, T) can have a value, or 

be O. But isn't it true that in fact we don't know "how much" its value is? 

C!>f3 ~ But that's all right. 

For instance, if we pull a spring way down, it rebounds that much back, and 
if we pull a little, it rebounds just a little. So it's OK no matter what the value of 
the amplitude is. 

I 
~ 
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EXPRESSING 
Al\tIPLITUDE AS A 
FUNCTION OF n 

In the case of the hydrogen atom, when n is large, the amplitude of the light 
waves is large, and when n is small, the amplitude of the light waves is small. 

en is largeA ~ G A n is smalD 

VV 
It is not necessary to actually find the value for amplitude. When we 

considered the correspondence principle, we placed classical mechanics in 
correspondence with Bohr's theory using n. 

v(!!.l) v (!!. 2) v (!!. 3) v (!!. T) 

~ 
v(~;~-l) v <!!! ~-2) v <!!.; ~-3) v <!!.; ~-T) 

It seems, then, that classical mechanics is designed to determine the value of 
the amplitude for any given n. In other words, it expresses the amplitude as a 
function of n. 

TO do this, we use Bohr's quantum condition. 

Bohr's Quantum Condition 

fpdq=nh 

This equation states that the orbits of an electron have values that are 
multiples of the integer h. 

When we looked at Bohr's ideas, 

to classical mechanics 

quantum ~ 
condition CI 

":J'rIa~e I 
'" ":J~a'r..t; 

we added the quantum 
condition 

and produced Bohr' s 
theory. 

At the time the discontinuous nature of the quantum condition 
was very significant, but here we will ignore that completely, and 
only use the quantum condition to express the amplitude as a 
function of n. In this case, therefore, n is not limited to integers 
and can be 2 or 5/8 or 0.3 or any continuously variable amount. 
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First, we modify the form of Bohr's equation. 

fpdq=nh 

1 · f is a symbol for integration over one cycle and becomes i' . 
• p is the momentum, and can be described as p = m4 . 

• dq can be rewritten as dq = ~; dt = qdt . 

Here we're right in the middle of getting 
it into a form that's easy to calculate. 

Applying these, Bohr's quantum condition formula changes. 

CJ~",'(\0e! i* 
~ :: m· q.q dt=nh 

,... ~ 0--
It" ... 
.~. A J, 

J<TI (q)2 

, fiJ ... 
t.' o 

For the q in this equation, we insert 

q = Q(n, l)e121rV' + Q(n, -1)e-<2 ..... ' 

which we found by solving Newton's equation for motion. 

First, the first derivative of q with respect to time. 

q = i21TpQ(n, l)e,"21rV' - i21TPQ(n, _l)e-l"21rV' 

We insert this in Bohr's equation. 

f m· {i21TPQ(n, 1)e'"21TV'-i21TPQ(n,-1)e-l"2 .... ,fdt =nh 

~Herelt~/ .... ' '.I " 't)' , 

The part inside the brackets is in the form of a square, so we can break it up 
using the formula (A - B)2 = A2 + B2 - 2AB. 

I f m· [{ i2 .. vQ(n. I)ea=,}, + {i21TV Q(n. -I)e-"~'}' 

- 2{i21TV Q(n. I)e""' }{i21TVQ(n, -I)e-"~' } r = nh 
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For the multiplication of e i2frV1 and e-i21TVf we use exponents according to the 
rule ell x e b = e"+ b and;Z = -1: 

I r m {-4l7'P' Q(n, I)'e"-'} + { -4l7'P' Q(n, -I )'e-""'} 

, / 

.A_~ ~we're movins 
~ ; risht alone!! 

I r -41T 2p 2m {Q(n, 1)2ei41TVI + Q(n, _1)2e-i41TVI 

- 2Q(n, l)Q(n, -1) }dt = nh 

We take -41T2p 2m out of the mdt, as it is unrelated to 
the integration. ~ 

Now what? 

I 

-417 ' P 'm r { Q(n, I)' e"-' + Q(n, -I)' e-"-' - 2Q(n, I )Q( n, -I) }dt = nh 

We split the integration. 

-41T 2p 2m Q(n, 1)2 F ei41TVI dt + Q(n, -1/ F e-i41Tvr dt {

II 

Jo- Jo-

e i41TV I and e-i41TV I each represent a 
simple wave. 

If we integrate a simple wave 
over one cycle the area is O. 
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- 2Q(n, I)Q(n, -I) ( ..l... dt} = nh 

If we integrate for 1 from 0 to 1 
p 

the area is l ! 
p 



-47T2v-!"m{ 0 + 0 -2Q(n, 1)Q(n, -1~} = nh 

We remove the brackets. 

87T 2vmQ(n, I)Q(n, -1) = nh 

We divide both sides by 87T2vm. 

Q(n, l)Q(n, -1) = ~ n 
87T mv 

Oops! There's another tedious thing to take care of here. 

You must be getting pretty fed up with calculations about now. 
I'm losing steam too. But I was thinking about the time when 
TCL's Heisenberg group was in training. The Heisenberg team had 
three brand-new first year students - Yuko, Pero, Ricky- a third 
year student (myself), senior students Hyon, Ban, Manatsu, and 
some others. 

We started by letting people who knew a little about TCL's 
methods do the talking. Since I understood what we had done in 
previous years a little better than the first year students, I did a lot 
of talking at first. But even after doing the calculations once, 
twice, three times.. . they still didn't understand. Just as I was 
getting bored and sick of it all, wondering, "Will we ever get 
anywhere?" Hyon suddenly muttered something about music. 

"Like Mr. D (a man at Hippo) said, you can't show someone 
how to sing exactly like the songs on the Hippo tapes. They have 
to do it themselves. Then anyone can learn how to sing." He 
remembered how much he admired Mr. D for his determination to 
do the same song over and over again, until he got it. That made 
me think. How happy I would be if someday Yuko or Pero could 
speak the language of mathematical formulae, because I had 
spoken it with them. I stopped caring how many times I had to 
explain or calculate. So, it helps to think of it as a song to learn. 
Sooner or later, you'll come to understand it. 
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Let's get back to our discussion. 

Q(n, I)Q(n, -1) = nh 
81T 2mv 

~ 
We were working on this part. 

(This is the amplitud~_ ~ 
;:: ,\)Ahem! 

Let's look closely at this amplitude part! 

r real number r complex number 

~ q = L Q(n, 7') e i21rV (n. T)/ 

T---

In this equation, q represents the position, it is a "real number" that can 
actually be observed. The amplitude Q(n, 7') is a "complex number" that cannot 
be observed. A complex number is a real number plus an imaginary number. 
Imaginary numbers exist only in the world of mathematics. They are used to 
make our calculations more manageable. 

Given that amplitude is a complex number, let's see what the nature of the 
amplitude is. 

9~ 
Hint! 

To do that you should first 
take a complex conjugate. 

Yes. sir! 

g~ 
You get a complex conjugate when you change the symbol in front of an 

imaginary number. That symbol is written as * (star). Real numbers contain no 
imaginary numbers, so even if we take a complex conjugate, the original 
number does not change. r--------------, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Quiz Corner 

OK, which are real numbers and which are not! 
Ummm ... 

1) How about 2· = 21 (Real numberD-~ 

2) How about 5 i • = -5 i? (Not a real number! 

That's easy! 

3) How about (1 + 3,)" = 1 - 3i? @ot a real number!)=--~ r}/-

~r answers are aU correct.:>- ,. (jJ ~ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 1.. ______________ ..1 
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Now q is a real number, so we should get q' = q. If this is the case, let's see 
what the nature of the amplitude is! 

It'll be easier to understand if we write out 1:. 

q = ... Q(n, _1)e i21Tv(n.-I)I 

+ Q(n, 0)ei2'ITv(n.0)1 

+ Q(n, 1)e i2'ITv(n.1)1 ... 

Now we take the complex conjugate. 
q' = ... Q(n, _1)"e-i2'ITv(n.-I)1 

+ Q(n, 0)"e-i2'ITV(n.0)1 

+ Q(n, 1)" e-i2'lTV (n. 1)1 ••• 

Since -v(n, T) = v(n, -T), 

We change the order. 

We flip 
them! 

q" = ... Q(n, _1)"e i2'ITV(n.l)t 

+ Q(n, 0)" ei2 'ITv(n. 0)1 

+ Q(n, 1)"ei21Tv (n.-1)1 ... 

q* = ... Q(n, 1)"ei2".v(n.-1)1 

+ Q(n,0)"ei21TV( •. 0)1 

+ Q(n, _1)"e i21TV(n.1)I . .. 

~~~ 
Hint! D' 

In order to compare q and q", we should match up the frequencies of the 
simple waves. 

q' = ... Q(n, l)"e i21Tv(n.-I)t q = ... Q(n, _1)ei211'V( •• -I)t 

+ Q(n, 0)" e i21TV (n.0)1 + Q(n,0)ei21TV (n.0)1 

+ Q(n, -I) * e i2".v(n. 1)1 • • • + Q(n, 1 )ei21TV (n. 1)1 ••• 

Because each of these has to be equivalent, the parts for the amplitude must 
be like this: 

Q(n, 1)" = Q(n,-1) 

Q(n, 0) * = Q(n, 0) 

Q(n, -I)" = Q(n, 1) 
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As a general expression, we have: 

Q(n, T)· = Q(n, -T ) . 

Let's go back to the beginning! From the above, we now know that 

Q(n, 1)Q(n, -1) = Q(n, I)Q(n, If 

so 

Q(n, I)Q(n, -1) = ~ n 
81T mv 

becomes 

Q(n, I)Q(n, If = ~ n . 
81T mv 

ftllun: ,..,flutter 
, , 

6momentn~ ' .... 

Now it happens that a given complex number multiplied by its complex 
conjugate is the square of its absolute value. 

This Is Ii '0.,1 (complex number)· (complex number)* = Icomplex numberl' 

Therefore, 

Q(n, I)Q(n, If = 81T ~mv n 

becomes 

This is what we get when we express the amplitude Q (n, T) of harmonic 
oscillation as a function of n! 
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3. 3 BUILDING QUANTUM THEORY 

&ley! "::: OK everybody. You must be tired; thanks for your patience! From 
~,'t. here on it's quantum mechanics! The time has come for 

Heisenberg to take center stage. 

Heisenberg was one of the young people who, originally in association with 
Bohr, had been moving toward a theory of quantum mechanics. He had labored 
day after day, trying to find the spectral intensity of light. One day, unable to 
cope with a bad case of hay fever, he received two weeks leave from Professor 
Born, and went to Helgoland to recuperate. 

S S S / Helgoland 
???WhoO .. ~ ~ 

". this fever. . . """" 

"Hay-senburg fever" 

Poor boy! 
I'll be his nurse! 

someone 
from the Inn 

OK! I'm going to 
give it my alI! 

Heisenberg was trying to find a method which could determine the spectral 
intensity, i.e., "hv, the number of transitions multiplied by the energy of a single 
light particle" even when n was small. 

• REGARDING THE CORRESPONDENCE WITH CLASSICAL 
MECHANICS 

So far, when n was large, we were able to find the spectral intensity using 
classical mechanics. 

The theory of classical mechanics made the mistake of treating light as 
waves. Even so, physics could use that theory to find the intensity of spectra 
when n was large. What that means is that the broadening of classical mechanics 
like so: 

Newton's Equation of Motion + Bohr's Quantum Condition 

q+!q=O fpdq=nh 

was correct. 

RADICAL 
BREAKTHROUGH 
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r -- -- ............ -- -- -- .... -- -- -- -- maW1&i 

I ::: \\ The Classical Method 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

/ 

We take the equation that expresses the position of the electron 
in complicated waves, 

q = ~ Q(n, 'T )ei21T>(n. T)1 

insert it in the equation of motion for harmonic oscillation, 

and solve. In order to express the amplitude as a function of n, we 
place it in Bohr's formula for the quantum condition 

and solve. 

We have found the spectral intensity. 

L __ ........ _________________ .w,JOO ~~~ 

Now we can rewrite the part of classical 
mechanics that says "light is composed of 
waves" to say "light is composed of 
particles that have energy h v." 

Have we i05t you? 

Newton Bohr 

If you think you don't understand what we're talking 
about, there is no need to worry. Once you work it out 
yourself, it will definitely start to make sense. 

, 

Let's start by considering the frequency of light. It was necessary to think 
of light as being emitted by electrons, not as they spun around, but as they 
underwent transition from one orbit to another. 

At this point, "the frequency v(n, T) of light emitted by a simple wave at 'T 

cycles when an electron is in orbit n" must be rewritten in quantum mechanics 
as "the frequency v(n; n - T) of the light emitted when there is a transition from 
orbit n to orbit n - T." 
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classical mechanics 
v(n, T) 

rewrite 
:> 

Next, let's consider the amplitude of light! 

quantum mechanics 
v(n; n - T) 

In classical mechanics, the spectral intensity of a light wave was the square 
of the amplitude Q(n, T). However, Einstein's discoveries indicated that the 
spectral intensity was really "hv, the number of transitions multiplied by the 
energy of a single light particle." 

So let's take ./number oftransitions x h/l and write it as Q(n; n - T) and put this 
in place of the amplitude Q(n, T) of classical mechanics. We have absolutely no 
idea what the "the root of the number of transitions multiplied by hv " actually 
is, but it is certain that it has a correspondence to Q(n, T), "the root of the 
spectral intensity." 

classical mechanics 

Q(n, T) 

rewrite 
:> 

quantum mechanics 

Q(n; n - T) 

Now, in classical mechanics a simple light wave of T cycles (the Fourier 
component) was described as 

Q(n, T )ei2".~(n. T)I 

Q(n, T) is equivalent to Q(n; n - T) in quantum mechanics, and 
v(n, T) is equivalent to v(n; n - T) in quantum mechanics. 

So in quantum mechanics this simple wave becomes 

Q(n; n - T )ei21rV(n;n-T)1 

From now on we will call this the "transitional component." 

Eh?! S-so what does that mean? 

It doesn't make much sense, does it. But this is what happens when we 
follow Einstein's and Bohr's theories and replace "waves" with "quanta." 
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Again, in classical mechanics ... 

Question! A -{" What about • complicated waveD ~ ~'OO"':c 
~'s the summation of simple waves~ ~ 

We see that Fourier's theory is valid here, so we can proceed to a summation 
of the above simple waves: 

q = 1: Q(n, T )ei27r.(n. T)t 

T 

Similarly, in quantum mechanics this is 

q = 1: Q(n; n - T )e i21T.(n;n-T)t • 

T 

Hmmm? ? 
~ay, w-what could that possibly mean'0--~ • 

It sure is hard. 
In the case of classical mechanics, q for complicated light waves described 

how the electron changed position with time. That was because it was thought 
that the electron gave off light as it rotated. 

~ 
~m 

Yes, but you know a quantum doesn't give off 
light as it rotates, it gives off light as it 
undergoes transition from one orbit to another. 

Right. When an electron undergoes transition, we don't know what path it 
takes!! What that means is that the q of the quantum, which is the summation of 
the transition components, does not "describe" the position of the electrons. 

~!!! My gosh-so q doesn't describe 
the position of the electron, right? 

Coming this far with classical mechanics, we could insert 

q = 1: Q(n, T )e i21T·(n. T)t 

T 

into Newton's equation of motion F = mq. Now if we used Bohr's quantum 

condition formula a little at the end, we could find the amplitude Q(n, T) and the 
frequency yen, T) for individual simple waves (the Fourier component). 

214 CHAPTER 3 THE BIRTH OF QUANTUM MECHANICS 



OK, in the case of quantum mechanics, also, we take 

q = L Q(n; n - T )ei2 .... (n;n-T)I 
T 

and put it in Newton's equation of motion F = mij . ... 

\ ' I 

~ Hey! Hey! Wait a second!! 

CD~ What? 

j ~ ~ , The q in F = mij expressed position, didn't it? That's why we were 
able to insert the q of classical mechanics. But what happens in the case of a 
quantum? 

Then q is not "position"! 

~ ~ The change over time of the position q is expressed as q (first 
derivative with respect to time), and represents velocity; the change in velocity 
over time is expressed as ij (second derivative with respect to time), and 
represents acceleration. Further, acceleration times mass is force. If it all went 
like that, it would be easy. 

But in the case of quanta, since we don't know what the position q is, we 
also don't know its change over time q. Still less do we know ij, the change in 
q over time. Even if we multiply such a thing by its mass, it's not likely to be 
equal to the force F. 

I suppose we can't use Newton's equation of motion, F = mij when we're 
dealing with quantum mechanics. 

~ H Yes, that's strange. 

UhIijOW. 
W After all, putting a q that doesn't express position into F = mq goes 

against common sense, doesn't it? 

We d,' We're in a fix. 
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"g You know, in the end it's no good. Bnilding something like a 
quantum mechanics seems impossible. 

d'.t 
~ That's right. Starting with Bohr, many people struggled with it, and it 

still didn't work. It can't be solved that easily. 

; ~:: Maybe we should give up ... 
I throw up my hand5! 

But Heisenberg was tough. 

He was able to ... 

" 
/' 

Huh" 

~ @ Force a Radical Breakthrough!!?? 

~ A ~ca' breakth,.o 
~~ ~e"" "" '(/ 

That's right. It may seem strange, but the equation 

q = 1: Q(n; n - 7' )ei27TV(n;n-T)t 
T 

turns out to be the same thing as the equation 

q = 1: Q(n, 7' )ei2",,(n. T)t 

r 

of classical mechanics when n is large. The reason is that when n is large, 
Q(n; n - 7') and v(n; n - 7') have the same values as Q(n, 7') and v(n, 7'). 

Because light is composed of quanta, q does not actually describe the 
"position" of a thing, even when n is large. In spite of this, F = mij gave a 
correct answer. Maybe it will also work when n is small. 
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HeY'IOO~L 
~,~ ~ We can't tell without trying! ) 

C1 eJ ~ 

That is how Heisenberg boldly put q into F = mij and continued his 
calculations. 

I was thinking. If Heisenberg had not gotten sick and had 
not gone to Helgoland and forced his "great radical 
breakthrough," would Bohr have been able to complete his 
quantum theory? I wavered, sometimes thinking, "Hey it's 
Bohr; he could have done it!" and sometimes, "Bohr-no 
way!" I concluded that it would have been too much for Bohr 
after all. Bohr was older than Heisenberg, and he knew that 
much more physics. For that very reason he probably would 
have demurred at trying to force such a radical breakthrough
putting something that wasn't a "position" into an equation 
describing position. Heisenberg could do it because he was 
young and "naive," I love Heisenberg for daring to ignore 
conventional knowledge! 

Let's get going on our calculations! 

Just as before when we used classical mechanics, we will proceed here by 
solving the equation of motion for harmonic oscillation. 

The equation of motion for harmonic oscillation went like this: 

.. k 0 q+m q = . 

We insert q = L Q(n; n - T )ei21Tv (n;n-T)1 into this equation. 
T 

First, we calculate ij. 

Let's try taking the derivatives piece by piece, 
just like we did with classical mechanics! 

SOLVING 
HARMONIC 
OSCILLATION 
USING 
QUANTUM 
MECHANICS 
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. first derivativ~ .... q = ~ i21Tv(n; n - T) Q(n; n - T )e i27TV(II:II-T)1 
WIth respect to tIme T ---------

second derivative .. ~ ('2 )2 ( . )2 Q( . ) i27Tv(n:II-T)1 .... q=~ l1T vn n-T n n-T e 
with respect to time T ' , 

= ~ -41T 2v(n; n - T )2Q(n; n - T )e i27TV (n:Il- T)I 

T 

We then insert i:j and q in the equation of motion for harmonic oscillation. 

~ -41T 2v(n; n - T )2Q(n; n - T )e i27TV(n:n-T)t 
T 

+ ~ ~Q(n;n_T)ei27TV(n:n-T)t=0 
_T 

Here we let ~ = (21TV )2 = 41T 2V 2 . 

The calculation is exactly the same as 
in classical mechanics, isn't it! 

~ -41T 2 V (n; n - T ) 2 Q(n; n - T )ei27TV (n: n - T)t 
_T_------' 

+ 41T2v2~Q(n;n_T)ei27TV(n:n-T)1 =0 
~ ~-----------------

There are a lot of redundancies, so let's clean up the equation! 

Now consider the requirements for this equation to hold true for O. 
In order for this equation to hold true for classical mechanics (as the 

summation of simple waves with new amplitudes), the new amplitudes for each 
respective simple wave have to equal O. 

In quantum mechanics, light is not considered to be a wave. But 
superficially, at least, the equation has the same form as the equation above, for 
the summation of simple waves. Thus for this equation to hold true, the new 
amplitude of each new "wave" must be O. 
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47T 2 {v 2-V(n;n-T)2} Q(,.;,.-T) =0 

4;0 

Because 47T2 can never be 0, either {v2 - v(n; n - T)2} or Q(n; n - T) must be 
equal to O. 

Just as we did with classical mechanics, we decide that {v2 - v(n; n - T)2} is 
o when Tis 1. 

Oh.l ~ v 2-v(n;n-1)2=0 
(letlt.~ 

From this we know that 

v(n;n-1)=v 

and so we know in turn that here the amplitude Q(n; n - 1) has a value other 
than O. Similarly, when T= 2,3,4· .. , then {v2 - v(n; n - T)2} doesn't become 
0, so in that case Q(n; n - T) must be O. 

With this we've found half the answer. But just as with classical mechanics, 
the equation also holds for one more case: when -v(n; n - 1) = -v. Therefore, 
we must consider what will happen to the equation 

-v(n; n -1). 

If we use the same approach as in classical mechanics, the equation 
becomes v(n; n + 1). 

Frequencies in classical mechanics had the 
property of being integer multiples, right? 

But in quantum mechanics, as a glance at the spectra will show, the 
frequencies are not integer multiples. So it would be wrong to use the same 
approach as in classical mechanics. 

11111111111 1 11111-+, 
So in quantum mechanics, what should we do with the minus signs on the 

frequencies? 
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There is an equation that gives the correct frequencies 
for quantum mechanics. This is Rydberg's equation 

v = Rc _ Rc 
m2 n2 ' 

Maybe this will tell us something. 

That's a good idea! Let's take a look. 

Rydberg's equation, according to Bohr, gives the frequency 
when there is a transition from orbit n to orbit m. If we express 
this with the symbols we are currently using, then when there is 
a transition from n to n - '1', the frequency v(n; n - '1') is 

v(n;n-T)= Rc 2 

(n - '1') 

Let's see what happens to -v(n; n - '1') in this equation! 

-V(n;n-T)=-{ Rc 2_ RC }=R;_ Rc 2 
(n - '1') n2 n (n - '1') 

Compared to Rydberg's original equation, we have 
v(n - r, n), that is, the frequency when there is a transition from 
n - '1' to n. In the case of quantum mechanics, a minus sign on 
the frequency means that a reverse transition is occurring. 

-v(n; n - '1') = v (n - '1'; n) 

Therefore, with -v(n; n - 1), we get 

-v(n; n - 1) = v(n - 1; n) 

I see! Have you noticed what we're doing? We are 
exploiting its correspondence with classical theory 
to work out the theory of quantum mechanics, but 
we are not just imitating it. We just suppress the 
parts that don't fit in quantum mechanics. 

At any rate, we have found the answer. For harmonic oscillation, only the 
two cases 

amplitude Q(n; n -1) for a transition from n to n - 1 
amplitude Q(n -1; n) for a transition from n - 1 to n 

have a value. We have found that for all other cases the amplitude must be O. 
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In addition, 

the frequency v(n; n -1) for a transition from n to n - 1 is v 
the frequency v(n - 1; n) for a transition from n - 1 to n is-v 

There is a special condition that applies only in the case of harmonic 
oscillation. The frequency of harmonic oscillation v(n; n - 1) = v behaves like 
this: 

What? 

m v(5; 4)} 
v(4;3) =v 

v(3; 2) 

Thus, when there is a transition one orbit inward, regardless of what n is, the 
frequency is always v. Similarly, for v(n - 1; n)= -v, 

V(4;5)} 
v(3; 4) =-v 

v(2; 3) 
~ 
~Oh. 

When there is a transition one orbit outward, regardless of what n is, the 
frequency is always -v. 

So whether we write (n -1; n) or (n; n + 1), it amounts to the same thing. 

SUMMARY 

Q(n; n -1) *0 

Q(n;n+1)*0 

Q(n; n - T)= ° (T *±l) 
v(n; n - 1) = v 

v(n; n + 1) =-v 
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EXPRESSING 
AMPLITUDE 
Q (n; n - T) AS A 
FUNCTION OF n 
IN QUANTUM 
MECHANICS 

As in the case of classical mechanics, we solved Newton's equation of 
motion to find when the amplitude Q(n; n - T) has a value other than O. 

Now we use Bohr's quantum condition f pdq = nh and express the amplitude 

as a function of n. If we can do this, we will be able to find concrete values for 
the frequencies of any and all transitions. 

--------------
Bohr's Quantum Condition Corner 

CD 
~ Say, why are you bringing up the quantum condition now? 

{!})"- What's wrong with that? 

'T'T ~\ 
'" We don't need it if we're trying to build a theory of 

quantum mechanics, right? 

f] ~- Well, in Bohr's case, 

J ~;-~:.. 3 ~ ! if Z ::dition 

~~/-+ 
/~, 

to classical mechanics we add the quantum 
condition 

\ \ / / 

'~ 
and produce quantum 

mechanics! 

the quantum condition was something that you added later. 

·~e The only reason we said that the n in the quantum 

condition f p dq = nh was an integer in the first place was because 

that could explain the experimental results. There wasn't any other 
good reason. 

Hmm 

~ But Heisenberg isn't simply taking a theory and adding 
the concept of "jumping" to it after the fact. He is trying to build 
quantum mechanics by studying the components of classical 
mechanics, one by one. 

., 
• I 

• I 
I 
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Yeah. Heisenberg is trying to rewrite the parts of 
classical mechanics that say "light is composed of waves" to say 
"light is composed of quanta." 

" 

~ In that case, we shouldn't need to add any quantum 
condition after the fact, right? 

? 

~~ What? We don't really understand. 

-'~ All right, let's explain it in a bit more detail! First of all, 
in classical mechanics 'T expresses the number of times a 
complicated wave undulates during one cycle. It follows that 'T can 
only be an integer. 

Now the 'T in quantum mechanics was taken directly from the 'T 

in classical mechanics, so it remained an integer. 
Next, in the case of quantum mechanics, n takes the form n - 'T. 

As an example, let's assume that n is 5. Because 'T is an integer, 
the next orbit is 5 - 1 = 4, and the next after that is 5 - 2 = 3. In 
this manner, n is always an integer. 

Understand? 

No! 

~ 
??? 

In other words, in quantum mechanics, if we say that 'T is 
an integer, then it naturally follows that n is an integer. We know 
this even without resorting to the quantum condition (n = 0, 1,2,3,. .. ) 

? 

-:.,"fJJ In that case, if we don't need the quantum condition any 
more, why is it appearing again? 

gl:J 
~ Remember earlier we said that classical mechanics and 

quantum mechanics correspond through "n". 
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L 

v (!!, 1) v (!!, 2) v (!!, 3) v (!!, T) 

v 0..; ~-1) v ~ ~-2) v ~ ~-3) v 0..; ~-T) 

If we want to develop quantum mechanics theory by rewriting 
classical mechanics, it is necessary to specify the value of n, 
whether we're talking about frequency or amplitude. For example, 
in classical mechanics when n is 3 and Tis 2, then the amplitude is 
Q(3, 2). In quantum mechanics this becomes Q(3; 3 - 2). 

n is not an arbitrary number; it is determined according to the 
series n = 1, 2, 3· .. and has a definite meaning. That's why we 
have to use this formula. 

" 
~._ ~ Somehow I feel like I understand. ~ 

:: ~ In fact Heisenberg rewrote the quantum condition in the 
following manner to make it suitable for its new use: 

L P(n; n - T )Q(n - T; n) - L Q(n; n + T )P(n + T; n) = 2h . 
T T 7T I 

<> ~ What? All of a sudden I don't understand anything! 

fli~ That's all right. This calculation is too much trouble. 
When we put the q of quantum mechanics into Bohr's equation, it's 
also a bit of a bother, and so we won't use it. But please remember 
that this equation is actually necessary! 

\ \ I 

~ ~ OK. Got it. 

----------------
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All right, now let's do the calculations! 

Just as in classical mechanics, we use a modified fonn of Bohr's quantum 
condition. 

I r m· (q)2 dt = nh 

In quantum mechanics, q took this fonn: 

q = L Q(n; n - T )e,'21TV(n;n-T)' . 
T 

We next insert the amplitude and frequency that we found for simple waves. 

q = Q(n; n _1)ei2 ... , + Q(n; n + 1)e--i2 ... , 

~" 
Tip! Uti]- Remember, this doesn't represent the position 

of the electron, as in classical theory! 

The first derivative with respect to time: 

q = i21TvQ(n; n _l)ei21TV'_ i21TvQ(n; n + 1)e-i21TV' . 

I 

We place this into our earlier equation r m . (q Y dt = nh. 

,\ ~ Thl5 15 It! 

-!b~ 

Because the figure in the brackets is a square, we use the formula 
(A - B)2 = A2 + B2 - 2AB to break it down. 

I r m{ -4 .. 'v ' Q(n; n - 1)'e"-' + (-4 .. 'v') Q(n; n + 1 )'e~-' 

+ 2 (-4 .. ,v') Q(n; n - 1)Q(n; n + l)e" }dt = nh 
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We factor out -41T2V 2. 
I r -41T 2mv 2 {Q(n; n - 1)2ei4tTvt + Q(n; n + 1)2e-i41rV' 

- 2Q(n; n - 1)Q(n; n + 1) }dt = nh 

pit-a-pat pit-a-pat 

We put -41T2mv 2 outside the integration . 

~~ ~~ 
.l 

-41T'mv'f { Q(n; n - I)'e"-' + Q(n; n + I)'e~'" 

- 2Q(n; n -l)Q(n; n + 1) }dt = nh 

Then we do the integration. 

-20n; n-I)Q(n; n + I)t ..!.. dt} =nh 

ei4...v, and e-i4...v, each represent a 
simple wave. If we integrate 
this, the area is O. 

If we integrate for 1 from 0 to 

1- the area is 1 
11 11 

-41T2mIl2{ 0 +0 - 2Q(n; n -1)Q(n; n + 1)~ } = nh 

We remove the brackets. 

81T 2mvQ(n; n -l)Q(n; n + 1) = nh 

~ , -\ , 
- 0 I get it. 

You divide. 
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We divide both sides by 87T2mv. 

Q(n; n - I)Q(n; n + 1) = h n 
87T 2mv 

Now if we write Q(n; n - 1) Q(n; n + 1) in its generalized form, we get 
Q(n; n -1) Q(n -1; n), but we have to think about what this means. 

In classical mechanics, from the property (Q(n, 7')* = Q(n, -7')} of the 
amplitude, Q(n, T) Q(n, -T) became IQ(n, 7')12. In quantum mechanics, can we 
also just say that Q(n; n + T) = Q(n; n - Tf? 

For the frequency, the v(n, -T) = -v(n, T) of classical mechanics has to be 
thought of as the reverse transition v (n - 1"; n) = -v (n; n - T) in quantum 
mechanics. Following this, we now take the property of amplitude in classical 
mechanics {Q(n, 1 f = Q(n, -I)} and rewrite it for quantum mechanics as a 
reverse transition. 

Q(n; n - T)' = Q(n - 7'; n) 

We then get Q(n; n + 1) = Q(n -1; n) = Q(n; n -1)*, and then 

Q(n; n - I)Q(n; n + 1) = 1 Q(n; n - 1) 12 . 

Finally, we geAt ,..,.. :. 

.. ! 
o 

Now, when we compare this to the experimental values ... Wow! A perfect 
match!! 

/' 

WE'VE COMPLETED 
QUANTUM MECHANICS!! 
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The amplitude of armonic oscillation The amplitude of harmonic oscillation 
found with classical mechanics found with quantum mechanics 

Why are classical mechanics and quantum mechanics 
the same? Nothing's changed. At this rate I don't see 
how we've gotten anywhere with quantum mechanics! 

For those of you who feel this way: 

Actually, we ended up with this result because using simple waves was too 
simplistic. For those who are still unsatisfied, you should tackle a problem 
that's a bit more complicated, such as that of an anharmonic oscillator. In fact, 
it was by solving the problem of an anharmonic oscillator that Heisenberg 
discovered quantum mechanics. 

In the case of an anharmonic oscillator, the force that acts on the electron is 
described as 

F=-kq-A q2. 

Compared to the force F = -kq in harmonic oscillation, there is an extra 
term -Al, which expresses a more complicated oscillation. 

If we place F = -kq - Aq2 in Newton's equation of motion, we produce the 
equation of motion for an anharmonic oscillator: 

If we can solve this, we should be OK. 

As in the case of harmonic oscillation, all we need to do is insert 

q = 1: Q(n; n - l' )e,"21TV(.;.-.)1 

• 
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in the equation and complete the calculation. But there is a l (a square) that 
was not present in the case of harmonic oscillation. We must think about how to 
calculate this in quantum mechanics. 

At this point, let's consider how to perform multiplication in quantum 
mechanics. 

First, what happens to multiplication in classical mechanics? 

For now, let's assume that x and y both take the fonn of an aggregate of 
simple waves. 

x = L X(n, 'T )e,"2l1'v(n. T)t 
T 

y = L Y(n, 'T )ei211'v(n. T)t 
T 

If we multiply x and y . .. 

xy = L X(n, 'T )ei2 11'v(n, T)t . L Y(n, 'T )e,"2l1'v(n. T)t 
T T 

Because ~ expresses a sum, we can proceed in the same way as below: 

multiplication 
of sums addition of products 

I see. Adding and then mUltiplying is the 
same thing as multiplying and then adding. 

xy = LL X(n, 'T )ei211'v(n. T)t . Y(n, 'T ')e,"2l1'v(n. Tit 
T T' 

To multiply the e's we add the exponents, like here: 

xy=LLX(n, 'T)Y(n, 'T')e i21rV(n.T)t+t"21rV(n,T l t 
T T' 

= L L X(n, 7' )Y(n, 7' ')e i211'{ v(n,T) +v(n, TI}t 
T T' 

Now let's see what happens to the exponent of e, that is v(n, 7') + v(n, T). 
In classical mechanics, the frequency of light is an integer multiple. 

MULTIPLICATION 
IN QUANTUM 
MECHANICS 
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II (n, -2) II (n,-1) o 

For instance, what happens 
to v(n, 1) + v(n, 2)? 

· . . 
II (n, 1) II (n, 2) 

(That'S easy. It's p(n, 3), right?).. ~ 

Right. All we do is add 1 + 2. To generalize, we add T + I. 

v (n, T) + v (n, T ') = v (n, T + T ') 

Now xy becomes 

xy = L L X(n, T )Y(n, T ')eiZTI".(n. T +TIt 
T T' 

Now let's refine it a little. 

Both T and 1 in v(n, T + I) include all of the integers between - 00 and 00. It 
is natural, therefore, that sometimes T + 1 has the same value as T. 

ti:\. 
~ 

There are times when T + 1 = 5, 
and times when T = 5, right? 

We now let the T + 1 in the above equation be T. In so doing, T now 
becomes T -I. 

The Rule for Multiplication in Classical Mechanics 

xy = LL X(n, T - T ') Yen, T ')eizTI".(n. T)t 

T T' 

Actually, there is a very basic reason for these refinements. If we look at 
our original x and y 

x = L X(n, T )eiZTI" .(n. T)t 

T 

y = L yen, 'T )eiZTI" _(no T)t 

T 

Lo and behold, the frequencies are the same for both x, y and xy. 
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Here's The Pointl 
In classical mechanics, you do not get 
different frequencies even if you multiply! 

Let's keep this in mind as we think about the rule for multiplication in 
quantum mechanics! 

x = L X(n; n - T )ei21TV(n:n-T)1 

T 

Y = L Y(n; n - T)e i21TV (n:n-T)1 

T 

Let's multiply these. 

The method is exactly the 
same as in classical mechanics. 

xy = L X(n; n -T )ei21Tv (n:n-T)I. L Y(n; n _T')e i21Tv (n:n-T'lf 

T T' 

= L L X(n; n -T )ei21TV (n:n-T)f. Y(n; n _T')e i21Tv (n:n-T')f 

T T' 

= L L X(n; n -T )Y(n; n -T ')e i21T {V(n:n-T)+ V(n:n-T')}f 

T T' 

Now let's consider what happens to the exponent of e, v(n; n - T) + v(n; n - i). 

As we have said many times, frequencies in quantum mechanics are not 
integer multiples. Simply adding them, as we would in classical mechanics 

v (n; n - T) + v (n; n - T') = v (n; n - T - T ') 

does not work. If we proceed via classical mechanics methods, the 
frequencies of the variables that have been multiplied will end up being 
different from the frequencies before multiplication. 

--l ~-n 
----~---T----+----n-i 

j) (n; n-i) 

--------~~----+----n-T 
j) (n; n-T) 

\ 

j) {n; n-( T+i)} ??? 
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IPaull, Wolfgang 
[1900-1958] 

In classical mechanics, the frequencies remain the same even when we 
mUltiply. This will become very important as we continue our calculations. In 
quantum mechanics we want to be able to perform basically the same 
calculations as in classical mechanics, so we need to establish a rule for 
multiplication that does not yield different frequencies after multiplication. 

'@J hat could 
~ It !:Ie? 

.J -)')r~ 

xy=1:1:X( ? )Y( ? )ei21TV(n;n-T)1 

T T' 

If we use the following rule for adding frequencies in quantum mechanics, 
we can avoid getting frequencies that are different from the original ones. 

v(n; n - or') + v(n- or'; n - or) = v(n; n - or) 

This is easy to understand if we look at the chart. 

--l-n 
----~--~---+----n-f 

v(n; n-f) 
v(n; n-T) 

--------~,~--~~----n-T 
v (n-f; n-T) 

;' 
OK! 

-.... , 

If we take this and make a rule for xy, the product of x and y, we get: 

The Rule for Multiplication in Quantum Mechanics 

xy = 1: 1: X(n; n - T ')Y(n - T'; n - T )ei21TV(n;n-T)1 
T T' 

With this rule, we can solve the equation of motion for an anharmonic 
oscillator. 

This matched the experimental results very well. And, using this method, 
Wolfgang Pauli unraveled the structure of the hydrogen atom. This too 
perfectly matched the experimental results. 

\ 
" 

232 CHAPTER 3 THE BIRTH OF QUANTUM MECHANICS 



~ \I~ But wait!! It's too early for celebration!! In Physics and U ~ Beyond, Heisenberg says: 

Then I noticed that there was no guarantee 
that the new mathematical scheme could be 
put into operation without contradictions. 

When Heisenberg first calculated spectral amplitudes and frequencies and 
found that they corresponded with experimental results, he was oveIjoyed. But 
when he looked at the problem more objectively, he was concerned. 

In spite of the fact that the q of the sum of the transition components no 
longer represented the electron's position, Heisenberg "forced" it into the 
equation F = mq. He was indeed able to obtain results that matched the 
experiments. But was it really valid to do this? 

.f!2 But Heisenberg dido't force the q in out of recklessness. 

·0" :~~::: 
Right. He was able to do it because he was faithful to the concept of 

correspondence with classical mechanics. 

? t 

! ~ In that case, perhaps we could show that quantum mechanics 
corresponds to classical mechanics in a consistent way, even in areas other than 
F=mq ... 

\ , 

- -: ~ .... Say, that's right. 'CW'" Maybe it was just a coincidence that F = mq 
• matched up. 

HUhA If we're talking about classical mechanics, what else is there besides 
F=mq? 

~J Isn't energy really the most important thing? 
conservation of energy is valid in all circumstances. 

The law of the 

CONSERVATION 
OF ENERGY 
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IHawking, Stephen 
William 
[b. 1942] 

Oh, I see. 

Besides, Planck, Einstein and Bohr entered the world of quanta 
through this thing called energy, didn't they? 

. a 

E=nhv (n=O, 1,2,3 .. ·) 

E =hv 
Wn-Wm v - ---"'-"..--.:.::. - h 

)~ 
So even if q no longer represents the position of the electron, all we 

have to do is show that this energy properly corresponds to classical mechanics. 

~ That's right. 

~ That is, it must he consistent with the law of the conservation of 
energy and also satisfy Bohr's frequency relation. 

®~ '.' ~ Good. Let's try and confirm that. 

According to Stephen Hawking, the law of 
the conservation of energy is "a physical law 
that can be neither created nor destroyed." 

('JJ' ::: - , 
~~ • • . " 
o . 

Let's think about energy. There are two kinds of energy, kinetic energy and 
potential energy; and the sum of both kinds, i.e., total energy, always has the 
same fixed value. 

kinetic energy + potential energy = constant 

! m(q)2 + V(q) = W 

__ ------~A~------------
This is calledQhe law of the conservation of energy) It has never been 

proven wrong. 
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For example, when you drop a ball from the top of a building: 
I 

~: 0 

·.·.·0 

, 
v 

The potential energy starts out I 
large, and keeps decreasing as the ball I 
falls. In contrast, the kinetic energy is 0 
at first, and it keeps increasing as the I 
ball falls. The sum of the two at any I 
given point in the fall is always the 
same as at any other point. I 

Let's look at Heisenberg's quantum mechanics theory and see if it is 
consistent with the law of the conservation of energy. 

, A~e5! 
;~ 

This is the equation for energy. 

w = -t m(iN + V(q) 

With harmonic oscillation, the potential energy V(q) is -t kq2, so the total 

energy of harmonic oscillation is 

First, let's see what happens to land (qy. 

square 

Get your calculating weapons 
ready-they'll help! 

q = L Q(n; n -T )e i21TV (n:n-T)T 

T 

Square q, using the multiplication 
rule that we devised earlier. 

q2 = L L Q(n; n - T ')Q(n - T '; n - T )e i21TV (n:n- T)T 
T T' 

first derivative with respect to time 

~; =q=~ i21T1J(n;n_T)Q(n;n_T)e i21TV (n:n-T)T 
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square of the first derivative with respect to time 

( ddq )2 = ('.1)2 = ~~ (i27T)2v(n; n - l' ')v(n - 1"; n - 1') t ,,' ________________________ _ 

Q(n; n - 1") Q(n - 1"; n - l' )ei2"v ln:n-T)r 

=~~-47T2v(n; n-1")v(n-1"; n-1') 
, " 

Q(n; n - l' ') Q(n - l' '; n - l' )ei21Tvln: n - T)r 

Next, change the form of k slightly. 

Because ! = (27TV)2=47T 2V2 ,wearriveat k=47T 2mv 2 

Get those weapons out, put them into the equation 
for energy, and let's attack the calculations! 

w = -21 m~ l; -47T 2v(n; n - l' ')v(n - 1"; n - 1') 
, T 

Q(n; n - l' ') Q(n - l' '; n - l' )e i2trv (n: II - Tit 

+ -21 (47T 2mv 2)~ l; Q(n; n - 1") Q(n - 1"; n - l' )e i21TV (II II - Tif 

T T 

t • 
I \', 

comeon!!~ 

~ 
or, 

We clean up the equation like this: 

W = 27T 2m ~~-v(n; n - l' ')v(n - 1"; n - 1') 
~-t-L 

Q(n; n - l' ')Q(n - l' '; n - 7 )e i2trv III: n - T)r 

+ 27T 2m v 2~~ Q(n; n - l' ')Q(n - 1"; n - 7 )ei21TvIII:n- T)f 

~ -t-L----------------------------

~ There sure are a lot of the same things. 

I I, 

fl) Oh! We've had this pattern before!! 
I think it was when we solved Newton's equation of motion. 

~,. ,. , 
"<:2 Let's make the equation look a little better! 

w = 27T2m~~ {v 2_ v(n; n -1")v(n -1"; n - 1')} 
T T' 

Q(n; n - 7 ')Q(n - l' '; n - 7 )e i2trv (n: II - T if 
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When we found the amplitude and frequency of harmonic oscillation, 
without regard to n, we knew that: 

When there is one transition inward, the frequency is v. 
When there is one transition outward, the frequency is -v. 

Moreover, the amplitude Q(n; n - T) only had a value in these two cases; we 
learned that at other times it was always O. 

v(n;n-l) = v 

v(n; n + 1) =-v 

Q(n; n - 1) ;t 0 
Q(n; n + 1) ;c 0 
Q(n;n-T)=O (T ;t±I) 

Therefore, it is clear that in the above equation for W, both Q(n; n - 'T') and 
Q(n - 'T'; n - T) are always 0, except when there is only one transition. 

W& :-{ When 'T' = 1.) 

Q(n; n - I)Q(n - 1; n - 2) 

Q(n; n - I)Q(n - 1; n - 0) 

Q(n; n + I)Q(n + 1; n + 2) 

Q(n; n + I)Q(n + 1; n - 0) 

(T =2) 

(T =0) 

(T =-2) 

(T =0) 

What do you know! The amplitudes Q(n; n - 'T') and Q(n - 'T'; n - T) never 
have values other than 0 except in the above four cases! The frequencies for 
these cases are as follows: 

v(n; n -l)v(n -1; n - 2) = inside· inside = v' v = v 2 

v(n; n -1)v(n - 1; n - 0) = inside . outside = v . (-v) = -v 2 

v(n; n + l)v(n + 1; n + 2) = outside· outside= (-v) . (-v) = V 2 

v(n; n + l)v(n + 1; n - 0) =outside· inside = (-v)· v = -v 2 

We insert them in the previous equation for energy. ~i'" . 
r;:::. We Insert 

• these! . 
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r'=1,r=2 

W = 27T 2m( v 2 - V 2 )Q(n; n - I)Q(n - 1; n - 2)e i21T.(n:n-2j, (= 0) 

=0 

r'=l,r=O 

+ 27T 2m{ v 2 - (-V 2) }Q(n; n -l)Q(n - 1; n)ei21T.(n;uj, 

= 2v 2 

r'=-l,r=-2 

+ 27T 2m( v 2 - V 2 )Q(n; n + l)Q(n + 1; n + 2)e i21T.(u:u+2)' (= 0) 

=0 

r'=-l,r=O 

+ 27T 2m{ V 2 - (-V 2) }Q(n; n + I)Q(n + 1; n)e i21T.(u:uj, 

=2v 2 

The first term and the third term fall out. 

W = 47T 2mv 2Q(n; n -l)Q(n -1; n)ei21T .(u:nj, 

+ 47T 2mv 2Q(n; n + 1 )Q(n + 1; n)e i21T .(n: u), 

v(n; n) refers to the frequency when there is a transition from n to n, but since 
transition from n to n is actually no transition at all, it turns out that v(n; n) = O. 

Therefore, ei21T.(n;n)1 = ei27rOI = l. 

W = 4""mv'{ Q(n; n -1)Q(n-l; n) + Q(n; n + I)Q(n + I; n)} 

We take the complex conjugates 

Q(n - 1; n) = Q*(n; n - 1) 

Q(n; n + 1) = Q·(n + 1; n) 

and work them in: 

W = 4". 'mv'{ Q(n; n -1)Qo(n; n - 1) + QO(n + I; n)Q(n + I; n) } 

Keep It up! ~/ • • ( 

,II CJ 

8 We're almo5t there! 
You can do it! 
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Next, we get 

so that 

Q(n; n - I)Q·(n; n -1) = 1 Q(n; n -1) 12 

Q·(n + 1; n)Q(n + 1; n) = I Q(n + 1; n) r 

W = 41T2mv2{1 Q(n; n -1) 12 + 1 Q(n + 1; n) 12}. 

I I , 

~ Done! This is the energy of hannonic oscillation! 

® This equation doesn't contain t (time)! What's going on? 

.. 0~-_~ 
.. 0· The energy of harmonic oscillation doesn't change over time! So it 

follows that the law of the conservation of energy holds, doesn't it! 

tff' '-4"- I, 
.., 

'"\ ....... " " .. "" .,~ . ~ 

Now take our equation for the intensity of light 

and put that in: 

W = 41T2mv2{1 Q(n; n -1) 12 + 1 Q(n + 1; n) 12} 

i i 
~ (n + 1) 

817' mv 
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h 
We take 81T 2mv out of the brackets. 

= 41T 2mv 2 h (n + n + 1) 
81T 2mv 

= t hv(2n + 1) 

=hv(n+t) 

~ :: The only difference between this and Planck's value for energy 

E = nil v is t hv . 

But we confIrmed that Heisenberg's value had better explanatory value! 

Finally, let's make sure that this satisfies Bohr's frequency relation 
Wn-Wm 

v = h . 

~-•• Oh oh, ~ 

there's troul1le. 

Bohr's frequency relation matched the experimental 
results perfectly. So if there's an inconsistency between 
Heisenberg and Bohr, we've got a big problem. 

We'll try putting the equation for energy that we just found into Bohr's 
equation for frequency relation. 

W -w ( 1) w ~-o 
v n; n - = h 

= v 

In harmonic oscillation, when there is one energy transition inward, the 
frequency is v! 
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That means the energy calculated by Heisenberg's method satisfied all 
of the necessary conditions for energy . 

., 

! !~. But with this "energy," q no longer expresses the position of the 
electron, so this isn't "energy" in the usual sense. We have no idea what q is 
anymore, and so we don't have any idea what this "energy" is either. 
Nevertheless, the equation satisfies the conservation law as well as Bohr's 
frequency relation. So that means ... 

rJ3H~~~! r,:. :: 
,,,,,' , 

Yes, yes, ye--es. 
We'll give it a new name-we'll call it "energy for quantum mechanics!" 

A 
~ Good! It satisfies all the conditions so far for energy, so who cares if 

it doesn't make sense! 

~ Yes, yes,let's do that! 

In Physics and Beyond, Heisenberg wrote of the time he constructed 
quantum mechanics in Helgoland. 

At first, I was deeply alarmed. I had the feeling that, 
through the surface of atomic phenomena, I was looking at a 
strangely beautiful interior, and felt almost giddy at the thought 
that I now had to probe this wealth of mathematical structures 
nature had so generously spread out before me. I was far too 
excited to sleep, and so, as a new day dawned, I made for the 
southern tip of the island, where I had been longing to climb a 
rock jutting out into the sea. I now did so without too much 
trouble, and waited for the sun to rise. 
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3. 4 THE COMPLETION OF MATRIX 
MECHANICS 

THE MATRIX 

IPauli, Wolfgang 
[1900-1958] 

Heisenberg's hay fever cleared up, and he returned from Helgoland. He 
wrote up the great discovery he had made there, and presented the report to 

his close friends Wolfgang Pauli and Professor Born. He left once more, this 
time to go mountain climbing. Good for the health! 

When Pauli and Born read the report, they thought, 
,\ I 

~ 
Paul\ 

But they didn't know how to deal with Heisenberg's calculations. They 
were far too messy and complicated. Then, looking again at the equations, Born 
noticed that Heisenberg's method of calculation resembled something that he 
had run into only once before, in a university lecture twenty years earlier. 

f8 --{ Th-this is a MATRIX!!) 

Born realized that Heisenberg's calculations were matrices. 

1J1? Hey, what's a matrix1 

~ It's an array of numbers laid out in a specific order. 

~ Really-how? 

A= 

I 

A-z [get It.] 

(P I if • • 
." 

Au 

A2l 

A3l 

AJ2 A13 ~ rho h",,,",,,,, 
-' .... are rows ... 

A22 A 23 

A32 A33 

o ~ The verticals 
~ are columns. 
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The horizontal lines are called rows, and the vertical lines are called 
columns. The individual numbers or units in the matrix are called elements. 
The elements of a matrix may be written in general fonn as 

AM' 

Heisenberg had developed a "sum of transition components" to correspond 
with classical mechanics. 

q = L Q(n; n - T )e i2 .... (n;n-T)t 

T--------
transition component 

In classical mechanics, what does the sum of simple waves 

q = L Q(n, T )ei2"..(n, T)t 

T 

indicate? 

!~ 
~ Uh ... Position! 

t\'/: ~ Base hit! Now what about the sum of transition components? 

~ Mmm ... what was it? I don't know. 

~~ That's right-we had no clue what it was. 

Transitions of electrons from one energy level to another cannot be summed 
up like waves. It might be clearer if instead we thought of each individual 
transition component as 

Q(n; n -T )e i2"..(n;n-T)1 

where q is a "collection" of transition components. We can certainly express 
that using a matrix! 
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'"' ~ In order to make this easier to express as a matrix, let's change the 
symbols a bit and replace what we've been writing as n - T with n'l If we do 
that, we can write the transition component as 

\ \ I / '" 

~ Short and easy! 

Q ei21rv nn't 
nn' 

/ 

~ If we say that the nn' elements of the matrix q are q,,' , then the matrix 
q may be written thus: 

qll ql2 q13 ... 

q21 q22 q23 ... 

q= 
q31 q32 q33 ... 0 • • . ~" 

, 
~ Of course! 

~ From now on, let's call matrix q the "position" in quantum mechanics. 

~. What!? But in quantum mechanics q doesn't express position any more! 

~ Yes, but remember that here, q does not refer to the "position" as 
defined in classical mechanics. We can call it "position" in the sense that it has 
a correspondence to the classical mechanics definition. 

I'm convInced. W 
-" -." ~ ~ ;(.~ Gee. 
. . 
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In quantum mechanics, because the position q is a matrix, the q in 

is also a matrix. So naturally F is a matrix, and all of the other physical 
quantities are matrices, as well . 

. ~" ~ So they all become collections of numbers! 

YUpn This is because all the physical quantities contain q. 

Physical Quantities 

q (position) q (velocity) q (acceleration) 

p = m q (momentum) F = m ij (force) 

m( q )2 
M ----===r=-- (angular momentum) 

E = t m(J..Y +V(...!..) (energy) 

Here's The Point! 
The language of quantum mechanics may be 

expressed entirely through matrices! 

When we say matrix, however, it's not as if any matrix will do. It must meet 
certain conditions. 

(Like what?)-

In quantum mechanics, amplitude had the property 

Q(n; n - 'T). = Q(n - 'T; n) . 

If we represent this as a matrix, we get ) 

QM'· = Qn'n' 
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I Hermite, Charles 
[ 1822-1901] 

Now let's see what properties matrix q has! 
The elements qM' of q were 

q ,= Q ,ei21TVnn" 
nn nn 

Let's take the complex conjugate (adding a star). 

To take the complex conjugate, the 
plus/minus sign in front of i changes! 

• Q • '2 q = Ie-I 1TV nn" 
nn' nn 

Because Qn': = Qn'n , -)1M' = )In'n (expressed in terms of the symbols we have 
been using, -)I (n; n - 7) = )I (n - 7; n)). Therefore 

q • = Q ' ei21TVn'n' 
nn' nn 

That is, 

Written in matrix form, it looks like this: 

qll q12 q13 ... · · · qll q21 q31 

q21 q22 q23 ..• · · · q12 q22 q32 

= 
q31 q32 q33 ••• · · · q13 q23 q33 

The rows and columns of this matrix have been inverted diagonally and its 
complex conjugate taken, yet it is equivalent to the original matrix. A matrix of 
this type is called an "Hermitian matrix". This type of matrix was studied by 
the mathematician Charles Hermite. If we use the language of the Hermitian 
matrix, 

all physical quantities can be 
expressed by the Hermitian matrix. 
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We now know that in quantum mechanics, physical quantities are expressed 
as matrices. But when Born first saw Heisenberg's calculations and 

thought, "This is a matrix!" it was because he assumed that the rules Heisenberg 
had used in his calculations were similar to the rules for calculating matrices. 

rtJi What are the rules for calculation? 

:'~ They tell you how to perform operations, like addition or 
multiplication. 

Let's see how Heisenberg's rules for calculation compare with the rules for 
calculating matrices. 

~ .. 
" 

"~. 
OK, ADDITION first! 

When we solved the equation of motion for harmonic oscillation, 

we perfonned addition transition component by transition component. 

In adding matrices, we can add elements in this way: 

(

All AI2 

A 21 A22 

All +Bll A12+B12 

A2l + B2l A22 + B22 

That is, we perfonn addition element by element. 

Heisenberg's addition and the addition 
for matrices are exactly the same! 

iii! .11.1~.;;illl~li 
RULES FOR 
CALCULATION 
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OK, on to DERIVATIVES WITH RESPECT TO TIME! ::' ..... ~
'/-

There are a whole pile of derivatives with respect to time in ;e:, ,; 
Heisenberg's work! 

Do . (dot) or" (double dot) have something 
to do with derivatives with respect to time? 

Right. They were calculated like this: 

q = L Q(n; n - 'T )ei21TP(n:n-T)r 

T 

first derivative with respect to time· .. 

q = L i21TV (n; n - 'T) Q(n; n - 'T )ei21TP (n: n - T)r 
T _____ _ 

Calculations were done for each transition, just as in classical mechanics. 
\ I _ 

Now, the derivative of the matrix with respect to time is A~ 
I • 
II II 

Here too we take derivatives on the ~~Od!! 
elements one by one. ~ ~ 

~ MULTIPLICATION is next! 

Now this is a problem. Heisenberg decided upon a particular form for his 
rule for multiplication. 

xy = L ~ X(n; n - 'T ')Y(n - 'T '; n - 'T )ei21TP (n:n- T)r 

T T' 
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If we look at its tenns one at a time, we have 

r, X(n; n - 'T ')Y(n - 'T '; n - 'T )e12 .... (II;n-~)I • 
T' 

A --("What happens when you multiply. matrix?) 
Multiplication of a matrix is done this way: 

(~~H: ;)=( ~::~ ~::) {17}@""iOj) 

Then, using the following fonnat: 

the general fonn is written 

X.!!.Y.!!. + xQYB. .. x.!!.YQ + XQY22 .. 

xy = xB.Y.!!. + X22YB. .. xB.YQ + X1!Y22 .. 

= (~XlnY!!! ~ XlnY~ .. ) . 

r, XlnY nl r, XlnY n2 .. n __ n --

Matrix element (XY)nn' is then 

Whenx,yare 

the matrix x, Y is 

mmmm 

~ 
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If we use the property Jlnn" + Jln"n' = Jlnn, of frequencies, 

(xy) = ~ X ". y • ,ei21TVnn" 
nn' 4 nn. nn 

n 

W-what?! It's exactly the same rule Heisenberg used for 
multiplication! 

A If we replace n with n, n - Twith nIt, and n - 'T with n', it's exactly the 
same as Heisenberg's multiplication! 

~'" 
~ ~ -
II " ( Terrific! >-

Heisenberg's calculation rules for addition, derivation and multiplication 
were exactly the same as the calculation rules for matrices. Unmodified, 
Heisenberg's calculations were complicated. He understood them perfectly 
well, but it was hard for others to do so. 

But if they are rearranged as a matrix, then anyone can understand them! 

Heisenberg's Method 
of Calculation 

q = L Q(n; n - 'T )ei2",.(n;n-T)1 

T 

" t 
F=mq 

tpdq=nh 

,t I" 
... We find Q, JI -

Method for Calculating 
Matrices 

GVefindQ,~ 

/ 

00 
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fI " " .. ~~ "'" 

tJ Actually, when I developed the theory of quantum mechanics on 
Helgoland, I didn't know a thing about matrices. 

~ ..:-~ V But if you're going to push the frontiers of physics forward, you have 
to discover or invent whatever mathematics you need. 

0~ 
Q Hey, it's Yama-chan (assistant to Heisenberg for eleven years, 

currently senior fellow at TeL, Professor Kazuo Yamazaki)! 

POln~ Lz) The important thing is, just do it, whatever it takes! 

LllmBorn.) 
, 

qz.- When I used matrices to arrange Heisenberg's calculations, I 
~ ~ realized that his calculations were even more significant. 

(What do youmean by that? }-4 ~ 
~

-. -, ~.\~ 
-' \\f=.\ -G All right, I see I've got to lay it out for you. Look, when matrix 
calculations are used, 

Bohr's quantum condition ~ 
Qy 

'--___ f_p_dfJ_=_n_h ___ --I (j Th~ one's mine. 

and 

Newton's equation of motion -~ 
F=mij ~ 

'--__________ --1 ii!Thls one's mine. 

may be rewritten. This gives us three advantages. 

A CANONICAL 
COMMUTATIVE 
RELATION 
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Huh? What? What could 

{j~~ 
I~ 

~- If you rewrite these two equations, then 

, 

1. you can prove that the law of the conservation of energy 
applies in all circumstances. 

2. you can prove that Bohr's frequency relation always 
holds true. 

3. the problem becomes one of eigenvalues, which we'll 
explain later. 

~ Uhh. I'm totally lost! 

Hln~ 

~ til That's all right. You'll understand eventually. For now, just 
remember that there are these three advantages. 

As I wrote in Physics and Beyond, my group and I worked for many 
months. It nearly did us in. 

All right, let's knuckle down and see what we've got here. 

" ... the extremely intensive work . . . kept 
us breathless for a few months." Even 
Heisenberg said, in Physics and Beyond, that the 
months and months of work nearly did him in. 
But there aren't many things as marvelous as 
Heisenberg's discovery in Helgoland! It might 
make you dizzy, but you'll feel the majesty of 
mathematics. Go for it! You can do it! 
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When Bohr's quantum condition is rewritten in the form of quantum 
mechanics, we get the following: 

, . h ' - L P(n; n - 'T )Q(n - 'T; n) -1: Q(n; n + 'T )P(n + 'T; n) = -2 .-
, r T 'TTl ...... 

~ -=C Actually, we left out the proof. SOrry!) 

When it is written with matrix symbols, we get this: 
~GO!GO! 

~ Pnn"QnHn - ~ QnnHPnHn = 2~ i (r i:i tr~ 
If we consider the rule for multiplication of matrices 

we see that in the last equation, PQ, QP are multiplied by the nn elements (the 
diagonal elements). Applying this, we rewrite the equation: 

_ h f;jHUhf 
(PQ)nn - (QP)nn - -2 . I' " 'TTl (. 

In addition, we let all the elements except for the nn elements be O. 

Scribble 

{ 

h 
2'TTi 

(PQ)nn' - (QP)nn' = 0 
(n = n') 

(n * n') 

A matrix such as this, where only the diagonal elements have values other 
than 0 and the rest are all 0, is called a diagonal element matrix. It may also 
be written this way 

h 0 0 
2'TTi 1 0 0 
0 h 0 1 love it! 2'TTi h 0 1 0 = 2 h . 1 = 
0 0 h 2'TTi 0 0 1 'TTl 

t::J 2'TTi f/ t:J' ;, --" 
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A matrix where the diagonal elements are 1 and the rest are all 0 is called an 
identity matrix and is written as 1. 

matrix··· PQ-QP=~ 1 
21T1 

matrix elements· .. (PQ)IIn' - (QP)nll' = 2h . 81111, 

1T1 

8nn' is what is called the Kronecker delta! 
When n = n', it is 1 
When n:#: n', it is 0 

q ,= Q ,e,"21Tv lln" 
nn nn 

The upper-case P, Q were amplitudes; assuming that P, Q are related in the 
ways we have studied so far, what relationships do we find for lower-case p, q, 
which express energy transitions? 

(pq - qP)nn' = 1; Pnn"qn"n' -1; qnn"PII"II' 
n n 

We change it into the form for transition components. 

We factor out ei21TVnn" • 

We rewrite it in the form of matrix elements. 

In the end, we get 

Here when n = n', ei2 '1f11r1111 = eO = 1,. When n ¢ n', 8nll, becomes O. 
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SUMMARY 

pq-qp =~1 
21'1 

) _~r;:, (pq - qp nn' - 2 . U nn' 
1'1 

8 - {n =n'··· 1 
nn' - n '* n' ... 0 

W Got it! ,,'., A: 

" In this way, when we express Bohr's quantum condition as a matrix, a new 
meaning appears. 

fJY What kind of meaning1 

~ In matrix multiplication, if we change the order, the solution changes. 

In the case of 

for example, 

AXB=(12)(56)=( 5+14 6+16 )_(1922) 
34 78 15+2818+32 - 4350 

B x A = (5 6)( 1 2) = ( 5 + 18 10 + 24) _ (23 34) 
7 8 34 7 + 24 14 + 32 - 31 46 

In this way, AB '* BA. 

I knowl 

flJ!j-- Using ordinary numbers, we can say that AB = BA. 

(sX3~ 
Right. In the case of matrices, the commutative law for multiplication 
is not valid! 

But if that's so, our calculations are going to run into trouble. 
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1.1 
~ If you tum the order of a matrix upside down, what will happen? 

Unless you know this, there are a number of calculations you can't do. What 
you need to provide is 

h pq-qp=-.l 
2m 

which is what we have been working with here. 

When we change the order in which we multiply the p and q of the matrix, 

the difference between them is determined to be 2; i . 

This is called the 

It is an important rule for calculation in matrix mechanics. 

The basis of the equation for the canonical 
commutative relation is Bohr's quantum condition, 

Because quantum mechanics was developed from 

1 classical mechanics 1 + 1 quantum condition I, 

in a way the quantum condition was superfluous. But by 
now it has become a rule for calculation, and matrix 
math can't do without it! 

( quantum mechanics quantum condition) 
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T hus, calculations in quantum mechanics are no longer done by the 
commutative law AB = BA, and the canonical commutative relation 

pq-qp=~ 1 
2m 

is applied as the commutative rule for multiplication. 

When the canonical commutative relation is used, however, Newton's 
equation of motion 

is reincarnated as a more powerful equation. In fact, the canonical commutative 
relation plays the role of a derivative. 

HUhffl'--n-0 The canonical commutative relation is a derivative? 

fl Yep. Lei's try an actual calculation! For example, consider the 
function of matrix p, q 

j(p, q) = 2p + 3q2 + pq 

If we take a partial derivative ofj(p, q) with respect to q, we get 

aj(p, q) 6 
---= q+p 

aq 

~ In the case of the partial derivation of j(p, q) with respect to q, the 
remaining p is calculated as if it were a normal number. This is how partial 
derivatives work. 

00 ~ Yes, I see. 

~ Let's do some calculating. 

pj(p, q) - j(p, q)p 

p, q is a matrix, so you can't change 
the order of multiplication. 

Hi II!P. 
HEISENBERG'S 
EQUATION OF 
MOTION 
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f(p, q) = 2p + 3q2 + pq 

pf(p, q) - f(p, q)p = p(2p + 3q2 + pq) - (2p + 3q2 + pq)p 

We remove the brackets. 

= 2p2+ 3pq2 + p2q _ 2p2 _ 3q2p _ pqp 

We factor out 3 

Now we use the canonical commutative relation pq - qp = ~ 1 
27f 1 

From the canonical commutative relationship pq - qp = 2h . 1 , we get 
h 7f 1 

pq=qp+-.1· 
27fl 

We remove the brackets. 

= 3( qpq + 2~i q - q2p) + 2~i P 

We factor out q. 

= 3 { 2~ i q + q (pq - qp) } + 2 ~ i P 

We bring in the canonical commutative relation once again. 

h 
We factor out -2 '. 

7fl 

( h h) h =3 -2 ·q+-2 .q +-2 .p 
7fl 7fl 7fl 

h h =3-2 .2q+-2 .p 
7fl 7fl 

pf - fp = ~ (6q + p) 
21Tl 
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'h.(i) 
(iJ Now then, let's compare the derivative of this same function f (p, q) 

with our results when we calculated using the canonical commutative 
relationship! 

derivative 

af(p, q) 6 
---=----,----,c- = q + p 

aq 

canonical commutative relation 

pf - fp= 2h .(6q+ p) 
1Tl 

W Super! Aside from the 2~i it's exactly the same! 

'h "- Right. When we put it together we can write it like this! 
V e3 

af(p, q) = 21Ti (pf _ fp) 
aq h 

That makes sense. 

In the same way, if we take a derivative off(P, q) for p, we get 

af(p, q) _ 21Ti (f fi) --- q - q 
ap h 

::v~ 

-~ Wow! pf-fp and qf- fq played the roles of derivatives, didn't they! 

Born took one look and thought, "That's it!" It was 

I get it!! 

HAMILTON'S CANONICAL 
EQUATION OF MOTION 

dq aH 
dt = ap 

dp aH 
dt = - aq 

Here. look! 
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IHamilton, Sir William 
Rowan 
[1805-1865] 

This is Newton's equation of motion F = mq expressed in the form of 
derivatives of p, q. H is called the "Hamiltonian" and it expresses energy in the 
form of a function of p, q. 

H(p, q) = 2~ p2 + V(q) 

In the case of harmonic oscillation, the potential energy V (q) is 

Therefore, the Hamiltonian for harmonic oscillation is ... 

H(p, q) = 2~ p2 + ! q2 . 

Let's try putting this in Hamilton's 
canonical equation of motion! 

Here ~; = q ,and describes velocity v, exactly as we would expect. If we 

perfonn the same calculation for : ,we get 

Because dp/dt = m (dv/dt) = mq, this is equivalent to F = mq . 

Newton's equation of motion and Hamilton's canonical equation of motion 
are essentially the same. Sir William Hamilton deliberately fashioned a separate 
canonical equation of motion for one simple reason. 

It's mathematically elegant! ~~ ~ It's me, Hamilton! 

a>~ H What? I think F = mq is more elegant. .. 
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~~ I'm talking about a kind of elegance that is deeper than visual beauty. 
But let's not go into such things here. 

For solving problems it doesn't particularly matter whether it is elegant or 
not. Newton's equation was simpler, and almost everyone liked it better. 
Hamilton's canonical equation of motion hardly ever saw the light of day. 

However ... if we take Hamilton's canonical equation of motion 

and compare it carefully to the familiar 

af(p, q) = 21Ti (pf _ fp) 
aq h 

af(p, q) = _ 21T i (qf _ fq) 
ap h 

( }-~Plt-.... 
I have the feeling we can use iL ~ ... _':,~ 

If f is a function of p and q, it can be anything. Because H is a function of p 
and q, we can replacefwith H in the above equation. 

aH 21Ti 
-=-(pH-Hp) 
aq h 
aH 21Ti 
-=--(qH-Hq) 
ap h 

What? 

~_ What? 
I I 
" I, 
~ 

We combine this with Hamilton's canonical equation of motion. 

dp 21Ti 
- = - - (pH - Hp) 
dt h 
dq 21Ti 
-=--(qH-Hq) 
dt h 
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FIRST, 
CONCERNING 
POINTS 1 AND 2 

Now it looks really nice! Moreover, if we think of this as function g of p 
and q and put them together into one function, we have: 

dg 2'TTi 
-=--(gH-Hg) 
dt h 

This is called 

HEISENBERG'S EQUATION OF MOTION. 

By using the canonical commutative relation, it is possible to rewrite 
Newton's equation of motion in this form. 

G>~ 
o Wh d h' k' 11 h" .. N ' c:;;:s Y 0 you t 10 we ve spent a t IS tIme rewrIt10g ewton s 

equation of motion? 

~ , Because. as we said before. there are three advantages. 

1. you can prove that the law of the conservation of energy 
applies in all circumstances. 

2. you can prove that Bohr's frequency relation always 
holds true. 

3. the problem becomes one of eigenvalues. 

( Let's stop and think about this a littler 

Heisenberg was able to solve the problem by "forcing" something that was 
not the position of an electron into Newton's equation of motion. 

Nevertheless, he was able to verify that energy is conserved, and to fulfill 
Bohr's frequency relation. 

The energy that was calculated by introducing something that was not 
position was entirely different from energy as it had been previously conceived. 
But it was consistent with the law of energy conservation and with Bohr's 
frequency relation. The term "energy" was therefore acceptable, and other 
terms in the language of classical mechanics could be retained and used in 
quantum mechanics. 
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In sum, Heisenberg's equation of motion 

1) shows that energy is conserved. 
2) is consistent with Bohr's frequency relation. ~..., Uh ... • • II I. ,... 

Although it was found that Heisenberg's equation worked for harmonic 
oscillation (or, for Heisenberg, an anharmonic oscillator), no one knew whether 
it would hold in all other cases. If Heisenberg's theory were to have any 
meaning, it had to be valid in every case. 

1. The Conservation of energy! 

In Heisenberg's equation of motion 

dg 27ri 
-=--(gH -Hg) 
dt h 

as long as g is a function of p and q, it can be anything. 

However, the Hamiltonian H of the matrix describing energy is 

o,fj H(p, q) = 2~ p2 + V(q) . 

It is apparent that this is a function of p and q. 

If we take the g in Heisenberg's equation of motion to be H, we get 

It goes without saying that HH - HH = 0, so 

dH =0 
dt . 

The meaning of this equation is that the change of energy over time dHldt is O. 
And, if energy does not increase or decrease over time, then ENERGY IS 
CONSERVED. 

How easy it was to prove finally that energy is conserved (Le., it does not 
change over time) not only in the case of harmonic oscillation, but in any and all 
cases! 
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I feel like I've been tricked! 
Am I the only one who feels this way? 

We have proved that energy does not change over time, and now we know 
something else, too. Energy H is a matrix, in the same way that p or q are. 

Physical quantities in quantum 
mechanics are all matrices! 

\ I '" 

~~ 
~ 

When we define H for all elements, we write: 

H nn' = H nn' ei2". on" 

( Hnn, is amplitude) 

Because Hnn, is a function of time, obviously it varies over time. But there is 
only one situation when it doesn't change over time. 

(When n = n'?)-
, ? 
::~. 

"71" -
Exactly! When n = n', the frequency Vnn indicates the frequency when there 

is transition from n to n, that is to say when there is no transition, and therefore 
equals O. 

Thus, we obtain: 

H = H e'·"~' = H ei2"Ot = H eO = H-
l1li l1li nn nn nn· 

If matrix H does not change over time, then only Hnn , the elements of the 
form n = n' which do not change over time (that is, only the diagonal elements), 
can have values other than 0; all other elements in H must be O. 

~~<.~ 
~ throueh It! 
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If we denote the values of the diagonal elements of matrix H by WI' W2, W 3 ••• , 

matrix H then becomes: 

WI 0 0 \ 

~ 1'. 

0 W2 0 '~" What ... 

0 0 W3 •• • 

MATRIX H FOR ENERGY BECOMES 
A DIAGONAL MATRIX!! 

If we express the elements of matrix H using the Kronecker delta 0nn' we get: 

This shows that when n = n', 
o,m' is 1, otherwise it is O! 

2. Bohr's frequency relation 

Let's look again at Heisenberg's equation of motion! 

dg 21Ti 
-=--(gH -Hg) 
dt h 

Now, all we do is use this equation to prove that Bohr's frequency relation 
holds ... 

(Here! I'll do it0=-

;~ OK, Pero, give it a try! 
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The g in Heisenberg's equation of motion is, of course, a matrix, and 
its elements are 

Now let's look at each side of Heisenberg's equation of motion and 
see what their respective elements are! 

Taking the left side, dg/dt, first, the elements are: 

( dg ) = i21T v G e i2"v •• ". dt M' •• ' .n' 

But, G.n,e,"2"V.rfl = gM' , so it follows that the 

left side = i21T v •• ' g •• , . ~ A ~ 

... \ /1 -),' 

-~ v 

That takes care of the left side! 

Now let's go to the right side. We obtain 

{ 21Ti } 21Ti (~ ) - It (gH - Hg) M' = -It ft gM-H.-n' - ft H.n-gn-n, . 

But we know that energy H is a diagonal matrix with the form 

HM ,= W.B.n" 

We insert this into the above equation, and obtain 

H.-n, = Wn- B.-n' 

It follows that 

There'!; got to "e 
!Some triCK. <@ 

--~ 

The Kronecker delta 8,,',., is 1 only if nil = n'; otherwise it is O. In the 

same way, &,.- is 1 only if n = nil; otherwise it is O. Therefore, ~ 
disappears. 
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We factor out glln" 

27T i ( ) = - -h- Wn, - Wn gnn' 

If we put the minus sign inside the brackets, the order inside the brackets 
is reversed. 

27T i ( ) =T Wn - Wn, glln' 

Last of all, let's put the h inside the brackets . 

. h'd 2 .(Wn- Wn') ng t Sl e = 7T I h g nn' 

The right side is finished! 

So far we have worked out the left and right sides of Heisenberg's 
equation of motion. 

dg 27Ti 
-=--(gH -Hg) 
dt h 

r-------------, 
: left side : 

r----------------, 
: right side : 

I I I I 
I I 
: i27T VIl/,' g nn' : 
I I 

: 2 . Wn - Wn, : 
I 7T1 h gnn' I 
I I L _____________ .J L ________________ .J 

We now connect the left half and the right half with an equal sign, and 
obtain: 

'10'- )-. _ ~~'k_Wn - Wn, ~ 
" ....... "'Ynn'6),q' - -<~, h 6/1ri' 

With this we have proven that Bohr's frequency relation always holds! 

~ero,gOOOjOb0-- tl ~ 
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EIGENVALUE 
PROBLEMS 

SUMMARY 

Using Heisenberg's equation of motion 

dg 27T'i 
-=--(gH-Hg) 
dt h 

we have neatly proven that 
1) energy is always conserved and 
2) Bohr's frequency relation always holds true. 

OK, now let's move on to the major advantage of Heisenberg's equation of 
motion, which is that THE PROBLEM BECOMES ONE OF 

EIGENVALUES! 

~ -( Eigenvalues? ) 

Since it's an unfamiliar term, we'll interview someone who knows matrix 
mathematics well and can explain. 

~d;- -{ The word "matrix" .. .) 

~ 
Paull 

Just as "baseball" makes us think of "hot dogs," 

IF WE TALK ABOUT "MATRICES," 
WE HAVE TO DISCUSS ''EIGENVALUES''. 

We are trying to fmd the frequencies and amplitudes of spectra. In order to 
find them, all we need to do is solve Heisenberg's equation of motion. 
However, Born discovered a method for finding Q and v directly, without 
solving the equation of motion. This is the famous "eigenvalue problem." 

Eigenvalues problems are an important part of matrix mathematics. They 
come into play in various contexts. Because solutions have been studied for so 
long, material written on this subject would fill a bulging manual. 
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Just think how easy it would 
be if there were a manual! 

1j~"V\ '6) ~ 
\1{, • -; . , . -

. 

Now, how can we find the amplitude and frequency of a spectrum using 
eigenvalues? Let's try it! 

First Step: Lower-case p, q and upper-case P, Q 

We gather the spectral amplitudes P nn' , Qnn' and write them as a matrix. 

P II P12 P13 ••• Ql1 Q12 QI3 

P21 P22 P23 ... Q21 Q22 Q23 
P= Q= 

P31 P32 P33 ... Q31 Q32 Q33 

In so doing, finding the amplitude P nn' • Qnn' becomes the same thing as 
finding the matrix P, Q. 

Do we gain anything by going to the 
trouble of gathering the amplitudes 
Pnn" Qnn' and write them as a matrix? 

(Sure we dO)-

In fact, matrix P, Q has the following interesting property: 

f(p, q)nn' = f(P, Q)nn,ei27T~n".t 

To obtain the lower-case function, simply 
multiply the upper-case function by ei21fvnn". 

First, in the case off(P. q) = p and f(P. q) = q, we obtain 

This is great: they simply become the elements of matrix p, q. 

~~ • • 
. 

~,.. hmm , , 
hmm 
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Next, we consider addition. 

Yup! The lower-case function becomes the upper-case function multiplied 
by ei2'rrl' •• ", 

Finally, we tackle multiplication. 

= ~ p .Q .,ei2 .-(",·"+","·,), 
~ nn nn i 

vnn' 

Here too the lower-case function is the upper-case function mUltiplied by 
i2""M" , e , 

So that means that for both addition and 
multiplication, the lower-case function is the 
upper-case function multiplied by ei2WM"! 

Almost all functions are combinations of additions and multiplications, So 
whether you are adding p,q or are multiplying them, the rule that the lower-case 
function is the upper-case function multiplied by ei2 .-v •• ',! will apply for all 
functionsj(p, q) of p and q. 

( I see. )-~ 
It really gets interesting now. 

Let's go on to the canonical commutative relation for lower-case p, q. 
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Because the (pq - qp )nn' on the left is a lower-case function, it equals the 
upper-case function multiplied by ei21rJ'ru('. 

(pq - qP)nn' = (PQ - QP)"",e12fr lfw(' 

_ h 
Here, we use the canonical commutative relation (pq - qP)nn' - 2'TT i . 

{ 

h 
2'TTi 

(PQ-QP) ,el"211''ltn'/=~ 13 ,= 
(n = n') 

nn 2'TT1 nn 0 (n * n') 

This equation means that 
When n = n', ei2 11'Vnn'/ = I, and so (PQ - QP) ,= ~,and 

lin 2'TT I 

when n * n', ei211'v.n" * 0, and so (PQ - QP)M' = O. 

SUMMARY 

_ h 
(PQ - QP)nn' - -2 . I3nn, 'TTl 

When the canonical commutative relation holds for lower-case P, q, 
the canonical commutative relation also holds for upper-case P, Q. 

Let's consider one last thing-the Hamiltonian H (p, q)! Since the lower
case function is the upper-case function multiplied by i 2'"'ru1", we get 

Here the lower-case Hamiltonian H (p, q) is a diagonal matrix. 

then H(P Q) ,ei2 11''ltn'/ = W 13 , nn nnn' 

The situation is the same as for the canonical commutative relation. 
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SUMMARY 

H(P, Q)nn' = W.8 •• , 

If the Hamiltonian is a diagonal matrix for lower-case p, q, it will 
also be a diagonal matrix for upper-case P, Q. 

~ It's interesting that the same things hold true for both lower and 
upper-cases, isn't it? 

~<J) 
~ Yes, but doesn't it seem then like we could do something with it? 
We've been concentrating on lower-case p, q so far, and yet. .. 

~ We could switch our focus to upper-case! 

-~ Bingo! The upper-case P, Q are amplitudes P nn' , QM' arranged in a 
matrix, so it'll be easier if we treat them as upper-case from the start. 

e Can we do that? 

('j Sure we can! We have already proven that 

1. upper-case P, Q fulfIlls the canonical commutative relation, and 
2. when the Hamiltonian H (P, Q) is a diagonal matrix, 

then lower-case p, q fulfills both the canonical commutative 
relation and Heisenberg's equation for motion. 

'1 ? ;J 

~ Now what did that mean again? 

~ Well, until now we have found the amplitude and frequency by 
looking for a lower-case p, q which fulfills the canonical commutative relation 
and Heisenberg's equation of motion. 

P But now we don't have to do that anymore? 
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~<!J: 
~ Right. From now on we can look for an upper-case P, Q that will 

fulfill the two previous conditions, and find the amplitude and frequency directly. 

~ ,,_ OK, let's get to the proof. 
~ 

® A Right on! 

First, consider upper-case P, Q 

PII P12 P13 ... Ql1 

PZI P22 
PZ3 ... Q21 

P= Q= 
P31 P32 P33 ... Q31 

Now let its Hamiltonian H 

H(P, Q) = 2~ p2 + V(Q) 

fulfill the canonical commutative relation, 

and form a diagonal matrix. 

h PQ-QP=-.l 
211'l 

QI2 Q13 

Q22 Q23 

Q32 Q33 

Let's take as amplitude the elements of upper-case P, Q , and take as 
frequency the Villi' that we derived, using Bohr's frequency relation 

Wn - Wn, 

Vnn, = h 

from the Hamiltonian H (P, Q) diagonal elements WI' W2, W 3' •• 

Now, let's consider transition components possessing this amplitude and 
frequency 

q = Q ei21Tlltn'/ 
nn' nN' 

as well as the lower-case matrix with elements Pnn" qM" 
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We do not know whether p, q fulfills the canonical commutative relation. 
This can be proven in the same way as when we derived the canonical 
commutative relation from Bohr's quantum condition, so we will skip it here. 

The only thing left is to find out if it satisfies Heisenberg's equation of 
motion. 

,~ -( Firs~ let's look at momentum pi ) 

With regard to momentum p, Heisenberg's equation of motion is as follows: 
, 

dp 27Ti -
dt = - h (pH - Hp) . 

Then let's see what happens to the elements on both sides of the equation! 

~I I , 

" '~ 
For lower-case p to satisfy Heisenberg's equation 
of motion, the left side must equal the right side. 

The left side is 

(dP ) '2 P i21Tv"." 
dt = l 7T JJnn, nn' e . 

nn' 

.ti'~'" hmm 
II 

,.," hmm 

Next, the right side is 

_(2;i){PH(P,Q)_H(P,q)P} . 

However, since H (p, q) is a lower-case function-indeed, since the entire 
left side is a lower-case function-we can use our old trick "lower-case = upper
case multiplied by ei2fn1tu1"." 

[- 2; j {PH(P, q) - H(p, q)p} L 
= [- 2;1 {PH(P, Q)-H(P, QIP}Lea., .. 
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We do multiplication using elements. 

Because the upper-case Hamiltonian H (P, Q) is a diagonal matrix, we get 

H(P, Q)nn" = Wn8nn" 

H(P, Q)n"n' = W.- 8.-., . 

From this, we arrive at the following: 

15®ee .... _ 
,... -

I.) It 

" r 

Here, Wn"&"n' equals 0, except for elements where n" = n'. Because Wn-&-. 
equals 0, except for elements where n" = n, ~ drops out. 

21ri 
- - - (P W - W P )ei2"."", - h nn'rt' nnn' 

We place the minus sign inside the brackets. 

21ri = - (W P ,- W P )e il7T",." h nnn ,.'M' 

We place h inside the brackets and factor out PM" 

We finally have: 
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Now, compare the right and left sides of Heisenberg's equation of motion ... 
~~ H 

~CJ'" oora'y'(/ 

left side 

i27TlInnPnn' 

right side 

2 7T i linn' P nn' 

THEY'RE EXACTLY THE SAME!!!! 

We can treat the case of q in exactly the same manner. 

Our calculations have proven that lower-case PM" which was derived from 
upper-case P, Q, satisfies Heisenberg's equation of motion! 

SUMMARY 

If an upper-case P, Q can be found that fulfills the 
canonical commutative relation and whose Hamiltonian 
forms a diagonal matrix, it is then possible to find the 
amplitude and frequency of a spectrum. 

Next step: Unitary transformation 

Thus, if an upper-case P, Q can be found 

1. that fulfills the canonical commutative relation, and 
2. whose Hamiltonian forms a diagonal matrix, 

then the spectral amplitude and frequency may be found. 

Well then, how do we go about finding a P, Q that fulfills these 
conditions? 

r:J There's a trick to it. 

First we propose a matrix pO, QO. 

pO, QO can be anything, as long as it satisfies the canonical commutative 
relationship 

It doesn't matter where we fmd it. 
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~ If that is so, then it should be easy to find. 

'I.?""tJ\ C!J' ~ ~ 
:d This means that we've reduced the number of conditions by one. 

However, pO, QO was stuck in arbitrarily, and so normally its Hamiltonian 

will not form a diagonal matrix. 

You're right. But what should we do? 

~ Actually, there is a technique for making pO, QO into a diagonal 
matrix. The technique is called 

UNITARY TRANSFORMATION! 

Well, let's see what kind of beast this unitary transformation is! 

A unitary transformation is possible when a matrix is placed within a unitary 
matrix U. 

UtAU 

A unitary matrix looks like this: 

utu = uut = I (identity matrix) 

The t sign is called a "dagger." It tells you to 
switch the positions of rows and columns and 
then take the complex conjugate. 

(A B) t = ( A· C·) 
CD B· D· 

H (po, QO) is not a diagonal matrix. But fortunately, we can perform a 
unitary transformation, so that If H(po, QO) U becomes a diagonal matrix. 
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But remember, we were trying 
to fmd the upper-case P, Q. 

In fact, there is a way to find it. That's the 
great thing about unitary transformation! 

Take harmonic oscillation as an example. With harmonic oscillation, the 
Hamiltonian H (po, QO) of pO, QO is the following: 

H(PO, QC) = 2~ (pC)2 + ~ (QC)2 

= _1_ papa + ! QOQo . 
2m 2 

We sandwich (po, QO) inside the unitary matrix if, U and turn it into a 
diagonal matrix. 

Now insert the Hamiltonian for harmonic oscillation and work it out. First, 
we remove the brackets. 

Here is where the unitary matrix can show off its special character. We 
insert if U between pO and pO and between QO and QO. 

~ --{j;tu is 1, so it has no effect on the eqUation) 
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Now for something new. We let 

p= UtpOU 

Q= UtQoU. 

Since this was placed in a unitary matrix and is therefore now a diagonal 
matrix, we can write this: 

_1_p2+! Q2= 
2m 2 

That is to say, pO, QO, which was chosen arbitrarily, is placed in the unitary 
matrix cf, U, which gives us 

p= utpOu 

Q= UtQoU 

This is the upper-case P, Q that we wanted to fmd-the spectral amplitude. 

rJ_r@ 
, , 

, " 

c3 ,. 

Does that mean that all we have to find now is 
a unitary matrix U that will tum H (po, QO) 
into a diagonal matrix when we do the unitary 
transformation? 

"',, re y goo«, That's right. And the method for finding U binges ~P tt ~ 
on the use of eigenvalues. 0 

Since cfH (po, QO) U will be a diagonal matrix, we get this: 

If we mUltiply both sides by U, beginning with the left side, we get 
cfu=l. 
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Therefore, 

= 

= 

Un UIZ U\3 

U21 UZZ UZ3 

U31 U3Z U33 

UllWI U12WZ U I3W3 

U21 WI UzzWz UZ3W3 

U31 WI U32WZ U33W3 

o 0 

If you look at the right side, you see that the first column contains only WI; 
the second column, only W2• and the third column, only W3• Therefore. those 
groupings remain intact even if you move the individual columns around. Now, 
let the unitary matrix with the disordered columns be g (xi). 

Eigenvalues are the key to solving this equation! 
And when we solve the eigenvalue problem here, we can find upper-case P, 

Q and, therefore, find the spectral amplitude and frequency. 

We did It! 

WE HAVE COMPLETED 

~,::,(.-::, MA:~TRIX MEC::::~S! ~ -::;00::: ~~ ~~~ ..... 
'0' 

clap clap! 
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3. 5 A CONVERSATION WITH EINSTEIN 

So you see that Heisenberg's discovery was formulated into a system of 
matrix mathematics. His theory had huge reverberations in the world of 

physics and mathematics, and beyond. He had discovered a method for finding 
spectral intensity, something that had seemed impossible until then. 

Soon he was invited to speak on his matrix mechanics theory at a physics 
conference at the University of Berlin. At the time, the University of Berlin was 
considered a bastion of physics. Planck and Einstein were both working there. 
Whenever a physics conference was held, they and other prominent members of 
the academic community attended. 

All right. ('II give it everything ('ve got! 

Having this opportunity to get to know some world-class physicists, 
Heisenberg was eager and determined. He prepared with great care so that his 
discovery would be properly understood. He rehearsed his presentation 
countless times with his close friend Pauli. 

On the day of the conference, Heisenberg's lecture went exactly as planned. 
And just as he had hoped, Einstein expressed interest in his topic. 

Shall we talk about it at grealer length at my home? ~ 

This was the renowned Einstein speaking to him! ~~' 
Heisenberg's knees were shaking. Before he could say yes or no, J ,1 
Einstein started in. 

What you have told us sounds extremely strange. You 
assume the existence of electrons inside the atom, and 
you are probably quite right to do so. But you refuse to 
consider their orbits, even though we can observe 
electron tracks in a cloud chamber. I should very much 
like to hear more about your reasons for making such 
strange assumption. 

That was Einstein. Very sharp. 
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Heisenberg developed his quantum mechanics theory from the perspective 
of a correspondence with 'classical mechanics. He worked within the main 
framework of classical mechanics. But where classical mechanics considered 
light to be composed of waves, he followed Einstein and said that light is 
composed of quanta. In so doing, he successfully explained the spectrum, the 
only available clue in the quest to unravel the mystery of the atom. 

But along the way Heisenberg had done something unthinkable. Despite the 
fact that the sum of transitions 

q = L Q(n; n - T )e i21TV (n; n - Tlt 
T 

could no longer be used to describe the position--or in Einstein's words, the 
orbit--of the electron, he had forcibly maneuvered it into Newton's equation of 
motion F = mq. Finally, q was taken to be a collection of numbers called a 
matrix. 

This "radical breakthrough" was not simply a devil-may-care error. 
Although q no longer described the orbit of the electron and ended up becoming 
a matrix, Heisenberg's "energy" was in full accord with the law of energy 
conservation and Bohr's frequency relation. Yet that did not change the fact that 
Heisenberg had built a theory on a base other than the orbit of the electron. 

_ M ,.",,'" "",, :~ 0': 
.". ..... 

The cloud chamber experiment clearly demonstrates that the orbits of 
electrons exist and that electrons describe a certain path as they move from a 
given location to another. Inside the cloud chamber, electrons can be clearly 
seen describing paths as they fly around. Since their traces are so unmistakably 
evident, the failure to explain them suggested something seriously wrong with 
Heisenberg's theory. 

But Heisenberg had given ample thought to this point, too. It was almost 
inevitable that this question would come up. Heisenberg met Einstein's 
challenge with his response already prepared. 

We cannot observe electron orbits inside the atom. But the 
radiation which an atom emits during discharges enables 
us to deduce the frequencies and corresponding amplitudes 
of its electrons. After all, even in the older physics wave 
numbers and amplitudes could be considered substitutes 
for electron orbits. Now, since a good theory must be 
based on directly observable magnitudes, I thought it more 
fitting to restrict myself to these, treating them, as it were, 
as representatives of the electron orbits. 

Yes indeed, that was an impressive answer. 
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Electrons are regarded as "invisible." Although we can see their tracks as 
vapor in a cloud chamber, we certainly cannot see the electrons themselves. 
From its spectrum, however, we can find the frequency and amplitude of the 
light emitted by the electrons. Of course, electrons were considered invisible in 
classical mechanics also, but it was assumed that if the frequency v(n, 7") and 
amplitude Q(n, 7") of an electron's light were known, then its orbit could also be 
identified. 

q = L Q(n, 7") e i21T p(n. T)t 

T 

But when classical mechanics is rewritten "correctly" for quanta, we obtain 

q=L Q(n;n_7")ei21TP(n;n-T)t 

T 

and the orbits have disappeared. This tells us that thinking in terms of "orbits" 
was a mistake right from the start. Instead of thinking of orbits as things that 
exist even though we can't see them, wouldn't it be better to regard things we 
can't see as not existing? 

That is the way Heisenberg thought. 

But Einstein didn't accept that. 

But you don't seriously believe that none but 
observable magnitudes must go into a physical theory? 
It is the theory which decides what we can observe. 

It is too simplistic to say that just because you can't see it, it's not there. 
Let's say you hear a thumping sound in the next room, for example. As 

long as you know that the room belongs to a child, and that he or she likes 
kicking a ball around, you can deduce from the sound that there is a child 
playing with a ball in the next room, even without looking in the room. It is the 
same with the inside of an atom. Even if you can't see electrons, from the light 
that electrons give off, you can deduce that something is happening. That is 
physics: people trying to explain physical phenomena. That is why it is a huge 
mistake to find satisfaction, as Heisenberg did, in explaining the light emitted by 
electrons without asking how and why they are moving. 

Einstein haltingly reasoned this way with Heisenberg. 

But Heisenberg would not be beaten. No matter what 
Einstein might say, he would try to refute it. All things considered, however, 
Heisenberg was at a disadvantage. 
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WHAT IS HAPPENING INSIDE THE ATOM? 

Heisenberg had no answer to Einstein's question. 

Finally Einstein asked: 

How can you really have so much faith in your 
theory when so many crucial problems remain 
completely unsolved? 

Heisenberg could not respond right away. But after a while, he said: 

I believe, just like you, that the simplicity of natural 
laws has an objective character, that it is not just the result 
of thought economy. If nature leads us to mathematical 
forms of great simplicity and beauty - by forms I am 
referring to coherent systems of hypotheses, axioms, etc. -
to forms that no one has previously encountered, we 
cannot help thinking that they are 'true,' that they reveal a 
genuine feature of nature. 

You must have felt this, too: the almost frightening 
simplicity and wholeness of the relationships which 
nature suddenly spreads out before us and for which none 
of us was in the least prepared. And this feeling is 
something completely different from the joy we feel when 
we have done a set task particularly well. That is one 
reason why I hope that the problems we have been 
discussing will be solved in one way or another. 

Einstein was not convinced by Heisenberg's answer. Although he did not 
accept it, he ended their conversation with these words: 

That is why I am so interested in your remarks about 
simplicity. Still, I should never claim that I really 
understood what is meant by the simplicity of natural laws. 

From this conversation with Einstein, Heisenberg realized that quantum 
mechanics was still very much a work in progress. 
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CHAPTER 4 

Luis Victor de Broglie 
and 

Erwin Schrodinger 

WAVE MECHANICS 

As long as electrons were thought of as particles, physicists could explain 
their behavior very well. But with Heisenberg's statement, "Let's do away with 
orbits. " it became impossible to imagine how they behaved. 

Then de Broglie, drawn to physics by Einstein's work, presented the daring 
theory that electrons also have the characteristics of waves. At the same time, 
experiments were performed showing that electrons were infact waves. 

When Schrodinger learned of these developments, he worked out a series of 
equations based on the image of electrons as waves. 
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4. lOUR ADVENTURE SO FAR 

We're almost halfway through our adventure. As a reminder of what we've 
done so far, let's quickly go over the first half. 

Long ago, light was thought to be waves. Why? Because the wave theory 
of light nicely accounted for certain important experiments. 

These experiments concerned interference and diffraction. Briefly. the 
height of a wave is its amplitude, and the energy of a wave may be expressed as 
lamplitudel2• Since waves can attain any height, the amplitude, and therefore the 
energy, should be able to assume any value. 

But!!! 

Seeing the results of the blackbody radiation experiment, Planck stated, 

THE ENERGY OF LIGHT 
HAS DISCRETE VALUESl 

Planck 

In the language of numerical expressions, this may be expressed as 

E = nh V (n = 0, 1, 2, 3 ... ) 
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It, 
Sq 

.5'e> The energy of a wave should be able 
\ to have any value along a continuum of 
.- values, but the energy of light IS 

discontinuous. It's odd, isn't it? 

Planck thought his own discovery 
was so strange that he tried not to talk 
about it. 

But without realizing it, Planck had 
opened the door to the adventure of 
quantum mechanics. 

Then Einstein made his appearance. 
Planck had discovered that the energy of light increases in discrete intervals. 

This was odd if light was thought of as waves, but Einstein suggested that the 
experimental results would make sense if 

Light is approached as 
PARTICLES with the energy hv!! 

E=hv 

@ 
{Einstein'l 

Let's imagine a small box with a hole inside a larger box in which there is a 
vacuum, as in the drawings below. If light were particles, the number of light 
particles inside the little box ought to increase and decrease one at a time, as 
illustrated below. 

@ 

There was only one light 
particle in the little box, 

but then there were two, and then one again. 

So, light can be present even inside a vacuum! ~~ .. 
o 

Next, since the energy of a single particle is hv, it follows that the energy of 
light changes in discrete intervals. 

The energy inside the little box goes 

C!l Q-x 1 =hv ~ @ Q-x2=2hv ~ @ Q-x 1 =hv 

thus changing by one unit of hv at a time! 

This was Einstein's photon hypothesis. 
In addition, thinking of light as a particle made it possible to explain the 
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results of certain experiments that the wave theory of light could not account for. 

Those results were the photoelectric effect 
and the Compton effect. 

The experiment showing the photoelectric 
effect was easily explained by taking the 
energy of a single light particle to be h v. 

Furthermore, according to the 
Compton effect, the momentum of a light 
particle was found to be 

p=lL 
A 

--=.<:;) 

~Ei> 

~Q 

Photoelectric Effect 

Compton Effect 

But experiments on interference and diffraction, which could only be 
explained by the wave theory of light, were by no means abandoned. At times 
light behaves like a particle, at other times like a wave. This odd dual nature of 
light was to become a challenging and yet unsolvable problem as the adventure 
of quantum mechanics progressed. 

At this point, the focus of our story moves from light to the star of quantum 
mechanics, Mr. ELECTRON. In terms of what was known at the time, the 
behavior of electrons seemed bizarre, and the question of how electrons moved 
inside the atom was a big problem for physicists. Because electrons were not 
visible, the only clue to their behavior was the spectrum of the light they 
emitted. Physicists tried to understand how electrons moved by explaining the 
order of the spectrum they emitted. But since this could not be explained using 
existing theories, the physicists were in a bind. 

Bohr then made his appearance. He drew on Planck's, "the energy of light 
takes on discrete values," and Einstein's "light is a particle with energy hv" to 
construct a hypothesis that neatly explained the spectra emitted by atoms. 

1. Electrons only rotate along stepped orbits. 
They do not emit light while rotating. 

2. Electrons emit light when they undergo 
sudden transitions (instant relocation) from 
orbit to orbit. 

3. The order of the stepped orbits is 
determined by 

fpdq=nh (n=I,2,3,···) 

288 CHAPTER 4 WA VB MECHANICS 



According to prevailing theory, Bohr's hypothesis would have 
been unthinkable. It only became possible if it wu based on the 
idea that THE ATOM IS STABLE. ~ 

Bohr 

Using this model of the atom, Bohr was able to find frequency v of the 
spectra of light. But the question of how and why this hypothesis worked could 
not be answered. 

EhY is the n in f p dq = nh an integer}.... 16 
When, where, and how does transition occur? ~ 

Why doesn't the electron give off light when it rotates? dl? 
Now, it is the young, handsome and clever Heisenberg who makes his 

dashing entry! Heisenberg stated that the problem was in assuming that there 
were orbits. 

If we don't think about orbits, then we don't need to think about how 
transition occurs or why electrons don't emit light when they rotate. This is 
what led Heisenberg to construct matrix mechanics, by which he could find the 
frequency v and intensity IQI2 of the spectra of light. Then Heisenberg said, 

If we can explain the frequency and the intensity 
of the spectra of light emitted by the atom, we 
don't need to explain the orbits of electrons!! 'tJ ,... '"' 

~~~, 

But if we dismiss the orbits, we won't be able to determine the position of 
an electron at any given time. We've been reading What is Quantum 
Mechanics? A Physics Adventure to find out how electrons move inside an 
atom, and now we're told that there is no way to envision the state of an electron 
inside an atom. 

Einstein became angry when he heard Heisenberg's statement. 

Where will this adventure take us? We're not supposed to envision the 
behavior of electrons. Really! So much for our review. It's time to charge 
ahead into the last half of our adventure. 
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4. 2 ELECTRONS ARE WAVES 

MR. 
NONCHALANT 
DE BROGLIE ON 
THE SET! 

Ide Broglie, Louis Victor 
[1892-1987] 

Setting us on our way after half-time is LOUIS VICTOR DE BROGLIE. 

De Broglie 

Luis de Broglie was a very easy-going sort of fellow. Unlike most of the 
other physicists we have met, de Broglie did not start out in physics. 

r--------------
D 

I 
i 
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'\ The de Broglie Story ~ 
Many years ago, two brothers named Louis and Maurice lived 

in a large castle in France. Their parents were aristocrats and they 
were very wealthy. Because of this, they were able to live 
extremely comfortably without having to work. The brothers were 
raised with few constraints, and were able to spend their time as 
they liked. The elder brother, Maurice, wondered how things 
moved, and pursued research in physics; Louis was interested in 
how the people of the past lived, and he studied history. 

One day, Maurice attended a gathering (the Solvay Conference) 
where physicists exchanged information about their research. 
When he returned, he told his brother Louis about the people at the 
conference and the things they had talked about. At the 
conference, the physicists devoted their discussions to the question 
of light, which at the time was a popular topic. Louis found the 
subject very stimulating, and he became deeply interested in 
physics. Louis began to acquire the language physicists used to 
explain the movements of things, and also to acquire the language 
of equations by reading and learning a little from his older brother 
every day. 

L _____________ _ 
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290 CHAPTER 4 WAVE MECHANICS 



At the time, the star in the world of physics was EINSTEIN. 

~ TA-DMI 

De Broglie became a fan of Einstein, and read his papers avidly. What was 
especially interesting to de Broglie was Einstein's photon hypothesis: 

E = h v and p = h .l 
A 

E describes the energy of a light particle, v is the frequency of a light wave, p 
stands for the momentum of a light particle, and A the length of a light wave. 
Normally, a particle and a wave would never be paired with an equal (=) sign. 

r
I 

Use your imagination! 

I 
I 

First try picturing a wave in your head. 

00 .. & ......{" It sways and spreads.) 

I Next, imagine a particle. 

I 80 .. & 'I-t'-s-a-ll-s-q-u-ee-z-e-d-i-n-to-a-s-in-g-Ie-sp-o-t-....... 

I Now, to picture something that is both a particle and a wave. 

I ~0:~6A I can't do it! ) 

, 
I 
I 
I 
I 
I 
I 
i 

.J 

There can't be something that sways and spreads and is squeezed into a 
single spot at the same time. Waves and particles are completely different. 

Regardless of the fact that waves and particles are different, Einstein said 
that light could also be described as a particle even though physicists were used 
to thinking of it as a wave. 

( How bold Einstein was! >-1 
That was what de Broglie loved about Einstein. 

But around that time, World War I began and de Broglie had to go to war. 
When he returned from the battlefield, the age of Einstein was over. The new 
hero was ... Niels Bohr. 

~ ~o you know me ~y now7 ) 
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DE BROGLIE'S 
INTUITION 

De Broglie was a bit disappointed, but as he began to understand Bohr's 
research, he became aware that it included a very thorny problem, which was ... 

No one could explain the discrete values 
of the orbits of the electrons in an atom! 

According to Bohr, the angular momentum of electrons was 

M=2~ n (n=1,2,3,···) 

It was thus limited to integral multiples. Bohr, together with Sommerfeld, 
expressed this in the form 

f pdq=nh (n=1,2,3,···) 

Using this, the spectra of light emitted by the atom could be described 
beautifully, but nobody could answer WHY THEY WERE INTEGRAL 
MULTIPLES. 

At the time, electrons were considered to be particles; this had been 
confirmed by many different experiments. But de Broglie had a hunch. 

Before Einstein, the notion that light was a 
wave had been confirmed experimentally. But 
Einstein was daring enough to declare that 
electrons were particles, and experiments 
showed that to be true, too. 

IF DE BROGLIE WAS RIGHT, an 
ELECTRON, which everyone assumed was a 
particle, MIGHT ALSO BE A WAVE! 

That's rightl 
That's rightl 

(r--:;'iINSTEIN LIGHT: WAVE~PARTICLE ' ~ 
L:(),> ~E BROGLIE ELECTRON : PARTICLE ~ WAV~\~:::J 

This idea was as bold as Einstein's. 

In addition, up until that time, integral multiples appeared in physics only in 
phenomena related to waves. 

A complicated wave is the sum of simple waves whose 
FREQUENCIES ARE INTEGRAL MULTIPLES. 
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De Broglie thought that Einstein's photon hypothesis would also hold for 
electrons. 

E = h JI and p = h 1-
A 

That means that the energy of an electron is E and the momentum p, while at the 
same time the electron is a wave with frequency JI and wavelength A. 

~" ~ ~l Perhaps Bohr's quantum condition can be explained this way! 

Let's try it. 

Let's consider the most simple atom - hydrogen - just as Bohr did. If an 
electron in a hydrogen atom is a wave ... 

I wonder if it's like this? ) 

b- Oh! 

Thus, the number of times that a wave undulates must always BE AN 
INTEGRAL VALUE. 

In this picture, there are eight undulations. 

If the number of undulations of the wave were not an integer ... 

The wave would end up being "chopped off"; it would be weakened and be 
unable to maintain a constant, stable state. 

~~': . . 
o 

And if it's chopped off, you 
can't call it a wave, can you? 

I see. The number of undulations in a wave must be an integer . 

THE ROAD TO 
DE BROGLIE'S 
NOBEL PRIZE 
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Now, let's put that in the language of numerical expressions. If the radius is 
r, what is the circumference? 

C2m-!! r ~ 
That's right! Next, what is the total length of a wave with wavelength (that 

is, the distance a wave covers in one undulation) A and n cycles (number of 
undulations)? 

Let's see, one wavelength is A, 
and we've got n cycles, 
so ... I've got it! It's nA! 

Right!! Furthermore, the circumference and the length of a wave with n 
cycles are equivalent, so ... 

(2m-=nA!?Og Here! 

Great! You've got it! 

But, we're now thinking of the wavelength of an electron as if it had the 
same momentum it did when we thought of it as a particle, in the relationship 

So wavelength A becomes 

=.h... p A . 

A = 11. p 

If we replace A in 2m- = nA with this, we get 

27Tr=ni· 

Now, to get rid of the fraction, we mUltiply both sides by p and come up with 

27Trp = nh. 

Because rp = M, we have 

27TM =nh. 

M is the angular momentum. 
It came up before when we were talking about Bohr. 

Dividing both sides by 27T, we get 

M=~n 
27T 

Ww-what! This is 

II 

BOHR'S QUANTUM CONDITION!!! 
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n was the number of cycles, or the number of times a wave 
undulates, so it will always be an integer (n = 1,2,3 ... ). 

No one could explain the angular momentum of an electron before, but now 
it could be shown that electrons have discrete integral values. If one thought of 
electrons as waves, IT WAS NATURAL, A MATTER OF COURSE. 

~ ~ 
(Great! Mr. de Broglie, you did it! )-\.~~ :tl j' 

De Broglie published a paper describing his discovery. 

[~ you know, Mr. de Broglie, no matter how brilliant your theory is, 
() we can't say it's true until there is an experiment to prove it, can 

we? Have you got that covered? 

~ Experiment? One has been found, you know. In fact, after I 
published my paper saying that electrons are waves, Clinton Davisson and L. H. 
Germer noticed that in their experiments electrons behaved like waves. 

~ \yJ The word "noticed" bothers me. Just what do you mean by that? 

~ That is, until they noticed that behavior, they didn't understand the 
results of their experiments. 

~~What are you trying to say? 

~ 

Q 
-l!) Well, you see, until I said that electrons are waves, physicists believed 

that electrons were particles because this was indicated by experimental results. 
For that reason, all the phenomena caused by electrons that had been discovered 
so far were thought to reflect only the behavior of particles. There was, 
however, one experimental result that did not make sense with respect to the 
electron as a particle. That was Davisson and Germer's experiment. 

FINDING AN 
EXPERIMENT 

IDavisson, Clinton 
Joseph 
[1881-1958] 

I Germer, Lester Halbert 
[1896-1971] 
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While carrying out numerous experiments trying to discover something 
about the structure of the atom by investigating electrons, they obtained 
experimental results that did not make any sense. 

They thought the experiment had probably been a failure. But after de 
Broglie published his paper stating that electrons are waves, a physicist named 
W. Elsasser asked, 

"Isn't it possible that this has something to do 
with the INTERFERENCE of electrons?" 

This caused Davisson and Germer to perform their experiment more 
thoroughly, and they discovered a surprisingly beautiful and orderly interference 
pattern. The results turned out to corroborate de Broglie's theory. They also 
indicated that without de Broglie's theory stating that electrons are waves, it 
would have been impossible to explain the experimental results. 

We thought de Broglie did a magnificent job, but these 
two guys were pretty impressive too, weren't they? 

If you've got a correct theory, then order 
appears after all, even out of something 
that was vague. 
A solid theory reveals the existing 
regularity even when things appear to 
be random and lacking in order. 

De Broglie dared to claim that ELECTRONS ARE WAVES. In doing so, 
he was able to derive Bohr's quantum condition with SURPRISING EASE. 
Moreover, it was CONFIRMED EXPERIMENTALLY that ELECTRONS 
INTERFERE. Having achieved so 
much, de Broglie was awarded the 
NOBEL PRIZE! With this, we end our 
tale of de Broglie. 
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How apout a short rest? ~ 
THE STORY OF DE BROGLIE'S 

ELECTRON WAVE 

... If you leave it 
alone, the eel will 
slither away. 

J Let'5 
... slither 
""""- G .".... away! 

r 
Electrons are 

3 thus unstable. 

0~ThiSWay 
G the eels can't 

4 . get away. 5 de Broglie 6 

The number of eels that are linked together 
must be an integer, such as three or four. There 
can't be such a thing as a ring of 3.5 eels, right? 

, .. -
THE STRANGE BEHAVIOR OF 

PARTICLES AND WAVES 

Although many sounds from the Hippo story tapes may run through a member's head, in 
some cases, he may be able to vocalize only a few of them. If we think of the things running 
through his head as being a wave, what comes out of his mouth is like a particle, isn't it? 

~----------------
I \ 

"I've got a friend named I He can sina all of the son as in I 

p the Yellow Cat. : his head, put all he can actually : 

(snap, snap) Me.oW!'~~~ \. :a! ~s_"~~-~w~"~~~ :.o~~!~ _./ 
'd 

~Me-ow~i>~ __________ _ 
Let'5 5ee for our5elve5!! 
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CHAPTER 4 WAVE MECHANICS 297 



4.3 LET'S MAKE WAVE MECHANICS 

MR. GUNG-HO, 
SCHRODINGER 

I Langevin, Paul 
[ 1872-1946] 

ISchrodinger, Erwin 
[1887-1961] 

De Broglie wrote his paper and showed it to his advisor, Professor 
Paul Langevin. But when Professor Langevin read it, he had no idea what 

it meant. 

This is pretty strange. What is he talking about? 

The practical and sensible Langevin didn't realize that de Broglie's 
discovery was both historic and immense. However, since de Broglie was a 
duke and his social rank was high even among aristocrats, Langevin could not 
simply ignore the paper as he normally would have. Langevin wondered what 
he should do. De Broglie's paper contained quotations from Einstein's theory, 
so Langevin arranged to have his friend Einstein read the paper. 

~ 
Please tell me whether this 
paper makes any sense or not. 

Even Einstein was not able to completely understand de Broglie's theory. 

'I:ihl~' ~ . But something about it was interesting! 

At this point, Einstein handed the paper over to an 
acquaintance of his, ERWIN SCHRODINGER, and 
told him to introduce it at the next seminar. 

Schrodinger had a totally 
different personality from that of de 
Broglie. Whatever he did, he 
undertook it at a furious pace. 
Schrodinger started reading the 
paper with some reluctance, but 
soon realized that it might hold a 
great discovery. 

De Broglie pointed out that electrons are waves. He also stated in his paper 
that it should be possible to set forth the laws that the electron waves followed. 
When electrons are particles, their behavior can be described by the laws of 
Newtonian mechanics. But since it had become evident that electrons are also 
waves, naturally they would also have to follow laws pertaining to waves. 
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De Broglie called these laws WAVE MECHANICS in ~ 
contrast to Newtonian mechanics. -'S 0 

Schrbdinger was excited by the idea of wave mechanics. The fact is that he 
had already been thinking along these lines for some time. 

In order to explain the workings of the atom, Bohr had \D
~_' accepted that the orbits of an electron are discrete. 

This was unthinkable according to the theories of the time. 

Then Heisenberg, talking about the behavior of the electron within the atom, 
had declared, 

o AWe shouldn't try to envision it. ) 

~ 
That statement would put an end to any such discussion. 

WHAT? YOU AREN'T SUPPOSED TO 
HAVE A MENTAL PICTURE OF IT!? 

IF THAT'S THE CASE, 
THEN IT'S NOT PHYSICS!! 

Bohr and Heisenberg both started from the idea that electrons are particles. 
However, as de Broglie pointed out, if electrons are thought of as waves, then 
the seemingly impossible fact that the angular momentum of an electron having 
discrete integral multiple values as in Bohr's quantum condition could be 
explained. If de Broglie's wave mechanics could be demonstrated, it might be 
possible to take Heisenberg's statement, "Just get rid of the mental image," and 
prove it wrong. Schrbdinger decided to tackle this problem. 

A ccording to de Broglie's theory, an electron with 
energy E and a momentum p can also be 

described as was a wave with frequency lJ and wave 
length A. 

'VTP ). ..... 18 " r ~ v~'< 
, 'f /J 

./ 

However, if you think of electrons as particles, you assume that energy E is 
conserved and does not change, whereas momentum p changes with respect to 
time. The law that describes the change in momentum is ... 

Newtonian Mechanics 

F=mq 

LET'S 
ESTABLISH 
WAVE 
MECHANICS! 
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By solving this equation, we can detennine exactly what values momentum 
p will assume under given conditions. 

On the other hand, when electrons are thought of as particles, frequency v 
corresponds to energy and does not change; but wavelength A corresponds to the 
momentum, so naturally it changes. However, de Broglie's theory alone does 
not tell us HOW WAVELENGTH A CHANGES. 

But, we need to know this in order to develop wave theory. 

(What should we do?? i 
How should we go about finding a law that describes the change in 

wavelength A? 

r
I 
I 
I 

• I 
I 
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I 
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~ 

I 

AT TIMES LIKE THIS 

When you learn various languages at Hippo, this sort of thing 
often happens: 

One day, when I was in Mexico, I was discussing 
my schedule with my host family, saying, "Today I'm 
going here, tomorrow I'll be going there, and then ... " I 
was going on like this in Spanish, but I didn't know 
how to say "the day after tomorrow (pasado de 
manana)." So I said "manana y manana (tomorrow's 
tomorrow)" and they understood me. 

Something similar happened to me when I was 
doing a homestay with a family in Korea. It was 
during the summer, so it was very hot. I wanted to tell 
my Korean friend that I was sweating a lot, but I didn't 
know the Korean word for "sweat." I knew that the word for 
"tears" was "[nun mul] (eye water)" and that the word for "runny 
nose" was "[ko mul] (nose water)" so I made up a word using 
"body" and "water" and said "[mom mull (body water)." My friend 
burst out laughing and said, "You mean '[tam] (sweat),' don't you!" 

At the time, I only used one word, "[mul] (water)," to • 
express "water," "sweat," "ocean," "river," or anything else ~ 
related to "water." 

Children do the same thing. When our 
child could only say a few words, he used a 
single word to describe many things. Whether 
it was an apple, a strawberry or a persimmon, 
he said "tomato." 
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a~ .. , 
'-' 

I know why he did that! The logic behind 
it is, they're all red foods. 

We often make do with the words we know at the time. 
Haven't you all had a similar experience? 

,=~~-------------

That's right! When we don't know a word, the best thing is to make do with 
the words you do know. 

Although there is no law for the change in wavelength A in de Broglie's 
theory, there is a law that corresponds to wavelength, the law for the change in 
momentum. That's Newtonian mechanics! 

( Let's use it to good effect! }-r 
Schrbdinger started working away. 

Because he used frequency 11 and wavelength A to 
explain the notion of electrons as waves, we can say that 
those words are THE LANGUAGE OF WAVES~ 

~<0~. W 0-

In contrast, Newtonian mechanics, which we use 
when we think of electrons as particles, can be said to be 
THE LANGUAGE OF PARTICLES. 

There was no law for changes in wavelength A in the 
language of waves, so SchrOdinger thought of trying to 
use the language of particles . 

. When integration is performed on both sides of Newton's equation for motion, 

the law of the conservation of energy 
2 

E=L+v 
2m 

results. E is the energy, p is the momentum and V is the potential energy. We 
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may rewrite the equation as: 

And finally, 

p2 
E-V==-

2m 

p2 == 2m(E- V) 

p==J2m(E- V) 

Let's think a bit about what this means. In this equation, if we increase the 
potential energy, what happens to momentum p? 

~ ~ Mass m and energy E are fixed, which means we are drawing from 
something that is fixed ... so momentum p decreases! 

That's it! So what happens when potential energy V is small? 

~ Momentum p increases! 

Right! This is what we get: 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
L 
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Potential energy V big, Momentum p small 

Potential energy V small, Momentum p big 

Let's do an experiment!! 

We drop a ball from the top of a building. 
When the ball is first released, it falls at a slow 
speed. But as it falls further, its speed gradually 
increases. 

The higher the building is, that is, the farther 
the ball is from the ground, the greater its 
potential energy V. Momentum p of the ball is 

p == 
(momentum) 

m 
(mass) 

v 
(velocity) 

Therefore, the greater the speed is, the 
greater the momentum. In other words, when 
potential energy V of the ball is high, 
momentum p is small; when potential energy V 
is low, momentum p is large. 



So, the equation we just looked at now, p = J2m(E - V) , 
describes the change in momentum, doesn't it? 

Newtonian mechanics can explain anything related to the movement of particles. 

rfl!!]j Hey, doesn't this remind you of something? 

~ Yes. There was an equation p = ; ,wasn't tbere? 

~ Since the equation p = J2m(E - V) perfectly describes changes in 

momentum, if we use the same p in equation 

p=1L 
A 

and then solve for A, we can probably see how wavelength A changes. 

~ . CJ That's right. We can also write E = hv in place of energy E! 

~. Hey, that's great!! So we can translate the language of particles 
(Newtonian mechanics) entirely into the language of waves. 

~ This means that Einstein's two equations 
\;J h E=hv and p=-

A 

are the bridge that joins the language of waves to the language of particles. 

~ Right, Planck's constant h had that sort of significance, too. 
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Let's do the translation! 

p=J2m(E- V) 

We rewrite p and E above as 

E=hv and p=A 
A 

Placing them in the equation, we get 

Solving for A, we get 

A = J2m(hv - V) 
A 

A = h 
J2m(hv - V) 

~ It's done! So now we know how wavelength A changes! 

~ But wait a second. Mass m and potential energy V of the particle are 

still with us .. 

rff!!1J You're right. We shouldn't have the language of particles mixed in 
with the language of waves, should we? 

6 But is there such a thing as the mass of a wave? 

(:;) 
>,C~5>~ Hmm ... 

~ AHH, LET'S JUST MAKE IT UP! 

• • I? ~" 
C~':~ What .. 

~ Taking from E = hv and p = : ,we can just make it 

m=hfIR V=h~ 

'l.~ 
~I But what are fIR and ~? 
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w o Don't worry if you don't understand. For the time being, let's just say 
they correspond to mass and potential energy. e All right. I can understand that. 

Taking Schrodinger's opinion into account, if we let m = h'ffJl and V = hl8, 
we get 

A = h 
.j2h'ffJl(hv - hl8) 

Factoring h out of the term in the square root, we get 

A = h 
.j h22'ffJl(v -l8) 

h 
A = -h.jr2='ffJl=(=v=-=l8=) 

Dividing by hlh, we come up with 

A = 1 
.j 2'ffJl(v -l8) 

It was not simply a matter of determining changes in wavelength A. 

By translating Newtonian mechanics using Einstein's equations, we have 
derived a law describing changes in wavelength A. 

T hat is how Schrodinger derived a law for changes in wavelength A, but he 
realized that this is still not enough. 

It was not simply a matter of determining changes in wavelength A. 

We still need to know more about 
determining the form of the wave itself. 

And this would involve creating a visual image. 

Schrodinger was truly skilled when it came to the mathematics of waves. 
He knew an equation that could describe the form of any wave. Here is that 
equation: 

V2 1J1' + (2:v r 1JI' = 0 

It is known as the equation of wave motion. 

EQUATIONS FOR 
THE ELECTRON 
WAVE 
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Consider the meaning of the equation! 

For now, all that's required 
is a general understanding. 

V2: This means to change the form by 
performing differentiation twice 
on 1/1' with respect to position. This 
will determine the amount of 
spatial change at a given location. 

This is called a 
Laplacean. 

1/1': This describes the form of the wave. It 
describes how high a wave is at a given 
time and location. If this is known, we 
can find what form the wave has at a 
given time. Naturally, this can also 
describe an electron wave. 

'Tr: Circumference ratio 

v: Frequency 

u: Wave speed (phase velocity) 

Many of you 
probably know 

these two. 

By solving this equation and finding the wave motion function 
1/1', you can find the form of the wave. But to do that, the phase 
velocity u must be known. What might the phase velocity of an 
electron wave be? L ______ _ 

r 
I 
I 
B 

I 
I 

Just what is phase velocity? 

1. A watermelon floating on top 
ofa wave 

2m 4m 6m 

2. has advanced the distance of two i 

undulations one second later. 

I~_r;_~_+~~~~ 

I 
I 
I 
I 
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The length of one undulation of a wave (wavelength) is 

A =2m 



The number of undulations per second (frequency) is 

v = 2 cycles/sec 

Therefore, the distance a wave travels in one second is 

2x 2=4 mlsec 

The distance a wave travels in one second is the speed at which 
it progresses. For phase velocity u, it will suffice to multiply 
wavelength A by v, the number of times the wave undulates in one 
second. If we write this as an equation, we get: 

'''~"oo b 8 under5tand7 

u=Av 

In the case of the electron wave, we know wavelength A: 

1 
A = 'J=2m=(=v=-=~=) 

Therefore, phase velocity u = A v is: 

To obtain the equation that tells us the form of the electron wave, that is, the 
equation for electron waves, we can take the equation for wave motion 

and put in the just derived phase velocity u of the electron. 

If you are doing this for the first time, get together with SchrOdinger and try 
making an equation for the motion of electron waves! 
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MAKING OUR 
FIRST 
ELECTRON 
WAVE 
EQUATION 

By combining various elements, we can come up with the equation for 
electron waves. We won't be doing any difficult calculations, so even first

timers will be able to enjoy doing the equations. Procedure is the most 
important thing when making equations. At this point you will need to learn the 
steps for constructing an equation. First you'll master the basics, such as 
gathering your tools and materials and making other preliminary arrangements. 

So Division, Multiplication, Addition, Subtraction 

A 

B 

A is an equation that can tell us the form of all sorts of waves. Placing the 
speed of the wave you want to solve for in the u part of the equation, you can 
find the form. 

B is an equation that describes the speed at which an electron wave travels. 
This means that if you place equation B in the u portion of equation A, you will 
have an equation to find the form of an electron wave. 

OK, now let's do it all at once. Have you got all 
your materials ready? All you have to do is 
combine A and B while looking at the instructions. 

We place B into the u part of A 

V''i' +(2"" .;~ -$) )''i' = 0 
V21/1' + 41T 2 ·2IDl( II -~) 1/1' = 0 

THE EQUATION FOR ELECTRON WAVES IS DONE! 

This equation is also called the de Broglie 
wave equation because it was de Broglie who 
first proposed that electrons are waves. 

# ~d'-
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SChrodinger finally found an equation that described electron waves! He was 
able to express his thoughts in the language of equations! 
However, this equation contains v, which describes the frequency. Because 

j) can only have a certain values such as 21 or 100, wave 1/1' derived from this 
equation is a wave that oscillates at a specific frequency. More precisely, it is a 
simple wave. 

But the waves produced in nature aren't simple waves; they are complicated 
waves and are made up of a number of waves put together. It looks like we'll be 
able to say the same thing about electron waves, doesn't it? 

In order to determine this, an equation that can derive 1/1' for complicated 
waves is necessary. 

Because complicated waves are the sum of 
simple waves, we can find 1]1' for complicated 
waves by adding up the 1]I's for simple waves 
from the equation that we have just made. 

(complicated 1JI) = (simple 1Jim) + (simple 'IJI(%)) + (simple 1Ji@) + ... 

To solve the equation, first we have to formulate an equation that will give 
us complicated waves in the form 

(simple 1Jim) + (simple 'IJI(%)) + (simple 1Ji@) + ... 

For that, we must put the equation in a form that does not include v. 

Because if it includes v, it would be a simple wave. ~ 
~d-

Schrodinger had a lot of formulas jammed in his head, and he quickly 
recalled 

This is an equation that is also used for simple waves. It is used for most 
harmonic oscillation, such as the movement of a spring. 

Both are equations for simple waves, and both contain v. Perhaps if we put 
these two equations together, the v's would cancel each other out. 

V21]1' + 81T 2IDC(v - m)1/I' = 0 ... <I> 

a2 1/1' --= - (21TV )21]1' ••. @ 
a t 2 

fi[iiQ7P~ 
As it happens, this doesn't work. ~ " 

EQUATIONS FOR 
COMPLICATED 
ELECTRON 
WAVES 
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Please pay particular attention to the v in equation @. For example, when 
v = 5, we obtain 

Well, what if we try v = -5? We get 
2 a 1jt 2 2,1, --= - (21T . -5) 1jt = -1001T '.1' at2 

so whether it is 5 or -5, the result is exactly the same. 

Now then, let's next look at equation <D when v = 5 and when v = -5. 

When v =5 V2p + 81T 2IDC(5 - ~)P = 0 

V21jt +401T 2WCP -81T2WC~P =0 

When v =-5 V2p +81T2WC(-5-~)P =0 e 
V2P -401T 2WCP -81T2WC~P =0 ()~ 

In equation CD, v's sign changes from 5 to -5, and a different answer results. 

So look, equation CD changes depending on whether 
v is 5 or -5. Equation @ doesn't change, whether v 
is 5 or -5. Equations CD and @ have entirely 
different characteristics with respect to v, so do you 
think it is all right to think about them together? 

We've done something wrong. 
Let's give it another try! 

SchrMinger continued calculating day after day, trying to form a new 
equation. 

{{{(~. ::; I --- ( " 

o ~- ~-
In equation @, 21TV is a square, so whether v is 5 or -5, the form of the 

equation is the same. To see why this is true, let's consider the meaning of the 
equation. 

Hmmm ... 
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When a second order derivative of 1jt is 
taken with respect to t (time), P appears 
again, and in this case v is a square ... 



So, we find that if we look for an equation in a fonn such that v is not a 
square after differentiation, but is to the power of one (v x 1Ji), we will be fine. 
In the previous equation, v was squared when the second order derivative was 
taken with respect to time, so it seems likely that if we take a first order 
derivative with respect to time, the power of v will be one. 

This means that it will be an equation for harmonic oscillation, resulting in 
v x P to the first power when a first order derivative of P is taken with respect 
to time. 

Well, what takes its original form when a 
first derivative is taken with respect to time? 

~...{Sine!) CCOSine!~~ 

G thought that e;O, would work, too ... )=- r!J 
Well, let's try it. 

What's the first derivative of sin(t) with respect to t? 

(cos(t)! ). ~ 
What's the first derivative of the cos(t) with respect to t? 

( -sin(t)! >- ~ 
What happens if we take the first derivative of eiD1 with respect to t? 

When the first derivative is taken with respect to time, only eiD1 reverts to 

its original fonn. Thus, there seems to be no fonn for pother than eiD1 . 

When we look at the previous second derivation equation, 

a2 p --= - (27TV)2p 
at2 

it seems that if we put - 27TV in place of i D ,then it will work out, doesn't it? 

All right, let's now take a first derivative of e-i2TrVI with respect to time and 
try to confinn it. 

a'2 '2 '2 - e-l "., = -I 7Tve-' """ 
at 
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This will be harmonic oscillation 
rotating with an angular velocity of 
21Tvon a complex plane (a graph that 
contains the imaginary number i ). 

~ -'b~ 

In that case, it does seem that the correct term for 1Jf 
for time is 

At first, we used 

after all. 

i/lJf 
-- = - (21TV )21Jf 
ot2 

and tried to make v disappear, but it didn't work out. If we use 

olJf . 
-- = -121TVlJf 

dt 

instead, v is no longer a square. In that case, if we join this to the equation for a 
simple electron wave, perhaps we can form an equation that will derive 1Jf for a 
complicated electron wave in one shot. Let's try it. 

V21Jf + 81T 2IDl(v - m) 1Jf = 0 ... ill 

d 1/' = -i21Tv1/' 
dt 

We remove the parentheses from the equation marked <D and deconstruct it. 

V21/' + 81T 2IDlvlJf - 81T 2IDlmlJf = 0 

Now, let's try putting together the equation marked ill and the equation 
marked @ and [md the elements common to both equations. 

Here it is! v1/'is in both equations! 

~rB~ 
dlJf 

V 2 1Jf + 81T 2IDlv1/' - 81T 2IDlmlJf = 0 - = -i21Tv1/' ot 
Okay, now let's manipulate vlJf! We change the form of the equation 

marked @ to v1/' = o. 
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We insert this equation into the equation marked <D. 

Yes! We have managed to get rid of the v. We've now got an equation that 
can derive the form of the electron wave in one pass. 

But what form does 1JI' have? 

The electron exists in the three-dimensional space that we occupy. Thus the 
1JI' in the electron wave is a function that describes what is happening in three
dimensional space x, y, Z at time t. 

In addition, when we looked for an equation for 
complicated electron waves, we used 

i)1JI' . 
-- = -121T1I1JI' • at 

We thought that the term for time for 1JI' could only be 

e-i27Tvt. 

But unless we can make up some function that describes the remaining term 
for space in 1JI', (spatial coordinates x, y, z), we cannot know the full identity of 
1JI'. So, let's assume that the function that expresses the spatial term of 1JI' is 
cp (x, y, z). By doing so, we can express 1JI'as 

1JI' (x, y, z, t) = cP (x, y, z)e-i"2,",' . 

Now 1JI'for a complicated electron wave may be expressed as 

complicated 1JI'= (simple 1JI\D) + (simple 1Ji@) + (simple 1Ji@) + ... 

THE FORM OF 
THE ELECTRON 
WAVE 

CHAPTER 4 WAVE MECHANICS 313 



So, 'Ijf may be expressed as 

'Ijf (x, y, z, t) = 'Ijf I(X, y, z, t) + 'Ijf 2(X, y, z, t) + 'Ijf lx, y, z, t) + ... 

= L (jJ (x, y, Z) e-i2" •• , 
n n 

But look, we just talked about getting the form 

1Tr ( ) m ( ) -i2"., 
':I." x, y, Z ,t = '*' x, y, Z e . 

But the fact that the imaginary number i is in 
there means ... it's a COMPLEX NUMBER 
WAVE!? What's that? 

I see. 

The imaginary number i is a number 
such that i 2 = -1, right? Somehow I 
can't imagine what it might be. 

~ ...( That's aU right! 1 
The strength of a wave may be expressed by the square of its amplitude. So, 

let's try squaring the magnitude of P. 

I 'Ijf 12 = (jJ e-i2"., x «(jJ e-i2".,) • 

= C/J l/J * e-i27TVI + i21TII' 

When you want to determine the size of a 
complex number, just change the sign in front of 
the i and multiply. This is called taking the 
complex conjugate. 

* is used when taking a complex conjugate. ®Y . . 
-" ~ 
b 

SchrMinger thought of this 1 'Ijf 1 2 = 1 (jJ 12 as the "material density." 
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~ Material density? I feel like rm understanding less and less. 

People think that inside the atom there are electron waves which are dense 
in some places and not dense in others. If you put a grain of a bouillon cube 
into the middle of a pot of water, the flavor of the soup will gradually even out, 
but in the beginning, it will be weak in some places and strong in others. 
Electron waves inside the atom are something like that. 

The dark areas indicate where the material density is high. 
Although 1Jr is a complex number, 11Jr I 2, the material 
density is a real number, so there is no great problem. 

Hee hee hee. Make no mistake, 
THE ELECTRON IS A WAVE! 

OUC de lJrogf", ~ and ~ Mr. ~,~lnl1er .. 
~ J "~1)9t:;'\ J 
~ de Broglie ~ 

\ all 

O~[J >0 >f} 
It's a peanut. It's not a peanut, It's not a ilean, It's not a duck 

It', a ilean. It's a duck. It's a sandal. 

j? 

E?-----::::~~. ~ ""''' .""", d_ """ ~ E?9 ...... E?9 tlefore you can say 
'7" * -....:;:~~ ~ "IOWhat7!1O 

It's not a sandal, 
It's a ehost 

It's not a ghost, 
It's Duc de Broglie. 
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4. 4 LET'S ASK MOTHER NATURE! 

'121/1 + 87T 2WC(V -l8)1/1 =0 

'121/1 + 47T iWC a 1/1 - 87T 2WCl81/1 = 0 
at 

H ey, with these equations you can find out 
what's going on with the electron wave! 

Schrodinger desperately wanted to confirm whether he could explain the 
electron with the equations he had formed. Following Heisenberg's theory he 
thought, "One should not draw a mental picture of the electron's form within an 
atom." 

But that was unacceptable. Starting from a theory that assumes a clear 
image of electrons as waves, would it be possible to explain all phenomena 
caused by electrons, such as the energy levels of an atom or the light spectra 
emitted by atoms? Electrons exist not only inside atoms, but in all sorts of 
places. Schrodinger wanted to determine the form of electron waves under 
various conditions and whether his equations could explain natural phenomena. 
In the world of physics, no matter how elegant an equation may be, if it doesn't 
describe natural phenomena, it has no meaning. After all, physics explains what 
happens in nature. 

With that, let's brace ourselves and proceed. The theme is, LET'S GO ASK 
MOTHER NATURE! 
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With my equations I can describe an 
electron, with an image no less! ! 

Heehee hee ... 

Pretty sure of himself, isn't he! 

SchrOdinger probably wanted to make 
sure that the equations were truly correct 
before announcing them to everyone! 



Very easy conditions .....••.•••.••••••••••••••• step 1 
Slightly complicated conditions ••••••••••••••• step 2 

Conditions close to those found in nature ••••• step 3 
Natural conditions ............................. step 4 

Now let's follow these four steps and see if SchrMinger's equations really 
describe what happens in the physical world. 

~ ? --{ Why are we following !hese steps? ) 

You can't do something difficult all at once! 

By the way, I discovered that the characteristics of an 
electron and the characteristics of a father who attends 
the Hippo Family Club are exactly the same! 

How can an electron and a father be the same? G).:J 

Well, think of it this way. We are checking to see if 
SchrMinger's equations really describe the behavior of 
electrons under different conditions. It seems to me that the 
changes in the behavior of the electrons that occur as 
conditions vary are just like the process of change that we 
see in a typical father as he becomes more and more 
involved in Hippo Family Club activities. 

But everyone who joins the Hippo Family Club 
is the same, right? Why does it have to be a father? 

We have a clear image of "fathers" so it's easy to 
talk about them. And besides, they're fun! Of 
course it could be anyone, but we actually do see 
a common pattern of change among many fathers 
as they participate in the Hippo Family Club. 
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Generally speaking, it's like this. 

Step 1 Step 2 Step 3 Step 4 

~ & I ~~I b'6o~1 ~ 
Father At home Hippo room "carpeted room" China 

'\ .' @ ~l/ ('I, .' -
~l.;:;- -

? ? 
Electron Free space Inside a box Hooke field Hydrogen atom 

( What's this? I don't get iti)-~ 
Right, you probably don't get it just by looking, but 
the characteristics are similar. Don't worry. I'll go 
into more detail after we finish our discussion. 

Now, first we'll look at the experience of a father and then apply it to 
electrons. 

That will make it easier to understand the 
conditions that affect the behavior of electrons. 

Then we will discuss what happens with the electrons themselves. 

Okay, on to the tale of the electron and the father! 

4. 4. 1 STEP 1: FREE SPACE 

THE CASE OF 
THE FATHER 

I n my family there is my wife Kanoko, my daughter Sonoko, my son Yuta, and 
myself. Recently we joined the Hippo Family Club as a family. 

(Do you know what the Hippo Family Club isD=-. 

Well, ever since we started going there is always some tape playing when I 
get home at night, but I'm not sure why. 

I'll explain. At "Hippo Family Club", we listen to the 
Hippo story tapes in English, Korean, Spanish and some 
other languages as well as in Japanese. 

And, every Friday night my wife takes the kids and goes off somewhere. 
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When you join the Hippo Family Club, you start attending 
meetings. We call our groups "families," but being there is 
more like being at an international amusement park where 
many different languages are being spoken at the same 
time. In our case, we get together every Friday at the 
home of a "fellow" named Mrs. Yako Nakashiro. What's a 
fellow? That's the person who looks after the "family." 

But since I have to work, I have never been to a gathering at Mrs. Nakashiro's 
house. I don't really know what they do there. 

We sing and dance to the music 
and act out the Hippo stories in 
several languages. It's a lot of fun! 

Sing and dance? I could never do that! For generations the people in my 
family have worked as teachers. If my ancestors found out that I was singing 
and dancing ... Besides, I'm busy with work, and there's no way I can get home 
in time for the start of the "family" meetings. So I usually spend Friday night 
all by myself. 

One day I had some free time. I stretched out on the carpet. Suddenly, the 
sounds of the Hippo tape began flowing through my head: "Ra-ko-shanpiao
pooshee-pyen." I remembered hearing my wife and children say, "Recitation 
Ti me!" and then begin repeating after the tape. Recitation seems to be 
something they do so they can successfully imitate the words on the tape. I 
thought I'd try it. Amazing! Although I had never listened carefully to the tape, 
I was repeating the phrases I had so often heard echoing throughout our house!! 
But my words were swallowed up by the walls, with no response. I felt lonely. 

~ Boy, am W I lonely ... 

So what does this father have to do with an electron? 

( They seem totally unrelated, but. .. )-~ 

The father was all alone at home. 

I have free time, but I'm lonely. 

! 

THE CASE OF 
THE ELECTRON 
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The electron was all alone in free space. 

I have free time, but I'm 

The state of being all alone and not being 
influenced by other forces is called free space. 

When an electron is all alone, just like the father, no force is being applied 
to it; there is nothing restraining it. 

I see. Step 1 is to get into that simple state. 

What form does the electron wave have in free space? Let's use the 
equations developed by SchrOdinger. 

PREPARATORY STEP 1: 
SIMPLIFYING THE EQUATION FOR 
ELECTRON WAVES 

I've hated mathematics since high school, especially 
derivatives. Then I entered TeL and took part in a 
project where we formulated equations. Not-so-clever 
me made many mistakes, but seeing the equations 
gradually come together through everyone's efforts was 
very satisfying. 

At some point in the course of countless failures, I 
learned that, for people like me who have butterfingers 
when it comes to mathematics, there are butterfingered 
ways of doing equations. Rather than worrying about 
fine calculations, it's enough to pour your energy into 
understanding the basic idea behind the equation. 

Please don't be afraid of making mistakes. Then see if you don't come to 
love equations, too. e multiplication, division, differentiation 

A V 21/i' + 81T 29R(v - ~)1/i' = 0 

B 1/i'(x, y, z, t) = lP(x, y, z)e-i21TV' 
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Having collected our tools and materials, let's think 
about the meaning of the equation. 

First, study the equation. Then, when you calculate 
it, repeat the steps to yourself as though you were talking 
to a friend. That way you'llieam to like equations! 

This equation describes the electron wave, doesn't it? 

B 1f/'(x, y, z, t) = CP(x, y, z)e-i2,m 

When we set up our equation for complicated electron-waves, 1f/' was a 
complex number wave. We found that it took this form when written in an 
equation. 

Since 1f/' takes a form similar to B, let's apply it to equation A. 

First, we insert equation B into equation A. 

e-;2m', is a function of t. It has no relationship to V2, which will affect the 
values related to only x, y, z. Therefore, it is safe to divide both sides by e-i2Tfv ,. 

Modifying this slightly, we obtain 

V2CP = -81T 2IDC(v - 58)CP 

The equation for electron waves is a bit simpler now. Let's find cP from this 
equation. Then, if we multiply the cP that we get by e-i21n't, we can find 1f/'. 

cP is a function of (x, y, z) , and describes the height of a wave at a given 
location. 

You say that, but I still don't understand CPo .. 

Wave 1/1' Let's steal the With its time 

What Sort is moving. function of time stolen, 1/1' turns cJ> is a 
from 1/1'! into CPo 

of Wave wiggle 
wavem 

is cJ>? ~ 
41= W() I Snap! suspended 

~ I\fi animation! ,-" 
wiggle 
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Now, let's prepare for Step 2 and the rest of the steps as well. From here on, 
we will not refer back to Preparatory Step 1. 

PREPARATORY STEP 2: 
ADJUSTING ~ TO THE CONDITION 

As we explained earlier, in free space the electron is not acted upon by any 
other forces. 

This means that it does not have any potential energy V. 

v=o 
Then 

V=h~ 

So, 

The equation for the electron wave is then 

This is the equation for electron waves in free space. 

You start like this, first adjusting ~ to the condition . 

• ESTIMATING 4J 

Now, at last, we will use this equation to find CPo 

The method for finding cP takes a slightly different approach. 

(In what way!>-~ 
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Well, we make an estimate that fits the fonn of the 
wave in this particular case, and then we put it into 
the equation for CPo By doing this, we can fmd a 
cP that can be used in the electron wave equation. 

We're solving for the cP produced by simple waves. 
Since there aren't many different kinds of waves, the 
mathematical expressions can be learned quickly. 

First of all, cP (x, y, z) is a wave that spreads out in three directions, x, y, z. 
In this case, we should take the waves in each direction and mUltiply them. 

rp (x, y, z) = (wave in direction x) x (wave in direction y ) 
x (wave in direction z ) 

A wave in free space may be described using eilr."x. 

k, is the wave number. It expresses how 
many times a wave oscillates in one meter. 

Therefore, if we let the amplitude of a wave in direction x be At" we should 
have the fonn 

I'll bet sine or cosine would be okay, too. 

In fact, the sine and cosine can be described with eiO• 

It should be 

for both direction y and direction z, so when we multiply the directions for the 
three-dimensional wave cP (x, y, z)" we use the following fonn 

cP (x y z) = A e ikr . A e ikyY . A eik,z 
" kx ky k z 

If we collect the frequencies Ak., AI:,' A!:,. into one as Ak,W then cP is 

Now we have an estimate for CP! 
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• LET'S INSERT THE ESTIMATED 4J INTO 
THE EQUATION FOR ELECTRON WAVES 
AND SEE WHAT HAPPENS! 

Up to now we've pictured wave 4> of an electron in free space and assumed 
its behavior. Now we must determine whether this supposition accurately 
matches the equation for electron waves. 

The equation for the electron wave 

means that when we take the second derivative of 4>, the original reappears as a 
multiple of the fixed quantity - 81T2RnV. 

Let's try to take the second derivative of 4> with respect to position that we just 
estimated. 

Finally, it's time for the calculations. Procedure is very 
important when doing calculations. Once you get used 
to the procedure, it's easy. But if you forget something 
or get the order wrong, the calculation can become quite 
troublesome. That's when you can make mistakes. The 
procedure followed here can be used for electrons in a 
box or for electrons in a Hooke field, as described below. 
So, try to get the flow of the calculations clear in your 
mind. If you do, they will be a whole lot easier. 

The symbol V2 means 

So, in this case, we will have 
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Ak, k, k, is a constant with no relationship to the derivative. Many derivative 
signs have appeared, so let's clean them up, one by one. 

i ... 
the wave in direction x: - e'kre'kY!'e'ki' 

ax2 

i ... 
the wave in direction y: - e,kre,k·>"·e,ki' 

ay2 

i ... 
the wave in direction z: - e'kre'k)"'e'ki' 

az2 

~ j What a bother! ) 
'0)) ( No, it's not)- &Y' o -

( 
./ 

Look, all the forms are the same, aren't they? If you take the derivative of 
anyone of them like x, you can put it in the spot for variable (x) in the other two 
equations. 

~-- . , 
Q 

(ThiS is a lot less work~ ~ 

Yes. From here on we'll see a lot of this, so 
it'll be useful if you learn how to do this now. 

Let's take the derivative with respect to x only. 
2 

aa: ([don't know this derivativ~ ~ 

Here, what you do is take the second derivative of cP with respect to x. In 
this case, there is no relationship to y or z, so you can just think of them as a 
number. That way, the coefficient in the superscript comes down twice. 

1 st derivative 
aCP 

A e ikxxeik)"'eiki' -+ 
ax t kxk,k: T 

-+ ik.A eikreik"!'eiki' 
kxk/', 

2nd derivative 
a2cp 

ik.A e ikxxeik)'Yeiki' -+ 
ax2 t kxk,k: J 

-+ (ik x)2A kxk)J::eikreik)"'eiki' 

-+ -k;A. eikreik)'Yeiki' 
kxk,k, 
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Then, since y and z will have the same form, 

i/ l/> = -e l/> ill/> = -e l/> 
ax2 x' ay2 .r' 

we place these in the previous equation. 

il/> a2 l/> a2l/> 
V2 l/> =--+--+--a x2 a y2 a Z2 

We then obtain 

At last, we've completed the second derivative of l/>. 

Now let's compare it to the equation for an electron in free space. 

V2 l/> = - 87T 2WCvl/> 

V2 l/> = - (k/ + k,2 + k,2)l/> 

In both cases, when we take the second derivative of l/>, the result is a 
constant multiplied by l/>. They have EXACTLY THE SAME FORM. 

The left side of both equations is V2, so It's true. 

~
" 

, , 

o 

So the l/> for which we just gave an estimate is an electron wave in free 
space. 

By rewriting the above equation, we get 

k 2 'k 2 x +k r -+ , 
v= . 

87T 2WC 

Looking at it another way, we have also been able to find frequency v for an 
electron wave. 

What! We were finding l/>, but we ended up finding v, too! 

--.. ~--...... --- -
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• FINDING 1/1' 

In free space, cP is 

When multiplying two exponential numbers, you add their exponents! 

But, 
k/ + k,2 + k c

2 = 87T 2ID(V 

1Jr described how an electron wave moves. 

Since 

1Jr (x, y, Z, t) = cP (x, y, z)e-i21Tvr 

if we know CP, we need only multiply by e-i21Tvr in order to get P. 

After all, we've already found frequency v. 

P (x, y, z, t) = A k.l.,k,e i(k,.:c+k,Y+k:Z-i21Tvrl 

k x
2+k,2+k,2 

Provided that v = . -
87T 2ID( 

This means that we now know the WHEN, WHERE AND HOW of the 
behavior of an electron wave 1f1in free space! 

----
But Mr. SchrOdinger, even if we know what P is, I 
don't quite understand when it's in equation language. 

That's true. Okay, let's look at the wave it 
describes. I formed this equation because I 
wanted to know how an electron behaves inside 
an atom. My equation, unlike Heisenberg's, 
corresponds to a definite VISUAL IMAGE. 
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Let's actually look at an electron wave in free space. 

First, let's look at the 1Ji' we just found. 

1Ji' is a wave that spreads out in three dimensions, x, y and z. Right now 
we'll consider only the x dimension. 

1Ji (x, t) = Ae i(k,x-21Tvr) 

We can also think of the frequency in just the x 
dimension, so instead of At, let's use just plain A. 

A complex number wave? 
That's not something you can see! 

That's all right. Actually, we can apply 

the Euler formula 

ei8 = cosO + i sin 0 

In other words, ei9 is the sum of a sine and a cosine. 

To simplify things. let's take a sine wave. 

1Ji (x, t) = A sin (k..x - 271'v t) 

Because it's a simple wave, v can assume only one value. 

v: Number of undulations per second 
kx : Number of radians traversed in a meter 

Now, if v = 1 and kx = 271', the equation becomes 

1Ji (x, t) = A sin (271' x - 271' t) 

Speaking of /"'\. ~ /"'\. 0 

which. \J 0 \J 
what's a It's like a It starts at 0 and 

sine wave? It's a wave mountain and ends at O. 
~ :::::::- like this. a valley. This is a 

sine wave. The End. 
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Next, let's see how this 

1/1' (x, t) = A sin (21T x - 21T t) 

changes with time. 

(How do we do that:\.. ~ 

I was just about to explain that. 

How It's Done! 

1. Fix the time. At first, t = 0, so 

1/1' (x, 0) = A sin (21T x - 21T ·0) 

= A sin 21T x 

2. Next, we examine the form of the wave when t = O. For that, we use 

1/1' (x, 0) = A sin 21T x 

Then, all we have to do is change the value of x in the equation by 
increments of 0.25, so you get 0, 0.25, 0.5, 0.75. .. Then we find the 
height of the wave for each of these positions and join them by a line. 

., 

--~-------------~ 
( That's how you do it!).. ~ 

d 

Q've found 3J) easier method>,:~ 

( Great, but how do you do it? )... ~ 
~~~~~ 

Sine wave 

You make use of the cyclical property of a wave. A sine wave continuously 
repeats the same form, so if we examine only one undulation (one cycle), the 
rest will be the same. 
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1. Let's start by placing t = 0 in this equation and see the fonn of the wave. 

1Ji'(x, O)=A sin (27TX- 27T ·0) 

=A sin 27T x 

Let us insert 0, 0.25, 0.5, 0.75, and 1 as values for x. 

Wherex=O 

P(0,0)=Asin27T ·0 

=A sin 0 
here 

/ 
~----------------~x 

=A·O 

=0 

Where x = 0.25 (x= t) 
P(0.25, 0) = A sin 27T . t 

=A sin (t)7T 

=A ·1 

=A 

Wherex=0.5 (x=t) 
P(0.5, 0) = A sin 27T . ! 

=A sin 7T 
=A·O 

=0 

Wherex=0.75 (x=t) 
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P(0.75, 0) = A sin 27T . t 
=A sin (i)7T 
=A ·-1 

=-A 

o 

~ I'm !:letting 9 used to It. 

A ...... ::.,-" 

,/ i here 
" ! " : r-~~------------_'x o 0.25 

A· .. · .. ::· ... · ... , 

,/ .... here 
/ \/ 
r-----~~--------_.x 

o 0.5 

0.75 

, i here 
" :/ -A ................................. :: ... 

x 



Where x = I 
1Jr (1, 0) = A sin 27T . 1 

= A sin 27T 

=A ·0 

=0 

A .... >.;:.- .. ' .... 
,'/ \ .. , 
~------~------~--~x o /\ 

/ here 
-A ................................ \,_ ... . 

Okay, we'll put the height of the wave for each position when t = 0 into a table. 

x 0 0.25 

1Jr(x,O) 0 A 

r-------~------~--~x o 

0.5 0.75 1 

0 -A 0 

The more points you calculate in 
between, the more accurately the 
function is represented. So 
finally you get the sine wave. 

~ 50 thi5 15 how 
',®Y) you find them ... 

This gives us one undulation. The rest are just repetitions of this, so A and 
-A alternate between the zeros. Knowing this makes it a lot easier. 

2. Next, let's insert t = 0.25 in the equation, and check the form of the 
wave when t = 0.25. 

1Jr (x, 0.25) = A sin ( 27T x - 27T . t) 

We insert 0,0.25,0.5,0.75 and 1 as values for x. 

Wherex= 0 

1Jr(0, 0.25) = A sin {27T . - (~)7T } 

~lt'5 the 5ame 
~ a5l7efore! 

=A sin (-~)7T 
o ~------------------~x 

=A ·-1 

=-A 

here 

-A It'" 
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Where x = 0.25 (x= t) 
1/' (0.25,0.25) = A sin {217" . t -(!)17" } 

=A sin {(!)17" -(!)17"} 0.25 , x 

=A sin 0 here 

=A·O 

=0 

Where x = 0.5 (x=!) 

1/'(0.5,0.25) = A sin {217" . ! - (!)17" } 
A .................... --

I' =A sin (!)17" here 
x 

0 0.5 
=A ·1 

-A 
=A 

Wherex=0.75 (x=~) 

1/' (0.75,0.25)= A sin {217" . ! -(!)17" } 
here 

= A sin 17" I 
x 

=A·O 
-A 

=0 

Where x = 1 

1/' (1,0.25)= A sin {217" . 1 - (!)17" } 

=A sin(~)17" x 
0 

=A ·-1 here 

-A /' 

=-A 
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Let's combine this with what we found when t = 0 and make a single table. 

Ir'Z 0 0.25 0.5 0.75 1 

0 0 A, 0 -A 0 , , , 
0.25 -A ~O FIlA "0 "-A 

Could this mean that they just slip 
down diagonally by one notch? !t. .. 

o ---

In the beginning, we said that the shape 
of a sine wave keeps repeating itself. So 
the numbers keep sliding down like this. ~ 

Over time, the position of the peaks and valleys of the wave changes. Okay, 
now let's look at the graph and see how Mr. Whale moves when he starts off 
floating at x = 0.25m. 

1m 2m 3m 4m 

It seems that in free space, an electron wave 
progresses the same way. 

This is called a RUNNING WAVE. 
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With the equations for electron waves 

V1tfJ + 81T 2IDl(v - 58)tfJ = 0 

Vl1p + 41Tl1lR a 1/1' _ 81TIDl58tfJ = 0 
at 

we've been able to form a MENTAL PICTURE of the wave! 

• HOW TO FIND E 

The energy can be easily found by placing the v that we just obtained into 
the equation 

E=hv @ That's 
b~ my equation. 

The energy of an electron in free space cannot be determined 
experimentally. In Steps 2 through 4, we will attempt to see whether the energy 
values found using Schrodinger's equations are still more complicated 
conditions in the physical world. 

Only when the energy values found using SchrOdinger's equations match 
experimental results can we say that his theory of electrons truly explains 
physical phenomenon, and that electrons are waves, just as he thought. 

That's why we've done all this calculating! 

• SUMMARY OF THE PROCEDURE 

Let's summarize the lengthy procedure we have been employing to do our 
calculations with the following steps: 
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Adjust 58 to the given conditions. 
J, 

Make an estimate for cP . 
J, 

Place the estimate in the equation for electron 
waves and conftrm. 

J, 
Find 1/1' 

J, 
FindE 



Finally, let's consider the analogy between the father and the electron. How 
do they compare? 

The Father 

One day, a phrase from the Hippo Club tapes started running 
through Dad's head. He could recite it, but would anyone 
understand what he was saying? 

The Electron 

We were able to describe an electron in free space using the 
equation for electron waves. But there were no experimental 
results to compare this with. Was this really right? 

We've completed our preparatory exercises for Step 1. Now, on to Step 2. 
The adventure of the father learning to speak a foreign language by participating 
in the Hippo Family Club activities and the adventure with the electron wave 
equation will both continue. There's more fun ahead, folks ... 

I~'-=-011 

It'5 a t>utterfly. 

~ 

It'5 not a t>utterfly, 
It'5 a catfl5h. 

~lt'5 not a grasshopper, _.....;~~ ~ 
~ it's Mr. Schr"dlnger. >' ~ 

It'5 not a catfish, 
It'5 a gra55hopper . 

..J 

And t>efore you know It. a 
drawing of Mr. Schr"dlnger 
appeal'5!. 
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4. 4. 2 STEP 2: INSIDE THE BOX 

THE CASE OF 
THE FATHER 

Today is Friday. Dad is waiting outside in his car for Mom and the kids, who 
are still at a Hippo Club meeting. 

"Boy, they're late." 

He sneaks a glance at his watch. It's well past eight o'clock. They're not 
usually this late. What could they be doing? 

"I'm not their chauffeur," Dad mutters ill-humoredly. 

Tick, tick, tick goes his watch. 

"I'll just have to go in and get them ... " 

He opens the door of the car. The wind is cold. With his collar turned up, 
Dad hurries toward the Hippo Club room. He hesitates slightly as the sound of 
the tape becomes louder. 

"If I go in now, I'll end up having to dance around with them, won't I?" 

Even so, he can't wait any longer. Resigning himself, Dad steps into the 
Hippo Club room. What is this? Everybody is in a circle excitedly talking 
about something or other. Yuta is there among the children crowded into the 
room. They have just left the tape running in the background. 

"Uhh, excuse me ... " 

No one notices him. 

"Kanoko!" 

Without realizing it, he shouts to be heard above the din. Suddenly 
everyone is silent and looks at him in surprise. Thinking to himself, "Now I've 
done it," he hesitantly asks, 

"Are Kanoko, Sonoko and Yuta Ogura here? I've come to get them." 
"Oh, it's nice to meet you! So you're Sonoko and Yuta's father! Please come in!" 

A middle-aged woman who appears to be the leader of the group stands up 
and approaches him. 

(Welcome!!)-~ 
"Uhh ... " 
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Guided by the woman, Dad joins the circle. On the far side of the circle, 
Kanoko and Sonoko are smiling at him. 

"My name is Yako Nakashiro. We hold· our Hippo Club activities here 
every week. I'm very pleased you could join us today." 

Dad takes a look around him. The group includes young mothers, babies, 
elementary school children and men of different ages. 

"Well then, Mr. Ogura, please introduce yourself to the group." 

There are welcoming shouts and applause from the group. Feeling rather 
embarrassed, Dad begins speaking in a halting manner. 

"Well, uhh, I'm Gan Ogura. My wife and children enjoy coming here to 
these gatherings. I only came to pick them up tonight. I wasn't planning on 
participating or anything like that. .. " 

Suddenly someone cries out, "Why don't you join us and give the Hippo 
Club activities a try? Just a few words in any language." 

And then others begin shouting, "Go 
ahead, give it a whirl!" 

With everyone looking at him so 
expectantly, Dad finds he just can't refuse. 

"Well, let's see, I haven't really listened to the tapes very closely, so ... " 

Having made these excuses, Dad plunges in and lets loose with a torrent of 
words. 

"Rah-koh-shianpiao-puushee-pyen. Zu-zuu shyeshye-ta-jah!" 

"That's great! You sound just like the tape!!" 

Dad is pleased to receive so much praise from everyone around him. He 
smiles to himself, thinking happily, "Well, everyone here listens to the tapes 
often so they ought to know. I guess I'm not so bad. At this rate I probably can 
learn to speak a foreign language." 

C You can do it if you try. )-~ 
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THE CASE OF 
THE ELECTRON 

Por Step 2, let's consider the state of the electron by comparing it to the 
father's situation at Hippo. 

Dad is in the Hippo Club room. 

~ 
casa de N!!asb' ~ .~ H%"&J = ___...::11'0 

~9" 

It is important to note that Dad is not at home but at someone else's house, 
in this case, Mrs. Nakashiro's house. Inside the Hippo Club room he is free to 
sing, dance and act freely, but that does not mean he can just go marching into 
the other rooms in the house. Dad is in a position where he has freedom, but is 
limited spatially. 

Well then, what about an electron? An electron also has freedom, but is 
limited spatially. For example, the electron is free, with no forces acting upon 
it, but its boundaries are limited to 

~---~" / /-
INSIDE 

THE v 
BOX. / 

For Step 2, let's think of the electron as though it were in a box. What form 
does the electron wave have inside a box and will Schrodinger's equation be 
able to describe it? 

Making mistakes along the way is part of the process of forming equations. 
In order to learn from your mistakes, when something goes wrong, be sure to 
always ask yourself, "Why didn't it work?" Equations are based on scientific 
formulations, and so coming up with an equation that works naturally requires a 
scientific approach. 

After determining the characteristics of the equations for 'P, CP, E and for 
differentials, the best way to work with them is by considering them carefully 
and keeping their characteristics in mind. That's the key to formulating 
equations that work. Even if you fail once or twice, don't give up; keep going 
till you succeed no matter how long it takes. You'll find that as you keep 
making more equations, you'll become better and better at it. 
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The procedure was as follows: 

Adjust ~ to the given conditions. 
j, 

Make an estimate for fIJ. 
j, 

Insert into the equation for electron waves and confirm. 

Right? 

j, 
Find 1ft. 

j, 
FindE. 

• PREPARATORY STEP: 
ADJUST ~ TO THE GIVEN CONDITIONS 

First, let's consider what happens to the ~ in the equation for electron 
waves. 

In this case, as in the case of free space, no force is acting on the electron, so 

~=O . 

Therefore, the equation for the electron wave inside a box is 

• MAKING AN ESTIMATE FOR tIJ 

What kind of wave is inside the box? 

What is the most obvious characteristic of a box? 
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'! ? Start 

~\lat kind of lEJ ~ ....... ~ ~ .. A'---""~ , ~---- I I 

~ave e~ If there was no wall, it The wave hits the first ., \S'(r Starting from one would continue on, wall again and turns . b? 01\ a ox. wall, a wave hits the but since there is a back toward the other 
\: ., wall on the opposite wall, the wave hits it wall. G • side. and turns back. 

El-~gJ But the endpoints don't This is called 

gJ··· .... ·i·······l .. · .... ·~ 
gJ gJJ 

move up and down. So a sine wave. 
the height of the wave = 
at its end points is O. The wave in the box 

~ ••• j is a sine wave! 

It hits the opposite The wave rocks back A wave that starts at 0 
ends at O. wall yet again and and forth inside the 

turns back around. box like this. The End. 

The wave inside the box hits the two walls at the same point each time. Its 
height is 0 at both ends, so it's a sine wave. 

, , 
,- - -

~I< => 
IE L >1 

This is half of one undulation. 
You could also say that this is the 
"hill" portion of the sine wave. 

For the time being, think of the x dimension of the above wave. It has 7T' 
radians for each L m (meter), and so the wave number kx (the number of radians 
in 1 meter) is: 

7T' 
kx=y rad/rn· 

One undulation is 27T'radians, so one "hill" is 7T'radians, right? ~ 

One could also imagine a case where there are 27T'radians for L m. Then kx is: 

ee k =27T' rad/rn· 
x L 

There could also be the case where there are 37T' radians for L rn. In this 
case, kx is: 

OE>E> 
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b~ 
My discovery! My discovery! 

.::E3>IU .................................. .. 

<::>0·· ...... · ........... ···· .. · .... · .. · .. ·· 
(X)o·· ... · ... · .. · ..... · .. · ... · ... ·-..... ·· 

'1T 
kx=y 

k = 2'1T 
x L 

k = 3'1T 
x L 

It increases half an 
undulation (one"hill") 
at a time! 

k. increases by ; 

with each "hill"! 

So, for the wave inside the box, kx increases by discrete integral multiples of ~ . 

Expressed as an equation, this is written as: 

k = n/lT 
x L (n = 1, 2, 3· .. ) 

Using what we have just found, let's estimate the value of CPo 

As in the case of free space, cP has the three dimensions x, y and z. Since cP 
is the product of multiplying the three dimensions, this is written as: 

cP (x, y, z) = (x dimension wave) x (y dimension wave) 
x (z dimension wave) 

Being a wave, each dimension will have an amplitude. Thus, the form of cP 
will be: 

cP =A D·A D·A D n,t ny nz 

The wave in the box is a sine wave with a height of 0 at both ends. In 
addition, the wave number kx of that sine wave takes integral multiple values 

inside the box, such that k = nx'1T. As seen below, this same form is also taken 
x L 

by the y and z dimensions: 

k = n.'1T 
• L 
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When you take the second 
derivative of the sine, the 
original sine reappears. This is 
similar to when, in a comic strip, 
an ordinary man chan(les into a 
superhero and then back again 
to his ordinary self. 

J 

Thus iP takes the fonn 

We have estimated iP!! 

• LET'S INSERT OUR ESTIMATED tP INTO 
THE EQUATION FOR ELECTRON WAVES 
AND SEE WHAT HAPPENS! 

Since we were able to estimate the value of iP, let's now take the iP, 

and, as we did in the case of free space, insert it into the equation for electron 
waves in a box 

iiP First, let's look at on the left side of the equation 
a x2 

a2iP iiP a2qJ 
V2iP =--+--+--

ax2 ay2 az2 

The second derivative of sine with respect to x was 

-02sin Ox 
t.-I 

What goes in the 0 is nL71' ,so 

a '¥ n x 71' . n x71' . n1'71' ,11,71' 2m ( )2 -- = - -- A sm -- x' sm -' - y , sm -' - z ax2 L n,n,n, L L' L 

I hate it when it's long l A 
Let's make it short. Q 
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In the same way, both the y dimension and the z dimension are 

itP = _ (nzTr)2 tP 
az2 L 

With this, the second derivative of the estimated tP is complete. 

Let's compare it to the equation for the electron wave inside a box. 

Hmm. Hmm. 

60 
Because the left side of both equations is V2tP, if 

then the cjJ we just estimated does indeed describe the electron wave inside a box! 

Tr2 
Factoring out -, we get e 

Tr2 
If we then divide both sides by U ,we have 

Just like for free space, we can find frequency v by looking for tP. 
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Rewriting the equation in the form for 11= 0, we get 

_ 1 (2+2+2) 
II - 8IDeL2 nx n)' n z 

That's right. Now we've found II. 

Since the nx, n", and n: in the above equation 
describe the number of "hills" in the sine wave, 
the integral values 1, 2, 3 ... can be entered. 
Corresponding to this, frequency II occurs at 
discrete intervals. Frequency II, which occurs at 
discrete intervals when placed under specified 
conditions, such as inside a box, is called an 

• FINDING 1/f 

Now that we have found <P and II, let's find 'P. 

'P (x, y, z, t) = <P (x, y, z)e-i21rV ' 

Therefore, 

'P(x, y, z, t) - An -II Il_ Sill - X • Sill - Y . Sill - Z e _ (. n,,''TT . ny'TT . nz'TT ) -;21T'" 

.\ y, L L L 

provided that _ 1 (2+ 2+ 2) 
II - 8IDeL2 nx n). n z 

With this we know the WHEN, WHERE AND HOW of an electron wave 
1Jf inside a box! 
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+FINDINGE 

~ Okay, now let's find the ene<gy of an electron inside • box. 

~ The energy of an electron inside a box has been calculated by Bohr 
~~ too, hasn't it? 

~ If the energy values calculared by Bohr are the same as the value 
found using Schrodinger's theory that the electron is a wave, then it means that 
SchrOdinger's theory applies to the natural world. 

~ Right, although it's still only true wilh respect to an electron in • box. 

~ So let's try to fmd the energyl 

a Howexciting! It's such a thrill to think of what's going to happen next. 

@ DOYOU 
• rememllcr1 

Energy was found usmg E = h." "t) ~ 

In the equation E = h v, v will be the frequency of the electron in the box. 

E=hv 

=hx-l-(n 2+n 2+n 2) 
8ID'lL2 " y ~ 

Since 

m =hID'l, 
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• 

Therefore, 

WE'VE DONE IT! 

E=hx 8~L2 (n/+n/+n/) 
h 

_ h h (2 2 2) - X--2 nx +nr +n: 
8mL . 

E h2 (2 2 2) =--2 nx +nl' +nz 8mL . 

What's this? I recall seeing this somewhere 
before ... Yes, that's it! It's the same as the energy 
Bohr found for the electron in the box! 

ELECTRON IN A BOX (PARTICLE THEORY) 

Let's look at the energy that Bohr calculated for an electron in a 
box, assuming that electrons are particles! 

First, the energy (E) of an electron is the sum of kinetic energy 
(K) and potential energy (V) and is expressed as: 

E=K+V 

There are no forces at work inside this box. To make an 
analogy, it is like placing a tiger inside a cage and leaving it 
undisturbed. In other words, the tiger can sit, sleep and move 
about freely within the confines of the cage. 

In the same way, despite the limitations presented by the box, 
we can think of the electron within as being enclosed in a space in 
which freedom of movement is allowed. 

In that case, V = 0, so 
E=K 
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And since K = ! mv2 , we have 

E=!mv2 

The space inside the box has three dimensions (x, y, z) - up 
and down, right and left, and front and back. Thus, 

z 

(This is what happens, isn't ito...~ 

y 

Now, let's see if you can solve this. 

Using momentum p, try to make an equation where E = O. 

(BOY, that's kind of hard)-~ 

Hint! 

Answer: 

p = mv (momentum = mass x velocity) 

2 P 2 2 
E=!!.L+-y +pz 

2m 2m 2m 

(YOU did it! Bull's eye0=-~ - - 96-
Let's leave this equation for the time being, and take the 

quantum condition that was used to explain electrons as particles. 
We'll rewrite it to suit the condition of the electron inside a box. 

Quantum condition 

J. 

f p dq = nh (n = 1, 2, 3 ... ) -+ 

Quantum condition 
for the inside of a box 

J. 

First, f D dq of the quantum condition means to take the 

integration for one cycle. One cycle inside the box is the distance 
an electron covers when going from the left side of the box to the 
right side, and then back again to the left side. This means that one 
cycle is equal to one round trip in a box from 0 to 2L where the 
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length of the box is L m. Therefore, the quantum condition for the ~j 

inside of a box will be 
Momentum 

i'L 

o pdq = nh (n = 1, 2, 3 ... ) 

2L 

This is the area of the shaded section of the graph, 2L . p, isn't it? 

2L· p=nh 

p= nh 
2L 

(n = 1,2, 3 ... ) 

Thinking in three dimensions (x, y, z): we come up with 

n)z 
px= 2L' 

n.h 
pz= 2£ 

When we substitute the respective p's in the previous equation 
for E , we have 

(n = 1,2,3· .. ) 

This is it. We've done it! 

rf!!!}j We did it! Bohr's energy for an electron in a box and Schrbdinger's 
energy obtained from the theory that electrons are waves are now exactly the 
same! 

Now this matches the slightly complicated conditions exactly, you 
know. 

rfl!!j Right, so now we can say, electrons are waves! 
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~ Let's not get ahead of ourselves. We have to look at a few more 
things before we can say that with absolute certainty. 

~ There's more fun to come! 

Now, let's refer again to the electron-father analogy as we did in Step 1. 

The Father 

~ Frlend5hlp 

~ ~ ~ 

The Hippo Family Club members understood what Dad was 
saying when he spoke to them in a foreign language. Would a real 
native speaker of the foreign language understand him as well? 

The Electron 

1// <D-*-Ci> ~ 
Even in slightly complicated conditions, the energy of the 

electron found using Schrodinger's equation matched previously 
determined results. But would this really describe the behavior of 
the electron in the natural world? 

So far, both Dad and the equation for the electron wave have followed a 
pretty solid course. The possibility of describing nature becomes greater with 
every step. In Step 3, let's make this possibility a reality! 

Do you understand? I didn't really understand 
why a wave inside a box is a sine wave, but in 
hoping to understand this, I eventually became 
able to make drawings of this concept. By 
making a sincere effort, you often become able to 
understand things you initially couldn't grasp. 
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4. 4. 3 STEP 3: HOOKE FIELDS 

THE FATHER'S 
CASE 

Come Sing and Dance Along! 

The sounds from the Hippo tapes 
gradually become louder and louder as 
we approach a building in the Shoto 
district of Shibuya ward in Tokyo. The 
Hippo Club offices appear to be on the 
third and fourth floors. The Hippo College, called TCL, is on the second floor. 

Dad doesn't use the elevator because he wants to get as much exercise as he 
can. We watch him climbing up the stairs of the building. Reaching the fourth 
floor, he pushes open the door and is dazzled by the bright blue and yellow 
walls he sees before him. 

"Good evening! Please write your name on the sign-in sheet and then fill 
out a name tag," says the receptionist, smiling broadly at him. 

"Wow, there sure are a lot of people here today," thinks Dad, glancing at the 
long list of names. Picking up a pen, Dad adds his own name to the list. 

"Please write out your name tag. That way everyone around you will know 
your name." 

"Oh, right. I forgot." 

Using a black marker, Dad writes out "Ogura" in big letters and begins to 
feel slightly embarrassed. These name tags make him feel as if he's back in 
kindergarten. Entering the carpeted room, Dad is surprised to see that. .. 

~war~ A,........ ~ ~~rm,........ ,........ r,;;;;;. Ivv' 00 II) ,vv' 
I~~' 00 rm A (.:\. r::;::.. II)"'~ (;":\ t:":'\ 

It's full of men! 

But of course. This is the one day a month when the Starlight Workshop is 
held. At the Starlight Workshop, the Hippo Club members get together for a 
special program designed for men. 

Although most of the people in the room are men, there are some women 
and children scattered about the group as well. Everyone is dancing joyfully to 
the music. A few are showing off some interesting dance steps that they have 
made up. What to do ... 

Overwhelmed by their excitement, Dad stands back against the wall of the 
room. Eventually though, he begins to notice that he might be calling more 
attention to himself by standing alone against the wall apart from everyone else. 
Glancing around, Dad sees that although a few of the fathers aren't quite with 
the swing of things, most people in the group are having a grand time dancing. 
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Dad hesitates, but then decides to give it a try. He realizes there is no need to 
feel self-conscious because his wife and children aren't around to watch him, 
and besides, dancing looks like so much fun. 

Dad moves slowly towards the center of the room and 
copies the movements of the people around him. He finds 
that dancing comes quite naturally and easily. "Hey, I can 
dance, too!" he tells himself. Feeling suddenly happy, Dad 
moves in even closer to the center. 

A little later the games and dancing end and everyone 
gets together. A language tape plays in the background. 
One of the men takes the microphone and begins to recite 
the words along with the tape. 

With the tape-led activity in full swing, the fathers' conversations become 
quite interesting. They find themselves discussing topics such as how they got 
started at Hippo and what they like about it. 

"So everyone was like me when they started out. I wonder if I too will 
become as good as the others are now," Dad wondered to himself. 

At that point, the voice of the man conducting the meeting broke in. 

"All right now, who wants to try reciting phrases from the Hippo story tapes 
by themselves? Any language is fine. It will be too late after the meeting is 
over, so step forward and don't be shy. Now is your chance!" 

"Should I give it a try?" Dad raises his 
hand and volunteers. 

"Okay, how about you over there." 

Dad begins feeling a bit nervous with everyone's eyes on him, but there's no 
turning back. 

"Pleased to meet you. My name is Ogura. I've only been to one other 
Hippo Club meeting so far." 

Everyone is smiling and listening. 

"At the first meeting, I repeated words off the tape and everyone praised me, 
which made me feel very good about myself. So today I will do it again. Okay, 
here goes. Rah-koh-shianpiao-puushee-pyen. Zu-zuu shyeshye-ta-jah!" 

"Wow!!" 

The other fathers in the group cheer in delight, and the man sitting in the 
very front stands up and happily shakes Dad's hand. 
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THE CASE OF 
THE ELECTRON 

Well, what do you know, he's Chinese. And he understood me when I was 
speaking Chinese. Isn't that wonderful? It turns out I can actually 
communicate in another language. 

At this rate ... 

Dad was convinced. From that point on, he 
was a believer. 

Now then, let's continue. Having gone through "free space" and "inside the 
box," you know what we have to do next, don't you? Right! First, we need 

to draw a comparison between the electron and the father. For those of you who 
have forgotten, turn back for a quick review before we go on. 

Dad was in the carpeted room at Hippo. 

Since we're making an analogy between the inside of a box and the carpeted 
room, the idea of the carpeted room needs to be made more scientific. 

~~/) 
(Well then, what should we call it? >-~j 

Well, let's first think about the characteristics of the carpeted room during 
the Starlight Workshop. 

( Its characteristics? ).. a-
But how do we find the characteristics of the carpeted room? 
It's not as if we can do experiments on it. .. 

Well, let's start by thinking about what Dad did in the carpeted room. 
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What Dad did. 

0 ~ 0\{(~ 
0 r;::::.. 

0 @ c;:,. c:;... 
~ 0 C\ 

0\/ 
~o~~ 
@ r;::::.. c;:,. c:;... 

0 0 C\ 

0 0 
0\ r;::::.. 

~~ e N\Y~ \-Ilppo! 
r;::::.. ~ \Q 

@ '" GB c:;... 
c;:,. 

00 C\ 

When Dad first entered the room, he stood 
next to a wall. 

Thinking that what was going on around him 
was interesting, he moved toward the center of 
the room. 

The next thing he knew, he was dancing 
around right in the middle of the room! 

So he gradually moved toward the middle. 

That's right. In physics, a Hooke field (Hooke field: See page 355) is a 
place where a force pulls toward the center. 

Yes, there are various forces that pull toward the 
center. But we'll leave the details for later, okay? 

If you want to see whether we can really 
compare a Hippo Club meeting to a Hooke 
field, try going to a Starlight Workshop! 

Let's use Schrodinger's equation for electron waves to find out what happens 
to an electron wave in a place where there is a force pulling toward the center. 

If Schrodinger's equation is valid, we can say it describes nature. This is 
because an electron placed in a Hooke field is extremely close to its actual state 
in nature. 
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Maybe it's because calculators and personal computers 
are readily available these days, but many people, 
including physicists, seem to be avoiding doing 
calculations. But, if you randomly reduce the number of 
calculations, you'll lose sight of the meaning of the 
equations, and won't be able to experience the joy of 
working them out. This is especially true when you do 
physics. We want everyone who is worried they won't 
understand the equations to go back and read them over so 
that they, too, can experience the genuine pleasure of 
doing equations. 

Let us proceed with our calculations for Hooke fields 
using the same method that we used for free space and for 
the inside of a box. An estimate is made for lP, v is 
derived and the energy is found. It takes some time to do 
this, but the rewards are great. 

When we study quantum mechanics at TeL, the 
students who understand the equations tell the others what 
they have learned and how they learned it. When we write 
equations that we've learned, everyone is drawn to the 
blackboard; it becomes a veritable Hooke field. That's how 
interesting physics equations can be. I wish everyone 
could experience the joy of calculating and the sense of 
satisfaction it brings. 

PREPARATORY STEP 1: 
ADJUSTING ~TO GIVEN CONDITIONS 

Before starting our calculations, let's complete our preparatory work. 

Hooke fields are so interesting that you are likely to lose sight of everything 
else when you get involved in them. Take care not to become so involved in 
your calculations that you forget why you are doing them; if you lose sight of 
your purpose, you wi11lirnit yourself to only understanding the mechanics of the 
calculations before you. Whenever you do something, always try to remember 
what you are actually trying to accomplish, and why you are making the 
calculation. Do this even when the train of thought is long. 

In free space and inside a box, the force acting on the electron is 0, so ?8 = O. 
But that is not the case for Hooke fields. In a Hooke field, there is a force pulling 
toward the center. 
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What kind of force pulls toward the center? 

FAMILIAR HOOKE FIELDS 
, 

As an example of a Hooke field, imagine a big, deep pit into I 
which about 10,000 people have fallen. What would you do if you ill 

were one of them? ill 

People <GOUld try and climb out of the pD ~ 
ij 

Most people would react that way. But this pit is infinitely 
deep, and no one is able to get out. In that case, where in this pit 
do you think the greatest number of people are? 

( At the very bottom of the pit? )=- Q Arf! 

And where are the fewest number of people? 

It's difficult to climb to the top of a pit. 
The sides are so steep that only the 
strongest people can do it. 

If we draw a diagram showing the distribution of the people in 
the pit, we get something like this. 

Area with almost nobody 

Area with a moderate __ --J~_fi~~_Area with only a few people 

number of people Area with the most people 

Next, let's take this diagram showing the distribution of people 
and consider it in three dimensions, viewing the pit from the 
bottom and showing the population density on a graph. 

ill ill 
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i;.~;n upward ; on a graph 

~~--+ 
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The density at the center is high; it decreases gradually as it 
moves toward the outer edges. When a force pulls things toward 
the center like this, it is said to follow Hooke's law. From here on, 
we will refer to a field which is ruled by Hooke's law as a Hooke 
field. ...... _----_ ...... _--- .J 

Consider the electron in a Hooke field. Because the electron wave is acted 
upon by a force pulling toward the center, a Hooke field may be thought of as 
something having a spring. If people were connected to this spring, the further 
out from the center they go, the stronger the force that pulls them back toward 
the center. 

In this case, the force is 

works 

Position of the weight 
when suspended 

~x t 

Distance from the 
point of stationary 
suspension 

backward pulling force. F 

A force acts on the spring, trying to pull it in the 
opposite direction from which it is being pulled. 

~ Potential Energy in Hooke Fields ~ 

When we pick something up and drop it, the impact varies according to the 
height from which it is dropped. This has to do with energy being stored in the 
form of potential energy. The higher an object is raised, the greater its potential 
energy. 

Potential energy is determined by how far and with how much force 
something is being pulled. 
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Expressing potential energy Vas an equation. we arrive at 

In the case of the spring, force F = - kx, so potential energy V is 

V=- fFdx 

=-i
x

- kxdx # 
o ~(d 

= f kxdx=!~'2 
We look for something 
that becomes kx when 
its derivative is taken. 

F 

o 

This tells us that potential energy V in a Hooke field is 

v 

----~~~----~x 

0e force works just like a 'pring)> ~ 1 
Now ~ is 

Therefore. ~ for a Hooke field is 
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PREPARATORY STEP 2: 
PUTTING THE EQUATION IN ORDER 

cP is a wave that spreads out in three-dimensional space (x, y, z). In a Hooke 
field, however, the applied force is the same for all three dimensions, so in order 
to simplify the calculations let's consider only one dimension, x. In this case, 
the Laplacean 

becomes ~ <For x dimension onl0 

(See, it's become a little simpler)-~/ 
So, the equation for electron waves becomes 

In addition, when we place ~ = J£ x 2 for Hooke fields into the m in this 
2h 

equation, we obtain: 

d24J (x) = -87T 2ID?( v _ J£ X2) cP (x) 
dx2 2h 

= (-8" 'ID/v + 4"~W x,)<p (xl 

At this point, let's redefine things. 

358 CHAPTER 4 WAVE MECHANICS 

Redefinition 1 

81T 2ID?v = A 

41T 2f1Rk 
_-:---_- a 2 

h -

This A doesn't refer to wavelength, you know. 



Doing this, we get 

~ .{ This looks a lot betterD 

Let's simplify it even more. 

Redefinition 2 

(There is a reason to define it like this)=-

As ax" = e , it can be further redefined as: 

Let's now insert these. 

It appears like cP has changed from being a function 
of x to being a function g. But in reality it hasn't. 

Now we divide this by a. 

All right, let's do another redefinition. 
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Redefinition 3 

.!L=a a 

We don't want fractions, so let's redefine this. 

The result is that our first equation for the electron wave in Hooke fields, 

through the course of several redefinitions, has become this extremely simple 
equation 

• ESTIMATING «P 
{ \ 

Now, let's estimate4J. This time, the procedure for 
making the estimate is really long, so don't forget what you 
are trying to do. 

In the case of Hooke fields, the farther away from the 
center, the more strongly the electron wave is drawn toward it. 
We can think of the center as being dense. with the outer 
edges becoming increasingly sparse. Thus. cP takes the 
following form as shown in the graph below. 

\ 

What kind of 4J would take such a form? 
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fi! AWell, I can~ even ~s ... ) 
Ha ha ha. We might have to get a real physics expert to 
help us out. At times like this, you take out your 
handbook full of equations. From that you draw out a 
number of likely candidates and then do the calculations. 

Oh, that's something we often do at Hippo, isn't it? 

-_1IIIIIIII1IIIIIIII_-_1IIIIIIII1IIIIIIII1IIIIIIII1IIIIIIII1IIIIIIII_-_1IIIIIIII 

My Homestay in Korea 

Hippo Family Club activities take place in many other 
countries besides Japan. The Club organizes a number of 
homestay programs to the United States, France, Germany, 
Mexico, Spain, Korea, China, Russia and other countries. After 
listening to the Hippo tapes many times over in Japan and reciting 
the phrases heard on the tape, many of us go overseas every year in 
the spring and summer. These homestays abroad give us the 
welcome opportunity to test out our skills in a completely natural 
setting. 

We have an organization with which we do home stay 
exchanges in Korea, and when we go on a homestay there we stay 
with Korean families. Since they use the same tapes and engage in 
the same type of activities we do, we find there is a common 

:~::e:~:::::: mpeS):i us. 
't) ~~' 8 

When I first went to Korea, the only things I could say were 
simple greetings and words I'd heard on the Hippo tapes. 

( But I didn't have any trouble at all)....r!J 

( After all, we're friends! }ft 
One day after we had finished eating dinner, some words from 

the Hippo tape began running through my head. "Cha! moudu 
hamke teopur-ul chi-uja." On the tape, this is what you say after a 
meal. 

., 
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What am I hearing? Boy, this would be just the 
right time to say it, wouldn't it? Why don't I just 
give it a try. .. They're the same words that are 
on the tape, but will they actually understand me'? 

Cha! moudu hamke teopur-ul chi-uja. 
[Let's all help clear the table!] 

Although I didn't understand all of the words, I knew when this 
phrase should be used, so I decided to try saying it. And when I 
did ... 

Ahh - ken cha na yah! 
[Hey, no problem] 

Rather than just praising me for my efforts, the members of my 
host family began a conversation with me that quickly became 
more and more animated. 

,-----------------------------------~ 
A conversation began because the words I'd tried using 
happened to fit the situation perfectly. I figured out the 
meaning of "Ahh - ken cha na yah!", and although 
making an educated guess can be risky, sometimes you 
come out a winner when you hit it right on the mark. 

SchrOdinger was also guided by intuition when he looked at the graph for <1>. 
With equations swimming around in his head, the answer came to him in a 
flash. 

- 0 ~
~: 

i' 0 0 

All at once, he had the answer. This function should result in the graph 
above. 

For those of you who are interested, go ahead and confirm this. 

Right now, let's confirm this by putting it in Schrodinger's equation for 
electron waves. 

d 2 l/J (0 = (-a + e)<p (0 
d~2 

If we put <P (g) in the form of the second derivative with respect to g, as in 
(-a + e) l/J (0, we'll be fine. 

~ .. , -<MarvelOuS! Let's try it) 
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Oh, but the derivative of cP (~) = e_ l22 looks hard ... 

(rm Dr. Bucci)-fo:kJ. 
~~ 

r---------------, 
I 
I 
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I 

Dr. Bucci's Formula for the Derivative of Compound Functions 

2 ~2 
The function cP (~) = e- l2 , by setting - T equal to y, may 

be expressed as e. In this case, in order to take the derivative of 

cP (~) = e- '2
2 

, you can multiply the derivative of e with respect to 
2 

y by the derivative of - ~ with respect to E. 

~ e- f22 = ~ (eY). d~ (_ ~2) 

= eY x ( - !) . 2~ 
=-~eY 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I L _______________ ~ 

This derivative has an interesting pattern, 
and can be made even easier! 

If you take the derivative of a compound function using the "snowman" 
method, it works out like this. 
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With this approach, let's take the first derivative of 4> with respect to g. 

( The first derivative is dOne!!}- \~"" 
Next, let's take on the second derivative!! 

Taking the derivative of the first derivative again will result in the second 
derivative. There is another clever trick we can use for this, the generic 
derivative. Once again, let's ask Jirosa for her help with this. 

r------~--~--~--, ~'(-.o\a! . 

I Jirosa's Generic Derivative ~I I 
I For instance, when the derivative of an equation {f(x) . g(x)} is I 
I taken, the following fonn results: I 

~ fx {f(x) . g(x)} = fx f(x) . g(x) + f(x) . fx g(x) I 
I I 
I ~~~ I 
I ~Q~ I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

There's an easy way to remember that! Look closely and 
compare the right and left sides. A generic derivative of the type 
{f (x) . g (x)} will be: 

fx f(x) x g(x) + f(x) x fx g(x) 

~erivative [Als is [Als is ~erivative 

Similar generic derivatives can always be calculated like this. 

How about that! It's easier than you'd think. 

Look at that! The key word to remember is DAAD! 
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Now then, using this strategy, let's take the first order derivative that we just 
found for cP and take its derivative with respect to t. 

(The key word is DAAD!}.... ~. 
d2CP (0 =.J!... (dcP ) 
d~2 d~ d~ 

d _~2 _t 2 

We just did d~ e 2 = -~ e T ,didn't we? 

Let's compare the forms of the estimated cP with the 4J from the original 
equation for the electron wave. 

Estimated cP (~) 

cp (~ ) from the equation 
for electron waves 

They are close, but the only time the estimated cP (~) and the cP (~) derived 
using the equation for electron waves will be exactly the same is when a = 1. 

(BY the way, what was a anyway?» a 
A = 81T 2IDlII 

41T 2IDl1c 
a 2 =--:-h-
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As things stand, this will result in a special circumstance where the 
complicated numerator and denominator equal 1. 

We would like to make it so that a doesn't correspond to just 1. Except for 
the a term, the forms are exactly the same. Isn't there some way we can use the 

estimate for e- {2
2 that we made in the beginning and come up with a solution? 

~ -#: 
\JJ6' ~ 

Mmm. I don't see how. Maybe my 
repertoire of equations is too small. 
Mr. SchrOdinger, please help us!! 

(2 

What we do is apply a certain function to e-T . For the time being, let 

us call that function/(g). Look for a function/(g) such that when the 
{2 

second derivative of e-T. /(0 is taken, the result will be 
{2 

(-a + e)e-T . /(0. 

So that's how you can do it. 

In that case, 4> (g) can be described as 

If we know /(g), we could then solve for 4> (g) 

Let's insert 4> (g) in the equation for electron waves in Hooke fields, 

First, let's start with the second derivative of 4> (g) on the left side. 

Here functions are being multiplied, so it's a generic 
derivative. That means we need to use DAAD. 

d4>(g) =.iL {e-'22. I(g)} 
dg dg 

=.iL (e- (22) • 1(0 + e- '2
2 

• .iL /(0 
dg dg 
~ tAl tAl ~ 
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Next, let's find the second derivative by taking the derivative again. 

~ -( This is DAAD + DAAD, isn't it~ 

d~ (-g . e- {22) was equal to (-1 + g 2 )e- {2
2 isn't that right? 

With this, we have succeeded in inserting our estimated cP (g) 

into the left side of the equation for electron waves in Hooke fields. 

( That sure was a lot of work. )-: ~ 
~W 

Now, let's work on the right side of the equation. 
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We have the right and left sides of the equation for electron waves, so 
naturally we can join them with an equal sign, 

),' 

= (-a + ~ 2)~._.~ , f(~) 

(g.,2'_ l)f(~) - 2~ -.!L f(O + d2
2 f(O = (-a + ,5':1)f(O 

" d~ d~ " 

-f(~) - 2~ -.!L f(O + d 2
2 f(O = -af(O 

d~ d~ 

d\ f(O = (l-a)f(O + 2~ -.!L f(O 
d~ d~ 

{2 

By inserting tP (~) = e-T, 1(0 in the equation for 

electron waves in Hooke fields, we are able to rewrite the 

equation as above, 

~
'.

[C) 
The calculations were a lot of work, but the formsf(~) as well as the 

derivative of/(~) are in the actual result. 

®' We still can't fmdJ W just with what we have now, can we' 

(!;\ 
r$i~~Mmm", 

~~--Mr, Schrooinger, what else can we do? Help us, please, 

-J}!f) In this case, we'", forced to bring out the secret handbook within the 
handbook of equations we used earlier, This may be, , , 

THE LAST RESORT. 

There it is! 
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.. UM#4J =- -- -- ;:a:t:;a;':;:;8:0'; -- -- -- , 
,II I 

•. ~ 

The Taylor expansion is a mUltipurpose formula that can be 
used to rewrite ordinary continuous functions . 

The Taylor expansion takes the form 

If the respective coefficients Co, C., C2 • •• are known, then we 
can find the form for f(x). 

When physicists want to know the form of a certain function, 
they work it out as a Taylor expansion. 

If CII can be found, then we can 
solve for f(g) and then for cp (g). 

~~ 
ff~ But 1S there a good reason to use the Taylor expansion? 

~f!!j:J Only as a last resort. And remember to be careful not to overuse it. 
It's true that even if we replace a function with a Taylor expansion, nothing 
really changes because it's only a replacement. The only difference is that now 
we are trying to find coefficient Cn instead off (g). But occasionally, there are 
unexpected breakthroughs. 

~ Really? Wen then, let's try it. 

If we make f (g) a Taylor expansion, we get 
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Next, the first derivative of f(~ with respect to~, df(~) will be: 
d~ 

Multiplying by~, we get ~f(~). Then we have 

Next, taking the derivative of d~ f(~) with respect to ~ and solving for 

d 2 de f(~), we come up with 

= (0 + 2)(0 + 1)Co+2~ 0 + (1 + 2)(1 + 1)C1 +2~ 1 

+ (2 + 2)(2 + 1)C2+2~ 2 + ... 

= t (n + 2)(n + 1)CII+2~ II 
11=0 

Let's sum up what we have found. 

f(~) = lit Cn~n 
~ JL f(~) = t nCn~ n 
d~ n=O 
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Next, let's take the rewritten equation for electron waves in Hooke fields 

d 2
, /(0 = (l - a)/(O + 2~ .3L /(0 

d~- d~ 

d2 

and insert the/(O, ~/(g), and, de /(~) that were found by putting them into 

the form of a Taylor expansion. 

Finding ~ and multiplying by f', we obtain 

I~O {(n+2)(n+ 1)C"+2-(l-a+2n)C,,}~,,=o 

With this equation, when ~ to the power of 1, ~ to the power of 2, g to the 
power of 3, g to the power of 4, ~ to the power of 5, and so on are all added, the 
result is zero. 

~ Do you know when an infinite sum like Ibis will be 01 

~ r$i~~ Let me see ... 

F The fact is this only happens when tbe coefficients of all of the tenns 
in the equation are O. 

In other words, 

(n + 2)(n + 1)C,,+2 -(I -a + 2n)C" = 0 

Only when 

(n + 2)(n + I)C,,+2 = (I - a + 2n)C" 

does the above equation hold true. 
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Changing this into a polynomial, we get 

C = 2n+l-a C 
n+2 (n+2)(n+l) n 

(n = 0, 1,2,3 ... ) 

Okay, take a good look at this relational equation. In this equation, if C" is 
known, then Cn + 2 will be known; if Cn + 2 is known, then C" + 4 will be known; if 
Cn + 4 is known, then ... 

e Thafs certainly true. 

~ So, once C, is detennined, all the even-numbered coefficients, C" C" 
C6, Cs' .. will be known. In the same way, if C[ is determined, then all the odd
numbered terms will be known. 

~' That means that we've FOUND THE COEFFICIENTS C. II 

When n is an even number: Co - C2 - C4 - C6 ••• 

When n is an odd number: C[ - C3 - C5 - C7 . • . rf.~ 

( So, Cn is divided into two parts.y~ 

~ 
:l;il~ But Mr. SchrOdinger, without more information, we don't know what 

values Co or C[ will take. 

r( ~ Well, we'll just think up some suitable values. 

an What!! 

~ Solving differential equations is like that. No need for concern. 

So for now, we'll just do what Mr. SchrOdinger suggested and say that 

Co= 1, C[ = 1 

If we do that, we'll know Cn for both even and odd numbers. 
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Let's look at the values the coefficients take in the respective series for Co = 1 
and C, = 1. 

When n is an even number 

when n =0 

when n = 2 

when n =4 

C - I-a. C _ I-a 
2-2·1°-2! 

C = 5 - a . C = (5 - a)(1- a) 
4 4.3 2 4! 

C - 9 - a . C _ (9 - a)(5 - a)(l - a) 
6-6.5 4- 6! 

When n is an odd number 

whenn = 1 C=3-a·C=3-a 
3 3. 1 1 3 ! 

when n = 3 C - 7 -a. C _ (7 -a)(3 -a) 
5- 5.4 3- 5! 

when n = 5 C - 11 - a . C _ (11 - a)(7 - a)(3 - a) 
7- 7.6 5- 7! 

~ WI hekn coefficdients ,C? ?are known, it means that/a) is 
'\:::) a so nown, oesn t It. 

Since coefficients CII of/(f) are divided into even-numbered tenns and odd
numbered tenns, let's also divide/(f) in the same way. 

I Even(~) = Co + C2~ 2 + C4~ 4 + C6~ 6 + ... 

_ 1 1 - a I: 2 (5 - a)(l - a) I: 4 (9 - a)(5 - a)(1 - a) I: 6 ••• 

- + 2! ~ + 4! ~ + 6! ~ + 

I Odd(O = CI~ + C3~ 3 + C5~ 5 + C7~ 7 + ... 

_I: 3-a 1:3 (7-a)(3-a) 1:5 (1l-a)(7-a)(3-a) 1:7 ... 
-~ + 3! ~ + 5! ~ + 7! ~ + 
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( So there are two answers for fW. right? >-~ 
In addition, since we know f (g), 

is also known. Let's divide this into odd-numbered and even-numbered terms, too. 

~2 

l[> Even(O = e-T. f Even(O 

={l l-at: 2 (5-a)(l-a)t: 4 

+ 2! ~ + 4! !:> 

(9-a)(5-a)(l-a) 6 } _f1 

+ 6! g+"'e 2 

~2 

l[> Odd(O = e-T. f Odd(O 

= {t: 3 - a t: 3 (7 - a)(3 - a) t: 5 
~+3!~+ 5! !:> 

(l1-a)(7-a)(3-a) 7 } _f1 

+ 7! g+"'e 2 

With this we have found what we were looking for, the electron wave cP (t). 
l[> (g) is defined as 

l[> (0 = l[> Even(O + l[> Odd(O 

and is made up of even-numbered terms and odd-numbered terms. We have 
also solved the forms of l[> Even (g) and l[> Odd (g)! ! ! 

Could it be true? Somehow it's hard to believe ... 

Now, let's confirm whether we have really found the electron wave cP (t) 
we've been looking for. 

Since a Hooke field is a space with a force pulling toward the center, cP ct) 
would have to be 0 in places far from the center. 
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Expressing this as an equation, we get tP (~) = 0 when ~ - ± 00. 

Now then, let's see what happens. 

First let's look at what happens to tPEven (~) when ~- 00. 

~2 fEven(O 
cfJ Even(O = e-T. f Even(O = ~2 

eT 

~2 

When g - 00 , both the denominator e- T and the numerator f (g ) of 
<P Even (g) are infinite. 

But, even if they are both infinite, 

when If Even(g) I > e '22 then ItP Even(t) I will be infinite; 

t 2 

when If Even(t) I < eT then I cfJ Even(t) I will be O. 

Because the final term of the numerator If Even (~I when ~ - 00 is 

we come up with 00"'. When the denominator is t- 00, we have 

The result is that 00 x > e ~2 

, 
00-

-) eT 

This means that when t - ± 00, IcfJ (~I = 00. 

I've got to do something about that. .. 

thought Schrodinger. 
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• FINDING CONDITIONS THAT MATCH NATURE! 

Remember that the equation for the relationship of the coefficients is 

C = 2n+l-a C 
n+2 (n + 2)(n + 1) n 

When we refer to conditions that match nature, 
let's call them boundary conditions. 

In this equation, coefficient Cn + 2 is determined by the previous coefficient 
Cn' This means that if the coefficient is ° at some point, all subsequent 
coefficients will be 0. 

Although ft ~) was a series continuing to infinity, if 
at some point the coefficient becomes 0, then it will 
be a finite series. In that case, even when ~ - ± (N, 

4J( ~)will never approach infinity. 

8 
( I see. We bring it to an end, don't we?» ~ 0'0" 

This means 

(2n + I-a) = ° 
(n + 1)(n + 2) 

will be a condition that brings an infinite series to an end at some point. 

Let's look at the above equation. As n changes according to n = 0, I, 2, 3, ... 
only a can be changed at will. Therefore, if a is such that 

2n+l-a=0 

That is, 

a=2n+l (n = 0, 1,2,3· .. ) 

Then Cn will be 0. 
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~~CJ Yes, I see. If the above equation is 0 when n = I, then the equation 
will be 0 from the third tenn (C3) onward. And if the previous equation is 0 
when n = 6, then the equation will be 0 from the eighth tenn (Cs) onward. Isn't 
that right? 

~ But C, detennines each subsequent coefficient in the even or odd 
sequences. So if n is an even number, then only the subsequent even-numbered 
terms will be O. Likewise if it is an odd number, then only the odd-numbered 
terms will be 0, right? 

~ (J That way, if n is an even number, then the odd-numbered tenns will 
end up being infinite, and if n is an odd number, then the even-numbered tenns 
will end up being infinite. 

~' Dh, that's simple. If n is an even number, we just have to set C, = 0 so 
that the odd-numbered tenns will be O. Conversely, if n is an odd number, we 
set Cil = 0 so that the even-numbered tenns will be O. 

Finally, we know the fonn of ([J (~). By applying a condition so that the 
results will match what is found in nature, we know that a must be 

a=2n+ 1 (n = 0, 1,2,3· .. ) 

By recalling what a was, we see that it is a constant containing v. This 
means that eigenvalue v is also known. As might be expected, once we know 
([J (g), we can also know v. 

Let's complete the equation for cP (~). 

CHAPTER4 WAVE MECHANICS 377 



: _ ~ ____ ~ __ ~ ~:UH ___ _ ..•...... ~ ~:-:Q.;~ lY.o»Yd"" r ~ - - ~ - ~= =~ ,=~ "=.". ,·.,,~W"' ,=w.", 'W&"' "~,w~'wm" 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

WHEN n IS AN EVEN NUMBER 

<P EVen(o={ 1 + 12-t §'+ (5-al\1-a) §' 

(9 - a)(5 - a)(l - a) [6 } _~ + + ... e 2 
6! 

For example, a = 9 when n = 4 and therefore the coefficients 
from C6 onward will all be O. In this case, because l/J Even(~ 
corresponds to n, we'll call it l/JII ([). So l/J4 (0 will be 

I 

I 

r W"~ ~ ~ - -- - ~ ~ ~ffi ;r;m-s;:;:;: i$i;:'~~::: m.::;:;..w.;: :::;:::::;::-::r~ ;:;wm '" 
i 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

WHEN n IS AN ODD NUMBER 

<P Odd(O = { § + 33-t §' + (7 - al\3 -a) §' 

(11-a)(7-a)(3-a) [7 }_~ + +.,. e 2 
7! 

For example, a = 11 when 11 = 5 and the coefficients from C7 

onward will all be O. In this case, because l/J Odd( g) corresponds 
to n, we'll call it l/JII ([). So l/J5 ([) will be 

l/J s([) = ([ + 3~ [3 + -45' ,8 [s )e-~ 

= ( t - t [3 + 1~ e )e-~ 
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• LET'S FIND EIGENVALUE v! 

a=2n+ I (n = 0, 1, 2, 3 ... ) 

The a detennined according to the boundary condition has been transposed 
many times. Let's return it to its original state and find eigenvalue v. 

Eigenvalue v 
corresponds to 
integer n. 
So we'll call it Vn. 

a=2n+ 1 

~=2n+ 1 a 

v=2n+l j k 
n 41T IDCh 

k = 21T 
.\ L 

Transposition I 

{
A = 81T2~.n v 

41T2IDCk 
a 2 = ---:-----

h 

Is a so complicated? 

(n=1,2,3···) 
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• LET'S FIND THE ENERGY!! 

Now that you mention it, Heisenberg was also seeking the 
energy for harmonic oscillation. I think I'll try and find 
energy based on my theory that the electron is a wave. 

Harmonic oscillation correlates to Hooke fields. 
You see, in the case of particles, we speak of 
harmonic oscillation whereas in the case of 
waves. we refer to Hooke fields. 

The energy can be found by multiplying eigenvalue v by Planck's constant h. 

E = hv" 

Let's insert the eigenvalue for Hooke fields into this. 

E=h1l. =~(n+l)J k "2'lT 2 MJ]( 

Since m = hWl, 

I"f = 2 'lTv. This came up in the 

section on Heisenberg, too! 
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How about that!! This is exactly the same as the 
energy obtained by Heisenberg, who said, "LET'S 
THROW OUT VISUAL IMAGES!" The energy 
values Heisenberg found have already been confrrmed 
to be true, corroborating my theory even more. 
Moreover, my theory has a clear 

!~. 
,...... .~.: , 

~. ,I, clap 

~v '" o"P 

"W-/ 
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SUMMARIZING WHAT WE'VE DONE SO FAR 

CPn( g) is divided into cases where n is an 
even number and where n is an odd number. 

1. When n is an even number 

2. When n is an odd number 

( a = 2n + 1 was', it? } ~ 

(n = 0, 1, 2, 3 ... ) 

The movement 1/1" of an electron wave is 

The energy of an electron is 

(n = 0, 1, 2, 3 ... ) 
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Now then, let's finally look at the form of the electron wave using the lP (~ 
that we actually found! 

Whenn =0 

When n = 1 

When n =2 

When n = 3 
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The graph shows that the only time the result agrees with the 
initial predictions is when n = O. When n does not equal 0, when 
~ ~ ± 00, we come up with 1 <p. (~12 = 0 as predicted. 

When the initial predictions were made, we assumed an 
electron wave was being acted upon by a force trying to pull it 
toward a center. It was thought that the force would be greatest 
when <P was at the center, and that it would decrease gradually as it 
approached the outer edges. But we discovered that in some cases, 
cP actually decreases even at the center. 

I DID IT! I KNOW THE FORM 
FOR THE ELECTRON WAVE! 

Were the calculations fun to do? I liked "DA + AD" and the 
Taylor expansion and the way C. gets divided into odd and 
even numbers just fine. The derivative of a compound 
function using a snowman was intriguing as well, wasn't it? 

What did everyone else find interesting? ~J 
Now, let's look quickly again at the similarities between the father's 

behavior and the behavior of the electron! 

oYl@@!>1!) 

China 

The Father 

~rI 
~ 

m 
Japan 

Not knowing whether he would be understood or not, Dad tried 
reciting some Chinese he learned from the Hippo tapes to a Chinese 
person. The response Dad received reassured him that he was understood. 

The Electron 

We used the wave equation to find the energy of electrons in conditions 
similar to those in nature. A visual image of the electron was produced 
which was then corroborated. 

Brimming with confidence, let's now go on to Step 4! 
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4. 4. 4 STEP 4: THE HYDROGEN ATOM 

Dad is in his study. Inside the room, brightly lit by the morning sun, a large, 
black suitcase is spread open. 

103 ... 103 ... 103 ... 

He repeats the number to himself again and again. 1 0 3 is the combination 
of the lock on Dad's suitcase. The day he bought the suitcase, he couldn't 
decide what combination to use, whereupon his daughter Sonoko said, 

"Since it's for you, Dad, why not make it 1 0 3 for October 3, your 
birthday?" It was easy to remember, and so he made it 1 03. The door opens 
and his wife Kanoko enters the room. 

"Do you have your passport, dear?" \ J I/, 

'103- '_ .. ,-"Oh." 

"You won't be able to go to China without it." 

"I know." 

Dad is leaving today for Qinghai, China, as part of the Hippo Homestay 
Program. While packing his suitcase, Dad reflects a bit on his Hippo 
experiences which have led up to this trip. 

Since the night of the Hippo Family Club's special meeting for fathers, I 
have become very interested in the Hippo method of language acquisition and 
have gone to the group meetings every week to improve my skills. By now I 
am completely comfortable with the Hippo way of learning, that is, learning in a 
natural setting while having fun. I have even come to enjoy activities such as 
singing and dancing with others in the group. 

I have heard that people who practice speaking foreign languages using the 
Hippo tapes and who then go abroad all come back with the ability to speak the 
target language fluently. Of course, you can learn to speak a foreign language 
well without going abroad, but the thought of using natural methods to learn a 
language while abroad sounds really fascinating and fun. Besides, imagine the 
joy of becoming fluent in another language ... 

And so, today I'm off! 

When I arrived at Qinghai, a man my age came running up to me speaking 
in rapid flre Chinese. Just as I was thinking, "What in the world am I going to 
do?" these words tumbled out of my mouth from nowhere. 

"To e puchee, chin neeshu maeiah!" 

THE FATHER'S 
CASE 
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THE CASE OF 
THE ELECTRON 

The man then said, a little more slowly, 

Ah to e pucheei. Nijiu shi Ogura shen shang. Fan-ying ni. Rui la ba? 
[Oh, sorry. You are then Ogura-sensei. Welcome. Are you tired?] 

The words out of my mouth were the words off one of the Hippo story 
tapes. What I had just said was a phrase I remembered from a lesson called "At 
the Airport." 

"Well, what do you know. These phrases really do come in handy in 
situations like this," I thought to myself. "This must surely be a case of a sound 
taking on meaning the moment it initiates a response." 

When Dad returned home to Japan, he couldn't stop talking about his 
wonderful homestay experience. While relating his adventures, he used a 
number of Chinese words that came spilling out of his mouth. 

"My, you've become just like a native Chinese, haven't you?" teased his wife 
Kanoko. 

<!1 ~un! 
Dad was already planning ahead to his next trip. ~~, 

~ 
Where should he go next? 1\ ~ 

This is the end of Dad's story. In listening to it, many of you can probably 
relate to Dad. In Step 4, instead of limiting himself to staying at home, he 
ended up traveling abroad. He came back chattering away in Chinese, full of 
lively tales of his travels. 

This spring I went to Mexico, and when I came 
back I was just like Dad. We should all go 
overseas! 

jCruza los mares! 

L et's again compare the father to the electron and see what we come up with 
this time. 

The Father 

lf~ g--~ 

Dad went to China, where Chinese is actually 
spoken, to see whether he would be understood by 
the natives there. 
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The Electron 

~ • 
? 
• Minus? ~ • 

~ • • 
~ 

? 
• • 

~ 

Let's see if the hydrogen atom can really be explained 
with Schrodinger's equation for electron waves. 

In Steps 1-3, we looked at what happened to the electron ~: 
under certain conditions using Schrodinger's equation. We were ( ThrOb 

able to confirm that it provided a visual image, and that it neatly., ../" Throb 

explained experimental results. Thus, it is very solid as a theory . .j;'~ 
You could even say that it's almost flawless. 

Now, in Step 4, we will finally find out what is happening to the electron 
within the atom! 

We'll be able to rid ourselves of those unforgivable words 
of Heisenberg telling us to throw out the visual image. 

But we still have to solve the equation. 

Having come this far, consider it solved! From here 
on, we just have to work through the calculations!! ~'h' 

~ij 

40 

<) 

~ 

Oh my, Mr. Schrodinger has already started doing his 
calculations. We've got to hurry to catch up ... 

But the hydrogen atom is more complex than Hooke 
fields. So it's really difficult for someone like me, who only 
met Mr. SchrMinger six months ago, to explain this in a way 
that even a beginner can understand. This being the case, can 
you just let me skip the calculations this time around? For 
those of you who are saying, "I've just got to solve it for 
myself!" go ahead and work the calculations out on your own. 

By the way, the ~ for a hydrogen atom is 

e2 1 ~=--
h r 

e represents the electrical charge and is a constant 
with a fixed value, so it is different from the natural 
logarithm e that we have seen before. 
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........ ~.~. 

BACKTRACKING 

Let's make a graph of ~ inside the hydrogen atom. 

Since hand e are both 
constants, 58 is something like 
this. As in Hooke fields, there 
is a force pulling toward the 

center. Thus, as one moves ~.(. ~ 
away from the center, 58 _ 
becomes larger. 

Therefore, the equation for electron waves inside the hydrogen atom will be 

V 2l/J + 81T 2im(V + ~2 ~)1Jr =0 

Hey, if we can solve this, we'll 
know what form the electron wave 
takes inside the hydrogen atom! 
Sct;ibble scribble scribble ... 

fffi?ic '~ ra It's solved! I 
At long last, Schrodinger unraveled the mystery of the hydrogen atom. 

He was also able to confirm that his theory matched the experimental 
results. He did all that and obtained a visual image, through a simple method, 
no less ... 

Bohr and Heisenberg were both amazed at the simple results. They were 
amazed because understanding the hydrogen atom using Heisenberg's matrix 
mechanics was a process so incredibly difficult that the only person who could 

successfully {i: a greru ;:~:;;~~;;;e:;~t:;:';:~d 

By comparison, working out the hydrogen atom 
using Schrodinger's equation for waves is so easy 
that even we can do it with a little effort. 

As we have seen in Steps 1-4, the energy values derived from Schrodinger's 
equation agreed with the experimental results. We have seen how 

SchrOdinger's flawless theory provided a visual image of how and in what form 
electron waves existed while correctly accounting for experimental results. 
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In addition, with SchrMinger's equation, if we know under what conditions 
the electron exists, we will be able to detennine how it behaves as a wave. With 
that in mind, we thought it would be interesting to consider the conditions 
affecting electrons by comparing them to the situation of a father who joins the 
Hippo Club. 

We went through Steps 1-4 and placed the electron in progressively more 
complicated situations, checking to see if we could really describe its behavior 
using Schrodinger's equation. We learned that this process was exactly the same 
as what happens to a father who has just entered the Hippo Club and who 
quickly learns to speak a foreign language the way a young child does. 

The behavior of the electron varies depending on the environment in which 
it exists. Keeping that fact in mind as we solve SchrMinger's equations, we 
found that the environment in which language acquisition is nurtured is 
determined by the surrounding relationships between people. 

So it seems that language grows out of ~ 
~ relationships between human beings. V 

-;:: ;J When a new person joins the group, the new energy which he brings 
in sparks the energy of others around him. Due to this change in dynamics, 
everyone is motivated to speak the language better. This is echoed in 
Schrodinger's equation, where the behavior of an electron can be deduced from 
its environment. 

Well, now that you have come this far with us, let's see how you would 
answer this question ... 

Which would you choose? To think of electrons as particles, which means 
losing your visual image after working through some difficult matrix 
mechanics. or to think of electrons as waves, which means being able to retain a 
visual image after solving SchrMinger's simple wave equation? 

Of course I'd like to think of 
electrons as waves!! Same 
for Mr. SchrMinger, right? 

All right then, let's all say it together. 

( Of course! 0-.. fijiY 

However, Schrodinger was far from satisfied. 
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4. 5 COMPLICATED ELECTRON WAVES 

IFourier, Jean Baptiste 
Joseph, Baron de 
[1768-1830] 

We have solved equations relating to electron waves in various conditions 
such as in free space, the inside of a box, in Hooke fields, and inside the 

hydrogen atom. 

We were able to calculate the energy of an electron 
using eigenvalue v, and that corresponded perfectly 
to the experimental results, right? 

Now, we can say, "It's perfect." But SchrOdinger still wasn't satisfied. 

The 1/'s that we found up to now 
have all been for simple waves. 

Well, that's true. A simple wave is a wave that oscillates at a specific 
frequency. In all of the wave equations we've solved so far, 1/' was always 

And since frequency v was fixed at a certain value, they were simple waves. 

~ Rry to remember what Mr. Fourier said. ) 

Right. So in the case of electron waves, you 
can also conceive of a complicated electron 
wave that is the sum of simple electron waves. 

In this case, because lP corresponds to vn' we'll call it eigenfunction lPn• 

I see. So let's add the simple waves together. 
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For all of the Ps we found so far, eigenvalue v has had various discrete 
values. If we take one of these eigenvalues and call it vn' it will determine the <P 
for the electron wave. In this case, because tI> corresponds to V,,' we'll call it 
eigenfunction c[J". 

Eigenvalue 
111 

liz 

113 

114 

11" 

Electron wave 
<PI 
<P2 
c[J3 

c[J4 

Letting P for frequency 11" be p." and letting the corresponding amplitude 
be All' P., may be expressed as 

In this case, all we have to do is sum up Pn! 

Taking P for a complicated electron wave, we have 

Expressing this using the symbol for sum ~, we get 

P = LA <P e-i27T 'lt1 

" n n 

( This is it! }-~ 
Wait a minute! It's not that easy. You can talk 
about summing up, but we still have to see if 
summation can describe any sort of complicated 
wave. If it can't, then we can't say that a 
complicated wave is the sum of simple waves. 

--ffi~ Cl.(1) ~ How do we confirm that? ) 

All we have to do is explain that a 
complicated wave P can be expanded. 

~(. ~ Stop!! 
o ' I I 

Sd 
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Talking about expansion reminds me of the Fourier coefficients. 

"" 
= ao + l: (ancos nw t + b nsin nw t) 

n=1 

The summation of sine waves and cosine waves (the Fourier 
series), can describe any complicated wave. This means that, 
conversely, any complicated wave CAN BE ANALYTICALLY 
DECOMPOSED into sine waves and cosine waves. 

That's the Fourier coefficients. 

In the Fourier series, frequencies are set at integral multiples. 
So if we can find the amplitudes of the sine waves and cosine 
waves, we will be able to decompose the wave. 

In Fourier coefficients, if one wants to know the amplitude of 
simple wave sinlwt contained in complicated wave f(t), one may 
find it by mUltiplying complicated wave fit) by the wave that you 
want to extract (in this case, sinlwt). Ultimately, this is the same 
thing as multiplying, one at a time, the simple waves that make up 
f(t) by sinl wt. The illustration below will make this easier to 
understand. 

~ .. Area: 0 i 
, 

IA AI .. AreaCD~) 

This means that Area <D ofJtt) x sinlwt will be the same as 
Area Ci)' of hi sinlwt x sinlwt, which are contained infit). 
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When we find the Fourier coefficients, the area will not be zero when waves 
of the same form are multiplied; the area can only be zero when waves of 
different forms are multiplied. When waves are multiplied by something other 
than themselves and the area that results is zero, the waves are said to be 
mutually ORTHOGONAL. 

In short. 

1. f(t) is multiplied by a simple wave with an amplitude of 1 and 
the area is calculated. 

2. Because each wave is orthogonal. the area will be 0 for all 
cases other than when the frequency is the same as the wave 
that is the multiplier. 

3. Thus, waves having the same frequency as the multiplier may 
be extracted. 

By multiplying f(t) by various frequencies of simple 
waves one at a time. it is possible to decomposeftt). 

Yes, I see. In order to confirm whether the sum 'tJI" 

'tJI" = LA cP e-i21T'ilt , 
n n n 

of simple electron waves 'tJI"n can really describe any 
complicated wave. we must explain why the various simple 
electron waves are all orthogonal. A 
But it's difficult to consider the functions of both time and space 

at the same time. So, to start, let's find out if the function for space, 4»n' IS 
ORTHOGONAL. 
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DETERMINING 
WHETHER tPn IS 
ORTHOGONAL 

I n order to say that two waves, CPR and CPn' (n ¥: n'), are orthogonal, we must 
show that when CPR and cp., are multiplied, the area is zero. Let's write this in 

the language of equations. 

iB • {= 0 (n * n') 
tPnCPn' dx 

A * 0 (n = n') 

f 0 dx is an integration symbol which indicates "determine the area. " 

;:b o have a question. What is that * mark on <1>.?")-i~ ~ 
In some cases, CPR is a complex-numbered wave (a wave that contains i). 

When you deal with an i, or a complex-numbered wave, the area can't be 
determined without introducing a complex conjugate. The * mark indicates that 
the complex conjugate has been applied. 

When you use a complex conjugate, you change the 
sign in front of i. For example, the complex 
conjugate of 2 + 3i will be 2 + (-30 = 2 - 3i; the 
complex conjugate of e-i27TP r will be e+i27TP r) = ei2TT I'r. 

Now then, what is the complex conjugate of I? The 
answer is 1 because there isn't an i contained in I!! 

When referring to the * mark, let's call it a "star." 

There's no need to overthink this. 
Just consider it a magical formula. 

Next, let's begin proving all this! 

Let's prove that the two different waves c1J1I and CPII' are in fact orthogonal. 

This is the result we want to obtain! 
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From here on, we will assume that everything is one dimensional. First, cjJlI 

must work in the equation for electron waves. 

d
2

cjJ" + 87T 2WC(V _ m)rp = 0 ..... Q) 
dx2 n n 

We can also think of V2 

in just the x dimension. 

The same applies to cjJlI" 

cf.mffiSiOn 

d 2cjJn' 2ffi} ro 
dx2 + 87T ~",~(vn' - 'O)cjJn' = 0 

In order to come up with the desired result, we take the complex conjugate 
for C/J". in this equation. 

d2cjJn~ 2ffi} ro· "" 
~ + 87T ~"'~(vn' - 'O)cjJn' = 0 ..... ~ 

Now then, do you think we can manipulate Q) and @ 

into the desired form? Let's rewrite equations Q) and @. 

R~canitl1e 
If \:03? done.? 

Q): 

@: 

Next, multiply both sides of equation Q) by cjJn" and both sides of equation @ 

by C/J". 

.. .... Q)' 

2 • 
d cjJo' 2ffi} ro· 
~ C/Jn = -87T ~",~(vn' - 'O)cjJn' C/Jn 

...... @' 

This will involve a bit of work, but in order to obtain the desired form, we 
will need to subtract equation @' from equation Q)'. 

At the Hippo Family Club, we have created a multilingual 
environment where foreign language tapes are played everywhere, 
all the time, much like background music. It is a multilingual 
amusement center where many different people and families gather 
together as one big family to play fun-filled games with language. 
After being immersed in this environment for a few months, you 
find yourself beginning to recognize what languages are being 
played. By repeating the sounds on the tapes over and over again, 
you soon are able to say them perfectly. 

The Hippo method of language acquisition involves repeating 
or "singing" the sounds heard on the tapes, without always 
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knowing exactly what they mean word for word. 

Vocalizing is important when learning 
to speak a language. 

When we went to Mexico on an international exchange 
program, we were always surrounded by people speaking Spanish. 
Now and then we understood some of the words because we had 
heard them before on the Hippo tapes. At home after listening and 
repeating the sounds heard on the tapes, words had begun to tumble 
forth naturally from our mouths. The words we learned in this way 
were the ones we were able to pick out in conversations in Mexico. 

~~o When you find yourself in a situation similar to 
:' . one presented on the tapes, you will instantly make 

0_0", the connection in your head. In an actual situation, 
you will find yourself instinctively using the words 

heard on the tapes. The words will come to you naturally and 
easily, and you will find yourself knowing exactly what they mean. 
As long as you have a good repertoire of sounds in your head, you 
are bound to hear them verbalized when the situation calls for 
them. As you try these sounds out, you find they take on meaning, 
becoming part of your ever growing vocabulary. 

We apply the above method of language learning to the 
language of mathematics. In the language of mathematics, we 
initially start by absorbing the fonns of the equations without really 
understanding what they mean. I already know, however, that the 
meaning will come soon enough as I work with the equations. For 
now, don't worry too much about the details. We can work on 
them later. The important thing is to keep on working to absorb the 
language of equations! 

Let's calculate CD' - C%l'. 

d 2 cPn • _ 2 • 
dx2 cPn' --87T m(vn -)jJ)cPncPn. . ..... CD' 

6~ 
~ ...... @' 

2aD • 

It's not hardl 

It's simple, 
simple. 

= -111,. ",",P, -- p,,) <1>;1>", ~ 'P 
C This looks a bit like the form we're after. :> ~ 
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For the next step, we wish to integrate 4)" and 4)". from A to B with respect 
to x. So we integrate both sides of the equation. 

f ( d~;,' <1>; - d;:; <1>.) dx= -lhT'IDl{V. - v,l f <1>.<1>.: dx 

This is a constant that bears no relation to the :\ f'! 
integration so we moved it to the front. (j 

Whee! The right side is coming close to the target 
equation. But the left side is still hard to recognize. 
Is that all right, Mr. Schrooinger? 

Don't worry. It'll still work. We just need to use a 
method called partial integration. 

Formula for partial integration 

f I(x) 1x g(x) dx = [/(x) . g(x) 1: -f 1x I(x) . g(x) dx 1/ 

We can continue the proof using this formula! 
Let's start our calculations from ~ on the left side of •. 

r d2tP • 
~: L dx2n tPn' dx 

We rearrange the elements of the equation just a bit and we get 

Even if we change the 
order, the meaning of the 
equation is still the same. 

Comparing this to the formula for partial integration, we see that we can 
express it as 

dtP 
g(x) = dxn 

LB Odx :means to integrate 

the function 0 from A to B 
and find the area. 

CHAPTER 4 WAVE MECHANICS 397 



We'll then apply it to the formula. 

0. i8 
m.. dcIJn dx = [n-. . dcIJn]B _ 18 dr/Jll~ . dcIJll d 

~. '¥n' dx '¥n' dx dx dx x 
A A A 

What happens to formula [[i] on the left side of A. ? 

r 2 • 

[[i] : L d d~r' cIJ. dx 

Again, we first rearrange the elements in the formula. 

Comparing this to the formula for partial integration, we see that we can express it as 

dcIJ~ ~ 
f(x) = clJn , g(x) = di- .. , r '?f 

We c. an also put this in the formula ~V~ 
for partial integration, can't we? ""\ ~ 

Then let's apply this to the formula and do the calculation. We get 

18 
• [ °lB 18 

• [[i]: cIJ dcIJn, dx = cIJ dcIJn, _ dcIJn . dcIJll, dx 
ndx ndx dx dx 

A A A 

We calculate the entire left side of A.. 

[ ]
B 8 ~tll -• 0 dcIJ dcIJ ~ dcIJ '\- "V0 \ .. -:: 

left side of A. = cIJ . __ " - I --" . -_. dx i.,'-V ·'dx dx dx co ( 
A A ./ 

_ [cIJ . dcIJ.~]B + iB dcIJn • dr/Jll~ dx . 
"dx dx dx 

A A 
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Since we can change the order of multiplication within the f sign without 
changing the meaning, the result is that "A" = "B". It follows that the left side 
of. is 

. • dC/J dC/J, [ ]B [ *IB 
left SIde of • = C/J.. dxn A - C/Jn· dxn A 

Next, we apply a boundary condition to C/Jn in the A and B terms of this 
equation, such that cfJn (A) = 0, and C/Jn (B) = 0, and we get 

[ C/J~. dC/Jn]B =0 [C/J. dC/Jn~IB =0 
II dx A ' n dx A 

? 

'. {ff!J) -< A boundary condition? ) 

It came up when we did Hooke fields. It means to 
stipulate a condition that agrees with what's actually 
happening in nature. For the electron in a box, the 
electron wave cP had to be zero outside the box. In Hooke 
fields, the electron wave had to become proportionately 
smaller the farther it moved from the center, becoming 
zero at infinity. This is one of those cases where cP will 
always be zero if we stipulate a boundary condition. 

All right, since the left side of • = 0, 

1 
Since -81T 2W( is a constant, if we multiply both sides by - 81T 2[)C ,we get 

Boy, I'm tired. Isn't 
the proof finished yet? 

Just a little more to 
go! Don't give up!! 

Let's consider this equation after dividing it into two parts. 

(vn- vn') f CPnC/Jn~ dx =0 

• 
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First, the case when n :j:. n'. b~ 
As for the place marked. when n =F n', 

So if the whole left side is 0, the part of the equation marked" will have to 
be 0, too. This means that when n =F n', we get 

Hey!! We've already managed to 
come up with a proof for n =F n'. 

Next, let's tackle n = n'. ~ 
Looking at the part of the equation marked ., 

And since v" - Vn' = 0, the part marked" will not be O. 

Yes, but isn't it all right if the part 
marked" is 0, since 0 x 0 = O? 

That's true. But in that case, cP will end up being 0 
everywhere. Right now, we're thinking of the cJJs 
that have some value, so in this case, cP will not be O. 

That is, when n = n', we get 

With this, we're able to prove 

l/J II l/J n~ dx i. {=O 
A :;eO 
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Up until now, we've only been thinking in one dimension, but we can also 
prove the same thing in three dimensions. 

We can say that simple waves tPn found by solving 
SchrMinger's equation for electron waves 

ARE MUTUALLY ORTHOGONAL 
IN ANY AND ALL CASES. 

~ ---< G r re a I! That's perfect!!) 

T he equation will appear more elegant if ,@?= 
we use a technique called normalization.' " 

~ (1 

Don't look so worried. Normalization is not as difficult as it sounds. 

In Fourier math, when we wanted to find out how much of simple wave 
sin lwt was contained in complicated wavej(t), what did we do? 

II~ 

I 
I 

-------------, 
Finding out how much of simple wave sinlwt is 

contained in a complicated wave 

1. A complicated wave j(t) is multiplied by the simple wave you 
want to extract, sin lwt. 

f(t)· sin lwt X~~T 
sinlwt 

2. Determine the area from 0 to T. 

f f(t) . sin I w t dt 

3. The amplitude b l of sin lwt (the part taken up by the simple 
wave) is found by dividing by TI2 (multiplying by 2/1) 

b I ::::: ~ f f(t) . sin I w t dt b'PvT 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-~ 

LET'S 
NORMALIZE IT! 

CHAPTER 4 WAVE MECHANICS 401 



By separating out one simple wave from the complicated wave, you can know 
how much ofthe complicated wave (amplitude) is occupied by the simple wave. 

Yes, I remember the equation for the 
Fourier coefficients. But did we find 
the amplitude by mUltiplying by 21T? 

It's easy to figure out if you think about what the answer to 

f sin 1 w t . sin w t dt will be. 

I 
I 
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X 

,;~~T 
= 

MUltiplying sin 1 wt by sin 1 wt to find the 
area from 0 to T, we get 

f sin 1 w t . sin 1 w t dt = I 
So, to find the amplitude of a simple wave using 
Fourier, you multiply the area you found by 21T. 

i-f b,sin lwt· sin lwtdt=b, ~: 

At this point, instead of multiplying by 21T each time after finding the area, 

you multiply each of the two waves by If before mUltiplying them 

together. That way you get 

f If blsinlwt· If sinlwtdt = b l 

If you do it like that, you can find the amplitude without having to multiply 
by 21T at the end. 

Then if we manipulate the CPR in r CPnCPn'dx 

the same way, we corne up with the answer 1. We call this manipUlation of the 
formula normalization. 

In this case, since what is set up to be multiplied changes as the conditions 
change, we cannot predict what CPn is to be multiplied with. 
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Here we want to indicate this is something that has been normalized. To do 
that, we'll use <p (the lower case form of tP) instead of tP. With that, the 
normalized equation for orthogonality becomes: 

f . {= 0 (n :;t n') 
<Pn<Pn'dx = 1 (n = n') 

From now on, we will omit the A and B in r ~. 
If we use the normalized <P/I' we can also find amplitude An of <P/I from 

complicated wavef(x) with only step. 

An = f f(x)<p:dx 

Whoa! It has become a symphony 
of elegance! Three cheers! 

:~ So far the question has been, "Is it really possible to express 
(0 complicated wave P as the sum of simple waves 1J!;,?" 

~
_ You only need to be absolutely sure that whatever P you bring in, it 

" .. - can be decomposed into Pn• For decomposition, it will suffice if our 
i 1J!;, are orthogonal. Because it is difficult to examine the function 1J!;, 
: with respect to both time and space, we looked only at the function for 

space CPn to see if it was orthogonal. 

.e! And we proved that it was orthogonal. 

~ Right That means that with respect to space, any complicated wave W can be expressed as the sum of normalized simple waves <p". Since 

f(x) = 1: An<Pn(x) 
n 

we can find amplitude An in the same manner as the Fourier coefficients. 

III 1I •• if.t~~iii 
THE EXPANSION 
THEOREM 
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But, there is one thing that you should remember. In order to expand a 
complicated 1JI', all of the necessary integrations of 4> must be included. This 
rule is called the expansion theorem. 

~ That's fine, but would you please explain it so that we can understand, too' 

~ W All right. Think back to the Fourier series. We expressed 
b .... complicated waves with the following equation, remember? 

" 

~
_ f(t) = ao + '~l (a.cos nw t + b nsin nw t) 

( 

../ Take an example like the one in the diagram below. When no part 
. of a ~omplicated wave drops below 0, the simple wave ao becomes 

very Important. 

No matter how you manipulate the amplitude of other simple waves, it is 
impossible to make a complicated wave like this without ao. In the physical 
world there are an enormous number of different complicated wave forms. We 
were able to describe complicated waves using Fourier math by summing 
simple waves, but that was possible only because we used all of the types of 
simple waves . 

.e, I've got it! The same is true of 'l' and", as well! 

~: You're absolutely right! Just like you were saying, in order to express 
( all complicated waves 0/, we have to have already accounted for 
o " 

c'f every type of simple wave 4>. 

~ Does that mean if just one'" is missing, it won't work? 

~ If even one is missing, you won't be able to express all of the 
~ complicated wave forms. 
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All we have left to do now is detennine whether the functions 'P of time and 
space can be expressed as the sum of simple waves. 

'P (x, y, Z, t) = r, An<Pn(x, y, z)e-<'211"'!rt 
n 

That, then, is our next task. 

I s it really true that the function 'P of time and space can be described by this 
equation? 

'P (x, y, Z, t) = r, An<Pn(x, y, z)e-<'2'IT'!r' 
n 

Let's try to prove it, starting from the assumption that <Pn are mutually 
orthogonal! Before that, you should note one thing. Because we will use a 
normalized 4> from here on, the equation for complicated electron waves 'P will 
be the sum of normalized <p. Thus we will use 'P in the lower case (r/J), as 
below. 

( At last, on to the proof! )> ~ 
First, we don't know whether the term for time r/J is correctly expressed as 

e-i2m'n', so for the moment we'll gather all the terms that include time, except 
those that include space, and call them Cn(t) 

If we do that, r/J will be 

r/J(x, y, z, t) = r, <Pn(x, y, z)Cn(t) 
n 

So, we just have to prove that 

Since r/J refers to a complicated electron wave, it must satisfy the equation 
for complicated electron waves 

'V 2 r/J + 47TiWC a r/J -87T 2WCmt/l =0 at 

For those of you who have forgotten 
this, please refer to page 313. 

CAN A 
COMPLICATED 
ELECTRON 
WAVE REALLY 
BE MADE BY 
SUMMING 
SIMPLE WAVES 
cp? 
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When we rewrite each", in the above equation, we obtain 

V2L <PnCn(t) + 417111R ~ {L <PnCn(t)} - 817 2IDCQ3L <PnC,,(t) = 0 nat n n 

Onward to the calculations!! 
First, we factor 1: out of all the terms. 

1 st term 2nd term 

Next, V2 in the first term is a derivative with repect to x, y, z. So we remove 
Cn(t) , which is a function of time and thus has no relationship to x, y, z, and 
place it outside, combining it with the third term. Then since the second term 
0/& is a derivative with repect to time, we take <Pn' which has no relationship to 
time, out of the derivative. 

L{Cn(t) (V2<pn -817 2IDCQ3<Pn ) + 417iIDC aCn(t) <Pn}=O --{*) 
nat 

CD 

This may come as a surprise, but it's time now for a quiz! 

r ---- - - ........ -- .... -. ~~<'W.;\ 

I Question: Term (i) may be rewritten in which of the 
following forms? 

: I. 4~/WI a~.:t)~. ~ 11$ 
I 2. -817 2IDClIn<Pn @, 

3. (V2 - 817 2IDC)<Pn L ___________ m;,~~~;m;, 

~ -( The correct answer is 2. ) 

I 

You'll see why if you look at the following equation for electron waves. 

If we break up this equation and then calculate, 
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,p"l,. - 87T 2Wl~"I,. = - 81T 2IDlv "I,. '+'n 'f'n n 'f'n 

CD 

The left side takes the same form as <1>, which means that <1> will be 

and the previous equation * becomes 

i 
We multiply both parts by 47TWl and factor out cPn. 

L - 87T 2Wlv _,_ "I,. C (t) + _,_. 41TiIDl--n _"I,. = 0 { 
. . d C (t) } 

f1 n 47TWl '+'. n 47TWl d t '+'11 

L -i27T V C (t) - -- "I,. = 0 ( d Cn(t») 
n n n d t '+'n 

@ 

Now, then let's consider this equation. The right side is 0, but when will the 
left side be O? In terms of Fourier, cPn is a simple wave. In that case, the part 
marked @ in the equation above may be thought of as the amplitude of cPw We 
can think of this in the same way as the equation for the Fourier series. Now 
then, when we take simple waves and keep adding them, they become a 
complicated wave. But in this equation, no matter how many simple waves are 
added, the result is O. 

Now then let's consider this equation a bit. The right side is 0, but at just 
what times will the left side be O? 

A wave of 0 is 

)x 
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+ 

+ 
P /Jd \J 

+ 

= 

Can you really get a wave of 0 by taking the sum of 
simple waves? You're right. With the exception of one 
special case, it is impossible! That special case is when the 
respective simple waves are all O. That is to say, when their 
amplitudes are O. In that case, for the equation 

( a Cit) ) 1: -i21T lInCn(t) - -- ¢n = 0 
nat 

to be true, the amplitude of ¢n must be O. Therefore, we have 

Some of you may have forgotten what we've done so far, so let's take a 
moment to review. We used Cn(t) to initially express the terms for time in order 
to confirm whether the terms for time in rfJ really were in the form e-i21T1'n', but in 
fact we already know Cn(t) from the above equation! 

If we transpose -i21TlIn Cn(t) and then mUltiply both sides by -1, we get 

a C"(t) 
--= -i21T lInC,,(t) 

at 

What this equation says is that when the first derivative of C,,(t) with respect 
to time is taken, the -i21TlIn in front will emerge once more to resume a form of 
its own. Then if Cn(t) is to satisfy this equation, it becomes ... 

An is the appropriate real number, and it will be 
the amplitude when the equation is normalized. 

aeDt 
After all, -- = D eDt 

at 

This completes the proof. We have found that the term for time'" really is 

e~2"'''J 
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In other words, whatever the complicated electron wave rfJ may be, it can be 
expressed as 

~ .. 
o "-

But how do you find An in this equation? 

H aving found the term for time rfJ, let's find amplitude An from rfJ for a 
complicated electron wave. As we saw earlier in the expansion theorem, 

no matter what formfix) takes, the amplitude An of cPn(x) may be extracted in the 
following manner. 

We can do that because fix) is the sum of simple waves cPn' and may be 
expressed as 

Now then, it may be a bit abrupt, but let's look at how rfJ(x, t) can be 
expressed when t = O . 

.p(x, 0) =+A.4> •. e~""= +A.4>,~'t'Hhl" 

rfJ(x, 0) = L AncPn = I(x) 
n 

This means that although in general rfJ(x, t) is a function of both time and 
space, here rfJ(x, 0) is a function of space only. Thus we can think of it in the 
same way as we did the previous fix). 

In that case 

An = f l(x)cPn·dx 

= f rfJ(x, O)cPn·dx 

we have found that amplitude An of eigenfunction cPn at this time t = 0 can be 
expanded from rfJ(x, 0) of a complicated electron wave. 

LET'S FIND 
AMPLITUDE All 
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LET'S REVIEW! 
Let's look back over what we have done up until this point. First, we found v 

and cP from 

Next, we found complicated electron wave'" by obtaining a sum in the following way . 

. /, = L A ,I.. e-i21Tvn' 
'f' n n'f'n 

Come to think of it, when we first started making equations for electron waves, 
we went to great trouble to produce the equation for complicated electron waves. 

In the end, however, we ended up not using it. 

~ Uh .. . now that o you mention it 

Why didn't we use the equation for complicated electron waves in Steps 1-4, 
instead of only using the equation for simple electron waves? Others may be 
wondering the same thing. The reason is that 

COMPLICATED WAVES ARE 
THE SUM OF SIMPLE WAVES!! 

Hey! We've proven that the equation 
for electron waves is perfect from a 
mathematical standpoint! 
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T o conclude, let's look back over what de Broglie and Schrodinger 
accomplished. Starting from the inspired thought, "Could electrons, which 

have been considered particles up until now, be described in the language of 
waves?" De Broglie hammered together a theory stating that electrons are 
waves. 

Using that theory as a base, SchrOdinger developed an equation for electron 
waves. Then, in order to confirm that his equation described what occurs in 
nature, he succeeded in figuring out the hydrogen atom. In doing all this, the 
mathematics used in his equation was beautifully concise. 

But that was not all. An important consideration was whether a mental 
image of the electron's behavior inside the atom could be produced. This was 
not possible with the knowledge available at the time, but Schrodinger's theory 
made it possible to HAVE A VISUAL IMAGE!! 

IT WAS MATHEMATICALLY PERFECT, 
THE CALCULATIONS WERE CONCISE 

AND A VISUAL IMAGE COULD BE PRODUCED. 

Schrodinger built a perfect EQUATION FOR ELECTRON WAVES! 

Schrodinger started with the premise that a visual image was necessary. 
With that firmly in his mind, he went boldly ahead to construct a theory that 
fulfilled the basic premise. By now there can be no doubt that electrons are 
waves. So indeed, 

-- ----- ---

j!~~r-F!!m . 
CONCLUDING 
WITH 
DE BROGLIE 
AND 
SCHRODINGER 
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DE BROGLIE1S LRGNIRPPE 

YOU TOO CAN WIN THE NOBEL PRIZE 
WITH THE NICOTINE EFFECTTHEORYI 

~ BASIC PREMISE OF THE NICOTINE EFFECT 

~ puff 

.., •• puff 

hack • ....\.....;;'"""""f'''--...... 

hack~ .. e 
~~ coueh ~ 
/r'\ 4ft coueh ~'® 

The people around you are more 
affected by nicotine than you, 
the smoker. 

• ~ HIPPO MULTILINGUAL ACTIVITIES AND THE NICOTINE EFFECT 

People within earshot of a language tape 
playing in the background unconsciously 
absorb more of the sounds than people 
who are listening intently to the tape. 
This is because people who are intently 
listening are often driven to distraction 
by the effort of learning the words. 
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~ THE NOBEL PRIZE AND THE NICOTINE EFFECT .. ~ 

Elder brother: 
Maurice de Broglie, 

physicist 

I, Louis de Broglie, got the idea of the nicotine effect for !t 
physics from my elder brother Maurice, who was a 
physicist. I approached physics as a hobby and ended up 
winning the Nobel Prize. Incidentally, although my elder 
brother was a co-researcher, he did not receive the prize. 

IF YOU WANT TO WIN THE 
NOBEL PRIZE THROUGH 
THE NICOTINE EFFECT 

LIKE I DID ... 

Step 1. You need something to act as the "nicotine". Without it there can 
be no "nicotine effect". Walk right into a place like TeL where 
you are likely to get such an effect, and just stay there! 

/# Step 2. It's important to speak out, and you've nothing to lose. So don't be shy! 

Like saying, "Electrons are waves!" 

Warning: 

P. S. 

If you start with some outlandish notion such as, "I'm going to win the 
Nobel Prize through the nicotine effect theory!" you will not meet with 
success. 

You need to be cool and unfazed to the bitter end! 

For those who still want a Nobel Prize, going all out like Schr6dinger 
isn't a bad idea!! 
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THE ADVENTURES OF 

THE DE BRO(GLIE)-SCHRO(DINGER) TEAM 

The adventure of quantum mechanics started when a team formed. In the Paris-Dakar motor 
race, the mechanic, driver, navigator, support personal, etc. are all part of a team. No one can make 
it through the desert unless the team stays together. Teamwork is everything. In fact, the adventure 
has already started when the team is formed. 

But the difference between us and the Paris-Dakar race is that our teams are determined purely 
by chance. Practically all TeL students choose their groups by whim. At any rate, when the 
project announcements are put up on the walls of the school, the students form groups as they 
please. 

I don't know why, but the name 
Schrodinger just appealed to me. 

The last group sounds like the best. 
I'm signing up for Born-Heisenberg. 

Since Bucci will be there, I'm going to 
join the de Broglie-Schrodinger group! 

I decided to join the de Broglie-SchrOdinger group this time. 

By the way, students at TeL love abbreviations. 

Planck, 
Einstein 

Bohr 

Heisenberg 

de Broglie 
SchrOdinger 

SchrOdinger 

Born 
Heisenberg 

Boxer, Ken, Miki, Goyuri, 
Kanoko. Manju 

Chibo, MiIOYO, Gotaro, 
Meenyo. Otake, Penpen 

San-chan, Pero, Yuko. Ricky, Hyon 

Dorami, Tamayan, Jirusa, 
Bucci. Tomakomai, She-chan 

Hana. Jun'O,Osamu. 
Marl-e, Shenbei 

Saru, Ko'shee, Miyaki, 
!Gyomi, Furuta, Chiyon'mi 

Thus, ryoshi rikigaku (quantum mechanics) becomes ryoriki, 
Heisenberg becomes Heisen, Born and Heisenberg becomes 
Bor-Hei and de Broglie and Schrooinger becomes de Bro-Schro. 

Our de Bro-Schro group consisted of the students She-chan, from TeL's first class in 1984; 
Penpen, who entered in 1985; Shenbei and Soyurita, who entered TeL in 1986; Patti (myself), who 
entered in 1987; Tamyan, who entered in 1988; Jirosa and Mufio, who entered in 1989; Doctor 
Bucci and Dorami, who entered in 1990; and our coordinators, Mr. Senbe and Ms. Tomakomai. 

414 CHAPTER 4 W A VB MECHANICS 

, 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 



I 
I 
I 

• 
• I 
I 
I 
I 

• I 
I 
I 
I 
I 
I 

• • I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Despite the fact that all of us - from the first-tenn students to the coordinators - were placed 
together simply by chance, we launched ourselves into the project as a unified team. 

The members began by deciphering some explanatory material on racing cars written in a 
foreign language. That is, we began deciphering the official guidebook, the pilot edition of What is 
Quantum Mechanics? A Physics Adventure, written by students who had preceeded us at TeL. We 
understood some parts, but there were a great many things we didn't understand. In fact, it would 
probably be more accurate to say we didn't understand most of it. 

After reading the material, we set about making a car, that is, making our own equations. It was 
a matter of going by the explanations provided to see what fit and what didn't. We discussed what 
each of us believed he or she had found. 

One of us might demonstrate the de Broglie wave in free space, while another would talk about 
the diffraction of light. It was as if one were rolling tires around while someone else was trying to 
explain how to make an engine. I wondered if an automobile actually can be made like this, with 
no fonnal guidelines. 

After a while ... 

Should we try having everyone explain things in general tenns? 

For the time being, let's try to fonn an image of the de Bro-Schro racer. 

The French nobleman de Broglie realized that the diffraction of light 
could be described in both the language of particles and that of waves. 
And I don't really understand it but when the diffraction of light is 
expressed in the language of particles, it's n = k' p! ! 

That's the kind of explanations people gave. Statements like "Although I don't really 
understand," or "Let's assume the calculations have been done," or "Skip this part," were all 
common. To make an analogy, it was like having a car without a tire or a steering wheel. 

In spite of that, through everyone's efforts we gradually come to form an image of de 
Broglie-Schrodinger. Though we may have encountered many difficulties along the way, they 
were all happily challenged! 

If electrons are waves, the problem is settled. 
Whatever you may say, we can sustain a visual image!! 
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'" ~ 

Is this wiggling three-dimensional thing an electron? 

a -{isn't the entire surface wiggling? ) 

~ Yes, it is. Does that mean it's wiggly and prickly? 

~ ~ What!? That's not right, is it? ) 

It's not like this and it's not like that. Yak yak blab blab. .. Problems were solved step by step, 
and we eventually formed a complete picture of what de Broglie and Schrodinger attempted. From 
the driver, navigator and mechanics to the Race Queen, all of us performed the required roles. We 
could run this car in a real race ... 

And now for the real thing. 

Ms. Tomakomai urged us on, doing cheers and leading pep rallies. She actually started at Paris 
as one of the drivers. Wearing a swimsuit with high-cut legs she sang, 

I'm a wave, you're a wave, everyone in the who-ole world 
is a wave. The de Bro-Schro group is simply fantastic! 
There's more fun and surprises that await! 

Driving is tough for me, so I'll leave it to you. 

Even Dr. Bucci, who knew very little about mechanics, made it across difficult spots in the 
desert demonstrating exquisite driving technique. At fITst he was quite surprised to find himself 
suddenly thrown onto the unfamiliar race course. 
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Even Tamayan, who was practically forced into handling the steering wheel, ran beautifully. 
When it came time for second-termer Jirosa and first-termer Dorami to run, their daring was 
brilliant. As for my role in all this, I also got to handle the steering wheel. On the appointed day, I 
was able to slither across that daunting desert. We had so much fun because we were riding in the 
de Bro-Schro racer that we had all built together with everyone cheering us on. 

The process by which our de Bro-Schro group went about our adventure is actually quite 
similar to what happens in a Hippo Family Club. During Hippo Club gatherings, languages are 
learned in a fun-filled atmosphere where everyone sings and dances and sends words flying about. 
When one person learns to say new words, it follows that everyone else learns to say them too. 
Language is something which naturally develops between people as they interrelate with one 
another. Since quantum mechanics is also a language - an exquisite language that explains nature -
it should come as no surprise that this language is learned in the same way. 

The only sad thing about our adventure in quantum 
mechanics is that the de Bro-Schro group will be 
dissolved once the project comes to an end!! 

The words of first year student Dorami expressed everyone's feelings. That's how wonderful 
the de Bro-Schro team was. We will be very happy if all of our readers have this much fun when 
they read about our adventures with de Broglie and Schrodinger in What is Quantum Mechanics? 
A Physics Adventure. 
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CHAPTER 5 

Erwin Schrodinger 

SO LONG, MATRIX! 

Schrodinger could not accept Heisenberg's conclusion that it was 
impossible to form a visual image of electrons. To refute it, he used the idea 
that electrons are waves to construct a language that would describe their 
behavior. Schrodinger s hard work and determination bore fruit, and with his 
marvelous new language, Heisenberg's matrix mechanics was no longer 
needed. 
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5. 1 SEEKING A VISUAL IMAGE 

INTRODUCTION 
I 'm a Transnational College of LEX (TCL) student, 

too. I love Hippo! It's wonderful! With just eleven 
new words I can sing the language of math just fine. 
Of course it wasn't like that from the start. Before I 
entered TCL, I was a common, ordinary girl and like 
so many other people, disliked physics and 
mathematics. "So how did you come to like them?" 
you ask. I think you'll understand if you go through 
this adventure with me. Along the way, you'll 
probably have many of the same feelings that I had. 

Well, let's get going! 

Schr"dlnger group friend Osamu. 

First take a look at this. It's a map of where we've been so far. We've 
certainly met a lot of different people. 

It is possible 

~-_ f have a visual 
i . !~"/ Image! 

Equation for 
Scbrodtt\¢ electron waves 
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A What in the world got us started on quantum mechanics at TCL 1 
Well, it all began with a book by Heisenberg called Physics and Beyond • 

.;' 

/ 

e You don't have to take any tests or anything to enter TCL, but there is 

°A :~c::::::a:~:::e: ::~W::Of:Ulated matrix 
mechanics, and the physicists he encountered in the course of constructing 
quantum mechanics, such as Bohr and Einstein, are recorded in this book. 

When I started it, knowing nothing about quantum mechanics, I was totally 
lost. But after reading and rereading it bit by bit, I got interested. I wanted to 
know what Heisenberg and the other physicists did, and what quantum 
mechanics was. That was the beginning. 

~ But why would they read a book written about quantum mechanics at 
~TCL? 

J1.P!.Il That's a good question. Even I feel like I've only recently begun to H understand. 

Apparently, the thrust at both Hippo and TCL is treating language as a 
natural science - something that left me completely baffled. Only after 
entering TCL did I begin to see that natural science is the search for a language 
to describe nature. And physics is certainly a part of natural science. 

Newton, Galieo Gali1ei and all the others were looking for a language that 
could explain natural occurrences in a single expression. 

"Why do apples fall?" 

"How and why does the earth revolve 
around the sun?" 

~ 
\ I / 

• -~G: 
I I " 

~ 

It was a matter of doing experiments and making observations over and over 
again and identifying an underlying regularity or order, and then expressing that 
order in terms that would make sense to anyone, anywhere in the world. 

Things fall because the earth has a force that pulls them toward its center! 

I Galilei, Galieo 
[1564-1642] 
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When you consider that everything on this earth is being pulled by that force, 
then you can express the movements of everything by that one term. 

~ q is the acceleration. 

F = mij In other words, 

: Force = mass x acceleratIOn 
Newton 

This language used in physics is the language of MATHEMATICS, 
common to all nations and understood by anyone. What a surprise that 
mathematical equations have turned out to be the language used to describe 
nature! My image of math was a collection of meaningless formulas, and 
memorizing them was just a dull chore. But when I realized that math is a 
human language shared by all nations, created to describe nature, it quickly 
acquired a strong, personal importance for me. Math is also something that 
many people have struggled hard to develop. It has a drama all its own! 

It's the same with quantum mechanics. What you discover after studying 

~ ~ ~ ~ ~~ ~. <f'''$'.., ... is that What is Quantum 
Plane'!. <$'JII5te\~ 80ht "isen'oe,<; "to 8roy,\'" lJrod\(\'" 

Mechanics? A Physics Adventure is about the search for a language to describe 
the natural world of light and electrons, a world we cannot see with our eyes 
alone. And we are now right in the middle of the adventure. 

(J) I see what you mean. I think I understand a little better why we're 
doing quantum mechanics at TCL. Quantum mechanics is the search for a 
language to explain the electron. We're trying to understand how language 
itself is constituted so that we can identify the underlying order and find a way 
to express it in a single term. 

"How do babies learn to talk? What is the process of that natural 
development?" e 

"I wonder why Japanese has five vowels." B £Q"@ 
How wonderful if we could describe these things using a single expression! 

Just as people are creations of nature, language too is a natural phenomenon. So 
they are really the same thing: 

THE SEARCH FOR A LANGUAGE TO DESCRmE NATURE. 

t'.> At any rate, if we can relive, even a little, the way physicists 
discovered a language to describe nature, it will be a great help later when we 
are thinking about LANGUAGE at TCL and Hippo. More than anything else, 
however, the idea of searching for a language together with the physicists is to 
me one of the most exciting and interesting adventures anyone could hope for. 
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Now we are going to go on a search for language with none ®~ 
other than Mr. Schrodinger. We're going with him to find a '7' 

language that describes the behavior of atoms. --' 

o I'm coming along too! ... But before that, I'd like to look back at that 
map of our adventure to see the path we've traveled so far. 

We came like this .. . 
and then like this .. . 

Before the door to quantum mechanics was opened, physicists believed that 
the phenomena we observe - a ball being thrown, an apple falling, sound 

being transmitted, iron sticking to a magnet, and so on - could be completely 
explained by the language of Newtonian mechanics and Maxwell's 
electromagnetics. Even if some things could not be clearly explained, the 
physicists believed that eventually they would be understood. 

But no matter how they tried, TWO things remained that could not be 
neatly explained using that language. 

One was LIGHT; the other was the ATOM. 

Planck and Einstein came up with various theories regarding light. We 
won't be discussing those here in detail. But Schrodinger, who we're 
accompanying in our search for a language, took up the matter of the atom. 
Let's look at how physicists regarded atoms until then. 

At that time, physicists wanted to find a language to explain the behavior of 
the electrons inside an atom, but the problem was that the electron could not 
be observed by the human eye. They wanted to find out about things that you 
can't see directly, and they wondered how to do it. Actually, there was a way to 
discover things about atoms. That was the spectrum of the light emitted by an 
atom. 

-
The spectrum of the hydrogen atom ,/' 

IIIIIIII1111 1 111111-+ ~ 

OUR PATH SO 
FAR 
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In short, when energy is applied to an atom, light is emitted. 

This contains 17)) J L" 1 
hydrogen. red blue green ~:fet 

\ Ooh! 

" «'''''''' ~---~ 
A machine that 
applies energy 

Spectroscope 
(something like a prism) 

I actually saw this in an 
experiment. When energy is 
added to a glass tube containing 
hydrogen, oxygen or helium 
inside, hydrogen glows pink, 
oxygen glows pale violet, and 
helium glows whitish or 
yellowish. 

When you look at it through 
a spectroscope, the light that 
you thought was one color 
appears to be divided into a 
number of colors. Those colors 
are the spectrum of the light 
emitted by the atom. 

Based on the premise that ELECTRONS ARE PARTICLES, first Bohr 
and then Heisenberg were able to find a "language" that could describe the 
spectrum. 

That turned out to be the famous HEISENBERG'S MATRIX 
MECHANICS. 

Using this equation, they could accurately calculate the frequencies and 
intensities of the spectrum of the light emitted by an atom. That's pretty great!! 

However, Heisenberg had this to say: 

Let's get rid of the orbit idea. VI,.... 
• • ( 

o 

That is to say, "DON'T TRY TO ENVISION THE FORM AN 
ELECTRON TAKES, OR THE MANNER IN WmCH IT MOVES!" 

What a thing to say! From the start. our purpose in trying to explain spectra 
was to find a language to describe the behavior of electrons. Just as we were 
[mally on the verge of being able to explain spectra, how could anyone even 
suggest that we toss out all thought of how electrons behave? 
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But Heisenberg defended himself. 

The orbits of an electron inside an atom 
cannot be observed, but if the frequency and 
intensity of the spectrum are known, that is the 
same thing as knowing the orbits. 

BUT, that statement is absolutely not acceptable! 

As we said in the beginning, the intent of physics is to find a language that 
can express the behavior of things at a certain time. 

However, if we were to accept Heisenberg's words, 

That would mean ... Doing away with orbits. 

We would be rejecting the physics 
we've known until now. 

This is just not acceptable! We can't simply toss out accepted knowledge of 
physics. 

That's right! 
I 

'" ~'\~ ~:.<' ~h~ 0" . )) 

• 
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5. 2 CONSTRUCTING THE SCHRODINGER 
EQUATION! 

DOING AWAY 
WITH 
HEISENBERG 

The on~. person who would not allow such a thing was ERWIN 
SCHRODINGER. 

I simply can't understand Bohr's thinking 
on atomic spectra! 
Jumping electrons? 
Nonsensical! And according to Heisenberg, 
we can't have a visual image!? Ridiculous! 
What a thing to say! And they dare to call 
themselves physicists!? 

In this way Schrodinger overruled Heisenberg's absurd departure from 
common sense. I felt the same way as Schrodinger. 

What SchrOdinger hoped for was, of course, 

TO MAKE A LANGUAGE THAT COULD 
EXPRESS THE BEHAVIOR OF 

ELECTRONS WHILE ALLOWING A 
VISUAL IMAGE! 

Naturally, that language would also have to be able to explain experiments. 
After all, experiments are the only method we have to confirm whether or not a 
language conveys reality. But no matter how well it might explain experiments, 
or anything else, physics that does not allow one to form visual images is not 
necessarily valid ... 

Nevertheless, why do you suppose SchrOdinger was so concerned with 
visual images? 
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People need to mentally picture how something is 
behaving before they can begin to understand it. 

This is what Schrodinger said. In other words, 

TO HAVE A VISUAL IMAGE 
(FORM A MENTAL PICTURE) = TO UNDERSTAND 

The !;Iounclng of @ 
..... 0° 

a tlaIl15t:0 

° ~ J 

... 

NOW, in the previous chapter we saw that as long as SchrOdinger held to de 
Broglie's novel way of thinking that 

his efforts to produce an equation to describe the state of an electron proceeded 
admirably. Let's look again at the splendid equation formed by Schrodinger, 
based on the idea of electrons as waves. 

If everything in the world is thought of in terms of waves, then this equation 
can be applied to any of these waves. If this equation is solved, 

THE FORM, THE MOVEMENT AND 
THE BEHAVIOR OF ANY ELECTRON 

WAVE WHATSOEVER MAY BE 
PERFECTLY DESCRIBED. 

So this is a very special equation! By using it, we really did succeed in 
deriving cp (the form) and v (the frequency) for electrons in free space, within a 
box, and in a field which is ruled by Hooke's law. In other words, this equation 
succeeded in explaining the behavior of an electron, something that Heisenberg 
failed to do! ! 
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In addition, just by putting the v that we found back into the equation E = h v, 
we got the energy of the electron. When that was done, 10 and behold, the 
results all matched the values found by Bohr and then by Heisenberg. 

Everyone recognized that the values found for energy from Heisenberg's 
and Bohr's equations were undoubtedly correct. And since it produced the 
same answers, the language Schrodinger devised - his mathematical 
expressions - was also correct! 

We did itl * It's exactly what we predicted! 

This is the road we have traveled so far ... 

• • 
'€)\\~ ~ 

~ So in other words, by using either Schrodinger's equation or 
Heisenberg's equation, the values found for energy are the same. That means 
that both Schrodinger's and Heisenberg's equations are correct! 

,/ 

Oh, happy day! 
./ 1 wonder If we'll become 

good buddle5 ... '{ 

~:Wait! Hold on a second. That's a bit strange. When I think back 
carefully, Heisenberg'S equation ended up being unable to sustain a visual 
image, and thus it was impossible to say that electrons are particles. But his 
equation started from that idea that electrons are particles. In contrast, 
Schrodinger's equation started from the idea that electrons are waves. 

WAVE and PARTICLE are two utterly incompatible ways of thinking. 
When you think about it, it's strange that the energy found by either one of these 
approaches is the same. 

e""' • • '""' That's true, isn't it? One would think that either Heisenberg's 
equation, which used the language of particles, or SchrMinger's equation, 
which used the language of waves, is the true language describing electrons. 
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\ \ /' 

You've hit on a good point. I was thinking the 
same thing. Just whose language, Heisenberg's or 
mine, was the correct one for describing electrons? 
Well, the answer is simple. It has to be mine, that 
is, the mathematical expression of the language 
of waves is the correct language for describing 
the electron. 

Gasp. How can you say such a thing? 

W Because I can fonn a VISUAL IMAGE. 
the behavior of the electron. 

That means I can describe 

®~ 
HHmm, I see. We want to know what's happening with an electron, 

but we can't mentally picture its behavior with Heisenberg's equation. No 
matter how well it matches the experimental results, if it can't explain anything 
about the electron itself, such a language is meaningless and has some serious 
deficiencies. 

~
\' 

t " & I agree. On the other hand, Schrodinger's equation really does 
describe the state of an electron inside an atom. In other words, SchrOdinger's 
equation, which uses the language of waves, is correct! 

" ~ You guys are pretty good. Try figuring out for yourselves what we 
should do next. I'll excuse myself for a while. 

,; 

Wa-ait! ... Oh well, he's gone already. So what we've got to do now 
is pretend that we're SchrOdinger and think about the next step. 

(:Sf) Let's put the story in order. At present there are two equations that 
can describe the behavior of electrons. One is SchrOdinger's, which uses the 
language of waves; the other is Heisenberg's, which uses the language of 
particles. Either one will produce the same value for energy. 
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When we look at this in the form of a table ... 

Visual image 

Particle Heisenberg NO 

Wave SchrOdinger YES 

"~' ~ . • • 
" " The correct language is most certainly Schrodinger's equation, the 

one that allows a visual image. 

Somehow Heisenberg's equation now seems like a nuisance, doesn't 
it? I wonder if we can do away with it somehow. 

"" <7'0 ~ ~ 

•• 
What are you saying? You do recall that Heisenberg's equation 

describes the experimental results perfectly. 

~ 
Gosh, this is tough. With my brain, I haven't got a clue. Maybe we 

should give up the search for a language describing electrons and leave this to 
the physicists. 

Q 
c@ What are you saying? If you think that way, we'll end up not being 

able to find a language to describe "language" here at TeL. We are all involved 
in thinking about language, so we're natural scientists too, in a small way. We 
shouldn't give up. 

~ You're right. So let's study the table once again. Let's see, what ir. . 

7 e Huh ... ? 

Looking at the table, Heisenberg's equation seems to work well only 
when it expresses the part of Schrodinger's equation that relates to energy. 

<@ Mmm, right. What it means is that the 
language of particles is subsumed in the language of 
waves, and as a result, everything is expressed in the 
language of waves! 
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If we can say that, then we can also say 

~ WE DON'T NEED HEISENBERG'S EQUATION) ~ 
We'll be able to proudly state that, as a language for describing electrons, 

Schrodinger's equation alone is more than sufficient. Can we say, then, that the 
reason why energy W derived from Heisenberg's equation is the same as 
SchrOdinger's energy E is because Heisenberg's equation can be placed inside 
SchrOdinger's equation? 

o That's a good idea, but I wonder if it'll work. 

Heisenberg's equation 

H(po, Q~~ - W~ =0 

Schrodinger's equation 

V2q, + 81T 2IDl(v - 'i8)q, = 0 

Can we at least find the relationship between the two equations? 

Just how are we to take these apparently dissimilar equations and state that 
Heisenberg's equation can be placed inside Schrodinger's? 

Boy, I'd like to discuss this with someone very smart. 

~ You're working at it, aren't you? 

~ 
~ .. : ... 

I thought the same thing. One of my close friends, Hermann Weyl, is a 
mathematical genius. He helps me out whenever I run into differential 
equations. Let's discuss it with him. 

It is said that SchrOdinger asked Weyl to clarify the relationship between 
these two equations. 

Heisenberg's equation 
H(po, Q~g - wg =0 

SchrOdinger's equation 
V24> + 87T2ID1(V - IB)4> = 0 

I Weyt, Hermann 
[ 1885-1955] 
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However, genius Weyl's reply was, "I hate to say it, but I 
couldn't do it either. I apologize for being unable to help." 
Exactly what he said is not known, but in any event, he was 
unable to please Schrooinger. A Even the genius Weyl can't do it. Sniff. 

<:\. (76 It's too much for us after all. Darn. 

; ~ Are you people going to be deterred by something like that!? If you 
were natural scientists who gave up so easily, you'd never find a true theory! 
My esteemed teacher, the great Professor Einstein, would have said the same 
thing. 

WHEN A QUESTION IS POSED THE RIGHT WAY, 
THE PROBLEM IS HALFWAY SOLVED. 

This is a cardinal principle in natural science, and as you continue to think 
about language, this will be very important. If the question is not properly 
posed, you will not fmd the right answer no matter what you do. 

A You can say that about anything, you know. Thinking about language, 
for example, very few people learn to speak English just by studying the 
grammar that is taught in classes at schools. The students get depressed and 
start to hate English. You could say it's a matter of approaching the problem the 
wrong way. Schools have lost sight of the way children naturally acquire 
language. If they would follow the path of nature, anyone ought to be able to 
learn it. 

~ Absolutely. At Hippo Family and TeL the way a problem is 
approached is indeed important, isn't it? 

, 

~ , That's right. With that in mind, if we recall the way we asked the 
question, the problem that we posed to ourselves was: 

HOW DO WE DESCRIBE THE BEHAVIOR OF ELECTRONS? 

There's no mistaking it. No matter how you approach it, the relationship 
between my equation and Heisenberg's will be discovered, and it will become 
clear that Heisenberg's equation can be included in my equation. And then we 
ought to be able to do away with Heisenberg's equation. I know that's what will 
happen. We just have to forge ahead with that belief." A ~" 

( Got it, Mr. Schrodinger. }-~ tF:t 
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''r:fI Okay, I think you already have it down. but let's state our objective. 
Go ahead, say it again. 

WE HAVE ABSOLUTELY NO USE FOR AN EQUATION 
LIKE HEISENBERG'S THAT DOES NOT ALLOW FOR 

A VISUAL IMAGE OF THE ELECTRON!! 

I 

~
- -: - :::.. Right. Okay, let's press on! 
~ 

You get dizzy looking at them. 

O~ • • 
<::> To repeat, we're looking at two languages here. And we know that 

Heisenberg's equation is insufficient. But the E and W found in the two 
equations are the same. 

, I 

The way things stand, it looks hopeless. That makes me feel even 
dizzier. 

'® 
c(ID That's it. Everything is much too vague as it is now. What if we 

think in terms of a concrete situation? 

Huh!? 

-~'\~ ~ 
•• o We can imagine various situations, like inside a box or in free space. 

How about it? 

THE FORM OF 
THE EQUATIONS 
WILL BECOME 
THE SAME! 
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Let's consider THE CASE WHEN AN ELECTRON FOLLOWS A 
HOOKE FIELD (that is, when there is a force being applied that draws toward 
the center), or in the language of particles, HARMONIC OSCILLATION. 

The reason we do this is that the E derived from SchrMinger's equation is 
not the same as the W derived from Bohr's equation, which is now held to be 
incorrect. Instead, it agrees with the correct W derived from Heisenberg's 
equation. 

Hmm. I don't really understand, but I think it's good to consider the 
energy in Schrodinger's and Heisenberg's equations, and how they are the same, 
by looking at concrete examples. By the way, this has been bothering me for a 
while, but why do W and E have different symbols, when they mean the same 
thing, energy? 

• • c(J) .... 
'<:::1 Don't worry about that. I think that's just how they distinguish the 

energy found from Schrodinger's equation, called E, from Heisenberg's energy, 
W. Anyway, we shouldn't let trivial things like this hold us up. 

All right, now we're going to put both equations in the form _" 
of Hooke fields, or harmonic oscillation! ~ .... 

• • "'~" 

For those of you who get dizzy when looking at mathematical 
expressions, there's no need to feel overwhelmed. As you try 
repeating them while thinking of them as words of a language, you 
will gradually be able to "recite" them just like you do with the 
Hippo tapes. It's a wonderful feeling to be able to "recite" them. I 
know, because I've done it! Just "recite" the language of 
mathematical expression along with us. The meaning will eventually 
dawn on you, out of the blue. Anyway, let's look at things from the 
broad point of view and work our way through them. 

Relax! 
Don't worry 
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APPLYING HEISENBERG'S EQUATION TO THE FORM 
FOR HARMONIC OSCILLATION 

[ Heisenberg's equation J 
H(po, Q~~ - w~ =0 

H (the Hamiltonian) is a method of describing the energy using 
P (momentum) and Q (location). Writing this in detail, we get: 

V is potential energy. Potential energy changes with location; 
in other words, it is a function of position QO. 

So, writing it out, Heisenberg's equation at the top of the page 
becomes: 

The potential energy in the case of harmonic oscillation V (Qo) 

is ~ kQ02. Thus Heisenberg's equation may be rewritten in the 

following way: 

(_1 p02 + k Q02)~ _ W ~ = 0 
2m 2 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
i 
I 
I 
I 
I 
I 
I 
I 
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I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

APPLYING SCHRODINGER'S EQUATION TO THE FORM 
FOR HOOKE FIELDS 

[ Schriidinge~s equation J 
V2¢ + 87T 2IDe(V -I,[J)¢ = 0 

First, using I,[J = ~ , IDe = ~ and v = ~ , we replace the 

potential energy V above with an equivalent term. When we do so, 
we get: 

Factoring out *' we get: 

V is the same for Hooke fields and harmonic oscillation. In 
other words, whether an electron is a particle or a wave, the energy 
applied to it is the same. Thus when we substitute, in the same way 

as before, t kx2 in place of V, we get: 

Ii 

II 

I 

I 

I 
I 

Let's compare Schrodinger's equation, rewritten in this way, with 
Heisenberg's equation as we just rewrote it: 

(_1 p02+kQ02){ _ W{ =0 
2m 2 \ 

~ 
#..d Looking at them like this, I still don't see that we've clarified the 

relationship between these two. It has turned out to be difficult after all. 
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c({J) I don't think we can compare the relationship between these two 
unless we somehow place them in a more SIMILAR FORM. I'm not sure if 
that's possible, but if we fiddle around with Schr<>dinger's equation as we just 
rewrote it, then perhaps we can put it into a comparable form. 

~~.~ 

A All right. Let's try and see if we can do it. We're going to bring 
Schrodinger's equation into a form more like Heisenberg's, right? It's 
interesting, much like trying to solve a quiz or a puzzle. 

ALIGNING SCHRODINGER'S EQUATION 
FOR HOOKE FIELDS 

WITH THE FORM OF HEISENBERG'S EQUATION 

Schr6dinger's equation 
for Hooke fields 

rP<t> +81T 2 ~~ (E-!kX2)<t> =0 

a2 i i 
To make the story simpler, let us think of V2 (= -0 + -0 + -0 : ax- ay- az-

the second-order derivatives in three dimensions) with respect to 
the x dimension only. 

::2¢ +81T2~ (E-!kx2)¢ =0 
Comparing this equation to Heisenberg's, one notices that E 

and Ware the same and that they have the number - ~ in 

common. One suspects that by making use of this, they can 
probably be made into the same form. 

Heisenberg's equation 
for harmonic oscillation 

(_1 p02 + Is.. Q02)g _ W g = 0 
2m 2 

Here we see a minus sign (-) in front of W, but no coefficient. 
In the other equation, there is a plus sign (+) and the complicated 

coefficient 81T 2 m 
h2 
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• I 
I 

• I 
I 

• I 
I 

• 

I 

• I 
I 

• I 
L 

So that means, in order to erase the coefficient in front of E and 

change the sign, we mUltiply by - 8 h: and get: 
TTm 

Removing the parentheses and changing the order a bit, we get: 

Now we factor </> out of the first two. Hmm ... 
This looks quite a bit like Heisenberg's equation! 

Looking closely, you see that the symbols used are a bit 

different, but if we factor 2~ out of one more term, the form 

becomes even more similar. 

Okay, let's factor out 2~ . When we do, we come up with: 

{ I ( h 2 d 2
) k } - --- +-x2 </> -E</> =0 

2m 4TT2 dx2 2 

....... -If we make this into (something)2, 
then they become even more alike. 

1 ·2 d d 2 • d d h . b . - = I , an dx2 IS dx· dx ,so t e equatiOn a ave IS: 

'i' "" (Q)" 
II • \\ 

BANG! SchrOdinger's equation has turned into this form! 
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And when we look and see what Heisenberg's equation is, 

(_1 p02 + k Q02)~ _ W ~ = 0 
2m 2 

They've really taken the same form! 

It's easy when you do the calculations slowly, don't you 
think? The great thing here is that even though there 
must be cases when they simply won't take on the same 
form, the two equations can really come out the same 
way. It's really interesting, much like solving a riddle! 

c@ Let's look at the contents a little more closely. 

{ 
_1 (_h .!l...) 2 + k x 2} _<P _ _ E <p = 0 
2m 211'i dx 2 -

t t t t 
+ ~ ~,) 0 -Ejg ~ 0 

When we look at them like this, the symbols are completely different. 
However, to say something is in the same place but in a different form is the 
same as tying the two, underlined parts and 0 , together as is done above. We 
know that E and Ware the same thing. 

M Hey, listen. Maybe ... 

COMPARING 
SCHRODINGER'S 
EQUATION 
WITH 
HEISENBERG'S 
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o 0 
If we could say that P ,Q ,t were all originally Schrodinger's 

2~i! ,x, t/J, then we won't need Heisenberg's equation! 

Won't Schrooinger's equation alone be sufficient? 

/ 

c® But I wonder if it will be that easy ... 

It'll be all right! I think it's bound to work out. 

e You're probably right. Well then, let's first recall just what all those 
symbols were. If we don't know what they are, we won't be able to do a thing. 

440 CHAPTER 5 SO LONG, MATRIX! 

Quiz: Remembering the Symbols? 

Write what you know in the I '-_..I 

~ is? 

WandE are? 

4> is? 

~
• Do you ~now 

~ the answer5f' 

;r'-

Name What is it? 



~ A Now just what was the pO, if in Heisenberg's equation? 

e Have you forgotten already? It's a MATRIX. 

> Oh, right. ~ row It's numbers gathered together like this in 

column 

rows and columns. 

\ 

~ ~isaVECTOR. 

A vector is an arrow sign 
with length and direction. -' ~ 

~ 
" 

Wand E are ENERGIES. There's no problem there. But what is cf>? 

It was A FUNCTION OF LOCATION (x, y, z) although now we're 
just using x. Anyway, it's a function, something that tells you cp if you know x. 

~ ~ ~ o I wonder then what the 2~i Ix and x that correspond to the 

matrices pO, QO are? There's probably a way of EXPRESSING IT IN ONE 

WORD. 

CDQ) A :fx is a differentiation symbol, 2~i can he called a number, and x 

is position. You're now going to put all this together and give it a name? Oh 
dear, I won't know what's what anymore! How about everyone else? What 
could that name possibly be? If there is someone who knows, tell me POR 
FAVOR! 

~ ': Ha ha hal! You've come along pretty well, haven't you? 
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Oh, Mr. Schrlidingerl 

I mulled this over quite a bit too. And then, one particular bit of math that I 
had heard somewhere before suddenly came to mind. w. 0 (It was the OPERATOR. ) 

Well, I've listened to the mathematics tapes a few more times than you 
folks. Listening to those tapes sure turned out to be a useful thing. 

? ? . 

Operator .. ? I haven't heard of that before. What is this operator that 
Schrodinger is talking about? 

What's an OPERATOR? 

You take something like :fx or f dx, and like A x , you 

-take the derivative 
-take the integral 
-multiply by the number A 

It's something that only involves an OPERATION. 
(By themselves operators have no meaning; they first 
gain meaning when they are applied to a function.) 

I see. So an operator is something that is applied to a function. 

©,I .... 

A • 

,~ " Now, let's separate them neatly so they're easy to distinguish, and put 
them in a table! 
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Heisenberg Schrodinger 

[ :: h d 
Rows 2fT; ax ] 
and Operator 

columns x 

Vector g <P Function 

Energy W - E Energy 

<:) As we've said before, since these things are the same, if we can begin 
with SchrOdinger's equation, and from that construct Heisenberg's, then we 
don't need Heisenberg's equation at all. But it looks like this is a big "if." No 
matter how you look at it, here's a matrix on one side, and an operator on the 
other. Here's a vector on one side, and a function on the other, all very different 
things. It's not going to work like this. 

" CO o 
o • 

Try looking at all this a little more~. 
broadly. If you pay too much attention to the 'I' 
details, you'll lose sight of the whole. If you 
focus on a single pistil in a field of flowers, you 
won't sense the beauty in the whole field, but if \ 
you step back a bit and gaze over it, you'll \ How pretty! 

'.... J. ~ appreciate the beauty of all the flowers. It's ' 0 
quite an experience! - -> <. \ \ \ 

, \ I 

As is written in the chronicles of our adventure, AN ~/ 
OPERATOR ACQUIRES MEANING WHEN IT ~ 

OPERATES ON A FUNCTION. 

c(3) I'd like to see what that means in more concrete terms. 

FIND THE 
FEATURES 
COMMON TO 
BOTH 
OPERATORS 
AND MATRICES! 
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r---------------
I I OPERATOR PLAZA I 
I 
I Dramatis personae: Operator Jx Function x2 

I 
I 
I 

The operator Jx can't do a thing all by itself. f}' ; By myself 

dx 

I But, if you try applying it to the function x2, 

I 
I 
I 
I 

a new function called 2x is produced 

I What this means is, Jx has the EFFECT of turning x2 into 2x. 

I Drawing a graph, we get: 

I 
I 
I 
I 
I 
I 
I I As can be seen, 

I 
~------------------------------~ 

AN OPERATOR IS SOMETHING THAT, 
WHEN IT OPERATES ON A FUNCTION, 

CREATES A NEW FUNCTION. 

If we represent the operator as A, the original function as j(x), and 
the new function as g(x), then the long phrase above can be concisely 
expressed in mathematical notation as: 

I 
I 
I 
I 
I 
I I Af(x) = g(x) I 
L _____________ ",,*w:m ;o,;",;@ 
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In a way, operators are like words. Words by themselves have no 
effect; you only see their effect if you have an audience present. 

and no one is around, then nothing 
happens. Even the meaning of the 
word "agua" is unclear. 

But if you bounce that word off of someone, 

~ ------..- _ _ /_, ". 'CI' por favor! a, ~ tI°. -----"'-- = \ / t).... .. iAqul e5t<l, 

I:>ine! / 1'-

you know from its effect - maybe someone brings you a glass of 

" water va - that agua means water. It's quite similar to an 

® Be that as it may, the power of an operator is that it produces new 
functions. 

A In Heisenberg's case, matrices worked on vectors. What if we also try 
looking at matrices? 

MATRIX PLAZA 

In a nutshell, a matrix is a 
collection of numbers like this: 

(1510-6) 
3 2 -4 9 
6 4 8 5 
7 14 6 -8 

A vector is represented by an arrow having length and 
direction. Its length and direction are extracted and placed 
within parentheses ( ). 

Dramatis personae 

Matrix (~ ~) Vector U) 
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By itself, a matrix is just a collection of numbers 
whose meaning is unknown. 

Only when an operator operates on a function 
can we tell what its role is. 

Let's have this matrix operate on vector (~). 

o Alone @' 12 
34 

binlJ]1 '- I.. '0' 

I 
2 

G ~)n)=u::) 
= (;1) 

The way to multiply 
rows and columns t----_ 

(1:: 1:)( ~:H ~::~ : :~::~:) 
Incidentally, thiS! be written as, 

How about that, a new 

vector ( ;1 ) has emerged. 
( ( If = ~ A 1f1f'T} If') 

We need to remember this! 

Let's draw a graph just as we did with operators. 

2f jl;; '/ =(~) > 11 

-¥.-- We,ppIY(!~) 

Thus, we may say that, 

5 

A MATRIX IS SOMETHING THAT, 
WHEN IT OPERATES ON A VECTOR, 

PRODUCES A NEW VECTOR. 

When the matrix is set out as A, the vector as T} (eta), and the 
new vector as ( (zeta), the sentence above turns into the following 
concise term: 
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~ 
\:!J So, a matrix has the power to produce a new vector. 

At first glance operators and matrices seem to be completely different, 
but in the sense that they "BOTH PRODUCE NEW THINGS" 

\ II 
\ / . oye/'J 

.~ we can say they're THE SAME!! 

What that means is, 

pO h d 
flew 21Ti dx Proa. 

([ Matrix QO x Operator J'l:.~ 
$:' 

(\)VI').o Vector ~ ¢ Function 'OoS-' 
OJd Me\) 

W E 

•• (J)~ 
-../ As when we first tackled the question, we have continued to think of 

Heisenberg's and SchrOdinger's languages as totally different, but now we've 
found a clue suggesting that they are in fact the same. I have a feeling that it 
will be productive to follow this line of thought. 

Yes, but wait a minute. Can we say that so easily? If we compare the 
two equations, 

~~--------------------------------------~ 

Schrodinger 

Heisenberg 

In both cases, the parts marked by V'VV'o. are mUltiplied by ¢ (x) or ~. 
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Looking at each one, we ftrst see that in SchrOdinger's equation, the part 
marked by VV\A is a multiplication of operators. That is: 

(LA..)2 = LA.. x LA.. 
[ 

21Tidx 21Ti dx 21Ti dx 

x2 = X X X 

(operator)2 = operator x operator 

Besides that, operators are added together: 

_1 (L A..)2 + 1£ x2 
2m 21Ti dx 2 

I T 

operator + operator 

In Heisenberg's equation, matrices are multiplied: 

[ 
p02 = pO X pO 

Q02 = QO X QO 

(matrix)2 = matrix x matrix 

And matrices are added: 

matrix + matrix 

You see, the 
operators are being 

multiplied. 

If Heisenberg's equation is really contained within SchrOdinger's, then the 
effect of the multiplication and addition of these operators on the function ought 
to have THE SAME EFFECT that the multiplication and addition of the 
matrices have upon the vector. Don't you agree? 

Mmhmm 
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M 
~ Hmm ... Is that right? I don't really know, but let's 
take a look starting from the addition of operators. But wait, 
how do you add operators? 

... . n? 
:~, ? 

• THE ADDITION OF OPERATORS AND THE 
ADDITION OF MATRICES 

A So, you want to ADD OPERATORS, Operators are things like 

1x and f dx that do nothing except operate on, or have AN EFFECT, on 

something else. Can we add them like this? 

~ \ f I 

~ <@ Whoa! You know you can't add them together like ordinary numbers. 

S~ d~:::,~~o:e ::u:i~:~d your own busme58 this wouldn't have 

happened. What are we going to do? 

~ f!!J1 Ha ha ha. It looks like you're m trouble. Actually, I got myself into 
trouble here, too. 

~ RelIlly? Even you? 

~ Relax. We call it addition of operators. but we don't actually add 
together a derivative and a derivative, or an integral and a derivative. 

~ Why is it called addition of operators if you don't really add them? 

: ~ Addition of operators has a specific DEFINITION. ,,\if 

?A Definition? 
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@7 A definition is something like" 000 is DOD." 
meaning for a word. 

It gives you a fixed 

Well then, what is the definition of "addition of operators"? 

Addition of operators A and B 

When (A +B) 

operates on a given functionf(x), 

(A + B)f(x), 

the separate effects of A and B on the functionf(x) are added 

Af(x) + Bf(x). 

Thus (A + B) is the sum of the separate effects, not the operators per se. 

~ 
~ Hmm. It's a bit tricky, but let me try to explain it. When you see an 

operator (A + B), you can't calculate anything until it acts upon a function. 
Then you have to remember that you'll be adding the effects: 

(A + B)f(x) = Af(x) + Bf(x) 

Here we are trying to confirm whether the effect on the function in the 
addition of operators is the same as the effect on the vector in the addition of 
matrices. 

, .: W Exactly. Let's look at ADDITION OF MATRICES. 

Addition of matrices is set up like this: 

AII+Bll AI2+B12 

A21 + B21 A22 + B22 

You take what's inside the parentheses ( ), which are the elements, and add 
them up, right? 
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Yes, it's just as you say. But now we want to know what adding 
matrices has in common with adding operators, and so we're going to give it a 
definition, just as we did with addition of operators. 

®t!,;.-'>:i' . ," I'll try It. Hmm ... 
. ~ 

Addition of matrices A and B 

When (A +B) 

operates on a given vector TI, 

(A + B) TI, 

the individual effects of A and B upon the vector TI are added 

ATI + BTl· 

Thus (A + B) is the addition of the parts affected by A and B. 

Is it something like that? 

~,w Beautiful! You've ended up defining it the same way as an operator, 
didn't you? Which means that, the effect on a function in addition of 
operators is the same as the effect on a vector in addition of matrices! 

~ That's right. Now we're going 
to do the multiplication too! 

\ \ / 

6&'" t<\~-
'" 

• MULTIPLICATION OF OPERATORS AND OF 
MATRICES 

® Let's attempt a definition for the multiplication of operators, just as 
we did for their addition. 
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OK! 

Multiplication of operators A and B 

When (AB) 

acts on a given function/(x), 

(AB)/(x), 

first B is applied to lex), then A is applied to the resulting function 

A{B/(x)}. 

The two-part operation is condensed into a single operation on/ex). 

(How'S thiS~ <fJ.D~1:iH 

W Wen done. Indeed it's exactly as you stated. 

Now, if we can define the multiplication of matrices in the same way, 
we'11 be in good shape. 

c([J) That's right. We'll be able to say that the effect on a function in the 
multiplication of operators is equivalent to the effect on a vector in the 
multiplication of matrices. I'm going to try it this time. 

Multiplication of matrices A and B 

When (AB) 

is applied to a given vector TJ, 

(AB)TJ, 

first B is applied to TJ, then A is applied to the resulting vector 

A(BTJ)· 

Again, the two-part operation is condensed into a single operation on 7]. 
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~ Say, I have a question! 

We have defined the multiplication of matrices as 

(AB)1J = A(B1J ) 

but will it work if it is 

Let'5 5ee ... 
-----~ A If we change the A order of A andB ... 

, 

; ~ That's a very good point. The order in which operators or matrices 
are applied is very important. How about trying it out? 

<® Okay. Let's try it first with operators. 

When operators ix and x act upon the function x2, 

When the order is changed, 

x(ix X2) =xx 2x= ~ . A" ,-
" -.... 

It's true! The answers 
are different. 

c(J» That's right. Let's see what happens with matrices. 

Apply matrices n ;) and (; ~) to vector U) and you get 

When the order is changed, you get 

So we find that with matrices also, if you change the order, you get a 
different result. 
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I see. Now I know the reason why we made 

(AB)f(x) = A {Bf(x)} 

(AB)l1 =A{Bl1 } 

You can't change the order of either one. In other words, the effect on 
functions in the multiplication of operators and the effect on vectors in the 
multiplication of matrices are equivalent! 

\ \ / 
/ 

-
\ 

With this, we can proudly say that the effect 

_1_ ~.!L + .Ii x2 ( )
2 

2m 27ri dx 2 

in SchrMinger's equation has on a function, 

and the effect 

_1_ p02 + .Ii Q02 

2m 2 

in Heisenberg's equation has on a vector, are 
THE SAME! 

~ ©NOW we know that matrices and operators have the same effect, 
but what we really want to know in more detail is whether Heisenberg's 

matrices pO and QO and SchrMinger's operators ~ dxd and x are the same 
27r1 

thing. We know that they're roughly the same thing, but now we have to delve 
into this a little more deeply. 

® ~ From generalities to details ... I think I've heard those words 
• 0" somewhere before. 

454 CHAPTER 5 SO LONG, MATRIX! 

You definitely have. In any event, let's see if we can really say that 

pO is the same as ....!L...!L, or that QO is the same thing as x! 
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~ N0W then, not just any matri~ would suffice for Heisenberg's pC 
~ and QO. It had to meet certam FIXED CONDITIONS. 

CONDITIONS FOR HEISENBERG'S pO AND QO 

1. They satisfy the canonical commutation relation. 

2. They are Hermitian. 

In order to claim that Heisenberg's matrices pO and QO, which 
fulfill these two conditions, were originally the same things as operators 

-211 . dd , x, the two operators would naturally have to fulfill the same 
7T1 x 

conditions, right? However, since we don't really know what a Hermitian 
operator is, for the time being let's look at them simply in terms of the 
canonical commutation relation. 

I don't really know what canonical commutation relation means ... 
But apparently we get this: 

In Heisenberg's canonical commutation relation, 
the fact that we had a matrix meant we had to 

attach unit matrix 1 to 2h '. Do you recall this? 
7Tl 

For details, please review the Heisenberg section. 

LOOKING FOR 
THE 
RELATIONSHIP 
BETWEEN pO, QO 

h d 
AND -2 ·-d ,x 

TTl X 

DO THE 
OPERATORS 
FULFILL THE 
CANONICAL 
COMMUTATION 
RELATION? 
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o Since pO corresponds to 2~ i 1x ' and QO to x, 

? . 

THE EQUATION FOR THE CANONICAL COMMUTATION 
RELATION IN THE CASE OF OPERATORS 

h d h d h --_·x-x·---=--
21Ti dx 21Ti dx 21Ti 

Isn't it 2h . I? So where did the 1 go? 
1Tl 

In the case of operators, it simply means 
"multiply by 1," and so it's all right to omit it. 

And if the equation works, it will be all we need. I wonder if it'll work ... 

But that equation has nothing but operators, and so I don't see how we 
can do any calculations. 

o Right. We saw in the Operator Plaza (see page 444) that operators 
onlie on meaning when they operate on a function. 

H Well, in that case, can't we make calculations if we apply 
h d h d h . --. - . x - x· --. - = --. to a functlOn? 

21Tl dx 21Tl dx 21Tl 

(!J) . hd hd 
".~. Yes. Now let's first take the left SIde --. - . x - x . --. - and .~ 21T1 dx 21T1 dx 

apply it to j(x) in such a way that any function will do, and then calculate it. 

It would be great if the result turned out to be 2h . f(x) ... 
1TI 

r-------------=== 
:~ What's going to happen to ~ .!L . x - x . ~.!L !? 

21T1 dx 21T1 dx 

• 
I 
I 
I 
I 

First, we rewrite it so that we can apply each of the terms to 
j(x) and then calculate. 
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Using the definition of the multiplication of operators, 
A{B/(x)} = (AB)/(x), we get: 

_hd{ } {hd } - 27Ti dx x/ex) -x 27T; dxl(x) . 

Since 2h. is a fixed number, we can factor it out and come 7T1 
up with: 

= 2~i 1x {x/(x)} - x{ ix I(X)}. 

This underlined part is called the derivative of a product! 

Formula for the derivative of a product I-
ix {/(x) . g(x)} = ix I(x) . g(x) + I(x) ix g(x) 

Using this, we have: 

=2~i (1xx)/(X)+~-~. 
~ 

Since :fx x (the derivative of x) is I, 

=_h_/(x) 
27Ti . 

This means that, 

( h d) ( h d) h 27Ti dx . x I(x) - X· 27Ti dx I(x) = 27T; I(x). 

Now that we have the results of applying them to a function, if 
we extract the actual effect from our results ... 
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In other words, we've found that 

D ' h h pO d h d QO d . h· oesn t t at mean t at an -2 . -d' an x, In t elr 
7T1 x 

essential points, are really the same thing? 

II 

II 

° h d 
P is 27Ti dx 

QO isx 

~ Hey, you folks are in no position to be celebrating, 
is to detennine that 

Our objective here 

In order to do that, just to say that their effects are the same is not enough; 
we must be able to show that 

1=::--.. 
) 

o 
o 
o 

WE CAN CONSTRUCT 
o h d 

P from -2 ·-d 7Tt x 

If we can do that, then po and QO become unnecessary. Next, we must think 
about how that can be done. Then, at the end, 

? 

I'M GOING TO FORMULATE 
HEISENBERG'S EQUATION OUT OF 
MY "SCHRODINGER EQUATION"! 

bA? If you say so - but can we really do it? 
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~Cl·' " ~---:I • • 
What is TeL's Who is Fourier? A Mathematical 

Adventure doing here? I wonder if that's some sort of hint. ,/ 

"" =~--

~8 You still don't know of a method for making matrices out of 
operators. Before starting off on this adventure in quantum mechanics, all of 
you completed the Fourier Adventure, right? 

Yes. 

Then you must know the chapter in Who is Fourier? A Mathematical 
Adventure called "Projection and Orthogonality" that discusses how to make 
vectors out of functions. 

~ : t'l Oh ... I guess I've forgotten . 

. ~ Wen then, try to remember a method for making vectors out of 
functions using Fourier mathematics. 

/ 

When you say Fourier mathematics, that means a complicated wave 
is the sum of simple waves. 

~A 
~ 

~~ __ ~~l'-~~~ ____ , 

Writing this in equation language, 

f(x) = a o + a l cos lwt + b l sin lwt 

+ a2 cos 2w t + b 2 sin 2w t 
+ ..... 

By the way, this means the same thing as'" 
complicated wave = complicated function ) 
simple wave = simple function. 

~ Now then, in each of these simple waves a certain relationship exists 
between cosine and sine. Do you remember what we call it? 

MAKING 
VECTORS OUT 
OF EQUATIONS 
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Let's see ... 

They are 

(ORTHOGONAL} fI: 
Yes, "orthogonal," but it still doesn't ring a bell. The word means that 

things form a 90 degree angle. But how can two functions (waves) be 
orthogonal? 

? 

Could it be something like this? 

'~ 
, ~'NO' no, That's not quite right. To say that two functions are 

orthogonal means that "when a certain function is multiplied by a certain other 
function, the area of the resulting function is 0." Let's take a look. 

sin I WI' f---"~""'lII sinlWl' sinlwt f---"--,j 

sin2wt Hr-+-+ ..... sin5W1' cos I wt """'r---+-I 

Area=O Area=O Area = 0 
They are orthogonal. They are orthogonal. They are orthogonal. 

I I 

I see. So any kind of a simple wave is orthogonal. ~ 
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if!!! But there is a simple wave tbat is not orthogonal. Do you know 
which one that is? ~~ 

As the diagram at the left shows, simple 
waves are not orthogonal when they are 
multiplied by themselves. In other words, when a 
simple wave is multiplied by itself, the resulting 
area does not equal zero. So we know that they 
are not orthogonal to themselves. 

In this manner, sine and cosine are functions that are orthogonal to 
everything but themselves. To put it briefly, they are called 

G SYSTEM OF ORTHOGONAL FUNCTIONs)" r 
~ But you can't tell if those functions are orthogonal just by 

looking at them. Can we write them in such a way that you can tell at a glance 
if they're orthogonal? 

~ W Yes, easily. Just put these orthogonal functions on a graph. We place 
each wave along an axis. As they are mutually orthogonal, 

sinlwt The amplitude of the wave 

) 

is represented here 
by the length of the arrow. 

o~~~~:n~. b
l 

... _____ ..... _~ 
~-+___t-+_i cos2wt 

'~ 
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C'J .... • • 
v Somehow it seems too easy. But that arrow on the previous graph ... 

I mean, isn't it a VECTOR?!! 
Besides the amplitude of each wave is the length of one of the respective 
orthogual vectors! 

c(fJ) I know how to find the amplitude of waves. That's Fourier 
coefficients, right? 

FOURIER COEFFICIENT an = if f(t) cos nw t dt 

You're all familiar 
with Fourier. right? 

A complicated wave is multiplied by the wave that is to -

be extracted, and the area is found and divided by ~ . 

Using this method, we can fmd ,the amplitude of any simple wave 
and we'll be able to find -

. ( . "\ ~ ..... 

the length of orthogonal arrows (= vectors). '::t t }en~ 

\' I 

~ The sum of the two previous waves makes a complicated wave fit). 
Let's try drawing it on this orthogonal graph. I wonder if it'll all work out. 
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The resulting vector is shown by Uniaa up their length vertically and 
attaching parentheses () as follows: 

J(i) = (a2 ) 7" ~f ~h~s is 5, enter 5; 
b 1 If It IS 3, enter 3. "'A b" 

In other words, when the amplitude of simple waves are aligned vertically 
and surrounded by parentheses, they become a complicated wave expressed in 
vectors. 

~ Here we were using the Fourier transformation. and so the system of 
orthogonal functions was sine and cosine, but there are other systems of 
orthogonal functions. As long as they are a system of orthogonal functions, 
they may be anything, so let's put them in a more general fonn. 

I, e In order to tum the ordinary equation for transfonnation into 
something that can be used with any system of orthogonal functions ... 

an = if f(t) cos nil) t dt 

~ Ii ------\r--~ 
This is the amplitude of This is now j(x). We let the general fonn 
the cosine, so it's an' of systems of orthogonal 

~ Here tht(s~ range are ~ - 00 functions be Xn(x). 
so we don t have to wnte Thi () h be 

th o s X n X as en any mg. 

We make 17 the amplitude 
in the case of orthogonal 
functions. 

So ... 

If we change the order a bit. .. 

nonnalized, and so 

it can include i. 

THE METHOD OF FINDING ONE OF THE ELEMENTS 17" OF A 
VECTOR PRODUCED FROMj{x) 

I I 

1/ ~~~ 
17.= f X:(x)f(x)dx ~~ 

The orthogonal function is multiplied by the complicated 
function whose vector is to be found, and the area is determined. 

CHAPTER 5 SO LONG, MATRIX! 463 



Here the * symbol indicates that X,,(x) can be used when j(x) is a complex 
function, so you can just disregard it. 

When we insert 1, 2, 3 ... as n, the length of the respective vectors emerge. 
And when they are surrounded by parentheses, XI 

f X ;(x)f(x) dx = 'TI I 'TIl 
111 ----------,. , , 

" , 
, " : 

(:. - - - - - - - ' I 

f X ;(x)f(x) dx = 'TI 2 ..... 

I 7] I : 

: : 'YJ~ : 
: ' , , , , . f x3"(x)f(x) dx = 'TI 3 

WE DID IT! WE WERE ABLE TO PRODUCE 
VECTOR ij FROM A GIVEN FUNCTION/(x)! 

As in the case of 
vector 'TI from a given functionj(x) or 
vector ,from a given function g(x), 
a certain vector can be produced from 
a single function. By the way, if this 
is applied in reverse, 

A COMPLICATED FUNCTIONflx) IS 
THE SUM OF SIMPLE FUNCTIONS: 

f(x) = L 1JnXn(x) 
n 

We're going to use 
this later! 

We were able to make vectors from functions, but we mustn't forget 
that, in order to do away with Heisenberg's ideas, we have to be able to show that 

-.l!:..- A.. ~ pO x ~ QO 
27Ti dx 

In other words, 

WE WANT TO PRODUCE 
A MATRIX FROM AN OPERATOR! 

~ That's exactly right. Let's challenge ourselves and produce a matrix 
from an operator, using the method that we just used to create a vector from a 
function. 
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:© Avector can be produced from a function. You tell us to use this cD method, but. .. I've got it! For example, we see in 

Af(x) =g(x) 

that since we have produced vector T'/ from Ax), it is possible to produce a 
different vector from g(x). Let us call this new vector (zeta). 

(n = f Xn*(x)g(x) dx 

This g(x) is Aj{x), 

So we get 

(n = f X n*(x)Af(x) dx 

If we changed the form of this equation, we might be able to understand the 
relationship between operators and matrices. Let's try it! This (n is the equation 
we saw before: 

f(x) = 1: T'/nXix) 
n 

If we apply the sum of simple orthogonal functions to complicated functions, 

f * ~ ~'I' wh.~ happen •. 

(fo mStinguiS:" ~iS ::>4~ fJ~ (X) dx J)' a -
the earlier n, we add a I and read it un prime.") ,..~ 

Here it's the same thing whether the summation is made with operator A 
applied to the terms taken as a whole or individually. Thus we can place A 
inside ~. 

(n = f X n*(x) ~ A T'/ n'X ix) dx 

Since it doesn't matter whether we do the addition and then the integration, 
or do the integration and then the addition, we bring ~ to the front. 

= ~ f Xn*(x)AT'/n'Xix) dx 

Here we are taking the integral of x. and since T'Jn' has no relationship to x, 

we take'it outside of the integration f dx . Then we have ... 

~ .. I, ~4 ....... I HoC. 

What we've been doing is calculating the magnitude (n of the vector. In 
other words, the magnitude (n of a vector is: 

(n = ~ f Xn*(x)AXix) dxT'/n' ~ (!:If) ~.' ~! .. 

" 

PRODUCING A 
MATRIX FROM 
AN OPERATOR 
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, I 

'0) 

~ What? I know I've seen this somewhere before. 

'C. 
I don't remember it at all. 

~ Don't you recall doing the multiplication of matrices and vectors in 
the Matrix Plaza (see page 445)? This was the one they said was a good thing 
to remember. 

I just looked at what we were encouraged to remember but it was 

But this one is 

They're totally different. 

They're completely 
different I 

:'® Let's close our eyes to the underlined part and we'll see ... 

We clo5e 
our eye5 ... 

1ffi>J....::.-(~,'~,\ 

Hmm ... If you say they're alike, maybe they are alike. 

-<@'\~ ~ 
• • a Couldn't you perhaps consider that the underlined part is one element 

in matrix Ann'? In other words, that it's a certain number? 

I suppose so. 

c(}J) In that case, since the underlined part is an integral, it's a value for 
area. Let's think about what determines that value. 

CD 
You say area, but the area of what? 
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c({5) If you look at the underlined part. AX"'<x) is a new function that results 
from applying operator A to function XII'(X), 

f XII-(x)AXII'(x) dx 

In other words, it is a new function that resulted from multiplying a 
complicated function by a simple function. Now then, what will determine the 
final form of the function? That the value is determined by operator A goes 
without saying. After all, the value changes according to whether A is a 

derivative 1x or an integral f dx. 

~ A Yes, of course. 

• • CCWP" 
" 0" It also changes with respect to n' of the system of orthogonal 

functions XII'(X), For example, if we take the present case of orthogonal function 
sin n' x, the forms of sin 15x and sin 3x are totally different. It is the same for n 
in XII-(X), In other words, if even one of the n and n' pairings is different, the 
form of the function created from them ends up being totally different, as does 
the area. 

A Yes, that's right. 

© This means that the value of the inte~ral is determined by the 
combination of A and nand n'. In other words, it's a single number. Since that 
number is determined by A and n and n', let's write it as, 

/ 

This form is ... 

A MATRIX! 
Does this mean that what is determined by the combination of n and n' is 

All AI2 A13 

A21 A22 A2l 

All Al2 All 
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I may be totally deceived, but it really does appear to be a matrix. 
So the current underlined part is a method for making a matrix from an 

operator, isn't it? Super!! 

... \ I 

o Okay. Now let's summarize the method for making a matrix from an 
operator. 

MAKING A MATRIX 
FROM AN OPERATOR 

I X:(x)AX"(x) dx 

Using this method, you can make a matrix from an operator. 

~ 
~ No, not yet! We aren't really finished until we can make matrix P-: 

from Schrodinger's 2~i:1x and matrix QO from Schrodinger's x!! 

" 
}It,-, Oh, boy! It seems like the time has finally come. It would be so great 

if we could really do it! 

\ \ 

: '© Don't get too worked up, but let's try it. 
t I I 
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, \ 

'~First, making a matrix out of 2~i 1x and x is simple. 

by making a sandwich, like we did before. 

f X;(x) 2~i fx xix) dx 

f Xn"(x)XXn'(x) dx 

r····················································· ...... : 

= l .... _~ .. ~~.~ ... ~.~~.~ .... . 
................................................... 

= a certain matrix 

You do it 

Using this method, one matrix can be made from 2~i fx' and another 

matrix can be made from x. If these new matrices can satisfy Heisenberg's 
special conditions, 

1. they satisfy the canonical commutation relation 

pOQo-Qopo=~ 1 
217'1 

2. they are Hermitian 

then we can definitely say that the two matrices are pO and QO. 

Well, shall we give the name pC' to the matrix made from 

2~ i fx and the name Ql:>. to the matrix made from x? 

"" W I wonder if pl:>. and Ql:>. really will become pO and QO! 
pl:>. and Ql:>. satisfy the canonical commutation relation. 

First let's see if 

AT LAST,MAKING 
randQo 
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j*jtlf~f.rf'~ .* 

CONDITION 1. 
Dp l\]ATRICES 
P , Q , DERIVED 
FROM 
OPERATORS 

h d 
-2 . -d AND x, 

7Tl x 
SATISFY THE 
CANONICAL 
COMMUTATION 
RELATION? 

c(£!) preViOUSlY we confinned that 2~i 1x and x satisfy the canonical 

commutation relation. 

h d h d h ---·x-x·_--=--
271'i dx 271'i dx 271'i 

Yes, but here we are confirming whether the matrices made from 

~.sL and x satisfy the canonical commutation relation. 
271'i dx 

@ Exactly. 

How do we go about confinning this? 

, I I 

~ We just stick the matrices into the left and right sides of the equation 
for the canonical commutation relation: 

h d h d h --_·x-x·_--=--
271' i dx 271' i dx 271' i 

Can we do that? 

:m Think about it. If you take the left side (2h. dd x - x 2h . (iIi) and '\:.s;;/ 71' I X 'TT I (i X 

apply a function to it, you can make the whole thing into an operator; and 211 . 
'TTl 

naturally is a number. If you apply a function to it, it falls into the category of 
operators. If you start with an operator, you can always make a matrix by using 
the "sandwich method" attack. Anyway, let's do it! 

But can you do such a thing? Never mind. Let's just do it! The right 
side is simple, so let's start with that. 
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LET'S MAKE THE RIGHT SIDE, 
h -2 ., INTO A MATRIX. 
1Tl 

\ I , . . "-C)JJ~ -
,,~ " 

Now we initiate the "sandwich method" attack! 

f X:(x) 2~i X,,(x)<h 

This is simply a number, so we can remove it from the integration. 

= 2~i f x:(x)xix) dx 

What will the integral of this be? 

X,(x) is a system of orthogonal functions. 

\ I / 

.. t 'c([J) 
"eJ" Let's see, if you multiply a function by a function and take the 

integral. .. Oh! That's the method that we used to confirm orthogonality, isn't 
it? 

This means that there is an elegant way of writing this integral. You take 
the area and, 

When n '* n', it is O. 

When n = n', it is 1. 

You can write it as a matrix. 

When mUltiplying a pair 
of like things, we come up 
with an area. 
Here we've set things up 
so that the area will be 1. 

D nn' 

This is read as "Kroneckers delta." 

<DP / . '" .. <' -.. 

" 
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e You can change those long sentences above into single mathematical 
expressions. 

~ ~It'SSOCOmpact! 

<:!2> What sort of matrix is this? 

n' = 1 2 3 4 ... ~ ~ It's a matrix 

n=1 1 0 0 0· .. like this. 

=2 0 1 0 0· .. 
=3 0 0 1 0 ... 

Of course! The vertical 
=4 0 0 0 1 ... columns are n' and the 

horizontal rows are n. 

Only the elements along a diagonal line become 1. I'm positive this 
is called a unit matrix. Am I right? 

Hey, that's great. You've been gradually learning the language of equations, 
haven't you? Just as you say, it's a unit matrix. We express it with the numeral 1. 

(1 0 0) 
1 = 0 1 0 

o 0 1 

:: ~ So the continuation of the previous calculation is: 
"''W 
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h 
-2 .8nn• 

'TTl 

h (1 0 - 01 
2'TTi 0 0 

This is the form of the 
right side when it is made 
into a matrix, right? 

LET'S TURN THE LEFT 
SIDE INTO A MATRIX!! 

\ I / 

g) = 2h .1 _ 
1 'TT l 

WExactlyl 



We're going to take the left side 

h d h d ---·x-x·---
21Ti dx 21Ti dx 

and gather it up into a matrix?? It looks difficult. 

~ Don't worry. It probably can be done. The method for turning an 
operator into a matrix is ... 

The "sandwich method" attack! Leave it to me! We need to place 
the operator between two orthogonal functions of xix), so we have to do this. 

f . (h d h d) Xn(x) 21Ti dx x-x 21Ti dx X.·(x)dx 

~ Yes. I'm going to use the definition of the addition of operators and 
break up what is in the parentheses, okay? 

We can break it up further, since taking the area of the integral all at once 
and taking the areas piece by piece are the same thing. 

= f X:(x) (2:i ix .x)x,'(X)dx-f X:(X) (X. 2:i ix)X"<X)dx 

When we rearrange what is in the parentheses again, according to the 
multiplication of operators, we have this . 

..... 
; ... ~. What happens next? 

c® Next we can use a trick. 

CHAPTER 5 SO LONG, MATRIX! 473 



~ #!) What sort of trick1 

<F:I> It's simple. We rewrite xxix) and 2~i fx xix). To do that, we 

h d first make matrices from the individual operators 27T i dx and x. 

That is to say: 

p!, = f XnO(x) 2~i fx Xn'(x) dx 

Q!, = f XnO(x)xXix) dx. 

Then we use the method of making a vector from a function, and of making 
a function from a vector. That is, we use the summation equation. 

In order to make a function from a vector, 

'TJ n = f XnO(x)f(x) dx . 

In order to make a vector from a function, 

f(x) = 1: x n(x)'TJ n • 
n 

r This corresponds ' 
1-1 to the so-called 

\ Fourier series. 

(This corresponds to "\ 
1_ the so-called Fourier 

\ coefficients. 

If you look closely, making a matrix from an operator and making a vector 
from a function are very similar. Let's compare them. 

[ 
P!-= f X:(x) 1,,;1; X..<x) dx 

'TJ n = f x nO(x) f(x) dx 

[ 
Q!, = f XnO(x)XXn'(x) dx 

'TJ n = f X nO(x) f(x) dx 

~ '-' Only the underlined parts are different. j(x) is a complicated function. 
Because an operator is being applied to the function, the newly created equation 
should be a complicated function. 
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Hmm. 

Think of xXII,(x) and 2~i! xix) as j(x) and use the method for 

producing a function from a vector. 

lex) = +. XII (x) 1] II 

2h . dxd XII'(X) = l: XII(X)P~,. 
7T I II 

xxix) = l: XII(X)Q~,. . II 

Is this right? 

• • <:!?" 
'..J " Yes. And then we insert this into the underlined part of this equation 

that appeared previously. 

/ .. 'I;: 
~ fjJ':f.i~i~W::: 

;1:1i:1; 1iii:il OK! Now, since there are two n's, we replace the n inside the 
parentheses with nil. When we do that, we get 

rfR:h 
~ That's right. We can place l: outside the integral. You get the same 

thing whether you add after taking the integral or take the integral after adding. 
From there, Pfc.II"II' and Qfc.II"II' have no relation to x, and so they'll have no relation 
to the integral. Therefore, these can also be taken out of the integration. When 
we do that, 
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\ I / 

'CD .. 
What!? Doesn't that mean that the underlined part, which started as 

the integral of 2~i 1x sandwiched between orthogonal functions, is now 

matrix pD. nn"? What is more, the next underlined part is QD.""". Therefore, the 
above equation can be written in the following way. 

Could this really be? 

\ I 

'~ -W 
." / ," I " It could indeed! This is the type of matrix that we saw in Matrix 
Plaza. In other words, when 

l: p~. Q~n' = (pD.QD.) nn' 

l: Q~.P~n' = (QD.pD.L, 

is placed in accordance with the result previously obtained for the right side, we get 

(pAQA) ,_ (QD.pD.) ,= 2h , Dnn, 
n. nn 7fl 

Thus, 

e~ 
I \ ~ Hey! Isn't this the same as Heisenberg's equation for the canonical 
commutation relation!? 
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c(fJ) That's exactly right. In other words, 

A Well then. if it satisfies condition number 2, that it be Hermitian. then 
it will really and truly be pO QO. In that case, the matrix made from 
Schrodinger's operator will be pO QO, right? 

~ Yes. 

Then Heisenberg's equation will become unnecessary! Quick, let's 
find out if p6 Q6 is Hermitian and satisfies the condition! 

WHAT HERMITIAN MEANS 

Raw materials ( 0 -. 
Ann' 

o 

b:" -0) 
• Ai 

"* * 

There is a given matrix Ann' 

! The numbers nand n' 

Step CD 

An'n 

Step@ . 
An'n 

Result . 
A'I'n =A J1I1 , 

(~) 
are repositioned 

First, the elements about a diagonal line. 
are transposed ,6"-------

o • 0 An asterisk * is inserted.-v 

-~-~:/ ! 
( ) 

-:: If the resulting matrix takes the same 
form as it had originally, 

that matrix is said to be HERMITIAN. 

CONDITION 2. 
CONFIRMING 
WHETHER 
MATRIX p6, Q6, 
FORMED FROM 
OPERATOR 

h d -2 . -d ,x, IS 
'TTl X 

HERMITIAN 
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~ As you can tell from looking at this, when you have a given matrix, 
and the result after performing steps <D and @ has the same form as the original 
matrix, then we can call that matrix Hermitian. 

~ 
H Yes, I see. If we do that to either Heisenberg's pO or QO, they will 

take their original form, right? All we have to do is make sure that 
ScbrMinger's p6. and Q6. will go back to their original form if we do them the 
same way. , \ 
-~ All right, let's get right to it. 

0'rst, let's CONFIRM THAT p' IS HERMIT~ '@ 
Its original form is 

First, we do step <D. In other words, we transpose nand n'. Thus, 

Next, in step @ we add a * (we change the sign in front of 0. 

P~:= f r+2~i ilyXld;c 
The asterisk disappe~ We add an asterisk. 

There is an i, so we 
make it negative 8. 

Let's go on to calculate this. 

- 2h . is a number so it is placed outside the integration. 
'TTl 

= -2~i f xix) 1; x,,'(x) dx 

You know this part; it's in the form 
of a PARTIAL INTEGRATION. 
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Formula for partial integration 

f I(x) fx g(x) dx = [/(x) - g(x) [oo -f Jx I(x)g(x) dx 

x..(x) is chosen so that it will 
be 0 for x.(oo) and x.(-oo). 

=- 2~i {o-f i: xix)· x:(X).u} 

= 2:; f fx xix), x:(x) dx QHmm 

7} ~ 
We put this inside. 

= f X:(x) 2:; fx xix) dx 

~ 
We transpose these. 

OH! This is the original form of p~, !! 

-{Meaning thatl'" IS HERMITIAN) 

/ I 

( All right, then r IS pO. )-~ ~ ~ = 
~Rwedidit! 
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Next, let's check to see if QlJ., which was 
made from operator x, is Hermitian. 

Original fonn 

Step 1 

n and n' are transposed. Q~n = f X n:(x)XX n(x) dx 

Step 2 
* is inserted. 

Now, all we have to do is see whether this is the same as what we started 
with. So, when changing the order ... 

= f Xn·(x)xXix) dx 

\ I / 

,,®~ 
• • " '> I --=(Q!- is also a Hermitian matrix after all! ) 

Now that we've made this clear, 

we can also make Q!- = Q~, for 

the matrix made from x! 

That's right. The matrices made from Schrodinger's operators 2~ i 1x and 

x fulfill Heisenberg's two conditions for pO and QO. This means that in the end 
we really have ___ - __ 
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, \ / 

:: A : Great! If we have Schrtidinger's operators, then we don't need 
Heisenberg's pO or QO any more. Next, if we show that g can be made from 
¢, then Heisenberg's equation will no longer be needed! 

~ At this. point, let's look again at SchrOdinger's and Heisenberg's 
~ equations. 

Schriidinger {~ ( 2~ i fx r + ~ x' }'" (x) - E '" (x) ~ 0 

Heisenberg (2~ p02 + ~ Q02)g - W g = 0 

UTe've &ound that pO can be made from h d and that QO can be made 
\'VI I' 27Ti dx ' 

from x. That means 

HAVE DIFFERENT 
FORMS BUT ARE THE 

SAME TmNG! 

(_1 p02 + Is:.. Q02) 
2m 2 

SCHRODINGER'S 
EQUATION 
PERFECTED!! 
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\ I 'e!J If a system of orthogonal functions is used, 

{~(2~i i)\~x'} 
can always be produced from Schrooinger's equation, 

(2~ p02 + ~ Q02) . 

Next, if vector g can be produced from function cf>(x), it will be perfect! 

~ To create a vector from a function, we use a system of orthogonal 
~ functions. 

A We have yet to determine whether ~ can be fonned, so for the time 
being let's say the vector made from </>(x) is 71. Then, when we rewrite 
SchrOdinger's equation, 

{ _I (~.4.)2 +! X2}</> (x) _ E</> (x) = 0 
2m 217'1 dx 2 

~ --==(¥e use the system of orthogonal functionS) 

(_1 p02 +! Q02)71 _ E71 = 0 
2m 2 

This is what we get. 

-CD "', ® Oh, my! I'm pretty sure that Heisenberg's equation 

(_1 p02 + ! Q02)g _ W ~ = 0 
2m 2 

means that you should take a certain vector out of matrix (2~ p02 + ~ Q02) . 

, \ 

-/~ That's right, just as you say. Heisenberg's equation, and my 
equation, altered by using the system of orthogonal functions, both involve 
taking a vector from the same matrix. Naturally, it's bound to tum out that g 
and 71 are the same! 
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~ ~ So does that mean that tile ___ from of> is the same as ~? 

Exactly! If my equation is rewritten using 
a system of orthogonal functions, it will 
turn into Heisenberg's equation. 

If we think about it, until now we've been using the example of Hooke 
fields, but there's no reason why we have to be limited to these. Originally, 

(2~ p02 + ~ Q02) was H (po, QO) with the conditions for Hooke fields 

applied. So, in general terms, it was 

It so happens that 2~ i 1x and x correspond to the pO and QO of this 

equation. Thus, operators 2~ i 1x and x that come up in my equation can be 

inserted into this equation as pO and QO. 
,I 

(!J)' ...... So SchrMinger's equation may be rewritten like this! • • 
>oJ 

H( 2~i :Ix 'X)cfJ (X) - EcfJ (X) = 0 

A NEW EQUATION FOR DESCRIBING THE ELECTRON IS BORN! 

Au,prlma! 

Choucttel 

~! fi'd:q.! 

;Qu~ bltm! 

~!«! 

~ fAooo')\ 
O~· 
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We've traveled a long road, but we're 
done at last. 

:: ~ He did it!! He's incredible, super!! 

. ., This most certainly is a language that describes the electron. 
~ It's really splendid! This equation ALLOWS A VISUAL ~ 

It's a wonder we got this far! 

• IMAGE OF THE ELECTRON, AND EXPLAINS ITS 
PHENOMENA PERFECTLY! 

When I completed this equation, I felt just as you do now. Now, as for the 
equation that says you can't have a visual image of the electron ... 

Heisenberg's nonsensical equation 
is no longer needed! 

I don't think Heisenberg ever noticed that my equation was at the root of 
his. Ha-ha-ha! 

Heisenberg's language for describing 
the electron was incomplete. The 
electron can be fully described using 
only the language of waves. My equation 
does it all! Ha-ha! 

rt~~ 
\~ 

Super! We did pretty well too in coming up with this language. 

~ ~ <r.:f) That makes us part of the world of natural scientists. 

A Do you think there', a chance of receiving the Nobel Prize 1 

This splendid equation was completed by 
SchrOdinger in 1926. Afterwards, this equation came 
to be called THE SCHRODINGER EQUATION in 
honor of his great achievement. 
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s. 3 SO LONG, MATRIX 

rl we've finally come up with the above equation. Not only does it 
allow a visual image of the electron, it explains the 

experimental results perfectly. 

~ We no longer need Heisenberg's equation. We did it, Mr. 
~ Schrooinger! 

o~~ Uh, well. . .. ( 

r 

Okay, then let's find the spectrum of an atom! 

To find the spectrum, you have to find its frequencies and 
intensities. So, let's try it! 

W····· 
~ What's the matter, Mr. Schrodinger? 

~ I noticed something dreadful. When you use the SchrMinger 
equation to find the spectrum of light emitted by an atom, frequency v is found 
using 

Bohr's equation for the 
frequency relationship 

You see, since W = E, it's the same thing as saying 

FINDING THE 
SPECTRUM 
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But when you find the intensity IQI2, you still need to perform matrix 
calculations. 

Oh,no! 

G> ® What do you mean? I don't understand. 

~ So far we've found that Heisenberg's equation 

H(po, Q~~ - w~ =0 

can be produced from my equation, right? But that is all that we know so far. I 
mean, when we find the frequencies and intensities of the spectrum of light 
emitted by an atom, we must basically use the same methods that Heisenberg 
used. 

To find frequency II of a spectrum from Heisenberg's equation, you use 
w-w, 

II = n n 

h 

However, some clever maneuvering is necessary to find the intensity. 

First of all, you find ~ from Heisenberg's equation. In this case, you have to 
find not just one ~, but many of them. For example, if H (po, QO) is a matrix of 
three rows and three columns, then you have to find three g's; if there are ten 
rows and ten columns, then it's ten fs,and so on. 

As in the following diagram, we gather together all of these t's and make 
them into a single matrix. 

HEISENBERG'S METHOD 
OF FINDING INTENSITY 

0 I::. 0 
0 I::. 0 

~= 0 ' ~ = I::. ' ~ = 0 

U= 
01::.0 .. · 

Heisenberg 

------------~~~----------C This U is called a UNITARY MATRIX. ) 
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'7 
Unitary matrix? Now what does that do? 

c© I remember. I'm pretty sure that as soon as you clamp these unitary 
matrices U and if around QO, you can then fmd Q. 

Q= utQoU 

~ W That's right. The square of the absolute value of Q will be the 
intensity of the light emitted by the atom. 

Intensity = 1 Q 12 

I stated before that Q and g can be found from my equation, didn't I? But 
you see, when we go on to derive the intensity ... 

.... '~ .. '.'."'." ... .~IQF 

; ,j I get it! Since we can derive g from the <p found from SchrOdinger's 
equation, unless the unitary matrices U and Ut are found from g and then 
applied in a unitary transformation to QO, the intensity IQI2 cannot be found! 

Summarizing it. .. 

Heisenberg Schrodinger 

H( 2~ i 1x ' x)<p (x) - E <p (x) = 0 

1 <p ~x) 
g +-E ________ ..... 1 

J, 
u,ut 

J, 
utQOu 

J, 
Q 

'\~ '. 
•••.•.... i' {' Oh my ... We're 

" " using Heisenber(J's 
method. 

e Now I see what you mean. When we find the intensity, we can't 
avoid doing Heisenberg's matrix calculations as part of our other calculations. 
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WE DON'T NEED 
UNITARY 
TRANSFORMA
TION! 

What are we going to do, Mr. SchrOdinger? 

J W There's nothing we can do, except give up. 

" 

Don't let something like this discourage you. Who was it that once 
said, "If you let every little thing discourage you, you'll never be able to 
discover a language to describe language"? Wasn't that you, Mr. Schrodinger? 

$ That's right. It was you. 

~ I'm sorry, but can't you folks do something about it for me' 

We'll certainly give it a try! 

(f3) Yeah! 

"~ .... 
". '" " '-' 

First of all, let's review how to calculate vector g from the function 
c/J(x) one more time. 

Okay. In order to get g from c/J(x), you have to do this: 

gn= f ¢(x)Xn·(x)dx 

You have to mUltiply ¢(x) by the system of orthogonal functions XII(X), and 
then find the area. 
? . 

~ 
'\V/ 

the form 

By the way, what form does ¢(x) take? 

Let's see. Recalling the de Broglie wave for the inside of a box, it's in 

A, • n11' 
'f'(x) = 8m T x (n = 1,2,3, ... ) 
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Hey, there's an n inside the equation! 

C You're right. We forgot all about that. Well ... 
/ I 

..1,( . 17r 
'f'1 x)=smyx 

A. . 21T' 
'f'2(X) = sm y x 

..1,( .31T' 
'f'3 x) = sm y x 
~ .... ,~< ~, ~(x) was as ordinary 

- as this ... 

cp(x) is an ordinary thing taking the form of many functions written together. 
You could say it's a collection offunctions. 

~.~ 
H So we have to make g from each one of these functions CPI' CP2' CP3 ... 

We apply an orthogonal function to each one and then find the area, so ... 

{nl = f Xn·(X)CPI(X) dx 

{n2 = f Xn·(x)CPix) dx 

{n3 = f Xn·(X)CP3(X) dx 

Let's see ... 
It turns out like this. 
doesn't It? 

All of the gs that result are then gathered together - that is the unitary 
matrix U. 

c([J)" I I 

"~.. There's a good way of doing that. Because the subscripts change 
regularly as in CPI' CP2' CP3' .. , can't we just shorten it all into CPn'? If we do that, then 

f Xn·(x)CPn'(x) dx = Unn, 

will be a unitary matrix just as it is! 

I, 

Well, aren't you smart!. .. Aaah! 0: 

® What is it? Why are you suddenly shouting? Is something wrong? 
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:0 1 'I " I'J , What did we just say c/J(x) was? 

\ I 

~ We said it was a collection of functions ... Oh! 

c/J(x) is a system of orthogonal functions! 

After all, cPn(x) were all orthogonal to one another! 

~ 
~ But they've been normalized. I'm pretty sure that if Xn(x) were a 

system of orthogonal functions and were normalized, it would have worked. 
That means ... 

\ / 
/ 

(cPn(X) can be used in place of Xn(X)!r _=allll@ ~ 

~ This is a brilliant idea! You really live up to your billing as natural 
"t;{;;j scientists. 

Mr. Schrodinger, do you already know what's coming next? 

~ I didn't listen to the math language tapes for nothing! 

~ You sure didn't, I can't wait to grow up and be like Mr. SchrOdinger. 

® Let's keep going, okay? Like Mr. SchrOdinger says, it's a brilliant 
idea. All we have to do is keep moving in the same direction. 

A Can I say something? What if we use cPn(x) to make QO and g? 

• ~ Q~= f </J.:(X)X</JiX)dx 

, r- U"". = f cPn (x)cPn'(x) dx 

I have a feeling I've seen the equation for finding Unn' somewhere before. 
I'm pretty sure it was at the end of the last chapter ... 
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, \ 
-CD 

'0J) I know!! 

Don't tell us! I ought to be able to figure it out, too. Hmm ... I've 
got it! It's the equation for orthogonality! 

W That's right. This equation ... 

Wait, let me say it. 
When n and n' are different numbers, they are orthogonal and the area 
will be O. 

When n and n' are the same, the area will be 1. 

In other words, the unitary matrix V is 

f tPI" tPl dx f tPI"tP2 dx .. · 

V= f tP2* tPl dx f tP2" tP2 dx ... = 

a UNIT MATRIX! Then what is lP ? 

1 0 0 

0 1 0 

0 0 1 

, 1./ 

~ ;:.; V is ~ unit 
~matnx. 

iJ3)-• • 
" '-" I' I'm sure there was an equation vlP = lPv = 1. We need to think of 

what will equal I when it is multiplied by the unit matrix V, in other words, 
what will make a unit matrix. 

? g :::)x(?)=( 6 ? g :::) 
01 .. · 001 .. · 

~- ull" ~ 
,-'" ..J.J 

lP is a unit 
matrix. too! 

It's a UNIT MATRIX after all! 

<® Now that we've found V and Vt , let's apply the unitary 
transformation to QO. 

"lI" can be found by looking 
back at the definition of 
"dagger" on page 277. A 
dagger tells you to switch the 
positions of rows and columns 
and then take the complex 
conjugate. If U is a unit matrix, 
then even if you switch the 
position of the rows and 
columns and take the complex 
conjugate, the matrix will not 
change. Therefore, 

( 1 0 0 "') Ut = U = 0 1 0 ", 
o 0 I '" 
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7 A What? It turned hack into Q 0. 

~Q 
~Don't sound so surprised. We have Q = QO. Therefore, 

although we thought that the matrix made from 

f c/>n'(x)xC/>ix) dx 

was QO, it was in fact none other than Q ITSELF! 

Q~,= f cfJ:(X)xcfJn'(x)dx ~ 
This is the way to find spectral intensities ~ 

without using matrix calulations!! ; ) 

Yes, I see. It's far simpler than Heisenberg's method. 

;.~n...~ ~ Congratulations! It's done, Mr. Schrodinger. 

~ There's nothing more to say. That's really splendid! You did a great 
~ job. 

<Q2Y We no longer need any unitary transformation! 

We did it! Those matrix calculations were so troublesome and 
difficult. I hated them! 

,~ 
- 0> ~ There's also another great thing. As I've said many times before, 

Heisenberg's equation could only describe the spectrum. But, if you think about 
it, the 11JII2 that we obtained from 

•• pp + 41T iIDC a p - 81T 2IDC\B P = 0 
at 

which we constructed in the previous chapter on de Broglie and SchrOdinger 

I Il~' fJl c. ' 

• I (7 • (',,, \) It e,m de5eribe thi5 
Stream of I (7 d experiment, too! 
electrons 

can describe the interference experiment. Besides that, it can explain how 
an electron changes over time. 
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I .... 

~ - I'd like to make this a Hennitian equation, too. 
distance ourselves even farther from Heisenberg. 

By doing that, we'll 

I'll leave out the detailed calculations here, but the equation we come out 
with is: 

Time dependent SchrOdlnger equation 

H -- --- -- x 1/1' x t +--=0 ( 
h a h a h a) h a1Jf 

2 .::1 '2 .::1 '2 .::1 ' ,y, z (, y, z,) 2 .::1 • 
1T I oX 1T I oy 1T I oZ 1T I of 

This may be gilding the lily, for we have already proven our point: we can 
now explain the interference experiment, which Heisenberg could not do, and 
we can describe changes in an electron over time. We have everything we need 
to HAVE A VISUAL IMAGE, AND TO DESCRIBE THE PHENOMENA 
COMPLETELY. 

But the required calculations are far simpler than matrix 
mechanics. We have just brought a PERFECT THEORY 
into the world of physics!! 

~
-

I, •• ~ ,1 

r ,n 
~ 

· · · 
~ Wow, we really did something pretty great. 

:; A I feel a lot closer to Mr. ScbrOdinger. 

~ , This is marvelous. You were a big help. Thank you! Now then, let's 
all say it together ... 

- ~ \ 

))~~ Good-'o)'e. 

II' ~I ---

JJ 

Adios! 

'" 
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•• 

5. 4 SCHRODINGER'S EQUATION IN 
JEOPARDY 

THE 
STRENGTHS OF 
SCHRODINGER'S 
EQUATION 

Not even SchrMinger could suppress his excitement over his brand new 
equation. We should stop for a minute and review the points that make it 

brilliant. 

H( 2~ i Ix ' x)¢ (x) - E ¢ (x) = 0 

THE THREE STRENGTHS OF SCHROOINGER'S EQUATION 

1. It allows for a visual image. /r 2. The calculations are simple. 

,_-------------------J 
You don't have to do those tiresome 
and difficult matrix calculations! 

3. It offers a way to explain interference. That may be 
calculated as 11JIf 

I 
• I 

Stream of I 
electrons 

11Ji1 2 precisely matches the effect 
obtained in experiments by passing 
an electron through a barrier with 
two holes in it. 
Heisenberg is not able to explain 
this effect. 

It's amazing! If you use this equation, all sorts of things that couldn't 
be explained by Heisenberg's equation become clear. 
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But that wasn't the end of it. .. 

Come to think of it, what started us on our physics adventure was the one 
book that was assigned reading when we entered TeL. 

-......--. 

--
A description of what happened when SchrOdinger, super equation in hand, 

went riding into Heisenberg's encampment appears in the chapter "FRESH 
FIELDS." 

In the summer of 1926, Schrodinger lectured on his theory at a seminar in 
Munich at the invitation of Heisenberg's teacher, Professor Sommerfeld. 
Naturally Heisenberg was there, too. As Heisenberg later remembered, 

~ 
Heisenberg Wien 

"SchrOdinger first of all explained 
the mathematical principles of wave 

- mechanics by using the hydrogen atom 
..... as an illustration. All of us were 

" delighted to see his elegant and simple 
solution by conventional methods of a 
problem that Wolfgang Pauli had been 
able to solve only with great difficulty 
using quantum mechanics." 

Schrodinger explained the hydrogen atom so simply that those attending the 
seminar were speechless. Heisenberg tried to refute him on one point, but it was 
a minor issue, and by then everybody was convinced that SchrOdinger's method 
would eventually be able to clear up everything. 

~ U "Even Sommerfeld, who felt most kindly toward me, succumbed to 
the persuasive force of Schrodinger's mathematics." 

SchrMinger's equation was indeed formidable. But Heisenberg simply 
refused to accept it. That very evening he wrote to Bohr telling him of the day's 
events. 

After reading what Heisenberg had to say, Bohr invited 
Schrodinger to his own home in Copenhagen that autumn in 
order to discuss the behavior of the electron. Bohr's discussions 
with Schrodinger began at the railway station and were 
continued daily from early morning until late at night. 
Schrodinger stayed in Bohr's house so that nothing would 
interrupt the conversation. When it came to topics related to 
quantum mechanics, neither one yielded an inch; they sent 
sparks flying. 

I ~.I1~4I:-'~ ··r.{"t· '[['J t%~!;J)J:;~lwj; 

CONFRONTATION 
wmIBOHR 
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Surely you realize that the whole idea of 
quantum jumps is bound to end in 
nonsense. You claim first of all that if an atom 
is in a stationary state, the electron revolves 
periodically but does not emit light, when, 
according to Maxwell's theory, it must. Next, 
the electron is said to jump from one orbit to 
the next and to emit radiation. Is this jump 
supposed to be gradual or sudden? If it is 
gradual, the orbital frequency and energy of 
the electron must change gradually as well. 

In other words, the whole idea of 
quantum jumps is sheer fantasy. 

What you say is absolutely correct. 
But it does not prove that there 
are no quantum jumps. 

It only proves that we cannot imagine 
them, that the representational concepts with 
which we describe events in daily life and 
experiments in classical physics are 
inadequate when it comes to describing 
quantum jumps. Nor should we be surprised 
to find it so, seeing that the processes 
involved are not the objects of direct 
experience. 

/ 

\ 

(/ 

I don't wish to enter into long 
arguments about the formation of concepts; 

?> I prefer to leave that to the philosophers. 
I wish only to know what happens 

inside an atom. 
I don't really mind what language you 

choose to discuss it.· .. 
The moment, however, that we change the picture and say that 

there are no discrete electrons, only electron waves or waves of 
matter, then everything looks quite different. We no longer 
wonder about the fme lines.· .. 

What seemed to be insoluble contradictions have suddenly 
disappeared. 
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I beg to disagree. The contradictioDS 
do not disappear; they are simply 
pushed to one side.· .. 

We can see the inconstancies, .. for 
instance· .. The sudden rush of an 
electron through a cloud chamber. You 
cannot simply ignore these observations 
and behave as if they did not exist at all. 

If all this damned quantum 
jumping were really here to 
stay, I should be sorry I ever got 
involved with quantum theory. 

But the rest of us are extremely grateful that you 
did; your wave mechanics has contributed so 
much to mathematical clarity and simplicity 
that it represents a gigantic advance over all 
previous forms of quantum mechanics. 

/ 

Day after day, from dawn to dusk, their discussion of the atom went on and on. 

After a few days SchrOdinger fell ill, perhaps as a result of his enonnous 
effort; in any case, he was forced to keep to his bed with a feverish cold. 

Niels Bohr kept sitting on the edge of the bed talking at Schrodinger: "But 
you must surely admit that ... " No real understanding could be expected since, at 
the time, neither side was able to offer a complete and coherent interpretation of 
quantum mechanics. 

In this conversation, Bohr seemed to be saying that there is some sort of 
problem with SchrOdinger's "perfect" equation. Hmm ... Maybe Schrodinger's 
equation seemed so complete and perfect because he himself never touched on 
its problems. That's possible, and I guess it's up to us TCL students to look 
again at Schrodinger's equation, this time with TCL eyes! 
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r ~ - -- -- -- - -- - -- - - :?,@'~»j "~'~,,m:;; ""';;;",& ",,,,,,,@" 

PROBLEM AREAS IN THE W--I SCHRODINGER EQUATION a . ~ 
( \) 

m d r 

II 1. Cloud chamber } 
m The equatio.n cannot explain 
II Compton effect these expenments. 

I Photoelectric effect 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

In the cloud chamber experiment, the 
paths traveled by electrons can be seen. 
The Compton effect and the photon effect 
refer to collisions between electrons and 
light, in which the electrons are thrown 

Cloud chamber 

back. If electrons were waves, they would keep on going when 
they collided with light without being thrown back, and the 
ricocheting phenomenon would not occur. 

2. When creating the equation 

H( 2~ i ~ , x)4> (x) - £4> (x) = 0 

from equation 

why were m ,flJ and v first changed to 

m ~ ~ , v ~ ~ and ~ ~ X ' the language of particles? 

This is supposed to be a wave 
equation. What is going on? 

3. 0...0. Light is emitted when the number n 
changes, getting smaller or bigger (left 

,,\ I '" _ diagram). Not even Bohr suggested how 
- ~[}j)Q, - and when this occurs. 

/ I \ 

Regarding this, Schrodinger said it's hard to imagine an 
electron jumping about like a flea and that he felt better thinking of 
it as a wave. 

How about that! We thought Schrooinger's equation was perfect, yet there 
are all these weak points. 

Mr. Schrodinger, what are you going to do about all these problems? 
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~ A Mr. Schrodinger! How do you suggest solving these problems? 

Hee hee hee. Such concern over a few little things ... Eventually, 

I WILL FIND A SOLUTION FOR THEM!! 

--
In general, this equation lets you fonn a visual image! That's 

the basis of physics, the very foundation. As I said before, only 
when people can conceptualize the image in their heads, can they 
be said to understand it. Compared to the all important "visual 
image," these problems are minor. 

SchrOdinger spoke with strong conviction, stemming from the most crucial 
element of his equation, which is that 

~ 
Heisenberg gave up and declared, "Let's get rid of the visual image." 

Compared to his proposal, SchrOdinger's equation is absolutely splendid! 

However. .. A dreadful discovery was made relating to the source of 
Schrodinger's self-confidence, the visual image!! This happened when 

Schrodinger's equation, taking the electron as a wave, was used in the case 
where there are two electrons. 

A Let's see ... SchrOdinger's equation 

H( 2~i ix, x)cp (x) - Ecp (x) = 0 

described the case of A SINGLE-ELECTRON WAVE. 

THE LOST 
IMAGE 
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-'6 W I'd like to call your attention to something. 
equation from the equation for de Broglie fields 

At the time we made my 

do you recall that 1Jr was the second derivative of x, y, z, and we decided that we 
would take just the x dimension because the calculations were so troublesome? 

Now that you mention it. .. 

We took only this part into consideration when making the equation. 

This means that you can't really describe one electron without considering 
the y and z dimensions too. 

W That's correct. 
:~ 

/ 

Otherwise, you know the movements of the electron only in the x 
dimension. Now then, 4> in this equation will be a function of what? 

If we look within the brackets, H is determined by Ix - that is, the 

derivative with respect to x - and by x. Doesn't that make ¢ a function of x, 
too? 

~ That's exactly right. H is basically a way of expressing energy as a 
/ / function of P (momentum) and V (position), and is known as a 

Hamiltonian. If we look at it closely, it is 

p 2 

H(P", x) = 2:n + V(x) 
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But as we already know, any Pxmay be expressed in the language of waves 

h d S· 1'" h ..& thi al I . as 21r i dx' a III rea Ity, It IS enoug to pellonn s e eu aHon: 

( h d ) 1 (h d)2 H 21ri dx ,x = 2m 21ri dx + V(x) 

The point is, since the H is determined by the derivation in respect to x, the 
wave ¢ of this electron is also determined solely by the one dimension x. 

So if we want to describe a single electron properly, we also have to 
think in terms of the y and z dimensions. That means we must take H, which 
was determined solely in terms of x, and modify it so that it is determined by y 
and z as well. Is it something like this? 

(
h a h a h a ) H -- --- -- x -E =0 

2 . a '2 . a '2 . a ' ,y, z ¢ ¢ 
1rl X 1rl Y 1rl Z 

: W Super! That's exactly right. Okay, this time the electron wave is a 
I function of what and what and what? 

\ I I,', -E Atl¥~ 
-:. ~ )i~, That's simple. It's ¢ (x, y, z). In other words, it's a three

dimensional wave determined by the three elements x, y and z. 

\ 

':.~ That's right. In sum, A SINGLE ELECTRON IS A THREE· 
DIMENSIONAL WAVE. 

There are three-dimensional waves all around us. Sound waves are one 
example. If you think of them that way, you can picture them in your mind, 
can't you? 

Yes. o 0 

So far, so good. Now what happens when we describe the case of two
electron waves? 
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,~ o First, let's think concretely about what happens to H when Hcp - Ecp = O. 

The energy of the first electron is described as a Hamiltonian. 
We call this HI' 

(
h a h a h d ) H ---- --- ---- X '7 

I 2 '!l ' 2 '!l ' 2 '!l ' I' YI' ~I 7Tl uXI 7Tt UYI 7Tt uZI 

The energy of the second electron is also described as a Hamiltonian. 
We call this H 2• 

(
h a h a h d ) H, ----,----,---- ,x." v ... ,z.., 

- 27Ti aX2 27Ti aY2 27Ti aZ2 _. - -

Next, the energy in the case of two electrons in three-dimensional space 
is described as a Hamiltonian. We call this H. 

(
h a h d h a h a h d 

H 27Ti aXI ' 27Ti aYI ' 27Ti ik; '27Ti dX2 ' 27Ti aY2 ' 

2h . -!- ' XI' YI' ZI' X2' Y2' Z2] 
7T t uZ2 

And in this case, H = HI + H2• 

Therefore, when you use the SchrOdinger equation to describe the fact 
that there are two electrons, a very long equation results. 

(
h a h a h a It a It d 

H 27Ti aXI ' 27Ti ay:-' 27Ti ik; '27Ti aX2 ' 27Ti aY2 ' 

h a ] -2 . -;- ,XI' YI' ZI' X2, Y2' Z2 4> ± E4> = 0 
7T t uZ2 

Let's take a good look at this equation. This time cp is ... 
...., Oh! ) 

Q 

; fJJ Mr. Schriidinger. it's a disaster!! Using your equation. I described the 
fact that there are two electrons, but please have a look at this. What on earth 
happened to 4> this time? 

(}} f§' Slow down. You're jumping ahead of yourself. 
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Looking at what we have so far, this expression ¢ seems to be 
determined by XI YI ZI' X2 Y2 Z2' that is, by six numbers. 

~, \j .... 

:: ~ At first I thought that x, y, z, as well as X, y, z, were subsumed in the 
same X y z, but in mathematical terms they are describing completely separate 
dimensions! Doesn't that mean that when there are two electrons, we will 
have a six-dimensional wave? 

So if we describe a two-electron wave, we get a six-dimensional wave; 
for three electrons, we get nine dimensions; for four electrons, 
twelve dimensions. With something like this, there's no way I can 
picture such waves. At first, I was worried, thinking that I couldn't 
picture such waves because I wasn't smart enough, but that wasn't it at 
all. I mean, people can only picture up to three dimensions! So what 
exactly is going on here? 

A Our bodies are made up of how many hundreds of millions of units 
called atoms? There are many times that number of electrons. If we try to 
represent them using SchrMinger's equation, won't we end up with 

No one can picture an electron wave with infinite 
dimensions. 

At this point, Schrodinger became aware that it was Hamiltonian 
mathematics itself that had caused such an incomprehensible thing to happen. 
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But it was too late. All kinds ofthoughts went through Schrodinger's head. 

~ Drat. .. I didn't think there was anything wrong with my thinking. 
Yet it might have been a mistake for me to use Heisenberg's equation as a model 
by putting 

in Hamiltonian form. 

I learned when I made the equation 

that as long as ¢ and E are known, 11 and Q of a spectrum can be found. That is, 
you can explain the experiments and still retain a visual image. I wonder if 
ultimately I'll have to abandon the equation that I've worked so hard to create, 
and just leave things as they are, with the de Broglie-Schrodinger equation 

If I stop at finding just ¢ and E from this equation, since there is a V in it, I 
can mentally picture it as a simple three-dimensional image. Not only that, if ¢ 
and E are found, then 11 and Q can be found also. 

But that idea didn't help either. The problem was that Heisenberg's 
equation and de Broglie's equation agreed in giving the same correct answer 
only in the case of one particle. When there were two or more particles, de 
Broglie's equation could not produce correct answers. The equation that 
produced correct answers was, after all, the H form of the equation that 
SchrOdinger developed. There was no turning back. 

Whew ... 
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SchrOdinger was deeply discouraged. Indignant at 
Heisenberg's statement that a visual image of the 
electron was not possible, he had tried vigorously to 
prove him wrong, and apparently succeeded. But as it 
turned out, he too, had ended up creating an equation 
that could not produce a visual image. 



As for Heisenberg, his 
starting premise was that a 
visual image was not possible, 
and he formulated an equation 
to correspond to that reality, 
with the objective of describing 
actual experiments on spectra. 

~ 
H(poQ~~ - W~ = 0 

'" " 
Matrix 

mechanics 

I Experimental results I 
Schrodinger, on the other hand, built up his theory on the cornerstone 

assumption that we can and must be able to visualize the electron, but when it 
came time to look at the finished product, the cornerstone wasn't there. 

'(J~~~ 'O311~ ~ H( 2~i .fL, x )f}cf> = 0 ~ , ~ 
r-:.........----,,,~':CI1 ~t'5 done! 

Wave • Wave t 
mechanics ,_ ~~~~~~i~_: ~Q 

i Visual Image : ~ 
------------ ______ 1 

Helpl 

What the ... 

But Schrodinger was not the sort to be daunted by such a thing! He 
persisted to the bitter end, saying: 

Now that this unintelligible matter of six 
dimensions has come up, I realize that wave 
mechanics is only half-developed. Sooner or 
later, someone is bound to resolve the problems 
and think up a way to represent the behavior of 
electron waves in three dimensions. In any 
event, it seems likely that soon we will achieve 
a definitive value for 11/12• 

AN ELECTRON IS A WAVE. 
WHATEVER DIFFICULTIES THERE MAY BE, 

THEY WILL ALL BE RESOLVED IN THE END. 

-
/ 

/ 
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IN CONCLUSION 
I feel sorry for Mr. Schrodinger. He struggled so far, only to see his 

equation end up like this. 

~ I agree. Only because he was so determined to show that a visual 
image is possible was he able to complete the Schrodinger equation. 

But it was a wonderful experience creating equations together with 
Mr. SchrOdinger. Because of that, I'm no longer as intimidated by equations. In 
the end, we truly understood that equations are not complete from the 
beginning, but are constructed bit by bit. What's more, I somehow feel as if I 
physically experienced how equations work as language. Heisenberg's equation 
simply explained phenomena. Schrodinger's equation, on the other hand, had 
an intimate relationship to language. Creating this equation involved much 
more than manipulating values; it involved attempting to construct a language 
that produces a visual image. This search for a language to describe nature 
was a lot of fun! 

'i' t' r.~ 
'-' I agree. Until now we've been looking only at completed things, so 

we didn't know anything about process. Nevertheless, this electron which we 
cannot mentally envision ... what could it be? Normally, we're supposed to be 
able to produce some kind of visual image with the language that we're using. 
That's what language is after all, right? 

Yes. Language has meaning, and language always produces a mental 
image. That's why we can transmit meaning to the person to whom we're 
speaking. 

~ If no visual image is possible, does that mean we can't explain the 
electron in the language we use? 

\ 
.... 

Come on. If that's so, just how are we supposed to explain it? 

o That's what I think too, but. .. 

I really understand how desperately SchrOdinger kept chasing after a 
visual image. 

® Right, and I hear that other physicists also gave him a lot of support. 
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Everyone wanted the reassurance of being able to have a visual 
image. But in the end we lost the image, and now it seems like we've ended up 
right back where we started. 

o 
~ 
~ It's too bad. Like before, we have a language to explain the results of 

experiments, but we still don't have one that can explain the behavior of 
electrons. I don't know how it will tum out, but all we can do is go on ... 

What is going to happen to the electron? Will there really come a day when 
its mysteries are unraveled? With that tantalizing thought, we're off on the final 
chapter of our adventure. Let's go! 
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CHAPTER 6 

Max Born 
and 

Werner Heisenberg 

DEPARTURE 
TO A NEW WORLD 

Bohr and Heisenberg started from the premise that eLectrons are particles. 
That approach led to a thesis where a visual image of the electron was not 
possible. Schrodinger, on the other hand, believed that we can and must aLways 
have a visuaL image. His point of departure was the premise that eLectrons are 
waves. But, as it turned out, the theory he worked out couLdn't support a visual 
image either. 

And now, here we are, at the climax of our adventure! How, uLtimately, will 
Heisenberg's thesis affect quantum mechanics? Exactly what is this thing called 
quantum? We now take a step toward a new worLd. 
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6. 1 HAVING IT OUT 

It was Niels Bohr who said: 

"We ourselves are ... both spectators and actors in the great drama of life." 

Now that we have started to explore the world of language and of quanta. 
everything around us - what we hear, see and feel every day - has taken on 
new meaning as objects of natural science. It's an exciting drama that we want 
to share with as many people as possible. 

One day when we had just about finished quantum mechanics, I turned 011 

the television. As I flipped through the channels, I noticed a program starting 
on one of the channels that looked interesting. As I began watching, I realized 
what it was! 

10th Anniversary of Hippo: 
A TCl SPECIAL 

"THE NATURAL SCIENCES IN 
THE 20TH CENTURY" 

i®! Greetings to you all in the television audience. The topic of our 
special program today is the natural sciences in the 20th century, and we are 
going to explore the landscape of the micro-world of atoms. My name is Janet 
Brown and I will be the host of this program. Let me begin by introducing our 
participants. 

The heroes of twentieth-century physics were sitting around a big oval table. 
along with three guests. Around them sat the audience. 

i®l First, on my left, is Max Planck. Mr. 
Planck discovered Planck's constant h. He is 
the pioneer who blazed the trail to quantum 
mechanics. Good evening. 

~ Good evening. Of the various 
quanta, I am especially interested in talking 
about light. 
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(Wl Next to him is our old friend who 
gave us the theory of relativity. Good evening, 
Mr. Einstein. 

@ Good evening. I've been looking 
forward to coming here. 

t®l Next to him is Niels Bohr. This is a 
man who constantly surprises us with his 
innovative ideas. 

What a pleasure it is to be able to 
share with you all the sublime joy of the 
natural sciences! 

~ ~Next to him is Werner Heisenberg. 
Although he is young, his achievements are 
tremendous. 

ry 
W I have only followed in the path of 

those who have gone before me. 

Sitting proud and erect, Heisenberg stood out among the participants, a 
refreshing, likable young man. 

t®l Next to him is Louis de Broglie. He 
is the person who first concentrated on the 
properties of wave motion observed in 
electrons. 

I began to take an interest in the 
world of physics after reading a thesis that my 
brother was studying. I hope we can learn 
more about physics today while having fun and 
enjoying ourselves. 
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~ Next is Erwin SchrOdinger. Mr. 
Schr6dinger just recently completed the 
equation of wave mechanics. 

W In the process of formulating my 
equation for wave mechanics, I have made 
great advances in both mathematics and 
physics. 

Now, coming next after this 
illustrious parade of people from the physics 
world is the adventurer Mr. Hippopotamoid. 
Hippopotamoid makes astute points by asking 
simple questions. We're looking forward to 
hearing the questions he will ask today. 

@A • • " n 
Q 

I really enjoy investigating strange 
things. 

~ Next to him is the critic Aunt Potam, 
who is none other than Hippopotamoid's aunt. 
Aunt Potam would like to comment 
occasionally from the standpoint of a 
homemaker and mother. 

~ Well, as a homemaker involved in the 
routines of everyday life, I'd like to find out a 
few things about natural science. 

{®j Finally, to my left, from the 
Transnational College of LEX, known as TCL, 
is Ms. Yuka Fujimura. e ...... . ~ . 

o I will never forget Heisenberg's 
words: "Science is made by men." Human 
beings create science and they describe it using 
language. My interest is exploring the natural 
sciences from a linguistic point of view. 
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(®) Well,Iet's get started. Firs~ will you pIease look at this diagram1 

The diagram was a long and narrow band containing a number of lines. 

1111111 I 1111 I 1111 L-. v 

t®l We are able to determine the atom's size, its weight and also its 
spectrum. This is the spectrum of the hydrogen atom. I've heard that 
practically all discoveries in atomic physics were related to the spectrum 
emitted by an atom. 

~ ~ An atom is too small for us to look directly inside it, but even though 
we cannot see something, we can still obtain information about it. For instance, 
when you throw a rock in total darkness and you hear a "kerplunk" sound, 
where do you suppose the rock landed? 

j) 

.~ 
rock 

fl] I'd think it was a pond, or some other body of water. 

® That's right. If you heard glass breaking, you would think you had hit 
something made of glass. We may not be able to see it, but we can guess what a 
thing might be by doing something to it and observing the response . 

. ""~. Well then, are we going to hit some atoms? 
~ ~ 

• 

® We cannot actually hit them with anything, but we can place atoms 
under certain conditions, or limitations, and then observe what happens. That is 
what it means to perform an experiment. 

i i @'" 
"0 lance did an experiment in human flight. I attached some banana 

leaves to myself and tried to fly. I found, however, that I couldn't fly under 
such conditions. 
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W If we want to find out about atoms, what experiments should we 
~W~ perfonn? 

~ ~Do an experiment that applies energy to the atom and observe what 
happens to the spectrum. The spectrum mentioned earlier is a response that 
always occurs when energy is applied to an atom. 

~ Mr. Planck, are you able to explain that in more detail? 

@ As we've said, it is impossible to look inside the atom. Nevertheless, 
the responses to such experiments applying energy to atoms give us certain 
infonnation. When we talk about applying energy to an atom, we mean passing 
electricity through it. When that is done, a change in the movement of electrons 
occurs inside the atom which produces light. The spectrum of an atom is what 
one sees when that light is passed through a spectroscope, which is something 
like a prism. Each type of atom produces a distinctive spectrum. Through 
electromagnetics it was known that electrons give off light when they move, but 
it was not known how electrons moved within an atom. In order to understand 
the movements of an electron, we need to understand something about atoms. 

~o~ So the spectrum is an important key to understanding the structure of W the atom. 

@ Before considering the visible spectrum of each type of atom, we had 
to understand the true nature of the light given off by electrons. 

~ Is it like knowing who the parents are like from looking at the 
children? Can we think of an electron as a parent who gives birth to light? If 
the offspring is a hippopotamus, then you know the parent is not an elephant. 
Human parents give birth to human children. So you can infer things about 
electrons from your understanding of light, can't you? 

{®} What we call1igbt is something that is visible, yet it cannot be seen. 
Only with light are we able to see things because our eyes see objects by 
receiving light that is reflected off them. So, although our eyes see light, they 
do not see what light itself is. 

~ Actually, for some time it has been considered possible that light is 
something like a wave, something with wave-like properties. 
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~ What is the nature of a wave? 

~ We think of a wave as moving, or being transmitted, as its oscillations 
spread. If you drop something onto the surface of water, you can see the ripples 
start and spread outward. 

© Once, when I feU into a pond, the ripples spread out ~ \\ 
in rings. Is that the same thing? ~ M I) ! 

rw 
~ Right. It was thought that light is transmitted in the form of waves as 

they spread out from a point of origin. Thus, if we can obtain numbers from 
light that indicate the speed, the height and the frequency of waves, then we can 
write about light using wave equations, the language of waves. 

i®l What things don't have the properties of waves? 

® Things caUed particles. They do not spread; they are not transmitted 
like ripples are through water. Particles themselves move. The movement of a 
ball when it is thrown, or the movement of something as it falls are good 
examples. This kind of thing can be expressed using the laws discovered by 
Newton. These laws are called Newtonian mechanics, and they are completely 
different from the behavior of waves. In no way can a particle be a wave, nor a 
wave be a particle. 

iWl The ripples in a pond or the waves in the ocean spread, or are 
transmitted, across the surface of water. By what medium are light waves 
transmitted? 

@ Although the properties of light waves and water waves are similar, 
there is no actual thing, like water in the ocean, that transmits light waves. 
Light is transmitted even through a vacuum, like the light of the sun that is 
transmitted to the earth. It is truly a strange thing. Nevertheless, because in 
certain ways light appears to behave like waves, it was thought that the 
equations used for waves might be used to describe light. 

~ What characteristics of light resemble the behavior of waves? 
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@ Light, like waves on the surface of water, interferes. If Aunt Potam 
falls into the pond, the ripples, or rings, will simply spread. But, if 
Hippopotamoid were to jump in also, rings would spread out from both of them 
and the waves would collide. 

il As the waves mee~ the places where crests meet become higher, and 
the places where the Valleys meet become lower. Where a crest meets a valley, 
the waves cancel each other out, creating a place that is neither high nor low. 
The way that waves meet and influence each other is called wave interference. 

• I • a~ 

'-' The way in which people influence each other - for better or for 
wo~ could be called people interference. Don't you agree? o What do you see when waves interfere? 

~ Wave interference can be demonstrated by passing light through two 
slits, like this. 

Wall 

Slits 

Light source (laser) 
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~ The light that passes through the two slits spreads out from them like 
waves. Where they collide, they interfere, creating that striped pattern of light 
and dark on the wall. This would not happen if light behaved like a particle. If 
light were a particle, it could not pass through both slits at the same time and 
there would not be any interference. Therefore, light is not a particle, but a 
wave. 

Waver-------------------__ 

Intensity 

I 
I 
I 

Number of pellets 

i®) 

~ 

If that's so, saying that light is a wave was correct. 

In the end, however, the results of an experiment showed that you 
couldn't simply call light a wave and leave it at that. The experiment, called 
blackbody radiation, was designed for measuring the specific heat of light. 

What was the meaning of the experiment? (W) 
i) 

A graph could be made from the experimental results showing the 
relationship of frequency to energy, but no one could really explain the graph. 
By all accounts, it was a mystery. People searched for an equation that 
corresponded to the graph, but many years passed before such an equation was 
found. © What did that equation tell us about light? 

~ Of course I was glad that an equation had been found, but for a long 
time I didn't want to believe what it was saying about light. However, after 
working tirelessly to understand, I came to one conclusion. 

Even though it was Planck's own conclusion, he spoke a little regretfully. 
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~ The energy of light oscillating at frequency v only has values which 
are integral multiples of the value hv. This is expressed by E = nhv. It can only 
have discrete values, and it can never have values in between these multiples. 
This means that the change in energy levels is not continuous. 

That didn't seem like such a big deal to me. 

~ Since experiments show that for some reason the energy of light only 
takes discrete values, we cannot simply say that light is a wave. We need to 
construct a language for explaining this. 

~ This is when Einstein appears on the scene, right? 

Einstein, who had been thinking hard, now came forward. 

® There's a ready explanation if you consider light to be a particle. 

My, he S bold. Some things can be left only to Einstein. 

~ What difference will it make if we think of light as a particle? 

® If light is a particle, there is nothing strange about having 
discontinuous, discrete values. 

@ A particle resembles a coin in that both are counted by jumping from 
one fixed value to the next. There are no gradations in between these values. 

®The energy of light bas values that are integral multiples of hv. Thus 
we can think of n as the number of particles. In other words, each particle of light 
has energy h v, and the energy of one particle of light may be written as E = h v. 

I was startled by this radical change of course. As for Einstein, he 
continued on with his argument. 
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~ ~ I'd like you to recall the photoelectric effect and Compton effect 
experiments. 

These two experiments were inexplicable as long as light was thought of as 
waves. But as Einstein carefully explained each one, as if by magic I was able 
to see how light could be regarded as having the characteristics of a particle. 
And, Einstein said, if you treated light as a particle, you could find its 
momentum as well. Then he wrote out the two equations in large clear 
handwriting for us. 

Energy of light E = hv ~ 
Momentum of light p = .l!.. '---_ e, 

A 

By this time, we were just about convinced that light was a particle. 

I I 

" " @'"' 
o Wait a minute! What about interference of light? We were just 

talking about that. If light is a particle, there won't be any interference. 

That's true. Didn't we say that light is a wave because it demonstrates 
inteiference behavior? 

~? 
8 Also, I can't imagine what the frequency of a particle would be. Isn't 
frequency a word that relates to waves? Light seems to act like a particle, but 
talking about that behavior alone does not explain everything about light, does it? 

® The logical conclusion is that light bas a dual nature; it acts like both a 
wave and a particle. Further, we have two important equations: one expresses 
the relationship between momentum and wave length, and the other expresses 
the relationship between energy and frequency. The development of those 
equations gives us a connecting link between particle equations and wave 
equations. 

I l I ®r,.... 
.J Those two equations were to become the linchpins in quantum 

mechanics, and right to the end they were at the crux of questions about the 
strange behavior of electrons. 

A momentary, pained expression on Einstein s face did not escape me. 
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~ We talk about a dual nature when something has two contradictory 
sides, right? 

f!1 Listening to your conversation has made me think of how much 
language resembles light. Language also seems to have a dual nature. To me, 
when language is treated as sounds it has a wave-like character; and when it is 
treated as meaning, it has a particle-like character. If only there was something 
that could tie the two together, like an h for language! 

~ If light really has a dual nature, then what in heaven's name are those 
electrons that give off light? Now that we're really determined to find out more 
about them, let's continue on our way with Bohr's discovery. 

~ W First, you look at the movement of an electron as particle motion. If it 
is particle motion, you can represent a light particle as E = h v. That was my 
starting point. 

(®) If an electron moves like a particle, how does it move inside an atom? 

~ The electron goes round and round the nucleus of an atom, and that 
motion is thought to generate light. 

[®) But an electron cannot keep rotating and giving off light indefinitely, 
can it? As it gives off light its energy becomes used up, so the electron will 
gradually lose centrifugal force and it will be pulled in closer and closer until it 
is stuck onto the nucleus. 

~ W Let us say, then, that the electron gives off light not as it rotates, but 
when it changes its orbit of rotation. 

Can you decide such a thing on your own, just like that? 
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t.?L W Yes, it's all right. Thinking along the lines of classical mechanics, 
experimental results on the behavior of electrons could not be properly 
explained. That is to say, the visual image that could normally be sustained in 
classical mechanics could not be produced. But I do not think we need to throw 
out classical mechanics altogether. When we can rewrite classical mechanics 
for use with quanta, and obtain equations that have no inconsistencies with the 
results of experiments, then perhaps we will come to understand the atom. 

(@) You're saying tbat if we assume that electrons give off light as they 
move from one orbit to another, then there is a very good way to explain the 
atom. 

W Yes, for the time being. It was a matter of figuring out how an 
electron works to give off light. When an electron moves from one orbit to 
another, it releases one light particle with energy E = h"ll. 

I was astonished at the turn Bohr's discussion was taking. 

•• Q'"' 
",-," A violin string produces sound only when it is bowed or plucked. 

Similarly, electrons give off light only when they move between orbits. 

• I • n~ 

'-' Maybe there's an analogy in language, too. If you utter nothing but 
the same sound, "aaaa," it won't sound like a word. But as soon as a change is 
introduced, like "aaaai," then it starts to sound like a word. 

(@) How are the spectrum and E = hv related? 

~ You remember that we describe spectra using numerical values of 
frequency and amplitude. Light carries that information. I imagined therefore 
that I could describe the frequency and amplitude of a spectrum with an 
equation using h and "II. 

@ Are the numbers for frequency or amplitude arranged in some kind of 
~WS order? 

t.?L W At first glance, they seem to be a scattered jumble. Now, when I say 
spectrum, does that remind you of something? 
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n Q Yes! Fourier. 

~ That's right. Fourier math is a method of describing a complicated 
wave as the sum of simple waves. It occurred to me that Fourier's method 
might be of use. For the time being, why not make do with something that 
appears useful, or at least related. It reminds me of a time I spent living in a 
shack up in the mountains. Without running water, my dishwater and towels 
were dirty, but I still managed to get my plates and cups clean. 

~ Did you apply Fourier's method without modification' 

~ If I had been able to do that, it wouldn't have been difficult. But the 
most important prerequisite for using Fourier math - the requirement that the 
frequencies have values that are integral multiples - was missing. If the 
spectrum of light emerging from an atom were a sum of frequencies at regular 

inii)' ~~:::u h~::::::~:~ithout giving it a second thought. 

As it happens, when the frequency is very low, it is possible to make 
calculations using Fourier. Encouraged by this, I decided to proceed using only 
Fourier. !®l Could you get those cups and plates clean with Fourier? 

9 W No matter what you do, you cannot describe the atom using Fourier 
alone. That's my conclusion. Since classical mechanics alone could not 
describe them, I knew that we needed a new quantum language for both 
electrons and light. When something is lacking, there arises a need to make up 
for it. Here it is made up for by a special condition that must be applied only in 
the case of quanta, the quantum condition. i®l Will the application of the quantum condition solve the problem? 

~ W I succeeded in describing things related to frequencies. But with 
regard to the other element of the spectrum, the amplitude, I could describe 
nothing. 
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~ At this poin~ Heisenberg begins playing. big role, doesn't he? 

~ W That's right. He had the pluck that I did not have, and finally he was 
able to describe atomic spectra completely in a single equation, without even 
using the quantum condition. 

~ W Oh no, Professor Bohr's pluck and determination are just as 
admirable. First he tried to express things using only the language that he 
started with, but with each new barrier he encountered, he changed his course. 
The method that he developed is now used routinely, although at the time it 
seemed like a revolutionary new way of thinking about physics. It is a method 
based on what is called the Correspondence Principle, and one that I also use to 
tackle the problem. 

~ W What I couldn't do was to abandon the idea of orbits. If electrons 
make transitions, I could see no other way to talk about them except in terms of 
orbits - that is to say, locations with which to describe motion. Granted, I 
couldn't say when and how electrons make transitions, but my real regret is that 
I was unable to say where the electrons went. However, Heisenberg 
intentionally ignored the idea of orbits producing a breakthrough. 

~ What did you conclude, Mr. Heisenberg? 

~ I came up with Fourier math fOl' use with quanta. I was tben able to 
explain everything about the spectrum of the atom, such as frequency and 
amplitude. In addition, I could express things without having to use the 
quantum condition. 

~ That's ~reat. You described the motion of electrons using quantum 
~ \W j mechanICS. 

~ That's right. 

, \ I ... 

®But now we can't mentally picture the motion of an electron .s 
particle motion any more! 

Einstein cut in rather coldly. 
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~~ 
I I 

~ That's right. At this stage, if someone asked how an electron moves, 
all we can do is show the equation and say that it moves as the equation says. It 
has become impossible to draw a picture of the motion of an electron, or to 
represent it with some analogy. But I'm really proud of one thing. 

~ What is that? What did you gain by making a visual image 
r~ ~ impossible? 

~ W We were able to describe things using the language of quantum 
mechanics including classical physics. It became possible to describe high and 
low frequencies and even amplitude, which changes over time, with just one 
equation. If the Correspondence Principle is mastered, then anything can be 
made to correspond with classical theory. The only difference is that the value 
that represents position in classical mechanics does not refer to position in the 
case of electrons. 

~ 
~ The process of learning a language is also a Correspondence 

Principle. Toddlers imitate words, don't they? And we imitate the Hippo tapes. 
It's like being a voyager who drifts ashore in a strange country. The 

language of the people who live there is completely strange. To be able to 
understand each other's intentions, what do you do? You probably start by 
communicating through body and hand gestures, and then proceed to talk using 
words as you pick them up. In the end you master a language you had never 
encountered before. 

@ ~ This is like cooking, I think. At fust, it seemed that in order to bring 
out the flavor of a dish called the atom, an artificial seasoning called the 
quantum condition had to be added to the basic ingredients of classical 
mechanics. By flavor, I mean the spectrum. But after the chefs thought and 
tested for some time, the basic ingredients alone appeared to be giving a good 
flavor, and they realized that the taste of the atom could be brought out without 
the use of artificial seasonings. 
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I I @r-. 

~ Q" Mr. Bohr and Mr. Heisenberg, you really boiled down classical 
mechanics, didn't you? 

~ W We boiled it down so much that no traces were left of the original 
form of the basic ingredients. But the taste is exactly that of the dish called the 
atom. Since no one has ever seen what the dish called the atom looks like, if the 
form matches the taste, I suppose it can be established as an atom. 

t®l What is the method of cooking? 

~ The dish is made by using the technique known as matrix mechanics 
This method of cooking is a very difficult one requiring the skills of a seasoned 
veteran. It is not something that anyone can do easily at home. 

(®') We've seen one dramatic development after another, haven't we? 
And they seem to lead to the conclusion that it is not possible to have a visual 
image of the atom! 

®NO' we haven't reached the end yet. We can't do away with a visual 
image so easily. It is possible, you know, that the initial premise was wrong. 

t®l At this point, we come to the story of de Broglie and the wave-like 
characteristics of electrons. 

M Bohr tried to associate particle motion with electrons, and ended up 
with the disadvantage of having to give up on a visual image. But I noticed that 
one other road remained, which is that light can be treated as a wave. I took up 
the challenge of writing about electrons in the language of waves. The 
refraction of light in water can be explained from the standpoint of both waves 
and particles. I thought that if we described the motion of electrons in terms of 
waves rather than particles, we wouldn't have to sacrifice the visual image. 

W De Broglie's equation for electron waves supported a visual image of 
~ \.:§)? them. 

ti! Of course it did. And it didn't require anything special like a quantum 
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condition. In the end, Schrooinger built up the equation for electron waves for 
us, calling it wave mechanics. 

~ Do you understand what it means to express the motion of an electron 
using wave mechanics? It means that the electron is a wave, and we can have a 
visual image of it. 

That is the way I think natural science should be. Moreover, the 
calculations for the Schrodinger equation of wave mechanics are simple. We've 
found, in fact, that his equation is fully equivalent to matrix mechanics. 

~ W Everything working out smoothly isn't all that is required. You've got 
to be more rigorous than that. Matrix mechanics may be difficult, and granted it 
doesn't give you a visual image, but the fact remains that it can be written in a 
beautiful equation that describes the spectrum of an atom. Matrix mechanics is 
an elegant language of quantum mechanics. Besides, you say that the equation 
of wave mechanics lets you have a visual image, but isn't the wave you see in 
your mind a complex-numbered wave? And how do you explain the fact that 
when you calculate for two or more electrons, you end up with an equation that 
gives you more than three dimensions? 

~ Look, those things will be resolved in the end. 

~ Mr. SchrOdinger, you are really excited at being able to fonn a visual 
image, but to me, the exciting part is something else. 

W What is that1 

tr The calculations for the matrix mechanics that I came up with are 
difficult. I am very grateful to you for making it easier to calculate by putting it 
in the form of a differential equation. It is absolutely magnificent that, starting 
from either wave equations or particle equations, we were able to arrive at 
equivalent equations. 

fa In the process of completing SchrBdinger's equation, we made one 
big discovery. Since the "effects" of the differential equations and matrix 
equations are the same, they can be thought of as the same thing even though 
they appear to be completely different. That's really fantastic, isn't it? This is 
true with languages as well. French and Chinese are two completely different 
languages, but they can have the same effect. For example, either one can 
convey something like "I want water." Don't you think that's remarkable? 
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W The Schrodinger equation wins. It has achieved the greatest thing, 
namely a visual image. 

~ It isn't possible to sustain a visual image. 

W Why is that? 

~ It is not because of matrix mechanics that a visual image of an 
electron's movements cannot be drawn. It has been proven that producing this 
image simply cannot be done. 

W Now listen to me. If you think of an electron as a wave, you can 
mentally picture it. Moreover, you can do without matrix mechanics where 
equations are difficult to calculate. It becomes possible to describe everything 
about electrons using just the Schrodinger equation. 

Schrodinger's explanations convinced everyone that an electron is a wave. 
He also statedJirmly that electrons are not particles. 

~ I think he is wrong. 

~ W Even if the characteristics of waves are the premise of an equation 
expressing the behavior of electrons, there is no reason to expect that we can 
actually form a visual image. The use of quantum mechanics was important not 
only because the order of the spectrum could be put into an equation, but also 
because it gave me reason to conclude that the electron cannot be pictured 
mentally. 

The television program came to an end midway through the debate. I 
wonder what happened to the atom after that. 
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6. 2 BORN'S PROBABILITY 
INTERPRETATION 

DEPARTURE TO 
A NEW WORLD 

M ATRIX MECHANICS, inspired by Newtonian mechanics, treats 
electrons as particles. 

THE SCHRODINGER EQUATION, inspired by wave mechanics, 
envisions the behavior of electrons as waves. 

Surprisingly, these two equations, born of two contradictory ways of 
thinking, express the same things from a mathematical standpoint. 

For all the effort SchrOdinger invested to formulate an equation that would 
yield a visual image of the electron, his achievement ultimately suffered the 
same fate as matrix mechanics. 

IT COULD NOT SUPPORT A VISUAL IMAGE 
FOR A MULTI-ELECTRON ATOM. 

What will the electron end up being? 
Where will the arduous path of quantum mechanics lead? 

On we go to our final adventure! 

528 CHAPTER 6 DEPARTURE TO A NEW WORLD 



W Compared to matrix mechanics, the SchrOdinger equation is easy 
?t, ~ to calculate! It would be a waste to toss it aside just because 
(0) you can't get a visual image from it. 

Such were the thoughts of Max Born as he pondered a way to rescue the 
visual image in SchrOdinger's equation. Of course Schrodinger was thinking 
the same thing, but he wasn't getting anywhere. The problem seemed to be that 
he had become so intent upon finding a wave-like image of electrons that other 
possibilities were overlooked. 

What about Born? Well, he was a determined sort of person. To begin with, 
he believed that the electron was a particle, but he was also very interested in 
the Schrodinger equation, which is an equation describing waves. 

Biographical Notes on Max Born 

Born was born in 1882. Using the theory of 
relativity as a base, he made contributions to physics in 
thermodynamics, quantum mechanics and other areas. 

In 1925, with Werner Heisenberg and Ernst Jordan, 
he developed matrix mechanics. He was awarded the 
Nobel Prize in Physics in 1954 for the probability 
interpretation of the SchrOdinger Equation, which we 
will discuss here. 

Born then went on to work out theoretical ideas on electrons by TAKING A 
PARTICLE AS THE VISUAL IMAGE, WHILE USING SCHRODINGER'S 
EQUATION AS THE MATII BASE. 

Born was prompted to try this when he noticed a relationship between the 
slit experiment and the Schrodinger equation. 

UNTIL THEN, Schrodinger had thought that the result of the slit 
experiment, I pp, was accounted for by the wave-like characteristics of 
electrons. For example, an electron was transmitted as a wave, and after 
passing through two slits, became two waves that interfered. 

BORN'S 
APPROACH OF 
USING 
PROBABILITY 

'Jordan, Ernst Pascual 
[1902-1980] 
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Intensity 

However, Born thought that I Pl2 might be explained as particle behavior. 

There is a detector that can take a count of electrons as particles. It is a 
simple machine that clicks and makes a tally as each electron is detected. It 
tallies only whole electrons. If you set up a detector on a wall and release 
electrons, the total count of electrons that it records corresponds with I PI'. 

I 5 
:::::l 
:::::l 
:::::l 
:::::l 
:::::l 

I 
:::::l 

• :::::l 
:::::l 
:::::l 
:::::l 

I 
:::::l 
:::::l 
:::::l 
:::::l 

5 
:::::l 

Intensity 

The results of the slit experiment I Pl2 can be interpreted in either of two 
ways, as the intensity of the wave or as the number of electrons, but only 
when a great many electrons are released. When just one electron is released, a 
problem arises. 

If, like SchrCidinger, you approached electrons as if they were waves, then 
you would expect the intensity of a wave that has interfered to be visible at the 
wall even when only a single electron has been released. 

Intensity 

But Born believed THAT WOULD NOT HAPPEN. 
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An electron is no doubt a particle, he thought, and so if only one were 
projected, it would hit only one spot on the wall. 

I 
. I 

I 
You might think his idea would be easy to confirm, but it really wasn't 

because no one at the time had the technology for releasing one electron at a 
time. 

RECENTLY it has become possible to actually project single electrons 
during the slit experiment. When one electron is projected, it does indeed make 
one spot on the wall. Plop! 

If 50 are projected, we see this. 

. . . . 

If about 3,000 are projected. then we see something like this. 

In that way, concentrations of spots are dense or not so dense, showing the 
places where many electrons came flying and places where they were fewer. 
Thus it became possible to show experimentally that, just as Born said, 
SchrMinger's function of wave motion 1-qij2 describes the distribution of the 
number of electrons projected one by one. 
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Intensity 

As in cases like this when electrons are projected any number of times, if 
the square of Schrodinger's function of wave motion 1JI' expresses the number 
of electrons, then in the case of a single electron, 

THE SQUARE OF 1P DESCRIBES 
THE PROBABILITY 

THAT AN ELECTRON WILL ARRIVE 
AT A CERTAIN SPOT. 

Although it was impossible in Born's time to perform experiments where 
electrons are released one at a time, other experiments had confirmed that 
electrons could be "captured one at a time." 

Let's see how the meaning of the Schrodinger equation changes when the 
principles of probability are applied to it. 

H¢ - W¢ =0 

When this equation is solved, it is possible to find the eigenvalues 

as well as the eigenfunctions 

Since 1JI'is the sum of the eigenfunctions ¢", it may be expressed thus: 

= L A A. (q)e i21ThWn, 
n n'f' n 

Adding up these simple waves ¢n' we find that electrons have states when 
their energy is WI' W2 and so on, all at the same time. 

An electron is a particle, however, and when its energy is measured 
experimentally, it is always a single value. It would never indicate two or three 
energy states at the same time. 
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The problem here is exactly what we ran into before, that is, how to interpret 
the meaning of P. 

According to SchrOdinger's way of thinking, the square of P, IP (q, tW, is 
the intensity of a wave at a given location q, and so it has many, continuous 
values. Nevertheless, in experiments an electron is a particle which can only be 
measured at one location. Born then came up with the idea that 1 P (q, t)12 was 
the probability of an electron being at a given location q. 

What if we take the same approach to the present case? 

i27TW"t 
P(q, t) = ~An¢n(q)e-h-

n 

According to the equation, the energy turns out to have many values at the 
same time. But here, we will define the intensity IAl of the simple wave ¢II 
(which describes the energy of an electron as Wn) as the probability that an 
electron will have energy W", 

Differences in Interpretation Between Schrodinger and Born 

Schrodinger -. Born 

Material DENSITY 
PROBABILITY 

of an electron 111'12 of an electron being 
at a given place 

There is density in any Like a particle, an electron 
position, as if the electron exists only in one spot. This 
was thinly spread out. expresses the probability of 

that electron's position. 

Simple electron wave ~n State of the electron 

n corresponds to the n corresponds to the n in Wn. 
frequency of the electron ¢n describes the state where 
wave. the electron particle has the 
Simple wave ¢n has energy Wn. 
eigenvalue Wn • 

Value for electron's energy Wn Value for electron's energy 

Wave amplitude An Probability amplitude 

When the amplitude is When squared, it becomes 
squared, it becomes the the probability of the state 
intensity of the wave. ¢n' where energy is Wn. 
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BORN'S 
EQUATION OF 
INCLUSION: 
USEFUL IN FINDING 

THE PROBABILITY 

OF PHYSICAL 

QUANTITIES 

N ow, how do we fmd the coefficient A.? 1Jr was the sum of 4>: 

1Jr(q, t) = L A.(t)4>.(q) 
• 

But the 4>. were all orthogonal. 

AS FOR THE SUM OF ORTHOGONAL CONDITIONS ... 

As we found when we were dealing with de Broglie and Schrodinger, we 
can find amplitudes for 4> by using the same method as the Fourier • 
coefficients. 

Remember how we multiplied the complicated wave 1Jr by the simple wave 
4>. whose amplitude we wanted to extract, and then did the integration? We do 
the same thing here. 

A.(t) =f 1Jr(q, t)4>:(q) dq . 

Born compared the energy probabilities he calculated this way to actual 
experimental results. The results were just as he had predicted. Born began 
thinking about probability in other situations. After considerable trial and error, 
he arrived at the following equation. 

II n4J -w4J = 0 II 

At TeL, we call this the Born equation of inclusion. This equation is very 
useful in finding all sorts of physical quantities for electrons. 

Let's see how it works to fmd ENERGY. If we replace the n in the Born 
equation of inclusion with H (energy operator), and replace w with the 
eigenvalue W, we get: 

H4> - W4> =0. 

This is the Schrooinger equation. 

Okay, we're saying that an electron is a particle, right? So let's find the 
electron's position and mOllleDtum. Because position and momentum are basic 
physical quantities that describe a particle, they are extremely important when 
considering electrons as particles. 
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We can find the position and the momentum the same way we went about 
finding energy. When we are solving for momentum, we let n be momentum 
operator P, and w be eigenvalue px• 

n¢ - w¢ =0 
J, J, 
P¢ - Px¢ =0 

(The ¢ in this equation may also be written as ¢px.) 

We can get eigenfunction ¢px' which corresponds to Px' from this equation. 
Next, as in the case of energy, the probability of the momentum being in the 
state ¢ may be found. 

px 

A Px = f 1JI'(q)¢p:(q) dq 

Probability of momentum P(Px) = 1 A Px 12 

We can also find the probability of position, which is what got us into 
probability as an approach. To find the position, we let n be position operator 
q, and w be eigenvalue qo. 

(The ¢ in this equation may also be written as ¢qo.) 

The ¢qO found from this equation describes the state of an electron in 

position qo. We apply an expansion, and find Aqo. 

Next, if we take the square, we can find the probability of position. 

The probability that the electron is in position qo P(qo) = 1 AqO 12 . 

Up to this point, we've proceeded as we did for energy and momentum. 
However, if we calculate again to see what sort of value position probability 

1 AqO 12 takes, we discover something interesting. 

The equation of inclusion for finding the position is: 
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We factor ¢qO out of the equation. 

In an equation such as this, one thing is certain concerning ¢"o and (q - q,). 

When (q - qo) is 0, ¢qO may assume a value, but when (q - qo) is not 0, then ¢,," 

must be O. A relation such as this between ¢% and (q - qo) is called a 5 (delta) 
function. 

When(q -qo)=O, ¢qo:f:.O 

When(q -qo):f:.O, ¢qo=O 

Such a relationship is expressed in the following equation. 

When we take the complicated conjugate of ¢% and insert it into the 
equation AqO we get the following. 

AqO = f P(q)¢qo'(q) dq 

= f P (q)8 (q - qo)" dq 

What sort of values will we get on the right side? At this point, we're going 
to use a formula for delta functions. 

Using this, the right side is as follows. 

This means that AqO becomes P(qo)' 

Do you see? The value for the position probability 1 Aqo 12 found from 

Born's equation of inclusion is equal to 1 P qo 12 . It's just as Born surmised! 
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Right up to the end SchrOdinger was convinced that electrons were waves. 
In experiments, however, physicists could observe electrons behaving like 
particles. So at that point they still didn't know how the results from solving 
Schrodinger's equation were related to the experimental results. But with 
Born's use of probability, they found a way to calculate various physical 
quantities and compare the results with experimental results. The results of the 
calculations and the results of the experiments matched perfectly! 

I t turns out that probability provided the tool to reclaim the visual image we 
lost when we were using SchrOdinger's method. The probability that a single 

electron will be in location x, Y, Z at time t is expressed in the following 
equation. 

x 

P(X, y, z, t) = 11Jt (x, y, z, t) 12 

Z 

--~--~~----~--~~----~y 

Next, the probability for the positions of two electrons is expressed in the 
following way. 

P(x1, Yl' Zl' x2, Y2' Z2' t) = 11Jt(XI , Yl' Zl' x2, Y2' Z2' t) r 
This means that one electron is at position Xl' Y1' Zl' and the other is at x2' Y2' 

Z" Seen in a diagram, it looks like this. 

Z 

x 

PROBABILITY 
THEORY 
BRINGS BACK 
THE VISUAL 
IMAGE 
BUT ... 
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When the case of two electrons is solved using SchrOdinger's equation, 1/1' 
ends up with six variables. If these electrons were thought of as waves, the 
equation would end up describing a six-dimensional wave, something pretty 
hard to visualize. 

BUT, if the two electrons are considered in terms of probability, it becomes 
a matter of the probability of one electron being in position XI' YI , ZI' and the 
other in position x2' Y2, Z2' Thus, it is still possible to envision things in three 
dimensions. Whether there are three, four or however many electrons, it is 
possible to always make three-dimensional mental constructs. Using 
probability, no matter how many electrons there are, 

, 
I did it! I got back the visual image of SchrOdinger's equation! 

SO BORN'S USE OF PROBABILITY GAVE A BOOST 
TO QUANTUM MECHANICS ... 

Contribution 1: 
With probability, electrons could be described using the 

Schrodinger equation with mathematical expressions far 
simpler than matrix mechanics. 

Contribution 2: 
If we take the wave motion function 1/1' as expressing the 

position probability for each electron, then we can describe 
things within three dimensions even when there are two or 
more electrons. That restores to us the long cherished visual 
image. 

WHAT NOTEWORTHY CONTRIBUTIONS! -
/ 

QUANTUM MECHANICS IS COMPLETE! 
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Meanwhile, back in the lab ... 

Heisenberg and Bohr cut in. 

~oo - ~ . ~ . I think Born's probability approach is splendid. But how do 
you account for the cloud chamber experiment if you're 
using the SchrOdinger equation? The electron tracks running 
around inside the cloud chamber don't spread out like waves! 

r--------------, I THE CLOUD CHAMBER EXPERIMENT ~ I 
I We saw the cloud chamber experiment performed earlier at I 
I TCL. Let's look at it again to see what's going on. I 
i1 At TCL, we used a simple cloud chamber from a set of 
I educational materials. The "cloud chamber" was a round container I 

that could be held in the palms of two hands. As shown in the 
I drawing below, instead of electrons, this set contained an alpha ray I 
I generator that emitted alpha particles. Since electrons and alpha I 

particles are both quanta (particles smaller than atoms), they will 
I appear to be almost identical. I 

At normal temperatures, alcohol fumes are a vapor, but when 
I the temperature drops below a certain level, they tum into liquid. I 
I Alcohol is dribbled into a small box cooled by dry ice. As this is I 

done, the alcohol evaporates, but meeting the low temperature, it 
I tries to return to a liquid state. Into this vapor, alpha particles are I 
I shot. I 

When alpha particles are shot into uniformly distributed 
I alcohol vapor, lines appear. What happens is that as the alpha I 

particles pass, the alcohol that had been vapor turns into small 
I droplets of liquid. This occurs continuously along the path traveled I 
I by an alpha particle, and a single line of droplets is formed for each I 

alpha particle. You can see this happening with the naked eye. 
I The lines really do look like the tracks made by alpha particles. I 
I Transparent lid Lines resembling I 
I When you look contrails appear I 

inside. . . in the fog. -Radium, which '{ol\'\Oosh 

disperses alpha I 
particles. /VlJo I 

0,s-
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The fact that electrons make tracks in straight lines 
inside the cloud chamber was originally completely 
incompatible with the behavior of electrons described by 
the Schrodinger equation. What I mean is that, as long as 
Schrodinger's wave motion function 'P mathematically 
describes a wave, even if it is thought of as a "probability 
wave," it ought to keep spreading out over time. But the 
electrons inside the cloud chamber do not spread out; they 
fly along in nearly straight lines. 

Even though electrons that make tracks like particles 
and electrons that spread and interfere like waves are one 
and the same thing, we still need a language that can 
explain both without inconsistencies. 

Despite Born's achievements with probability, the fact remained that 'P was 
a wave. For that reason, electrons should theoretically continue to spread when 
placed in a cloud chamber even if they are initially gathered together in one 
spot. Since electrons should, therefore, exist randomly somewhere on the 
surface of the spreading wave, there ought to be randomly spreading spots of 
electrons, as in the following drawing. (Figure I) 

But in fact, electrons inside the cloud chamber appear to draw a straight 
track as they fly by. (Figure 2) 

(Figure 1) (Figure 2) 

Attempting to resolve these difficulties, Bohr and Heisenberg kept up a 
running interchange for months. Together they went over every possible 
experiment concerning electrons in a cloud chamber. They exhausted every 
avenue to reconcile the electron tracks in the cloud chamber experiment with 
the Schrodinger equation. 

Close to burn out and having failed to find the answer, they decided to take 
separate holidays. As Heisenberg continued to think about the problem on his 
own, he remembered something Einstein had said: 
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"IT IS THE THEORY WHICH DECIDES 
WHAT WE CAN OBSERVE. " 

And then he thought once again about the kind of theory he needed, and 
what it would yield for him to observe. 

, I / 

'~ 

W 

So far we've talked fairly casually about 

BEING ABLE TO SEE 
THE TRACKS OF ELECTRONS 

inside a cloud chamber. 

When we tried to reconcile the electron tracks and the wave 'P, 
we got nowhere. 

Let's think. When we say "track," we are referring to a thin 
line running through the vapor. However, what we are really 
seeing inside the cloud chamber is, in fact, 

A ROW OF LIQUID DROPLETS 
THAT ARE BIGGER AND WIDER 

THAN ELECTRONS. 

~))) 

So what I'm suggesting is ... 

It just might be that we haven't been looking at electron tracks 
at all. If those lines in the cloud chamber are not actual electron 
tracks, then we should change the way we state the problem. 
Instead of trying to find a way to describe the electrons' tracks 
using the wave equation 'P, we need to explain the row of fat liquid 
droplets that were formed by the electrons. 

Once the problem was restated in this way, it became clear that there were 
limits to how far an electron could be observed. This conclusion was called the 
uncertainty principle, and it was to be significant in the amazing climax of 
quantum mechanics. 
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6. 3 THE UNCERTAINTY PRINCIPLE 

::":":':'::::;'::. :'. 

THE 
UNCERTAINTY 
OF POSITION 
AND 
MOMENTUM 

Here we will consider an experiment such as the one below. We will 
examine how an electron wave spreads out when it passes through a slit. 

LlxI 

I 
A : Wavelength A (lambda) of the wave 

Ax : Width Ax (delta x) of the slit 
.18 : Angle of dispersion .18 (delta theta) of the wave after 

passing through the slit 
p : Momentum p of the electron 

L1px : Dispersion of momentum L1p, (delta p) of the electron for x 

We will now look at the relationship among these five values. But since it is 
difficult to handle the relationships of all the variables at once, we will begin 
constructing our equation by confirming the relationship among three variables 
at a time. 

1. Relationship between width .it- of the slit and angle of dispersion ..:10 
of the wave when the wavelength is the same 

To find this relationship, we first make sure the wavelengths are the same, 
and then we observe how the waves spread as the width of the slit is changed. 
We find, as in the diagram, that when the width Ax of the slit is increased, the 
angle of dispersion .18, or spread, of the wave decreases; and when L1x is 
narrowed, .18 grows larger. This is an inversely proportional relationship. 

H H 
When Ax is small ~ .1 8 is large 
When Ax is large ~ .18 is small 

JiB AND .it- HAVE 
AN INVERSELY PROPORTIONAL RELATIONSHIP. 
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2. Relationship between wavelength A and the .... e of dispersion .:16 of 
the wave when the slit width is the same 

This time we'll keep the width of the slit constant, and we will watch how 
the wave spreads as we change the wavelength. As in the diagram below, when 
wavelength A is large, the angle of dispersion i18 of the wave is also large; and 
when A is small, ..1e is also small. This is a directly proportional relationship. 

When the wavelength is long, the wave spreads out more easily than when it 
is short. This phenomenon also occurs in our immediate surroundings. AM 
radio waves, which are long, travel between buildings or into valleys more 
easily than FM waves or television waves, which have short wavelengths. 

When A is large .. ..18 is large 
When A is small .. i16 is small 

.:18 AND A HAVE 
A DIRECTLY PROPORTIONAL RELATIONSHIP. 

Now, when we combine the two relationships 1. and 2. above into an 
equation, we get: 

..1e =A
..1 x 

Equation 1-2 

3. Relationship between the dispersion of momentum 11p and angle of 
dispersion .:18 of the wave when the momentum is the same 

As the angle of dispersion ..16 of the wave increases, the dispersion of 
momentum ..1P, also increases. 

P 
I~tlp, 
~ 

f\ 
When..1e is large .. ..1Px is large 
When ..18 is small .. ..1Px is small 

.:16 AND 11p HAVE 
x 

A DIRECTLY PROPORTIONAL RELATIONSHIP. 
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4. Relationship between the dispersion of momentum Jip and the 
momentum p when the angle of dispersion is the same 

If the angle of dispersion .10 of the wave is not changed while the 
momentum p is increased, as in the diagram, the dispersion of momentum L1p 
increases. As in 3., this is a directly proportional relationship. 

I I 
When p is large ~ L1p,\ is large 
When p is small ~ L1p, is small 

p AND iip HAVE 
% % 

A DIRECTLY PROPORTIONAL RELATIONSHIP. 

Putting 3. and 4. together into one equation, we get: 

pL10 = .1 Px 

We divide both sides by p: 

.10 = .1 Px 
P 

Equation 3-4 

Now let's put equations 1-2 and 3-4 together. Since both equations take the 
form .10 = ****, they can be placed into a single equation. When we put them 
together, the result is: 

A .1 Px 
.1 x =----p-

If the form of the fraction is changed, it can be written as L1x, L1p, = Ap, 

Here, let's bring out the equation for quanta, the one we have seen when we 
were talking about Einstein: 

p=A 
A 

This equation describes the relationship between a quantum's momentum 

and its wavelength. If we replace p with : ,we get: 

.1 x . .1 Px = 'A.; = h 

.1 x· .1 p %= h 

With this, we've got a relationship where the product of width L1x of the slit 
and the dispersion of momentum L1p of the electron equals Planck's constant h. 
This equation means that the position and the momentum of an electron are 
uncertain; it is none other than the equation for Heisenberg's uncertainty 
principle, an idea that caused a big stir in the physics world! 
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EQUATION FOR THE 

UN CERTAINTY PRINCIPLE 

Planck's constant h is a fixed value, so in this equation if Llx becomes small, 
the equation will not balance out unless llpx becomes proportionately that much 
bigger. 

Of course if IIp, becomes smaller, then Llx must become that much bigger. 

As llx is the width of the slit, one might say that llx is the "applied 
position" of the electron, somewhere along the way which the electron has 
passed. On the other hand, IIp, is the dispersion of momentum. 

To sum up the uncertainty of the electron, "The more precisely you try to 
determine the position of an electron, the less you will know about its 
momentum; conversely, the more you know about momentum, the less you will 
know about the position of the electron." 

K nowing all we do about the uncertainty of the electron's position and 
momentum, let's now consider electrons in a cloud chamber. Let's say that 

at a certain time, a droplet of alcohol forms and its size is Llx. This tells us that 
the electron is somewhere within the droplet, and therefore THE POSITION 
OF THE ELECTRON IS MEASURED AS BEING WITHIN THE LIMITS 
OF .1x. 

~ : means "approximately equals" 

! 1111 I»' 
USING THE 
UNCERTAINTY 
PRINCIPLE TO 
EXPLAIN 
ELECTRONS IN 
THE CLOUD 
CHAMBER 
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Because .1x . ,1P, "" h, if .1x can be detennined, then dispersion l1p of the 
electron's momentum p can also be found. ,1p describes the way in which a 
wave spreads, so to say that ,1p has a value means that THE WAVE WILL 
SPREAD. 

But size .1x of the cloud particle is much greater than the value for Planck's 
constant h, so dispersion of momentum l1p must therefore be very small. 
Vitally important is that no matter how small ,1p is, it is never O. Thus each 
time a cloud particle fonns, the probability wave begins to spread again, even if 
only a little. 

And before the probability wave spreads very much, the next cloud particle 
soon forms somewhere on the spreading wave surface. 

In this way, the fonnation of a cloud particle clearly indicates the presence 
of an electron within the range .1x that defines the size of the cloud particle. 
Since the electron is not outside that range, the probability wave, having once 
spread out, ends up shrinking to .1x, the size of the cloud particle! Because the 
probability wave shrinks back each time another cloud particle fonns, that can 
account for why the wave does not continue to spread out, and why instead the 
cloud particles line up in a roughly straight line. 

Still, it probably seems hard to believe that EACH TIME A CLOUD 
PARTICLE FORMS, THE PROBABILITY WAVE OF THE ELECTRON 
STOPS SPREADING no matter how it is explained. 

THE PROBABILITY WAVE SHRINKS!? 
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Let's consider this in terms of rolling a die. Whenever you toss a die, there 
is the possibility that anyone of six faces will appear. But after you've tossed 
it. one possibility is chosen. In other words, in the instant that one of the faces 
appears, the possibility that any of the other five will appear is gone. 

What the probability wave does is describe the possibility that somewhere 
along the wave surface an electron will be found. You could call it a 
"possibility wave." As in throwing a die, the instant it is discovered that there is 
an electron in one place, the possibility of it being in another place is gone, and 
the possibility wave ends up "shrinking." 

When it's rolled ... 

\ I I 

~ 
~ 

IT IS IMPOSSIBLE TO SEE AN ELECTRON WITH OUR OWN EYES. 

Because we cannot see electrons, we have to resort to techniques such as 
observing cloud particles that are formed when electrons are present, or 
examining light as it strikes electrons, if we want to know about their position or 
momentum. Without such observations, we'd never learn anything about 
electrons. 

However, the uncertainty of an electron's position and momentum is 
established the moment it is observed, resulting in the measured values always 
being dispersed. 

The closer you try to look at position, the more dispersed momentum 
becomes; and the closer you try to look at the momentum, the more dispersed 
position becomes. 

The formula Llx . Llp ~ h for the uncertainty principle shows that it is 
impossible to know the position or the momentum to a more exact degree than 
Planck's constant h. In other words, it lays out 

THE LIMITS TO OBSERVATION 
OF THE ELECTRON. 

2I;~.!:;aJ , 1 .. ~,t.; .. , ..• 

LIMITS TO 
WHAT WE CAN 
KNOW ABOUT 
THE ELECTRON 
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A DUAL 
NATURE: 
PARTICLE AND 
WAVE 

The adventure in quantum mechanics started out with Planck's constant 11, 
and may end with it as well. 

When Born talked about describing electrons in terms of probability, the 
meaning of "probability" was unclear. Probability is a technique that is often 
used. For example, although it is possible to find exactly how a particle is 
moving, expressing things in terms of probability is useful in that it offers an 
alternative to dealing with a large number of bothersome variables. 

But in the case of electrons, describing them in terms of probability in 
accordance with Heisenberg's uncertainty principle turned out to be not just an 
alternative method but the way to a definitive conclusion. It was determined 
conclusively that position and momentum would always be dispersed, and that 
the only way they could be described was in terms of probability. 

Classical mechanics could never have imagined such an unorthodox, odd 
development. But accepting the idea finally allowed quantum mechanics to 
reach a definitive conclusion. Unless one thought in those terms, it was 
impossible to explain the tracks of the electrons in the cloud chamber. 

When performing the slit experiment, electrons demonstrate wave-like 
behavior in their interference. Despite interfering, an electron also 

demonstrates particle-like behavior in arriving at one spot on the wall. With the 
uncertainty principle, we can now resolve the inconsistencies of the slit 
experiment. 

If an electron is going to interfere as a wave, it must pass through both slits 
at the same time. But if the electron is a particle, as it appears to be when it 
arrives at the wall, then it must pass through one or the other slit, not both. 
What's going on?? 

Let's set up the following experiment. We'll place light bulbs near each of 
the two slits as shown below in the diagrams. When we tum the bulbs on, we 
can see a flicker as the electron passes through the slit. This way we can 
actually see which slit the electron has passed through. Because electrons are 
invisible to the naked eye, we must use props such as this to observe their 
movements in determining which slit they passed through. 
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If we leave the light bulbs off and shoot off electrons. they interfere. 

Intensity 

Then we turn on the bulbs and shoot off some more electrons. With the 
lights on, we can see that a given electron goes through either slit A or slit B. 

Well. what do you know. An electron went right through one of the slits. 

But wait! In experiments where we can tell which slit an electron goes 
through, it means the electrons don't interfere!! 

What could have happened? We did the experiment in the first place to 
learn how the interfering electrons passed through the slits. Now it turns out 
that such an experiment cannot be done! 
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We can explain what took place by bringing in the uncertainty principle. 
Turning on the light bulbs, we were able to observe which slit the electron went 
through. Let's say we saw it passing through slit A. At that instant, the 
possibility of it going through slit B disappeared, meaning that the electron 
wave arriving at both slits "shrank" to the area around A before it could go 
anywhere further. 

When this happens, the electron wave will pass only through slit A and 
interference will not occur. 

If it is not observed which slit the electron went through, the electron wave 
will not shrink. The electron wave will go through both slits and interference 
will take place. 

When an electron passes through only one of the slits and when it passes 
through both slits represent different sets of conditions. In the former case, the 
electron is observed; in the latter, it is not. It is impossible for both cases to 
occur at the same time. For that reason, these occurrences are not contradictory. 

We've used the observation that an electron wave shrinks to explain a 
number of experiments. But what sort of mechanism do you suppose is at work 
when an electron wave shrinks? That mechanism has nothing to do with 
anything you can actually see happening. That goes without saying. 

In the slit experiment, let's say that the lights were on, but you weren't 
looking at the passing electrons. Regardless of this, interference did not occur. 
Whether the electrons were observed or not observed, as long as the lights were 
turned on, conditions were satisfied and interference did not occur. 

550 CHAPTER 6 DEPARTURE TO A NEW WORLD 



Next, let's consider that there is some kind of interaction involving the light 
from the bulbs that causes the electron wave to shrink. Since electrons are so 
minuscule, they may be disturbed when they are struck by light, and their 
movement is thrown into disorder. 

But as the following experiment shows, this is not true. 

We'll use the slit experiment setup, but this time we'll tum on just one light 
and point it toward slit A. That way, the electron will flicker only when it passes 
through slit A and at no other time. 

But the only other thing it can do is to pass through slit B. If the electron 
does not flash at slit A, you might think that it has passed through slit B. And 10 
and behold, the electron does not interfere in this experiment. 

The electron did not flash at slit A, and therefore the electron wave shrank to 
slit B. Not only did the electron not flash at slit A, but there was no light bulb at 
slit B to begin with. Thus, in this case, it was not some interaction between 
electron and light that caused the electron wave to shrink. To put it another 
way, an electron wave shrinks when the observer, in principal, knows what slit 
the electron has passed through. 
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6. 4 WRAPPING UP QUANTUM 
MECHANICS 

THE STRANGE 
RELATIONSHIP 
BETWEEN THE 
BEHAVIOR OF 
THE ELECTRON 
AND THE 
PEOPLE WHO 
OBSERVE IT 

Throughout this adventure we have been trying to solve the mystery of the 
electron. Is it a particle or a wave? At last, we've found an answer! 

Although we may call an electron a wave, it is not a wave with material 
properties. It is a "wave of possibility." And although we may call it a particle, 
its position and momentum cannot be known simultaneously according to the 
uncertainty principle. And finally, the very act of observing an electron affects 
the state it is in. The whole mystery of the electron may defy common sense, 
but unless we take a daring leap and go beyond the ideas of pre-quantum 
science, we aren't able to explain all the experimental facts staring at us. 

For a long time the essential concern of the natural sciences was to 
determine where objects were at a given point in time. In this way, science 
described everything in terms of an objective world. But when it came to 
quanta, this was a different world where it was impossible to pinpoint exactly 
when and where things happened. Understandably, it wasn't easy to accept such 
a different world right off. 

Einstein came down hard on Heisenberg and Bohr for their work on the 
uncertainty principle. 

Einstein did not object to the idea of describing things in terms of 
probability. That had been done before, especially when the number of particles 
was particularly large. In those cases, there were ways to determine the position 
and momentum of each and every particle if you were willing to go to all the 
trouble. But scientists weren't willing for it involved too much work. 

But then Heisenberg announced that according to the uncertainty principle, 
there was absolutely no way to precisely determine both the position and 
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momentum of quanta. Einstein could not accept this premise. "Fresh Fields," 
the sixth chapter of Physics and Beyond, describes the heated debate between 
Bohr and Einstein. 

At the Solvay conference held in Brussels, Belgium, Einstein delivered a 
powerful refutation of Heisenberg and Bohr's hypotheses. Under no 
circumstances would he believe that electrons could only be described in terms 
of probability. Even worse, he balked at the suggestion that objective 
observation was not possible due to human observation influencing the behavior 
of electrons. 

Each day during the Solvay conference, Einstein thought up a new 
hypothetical experiment in which the uncertainty principle would not hold up, 
and every time he challenged Heisenberg and Bohr to answer a very difficult 
question related to it. Heisenberg and Bohr would spend all day pondering the 
difficult questions posed by Einstein before presenting their solution to him in 
the evening. Then Einstein would come up with another hypothetical 
experiment, so complex that anyone would think, "Aha! He's got them for sure 
this time!" But the uncertainty principle did not fall apart. It held up and let 
Bohr and Heisenberg counter every challenge by Einstein. 

"Watching from the sidelines, a friend of Einstein is said to have 
admonished him: 'Einstein, I am ashamed of you; you are arguing against the 
new quantum theory just as your opponents argue about relativity theory.' But 
Einstein wasn't really listening." 

"A number of years later, Einstein died. To the very end he was unable to 
accept quantum theory as valid science, saying over and over again, 'God does 
not throw dice.' 

Schrodinger too, regretting having ever set foot in the world of 
quantum physics, ended up switching to molecular biology." 

dice. ~ 

-c:>
God doe5~--not throw 

More than sixty years after the uncertainty principle was discovered in 1927, 
an empirical proof or theory that might overthrow the uncertainty principle has 
yet to be discovered, despite the attempts of many physicists. Even today, 
quantum mechanics as Heisenberg and the rest developed it is held to be valid. 
In fact, we can no longer do without quantum mechanics, for it has become part 
of the scientific fabric of civilized society today. 
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NATURAL 
SCIENCE IN THE 
21sT CENTURY 

Thinking about electrons as quantum mechanics sees them, they seem to 
resemble people in various ways. And people, too, sometimes behave in 

ways that could be explained by quantum mechanics. 

When a person is born, he or she has the potential of becoming or doing 
anything in life. But through their individual experiences in the cloud chamber 
known as society, they are observed through the eyes of other people. 
Individuals are assigned a value by others, and from that point on find it 
difficult to think beyond the value they have been assigned or their confirmed 
status within society. However, there are endless possibilities in life, and a 
person's potential to grow is always present. 

At Hippo, too, every time we sing the words of a language and are praised 
by our friends for our accomplishments, we feel very good about ourselves. 
Bolstered by our sense of accomplishment, we go on to put even more effort 
into learning. This is but one example to illustrate that is not possible to go 
through life without being influenced by other people's observations. 

Moreover, some aspects of the uncertainty principle remind us of the 
process by which a toddler acquires language. 

When you observe a toddler, his manner changes. You have an effect on 
him. It is impossible to observe the way a toddler's language ability forms in a 
situation where there is no human influence, for if he is kept alone in a room, he 
will not learn to speak. We are unable to observe behavior that is completely 
uninfluenced by others. 

When we see something, we see it in a shower of light. When a young child 
learns to speak, he hears a shower of words that we send forth. These showers, 
of light and of words, have an influence on the electron and the baby, 
respectively. There are similar aspects between the behavior of an electron and 
that of a baby. There are also similarities between light and language. Perhaps 
the relationship between light and the behavior of electrons will offer a clue to 
the relationship between toddlers and language, which may be explained 
scientifically. In any case, the world of light and electrons has produced a 
startling conclusion that common sense alone could never have conceived. 
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Recently, a physicist named Stephen Hawking has been saying some 
interesting things about the macro world, about space and the universe. 

A black hole is commonly thought of as a place from which nothing 
emerges. It swallows up all matter, even light. Because it appears black, this 
phenomenon is called a black hole. 

It so happens that the uncertainty principle is involved here. In theory, in a 
black hole, matter and light keep getting packed more and more tightly into a 
small space. When that happens, Ax in the black hole becomes smaller and 
smaller and dispersion of momentum ~Px becomes proportionately larger. 
Hawking suggests that one result is the formation of something even faster than 
the speed of light. Somehow overcoming the force sucking it into the black 
hole, it springs forth and produces light or matter. If it is matter, it is of course 
impossible that it can exceed the speed of light, but if we are speaking of 
"waves of possibility," then it is conceivable. This theory, based on actual 
observation, proposes that the uncertainty principle is at work in the macro 
world called the universe. 

Our day-to-day world is a macro world made up of light and electrons. 
Viewing it from space, it is a very tiny part of the universe. We believe that 
human beings, existing between the micro world of electrons and the macro 
world of the universe, cannot be fully explained without using the terms and 
concepts of quantum mechanics. 

With regard to language, in particular, there is much that a quantum-type 
analysis might reveal. Using language, we are able to create images that 
express our future and our past, the micro world as well as the universe. How 
can we describe so strange and wonderful a thing as language that can leap 
across time and space? 

For those of us who are treating language as a natural science, Heisenberg's 
Physics and Beyond inspires courage and the spirit of adventure. When we err, 
when we think and even when we lose hope, we always return to these pages for 
inspiration. There are still many, many worlds that remain unknown, some right 
at our doorstep. As we go forth to turn those worlds into language, we must 
always remember the wisdom and the courage of those who have preceded us. 

For those of us now who have experienced the adventure of quantum 
mechanics and witnessed this grand drama, taking the stage in the world of 
natural science in the 21st Century may not be so far away. 
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AFTERWORD 
It feels like we've been romping around in a delightful park where the 

words of quantum mechanics fly about us. The language of quantum mechanics 
was probably familiar to those who participated in the seminars over the past 
year, but it may have seemed like incomprehensible gibberish to all the new 
students. 

Five-year-old Taro came from Japan to America when his father's job took 
the family there. The first time he went to the neighborhood park, the English 
language he heard all around him was completely new to him. For a month or 
two he played along by watching and imitating the other children, and he 
gradually began to understand the words they said. After another month or two, 
he could understand more clearly, and at some point he began to say a few 
things in English himself. His American friends would come over and listen 
intently, trying to pick up what he was saying. Something was being 
communicated. Their eyes shone as more words flew back and forth. The 
immense pleasure and satisfaction in understanding each other's words were 
apparent when watching Taro play with his new American friends. As more of 
Taro's words were understood, he had more fun playing. Mter about a year, he 
could speak English with no trouble. There are many similarities between that 
sort of good, natural setting that Taro found himself in and the warm, fun-filled 
atmosphere of our quantum mechanics seminars. 

"Nature works and behaves like this." 
Natural science is finding a language to describe how nature works and 

behaves. Since the ancient past, generations of people have culled out and 
examined the most reliable knowledge about how the nature around them was 
formed, and what human beings existing as part of nature really were. They 
sought a language to explain these things. 

What was observed were repeated occurrences in nature, such as the 
movements of stars and seasonal changes in weather. That was because a 
phenomenon that occurred only once could not be confirmed a second time. 
Starting at the beginning with broad, general descriptions, words to depict ever 
greater detail were gradually found. 

Newton is said to have opened the door to modem natural science. In order 
to describe the behavior of nature, he appropriated the abstract and rigid 
language of mathematics and used it with stunning success. But as people 
turned increasingly from explaining the macro world to the micro world, they 
found themselves at a loss to explain the world of atoms, those tiny things that 
make up the existence of all matter. It was found that these atoms could not be 
explained using Newtonian language. 

What were the parts of the atom called the nucleus (protons) and electrons? 
What was the light emitted by an electron when it moved? Electrons and 
photons were too small to see. How did they behave? Because they were not 
directly visible, people could only theorize that they must be moving in such 
and such a way. In contrast to the world of Newtonian mechanics, people in 
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recent times have been able to do no more than discuss possibilities. 
Nevertheless, as long as we allow ourselves to suppose from evidence that 

things behave in a certain manner (theories), a way to determine whether our 
assumptions are correct can be devised (experiments). When an experiment 
proceeds according to the predictions of theory (language), it is considered a 
success, thereby confirming the theory. At that point the theory has been proven 
correct, and we can then say that nature behaves according to the predictions of 
language. Here, rather than saying that theory (language) describes natural 
phenomena, it is more suitable to say that nature demonstrates whether a theory 
(language) is correct (reality). The new theory (language) that Heisenberg and 
his colleagues formulated, quantum mechanics, was very successful in 
explaining the behavior of light and electrons. It was new and expansive, 
pushing out beyond the framework of Newtonian mechanics. 

During these six months, as we played in a "park" with the language of 
quantum mechanics flying around us, we grew closer and closer to Heisenberg 
and the rest of his colleagues. Even so, we don't quite dare to dream that we 
understand the greater part of quantum mechanics. We are still just looking into 
the garden beyond the wall. Yet for all that, we have experienced the 
satisfaction of having glimpsed the beautiful and delicate tensions of nature and 
coming to know firsthand the language that describes it. 

Anyone would agree that nature can be described through language, but we 
must not forget that language itself is a part of nature. We have the feeling that 
we are at last on solid ground, supported by the goal of describing language 
itself as a natural phenomenon. As the Dean of TeL always says, "Nature as 
humans know it does not exist beyond what can be described through words." 

Students at the Transnational College of Lex 
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oflight, 31-33 
wave, 4, 29,286, 515-516 
wave interference. slit experiment, 30-32. In. 516-~'

Invisible spectrum of light. 38 

J 
Jeans, Sir James Hopwood. 40. See also Rayleigh-Jeans theory 
Joule unit, 41 

K 
Kelvin unit, 41 
Kinetic energy, 44,166-167 

electron in box, 346 
of waves, 44 

L 
Law of conservation of angular momentum, 164 
Law of conservation of energy, 79, 234-235, 262-265 
Lenard, Philipp Eduard Anton, 67 

Light 
experiment and photoelectric effect. 67-69 

atoms emitting, 98-100 
blackbody radiation, 5, 34-61. See also Blackbody 

radiation 
classical equation for amplitude and intensity of. 143. 

148, 150 
cloud chamber experiment, 84-87 
color, 37-38 
Compton effect, 7, 75-83, 288 
Einstein's quantum theory, 65-66, 112,287 
emitted by atoms, 98-102, 108 
emitted from atoms as photons, 113-115 
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(Light) emitting from atoms, classical theory, 147-149 
energy and discrete values, 57-61, 139, 286 
energy of waves, 63 
experiment of little box, 64-65, 287 
frequency from atoms, not expressed through Fourier 

series, 11 0-111 
intensity of, 140-154,486-488 
interference of, 31-33 
laser beam experiment, 31-33 
mass of, 80-82 
momentum of, 80-83, 288, 519 
particles, 62-63 
particles and electron transitions, 149 
photoelectric effect, 7, 67-74, 288 
Photon Hypothesis, 65-66, 112, 173 
prism and colors, 37, 99 
quantum, defined, 18, 27 
reviewing what it is, 88-90 
slit experiment, 30-33, 90-92,172,516-517 
spectra, 36-38, 177 
speed of, 80 
wave and particle theories, 4-7, 88-94 
wave frequency (v), 38 

and blackbody radiation theories, 49-54 
and light energy, 74 
and type of atom, 99-102 

wave interference, 4, 29, 286, 515-516 
wave interference, slit experiment, 30-32, 172, 516-517 
wave motion and light, 29, 286 
wavelength (A), 83 
monochromatic, 30 

Linear and circular motion, 161 
Lorentz, Hendrik, 142 
Lyman, Theodore, 102 

Lymann series, 102, 118 
spectra emitted by hydrogen, 102, 118 

M 
Mass of light, 80-82 
Matrices. See also Matrix mechanics 

addition of, 449-451 
and vectors, 446 
calculation rules, 247-251 
derived from SchrOdinger's operators, 470-477 
diagonal element matrix, 253, 265 
fixed conditions for Heisenberg's equation, 455 
Hermitian, 246, 455, 477 
identity matrix, 277 
introduction to, 242-246 
multiplication of, 451-454 
overview, 445-446 
producing from operators, 465-468 
unit matrix, 472 
unitary matrix, 277, 486 

Matrix mechanics. See also Matrices 
canonical commutative relation, 251-256, 259, 455-458, 

470-477 
finding eigenvalues, 262, 268-280 
eigenvalue problems, 268-280 
fixed conditions for Heisenberg's equation, 455 
Heisenberg's equation of motion, 257-262, 525-527 
Hermitian matrix, 246,455,477-481 
law of conservation of energy, 262-265 
unitary transformation, 276-280, 488-493 
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Maxwell, James Clerk, 33 
EUectromagneticstheory, 33, 104, 108, 112, 160 

Molecular 
degrees of freedom, 43 
energy,averaged,42 

Momentum of light, 80-83, 288, 519 
uncertainty principle, 542-545 

Monochromatic light, 30 
Motion 

Hamilton's canonical equation of motion, 259-261 
Heisenberg's equation of motion, 257-262, 523-524 

Multiplication 
in quantum mechanics, 229-232 
of operators and matrices, 451-454 

N 
Nagaoka, Hantaro, 104 
Nagaoka model, structure of atom, 104 
Nearly equal (=:) sign, 53 
Newton, Sir Isaac, 149 

Newtonian dynamics and Planck's formula, 57-61 
Newton's equation of motion, 148-152, 155-158 

Normalizations, 40 1-403 
Nucleus, electrons rotating around, 158-160. See also Atoms 

o 
Operators 

Orbits 

addition of, 449-451 
functions and, 442, 444-445 
multiplication of, 451-454 
producing matrices from, 465-468 

of Bohr's atomic theory, and radii of classical theory, 
124-126, 128-131 

Heisenberg's problems explaining, 281-284, 289 
Orthogonal functions, 460-461 
Orthogonal waves, 393,460-461 
Oscillations 

p 

harmonic, solving with classical mechanics, 192-204 
solving with quantum mechanics, 217-221 

Heisenberg's equation for, 278-280,435,439-441 
harmonic, 434 

Particle theory of light, 62-63. See also Particles; Waves 
Compton effect and X-ray dispersion, 78-79 
Einstein's quantum theory, 65-66,112,287,515,518 
electrons in a box, 346-348 
energy of waves, 63 
experiment of little box, 64-65, 287 
photoelectric effect and, 71-73, 288 
Photon Hypothesis, 65-66, 112, 173 
proven conclusively, 82 

Particles. See also Particle theory of light; Wave theory 
Born's interpretation of slit experiment, 530 
of light and electron transitions, 149 
harmonic oscillations, 434 

Paschen, Louis Carl Heinrich Friedrich, 102 
spectra emitted by hydrogen, 102, 118 
Paschen series, 102, 118 

Pauli. Wolfgang, 232. 242 
Phase plane, 135 
Phase velocity. 306-307 



Photoelectric effect, 67-74 
around us, 7. 74 
Lenard's experiment. 67-69 
light as a particle. 71-73, 288 
light as a wave. 69-71 

Photon Hypothesis, 65-66. 112, 173 
Photons. I 13-115 
Planck. Max Karl Ernst Ludwig, 34. See also Planck's constant 

(II); Planck's law 
blackbody radiation. 34-61. 286, 517 
deriving Planck's law from E = nhv, 57-61 
deriving Raylcigh-Jeans formula from Planck's formula, 

52-53 
deriving Wien's law from Planck's formula, 51-52 

Planck's constant (h). 6. 53 
Bohr's quantum condition, 134 
equation for uncertainty principle, 545 
momentum of light, 83 

Planck's law, 49-61 
birth of, 53-54. 173 
blackbody radiation and. 49-51, 55-56, 112, 286 
deriving from E = IIhl'. 57-61, 517-518 
deriving Rayleigh-Jeans law from Planck's formula, 

52-53 
deriving Wicn's law from Planck's formula, 51-52 
meaning 01'.5-6.55-56. 112 

Potential energy. 44.166-167 
electron in box, 346 

Prism and colors of light. 37,99. See also Spectra 
Probability theory 

Q 

Born's approach. 15-16,529-533 
Born's equation of inclusion, 534-537 
cloud chamber experiment, 539-541 
providing visual image. 15-16.537-541 

Quanta. 18. 27-29 
Quantum condition 

classical theory and, 144-147 
discovery of. 131-140 
road to, 127-131 

Quantum theory, early. 121-140 

R 

correspondence principle, 121-127, 183-191 
discovery of quantum condition, 131-140 
intensity of light. 141-144,148,150 
light emitting and atoms, classical theory, 147-149 
light emitting and atoms. mechanics of, 149-154 
road to quantum condition. 127-131 
road to true theory and correspondence principle, 

144-147 
theoretical inconsistencies and methods of solving them, 

141-154 

Radii of classical atomic theory, and orbits of Bohr's theory 
124-126, 128- I3I 

Rayleigh. Lord John William Struff. 40. See also Rayleigh-Jeans 
theory 

deriving Rayleigh-Jeans theory from Planck's formula, 
52-53 

Rayleigh-Jeans theory, 40-41 
Running wave, 333 

Rutherford, Sir Ernest, 105 
atomic model, 106-108 
experiment on scattering of alpha particles. 105-106 
problems 

expressing frequency of light through Fourier 
series. 110-111 

inexplicable spectra emitted, I 10 
maintaining size of, 109, 131. 158-160 
of Rutherford's model, 116-117. 179-18,1 
size cannot be derived, III 

Rydberg, Johannes Robert, 101 

S 

Rydberg's equation and spectra emitted by hydrogen 
atoms,101-102,116-117,178.181 

Rydberg's equation, compared to Bohr's frequency 
relationship equation, 116-117. 181 

SchrMinger, Erwin, 24. See also Schrodinger's equation 
confrontation with Bohr, 495-497 
differences in interpretation between Born and. 533 
electron wave equation, 305-313. See also electron 

wave equations 
and the physical world, 316-389 
and visual image, 327-334. 426-433. 493 

electron wave theory, conclusion, 411 
establishing wave mechanics, 301-305 
form of electron wave, 313-315 
introduced to de Broglie's wave mechanics, 298-299 
material density, 314-315 
running wave, 333 

Schr&tinger's equation, 481-483 
applying to form for Hooke fields, 436. 437-438 
canonical commutative relation. 455-458.470-477 
comparing to Heisenberg's, 439-443 
completion of. 484 
constructing, and visual image. 426-433. 493. 499 
features common to operators and matrices. 443-454 
finding relationship to Heisenberg's equation. 433-439 
finding spectrum, 485-488 
Hermitian matrix formed from operator, 477-481 
in similar form to Heisenberg's equation. 437-438 
interference (11JII\ 327-334, 344, 492, 494 
making vectors out of equations, 459-464 
problem areas, 498 
producing Heisenberg's matrices from operators. 

465-469 
strengths of, 494 
time dependent, 493 
visual image problem with multiple electrons, 499-505 

Sine wave, 328, 340 
Size of atoms. See also Atoms 

cannot be derived, 111 
problem maintaining, 109, 131, 158-160 

Slit experiment, 30-33 
Born's interpretation as particle behavior. 530 
Born's probability theory, 532 
for particles, 90-92 
interference of light, 31-33, 172 
uncertainty of position and momentum, 542-545 
wave interference, 30-32, 172, 516-517 

Sommerfeld, Arnold Johannes Wilhelm, 134 
perfecting Bohr's quantum condition, 134-139 
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Spectra 
Bohr's theory, problem with intensity, 182-183 
emitted from atoms. inexplicable, 110 
equations for hydrogen atoms, 100-101 
finding with Schrbdinger's equation, 485-488 
in blackbody radiation experiment, 5, 39-40 
key to search for atom, 176-178.513-514 
light intensity and. 140, 141-154,486-488 
of light. 36-38. 177 
of light emitted by atoms. 98-102, 118. See also Atoms 
Rydberg's frequency of hydrogen, 101-102, 116-117, 

178. 181 
spectral series and electron transitions, 117-121 

Speed of light. 80 
Stationary mass. 81 
Stationary state of electrons and classical theory, 128-131 
Statistics. 42 
Subatomic particles. See Quantum 
Sunburn and ultraviolet light. 7. 74 

T 
Taylor expansion, 52. 369-375 
Temperature and light, 35 
Temperature units. 41 
Theoretical inconsistencies and methods of solving them, 141-154 
Thomson. Sir Joseph John. 103 

discovery of electron, 103 
Thomson model. structure of atom, 104 

Tomonaga. Shinichiro. QlliIIZ11I1Il Mechanics I-II, xvii 
Torque. 162-163 

U 
Ultraviolet light and sunhurn. 7, 74 
Ultraviolet series. 102 
Uncertainty principle 

cloud chamber experiment. using to explain. 17-18, 
545-547 

equation for. 545 
position and momentum. 542-545 

Unit matrix. 472, 491 
Unitary matrix, 277. 486 
Unitary transformation. 276-280.488-493 
Units. electrostatic system of. 103 

V 
Vectors 

Velocity 

and complicated waves. 462-463 
and matrices. 446 
making. out of equations. 459-464 

and motion. 155-158 
for circular orbits. 165 
of light. 80-82 
phase. 306-307 

Visible spectrum of light. 38 

W 
Wave equation. 305-308 

de Broglie. 308 
Wave frequency (v) 

blackbody radiation theories and, 49-54 
light energy and. 74 
of light. 38 
photoelectric effects around us. 7. 74 
type of atom. 99-102 
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Wave intensity, 30, 172 
Wave interference, 4, 29, 286, 515-516 

slit experiment, 30-32, 172,516-517 
Wave mechanics. See also Wave theory; Waves 

electron wave experiment. 295-297 
electron waves, 290-297 
equations for complicated electron waves. 309-313. 

390-417 
equations for electron wave. 305-308 
establishing, 299-305 
phase velocity, 306-307 
Schrodinger introduced to de Broglie's theories. 

298-299 
wavelength (A), describing changes in. 300-305 

Wave theory. See also Particle theory of light 
blackbody radiation, 34-61 
Compton effect and X-ray dispersion, 76-77 
photoelectric effect and light as waves. 69-71 
slit experiment. 30-33, 172. 516-517 

Wavelength (A) of light. 83 
describing changes in. wave mechanics. 300-305 

Waves. See also Wave mechanics; Wave theory 
complex number, 314 
degrees of freedom, 44-45 
energy and amplitude, 55-56, 63 
Hooke tields, 380,434 
motion and light, 29 
multi-dimensional. 503 
mutually orthogonal, 393.460-461 
number of, 45-48 
potential and kinetic energy of. 44 
running, 333 
sine wave. 328, 340 

Weyl, Hermann, 431 
Wien, Wilhelm Carl Werner Otto Fritz Franz. 48 

Wien's law. 48, 51-52 
Wilson, Charles Thomson Rees. 84 

cloud chamber experiment, 84 

y 
Young, Thomas, 30, 172 

slit experiment, 30-33 
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