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CHAPTER 1

Classical Mechanics

1. Lagrangian Mechanics

1.1. Generalized coordinates. Classical mechanics describes systems
of finitely many interacting particles1. The position of a system is spec-
ified by positions of its particles and defines a point in a smooth, finite-
dimensional manifold M , the configuration space of a system. Coordinates
on M are called generalized coordinates of a system, and the dimension
n = dimM is called the number of degrees of freedom. Classical mechanics
describes systems with finitely many degrees of freedom, while systems with
infinitely many degrees of freedom are described by classical field theory.

The state of a system at any fixed moment of time is described by a point
q ∈ M , and by a tangent vector v ∈ TqM at this point. The basic prin-
ciple of classical mechanics is Newton-Laplace determinacy principle, which
asserts that the state of a system at a given moment completely determines
its motion at all times t (in the future and in the past), defining a classical
trajectory — a path q(t) in M . In generalized coordinates q(t) is given by
(q1(t), . . . , qn(t)), and corresponding derivatives q̇i = dqi

dt are called gener-
alized velocities. Newton-Laplace principle is a fundamental experimental
fact, which is valid in the world around us. It implies that generalized
accelerations q̈i = d2qi

dt2
are uniquely defined by generalized coordinates qi

and generalized velocities q̇i, so that classical trajectories satisfy a system
of second order differential equations, called equations of motion. In the
next section we formulate the most general principle governing the motion
of mechanical systems.

1.1.1. Notations. We use standard notations from differential geometry.
All manifolds, maps and functions are smooth (i.e., C∞) and real-valued,
unless it is specified explicitly otherwise. Local coordinates q = (q1, . . . , qn)
on a smooth n-dimensional manifold M at a point q ∈ M are Cartesian
coordinates on φ(U) ⊂ Rn, where (U, φ) is a coordinate chart on M centered
at q ∈ U . For f : U → Rn we denote (f ◦ φ−1)(q1, . . . , qn) by f(q). If U is a
domain in Rn then for f : U → R we denote by

∂f

∂q
=
(

∂f

∂q1
, . . . ,

∂f

∂qn

)
1A particle is a material body whose dimensions may be neglected in describing its

motion.
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8 1. CLASSICAL MECHANICS

the gradient of a function f at a point q ∈ Rn with Cartesian coordinates
(q1, . . . , qn). We denote by

A•(M) =
n⊕

k=0

Ak(M)

the graded algebra of smooth differential forms on M , and by d its deRham
differential — a graded derivation of A•(M) of degree 1, such that for f ∈
A0(M) = C∞(M) it is a differential df of a function f . By Vect(M) we
denote the Lie algebra of smooth vector fields on M and for X ∈ Vect(M)
we denote, respectively, by LX and iX the Lie derivative along X and the
inner product with X. The inner product is a graded derivation of A•(M)
of degree −1 such that iX(df) = X(f) = df(X) for f ∈ A0(M). The
derivations LX and iX satisfy Cartan formulas

LX =iX ◦ d + d ◦ iX = (d + iX)2

i[X,Y ] =LX ◦ iY − iY ◦ LX

If f : M → N is a smooth mapping of manifolds, then f∗ : TM → TN and
f∗ : T ∗N → T ∗M denote, respectively, the induced mappings on tangent
and cotangent bundles. Other notations, including those traditional for
classical mechanics, will be introduced in the main text.

1.2. The principle of the least action. The main assumption of
Lagrangian mechanics is that a mechanical system with a configuration space
M is completely characterized by its Lagrangian L — a smooth, real-valued
function on the direct product TM ×R of the tangent bundle of M and the
time axis2. The fundamental problem is to derive the differential equations
for generalized coordinates, which describe the motion of the system (M,L)
starting from the initial state qi, q̇i. According to the principle of the least
action (or Hamilton’s principle), the equations of motion are completely
characterized by specifying the motion of the system between position q0 ∈
M at t = t0 and position q1 ∈ M at t = t1.

Namely, let

Ω(M ; q0, t0, q1, t1) = {γ : [t0, t1] → M, γ(t0) = q0, γ(t1) = q1}
be the space of smooth paths in M connecting points q0 and q1. The path
space Ω(M) = Ω(M ; q0, t0, q1, t1) is a real infinite-dimensional Fréchet man-
ifold, and the tangent space TγΩ(M) to Ω(M) at a point γ ∈ Ω(M) consists
of all smooth vector fields along the path γ(t) in M which vanish at the
endpoints. Following tradition, we call a smooth path in Ω(M), passing
through the point γ ∈ Ω(M), a variation with fixed endpoints of the path
γ(t) in M . Explicitly, variation is a smooth family γε(t) = Γ(t, ε) of paths
in M , given by a smooth map

Γ : [t0, t1] × [−ε0, ε0] → M,

2It follows from Newton-Laplace principle that L could depend only on generalized
coordinates and velocities, and on time.



1. LAGRANGIAN MECHANICS 9

such that Γ(t, 0) = γ(t) for all t ∈ [t0, t1], and Γ(t0, ε) = q0, Γ(t1, ε) = q1

for all ε ∈ [−ε0, ε0]. The tangent vector to Ω(M) at γ corresponding to the
variation γε(t) is also called infinitesimal variation and is given by

δγ =
∂Γ
∂ε

∣∣∣∣
ε=0

∈ TγΩ(M), δγ(t) = Γ∗( ∂
∂ε)(t, 0) ∈ Tγ(t)M.

For every γ ∈ Ω(M) let γ′(t) = γ∗( ∂
∂t) ∈ Tγ(t)M , where ∂

∂t is the tangent
vector to the interval [t0, t1] at a point t. The path γ′(t) in TM is the
tangential lift of the path γ(t) in M .

Definition. The action functional S : Ω(M) → R of the system (M ; L)
is

S(γ) =
∫ t1

t0

L(γ′(t), t)dt.

Equivalently, the action functional can be defined as the evaluation of
the 1-form Ldt on TM × R over the 1-chain γ̃ on TM × R,

S(γ) =
∫
γ̃

Ldt,

where γ̃ = {(γ′(t), t); t0 ≤ t ≤ t1} ⊂ TM × R and

Ldt
(
w, c ∂

∂t

)
= cL(q, v), w ∈ T(q,v)TM, c ∈ R.

Principle Of The Least Action (Hamilton’s Prinicple). The path
γ ∈ Ω(M) describes the motion of the system (M,L) between the position
q0 ∈ M at time t0 and the position q1 ∈ M at time t1 if and only if it is a
critical point (an extremal) of the action functional S,

d

dε

∣∣∣∣
ε=0

S(γε) = 0

for all variations γε(t) of γ(t).

Remark. Note that this principle does not state that a classical trajec-
tory connecting points q0 and q1 always exists or is unique, nor does it state
that corresponding trajectory is a minimum of the action functional. The
principle just states that the system (M,L) moves along the extremals of
the action functional.

The following choice of local coordinates on TM will be very convenient
for writing down equations of motion.

Definition. Let (U, φ) be a coordinate chart on M with local coordi-
nates q. Coordinates

(q,v) = (q1, . . . , qn, v1, . . . , vn)



10 1. CLASSICAL MECHANICS

on a chart TU on TM are called standard coordinates, if for (q, v) ∈ TU
and f ∈ C∞(U),

v(f) =
n∑

i=1

vi
∂f

∂qi
(q) = v

∂f

∂q
.

Equivalently, standard coordinates on TU are uniquely characterized by
the condition that v = (v1, . . . , vn) are coordinates in the fiber corresponding
to the basis ∂

∂q1
, . . . , ∂

∂qn
for TqM . In other words, standard coordinates are

Cartesian coordinates on φ∗(TU) ⊂ TRn � Rn × Rn.
The tangential lift γ′(t) of a path γ(t) in M in standard coordinates on

TU is (q(t), q̇(t)) = (q1(t), . . . , qn(t), q̇1(t), . . . , q̇n(t)), where dot stands for
the time derivative, so that

L(γ′(t), t) = L(q(t), q̇(t), t).

Following a centuries long tradition, we will denote standard coordinates as

(q, q̇) = (q1, . . . , qn, q̇1, . . . , q̇n),

where the dot here does not stand for the time derivative. Since we only
consider curves in TM that are tangential lifts of curves in M , there will be
no confusion3 .

Theorem 1.1. In standard coordinates, extremals q(t) of the action
functional satisfy the Euler-Lagrange equations

∂L

∂q
(q(t), q̇(t), t) − d

dt

(
∂L

∂q̇
(q(t), q̇(t), t)

)
= 0.

Proof. Suppose first that the extremal γ(t) lies in a coordinate chart U
of M . Then a simple computation in standard coordinates, using integration
by parts, gives

0 =
d

dε

∣∣∣∣
ε=0

S(γε)

=
d

dε

∣∣∣∣
ε=0

∫ t1

t0

L (q(t, ε), q̇(t, ε), t) dt

=
n∑

i=1

∫ t1

t0

(
∂L

∂qi
δqi +

∂L

∂q̇i
δq̇i

)
dt

=
n∑

i=1

∫ t1

t0

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)
δqidt +

n∑
i=1

∂L

∂q̇i
δqi

∣∣∣∣t1
t0

.

The second sum in the last line vanishes due to the property δqi(t0) =
δqi(t1) = 0, i = 1, . . . , n. The first sum is zero for arbitrary smooth functions

3We reserve notation (q(t),v(t)) for general curves in TM .
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δqi on [t0, t1] which vanish at the endpoints. This implies that for each term
in the sum the integrand is identically zero,

∂L

∂qi
(q(t), q̇(t), t) − d

dt

(
∂L

∂q̇i
(q(t), q̇(t), t)

)
= 0, i = 1, . . . , n.

Since the restriction of an extremal of the action functional on a coordi-
nate chart on M is again an extremal, each extremal in standard coordinates
satisfies Euler-Lagrange equations. �

1.2.1. Examples. Mathematically, one can consider mechanical systems
on a configuration space M with arbitrary smooth functions on TM × R

as Lagrangians. However, Lagrangians describing physical systems satisfy
additional properties which can be deduced from basic physical principles.
The first basic principle describes the nature of the space-time in classical
mechanics. It states that the space-time is a direct product R3×R, where R3

carries standard Euclidean product and has a fixed orientation. The second
is Galileo’s relativity principle4.

Galileo’s Relativity Principle. The laws of motion are invariant
with respect to the Galilean transformations

r �→ r + r0 + gr, t �→ t + t0,

where r ∈ R3 and g : R3 → R3 is an orthogonal transformation.

Example 1.1 (Free particle). Configuration space for a free particle is
M = R3, and it can deduced from Galileo’s relativity principle that the
Lagrangian for a free particle is

L = 1
2mṙ2.

Here m > 0 is the mass of a particle and ṙ2 = |ṙ|2 is the square of the
length of the velocity vector ṙ ∈ TrR

3 � R3. Euler-Lagrange equations give
Newton’s law of inertia,

r̈ = 0.

If the Lagrangian does not explicitly depend on time, i.e., L is a function
on TM , then the system (M,L) is called closed.

Example 1.2 (Interacting particles). Closed system of N interacting
particles in R3 with masses m1, . . . ,mN , is described by the configuration
space

M = R
3N = R

3 × · · · × R
3︸ ︷︷ ︸

N

4These principles are valid only in the non-relativistic limit of special relativity, when
the speed of light in the vacuum is assumed to be infinite.
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with a position vector r = (r1, . . . , rN ), where ra ∈ R3 is the position vector
of a-th particle, a = 1, . . . , N . It is found that the Lagrangian is given by

L =
N∑

a=1

1
2maṙ2

a − U(r) = T − U,

where

T =
N∑

a=1

1
2maṙ2

a

is called the kinetic energy and U(r) — the potential energy. The Euler-
Lagrange equations give Galileo-Newton’s equations

mar̈a = Fa,

where
Fa = − ∂U

∂ra

is a force on a-th particle, a = 1, . . . , N . Forces of this form are called
conservative.

Example 1.3 (Universal gravitation). It follows from the Galileo’s rel-
ativity principle that the potential energy U(r) of the closed system of N
interacting particles with conservative forces depends only on relative posi-
tions of the particles. The principle of equality of action and reaction forces5

leads to the following form for the potential energy

U(r) =
∑

1≤a<b≤N

Uab(ra − rb).

A fundamental example is universal gravitation. According to the Newton’s
law of gravitation, the potential energy of the gravitational force between
two particles with masses ma and mb is

U(ra − rb) = G
mama

|ra − rb| ,
where G is the gravitational constant. In this case, the configuration space
of N particles is

M = {(r1, . . . , rN ) ∈ R
3N | ra �= rb for a �= b, a, b = 1, . . . , N}.

Example 1.4 (Riemannian geometry). Let M be a Riemannian mani-
fold with a Riemannian metric 〈 , 〉 : TqM ⊗ TqM → R,

〈u, v〉 =
n∑

i,j=1

gij(q)uivj , u, v ∈ TqM.

The Lagrangian

L(q, v) =
1
2
‖v‖2 =

1
2
〈v, v〉, v ∈ TqM

5This principle is independent from Galileo’s relativity principle.
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gives rise to the action functional in Riemannian geometry, and correspond-
ing Euler-Lagrange equations are geodesic equations written with respect to
the natural parameter. Another choice of the Langrangian is

L̃(q, v) = ‖v‖, v ∈ TqM.

It gives rise to the length functional in Riemannian geometry and corre-
sponding Euler-Lagrange equations are geodesic equations written in a repa-
rameterization invariant way.

1.2.2. Exercises. (Later) Examples of Lagrangians and first and second
variations for the action functional in Riemannian geometry; invariant for-
mulation of Euler-Lagrange equations (following Bryant lectures), etc.

1.3. Symmetries and Noether theorem. Since during the motion
of a mechanical system its generalized coordinates and velocities vary with
time, of particular interest are the functions of these quantities which remain
constant during the motion.

Definition. A smooth function I : TM → R is the integral of motion
(first integral, or conservation law) for the system (M,L) if

d

dt
I(γ′(t)) = 0

for all extremals γ of L.

Definition. The energy of a system (M,L) is a function E on TM ×R

defined in standard coordinates on TM by

E(q, q̇, t) =
n∑

i=1

∂L

∂q̇i
(q, q̇, t)q̇i − L(q, q̇, t).

Lemma 1.1. The energy E = ∂L
∂q̇ q̇ − L is a well-defined function on

TM × R.

Proof. Let (U, φ) and (U ′, φ′) be coordinate charts on M such that
Rn ⊃ φ(U ∩ U ′) � q �→ q′ = f(q) ∈ φ′(U ∩ U ′) ⊂ Rn. It follows from the
definition of standard coordinates that

q̇′i =
n∑

j=1

∂fi

∂qj
q̇j , i = 1, . . . , n,

or q̇′ = f∗(q)q̇, where f∗(q) =
{

∂fi

∂qj

}n

i,j=1
is a matrix-valued function on

φ′(U ∩ U ′). Similarly,

dq′ = f∗(q)dq and dq̇′ = g(q, q̇)dq + f∗(q)dq̇,
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where g(q, q̇) is a matrix-valued function. We have

dL =
∂L

∂q′dq
′ +

∂L

∂q̇′dq̇
′

=
(

∂L

∂q′ f∗(q) +
∂L

∂q̇′ g(q, q̇)
)

dq +
∂L

∂q̇′ f∗(q)dq̇

=
∂L

∂q
dq +

∂L

∂q̇
dq̇.

Thus under the change of variables q′ = f(q), q̇′ = f∗(q)q̇

∂L

∂q̇′ f∗(q) =
∂L

∂q̇
and

∂L

∂q̇′ q̇
′ =

∂L

∂q̇
q̇,

so that two expressions for E in coordinates (q, q̇) and (q′, q̇′) agree on
φ′∗(TU ∩ TU ′). �

Corollary 1.1. Standard coordinates (q, q̇) on TM have the property
that under the change of coordinates q on M components of

∂L

∂q̇
(q, q̇) =

(
∂L

∂q̇1
, . . . ,

∂L

∂q̇n

)
transform like components of a 1-form on M , and components of q̇ =
(q̇1, . . . , q̇n) — like components of a tangent vector on M .

Proposition 1.1 (Conservation of energy). The energy of a closed sys-
tem is an integral of motion.

Proof. For an extremal γ set E(t) = E(γ(t)). We have, according to
the Euler-Lagrange equations,

dE

dt
=

d

dt

(
∂L

∂q̇

)
q̇ +

∂L

∂q̇
q̈ − ∂L

∂q
q̇ − ∂L

∂q̇
q̈ − ∂L

∂t

=
(

d

dt

(
∂L

∂q̇

)
− ∂L

∂q

)
q̇ − ∂L

∂t
= −∂L

∂t
.

Since for the closed system ∂L
∂t = 0, the energy is conserved. �

Conservation of energy for a closed mechanical system is a basic law
of physics, which follows from the fundamental principle of homogenuity
of time. By virtue of this principle, the Lagrangian of a closed system is
invariant under time translations, i.e., it does not explicitly depend on time.
For the closed system of N interacting particles considered in the previous
example,

E =
N∑

a=1

maṙ2
a − L =

N∑
a=1

1
2maṙ2

a + U(r).

The total energy is the sum of the kinetic energy and the potential energy,
E = T + U .
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Definition. A Lagrangian L : TM → R for a closed system is invariant
with respect to the diffeomorphism h : M → M , if L(h∗(w)) = L(w) for
all w ∈ TM . The diffeomorphism h is called the symmetry of the system
(M,L).

The following theorem asserts that continuous symmetries of a mechan-
ical system give rise to conservation laws.

Theorem 1.2 (Noether). Suppose that the Lagrangian L of a closed
system is invariant under a one-parameter group {hs}s∈R of diffeomorphisms
of M . Then the system (M,L) admits an integral of motion I, given in the
standard coordinates by

I(q, q̇) =
n∑

i=1

∂L

∂q̇i
(q, q̇)

(
dhs

i (q)
ds

∣∣∣∣
s=0

)
=

∂L

∂q̇
q′.

Proof. Since

q′ =
(

dhs
1(q)
ds

∣∣∣∣
s=0

, . . . ,
dhs

n(q)
ds

∣∣∣∣
s=0

)
are components of the vector field on M associated with the one-parameter
group {hs}s∈R, it follows from Corollary 1.1 that I is a well-defined function
on TM . We get, differentiating L(hs∗w) = L(w) with respect to s at s = 0
and using the Euler-Lagrange equations,

0 =
∂L

∂q
q′ +

∂L

∂q̇
q̇′ =

d

dt

(
∂L

∂q̇

)
q′ +

∂L

∂q̇
dq′

dt
=

d

dt

(
∂L

∂q̇
q′
)

.

�

Remark. Conservation of energy does not follow from Noether’s theo-
rem, which was formulated for closed systems. One can extend it to general
systems as follows. For a Lagrangian L : TM × R → R define the extended
configuration space M1 = M × R and set L1 : TM1 → R

L1(q, τ, q̇, τ̇) = L

(
q,

q̇
τ̇

, τ

)
τ̇ ,

where (q, τ) are local coordinates on M1 and we are using standard coor-
dinates on TM1. The Noether integral of motion I1 for a system (M1, L1)
give rise to the integral of motion I for the system (M,L),

I(q, q̇, t) = I1(q, t, q̇, 1).

In particular, if L does not depend on time, Lagrangian L1 is invariant
under the one-parameter group of translations τ �→ τ + s and corresponding
Noether integral I1 = ∂L1

∂τ̇ τ̇ gives rise to I = −E, where E is the energy of
the system (M,L).

The main applications of Noether theorem are the following.
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Example 1.5 (Conservation of momentum). Let M = V — a vector
space, and suppose that the Lagrangian L is invariant with respect to the
one-parameter group hs(q) = q+sa, a ∈ V . According to Noether’s theorem,

I =
n∑

i=1

∂L

∂q̇i
ai

is an integral of motion. For the system of N interacting particles, consid-
ered in Example 1.2, V = R3N . Another fundamental principle of classical
mechanics is homogenuity of space. By virtue of this principle, Lagrangian
of a closed system of N particles is invariant under simultaneous translation
of coordinates ra = (ra1, ra2, ra3) of all particles by the same vector c ∈ R3.
Thus a = (c, . . . , c) ∈ R3N , and for every c = (c1, c2, c3) ∈ R3

I =
N∑

a=1

(
∂L

∂ṙa1
c1 +

∂L

∂ṙa2
c2 +

∂L

∂ṙa3
a3

)
= P 1c1 + P 2c2 + P 3c3

is an integral of motion. The integrals of motion P 1, P 2, P 3 define the vector

P =
N∑

a=1

∂L

∂ṙa
∈ R

3

(or rather a vector in the dual space to R3), called the momentum vector.
Explicitly,

P =
N∑

a=1

maṙa,

so that the total momentum of a closed system is the sum of momenta of
individual particles.

Example 1.6 (Conservation of angular momentum). Let M = V be the
vector space with Euclidean inner product and let G = SO(V) ⊂ GL(V) be
the connected Lie group of automorphisms of V preserving the inner prod-
uct, and let g = so(V) ⊂ gl(V) be its Lie algebra. Suppose that Lagrangian
L is invariant with respect to the action of the one-parameter subgroup
hs(q) = esx(q) of G on V , where x ∈ g and ex is the exponential map.
According to Noether’s theorem,

I =
n∑

i=1

∂L

∂q̇i
(x(q))i

is an integral of motion. For the system of N interacting particles, considered
in Example 1.2, V = R3N and it is equipped with the standard Euclidean
inner product.

Another fundamental principle of classical mechanics is the isotropy of
space. By virtue of this principle, Lagrangian of a closed system is invariant
under simultaneous rotation of coordinates ra of all particles by the same
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orthogonal transformation in R3. Thus x = (x, . . . , x) ∈ so(3) ⊕ · · · ⊕ so(3)︸ ︷︷ ︸
N

,

and for every x ∈ so(3)

I =
N∑

a=1

(
∂L

∂ṙa1
x(ra)1 +

∂L

∂ṙa2
x(ra)2 +

∂L

∂ṙa3
x(ra)3

)
is an integral of motion. Using the standard basis in so(3) � R3 (i.e.,
identifying R3 ∧ R3 � R3), we get the angular momentum vector

M =
N∑

a=1

ra ∧ ∂L

∂ṙa
∈ R

3

(or rather a vector in the dual space to so(3)), whose components are inte-
grals of motion. Explicitly,

M =
N∑

a=1

mara ∧ ṙa,

so that the total angular momentum of a closed system is the sum of angular
momenta of individual particles.

Combining the principle of equality of action and reaction forcess with
homogenuity and isotropy of space, we see that the most general form of a
Lagrangian for a closed system of N interacting particles is

L =
N∑

a=1

1
2maṙ2

a −
∑

1≤a<b≤N

Uab(|ra − rb|).

1.4. Integration of equations of motion.
1.4.1. One-dimensional motion.
1.4.2. The motion in a central field.
1.4.3. The Kepler problem.

1.5. Legendre transformation. In standard coordinates (q, q̇) at (q, v) ∈
TM the Euler-Lagrange equations can be written explicitly as the following
system of second order differential equations

∂L

∂qi
(q, q̇) =

d

dt

(
∂L

∂q̇i
(q, q̇)

)
=

n∑
j=1

(
∂2L

∂q̇i∂q̇j
(q, q̇) q̈j +

∂2L

∂q̇i∂qj
(q, q̇) q̇j

)
, i = 1, . . . , n.

In order for this system to be solvable for the highest derivatives, the matrix

HL =
(

∂2L

∂q̇i∂q̇j
(q, q̇)

)
should be invertible in the neighborhood of a point (q, v) in TM .
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Definition. A system (M,L) is called non-degenerate if the matrix
HL(q, v) is invertible for all (q, v) ∈ TM .

The last definition uses standard coordinates. For an invariant formu-
lation, consider the 1-form θL on TM , defined in standard coordinates on
TM by

θL =
n∑

i=1

∂L

∂q̇i
dqi =

∂L

∂q̇
dq.

It follows from Corollary 1.1 that the 1-form θL is well-defined.

Lemma 1.2. A system (M,L) is non-degenerate if and only if the 2-form
dθL on TM is non-degenerate.

Proof. In standard coordinates,

dθL =
n∑

i,j=1

(
∂2L

∂q̇i∂q̇j
dq̇j ∧ dqi +

∂2L

∂q̇i∂qj
dqj ∧ dqi

)
.

�

Definition. Let (U, φ) be a coordinate chart on M . Coordinates

(q,p) = (q1, . . . , qn, p1, . . . , pn)

on the chart T ∗U on the cotangent bundle T ∗M are called standard coordi-
nates if for (q, p) ∈ T ∗U and f ∈ C∞(U)

pi(df) =
∂f

∂qi
, i = 1, . . . , n.

Equivalently, standard coordinates on T ∗U are uniquely characterized
by the condition that (p1, . . . , pn) are coordinates in the fiber corresponding
to the basis dq1, . . . , dqn for T ∗

q M , which is dual to the basis ∂
∂q1

, . . . , ∂
∂qn

for
TqM .

Definition. The 1-form θ on T ∗M , defined in standard coordinates by

θ =
n∑

i=1

pidqi = pdq,

is called the canonical Liouville 1-form.

Corollary 1.1 shows that θ is a well-defined 1-form on T ∗M . Equiva-
lently, the 1-form θ can be defined as follows. Let π : T ∗M → M be the
canonical projection and u ∈ T(q,p)T

∗M . Then θ(u) = p(π∗(u)).

Definition. A fibre-wise mapping τL : TM → T ∗M is called a Legendre
transformation associated with the Lagrangian L, if

θL = τ∗
L(θ).
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Equivalently, the Legendre transformation in standard coordinates is
defined by

τL(q, q̇) = (q,p), where p =
∂L

∂q̇
.

The mapping τL is a local diffeomorphism if and only if Lagrangian L is
non-degenerate.

Definition. Suppose that the Legendre transformation τL is a diffeo-
morphism. The Hamiltonian H : T ∗M → R, associated with the Lagrangian
L : TM → R, is defined by

H ◦ τL = E =
∂L

∂q̇
q̇ − L.

In standard coordinates,

H(q,p) = (pq̇ − L(q, q̇))|
p=

∂L
∂q̇

,

where q̇ is expressed in terms of q,p through the inverse of the Legendre
transformation.

Theorem 1.3. Suppose that the Legendre transformation τL is a diffeo-
morphism. Then the Euler-Lagrange equations in standard coordinates on
TM ,

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

are equivalent to the canonical Hamilton’s equations in standard coordinates
on T ∗M ,

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
, i = 1, . . . , n.

Proof. We have

dH =
∂H

∂q
dq +

∂H

∂p
dp

=
(
pdq̇ + q̇dp − ∂L

∂q
dq − ∂L

∂q̇
dq̇
)∣∣∣∣

p=
∂L
∂q̇

=
(
q̇dp − ∂L

∂q
dq
)∣∣∣∣

p=
∂L
∂q̇

.

Thus under the Legendre transform p = ∂L
∂q̇ ,

q̇ =
∂H

∂p
and

∂L

∂q
= −∂H

∂q
.

The second half of Hamilton’s equations follows from the Euler-Lagrange
equations,

∂L

∂q
=

d

dt

∂L

∂q̇
= ṗ.

�
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Corollary 1.2. The Hamiltonian function H is constant on the solu-
tions of the Hamilton equations, e.g., it is an integral of motion.

Proof. On the solution (q(t), p(t)) we have for H(t) = H(q(t), p(t)),
dH

dt
=

∂H

∂q
q̇ +

∂H

∂p
ṗ =

∂H

∂q
∂H

∂p
− ∂H

∂p
∂H

∂q
= 0.

�
The cotangent bundle T ∗M is called the phase space of the Hamiltonian

system associated with (M,L).

Examples 1.4.
1. The Lagrangian of a particle of mass m with the potential energy

U(r) is

L =
mṙ2

2
− U(r), r ∈ R

3.

We have
p =

∂L

∂ṙ
= mṙ,

so that the Legendre transformation is global diffeomorphism linear
on the fibers, and

H = (pṙ − L)|
ṙ=

p
m

=
p2

2m
+ U(r).

The Hamilton’s equations

ṙ =
∂H

∂p
=

p
m

,

ṗ = − ∂H

∂r
= −∂U

∂r
,

are equivalent to Newton’s equations with the force F = −∂U
∂r .

2. Consider the Lagrangian

L =
n∑

i,j=1

1
2aij(q)q̇iq̇j − U(q), q ∈ R

n,

where A(q) = {aij(q)}n
i,j=1 is symmetric matrix. We have

pi =
n∑

j=1

aij q̇j ,

and the Legendre transformation is global diffeomorphism, linear
on the fibres, if and only if the matrix A(q) is non-degenerate for
all q ∈ Rn. In this case,

H = (pq̇ − L)|
p=

∂L
∂q̇

=
n∑

i,j=1

1
2aij(q)pipj + U(q),

where {aij(q)}n
i,j=1 = A−1(q) is the inverse matrix.
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1.6. The action functional in the phase space. With every func-
tion H on the phase space T ∗M we associate a 1-form

θ − Hdt = pdq − Hdt

on the extended phase space T ∗M × R, called the Poincaré-Cartan form.
Let Ω(T ∗M × R; q0, t0, q1, t1) be the space of all smooth paths σ : [t0, t1] →
T ∗M × R such that π1(σ(t0)) = q0, π1(σ(t1)) = q1, and π2(σ(t)) = t for
all t ∈ [t0, t1]. Here π1 and π2 are, respectively, canonical projections of
T ∗M×R onto M and R. Such path σ is called an admissible path in T ∗M×R.
A variation of an admissible path σ is a smooth family of admissible paths
σε, ε ∈ [−ε0, ε0], such that σ0 = σ, and the corresponding infinitesimal
variation is

δσ =
∂σε

∂ε

∣∣∣∣
ε=0

∈ TσΩ(T ∗M × R; q0, t0, q1, t1).

The principle of the least action in the phase space is the following statement.

Theorem 1.5 (Poincaré). The admissible path σ in T ∗M × R is an
extremal for the action functional

S(σ) =
∫
σ

(pdq − Hdt)

if and only if its projection onto T ∗M is a solution of canonical Hamilton’s
equations.

Proof. As for the derivation of Euler-Lagrange equations, using inte-
gration by parts we compute in standard coordinates

d

dε

∣∣∣∣
ε=0

S(σε) =
∫ t1

t0

n∑
i=1

(
q̇iδp

i − ṗiδqi − ∂H

∂qi
δqi − ∂H

∂pi
δpi

)
dt

+
n∑

i=1

pi δqi|t1t0 .

Since δq(t0) = δq(t1) = 0, we conclude that the path σ is critical if and only
if q(t),p(t) satisfy canonical Hamilton’s equations. �

2. Hamiltonian Mechanics

2.1. Canonical Hamilton’s equations. The canonical Hamilton’s
equations on T ∗M with a Hamiltonian H : T ∗M → R in standard coor-
dinates on T ∗U have the form

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
.

and define a vector field XH on T ∗U by

XH =
n∑

i=1

(
∂H

∂pi

∂

∂qi
− ∂H

∂qi

∂

∂pi

)
=

∂H

∂p
∂

∂q
− ∂H

∂q
∂

∂p
.
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As it follows from the definition of standard coordinates, this gives rise to
a well-defined vector field XH on T ∗M , called the Hamiltonian vector field.
Suppose that the vector field XH is complete, i.e., its integral curves exist for
all times (this is the case when level sets of the Hamiltonian H are compact
submanifolds on T ∗M). The corresponding one-parameter group {gt}t∈R of
diffeomorphisms of T ∗M generated by XH is defined by gt : (q(0), p(0)) �→
(q(t), p(t)) and is called Hamiltonian phase flow.

Definition. The canonical symplectic form on T ∗M is ω = dθ.

In standard coordinates (q, p) on T ∗M the 2-form ω is

ω =
n∑

i=1

dpi ∧ dqi = dp ∧ dq,

and is non-degenerate. The symplectic form ω defines an isomorphism be-
tween tangent and cotangent bundles of T ∗M ,

J : T ∗(T ∗M) → T (T ∗M),

such that for every (q, p) ∈ T ∗M

ω(u1, u2) = J−1(u2)(u1), u1, u2 ∈ T(q,p)(T
∗M).

In standard coordinates on T ∗M and TM ,

J(dq) = − ∂

∂p
, J(dp) =

∂

∂q
and XH = J(dH).

Theorem 2.1. The Hamiltonian phase flow on T ∗M preserves canonical
symplectic form.

Proof. We need to proof that (gt)∗ω = ω. Since gt is a one-parameter
group of diffeomorphisms, it is sufficient to show that

d

dt
(gt)∗ω

∣∣∣∣
t=0

= LXH
ω = 0,

where LXH
stands for the Lie derivative along the vector field XH . For every

vector field X
dLX(f) = LX(df),

we have

LXH
(dqi) = d(XH(qi)) = d

(
∂H

∂pi

)
and LXH

(dpi) = d(XH(pi)) = −d

(
∂H

∂qi

)
.

Thus

LXH
ω =

n∑
i=1

(LXH
(dpi) ∧ dqi + dpi ∧ LXH

(dqi)
)

=
n∑

i=1

(
−d

(
∂H

∂qi

)
∧ dqi + dpi ∧ d

(
∂H

∂pi

))
= −d(dH) = 0.

�
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The canonical symplectic form ω on T ∗M defines the volume form ωn =
ω ∧ · · · ∧ ω︸ ︷︷ ︸

n

— the Liouville volume form on T ∗M .

Corollary 2.1 (Liouville’s Theorem). The Hamiltonian phase flow on
T ∗M preserves the Liouville volume form.

The configuration space M has the property that the restriction of the
symplectic form ω to M vanishes. Generalizing this property we have the
following

Definition. A submanifold L of the phase space is called Lagrangian
submanifold if dimL = dimM and ω|L = 0.

It follows from the theorem that under the Hamiltonian phase flow the
image of a Lagrangian submanifold is a Lagrangian submanifold.

2.2. The action as a function of coordinates. For a system (M,L)
let γ(t;q0, q̇0) be the solution of Euler-Lagrange equations

d

dt

∂L

∂q̇
− ∂L

∂q
= 0

with the initial conditions γ(t0;q0, q̇0) = q0, γ̇(t0;q0, q̇0) = q̇0. Fix q0 ∈ M
and t suppose that a self-mapping of M defined in standard coordinates by
q̇0 �→ γ(t;q0, q̇0) is a diffeomorphism. Then for every q ∈ M there is a
unique extremal γ(τ ;q0,q) connecting points q0 and q at times t0 and t,
and we define the action as functions of coordinates by

S(q, t;q0, t0) =
∫ t

t0

L(γ′(τ ;q0,q))dτ.

Remark. If the mapping q̇0 �→ γ(t;q0, q̇0) is a local diffeomorphism,
i.e., a diffeomorphism between some domains U0 and U , then S(q, t;q0, t0)
is defined on U . For each extremal γ(t;q0, q̇0) with |t − t0| small enough,
there always exists such a domain U containing q = γ(t,q0, q̇0). In this case
it is said that the extremal connecting q0 at t0 and q at t is included into a
central field of extremals.

Theorem 2.2. Differential of the action as a function of coordinates
(with fixed initial point) is given by

dS = pdq − Hdt

where p = ∂L
∂q̇ and H = pq̇ − L are defined by q̇ = γ̇(t;q0,q).

Proof. Fix v ∈ TqM � Rn using standard cooridnates. For the family
of extremals γε(τ) = γ(τ ;q0,q + εv) the corresponding infinitesimal varia-
tion δγ satisfies δγ(t0) = 0 and δγ(t) = v. Repeating the computation in
the proof of Theorem 1.1 and using the fact that γε satisfy Euler-Lagrange
equations, we get for fixed t,

dS(v) =
∂L

∂q̇
v,
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so that
∂S

∂q
= p. Now along the extremal γ(t;q0,q),

d

dt
S(q(t), t;q0, t0) =

∂S

∂q
q̇ +

∂S

∂t
= L,

so that
∂S

∂t
= L − pq̇ = −H. �

Corollary 2.2. The classical action satisfies the following nonlinear
partial differential equation

(2.1)
∂S

∂t
+ H

(
∂S

∂q
,q
)

= 0.

This equation is called the Hamilton-Jacobi equation. Hamilton’s equa-
tions can be used for solving the Cauchy problem

(2.2) S(q, t)|t=t0
= s(q)

for Hamilton-Jacobi equation (2.1) by the method of characteristics. Namely,
let gt be the Hamiltonian phase flow in the phase space M = T ∗M and let

L =
{

(q,p) ∈ T ∗M : p =
∂s(q)
∂q

}
be the Lagrangian submanifold — a graph of the section ds of the cotangent
bundle π : T ∗M → M . The submanifold L has an addition property that
the mapping π|L is one to one. For the Lagrangian submanifold L t =
gt−t0L the restriction of the projection mapping π to L t will remain one
to one provided that t − t0 is sufficiently small. For such t we consider the
mapping πt = π ◦ gt ◦ (π|L )−1 : M → M is a diffeomorphism. This is the
statement that for t0 ≤ τ ≤ t the extremals γ(τ,q0, q̇0) in the extended

configuration space M ×R, where q̇0 =
∂H

∂q
(q0,p0) for (q0,p0) ∈ L , called

characteristics of the Hamilton-Jacobi equation, do not intersect.

Proposition 2.1. Under the above assumptions, the solution S(q, t) to
the Cauchy problem (2.1)-(2.2) is given by

S(q, t) = s(q0) +
∫ t

t0

L(γ′(τ))dτ.

Here γ(τ) is the characteristic which ends at a given point (q, t) ∈ M × R

and starts at some point (q0, t0) ∈ M × R, uniquely determined by q ∈ M .

Proof. By the same computation as in the proof of the previous theo-
rem, with the only difference that q0 now depends on q, we get that along
the characteristic,

∂S

∂q
(q) =

∂s

∂q0
(q0)

∂q0

∂q
+

∂L

∂q̇
(q) − ∂L

∂q
(q0)

∂q0

∂q
= p,
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where we have used Theorem 2.1 and definition of L . Since along the
characteristic

∂S

∂t
= −H(p,q),

we get the result. �
We can also consider the action S(q, t;q0, t0) as a function of both vari-

ables q and q0. The analog of Theorem 2.3 is the following statement, where
notations and conditions should be clear from the content.

Proposition 2.2. Differential of the action as a function of initial and
final points is given by

dS = pdq − p0dq0 − Hdt + H0dt0.

2.3. Classical observables and Poisson bracket. The vector space
C∞(T ∗M) of smooth real-valued functions on T ∗M is an R-algebra — an
associative algebra with a unit over R, with a multiplication given by the
point-wise product of functions. The R-algebra C∞(T ∗M) is called the
algebra of classical observables. The time evolution of every observable f ∈
C∞(T ∗M) is determined by the Hamiltonian phase flow and is given by

ft(q, p) = f(gt(q, p)), (q, p) ∈ T ∗M.

Equivalently, the evolution is described by Hamilton’s equations of motion
for classical observables,

dft

dt
=

dfs+t

ds

∣∣∣∣
s=0

=
d(ft ◦ gs)

ds

∣∣∣∣
s=0

= XH(ft)

=
n∑

i=1

(
∂H

∂pi

∂ft

∂qi
− ∂H

∂qi

∂ft

∂pi

)
=

∂H

∂p
∂ft

∂q
− ∂H

∂q
∂ft

∂p
.

This motivates the following definiton.

Definition. The canonical Poisson bracket of classical observables on
T ∗M is a linear6 mapping { , } : C∞(T ∗M) ⊗ C∞(T ∗M) → C∞(T ∗M),
given by

{f, g} = Xf (g) =
∂f

∂p
∂g

∂q
− ∂f

∂q
∂g

∂p
,

where ⊗ stands for the tensor product of vector spaces.

Theorem 2.3. The canonical Poisson bracket on T ∗M has the following
properties.

(i) (Relation with the symplectic form)

{f, g} = ω(Jdf, Jdg) = ω(Xf , Xg).

(ii) (Skew-symmetry)

{f, g} = −{g, f}.
6Equivalently, a bilinear mapping { , } : C∞(T ∗M) × C∞(T ∗M) → C∞(T ∗M).
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(iii) ( Leibniz rule)

{fg, h} = f{g, h} + g{f, h}.
(iv) (Jacobi identity)

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0

for all f, g, h ∈ C∞(T ∗M).

Proof. Property (i) immediately follows from the definitions of the
canonical symplectic form ω and linear operator J . Properties (ii)-(iii) are
obvious. As we will prove in the next section, the Jacobi identity follows
from the property

LXH
ω = 0 for all H ∈ C∞(T ∗M).

For the canonical Poisson bracket the Jacobi identity can be also verified by
a straightforward computation. Another elegant argument is the following.
The Poisson bracket {f, g} is a bilinear first order differential operator, and
analyzing each term of the left hand side of the Jacobi identity, we conclude
that it is a linear homogenous function of second partial derivatives of the
functions f, g, h. The only terms in the Jacobi identity that may contain
second derivatives of h (say) are of the form

{f, {g, h}} + {g, {h, f}} = (XfXg − XgXf )(h).

However, this expression does not contain second derivatives of h since a
commutator of two differential operators of the first order is again an oper-
ator of the first order! �

This theorem motivates the following definition.

Definition. A commutative R-algebra A is called a Poisson algebra if
it has a Lie algebra structure such that the Lie bracket [ , ] is a derivation
with respect to the multiplication in A,

[ab, c] = a [b, c] + b [a, c] for all a, b, c ∈ A.

The algebra C∞(T ∗M) of classical observables on T ∗M is a Poisson
algebra with a Lie bracket given by the canonical Poisson bracket. In ad-
dition, the Poisson bracket preserves supports of functions. Derivations on
C∞(T ∗M) with these property are called local derivations.

2.4. Symplectic and Poisson manifolds. Here we formulate Hamil-
tonian mechanics on manifolds by generalizing Hamiltion’s canonical for-
malism developed for the cotangent bundle T ∗M .
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2.4.1. Symplectic manifolds. The natural symplectic structure on the
cotangent bundle T ∗M admits the following generalization.

Definition. A non-degenerate, closed 2-form ω on a manifold M is
called symplectic form. A pair (M , ω), where ω is a symplectic form, is
called a symplectic manifold.

Since symplectic form is non-degenerate, a symplectic manifold M is
necessarily even-dimensional, dimM = 2n. Every non-degenerate 2-form ω
on M defines the bundle isomorphism

J : T ∗M → TM ,

where for every x ∈ M ,

ω(v1, v2) = J−1(v2)(v1), v1, v2 ∈ TxM .

Let x = (x1, . . . , x2n) be local coordinates on M associated with the coor-
dinate chart (U, φ) centered at x ∈ M . In these coordinates the 2 form ω is
given by

ω = 1
2

2n∑
i,j=1

ωij(x) dxi ∧ dxj ,

where {ωij(x)}2n
i,j=1 is non-degenerate, skew-symmetric matrix-function on

φ(U). Denoting the inverse matrix by {ωij(x)}2n
i,j=1, we have in standard

coordinates on T ∗U and TU

Jdxi =
2n∑

j=1

ωij(x)
∂

∂xj
, i = 1, . . . , 2n.

Symplectic manifolds form a category. A morphism between (M1, ω1)
and (M2, ω2) is a mapping f : M1 → M2 of smooth manifolds such that
ω1 = f∗(ω2). Such mapping f is called a symplectomorphism. The di-
rect product of symplectic manifolds (M1, ω1) and (M2, ω2) is a symplectic
manifold

(M1 × M2, π
∗
1(ω1) + π∗

2(ω2)),

where π1 and π2 are, respectively, projections of M1×M2 onto the first and
second factors.

Definition. A mechanical system on a symplectic manifold (M , ω) is
given by a Hamiltonian H — a smooth real-valued function on M . The
time evolution of the system (M ,H) is described by a Hamiltonian vector
field XH on M associated with the Hamiltonian function H,

XH = JdH.

The manifold M is called the called phase space of a mechanical system
and the algebra A = A0(M ) = C∞(M ) is called the algebra of classical
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observables on the phase space M . Time evolution of classical observables
is given by the Hamilton’s equations of motion

df

dt
= XH(f) = ω(XH , Xf ), f ∈ A.

The following statement shows that Hamiltonian mechanics on a sym-
plectic manifold locally can be described by canonical Hamiltonian formal-
ism on the cotangent bundle.

Theorem 2.4 (Darboux’ Theorem). Let (M , ω) be a symplectic mani-
fold, dim M = 2n. For every point x ∈ M there is a neighborhood U of x
with local coordinates (q,p) = (q1, . . . , qn, p1, . . . , pn) such that on U

ω =
n∑

i=1

dpi ∧ dqi = dp ∧ dq.

The proof of Darboux’s Theorem will be sketched in the exercises.
Now we assume that the vector field XH on M is complete. The phase

flow on M associated with a Hamiltonian H is a one-parameter group
{gt}t∈R of diffeomorphisms of M generated by XH . The following state-
ment generalizes Theorem 2.1.

Theorem 2.5. The Hamiltonian phase flow on a symplectic manifold
preserves the symplectic form.

Proof. It is sufficient to show that LXH
ω = 0 for every H ∈ A. Using

Cartan’s formula
LX = iX ◦ d + d ◦ iX

and dω = 0, we get
LXω = (d ◦ iX)(ω)

for every X ∈ Vect(M ). Since

iX(ω)(Y ) = ω(X, Y )

for every Y ∈ Vect(M ), we have for X = XH ,

iXH
(ω)(Y ) = ω(JdH, Y ) = −dH(Y ).

Thus iXH
(ω) = −dH, and the statement follows from d2 = 0. �

It follows from the proof that a vector field X on M is Hamiltonian if
and only if the 1-form iX(ω) on M is exact. Similarly, a vector field X on
M is called symplectic if the 1-form iX(ω) is closed.

Since Hamilton’s equations for observables

df

dt
= XH(f) = ω(JdH, Jdf)

have the same form as Hamilton’s equations on M = T ∗M , this justifies
the following definition.
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Definition. A Poisson bracket on the algebra A = C∞(M ) of classical
observables on a symplectic manifold (M , ω) is a linear mapping { , } :
A ⊗ A → A, defined by

{f, g} = Xf (g) = ω(Jdf, Jdg) = ω(Xf , Xg), f, g ∈ A.

In local coordinates x = (x1, . . . , x2n) on M ,

{f, g}(x) =
2n∑

i,j=1

ωij(x)
∂f(x)
∂xi

∂g(x)
∂xj

.

Theorem 2.6. The bracket mapping { , } on a symplectic manifold
(M , ω) is a Poisson bracket, i.e., it is skew-symmetric and satisfies Leibniz
rule and the Jacobi identity.

Proof. The first two properties are obvious. The Jacobi identity is
equivalent to from the property

[Xf , Xg] = X{f,g}
since

{{f, g}, h} = X{f,g}(h) = (XgXf − XfXg)(h) = {g, {f, h}} − {f, {g, h}}.
To prove this property, let X and Y be symplectic vector fields on M . Using

LX ◦ iY − iY ◦ LX = i[X,Y ],

Cartan’s formula and Theorem 2.7, we get

i[X,Y ](ω) =LX(iY (ω)) − iY (LX(ω))

=d(iX ◦ iY (ω)) + iXd(iY (ω))

=d(ω(X, Y )) = −d(ω(Y, X)) = iXω(X,Y )
(ω).

Since 2-form ω is non-degenerate, iX(ω) = iY (ω) implies X = Y , and we
get

[X, Y ] = Xω(X,Y ).

Setting X = Xf , Y = Xg and using {f, g} = ω(Xf , Xg) we get the assertion.
�

The property [Xf , Xg] = X{f,g} means that the vector space Ham(M )
of Hamiltonian vector fields on M is a Lie subalgebra of the Lie algebra
Vect(M ) and the mapping A → Ham(M ) given by f �→ Xf is a Lie algebra
homomorphism. The kernel of this mapping consists of locally constant
functions on M (and is R if M is connected).

In the Lagrangian mechanics, the function I on M is called an integral
of motion (first integral) for the mechanical system (M ,H) if it is constant
along the Hamiltonian phase flow. Equivalently, I is the first integral if

{H, I} = 0.

This condition is also stated that observables H and I are in involution.
From the Jacobi identity for the Poisson bracket we get the following
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Corollary 2.3 (Poisson’s Theorem). The Poisson bracket of two inte-
grals of motion is an integral of motion.

Proof. If {H, I1} = {H, I2} = 0, then

{H, {I1, I2}} = {{H, I1}, I2} − {{H, I2}, I1} = 0.

�

Below we give several examples of symplectic manifolds, compact and
non compact.

Example 2.1 (Cotangent bundles). M = T ∗M , with the canonical
symplectic form ω = dθ.

Example 2.2 (Kähler manifolds). M = XR — a real form of a Kähler
manifold X with Kähler form as a symplectic form.

Example 2.3 (Projective varieties). Real forms of complex projective
varities, with a pull-back of Fubini-Study metric on CPn as a symplectic
form.

Example 2.4 (Coadjont orbits). M = Ou — a coadjoint orbit of a
finite-dimensional Lie group G with a Lie algebra g, where u ∈ g∗ is the
dual space to g. The symplectic form is the Kirillov-Kostant 2-form on the
orbit.

Example 2.5 (Symplectic quotients). Let (M , ω) be a connected sym-
plectic manifold on which a Lie group G acts by symplectomorphisms. The
action is called Hamiltonian if the Lie algebra g of G acts on M by Hamil-
tonian vector fields,

g � ξ �→ XHξ
∈ Vect(M ).

The action is called Poisson if

{Hξ,Hη} = H[ξ,η] for all ξ, η ∈ g.

For a Poisson action define the moment map P : M → g∗ by

P (x)(ξ) = Hξ(x), ξ ∈ g, x ∈ M .

The for every regular value p ∈ g∗ of the moment map P such that a
stabilizer Gp of p acts freely and proper on Mp = P−1(p), the quotient Mp =
Gp\Mp is called a reduced phase space. It is a symplectic manifold and the
symplectic form on Mp is uniquely characterized by the condition that its
pull-back to Mp coincides with the restriction to Mp of the symplectic form
ω.

In general a quotient of a symplectic manifold by a symplectic group ac-
tion is not symplectic. The usefullness of the last example is that it provides
a systematic way of producing a family of quotient symplectic manifolds pa-
rameterized by g∗. In the exercises we will give a more detailed information
about the last two examples.
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For the example M = T ∗M the configuration space M is the base of the
fibration π : T ∗M → M and has the property that ω|M = 0. Generalizing
this we get the following

Definition. A submanifold M of a symplectic manifold (M , ω) is call
Lagrangian submanifold if dimM = 1

2 dim M and the restriction of the
symplectic form ω to M is 0.

Example 2.6. Configuration space M is a Lagrangian submanifold in
M = T ∗M .

2.4.2. Poisson manifolds. The Poisson bracket on a symplectic manifold
(M , ω) has the property that only locally constant obervables are in involu-
tion with the whole algebra A. Relaxing this condition, we get an important
notion of a Poisson manifold.

Definition. A Poisson manifold is a smooth manifold M equipped
with a Poisson structure: a skew-symmetric linear mapping { , } : C∞(M )⊗
C∞(M ) → C∞(M ), which preserves supports, satisfies the Leibniz rule and
Jacobi identity.

Equivalently, M is a Poisson manifold if algebra A = C∞(M ) of classical
observables on M has a structure of a Poisson algebra such that a Lie bracket
is a local derivation. Due to this property, in local coordinates at x ∈ M
the Poisson bracket has the form

{f, g}(x) =
N∑

i,j=1

ηij(x)
∂f(x)
∂xi

∂g(x)
∂xj

.

The 2-tensor ηij(x) defines a section over M of the exterior square Λ2TM
of the tangent bundle TM , called the Poisson tensor.

The evolution of classical observables on a Poisson manifold is given by
Hamilton’s equations of motion

df

dt
= XH(f) = {H, f}.

The phase flow gt for a complete Hamiltonian vector field XH = {H, · }
defines an evolution operator

Ut(f)(x) = f(gt(x)), f ∈ A.

Theorem 2.7. Suppose that every Hamiltonian vector field on a Poisson
manifold (M , { , }) is complete. Then for every Hamiltonian H ∈ A, the
evolution operator Ut is an isomorphism of the Poisson algebra A,

Ut({f, g}) = {Ut(f), Ut(g)} for all f, g ∈ A.

Proof. Since Ut is a one-parameter group, it is sufficient to verify this
statement infinitesimally. Applying d

dt at t = 0 to both sides of the equation
we see that it is equivalent to the Jacobi identity for the observables H, f, g.

�
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Corollary 2.4. A smooth section η of Λ2TM is a Poisson tensor if
and only if

LXf
η = 0 for all f ∈ A.

Remark. The above result is the counter-part of Theorem 2.4 for Pois-
son manifolds.

Definition. The center of a Poisson manifold (M , { , }) is

Z(M ) = {f ∈ C∞(M ) : {f, g} = 0 for all g ∈ C∞(M )}.
A Poisson manifold is called non-degenerate if Z(M ) = R.

Equivalently, a Poisson manifold (M , { , }) is non-degenerate if the
Poisson tensor η ∈ Vect(M ) ∧ Vect(M ) gives rise to a bundle isomorphism
J : T ∗M → TM .

Poisson manifolds form a category. A morphism between (M1, { , }1)
and (M2, { , }2) is a mapping φ : M1 → M2 of smooth manifolds such that

{f ◦ φ, g ◦ φ}1 = {f, g}2 ◦ φ ∀f, g ∈ C∞(M2).

Non-degenerate Poisson manifolds form a subcategory of the category of
Poisson manifolds. A direct product of Poisson manifolds (M1, { , }1) and
(M1, { , }1) is a Poisson manifold (M1×M2, { , }12) defined by the property
that natural projections maps π1 : M1×M2 → M1 and π2 : M1×M2 → M2

are Poisson mappings. Identifying C∞(M1 × M2) � C∞(M1) ⊗ C∞(M2),
we have

{f1 ⊗ f2, g1 ⊗ g2}12 = {f1, g1}1 ⊗ f2g2 + f1g1 ⊗ {f2, g2}2,

where f1, g1 ∈ C∞(M1), f2, g2 ∈ C∞(M2).

Theorem 2.8. The category of symplectic manifolds is (anti-) isomor-
phic to the category of non-degenerate Poisson manifolds.

Proof. We already have proved that every symplectic manifold is a
non-degenerate Poisson manifold. Conversely, let (M , { , }) be a non-
degenerate Poisson manifold and define the 2-form ω on M by

ω(X, Y ) = J−1(Y )(X) X, Y ∈ Vect(M ).

Clearly, the 2-form ω is skew-symmetric and non-degenerate. For every
f ∈ A define Xf ∈ Vect(M ) by

Xf (g) = {f, g}, g ∈ A.

The Jacobi identity for the Poisson bracket { , } is equivalent to the condi-
tion LXf

η = 0 for every f ∈ A so that

LXf
ω = 0.

Since Xf = Jdf , we have

ω(X, Jdf) = df(X), X ∈ Vect(M )

and
ω(Xf , Xg) = {f, g}.
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Now using another one of Cartan’s formulas,

dω(X, Y, Z) =1
3 (LXω(X, Y ) − LY ω(X, Z) + LZω(X, Y )

−ω([X, Y ], Z) + ω([X, Z], Y ) − ω([Y, Z], X)) , X, Y, Z ∈ Vect(M )

and setting X = Jdf, Y = Jdg, Z = Jdh, we get

dω(Jdf, Jdg, Jdh) =1
3 (ω(Xh, [Xf , Xg]) + ω(Xf , [Xg, Xh]) + ω(Xg, [Xh, Xf ]))

=1
3

(
ω(Xh, X{f,g}) + ω(Xf , X{g,h}) + ω(Xg, X{h,f})

)
=1

3 ({h, {f, g}} + {f, {g, h}} + {g, {h, f}})
=0

by the Jacobi identity.
Since 1-forms df, f ∈ A, generate A1(M ) as a module over A, Hamil-

tonian vector vector fields Jdf generate Vect(M ) as a module over A, so
that dω = 0. Thus (M , ω) is a symplectic manifold corresponding to the
Poisson manifold (M , { , }). Now from ω(Xf , Xg) = {f, g} it follows that
Poisson mappings of non-degenerate Poisson manifolds correspond to sym-
plectomorphisms. �

Remark. One can also prove the theorem by a straightforward compu-
tation in local coordinates at x ∈ M . Namely, define

ω = −
∑

1≤i<j≤N

ηij(x) dxi ∧ dxj ,

where {ηij(x)}N
i,j=1 is the inverse matrix to ηij(x). Then the condition

∂ηij

∂xl
+

∂ηjl

∂xi
+

∂ηli

∂xj
= 0

for all i, j, l = 1, . . . , N , which is a coordinate form of dω = 0, follows from
the condition

N∑
j=1

(
ηij

∂ηkl

∂xj
+ ηlj

∂ηik

∂xj
+ ηkj

∂ηli

∂xj

)
= 0,

which is a coordinate form of the Jacobi identity, by multiplying it three
times by the inverse matrix using

N∑
p=1

(
ηip

∂ηpj

∂xm
+

∂ηip

∂xm
ηpj

)
= 0.

Below are two examples of Poisson manifolds.

Example 2.7 (Dual space to a Lie algebra). Let g be a finite-dimensional
Lie algebra with a Lie bracket [ , ] and let g∗ be its dual space. The vector
space M = g∗ has a natural Poisson structure, which goes back to Sophus
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Lie, and is defined as follows. For f, g ∈ C∞(M ) the differentials df and dg
at u ∈ M are7 elements in (g∗)∗ = g, and we set

{f, g}(u) = u ([df, dg]) .

The Jacobi identity for the Poisson bracket { , } follows from the Jacobi
identity for the Lie bracket [ , ]. When f(u) = u(x), g(u) = u(y), x, y ∈ g
are linear functions on M , then {f, g}(u) = u ([x, y]), so that Lie-Poisson
bracket on M is linear. Let x1, . . . , xn be a basis for g with the structure
constants ck

ij ,

[xi, xj ] =
n∑

k=1

ck
ijxk, i, j = 1, . . . , n,

and let x1, . . . , xn be the corresponding dual basis for g∗. Denote by u =
(u1, . . . , un) the coordinates on g∗, u =

∑n
i=1 uix

i ∈ g∗. Then

{f, g}(u) =
n∑

i,j,k=1

ck
ijuk

∂f(u)
∂ui

∂g(u)
∂uj

,

and the Poisson tensor for the Lie-Poisson bracket is

ηij(u) =
n∑

k=1

ck
ijuk, i, j = 1, . . . , n.

The center Z(A) of the Poisson algebra consists of functions f on g∗ satis-
fying

n∑
k,j=1

ck
ijuk

∂f(u)
∂uj

= 0, i = 1, . . . , n,

and is generated by Casimir elements. The phase space M is a degenerate
Poisson manifold, foliated by symplectic leaves of the Lie-Poisson bracket,
which are coadjoint orbits of G.

Example 2.8 (Poisson-Lie groups). Let G be a Lie group with a Lie
algebra g. It is called a Lie-Poisson group if it has a structure of a Poisson
manifold (G, { , }) such that the group multiplication G×G → G is a Poisson
mapping (when G×G is equipped with the product Poisson structure). For
x ∈ g denote by ∂x the left-invariant vector field on G,

(∂xf)(g) =
d

ds

∣∣∣∣
s=0

f(getx),

where ex stands for the exponential map. For every choice of the ba-
sis x1, . . . , xn for g denote by ∂1, . . . , ∂n corresponding left-invariant vector
fields. The Poisson bracket on G can be written as

{f1, f2}(g) =
n∑

i,j=1

ηij(g)∂if1∂jf2,

7We are identifying TuM with M at every u ∈ M .
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where 2-tensor ηij(g) defines a mapping

η : G → Λ2g.

The bracket { , } equips G with a Lie-Poisson structure if and only if the
following properties are satisfied.

1. The mapping η is a group 1-cocycle with the adjoint action on Λ2g,

η(g1g2) = Ad−1g2 η(g1) + η(g2), g1, g2 ∈ G

2. For all g ∈ G, the 3-tensor

ξijk(g) =
n∑

l=1

(
ηil(g)∂lη

jk(g) + ηjl(g)∂lη
ki(g) + ηkl(g)∂lη

ij(g)
)

+
n∑

l,p=1

(
ci
lpη

pj(g)ηkl(g) + cj
lpη

pk(g)ηil(g) + ck
lpη

pi(g)ηjl(g)
)

vanishes.

The first condition is trivially satisfied when η is a coboundary, η(g) =
−r + Ad−1g r for some r ∈ Λ2g. The second condition is fulfilled when r
satisfies the so-called classical Yang-Baxter equation.

2.5. Hamilton and Liouville representations. In order to complete
our description of classical mechanics, we need to understand the process of
measurement. In physics, by the measurement we understand the result of a
physical experiment which gives numerical values for classical observables of
a mechanical system. The experiment consists of creating certain conditions
for the system and it is always assumed that these conditions can be repeated
over and over. The conditions of the experiment define a state of the system,
if repeating these conditions results in probability distributions for the values
of all observables of the system.

Mathematically, a state µ on the algebra A = C∞(M ) of classical ob-
servables on the phase space M is the assignment

A � f �→ µf , a probability measure on R.

Here for every Borel set E ⊂ R the number 0 ≤ µf (E) ≤ 1 is the probability
that in the state µ the values of the observable f are in E. The expectation
value of the observable f in the state µ is given by the Lebesgue-Stieltjes
integral

Eµ(f) =
∫ ∞

−∞
λdµf (λ),

where µf (λ) = µf ((−∞, λ]) is the distribution function. The assignment
f �→ µf should should satisfy the following natural properties.

S1. The integral Eµ(f) is convergent for bounded observables f ∈ A.
S2. Eµ(1) = 1, where 1 is the unit in A.
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S3. If f1 = ϕ ◦ f2 with smooth ϕ : R → R, then for every Borel set
E ⊂ R,

µf1(E) = µf2(ϕ
−1(E)).

S4. For all a, b ∈ R and f, g ∈ A,

Eµ(af + bg) = aEµ(f) + bEµ(g),

if both Eµ(f) and Eµ(g) exist.
It follows from property S3 and definition of the Lebesgue-Stieltjes in-

tegral, that

Eµ(ϕ(f)) =
∫ ∞

−∞
ϕ(λ)dµf (λ).

In particular, Eµ(f2) ≥ 0 for all f ∈ A. It follows from these properties
that states define normalized, positive, linear functionals on the subalgebra
of bounded observables of the algebra A.

Assuming that the functional Eµ can be extended to a bounded, piece-
wise continuous functions on M , one can recover the distribution function
from the expectation values by the formula

µf (λ) = Eµ (θ(λ − f)) ,

where θ(x) is Heavyside step function,

θ(x) =

{
1, x ≥ 0,

0, x < 0.

Indeed, setting θλ(x) = θ(λ − x), we get

µθλ(f)((−∞, s]) = µf

(
θ−1
λ (−∞, s]

)
=

⎧⎪⎨⎪⎩
1, s ≥ 1,

µf ((λ,∞)), 0 ≤ s < 1,

0, s < 0,

so that

Eµ(θ(λ − f)) =
∫ ∞

−∞
sdµθλ(f)(s) = 1 − µf ((λ,∞)) = µf (λ).

Conversely, a probability measure dµ on M defines for every observable f
a probability measure on R with the distribution function

µf (λ) =
∫
M

θ(λ − f)dµ =
∫

{f≤λ}
dµ,

and by definition of the Lebesque-Stieltjes integral,∫ ∞

−∞
λdµf (λ) =

∫
M

fdµ.

When the phase space M is compact, the classical Riesz representation
theorem asserts that for every positive, continuous, linear functional l on
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the Banach space C(M ) of continuous functions on M there exists a unique
measure dµ, defined on the σ-algebra of all Borel subsets of M , such that

l(f) =
∫
M

fdµ.

We summarize this discussion in the following definition.

Definition. The set of states S for a mechanical system with the phase
space M is the set P(M ) of all probability measures on M . For every µ ∈ S
and f ∈ A the distribution function µf is defined by

µf (λ) =
∫
M

θ(λ − f)dµ =
∫

{f≤λ}
dµ,

and the expectation value of f in the state µ is

Eµ(f) =
∫ ∞

−∞
λdµf (λ) =

∫
M

fdµ.

The states corresponding to Dirac measures dµx supported at points x ∈ M
are called pure states; all other states are called mixed states.

Physically, pure states are characterized by the property that a mea-
surement of every observable in the pure state gives a well-defined result.
Mathematically this can be expressed as follows. Let

σ2
µ(f) = Eµ

(
(f − Eµ(f))2

)
= Eµ(f2) − Eµ(f)2

be the dispersion of the observable f in the state µ. By the Cauchy-Schwarz
inequality, σ2

µ(f) ≥ 0, and equality holds if only if f is constant on the
support of a probability measure dµ. Thus pure states are the only states in
which every observable has zero dispersion. In particular, a mixture of two
pure states dµx and dµy, x, y ∈ M , is a mixed state with the measure

dµ = αdµx + (1 − α)dµy, 0 < α < 1,

and σ2
µ(f) > 0 for every observable f such that f(x) �= f(y).

For a system consisting of few interacting particles (say, a motion of
planets in celestian mechanics) it is possible to measure all coordinates and
momenta, so one considers only pure states. Mixed states necessarily appear
for macroscopic systems, when it is impossible to measure all coordinates
and momenta8. Macroscopic systems are studied in classical statistical me-
chanics.

8Typically, a macroscopic system consists of N ∼ 1023 molecules.
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2.5.1. Hamilton’s description of dynamics. Consider a mechanical sys-
tem with the phase space (M , { , }), algebra of observables A, set of states
S, and Hamiltonian H. In Hamilton’s picture, states do not depend on
time and time evolution of observables is given by Hamilton’s equations of
motion,

dµ

dt
= 0, µ ∈ S and

df

dt
= {H, f}, f ∈ A.

Assuming that Hamiltonian vector field XH is complete, the expectation
value of an observable f in the state µ at time t is

Eµ(ft) =
∫
M

f
(
gt(x)

)
dµ(x).

In particular, the expectation value of f in the pure state corresponding to
the point x ∈ M is f(gt(x)).

2.5.2. Liouville’s description of dynamics. Here we assume that the phase
space M of the mechanical system has a volume form invariant under the
phase flow with Hamiltonian H. In particular, this is the case when Poisson
structure on M is non-degenerate. Denoting this volume form by dx, we can
write a probability measure dµ as dµ(x) = ρ(x)dx, where ρ(x) is a positive
distribution (generalized function) on M . This is the usual description of
states in statistical mechanics by distribution functions on the phase space.
For the pure state supported at x0 ∈ M we have ρ(x) = δ(x− x0) — Dirac
δ-function. Since the volume form is invaraint under the phase flow, we have
by the change of variables,

Eµ(ft) =
∫
M

f(x)ρ
(
g−t(x)

)
dx.

This representation introduces Liouville’s picture, in which observables do
not depend on time

df

dt
= 0, f ∈ A,

and states dµ(x) = ρ(x)dx satisfy Liouivlle’s equation,
dρ

dt
= −{H, ρ}, ρ(x)dx ∈ S,

which is understood in the distributional sense. Liouiville’s picture is com-
monly used in statistical mechanics. The equality

Eµ(ft) = Eµt(f) for all f ∈ A, µ ∈ S,

expresses the equivalence between Liouville’s and Hamilton’s descriptions of
dynamics.



CHAPTER 2

Foundations of Quantum Mechanics

1. Observables and States

1.1. Physical principles. Quantum mechanics studies the physical
laws of the microworld at the atomic scale. The properties of the microworld
are so different from our everyday’s experience that there is no surprise that
its laws seem to contradict the common sense. The need for a quantum me-
chanics is the breakdown of classical mechanics, its inadequacy to describe
the properties of atomic systems. Thus classical mechanics and classical
electrodynamics can not explain stability of atoms and molecules. Neither
can these theories reconcile different properties of light, its wave-like behav-
ior in interference and diffraction phenomena and its particle-like behavior
in photo-electric emission and scattering by free photons.

We will not discuss here these and other basic experimental facts, re-
ferring the interested reader to physics textbooks. Nor will we follow the
historic path of the theory. Instead, we show how to formulate quantum me-
chanics using the general notions of states, observables and time evolution.
The departure from classical mechanics is that we will realize these notions
differently. The fundamental difference between microworld and the world
around us is that in the microworld every experiment results in interaction
with the system and thus disturbs its properties, whereas in classical physics
it is always assumed that one can neglect the disturbances the measurement
brings upon a system. This imposes a limitation on our powers of observa-
tion and leads to a conclusion that there exist observables which can not be
measured simultaneously.

Mathematically, this means that observables in quantum mechanics no
longer form a commutative algebra. Indeed, according to Gelfand’s theorem,
every semi-simple commutative Banach algebra is an algebra of continuous
functions on a compact topological space, the spectrum of the algebra, and
the values of all these functions at a given point can be “measured simulta-
neously”. An example of a non-commutative algebra is given by the Banach
algebra of bounded operators on a complex Hilbert space, and it is this pas-
sage from functions on the phase space to operators on the Hilbert space
that lies at the heart of quantum mechanics. Below we formulate the ba-
sic principles of quantum mechanics in a convenient form. At this point it
should be noted that one can not verify directly the principles lying in the
foundation of quantum mechanics. Nevertheless, the validity of quantum
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mechanics is continuously being confirmed by numerous experimental facts
which perfectly agree with predictions of the theory.

1.1.1. Notations. We use standard notations and basic facts from the
theory of self-adjoint operators on Hilbert spaces. Let H be a separable
Hilbert space with an inner product ( , ) and let A be a linear operator in
H with the domain D(A) ⊂ H — a linear subset of H . If domain of A is
dense1 in H , i.e., D(A) = H , the adjoint operator A∗ is an operator with
the domain

D(A∗) = {ϕ ∈ H | ∃ η ∈ H such that (Aψ, ϕ) = (ψ, η) ∀ψ ∈ D(A)},
defined by η = A∗ϕ. Operator A is called symmetric if

(Aϕ, ψ) = (ϕ, Aψ) for all ϕ, ψ ∈ D(A).

The regular set of a closed operator A with a dense domain D(A) is the set

ρ(A) = {λ ∈ C |A−λI : D(A) → H is a bijection with a bounded inverse2}.
If λ ∈ ρ(A), the bounded operator Rλ(A) = (A−λI)−1 is called the resolvent
of A at λ. The resolvent set ρ(A) is closed and its complement σ(A) =
C\ρ(A) is called the spectrum of A. The set of all eigenvalues of A is called
the point spectrum.

An operator A is called self-adjoint if A = A∗ (i.e., A is symmetric and
D(A) = D(A∗)), and for such operators σ(A) ⊂ R. A symmetric operator
A is called essentially self-adjoint if its closure Ā = A∗∗ is self-adjont. A
symmetric operator A with D(A) = H is bounded and self-adjoint. An
operator A is called positive if (Aϕ, ϕ) ≥ 0 for all φ ∈ D(A), which we
denote by A ≥ 0. Positive operators satisfy the Cauchy-Schwarz inequality

|(Ax, y)|2 ≤ (Ax, x)(Ay, y) for all x, y ∈ D(A).

In particular, (Ax, x) = 0 implies that Ax = 0. Every bounded positive op-
erator is self-adjoint3. We denote by L (H ) the Banach algebra of bounded
operators on H . Compact operator A is of trace class, if

∞∑
n=1

µn(A) < ∞,

where µn(A) are singular values of A, µn(A) =
√

λn(A) ≥ 0, where λn(A)
are eigenvalues for A∗A. A bounded operator A is of trace class if and only

∞∑
n=1

|(Aen, en)| < ∞

for every orthonormal basis {en}∞n=1 for H . Since a permutation of an
orthonormal basis is again an orthonormal basis, this condition is equivalent

1We consider only linear operators with dense domains.
2By the closed-graph theorem, the last condition is redundant.
3This is true only for complex Hilbert spaces.
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to ∞∑
n=1

(Aen, en) < ∞

for every orthonormal basis {en}∞n=1 for H . By definition, for a trace class
operator A,

Tr A =
∞∑

n=1

(Aen, en),

and does not depend on the choice of a basis. Operators of trace class form
a two-sided ideal S1 (Schatten ideal) in the Banach algebra L (H ) and

Tr AB = Tr BA for all A ∈ S1, B ∈ L (H )

— the cyclic property of the trace. Bounded positive operator A is of trace
class if there is an orthonormal basis {en}∞n=1 for H such that

∞∑
n=1

(Aen, en) < ∞.

1.2. Basic axioms.
A1. With every quantum system there is an associated separable com-

plex Hilbert space H , in physics terminology called the space of
states4.

A2. The set of observables A of a quantum system with the Hilbert
space H consists of all self-adjoint operators on H .

A3. Set of states S of a quantum system with a Hilbert space H
consists of all positive (and hence self-adjoint) M ∈ S1 such that
Tr M = 1. Pure states are projection operators onto one-dimensional
subspaces of H . For ψ ∈ H, ‖ψ‖ = 1, the corresponding projection
is denoted by Pψ. All other states are called mixed states.

A4. The expectation value of an observable A ∈ A in a state M ∈ S
is

〈A|M〉 = Tr AM,

and it exists whenever AM is a trace class operator (a nesessary
condition is M(H) ⊂ D(A)). In particular, if M = Pψ and ψ ∈
D(A), then

〈A|M〉 = (Aψ, ψ).
A5. A state M ∈ S assigns to every observable A ∈ A a probability

measure µA on R. For a quantum system in the state M , the
probability that the value of a measurement of the observable A
lies in the Borel set E ⊂ R is 0 ≤ µA(E) ≤ 1. The correspondence
S � M �→ µA ∈ P(R) satisfies

〈A|M〉 =
∫ ∞

−∞
λdµA(λ),

4Space of pure states, to be precise.
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where µA(λ) = µA((−∞, λ]) is the distribution function associated
with the measure µA.

Construction of the correspondence S × A → P(R) is based on a general
spectral theorem of von Neumann, which clarifies the fundamental role the
self-adjoint operators play in quantum mechanics.

Definition. A mapping P : B(R) → L (H ) of the σ-algebra B(R)
of Borel subsets of R into the Banach algebra of bounded operators on H
is called a projection-valued measure on R if the following properties are
satisfied.

1. For every Borel set E ⊂ R, P(E) is an orthogonal projection, i.e.,
P(E) = P(E)2 and P(E) = P(E)∗.

2. P(∅) = 0, P(R) = I, the identity operator on H .
3. For every disjoint union of Borel sets,

E =
∞∐

n=1

En, P(E) = lim
n→∞

n∑
i=1

P(Ei)

in the strong topology on L (H ).
In particular, it follows from properties 1-3 that

P(E1)P(E2) = P(E1 ∩ E2).

With every projection-valued measure P we associate a projection-valued
function

P(λ) = P((−∞, λ]),
called the projection-valued decomposition of unity. It is characterized by
the properties

1
′
.

P(λ)P(µ) = P(min{λ, µ}).
2′.

lim
λ→−∞

P(λ) = 0, lim
λ→∞

P(λ) = I.

3′.
lim

µ→λ+0
P(µ) = P(λ).

For every ϕ ∈ H the decomposition of unity P(λ) defines a distribution
function (P(λ)ϕ, ϕ) of the bounded measure on R (probability measure when
‖ϕ‖ = 1). By the polarization identity

(P(λ)ϕ, ψ) = 1
4 {(P(λ)(ϕ + ψ), ϕ + ψ) − (P(λ)(ϕ − ψ), ϕ − ψ)

+ i(P(λ)(ϕ + iψ), ϕ + iψ) − i(P(λ)(ϕ − iψ), ϕ − iψ)} ,

so that (P(λ)ϕ, ψ) corresponds to a complex measure — a complex linear
combination of measures.

A measurable function f on R is called finite almost everywhere (a.e.)
with respect to the projection-valued measure P, if it is finite a.e. with
respect to the measures (Pψ, ψ) for all ψ ∈ H . According to von Neumann
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theorem, for a separable Hilbert space H there exists an element ϕ ∈ H
such that f is finite a.e. with respect to the projection-valued measure P if
and only if it is finite a.e. with respect to the measure (Pϕ, ϕ).

Theorem 1.1 (von Neumann). For every self-adjoint operator A on the
Hilbert space H there exists a unique projection-valued decomposition of
unity P(λ), satisfying the following properties.

(i)

D(A) =
{

ϕ ∈ H

∣∣∣∣ ∫ ∞

−∞
λ2d(P(λ)ϕ, ϕ) < ∞

}
and for every ϕ ∈ D(A)

Aϕ =
∫ ∞

−∞
λ dP(λ)ϕ

as the limit of Riemann sums in the strong topology on H .
(ii) For every continuous function f on R

D(f(A)) =
{

ϕ ∈ H
∣∣∣∣ ∫ ∞

−∞
f(λ)2d(P(λ)ϕ, ϕ) < ∞

}
is a dense linear subspace of H and

f(A) =
∫ ∞

−∞
f(λ)dP(λ)

is a linear operator on H , understood as a limit of Riemann sums
in strong operator topology on H . Operator f(A) satisfies

f(A)∗ = f̄(A),

where f̄ is the complex conjugate function to f , and operator f(A)
is bounded if and only if f is bounded. For bounded continuous
functions f and g,

f(A)g(A) =
∫ ∞

−∞
f(λ)g(λ)dP(λ).

(iii) For every measurable function f on R, finite a.e. with respect to
the projection-valued measure P, f(A) is a linear operator on H
with a dense domain D(f(A)) defined as in (ii), understood in the
weak sense: for every ϕ ∈ D(f(A)) and ψ ∈ H ,

(f(A)ϕ, ψ) =
∫ ∞

−∞
f(λ)d(P(λ)ϕ, ψ)

is a linear combination of Lebesgue-Stieltjes integrals. The corre-
spondence f �→ f(A) satisfies the same properties as in (ii).

(iv) For every bounded operator B which commutes with A, that is,
B(D(A)) ⊂ D(A) and AB = BA on D(A), operator B commutes
with the decomposition of unity P(λ) and, therefore, with every op-
erator f(A).



44 2. FOUNDATIONS OF QUANTUM MECHANICS

We will denote the decomposition of unity for a self-adjoint operator
A given by the spectral theorem by PA(λ). Conversely, every decomposi-
tion of unity P(λ) as defined by properties 1′-3′, by virtue of (i)-(ii) is a
decomposition of unity for a self-adjoint operator.

According to the spectral theorem, λ ∈ σ(A) if and only if P(λ − ε, λ +
ε) �= 0 for all ε > 0. For ψ ∈ H let µψ is a Borel measure on R defined
by µψ(E) = (P(E)ψ, ψ) for E ∈ B(R). The next result is used for more
detailed classification of the spectra.

Theorem 1.2. Let A = A∗ on H . Then

H = Hpp ⊕ Hac ⊕ Hsc

is a direct sum of closed invariant subspaces5 for A,where

Hpp = {ψ ∈ H |µψ is a pure point measure with countable support on R},
Hac = {ψ ∈ H |µψ is absolutely continuous w.r.t. Lebesgue measure on R},
Hsc = {ψ ∈ H |µψ is continuous singular w.r.t. Lebesgue measure on R}.

By definition, the point spectrum of A is σp(A) = σ(A|Hpp
), the ab-

solutely continuous spectrum of A is σac(A) = σ(A|Hac
), and the singular

spectrum of A is σsing(A) = σ(A|Hsc
), so that

σ(A) = σp(A) ∪ σac(A) ∪ σsing(A).

In virtue of the spectral theorem, two (possibly unbounded) self-adjoint
operators A and B commute if corresponding projection-valued measures
PA and PB commute. The following three statements are equivalent.

• Self-adjoint operators A and B commute.
• For all λ, µ ∈ C, Im λ, Im µ �= 0,

Rλ(A)Rµ(B) = Rµ(B)Rλ(A),

where Rλ(A) = (A−λI)−1 and Rµ(B) = (B−µI)−1 are resolvents.
• For all u, v ∈ R,

eiuAeivB = eivBeiuA.

The correspondence S ×A → P(R) is defined by (M,A) �→ µA, where

µA(λ) = Tr PA(λ)M,

and PA is decomposition of unity for the self-adjoint operator A. It immedi-
ately follows from the spectral theorem that µA(λ) is a distribution function
of a probability measure on R and

〈A|M〉 = Tr AM =
∫ ∞

−∞
λdµA(λ),

if AM is of trace class. In particular, for M = Pψ

µA(λ) = (PA(λ)ψ, ψ)

5A subspace V is invariant for the unbounded operator A, if A(D(A) ∩ V ) ⊂ V .
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and
〈A|M〉 = (Aψ, ψ) =

∫ ∞

−∞
λd(PA(λ)ψ, ψ),

if ψ ∈ D(A).
Mixed and pure states can be characterized as follows.

Lemma 1.1. Every mixed state is a convex linear combination of pure
states. A state is pure if and only if it can not be represented as a non-trivial
convex linear combination of states.

Proof. It follows from Hilbert-Schmidt theorem for compact opera-
tors that for every state M there exists (finite or infinite) orthonormal set
{ψn}N

n=1 in H such that

M =
N∑

n=1

αnPψn ,

where αn > 0 are corresponding non-zero eigenvalues of M . Such represen-
tation is called canonical decomposition for self-adjoint compact operator.
Since M ∈ S1 and

Tr M =
N∑

n=1

αn = 1,

the state M is a convex linear combination of pure states. To prove the
second statement we need to show that if

Pψ = aM1 + (1 − a)M2,

for some states M1,M2 and 0 < a < 1, than M1 = M2 = Pψ. Let

H = Cψ ⊕ H1

be the orthogonal sum decomposition. Since M1 and M2 are positive oper-
ators, for ϕ ∈ H1 we have

a(M1ϕ, ϕ) ≤ (Pψϕ, ϕ) = 0,

so that (M1ϕ, ϕ) = 0 for all ϕ ∈ H1 and M1|H1
= 0. Since M1 is self-adjoint,

it leaves the complimentary subspace Cψ invariant, and from TrM1 = 1 it
follows that M1 = Pψ. �

1.3. Heisenberg’s uncertainty principle. The dispersion of the ob-
servable A in the state M is defined as

σ2
M (A) = 〈(A − 〈A|M〉I)2|M〉 = 〈A2|M〉 − 〈A|M〉2,

provided the expectation values 〈A2|M〉 and 〈A|M〉 exist. For every M ∈ S
let

M =
N∑

n=1

αnPψn

be its Hilbert-Schmidt decomposition of the operator M and let PM be
the orthogonal projection onto the closed subspace HM in H spanned by
{ψn}N

n=1 (HM is the orthogonal complement to KerM in H ).
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Lemma 1.2. For every M ∈ S and A ∈ A the dispersion σ2
M (A) ≥

0. The dispersion σM (A) = 0 if and only if HM is an eigenspace for the
operator A. In particular, if M = Pψ, then ψ is an eigenvector of A.

Proof. First of all, it is sufficient to prove the statement for bounded
operators A since by the spectral theorem

Tr MA = lim
n→∞Tr MAn,

where An = fn(A) and

fn(λ) =

{
λ, |λ| ≤ n,

0, |λ| > n.

Thus assuming A ∈ L (H ) and completing, if necessary, the set {ψn}N
n=1

to an orthonormal basis {en}∞n=1 for H , we have

〈A2|M〉 = Tr A2M =
N∑

n=1

αn(A2ψn, ψn) =
N∑

n=1

αn(Aψn, Aψn)

=
N∑

n=1

∞∑
m=1

αn(Aψn, em)(em, Aψn) =
N∑

n=1

∞∑
m=1

αn|(Aψn, em)|2.

Thus

〈A2|M〉 ≥
N∑

n=1

αn|(Aψn, ψn)|2 ≥
(

N∑
n=1

αn(Aψn, ψn)

)2

= 〈A|M〉2

by the Cauchy-Schwarz inequality, since
∑N

n=1 αn = 1. Now σ2
M (A) = 0

if and only if Aψn ⊥ em for all m �= n and (Aψ1, ψ1) = · · · = (AψN , ψN ).
Thus there is λ ∈ R such that Aψn = λψn for n = 1, . . . , N and HM is an
eigenspace for A. �

Now we formulate generalized Heisenberg uncertainty principle.

Proposition 1.1 (H. Weyl). Let A,B ∈ A and let M = Pψ be the pure
state such that ψ ∈ D(A) ∩ D(B) and Aψ, Bψ ∈ D(A) ∩ D(B). Then

σ2
M (A)σ2

M (B) ≥ 1
4〈i[A,B]|M〉2.

The same inequality holds for all M ∈ S , where by definition 〈i[A,B]|M〉 =
limn→∞〈i[An, Bn]|M〉.

Proof. Let M = Pψ. Since

[A − 〈A|M〉I,B − 〈B|M〉I] = [A,B],

it is sufficient to prove the inequality

〈A2|M〉〈B2|M〉 ≥ 1
4〈i[A,B]|M〉2.
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We have for all α ∈ R,

0 ≤ ‖(A + iαB)ψ‖2 =α2(Bψ,Bψ) − iα(Aψ, Bψ) + iα(Bψ,Aψ) + (Aψ, Aψ)

=α2(B2ψ, ψ) + α(i[A,B]ψ, ψ) + (A2ψ, ψ),

so that necessarily 4(A2ψ, ψ)(B2ψ, ψ) ≥ (i[A,B]ψ, ψ). The same argument
works for the mixed states. As in the proof of Lemma 1.2, it is sufficient to
prove the inequality for bounded A and B. Then using the cyclic property
of the trace we have for all α ∈ R,

0 ≤Tr((A + iαB)M(A + iαB)∗) = Tr((A + iαB)M(A − iαB))

=α2 Tr BMB + iα Tr BMA − iα Tr AMB + TrAMA

=α2 Tr MB2 + α Tr(i[A,B]M) + TrMA2,

and the inequality follows. �
A consequence of the Heisenberg’s uncertainty principle is that in quan-

tum mechanics there are observables which can not be measured simulta-
neously, even in a pure state. This is a fundamental difference between
classical and quantum mechanics.

1.4. Dynamics. Though quantum observables A do not form an al-
gebra in any sense6, a subspace A0 = A ∩ L (H ) of A carries a natural
structure of a Lie algebra with respect to the bracket

i[A,B] = i(AB − BA).

In analogy with classical mechanics, the time evolution is defined by choosing
an observable H ∈ A , called the Hamiltonian operator (Hamiltonian for
brevitiy). The corresponding quantum equations of motion are

dM

dt
= 0, M ∈ S , �

dA

dt
= i[H,A], A ∈ A0

and define the Heisenberg picture in quantum mechanics. Here the positive
number � is called Planck constant ; numerical value of � is determined from
experiment7.

One should be careful with the commutator [H,A] when H is not bounded,
since Im A is not necessarily a subspace of D(H). To avoid this complica-
tion, and to extend the time evolution for all observables (not necessarily
bounded), we pass from a self-adjoint operator H to a one-parameter group
U(t) fo unitary operators,

U(t) = e−
i
�

tH , t ∈ R.

Conversely, according to the Stone theorem, every self-adjoint operator
comes from a one-parameter group. Namely, the following statement is
valid.

6Product of two non commuting self-adjoint operators is not self-adjoint.
7The Planck constant has physical dimension of the action. The value � = 1.054 ×

10−27 erg × sec manifests that quantum mechanics is a microscopic theory.
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Theorem 1.3 (Stone’s theorem). Let U(t) be a strongly continuous one-
parameter group of unitary operators on H . Then there exists a self-adjoint
operator A on H , called an infinitesimal generator of U(t), such that U(t) =
eitA.

Explicitly,

D(A) =
{

ϕ ∈ H

∣∣∣∣ lim
t→0

U(t)ϕ − ϕ

it
= ψ ∈ H

}
,

and Aϕ = ψ.

Remark. A theorem of von Neumann asserts that for a separable Hilbert
space every weakly measurable one-parameter group of unitary operators is
strongly continuous, so in this case the conditions of Stone theorem can be
relaxed.

The evolution operator Ut : A → A is defined by

Ut(A) = U(t)−1AU(t) = e
i
�

tHAe−
i
�

tH .

This formula justifies the introduction of Heisenberg equation for quantum
observables

dA

dt
= {H,A}�, A ∈ A ,

where

{ , }� =
i

�
[ , ]

is called quantum bracket.
Similarly to the Liouville’s picture in classical mechanics, we can consider

the quantum mechanical evolution where observables do not depend on time.
It is called Schrödinger picture and dynamics is given by

dA

dt
= 0, A ∈ A ,

dM

dt
= −{H,M}h, M ∈ S .

Thus

M(t) = U(t)MU−1(t) = e−
i
�

tHMe
i
�

tH

and

〈A(t)|M〉 = Tr(U−1(t)AU(t)M) = Tr(AU(t)MU−1(t)) = 〈A|M(t)〉
by the cyclic property of the trace. This shows that Heisenberg and Schrödinger
pictures are equivalent.

In particular, for a pure state M = Pψ we get M(t) = Pψ(t) where
ψ(t) = U(t)ψ, so that ψ(t) satisfies Schrödinger equation

i�
dψ

dt
= Hψ.

A state M ∈ S is called stationary if M(t) does not depend on time, i.e. if
[M,U(t)] = 0 so that, by definition, [M,H] = 0.
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Lemma 1.3. The pure state M = Pψ is statiionary if and only if ψ is
the eigenvector for H,

Hψ = Eψ.

Corresponding eigenvalue E is called the energy and

ψ(t) = e−
i
�

Eψ.

Proof. It follows from U(t)Pψ = PψU(t) that ψ is a common eigenvec-
tor for unitary operators U(t) for all t, U(t)ψ = c(t)ψ. Since U(t) is strongly
continuous (weak continuity would be enough), there exists E ∈ R such that

c(t) = e−
i
�

tE . �

Eigenvalue equation Hψ = Eψ is called stationary Schrödinger equation.

2. Heisenberg’s commutation relations

Many quantum mechanical systems have classical analogs. Here we start
to consider the quantization problem, which can be heuristically formulated
as follows. Given classical system with the phase space (M , { , }) and
algebra of classical observables A, one needs to construct a Hilbert space
H and a one-to-one correspondence A � f �→ Af ∈ A between classical
and quantum observables. This correspondence depends on a parameter
� > 0 and satisfies

1
2(AfAg + AgAf ) → fg, {Af , Ag}� → {f, g} as � → 0

for all f, g ∈ A. The correspondence f �→ Af is called quantization and
Hamiltonian operator for a quantum system is a quantization of a Hamil-
tonian function for the classical system. Later we will formulate quantization
problem mathematically. Here we consider several basic examples which will
help to state it in a closed form.

2.1. Free particle. Consider first the simplest case of a free quantum
particle with one degree of freedom. Corresponding classical phase space is
M = T ∗R � R2 with canonical Poisson bracket

{f, g} =
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
, f, g ∈ A = C∞(R2),

wriitten in standard coordinates q, p on M . The Hamiltonian function of a
free particle is

h =
p2

2m
.

Poisson bracket of standard coordinates have the following simple form

{p, q} = 1.

It is another postulate of quantum mechanics that there is a correspondence
q �→ Q and p �→ P between classical and quantum observables such that
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self-adjoint operators P and Q on a Hilbert space H satisfy the following
commutation relation,

{P,Q}� = I on D(P ) ∩ D(Q),

called Heisenberg’s (canonical) commutation relation. Mathematically, op-
erators P and Q realize a representation of a Heisenberg Lie algebra. The
latter is a 3-dimensional Lie algebra h with the generators x, y, c satisfying
the relations [x, y] = c, [x, c] = [y, c] = 0, where now [ , ] stands for the Lie
bracket on h. The correspondence x �→ −iP, y �→ −iQ and c �→ i�I defines
a representation of h on the Hilbert space H . It is natural to assume, in
addition, that this representation is irreducible, i.e., every bounded operator
on H which commutes with P and Q is a multiple of the identity operator.

Remark. It is well-known that there are no bounded operators on
a Hilbert space which satisfy [A,B] = I (which is trivial in the finite-
dimensional case). Thus operators P and Q should be necessarily un-
bounded. Defining a representation of a Lie algebra by unbounded operators
requires a caution. However, later we will bypass all these ramifications by
considering unitary representations of the corresponding Lie group to h —
the Heisenberg group.

We we consider two natural realizations of the Heisenberg’s commutation
relation, defined by the property that one of the self-adjoint operators P
and Q is “diagonal” (i.e., is a multiplication by a function operator in the
corresponding Hilbert space).

2.1.1. Coordinate (Schrödinger) representation. Here H = L2(R, dq) is
the Hilbert L2-space on the configuration space R with coordinate q, which
is a Lagrangian subspace of M defined by the equation p = 0. Set

D(Q) =
{

ϕ ∈ H

∣∣∣∣ ∫ ∞

−∞
q2|ϕ(q)|2dq < ∞

}
and for ϕ ∈ D(Q) define the operator Q as a “multiplication by q operator”,

(Qϕ)(q) = qϕ(q), q ∈ R.

Operator Q is called a coordinate operator and it is obviously self-adjoint.
Its decomposition of unity is given by

(P(λ)ϕ)(q) =

{
ϕ(q), q ≤ λ,

0, q > λ.

Self-adjoint operator Q has a simple continuous spectrum σ(Q) = R and
every bounded operator which commutes with Q is a function of Q, i.e., is
a multiplication by a function operator on H . Indeed, a bounded operator
B on H commutes with Q if it commutes with projections P(E) for all
E ∈ B(R). In particular, for every interval [a, b]

B(χ[a,b]) = fa,bχ[a,b]
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for some measurable function fa,b on [a, b], where χ[a,b] is a characteristic
function of the interval [a, b]. Using the property P(E)B = BP(E) once
again we see that for [c, d] ⊂ [a, b],

fa,b|[c,d] = fc,d,

so that fa,b patch to a measurable function f on R. Since characteristic
function are dense in H we get that B is a multiplication by f(q) oper-
ator. Another version of this proof (now at a physical level of rigor) is
the following. Represent B as an integral operator with a Schwarz kernel
— a distribution K(q, q′) (by Schwarz kernel theorem this is legitimate on
the linear subspace S (R) ⊂ L2(R) of Schwarz class functions). Then the
commutativity BQ = QB implies that in the distibutional sense

(q − q′)K(q, q′) = 0.

Thus K is “proportional” to the Dirac delta-function, i.e.,

K(q, q′) = f(q)δ(q − q′),

with some bounded measurable function f on R.

Remark. Operator Q on H has no eigenfunctions: equation

Qϕ = q0 ϕ

has no solutions in L2(R). However, in a distributional sense for every
q0 ∈ R it has a unique (up to a constant) solution φq0(q) = δ(q − q0).
These “generalized eigenfunctions” combine to Schwarz kernel δ(q − q0) of
the identity operator I on L2(R). This reflects the fact that operator Q is
diagonal in the coordinate representation.

For every pure state M = Pψ, ‖ψ‖ = 1, denote by µψ the probability
measure on R corresponding to Q. We have

µψ(E) =
∫

E
|ψ(q)|2dq

for every Borel subset E ⊂ R. Physically, this is interpreted that in the
state Pψ with the “wave function” ψ(q), the probability of finding quantum
mechanical particle in the interval [q, q + dq] is |ψ(q)|2dq. In other words,
the modulus square of a wave function is the probability distribution for the
coordinate of a particle.

Corresponding operator P is a differential operator

P =
�

i

d

dq

with D(P ) = W 1,2(R) — a Sobolev space of absolutely continuous functions
f on R such that f and its derivative f ′ (defined almost everywhere) are
in L2(R). Thus defined operator P is self-adjoint and is called momentum
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operator. It is now straightforward to verify that on D(P )∩D(Q) (which is
a dense linear subspace in H )

QP − PQ = i�I.

Thus coordinate representation is characterized by the property that the
coordinate operator Q is a multiplication by q operator and P is a differen-
tiation operator,

Q = q and P =
h

i

d

dq
.

Remark. Operator P on H has no eigenvectors: the equation

Pϕ = p ϕ, p ∈ R,

has a solution
ϕ(q) = const × eipq/�

which does not belong to H . However the family of “normalized generalized
eigenfunctions”

ϕp(q) =
1√
2π�

eipq/�

combines to a Schwarz kernel of the inverse Fourier transform operator. As
it will be shown below, this operator diagonalizes the momentum operator
P . The choice of the constant is such that∫ ∞

−∞
ϕp(q)ϕp′(q)dq = δ(p − p′).

The following fundamental fact asserts that coordinate representation is
irreducible.

Proposition 2.1. Every bounded operator on H which commutes with
coordinate and momentum operators Q and P in coordinate representation
H � L2(R, dq) is a multiple of the identity operator I.

Proof. Let T be such operator. By part (iv) of Theorem 1.1, operator
T commutes with the projection-valued measure PQ so that T is a function
of Q, T = f(Q) for some bounded measurable function f on R. Similarly,
commutativity between T and P means that T commutes with the one-
parameter group U(u) = e−iuP of unitary operators. It follows from the
definition of the derivative that in coordinate representation (U(u)ψ)(q) =
ψ(q − �u) for all ψ ∈ H . Thus

TU(u) = U(u)T for all u ∈ R

is equivalent to f(q − �u) = f(q) for all q, u ∈ R, and f = const a.e. �

The Hamiltonian operator of a free quantum particle on R is

H =
P 2

2m
= − �2

2m

d2

dq2
.
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It is a self-adjoint operator on H with D(H) = W 2,2(R) — a Sobolev space
of functions in L2(R) whose generalized first and second derivatives are in
L2(R).

2.1.2. Momentum representation. It is defined by the property that the
momentum operator P is a multiplication by p operator. Namely let H =
L2(R, dp) be the Hilbert L2-space on the “momentum space” R with coordi-
nate p, which is a Lagrangian subspace of M defined by the equation q = 0.
Now the coordinate and momentum operators are

Q̂ = i�
d

dp
and P̂ = p

and satisfy Heisenberg’s commutation relation. In momentum representa-
tion, the wave function ψ of a pure state M = Pψ defines the probability
distribution for the momentum of the quantum particle: its modulus square
|ψ(p)|2dp is the probability that momentum of a particle is between p and
p + dp.

Coordinate and momentum representations are unitary equivalent. Namely,
let F� : L2(R) → L2(R) be the �-dependent Fourier transform operator, de-
fined by

ϕ̂(p) = F�(ϕ)(p) =
1√
2π�

∫ ∞

−∞
e−ipq/�ϕ(q)dq.

Here integral is understood as the limit ϕ̂ = limn→∞ ϕ̂n in the strong topol-
ogy on L2(R), where

ϕ̂n(p) =
1√
2π�

∫ n

−n
e−ipq/�ϕ(q)dq.

It is well-known that F is a unitary operator on L2(R) and

Q̂ = F�QF−1
�

, P̂ = F�PF−1
�

.

In particular, since operator P̂ is obviously self-adjoint, this immediately
shows that P is self-adjoint.

It follows from Heisenberg uncertainty principle that for any pure state
M = Pψ satisfying conditions of the Lemma,

σM (P )σM (Q) ≥ �

2
.

This is a fundamental result saying that it is impossible to measure coorid-
nate and momentum of quantum particle simultaneously: the more accurate
is the measurement of one quantity, the less accurate is the value of the other.
It is often said that quantum particle has no observed path so that “quantum
motion” differs dramatically from the motion is classical mechanics.

2.1.3. Motion of free quantum particle. The Schrödinger equation

i�
dψ(t)

dt
= Hψ(t), ψ(0) = ψ
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in momentum representation becomes

i�
∂ψ̂(p, t)

∂t
=

p2

2m
ψ̂(p, t), ψ̂(p, 0) = ψ̂(p),

so that

ψ̂(p, t) = e
− ip2t

2m� ψ̂(p),

and

ψ(q, t) =
1√
2π�

∫ ∞

−∞
e
i

„
qp− p2

2mt

«
/�

ψ̂(p)dp.

This formula admits a simple physical interpretation. Suppose that the
initial condition ψ̂(p) is smooth function supported in a neighborhood U0 of
p0 �= 0 such that 0 /∈ U0 and∫ ∞

−∞
|ψ̂(p)|2dp = 1.

Such states are called “wave packets”. Then for every compact E ⊂ R,

lim
|t|→∞

∫
E

|ψ(q, t)|2dq = 0.

Since ∫ ∞

−∞
|ψ(q, t)|2dq = 1

for all t, it follows that as |t| → ∞, quantum particle “leaves” every compact
subset of R, so that the motion is unbounded. To prove this observe that
the function χ(p, q, t) = − p2

2m + qp
t has the property that |∂χ

∂p | > C > 0 for
all p ∈ U0 and q ∈ E, provided that |t| is large enough. Integrating by parts
in the representation for ψ(q, t) gives

ψ(q, t) =
1√
2π�

∫
U0

eitχ(q,p,t)/�ψ̂(p)dp

= − 1
it

√
�

2π

∫
U0

∂

∂p

⎛⎝ ψ̂(p)
∂χ(q,p,t)

∂p

⎞⎠ eitχ(q,p,t)/�dp,

so that uniformly on E,

|ψ(q, t)| ≤ C

t
for |t| large enough.

To describe the motion of the particle as |t| → ∞ in the unbounded
regions, we use the stationary phase method. In its simplest form it is the
following statement.
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The Method of Stationary Phase. Let f, g ∈ C∞(R), where f is
real-valued and g has compact support Supp(g), and suppose that f has a
single non-degenerate critical x0 ∈ Supp(g), i.e., f ′(x0) = 0 and f ′′(x0) �= 0.
Then∫ ∞

−∞
eiNf(x)g(x)dx =

(
2π

N |f ′′(x0)|
)1/2

eiNf(x0)+
iπ
4 sgnf ′′(x0)g(x0) + O

(
1
N

)
as N → ∞.

Setting N = t we find that the critical point of χ(q, p, t) is p0 = mq/t
and χ′′(p0) = 1

m�
�= 0. Thus as t → ∞,

ψ(q, t) =
√

m

t
ψ̂
(mq

t

)
e

imq2

�t +
iπ
4 + O(t−1)

=ψ0(q, t) + O(t−1).

Asymptotically as t → ∞ the wave function ψ(q, t) is supported on t
mU0

— a domain where the probability of finding a particle is asymptotically
different from zero. At large t the points in this domain move with constant
velocities v = p

m , p ∈ U0. Thus the classical relation p = mv remains valid
in the quantum picture. Moreover, the asymptotic wave function ψ0 satisfies∫ ∞

−∞
|ψ0(q, t)|2dq =

√
m
t

∫ ∞

−∞
|ψ̂ (mq

t

) |2dq = 1,

so that it describes the asymptotic probability distribution. Similarly, set-
ting N = −|t|, we can describe behavior of the wave function ψ(q, t) as
t → −∞.

Moreover, in the weak topology on H the vector ψ(t) → 0 as |t| → ∞.
Indeed, for every ϕ ∈ H we get by the Parseval identity

(ψ(t), ϕ) =
∫ ∞

−∞
ψ̂(p)ϕ̂(p)e

− ip2t
2m� dp,

and the integral goes to zero as |t| → ∞ by Riemann-Lebesgue lemma.
2.1.4. Several degrees of freedom. We start with the phase space M =

T ∗Rn � R2n with coordinates q = (q1, . . . , qn) and p = (p1, . . . , pn), and
with canonical Poisson bracket { , }, coming from canonical symplectic
form ω = dp ∧ dq. The Poisson brackets between coordinates q and p are

{qk, ql} = 0, {pk, pl} = 0, {pk, ql} = δk
l , k, l = 1, . . . , n.

The Hamiltonian function of a free particle is

h =
p2

2m
=

(p1)2 + · · · + (pn)2

2m
.

Corresponding quantum coordinate and momenta operators Q = (Q1, . . . , Qn)
and P = (P 1, . . . , Pn) satisfy Heisenberg commutation relations for n de-
grees of freedom,

{Qk, Ql}� = 0, {P k, P l}� = 0, {P k, Ql}� = δk
l I, k, l = 1, . . . , n.
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Remark. These are commutation relations of the Heisenberg Lie alge-
bra h — a Lie algebra with generators xk, . . . , xn, y1, . . . , yn, c and relations

[xk, c] = 0, [yk, c] = 0, [xk, yl] = δk
l c, k, l = 1, . . . , n.

The correspondence xk �→ −iP k, yk �→ −iQk and c �→ i�I defines a repre-
sentation of a Heisenberg Lie algebra.

In coordinate representation, H � L2(Rn, dnq), where dnq = dq1 . . . dqn

is the Lebesgue measure on Rn, and

Q = q = (q1, . . . , qn), P =
�

i

∂

∂q
=
(

�

i

∂

∂q1
, . . . ,

�

i

∂

∂qn

)
.

The coordinate and momenta operators are self-adjoint and satisfy Heisen-
berg’s commutation relations. Corresponding decompositions of unity for
operators Qk are defined as before,

(Pk(λ)ϕ)(q) =

{
ϕ(q), qk ≤ λ,

0, qk > λ.

k = 1, . . . , n. Coordinate operators Q1, . . . , Qn form a complete system of
commuting operators on H . This means that none of coordinate opera-
tors is the function of the other coordinate operators and every operator
commuting with Q1, . . . , Qn is a function of these operators, i.e., is a mul-
tiplication by a function operator on H . The proof repeats verbatim the
proof in the case of one degree of freedom. For the pure state M = Pψ the
modulus square |ψ(q)|2 of the wave function is the density of joint distribu-
tion function µψ for Q1, . . . , Qn. In the state with the wave function ψ(q)
the probability of finding a particle in the Borel subset E ⊂ Rn

µψ(E) =
∫
E

|ψ(q)|2dnq.

The Hamiltonian operator of a free particle in coordinate representation is
�2

2m times the Laplace operator of the Euclidean metric on Rn,

H =
P2

2m
= − �2

2m

(
∂2

∂q2
1

+ · · · + ∂2

∂q2
n

)
,

and is a self-adjoint operator with domain D(H) = W 2,2(Rn) — the Sobolev
space on Rn.

In momentum representation H � L2(Rn, dnp), where dnp = dp1 . . . dpn,
and

Q̂ = i�
∂

∂p
, P̂ = p.

The Hamiltonian operator

H =
p2

2m
is a multiplication by a function operator on H .
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The coordinate and momentum representations are unitary equivalent
by the Fourier transform. As in the case n = 1, the Fourier transform
F� : L2(Rn, dnq) → L2(Rn, dnp) is a unitary operator defined by

ϕ̂(p) = F�(ϕ)(p) =(2π�)−n/2

∫
Rn

e−ipq/�ϕ(q)dnq

= lim
N→∞

(2π�)−n/2

∫
|q|≤N

e−pq/�ϕ(q)dnq,

where the limit is understood in the strong topology on L2(Rn, dnp). As in
the case n = 1, we have

Q̂k = F�QkF
−1
�

, P̂k = F�PkF
−1
�

, k = 1, . . . , n.

In particular, since operators P̂1, . . . , P̂n are obviously self-adjoint, this im-
mediately shows that P1, . . . , Pn are also self-adjoint.

The Schrödinger equation for free particle,

i�
dψ(t)

dt
= Hψ(t), ψ(0) = ψ

is solved, as in the case n = 1, by using the Fourier transform

ψ(q, t) = (2π�)−n/2

∫
Rn

e
i

„
qp− p2

2mt

«
/�

ψ̂(p)dnp,

where ψ̂ = F�(ψ). For a wave packet — a smooth function ψ̂(p) supported
on a neighborhood U0 of 0 �= p0 ∈ Rn such that 0 /∈ U0 and∫

Rn

|ψ̂(p)|2dnp = 1,

quantum particle “leaves” every compact subset of Rn and the motion is
unbounded. Asymptotically as |t| → ∞, the wave function ψ(q, t) is different
from 0 only when q = p

m t, p ∈ U0.

2.2. Quantization of Newtonian particle. As in the previous sec-
tion, we consider the phase space M = R2n � T ∗Rn with canonical Poisson
bracket. Newtonian particle — a particle in a potential field V (q) is de-
scribed by the Hamiltonian

h =
p2

2m
+ v(q).

Corresponding quantum system has a Hamiltonian

H =
P2

2m
+ V
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for some operator V and corresponding coordinate and momenta operators
satisfy Heisenberg equations of motion

Ṗ = {H,P}�, Q̇ = {H,Q}�.

The explicit form of operator V can obtained by requiring that classical
relation q̇ = p/m between velocity and momentum is preserved under the
quantization, i.e.,

Q̇ =
P
m

.

Indeed, since {P2,Q}� = 2P, it follows from Heisenberg equations of motion
that this condition is equivalent to [V,Qk] = 0 for k = 1, . . . , n. Thus V
is a function of the commuting operators Q1, . . . , Qn and it is natural to
suppose that V = v(Q) and is a self-adjoint operator on H (for real-valued
v). Thus Hamiltonian operator of a Newtonian particle is

H =
P2

2m
+ v(Q).

Note that though both terms in the expression for H are self-adjoint oper-
ators, it is not true that the sum of (unbounded) self-adjoint operators is
self-adjoint. Admissible classes of potential functions v(q) are determined
by the requirement that H is (essentially) self-adjoint. In coordinate repre-
sentation H has the standard form

H =
�2

2m
∆ + V,

where ∆ is the Laplacian of the standard Eucildean metric on Rn,

∆ = −
n∑

k=1

∂2

∂q2
k

,

and V = v(q) is a multiplication by v(q) operator.

3. Harmonic oscillator and holomorphic representation

3.1. Harmonic oscillator. In classical mechanics the simplest system
with one degree of freedom is harmonic oscillator. Its phase space M = R2

carries canonical Poisson bracket and corresponding Hamiltonian function
is

h(p, q) =
p2

2m
+

mω2q2

2
,

where ω > 0 has a physical meaning of frequency of the oscillations. Hamil-
ton’s equations of motion describe harmonic motion.

In quantum mechanics, corresponding Hamiltonian operator is

H =
P 2

2m
+

mω2Q2

2
,
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where P and Q satisfies Heisenberg’s commutation relation. In coordinate
representation it is a Schrödinger operator with quadratic potential,

H = − �2

2m

d2

dq2
+

mω2q2

2

on the Hilbert space H = L2(R). The significance of this quantum system
is that we can explicitly diagonalize the operator H, i.e., find its eigenvalues
and eigenvectors, where the latter form a complete set. In particular, it
follow from here that operator H, which is obviously symmetric on S (R),
is a self-adjoint operator with D(H) = W 2,2(R) ∩ Ŵ 2,2(R).

Namely, set temporarily m = 1 and consider the operators

a =
1√
2ω�

(ωQ + iP ) ,

a∗ =
1√
2ω�

(ωQ − iP ) .

defined on W 1,2(R) ∩ Ŵ 1,2(R). It is easy to verify that a∗ is the adjoint
operator to a. It follows from Heisenberg commutation relations that

[a, a∗] = I

on W 2,2(R) ∩ Ŵ 2,2(R). Indeed, we have

aa∗ =
P 2 + ω2Q2

2ω�
+

iω

2ω�
[P,Q] =

P 2 + ω2Q2

2ω�
+

1
2
I

and

a∗a =
P 2 + ω2Q2

2ω�
− iω

2ω�
[P,Q] =

P 2 + ω2Q2

2ω�
− 1

2
I,

so that on W 2,2(R) ∩ Ŵ 2,2(R)

H = ω�
(
a∗a + 1

2I
)

= ω�
(
aa∗ − 1

2I
)
.

It follows from this representation that operators a, a∗ and N = a∗a
generate a nilpotent Lie algebra:

(3.1) [N, a] = −a, [N, a∗] = a∗, [a, a∗] = I.

It is this Lie-algebraic structure of the harmonic oscillator which is respon-
sible for the exact solution of the Schrödinger equation. Namely, suppose
that

I. There exists ψ ∈ H such that

Hψ = Eψ.

II. For all n ∈ N, ψ ∈ D(an) ∩ D((a∗)n).
Then we have the following.
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(a) There exists ψ0 ∈ H , ‖ψ0‖ = 1, such that

Hψ0 = ω�

2 ψ0

— the ground state vector for the harmonic oscillator.
(b) The vectors ψn = 1√

n!
(a∗)nψ0 ∈ H are orthonormal eigenvectors

for H with eigenvalues ω�(n + 1
2), i.e.,

Hψn = ω�(n + 1
2)ψn, n ∈ N ∪ {0}.

(c) Operator H is essentially self-adjoint on the Hilbert subspace H0

of H , spanned by the orthonormal set {ψn}∞n=0.
It is easy to prove these statements. If ψ ∈ H satisfies properties I-II,

then rewriting commutation relations (3.1) as

Na = a(N − I) and Na∗ = a∗(N + I),

we get for all n ≥ 0,

(3.2) Nanψ = (E − n)anψ and N(a∗)nψ = (E + n)(a∗)nψ.

Since N ≥ 0 on D(N), it follows from the first equation in (3.2) that there
exists n0 ≥ 0 such that an0ψ �= 0 but an0+1ψ = 0. Setting ψ0 = an0ψ ∈ H
we get

aψ0 = 0 and Nψ0 = 0.

Since H = ω�(N + 1
2I), this proves (a). To prove (b) we observe that it

follows from the commutation relation [a, a∗] = I by Leibniz rule that

[a, (a∗)n] = n(a∗)n−1.

Using this relation, we have

‖(a∗)nψ0‖2 = ((a∗)nψ0, (a∗)nψ0) = (ψ0, a
n−1a(a∗)nψ0)

= n(ψ0, a
n−1(a∗)n−1ψ0) + (ψ0, a

n−1(a∗)naψ0)

= n‖(a∗)n−1ψ0‖2 = · · · = n!‖ψ0‖2 = n!

From the second equation in (3.2) it now follows that ψn are normalized
eigenvectors of H with the eigenvalues ω�(n + 1

2). These eigenvectors are
orthogonal since these eigenvalues are distinct and H is symmetric. Finally,
property (c) immediately follows from the fact that, according to (b), the
closure of Im(H|H0

+ iI) is H0.

Remark. Since coordinate representation of Heisenberg’s commutation
relation is irreducible it is tempting to conclude from the properties (a)-(c)
that H0 = H . However, though it folllows from construction of the Hilbert
subspace H0 that the linear subspace (D(P ) ∩ D(Q)) ∩ H0) is invariant
for the operators P and Q, we can not immediately conclude from here
that projection operator P0 onto the subspace H0 commutes with operators
P and Q. Namely, we still need to prove that P0(D(P )) ⊂ D(P ) and
P0(D(Q)) ⊂ D(Q).
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However, we can prove that H0 = H using the coordinate represen-
tation explicitly. Namely, equation aψ0 = 0 becomes a first order linear
differential equation (

�
d

dq
+ ωq

)
ψ0 = 0,

so that

ψ0(q) = 4

√
ω

π�
e
−ωq2

2�

and

‖ψ0‖2 =
√

ω

π�

∫ ∞

−∞
e
−ωq2

� dq = 1.

Correspondingly, the eigenfunctions

ψn(q) =
1√
n!

(
1√
2ω�

(
ωq − �

d

dq

))n

ψ0

are of the form Pn(q)e
−ωq2

2� , where Pn(q) are polynomials of degree n. Thus
to prove that the functions {ψn}∞n=0 form an orthonormal basis in L2(R), it
is sufficient to show that the system of functions {qne−q2}∞n=0 is complete.
Suppose that f ∈ L2(R) is such that∫ ∞

−∞
f(q)qne−q2

dq = 0 for all n ≥ 0.

For z ∈ C introduce

F (z) =
∫ ∞

−∞
f(q)eiqz−q2

dq.

Clearly, this integral absolutely converges for all z ∈ C and defines an entire
function. We have for all n ≥ 0,

F (n)(0) = in
∫ ∞

−∞
f(q)qne−q2

dq = 0,

so that F (z) = 0 for all z ∈ C. In particular, setting z = −ip, p ∈ R and
g(q) = f(q)e−q2 ∈ L1(R)∩L2(R), we get F (g) = 0, where F stands for the
ordinary (� = 1) Fourier transform, so that g = 0.

The polynomials Pn are expressed through classical Hermite polynomials
Hn, defined by

Hn(q) =
(−1)n√
2nn!

√
π

eq2 dn

dqn
(e−q2

), n ≥ 0.

Namely, using the identity

eq2/2 dn

dqn

(
e−q2

)
= −

(
q − d

dq

)[
eq2/2 dn−1

dqn−1

(
e−q2

)]
= · · · = (−1)n

(
q − d

dq

)n

e−q2/2
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we obtain

ψn(q) = 4

√
ω

π�

1√
2nn!

e
−ωq2

2� Hn

(√
ω

�
q

)
.

We summarize everything in the following statement.

Theorem 3.1. Hamiltonian

H = −�2

2
d2

dq2
+

ω2q2

2

of harmonic oscillator, defined on S (R), is essentially self-adjoint operator
on L2(R) with pure point spectrum. The complete system of eigenfunctions
is

ψn(q) = 4

√
ω

π�

1√
2nn!

e
−ωq2

2� Hn

(√
ω

�
q

)
,

where Hn(q) are classical Hermite polynomials, and

Hψn = ω�(n + 1
2).

The closure H̄ of H is self-adjoint and D(H̄) = W 2,2(R) ∩ Ŵ 2,2(R).

Proof. The operator H is symmetric and has a complete system of
eigenvectors, so that

Im(H + iI) = Im(H − iI) = H .

This proves that H is essentially self-adjoint. The proof that D(H̄) =
W 2,2(R) ∩ Ŵ 2,2(R) is left to the reader. �

3.2. Holomorphic representation. Let

�2 =

{
c = {cn}∞n=0 : ‖c‖2 =

∞∑
n=0

|cn|2 < ∞
}

be the Hilbert �2-space. The choice of the basic {ψn}∞n=0 for L2(R) defines
the isomorphism L2(R) � �2,

L2(R) � ψ =
∞∑

n=0

cnψn �→ c = {cn}∞n=0 ∈ �2,

where

cn = (ψ, ψn) =
∫ ∞

−∞
ψ(q)ψn(q)dq

since functions ψn are real-valued. Using [a, (a∗)n] = n(a∗)n−1, we obtain

a∗ψ =
∞∑

n=0

cna∗ψn =
∞∑

n=0

cn
(a∗)n+1

√
n!

ψ0 =
∞∑

n=1

√
n cn−1ψn, ψ ∈ D(a∗),
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and

aψ =
∞∑

n=0

cnaψn =
∞∑

n=0

cn
a(a∗)n

√
n!

ψ0 =
∞∑

n=0

√
n + 1 cn+1ψn, ψ ∈ D(a).

Thus creation and annihilations operators a∗ and a in the Hilbert space �2

can be represented by the following semi-infinite matrices:

a =

⎡⎢⎢⎣
0

√
1 0 0 .

0 0
√

2 0 .

0 0 0
√

3 .
. . . . .

⎤⎥⎥⎦ , a∗ =

⎡⎢⎢⎢⎢⎣
0 0 0 0 .√
1 0 0 0 .

0
√

2 0 0 .

0 0
√

3 0 .
. . . . .

⎤⎥⎥⎥⎥⎦ ,

and

N = a∗a =

⎡⎢⎢⎢⎢⎣
0 0 0 0 .
0 1 0 0 .
0 0 2 0 .
0 0 0 3 .
. . . . .

⎤⎥⎥⎥⎥⎦ .

Thus in this representation the Hamiltonian of the harmonic oscillator
is represented by a diagonal matrix,

H = ω�

(
N +

1
2

)
= diag

{
ω�

2
,
3ω�

2
,
5ω�

2
, . . .

}
.

Let D be the Hilbert space of entire functions,

D =

⎧⎨⎩f entire function : ‖f‖2 =
1
π

∫∫
C

|f(z)|2e−|z|2d2z

⎫⎬⎭ ,

where d2z = i
2dz ∧ dz̄. The functions

zn

√
n!

, n = 0, 1, 2, . . . ,

form an orthonormal basis for D , and the assignment

�2 � c = {cn}∞n=0 �→ f(z) =
∞∑

n=0

cn
zn

√
n!

∈ D

establishes the isomorphism �2 � D . The realization of the Hilbert space
H as the Hilbert space D of entire functions is called holomorphic represen-
tation. It follows from the matrix representations of creation-annihilation
operators that in the holomorphic representation

a =
d

dz
, a∗ = z
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and

H = ω�

(
z

d

dz
+

1
2

)
.

The holomorphic representation is characterized by the property that
Hamiltonian H of the harmonic oscillator is diagonal. Moreover, since H
has a simple spectrum, every bounded operator which commutes with H is
a function of H.

The assignment

H � ψ =
∞∑

n=0

cnψn �→ f(z) =
∞∑

n=0

cn
zn

√
n!

∈ D

establishes the isomorphism between the coordinate and momentum repre-
sentations. Using the generating function for Hermite polynomials,

∞∑
n=0

Hn(q)
zn

n!
= e2qz−z2

,

corresponding unitary operator U : H → D can be specified explicitly as
the integral operator

Uψ(z) =
∫ ∞

−∞
U(z, q)ψ(q)dq

with the kernel

U(z, q) =
∞∑

n=0

ψn(q)
zn

√
n!

= 4

√
ω

π�
e

ωq2

2�
−

„q
ω
�

q− z√
2

«2

.

3.2.1. Wick symbols of operators.

4. Stone-von Neumann theorem

4.1. Weyl commutation relations. As we discussed before, Heisen-
berg commutation relations realize irreducible representation of Heisenberg
Lie algebra h by skew self-adjoint operators on the Hilbert space,

xk �→ −iP k, yk �→ −iQk, k = 1, . . . , n, c �→ i�I.

It is a non-trivial mathematical problem to define a commutator of un-
bounded operators. It can be completely bypassed by considering corre-
sponding unitary representation of the Heisenberg group G. The latter is
a connected, simply-connected Lie group with the Lie algebra h. It is a
unipotent Lie group of (n + 2) × (n + 2) matrices, defined by

G =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
g =

⎡⎢⎢⎢⎢⎢⎢⎣
1 u1 u2 . . . un c
0 1 0 . . . 0 v1

0 0 1 . . . 0 v2

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 vn

0 0 0 . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ SL(n + 2, R)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.
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The Heisenberg group G generated by n-parameter abelian subgroups euX =
e

Pn
k=1 ukxk

, evY = e
Pn

k=1 vkyk and a one-parameter center eαc, which satisfy
the relations

euXevY = euvcevY euX , where uv =
n∑

k=0

ukv
k.

The exponential map h → G is onto, so by Schur lemma in order to describe
the irreducible unitary representation ρ : G → U (H ), it is sufficient to
define strongly continuous n-parameter abelian groups of unitary operators

U(u) = ρ(euX), V (v) = ρ(evY )

satisfying Hermann Weyl commutation relations

U(u)V (v) = ei�uvV (v)U(u).

Here parameter � is determined by ρ(ec) = ei�I. Thus mathematically
the Planck constant parameterizes irreducible unitary representations of the
Heisenberg Lie group. In coordinate representation, U(u) = e−iuP and
V (v) = e−ivQ are given by the unitary operators

U(u)ψ(q) = ψ(q − �u), V (v) = e−ivqψ(q),

which satisfy Weyl relations. This realization of Weyl relations is called
Schrödinger representation. We proved in Section 2.1.1 that Schrödinger
representation is irreducible, so that irreducible unitary representations of
Heisenberg group exist for all real � �= 0.

Remark. It should be noted that neither Weyl relations can be obtained
from Heisenberg commutation relations, nor Heisenberg commutation rela-
tions can be obtained from Weyl relations. However, there is a heuristic
(at the physical level of rigor) derivation of Weil relaions. Consider, for
simplicity, the case of one degree of freedom and start with the Heisenberg
commutation relation

{P,Q}� = I.

Since quantum bracket satisfies the Leibniz rule, i.e., is a derivation, we have
(for a “suitable” function f) that

{f(P ), Q}h = f ′(P ).

In particular, choosing f(P ) = e−iuP = U(u), we obtain

U(u)Q − QU(u) = �uU(u) or U(u)QU(u)−1 = Q + �uI.

In turn, we get from here (for a “suitable” function g)

U(u)g(Q) = g(Q + �uI)U(u).

Setting g(Q) = e−ivQ = V (v), we get from here Weyl relation. Another
formal derivation of Weyl relation is based on the Campbell-Baker-Hausdorff
formula. Namely, since [P,Q] = �

i I, we get

e−iuP e−ivQ = e
uv
2 [P,Q]e−i(uP+vQ)
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and

e−ivQe−iuP = e−
uv
2 [P,Q]e−i(uP+vQ).

4.2. Stone-von Neumann theorem. It turns out that Schrodinger
representation, for real � �= 0, and trivial (one-dimensional) representation
are the only unitary irreducible representations of the Heisenberg group.

Theorem 4.1. (Stone-von Neumann Theorem) Every irreducible uni-
tary representation of Weyl commutation relations for n degrees of freedom
,

U(u)V (v) = ei�uvV (v)U(u),

is unitary equivalent to the Schrodinger representation.

Corollary 4.1. Generators P = (P 1, . . . , Pn) and Q = (Q1, . . . , Qn)
of n-parameter abelian groups U(u) and V (v), realizing irreducible repre-
sentation of Weyl commutation relations, satisfy Heisenberg commutation
relations.

Remark. The Stone-von Neumann theorem is a very strong statement.
In particular, it guarantees that for creation-annihilation operators a and
a∗, constructed from the infinitesimal generators P and Q, there exists a
ground state — a vector ψ0 ∈ H , annihilated by all operators a. Cor-
responding statement does not hold for the systems with infinitely many
degrees of freedom, where in addition one postulates the existence of the
ground state (“physical vacuum”). This reflects a fundamental difference
between quantum mechanics (systems with finitely many degrees of free-
dom) and quantum field theory (systems with infinitely many degrees of
freedom),

Now we will give a proof of Stone-von Neumann theorem. For sim-
plicity, we consider the case of n = 1. Later we interprete corresponding
constructions from the symplectic geometry point of view.

Proof. Set

S(u, v) = e−
i�uv

2 U(u)V (v).

Unitary operator S(u, v) satisfies

S(u, v)∗ = S(−u,−v)

and it follows from Weyl relation that

S(u1, v1)S(u2, v2) = e
i�
2 (u1v2−u2v1)S(u1 + u2, v1 + v2).

Define a linear map W : L1(R2) → B(H ) by

W (f) =
1
2π

∫∫
R2

f(u, v)S(u, v)dudv,
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where integral is understood in the weak sense: for every ψ1, ψ2 ∈ H ,

(W (f)ψ1, ψ2) =
1
2π

∫∫
R2

f(u, v)(S(u, v)ψ1, ψ2)dudv.

It follows from this definition that the integral is convergent for all ψ1, ψ2 ∈
H and

‖W (f)‖ ≤ 1
2π

‖f‖L1 .

The map W is called Weyl transfrom. From the above relations we have

W (f)∗ = W (f∗),

where

f∗(u, v) = f(−u,−v),

and

S(u1, v1)W (f)S(u2, v2) = W (f̃),

where

f̃(u, v) = e
�

2 {(u1−u2)v−(v1−v2)u+u2v1−u1v2}f(u − u1 − u2, v − v1 − v2).

The Weyl transfrom has the following properties.

1. ker W = {0}.
2. For f1, f2 ∈ L1(R2),

W (f1)W (f2) = W (f1 ∗� f2)

where

(f1 ∗� f2)(u, v) =
1
2π

∫∫
R2

e−
i�
2 (u′v−uv′)f1(u − u′, v − v′)f2(u′, v′)du′dv′.

To prove the first property, suppose that W (f) = 0. Then for all for all
u′, v′ ∈ R we have

S(−u′,−v′)W (f)S(u′, v′) =
1
2π

∫∫
R2

e−
i�
2 (u′v−uv′)f(u, v)S(u, v)dudv = 0,

which implies that for every ψ1, ψ2 ∈ H and every trigonometric polynomial
p(u, v) we have ∫∫

R2

p(u, v)f(u, v)(S(u, v)ψ1, ψ2)dudv = 0.
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Therefore, f(u, v)(S(u, v)ψ1, ψ2) = 0 for all ψ1, ψ2 ∈ H , so that f = 0. To
prove the second property, we compute

(W (f1)W (f2)ψ1, ψ2) = (W (f2)ψ1,W (f1)∗ψ2)

=
1
2π

∫∫
R2

f2(u2, v2)(S(u2, v2)ψ1,W (f1)∗ψ2)du2dv2

=
1
2π

∫∫
R2

f2(u2, v2)(W (f1)S(u2, v2)ψ1, ψ2)du2dv2

=
1

(2π)2

∫∫
R4

f1(u1 − u2, v1 − v2)f2(u2, v2)e
i�
2 (u1v2−u2v1)(S(u1, v1)ψ1, ψ2)du1dv1du

=
1
2π

∫∫
R2

(f1 ∗� f2)(u, v)(S(u, v)ψ1, ψ2)dudv,

where f1 ∗� f2 ∈ L1(R2). The linear mapping

∗� : L1(R2) × L1(R2) → L1(R2)

is associative,

f1 ∗� (f2 ∗� f3) = (f1 ∗� f2) ∗� f3 for all f1, f2, f3 ∈ L1(R2),

which immediately follows from associativity of the operator product. When
� = 0, the product ∗� becomes the usual convolution product of functions
in L1(R2).

For every ψ ∈ H , ψ �= 0, denote by Hψ the closed subspace of H
spanned by the vectors S(u, v)ψ for all u, v ∈ R. The subspace Hψ is an
invariant subspace for the operators U(u) and V (v) for all u, v ∈ R. Since
the representation of Weyl commutation relations is irreducible, Hψ = H .
It turns out that there is a vector ψ0 ∈ H for which all the scalar products
of the generating elements S(u, v)ψ0 of the subspace Hψ0 can be explicitly
computed. For this aim, we let

f0(u, v) = � e−
�(u2+v2)

4

and set
W0 = W (f0).

Then W ∗
0 = W0 and

W0S(u, v)W0 = e−
�

4 (u2+v2)W0.

In particular, W 2
0 = W0, so that W0 is an orthogonal projection. Indeed,

using property 2, we have

W0S(u, v)W0 = W (f0 ∗� f̃0),

where
f̃0(u′, v′) = e−

i�
2 (u′v−uv′)f0(u′ − u, v′ − v).
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Thus

(f0 ∗� f̃0)(u′, v′) = �e−
�

4 (u2+v2+u′2+v′2 )I(u′, v′),

where

I(u′, v′) =
�

2π

∫∫
R2

e−
�

2 {(u′′−u−u′+iv+iv′)2+(v′′−v−v′−iu−iu′)2}du′′dv′′.

Shifting contours of integration to Imu′′ = −v − v′, Im v′′ = u + u′ and
substituting ξ = u′′ − u − u′ + iv + iv′, η = v′′ − v − v′ − iu − iu, we get

I(u′, v′) =
�

2π

∫∫
R2

e−
�

2 (ξ2+η2)dξdη = 1.

Now let H0 be the image of the projection operator W0, a closed sub-
space of H . By the property 1, H �= {0}. For every ψ1, ψ2 ∈ H0 we have
W0ψ1 = ψ1,W0ψ2 = ψ2 and

(S(u1, v1)ψ1, S(u2, v2)ψ2) = (S(u1, v1)W0ψ1, S(u2, v2)W0ψ2)

= (W0S(−u2,−v2)S(u1, v1)W0ψ1, ψ2)

= e
i�
2 (u1v2−u2v1)(W0S(u1 − u2, v1 − v2)W0ψ1, ψ2)

= e
i�
2 (u1v2−u2v1)−�

4 {(u1−u2)2+(v1−v2)2}(W0ψ1, ψ2)

= e
i�
2 (u1v2−u2v1)−�

4 {(u1−u2)2+(v1−v2)2}(ψ1, ψ2).

Now we claim the subspace H0 is one-dimensional. Indeed, by the above
formula, for every ψ1, ψ2 ∈ H0 such that (ψ1, ψ2) = 0 the corresponding
subspaces Hψ1 and Hψ2 are orthogonal. Since Hψ = H for every ψ �= 0,
at least one of the vectors ψ1, ψ2 is 0. Let H0 = C ψ0, ‖ψ0‖ = 1, and set

ψα,β = S(α, β)ψ0, α, β ∈ R.

The closure of the linear span of the vectors ψα,β for all α, β ∈ R is H . We
have

(ψα,β, ψγ,δ) = e
i�
2 (αδ−βγ)−�

4 {(α−γ)2+(β−δ)2}

and

S(u, v)ψα,β = e
i�
2 (uβ−vα)ψα+u,β+v.

Now consider Schrödinger representation of Weyl commutation relations
in the Hilbert space L2(R):

(U(u)ψ)(q) = ψ(q − �u),

(V(v)ψ)(q) = e−ivqψ(q),

(S(u, v)ψ)(q) = e
i�uv

2 −ivqψ(q − �u).
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For the corresponding projection operator W0 we have

(W0ψ)(q) =
�

2π

∫∫
R2

e−
�

4 (u2+v2)e
i�uv

2 −ivqψ(q − �u)dudv

=

√
�

π

∫ ∞

−∞
e−

�

4 (u2+(u−2q
�

)2)ψ(q − �u)du

=
1√
�π

∫ ∞

−∞
e−

1
2�

(q2+q′
2
)ψ(q′)dq′,

where we have performed Gaussian integration with respect to the variable
v. Thus W0 is a projection operator onto the one-dimensional subspace of
L2(R) spanned by the Gaussian exponential ϕ0 = 1

4√
π�

e−q2/2�, ‖ϕ0‖ = 1.
Now set

ϕα,β = S(α, β)ϕ0.

Since Schrödinger representation of Weyl commutation relations is irre-
ducible, the closure of the linear span of the functions ϕα,β for all α, β ∈ R

is the Hilbert space L2(R). (This also can be proved directly from the com-

pleteness of Hermite functions, since ϕα,β(q) = 1
4√

π�
e

i�αβ
2 −iβq−(q−�α)2/2�).

We have

(ϕα,β, ϕγ,δ) = e
i�
2 (αδ−βγ)−�

4 {(α−γ)2+(β−δ)2}

and

S(u, v)ϕα,β = e
i�
2 (uβ−vα)ϕα+u,β+v.

For ψ =
∑n

i=1 ciψαi,βi
∈ H define

U (ψ) =
n∑

i=1

ciϕαi,βi
∈ L2(R).

Since the inner products between vectors ψα,β coincide with the inner prod-
ucts between the vectors ϕα,β, we have

‖U (ψ)‖2
L2(R) = ‖ψ‖2

H ,

so that U is well-defined unitary operator between the linear spans of the
systems of vectors {ψα,β}α,β∈R and {ϕα,β}α,β∈R. Thus U extends to the
unitary operator U : H → L2(R) satisfying

U S(α, β) = S(α, β)U for all α, β ∈ R.

This completes the proof of Stone-von Neumann theorem. �

Corollary 4.2. The Weyl transform W extends to the isomorphism
between L2(R2) and the Hilbert space S2(H ) of Hilbert-Schmidt operators
on H .
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Proof. It follows from the proof of Stone-von Neumann theorem that
for f ∈ L1(R2) operator W (f) on L2(R) is an integral operator with the
kernel

K(q, q′) =
1

2π�

∫ ∞

−∞
f( q−q′

�
, v)e−

i(q+q′)v
2 dv,

i.e., for every ψ ∈ L2(R),

(W (f)ψ)(q) =
∫ ∞

−∞
K(q, q′)ψ(q′)dq′.

For f ∈ S (R2) we have by elementary theory of Fourier transform that∫∫
R2

|K(q, q′)|2dqdq′ = ‖f‖2
L2(R2).

Thus for such f the operator W (f) is Hilbert-Schmidt and since S (R2)
is dense in L2(R2), we get the isometry W : L2(R2) → S2(H ). Since
every Hilbert-Scmidt operator on L2(R) is an integral operator with square-
summable kernel, the mapping W is onto. �

4.3. Invariant formulation of Stone-von Neumann theorem. Let
(V, ω) be a finite-dimensional symplectic vector space, dim V = 2n. Corre-
sponding Heisenberg Lie algebra h is a one-dimensional central extension of
the abelian Lie algebra V by the two-cocycle given by the symplectic form
ω. As a vector space,

h = V ⊕ Rc,

and the Lie bracket is

[u + αc, v + βc] = ω(u, v)c, u, v ∈ V, α, β ∈ R.

Choosing the symplectic basis x1, . . . , xn, y1, . . . , yn for V (that is, ω(xk, xl) =
ω(yk, yl) = 0, ω(xk, yl) = δk

l ) we see that this definition agrees with the one
given in Section 2.1.4. Every Lagrangian subspace � of V defines an abelian
subalgebra � ⊕ Rc of h. Let �′ be a complimentary Lagrangian subspace to
� in V ,

� ⊕ �′ = V.

Then
h/(� ⊕ Rc) � �′.

Let G be the Heisenberg group — connected and simply-connected Lie
group such that Lie(G) = h. Under the exponential map, Lie group G is
identified with the (2n + 1)-vector space V ⊕ Rc with the group law

exp(v1 + α1c) exp(v2 + α2c) = exp
(
v1 + v2 +

(
α1 + α2 + 1

2ω(v1, v2)
)
c
)
,

where v1, v2 ∈ V, α1, α2 ∈ R. The volume form d2nv ∧ dc, where d2nv ∈
Λ2nV ∨ is a non-zero volume form on V (here V ∨ is a dual vector space to V ),
defines a bi-invariant Haar measure on G. Let L = exp(� ⊕ Rc) be abelian
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subgroup of G defined by the Lagrangian subspace �. Since every g ∈ G can
be uniquely represented as g = exp v′ exp(v + αc), where v ∈ �, v′ ∈ �′,

G/L � �′.

The isomorphism Λ2nV ∨ � Λn�∨ ∧Λn�′∨ gives rise to the volume form dnv′
on �′ and defines on the homogeneous space G/L the measure dg, invariant
under the left G-action. The measure dg does not depend on the choice of
the complimentary Lagrangian subspace �′.

For a given � ∈ R, the function χ : G → C,

χ(exp(v + αc)) = ei�α for v ∈ V, α ∈ R,

defines a unitary character of L,

χ(l1l2) = χ(l1)χ(l2) for l1, l2 ∈ L.

Definition. Schrödinger representation S(�) of the Heisenberg group
G, associated with a Lagrangian subspace �, is a representation of G induced
by the one-dimensional representation χ of L,

S(�) = IndG
L χ.

Explicitly, the representation S(�) is realized in the Hilbert space H (�)
of functions f : G → C satisfying

f(gl) = χ(l)−1f(g) for all g ∈ G, l ∈ �,

and

‖f‖2 =
∫

G/L

|f(g)|2dg < ∞.

The representation S(�) of the Heisenberg group G on H (�) acts by left
translations,

(S(�)(g)f)(g′) = f(g−1g′) for all f ∈ H (�), g ∈ G.

In particular,

(S(�)(exp αc)f)(g) = f(exp(−αc)g) = f(g exp(−αc)) = ei�αf(g),

so that S(�)(exp αc) = ei�αI, where I is the identity operator on H (�).
Every choice of a complimentary Lagrangian subspace �′ gives rise to

the decomposition g = exp v′ exp(v + αc) for all g ∈ G. For f ∈ H (�) we
get,

f(g) = f(exp v′ exp(v + αc)) = e−i�αf(exp v′), v ∈ �, v′ ∈ �′, α ∈ R,

so that f ∈ H (�) is completely determined by its restriction on exp �′ � �′.
Thus the mapping

H � f �→ ψ ∈ L2(�′, dnv′), ψ(v′) = f(exp v′
�
), v′ ∈ �′,
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defines the isomorphism H (�) � L2(�′, dnv′). In this realization, the repre-
sentation S(�) is given by

(S(�)(exp v)ψ)(v′) = eiω(v,v′)ψ(v′), v ∈ �, v′ ∈ �′

(S(�)(exp u′)ψ)(v′) = ψ(v′ − �u′), u′, v′ ∈ �′.

In particular, choose a symplectic basis x1, . . . , xn, y1, . . . , yn for V and
set

d2nv = dx1 ∧ · · · ∧ dxn ∧ dyn ∧ · · · ∧ dyn.

For � = Ry1 ⊕ · · · ⊕ Ryn choosing �′ = Rx1 ⊕ · · · ⊕ Rxn we see that the
representation S(�) becomes coordinate representation of Weyl commutation
relations. Namely, for u =

∑n
k=1 ukx

k ∈ �′ and v =
∑n

k=1 vkyk ∈ � we get

S(�)(exp u) = U(u) and S(�)(exp v) = V (v).

Similarly, choosing � = Rx1⊕· · ·⊕Rxn and �′ = Ry1⊕· · ·⊕Ryn, we recover
the momentum representation (with P,Q replaced by −P,−Q).

Finally, we explain the invariant meaning of the ∗� operation. Namely,
consider the complex vector space C0(G, χ�) of all continuous functions f
on G with compact support satisfying

f(g exp αc) = e−i�αf(g) for all g ∈ G, α ∈ R.

Let B� = G/Γ�, where Γ� is discrete central subgroup in G,

Γ� = {g = exp(2πn
�

c) ∈ G |n ∈ Z},

and let db be the left-invariant Haar measure on B�,

db = d2nv ∧ dα, , α ∈ R/2π
�

Z.

The complex vector space C0(B�) of continuous functions on B� with com-
pact support has an algebra structure with respect to the convolution oper-
ation,

(ϕ1 ∗B�
ϕ2)(b) =

∫
B�

ϕ1(b1)ϕ2(b−1
1 b)db1 for ϕ1, ϕ2 ∈ C0(B�).

The convolution operator also defines the algebra structure on the Banach
space L1(B�, db), as well as on the space of distributions on B� with compact
support.

The natural inclusion C0(G, χ�) ↪→ C0(B�) has the property that the
image of C0(G, χ�) is a subalgebra of C0(B�) under the convolution. From
the other side, the isomorphism expV � V allows to identify the vector
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space C0(G, χ�) with C0(V ). We have

(ϕ1 ∗B�
ϕ2)(exp v) =

∫
V

ϕ1(exp u)ϕ2(exp(−u) exp v)d2nv

=
∫
V

ϕ1(exp u)ϕ2(exp(v − u) exp(−1
2ω(u, v)c))d2nv

=
∫
V

ϕ1(exp u)ϕ2(exp(v − u))e
i�
2 ω(u,v)d2nv.

Under the correspondence f(v) = ϕ(exp v) we get

(φ1 ∗B�
ϕ2)(exp v) = (f1 ∗� f2)(v), v ∈ V,

where ∗� was introduced in the proof of Stone-von Neumann theorem. Thus
the ∗� operation from the Weyl transform is nothing but the convolution
operator on C0(B�) restricted to C0(G, χ�). Moreover, the Weyl transfrom
is an injective homomorphism of the algebra L1(V, d2nv) with the operation
∗� into the algebra L (H ) of bounded operators on the Hilbert space H .

5. Quantization

Here we consider the quantization problem of classical system (M , { , }),
outlined in the beginning of Section 2.

5.1. Weyl quantization. The quantization of the classical system with
the phase space M = R2n and the canonical Poisson bracket associated with
the symplectic form ω = dp ∧ dq can be described by the help of the Weyl
transform. Namely, consider the linear mapping

Φ : A → L (H )

of the subalgebra of classical observables of rapid decay A0 = S (R2n) into
the algebra of bounded operators L (H ) on the Hilbert space H = L2(Rn),
defined by

A � f �→ W (F−1(f)) ∈ L (H ),

where F−1 is the inverse Fourier transform,

F−1(f)(u,v) = f̌(u,v) = (2π)−n

∫
R2n

f(p,q)ei(up+vq)dnqdnp.

Explicitly,

Φ(f) = W (f̌) =
1

(2π)n

∫
R2n

f̌(u,v)S(u,v)dnudnv.

The linear mapping Φ is one-to-one. Its image and the inverse mapping are
described by the following
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Lemma 5.1. For every f ∈ A the operator Φ(f) is of trace class and

f̌(u,v) = �
n Tr(Φ(f)S(u,v)−1).

Proof. First, the operator Φ(f) on L2(Rn) in an integral operator: for
every ψ ∈ L2(Rn),

(Φ(f)ψ)(q) =
∫

Rn

K(q,q′)ψ(q′)dnq′,

where

K(q,q′) =
1

(2π�)n

∫
Rn

f̌(q−q′
�

,v)e−
iv(q+q′)

2 dnv

=
1

(2π�)n

∫
Rn

f(p, q+q′
2 )e

ip(q−q′)
� dnp.

Since K ∈ S (Rn×Rn) ⊂ L2(Rn×Rn), the operator Φ(f) is Hilbert-Schmidt.
To prove that Φ(f) is of trace class, we first consider the case n = 1. Let

H =
P 2 + Q2

2
be the Hamiltonian of the harmonic oscillator with m = 1 and ω = 1.
Operator H has a complete system of eigenfunctions

ψn(q) = 4

√
1
π�

1√
2nn!

e−
q2

2�Hn

(
q√
�

)
with the eigenvalues �(n + 1

2), n = 0, 1, 2 . . . . The inverse operator H−1

is Hilbert-Schmidt. Using integration by parts, it is easy to show that the
operator Φ(f)H is an integral operator with the kernel

1
2

(
− ∂2

∂q′2
+ q′

2

)
K(q, q′),

which is a Schwarz class function on R2. Thus the operator Φ(f)H is Hilbert-
Schmidt, so that the operator

Φ(f) = Φ(f)HH−1

is of the trace class. Since {ψn(q)}∞n=0 is an orthonormal basis for H =
L2(R), we have

K(q, q′) =
∞∑

m,n=0

cmnψn(q)ψm(q′),

where

cmn =
∫
R2

K(q, q′)ψn(q)ψm(q′)dqdq′,
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and convergence is in the L2(R2)-topology. Since K ∈ S (R2), this series is
also convergent in the S (R2)-topology. Setting q′ = q, we get the expansion

K(q, q) =
∞∑

m,n=0

cmnψn(q)ψm(q),

convergent in the S (R)-topology. This allows to interchange the order of
the summation and the integration over q, and we obtain

Tr Φ(f) =
∞∑

n=0

(Φ(f)ψn, ψn) =
∞∑

n=0

cnn =
∫ ∞

−∞
K(q, q)dq.

The general case n > 1 is similar: consider the operator

H =
P2 + Q2

2
and use the fact that operators KHn and H−n are Hilbert-Schmidt. To
prove the formula

Tr Φ(f) =
∫

Rn

K(q,q)dnq,

expand the kernel K with respect to the orthonormal basis {ψk(q)ψk′(q′)}∞k,k′=0

for L2(Rn × Rn), where

ψk(q) = ψk1(q1) · · ·ψkn(qn), k = (k1, . . . , kn).

Using the explicit form of the kernel K, we get

Tr Φ(f) =
1

(2π�)n

∫
Rn

∫
Rn

f̌(0,v)e−ivqdnvdnq = �
−nf̌(0, 0).

Finally, using S(u,v)−1 = S(u,v)∗ = S(−u,−v) and the property

W (f̌)S(−u,−v) = W (f̌u,v),

where
f̌u,v(u′,v′) = f̌(u + u′,v + v′)e

i�
2 (v′u−u′v),

we get the inversion formula. �
Corollary 5.1.

Tr Φ(f) =
1

(2π�)n

∫
R2n

f(p,q)dnpdnq.

Remark. Formally, the operator S(u,v) is an integral operator with
the kernel

e
i�uv

2 −ivq δ(q − q′ − �u)
(which could be properly understood by Schwarz kernel theorem), so that

Tr S(u,v) =
(

2π

�

)n

δ(u)δ(v).



5. QUANTIZATION 77

Thus (at a physical level of rigor)

Tr Φ(f) = �
−n

∫
Rn

f̌(u,v)δ(u)δ(v)dnudnv = �
−nf̌(0, 0).

The linear mapping Φ : A0 → L (H ) which assigns quantum observ-
ables to (rapidly decaying) classical observables, is called Weyl quantization.
Clearly, it can be extended to the complex vector space of continuous func-
tions which are inverse Fourier transforms of the L1 functions on R2n. More
generally, it follows from the explicit formula for the kernel K, that for
f ∈ S (R2n)′ — the space of L. Schwarz (tempered) distributions on R2n,
corresponding K ∈ S (Rn×Rn)′. Such kernels K correspond to linear oper-
ators from the Schwarz space S (Rn) to the space of tempered distributions
S (Rn)′. In particular, the constant function f = 1 corresponds to the iden-
tity operator I. In many cases, as the examples below show, Schwarz kernels
K correspond to an unbounded self-adjoint operators on H = L2(Rn).

Example 5.1. Let f = f(q) ∈ Lp(Rn) for some p ≥ 1, or f be a
polynomially bounded function as |q| → ∞. Considered as a tempered
distribution on R2n,

f̌(u,v) = (2π)n/2δ(u)f̌(v),

so that

K(q,q′) =
1

(�
√

2π)n

∫
Rn

δ(q−q′
�

)f̌(v)e−
iv(q+q′)

2 dnv

= δ(q − q′)f(q+q′
2 ) = f(q)δ(q − q′).

This is the Schwarz kernel of a multiplication by f(q) operator on L2(Rn).
In particular, coordinates q in classical mechanics correspond to coordinate
operators Q in quantum mechanics. Similarly, if f = f(p) then Φ(f) =
f(P). In particular, momenta p in classical mechanics correspond to the
momenta operators P in quantum mechanics.

Example 5.2. Let

h =
p2

2m
+ v(q)

be the Hamiltonian function in classical mechanics. Then H = Φ(h) is the
corresponding Hamiltonian operator in quantum mechanics,

H =
P2

2m
+ v(Q)

Remark. The Weyl quantization can be considered as a way of defin-
ing, for f ∈ A0, a function f(Q,P) of non-commuting operators P =
(P 1, . . . , Pn) and Q = (Q1, . . . , Qn) by setting

f(P,Q) = Φ(f).
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In particular, if f(p,q) = g(p) + h(q), then

f(P,Q) = g(P) + h(Q).

For f(p,q) = pq = p1q1 + · · · + pnqn, it is easy to compute

f(P,Q) =
PQ + QP

2
,

so that Weil quantization gives a symmetrized form of the non-commuting
factors P and Q. In general, let f is a polynomial function,

f(p,q) =
∑

|α|,|β|≤N

cαβ pαqβ,

where for the multi-indices α = (α1, . . . , αn) and β = (β1, . . . , βn),

pα = (p1)α1 . . . (pn)αn , qβ = qβ1
1 . . . qβn

n ,

and |α| = α1 + · · · + αn, |β| = β1 + · · · + βn. Then

Φ(f) =
∑

|α|,|β|≤N

cαβ Sym(PαQβ),

where the symmetric product Sym(PαQβ) is defined by

(uP + vQ)k =
∑

|α|+|β|=k

k!
α!β!

uαvβ Sym(PαQβ),

with uP + vQ = u1P
1 + · · · + unPn + v1Q1 + · · · + vnQn and

α! = α1! . . . αn!, β! = β1! . . . βn!.

As another example, consider the pure state Pψ, where ψ ∈ H , ‖ψ‖ = 1
and find the classical observable f such that

Φ(f) = Pψ.

Since Pψ is an integral operator with the kernel ψ(q)ψ(q′), we get

1
(2π�)n

∫
Rn

f(p, q+q′
2 )e

ip(q−q′)
� dnp = ψ(q)ψ(q′),

so that introducing q+ = q+q′
2 ,q− = q−q′

2 , we get

f̌(2q−
�

,v) = �
n

∫
Rn

ψ(q− + q+)ψ(q+ − q−)eivq+dnq+,

or
f̌(u,v) = �

n

∫
Rn

ψ(q + �u
2 )ψ(q − �u

2 )eivqdnq.

Setting

ρ̌(u,v) = lim
�→0

1
(2π�)n

f̌(u,v) =
1

(2π)n

∫
Rn

|ψ(q)|2eivqdnv,
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we see that in the classical limit � → 0 the pure state Pψ in quantum
mechanics corresponds to the mixed state in classical mechanics with the
density

ρ(p,q) = δ(p)|ψ(q)|2.
Corresponding probability measure dµ = ρ(p,q)dnpdnq describes the clas-
sical state of the particle at rest (p = 0) with the coordinates distribution
|ψ(q)|2dnq.

5.2. The �-product. As in Section 4.2, the assignment A C
0 � f �→

Φ(f) ∈ L (H ) defines a new bilinear operation

�� : A C
0 × A C

0 → A C
0

by
f1 �� f2 = Φ−1(Φ(f1)Φ(f2)),

or
f1 �� f2 = F

(
F−1(f1) ∗� F−1(f2)

)
.

Explicitly, as it follows from the computation in Section 4.2,

(f1 �� f2)(p,q) =
1

(2π)2n

∫
R2n

∫
R2n

f̌1(u1,v1)f̌2(u2,v2)(5.1)

e
i�
2 (u1v2−u2v1)−i(u1+u2)p−i(v1+v2)qdnu1d

nu2d
nv1d

nv2.

The ��-operation has the following properties.

1. Associativity

f1 �� (f2 �� f3) = (f1 �� f2) �� f3 for all f1, f2, f3 ∈ A0.

2. Semi-classical limit

(f1 �� f2)(p,q) = f1(p,q)f2(p,q) − i�

2
{f1, f2}(p,q) + O(�2) as � → 0.

3. Property of the unit

f �� 1 = 1 �� f for all f ∈ A C
0 ,

where 1 is the constant function equal to 1 on R2n.
4. The C-linear mapping τ : A C

0 → C, defined by

τ(f) =
1

(2π�)n

∫
R2n

f(p,q)dnpdnq,

satisfies the cyclic trace property

τ(f1 �� f2) = τ(f2 �� f1) for all f1, f2 ∈ A C
0 .
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These properties imply that the complex vector space A C
1 = A C

0 ⊕ C1
with bilinear operation �� is an associative algebra over C with a unit 1 and
the cyclic trace τ , satisfying the celebrated correspondence principle,

lim
�→0

i

�
(f1 �� f2 − f2 �� f1) = {f1, f2} for all f1, f2 ∈ A C

0 .

The operation �� is called the �-product.
Properties 1, 3 and 4 immediately follow from the corresponding proper-

ties for the operator product. To prove property 2, it is sufficient to expand

e
i�
2 (u1v2−u2v1) = 1 − i�

2
(u1v2 − u2v1) + O(�2),

where the 0-term is uniform on compact subsets of R2n, and to use

F (uf̌(u,v)) = −i
∂f

∂p
(p,q) and F (vf̌(u,v)) = −i

∂f

∂q
(p,q).

Since f̌1, f̌2 ∈ S (R2n), the estimate follows.
Next, consider the tensor product of Hilbert spaces,

L2(R2n) ⊗ L2(R2n) � L2(R2n × R
2n),

and the unitary operator U1 on L2(R2n) ⊗ L2(R2n), defined by

U1 = e
− i�

2

“
∂

∂p⊗ ∂
∂q

”
,

where
∂

∂p
⊗ ∂

∂q
=

n∑
l=1

∂

∂pl
⊗ ∂

∂ql
.

It follows from the theory of Fourier transform that for f1, f2 ∈ S (R2n),

(U1(f1 ⊗ f2)) (p1,q1,p2,q2) =
1

(2π)2n

∫
R2n

∫
R2n

f̌1(u1,v1)f̌2(u2,v2)

e
i�
2 u1v2−iu1p1−iu2p2−iv1q1−iv2q2dnu1d

nu2d
nv1d

nv2.

Similarly, introducing the unitary operator U2 on L2(R2n) ⊗ L2(R2n),

U2 = e
− i�

2

“
∂
∂q⊗ ∂

∂p

”
,

we get

(U2(f1 ⊗ f2)) (p1,q1,p2,q2) =
1

(2π)2n

∫
R2n

∫
R2n

f̌1(u1,v1)f̌2(u2,v2)

e
i�
2 u2v1−iu1p1−iu2p2−iv1q1−v2q2dnu1d

nu2d
nv1d

nv2.

Introducing the unitary operator U� on L2(R2n) ⊗ L2(R2n),

U� = U1U−1
2 = e

− i�
2

“
∂

∂p⊗ ∂
∂q− ∂

∂q⊗ ∂
∂p

”
,
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and defining the linear operator m : A C
0 ⊗ A C

0 → A C
0 by8

(m(f1 ⊗ f2))(p,q) = f1(p,q)f2(p,q),

we can rewrite the �-product in the following succinct form:

f1 �� f2 = (m ◦ U�) (f1 ⊗ f2).

Now remembering that the canonical Poisson bracket on the phase space
R2n has the form

{f1, f2} =
∂f

∂p
∂g

∂q
− ∂f

∂q
∂g

∂p
,

and introducing the notation

{ ⊗, } =
∂

∂p
⊗ ∂

∂q
− ∂

∂q
⊗ ∂

∂p
=

∂2

∂p1∂q2
− ∂2

∂q1∂p2
,

we get for all f1, f2 ∈ A C
0 ,

(5.2) (f1 �� f2)(p,q) =
(

e−
i�
2 { ⊗, }f1(p1,q1)f2(p2,q2)

) ∣∣∣p1=p2=p
q1=q2=q

.

The formula (5.2) for the �-product is equivalent to (5.1). Its has an advan-

tage of formally expanding the exponential e−
i�
2 { ⊗, } to get an asymptotic

expansion of the �-product as � → 0. Namely, for k ∈ N define the bidiffer-
ential operators

Bk : S (R2n) ⊗ S (R2n) → S (R2n)

by Bk = m ◦ { ⊗, }k and set B0 = m — the point-wise multiplication of
functions. Repeating the proof of property 2 and expanding the exponential

function e
i�
2 (u1v2−u2v1) into Taylor series, we obtain the following result.

Lemma 5.2. For every f1, f2 ∈ A C
0 , there is the asymptotic expansion

(f1 �� f2)(p,q) =
∞∑

k=0

(−i�)k

2kk!
Bk(f1, f2)(p,q) + O(�∞) as � → 0,

i.e., for every N ∈ N the exists C > 0 (depending on p,q and functions
f1, f2) such that∣∣∣∣∣(f1 �� f2)(p,q) −

N∑
k=0

(−i�)k

2kk!
Bk(f1, f2)(p,q)

∣∣∣∣∣ ≤ C�
N+1.

8This is the definition of the point-wise product of functions as a restriction on the
diagonal in the tensor product.
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Finally, let us obtain another integral representation for the �-product.
Consider again formula (5.1) and apply Fourier inversion formula to the
integral over dnu1d

nv1. We obtain

(f1 �� f2)(p,q) =
1

(2π)n

∫
R2n

f1(p − �

2v2,q + �

2u2)f̌2(u2,v2)e−iu2p−iv2qdnu2d
nv2

=
1

(2π)2n

∫
R2n

∫
R2n

f1(p − �

2v2,q + �

2u2)f2(p2,q2)

e−iu2p−iv2q+iu2p2+iv2q2dnp2d
nq2d

nu2d
nv2.

Introducing new variables

p1 = p − �

2
v2, q1 = q +

�

2
u2,

we obtain

(f1 �� f2)(p,q) =
1

(π�)2n

∫
R2n

∫
R2n

f1(p1,q2)f2(p2,q2)

e
2i
�

(p1q−pq1+q1p2−q2p1+pq2−p2q)dnp1d
nq1d

np2d
nq2.

Consider now Euclidean triangle � in the phase space R2n (a 2-simplex)
with the vertices (p,q), (p1,q1) and (p2,q2). It is easy to see that

p1q − pq1 + q1p2 − q2p1 + pq2 − p2q = 2
∫



ω,

which is twice the oriented area of a triangle for n = 1. For n > 1 this is
twice the symplectic area of a triangle � — the sum of oriented areas of the
projections of � onto two-dimensional planes (p1, q1), . . . , (pn, qn). Thus we
have the final formula

(f1 �� f2)(p,q) =
1

(π�)2n

∫
R2n

∫
R2n

f1(p1,q2)f2(p2,q2)e
4i
�

R
�

ω

dnp1d
nq1d

np2d
nq2.

5.3. Deformation quantization. We start with an elementary intro-
duction to the deformation theory of algebras. Let A be a C-algebra (or an
associative algebra with unit over any field k of characteristic zero) with a
multiplication map

m : A⊗C A → A.

Here ⊗C stands for a tensor product of vector spaces over C. Let C[[t]] be
a ring of formal power series in the variable t, i.e.,

C[[t]] =

{ ∞∑
n=0

zntn | zn ∈ C

}
,
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and let
At = C[[t]] ⊗C A

be the C[[t]]-algebra of formal power series over A (formal power series in t
with coefficients in A). The multiplication in At is a C[[t]]-linear extension
of the multiplication m in A, which we continue to denote by m. For a, b ∈ A
(or in At) we also denote ab = m(a ⊗ b). The algebra At is Z-graded,

At =
∞⊕

n=0

An,

where An = tnA, so that AmAm ⊂ Am+n.

Definition. A deformation of the C-algebra A is a pair (At,mt) with
a C[[t]]-linear map

mt : At ⊗C At → At,

satisfying the associativity property

mt ◦ (mt ⊗C id) = mt ◦ (id ⊗C mt)

(as mappings from At ⊗C At ⊗C At into At), and such that

mt|A⊗CA = m + tµ1 + t2µ2 + . . . ,

where µn : A⊗C A → A are C-linear mappings, n ≥ 0.

Definition. Two deformations mt and m′
t of the C-algebra A are equiv-

alent, if there is a C[[t]]-linear mapping Ft : At → At of the form

Ft|A = id + tf1 + t2f2 + . . . ,

where fn : A → A are C-linear mappings, such that

Ft ◦ m′
t = mt ◦ (Ft ⊗C Ft).

The mapping Ft with the property f0 = id is a C[[t]]-modules isomor-
phism, so that the equivalence of deformations is an equivalence relation.

The C-linear mappings µn should satisfy infinitely many relations ob-
tained by the expanding the associativity condition

mt(a,mt(b, c)) = mt(mt(a, b), c) for all a, b, c ∈ A
into the formal power series in t. The first two of them, arising from com-
paring the coefficients at powers t and t2, are

µ1(a, bc) + aµ1(b, c) = µ1(ab, c) + µ1(a, b)c

µ2(a, bc) + aµ2(b, c) + µ1(a, µ1(b, c)) = µ2(ab, c) + µ2(a, b)c + µ1(µ1(a, b), c),

and in general

aµn(b, c) − µn(ab, c) + µn(a, bc) − µn(a, b)c

=
n−1∑
j=1

(µj(µn−j(a, b), c) − µj(a, µn−j(b, c))) .
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For the proper algebraic interpretation of these equations one needs to in-
troduce the notion of Hochschild cohomology.

Let M be A-bimodule, i.e., M is left and right module with respect to
the C-algebra A.

Definition. Hochschild cochain complex (C•(A,M), d) of a C-algebra
A with coefficients in A-bimodule M is defined by the cochains Cn(A,M) =
HomC(A⊗n

,M) and the differential dn : Cn(A,M) → Cn+1(A,M),

(dnf)(a1, a2, . . . , an+1) = a1f(a2, . . . , an+1) +
n∑

j=1

(−1)jf(a1, . . . , ajaj+1, . . . , an+1

+ (−1)n+1f(a1, . . . , an)an+1.

It is clear that d2 = 0, i.e., dn+1 ◦ dn = 0. The cohomology of the
Hochschild complex (C•(A,M), d) is called Hochschild cohomology and is
denoted by H•(A,M),

Hn(A,M) = ker dn/ Im dn−1.

The simplest non-trivial example of A-bimodule is M = A with the
left and right actions of A. It follows from the associativity equations that
µ1 ∈ C2(A,A) is a Hochschild 2-cocycle, d2µ1 = 0, and

(d2µn)(a, b, c) =
n−1∑
j=1

(µj(µn−j(a, b), c) − µj(a, µn−j(b, c))) .

It turns out that the right-hand side of this equation defines another op-
eration on Hochschild cochains for the case M = A. Namely, for f ∈
Cm(A,A), g ∈ Cn(A,A) set

(f ◦ g)(a1, . . . , am+n−1)

=
m−1∑
j=0

(−1)jf(a1, . . . , aj , g(aj+1, . . . , aj+n), aj+n+1, . . . , am+n−1),

and define
[f, g]G = f ◦ g − (−1)(m+1)(n+1)g ◦ f.

The linear mapping [ , ]G : Cm(A,A)×Cn(A,A) → Cm+n−1(A,A) is called
the Gershtenhaber bracket and it defines the structure of a graded Lie dif-
ferential Lie algebra on C•(A.A). In terms of Gershtenhaber bracket, the
associativity condition can be written succinctly as

dmt = 1
2 [mt − m, mt − m]G.

This gives the way of solving this equation. Suppose we already solved it
mod tn, starting with the case n = 1. Then it can be shown that the right-
hand side mod tn+1 is always a Hochschild 2-cocycle and we need to ensure
that it is zero in Hochschild cohomology.
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Now we will concentrate on the case when the C-algebra A is commuta-
tive, and let At be a deformation of A. Define { , } : A×A → A by

{a, b} = µ1(a, b) − µ1(b, a), a, b ∈ A.

Lemma 5.3. Any deformation At of a commutative C-algebra A equippes
A with the structure of a Poisson algebra with the Poisson bracket { , }.

Proof. First, consider the equation dµ1(a, b, c) = 0. Subtracting from
it the equation with a and c interchanged and using the commutativity of
the product in A, we get the following equation for the 2-cochain { , }:

{ab, c} − {a, bc} = a{b, c} − c{a, b}.
Interchanging b and c, we get

{ac, b} − {a, bc} = a{c, b} − b{a, c},
and interchanging a and c in this equation we obtain

{ac, b} − {c, ab} = c{a, b} − b{c, a}.
Now adding the first and third equations and subtracting the second equa-
tion we obtain

{ab, c} = a{a, c} + b{a, c},
so that skew-symmetric 2-cochain { , } satisfies the Leibniz rule. To prove
the Jacobi identity, observe that

{a, b} =
a �t b − b �t a

t
mod t,

where we have set mt(a, b) = a �t b. Using that the product �t is associative
modulo t2 (which is expressed by the equation dµ2 = 1

2 [µ1, µ1]G), we get

{{a, b}, c} + {{c, a}, b} + {{b, c}, a} =
1
t2

(
(a �t b − b �t a) �t c

−c �t (a �t b − b �t a) + (c �t a − a �t c) �t b − b �t (c �t a − a �t c)

+(b �t c − c �t b) �t a − a �t (b �t c − c �t b)
)

mod t = 0.

�
This result motivates the following

Definition. A deformation of the Poisson algebra (A, { , }) with the
commutative product m : A ⊗ A → A, m(a ⊗ b = ab, is an associate
algebra At over C[[t]] with the C[[t]]-linear product mt : At ⊗ At → At,
mt(a ⊗ b) = a �t b, such that for all a, b ∈ A

1.
a �t b = ab mod tAt

2.
a �t b − b �t a

t
= {a, b} mod tAt
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3.
a �t 1 = 1 �t a = a.

The Weyl quantization provides the example of a deformation of the
Poisson algebra of classical observables on the phase space M = R2n with
the canonical Poisson bracket. The algebraic nature of the Weyl quantiza-
tion is revealed by the following

Theorem 5.1 (Universal deformation). Let A be a commutative C-
algebra and let ϕ1, ϕ2 ∈ HomC(A,A) be two commuting derivations of A,
i.e., ϕ1, ϕ2 satisfy Leibniz rule and

ϕ1 ◦ ϕ2 = ϕ2 ◦ ϕ1.

The {a, b} = ϕ1(a)ϕ2(b) − ϕ2(a)ϕ1(b), a, b ∈ A, is a Poisson bracket and
the deformation of the Poisson algebra (A, { , }) is given by the universal
deformation formula

mt = m ◦ etϕ1⊗ϕ2 .

Proof. It is sufficient to verify the associativity of the product mt,
since the properties 1-3 are obvious. Let Φ = ϕ1 ⊗ ϕ2 : A⊗A → A and let
∆ : A → A⊗A be the coproduct map,

∆(a) = a ⊗ 1 + 1 ⊗ a, a ∈ A.

The coproduct map extends to a C-linear mapping from HomC(A,A) to
HomC(A⊗2

,A⊗2
), which we continue to denote by ∆,

∆(ϕ) = ϕ ⊗ id + id⊗ϕ, ϕ ∈ HomC(A,A).

For a, b ∈ A set a �t b = mt(a ⊗ b). It is sufficient to verify that for all
a, b, c ∈ A,

(5.3) a �t (b �t c) = (a �t b) �t c.

It follows from Leibniz rule that a derivation ϕ of A satisfies the following
identity in At,

etϕ(ab) = m
(
etϕ(a ⊗ b)

)
.

Thus we obtain,

a �t (b �t c) = m(etΦ(a ⊗ m(etΦ(b ⊗ c))))

= (m ◦ (id⊗m))(et(id⊗∆)(Φ)et id⊗Φ(a ⊗ b ⊗ c))

= (m ◦ (id⊗m))(et(id⊗∆)(Φ)+t id⊗Φ(a ⊗ b ⊗ c)),

where we have also used commutativity of ϕ1 and ϕ2. Similarly,

(a �t b) �t c = (m ◦ (m ⊗ id))(et(∆⊗id)(Φ)+tΦ⊗id(a ⊗ b ⊗ c)).

Since m ◦ (id⊗m) = m ◦ (m⊗ id) due to the associativity of the product m,
it is sufficient to prove that

∆ ⊗ id)(Φ) + Φ ⊗ id = id ⊗ ∆)(Φ) + id⊗Φ,
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which reduces to the identity

(ϕ1⊗ id + id⊗ϕ1)⊗ϕ2+ϕ1⊗ϕ2⊗ id = ϕ1⊗(ϕ2⊗ id + id⊗ϕ2)+id⊗ϕ1⊗ϕ2.

�





CHAPTER 3

Schrödinger Equation

To be completed during the semester.

1. General properties

The Schrödinger operator is defined the formal differential expression

H = −∆ + v(q).

Here we present general conditions on the potential v(q) guaranteeing that
has a unique extension to a self-adjoint operator on the Hilbert state H =
L2(Rn), i.e., when H is essentially self-adjoint. In this case we, slightly
abusing notations, will continue to denote the closure by H. We know that
self-adjointness is a fundamental property of quantum observables. Unique-
ness of the self-adjoint extension is also fundamental: there are no physical
principles distinguishing between different extentions (which exist if the de-
fect indices of H are equal and non-zero). We also will present different
criteria for the absence of the singular spectrum of H, for the spectrum to
be purely discrete and other possibilities.

1.1. Self-adjointness. First we consider the case when v is a real-
valued measurable locally bounded function on Rn, i.e., v ∈ L∞

loc(R
n, R).

The operator H defined by the formal differential expression, is symmetric
on C∞

0 (Rn) ⊂ H , and we are interested in sufficient conditions for H being
essentially self-adjoint. The simplest one is stated as follows.

Theorem 1.1. If v(q) is bounded from below, v(q) ≥ C for almost all
q ∈ Rn, then H is essentially self-adjoint on H .

In fact, a much more general statement holds.

Theorem 1.2 (Sears). Suppose that the potential v(q) for all q ∈ Rn

satisfies the condition
v(q) ≥ −Q(|q|),

where Q(r) is an increasing continuous positive function on R≥0 such that∫ ∞

0

dr√
Q(r)

= ∞.

Then H is essentially self-adjoint on H .

89
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1.2. Discreteness of the spectrum. The simplest result is the fol-
lowing statement.

Theorem 1.3. Suppose that

lim
|q|→∞

v(q) = ∞.

Then operator H has a point spectrum, i.e., there exists an orthonormal
basis {ψn}n∈N for H consisting of eigenfunctions of H,

Hψn = Enψn, n ∈ N.

2. One-dimensional Schrödinger equation

3. Angular momentum and SO(3)

4. Two-body problem

5. Hydrogen atom and S0(4)

6. Semi-classical asymptotics



CHAPTER 4

Path Integral Formulation of Quantum Mechanics

1. Feynman path integral for the evolution operator

Here we develop another approach toward Schrödinger equation

i�
dψ

dt
= Hψ

(see Chapter 2, Section 1.4). Namely every solution of the initial value
problem

ψ(t)|t=0 = ψ

for the Schrödinger equation (assuming ψ ∈ D(H)) can be written in terms

of the evolution operator U(t) = e−
i
�

tH as ψ(t) = U(t)ψ. Choosing coordi-
nate representation (see Chapter 2, Section 2.1.2) and assuming that U(t)
is an integral operator with the kernel K(q,q′, t), we can write

ψ(q′, t′) =
∫

Rn

K(q′, t′;q, t)ψ(q, t)dnq,

where K(q′, t′;q, t) = K(q′,q, T ) and we have set T = t′ − t. The function
|K(q′, t′ |q, t)|2 has a physical meaning of the conditional probability distri-
bution of finding quantum mechanical particle at q′ ∈ Rn at time t′ provided
the particle was at q ∈ Rn at time t. Our goal is to give a representation
for the propagator.

Of course, when the spectral decomposition of the Hamiltonian operator
is known, the propagator can be obtained in a closed form. Suppose, for
simplicity, that H has a pure discrete spectrum, i.e., there is an orthonormal
basis of the Hilbert space H � L2(Rn, dnq) consisting of the eigenfunctions
{ψn(q)}n∈N of H with the eigenvalues En. Then for

ψ(q) =
∞∑

n=1

cnψn(q)

we have

(U(T )ψ)(q) =
∞∑

n=1

e−
i
�

EnT cnψn(q).

Thus

ψ(q′, t) =
∞∑

n=1

e−
i
�

EnT ψn(q′)
∫

Rn

ψn(q)ψ(q)dnq,

91
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where all the series converge in L2 sense. If the change of orders of summa-
tion and integration was justified, we could write

(1.1) K(q′, t;q, t) =
∞∑

n=1

e−
i
�

EnT ψn(q′)ψn(q).

This is what happen in many cases and the series (1.1) converges in the
distributional sense, thus providing a representation for the propogator in
terms of the spectral decomposition of H. Similar representation exists
when Hamiltonian H has continuous spectrum. In general, the integral
kernel K(q,q′, t) of the evolution operator is the fundamental solution of the
Schrödinger equation, considered as a partial differential equation. Namely,
when

H =
P2

2m
+ v(Q),

then in coordinate representation K(q,q′, t) satisfies the Schrödinger equa-
tion

i�
∂K

∂t
= − �2

2m
∆ K + v(q)K(1.2)

with the initial condition

K(q,q′, t)
∣∣
t=0

= δ(q − q′),(1.3)

where

∆ =
n∑

i=1

∂2

∂q2
i

is the classical Laplace operator (minus of the Laplace operator of the Eu-
clidean metric on Rn).

It is remarkable that one can get another representation for the propa-
gator in terms of the corresponding classical system. We start with the case
n = 1 and consider

H =
P 2

2m
+ v(Q) = − �2

2m

d2

dq2
+ v(q).

1.1. Free particle. It is easy to give an explicit representation for the
propagator of the free particle. Namely, using explicit representation for the
solution of the Schrödinger equation we get

ψ(q′, t′) =
1√
2π�

∫ ∞

−∞
e

i
�

„
q′p− p2

2mt′
«
ψ̂(p, t)dp =

∫ ∞

−∞
K(q′, t′; q, t)ψ(q, t)dq,

where

(1.4) K(q′, t′; q, t) =
1

2π�

∫ ∞

−∞
e

i
�

„
p(q′−q)− p2

2mT

«
dp.
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Using the Gaussian integral∫ ∞

−∞
e−iax2

dx = e−
πi
4

√
π

a
, a > 0,

(understood as analytic continuation in the distributional sense, or, which
is equivalent, as limR∞

∫
|q|≤R), we obtain

(1.5) K(q′, t′; q, t) =
√

m

2πi�T
e

im(q−q′)2
2�T .

Thus the propagator for the free quantum mechanical particle on R is ob-
tained from the heat kernel on R (with respect to Euclidean metric) by
analytic continuation T �→ iT to “imaginary time”.

1.2. Path integral in the phase space. No such simple formula ex-
ists for a propagator of the quantum particle in a potential v(q). Indeed,

H = A+B, where the operators A =
P 2

2m
and B = v(Q) no longer commute,

so that ei(A+B) �= aiAeiB. However, there is a way of expressing the expo-
nential ei(A+B) in terms of the individual exponentials eiA and eiB, given by
the Trotter product formula.

Theorem 1.1 (The Trotter product formula). Let A and B be self-
adjoint operators on H such that A+B is essentially self-adjoint on D(A)∩
D(B). Then for ψ ∈ H ,

ei(A+B)ψ = lim
n→∞(eiA/neiB/n)nψ.

Proof. When A,B ∈ B(H ), this is the classical theorem of S. Lie.
Namely, set Cn = ei(A+B)/n and Dn = eiA/neiB/n. Then

Cn
n − Dn

n =
n−1∑
k=0

Cn−k−1
n (Cn − Dn)Dk

n.

Since ‖Cn − Dn‖ ≤ c

n2
for some constant c > 0, we have

‖Cn
n − Dn

n‖ ≤ c

n
,

and the result follows (with the convergence in the uniform topology). For
the proof of the general case, see Reed and Simon, v. 1. �

Using the Trotter formula, we have (in the strong operator topology)

e−
i
�

TH = lim
n→∞

(
e−

i∆t
�

A e−
i∆t
�

B

)n

, ∆t =
T

n
=

t′ − t

n
.

In the Schrödinger representation the operator e−
i∆t
�

B is a multiplication by

e−
i
�

v(q)∆t operator, and the integral kernel of the operator e−
i∆t
�

A is given
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by (1.4), where T is replaced by ∆t. Thus the integral kernel of the operator

e−
i∆t
�

A e−
i∆t
�

B is given by

(1.6)
1

2π�

∫ ∞

−∞
e

i
�

„
p(q′−q)−

„
p2

2m+v(q)

«
∆t

«
dp.

As the result, we obtain the representation of the propagator of quantum
mechanical particle as the limit of multiple integrals,

K(q′, t′; q, t) = lim
n→∞

∫
· · ·
∫

R2n−1

exp

{
i

�

n−1∑
k=0

(pk(qk+1 − qk) − h(pk, qk)∆t)

}(1.7)

dp0

2π�

n−1∏
k=1

(
dpkdqk

2π�

)
.

Here h(p, q) =
p2

2m
+ v(q) is the corresponding classical Hamiltonian func-

tion, and q0 = q, qn = q′.
This formula admits a remarkable interpretation which which exhibits

the deep relation between quantum and classical mechanics. Namely, to
every point (p0, p1, . . . , pn−1, q1, . . . , qn−1) ∈ R2n−1 assign a piece-wise linear
curve σ : [t, t′] → R2 × R by σ(τ) = (p(τ), q(τ), τ), τ ∈ [t, t′], defined by
dividing interval [t, t′] into n subintervals [tk, tk+1] of length ∆t, and setting

p(τ) = pk, q(τ) = qk + (τ − tk)
qk+1 − qk

tk+1 − tk
,

for τ ∈ [tk, tk+1], where t0 = t1 and tn = t′. Then (provided that v(q) is
Riemann integrable) we have

n−1∑
k=0

(pk(qk+1 − qk) − h(pk, qk)∆t) = A(σ) + o(1)

as n → ∞, where S(σ) =
∫

σ
(pdq − hdt) is the action functional of the clas-

sical system with the Hamiltonian function h(p, q) (see Chapter 1, Section
1.5). Following Feynman, we rewrite representation (1.7) in the following
form:

(1.8) K(q′, t′; q, t) =
∫∫∫

Ωq′,t′
q,t

e
i
�

S(σ)DpDq.

Here Ωq′,t′
q,t = Ω(T ∗R×R, q, t, q′, t′) is the space of all admissible paths in ex-

tended phase space T ∗R×R connecting points (q, t) and (q′, t′) (see Chapter
1, Section 1.5), and DpDq “symbolizes” the “measure” on the path space
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of Ωq′,t′
q,t , naively defined as

DpDq = lim
n→∞

dp0

2π�

n−1∏
k=1

(
dpkdqk

2π�

)
,

by “approximating by piece-wise linear paths” introduced above.
Of course, correct mathematical meaning of formula (1.8) is just (1.7).

Still, the form (1.8), called Feynman path integral in the phase space provides
a profound interpretation of the quantum mechanical propagator K(q′, t′, q, t)
as an “average” of the exponential of i

�
× classical action functional over all

admissible paths in the extented phase space connecting (q, t) and (q′, t′).
Of course, “integrating” over smooth paths is rather naive; in cases when

we make a precise meaning of Feynman path integral (when the time differ-
ence T = t′ − t has a non-zero positive imaginary part) the corresponding
measure will be supported on the set of nowhere differentiable paths.

1.3. Path integral in the configuration space. We can remove the
integration over p in (1.6) by using Gaussian integral (1.5). The resulting
expression

K(q′, t′; q, t) = lim
n→∞

( m

2π�i∆t

)n/2
∫

· · ·
∫

Rn−1

(1.9)

exp

{
i

�

n−1∑
k=0

(
m

2

(
qk+1 − qk

∆t

)2

− v(qk)∆t

)}
n−1∏
k=1

dqk

admits the following interpretation as Feynman path integral in the config-
uration space. Suppose that there exists a smooth path γ : [t, t′] → M such
that γ(t) = q, γ(t′) = q′ and γ(tk) = qk for remaining k = 1, . . . , n−1. Then

n−1∑
k=0

(
m

2

(
qk+1 − qk

∆t

)2

− v(qk)∆t

)
=
∫ t′

t
L(γ′(τ))dτ + o(1),

where L(q, q̇) =
mq̇2

2
− v(q) is the Lagrangian of the corresponding classical

system. Thus as before, we can interpret (1.9) as

(1.10) K(q′, t′; q, t) =
∫∫∫

q(t′)=q′
q(t)=q

e
i
�

R t′
t L(q,q̇)dτDq,

where now the “integration” goes over the space of paths Ω(R, q, t; q′, t′) in
the configuration space R connecting points q and q′ (see Chapter 1, Section
1.2), and Dq “symbolizes” the “measure” on the path space, naively defined
as

Dq = lim
n→∞

( m

2π�i∆t

)n/2
n−1∏
k=1

dqk
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by “approximating by piece-wise linear paths”. Again, correct mathematical
meaning of (1.10) is given by (1.9).

Heuristically, the Feynman path integral (1.10) in the configuration
space is obtained from the Feynman path integral (1.8) in the phase space
by “evaluating the Gaussian integral over Dp”:∫∫∫

q(t′)=q′
q(t)=q

exp

{
i

�

∫ t′

t

(
mq̇2

2
− v(q)

)
dτ

}
Dq

=
∫∫∫

Ω(q,t;q′,t′)

exp

{
i

�

∫ t′

t
(pq̇ − h(p, q))dτ

}
DpDq.

1.4. Harmonic oscillator. By definition, Feynman path integral is a
limit of multiple integrals with the number of integrations tending to infinity,
so it does not seem to be very practical. However, Feynman integrals play
a profound role in formulation of quantum mechanics and can be computed
exactly in several cases.

Obviously, Feynman path integral for free particle gives the same answer
(1.5) for the propogator. This is because in this case Trotter product for-
mula reduces to eA = (eA/n)n, which is valid for all n. The first nontrivial
example is provided by the harmonic oscillator — the classical system with

the Lagrangian L(q, q̇) =
m(q̇2 − ω2q2)

2
. In this case the (n−1)-fold integral

in (1.9) is Gaussian and can be computed exactly.
Namely, start with the basic formula of the Gaussian integration

(1.11)
∫

Rn

exp
{
−〈Aq,q〉

2
+ 〈p,q〉

}
dnq =

(2π)n/2

√
det A

exp{〈A−1p,p〉},

where A is positive-definite symmetric n×n matrix and 〈 , 〉 stands for the
standard inner product in Rn. By analytic continuation, the formula remains
valid when A = iB, where B is positive-definite and symmetric. In this case
the integral is understood in the distributional sense as limR→∞

∫
‖q‖≤R,

where ‖q‖2 = 〈q,q〉, and
√

det A = eiπ/4
√

det B. For the harmonic oscil-
lator,we apply (1.11) with the following thrice-diagonal (n − 1) × (n − 1)
matrix

A =
m

i�∆t

⎡⎢⎢⎢⎢⎢⎢⎣
2 − (ω∆t)2 −1 0 . . . 0 0

−1 2 − (ω∆t)2 −1 . . . 0 0
0 −1 2 − (ω∆t)2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 2 − (ω∆t)2 −1
0 0 0 . . . −1 2 − (ω∆t)2

⎤

⎦
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and

p =
m

i�∆t

⎡⎢⎢⎢⎢⎢⎢⎣
q
0
·
·
0
q′

⎤⎥⎥⎥⎥⎥⎥⎦ ∈ R
n−1.

Using mathematical induction, it is easy to compute that

det A =
( m

i�∆t

)n−1 sin nθ

sin θ
, where 2 − (ω∆t)2 = 2 cos θ,

and

〈A−1p,p〉 = − m

2i�∆t

sin(n − 1)θ
sin nθ

(q2 + q′ 2) +
m sin θ

i�∆t sin nθ
qq′.

Using that θ = ω∆t + o(1) as n → ∞, we get

K(q′, t′; q, t) = lim
n→∞

( m

2πi�∆t

)n
2 (2π)

n−1
2√

det A
exp
{

im(q2 + q′ 2)
2�∆t

+ 〈A−1p,p〉
}

=
√

mω

2πi� sin ωT
exp
{

imω

2� sin ωT

((
q2 + q′ 2

)
cos ωT − 2qq′

)}
.(1.12)

Thus we obtained a closed expression for the propagator of harmonic
oscillator. It is instructive to compare it with the series (1.1). Using the ex-
plicit representation for the wave functions ψn(q) of the harmonic oscillator
in terms of the Hermite polynomials (see Chapter 2, Section 3.1), we get the
series

K(q′, t′; q, t) =
√

ω

π�

∞∑
n=0

e
− ω

2�
{(q2+q′ 2)−iωT (2n+1)}

2nn!
Hn

(√
ω

�
q′
)

Hn

(√
ω

�
q

)

which converge in the distributional sense. Setting x =
√

ω

�
q , y =

√
ω

�
q′

and z = e−ω(t′−t)/2 and comparing with (1.12), we obtain
∞∑

n=0

zn

2nn!
Hn(x)Hn(y) =

1√
1 − z2

exp
{

2xyz − (x2 + y2)z2

1 − z2

}
.

When |z| < 1, this is classical Mehler identity from the theory of Hermite
polynomials. Two ways of computing the propagator of the harmonic oscil-
lator give a proof of this identity, in the distributional sense, for |z| = 1.

Expression (1.12) becomes singular when sinωT = 0, i.e., when T = Tk =
πk

ω
.

The eigenvalues of the evolution operator U(Tk) are e−πik(n+
1
2), so that when

k is even U(Tk) = e−
πik
2 I, and

K(q′, t + Tk, q, t) = e−
πik
2 δ(q − q′).
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For odd k we have

e−
i
�

HTk = e−
πik
2
∑
n=0

(−1)nPn,

where Pn are projection operators on the eigenspaces Cψn of H. Since
Hn(−q) = (−1)nHn(q), we have in this case

K(q′, t + Tk, q, t) = e−
πik
2 δ(q + q′).

1.5. Several degrees of freedom. In general, consider the classical
mechanical system (M,L). At a physical level of rigor, its quantization
is described by the propagator K(q′, t′;q, t) given by the Feynman path
integral in the configuration space,

(1.13) K(q′, t′;q, t) =
∫∫∫

q(t′)=q′
q(t)=q

e
i
�

R t′
t L(q,q̇)dτDq,

For the case when M = Rn and L(q, q̇) =
mq̇2

2
− v(q), the mathemati-

cal meaning of (1.13) is the same as (1.10): it gives the representation of

the propagator for a quantum Hamiltonian H =
P2

2m
+ v(Q) as the limit of

multiple integrals using Trotter product formula. In general, this formula
serves as a heuristic tool which enables, in some cases, to understand what
a quantization of a classical system (M,L) should be.

Analogously, for a Hamiltonian system with the phase space M = T ∗M
with the canonical symplectic form ω = dp∧dq and a hamiltonian function
h, its quantization is described by the propagator K(q′, t′;q, t) given by the
Feynman path integral in the phase space,

(1.14) K(q′, t′;q, t) =
∫∫∫

Ωq′,t′
q,t

e
i
�

R
σ(pdq−hdt)DpDq.

Here Ωq′,t′
q,t = Ω(T ∗M ×R,q, t,q′, t′) is the space of all admissible paths σ in

T ∗M ×R connecting points (q, t) and (q′, t′) (see Section 1.5). Again, when

M = T ∗Rn and h(p,q) =
p2

2m
+ v(q), the precise mathematical meaning

of (1.14) is the same as (1.8): it gives the representation of the propagator

for a quantum Hamiltonian H =
P2

2m
+ v(Q) as the limit of multiple inte-

grals using Trotter product formula. In this case formulas (1.13) and (1.14)
are equivalent. We note that for Lagrangian functions Rn which are not
quadratic in q̇ the formulas eqreffeynman-several-config and (1.14) are not
necessarily equivalent.

In general, this formula serves as a heuristic tool which enables, in some
cases, to understand what a quantization of a classical system (M , ω, h) is.
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This is a very non-trivial problem, especially when the phase space M is a
compact manifold.

1.6. Path integral in the holomorphic representation. Let H(z̄, z)
be the Wick symbol of a Hamiltonian operator. Here we find a formula for
the symbol Kt(z̄, z) of the evolution operator Ut = e−

it
�

H . Let Ũ∆t be the
operator with the Wick symbol e−

i∆t
�

H(z̄,z). We have

Ut = lim
N→∞

(Ũ∆t)N .

Using formulas for the composition of Wick symbols, we obtain the following
representation for the Wick of the evolution operator:

Ut(z̄, z) =
∫∫∫

ā(t)=z̄
a(0)=z

exp
{∫ t

0
(ȧā − iH(ā, a))dτ + z̄ a(t) − z̄z

}
D āDa,

which is the Feynman path integral in holomorphic representation. Using
relation between the trace and Wick symbols we obtain that in Euclidean
time

Tr e−TH =
∫∫∫

ā(0)=ā(T )
a(0)=a(T )

exp
{∫ T

0
(ȧā − iH(ā, a))dτ

}
D āDa.

2. Gaussian path integrals and determinants

2.1. Free particle and harmonic osicllator revisited. It turns out
that formulas (1.5) and (1.12) for the propagators for the free particle and
harmonic oscillator admits a very nice interpretation which shows the im-
portance of Feynman path integrals.

2.1.1. Gaussian integral for the free particle. We know that for the free
quantum particle

(2.1) Kfree(q′, t′; q, t) =
√

m

2πi�T
e

im(q−q′)2
2�T =

∫∫∫
q(t′)=q′
q(t)=q

e
im
2�

R t′
t q̇2dτDq.

Here we will establish this formula differently by computing the Feynman
path integral as if it was defined independently of the limit as n → ∞. Let

qcl(τ) = q + (τ − t)
q′ − q

T
, T = t′ − t,

be the classical trajectory connecting points q and q′. For any other path
q(τ) connecting these points we set q(τ) = qcl(τ)+y(τ), where y : [t, t′] → R

satisfies y(t) = y(t′) = 0. Since the classical trajectory is the extremal of
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the action functional (see Chapter 1, Section 1.1) and for the free particle
this functional is quadratic, we have

S(q) =
∫ t′

t

m

2
q̇2dτ = Scl + S(y).

Here Scl = S(qcl) is called the classical action and is given by

Scl =
∫ t′

t

m ˙qcl
2

2
dτ =

m

2
(q − q′)2

T
.

Assuming (which is quite natural) that under the “change of variable” q =
qcl + y we have Dq = Dy, we can rewrite the Feynman path integral as

Kfree(q′, t′; q, t) = e
i
�

Scl

∫∫∫
y(t′)=0
y(t)=0

e
im
2�

R t′
t ẏ2dτDy.

Remarkably, e
i
�

Scl = e
im(q−q′)2

2�T — the exponential factor in the propagator
for the free particle. The remaining path integral does not depend on q and
q′ and, as we know, coincides with the prefactor in (2.1).

Another, more “profound” way to interpret this result is the following.
Let A be the self-adjoint operator on L2([t, t′]) defined by the differential ex-

pression − d2

dτ2
with Dirichlet boundary conditions y(t) = 0, y(t′) = 0. Then

for any real-valued, absolutely continuous function y(τ) satisfying Dirichlet
boundary conditions and such that y, ẏ ∈ L2([t, t′]), we have by integrating
by parts

〈Ay, y〉L2 =
∫ t′

t
ẏ2dτ.

Thus the “integrand” in the path integral∫∫∫
y(t′)=0
y(t)=0

e−
R t′

t ẏ2dτDy.

can be interpret as the quadratic form of the operator A and, in accordance
with (1.11) it natural to expect that this Gaussian path integral is propor-

tional to
1√

det A
. Of course, we need to understand what we mean by the

determinant of a differential operator. Clearly, it should be defined by some
regularization of the divergent product

∏∞
n=1 λn, where λn are eigenvalues

of A.
The most convenient regularization is given by considering the operator

zeta-function. Namely, let A be a non-negative self-adjoint operator on the
Hilbert space H with pure discrete spectrum 0 ≤ λ1 ≤ λ2 ≤ . . . such that
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for some α > 0 the operator (A + I)−α is of trace class. Then the zeta-
function ζA(s) is defined for Re s > α by the following absolutely convergent
series

ζA(s) =
∑
λn>0

1
λs

n

.

Provided ζA(s) can be meromorphically continued to the larger domain con-
taining s = 0 and is regular at this point, we define the regularized deter-
minant by

det′A = e−ζA(0).

Here ζ ′A(s) stands for the derivative with respect to s, and the prime on
det symbolizes that we omit zero eigenvalues. We will also use convenient
notation

det′A =
∏′

λn>0

λn,

where the prime indicates that the infinite product is regularized by the
operator zeta-function.

Since ζcA(s) = c−sζA(s) for c > 0, we get

det′cA = cζA(0)det′A,

so that ζA(0) plays the role of “regularized scaling dimension” of the Hilbert
space H (with respect to the operator A). When dimC H = n < ∞ and
A > 0, then ζA(0) = n and ζ ′A(0) = log λ1 + · · · + log λn, so that we recover
the usual definition of detA.

This outline works for the general case of elliptic operators on compact
manifold M . Here we will be dealing only with the cases when M = [t, t′] or
M = S1 and will prove all the statements above. The case of free particle
provides the simplest example. Indeed, the corresponding eigenvalues are

λn =
(πn

T

)2
and we have

ζA(s) =
(

T

π

)2s

ζ(2s),

where ζ(s) is Riemann zeta-function. Using classical formulas ζ(0) = −1
2

and ζ ′(0) = −1
2 log 2π, we obtain

(2.2) ζA(0) = −1
2

and ζ ′A(0) = − log
T

π
− log 2π = − log 2T.

Thus for the operator A = − d2

dτ2
on the interval [t, t′] with Dirichlet bound-

ary conditions we have

(2.3) det′A = 2T.
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The formula ∫∫∫
y(t′)=0
y(t)=0

e
im
2�

R t′
t ẏ2dτDy =

√
m

2πi�T

is in agreement with the intepretation that Gaussian path integral is pro-

portional to
1√

det′A
. The coefficient of proportionality

√
m

πi�
is determined

by comparison with the definition of the path integral as a limit as n → ∞.
2.1.2. Gaussian integral for harmonic oscillator. The propagator for har-

monic oscillator

Kosc(q′, t′; q, t) =
√

mω

2πi� sin ωT
exp
{

imω

2� sin ωT

((
q2 + q′ 2

)
cos ωT − 2qq′

)}
=

∫∫∫
q(t′)=q′
q(t)=q

exp

{
im

2�

∫ t′

t

(
q̇2 − ω2q2

)
dτ

}
Dq

admits similar interpretation. Indeed, solving classical equations of motion
we readily compute that

Scl =
imω

2 sin ωT

((
q2 + q′ 2

)
cos ωT − 2qq′

)
,

and we would have∫∫∫
y(t′)=0
y(t)=0

exp

{
im

2�

∫ t′

t

(
ẏ2 − ω2y2

)
dτ

}
Dy =

√
m

πi� det′Aω
,

where Aω is the self-adjoint operator on L2[t, t′], defined by the differential

expression − d2

dτ2
− ω2 with Dirichlet boundary conditions. The interpration

holds provided we can show that det′Aω =
2 sin ωT

ω
.

It is easy to get convinced that it is indeed the case. The eigenvalues of

Aω are λn(ω) =
(πn

T

)2 − ω2, and (provided 0 is not an eigenvalue for Aω)
we have the following heuristic computation, which goes back to Euler:

det′Aω

det′A0
=

∞∏
n=1

λn(ω)
λn(0)

=
∞∏

n=1

(
1 − ω2T 2

π2n2

)
=

sin ωT

ωT
.

The claim would follow since we already know that det′A0 = 2T .
For the rigorous derivation, it more convenient to consider the operator

Aiω for ω ∈ R≥0 since it is positive-definite.

Lemma 2.1.
det′Aiω =

sinhωT

ωT
.
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Proof. Denoting ζiω(s) = ζAiω(s), we have for Re s > 1
2 ,

ζiω(s) =
1

Γ(s)

∫ ∞

0
e−ω2x

∞∑
n=1

e−
π2n2

T 2 xxs dx

x

=
1

2Γ(s)

∫ ∞

0
e−ω2xϑ

(πx

T 2

)
xs dx

x
− 1

2ωs
,

where
ϑ(x) =

∑
n∈Z

e−πn2x

is Jacobi theta series. Using Jacobi inversion formula

ϑ

(
1
x

)
=

√
x ϑ(x), x > 0,

we get the following representation

ζiω(s) = − 1
2ωs

+
T

2
√

πΓ(s)

∫ ∞

0
e−ω2xϑ

(
T 2

πx

)
xs−1

2
dx

x

= − 1
2ωs

+
TΓ(s − 1

2)
2
√

πω2s−1Γ(s)
+

T√
πΓ(s)

∫ ∞

0
e−ω2x

∞∑
n=1

e−
n2T 2

x xs−1
2
dx

x

= − 1
2ωs

+
TΓ(s − 1

2)
2
√

πω2s−1Γ(s)
+

T√
πΓ(s)

∞∑
n=1

(
nT

ω

)s−1
2

K
s−1

2
(ωnT ),(2.4)

where

Ks(x) =
∫ ∞

0
e−x(u+u−1)us du

u
, x > 0,

is Macdonald’s K-function (modified Bessel function). Since for Ks(x) =
O(e−x) as x → ∞, for every s ∈ C, uniformly on compact subsets, repre-
sentation (2.4) establishes meromorphic continuation of ζiω(s) to the entire
s-plane with simple poles at s ∈ −1

2 + Z≥0. Since lims→0 sΓ(s) = 1, we
obtain ζiω(0) = −1

2 . Using classical formulas

K1
2
(x) = K−1

2
(x) =

√
π

x
e−2x,

and Γ(1
2) =

√
π, we also obtain from (2.4)

ζ ′iω(0) = log ω − ωT +
∞∑

n=1

1
n

e−2nωT

= log ω − ωT − log(1 − e−2ωT ),

so that det′Aiω = e−ζ′iω(0) =
2 sinh ωT

ω
. �

Now we will show how to define a “characteristic polynomial” of the
operator A = A0 — an entire function det(A− λI) on λ-plane, whose zeros
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are the eighenvalues λn = λn(0). First we note that for Re(λN − λ) > 0 the
truncated zeta-function

ζ
(N)
A−λI(s) =

∞∑
n=N+1

1
(λn − λ)s

,

where the principal branch of of the logarithm is used, is absolutely conver-
gent for Re s > 1

2 , admits a meromorphic continuation to the s-plane and is
regular at s = 0. Indeed, setting

ϑN (x) = ϑ(x) − 2
N∑

n=1

e−λnx − 1,

we have

ζ
(N)
A−λI(s) =

1
2Γ(s)

∫ ∞

1
e−λxϑN (x)xs dx

x
+

1
2Γ(s)

∫ 1

0
e−λxϑN (x)xs dx

x
.

Since Re(λn − λ) > for all n > N , the first integral in this formula is
absolutely convergent for all s ∈ C and represents a holomorphic function.
Using Jacobi inversion formula and expanding e−λx, e−λ1x, . . . , e−λNx into
power series in x, we conclude just as before that the second integral admits a
meromorphic continuation to the s-plane with simple poles at s ∈ −1

2 +Z≥0.
For Re(λN − λ) > 0 we set

∞∏′

n=N+1

(λn − λ) = e−ζ
(N)
A−λI

′(0)

and define

det(A − λI) =
N∏

k=1

(λk − λ)
∞∏′

n=N+1

(λn − λ).

Since for M > N
∞∏′

n=N+1

(λn − λ) =
M∏

k=N+1

(λk − λ)
∞∏′

n=M+1

(λn − λ),

det(A − λI) is well-defined and is an entire function with zeros at λn. For
λ = −ω2 < 0 we have det(A − λI) = det′Aiω, which is given by Lemma
2.1.2. Thus for all λ ∈ C,

det(A − λI) =
2 sin

√
λ T√

λ
.

2.2. Determinants. Here define and evaluate the characteristic deter-
minant det(A − λI) of the Sturm-Liouville operator

A = − d2

dx2
+ u(x)

on the interval [0, T ] with Dirichlet or periodic boundary conditions.
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2.2.1. Dirichlet boundary conditions. Namely, suppose that u ∈ C1([0, T ], R).
It is known that A is a self-adjoint operator on L2[0, T ] with the domain
D(A) consisting of y(x) ∈ W 2

2 [0, T ] satisfying y(0) = 0, y(T ) = 0. Moreover,
in this case operator A has a pure discrete spectrum with simple eigenvalues
λ1 < λ2 · · · < λn < . . . such that

(2.5) λn =
π2n2

T 2
+ c + O

(
1
n2

)

as n → ∞, where c =
π

T 2

∫ T

0
u(x)dx. Assume first that A > 0. Setting

ϑA(t) =
∞∑

n=1

e−λnt,

we have for Re s > 1
2 ,

ζA(s) =
1

Γ(s)

∫ ∞

0
ϑA(t)ts

dt

t

=
1

Γ(s)

∫ ∞

1
ϑA(t)ts

dt

t
+

1
Γ(s)

∫ 1

0
ϑA(t)ts

dt

t
.(2.6)

Since ϑA(t) = O(e−λ1t) as t → ∞ and, by assumption λ1 > 0, the first
integral converges absolutely for all s ∈ C and represents an entire function.
Using asymptotics (2.5) and Jacobi inversion formula we get

ϑA(t) =
1
2
ect

(
ϑ

(
πt

T 2

)
− 1
)

(1 + O(t)) =
a− 1

2√
t

+ a0 + ϑ̃A(t),

where

a− 1
2

=
T

2
√

π
, a0 = −1

2
and ϑ̃A(t) = O(

√
t)

as t → 0. Thus for the second integral in (2.6) we have

1
Γ(s)

∫ 1

0
ϑA(t)ts

dt

t
=

a− 1
2

(s − 1
2)Γ(s)

+
a0

sΓ(s)
+

1
Γ(s)

∫ 1

0
ϑ̃A(t)ts

dt

t
,

which shows that it admits a meromorphic continuation to the half-plane
Re s > −1

2 and is regular at s = 0. This completes the proof that for the
case A > 0 the zeta-function ζA(s) admits a meromorphic continuation to
Re s > −1

2 and is regular at s = 0.
Thus

det′A =
∞∏′

n=1

λn = e−ζ′A(0)

is well-defined. Repeating verbatim the arguments at the end of the previous
section we get that for Re(λN −λ) > 0 the truncated zeta-function ζ

(N)
A−λI(s)
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admits a meromorphic continuation to Re s > −1
2 and is regular at s = 0.

This defines

det(A − λI) =
N∏

k=1

(λk − λ)
∞∏′

n=N+1

(λn − λ)

as an entire function of λ with simple zeros at λn. Finally we can remove
the assumption A > 0 by replacing A by Ã = A+(1−λ1)I > 0 and defining

det′A =

⎧⎨⎩det(Ã − (1 − λ1)I) if 0 is not an eigenvalue of A,
d

dλ
det(Ã − (1 − λ1)I) if 0 is an eigenvalue of A.

Let y1(x, λ) be the solution of the Sturm-Liouville boundary value prob-
lem

(2.7) −y′′ + u(x)y = λy,

satisfying initial conditions

y(0, λ) = 0, y′(0, λ) = 1.

It is well-known that y1(x, λ), for every x, is entire function of λ of order 1
2

and

(2.8) y1(x, λ) =
sin

√
λx√

λ
+ O

(
e|Re

√
λ|x

|λ|

)
.

The entire function d(λ) = y1(T, λ) has simple zeros at the eigenvalues λn

of the operator A and is represented by the absolutely convergent product,

d(λ) = constλδ
∏

λn =0

(
1 − λ

λn

)
,

where δ = 1 if 0 is an eigenvalue of A, and δ = 0 otherwise. The following
theorem expresses the characteristic determinant det(A−λI) of the operator
A in terms of the function d(λ).

Theorem 2.1. One has

det(A − λI) = 2d(λ)

and

det(A − λI)
det′A

= λδ
∏

λn =0

(
1 − λ

λn

)
.

Proof. By what was said above, it is sufficient to prove the identity
det(A − λI) = 2d(λ) for Re(λ1 − λ) > 0. In this case, using

ζA−λI(s) =
1

Γ(s)

∫ ∞

0
Tr e−(A−λI)tts

dt

t
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for Re s > 1
2 , and differentiating under the integral sign we get

∂

∂λ
ζA−λI(s) =

1
Γ(s)

∫ ∞

0
Tr e−(A−λI)ttsdt,

which is now absolutely convergent for Re s > −1
2 . Thus we obtain

∂

∂λ
ζA−λI(0) =

∫ ∞

0
Tr e−(A−λI)tdt = Tr(A − λI)−1.

It follows from (2.5) that the operator Rλ = (A − λI)−1 — the resolvent of
A — is of trace class. Thus all our manipulations are justified and we arrive
at the formula

(2.9)
d

dλ
log det(A − λI) = −Tr Rλ,

which generalizes the familiar property of finite-dimensional determinants.
To compute this trace, we use the representation of Rλ as an integral

operator with the continuous kernel

(2.10) Rλ(x, x′) =

⎧⎪⎨⎪⎩
1

d(λ)
y1(x, λ)y2(x′, λ) if x ≤ x′,

1
d(λ)

y1(x′, λ)y2(x, λ) if x ≥ x′.

where y2(x, λ) is another solution of (2.7) satisfying initial conditions

y(T, λ) = 0, y′(T, λ) = −1,

so that

W (y1, y2)(λ) = y1(x, λ)y′2(x, λ) − y′1(x, λ)y2(x, λ) = d(λ).

Since Rλ is a trace class operator on L2[0, T ] with the integral kernel Rλ(x, x′)
continuous on [0, T ] × [0, T ], we have by Lidskij theorem,

Tr Rλ =
∫ T

0
Rλ(x, x)dx =

1
d(λ)

∫ T

0
y1(x, λ)y2(x, λ)dx.

We evaluate this integral by the following beautiful computation. Let

ẏ(x, λ) =
∂y

∂λ
(x, λ) and consider the following pair of equations:

−ẏ′′1 + u(x)ẏ1 = λẏ1 + y1,

−y′′2 + u(x)y2 = λy2.

Multiplying the first equation by y2(x, λ), the second equation by ẏ1(x, λ)
and subtracting, we obtain

y1y2 = ẏ1 y′′2 − ẏ′′1 y2 =
(
ẏ1 y′2 − ẏ′1 y2

)′
.

Using the initial conditions for y1 and y2, we finally get∫ T

0
y1(x, λ)y2(x, λ)dx =

[
ẏ1(x, λ)y′2(x, λ) − ẏ′1(x, λ)y2(x, λ)

]∣∣T
0

(2.11)

= −ẏ1(T, λ).
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Thus we have proved that for Re(λ1 − λ) > 0,

Tr Rλ = − d

dλ
log d(λ),

from which it follows that

(2.12) det(A − λI) = C d(λ)

for all λ ∈ C and some constant C. Using the product representation for for
d(λ) we get from here the second formula in the theorem.

Now we will determine the constant C in (2.12). It follows from (2.8)
that it is sufficient to compute the asymptotics of det(A− λI) as λ → −∞.
Setting λ = −µ we have

ζA+µI(s) =
1

Γ(s)

∫ ∞

1
ϑA(t)e−µt ts

dt

t
+

1
Γ(s)

∫ 1

0
ϑA(t)e−µt ts

dt

t
.

As before, the first integral is an entire function of s whose derivative at
s = 0 exponentially decays as µ → +∞. For the second integral we have

1
Γ(s)

∫ 1

0
ϑA(t)e−µt ts

dt

t
=

1
Γ(s)

∫ 1

0
ϑ̃A(t)e−µt ts

dt

t

+
1

Γ(s)

∫ 1

0

(a− 1
2√
t

+ a0

)
e−µt ts

dt

t
.

Since ϑ̃A(t) = O(
√

t) as t → 0, the first integral is absolutely convergent
for Re s > −1

2 and it derivative at s = 0 is O(µ− 1
2 ) as µ → +∞. For the

remaining integral we have

1
Γ(s)

∫ 1

0

(a− 1
2√
t

+ a0

)
e−µt ts

dt

t
=

a− 1
2
µ

1
2
−s

Γ(s)

(
Γ(s − 1

2) −
∫ ∞

µ
e−tts−

1
2
dt

t

)
+

a0 µ−s

Γ(s)

(
Γ(s) −

∫ ∞

µ
e−tts

dt

t

)
.

Now it is elementary to show that s-derivative of this integral at s = 0 has
an asymptotics −2

√
πa− 1

2

√
µ − a0 log µ + O(e−µ/2) as µ → +∞. Using the

expression for the Seeley coefficients obtained in the previous section, we
finally get

det(A + µI) =
e
√

µ T

√
µ

(
1 + O

(
1√
µ

))
as µ → +∞. Comparing this with (2.8) at x = T we conclude that C = 2,
which completes the proof. �

Similar results hold for for the matrix-valued Sturm-Liouville operator
with Dirichlet boundary conditions. Namely, let U(x) = {uij(x)}n

i,j=1 be a
C1-function on [0, T ] with values in real, symmetric n by n matrices, and
let

A = − d2

dx2
+ U(x)
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be the corresponding differential operator with Dirichlet boundary condi-
tions. As in the case n = 1, A is a self-adjoint operator on the Hilbert space
L2([0, T ], Cn) of Cn-valued functions, and has a pure discrete spectrum ac-
cumulating to ∞. Its regularized determinant det′A and characteristic de-
terminant det(A − λI) are defined as before and have similar properties.
Let Y(x, λ) be the solution of the differential equation

−Y′′ + U(x)Y = λY

satisfying initial conditions

Y(0, λ) = 0, Y′(0, λ) = In,

where In is n by n identity matrix, and define D(λ) = detY(T, λ). The
entire function D(λ) has similar properties to that of d(λ). Namely, the
analog of Theorem 2.1 is the following statement.

Proposition 2.1. One has

det(A − λI) = 2nD(λ)

and

det(A − λI)
det′A

= λδ
∏

λn =0

(
1 − λ

λn

)
,

where δ ∈ Z≥0 is the multiplicity of the the eigenvalue λ = 0.

2.2.2. Periodic boundary conditions. The Sturm-Liouville operator

A = − d2

dx2
+ u(x)

with periodic boundary conditions is a self-adjoint operator on L2[0, T ] with
the domain consisting of y(x) ∈ W 2

2 [0, T ] satisfying y(0) = y(T ) and y′(0) =
y′(T ). In case u(x) ∈ C1[0, T ] the operator A has a pure discrete spectrum
with the eigenvalues λ0 < λ1 ≤ λ2 ≤ . . . such that as n → ∞,

λ2n−1 =
4π2n2

T 2
+ c + O

(
1
n2

)
,

λ2n =
4π2n2

T 2
+ c + O

(
1
n2

)
,

where c is the same as in (2.5). Assume that λ0 > 0 (which can be always
achieved by replacing A by A − λ0 + ε with ε > 0) and set

ϑA(t) =
∞∑

n=0

e−λnt, t > 0.

As in the previous section, using the asymptotic for λn we get that as t → 0,

ϑA(t) = cctϑ

(
4πt

T 2

)
=

a− 1
2√
t

+ O(
√

t),
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where as for the Dirichlet boundary conditions, a− 1
2

=
T

2
√

π
, but now a0 = 0.

This allows to define the regularized determinant det′A and the character-
istic determinant det(A−λI) exactly as in the previous section. Due to the
property a0 = 0 we now get, as in the end of the proof of Theorem 2.1, that

(2.13) det(A + µI) = e
√

µT (1 + O(µ−1/2))

as µ → +∞.
Here we denote by y1(x, λ) and y2(x, λ) solutions of the Sturm-Liouville

equation (2.7) with the initial conditions y1(0, λ) = 1, y′1(0, λ) = 0 and
y2(0, λ) = 0, y′2(0, λ) = 1. Solutions y1 and y2 are linear independent for all
λ and the matrix

Y (x, λ) =
(

y1(x, λ) y2(x, λ)
y′1(x, λ) y′2(x, λ)

)
satisfies the initial condition Y (0, λ) = I2, where I2 is 2× 2 identity matrix,
and has the property detY (x, λ) = 1. For fixed x the matrix Y (x, λ) is
an entire matrix-valued function of λ having the following asymptotic as
λ → ∞

(2.14) Y (x, λ) =

⎛⎝ cos
√

λT
sin

√
λT√

λ√
λ sin

√
λT cos

√
λT

⎞⎠(I2 + O

(
e|
√

λ|x

λ

))
.

By definition, the monodromy matrix of the periodic Sturm-Liouville
problem is the matrix

T (λ) = Y (T, λ).

The monodromy matrix satisfies det T (λ) = 1 and is an entire matrix-valued
function. The following result is the analog of Theorem 2.1 for the periodic
boundary conditions.

Theorem 2.2. One has

det(A − λI) = −det(T (λ) − I2) = y1(T, λ) + y′2(T, λ) − 2,

where det in the right hand side is a matrix determinant, and

det(A − λI)
det′A

= λδ
∏

λn =0

(
1 − λ

λn

)
,

where {λn}∞n=1 are non-zero eigenvalues of A and δ = 0, 1, 2 is the multi-
plicity of the eigenvalue λ = 0.

Proof. it follows very closely the proof of Theorem 2.1 and we will
assume that A > 0. First, in precise analogy with (2.9) we obtain,

d

dλ
log det(A − λI) = −Tr Rλ,
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where det(T (λ) − I2) �= 0. Similar to (2.10), the resolvent Rλ is an integral
operator with the symmetric kernel Rλ(x, x′) = Rλ(x′, x), given for x < x′
by the following formula

Rλ(x, x′) =
(
y1(x, λ), y2(x, λ)

)
(T (λ) − I2)−1T (λ)

(−y2(x′, λ)
y1(x′, λ)

)
= −Tr

(
T (λ) − I2)−1T (λ)Z(x, x′)

)
,

where Tr in the last formula is the matrix trace and

Z(x, x′) =
(−y1(x, λ)y2(x′, λ) y2(x, λ)y2(x′, λ)

y1(x, λ)y2(x′, λ) y2(x, λ)y1(x′, λ)

)
.

One can verify this formula directly by solving the non-homogeneous differ-
ential equation

−y′′ + u(x)y = f(x)
with the boundary conditions y(0) = y(T ) = c1, y′(0) = y′(T ) = c2 for some
uniquely determined c1 and c2 by variation of parameter method.

As in the proof of Theorem 2.1, we need to compute
∫ T

0
Z(x, x)dx. It

readily follows from (2.11) that∫ T

0
Z(x, x)dx = T−1(λ)

d

dλ
T (λ)

and we obtain
d

dλ
log det(A − λI) = Tr

(
(T (λ) − I2)−1 d

dλ
T (λ)

)
=

d

dλ
log det(T (λ − I2).

Thus det(A − λI) = C det(T (λ) − I2). To determine the constant C we set
λ = −µ → +∞ and compare the asymptotic (2.13) with the asymptotic

det(T (−µ) − I2) = 2 − Tr T (−µ) = 2 − 2 cosh
√

µT (1 + O(µ−1/2))

= −e
√

µT (1 + O(µ−1/2)),

which follows from (2.14). Thus C = −1. �
In particular, when u(x) = ω2 > 0, we have

y1(x, 0) = cosh ωx and y2(x, 0) =
sinhωx

ω
,

so that for the operator Aiω = − d2

dx2
+ ω2 we have

(2.15) det′Aiω = 2(cosh ωT − 1) = 4 sinh2 ωT

2
.

The smallest eigenvalue of Aiω is λ0 = ω2 and it tends to 0 as when ω → 0,

so that for the operator A0 = − d2

dx2
we get

det′A0 = lim
ω→0

det′Aiω

ω2
= T 2.
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One can also derive these formulas directly, as it was done in Section 2.1.2
of Chapter 4 for Dirichlet boundary conditions.

Similar results hold for for the matrix-valued Sturm-Liouville operator
with periodic boundary conditions. Namely, let U(x) = {uij(x)}n

i,j=1 be a
C1-function on [0, T ] with values in real, symmetric n by n matrices, and
let

A = − d2

dx2
+ U(x)

be the corresponding differential operator with periodic boundary condi-
tions. As in the case n = 1, A is a self-adjoint operator on the Hilbert space
L2([0, T ], Cn) of Cn-valued functions, and has a pure discrete spectrum ac-
cumulating to ∞. Its regularized determinant det′A and characteristic de-
terminant det(A − λI) are defined as before and have similar properties.
Let Y1(x, λ) and Y2(x, λ) be the solutions of the differential equation

−Y′′ + U(x)Y = λY

satisfying, respectively, the initial conditions

Y1(0, λ) = In, Y′
1(0, λ) = 0 and Y2(0, λ) = 0, Y′

2(0, λ) = In,

where In is n × n identity matrix. The monodromy matrix T(λ) is defined
as the following 2n × 2n block mathrix,

T(λ) =
(
Y1(T, λ) Y2(T, λ)
Y′

1(T, λ) Y′
2(T, λ)

)
,

and is entire matrix-valued function. The analog of Theorem 2.2 is the
following statement.

Proposition 2.2. One has

det(A − λI) = (−1)n det(T(λ) − I2n)

and

det(A − λI)
det′A

= λδ
∏

λn =0

(
1 − λ

λn

)
,

where δ ∈ Z≥0 is the multiplicity of the the eigenvalue λ = 0.

2.2.3. First order differential operators. Here we assume that u(x) is
smooth real-valued periodic function with period T and study first-order
differential operators

A =
d

dx
+ u(x)

on the interval [0, T ] with periodic boundary conditions y(T ) = y(0). The
equation

y′ + u(x)y = λy
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has an explicit solution y(x) = Ceλx−R x
0 u(τ)dτ has a periodic solution if and

only if λ = λn, where

λn = u0 +
2πin

T
, n ∈ Z, and u0 =

1
T

∫ T

0
u(x)dx.

Thus the spectrum of the operator A coincides with the spectrum of the
operator A0 with the constant coefficient u0. This is because A = UA0U

−1,
where U : L2[0, T ] → L2[0, T ] is a multiplication operator by a periodic

function e−U(x) with U(x) =
∫ x
0 (u(τ) − u0)dτ . Set D =

d

dx
.

Proposition 2.3. For u0 �= 0,

det′(D + u(x)) = 1 − e−u0T ,

and det′D = T for u0 = 0.

Proof. The zeta-function of the operator A with u0 �= 0 is given by the
following series

ζA(s) =
∞∑

n=−∞

1
λs

n

,

where λ−s
n = e−s log λn with the principal branch of log for n �= 0. The series

is absolutely convergent for Re s > 1. Introducing the Hurwitz zeta-function

ζ(s, a) =
∞∑

n=0

1
(n + a)s

,

where Re a > 0 and Re s > 1, we can rewrite ζA(s) as follows

ζA(s) =
(

2π

T

)−s

(e−
πis
2 ζ(s, a) + e

πis
2 ζ(s, ā)) +

1
us

0

, a = 1 − u0T

2π
i.

It is well-known that Hurwitz zeta-function admits a meromorphic continu-
ation to the whole s-plane with single simple pole at s = 1 with residue 1,
and

ζ(0, a) =
1
2
− a,

∂ζ

∂s
(0, a) = log Γ(a) − 1

2
log 2π.

Thus using the classical formula

Γ(1 + z)Γ(1 − z) =
πz

sin πz
,

we get
∂ζA

∂s
(0) = log |Γ(a)|2 − log u0T +

u0T

2

= − log(e
u0T

2 − e−
u0T

2 ) +
u0T

2
,

and det′(D + u0(x)) = 1− e−u0T . Finally, ζD(s) = limu0→0(ζA(s)− u−s
0 ), so

that

det′D = lim
u0→0

det′(D + u0)
u0

= T.
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�
Remark. Since operators D+u(x) and −D+u(x) with periodic bound-

ary conditions have the same spectrum, det′(−D + u(x)) = 1 − e−u0T .

One can also consider the operator A = D + u(x) on the interval [0, T ]
with periodic function u(x) and anti-periodic boundary conditions y(T ) =
−y(0). Since corresponding eigenvalues are

λn = u0 +
πi(2n + 1)

T
, n ∈ Z,

we see the the passage from periodic to anti-periodic boundary conditions
amounts to replacing u0 by u0 + πi

T . From Proposition 2.3 we get

Proposition 2.4. For the anti-periodic boundary conditions on [0, T ],

det′(D + u(x)) = 1 + e−u0T .

2.3. Semi-classical asymptotics. Here for the quantum mechanical
system with the Hamiltonian

H =
P 2

2m
+ v(Q)

with the one degree of freedom we consider the asymptotics of the prop-
agator K�(q′, t′; q, t) as � → ∞, called semi-classical asymptotics, where
we indicated explicitly the dependence on �. We will compare the heuris-
tic method based on Feynman path integral with the rigorous asymptotic
analysis.

2.3.1. Using Feynman path integral. The Feynman path integral repre-
sentation (1.10) allows to derive this asymptotics easily (albeit at a heuristic
level). Namely, suppose that an analog of the stationary phase method is
valid for the path integrals. Examples of Gaussian path integrals considered
in the previous sections confirm this point of view.

Thus we are assuming that the leading contribution to the Feynman
integral (1.13) comes from a critical point point of the action functional —
the classical trajectory qcl(τ) connecting points q and q′ at times t and t′
(we are assuming that such trajectory exists and is unique; compare with
the discussion in Section 2.2 in Chapter 1). Then the leading term of the

semi-classical asymptotics will be given by the factor e
i
�

Scl , where

Scl = S(q′, t′; q, t) =
∫ t′

t
L(qcl, q̇cl)dτ

is the classical action — the critical value of the action functional (see Section
2.2 in Chapter 1). To compute the prefactor, we set in eqreffeynman-several-
config

q(τ) = qcl(τ) + y(τ),
where y(τ) — the quantum fluctuation — satisfies Dirichlet boundary condi-
tions y(t) = y(t′) = 0, and expand the action functional around the critical
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point, keeping only quadratic terms in y. Using Dirichlet boundary condi-
tions we obtain

S(q) = Scl +
∫ t′

t

(
m

2
ẏ2 − v′′(qcl(τ))

2
y2

)
dτ + O(y3).

Following the convention in previous sections and setting u(τ) =
1
m

v′′(qcl(τ)),
we get ∫∫∫

y(t′)=0
y(t)=0

exp

{
im

2�

∫ t′

t

(
ẏ2 + u(τ)y2

)
dτ

}
Dy =

√
m

πi� det′A
,

where A is a self-adjoint operator on L2[t, t′] defined by the differential ex-
pression

A = − d2

dτ2
+ u(τ)

and Dirichlet boundary conditions. (We assume that v ∈ C3([t, t′], R), so
that u ∈ C1([t, t′], R) and A has a pure discrete spectrum.) Differential
operator A is the operator of the second variation of the action functional
S.

Thus we arrive at the following asymptotic behavior

(2.16) K�(q′, t′; q, t) �
√

m

πi� det′A
e

i
�

S(q′,t′;q,t)

as � → 0. This formula is remarkably simple and shows a deep relation
between semi-classical asymptotic of a quantum mechanical propagator and
classical motion. Of course, our derivation was heuristic.

Remark. According to Theorem 2.1, we have det′A = 2y1(t′, 0), where
the function y1(τ) = y1(τ, 0) is the solution of the differential equation
Ay1 = 0 with the initial condition

y1(t) = 0, ẏ1(t) = 1.

When u(τ) =
1
m

v′′(qcl(τ)), the function y1(τ) can be easily expressed in

terms of the classical solution qcl(τ). Indeed, setting f(τ) = q̇cl(τ) and
differentiating the Newton’s equation

mq̈cl = −v′(qcl),

we get that f satisfies the differential equation Af = 0, so that the Wron-
skian ẏ1f − ḟy1 of its two solutions is constant on [t, t′]. Using the initial
conditions for y1 we get ẏ1f − ḟy1 = f(t). Assuming that f(t) �= 0 we obtain

y1(τ) = f(τ)f(t)
∫ τ

t

ds

f2(s)
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and

det′A = 2f(t)f(t′)
∫ t′

t

dτ

f2(τ)
.

If f(t) = 0, then ḟ(t) �= 0 (unless qcl = const), so that

y1(τ) =
f(τ)
ḟ(t)

= −m
f(τ)

v′(qcl(t))

and

det′A = −m
q̇cl(t′)
v′(q)

.

As the result, we have expressed det′A — a contribution from the quantum
fluctuations around the classical solution — in terms of the classical motion.

Similarly, for the case of n degrees of freedom, when

H =
P2

2m
+ v(Q),

and v ∈ C3(Rn, R), we obtain

(2.17) K�(q′, t′;q, t) �
( m

πi�

)n/2 1√
det′A

e
i
�

S(q′,t′;q,t)

as � → 0, where A = − d2

dτ2
+ U(τ) and

U(τ) =
∂2v

∂q2
(qcl(τ)) =

{
∂2v

∂qi∂qj
(qcl(τ))

}n

i,j=1

.

2.3.2. Rigorous derivation. The rigorous approach is based on the fact
that integral kernel K�(q, q′, t) is the fundamental solution of the Schrödinger
equation — the Cauchy problem (1.2)–(1.3). Since K�(q′, t′; q, t) = K�(q′, q, T ),
where T = t′ − t, we need to find the asymptotics of a fundamental solution
K�(q, q′, t) as � → 0. This problem can be solved in two steps.

1. Finding short-wave asymptotics — asymptotics as � → 0 of the so-
lution ψ�(q, t) of the Cauchy problem for the Schrödinger equation

i�
∂ψ

∂t
= − �2

2m

∂2ψ

∂q2
+ v(q)ψ

with the initial condition

ψ�(q, t)|t=0 = ϕ(q)e
i
�

s(q),

where s(q), ϕ(q) ∈ C∞(R, R) and the “amplitude” ϕ(q) has com-
pact support.

2. For fixed q′ = q0 use the representation

δ(q − q0) =
ϕ(q)
2π�

∫ ∞

−∞
e

i
h ξ(q−q0)dξ,

where ϕ has compact support and satisfies ϕ(q0) = 1, and use
the “superposition principle” to express the kernel K(q, q0, t) as
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an integral over dξ of solutions of the Schŕ’odinger equation with
initial amplitude ϕ(q) and initial “phases” s(q, ξ) = ξ(q − q0). Use
asymptotics from part 1 and evaluate the resulting integral by the
stationary phase method as � → 0.

To realize the first step, we set ψ�(q, t) = e
i
�
S(q,t,�) and substitute this

“Ansatz” into the Schrödinger equation. For the function S we obtain the
following nonlinear partial differential equation,

(2.18)
∂S
∂t

+
1

2m

(
∂S
∂q

)2

+ v(q) =
i�

2m

∂2S
∂q2

,

which is equivalent to the Schrödinger equation. The advantage of (2.18)
is that it is more convenient for determining the asymptotic expansion of
S(q, t, �) as � → 0. Namely, substituting

S(q, t, �) =
∞∑

n=0

(−i�)nSn(q, t)

into (2.18) and equating terms with the same powers of �, we obtain that
S0(q, t) satisfies the following initial value problem

(2.19)
∂S0

∂t
+

1
2m

(
∂S0

∂q

)2

+ v(q) = 0

and

(2.20) S0(q, t)|t=0 = s(q),

whereas S1(q, t) satisfies

(2.21)
∂S1

∂t
+

1
m

∂S0

∂q

∂S1

∂q
= − 1

2m

∂2S0

∂q2

and

(2.22) S1(q, t)|t=0 = ϕ(q).

For n > 1 the functions Sn(q, t) satisfy differential equations similar to
(2.21).

It is remarkable that (2.19)–(2.20) is the Cauchy problem for the Hamilton-

Jacobi equation with the Hamiltonian h(p, q) =
p2

2m
+ v(q) considered in

Section 2.2 in Chapter 1! According to Proposition 2.1 in Section 2.2 of
Chapter 1, solution of (2.19)–(2.20) is given by the method of characteris-
tics as follows:

(2.23) S0(q, t) = s(q0) +
∫ t

0
L(γ′(τ))dτ.

Here γ(τ) is the characteristic: the classical trajectory which at τ = 0 starts

at q0 with the momentum p0 =
∂s

∂q
(q0) and at τ = t ends at q, where q0 is

uniquely determined by q. (Here we assume that the Hamiltonian phase flow
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gt satisfies the assumptions made in Section 2.2.) It follows from Theorem
2.2 in Section 2.2 of Chapter 1 that along the characteristic,

∂S0

∂q
(q, t) = m

dγ

dt
(t),

so that

(2.24)
(

∂

∂t
+

∂S0

∂q

)
S1(γ(t), t) =

d

dt
S1(γ(t), t).

Now we can solve the Cauchy problem (2.21)–(2.22) for the transport equa-
tion explicitly. For this aim, consider the flow πt : R → R, defined in Section
2.2 of Chapter 1, set Q = πt(q)1, and denote by γ(Q, q; τ) the characteristic
connecting points q at τ = 0 and Q at τ = t. Differentiating the equation

∂S0

∂Q
(Q, t) = m

∂γ

∂t
(Q, q; t)

with respect to q we obtain

∂2S0

∂Q2
(Q, t)

∂Q

∂q
= m

∂2γ

∂q∂t
(Q, q; t) = m

d

dt

(
∂Q

∂q

)
,

so that we can rewrite (2.21) as

d

dt
S1(Q, t) = −1

2
d

dt
log

∂Q

∂q
.

Using (2.22), this equation (under the assumptions made in Section 2.2. of
Chapter 1) is easily solved as follows,

S1(Q, t) = ϕ(q)
∣∣∣∣∂Q

∂q
(q)
∣∣∣∣−1/2

.

Thus we obtain

(2.25) ψ�(Q, t) = ϕ(q)
∣∣∣∣∂Q

∂q
(q)
∣∣∣∣−1/2

e
i
�

(S(Q,q;t)+s(q))(1 + O(�)),

where S(Q, q; t) is the classical action along the characteristic that ends at Q.
Under our assumption the flow πt is a diffeomorphism so that the mapping
q �→ Q is one to one. Here we did not prove that (2.25) is an asymptotic
expansion as � → 0. This can be shown using the assumptions made in
Section 2.2 of Chapter 1.

The asymptotics (2.25) is consistent with the conservation of probability :
for any Borel subset E ⊂ R,∫

Et

|ψ�(Q, t)|2dQ =
∫

E
|ϕ(q)|2dq + O(�)

as � → 0, where Et = πt(E).

1There should not be any confusion with the quantum coordinate operator Q.
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Remark. When assumptions made in Section 2.2 of Chapter 1 are not
satisfied, the situation becomes more complicated. Namely, in this case
there may be several characteristics γj(τ) which end at Q at τ = t having
qj as their corresponding initial points. In this case,

ψ�(Q, t) =
∑

j

ϕ(qj)
∣∣∣∣∂Q

∂q
(qj)
∣∣∣∣−1/2

e
i
�
(S(Q,qj ;t)+s(qj))−πi

2
µj (1 + O(�)),

where µj ∈ Z is the Morse index of the characteristic γj . It is defined as
the number of focal points of the phase curve (q(τ), p(τ)) with inital data

qj and pj =
∂s

∂q
(qj) with respect to the configuration space R. It is a special

case of a more general Maslov index.

Now we proceed to the second step. For every ξ ∈ R let ψ�(q, t; ξ) be the
solution to the Schrödinger equation with the initial amplitude ϕ(q) and the

initial phase s(q) = ξ(q−q0). In this case p(q) =
∂s

∂q
= ξ, so the characteristic

ending at Q has the initial momentum ξ and the initial coordinate q =
q(ξ,Q) Using (2.25), we obtain

K�(Q, q0; t) � 1
2π�

∫ ∞

−∞
ϕ(q(ξ,Q))

∣∣∣∣∂Q

∂q
(q(ξ,Q))

∣∣∣∣−1/2

e
i
�
(S(Q,q(ξ,Q);t)+ξ(q(ξ,Q)−q0)dξ.

To this expression we apply the stationary phase method (see Section 2.1.3
of Chapter II). To find the critical points of the function S(Q, q(ξ,Q); t) +
ξ(q(ξ,Q) − q0), we use Proposition 2.2 in Section 2.2 of Chapter 1 that

∂S

∂q
(Q, q; t) = −p

— the initial momentum. Thus
∂

∂ξ
(S(Q, q(ξ,Q); t) + ξ(q(ξ, Q) − q0)) = −ξ

∂q

∂ξ
(ξ,Q) + q(ξ,Q) − q0 + ξ

∂q

∂ξ
(ξ,Q)

= q(ξ,Q) − q0.

Thus (under our assumptions) we have a single critical point ξ0 determined
by the equation q(ξ0, Q) = q0. To find the prefactor, we use the equation

∂Q

∂ξ
+

∂Q

∂q

∂q

∂ξ
= 0,

which follows from the equation Q(ξ, q(ξ, Q)) = Q. Thus we arrive at the
expression

(2.26) K�(Q, q0; t) � 1√
2πi�

∣∣∣∣∂Q

∂ξ
(q0, ξ0)

∣∣∣∣−1/2

e
i
�

S(Q,q0;t).

Since K�(q′, t′; q, t) = K�(q′, q; t′ − t), formula (2.26) would be the same as

(2.16), provided we can express
∂Q

∂ξ
(q0, ξ0) in terms of the determinant of

the operator A from the previous section. To this aim we use Theorem
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2.1. Namely, differentiating Euler-Lagrange equation for the characteristic
γ(Q, q; τ) with respect to q̇ — the velocity at τ = 0, which is a function of

Q and q — we get that y(τ) =
∂γ

∂q̇
(Q, q, τ) satisfies the differential equation

Ay = 0 and the initial conditions

y(0) = 0, ẏ(0) = 1.

Since ξ = mq̇0, we have

∂Q

∂ξ
(q0) =

y(t)
m

=
1

2m
det′A.

Substituting this into the representation (2.26) we get exactly the represen-
taion (2.16).

As in the case of short-wave asymptotics for the Schrödinger equation,
when assumptions made in Section 2.2 of Chapter 1 are not satisfied, there
are several characteristics γj(τ) connecting points q0 and Q and initial mo-
menta having ξj . In this case we have,

K�(Q, q0, t) �
∑

j

1√
2πi�

∣∣∣∣∂Q

∂ξ
(q0, ξj)

∣∣∣∣−1/2

e
i
�
(S(Q,q0,ξj ;t)−πi

2
µj ,

where µj is the Morse index of γj .

Remark. One can get yet another formula for the pre-factor in repre-

sentation (2.26). Namely, differentiating
∂S

∂q
(Q, q; t) = −ξ with respect to

Q we get
∂2S

∂q∂Q
= − ∂ξ

∂Q
,

so that (2.26) can be rewritten entirely in terms of the classical action

K�(Q, q0; t) � 1√
2πi�

∣∣∣∣ ∂2S

∂q∂Q
(Q, q0; t)

∣∣∣∣1/2

e
i
�

S(Q,q0;t).

The case of n degrees of freedom, under assumptions made is Section 2.2
of Chapter 1, is considered similarly. The solution ψ�(q, t) of the Cauchy
problem for the Schrödinger equation

i�
∂ψ

∂t
= − �2

2m
∆ψ + v(q)ψ,

ψ�(q, t)|t=0 = ϕ(q)e
i
�

s(q),

with smooth s(q), ϕ(q) and compactly supported ϕ(q), has the the following
asymptotics as � → 0:

ψ�(Q, t) = ϕ(q)
∣∣∣∣det

(
∂Q
∂q

(q)
)∣∣∣∣−1/2

e
i
�

(S(Q,q;t)+s(q))(1 + O(�)),
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and the asymptotics of the fundamental solution is given by

K�(Q,q0, t) � (2πi�)−n/2

∣∣∣∣det
(

∂Q
∂ξ

(q0, ξ0)
)∣∣∣∣−1/2

e
i
�
(S(Q,q0,ξ0;t).

Using the equation

∂ξ

∂Q
= − ∂2S

∂q∂Q
=
{

∂2S

∂qi∂Qj

}n

i,j=1

,

this asymptotics can be rewritten as

K�(Q,q0; t) � (2πi�)−n/2

∣∣∣∣det
(

∂2S

∂q∂Q
(Q,q0; t)

)∣∣∣∣1/2

e
i
�

S(Q,q0;t).

Here det
∂2S

∂q∂Q
is known as van Vleck determinant.





CHAPTER 5

Integration in Functional Spaces

1. Gaussian measures

Here we will study classical Gaussian measures.

1.1. Finite-dimensional case. Let A be symmetric, positive-definite,
real n × n matrix. As we know in Section 1.4 of Chapter 4,∫

Rn

e−〈Aq,q〉dnq =

√
(2π)n

det A

is the basic formula of Gaussian integration. We use it to define a Gaussian
measure µA on Rn by

(1.1) dµA(q) =

√
det A

πn
e−

1
2 〈Aq,q〉dnq,

so that µA(Rn) = 1. The measure µA is a mean-zero probability measure
on Rn with the covariance G = A−1. When A = In — n×n identity matrix
— the corresponding measure is denoted by µn.

As it follows from (1.11) in Section 1.4 of Chapter 4,

(1.2)
∫

Rn

e〈p,q〉dµA(q) = e
1
2 〈Gp,p〉,

and by analytic continuation,

(1.3)
∫

Rn

ei〈p,q〉dµA(q) = e−
1
2 〈Gp,p〉.

The function (2π)−n/2e−
1
2 〈Gp,p〉 is the Fourier transform of the measure µA

(in the distributional sense).
Applying to (1.2) the directional derivative with respect to v ∈ Rn —

the differential operator

∂v = v
∂

∂p
=

n∑
k=1

vk
∂

∂pk

(the differentiation under the integral sign is clearly legitimate), we obtain

(1.4)
∫

Rn

〈v,q〉e〈p,q〉dµA(q) = 〈Gv,p〉e1
2 〈Gp,p〉.

123
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Setting here p = 0 we get ∫
Rn

〈v,q〉dµA(q) = 0,

while applying to (1.4) another ∂v′ and setting p = 0 afterwards, we obtain∫
Rn

〈v,q〉〈v′,q〉dµA(q) = 〈Gv,v′〉.

Repeating this procedure, we arrive at the following very important and
useful formula, the so-called Wick’s theorem:
(1.5)∫

Rn

〈v1,q〉 . . . 〈vN ,q〉dµA(q) =

{
0 if N is odd∑〈Gvi1 ,vj1〉 . . . 〈GviN/2

,vjN/2
〉 if N is even.

Here the sum goes over all possible pairings (i1, j1), . . . , (iN/2, jN/2) of the
set {1, 2, . . . , N}.

1.2. Infinite-dimensional case. Let

H = �2(R) =

{
x = {xi}∞i=1 : ‖x‖2 =

∞∑
i=1

x2
i < ∞

}
be the real Hilbert space with the scalar product 〈x, y〉 =

∑∞
i=1 xiyi, and

let V = R∞ be the Cartesian product over N of copies of R equipped with
Tychonoff topology, so that H ⊂ V . The element x ∈ V is said to have
finite support if xi = 0 for sufficiently large i.

The Gaussian measure µ on V is defined by the direct porduct of the
Gaussian measures µ1, µ = µ∞ = µ1 × µ1 × · · · , and can be heuristically
represented as

dµ = π−∞e−
1
2‖x‖2

∞∏
i=1

dxi.

Here “divergent to 0 product π−∞e−
1
2‖x‖2

” compensates “divergent to ∞
product”

∏∞
i=1 dxi. More precisely, the measure µ first is defined for “cylin-

drical sets C = E1 × · · · × En × R × · · · ” with E1, . . . , En ∈ B(R) by
µ(C) = µ1(E1) . . . µ1(En), and then extending it to the whole σ-algebra
generated by the cylindrical sets by using Kolmogoroff theorem. In partic-
ular, if F (x) = f(x1, . . . , xn), where f is bounded measurable function on
Rn, then

(1.6)
∫
V

Fdµ =
∫

Rn

fdµn.

Conversely, the following statement holds.
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Lemma 1.1. There exists a unique probability measure µ on V such that
for all v ∈ V with finite support,∫

V

ei〈v,x〉dµ(x) = e−
1
2‖v‖2

.

Proof. Immediately follows from (1.3) since the measure µn on Rn is
uniquely determined by its Fourier transform. �

Now for α = {αi} ∈ V let

Hα =

{
x ∈ V :

∞∑
i=1

α2
i x

2
i < ∞

}
.

Proposition 1.1 (“0-1 law”).

µ(Hα) =

{
0 if α /∈ H ,

1 if α ∈ H .

In particular, µ(H ) = 0.

Proof. Let χα be the characteristic function of the set Hα ⊂ V ,

χα(x) = lim
ε→0

exp{−ε2
∞∑
i=1

α2
i x

2
i }.

Twice applying the dominated convergence theorem, we get

µ(Hα) =
∫
V

χαdµ

= lim
ε→0

∫
V

exp{−ε2
∞∑
i=1

α2
i x

2
i }dµ(x)

= lim
ε→0

lim
n→∞

∫
Rn

exp{−ε2
n∑

i=1

α2
i x

2
i }dµn(x)

= lim
ε→0

lim
n→∞

n∏
i=1

(1 + ε2α2
i )

−1/2.

The product
∏∞

i=1(1 + ε2α2
i ) is convergent if and only if the series

∑∞
i=1 α2

i
is convergent, and the statement follows. �

For v ∈ H let v(n) = (v1, . . . , vn, 0, 0 . . . ). It follows from (1.6) that∫
V

〈v(n), x〉2dµ(x) = ‖v(n)‖2,

so that the sequence of functions Fn(x) = 〈v(n), x〉 is a Cauchy sequence
in L2(V , dµ) and converges in L2 to the function F (x). Abusing notation,
we write F (x) = 〈v, x〉. This shows that though µ(H ) = 0, 〈v, x〉 is still a
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well-defined element in L2(V , dµ). Moreover, Lemma 1.1 and, consequently,
Wick’s theorem, hold for v ∈ H .

2. Wiener measure and Wiener integral

In the previous chapter we considered the one-parameter group of uni-

tary operators U(t) = e−
it
�

H for the quantum Hamiltonian operator H =
H0 + V . Corresponding propagator K�(q′, t′;q, t) — the integral kernel of
the operator U(t′ − t) — has been expressed in a form reminiscent, at a
heuristic level, of an integral over the space of paths — the Feynman path
integral. Here we replace the physical time t by “Euclidean time” −it and

consider the semigroup e−
t
�

H of contracting operators (when H > 0) for
t > 0. In this case all constructions can be made rigorous with Wiener
integral replacing the Feynman integral.

2.1. Definition of the Wiener measure. Here we define the proba-
bility measure on the space C([0,∞), Rn; 0) of continuous paths in Rn start-
ing at the origin, called the Wiener measure. In physical terminology, it is
related to the Brownian motion — the diffusion process in Rn with diffu-

sion coefficient D =
�

2m
. Mathematically, it is described by the probability

density

(2.1) P (q′,q; t) = (4πDt)n/2e−(q−q′)2/4Dt

that a particle with initial certainty of being at q is diffused in time t to
point q′.

For compactness argument, It will be convenient to use one-point com-
pactification R̂n � Sn of Rn that allows paths to pass through ∞. Let

Ω =
∏

0≤t<∞
R̂

n

be the Cartesian product of copies of R̂n parameterized by the R≥0. Equipped
with the Tychonoff topology Ω is compact topological space — the space
of all paths in R̂n. For every partition t = {0 ≤ t1 ≤ · · · ≤ tm} and every
F ∈ C(

∏m
i=1 R̂n), define ϕ ∈ C(Ω) by

ϕ(γ) = F (γ(t1), . . . , γ(tm)) for all γ ∈ Ω.

Denote by Cfin(Ω) the subspace of C(Ω) spanned by functions ϕ for all par-
titions t for all m and all continuous functions F . Define a linear functional
l on Cfin(Ω) by the following formula:

l(ϕ) =
∫

Rn

. . .

∫
Rn

F (q1, . . . ,qm)P (qm,qm−1; tm − tm−1) . . .(2.2)

. . . P (q1, 0; t1)dnq1 . . . dnqm.
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It follows from the semi-group property∫
Rn

P (q′,q1; t′ − t1)P (q1,q; t1 − t)dnq1 = P (q′,q; t′ − t)

that the functional l is well-defined. The functional l is positive: l(ϕ) ≥ 0
for ϕ ≥ 0, satisfies l(1) = 1 and

|l(ϕ)| ≤ |ϕ‖∞ = sup
γ∈Ω

|ϕ(γ)|.

By Stone-Weierstrass theorem, Cfin(Ω) is dense in C(Ω), and l has a unique
extension to a continuous positive linear functional on C(Ω) with norm 1.
By Riesz-Markoff theorem, there exists a unique regular Borel measure µW

on Ω with µW (Ω) = 1 such that

l(ϕ) =
∫
Ω

ϕ dµW

The measure µW is called the Wiener measure.

Remark. The Riesz-Markoff theorem is the usual way the measures
arise in functional analysis. Actually, the theorem guarantees an existence
of the Baire measure — a measure defined on the σ-algebra of Baire sets.
However, for compact spaces a Baire measure has a unique extension to a
regular Borel measure — a measure defined on the σ-algebra generated by
all open subsets. A Borel measure µ is regular if for for every Borel set
E ⊂ Ω,

µ(E) =

{
inf{µ(U) : E ⊂ U, U is open}
sup{µ(K) : K ⊂ E, K is compact and Borel }.

The space Ω is “so large” that its σ-algebras of Baire and Borels sets are
different.

Thus constructed Wiener measure is supported on continuous paths
starting at the origin, i.e., µW (C) = 1 for C = C([0,∞), Rn; 0). The support
µW can be characterized more precisely as follows. For 0 < α ≤ 1 let Ωα be
the subspace of Ω of Holder continuous path of order α:

Ωα =

{
γ ∈ Ω : sup

t,t′≥0

‖γ(t) − γ(t′)‖
|t − t′|α < ∞

}
.

Then

µW (Ωα) =

{
1, if 0 < α < 1

2 ,

0, if 1
2 ≤ α ≤ 1.

Replacing in the definition (2.2) P (q1, 0; t1) by P (q1,q0; t1) for a fixed
q0 ∈ Rn, we obtain a Wiener measure supported on continuous paths that
start at q0.
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Remark. One could try to define the Wiener measure by the following
construction. Set, for simplicity, n = 1 and for every partition t and intervals
(α1, β1) . . . , (αm, βm) consider the cylindrical sets

Ct = {γ ∈ Ω : α1 < γ(t1) < β1, . . . , αm < γ(tm) < βm},
and assign to them the measure

µ(Ct) =
∫ β1

α1

. . .

∫ βm

αm

P (qm, qm−1; tm − tm−1) . . . P (q1, 0; t1)dq1 . . . dqm.

By Kolmogoroff extension theorem and the semi-group property, µ extends
to a measure on the σ-algebra of Ω generated by the cylindrical sets, which
we continue to denote by µ. However, the set C of continuous path starting
at 0 turns out to be non-measurable! Specifically, one can show that

µ∗(C) = 0 and µ∗(C) = 1.

To remedy this situation, one should define cylindrical sets as consisting of
continuous functions only with the measure defined as above. This measure
extends to the σ-algebra of C generated by cylindrical sets and coincides
with the Wiener measure µW .

Proposition 2.1. Let v ∈ C(Rn, R) be bounded below. Then for every
t ≥ 0 the function Ft : C → R, defined by

Ft(γ) = e−
R t
0 v(γ(τ))dτ ,

is integrable with respect to the Wiener measure, and∫
C

FtdµW = lim
N→∞

∫
Rn

. . .

∫
Rn

exp{− t
N

N∑
k=1

v(qk)}P (qN ,qN−1; t
N ) . . .

. . . P (q1, 0; t
N )dnq1 . . . dnqN .

Proof. For γ ∈ C,∫ t

0
v(γ(τ))dτ = lim

N→∞

N∑
k=1

v(γ(tk))∆t,

where tk = kt
N and ∆t = t

N . Since by definition every function
∑N

k=1 v(γ(tk))∆t
is measurable with respect to the Wiener measure on C, the function Ft is
measurable as a point-wise limit of a sequence of measurable functions. The
function Ft is bounded and, therefore, is integrable on C with respect to the
Wiener measure. Finally, by the dominated convergence theorem,∫

C

FtdµW = lim
N→∞

∫
C

exp

{
−

N∑
k=1

v(γ(tk))∆t

}
dµW (γ),

and the result follows. �



2. WIENER MEASURE AND WIENER INTEGRAL 129

Remark. Note the limit in Proposition 2.1 exists because the function
Ft is integrable, and not the other way around. This is similar to an ele-
mentary calculus argument that the limit

lim
n→∞(1 + 2 + · · · + n − log n)

exists since the integral ∫ 1

0

(
1
x
−
[

1
x

])
dx

is convergent. Here [x] stands for the largest integer not greater then x.

2.2. Conditional Wiener measure and Feynman-Kac formula.
Let

Ωq,q′
t,t′ = {γ ∈

∏
t≤τ≤t′

R̂
n : γ(t) = q, γ(t′) = q′}

be space of all paths which start at q ∈ Rn at time t and end at q′ ∈ Rn at
t′, and let Cq,q′

t,t′ be the subspace of continuous paths. Conditional Wiener

measure µq,q′
W on Ωq,q′

t,t′ is defined analogously. We replace a positive linear

functional l on C(Ω) by a positive linear functional lq,q′
t,t′ on C(Ωq,q′

t,t′ ), which

for ϕ ∈ Cfin(Ωq,q′
t,t′ ) is defined by

lq,q′
t,t′ (ϕ) =

∫
Ωq,q′

t,t′

ϕ dµq,q′
W =

∫
Rn

. . .

∫
Rn

F (q1, . . . ,qm)P (q′,qm; t′ − tm) . . .

. . . P (q1,q; t1 − t)dnq1 . . . dnqm,

where t ≤ t1 ≤ · · · ≤ tm ≤ t′ and ϕ(γ) = F (γ(t1), . . . , γ(tm)). As in the case
of Wiener measure, conditional Wiener measure is supported on continuous
paths and

µq,q′
W (C(Ωq,q′

t,t′ )) = P (q′,q; t′ − t).

Now it is easy to define a Wiener measure µloop
W on the space Lt,t′ of based

loops in R̂n, parameterized by [t, t′]. Namely, the space Lt,t′ is a disjoint
union of the spaces C(Ωq,q

t,t′ ) of closed paths starting and ending at q ∈ R̂n.
By definition, a function ϕ : Lt,t′ → C is integrable, if ϕ|C(Ωq,q

t,t′ )
is measurable

with respect to µq,q
W for all q ∈ R̂n, and if the function

∫
C(Ωq,q

t,t′ )
ϕ dµq,q

W :

Rn → C is Lebesgue integrable on Rn. Then∫
Lt,t′

ϕ dµloop
W =

∫
Rn

∫
C(Ωq,q

t,t′ )

ϕ dµq,q
W dnq.

Let

H = H0 + V =
�2

2m
P2 + v(Q)
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be the Schrödinger operator on L2(Rn, dnq) with continuous, bounded below
and real-valued potential v(q). Let L�(q′,q; t′, t), t′ > t, be the integral

kernel of the operator e−
t′−t

�
H . Here is the meain result of this section.

Theorem 2.1 (Feynman-Kac formula).

L�(q′,q; t′, t) =
∫

Cq,q′
t,t′

e−
1
�

R t′
t v(γ(τ))dτdµq,q′

W (γ).

Proof. Setting T = t′ − t and ∆t = T
N , we have by Trotter product

formula
e−

T
�

H = lim
N→∞

(e−
∆t
�

H0e−
∆t
�

V )N .

Let L
(N)
�

(q′,q; t′, t) be the integral kernel of the operator (e−
∆t
�

H0e−
∆t
�

V )N .
Computing this kernel as in Sections 1.2-1.3 of Chapter 4, and using the
definition of the conditional Wiener measure we obtain

L
(N)
�

(q′,q; t′, t) =
∫

Cq,q′
t,t′

exp

{
−1

�

N∑
k=1

v(γ(tk))∆t

}
dµq,q′

W (γ),

and applying the dominated convergence theorem completes the proof. �
It is very instructive to compare Feynman and Wiener integrals. Infor-

mally, conditional Wiener measure can be written as

DqW = e−
m
2�

R t′
t q̇2dτD�q,

where

D�q = lim
N→∞

( m

2π�∆t

)N/2
N−1∏
k=1

dnqk.

Of course, neither the “measure” Dq exists: the product is divergent, nor the
trajectory q(τ) is differentiable: the integral

∫ t′
t q̇2dτ is divergent. However,

due to the presence of the negative sign in the exponential we get “the ratio
of infinities” and the resulting expression for the Wiener measure makes a
precise sense! The corresponding “measure” for the Feynman path integral
is obtained by replacing � by i�. In this case the exponential factor can
not compensate for the divergence of Di�q since it is a complex number
of modulus 1 for differentiable trajectories and has no meaning for non-
differentiable ones.

Still, the advantage of Feynman path integral, besides having a rigorous
definition as limit of multiple integrals, is that the corresponding represen-
tation for the propagator

K�(q′, t′;q, t) =
∫∫∫

q(t′)=q′
q(t)=q

e
i
�

R t′
t L(q,q̇)dτDi�q,



2. WIENER MEASURE AND WIENER INTEGRAL 131

where L(q, q̇) =
p2

2m
− v(q), shows a deep relation between quantum and

classical mechanics, which manifests itself as � → 0. Similarly, the Feynman-
Kac formula can formally rewritten as

L�(q′, t′;q, t) =
∫∫∫

q(t′)=q′
q(t)=q

e−
1
�

R t′
t h(q,q̇)dτD�q,

where h(q, q̇) =
p2

2m
+ v(q), and we no longer see the presence of the action

functional of the corresponding classical system.

2.3. Relation between Wiener and Feynman integrals. The sim-
plest example which illustrates the nature of the relation between Wiener
and Feynman integrals is the following. Let f be a smooth bounded func-
tion on R such that f ′(x) = O(x−1) as x → ∞. The Gaussian integral∫∞
−∞ f(x)e−x2

dx is absolutely convergent, whereas the integral
∫∞
−∞ f(x)eix2

dx

is convergent only as limM,N→∞
∫ N
−M f(x)eix2

dx, as simple integration by
parts shows. We also have∫ ∞

−∞
f(x)eix2

dx = lim
ε→0+

∫ ∞

−∞
f(x)e(i−ε)x2

dx,

so that conditionally convergent integral
∫∞
−∞ f(x)eix2

dx is interpreted as as
a limit ε → ∞ of an integral of bounded function f(x) with respect respect
to the complex-valued Gaussian measure e(i−ε)x2

dx.
It is tempting to extend this interpretation for Wiener in integrals and

for a complex diffusion coefficient D with Re D > 0 define a complex-valued
Wiener measure by the same formula (2.2). However, a theorem of Cameron
states that corresponding linear function l is no longer bounded on Cfin(Ω),
so that this approach does not work. However, under our assumptions on
a potential v(q) it easy to show by using the profuct Trotter formula that
L�(q′, t′;q, t), defined for � > 0, admits an analytic continuation into the
half-plane Re � > 0 and

K�(q′, t′;q, t) = lim
ε→0+

Li�−ε(q′, t′;q, t).

This establishes the precise relation between Wiener and Feynman integrals
for the case of quantum particle.

2.4. Gaussian Wiener integrals. In Section 2 of Chapter 4 we eval-
uated Gaussian Feynman integrals in terms of the zeta-function regularized
determinants. Here we consider the corresponding problem for Gaussian
Wiener integrals.
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2.4.1. Dirichlet boundary conditions. Let A = − d2

dx2
+ u(x) with u ∈

C1[0, T ], u ≥ 0, be the Sturm-Liouville operator on [0, T ] with Dirichlet
boundary conditions. We have the following result.

Theorem 2.2.∫
C0,0

0,T

e−
m
2�

R T
0 u(x)y2(x)dxdµ0,0

W (y) =
√

m

π� det′A
.

Proof. Using the dominated convergence theorem and finite-dimensional
Gaussian integration formula we get∫

C0,0
0,T

e−
m
2�

R T
0 u(x)y2(x)dxdµ0,0

W (y) = lim
n→∞

( m

2π�∆t

)n/2
∫

· · ·
∫

Rn−1

exp

{
−m

2�

n−1∑
k=0

((
yk+1 − yk

∆t

)2

+ u(tk)y2
k

)
∆t

}
n−1∏
k=1

dyk

= lim
n→∞

√
m

2π� det A(n)
,

where y0 = yn = 0, ∆t = T
n , and

A(n) =

⎛⎜⎜⎜⎜⎜⎜⎝
b1 c1 0 . . . 0 0
a1 b2 c2 . . . 0 0
0 a2 b3 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . bn−2 cn−2

0 0 0 . . . an−2 bn−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where a1 = −1, b1 = 2∆t + u(t1)(∆t)3, c1 = −∆t and ak = ck = −1, bk =
2 + u(tk)(∆t)2, k = 2, . . . , n− 1. Denote by y

(n)
k , k = 2, . . . , n, the (k − 1)×

(k− 1) minor of A(n) corresponding to the upper-left corner of A(n), so that
det A(n) = y

(n)
n .The sequence y

(n)
k satisfies the recurrence relation

y
(n)
k+1 = (2 + u(tk)(∆t)2)y(n)

k − y
(n)
k−1, k = 3, . . . , n − 1,

with the initial conditions

y
(n)
2 = 2∆t+u(t1)(∆t)3, y

(n)
3 = 3∆t+2(u(t1)+u(t2))(∆t)3+u(t1)u(t2)(∆t)5.

We rewrite the recurrence relation as

(2.3)
y

(n)
k+1 + y

(n)
k−1 − 2y

(n)
k

(∆t)2
= u(tk), k = 3, . . . , n − 1.

According the method of finite-differences for solving initial value problems
for ordinary differential equations, we obtain that when

lim
k,n→∞

k

n
T = x ∈ [0, T ],
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then
lim

k,n→∞
y

(n)
k = y(x),

where y(x) satisfies the differential equation

−y′′ + u(x)y = 0,

and the initial conditions

y(0) = lim
n→∞ y

(n)
2 = 0, y′(0) = lim

n→∞
y

(n)
3 − y

(n)
2

∆t
= 1.

Using Theorem 2.1 in Chapter 4, we obtain from here that limn→∞ det A(n) =
1
2det′A. �

2.4.2. Periodic boundary conditions. Let A = − d2

dx2
+ u(x) with u ∈

C1[0, T ], u(0) = u(T ), u ≥ 0, be the Sturm-Liouville operator on [0, T ]
with periodic boundary conditions. We have the following result.

Theorem 2.3.∫
L[0,T ]

e−
m
2�

R T
0 u(x)y2(x)dxdµloop

W (y) =
1√

det′A
.

Proof. As in the proof of Theorem 2.2, we have∫
L0,T

e−
m
2�

R T
0 u(x)y2(x)dxdµloop

W (y) = lim
n→∞

( m

2π�∆t

)n/2
∫

· · ·
∫

Rn

exp

{
−m

2�

n−1∑
k=0

((
yk+1 − yk

∆t

)2

+ u(tk)y2
k

)
∆t

}
n∏

k=1

dyk

= lim
n→∞

1√
det An

,

where y0 = yn, ∆t = T
n and An is the following n × n matrix

An =

⎛⎜⎜⎜⎜⎜⎜⎝
b0 −1 0 . . . 0 −1
−1 b1 −1 . . . 0 0
0 −1 b2 . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . bn−2 −1
−1 0 0 . . . −1 bn−1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where bk = 2 + u(tk)(∆t)2, k = 0, 1, . . . , n − 1. We compute det An by the
following elegant argument. First, note that the real λ is an eigenvalue of
An if only if the system of linear algebraic equations

(2.4) yk+1 + yk−1 − (2 + u(tk)(∆t)2)yk = λyk, k = 0, . . . , n − 1,

with “initial conditions” y−1 and y0 has a “periodic solution” — a solution
{yk}n

k=1 satisfying yn−1 = y−1 and yn = y0. Now for given λ let v
(1)
k (λ)
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and v
(2)
k (λ) be the solutions of (2.4) with corresponding initial conditions

v
(1)
−1(λ) = 1, v

(1)
0 (λ) = 0 and v

(2)
−1(λ) = 0, v

(2)
0 (λ) = 1, and let

Tn(λ) =

(
v

(1)
n−1(λ) v

(2)
n−1(λ)

v
(1)
n (λ) v

(2)
n (λ)

)
.

It is easy to show that “Wronskian” v
(1)
k−1(λ)v(2)

k (λ) − v
(1)
k (λ)v(1)

k−1(λ) does
not depend on k, so that detTn(λ) = 1. Since every solution yk of the
initial value problem for (2.4) is a linear combination of solutions v

(1)
k (λ)

and v
(2)
k (λ), (

yn−1

yn

)
= Tn(λ)

(
y−1

y0

)
.

This shows that λ is an eigenvalue of An if and only if det(Tn(λ) − I2) =
0. Moreover, the multiplicity of λ as the eigenvalue of An is the same as
the eigenvalue of Tn(λ) − I2. Finally, it is easy to show that v

(1)
n−1(λ) =

O(λn−1), v
(2)
n (λ) = λn + O(λn−1) as λ → ∞, so that

det(An − λIn) = −det(Tn(λ) − I2) = v
(1)
n−1(λ) + v(2)

n (λ) − 2.

To compute limn→∞ det An, denote by y
(1)
k (λ) and y

(2)
k (λ) two solutions

of (2.4) with initial conditions(
y

(1)
−1(λ)

y
(1)
0 (λ)

)
=
(

1
1 + (∆t)2

)
and

(
y

(2)
−1(λ)

y
(2)
0 (λ)

)
=
(

∆t
∆t

)
correspondingly. Expressing solutions v

(1)
k (λ) and v

(2)
k (λ) through y

(1)
k (λ)

and y
(2)
k (λ), we get

det(An − λIn) = y
(1)
n−1(λ) − ∆t y

(2)
n−1(λ) +

y
(2)
n (λ) − y

(1)
n−1(λ)

∆t
− 2.

Now it follows from the method of finite differences that

lim
n→∞det(An − λIn) = y1(T, λ) + y′2(T, λ) − 2 = det(A − λI)

by Theorem 2.2 in Chapter 4. �
2.4.3. Traces. Here we assume that the Hamiltonian operator H = H0+

V has a pure discrete spectrum and that Tr e−
T
�

H exists. For instance, this
is the case when v(q) → ∞ as q → ∞ “fast enough”.

Proposition 2.2.

Tr e−
T
�

H =
∫

L0,T

e−
1
�

R T
0 v(γ(t))dtdµloop

W (γ).

Proof. It immediately follows from Feynman-Kac formula and Lidskij
theorem. �
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As an illustration, we use this result to compute Tr e−
T
�

H when H = Hosc =
m

2
Since the eigenvalues of Hosc are En = �ω(n + 1

2), we have

Tr e−
T
�

Hosc =
∞∑

n=0

e−
T
�

En = e−
ωT
2

∞∑
n=0

e−ωTn =
1

2 sinh ωT
2

.

The same result can be also obtained without using the explicit form of
the eigenvalues of the harmonic oscillator. Namely, using Proposition 2.2,
Theorem 2.3 and formula (2.15) in Chapter 4, we get

Tr e−
T
�

Hosc =
1√

det′Aiω

=
1

2 sinh ωT
2

.





CHAPTER 6

Spin and Identical Particles

1. Spin

So far we have tacitly assumed that the Hilbert space space for a quan-
tum mechanical particle is H = L2(R3). Based on this assumption, in
Chapter 3 we found the energy levels of the hydrogen atom. In particu-
lar, in the ground state the quantum angular momentum operator M3 has
eigenvalue 0. However, the famous Stern-Gerlach experiment has shown that
the hydrogen atom also has a “magnetic angular momentum”, whose third
component in the ground state may take two values which differ by a sign.
Therefore in addition to the “mechanical” angular momentum operator M
with components M1,M2,M3, the electron also has the “internal angular
momentum” operator S with components S1, S2, S3, called spin, which is
independent of its position in the space. The spin describes internal degrees
of freedom of the electron. As the result, the number of the states is doubled
and the Hilbert space of states is HS = H ⊗C2. Equivalently, HS consists
of two-component vectors

Ψ =
(

ψ1(q)
ψ2(q)

)
and

‖Ψ‖2 =
∫
R3

|ψ1(q)|2d3q +
∫
R3

|ψ2(q)|2d3q.

To every observable A in H there corresponds an observable A ⊗ I2 in
HS , given by the 2 × 2 block-diagonal matrix

(
A 0
0 A

)
. Observables of the

form I ⊗ S, where I is the identity operator in H and S is a self-adjoint
operator in C2, characterized the inner degrees of freedom and commute
with all observables A ⊗ I2. The complete set of the observables in HS

consists of the operators Q1 ⊗ I2, Q2 ⊗ I2, Q3 ⊗ I2 and I ⊗S1, I ⊗S2, I ⊗S3,
where Sj are the spin operators — the traceless self-adjoint operators on C2

satisfying the same commutation relations as the quantum operators of the
angular momentum, i.e.,

[S1, S2] = i�S3, [S2, S3] = i�S1, [S3, S1] = i�S2.

In terms of the standard basis e1 = ( 1
0 ) , e2 = ( 0

1 ) of C2, Sj = �

2σj , j =
1, 2, 3, where σj are popular in physics Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

137
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It is convenient to represent Ψ =
(

ψ1

ψ2

)
∈ HS as a function ψ(q, σ), where

q ∈ R3 and σ takes two values 1
2 and −1

2 , by setting ψ(q, 1
2) = ψ1(q) and

ψ(q,−1
2) = ψ2(q). Then the operator S3 becomes a multiplication by �σ

operator,
S3ψ(q, σ) = �σψ(q, σ),

and
S1ψ(q, σ) = �|σ|ψ(q,−σ), S2ψ(q, σ) = i�σψ(q,−σ).

Here and in what follows we will always assume that the spin operators act
on the variable σ and will often write Sj instead of I ⊗ Sj . The operator
S2 = S2

1 + S2
2 + S2

3 is called the square of the total splin operator and
S2 = �2s(s + 1)I2, where s = |σ| = 1

2 . In physics terminology, electron has
spin 1

2 .
Mathematical interpretation of spin is provided by the representation

theory of the Lie algebra su(2). Namely operators

x± =
1
�
(S1 ± iS2) =

σ1 ± iσ2

2

and h = 2S3
�

= σ3 satisfy su(2) commutations relations

[h, x±] = ±2x±, [x+, x−] = h,

and thus define an irreducible an irreducible two-dimensional representation
of su(2). The highest weight of the representation — the maximal eigenvalue
of the generator h of the Cartan subalgebra of su(2) — is 2s = 1. This
representation is said to be spin 1

2 representation and is denoted by D 1
2
.

It is known that all irreducible representations of su(2) are highest weight
finite-dimensional representations Ds of dimension 2s+1, parameterized by
the highest weight — the spin s = 0, 1

2 , 1, 3
2 , . . . . The representation Ds can

be described as the vector space of polynomials f(z) of degree not greater
than 2s with the inner product

(1.1) 〈f, g〉 =
(2s + 1)!

π

∫
C

f(z)g(z)
(1 + |z|2)2s+2

d2z,

with the generators h, x± represented by the operators

h = z
d

dz
, x+ =

d

dz
, x− = z2 d

dz
− 2sz.

It is easy to verify that h∗ = h and x+ = x∗− with respect to the inner
product (1.1). This representation of the Lie algebra su(2) is associated
with the representation of the Lie group G = SU(2), defined by

ρs(g)(f)(z) = (β̄z + α)2sf

(
ᾱz − β

β̄z + α

)
,

where g =
(

α β
−β̄ ᾱ

)
∈ SU(2) and f ∈ Ds.
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Now we can specify the first axiom A1 in Section 1.1 of Chapter 2 for
the case of particles with spin.

Definition. A quantum mechanical particle with a spin s ∈ {0, 1
2 , 1, 3

2 , . . . }
is associated with a Hilbert space of states HS = L2(R3)⊗Ds, where Ds is
the irreducible representation of su(2) of spin s. Corresponding spin opera-
tors are given by I ⊗ Sj , j = 1, 2, 3, where

S1 =
�

2
(x+ + x−), S2 =

i�

2
(x+ − x−), S3 =

�

2
h,

and h, x+, x− are self-adjoint operators in C2s+1 corresponding to the stan-
dard generators su(2). Particles with integer spin are called bosons, and
particle with half-integer spin are called fermions.

As in the case s = 1
2 , the complete set of observables for a quantum

particle of spin s consists of position operators Q1 ⊗ I2s+1, Q2 ⊗ I2s+1, Q3 ⊗
I2s+1, and spin operators I⊗S1, I⊗S2, I⊗S3. The total operators of angular
momentum in HS are

Jj = Mj ⊗ I2s+1 + I ⊗ Sj , j = 1, 2, 3,

which satisfy the commutation relations

[Jj , Jk] = i�εjklJl, j, k, l = 1, 2, 3.

As the spin operators Sj , the operatorsJj of total angular momentum
are related with self-adjoint operators corresponding to the representation
of the Lie algebra su(2) is the Hilbert space HS , which is associated with the
unitary representation R⊗ ρs of the Lie group SU(2) in HS = L2(R3)⊗Ds.
Here R is the unitary representation of SU(2) in L2(R3), defined by

(R(g)ψ)(q) = ψ(Adg−1q), q ∈ R
3,

where ψ ∈ L2(R3), g ∈ SU(2), and Ad is the adjoint representation of SU(2)
in su(2) � R3. For a = (a1, a2, a3) ∈ R3 setting g(a) = e−i�(a1σ1+a2σ2+a3σ3) ∈
SU(2), we have

∂

∂ai
(R ⊗ ρs)(g(a))

∣∣∣∣
a=0

= iJj , j = 1, 2, 3.

2. Charged spin particle in the magnetic field

2.1. Pauli Hamiltonian.

2.2. Electron in a magnetic field.
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3. System of Identical Particles

Consider a quantum system of n particles of spins s1, . . . , sn. According
to the basic principles of quantum mechanics, the Hilbert space of states of
the system is given by

H = Hs1 ⊗ · · · ⊗ Hsn = L2(R3) ⊗ Ds1 · · · ⊗ L2(R3) ⊗ Dsn .

Introducing the variables ξi = (qi, σi), where qi ∈ R3 and σi ∈ {−si,−si +
1, . . . , si−1, si}, the wave function of the system can be written as Ψ(ξ1, . . . , ξn).
Corresponding n-particle Hamiltonian (without the spin interaction) in the
Schrödinger representation can be written as

H = −
n∑

i=1

�2

2mi
∆i +

n∑
i=1

Vi(qi) +
∑

1≤i<k≤n

Uik(qi − qk),

where the first term is the operator of kinetic energy of the system of n
particles, the second term describes the interaction of the particles with
the corresponding external fields, and the last term describes the pair-wise
interaction of particles.

When the particles are identical, i.e., when m1 = · · · = mn = m and
s1 = · · · = sn = s, the symmetric group Symn on n elements acts on H by

PπΨ(ξ1, . . . , ξn) = Ψ(ξπ1 , . . . , ξπn), π ∈ Symm(n).

Since in this case it is natural to assume that Vi = V and Uik = U for all
i = 1, . . . , n and 1 ≤ i < k ≤ n, the Hamiltonian H commutes with the
Symm(n)-action:

[H,Pπ] = 0 for all π ∈ Symm(n).

As the result, H can be restricted to the Symn-invariant subspaces of H , in
particular to the subspace Hsym of totally symmetric functions Ψ(ξ1, . . . , ξn),
and to the subspace Halt of totally antisymmetric functions. It turns out
that in the case of identical particles the Hilbert space of states is defined
as follows.

The Pauli Principle of Identical Particles. The Hilbert space of
states for the system of n identical particles of spin s is the totally symmetric
subspace Hsym of (L2(R3)⊗Ds)⊗

n
for the case of bosons (integer spin), and

the totally antisymmetric subspace Halt for the case of fermions (half-integer
spin).

This is another postulate of quantum mechanics, also known as Pauli
exclusion principle for fermions.



CHAPTER 7

Fermion Systems and Supersymmetry

1. Canonical Anticommutation Relations

1.1. Motivation. As was discussed in Section 3.1 of Chapter 2, the
Hilbert space H = L2(R) for the one-dimensional quantum particle can be
described in terms of the creation and annihilation operators. Namely, the
operators

a =
1√
2�

(ωQ + iP ) and a∗ =
1√
2�

(ωQ − iP )

satisfy the canonical commutation relation

[a, a∗] = I

on W 2,2(R) ∩ Ŵ 2,2(R), and the vectors

ψk =
(a∗)k

√
k!

ψ0, k ∈ Z≥0,

where ψ0 ∈ H satisfies aψ0 = 0, form an orthonormal basis for H . Corre-
sponding operator N = a∗a is self-adjoint and has an integer spectrum,

Nψk = kψk, k ∈ Z≥0.

Similarly, for several degrees of freedom, H = L2(Rn) and the creation and
annihilation operators

a∗k =
1√
2�

(ωQk − iPk) and ak =
1√
2�

(ωQk + iPk) , k = 1, . . . , n,

satisfy canonical commutation relations

(1.1) [ak, a
∗
l ] = δklI and [ak, al] = [a∗k, a

∗
l ] = 0, k, l = 1, . . . , n.

There exists a vector ψ0 ∈ H such that akψ0 = 0, k = 1, . . . , n (ψ0(q) =

(π�)−n/4e−
q2

2� ), and the vectors

ψk1,...,kn =
(a∗1)k1 . . . (a∗n)kn

√
k1! . . . kn!

ψ0, (k1, . . . , kn) ∈ Z
n
≥0,

form an orthonormal basis for H . The operator

N =
n∑

k=1

a∗kak

141
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is self-adjoint and has an integer spectrum:

Nψk1,...,kn = (k1 + · · · + kn)ψk1,...,kn ,

and the Hilbert space H decomposes into the direct sum of invariant sub-
spaces

(1.2) H =
∞⊕

k=0

Hk,

where N |Hk
= kI|Hk

.
While studying the spin operators in the previous chapter, we found that

for the quantum particle of spin 1
2 the operators σ± = 2S±/� have the form

σ− =
(

0 0
1 0

)
, σ− =

(
0 1
0 0

)
,

are nilpotent, σ2± = 0, and satisfy the following anticommutation relation

σ+σ− + σ−σ+ = I2.

Introducing the notion of an anticommutator of two operators,

[A,B]+ = AB + BA,

we can say that the operators a = σ− and a∗ = σ+ satisfy canonical anti-
commutation relations

[a,a
∗]+ = I and [a, a]+ = [a∗, a∗]+ = 0.

The vectors e0 = ( 0
1 ) and a∗e0 = ( 1

0 ) form an orthonormal basis of C2, and

N = a∗a =
1
2
(σ3 + I2) =

(
1 0
0 0

)
.

In addition, the vector e0 has the property ae0 = 0. We thus say that the
Hilbert space of a fermion particle with one degree of freedom is HF = C2,
and it is generated by the creation and annihilation operators a and a∗
satisfying canonical anticommutation relations.

Similarly, canonical anticommutation relations for several degrees of free-
dom have the form

(1.3) [ak, a
∗
l ]+ = δklI and [ak, al]+ = [a∗k, a

∗
l ]+ = 0, k, l = 1, . . . , n,

where operators a∗j are adjoint to aj , j = 1, . . . , n. These relations can be
realized in the Hilbert space HF = C

2 ⊗ · · · ⊗ C
2︸ ︷︷ ︸

n

= C2n
as follows

aj = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
j−1

⊗a ⊗ I2 ⊗ · · · ⊗ I2,(1.4)

a∗j = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
j−1

⊗a∗ ⊗ I2 ⊗ · · · ⊗ I2,(1.5)

j = 1, . . . , n. It is easy to see that this representation is irreducible, i.e.,
in there are no nontrivial subspaces of HF , invariant with respect to the
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operators aj and a∗j , j = 1, . . . , n. Moreover, the vector ψ0 = e0 ⊗ · · · ⊗ e0 ∈
HF satisfies ajψ0 = 0, j = 1, . . . , n, and the vectors

ψk1...kn = (a∗1)
k1 . . . (a∗n)knψ0, (k1, . . . , kn) ∈ {0, 1}n,

form an orthonormal basis for HF . The operator

N =
n∑

k=1

a∗kak

is self-adjoint and has an integer spectrum:

Nψk1,...,kn = (k1 + · · · + kn)ψk1,...,kn ,

and the Hilbert space HF decomposes into the direct sum of invariant sub-
spaces

(1.6) HF =
n⊕

k=0

Hk,

where N |Hk
= kI|Hk

.

1.2. Clifford algebras. Let V be a finite-dimensional vector space
over the field k of characteristic zero, and let Q : V → k be a symmet-
ric non-degenerate quadratic form on V , i.e., Q(v) = Φ(v, v), v ∈ V , where
Φ : V ⊗k V → k is a symmetric non-degenerate bilinear form. The pair
(V,Q) is called quadratic vector space.

Definition. A Clifford algebra C(V,Q) = C(V ) associated with a qua-
dratic vector space (V,Q) is a k-algebra generated by the vector space V
with relations

v2 = Q(v) · 1, v ∈ V.

Equivalently, Clifford algebra is defined as quotient algebra

C(V ) = T (V )/J,

where J is a two-sided ideal in the tensor algebra T (V ) of V , generated by
the elements u ⊗ v + v ⊗ u − 2Φ(u, v) · 1 for all u, v ∈ V , and 1 is the unit
in T (V ). In terms of a basis {ei}n

i=1 of V , the Clifford algebra Cl(V,Q) is a
C-algebra with the generators e1, . . . , en, satisfying the relations

[ei, ej ]+ = eiej + ejei = 2Φ(ei, ej), i, j = 1, . . . , n.

The Clifford algebra C(V ) is a superalgebra with the Z2 grading de-
scended from the tensor algebra T (V ). The natural map V ↪→ C(V ) is
injective and V is identified with its image in C(V ). The elements in V are
odd. The definition of C(V ) is compatible with the field change: if k ⊂ K
is a field extension and VK = K ⊗k Vk, then

C(VK) = K ⊗k C(Vk).
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If the field k is algebraically closed (e.g., k = C), there always exists an
orthonormal basis for V — a basis {ei}n

i=1 such that

Φ(ei, ek) = δik, i, k = 1, . . . , n.

In this case there is essentially one Clifford algebra Cn for every dimension
n. If k = R, there exists non-negative integers p, q such that p + q = n and
there is an isomorphism V � Rn such that

Q(x) = x2
1 + · · · + x2

p − x2
p+1 − · · · − x2

n, x ∈ R
n.

This classifies Cliffords algebras over R.
A (left) module S for a Clifford algebra C(V ) is superalgebra module

— a finite-dimensional superspace S over k with a map ρ : C(V ) ⊗ S → S
such that

|ρ(a ⊗ s)| = |a| + |s|
and

ρ(ab ⊗ s) = ρ(a ⊗ ρ(b ⊗ s))
for all a, b ∈ C(V ) and s ∈ S.

The fermion Hilbert space HF from the previous section is an irreducible
C2n module. Indeed, it follows from the canonical anticommutation relations
(1.3) that the operators

γ2k−1 = ak + a∗k(1.7)

γ2k = −i(ak − a∗k)(1.8)

k = 1, . . . , n, satisfy the relations

[γµ, γν ]+ = 2δµνI,

where I is the identity operator on HF = C2n
. Thus the Clifford algebra

C2n acts on HF and ρ(1) = I. The representation ρ : C2n → End(HF )
is irreducible and is analogous to the Schrödinger representation for the
canonical anticommutation relations.

Set N =
∑n

j=1 a∗jaj and define the chirality operator Γ = eπiN . Since
the operator N has an integral spectrum, Γ2 = I. Moreover, we have that

[Γ, γµ]+ = 0, µ = 1, . . . , 2n

Indeed, it follows from (1.3) that

Na∗j = a∗j (N + I) and Naj = aj(N − I),

so that
eπiNa∗j = a∗je

πi(N+I) and eπiNaj = aje
πi(N−I).

Thus Γ anticommutes with all aj , a
∗
j , and hence with all γµ. Since Γ2 = I,

the operators

P± =
1
2
(I ± Γ)

are orthogonal projection operators and we have a decomposition

HF = H+ ⊕ H−
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into the subspaces of positive and negative spinors, and γµ(H+) = H−.
Also, since eπia∗

j aj = I − 2a∗jaj = −iγ2j−1γ2j , we have

Γ = (−i)nγ1 . . . γ2n.

When n = 2, matrices γ1, γ2, γ3, γ4 are famous γ-matrices of Dirac with
Γ = γ5.

The analog of Stone-von Neumann theorem for canonical anticommuta-
tion relations is the following statement.

Theorem 1.1. Let C(V ) be a Clifford algebra over a C-vector space V .

(i) If dim V = 2n, then

C(V ) � End(S) where S � C
2n−1|2n−1

.

(ii) If dim V = 2n + 1, then

C(V ) � D ⊗ End(S0), where D = C[ε]/{ε2 − 1} and S0 � C
2n

.

Proof. If dimV = 2n, the quadratic vector space (V,Q) is isomorphic
to U ⊕ U∨ with the quadratic form Q(u + α) = α(u), where U∨ is the dual
vector space to U , dimU = n. (Indeed, using the orthonormal basis {ei}2n

i=1,
set U to be the linear span of the vectors 1√

2
(ek +

√−1ek+n), k = 1, . . . , n,

and U∨ be the subspace spanned by the vectors 1√
2
(ek − √−1ek+n), k =

1, . . . , n.) Set S = Λ•U∨ and define the mapping

ρ : C(U ⊕ U∨) → End(S)

by

ρ(u)s = ius, ρ(α)s = α ∧ s,

where u ∈ U,α ∈ U∨ and s ∈ S. It is easy to see that the mapping ρ is an
isomorphism of superalgebras.

When dimV = 2n + 1, the quadratic vector space (V,Q) is isomorphic
to the U ⊗ U∨ ⊕ C · e2n+1, where Q(u + α + ae2n+1) = α(u) + a2. Since
C(C · e2n+1) � D, we have, setting S0 = ΛU∨,

C(V ) � End(S) ⊗ D � D ⊗ End(S0).

�

Remark. Part (i) of the Theorem is a fermion analog of Stone-von
Neumann theorem. Choosing a polarization of V given by the orthonormal
basis {ej}2n

j=1 of V , we see that S � HF with 1 �→ ψ0 and the operators
αk∧ and iuk

become, correspondingly, creation and annihilation operators
â∗k, âk, k = 1, . . . , n.
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2. Grassmann algebras

A Grassmann algebra Grn with n generators is a C-algebra with the
generators θ1, . . . , θn satisfying the relations

θiθj + θjθi = 0, i, j = 1, . . . , n.

Of course, Grn is nothing but the exterior algebra Λ•V of an n-dimensional
vector space V with a choice of a basis of V . In this form it can be considered
as counterpart of a polynomial algebra C[x1, . . . , xn] — a symmetric algebra
Sym(V ) of an n n-dimensional vector space V with a choice of a basis.

The Grassmann algebra Grn is a vector space of dimension 2n and it
admits a decomposition

(2.1) Grn = C ⊕ Gr1n ⊕ · · · ⊕ Grn
n

into grades components Grk
n of degree k and dimension

(
n
k

)
, k = 0, . . . , n.

The multiplication in Grn is graded-commutative:

αβ = (−1)|α|β|βα

for homogenous elements α, β ∈ Grn.
The advantage of using Grassmann algebra is that we can realize the

representation ρ of a Clifford algebra associated with canonical anticommu-
tation relations, considered in the previous section, by an analogs of mul-
tiplication and differentiation operators, quite similar to the ones used for
canonical commutation relations. Namely, let θ̂i be a left-multiplication by

θi operator in Grn, and let
∂

∂θi
be a left derivative operator,

∂

∂θi
θi1 . . . θik =

k∑
l=1

(−1)l−1δiilθi1 . . . θ̌il . . . θik .

The derivative operators satisfy the graded Leibniz rule
∂

∂θi
(αβ) =

∂α

∂θi
β + (−1)|α|α

∂β

∂θi
,

and it is easy to verify that the operators θ̂i,
∂

∂θi
satisfy[

θ̂i, θ̂j

]
+

=
[

∂

∂θi
,

∂

∂θj

]
+

= 0

and [
θ̂i,

∂

∂θj

]
+

= δijI, i, j = 1, . . . , n.

Moreover, operators θ̂i,
∂

∂θi
are Hermitian conjugate with respect to the

standard inner product in Grn with the orthonormal basis given by the
monomials θi1 . . . θik for all 1 ≤ i1 < · · · < ik ≤ n.
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These arguments prove the following result.

Proposition 2.1. The assigment HF � ψi1...ik �→ θi1 . . . θik ∈ Grn

establish an isometric isomorphism HF � Grn between the fermion Hilbert
space of n identical particles and the vector space of Grassmann algebra
which preserves decompositions (1.6) and (2.1) and such that a∗i �→ θ̂i and

ai �→ ∂

∂θi
, i = 1, . . . , n.

Thus in analogy the holomorphic representation of canonical commuta-
tion relations (1.1), we obtain a realization of the operators ai, a

∗
i satisfying

canonical anticommutation relations (1.3) as derivation and multiplication
operators in Grn. In Section 1.5 we will develop the notion of an integral
over the Grassmann variables and will show that the inner product in Grn
can be also written in a form similar to the holomorphic representation.

2.1. Commutative superalgebras. The notion of a commutative su-
peralgebra allows to consider exterior and symmetric algebras (or Grass-
mann and polynomial algebras) on the same footing.

Definition. A graded (Z/2-graded) vector space over C is a vector
space W with a decomposition

W = W 0 ⊕ W 1

into even and odd subspaces. The elements in W 0 ∪ W 1 \ {0} are called
homogeneous and the parity is a map | · | : W 0 ∪ W 1 \ {0} → {0, 1} such
that |w| = 0 for w ∈ W 0 and |w| = 1 for w ∈ W 1.

We reserve the notation V for ordinary (even) vector spaces, denoting
graded vector spaces by W .

A tensor product of graded vector spaces is defined in the same way
as for ordinary vector spaces. However, the difference between ordinary
and graded vector spaces becomes transparent for the corresponding tensor
categories. Namely, the associativity morphism

cW1W2W3
: W1 ⊗ (W2 ⊗ W3) → (W1 ⊗ W2) ⊗ W3

for graded vector spaces is defined by the same formula

cW1W2W3
(w1 ⊗ (w2 ⊗ w3)) = (w1 ⊗ w2) ⊗ w3

as in the case of ordinary vector spaces, whereas the commutativity mor-
phism

σW1W2
: W1 ⊗ W2 → W2 ⊗ W1

is defined by
σW1W2

(w1 ⊗ w2) = (−1)|w1||w2|w2 ⊗ w1.

The tensor algebra T (W ) of a graded vector space W is defined using the
associativity morphism. The exterior algebra Λ•W and symmetric algebra
Sym(W ) of W are defined as a quotient algebras of T (W ) by using the
commutativity morphism.
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Definition. A superalgebra over C is a graded vector space A = A0⊕A1

with a C-algebra structure such that 1 ∈ A0 and

A0 · A0 ⊂ A0, A0 · A1 ⊂ A1, A1 · A1 ⊂ A0.

A superalgebra A is a commutative superalgebra, if

a · b = (−1)|a||b|b · a
for homogeneous elements a, b ∈ A.

Exterior Λ•V and symmetric Sym(V ) algebras of a vector space V are
obvious examples of commutative superalgebras.

Definition. Let W = W 0 ⊕ W 1 be a graded vector space. A parity-
reversed vector space ΠW is a graded vector space with (ΠW )0 = W 1 and
(ΠW )1 = W 0.

It immediately follows from the above definitions that

Λ•(V ) = Sym(ΠV ).

Thus the Grassmann algebra Grn can be considered as polynomial algebra
on odd generators,

Grn = C[θ1, . . . , θn].
To avoid the confusion, in what follows we always use the Greek letters for
the odd generators.

2.2. Differential calculus on Grassmann algebra.

2.3. Grassmann integration. Every element f ∈ C[θ1, . . . , θn] can
be uniquely written as

f =
n∑

k=0

∑
1≤i1<···<ik≤n

f i1...ikθi1 . . . θik .

Definition. The integral on a Grassmann algebra Grn with an ordered
set of generators θ1, . . . , θn (Berezin integral) is a linear functional B : Grn →
C, defined by

B(f) = f12...n.

It is a tradition to write the Berezin integral as

B(f) =
∫

f(θ1, . . . , θn)dθ1 . . . dθn.

It follows from the definition of the partial derivatives on Grassmann
algebra that ∫

f(θ1, . . . , θn)dθ1 . . . dθn =
∂

∂θn
. . .

∂

∂θ1
f,

so that ∫
∂

∂θi
f(θ1, . . . , θn)dθ1 . . . dθn = 0.
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This leads to the following integration by parts formula∫ (
∂f

∂θi
g

)
(θ1, . . . , θn) dθ1 . . . dθn = −(−1)|f |

∫ (
f

∂g

∂θi

)
(θ1, . . . , θn) dθ1 . . . dθn

for homogeneous f ∈ Grn and g ∈ Grn.

Remark. Berezin integral is not an integral in the sense of integration
theory. It is defined as linear functional on a Grassmann algebra Grn and it
depends on the choice of the ordered generators for Grn, which is symbolized
by dθ1 . . . dθn. In particular, for any permutation σ ∈ Symn,∫

f(θ1, . . . , θn)dθ1 . . . dθn = (−1)ε(σ)

∫
f(θ1, . . . , θn)dθσ(1) . . . dθσ(n),

where σ is the parity of a permutation σ.

Remark. Using the embeddings Grk ⊂ Grn for k ≤ n, physicists usu-
ally define the Berezin integral as a “repeated integral” starting from the
following “one-dimensional integrals”∫

dθj = 0,

∫
θjdθj = 1, j = 1, . . . , n.

Lemma 2.1 (Change of variables for Berezin integral). Let θ1, . . . , θn

and θ̃1, . . . , θ̃n be two sets of generators of the Grassmann algebra Grn, θi =∑n
j=1 aij θ̃j, j = 1, . . . , n, with a non-degenerate n×n matrix A = {aij}n

i,j=1.
Then ∫

f(θ1, . . . , θn)dθ1 . . . dθn =
1

det A

∫
f̃(θ̃1, . . . , θ̃n)dθ̃1 . . . dθ̃n,

where f̃(θ̃1, . . . , θ̃n) = f(
∑n

j=1 a1j θ̃j , . . . ,
∑n

j=1 anj θ̃j).

Proof. By multi-linear algebra, f̃12...n = f12...n det A. �
Remark. Informally, the lemma states that under the change of vari-

ables θi =
∑n

j=1 aij θ̃j ,

dθ1 . . . dθn =
1

det A
dθ̃1 . . . dθ̃n.

This differs from the usual change of variables formula for Lebesgue integral∫
Rn

f(x1, . . . , xn)dx1 . . . dxn = |det A|
∫

Rn

f̃(y1, . . . , yn)dy1 . . . dyn,

or dx1 . . . dxn = |det A|dy1 . . . dyn, where xi =
∑n

j=1 aijyj . Of course,
Berezin integral is not an integral with respect to any measure but rather is
a multiple derivative, which explains this difference.

Let A = {aij}n
i,j=1 be n × n skew-symmetric matrix. Its Pfaffian Pf(A)

is defined by

Pf(A) =
1

n!2n

∑
σ∈Sym2n

(−1)ε(σ)aσ(1)σ(2) . . . aσ(2n−1)σ(2n),
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where ε(σ) is the parity of a permutation σ. Clearly Pf(A) = 0 when n is
odd.

Proposition 2.2 (Gaussian integrals for Grassmann variables). Let A =
{aij}n

i,j=1 be n × n skew-symmetric matrix. Then
(i) ∫

exp

⎧⎨⎩1
2

n∑
i,j=1

aijθiθj

⎫⎬⎭ dθ1 . . . dθn = Pf(A).

(ii)
Pf(A)2 = detA.

Proof. It is sufficient to prove part (i) for n = 2m. It follows from the
definition of the Pfaffian

Pf(A)θ1 . . . θn =
1

n!2n

⎛⎝ n∑
i,j=1

θiθj

⎞⎠m

,

and from the definition of Berezin integral. Part (ii) is a classical result,
which can be proved by Berezin integral as follows. Suppose first that A is
real-valued. There exists an orthogonal matric C, det C = 1, such that

CAC−1 =

⎛⎜⎜⎜⎜⎝
0 λ1 . . . 0 0

−λ1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 0 λm

0 0 . . . −λm 0

⎞⎟⎟⎟⎟⎠
is a block-diagonal matrix. Since∫

eλ1θ1θ2+···+λmθ2m−1θ2mdθ1 . . . dθ2m = λ1 . . . λm,

using part (i) and change of variables formula we obtain Pf(A)2 = detA.
For complex-valued A the relation holds since both sides are polynomials in
variables aij , 1 ≤ i < j ≤ n, which coincide for real values of aij . �

For a Grassmann algebra Gr2n = C[θ1, θ̄1 . . . , θn, θ̄n] with 2n generators
denote by

∫
dθ̄dθ the corresponding Berezin integral,∫

f(θ, θ̄)dθ̄dθ =
∂

∂θ̄n

∂

∂θn
. . .

∂

∂θ̄1

∂

∂θ1
f, f ∈ C[θ1, θ̄1 . . . , θn, θ̄n].

We also set∫
f(θ, θ̄)dθdθ̄ =

∂

∂θn

∂

∂θ̄n
. . .

∂

∂θ1

∂

∂θ̄1
f = (−1)n

∫
f(θ, θ̄)dθ̄dθ.

Lemma 2.2. For an n×n matrix A = {aij}n
i,j=1 set (Aθ, θ̄) =

∑n
i,j=1 aijθiθ̄j.

Then ∫
e(Aθ,θ̄)dθ̄dθ = detA.
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Proof. According to Proposition 2.2,∫
e(Aθ,θ̄)dθ̄dθ = Pf(A),

where A =
(

0 A
−At 0

)
is a 2n×2n skew-symmetric matrix. We have Pf(A)2 =

detA = (detA)2, so that Pf(A) = ±det A, and checking for A = In deter-
mines the correct sign. �

Definition. An involution on a Grassmann algebra Gr over C is a
complex anti-linear mapping Gr � f �→ f∗ ∈ Gr such that (f∗)∗ = f and
(fg)∗ = g∗f∗ for all f, g ∈ Gr.

The Grassmann algebra C[θ1, θ̄1 . . . , θn, θ̄n] has a natural involution de-
fined on generators by (θ1)∗ = θ̄1, (θ̄1)∗ = θ1, . . . , (θn)∗ = θ̄n, (θ̄n)∗ = θn. In
particular, for

f(θ) =
n∑

k=0

∑
1≤i1<···<ik≤n

f i1...ik θi1 . . . θik ∈ Grn ⊂ Gr2n

we have

f∗(θ) = f(θ) =
n∑

k=0

∑
1≤i1<···<ik≤n

f i1...ik θ̄i1 . . . θ̄ik ∈ Gr2n.

Lemma 2.3. The standard inner product on the Grassmann algebra Grn =
C[θ1, . . . , θn] is expressed as the following Berezin integral over the Grass-
mann algebra Gr2n = C[θ1, θ̄1 . . . , θn, θ̄n]

〈f1, f2〉 =
∫

f1(θ)f2(θ)e−θ̄θdθ̄dθ,

where θ̄θ = θ̄1θ1 + · · · + θ̄nθn.

Proof. It sufficient to prove the lemma for monomials. It is clear that
for f1(θ) = θi1 . . . θik and f2(θ) = θj1 . . . θjl

the integral is 0 unless k = l and
i1 = j1, . . . , ik = jk. In this case we have

〈θi1 . . . θik , θi1 . . . θik〉 =
∫

θi1 . . . θik θ̄ik . . . θ̄i1e
−(θ̄1θ1+···+θ̄nθn)dθ̄dθ

=
∫

θ1 . . . θnθ̄n . . . θ̄1dθ̄dθ = 1.

�

Corollary 2.1. The operators
∂

∂θi
and θ̂i, i = 1, . . . , n, are adjoint

with respect to the inner product on Gr2n.
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Proof. It follows from Lemma 2.3 the integration by parts formula that〈
∂f

∂θi
, f2

〉
=
∫

∂f1

∂θi
(θ)f2(θ)e−θ̄θdθ̄dθ

= −(−1)|f1|+|f2|
∫

f1(θ)f2(θ)θ̄ie
−θ̄θdθ̄dθ

= −(−1)|f1|+|f2|
∫

f1(θ)θif2(θ)e−θ̄θdθ̄dθ

= 〈f1, θ̂if2〉,

since
∂

∂θi
e−θ̄θ = θ̄ie

−θ̄θ and the integrals are different from 0 if and only if

|f1| + |f2| is odd. �

2.4. Functions with anticommuting values.

2.5. Supermanifolds. A supercommutative superalgebra A(M) of dif-
ferential forms on the manifold M can be also considered as a superalgebra
of functions on a supermanifold ΠTM . Namely, to every ωp ∈ Ap(M), given
in local coordinates on U ⊂ M by

ωp =
∑

i1<···<ip

ai1...ip(x)dxi1 ∧ · · · ∧ dxip ,

we assign

ωp(x, η) =
∑

i1<···<ip

ai1...ip(x)ηi1 . . . ηip ∈ C∞(U)[η1, . . . , ηn].

Since under a change of coordinates ai1...ip(x) transform like coefficients
of differential forms, and η1, . . . , ηn — like components of tangent vectors,
ωp(x, η) is a well-defined function on the supermanifold ΠTM . The de Rham
differential d gives rise to an odd vector field δ on ΠTM ,

δ =
n∑

k=1

ηk
∂

∂xk

with the property that δ2 = 0. Integration of a top form over M reduces to
the integration of a corresponding function over ΠTM with respect to the
canonical volume form dxdη = dx1 . . . dxndη1 . . . dηn:∫

M

ωn =
∫

ΠTM

ωn(x, η)dxdη.

The volume form dxdη is well-defined due the opposite change of variables
formulas for the ordinary and Berezin’s integrals.
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2.6. Classical mechanics on supermanifolds.

Example 2.1 (Free spin 1
2 particle). The configuration space is the

supermanifold M = ΠTRn � Rn|n — the tangent bundle to Rn with the
reversed parity of the fibres, with even and odd real coordinates q1, . . . , qn

and ψ1, . . . , ψn. Denote by π : M → Rn the corresponding projection and let
π∗(TRn) be the pull-back to M by the mapping π of the tangent bundle TRn

over Rn. For every γ ∈ ΩI(Rn) — the space of smooth maps of I = [t0, t1] to
Rn, let ψ be the odd vector field along the path γ = q(t) in Rn — a global
section over I of the bundle γ∗(ΠTRn), and let d

dt be the connection in
γ∗(ΠTRn) corresponding to the Euclidean metric on Rn — the Levi-Civita
connection. Explicitly,

ψ(t) =
n∑

k=1

ψk(t)
∂

∂qk
, t ∈ I.

Every pair (q(t),ψ(t)) — a path in M , lifts to a path γ(t) = (q(t), q̇(t),ψ(t))
in π∗TRn, and we define the Lagrangian (with values in auxiliary Grassmann
algebra) along this path by

L =
mq̇2

2
+

i

2
〈ψ, ψ̇〉 =

n∑
k=1

mq̇2
k

2
+ i

n∑
k=1

ψkψ̇k

2

and the corresponding action functional by

S(γ(t)) =
∫ t1

t0

L(q(t), q̇(t),ψ(t))dt.

The Euler-Lagrange equations are

q̈ = 0 and ψ̇ = 0.

Corresponding Legendre transformation introduces canonically conjugated
momenta as follows

pj =
∂L

∂q̇j
= mq̇j and πj =

∂L

∂ψ̇j

= − i

2
ψj , j = 1, . . . , n.

Thus the phase space is a supermanifold R2n|n with real coordinates p,q,ψ
and the symplectic form

ω = dp ∧ dq +
i

2
dψdψ,

and the Hamiltonian

(2.2) H =
p2

2m
.

Example 2.2 (Spin 1
2 particle in a constant magnetic field). On the

configuration space R3|3 with real coordinates q,ψ consider the Lagrangian

L =
m

2
q̇2 +

i

2
ψψ̇ +

i

2
(B × ψ)ψ.
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The corresponding phase space is R6|3 with real coordinates p,q,ψ and the
symplectic form

ω = dp ∧ dq +
i

2
dψdψ,

and the Hamiltonian is

(2.3) H =
p2

2m
− i

2
(B × ψ)ψ.

3. Quantization of classical systems on supermanifolds

Quantization of the phase space R2n|n with the symplectic form

ω = dp ∧ dq +
i

2
dψdψ

is the Hilbert space H = L2(Rn) ⊗ C2d
, where d =

[
n
2

]
, where now ψ̂k

satisfy Clifford algebra relations

[ψ̂k, ψ̂l]+ = δklI,

and Pk, Qk satisfy Heisenberg commutation relations. The Hamiltonian op-
erator corresponding to (2.2) is

Ĥ =
P2

2m

and describes free quantum particle of spin 1
2 .

Similarly, Hamiltonian operator corresponding to (2.3)

Ĥ =
P2

2m
− B · σ

2
in H = L2(R3) ⊗ C2, which describes quantum particle of spin 1

2 in a
constant magnetic field. The second term in this formula is called Pauli
Hamiltonian.

4. Path Integrals for Anticommuting Variables

4.1. Matrix and Wick symbols of operators. Let â∗k, âk, k = 1, . . . , n
be fermion creation and annihilation operators of n identical particles, let

(4.1) HF =
n⊕

k=0

Hk

be the decomposition of the fermion Hilbert space into a direct sum of
invariant subspaces of the operator N =

∑n
k=1 â∗kâk, and denote by Pk cor-

responding orthogonal projection operators onto Hk. According to the de-
composition (4.1), every operator A in HF can be represented in a follwoing
block-matrix form

A =

⎛⎜⎜⎝
A00 A01 . . . A0n

A10 A11 . . . A1n

. . . . . . . . . . . . . . . . . . . .
An0 An1 . . . Ann

⎞⎟⎟⎠ ,
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where Aij : Hj → Hi is the operator PiAPj .

Definition. The supertrace of an operator A on HF is defined by

Trs A = Tr ΓA =
n∑

k=0

(−1)k Tr|Hk
PkA,

where Γ is the chirality operator in HF .

Let Gr2n = C[a1, ā1 . . . , an, ān] be the Grassmann algebra with 2n gen-
erators.

Definition. A matrix symbol of an operator A : HF → HF is a element
A(ā, a) ∈ Gr2n, defined by

A(ā, a) =
n∑

i,j=0

∑
0≤k1<···<ki≤n
0≤l1<···<lj≤n

Aij(k1, . . . , ki; l1, . . . , lj)āk1 . . . āki
alj . . . al1 ,

where Aij(k1, . . . , ki; l1, . . . , lj) = 〈Aψl1...lj , ψk1...ki
〉.

Since Cl2n � End(HF ), every operator A : HF → HF can be uniquely
represented in a normal form as follows

A =
n∑

i,j=0

∑
0≤k1<···<ki≤n
0≤l1<···<lj≤n

Kij(k1, . . . , ki; l1, . . . , lj)â∗k1
. . . â∗ki

âlj . . . âl1 .

Definition. A Wick symbol of an operator A : HF → HF is a element
A(ā, a) ∈ Gr2n, defined by

A(ā, a) =
n∑

i,j=0

∑
0≤k1<···<ki≤n
0≤l1<···<lj≤n

Kij(k1, . . . , ki; l1, . . . , lj)āk1 . . . āki
alj . . . al1 .

When n = 1, every operator A in HF � C2 is represented by

A =
(

α00 α01

α10 α11

)
,

so that
A(ā, a) = α00 + α01a + α10ā + α11āa ∈ C[a, ā].

On the other hand,

A = α00ââ∗ +α01â+α10â
∗ +α11â

∗â = α00I +α01â+α10â
∗ +(α11−α00)â∗â,

so that

A(ā, a) = α00 + α01a + α10ā + (α11 − α00)āa ∈ C[a, ā].

In this case it is elementary to verify that A(ā, a) = A(ā, a)eāa and, in fact,
this relation holds in general.
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Lemma 4.1. Matrix and Wick symbols of an operator A : HF → HF in
the Hilbert space of n identical fermions are related by

A(ā, a) = A(ā, a)eāa,

where āa =
∑n

k=1 ākak.

Proof. It is sufficient to compute the matrix symbol of the operator
A = â∗k1

. . . â∗ki
âlj . . . âl1 . Denote by K = {k1, . . . , ki} and L = {l1, . . . , lj}

the ordered subsets of the set {1, . . . , n}, and let S = {s1, . . . , sp} and
T = {t1, . . . , tq} be two other ordered subsets of {1, . . . , n}. Then the inner
product

〈Aψs1...sp , ψt1...tq〉 = 〈âlj . . . âl1ψs1...sp , âki
. . . âk1ψt1...tq〉

is different from 0 if and only if L ⊂ S, K ⊂ T and the corresponding set
complements coincide: S \ L = T \ K. In this case,

〈Aψs1...sp , ψt1...tq〉 = (−1)ε(L,S)+ε(K,T ).

Here for any pair of ordered subsets L and S of {1, . . . , n} such that L ⊂ S,
we denote by ε(L, S) the parity of a permutation that sends L � (S \ L) to
S. Thus the matrix symbol of A is given by

A(ā, a) =
∑
S,T

(−1)ε(L,S)+ε(K,T )āt1 . . . ātqasp . . . as1 ,

where the summation goes over the subsets S and T satisfying the above
condition. Setting {r1, . . . , rm} = S \ L = T \ K, we get

A(ā, a) =
n∑

m=0

∑
1≤r1<···<rm≤n

āk1 . . . āki
ār1 . . . ārmarm . . . ar1alj . . . al1

= āk1 . . . āki
alj . . . al1

n∑
m=0

∑
1≤r1<···<rm≤n

ār1ar1 . . . ārmarm

= āk1 . . . āki
alj . . . al1e

ā1a1+···+ānan .

�
To matrix symbol A(ā, a) of an operator A on HF (respectively, Wick

symbol A(ā, a)) one canonically associates the elements A(ā, η) and A(η̄, a)
(respectively A(ā, η) and A(η̄, a)) in the larger Grassmann algebra Gr4n =
C[a1, ā1, . . . , an, ān, η1, η̄1, . . . , ηn, η̄n] by replacing, correspondingly, Grass-
mann variables ai by ηi and āi by η̄i. We define the incomplete Berezin
integral as the following linear mapping

∫
dη̄dη : Gr4n → Gr2n:∫

f(a, ā, η, η̄)dη̄dη =
∂

∂η̄n

∂

∂ηn
. . .

∂

∂η̄1

∂

∂η1
f, f ∈ Gr4n.

The following result shows the usefulness of matrix and Wick symbols.

Theorem 4.1. Let A and B be two operators in HF with matrix symbols
A(ā, a) and B(ā, a). Then the following formulas hold.
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(i) The matrix and Wick symbols of C = AB are given by

C(ā, a) =
∫

A(ā, η)B(η̄, a)e−η̄ηdη̄dη,

C(ā, a) =
∫

A(ā, η)B(η̄, a)e−(η̄−ā)(η−a)dη̄dη.

(ii) The trace and supertrace of an operator A are given by

Tr A =
∫

A(ā, a)eāadadā =
∫

A(ā, a)e2āadadā,

Trs A =
∫

A(ā, a)e−āadāda =
∫

A(ā, a)dāda.

Proof. The first formula in part (i) follows from∫
ηlj . . . ηl1 η̄k1 . . . η̄ki

e−η̄ηdη̄dη = δijδk1l1 . . . δkili

and the rules of matrix multiplication. The second formula in part (i) is
obtained using Lemma 4.1. The first and second formulas in part (ii) follow,
correspondingly, from∫

āk1 . . . āki
alj . . . al1e

āadadā = δijδk1l1 . . . δkili

and ∫
āk1 . . . āki

alj . . . al1e
−āadāda = (−1)iδijδk1l1 . . . δkili .

�

Remark. Note the difference between formulas for Tr A and Trs A.

Remark. Since Γ = eπiâ∗â =
∏n

k=1(1− 2â∗kâk) (see Section 1.2), for the
Wick symbol of Γ we have

Γ(ā, a) =
n∏

k=1

(1 − 2ākak) = e−2āa,

so that

Trs Γ = Tr I =
∫

e−2āadāda = 2n = dimHF .

Here is another derivation of the formula for Trs A = Tr AΓ based on the
formulas for TrA, Part (i) of Theorem 4.1 and the expression Γ(ā, a) =
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e−2āa. We have

Tr AΓ =
∫ ∫

A(ā, η)e−2ηa−(η̄−ā)(η−a)+2āadη̄dηdadā

=
∫ ∫

A(ā, θ + a)e−2θ̄a−θ̄θdθ̄dθdadā

=
∫

A(ā, θ − a)e−θ̄θdθ̄dθdadā

=
∫

A(ā,−a)dadā =
∫

A(ā, a)dāda.

Here in the second line we changed variables η = θ + a, η̄ = θ̄ + ā, changed
θ by θ + 2a in the third line, and have used that∫

f(θ)e−θ̄θdθ̄dθ = f(0)

in the fourth line.

4.2. Path integral for the evolution operator. Let Ĥ be an Hamil-
tonian of a system of n identical fermions — an operator in HF with Wick
symbol H(ā, a). Here we express the Wick symbol UT (ā, a) of the evolution
operator ÛT = e−iT Ĥ using the path integral over Grassmann variables. Set
∆t = T

N , and let Ũ∆t be the operator with the Wick symbol e−iH(ā,a)∆t. The
following elementary fact replaces Trotter’s product formula for bosons.

Lemma 4.2.

ÛT = lim
N→∞

ŨN
∆t,

where the convergence in the Grassmann algebra Gr2n = C[a1, ā1, . . . , an, ān]
is understood in the topology of the underlying vector space Gr2n � Λ•C2n.

Proof. We have

ÛT = lim
N→∞

(
I − iĤ∆t

)N
.

The Wick symbol of the operator R̂∆t = I− iĤ∆t− Ũ∆t, as a polynomial in
∆t with Grassmann algebra coefficients which starts with the term (∆t)2.
Therefore, ‖R̂∆t‖ = O((∆t)2), and

ÛT = lim
N→∞

(Ũ∆t + R̂∆t)N = lim
N→∞

ŨN
∆t.

�

Using Theorem 4.1, we can represent the Wick symbol ŨN
∆t(ā, a) of the

operator ŨN
∆t as a (N − 1)-fold Berezin integral over the Grassmann vari-

ables {a(k)
1 , ā

(k)
1 , . . . , a

(k)
n , ā

(k)
n }, k = 1, . . . , N − 1. We set for brevity a(k) =
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{a(k)
1 , . . . , a

(k)
n }, ā(k) = {ā(k)

1 , . . . , ā
(k)
n }, and denote ā(k)a(k) =

∑n
l=1 ā

(k)
l a

(k)
l ,

etc. Then

ŨN
∆t(ā, a) =

∫
· · ·
∫

exp

{
1
2

N−1∑
k=1

((ā(k+1) − ā(k))a(k) + (a(k) − a(k−1))ā(k))

+
1
2
((ā(1) − ā)a + (a − a(N−1))ā) − i

N−1∑
k=0

H(ā(k+1), a(k))∆t

}
N−1∏
k=1

dā(k)da(k),

where we set a(0) = a and ā(N) = ā. (Note that in this formula there are no
variables ā(0) and a(N)!).

It follows from Lemma 4.2 that

UT (ā, a) = lim
N→∞

ŨN
∆t(ā, a)(4.2)

= lim
N→∞

∫
· · ·
∫

exp

{
1
2

N−1∑
k=1

((ā(k+1) − ā(k))a(k) + (a(k) − a(k−1))ā(k))

+
1
2
((ā(1) − ā)a + (a − a(N−1))ā) − i

N−1∑
k=0

H(ā(k+1), a(k))∆t

}
N−1∏
k=1

dā(k)da(k).

Now following the analogy with the boson case considered in Section 1.5 in
Chapter 4, we pretend that as N → ∞, the piece-wise constant functions

ai(t) = a
(k)
i , ā(t) = ā

(k)
i , k∆t ≤ t ≤ (k + 1)∆t, k = 0, . . . , N − 1,

with anticommuting values “converge” to the functions ai(t), āi(t) on [0, T ]
satisfying boundary conditions ai(0) = ai, āi(T ) = āi, i = 1, . . . , n, and,
respectively,

a
(k)
i − a

(k−1)
i

∆t
,

ā
(k)
i − ā

(k−1)
i

∆t
“converge” to ȧi(t) =

dai

dt
, ˙̄ai(t) =

dāi

dt
.

Extending the analogy further we pretend that

lim
N→∞

{
1
2

N−1∑
k=1

((ā(k+1) − ā(k))a(k) + (a(k) − a(k−1))ā(k))

+
1
2
((ā(1) − ā)a + (a − a(N−1))ā) − i

N−1∑
k=0

H(ā(k+1), a(k))∆t

}

=
∫ T

0

(
1
2( ˙̄aa + ȧā) − iH(ā, a)

)
dt + 1

2(ā(0)a + āa(T )) − āa)

=
∫ T

0
(ȧā − iH(ā, a))dt + āa(T ) − āa,

where in the last line we have used “integration by parts”∫ T

0

˙̄aa dt =
∫ T

0
ȧā dt + āa(T ) − ā(0)a.
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We can summarize everything by writing

(4.3) UT (ā, a) =
∫∫∫

ā(T )=ā
a(0)=a

exp
{∫ T

0
(ȧā − iH(ā, a))dt + ā a(T ) − āa

}
D āDa,

where the symbol on the right hand-side is, by definition, the path inte-
gral over Grassmann variables. Here the “integration” goes over all func-
tions al(t), āl(t) with anticommuting values on the interval [0, T ], satisfying
boundary conditions al(0) = al, āl(T ) = āl, l = 1, . . . , n, and

D āDa =
∏

0≤t≤T

dā(t)da(t) =
∏

0≤t≤T

n∏
l=1

dāl(t)dal(t),

where the integration goes over a(T ) and ā(0) as well.

Remark. We emphasize that the rigorous definition of the Grassmann
path integral is given by the limit N → ∞ in (4.2). Still, in many interesting
cases the heuristic reasoning presented above can be made into rigorous
arguments.

Using Theorem 4.1, we can also express the trace and the supertrace of
the evolution operator UT = e−iT Ĥ as a Grassmann path integral. We have

Tr e−iT Ĥ =
∫

UT (ā, a)e2āadadā

= lim
N→∞

∫
· · ·
∫

exp

{
1
2

N−1∑
k=1

((ā(k+1) − ā(k))a(k) + (a(k) − a(k−1))ā(k))

+1
2((ā(1) + ā)a − (a + a(N−1))ā) − i

N−1∑
k=0

H(ā(k+1), a(k))∆t

}
N−1∏
k=1

dā(k)da(k)dadā,

where a(0) = a and ā(N) = ā. The terms (ā(1) + ā)a and −(a + a(N−1))ā can
be included into the respective sums

∑N−1
k=0 and

∑N
k=1 if we set ā(0) = −ā

and a(N) = −a. In the limit N → ∞ we arrive to the anti-periodic boundary
conditions for a(t) and ā(t) and

Tr e−iT Ĥ =
∫∫∫

ā(0)=−ā(T )
a(0)=−a(T )

exp
{∫ T

0
(ȧā − iH(ā, a)) dt

}
D āDa.
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For the supertrace we have

Trs e−iT Ĥ =
∫

UT (ā, a)dāda

= lim
N→∞

∫
· · ·
∫

exp

{
1
2

N−1∑
k=1

((ā(k+1) − ā(k))a(k) + (a(k) − a(k−1))ā(k))

+1
2((ā(1) − ā)a + (a − a(N−1))ā) − i

N−1∑
k=0

H(ā(k+1), a(k))∆t

}
N−1∏
k=1

dā(k)da(k)dāda,

where a(0) = a and ā(N) = ā. In this case the inclusion of the terms (ā(1) −
ā)a and (a− a(N−1))ā) into the corresponding sums imposes the conditions
ā(0) = ā and a(N) = a. In the limit N → ∞ we arrive to the periodic
boundary conditions in the Grassmann path integral,

Trs e−iT Ĥ =
∫∫∫

ā(0)=ā(T )
a(0)=a(T )

exp
{∫ T

0
(ȧā − iH(ā, a)) dt

}
D āDa.

Remark. Formulas for the trace and supertrace of the evolution op-
erator e−iT Ĥ make sense because it is an operator in a finite-dimensional
Hilbert space HF .

Replacing the “physical time” t by the “Euclidean time” −it and T by
−iT , we get the Grassmann integral representation for the Wick symbol of
the operator U−iT = e−TĤ ,

U−iT (ā, a) =
∫∫∫

ā(T )=ā
a(0)=a

exp
{
−
∫ T

0
(−ȧā + H(ā, a))dt + ā a(T ) − āa

}
D āDa,

and for its trace and superstrace,

Tr e−TĤ =
∫∫∫

ā(0)=−ā(T )
a(0)=−a(T )

exp
{
−
∫ T

0
(−ȧā + H(ā, a)) dt

}
D āDa,(4.4)

Trs e−TĤ =
∫∫∫

ā(0)=ā(T )
a(0)=a(T )

exp
{
−
∫ T

0
(−ȧā + H(ā, a)) dt

}
D āDa.(4.5)

4.3. Gaussian path integrals over Grassmann variables. We start
with the case n = 1. Let u(t) be smooth periodic function on the interval
[0, T ]. We set

u0 =
1
T

∫ T

0
u(t)dt
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and consider the first-order differential operator

D + u(t), D = − d

dt
,

on the interval [0, T ]. Similarly to the corresponding result for the bosons, we
have the following statement for the corresponding Gaussian path integrals
over Grassmann variables.

Theorem 4.2. We have∫∫∫
ā(0)=ā(T )
a(0)=a(T )

e−
R T
0 (−ȧā+u(t)āa)dtD āDa = det′(−D + u(t))

∣∣
pbc

= 1 − e−u0T

and∫∫∫
ā(0)=−ā(T )
a(0)=−a(T )

exp− R T
0 (−ȧā+u(t)āa))dt D āDa = det′(−D + u(t))

∣∣
apbc

= 1 + e−u0T ,

where pbc and apbc stand, correspondingly, for the periodic and anti-periodic
boundary conditions for the differential operator D + u(t) on the interval
[0, T ].

Proof. We repeat the arguments for the bosonic case and prove the
first formula; the second formula is proved analogously. Using (4.2) and
Lemma 2.2 we get ∫∫∫

ā(0)=ā(T )
a(0)=a(T )

e−
R T
0 (−ȧā+u(t)āa)dtD āDa

= lim
N→∞

∫
· · ·
∫

e−
PN−1

k=0 ((āk−āk+1)ak+u(tk)āk+1ak∆t)
N−1∏
k=0

dākdak

= lim
N→∞

det AN ,

where aN = a0, āN = ā0, tk = kT
N , and AN is the following N × N matrix:

AN =

⎛⎜⎜⎜⎜⎜⎜⎝
1 0 . . . 0 −1 + u(tN−1)∆t

−1 + u(t0)∆t 1 . . . 0 0
0 −1 + u(t1)∆t . . . 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 0
0 0 . . . −1 + u(tN−2)∆t 1

⎞⎟⎟⎟⎟⎟⎟⎠
It is elementary to compute that

det AN = 1 −
N−1∏
k=0

(1 − u(tk)∆t),
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so that
lim detAN = 1 − e−

R T
0 u(t)dt = 1 − e−u0T .

Using Proposition 2.3 in Chapter 4 completes the proof. �
Example 4.1 (The fermion harmonic oscillator). The Hamiltonian

Ĥ =
ω

2
(â∗â − ââ∗) = ωâ∗â − ω

2
I

has Wick symbol H(ā, a) = ωāa − ω
2 , so that using (4.4) and Theorem 4.2

we get,

Tr e−TĤ = e
ωT
2

∫∫∫
ā(0)=−ā(T )
a(0)=−a(T )

exp− R T
0 (−ȧā+ωāa))dt D āDa = e

ωT
2 (1+e−ωT ) = 2 cosh

ωT

2

Of course, in this case HF = C2 and Ĥ = −ω
2 σ3, so that

Tr e−TĤ = e
ωT
2 + e−

ωT
2 = 2 cosh

ωT

2
.

— a different derivation of the same result.
Similarly, using (4.5) and Theorem 4.2 we get

Trs e−TĤ = e
ωT
2

∫∫∫
ā(0)=ā(T )
a(0)=a(T )

exp− R T
0 (−ȧā+ωāa))dt D āDa = e

ωT
2 (1−e−ωT ) = 2 sinh

ωT

2
,

Using that for HF = C2 we have Γ = σ3, the same result is obtained by

Trs e−TĤ = Tr σ3e
−TĤ = e

ωT
2 − e−

ωT
2 = 2 sinh

ωT

2
.

5. Supersymmetry

5.1. The basic example. We start with the Lagrangian of a free par-
ticle in Rn of spin 1

2 , considered in Example 2.2 in Section 2.6:

L =
m

2
〈q̇, q̇〉 +

i

2
〈ψ, ψ̇〉.

5.1.1. Total angular momentum. This Lagrangian is invariant with re-
spect to the action of the orthogonal group G = SO(n) on the configuration
space Rn|n,

(5.1) L(g · v) = L(v), v ∈ TR
n|n,

where the action of G on an tangent bundle TRn|n extends the diagonal
action on Rn|n, defined by (q,ψ) �→ (g · q, g · ψ), g ∈ G. Corresponding
conserved quantity — the Noether charge J ∈ g∗ — the dual space to the
Lie algebra g = so(n), can be obtained as follows (c.f. the proof of Theorem
1.2 in Chapter 1).

Consider arbitrary infinitesimal change of coordinates

q �→ q̃ = q + δq, ψ �→ ψ̃ = ψ + δψ,
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and compute δL = L(ṽ) − L(v), up to the second order terms in δq, δψ as
follows:

δL = m〈q̇, δq̇〉 +
i

2

(
〈δψ, ψ̇〉 + 〈ψ, δψ̇〉

)
= −m〈q̈, δq〉 + m

d

dt
〈q̇, δq〉 +

i

2

(
〈δψ, ψ̇〉 − 〈ψ̇, δψ〉

)
+

i

2
d

dt
〈ψ, δψ〉

= −m〈q̈, δq〉 + m
d

dt
〈q̇, δq〉 + i〈δψ, ψ̇〉 +

i

2
d

dt
〈ψ, δψ〉,

where we have used that 〈ψ̇, δψ〉 = −〈δψ, ψ̇〉. Thus on solutions of the
Euler-Lagrange equations q̈ = 0, ψ̇ = 0 we have

δL =
d

dt

(
m〈q̇, δq〉 +

i

2
〈ψ, δψ〉

)
.

Now using (5.1) with g = eεx, where x ∈ g, for δq = εx · q and δψ = εx ·ψ
we obtain δL = 0, so that

−J(x) = m〈q̇,x · q〉 +
i

2
〈ψ,x · ψ〉

is an integral of motion:
d

dt
J(x) = 0

on solutions of the Euler-Lagrange equations. Choosing a standard basis
xkl, 1 ≤ k < l ≤ n of so(n) consisting of skew-symmetric n × n matrices
corresponding to the roots of g, we get Noether integrals of motion

Jkl = qkpl − qlpk − iψkψl, 1 ≤ k < l ≤ n,

which are components of the total angular momentum of a classical particle
of spin 1

2 . In particular, for n = 3 we get

J1 := J23 = M1 − iψ2ψ3,

J2 := J31 = M2 − iψ3ψ1,

J3 := J12 = M3 − iψ1ψ2,

where M1,M2,M3 are components of the angular momentum M of a particle
in R3 (see Section 1.3 in Chapter 1).

Remark. In fact, Lagrangian L of a free particle with spin 1
2 is invariant

under the action of G × G on Rn|n, so that both the angular momentum
qkpl − qlpk in Rn and the “Grassmann angular momentum” −iψkψl in R0|n
are conserved.

As we know, the Hilbert space for a corresponding quantum system is
H = LRn ⊗C2d

, where d =
[

n
2

]
, and Noether charges Jkl correspond to the

operators
Ĵkl = QkPl − QlPk − iψ̂kψ̂l,

where the operators ψ̂k satisfy

[ψ̂k, ψ̂l]+ = δklI, k, l = 1, . . . , n.
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In particular, for n = 3 we have ψ̂j = 1√
2
σj , and

Ĵ = M̂ + 1
2 σ

— the total angular momentum of a quantum particle in R3 of spin 1
2 .

5.1.2. Supersymmetry transformation. It is remarkable that Lagrangian
L is also invariant under another transformations on Rn|n that mix even and
odd coordinates. Namely, for γ ∈ ΩI(Rn) let ψ(t) ∈ ΠTγΩI(Rn) — a global
section over I of the pull-back by γ of the tangent bundle of TRn with the
reverse parity of the fibres,

ψ(t) =
n∑

k=1

ψk(t)
∂

∂qk
.

Now let ε be an odd real element and for every (γ,ψ) ∈ ΠTΩI(Rn) consider

δεq(t) = iεψ(t) ∈ TγΩI(Rn) and δεψ(t) = −mεq̇(t) ∈ ΠTγΩI(Rn).

Then for
δεL = L(q + δεq,ψ + δεψ) − L(q,ψ)

we obtain

δεL = im〈q̇, εψ〉 − im

2
(〈εq̇, ψ̇〉 + 〈ψ, εq̈〉)

=
im

2
(〈q̇, εψ〉 + 〈εψ, q̈〉)

=
imε

2
d

dt
〈ψ, q̇〉.

Introducing Q = i〈ψ,mq̇〉 = i〈ψ,p〉 = i
∑n

k=1 ψkpk — the generator of
supersymmetry, we get that along every γ ∈ ΩI(Rn), ψ ∈ γ∗(ΠTRn),

(5.2) δεL =
ε

2
dQ

dt

This means that δεS = 0 for all periodic boundary conditions (and not only
on equations of motion)!

Another remarkable property is the Lagrangian L can be recovered from
“supercharge ”Q. Namely, the computation

δεQ = im(〈δεψ, q̇〉 + 〈ψ, δεq̇〉)
= imε(−m〈q̇, q̇〉 − i〈ψ, ψ̇〉),

gives

(5.3) −2imεL = δεQ.

The Hamiltonian can also be recovered from Q by

{Q,Q} = p2 = 2mH,

which shows that all properties of a free particle of spin 1
2 are contained in

the supercharge Q.
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The invariant meaning of the supersymmetry transformation is related
to the geometry of a path space. Namely, set m = 1 and consider the Wick
rotation t �→ −it to Euclidean time, so that the sypersymmetry transforma-
tion becomes

(5.4) δεq(t) = iεψ(t), δεψ(t) = −iεq̇(t).

Now consider the infinite-dimensional supermanifold ΠTΩI(Rn) with coor-
dinates (q(t),ψ(t)), t ∈ I. The supersymmetry transformation (5.4) (up to
an overall factor of i) corresponds to the following vector field on ΠTΩI(Rn),

X =
n∑

k=1

∫ t1

t0

(
ψk(t)

δ

δqk(t)
− q̇k(t)

δ

δψk(t)

)
dt.

Setting

Q =
∫ t1

t0

〈ψ(t), q̇(t)〉dt,

we get

X (Q) =
∫ t1

t0

(−〈q̇(t), q̇(t)〉dt +
∫ t1

t0

∫ t1

t0

d

ds
δ(s − t)〈ψ(t),ψ(s)〉dtds

= −
∫ t1

t0

(〈q̇(t), q̇(t)〉 + 〈ψ(t), ψ̇(t)〉)dt

= −2S(q(t),ψ(t)),

where now S stands for the Euclidean action. Interpreting functions on
ΠTΩI(Rn) as differential forms on ΩI(Rn), we also get that

X ◦ X = −
n∑

k=1

∫ t1

t0

(
q̇k(t)

δ

δqk(t)
+ ψ̇k(t)

δ

δψk(t)

)
dt = −LV

— a first order differential operator on functions on ΠTΩI(Rn) which cor-
responds to a Lie derivative of the vector field V on ΩI(Rn), defined by
Vγ = γ̇ ∈ TγΩI(Rn). Also, we have

X (S) = −2
∫ t1

t0

dQ

dt
dt = −2 Q(t)|t1t0 ,

where Q(t) = 〈ψ(t), q̇(t)〉 is Euclidean supercharge.
After the quantization,

Q̂ = i

n∑
k=1

ψ̂kPk,

where

Pk =
�

i

∂

∂qk
and ψ̂k =

1√
2

γk, k = 1, . . . , n,

so that
Q̂ =

1√
2

ð
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where ð is a Dirac operator for the Euclidean metric on Rn. We have

[Q̂, Q̂]+ = 2Q̂2 = ∆ = 2mĤ,

where ∆ is the Laplace operator on Rn.
5.1.3. Spin 1

2 particle on a Riemannian manifold. Let M be n-dimensional
Riemannian manifold with a Riemannian metric ds2. In local coordinates
q = (q1, . . . , qn),

ds2 =
n∑

i,j=1

gij(q)dqi ⊗ dqj .

Let ΠTM be the tangent bundle of M with the reverse parity on the fibres.
For a path γ ∈ ΩI(M) denote by ψ(t) the section of the pull-back bundle
γ∗(ΠTM) over I. In local coordinates,

ψ(t) =
n∑

k=1

ψk(t)
∂

∂qk
∈ ΠTγ(t)M.

Now let ε be an odd real element, and for every (γ,ψ) ∈ ΠTΩI(M)
consider the supersymmetry transformation — the vector fields along γ,
defined in local coordinates by
(5.5)

δεq(t) = iεψ(t) ∈ ΠTγ(t)M, δεψ(t) = −mεq̇(t) ∈ ΠTγ(t)M, t ∈ I.

Lemma 5.1. Supersymmetry transformation (5.5) is well-defined, i.e.,
does not depend on the choice of local coordinates.

Proof. Let q̃ be another coordinate system, q̃k = fk(q1, . . . , qn), k =
1, . . . , n. Along the path γ,

˙̃qk(t) =
n∑

l=1

∂fk

∂ql
(γ(t))q̇l(t),

and

ψ(t) =
n∑

k=1

ψ̃k(t)
∂

∂q̃k
,

where

ψ̃k(t) =
n∑

l=1

∂fk

∂ql
(γ(t))ψl(t).

We have

δεq̃k(t) =
n∑

l=1

∂fk

∂ql
(γ(t))δεql(t) = i

n∑
l=1

∂fk

∂ql
(γ(t))εψl(t) = iεψ̃k(t),
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and

δεψ̃k(t) = δε

(
n∑

l=1

∂fk

∂ql
(γ(t))ψl(t))

)

=
n∑

l=1

∂fk

∂ql
(γ(t))δεψl(t) +

n∑
j,l=1

∂2fk

∂qj∂ql
(γ(t))δεqj(t)ψl(t)

= −mε

n∑
l=1

∂fk

∂ql
(γ(t))q̇l(t) + iε

n∑
j,l=1

∂2fk

∂qj∂ql
(γ(t))ψj(t)ψl(t)

= −mε ˙̃qk(t),

since ψk anticommute. �
For a γ ∈ ΩI(M) let ψ ∈ ΠTγΩI(M) and along the path γ set

Q(t) = i〈q̇(t),ψ(t)〉,
and denote by ∇γ̇ the covariant derivative in the tangent bundles TM and
ΠTM along γ, given by Levi-Civita connection.

Proposition 5.1. Along γ ∈ ΩI(M),

δεQ = −2iεL,

where
L =

m

2
〈q̇, q̇〉 +

i

2
〈ψ,∇γ̇ψ〉

is a supersymmetric Lagrangian for a spin 1
2 particle on a Riemannian man-

ifold M ,

δεL =
ε

2
dQ

dt
.
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