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Preface

Why another book on Quantum Mechanics? My excuse for indulging in this
venture is not much different from my predecessors. I believe that there is
something new and important that this book will offer and that it will be
beneficial, at least, for some students. I must, however, admit that this book
is not a substitute for a standard text book on Quantum Mechanics. It should
rather be read as one long introductory chapter where the formal descrip-
tion of Quantum Mechanics is first introduced. It is a constructive approach
to the inner product space formulation of Quantum Mechanics as opposed
to inductive approaches based on intuitive associations or blatant axiomatic
approaches aimed at the purely mathematically oriented.

The book is essentially aimed at undergraduate students taking their first
course on Quantum Mechanics (although, I hope there will be something in
it even for the experts). There is practically no prerequisite for this book. It
is designed for anyone who is interested, and knows a little bit about matrix
additions and multiplications. A philosophical taste and respect for logical
purity is nevertheless assumed.

The main thesis of this book is the following:

The entire mathematical fabric of quantum mechanics, built on inner prod-
uct spaces and linear transformations, is essentially a consequence of the fact
that quantum probabilities interfere - a fact that is encoded in the super-
position principle.

The formal description of any theory often obscures its empirical content.
Quantum Mechanics is no exception. When a student first encounters the
postulates of Quantum Mechanics (states are rays in a Hilbert space, observ-
ables are linear Hermitian operators, etc.), it is very hard for her to conceive
how nature can suggest its nature in so unnatural a way. For example, the
student has no clue what empirical fact is described by the statement that
an observable is a linear Hermitian operator. Equipped with the postulates of
Quantum Mechanics, a student can surely compute what Quantum Mechanics
is designed to predict but the student usually has no idea how the postulates
got cooked up. Despite all the skills that the student may have acquired in ap-
plying the postulates, they remain incomprehensible to her. A student needs
to understand why a theory has been laid out in the way it has been. What

xi



xii Preface

other choices there were, and why the choices that were made, were actually
made.

In this book I try to introduce quantum mechanics, first, in a simple,
informal language - a language that would be used by an intelligent pedestrian
who can perform experiments and draw inferences from them, but does not
know about inner product spaces and linear transformations. Then, I show
how one can recast this empirical content in the standard, formal language of
quantum mechanics using inner product spaces and linear transformations. So,
rather than starting by defining a quantum state as a normalized vector in a
Hilbert space, and a quantum observable as a linear Hermitian operator acting
on that Hilbert space, I start with more tangible definitions which conforms
to the notions of state and observable that we have elsewhere in physics and
in life. Then I show how the empirical laws of Quantum Mechanics refines
these notions, eventually leading to the formal definitions.

I demonstrate, step by step the construction of the inner product space
formulation from the empirical content of QuantumMechanics to bring out the
fact that the inner product space formulation of Quantum Mechanics is a way
of expressing the factual content of Quantum Mechanics and not the content
itself. It is important for a student to understand this difference between
content and language so that she can appreciate the power and beauty of
the language while being able to perceive the content independently of the
language.

Of course, the most important point to see about a formulation is not that
it is possible but to see what it achieves. The primary motivation for writing
this book was to show what the inner product space formulation actually
accomplishes. I have tried to demonstrate how this formulation leads to a
pragmatic recipe for solving the typical problem that Quantum Mechanics was
designed to solve by reducing the target questions to an eigenvalue problem.

The content and purpose of the book automatically addresses the issue of
measurement in Quantum Mechanics. According to the standard interpreta-
tion of Quantum Mechanics, the so called Copenhagen Interpretation, Quan-
tum Mechanics is a theory of measurements. Unfortunately, measurement is
one of the most ill-understood and controversial terms in Quantum Mechan-
ics. It is a source of immense worry for people who are concerned about the
logical purity and foundations of Quantum Mechanics1. In the Copenhagen
interpretation, measurement does not really measure a preexisting attribute
of a quantum state of a system. It actually prepares a state which is labeled
by what we call the outcome of the measurement. This view of measurement
is indispensable if one wants to understand the Copenhagen interpretation -
even if it is only to find out what is wrong with it. In this book I have made
an aggressive effort to hammer this idea into the student’s mind right from
the outset. I will consider my effort amply rewarded if this one idea is well

1If John S. Bell had his way, he would have dispensed with the term measurement
altogether from Quantum Mechanics and replaced it with something like experiment.
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digested by the reader after reading this book. It is also one of the key themes
of this work to demonstrate how the entire conceptual edifice of Quantum
Mechanics is built from the single notion of measurement.

As much as I may have talked about the factual content of Quantum Me-
chanics, and despite the subtitle of the book, “From Facts to Formalism”, I
have purposely refrained from discussing actual physical experiments. Discus-
sion of any real physical experiment is bound to raise subtle questions in the
mind of the critical reader that eventually gets dangerously close to the deli-
cate foundational issues of Quantum Mechanics (these are issues related to the
boundary of classical and quantum). I wanted to spare the beginner from such
worries. It is best that the student confronts such issues only after the basic
structure of the subject is familiar. The strategy that I have followed is to
keep the discussion of experiments sufficiently schematic so that the relevant
features are pointed out and the disconcerting ones are never brought up.

Although, the main objective of this book has been to expose the facts
that underpin the formal description of quantum mechanics and to make
quantum mechanics seem natural, in going about this process, I have tried
to provide the young student with a guideline on how to approach learning
a new theory. Thus, somewhat unconventionally, I start the discourse with a
discussion on the meaning of theory and its formal description. This allowed
me to demonstrate, in concrete terms, how quantum mechanics is just another
theoretical framework that conforms to the standard definition of a theory in
the natural sciences.

The required linear algebra (which comprise the main mathematical back-
ground for quantum mechanics) is taught as we go along. In my experience
of teaching Quantum Mechanics, I have found this strategy to be much more
efficient compared to teaching linear algebra, all at one go, in a separate chap-
ter as a mathematical prerequisite. However, to avoid lengthy digressions, most
of the proofs of the theorems have been relegated to the appendix.

Since quantum mechanics is a probabilistic theory, the concept of probabil-
ity is all over the place. In the appendix, we provide a very brief introduction
to the bare essentials of probability. The last section talks about probability
measure. Although this topic is more advanced than what we need in this
book, we took the opportunity to discuss this to illustrate the idea of abstrac-
tion and generalization which is essential for the understanding of the content
of the book.

The problems constitute an essential part of the book and the reader is
urged to solve them meticulously. I have posted them at appropriate places
inside the chapters and not necessarily at the end. Many of the important the-
orems have been included in the problems. Some standard content (e.g., parity
operator, Heisenberg picture representation), customarily included within the
text, have also been relegated to the problems because they did not belong to
the main line of development of this book. However, such problems have often
been broken up into parts and provided with detailed hints so that by working
sequentially through the parts the student will be able to acquire a basic un-



xiv Preface

derstanding of the topic. The level of the problems is, at times, slightly higher
than that of the book. While the main text requires practically no mathemat-
ical background (certainly not beyond elementary high-school mathematics),
so that the main content is accessible to any (motivated) pedestrian, this is
not true for the problems. The problems will often require some hard work.
The book has been designed such that, together with the problems, it can
serve as a standard text for a one semester undergraduate course in Quantum
Mechanics.

The sections and even the equations in this book have not been numbered.
This has been done deliberately so that the experience of reading this book is
like listening to a lecture. Since the book is predominantly about conveying
the motivation and spirit behind a formulation, it was important to adhere to
this style to spare the reader from keeping a mental tab open in various pages
which would compromise focusing on the main issues.

I am deeply indebted to all my students for their enthusiasm, questions
and comments but above all for being the reason for this book.

I would like to express my gratitude to my teachers, and the authors whose
books shaped my own understanding of Quantum Mechanics.

It is impossible to thank my wife Tanaya enough for putting up with
all the hurdles that this project has been through. However, I would like to
thank her, in particular, for carefully reading the manuscript, and for making
critical suggestions. I would also like to thank her for choosing to use the
content of this book for teaching Quantum Mechanics to her undergraduate
students at St. Xavier’s College, Kolkata, for the last several years, and for
assimilating invaluable feedback from them. Indeed, it has been the most
worthwhile collaboration of our life as physics teachers.

I would also like to thank my former colleague and friend Dr. Saurav
Samanta for his valuable comments and encouragement.

Finally, I would like to thank the people at the CRC Press for their con-
tinuous help and support in making this project possible.

Tilak Sinha



Prologue

Quantum Mechanics (QM) is a theoretical framework that describes physics
of the microscopic world (loosely, systems of atomic dimensions and smaller).
Some people, probably most, believe that QM is a fundamental theory, and
it should apply to everything - across all dimensions and not just to the
microscopic. They say that, after all, large scale macroscopic objects are in
the end made up of microscopic constituents; it is due to the complexity of
large systems that the quantum signatures are somehow lost in macroscopic
phenomena. What we know as classical physics, that applies to large scale
phenomena, must emerge from an underlying quantum machinery. Be that as
it may, whether or not QM is applicable to large systems, this much is certainly
true that classical physics is not applicable to microscopic phenomena, and
QM becomes indispensable in that regime. Even within this restricted domain
of applicability, QM embodies an enormous volume of our experience. For
example, it explains why water is the way it is, how long the sun will shine
or why you are not falling through the floor as you are reading this. The
importance of QM can therefore hardly be exaggerated. It is indeed, a corner
stone of modern day physics.

QM can initially be a difficult subject to learn. Part of the difficulty is
attributable to the fact that its applications relate to small-scale phenomena
that are not directly perceptible to our biological senses. For example, water
is the way it is (it has a certain density, specific heat, boiling point, chemical
properties, etc.) because QM requires it to be that way, but we do not actually
see the laws of QM at work that makes water behave the way it does. For large
scale phenomena this is not the case. For instance, we explicitly see Newton’s
laws at work (at least, qualitatively) when we watch a tennis ball being hit.

The other, more serious reason that makes learning QM difficult is the
fact that, as a theory, QM adopts a philosophy that is completely different
from its classical counterparts. This requires us to dismiss our usual pattern of
thinking and embrace a new one. For example in Newtonian mechanics (more
particularly according to the, so called, mechanistic view of the world), one
believes that all matter is essentially an assembly of particles, and once we
know the positions of the particles as a function of time we know everything
that is there to know. Every question that we ask about a system can be trans-
lated into a question involving the positions of the constituent particles of the
system as a function of time. Thus, Newtonian mechanics is essentially aimed
at solving the question: “how do positions of particles change with time?” QM,

xv



xvi Prologue

on the contrary is not obsessed with systems of particles. In fact, QM per se
does not even talk about the constitution of systems that it tries to describe2.
It is rather a general theoretical framework for describing measurements made
on an arbitrary system. The question that QM hopes to solve is “at any given
time, what are the possibilities in the outcome of an arbitrary measurement
made on a system, and what are the probabilities of the different possibili-
ties?”. So, we see that the philosophy of QM departs from the philosophy of
classical mechanics in at least two main points:

1. QM is a probabilistic theory as opposed to its deterministic, classical
counterpart.

2. In QM, position loses its position of fundamental importance.

Owing to the difficulties discussed above, QM has earned a reputation of being
a strange and mysterious theory. While it is alright to be shocked by it, or
be excited about it, we must remember that to understand something is to be
able to see it as natural, and not as mysterious or magical. Our emphasis will
therefore be to try to appreciate how natural QM is as a natural science, and
not on how peculiar it is.

2This does not mean that QM cannot describe composite systems constituted of smaller
subsystems. It only means that QM does not restrict the nature of such subsystems. In
particular, it does not force us to assume that all systems are constituted of some elementary
system of a particular kind (which may be called a particle) that must have an attribute
called position.



Chapter 1
Theoretical Framework - A Working
Definition

The principal objective of this book is to make quantum mechanics seem
natural. We wish to demonstrate how quantum mechanics is just another
theoretical framework that conforms to the standard definition of a theory in
the natural sciences, and it is our purpose to expose the facts that underpin the
essential fabric of the formal description of quantum mechanics. Obviously,
before we embark on this task, we must be clear in our minds what we mean by
a theoretical framework and its formal description. So, in this opening chapter,
we begin our journey by looking into the meaning of these terms.

What Is a Theory?
In the natural sciences, a theory is defined as follows:

A theory is a logical framework comprising some assumption(s) from which
one can make some logical prediction(s) that, in principle, should be falsifiable
by experiment1.

The assumptions of the theory are usually motivated by factual obser-
vations2. They go by various names such as laws, principles, axioms, and
postulates. The various names are used in slightly different contexts, but they
essentially play the same role in the logical system. Here is a simple example
of a theory. It makes the following two assumptions:

A1 Red apples are sweet.
A2 Sweet apples are expensive.

Since we want to discuss this toy theory for a while, we will give it a name.

1The experiment need not necessarily be performed by humans. It could well be some
natural phenomenon that humans can observe.

2Quite often, however, the assumptions are educated guesses which do not lend them-
selves to a direct observation. It is only their implications that can be subjected to obser-
vation in such cases.

1



2 An Introduction to Quantum Mechanics

We will call it “a theory on the price of apples” or ATOPA in short. From the
two assumptions, A1 and A2, we can immediately deduce an implication:

T1 Red apples are expensive.

This, of course, is certainly falsifiable by experiment. All we need to do is go
about asking the price of red apples in every market that we come across.

It is important to note that the statement “If A1 and A2 is true, then T1
is true”, is always correct (true) irrespective of the truth of A1, A2 or T1.
Whether or not A1, A2 or T1 is actually true in real life is a separate issue.
If T1 turns out to be false, then we say that ATOPA has been disproved or
falsified by observation. In this case at least one of the assumptions of ATOPA
(i.e., either A1 or A2) must be false.

It should be emphasized that a theory can never be proved; it can only
be disproved. Every time a theoretical prediction fits observed data, it merely
increases our confidence in the theory. No matter how many times this agree-
ment (between observed data and theoretical prediction) occurs, the theory is
not proved. The possibility of a hitherto unperformed experiment which does
not agree with the theoretical prediction can never be ruled out. Moreover,
even if there are no disagreements with observed data, it is always possible
to imagine the existence of a yet undiscovered theory which makes the same
predictions so that it is impossible to claim that a given theory is the cor-
rect one. On the contrary, a single contradiction of theoretical prediction with
observation immediately falsifies the theory in question.

Formal Description of a Theory
To put the discussion into context, let us start with an anecdote.

The deaf composer
In a town there lived a music composer who had conceived a theory on the

musicality of music. He was extraordinarily gifted and could actually recognize
the patterns that made some sequence of notes musical, some discordant, and
some in between. The composer wanted to develop and propagate his theory.
He was so ambitious in his objective that not only did he want to specify a
rule that would tell one which pieces will be musical and which not, he also
wanted to invent a formula that would quantify the musical quality of a piece.
In fact, he even wanted to develop a recipe that would produce good music!

Unfortunately, the composer lived in an era when musical notation was not
yet invented. So the only way he could communicate his ideas was through
actual demonstration. His ideas, naturally, did not propagate very far. Firstly,
they were limited to his students and friends. Moreover, how much of his
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ideas would be grasped in a demonstration was crucially dependent on the
perceptibility and sensitivity of the audience. The communication of the ideas
through his followers was even more vulnerable to distortion because it was
also heavily dependent on the quality of demonstration, in addition to the
sensitivity and perceptibility of the recipients. So each layer of prospective
followers in the chain was receiving an increasingly deviated version of the
original theory. As was to be expected, the distorted versions of the theory
were more and more, less and less impressive. The future of the theory looked
grim! Our composer became very depressed at the inevitable fate of the science
that he had given birth to.

At this point a mathematician in the town, who had only a modest appre-
ciation of music, developed a scheme by which music could be represented in
a visual form as a script, much the same way that spoken words are scripted
using alphabets and punctuation. This was the birth of the musical notation!

Our composer immediately realized that this could save his theory. So he
took the plunge and invested all his time and energy into developing and writ-
ing up his ideas in the newly invented language. He wrote down all the facets
and features of his musical theory, starting from the recipe of identifying a
truly musical piece to the formula for creating one. The results were exactly
as he had expected. In a few years, there was an immense following of his the-
ory. With the distortions hugely minimized, people really began to appreciate
the true content and merit of his work. It was all because the visual, scripted
representation provided a much more objective character to his theory; it was
now much less open to subjective, personal interpretations.

Our composer quickly became a famous man. He came to be recognized as
a father figure of the science of music. However, it was only after many years
that he received his highest accolade. It was at a concert where he was invited
as the chief guest. The showstopper of the evening was a piece composed by
a young man about whom our composer had not even heard of before. The
performance was so overwhelming that it left the audience speechless for some
time. Then the entire audience rose to give the young composer a standing
ovation. As he was being applauded by everyone, the anchor walked up to
the middle of the stage and announced: “If you are all astounded by what
you heard just now, I have more astonishment in stock for you. Our composer
can’t hear a single clap that you are showering on him. He was born deaf. He
cultivated the art and skill of making music based on the theory and method
that was developed by our chief guest tonight!”.

This was a fictional anecdote designed to demonstrate the purpose of what
is known as a formal description. A formal description is to its informal coun-
terpart what the scripted version of the musical theory was to its original
version (that was almost going to get obliterated). The whole purpose of a
formal description is to make it so completely free of subjective human inter-
pretations that even a machine, which is programmed to read the language,
will be equipped to use it in spite of the fact that it has no understanding of
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the underlying reality. Let us then try to illustrate, more concretely, what we
mean by a formal description of a theory in the natural sciences.

Formal description in the natural sciences
In the natural sciences, a theory is essentially a logical scheme to describe

our experience. It establishes a connection between some set of our experience
(usually called phenomena) and some logical system. The more mature the
state of the science, the clearer the connection. In the initial stages of the
formulation of a theory, the description (connection of the phenomena to the
logical system) usually suffers from having ambiguities and, consequently, in-
terpretations can be subjective. The ambiguities may be so subtle that they
may not cause practical problems for a long time until some day one finds
oneself confronting a situation that demands a resolution of the ambiguity.
For instance, in the context of our theory ATOPA, it could so happen that
one day someone comes across a breed of apples, which when ripe, become red
only on one side (may be, around the stem of the apple). This would naturally
lead to an ambiguous interpretation of red apples. To resolve this, one has to
decide, precisely, to what extent the apple must be red (fraction of the surface
that is red, and also perhaps the wavelength specifying the redness) in order
that it may be called a red apple. In the absence of such a precise definition,
ATOPA may be a correct theory in some interpretation (of a red apple) and
false in another.

As our understanding of the underlying phenomena improves, ambiguities
are resolved and the true shape of things emerge. When the concepts and
assumptions necessary for a theory are precisely understood, one may try to
formulate the theory completely in terms of well-defined mathematical entities
and relationships. We call this a formal description of the theory.

Let us try to see what a formal description of a theory may look like. We
shall, once again, use as an example the theory ATOPA, which we had de-
scribed informally in the last section.

ATOPA (Formal Description):

• There exist three sets A, C and T whose members are respectively called
“apples”, “colours” and “tastes”.

• There exist three function c, t and p on A, having C, T and R as their
respective codomains:

c : A −→ C

t : A −→ T

p : A −→ R

Here R is the set of real numbers.
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The functions c, t and p obey the following conditions3:

1. There exists a colour “red” ∈ C and a taste “sweet” ∈ T such that for
all apples a ∈ A

(c (a) = red) =⇒ (t (a) = sweet)

2. There exists a real number e ∈ R such that for all apples a ∈ A

(t (a) = sweet) =⇒ (p (a) ≥ e)

A formal description of a theory is sometimes called an axiomatic description.
The assumptions of the formally described theory are generally referred to as
axioms or postulates. Thus, in the above example, the assertions 1 and 2 may
be called the axioms (or postulates) of ATOPA. It is important to understand
that once an axiomatic formulation has been laid down, it becomes a piece of
mathematics and can exist in its own right, independently of the phenomena
it was designed to describe. Thus,

consequences of the theory ATOPA can be derived as theorems following from
the axioms by a colour blind, taste blind person who has never heard of apples.

Since a formal description is independent of individual perceptions, it is free
of ambiguities arising out of subjective interpretations4. Having said that,
one must understand that for an axiomatic description to be of any practical
value, it must carry with it a set of interpretative rules that establishes its
connection to reality. For our theory ATOPA, the rules, of course, are obvi-
ous. Real apples are identified with elements of the set A, real colours with
the elements of C and real tastes with the elements of T . If for an apple a we
have c (a) = red, it would mean the apple is red; if t (a) = sweet, the apple
is sweet; if p (a) ≥ e, the apple is expensive. A well-formulated theory in the
natural sciences should be considered as the union of some set of axioms and
a suitable body of interpretative rules.

Abstraction and Generalization
An axiomatic formulation has to start by identifying appropriate math-

ematical entities that can be used to describe the different physical notions

3For those unfamiliar the symbols ‘ =⇒ ’ and ‘∈’ stand for “implies” and “belongs to”,
respectively.

4At a deeper level, it can be argued that even formal descriptions are subjective in the
last analysis, but we do not intend to delve deeper into this philosophical intricacy at this
level.
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that the theory intends to talk about. It is done through a process called
abstraction and generalization that we shall discuss in this section.

Imagine a group of scientists, studying the mechanism of movements of
animals with a purpose of implementing them in robots. After studying quite
a handful of them (say, dogs, horses, tigers, kangaroos, humans and spiders),
they observe a pattern. They see that the movement of animals that have
four legs have a lot in common which can be entirely attributed to the fact
that they have four legs. The scientists then decide to define an object that has
four legs and call it a four-legged animal. This four-legged animal is, of course,
not any real animal. It is a hypothetical, faceless creature defined only by the
property that it has four legs. The scientists then get down to study all the
logical consequences of having four legs in the movement patterns of the four-
legged animal. This enables them to study many of the relevant properties of
the movements of a large set of animals, collectively. The set of properties need
not necessarily constitute the full characterization of the movement of some
particular four-legged animal (which could be attributed to something else, for
example, having a particular kind of tail). Nevertheless, everyone would agree
that defining the four-legged animal provides for an efficient and economical
method for the study. Apart from economy, there is another advantage of
studying the four-legged animal: a great deal would be already known about
all animals with four legs that would be encountered in future.

This method that we described using an analogy is known as abstraction
and generalization. The identification and extraction of the relevant properties
(e.g., “animal has four legs”) is called abstraction. Defining a general class that
is assumed to have the abstracted properties is called generalization. It is to
be noted that this general class is not restricted to the union of the sets from
which the properties are originally extracted.

This ubiquitous mechanism permeates all our understanding. It is some-
thing that we consciously or unconsciously do all the time. If we did not, then
we would not have been able to walk on a surface on which we had not walked
before. We can do it because our brain abstracts the relevant properties of
surfaces (with regard to balancing, etc.), from a finite sample of them that
we are exposed to in our childhood. It then sets up a set of rules of mus-
cle coordination that would keep us from falling when we walk on some new
surface, which the brain assumes to have the same relevant properties. One
abstracts those properties from experience which are thought to be relevant
for the question(s) of interest and internally forms a general class whose mem-
bers are assumed to obey these properties. At a higher cognitive level, it is
also the underlying mechanism by which concepts are formed and theories
are made through inductive reasoning. Indeed, according to some schools of
thought, intelligence is viewed and measured as the ability to see abstractions
and generalizations5.

5We shall make explicit use of this process in the third chapter when we introduce
abstract vectors. Another illustration can be found in the last section of appendix ‘A’ that
discusses the axiomatic description of probability.
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A word of caution! In constructing a formal description of a theory, the
process of abstraction and generalization can often be a rather slippery busi-
ness. It is because, from a logical point of view, the mathematical entities
become the definitions of the physical concepts they describe.

If the relevant physical idea is not captured in its entirety by the definition,
it could lead to mathematically correct solutions which are completely useless
from a physical point of view.

The following popular anecdote will illustrate the point6. A mathematician
was once asked, “how do you catch a tiger?” To this, the mathematician
replied, “before I start looking for a solution, I would need a precise defi-
nition for catching a tiger”. This was, of course, not easy to provide. After a
lot of thought, someone came up with the following definition: “by catching
a tiger one means, isolation of the tiger from the person who is catching the
tiger by means of a cage”. When this was communicated to the mathemati-
cian, he instantly responded “that’s trivial: you get inside the cage, then the
tiger is caught - by definition”.

Philosophy and Fundamental Theorem
Construction of a theory is guided by the following objectives:

1. Formulation of the target question that the theory aims to solve7.

2. Construction of an algorithm that determines the answer to the target
question.

The target question embodies the philosophy of the theory. For example, in
classical mechanics, the target question is “how do the positions of particles
change with time?” The reason why this is considered to be the target ques-
tion is encapsulated in the mechanistic view of the world: The universe is
largely empty space inhabited by a (sparse) distribution of matter. All matter
is essentially an assembly of elementary building blocks called particles. The
particles have an attribute called position which is a function of another en-
tity called time. Once we know how positions of particles change with time,
we know everything that we could possibly want to know within the scope of

6This well-known joke circulates in academic circles in many variants in various con-
texts. The earliest reference of the idea known to the author is: Ya Khurgin. Did you say
mathematics? Mir Publishers. Moscow, 1974.

7It is quite possible to have more than one target question in a theory. However, having
many target questions makes a theory practically and aesthetically less appealing.
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classical mechanics. It is important to understand that the construction of a
theory does not start with the formulation of the target question. In order
to come to the point where the target question can be framed, one has to
already have some assumptions in place that paints the underlying picture. In
classical mechanics, for instance, the target question makes sense because we
assume that there exists an entity called particle which has a property called
position, which is a function of time. How we choose to see the things that
the theory talks about is what we mean by the philosophy of the theory8.

Once the target question has been framed, the next step is to look for some
clues that would enable one to make some more (usually, not so obvious)
assumptions, which together with the other assumptions already laid out,
lead to an algorithm for obtaining the answer to the target question9. In
Newtonian mechanics, these assumptions are the famous Newton’s laws of
motion. The algorithm is a theorem that is derived from the assumptions
of the theory. In a real-life theory, this will typically be based on several
theorems that orchestrate to yield one grand theorem, which is the statement
of the algorithm. We can refer to this theorem as the fundamental theorem of
the theory.

Thus, to summarize, there are two main objectives that drive the construc-
tion of a theory: adopting a philosophy (embodied by the target question)
and deducing the fundamental theorem (which provides the algorithm for
solving the target question).

Theory vs Theoretical Framework
In our discourse, it will be important to understand the distinction be-

tween the terms “theory” and “theoretical framework”. The term theory is
used when we talk about the description of a particular phenomenon while
theoretical framework refers to a general logical structure shared by a class of
theories. The theories under a theoretical framework share the same philoso-
phy, and the same general algorithm (validated by the fundamental theorem)
that applies to all of them. For example, Newtonian mechanics is a theoretical
framework that can be used to write down a theory that describes the mo-

8The etymology of the word “philosophy” is “love of wisdom”. It comes from the Greek
words “philos” meaning “to love”, and “sophie” meaning “wisdom”. In Sanskrit, philosophy
is called “darshan.” Translated literally, it means “to see”. In our context, this sense of the
word is more appropriate. Philosophy of a theory is how it chooses to see things.

9An algorithm is an instruction comprising a sequence of well-defined steps to perform
some specific task. Every step in an algorithm, by definition, must be executable. Here, we
use the term in a slightly loose sense. The “algorithm” that we refer to can involve steps
(such as solving a differential equation) which may not be exactly solvable in all possible
cases. What we mean is: an algorithm is a sequence of steps such that when all steps are
executable, it leads to a solution of the target question.
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tion of a planet moving around a star, or a theory that describes the motion
of a charged particle moving in a magnetic field. For both of these theories,
Newtonian mechanics is the underlying theoretical framework. In the frame-
work of Newtonian mechanics, one has to specify (i) the intrinsic properties
of a system (e.g., mass of particles), and (ii) the force law(s), as theoretical
input10. Once these inputs have been specified, we have one theory belonging
to the family of theories in the Newtonian mechanics framework.

Before moving on, we would like to mention, however, that often for the
sake of brevity, if there is no chance of confusion, a “theoretical framework”
is referred to, simply, as a “theory”.

10In the example theories cited, the law of gravitation and the laws of electromagnetism
serve to provide the force laws.
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Chapter 2
The Empirical Basis of Quantum
Mechanics

In this chapter we will try to introduce the basic empirical content of QM.
However, rather outrageously, we shall do it without discussing any actual
physical experiment. Instead, we will use cartoons to describe the general
results that have been extracted from such experiments. Even these results
shall not be presented in their full glory. We will set up a simplified scenario
which will allow us to quickly weave the basic mathematical fabric of QM.

We will start with a metaphorical description designed to illustrate the
typical setting of a quantum mechanical problem. This will be followed up
with a more physical illustration of the core aspect of quantum measurement
before we get to the actual business of describing QM.

Professor Funnyman’s Ghosts1

Professor Funnyman was a staunch believer in ghosts. So much so that he
took it upon himself to study them in his laboratory. The ghosts, of course,
were not perceptible to him any more than they were to others. So, to his
critics, professor Funnyman had a real hard time defining the systems he
claimed he was working on. Nevertheless, he devised experiments that he
believed measured various properties of the ghosts, like their colour, odour
etc. Strangely, that led to a solution to his problem. Here is how.

The results of professor Funnyman’s experiments (see Figures 2.1–2.4)
could roughly be summarized as follows.

1. A specific measurement on a ghost, designed to measure a specific ghost
property, always produced one or the other of a specific set of values.
For example, upon measurement of colour (which means execution of
some well defined actions involving a particular apparatus that professor
Funnyman believed will determine the colour of the ghost) professor
Funnyman always found red or green (which means there was a window
in his colour apparatus which glowed red or green) and never anything

1For those who are already familiar with QM, this metaphor will apply to QM without
degeneracy.

11
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else. Similarly, measurement of odour always yielded coffee or lemon
(which means there was a hole in the odour apparatus that one could
sniff at, and it smelt either of coffee or of lemon) and never anything else.

2. When two successive measurements were performed, there was always a
definite probability for every possible sequence of outcomes and a given
delay between the measurements2. For example, if successive measure-
ments of colour and odour were made, separated by a fixed interval (say
five minutes), there was always a definite probability for getting coffee
after red or lemon after green. Thus, it was always the last measurement
result that determined the probability of the outcomes of all the fu-
ture measurements. Measurements made prior to the last measurement
had no bearing on outcomes of future measurements because definite
probabilities could be assigned only to pairs of outcomes resulting from
a sequence of two successive measurements. So, according to professor
Funnyman, ghosts have a very short memory - they only remember the
last measurement made on them.

3. If the same measurement was repeated instantaneously, the outcome of
the first measurement was always reproduced in the second. For exam-
ple, when professor Funnyman measured colour twice in quick succession
(i.e., with a vanishingly small delay), then either both outcomes were
red or both outcomes were green (i.e., probability of getting red af-
ter red or green after green was unity, while red after green or green
after red was zero). However, if a measurement of colour produced red
and an immediate measurement of odour produced lemon, then another
instantaneous measurement of colour was no longer guaranteed to yield
red. There was a definite probability for getting red, lemon and then red
again (which is the product of the probabilities of getting lemon after red
and red after lemon) but that probability was not unity anymore. This
was a curiously strange feature of ghosts. But then, they were ghosts
after all. Also, if there was a delay between measurements, it was in
general no longer certain that the outcomes of identical measurements
would be identical. If one made a colour measurement that yielded red
and then repeated the measurement after waiting for five minutes, the
outcome would not be red with certainty.

The results of his experiments led professor Funnyman to the most impor-
tant realization of his life. He understood which questions were meaningful
and which were not. He understood that he was only obliged to answer ques-
tions about what can be observed. If the possible answers to some question was
not experimentally verifiable then he did not need to answer such a question3.

2Since quantum mechanics is fundamentally a probabilistic theory, it is important to
have a reasonably well-formed idea about probability before proceeding with the content
of this book. We have provided a brief description of probability in the appendix for those
who are not familiar.

3This, of course, does not mean that it is forbidden to have in a theory concepts that are
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FIGURE 2.1: Three consecutive, instantaneous measurements: colour-odour-
taste. With fixed delay between measurements, the probability P is associ-
ated with a pair of consecutive outcomes. Thus, P [red→ coffee→ bitter] =
P [green→ coffee→ bitter] = P [coffee→ bitter].
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Colour

Green

Green

Red

Red

Colour

Green

Colour

Measurement-IIDelayMeasurement-I

Red

FIGURE 2.4: Consecutive colour measurements may not produce the same
colour if there is a delay between measurments. Thus, P [red 99K red] 6= 1 6=
P [green 99K green].
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The important thing was that, for the system that he was studying, there were
some questions that could be experimentally answered. To wit “if a measure-
ment of some observable was performed, what were the possible outcomes and
what were the probabilities of the different possibilities?”.

Now for the definition of ghosts, professor Funnyman decided that instead
of defining ghosts first, he would start by defining “ghost-states”. He empha-
sized that at this point a ghost-state was not to be understood as the state
of the ghost but simply as a whole entity that he chose to call a ghost-state.
According to him a ghost-state was to be characterized by the outcome of the
last measurement. Usually by “state” of a system we mean some minimal
information pertaining to the system from which one can make all possible
predictions within the scope of the theory. For the theory that professor Fun-
nyman had in mind, the predictions could only concern the probabilities of
outcomes of future measurements. Since professor Funnyman had found that
once a ghost-measurement was performed and an outcome recorded, it deter-
mines the probability for every outcome of every possible subsequent measure-
ment, it was natural to use the last measurement result to characterize state.
Thus, every measurement outcome of every observable would characterize a
possible ghost-state. Professor Funnyman’s definition of (ghost) states implies
that for ghosts, a measurement ought to be considered as a state preparation
process as opposed to a process that measures some preexisting property of a
system. Thus, “red” would label a ghost-state that is prepared by the colour
measuring process when the outcome is red, and not as the colour of the ghost
measured by a colour measurement. This, of course, was also justified since
professor Funnyman did not have a prior definition of a ghost so it would
make no sense to ascribe a property to it. Moreover, according to professor
Funnyman, one could not be sure, for example, whether the glow that one sees
through the window of the colour measuring instrument is really the colour of
the ghost (if one insists on its existence) or a result of the interaction of the
ghost with the measurement apparatus. All that one could tell, for sure, was
that a colour, say red, was an outcome of colour measurement that could be
reproduced if the measurement was repeated instantly, and which determines
the probabilities of outcomes of all future measurements4.

Having defined the ghost-states it was now easy for professor Funnyman to
define his system - the ghost: A ghost was defined as something that could exist
in one of the ghost-states. This was based on the simple idea that if a ghost
exists, it must exist in one of its states. So, the ghost was characterized by the
universal set of ghost-states, which was essentially the set of outcomes of all
possible ghost-measurements. Thus, to summarize: ghosts were character-
ized by the totality of ghost-states, the ghost-states were specified by

not accessible to experiments. A real theory can and usually does contain such concepts.
The point is that it is not compelling on a theory to contain a concept, or answer a question
that is not accessible to observation.

4However, there is no harm in using a vocabulary inspired by imagining that red was
the colour of the ghost as long as one is aware of what it really means.
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the way they were prepared, and the state preparation process was
identified with measurement process.

From here on, professor Funnyman did not have to look back. He happily
continued with his research on ghosts with full commitment and zeal. Along
the way professor Funnyman attracted many followers and they all joined
hands in an effort to construct a theoretical framework that would answer the
basic questions about ghosts.

If we come to think of it, the microscopic systems (that QM was designed
to describe) like atoms or nuclear particles are very similar to professor Funny-
man’s ghosts. They are also not directly perceptible by our biological senses.
We see them only indirectly with the help of some measurement apparatus.
But all measurements on such systems come with associated interpretations
based on our psychological notion of the corresponding observable which is
formed entirely from macroscopic experience. It is then more appropriate to
define the properties of such systems by the way they are measured rather
than regarding measurement as a means of determining the properties of such
systems.

An Experiment with Bullets
Here we try to give a slightly more realistic (physical!) example to illustrate

the main point that we tried to make in the preceding paragraph.
Imagine an experiment with invisible bullets (perhaps because they are

very small) that is designed to measure the velocity of the bullets. We assume
that the bullets are generated and ejected from a gun by some mechanism (just
as electrons can be liberated from some metal surfaces by heating them). We
also assume that there is a provision in the gun which allows the velocity of
the bullets to be continuously varied (just as electrons can be collimated and
accelerated by a continuously varying potential). For example, we can imagine
a trigger-spring (obeying Hooke’s law) which can be stretched continuously.
All these assumptions are based on expectations which has its roots in classical
physics. The bullets finally impinge on the surface of a specially designed
material and create dents. The velocity of a bullet is then inferred from the
depth of the dent based on some classical theory once again.

The exact size of the dent will depend on the property of the material of the
surface which receives the bullet and the gun that determines its speed. These
parameters may not be completely controllable or even precisely known5. Nev-
ertheless, this much is certainly expected that the inferred velocities should
display properties consistent with the physics that has gone into the design of

5When this is the case, one might need to suitably calibrate the apparatus with known
velocities first.
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the apparatus. For instance, it is certainly expected that the observed veloci-
ties will display a continuous spectrum.

Now let us imagine that, for some reason, the outcome in the measurement
exhibits some strange feature. For example, let us suppose that the observed
velocities are restricted to a discrete set of values. If it is impossible to explain
away the observed strange feature, then at the end of the day one is left with
only one choice: to accept the observation. In such circumstances, it would be
logically impossible to claim that one is actually measuring the velocity of a
bullet. One will then only be entitled to define the velocity of the bullet in
terms of the action that was hitherto being called the velocity measurement.
Consequently the act, using the gun and the target surface, would be defined as
the “velocity measurement”. Of course, this is no longer really a measurement
but only an act that produces something as an outcome that we choose to call
the velocity of the bullet6.

The bottom line is that there is no logical reason to call our experiment,
“velocity measurement of bullets” but only a psychological one arising out of
the fact that we started out believing that we are measuring the velocity of
bullets7.

Basic Concepts in Quantum Mechanics
We will now lay down the concepts that will constitute the building blocks

of QM. If we have been able to convey the spirit of the game in the foregoing
sections then it should be easy to see the motivation for the definitions that
follow.

The concept of measurement
As we have tried to explain in the previous sections measurement is the

most fundamental concept in QM. Everything that follows is built from this
key concept. Naturally, we shall start by defining what we mean by “measure-
ment” in QM.

Measurement By a measurement in QM, we mean a well defined set of
actions (usually involving some apparatus) to which we can associate a well
defined set of real numbers that are called the outcomes of the measurement.

6Here the term outcome is also some part of the act of measurement that we call the
“outcome”.

7This is nicely summed up in a famous quote by Julian Schwinger: “We only borrow
names”.
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The concept of observable
For reasons that we have already clarified, in QM, we can no longer con-

ceive an “observable” as an observable property of a system (a concept for
which we have no definition as yet) as we are used to doing in classical physics.
Observables in QM are actually defined in terms of measurements.

Observable An observable in QM is characterized by a well defined collection
of measurements8. A collection of such measurements are required to share the
same set of outcomes.

The set of all the outcomes of an observable is called the spectrum of the
observable9.

In practice, the measurement prescriptions that define an observable are
chosen by the way we think we could measure the value of the observable,
usually, using some classical reasoning. However, the role of the measurement
is not really to measure the value of an observable. In QM, it actually defines
the observable.

The concept of state
The concept of state always comes into being in the context of a theory.

Typically, by a “state” we mean some minimal information, pertaining to the
system under question, from which the theory can extract all the information
about the system within the scope of the theory. Thus, to talk about state,
we need to have some underlying theory, and some notion of a system at the
back of our mind. The theory on which the definition of a quantum state is
based is founded on the following law:

• There exists sets of measurement processes such that if one makes two
successive measurements from the set (which may or may not correspond
to distinct observables), then a definite probability can be assigned to ev-
ery possible ordered pair of outcomes, provided that the interval between
the measurements is held fixed10.

We shall call this the law of definite probabilities. It will form the basis
of our entire discourse. Note that the law states that definite probabilities
exist only for specified sets of measurement processes. This is because this
law intends to make a statement about measurements on a given system. It is

8In this definition, we use a collection of measurements instead of just one measurement
to allow for the fact that just as, classically, there can be more than one experimental setup
to measure the same observable, in the quantum context, a quantum state (to be defined
shortly) can be prepared in several ways.

9Obviously, I do not intend to mean that every measurement process that has the same
set of outcomes must necessarily correspond to the same observable but only that measure-
ments corresponding to the same observable must have the same set of outcomes.

10This is not the most general scenario but we shall assume this to be true for now.
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only to successive measurements on a given system that we expect the law of
definite probabilities to hold. Measurements on different systems are obviously
expected to be uncorrelated. But we do not yet have a definition for a system.
So, in absence of a concrete definition of a system, we assert that the law
of definite probabilities holds only within certain sets of measurements. This
means we are actually, implicitly, identifying a system with a well defined set
of measurement processes to which the law of definite probabilities apply11.

In this and the next two chapters we shall restrict ourselves to a special
scenario called “instantaneously subsequent measurements”12. Let me
explain what I mean by this. If there is a delay between successive measure-
ments, then, in general, the probabilities will be dependent on the extent of the
delay. This means that the probabilities (for pairs of measurement outcomes)
are not uniquely specified by the outcomes alone. One has to also specify the
delay between the measurements. However, it is possible to imagine that the
duration between measurements can be made so small that a further reduction
in the duration between measurements do not lead to different probabilities.
Such sequences of measurements will be called instantaneously subsequent. If
we restrict ourselves to instantaneously subsequent measurements, a unique
probability can be assigned to every ordered pair of measurement outcomes.

The law of definite probabilities allows us to conceive a simple theory that
is aimed at predicting the probabilities for instantaneously subsequent mea-
surements. In this simple theory, all we need to do is determine and record,
once and for all, the probability for every possible pair of measurement out-
comes for every sequence of two instantaneously subsequent measurements.
This will enable us to predict the probability of producing a pair of outcomes
upon two successive measurements (of arbitrary observables which may or
may not be distinct), at all future times. We will call this the primitive
theory.

We also observe that although we do not as yet have the precise definition
of a system, we do have a tentative notion for it. As we have mentioned above,
in our mind we can associate a system with the set of measurements to which
the law of definite probabilities apply. It is for such sets of measurements that
we have our primitive theory.

Now, in the primitive theory, it is the last measurement result that de-
termines the probability of the outcomes of an arbitrary instantaneously sub-
sequent measurement, and this is the sole issue that the theory is concerned
with. This naturally leads us to a definition of a quantum state.

11This is a temporary notion which shall be made precise shortly.
12As far as I know, the coinage of this extremely useful jargon is due to Marvin Chester:

(Chester 1987).
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State A state in QM is characterized by the last measurement result13.

Our definition of a quantum state thus amounts to making the following
assertion:
• A measurement is a state preparation process and every measurement
prepares a state that is completely characterized by the outcome of the
measurement14.

The concept of system
Having defined states as preparations through measurements, we will now

provide a more concrete definition of a quantum system in terms of states.
Whatever be our intuitive notion of a system, we will all agree that a system
must necessarily exist in one of its states. It is impossible to imagine a system
that is not in one of its states. The universal set of states that a system can
inhabit can therefore be used as a characterization of the system. Hence, we
move to define a quantum system as follows:
System A system in QM will be characterized by the entire collection of
states that are associated with a set of measurement processes to which the
law of definite probabilities apply.

The concept of event
In probability theory, a sample space is defined to be the set of all possible

outcomes of an experiment. An event is characterized by a subset of the sam-
ple space. An elementary event is a subset that contains just one element - it
is essentially one point in the sample space15. In QM, the typical experiment
that one considers is a measurement of some observable on a well defined state
of a system. The experiment produces some outcome that labels the final state
of the system. It is thus natural to characterize the elementary events of these
experiments by the initial and final states. Unless otherwise specified, in our
discussion, an event will always mean an elementary event of such an exper-
iment. If we restrict ourselves to instantaneously subsequent measurements,
such experiments are essentially defined by a pair of measurements (where the
role of the first measurement is to prepare the state). So let us agree to define
an (elementary) event in QM as follows:

13Note that our definition is quite consistent with the way we use the word “state” in
everyday life. When a doctor asks his nurse about the state of his patient, the nurse normally
reports the latest observations (the last measured blood pressure, temperature, etc.) made
on the patient. The most recent observation is believed to be the most relevant.

14Actually, a state can always be characterized by the prescription of its preparation. In
QM, additionally, we identify measurements with the state preparation process.

15Events that are not represented by singleton subsets (i.e., subsets containing just one
element) are often called compound events to distinguish them from elementary events.
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Event An event in QM is characterized by an ordered pair of states associ-
ated with some system16.

The initial and final states need not necessarily be distinct. The trivial
event when there is no change of state is characterized by identical initial
and final states. This is the case when successive measurements of the same
observable yields the same outcome.

This is a good point to pause and fix the notation.

Notation
An observable will be denoted by placing a hat on an alphabet: ψ̂, φ̂, Â, b̂,

etc.

The outcomes of measurement of an observable ψ̂ will be denoted by ψi.

The spectrum of an observable ψ̂ will be denoted by {ψi} where the index
‘i’ is assumed to run over the entire spectrum of ψ̂.

A state characterized by the measurement result ψi will be denoted by |ψi〉.

An event characterized by the initial state |ψi〉 and final state |φj〉 will be
denoted by |ψi〉 → |φj〉. Often we shall use the shorthand ψi → φj if there is
no possibility of confusion.

The probability of the event ψi → φj will be denoted by P [ψi → φj ].

Illustration

Let us go back to the system of professor Funnyman’s ghosts. We consider
three observables for ghosts: colour, odour and taste. We would denote them
by

colour: Ĉ, odour: Ô, taste: T̂ .

16For more general scenarios an event can still be characterized by initial and final states
but state itself is defined more generally. We shall furnish this definition later.
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Let the spectra of the respective observables be17

{C1, C2} ≡ {red, green} , {O1,O2} ≡ {coffee, lemon} , {T1, T2} ≡
{bitter, sweet}.

Examples of states of the system would then be

|C1〉 ≡ |red〉 , |O2〉 ≡ |lemon〉 , |T2〉 ≡ |sweet〉 , . . . , etc.

We will often refer a ghost-state such as |red〉 as a “red ghost”.

Typical events for the ghost would be written as

red→ sweet, lemon→ bitter, bitter→ bitter, . . . , etc.,

with the respective probabilities denoted by

P [red→ sweet], P [lemon→ bitter] , P [bitter→ bitter] , . . . , etc.

Now that we have constructed the basic definitions and notations, let us,
once more, state the central questions in QM using the vocabulary and nota-
tion we have developed (see Figure 2.5).

If we make a measurement of an arbitrary observable φ̂ on a state |ψi〉 what
are the possibilities {φj} in the outcome of the measurement (i.e., what is
the spectrum of φ̂) and what are the probabilities P [ψi → φj ] of the different
possibilities φj ?18

Laws of Quantum Mechanics
The measure of goodness of a theory is how much can be embodied in how

little. This is called the predictive power of the theory. Clearly, our primitive
theory based on the law of definite probabilities has a very low predictive
power. This theory requires far too many inputs than we can hope to tolerate.

17We must keep in mind that in an actual situation, outcomes of measurements will
always be real numbers.

18For instantaneously subsequent measurements φ̂ is assumed to be measured soon after
the state |ψi〉 is prepared. However, in the general case the state |ψi〉 may be prepared at
some arbitrary earlier time.
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the outcomes

Target Questions

Probabilities of

FIGURE 2.5: The typical setting of a quantum mechanical problem and the
“Target Questions”.

If there are M observables each having N elements in their spectra, then we
need to specify M × N possible outcomes and (M × N)2 probabilities. The
primitive theory can, however, serve as a reference point to assess how much
progress we have actually made when we try to build a more improved theory.
In this section we shall introduce more laws of QM that will lead to such an
improved theory - a theory that will require fewer inputs than the primitive
theory. To introduce these new laws, we shall first need to recast the law of
definite probabilities in a slightly different way.

Law of Definite Probabilities To every event ψi → φj one can associate
a complex number 〈φj |ψi〉 such that the probability P [ψi → φj ] of the event is
given by

P [ψi → φj ] = |〈φj |ψi〉|2

The complex number 〈φj |ψi〉 is called the probability amplitude (or ampli-
tude in short) of the event ψi → φj .

Since the total probability must be unity, the probability amplitudes must
satisfy what we will call the totality condition:∑

k

|〈χk|ψi〉|2 = 1

if k runs over the entire spectrum of the observable χ̂.
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In the literature, this law is referred to as the Born rule, after German
physicist Max Born, who first correctly put forward the probabilistic interpre-
tation of quantum mechanics.

Illustration

The probability of a red ghost to be found in the |sweet〉 state upon mea-
surement of taste will be given by

P [red→ sweet] = |〈sweet|red〉|2

where 〈sweet|red〉 is the probability amplitude for the event |red〉 → |sweet〉.
The totality conditions applied to the |red〉 state would read

|〈bitter|red〉|2 + |〈sweet|red〉|2 = 1
|〈coffee|red〉|2 + |〈lemon|red〉|2 = 1
|〈red|red〉|2 + |〈green|red〉|2 = 1

Note that at this point the above statement of the law of definite proba-
bilities is only a cumbersome way of saying that to every event we can assign
a definite probability. Of course, in order to make this assertion there was no
need to assign a complex number to every event. A real number in the interval
[0, 1] would have sufficed. The actual reason for doing this is to enable us to
describe a weird fact about quantum probabilities that is responsible for al-
most all of the mystery that QM has to offer. We state this fact as our next law.

Superposition Principle Probability amplitudes satisfy the relation

〈φj |ψi〉 =
∑
k

〈φj |χk〉 〈χk|ψi〉

where k runs over the entire spectrum of any arbitrary observable χ̂ .

The superposition principle is a relationship between certain probability
amplitudes. It is not difficult to see that it implies a relationship between
probabilities that resemble the relationship between intensities of interfering
waves. This has led to the common jargon: “quantum probabilities interfere”.
Let me demonstrate this more clearly. Observe that the right hand side of the
above formula is a sum of products of amplitudes 〈φj |χk〉 〈χk|ψi〉. Now the
probability of the composite event, ψi → χk followed by χk → φj , is given by

P [ψi → χk]P [χk → φj ] = |〈φj |χk〉|2 |〈χk|ψi〉|2 = |〈φj |χk〉 〈χk|ψi〉|2
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Thus the product 〈φj |χk〉 〈χk|ψi〉 can be considered to be the amplitude for the
composite event ψi → χk followed by χk → φj . Such a composite event can be
visualized as a path: ψi → χk → φj . The right hand side of the superposition
principle then becomes a sum of amplitudes for all possible paths ψi → χk →
φj (each path being characterized by a distinct intermediate state labelled
by χk; see Figure 2.6). Now recall that in the theory of interfering waves, to
get the resultant intensity of waves arriving at some point through different
paths, we add the displacements for each path and then take the square of
the modulus of this sum19. The parallel is evident. Quantum probabilities
combine like the intensities of interfering waves: The probability amplitudes
are to probabilities what displacements are to intensities20.

We wish to emphasize that it is only if we choose not to make the interme-
diate measurement that the superposition principle will be applicable. If we do
make the intermediate measurement the probability is given by the classical
probability addition rule. This means that if we make three successive mea-
surements of the observables ψ̂, χ̂ and φ̂, the probability P [ψi → {χk} → φj ]
that the outcome of the first measurement is ψi and that of last is φj (irre-
spective of the outcome χk in the intermediate measurement) is given by

P [ψi → {χk} → φj ] =
∑
k

|〈φj |χk〉 〈χk|ψi〉|2

Here, and in the rest of the chapter k (the subscript of χ) will be assumed to
run over the entire spectrum of χ̂ in summations.

19The square of the modulus is actually more appropriate when the displacements are
taken to be complex as is sometimes done in the theory of interfering electromagnetic
(light) waves. In this case the parallel that we are trying to point out is even closer.

20For the sake of visualization (see Figure 2.6), it may be useful to imagine the observables
ψ̂, χ̂ and φ̂ to be associated with a measurement of position of particles (let us call them
photons) along the y-direction (along the slits) at three different x-positions (perpendicular
to the slits), say x1, x2 and x3. So we are interested in the event that photons are ejected from
a certain y-position yi at x1 and detected at a certain y-position yj at x3. We can imagine,
at an intermediate position x2, a series of slits with sensors placed at edge of each slit which
fire when the particle passes through the slit. This corresponds to the χ̂ measurement. It
turns out that for some reason, the only positions through which the particles may pass are
the locations of the slits y1, y2, . . . , yn. One may argue that this is an artifact of the sieve-
like y-measurement apparatus (which allows photons to pass through particular positions
only) and not a property of the photons. The remarkable observation is, however, that
irrespective of the design of the ŷ-measurement apparatus, the allowed y-positions at x2 are
always the same if we intend to detect all possibilities. The parallel can be carried further
by noting that the intensity of a stream of photons (if each photon is assumed to carry
some definite energy), at the point φj on the detector φ̂, is expected to be proportional to
the number of photons reaching that point per second, and this number would, in turn,
be proportional to the probability of a single photon reaching that point of the detector.
Now, it just takes one leap of the imagination to arrive at the superposition principle: the
observables ŷ (x1), ŷ (x2) and ŷ (x3) need to be generalized to arbitrary observables ψ̂, χ̂ and
φ̂. For a delightful exposition of the interference phenomena as a motivation for QM, see
(Feynman et al. 1963); Indeed, much of the present work is inspired by this very celebrated
course of lectures by Richard P. Feynman.
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|χ1〉
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ψi → χk → φj

|χn〉

FIGURE 2.6: Superposition Principle: 〈φj |ψi〉 =
∑

k
〈φj |χk〉 〈χk|ψi〉.

The nontrivial feature of the superposition principle is to replace the sum of
squares by the square of the sum when the intermediate measurement is not
performed:

P [ψi → φj ] =
∣∣∣∑
k

〈φj |χk〉 〈χk|ψi〉
∣∣∣2

It is often remarked that the superposition principle is a violation of the
classical probability addition rule and that it is here that quantum mechanics
actually departs from classical physics. In our opinion this is incorrect. As
we have explained above, the classical probability addition formula and the
superposition principle apply to two different situations. The left hand side
of the last formula refers to an elementary event ψi → φj in an experiment
involving two successive measurements (ψ̂ and φ̂) while the one preceding that
refers to an event ψi → {χk} → φj in an experiment involving three succes-
sive measurements (ψ̂, χ̂ and φ̂). The event ψi → {χk} → φj is a collection
of mutually exclusive, simpler events where each simple event is of the form
ψi → χk followed by χk → φj , and the collection is generated by making k
run over the entire spectrum of χ̂. It is to this collection of mutually exclusive
events that the classical probability addition rule should apply, as it rightfully
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does in this case. The composite events ψi → χk followed by χk → φj are
not mutually exclusive ways by which the event ψi → φj is realized. They are
mutually exclusive ways by which the event ψi → {χk} → φj is realized21.

Illustration

If we apply the superposition principle to the amplitude 〈lemon|red〉 for our
ghost system, we get

〈lemon|red〉 = 〈lemon|bitter〉 〈bitter|red〉
+ 〈lemon|sweet〉 〈sweet|red〉

where we have used the taste states as intermediate states.

Law of Sustained States Instantaneously subsequent measurement of the
same observable yields the same outcome.

P [ψi → ψi] = 1

The law of sustained states trivially translates into the following statement
in terms of amplitudes:

〈ψj |ψi〉 = δij

where ψi and ψj are two outcomes of the same observable ψ̂ and δij is the
Kronecker delta function22.

One might think that one should more generally assume 〈ψj |ψi〉 = δije
iθ.

It will soon be clear that one can, without any loss of generality choose the
phase θ = 0.

21We are not taking anything away from the importance of the superposition principle. It
is certainly true that nothing like the superposition principle exists in classical probability
theory. We just wish to underline that the context of its applicability does not imply a
violation of the classical probability addition rule.

22For those unfamiliar, the kronecker delta function is defined as follows:

δij =
{

0 for i 6= j

1 for i = j
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Illustration

For the ghosts, the law of sustained states mean, for example, that if we
measure colour on a red ghost the outcome is certain to be red. For the colour
states this implies

〈green|red〉 = 0
〈red|red〉 = 1

〈green|green〉 = 1
〈red|green〉 = 0

Exchange Symmetry Probability amplitude of events, ψi → φj and φj →
ψi, with the initial and final states exchanged are complex conjugates of each
other.

〈φj |ψi〉∗ = 〈ψi|φj〉

The most obvious implication of this law is that the probability of events
with initial and final states swapped are equal:

P [ψi → φj ] = P [φj → ψi]

Though this consequence is easy to see, it is not apparent what suggests the
complex conjugation. We wish to caution the reader that the amplitudes are
not equal under exchange of initial and final states, only the probabilities are.
This has nontrivial and measurable consequences23.

To see what prompts the complex conjugation, note that the totality con-
dition can be written as∑

k

〈χk|ψi〉∗ 〈χk|ψi〉 = 1

Again, the superposition principle and the law of sustained states, 〈ψi|ψi〉 = 1,
taken together gives ∑

k

〈ψi|χk〉 〈χk|ψi〉 = 1

23Check that the superposition principle leads to distinct probabilities if we drop the
complex conjugation and use 〈φj |ψi〉 = 〈ψi|φj〉 instead.
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The simplest way to render these equations consistent is to require

〈χk|ψi〉∗ = 〈ψi|χk〉

Since there is nothing special about the states |ψi〉 or |χk〉, similar results are
expected to hold for arbitrary pairs of states. Of course, mathematical con-
sistency is only a necessary condition for a physical law and cannot by itself
validate the law. Such validation can only come from experiments. Indeed,
exchange symmetry has been validated by experiments.

Illustration

For our ghost system, exchange symmetry would imply, for example, that
the probability of getting a sweet ghost upon measurement of taste on a red
ghost is the same as that of getting the outcome red on measurement of colour
on a sweet ghost. The amplitudes for the two events are however conjugates
of each other:

〈sweet|red〉 = 〈red|sweet〉∗

Finally, before closing this section let us note that the totality condition,
superposition principle and exchange symmetry naturally leads to the law of
sustained states: ∑

k

|〈χk|ψi〉|2 = 1∑
k

〈χk|ψi〉∗ 〈χk|ψi〉 = 1∑
k

〈ψi|χk〉 〈χk|ψi〉 = 1

〈ψi|ψi〉 = 1

Thus, the law of sustained states is rendered redundant. It becomes a theo-
rem that follows from the other three laws of QM. What then was the point
of introduction of the law of sustained states? Well, it was to motivate the
exchange symmetry law which is not very obvious by itself. But we have seen
in the preceding paragraph, how a requirement of consistency of the totality
condition, superposition principle and law of sustained states leads us natu-
rally to assume the existence of exchange symmetry. However, after having
assumed exchange symmetry, it now makes no sense to retain the status of
sustained states as a law. Henceforth, we shall only refer to the other three
laws as the independent laws of QM.
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The Quantum State Redefined
The laws of QM discussed in the previous section imply that for instan-

taneously subsequent measurements, if for all states |ψ〉 we furnish the set of
probability amplitudes {〈χk|ψ〉} with k running over the entire spectrum of an
arbitrary but specific observable χ̂, the probability P [αi → βj ] of an arbitrary
event αi → βj can be computed in a straight forward manner:

P [αi → βj ] = |〈βj |αi〉|2

=

∣∣∣∣∣∑
k

〈βj |χk〉 〈χk|αi〉

∣∣∣∣∣
2

=

∣∣∣∣∣∑
k

〈χk|βj〉∗ 〈χk|αi〉

∣∣∣∣∣
2

where we have made use of the superposition principle and exchange symmetry
in the second and third lines respectively.

Thus, the laws of QM have led us to an improved theory (in comparison to
our primitive theory). To predict the probabilities, it is now enough to specify
the probability amplitudes 〈χk|ψ〉 only for those events ψi → χk that has |χk〉
as a final state. Comparing this theory with the primitive theory (that was
based on the law of definite probabilities alone) we see that for this theory
the required number of inputs is greatly reduced. Once again, if there are M
observables each having N elements in their spectra, we now need to specify
M ×N2 amplitudes in order to determine all possible amplitudes. This theory
is therefore, surely, an improvement over the primitive theory which required
(M × N)2 inputs24.

Definition of state in the improved theory
As we have mentioned before, in any physical theory the state of a system

usually refers to the minimal set of information pertaining to the system
that enables the theory to extract the maximal information about the system
within the scope of the theory. The development outlined in the preceding
paragraph thus clearly leads to the following definition of a state:

• A state |ψ〉 in the χ space is defined to be the ordered list of probabil-
ity amplitudes {〈χk|ψ〉}, where k runs over the entire spectrum of an
arbitrary but specific observable χ̂.

24If we take the law of sustained states into account, the improvement is even better.
But we are not interested in that arithmetic here. It is enough if we are convinced that the
improvement is overwhelming.
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Note that, since this way of defining a state makes reference to an (arbitrary)
observable χ̂, we refer to the state as the “state in the χ space”.

I wish to emphasize that having defined states as a list of probability am-
plitudes, our earlier characterization of a state using the last measurement
result now merely becomes a way of labeling a state. Moreover, we no longer
need to restrict states to be prepared only by measurement processes. In fact,
our new definition of a quantum state implies that any process that ensures
that subsequent measurements are in accordance with a list of probability
amplitudes, say {〈χk|ψ〉} with k running over the entire spectrum of some
observable χ̂, is a legitimate state preparation process. More explicitly, this
means that we are now identifying the state with a condition that is character-
ized by the set of complex numbers {〈χk|ψ〉} such that upon a measurement
of an arbitrary observable φ̂ the probability of getting an outcome φj will
be given by

∣∣∑
k 〈χk|φj〉

∗ 〈χk|ψ〉
∣∣2. Incidentally, one such process is “waiting”

where one merely waits and lets one quantum state evolve in time into a new
quantum state. We shall take this up in a later chapter. Of course, we can
always ask whether to every possible quantum state there corresponds an ob-
servable such that upon its measurement it may prepare the system in the
given state. We shall see that, in principle, this is true. To see how this comes
about, however, we have to wait until we are done with the next chapter25.

Illustration

The ghost-states now become ordered pairs. For example, the ghost state
|coffee〉 in the colour space will be the ordered pair,

{〈red|coffee〉 , 〈green|coffee〉}

Incidentally, if we express |coffee〉 in the odour space the ordered pair is

{〈coffee|coffee〉 , 〈lemon|coffee〉} = {1, 0}

by virtue of the law of sustained states. Now it is clear that if we are interested
in the probability of the event |coffee〉 → |sweet〉, it is adequate to specify
the states |coffee〉 and |sweet〉 in some specified space, say colour. Then the
prescription outlined above gives

P [coffee→ sweet] = |〈sweet|coffee〉|2

25The careful reader will have noticed that unless we assume that the size of spectra of all
observables are the same, states in different spaces will have different number of elements
and our construction will break down. Obviously, it would be extremely unnatural to assume
that all observables for a system will have exactly the same number of possible outcomes.
Unfortunately, we will be able to resolve this issue only in the fifth chapter. Until then, we
will have to stick to the unnatural scenario that size of the spectra of all observables are
equal.
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where the amplitude 〈sweet|coffee〉 is given by

〈sweet|coffee〉 = 〈sweet|red〉 〈red|coffee〉
+ 〈sweet|green〉 〈green|coffee〉

= 〈red|sweet〉∗ 〈red|coffee〉
+ 〈green|sweet〉∗ 〈green|coffee〉

There is a neat way to express the last equation using matrices:

〈sweet|coffee〉 =
[
〈red|sweet〉
〈green|sweet〉

]† [ 〈red|coffee〉
〈green|coffee〉

]
where the states have been expressed as column matrices and the symbol ‘†’
stands for Hermitian conjugation.



Chapter 3
States as Vectors

Our description of QM will now go through several stages of metamorpho-
sis. We shall rephrase QM in a language that will increasingly become more
sophisticated (i.e., mathematical) and obscure (i.e., connection of statements
to the facts they describe will become more involved). In the last chapter we
introduced QM in an empirical language. It was done to make the factual
content of QM apparent. Now we shall try to find a mathematical characteri-
zation of all the concepts and facts that were introduced in the last chapter1.
This will lead us to the formal description of QM. The point of introducing
QM in an empirical language was to avoid introducing QM through the for-
mal language from the outset, so that we can demonstrate how the empirical
content can be translated into the formal language and we may be able to
appreciate the power and beauty of what this translation accomplishes. It will
also allow us to identify which parts of the formal description of QM are in-
dispensable (i.e., required by nature) and which are required by our choice of
the language. We shall start by learning some linear algebra.

Vectors in Cn

Consider the set Cn comprising all n-tuples of complex numbers2 One can
choose to write the elements of Cn as n-dimensional complex column matrices.
We shall call these objects, vectors. We will denote vectors by alphabets in
square brackets (e.g., [A], [B],. . ., etc.) and their components by placing a
superscript on the alphabet (e.g., Ai, Bi,. . ., etc.). Complex numbers will be
referred to as scalars and denoted by lower case alphabets (e.g., a, b,. . .,
etc.3).

1Probably the earliest and the most authentic work in this direction is due to P.A.M.
Dirac; see (Dirac 1958).

2A n-tuple is a set of n elements (in this case complex numbers) arranged in a definite
order.

3Everything that we will do in this section can also be done with n-tuples of real numbers
which would belong to the set Rn.

33
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Addition of vectors and multiplication of a vector by a scalar
We define addition of vectors in Cn and multiplication of a vector

by a scalar (sometimes called scalar multiplication in short) by the usual
rule of matrix addition and multiplication of a matrix by a scalar:

[A] + [B] =


A1 +B1

A2 +B2

. . .

. . .
An +Bn

 c [A] =


cA1

cA2

..

..
cAn


Addition of vectors and multiplication of a vector by a scalar have the

following algebraic properties:

1. Associativity of addition of vectors: For all vectors [A], [B], [C]

([A] + [B]) + [C] = [A] + ([B] + [C])

2. Existence of Additive Identity: There exists a vector [0], that is called
the additive identity, such that for any vector [A]

[A] + [0] = [0] + [A] = [A]

3. Existence of Additive Inverse: For every vector [A] there exists a vector
[−A], that is called the additive inverse of [A], such that

[A] + [−A] = [−A] + [A] = [A]

4. Commutativity of addition of vectors: For all vectors [A], [B]

[A] + [B] = [B] + [A]

5. Compatibility of multiplication of scalars with multiplication of a vector
by a scalar: For every vector [A] and all scalars a, b

a (b [A]) = (ab) [A]

6. Distributivity of scalar multiplication of a vector over addition of vectors:
For all vectors [A] and [B] and every scalar a

a ([A] + [B]) = a [A] + a [B]

7. Distributivity of scalar multiplication of a vector over addition of scalars:
For every vector [A] and all scalars a, b

(a+ b) [A] = a [A] + b [A]

8. Equality of identity of scalar multiplication and multiplicative identity
of scalars: For every vector [A]

1 [A] = [A]
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Inner product of vectors
We define an inner product (also called scalar product) of two vectors

[A] and [B] denoted by ([A], [B]) (or more often, simply, as (A,B)) in the
following way:

(A,B) = [A]† [B]

It is easy to check that this inner product has the following properties4

1. Conjugate Symmetry: For all vectors [A], [B]

(A,B) = (B,A)∗

2. Linearity: For all vectors [A], [B], [C] and all scalars b, c

([A] , b [B] + c [C]) = b (A,B) + c (A,C)

3. Positive-definiteness: For any vector [A]

(A,A) ≥ 0 and (A,A) = 0 if and only if [A] = [0]

Norm

We define the norm
∣∣A∣∣ of a vector [A] by the positive square root of the

scalar product of the vector with itself:∣∣A∣∣ =
√

(A,A)

A vector that has unit norm is said to be normalized. Vectors that are not
normalized can be multiplied by appropriate scalars to give normalized vec-
tors. This process is called normalization: Suppose we have a vector [A] such
that

|A| = N

where N is some real number. We can always construct the new vector

[AN ] = 1
N

[A]

which is normalized: ∣∣AN ∣∣ = 1
4It is possible to define a product in other ways which will obey the same properties.

Later on, we shall generalize the definition and call all such products an inner product.
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Orthogonality

If a pair of vectors [A] and [B] have a vanishing scalar product:

(A,B) = 0

then the vectors [A] and [B] are said to be orthogonal to each other. If the
members of a set of vectors A = {[A1] , [A2] , . . . , [An]} are mutually orthogo-
nal:

(Ai, Aj) = 0 when i 6= j

then the set A is said to be an orthogonal set. If the members of a set of
normalized vectors A = {[A1] , [A2] , . . . , [An]} are mutually orthogonal:

(Ai, Aj) = δij

then the set A is said to be an orthonormal set.

Basis and dimension
A linear combination of a set of vectors is a sum of scalar multiples of

the vectors. For example, if for a set of r scalars ci and vectors [Bi], the vector

[A] =
r∑
i=1

ci [Bi]

then [A] is said to be a linear combination of the vectors [Bi].

Now, consider the set of vectors E = {[Ek] ; k = 1, 2, . . . , n}, with the compo-
nents Eik of the vector [Ek] being given by

Eik = δik

Thus, E consists of the vectors

[E1] =


1
0
· · ·
· · ·
0

 , [E2] =


0
1
· · ·
· · ·
0

 , . . . . . . . . . . . . . . . , [En] =


0
0
· · ·
· · ·
1


It is clear that any vector [A] in Cn can be written as

A1

A2

..

..
An

 = A1


1
0
· · ·
· · ·
0

+A2


0
1
· · ·
· · ·
0

+ · · · · · · +An


0
0
· · ·
· · ·
1


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Thus, in other words, any vector [A] in Cn can be expressed as a linear
combination of the vectors in E. We express this by saying that the set of
vectors E is a complete set. If an arbitrary vector can be expressed as a linear
combination of the vectors in some subset, we say that the subset forms a
complete set. Conversely, the set of all linear combinations of some subset
is called the linear span of the subset.

We observe further, that it is impossible to express any of the vectors in the
set E as a linear combination of the other vectors in the set. This is expressed
by saying that E is a linearly independent set. Thus if it is impossible to
express the vectors in some set as a linear combination of other vectors in the
set, we say that the set is a linearly independent set.

Now we come to the most important definition of this subsection. A set
which is complete and linearly independent is called a basis. In general many
(actually infinite) such bases exist in Cn. If a basis forms an orthonormal set
it is called an orthonormal basis. It is evident that the set E comprises an
orthonormal basis. The basis E is called the standard basis in Cn.

It turns out that every basis in Cn has exactly n elements and this number
is called the dimension of Cn.

Problems5

1. Consider the set of vectors S =
{

(1, 1, 3)T , (1,−1, 2)T , (2, 0, 3)T
}
in C3.

Using Cramer’s rule express the vector [ψ] = (1, 2, 3)T of C3 as a linear
combination of the members of the set S.

2. Show that the set of vectors
{

(1, 2, 2)T , (2, 1, 2)T , (2, 2, 1)T
}

forms a
linearly independent set in C3. Does it form a basis? What about the
set
{

(1, 2, 2)T , (2, 1, 2)T
}
?

3. Prove that every basis of Cn must have exactly n elements.

(Hint: Prove that the necessary and sufficient condition for an arbi-
trary vector in Cn to be expressible as a linear combination of a set
of n vectors is that the n vectors must be linearly independent. This
also proves that any set of n linearly independent vectors forms basis in
Cn. Therefore, bases with cardinality larger than n are impossible. Now

5Throughout the book, in the problems, to save space we have often written the column
matrices as transposed row matrices (written with a superscripts T , as usual). Of course,
mathematically, row and column matrix are both ordered n-tuples, and one could have used
row matrices in place of column matrices all along. It is only a matter of convention.
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argue that it is impossible, in general, to express an arbitrary vector in
Cn as a linear combination of less than n vectors6.)

4. Show that an equivalent definition of the linear independence of a set of
vectors {[B1] , [B2] , . . . , [Br]} is given by the condition:

r∑
i=1

ci [Bi] = 0 =⇒ ci = 0 for all i

where ci are complex numbers7.

5. Prove that an orthogonal set is necessarily linearly independent.

Towards a Formal Description
Now we have the preliminary mathematical background to start developing

the mathematical characterization of the concepts and features of QM that
were introduced in the last chapter.

Description of states
In the last chapter, we started out by characterizing a quantum state by

the last measurement result. In the last section of the chapter we saw that
a quantum state |ψ〉 can be characterized by a set of n complex numbers{
ψk; k = 1, 2, . . . , n

}
if these complex numbers can be interpreted as prob-

ability amplitudes: ψk = 〈χk|ψ〉 where χk are the members of the spectrum
(assumed to consist of n elements) of some arbitrary observable χ̂ of our
choice. Since, there could be many such characterizations depending on the
choice of the observable χ̂, we called this description, a state in the χ space.
Since the amplitudes 〈χk|ψ〉 that go into the characterization of the state |ψ〉
must obey the totality condition:

n∑
k=1
|〈χk|ψ〉|2 = 1

the set of n complex numbers
{
ψk; k = 1, 2, . . . , n

}
characterizing a state must

respect the algebraic condition
n∑
k=1

∣∣ψk∣∣2 = 1

6You have essentially proved that a basis in Cn is the smallest complete set and largest
linearly independent set.

7While the earlier definition, that was provided in the text, is more intuitive, this one
comes in much more handy to work with in proofs and computations.
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We shall start the construction of the formal description of QM by asserting
that any set of n complex numbers

{
ψk; k = 1, 2, . . . , n

}
for which the above

algebraic condition holds may be interpreted as a set of n probability am-
plitudes {〈χk|ψ〉 ; k = 1, 2, . . . , n} (with any predetermined choice of χ̂) and
therefore can specify a quantum state in the χ space. So, we define a quantum
state as follows.

A state in the χ space is defined to be any ordered list of n complex num-
bers

{
ψk; k = 1, 2, . . . , n

}
which obey the algebraic condition

∑n
k=1

∣∣ψk∣∣2 = 1.
The complex numbers ψk are interpreted as the probability amplitudes 〈χk|ψ〉
where k runs over the entire spectrum of the observable χ̂.

It is convenient to write such states as complex column matrices

[ψ]χ ≡


ψ1

ψ2

..

..
ψn


where we use the explicit superscript χ in [ψ]χ to denote the space that we
use for our description. Using the vocabulary introduced in the last section,
and noting that the totality condition

∑n
k=1

∣∣ψk∣∣2 = 1 is the same as the
normalization condition ([ψ]χ)† [ψ]χ = 1, we can rephrase the above definition
of state as follows:

• A state (in the χ space) is a normalized vector belonging to Cn.

We shall often refer to a normalized vector in Cn as a state vector . There is
one thing we would like to point out here. A normalized vector in Cn is not
really unique. It is defined up to an unimodular scalar factor8. This overall
phase factor is sometimes called a global phase. It will be easy to convince
ourselves that physical predictions will not depend on global phase factors. We
emphasize the use of the word “global”. If we multiply different components of a
normalized vector with distinct unimodular factors (sometimes called relative
phases) the norm will still be one, but this will be a physically different state
vector9.

Incidentally, the states [χk]χ corresponding to the elements χk of the spec-
trum of χ̂ are simply the members of the standard basis in Cn. This is because,
the law of sustained states requires that the components χik of [χk]χ be given
by

χik = 〈χi|χk〉 = δik

8If [ψ] is a normalized vector (where
∣∣∣√(ψ,ψ)

∣∣∣ = 1) then so is eiθ [ψ] where θ is any
real number.

9It should now be clear, why we could drop the phase factor eiθ when we stated the law
of sustained states as 〈χi|χk〉 = δik (instead of 〈χi|χk〉 = δike

iθ).
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In this section, since we shall work exclusively in the χ space, we shall
often drop the superscript χ on vectors.

Description of amplitudes
Having constructed the definition of a quantum state, it now becomes our

obligation to prescribe how the amplitudes involving such states should be
defined in a consistent way. To do this we recall that, by the superposition
principle and exchange symmetry, the amplitude 〈φ|ψ〉 is given by

〈φ|ψ〉 =
∑
k

〈φ|χk〉 〈χk|ψ〉

=
∑
k

〈χk|φ〉∗ 〈χk|ψ〉

where the states |ψ〉 and |φ〉 are labelled by the measurement outcomes ψ and
φ. We shall generalize this formula to define the amplitudes between general
states defined as normalized vectors in Cn.

We define the amplitude 〈φ|ψ〉 between two general states [ψ] and [φ] (in the
χ space) by

〈φ|ψ〉 =
∑
k

(
φk
)∗
ψk

where ψk and φk are the complex components of [ψ] and [φ] respectively.

It is trivial to see that the amplitude 〈φ|ψ〉 is given by

〈φ|ψ〉 = [φ]† [ψ] = (φ, ψ)

Thus, we can rewrite the definition of probability amplitude as follows:

• The probability amplitude 〈φ|ψ〉 for an event characterized by an initial
state [ψ] and final state [φ] is given by the inner product (φ, ψ) between
the states10.

One should note that the components ψi of a state vector [ψ]χ have already
been defined to be the amplitudes 〈χi|ψ〉. So, in order that the definition of
amplitudes provided above be consistent, the components ψi must be equal
to the inner products (χi, ψ). It is trivial to check that this is indeed the case.

10It may seem that we should also use some indicator like a superscript χ on the inner
product (φ, ψ) and write it as (φ, ψ)χ to indicate the space that we are working in. Actually
(as we shall show in the next section), the inner product between states do not depend on
the choice of the space we choose to work in. Of course, this whole description would have
broken down if probabilities were dependent on the choice of the space that is used for the
description of states.
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Description of observables
In this chapter we shall not be able to directly seek a mathematical de-

scription of observables. We do not have the mathematical ingredient ready
for that as yet. We will do that in the next chapter. However, since we have
seen that we can associate a state with every measurement outcome of an
observable, we shall try to characterize an observable by identifying the set of
states in Cn that can be associated with the spectrum of an observable.

Owing to the law of sustained states the amplitudes 〈ψj |ψi〉, between states
that correspond to measurement outcomes of some observable ψ̂, obey the
relation

〈ψj |ψi〉 = δji

It is therefore clear that, in order to respect the law of sustained states, the
set of state vectors that correspond to the spectrum of an observable must be
orthonormal. Moreover, this set must have exactly n elements since we have
assumed (see chapter 2, footnote 25) that the spectra of all observables have
the same number of elements. Now, we have seen in the problem set that every
set of n orthonormal vectors in Cn comprises an orthonormal basis. Thus the
set of state vectors that correspond to the spectrum of an observable neces-
sarily constitutes an orthonormal basis. To provide a formal characterization
of an observable, we assert that this condition is also sufficient. Thus we move
to characterize a quantum observable as follows:

• Every orthonormal basis in Cn corresponds to some observable such that
every member of the spectrum of the observable is associated with a
unique member of the orthonormal basis.

Note that this assumption provides us with only a partial characterization of
an observable. We say partial because it does not tell us anything about the
spectrum of the observable. In the next chapter when we develop the com-
plete characterization of a quantum mechanical observable we shall see how
the information about the spectrum is encoded.

In the next subsection, we shall demonstrate how our definitions reproduce
the features of QM that we have learnt in the last chapter. But before we get
on with that task, let us make sure that we have not lost sight of the whole
point of this exercise. We are out to construct a formal description of QM.
Recall from the first chapter that in the formal description of ATOPA we wrote
down the theory in a language that would make sense even to someone who
had never heard of apples but, nonetheless, knew the necessary mathematics
to perform analysis with the formal theory. Here, we are trying to describe QM
such that it makes sense to anyone who knows the necessary vector algebra
(of Cn) even if she has no clue about the physics. The construction, thus far,
of our formal description has been summarized in the Table 3.1.
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TABLE 3.1: Summary of the construction of formal definitions so far. All state
vectors have been assumed to be in some definite space, say the χ space.

Motivation Definition
{[ψ] is a state} =⇒ {[ψ] is a
normalized vector in Cn}

{[ψ] is a normalized vector in Cn} ⇔
{[ψ] is a state}

{〈φj |ψi〉 is an amplitude for
[ψi]→ [φj ]} =⇒ {〈φj |ψi〉 is the inner
product (φj , ψi) of the normalized

vectors [φj ] and [ψi]}

{(φ, ψ) is an inner product of
normalized vectors [φ] and [ψ]} ⇔
{(φ, ψ) is the amplitude 〈φ|ψ〉 for

[ψ]→ [φ]}

{ψ̂ is an observable with spectrum
ψ} =⇒ {There exists an
orthonormal basis Ψ in Cn

associated with the spectrum ψ}

{Ψ is an orthonormal basis in Cn} ⇔
{There exists an observable ψ̂ such
that its spectrum ψ is associated
with the orthonormal basis Ψ}

Identification of the laws
In this section we shall demonstrate how the mathematical structure of

Cn provides a description of QM11. To this end, we shall look for the alge-
braic relationships in Cn that resemble the laws of QM. More concretely, the
purpose of this section is to show that

if

1. we define normalized vectors in Cn to be quantum states,

2. we define inner products between ordered pairs of normalized vectors in
Cn to be the probability amplitudes for the corresponding events, and

3. we associate orthonormal bases in Cn with quantum observables such
that every member of any such basis corresponds to a unique member of
the spectrum of the associated observable,

then
the laws of QM as laid down in the previous chapter manifest themselves
in the properties of Cn (endowed with addition of vectors, multiplication
of vectors by scalars and inner products).

In order to demonstrate this, we shall first derive a formula for inner products
in Cn.

11It is, of course, not the full formal description of QM but only the first layer in its
construction.
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If we have two vectors [φ], [ψ] and an orthonormal basis {[ξk] ; k = 1, 2, . . . , n}
in Cn, then the inner product (φ, ψ) between the two vectors is given by

(φ, ψ) =
n∑
k=1

(φ, ξk) (ξk, ψ)

To prove this, observe that the vectors [φ] and [ψ] in Cn can be written as

[φ] =
∑
m

φ̄m [ξm]

[ψ] =
∑
l

ψ̄l [ξl]

where φ̄m and ψ̄l are appropriate scalars, and all summation indices have been
assumed to run from 1 to n. The inner product (φ, ψ) will then be given by

(φ, ψ) = [φ]† [ψ] =
∑
l

∑
m

(
φ̄m
)∗
ψ̄l
(

[ξm]† [ξl]
)

=
∑
l

∑
m

(
φ̄m
)∗
ψ̄lδml

=
∑
l

(
φ̄l
)∗
ψ̄l

Now let us see what the coefficients ψ̄l and φ̄l are. We have

[ψ] =
∑
l

ψ̄l [ξl]

The inner product (ξm, ψ) will given by

(ξm, ψ) = [ξm]† [ψ] =
∑
l

ψ̄l
(

[ξm]† [ξl]
)

=
∑
l

ψ̄lδml

= ψ̄m

Similarly (ξm, φ) = φ̄m. Thus, we finally have

(φ, ψ) =
∑
l

(
φ̄l
)∗
ψ̄l

=
∑
l

(ξl, φ)∗ (ξl, ψ)

=
∑
l

(φ, ξl) (ξl, ψ)
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q.e.d

Now let us take up the laws of QM one by one to see how they are embed-
ded in the algebraic structure of Cn.

Law of definite probabilities This follows from the fact that to every
ordered pair of vectors there exists a well defined complex number given by
the inner product. The square of the modulus of this complex number is ob-
viously a positive semidefinite real number. For a pair of normalized vectors,
this number lies between zero and one12. Further, it is easy to see that for
a normalized vector, the inner product formula derived above reduces to the
totality condition when we set a self inner product to unity.

Exchange symmetry Exchange symmetry follows trivially from the con-
jugate symmetry property of inner products.

Superposition principle To see how this comes about, recall that the su-
perposition principle reads

〈φj |ψi〉 =
∑
k

〈φj |ξk〉 〈ξk|ψi〉

where the states |ξk〉 are labelled by the elements of the spectrum of some
arbitrary observable ξ̂ and k runs over its entire spectrum. It is immediately
evident that the inner product formula that we have derived above will reduce
to the superposition principle when [φ] and [ψ] are normalized vectors so that
the scalar products appearing in the formula can be interpreted as amplitudes:

〈φ|ψ〉 =
∑
l

〈φ|ξl〉 〈ξl|ψ〉

noting that the vectors [ξl] have already been assumed to be normalized13.

A change in the notation of inner products
Before we quit this section let us note that the inner products between

arbitrary vectors, irrespective of whether they constitute quantum states or

12This follows from Cauchy-Schwarz inequality:

|(φ, ψ)| ≤ |φ| |ψ|

for all [φ] , [ψ] ∈ Cn. Actually, it applies to more general spaces that are generalizations of
Cn. We will see such spaces shortly.

13The law of sustained states follows from the fact that the vectors that are associated
with the members of the spectrum of an observable are, by assumption, members of an
orthonormal set. But we do not really need to include this in our demonstration, since we
have pointed out in the last chapter that this is no longer an independent law of QM.
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not (i.e., irrespective of whether they are normalized or not), bear a strong
resemblance with probability amplitudes. To wit

1. exchange symmetry: this is just the conjugate symmetry property in the
definition of inner product

(φ, ψ) = (ψ, φ)∗

2. superposition principle: this is manifest in the formula for inner products
that we have proved in the beginning of the last subsection

(φ, ψ) =
∑
l

(φ, ξl) (ξl, ψ)

for every orthonormal basis {[ξl] ; l = 1, 2, . . . , n}.

Thus we see that, although not all inner products are amplitudes, they vir-
tually mimic the properties of amplitudes. So, from here on we shall use the
same notation for amplitudes and inner products and denote all inner prod-
ucts14 (φ, ψ) by 〈φ|ψ〉.

Problems

1. Which of the following vectors can qualify as a state in QM?
a) (1, 1, 1)T b) (1/

√
3) (1 + i, 1)T c) (1, 0, 0, 0)T d) (1 + i, 1− i)T

Multiply the vectors that do not qualify as states by appropriate scalars
so that they do qualify as states.

2. Two states |ψ〉 and |φ〉 are given in the χ space as

[ψ]χ = 1
5
√

2

[
3 + 4i
4 + 3i

]
and [φ]χ = 1

5
√

2

[
4− 3i
3− 4i

]
Find out the amplitudes and probabilities for the following events:
a) |ψ〉 → |φ〉 b) |φ〉 → |ψ〉 c) |ψ〉 → |χ1〉 d) |χ2〉 → |φ〉

3. Check whether a measurement on a state (1/
√

5) (1, 2)T can lead to the
state (1/

√
5) (−2, 1)T .

4. Consider the set of vectors
{

(1, 0, 0)T , (0, 1, 0)T , 1√
2 (0, 1, 1)T

}
in C3. Is

it possible that the given set of vectors correspond to the complete set
of states associated with the spectrum (comprising three elements) of
some observable?

14After reading this chapter, please see the section on braket notation in appendix ‘B’ for
a deeper motivation of this notation.
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5. Consider the two vectors

[ψ]χ = 1√
3

[
1 + i

1

]
and [φ]χ = 1√

4

[
1 + i
1− i

]
(a) Show that the vectors can represent quantum states.
(b) Investigate if they can represent states corresponding to the same

observable with different outcomes.
(c) What would be the probability of the event [ψ]→ [φ] ?

6. Prove Cauchy-Schwarz inequality: For any two vectors [A] and [B] in
Cn

|(A,B)| ≤ |A| |B|

7. Our definition of a quantum state means that to every normalized vector
there will always exist an observable such that the vector can be associ-
ated with one of its outcomes. Mathematically, it is not difficult to see
why this is so. Given a normalized vector one merely has to construct an
orthonormal basis that includes the vector15. Justify that this is always
possible.

Vector Spaces and Inner Product Spaces
In the previous section we have assumed that states in the χ space live

in Cn. In fact, all vectors of Cn will carry the signature of the χ space since
any vector can be normalized to describe a state vector. Obviously, there is
nothing special about the χ space. We can choose to use any other space that
we fancy. If we chose some other space, say ξ, we would along the same lines,
again use Cn to host the state vectors (only this time, in the ξ space). In
this section we shall try to see the mathematical relationship between these
different descriptions. It is clearly essential that all such descriptions should
reproduce the same physics (i.e., the same facts), and therefore they should
somehow integrate into some common unified framework. Such a framework
will indeed be seen to exist. However, to see this we will have to understand
the algebraic structure of Cn from a more general and abstract point of view.

15However, it is neither easy nor essential to physically make sense of observables associ-
ated with arbitrary orthonormal bases.
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Different representations of a vector in Cn

Consider a basis ξ = {[ξk] ; k = 1, 2, . . . , n} in Cn. Then an arbitrary vector
[ψ] in Cn can be written as a linear combination

[ψ] =
n∑
k=1

ψ̄k [ξk]

We can associate a unique n-tuple of coefficients ψ̄k with every vector [ψ]
in Cn. We call this n-tuple the representation of the vector [ψ] in the ξ
basis (or simply the ξ representation of [ψ]). The coefficients ψ̄k are called the
coordinates of the representation. We can write the ξ representation of the
vector [ψ] as a column matrix as well

[ψ]ξ =


ψ̄1

ψ̄2

..

..

ψ̄n


Clearly, the representation [ψ]ξ is also an element of Cn. In fact, the collection
of ξ representations of all vectors in Cn is identical to the set Cn (i.e., it gives
us another copy of Cn). This means, that for every basis ξ, there is a one-to-one
mapping from Cn onto itself.

We shall work exclusively with orthonormal bases. As we have seen before,
if a basis ξ is orthonormal, the expansion coefficients are given by the inner
product so that

ψ̄k = 〈ξk|ψ〉
Incidentally, in the standard basis χ = {[χk] ; k = 1, 2, . . . , n} where χik = δik,
a vector [ψ] is expanded as

[ψ] =
n∑
i=1

ψi [χi]

That is, the coordinates of [ψ] in the standard representation are simply the
components of [ψ]. Thus the χ representation [ψ]χ of [ψ] is identical to [ψ]:

[ψ]χ = [ψ]

Since the standard basis is also orthonormal, we have

ψi = 〈χi|ψ〉

Relationship between representations
It is easy to see that if ζ and ξ are two orthonormal bases, then the

coordinates 〈ζk|ψ〉 and 〈ξk|ψ〉 of a vector [ψ] in the two representations [ψ]ζ
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and [ψ]ξ are related by16

〈ζi|ψ〉 =
∑
j

〈ζi|ξj〉 〈ξj |ψ〉

This can be written as a matrix equation

[ψ]ζ = T(ζ,ξ) [ψ]ξ

where T(ζ,ξ) is a n× n square matrix whose components T ij(ζ,ξ)are defined by

T ij(ζ,ξ) = 〈ζi|ξj〉

Note that the matrix T(ζ,ξ) is made up of the column vectors [ξk]ζ

T(ζ,ξ) =


〈ζ1|ξ1〉 〈ζ1|ξ2〉 .. .. 〈ζ1|ξn〉
〈ζ2|ξ1〉 〈ζ2|ξ2〉 .. .. 〈ζ2|ξn〉
.. .. .. .. ..
.. .. .. .. ..

〈ζn|ξ1〉 〈ζn|ξ2〉 .. .. 〈ζn|ξn〉


Owing to the orthonormality of the vectors [ξk]ζ , the matrix T(ξ,χ) will turn
out to be unitary17. The matrix T(ζ,ξ) transforms the ξ representation [ψ]ξ of
a vector to its ζ representation [ψ]ζ . It is therefore called a transformation
matrix. The transformation matrix defines a function from Cn onto itself.
We will denote this function (i.e., the transformation) also by T(ζ,ξ).

Let us now consider the set of ξ representations of all vectors in Cn. Let
us call this set Cnξ . We have already remarked that this set is identical to
Cn. It is only the interpretation of their elements that are different. We can
define addition, multiplication by a scalar and inner product on Cnξ in the
same way as on Cn. We can similarly define Cnζ . Now we note that the general
transformation matrix T(ζ,ξ) which defines a mapping from Cnξ to Cnζ preserves
the algebraic structure. By this we mean that

• under the transformation T(ζ,ξ), the image of an arbitrary linear combi-
nation of vectors in Cnξ is equal to the same linear combination of the

16This relation was actually derived in the last section. Up until that point we were using
a slightly different notation for inner products. In that notation this relation would read

(ζi, ψ) =
∑
j

(ζi, ξj) (ξj , ψ)

17It turns out that when the bases are not orthonormal, the transformation matrix T(ξ,χ)
is still made up of the column vectors [χk]ξ, however, T(ξ,χ) is then no longer unitary. After
you have read this chapter, you may check out appendix ‘B’ for transformation between
nonorthonormal bases.
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images of the of vectors in Cnζ∑
i

ci [ψi]ξ
T(ζ,ξ)−−−→

∑
i

ci [ψi]ζ

where the c′is are arbitrary complex numbers.

This follows trivially from the relationship between the representations18

[ψ]ζ = T(ζ,ξ) [ψ]ξ

In general, when a mapping preserves the algebraic structure, it is called
a homomorphism. When the homomorphism is one-to-one, it called an iso-
morphism. If we have an isomorphism from a set onto itself, it is called an
automorphism. Thus, every transformation T(ζ,ξ) defines an automorphism on
Cn.

Now, the transformation T(ξ,χ) effects a transformation from the standard
representation χ to the representation ξ. Since [ψ]χ = [ψ], and the transforma-
tion T(ξ,χ) preserves the algebraic structure, it follows that the representations
[ψ]ξ in Cnξ essentially mimic the algebraic behaviour of the vectors [ψ] in the
Cn that we started out with. This, of course, is true for any representation ξ.

We observe further that the unitarity of the transformation matrix T(ξ,χ)
implies that for an arbitrary pair of vectors [ψ] and [φ]

([φ])† [ψ] =
(
T(ξ,χ) [φ]

)† (
T(ξ,χ) [ψ]

)
=
(

[φ]ξ
)†

[ψ]ξ

This means that

the inner product of an arbitrary pair of vectors is invariant under the trans-
formation.

That is, irrespective of whether we use the coordinates in the standard rep-
resentation (i.e., the components of the vectors) or the coordinates in some
other orthonormal representation, the inner product remains unaltered.

Problems

1. Two orthonormal bases in C2 are given by

S =
{

1√
2

[
1
1

]
,

1√
2

[
1
−1

]}
and S′ =

{
1
5

[
4
−3

]
,

1
5

[
3
4

]}
18Multiplication of matrices distributes over addition and associates with scalar multipli-

cation of matrices.
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(a) Find the transformation matrices T(S,E) and T(S′,S) that effects the
transformations from the standard basis E to S and from S to S′.
Express T(S′,E) in terms of T(S,E) and T(S′,S).

(b) Demonstrate that the transformation matrices are unitary.
(c) Find out the inner product 〈ψ|φ〉 between the vectors

[ψ]S = (1/
√

5) (1, 2)T and [φ]S
′

= (1/
√

10) (1, 3)T .

2. The following matrix T(ξ,η) transforms coordinates from an orthonormal
basis η to a basis ξ in C3:

T(ξ,η) = 1√
2

 1 1 0
−i i 0

0 0
√

2i


(a) Write down the elements of the basis ξ in terms of the elements of

η.
(b) Can you check, simply by looking at T , whether the basis ξ is

orthonormal?
(c) If the vector (1, 1, 1)T is a representation in the ξ basis, express it

in the η basis.

3. Show that the transformation matrix taking representations from one
orthonormal basis to another is necessarily unitary. Prove that the con-
verse is also true: every unitary matrix can be looked upon as a transfor-
mation matrix that effects a transformation between two orthonormal
bases.

Abstract spaces
Recall that ordinary displacement like vectors in our usual 3-dimensional

space are represented as ordered triplets of real numbers (i.e., as elements
of R3). These representations (which can be written as real, 3-dimensional
column matrices) mimic the behaviour of the displacement vectors they rep-
resent. They have the same algebraic structure under addition of column ma-
trices and multiplication of column matrices by scalars (real numbers) as dis-
placement like vectors under vector addition and multiplication of a vector
by a scalar (defined by parallelogram law and length scaling, respectively).
Obviously, this algebraic structure is preserved if we go from one representa-
tion (coordinate system) to another (say, a rotated coordinate system). Now,
in the previous subsection we have seen that the algebraic structure of Cn is
also preserved as we go from one of its representations to another. We would
like to explore the possibility whether we can imagine an underlying set of
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objects (analogous to displacement like vectors) to which Cn is a set of repre-
sentations19. We could call these underlying objects, vectors, as well. This will
enable us to speak of vectors in a representation independent way. We could,
in some sense, regard them as more fundamental than their representations.

Let us then imagine an abstract space that has an algebraic structure
exactly like Cn. We are essentially contemplating a set of symbols that can be
put into one-to-one correspondence with the vectors of Cn. We define definite
rules of combining the symbols and scalars (i.e., complex numbers) to yield
other symbols in the set (to correspond to addition and scalar multiplication
of vectors) or combining pairs of symbols to yield a scalar (to correspond to
inner product of vectors) in such a way that the algebra of such combinations
is exactly the same as the algebra of Cn. Let me define this more concretely.

Let us consider a set V and call its elements, vectors. We will denote
vectors as |ψ〉 , |φ〉 , . . . , etc. Let us define an operation that associates a vector
to every ordered pair (|ψ〉 , |φ〉) of vectors in V . We choose to denote this vector
by |ψ〉+ |φ〉 and call this operation “addition of vectors”. Let us define another
operation that associates a vector, denoted by c |ψ〉 to every pair {c, |ψ〉}
consisting of a complex number c (to be called a scalar again) and a vector
|ψ〉 in V. We will call this operation “multiplication of a vector by a scalar”.
Now let us require the operations, addition of two vectors and multiplication
of a vector by a scalar, to obey the properties that were listed for Cn in the
first section of this chapter:

1. Associativity of addition of vectors: For all vectors |α〉, |β〉, |γ〉

(|α〉+ |β〉) + |γ〉 = |α〉+ (|β〉+ |γ〉)

2. Existence of Additive Identity: There exists a vector | 〉, that is called the
additive identity, such that for any vector |α〉

|α〉+ | 〉 = | 〉+ |α〉 = |α〉

3. Existence of Additive Inverse: For every vector |α〉 there exists a vector
− |α〉, that is called the additive inverse of |α〉, such that20

|α〉+ (− |α〉) = (− |α〉) + |α〉 = | 〉

4. Commutativity of addition of vectors: For all vectors |α〉, |β〉

|α〉+ |β〉 = |β〉+ |α〉
19This exercise is an important example in QM of the process of abstraction and gener-

alization that we discussed in the first chapter.
20Incidentally, an algebraic system that obeys these first three properties is called a group,

and when a group obeys the next property (i.e., commutativity), it is called a commutative
group (also called anAbelian group).Groups are profoundly important algebraic structures
in all of physics and mathematics.
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5. Compatibility of multiplication of scalars with multiplication of a vector
by a scalar: For every vector |α〉 and all scalars a, b

a (b|α〉) = (ab) |α〉

6. Distributivity of scalar multiplication of a vector over addition of vectors:
For all vectors |α〉 and |β〉 and every scalar a

a (|α〉+ |β〉) = a|α〉+ a|β〉

7. Distributivity of scalar multiplication of a vector over addition of scalars:
For every vector |α〉 and all scalars a, b

(a+ b) |α〉 = a|α〉+ b|α〉

8. Equality of identity of scalar multiplication and multiplicative identity
of scalars: For every vector |α〉

1|α〉 = |α〉

The set V endowed with these properties is said to form a vector space over
the field of complex numbers21.

Now let us define another function that assigns a scalar denoted by 〈φ|ψ〉
to every ordered pair (|φ〉 , |ψ〉) of vectors in V. Let us call this function an
inner product of vectors . We require this function to obey the properties that
were listed for inner product of vectors in Cn:

1. Conjugate Symmetry: For all vectors |α〉, |β〉

〈α|β〉 = 〈β|α〉∗

2. Linearity: For all vectors |α〉, |β〉, |γ〉 and all scalars b, c

〈α| , (b |β〉+ c |γ〉) = b 〈α|β〉+ c 〈α|γ〉

3. Positive-definiteness: For any vector |α〉

〈α|α〉 ≥ 0 and 〈α|α〉 = 0 if and only if |α〉 = | 〉
21Linear algebra, which provides the main mathematical basis for QM, is essentially

the study of vector spaces. A firm grasp of this very important branch of mathematics
is actually indispensable for almost all areas of physics and mathematics. Although we
provide the essentials required for this discourse, we recommend the comprehensive treatise
by P.R.Halmos (Halmos 1987) for acquiring a thorough background on this subject.
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The vector space V is now said to form an inner product space over the
complex field22.

Note that in the above definitions the names, addition and multiplication
that we have used for the functions are not the usual addition and multipli-
cation of numbers or matrices. We have merely borrowed the names23.

It is easy to imagine that one can define a vector space and inner product
space with real numbers as scalars. Such a space is often called an Euclidean
space24. An n-dimensional Euclidean space is denoted by Rn. Incidentally, an
inner product space over a complex field (that we have just defined) is called
an unitary space. There are myriads of examples of vector spaces and inner
product spaces other than Rn and Cn. However, it is easy to see that every
n-dimensional real vector space is isomorphic to Rn and every n-dimensional
complex vector space is isomorphic to Cn.

All definitions that were laid down for Cn in the first section of this chapter
carry over naturally to abstract spaces. The norm of a vector is the positive
square root of the inner product of the vector with itself. Vectors which have
unit norm are said to be normalized vectors. If two vectors have a van-
ishing inner product, they are called orthogonal vectors. A set comprising
mutually orthogonal vectors is called an orthogonal set. If an orthogonal
set consists of normalized vectors, it is called an orthonormal set. A linear
combination of a set of vectors is a sum of scalar multiples of the vectors.
When an arbitrary vector in a vector space can be expressed as a linear com-
bination of the elements of some subset of the vector space, we say that the
subset forms a complete set. The set of all possible linear combinations of
a subset is called the linear span of the subset. If it is impossible to ex-
press any of the vectors of a set as a linear combination of other vectors in
the set, we say that the set is a linearly independent set. A set which
is complete and linearly independent is said to form a basis. A basis which
is orthonormal is naturally called an orthonormal basis. It turns out that

22Essentially, we have defined three mappings or functions: V ×V −→ V , C×V −→ V
and V × V −→ C . The values of the functions are denoted respectively by |ψ〉+ |φ〉, c |ψ〉
and 〈φ|ψ〉:

(|ψ〉 , |φ〉) 7→ |ψ〉+ |φ〉 (c, |ψ〉) 7→ c |ψ〉 (|ψ〉 , |φ〉) 7→ 〈φ|ψ〉

and they have been defined to obey the properties that we have listed. Here ‘×’ is the
Cartesian product. Incidentally, a function like V ×V −→ V is also called a binary operation
on V . For those unfamiliar, the symbol ‘7→’ means “maps to”.

23In the first few problems of the next problem set, you will see how the structure of
vector spaces and inner product spaces can show up in completely different contexts and
forms.

24If one uses real instead of complex scalars one would have, what are called, vector spaces
and inner product spaces defined over the real field. Actually, such algebraic structures can
be defined on arbitrary fields where field is an abstraction of the familiar algebraic systems
of real and complex numbers (i.e., the set of real or complex numbers with addition and
multiplication defined on them).
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every basis of a vector space has exactly the same number of elements, and
this number is called the dimension of the vector space25.

Incidentally, if S be a subset of a vector space V , and if S forms a vector
space over the same field under the same addition and scalar multiplication
operations under which V forms a vector space, then S is called a subvector
space, or simply, a subspace26.

Let us now see how we can retrieve Cn from our abstract space. We choose
some orthonormal basis ξ = {|ξk〉 ; k = 1, 2, . . . , n} in V . Then an arbitrary
vector |ψ〉 in V can be written as

|ψ〉 =
n∑
k=1
|ξk〉 〈ξk|ψ〉

The ξ representation of |ψ〉 is defined as the n-tuple of expansion coefficients

[ψ]ξ =


〈ξ1|ψ〉
〈ξ2|ψ〉

〈ξn|ψ〉


The set of ξ representations of all vectors |ψ〉 in V will comprise the ξ represen-
tation space27 Cnξ . It is trivial to see that Cnξ is identical to Cn. Thus, vectors
that were defined in the different spaces are now treated as representations of
the same vector in different bases. Incidentally, the set of representations of
the basis vectors |ξk〉 in their own basis ξ will constitute the standard basis
in the ξ representation space Cnξ :

|ξk〉 =
n∑
j=1

δjk |ξj〉

=⇒ ξjk = δjk

where ξjk is the j-th component of [ξk]ξ.

Problems

1. Show that the ordinary 3-vectors (directed line segments in 3-
dimensional space) form an inner product space with real scalars under

25See problem ‘9’ in the problem set that follows.
26Please see appendix ‘B’ for a few easy to prove but important theorems on subspaces.

We will need them later in the book.
27Such a space will often be referred to as a ξ space in short.
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addition of vectors (parallelogram or triangle law), multiplication of a
vector by a scalar (scaling) and dot product of vectors.

2. Consider the set of 2× 2, traceless, Hermitian matrices.

(a) Show that they form a vector space under addition of matrices and
multiplication of matrices by a (real) scalar.

(b) What will be the dimension of this vector space?
(c) If we define a function that associates every pair of such matrices

(A,B) with a real number Φ (A,B) according to the rule:

Φ (A,B) = 1
4Tr (AB +BA)

establish that the function qualifies as an inner product.

(Hint: Write the general form of the matrices in terms of real
scalars. For example, write the traceless Hermitian matrices in
terms of three real numbers x, y, and z as[

z x− iy
x+ iy −z

]
Now observe that the problem can be identified with the previous
problem if you identify every such matrix with the ordered triplet
(x, y, z). You may try to identify (read off) a basis, and proceed
from there.)

3. Show that the set of n-th degree (univariate) polynomials (with real
coefficients) Pn (t) form a vector space under addition (of polynomials)
and multiplication (of polynomials) by a scalar.

4. Let S be a set of positive real numbers. We define two operations ⊕ and
� on S by

x⊕ y = xy

x� r = xr

for all x, y in S and all real numbers r. Show that the set S forms a
vector space over the real field under the operations28 ⊕ and �.

5. Consider, once again, the ordinary 3-vectors of the first problem.

28Note how, ordinary multiplication plays the role of vector addition while multiplication
by a scalar is given by exponentiation. In abstract algebra, the terms addition and multi-
plication are just names. Notice that the objects that constitute the vector spaces in this
and the preceding three problems are actually completely different animals. Nevertheless,
they have many common features by virtue of only a few fundamental properties (namely,
the defining conditions of a vector space) they share.
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(a) Show that any set of three non-coplanar vectors will form a basis
in the above vector space.

(b) The set S = {x̂, ŷ, ẑ} forms an orthonormal basis where x̂, ŷ and
ẑ are the unit vectors along the axes of a Cartesian coordinate
system. If the x− y plane of the Cartesian system S is rotated by
some angle θ about the z axis to yield a new orthogonal coordinate
system S′, construct the transformation matrix R that connects S
and S′. Show that the transformation matrix R is an orthogonal
matrix.

(c) Argue that any orthogonal matrix will always be a transformation
matrix that effects a transformation from one orthonormal basis to
another (i.e., from one orthogonal co-ordinate system to another29).

6. Let χ = {|χ1〉 , |χ2〉} be an orthonormal basis for some inner product
space V and ξ = {|ξ1〉 , |ξ2〉} be another set contained in V , where

|ξ1〉 = −i√
2
|χ1〉+ 1√

2
|χ2〉 and |ξ2〉 = 1√

2
|χ1〉+ −i√

2
|χ2〉

(a) Show that ξ forms an orthonormal basis in V as well.
(b) Construct the transformation matrix T(ξ,χ).
(c) Determine the coordinates of the vector |ψ〉 = (1/5) (3 |χ1〉+ 4 |χ2〉)

in the ξ basis using T(ξ,χ).
(d) If a vector is given by |φ〉 = (1/5) (4 |ξ1〉 − 3 |ξ2〉), compute the inner

product 〈φ|ψ〉.

7. If B = {|β1〉 , |β2〉 , |β3〉 , |β4〉} forms a basis in V and |α〉 = c2 |β2〉 +
c4 |β4〉 with c2, c4 6= 0, show that the set B′ = {|β1〉 , |α〉 , |β3〉 , |β4〉}
also forms a basis.

(Hint: In the expansion of any vector in terms of the vectors |βi〉, one
can always replace |β2〉 or |β4〉 in terms of |α〉 to establish completeness.
The linear independence of the new set is a consequence of the linear
independence of the old set.
It is straightforward to generalize the analysis to any finite dimensional
vector space. In the general setting this gives what is known as the re-
placement theorem: If B = {|αi〉 ; i = 1, 2, . . . , n} be a basis in a vector
space V and |ψ〉 be a vector given by

|ψ〉 =
n∑
i=1

ci |αi〉

where cis are scalars, then

B′ = {|α1〉 , |α2〉 , . . . , |αk−1〉 , |ψ〉 , |αk+1〉 , . . . , |αn〉}

29Check out the more general theorem in an abstract setting in appendix ‘B’.
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forms a basis as well, provided that ck 6= 0.)

8. If B = {|α1〉 , |α2〉 , |α3〉} forms a basis in a vector space V , show that
the set B′ = {|β1〉 , |β2〉 , |β3〉} also forms a basis of the vector space in
V where

|β1〉 = |α1〉+ |α2〉 |β2〉 = |α1〉+ 2 |α2〉+ 3 |α3〉 β3 = 2 |α1〉+ 3 |α2〉+ 4 |α3〉

(Hint: Use the argument of problem (7) sequentially, to replace the mem-
bers of B by those of B′. Inspect that B′ is linearly independent, and
note that the process of replacement will not fail owing to this.
Again, the procedure is easily extended to arbitrary finite dimensional
vector spaces. The general result is: if a basis of a vector space V has n
elements then every set of n linearly independent vectors in V will form
a basis30.)

9. Establish that if one basis in a vector space V has n elements, then every
basis of V must also have exactly n elements31. Hence, argue that if B
is a basis in a vector space V , then it is the smallest complete set and
the largest linearly independent set in V .

10. Show that the dependence of the inner product on the first argument is
antilinear: using the notation 〈α|β〉 ≡ (|α〉 , |β〉), demonstrate that

(c1 |α〉+ c2 |β〉 , |γ〉) = c∗1 (|α〉 , |γ〉) + c∗2 (|β〉 , |γ〉)

where |α〉 , |β〉 , |γ〉 are arbitrary vectors and c1, c2 are arbitrary scalars.

11. Prove that, given a set of linearly independent vectors, one can construct
an orthonormal set (of the same cardinality) by taking appropriate lin-
ear combinations of the given vectors.

(Hint: Imagine three non-coplanar vectors which are not mutually or-
thogonal. Now construct three orthonormal vectors by taking appro-
priate linear combinations. Generalize the algebra of the proof to your
abstract inner product space. If you succeed, you will have proved the
Gram-Schmidt orthogonalization theorem32.)

12. Using the Gram-Schmidt orthogonalization process, construct an or-
thogonal basis from the basis vectors: (0, 2,−1), (2, 0, 1), (2, 2, 0) in R3.

13. Prove that every n-dimensional real vector, space is isomorphic to Rn,
and every n-dimensional complex vector space is isomorphic to Cn.

30The general proof has been provided in the appendix. However, we would strongly
encourage you to do it yourself.

31Recall that you have already proved this in the first problem set for Cn. Here you are
required to frame the argument in a more abstract setting.

32If you do not succeed, please look up in appendix ‘B’.
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|ψ1〉

|χ1〉

|φ1〉

|χ2〉
|ψ2〉

|φ2〉

FIGURE 3.1: The state space for a 2-dimensional quantum system visualized as
a 2-dimensional real vector space. States lie on the unit circle. A measurement of φ̂
on |ψ1〉 leading to an outcome φ2 produces a final state |φ2〉. This visualization is,
however, not precisely correct since unit normed state vectors are not unique and
defined only up to global phases in a complex vector space.

Postulates of Quantum Mechanics - Version 1
It is now easy to guess the appropriate mathematical framework for the

description of QM that will treat states in different spaces in a unified way.
We shall have to formulate QM using an abstract inner product space instead
of Cn for the description of the state space (see Figure 3.1). We will lay
down the formulation as a set of postulates. In the course of this book, these
postulates will evolve as we introduce new features of QM and new ingredients
of description. It is our purpose to demonstrate how this evolution comes
about. Let us then write down the first version of the postulates.

1. Every system is associated with an inner product space. States of the
system are the normalized vectors belonging to this space.

2. Every observable of the system is associated with an orthonormal basis
of the state space. The members of the measurement spectrum of an
observable are in one to one correspondence with the members of the
orthonormal basis associated with the observable33.

33Note that we are still not in a position to say what an observable is in terms of a
concrete, mathematical ingredient of our formal description. In particular, these postulates
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3. If a measurement of an observable ψ̂ yields an outcome ψi, soon after
the measurement, the new state becomes |ψi〉 - the state associated with
the outcome34 ψi.

4. The probability P [ψi → φj ] of the event ψi → φj of getting an outcome
φj upon measurement of an observable φ̂ on a state |ψi〉 is given by the
Born rule:

P [ψi → φj ] = |〈φj |ψi〉|2

where the scalar product 〈φj |ψi〉 is called the probability amplitude of
the event ψi → φj .

It is trivial to see how our previous description (where we used Cn) is contained
in our new formulation. Let V be an inner product space corresponding to a
quantum system. Let χ = {|χk〉 ; k = 1, 2, . . . , n} be an orthonormal basis in V
that we associate with an observable χ̂ of the quantum system. An arbitrary
state |ψ〉 is then described by the normalized vector

|ψ〉 =
∑
k

|χk〉 〈χk|ψ〉

The representation of the state vector |ψ〉 in the χ basis is given by

[ψ]χ =


〈χ1|ψ〉
〈χ2|ψ〉

〈χn|ψ〉


where the coefficients 〈χk|ψ〉 are given by the scalar product of |ψ〉 and |χk〉
because of the orthonormality of the basis χ. By our agreed interpretation,
the scalar products 〈χk|ψ〉 are the probability amplitudes for the events |ψ〉 →
|χk〉. Thus the representation [ψ]χ is nothing but what we had earlier called the
state |ψ〉 in the χ space. Similarly, representations of |ψ〉 in other orthonormal
bases will give the state |ψ〉 in other spaces. Thus our description neatly
brings out the fact that states can be equivalently described in different spaces
(characterized by the spectra of different observables).

Before we end this chapter, let us quickly review how the description of the
quantum state evolved. We started out using a notion of a quantum state that

do not formally allow us to make any prediction about the values of the measurement
outcomes.

34This postulate encodes the fact that every measurement prepares a state. Note that in
the last chapter this fact was already integrated into the definition of the state that emerged
from the law of definite probabilities. But in the formal description, it requires an explicit
mention (which we did not do when we used Cn). Incidentally, there is a standard jargon
for this postulate: it is called the collapse postulate or the postulate of state collapse. We
shall, however, introduce this term later when we discuss it in a more general setting.
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was characterized by the last measurement outcome. Then, equipped with the
superposition principle (and exchange symmetry), we were able to develop a
definition of quantum state as a collection of probability amplitudes of events
that have as a final state all possible outcomes of some arbitrary but specific
observable. This definition was subsequently generalized to associate a quan-
tum state with any set of complex numbers having some fixed cardinality
(determined by the size of the spectra of the observables of the system), the
squares of whose moduli add up to one. This was embodied in the statement
that every normalized vector in Cn is a quantum state (in a space associated
with some arbitrarily chosen observable). Finally, a (representation indepen-
dent) state was defined to be a normalized vector in an abstract inner product
space.

Problems

1. Let {|χ1〉 , |χ2〉} and {|ξ1〉 , |ξ2〉} be the orthonormal bases associated
with the observables χ̂ and ξ̂ having the respective spectra {χ1, χ2} and
{ξ1, ξ2}. The bases are related by

|ξ1〉 =
√

3
2 |χ1〉+ 1

2 |χ2〉 and |ξ2〉 = − 1
2 |χ1〉+

√
3

2 |χ2〉

(a) A measurement of χ̂ on an initial state |ψ〉 yields χ1. If the probabil-
ity of the event in known to be 1/5, can you say what was the initial
state |ψ〉? If you knew that the amplitude for the event |ψ〉 → |χ1〉
is 1/

√
5, would your answer be different? What is the final state after

the χ̂ measurement?
(b) If an instantaneous measurement of ξ̂ is now performed, what is

the probability that the outcome is ξ2, and what is the final state
when the measurement produces this outcome?

(c) Immediately after the ξ̂ measurement if χ̂ is measured again, what
are the probabilities of the different possibilities? What would be
your answer if you did not know the outcome of the ξ̂ measure-
ment35.

(d) By a sequence of instantaneously subsequent measurements of χ̂

35What you will have after the ξ̂ measurement is known as a statistical mixture of states.
In this case it will be a statistical mixture of the states |ξ1〉 and |ξ2〉 with probabilities
determined by the state |χ1〉.
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and ξ̂ check whether it is possible to produce the states

(i) |φ〉 = 1
5 (4 |ξ1〉 − 3 |ξ2〉)

(ii) |ψ〉 = 1
10

((
3
√

3− 4
)
|χ1〉+

(
3 + 4

√
3
)
|χ2〉

)
(e) Determine the probability of the event |ψ〉 → |φ〉? Can the states

correspond to two distinct outcomes of the same observable?
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Chapter 4
Observables as Operators

In the last chapter, we started working towards a formal description of QM.
The entire chapter was devoted to establishing a connection between QM and
an algebraic system called inner product space. The formulation that was
laid out was, however, only half baked since we were not able to assign any
concrete mathematical object to quantum observables. This is what we intend
to do now. In this chapter, we shall introduce a new ingredient in our language
called a linear operator. A linear operator will turn out to be the appropriate
mathematical entity to describe observables of QM. We shall see that this will
allow us to rephrase the fundamental questions of QM in a very economical
way, and make it easier for us to look for a road that would lead to their
answers.

Linear Operators
We define an operator acting on a vector space as a function that associates

to each member of the vector space some unique element of that vector space1

(e.g., a n×n square matrix can be considered to be an operator acting on the
vectors of Cn through the operation of matrix multiplication).

We shall denote operators by placing a hat on them (e.g., Â,B̂,..., etc.),
and their action on an arbitrary vector |ψ〉 will be written as

Â |ψ〉 = |ψ〉′

We shall sometimes call |ψ〉′ the Â-transform of |ψ〉.
Now, a linear operator is an operator whose action preserves linearity:

Â [c1 |ψ1〉+ c2 |ψ2〉] = c1Â |ψ1〉+ c2Â |ψ2〉

where c1, c2 are arbitrary scalars, and |ψ1〉 , |ψ2〉 are arbitrary vectors. Thus,

1In mathematics, one uses the term operator in a more general sense that refers to
mappings from one vector space to another. For our purpose, it is enough to restrict the
definition to mappings from a vector space to itself.
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the action of a linear operator is such that the transform of a linear combi-
nation of vectors is equal to the same linear combination of the transforms of
the vectors.

Since we will always be concerned with inner product spaces, the rest of the
discussion will assume that our linear operators act on inner product spaces.

An operator is well defined when its action on each and every member
of the space on which it acts is specified. For linear operators, it is immedi-
ately obvious that it is sufficient to specify the action of the operator on all
the elements of some chosen basis. The action on every other vector is then
automatically specified by virtue of linearity:

|ψ〉′ = Â |ψ〉
= Â

∑
i

|χi〉 〈χi|ψ〉

=
∑
i

Â |χi〉 〈χi|ψ〉

=
∑
i,j

|χj〉
〈
χj

∣∣∣Â∣∣∣χi〉 〈χi|ψ〉
The summation indices will always be assumed to run over the dimension
of the vector space if not specified. Here, the action of the operator Â is
completely specified through the specification of its action on the elements
of the basis χ = {|χi〉 ; i = 1, 2, . . . n}, which in turn are specified through
the specification of the objects2

〈
χj

∣∣∣Â∣∣∣χi〉. Note that the inner product〈
χj

∣∣∣Â∣∣∣χi〉 is the coefficient of |χj〉 in the expansion of Â |χi〉 in the χ basis.
These objects provide a representation of linear operators.

Representations of linear operators

The objects
〈
χj

∣∣∣Â∣∣∣χi〉 defines a n× n matrix, where n is the number of
elements in the χ basis (i.e., the dimension of the vector space). Let us denote
this matrix by

[
Â
]χ

.

[
Â
]χ

≡


〈χ1| Â |χ1〉 〈χ1| Â |χ2〉 .. .. 〈χ1| Â |χn〉
〈χ2| Â |χ1〉 〈χ2| Â |χ2〉 .. .. 〈χ2| Â |χn〉

.. .. .. .. ..

.. .. .. .. ..

〈χn| Â |χ1〉 〈χn| Â |χ2〉 .. .. 〈χn| Â |χn〉


2We have chosen an orthonormal basis for illustration because that is what we shall use

almost all the time. It should be clear that the argument does not depend on this choice.
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The equation

|ψ〉′ =
∑
i,j

|χj〉
〈
χj

∣∣∣Â∣∣∣χi〉 〈χi|ψ〉
〈χj |ψ〉′ =

∑
i

〈
χj

∣∣∣Â∣∣∣χi〉 〈χi|ψ〉
So we see that the matrix

[
Â
]χ

transforms the χ representation [ψ]χ of |ψ〉
to the χ representation [ψ′]χ of |ψ〉′ :

[ψ′]χ =
[
Â
]χ

[ψ]χ

It is therefore natural to call the matrix
[
Â
]χ

the χ representation of Â, that
is, the representation of the operator Â in the χ space3.

Change of representation
To obtain the representation of Â in some other orthonormal basis, say

ξ = {|ξi〉 ; i = 1, 2, . . . n}, let us multiply the last equation of the preceding
subsection by the transformation matrix T(ξ,χ) that we introduced in the last
chapter:

T(ξ,χ) [ψ′]χ = T(ξ,χ)

[
Â
]χ

[ψ]χ

= T(ξ,χ)

[
Â
]χ
T †(ξ,χ)T(ξ,χ) [ψ]χ

[ψ′]ξ = T(ξ,χ)

[
Â
]χ
T †(ξ,χ) [ψ]ξ

where we have used the unitarity of the transformation matrix T(ξ,χ). Hence,

the ξ representation
[
Â
]ξ

of Â is clearly given by

[
Â
]ξ

= T(ξ,χ)

[
Â
]χ
T †(ξ,χ)

3Here the matrix elements A(χ)
ji are given by A(χ)

ji =
〈
χj
∣∣Â∣∣χi〉. This is true for or-

thonormal bases. In the general case A(χ)
ji is still equal to the j-th expansion coefficient of

Â |χi〉 in the χ basis, but it is no longer given by the inner product
〈
χj
∣∣Â∣∣χi〉. Please see

appendix ‘B’ for details.
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Problems

1. The set of vectors B = {|α〉 , |β〉 , |γ〉} forms a basis in some 3-
dimensional vector space V . If the action of an operator R̂ on the basis
vectors are given by

R̂ |α〉 = |α〉+ 2 |β〉+ 3 |γ〉 , R̂ |β〉 = 3 |α〉+ |β〉+ 2 |γ〉 , R̂ |γ〉 = 2 |α〉+ 3 |β〉+ |γ〉

(a) What will be the action of R̂ on the vector: |ψ〉 = |α〉− 2 |β〉+ |γ〉?
(b) Determine the matrix representation of the operator R̂ and the

representation of R̂ |ψ〉 in the B basis.

2. Consider an operator F acting on C2 such that

F (x, y)T = (2x+ 3y, 4x− 5y)T

where (x, y)T ∈ C2. Show that F is a linear operator and find its repre-
sentation in the standard basis

{
(1, 0)T , (0, 1)T

}
and the orthonormal

basis
{

(1/
√

2) (1, 1)T , (1/
√

2) (−1, 1)T
}
.

3. Let M̂ be a linear operator acting on C2. If the action of M̂ on the
orthonormal basis elements (1, 0)T and (0, 1)T are given by M̂ (1, 0)T =
(1, 1)T and M̂ (0, 1)T = (1,−2)T . Find the action of M̂ on an arbitrary
element (x, y)T of C2. What will be the matrix representation of M̂?

4. An operator Â is defined on C2 in the standard basis by the matrix,

Â =
[

5 2
−1 4

]
Determine the matrix representing Â in the basis,

S1 =
{

1√
2

[
1
1

]
,

1√
2

[
1
−1

]}
5. The outer product |α〉 〈β| associated with an ordered pair of vectors

(|α〉 , |β〉) in a vector space V is an operator defined by

[|α〉 〈β|] |ψ〉 = |α〉 〈β|ψ〉

where |ψ〉 is an arbitrary vector in V .

(a) Show that the operator is linear.
(b) If B = {|a〉 , |b〉} is an orthonormal basis, determine the represen-

tation
[
Q̂
]B

where Q̂ is defined by

Q̂ = p |a〉 〈a|+ q |b〉 〈b|+ r |a〉 〈b|+ s |b〉 〈a|

where p, q, r, s are scalars. Here, addition of operators, and multi-
plication of operators by a scalar are defined in a natural way.
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Eigenvalues and eigenvectors
Let Â be a linear operator acting on a vector space V . If for some vector

|ψ〉 in V and some scalar λ

Â |ψ〉 = λ |ψ〉

then we say that |ψ〉 is an eigenvector of Â with eigenvalue λ. The above
equation is called the eigenvalue equation of Â. The full set of eigenvalues
is called the spectrum of the operator.

In general, there can be more than one linearly independent eigenvector cor-
responding to a given eigenvalue. As for linearly dependent eigenvectors, it is
easy to see that

if a set of eigenvectors of a linear operator have the same eigenvalue, then
every linear combination of those eigenvectors is also an eigenvector of the
operator with that eigenvalue.

So given a linearly independent set of eigenvectors with a specific eigenvalue,
there exists a linearly dependent set of infinitely many eigenvectors with that
same eigenvalue which can be constructed simply by taking the linear combi-
nations of the given set of independent eigenvectors. An immediate corollary
to the above theorem is that

the eigenvectors corresponding to different eigenvalues are always linearly in-
dependent4.

If for a linear operator, there are two or more linearly independent eigen-
vectors corresponding to the same eigenvalue, then the eigenvalue is said to be
degenerate. If an eigenvalue has a unique eigenvector up to scalar multiples
(i.e., just one linearly independent eigenvector), it is called nondegenerate.
The maximum number of linearly independent eigenvectors that an eigenvalue
can have is called the degree of degeneracy of that eigenvalue. If an eigen-
value has maximally g linearly independent eigenvectors, then it is said to be
g-fold degenerate. The set of all linear combinations of the g independent
eigenvectors of a g-fold degenerate eigenvalue forms a subset of V, and this
subset also forms a vector space. It is called the eigensubspace (or simply,
the eigenspace) of the eigenvalue. Clearly, every eigenvector of an eigenvalue
must belong to its eigensubspace.

4This follows directly by contrapositivity: for two statements A and B

if (A =⇒ B) then ((notB) =⇒ (notA))
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Determination of eigenvalues and eigenvectors

If we cast the eigenvalue equation for a linear operator Â in a representation
with respect to some basis, say χ = {|χi〉 ; i = 1, 2, . . . , n}, we get a system of
n linear homogeneous equations:[

Â
]χ

[ψ]χ = λ [ψ]χ

Writing the components of
[
Â
]χ

as Aij , the n equations read

n∑
j=1

Aijψ
j = λψi

with i taking values from 1 to n. Here ψi and Aij are given by

|ψ〉 =
n∑
i=1

ψi |χi〉

and Â |χj〉 =
n∑
i=1

Aij |χi〉

Writing λψi = λ
∑
j δijψ

j, where δij is the Kronecker delta function, we have

n∑
j=1

(Aij − λδij)ψj = 0

Switching back to matrix notation, the above system of equations become([
Â
]χ
− λ [I]

)
[ψ]χ = 0

where [I] is the n×n identity matrix. This system of homogeneous equations
can have a nontrivial solution if and only if the determinant of the matrix
([A]χ − λ [I]) is zero:

det ([A]χ − λ [I]) = 0

This is known as the characteristic equation of the operator.
The characteristic equation is a polynomial equation in λ of degree n. It

therefore has n roots (which are not necessarily distinct). Thus, the eigen-
values λ of the operator Â are the roots of its characteristic equation. The
solution(s) of the eigenvalue equation corresponding to a given root yields the
eigenvector(s) of the corresponding eigenvalue in the chosen representation5.

The number of times an eigenvalue (i.e., a given root of the characteristic

5Please see appendix ‘B’ for details.
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equation) is repeated in the characteristic equation is called the algebraic
multiplicity of the eigenvalue. The degree of degeneracy of the eigenvalue is
called its geometric multiplicity.

The geometric multiplicity of an eigenvalue is at least one, and at most equal
to its algebraic multiplicity6.

Diagonalization

An operator is said to have been diagonalized if the operator is represented
as a diagonal matrix. It is easy to see the following result:

The representation of an operator is diagonal (i.e., given by a diagonal matrix)
if and only if the basis comprises its own eigenvectors. When this happens, the
eigenvalues appear as the diagonal elements of the representation matrix.

Solving the eigenvalue problem to determine a set of eigenvectors that can
constitute a basis is, therefore, often referred to as diagonalization. Of course,
it is not guaranteed that such a basis will always exist. Clearly,

one can construct a basis out of the eigenvectors of an operator if and only if,
for all eigenvalues of the operator, the geometric multiplicity is equal to the
algebraic multiplicity.

Such a linear operator is said to be diagonalizable.

Hermitian operators
Let us for this subsection, use the following notation for inner products:

〈φ|ψ〉 ≡ (|φ〉 , |ψ〉)

If for a linear operator Â acting on some inner product space V , there exists
an operator Â† such that(

|φ〉 , Â |ψ〉
)

=
(
Â† |φ〉 , |ψ〉

)
for all vectors |φ〉 , |ψ〉 in V , then the operator Â† is called the Hermitian
conjugate to the operator Â. The Hermitian conjugate of an operator is also
called the adjoint of the operator.

A Hermitian or self adjoint operator is defined by the condition7

Â† = Â

6For a proof of this important result, please see appendix ‘B’.
7Actually, a self adjoint operator is not in general the same as a Hermitian operator, but

on a finite dimensional space they are identical.
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Thus, for a Hermitian operator Â we have(
|φ〉 , Â |ψ〉

)
=

(
Â |φ〉 , |ψ〉

)
for all vectors |φ〉 , |ψ〉 in V .

Incidentally, an anti-Hermitian operator Â is defined by the condition

Â† = −Â

Important properties of Hermitian operators

The following properties of Hermitian operators will turn out to be impor-
tant in QM8.

• The eigenvalues of a Hermitian operator are real.

• The eigenvectors of a Hermitian operator corresponding to different
eigenvalues are orthogonal.

• An orthonormal basis can always be constructed out of the eigenvectors
of any Hermitian operator acting on a finite dimensional space (this also
means that a Hermitian operator is diagonalizable by a unitary trans-
formation).

Conversely

• If the eigenvalues of a linear operator are real, and if an orthonormal
basis can be constructed out of its eigenvectors, then the operator is
Hermitian.

For finite dimensional spaces the last property, clearly, provides an equivalent
characterization of Hermiticity.

Incidentally, Hermitian operators that act on infinite dimensional spaces
may not have a complete set of eigenvectors9. In our discussion, Hermitian
operators will, however, always refer to operators that have a complete set of
eigenvectors.

Representation of Hermitian operators

In finite dimensional spaces, the representation of the Hermitian conjugate
of an operator Â in an orthonormal basis can simply be obtained by taking
the Hermitian conjugate of the matrix representing Â. That is[

Â†
]χ

=
([
Â
]χ)†

8The proofs have been provided in appendix ‘B’. However, it is better if you attempt to
prove the results yourself before you look them up.

9Hermitian operators which do have a complete set of eigenvectors have been given a
special name. They are called observables (inspired by their use in QM as we shall see).



Observables as Operators 71

Clearly, the representation of a Hermitian operator in an orthonormal basis
is a Hermitian matrix.

Algebra of operators
We define addition Â+ B̂, of two operators Â and B̂, and the multi-

plication cÂ of an operator Â by a scalar c, respectively, by the following
rules: (

Â+ B̂
)
|ψ〉 = Â |ψ〉+ B̂ |ψ〉(

cÂ
)
|ψ〉 = c

(
Â
)
|ψ〉

where |ψ〉 is an arbitrary vector in the vector space. The multiplication ÂB̂
of two operators Â and B̂ is defined by successive action on |ψ〉:(

ÂB̂
)
|ψ〉 = Â

(
B̂ |ψ〉

)
Note that multiplication of operators do not in general commute. That is, in
general ÂB̂ 6= B̂Â. It is clear that algebraic combinations of operators, such
as polynomials, can now be naturally defined on linear operators.

Representations of algebraic combinations of operators

It is not hard to see that the representation of the sum of two operators is
given by the sum of the representations. Similarly, the representation of the
scalar multiple or product of linear operators are given, respectively, by the
scalar multiple and the product of the representations:[

Â+ B̂
]χ

=
[
Â
]χ

+
[
B̂
]χ

[
cÂ
]χ

= c
[
Â
]χ

[
ÂB̂
]χ

=
[
Â
]χ [

B̂
]χ

where Â and B̂ are linear operators acting on some space V , and c is a scalar.
As always, χ denotes an orthonormal basis in V where the operators have
been represented.

Problems

1. Find out the eigenvalues and normalized eigenvectors of the Hermitian
operator

X̂ =
[

2 3− 4i
3 + 4i 2

]
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acting on C2. Show explicitly that the eigenvectors corresponding to dif-
ferent eigenvalues are orthogonal. Construct the transformation matrix
T using the normalized eigenvectors that would diagonalize X̂.

2. A 2 × 2 Hermitian operator Ŝ acting on C2 has an eigenvalue σ with
algebraic multiplicity 2. Write down the representation of Ŝ in the basis{

(a, b)T , (c, d)T
}
. Can you see (without attempting to construct the

eigenvectors) why the following matrix cannot be diagonalized?[
1 0
−2 1

]
3. The eigenvalues of the following matrices 4 −2 3

1 1 3
1 −2 6

 and

 −2 0 1
1 1 0
0 0 −2


are (3, 5) and (1,−2) respectively. Find out their algebraic and geometric
multiplicities, and hence determine their diagonalizability. Evaluate the
possibility of diagonalizing them by a unitary transformation matrix (if
diagonalizable).

4. For each of the Hermitian matrices given below, construct orthonormal
bases comprising their eigenvectors

i)

 2 −1 0
−1 2 −1

0 −1 2

 ii)

 0 1 1
1 0 1
1 1 0


Are these bases unique?

5. Solve the eigenvalue problems for the Hermitian operators

i)
[

0 1
1 0

]
ii)
[

0 −i
i 0

]
Using the solutions, directly write down the eigenvalues and eigenvectors
of the matrices

i)

 0 0 1
0 7 0
1 0 0

 ii)

 3 0 0
0 1 2i
0 −2i 1


(Hint: Try to identify the matrices you have solved for in the above ma-
trices. Change the ordering of the basis vectors, if required, and exploit
the block-diagonal structure of the matrices.)
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6. Let Q̂ be an operator with an eigenvalue q and let the corresponding
eigenvector be |q〉. Show that the operator f

(
Q̂
)
will also have |q〉 as

an eigenvector with f (q) as the corresponding eigenvalue where f is a
polynomial function.

7. Show that the projection operator P̂i associated with the eigenspace of
a gi-fold degenerate eigenvalue Ai of an observable Â can be written
as a linear combination of outer products (please see the section on
“Direct Sum of Subspaces” in appendix ‘B’ for the definition of projection
operator):

P̂i =
gi∑
r=1
|Ari 〉 〈Ari |

where |Ari 〉 comprise a set of orthonormal eigenvectors with eigenvalue
Ai. Hence, demonstrate that the observable Â can be represented as

Â =
∑
i

AiP̂i

where i runs over all the eigenvalues of Â.

8. Prove that the set Θ of all linear operators acting on some vector space,
itself forms a vector space under the functions, addition and multiplica-
tion by a scalar.

9. Show that, if Â, B̂, Ĉ are linear operators acting on some vector space,
and c is a scalar, then the following properties hold10:

(a) Â
(
B̂ + Ĉ

)
= ÂB̂ + ÂĈ

(b)
(
Â+ B̂

)
Ĉ = ÂĈ + B̂Ĉ

(c) c
(
ÂB̂
)

=
(
cÂ
)
B̂ = Â

(
cB̂
)

(d)
(
ÂB̂
)
Ĉ = Â

(
B̂Ĉ

)
10. Prove the following properties on Hermitian conjugation: If Â, B̂ are

linear operators acting on an inner product space V , c is a scalar, and
|ψ〉 , |φ〉 are arbitrary vectors in V , then

(a)
(
Â+ B̂

)†
= Â† + B̂†

(b)
(
cÂ
)†

= c∗Â†

10A vector space over C, on which multiplication is defined satisfying these properties is
called an associative algebra, or more precisely, an associative algebra over the field C. If
the last property is dropped, it becomes simply an algebra over the field C.



74 An Introduction to Quantum Mechanics

(c)
(
ÂB̂
)†

= B̂†Â†

(d)
〈
ψ|Â|φ

〉∗
=
〈
φ|Â†|ψ

〉

Describing Observables by Linear Operators
Every observable in QM has associated with it a spectrum whose mem-

bers are real scalars. Again, according to the second postulate of QM, every
member of the spectrum of an observable is associated with a state vector,
and the set of state vectors associated with the full spectrum of an observable
forms an orthonormal basis. Now, to define a linear operator, we have seen
that it is sufficient to specify the action of the operator on every member of
some basis. One can then, trivially, associate with every observable in QM a
unique linear operator defined by the following simple rule:

If Â is an observable having the spectrum {Ai; i = 1, 2, . . . , n}, then we de-
fine a linear operator Â (which we choose to denote by the same symbol as
that of the observable) by

Â |Ai〉 = Ai |Ai〉

where the vectors |Ai〉 are the state vectors corresponding to the members Ai
of the spectrum of the observable Â.

By construction, the spectrum of the observable Â then becomes the set
of nondegenerate, real eigenvalues of the operator Â, and the state vectors
corresponding to the members of the spectrum of the observable Â become a
complete set of orthonormal eigenvectors of the operator Â (often referred to
as eigenstates of the observable). Now, we know that an operator with real
eigenvalues and a basis of orthonormal eigenvectors is Hermitian. Thus, we
can make the following assertion (see Figure 4.1):

• Every observable in QM can be associated with a linear, Hermitian oper-
ator having only nondegenerate eigenvalues11. The possible outcomes of
measurement of the observable are the eigenvalues of the operator, and
the states associated with the outcomes are the normalized eigenvectors
of the respective eigenvalues12.

11The restriction to nondegenerate eigenvalues will be lifted when we discuss more general
scenarios.

12The spectrum of the observable is thus the eigenvalue spectrum of the corresponding
operator.
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with a real spectrum
Every observable is associated

ψ̂ Observable

Orthonormal

Linear operators can be defined by
their actions on a basis

Recipe for defining the operator
is an eigenvalue equation by construction

Real eigenvalues + Orthonormal basis of
eigenvectors =⇒ Hermiticity

Hermitianψ̂ |ψi〉 = ψi |ψi〉
Operator

. . . ψnψ2 . . . Spectrumψ1

|ψ2〉 . . . . . . |ψn〉

Every measurement outcome

=⇒ orthonormality
Law of Sustained States

Orthonormality =⇒ Linear Independence

‘n’ linearly independent vectors form
a basis in an ‘n’ dimensional space

is associated with a state

|ψ1〉
Basis

FIGURE 4.1: Construction of the linear Hermitian operator associated with an
observable.

We can generalize this observation to assert that the converse to this statement
is also true.

• Every linear, Hermitian operator having only nondegenerate eigenval-
ues can be imagined to be associated with an observable in QM. The
eigenvalues of the operator would correspond to the possible outcomes
of measurement of the observable, and the normalized eigenvectors of
the eigenvalues would correspond to the states associated with respective
outcomes13.

This is possible because of the following reasons. Firstly, the eigenvalues of a
Hermitian operator are real, so that one can interpret them as measurement
outcomes. Secondly, if the eigenvalues are nondegenerate, the eigenvectors (up
to a multiplicative scalar) can be labelled by a unique eigenvalue. Finally, for a
Hermitian operator with nondegenerate eigenvalues, collecting the normalized
eigenvectors for each eigenvalue will give us an orthonormal basis14.

13This generalization is similar in spirit to what we did when we made the assertion
that every normalized vector in Cn is a quantum state. This was a generalization based on
the observation that quantum states, according to the previous definition, were normalized
vectors in Cn.

14Here again, let us point out that it is irrelevant how one can devise an experiment that
measures the observable corresponding to an arbitrary Hermitian operator. The important
point is that we are obliged to admit that it exists.
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Postulates of Quantum Mechanics - Version 2
By virtue of the association of quantum observables and Hermitian op-

erators established in the foregoing section, we will now replace the second
postulate of QM by two assertions which will characterize a quantum observ-
able more completely. Let us incorporate this change, and write down the
postulates of QM once again.

1. Every system is associated with an inner product space. States of the
system are the normalized vectors belonging to this space.

2. Every observable of the system is associated with a linear Hermitian
operator with nondegenerate eigenvalues acting on the state space.

3. The eigenvalues of the Hermitian operator associated with an observable
constitute the measurement spectrum of the observable.

4. If a measurement of an observable φ̂ is made that yields an eigenvalue
φi, soon after the measurement the new state becomes the normalized
eigenstate |φi〉 corresponding to the eigenvalue φi.

5. The probability P [ψi → φj ] of the event ψi → φj of getting an outcome
φj upon measurement of an observable φ̂ on a state |ψi〉 is given by the
Born rule:

P [ψi → φj ] = |〈φj |ψi〉|2

where the scalar product 〈φj |ψi〉 is called the probability amplitude of
the event ψi → φj .

Note that by postulating an observable to be a linear Hermitian operator, in
one stroke, not only have we furnished a complete mathematical characteriza-
tion of a quantum observable, we have rendered it completely unnecessary to
require that to every outcome of an observable there corresponds a quantum
state, and the set of all such states form an orthonormal basis. Eigenvalues are
naturally associated with eigenvectors which can be taken to be normalized.
This association is one-to-one (at least, up to a global phase) if eigenvalues
are assumed to be nondegenerate. Finally, Hermiticity ensures that the set of
normalized eigenvectors associated with the full set of eigenvalues will form
an orthonormal basis.
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Quantization
Rephrasing the target questions

So far, we have been able to connect quantum systems with inner product
spaces, quantum states with normalized vectors, and quantum observables
with linear Hermitian operators, so that the laws of QM manifest themselves
as concrete statements involving these mathematical constructs. But the cu-
rious mind would surely wonder, what does it really buy us15? Are there any
practical benefits that we can reap out of this exercise in trying to find the
answers to the target questions of QM? The answer is “yes”, and this is what
we wish to discuss now.

Suppose, we are concerned with the measurement of the observables
α̂, β̂, γ̂ , . . ., etc., of some system. Assuming that we have chosen to work in
the χ space, the respective representations of the observables α̂, β̂, γ̂ . . . would
be the matrices [α̂]χ ,

[
β̂
]χ
,[γ̂]χ , . . ., etc. If we solve the eigenvalue equations

for these matrices, the eigenvalues will give the spectra {αi},{βj},{γk} . . . of
the observables, and the probability of an event such as αi → βj will be given
by the scalar product of the normalized eigenvectors [αi]χ and [βj ]χ:

P [αi → βj ] = |〈βj |αi〉|2

=
∣∣∣([βj ]χ)† [αi]χ

∣∣∣2
The prescription for answering the target questions of QM is then to solve
the eigenvalue equations for the Hermitian operators associated with the ob-
servables in question in some representation. So, with the “observable – linear
Hermitian operator” association, the fundamental problem of QM (for in-
stantaneously subsequent measurements) has been translated to an eigenvalue
problem16:

Instead of asking
what are the possibilities and what are the probabilities?

we can ask
what are the eigenvalues and what are the eigenvectors?

15Of course, there are the advantages of having a formal description, as we have discussed
in the first chapter. But we are looking for more dividends here.

16It is not always the case that in a theory the target questions come with a clue that
leads to a strategy for its solution. In this situation, quite often, one tries to rephrase the
question in a way that might offer a new perspective leading to an idea for a method of
solution. This is what we are actually doing here.
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Quantization rules
With the target questions of QM rephrased, it is evident that there are

two steps involved in laying down a quantum mechanical description for a
system. The first step is to specify the state space: the inner product space
in which the states of the system live, and on which the observables of the
system act. The second step is to identify the observables of interest, and
specify their explicit representations in some basis. The eigenvalue problems
for the observables can, of course, only be solved if the representations for
the observables are explicitly known in some basis. This whole information
is, naturally, system specific, and has to be supplied as a separate set of
assumptions that must go into the quantum algorithm as an input. These
system specific assumptions are called quantization rules. Specifying the
quantization rules is often referred to as quantizing the system. Specifically,
quantization rules furnish the following information:

1. The state space of the system.

2. The representations of all observables of interest in some basis17.

The way in which this information is encoded in the quantization rules is,
unfortunately, not always very straightforward. In practice, for most real life
systems, one uses an intermediate classical system to lay down the recipe for
quantization. The phrase “quantizing the system” actually originates in this
context. Having an intermediate classical system is, however, not a logical
requirement for defining quantization. It is only a way of guessing that has
proved to be very successful in an overwhelmingly large number of cases. We
will discuss quantization of systems that use the scaffolding of intermediate
classical systems later on. For now, we wish to discuss quantization without
making any reference to intermediate classical systems.

In the simplest case, the inner product space corresponding to a system
is specified by specifying an orthonormal basis18. The orthonormal basis is
specified by specifying the spectrum of some observable. Each element of the
basis is labelled by a unique member of the spectrum of the observable. This
spectrum, incidentally, will often be called the primitive spectrum, and the
corresponding basis will often be referred to as the first basis in this book.

Now, let us come to the representation of observables. It is trivial to con-
ceive the matrix representation of the observable that furnishes the primitive
spectrum which defines the first basis. The primitive spectrum comprises the
set of eigenvalues of the observable and the basis elements are its eigenvec-
tors. But we know that the representation of an observable in its own space
(i.e., in a basis made out of its own eigenvectors) is simply a diagonal matrix

17If we could determine the eigenvalues and eigenvectors without specifying the represen-
tations, that would also be acceptable but that will not generally be the case.

18For this purpose, the orthonormality of the basis is actually not essential. If we specify
the inner products of the basis elements, it is good enough. However, more often than not
one tends to use an orthonormal basis.
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with the eigenvalues as the diagonal elements. For example, the matrix [χ̂]χ
corresponding to the observable χ̂ in its own space is given by

〈χi| χ̂ |χj〉 = χi δij

It is clear that a knowledge of this representation is no more (or no less) than
a knowledge of the primitive spectrum. The representations of observables
other than the one which furnishes the primitive spectrum comprise the most
nontrivial part of the quantization rules. Let us illustrate this using a simple
toy example.

A toy example of quantization19

We consider a quantum system which is defined by the following quanti-
zation rules:

1. The system has three basic observables, Â, B̂ and Ĉ. We call these
observables “basic” because we assume that every other observable for
this system can be expressed as a function of these basic operators.

2. The observable Ĉ has two possible outcomes, which we label as +κ and
−κ, where κ is some (possibly dimensionful) positive real number. The
spectrum {+κ, −κ} of Ĉ is our primitive spectrum.

This furnishes a first basis: {|+κ〉 , |−κ〉}. The representation of the
basis vectors in their own space are trivially given by

[+κ]C =
[

1
0

]
and [−κ]C =

[
0
1

]
The representation of Ĉ in this basis (i.e., in its own space) is also trivial[

Ĉ
]C

= κ

[
1 0
0 −1

]

3. The representations of the operators Â and B̂ in the C space are assumed
to be given by[

Â
]C

= κ

[
0 1
1 0

]
and

[
B̂
]C

= κ

[
0 −i
i 0

]
These assumptions are all we need to make all possible predictions (for in-
stantaneously subsequent measurements) about this system20.

19Incidentally, this is an example of a 2-level system: a system whose states live in an
inner product space that is 2-dimensional.

20Please work out problem ‘3’ in the next problem set.
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I am sure you are wondering, where on earth did the representations
[
Â
]C

and
[
B̂
]C

come from?Well, that is precisely the point I wanted to make. These
representations are nontrivial assumptions, and there is no general prescription
to guess them any more than there is a prescription to guess a Hooke’s law of
elasticity, or a Newton’s law of gravitation. The purpose of this toy example
was to point out what sort of mathematical input is required to carry out the
programme in QM. That is why we did not even care to mention, what kind
of physical system our toy example describes, and what the observables Â,
B̂ and Ĉ mean physically. In real life, the nontrivial representations have to
be obtained through educated guesswork. Later on, we shall describe some of
the schemes for guessing representations that have worked in a large number
of actual physical problems. For now, let us be content with these god given
representations to see what we can do with them.

Expectation Values
Since QM is essentially statistical in nature, it makes sense to talk about

the mean value of an observable. This refers to the average value in the out-
come when measurement of a specified observable is made on a large number
of identically prepared systems (i.e., on systems that are in the same initial
state)21. In fact, it turns out that the quantity of interest to the experimental-
ist is, quite often, the average value of an observable. It is, for various practical
reasons, the quantity that is actually accessible to experiments.

Now, an average value of a statistical quantity naturally depends on the
size of the sample on which the experiment is carried out. In our case, the
sample size means the number of systems prepared in an identical quantum
state on which measurement of the observable in question is performed. As
far as quantum prediction is concerned, the relevant quantity would be the
idealized average defined as the limiting value of the average as the sample
size is taken to infinity. Such a quantity is called the expectation value of
the observable.

If ĀN is the average value for an observable Â (having m possible out-
comes) when the measurement is performed on N identical systems, then

ĀN = 1
N

m∑
i=1

NiAi

where Ni is the number of systems that has yielded the outcome Ai. Clearly,

21Such a collection of systems is called an ensemble. One says that the measurement is
performed on an ensemble of identically prepared systems.
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i=1 Ni = N . The expectation value 〈A〉 of Â is then defined by

〈A〉 = Lim
N→∞

ĀN

Let us derive an expression for the expectation value of the observable Â if
the system is in an initial state |ψ〉. We have

Lim
N→∞

ĀN = Lim
N→∞

(
1
N

) m∑
i=1

NiAi

=
m∑
i=1

Lim
N→∞

(
Ni
N

)
Ai

=
m∑
i=1

PiAi

where Pi = Lim
N→∞

(Ni/N) is, by definition, the probability for the outcome Ai.
Hence

〈A〉 =
m∑
i=1

PiAi

But, if the system is in a state |ψ〉, then Pi = |〈Ai|ψ〉|2. So

〈A〉 =
m∑
i=1
〈ψ|Ai〉 〈Ai|ψ〉Ai

=
m∑
i=1

〈
ψ|Â|Ai

〉
〈Ai|ψ〉

= 〈ψ| Â
m∑
i=1
|Ai〉 〈Ai|ψ〉

where we have used the relations: 〈Ai|ψ〉∗ = 〈ψ|Ai〉 , Â |Ai〉 = Ai |Ai〉 and
|ψ〉 =

∑m
i=1 |Ai〉 〈Ai|ψ〉. Using the last formula again, we finally have

〈A〉 =
〈
ψ|Â|ψ

〉
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Problems22

1. Which of the following operators will describe a quantum observable?

i)
[
Â
]

=

 1 1 −1
−2 3 0
−2 1 2

 ii)
[
B̂
]

=

 3 2− i −3i
2 + i 0 1− i

3i 1 + i 0


2. Two observables Û and V̂ are represented as[

Û
]

= µ

[
11 0
0 19

]
and

[
V̂
]

= λ

2

[
1 1
1 1

]
where µ and λ are dimensionful constants. If a measurement of Û that
yields an outcome 19µ is followed up by an instantaneously subsequent
measurement of V̂ , what are the possible outcomes and what are their
probabilities? Do not compute any inner product.

3. Consider the toy example of a quantized system which was discussed in
the text.

(a) Show that any observable (i.e., an arbitrary Hermitian operator)
can indeed be expressed as a function of the operators Â, B̂ and Ĉ.

(Hint: Observe that Â2 = B̂2 = Ĉ2 = κ2Î2 where Î2 is the 2-
dimensional identity matrix. Now write out the general form of a
complex, 2-dimensional Hermitian matrix, and show that it can be
expressed as a linear combination of the matrices Â, B̂, Ĉ and Î2.)

(b) If a measurement of the observable

M̂ = 3ω
κ
Â+ 4ω

κ
B̂ + 2ω

κ2 Ĉ
2

is made on the system which is in a state [ψ]C = (1/
√

2) (1,−1)T ,
find out the possible outcomes of the measurement and the proba-
bilities of the different possibilities. Here ω is another dimensionful
constant.

(c) A sequence of four instantaneously subsequent measurements
Â, B̂, Â and B̂ are performed on the system. If the outcome of the
first measurement is A1, find out the probability that the outcome
of the last measurement is B2. Here, by convention, the spectrum
of an observable X̂ is written as {X1, X2} with X1 > X2.

22None of the problems in this problem set requires an explicit solution of an eigenvalue
problem. You can use the work that you have done in the last problem set.
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(d) An observable N̂ is represented in the C space by the Hermitian
matrix [

N̂
]C

= κ

[
2 −i
i 2

]
From the results of your previous problems (i.e., without solving
any more eigenvalue equations), write down the spectrum of this
observable, and determine the probabilities of the events (i) N1 →
B1 and (ii) N1 → A2 (where the same convention for writing the
spectral elements have been used as in part ‘c’).

4. An observable is described by an operator P̂ , which is represented in
some basis as [

P̂
]

=

 −1 0 −2i
0 2 0

2i 0 −1


(a) Show that the spectrum of P̂ is {1, 2,−3}.
(b) If the system is in an initial state |ψ〉, which is represented as

(1/
√

2) (1, 0, 1)T , find the probability
i. that a measurement of P̂ yields the state |P = 2〉.
ii. of the event |ψ〉 → |φ〉 where |φ〉 = (1/

√
2) (|P = 1〉+ |P = −3〉).
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Chapter 5
Imprecise Measurements and
Degeneracy

Back in the second chapter, we introduced the concept of a quantum state as
a preparation that results from a measurement. In fact, we claimed that every
measurement prepares a quantum state. Let us now admit that this is not true
in general. In order to give a quick introduction to the basic framework of QM,
we had set up a simplified setting. Now I wish to make amends and consider
more general scenarios. This will require us to make a slight modification
to the mathematical description that we have presented. In particular, we
will have to lift the restriction that only linear Hermitian operators having
nondegenerate eigenvalues can describe observables in QM. Here, we shall see
that every Hermitian operator will describe some quantum observable and
degeneracy will play a crucial role in the description.

Precise and Imprecise Measurements
In this section, we shall look at a new type of measurement which we have

not discussed so far. The laws of QM as they stand now, will not apply to
such measurements. So we will also extend the laws appropriately to describe
this new kind of measurement.

Experiments with inadequate resolution
Let us consider an observable α̂ having a spectrum {αi ; i = 1, 2, . . . n}.

Let this spectrum be the union of the disjoint subsets

A1 = {α1, α2, ... , αg1} ,
A2 = {αg1+1, αg1+2, ... , αg1+g2} ,
. . . = . . .

. . . = . . .

Am =
{
αg1+g2+...+gm−1+1, αg1+g2+...+gm−1+2, ... , αg1+g2+...+gm−1+gm

}

85
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α̂B̂Â

A3

A1

B3

|ψ〉

α7

α6

α5

α4

α3

α2

α1

α8

Test State

B1

B2A2

FIGURE 5.1: Imprecise and precise measurements.

(where αg1+g2+...+gm−1+gm = αn). Now imagine an apparatus that is capable
of making a measurement that can distinguish between the different disjoint
subsets Ai but cannot tell precisely which particular outcome of α̂ has actually
occurred (see Figure 5.1)1. In other words, we are saying that this measure-
ment apparatus has an inadequate resolution for measuring α̂. If we like, we
could say that the outcomes of the new measurement are the subsets Ai and
choose to label the subsets by real numbers (i.e., we can take the A′is to be
real numbers instead of alphabets). We can now associate with our new mea-
surement, a new observable, say Â, with a real spectrum {Ai ; i = 1, 2, . . .m}.
It is then only too natural to call the measurement of such an observable Â

1As a mnemonic, imagine the imprecise measurements to be like filters. Consider the
test state to be a particle moving from left to right whose position along the direction of
the slits (call it the y-direction) is not known. Assume that the measurements Â, B̂ and α̂
are designed to determine the positions along y. Then, if a measurement of Â leads to an
outcome A1, the measurement of α̂ is guaranteed yield a value from the set {α1, α2, α3}
but A1 does not specify any definite value of α. Similarly, a measurement of B̂ yielding B3
will only ensure that a subsequent α̂ measurement will yield one of the values in {α7, α8},
etc. Note that our picture also suggests that if we perform instantaneously subsequent
measurements of the imprecise observables Â and B̂, an outcome A1 for Â will guarantee
that the outcome of the B̂ measurement will yield an outcome from the set {B1, B2}.
Although there is nothing to imply this, in what we have said so far in terms of the rules
of QM, we shall shortly see that this will indeed turn out to be true.
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an imprecise measurement of α̂. There is, however, one big problem! We have
learnt that in QM, measurements do not really measure some preexisting value
of an observable - they define an observable. In this light, it is unclear what
meaning one can ascribe to the statement: “a measurement apparatus has in-
adequate resolution” or that “a measurement is imprecise”. So it is important
to clarify, precisely, what we intend to mean by these phrases.

Imprecise Measurement An imprecise measurement corresponding to
some precise observable is a measurement process which ensures that

1. an instantaneously subsequent measurement of the corresponding precise
observable yields a value that belongs to a well defined subset of the
spectrum of the precise observable,

2. all such subsets associated with different outcomes of the imprecise mea-
surement are disjoint, and

3. the union of all such subsets is the spectrum of the precise observable.

In our example, this means that if a measurement of Â yields an outcome
Ai, a subsequent measurement of α̂ is guaranteed to yield a value from the
subset Ai =

{
αg1+g2+...+gi−1+1, αg1+g2+...+gi−1+2, ... , αg1+g2+...+gi−1+gi

}
. An

imprecise observable is then defined in terms of imprecise measurements as
before.

Imprecise Observable An imprecise observable is the universal collection
of similar imprecise measurements2.

If we define imprecise measurement by the criteria outlined above, it natu-
rally brings up the question: how do we know that a measurement is precise?
Is it not possible that a precise measurement of an observable is an imprecise
measurement with regard to some other observable? For example, how can one
be sure that the precise observable α̂ in the above example is really precise,
and that there does not exist some other hitherto undiscovered observable, say
β̂, with respect to which it is imprecise? We must therefore furnish a criterion
for a measurement to be called precise. We move to propose the following
definition of a precise measurement:

Precise Measurement A measurement would be called a precise measure-
ment if it prepares a quantum state that is completely specified by the outcome
of the measurement.

This means that after a precise measurement is made on an arbitrary and
possibly unknown initial state, subsequent measurements of other observables

2Recall, that a precise observable was associated with a collection of precise measure-
ments to allow for the fact that an observable can be measured (in the quantum sense) in
several ways. The same applies to imprecise measurements.
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will yield outcomes with definite probabilities that are completely specified by
the outcome of the precise measurement.

The introduction of imprecise measurements forces us to review the laws
of QM. We would now have to inquire what the laws of QM could say about
imprecise measurements. In particular, we would want to know

1. what is the new state of a quantum system soon after an imprecise
measurement has been performed on it (i.e., how the fourth postulate
of QM applies to imprecise observables), and

2. whether definite probabilities can be assigned to the different outcomes
of an imprecise measurement when the measurement is performed on
some well defined initial state (i.e., how the fifth postulate of QM applies
to imprecise observables).

We will take up these questions after the next subsection.

Operator describing an imprecise observable
We consider, once again, the precise observable α̂ and the corresponding

imprecise observable Â. Let us introduce the following notation. We denote
the elements of the subset Ai by Ari so that the state corresponding to the
measurement outcome Ari is denoted by |Ari 〉. Here i runs from 1 to m and
we denote the number of elements in the subset Ai by gi so that r runs from
1 to gi for a given i.

Owing to the reality of the labels Ai, and the orthonormality and com-
pleteness of the vectors |Ari 〉, we can associate a linear Hermitian operator
with the imprecise observable Â using the rule

Â |Ari 〉 = Ai |Ari 〉

in the same way that we associated an operator with a quantum observable
earlier. Only this time, by construction, the outcomes Ai’s become the degen-
erate eigenvalues of the operator3 Â. The states |Ari 〉 are the eigenvectors of
the eigenvalue Ai. Thus, we see that

• with every imprecise observable one can associate a linear Hermitian
operator (acting on the state space) with degenerate eigenvalues.

As we have done before, we assert that the converse to this statement is also
true:

• with every linear Hermitian operator (acting on the state space) with
degenerate eigenvalues one can associate an imprecise observable.

3Recall that in the previous instance, when we associated a linear operator with a precise
observable, the eigenvalues were nondegenerate.
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One can ask, given an arbitrary Hermitian operator with degenerate eigenval-
ues (which would describe some imprecise observable by the above assertion),
how does one identify a precise observable associated with it? Well, to do this,
one merely has to define an operator by writing down for it, a real spectrum
(arbitrarily) whose cardinality is equal to the dimension of the underlying
vector space, and then assign to each member of this spectrum (arbitrarily), a
unique eigenvector from the orthonormal basis of eigenvectors of the imprecise
observable under question.

State resulting from a general measurement
Let us consider, yet again, the precise observable α̂ and the corresponding

imprecise observable Â that was used in the previous section. We can expand
an arbitrary state |ψ〉 as

|ψ〉 =
n∑
i=1
|αi〉 〈αi|ψ〉

=
m∑
i=1

gi∑
r=1
|Ari 〉 〈Ari |ψ〉

where n and m are the total number of elements in the spectra of α̂ and Â
respectively, and gi, as before, represents the number of elements in the subset
of the α spectrum that corresponds to Ai. Now, if we a make a measurement
of α̂ resulting in some outcome Ari , it would eliminate the possibility of getting
anything other than the outcome Ari if the measurement of α̂ were repeated
instantaneously. We know that the final state would simply become |Ari 〉. On
the other hand, a measurement of Â resulting in some outcome Ai would
only eliminate the possibility of getting anything other than the elements of
the subset labelled by Ai in an instantaneously subsequent measurement of
α̂. Whereas a measurement of α̂ filters out a single outcome, a measurement
of Â will filter out a set of outcomes. Thus, we could regard an imprecise
measurement as a coarse filtering process.

Now it turns out that in addition to coarse filtering, an imprecise mea-
surement has the following property:

• The relative probabilities of getting different outcomes upon measurement
of a precise observable remain unaltered by a preceding measurement of
a related imprecise observable, provided that the outcomes of the mea-
surement of the precise observable belong to the same subset associated
with the outcome of the imprecise observable.

That is, if we tentatively denote by |ψ ; Ai〉, the state resulting from a
measurement of the imprecise observable Â on the state |ψ〉 that yields an
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The subspace orthogonal

Normalized Projection

Normalizeeigensubspace of Ai

Projection of |ψ〉 on the

to the eigensubspace of Ai

|ψ ;Ai〉

∣∣∣Ak
j

〉

∣∣A2
i

〉

∣∣A1
i

〉

|ψ〉

FIGURE 5.2: State Collapse: After an imprecise measurement of Â on a state |ψ〉
leading to a doubly degenerate eigenvalue Ai, the final state |ψ ;Ai〉 is the normalized
projection on the eigenspace of Ai. Here we have again used a real vector space for
visualization.

outcome Ai, then we have4

P [|ψ ; Ai〉 → Ari ]
P [|ψ ; Ai〉 → Asi ]

= P [|ψ〉 → Ari ]
P [|ψ〉 → Asi ]

The simplest way to implement this feature in our mathematical framework
is to demand that

after making an imprecise measurement the initial state would collapse to
the eigenspace associated with the outcome of the measurement.

This means that if the initial state is
∑m
i=1
∑gi
r=1 |Ari 〉 〈Ari |ψ〉, and a mea-

surement of Â yields Ai, then the final state will become
∑gi
r=1 |Ari 〉 〈Ari |ψ〉.

However, such a vector is not normalized and so we must rescale it in order
that it may describe a quantum state. This leads to a proposition for the
postulate that we are looking for (see Figure 5.2).

4We say “tentatively” because we are actually anticipating that a measurement of an
imprecise observable results in a quantum state. This is also suggested by the notation
|ψ ; Ai〉. While this is indeed true (as will be stated shortly), the anticipation is not essential.
One can simply take the notation |ψ ; Ai〉 → βj to refer to a prospective event that a
measurement of an imprecise observable Â made on a state |ψ〉, that yields an outcome Ai,
upon an instantaneously subsequent measurement of an observable β̂ yields βj .
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State Collapse Postulate If on the state |ψ〉 we make a measurement of
an imprecise observable Â that yields a gi-fold degenerate eigenvalue Ai as an
outcome, we get a new state |ψ ; Ai〉 given by

|ψ ; Ai〉 =
∑gi
r=1 |Ari 〉 〈Ari |ψ〉√∑gi
r=1 |〈Ari |ψ〉|

2

where the vectors |Ari 〉 are a set of orthonormal eigenvectors of Â correspond-
ing to the eigenvalue Ai.

Of course, finally, whether a law is correct or not is decided by experiment,
and it turns out that our proposition is indeed a correct law of nature. It is
not hard to see that this law is not the only way to implement the requirement
of unaltered relative probabilities. There are other possibilities of a final state
which would reproduce this feature. However, every such choice will have dis-
tinguishable observable consequences, and therefore will admit the possibility
of being ruled out by experiment5. This is simply an instance of a situation,
quite commonly encountered in physics, where a requirement of mathematical
simplicity leads to the correct law of nature.

It may be remarked here that the above rule, that determines what the
final state becomes soon after an imprecise measurement, could be used as the
definition of an imprecise measurement. However, this would be a bit of an
overkill since our earlier definition is less restrictive than the above assertion
(as you have been invited to explore in the previous footnote).

Note that the law embodied in the above formula automatically includes
the case of precise measurements. If Â were a precise measurement, all its
eigenvalues would be nondegenerate (i.e., gi = 1 for all i). Hence, the final
state |ψ ; Ai〉 would simply become |Ai〉, which is what we expect. In fact,
since the eigenspaces are 1-dimensional for precise observables, the collapse to
the eigenspace would be most severe for precise measurements.

It might appear that the content of this subsection is in stark contradiction
to our earlier statement: “imprecise measurements do not prepare a state”. We
have just written down the formula that tells us what state is prepared by an
imprecise measurement! To understand why this is not a contradiction, one
has to note that

an imprecise measurement leads to a well defined state only if the initial state
on which the measurement is performed, is known.

An imprecise measurement made on a system whose state is a priori unknown,
does not prepare a state. Thus, if we start with an imprecise measurement and
record its outcome, we will not be able to predict the probability of outcomes

5Think about the other possibilities.
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of subsequent measurements. This is what we mean when we say imprecise
measurements do not prepare a state.

When we make a precise measurement, the initial state on which the measure-
ment is performed becomes irrelevant in the specification of the final state,
whereas when we make an imprecise measurement, the final state depends
crucially on the initial state on which the measurement is performed.

Probability of outcomes of a general measurement
Fortunately, the postulate for computing probability does not need to be

altered or extended in order to incorporate imprecise measurements. With the
state preparation postulate laid out in the previous subsection, the existing
postulate for computing probabilities automatically includes the case of im-
precise measurements. To see how, recall that the probability P [|ψi〉 → |ψf 〉]
of an event characterized by the initial state |ψi〉 and final state |ψf 〉 is given
by

P [|ψi〉 → |ψf 〉] = |〈ψf |ψi〉|2

where 〈ψf |ψi〉 is the inner product of the states |ψi〉 and |ψf 〉. Now if a mea-
surement of the imprecise observable Â is made on some state |ψ〉, the prob-
ability for getting some outcome Ai would be given by P [|ψ〉 → |ψ;Ai〉]. If gi
is the degree of degeneracy of the eigenvalue Ai, and |Ari 〉 are the associated
gi eigenvectors (assumed to be orthonormal), we have

P [|ψ〉 → |ψ;Ai〉] = |〈ψ;Ai|ψ〉|2

=

∣∣∣∣∣∣
∑gi
r=1 |〈Ari |ψ〉|

2√∑gi
r=1 |〈Ari |ψ〉|

2

∣∣∣∣∣∣
2

=
gi∑
r=1
|〈Ari |ψ〉|

2

It is evident that if Â is a precise observable (gi = 1 for all i), the above
formula reduces to the familiar result for precise measurements:

P [|ψ〉 → |Ai〉] = |〈Ai|ψ〉|2

The general rule to compute the probability of a measurement outcome (irre-
spective of whether the measurement is precise or imprecise ) is given by

P [|ψ〉 → Ai] =
gi∑
k=1

∣∣〈Aki |ψ〉∣∣2
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where gi is the degree of degeneracy of the eigenvalue Ai and
∣∣Aki 〉 are the

associated orthonormal eigenvectors6.

Postulates of Quantum Mechanics - Version 3
In the preceding sections we have seen how Hermitian operators with de-

generate eigenvalues describe imprecise observables, and how the postulate of
state preparation has been generalized to accommodate imprecise observables.
These developments, clearly, call for another listing of the postulates.

1. Every system is associated with an inner product space. States of the
system are the normalized vectors belonging to this space.

2. Every observable of the system is associated with a linear Hermitian
operator acting on the state space.

3. The eigenvalues of the Hermitian operator associated with an observable
constitute the measurement spectrum of the observable.

4. If a measurement of an observable φ̂ is made on some state |ψ〉 that yields
an eigenvalue φj , soon after the measurement, the new state becomes
|ψ ; φj〉 which is given by the collapse postulate:

|ψ ; φj〉 =
∑gj
r=1

∣∣φrj〉 〈φrj |ψ〉√∑gj
r=1

∣∣〈φrj |ψ〉∣∣2
where

∣∣φrj〉 are orthonormal eigenvectors of the eigenvalue φj and gj is
its degree of degeneracy.

5. The probability P [|ψ〉 → |φ〉] of an event |ψ〉 → |φ〉 is given by the Born
rule:

P [|ψ〉 → |φ〉] = |〈φ|ψ〉|2

where the scalar product 〈φ|ψ〉 is called the probability amplitude of the
event |ψ〉 → |φ〉.

6Note that despite the resemblance, this is not the classical probability addition rule.
The event ψ → Ai is not defined to be the collection of elementary events

{
|ψ〉 →

∣∣Ari 〉}.
The values Ai are actual outcomes of an actual measurement process. Incidentally, although
the meaning of the notation P [|ψ〉 → Ai] is self explanatory, we must admit that we have
not defined it explicitly. For the puritan, the |ψ〉 → Ai that P refers to may be taken to be
the (quantum) event |ψ〉 → |ψ;Ai〉, which is characterized by the initial state |ψ 〉 and final
state |ψ ; Ai〉.
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Problems

1. A state |ψ〉 is expanded in the orthonormal basis of eigenvectors
{|q1〉 , |q2〉 , |q3〉} of a certain observable Q̂ as

|ψ〉 = 1√
2
|q1〉+ 1

2 |q2〉+ 1
2 |q3〉

The states |q1〉 and |q2〉 correspond to a 2-fold degenerate eigenvalue η
of Q̂. If the observable Q̂ is measured on |ψ〉 what is probability that
the outcome will be η and what will be the final state in this case?

2. Let Ĝ be an observable having a degenerate eigenvalue µ. The eigenspace
of µ is spanned by the vectors (0, 1, 1)T and (0, 2,−1)T . If Ĝ is measured
on the state (1/

√
2) (1, 1, 0)T , what will be the state soon after the mea-

surement if the outcome is µ, and what is the probability for this event?

3. For a certain three level system, two observables P̂ and Q̂ are represented
by

[
P̂
]

= p

 1 0 0
0 0 1
0 1 0

 and
[
Q̂
]

= q

 4 0 0
0 7 −1
0 −1 7


where p and q are dimensionful constants.

(a) Show that P̂ is an imprecise observable in regard to Q̂.
(b) If a measurement of P̂ is made on states |ψ〉 and |φ〉 represented

respectively by

[ψ] = 1√
3

 1
1
1

 and [φ] = 1√
14

 1
2
3


what is the probability of getting an outcome p?

(c) Write down the final state |ψ ; p〉.
(d) If a measurement Q̂ is made on |ψ ; p〉 find out the probabilities of

the different possibilities.
(e) As you may have found out, the spectrum of Q̂ is {2q, 3q, 4q}.

The imprecise observable P̂ resolves between the subsets {2q, 3q}
and {4q} of the Q̂-spectrum. Construct another imprecise observ-
able that will resolve between the following partitioning of the Q̂-
spectrum: {2q} and {3q, 4q}. Express this observable in the same
basis in which P̂ and Q̂ have been represented.
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4. Check that after a measurement of an imprecise observable, an instanta-
neously subsequent measurement of the corresponding precise observable
can only lead to an outcome that belongs to the subset associated with
the outcome of the imprecise measurement.

5. Show that if a measurement of an imprecise observable is instantaneously
repeated, the outcome will be reproduced:

P [|ψ ;Ai〉 → Aj ] = δij

6. If P̂i is the projection operator associated with the eigenvalue Ai of the
observable Â, show that

(a) the postulate of QM that specifies the final state soon after a mea-
surement of Â is made on a state |ψ〉 that yields the outcome Ai
(collapse postulate) can be written as

|ψ ;Ai〉 = P̂i |ψ〉√〈
ψ|P̂i|ψ

〉
(b) the postulate of QM that furnishes the probability of getting the

outcome Ai upon a measurement of Â on a state |ψ〉 (Born rule)
can be written as

P [|ψ〉 → Ai] =
〈
ψ|P̂i|ψ

〉
7. A certain system is described by the inner product space V. A precise

observable α̂ acts on V and has a spectrum {αi ; i = 1, 2, . . . , 8}. Now
consider three observables Â, B̂ and Ĉ which are imprecise with respect
to α̂. The respective spectra {Ai}, {Bj} and {Ck} of the observables Â,
B̂ and Ĉ and associated subsets of the spectrum of α̂ are given by

A1 = {α1, α2, α3, α4}
A2 = {α5, α6, α7, α8}
B1 = {α1, α2, α5, α6}
B2 = {α3, α4, α7, α8}
C1 = {α1, α3, α5, α7}
C2 = {α2, α4, α6, α8}

(a) Show that the final state resulting from instantaneously subsequent
measurements of Â and B̂ is independent of the order of the mea-
surement:

|ψ; Ai, Bj〉 = |ψ;Bj , Ai〉
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(b) Using the previous result, show that

P [|ψ;Ai, Bj〉 → Ak] = δik

(c) Show that instantaneously subsequent measurements of the impre-
cise observables Â, B̂ and Ĉ results in a final state that is indepen-
dent of the initial state:

|ψ ; Ai, Bj , Ck〉 = |φ ; Ai, Bj , Ck〉 = |χ ; Ai, Bj , Ck〉 = . . .

where |ψ〉,|φ〉,|χ〉 , . . ., etc., are arbitrary initial states. The final
states can then simply be written as |Ai, Bj , Ck〉.

(d) It is not essential, in general, that the partitioning of the spectrum
of a precise observable by a set of imprecise observables will be such
that it admits all possible combinations of outcomes of the impre-
cise observables (like the case just considered). Can you imagine a
partitioning of the α spectrum provided by some pair of imprecise
observables such that all combinations of outcomes are naturally
forbidden?

Complete and Incomplete Measurements
We know that if we make two instantaneously subsequent precise measure-

ments, the second measurement wipes out the memory of the first. If the first
measurement prepares a system in some state that we label by the outcome
of the measurement, then the second measurement destroys this state and
prepares a new state that is now completely specified by the outcome of the
second measurement. This, however, is not true if imprecise measurements
are involved. For example, imagine that we follow up a precise measurement
with a second measurement that is imprecise, but with regard to some dif-
ferent precise observable. Then the new state that will be prepared by the
imprecise measurement, will carry an imprint of the earlier state prepared
by the precise measurement. This new state cannot be completely specified
by the outcome of the imprecise measurement alone; one must also use the
outcome of the previous precise measurement. A series of imprecise measure-
ments, made on some well defined initial state, will in general, produce a
state that will carry residual footprints of all the previous measurements in
the history of its preparation starting from the precise measurement that
prepared the initial state. Memories of previous measurements are not, in
general, wiped out by imprecise measurements. Thus, it appears that in order
to prepare a quantum state that is independent of the history of past mea-
surements, one must necessarily make a precise measurement on the system.
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But, if you have worked out the last problem carefully, you will have seen
a counter example: a set of measurements, that were imprecise in regard to
the same precise observable, could actually collaborate to prepare a quantum
state specified completely in terms of the set of outcomes of the sequence of
imprecise measurements. A suitable sequence of instantaneously subsequent
imprecise measurements can indeed wipe out the memory of the initial state.
To discuss this in a general context, it is useful to introduce the following
definitions.

Compatible Observables A set of observables are said to be compatible
if there exists an orthonormal basis consisting of common eigenvectors of the
observables7.

It is clear that

1. a precise observable is compatible with all its imprecise observables, and

2. observables that are imprecise with respect to the same precise observable
are mutually compatible.

The following important properties of compatible observables are easy to
prove:

• The final state resulting from instantaneously subsequent measurements
of a set of compatible measurements is independent of the order of the
measurements.

• After a set of instantaneously successive measurements of compatible
observables, if a measurement belonging to the set is repeated instanta-
neously, its previous outcome will be reproduced with certainty8.

Thus, if Â and B̂ are compatible observables, then for all measurement out-
comes Ai, Bj of Â and B̂ respectively, we have

|ψ ;Ai, Bj〉 = |ψ ;Bj , Ai〉 ,
P [|ψ ;Ai, Bj〉 → Ai] = 1 = P [|ψ ;Bj , Ai〉 → Bj ]

for an arbitrary initial state |ψ〉.
Incidentally, if a set of observables are mutually compatible (i.e., com-

patible in pairs), then there exists an orthonormal basis of their common
eigenvectors, and the set is said to be compatible as a whole. The simplest
way to prove this uses results discussed in the next section9.

7Actually it is adequate to require that there exists a complete set of common eigenvec-
tors of the observables, but it turns out that in this case, an orthonormal basis of common
eigenvectors can always be found.

8It is, obviously, this characteristic that makes us call compatible observables “compat-
ible”; they tolerate each other instead of wiping each other out.

9One might wonder if by using these properties, it is possible to decide experimentally
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Simultaneous Measurement Instantaneously subsequent measurements
of compatible observables are called simultaneous measurements.

Note that we do not really mean that the measurements are simultaneous
in time. We call them simultaneous because of the simultaneous certainty of
reproducing the outcomes upon instantaneously subsequent measurements. In
some sense, the information about the outcomes exist simultaneously in the
final state.

Complete Set of Compatible Observables If simultaneous measure-
ment of all members of a set of compatible observables always prepares a state
that is independent of the initial state, then the set of compatible observables
is said to form a complete set of compatible observables (CSCO).

In other words, a set of observables forms a CSCO if the memory of the
initial state is completely wiped out after simultaneous measurements of all
the observables of the set (irrespective of the outcomes of the simultaneous
measurements). Thus, if |ψ〉 , |φ〉 , |χ〉 , . . . are arbitrary initial states and the
set of observables

{
Â, B̂, Ĉ, . . .

}
comprises a CSCO, then

|ψ ; Ai, Bj , Ck, . . .〉 = |φ ; Ai, Bj , Ck, . . .〉 = |χ ; Ai, Bj , Ck, . . .〉 = . . .

where Ai, Bj , Ck, . . . are arbitrary outcomes of simultaneous measurements
of Â, B̂, Ĉ, . . . respectively. Since the initial state becomes irrelevant in the
specification of the final state, it makes no sense to carry the burden of the
labels ψ, φ, χ, . . . that indicate the initial state. We can denote the final state
simply as |Ai, Bj , Ck, . . .〉. A set of compatible observables will therefore form
a CSCO if after a simultaneous measurement of all the observables of the set,

whether a set of observables are compatible. Indeed, it turns out that either of these prop-
erties is completely equivalent to the definition of compatibility. However, one has to be
cautious! In order to decide the compatibility, it may be tempting, for example, to test for
two prospective compatible observables Â and B̂, whether the measurement outcomes are
appropriately sustained:

P [|ψ;Ai, Bj〉 → Ai] = 1 = P [|ψ;Bj , Ai〉 → Bj ]

for all outcomes Ai and Bj of Â and B̂ respectively. But, one should bear in mind that
this test, performed on a particular state |ψ〉, or even a full basis of states, cannot ascer-
tain compatibility. If the sustainability of measurement outcomes, referred to above, is not
maintained, we can, at once, say that the observables are incompatible. However, if the
measurement outcomes are sustained, it will, unfortunately, not be enough to claim that
the observables are compatible. It will merely be an indication that they might be. If one
performs the test on all possible states of the system (which is clearly impossible in prac-
tice), and gets an affirmative result, only then can compatibility be inferred. Similarly, it
is also possible to check compatibility by testing (which is, again, impossible in practice),
if the state resulting from instantaneously subsequent measurement of the observables is
independent of the order of the measurements for all possible initial states, and all possible
measurement outcomes.
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the final state is, always, completely specified by the set of their measurement
outcomes10. Such a set of measurements is often called a complete set of mea-
surements in QM.

It is clear that

a precise observable will constitute a CSCO by itself but imprecise observ-
ables must team up in order to form a CSCO.

The preceding concepts lead to the following terminology:

Complete and Incomplete Measurements A simultaneous measurement
of a complete set of compatible observables is often referred to as a complete
measurement. Similarly, simultaneous measurement of a set of compatible ob-
servables which do not form a CSCO is called an incomplete measurement.

If a CSCO comprises N observables
{
Â, B̂, Ĉ, ...

}
, then the states pre-

pared by the simultaneous measurement of this CSCO will be described by N
parameters: {Ai, Bj , Ck, ...} where Ai, Bj , Ck, . . . are elements of the spectra
of the observables Â, B̂, Ĉ, ... respectively11. We shall often, for the sake of
brevity, use a single label to stand for the complete set of measurement out-
comes (corresponding to a CSCO) that specifies a state. Thus, we shall often
write a state such as |Ai, Bj , Ck, . . .〉 as |ψ〉 where ψ will collectively denote
the labels Ai, Bj , Ck, ... .

Until the last chapter, we have been working under the unnatural assump-
tion that the spectra of all observables have the same number of elements,
which is equal to the dimension of the state space. It is obvious that this
assumption will now apply only to precise observables. With imprecise ob-
servables introduced in the picture, the situation becomes much more natural.

The spectra of observables are allowed to have any size. If the number of
elements in the spectrum of an observable is equal to the dimension of the

10To find a CSCO, we can imagine that we go on making instantaneously subsequent
measurements of compatible observables until we reach a point when probabilities for all
possible outcomes of measurement of an arbitrary (and possibly incompatible) observable
becomes independent of the initial state. When this happens we know that we have prepared
a well defined state, and this state can then be labelled by the outcomes of the compatible
measurements. If this is true for all possible outcomes of the set of compatible measurements,
we know that the set of compatible measurements corresponds to a CSCO. This procedure
is, obviously, impossible to carry out in practice but it underlies the meaning of a CSCO.
A practical method will be discussed at the end of this chapter.

11One often loosely refers to the number of elements in the CSCO as the dimension of
the system. This is not to be confused with the dimension of the inner product space that
constitutes the state space of the system. We say “loosely” because this number is really
not a characteristic of the system but merely a characteristic of the description: the choice
of the CSCO. For a given system it is not necessary that every CSCO will have the same
number of elements. Actually, it is trivially possible to treat even a 1-dimensional system
as higher dimensional and vice versa.
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state space, the observable is precise, else it is imprecise.

It is not difficult to see that if a set of observables
{
Â, B̂, Ĉ, . . .

}
forms a

CSCO, then the set of states |Ai, Bj , Ck, . . .〉 with (Ai, Bj , Ck, . . .) running
over all permissible combinations of the measurement outcomes of Â, B̂, Ĉ, . . .
forms an orthonormal basis in the state space12. Since they will often be used
in QM, let us acquaint ourselves with the most important formulae involving
such bases.

In the following equations, for all the summations, the indices have been as-
sumed to run over all their allowed values.

Orthonormality of the basis states read

〈Ai′ , Bj′ , Ck′ , ...|Ai, Bj , Ck, ...〉 = δii′δjjδkk′ ...

An arbitrary vector |ψ〉 can be written as

|ψ〉 =
∑
i,j,k,...

|Ai, Bj , Ck, . . .〉 〈Ai, Bj , Ck, . . . |ψ〉

If |ψ〉 is a state vector, then the totality condition obeyed by the amplitudes
〈Ai, Bj , Ck, . . . |ψ〉 will take the form∑

i,j,k,...

|〈Ai, Bj , Ck, . . . |ψ〉|2 = 1

The formula for the inner product 〈φ|ψ〉 will appear as

〈φ|ψ〉 =
∑
i,j,k,...

〈φ|Ai, Bj , Ck, . . .〉 〈Ai, Bj , Ck, . . . |ψ〉

If we have an initial state

|ψ〉 =
∑
i,j,k,...

|Ai, Bj , Ck, . . .〉 〈Ai, Bj , Ck, . . . |ψ〉

on which we make a measurement of an observable Â belonging to the CSCO{
Â, B̂, Ĉ, ...

}
that yields an outcome Ai′ , soon after the measurement the

new state |ψ ; Ai′〉 will be given by

|ψ ; Ai′〉 =
∑
j,k,... |Ai′ , Bj , Ck, . . .〉 〈Ai′ , Bj , Ck, . . . |ψ〉√∑

j,k,... |〈Ai′ , Bj , Ck, . . . |ψ〉|
2

12It is possible, and quite often the case that every possible combination of the mea-
surement outcomes of a set of compatible observables does not correspond to an allowed
state.
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The probability of getting an outcome Ai′ in a measurement of the observable
Â made on a state |ψ〉 will be given by

P [|ψ〉 → |ψ ; Ai′〉] =
∑
j,k,...

|〈Ai′ , Bj , Ck, . . . |ψ〉|2

Along the same lines, the probability of getting the outcomes Ai′ and Bj′ in
a simultaneous measurement of the observables Â and B̂ made on the state
|ψ〉 would be

P [|ψ〉 → |ψ ; Ai′ , Bj′〉] =
∑
k,...

|〈Ai′ , Bj′ , Ck, . . . |ψ〉|2

By repeated application of the same procedure, the probability of getting the
outcomes Ai′ , Bj′ , Ck′ , . . . in a simultaneous measurement of all the members
of a CSCO

{
Â, B̂, Ĉ, ...

}
made on |ψ〉 will be

P [|ψ〉 → |ψ ; Ai′ , Bj′ , Ck′ , . . .〉] = |〈Ai′ , Bj′ , Ck′ , . . . |ψ〉|2

All these formulae are elementary consequences of the definitions provided in
this section.

In real life, to see whether a set of imprecise observables forms a CSCO,
one does not usually check whether the defining criteria are satisfied. It is
also seldom necessary to identify the underlying precise observable (although
such an observable can be trivially constructed a posteriori). At the level of
quantization, one usually specifies a first basis in terms of the spectra of a
set of imprecise observables which are assumed to form a CSCO13. Testing
the compatibility of new observables and construction of new CSCO’s are
then done using purely algebraic properties of the operators that describe
compatible observables. This is what we intend to discuss now.

Commuting Operators
The commutator

[
Â, B̂

]
of two operators Â and B̂ is defined by[
Â, B̂

]
= ÂB̂ − B̂Â

The operators Â and B̂ are said to commute if they have a vanishing com-
mutator. Now, let us introduce some properties of such operators.

13This is, of course, guided by some physical input or intuition.



102 An Introduction to Quantum Mechanics

• If two linear operators have a complete set of common eigenvectors then
the operators must commute.

It is extremely easy to prove this result. Let {|χi〉 ; i = 1, 2, . . . , n} be a com-
plete set of common eigenvectors of two linear operators Â and B̂ acting on a
vector space V . We can write an arbitrary vector |ψ〉 in V as

|ψ〉 =
n∑
i=1

ψi |χi〉

where the expansion coefficients ψi are appropriate scalars. Now, owing to the
linearity of the operators Â and B̂, we have

ÂB̂ |ψ〉 =
n∑
i=1

ψiAiBi |χi〉 =
n∑
i=1

ψiBiAi |χi〉 = B̂Â |ψ〉

Here Ai and Bi are the eigenvalues of Â and B̂ corresponding to the common
eigenvector |χi〉. Since |ψ〉 is arbitrary, it follows that

ÂB̂ = B̂Â

Now let us state the converse to the above theorem.

• If two diagonalizable linear operators commute, then they will necessarily
have a complete set of common eigenvectors14.

A straightforward corollary to the above theorem follows.

• If two Hermitian operators commute, then there must exist an orthonor-
mal basis comprising common eigenvectors of the operators.

Since in QM, we shall only use the corollary, we shall demonstrate the proof
of the corollary directly. This proof will serve as a warm up exercise for an
upcoming analysis that we shall shortly undertake.

Let Â and B̂ be two commuting Hermitian operators acting on a vector
space V . Let the vectors

∣∣∣Aji〉 constitute an orthonormal basis of eigenvectors
of Â (since Â is Hermitian, such a basis will always exist). We assume

Â
∣∣∣Aji〉 = Ai

∣∣∣Aji〉
for all j running from 1 to gi where gi is the degree of degeneracy of the
eigenvalue Ai of Â. Now, owing to the commutativity of Â and B̂

Â
(
B̂
∣∣∣Aji〉) = B̂

(
Â
∣∣∣Aji〉) = B̂

(
Ai

∣∣∣Aji〉) = Ai

(
B̂
∣∣∣Aji〉)

14Note that we are not saying that if the two operators have a complete set of eigenvectors
(i.e., they are diagonalizable), the eigenvectors will be common (this will happen only if all
eigenvalues are nondegenerate, as we shall see). We are only claiming that a complete set
of common eigenvectors will exist.
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Thus B̂
∣∣∣Aji〉 is also an eigenvector of Â with the eigenvalue Ai, and it will

therefore belong to the eigensubspace associated with Ai so that

B̂
∣∣∣Aji〉 =

gi∑
k=1

Bkji
∣∣Aki 〉

This is often expressed by saying that the subspace, say Vi, associated with the
eigenvalue Ai is invariant under the action of B̂. Hence, corresponding to every
eigenvalue Ai of Â, we can imagine an operator B̂i acting on the eigenspace
Vi of Ai which may be called the restriction of B̂ to Vi. The representation of
B̂i in the basis consisting of the vectors

∣∣∣Aji〉, where i is now fixed and j runs
from 1 to gi, is given by the expansion coefficients

Bkji =
〈
Aki |B̂|A

j
i

〉
Owing to the Hermiticity of B̂, the restriction B̂i will also be Hermitian.
Hence, there will exist an orthonormal basis of eigenvectors of B̂i (and there-
fore, also of B̂) in Vi. But all such eigenvectors, being linear combinations of
the vectors

∣∣∣Aji〉 (with i fixed), will continue to be eigenvectors of Â with the
eigenvalue Ai. By repeating this argument in every eigenspace Vi, we can see
that an orthonormal basis of common eigenvectors of Â and B̂ will exist.

Complete Set of Commuting Operators If every common eigenvector
of a set of commuting operators can be uniquely specified by specifying the
eigenvalues of all the operators of the set, then we say that the set constitutes
a complete set of commuting operators.

Fortunately, a complete set of commuting operators can also be acronymed
CSCO (i.e., the same acronym as for a complete set of compatible observ-
ables15).

In our discussion, a complete set of commuting operators will always refer
to a complete set of commuting, Hermitian operators.

Construction of a CSCO
To construct a CSCO, consider two commuting Hermitian operators Â and

B̂. If the eigenvalues of B̂i (restriction of B̂ to the eigenspace Vi associated with
eigenvalue Ai of Â) are nondegenerate for every Vi, then the set

{
Â, B̂

}
will

form a CSCO. Note that we do not need the eigenvalues of the full, unrestricted
operator B̂ to be nondegenerate. It is fine if eigenvectors of B̂ belonging to
different Vi have the same eigenvalue. We only require the eigenvectors of

15Can you guess, why this is fortunate?
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B̂ belonging to the same Vi to have distinct eigenvalues. This is equivalent
to requiring that the restrictions B̂i of the operator B̂ have nondegenerate
eigenvalues. If this is not the case, then for each eigenvalue Bj of B̂i, there will
exist an orthonormal set of eigenvectors

∣∣Bkij〉 which are common eigenvectors
of Â and B̂ with eigenvalues Ai and Bj respectively. We can now take another
Hermitian operator Ĉ that commutes with the operators Â and B̂. It is clear
that if Ĉ acts on a common eigenvector

∣∣Bkij〉 of Â and B̂, with eigenvalues Ai
and Bj respectively, then it will give a vector that will belong to the eigenspace
associated with Ai as well as Bj :

Â
(
Ĉ
∣∣Bkij〉) = Ai

(
Ĉ
∣∣Bkij〉)

B̂
(
Ĉ
∣∣Bkij〉) = Bj

(
Ĉ
∣∣Bkij〉)

This means that Ĉ
∣∣Bkij〉 will belong to the intersection of the eigenspaces

associated with Ai and Bj . Let us denote this space by Vij and let gij be its
dimension16. Clearly the set of vectors

∣∣Bkij〉 will form an orthonormal basis
in Vij . We shall, as before, be able to define a restriction Ĉij of Ĉ to the space
Vij corresponding to every pair of eigenvalues Ai and Bj of Â and B̂. The
action of Ĉij on Vij will be given by

Ĉij
∣∣Bkij〉 =

gij∑
l=1

Clkij
∣∣Blij〉

Like before, owing to the Hermiticity of Ĉ, we shall be able to find an or-
thonormal basis of eigenvectors of Ĉij (and of Ĉ) in Vij . If the eigenvalues of
Ĉij are nondegenerate then the set of operators

{
Â, B̂, Ĉ

}
will form a CSCO.

Note, once again, that we do not need the eigenvalues of the operator Ĉ to
be nondegenerate. It is alright if eigenvectors of Ĉ belonging to different Vij
have the same eigenvalue. We only require eigenvectors belonging to the same
Vij to have distinct eigenvalues. If some of the eigenvalues of Ĉij are degener-
ate, we shall need to look for another Hermitian operator, say D̂, commuting
with every member of

{
Â, B̂, Ĉ

}
and see if all eigenvalues of the appropriate

restrictions of D̂ are nondegenerate. This process can be continued until we
find a CSCO.

Illustration

In Table 5.1, we illustrate the construction of a CSCO comprising four
observables in an 8-dimensional vector space V . We have denoted the eigen-
vectors without the ‘| 〉’ symbols in the table entries to avoid clutter.

16Convince yourself that the intersection of two subspaces is also a subspace. Will the
union of two subspaces be a vector space?
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TABLE 5.1: Construction of a CSCO.

V

A1
1 A2

1 A3
1 A4

1 A1
2 A2

2 A1
3 A2

3 A3
3

V 1 V2 V3

B1
11 B1

12 B2
12 B3

12 B1
21 B1

23 B1
34 B1

35 B2
35

V11 V12 V21 V23 V34 V35

C1
111 C1

121 C1
122 C2

122 C1
213 C1

233 C1
343 C1

353 C1
354

V111 V121 V122 V213 V233 V343 V353 V354

D1
1111 D1

1211 D1
1221 D1

1222 D1
2133 D1

2333 D1
3434 D1

3534 D1
3544

V1111 V1211 V1221 V1222 V2133 V2333 V3434 V3534 V3544

1. In a vector space V , the vectors
{∣∣∣Aji〉} comprise a basis of eigenvec-

tors of Â where Â
∣∣∣Aji〉 = Ai

∣∣∣Aji〉. The eigenspaces associated with
the eigenvalues Ai are denoted by Vi. There are three degenerate eigen-
values A1, A2 and A3 with degrees of degeneracy four, two and three
respectively.

2. The operator B̂ commutes with Â so that the eigenspaces Vi are in-
variant under the action of B̂, and B̂ is completely defined within each
eigenspace Vi. We define the operators B̂i to denote the restrictions of
B̂ to Vi. The vectors

{∣∣Bkij〉} comprise a basis of common eigenvectors
of Â and B̂, where Â

∣∣Bkij〉 = Ai
∣∣Bkij〉 and B̂

∣∣Bkij〉 = Bj
∣∣Bkij〉. The in-

tersection of the eigenspaces of Ai and Bj are denoted by Vij . We note
that only V12 and V35 have dimension more than one. There are five
distinct eigenvalues of B̂ denoted by B1, B2, B3, B4 andB5 of which B1,
B2 and B5 are degenerate. However, only B2 and B5 are also degenerate
eigenvalues of the restrictions of B̂ (to V1 and V3). The eigenvalue B1 is
a degenerate eigenvalue of B̂ acting on V but not of the restrictions of
B̂ to any of the eigenspaces Vi. At this point, the vectors belonging to
V12 and V35 cannot be uniquely identified by specifying the eigenvalues
of Â and B̂.

3. Now we introduce a third operator Ĉ which commutes with both, Â and
B̂ having a basis of common eigenvectors

{∣∣∣Clijk〉} of Â, B̂ and Ĉ. We
need to check if all eigenvalues of the restrictions of Ĉ to V12 and V35 are
nondegenerate. This will ensure that the basis of common eigenvectors{∣∣∣Clijk〉} of Â, B̂ and Ĉ will be uniquely specified by the eigenvalues
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of Â, B̂ and Ĉ. We see that this happens for V35 but not for V12, which
still has a degenerate eigenvalue C2 having an associated subspace V122
(being the intersection of the eigenspaces of A1, B2 and C2) of dimension
two.

4. Finally, we introduce the operator D̂ that commutes with Â, B̂ and Ĉ
and whose restriction to V122 does have all nondegenerate eigenvalues,
completing the construction of the CSCO

{
Â, B̂, Ĉ, D̂

}
.

Compatibility and Commutativity
The mathematical results of the previous section shows the obvious connec-

tion between compatible observables and commutating Hermitian operators:

• If a set of observables are compatible, then the corresponding operators
which describe them must commute with each other.

and conversely

• If a set of Hermitian operators commute among themselves, then the
observables, that the Hermitian operators correspond to, are compatible.

Moreover, the definition of a complete set of commuting operators makes the
following connection evident:

• A complete set of compatible observables is described by a complete set
of commuting Hermitian operators and vice versa.

In actual practice, these are the connections that are used to identify compat-
ible observables and their complete sets.

Uncertainty principle
In the early days of QM, people constantly had to be reminded that QM

is a probabilistic theory as opposed to the deterministic ones that were known
up until the arrival of QM. Arguably, the most famous result that has played
the role of this reminder is the so called uncertainty principle, due to Werner
Heisenberg, one of the founding fathers of QM17. It states that the product
of the uncertainties of two incompatible observables (essentially arising out
of being simultaneously indeterministic) has a lower bound. The exact value
of the lower bound depends on the estimate that is chosen to express the
uncertainty. If the standard deviation (square root of the expectation value

17Deservingly, it is commonly referred to as Heisenberg’s uncertainty principle.
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of the square of the deviation from the mean) is taken as a measure of the
uncertainty, then the uncertainty principle reads

σ2
Aσ

2
B ≥

(
1
2i

〈[
Â, B̂

]〉)2

where Â and B̂ are two incompatible observables having a commutator
[
Â, B̂

]
and

σX =
√〈

(X − 〈X〉)2
〉

is the standard deviation of the observable18 X̂.

Problems

1. Two observables Â and B̂ are represented in an orthonormal basis by

[
Â
]

=

 1 0 0
0 3 0
0 0 3

 and
[
B̂
]

=

 −1 0 0
0 4 −5i
0 5i 4


(a) Argue without computing the commutator explicitly that Â and B̂

are compatible.
(b) Identify why the form of B̂ is block-diagonal.
(c) Verify that they form a nontrivial CSCO (i.e., none of them is a

CSCO by itself).
(d) Construct the orthonormal basis comprising common eigenvectors

of Â and B̂. Label the members of the basis by the eigenvalues of
Â and B̂.

(e) Construct an observable for this system which will form a CSCO
by itself19

18Incidentally, the uncertainty relation was first stated for the position and momentum
operators x̂ and p̂ (to be introduced later in this book). The commutator of x̂ and p̂ is
given by what is known as the canonical commutation relation: [x̂, p̂] = i~, where ~ is a
fundamental constant of nature called the Planck’s constant (also to be introduced later).
This gives the original version of the uncertainty relation:

σxσp ≥
~
2

19You will have thus demonstrated that the number of members in a CSCO is indeed a
feature of the description, and not of the system.
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2. For the following two pairs of operators, check whether there exists a
complete set of common eigenvectors.

i)
[
Â
]

=
[

3 2
0 3

]
and

[
B̂
]

=
[

7 0
0 7

]
ii)

[
X̂
]

=
[

3 1
1 3

]
and

[
Ŷ
]

=
[

2 3
3 −2

]
3. Investigate if the operators given below are compatible, and whether

they form a CSCO.

[α̂] =

 4 −4 2
−4 4 −2

2 −2 1

 and
[
β̂
]

=

 5 4 −2
4 5 2
−2 2 8


4. Consider the two observables Ĝ and Ĥ given in some representation as

[
Ĝ
]

=

 1 0 1
0 0 0
1 0 1

 and
[
Ĥ
]

=

 2 1 1
1 0 −1
1 −1 2


(a) Show that Ĝ and Ĥ represent compatible observables.

(b) The set
{

(1/
√

3) (1,−1,−1)T , (1/
√

6) (−1,−2, 1)T , (1/
√

2) (1, 0, 1)T
}

is an eigenbasis of Ĝ. Construct an orthonormal basis of common
eigenvectors of Ĝ and Ĥ. You are not allowed to solve for the eigen-
vectors of Ĥ directly20.

(Hint: Write down the representation of the restriction of Ĥ to
the eigenspace associated with any degenerate eigenvalue of Ĝ if
present. Diagonalize this restriction, and transform back to the
original basis.)

5. Prove the results of the last problem of the last problem set in a general
context:

(a) Show that the final state resulting from simultaneous measurements
of two compatible observables Â and B̂ is independent of the order
of the measurement21:

|ψ; Ai, Bj〉 = |ψ;Bj , Ai〉
20After you have solved the problem, can you see why you were not allowed to solve the

eigenvalue problem of Ĥ directly?
21The wording of this problem and the one to follow brings out the special meaning of

“simultaneous measurement” in QM. We say simultaneous and yet we talk of order.
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(b) Using the previous result show that if a series of simultaneous mea-
surements of Â, B̂ and Â are performed (in the given order), the
outcome of Â obtained in the first measurement will be reproduced
in the last

P [|ψ;Ai, Bj〉 → Ak] = δik

(c) Show that simultaneous measurements of a CSCO
{
Â, B̂, Ĉ

}
re-

sults in a final state that is independent of the initial state.

|ψ ; Ai, Bj , Ck〉 = |φ ; Ai, Bj , Ck〉 = |χ ; Ai, Bj , Ck〉 = . . .

where |ψ〉,|φ〉,|χ〉 , . . ., etc., are arbitrary initial states. The final
states can then simply be written as22 |Ai, Bj , Ck〉.

6. Prove that an alternative definition of compatibility of a collection of
observables could be provided using either of the following criteria:

(a) The state resulting from a sequence of instantaneously subsequent
measurements of the observables is independent of the order of the
measurements.

(b) If the measurement of one of the observables of the collection is
repeated soon after a set of simultaneous measurements of observ-
ables from the collection, the outcome recorded during the simul-
taneous measurement will be reproduced.

7. Show that, if Â, B̂, Ĉ are linear operators acting on some vector space,
and b, c are scalars, then the following commutation properties hold:

(a)
[
Â, B̂

]
= −

[
B̂, Â

]
(b)

[
Â, bB̂ + cĈ

]
= b

[
Â, B̂

]
+ c

[
Â, Ĉ

]
(c)

[
Â, B̂Ĉ

]
=
[
Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
8. Prove the uncertainty relation:

σ2
Aσ

2
B ≥

(
1
2i

〈[
Â, B̂

]〉)2

where Â and B̂ are two incompatible observables having a commutator[
Â, B̂

]
and

σX =
√〈

(X − 〈X〉)2
〉

is the standard deviation of the observable23 X̂.

22These results are trivially generalized to sets containing more compatible observables.
23Can you see why the result is meaningful in spite of the factor i on the right hand side?
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Chapter 6
Time Evolution

Up until now, we have been considering instantaneously subsequent measure-
ments. This allowed us to restrict ourselves to the scenario in which mea-
surements were performed in such quick succession that quantum states did
not have time to evolve in between measurements. Now we want to look at
the more general scenario which allows for evolution of the quantum states in
time. This means we will look into the change in a state that is brought about
simply by waiting (as opposed to making measurements). But before we delve
into that, we will have to introduce some mathematical prerequisites.

Unitary Operators
To discuss time evolution in QM, the main tool that will be needed is a

unitary operator. But to define a unitary operator we must first introduce the
identity and the inverse operators.

Identity operator
The identity operator Î acting on a vector space V is defined by

Î |ψ〉 = |ψ〉

for all vectors |ψ〉 belonging to V. Clearly, for every linear operator Â acting
on V we have

ÎÂ = ÂÎ = Â

The identity operator acting on an n-dimensional vector space is represented
by an n× n identity matrix

[
Î
]
.

Inverse operator
The inverse Â−1 of an operator Â is defined by

ÂÂ−1 = Â−1Â = Î

111
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Not every operator has an inverse. Operators that do have an inverse are
called invertible operators. In general for every operator Â we have

Â | 〉 = | 〉

where | 〉 is the additive identity vector. If there exists a vector |ψ〉 6= | 〉 such
that

Â |ψ〉 = | 〉
then Â is said to be a singular operator , and in this case |ψ〉 is called the
singular point. An operator which is not singular is called a nonsingu-
lar operator. It turns out that an operator is invertible if and only if it is
nonsingular . Incidentally, an operator Â is nonsingular if and only if its rep-
resentation

[
Â
]
has a nonvanishing determinant. Such a matrix is also called

nonsingular1.
If an operator Â is represented by the matrix

[
Â
]
, its inverse is represented

by the inverse matrix
[
Â
]−1

.

Unitary operators
An operator Û is said to be a unitary operator if

Û−1 = Û†

That is, if
Û Û† = Û†Û = Î

An unitary operator Û is represented by an unitary matrix
[
Û
]
:[

Û
] [
Û
]†

=
[
Û
]† [

Û
]

=
[
Î
]

Important properties of unitary operators

The following, easy to prove, properties of unitary operators are important
in the analysis of time evolution in QM:
• A necessary and sufficient condition for an operator to be unitary is that
it preserves the norm of every vector that it acts on2.

• An unitary operator can always be written as the exponential of an anti-
Hermitian operator3.

1You should be able to prove these results right away. To prove the second result, one
needs to make use of the fact that the columns (or rows) of a square matrix are linearly
independent if and only if it has a nonvanishing determinant.

2It is trivial to see why the condition of unitarity is sufficient to preserve norm. That
the condition is necessary is also not difficult to show. You will be asked to prove this in
the problem set at the end of this chapter.

3You will prove this also in the problem set. An anti-Hermitian operator, by the way,
can always be written as ‘i’ times a Hermitian operator.
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|χ2〉

|χ3〉

|χ1〉

|ψ〉

FIGURE 6.1: Time Evolution. The trajectory of the state vector of a 3-
dimensional quantum system lies on the surface of a unit sphere embedded in
3-dimensional space. Here we have, yet again, indulged in the oversimplification
of using a real vector space for the purpose of visualization.

Time Evolution of Quantum States
Let us consider a state |ψ(t)〉 at time t that has evolved from the state

|ψ(t0)〉 at some earlier time t0 (see Figure 6.1). Our purpose in this section is
to look for a clue which would provide a law that would enable us to determine
|ψ(t)〉 from |ψ(t0)〉.

Time evolution operator for conservative systems
It is perhaps only too natural that one would explore the possibility that

the state |ψ(t)〉 is linearly related to |ψ(t0)〉. So, we want to look into the
possibility that there exists an operator Û (t, t0) such that4

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉

4We are trying to look into the possibility that when expressed in a representation
(say χ), every component of the vector |ψ(t)〉 would be a linear function (i.e., a linear
combination) of the components of the vector |ψ(t0)〉. This can be written as a matrix
equation

[ψ(t)]χ = U (t, t0) [ψ(t0)]χ
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Although we have written Û(t, t0) as a function of two arguments t and t0,
it is to be understood that it depends only on the difference t − t0. For this
equation to be acceptable, it must ensure that an initial quantum state evolves
into a vector that is also a quantum state. That is, the equation must preserve
the normalization of the initial state. Recall, that the normalization condition
on a state |ψ〉 is expressed as

〈ψ|ψ〉 = 1

Now, if we start from the normalized state |ψ(t0)〉 and require that the final
state |ψ(t)〉 is also normalized, then

〈ψ(t)|ψ(t)〉 = 1
=⇒ 〈ψ(t0)| Û†(t, t0)Û(t, t0) |ψ(t0)〉 = 1

Now we know that this requires that the operator Û(t, t0) must be unitary.
Hence

Û†(t, t0)Û(t, t0) = Î

Of course, finally, it can only be decided by experiment whether or not the time
evolution of states may actually be described by an unitary, linear operator as
laid out above. Indeed, such a description has been validated overwhelmingly
by experiment. The unitary operator Û (t, t0) that governs the time evolution
of quantum states is called the time evolution operator (sometimes, simply
called evolution operator).

Now, since one can always write a unitary operator as an exponential
of an anti-Hermitian operator, or equivalently, the exponential of i times a
Hermitian operator5, one can write the evolution operator as

Û(t, t0) = exp
{
i Ĥ
}

Here Ĥ is a function of the duration t− t0.
In the preceding discussion we started by exploring the simple scenario

that the final state has a linear dependence on the initial state. Now we wish
to make a further simplification. We consider a situation where the temporal
dependence of the Hermitian operator Ĥ is also linear6. This means that the
duration t− t0 occurs as a multiplicative factor in Ĥ. It turns out that for a
large class of systems, we can indeed choose to write the law of time evolution
in this form. Such systems are called conservative. It is customary to write

where U (t, t0) is some square matrix of appropriate dimension. In the abstract vector space,
this will manifest itself as

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉
for some linear operator Û(t, t0).

5Physicists usually prefer to use a Hermitian operator.
6Do you think that the simpler possibility that Û(t, t0) is linear in t− t0 is plausible?
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the evolution operator as

Û(t, t0) = exp
{
− i
}
Ĥ (t− t0)

}
where Ĥ is again a Hermitian operator called theHamiltonian of the system.
It is assumed to be time independent here so that the time dependence in the
exponent enters simply as a multiplicative factor t − t0. The } appearing in
the denominator of the exponent is an universal constant called the Planck’s
constant and the negative sign is a convention7. It is then clear that

• the entire information about the dynamics of the quantum mechanical
system is contained in the Hamiltonian operator Ĥ.

Owing to its Hermiticity, Ĥ can be regarded as an observable8.

Schrödinger equation
Now we shall try to arrive at a differential form of the law of time evolution.

Let us imagine that a state |ψ(t)〉, of a conservative system, evolves into a state
|ψ(t+ δt)〉 in a time interval δt. Using the time evolution equation, we can
write

|ψ(t+ δt)〉 = Û(δt) |ψ(t)〉

with Û(δt) = exp
{
− i
}
Ĥ δt

}
Expanding out the exponential, we have

|ψ(t+ δt)〉 =
(
Î − i

}
Ĥ δt+ . . .

)
|ψ(t)〉

ψ(t+ δt)− ψ(t)
δt

= − i
}
Ĥ |ψ(t)〉+ . . .

7In 1900, in an attempt to find the elusive description of the intensity of electromagnetic
radiation from a black-body as a function of the frequency of radiation, the German physicist
Max Planck hypothesized that the energy from radiation was available only in discrete
bundles (quanta) and that the minimum quantum of energy Eν was proportional to the
frequency of the radiation ν. The relationship was written as E = hν and the constant h
was subsequently called the Planck’s constant. This marked the birth of QM. For theoretical
convenience ~ = ~/2π was defined later. It turned out that it is the quantum transcription of
energy (Hamiltonian) that governs the time evolution of systems. That is how the constant
crept into this equation.

8To know how Ĥ got to be called the Hamiltonian, once again, one has to go into the
history of the development of QM. Unfortunately, we will be unable to discuss it in this
book. However, I urge the reader to look up the literature to know about this intriguing
story.
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where in the last equation, the dots contain terms involving δt. Taking the
limit δt→ 0 gives the differential equation:

i}
d |ψ(t)〉
dt

= Ĥ |ψ(t)〉

Although, the above equation was derived for conservative systems, it turns
out that this differential form of the time evolution equation is actually more
general! It governs the time evolution of all quantum systems (and not just the
conservative systems from which it was derived). It is called the Schrödinger
equation after the Austrian physist Erwin Scröodinger who discovered it.
The Law of Time Evolution The Schrödinger equation embodies the gen-
eral law of time evolution of states in QM.

We have derived the Schrödinger equation from the unitary state evolution
formula. One can also show the converse that unitary evolution follows from
the Schrödinger equation. If the Hamiltonian does not depend explicitly on
time, then it is trivial to see that the Schrödinger equation leads to a time
evolution operator given precisely by the form Û(t) = exp

{
− (i/~) Ĥ t

}
. For

Hamiltonians that have an explicit time dependence, the time evolution op-
erator is quite a bit more involved. Such systems are called nonconservative.
We shall be mostly concerned with conservative systems in this book.

Postulates of Quantum Mechanics - Version 4
The law of time evolution of states will obviously have to go into our list

of postulates of QM. For the sake of completeness we will write down the full
list of postulates one more time by including the time evolution postulate.

1. Every system is associated with an inner product space. States of the
system are the normalized vectors belonging to this space.

2. Every observable of the system is associated with a linear Hermitian
operator acting on the state space.

3. The eigenvalues of the Hermitian operator associated with an observable
constitute the measurement spectrum of the observable.

4. If a measurement of an observable φ̂ is made on some state |ψ〉 that yields
an eigenvalue φj , soon after the measurement, the new state becomes
|ψ ; φj〉 which is given by the collapse postulate:

|ψ ; φj〉 =
∑gj
r=1

∣∣φrj〉 〈φrj |ψ〉√∑gj
r=1

∣∣〈φrj |ψ〉∣∣2
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where
∣∣φrj〉 are orthonormal eigenvectors of the eigenvalue φj and gj is

its degree of degeneracy.

5. The probability P [|ψ〉 → |φ〉] of an event |ψ〉 → |φ〉 is given by the Born
rule:

P [|ψ〉 → |φ〉] = |〈φ|ψ〉|2

where the scalar product 〈φ|ψ〉 is called the probability amplitude of the
event |ψ〉 → |φ〉.

6. The time evolution of a state in QM is governed by the Schrödinger
equation:

i}
d |ψ(t)〉
dt

= Ĥ |ψ(t)〉

where Ĥ is a linear, Hermitian operator (called the Hamiltonian).

The Programme in Quantum Mechanics
Finally, we are in a position to lay out a prescription to solve the target

questions in QM. Let us recall, one final time, the target questions in QM in
its full glory (see Figure 6.2):

Given a state [ψ(t0)]χ at some initial time t0, in some representation χ, if
we choose to make a measurement of some observable φ̂ at some later time t,
then what are the possible outcomes and what are their probabilities?

The solution to these questions will involve two essential steps:

1. Solution of the Schrödinger’s equation, leading to the determination of
the state [ψ(t)]χ at time t.

2. Solution of the eigenvalue problem for the observable φ̂ yielding the
spectrum {φi} of φ̂ obtained as the eigenvalues of

[
φ̂
]χ

, and the corre-

sponding states [φi]χ obtained as the normalized eigenvectors of
[
φ̂
]χ

.

The probabilities, P [ψ(t)→ φi] are then trivially given by

P [ψ(t)→ φi] = |〈ψ(t);φi|ψ(t)〉|2

with 〈ψ(t);φi|ψ (t)〉 = ([ψ(t);φi]χ)† [ψ(t)]χ

This constitutes the essential recipe for solving the basic problem of QM.
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 Probabilities of
the outcomes

final measurement

Possibilities in

φ̂

{φj}

initial state|ψi〉

time evolved state

time evolution

initial measurement

the outcome

Target Questions

ψ̂

|ψ (t)〉

t

P|ψ(t)〉→|φj〉

FIGURE 6.2: The full setting of a quantum mechanical problem and the “Target
Questions”.

Formal Solution of Time Evolution
As mentioned, we will restrict our discussion to time independent Hamil-

tonians. Since the Hamiltonian is a Hermitian operator, we will be able to
construct an orthonormal basis out of its eigenvectors. Let us assume, for
simplicity, that the eigenvalues of the Hamiltonian are nondegenerate9. Let
the eigenvalues of our Hamiltonian Ĥ be denoted by Ek with k running over
its entire spectrum. We can expand a state |ψ(t)〉 in the orthonormal basis of
eigenvectors of the Hamiltonian as

|ψ(t)〉 =
∑
k

|Ek〉 〈Ek|ψ(t)〉

9Nothing in the argument depends on this assumption. It just makes our life easier by
allowing for a simpler notation.
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By plugging this expansion into Schrödinger’s equation we have10

i}
d

dt

(∑
k

|Ek〉 〈Ek|ψ(t)〉
)

= Ĥ

(∑
k

|Ek〉 〈Ek|ψ(t)〉
)

∑
k

|Ek〉
(
i}
d

dt
〈Ek|ψ(t)〉

)
=

∑
k

Ek |Ek〉 〈Ek|ψ(t)〉

Comparing the coefficients of |Ek〉 we have

d

dt
〈Ek|ψ(t)〉 = − i

~
Ek 〈Ek|ψ(t)〉

which admits of a simple solution11

〈Ek|ψ(t)〉 = 〈Ek|ψ(0)〉 e− i
~Ekt

Hence the solution to Schrödinger’s equation becomes

|ψ(t)〉 =
∑
k

|Ek〉 〈Ek|ψ(0)〉 e− i
~Ekt

The above exercise shows us that if we know the eigenvalues and eigenvec-
tors of the Hamiltonian, the Schrödinger equation is, in effect, solved. We
had seen earlier that for instantaneously subsequent measurements, the tar-
get questions of QM were reduced to solving an eigenvalue problem. When we
allow time evolution, in the case of conservative systems, we see that the only
additional task, that of solving the Schrödinger’s equation, also turns out to
be equivalent to solving an eigenvalue problem. This time, it is the eigenvalue
problem of the Hamiltonian.

Incidentally, it is trivial to see that that the eigenstates of the Hamilto-
nian do not evolve in time (in any physically significant way). These states
are called stationary states and are of paramount importance in QM.

Problems

1. The Hamiltonian for a system, represented in the χ space is given by[
Ĥ
]χ

= ε

[
3 2
2 3

]
10Here we use the fact that the eigenvectors of the Hamiltonian are time independent.

This is obvious since the Hamiltonian has been assumed to be time independent.
11This solution can also be simply derived by making the time evolution operator Û (t) =

exp
{
− (i/~) Ĥ t

}
act on the state |ψ(t)〉 =

∑
k
|Ek〉 〈Ek|ψ(t)〉.
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(ε is some dimensionful constant). If the system starts out from an initial
state [ψ(0)]χ given by

i)
[

1
0

]
ii) 1√

2

[
1
1

]
and one makes a measurement of the observable Â represented in the χ
space by [

Â
]χ

= ~
[

6 2 + 3i
2− 3i −6

]
after t seconds, find out

(a) the different possibilities in the outcome, and
(b) the probabilities of the different possibilities.

2. Consider the Hamiltonian of a 4-level system:

[
Ĥ
]

= E


3 0 2 0
0 6 0 2 + 3i
2 0 3 0
0 2− 3i 0 −6


where E is a dimensionful constant.

(a) Find the state at time t if the system starts out from the initial
state

i) 1√
2


1
0
−1

0

 ii)


0
0
0
1


(Hint: Do not use brute force. You should be able write down the
solution right away from the previous problem.)

(b) Find the probability that a measurement outcome of Ĥ will yield
the value E after 10 billion years in each case.

3. At t = 0 a measurement of an observable B̂ is made on a 4-level system
which yields the value −b. The system then evolves under a Hamiltonian
Ĥ. The representations of B̂ and Ĥ are given in some orthonormal basis
by

[
B̂
]

=


0 b 0 0
b 0 0 0
0 0 2b 0
0 0 0 3b

 and
[
Ĥ
]

=


ε 0 0 0
0 2ε 0 0
0 0 2ε 0
0 0 0 3ε


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After time t, find out

(a) the probability that a measurement of B̂ yields −b again, and
(b) the probability that a measurement of Ĥ yields 2ε.

4. Show that the Schrödinger equation preserves the normalization of
states.

5. Prove that, if an operator Â satisfies〈
ψ|Â†Â|ψ

〉
= 1

then it must be unitary.

6. Show that an unitary matrix can always be expressed as the exponential
of an anti-Hermitian matrix12.

7. Show that for conservative systems, the Schrödinger equation implies
that the evolution operator Û (t− t0) is given by

Û (t− t0) = exp
{
− i
~
Ĥ (t− t0)

}
where Ĥ is the Hamiltonian operator, and t−t0 is the temporal interval.
(Assume that the standard rules of calculus can be used for operators.)

8. For a nonconservative system, the Hamiltonian Ĥ (t) depends explicitly
on time. From the Schrödinger equation, the evolution operator may
appear to be

Û(t, t0) = exp
{
− i
}

∫ t

t0

Ĥ (t′) dt′
}

This is, however, incorrect. Figure out why.

9. Suppose the Hamiltonian Ĥ of a certain system can be written as Ĥ =
Ĥ0 + Ĥ1. Assume further that Ĥ1 commutes with Ĥ0. If we have the
system in an initial state |E0〉, which is an eigenstate of Ĥ0, write down
a formal expression for the probability that at a later time the system
may be found in the state |E0〉.

10. Show that the time evolution of the expectation value of an observable Â
(which can possibly have an explicit time dependence) obeys the relation

i~
d
〈
Â
〉

dt
=
〈[
Â, Ĥ

]〉
+ i~

∂
〈
Â
〉

∂t

where Ĥ is the Hamiltonian operator.
12You might need to first establish that unitary operators are necessarily diagonalizable.

See appendix ‘B’ if you are stuck.



122 An Introduction to Quantum Mechanics

11. An observable which does not explicitly depend on time, and also com-
mutes with the Hamiltonian is called a constant of motion.

(a) Show that the probability of getting a measurement outcome Ai of
a constant of motion Â is constant in time.

(b) Show that an eigenstate of a constant of motion will never evolve
into a state that does not belong to the same eigenspace.

(c) Show that the expectation value of a constant of motion does not
evolve over time.

(d) Constants of motion play an important role in QM. Can you imag-
ine why?

12. An alternative description of time evolution is given by the so called
Heisenberg picture. In this description all vectors and operators are
transformed by a time dependent unitary transformation as follows:

|ψ〉H = Û† (t) |ψ〉S
ÂH = Û† (t) ÂSÛ (t)

Here, the subscript H denotes “Heisenberg picture” and the subscript S
indicates the usual description, generally referred to as the “Schrödinger
picture”. The operator Û (t) is the evolution operator Û (t) ≡ Û (t, 0).

(a) Show that all predictions of QM (i.e., the spectra of observables,
and the probabilities) remain unchanged in the Heisenberg picture.

(b) Observe that, in the Heisenberg picture, states do not evolve in
time while observables in general do. Justify the comment: “In the
Heisenberg picture, although states are constant in time, the mean-
ing of states are not”.

(c) Obtain a formula to describe how the eigenvector of an observable
will evolve in time in the Heisenberg picture.

(d) Show that, in the Heisenberg picture, an operator ÂH evolves in
time according to the differential equation

i~
dÂH
dt

=
[
ÂH , Ĥ

]
+ i~

[
∂ÂH
∂t

]

where the subscript H indicates the Heisenberg picture. Can you
see why the Hamiltonian observable Ĥ does not have the subscript
H?



Chapter 7
Continuous Spectra

So far, we have only been considering observables whose spectra are discrete.
This was not because continuous spectra are forbidden by nature1. It was
because the ideas that we were trying to communicate are easier to grasp
for discrete spectra. In this chapter we want to discuss observables whose
spectra form a continuum. It will, unfortunately, not be possible to discuss
this with any mathematical rigor since it will take us way beyond the scope of
the present book. It would require formulations involving infinite dimensional
inner product spaces and functional analysis. However, the structure of QM
in such a scenario closely resembles the quantum mechanical descriptions of
systems that involve only finite dimensional inner product spaces which we
have been studying so far. This is what we shall exploit. So, the content of this
chapter should be looked upon as essentially a collection of results motivated
mainly by analogy2.

This chapter will be of considerable practical importance since most real
life quantum systems will use descriptions that are discussed here.

Description using Function Spaces
We will now quickly re-run the developments leading to the inner prod-

uct space formulation of QM3. Only this time, we will start from a scenario
where we contemplate states to be described in some χ space, where χ̂ is an

1Well, in a sense they are, but that is not why we chose to avoid them thus far. Notwith-
standing the prohibition, such operators play an essential role in the description of many
(if not most) quantum systems, as we shall see in this chapter.

2Having said that one must also be alert to the differences between descriptions involving
discrete, finite dimensional inner product spaces and infinite dimensional inner product
spaces required for including observables with continuous spectra. These differences are
often stark, counter-intuitive and disconcerting. For the puritan, let us admit that many
of the statements that we shall make in this chapter are not even strictly correct from a
mathematical standpoint. Our presentation will be purely heuristic. The justification for
this naive approach is that if the scheme outlined here is followed, it leads to the correct
answers for most standard applications of QM.

3We are, in effect, re-starting our story from the chapter “States as Vectors”.
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observable that has a continuous spectrum4. Now, if we attempt to use such a
space for our description, we shall see that we will need to make some changes
in our language, notation and interpretation5. Let us see what these changes
might be.

Vectors
If the spectrum of the observable χ̂ was enumerable and finite (the case
that we have seen so far), we would have written the spectrum as a set
{χi ; i = 1, 2, . . . n} (where n denotes the cardinality of the set) so that a vec-
tor |ψ〉 would be represented in the χ space by an ordered list of n complex
numbers written as a column matrix

[ψ]χ =


〈χ1|ψ〉
〈χ2|ψ〉
..
..

〈χn|ψ〉


We have seen that the representations [ψ]χ are also considered to be vectors,
but this time in the representation space Cn. For such a vector [ψ]χ, we have
one complex number 〈χi|ψ〉 (called a component) corresponding to each mem-
ber χi of the spectrum of χ̂. Now, let us try to transcribe the object [ψ]χ for
the setting where the spectrum of χ̂ is continuous. Let us imagine that the
spectrum of χ̂ is the real interval [a, b]. We shall denote the members of the
spectrum by the symbol χ. Then the transcribed object, which we tentatively
call a vector as well, should have a component for each real number in [a, b].
But this, by definition, is a complex function defined over the domain [a, b].
So,

• a vector in the χ space would now be a function ψ (χ) instead of a column
matrix [ψ]χ:

[ψ]χ −→ ψ (χ)

The value of the function for a particular value χ of the domain would be a
component of the vector, and will be denoted by ψ (χ) ≡ 〈χ|ψ〉 in accordance
with the notation 〈χi|ψ〉 for the enumerable case (see Figure 7.1). Of course,
whether such vectors actually form a vector space or not must be checked by
testing whether such functions obey the defining properties of vector spaces
under addition and multiplication by a scalar. This is rather easy to do and
one can easily convince oneself that the set of complex functions over the real

4As we had done before, we are also making the tacit assumption that we are in a
scenario where χ̂ forms a CSCO by itself so that there is no degeneracy, etc. The description
we demonstrate below will easily carry over to situations when one needs more members to
complete the CSCO.

5We will also see to what extent it is actually possible to regard χ̂ as a true observable.
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complex function ψ (χ)
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at χ = χ′

Operator with continuous spectrum

χ̂

FIGURE 7.1: Discrete vs continuous spectrum operators and the associated representation of vectors.
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interval [a, b] is indeed a vector space under addition of complex functions and
multiplications of such functions by a complex number. Let us call this set
Fc [a, b].

Next, we would like to investigate whether we can identify the standard
basis in Fc [a, b]. Recall that the column matrices {[χk] ; k = 1, 2, . . . , n} whose
components are defined by the kronecker delta function 〈χi|χk〉 = δik provided
the standard basis in the discrete case:

δik =
{

0
1

if χk 6= χi

if χk = χi

ψi =
n∑
k=1

δikψ
k

[ψ]χ =
n∑
k=1

[χk]χ ψk

where the index k runs from 1 to n. In the continuum, the so called Dirac-
delta functions δ (χ− χ′), defined by

δ (χ− χ′) =
{

0
∞

if χ 6= χ′

if χ = χ′

ψ (χ′) =
∫ b

a

dχ δ (χ− χ′)ψ (χ)

provide a standard basis. That is, the standard basis in the continuum are a
set of functions {χ (χ′) ; χ′ ∈ [a, b]} such that the components 〈χ′|χ〉 of the
functions χ (χ′) are given by

〈χ′|χ〉 = δ (χ− χ′)

The definition of the Dirac-delta function directly ensures that they qualify as
the standard basis in an analogous fashion to the discrete case cited above6.

Inner products
We can attempt to endow the vector space of all complex functions over

[a, b] with an inner product defined by

〈φ|ψ〉 =
∫ b

a

dχφ (χ)∗ ψ (χ)

6The Dirac-delta functions are, technically, not functions. In proper mathematical terms,
they belong to what are known as distributions (in fact, they are examples of what are
known as a non-regular distributions). This means that the basis functions cannot belong
to our vector space Fc [a, b]! This is extremely disconcerting and certainly needs to be
legitimized. Unfortunately, it is beyond the scope of this book. The interested reader is
strongly encouraged to look into the meaning and justification more carefully at some
stage. For this, a comprehensive study of the formulation of QM on infinite dimensional
inner product spaces which admit observables with continuous spectrum must be taken up.
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in analogy with the corresponding formula for the finite, enumerable case.
Here ψ (χ) and φ (χ) are two vectors in Fc [a, b].

Even before we try to check whether the above formula conforms to the
defining properties of inner products we must, of course, ensure that the above
integral would converge. Now, in order that this integral converges for all
functions φ (χ), it is clearly necessary (in order that the above equation holds
for φ = ψ ) that

〈ψ|ψ〉 =
∫ b

a

dχψ (χ)∗ ψ (χ) =
∫ b

a

dχ |ψ (χ)|2

should converge. Such functions are called square integrable functions. It
is quite remarkable that if we assume that two functions ψ (χ) and φ (χ) are
both square integrable, then the condition of square integrability turns out
to be sufficient for the integral

∫ b
a
dχφ (χ)∗ ψ (χ) to converge. One can easily

check that

• in the set of square integrable functions, the proposed definition of inner
product holds obeying all the required properties of inner products.

Thus,

• in the continuum, the state space of quantum systems must be the space
of square integrable functions7.

The space of square integrable functions defined over [a, b] is denoted by
L2 [a, b]. Another such space that is used commonly in QM is L2 (−∞,+∞),
the meaning of which is self evident. Technically, these spaces are called
Hilbert Spaces8.

We would naturally define the norm |ψ| of a vector |ψ〉 by

|ψ| =
√
〈ψ|ψ〉

In L2 [a, b] all vectors can be normalized so that∫ b

a

dχψ (χ)∗ ψ (χ) =
∫ b

a

dχ |ψ (χ)|2 = 1

7It is trivial to check that the space of square integrable functions is also closed under
addition and multiplication by a scalar. Therefore such spaces will automatically obey the
defining conditions of a vector space.

8Strictly speaking, these are only two examples of Hilbert Spaces. You should look up
the precise definition at some point. It turns out that all finite dimensional inner product
spaces trivially qualify as Hilbert spaces. But Hilbert spaces really come to there own for
the infinite dimensional cases. Unfortunately, it turns out that even infinite dimensional
Hilbert spaces are not adequate when we wish to describe QM with observables that have
a continuous spectrum! The appropriate mathematical setting in this case is a, so called,
rigged Hilbert space.
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If we compute the inner product between the standard basis elements, we
have

〈χ′|χ〉 = δ (χ− χ′)

We define this to be the new orthonormality condition for continuous
bases. This is obviously not the kind of orthonormality that we have seen
in the enumerable case. However, this definition of orthonormality correctly
reproduces the desired relations (that are analogous to the enumerable case).
For example, this ensures that the inner product of a vector with a basis
element (of an orthonormal basis in the modified sense) correctly picks out
the expansion coefficient corresponding to that basis element when the given
vector is expanded in the basis.

Identification of the laws
Along the lines that we had followed for the finite, enumerable spectrum

scenario, we make the following associations again:

• Normalized vectors in the space of square integrable functions are quan-
tum states.

• Inner products in the space of square integrable functions between state
vectors are probability amplitudes9.

• Orthonormal bases in the space of square integrable functions are associ-
ated with observables such that every member of such a basis corresponds
to an element of the spectrum of the associated observable.

Here we would like to remark that unlike the usual orthonormal bases, the
bases which are orthonormal in the extended sense cannot be associated with
physical quantum observables10. This is because the elements of such a basis
cannot really qualify as quantum states. For example, if we look at the stan-
dard basis that we have been using, we see that 〈χ|χ〉 is infinite! These vectors
are therefore not normalizable (which means that they do not belong to L2)
and do not qualify as quantum states11.

Before we move on to the next section we would like to mention that for
historical reasons, the state vectors when represented in some basis are often
called wave functions. In fact, this terminology is freely used even in the
enumerable basis case.

9The interpretation of the inner product 〈χ|ψ〉 of a square integrable function ψ (χ′) and
a continuous basis function such as χ (χ′) is however slightly different. We shall come to
this shortly.

10It is, nevertheless, customary to call them observables and we will continue to do so.
11Actually, they are not even functions as we have mentioned before. However, they are

still useful because, in a sense, they provide a basis for L2. That turns out to be adequate
for our purpose. You have every right to feel confused about this at this stage. Later on we
will provide some concrete examples that will demonstrate how one works with such bases.
This will, hopefully, make you somewhat more comfortable.
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Abstraction
One can imagine an abstract vector space V having a basis {|χ〉 ; χ ∈ [a, b]},

the elements of which are labelled by the continuous string of real numbers
χ ∈ [a, b], such that a vector |ψ〉 can be formally written as12

|ψ〉 =
∫ b

a

dχ |χ〉 〈χ|ψ〉

The representation of the vector |ψ〉 in the basis {|χ〉 ; χ ∈ [a, b]} is essentially
the function ψ (χ) = 〈χ|ψ〉 defined over the real interval [a, b]. Restricting the
representations ψ (χ) to square integrable functions defines a subspace of V
that can be endowed with an inner product, making it an inner product space.

Incidentally, if we assume that the basis {|χ〉 ; χ ∈ [a, b]} is orthonormal
in accordance with the definition of orthonormality that we have provided
in a preceding subsection, then it reproduces the defining expression of inner
product in L2 [a, b] that we had provided earlier. This only requires a straight-
forward application of linearity and conjugate symmetry property of inner
products:

〈φ|ψ〉 =
∫ b

a

∫ b

a

dχdχ′ φ (χ)∗ ψ (χ′) 〈χ|χ′〉

=
∫ b

a

∫ b

a

dχdχ′ φ (χ)∗ ψ (χ′) δ (χ′ − χ)

=
∫ b

a

dχφ (χ)∗ ψ (χ)

In the abstract setting, this should be looked upon as the formula for the
inner product of two vectors expressed in terms of their coordinates in an
orthonormal basis.

Operators
It is easy to imagine along the lines that was followed for the observables

with discrete spectrum that one may associate with the quantum observables
having continuous spectrum, linear Hermitian operators with the additional
property that their eigenvectors must form a complete set13.

12Note that, here dχ actually stands for the measure of the integral which is the appropri-
ate differential volume in the χ space. For example, if χ refers to the position of a particle
moving on a circular track of radius a then dχ = adθ where θ is the polar angle.

13Recall that we had mentioned, way back in the fourth chapter that in infinite di-
mensional inner product spaces, it is not in general guaranteed that the eigenvectors of a
Hermitian operator will have a complete set of eigenvectors. Further, we had also mentioned
that Hermitian operators that do have a complete set are called “observables”, which is a
mathematical term in this context.
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In the present scenario the representations of such operators will clearly be
different. When we are working with a continuous basis, the representations
of vectors are functions. Therefore, the corresponding representations of linear
operators will not be matrices any more. As we shall see in the next section,
in the cases of interest to us,

• the representations of operators will be differential operators14.

To state this more concretely, let us use the inner product space V that was
introduced in the preceding subsection. We shall denote the representation of
an operator α̂ acting on V , in some continuous basis χ, by [α̂]χ (using the
same symbol as matrix representations). If α̂ acts on a vector |ψ〉 to give |ψ〉′,
then its action in the χ space will be represented as

ψ′ (χ) = [α̂]χ ψ (χ)
or 〈χ|ψ〉′ = [α̂]χ 〈χ|ψ〉
or 〈χ|α̂|ψ〉 = [α̂]χ 〈χ|ψ〉

Since the vector |ψ〉 in the above equation is arbitrary,

the role of the differential operator representation of an operator can be suc-
cinctly expressed using the following mnemonic:

〈χ| α̂ = [α̂]χ 〈χ|

After the next section, we will demonstrate what kind of quantization rules ac-
tually lead to such differential operator representations. Incidentally, in what
follows we will often refer to a quantity like 〈χ |α̂|χ′〉 as a matrix element,
borrowing the term from the finite, discrete basis case. Of course, for a basis
labelled by a continuous index χ, strictly speaking, there really is no matrix
to speak of.

In Table 7.1, we provide a dictionary that displays how one needs to carry
out the translation as one moves from the discrete to the continuous basis
description of QM.

14Loosely, a differential operator is a finite, linear combination of terms involving deriva-
tion operators and functions. A few common examples are

d

dx
,

∂

∂x
x
∂

∂x
,
∑
i

xi
∂

∂xi
, x2 + sinx, 13

Note that the differential operator can involve simple multiplicative functions like x2 +
sinx or even a constant like 13. In general, the differential operator acting on a space of
functions of several variables will involve functions (of the different variables) and their
partial derivation operators. A typical example is the operator

∑
i
xi (∂/∂xi) listed above.
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TABLE 7.1: Discrete vs continuous spectra.

Discrete Continuous
χ̂ has a discrete spectrum:
χ = {χ1, χ2, . . . , χn}

χ̂ has a continuous spectrum:
χ = [a, b]

Vectors in χ space are column matrices:
[ψ]χ = (〈χi|ψ〉 ; i = 1, 2, . . . , n)

[ψ]χ ∈ Cn

ψi = 〈χi|ψ〉

Vectors in χ space are complex functions:
[ψ]χ = (〈χ|ψ〉 ;χ ∈ [a, b])

[ψ]χ ∈ Fc [a, b]
ψ (χ) = 〈χ|ψ〉

Cn forms a vector space under addition of
complex column vectors and mutiplication

of such vectors by a complex number

Fc [a, b] forms a vector space under
addition of complex functions and
mutiplication of such functions by a

complex number

Vectors [χi]χ provide a standard basis:
ψi =

∑
j
χijψ

j

where
χij = 〈χi|χj〉 = δij

Functions χ (χ′) provide a standard basis:
ψ (χ′) =

∫ b
a
dχχ (χ′)ψ (χ)

where
χ (χ′) = 〈χ′|χ〉 = δ (χ− χ′)

Inner products are defined by
〈φ|ψ〉 =

∑
i

(
φi
)∗ (

ψi
)

- always convergent for finite n

Inner products defined by
〈φ|ψ〉 =

∫ b
a
dχ (φ (χ))∗ (ψ (χ))

- converges in L2 [a, b]
The standard basis is orthonormal:

〈χi|χj〉 = δij

The standard basis is orthonormal:
〈χ′|χ〉 = δ (χ− χ′)

Abstraction proceeds as:
|ψ〉 =

∑
i
|χi〉 〈χi|ψ〉

The column vectors [ψ]χ are
representations of |ψ〉 in the {|χi〉} basis

Abstraction proceeds as:
|ψ〉 =

∫ b
a
dχ |χ〉 〈χ|ψ〉

The functions ψ (χ) are representations of
|ψ〉 in the {|χ〉} basis

Representations of operators are square
matrices on Cn:
α̂ |ψ〉 = |ψ〉′

is represented as
[α̂]χ [ψ]χ = [ψ′]χ

with
[α̂]χij = 〈χi|α̂|χj〉

Representations of operators are
differential operators on L2 [a, b]:

α̂ |ψ〉 = |ψ〉′

is represented as
[α̂]χ ψ (χ) = ψ′ (χ)

where
[α̂]χ : 〈χ| α̂ = [α̂]χ 〈χ|
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Modified Postulates
Two of our postulates will have to be reviewed and revised when observ-

ables with continuous spectra are involved. To see this, consider a Hermitian
operator χ̂ having a continuous spectrum. Suppose that on a properly nor-
malized state |ψ〉, an imprecise measurement of the observable χ̂ is made
that measures whether the outcome χ belongs to some well defined interval
[χ0 − ε, χ0 + ε]. From what we have learnt earlier about imprecise observables,
we would expect the following rules to be obeyed:

1. New state after a measurement: If the outcome of the imprecise
measurement is affirmative, then soon after the measurement the new
state |ψ ;χ0 ± ε〉 will become

|ψ ;χ0 ± ε〉 =
∫ χ0+ε
χ0−ε dχ |χ〉 〈χ|ψ〉√∫ χ0+ε
χ0−ε dχ |〈χ|ψ〉|

2

This is essentially the state collapse postulate that was introduced earlier
for the discrete case. It should be emphasized here that although the
vectors |χ〉 do not qualify as true quantum states (because they do not
have the appropriate normalization), a measurement with inadequate
resolution of χ̂ is still possible. In fact, the only measurements involving
observables with continuous spectra are such imprecise measurements.

2. Probability of outcomes: The probability that the measurement of
the imprecise observable yields an affirmative outcome is given by

P [|ψ〉 → |ψ ;χ0 ± ε〉] =
∫ χ0+ε

χ0−ε
dχ |〈χ|ψ〉|2

This again is essentially the Born rule (for imprecise observables) that
we have seen earlier for the discrete spectrum case. It should be noted
that the inner product 〈χ|ψ〉 has a slightly different interpretation in
the present scenario.

Here, |〈χ|ψ〉|2 ≡ |ψ (χ)|2 describes the probability density instead of
the probability; The probability P [ψ → [χ, χ+ dχ]] that an imprecise χ̂
measurement on a state ψ (χ) yields an outcome that ensures that χ lies
in the interval [χ, χ+ dχ] is given by15

P [ψ → [χ, χ+ dχ]] = |ψ (χ)|2 dχ
15See the subsection on probability density function in appendix ‘A’.
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We notice a remarkable deviation from the discrete case: although the quantity
|〈χ|ψ〉|2 = |ψ (χ)|2 provides the probability for the event ψ → [χ, χ+ dχ],
unlike the discrete case, the same quantity |ψ (χ)|2 = |〈ψ|χ〉|2 cannot describe
the probability for the reversed event χ→ [χ;ψ]. In fact, since the vectors |χ〉
do not qualify as quantum states, the reversed event does not even exist.

The above rules are natural transcriptions of the corresponding postulates
for the discrete case. However, since they cannot be deduced from them, these
rules have to go into the theory as independent postulates.

We shall not list these rules in the “Postulates of QM” separately, but it
is to be borne in mind that whenever observables with continuous spectra are
involved, these will be the appropriate rules to use.

Quantization of Systems with Classical Analogues
Now we shall take up the issue of constructing quantum models of real life

systems. It turns out that an overwhelmingly large class of quantum systems
have classical analogues. By this we mean that for such systems we can frame
a classical picture in our mind, so that it is possible to use the vocabulary of
classical physics in the process of quantization. It is needless to mention that
the classical model will not be the correct description of the system (which
is why we seek a quantum description for it). It is not expected to lead to
predictions that would match our experimental observations on the system.
The framing of the classical picture is only an intermediate step to enable
the quantum description to be formulated. The scheme essentially comprises
laying down a consistent prescription to write down the quantization rules for
a given classical system.

The essence of the preceding paragraph is that, when confronted with the
task of formulating a quantum model for a real life system, one can try to16

1. imagine an appropriate classical system, and

2. quantize the classical system according to the laid out prescription17.

If this process correctly reproduces all the experimental observations on the
system, the quantization would be deemed to be correct. If it does not, one
has to come up with some new quantization rule.

16Historically, this method evolved in the reverse route. Unsuccessful attempts of classical
descriptions for certain systems lead people to tweak and twist the classical descriptions
in order to explain the discrepancies of classical predictions with experimental observa-
tions. The ad hoc modifications which were implanted in the classical descriptions are now
understood to be features of the quantized versions of those classical models.

17The prescription will be described shortly.
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The language that we shall use for the classical description is that of
a classicalHamiltonian formalism18. The corresponding quantization
rule is called canonical quantization. In the Hamiltonian formalism, a
system is described by two sets of basic variables: coordinates {qi} and mo-
menta {pi}. Each coordinate qi necessarily comes with a conjugate momentum
pi, and i runs over all the coordinates. Every other observable (classically, one
usually uses the term dynamical variable) is a function of the coordinates and
momenta19. The time evolution of the system (which is essentially that of
the coordinates and momenta) is governed by a function H (q, p), called the
Hamiltonian, through the equations

dqi
dt

= ∂H (q, p)
∂pi

dpi
dt

= −∂H (q, p)
∂qi

where q and p stands collectively for all the coordinates and momenta. For all
practical purposes (at least, for what we wish to discuss), one can take the
Hamiltonian to be identical to the energy of the system, and we shall often
use the terms Hamiltonian and energy interchangeably.

Now we turn to the quantization prescription of classical systems given in
the Hamiltonian description. We start by laying it down for a particle whose
motion is confined to one spatial dimension.

Particle living in one dimension
Classically, for this system there is one coordinate and one momentum. Let

us denote them by x and p respectively. Every dynamical variable θ for the
system will be written as a function θ (x, p). The quantization of this system
involves the following assumptions and observations20.

1. There exists an observable x̂ called position corresponding to the clas-
sical coordinate x which has a spectrum {x : x ∈ (−∞,+∞)}. The ob-
servable x̂ forms a CSCO by itself which acts on a vector space V being
the linear span of the basis Bx = { |x〉 : x ∈ (−∞,+∞) } where |x〉 are
the eigenvectors of x̂. Vectors |ψ〉 in V can be expanded formally as

|ψ〉 =
∫ +∞

−∞
dx |x〉 〈x|ψ〉

18If you are not familiar with the formalism, do not worry, we do not assume any back-
ground.

19There can also be an explicit time dependence.
20Let us, for one last time, warn the reader that the treatment provided here is purely

heuristic. The lack of rigor should be repaired when the necessary mathematical background
has been acquired.
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The x representations of vectors of this space are essentially functions of
x. The standard jargon for this representation is “position space”21. So
V is essentially the space of all functions of x. There exists a subspace V
of V consisting of vectors whose x representations are square integrable
functions. States of the quantum system belong to V . This space is
endowed with an inner product

〈φ|ψ〉 =
∫ +∞

−∞
dxφ (x)∗ ψ (x)

The basis vectors |x〉 are orthonormal in the extended sense:

〈x′|x〉 = δ (x− x′)

The representation of x̂ follows trivially:

〈x′ |x̂|x〉 = xδ (x− x′)
〈x| x̂ = x 〈x|
[x̂]x = x

that is, in its own space, the operator x̂ can be represented as multi-
plicative operator22.

2. There exists an observable p̂ called momentum that corresponds to the
classical momentum p. The representation of p̂ in the x space is given
by23

[p̂]x = −i~ d

dx

3. Every observable θ̂ of the quantum system corresponds to some dynam-
ical variable θ (x, p) in the classical system. The operator corresponding
to θ̂ is a function of the operators x̂ and p̂. The function θ̂ (x̂, p̂) is given
by

θ̂ (x̂, p̂) = θ (x̂, p̂)

which is the same function by which the corresponding classical variable
θ is connected to x and p.

21The phrase “coordinate space” is also used which often refers to a more general setting
as the name suggests.

22You will have to prove this in the problem set provided at the end of this chapter. To
see how this can be proved, check out the following subsection where the representation of
the momentum operator is demonstrated to be a differential operator (described in the next
item below). Note that a multiplicative operator is also, by definition, a trivial example of
a differential operator.

23We shall demonstrate how this was arrived at shortly.
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Sometimes, however, the construction may require minor adaptations.
One such adaptation is symmetrization. This is required when prod-
ucts of classical variables corresponding to noncommuting operators
need to be transcribed. For example, since x̂ and p̂ are noncommut-
ing (which one can easily check), a term xp occurring in a dynamical
variable is transcribed as (1/2) (x̂p̂+ p̂x̂). Note that, in this example the
symmetrization is necessary not merely to avoid unnecessary bias in the
order of the operators x̂ and p̂ in the product, but for a much more
important reason: the operator product x̂p̂ is not Hermitian! Unless we
symmetrize, we do not have a quantum observable.

We mention, in particular, that the Hamiltonian operator Ĥ (x̂, p̂), that
governs the time evolution of the system, is given by

Ĥ (x̂, p̂) = H (x̂, p̂)

where H (x, p) is the (duly symmetrized) classical Hamiltonian of the
system.

Origin of the representation of the momentum operator

The most nontrivial and nonobvious component in the above prescription is
perhaps the representation of the momentum operator in the position space24:
[p̂]x = −i~ (d/dx). Historically, there have been two routes to it. They are
the famous de Broglie hypothesis and canonical commutation relation. Let us
explicitly demonstrate how one derives [p̂]x from each of them.

de Broglie Hypothesis The de Broglie hypothesis specifies the momentum
eigenvectors in the position space as

〈x|p〉 = C e
i
~px

where C is some constant of normalization and ~ is the Planck’s constant25

(which is there to make the theory fit observed data). It is then a triv-
ial exercise to figure out the representation of the momentum operator. By
mere inspection it is evident that a x space differential operator that has
C exp {(i/~) px} as its eigenvector with p as the corresponding eigenvalue is
−i~ (d/dx).

24The representation of any operator in a space other than the one constructed out of its
own eigenvectors is always nontrivial.

25It is only after several re-interpretations that the meaning of de Broglie’s hypothesis be-
came clear. The original hypothesis made the assertion that there should be waves associated
with particles whose momenta p are related to the wave lengths λ of the waves by p = h/λ.
Historically, people called this the “wave particle duality”. Note that, since the Hamiltonian
for the free particle is Ĥ = p̂2/2m (where m is the mass), the momentum eigenstates are
stationary, and a momentum eigenstate after time t is 〈x|p (t)〉 = C exp {(i/~) (px− Et)}
which is indeed a progressive wave!
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The fact that the eigenvectors of the momentum operator p̂ are given in the
position space by hypothesis, means that here the solution to the eigenvalue
problem of the momentum operator p̂ is assumed, and the representation is
deduced! The point is, once the representations of the position and momentum
operators are available, the representations of all other observables can be
constructed, and one can proceed with the usual program of solving their
eigenvalue problems to find the answers to the target questions of QM.
Canonical Commutation Relation26 In this prescription one hypotheti-
cally specifies the commutation relation between x̂ and p̂:

[x̂, p̂] = i~

From here, one can derive the representation of either of the operators in the
space of its conjugate. We show how the x representation of p̂ can be derived.

From the above commutation relation, we have

〈x′ |[x̂, p̂]|x〉 = 〈x′ |i~|x〉

The matrix element of the commutator on the left hand side is

〈x′ |[x̂, p̂]|x〉 = (x′ − x) 〈x′ |p̂|x〉
But the right hand side gives

〈x′ |i~|x〉 = i~δ (x− x′)

Hence by equating the two sides, we have

〈x′ |p̂|x〉 = i~
δ (x− x′)
(x′ − x)

= i~
d

dx
δ (x− x′)

where we have used a delta function identity:
∂

∂x
δ (x) = −δ (x)

x

Now, we can write for an arbitrary state |ψ〉

〈x′ |p̂|ψ〉 =
∫ +∞

−∞
dx 〈x′ |p̂|x〉 〈x|ψ〉

=
∫ +∞

−∞
dx

[
i~
d

dx
δ (x− x′)

]
ψ (x)

= −i~ d

dx′
ψ (x′)

i.e., 〈x |p̂|ψ〉 = −i~ d

dx
〈x|ψ〉

26This hypothesis was inspired by the so called Poisson bracket formulation of classical
mechanics.
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Here, in the third line, we have used another delta function identity:∫
dx

[
d

dx
δ (x)

]
ψ (x) = − d

dx
ψ (x)

∣∣∣∣
x=0

(where the range of the integral is assumed to include the point x = 0), and
in the last line we have switched the variable from x′ to x. Since the derived
expression for 〈x |p̂|ψ〉 is true for all states |ψ〉, it implies

〈x| p̂ = −i~ d

dx
〈x|

[p̂]x = −i~ d

dx

Justification for θ̂ (x̂, p̂) = θ (x̂, p̂)

Although the rule: θ̂ (x̂, p̂) = θ (x̂, p̂) does not look very strange and far
fetched, an inquisitive mind is bound to wonder why it works. Classical physics
should not tell us what the quantum theory should be like. We expect classical
physics to emerge from quantum theory and not the other way around27. Be
that as it may, a more reasonable and legitimate question to ask is probably,
what are the facts from which this rule could be inferred? A strong evidence
for the quantization rule is provided by the fact that expectation values of
various observables resemble classical relationships for arbitrary states. For
example, when V (x) is the potential energy, if the relationship

〈ψ| Ĥ |ψ〉 = 〈ψ| p̂
2

2m |ψ〉+ 〈ψ|V (x̂) |ψ〉

between the Hamiltonian, momentum and position expectations hold for any
arbitrary state |ψ〉, it would strongly suggest that the relationship

Ĥ = p̂2

2m + V (x̂)

is true at the operator level.

Position and momentum states

We have seen that eigenvectors |x〉 of the position operator x̂ are not nor-
malized to unity (actually 〈x|x〉 is infinite). So the vectors |x〉 cannot qualify
as quantum states. This means that a quantum particle with definite position
does not exist! The vectors |x〉 serve only to provide an orthonormal basis
(with orthonormality in the extended sense) of an inner product space which

27It might be worth considering whether this quantization rule is actually a manifestation
of the fact that the classical physics is actually getting cooked up by the underlying quantum
machinery. But nobody has proved it as yet.
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contains the properly normalizable vectors |ψ〉. It is with this understanding
that we write the equations

|ψ〉 =
∫ +∞

−∞
dx |x〉 〈x|ψ〉

〈x′|x〉 = δ (x− x′)

(where 〈x|ψ〉 is square integrable). It is easy to see that the eigenvectors |p〉
of the momentum operator p̂ are also not normalizable to unity

〈p|p〉 =
∫ +∞

−∞
dx
∣∣∣C e i~px∣∣∣2 = |C|2

∫ +∞

−∞
dx −→ ∞

However, just as the position eigenvectors, they can also serve to provide an
orthonormal basis of the Hilbert space where states live. This follows from
Fourier’s theorem: A reasonably well behaved function ψ (x) can be expressed
as the following integral28:

ψ (x) = 1√
2π~

∫ +∞

−∞
dp ψ̃ (p) e i~px

where ψ̃ (p) is called the Fourier transform of ψ (x). In a representation free
language, we can write this as

|ψ〉 =
∫ +∞

−∞
dp |p〉 〈p|ψ〉

where 〈p|ψ〉 = ψ̃ (p). It is easy to see that the vectors |p〉 respect orthonor-
mality in the extended sense as well. Using the expression for 〈x|p〉, we have

〈p′|p〉 = 1
2π~

∫ +∞

−∞
dx e

i
~ (p−p′)x

The right hand side is a well known representation of the Dirac delta func-
tion29. Thus

〈p′|p〉 = δ (p− p′)

Schrödinger equation in position space

The representations of all observables can be easily constructed in terms
of the representations of x̂ and p̂. Let us illustrate this for the Hamiltonian of
our system:

Ĥ = 1
2mp̂2 + V (x̂)

28By “reasonably well behaved” we mean, functions that are well behaved enough to
admit Fourier transform. Please check what comprises a set of sufficient conditions for
Fourier transforms to exist; see, for example, (Boas 1980).

29This can be found in any reference on the Dirac delta function; see, for example, (Cohen-
Tannoudji et al. 1977, Appendix II).
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where V (x) is assumed to be a potential under which the classical particle
moves. The coordinate space representation of the momentum operator p̂ is
given by

〈x| p̂ = −i~ d

dx
〈x|

〈x| p̂ |ψ〉 = −i~ d

dx
〈x|ψ〉

where |ψ〉 is an arbitrary state. Now let us try to figure out what the position
space representation of the operator p̂2 would be. We have

〈x| p̂2 |ψ〉 = 〈x| p̂p̂ |ψ〉

= −i~ d

dx
〈x| p̂ |ψ〉

= −~2 d
2

dx2 〈x|ψ〉

Since this is true for an arbitrary state |ψ〉, we can write

〈x| p̂2 = −~2 d
2

dx2 〈x|

Along the same lines we can show that30

〈x| x̂ = x 〈x| =⇒ 〈x|V (x̂) = V (x) 〈x|

The representation of the Hamiltonian will then be given by

〈x| Ĥ =
(
− ~2

2m
d2

dx2 + V (x)
)
〈x|

Now, the time evolution of the system is governed by the Schrödinger equation:

i}
d |ψ(t)〉
dt

= Ĥ |ψ(t)〉

which for our system becomes

i}
d |ψ(t)〉
dt

=
(

1
2mp̂2 + V (x̂)

)
|ψ(t)〉

If we cast this equation in position space, we have

i}
d 〈x|ψ(t)〉

dt
= 〈x| 1

2mp̂2 |ψ(t)〉+ 〈x|V (x̂) |ψ(t)〉

30To see this, imagine that V (x) is a polynomial in x.
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Writing 〈x|ψ(t)〉 = ψ(x, t), and using the x representations of the operators
p̂2 and V (x̂), we get the Schrödinger equation in position space for a particle
moving in one dimension:

i}
∂ψ(x, t)
∂t

=
(
− ~2

2m
∂2

∂x2 + V (x)
)
ψ(x, t)

Since the representation of the state vector in the position space is a function
of x, it is clear that the Schrödinger equation is now a partial differential
equation in x and t.

Solution of the Schrödinger equation in a simple case: particle
in a 1-dimensional box

Although, the target questions of QM continue to be eigenvalue problems,
the technology for solving the eigenvalue problems in the continuum are com-
pletely different. Since the representations of observables are now differential
operators, the eigenvalue equations show up as differential equations. To il-
lustrate this, in this section, we shall obtain the solution of the Schrödinger
equation for a simple system. The classical analogue of the system that we
wish to describe is a particle confined to a one dimensional box. Such a particle
can be assumed to be moving under the potential

V (x) =
{

0
∞

0 ≤ x ≤ a
otherwise

where x is, as always, the Cartesian coordinate denoting position, and ‘a’ is
the extent of the box. This is a conservative system and, therefore, as we have
explained in the last chapter, the solution will essentially be reduced to solving
the eigenvalue problem of the Hamiltonian.

Assuming the particle to be of mass m, the Hamiltonian of this particle
will be given by

Ĥ = 1
2mp̂2 + V (x̂)

The representation of the Hamiltonian in position space will be expressed as

〈x| 1
2mp̂2 + V (x̂) |ψ〉 =

(
− ~2

2m
d2

dx2 + V (x)
)
〈x|ψ〉

The eigenvalue equation of the Hamiltonian

Ĥ |E〉 = E |E〉

when cast in position space, gives us the differential equation

〈x| 1
2mp̂2 + V (x̂) |E〉 = E 〈x|E〉

i.e.,
(
− ~2

2m
d2

dx2 + V (x)
)
E (x) = EE (x)
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which has a form of the familiar differential equation[
d2

dx2 + κ2
]
Eκ (x) = 0

with κ2 = 2mE
~2

in the range 0 ≤ x ≤ a. The general solution is well known:

Eκ (x) = A sin κx+B cosκx

where A and B are the constants of integration. Outside the box (0 > x > a),
the wave function must be zero owing to the infinite potential there. Now,
it so happens that the wave functions (i.e., the solution to our differential
equation) must be continuous everywhere31. Imposing this condition at the
boundary x = 0 gives B = 0, and at x = a gives

κa = nπ

with32 n = ±1,±2, . . . . This gives the allowed values of the energy33:

En = π2~2n2

2ma2

where we have now chosen to write the energy with a subscript n as En. Thus
the eigenfunctions read34

En (x) = A sin
(nπ
a
x
)

The constant A is determined by the normalization condition∫ a

0
|En (x)|2 = 1

which gives A =
√

2/a. Hence, finally, the normalized energy eigenfunctions
are

En (x) =
√

2
a

sin
(nπ
a
x
)

31This can actually be proven rigorously from the nature of the differential equation. In
the problem set that follows, you will be asked to convince yourself of this fact using a
simple analysis (although, in a nonrigorous way).

32The possibility n = 0 is excluded for the same reason A = 0 is excluded. Can you see
why? Yes, the wave function in these cases will be zero everywhere. But so what?

33Note that the eigenvalues are determined from the boundary conditions here. As you
will see in the next chapter, the eigenvalues will often be obtained from other constraints
that the eigenvectors will be expected to obey. In the continuum, they will not be obtainable
through a general prescription as was possible for the discrete, finite dimensional case where
they were provided by the solution to the characteristic equation.

34In the continuum, eigenvectors are often referred to as eigenfunctions.
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These wave functions constitute an orthonormal basis for the state space of
our system.

Now, we have learnt in the last chapter how to write a formal solution to
the Schrödinger equation (i.e., the quantum mechanical state at an arbitrary
time) |ψ(t)〉 in terms of the energy eigenvalues and eigenfunctions. Using this
result, we write

|ψ(t)〉 =
∑
n

|En〉 〈En|ψ(0)〉 e− i
~Ent

In the position space, this takes the form

ψ (x, t) =
∑
n

En (x) cne−
i
~Ent

where cn = 〈En|ψ(0)〉

So we see that once the energy eigenvalue problem has been solved, one merely
needs to compute the expansion coefficients cn of the initial state ψ (x, 0) in
the energy basis to write down the full solution. The orthonormality of the
basis vectors En (x) for our system gives

cn =
∫ a

0
dxEn (x)ψ (x, 0)

noting that the En (x) are real35.

Particles living in higher dimensions
A classical particle moving in two dimensions can be described by two

Cartesian coordinates x, y and their corresponding momenta px, py. This sys-
tem can be quantized by specifying a CSCO comprising two position observ-
ables x̂ and ŷ (instead of just x̂ that constituted a CSCO by itself in one
dimension) both having continuous spectra. The operators act on a vector
space V spanned by the basis Bxy = { |x, y〉 : x, y ∈ (−∞,+∞) } where |x, y〉
are common eigenvectors of x̂ and ŷ. Vectors in this space can be expanded
formally in this basis as

|ψ〉 =
∫ +∞

−∞

∫ +∞

−∞
dxdy |x, y〉 〈x, y|ψ〉

The position representation of |ψ〉 are functions of x and y: 〈x, y|ψ〉 = ψ (x, y).
Quantum states live in the subspace V of V whose position representation
comprises square integrable functions of x and y and the space V is endowed
with an inner product in the usual way:

〈φ|ψ〉 =
∫ +∞

−∞

∫ +∞

−∞
dxdy φ (x, y)∗ ψ (x, y)

35This standard technique, of using an inner product to pick out the expansion coefficients
in an orthonormal basis expansion is known as Fourier’s trick in the continuum.
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The orthonormality condition on the basis Bxy reads

〈x′, y′|x, y〉 = δ (x− x′) δ (y − y′)

In the (x, y) representation, the x̂ and ŷ observables become multiplicative
operators:

[x̂]x,y = x and [ŷ]x,y = y

The representations of the momenta in the (x, y) space are given by

[p̂x]x,y = −i~ ∂

∂x
and [p̂y]x,y = −i~ ∂

∂y

Every observable θ̂ corresponds to some classical dynamical variable
θ (x, px, y, py), and is given by

θ̂ = θ (x̂, p̂x, ŷ, p̂y)

Multiparticle systems
Multiparticle systems can be quantized in exactly the same way as a parti-

cle living in higher dimensions. For example, two classical particles moving in
one dimension can be described by a prescription that can be obtained simply
by replacing x, y, px and py above by x1, x2, p1 and p2 respectively, where
the numbers ‘1’ and ‘2’ in the superscripts are used to label the two particles.

The extension of this recipe to more general scenarios (more particles and
dimensions) is obvious36.

Problems

1. Consider a particle of massmmoving in one dimension under a potential
V (x).

(a) Show that the representation of the position operator in position
space is given by37

[x̂]x ψ (x) = xψ (x)
36It is also not hard to imagine application of this prescription to other classical systems

such as classical fields. This has actually been done and has led to whole new subject
called Quantum Field Theory, which provides the basic framework for describing elementary
particles (the fundamental building blocks that everything is made up of). But that is a
story for another day.

37By the way, if this looks like an eigenvalue equation to you, you should look again and
convince yourself that it certainly is not!
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(b) Establish the Hermiticity of the momentum operator [p̂]x =
−i~ (d/dx) from the definition of Hermiticity in the x space: an
operator Ô is Hermitian if its x representation

[
Ô
]x
obeys the con-

dition∫ +∞

−∞
dx f(x)∗

[
Ô
]x
g(x) =

∫ +∞

−∞
dx
([
Ô
]x
f(x)

)∗
g(x)

where f (x) and g (x) are any two functions in the domain. Assume
that f (x) and g (x) are localized (i.e., they vanish as x→ ±∞).

(c) Using separation of variables, show that a solution to the
Schrödinger equation in the position space is

ψn (x, t) = e−
i
~EntUn (x)

where Un (x) is an eigenfunction of the Hamiltonian operator with
eigenvalue En. These solutions are called separable solutions. Argue
that every solution ψ (x, t) of the Schrödinger equation is a linear
superposition of the separable solutions:

ψ (x, t) =
∑
n

cnψn (x, t)

where the coefficients cn are given by

cn =
∫ +∞

−∞
dxU∗n (x)ψ (x, 0)

(d) From the generalized uncertainty principle, show that

σxσp ≥
~
2

where σx and σp are the standard deviations in position and mo-
mentum respectively.

(e) Starting from the canonical commutation relation, prove the fol-
lowing commutation relations:

[x̂, p̂n] = i~np̂n−1 and [p̂, x̂n] = −i~nx̂n−1

(f) Show that
i. the time evolution of the expectation values of the position and

momentum observables, x̂ and p̂, obey the relations

d 〈x̂〉
dt

= 〈p̂〉
m

and d 〈p̂〉
dt

= −d 〈V (x̂)〉
dx

Incidentally, these relationships, which demonstrate that the
expectation values obey classical relationships, are known as
Ehrenfest’s theorems.
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ii. in the Heisenberg picture, the time evolution of the position
and momentum observables, x̂H and p̂H , obey the relations

dx̂H
dt

= p̂H
m

and dp̂H
dt

= −dV (x̂H)
dx

(g) Obtain an expression for the differential rate of change of the prob-
ability dP/dt of finding the particle in some finite interval [a, b].
Interpret your result in terms of a probability flow.

(Hint: Start from the Schrödinger equation and its complex con-
jugate equation. What you will see on the right hand side is the
divergence of a function. How will you call it?)

(h) Show that the wave function is always continuous and its first
derivative (with respect to position) is also continuous if the po-
tential has, at worst, finite discontinuities38. What will be the con-
tinuity condition if the potential is of the form

V (x) = −C δ (x− x0)

(i) Investigate how the results of this problem may be generalized for
higher dimensions and multi-particle systems.

2. A particle of mass m is confined in a 1-dimensional box of size a.

(a) Check that the (normalized) energy eigenstates constitute an or-
thonormal basis for its state space.

(b) Suppose the particle is in an initial state

|ψ (0)〉 = A [1 |E1〉+ 2 |E2〉+ 3 |E3〉]

where A is an appropriate constant that normalizes39 |ψ (0)〉.
i. Find out the normalization constant A
ii. Determine the state |ψ (t)〉 at time t.
iii. What is the probability that at time t, in a measurement of po-

sition, the particle will be found in the position interval [0, a/4]?
What would be your answer if immediately prior to the posi-
tion measurement, an energy measurement is performed that
yields an outcome E2?

iv. Suppose an imprecise measurement is designed to tell us
whether the particle is in the left half of the box x ∈ [0, a/2]
or the right half x ∈ (a/2, a]. If, at time t, the outcome of this
measurement indicates that the particle is in the right half of
the box, write down the state of the particle soon after the
measurement.

38These are known as wave function continuity conditions.
39You might want to try using a computer algebra system for some parts of this problem.
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(c) Assume that the particle starts out from an initial state that is
given by the position space wave function

ψ (x, 0) = C x (a− x)

i. Find out the normalization constant C.
ii. Suppose an imprecise measurement of energy is made on the

system that detects whether the energy is even or odd (i.e.,
whether the quantum number n occurring in the expression
for the energy is even or odd). Deduce the probability of the
two possible outcomes.

iii. If an imprecise measurement of energy made at time t yields
that the energy E < 16π2~2

/2ma2, what is the final state soon
after the measurement?

3. Consider a particle of mass m confined to a rectangular, 2-dimensional
box of sides a and b (along x and y axes respectively of a Cartesian
system).

(a) Write down the Hamiltonian for this system in position (x, y) space.
(b) Write down the spectrum and normalized eigenstates of this Hamil-

tonian using the results of the previous problem.
(c) Your Hamiltonian Ĥ should consist of an x dependent part, say Ĥx,

and a y dependent part, say Ĥy, so that Ĥ = Ĥx + Ĥy. Show that
the pair

{
Ĥx, Ĥy

}
forms a CSCO. Will Ĥ form a CSCO? Study

the degeneracy in the case of a square box: a = b.
(d) Assume that the system starts from an initial state

ψ (x, y; 0) = C x (a− x) cos 2πy
b

sin 3πy
b

where C is the normalization constant.
i. Find out the state ψ (x, y; t) at time t.
ii. What are the possible measurement outcomes of Ĥy and the

probabilities of the different possibilities?

4. A particle is moving in a closed circular loop having a radius a. The
position of the particle can be described by using the polar angle φ.
In the quantized version, the observable φ̂ forms a CSCO by itself hav-
ing a spectrum {φ ∈ [0, 2π]}, and {|φ〉 ; φ ∈ [0, 2π]} is the corresponding
orthonormal basis that spans the state space. Now let us define an ob-
servable Ĝ by its action in the φ space as

〈φ| Ĝ = i~
d

dφ
〈φ|
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(a) Prove that Ĝ is Hermitian in the domain φ ∈ [0, 2π].
(b) Determine the spectrum of Ĝ and the corresponding orthonormal

eigenstates.

(Hint: The eigenstates G (φ) must obey periodic boundary con-
ditions: G (φ) = G (φ+ 2π) on physical grounds.)

(c) Does Ĝ form a CSCO?
(d) Can you guess a classical dynamical variable that Ĝ corresponds

to?
(e) Construct the Hamiltonian Ĥ for the system and express it in terms

of Ĝ.
(f) Will Ĥ form a CSCO?
(g) Can you normalize the eigenfunctions if the loop is an ellipse with

semi-major axis a and semi-minor axis40 b?

5. The parity operator Π̂ is defined by its action on a basis comprising the
position vectors |−→r 〉 (where |−→r 〉 ≡ |x, y, z〉) as

Π̂ |−→r 〉 = |−−→r 〉

Show that

(a) the position space representation of Π̂ can be described as

〈−→r | Π̂ = 〈−−→r |

(b) Π̂ is both Hermitian and unitary.
(c) the eigenvalues of Π̂ are +1 or −1. The corresponding eigenvectors

are called even and odd respectively.
(d) the eigenspaces associated with the eigenvalues of Π̂ are orthogonal

and the vector space on which Π̂ is defined is a direct sum of the
even and odd eigenspaces41.

40Strangely, it turns out that it is impossible to do this exactly. Look up the literature to
give an approximate expression.

41Two subspaces are orthogonal if every vector of one subspace is orthogonal to every
vector of the other. Although these propositions can be proved directly, another instructive
way to show them is to consider the operators

Ê =
1
2
(
Î + Π̂

)
Ô =

1
2
(
Î − Π̂

)
and show that the operators Ê and Ô are projectors onto the even and odd eigenspaces. It
is then a simple algebraic exercise to show that

ÊÔ = ÔÊ = 0̂ and E + Ô = Î

where 0̂ and Î is the null operator and identity operator respectively. You may look up the
section on direct sum and projection operators in appendix ‘B’ if required.
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(e) if an observable Â is even (i.e., it remains invariant under parity42):

Π̂ÂΠ̂ = Â

it has a complete set of eigenvectors of definite parity43. What can
you say about the degeneracy of the eigenvalue of an even operator
Â if its eigenvector does not have a definite parity?

(f) if an observable Â is odd:

Π̂ÂΠ̂ = −Â

its matrix elements between states which have a definite parity
vanish. How would your result be modified if the operator was
even?

42You will have already noticed that the parity operator is its own inverse.
43Check that the eigenstates of the Hamiltonian of the particle in a box (problem 2) have

definite parity. Can you infer this without an explicit check?
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Chapter 8
Three Archetypal Eigenvalue
Problems

In the previous chapter, we have introduced the basic scheme of things for
the description of quantum systems that involve inner product spaces whose
members can be expressed using bases that form a continuum. In this chap-
ter we shall discuss three, very well known, quantum mechanical eigenvalue
problems for systems that belong to this class: i) energy of a 1-dimensional
harmonic oscillator, ii) angular momentum and iii) internal energy of the hy-
drogen atom1. These problems are treated in almost all books on QM. There
are many reasons why these examples have become so important. Among
other things, they are among the few real life problems in QM that can ac-
tually be solved exactly. For most problems that one encounters in nature,
one has to resort to sophisticated approximation techniques2. The problems
that we discuss here will introduce some of the basic methods used in solving
typical, real life, quantum mechanical eigenvalue problems.

Harmonic Oscillator
The classical 1-dimensional harmonic oscillator is a system comprising a

particle of massm moving in one dimension along some axis, say x-axis, under
a harmonic potential V (x) = (1/2) mω2x2 where ω is the natural frequency3.
The quantum harmonic oscillator is a quantum system that is quantized using
an intermediate classical harmonic oscillator.

The Hamiltonian operator for the quantum system that controls its time
evolution is given by

Ĥ = 1
2mp̂2 + 1

2mω
2x̂2

1More specifically, we are referring to orbital angular momentum here, although, we shall
also discuss, generalized angular momentum using an algebraic method which is not tied to
continuous bases.

2Unfortunately we will not discuss these techniques in this book.
3For a detailed account of this very important system, see (Cohen-Tannoudji et al. 1977).

See, in particular, complement A of chapter five where several applications of this model to
actual physical systems have been discussed.
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Since the Hamiltonian has no explicit time dependence, the time evolution of
the system reduces to the solution of the eigenvalue problem of the Hamilto-
nian, as we have explained before. In this section, we shall solve this eigenvalue
problem to determine the spectrum and the corresponding wave functions.

Analytical method
The coordinate space representation of the Hamiltonian follows from the

representations of x̂ and p̂ in coordinate space:

〈x| 1
2mp̂2 + 1

2mω
2x̂2 |ψ〉 =

(
− ~2

2m
d2

dx2 + 1
2mω

2x2
)
〈x|ψ〉

Now, the eigenvalue equation for Ĥ is

Ĥ |E〉 = E |E〉

Expressing this equation in the x representation we have

〈x| 1
2mp̂2 + 1

2mω
2x̂2 |E〉 = E 〈x|E〉(

− ~2

2m
d2

dx2 + 1
2mω

2x2
)
〈x|E〉 = E 〈x|E〉

The above equation can be identified with a standard differential equation:

−d
2yn
dρ2 + ρ2yn = (2n+ 1) yn

if we write yn (ρ) = 〈x|E〉 with the simple substitutions

x = ρ

√
~
mω

and E =
(
n+ 1

2

)
~ω

This equation is usually discussed in connection with Hermite’s differential
equation; see, for example, (Margenau and Murphy 1956). It turns out that,
for the solutions of this differential equation to be square integrable, n must
be a nonnegative integer. This gives the eigenvalues En of Ĥ:

En =
(
n+ 1

2

)
~ω with n = 0, 1, 2, 3, . . .

Writing yn (ρ) = 〈ρ|n〉, the corresponding normalized eigenvectors of Ĥ are

〈ρ|n〉 =

√
1

x0
√
π 2n n!

Hn (ρ) e− 1
2ρ

2
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where x0 =
√

~/mω and Hn (ρ) are n-th order polynomials known as Hermite
polynomials in the mathematical literature4. These are well tabulated in most
handbooks of mathematical functions. The Hermite polynomials may be
defined by the, so called, Rodrigues’ formula:

Hn (ρ) = (−1)n ex
2
(
d

dρ

)n
e−x

2

Algebraic method
It turns out that the eigenvalue spectra can sometimes be obtained by

using purely algebraic means. The method also provides a way to obtain the
eigenvectors by solving a much simpler equation than the full eigenvalue equa-
tion. We demonstrate this method below.

Eigenvalue spectrum

Let us define operators â and â† by

â = 1√
2

(√
mω

~
x̂+ i√

m~ω
p̂

)
â† = 1√

2

(√
mω

~
x̂− i√

m~ω
p̂

)
and another operator N̂ by

N̂ = â†â

The operator N̂ is called number operator, and the operators â and â†

are called ladder operators, for reasons that will become apparent shortly.
Using these operators we can rewrite the Hamiltonian as

Ĥ =
(
N̂ + 1

2

)
~ω

Now, the canonical commutation relation between x̂ and p̂ is given by

[x̂, p̂] = i~

It is easy to check that

[x̂, p̂] = i~ =⇒
[
â, â†

]
= 1

We shall prove that the eigenvalues of N̂ are nonnegative integers:

N̂ |n〉 = n |n〉 with n = 0, 1, 2, . . .

4A detailed solution of this equation (by making use of the power series method) is
worked out in many standard undergraduate text books. See, for example, (Griffiths 2005).
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The eigenvalues En of Ĥ are then trivially given in terms of n by

En =
(
n+ 1

2

)
~ω

The proof can be broken down into the following steps:

1. 〈n| â†â |n〉 ≥ 0 =⇒ n 〈n|n〉 ≥ 0 =⇒ n ≥ 0 since |n〉 is assumed to
be a nontrivial (non-null) eigenstate of â†â. This implies that n has a
lower bound, zero. We shall denote the lowest eigenvalue by nmin.

2.
[
â, â†

]
= 1 =⇒

[
N̂ , â†

]
= â† and

[
N̂ , â

]
= −â.

3.
[
N̂ , â†

]
= â† =⇒ â† |n〉 = |n+ 1〉 and

[
N̂ , â

]
= −â =⇒ â |n〉 =

|n− 1〉.

4. â |nmin〉 = |nmin − 1〉 =⇒ |nmin − 1〉 = | 〉 . This is the only possible
reconciliation if nmin is the lowest value of n.

5. â |nmin〉 = | 〉 =⇒ â†â |nmin〉 = | 〉 =⇒ nmin |nmin〉 = | 〉. This implies
that5 nmin = 0.

6. By repeated application of â† on |nmin〉 it is evident that all nonnegative
integers n ∈ Z0+ are eigenvalues of N̂ .

7. It only remains to show that every eigenvalue n must belong to Z0+.
This follows because if n /∈ Z0+, repeated action of â on |n〉 will even-
tually lead to â |n′〉 = | 〉 for some n′ within the range 0 < n′ < 1. But
â |n′〉 = | 〉 leads to n′ = 0 as in step (5) leading to a contradiction.

Ground state

To determine the eigenstates, the basic strategy is to first determine the
ground state (i.e., the lowest energy eigenstate) in some convenient basis
(e.g., coordinate space) and then determine all the higher states by repeated
application of â† on the ground state6. This ground state is given by the
condition

â |nmin〉 = | 〉

5If c |ψ〉 = | 〉 for some vector |ψ〉 and some scalar c, then either c = 0 or |ψ〉 = | 〉 (or
both). Prove this.

6Note that the eigenvectors have already been (trivially) determined in the basis of
eigenvectors of the number operator (i.e., in the number space).
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We will cast this equation in the x representation

〈x| â |0〉 = 〈x| 〉

〈x| 1√
2

(√
mω

~
x̂+ i√

m~ω
p̂

)
|0〉 = 〈x| 〉(√

mω

~
x+

√
~
mω

d

dx

)
〈x|0〉 = 0

Writing x0 =
√

~/mω and ρ = x/x0, we have(
x

x0
+ x0

d

dx

)
〈x|0〉 = 0(

ρ+ d

dρ

)
〈ρ|0〉 = 0

The above differential equation is easily solved, yielding a nondegenerate
ground state

〈ρ|0〉 = Ce−
1
2ρ

2

where the normalization constant C is given by

x0

∫ +∞

−∞
|〈ρ|0〉|2 dρ = 1

C2x0

∫ +∞

−∞
e−ρ

2
dρ = 1

so that we finally have

C =

√
1

x0
√
π

Degeneracy

We have already seen that the ground state is nondegenerate. It will be
easy to check that all higher states will also be nondegenerate as a conse-
quence. If |n〉 is a nondegenerate eigenstate, we have

â |n+ 1; i〉 = ci− |n〉

where i labels the possible degenerate states of the eigenvalue n+ 1 of N̂ and
ci− is some multiplicative constant. Hence

â†â |n+ 1; i〉 = ci−â
† |n〉

(n+ 1) |n+ 1; i〉 = ci−â
† |n〉

|n+ 1; i〉 =
ci−
n+ 1

(
â† |n〉

)
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Thus all vectors |n+ 1; i〉 turn out to be scalar multiples of â† |n〉, and there-
fore cannot be independent. So the eigenvalue n+1 must also be nondegenerate
if n is nondegenerate. Thus, by induction, all higher states must be nondegen-
erate.

Normalization constant

Since all the eigenstates are nondegenerate, the ladder action of â† and â
implies

â† |n〉 = cn+ |n+ 1〉
â |n〉 = cn− |n− 1〉

where cn+ and cn− are constants, and |n〉 , |n+ 1〉 and |n− 1〉 are all assumed
to be normalized. The phases of all states |n〉 with respect to the ground state
|n = 0〉 are by definition chosen in such a way that cn+ and cn− are real and
positive7. Taking self inner products on both sides we have

〈n| ââ† |n〉 =
∣∣cn+∣∣2 〈n+ 1|n+ 1〉

〈n| â†â |n〉
∣∣cn−∣∣2 〈n− 1|n− 1〉

which gives

(n+ 1) 〈n|n〉 =
∣∣cn+∣∣2 〈n+ 1|n+ 1〉

n 〈n|n〉 =
∣∣cn−∣∣2 〈n− 1|n− 1〉

where we have used the formulae, N̂ = â†â and
[
â, â†

]
= 1. Hence we have

cn+ =
√
n+ 1

cn− =
√
n

Higher states

Now we can determine the eigenstates for n > 1. Since we have
â† |n〉 =

√
n+ 1 |n+ 1〉

it is clear that all higher states can be constructed by repeated application of
the operator â† on the ground state |0〉. This leads to

|n〉 = 1√
n!
(
â†
)n |0〉

In the position representation, this equation becomes

〈x|n〉 = 〈x| 1√
n!

[
1√
2

(√
mω

~
x̂− i√

m~ω
p̂

)]n
|0〉

〈x|n〉 = 1√
n!

[
1√
2

(√
mω

~
x−

√
~
mω

d

dx

)]n
〈x|0〉

7Convince yourself that this can always be done.



Three Archetypal Eigenvalue Problems 157

In terms of the variable ρ = x/x0 with x0 =
√

~/mω, we have

〈ρ|n〉 = 1√
n!

[
1√
2

(
ρ− d

dρ

)]n
〈ρ|0〉

This leads to8

〈ρ|n〉 =

√
1

x0
√
π 2n n!

Hn (ρ) e− 1
2ρ

2

where Hn (ρ) are the Hermite polynomials of order n.

Problems

1. Show that eigenvalue equation for the Hamiltonian operator, cast in the
momentum space, leads to the same differential equation as the one in
position space.

2. For the n-th energy eigenstate of the harmonic oscillator

(a) find out the expectation values 〈x̂〉 and 〈p̂〉 of the position and mo-
mentum observables.

(Hint: Write the observables in terms of the ladder operators.)
(b) obtain analytic expressions for the expectation values

〈
x̂2〉 and〈

p̂2〉. Hence find the expressions for the expectation values of the
kinetic and potential energies.

(c) verify the uncertainty principle for the position and momentum
observables.

3. By explicitly evaluating the integrals (in position space), compute the
expectation values of the kinetic and potential energies for a harmonic
oscillator in the second excited state (n = 2), and also verify the uncer-
tainty principle for 〈x̂〉 and 〈p̂〉. Check that the findings are consistent
with your general results obtained in the previous problem. You may
use the standard integral:

2
∫ ∞

0
x2ne−αx

2
dx = 1.3.5 . . . (2n− 1)

(2α)n
√
π/α

4. Imagine that a harmonic oscillator is in a superposition of energy eigen-
states such that the probabilities of all the energies E are equal, and the
relative phase between any two consecutive stationary states is θ.

8You will be asked to prove this result in the problem set that follows.
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(a) What will be the probability that an imprecise measurement of
energy yields E ≤ 2~ω?

(b) Find out the probability that the oscillator can be found in −δ ≤
x ≤ +δ (for some δ > 0) after a time t has elapsed following the
imprecise measurement in part (a) which yields E ≤ 2~ω.

5. Consider a charged harmonic oscillator, having mass m and charge q,
under the action of a uniform electric field E.

(a) Plot the potential by choosing the reference at the origin (i.e.,
V |x=0 = 0).

(b) Show that the effect of the electric field is to shift the energy lev-
els by an amount q2E2

/2mω2, and also obtain the modified energy
eigenfunctions.

(Hint: This practically requires no calculations.)
(c) An atom can sometimes be modelled as an electron bound harmon-

ically to the nucleus. Show that an estimate of the atomic polariz-
ability α is given by9 q2

/mω2. Does this expression agree with your
physical expectation?

(Hint: Compute the expectation value of the electric dipole mo-
ment in an eigenstate of energy. Imagine that the state moves from
|ψn〉 to |ψn′〉as the electric field is turned on. Here n and n′ labels
the original and shifted energies of the state of the electron.)

6. Show that (
ρ− d

dρ

)n
e−

1
2ρ

2
= Hn (ρ) e− 1

2ρ
2

where Hn (ρ) is the Hermite polynomial which was defined by the
Rodrigues’ formula.

(Hint: Use method of induction: Prove that the result is true for n = 1.
Now assuming that it is true for n = m, prove that it is true for
n = m+ 1. Note that the case of n = 0 is trivially valid.)

7. If two operators Â and B̂ satisfy the commutation relation[
Â, B̂

]
= bB̂

for some real b, what can you say about the eigen-properties of Â?

9The atomic polarizability is the proportionality factor of the dipole moment and the
electric field. It is the atomic parameter that determines the electric succeptibility.



Three Archetypal Eigenvalue Problems 159

8. We know that the energy eigenfunctions of the harmonic oscillator must
be orthogonal (since the eigenvalues are nondegenerate). In fact, they
form an orthonormal basis in L2 (R). Using this fact

(a) modify the inner product such that the Hermite polynomials may
be called orthogonal. Verify explicitly using the definition of Her-
mite polynomials (Rodrigues’ formula) that they indeed obey these
orthogonality conditions.

(b) suggest the condition on the set of functions for which the Hermite
polynomials will be complete.

Angular Momentum
We now wish to describe a set of quantum observables that is not tied

to any particular system as such but play a very important role in the de-
scription of many quantum systems. These observables originate as quantum
transcriptions of classical orbital angular momenta10.

Orbital angular momentum
Consider a particle moving in three dimensions. The angular momentum−→

L of the particle having position −→r and moving with a momentum −→p is
defined by −→

L = −→r ×−→p

In QM, orbital angular momenta comprises a set of three operators, L̂i
(i = 1, 2, 3) corresponding to the x, y and z directions respectively, defined
by

L̂i =
3∑

j,k=1
εijkx̂j p̂k

where x̂j and p̂k are the position and momentum operators, and εijk is the
Levi-Civita symbol defined by

εijk =


+1
−1

0

for i = 1, j = 2, k = 3 and cyclic permutations
for i = 3, j = 2, k = 1 and cyclic permutations
when two or more indices are repeated

10As in classical mechanics, the angular momenta observables also play a pivotal role in
the description of rotational symmetry in QM. Unfortunately, we shall not be discussing
symmetries in this book. For a more exhaustive treatment of angular momentum in QM,
see (Cohen-Tannoudji et al. 1977). In particular, see complement B of chapter six for its
connection with rotational symmetry.
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One also defines the “square of the total angular momentum” operator L̂2 by

L̂2 =
3∑
i=1

L̂2
i

Starting from the canonical commutation relations [x̂i, p̂j ] = i~δij , or the
explicit representations of x̂i and p̂j given by [x̂i] = xi and [p̂i] = −i~ (∂/∂xi),
it is easy to check that [

L̂i , L̂j

]
= i~εijkL̂k

From these commutation relations, it follows that[
L̂2, L̂i

]
= 0

Thus, a complete set of common eigenvectors of L̂2 and L̂i will exist. Here
L̂i is an arbitrarily chosen angular momentum operator from the set of the
three angular momenta. It is customary to discuss the eigenvalues and com-
mon eigenvectors of L̂2 and L̂z. This is what we shall do now.

We write the eigenvalue equations for L̂2 and L̂z as

L̂2 |λ,m, k〉 = ~2λ |λ,m, k〉
L̂z |λ,m, k〉 = ~m |λ,m, k〉

where λ and m are now dimensionless numbers and k labels any possible
degeneracy. For algebraic convenience we write11

λ = l (l + 1)

so that the eigenvalue equation for L̂2 becomes

L̂2 |l,m, k〉 = ~2l (l + 1) |l,m, k〉

For historical reasons, l is called the azimuthal quantum number , and m is
called the magnetic quantum number . Starting from the representations
of x̂i and p̂j , one can easily derive the (x, y, z) space representations of L̂2

and L̂i. Thereafter, by a simple change of variables, we can derive the (r, θ, φ)
space representations of L̂2 and L̂i. These representations for L̂2 and L̂z are

〈r, θ, φ| L̂2 = − ~2

sin2 θ

[
sin θ ∂

∂θ

(
sin θ ∂

∂θ

)
+ ∂2

∂φ2

]
〈r, θ, φ|

〈r, θ, φ| L̂z = −i~ ∂

∂φ
〈r, θ, φ|

11This is a quadratic equation in l implying that there are two roots of l for each value of
λ. However, it is easy to see that λ is nonnegative, and one can check that there is exactly
one positive and one negative root for each positive value of λ. So there is a one to one
mapping between the positive roots of l and the positive eigenvalues λ. Using l = 0 to
correspond to λ = 0 one can use the nonnegative roots of l to label the eigenvalues λ.
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The eigenvalue equations for L̂2 and L̂z, cast in the (r, θ, φ) space, become
the following differential equations:

− ~2

sin2 θ

[
sin θ ∂

∂θ

(
sin θ ∂

∂θ

)
+ ∂2

∂φ2

]
〈r, θ, φ |l,m, k〉 = ~2l (l + 1) 〈r, θ, φ |l,m, k〉

−i~ ∂

∂φ
〈r, θ, φ |l,m, k〉 = ~m 〈r, θ, φ |l,m, k〉

Let us write the solutions as

〈r, θ, φ |l,m, k〉 = fk (r)Y ml (θ, φ)

where the fk(r) are arbitrary (square integrable) multiplicative functions of12

r.
Now to solve these equations, one can use the standard method of separa-

tion of variables. Thus we write

Y ml (θ, φ) = Θ (θ) Φ (φ)

(where we have suppressed the indices l and m in Θ (θ) and Φ (φ)).
The eigenvalue equation for L̂z then becomes

−i~dΦ (φ)
dφ

= ~mΦ (φ)

which has a simple solution

Φ (φ) = Ceimφ

where C is a constant of normalization which we shall henceforth absorb
in Θ (θ). In order to ensure that Φ (φ+ 2π) = Φ (φ), the index m must be
integral.

The eigenvalue equation for the operator L̂2 now becomes the ordinary
differential equation13

1
sin θ

d

dθ

(
sin θdΘ

dθ

)
+
[
l (l + 1)− m2

sin2 θ

]
Θ = 0

12Since the representations of L̂2 and L̂i are independent of r, any solution to the dif-
ferential equations are essentially functions of θ and φ. In the (r, θ, φ) space, this means
that Yml (θ, φ) are unique up to a multiplicative function of r which must, of course, also
be square integrable on physical grounds.

13One could also start from the L̂2 eigenvalue equation whence, employing separation of
variables (with separation constant m2), one would get a φ - differential equation

1
Φ
d2Φ
dφ2 = −m2

This leads to a solution which is automatically obeyed by the eigenvalue equation for L̂z .
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Setting u = cos θ, we have[
d

du

(
1− u2) dΘ

du

]
+
[
l (l + 1)− m2

1− u2

]
Θ = 0

with −1 ≤ u ≤ +1. This is a standard, well studied differential equation that
is usually discussed in connection with Legendre’s differential equation; see,
for example (Margenau and Murphy 1956). The solutions to this equation are
given by the so called associated Legendre polynomials14 Pml (u):

Pml (u) =
(
1− u2) |m|2

(
d

du

)|m|
Pl (u) with Pl (u) = (−1)l

2ll!

(
d

du

)l (
1− u2)l

where Pl (u) are called the Legendre polynomials. They are well behaved in
−1 ≤ u ≤ +1 (i.e., bounded, square integrable, etc.) for nonnegative integral
values of15 l. It is also clear from the defining equation of Pml (u), that for
Pml (u) to be nonzero, |m| ≤ l.

Finally, after normalization, putting everything together, we have

Y ml (θ, φ) = η

√
(2l + 1)

4π
(l − |m|)!
(l + |m|)!P

m
l (cos θ) eimφ

where in order to be consistent with standard phase conventions (that remain
undecided after normalization), we choose η = (−1)m for m ≥ 0 and η = 1
when16 m < 0. Here l ∈ {0, 1, 2, . . .} and m ∈ {−l,−l + 1, . . . , l}, as explained
before, for acceptable well behaved solutions (which are finite, single valued
and square integrable). These important functions Y ml (θ, φ) are known in the
literature as spherical harmonics.

Since r has dropped out from the representations of L̂2 and L̂z, it also
means that we could just as well have defined the angular momenta observables
in the (θ, φ) space. It is not hard to imagine a physical system for which such
a space would be appropriate: a particle moving on a spherical surface of some
radius a. The position of such a particle can obviously be described by the
polar and azimuthal angles θ and φ respectively. The quantum states of this
system would live in the space of all square integrable functions of θ and φ,
which in turn will be contained in a vector space that can be formally written
as the linear span of {|θ, φ〉 : θ ∈ [0, π] , φ ∈ [0, 2π]}. Here |θ, φ〉 are, obviously,
the common eigenvectors of the observables θ̂ and φ̂ which are assumed to form

14Note that for m = 0, if we set l (l + 1) = λ, the differential equation actually reduces to
Legendre’s differential equation, whose solutions are the Legendre polynomials. Reverting
to λ = l (l + 1) and differentiating the Legendre equation m times (with Θ = Pl (u)) shows
that the associated Legendre polynomials are indeed the solution to the given equation.

15The defining equation for the Legendre polynomial (Rodrigues’ formula) does not even
make sense if l is not a nonnegative integer.

16We shall review this more clearly, later in the chapter.
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a CSCO for this space17 The angular momentum operators L̂2 and L̂z also
form a CSCO for this space. The inner product in this space is defined as

〈β|α〉 =
∫ π

θ=0

∫ 2π

φ=0
β∗ (θ, φ)α (θ, φ) sin θ dθ dφ

where the appropriate measure is provided by the volume element sin θ dθ dφ.
By the same token in the (r, θ, φ) space the inner product is given by

〈β|α〉 =
∫ ∞
r=0

∫ π

θ=0

∫ 2π

φ=0
β∗ (r, θ, φ)α (r, θ, φ) r2 sin θ dr dθ dφ

Here the appropriate volume element is r2 sin θ dθ dφ. Incidentally, for a sim-
ilar reason the requirement that fk (r) must be square integrable means that∫∞

0 fk (r) r2dr should be finite, not
∫∞

0 fk(r) dr.

Generalized angular momentum
In QM, the idea of angular momenta is not restricted to the orbital angular

momenta that we have discussed above. Instead, the concept is defined by
abstracting and generalizing the angular momentum commutation relations:[

Ĵi , Ĵj

]
= i~εijkĴk

Thus, any set of three observables
{
Ĵi ; i = 1, 2, 3

}
satisfying the above com-

mutation relations are called angular momenta in QM. But why does one care
about such sets of observables? Well, it turns out that the description of a
huge body of fundamental quantum observables, which do not have classical
analogues, is based on or inspired by the mathematical framework of general-
ized angular momenta18. Unfortunately, we shall not be able to go into all that
in this book. In this section we shall simply show how the algebraic method,
that was demonstrated for the harmonic oscillator, can be used to solve the
eigenvalue problem for the generalized angular momenta.

Eigenvalue spectrum

First of all, we define an operator called “total angular momentum squared”
by

Ĵ2 =
3∑
i=1

Ĵ2
i

17the linear span of {|θ, φ〉 : θ ∈ [0, π], φ ∈ [0, 2π]} is obviously identical to the linear
span of

{
|x, y, z〉 : x2 + y2 + z2 = a2

}
which in turn is embedded in the linear span of

{|x, y, z〉 : x, y, z ∈ (−∞,+∞)}.
18Historically, the idea of generalized angular momenta has also had a profound influence

on the formulation of QM as we know it today.
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It is easy to check that Ĵ2 commutes with all Ĵi’s:[
Ĵ2, Ĵi

]
= 0

The eigenvalue equations for Ĵ2 and Ĵ3 are19

Ĵ2 |λ,m〉 = ~2λ |λ,m〉
Ĵ3 |λ,m〉 = ~m |λ,m〉

For algebraic convenience (just as we had done before), we write

λ = j (j + 1)

We shall prove that

j = N

2 where N ∈ {0, 1, 2, . . .} and m ∈ {−j,−j + 1, . . . ,+j}

We define ladder operators, Ĵ+ and Ĵ−, by

Ĵ+ = Ĵ1 + i Ĵ2

Ĵ− = Ĵ1 − i Ĵ2

Evidently, Ĵ+ and Ĵ− are Hermitian conjugates of each other: Ĵ+ = Ĵ†−

It is easy to check the commutation relations[
Ĵ3, Ĵ+

]
= ~Ĵ+[

Ĵ3, Ĵ−

]
= −~Ĵ−

and the operator relations

Ĵ+Ĵ− = Ĵ2 − Ĵ2
3 + ~Ĵ3

Ĵ−Ĵ+ = Ĵ2 − Ĵ2
3 − ~Ĵ3

The main argument of the proof comprises the following steps20:

1. The parameter j can be taken to be nonnegative21.

19Although the notation |λ,m〉 for the eigenvectors seem to suggest that Ĵ2 and Ĵ3 forms
a CSCO so that λ andm specifies a unique common eigenvector, we are actually not making
any such assumption. The issue of completeness of the operators will arise only when we
specify the system with which the generalized angular momenta would be associated.

20In what follows, the line of reasoning is very similar to what was done for the harmonic
oscillator.

21We have explained this before when we set λ = l (l + 1) in the previous subsection.
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+(j + 1)+j
m

−j−(j + 1)
m

+j +(j + 1)−j−(j + 1)

FIGURE 8.1: Range of allowed ‘m’ values.

2. Ĵ+ = Ĵ†− =⇒ 〈j,m| Ĵ−Ĵ+ |j,m〉 ≥ 0. But Ĵ−Ĵ+ = Ĵ2 − Ĵ2
3 − ~Ĵ3

=⇒ j(j + 1)−m(m+ 1) ≥ 0 =⇒ (j −m)(j +m+ 1) ≥ 0
=⇒ m ≤ j and m ≥ −(j + 1) OR m ≥ j and m ≤ −(j + 1)
The second case is impossible.

3. Ĵ+ = Ĵ†− =⇒ 〈j,m| Ĵ+Ĵ− |j,m〉 ≥ 0. But Ĵ+Ĵ− = Ĵ2 − Ĵ2
3 + ~Ĵ3

=⇒ j(j + 1)−m(m− 1) ≥ 0 =⇒ (j +m)(j −m+ 1) ≥ 0
=⇒ m ≥ −j and m ≤ j + 1 OR m ≤ −j and m ≥ j + 1
The second case is impossible.

4. From (2) and (3) it follows that −j ≤ m ≤ +j (see Figure 8.1). Thus,
there will exist a maximum value mmax, and a minimum value mmin of
m bounded by +j and −j respectively.

5.
[
Ĵ3, Ĵ+

]
= ~Ĵ+ and

[
Ĵ3, Ĵ−

]
= −~Ĵ−

=⇒ Ĵ+ |j,m〉 = |j,m+ 1〉 and Ĵ− |j,m〉 = |j,m− 1〉

6. Since m is bounded above for given j,
Ĵ+ |j,mmax〉 = | 〉 =⇒ Ĵ−Ĵ+ |j,mmax〉 = | 〉
=⇒ (j −mmax)(j +mmax + 1) |j,mmax〉 = | 〉 =⇒ j = mmax

7. Similarly, since m is bounded below,
Ĵ− |j,mmin〉 = | 〉 =⇒ j = mmin

8. Therefore m ∈ {−j,−j + 1, . . . ,+j}.

9. Intermediate values are not possible because repeated action of ladder
operators will take them beyond the allowed range. For consistency, we
must then require Ĵ− |j,m′〉 = | 〉 and Ĵ+ |j,m′′〉 = | 〉 for some m′ and
m′′ satisfying mmin < m′ < mmin+1 and mmax−1 < m′′ < mmax. But
just as in points (7) and (6), we have Ĵ− |j,m′〉 = | 〉 =⇒ m′ = mmin

and Ĵ+ |j,m′′〉 = | 〉 =⇒ m′′ = mmax leading to contradictions.
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10. Finally, since there are 2j+1 allowed values ofm, 2j+1 must be a natural
number. Hence j must be half integral: j = N/2 with N ∈ {0, 1, 2, . . .}.

Degeneracy

So far we have been using the misleading symbol |j,m〉 for the common
eigenvectors of Ĵ2 and Ĵ3 which seems to suggest that

{
Ĵ2, Ĵ3

}
is a CSCO.

We had, however, pointed out (in a footnote) that this does not necessarily
have to be the case. To discuss degeneracy, let us denote the eigenvectors
as |j,m, p〉 where the additional index p is used to label all the independent
eigenvectors associated with a particular set (j,m). For concreteness, we can
assume that

{
Ĵ2, Ĵ3, P̂

}
forms a CSCO so that p labels the eigenvalues of P̂

(this can actually be done without any loss of generality). Let us assume that
there are g (j,m) independent eigenvectors associated with the set (j,m). It
is not hard to show that g (j,m) is actually independent of m so that one can
actually write22 g (j,m) = g (j).

The degree of degeneracy of the eigenvalues of Ĵ2 and Ĵ3 are then easy to
see:

1. To every value of j there are (2j + 1) × g (j) independent eigenvectors
|j,m, p〉.

2. If for a given value of m there are r values of j such that |m| ≤ j (the
allowed values of j depends on the actual system being described), then
the number of independent eigenvectors associated with this value of m
are r × g (j).

We can imagine a subspace V (j,m) associated with the set (j,m), which is
a linear span of an orthonormal basis {|j,m, p〉 ; p = 1, 2, . . . , g (j)}. The full
inner product space describing the system can be split up into such subspaces
V (j,−j), V (j,−j+1), . . .,V (j,j) where the subspace V (j,m+1) is the linear span of
the orthonormal basis

{
Ĵ+ |j,m, p〉 ; p = 1, 2, . . . , g (j)

}
. Of course, one needs

to prove that this set actually forms an orthonormal basis. It is not hard to
show this, and I leave it as an exercise23.

Eigenvectors

To obtain the eigenvectors explicitly we may first cast the equation

Ĵ+ |j, j〉 = | 〉

in the representation of our choice, and then all the other states |j,m〉 with

22See (Cohen-Tannoudji et al. 1977).
23Incidentally, in this case one says that the full inner product space, say V , is a direct

sum of the subspaces V (j,−j), V (j,−j+1), . . . , V (j,j). See appendix ‘B’ for the definition of
direct sum.
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m = −j,−j + 1, . . . , j − 1 can be explicitly obtained by repeated application
of24

Ĵ− |j,m〉 = |j,m− 1〉

Normalization constants

The ladder action of Ĵ± implies

Ĵ+ |j,m〉 = c+ |j,m+ 1〉
Ĵ− |j,m〉 = c− |j,m− 1〉

where |j,m〉, |j,m+ 1〉 and |j,m− 1〉 are assumed normalized, and corre-
spondingly, c+ and c− are appropriate constants. The constants c+ and c− can
be taken to be real by making appropriate choice of the phases of the vectors
|j,m〉. Taking self inner products on both sides and using the expressions for
Ĵ−Ĵ+ and Ĵ+Ĵ− that were given earlier, we have

~2 (j(j + 1)−m(m+ 1)) 〈j,m|j,m〉 = c2
+ 〈j,m+ 1|j,m+ 1〉

~2 (j(j + 1)−m(m− 1)) 〈j,m|j,m〉 = c2
− 〈j,m− 1|j,m− 1〉

which gives

c+ = ~
√
j(j + 1)−m(m+ 1)

c− = ~
√
j(j + 1)−m(m− 1)

Thus, finally, the precise action of the ladder operators can be written as

Ĵ+ |j,m〉 = ~
√
j(j + 1)−m(m+ 1) |j,m+ 1〉

Ĵ− |j,m〉 = ~
√
j(j + 1)−m(m− 1) |j,m− 1〉

Special case of orbital angular momenta

The orbital angular momenta are, obviously, a special case of generalized
angular momenta. Using the ladder operator technique discussed above, we
can carry out the construction of the eigenvectors explicitly in the (θ, φ) space
for the case of orbital angular momenta. Let us use the alphabet ‘L’ instead
of ‘J ’ to denote the orbital angular momentum operators, and l in place of ‘j’
to label the eigenvalues of the total angular momentum squared operator. We
can start by casting the equation

L̂+ |l, l〉 = | 〉

in the (θ, φ) space
〈θ, φ| L̂+ |l, l〉 = 〈θ, φ | 〉 = 0

24Of course, we could also start with Ĵ− |j,−j〉 = | 〉 and then generate all the other
states by repeated application of Ĵ+ on |j,−j〉.
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All the other states |l,m〉 with −l ≤ m < +l can be obtained by repeated use
of L̂− :

〈θ, φ| L̂− |l,m〉 = c− 〈θ, φ |l,m− 1〉

We have already seen the (θ, φ) representations of L̂2 and L̂z. The represen-
tations of L̂x and L̂y are given by

〈θ, φ| L̂x = i~
[
sinφ ∂

∂θ
+ cosφ cot θ ∂

∂φ

]
〈θ, φ|

〈θ, φ| L̂y = −i~
[
− cosφ ∂

∂θ
+ sinφ cot θ ∂

∂φ

]
〈θ, φ|

Hence, the representations of the ladder operators, L̂+ and L̂−, will be given
by

〈θ, φ| L̂± = ±~e±iφ
[
∂

∂θ
± i cot θ ∂

∂φ

]
〈θ, φ|

Now the eigenvalue equation for L̂z in the (θ, φ) space is

−i~ ∂Y
m
l (θ, φ)
∂φ

= ~mY ml (θ, φ)

This equation is solved trivially:

Y ml (θ, φ) = Fl,m (θ) eimφ

where Fl,m (θ) is some function of θ. Requiring the natural periodicity eimφ =
eim(φ+2π), we have |m| = 0, 1, 2, . . . which in turn requires that l = 0, 1, 2, . . ..
Note that, in this case, the single valuedness of the eigenfunction imposes a
further restriction on the spectra of the operators L̂2 and L̂z (forbidding half-
integral values).

Now we have

〈θ, φ| L̂+ |l, l〉 = 0

~eiφ
[
∂

∂θ
+ i cot θ ∂

∂φ

]
Y ll (θ, φ) = 0[

d

dθ
− l cot θ

]
Fl,l (θ) = 0

leading to an easy solution

Fl,l (θ) = Al (sin θ)l

so that
Y ll (θ, φ) = Al (sin θ)l eilφ
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Here Al is a constant of normalization. Now for a fixed l, all the other states
|l, l − 1〉 , |l, l − 2〉 , . . . , |l,−l〉 in the (θ, φ) space will be obtained by repeated
action of L̂− on Y ll (θ, φ). Upto normalization we have

Y l−1
l (θ, φ) = −~e−iφ

[
∂

∂θ
− i cot θ ∂

∂φ

]
Y ll (θ, φ)

Y l−2
l (θ, φ) = −~e−iφ

[
∂

∂θ
− i cot θ ∂

∂φ

]
Y l−1
l (θ, φ)

. . . = . . .

It is evident that the eigenvector |l, l〉 is unique up to the normaliza-
tion constant Al. So using the same reasoning that was used to prove
the degeneracy of the eigenstates of the harmonic oscillator, it should be
easy to show that the uniqueness of the state |l, l〉 implies that all states
|l, l − 1〉 , |l, l − 2〉 , . . . , |l,−l〉 are unique up to a multiplicative constant.

Problems

1. Measurement of the total angular momentum squared operator Ĵ2 on
a certain system leads to the eigenvalue 2~2 and the state collapses to
the appropriate subspace. What would be the possible outcomes of an
instantaneously subsequent measurement of Ĵ1.

2. Consider a state |ψ〉 in a linear superposition of the angular momentum
states |j,m〉 (common eigenstates of Ĵ2 and Ĵ3) given by

|ψ〉 = |2, 2〉 〈2, 2|ψ〉+ |2, 1〉 〈2, 1|ψ〉+ |2, 0〉 〈2, 0|ψ〉
+ |1, 1〉 〈1, 1|ψ〉+ |1,−1〉 〈1,−1|ψ〉

(a) What would be the final state if a measurement of Ĵ2 yields 6~2?
(b) If a measurement of the operator Ĵ2

1 + Ĵ2
2 is now made, what are

the expected outcomes and their probabilities?

3. A system is in a common eigenstate |j,m〉 of the angular momentum
operators Ĵ2 and Ĵ3 with respective eigenvalues j (j + 1) ~2 and m~.
Calculate the expectation values

〈
Ĵ1

〉
and

〈
Ĵ2

1

〉
.

4. Find out the representation of the set of angular momentum operators{
Ĵ+, Ĵ−, Ĵ1, Ĵ2, Ĵ3, Ĵ

2
}

in a basis of common eigenstates of the opera-
tors Ĵ2 and Ĵ3 for i) j = 3/2 and ii) j = 1.(
Hint: Start by working out the representations of the ladder opera-

tors and express the other operators in terms of them.
)
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5. If Ĵ1 and Ĵ2 are generalized angular momentum operators, check whether
the operators Â and B̂ are compatible, where

Â = Ĵ1 + Ĵ2 and B̂ = Ĵ1 − Ĵ2

6. Consider the set of three operators
{
K̂1, K̂2, K̂3

}
obeying the commu-

tation relations[
K̂+, K̂−

]
= 2~K̂3

[
K̂±, K̂3

]
= ∓~K̂±

where K̂± are the ladder operators defined in the usual way. Show that
these commutation relations define an equivalent way to specify that the
operators

{
K̂1, K̂2, K̂3

}
are angular momenta.

7. Classically, the magnetic moment −→M of a charged particle is proportional
to its angular momentum −→L :

−→
M = γ

−→
L

where γ is the proportionality constant called the gyromagnetic ratio.
Consider a point mass (which, therefore, cannot spin) moving with zero
orbital angular momentum. Imagine that, strangely, this system yields
a magnetic moment spectrum comprising two values, say µ and −µ.
Postulate an intrinsic generalized angular momentum with spectrum
(~/2,−~/2), which, as a figure of speech, you might call spin, that pro-
duces the magnetic moments with: µ = γ̄~/2 (γ̄: some new constant).

(a) Argue that the total spin s must be 1/2 for the particle.
(here s is the value of the quantum number that labels the eigen-
value for total angular momentum squared which we called j ear-
lier)

(b) For some chosen axis, say ẑ, let the members of the spectrum of
the spin Ŝz be (~/2,−~/2). Construct the operators Ŝ2 and Ŝz in a
basis of their common eigenstates.

(c) Now construct representations for the ladder operators and hence
construct the representations for Ŝx and Ŝy.

(d) Verify that Ŝx, Ŝyand Ŝz does indeed satisfy the angular momen-
tum commutation relations.

(e) If the magnetic moment spectrum comprised three equispaced val-
ues µ, 0 and −µ instead of two, what would be the total spin?
Repeat the entire exercise for this case.

8. Derive the momentum space representations of the orbital angular mo-
menta

{
L̂x, L̂y, L̂z

}
.
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9. Using the canonical commutation relations, check whether the following
set of observables are compatible:

i)
{
ŷ, L̂y

}
and i)

{
ŷ, L̂z

}
Here

{
L̂x, L̂y, L̂z

}
are orbital angular momenta and ŷ is the usual po-

sition operator along the y-axis.

10. Given that the spherical harmonics form an orthonormal basis in the
(θ, φ) space, argue that

∞∑
l=0

l∑
m=−l

Y ml (θ, φ)Y m∗l (θ′, φ′) = δ(cos θ − cos θ′)δ(cosφ− cosφ′)

11. Derive the explicit formulae for the spherical harmonics by making use
of the repeated action of the ladder operators on Y ll and Y −ll . You may
proceed through the following exercises:

(a) Using L̂+Y
l
l = 0, show that the normalized form of Y ll is given by

Y ll (θ, φ) = (−1)l

2ll!

√
(2l + 1)!

4π (sin θ)l eilφ

with the (−1)l being a customary choice of phase (that is not de-
cided by normalization25).

(b) Prove that
L̂k±
[
f (θ) eimφ

]
= (±~)k ei(m±k)φ (sin θ)k±m dk

d (cos θ)k
[
(sin θ)∓m f (θ)

]
(Hint: Use method of induction. First prove that it is true for k = 1.
Then show using this formula that if it true for k = s− 1, then it
is true for k = s .)

(c) Use the standard lowering ladder operator action to show that

Y ml (θ, φ) =

√
(l +m)!

2l! (l −m)!

(
L̂−
~

)l−m
Y ll (θ, φ)

from which the desired expression follows by applying the formula
in part (b):

Y ml (θ, φ) = (−1)l

2ll!

√
(2l + 1)

4π
(l +m)!
(l −m)!e

imφ (sin θ)−m dl−m

d (cos θ)l−m
(sin θ)2l

(d) Now from the above expression, show that

Y −ll (θ, φ) = 1
2ll!

√
(2l + 1)!

4π (sin θ)l e−ilφ

25This phase convention ensures that Y 0
l (θ, φ) (which is φ-independent) is real and pos-

itive.
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and hence demonstrate that an alternative (but completely equiv-
alent) representation of Y ml (θ, φ) constructed using l+m applica-
tions of the raising operator L̂+ on Y −ll (θ, φ) is given by

Y ml (θ, φ) = (−1)l+m

2ll!

√
(2l + 1)

4π
(l −m)!
(l +m)!e

imφ (sin θ)m dl+m

d (cos θ)l+m
(sin θ)2l

12. Prove that the above representations imply that

[Y ml (θ, φ)]∗ = (−1)m Y −ml (θ, φ)

13. Express the spherical harmonics Y ml (θ, φ) in terms of the associated
Legendre polynomials26 Pml (cos θ):

Y ml (θ, φ) = η

√
(2l + 1)

4π
(l − |m|)!
(l + |m|)!e

imφPml (cos θ)

where η = (−1)m for m ≥ 0 and η = 1 when m < 0. The Pml (x) are
defined by

Pml (x) =
(
1− x2) |m|2

(
d

dx

)|m|
Pl (x)

with Pl(x) = (−1)l

2ll!

(
d

dx

)l (
1− x2)l

where Pl (x) are called the Legendre polynomials27.

14. Work out the parity of the spherical harmonics: how does Y ml (θ, φ)
change under −→r → −−→r ?

(Hint: what does −→r → −−→r mean in terms of θ and φ?)

15. Consider a particle constrained to move on the surface of a sphere of
fixed radius28.

26This result can also be proved by first showing that Y 0
l (θ, φ) can be expressed in terms

of the Legendre polynomial Y 0
l (θ, φ) =

√
2l+1/4π Pl (cos θ) and then using the fact that for

m ≥ 0, Yml (θ, φ) is proportional to
(
L̂+
)m

Y 0
l (θ, φ). Application of the formula in part

(b) of problem 11 yields the final result.
27Note that, while for m ≥ 0, one merely needs to plug in the value of Pml (cos θ) to

retrieve the formula for Yml (θ, φ) derived earlier, for negative m, one has to work a little
more.

28To a first approximation, it is possible to treat the translational, vibrational and ro-
tational degrees of freedom of a diatomic molecule independently. To treat the rotational
part, the diatomic molecule is modelled as a rigid rotor: a system of two identical masses
connected by a massless rigid rod. In the centre of mass frame this is equivalent to a parti-
cle (with mass equal to the reduced mass) moving on the surface of a sphere having radius
equal to the inter-particle distance.
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(a) Show that the stationary states of the system are the common
eigenstates of L̂2 and L̂z.

(b) Determine the energy spectrum for this system and comment on
the degeneracy.

(c) If the system is in the stationary state |l = 2,m = 2〉 (l and m
being the orbital and azimuthal quantum numbers), find out the
probability that the particle may be found in the positive octant.

Hydrogen Atom
As our final project, we will solve the eigenvalue problem for the Hamil-

tonian of the hydrogen atom. The classical picture of the hydrogen atom is a
negatively charged particle (electron) bound to a positively charged particle
(proton) by the coulomb potential. We shall actually solve for the Hamilto-
nian corresponding to the internal energy of the system. This is achieved by
transforming to a new set of coordinates: the centre of mass −→R and relative
coordinate of the electron with respect to the proton −→r .

−→
R = mp

−→r p +me
−→r e

mp +me
and −→r = −→r e −−→r p

where mp and −→r p are the mass and position vector of the proton, and me

and −→r e are the corresponding quantities for the electron. The energy of the
system, for a potential V (r) that depends only on the relative coordinate,
splits up into the centre of mass and relative coordinate parts:

Htotal = 1
2MP 2 + 1

2mp2 + V (r)

where M = mp + me,
−→
P = M

(
d
−→
R/dt

)
, m = (mpme)/(mp+me) and −→p =

m (d−→r/dt). Here, M is the total mass of the system, and m is called the re-
duced mass of the system. Also, −→P turns out to be the total momentum of
the system, and −→p is called the relative momentum. Considering the internal
energy H amounts to focussing on the relative coordinate part:

H = 1
2mp2 + V (r)

This is formally identical to a one body problem of a particle of mass m
moving under the central potential V (r). For the hydrogen atom, the potential
is simply the coulomb potential V (r) = −e2

/4πε0r produced by the positive
charge +e of the proton that attracts the electron having a negative charge
−e. Here ε0 is the permittivity of vaccum.
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Now for a quantum particle moving under a central potential, the Hamil-
tonian operator

Ĥ = 1
2mp̂2 + V (r̂)

represented in position space using Cartesian coordinates is given by

〈x, y, z| 1
2mp̂2 + V (r̂) |ψ〉 =

[
− ~2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
+ V (r)

]
〈x, y, z|ψ〉[

Ĥ
](x,y,z)

= − ~2

2m

(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
+ V (r)

Here we retained the symbol r in V (r) which, obviously, stands for√
x2 + y2 + z2. We note that the position representation of p̂2 is essentially

the Laplacian operator. Since the potential is central, and therefore spherically
symmetric, it is convenient to go over to spherical polar coordinates (r, θ, φ).
The representation of the Hamiltonian operator in the (r, θ, φ) space is[
Ĥ
](r,θ,φ)

= − ~2

2m

(
1
r2

∂

∂r

(
r2 ∂

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1
r2 sin2 θ

∂2

∂φ2

)
+ V (r)

The eigenvalue equation for the Hamiltonian, when cast in the (r, θ, φ) space,
becomes [

Ĥ
](r,θ,φ)

〈r, θ, φ|E〉 = E 〈r, θ, φ|E〉

Now, recall that the representation of the total orbital angular momentum
squared operator in the (r, θ, φ) space is[

L̂2
](r,θ,φ)

= − ~2

sin2 θ

[
sin θ ∂

∂θ

(
sin θ ∂

∂θ

)
+ ∂2

∂φ2

]
Therefore, the Hamiltonian operator can be written as

[
Ĥ
](r,θ,φ)

= − ~2

2m

 1
r2

∂

∂r

(
r2 ∂

∂r

)
−

[
L̂2
](θ,φ)

~2r2

+ V (r)

Now, the operators involving only the radial coordinate r will commute
with operators involving only the angular coordinates (θ, φ). Thus, it is evident
that the Hamiltonian Ĥ will commute with L̂2 and L̂z, since L̂2 will commute
with itself, and the L̂z operator also commutes with L̂2. Hence, a complete
set of common eigenvectors of

{
Ĥ, L̂2, L̂z

}
will exist. With this observation

let us try to solve the eigenvalue equation of the Hamiltonian using a trial
solution of the form

〈r, θ, φ|E〉 ≡ ψ (r, θ, φ) = R (r)Y ml (θ, φ)
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where R (r) is a function of r alone, and Y ml (θ, φ) are the spherical harmonics:
the common eigenfunctions of

{
L̂2, L̂z

}
. Note that this is the most general

possibility for a function to be a common eigenstate for
{
L̂2, L̂z

}
, since for a

given l and m, the common eigenfunction Y ml (θ, φ) is unique up to a multi-
plicative constant in the (θ, φ) space.

If we plug our trial solution back in the eigenvalue equation, we get[
− ~2

2m

(
1
r2

d

dr

(
r2 d

dr

)
− l (l + 1)

r2

)
+ V (r)

]
RE,l (r) = ERE,l (r)

where l is the azimuthal quantum number. Here we have also introduced the
subscripts E and l (the parameters occurring in the differential equation) in
RE,l (r). This is the radial equation for an arbitrary central potential29.

For the specific case of the hydrogen atom, V (r) = −Ze2
/4πε0r, and the

radial equation becomes[
− ~2

2m

(
1
r2

d

dr

(
r2 d

dr

)
− l (l + 1)

r2

)
− Ze2

4πε0r

]
RE,l (r) = ERE,l (r)

Here Z is the atomic number. Although Z = 1 for the hydrogen atom, it is
customary to keep the Z in the formulae to facilitate easy generalization to
hydrogen like atoms for which Z 6= 1.

If we make the substitutions

r2 = −ρ2 ~2

8mE and − Ze2

4πε0

√
−8mE
4~E = n

then the radial equation can be mapped to the following standard differential
equation: [

1
ρ2

d

dρ

(
ρ2 d

dρ

)
− l (l + 1)

ρ2 + n

ρ
− 1

4

]
Rn,l = 0

that is usually discussed in connection with Laguerre differential equation;
see, for example, (Margenau and Murphy 1956). This differential equation
has well behaved, square integrable solutions only if n is a positive integer,
and l is also integral. Moreover, for a given n, acceptable solutions exist only
for l < n. Thus, the allowed values for n and l are

n = 1, 2, 3, . . . and l = 0, 1, 2, . . . , n− 1

The restriction on n gives the allowed values of the energy E (which we now
write as En):

En = − m

2~2

(
Ze2

4πε0

)2 1
n2

29If we naively use separation of variables for the eigenvalue equation of the Hamiltonian,
the angular equation will turn out to be simply the eigenvalue equation of L̂2. If we use
separation of variables for this equation, we shall see that the φ equation will automatically
be obeyed by the solution of the eigenvalue equation of L̂z .



176 An Introduction to Quantum Mechanics

For n = 1, we get the ground state energy E1 of the hydrogen atom. The
numerical value of E1 = −13.6 eV . Incidentally, n is called the principal
quantum number .

The degeneracy in E is easy to calculate. Since the eigenvalue of L̂2 asso-
ciated with l is 2l + 1 fold degenerate, the degeneracy gn of En is30

gn =
n−1∑
l=0

(2l + 1) = n2

The solution Rn,l to the radial equation, written in terms of ρ and replacing
the subscript E by n, is

Rn,l (ρ) = Nρle−ρ/2L2l+1
n−1−l (ρ)

where L2l+1
n−1−l (ρ) are known as associated Laguerre polynomials, and N

is the constant of normalization31. The associated Laguerre polynomials Lpq−p
are defined by

Lpq−p (ρ) = (−1)p
(
d

dρ

)p
Lq (ρ)

where the Lq (ρ) are the Laguerre polynomials given by

Lq (ρ) = eρ
(
d

dρ

)q (
e−ρρq

)
Finally, reverting to the radial coordinate r, the normalized radial function
Rn,l (r) has the form

Rn,l (r) =

√(
2
na

)3 (n− l − 1)!
2n [(n+ 1)!]3

(
2r
na

)l
exp

{
− r

na

}
L2l+1
n−1−l

(
2r
na

)
where a is a constant known as the Bohr radius32. The Bohr radius is given
by a = 4πε0~2

/Ze2m.

30Actually, we have ignored another observable called spin having purely quantum origin
(which we have briefly encountered in the last problem set). Electrons can come with two
possible spin values, and each electronic state can have two associated spin wave functions
that will multiply its spatial wave function just as the angular wave functions Yml multiply
the radial wave functions RE,l. For the hydrogen atom the energy does not depend on the
spin (to a first approximation). This will throw in a factor of 2 to the degeneracy, so that
the actual degeneracy is 2n2.

31It is customary to normalize the Rn,l and Yml separately.
32Bohr’s theory was a remarkably successful attempt to describe the spectrum of the

hydrogen atom through some ad hoc assumptions fused into an otherwise classical theory.
According to this theory, the hydrogen atom was an electron revolving around the proton
in circular orbits. The electron’s orbital angular momentum could only take values which
were integral multiples of ~. This implies that the allowed radii of the circular orbits were
also discrete: given by rn = n2a0. Here n is a positive integer and a0 is a constant known
as the Bohr radius. Clearly, the Bohr radius is the radius of the orbit when the electron is
in its lowest orbit n = 1.
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The full wave function for the Hydrogen atom ψn,l,m (r, θ, φ) is then the
product of the radial function Rn,l (r) defined above, and the spherical har-
monics defined in the previous section33:

ψn,l,m (r, θ, φ) = Rn,l (r)Y ml (θ, φ)

Problems

1. A particle in a spherical box is defined by the potential:

V (r) =
{

0 r<a
∞ r ≥ a

(a) Setup the eigenvalue equation for the Hamiltonian in position space
and convince yourself that the formal solution to the equation can
be written as

ψE,l,m (r, θ, φ) = KE,l (r)Y ml (θ, φ)

where KE,l (r) denotes the radial part of the wave function and
Y ml (θ, φ) are the spherical harmonics34. Here E labels the different
energies.

(b) Simplify the radial equation by using the change of variables35:

KE,l (r) = uE,l (r)
r

Identify the equation for l = 0, and determine the corresponding
wave functions and energies.

2. The ground state of the hydrogen atom is given by

R1,0 = 2a− 3
2 exp

{
− r
a

}
and Y0,0 = 1√

4π

where a is the Bohr radius.
33A detailed solution of the radial differential equation (employing the power series

method) is worked out in many standard undergraduate text books. See, for example,
(Griffiths 2005).

34Incidentally, solution to the radial part is given by the so called spherical Bessel function
Jl (kr), i.e., KE,l (r) = Jl (kr) where k =

√
2mE/~, m being the mass of the particle.

35This is quite a standard substitution employed for central potential problems. One,
typically, writes the differential equation in terms of u, analyses the asymptotic behaviour,
and factors out the dominant terms in the asymptotic limit. One then proceeds with a power
series solution for the remaining factor and imposes the requirements of well-behavedness.
Indeed, the treatment of the hydrogen atom follows this line in most books.
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Show that in the ground state

(a) the most probable value of the radial distance is the Bohr radius
a.

(b) the expectation value 〈r̂〉 of the radial distance r is 1.5 times its
most probable value a. You may use the standard integral:∫ ∞

0
xne−αxdx = n!

αn+1 ; α > 0

(c) the expectation value of 〈x̂〉 is zero (preferably without calculation).

3. Find out the expectation value of the kinetic energy T̂ and the potential
energy V̂ in the ground state of the hydrogen atom. Can you think of a
quick way to check your result?

4. The spherical harmonics, with an appropriate normalization, obey the
condition

+l∑
m=−l

|Y ml |
2 = 2l + 1

4π

What is the position probability density if a hydrogen atom is in a
statistical mixture of all the ψn,l,m states for n ≤ q (q is some positive
integer) with all states being equally likely36. Do you expect it to be
similar if the hydrogen atom is in an unbiased superposition of all the
ψn,l,m states (i.e., if the state is a superposition of all the possible ψn,l,m
states with n ≤ q where all the expansion coefficients are identical).
Leave your answer in terms of the radial wave functions Rn,l.

5. Imagine that a hydrogen atom is in an unbiased superposition of states
compatible with the conditions n ≤ 2 and l = 0 at time t = 0.

(a) How will such a state evolve in time?
(b) Find out the nature of the time dependence of the expectation value

of the radial distance r.

6. The hydrogen atom, being a system of two oppositely charged particles,
should naturally have an electric dipole moment.

(a) Write down the electric dipole moment operator for the hydrogen
atom.

36It is not to be confused with a superposition of the allowed states with coefficients
having equal modulus. It means that the system is in any one of the allowed states, and the
likelihood of each state is equal.
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(b) Show that the expectation value of the dipole moment is zero in
any stationary state.

(Hint: The parity of the hydrogenic wave functions ψn,l,m is con-
trolled by the relation Y ml (−~r) = (−1)l Y ml (~r).)

(c) Find out the expectation value of the dipole moment if the ini-
tial state of the atom is ψ|t=0 = (1/

√
2) (ψ1,0,0 + ψ2,1,0). Use the

relations:

x =
√

2π
3 r
(
Y −1

1 − Y 1
1
)
, y = i

√
2π
3 r
(
Y −1

1 + Y 1
1
)
, z =

√
2π
3 rY 0

1

and the radial wave functions:

R1,0 = 2a− 3
2 exp

{
− r
a

}
and R2,1 = 1√

24
a−

3
2
r

a
exp

{
− r

2a

}
7. Although the full hydrogenic wave functions form fully orthogonal sets

(i.e., with respect to all its indices), the radial wave functions are only
partially orthogonal. Show this explicitly for R1,0 and R2,1.

8. A positronium is a hydrogen atom like system where an electron is bound
to a positron instead of the proton. A positron is a particle which is
identical to the electron except that its charge is positive. In particular
it has the same mass as the electron.

(a) How would its spectrum compare with that of the hydrogen atom?
(b) Estimate the size of this system as compared to the hydrogen atom.

(Hint: Think about a reasonable measure to estimate the size of
the atom. Recall that the mass me of the electron is much smaller
than the mass mp of the proton (mp = 1836me.)
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Chapter 9
Composite Systems

From the very early days of science we have been asking, what is everything
made up of? This question stems from the belief that matter as we know it, is
made out of some elementary building blocks. Our theoretical paradigms try
to conceive the vast diversity of phenomena that we see around us as a man-
ifestation of complex combinations of some elementary interactions between
elementary constituents of matter. In fact, when we ask “what is everything
made up of?”, the very question seeks an answer that must conform to this
philosophical choice. It has dominated the entire course of scientific history.
Thus, being able to deal with composite systems must be an essential virtue
of any theory. In the preceding chapters we have outlined a formal description
of QM. In this chapter we shall see how, within the framework that has been
laid out, we can describe physical scenarios involving composite systems that
is ubiquitous in physics.

The Meaning of a Composite System
Let us consider two quantum systems1 S1 and S2. We will indicate the

observables and states of the two systems using parenthesized superscripts ‘1’
and ‘2’ (e.g., α̂(1), β̂(2),

∣∣ψ(1)〉 , ∣∣φ(2)〉 , etc.). The entire machinery of QM ap-
plies individually to the two systems. Let the sets

{
χ̂(1)} and

{
ξ̂(2)
}
comprise

CSCO for the two systems2. Then we have, for example, definite probabilities
P
[
χ

(1)
i → α

(1)
j

]
, P

[
ξ

(2)
k → β

(2)
l

]
, etc., defined on the systems. Now we can,

quite trivially, imagine a composite system S simply by juxtaposing the two
systems S1 and S2. Corresponding to the states

∣∣ψ(1)〉 and ∣∣φ(2)〉 belonging to
the systems S1 and S2, we can associate an ordered pair

(∣∣ψ(1)〉 , ∣∣φ(2)〉), and
1For concreteness one could think of the two systems as two particles.
2The arguments that follow can easily be generalized to CSCO that have more than one

member.
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consider it to be a state of the composite system S. The independent events3

χ
(1)
i → α

(1)
j and ξ

(2)
k → β

(2)
l

for the systems S1 and S2 can be conceived as a single elementary event(
χ

(1)
i , ξ

(2)
k

)
→
(
α

(1)
j , β

(2)
l

)
for the composite system S. Hence, the probability of this event would be
given by

P
[
χ

(1)
i , ξ

(2)
k → α

(1)
j , β

(2)
l

]
= P

[
χ

(1)
i → α

(1)
j

]
P
[
ξ

(2)
k → β

(2)
l

]
according to the rules of classical probability. It is now trivial to see that

P
[
χ

(1)
i → α

(1)
j

]
= P

[
χ

(1)
i , ξ

(2)
k → α

(1)
j , ξ

(2)
k

]
Again, the probability of the event χ(1)

i → α
(1)
j in S1 can be written as

P
[
χ

(1)
i → α

(1)
j

]
= P

[
χ

(1)
i → α

(1)
j

]∑
l

P
[
ξ

(2)
k → β

(2)
l

]
=

∑
l

P
[
χ

(1)
i → α

(1)
j

]
P
[
ξ

(2)
k → β

(2)
l

]
=

∑
l

P
[
χ

(1)
i , ξ

(2)
k → α

(1)
j , β

(2)
l

]
= P

[
χ

(1)
i , ξ

(2)
k → α

(1)
j

]
which is a probability for a compound event in the system S in which a mea-
surement of α̂(1) yields α(1)

j and β̂(2) yields anything. Here, the observables
ξ̂(2)and β̂(2) can be chosen arbitrarily and l runs over the entire spectrum of
β̂(2).

For our composite system, we thus have the following observations:

One can identify

• with every observable in S1 (or S2), an observable in S,

• with every state in S1 (or S2), a set of states in S, and

• with every event in S1 (or S2) specific events in S such that the proba-
bilities are identical.

3If you are not sure of the exact meaning of an independent event, see appendix ‘A’.
There is more to it than what is intuitively suggested by the term independent.
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One can also, in the same spirit, consider the time evolution of the states∣∣ψ(1)〉 and
∣∣φ(2)〉 belonging to the systems S1 and S2 respectively, to be as-

sociated with the time evolution of the ordered pair
(∣∣ψ(1)〉 , ∣∣φ(2)〉), which

is a state in the system S. If the states
∣∣ψ(1) (0)

〉
and

∣∣φ(2) (0)
〉
evolve into

the states
∣∣ψ(1) (t)

〉
and

∣∣φ(2) (t)
〉
in time t, then we would be obliged to as-

sume that the initial state
(∣∣ψ(1) (0)

〉
,
∣∣φ(2) (0)

〉)
of S evolves into the state(∣∣ψ(1) (t)

〉
,
∣∣φ(2) (t)

〉)
at time t.

Now if we are given a quantum system (described by some inner product
space) for which we are able to identify parts (i.e., sets of states and observ-
ables) such that the features and properties mentioned above hold, we could
want to call it a composite system. However, it is obvious that a composite
system defined merely by juxtaposing two systems is not expected to be useful
or interesting. The parts of such a system are, so to speak, not coupled to each
other.

It is only when a composite system exhibits some properties that are not deriv-
able from the properties of its constituents, that the study of the composite
system becomes worthwhile.

Thus, for a nontrivial composite system, in the first place, we do not want
to restrict all states in the composite system to be ordered pairs. Furthermore,
even if an initial state of the composite system is an ordered pair, we will not
expect that the time evolution will be some sort of a simple union of the
independent time evolutions in the constituent systems, yielding a final state
that is an ordered pair of the time evolved initial states of the constituents.
Finally, in the composite system we will not expect that all of the observables
of the composite system will be related to one or the other of its parts. We
will expect to see observables which are meaningful and definable only for the
composite system as a whole.

Now we ask, whether it is possible to find a suitable mathematical frame-
work that we can propose as a formal description of composite systems. Such
a mathematical framework must, obviously, allow the description of trivially
juxtaposed composite systems (whose parts are not coupled to each other) but
must also be able to accommodate the nontrivial composite systems having
features described in the preceding paragraph. We shall turn to study such
a mathematical framework in the following section. One should, of course,
always bear in mind that the validation of a proposal of a formal description
must finally come from experiments.
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Tensor Product Space
Tensor product of vectors and tensor product space

We consider two vector spaces V 1 and V 2. The set of all ordered pairs of
vectors

(∣∣ψ(1)〉 , ∣∣φ(2)〉) with
∣∣ψ(1)〉 belonging to V 1 and

∣∣φ(2)〉 belonging to
V 2 is called a Cartesian product, and it is denoted by V 1 × V 2. Now we
define tensor product space V 1⊗V 2 as a vector space that has the following
properties:

1. There exists a bilinear function4 ⊗ : V 1×V 2 → V 1⊗V 2. This function
is called a tensor product (to be distinguished from the tensor product
space) and the value of the function is denoted by

⊗
(∣∣∣ψ(1)

〉
,
∣∣∣φ(2)

〉)
≡
∣∣∣ψ(1)

〉
⊗
∣∣∣φ(2)

〉
Bilinearity of tensor product implies

(a)
(
c
∣∣ψ(1)〉)⊗ ∣∣φ(2)〉 =

∣∣ψ(1)〉⊗ (c ∣∣φ(2)〉) = c
(∣∣ψ(1)〉⊗ ∣∣φ(2)〉)

(b)
(∣∣∣ψ(1)

1

〉
+
∣∣∣ψ(1)

2

〉)
⊗
∣∣φ(2)〉 =

∣∣∣ψ(1)
1

〉
⊗
∣∣φ(2)〉+

∣∣∣ψ(1)
2

〉
⊗
∣∣φ(2)〉

(c)
∣∣∣ψ(1)

1

〉
⊗
(∣∣∣φ(2)

1

〉
+
∣∣∣φ(2)

2

〉)
=
∣∣ψ(1)〉⊗ ∣∣∣φ(2)

1

〉
+
∣∣ψ(1)〉⊗ ∣∣∣φ(2)

2

〉
Here, in the set of equations (a), c ∈ C.

2. If B1 =
{∣∣∣χ(1)

i

〉
; i = 1, 2, . . . , d1

}
and B2 =

{∣∣∣ξ(2)
j

〉
; j = 1, 2, . . . , d2

}
are bases in V 1 and V 2 (assumed to be of dimensions d1 and d2 respec-
tively), then the setB =

{∣∣∣χ(1)
i

〉
⊗
∣∣∣ξ(2)
j

〉
; i = 1, 2, . . . , d1; j = 1, 2, . . . , d2

}
is a basis in5 V 1 ⊗ V 2.

For the tensor product
∣∣ψ(1)〉⊗ ∣∣φ(2)〉 of two vectors

∣∣ψ(1)〉 and ∣∣φ(2)〉, having
the respective expansions∣∣∣ψ(1)

〉
=

d1∑
i=1

ψi
∣∣∣χ(1)
i

〉
and

∣∣∣φ(2)
〉

=
d2∑
j=1

φj
∣∣∣ξ(2)
j

〉
it is clear that ∣∣∣ψ(1)

〉
⊗
∣∣∣φ(2)

〉
=

d1∑
i=1

d2∑
j=1

ψiφj
(∣∣∣χ(1)

i

〉
⊗
∣∣∣ξ(2)
j

〉)
4A bilinear function is just a function of two variables that is linear in both.
5It can be shown that this definition is consistent: any choice of bases leads to the same

tensor product space. Please see appendix ‘B’ for the proof.
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However, it should be noted that not every vector in the tensor product space
is a tensor product vector; a general vector in V 1⊗V 2 is some arbitrary linear
combination of the basis vectors

∣∣∣χ(1)
i

〉
⊗
∣∣∣ξ(2)
j

〉
in6 B.

From here on, we shall often use a simpler notation
∣∣ψ(1)〉 ∣∣φ(2)〉, or some-

times even
∣∣ψ(1), φ(2)〉, to denote the tensor product

∣∣ψ(1)〉⊗ ∣∣φ(2)〉.
Inner product on tensor product space

We define an inner product on the tensor product vectors in V 1⊗V 2 by〈
α(1)β(2)|ψ(1)φ(2)

〉
=

〈
α(1)|ψ(1)

〉〈
β(2)|φ(2)

〉
This, obviously, specifies the inner products between all the basis elements of
any basis in V 1⊗V 2 that is made out of tensor product vectors (e.g., the basis
B used above in the definition of tensor product space). The inner product
between arbitrary pairs of vectors in V 1⊗V 2 is then automatically specified by
requiring the inner product to obey the defining properties of inner products,
namely linearity and conjugate symmetry.

Linear operators on tensor product space
Now we turn to linear operators on the tensor product space V 1 ⊗ V 2 .

If α̂(1) is an operator defined on V 1 and if β̂(2) is an operator defined in V 2,
then we define the tensor product operator α̂(1) ⊗ β̂(2) by(

α̂(1) ⊗ β̂(2)
) ∣∣∣ψ(1)

〉 ∣∣∣φ(2)
〉

=
(
α̂(1)

∣∣∣ψ(1)
〉)
⊗
(
β̂(2)

∣∣∣φ(2)
〉)

Since the basis vectors of V 1⊗V 2 are tensor product vectors, it is clear that the
requirement of linearity of the operators, together with the above condition
ensures that the action of a tensor product operator on all vectors in V 1⊗V 2

are specified.
Once again, note that in V 1⊗V 2, just as all vectors are not tensor product

vectors, all linear operators are also not tensor product operators.
Incidentally, the extension α̂ of an operator α̂(1) that acts on V 1 to the

tensor product space V is defined by

α̂
(∣∣∣ψ(1)

〉 ∣∣∣φ(2)
〉)

=
(
α̂(1)

∣∣∣ψ(1)
〉)
⊗
(
Î(2)

∣∣∣φ(2)
〉)

where Î(2) is the identity operator acting on V 2. It is easy to check that the
tensor product of two operators acting on V 1 and V 2 is equal to the ordinary
product of their extensions to7 V 1 ⊗ V 2 .

6In order to specify an arbitrary vector in V 1 ⊗ V 2 we shall need to specify d1 × d2
coefficients in general. If every vector were a tensor product, then the d1 × d2 complex
coefficients would always be describable in terms of d1 + d2 complex numbers!

7Please see appendix ‘B’ to check out some of the important properties of tensor product
operators in regard to their eigenvalues and eigenvectors.
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Description of Composite Systems
Now we are adequately equipped to put forward the assertion that embod-

ies the description of composite systems:
• The state space V of a composite system, constituted of systems S1 and
S2, is the tensor product space V 1 ⊗ V 2 where V 1 and V 2 are the state
spaces of the respective component systems8 S1 and S2.

Let us now consider a composite system S made out of two component sys-
tems S1 and S2. If

{
χ̂(1)} and

{
ξ̂(2)
}

comprise CSCO for these two sys-

tems, then a CSCO for the composite system S would be
{
χ̂(1), ξ̂

(2)}
where

χ̂(1) and ξ̂
(2)

are the extensions of χ̂(1) and ξ̂(2) to V . It is easy to see

from the definition of extensions, that χ̂(1) and ξ̂
(2)

must commute. More-
over, if

{∣∣∣χ(1)
i

〉
; i = 1, 2, . . . , d1

}
and

{∣∣∣ξ(2)
j

〉
; j = 1, 2, . . . , d2

}
are bases con-

stituted of orthonormal eigenvectors of χ̂(1) and ξ̂(2) respectively, then the
set
{∣∣∣χ(1)

i

〉 ∣∣∣ξ(2)
j

〉
; i = 1, 2, . . . , d1; j = 1, 2, . . . , d2

}
will form an orthonormal

basis in V . Hence we have

χ̂(1)
(∣∣∣χ(1)

i

〉 ∣∣∣ξ(2)
j

〉)
=

(
χ̂(1)

∣∣∣χ(1)
i

〉)
⊗
(
Î(2)

∣∣∣ξ(2)
j

〉)
= χi

(∣∣∣χ(1)
i

〉 ∣∣∣ξ(2)
j

〉)
and in an exactly similar fashion

ξ̂
(2) (∣∣∣χ(1)

i

〉 ∣∣∣ξ(2)
j

〉)
=

(
Î(1)

∣∣∣χ(1)
i

〉)
⊗
(
ξ̂(2)

∣∣∣ξ(2)
j

〉)
= ξj

(∣∣∣χ(1)
i

〉 ∣∣∣ξ(2)
j

〉)
Thus

{
χ̂(1), ξ̂

(2)}
has a complete set of common eigenvectors which constitutes

an orthonormal basis in V , and the specification of the eigenvalues (χi, ξj) of
χ̂ and ξ̂ specifies a unique common eigenvector in that basis.

Now, the probability P
[
χ

(1)
i , ξ

(2)
k → α

(1)
j , β

(2)
l

]
will be given by

P
[
χ

(1)
i , ξ

(2)
k → α

(1)
j , β

(2)
l

]
=

∣∣∣〈α(1)
j β

(2)
l |χ

(1)
i ξ

(2)
k

〉∣∣∣2
=

∣∣∣〈α(1)
j |χ

(1)
i

〉∣∣∣2 ∣∣∣〈β(2)
l |ξ

(2)
k

〉∣∣∣2
= P

[
χ

(1)
i → α

(1)
j

]
P
[
ξ

(2)
k → β

(2)
l

]
8The rule is naturally generalized to the case of composite systems constituted of more

than two components.
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as required. Again, the probability P
[
χ

(1)
i , ξ

(2)
k → α

(1)
j

]
for getting the out-

come αj upon measurement of α̂(1) on the tensor product state
∣∣∣χ(1)
i , ξ

(2)
k

〉
is

given by

P
[
χ

(1)
i , ξ

(2)
k → α

(1)
j

]
=

∑
l

∣∣∣〈α(1)
j β

(2)
l |χ

(1)
i ξ

(2)
k

〉∣∣∣2
=

∣∣∣〈α(1)
j |χ

(1)
i

〉∣∣∣2∑
l

∣∣∣〈β(2)
l |ξ

(2)
k

〉∣∣∣2
= P

[
χ

(1)
i → α

(1)
j

]
as required. Here, l runs over the entire spectrum of β̂(2) and we have also
assumed (for simplicity) that

{
α̂(1)} and

{
β̂(2)

}
comprise CSCO for the two

systems S1 and S2.
So far, the exercise was only to show that the required properties of a

composite system, as laid down in the first section of this chapter, is indeed,
reproduced by our proposed mathematical characterization of a composite
system. But as we have already remarked, the artificial sewing of two systems
to make it look like a composite does not buy us anything new. The above
properties are aspects of trivial composite systems, and they are only necessary
conditions that a proposed description of composite system must obey. We
shall have to ask, what are the new, nontrivial consequences implied by our
formal definition. We shall now point out the features of our description of
a composite system that cannot be constructed out of the properties of its
constituents. These features, that we list below, have all been observed in real
life composite systems.

1. We have seen that there can exist linear operators acting on V which
are not tensor products of operators acting on V 1 and V 2. This means
that there can be observables that are associated with the composite
system which cannot be split up into parts that are associated with its
constituents.

2. We have also noted that there can exist vectors (and therefore composite
system states) in V = V 1⊗V 2 which are not tensor products of vectors
in V 1 and V 2. These states which are not tensor products are called
entangled states. We shall see that when a composite system inhabits
an entangled state, the subsystems become inextricably correlated with
each other. Such correlations imply one of the most stark and counter-
intuitive aspects of QM which we shall discuss below. The properties of
an entangled state of a composite system can no longer be deduced from
the states of the constituents.

3. We shall see that our description allows for a time evolution involving
interactions (between subsystems), that is nontrivial. In particular, we
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shall see that interactions can cause an unentangled state to evolve into
an entangled state. In fact, it is only if interactions are involved, that
an entangled state can be produced.

To demonstrate the last point, we have to first understand what we mean by
“interaction” between parts of a system. This is what we shall address in the
next section.

Interaction between Subsystems
It is actually more convenient to start by defining what we mean

by non-interacting systems. Let us, once again, consider a composite system
S made up of two systems S1 and S2. The state space V of S is a tensor
product of the state spaces of S1 and S2 denoted by V 1 and V 2 respectively.
Let the (time independent) Hamiltonians of the two subsystems be Ĥ(1) and
Ĥ(2), so that the time evolution for the two systems are given by∣∣∣ψ(1) (t)

〉
= e−

i
~ Ĥ

(1)t
∣∣∣ψ(1) (0)

〉
∣∣∣ψ(2) (t)

〉
= e−

i
~ Ĥ

(2)t
∣∣∣ψ(2) (0)

〉
Now, intuitively, if we want the systems to be non-interacting, it should make
no difference whether we consider the systems S1 and S2 separately or as
a composite. In order to ensure that all observable effects remains the same
irrespective of this choice, we will have to require that a tensor product state∣∣ψ(1) (0)

〉 ∣∣ψ(2) (0)
〉
evolves into the tensor product state

∣∣ψ(1) (t)
〉 ∣∣ψ(2) (t)

〉
.

It is easy to see that if we use the tensor product of the evolution operators
in V 1 and V 2 as the evolution operator in V , the time evolution of any tensor
product state in V will have this desired property:(

e−
i
~ Ĥ

(1)t ⊗ e− i
~ Ĥ

(2)t
) ∣∣∣ψ(1) (0)

〉 ∣∣∣ψ(2) (0)
〉

=
(
e−

i
~ Ĥ

(1)t
∣∣∣ψ(1) (0)

〉)(
e−

i
~ Ĥ

(2)t
∣∣∣ψ(2) (0)

〉)
=
∣∣∣ψ(1) (t)

〉 ∣∣∣ψ(2) (t)
〉

Now, we have mentioned earlier that the tensor product of two operators is
equal to the ordinary product of the extensions of the two operators, so

e−
i
~ Ĥ

(1)t ⊗ e− i
~ Ĥ

(2)t = e−
i
~ Ĥ

(1)
te−

i
~ Ĥ

(2)
t

where Ĥ
(1)

and Ĥ
(2)

are the extensions of the Hamiltonians Ĥ(1) and Ĥ(2) to
V . We have also mentioned before that extensions of operators acting on two
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different spaces will commute. This allows us to write9

e−
i
~ Ĥ

(1)
te−

i
~ Ĥ

(2)
t = e

− i
~

(
Ĥ

(1)+Ĥ(2))
t

Thus, the Hamiltonian in V will be

Ĥ = Ĥ
(1)

+ Ĥ
(2)

In general, if this scenario prevails we will say that the systems S1 and S2 are
non-interacting. Thus,

two systems S1 and S2 will be called non-interacting if their composite
S has a time evolution governed by a Hamiltonian Ĥ given by

Ĥ = Ĥ
(1)

+ Ĥ
(2)

where Ĥ
(1)

and Ĥ
(2)

are the extensions of the Hamiltonians Ĥ(1) and Ĥ(2) of
the component systems S1 and S2 to the state space of 10 S.

Having defined non-interacting systems, we can now move to define “interac-
tion” between systems as follows:

Interaction An interaction of two systems is that component of the theory
which causes the time evolution of their composite to be different from what it
would have been if the systems were non-interacting.

In the present context, it should be evident that if we add to the Hamil-
tonian Ĥ a term Ĥ ′, so that

Ĥ = Ĥ
(1)

+ Ĥ
(2)

+ Ĥ ′

then a tensor product state
∣∣ψ(1) (0)

〉 ∣∣ψ(2) (0)
〉

in V will not evolve into
the state

∣∣ψ(1) (t)
〉 ∣∣ψ(2) (t)

〉
. Thus the term Ĥ ′ in the above equation, which

9This follows from the Baker-Campbell-Hausdorff formula: For two operators Â and B̂

eÂeB̂ = exp
{
Â+ B̂ +

1
2
[
Â, B̂

]
+

1
12
([
Â,
[
Â, B̂

]]
+
[
B̂,
[
B̂, Â

]])
+ . . .

}
The ‘. . .’ denotes terms involving nested commutators all of which have

[
Â, B̂

]
at the

deepest level (as in the third term).
10Here we have assumed that the systems involved are all conservative. The criterion can

easily be generalized for time dependent Hamiltonians. We can simply proceed by changing
the condition to require that the time evolution operator Û in V can be written as a tensor
product Û = Û(1) ⊗ Û(2) where Û(1) and Û(2) are the time evolution operators in V 1 and
V 2.
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is given by
Ĥ ′ = Ĥ −

(
Ĥ

(1)
+ Ĥ

(2))
is defined to be the interaction for all practical purposes11.

The above definition of “interaction” trivially leads to the following result.

• If we start from a tensor product state, then the state can evolve into an
entangled state only if there is interaction.

Measurement on a Subsystem
Now that we have mathematically specified what we mean by composite

system, we can talk about the rules that will enable us to answer the target
questions of QM in the context of composite systems. The basic postulates of
QM remain the same. The only additional component is that, now we have
agreed to associate with a composite system, the tensor product space of the
inner product spaces that describe the component subsystems.

Final state after a measurement on one part
Noting that the basic postulate that determines the final state after a

measurement remains the same, let us apply it to a composite system S made
out of two component systems S1 and S2. The state of the system soon after
the measurement on an initial state |ψ〉, of an observable α̂(1) associated with
the first subsystem, yielding an outcome αi′ would be given by

|ψ ; αi′〉 =
∑
j,k |αi′ , βj , γk〉 〈αi′ , βj , γk|ψ〉√∑

j,k |〈αi′ , βj , γk|ψ〉|
2

where we have assumed that
{
α̂(1), β̂(1)

}
forms a CSCO in S1, and

{
γ̂(2)}

forms a CSCO in S2, so that
{
α̂(1), β̂(1), γ̂(2)

}
forms a CSCO in S (where

the operators are now understood to be extensions to S). Here |αi′ , βj , γk〉 =∣∣∣α(1)
i′

〉
⊗
∣∣∣β(1)
j

〉
⊗
∣∣∣γ(2)
k

〉
, and the indices j and k obviously run over all the

11It may have occurred to the reader that, if we add to the non-interacting Hamiltonian
Ĥ

(1) + Ĥ
(2) a term such as Â(1), that is an extension of some observable Â(1) of S1,

for example, then the time evolution will still be different from what it would be for the
non-interacting situation, although an initial tensor product state will, in this case, evolve
into some tensor product state. Should a term such as Â(1) be regarded as an interaction?
Theoretically, such a scenario may be imagined to be the result of the composition of a new
system S1

new with S2, where S1
new has a Hamiltonian Ĥ(1) + Â(1).
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allowed values of the spectra of the respective observables, as usual. We can
straight away make the following two observations:

1. If the initial state is a tensor product |ψ〉 =
∣∣θ(1)〉⊗ ∣∣φ(2)〉 then so is the

final state:

|ψ ; αi′〉 =

∑j |αi′ , βj〉
〈
αi′ , βj |θ(1)〉√∑

j |〈αi′ , βj |ψ〉|
2

⊗ ∣∣∣φ(2)
〉

The state of the second system
∣∣φ(2)〉 is simply unaffected.

2. Even when the initial state is not a tensor product state, the final state
would still be a tensor product state if a complete set of measurements
is performed on one of the subsystems. So if a measurement of α̂(1) and
β̂(1) on S1 yields the outcomes αi′ and βj′ , we have

|ψ ; αi′ , βj′〉 = |αi′ , βj′〉 ⊗

∑k |γk〉 〈αi′ , βj′ , γk|ψ〉√∑
k |〈αi′ , βj′ , γk|ψ〉|

2


Note that in the final tensor product state, the factor that corresponds to
the system S2 (i.e., the part in the parenthesis in the above expression)
crucially depends on the outcome of the measurement on the first part.

This is a remarkable result because it holds even for subsystems that have
arbitrary spatial separation. So, for systems that have interacted in the past
(to produce an entangled state) and then have drifted away to far off places,
if we perform a measurement on one part, that will instantaneously affect the
state of the other part12.

Probability in measurements on one part
We have already seen that, if on a tensor product state, we make a measure-

ment of an observable that relates to one part of a system, then the probability
of outcomes are independent of the other part of the system in every way. The
probability is simply equal to what it would have been if the measurement
was made on one part of the system forgetting completely about the other.

When the state of the system is entangled (i.e., not expressible as a ten-
sor product) the probability of results on a part are not independent of the
other parts. So one says that the systems are correlated. When two systems

12This apparent contradiction with special relativity (that allows news to travel only as
fast as light) was pointed out by Einstein, Podolsky and Rosen in a famous 1935 paper. It is
referred to in the literature as the EPR paradox. The phenomena has now been adequately
validated by experiment. It has also been appropriately interpreted to show that there is
really no contradiction with special relativity. Today, consequences such as the EPR paradox
are no longer considered to be a problem of quantum mechanics but only a feature.
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are correlated, the probability of outcomes of measurement on one part of the
system will, in general, depend on the other part13. This is easy to see from
the last formula of the previous subsection14. If α̂(1) alone forms a CSCO in
S1, then the probability P [|ψ〉 → αi′ ] would be given by |〈ψ ;αi′ |ψ〉|2 which
depends on the amplitudes 〈αi′ , γk|ψ〉 which involves the states

∣∣∣γ(2)
k

〉
.

We wish to conclude this section by mentioning that the features that we
have discussed above have been overwhelmingly validated by experiments.

Examples of Composite Systems
A particle living in 2-dimensions

A particle living in a 1-dimensional space was described using the Hilbert
space V x having a basis {|x〉 ; x ∈ (−∞,+∞)}. We can similarly imagine a
space V y having basis {|y〉 ; y ∈ (−∞,+∞)} corresponding to the coordinate
y. A tensor product space V x ⊗ V y can now be constructed with a basis
{|x〉 |y〉 ; x, y ∈ (−∞,+∞)}. Now, it is easy to see that the space V x,y having
a basis {|x, y〉 ; x, y ∈ (−∞,+∞)} that was used to describe a particle moving
in two dimensions can be identified with the tensor product space V x ⊗ V y
and the basis in V x,y can be identified with the basis in V x ⊗ V y .

V x,y = V x ⊗ V y and |x, y〉 = |x〉 |y〉

The basis vectors |x〉 |y〉 are clearly common eigenvectors of x̂ and ŷ extended
to V x⊗V y. A general vector in V x⊗V y can be expanded in this basis formally
as

|ψ〉 =
∫ +∞

−∞

∫ +∞

−∞
dxdy ψ (x, y) |x〉 |y〉

where the function ψ (x, y) is the representation of the vector in the basis. Vec-
tors whose representations are square integrable functions qualify as quantum
states, as usual. Since in the spaces V x and V y

〈x′|x〉 = δ (x− x′) and 〈y′|y〉 = δ (y − y′)

the inner product in V x ⊗ V y will obey

〈x′, y′|x, y〉 = 〈x′|x〉 〈y′|y〉 = δ (x− x′) δ (y − y′)

13See problem 1(f).
14Incidentally, there is actually a formalism that uses linear operators instead of nor-

malized vectors to describe quantum states. These operators are called density operators.
In this formalism it is possible to assign density operators (by an operation called partial
trace) to individual parts even if the system is in an entangled state. However, it is still
impossible to describe the time evolution of the entangled state (i.e., the density operator of
the composite state) in terms of the time evolution of the density operators of the individual
parts.
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So, the basis {|x〉 |y〉 ; x, y ∈ (−∞,+∞)} is orthonormal (in the extended
sense) as before.

The position observables (extended to V x ⊗ V y) are again represented as
multiplicative operators

[x̂]x,y = x ; [ŷ]x,y = y

and the momenta (extended to V x ⊗ V y) are represented as the differential
operators

[p̂x]x,y = −i~ ∂

∂x
; [p̂y]x,y = −i~ ∂

∂y

Finally, every observable θ̂ corresponds to some classical dynamical variable

θ (x, px, y, py)

and is given by the same function with the coordinates and momenta replaced
by the corresponding operators

θ̂ = θ (x̂, p̂x, ŷ, p̂y)

Thus, we see that an appropriate way to describe a particle moving in
two dimensions is to use a tensor product space of two spaces corresponding
to each of the dimensions. The above discussion and results can be trivially
generalized to higher dimensions.

Multiparticle systems
It is straightforward to quantize systems that are constituted of more

than one particle. Suppose we have a two particle system (moving in 3
dimensions). Classically, the system will be described by six coordinates(
x1, y1, z1, x2, y2, z2) and six momenta

(
p1
x, p

1
y, p

1
z, p

2
x, p

2
y, p

2
z

)
, where the su-

perscripts indicate whether a variable refers to the first or the second par-
ticle. A CSCO for this system could be the set of six position observables{
x̂1, ŷ1, ẑ1, x̂2, ŷ2, ẑ2}. We can assume, for example, the spectrum of each ob-

servable to be the real interval (−∞,+∞). An appropriate space for the de-
scription of this system is the tensor product space V x1 ⊗ V y1 ⊗ V z1 ⊗ V x2 ⊗
V y

2 ⊗ V z
2 . We shall often denote the coordinates of the i-th particle col-

lectively by −→r i where i can take the values 1 or 2. Hence, we shall write
the above tensor product space as V −→r 1,−→r 2 = V

−→r 1 ⊗ V
−→r 2 where V −→r i ≡

V x
i ⊗ V yi ⊗ V zi . The basis vectors in V

−→r 1,−→r 2 are
∣∣−→r 1,−→r 2〉 =

∣∣−→r 1〉 ∣∣−→r 2〉
where

∣∣−→r i〉 =
∣∣xi〉 ∣∣yi〉 ∣∣zi〉 . An arbitrary vector in this space is expanded as

|ψ〉 =
∫
−→r 1

∫
−→r 2

d3−→r 1d3−→r 2 ψ
(−→r 1,−→r 2) ∣∣−→r 1,−→r 2〉
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In the
(−→r 1,−→r 2) space this vector is represented as a function of six vari-

ables. Square integrable functions will describe quantum states as usual. The
orthonormality condition becomes〈−→r 1′ ,−→r 2′ |−→r 1,−→r 2

〉
= δ3

(−→r 1 −−→r 1′
)
δ3
(−→r 2 −−→r 2′

)
where δ3

(−→r i −−→r i′) = δ
(
xi − xi

′
)
δ
(
yi − yi

′
)
δ
(
zi − zi

′
)

The position observables (extended to V −→r 1 ⊗ V −→r 2) are represented as multi-
plicative operators[

x̂i
]−→r 1,−→r 2

= xi ;
[
ŷi
]−→r 1,−→r 2

= yi ;
[
ẑi
]−→r 1,−→r 2

= zi

The momenta (extended to V −→r 1 ⊗ V −→r 2) are represented as differential oper-
ators[
p̂ix
]−→r 1,−→r 2

= −i~ ∂

∂xi
;
[
p̂iy
]−→r 1,−→r 2

= −i~ ∂

∂yi
;
[
p̂iz
]−→r 1,−→r 2

= −i~ ∂

∂zi

Finally, every observable θ̂ corresponds to some classical dynamical variable

θ
(
x1, p1

x, y
1, p1

y, z
1, p1

z, x
2, p2

x, y
2, p2

y, z
2, p2

z

)
and is given by the same function with the coordinates and momenta replaced
by the corresponding operators

θ̂ = θ
(
x̂1, p̂1

x, ŷ
1, p̂1

y, ẑ
1, p̂1

z, x̂
2, p̂2

x, ŷ
2, p̂2

y, ẑ
2, p̂2

z

)
In the following section we will have more to say about multiparticle systems.

Problems

1. Consider two, 2-level systems, S1 and S2, whose states live in similar
inner product spaces V 1 and V 2 respectively. There is a “colour” ob-
servable for both the systems having identical spectrum {blue, green} ≡
{b, g} so that we have orthonormal bases C1 =

{∣∣b1〉 , ∣∣g1〉} and C2 ={∣∣b2〉 , ∣∣g2〉} in V 1 and V 2. We can imagine a composite system S whose
states live in the tensor product space V = V 1 ⊗ V 2 having a basis15

C =
{∣∣b1〉 ∣∣b2〉 , ∣∣b1〉 ∣∣g2〉 , ∣∣g1〉 ∣∣b2〉 , ∣∣g1〉 ∣∣g2〉}

15In this problem, we have slightly deviated from the notation used in the text. For
example, to avoid clutter, we have dispensed with the parenthesis in the superscripts. Con-
sequently we have had to demote the component index of vectors downstairs as subscripts,
breaking the convention used in the rest of the book.
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We choose to denote the basis states as follows∣∣b1〉 ∣∣b2〉 ≡ |bb〉∣∣b1〉 ∣∣g2〉 ≡ |bg〉∣∣g1〉 ∣∣b2〉 ≡ |gb〉∣∣g1〉 ∣∣g2〉 ≡ |gg〉

(a) Show that in order that a vector

|ψ〉 = p |bb〉+ q |bg〉+ r |gb〉+ s |gg〉

is a tensor product, the expansion coefficients p, q, r and s must
satisfy the condition

p

q
= r

s

(b) Show that if the vectors
∣∣χ1〉 and ∣∣ξ2〉 have the representations

[
χ1]C1

=
[
χ1

1
χ1

2

]
and

[
ξ2]C2

=
[
ξ2

1
ξ2

2

]
in the C1 and C2 spaces, the tensor product vector

∣∣χ1〉 ∣∣ξ2〉 will
be represented as

[
χ1ξ2]C =

 χ1
1

(
ξ2

1
ξ2

2

)
χ1

2

(
ξ2

1
ξ2

2

)


in the C space.
(c) Show that if two operators Â1 and B̂2 acting on V 1 and V 2 are

represented as[
Â1
]C1

=
[
A1

11 A1
12

A1
21 A1

22

]
and

[
B̂2
]C2

=
[
B2

11 B2
12

B2
21 B2

22

]
in the bases C1 and C2 respectively, then the representation of the
tensor product operator Â1 ⊗ B̂2 in the C basis is

[
Â1 ⊗ B̂2

]C
=

 A1
11

(
B2

11 B2
12

B2
21 B2

22

)
A1

12

(
B2

11 B2
12

B2
21 B2

22

)
A1

21

(
B2

11 B2
12

B2
21 B2

22

)
A1

22

(
B2

11 B2
12

B2
21 B2

22

)




196 An Introduction to Quantum Mechanics

(d) If we label the outcomes of the colour observable so that b = +κ
and g = −κ where κ is a real number, then in the spaces V 1 and
V 2, the colour observables Ĉi (i = 1, 2) obey

Ĉi
∣∣bi〉 = +κ

∣∣bi〉
Ĉi
∣∣gi〉 = −κ

∣∣gi〉
Write down the representations of the extensions Ĉ

i
of Ĉi to V in

the basis C.
(e) If an observable F̂ 1 acting on V 1 is defined by

F̂ 1 ∣∣b1〉 = +κ
∣∣g1〉

F̂ 1 ∣∣g1〉 = +κ
∣∣b1〉

Find the representation of the extension F̂
1
of F̂ 1 to V in the basis

C. Determine the spectrum of F̂
1
, the degeneracy of the eigenvalues

and identify a maximal set of independent eigenvectors for each of
the eigenvalues.

(f) Suppose that a measurement of colour Ĉ1 associated with the sys-
tem S1 is performed that leads to an outcome blue b1. What would
be the final state and the probability of this event if the initial state
is
i. a tensor product: |ψ〉 =

∣∣θ1〉⊗ ∣∣φ2〉 ?
ii. a general state: |ψ〉 = ψbb |bb〉+ ψbg |bg〉+ ψgb |gb〉+ ψgg |gg〉 ?

(g) If a measurement of the observable F̂
1
, introduced in part (e), is

made on the state

|β〉 = 1√
2

(|bg〉+ |gb〉)

find out the probability of getting the outcome −κ and the final
state. What would your findings be if the initial state was

|β〉 = β1 |bg〉+ β2 |gb〉

where |β1|2 + |β2|2 = 1 ?

2. A particle of mass m is confined in a 3-dimensional box having rectan-
gular dimensions a, b and c. Find out the energy eigenvalues and eigen-
functions. Investigate the degeneracy of the eigenvalues if a = b = c.

(Hint: The vector space where the states of a 3-dimensional particle live
is the tensor product space V x⊗V y⊗V z of the vector spaces associated
with the three spatial dimensions x, y and z. Now for any operator

Â = Âx + Ây + Âz
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where Âx, Ây and Âz are the extensions of operators acting on V x, V y
and V z respectively to V x ⊗ V y ⊗ V z, if the eigenvalue equations

Âx |Ax〉 = Ax |Ax〉
Ây |Ay〉 = Ay |Ay〉
Âz |Az〉 = Az |Az〉

are obeyed respectively in V x, V y and V z (using the same notation to
denote the original operators before extension), then

Â (|Ax〉 |Ay〉 |Az〉) = (Ax +Ay +Ay) (|Ax〉 |Ay〉 |Az〉)

holds in V x ⊗ V y ⊗ V z.)

3. Consider a particle of mass m moving under a potential energy V (x) =
1/2(Kxx

2 +Kyy
2 +Kzz

2) where Kx, Ky and Kz are positive constants.

(a) Solve the eigenvalue problem for the energy of the system by using
separation of variables, and showing that the problem reduces to
three 1-dimensional harmonic oscillators.

(b) In the light of the tensor product space formulation, the system can
be reinterpreted as a composite system of three independent har-
monic oscillators (oscillating with the same frequency). Reproduce
the spectrum and the eigenfunctions of the Hamiltonian.

(c) Obtain an expression for the degeneracy of the energy levels.

4. The hydrogen atom is surely an interacting composite system where a
proton ‘p’ and an electron ‘e’ are bound by the coulomb interaction. Tak-
ing both the centre of mass and relative coordinate sectors into account,
the full energy eigenstates would look like

Ψn,l,m

(
~P
)

= Aψn,l,m (r, θ, φ) exp
(
i

~
~P . ~R

)
Here ~r = ~re − ~rp is the relative coordinate, ~R = (me~re+mp~rp)/(me+mp) is
the centre of mass coordinate, ~P is the corresponding momentum and
A is some constant. Is the state entangled? Argue that we can envisage
the hydrogen atom formally as a non-interacting system of two fictitious
particles of mass M = me + mp and µ = (memp)/(me+mp). What would
you say about the entanglement in this description?

5. Imagine a composite system comprising two spin-half particles16. Also
assume that spin is the only attribute of these particles; they have no
other observables17.

16Refer to the spin-half problem (problem 7) following the section on angular momentum.
17This exercise is a simple example of something that is referred to as addition of angular

momenta in QM.
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(a) Write down the state space for this composite system using the
spin-z basis for both particles.

(b) In the state space of the composite system, define the new observ-
ables

Ĵi = Ĵ1i + Ĵ2i

where i = x, y, z. Here the suffixes, 1 and 2, refer respectively to the
first and the second particles, and all the single particle operators
are assumed to be extended to the state space of the composite
system. Show that these operators obey the angular momentum
commutation relations.

(c) Without using brute force, determine the possible eigenvalues of Ĵz
and identify the corresponding eigenspaces.

(d) Instead of using the CSCO
{
Ĵ2

1 , Ĵ
2
2 , Ĵ1z, Ĵ2z

}
one can use the CSCO{

Ĵ2
1 , Ĵ

2
2 , Ĵ

2, Ĵz

}
18. Construct the transformation matrix connect-

ing the corresponding bases: express the basis elements that are
labelled by the eigenvalues of the operators of the second CSCO in
terms of the basis whose members are labelled by the eigenvalues
of the operators of the first.

6. The electron in the hydrogen atom is a spin-half particle.

(a) What do you imagine will be the state space of the hydrogen atom if
we take electron spin into account. Write down a formal expression
of a wave function in your proposed state space.

(b) Inspect how the degeneracy of the energy eigenvalues will be af-
fected (recall that the previous degeneracy was n2, with n being
the principal quantum number).

Identical Particles
In this section we will finally have occasion to take up a class of quantum

systems that have no classical analogues19. The setting of the discussion to
follow, are composite systems made out of an assembly of elementary build-
ing blocks that we shall call “particles”. Now in nature, as one would perhaps

18Note that here the operators Ĵ2
1 and Ĵ2

2 are actually redundant since both particles are
spin-half.

19The content of this section should, rightfully, belong to the earlier section. But owing
to its importance and generality we have decided to dedicate a full section to it.
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imagine, there exists composite systems that are made out of elementary build-
ing blocks (i.e., particles) that are identical20. It turns out that this aspect of
having exactly similar building blocks have rich and intriguing consequences
that are actually observable. We shall lay down in this section a scheme for
specifying the quantization rules that one must use for such systems.

Classification of identical particles
The first task in the quantization process is the specification of the state

space. It turns out that within the category of systems that we are now con-
sidering, there are two broad subclasses of systems for which state spaces are
intrinsically different. We refer to these subclasses in terms of the particles
that constitute them. These particles are, therefore, called by different names.
Let us describe this in more detail.

The specification of the state space involves two steps:

1. Specification of one particle states: One considers a quantum system
consisting of just one unit of the elementary building block (i.e., a single-
particle system). The members of the state space of a single particle are
called one particle states.

2. Specification of the full state space: One assumes that there exists an
occupation number operator (sometimes referred to, simply, as a
number operator) corresponding to every one particle state. The spec-
tra of these operators consists of nonnegative integers representing the
number of particles occupying the respective one particle states. The
CSCO for the state space is the set of all occupation number operators
associated with all the one particle states corresponding to some basis
of the one particle state space.

There are only two classes of identical particle systems that we see in
nature. Correspondingly, there are only two species of identical particles
that exist in our universe. The state space of the first kind have number
operators whose spectra consists of the two integers, 0 and 1. Such par-
ticles are called Fermions21. The state space of the second kind have
number operators whose spectra are the set of all nonnegative integers.
These particles are called Bosons.

The spectra of the number operators are, of course, constrained by the
total number of particles of the multiparticle system under considera-
tion. However, there exists situations where the total number of particles
are taken to be infinite.

20For a more exhaustive treatment of “identical particles”, see (Cohen-Tannoudji et al.
1977).

21This is just the Pauli’s exclusion principle in our new language.
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Explicit description of the state spaces

Let us consider the one particle states to inhabit a state space spanned
by a basis {|ψi〉 ; i = 1, 2, . . . , g} comprising g one particle states |ψi〉. We also
leave open the possibility that the number g is infinite.

A basis of the multiparticle state space of a system comprising N identi-
cal particles can be taken to be the set of states |n1, n2,, . . . ng〉 where nj is an
eigenvalue of the number operator N̂j corresponding to the j-th one particle
state |ψj〉. The eigenvalue nj represents the number of particles occupying the
state |ψj〉.

• For a system of fermionic particles, the occupation number nj can take
values from the set [0, 1].

• For a system of bosonic particles, the occupation number nj can take
values from the set [0, 1, 2, . . . , N ].

Symmetric and antisymmetric spaces

Although we have, in our description, used the occupation number rep-
resentation to specify the state space of identical particles, we would like to
mention that a different strategy was also possible22.

In this approach, one starts from a one particle state space U , as usual,
having a basis BU = {|ψi〉 ; i = 1, 2, . . . , g} (assumed to be g-dimensional, for
concreteness). To describe a system of N particles, one then constructs, as
an intermediate step, a tensor product space V of the state spaces of the N
particles, pretending that they are distinguishable. The state spaces of all the
N particles are assumed to be identical. A basis BV of the multiparticle state
space V comprises the set of tensor product states

∣∣∣ψ(1)
α , ψ

(2)
β , . . . , ψ

(N)
κ

〉
of

N one particle states
∣∣∣ψ(j)
γ

〉
where the index j denotes the particle, and the

index γ indicates a one particle state belonging to BU . Every state |ψ〉 in V
can then be written as

|ψ〉 =
∑
K

CK

∣∣∣ψ(1)
α ψ

(2)
β , . . . , ψ(N)

κ

〉
where K stands for a particular choice of one particle states belonging to BU ,
in which the particles are put. Thus K is essentially an N -tuple comprising
the values of the indices {α, β, . . . , κ}; each of the indices, in turn, can run
over the set of indices (1, 2, . . . , g) labelling the states in BU .

Now a permutation of the particles in |ψ〉 amounts to permuting the se-
quence of the N integers: (1, 2, . . . , N) in the superscripts of all the basis states
of BV in the expansion of |ψ〉.

22This has actually been the historical route, and it is still very relevant and important.
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The set of states |ψ〉 which remain invariant under an arbitrary permuta-
tion of the particles forms a subspace of V . Such states are called symmetric
states, and the subspace is called the symmetric subspace. We shall de-
note this subspace by S. An example of a symmetric state, for N = 2, is23∣∣∣ψ(1)
i ψ

(2)
j

〉
+
∣∣∣ψ(1)
j ψ

(2)
i

〉
.

The set of states |ψ〉 which become ε |ψ〉 under a permutation, where
ε = +1 or −1 depending on whether the permutation is even or odd, also forms
a subspace. Such states are called antisymmetric states, and the subspace
is called the antisymmetric subspace. We shall denote this subspace by A.
An example of an antisymmetric state, for N = 2, is24

∣∣∣ψ(1)
i ψ

(2)
j

〉
−
∣∣∣ψ(1)
j ψ

(2)
i

〉
.

It turns out that the symmetric subspace is precisely the state space of Bosons,
and the antisymmetric subspace is precisely the state space of Fermions.

One proceeds with the quantization by imposing the constraint that

physical states of identical particles must belong to either the symmetric sub-
space or the antisymmetric subspace.

Sometimes, this is referred to as the symmetrization postulate.

A natural basis for the symmetric and the antisymmetric subspaces can
be constructed as follows:
First of all we observe that every basis vector in BV corresponds to a selection
L = {|ψ1〉 , |ψ2〉 , , . . . , |ψl〉} of l basis vectors in BU that have been populated
(clearly, 1 ≤ l ≤ N). It is possible to assign a set of l occupation numbers
{n1, n2, . . . , nl} with ni denoting the number of particles in state |ψi〉 ∈ L.
More systematically, one can define an ordered set (n1, n2, . . . , ng), which, for
brevity, we denote by the vector −→n , such that we have an occupation number
entry for every one particle state in the basis BU . For the one particle states
that are not in the chosen set L, we simply assign an occupation number
zero. It is clear that a specification of −→n does not uniquely determine a basis
element of BV . There will, in general, be several vectors in BV corresponding
to a given −→n who are related to each other by permutations.

One can construct a vector
∣∣−→n S〉 by

∣∣−→n S〉 = 1
N !
∑
I

PI

∣∣∣ψ(1)
α ψ

(2)
β , . . . , ψ(N)

κ

〉
23Note that, here the states

∣∣∣ψ(i)
k

〉
are arbitrary states in V . They need not correspond

to the basis states in BU . Here we assume i 6= j; the case i = j is trivially symmetric.
24Here again, the states

∣∣∣ψ(i)
k

〉
are arbitrary states in V . Note that For N = 2, there are

no nontrivial even permutations. Here also, we assume i 6= j. Can you see what will happen
if i = j?
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where I = (i1, i2, . . . , iN ) is a permutation of the set (1, 2, . . . , N) and PI is a
permutation operator that acts on a basis vector of BV according to

PI

∣∣∣ψ(1)
α ψ

(2)
β , . . . , ψ(N)

κ

〉
=
∣∣∣ψ(i1)
α ψ

(i2)
β , . . . , ψ(iN )

κ

〉
Note that, in the above formulae, the label ψ(j)

γ designates the single particle
state |ψγ〉 to j-th particle but such single particle states need not be distinct
for different j. It is clear that for every I, the vector PI

∣∣∣ψ(1)
α ψ

(2)
β , . . . , ψ

(N)
κ

〉
corresponds to the same −→n as

∣∣∣ψ(1)
α ψ

(2)
β , . . . , ψ

(N)
κ

〉
. Moreover every basis vec-

tor that corresponds to this −→n is generated by some PI in this way. It is
easy to see that the vector

∣∣−→n S〉 is symmetric25. The above properties justify
the notation

∣∣−→n S〉 (the superscript S stands for symmetric and −→n specifies
the occupation distribution). The set of vectors BS =

{∣∣−→n S〉 |∑g
i=1 ni = N

}
forms a basis of the symmetric subspace S.

For the antisymmetric subspace, the appropriate superposition turns out
to be ∣∣−→n A〉 = 1

N !
∑
I

εIPI

∣∣∣ψ(1)
α ψ

(2)
β , . . . , ψ(N)

κ

〉
where εI = +1 or −1 for even and odd permutations respectively. The intro-
duction of εI ensures that

∣∣−→n A〉 is antisymmetric. It is to be noted that in this
case, unless the number l of one particle states that we choose to populate, is
exactly N , the vector

∣∣−→n A〉 will vanish (i.e., it will become the additive iden-
tity vector, as you shall prove in the problem set shortly). This also means
that the occupation numbers ni are restricted to 0 and 1. The set of vectors
BA =

{∣∣−→n A〉 |∑g
i=1 ni = N

}
forms a basis of the antisymmetric subspace A.

It turns out that the basis vectors
∣∣−→n S〉 and

∣∣−→n A〉 in BS and BA can
be identified with the basis vectors |n1, n2, . . . , ng〉 for Bosons and Fermions
defined earlier in terms of occupation numbers.

Observables of the multiparticle system
The final step in the quantization procedure, namely the specification of

representations of all observables of interest will depend on the specifics of
the actual system under consideration, and therefore, cannot be written down
in general. However, the curious reader will surely wonder how one can even
guess the form of the observables of interest for identical particle systems. Let
us provide a rough idea of how this can be done.

One can imagine in the full tensor product space (that would be used as
the state space of a system of distinguishable particles), operators which can
be constructed by taking clues from a classical system along the lines that
was discussed earlier. These operators would include the extensions of the one

25The factor 1/N ! is for computational convenience, as you will discover in the problem
set.
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particle operators (for different particles) to the full tensor product space.
Now, there exists a subclass of such operators, called symmetric operators,
which remain invariant in form under arbitrary permutation of the particle
index associated with the individual component operators (which are the ex-
tensions of one particle operators associated with the different particles). It
turns out that the symmetric and the antisymmetric subspaces are invariant
under the action of symmetric operators so that the symmetric operators are
well defined in the symmetric and antisymmetric subspaces. In the occupa-
tion number representation, these operators can be transcribed in terms of a
new set of operators which are appropriate to this description. Generally, one
defines ladder operators on the occupation number states |n1, n2,, . . . nr〉, and
then attempts to write the symmetric observables discussed above in terms
of the ladder operators, somewhat along the same lines that was followed for
the harmonic oscillator.

Exchange degeneracy
In the opening paragraph of this section we said that indistinguishabil-

ity has observable consequences, which is why we had to deviate from our
usual tensor product prescription for the quantization of systems of identi-
cal particles. It is finally time to demonstrate this, and justify our choice of
quantization.

Imagine a system of two identical particles whose state space V is con-
structed from the one particle state space U . We shall attempt a quantization
of this system using the tensor product prescription (without symmetrization
or number operators) and see what it implies.

Let us assume that U corresponds to a 2-level system and that B =
{|χ1〉 , |χ2〉} is a basis in U . Consider that the system is in an initial state
such that one of the particles is in a state |χ1〉 and the other particle is in the
state |χ2〉. The most general state |ψ〉 of this kind will be the superposition

|ψ〉 = c1

∣∣∣χ(1)
1

〉 ∣∣∣χ(2)
2

〉
+ c2

∣∣∣χ(1)
2

〉 ∣∣∣χ(2)
1

〉
where ci (i = 1, 2) are complex coefficients, and the superscripts denote the
particles. Now consider a general state |ξ〉 in U . Obviously

|ξ〉 = d1 |χ1〉+ d2 |χ2〉

where d1 and d2 are again complex coefficients. Now consider, in V , a state

|φ〉 =
∣∣∣ξ(1)

〉 ∣∣∣ξ(2)
〉

The probability P [|ψ〉 → |φ〉] of the event |ψ〉 → |φ〉 will then be given by

P [|ψ〉 → |φ〉] = |〈φ|ψ〉|2
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It is easy to check that

P [|ψ〉 → |φ〉] = |d1|2 |d2|2 |c1 + c2|2

Evidently, the probability depends on the coefficients ci. This means that
our description makes a clear distinction between particles 1 and26 2. The
probability depends on the weight of which particle is in which one particle
state in the superposition that constitutes the initial state |ψ〉. This is never
observed in reality. Every preparation of the state |ψ〉 (with one of the particles
in state |χ1〉 and the other particle in state |χ2〉) will always give the same
probability. In other words, it is impossible to prepare two or more distinct
physical states compatible with the condition that one of the particles is in a
state |χ1〉 and the other particle is in the state |χ2〉. In fact, it is precisely for
this reason that the particles are called identical in the first place.

The feature of having different possible physical states (leading to differ-
ent observable outcomes) under exchange of identical particles is known as
exchange degeneracy27.

In the correct description, exchange degeneracy must be absent.

It is not difficult to see that if the initial and final states are appropriately
symmetrized, then the exchange degeneracy is removed.

Problems

1. The state space of a system of N identical particles is constructed from a
one particle state space U having dimension g. Determine the dimension
of the symmetric and antisymmetric state spaces S and A.

2. Show that the permutation operators form a group28.

3. If we have a finite set G = {g1, g2, . . . , gn} that forms a group un-
der a group operation ‘?’, then according to the, so called, rear-
rangement theorem in group theory, gk ? G = G where29 gk ? G =
{gk ? gi ; i = 1, 2, . . . , n}.

26Note that the dependence on d1 and d2 is irrelevant in this context. It merely specifies
the choice of the state |ξ〉 in the one particle state space. In this example, the final state
|φ〉 is invariant under an exchange of the particles 1 and 2.

27In the above discussion the exchange degeneracy was due to the initial state. In the
general case, it can, of course, be present in the final state as well. In fact, this artifact
of the present example (i.e., absence of exchange degeneracy in the final state) somewhat
masks the effect of exchange degeneracy: under an exchange of particles, although we have
a distinct initial state, the final probability remains unaltered.

28The definition of a “group” was introduced in chapter 3 (footnote 20).
29This is easy to prove and you should actually prove it.
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(a) If P̂I are the permutation operators on V (in the notation used in
the text), using the above theorem, show that the operators

Ŝ = 1
N !
∑
I

P̂I and Â = 1
N !
∑
I

εI P̂I

are projection operators30.
(b) Show that Ŝ and Â are actually projections onto the symmetric

and antisymmetric subspaces. For this reason they are called the
symmetrizer and antisymmetrizer respectively.

(c) Prove that the symmetric and antisymmetric subspaces S and A
are orthogonal.

(You will probably need the following fact: A permutation operator
that exchanges exactly two particles keeping the others unaffected
is called a transposition operator or, sometimes, exchange opera-
tor . Every permutation operator can be expressed as a product of
transposition operators. Although the factorization is not unique,
the number of such transposition operator factors is unique for a
given permutation. It is called the parity of the permutation. In a
permutation group, exactly half the elements have even parity and
half have odd parity31.)

(d) For N = 2, write down the form of the projectors Ŝ and Â. Show
that they are also supplementary: Ŝ+ Â = Î (identity operator)32.
Is this true for N > 2?

4. Consider a system of 3 particles, and a set of one particle states B =
{|ψ1〉 , |ψ2〉 , |ψ3〉 , |ψ4〉}.

(a) Write down a Bosonic state if we choose to populate exactly (i)
three (ii) two (iii) one state(s) from the set B.

(b) Show that, if you choose to populate three states, a Fermionic state
is proportional to detF , where F is a matrix defined by33 Fij =∣∣∣ψ(i)
j

〉
(where i denotes the particle, and j the one particle state

assigned to it). What do you expect to see if you choose to populate
less than three states34?

30Check out the section of projection operators in appendix ‘B’. The proofs should make
it clear why the factors 1/N ! have been hanging around.

31This is a general permutation group result and you are invited to prove it as well.
32Another way of saying this is that the state space is a direct sum of the symmetric and

antisymmetric subspaces. Check out appendix ‘B’ for the meaning of “direct sum” if you
haven’t done it as yet.

33Incidentally, detF is called the Slater determinant, and this formula actually holds for
any N .

34You have again stumbled upon Pauli’s exclusion principle!
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(c) Assuming the set B to be orthonormal, normalize the states in part
(a) and (b).

(d) Generalize the argument in part (c) to obtain general expressions
for the normalization constants for the Bosonic and Fermionic basis
vectors

∣∣−→n S〉 and
∣∣−→n A〉 that were identified with basis vectors in

occupation number representation.

5. Construct an argument to convince yourself that symmetrization re-
moves exchange degeneracy.



Appendix A
Probability

Since QM is a probabilistic theory, it is not surprising that the term “prob-
ability” has occurred all over the place in this book. To have a concrete un-
derstanding of the content of this book, a reasonably precise understanding of
probability is essential. Now the word probability comes with various conno-
tations in everyday usage, and there have been attempts to mathematically
formalize and interpret probability in various ways to make it as inclusive of
those connotations as possible. In this appendix, we shall give a brief discus-
sion on the interpretation of probability that is relevant to the standard view
of QM. This is known as the frequentist interpretation and is by far the most
common interpretation used in physics.

Preliminary Background
In this section, we introduce the basic concepts and definitions which are

essential to any discourse on probability.

Experiment An experiment is any process that has associated with it a well
defined set of outcomes.

In the frequentist interpretation, we shall always assume that an experi-
ment is infinitely repeatable.

Simple examples are: 1) tossing a coin, where the outcomes are head or
tail, and 2) rolling a die, where the outcomes are the pips. It is to be noted that
what constitutes an outcome depends on the context and the problem under
study. The outcomes need only be distinguished and characterized by what
is of interest to the experimenter. For example, we can imagine a shooting
experiment designed to study the aim of the shooter. We would consider the
outcomes to be the distances from the bulls eye where the bullet hits the
target board. There might be other aspects of the output that also vary from
one experiment to another (e.g., the depth of the dent produced by the bullet)
which are not relevant.

207
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Sample Space The set of all possible outcomes of an experiment is called
the sample space of the experiment.

The sample space for the “coin tossing” experiment would be the set:
{head, tail}. Similarly, for the “die rolling” experiment the sample space would
be the set of pips: {1, 2, 3, 4, 5, 6}. If we imagine an experiment where two dice
are rolled simultaneously, we could represent the sample space by the set of
ordered pairs {(1, 1) , (1, 2) , . . . , (6, 6)} where the first entry of an ordered pair
is the outcome from the first die and the second entry is that from the second.

Event Space1 An event is characterized by a subset of the sample space.
The set of all possible events is referred to as the event space.

For a discrete sample space, the set of all subsets, called the power set, is
thus an event space containing all possible events.

If A and B are two events then the event characterized by the intersection
set A ∩B is said to be a conjunction of the two events and is referred to as
A and B. The event characterized by the union A∪B is called a disjunction
of A and B and the event is referred to as A or B .

Two events A and B are mutually exclusive when the corresponding
subsets have a null intersection: A ∩B = φ.

For an event A, its negation is characterized by the complement Ā, and
it is referred to as not A.

If a subset of the sample space is a singleton (i.e., it has just one element),
it characterizes a simple or an elementary event. A non-empty subset that
is not a singleton characterizes a compound or a non-elementary event.
Thus, every possible outcome of an experiment corresponds to a simple event.
On the other hand, the occurrence of one or the other of a well defined subset
of outcomes corresponds to a compound event that is characterized by the
subset. So a compound event is one which can happen in several different
ways, where each way corresponds to an elementary event.

Let us illustrate these definitions with examples. In the experiment where
two dice are rolled, a particular outcome, say (2, 5), corresponds to a sim-
ple event. If, for some reason, we are interested in the situation where the
outcomes of the two die rolls add up to four, then we are talking about a com-
pound event which would be characterized by the subset {(1, 3) , (2, 2) , (3, 1)}
of the sample space. In the single die rolling experiment, a pip {3} is a simple
event while if we talk about the event that the “pips must be even”, it would

1What we discuss here is not the most general scenario. Please see the last section for a
more complete definition.
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be a compound event described by the subset {2, 4, 6}. The event that the pip
must be “even and less than 5” would be the set {2, 4}, which is the intersection
{2, 4, 6}∩{1, 2, 3, 4}. Again, if we consider the event that pip must be “even or
less than 5”, it would be described by the set {1, 2, 3, 4, 6}, which is given by
the union {2, 4, 6}∪{1, 2, 3, 4}. The set of events {“pip is even”, “pip is odd”}
are mutually exclusive: {2, 4, 6} ∩ {1, 3, 5} = φ.

Frequentist Interpretation
Now we are in a position to introduce the definition of probability. A prob-

ability will always be associated with an event which in turn is tied to an
experiment.

Probability of an event The ratio of the number of times that an event
occurs to the total number of experiments, in the limit when the experiment
is repeated an infinite number of times, is defined to be the probability of the
event.

If nA denotes the number of times that an event A occurs, andN represents
the total number of experiments, then the probability P [A] is defined by

P [A] = lim
N→∞

nA
N

Thus, the probability of an event in the frequentist view is given by the fre-
quency of occurrence of the event in the long run.

The probability P [x] of the simple events {x} where x is an element of the
sample space, defines what is known as the probability mass function2.
Note that this function is defined on the sample space and not on the event
space. The probability of an arbitrary event P [A] is given in terms of the
probability mass function as

P [A] =
∑
x∈A

P [x]

2Remember, that this is in the discrete case. In the case of an uncountable sample space,
it is not even necessary that the probability of an elementary event be defined. It is only
required that probabilities can be assigned to subsets of the sample space that constitute
the event space.
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Properties
We now list a set of properties that follow easily from the above definition

of probability.

1. The probability of any event A lies between zero and one:

0 ≤ P [A] ≤ 1

2. The total probability P [S], which is the probability that some outcome
in the sample space S will occur, is unity.

P [S] =
∑
x∈S

P [x] = 1

3. The probability of a compound event comprising a countable collection
(possibly infinite) of mutually exclusive events, characterized by disjoint
subsets Ai (where i = 1, 2, . . . n with the possibility n → ∞ being al-
lowed) of the event space, is equal to the sum of the probabilities of the
disjoint events3 :

P [∪ni=1Ai] =
n∑
i=1

P [Ai]

4. The probability P
[
Ā
]
of the event Ā, that some event characterized by

A does not occur, is given by

P
[
Ā
]

= 1− P [A]

Here Ā is the complement of A.

5. The probability P [A ∪B] of a compound event A∪B, that an event A
or an event B occurs, is given by

P [A ∪B] = P [A] + P [B]− P [A ∩B]

Random variables
A random variable provides a representation of the sample space in

terms of real numbers. Formally, the random variable is a function from the
sample space to the set of real numbers4:

X : S −→ R

The range of the random variable is often called the state space.
3More precisely, the requirement is pairwise disjointness. The subtle difference between

pairwise disjointness and ordinary disjointness can be ignored for most practical purposes.
4More generally, it is a function to a measurable space. For our purpose, it will be

adequate to restrict the definition to the special case of real numbers.
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It is often the case that one is interested in the statistics and probability of
various quantities, which are all dependent on (i.e., functions of) a few basic
quantities represented by a few basic variables, often called coordinates. In
this situation it is clearly uneconomical and unnecessary to specify the proba-
bilities of all the different quantities. It is adequate to specify the probability
of the basic variables. It then makes sense to call the set from which the basic
variables takes their values, the state space5. In most cases of interest, the
basic variables are real valued.

In general, it might be necessary to use more than one real number to
represent a point in the sample space. In this case, we call the random variable
multivariate (as opposed to univariate), and the random variable is then
defined by a function

X : S −→ Rn

The value of this function, the multivariate random variable is a real n-tuple,
and it is often called a random vector .

To give an example of random variables, we can imagine an experiment
involving darts thrown at a dart board. The sample space would naturally be
the set of points on the dart board. A natural choice of the random vector
in this case could be the coordinates (x, y) with respect to a 2-dimensional
Cartesian coordinate system set up on the dart board.

For a discrete sample space, the random variable can be trivially chosen to
be any appropriate set of integers. It is seldom necessary to explicitly invoke
the random variable for discrete sample spaces.

Once a random variable has been chosen to represent the sample space,
for all practical purposes, one can forget about the underlying sample space.

For the rest of this section we shall continue to denote the sample space
by S and the associated random variable by X.

Probability density function
It is obvious, that when the sample space is uncountable, it is impossible

to assign a probability function to the event space through the probability
mass function (since a sum can no longer be performed on an uncountable
set). As one would imagine, one needs an integral in such cases. To this end
one often uses a probability density function.

A probability density function (PDF) p (x) is a continuous, nonneg-
ative function defined on the codomain R of the random variable, satisfying
the condition ∫ +∞

−∞
p (x) dx = 1

5For example, in classical mechanics, the dynamical variables are all functions of the
positions and momenta of the particles that make up the system, collectively called the
state of the system.
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The PDF allows one to assign probabilities to intervals (subsets) A = [a, b]
of R:

P (a ≤ x ≤ b) =
∫ b

a

p (x) dx

Now the events A can be defined as preimages of intervals of R with respect
to the random variable function X:

A = {s ∈ S : X (s) ∈ A}

Hence, the probability P [A] associated with the event A is defined by

P [A] = P (A)

Thus P (A) can be used as a shorthand for expressing the probability of the
event A:

P (A) ≡ P [{s ∈ S : X (s) ∈ A}]

Cumulative distribution function
One often works with what is known as a cumulative distribution function

instead of the density function.

A cumulative distribution function (CDF) PX (x) is a function de-
fined on the range R of a random variableX such that the value of the function
at a point x ∈ R is the probability of the event that the value of the random
variable is not greater than x:

PX (x) = P (X ≤ x)

One can associate probabilities with half open intervals (a, b] in the range
of the random variable using cumulative functions

P (a < x ≤ b) = PX (b)− PX (a)

A CDF can be associated with a PDF as

PX (x) =
∫ x

−∞
p (t) dt

and conversely, the PDF is given in terms of the CDF by the derivative:

p (x) = dPX (x)
dx

Since for a continuous random variable, the probability at any particular
point is zero, it follows that

P (a < x ≤ b) = P (a ≤ x ≤ b) ≡ P [a, b]
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Any CDF is a right-continuous, increasing function defined on R satisfying
the conditions6

1. lim
x→∞

PX (x) −→ 1

2. lim
x→−∞

PX (x) −→ 0

Unlike a PDF, a CDF may be easily defined also for a discrete random variable
using the probability mass function (in this case defined on the range of the
random variable). If the random variable takes values from a set {x1, x2, . . .},
then the CDF will be given by

PX (x) =
∑
xi≤x

P (X = xi) =
∑
xi≤x

p (xi)

Here p (xi) is the probability mass function.
In the literature the usage of the term probability distribution is a bit

ambiguous. Most of the time, it is used to refer to the probability density func-
tions, but, often, it is also used to refer to cumulative distribution functions.
Sometimes, it is also used as a blanket term that includes probability mass
functions. It has to be understood from the context how the term is being
used.

Conditional probability
The conditional probability P (A |B) is the probability for an event A

to occur given that another event B has occurred. It is defined by

P (A |B) = P (A ∩B)
P (B)

It is worth remarking that although the conditional probability is defined
in terms of probabilities of certain events in the event space, there is no event
(subset of sample space) in the event space that could be called a conditional
event to which the conditional probability can be associated. If one insists,
the conditional event ‘A |B’ can be interpreted as an event in a redefined
(restricted) sample space which is the event B (see Figure A.1).

To see an example of conditional probability, let us go back to our die
rolling experiment and assume that all the pips have equal likelihood. The
conditional probability that a die roll yields {2} given that the outcome is
even, is (1/3). With the possibilities restricted to even outcomes {2, 4, 6}, the
event {2} is just one of the three equally likely possibilities. Using the above
formula

P (2|even) = P (2 ∩ even)
P (even) = 1/6

1/2 = 1
3

6It turns out that these conditions are also sufficient for a function to qualify as a CDF.
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A

S

A ∩ B

P (B|A) = A∩B
A

P (A|B) = A∩B
B

B

FIGURE A.1: Conditional Probability: Observe that there is no subset of the
sample space S that can be assigned to a conditional event. However, the intersection
A ∩ B can be taken to be the conditional event (A|B) (or (B|A)) if we imagine a
restricted sample space B (or A). Also note that, in general, P (A|B) 6= P (B|A).

It is easy to imagine innumerable real life scenarios where conditional prob-
abilities are relevant. For example, in an outbreak of an epidemic, a clinician
may be interested in the probability that a person who is known to have con-
tracted the disease will actually test positive under a certain detection test.
This would give the reliability of the test indicating the propensity of the
test to produce false negatives. On the other hand a patient, who has tested
positive, could be interested to know how likely it is that she has actually
contracted the disease given that she has got a positive test result. This will
depend on the propensity of the test to produce false positives.

It should be noted that conditional probability is clearly not symmetric:
P (B |A) 6= P (A |B). In the above example, it could be that the test under
question detects a biomarker that is only sometimes elevated due to the dis-
ease but it is almost never elevated in absence of the disease. Such a marker
will yield high false negatives but very few false positives. Consequently, the
probability for a person having the disease to test positive may not be very
high, but the probability for a person who has tested positive to actually have
the disease will be high.

It is easy to see, from the definition of conditional probability, that it can
be inverted. We have

P (B |A)P (A) = P (A ∩B) = P (A |B)P (B)

which implies
P (A |B) = P (B |A)P (A)

P (B)
This is known as Bayes’ formula and it constitutes the basis of Bayesian



Probability 215

statistics. In Bayesian statistics P (A) is called the prior probability, P (B |A)
is called the likelihood and P (A |B) is called the posterior. The denominator
on the right hand side P (B) is often called the marginal probability.

Independent events
The concept of conditional probability naturally leads to the notion of

independent events. Two events A and B are said to be independent events
when the conditional probability for A given B is the same as the absolute
probability of A:

P (A) = P (A |B)
That is, the probability of A is unaffected by whether or not B occurs. Math-
ematically this is equivalent to the condition:

P (A ∩B) = P (A)P (B)

Evidently, the definition is symmetric so that, if A is independent of B, then
B is also independent of A.

One should note that up until the introduction of conditional events, all
events that we talked about (e.g., A and B, A or B, not A, mutually exclusive
events, etc.) could be defined in terms of the elements of the event space.
However, we had to invoke the concept of probability to introduce the definition
of conditional events and the related idea of independent events.

Shortcomings of the frequentist view
The frequentist view of probability does not include many scenarios within

its scope where the notion of probability or chance is still very much applicable.
For example, if we wish to know the likelihood that “it will rain tomorrow”,
the question cannot even be posed within the frequentist interpretation of
probability. Since there is just one tomorrow, the experiment is not repeat-
able. Indeed, there are myriads of instances where we talk of chance but the
experiment in question cannot even be repeated once, let alone the possibility
of repeating infinite times.

Since it is impossible, even in theory, to repeat an experiment an infinite
number of times, and the frequentist interpretation does not give us any clue
as to how high the number of experiments must be before the probability
can be objectively inferred, the issue of convergence remains unsettled. There
is always the possibility that at some large N (where N is the number of
experiments), the frequency appears to converge, then it drifts away before
finally damping to its supposed final value. One might imagine that it could
be possible to incorporate, in the definition of probability, the fact that for
finite N , the probability will be given up to some error with respect to the
true probability. However, this will have the problem that any definition of
error must invariably use some notion of probability leading to a circularity
in the definition of probability!
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Alternative Interpretations
There are two broad categories of interpretations called physical and ev-

idential probability. The frequentist interpretation, that we have discussed,
belongs to the “physical” probability category. Some of the other commonly
used interpretations of probability are the Classical and Bayesian views. The
classical view, again, belongs to the class of physical probability while the
Bayesian view is the main candidate representing evidential probability inter-
pretation.

In the classical view one conceives a class of equally likely base events
(somewhat like the elementary events we discussed earlier) such that every
other event can be associated with a number of favourable base events (which
lead to it). The probability of an event is then defined to be the ratio of
the number of favourable base events to the total number of possible base
events. This, rather simplistic, view of probability obviously suffers from the
disadvantage that it is limited only to those scenarios which admit an unbiased
set of base events, which is quite often not the case in real life.

In the Bayesian approach, one adopts the view that probability is a degree
of belief that a certain event will occur (or that a certain fact is true, etc.).
These degrees of beliefs are constrained by consistency requirements (laws
of probability7). The Bayesian method lays down rules on how the beliefs
should be updated based on subsequently acquired data. Briefly, the method
comprises the following:
A prior probability P (H) for the hypothesis H under question is first gen-
erated based on available information. Then, in the light of subsequently
acquired data D, the prior probability is updated by making use of Bayes’
formula:

P (H |D) = P (D |H)P (H)
P (D)

to generate what is called the posterior probability P (H |D). The step is
then repeated by using the posterior as a prior. In this way, by repeated use of
Bayes’ formula, the posterior is updated to yield increasingly improved degrees
of belief. The updation scheme has to make use of some process (mathematical
model) that provides a likelihood for the acquired evidence (i.e., the data) to
have been generated from the hypothesis under question. This likelihood is
the conditional probability P (D |H).

The main criticism held by the opponents of this view is that it is inherently
subjective8.

7These have been discussed in the next section.
8There is, however, a variant of the Bayesian interpretation called the objective Bayesian

approach. As the name suggests, this view asserts that even Bayesian probabilities can be
made objective. Essentially it extends the underlying logic system to accomplish this. In
ordinary propositional logic, a proposition can either be true or false. In the generalized
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Formal Description9

Although there is considerable amount of disagreement among experts as
to what should be the correct interpretation of probability, people more or
less agree on how a general probability should behave irrespective of the in-
terpretation. These properties, which are shared by all the interpretations of
probability, have been abstracted and generalized to develop a formal defini-
tion of probability.

The formal description of probability is not tied to any particular inter-
pretation. It is a mathematical structure that has been motivated by the
important properties of probability10.

The formal description of probability defines a probability space comprising
a sample space, an event space and a probability function11.

Sample space
Since the formal description of probability is no longer attached to an in-

terpretation, the sample space is no longer defined as the set of outcomes of
some experiment (although this remains the underlying intended interpreta-
tion). Formally,

the sample space is defined as a non-empty set.

Event space
In the first section, we had defined the event space to be the power set of

the sample space. Actually, it is neither essential nor possible, in general, to
do this.

When the sample space forms a continuum (and is therefore uncountable),
it is in general impossible to use the power set as an event space. To give an
example, let us return to the “shooting” experiment. We could consider the
sample space to be the set of real numbers that stand for the distance of the
point from the bulls eye where the bullet hits the target board. If 60 cm be
the radius of the target board, then the sample space S could be imagined

system, a proposition is allowed to take any value in the range [0, 1]. The aim of objectivists
is to lay out a prescription for predicting the degrees of belief which would be so constrained
that scope of subjectivity will be completely eliminated. Even a robot will come up with
the same expectation.

9This section may be omitted on first reading. However, it provides a concrete example of
a formal theory (without attached interpretations) that was introduced in the first chapter.

10The first major formalization was provided by Russian mathematician, Andrey Kol-
mogorov in 1933.

11More technically, called a probability measure. Formally, a probability is a measure and
a probability space is a measurable space of measure one.
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to be the real interval [0, 60]. An interval [10, 15] would comprise a subset
that would qualify as an event in the event space. However, if we consider
the subset of all irrationals in the interval [10, 15], that would not qualify as
an event. It turns out that for such a set, one cannot associate a notion of
size (in the mathematician’s jargon, such a set is not measurable). This has
the consequence that it is impossible to assign a probability (to be defined in
the next section) to such subsets. In fact, it is also impossible, in general, to
assign nonzero probabilities to arbitrary singletons of such a sample space.

In different contexts and scenarios, we may not be interested in all events
associated with all possible subsets of the sample space. For example, in the
die rolling experiment, if for some reason, the events of interest are the ones for
which the pips belong to disjoint pairs of consecutive integers, then a perfectly
acceptable event space would be

{{1, 2} , {3, 4} , {5, 6} , {1, 2, 3, 4} , {1, 2, 5, 6} , {3, 4, 5, 6} , S, φ}

Here S is the full sample space {1, 2, 3, 4, 5, 6} and φ denotes the empty set.
We observe that for any set of events in this space, their conjunction and
disjunction is also a member of the space. We also note that, for every event
in the space, its negation is also a member of the space. Thus, in order to
include events like {{1, 2} or {3, 4}}, the four-outcome sets such as {1, 2, 3, 4}
have been included. For any set of events, say {{1, 2, 3, 4} , {3, 4, 5, 6}},
the event {{1, 2, 3, 4} and {3, 4, 5, 6}}, which is {3, 4}, is also a member of
the event space. The presence of the empty set φ allows for the description
of the conjunction of mutually exclusive events like {{1, 2} and {3, 4}}. For
every event, say {1, 2}, in the event space, {not {1, 2}} is also a member of the
space; to wit: {3, 4, 5, 6}. We see that the full sample space S is also a member
of the event space. This allows us to talk about the event that “something will
occur”. The null set ensures that {not S} would also be describable.

An example of an event space which is even smaller than the above example
is the set {{1, 3, 5} , {2, 4, 6} , S, φ}, which is appropriate to a situation in which
one is interested only in the fact whether pips are even or odd. It is easy to
see that this event space also has all the virtues that the earlier example has.

These properties, actually, sum up the qualities we want a general event
space to possess. The set of desirable properties of a class of subsets of the
sample space to qualify as an event space lead to the formal definition of the
event space12:

If S is the sample space and E is a set of subsets of S such that

1. the sample space S belongs to the set E,

2. if a subset A is a member of E, then its complement S − A is also a
member of E,

12It is easy to see that for a discrete sample space, the power set fulfills all these properties
for an event space. In fact, in this case, the power set provides the most detailed description
of events for a given sample space.
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3. if the subsets Ai belong to E for i = 1, 2, . . . , n, then their countable
union (∪ni=1Ai) also belongs to E,

then the set E qualifies as an event space13.

It is not difficult to see why we have not listed the conditions that the
event space should include all possible intersections and the empty set. It is
because, these can be derived from the above properties14.

Probability Measure
The first three properties of probability mentioned in the context of the fre-

quentist interpretation in the previous section turn out to be an adequate char-
acterization of generalized probability (with the first property slightly weak-
ened to require non-negativity only). Technically, it is called a probability
measure:

If S is a sample space, and E is an associated event space, then the prob-
ability P is a function P : E −→ R such that

1. the function P is nonnegative: for all events A in E,

P [A] ≥ 0

2. the total probability is unity:

P [S] = 1

3. the probability function is countably additive:

P [∪ni=1Ai] =
n∑
i=1

P [Ai]

where Ai are disjoint subsets of 15 E.

All the other properties that were listed for the frequentist definition of prob-
ability, follow from these properties.

We have, in this appendix, mentioned the frequentist interpretation, the
classical interpretation and the Bayesian interpretation of probability. The

13In mathematical jargon, one says that the event space is required to include the sample
space, and it must be closed under compliments and countable unions. Such a set (of subsets)
is said to form a σ − algebra.

14One merely needs to use De Morgan’s rules in conjunction with the closure under
complement rule (the second property).

15As we have mentioned before, the requirement is actually pairwise disjointness, but we
shall not bother about the subtle difference here.
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defining properties of probability, listed above, are respected by all these dif-
ferent definitions.

For the frequentist definition, we have already listed the properties earlier.
For the classical definition, the probability is again defined as a ratio, and it
is extremely straightforward to prove that the above properties are obeyed.
In the Bayesian interpretation, it is a requirement upon the probability source
that generates the degrees of belief to produce probabilities that respect the
above properties. Since the Bayesian updations use conditional probabilities
as likelihoods, and yield conditional probabilities as posteriors, it is natural to
ask whether the conditional probabilities (which constitute the key ingredient
of the Bayesian methodology) have the desired properties of a probability
measure. Indeed, it is not difficult to see that, given an event space, for every
event A with probability P (A) 6= 0, one can define a function P (B) by

P (B) = P (A ∩B)
P (A) ≡ P (B |A)

which satisfies all the required properties of a probability.



Appendix B
Linear Algebra

In this appendix, we fill in the proofs of many of the theorems that have been
used in the text. Some theorems (without proofs) and some additional con-
tent important for quantum mechanics have also been included. In particular,
linear functionals and dual spaces have been included to introduce the bra
vector and the bra-ket notation. Although this has not been used in the text,
this powerful language is standard in the quantum mechanics literature. Up
until the point the bra-ket notation is introduced we have, however, used the
traditional notation for vectors.

Vector Space
We shall denote the multiplication of two scalars, a and b, simply by jux-

taposition ab, and multiplication of a vector −→α by a scalar a by a−→α . The
addition of vectors, −→α and

−→
β , and the addition of scalars, a and b, will both

be denoted by the same symbol + as −→α +
−→
β and a + b respectively. It will

always be clear from the context (i.e., the position of the operator with respect
to the operands), which operation is intended. The additive identity in V will
be denoted by−→0 .

Theorem: For all ~α ∈ V , (−1)−→α = −−→α .

Theorem: For all a ∈ C and ~α ∈ V , a−→α = ~0 if and only if a = 0 or −→α = ~0.

Theorem: If S is a subset of a vector space V , and if addition and scalar
multiplication are closed in S, that is, if for all −→α ,

−→
β ∈ S, and for all a ∈ F ,

−→α +
−→
β ∈ S and a−→α ∈ S, then S is a subspace of V .

Theorem: The intersection of subspaces is a subspace.

It is easy to see that the union of two subspaces is not in general a subspace.

Theorem (Trivial Subspace): The subset
{
~0
}
of a vector space comprising

the additive identity ~0 only, forms a subspace. This subspace is called the
trivial subspace.

221
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Linear independence, completeness and basis

Theorem (Replacement Theorem): If B = {−→αi ; i = 1, 2, . . . , n} is a basis
in V , and if

−→
β =

∑n
i=1 bi

−→αi is some linear combination with scalars bi such
that bk 6= 0 for some k, then the set

B′ =
{−→α1,

−→α2, . . . ,
−→α k−1,

−→
β ,−→α k+1, . . . ,

−→αn
}

is also a basis in V .

Proof (completeness): Let
−→
β =

∑n
i=1 bi

−→αi where bk 6= 0. Then (assuming
all sums to run from 1 to n)

bk
−→α k =

−→
β −

∑
j 6=k

bj
−→α j

or −→α k = b−1
k

−→
β −

∑
j 6=k

b−1
k bj
−→α j

Now since B is a basis, every −→γ ∈ V can be written as a linear combination

−→γ =
∑
i

ci
−→α i

=
∑
i 6=k

ci
−→α i + ck

−→α k

=
∑
i 6=k

ci
−→α i + ck

b−1
k

−→
β −

∑
i 6=k

b−1
k bi
−→α i


=

∑
i 6=k

(
ci − b−1

k bi
)−→α i + ckb

−1
k

−→
β

which proves the completeness of B′.

Proof (linear independence): Let us assume that (again with all sums
running from 1 to n) ∑

i 6=k
ei
−→α i + f

−→
β = 0

∑
i 6=k

ei
−→α i + f

(
n∑
i=1

bi
−→αi

)
= 0

∑
i6=k

(ei + f bi)−→α i + f bk
−→α k = 0

Now by hypothesis bk 6= 0. Hence from the linear independence of B, it follows
that f = 0 and ei + f bi = 0 for i 6= k. But since f = 0 we have ei = 0 for
i 6= k. Therefore B′ is a linearly independent set.
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Theorem: If a set B is a basis in V , then every linearly independent set in
V having the same number of elements as B will also constitute a basis.

Outline of proof: One merely needs to, iteratively, apply the replacement
theorem to the given basis B, and the given set, say I, of linearly independent
vectors until this set is exhausted, and all members of the basis B have been
replaced by members of I. Let us call the basis after m replacements Bm.
It may seem that the process mentioned above can fail if at some stage the
only nonzero expansion coefficients of a vector belonging to I − Bk−1, when
expanded in terms of the members of Bk−1, are the coefficients of the already
replaced elements of B (i.e., members of I ∩ Bk−1). In this case one can
only replace an already replaced member of I, and not a hitherto unreplaced
member of B. However, it is easy to convince oneself that this scenario will
never actually arise owing to the linear independence of I.

Theorem: Every basis in a vector space has the same number of elements.

Outline of proof: This is a straightforward consequence of the previous
theorem. Clearly, if we add an element into a set which is already a basis,
it will cease to be independent, and if we exclude an element from a basis it
will cease to be complete. Now if B1 and B2 are two bases such that one of
them, say B1, is larger than the other basis B2, then one can replace B2 by
a proper subset B′1 of B1 to form a new basis B′2 = B′1. This implies B1 is
not independent (since members of B1 −B′1 can be expressed in terms of the
members of B′1). Thus we arrive at a contradiction.

This proves that the size of a basis is a characteristic of the vector space.

Theorem: Bases are the largest linearly independent sets in a vector space.

Outline of proof: Let B be a basis and let there exist a linearly independent
set L larger than B. Any subset L′ ⊂ L having the same cardinality as B can
completely replace B to form a basis. This means L can no longer be linearly
independent leading to a contradiction.

Theorem: Bases are the smallest complete sets in a vector space.

Outline of proof: Let B be a basis and let there exist a complete set C
smaller than B. There will always exist a subset C ′ ⊆ C which will be complete
and linearly independent so that it forms a basis1. Since C ′ must be smaller
than B, this is impossible.

Representation

Definition (Homomorphisms and Isomorphisms of Vector Spaces):
If {V,+, ?} and {W,⊕,�} are two vector spaces, and f : V →W is a function

1If C is linearly independent C′ = C otherwise C′ ⊂ C.
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under which2

c1~v1 + c2~v2 7→ c1 ~w1 + c2 ~w2

where ~w1 = f (~v1) and ~w2 = f (~v2) for all ~v1, ~v2 ∈ V , and where c1, c2 are
arbitrary scalars, then the function f is called a homomorphism. When the
mapping f is one-to-one, it is called an isomorphism. The spaces V and W
are referred to as being homomorphic or isomorphic to each other depending
on whether f is a homomorphism or an isomorphism.

A homomorphism or isomorphism is, for obvious reason, called a structure
preserving map3.

Theorem: The vector space Cn is isomorphic to every complex vector space
of dimension n.

Theorem (change of basis): If two n-tuples [β] = {bi ; i = 1, 2, . . . , n} and
[β]′ = {b′i ; i = 1, 2, . . . , n} are the representations of a vector

−→
β ∈ V with re-

spect to two bases, B = {−→α i ; i = 1, 2, . . . , n} and B′ = {−→α ′i ; i = 1, 2, . . . , n},
then the coordinates are related by

b′i =
n∑
j=1

Tijbj

where the Tij are given by

−→α j =
n∑
i=1

Tij
−→α ′i

Clearly, the coefficients Tij can be looked upon as the elements of a matrix
T , so that the relations connecting the coordinates of

−→
β with respect to the

bases B and B′ can be written as a matrix relation

[β]′ = T [β]

We say that the matrix T effects the transformation of coordinates under the
change of basis B to B′. It is thus, often, referred to as the transformation
matrix.

Theorem: A transformation matrix is necessarily invertible.

2For those unfamiliar, the symbol ‘ 7→’ means “maps to”.
3The idea of a structure preserving map is a profoundly important concept, and it is

not restricted to vector spaces. It is used on various algebraic structures and other places
in mathematics.
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Theorem: If B = {−→α i ; i = 1, 2, . . . , n} is a linearly independent set in
V , and T is some n × n invertible matrix, then the set of vectors B′ =
{−→α ′i; i = 1, 2, . . . , n}, where

−→α ′j =
n∑
i=1

T−1
ij
−→α i

constitutes a linearly independent set in V .

Thus, if B = {−→α i ; i = 1, 2, . . . , n} is a basis in an n-dimensional vector space
V , then every n×n invertible matrix T serves as a transformation matrix that
effects a change of basis to a new basis B′ = {−→α ′i ; i = 1, 2, . . . , n}, where the
basis vectors −→α ′i ∈ B′ are given by the above equation.

Inner Product Space
Linear functionals and dual space

Definition (Linear Functional): A linear functional is a mapping f from
a vector space V to the set of scalars C:

f : V −→ C

which obeys

f
(−→α +

−→
β
)

= f (−→α ) + f
(−→
β
)

f (a−→α ) = af (−→α )

for all −→α ,
−→
β ∈ V and for all a ∈ C.

The above two properties imply that for all −→α ,
−→
β ∈ V and for all a, b ∈ C

f
(
a−→α + b

−→
β
)

= af (−→α ) + bf
(−→
β
)

that is, f depends linearly on its arguments. This gives the linear functional
its name.

Theorem: Every vector −→α ∈ V can be associated with a linear functional
f−→α whose action on an arbitrary vector

−→
β ∈ V is defined to be equal to the

inner product
(−→α ,−→β ):

f−→α

(−→
β
)

=
(−→α ,−→β )
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Theorem (converse): Every linear functional f
(−→
β
)
defined on an inner

product space V can be associated with a unique vector −→α ∈ V such that

f
(−→
β
)

=
(−→α ,−→β )

where
(−→α ,−→β ) is an appropriately defined inner product.

Bra-Ket Notation: So far, in this appendix, we have denoted vectors by
Greek alphabets with arrows (e.g., −→α ,

−→
β , etc.), inner products by ordered pair

of vectors (e.g.,
(−→α ,−→β ) etc.), and linear functionals corresponding to vectors

by subscripted Latin alphabet (e.g., f−→α , f−→β , etc.). We shall now move to a
new notation: we shall denote a vector −→α by |α〉 and call it a ket. The linear
functional corresponding to the ket |α〉 will now be denoted by 〈α|, and will
be called a bra. Finally, the inner product

(−→α ,−→β ), which by the theorem
stated above, is equal to the action of the bra 〈α| on the ket |β〉 will be called
the braket and denoted by 〈α|β〉4.

Definition (Addition and Scalar Multiplication on Bras): Let V ∗ be
the set of all bras acting on V . We consider two functions,

⊕ : V ∗ × V ∗ −→ V ∗

and � : C× V ∗ −→ V ∗

called addition of bras, and multiplication of a bra by a scalar respectively.
Their respective values will be denoted by 〈α|⊕〈β| and c�〈α| for 〈α| , 〈β| ∈ V ∗
and c ∈ F . The functions ⊕ and � are defined by

(〈α| ⊕ 〈β|) |γ〉 = 〈α|γ〉+ 〈β|γ〉
and (c� 〈α|) |γ〉 = c 〈α|γ〉

for all |γ〉 ∈ V and for all c ∈ C.

We can use the simpler notations: 〈α|⊕ 〈β| ≡ 〈α|+ 〈β| and c�〈α| ≡ c 〈α|.
It will be clear from the operands which function is intended (i.e., whether
the + refers to addition of scalars, kets or bras).

Theorem (Dual Space): The space V ∗ of bras endowed with addition and
multiplication by a scalar forms a vector space. The vector space V ∗ is called
the dual of the vector space V .

The ket |α〉 ∈ V and the corresponding bra 〈α| ∈ V ∗ are called conjugates of
each other.

4This delightful piece of notation is due to P.A.M. Dirac.
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A vector space V can also be looked upon as the dual of its dual space V ∗.
To see this we have to consider every ket |α〉 ∈ V as a linear functional acting
on the space of bras V ∗ such that the action of ket |α〉 on a bra 〈β| is defined
to be equal to the inner product 〈β|α〉.

Theorem: The bra corresponding to the ket |α〉+ |β〉 is given by 〈α|+ 〈β| .

Theorem: The bra corresponding to the ket c |α〉 is given by c∗ 〈α|. Here c
and c∗ are complex numbers that are complex conjugates of each other.

The above theorems taken together are equivalent to the following statement:
If {|αi〉 ; i = 1, 2, . . . , n} is a set of kets, then the bra corresponding to the
linear combination of kets

∑n
i=1 ci |αi〉 is given by

∑n
i=1 c

∗
i 〈αi|.

Theorem (Dual Basis): If a set B = {|αi〉 ; i = 1, 2, . . . , n} forms a basis
in V, then the set B∗ = {〈αi| ; i = 1, 2, . . . , n} forms a basis in V ∗. The basis
B∗ is called the dual basis of B.

Theorem (representation of bras in dual basis): If the set of vectors
B = {|αi〉 ; i = 1, 2, . . . , n} be a basis in V , and [β] ≡ (bi ; i = 1, 2, . . . , n)
be the representation of a ket |β〉 ∈ V , then the representation of the cor-
responding bra 〈β| ∈ V ∗ in the dual basis B∗ = {〈αi| ; i = 1, 2, . . . , n} is
[β∗] ≡ (b∗i ; i = 1, 2, . . . , n).

It is customary to write the representations of the bra vectors as row ma-
trices. To indicate a bra vector in a representation, we shall use a superscript
‘∗’ on the alphabet denoting the vector and enclose it in a square bracket as
usual.

Theorem (change of dual basis): If T is a transformation matrix that
effects the transformation of coordinates of kets in V from a basis B to B′,
then the transformation matrix that effects the transformation of coordinates
of the bras in V ∗ from the dual basis B∗ to B′∗ is the Hermitian conjugate
T † of the matrix T :

[β∗]′ = [β∗] T †

for all 〈β| ∈ V ∗.

Orthonormal bases

Theorem (Gram-Schmidt Orthogonalization): If B is a linearly inde-
pendent set of n kets, then it is always possible to construct an orthonormal
set of n kets comprising linear combinations of the elements of B.

Proof: We prove this theorem by explicit construction. The key idea under-
lying the construction can be easily visualized. If one subtracts from a vector,
the resultant of its projections along a set of m orthonormal vectors, then
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the new vector is orthogonal to each of the vectors of the orthonormal set.
Normalizing this vector then furnishes a set of m+ 1 orthonormal vectors.

Let B = {|αi〉 ; i = 1, 2, . . . , n} be a linearly independent set. We construct
a set B′ = {|βi〉 ; i = 1, 2, . . . , n} as follows:

|β1〉 = |α1〉
‖α1‖

|γ2〉 = |α2〉 − |β1〉 〈β1|α2〉

|β2〉 = |γ2〉
‖γ2‖

|γ3〉 = |α3〉 − |β1〉 〈β1|α3〉 − |β2〉 〈β2|α3〉

|β3〉 = |γ3〉
‖γ3‖

...

|γn〉 = |αn〉 −
n−1∑
i=1
|βi〉 〈βi|αn〉

|βn〉 = |γn〉
‖γn‖

It is easy to check explicitly that the set B′ is an orthonormal set.

It immediately follows that, given a set of any n independent vectors in
an n-dimensional inner product space, it is always possible to construct an
orthonormal basis out of linear combinations of the n independent vectors.

Theorem (representation of bras in orthonormal basis): If B =
{|αi〉 ; i = 1, 2, . . . , n} is an orthonormal basis in V , then the dual basis B∗ is
also orthonormal in the dual space V ∗.

The coordinates b∗i of the bra 〈β| in the dual basis B∗ are given by

b∗i = 〈β|αi〉

Linear Operators
Linear operators on dual space

Definition (Linear Operator on Dual Space): Let Â be a linear operator
acting on an inner product space V . Then we can define a linear operator on
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the dual space V ∗ (which we can choose to denote by the same notation Â)
whose action on an arbitrary bra vector 〈α| ∈ V ∗ is specified by the condition(

〈α| Â
)
|β〉 = 〈α|

(
Â |β〉

)
for all |β〉 ∈ V .

The definition makes the position of the parenthesis irrelevant so that we can
drop it altogether, and unambiguously use the notation

〈
α|Â|β

〉
.

A linear operator defined on an inner product space naturally induces a linear
operator acting on the dual space.

Theorem: The action of the induced operator on the bra vectors is linear:

(a 〈α|+ b 〈β|) Â = a
(
〈α| Â

)
+ b

(
〈β| Â

)
for all 〈α| , 〈β| ∈ V and all a, b ∈ C.

Hermitian operator

Theorem: If Â be a linear operator acting on an inner product space V such
that

Â |α〉 = |α〉′

where |α〉 , |α〉′ ∈ V , then a necessary and sufficient condition that an operator
Â† be the Hermitian conjugate of Â is

〈α| Â† = 〈α|′

where 〈α| and 〈α|′are the bra vectors conjugate to the kets |α〉 and |α〉′.

This can be used as an equivalent definition of the Hermitian conjugate (or
adjoint) operator.

Theorem: A linear operator acting on an inner product space V is Hermitian
if and only if

〈
α|Â|α

〉
is real for all |α〉 ∈ V .

Theorem: Any linear operator can be written as a sum of a Hermitian
operator and an anti-Hermitian operator.

Proof: Let Â be a linear operator. Then we can write

Â =
(
Â+ Â†

2

)
+
(
Â− Â†

2

)

Evidently, the operator (Â+Â†)/2 is Hermitian and (Â−Â†)/2 is anti-Hermitian.
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Unitary operator
For the next two theorems we will use the following notation for inner

product: 〈β|α〉 ≡ (|β〉 , |α〉).

Theorem: A linear operator Û acting on an inner product space V is unitary
if and only if the inner product is invariant under the action of Û :(

Û |α〉 , Û |β〉
)

= (|α〉 , |β〉)

for all |α〉 , |β〉 ∈ V .

There is actually a stronger theorem that furnishes an equivalent definition of
unitarity:

Theorem: A linear operator Û acting on an inner product space V is unitary
if and only if the norm of |α〉 is equal to the norm of Û |α〉:(

Û |α〉 , Û |α〉
)

= (|α〉 , |α〉)

for all |α〉 ∈ V .

Representation of linear operators

Theorem (representation of a linear operator acting on V ): Let B =
{|αi〉 ; i = 1, 2, . . . , n} be a basis in the vector space V . If Â be a linear operator
acting on V such that Â |β〉 = |β〉′ where |β〉 , |β〉′ ∈ V , then the coordinates
bi and b′i of the representations of the vectors |β〉 and |β〉′ in the basis B are
related by

b′i =
n∑
j=1

Aijbj

where Aij is given by

Â |αj〉 =
n∑
i=1

Aij |αi〉

The set of elements {Aij ; i, j = 1, 2, . . . , n} is called the representation of the
linear operator Â in the basis B.

If B is an orthonormal basis, then

Aij = 〈αi| Â |αj〉

The elements Aij can be written out as a n× n square matrix A so that the
representations [β] and [β′] of |β〉 and |β〉′ are related by the matrix equation

[β′] = A [β]
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Theorem (representation of a linear operator acting on V ∗): If a
linear operator Â defined on some vector space V induces a linear operator Â
acting on the dual space V ∗ such that 〈β| Â = 〈β|′ for 〈β| , 〈β|′ ∈ V ∗, then the
coordinates b∗i and b∗′i of the representations of the bra vectors 〈β| and 〈β|′,
conjugate to the kets |β〉 and |β〉′, in the dual basis B∗ are related by

b∗′i =
n∑
j=1

Ajib
∗
j

Thus, the representations [β∗] and [β∗′] of 〈β| and 〈β|′ are related by the
matrix equation

[β∗′] = [β∗] A

Here, recall that the representations of bra vectors are written as row matrices.

Thus, the representation of a linear operator acts on the representations of
vectors (both, kets and bras) by matrix multiplication. Moreover, a linear op-
erator acting on a vector space and the corresponding linear operator acting
on the dual space are represented, respectively, with respect to a basis and its
dual, by the same matrix.

Theorem (change of basis): The representations A and A′ of a linear
operator Â with respect to two bases B and B′ are related by

A′ = T AT−1

where T is the transformation matrix that effects the transformation from B
to B′.

If the bases B and B′ are orthonormal, then T−1 = T †, so that

A′ = T AT †

Eigen Systems
Determination of eigenvectors

Consider the eigenvalue equation of the operator Â, for some eigenvalue
λ, represented by the matrix A in some basis B = {|αi〉 ; i = 1, 2, . . . , n}:

n∑
j=1

Aijβj = λβi
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where βj are components of the eigenvector in the basis B. The characteristic
equation implies that not all the equations are independent5. Let the number
of linearly independent equations constituting the eigenvalue equation be n−p.
Thus, there will be infinitely many solutions for the variables βi. However,
we can determine in terms of the p variables {βi ; i = 1, 2, . . . , p} say, the
remaining n− p variables {βi ; i = p+ 1, p+ 2, . . . , n} as linear combinations,
so that for βi with p < i ≤ n, we can write βi =

∑p
j=1 Cijβj for some choice

of scalars6 Cij . For βi with 1 ≤ i ≤ p, one can trivially write a similar equation
with Cij = δij . Now an arbitrary eigenvector can be written as

|β〉 =
n∑
i=1

βi |αi〉

=
n∑
i=1

 p∑
j=1

Cijβj

 |αi〉
=

p∑
j=1

βj

(
n∑
i=1

Cij |αi〉

)

=
p∑
j=1

βj |γj〉

where the coefficients βj are arbitrary and |γj〉 =
∑n
i=1 Cij |αi〉. Thus every

eigenvector is a linear combination of the p linearly independent eigenvectors
|γj〉 with j running from7 1 to p. The linear independence of vectors |γj〉 can
be easily seen from the condition Cij = δij when i = 1, 2, . . . , p.

If n − p is the number of linearly independent equations among the n linear
homogeneous equations comprising the eigenvalue equation, then p is degree
of degeneracy or the geometric multiplicity of the eigenvalue.

Theorem: If an eigenvalue is a root of the characteristic equation of multi-
plicity one, then it is nondegenerate (i.e., its eigensubspace has dimension one).
If an eigenvalue is a root of the characteristic equation of multiplicity h > 1,
then the degree of degeneracy p is restricted to 1 ≤ p ≤ h (i.e., the dimension
of the associated eigensubspace is at least one and at most h ). In other words,

the geometric multiplicity of an eigenvalue is at least one and at most equal
to its algebraic multiplicity.

5The determinant of a matrix is zero if and only if the rows (or columns) are linearly
dependent.

6To see this, just use Cramer’s rule.
7That the vectors |γj〉 are eigenvectors can be seen by observing that the βjs are arbi-

trary. Hence, one may choose βj = δjk with k taking values from 1 to p.
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Outline of proof: By using the replacement theorem, one can construct
a basis B′ by replacing p of the elements of the initial basis B (in which
the eigenvalue equation was cast) by the p independent eigenvectors of some
eigenvalue λ, and re-arrange to keep these as the first p elements of the new
basis. The representation A′ of the operator Â (in question) in the new basis
B′ will consist of four blocks A(1,1), A(1,2), A(2,1) and A(2,2):

A′ =
[
A(1,1) A(1,2)
A(2,1) A(2,2)

]
where A(1,1) = λIp×p , A(2,1) is a (n− p) × p dimensional null matrix and
A(1,2), A(2,2) are p × (n− p) and (n− p) × (n− p) dimensional matrices re-
spectively8. The characteristic equation when cast in terms of the basis B′
(using µ as the undetermined eigenvalue) will be:

det [A′ − µIn×n] = 0
det [λIp×p − µIp×p] det

[
A(2,2) − µI(n−p)×(n−p)

]
= 0

(λ− µ)p det
[
A(2,2) − µI(n−p)×(n−p)

]
= 0

so that the multiplicity of the root λ of µ is at least p.

Diagonalization

Theorem: If Â is a diagonalizable linear operator acting on a vector space
V represented by a matrix A in some basis B = {|αi〉 ; i = 1, 2, . . . , n}, and
BA = {|βj〉 ; j = 1, 2, . . . , n} is a basis consisting of eigenvectors of Â, then
the diagonal representation Ad of Â will be given by

Ad = T AT−1

where T is the transformation matrix given by

|βj〉 =
n∑
i=1

T−1
ij |αi〉

i.e., the columns of the inverse transformation matrix T−1 are the eigenvectors
of Â represented in the basis B.

Diagonalizability of Hermitian and unitary operators

Theorem: Eigenvalues of a Hermitian operator are real.

8Here Iq×q is, obviously, the q dimensional identity matrix.
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Proof: If Ĥ is a Hermitian operator having an eigenvector |ψ〉 with eigenvalue
λ, we have 〈

ψ|Ĥ|ψ
〉

= λ 〈ψ|ψ〉〈
ψ|Ĥ|ψ

〉
= λ∗ 〈ψ|ψ〉

where the second equation was obtained by taking the Hermitian conjugation
of the first equation and using the Hermiticity of Ĥ. The result (λ = λ∗)
follows by taking the difference.

Theorem: Eigenvectors of a Hermitian operator corresponding to distinct
eigenvalues are orthogonal.

Proof: If Ĥ is a Hermitian operator, then for two arbitrary eigenvectors |φ〉
and |ψ〉 with distinct eigenvalues λ and µ, we have

〈
φ|Ĥ|ψ

〉
= λ 〈φ|ψ〉〈

ψ|Ĥ|φ
〉

= µ 〈ψ|φ〉

Taking the Hermitian conjugation of the second equation, using the Hermitic-
ity of Ĥ, and using the fact that the eigenvalues (in particular, µ) is real, we
get 〈

φ|Ĥ|ψ
〉

= µ 〈φ|ψ〉

Since λ 6= µ , the result (〈φ|ψ〉 = 0) follows by taking the difference of this
equation from the first.

Theorem: It is always possible to construct an orthonormal basis out of the
eigenvectors of a Hermitian operator.

A Hermitian matrix (the representation of some Hermitian operator in an
orthonormal basis) is thus always diagonalizable by a unitary transformation.

Outline of proof: By the fundamental theorem of algebra, there will exist at
least one eigenvalue α and one eigenvector |α〉 of the operator Â in question.
We can always construct an orthonormal basis B containing |α〉. Owing to
the Hermiticity of Â, the linear span V ′ of B − {|α〉} (the set constructed
by excluding |α〉 from B) will be an invariant subspace of Â (i.e., Â |β〉 ∈ V ′
whenever |β〉 ∈ V ′)9 . We can then repeat the argument on V ′. The result
will follow from finite induction.

Theorem (converse): If the eigenvalues of a linear operator are all real,
and if an orthogonal basis can be constructed out of the eigenvectors of this
operator, then the operator is Hermitian.

9V ′ is called the orthogonal complement of |α〉.
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Outline of proof: Let us, for this proof, write the inner product 〈α|β〉 as
(|α〉 , |β〉). If {|αi〉 ; i = 1, 2, . . . , n} is an orthonormal basis of eigenvectors
of an operator Â with αi being the eigenvalue associated with |αi〉, then for
two arbitrary vectors |φ〉 =

∑n
i=1 φi |αi〉 and |ψ〉 =

∑n
i=1 ψi |αi〉, a direct

evaluation gives10
(
Â |φ〉 , |ψ〉

)
=
∑n
i=1 φ

∗
iψiαi =

(
|φ〉 , Â |ψ〉

)
.

Theorem11: Eigenvalues of unitary operators are unimodular (i.e., they have
absolute value one).

Proof: Here we denote the inner product 〈α|β〉 also by (|α〉 , |β〉). If Û is an
operator having an eigenvector |ψ〉 with eigenvalue λ, we have(

Û |ψ〉 , Û |ψ〉
)

= λ∗λ 〈ψ|ψ〉

But if Û is unitary (
Û |ψ〉 , Û |ψ〉

)
=
〈
ψ|Û†Û |ψ

〉
= 〈ψ|ψ〉

whence the result follows by taking the difference.

Theorem: Eigenvectors of a unitary operator corresponding to distinct eigen-
values are orthogonal.

Proof: If Û is a unitary operator having an eigenvector |ψ〉 with eigenvalue
λ, then |ψ〉, clearly, is an eigenvector of Û† with eigenvalue 1/λ. Then, if Û has
two eigenvectors |φ〉 and |ψ〉 with distinct eigenvalues λ and µ, we have〈

ψ|Û |φ
〉

= µ 〈ψ|φ〉〈
φ|Û†|ψ

〉
= 1
λ
〈φ|ψ〉

Taking the complex conjugate of the second equation〈
ψ|Û |φ

〉
= 1
λ∗
〈ψ|φ〉

Taking the difference with the first equation and using the unimodularity of
the eigenvalues, the result follows.

Theorem: It is always possible to construct an orthonormal basis out of the
eigenvectors of a unitary operator.

10The apparent restriction to nondegenerate eigenvalues is insignificant for the argument.
Indeed one may simply allow the eigenvalues αi to be “not necessarily distinct” (although
the associated kets |αi〉 are distinct).

11The proofs of this and following three theorems are similar to that for the corresponding
theorems for Hermitian operators.
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A unitary matrix (representation of some unitary operator in an orthonor-
mal basis) is thus always diagonalizable by a unitary transformation.

Outline of proof: Observing that an unitary operator and its Hermitian
conjugate share the same eigenvectors, the proof follows exactly along the same
lines as the proof of the corresponding theorem for the Hermitian operator.

Theorem (converse): If the eigenvalues of a linear operator are all unimod-
ular, and if an orthogonal basis can be constructed out of the eigenvectors of
this operator, then the operator is unitary.

Outline of proof: If {|αi〉 ; i = 1, 2, . . . , n} is an orthonormal basis of eigen-
vectors of an operator Â with αi being the eigenvalue associated with |αi〉,
then for an arbitrary vector |ψ〉 =

∑n
i=1 ψi |αi〉, a direct evaluation gives

〈
ψ|Â†Â|ψ

〉
=
(
Â |ψ〉 , Â |ψ〉

)
=

n∑
i=1

ψ∗i ψi = 〈ψ|ψ〉

where in the first equality we have written the inner product using 〈α|β〉 ≡
(|α〉 , |β〉) on the right hand side.

Direct Sum of Subspaces12

Definition (Direct Sum of Subspaces): If H and K are two subspaces of
a vector space V such that every element |α〉 ∈ V can be uniquely written as
|α〉 = |β〉+ |γ〉 where |β〉 ∈ H and |γ〉 ∈ K, then V is said to be a direct sum
of H and K.

We denote the direct sum by V = H ⊕K.

12The concept of a direct sum can be introduced without resorting to subspaces: A direct
sum of the vector spaces H and K is the set V = H ×K on which two functions, addition
and multiplication by a scalar, are defined as
•
(
~h1, ~k1

)
+
(
~h2, ~k2

)
=
(
~h1 + ~h2, ~k1 + ~k2

)
• a
(
~h1, ~k1

)
=
(
a~h1, a ~k1

)
for all ~h1,~h2 ∈ H, ~k1, ~k2 ∈ K and a ∈ C. It is easy to check that V forms a vector space.

Now the set of vectors of the form
(
~h,~0
)
, where ~h ∈ H and ~0 is the additive iden-

tity in K, forms a subspace of V that is isomorphic to H. Similarly, the set of vectors of
the form

(
~0, ~k
)
, where ~0 is now the additive identity in H and ~k ∈ K, forms a subspace

that is isomorphic to K. The space V is the direct sum of these subspaces according to the
definition provided in the text. This establishes the connection between the definitions.
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Theorem: A necessary and sufficient condition for V = H ⊕ K is that
H ∩ K = {| 〉} (the trivial subspace), and every element |α〉 ∈ V can be
written as |α〉 = |β〉+ |γ〉 where |β〉 ∈ H and |γ〉 ∈ K.

Theorem: If V is a direct sum of two subspaces, H and K, and BH =
{|hi〉 ; i = 1, 2, . . . , nH} and BK = {|ki〉 ; i = 1, 2, . . . , nK} are bases in the
subspaces H and K respectively, then the union of the bases B = BH ∪ BK
is a basis in V .

Conversely, if B = BH ∪ BK is a basis in V , where BH ∩ BK = φ (null
set), then V is a direct sum of the linear spans of BH and BK .

Projection operator

Definition (Projection Operator): If V = H ⊕K so that for all |α〉 ∈ V
we can write |α〉 = |αH〉 + |αK〉 where |αH〉 ∈ H and |αK〉 ∈ K, then we
define the projection operator P̂H onto the subspace H along K by13

P̂H |α〉 = |αH〉

Note that this requires P̂H |αK〉 = | 〉, where | 〉 is the additive identity vector
in V . Corresponding to a given H, there could be several choices (actually
infinite) of K such that V = H ⊕K. Therefore, the specification of the pro-
jector onto H depends on the choice of K, and we say “projection of a vector
onto H along K”.

Theorem: The projection operator is linear.

Theorem: A necessary and sufficient condition for a linear operator to be a
projection operator is that it is idempotent:

P̂ 2 = P̂

Proof (necessity): Let P̂ be a projector onto a subspace H along K of a
vector space V = H ⊕K. For any |α〉 ∈ V we then have P̂ |α〉 ∈ H. Now for
any |β〉 ∈ H, the sum |β〉 = |β〉+ | 〉 is a unique expansion of |β〉 (as a sum of
two vectors, one from H and the other from K). So we must have P̂ |β〉 = |β〉.
Taking P̂ |α〉 = |β〉, we have P̂ P̂ |α〉 = P̂ |α〉.

Proof (sufficiency): Let P̂ be an operator acting on a vector space V
satisfying P̂ 2 = P̂ . Now for any vector |α〉 ∈ V , one can always write,
|α〉 = P̂ |α〉 +

(
Î − P̂

)
|α〉 for any operator P̂ . Here Î is the identity oper-

ator. We observe that P̂ P̂ |α〉 = P̂ |α〉 and P̂
(
Î − P̂

)
|α〉 = | 〉. If we define

13Sometimes the projection operator is simply called the projector.
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subspaces H and K by the conditions that H =
{
|β〉 : P̂ |β〉 = |β〉

}
and

K =
{
|β〉 : P̂ |β〉 = | 〉

}
, then P̂ |α〉 ∈ H and14

(
Î − P̂

)
|α〉 ∈ K. Moreover,

|β〉 ∈ H and |β〉 ∈ K implies |β〉 = P̂ |β〉 = | 〉. Thus H ∩K = {| 〉} (trivial
subspace). Hence V = H ⊕K, and P̂ is a projector onto H along K.
Theorem: The eigenvalues of projection operators are either 0 or 1.
Theorem: A necessary and sufficient condition for a linear operator P̂H to be
a projector is that Î− P̂H is also a projector, where Î is the identity operator.
Definition (Orthogonal Projector): If V = H ⊕ H⊥ where H⊥ is a
subspace such that every vector in H⊥ is orthogonal to every vector in H,
then the associated projectors are called orthogonal projectors. The subspace
H⊥ is uniquely determined by H, and hence, one refers to the projector onto
H along H⊥ simply as the projector onto H.
Theorem: A necessary and sufficient condition for an operator P̂ to be an
orthogonal projector is

P̂ = P̂ 2 = P̂ †

Thus, orthogonal projection operators are Hermitian.
Theorem: A Hermitian operator Ĥ with m eigenvalues can be written as

Ĥ =
m∑
i=1

aiP̂i

where ai are the m real eigenvalues of Ĥ, and P̂i are the orthogonal projectors
onto the eigensubspaces associated with the eigenvalues ai. The projectors P̂i
obey

P̂iP̂j = 0̂ for i 6= j

and
m∑
i=1

Pi = Î

Here 0̂ is the null operator defined by 0̂ |ψ〉 = | 〉 for all |ψ〉 in the vector space
on which Ĥ acts, and the operator Î is the identity operator acting on that
space. The symbol | 〉, as always, refers to the additive identity vector.
Definition (Outer Product): Let Θ be the set of linear operators acting
on V . We construct a function

〉〈 : V × V ∗ −→ Θ

which we call outer product, and whose value we denote by |α〉 〈β| for all
|α〉 ∈ V and all 〈β| ∈ V ∗. The operator |α〉 〈β| is defined by

(|α〉 〈β|) |γ〉 = |α〉 〈β|γ〉

for all |γ〉 ∈ V .

14It is only too easy to check that H and K are subspaces.
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Theorem: If V = H ⊕H⊥, and BH = {|hi〉 ; i = 1, 2, . . . , nH} and BH⊥ =
{|ki〉 ; i = 1, 2, . . . , nH⊥} are orthonormal bases in H and H⊥ respectively,
then the linear operators

P̂H =
nH∑
i=1
|hi〉 〈hi|

and P̂H⊥ =
n
H⊥∑
i=1
|ki〉 〈ki|

are orthogonal projectors onto the subspaces H and H⊥. Further

P̂H⊥ = Î − P̂H

where Î is the identity operator.

Tensor Product Space
In what follows, if there is no risk of ambiguity, we shall often use the

notation B1⊗B2 to denote a set constructed out of all possible tensor products
of two sets of vectors B1 and B2, where B1 ⊆ V 1 and B2 ⊆ V 2.

Theorem: If V 1, V 2 and V are vector spaces and ⊗ is a bilinear function

⊗ : V 1 × V 2 −→ V

such that we have one basis B = B1 ⊗ B2 where B1 and B2 are bases in V 1

and V 2 respectively, then for every other pair of bases C1 and C2 belonging
respectively to V 1 and V 2, the set C = C1⊗C2 will also form a basis in15 V .

Proof: Let
∣∣∣β(1)
i

〉
and

∣∣∣β(2)
j

〉
denote the basis vectors in B1 and B2 respec-

tively, and similarly, let
∣∣∣γ(1)
k

〉
and

∣∣∣γ(2)
l

〉
denote the respective basis vectors

in C1 and C2. We assume the dimensions of V 1 and V 2 to be d1 and d2 re-
spectively. We have to prove the completeness and linear independence of the
set C =

{∣∣∣γ(1)
k

〉
⊗
∣∣∣γ(2)
l

〉
; k = 1, 2, . . . , d1; l = 1, 2, . . . , d2

}
.

15Thus, it is not necessary to test the second defining property of a tensor product space
(defined in chapter 9) for all possible bases of V 1and V 2. It is enough that one basis such
as B = B1 ⊗B2 can be found in V .
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Completeness: If |ψ〉 ∈ V , then it can be expanded as

|ψ〉 =
d1∑
i=1

d2∑
j=1

ψij

∣∣∣β(1)
i

〉
⊗
∣∣∣β(2)
j

〉

=
d1∑
i=1

d2∑
j=1

ψij

(
d1∑
k=1

b1
ki

∣∣∣γ(1)
k

〉)
⊗

(
d2∑
l=1

b2
lj

∣∣∣γ(2)
l

〉)

=
d1∑
k=1

d2∑
l=1

 d1∑
i=1

d2∑
j=1

b1
kib

2
ljψij

∣∣∣γ(1)
k

〉
⊗
∣∣∣γ(2)
l

〉

where
∣∣∣β(1)
i

〉
=
∑d1
k=1 b

1
ki

∣∣∣γ(1)
k

〉
,
∣∣∣β(2)
j

〉
=
∑d2
l=1 b

2
lj

∣∣∣γ(2)
l

〉
and ψij , b1

ki and b2
lj

denote the appropriate expansion coefficients.

Linear independence: Let hkl be a set of coefficients such that

d1∑
k=1

d2∑
l=1

hkl

∣∣∣γ(1)
k

〉
⊗
∣∣∣γ(2)
l

〉
= 0

d1∑
k=1

d2∑
l=1

hkl

(
d1∑
i=1

c1
ik

∣∣∣β(1)
i

〉)
⊗

 d2∑
j=1

c2
jl

∣∣∣β(2)
j

〉 = 0

d1∑
i=1

d2∑
j=1

(
d1∑
k=1

d2∑
l=1

c1
ikc

2
jlhkl

)∣∣∣β(1)
i

〉
⊗
∣∣∣β(2)
j

〉
= 0

where
∣∣∣γ(1)
k

〉
=
∑d1
i=1 c

1
ik

∣∣∣β(1)
i

〉
,
∣∣∣γ(2)
l

〉
=
∑d2
j=1 c

2
jl

∣∣∣β(2)
j

〉
, and the symbols c1

ik

and c2
jl denote the appropriate expansion coefficients. The linear independence

of the set B implies
d1∑
k=1

d2∑
l=1

c1
ikc

2
jlhkl = 0

Now since B1, C1 and B2, C2 are valid bases in V 1 and V 2, the matrices c1
ik

and c2
jl are necessarily invertible. Multiplying by

(
c1)−1

k′i
= b1

k′i and
(
c2)−1

l′j
=

b2
l′j , and summing over i and j, the left hand side of the above equation yields

d1∑
k=1

d2∑
l=1

(
d1∑
i=1

c1
ikb

1
k′i

) d2∑
j=1

c2
jlb

2
l′j

hkl =
d1∑
k=1

d2∑
l=1

δkk′δll′hkl

= hk′l′

Since k′ and l′ are arbitrary, we have hkl = 0 for arbitrary k and l.

Theorem (representation of tensor product vectors): The represen-
tation of a tensor product vector |φ〉 =

∣∣µ(1)〉 ⊗ ∣∣ν(2)〉 in V 1 ⊗ V 2, in
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the basis B = B1 ⊗ B2 where B1 =
{∣∣∣α(1)

i

〉
; i = 1, 2, . . . , d1

}
, B2 ={∣∣∣β(2)

j

〉
; j = 1, 2, . . . , d2

}
are bases in V 1 and V 2 respectively, is given by

|φ〉 =
d1∑
i=1

d2∑
j=1

minj

∣∣∣α(1)
i

〉
⊗
∣∣∣β(2)
j

〉
with mi, nj ∈ C, and where the vectors

∣∣µ(1)〉 and
∣∣ν(2)〉 are represented in

the B1 and B2 bases respectively as

∣∣∣µ(1)
〉

=
d1∑
i=1

mi

∣∣∣α(1)
i

〉
∣∣∣ν(2)

〉
=

d2∑
j=1

nj

∣∣∣β(2)
j

〉

It is clear that an arbitrary vector in V cannot be expressed as a tensor product.
However, an arbitrary vector can always be expressed as a linear combination
of tensor product vectors.

Inner product

Theorem: If B1 and B2 are orthonormal bases in the inner product spaces
V 1 and V 2, then the basis B = B1 ⊗B2 is an orthonormal basis in V 1 ⊗ V 2.

Tensor product operators

Theorem: The tensor product Â(1)⊗ B̂(2) of two operators Â(1) and B̂(2) is
equal to the ordinary operator product ÂB̂ of their extensions.

Theorem: The extensions of two linear operators acting on V 1 and V 2 to
V 1 ⊗ V 2 always commute.

Theorem (representation of tensor product operators): If a linear
operator Â(1) acting on V 1 is represented by the matrix A(1) in a basis
B1 =

{∣∣∣α(1)
i

〉
; i = 1, 2, . . . , d1

}
, and if a linear operator B̂(2) acting on V 2

is represented by the matrix B(2) in a basis B2 =
{∣∣∣β(2)

j

〉
; j = 1, 2, . . . , d2

}
,

then the representation of the tensor product operator Ĉ = Â(1) ⊗ B̂(2) in the
basis B = B1 ⊗B2 is given by the tensor product matrix16 C = A(1) ⊗B(2) :

Ci,k;j,l = A
(1)
ij B

(2)
kl

16The rows and columns of a tensor product matrix are designated by a pair of indices.
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Eigenvalues and eigenvectors

Theorem: If the operator Â acting on V 1 ⊗ V 2 is the extension of a linear
operator Â(1) acting on V 1, then the spectra of Â and Â(1) are identical.

Theorem: If the operator Â acting on V 1 ⊗ V 2 is the extension of a linear
operator Â(1) acting on V 1, and if

∣∣α(1)〉 ∈ V 1 is an eigenvector of Â(1) with
eigenvalue λ, then

∣∣α(1)〉⊗ ∣∣β(2)〉 is an eigenvector of Â with the same eigen-
value λ for all

∣∣β(2)〉 ∈ V 2 .

If the degree of degeneracy of an eigenvalue λ of Â(1) is g, then the degree of
degeneracy of the eigenvalue λ of the extension Â of Â(1) to V 1 ⊗ V 2 is gd2,
where d2 is the dimension of V 2.

Theorem: If Â(1) and B̂(2) are linear operators acting on the vector spaces
V 1 and V 2 respectively, and if

∣∣α(1)〉 ∈ V 1 and
∣∣β(2)〉 ∈ V 2 are the respective

eigenvectors of Â(1) and B̂(2) with eigenvalues a and b, then
∣∣α(1)〉 ⊗ ∣∣β(2)〉

is an eigenvector of Â + B̂ with eigenvalue a + b, where Â and B̂ are the
extensions of Â(1) and B̂(2), respectively, to V 1 ⊗ V 2.

Complete set of commuting operators

Theorem: If the set of linear operators
{
Â

(1)
1 , Â

(1)
2 , . . . , Â

(1)
r

}
forms a CSCO

in V 1, and if the set of operators
{
B̂

(2)
1 , B̂

(2)
2 , . . . , B̂

(2)
s

}
forms a CSCO in V 2,

then the set
{
Â1, Â2, . . . , Âr, B̂1, B̂2, . . . , B̂s

}
will form a CSCO in V 1 ⊗ V 2,

where Âi and B̂j are the extensions of Â(1)
i and B̂(2)

j , respectively, to V 1⊗V 2.
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algebraic multiplicity, 69, 232
amplitude, 23, 40

as inner product, 40
angular momentum

addition of, 197, 198
generalized, see generalized

angular momentum
intrinsic, see spin
orbital, see orbital angular

momentum
spin, see spin

antisymmetric
state, see state, antisymmetric
subspace, 201–203

atomic polarizability, 158
axiom, 1, 5
axiomatic description, 5
azimuthal

angle, 162
quantum number, 160, 173, 175

basis, 37
change of, 47, 65, 224, 225, 231
diagonal, see diagonalization
dual, 227, 228, 231
in direct sum of spaces, 237
in tensor product space, 184, 239
of common eigenvectors, 97, 102,

160, 169, 170, 174, 186, 192
orthonormal, 37, 128, 128, 129,

135, 138, 159
standard, 37, 126

Bohr radius, 176, 177
Born rule, 24, 59, 76, 93, 117, 132
Boson, 199–202
bra, 228
bra vectors, 221, 226–229, 231

addition of, 226
scalar multiplication of, 226

braket notation, 45, 221, 226

canonical commutation, 136, 137
Cartesian product, 184
central potential, 173–175
classical mechanics, xvi, 7, 8, 137
collapse postulate, 59, 91, 93, 95,

116, 132
commutator, 101, 107, 109, 137
commuting operators, 71, 101, 102
compatible observables, 97, 97, 98,

100, 106
complete set

of common eigenvectors, see
basis of common
eigenvectors

of commuting operators, 103,
103, 104, 106, 242

of compatible observables, 98,
99, 99, 100, 101, 106, 134

of vectors, 37, 53, 74, 159
composite system, 181–183

description using tensor product
space, 186

conjugate symmetry, 35, 129, 185
conservative system, 114, 116, 121
constant of motion, 122
coordinate space, 135, 140, 152, 154,

see also position, space
coordinates

change of, see transformation
matrix

in classical Hamiltonian
formalism, 134

of a vector, 47, 228

245
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creation operator, 156, see also
ladder operator

CSCO, see i) complete set of
commuting operators, ii)
complete set of compatible
observables

de Broglie hypothesis, 136
degeneracy, 67

angular momentum, 166, 169,
173

degree of, 67, 69, 92, 93, 232
in case of extended operator, 242
in harmonic oscillator, 155
in hydrogen atom, 176, 198
in isotropic 3D oscillator, 197
in particle in a 3D box, 196
in QM, 88, 93
origin of; in QM, 85
QM without degeneracy, 11
removal of, 103, 104

delta function
Dirac, 126, 137–139
Kronecker, 27, 68, 126

density operator, 192
diagonalization, 69

simultaneous, 103, 104
dimension

of Cn, 37
of state space, 99, 100
of system, 99
of vector space, 54, 55, 224

direct sum, 236
dual space, 221, 226

Ehrenfest’s theorem, 145
eigenfunction, 142
eigensubspace, 67, 103, 232, 238
eigenvalues, 67

determination of, 68, 72, 231
of Hermitian operator, 70, 233,

234
of unitary operator, 235
spectrum of, 67

eigenvectors, 67

determination of, 72, 78, 231,
232

of Hermitian operator, 70, 74,
75, 234, 235

electric dipole moment, 158, 178
electron, 173, 176, 179, 197, 198
energy

in QM, 115
of harmonic oscillator, 151
of hydrogen atom, 151, 173, 175,

176, 197, 198
of particle in a box, 142

EPR paradox, 191
event, 20

composite, 24, 25, 27, 182
compound, 208
conjunctive (and), 208
disjunctive (or), 208
elementary, 20, 26, 208, 209, 216
independent, 215
mutually exclusive, 26, 208–210,

215
notation, 21
simple, see event, elementary

event space, 208, 217–219
exchange degeneracy, 203, 204, 206
exchange operator, 205
exchange symmetry, 28, 29, 30, 40,

44, 45, 60
expectation values, 80, 80, 81, 107,

138, 145

Fermion, 199–202
first basis, 78, 79, 101
formal description, 4, 5, 7

metaphorical illustration, 2–4
of probability, 217
of QM, 33, 39, 41, 42, 63, 183

Fourier transform, 139
Fourier’s trick, 143

generalized angular momentum, 163
commutation relations, 163, 164,

170
eigenvectors, 166
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operators, 163
spectrum, 163–166

geometric multiplicity, 69, 69, 232
Gram-Schmidtorthogonalization, 57,

227
group, 51

permutation, 204
gyromagnetic ratio, 170

Hamiltonian
classical, 134
for central potential, 174
for harmonic oscillator, 151
for hydrogen atom, 173
formalism, 134
importance of; in QM, 119
interaction, see interaction,

Hamiltonian
operator, 115, 117, 121, 136,

138–140
relation to energy, 115, 134

harmonic oscillator
charged, 158
energy spectrum, 152, 154
ground state, 154, 155
wave function, see wave

function, of harmonic
oscillator

Heisenberg picture, 122, 146
Hermite equation, 152
Hermite polynomial, 153, 157
Hermitian conjugate operator, 69,

229
Hermitian conjugate operators

representation of, 70
Hermitian operator, 69
Hermitian operators

connection with observable, 74,
75, 129

properties, 70, 233, 234
Hilbert space, 127
homomorphism, 224
hydrogen atom

energy spectrum, 175
ground state, 176–178

wave function, see wave
function, of hydrogen atom

identical particles, 199, 200, 202
identity

additive, 34, 51, 221
multiplicative, 34, 52
operator, 111, 238

imprecise observable, 87–89, 91, 92,
97, 99, 101, 132

inner product, 35, 40, 42, 44, 45, 49,
52

on tensor product space, 185
inner product space, 53, 60
instantaneously subsequent

measurement, 19
interaction, 15, 181

between subsystems, 187, 189,
190

Hamiltonian, 190
invariance

of inner product, 49, 230
invariant subspace, 103, 105, 234
inverse

additive, 34, 51
operator, 111

isomorphism, 49, 224

ket vector, 226

ladder operator, 153, 165, 167, 168,
170, 203

Laguerre polynomial, 176
associated, 176

Legendre polynomial, 162, 172
associated, 162

linear
operator, see operator, linear

linear combination, 36, 53
linear functionals, 221, 225, 226
linear span, 37, 53
linearly independent set, 37

magnetic moment, 170
magnetic quantum number, 160
measurement, 17, 18, 20
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complete and incomplete, 99
imprecise, 87–92, 95–97, 132,

146
instantaneously subsequent, see

instantaneously subsequent
measurements

metaphorical illustration, 11–17
precise, 87
simultaneous, see simultaneous

measurement
momentum

classical, 134, 135, 159, 173
eigenvectors, 136
operator, 135–137, 139, 140, 159
space, 157
state, 138

multiplication
of vector by scalar, 51

norm, 35, 53, 127, 230
normalization, 35
normalization condition, 39, 114
normalization constant

in angular momentum, 167, 169
in harmonic oscillator, 156
in hydrogen atom, 176

null vector, 154
number operator, 153

observable, 15, 16, 18, 18, 22
as Hermitian operator, 74, 75,

77, 88, 129
association with orthonormal

bases, 41
imprecise, see imprecise

observable
notation, 21

occupation number, 200–203
operator, 199, 200, 203
representation, 200, 203, 206

one particle state, see state, one
particle

operators, 63
addition of, 71
algebra of, 71

characteristic equation of, 68,
232

diagonalizable, 69, 102, 233, 234,
236

differential, 130, 131, 136, 193,
194

extension to tensor product
space, see tensor product
space, extension of
operators to

invertible, 112
linear, 63, 64
multiplication of, 71
representation of, see

representation, of operators
scalar multiplication of

operators, 71
singular, 112
tensor product, see tensor

product, operator
orbital angular momentum, 159

commutation relations, 160
eigenfunctions, 161, 162,

167–169
of hydrogen atom, 174, 176
operators, 159, 160, 162, 163,

167
spectrum, 162

orthogonal set, 36
orthonormal basis, see basis,

orthonormal
orthonormal set, 36, 53
orthonormality

extended to continuum, 128
outer product, 66, 73, 238, 238

parity, 149, 172, 179
of permutation, 205
operator, 148, 149

particle in a box, 141, 146, 147, 149,
196

spherical, 177
permutation operator, 202, 204, 205
phase, 27, 39, 76, 156, 157, 167
Planck’s constant, 107, 115, 136
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position
operator, 134, 135, 138, 193, 194
space, 135, 136, 139, 141, 144,

145, 157
state, 138

positronium, 179
postulates, 1, 5

of QM, 58, 76, 93, 116, 132, 190
potential

central, 174
coulomb, 173
delta function, 146
harmonic oscillator, 151
of a classical particle, 140
of particle in a box, 141

precise observable, 87
primitive spectrum, 78, 79
principal quantum number, 176, 198
probability, 209, 219

addition rule, 25–27, 93
amplitude, see amplitude
conditional, 213, 215, 220
density, 132, 211, 213
distribution, see also

probability, density, 213
of composite event, 24

projection operator, 73, 95, 148, 205,
237

projector, see projection operator

quantization, 78, 101
canonical, 134
of classical systems, 133, 134,

138
of identical particle systems,

199, 202, 203
rules, 78, 79, 130, 133, 134

random variable, 210
reduced mass, 172, 173
representation

change of, see basis, change of
of bra vectors, 227, 228
of operators, 64, 65, 71, 130,

230, 230, 231

of operators in continuous basis,
130

of vectors, 47, 51, 54, 54, 59,
129

of vectors in continuous basis,
129

rigid rotor, 172

sample space, 208, 208, 209, 217
of elementary quantum event, 20

Schrödinger equation, 116, 117
general solution of, 119
in position space, 141, 145
separable solution of, 145

simultaneous measurement, 98, 98,
99, 108, 109

single particle state, see state, one
particle

spectrum
continuous vs discrete, 123, 124,

129, 131
notation, 21
of an observable, 18
of eigenvalues, see eigenvalues,

spectrum of
spherical harmonics, 162, 171, 172,

175, 177, 178
spin, 170, 176, 197, 198
spin-half particle, 197, 198
square integrability, 152, 161–163,

175
square integrable function, 127, 127,

129, 135, 143, 192, 194
state, 18, 20, 30, 30, 31, 128

antisymmetric, 201
as vector, 38–39, 50–58, 128
Bosonic, 205
entangled, 187, 188, 190–192
Fermionic, 205
metaphorical illustration, 15
notation, 21
one particle, 199
symmetric, 201
tensor product, 187, 188, 190,

191, 200
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vector, 39, 46
state space, 58, 78, 100

as inner product space, 58
as range of random variables,

210
in the continuum, 127
of composite system, 186
of identical particle systems,

199–201, 204
stationary state, 119, 157, 173, 179
subspace, 54, 104, 129, 221

trivial, 221
superposition principle, 24–27,

28–30, 40, 44, 45, 60
sustained states, 27, 28, 28, 29–31,

39, 41, 44
symmetric

operator, 203
state, see state, symmetric
subspace, 201–203

symmetrization, 136
postulate, 201

system, 20
composite, see composite system
conservative, see conservative

system
metaphorical illustration, 15

tensor product
operator, 185, 187, 188, 195
state, 187, 188
vector, 184, 184, 185, 187

tensor product space, 184, 186
extension of operators to, 185,

188, 198, 241, 242
inner product in, 185

time evolution operator, 114, 115,
116, 119, 121, 122, 188, 189

totality condition, 23, 24, 28, 29, 38,
44, 100

transformation matrix, 48, 48, 50,
65, 198, 224, see also basis,
change of

for bra vectors, 227
invertibility of, 224, 225
orthogonal, 56
unitary, 49, 50, 72

uncertainty principle, 107, 109, 145,
157

unitary operator, 112, 112, 114, 230,
233, 235

unitary space, 53
unitary transformation, 70, 122, 234,

236, see also transformation
matrix, unitary

vector space, 52, 53
vectors, 33, 51, 124

addition of, 34, 51, 221
inner product of, see inner

product
representation of, see

representation, of vectors
scalar multiplication of, 34
tensor product, see tensor

product, vector

wave function, 128, 146
of harmonic oscillator, 152, 156
of hydrogen atom, 176, 177, 179,

198
of particle in a box, 143

wave particle duality, 136
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