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Chapter 1

Introduction and Review

The business of mechanics, both classical and quantum, is to predict the
future, i.e. given a system with some set of initial conditions, describe its
subsequent behavior. Quantum mechanics gives us a deceptively simple-
looking solution to this problem; it’s called Schrodingers’ equation.

ψ(t) = e−iĤ(t−t′)ψ(t′) (1.1)

The equation is not very useful because Ĥ = T̂ + V̂ is the sum of two non-
commuting operators.1 There is the trivial case in which the state is an
eigenstate of the complete Hamiltonian. If

Ĥψn(x, t) = Enψ(x, t) (1.2)

then
ψn(t) = e−iEn(t−t′)ψn(t′) (1.3)

These are called “stationary stattes” because there is no time dependence
except for the unobservable phase factor. If everything were that simple
there would be nothing to live for. The fact that such states exist, how-
ever, suggests a way of calculating time dependence. We simply expand the
wave function in a series of energy eigenstates, each one of winch has trivial
time dependence. The following calculation is done in every introductory
quantum text. We define energy eigenstates (with no time dependence) as

Ĥφn(x) = Enφ(x) (1.4)

1I will use “hats” on symbols when I want to call attention to the fact that they are
operators.
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8 CHAPTER 1. INTRODUCTION AND REVIEW

Now for some t′ < t,

ψ(x, t) =
∑
n

cnφ(x)e−iEnt (1.5)

∫
dx′φ∗m(x′) ψ(x′, t′) = cme−iEmt′ (1.6)

I have assumed that ∫
dxφ∗m(x)φn(x) = δmn (1.7)

Now reinsert (6) into (7)

ψ(x, t) =
∫

dx′
[∑

n

φ∗n(x′)φn(x)e−iEn(t−t′)

]
ψ(x′, t′) (1.8)

The quantity in brackets is called the propagator.

K(x, t; x′, t′) ≡
∑

n

φ∗n(x′)φn(x)e−iEn(t−t′) (1.9)

ψ(x, t) =
∫

dx′K(x, t; x′, t′)ψ(x′, t′) (1.10)

Obviously, the propagator has the ability to “move the wave function along
in time.” Equation (9) is a complete in-principle solution to the problem of
time development, but it’s still not very useful. For one thing, there are
only a few potintials for which we can find exact eigenfunctions, and these
are usually exotic transcendental functions. The worst part of it is that
there is no way to make systematic approximations. Nontheless, the notion
of a propagator as defined implicitly by (10) is very powerful. Everything
we will do in the next few chapters has to do ket in some way with finding
propagators.

In order to keep the discussion on familiar ground (for a little while), I
will redo the calculation above with a more abstract notation. This would
be a good time to review the difference between the Schrodinger picture and
the Heisenberg picture in elementary quantum mechanics. When we write
an equation like,

|ψ(t)〉S = e−iHt|ψ(0)〉 (1.11)

we are implicitly working the Schrodinger picture. The state vectors evolve
in time, whereas the operators do not. I have emphasized this by putting
the subscript S on the ket on the left. (There is no subscript on the other ket
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for reasons that will soon be clear.) Operators in the Schrodinger picture
usually don’t depend on time, but of course, their expectation values do.

〈Q(t)〉 = 〈ψS(t)|Q̂S |ψS(t)〉 = 〈ψ(0)|eiĤtQ̂Se−iĤt|ψ(0)〉 (1.12)

Define
Q̂H(t) = eiĤtQ̂Se−iĤt, (1.13)

so that
〈Q(t)〉 = 〈ψ(0)|Q̂H(t)|ψ(0)〉 (1.14)

All time dependence is now gathered into the operator. Since the two terms
on the right of (12) are identical for t = 0, we make no distinction between
Schrodinger states and Heisenberg states at this time. For this reason we
often write |ψ(0)〉 = |ψ〉. The question of exactly what time it was when
t = 0 (last week, last year?) just doesn’t come up.

If the Hamiltonian itself doesn’t depend on time, then the Heisenberg
operators satisfy their own version of Schrodinger’s equation.

dQ̂H(t)
dt

= i
[
Ĥ, Q̂H(t)

]
(1.15)

Now look at an eigenstate of Q̂.

Q̂S |q〉S = q|q〉S (1.16)

eiĤtQ̂Se−iĤteiĤt|q〉S = qeiĤt|q〉S (1.17)

Define
eiĤt|q〉S ≡ |q, t〉H (1.18)

so that
Q̂H |q, t〉H = q|q, t〉 (1.19)

These are the “Heisenberg eigenstates.” There is something paradoxical
about them. We are used to saying the Heisenberg states do not change in
time, but in fact, the eigenstates of Heisenberg operators transform “back-
wards” in time.

The Creed of Quantum Mechanics says, among other things, that to
every observable quantity there corresponds a Hermitian operator. The
eigenvalue spectrum of this operator corresponds to all possible results of
measurements of the observable, and the eigenstates themselves constitute
a complete set of states in terms of which any arbitrary state vector can be
expanded. This is not something we can prove mathematically. We believe
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in creeds, because life wouldn’t make sense otherwise. Certainly the position
of a particle is something that can be measured, so there must be a position
operator with eigenstates.

X̂|x〉 = x|x〉 (1.20)

The eigenvalue spectrum is continuous, so we can take advantage of com-
pleteness by writing

Î =
∫

dx|x〉〈x| (1.21)

Students often find this troubling, and for good reason. The variable x, in
addition to being an observable quantity, is also, along with time, one of the
independent variables in Schrodinger’s equation. And yet – we never think
of time as an observable, and the notion of a “time eigenstate” is bizarre!
The fact that position has this ambiguous dual role is one of the drawbacks
of Schrodinger theory. The problem largely disappears in the Heisenberg
picture, however, and for this and other reasons having to do with the role
of space and time, we will use the Heisenberg picture almost exclusively in
what follows.

Position eigenstates can be thought of as a notational device for switching
back and forth between the elementary formulation of quantum mechanics
in terms of wave functions and the more abstract formulation in terms of
bras and kets. For example

ψ(x, t) = 〈x, t|ψ〉H = |x〉ψ(t)〉S (1.22)

Notice that wave functions are really scalar products and as such do not
change between the Heisenberg and Schrodinger pictures. We can reverse
the procedure as follows:

|ψ(t)〉S =
∫

dxψ(x, t)|x〉S (1.23)

Now we can get back to the business of calculating propagators. Define
energy eigenstates as

Ĥ|n〉 = En|n〉 (1.24)

The symbol n stands for all the discrete quantum numbers required to spec-
ify the eigenstate. We’ll assume that the states are complete and normalized
so that

Î =
∑

n

|n〉〈n| (1.25)

e−iH(t−t′) = e−iH(t−t′)
∑

n

|n〉〈n| =
∑

e−iEn(t−t′)|n〉〈n| (1.26)



11

This is sometimes called the “spectral representation” of the operator e−iĤ(t−t′).
This gives us an alternative derivation of (8).

ψ(x, t) = 〈x|ψ(t)〉 = 〈x|e−iH(t−t′)|ψ(t′)〉 =
∑

n

e−iEn(t−t′)〈x|n〉〈n|ψ(t′)〉

=
∫

dx′
∑

n

e−iEn(t−t′)〈x|n〉〈n|x′〉ψ(x′, t′) (1.27)

This is identical to (8) if we remember that 〈x|n〉 = φn(x).
In order to take the next step toward the path integral formulation of

quantum mechanics, it will be necessary to calculate the propagator without
using energy eigenstates. So one last time · · ·

〈x|ψ(t)〉 =
∫

dx′〈x|e−iH(t−t′)|x′〉〈x′|ψ(t′)〉 (1.28)

Compare this with (10). We see the propagator lurking inside the integral.

K(x, t;x′t′) = 〈x|e−iH(t−t′)|x′〉 =
(〈x|e−iHt〉)

(
eiHt′ |x′〉

)
= 〈x, t|x′, t′〉

(1.29)
This is the starting point for the path integral formulation in the next sec-
tion. Before going on, we need one all-important result.

Î =
∫

dx|x〉〈x| =
∫

dx eiHt|x〉〈x|e−iHt =
∫

dx〈x, t|x, t〉 (1.30)

Insert this in (29).

K(x, t;x′, t′) =
∫

dx′′〈x, t|x′′, t′′〉〈x′′, t′′|x′, t′〉 =
∫

dx′′K(x, t; x′′, t′′)K(x′′, t′′;x′, t′)

(1.31)
This is the “composition property” of propagators. It implies that we can
always insert a complete set of Heisenberg position eigenstates using (30).
Physically it means that the probability for a particle to propagate from
(x′, t′) to (x, t) is equal to the probability of propagating from (x′, t′) to
(x′′, t′′) time the probability of propagating from (x′′, t′′) to (x, t) integrated
over all x′′.
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Chapter 2

The Path Integral
Formulation

2.1 Introduction

In the usual formulation of quantum mechanics, one tries to calculate the
time dependence of the wave functions directly using Schrodinger’s equation.
The path integral formulation seeks to calculate the propagator K(xf , tf ;x◦, t◦).
The procedure follows:

1. Draw all causal paths in the x-t plane connecting (x◦, t◦) with (xf , tf ).
By “causal” I mean that the paths must not loop back in time. There
are no other restrictions. The paths can be wildly unphysical.

2. Find the classical action S[x(t)] for each path x(t).

3. Perform the following sum.

K(xf , tf ; x◦, t◦) = A
∑

paths
eiS[x(t)]/h̄ (2.1)

The constant A is a normalization factor, more about this later. I have
put in the h̄ to illustrate the classical limit. The real question is how to do
the sum over paths. This will require learning some new math, functional
integration. First let’s do a brief review of classical mechanics.

The classical equations of motion can be derived from Hamilton’s prin-
ciple. We start with the Lagrangian L = T − V , the kinetic energy minus

13



14 CHAPTER 2. THE PATH INTEGRAL FORMULATION

the potential energy. Calculate the action.

S[q, q̇] =
∫ tf

t◦
L(q1 · · · qn, q̇1 · · · q̇n)dt (2.2)

The qi’s are the generalized coordinates. They are functions of time, and
these functions qi = qi(t) collectively describe the path taken by the system.
Each choice of functions will yield a numerical value for the action. We say
that it is a functional of the coordinates and their derivatives. Hamilton’s
principle says that the actual path followed by the system is the one that
makes the action an extremum, i.e. a maximum or a minimum. Your favorite
classical mechanics text will now prove that this statement is equivalent to
a set of n Euler-Lagrange equations,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (2.3)

We will be much concerned with the propagation of free particles. Let’s
see how that works classically in one dimension We know the answer ahead
of time

x(t) = x◦ +
(xf − x◦)
(tf − t◦)

(t− t◦) (2.4)

S =
∫ tf

t◦

1
2
mẋ2dt =

m

2

∫ tf

t◦

(
xf − x◦
tf − t◦

)2

dt =
m

2
(xf − x◦)2

(tf − t◦)
(2.5)

In classical mechanics, the particle follows just this one path. In quan-
tum mechanics, the particle somehow follows all paths (that don’t involve
propagation backwards in time), but as can be seen from (1), those with
action much different from the classical action will tend to cancel one an-
other through destructive interference. Terms close to the classical path add
coherently. Let’s put in some numbers. Suppose a classical particle travels
1 cm in 1 second. If it starts at the origin and follows the “right” path x = t
in the appropriate units

S =
∫ 1

0

1
2
m(1)2dt =

1
2
m. (2.6)

However, if the particle follows an unphysical path, say x = t2 then

S =
∫ 1

0

1
2
m(2t)2dt =

2
3
m. (2.7)

The units of S must be erg-seconds. If the mass were one gram, the “right”
and “wrong” action would differ by only 1/6 erg-sec., but remember that in
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(1) the action is divided by h̄ = 10−27 erg-sec. Consequently the wrong path
is out of phase by 1026 radians! On the other hand, if we are talking about
an electron with a mass of 9.11× 10−28 grams, then the wrong path is out
of phase by only 8.7 degrees. Clearly the classical particle must follow the
straight and narrow way, and how narrow the path must be is determined
by the extremely small size of h̄. To put it in less biblical terms, S À h̄
gives the classical limit.

The postulate (1) is usually attributed to Feynman1 who claimed that
he discovered it in a moment if inspiration during a high school physics
class. What Feynman could intuit, the rest of us can prove, though the
proof will take many pages. The key idea is to discretize time. We will
divide the interval between t◦ and tf into n + 1 equal slices bounded by
t◦ < t1 < t2 < · · · < tn−1 < tf . We represent the path of the particle as a
set of n + 1 straight-line segments connecting the space-time points, i.e.

(x◦, t◦) → (x1, t1) → (x2, t2) → · · · → (xn, tn) → (xf , tf )

We now use the composition property (1.31) n + 1 times.

〈xf , tf |x◦, t◦〉 =
∫

dxndxn−1 · · · dx1〈xf , tf |xn, tn〉〈xn, tn|xn−1, tn−1〉 · · · 〈x1, t1|x◦, t◦〉
(2.8)

We will use the more compact notation,

〈xf , tf |x◦, t◦〉 =
∫ n∏

i=1

dxi

n∏

j=0

〈xj+1, tj+1|xj , tj〉, (2.9)

but remember that x0 = x◦ and xn+1 = xf . We will eventually take the
limit n → ∞ to represent all smooth paths, but this is a strange limit in
which there are an infinite number of integrations! We now work on the
short-time propagator,

〈xj+1, tj+1|xj , tj〉 = 〈xj+1|e−iHτ |xj〉 ≈ 〈xj+1|(1− iHτ |xj〉 (2.10)

The first step makes use of (1.29). The second step takes advantage of the
fact that τ = tj+1 − tj is very small. At this point I would like to insert
a complete set of momentum eigenstates, but there are a few technicalities
regarding normalization and boundary conditions that will repay a brief
degression.

1Actually, most of these ideas were published earlier by Dirac. I don’t know if Feynman
was aware of his work.
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The momentum eigenvalue equation in the Schrodinger picture is

P̂ ξp(x) = p ξ(x) (2.11)

ξp ∝ eipx

We often make the eigenvalue spectrum discrete by imposing periodic bound-
ary conditions, ξ(x) = ξ(x + L). in this case

ξn =
1√
L

eipnx pn =
2πn

L
(2.12)

The normalization is chosen so that
∫ L

0
dx ξ∗nξn′ = δnn′ (2.13)

If we don’t use periodic boundary conditions, the eigenvalue spectrum
is continuous. You can go back and forth between these two representations
with the following “cookbook” recipe.

ξn =
eipnx

√
L
↔ ξp = eipx

∑
n

↔ 1
2π

∫ ∞

−∞
dp (2.14)

In the language of bras and kets

P̂ |p〉 = p|p〉 (2.15)

but we have to pay some attention to the normalization of |p〉. Let’s choose

〈x|p〉 = ξp(x) 〈x|pn〉 = ξn(x) (2.16)

We would also like 〈x′|x〉 = δ(x−x′). In terms of discrete states this requires

〈x′|x〉 =
∑
n

〈x′|pn〉〈pn|x〉 =
∑

n

ξn(x′)ξ∗n(x) = δ(x− x′) (2.17)

So far, so good, When we make the transition to continuum states according
to (14) this becomes

〈x′|x〉 =
1
2π

∫
dp〈x′|p〉〈p|x〉 = δ(x− x′). (2.18)

The point is that whereas
∫

dx|x〉〈x| = Î ,
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to be consistent we must have

1
2π

∫
dp|p〉〈p| = Î (2.19)

It is this last expression that we need for the short-time propagator.
The Hamiltonian in (10) can be written

Ĥ =
P̂ 2

2m
+ V̂ (x) (2.20)

Our strategy will be to use position and momentum eigenstates to replace
the momentum and position operators with their eigenvalues. When we
have done that, there will no longer be operators in our formalism. They
will have been replaced by classical or c-number variables. Let’s do the
kinetic energy term first.

〈xj+1| P̂
2

2m
|xj〉 =

1
2π

∫
dpj〈xj+1|

p2
j

2m
|pj〉〈pj |xj〉 (2.21)

=
1
2π

∫
dpje

ipj(xj+1−xj)
p2

j

2m

The potential energy term is simpler.

〈xj+1|V (x)|xj〉 = V (xj)〈xj+1|xj〉 = V (xj)
1
2π

∫
dpje

ipj(xj+1−xj) (2.22)

Combine (10), (21) and (22).

〈xj+1, tj+1|xj , tj〉 =
1
2π

∫
dpje

ipj(xj+1−xj) [1− iτH(pj , xj)] (2.23)

Two points to notice:

• The Hamiltonian contains no operators. It is the classical Hamilto-
nian.

• The symbol pj does not imply discrete momentum values. The sub-
script means that |pj〉 is being used to help do the integrals associated
with the tj time slice.

Use the fact that τ is small so that [1− iτH] ≈ e−iτH .

〈xj+1, tj+1|xj , tj〉 =
1
2π

∫
dpj exp {i [pj(xj+1 − xj)− τH(pj , xj)]} (2.24)

Substitute (24) into (9).
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〈xf , tf |x◦, t◦〉 =
∫ (

n∏

i=1

dxi

)


n∏

j=0

1
2π

∫
dpj exp {i [pl(xj+1 − xj)− τH(pj , xj)]}




=
∫ (

n∏

i=1

dxi

)


n∏

j=0

1
2π

∫
dpj


 exp

{
i

n∑

l=0

[pl(xl+1 − xl)− τH(pl, xl)]

}

(2.25)

The notation in the last line is potentially confusing. I have used three
independent indices, i, j, and l, since there are three indexed operations,
two products and a sum. The intent is to describe an equation with n
factors, each consisting of an integral over one of the x’s and one of the p’s.

In order to calculate a propagator, one evaluates (25) term by term.
The final result will be an expression that depends on n. One then takes
the limit n → ∞ in the hope that the limit is well-defined. Unfortunately,
there are only a few simple potentials for which this agenda can be carried
through exactly, so we are usually working with approximations. To this end,
note that something remarkable happens when we take the limit n → ∞.
Concentrate on the sum inside the exponential.

lim
n→∞

n∑

l=0

τ

[
pl

(
xl+1 − xl

tl+1 − tl

)
−H(pl, xl)

]
=

∫ tf

t◦
dt(pẋ−H) =

∫ tf

t◦
L = S

(2.26)
Yes! L is the classical Lagrangian and S is the classical action. Equation
(25) can now be collapsed as follows:

lim
n→∞

n∏

j=0

1
2π

∫ ∞

−∞
dpj ≡

∫
D[p] (2.27)

lim
n→∞

n∏

i=1

∫
dxi ≡

∫
D[x] (2.28)

〈xf , tf |x◦, t◦〉 =
∫

D[x]D[p]eiS (2.29)

Equations (25) through (29) not only prove Feynman’s conjecture (1), they
also tell us what it means to sum over paths. They are the most general
formulas for evaluating path integrals.
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The mathematics before the limit n → ∞ is conventional math. Equa-
tions like (25) can be done with ordinary calculus without much regard to
rigor. After the limit, the equations are in the new arena of functional in-
tegration. Eventually we will do functional integrals just as we do ordinary
integrals – by following a set of rules we have memorized. In order to derive
the rules we must go back to (25), do what needs to be done, and then retake
the limit. Our first example of this is the Feynman propagator, which we
will do in the next section.

2.2 The Feyman Path Integral

Most nonrelativistic Hamiltonians consist of a kinetic energy term, which
is some simple quadratic function of the momenta, and a potential energy
term, which is only a function of the coordinates. In the simplest case,
H = p2/2m + V (x). When this is true the momentum integrations in (25)
or (27) can be done once and for all. The resulting expression is called the
Feynman propagator.

Let’s go back to the integral in (24). In order to simplify the notation,
I will drop all the subscripts.

∫
dp exp

{
i

[
p∆x− τ

p2

2m
− τV

]}
(2.30)

The gaussian integral comes in many different forms. This is one of them.
The formula we need here is

∫ ∞

−∞
dp exp

[
i(−ap2 + bp + c)

]
=

√
π

ia
exp

[
ib2/4a + ic

]
(2.31)

We use this to evaluate (30) and substitute the result back into (25),

〈xf , tf |xi, ti〉 =
∫ (

n∏

i=1

dxi

)( m

2πiτ

)n+1
2 exp

{
iτ

n∑

l=0

[
m

2

(
∆xl

τ

)2

− V (xl)

]}
,

(2.32)
where ∆xl = xl+1−xl. In the limit that n →∞ the multiplicative constant
is

N = lim
n→∞

( m

2πiτ

)n+1
2 (2.33)

This diverges like ∞∞, but no matter, you have to get used to this sort of
thing. As you will see when we calculate things that are physically relevant,
this constant always factor out or disappears in some miraculous way. All
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this is to say the the limit n →∞ is tricky. If you are trying to be rigorous,
the limit should be the last step in the calculation after all the troublesome
factors have eaten each other.

There is another bit of math that we have ignored so far. The integral
(31) doesn’t really converge to anything, because of the oscillating expo-
nential. This, as the engineers would say, is not a bug but a feature. We
could make it converge unambiguously either by deforming the contour on
integration slightly into the complex plane or by adding a small convergence
factor in the exponential. The way we choose to do this will determine
whether the particle propagates forwards in time or backwards in time or
some combination of the two We will return to this issue presently.

So with all these caveats, let’s take the limit n → ∞ with our fingers
firmly crossed behind our backs.

〈xf , tf |xi, ti〉 = N

∫
D[x]eiS (2.34)

This is the Feynman path integral.

2.3 The free particle propagator

So far as I know, there are only two problems for which this last integral can
be done exactly, the free particle and the harmonic oscillator. Everything
else is approximation, but the approximations are all based on these two
cases. We need to study them carefully for this reason. Let’s start with the
free particle. Go back to (32) and set V = 0. The crux of the matter is this
integral,

∫
dx1 · · · dxn exp

{
im

2τ

[
(xf − xn)2 + (xn − xn−1)2 + · · ·+ (x1 − xi)2

]}

(2.35)
This is another example of the famous gaussian integral. Watch what hap-
pens when we integrate over dx1 using (31).

∫
dx1 exp

{
im

2τ

[
(x2 − x1)2 + (x1 − xi)2

]}
=

√
iπτ

m
exp

[
im

4τ
(x2 − xi)2

]

(2.36)
After you have done n of these integral you will be left with

〈xf , tf |xi, ti〉 =
√

m

2πi(tf − ti)
exp

[
im(xf − xi)2

2(tf − ti)

]
(2.37)
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Exercise: Do the calculation and confirm this result.
There are several points here to contemplate.

• We never had to take the limit n → ∞, because by the time we had
done all the integrals, there were no n’s left.

• By the same token, there are no divergent factors.

• Look at our example (5). The argument of the exponential is just the
classical action, so

〈xf , tf |xi, Ti〉 = CeiS (2.38)

• We could have gotten the same result directly from (1.6). The point is,
I guess, that for free particles, energy eigenstates are also momentum
eigenstates, so the sum in (1.6) it trivial.

• The propagator (37) seems to allow propagation backwards in time.
This is not surprising, since we could have replaced t → −t in any of
our derivations and gotten more of less the same results. As hinted
previously, this ambiguity in the direction of time is related to the
ambiguity associated with the convergence of integrals with oscillat-
ing phase factors. This phenomenon is not peculiar to path integrals
or even to quantum mechanics. One encounters the same problem
calculating Greens’ functions for the propagation of electromagnetic
waves. The free particle propagator is just simple enough to allow us
to investigate these issues carefully in the next section.

2.4 Causality and the propagator

Equation (1.9) gives a simple formula for the free-particle propagator in
terms of the energy eigenfunctions. In our current notation,

〈xf , tf |xi, ti〉 =
∑

n

φ∗n(xi)φn(xf )e−iEn(tf−ti) (2.39)

In the case of a free particle, energy eigenfunctions are also momentum
eigenfunctions, since

Ĥφn =
p2

n

2m
φn. (2.40)

We can use the momentum eigenfunctions defined in (12)and (14) for our
φ’s,

φn(x) =
1√
L

eipnx → eipx, (2.41)
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where the arrow represents the continuum limit. Replace the sum in (39)
with an integral as in (14)

〈xf , tf |xi, ti〉 =
1
2π

∫
dp ei(xf−xi)e−i p2

2m
(tf−ti) (2.42)

This can be integrated immediately using (31) to get (37), but for the pur-
poses of discussing causality, it is better to get rid of the time and space
variables by means of a Fourier transform.

Propagators are closely related to Green’s functions. For example, we
can define a “retarded” Green’s function as

GR(xf , tf ; xi, ti) ≡ −iθ(tf − ti)〈xf , tf |xi, ti〉 (2.43)

= − i

2π

∫
dp θ(tf − ti) exp

{
i

[
− p2

2m
(tf − ti) + p(xf − xi)

]}

I put in the step function “by hand” so that the Green’s function is zero for
all ti > tf . The −i factor is a convention, but there is a good reason for it
as you will see eventually. In order to save ink, I will set xi and ti equal to
zero and abbreviate

GR(xf , tf ; 0, 0) ≡ G(x, t) (2.44)

Eliminate the x variable with a Fourier transform.
∫

dx e−ip′xG(x, t) = −iθ(t)e−iEp′ t ≡ G(p′, t) (2.45)

Finally, take the Fourier transform with respect to time.
∫

dt eiωtG(p, t) = −i

∫ ∞

0
e−i(E−ω)tdt ≡ G(p, ω) (2.46)

The last integral is not well defined. There are several strategies for dealing
with it. The simplest is to add a small negative imaginary part to the energy,
E → E − iδ. Then

G(p, ω) =
1

ω −E + iδ
(2.47)

To see the significance of the “fudge factor,” Fourier transform back into
configuration space.

G(x, t) =
1

(2π)2

∫
dp

∫
dω

ei(px−ωt)

ω − Ep + iδ
(2.48)
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The ω integration can be done as a complex contour integral. For t < 0,
the integration contour closes in the upper half ω plane and the integral is
zero. When t > 0, the contour closes in the lower half plane and the integral
is just −2πi times the residue of the pole at ω = E − iδ. This displacing
the pole slightly below the real axis gives the retarded Green’s function, i.e.
the one that vanishes when t < 0. Obviously, we could get the advanced
Green’s function by displacing the pole upward.

Here is an assortment of points that you should absorb from the preced-
ing derivation:

• Compare the formula for the propagator in configuration space, equa-
tion (37), with the Fourier transform of the Green’s function, (47).
Not only is (47) much simpler mathematically, its causality properties
are unambiguous and obvious. (The −i factor in (43) was inserted to
make (47) as simple as possible.) This is a recurring theme in field
theory. Equations of motion and path integrals always start out in
configuration space, but the results are simpler in momentum space.

• Integrals over momentum like (42) tend to be mathematically am-
biguous because the integrand oscillates infinitely rapidly as p → ∞.
They are physically ambiguous because they could describe propaga-
tion backward in time just as well as propagation forward in time. We
can remove this ambiguity in several ways. In (43) we simply put in
a theta function. This makes causality explicit, but is clumsy to work
with. A better scheme is to give energies a small negative imaginary
part, or alternatively, just remember that the propagator in momen-
tum space always has the form (47). This apparently ad hoc scheme
removes the physical ambiguity and the mathematical ambiguity si-
multaneously, because they are really two manifestations of the same
problem.

• In non-relativistic quantum mechanics based on Schrodinger’s equa-
tion, cause and effect always propagate “forward” in time. The point
is that the equation is second order in space and first order in time, so
that if you replace t → −t in Schrodinger’s equation, you get a different
equation. I emphasize this because relativistic theories are profoundly
different; space and time coordinates (except for that damnable minus
sign) must be handled in the same way. The Kline-Gordon equation,
for example, is second order in space and time. The Dirac equation is
first order in both variables. Such theories do not have a well-defined
sense of past and future. The propagators must therefore account for
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both forward and backward propagation. I’ll have much more to say
about this later.

• If you replace t → −it in Schrodinger’s equation, you get something
that looks like the equation for heat flow,

∇2φ− a
∂φ

∂t
= 0 (2.49)

This is significant for two reasons. First, we all know that heat flows
from somewhere hot to somewhere colder. The second law of ther-
modynamics defines an unambiguous direction of time. Schrodinger’s
equation has this kind of causality built into it. Second, the trans-
formation t → −it is called a Wick rotation. It is a profound and
puzzling fact that the Wick rotation always turns quantum mechanics
into thermodynamics. You have just seen one example of this. There
are more to follow.

• You doubtless learned in Middle School that the Green’s function is
the field due to a unit impulse function. You should convince yourself
that G(x, t) is no different, i.e.

(
Ĥ − i

∂

∂t

)
G(x, t) = −δ(x)δ(t) (2.50)

2.5 Generalizing the one-particle propagator

We have been working on the propagator

〈xf , tf |xi, ti〉 = 〈xf |e−iH(tf−ti)|xi〉 (2.51)

Remember that the states on the left are time-dependent position
eigenstates in the Heisenberg picture. The states on the right are
time-independent Schrodinger states in which there is one particle that
happens to be at xi or xf . Let’s think through a series of generaliza-
tions. First, we replace x with a generalized coordinate q. We can
measure this coordinate, so by the Central Dogma of Quantum Me-
chanics, there must be some corresponding operator, eigenvalues and
eigenstates.

Q̂|q〉 = q|q〉 (2.52)
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We could repeat all our derivations with q replacing x and get

〈qf , tf |qi, ti〉 = 〈qf |e−iH(tf−ti)|qi〉 (2.53)

Now that we have introduced one generalized coordinate, there is no
reason why we can’t have N of them. The classical Hamiltonian is

H = K(p1 · · · pN ) + V (q1 · · · qN ) (2.54)

where

pj =
∂L

∂q̇j
(2.55)

Again, repeat all the derivations. This time replace the single integrals
with multiple integrals

∫
dpj →

∫
· · ·

∫
dpj1 · · · dpjN (2.56)

∫
dqj →

∫
· · ·

∫
dqj1 · · · dqjN

This does not introduce any additional problems.

In many respects we seem to be doing classical Langrangian mechanics
with N degrees of freedom. In order to do field theory, however, we
must pass to the limit of continuum mechanics, which is to say, me-
chanics with an infinite number of degrees of freedom. In this case the
coordinates qj are replaced with displacement fields φ(x). The moti-
vations for doing this and the mathematics involved are the subjects
of the next chapter.

2.6 Correlation functions

It turns out that many of the quantities that will be of interest to us have
the form

〈F |T
[
Q̂(t1)Q̂(t2) · · · Q̂(tn)

]
|I〉 (2.57)

The Q̂ operators were explained in the previous section. The states |I〉 and
〈F | are shorthand notation for the initial and final states. The notation
T [· · · ] introduces the time-ordered product. It means that the operators in
the brackets must be arranged so that operators evaluated at earlier time
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always stand to the right of operators evaluated at later times. for example,
in the case of a single particle,

〈F |T [Q̂(t1)Q̂(t2)]|I〉 = 〈qf , tf |Q̂(t1)Q̂(t2)|qi, ti〉θ(t1 − t2) (2.58)

±〈qf , tf |Q̂(t2)Q̂(t1)|qi, ti〉θ(t2 − t1)

The± sign anticipates some arcane math that will be necessary when we deal
with fermion operators, which anticommute. For the time being, this will
be a plus sign. As a mnemonic for remembering (58), recall that quantum
mechanics reads like Hebrew, from right to left, so that tf > t2 ≥ t1 > ti.

I will anticipate the next section by saying that we will usually evaluate
(57) in the limits, ti → −∞ and tf → +∞. This has the effect of projecting
out the ground state or lowest-energy state of the system, so that we are
really concerned with

〈Ω|T
[
Q̂(t1)Q̂(t2) · · · Q̂(tn)

]
|Ω〉, (2.59)

where |Ω〉 and 〈Ω| are the initial and final ground states. I would prefer to
do this one step at a time. First I will show how to evaluate (57) , and in a
later section, I’ll show the significance of the limits ti → −∞ and tf → +∞.

We start by evaluating (57) with a single operator. Transforming it into
the Schrodinger picture gives

〈qf , tf |Q̂(t)|qi, ti〉 = 〈qf |e−iH(tf−t)Q̂e−iH(t−ti)|qi〉. (2.60)

Now insert a complete set of states just to the right of Q̂ and take advantage
of the fact that Q̂|q〉 = q|q〉.

=
∫

dq q 〈qf |e−iH(tf−t)|q〉〈q|e−iH(t−ti)|qi〉 =
∫

dq q(t) 〈qf , tf |q, t〉〈q, t|qi, ti〉

In this last expression we have two ordinary propagators 〈qf , tf |q, t〉 and
〈q, t|qi, ti〉. Each one could be written as in (32) or (34). This is just as
if we were calculating 〈qf , tf |qi, ti〉 and stuck in one “extra” time slice at t
between ti and tf . Repeating the steps that led to (34) we have

〈qf , tf |Q̂(t)|qi, ti〉 =
∫

D[q]q(t)eiS (2.61)

Exercise: Verify this. Pay careful attention to the normalization factor.
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This procedure can be repeated as many times as we like, so

〈qf , tf |T
[
Q̂(t1)Q̂(t2) · · · Q̂(tn)

]
|qi, ti〉 =

∫
D[q]q(t1)q(t2) · · · q(tn)eiS

(2.62)
Notice that there is a time-ordering operator on the left side of the equation
and none on the right. One way to look at this is that the q’s commute,
so the order in which they are written makes no difference. A better way
to look at it is that when we insert sets of complete sets as in (60), we
will always put them in in such a way that tf > tn > · · · > t2 > t1 > ti
(in order to prevent backwards propagation in time). Thus the q(ti)’s are
automatically time ordered.

Path integrals are notoriously difficult to do, so what hope do we have of
evaluating an integral like (62) with all those additional q(t)’s? The answer
is that if we can evaluate it exactly without the q’s, then we can do it with
the q’s almost trivially! If we can get an approximate answer without the
q’s, then to the same degree of approximation, we can evaluate it with the
q’s. In order to understand how this trick works, look at the simpler integral

∫ ∞

−∞
dq qne−

1
2
aq2

We know that ∫ ∞

−∞
dq e−

1
2
aq2+Jq =

(
2π

a

) 1
2

eJ2/2a

Differentiating this n times with respect to J ,

∫ ∞

−∞
dq qne−

1
2
aq2+Jq =

dn

dJn

∫ ∞

−∞
dq e−

1
2
aq2+Jq =

dn

dJn

(
2π

a

) 1
2

eJ2/2a

Finally ∫ ∞

−∞
dq qne−

1
2
aq2

= lim
J→0

dn

dJn

(
2π

a

) 1
2

eJ2/2a (2.63)

You see the point? Integration is hard. Differentiation is easy. Using the “J
trick,” we can do difficult integrals by differentiating!

Now go back to (???) and put in the J .

z[J ] ≡ 〈qf , tf |qi, ti〉J ≡
∫

D[q] exp
{

i

∫ tf

ti

dt [L(t) + J(t)q(t)]
}

(2.64)

I can always get the propagator by taking the limit J → 0, but in the
meantime, I can put as many q’s as I like in the integrand by differentiating
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(64) with respect to J . z[J ] is called a generating function for this reason.
This is more than just a trick as you will see later on In some theories J has
a clear physical interpretation as a source of particles.

Before we can use (64) we must dispose of a technical difficulty. In (63),
J is a parameter, In (64) it’s a function of t buried inside a definite integral.
This requires a new technique called functional differentiation, I have put
this material in an appendix labelled Chapter 3, to which I will be referring
from time to time. This would be a good time to study it, We can use (3.5)
to get our final result:

〈qf , tf |T
[
Q̂(t1)Q̂(t2) · · · Q̂(tn)

]
|qi, ti〉

=
(

1
i

)n δnz[J ]
δJ(t1)δJ(t2) · · · δJ(tn)

∣∣∣∣
J=0

(2.65)



Chapter 3

Mathematical Appendix

3.1 Functional Differentiation

Consider the expression
F (J(τ))

By this we understand that τ is the independent variable and F is a function
of a function of τ . The familiar rules of differentiation apply, so for example,

dF =
∂F

∂J

dJ

dτ
dτ

These rules fail when there is buried inside F some definite integral in which
τ appears as the variable of integration. This is the case in equation (2.64),
which I repeat here for reference.

〈qf , tf |qi, ti〉J ≡
∫

D[q] exp
{

i

∫ tf

ti

dt [L(t) + J(t)q(t)]
}

(3.1)

We call a expression of this sort a functional of J and write it F [J ]. We
can’t differentiate this with respect to J , but we can do something similar
called functional differentiation.

Suppose, for example that the function f = f(J(τ)) is a function of J ,
which itself is a function of τ . The function f is turn is buried inside an
integral, so

F [J ] ≡
∫

f(J(τ))dτ (3.2)

Define the variation of F as follows.1 Let η(τ) be any old well-behaved
1This definition is taken from Goldstein, Classical Mechanics, 3’rd ed. Section 2.3

29
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function of τ , and define

J(τ, α) = J(τ) + αη(τ)

∂[F (α)]
∂α

=
∫

∂f

∂J

∂J

∂α
dτ =

∫
∂f

∂J
ηdτ (3.3)

The variation is then

δF ≡
(

∂F

∂α

)
δα = F [J + δη]− F [J ] (3.4)

Where δα is some very small value of α, and δη = ηδα. Combine (3.3) and
(3.4)

δF =
∫

∂f

∂J
δη dτ (3.5)

This is usually written

F [J + δη]− F [J ] =
∫

δF [J ]
δJ(τ)

δη dτ (3.6)

Equation (3.6) implicitly defines the functional derivative δF [J ]
δJ(τ) and also

gives us an algorithm for calculating it. As an example, take a simplified
form of (2.54)

F [J ] = exp
{

i

∫ τf

τi

dτ [L + J(τ)q(τ)]
}

(3.7)

F [J+δη] = exp
{

i

∫ τf

τi

dτ [L + J(τ)q(τ) + δη(τ)q(τ)]
}

= F [J ]ei
R τf

τi
δη(τ)q(τ)dτ

δF = iF [J ]
∫ τf

τi

q(τ)δη(τ)dτ

δF [J ]
δJ(τ)

= iq(τ)F [J ] (3.8)

This is a good time to point out that the functional derivative of a functional
is a function.

Now that you have the idea, you can take the shortcut. (This is some-
times used as a definition of the functional derivative.)

δF [J(τ)]
δJ(τ ′)

= lim
ε→0

F [J(τ) + εδ(τ − τ ′)]− F [J(τ)]
ε

(3.9)

The notation F [J(τ)] means that τ is the variable of integration.
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We can use the shortcut to evaluate a more difficult and important case
from a later chapter. The following expression occurs naturally when we
calculate correlation functions using the path integral formalism.

F [J ] = − i

2

∫
d4x d4yJ(x)D(x− y)J(y) (3.10)

All you need to know about this is that x and y are 4-vectors and D(x) =
D(−x). We use functional differentiation to pull D(x − y) out of the func-
tional. To do this, we need to evaluate the expression,

δ2F [J ]
δJ(x′)δJ(y′)

(3.11)

The first derivative is found as follows:

δF

δJ(x′)
= lim

ε→0

(
1
ε

){
− i

2

∫
d4xd4y[J(x) + εδ(4)(x− x′)]D(x− y)

×[J(y) + εδ(4)(y − x′)] +
i

2

∫
d4xd4yJ(x)D(x− y)J(y)

}

= −i

∫
d4xD(x− x′)J(x)

Notice that both J ’s are incremented by the ε term. The last step is easier.

δ2F

δJ(x′)δJ(y′)
= −iD(x′ − y′)

The primes have done their job of distinguishing the independent variables
from the variables of integration. We don’t need them anymore, so let’s
write it

δ2F

δJ(x)δJ(y)
= −iD(x− y) (3.12)

We differentiated with respect to J(x) and J(y), therefore the resulting
function must be a function of x and y.

3.2 Functional Taylor series

“When in doubt, expand in a Taylor series.” This is good advice with
functionals as well as ordinary functions This is particularly true, since most
path integrals cannot be evaluated exactly, and we need some way to make
systematic approximations.
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As in (3.2) we can write

F [J(α)] =
∫

f [J(τ) + αη(τ)]dτ (3.13)

This time we will expand F [J(α)] in an ordinary power series in α and set
α = 1 at the end of the calculation.

F [J(α)] = F [J(0)] +
d

dα
F [J(α)]|α=0 +

1
2

d2

dα2
F [J(α)]|α=0 + · · · (3.14)

Repeating the steps from (3.3) – (3.6)

d

dα
F [J(α)]|α=0 =

∫
∂f

∂J
ηdτ =

∫
δF [J ]
δJ(τ)

η(τ)dτ (3.15)

d2

dα2
F [J(α)] =

∫
dτ

δ

J(τ)
η(τ ′)

∫
dτ ′

δF [J ]
δJ(τ ′)

η(τ ′) (3.16)

Collecting these terms and setting α = 1 gives

F [J +η] = F [J ]+
∫

δF [J ]
δJ(τ)

η(τ)dτ +
1
2

∫ ∫
dτdτ ′η(τ)η(τ ′)

δ2F [J ]
δJ(τ)δJ(τ ′)

+ · · ·
(3.17)



Chapter 4

Introduction to Field Theory

The formalism I have employed so far tries to look as much as possible like
classical Lagrangian mechanics with a finite number of degrees of freedom.
Our strategy has been to get rid of operators and replace them with classical,
c-number variables. These variables commute with one another, which as a
great simplifying feature. They are embedded in the path integral formalism,
which is anything but simple, but most of the time this formalism “lurks
in the background.” We can construct Lagrangians, calculate interactions,
and discuss symmetries without actually doing path integrals. So long as
we work with a finite number of degrees of freedom, however, we can never
accommodate the creation and annihilation of particle. There is no way to
change the number of q’s in our Lagrangian. To do this, we need to replace
the mechanics of discrete masses with the mechanics of continuous media.
The motivation for this is explained nicely in Zee’s book in the section about
the mattress, which I will paraphrase.

Imagine that space is like a rubber sheet. If I put a bowling ball on
the sheet, it will create a depression, and nearby objects will roll into it.
This is an imperfect analogy for an attractive potential. We could describe
the attraction in one of two ways: we could say that there is an attractive
potential between any pair of point-like masses, or we could introduce a
continuous variable, φ(x, y) which describes the displacement of the sheet
as a function of position. Such a continuous displacement variable is a field in
the strict mathematical sense: it assigns a numerical value (or set of values)
to each point in space. The quantum mechanics of such fields is called
quantum field theory. Now suppose that instead of using a bowling ball I
jump up and down on the sheet. The sheet will oscillate in response. My
activity becomes a source of energy, which propagates outward in the form

33
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of waves. This is the rubber-sheet analogy to the propagation of particles.
This analogy can easily be misleading. For one thing, I don’t want you

to think we are doing general relativity. The rubber sheet is not intended as
an analogy for ordinary space-time as it is often used in explaining general
relativity. The field φ(x, y) describes a displacement, and I know you want
to ask, “Displacement of what?”

The same question comes up in classical electromagnetic theory. When
an electromagnet wave is propagating through space, what is waving? Folks
in the 19’th century thought it must be some sort of mechanical medium,
which they called the ether. According to the textbooks, Michaelson and
Morley proved that wrong with their famous interferometer. But just saying
that the ether does’t exist doesn’t answer the question, it just makes it
impossible to answer! Let’s bite the bullet and agree for the purposes of this
course that space is pervaded by a medium, which for lack of a better name,
we will call the ether. Well, actually the ethers. Each species of particle
corresponds to a set of vibrations in it’s own specific ether. Electrons are
all vibrations in the electron ether, etc. Space-time points in the ether can
be labelled with Lorentz four-vectors or (x, t) as usual, and these points
obey the usual rules for Lorentz transformations. This much is required
by the M-M experiment. Ordinary bulk media have elastic properties that
are described by two parameters, the density and Young’s modulus. These
parameters are not themselves relevant to our formalism, but their ratio
gives the velocity of propagation, which is what we really care about.

I am fond of saying, “When correctly viewed, everything is a harmonic
oscillator.” Now you see that this is profoundly true. Each point on the
rubber sheet or ether acts like a harmonic oscillator! Quantum field theory
is a theory about harmonic oscillators.

Well – I have to modify that slightly. If each point on the sheet be-
haved like a simple harmonic oscillator with a quadratic potential, the waves
propagating on the sheet would never interact. The principle of linear su-
perposition would hold everywhere. This is a theory of free particles. If
our theory is to describe interactions, then we must modify the potential
so that it becomes anharmonic. Unfortunately, the anharmonic oscillator
cannot be solve exactly in quantum mechanics. (If you think of a way to
do it, tell me and I’ll be famous.) We have to resort to approximations,
and here is where the path integral formalism really becomes a help rather
than a complication. It makes possible a systematic and understandable
perturbation theory that, with enough patience, can be carried out to any
degree of accuracy desired.

There is an alternative way of dealing with the creation and annihilation



4.1. INTRODUCTION TO CONTINUUM MECHANICS 35

of particles. It is the older way, sometimes called canonical quantization
or second quantization. The path integral formalism, seeks to banish all
operators from the theory. Second quantization goes in the other direc-
tion. It turns the wave functions themselves into operators by imbedding
creation and annihilation operators into them; but they are the raising and
lowering operators of the harmonic oscillator! The universe, according to
second quantization, is an infinity of harmonic oscillators. This approach is
complementary to path integrals in other ways as well. We need to master
both.

Continuum mechanics is not covered in most graduate mechanics classes.
There is a good discussion in the last chapter of Goldstein, but we never
make it that far. What follows is a brief introduction.

4.1 Introduction to Continuum Mechanics

The rules of continuum mechanics are derived by starting with a system
with a finite number of degrees of freedom and then passing to the limit in
which the number becomes infinite. Let’s do this with the simplest possible
system, a long chain of masses connected by springs. It’s a one-dimensional
problem. The masses can only oscillate along the chain. We will use ϕi,
the displacement of the i-th particle from its equilibrium position, as the
generalized coordinate. The Lagrangian is constructed in the obvious way.

T =
1
2

∑

i

mϕ̈2
i (4.1)

V =
1
2

∑

i

k(ϕi+1 − ϕi)2 (4.2)

L = T − V =
1
2

∑

i

a

[
m

a
ϕ̇2

i − ka

(
ϕi+1 − ϕi

a

)2
]

(4.3)

The equilibrium separation between masses is a. The spring constant is k.
The Euler-Lagrange equations of motion are obtained from

d

dt

∂L

∂ϕ̇i
− ∂L

∂ϕi
= 0 (4.4)

If there are N masses, then there are N coupled equation of this sort. They
look like

m

a
ϕ̈i − ka

(
ϕi+1 − ϕi

a2

)
+ ka

(
ϕi − ϕi−1

a2

)
= 0 (4.5)



36 CHAPTER 4. INTRODUCTION TO FIELD THEORY

We need different parameters to describe the continuum limit:

m/a → µ mass per unit length

ka → Y Young’s modulus

The index i points to the i-th mass, and ϕi gives its displacement. In the
continuum limit, the index is replaced by the coordinate x. In elementary
mechanics, x would be the displacement of a particle. Here ϕ(x) is the
displacement of the string at the point x. In the continuum limit

ϕi+1 − ϕi

a
→ ϕ(x + a)− ϕ(x)

a
→ dϕ

dx

L → 1
2

∫
dx

[
µϕ̇2 − Y

(
dϕ

dx

)2
]
≡

∫
dxL(ϕ, ϕ̇) (4.6)

The last integral implicitly defines the Lagrangian density . The continuum
version of the Euler-Lagrange equation is1

d

dt


 ∂L

∂
(

dϕ
dt

)

 +

d

dx


 δL

∂
(

dϕ
dx

)

− ∂L

∂ϕ
= 0 (4.7)

Use the Lagrangian density from (6) in (7)

∂2ϕ

∂x2
=

( µ

Y

) d2ϕ

dt2
(4.8)

(4) and (5) represent a set of N coupled equations for N degrees of freedom.
(7) is one equation for an infinite number of degrees of freedom. In this
sense, continuum mechanics is much easier that discrete mechanics.

(8) should remind you of the equation for the propagation of electromag-
netic waves.

(
∂2ϕ

∂x2

)
+

(
∂2ϕ

∂y2

)
+

(
∂2ϕ

∂z2

)
=

1
c2

(
∂2ϕ

∂t2

)

As you know, photons are massless particles. Notice that a string of massive
particles yields a wave equation that when quantized describes the propa-
gation of massless particles. (With a different velocity, of course.) This is
worth a brief digression.

1See Goldstein for a derivation of this important equation.
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What does it mean to say that a wave function describes the propagation
of a particle of a particular mass? The wave function ψ = ei(kx−ωt) might
describe a wave in classical E&M, or a massive particle in non-relativistic
or relativistic quantum mechanics. The question is, what is the relation
between k and ω? The relationship between the two is called a dispersion
relation. It contains a great deal of information. In the case of EM waves
in vacuum, k = ω/c. Frequency and wave number are simply proportional.
This is the hallmark of a massless field. The velocity is the constant of
proportionality, so there can only be one velocity. In Schrodinger theory

h̄2k2

2m
= h̄ω (4.9)

The relationship is quadratic. The relativistic wave equation for a spin-zero
particle is called the Kline-Gordon equation.

(
∇2 − 1

c2

∂2

∂t2

)
ϕ− m2c2

h̄2 ϕ = 0 (4.10)

The dispersion relation is

(ch̄k)2 + m2c4 = (h̄ω)2, (4.11)

or in other words, p2c2 + m2c4 = E2. All these equations can be obtained
from (7) with the appropriate Lagrangian density. They are all three-
dimensional variations of our “waves on a rubber sheet” model. What does
this have to do with the particle’s mass? It’s useful to plot (9) and (11), i.e.
plot ω versus k for small values of k. In both cases the curves are parabolas.
This means that in the limit of small k, the group velocity,

vgroup =
dω

dk
≈ h̄k

m
(4.12)

In other words, the group velocity is equal to the classical velocity for a
massive particle v = p/m. All the wave equations I know of fall in one of
these two categories; either ω is proportional to k, in which case the particle
is massless and its velocity v = ω/k, or the relationship is quadratic, in
which case

m = lim
k→0

(
h̄k

dk

dω

)
. (4.13)

So long as we are talking about wave-particle duality, this is what mass
means.
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One of the advantages of using Lagrangians rather than Hamiltonians
is that Lagrangians have simple transformation properties under Lorentz
transformations. To see this, let’s rewrite (7) in relativistic notation. Con-
struct the contravariant and covariant four-vectors

xµ ≡ (x0, x1, x2, x3) = (ct, x, y, z) (4.14)

xµ = (x0, x1, x2, x3) = (ct,−x,−y,−z) (4.15)

and the corresponding contravariant and covariant derivatives

∂µ ≡ ∂

∂xµ
∂µ ≡ ∂

∂xµ
. (4.16)

This puts the Euler-Lagrange equation in tidy form

∂µ

(
∂L

∂(∂µϕ)

)
− ∂L

∂ϕ
= 0 (4.17)

This is slightly amazing. Equation (7) was derived without reference to
Lorentz transformations, and yet (17) has the correct form for a scalar wave
equation. We get relativity for free! If we can manage to make L a Lorentz
scalar, then (17) will have the same form in all Lorentz frames. Better yet,
the action

S =
∫

dt L =
∫

dt

∫
d3x L =

1
c

∫
d4x L (4.18)

is also a Lorentz scalar. We can do relativity with path integrals without
having to “fix” anything.

Here’s an example. Rewrite (6) in 3-d

L =
1
2

{
µ

(
∂ϕ

∂t

)2

− Y

[(
∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2

+
(

∂ϕ

∂z

)2
]}

(4.19)

This would be the Lagrangian density for oscillations in a huge block of
rubber. Take

µ

Y
=

1
c2

. (4.20)

Obviously L can be multiplied by any constant without changing the equa-
tions of motion. Rescale it so that it becomes

L =
1
2

{(
∂ϕ

∂t

)2

− c2

[(
∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2

+
(

∂ϕ

∂z

)2
]}

(4.21)
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Substituting (21) into (17) yields the usual equation for EM waves, 2ϕ = 0.
Notice how the Lagrangian for oscillations a block of rubber (19) turns

into the Lagrangian for oscillations in the ether (21). We don’t have to worry
about the mechanical properties of the ether, because µ and Y are scaled
away. Despite what you may have been told, the Michelson-Morley experi-
ment proves the existence of the ether. When correctly viewed, everything
is a bunch of harmonic oscillators, even the vacuum!

Using Einstein’s neat notation, we can collapse (21) into one term

L =
1
2
(∂µϕ)(∂µϕ) ≡ 1

2
(∂ϕ)2 (4.22)

The last piece of notation (∂ϕ)2, is used to save ink. The fact that we can
write L like this is proof that it is a Lorentz scalar. This is an important
point; we can deduce the symmetry properties of a theory by glancing at L.

Now you can make up your own field theories. All you have to do is add
scalar terms to (22). Try it. Name the theory after yourself. Here’s a theory
that already has a name. It’s the Kline-Gordon theory.

L =
1
2

[
(∂ϕ)2 −m2φ2

]
(4.23)

(I have set c = 1 and h̄ = 1.) Using our new notation, the equation of
motion is

(∂µ∂µ + m2)ϕ = 0 (4.24)

If we assume that ϕ(x) (x is a 4-vector in this notation.) is a one-component
Lorentz scalar, then this describes a spinless particle with mass m propagat-
ing without interactions. Spin can be included by adding more components
to ϕ. More about this later.

It is plausible that we can adopt all the path integral results from the
previous sections. Simply replace the displacement qi with the displacement
field ϕ(x) and the momentum pi with the canonical momentum π(x) = ∂L

∂ϕ̇ .
Let’s look at this more closely. We have been calculating the propagator,

〈qf , tf |qi, ti〉H = 〈qf |e−iH(tf−ti)|qf 〉S =
∫

D[x]D[p]eiS . (4.25)

(Equation (29) in Chapter 2) The natural generalization of this is

〈ϕf (x)|e−iH(tf−ti)|ϕi(x)〉 =
∫

D[ϕ]D[π] exp
[
i

∫ tf

ti

d4xL(ϕ)
]

(4.26)
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Where the functions ϕ(x) over which we integrate are constrained to the
specific configurations ϕi(x) at x0 = ti, and ϕf (x) at t0 = tf .

In the previous chapter we were able to derive (2.29) directly from Feyn-
man’s sum over paths hypothesis. Here here that derivation breaks down.
The trouble is that the field operators ϕ̂ do not have complete sets of eign-
states. The derivation can be completed using the notion of coherent states,2

but I propose a different approach. To make the notation a bit more compact
I will write the propagator,

〈ϕf , tf |ϕi, ti〉 = U(ϕi, ϕf ; T ), (4.27)

where T = tf−ti. Now it is possible to show3 without using the completeness
hypothesis that U satisfies Schrodinger’s equation

ih̄
∂

∂T
U = HU (4.28)

The Hamiltonian in this equation is obtained from the Lagrangian in (26)
by the usual procedure. We argue that (26) is correct, even if we are unable
to derive it from first principles. Let’s just take it as a definition of U .

Since the exponent in (26) is quadratic in π, we can complete the square
and evaluate the D[π] integral to obtain

〈ϕf (x)|e−iH(tf−ti)|ϕi(x)〉 =
∫

D[ϕ] exp
[
i

∫ tf

ti

d4x L
]

(4.29)

You will recall from (2.32) and (2.33) that this integration produces a badly
behaved normalization constant. Back then, I simply called it N and re-
assured you that it would go away. Here, this is true a fortiori. I have no
idea what the constant is and only a clue what it means. I do know that all
physically interesting quantities are quotients of two terms, each containing
the same constant. Since it always cancels, I have not even bothered to
write it in (29).

4.2 Correlation functions

The propagator in (25) is just the ticket for ordinary quantum mechanics.
After all, the q’s are measurable quantities. Quantum fields, on the other
hand, are not measurable, so U as it stands is not of much use. It turns out

2This is worked out in Prof. Wasserman’s lecture notes.
3See Peskin and Schroeder, Section 9.1
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that the quantities of interest are the correlation functions defined in Section
2.6, equation (59), but with fields replacing the Q̂ operators. In other words
we are looking for

G(x1, x2, · · · , xn) ≡ 〈Ω|T [ϕ̂(x1)ϕ̂(x2) · · · ϕ̂(xn)] |Ω〉 (4.30)

This is sometimes called the n-point function. The most important instance
of this is the two-point correlation function, which we will now investigate.
Consider the following object:4

〈ϕb|e−iHT T [ϕ̂(x1)ϕ̂(x2)]e−iHT |ϕa〉 (4.31)

The ϕ̂’s are field operators in the Heisenberg picture. The times are arranged
so that both x0

1 and x0
2 fall in the interval between −T and T . ϕa represents

the field evaluated at time −T , ϕa = ϕ(−T, x) and ϕb = ϕ(T, x). The
construction T [· · · ] refers to the time ordering operator, as in Section 2.6.
Let’s assume to start with that x0

2 > x0
1. We can convert the Heisenberg

fields to Schrodinger fields, e.g.

ϕ̂(x2) = eiHx0
2 ϕ̂S(x2)e−iHx0

2

Now (31) can be written

〈ϕb|e−iH(T−x0
2)ϕ̂S(x2)e−iH(x0

2−x0
1)ϕ̂S(x1)e−iH(x0

1+T )|ϕa〉 (4.32)

At this point in Section 2.6 we inserted complete sets of position eigen-
states and replaced the operators with their eigenvalues. As mentioned
previously, this step is not immediately justified, because the field operators
don’t have eigenstates. I don’t want to get into the technicalities of coherent
states, so let me just reassure you that we won’t make any mistakes, if we
assume that we can replace field operators with c-number fields

ϕ̂S(x1)|ϕ1〉 = ϕ1(x1)|ϕ1〉,

and that the completeness relation
∫

D[ϕ1] |ϕ1〉〈ϕ1| = 1̂,

4I am using the notation from Section 9.2 of Peskin and Schroeder. I hope no one will
be so symbol-minded as to confuse the T in the exponentials (meaning some fixed time)
and the T in front of the fields (the time ordering operator).
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makes sense. Now insert 1̂ after each of the fields in (32). The result is
∫

D[ϕ1(x)]
∫

D[ϕ2(x)] ϕ1(x1)ϕ2(x2)〈ϕb|e−iH(T−x0
2)|ϕ2〉 (4.33)

×〈ϕ2|e−iH(x0
2−x0

1)|ϕ1〉〈ϕ1|e−iH(x0
1+T )|ϕa〉

This is a product of three propagators that jolly along the field from −T →
x0

1 → x0
2 → T . For example,

〈ϕb|e−iH(T−x0
2)|ϕ2〉 =

∫
D[ϕ] exp

[
i

∫ T

x0
2

d4x L(ϕ)

]

combining these three factors yields the final result

〈ϕb|e−iHT T [ϕ̂(x1)ϕ̂(x2)]e−iHT |ϕa〉 (4.34)

=
∫

D[ϕ]ϕ(x1)ϕ(x2) exp
[
i

∫ T

−T
d4x L(ϕ)

]

where the boundary conditions on the path integral are ϕ(−T, x) = ϕa(x)
and ϕ(T, x) = ϕb(x) for some ϕa and ϕb. Notice that if we had started with
the assumption that x0

1 > x0
2, we would have arrived at the same result. We

get the time ordering for free.
I have set up the correlation function with the e−iHT ’s in (31) because I

want to discuss the limit T → ∞. This has the effect of projecting out the
ground state, but exactly what does this mean and what is the ground state
anyhow? We are accustomed to dividing the Hamiltonian into two parts, the
free-particle and the potential or interaction term, H = H0 + HI . If we set
HI = 0, the particle has energy eigenstates and eigenenergies, and clearly,
the minimum energy is E0 = 0. This makes sense mathematically, but not
physically: nature doesn’t come equipped with switches to do this. This
is a highly non-trivial problem, because a single particle can interact with
itself via intermediate particles. Worse yet, even the vacuum can interact
with itself through the spontaneous creation of particle-antiparticle pairs.
We call this minimum-energy vacuum state |Ω〉.

Define the eigenstates of H as follows:

H|n〉 = En|n〉
Imagine starting with |ϕa〉, and evolving through time with H.

e−iHT |ϕa〉 =
∑

n

e−iEnT |n〉〈n|ϕa〉
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= e−iE0T |Ω〉〈Ω|ϕa〉+
∑

n 6=0

e−iEnT |n〉〈n|ϕa〉

Give a small negative imaginary part to T and look at what happens when
T → ∞(1 − iε). Each term tends toward zero, but since E0 < En for all
n 6= 0, the first term approaches zero more slowly. Put it another way: if we
divide the equation through by e−iE0T 〈Ω|ϕa〉, the term containing the sum
will vanish.

|Ω〉 = lim
T→∞(1−iε)

(e−iE0T 〈Ω|ϕa〉)−1e−iHT |ϕa〉. (4.35)

Insert (35) into (34).

〈Ω|T [ ˆϕ(x1) ˆϕ(x2)]|Ω〉 = lim
T→∞(1−iε)

∫
D[ϕ]ϕ(x1)ϕ(x2) exp

[
i
∫ T
−T d4xL

]

∫
D[ϕ] exp

[
i
∫ T
−T d4xL

]

(4.36)
I remarked previously that the measure

∫
D[ϕ] produced weird normaliza-

tion constants. Here as always, these constants cancel between the numera-
tor and denominator. Often in doing perturbation theory, we are concerned
with the correlation function for two free particles. In this case we replace
|Ω〉 with |0〉. The denominator is then proportional to 〈0|0〉 = 1, so we can
ignore it altogether.

Back at the end of Chapter 2, I introduced the notion of a generating
function. The key equations here are (2.64) and (2.65), which I repeat here
for reference.

z[J ] ≡ 〈qf , tf |qi, ti〉J ≡
∫

D[q] exp
{

i

∫ tf

ti

dt [L(t) + J(t)q(t)]
}

(4.37)

〈qf , tf |T
[
Q̂(t1)Q̂(t2) · · · Q̂(tn)

]
|qi, ti〉 =

(
1
i

)n δnz[J ]
δJ(t1)δJ(t2) · · · δJ(tn)

∣∣∣∣
J=0

(4.38)
We take advantage of recent developments by upgrading these formulas in
two ways: (1) replacing the Qi’s with the fields, ϕ(x), and (2) taking the
limit T → ∞(1 − iε). It is customary to use the capital Z for this new
generating functional.

Z[J ] ≡
∫

D[ϕ] exp
{

i

∫ ∞

−∞
d4x [L(ϕ) + J(x)ϕ(x)]

}
(4.39)

We can use this technology to rewrite (36) as follows:

〈Ω|T [ ˆϕ(x1) ˆϕ(x2)]|Ω〉 =
1

Z[0]

(
1
i

)2 δ2Z[J ]
δJ(x1)δJ(x2)

∣∣∣∣
J=0

(4.40)
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The generalization to higher-order correlation functions is obvious. We
sometimes use the notation

〈Ω|T [ ˆϕ(x1) ˆϕ(x2) · · · ϕ̂(xn)]|Ω〉 = G(x1, x2, · · · , xn) (4.41)

The function G(x1, x2, · · · , xn) is called the “n-point function.”

4.3 The Feyman Propagator

I will now show how this formalism works with the free Klein-Gordon field.
Use the Lagrangian (23) in (39)

Z[J ] =
∫

D[ϕ] exp
{

i

∫
d4x

[
1
2

(
(∂ϕ)2 −m2ϕ2 + iεϕ2

)
+ Jϕ

]}
(4.42)

I have inserted the iεϕ2 to ensure that the exponential integrals converge
as explained previously. The key to doing the

∫
d4x integral is to Fourier

transform the integrand to momentum space.

ϕ(x) =
∫

d4p

(2π)2
e−ipxϕ̃(p) (4.43)

Substituting (43) into (42) gives the following:
∫

d4x
1
2

[
(∂ϕ)2 −m2ϕ2 + iεϕ2

]
(4.44)

=
∫

d4p1d
4p2

2(2π)4
=

[−p1p2 −m2 + iε
]
ϕ̃(p1)ϕ̃(p2)

∫
d4xe−i(p1+p2)

=
1
2

∫
d4p ϕ̃(−p)ϕ̃(p)(p2 −m2 + iε)

On the other hand
∫

d4xJ(x)ϕ(x) =
∫

d4pJ̃(−p)ϕ̃(p) or
∫

d4pJ̃(p)ϕ̃(−p) (4.45)

or (in fact)
1
2

∫
d4p

[
˜ϕ(P )J̃(−p) + ϕ̃(−p)J̃(p)

]

The reason for the two terms will be clear soon. In order to make the
notation a bit more compact, I will define

∆−1 ≡ p2 −m2 + iε (4.46)
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The complete action becomes

S =
∫

d4x (L+ Jϕ̂)

=
1
2

∫
d4p

[
ϕ̃(−p)ϕ̃(p)∆−1 + J̃(p)ϕ̃(−p) + J̃(−p)ϕ̃(p)

] (4.47)

Define a new field
ϕ̃(±p) = ϕ̃0(±p)− J̃(±p)∆ (4.48)

S =
1
2

∫
d4p

[
ϕ̃0(−p)ϕ̃0(p)∆−1 − J̃(p)J̃(−p)∆

]
(4.49)

You see the point of (49)? It break up the action into two pieces, one
depending only on the fields and one depending only on the sources. The
peculiar sum in (45) was necessary to make this happen. Substituting into
(42) yields

Z[J ] =
∫

D[ϕ0] exp
{
− i

2

∫
d4p ϕ̃0(p)ϕ̃0(−p)∆−1

}
(4.50)

× exp
{

i

2

∫
d4p J̃(p)J̃(−p)∆

}

= Z[0]eiW [J ] (4.51)

where

W [J ] ≡ −1
2

∫
d4p J̃(p)J̃(−p)∆(p) (4.52)

Most path integrals are impossible to do, we just don’t have to do them.
We don’t have a snowball’s chance of calculating Z[0], but (40) guarantees
that it will always cancel out!

At this point it is useful to transform back to configuration space.

J̃(±p) =
∫

d4x

(2π)2
e±ipxJ(x) (4.53)

∆(p) =
∫

d4x eipxD(x)

Our final result is

W = −1
2

∫
d4x d4y J(x)J(y)D(x− y) (4.54)
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where

D(x− y) ≡
∫

d4p

(2π)4
eip(x−y)

p2 −m2 + iε
(4.55)

This is the Feynman propagator.5 It is the relativistic generalization of the
one-particle Green’s function (2.48). As such it represents the amplitude
for a particle at the space time point x to propagate to y. The boundary
conditions are different, however, since D(x − y) = D(y − x). Relativity
forces this on us, as I mentioned before.

The derivation of Z[J ] assumed that sources were turned on and off at
finite times before and after the limit T →∞. Let’s see how this idea plays
out in (50). First expand Z[J ]/Z[0] in an exponential series. (See equation
(51).)

Z[J ]
Z[0]

= 1 + iW +
i2

2
W 2 + · · · (4.56)

The second term is easy to understand.

iW = − i

2

∫ ∫
d4x d4y J(x)J(y)D(x− y) (4.57)

Suppose our source consists of two local centers of activity, so that J(x) =
J0[δ(x− x1) + δ(x− x2)]. Then

iW = −iJ2
0 [D(x1 − x2) + D(0)] (4.58)

The D(0) is meaningless. It’s an artifact of our delta function sources. The
other term is simply the probability of a particle to be created by the source
at x1 (when the source was turned on) and reabsorbed at x2 (when the
source was turned off) and vice versa.

Now calculate the two-point function corresponding to iW without spec-
ifying the nature of the sources. The following calculations use equations

5To be consistent I suppose, we should use D̃(p) instead of ∆(p), but this is not
customary notation.



4.4. INTERACTING FIELDS 47

(40), (41), (56) and (57).

G(x1, x2) = 〈Ω|T [ϕ̂(x1)ϕ̂(x2)]|Ω〉

=
1

Z[0]

(
1
i

)2 δ2Z[J ]
δJ(x1)δJ(x2)

∣∣∣∣
J=0

=
(

1
i

)2 δ2iW [J ]
δJ(x1)δJ(x2)

∣∣∣∣
J=0

=
(

1
i

)2 δ2

δJ(x1)δJ(x2)

[
− i

2

∫ ∫
d4x d4y J(x)J(y)D(x− y)

]

J=0

(4.59)

This functional derivative was worked out as an example in Chapter 3.
The relevant equations are (3.10) and (3.12). The effect of the functional
derivatives has been to “peel off” the sources. The final result is

G(x1, x2) = iD(x1 − x2). (4.60)

This is in fact the exact amplitude for a free particle to propagate from
x1 to x2. The higher order terms in (56) vanish when we set J = 0. It
is easy to see that the n-th term of the expansion (56) contains 2n factors
of J and that all the n-point functions vanish except for G(x1, x2, ·, x2n).
Your should work out the 4-point function as an exercise. It consists or a
sum of three terms corresponding to all possible ways in which two particles
can propagate between four points. Now that you have the idea, you can
represent any n-point function as a set of (2n-1)!! diagrams. Just draw
n points labelled x1, x2, · · · , x2n, and draw lines connecting them in pairs,
These are Feynman diagrams.

The theory so far has been trivial in the sense that the particles don’t
interact with one another. We started with the Lagrangian based on the
simple harmonic oscillator, i.e. with a quadratic potential, and in such a
model all the normal modes are linearly independent. This is well known
from continuum mechanics, and it’s true in quantum mechanics as well.
Interacting field theories have additional terms in the Lagrangian. We’ll
look at a simple example in the next section.

4.4 Interacting Fields

In order to make out fields interact, we must add some additional term to the
Lagrangian. Many texts use the interaction term −(λ/4!)ϕ4(x), which is as
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good as any. As you will see, this describes identical particles interacting in
groups of four. An example is the scattering process in which two particles
come together at a point and two particles emerge from that point. Another
is the decay process in which one particle decays into three clones of itself.
The parameter λ is called a “coupling constant.” It determines the strength
of the interaction. You probably don’t know any particles that act like this,
but it turns out to be an important ingredient in the non-Abelian gauge
theories we will study much later in the course. More familiar theories all
involve two or more different particle species and spin, but “Sufficient unto
the day is the evil thereof.”

The simplest non-trivial process involving these hypothetical particles is
the two-body scattering process described above, It turns out that every-
thing we can know about this process is contained in the four-point Green’s
function. We need to calculate the four-field version of (40),

1
Z[0]

(
1
i

)4 δ4Z[J ]
δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣
J=0

= G(x1, x2, x3, x4) (4.61)

with our new Z[J ],

Z[J ] =
∫

D[ϕ] exp
{

i

∫
d4x

[
1
2

(
(∂ϕ)2 −m2ϕ2 + iεϕ2

)
+ Jϕ− (λ/4!)ϕ4

]}

(4.62)
The tricks we used in arriving at (50) no longer work, and we are forced
to make approximations. As I am fond of saying, “When in doubt, expand
in a power series.” Feynman diagrams are a kind of perturbation theory in
which the coupling constant is assumed to be “small” so that perturbation
series is really an expansion in powers of the coupling constant, in this case
λ. Let’s start with the first-order term.

Z1[J ] =
−iλ

4!

∫
dω

∫
D[ϕ] exp

{
i

∫
d4x

[
−1

2
ϕ(∂2 + m2 − iε)ϕ + Jϕ

]}
ϕ4(ω)

(4.63)
You will notice that I replaced (∂ϕ)2 in the exponential with −ϕ∂2ϕ. This
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is just integration by parts. Now substitute (4.63) into (4.61)

G(x1, x2, x3, x4) =
1

Z[0]

(
1
i

)4 δ4Z1[J ]
δJ(x1)δJ(x2)δJ(x3)δJ(x4)

∣∣∣∣
J=0

=
−iλ

4!
1

Z[0]

∫
d4ω

∫
D[ϕ] exp

{
i

∫
d4x

[
−1

2
ϕ(∂2 + m2 − iε)ϕ + Jϕ

]}∣∣∣∣
J=0

× ϕ4(ω)ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)
(4.64)

You see that long string of ϕ’s on the last line of (4.64)? That is the
paradigmatic integral. If you can do that, you can calculate any Green’s
function to any order in λ. In fact, there is a simple, intuitive ”cookbook”
procedure for evaluating all such expressions effortlessly. The trick is yet
another application of our basic gaussian integral.6

∫ ∞

−∞
dx1dx2 · · · dxN e−

i
2
x·A·x+iJ ·x =

√
(2πi)N

det [iA]
e

i
2
J ·A−1·J (4.65)

The notation x ·A · x means
∑

ij xiAijxj , etc. The matrix A is assumed to
be real and symmetric. Let’s define

〈xixj · · ·xkxl〉 ≡
∫∞
−∞ · · ·

∫∞
−∞ dx1dx2 · · · dxNe−

i
2
x·A·xxixj · · ·xkxl∫∞

−∞ · · ·
∫∞
−∞ dx1dx2 · · · dxNe−

i
2
x·A·x (4.66)

By repeated differentiation of (4.65) we can derive

〈xixj · · ·xkxl〉 =
∑

Wick
(A−1/i)ab · · · (A−1/i)cd (4.67)

The subscripts ab and cd in (4.67) stand for any pair of the indices i, j, · · · k, l.
A sum over “Wick contractions” consists of all possible ways of connecting
the indices in pairs. If there is only one pair,

〈xixk〉 = (A−1/i)ik (4.68)

There is a useful analogy between (4.65) and (4.66) and the last two lines
of (4.64). Clearly Ji is analogous to J(x), and xi is analogous to ϕ(x). We’ve
discussed this before. So far so good. The term i

2J · A−1 · J is reminiscent

6There is a brief proof of this in Appendix 1 of Zee’s book. I will ask you to derive it
in more detail for homework.
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of (54), so it’s a good guess that A−1 is analogous to −D(x− y), but if this
is true, A must be analogous to (∂2 + m2 − iε). Quel horreur! Worse yet,
what does it mean to take the determinant of it?

The answer to the last question is clear: we don’t care, since the determi-
nant cancels in equation (4.66). In fact, come to think of it, the denominator
in (4.66) must be analogous to Z[0]. The other point is almost clear, since

(∂2 + m2 − iε)D(x− y) = −δ(4)(x− y) (4.69)

The proof of (4.69) is easily established using the definition (55). D(x− y)
is, after all, a Green’s function, and Green’s functions are by definition,
inverses of differential operators. That’s what they do for a living. In
summary then, I claim that we can use (4.65) and (4.66) for fields rather
than discrete variables by making the following replacements:

xi → ϕ(xi)
Ji → J(xi)

A−1 → −D(x− y)
i

2
J ·A−1 · J → − i

2

∫
d4xd4yJ(y)D(x− y)J(y)

A → (∂2 + m2 − iε)

− i

2
x ·A · x → − i

2

∫
d4xϕ(x)(∂2 + m2 − iε)ϕ(x)

∫ ∞

−∞
dx1dx2 · · · dxn →

∫
D[ϕ]

The proof that my claim is valid is sketched out in Ryder,7 but in fact,
we have implicitly proved it, at least for expressions of the form (4.64), as
you will see. Anyhow, if my claim is true then the correct generalization of
(4.66) is

〈ϕ(xi)ϕ(xj) · · ·ϕ(xk)ϕ(xl)〉

=

∫
D[ϕ] exp

{
i
∫

d4x
[−1

2ϕ(∂2 + m2 − iε)ϕ
]}

ϕ(xi)ϕ(xj) · · ·ϕ(xk)ϕ(xl)∫
D[ϕ] exp

{
i
∫

d4x
[−1

2ϕ(∂2 + m2 − iε)ϕ
]}

(4.70)

The denominator is just Z0[0], ie. equation (4.62) with J = λ = 0.

7Lewis Ryder, Quantum Field Theory, Section 6.2
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To see how this works, let’s evaluate (4.70) in the case of two fields.

G(x1, x2) =
1

Z0[0]

(
1
i

)2 δ2Z0[J ]
δJ(x1)δJ(x2)

∣∣∣∣
J=0

=

∫
D[ϕ] exp

{
i
∫

d4x
[−1

2ϕ(∂2 + m2 − iε)ϕ
]}

ϕ(x1)ϕ(x2)∫
D[ϕ] exp

{
i
∫

d4x
[−1

2ϕ(∂2 + m2 − iε)ϕ
]}

(4.71)

The first line follows from (59), and the second line uses (4.62) with λ = 0.
A glance at (4.70) reveals that what we have just calculated is 〈ϕ(x1)ϕ(x2)〉.

Let’s pause for a moment to see how all the pieces fit together. 〈ϕ(x1)ϕ(x2)〉
as defined by (4.70) equals G(x1, x2). That proof required nothing more than
functional differentiation. Reasoning by analogy from (4.68) led us to hope
that 〈ϕ(x1)ϕ(x2)〉 would be equal to −D(x1 − x2)/i. But we already know
from (60) that G(x1, x2) = iD(x1 − x2), so our cookbook analogy has given
us the right answer for the Feynman propagator without any of the clever
calculations in Section 4.3. Put it another way: we have proved that the
analogy works correctly in the case of (71). The analogy to (4.67) is

〈ϕ(xi)ϕ(xj) · · ·ϕ(xk)ϕ(xl)〉 =
∑

Wick
G(xa, xb) · · ·G(xc, xd) (4.72)

So here’s the procedure: make a list of all possible ways of pairing up the
indices i, j, · · · , k, l. Each entry in the list corresponds to one term in the
sum. That’s all there is to it. I’m willing to believe this without further
proof.

Now you can evaluate (4.64) using (4.70).

G(xi, x2, x3, x4) = − iλ

4!

∫
d4ω〈ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)ϕ4(ω)〉 (4.73)

The Wick sum contains in principle (N − 1)!! = 7!! = 105 terms. It is
probably the case, however, that most of these terms are of no interest.
Draw some pictures to find the interesting ones. Label five points 1,2, 3,
4, and ω. Each term in the expansion corresponds to a way of connecting
these points. Here are the rules:

• There are eight fields in (4.73), therefore there must be four lines
connecting points. Each line corresponds to one of the G(xa, xb)’s in
(4.72).

• The points 1, 2, 3, and 4, must be attached to one and only one line.
Since there are four factors of ϕ(ω) in (4.73), there must be four “line
ends” at the ω point, ie. it can be connected to itself by one or two
lines.
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The points 1, 2, 3, and 4 are connected to external sources, or to put it an-
other way, J(x1), J(x2), J(x3), and J(x4) were used to define G(x1, x2, x3, x4).
The ω point is not. If you want all four of these particles to interact, they
must each be contracted with one of the ϕ(ω)’s. There are 4! terms like this
in the Wick sum. The final result is

G(x1, x2, x3, x4) = −iλ

∫
d4ωG(x1, ω)G(x2, ω)G(x3, ω)G(x4, ω) (4.74)

Forgive me if I gloat a bit. A few paragraphs ago we had some algebra,
which, if done correctly, would have yielded 105 terms. Now we draw a few
pictures, and the answer is obvious by inspection. These pictures are called
Feynman diagrams.

You have noticed that we have ignored 105-4!=81 terms, These are all
pathological in the sense that the ω point is connected to itself by at least
one line. It is a general rule that all Feynman diagrams with loops give rise
to divergent integrals. This is ultimately related to the fact that there are
parameters such as the mass and coupling constant (or charge) of a particle
that are fundamentally mysterious. If these integrals converged, then we
might be able to calculate them. These divergences are nature’s way of
slamming the door in our face. That’s the big bad news. The little bit of
good news is that we can go on doing field theory calculating everything else,
if we treat these divergences very carefully. This comes under the general
heading of renormalization, to which we will return later.

4.5 Momentum Space

Our derivations have for the most part used configuration space. Momentum
space was only used occasionally as a tool for evaluating certain integrals.
Momentum space is more natural for many quantum processes, however.
Scattering is a good example. The particles in the beam have a well-defined
momentum. The target particle is at rest. The momenta of the final state
particles are determined by our apparatus. The rules for Feynman diagrams
discussed briefly above also have a simpler form in momentum space.

Define the momentum space Green’s functions in the obvious way.

G̃(p1, p2, · · · , pN ) =
∫

d4x1d
4x2 · · · d4xNei(±p1x1±p2x2±···±pNxN )G(x1, x2, · · · , xN )

(4.75)
I call your attention to the ± signs in the exponential. To some extent the
sign doesn’t matter, since G(x) = G(−x) and ∆(p) = ∆(−p). Moreover,
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when x or p appear as integration variables, one is always free to replace
x → −x or p → −p. In one respect, however, the signs are all-important.
Take the Fourier transform of (4.74) using (4.75) and (4.53).

G̃(p1, p2, p3, p4) = −iλ(2π)4δ(4)(±p1 ± p2 ± p3 ± p4)∆(p1)∆(p2)∆(p3)∆(p4)
(4.76)

The δ-function is there to enforce momentum conservation. For example, if
the scattering process is one in which p1 and p2 are the incident momentum
and p3 and p4 are the outgoing momentum, then the δ-function must be
δ(4)(p1 + p2−p3− p4) or δ(4)(p3 +p4− p1− p2). Let’s agree on a convention:
outgoing momenta are positive and incoming momenta are negative. That
way we will always get the right signs in (4.75).

Equation (4.76) illustrates some of the rules associated with Feynman
diagrams. The momentum space Green’s function corresponding to any one
diagram consists of a product of the following factors.

• A factor −iλ for each vertex.

• A factor i∆(pi) for each external line.

• An energy-momentum conserving δ-function (2π)4δ(4)(±p1±p2±p3±
p4)

There is one more important item that we have not yet encountered.
What happens to internal lines, ie. those that do not terminate on external
sources. To see that, let’s look at one of the pathological diagrams in which
one of the lines connected to the ω loops back on itself. One such term in
the Wick expansion is8

G(x1, x2, x3, x4) = − iλ

4!

∫
d4ω G(x1, x2)G(x3, ω)G(x4, ω)G(ω, ω) (4.77)

The momentum space Green’s function is

G(p1, p2, p3, p4) = − iλ

4!
(2π)4δ(4)(p1 − p2)(2π)4δ(4)(p3 − p4)

×∆(p1)∆(p3)∆(p4)
∫

d4p′4
(2π)4

∆(p′4) (4.78)

In this case, the particle that starts out with momentum p1 does not interact
with the one with momentum p3, therefore their momenta are conserved

8We have not yet come to terms with indistinguishable particles. For the moment,
assume that the particles have little numbers on them like billiard balls.



54 CHAPTER 4. INTRODUCTION TO FIELD THEORY

separately. There are two δ-function The new feature here is an internal
line, this one labelled by p′4. Since this momentum can have any value, there
is nothing to constrain the

∫
d4p′4 integral. Such integrals always diverge.

To see that this is so, look at
∫

d4p′4
p
′2
4 −m2 + iε

(4.79)

The numerator contains four powers of the momentum, whereas the denom-
inator contains only two. There is no oscillating phase factor, so the integral
diverges quadratically. Such integrals can be dealt with rigorously with a
variety of different techniques. For example, one can put a cutoff on the
range on integration, and then investigate analytically how the result de-
pends on the cutoff. For a certain privileged class of theories, one can show
that the only cutoff-dependent quantities are the particle’s mass and cou-
pling constant and the normalization of the wave function. Since we know
these things already, we can simply ignore the cutoff-dependent parts. Such
theories are said to be renormalizable. The fact that we have to do this is
a sign that our knowledge and theory are incomplete. The fact that we can
do it is also significant. All theories we know that describe the real world,
at least approximately, are renormalizable. If you give me a theory that is
not renormalizable, I know that it’s wrong!

4.6 Virtual Particles

We have encountered the free-particle Feynman propagator, first in mo-
mentum variables (46) and later in space-time variables (55). When we
evaluate out Green’s functions they appear attached to the external sources
as well as to points inside the region where the particles interact with them-
selves. In both cases they have a peculiar feature: in some sense they repre-
sent particles that are not “on the mass shell.” For free particles, after all,
p2 = pµpµ = m2, so it seems that the denominators of (46) and (55) should
vanish. They don’t of course, because pµ is not a physical momentum, but
a variable of integration. There is more to it than that, however. We can-
not specify space and momentum coordinates with arbitrary accuracy. The
propagator D(x− y) describes a situation in which x and y are microscopi-
cally close together, so there is some “fuzziness” in the momentum as well.
Since we cannot specify momentum and energy with arbitrary precision, we
can’t insist that they are perfectly conserved. The propagator takes this into
account in a way that is consistent with relativity. p2 is a Lorentz scalar,
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it’s just not equal to m2. We say that the propagator describes “virtual
particles.”

The propagator ∆(p′4) in (4.78) describes particles that are virtual be-
cause they are emitted and absorbed in a very short distance. The other
propagators in (4.77) and (4.78) describe particles that are virtual for a
different reason: the sources J(xi) that we built into the theory are also
quantum mechanical objects. They are not external sources like x-ray tubes
or cyclotrons. That should be evident from the discussion in Section 4.2.
The sources were turned on sometime after −T and turned off again before
T , but the limits −T → −∞ and +T → +∞ that were used to project out
the ground states refer to the macroscopic past and future where we live
and move and have our being. Put it another way, we live in the ground
state. The action takes place after the sources turn on , and it stops when
the sources turn off.

We often use the momentum space Green’s functions to calculate scatter-
ing reactions. Indeed, that is their principal use. But particles in scattering
experiments are produced by cyclotrons and other macroscopic sources. We
can use our Green’s functions for this by the simple expedient of removing
the ∆’s from the external legs. This is sometimes called “amputating the
legs of the diagram.”9 This procedure then becomes part of the rules for
Feynman diagrams.

Leaving aside the very technical issue of renormalization, you now have
everything you need to do perturbation theory calculations with scalar field
theory to any order. There is a complete description of the rules in Zee’s
book, pages 53 and 54. I will restate them here for reference.

To calculate a momentum space Green’s function corresponding to a
Feynman diagram, do the following:

• Draw the diagram and label each line with a momentum.

• Associate each line carrying momentum p with a propagator i/(p2 −
m2 + iε).

• Associate with each interaction vertex the coupling−iλ and (2π)4δ(4)(
∑

i pi−∑
j pj), forcing the sum of momenta

∑
i pi going out of the vertex to

be equal to the sum of momenta
∑

j pj going out of the vertex.

• Momenta associated with internal lines are to be integrated over with
the measure d4p/(2π)4.

• Remove those propagators associated with external lines.
9Don’t let PETA find out about this.
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4.7 A Word About Renormalization

I have said repeatedly that all diagrams with complete loops lead to diver-
gent integrals. That’s bad news enough, but what is worse, these divergent
integrals contribute real measurable effects to the physical processes de-
scribed by the Green’s functions. The challenge is to divide these integrals
into two parts; one part that is infinite and one part that is finite and con-
tains all measurable effects. This is really a huge subject, but I would like to
give you a few of the key ideas. I will do this in the context of the simplest
possible divergent integral. It arises when one tries to do calculations in the
so-called “phi-third theory.”

Lint = −i
λ

3!
ϕ3 (4.80)

When one calculates the two-point function G(x1, x2) to second order in
perturbation theory, one comes up against the integral

G2(x1, x2) = (−iλ)2
∫

d4w d4z G(x, w)G(w, z)G(w, z)G(z, x2) (4.81)

This will diverge because of the loop. It represents the second-order correc-
tion to the propagator.

First take the Fourier transform

G2(p1, p2) =
∫

d4x1 d4x2 d4w d4z ei(p2x2−p1x1)

∫
d4p′1 · · · d4p′4

(2π)16

× ei(x1−w)ei(w−z)ei(w−z)ei(z−x2)i∆(p′1)i∆(p′2)i∆(p′3)i∆(p′4) (4.82)

Do the integrals over
∫

d4x1 d4x2 d4w d4z, then do three momentum inte-
grals

∫
d4p′1 d4p′3 d4p′4. The result when all is said and done is

G2(p1, p2) = (−iλ)2(2π)4δ(4)(p1 − p2)∆(p1)∆(p2)
∫

d4k

(2π)4
∆(k)∆(p1 − k)

(4.83)
The integration variable p′2 has be renamed k, since there are no other primed
variables left.

That last integral is going to give us trouble. Let’s concentrate on it by
defining

F (p) ≡
∫

d4k

(2π)4
∆(k)∆(p− k) (4.84)

The integral is not only difficult, it’s divergent. We will deal with these
two problems with two amazing tricks; the first due to Feynman. Feynman
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argued that a four-fold integral is hard to do, so let’s make it a five-fold
integral! The basic formula is this:

1
A1A2

=
∫ 1

0
dz[A1z + A2(1− z)]−2 ≡

∫ 1

0

dz

D(z)2
(4.85)

The key idea is that the product A1A2 is replaced by the single factor D2.
This, as it turns out, is enough to make the d4k integrable doable. In our
case

D2 = B2 + Q2 − k′2 − iε = C2 − k′2 − iε (4.86)

where

Q = p(1− z) B2 = m2 − p2(1− z) k = k′ + Q c2 = B2 + Q2

Dropping the prime, we have

F (p) =
∫ 1

0
dz

∫
d4k

(2π)4
1

[C2 − k2 − iε]2
(4.87)

A bit of power counting shows that there are four powers of k in the nu-
merator and four in the denominator. The integral diverges logarithmically,
and here is where the next great idea comes in. Note that the integral

∫ ∞

1

dx

x

diverges, but ∫ ∞

1

dx

x1+ε
=

1
ε

ie. increasing the exponent in the denominator by an infinitesimal amount
makes the integral convergent. We would like to integrate over 1/D2+ε but
this makes no sense whatsoever (D is a four vector). Suppose we could
integrate over slightly less that four dimensions! In the context of the trivial
example above, suppose we could integrate

∫ ∞

1

d(1−ε)x

x

Here’s the idea
∫

ddk

(2π)d

1
(C2 − k2 − iε)2

=
i

(4π)d/2

Γ(2− d/2)
Γ(2)

(
1

C2

)2−d/2

(4.88)
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This was derived for integer d (don’t ask me how), but the Γ functions and
everything else on the right side of this equation are perfectly well-defined
continuous functions of d. We use (4.88) as a definition of what it means
to integrate over a non-integer number of dimensions. We will use (4.88) to
integrate (4.87) and then see what happens in the limit d → 4. Incidentally,

Γ(x) =
∫ ∞

0
dt tx−1e−t, (4.89)

Also Γ(n) = (n− 1)! for integer n, and Γ(x + 1) = xΓ(x) in general.
After some algebra we find

F (p) =
i

(4π)d/2

2Γ(1 + ε/2)
ε

∫ 1

0

dz

[m2 − p2z(1− z)]ε/2
(4.90)

where ε ≡ 4 − d. Well Γ(1) = 1, so the integral still diverges in the limit
ε → 0. We expected that, but I have one more trick up my sleeve. Look at
the expansion

A−ε/2 = 1− ε

2
ln A +

1
8
ε2(lnA)2 + · · · (4.91)

Insert (4.91) into (4.90).

lim
ε→0

F (p) = ∞− i

(2π)2

∫ 1

0
dz ln [m2 − p2z(1− z)] (4.92)

There are two points to notice here.

• The remaining integral is straightforward, since it involves only one
real variable of integration.

• The term “∞” in (4.92) is really

lim
ε→0

2i

(4π)2
1
ε

(4.93)

The point is that this is a pure number; It does not depend on p! We
have cleanly separated the measurable physics in the second term from
the meaningless constant in (4.93). To used an old cliche, we don’t
have to worry about throwing the baby(s) out with the bath water,
because we have gotten all the kids out of the tub!

Well, that’s not quite true. Recall that F (p) is multiplied by λ2 in (4.81).
It’s as if we were working with an infinite coupling constant. Rather than
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“throwing out an infinite term,” let’s say that the λ that appears in (4.80)
is not physically measurable. It’s sometimes called the “bare” coupling con-
stant λ0. What we are doing is replacing λ0∞→ λ. We have “renormalized”
the coupling constant. If we were to calculate G(p1, p2) to higher orders of
perturbation theory, we would find that these divergent integrals also have
the effect of renormalizing the mass. We use the same argument; the “bare”
mass m0 is not measurable, but we can always replace m0∞→ m, where m
is the physical mass. It is remarkable fact that all the infinities that occur to
all orders of perturbation theory can be disposed of using these two maneu-
vers. A theory in which all infinities can be sequestered in a finite number
of physical parameters is said to be “renormalizible.” We have learned from
decades of experience that all theories that are not renormalizible are wrong
in the sense that they make predictions that are falsified by experiments.
The bad news is that we can’t calculate m and λ. The good news is that we
can calculate everything else. This raises a profound and unanswered ques-
tion. Are the masses and coupling constants of elementary particles really
fundamental constants, or can they be calculated on the basis of something
else, and if so, what is that something else?
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Chapter 5

Identical Particles and
Many-Particle States

Ordinary matter consists of vast numbers of identical particles at low energy.
Quantum mechanics requires that the wave functions for such ensembles be
totally symmetric or totally antisymmetric, and this in turn is responsible
for many important properties, including the fact that atoms don’t simply
collapse into their nuclei! Ordinary quantum mechanics is capable of de-
scribing such systems so long as the number of particles remains constant.
In a sense this is always true; there is never enough energy in a semiconduc-
tor, for example, to create a single electron; but it is convenient to regard
holes in the Fermi-Dirac sea as real particles. Thus the formation of a hole
entails the creation of two particles, a positive “particle,” the hole, and a
negative particle, the excited electron. There are equivalent processes in
Boson condensates as we shall see. Second quantization is ideally suited to
describe such processes, but first we need to develop the ordinary quantum
mechanics of many-particle systems.

5.1 The Quantum Mechanics of Identical Particles

Let’s write a many-particle wave function as follows:

ψ = ψ(1, 2, . . . , N) (5.1)

The notation 1, for example, means x1, σ1. Suppose the particles had num-
bers on them like billiard balls. They don’t of course, that’s the whole point,
but suppose they did. Then ψ(1, 2) means that the particle numbered 1 was
at the point x1 and it’s z-component of spin was σ1. The wave function
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ψ(2, 1) means that the number-one ball has components x2 and σ2. Our
job is to construct a theory in which the sequence of numbers in ψ has
no observable consequences. That is what we mean by indistinguishable
particles.

Define the permutation operator Pij

Pijψ(. . . , i, . . . , j, . . .) = ψ(. . . , j, . . . , i, . . .) (5.2)

Here are a few simple theorems about permutations. The reader is invited
to supply the simple proofs.

1. For every symmetric operator S(1, . . . , N) we have

[P, S] = 0 (5.3)

An important example of a symmetric operator is the Hamiltonian.
This should be obvious, since a low-energy Hamiltonian will have the
form

H =
∑

i

p2
i

2m
+

∑

i,j

Vij

where Vij is the interaction potential between particles i and j. From
Newton’s third law, we expect Vij = Vji.

2.
〈Pϕ|Pψ〉 = 〈ϕ|ψ〉, (5.4)

which follows by renaming the integration variables.

3. Permutations have no effect on the expectation values of symmetric
operators.

〈Pϕ|S|Pψ〉 = 〈ϕ|P †SP |ψ〉 = 〈ϕ|S|ψ〉 (5.5)

4. If 〈ϕ|O|ψ〉 = 〈Pϕ|O|Pψ〉 for all ϕ and ψ, then O must be symmet-
ric. We believe that all physical observables must be invariant under
all permutations of the particles, so all operators corresponding to
observable quantities must be symmetric.

It is well known that wave functions describing identical bosons must
be symmetric with respect to the exchange of any pair of particles. Func-
tions describing identical fermions must be antisymmetric in the same sense.
There is a vast amount of experimental evidence to corroborate this. There
is also a deep result known as the spin-statistics theorem, which shows that
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it is virtually impossible to construct a covariant theory that does not have
this property.

One way to make completely symmetric or antisymmetric states is simply
to multiply single-particle states in all possible combinations. We’ll call the
basic ingredient |i〉α. By this I mean that the ball that wears the number
α is in the quantum state given by i. We assume these are orthonormal,
〈i|j〉 = δij . We can write an N -particle state

|i1, i2, . . . , iN 〉 = |1〉1|2〉2 · · · |iN 〉N (5.6)

The symmetrized and antisymmetrized basis states are can be written

S±|i1, i2, . . . , iN 〉 ≡ 1√
N !

∑

P

(±)P P |i1, i2, . . . , iN 〉 (5.7)

The sum goes over all of the N ! possible permutations of N objects. Equa-
tion (5.6) defines the symmetric- and antisymmetric-making operators S±.
The symbol (±)P requires further explanation. All the N ! permutations of
N objects can be obtained by exchanging successive pairs of particles. The
P in (±)P stands for the number of such exchanges required to achieve the
corresponding permutation. Of course, the upper sign refers to bosons and
the lower, to fermions. It is a fact that no permutation can be reached by
an even and an odd number of exchanges. Put it another way, even and odd
permutations constitute two disjoint sets.

5.2 Boson States

We must allow for the possibility that there are several particles in one
quantum state. If, for example, there are ni particles in the i-th state, there
will be ni! permutations that leave the N -particle state unchanged. In this
case (5.6) will not be normalized to unity. A properly normalized state can
be constructed as follows:

|n1, n2, . . . 〉 = S+|i1, i2, . . . , iN 〉 1√
n1!n2! · · ·

(5.8)

The numbers n1, n2, etc. are called occupation numbers. The sum of all
occupation numbers must equal to the total number of particles:

∑

i

ni = N (5.9)
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All this assumes that there are exactly N particles. We are interested
in precisely the situation in which the total number of particles is not fixed.
We allow for this by taking the basis states to be the direct sum of the space
with no particles, the space with one particle, the space with two particles,
etc. A typical basis element is written |n1, n2, . . .〉. There in no constraint
on the sum of the ni. The normalization is

〈n1, n2, . . . |n′1, n′2, . . .〉 = δn1,n′1δn2,n′2 · · · (5.10)

and the completeness relation
∑

n1,n2,...

|n1, n2, . . .〉〈n1, n2, . . . | = 1 (5.11)

Since there are physical processes that change the number of particles in
a system, it is necessary to define operators that have this action. The basic
operators for so doing are the creation and annihilation operators. As you
will see, they are formally equivalent to the raising and lowering operators
associated with the harmonic oscillator. For example, suppose a state has
ni particles in the i’th eigenstate. We introduce the creation operator a†i by

a†i | . . . , ni, . . .〉 =
√

ni + 1| . . . , ni + 1, . . .〉, (5.12)

ie. a†i increases by one the number of particles in the i’th eigenstate. The
adjoint of this operator reduces by one the number of particles. This can
be seen as follows: Take the adjoint of (5.12) and multiply on the right by
| . . . , ni + 1, . . .〉.

〈. . . , ni, . . . |ai| . . . , ni + 1, . . .〉
=
√

ni + 1〈. . . , ni + 1, . . . | . . . , ni + 1, . . .〉 =
√

ni + 1

Now replace ni everywhere by ni − 1.

〈. . . , ni − 1, . . . |ai| . . . , ni, . . .〉
=
√

ni〈. . . , ni, . . . | . . . , ni, . . .〉 =
√

ni (5.13)

The effect of ai on the state | . . . , ni, . . .〉 has been to produce a state in
which the number of particles in the i’th state has been reduced by one.
Eqn. (5.13) also tells us what the normalization must be. In short

ai| . . . , ni, . . .〉 =
√

ni| . . . , ni − 1, . . .〉 for ni ≥ 1 (5.14)
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Of course if ni = 0, the result is identically zero.

ai| . . . , ni = 0, . . .〉 = 0

The commutation relations are important. Clearly all the ai’s commute
among one another, since it makes no difference in what order the different
states are depopulated, and by the same argument, the a†i ’s commute as
well. ai and a†j also commute if i 6= j, since

aia
†
j | . . . , ni, . . . , nj , . . .〉

=
√

n1

√
nj + 1| . . . , ni − 1, . . . , nj + 1, . . .〉

= a†jai| . . . , ni, . . . , nj , . . .〉
Finally

(
aia

†
i − ai†ai

)
| . . . , ni, . . . , nj , . . .〉

=
(√

ni + 1
√

ni + 1−√ni
√

ni

) | . . . , ni, . . . , nj , . . .〉
In summary

[ai, aj ] = [a†i , a
†
j ] = 0, [ai, a

†
j ] = δij (5.15)

If it were not for the i and j subscripts, (5.15) would be the commutation
relations for the harmonic oscillator, [a, a] = [a†, a†] = 0, [a, a†] = 1. In this
context they are called ladder operators or raising and lowering operators.
This is the essence of second quantization. Try to imagine a quantum system
as an infinite forest of ladders, each one corresponding to one quantum state
labelled by an index i. The rungs of the i’th ladder are labelled by the integer
ni. The entire state of the system is uniquely specified by these occupation
numbers. The effect of ai and a†i is to bump the system down or up one
rung of the i’th ladder. There are several important results from harmonic
oscillator theory that can be taken over to second quantization. One is
that we can build up many-particle states using the a†i ’s. Starting with the
vacuum state |0〉 with no particles, we can construct single-particle states,
a†i |0〉, two-particle states

1√
2!

(
a†i

)2
|0〉 or a†ia

†
j |0〉,

or in general, many-particles states.

|n1, n2, . . .〉 =
1√

n1!n2! · · ·
(
a†1

)n1
(
a†2

)n2 · · · |0〉 (5.16)
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Another familiar result is that the number operator

Ni = a†iai (5.17)

is a Hermitian operator whose eigenvalue is the number of particles in the
i’th quantum state.

Ni| . . . , ni, . . . 〉 = ni| . . . , ni, . . . 〉 (5.18)

Here is a useful result that you can prove by brute force or induction.
[
ai,

(
a†i

)n]
= n

(
a†i

)n−1

Use this to do the following exercises.

• Show that (5.16) has the normalization required by (5.10).

• Prove (5.18).

• Show that the mysterious factor of
√

ni + 1 in (5.12) is in fact required
by (5.16).

5.3 More General Operators

The matrix element of a single-particle operator1 in a one-particle state is
just

Oij = 〈i|Ô|j〉. (5.19)

If the |i〉’s represent a complete set of states, we can represent the operator
as

Ô =
∑

i,j

Oij |i〉〈j| (5.20)

In a many-particle system, we must distinguish between operators that work
on specific individual particles and those that operate on all the particles
in the system. One way to do this is to simply sum over one-particle states
and generalize (5.20) as follows:

Ô =
∑

i,j

Oij

N∑

α=1

|i〉α〈j|α (5.21)

1I will sometimes use “hats” to emphasize that some particular symbol represents
an operator. I will do this only occasionally, however, and I reserve the right to be
inconsistent.
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The index α points to the individual particles, but the sum over α is awk-
ward; we would like to express it in terms of creation and annihilation oper-
ators. Note that when

∑ |i〉α〈j|α operates on an arbitrary N -particle state,
it produces nj terms in which |j〉 is replaced by |i〉, one for each particle in
the state, but these nj terms are still normalized as if they had nj particles
in the j’th state and ni particles in the i’th state. Taking this into account
gives

n∑

α=1

|i〉α〈j|α| . . . , ni, . . . , nj , . . .〉

= nj | . . . , ni + 1, . . . , nj − 1, . . .〉
√

ni + 1√
nj

=
√

nj

√
ni + 1| . . . , ni + 1, . . . , nj − 1, . . .〉
= a†iaj | . . . , ni, . . . , nj , . . .〉

≡ Nij | . . . , ni, . . . , nj , . . .〉 (5.22)

You see that Nij = a†iaj is a generalization of (5.17). Evidentally, Nii as
defined by (5.22) is the same as Ni defined by (5.17). Finally

Ô =
∑

ij

OijNij (5.23)

From here it’s only a hop, skip, and jump to defining two-particle operators.

Ô(2) =
1
2

∑

i,j,k,m

〈i, j|Ô(2)|k,m〉a†ia†jakam, (5.24)

where

〈i, j|Ô(2)|k, m〉 =
∫

dx

∫
dy ϕ∗i (x)ϕ∗j (y)Ô(2)(x, y)ϕk(x)ϕm(y). (5.25)

The factor 1
2 in (5.25) insures that each interaction is counted only once,

since for identical particles Ô(2)(x, y) = Ô(2)(y, x).

5.4 Field Operators

I have used the symbol |i〉 to indicate a one particle “quantum state.” For
example, if one were dealing with hydrogen, i would stand for the discrete
eigenvalues of some complete set of commuting operators, in this case n,
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l, m, and ms. The creation operators a†i create particles in such a state.
Whatever these operators might be, however, none of them is the position
operator. An important question is what the creation operator formalism
looks like in terms of the position operator. First consider two basis systems
based on two alternative sets of commuting observables. Use i to index one
set and λ to index the other. Then

|λ〉 =
∑

i

|i〉〈i|λ〉. (5.26)

Since this is true for states, it must also be true of creation operators.

a†λ =
∑

i

〈i|λ〉a†i (5.27)

Now remember that what we call a wave function in elementary quantum
mechanics is really a scalar product on Hilbert space of the corresponding
state and eigenstates of the position operator, i.e.

〈x|i〉 = ϕi(x). (5.28)

We assume that the ϕi are a complete set of orthonormal functions, so that
∫

d3x ϕ∗i (x)ϕj(x) = δij (5.29)

and ∑

i

ϕ∗i (x)ϕi(x′) = δ(3)(x− x′) (5.30)

Combining (5.27) and (5.28) gives

ψ†(x) =
∑

i

ϕ∗i (x)a†i (5.31)

and its adjoint
ψ(x) =

∑

i

ϕi(x)ai

ψ†(x) is the creation operator in the basis defined by the position opera-
tor. It creates a particle at x. ψ† and ψ are called field operators. Their
commutation relations are important.

[ψ(x), ψ(x′)]± = [ψ†(x), ψ†(x′)]± = 0 (5.32)

[ψ(x), ψ†(x′)]± = δ(3)(x− x′)
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I have used the symbol [· · · , · · · ]± to allow for both boson (commutation)
and fermion (anticommutation) rules. The first line of (5.32) is more or less
obvious. The second line follows from (5.30)

Quantum mechanics according to Heisenberg was obtained by replacing
classical quantities like P and L with noncommuting operators. Our for-
malism takes the further step of making the wave functions themselves into
operators via (5.32). This, I suppose, is the reason why it’s called “second
quantization.” Many texts in fact, start with (5.32) and use it to infer the
existence of the creation and annihilation operators. Let’s see what ordi-
nary quantum mechanics looks like in this formalism and then see what new
aspects appear. Start with the kinetic energy. Eqn. (5.19) gives the matrix
element

Tij =
∫

d3x ϕ∗i (x)
(
− h̄2

2m
∇2

)
ϕj(x) =

h̄2

2m

∫
d3x ∇ϕ∗i (x) ·∇ϕj(x). (5.33)

The last step involves an integration by parts. Eqn.(5.23) becomes

T̂ =
h̄2

2m

∑

ij

∫
d3x a†i∇ϕ∗i (x) · ∇ϕjaj(x) =

h̄2

2m

∫
d3x ∇ψ†(x) · ∇ψ(x)

(5.34)
The potential operator is similar.

Û =
∫

d3x ψ†(x)U(x)ψ(x) (5.35)

Equations (5.24) and (5.25) give us to form of any two-particle operator,

V̂ =
1
2

∑

i,j,k,m

∫
d3x

∫
d3y a†ia

†
jϕ
∗
i (x)ϕ∗j (y)V (x,y)ϕk(x)ϕm(y)akam (5.36)

=
1
2

∫
d3x

∫
d3y ψ†(x)ψ†(y)V (x,y)ψ(y)ψ(x)

The total Hamiltonian operator is then

Ĥ = T̂ + Û + V̂ (5.37)

From (5.17) N =
∑

i a
†
iai is the total number of particles operator. It

follows that ρ(x, t) = ψ†(x, t)ψ(x, t) is the spatial density operator. This
can be seen as follows. Inverting (5.31) gives

a†i (t) =
∫

d3x ψ†(x, t)ϕ∗i (x)
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ai(t) =
∫

d3x ϕi(x)ψ(x)

N =
∑

i

a†iai =
∑

i

[∫
d3x ψ†(x, t)ϕ∗i (x, t)

] [∫
d3x′ ϕi(x′)ψ(x′, t)

]

=
∫

d3x

∫
d3x′ψ†(x, t)ψ(x′, t)δ(3)(x− x′)

=
∫

d3x ψ†(x, t)ψ(x, t) =
∫

d3x ρ(x, t)

Notice that

ρ(x′, t)ψ†(x, t)|0〉 = ψ†(x′, t)ψ(x′, t)ψ†(x, t)|0〉

= ψ†(x′, t)
[
ψ†(x, t)ψ(x′, t) + δ(3)(x− x′)

]
|0〉

= δ(3)(x− x′)ψ†(x′, t)|0〉 = δ(3)(x− x′)ψ†(x, t)|0〉
The point of this is that ψ†(x, t)|0〉 is an eigenstate of ρ with eigenvalue
δ(3)(x−x′). This is consistent both with our interpretation of ψ† as a creation
operator and with our interpretation of ρ as a particle density operator.
ψ†(x, t) does indeed create a point-like particle at x and time t.

5.5 Field Equations

The field operators so far have had no time dependence. We have been
working in the Schrodinger picture. Field theory calculations are typically
done in the Heisenberg picture, however, so we must derive an equation of
motion. The basic relation is

ψ(x, t) = eiHt/h̄ψ(x, 0)e−iHt/h̄ (5.38)

Where H is the operator given by (5.37). The Heisenberg equation of motion
is obtained by differentiating (5.38),

ih̄
∂

∂t
ψ((x), t) = −[H, ψ(x, t)] = −eiHt/h̄[H, ψ(x, 0)]e−iHt/h̄ (5.39)

The commutator is something of a challenge. We’ll do it one term at a time.

[T, ψ(x)] =
(
− h̄2

2m

) 
∑

ij

∫
d3x′ϕ∗i (x

′)∇′2ϕj(x′)a
†
iaj ,

∑

k

ϕk(x)ak
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I have used (5.33) for T and (5.31) for ψ. At this point we use the com-
mutation relations, either (5.15) for bosons or (5.93) for fermions, to reduce
the product of three ai’s.

[a†iaj , ak] = −ajδki

[T, ψ(x)] =
(

h̄2

2m

) ∫
d3x′

∑

i

ϕi(x)ϕ∗i (x
′)∇′2

∑

j

ϕj(x′)aj

=
(

h̄2

2m

) ∫
d3x′δ(3)(x− x′)∇′2ψ(x′) =

(
h̄2

2m

)
∇2ψ(x) (5.40)

The potential energy is rather easier.

[U,ψ(x)] =
∫

d3xU(x′)[ψ†(x′)ψ(x′), ψ(x)] = −U(x)ψ(x) (5.41)

Finally, the interaction term. A straightforward application of (5.32) and
(5.36) gives

[V, ψ(x)] =
1
2

∫
d3x′d3x′′[ψ†(x′)ψ†(x′′)V (x′,x′′)ψ(x′′)ψ(x′), ψ(x)]

= −
∫

d3x′ψ(x′)V (x,x′)ψ(x′)ψ(x) (5.42)

Incidentally, these results are valid for both boson and fermion fields so long
as one keeps the fields ordered in exactly the way shown above. (The reader
is invited to work through these derivations to see how this comes about.
Finally combining (5.37), (5.39), (5.40), (5.41), and (5.42) gives the equation
of motion

ih̄
∂

∂t
ψ(x, t) =

(
− h̄2

2m
∇2 + U(x)

)
ψ(x, t)+

∫
d3x′ψ†(x′, t)V (x,x′)ψ(x′, t)ψ(x, t) (5.43)

The first line looks like the conventional Schrodinger equation but with field
operators rather than the usual wave functions. The last term is nonlinear
and has no counterpart in single-particle systems.



72CHAPTER 5. IDENTICAL PARTICLES AND MANY-PARTICLE STATES

5.6 Momentum Representation

As we have seen before, it’s usually easier to formulate a theory in position
space and easier to interpret it in momentum space. In this case we work
exclusively in a finite volume with discrete momentum eigenvalues. The
basic eigenfunctions are

ϕk =
1√
V

eik·x (5.44)

We assume the usual periodic boundary conditions force the momentum
eigenvalues to be

k = 2π

(
nx

Lx
,
ny

Ly
,
nz

Lz

)
(5.45)

Where each of the n’s can take the values 0,±1,±2, · · · independently. With
this normalization, the eigenfunctions are orthonormal,

∫

V
d3x ϕ∗k(x)ϕk′(x) = δk,k′ (5.46)

We can now calculate matrix elements of the Hamiltonian. Eqn. (5.33)
gives

〈k|T̂ |k′〉 =
∫

d3x ϕ∗k(x)
(
− h̄2

2m
∇2

)
ϕk′(x) =

h̄2k2

2m
δk,k′ (5.47)

For the potential energy

〈k|Û |k′〉 =
∫

d3x ϕ∗k(x)U(x)ϕk′(x) =
1
V

∫
d3x ei(k−k′)·xU(x) (5.48)

≡ 1
V

Uk−k′

This is the Fourier transform of U(x) with respect to the momentum k− k′.
The two-particle potential in (5.36) should only be a function of the differ-
ence of the two coordinates, ie. V (x,y) = V (|x− y|). As with U(x) we can
take the Fourier transform2

Vq ≡
∫

d3x e−iq·xV (x) (5.49)

V (x) =
1
V

∑
q

Vqeiq·x

2Anyone who confuses the volume V with the potential V will be taken out and tied
to a tree.
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The matrix element of V is then

〈p′,k′|V (k− k′)|p,k〉 =
1
V

∑
q

Vq δq,p′−p δq,k−k′ (5.50)

The complete Hamiltonian is then

H =
∑

k

(h̄k)2

2m
a†kak +

1
V

∑

k′,k

Uk′−ka†k′ak +
1

2V

∑

∆

Vk−k′a
†
k′a

†
p′akap (5.51)

The meaning of the sum over ∆ is that one sums over all values of k,p,k′,p′

such that k + p = k′ + p′. This is easy to interpret. Two particles with mo-
menta k and p interact in such a way that there is a momentum k− k′ = p− p′

transferred between them. After this scattering process their new momenta
are k′ and p′.

5.7 Superfluids

4He atoms have zero angular moment and as such are, to a good approx-
imation, Bose “particles”. Helium is unique in that it does not crystalize
even in the limit of zero temperature (except under extreme high pressure).
The reason is that it is so light that its endpoint oscillations have sufficient
energy to prevent the formation of a lattice. Helium does liquify at T ≈ 4K
and at the lambda point Tλ = 2.18K it enters the superfluid state with
some remarkable properties. One of the most striking is the ability to flow
through narrow channels without friction. Another is the existence of quan-
tized vortices. The occurrence of frictionless flow can be described in a rough
qualitative way by the two-fluid model. The two fluids – the normal and the
superfluid components – are interpenetrating, and their densities depend on
temperature. At very low temperatures the density of the normal compo-
nent vanishes, while the density of the superfluid component approaches the
total density of the liquid. Near the transition temperature to the normal
state, the situations is reversed: the superfluid density tends towards zero
while the normal density approaches the density of the liquid.

At a more microscopic level, superfluidity is explained in terms of ele-
mentary excitations. In an ideal gas an elementary excitation corresponds to
the addition of a single quasiparticle in a momentum eigenstate. For small
momenta the excitations in liquid 4He are sound waves or phonons. The
phonons have a linear dispersion relation E ∝ k, which is to say that they
are massless particles. This point is crucial to the phenomena of superflu-
idity as can be seen from the following argument. Imagine helium flowing
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Coordinate System S S′

Ground State E = E0 E′ = E0 + Mv2/2
P = 0 P′ = −Mv

GS + One Quasiparticle E = E0 + ε(p) E′ = E0 + ε(p)− p · v + Mv2/2
P = p P′ = p−Mv

Excitation Energy ∆E = ε(p) ∆E′ = ε(p)− p · v
Table 5.1: Kinematics for Quasiparticle Formation

through a tube at constant velocity. We can describe this in terms of two
different coordinate systems. In the system S the helium is at rest and the
tube is moving with velocity v, and in system S′ the tube is at rest and the
helium has velocity −v. Evidentally S′ is moving relative to S with velocity
v. Momentum and energy are related by the Galilean transformation,

P′ = P−Mv (5.52)

E′ = E −P · v + Mv2/2

If the fluid is ordinary, ie. not a superfluid, there will be friction between
the fluid and the walls of the tube. In S it would appear that the tube was
dragging a thin layer of fluid along with the it. In S′ the tube is decelerating
this same layer. In the limit T = 0, this deceleration comes about through
the creation of quasiparticles, and this is only kinematically possible if it
lowers the total energy of the fluid. Let’s try to create our first quasiparticle
in S with energy ε(p) and momentum p. Call the ground state energy of
the fluid E0 and its momentum, P. Table 1 shows the relevant kinematics.
Only when ∆E′ < 0 does the flowing fluid lose energy. This means there is
a minimum velocity

vmin =
ε

p
. (5.53)

This is called the Landau criterion. If the flow velocity is smaller that this,
no quasiparticles are excited and the fluid flows unimpeded and loss-free
through the tube. If the quasiparticles had finite mass so that ε(v) = p2/2m,
then vmin = 0 in the limit p = 0, and there could be no superfluidity. It is
essential that ε/p pass through the origin with a finite positive slope.

It is possible to calculate the dispersion relation for low-energy quasipar-
ticles using the field theory formalism we have just developed. This was done
originally by N.N. Bogoliubov,3 and is one of the crown jewels of many-body

3N. N. Bogoliubov, J. Phys. U.S.S.R. 11, 23 (1947)
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theory. Though this was not realized in 1947, this calculation introduced
into physics some profound ideas about symmetry breaking that are impor-
tant in theories of fundamental interactions. I will take you through the
Bogoliubov calculation now and come back to the fundamental issues later.

5.7.1 Bogoliubov Theory

We have derived the relevant Hamiltonians, (5.33) through (5.37) in coor-
dinate space and (5.51) in momentum space. Since we are not concerned
with the effect of external potentials, we set U = 0. Notice that (5.37) in
invariant under the simple gauge transformation,

ψ → ψ′ = e−iαψ. (5.54)

Moreover (5.51) obeys a simple conservation law; is conserves the number
of particles in the system. Each term has the same number of creation
and annihilation operators. For every particle created, one is annihilated
and vice versa. Though it’s by no means obvious, these two properties are
closely related. For every continuous symmetry transformation that leaves a
Hamiltonian invariant there is a corresponding conservation law. This deep
result is called Noether’s theorem. I will have much more to say about it
later.

We know from statistical mechanics, that if the particles do not interact
with one another, then in the limit of zero temperature, they are all in
the ground state. If we introduce a weak two-particle interaction via V in
(5.51), then it is plausible that most of the particles remain in the ground
state. The crucial approximation consists in ignoring interactions between
excited particles and keeping only those terms corresponding to particles
in the ground state interacting with one another and terms in which one
excited particle interacts with one particle in the ground state. That means
keeping in (5.51) only those terms that have at least two of the ground state
creation and annihilation operators ai and a†i . We are left with

H ≈
∑

k

(h̄k)2

2m
a†kak +

1
2V

V0a
†
0a
†
0a0a0 +

1
V

∑

k 6=0

(V0 + Vk)a†0a0a
†
kak

+
1

2V

∑

k6=0

Vk(a†ka†−ka0a0 + a†0a
†
0aka−k) (5.55)

We have ignored those terms with three a0’s, because they would not con-
serve momentum. Bogoliubov argued that the a0 and a†0 operators in (5.55)
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can be replaced with c-numbers, a0 →
√

N0, a†0 →
√

N0 where N0 is the
number of particles in the ground state. For one thing, the system is in an
eigenstate of a†0a0 (with eigenvalue N0) and of a0a

†
0 (with eigenvalue N0+1).

It figures that since N0 is a number on the order of 1020 or 1022, we can
neglect the 1 in N0 + 1. To this extent a0 and a†0 commute! Another point
the that the a0’s and a†0’s are all divided by the volume V .

1
V

[a0, a
†
0]|N0〉 =

1
V
|N0〉 (5.56)

The left side of (5.56) consist of two terms, both equal to the particle density.
This right side goes to zero as V → ∞. With that replacement (5.55)
becomes

H ≈
∑

k

(h̄k)2

2m
a†kak +

1
2V

N2
0 V0

+
N0

V

∑

k6=0

[
(V0 + Vk)a†kak +

1
2
Vk(a†ka†−k + aka−k)

]
(5.57)

The a†kak operator has three contributions. The first is the kinetic en-
ergy. The second, N0V0/V , is called the Hartree energy , which comes from
the direct interaction of a particle in the state k with the N0 atoms in the
zero-momentum state. The third is the exchange , or Fock term, in which
an atom in the state k is scattered into the zero-momentum state, while a
second atom is simultaneously scattered from the condensate to the state k.

We can get some insight about the approximations made so far by notic-
ing the following. We obtained (5.51) from (5.36) by replacing

ϕ(x) =
1√
V

∑

k

akeik·x. (5.58)

If we had made the replacement

ϕ(x) → √
ρ0 +

1√
V

∑

k 6=0

akeik·x (5.59)

where ρ0 = N0/V , we would have gotten (5.57) directly. You see that
(5.59) differs from (5.58) in two related ways: the classical density ρ0 and
the k = 0 exclusion in the summation. The meaning is clear. We are
treating the ground state like a classical fluid and all the other particles as
a dilute quantum fluid. I should mention a related matter. The original
Hamiltonian conserved particle number: for every creation operator there
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was a corresponding annihilation operator. Eqn. (5.57) no longer does. The
particles simply appear out of or disappear into the ground state where they
are “invisible,” since we are treating the ground state classically. We will
have much more to say about this later on in the course when we discuss
spontaneous symmetry breaking.

Eqn. (5.57) refers to N0, the number of particles in the ground state,
but this is not something we know ahead of time. We do know the total
number of particles, that’s something that can be measured. The two can
be related as follows:

N = N0 +
∑

k6=0

a†kak (5.60)

You see the similarity between (5.60) and (5.59). N0 is a c-number, but
the number of excited particles is obtained via an operator operating on the
state function. Substituting (5.60) into (5.57) gives

H ≈
∑

k6=0

Eka†kak +
N2

2V
V0 +

N

2V

∑

k6=0

Vk(a†ka†−k + aka−k) (5.61)

Ek =
k2

2m
+

N

V
Vk (5.62)

From (5.49), Vk = V−k, so that (5.61) can be written in a more symmetric
fashion,

H ≈ N2

2V
V0 +

∑

k>0

[
Ek(a†kak + a†−ka−k) +

N

V
Vk(a†ka†−k + aka−k)

]
(5.63)

5.7.2 The Bogoliubov Transformation

Physically realizable states must be eigenstates of the Hamiltonian, but
systems with a definite number of particles in the various energy levels are
not eigenstates of (5.63), since it does not conserve particle number. In
order to study the physical states, we must diagonalize H. The procedure
for doing this was originally invented by Bogoliubov in this context, and
the technique as since been applied to many different problems. In order
to work this out in a generic fashion (and also to keep the algebra under
control), I will pose the problem like this.4 Each term in the sum in (5.63)
has the form

H = ε0(a†a + b†b) + ε1(a†b† + ba) (5.64)
4I am following the development in Bose-Einstein Condensation in Dilute Gasses, C.

J. Pethick & H. Smith, Cambridge (2002)
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In this particular instance, a = ak and b = a−k, but the final result will hold
with the generality of (5.64). ε0 and ε1 are arbitrary numbers with units of
energy, or since h̄ = 1, of frequency. Of course

[a, a†] = [b, b†] = 1, and [a, b] = [a, b†] = [a†, b] = [a†, b†] = 0 (5.65)

We would like to find linear combinations of these

α = ua + vb†, and β = ub + va† (5.66)

such that

•
[α, α†] = [β, β†] = 1, and [α, β†] = [β, α†] = 0 (5.67)

• The only operators appearing in the Hamiltonian are α†α and β†β.

In other words, we will diagonalize the Hamiltonian, and resulting states,
whatever they may be, will be the observable, physical states. Insert (5.66)
into (5.67) and use (5.65). Assuming u and v to be real we get,

u2 − v2 = 1. (5.68)

The inverse of (5.66) is

a = uα− vβ†, b = uβ − vα†. (5.69)

Now substitute (5.69) into (5.64). After a bit of algebra we get,

H = 2v2ε0 − 2uvε1 + [ε0(u2 + v2)− 2uvε1](α†α + β†β)

+[ε1(u2 + v2)− 2uvε0](αβ + β†α†) (5.70)

We would like the last term to vanish, i.e.

ε1(u2 + v2)− 2uvε0 = 0 (5.71)

Combining (5.68) and (5.71) gives

u2 =
1
2

(ε0
ε

+ 1
)

and v2 =
1
2

(ε0
ε
− 1

)
, (5.72)

where
ε =

√
ε20 − ε21 (5.73)
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It is necessary to choose the positive branch of the square root so that u
and v are real. Substituting these into (5.70) gives

H = ε(α†α + β†β) + ε− ε0 (5.74)

It’s time to make contact with our original Hamiltonian, (5.61) or (5.63).
The parameter we have been calling ε is best thought of as a frequency.
Where convenient I will use n ≡ N/V .

ε0 → k2

2m
+ nVk ε1 → nVk

ε → ωk ≡
√(

k2

2m

)2

+
nk2Vk

m
(5.75)

H ≈ N2

2V
V0 +

∑

k>0

[
ωk(α†kαk + β†kβk) + ωk −

(
k2

2m
+ nVk

)]

=
N2

2V
V0 − 1

2

∑

k6=0

(
k2

2m
+ nVk − ωk

)
+

∑

k6=0

ωkα†kαk (5.76)

The Hamiltonian consists of the ground-state energy and a sum of oscillators
of energy ωk. Our new creation and destruction operators α†k and αk refer
to the quasiparticles discussed earlier. The ground state of the system is
that in which there are no quasiparticles.

αk|Ω〉 = 0 for all k. (5.77)

This new ground state plays the same role for the αk’s as the quantum
vacuum |0〉 plays for the ak’s. It is in some sense, the new vacuum. I’m sure
this was not realized back in 1947 when this work was originally published,
but we are standing on the threshold of a profound new idea. The point
is that in making the transition from the Hamiltonian (5.51) and the field
operator (5.31) to The Hamiltonian (5.63) and field (5.59), we automatically
make a transition to a new vacuum with some unusual properties. I will get
back to that in a minute.

This solution makes an interesting point about perturbation theory.
Let’s calculate the number of real particles, helium atoms say, that are
excited out of the ground state.

Nex = 〈Ω|
∑

k6=0

a†kak|Ω〉 = 〈Ω|
∑

k6=0

v2
kαkα†k|Ω〉 =

∑

k6=0

v2
k (5.78)
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To make my point, I will take the simplest possible potential, V (x) = λδ(x),
so that Vk = λ. If we were doing ordinary perturbation theory, we would
pray that λ was “small” and expand the solution in powers of nλ. In this
case we can get a solution which is “exact” in the sense that we don’t need
this approximation. We can replace the sum in (5.78) with an integral. After
a horrendous integration we get the simple result

nex ≡ Nex
V

=
m3/2

3π2
(λn)3/2 (5.79)

Now λ3/2 considered as a complex function of λ is non-analytic at λ = 0.
It has a branch point. You can’t make a power series expansion around
a branch point; it just doesn’t make sense. In this problem perturbation
theory, in the usual sense, would always get the wrong answer. It’s a sobering
thought that in scattering theory we always use perturbation theory. We
aren’t smart enough to do anything else. And it could all be wrong.

It’s clear that ωk from Eqn. (5.75) is the energy of a single quasiparticle.
In the limit of small k we have

ωk = vk with v =

√
nV0

m
(5.80)

The linear dispersion relation is the hallmark of massless particles. If there
were no potential or the potential somehow vanished at low energy, the
dispersion relation would be

ωk =
k2

2m
.

This is the relation for an ordinary particle of mass m, i.e. the potential
creates massless particles. We could say that (5.75) interpolates between
phonon-like behavior at small k and massive particle-like behavior at large
k.

Now let’s get back to the ground state. Since the αk’s and ak’s are
related by a canonical transformation, there must exist an unitary operator
U such that

αk = UakU−1 ak = U−1αkU. (5.81)

It is possible to find an exact form for this operator,5 but for our purposes it
is enough to know that it exists. Since ak|0〉 = 0, it must be that αkU |0〉 = 0.
Look at (5.77). It must be that

|Ω〉 = U |0〉. (5.82)
5This is assigned as Problem 17.4 in Gauge Theories in Particle Physics, Vol. II, I.J.R.

Aitchison and A. J. G. Hey, Institute of Physics Publishing, 2004
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The exact form of U shows that |Ω〉 is a linear superposition of states with
different numbers of particles, therefor it is not an eigenstate of the num-
ber operator (5.17). We had an intimation of this, since the Hamiltonian
(5.57) does not conserve particle number. It will turn out that the conser-
vation of particle number is related to gauge transformations. Our original
Hamiltonian is invariant under the simple U(1) symmetry transformation,
ϕ(x) → e−iαϕ(x), whereas the modified Hamiltonian is not. It turns out
that the breaking of this symmetry is directly responsible for the existence
of the massless quasiparticles. I will prove this assertion when we get around
to the Goldstone theorem.

The expectation value of the field ϕ(x) from (5.58) for any state with a
definite number of particles will always vanish. Let |N〉 be any state with
N noninteracting particles. Then

〈N |ϕ(x)|N〉 = 0,

but this is not true of our new field (5.59).

〈N |ϕ̃(x)|N〉 = ρ
1/2
0 . (5.83)

We can rewrite (5.59) in terms of the αk’s. Using (5.69) and (5.75) we get

ϕ̃(x) = ρ
1/2
0 +

1√
V

∑

k

(ukαk − vkα−k)eik·x

Then from (5.77),
〈Ω|ϕ̃(x)|Ω〉 = ρ

1/2
0 (5.84)

All this was obtained as the end result of a number of approximations.
Suppose we could do the theory exactly (whatever that means), and find
the “true” field and vacuum state. We postulate that something of (5.84)
would survive, that in fact

〈Ω|ϕ̃(x)|Ω〉 6= 0. (5.85)

While we are speculating, let’s guess that because we are not making
any approximations, the Hamiltonian would preserve the U(1) symmetry
discussed in connection with (5.54). Then we should not change any physical
results by replacing

ϕ̃(x) → ϕ̃′(x) = e−iαϕ̃(x) (5.86)

This transformation can be brought about by a unitary operator Uα, ϕ̃′ =
Uαϕ̃U−1

α . Then
〈Ω|Uαϕ̃U−1

α |Ω〉 = e−iα〈Ω|ϕ̃|Ω〉 (5.87)
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I choose to interpret (5.87) as follows. I regard U−1
α |Ω〉 ≡ |Ω, α〉 as an

alternative ground state. Then (5.87) becomes

〈Ω, α|ϕ̃|Ω, α〉 = e−iα〈Ω|ϕ̃|Ω〉 (5.88)

Obviously there are an infinite number of these ground states, (5.84) corre-
sponds to the special case α = 0, but the choice of α can have no observable
physical consequences.

It’s time to summarize the plot. It is postulated that our exact Hamil-
tonian is invariant under the U(1) transformation (5.54). The Hamiltonian
gives rise to an infinite number of alternative ground states, however, and
in choosing one of them we break the symmetry. This is called “spontaneous
symmetry breaking,” and I will have much more to say about it later. In the
meantime, there is another example of spontaneous symmetry breaking that
you’re all familiar with, the ferromagnet. In this case the broken symmetry
is rotation invariance. Surely the Hamiltonian for the interactions of atoms
and electrons is invariant under rotation, and so an infinite mass of molten
iron is also, but when the iron is cooled below the Curie point, the iron
spontaneously (spontaneously – get it?) “chooses” one direction to line up
all the magnetic moments, resulting in a ground state that has a preferred
direction. Thus rotation invariance is broken. It is widely speculated that
the “Hamiltonian of the universe” has many symmetries of which we are un-
aware, but we are living in or close to the ground state of this Hamiltonian,
and much of the physical world is the end result of this sort of symmetry
breaking.

5.8 Fermions

The fact that fermion wave functions are antisymmetric introduces a few
small complications regarding the creation and annihilation operators. They
are easy to explain looking at two-particle states. When I write |i1, i2〉, I
mean that particle 1 is in state i1, which is to say that the left-most entry
in the ket refers to particle 1, the second entry on the left refers to particle
2, etc. Antisymmetry then decrees that |i1, i2〉 = −|i2, i1〉. If both particles
were in the same state |i1, i1〉 = −|i1, i1〉, so double occupancy is impossible.
If I describe this state in terms of occupation numbers |n1, n2〉, the left-most
entry refers to the first quantum state (rather than the first particle), but
which state is the first state? You have to decide on some convention for
ordering states and then be consistent about it.
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These states are constructed with creation and annihilation operators
as in the case of bosons, but now we must be more careful about ordering.
Consider the following two expressions.

a†i1a
†
i2
|0〉 = |i1, i2〉

a†i2a
†
i1
|0〉 = |i2, i1〉 = −|i1, i2〉

I have decreed, and again this is a convention, that the first operator on the
left creates particle 1, etc. Obviously

a†i1a
†
i2

+ a†i2a
†
i1

= 0 (5.89)

We say that fermion operators anticommute. The usual notation is

[A,B]+ = {A,B} = AB + BA (5.90)

Of course, fermions don’t have numbers painted on them any more than
bosons do, so we must use occupation numbers. Here the convention is

|n1, n2, · · · 〉 =
(
a†i

)n1
(
a†2

)n2 · · · |0〉 ni = 0, 1 (5.91)

The effect of the operator a†i must be

a†i | . . . , ni, . . .〉 = η| . . . , ni + 1, . . .〉, (5.92)

where η = 0 of ni = 1 and otherwise η = +/−, depending on the number
of anticommutations necessary to bring the a†i to the position i. The com-
mutation relations of the ai’s and a†i ’s are obtained by arguments similar to
those leading to (5.15). The results are

{ai, aj} = {a†i , a†j} = 0 {ai, a
†
j} = δij (5.93)

One can construct one- and two-particle operators just as we did for bosons.
Formulas (5.23) and (5.24) are correct as they stand, but one must be careful
to keep the creation and annihilation operators in the exact order in which
they appear in these equations.6

6Strictly speaking, I should prove this. If you want to see all the excruciating details,
consult F. Schabel Advanced Quantum Mechanics, Section 1.4.2
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5.8.1 Inclusion of Spin

Spin is just “tacked on” to nonrelativistic quantum mechanics. The wave
function for a spin-1/2 particle is just

ψσ(r, t) = ψ(r, t)uσ(t). (5.94)

The spin wave function uσ is a two-component column matrix. The subscript
σ is an index that takes on the values ±1/2 corresponding to spin “up” or
“down” (with respect to some axis of quantization). The space wave function
is ψ(r, t). The point is that spin and space degrees of freedom are completely
decoupled. (This is not true in relativistic theory.) Sometime we need to
specify that a particle is in a specific spin state. This can be done in cartoon
fashion by writing ψ↑ or ψ↓.

It’s easy to incorporate spin into Fock-state formulation. For example,
the operator a†kσ creates a particle in a momentum and spin eigenstate with
momentum k and z-projection of spin σ. If we say that there are ni particles
in the i’th eigenstate, we must remember that a complete specification of
the i’th eigenstate must include the spin projection σi.

5.8.2 The Fermi Sphere and the Debye Cutoff

The ground state of a system of bosons is one in which all the particles
have zero energy. Because of the exclusion principle, this is not possible
with fermions. In the case of fermions the ground state is that in which all
the energies are as small as possible. Let’s try to make that more precise.
Since the kinetic energy is a function of k2, T = h̄2k2/2m, there will be a
certain momentum associated with the highest occupied energy level. This
is called the Fermi momentum h̄kF . The ground state can be constructed
in momentum space as

|Ω〉 =
∏
k

|k|<kF

∏
σ

a†kσ|0〉 (5.95)

The set of all wave numbers |k| < kF is called the Fermi sphere. Suppose
the system is contained in a cube of length L on a side. If we impose periodic
boundary conditions along x axis for example, the wave numbers are limited
by the condition eikxx = eikx(x+L), or kxL = 2πnx, where nx is an integer.

dnx =
L

2π
dkx, (5.96)
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where dnx is the number of allowed momentum states in the interval between
kx and kx + dkx. The number of states in the Fermi sphere is then

N = 2V

∫ kf

0

d3k

(2π)3
=

V k3
F

3π2
(5.97)

The factor of 2 in front of the integral arises because there are two allowed
spin states for every one momentum state. It follows that

k3
F = 3π2n, (5.98)

where n = N/V is the average particle density. The Fermi energy is defined
by εF = (h̄kF )2/(2m). Typically it is on the order of a few eV ’s.

At absolute zero temperature all the electrons would be inside the Fermi
sphere. The simplest excitation of this system is obtained by promoting
an electron from inside the sphere to an energy level outside. In terms of
creation and annihilation operators, such a state is written

|k2σ2,k1σ1〉 = a†k2σ2
ak1σ1 |Ω〉 (5.99)

One can think of this as the creation of an electron-hole pair. We can define
hole creation and annihilation operators as bkσ ≡ a†−k,−σ and b†kσ ≡ a−k,−σ.
Then (5.98) becomes

|k2σ2,k1σ1〉 = a†k2σ2
b†−k1,−σ1

|Ω〉 (5.100)

Bosons do not obey the exclusion principle, so there is nothing exactly
like the Fermi sphere for integer-spin particles. There is something simi-
lar for low-energy phonons in crystalline solids, however, called the Debye
cutoff. Phonons in crystals are sound waves in which the crystal planes os-
cillate longitudinally along the direction of propagation. The fact that the
oscillators are discrete imposes limitations on the wave numbers that can
exist. Consider a line of length L consisting of N + 1 atoms spaced at a
distance a. Assume that the first and last atoms don’t move because they
are at the surface of the crystal. The normal modes will be standing waves
in which there are an integer number of half-wavelengths in the length L.
Consequently, the allowed values are

k =
π

L
,

2π

L
,

3π

L
, · · · ,

(N − 1)π
L

(5.101)

Notice that if k = Nπ/L, there would be a node at the site of each atom, so
that no atom could move! It doesn’t make sense to have half-wavelengths
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smaller than the interatomic separation, so the number of allowed modes
is one less that the number of atoms – just those given in (5.101). We can
now calculate the number of modes with wave number less than k. The
calculation is identical to (5.97) (without the factor of 2),

N = V

∫ k

0

d3k′

(2π)3
=

V k3

6π2
. (5.102)

We know that the number of modes is just equal to the number of atoms
that are oscillating. If we call that number N also, (5.102) gives us a formula
for the maximum allowed k.

kD = (6π2N/V )1/3 (5.103)

In the long-wavelength limit, the energy and frequency are simply propor-
tional.

ω = vk (5.104)

where v is the velocity of sound. This allows us to define a cutoff frequency7

ωD = (6π2v3N/V )1/3. (5.105)

It will be relevant to our discussion of superconductors that the Debye energy
h̄ωD is usually several orders of magnitude smaller than the Fermi energy.

5.9 Superconductors

Some metals when cooled to a temperature close to absolute zero enter a dis-
tinct thermodynamic state in which current flows without resistance. Metals
in this state have many other remarkable properties as well. For example,
they are perfectly diamagnetic. Magnetic fields are excluded except for a
small penetration depth at the surface. This is called the Meissner effect.
This rich phenomenology will be covered in the spring quarter of your solid
state physics class. Here I want to concentrate on the basic physics of the
superconducting state.

Our basic ideas about superconductors come from a classic paper by
Bardeen, Cooper, and Schrieffer.8 They were awarded the Noble Prize for

7Unlike (5.103), (5.105) is not an exact result. The point is that (5.104) holds in the
long-wavelength limit, whereas the Debye cutoff argument is based on short-wavelength
behavior. Nonetheless, these ideas are at the heart of several useful results for solids at
low temperature. See C. Kittel, Introduction to Solid State Physics.

8J. Bardeen, L. N. Cooper, J. R. Schrieffer, Phys. Rev. 106, 162 (1957); 108, 1175
(1957)
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this, and the body of theory has come to be called “BCS theory.” Electrons
of course repel one another, and even with the screening effect of the lattice,
the net coulomb force is still repulsive. They can interact in another way,
however, through the exchange of phonons. It was L. N. Cooper who first
realized that this interaction produces a weak attractive force over a narrow
range of electron energies. This force is sufficient under some circumstances
to produce a weakly bound spin-zero state of two electrons called a “Cooper
pair.” Since the energy of an electron in a pair is less than the Fermi energy,
the ground state becomes unstable, and electrons rush out of the Fermi sea
to make pairs. The pairs act as bosons, so they can “condense” much like
the helium atoms in a superfluid. The crucial difference is that their wave
functions overlap, so there is a strong coherence among the pairs. For this
reason they are able to spontaneously lock into phase with one another with
a macroscopic coherence length. The pairs move, not as individual particles,
but as a fluid with a rigid phase. It’s not easy to scatter one of the pairs,
because it’s locked “in step” with all the others. It is this that accounts for
the lack of electrical resistance.

This is the barest outline of an enormously rich and elegant body of the-
ory. I will concentrate on the central ideas and make numerous idealizations
and approximations along the way.

5.9.1 Effective Electron-Electron Interaction

Phonons in this context are acoustic waves in crystals. They arise because
the crystal lattice can “flex” slightly. The phonon waves are purely longitudi-
nal, they have no polarization. In this respect they are a three-dimensional
generalization of compression waves on a rubber band. Since we will be
dealing with phonons in the long-wavelength approximation, the classical
analogy is apt. In both cases, the frequency and energy are proportional.
Phonons are massless particles. If we think of phonons as particles with
definite momentum, we must allow for them to scatter from electrons. The
Hamiltonian for this interaction is derived in every advanced text on solid
state physics.

H ′ =
∑

k,q

Dqc†k+qck(aq + a†−q) (5.106)

Here ck is the annihilation operator for electrons, and aq is the correspond-
ing operator for phonons. Dq is the coupling “constant.” It actually has
some momentum dependence, which we will ignore. The derivation of this
constant involves some assumptions about the mechanical properties of the
lattice. This is really a topic for a solid state class, so I will just take (5.106)
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as “given.” The significance of the terms is clear enough. This first term cor-
responds to an electron of momentum k absorbing a phonon of momentum
q and going on its way with momentum q + k. The second term gives the
emission of a phonon of momentum q leaving an electron with momentum
k− q. This is the Hamiltonian we would guess, even if we had no theory
to find Dq. In addition to the interaction term, there is the free-particle
Hamiltonian,

H0 =
∑
q

h̄ωqa†qaq +
∑

k

εkc†kck. (5.107)

The exchange of a phonon between two electrons is at least a two-step
process, so we need to do something like second-order perturbation theory to
combine two factors of (5.106) to get an effective electron-electron Hamilto-
nian. There is an elegant trick for doing this without any special formalism.
Suppose you have a Hamiltonian of the form

H = H0 + λH ′. (5.108)

The parameter λ is supposed to be “small.” We will eventually set it equal
to one. It’s really just a bookkeeping device. Our strategy is to find a
transformed Hamiltonian

H̃ ≡ e−SHeS = H + [H,S] +
1
2
[[H, S], S] + · · · , (5.109)

such that all first-order terms in λ are transformed away.9 This can be
accomplished by

λH ′ + [H0, S] = 0 (5.110)

Substitute (5.110) into (5.109) bearing in mind that S is itself first order in
λ.

H̃ = H0 +
1
2
[λH ′, S] + O(λ3) (5.111)

That commutator will be our second-order interaction Hamiltonian. We can
make an educated guess at the form of S (with λ = 1).

S =
∑

k,q

(Aa†−q + Baq)Dqc†k+qck (5.112)

9The solid state community calls this the Schrieffer-Wolff transformation.
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Here A and B are functions that we are about to determine. A long tedious
calculation gives

[H0, S] =
∑

k,q

Dqa†−qc†k+qck(h̄ωq + εk+q − εk)A

+
∑

k,q

Dqaqc†k+qck(εk+q − εk − h̄ωq)B (5.113)

I have assumed that ωq = ω−q. Now all this is supposed to equal −H ′ from
(5.106). It must be that

(εk − εk+q − h̄ωq)A = 1

(εk − εk+q + h̄ωq)B = 1 (5.114)

Use the notation ∆±(k,q) = εk − εk+q ± h̄ωq. Our formula for S is then.

S =
∑

k,q

[
a†−q

∆−(k,q)
+

aq

∆+(k,q)

]
Dqc†k+qck (5.115)

Some comments about (5.115) are in order.

• It’s possible to show that S is antihermitian, i.e. S† = −S. This is
necessary so that (5.109) is a unitary transformation. In some sense
we have “diagonalized” the Hamiltonian. I’ll explain what I mean by
that below.

• The energy denominators are typical for nonrelativistic perturbation
theory. They vanish on the energy shell. For ∆+ this corresponds to
the absorption of a phonon of momentum q, and ∆− to the emission
of a phonon of momentum −q.

• Our new second-order interaction Hamiltonian from (5.111) is [H ′, S]/2.
In order to calculate this we will need commutators like

[(a†−q+aq)c†k+qck, a†−q′c
†
k′+q′ck′ ] = δq,−q′c

†
k+qckck′+q′ck′+· · · (5.116)

The · · · in (5.116) refers to terms with one pair of boson operators and
one pair of electron operators. These are second order all right, but
they are the product of two single-particle interactions and as such do
not interest us. Now you see the sense in which (5.109) diagonalizes
the Hamiltonian. Our new Hamiltonian connects two-electron states
with two-electron states, and states with one electron and one boson
with similar states with one boson and one electron.
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It’s instructive to combine the two terms of (5.115) over a common denomi-
nator. That gives the final form for our effective, second-order, two electron
Hamiltonian as

1
2
[H ′, S] =

1
2

∑

k,k′,q

D2
qc†k+qc†k′−qck′ck

h̄ω

(εk′ − εk′−q)2 − (h̄ω)2
(5.117)

The electron energies εk, as I pointed out in Section 8.2, are much larger than
phonon frequencies, ωq, but there is a narrow window around |εk′−εk′−q| ≈
h̄ωD in which the potential changes sign. Outside the window the potential is
repulsive (just like a positive Coulomb potential), but inside it is attractive.
This is the famous “energy gap” upon which all superconducting phenomena
depend. Electrons with just this range of energy form Cooper pairs.

At this point it is customary to make several approximations based partly
on mathematical convenience and partly on an understanding of the physics
of superconductors. First it is known that most of the phonons in a low-
temperature solid have energies close to the Debye limit. Since the spread
in energies is so small, we do not sum over q in (5.117) but gather all the
numerical factors into one phenomonological (positive) coupling constant
V . Second, for a variety of reasons, electron pairs tend to have zero total
momentum and zero total spin. Thus if one electron of a pair has momentum
k and sz = 1/2, the other will have −k and sz = −1/2. We therefore
adopt the convention that a state written explicitly as k has spin ↑, and one
written as −k has spin ↓. The complete electron Hamiltonian with these
assumptions is

HBCS =
∑

k

εk(c†kck + c†−kc−k)− V
∑

k,k′
c†k′c

†
−k′c−kck (5.118)

This is known as the BCS reduced Hamiltonian. It operates only on the
subspace consisting of the Cooper pairs that satisfy the above assumptions.

Notice that the interaction part of this Hamiltonian cannot be written
as a product of number operators. Put it another way, a state described
in terms of occupation numbers is not an eigenstate of HBCS. We have not
completely succeeded in our goal of diagonalizing it. You will recall that
this was the situation with the superfluid Hamiltonian. In fact, (5.118)
apart from the double sum is formally equivalent to to (5.63). It won’t be a
surprise then that the Bogoliubov transformation is the key to diagonalizing
it.

In 1956 Cooper10 proved a profound result that was the prelude to the
full BCS theory. He showed that two electrons directly below the Fermi

10L. N. Cooper, Phys. Rev. 104, 1189 (1956)
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surface can lower their energy by being excited into a Cooper pair with
momentum (k,−k) just above the Fermi surface, provided that an attrac-
tive interaction of the form (5.118) exists. This is known as the Cooper
instability.11 He also showed that a small center of mass momentum has
the effect of much reducing the binding energy. This is one reason why
we only consider (k,−k) pairs. It is also the reason why superconductivity
only exists at low temperature. Now suppose we could start with a free
electron gas close to T = 0, so that the Fermi sphere is completely filled
up to a radius εF . As we “turn on” the interaction (5.118), electrons in a
thin shell, εF − ωD < ε < εF + ωD form Cooper pairs. The one-electron
states in k-space in this shell are used in forming the BCS ground state, i.e.
the minimum-energy of the Hamiltonian (5.118). Part of our job will be to
construct this state explicitly. For the time being I will simply call it |Ω〉.

We’ll start by deriving equations of motion for the ck’s.

iċk = εkck − c†−kV
∑

k′
c−k′ck′

iċ†−k = −εkc†−k − ckV
∑

k′
c†k′c

†
−k′ (5.119)

The key to solving the superfluid problem was to linearize the equations of
motion by replacing the product of operators a†kak with their expectation
value in the ground state, |Ω〉. Here the “particles” we are concerned with
are pairs, so the corresponding approximation is

V
∑

k

c−kck → V 〈Ω|
∑

k

c−kck|Ω〉 ≡ ∆k

V
∑

k

c†kc†−k → V 〈Ω|
∑

k

c†kc†−k|Ω〉 ≡ ∆∗
k (5.120)

Substituting (5.120) back into (5.119) puts us back in the realm of familiar
mathematics. We look for solutions of the form ak(t) = ak(0)e−iωkt.

ωkck(0) = εkck(0)−∆kc†−k(0)

ωkc†−k(0) = −εkc†−k(0)−∆∗
kck(0) (5.121)

These equations are consistent if

ωk − εk ∆k

∆∗
k ωk + εk

= 0 (5.122)

11See, P. Philips, Advanced Solid State Physics for an accessible proof.
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Or
ωk =

√
ε2k + ∆2

k (5.123)

This is an important result. It means that all excited states are separated
from εk by a finite amount, the gap parameter ∆.

The eigenvectors of (5.121) are in fact the Bogoliubov transformations
from Section 7.2. The analog to (5.66) is

βk = ukck − vkc
†
−k β−k = ukc−k − vkc

†
k (5.124)

with inverses

ck = ukβk + vkβ†−k c−k = ukβ−k − vkβ†k (5.125)

Both uk and vk are real numbers; uk is an even function of k, vk is odd. We
would like the β’s to satisfy fermion anticommutation relations.

{βk, βk′} = ukuk′{ck, ck′} = vkvk′{c†−k, c−k′} = δkk′(u2
k + v2

k)

This is the first condition on uk and vk.

u2
k + v2

k = 1 (5.126)

The natural parameterization is

uk = cos θk vk = sin θk (5.127)

Substituting (5.125) into the first of (5.121) gives

ωkuk = εkuk + ∆ukvk. (5.128)

Square and substitute (5.123)

∆2(u2
k − v2

k) = 2εk∆ukvk (5.129)

from which we conclude
tan 2θk = ∆/εk

cos2 θk =
1
2

(
1 +

εk
ωk

)
sin2 θk =

1
2

(
1− εk

ωk

)
(5.130)

So far I have said nothing about the phase of ∆. There is an important
issue lurking here. The BCS Hamiltonian (5.118) is invariant under the
global gauge transformation ck → c′k = e−iαck for all k. (It is clear that
if HBCS did not observe this symmetry, it would also not conserve fermion
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number.) It is speculated that the ground state observes this symmetry as
well so that any choice of the phase of ∆ is equally valid. We take ∆ real.
The magnitude of ∆ can be estimated as follows. Substitute (5.125) into
(5.120) and use the fermion anticommutation relations.

∆ = V 〈Ω|
∑

k

(cos θkβ−k + sin θkβ†k)(cos θkβk + sin θkβ†−k)|Ω〉

= V 〈Ω|
∑

k

cos θk sin θkβ−kβ†−k|Ω〉

= V
∑

k

∆

2
[
ε2k + ∆2

]1/2
(5.131)

I have used (5.130) in the last step. This can be converted into an integral
equation,

1 =
V NF

2

∫ ωD

−ωD

dε

[ε2 + ∆2]1/2
= V NF sinh−1(ωD/∆) (5.132)

The limits of the integral are chosen in light of the fact that the Hamiltonian
only works on the states εk where εF −ωD < εk < εF +ωk. NF is the density
of states at the Fermi level. Eqn. (5.132) can be inverted to yield

∆ =
ωD

sinh(1/V NF )
(5.133)

This was one of the original discoveries of the BCS collaborators. I under-
stand that it is in reasonable agreement with experiment. Remember that
ordinary perturbation theory requires that the interaction be in some sense
“small.” Here the magnitude of the interaction is set by the quantity V NF .
In the limit that this is small, the denominator looks like the hyperbolic
sine of infinity! This is not something you will ever get from a perturbation
theory.

Finally as promised, we construct the explicit form of the BCS ground-
state wave function. I claim that apart from normalization

|Ω〉 =
∏

k

β−kβk|0〉 (5.134)

Substituting (5.124) we get,

|Ω〉 =
∏

k

(−vk)(uk + vkc†kc†−k) (5.135)
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It turns out that the right normalization is obtained by dropping the factors
of (−vk). This can be seen as follows:

〈Ω|Ω〉 = 〈0|
∏

k

(uk + vkc−kck)(uk + vkc†kc†−k|0〉)

=
∏

k

(u2
k + v2

k)〈0|0〉 = 1 (5.136)

Thus the normalized ground state is

|Ω〉 =
∏

k

(uk + vkc†kc†−k) (5.137)

Just to make sure, let’s verify that β|Ω〉 = 0.

βk′ |Ω〉 = βk′β−k′βk′

′∏

k

β−kβk|0〉 = 0

The prime on the product indicates that the k = k′ term has been factored
out. The expression is zero because βk′βk′ = 0 for a fermion operator.
Eqn. (5.137) represents a coherent superposition of correlated pairs, with
no restraint on the particle number.



Chapter 6

Second Quantization and
Relativistic Fields

In Chapter 5 I introduced the concept of the field operators ψ(x) and ψ†(x)
(5.31). I explained that ψ†(x) is the operator that creates a particle at the
position x. In this context it seemed like a technical device for introducing
interactions in which particles are exchanged so that the number of particles
is not a constant of the motion. All this was done to “soup up” Schrodinger’s
equation. We didn’t worry too much about the physical interpretation.
There are other ways of regarding quantum field operators, however, that
are important when we are exploring other wave equations, particularly
those arising in relativistic theories.1

6.1 Introduction to Field Theory

Imagine that space is like a rubber sheet. If I put a bowling ball on the
sheet, it will create a depression, and nearby objects will roll into it. This
is an imperfect analogy for an attractive potential. We could describe the
attraction in one of two ways: we could say that there is an attractive
potential between any pair of point-like masses, or we could introduce a
continuous variable, φ(x, y) which describes the displacement of the sheet
as a function of position. Such a continuous displacement variable is a field in
the strict mathematical sense: it assigns a numerical value (or set of values)
to each point in space. The quantum mechanics of such fields is called
quantum field theory. Now suppose that instead of using a bowling ball I

1This material also appears at the beginning of Chapter 4. It is included here to make
the next few chapters self-contained.

95
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jump up and down on the sheet. The sheet will oscillate in response. My
activity becomes a source of energy, which propagates outward in the form
of waves. This is the rubber-sheet analogy to the propagation of particles.

This analogy can easily be misleading. For one thing, I don’t want you
to think we are doing general relativity. The rubber sheet is not intended as
an analogy for ordinary space-time as it is often used in explaining general
relativity. The field φ(x, y) describes a displacement, and I know you want
to ask, “Displacement of what?”

The same question comes up in classical electromagnetic theory. When
an electromagnet wave is propagating through space, what is waving? Folks
in the 19’th century thought it must be some sort of mechanical medium,
which they called the ether. According to the textbooks, Michaelson and
Morley proved that wrong with their famous interferometer. But just saying
that the ether does’t exist doesn’t answer the question, it just makes it
impossible to answer! Let’s bite the bullet and agree for the purposes of this
course that space is pervaded by a medium, which for lack of a better name,
we will call the ether. Well, actually the ethers. Each species of particle
corresponds to a set of vibrations in it’s own specific ether. Electrons are
all vibrations in the electron ether, etc. Space-time points in the ether can
be labelled with Lorentz four-vectors or (x, t) as usual, and these points
obey the usual rules for Lorentz transformations. This much is required
by the M-M experiment. Ordinary bulk media have elastic properties that
are described by two parameters, the density and Young’s modulus. These
parameters are not themselves relevant to our formalism, but their ratio
gives the velocity of propagation, which is what we really care about.

I am fond of saying, “When correctly viewed, everything is a harmonic
oscillator.” Now you see that this is profoundly true. Each point on the
rubber sheet or ether acts like a harmonic oscillator! Quantum field theory
is a theory about harmonic oscillators.

Well – I have to modify that slightly. If each point on the sheet behaved
like a simple harmonic oscillator with a quadratic potential, the waves prop-
agating on the sheet would never interact. The principle of linear superposi-
tion would hold everywhere. This is a theory of free particles. If our theory
is to describe interactions, then we must modify the potential so that it
becomes anharmonic. Unfortunately, the anharmonic oscillator cannot be
solve exactly in quantum mechanics. (If you think of a way to do it, tell
me and I’ll be famous.) We have to resort to approximations. The generic
name for these approximations is perturbation theory. The path integral
formalism in Chapters 1-4 comes equipped with its own natural way of do-
ing perturbation theory, which you understand by now if you have plowed
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through this material.
There is an alternative way of dealing with interaction involving the

creation and annihilation of particles. It is the older way, sometimes called
canonical quantization or second quantization. The path integral formalism,
seeks to banish all operators from the theory. Second quantization goes in
the other direction. It turns the wave functions themselves into operators
by imbedding creation and annihilation operators into them; but they are
the raising and lowering operators of the harmonic oscillator! The universe,
according to second quantization, is an infinity of harmonic oscillators. This
approach is complementary to path integrals in other ways as well. We need
to master both.

Continuum mechanics is not covered in most graduate mechanics classes.
There is a good discussion in the last chapter of Goldstein, but we never
make it that far. What follows is a brief introduction.

6.2 Introduction to Continuum Mechanics

The rules of continuum mechanics are derived by starting with a system
with a finite number of degrees of freedom and then passing to the limit in
which the number becomes infinite. Let’s do this with the simplest possible
system, a long chain of masses connected by springs. It’s a one-dimensional
problem. The masses can only oscillate along the chain. We will use ϕi,
the displacement of the i-th particle from its equilibrium position, as the
generalized coordinate. The Lagrangian is constructed in the obvious way.

T =
1
2

∑

i

mϕ̈2
i (6.1)

V =
1
2

∑

i

k(ϕi+1 − ϕi)2 (6.2)

L = T − V =
1
2

∑

i

a

[
m

a
ϕ̇2

i − ka

(
ϕi+1 − ϕi

a

)2
]

(6.3)

The equilibrium separation between masses is a. The spring constant is k.
The Euler-Lagrange equations of motion are obtained from

d

dt

∂L

∂ϕ̇i
− ∂L

∂ϕi
= 0 (6.4)
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If there are N masses, then there are N coupled equation of this sort. They
look like

m

a
ϕ̈i − ka

(
ϕi+1 − ϕi

a2

)
+ ka

(
ϕi − ϕi−1

a2

)
= 0 (6.5)

We need different parameters to describe the continuum limit:

m/a → µ mass per unit length

ka → Y Young’s modulus

The index i points to the i-th mass, and ϕi gives its displacement. In the
continuum limit, the index is replaced by the coordinate x. In elementary
mechanics, x would be the displacement of a particle. Here ϕ(x) is the
displacement of the string at the point x. In the continuum limit

ϕi+1 − ϕi

a
→ ϕ(x + a)− ϕ(x)

a
→ dϕ

dx

L → 1
2

∫
dx

[
µϕ̇2 − Y

(
dϕ

dx

)2
]
≡

∫
dxL(ϕ, ϕ̇) (6.6)

The last integral implicitly defines the Lagrangian density . The continuum
version of the Euler-Lagrange equation is2

d

dt


 ∂L

∂
(

dϕ
dt

)

 +

d

dx


 δL

∂
(

dϕ
dx

)

− ∂L

∂ϕ
= 0 (6.7)

Use the Lagrangian density from (6.6) in (6.7).

∂2ϕ

∂x2
=

( µ

Y

) d2ϕ

dt2
(6.8)

(6.4) and (6.5) represent a set of N coupled equations for N degrees of
freedom. (6.7) is one equation for an infinite number of degrees of freedom.
In this sense, continuum mechanics is much easier that discrete mechanics.

Equation (6.8) should remind you of the equation for the propagation of
electromagnetic waves.

(
∂2ϕ

∂x2

)
+

(
∂2ϕ

∂y2

)
+

(
∂2ϕ

∂z2

)
=

1
c2

(
∂2ϕ

∂t2

)

2See Goldstein for a derivation of this important equation.
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As you know, photons are massless particles. Notice that a string of massive
particles yields a wave equation that when quantized describes the propa-
gation of massless particles. (With a different velocity, of course.) This is
worth a brief digression.

What does it mean to say that a wave function describes the propagation
of a particle of a particular mass? The wave function ψ = ei(kx−ωt) might
describe a wave in classical E&M, or a massive particle in non-relativistic
or relativistic quantum mechanics. The question is, what is the relation
between k and ω? The relationship between the two is called a dispersion
relation. It contains a great deal of information. In the case of EM waves
in vacuum, k = ω/c. Frequency and wave number are simply proportional.
This is the hallmark of a massless field. The velocity is the constant of
proportionality, so there can only be one velocity. In Schrodinger theory

h̄2k2

2m
= h̄ω (6.9)

The relationship is quadratic. The relativistic wave equation for a spin-zero
particle is called the Klein-Gordon equation.

(
∇2 − 1

c2

∂2

∂t2

)
ϕ− m2c2

h̄2 ϕ = 0 (6.10)

The dispersion relation is

(ch̄k)2 + m2c4 = (h̄ω)2, (6.11)

or in other words, p2c2 + m2c4 = E2. All these equations can be obtained
from (6.7) with the appropriate Lagrangian density. They are all three-
dimensional variations of our “waves on a rubber sheet” model. What does
this have to do with the particle’s mass? It’s useful to plot (6.9) and (6.11),
i.e. plot ω versus k for small values of k. In both cases the curves are
parabolas. This means that in the limit of small k, the group velocity,

vgroup =
dω

dk
≈ h̄k

m
(6.12)

In other words, the group velocity is equal to the classical velocity for a
massive particle v = p/m. All the wave equations I know of fall in one of
these two categories; either ω is proportional to k, in which case the particle
is massless and its velocity v = ω/k, or the relationship is quadratic, in
which case

m = lim
k→0

(
h̄k

dk

dω

)
. (6.13)
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So long as we are talking about wave-particle duality, this is what mass
means.

One of the advantages of using Lagrangians rather than Hamiltonians
is that Lagrangians have simple transformation properties under Lorentz
transformations. To see this, let’s rewrite (6.7) in relativistic notation. Con-
struct the contravariant and covariant four-vectors

xµ ≡ (x0, x1, x2, x3) = (ct, x, y, z) (6.14)

xµ = (x0, x1, x2, x3) = (ct,−x,−y,−z) (6.15)

and the corresponding contravariant and covariant derivatives

∂µ ≡ ∂

∂xµ
∂µ ≡ ∂

∂xµ
. (6.16)

This puts the Euler-Lagrange equation in tidy form

∂µ

(
∂L

∂(∂µϕ)

)
− ∂L

∂ϕ
= 0 (6.17)

This is slightly amazing. Equation (6.7) was derived without reference to
Lorentz transformations, and yet (6.17) has the correct form for a scalar
wave equation. We get relativity for free! If we can manage to make L a
Lorentz scalar, then (6.17)) will have the same form in all Lorentz frames.
Better yet, the action

S =
∫

dt L =
∫

dt

∫
d3x L =

1
c

∫
d4x L (6.18)

is also a Lorentz scalar. We can do relativistic quantum mechanics using
the canonical formalism of classical mechanics.

Here’s an example. Rewrite (6.6) in 3-d

L =
1
2

{
µ

(
∂ϕ

∂t

)2

− Y

[(
∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2

+
(

∂ϕ

∂z

)2
]}

(6.19)

This would be the Lagrangian density for oscillations in a huge block of
rubber. Take

µ

Y
=

1
c2

. (6.20)

Obviously L can be multiplied by any constant without changing the equa-
tions of motion. Rescale it so that it becomes

L =
1
2

{(
∂ϕ

∂t

)2

− c2

[(
∂ϕ

∂x

)2

+
(

∂ϕ

∂y

)2

+
(

∂ϕ

∂z

)2
]}

(6.21)
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Substituting (6.21) into (6.17) yields the usual equation for EM waves, 2ϕ =
0.

Notice how the Lagrangian for oscillations a block of rubber (6.19) turns
into the Lagrangian for oscillations in the ether (6.21). We don’t have to
worry about the mechanical properties of the ether, because µ and Y are
scaled away. Despite what you may have been told, the Michelson-Morley
experiment proves the existence of the ether. When correctly viewed, ev-
erything is a bunch of harmonic oscillators, even the vacuum!

Using Einstein’s neat notation, we can collapse (6.21) into one term

L =
1
2
(∂µϕ)(∂µϕ) ≡ 1

2
(∂ϕ)2 (6.22)

The last piece of notation (∂ϕ)2, is used to save ink. The fact that we can
write L like this is proof that it is a Lorentz scalar. This is an important
point; we can deduce the symmetry properties of a theory by glancing at L.

Now you can make up your own field theories. All you have to do is
add scalar terms to (6.22). Try it. Name the theory after yourself. Here’s a
theory that already has a name. It’s the Klein-Gordon theory.

L =
1
2

[
(∂ϕ)2 −m2φ2

]
(6.23)

(I have set c = 1 and h̄ = 1.) Using our new notation, the equation of
motion is

(∂µ∂µ + m2)ϕ = 0 (6.24)

If we assume that ϕ(x) (x is a 4-vector in this notation.) is a one-component
Lorentz scalar, then this describes a spinless particle with mass m propagat-
ing without interactions. Spin can be included by adding more components
to ϕ. More about this later.

6.3 Introduction to Second Quantization

So far this has all been “classical field theory,” ie. the fields are ordinary
functions, c-numbers as they are called, and not operators. We have not yet
introduced second quantization. In the previous chapter I introduced the
field operator

ψ̂(x) =
1√
V

∑

k

eik·xâk (6.25)

I said that â†k and âk were creation and annihilation operators and that all
this was necessary to treat systems in which the number of particles was
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not constant. In this section I would like to examine the motivations behind
(6.25) more carefully and also investigate the many subtleties that arise
when we apply these ideas to relativistic wave equations. We will eventually
derive a completely relativistic generalization of (6.25), which will be our
starting point for doing relativistic field theory.

We have encountered so far three quantum mechanical wave equations,
the Schrodinger equation, the Klein-Gordon equation, and the equation for
massless scalar particles, which is just the K-G equation with m = 0. I will
write the free-particle versions of them in a peculiar way to emphasize the
complementary roles of time and energy.

i
∂

∂t
ψ(x, t) =

k̂2

2m
ψ(x, t) (6.26)

(
i
∂

∂t

)2

ψ(x, t) = (k̂2 + m2)ψ(x, t) (6.27)

(
i
∂

∂t

)2

ψ(x, t) = k̂2ψ(x, t) (6.28)

I have used k̂ = −i∇x and h̄ = c = 1. The operator on the right side of (6.26)
is the kinetic energy. Einstein’s equation E2 = k2 + m2 suggests that the
operators on the right side of (6.27) and (6.28) are the total energy squared.
Suppose that the ψ’s are eigenfunctions of these operators with eigenvalue
ω(k). (Each of these three equations will define a different functional relation
between k and ω, of course.) The equations become

i
∂

∂t
ψω(x, t) = ω(k)ψω(x, t) (6.29)

(
i
∂

∂t

)2

ψω(x, t) = ω2(k)ψω(x, t) (6.30)

(
i
∂

∂t

)2

ψω(x, t) = ω2(k)ψω(x, t) (6.31)

Although we don’t usually use this language, we could think of i∂/∂t as
a kind of energy operator whose eigengvalues are the total energy of the
particle. Suppose now that the ψω’s are also momentum eigenstates so that
k̂ψω = kψω. The simplest solutions of (6.26) and (6.29) with ω = k2/2m
are

ψk(x, t) =
1√
V

ei(±k·x−ωt) (6.32)
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whereas the simplest solutions of (6.27) and (6.30) with ω2 = k2 + m2 or
(6.28) and (6.31) with ω2 = k2 are

ψk(x, t) =
1√
V

ei(±k·x∓ωt) (6.33)

(The 1/
√

V is a normalization factor put in for later convenience.) Eviden-
tally the solutions to (6.30) and (6.31) comprise a larger family than those
of (6.29), and it is this larger family that I want to investigate.

To avoid ambiguity, I will assume that the symbol ω refers to a positive
quantity. Then

i
∂

∂t
e∓iωt = ±ωe∓iωt (6.34)

Since h̄ = 1, ω has the units of energy. Schrodinger’s equation does not
have negative energy solutions. This is the clue that the upper sign in
(6.33) and (6.34) gives positive-energy solutions and the lower sign gives
negative-energy solutions whatever that may mean! What about the other
sign ambiguity? Think about the solution ei(k·x−ωt). Pick out some point
on the wave where the phase of the exponential is φ. As time goes by, this
point will move so that k · x− ωt = φ, or

k · x = ωt + φ.

This point is moving in the general direction of k. We call this a positive-
frequency solution. If ω and k · x have opposite signs, the solution has
positive frequency (in the sense above). If the signs are the same, one gets
the negative-frequency solution.

Now take an arbitrary time-independent wave function and expand it in a
Fourier series. Assume periodic boundary conditions so that k is discretized
as in (5.45).

ψ(x) =
1√
V

∑

k

eik·xak (6.35)

At this point ak is a Fourier coefficient and nothing more. We can make ψ
time dependent by building the time dependence into the ak’s, ak → ak(t).
In order that (6.30) and (6.31) be satisfied, the ak’s should satisfy

äk + ω2
kak = 0 (6.36)

This is the differential equation for the harmonic oscillator, except for two
peculiar features. First, the ak’s are complex functions, and second, the
frequency (and hence the “spring constant”) is a function of k. In some
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sense, each term in (6.35) has a harmonic oscillator associated with it. We
can tie into the usual harmonic oscillator formalism and avoid the complex
coordinates at the same time by defining the real generalized coordinate,

qk(t) =
1√
2ωk

[ak(t) + a∗k(t)] . (6.37)

The conjugate momentum is given by p(t) = q̇(t), but before we take the
derivative, we must decide on whether we are dealing with the positive- or
negative-energy solution. In order that each term in (6.35) has the form
(6.33), ȧk(t) = ∓iωak. For the time being take positive energy (upper sign)

pk(t) = −i

√
ωk

2
[ak(t)− a∗k(t)] (6.38)

These are real variables oscillating with frequency ω. We know that the
Hamiltonian for simple harmonic motion is

Hk =
1
2

[
p2
k + ω2

kq2
k

]
. (6.39)

You can verify with the definitions (6.37) and (6.38) that Hk is time-
independent, that pk is canonically conjugate to qk, and that Hamilton’s
equations of motion are satisfied. We can turn (6.39) into a quantum-
mechanical Hamiltonian by simply making ak, a∗k, qk and pk into opera-
tors. We know from our work in Chapter 5 that âk must be an annihilation
operator with the commutation relations (5.15). The operators in (5.15),
however, are time-independent, Schrodinger-picture operators as is the field
operator (6.25). We will want to work in the Heisenberg representation, so
we must be careful about the time dependence. The natural assumption is

ak(t) → âke−iωt a∗k → â†ke+iωt (6.40)

In (6.40) âk and â†k are time-independent, Schrodinger-picture operators.
I’ll argue presently that these is a consistent and reasonable assumption.
The commutation relations are then,

[âk, â†k′ ] = δk,k′ [â†k, â†k′ ] = [âk, âk′ ] = 0 (6.41)

Since p̂k and q̂k don’t have this simple time dependence, the commutation
relations must be taken at equal times.

[q̂k(t), p̂k′(t)] = iδk,k′ [q̂k(t), q̂k′(t)] = [p̂k(t), p̂k′(t)] = 0 (6.42)
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With this substitution (6.39) becomes

Ĥk =
1
2
ωk

[
â†kâk + âkâ†k

]
= ωk

[
â†kâk +

1
2

]
(6.43)

The same replacement turns (6.35) into (6.25).
The last factor of 1/2 in (6.43) presents something of a dilemma. This

Ĥk is just the Hamiltonian for a single k value. The complete Hamiltonian
is a sum over all values.

Ĥ =
∑

k

Ĥk (6.44)

An infinite number of 1/2’s is still infinity. It is customary to discard the
constant with some weak argument to the effect that in defining energy,
additive constants are meaningless. Since this problem will appear again
and again in different contexts, it is useful to have some formal procedure
for sweeping it under the rug. To this end we introduce the concept of
“normal ordering.” We will say that an operator has been normal ordered
if all creation operators are placed to the left of all annihilation operators.
The usual symbol to indicate that an operator has been normal ordered is
to place it between colons, so for example,

: Ĥk := ωkâ†kâk (6.45)

To put it another way, (6.45) was obtained from (6.43) by commuting the âk

past the â†k in the second term and discarding the commutator. Whenever
we use a Hamiltonian in a practical calculation, we will assume that it has
been normal ordered.

We can check that this Hamiltonian is consistent with the time depen-
dence assumed in (6.40) First note that [âk, Ĥ] = ωkâk, so

Ĥâk = âk(Ĥ − ωk) (6.46)

hence
Ĥnâk = âk(Ĥ − ωk)n (6.47)

as a consequence

âk(t) = eiĤtâke−iĤt = âke−iωkt

â†k(t) = eiĤtâ†ke−iĤt = â†keiωkt
(6.48)

The deeper question is why this quantization procedure makes any sense
at all. The justification lies in the canonical quantization procedure from
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elementary quantum mechanics. It uses the Poisson bracket formalism of
classical mechanics and then replaces the Poisson brackets with commutator
brackets to get the corresponding quantum expression A Poisson bracket is
defined as

{F,G} ≡
N∑

k=1

(
∂F

∂qk

∂G

∂pk
− ∂F

∂pk

∂G

∂qk

)
(6.49)

where qk and pk are any pair of conjugate variables, and F and G are any
two arbitrary functions of qk and pk. The sum runs over the complete set
of generalized coordinates. Obviously

{qn, pm} = δmn

{qn, qm} = {pn, pm} = 0
(6.50)

This looks like the uncertainty relation in Quantum Mechanics, [x, p] =
ih̄. We get the quantum expression from the classical expression by the
replacement

{F, G} → [F̂ , Ĝ]/ih̄, (6.51)

where F̂ and Ĝ are the quantum mechanical operators corresponding to the
classical quantities F and G, and [F̂ , Ĝ] = F̂ Ĝ− ĜF̂ . In the case where F̂
and Ĝ depend on time, the commutator is taken at equal times. This seems
like a leap of faith, but it is valid for all the familiar operators in quantum
mechanics.3 Now inverting (6.38) and (6.39) gives

ak =
ipk + ωkqk√

2ωk
a∗k =

−ipk + ωkqk√
2ωk

(6.52)

Substituting (6.52) into (6.49) gives {ak, a∗k′} = −iδk,k′ and {ak, ak′} =
{a†k, a∗k′} = 0, so that

[âk, â†k] = δk,k′

[âk, âk] = [â†k, â†k] = 0
(6.53)

(with h̄ = 1).
The value of the Poisson bracket {F, G} is independent of the choice

of canonical variables. That is a fundamental theorem. Since (6.37) and
(6.38) are together a canonical transformation, (6.42) and (6.53) are identi-
cal. Any choice of variables will do so long as they are related to qk and pk

3Much of the formal structure of quantum mechanics appears as a close copy of the
Poisson bracket formulation of classical mechanics. See Goldstein, Poole and Safko, Clas-
sical Mechanics Third Ed., Sec. 9.7
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by a canonical transformation. We simply chose qk so that it was real and
had convenient units. The rest followed automatically. The fact that the
resultant Hamiltonian is that of harmonic oscillators is simply a consequence
of the fact that we choose to expand ψ(x, t) in a Fourier series.

I can now write Equation (6.25) as

ψ̂(+)(x, t) =
1√
V

∑

k

ei(k·x−ω(k)t)âk (6.54)

The superscript (+) means the positive energy solution. The functional
form of ω(k) is determined by the wave equation it represents, but I want
to concentrate on solutions of the Klein-Gordon equation. Suppose we had
chosen the negative energy solution.

ψ̂(−)(x, t) =
1√
V

∑

k

ei(k·x+ω(k)t)ĉk (6.55)

(This automatically becomes a negative frequency solution as well.) The op-
erators ĉk and ĉ†k annihilate and create these new negative energy particles.
Everything goes through as before except that p̂k(t) = ˆ̇qk(t) = +iωq̂k(t)
changes sign, so that (6.38) becomes

p̂k = i

√
ω(k)

2

[
ĉk − ĉ†k

]
. (6.56)

The counterpart of (6.41) is

[ĉ†k, ĉk′ ] = δk,k′ (6.57)

It seems that the new creation operator c†k stands in the place of the old
annihilation operator âk. This is not just a mathematical accident. It
points to an important piece of physics. To see this we define another pair
of creation and annihilation operators.

d̂k = ĉ†−k d̂†k = ĉ−k (6.58)

Substituting this in (6.55) and changing the sign of the summation variable
from k to −k gives

ψ̂(−)(x, t) =
1√
V

∑

k

e−i(k·x−ω(k)t)d̂†k (6.59)
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What is it that the d̂’s are creating and destroying, and what is the
significance of the change in the sign of the momentum? In Chapter 5 we
considered the Fermi sea to be a set of low-lying energy levels all occupied by
fermions. Removing one particle from the sea leaves a “hole,” which behaves
in some ways like a real particle. If the hole moves in the positive k direction,
a real particle must move in the −k direction to backfill the hole. Dirac
proposed this mechanism to explain the negative energy states that appear
in relativistic electron theory. The correspondence between holes moving
forward and real particles moving backward is a good way of visualizing the
significance of (6.58). Unfortunately, the Klein-Gordon equation describes
bosons, so there is no Fermi sea.4 Nowadays, we regard these negative-
energy solutions as representing real positive-energy antiparticles. There
are two lines of evidence for this. For one thing, the states created by d̂k

have momentum k (rather than −k). This can be proved formally, but it is
almost obvious from (6.59), which is a positive-frequency solution. Later on
when we discuss the interaction of the electromagnetic field with bosons, we
will show that d̂†k creates a particle of the opposite charge to that created
by â†k. The complete operator-valued wave function is the sum of (6.54) and
(6.59).

ψ̂(x, t) =
1√
V

∑

k

[
ei(k·x−ωt)âk + e−i(k·x−ωt)d̂†k

]
(6.60)

There are several profound reasons why the positive- and negative-energy
solutions must be added in just this way. These will emerge as we go along.

Let’s note in passing that there are several neutral spin-zero particles
such as the π0 that have no non-zero additive quantum numbers. Such
particles are thereby identical to their antiparticles. If â†k creates a π0, then
d̂k destroys the same particle. In this case there is no point in distinguishing
between âk and d̂k. We write (6.60)

ψ̂(x, t) =
1√
V

∑

k

[
ei(k·x−ωt)ak + e−i(k·x−ωt)â†k

]
(6.61)

Fields corresponding to neutral particles are Hermitian. Those correspond-
ing to charged particles are not.

In some ways (6.60) and (6.61) are relics of our nonrelativistic fields
from Chapter 5. Because they are based on discrete k values and periodic
boundary conditions they behave under Lorentz transformations in a most

4The idea is only relevant to low-temperature conductors anyway.
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awkward fashion. We are accustomed to passing to the continuum limit
through the replacement

1
V

∑

k

→
∫

d3k

(2π)3
,

but this may be a bad idea for relativistic fields. The trouble is that the
integration measure d3k does not transform like a scalar under Lorentz trans-
formations. A better choice might be

1
V

∑

k

→
∫

d4k

(2π)3
δ(k2 −m2), (6.62)

which is clearly invariant. (The symbol k here refers to the usual four-vector
kµ → (k0,k).) The dk0 integration is done as follows.

∫
dk0 δ(k2 −m2) =

∫
d(k0)2

(
dk0

d(k0)2

)
δ((k0)2 − ω2

k)

=
∫

d(k0)2

2k0
δ((k0)2 − ω2

k) =
1

2ωk

Equation (6.62) becomes

1
V

∑

k

→
∫

d3k

(2π)32ωk
(6.63)

Although this convention is sometimes used, it is somewhat simpler to use
the following

ϕ̂(x, t) =
∫

d3k√
(2π)32ωk

[
â(k)e−ikx + d̂†(k)eikx

]
(6.64)

where kx = ωt−k · x. The point is that we must also consider the transfor-
mation properties of the creation and annihilation operators. The natural
generalization of (6.41) is

[â(k), â†(k′)] = δ(3)(k− k′) [â(k), â(k′)] = [â†(k), â†(k′)] = 0 (6.65)

and and similarly for the d̂’s. Although δ(3)(k− k′) by itself is not a Lorentz
scalar, the field definition (6.64) together with (6.65) does have the right
transformation properties. This will be apparent once we have calculated
the propagator.
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6.4 Field Theory and the Klein-Gordon Equation

The Klein-Gordon equation and its associated Lagrangian were discussed
briefly in Section 6.2. The Lagrangian density (6.54) is5

L =
1
2

[
(∂ϕ)2 −m2ϕ2

]
(6.66)

Suppose we regard ϕ as a generalized “coordinate” perhaps referring to the
displacement of some hypothetical continuous medium. The conjugate field
is

π(x) =
δL
δϕ̇

= ∂0ϕ(x) (6.67)

We can use the Poisson bracket approach to quantize these fields just as we
quantized the ak’s in the previous section. Classically,6

{ϕ(x, t), π(x′, t)} = δ(3)(x− x′) (6.68)

Our quantized version of this is

[ϕ̂(x, t), π̂(x′, t)] = iδ(3)(x− x′) (6.69)

It is easy to verify that (6.64) satisfies (6.69) so long as the creation oper-
ators are normalized according to (6.65). It’s crucial that the two fields in
(6.69) are evaluated at the same time. As such they are called equal time
commutation relations. Many texts in fact consider (6.69) to be the funda-
mental postulate of field theory and use it to derive the properties of the
creation and annihilation operators.

Before we leave the subject of commutation relations, there is an issue
that has been hanging fire since (6.60). In that equation the positive- and
negative-energy solutions appear with equal magnitude. Nothing I have
said so far requires the presence of the negative-energy term, let alone that
it have the same normalization as the positive-energy part. In fact, we have
no choice in the matter. The argument goes like this. Consider two space-
like separated points (x, t) and (x′, t′). There will always be a Lorentz frame
such that t = t′. If x and x′ are distinct points, then a signal can propagate
from one to the other only by travelling at infinite velocity. We believe this
to be impossible, so our theory must not allow it, even in principle. We

5I am using ϕ in this section rather than ψ to refer specifically to solutions of the
Klein-Gordon equation.

6See J.V. Jose and E. J. Saletan, Classical dynamics: a contemporary approach, Sec
9.3.1 for a derivation of this rather non-trivial result.



6.5. THE PROPAGATOR 111

call this the requirement of causality. It can be argued that a necessary
requirement is that the fields ϕ̂(x) and ϕ̂†(x′) also commute at equal times.7

Let’s rewrite (6.64) with an additional parameter α that we can tweak at
our pleasure.

ϕ̂(x, t) =
∫

d3k√
(2π)32ωk

[
â(k)e−ikx + αâ†(k)eikx

]
(6.70)

A simple calculation now gives

[ϕ̂(x, t), ϕ̂†(x′, t)] =
∫

d3k

2(2π)3ωk
(1− |α|2)eik·(x−x′) (6.71)

This is not zero (because of the ω in the denominator) unless |α| = 1.
Relativity and causality together require an equal admixture of negative-
and positive-energy states. This argument takes on additional significance
when spin is taken into account. It can be shown that the requirement
proved above only holds for integer spin. In the case of half-odd integer
spin, the result only holds if the corresponding creation and annihilation
operators anticommute.

6.5 The Propagator

At this point I must anticipate some developments from the next few chap-
ters. It will turn out that one of the key ingredients of any perturbation
calculation is the Feynman propagator defined by

G(x, y) = iD(x− y) = 〈0|T [φ̂(x), ˆφ(y)]|0〉 (6.72)

Where T [ , ] is the “time-ordered product” defined by

T [ϕ̂(x)ϕ̂(y)] = θ(x0 − y0)ϕ̂(x)ϕ̂(y) + θ(y0 − x0)ϕ̂(y)ϕ̂(x) (6.73)

In a time-ordered product the time-dependent operators are ordered so that
later times stand to the left of earlier times. Time-ordered products read like
Hebrew, right to left. There are several ways of interpreting D(x−y). From
a mathematical point of view, it is the Green’s function of the Klein-Gordon
equation, i.e.

(∂µ∂µ −m2)D(x− y) = δ(4)(x− y) (6.74)

7See Paul Teller, An Interpretive Introduction to Quantum Field Theory, Chapter 4,
for a careful discussion of this point.
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From a physical point of view, it is the probability amplitude for a particle
to propagate from y to x. I need to prove the central result that

iD(x− y) = i

∫
d4k

(2π)4
e−ik(x−y)

k2 −m2 + iε
(6.75)

Each kind of particle has its own propagator, but the +iε term in the denom-
inator is ubiquitous. The ε stands for an infinitesimal positive quantity. It’s
job is to get the boundary conditions right as you will see in the derivation.

We know that this will be a function of x−y, so we can make the algebra
a bit simpler by setting y = 0. Just remember to replace x → x− y at the
end of the calculation. Substituting the fields from (6.70) into (6.72) and
taking the vacuum expectation value gives

iD(x) = 〈0|T [ϕ̂(x, t)ϕ̂(0, 0)]|0〉

=
∫

d3k

(2π)32ωk

[
θ(t)e−i(ωkt−k·x) + θ(−t)ei(ωkt−k·x)

] (6.76)

Equations (6.75) and (6.76) are really the same result, though this is far
from obvious. In principle, we could derive either form from the other, but
it’s probably easier to start from (6.75).

iD(x) = i

∫
d3k

(2π)4
eik·x

∫
dk0

e−ik0t

(k0 − ωk + iε)(k0 + ωk − iε)
(6.77)

Notice how the denominator is factored. Multiplying the two factors and
making the replacements, 2iωkε → iε and ε2 → 0, gives the same denomina-
tor as (6.75). The dk0 integration is now performed as a contour integration
in the complex k0 plane. For t < 0 the contour is completed in the upper
half-pane enclosing the point k0 = −ωk + iε, and for t > 0 the contour is
completed in the lower half-plane enclosing the point k0 = ω−iε. The result
is identical to (6.76). You see how the iε in the denominator displaces the
poles so as to pick up the right integrand depending on whether t is positive
or negative. Notice finally that (6.73) is a Lorentz scalar since kx, k2 and
d4k are all scalar quantities. You will see how D(x−y) becomes a key player
in perturbation theory via the interaction picture in the next chapter.
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Figure 6.1: The complex k0 plane
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Chapter 7

The Interaction Picture and
the S-Matrix

Most of what we know about subatomic physics comes from two kinds of
experiments: decay experiments and scattering experiments. In a decay
experiment, one starts with some system such as an atom or nucleus or
“elementary” particle and observes the spontaneous transitions that it un-
dergoes. One can determine the lifetime of the system, the identity of the
decay products, the relative frequency of the various decay modes, and the
distribution of momentum and energy among the resulting particles. In a
scattering experiment, one starts with a stable system and bombards it with
another particle. One measures the distribution of momenta among the var-
ious particles produced by the reaction and determines the probability that
the scattering will lead to a particular final state. One common feature of
both these experiments is that the particles are detected when they are not
interacting with one another. They are detected on a scale of distance that
is many orders of magnitude larger than the characteristic de Broglie wave-
length and at times that are vastly longer than the time of interaction. In
non-relativistic quantum mechanics these processes are calculated with first-
order, time dependent perturbation theory using a bit of hocus pocus called
“Fermi’s golden rule.” This is not altogether wrong, but it is inadequate
for several reasons: it can’t accommodate the creation of new particles, it’s
hopelessly non-relativistic, and it only works to first order.

Real scattering theory is difficult. There are many subtle issues involved.
Much of the material in advanced quantum books relates to scattering in one
way or another. I say this because it’s easy to lose sight of the goal amidst all
the technical difficulties. Roughly speaking, there are two basic issues: how

115
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do the quantum fields ϕ(x) evolve in time, and given this information, how
can we calculate the results of these experiments in terms of the momenta
of particles measured in the asymptotic regime as explained above? The
first question is answered neatly by the interaction picture formalism first
developed by Freeman Dyson. The second question is much more difficult
and will require the remainder of this chapter.

7.1 The Interaction Picture

Path integrals use the Lagrangian; the interaction picture uses the Hamilto-
nian; so I should say a few words about Hamiltonians in general. In classical
mechanics, the two are related by

H = pq̇ − L (7.1)

In our variety of continuum mechanics the Hamiltonian density becomes

H = πϕ̇− L (7.2)

For the free Klein-Gordon field

L =
1
2

[
(∂µϕ)(∂µϕ)−m2ϕ2

]
=

1
2

[
ϕ̇2 − (∇ϕ)2 −m2ϕ2

]
(7.3)

H =
1
2

[
ϕ̇2 + (∇ϕ)2 + m2ϕ2

]
(7.4)

We get the Hamiltonian by integrating (7.4) over all space.

H =
∫

d3xH (7.5)

We assume that the Hamiltonian can be split up into two pieces: H =
H0 +Hint. H0 is the Hamiltonian of the free field, and Hint is everything left
over. We assume the Hint is “small” in some sense; so that the perturbation
series converges. We also have to assume that Hint is a polynomial of the
fields and their derivatives. The reason for this technical assumption will
appear later.

You will recall the relation between the Schrodinger and Heisenberg pic-
tures is

|ψ(t)〉S = e−iHt|ψ〉H (7.6)

QH(t) = eiHtQSe−iHt
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This is the usual convention at any rate. |ψ〉H , which does not depend on
time, is a “snapshot” of |ψ(t)〉S taken at t = 0. This is not necessarily the
most convenient time to take the picture as we will see.

We define the interaction state by

|ψ(t)〉I ≡ eiH0t|ψ(t)〉S (7.7)

QI(t) = eiH0tQS e−iH0t

Some comments:

• It’s clear from (7.6) the Hamiltonian H is the same in the Schrodinger
and Heisenberg pictures, and equally clear from (7.7) that H0 is the
same in the interaction picture as well. This is not true of the inter-
action piece; since in general, [Hint,H0] 6= 0. I will write

HI
int(t) ≡ eiH0tHS

inte
−iH0t (7.8)

Naturally, HS
int is the interaction Hamiltonian in the Schrodinger pic-

ture. Notice that HI
int(t) depends on time.

• If there were no interactions, |ψ(t)〉I = |ψ〉H , so the interaction pic-
ture state would be stationary. Now think of a scattering experi-
ment. When the particles are far apart, there is no interaction between
them. In this regime, the interaction picture and Heisenberg pictures
are identical. As the particles begin to interact, Hint “turns on” and
|ψ(t)〉I begins to change. Eventually, after the particles are separated
it settles down to a new Heisenberg state.

Actually, this business of “turning on” and “ turning off” skirts a
profound and difficult problem. The trouble is that Hint never really
turns off. Even when the particles are not interacting with one another,
they are still interacting with themselves by emitting and reabsorbing
virtual particles. Worse yet, even the vacuum interacts with itself by
creating particle-antiparticle pairs. This is a difficult problem, but one
that can be dealt with rigorously.

Define the time evolution operator in the interaction picture, U(t, t0), by

|ψ(t)〉I = U(t, t0)|ψ(t0)〉I . (7.9)

Since H is Hermitian and the norm of |ψ〉I is conserved, we feel entitled by
the rules of quantum mechanics to the following basic relations:

U †(t, t0)U(t, t0) = 1 (7.10)
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U(t, t) = 1 (7.11)

U(t, t0) = U−1(t0, t) (7.12)

U(t2, t0) = U(t2, t1)U(t1, t0) (7.13)

We can derive an equation of motion for U by starting with Schrodinger’s
equation

i
∂

∂t
|ψ(t)〉S = H|ψ(t)〉S . (7.14)

A quick calculation with (7.7) and (7.9) yields

i
∂

∂t
U(t, t0) = HI

int(t)U(t, t0). (7.15)

We know how to solve equations like this.

U(t, t0) = 1− i

∫ t

t0

dt′ HI
int(t

′)U(t′, t0) (7.16)

Well – maybe solve is too strong a word, since U appears on both sides of
(7.16). We would like to claim that

U(t, t0) = (?) exp
{
−i

∫ t

t0

dt′ HI
int(t

′)
}

This would be the obvious solution if U and H were not operators. The flaw
in the reasoning here is that factors of Hint don’t commute at different times,
[Hint(t),Hint(t′)] 6= 0. We can come up with a valid solution by iterating
(7.16) paying careful attention to the time dependence.

U(t, t0) = 1− i

∫ t

t0

dt1H
I
int(t1)

+(−i)2
∫ t

t0

dt1

∫ t1

t0

dt2H
I
int(t1)H

I
int(t2) + · · ·

(7.17)

The entire series can be summarized by

U(t, t0) =
∞∑

n=0

(−i)n

∫ t

t0

dt1

∫ t1

t0

dt2 · · ·
∫ tn−1

t0

dtnHI
int(t1)H

I
int(t2) · · ·HI

int(tn)

(7.18)
The series (7.18) is more difficult than it looks. Since the Hamiltonians

don’t commute, we must be meticulously careful to keep later times to
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the left of earlier times. This is called time ordering. We need some
machinery to do this for us. Define the time ordering operator,

T [H(t1)H(t2)] ≡ H(t1)H(t2)θ(t1 − t2) + H(t2)H(t1)θ(t2 − t1) (7.19)

The generalization to three or more Hamiltonians is obvious. You should
convince yourself that the following things are true:

∫ t

t0

dt1

∫ t1

t0

dt2H(t1)H(t2) =
∫ t

t0

dt2

∫ t2

t0

dt1H(t2)H(t1)

=
1
2

∫ t

t0

∫ t

t0

dt1dt2T [H(t1)H(t2)],

and in general
∫ t

t0

dt1 · · ·
∫ tn−1

t0

dtnH(t1) · · ·H(tn) =
1
n!

∫ t

t0

dt1 · · ·
∫ t

t0

dtnT [H(t1) · · ·H(tn)]

So our final result for the U operator is

U(t, t0) =
∞∑

n=0

(−i)n

n!

∫ t

t0

· · ·
∫ t

t0

dt1dt2 · · · dtnT [HI
int(t1)H

I
int(t2) · · ·HI

int(tn)],

(7.20)
which can be written in shorthand notation as

U(t, t0) = T exp
{
−i

∫ t

t0

dt′HI
int(t

′)
}

(7.21)

The reason that this is a workable approximation is that the fields that make
up HI

int are interaction-picture fields, which according to (7.8), transform as
free fields. Equation (7.20) is a “recipe.” You just insert the formulas for
the free fields and do the algebra.

7.2 The S Matrix

We can imagine quantum scattering as taking place in three phases. In the
limit t → −∞ the particles are separated and not interacting with one an-
other. As the particles approach one another, the interaction between them
“turns on” as they exchange virtual particles. At some later time t → +∞,
this interaction turns off and they again become free particles. This is diffi-
cult to treat theoretically, since the interaction Hamiltonian itself in no way
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turns on or off. So far as theoretical difficulties are concerned, this is only
the tip of the iceberg. As soon as we allow particles to interact with other
particles, they inevitably interact with themselves. When this happens, the
notions of free particles, charge, and vacuum become profoundly subtle.

From the point of view of theory, a free particle is a boiling stream of
self-interactions. From the point of view of experiment, every electron in
the universe is an unremarkable little thing with a well-defined mass, spin,
charge, and magnetic moment. These two views can exist simultaneously
because the self-interactions are virtual processes, and as such they are con-
tained within a region roughly the size of the Compton wavelength. So long
as one does not probe inside this region, the electron has it’s usual phys-
ical properties, and probing inside the region means doing a high-energy
scattering experiment.

The same sort of ambiguities also complicate our understanding of the
vacuum state. According to perturbation theory, virtual particle-antiparticle
pairs are spontaneously emitted from and reabsorbed into empty space. This
fact is established experimentally (to some extent) by an experiment measur-
ing the so-called Casimir effect,1 but apart from this, these vacuum fluctua-
tions have very little consequence, and at any rate, are not well understood.2

Finally consider the charge of an electron (or more generally, the cou-
pling constant for any sort of interaction). The charge is the measure of
the strength with which photons couple to electrons, but this can only be
measured by doing a scattering experiment, and the experiment must be
interpreted in light of the virtual processes involved.

We believe that all these problems can be addressed, at least for quantum
electrodynamics, but this is a long story, which will occupy us for the next
few chapters. For the time being, let us say that the theory recognizes two
kinds of mass and two kinds of charge. There are the physical or “dressed”
masses and coupling constants – those that are measured in the lab – and
the “bare” masses and coupling constants, which are the parameters that go
into the interaction Lagrangians and Hamiltonians. Somehow the effect of all
virtual processes formulated in terms of the bare particles is to produce the
physical particles. What then are the numerical values of these bare masses
and charges? Alas, we do not know. There is no way to measure them
directly. They could be calculated in principle, but every such calculation
yields infinity! Despite this, we are able to calculate everything that can be

1Two charged plates suspended parallel to one another in vacuum experience a very
small repulsive force because of virtual electron-positron pairs created between them.

2One can calculate the gravitational mass of all the virtual particle-antiparticle pairs
in the universe. The result come out too large by many orders of magnitude.



7.2. THE S MATRIX 121

measured (except mass and charge, of course) using only the physical mass
and charge. The fact that we have learned to skirt infinities so violent as to
give sci-fi fans nightmares, is one of the ironic triumphs of modern physics.

In view of this, the interaction picture formulation in the previous section
is a bit too naive. What masses are we to put in Hint, the bare or the physical
mass? It seems that either way we are stuck. We need to back up and look
at the basic description of scattering processes.

Consider the state of a scattering experiment before the particles have
interacted. For mathematical purposes we say this corresponds to a time
“t → −∞” (The actual time for a relativistic particle could be as small
as t → −10−23 seconds.) At this time the particles are free in the sense
explained above. It is customary to call such states “in states,” and write
them |α, in〉. The symbol α stands for all the quantum numbers required
to completely specify the state. We will be particularly concerned with
the momentum. If there are n particles in the initial state, we can write
|k1, k2, . . . , kn, in〉. The field operators introduced in the previous chapter
can be written

ϕin(x) =
∫

d3x√
2Ek(2π)3

[
ain(k)e−ikx + a†in(k)eikx

]
(7.22)

It is understood that in calculating with this expression, one uses the phys-
ical mass of the particle. In the same way, one defines “out states” 〈β, out|,
“out fields” ϕout(x), and “out” creation operators a†out(k) corresponding to
the limit t → ∞. A scattering experiment can be idealized as follows. The
initial target and beam particles are prepared so that they are in a unique
eigenstate of all the relevant operators. We call this state |α, in〉. The detec-
tors of the scattered particles are so refined that they can specify that the
final state was in the exact eigenstate 〈β, out|. The object of the experiment
is to find what fraction of particles in |α, in〉 make the transition to 〈β, out|.
In other words, we are measuring the probability

Pβα = |Sβα|2 (7.23)

where the so-called S matrix is defined by

Sβα = 〈β, out|α, in〉 (7.24)

If we assume that the in states and out states are both complete sets, there
must be some operator S that transforms in states into out states.

〈β, out| = 〈β, in|S (7.25)
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Sβα = 〈β, in|S|α, in〉 (7.26)

The goal of scattering theory is to calculate the S matrix and the corre-
sponding S operator.

Here are some common-sense properties of S.

1. Nothing in – nothing out, i.e. |S00|2 = 1. Put it another way

〈0, in|S = 〈0, out| = eiθ〈0, in| (7.27)

The vacuum is stable, but we must allow the possibility that phase of
the vacuum state evolves with time.

2. One-particle states are also stable.

〈p, out|p, in〉 = 〈p, in|S|p, in〉 = 〈p, in|p, in〉 = 1 (7.28)

3.
ϕin = SϕoutS

−1 (7.29)

Proof:
〈β, out|ϕout|α, in〉 = 〈β, in|Sϕout|α, in〉

But 〈β, in|ϕout is itself an in state, so we can write

〈β, in|ϕout|α, in〉 = 〈β, out|ϕinS|α, in〉

Comparing these two equations gives

Sϕout = ϕinS

4. S is unitary.

Proof:
〈β, in|S = 〈β, out| S†|α, in〉 = |α, out〉
〈β, in|SS†|α, in〉 = 〈α, out|β, out〉 = Sβα

7.3 The LSZ Reduction Scheme

What is the relation between the fully-interacting field ϕ and ϕin? The
natural guess is

lim
t→−∞ϕ(x) = ϕin(x)
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lim
t→∞ϕ(x) = ϕout(x)

On second thought though, this can’t be right. The complete field ϕ(x)
is capable of creating states out of the vacuum with two or more virtual
particles. A more careful analysis suggests

lim
t→−∞ϕ(x) =

√
Z ϕin

lim
t→∞ϕ(x) =

√
Z ϕout (7.30)

Z is understood as the probability for ϕ(x) to produce a single-particle state
out of the vacuum. Even this is not quite correct as an operator equation for
some subtle mathematical reasons that are discussed in the original article.3

It is correct in terms of matrix elements, for example

lim
t→−∞ 〈α|ϕ(x)|β〉 =

√
Z〈α|ϕin(x)|β〉

where 〈α| and |β〉 are arbitrary states. Since we are only interested in
matrix elements in the long run, we will assume (7.30) without any further
comment. Furthermore, the processes in which ϕ(x) produces multiparticle
states out of the vacuum only occur in higher orders of perturbation theory.
When we are working to lowest non-trivial order we can (and will) set Z = 1.

Now we have the apparatus at hand for defining and studying the S
matrix defined in (7.24). We start from an initial state of a system with n
noninteracting physical particles, denoted by

|k1 · · · kn in〉 = |α in〉, (7.31)

and a final state in which m particles emerge denoted by

〈p1 · · · pm out| = 〈β out| (7.32)

Our agenda is to convert (7.24) into an expression involving vacuum expec-
tation values of interacting fields. This is the LSZ reduction technique.

Let us write the in-field in a way analogous to (6.64)

ϕin(x) =
∫

d3k
[
fk(x)ain(k) + f∗k (x)a†in(k)

]
(7.33)

where

fk(x) =
e−ikx

√
(2π)32ωk

(7.34)

3See also Quantum Theory of Point Particles and Strings, Brian Hatfield, Chapter 7.
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Equation (7.33) can be inverted to yield

ain(k) = i

∫
d3x f∗k (x)

↔
∂0 ϕin(x)

a†in(k) = −i

∫
d3x fk(x)

↔
∂0 ϕin(x) (7.35)

The notation a
↔
∂0 b means a∂0b − (∂0a)b. Since the in-state in (??) |α in〉

is made up with a product of creation operators as in (??), we can write

Sβα = 〈β out|a†in(k)|α− k in〉 (7.36)

where |α− k in〉 represents the initial assemblage of particles represented
by α with one particle of momentum k removed. The procedure is now to
use (7.35) to replace a†in(k) with an integral over ϕin(x). The procedure is
then repeated until all the particles have been removed from the in- and
out- states leaving the vacuum expectation value of the fields.

Sβα = 〈β out|a†out(k)|α− k in〉 (7.37)

+〈β out|
[
a†in(k)− a†out(k)

]
|α− k in〉

= 〈β−k out|α−k in〉−i〈β out|
[∫

d3x fk(x)
↔
∂0 (ϕin(x)− ϕout(x))

]
|α− k in〉

I have added and subtracted a†out(k) and used (7.35) to eliminate a†in and
a†out. The first term in the last line vanishes unless the initial and final
states are identical. This is the unscattered wave, which we will neglect for
the time being. Now use (7.30) to replace the in- and out- fields with the
complete interacting field. The scattered part can be written as follows:

Sβα ∼ i√
Z

(
lim

x0→∞
− lim

x0→−∞

) ∫
d3x fk(x)

↔
∂0 〈β out|ϕ(x)|α− k in〉 (7.38)

(The symbol ∼ means that I have temporarily neglected the forward scat-
tering term.) The limits have a nasty non-covariant look about them. I will
clean up the expression with a series of elegant mathematical tricks. For
any two functions such as fk(x) and ϕ(x),

(
lim

x0→∞
− lim

x0→−∞

) ∫
d3x fk

↔
∂0 ϕ =

∫ ∞

−∞
d4x ∂0

[
fk

↔
∂0 ϕ

]
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=
∫ ∞

−∞
d4x

[
fk

∂2

∂x2
0

ϕ− ϕ
∂2

∂x2
0

fk

]
(7.39)

The fact that fk satisfies the Klein-Gordon equation allows us to write

ϕ
∂2

∂x2
0

f = ϕ(∇2 −m2)f → f(∇2 −m2)ϕ (7.40)

The sense of the right arrow is that the subsequent expression is obtained
by integrating by parts twice and discarding the surface terms. Finally
substituting (7.39) and (7.40) into (7.38) gives the final result

Sβα = 〈β out|in α〉 = 〈β − k out|α− k in〉 (7.41)

+
i√
Z

∫
d4x fk(x)(2 + m2)〈β out|ϕ(x)|α− k in〉

You see the pattern? We have “reduced” an asymptotic particle from the in-
state and replaced it with an interacting field ϕ(x). The price we pay for this
is an integral, a wave function fk(x), and a differential operator (2 + m2).
We will eventually Fourier transform this expression, whereupon all these
complications will disappear leaving only the inverse of the momentum space
propagator ∆(k).

As an exercise (I am getting tired of typing) you should take the next
step and reduce a particle of momentum p out of the out-state. Convince
yourself that the result is

Sβα = 〈β − p out|α− k in〉 (7.42)

∼
(

i√
z

)2 ∫
d4x

∫
d4y fk(x)f †p(y)(2x + m2)(2y + m2)

× 〈β − p, out|T [ϕ(x)ϕ(y)]|α− k, in〉
The ∼ sign again means that we have dropped the forward scattering terms.
The new thing here is the time ordered product. You should do the calcu-
lation carefully to see how this comes about. Now suppose there are m
particles in the initial state and n particles in the final state. Just repeat
this procedure n + m times to get the following result:

Sβα =〈p1 · · · pn out|k1 · · · km in〉

∼
(

i√
Z

)m+n m∏

i=1

∫
d4xifki(xi)(2xi + m2)

n∏

j=1

d4yjf
∗
pj

(yj)(2yj + m2)

× 〈0|T [ϕ(y1) · · ·ϕ(yn)ϕ(x1) · · ·ϕ(xm)]|0〉
(7.43)
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Equation (7.43), to quote Bjorken and Dell, “serves as a cornerstone for all
calculation of scattering amplitudes in modern quantum field theory.” (This
was before the days of path integrals.)

Feynman rules are usually expressed in momentum space, so introduce
the Fourier transform,

G(x1 · · ·xmy1 · · · yn) =
m∏

i=1

∫
d4ki

eikixi

(2π)4

n∏

j=1

∫
d4pj

e−ipjyj

(2π)4
G̃(k1 · · · kmp1 · · · pn)

(7.44)
There is a possible confusion about this equation. Since

G(x1 · · ·xmy1 · · · yn) = 〈0|T [ϕ(y1) · · ·ϕ(yn)ϕ(x1) · · ·ϕ(xm)]|0〉 (7.45)

There is no distinction between x’s and y’s, but in (7.44), x’s are clearly
associated with incoming particles, and y’s are associated with outgoing
particles. The point is that G(x1 · · ·xmy1 · · · yn) is a “general purpose”
tool that can be used in many situations including those on a quantum-
mechanical time scale in which there is no clear-cut distinction between
past and future. In scattering experiments, on the other hand, past and
future are unambiguous. We therefore associate some coordinates with in-
states and some with out-states. We do this by assigning them to k’s (for
incoming particles) or with p’s (for outgoing particles). In this simple theory
with self-interacting scalar fields, the only difference is the + or − signs in
the exponentials in (7.44), but this is necessary to get the conservation
of momentum right. When there are several different kinds of particles
involved, this choice becomes even more significant. For example, if we were
looking at the process e+ + e− → γ + γ, (positron annihilation) we would
need to assign x’s to the electron fields and y’s to the photon fields. After
making this assignment, substitute (7.44) into (7.43) and do the necessary
integrals.

Sβα =〈p1 · · · pn out|k1 · · · km in〉

∼
(

i√
Z

)m+n m∏

i=1

1√
(2π)32Eki

(k2
i −m2)

×
n∏

j=1

1√
(2π)32Epj

(p2
j −m2)G̃(k1 · · · kmp1 · · · pn)

(7.46)
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7.4 Correlation Functions

The heart of (7.43) is the vacuum correlation function

G(x1 · · ·xn) = 〈0|T [ϕ(x1)ϕ(x2) · · ·ϕ(xn)]|0〉 (7.47)

The fields ϕ(x) are the fully interacting fields in the Heisenberg picture.
If we are to calculate anything in this formalism, we must somehow relate
them to the “in” fields defined in (7.30). Let’s hope there exists an operator
U(t) such that

ϕ(x) = U−1(t)ϕin(x)U(t) with t = x0 (7.48)

I happen to know that the necessary operator is given by

U(t) = lim
t0→−∞

U(t, t0) (7.49)

where U(t, t0) is time time-development operator given by (7.21). This is
plausible, but it need to be proved.

Both ϕ and ϕin satisfy Heisenberg equations of motion.

∂

∂t
ϕ(t) = i[H(ϕ), ϕ(t)] (7.50)

∂

∂t
ϕin(t) = i[H0(ϕin), ϕin(t)] (7.51)

I have written H(ϕ) and H0(ϕin) to emphasize that the Hamiltonians are
functionals of their respective fields. I have also written ϕ(t). I realize the
ϕ is really a function of the four vector xµ, but I am specifically concerned
with the time development here, and x0 = t. Note that

d

dt

[
UU−1

]
=

dU

dt
U−1 + U

dU−1

dt
= 0

In a condensed notation this is

UU̇−1 = −U̇U−1 (7.52)

Now substitute (7.48) into (7.51) and use (7.50) to eliminate ϕ̇.

∂

∂t
ϕin =

∂

∂t

[
UϕU−1

]
= U̇ϕU−1 + Uϕ̇U−1 + UϕU̇−1

= U̇(U−1ϕinU)U−1 + Ui [H(ϕ), ϕ] U−1 + U(U−1ϕinU)U̇−1
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= U̇U−1ϕin − ϕinU̇U−1 + i
[
(UH(ϕ)U−1), UϕU−1

]

=
[
U̇U−1, ϕin

]
+ i [H(ϕin), ϕin] = i [H0(ϕin), ϕin] (7.53)

I have used (7.52) to simplify the second line of (7.53). I have also used the
fact that Hamiltonians are polynomials of ϕ (and possibly its derivatives),
so for example, UH(ϕ)U−1 = H(ϕin). Therefore

[{
U̇U−1 + iHint(ϕin)

}
, ϕin

]
= 0

The operator in curly brackets commutes with all ϕin. It must therefore
be a c number. We could think of this constant as a number added to the
Hamiltonian. We have had several occasions to discard such numbers before
and will do so now. We conclude that (to within a meaningless additive
constant)

i
dU(t)

dt
= Hint(ϕin)U(t) (7.54)

This is equation (7.15) with the important clarification that Hint is con-
structed with in fields, i.e. fields using the physical masses of the particles
involved. We can take U(t, t0) to be given by (7.21) and U(t) by (7.49).
Using (7.12) and (7.13) we can argue that

U(t2, t1) = lim
t→−∞U(t2, t0)U(t0, t1)

= lim
t→−∞U(t2, t0)U−1(t1, t0) = U(t2)U−1(t1) (7.55)

Now consider a set of time-ordered points x1, · · · , xn satisfying x1
0 >

x0
2 > · · · > x0

n. Using (7.55) we can write

G(x1, · · · , xn) = 〈0|ϕ(x1) · · ·ϕ(xn)|0〉
= 〈0|U(t0, t1)ϕin(x1)U(t1, t2)ϕin(x2) · · ·U(tn−1, tn)ϕin(xn)U(tn, t0)|0〉

(7.56)

The sequence of times reading from left to right runs from t0 → −∞ to t1
and back again to −∞. We can deform the contour by writing U(t0, t1) =
U(t0,−t0)U(−t0, t1). An operator of the form U(−t0, t0) runs from −∞ to
+∞. It has the effect of transforming asymptotic initial states to asymptotic
final states. This is just the role of the S operator defined in (7.50). We will
simply call U(t0,−t0) = S−1. With this change, our correlation function
becomes

G(x1, · · · , xn)

= 〈0|S−1U(−t0, t1)ϕin(x1)U(t1, t2) · · ·U(tn−1, tn)ϕin(xn)U(tn, t0)|0〉
(7.57)
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According to (7.27), the vacuum state is an eigenstate of S with a complex
phase. We can write 〈0|S−1 = e−iθ〈0| and find the phase as follows.

〈0|S|0〉〈0|S−1 = 〈0|

The point is that since the vacuum is stable, |0〉〈0| constitutes a complete
set of states. Consequently

〈0|S−1 =
〈0|

〈0|S|0〉 (7.58)

Equation (7.57) becomes
G(x1, · · · , xn) (7.59)

=
〈0|U(−t0, t1)ϕin(x1)U(t1, t2) · · ·U(tn−1, tn)ϕin(xn)U(tn, t0)|0〉

〈0|S|0〉
Consider an operator like U(ti−1, ti). It contains an infinite sum of prod-
ucts of fields evaluated at various times, but every term in the sum contains
fields that are time-ordered between ti−1 and ti. The entire numerator of
(7.59) consists of a vast array of fields, but they are all time ordered. Of
course, we started out with the assumption that the sequence of coordi-
nates x1, x2, · · ·xn was already time ordered, so this makes the “scaffolding”
around which the U ’s are time ordered. The original definition of G, equa-
tion (7.47) already contains the time ordering operator, so we need not have
made that assumption. We just need to write it

G(x1, · · · , xn) (7.60)

=
〈0|T [U(−t0, t1)ϕin(x1)U(t1, t2) · · ·U(tn−1, tn)ϕin(xn)U(tn, t0)] |0〉

〈0|S|0〉
With the time-ordering operator in place, we are free to move the factors
around in the numerator to suit our convenience. In particular, we can
gather all the U ’s together.

U(−t0, t1)U(t1, t2) · · ·U(tn, t0) = U(−t0, t0) = S

Our final result for the correlation function function is

G(x1, · · · , xn) =
〈0|T [ϕin(x1)ϕin(x2) · · ·ϕin(xn)S] |0〉

〈0|S|0〉 (7.61)
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Itzykson and Zuber4 in a masterstroke of French understatement, call
this derivation “heuristic.” The fact is that we just don’t know how to
do rigorous mathematics with such badly-behaved operator expansions as
(7.20), and there are many subtle physical questions as well. You might call
this “experimental mathematics.” We use this formula and it works. It is
also true that equivalent formulas can be derived using the path integral for-
malism. This also goes way beyond the limits of conventional mathematics,
but the same result is obtained in the end.

7.5 The Wick Expansion

If we can calculate Sβα in (7.46), we can calculate all possible decay rates
and cross sections. In order to do this we need the Fourier transformed
Green’s function given (implicitly) by (7.44).

G̃(k1 · · · kmp1 · · · pn) =
m∏

i=1

∫
d4xi e−ikixi

n∏

j=1

∫
d4yj eipjyj G(x1 · · ·xmy1 · · · yn)

(7.62)
Now we need the configuration space Green’s function G(x1 · · ·xmy1 · · · yn).
The formula for this is (7.61)

G(x1, x2, · · · , xn) = 〈0|T [ϕ(x1)ϕ(x2) · · ·ϕ(xn)]|0〉

=
〈0|T [ϕI(t1)ϕI(t2) · · ·ϕI(tn)S]|0〉

〈0|S|0〉 ,
(7.63)

By S in (7.63) I mean the operator U(−t0, t0) in the limit t0 → −∞. Then
the equation for S is (7.20) with infinite limits on the integrals.

S =
∞∑

n=0

(−i)n

n!

∫
· · ·

∫
d4x1d

4x2 · · · d4xnT [HI
int(x1)HI

int(x2) · · ·HI
int(xn)],

(7.64)
where it is understood that the limits on the time integrations are −∞ <
x0 < ∞ and that HI

int is constructed with ϕin given by (7.33).
This seems (and is) an excruciatingly complicated set of equations to

wade through. The fact is that when you finally get the results in momentum
space, they are often embarrassingly simple. This led Feynman to formulate
a set of rules that give the right answer in momentum space without having

4Quantum Field Theory, C. Itzykson and J.-B. Zuber, McGraw-Hill 1980
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to calculate anything. I could just tell you the rules now, but they would
be devoid of any intellectual content. Let’s derive them step by step.

Take a look at the derivation of the propagator at the end of Chapter 6.
There we were dealing with free fields so we should rewrite (6.72)

〈0|T [ϕI(x1)ϕI(x2)]|0〉 = iD(x1 − x2) (7.65)

I am going to describe the steps that led from (6.72) to (6.75) in rather
formal terms that make it easy to generalize to situations in which there are
more than two fields. In order to keep the notation under control, I will write
ϕ(x) = ϕ+(x) + ϕ−(x), where ϕ+ is the positive-energy piece containing an
annihilation operator, and ϕ− is the negative-energy term with the creation
operator.

• Multiply the fields together with the time-ordering θ functions. This
gives eight terms, each one containing a product of two of the creation
and/or annihilation operators.

T [ϕ(x1)ϕ(x2)] = (ϕ+(x1) + ϕ−(x1))(ϕ+(x2) + ϕ−(x2))θ(t1 − t2)
+ (ϕ+(x2) + ϕ−(x2))(ϕ+(x1) + ϕ−(x1))θ(t2 − t1)

• Use the commutation relations (6.65) to rewrite each term (if neces-
sary) in such a way that all creation operators stand to the left
of all annihilation operators. This is called normal ordering. The
usual notation for this is to enclose the expression between colons, i.e.
: ϕ(x1)ϕ(x2) : means that the terms between the colons have already
been placed in normal order. In the course of normal ordering there
will appear terms without operators since, for example

ϕ+(x1)ϕ−(x2) =: ϕ−(x2)ϕ+(x1) : +
∫

d3k

(2π)32ω
e−ik(x1−x2)

The first term on the right is normal ordered. The second term is a
c-number.

• Take advantage of the fact that the vacuum expectation value of any
normal ordered product is zero. As a consequence

〈0|T [ϕ(x1)ϕ(x2)]|0〉 = 〈0| : ϕ(x1)ϕ(x2) : |0〉+ iD(x1 − x2) (7.66)

Of course, the first term on the right is zero. We say that iD(x1−x2) is
the contraction of ϕ(x1) and ϕ(x2). I will use the overbrace to indicate
contraction. In this notation (7.66) is

T [ϕ(x1)ϕ(x2)] =: ϕ(x1)ϕ(x2) : +
︷ ︸︸ ︷
ϕ(x1)ϕ(x2) (7.67)
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I am now in a position to state Wick’s theorem. The time ordered
product of n fields T [ϕ(x1)ϕ(x2) · · ·ϕ(xn)] can be written as a sum of terms
as follows:

• A single term in which all n fields are normal-ordered.

• A sum of terms, each one of which consists of one pair of contracted
ϕ’s. The n−2 remaining fields are normal-ordered. There is one term
in the sum for each possible pairing of two of the fields.

• A sum of terms, each one of which consists of two pairs of contracted
ϕ’s. The remaining n− 4 remaining fields are normal-ordered. There
is one term in the sum for each way in which two distinct pairs can be
made out of n fields.

• You see the pattern? One term with no contractions plus all possible
terms with one contraction plus all possible terms with two contrac-
tions plus all possible terms with three contractions and so forth. If
n is even, repeat this procedure n/2 times. The last group of terms
will consist of n/2 contractions. There will be one term in this group
for each way of choosing n/2 pairs out of n objects. If n is odd, re-
peat this procedure (n − 1)/2 times. The last terms will have one
normal-ordered field left over

This is all much easier to understand that to explain. The following
example with n = 4 should make this clear.

T [ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)] =: ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) :

+
︷ ︸︸ ︷
ϕ(x1)ϕ(x2) : ϕ(x3)ϕ(x4) : +

︷ ︸︸ ︷
ϕ(x1)ϕ(x3) : ϕ(x2)ϕ(x4) :

+
︷ ︸︸ ︷
ϕ(x1)ϕ(x4) : ϕ(x2)ϕ(x3) : +

︷ ︸︸ ︷
ϕ(x2)ϕ(x3) : ϕ(x1)ϕ(x4) :

+
︷ ︸︸ ︷
ϕ(x2)ϕ(x4) : ϕ(x1)ϕ(x3) : +

︷ ︸︸ ︷
ϕ(x3)ϕ(x4) : ϕ(x1)ϕ(x2) :

+
︷ ︸︸ ︷
ϕ(x1)ϕ(x2)

︷ ︸︸ ︷
ϕ(x3)ϕ(x4)+

︷ ︸︸ ︷
ϕ(x1)ϕ(x3)

︷ ︸︸ ︷
ϕ(x2)ϕ(x4)

+
︷ ︸︸ ︷
ϕ(x1)ϕ(x4)

︷ ︸︸ ︷
ϕ(x2)ϕ(x3)

(7.68)

You should try working out one of these time ordered products by brute force
starting with (6.64) and (6.65). You will be convinced that the theorem is
true. The proof is more work that it’s worth.5

5If you want a proof see J. D. Bjorken and S. D. Drell, Relativistic quantum Fields,
Section 17.4
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This would be a good time to go back to the free field Hamiltonian, Eq.
(6.43).

H =
1
2

n=∞∑
n=−∞

h̄ωn(ana†n + a†nan) =
n=∞∑

n=−∞
h̄ωn

(
a†nan +

1
2

)

We had to discard the h̄ω/2 term to avoid an infinite sum. This is a common
problem whenever we make Hamiltonians our of field operators. In order
to insure that this never happens, we will agree that all Hamiltonians come
already normally ordered. Accordingly (7.64) should be written

S =
∞∑

n=0

(−i)n

n!

∫
· · ·

∫
d4x1d

4x2 · · · d4xnT [: HI
int(x1) :: HI

int(x2) : · · · : HI
int(xn) :].

(7.69)
When we use Wick’s theorem on this expression, we only make contractions
of pairs of fields from different Hamiltonians.

7.6 An Example

Let’s take the interaction Hamiltonian Hint = (λ/4!)ϕ4(x) that we stud-
ied in Sections 4.3 and 4.4, and calculate the four-point Green’s function
G(x1, x2, x3, x4) to first order in λ. The S-operator (7.64) to first order is

S = 1− iλ

4!

∫
d4x : ϕ4(x) : + · · · (7.70)

Note that to first order 〈0|S|0〉 = 1, so (7.63) becomes

G(x1, x2, x3, x4) = 〈0|T [ϕI(x1)ϕI(x2)ϕI(x3)ϕI(x4)]|0〉

− iλ

4!
〈0|T

[
ϕI(x1)ϕI(x2)ϕI(x3)ϕI(x4)

∫
d4x : ϕ4

I(x) :
]
|0〉+ · · · (7.71)

The zeroth-order term can be read off of (7.68)

G(x1, x2)G(x3, x4) + G(x1, x3)G(x2, x4) + G(x1, x4)G(x2, x3) (7.72)

This is the sum of all possible ways two particles can propagate between two
pairs of points. As you would expect in this zeroth-order term, the particles
do not interact .

The first-order term has eight fields each with two terms. If you were to
simply multiply them out there would be 28 = 256 terms, so here’s where



134CHAPTER 7. THE INTERACTION PICTURE AND THE S-MATRIX

Mr. G. C. Wick earns his keep. First notice that the vacuum expectation
value of any normal-ordered product of fields vanishes. We need only be
concerned with terms in which all eight fields are contracted. Because of
the normal-ordered Hamiltonian, we don’t contract the four ϕ(x)’s with one
another. The only surviving terms are those in which each of ϕ(x1), ϕ(x2),
ϕ(x3), and ϕ(x4) is contracted with one of the ϕ(x)’s. There are, of course,
4! ways of doing this all leading to the same expression for the first-order
contribution to G(x1, x2, x3, x4).

G(x1, x2, x3, x4) = −iλ

∫
d4xG(x1, x)G(x2, x)G(x3, x)G(x4, x), (7.73)

which is exactly (4.74).
Now suppose you want to calculate the S matrix element for the scat-

tering of two particles k1 + k2 → p1 + p2. There are two ways of doing
this.

• First do the d4x integration in (7.73). Then substitute G(x1, x2, x3, x4)
into (7.62) and find the Fourier transform G̃(k1, k2, p1, p2). Finally
substitute G̃ into (7.46) to get Sβα.

• G is a Green’s function after all, so

(2x + m2)G(x, x′) = i(2x + m2)D(x− x′) = −iδ(4)(x− x′) (7.74)

You see, all the (2xi + m2) operators in (7.43) produce factors of
−iδ(4)(xi − x) when they operate on G(xi, x). Now all the integrals
are trivial.

Sβα =〈p1p2 out|k1k2 in〉

=
(

i√
Z

)4

(−iλ)(2π)4δ(4)(p1 + p2 − k1 − k2)

×
2∏

i=1

1√
(2π)32Eki

2∏

j=1

1√
(2π)32Epj

(7.75)

This second technique, though less obvious, saves a factor of two in scratch
paper.

This simple calculation illustrates most of the rules for calculating more
complicated S-matrix elements in the ϕ4 theory. To start with draw some
diagrams with the incoming and outgoing particles labelled with their mo-
menta. The diagrams will consist of straight lines and vertices where four
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lines meet. The number of vertices must be less than or equal to the corre-
sponding order of perturbation theory, i.e. if you working at the n-th order
approximation, you must draw all possible diagrams in which there are n
or fewer vertices. In the example, there was only one vertex corresponding
to first-order perturbation theory. There will be many diagrams in which
one or more of the particles don’t interact with the others. One way to say
this is that these diagrams can be separated into two or more pieces without
cutting any lines. These are called “disconnected” diagrams. These will
fall into two categories: “vacuum fluctuation” diagrams in which there is a
piece that is disconnected from all the external particles and “self interac-
tion” diagrams in which one of the external particles emits and reabsorbs
virtual particles without interacting with the other external particles. Dis-
card all these. It can be shown that the vacuum fluctuations only contribute
to the 〈0|S|0〉 term, which cancelled in the formula for the S-matrix. The
self interaction diagrams represents particles that don’t scatter, and we are
presumably not interested in the probability of things not happening. Each
of the remaining diagrams contributes a term to the perturbation expansion.
Each term will have the following factors.

• A factor 1/
√

(2π)32Ek for each external particle with momentum k.

• A factor (−iλ) for each vertex.

• A factor (2π)4δ(4)(k1+k2−p1−p2−· · · ) to enforce all-over momentum
conservation.

These factors are all evident in (7.75). There are several new features that
are only present in higher-order terms.

• There will be internal lines, i.e. lines that begin and end in the dia-
gram. Each one of these gets a propagator

i

p2 −m2 + iε

where p is the momentum of the internal particle.

• Impose momentum conservation at each vertex.

• Integrate over each undetermined loop momentum:
∫

d4p

(2π)4
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• Divide by the symmetry factor.

This last issue, the symmetry factor, has to do with redundant diagrams.
It’s too complicated to explain in the text. I’ll explain it in class when I can
draw lots of diagrams on the board.

There’s still one more step on the road. How do you turn an S-matrix
into a cross section. That is the subject of the next chapter.



Chapter 8

Cross Sections and Decay
Rates

The last step in the road from Lagrangians to cross sections is this: take
the S-matrix computed in Chapter 7 and convert it to a scattering cross
section or decay rate. There are two easy ways of doing this and one right
way. One easy way is to assume that the initial and final state particles can
be described by plane waves. Plane waves occupy infinite volume, unfortu-
nately, so several key integrals diverge. This problem can be ducked with
some judicious hand waving. The other easy way is to quantize the wave
functions in a box of finite size. This avoids the infinite integrals, but of
course, real experiments aren’t done in a box. It is best to acknowledge that
the beam and target particles should be represented by wave packets, but
this makes for a long tedious derivation. We’ll do it the ssecond easy way
(at least in this edition).

8.1 Classical Scattering

From the point of view of classical mechanics, the cross section of a particle
is just its projected area. If the particle is a sphere of radius R, the cross
section σT = πR2. This is usually called the “total” cross section. If the
particle were very small, we might contrive to measure its cross section by
means of a scattering experiment. First we prepare a target with nt of
these particles per unit volume, and bombard this target with Ni incident
point-like particles. We assume that the target is so thin and the target
particles so small that no one of them gets in front of another. We then
count the number N of incident particles that are deflected as a result of a

137
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collision. The fraction of particles that are scattered, N/Ni must be equal
to the fraction of the target area covered by the projected area of the target
particles, ntLσT , where L is the target thickness. The cross section is then
given by

σT =
N

NintL

The idea works even if σT is arbitrarily small. We just have to make Ni and
nt large enough.

We can also determine the shape with a scattering experiment. Imagine
that the target particles have concentric circles painted on them like an
archery target. If one of the incident particles hits a particular area dσ it
will scatter into a solid angle dΩ. OK – so your’re not as good with a bow
and arrow as Legolas. Just fire a gazillion arrows at random an observe the
distribution of scattering angles. Your favorite theorist should then be able
to infer the shape of the target particle from the distribution. The relevant
equation is

dσ

dΩ
=

1
NintL

dN

dΩ
(8.1)

If you are an experimentalist, you measure dN/dΩ in your lab, compute
dσ/dΩ, and pass it along to the theorist. This computed quantity is called
the “differential cross section.”

The quantities Ni, nt, and L in (8.1) are directly measurable, but for
purposes of comparing with theory, it is more convenient to express them in
terms of flux. If the beam is moving at velocity v toward a stationary target,
then the number of particles in the beam Ni is equal to the density of the
beam ni times the volume. If the beam is a pulse that is turned on for T
seconds, then the volume of the beam is vTA, where A is the cross-sectional
area of the beam (assumed smaller than the target.) Therefore Ni = nivTA.
The cross section can be written as:

dσ

dΩ
=

1
(nivTA)ntL

dN

dΩ

=
1
I

dR

dΩ
,

(8.2)

where the transition rate R is the number of scattering events per unit time
per unit target volume, V = AL.

R = N/V T, (8.3)

and the flux I is
I = nintv (8.4)
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8.2 Quantum Scattering

In the quantum mechanics regime, quantities like size and shape don’t have
any direct meaning, since any putative size is bound to be smaller that the
corresponding deBroglie wavelength; but the experiment can still be done
exactly as I have described it, because all the measurements are macro-
scopic and asymptotic. The differential cross section (DCS for short) can’t
be interpreted directly in terms of shape, but it does contain most of the
information we are entitled to have about particles and other subatomic
systems.

The description of scattering in terms of archery targets is appropri-
ate to low-energy potential scattering, but at higher energies new particles
can be created and the total momentum shared among them. It requires
more than a scattering angle to describe the final state. Rather we have
to specify the momenta of each of the particles: p1,p2, . . . ,pn. Not all val-
ues of the momenta are allowed of course, because of the conservation of
momentum and energy. We can imagine the momenta as occupying some
complicated-shaped region in a 3n-dimensional space whose coordinates are
the components of the individual momenta. This construct is called “phase
space.”1 A typical multiparticle scattering experiment measures the transi-
tion probability into some region of phase space. We still use the differential
cross section notation dσ, but now dσ might be an 3n-fold differential, de-
pending on the details of the experiment. I will also use the notation ∆Ω to
indicate some small region of phase space (not just a region of solid angle).

Now let’s put on our theorist’s hats. We know how to calculate the S-
matrix elements. How do we now find the cross sections? You will recall
from the end of Chapter 7 that the first term of the perturbation theory
expansion of the S-matrix describes particles that don’t scatter. Feynman’s
rules decree that all other terms contain the factor (2π)4δ(4)(Pf −Pi), where
Pi and Pf are the total momentum four-vectors of the initial and final state
particles. It is customary to define a transition matrix Tfi as follows:

Sfi = δfi − i(2π)4δ(4)(Pf − Pi)Tfi (8.5)

The δfi just represents the particles that don’t scatter. T is the non-trivial
part of the S-matrix with the delta function “peeled off.” If should be clear
from (6.25) and (6.35) that the S operator is unitary. The S-matrix in
the current notation is Sfi = 〈f |S|i〉, where |i〉 and 〈f | represent complete

1Note that phase space in thermodynamics is 6n-dimensional, since it includes space
as well as momentum coordinates.
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sets of states. As such we expect the S-matrix to be unitary as well. Very
schematically, this means that

∑

f

S∗fiSfk = δik (8.6)

I say “very schematically” because it’s not at all clear what it means to sum
over one of these indices. I’ll get back to that.

Since Sfi is a probability amplitude, we should get the corresponding
probability by squaring it. So for example,

Pfi = |Sfi|2 (8.7)

is the probability that the initial state |i〉 will scatter into the final state |f〉.
Unfortunately this means that we have to square the delta function in (8.5),
and this is bad news, since δ(Pf − Pi)δ(Pf − Pi) = δ(Pf − Pi)δ(0) and δ(0)
is infinite.

I’ll deal with this last problem first. Squaring (8.5) gives

Pfi = (2π)4δ(4)(0)(2π)4δ(4)(Pf − Pi)|Tfi|2 (8.8)

(I have ignored the non-scattering term.) Here’s the kludge. The factor
(2π)4δ(4)(0) is interpreted as a volume of space-time, since in the limit P → 0

(2π)4δ(4)(P ) =
∫

d4x eiPx →
∫

d4x = V T. (8.9)

But the time and volume of what? We can use the derivation of (8.2) as
a model. Let V be a small arbitrary volume inside the interaction region.
Assume that it is small enough to fit inside the beam and target but very
large compared the typical quantum-mechanical dimensions. T is the time
required for a beam particle to pass through V . The analogy to (8.3) is

Rfi = transition rate per unit volume =
Pfi

V T

=
(2π)4V Tδ(4)(Pf − Pi)|Tfi|2

V T

=(2π)4δ(4)(Pf − Pi)|Tfi|2

(8.10)

This is the first of several instances in which the arbitrary V ’s and T ’s cancel.
Now to the question of counting and normalizing states. This is not

explained clearly in any book I know of, so I hope you will indulge me while
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I explain this boring technical detail in excruciating detail. Someone has to
do it.

First of all, Klein-Gordon wave functions have a conserved norm, but it
isn’t

∫
dV |ϕ|2. In order to have the right behavior under Lorentz transforma-

tions, the norm must transform like the time-like component of a conserved
current. That is, there must be a probability density ρ and a probability
current j such that

∂ρ

∂t
+ ∇ · j = 0 (8.11)

The reason is that the rate of decrease of particles in a given volume is equal
to the total flux of particles out of that volume, that is

− ∂

∂t

∫

V
ρ dV =

∫

S
j · n̂ dS =

∫

V
∇ · j dV

The procedure for finding this current should be familiar from nonrelativistic
quantum mechanics. Write the Klein-Gordon equation as

−∂2ϕ

∂t2
+∇2ϕ = m2ϕ

Multiply this equation by −iϕ∗ and the complex conjugate equation by −iϕ
and subtract.

∂

∂t

[
i

(
ϕ∗

∂ϕ

∂t
− ϕ

∂ϕ∗

∂t

)]

︸ ︷︷ ︸
ρ

+∇ · [−i(ϕ∗∇ϕ− ϕ∇ϕ∗)]︸ ︷︷ ︸
j

= 0 (8.12)

As a consequence the norm is

ρ = i

∫
d3x ϕ∗(x)

←→
∂0 ϕ(x) (8.13)

By ϕ(x) I mean the wave function, not the quantized field, and

ϕ∗
←→
∂0 ϕ ≡ ϕ∗∂0ϕ− (∂0ϕ

∗)ϕ.

We have been using the quantized field operator

ϕ̂ =
∫

d3k√
(2π)32Ek

[
âke

−ikx + d̂†ke
ikx

]
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from (6.64). We obtain the classical wave function ϕ from the quantized
field operator ϕ̂ as follows

ϕ(x) = 〈0|ϕ̂(x)|p〉 =
∫

d3k√
(2π)32Ek

e−ikx〈0|âkâ
†
p|0〉

=
e−ipx

√
(2π)32Ep

(8.14)

This result depends on three normalization conventions that are to some ex-
tent arbitrary. First is the factor 1/

√
(2π)32E in the field operator (6.64).

Second is the commutation relations for the creation and annihilation op-
erators (6.65). Finally, we have agreed to construct single-particle states
as |p〉 = â†p|0〉. Only the equal-time commutation relations (6.69) are non-
negotiable. We will finally arrive at formulas for the cross sections and decay
rates that must be independent of all conventions. This will happen, but no
two books do it the same way!

Our choice of normalization for the field operator has the advantage of
making (6.65) as simple as possible, but it results in a rather odd-looking
norm.

ρ = i(ϕ∗
←→
∂0 ϕ) = 2Eϕ∗ϕ = (2π)−3

∫

V
ρ dV = (2π)−3V

(8.15)

Yes that’s right – there are (2π)−3 particles per unit volume!
Equation (8.10) refers to scattering into a single final state |f〉. What

does this mean? Since we already are committed to the imaginary box,
we can impose periodic boundary condition to discretize the momenta. For
a single particle, quantum theory restricts the number of final states in a
volume V with momenta in element d3p to be V d3p/(2π)3. Our V has
(2π)−3V particles, however, so

No. of final states/particle =
V d3p

(2π)3(2π)−3V
= d3p (8.16)

In the general case in which two particles go into N particles with initial
and final states given by

|i〉 = |k2,k2〉
|f〉 = |p1, p2, · · · , pN 〉

(8.17)
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the “density of states” is

No. of available states =
N∏

j=1

d3pj (8.18)

Now turn to the incident flux (8.4). With our norm ni = nt = (2π)−3,
and v is the relative velocity of the colliding particles.

v =
∣∣∣∣
k1

E1
− k2

E2

∣∣∣∣ =
1

E1E2

√
(k1 · k2)2 − (m1m2)2 (8.19)

The generalization of (8.4) is

dσ =
R

I
× density of states

Using (8.10), (8.18) and (8.7) we get

dσ =
(2π)4δ(Pf − Pi)|Tfi|2

(2π)−6 v

N∏

j=1

d3pj

=
1
v
(2π)10δ(4)(Pf − Pi)|Tfi|2

N∏

j=1

d3pj .

(8.20)

Finally, we use this formalism to compute the probability of the decay
of a single particle. The differential decay rate dΓ of an unstable particle is
defined by

dΓ =
R

nt
× density of states

= (2π)7δ(4)(Pf − Pi)|Tfi|2
N∏

j=1

d3pj

(8.21)

In this case nt is the number of decaying particles per unit volume, which
as usual is equal to (2π)−3.

8.3 Phase Space

The outcome of a scattering experiment as described by (8.20) depends,
generally speaking, on three kinds of things. First there are the fundamental
dynamics, which are encoded in the Hamiltonian of the system. Second,
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there are the details of the experiment itself, e.g. the number of particles
in the beam and target, the construction of the detectors, etc. There is a
third category of influences that arise because momentum and energy are
conserved and because the experiment must be describable in a relativistic
invariant way. These last considerations are incorporated in the notion of
phase space. Phase space in this context is the set of momentum states
available to the particles after the interaction. Imagine leaving the parking
lot in front of a movie theater after the show is over. If there is only one
narrow road leading out of the lot, then it will take you a long time to
escape. If there are freeways leading out in all directions, the lot will empty
quickly. This is an analogy based on coordinate space. Try to imagine
something like this in momentum space and you will have a feeling for what
phase space means. If there are many momentum states available to the
final-state particles, the scattering cross section will be large or the decay
will happen quickly. I will explain this again in the next paragraph using
a semi-quantitative argument based on the uncertainty principle and finally
present a version of the argument that is correct relativistically.

In classical statistic mechanics the state of motion of a particle is repre-
sented as a point in a six-dimensional manifold called phase space consisting
of three position and three momentum coordinates, i.e. (x, y, z, px, py, pz).
Classical mechanics places no restrictions on the density of these points,
since x and p are supposedly measurable with complete precision. Quan-
tum mechanics on the other hand limits the precision by the uncertainty
principle,

∆xj∆pj ≥ 2πh̄.

Phase space can be thought of as being subdivided into elementary cells of
size (2πh̄)3. The particle’s coordinates cannot be localized to any smaller
region. The number of states available to one particle will therefore be equal
to the total volume of phase space divided by the size of the elementary
cell. Assuming that the particle is contained in a volume V , the number of
available states is

N =
1

(2πh̄)3

∫
d3x d3p =

V

(2πh̄)3

∫
d3p.

The limits of integration come about from the conservation of mass and
energy. Since pµpµ = m2, the momentum integration is bounded by a sphere
of radius |p|2 = E2 − m2, so that N depends on m and E. The factor
V/(2πh̄)2 is part of the normalization discussed in the previous section. I
am concerned here with the integral over d3p.
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Now suppose there are N such particles in the final state of a scattering
experiment.

NN =
∫ N−1∏

j=1

d3pj (8.22)

There are only N − 1 integrals in (8.22), because the N pj ’s are not all
independent,

N∑

j=1

pj ≡ Pf = Pi.

We can incorporate this constraint in a more flexible way by introducing a
δ-function. ∫

d3pN δ(3)

(
pN +

N−1∑

k=1

pk −Pi

)
= 1

NN =
∫ N−1∏

j=1

d3pj =
∫ N∏

j=1

d3pj δ(3)

(
N∑

k=1

pk −Pi

)

Energy is also conserved, and this constraint can be included with a similar
trick. ∫

dEi δ(Ef − Ei) = 1

NN =
∫

dEi

N∏

j=1

d3pj δ(3)

(
N∑

k=1

pk −Pi

)
δ

(
N∑

k=1

Ek − Ei

)

dNN

dEi
=

∫ N∏

j=1

d3pj δ(4)(Pf − Pi) (8.23)

These are just the kinematic factors appearing in (8.20). It appears from
this heuristic argument, that the reaction rate is proportional to the density
of states dNN/dEi.2 This is not the whole story, because (8.23) as it stands
is not Lorentz invariant, but according to the Feynman rules from Section

2You will recall from elementary quantum mechanics that the transition probability
rate for a system to make a transition from an energy El to Ek is given by “Fermi’s golden
rule,”

wlk =
2π

h̄
g(Ek)|Hkl|2

where g(Ek) is the density of states whose energy is close to Ek. See R. L. Liboff, Intro-
ductory Quantum Mechanics.
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7.5, the square of the scattering amplitude, |〈f |T |i〉|2 in (8.20), contains a
factor 1/2Ei(2π)3 for each particle in the final state. This is good, since

∫
d4p δ(p2 −m2) =

∫
d3p

2E

is clearly a Lorentz scalar. The point is that the factors



N∏

j=1

∫
d3pj


 (2π)4δ(4)(Pi − Pf )

from (8.20) together with the factors 1/2Ei from |〈f |T |i〉|2 can be combined
into a Lorentz-invariant quantity

P =
∫ N∏

j=1

d3pj

2Ej
δ(4)(Pf − Pi)

=
∫ N∏

j=1

d4pj δ(p2
j −m2) δ(4)(Pf − Pi)

(8.24)

The quantity P is called the Lorentz-invariant phase space. In general we
are more interested in integrating some of the momenta in (8.24) over some
portion of their allowed kinematic range, in which case

dP =
∫

p∈∆

N∏

j=1

d4pjδ(p2
j −m2)δ(4)(Pf − Pi). (8.25)

You might say that (8.24) and (8.25) lie on the interface between theory and
experiment. For example, if you were using (8.20) to predict the results of an
experiment, the limits on the integrals would be set to represent the details
of the experimental apparatus. If the apparatus did not detect particle j (it
might be a neutral particle), then the corresponding momentum pj would
be integrated out. If the momentum of the k’th particle was measured, then
the corresponding integral would not be done, and P would be left as a
function of pk.

For many-particle reactions, P will have a complicated dependence on
the momentum variables.3 It is often the case that the data from an ex-
periment are determined mostly by P regardless of the dynamics. Such
an experiment is a failure almost by definition. The general purpose of an
experiment is always to find some deviation from phase space.

3There are entire books written on the subject, e.g. Kinematics and Multiparticle
Systems, M. Nikolic, Gordon and Breach (1968)
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8.4 Two-Particle Scattering

To make this more concrete, let’s calculate the cross section for the elastic
scattering of two particles k1+k2 → p1+p2 from the example in the previous
chapter. Comparing (7.75) (with Z = 1) with (8.5) gives

Tfi =
λ

(2π)6
√

2Ek12Ek22Ep12Ep2

(8.26)

Then (8.20) gives

dσ =
λ2

4(2π)2vEk1Ek2

∫
d3p1

2Ep1

d3p2

2Ep2

δ(4)(Pf − Pi)

=
λ2

4(2π)2vEk1Ek2

∫
dP

(8.27)

The transition matrix Tfi is especially simple in this example. This is why
there is nothing inside the integral except dP. In general there will be some
complicated function that we may or may not want to integrate.

I will complete the calculation in the center of mass system assuming
equal-mass particles. In this case |k1| = |k2| = |p1| = |p2|, k1 = −k2,
p1 = −p2, Ep2 = Ep1 ≡ E1, and Ek1 + Ek2 ≡ Ei. For the remainder of this
section only I will use the notation |p1| = p1. Integrating out d3p2 gives

P =
∫

1
4E2

1

p2
1dp1δ(2Ep1 − Ei)dΩ1

It’s convenient to change the variable of integration from p1 to E1.

p1dp1 = E1dE1 δ(2E1 −Ei) =
1
2
δ(E1 −Ei/2)

P =
∫

p1

8E1
dE1δ(E1 −Ei/2)dΩ1

There is still one δ-function, which will enforce energy conservation and
hence fix the value of p1.

P =
∫

p1

8E1
dΩ1 =

πp1

4E1
. (8.28)

Notice that symmetry together with the conservation of momentum and
energy largely predetermine the outcome of such a scattering experiment.
If the particles are spinless there can be no dependence on the azimuthal
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angle. Only the scattering angle θ1 is unconstrained, and the only way
the underlying dynamics could manifest itself is by affecting the differential
cross section as a function of scattering angle. Our example is trivial in the
sense that there is no θ dependence, but let’s go ahead and calculate the
differential cross section anyhow. For this purpose it is best to leave (8.28)
in the form of a differential

dP =
p1

8E1
dΩ1 (8.29)

We also need v from (8.19), which in this simple case gives

v =
2p1

E1
(8.30)

Equation (8.27) becomes

dσ =
λ2

4(2π)2E2
1

E1

2p1

p1

8E1
dΩ1

dσ

dΩ1
=

λ2

(16πE1)2

(8.31)

As anticipated, the scattering is isotropic. There is no θ1 dependence.

8.5 The General Case

Here is a cookbook procedure for calculating scattering cross sections and
decay rates for the general case in which there are N particles in the final
state.

• Use Feynman’s rules from Section 7.5 to calculate the S matrix.

• Find the transition matrix Tfi from (8.5).

• Find the relative velocity v from (8.19).

• The differential cross sections and decay rates are calculated from
(8.20) and (8.21) integrated over the appropriate regions of phase
space.

dσ =
(2π)10

v

∫

p∈∆Ω

N∏

j=1

d3pjδ
(4)(Pf − Pi)|Tfi|2 (8.32)
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dΓ = (2π)7
∫

p∈∆Ω

N∏

j=1

d3pjδ
(4)(Pf − Pi)|Tfi|2 (8.33)

When there are only two particles in the final state, one integrates
over all the momentum components that are constrained by the delta
function and leaves the remaining two angles in the form of a differ-
ential. When there are more than two particles in the final state, the
decision regarding which variables to integrate and which to leave in
the differential depends on the experiment that the theory is describ-
ing. That is the meaning of the notation p ∈ ∆Ω that specifies the
limits of the integrals

Because of our normalization conventions, |Tfi|2 will contain one factor of
1/(2π)32E for each external particle in the reaction. The factors of 2π as well
as the energies of the initial-state particles are constants that are gathered
together outside the integrals. The energies of the final-state particles are
functions of the variables of integration. It is best to think of them as part of
the phase space defined by (8.24). Needless to say, these rules are tailored
to the Feynman’s rules from Section 7.5. If you combine formulas from
different books, you are likely to get the wrong answer.

The rules so far only hold for spinless particles. The Dirac wave functions
used for spin-1

2 scattering are normalized differently. I’ll return to that point
at the end of Chapter 10.
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Chapter 9

The Dirac Equation

There is a story to the effect that Neils Bohr once asked Dirac what he was
working on. Dirac, who was famous for not saying much, replied, “I’m try-
ing to take the square root of the Klein-Gordon equation.” The background
to the story is this: the Klein-Gordon equation is invariant under Lorentz
transformations, but it was known to have a strange pathology, it has nega-
tive energy solutions. This is inevitable with a second-order equation. The
Schrodinger equation, on the other hand, is hopeless so far as relativity is
concerned, but because it has only a first derivative with respect to time,
it has only positive-energy solutions. (I’m talking about free-particle equa-
tions here. Bound state problems usually have negative total energy.) Dirac
thought that he could combine the two equations in a way that would pre-
serve the best features of each. The result is called the Dirac equation.
Ironically, it has negative-energy solutions anyway, but it does provide a
formalism for treating spin 1/2 particles in a way that is consistent with
relativity.

9.1 The Equation

Let’s follow in the footsteps of our taciturn master and see what we can
come up with. Start with the Schrodinger equation.

i
∂ψ

∂t
= Hψ

Can we come up with a Hamiltonian that (1) is first order in space deriva-
tives, (2) is Hermitian, and (3) leads to a covariant equation of motion? The
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answer is yes if ψ is a matrix. Try

i
∂ψ

∂t
= Hψ = (α · p + βm)ψ (9.1)

here α and β are Hermitian matrices and p = −i∇. We will also use the
replacement E = i∂/∂t. If E is the total energy of special relativity, it must
satisfy E2 = p2 + m2. Combine this with equation (9.1)

E2ψ =
(

i
∂

∂t

)2

ψ = (α · p + βm)
(

i
∂ψ

∂t

)
= (α · p + βm)2ψ

We would like this to equal (p2 +m2)ψ. This will be possible if the matrices
have some special properties.

(αip
i + βm)2 = β2m2 + (αi)2(pi)2 + {αi, β}mpi +

1
2
{αi, αj}i 6=j pipj (9.2)

I have used the convention that repeated indices are summed. The curly
brackets are endemic to Diracology. They represent the anticommutator.

{A,B} ≡ AB + BA

We would like (9.2) to boil down to pipi + m2. This will be possible if these
matrices obey the following constraints:

β2 = (αi)2 = 1 for each i (9.3)

{αi, β} = {αi, αj}i6=j = 0 (9.4)

We are trying to construct a theory of spin 1/2 particles, and we know
that in non-relativistic QM Pauli spinors have two components. We expect
therefore that α and β will be 2 × 2 matrices. Alas, it is not to be. They
must be at least 4× 4. Here is the argument:

1. βαi+αiβ = 0 so βαiβ = −αiβ
2 = −αi. Take the trace of this equation.

Tr[βαiβ] = Tr[αiβ
2] = Tr[αi] = −Tr[αi]. So αi is traceless. In the

same way we could prove that Tr[β] = 0.

2. We want α and β to be Hermitian. This together with (9.3) is sufficient
to prove that their eigenvalues are ±1

3. Arguments 1. and 2. lead us to conclude that the matrices must have
even dimension.
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4. There are only three independent traceless Hermitian 2× 2 matrices,
and you know what they are: the Pauli spin matrices.

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ1 =

(
1 0
0 −1

)
(9.5)

Unfortunately, we need four such matrices, so 2×2 won’t do. We must
have 4× 4. The traditional choice is

β =
(

I 0
0 −I

)
αi =

(
0 σi

σi 0

)
(9.6)

All this has a nasty, non-relativistic look about it. We therefore abandon
Dirac’s original notation for the following:1

γ0 = β γi = βαi =
(

0 σi

−σi 0

)
(9.7)

Now (9.4) becomes
{γµ, γν} = 2gµν (9.8)

and (9.1) is
(iγµ∂µ −m)ψ = 0 (9.9)

This is Dirac’s equation. Of course ψ is a four-component column matrix,
the so-called Dirac spinor. gµν is the usual metric tensor. There is one other
convenient bit of notation.

γµBµ = γµBµ ≡6B (9.10)

Dirac’s equation finally is (i 6 ∂ − m)ψ = 0. It looks simple. It’s not. It is
however, covariant. This is far from obvious, but I will not prove it at this
time.

Wave functions are supposed to have something to do with probability.
This is true of ψ as well, but to see the connection, we need to derive
the formula for a conserved current. Starting with (9.1) and taking the
Hermitian conjugate, we have

−i
∂ψ†

∂t
= i

∂ψ†

∂xi
αi + ψ†βm (9.11)

1Some authors use different conventions. This is consistent with Zee, Gross, and many
other texts.
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Multiply on the right by β2 = 1 and define

ψ ≡ ψ†β = ψ†γ0 (9.12)

This object ψ is called the Dirac conjugate. It often appears in bilinear
expressions in place of the usual Hermitian conjugate. Anyhow, the resulting
equation is

−i
∂ψ

∂t
γ0 = −i

∂ψ

∂xi
γi + ψm

or
ψ(i

←
6 ∂ +m) = 0 (9.13)

The arrow indicates that the derivative acts to the left. To find the current,
multiply (9.9) on the left by ψ and (9.13) on the right by ψ and add the
two. The result is

∂µψγµψ + ψγµ∂µψ = 0 = ∂µ(ψγµψ) (9.14)

So the conserved current is
jµ = ψγµψ (9.15)

The current density j0 = ψ†ψ is positive and has the same form |ψ|2 as the
probability density in non-relativistic QM.

9.2 Plane Wave Solutions

We know that electrons have two spin components. Why then are there four
components to the Dirac spinor? The answer is that despite Dirac’s best
intentions, there are still negative energy solutions. This in turn is related
to the existence of antiparticles. We will get to the particle interpretation
later. For the time being we will just reconcile ourselves to negative energies.
We start with

ψ± = e∓ipx

(
χ
η

)
(9.16)

As a convention, the symbol E = p0 will always refer to a positive number.
χ and η are two-component spinors. They are not independent; the Dirac
equation imposes a relationship between the two. Our job is to find it. Start
with the upper sign (positive energy) solution. Substitute (9.16) into (9.1).

(
E −m −σ · p
−σ · p E + m

)(
χ
η

)
= 0
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This will only have a solution if the determinant is equal to zero, i.e. E2 −
m2 − (σ · p)2 = 0. Remember that

σ2
i = I {σi, σj}i6=j = 0 (9.17)

so that
(σ · p)2 = p2, (9.18)

which is a useful identity to have at your disposal. We conclude that E2 =
p2 + m2, which we knew anyhow. Unfortunately, this means that E =
±

√
p2 + m2, so we are stuck with negative energy solutions. At any rate

η =
(

σ · p
E + m

)
χ

We can make χ into a Pauli spinor that satisfies χ†χ = 1.

χ(1) =
(

1
0

)
χ(2) =

(
0
1

)
(9.19)

The complete positive energy solution to the Dirac equation is written

ψ+(x, s) = u(p, s)e−ipx (9.20)

where

u(p, s) = C




χ(s)

σ·p
E+mχ(s)


 s = 1, 2 (9.21)

Notice that in the non-relativistic limit, the third and fourth components
become negligible.

The normalization constant C has to be chosen according to some con-
vention. We will use u(p, s)u(p, s) = 1. In order to appreciate this, it is
necessary to use one of these group theory results that I have not yet proved.
It is a fact that combinations like ψψ and uu are Lorentz scalars, so that
if we choose the normalization in the rest frame of the particle, it will have
the same value in all other frames. A quick calculation shows that

u(p, s)u(p, s) = C2 2m

E + m
,

so our normalized spinor is

u(p, s) =

√
E + m

2m




χ(s)

σ·p
E+mχ(s)


 s = 1, 2 (9.22)
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so that in the rest frame

u(0, 1) =




1
0
0
0


 u(0, 2) =




0
1
0
0


 (9.23)

Now back to the negative energy solutions, which I will provisionally call
u(p, 3) and u(p, 4). Repeating the above arguments with the lower sign in
(9.16) brings us to

χ = −
(

σ · p
E + m

)
η

and

u(p, s) =

√
E + m

2m



− σ·p

E+mχ(s−2)

χ(s−2)


 s = 3, 4 (9.24)

It is easy to see that in the rest frame (and so everywhere else) (9.24) is
normalized so that u(p, s)u(p, s) = −1. The minus sign is forced on us. The
complete negative-energy solution is

ψ−(x, s) = u(p, s)eipx s = 3, 4 (9.25)

9.3 Charge Conjugation and Antiparticles

The appearance of negative-energy states was both an embarrassment and a
disappointment; a disappointment because this wasn’t supposed to happen
with a linear wave equation and an embarrassment because of its physical
implications. Let us consider an atomic electron. An excited electron will
normally lose energy by emitting photons until it drops down to the lowest-
energy or ground state. In the original version of Dirac theory there is no
lowest-energy state since there exists an continuum of negative-energy states
from −mc2 to −∞. The electron would fall into a bottomless pit emitting
an infinite amount of energy in the process! To sidestep this difficulty, Dirac
proposed that under normal circumstances, all negative-energy states are
completely filled. This agglomeration of filled states is called the Dirac sea.
Like all of our theories I suppose, it’s a half truth. Unfortunately, the other
half is very confusing. For one thing, it depends on the Pauli exclusion
principle. The states are full because no two Fermions can occupy a single
state. This is not true for integer spin particles, and the Klein-Gordon
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equation also has negative energy states. Obviously the Dirac sea can’t be
the whole answer, but it contains a surprising amount of physical insight.2

Suppose one of the negative-energy electrons were to absorb a photon of
energy > 2mc2 and become an E > 0 state. As a result a “hole” is created
in the Dirac sea. The observable energy of the Dirac sea is now the energy
of the vacuum minus the negative energy of the vacated state, hence a pos-
itive quantity. In this way we expect that the absence of a negative-energy
electron appears as the presence of a positive-energy particle. The same
argument works with charge. Let Q0 represent the charge of the vacuum
and e the negative charge of an electron in the sea, then the total charge of
the Dirac sea is

Q = Q0 − e = Q0 − (−|e|) = Q0 + |e| (9.26)

The observable charge is then Qobs = Q−Q0 = |e|. This is interpreted as a
particle with positive energy and charge. This process actually happens. In
the laboratory it looks like γ → e− + e+. (It can’t happen in empty space
because of energy and momentum conservation. It does happen whenever
high energy photons pass through matter.) When Dirac first proposed this
in 1930, however, no such particle was known. For this reason it was as-
sumed that the theory couldn’t be right. The positron was discovered soon
thereafter.

According to this theory, the total energy of the vacuum as well as the
total charge is negative infinity. We have to take it on faith that these
infinities are not observable. What is observable are the deviations from
infinity corresponding to the energy and charge of a single electron! This is
an unsatisfactory aspect of the theory of course, but it will continue to devil
us long after we have abandoned the Dirac sea.

The argument made above regarding charge and energy also works for
momentum and spin. The absence of momentum p in the Dirac sea appears
as the presence of momentum −p. Similarly the absence of a spin-up E < 0
electron is to be interpreted as the presence of a spin-down E > 0 positron.

This is all well and good, but we must face the fact that the Dirac
sea is really just a metaphor. We need to describe antiparticles in a way
that does not invoke negative energies. I once heard Edward Teller explain
antiparticles like this: “Take a particle in one hand and an antiparticle in
the other. Put them together, and what you have is – nothing”! Put less
cryptically, all the additive quantum numbers sum to zero. What are the

2The best discussion of this entire subject is still the classic, Advanced Quantum Me-
chanics, by J. J. Sakurai, Addison-Wesley 1967, Sections 3.9-3.10
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additive quantum numbers? Well, charge, baryon number, three kinds of
lepton number, and strangeness for starters. Electrons have zero baryon
number and strangeness anyhow. I will come to the issue of lepton number
presently. Let’s concentrate on the matter of charge. We can define a
transformation called “charge conjugation.” It has two effects. First, it
replaces all particles with their antiparticles, and second, it changes the
wave function in such a way that it correctly describes the new situation.

It’s easy to modify the Dirac equation to include the electromagnetic
potential. The procedure is called “minimal substitution.” The rule is
everywhere you see the derivative ∂µ simply replace it with ∂µ → Dµ =
∂µ + iqAµ where q is the charge of the particle. This rule is based on the
idea of gauge invariance, which we will discuss in the next chapter. For the
time being – just believe it. With this replacement the Dirac equation for
an electron with charge −e (e > 0) becomes

(i6∂ + e 6A−m)ψ = 0 (9.27)

Charge conjugation must change the charge of the electron so that Teller’s
dictum comes true. The transformed equation is

(i6∂ − e 6A−m)ψc = 0. (9.28)

Here ψc is the new “charge conjugated” wave function. Take the complex
conjugate of (9.28) and multiply by C0, a 4× 4 matrix that operates on the
space of the γ’s.

C0(iγµ∗∂µ + eγµ∗Aµ + m)ψ∗c
=

[
(C0γ

µ∗C−1
0 )(i∂µ + eAµ) + m

]
C0ψ

∗
c = 0

(9.29)

At this point we don’t know what C0 is. The challenge is to get (9.28)
looking like (9.27). For this we will need C0γ

µ∗C−1
0 = −γµ and C0ψ

∗
c = ψ.

It doesn’t take much trial and error to realize that all the γ’s are pure real
except γ2. Try C0 = iγ2. (The i is necessary to make C0 Hermitian.)3 You
can check that C2

0 = I and C0γ
µ∗C−1

0 = −γµ as promised. The bottom line
is

ψc = C0ψ
∗ = iγ2ψ∗ (9.30)

Let us see what this operation does to our prefab spinors. The following
identities are useful.

σ · p =
(

pz p−
p+ −pz

)
(9.31)

3There are several different representations of the gamma matrices that are useful in
other contexts. Equation (9.30) is valid only in the the standard or Dirac-Pauli represen-
tation we are using.
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C0 =




0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0


 (9.32)

ψ+(x, 1) = u(p, 1)e−ipx =

√
E + m

2m




1
0

pz/(E + m)
p+/(E + m)


 e−ipx (9.33)

ψ+(x, 2) = u(p, 2)e−ipx =

√
E + m

2m




0
1

p−/(E + m)
−pz/(E + m)


 e−ipx (9.34)

ψ−(x, 3) = u(p, 3)eipx =

√
E + m

2m




−pz/(+m)
−p+/(E + m)

1
0


 e+ipx (9.35)

ψ−(x, 4) = u(p, 4)eipx =

√
E + m

2m




−p−/(E + m)
pz/(E + m)

0
1


 e+ipx (9.36)

Let’s find the charge-conjugated version of ψ+(x, 1). Using (9.30), (9.32),
and (9.33) gives

ψ+
c (x, 1) =




0 0 0 −1
0 0 1 0
0 1 0 0

−1 0 0 0




√
E + m

2m




1
0

pz/(E + m)
p+/(E + m)




∗

e+ipx

=

√
E + m

2m




−p−/(E + m)
pz/(E + m)

0
−1


 e+ipx = −u(−p, 4)eipx

(9.37)

In the same way one can prove that

ψ+
c (x, 2) = u(−p, 3)eipx (9.38)

Thus the charge-conjugate wave function obtained from the positive-energy
plane-wave solution is the wave function for a negative-energy plane wave
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with the same |E| and opposite momentum. The spin direction is also
reversed since the spin-up spinor with s = 1 is changed into the spin-down
spinor with s = 4. According to Dirac’s hypothesis, the observable behavior
of the charge-conjugate wave function should be a positron with E > 0 and
the same momentum and spin. This is consequence of the absence of an
electron with negative charge and energy and reversed momentum and spin.

If you buy into this bizarre notion of the Dirac sea, the rest is logically
consistent, but expectation values of the charge-conjugated wave functions
do not give the results you would like in terms of antiparticles. Try for
example, to calculate the expectation value of the charge of a positron. The
electromagnetic current should be proportional to the zeroth component of
the probability current (9.15).

Q = e

∫
j0d3x = e

∫
ψ†ψd3x (9.39)

The charge-conjugated wave functions give the same value for Q, since

Qc = e

∫
ψ†cψcd

3x = e

∫
(C0ψ

∗)†(C0ψ
∗)d3x = e

∫
(ψ†ψ)∗d3x = Q (9.40)

where I have used the fact that C0 is Hermitian, C2
0 = I, and currents

are real functions. It’s trivial to show that the expectation values of the
momentum and spin do change sign. The reason is that ψc is not the positron
wave function, it’s the wave function that is interpreted as the positron
wave function. Under the skin, it’s still the wave function of a fictitious
negative energy particle.4 In order to get sensible expectation values we
need to introduce second quantization with creation operators that create
real positrons. In order to do that, it is customary to define spinors for real
positrons as follows.

v(p, 1) ≡ −u(−p, 4)
v(p, 2) ≡ +u(−p, 3)

(9.41)

With this definition

uc(p, s) = C0u(p, s)∗ = v(p, s) s = 1, 2
vc(p, s) = C0v(p, s)∗ = u(p, s) s = 1, 2

(9.42)

u(p, 3) and u(p, 4) are properly called negative-energy spinors, while v(p, 1)
and v(p, 2) are positron spinors.

4Again – thanks to Sakurai for finally making me understand this point.
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Here is a summary of the important equations involving u and v:

ψ+(x) = u(p, s)e−ipx (9.43)

ψ−(x) = v(p, s)e+ipx (9.44)

u(p, s)u(p, s′) = −v(p, s)v(p, s′) = δss′ (9.45)

u†(p, s)u(p, s′) = v†(p, s)v(p, s′) =
E

m
δss′ (9.46)

u(p, s)v(p, s′) = v(p, s)u(p, s′) = 0 (9.47)

u†(−p, s)v(p, s′) = v†(p, s)u(−p, s′) = 0 (9.48)
∑

s

u(p, s)u(p, s) =
( 6 p + m

2m

)
(9.49)

∑
s

v(p, s)v(p, s) =
( 6 p−m

2m

)
(9.50)

These equations will all be useful later on. You can verify them by substi-
tuting the representations (9.22), (9.24), and (9.7).

9.4 Quantizing the Field

We repeat the procedure from Chapter 5 used to quantize the Kline-Gordon
field. First we’ll need a Lagrangian, which can be taken as

L = ψ(x)(i 6 ∂ −m)ψ(x) (9.51)

The conjugate momentum is

π =
∂L
∂ψ̇

= iψ† (9.52)

and the Hamiltonian is

H =
∫

d3x (πψ̇ − L) =
∫

d3x ψiγ0∂0ψ (9.53)

Next we will need the plane wave solutions of the Dirac equation. These are
u(p, s)e−ipx and v(p, s)eipx. We then expand ψ(x) and π(x) in a Fourier
series in which creation and annihilation operators appear as Fourier coeffi-
cients. This should look like (6.60) with the following differences:
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1. ψ is a four-component spinor rather than a scalar like ϕ.

2. u(p, x) and v(p, s) depend on spin, so in addition to integrating over all
momentum components, we must also sum over the spin components.

3. We need two kinds of creation and annihilation operators, one set for
electrons and one for positrons. In the usual notation

b(p, s) Annihilates a positive energy electron
b†(p, s) Creates a positive energy electron
d(p, s) Annihilates a positive energy positron
d†(p, s) Creates a positive energy positron

(9.54)

The analogs to (6.60) are

ψ(x) =
∫ √

m

E

d3p√
(2π)3

∑
s

[b(p, s)u(p, s)e−ipx + d†(p, s)v(p, s)eipx]

ψ(x) =
∫ √

m

E

d3p√
(2π)3

∑
s

[b†(p, s)u(p, s)eipx + d(p, s)v(p, s)e−ipx]
(9.55)

In analogy with (6.69) we would expect the equal-time commutation rela-
tions to be

[ψα(x, t), ψ†β(y, t)] = δαβδ3(x− y)

[ψα(x, t), ψβ(y, t)] = [ψ†α(x, t), ψ†β(y, t)] = 0.

Unfortunately, this leads to some wildly unphysical consequences. The ori-
gin of the problem is that electrons are fermions, i.e. particles with half-odd
integer spin. Such particles obey the Fermi exclusion principle, no two par-
ticles can occupy the same quantum state. Mathematically, this means that
creation and annihilation operators anticommute, and so as a consequence,
must the fields themselves. We must have

{
ψα(x, t), ψ†β(y, t)

}
= δαβδ3(x− y)

{ψα(x, t), ψβ(y, t)} =
{

ψ†α(x, t), ψ†β(y, t)
}

= 0.
(9.56)

Pay careful attention to the notation. ψψ† is a 4× 4 matrix,
whereas ψ†ψ is a 1×1 matrix, so [ψ, ψ†] doesn’t make any sense.
The commutators in (9.56) refer to the α-th component of one
ψ matrix with the β-th component of another. Put it another
way, each commutator is a 4× 4 matrix with rows and columns
indexed by α and β. Be alert to this ambiguity in other contexts.
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You should verify that (9.55) is consistent with (9.56) assuming the following
anticommutation relations

{
b(p, s), b†(p′, s′)

}
= δss′δ

3(p− p′)

{
d(p, s), d†(p′s′)

}
= δss′δ

3(p− p′) (9.57)

All other combinations of b and d anticommute. The factor of
√

m/E in
(9.55) was chosen so that (9.56) would come out right.

There are at least three places where we have to make a some-
what arbitrary choice of normalization. One is the normalization
of u and v, equations (9.22) and (9.24). The second is the above-
mentioned factor in the Fourier expansion of ψ. The third is the
normalization of the creation and annihilation operators, (9.57).
Only (9.56) is non-negotiable. It is only a slight exaggeration to
say that no two books do it the same way. At least Zee, Michio
Kaku (Quantum Field Theory, A Modern Introduction), and I
are consistent.

It’s easy to generalize charge conjugation (9.30) for the quantized fields.
Define the charge conjugation operator Ĉ by

ψ̂c ≡ Ĉψ̂Ĉ−1 = C0ψ̂
†T = iγ2ψ̂†T (9.58)

The point is that complex conjugation is not defined for the creation and
annihilation operators. The combination †T has the same effect as ∗ on
matrices and the same effect as † on b̂ and d̂. (I have put the hats back on
the operators for emphasis. They are implied in the other operator equations
in this section.) Now using (9.29), (9.55) becomes

ψ(x) =
∫ √

m

E

d3p√
(2π)3

∑
s

[d(p, s)u(p, s)e−ipx + b†(p, s)v(p, s)eipx]

ψ(x) =
∫ √

m

E

d3p√
(2π)3

∑
s

[d†(p, s)u(p, s)eipx + b(p, s)v(p, s)e−ipx]
(9.59)

The only change is that particle operators have been replaced by antiparti-
cles operators and vice versa, b(p, s) ↔ d(p, s) and b†(p, s) ↔ d†(p, s) with
no change in spin. This point will be central importance in the case of the
weak interactions.
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Now insert the Fourier decomposition back into the expression for the
Hamiltonian, equation (9.53). Again – as an exercise in Diracology, you
should verify that the following is obtained.

H =
∫

d3pE
∑

s

[b†(p, s)b(p, s)− d(p, s)d†(p, s)] (9.60)

Here is the first of many places where commutation relations lead to un-
physical results. If d and d† commuted, the last term could be written
−d†(p, s)d(p, s), so by creating many particles with d† we could create states
of arbitrarily large negative energy. With the anticommutation rules we have

: H :=
∫

d3pE
∑

s

[b†(p, s)b(p, s) + d†(p, s)d(p, s)] (9.61)

As in (6.45), the Hamiltonian must be normal ordered to avoid the infinite
constant. When dealing with fermions, it is necessary to include the minus
sign arising from the anticommutators. For example, if a, b, c, and d are
fermion annihilation operators,

: (a + b†)(c + d†) := ac− d†a + b†c + b†d† (9.62)

Take another look at the total charge calculated in (9.39)

Q = e

∫
d3x ψ†(x)ψ(x)

where e is the electron charge, a negative number. The usual Dirac business
gives us

Q = e

∫
d3p

∑
s

[b†(p, s)b(p, s) + d(p, s)d†(p, s)] (9.63)

This operator also has to be normal ordered.

: Q := e

∫
d3p

∑
s

[N−(p, s)−N+(p, s)] (9.64)

Where N+ and N− are the number operators for positive and negative
energy electrons respectively.
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9.5 The Lorentz Group

We can’t get much further with the Dirac equation without using some group
theory. Here is a brief review of the Lorentz group.

The basic equation of Lorentz transformation is

x′µ = Λµ
νx

ν (9.65)

Λµ
ν is any 4× 4 real matrix that satisfies

gµν = Λσ
µgσγΛγ

ν , (9.66)

or in matrix notation
g = ΛT gΛ. (9.67)

It is easy to show that this implies det Λ = ±1. The identity transformation
is given by Λ = I. Any transformation that can be obtained from this by
a continuous variation of the transformation parameters (β for example) is
called a proper transformation. There are three ways that a transformation
might be not proper.

1. Try Λ0
0 = −1, Λi

i = 1, and all off-diagonal terms equal to zero. This
simply makes time run backwards, and so it is called the time reversal
transformation or T for short. It is easy to show from (9.66) that this
is improper.

2. Λ0
0 = 1, Λi

i = −1, and all off-diagonal terms equal to zero. This
reverses the spatial coordinates. We call it a parity transformation
and refer to it as P.

3. We could have a product of the two, TP=PT.

These are examples of discrete transformations, and T 2 = P 2 = I. The most
general Lorentz transformation consists of a product of a proper transfor-
mation and P, T, or PT.5

All this is preliminary to analyzing the proper Lorentz group and its
associated Lie algebra.6 Consider the basic Lorentz transformation

x′ = γ(x− vt) y′ = y t′ = γ(t− vx/c2) (9.68)

5Later on we will use P and T to represent more general operators that have the effect
of reversing x or t.

6I am following a particularly fine exposition in Quantum Field Theory by Michio
Kaku.
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If we make the standard replacement

γ =
1√

1− v2/c2
= cosh ζ1 βγ = sinh ζ1 β = v/c (9.69)

then this transformation can be written as:



x′0

x′1

x′2

x′3


 =




cosh ζ1 − sinh ζ1 0 0
− sinh ζ1 cosh ζ1 0 0

0 0 1 0
0 0 0 1







x0

x1

x2

x3


 (9.70)

Transformations of this sort are called boosts and the angle ζ1 that parame-
terizes the boost in (9.69) and (9.70) is called the rapidity. The 4×4 matrix
above represents the tensor Λµ

ν in (9.65). In matrix notation x′ = Λx.
According to the doctrine of Lie groups, we can calculate the group gen-

erators by differentiating Λ with respect to its parameters and then setting
the parameters equal to zero.

K1 ≡ ∂

∂ζ1
Λ(ζ1)

∣∣∣∣
ζ1=0

(provisional definition)

The K’s obtained in this way are constant matrices called the “generators”
of the transformation. The group can then be “reconstituted” by exponen-
tiating the generators.

Λ(ζ1) = eK1ζ1

At this point physicists often muddy the water by inserting i’s in ways that
appal the mathematicians. We usually write the above as

K1 ≡ −i
∂

∂ζ1
Λ(ζ1)

∣∣∣∣
ζ1=0

(9.71)

and
Λ(ζ1) = eiK1ζ1 (9.72)

The reason for putting in the i and then taking it out will appear presently.
With this convention

K1 = −i




0 −1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0


 (9.73)
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The generators of boosts in the y and z directions are

K2 = i




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 K3 = i




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 (9.74)

Rotations are also Lorentz transformations, or to put it another way, the
rotation group is a subgroup of the Lorentz group. The usual parameters
are a set of three angles. For example, a rotation through an angle θ1 around
the 1 or x axis would yield

Λ(θ1) =




1 0 0 0
0 1 0 0
0 0 cos θ1 sin θ1

0 0 − sin θ1 cos θ1


 (9.75)

The corresponding generators are

J1 = i




0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0


 J2 = i




0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0


 (9.76)

J3 = i




0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


 (9.77)

Notice that the J i’s are antisymmetric and because of the i’s, Hermitian.
The corresponding rotation matrices

Γ(θ) = eiJ ·θ (9.78)

are unitary. This is why physicists (who are fond of unitarity) put in the i’s
and mathematicians (who would like to keep the structure constants real)
do not. The boost generators by contrast, are symmetric and boost matrices
are not unitary. The generators have the following commutation relations:7

[Ki, Kj ] = −iεijkJk

[J i, J j ] = iεijkJk

[J i,Kj ] = iεijkKk

(9.79)

7This is also worked out in Jackson, Sec. 11.7
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The matrices above constitute the defining representations of the group
and the algebra. That is to say, they operate on four-vectors. We are
looking for a representation that transforms Dirac spinors, however, and
for this purpose the commutation relations (9.79) must be put in a more
convenient form. To this end we start by proving a simple theorem about
the symmetry properties of the generators.

Consider infinitesimal Lorentz transformations of the form

Λµ
ν = δµ

ν + εMµ
ν (9.80)

with Mµ
ν a constant matrix, i.e. a member of the algebra, and ε infinitesi-

mal. Substitute (9.80) into (9.66) and discard the second-order terms.

Mµν + Mνµ = 0 (9.81)

This is equivalent in matrix notation to the statement that M (with both
indices down) is an antisymmetric matrix. It is easy to check that the
maximum number of independent 4 × 4 antisymmetric matrices is six and
that the commutator of two antisymmetric matrices is itself antisymmetric.
Thus this set of matrices constitutes a closed Lie algebra, the algebra of the
Lorentz group. A particularly useful way of choosing such matrices is

(Mµν)αβ = i(δµ
αδν

β − δµ
βδν

α) (9.82)

Just so there’s no confusion, µν is the name of the matrix and α and β index
it’s elements. It’s easy to remember. The matrix named Mµν contains all
zeros except for two elements. The element that sits on the µ’th row and
ν’th column is i and the element at the ν’th row and µ’th column is −i.
One can derive the following commutation relations:

[Mµν , Mρσ] = i(gνρMµσ − gµρMνσ − gνσMµρ + gµσMνρ) (9.83)

The M ’s defined by (9.82) constitute a matrix representation, but any set
of objects that satisfy the commutation relations (9.83) also constitutes a
valid representation of the Lie algebra. There are two other representations
that are important. One is the differential operator

Mµν = i(xµ∂ν − xν∂µ). (9.84)

The other is the spinor representation, which I will come to shortly.
Referring again to (9.82), there are twelve non-zero 4× 4 antisymmetric

matrices related in a simple way to the K’s and J ’s defined previously. It’s
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easy to verify that gM01 = K1, gM12 = J3, etc. Infinitesimal transforma-
tions are written

Λα
β(ω) = δα

β −
i

2
ωµν(Mµν)α

β, (9.85)

where ωµν is an infinitesimal antisymmetric tensor. We can iterate (9.85) to
build up finite transformations as usual.

Λ(ω) = exp
{
− i

2
ωµνM

µν

}
(9.86)

9.6 Spinor Representations

The anticommutation relations (9.8) define what is called a Clifford algebra.
(This works in any even dimension.) These algebras can always be used to
define a new sort of representation. Define

σµν ≡ i

2
[γµ, γν ] (9.87)

It is straightforward to show using (9.8) that the object 1
2σµν satisfies the

commutation relations (9.83) and hence constitute a representation of the
Lorentz group. The operator

S(ω) ≡ exp
{
− i

4
ωµνσ

µν

}
(9.88)

is exactly analogous to (9.86). This can also be written S(Λ) to remind our-
selves that given the parameters ωµν , we can calculate the defining represen-
tation Λµ

ν as well as the spinor representation S. It is also straightforward
to show that

[γµ,
1
2
σρσ] = (Mρσ)µ

νγ
ν (9.89)

where Mρσ is defined by (9.82).
Before we apply all this to the Dirac equation, we should think about

what it means to transform a vector field. The Dirac spinor ψ(x), like the
EM vector potential Aµ(x), describes some multi-component property (of
the ether, if you like) at the space-time point x. I take the passive point of
view, that a Lorentz transformed field describes the same phenomena at the
same space-time point, but both the point and the components of the field
are referred to a different set of axis, so

S(Λ)ψ(x) = ψ′(x′). (9.90)
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x′ = Λx as usual, and the new field components ψ′ will be determined by
S(Λ). If the Dirac equation is to make any sense, it must remain form
invariant under this transformation, so that we must have both

(γµpµ −m)ψ(x) = 0 (9.91)

and
(γµp′µ −m)ψ′(x′) = 0 (9.92)

(Here pµ = −i∂µ.) This requirement leads to an important equation for
S(Λ). Substitute (9.90) and p′µ = Λ ν

µ pν into (9.92).

S−1(Λ)(γµΛ ν
µ pν −m)S(Λ)ψ(x) = 0

This will be identical to (9.91) if

S−1(Λ)γµS(Λ) = Λµ
νγ

ν (9.93)

This is interesting. The left side is a similarity transformation. This is how
one transforms a matrix like γµ. The right side treats γµ like a four-vector.
So is γµ a matrix like S(Λ) or a four-vector like pµ? The answer of course,
is yes!

Or at least we hope so. The covariance of the Dirac equation stands or
falls depending on (9.93). Here its proof: The first step is to prove that
(9.93) is true for infinitesimal transformations

(1 +
i

4
ωρσσρσ)γµ(1− i

4
ωρσσρσ) = (γµ − i

2
ωρσ[γµ,

1
2
σρσ])

=(1− i

2
ωρσMρσ)µ

νγ
ν

(9.94)

The last line makes use of (9.89). The left side of (9.94) is the infinitesimal
form of (9.93) by construction. A glance at (9.86) shows that the last line
of (9.94) is also the infinitesimal form of the right side of (9.93). Thus
(9.93) is valid for infinitesimal transformations. It can be proved for finite
transformations by iterating infinitesimal transformations. It’s not a new
argument, but it’s very tedious to write out. I’ll leave it as an exercise.

We are now in a position to prove the claim made earlier that ψψ is
a Lorentz scalar. First take the Hermitian conjugate of (9.90) and right
multiply by γ0.

ψ′†(x′)γ0 = ψ†(x)γ0γ0S†(Λ)γ0

Remember that (γ0)2 = 1 and (γ0)† = γ0.

ψ
′(x′) = ψ(x)γ0S(Λ)†γ0
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= ψ(x)S−1(Λ) (9.95)

The last line follows from (9.87) and (9.88). Evidentally, ψ
′(x′)ψ′(x′) =

ψ(x)ψ(x). By the same token, ψγµψ is a genuine vector.

ψ
′(x′)γµψ′(x′) = ψ(x)S−1γµSψ = ψ(x)Λµ

νγ
νψ(x) (9.96)

The last step used (9.93).
Expressions like ψψ and ψγµψ are called Dirac bilinear forms. Notice

that unlike ψ and γµ, they are not matrices but ordinary tensors. We
can also show that ψσµνψ is a second-rank antisymmetric tensor. Since
these forms are essential in describing interactions, we should enumerate
the various possibilities. We need to define a new gamma matrix:

γ5 = γ5 = iγ0γ1γ2γ3 (9.97)

The following properties can be verified with the help of the anticommuta-
tion relations.

(γ5)† = γ5 (9.98)

(γ5)2 = 1 (9.99)
{
γ5, γµ

}
= 0 (9.100)

With our conventions

γ5 =
(

0 1
1 0

)
(9.101)

There are sixteen numbers in a 4 × 4 matrix, so there should be six-
teen linearly independent 4 × 4 matrices with well-defined transformation
properties. Here they are,

1 scalar 1
γµ vector 4
σµν tensor 6
γµγ5 pseudo-vector 4
γ5 pseudo-scalar 1

for a total of sixteen. The terms pseudo-tensor and pseudo-scalar are
“pseudo” in the sense that they change sign under parity conjugation. I
will return to this important subject later. One can show that these sixteen
matrices are indeed linearly independent. Any product of gamma matrices
can be reduced to a linear combination of these terms.
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9.7 The Dirac Propagator

Consider a physical process in which an electron is created out of the vacuum
at the point x and is subsequently reabsorbed at x′. This emission and
reabsorption might take place because of sources, which we discussed in
connection with path integrals, or it might come about because the electron
interacted with other particles at x and x′. In any case, the amplitude
for this process is called the propagator. It is the basic ingredient in all
perturbation theory calculations. I have argued before that the field ψ(x)
creates an electron at x and ψ destroys it, so the product 〈0|ψ(x′)ψ(x)|0〉
must have something to do with the propagator. This can’t be the whole
story, however, because we cannot annihilate the electron before it has been
created. True, simultaneity is relative, but it is logically impossible in any
reference frame to make something disappear that doesn’t exist.8 Therefore,
we should write out propagator as 〈0|ψ(x′)ψ(x)|0〉θ(t′ − t). This looks non-
covariant, because or the θ(t′−t). The argument can be made in a completely
covariant way, but this is just pedantry. We get a covariant result in the
end anyway.

This is still not the complete propagator, because there is a distinct pro-
cess that is physically equivalent. ψ doesn’t just create electrons, it reduces
the charge. So 〈0|ψ(x′)ψ(x)|0〉 also include the process in which negative
energy electrons travel backwards in time from x to x′, or equivalently,
positrons travel from x′ to x. We must still insist that the positron be
created before it is destroyed, so finally

iSF (x′, x) = 〈0|ψ(x′)ψ(x)|0〉θ(t′ − t)− 〈0|ψ(x)ψ(x′)|0〉θ(t− t′) (9.102)

So why subtract the two terms rather than adding them? The glib answer
is that the spinor fields anticommute. We will get more insight into this
presently. Just as we did in the case of the Kline-Gordon equation, eq.
(5.33), we introduce the time ordering operator

T [ψ(x′)ψ(x)] =
{

ψ(x′)ψ(x) t′ > t

−ψ(x)ψ(x′) t > t′
(9.103)

Finally
i(SF )αβ(x′, x) = 〈0|T [ψα(x′)ψβ(x)]|0〉 (9.104)

SF is a 4×4 matrix indexed with α and β. It’s easy to calculate. Substitute
(9.55) into (9.102) and use (9.49) and (9.50) to do the spin sums. Zee

8“Yesterday upon a stair, / I met a man who wasn’t there. / He wasn’t there again
today. / I wish that man would go away.”
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goes through this calculation in detail on pages 108-109. He arrives at the
following:

iS(x) = i

∫
d4p

(2π)4
e−ipx 6 p + m

p2 −m2 + iε
(9.105)

It turns out that (6p−m)( 6p + m) = p2 −m2. We could say that the factors
of (6 p + m) in the numerator and denominator “cancel” leaving the rather
whimsical equation,9

iS(x) =
∫

d4p

(2π)4
e−ipx i

6 p−m + iε
. (9.106)

In momentum space this is

iS(p) =
i

6 p−m + iε
(9.107)

Causality requires that the propagator vanishes outside the light cone.
You can show that (9.105) does have that property. It also reproduces the
minus sign in (9.102). It can also be shown10 that without that minus sign,
the propagator violates causality. This is an illustration of a deep result,
called the spin-statistics theorem. It says that in order to preserve causality,
Fermion fields must anticommute, and boson fields must commute.

At this point in our treatment of the scalar field, we added some in-
teractions and did perturbation theory, but electrons don’t interact with
themselves like our hypothetical scalar particle. They do interact with the
electromagnetic vector potential and with the potential that carries the weak
interactions. (The’re the same field actually, but that’s a story for another
time.) Our next order of business is the electromagnetic field, to which we
turn in the next chapter.

9Your instructor will become homicidal if you divide by a matrix under any other
circumstances.

10Peskin and Schroeder, An Introduction to Quantum Field Theory page 56
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Chapter 10

The Photon Field

10.1 Maxwell’s Equations

In some sense Maxwell discovered both quantum electrodynamics and rela-
tivity. I mean by this odd remark that Maxwell’s equations are consistent
with both. Nothing about them needs to be changed. Here they are:

∇ ·E = ρ

∇×B − ∂E

∂t
= j

∇ ·B = 0

∇×E +
∂B

∂t
= 0

(10.1)

You may never have seen them in this simple form. It arises because: (1) We
use Heaviside-Lorentz units. (See the appendix in Jackson regarding units.)
In this system, all the factors of 4π are absent from Maxwell’s equation.
(They retaliate by showing up in Coulomb’s law, but we don’t care about
that.) There are no dielectrics or magnetic materials, so ε = µ = 1. (3) We
set c = 1 as usual. The electromagnetic current is conserved.

∂ρ

∂t
+ ∇ · j = 0 (10.2)

The vector fields can be derived from potentials.

E = −∇A0 − ∂A

∂t
B = ∇×A (10.3)

175
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This can all be put in covariant notation by defining the following tensors:

Aµ = (A0,A)
jµ = (ρ, j)

Fµν = ∂µAν − ∂νAµ

(10.4)

Then current conservation is just

∂µjµ = 0 (10.5)

and Maxwell’s equations can be summarized as:

∂µFµν =jν

∂µFνρ + ∂νFρµ+∂ρFµν = 0
(10.6)

The fact that these can be written in covariant form indicates that relativity
is “built in” to Maxwell’s equations.

We need a Lagrangian to do field theory, Jackson has some obscure things
to say about Lagrangians in general, but if you know the answer ahead of
time, it’s really very easy.

L = −1
4
FµνF

µν − jµAµ (10.7)

To show that this does indeed generate the right equations of motion, sim-
plify the expression as follows:

−1
4
FµνF

µν = −1
4
(∂µAν − ∂νAµ)(∂µAν − ∂νAµ)

= −1
2
[(∂µAν)(∂µAν)− (∂µAν)(∂νAµ)]

∂L
∂(∂µAν)

= −∂µAν + ∂νAµ = −Fµν

(10.8)

The Euler-Lagrange equations are

∂µ

(
∂L

∂(∂µAν)

)
− ∂L

∂Aν
= −∂µFµν + jν = 0,

which is exactly (10.6).
The potential contains some unphysical information in the sense that

Maxwell’s equations are invariant under gauge transformations. The familiar
form for gauge transformation is

A → A +∇Λ



10.1. MAXWELL’S EQUATIONS 177

φ → φ− ∂Λ
∂t

where Λ(x) is any arbitrary function of space and time. We can write this
in covariant form as follows.

Aµ(x) → Aµ(x)− ∂µΛ(x) (10.9)

This leaves the field tensor invariant Fµν(x) → Fµν(x), and hence preserves
Maxwell’s equations. We can use this symmetry to make Aµ satisfy certain
relations.1 For example, we can choose Λ so that A0(x) = 0. Imposing
constraints like this is called “gauge fixing.” This particular constraint de-
fines what is called temporal gauge. It is possible to impose an additional
constraint

∇ ·A = 0 (10.10)

This is known as Coulomb gauge or radiation gauge. Another choice is
Lorentz gauge.

∂µAµ = 0 (10.11)

This has the advantage of being covariant, but it does not fully fix the
gauge. This poses a dilemma: we can’t fully fix the gauge without making
the equations non-covariant. We can’t make the theory covariant without
building into the theory unphysical degrees of freedom known as Fadeev-
Popov ghosts.2 The subject is so difficult and convoluted that one distin-
guished text3 simply refuses to discuss it!

Components of Aµ that can be set equal to zero by a gauge transfor-
mation cannot have any physical significance. It’s a well-known result from
classical field theory that any vector can be decomposed into a longitudinal
and a transverse part.

A = AT + AL

where by definition

∇×AL = 0 ∇ ·AT = 0

Furthermore, the decomposition is unique up to an additive constant. Since
F ij is basically the curl of A, it cannot depend on the longitudinal compo-
nents. Only the transverse components are meaningful. There are only two

1This subject is discussed extensively in Jackson and our Ph632 class. Here I am
quoting the main results without proof.

2Where is Buffy now that we need her?
3Peskin and Schroder
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physical degrees of freedom, which correspond to the two polarization states
of an electromagnetic wave.

Perhaps the easiest way out of this mess is to quantize in Coulomb gauge,
though even this is not straightforward. This is the approach taken in the
previous generation of texts.4 Modern texts do this with path integrals. It’s
ironic that the photon propagator, which is all you need to do perturbation
theory in QED, is very simple. This is my excuse for spending minimal
effort on this vexatious subject.

10.2 Quantization in the Coulomb Gauge

We have two goals.5 First, to find an expansion of the photon field in
terms of creation and annihilation operators, and second, find the photon
propagator. The Lagrangian density for the free fields is

L(x) = −1
4
FµνFµν =

1
2
(E2 −B2). (10.12)

The conjugate momenta to Aµ are,

π0(x) =
∂L

∂(∂0A0)
= 0

πi(x) =
∂L

∂(∂0Ai)
= −Ei (10.13)

and the Hamiltonian density is

H = πµȦµ − L =
1
2
(E2 + B2) + E ·∇A0 (10.14)

The next step is to impose the equal-time commutation relations. (Compare
with (73) in the previous chapter.)

[Aα(x, t), πβ(y, t)] = iδαβδ(x− y) (10.15)

[Aα(x, t), Aβ(y, t)] = [πα(x, t), πβ(y, t)] = 0

We are missing one relation, since π0 = 0. This is an invitation to duck into
coulomb gauge and set A0 = ∇ ·A = 0. We are not out of the woods yet,

4J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics and Relativistic Quan-
tum Fields is the Gold Standard.

5I am following B. Hatfield, Quantum Field Theory of Point Particles and Strings.
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however. Eq. (10.3) gives ∇ ·E = 0. This is Gauss’s law; so far so good. If
we take the divergence of (10.15)

[Ai(x, t), Ej(y, t)] = −iδijδ(x− y), (10.16)

we get the odd result
0 = −i∂iδ(x− y)

This is time for some creative thinking. Suppose we modify (10.15) slightly
so that we avoid this contradiction. Lets replace the δ-function with a
function f(x−y) such that ∂if(x−y) = 0. The usual choice is the transverse
δ-function,

δtrij (x− y) ≡
∫

d4k

(2π)3
eik·(x−y)

(
δij − kikj

k2

)
. (10.17)

δtrij (x) has the desired property: ∂iδ
tr
ij (x) = 0. We modify (16) to read

[Ai(x, t), Ej(y, t)] = −iδtrij δ(x− y), (10.18)

The following comments are in order:

• δtrij (x) 6= 0 so Ai and Ei don’t commute at space-like separations. This
in itself is OK since A is not measurable.

• Electric and magnetic fields calculated using (10.18) do commute at
space-like separations, and in fact, we get the same commutators for E
and B regardless whether we use the transverse or ordinary δ-function
in (10.18).

• The underlying idea here is that there are only two degrees of freedom,
but (10.16) tries to quantize three. The transverse δ-function remedies
this problem.

Now we are home safe. It remains only to expand A in plane waves and
calculate the propagator.

A(x) =
∫

d3k√
(2π)32k0

2∑

λ=1

ελ(k)
[
aλ(k)e−ikx + aλ†(k)eikx

]
(10.19)

Since there is no antiphoton (or more correctly, the photon is its own antipar-
ticle) there is only one set of creation and destruction operators. Since we
are working in transverse gauge, A must be perpendicular to the direction
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of propagation. This is accomplished by defining the photon polarization
vectors ελ such that

ελ · k = 0 (10.20)

We also require that they be orthonormal.

ελ(k) · ελ′(k) = δλλ′ (10.21)

Equation (10.18) will be satisfied if

[aλ(k), aλ†(k′)] = δλλ′δ(3)(k − k′) (10.22)

Our last mission is to calculate the propagator. The process should be
quite familiar by now.

iDF (x′ − x)µν = 〈0|T [Aµ(x′)Aν(x)]|0〉

= i

∫
d4k

(2π)4
e−ik(x′−x)

k2 + iε

2∑

λ=1

ελ
µ(k)ελ

ν (k) (10.23)

The polarization tensors are not in a convenient form, and since they refer
to a particular frame of reference, they are not covariant. That is the price
of working in Coulomb gauge. Here is an argument that addresses both
issues. We construct a set of orthonormal vectors based on the coordinate
system in which the polarization vectors are defined. In this frame they
are perpendicular to k, and since they have no time component εµkµ = 0
(regardless of the time component of k). We introduce a time-like unit vector
η = ( 1 0 0 0 ), ηµεµ = 0, but ηµkµ 6= 0. We complete our set of four
unit vectors by projecting out the part of kµ along ηµ.

k̂µ =
kµ − (k · η)ηµ

√
(k · η)2 − k2

(10.24)

The four unit vectors then are η, ε1, ε2, and k̂. If you think of them as
column matrices,

ηη† − ε1ε1† − ε2ε2† − k̂k̂† = g,

where g is the usual metric tensor. Writing this as a tensor equation gives,

2∑

λ=1

ελ
µ(k)ελ

ν(k) = −gµν + ηµην − k̂µk̂ν . (10.25)

The usual four-vector argument goes like this: equation (10.25) is valid in
one particular reference frame. gµν and k̂µk̂ν are legitimate four-tensors. If
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ηµην were also, then (24) would be valid in all reference frames. Unfortu-
nately, it isn’t, so it’s not. Let’s go ahead and substitute (10.24) into (10.25)
anyhow.

2∑

λ=1

ελ
µ(k)ελ

ν (k) = −gµν − kµkν

(k · η)2 − k2
+

(k · η)(kµην + kνηµ)
(k · η)2 − k2

− k2ηµην

(k · η)2 − k2

(10.26)
This is not covariant, but when the photon propagator is used in a actual
calculation it is always coupled to a conserved current. Eq. (10.5) written
in momentum space is kµjµ = 0. All the terms above with uncontracted k’s
vanish! The last term is something of an embarrassment. When substituted
into (10.23) it gives the term

−ηµην
δ(t− t′)

4π|x− x′|
This is the instantaneous Coulomb interaction. It is a well known artifact
of Coulomb gauge in classical E&M.6 It can’t be right, of course. Even the
Coulomb interaction doesn’t propagate instantaneously through space. In
this case it is cancelled by another spurious term in the Hamiltonian.7 The
remaining term in (10.26) gives the correct propagator,

DF (x′ − x)µν = gµν

∫
d4k

(2π)4
e−ik(x′−x)

k2 + iε
. (10.27)

In momentum space, this is simply,

D(k) =
gµν

k2 + iε
(10.28)

This argument guarantees that so long as we use (10.27) or (10.28) in our
calculations, the resulting S matrix elements and Green’s functions will have
the correct covariant behavior, even though the quantization was done in
Coulomb gauge.

6See Jackson, Sec. 6.5 and references therein.
7See M. Kaku, Quantum Field Theory, Section 4.3
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Chapter 11

Quantum Electrodynamics

11.1 Gauge Invariance

Before we can do any realistic calculations, we must figure out how the
electromagnetic field couples to electrons. We could guess this as follows:
we know that the classical electromagnetic Lagrangian has the term −jµAµ,
so we assume that the interaction Hamiltonian must be of the form jµAµ.
Furthermore, the electron probability current is jµ = ψ̄γµψ, so the charge
current must be eψ̄γµψ. We conclude that Hint = eψ̄γµψAµ. This is true,
but there is a profound principle here that we should linger over.

The free-particle Dirac Lagrangian is L = ψ̄(i 6 ∂ − m)ψ. If we make
the transformation ψ → eiqθψ, then L → L. This is called a “global gauge
transformation.” It’s not what we usually think of as a gauge transforma-
tion in E&M, but they are related as you will see. Try an infinitesimal
transformation δψ = iqδθψ. If the Lagrangian is to remain invariant under
this transformation we must have

δL = 0 =
δL
δψ

δψ +
δL

δ(∂µψ)
δ(∂µψ) (11.1)

= iqδθ

[
δL
δψ

ψ +
δL

δ(∂µψ)
∂µψ

]

Here θ is an infinitesimal and q is something like a charge. The Euler-
Lagrange equation of motion is

δL
δψ

= ∂µ
δL

δ(∂µψ)
(11.2)

183
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Substituting (11.2) into (11.1) gives

iqδθ∂µ

[
δL

δ(∂µψ)
ψ

]
= 0 (11.3)

Evidentally, the quantity in brackets is a conserved current.

jµ ∝ δL
δ(∂µψ)

ψ (11.4)

and ∂µjµ = 0. Applying this formula to the Dirac Lagrangian gives jµ =
ψ̄γµψ, which we knew before.

There is a stronger statement to be made if we make a different trans-
formation at each point in space, i.e. if we make a local transformation.

ψ′ = eiqθ(x)ψ. (11.5)

The function θ(x) is arbitrary. Now

∂µψ′ = eiqθ∂µψ + iq(∂µθ)eiqθψ

Now L is not invariant by itself, but it can be made invariant by incor-
porating an additional field with special transformation properties. Let’s
insist that we replace ∂µψ everywhere with (∂µ − ieqAµ)ψ. If the following
statement is true, the electron Lagrangian will be invariant:

(∂µ − ieqA′µ)ψ′ = eiqθ(∂µ − ieqAµ)ψ,

but
(∂µ − ieqA′µ)ψ′ = eiqθ∂µψ + iq(∂µθ)eiqθψ − ieqA′µeiqθψ

We conclude that
A′µ =

1
e
∂µθ + Aµ. (11.6)

In other words, the electron Lagrangian will be invariant under the trans-
formation (11.5) if our new fields transform according to (11.6), but these
new fields must also appear in our Lagrangian, and this Lagrangian must
be invariant under the transformation

Aµ → Aµ +
1
e

∂µθ(x). (11.7)

Equation (11.7) is of course, the usual statement of gauge invariance in clas-
sical E&M, but now we see it in a larger context; quantum gauge invariance,
(11.5), requires the existence on an additional vector field.
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We know that the Lagrangian for classical E&M (excluding sources) is

L =
1
4
FµνF

µν

where
Fµν = ∂µAν − ∂νAµ

Transformation (11.7) does leave this invariant, but if this were the La-
grangian for a massive field, it would contain an additional term

m2A†µAµ

which would not be invariant. We conclude that local gauge invariance
requires a massless vector field.

You will notice that the “charge” q cancels in the above calculation. As a
consequence the sign and magnitude of e are undetermined. As a convention
we usually write

L = ψ̄(iγµ∂µ − eγµAµ −m)ψ (11.8)

so that
Hint = −Lint = eψ̄γµψ = jµAµ (11.9)

11.2 Noether’s Theorem

Zee calls Noether’s theorem, ”one of the most profound observations in theo-
retical physics.” The theorem simply states that every continuous symmetry
transformation is connected with a conserved current and hence, with some
sort of conserved “charge.” The converse is also true, for every conserved
current, there is a corresponding symmetry group. The proof is a simple
generalization to that given above. Given the Lagrangian density composed
of N fields ϕi and their derivatives, L = L(ϕi, ∂µϕi). Consider an infinitesi-
mal change, δϕi, brought about by some small parameter or parameters δεj ,
and calculate the action.

δS =
N∑

i=1

∫
d4x

(
δL
δϕi

δϕi +
δL

δ(∂µϕi)
δ(∂µϕi)

)

=
N∑

i=1

∫
d4x

(
δL
δϕi

δϕi +
δL

δ(∂µϕi)
∂µδϕi

)
(11.10)
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(The repeated µ indices are summed.) We can use the N E-L equations of
motion

0 = ∂µ

[
δL

δ(∂µϕi)

]
− δL

δϕi

to combine the two terms in (11.10).

δS =
N∑

i=1

∫
d4x∂µ

(
δL

δ(∂µϕi)
∂ϕi

∂εj
δεj

)
(11.11)

If the action is unchanged by this variation, we can define a current

Jµ
j =

δL
δ(∂µϕi)

∂ϕi

∂εj
(11.12)

Equation (11.11) says that ∂µJµ
j = 0. From this conserved current, we can

also create a conserved charge by integrating over the time component of
the current:

Qj ≡
∫

d3x J0
j (11.13)

Now integrate the conservation equation:

0 =
∫

d3x ∂µJµ
j =

∫
d3x ∂0J

0
j +

∫
d3x ∇ · Jj

=
d

dt
Qj +

∫

s
dS · Jj

In the last term I have used the divergence theorem to convert the volume
integral into a surface integral. Assume that the fields vanish at infinity so
the last term can be neglected. Then:

d

dt
Qj(t) = 0 (11.14)

In summary: a continuous symmetry implies a conserved current, which
in turn implies a conserved charge. It’s important to understand that the
“charge” so defined usually has no connection with electrical charge. Most
of the conserved quantities in particle physics, such as strangeness, charm,
lepton number, etc. come about in this way. Many theories in particle
physics came about because the conserved quantities were first discovered
experimentally. Theorists then reasoned “backwards” from this discovery to
construct the underlying conserved currents.
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11.3 Feynman’s Rules for QED

The derivation of Feynman’s rules for electrons and photons proceeds along
the same lines as the derivation for scalar particles in Chapter 7. Because
fermion fields anticommute, there are some additional minus signs to keep
track of. The time-ordered product was defined in (9.103)

T [ψα(x1)ψβ(x2)] = ψα(x1)ψβ(x2)θ(x0
1 − x0

2)− ψ(x2)βψ(x1)αθ(x0
2 − x0

1)
(11.15)

Decompose the field into positive- and negative-energy parts. ψ = ψ+ +ψ−.
Remember that ψ+ contains the electron annihilation operator b̂k and ψ+

contains the positron creation operator d̂†k. Rewrite (11.15) in such a way
that all creation operators stand to the right of all annihilation operators.

T [ψα(x1)ψβ(x2)]

= {ψ+
α (x1), ψ

+
β (x2)}θ(x0

1 − x0
2)− {ψ

−
β (x2), ψ−α (x1)}θ(x0

2 − x0
1)

−ψ
+
β (x2)ψ+

α (x2) + ψ+
α (x1)ψ

−
β (x2) + ψ−α (x1)ψ

+
β (x2) + ψ−α (x1)ψ

−
β (x2)

(11.16)

You see that the second line of this equation is a c number and the third, a q
number. We call the c-number part the “contraction” of the two fields. The
q-number part is “normal ordered” in the sense that all creation operators
stand to the left of all annihilation operators, but because of the additional
minus sign we must amend the definition of normal ordering somewhat.

Definition: The fields : ψ(x1)ψ(x2) · · ·ψ(xn) : are normal ordered if in
each term, all creation operators stand to the left of all annihilation opera-
tors. Each term is positive unless it required on odd number of permutations
to bring the various creation and annihilation operators into that order.

In a way analogous to (7.67), we introduce the notion of the contraction
of two fields.

︷ ︸︸ ︷
ψα(x1)ψβ(x2) ≡ T [ψα(x1)ψβ(x2)]− : ψα(x1)ψβ(x2) : (11.17)

Since the vacuum expectation value of normal-ordered fields vanishes, we
have

︷ ︸︸ ︷
ψα(x1)ψβ(x2) = 〈0|T [ψα(x1)ψβ(x2)]|0〉 = i(SF )αβ(x1 − x2), (11.18)

where I have borrowed the definition of the propagator from (9.104). It’s
clear that ︷ ︸︸ ︷

ψ(x1)ψ(x2) =
︷ ︸︸ ︷
ψ(x1)ψ(x2) = 0 (11.19)
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An additional complication arises when there are more than two fields
to time order. In this case we must include a minus sign for each operator
interchange. For example, (compare with (7.68))

T [ψ(x1)ψ(x2)ψ(x3)ψ(x4)] =: ψ(x1)ψ(x2)ψ(x3)ψ(x4) :

−
︷ ︸︸ ︷
ψ(x1)ψ(x3) : ψ(x2)ψ(x4) : +

︷ ︸︸ ︷
ψ(x1)ψ(x4) : ψ(x2)ψ(x3) :

+
︷ ︸︸ ︷
ψ(x2)ψ(x3) : ψ(x1)ψ(x4) : −

︷ ︸︸ ︷
ψ(x2)ψ(x4) : ψ(x1)ψ(x3) :

−
︷ ︸︸ ︷
ψ(x1)ψ(x3)

︷ ︸︸ ︷
ψ(x2)ψ(x4) +

︷ ︸︸ ︷
ψ(x1)ψ(x4)

︷ ︸︸ ︷
ψ(x2)ψ(x3)

(11.20)

Wick’s theorem enables us to calculate the vacuum expectation value of
any product of boson and fermion fields. The next step toward calculating
the S matrix requires a fermion version of the LSZ reduction formulas de-
veloped in Section 7.3. The derivation is similar to that leading to (7.43).
There are no new ideas, just a lot of niggling details regarding minus signs.
I will simply state the results and refer the reader to the classic exposition
in Bjorken and Drell.1

In analogy with (7.30) we define the fermion in-field

lim
t→−∞ψ(x) =

√
Z2 ψin(x) (11.21)

The constant Z2 is called the electron wave function renormalization con-
stant. There are three such constants in QED. One for the electron wave
function, one for the photon, and one for the electric charge. If it were not for
the fact that all Feynman diagrams with closed loops give divergent results,
we would be able to calculate them. As it is, we must be sure that they do
not appear in any final results. As it turns out, the photon renormalization
constant can be set equal to unity and the other two can be gathered into
the definition of the physical mass and charge of the electron. This is to
say that QED is renormalizable. One of the key ideas to come out of this
is that renormalizability is a very special property possessed by only a few
theories, and non-renormalizable theories are wrong!

Define the plane-wave solutions of Dirac’s equation as follows.

Uks(x) =
√

m

(2π)3Ek
u(k, s)e−ikx

Vks(x) =
√

m

(2π)3Ek
v(k, s)eikx

(11.22)

1Relativistic Quantum Fields, J. D. Bjorken and S. D. Drell, McGraw-Hill 1965, Section
16.9
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In this notation the second-quantized Dirac field is

ψin(x) =
∫

d3k
∑

s

[bin(k, s)Uks(x) + d†in(k, s)Vks] (11.23)

There are several formulas analogous to (7.41) depending on whether we
remove a particle or antiparticle from the in-state or out-state. If we remove
a particle from the in-state (refer to Section 7.3 for the signification of the
notation)

Sβα = 〈β out|α in〉
∼ − i√

Z2

∫
d4x 〈β out|ψ(x)|α− k in〉←−−−−−−−(−i6∂ −m)Uks(x)

(11.24)

Removing an antiparticle from the in-state leads to

∼ i√
Z2

∫
d4x V ks

−−−−−−→
(i6∂ −m)〈β out|ψ(x)|α− k in〉 (11.25)

Removing a particle from the out-state leads to

∼ − i√
Z2

∫
d4x Uks

−−−−−−→
(i6∂ −m)〈β − k out|ψ(x)|α in〉Uks(x) (11.26)

Removing an antiparticle from the out-state gives

∼ i√
Z2

∫
d4x 〈β − k out|ψ(x)|α in〉←−−−−−−−(−i6∂ −m)Vks(x) (11.27)

After two or more particles have been “reduced,” the fields inside the bra-ket
combination are time ordered.

Finally, we need to be able to reduce photon fields. In this case the
asymptotic condition is

lim
t→−∞A(x, t) =

√
Z3Ain(x, t) (11.28)

The constant Z3 will turn out to renormalize the electron charge. The wave
function is

Akλ =
1√

(2π)32ω
e−ikxε(k, λ) (11.29)

so that the Fourier expansion of Ain(x) is

Ain =
∫

d3k
∑

λ

[ain(k, λ)Akλ(x) + a†in(k, λ)A∗
kλ(x)] (11.30)
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The reduction formulas are virtually identical to (7.43) (with m = 0 of
course) except for one minus sign.

Sβα = 〈β out|α in〉
∼ −i√

Z3

∫
d4x 〈β out|Aµ(x)|α− (k, λ)〉←−2Aµ∗

kλ(x)
(11.31)

The additional minus sign in (11.31) comes from the space-like nature of the
polarization unit vector

εµεµ = −ε · ε = −1

This would be a good point to summarize the results so far. According
to (8.5) the S-matrix can be rewritten

Sfi = δfi − i(2π)4δ(4)(Pf − P − i)Tfi (11.32)

The δfi stands for all those terms appearing in the reduction procedure in
which the two initial particles don’t scatter.2 The (2π)4δ(Pf − Pi) appears
when we do the last integral over coordinate space. The interesting part is
Tfi, which is the crucial ingredient in (8.20) and (8.21) to calculate cross
sections and decay rates. To calculate the S-matrix, we start with the
basic QED Hamiltonian (11.9) and substitute it into the formula for the
S-operator (7.69). This is an infinite series. We keep only those terms
corresponding to the desired degree of approximation. These terms are
substituted into (??)

Sβα = 〈β out|S|α in〉. (11.33)

In this context, α stands for the specific initial state you have set up in your
experiment, and β represents the particular final state whose probability
you wish to calculate. We then use (11.24), (11.25), (11.26), (11.27), and
(11.31) to reduce out the various electron and photon fields. Finally, do all
the implied differentiation and integration.

This is a “cookbook” procedure. No problem-solving ability is required.
You should be able to do it while in a coma. You have to have patience
though, even a modest calculation can involve, implicitly at least, tens of
thousands of terms. After you have done a few such calculations, you will
realize that you are doing the same few things over and over. These things
can be boiled down to a few simple rules known as Feynman’s rules.

2In a real experiment, the vast majority of incident beam particles don’t scatter. All
this business about calculating cross sections has to do with the infinitesimal fraction that
does.
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1. Draw all possible connected, topologically distinct diagrams, including
loops, with n external legs. Ignore vacuum-to-vacuum graphs. Each
vertex must have a continuous electron or positron line and a photon
line terminating on the fermion.

2. There is a factor given by the following rules for each external line.

Incoming fermion:

p

=
u(p, s)√

Z2(2π)32Ep

Incoming antifermion:
p

=
v(p, s)√

Z2(2π)32Ep

Outgoing fermion:
p

=
u(p, s)√

Z2(2π)32Ep

Outgoing antifermion:

p

=
v(p, s)√

Z2(2π)32Ep

Incoming photon:

p

=
εµ(p)√

Z3(2π)32Ep
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Outgoing photon:

p

=
εµ∗(p)√

Z3(2π)32Ep

3. For each internal line there is a propagator

Electron propagator: p =
i(6 p + m)

p2 −m2 + iε

Photon propagator:
p

µ ν
=
−igµν

p2 + iε

4. At each vertex, place a factor of −ieγµ.

Electron-photon vertex: = −ieγµ

5. Insert an additional factor of -1 for each closed fermion loop.

6. For each internal loop, integrate over:
∫

d4q

(2π)4
(11.34)

7. A relative factor -1 appears between graphs that differ from each other
by an interchange of two identical external fermion lines.

8. Internal fermion lines appear with arrows in both clockwise and coun-
terclockwise directions. However. diagrams that are topologically
equivalent are counted only once.

Remember that the electron-photon coupling has the form eψγµψAµ. As
a consequence, the spinors associated with any vertex must appear in the
order uγµu (with v replacing u as needed).

With this in mind, let’s do some examples.
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11.4 The Reaction e− + e+ → µ− + µ+

Consider the reaction e− + e+ → µ− + µ+. In terms of momentum, that is
p + p′ → k + k′, and in terms of spin indices we have s and s′ → r and r′.
The momentum of the exchanged photon is q = p + p′ = k + k′. The muons
are almost identical to electrons, i.e. they have the same electromagnetic
interactions, but they are heavier by a factor of 200. This simplifies the
problem in several ways. For one thing, we are usually entitled to neglect
the mass of the electron. For another, there are no identical particles in this
example. Feyman’s rules give

iM =
ie2

q2

(
ve(p′)γµue(p)

) (
uµ(k)γµvµ(k′)

)
(11.35)

I have added subscripts e and µ to the spinors to indicate that they contain
different masses. The spin indices are implicit. I will get back to spins in a
minute.

In order to obtain a differential cross section from M we must do three
difficult things: square it, sum over final spins, and average over initial spins.
In order to make the notation more compact, I will write (11.35) as

iM =
ie2

q2
aµbµ (11.36)

In order to calculate |M |2, we will need to figure out

|ab|2 = aµaν†bµb†ν (11.37)

Notice that a and b are 1 × 1 matrices in spin space and four-vectors in
Minkowski space. There are two useful consequences; they all commute and
complex conjugation and Hermitian conjugation have the same effect. This
allows us to write

aν† = u†γν†γ0†v = u†γ0γνv = uγνv (11.38)

With that insight (11.37) becomes

|M |2 =
e4

q4

(
v(p′)γµu(p)u(p)γνv(p′)

) (
u(k)γµv(k′)v(k′)γνu(k)

)
(11.39)

Now make use of the spin information. The differential cross section will be
proportional to

1
2

∑
s

1
2

∑

s′

∑
r

∑

r′
|M(s, s′, r, r′)|2 (11.40)



194 CHAPTER 11. QUANTUM ELECTRODYNAMICS

Remember from a previous chapter

∑
s

u(p, s)u(p, s) =
6 p + m

2m
(11.41)

∑
s

v(p, s)v(p, s) =
6 p−m

2m

Let’s do the spin sums on the first term of (11.39)

∑

s,s′
v(p′, s′)γµu(p, s)u(p, s)γνv(p′, s′) (11.42)

=
1

2m

∑

s′
va(p′, s′)γ

µ
ab(6 p + m)bcγ

ν
cdvd(p′, s′)

I apologize for the notational overload. An object like γµ is a 4× 4 matrix
in spin space. I have turned it in to a tensor by adding the matrix indices
a and b. Tensors commute as you know, so (11.42) can be rewritten

=
1

2m

∑

s′
vd(p′, s′)va(p′, s′)γ

µ
ab(6 p + m)bcγ

ν
cd

Now v and v are in the right relation to one another so that we can use
(11.41)

=
(

1
2m

)2

(6 p′ −m)daγ
µ
ab(6 p + m)bcγ

ν
cd

Now this is recognizable as the trace of a product of matrices.

=
(

1
2m

)2

Tr
[
(6 p′ −m)γµ(6 p + m)γν

]

Finally combining (11.39), (11.40), and (11.42), we get

1
4

∑

spins
|M |2 =

1
4

(
e

2mq

)4

Tr
[
(6 p′ −me)γµ(6 p + me)γν

]

× Tr
[
(6 p′ −mµ)γµ(6 p + mµ)γν

]
(11.43)

There you have it. QED calculations eventually come down to taking traces.
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11.4.1 Trace Technology

The things we are taking traces of are all 4 × 4 matrices, even when they
don’t look like that. This results in some paradoxical formulas like Tr 1 = 4
and Tr m = 4m. You can check from the representation of the gamma
matrices that Trγµ = 0. Traces of an even number of γ’s are generally not
zero. Here is a simple result.

Tr(6 a 6 b) = aµbνTr(γµγν) =
1
2
aµbνTr{γµ, γν} = aµbνTr(gµν) = 4a · b

I have used the important fact that the trace of a product of matrices such as
Tr(abc · · · z) is invariant under any cyclic permutation of the matrices. Thus
in the equation above Tr(γµγν) = Tr(γνγµ). Our result can be summarized

Tr(γµγν) = 4gµν (11.44)

The trace of an odd number of γ’s always vanishes. The proof requires
a trick. Remember the γ5 matrix. It has the properties

Tr(γ5) = 0 (γ5)2 = 1 {γ5, γµ} = 0

Now the line of argument goes

Tr(6 a1 6 a2 · · · 6 an) = Tr(6 a1 6 a2 · · · 6 anγ5γ5) = Tr(γ5 6 a1 6 a2 · · · 6 anγ5)

= (−1)nTr(6 a1 6 a2 · · · 6 anγ5γ5) = (−1)nTr(6 a1 6 a2 · · · 6 an)

The trace is zero for n odd.
There are many other identities that are easily proved. In a moment I

will use
Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (11.45)

which is obtained from repeated application of (11.44). Others can be found
in any standard text. At the moment I am looking at Peskin and Schroder,
Introduction to Quantum Field Theory Appendix A3.

11.4.2 Kinematics

A short calculation using (11.45) yields

Tr
[
(6 p′ −m)γµ(6 p + m)γν

]
= 4[p′µpν + p′νpµ − gµν(p · p′ + m2

e)] (11.46)

We can set m2
e = 0. Then (11.43) can be evaluated by using (11.46) twice.

1
4

∑

spins
|M |2 =

8e4

q4
[(p · k)(p′ · k′) + (p · k′)(p′ · k) + m2

µ(p · p′)] (11.47)
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Equation (11.47) is valid in any Lorentz frame. This is fine as far as it
goes, but in order to compare the result with an experiment, we need to
specialize to a definite frame of reference. Such an experiment is typically
done with a colliding beam machine for which the laboratory is the CM
frame. Let us assume then that k = (E,k), k′ = (E,−k), p = (E,Eẑ) and
p′ = (E,−Eẑ). The angle between k and the z axis is θ. The following
kinematic identities follow with me = 0.

q2 = (p + p′)2 = 4E2 p · p′ = 2E2

p · k = p′ · k′ = E2 −E|k| cos θ p′ · k = p · k′ = E2 + E|k| cos θ

Eqn. (11.47) can be rewritten

1
4

∑

spins
|M |2 = e4

[(
1 +

m2
µ

E2

)
+

(
1− m2

µ

E2

)
cos2 θ

]
(11.48)

Back in Chapter 8 I derived the relationship between M and the differ-
ential cross section. Since then we have introduced the Dirac spinors, which
must be normalized differently from the Kline-Gordon fields. I will therefore
state (without proof) the appropriate version of ?? is

(
dσ

dΩ

)

CM

=
1

2EAEB|vA − vB|
|p1|

(2π)24ECM
|M(pA + pB → p1 + p2)|2

(11.49)
This holds in any coordinate system in which generic particles A and B
scatter into a final state consisting of two particles with momenta p1 and
p2. In our case particles A and B are collinear and assumed massless. In
this case

|vA − vB| =
∣∣∣∣
kA

EA
− kB

EB

∣∣∣∣ = 2 (11.50)

In our example the M in (11.49) is replaced by the spin-averaged M of
(11.48).

11.5 Introduction to Renormalization

Every Feynman diagram with one or more closed loops yields a divergent in-
tegral.3 One of the most important discoveries of twentieth-century physics

3There are some exceptions in the case of spin-zero particles, but it’s universally true
in qed.
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is that these divergent terms contain real physical content that is part of
the “right answer” to any higher-order calculation. The program of extract-
ing useful information from meaningless infinities is called renormalization.
This is an extremely technical and complicated subject, but I would like
to expose you to some of the basic ideas. To do this, I will concentrate
on a subset of divergent diagrams that go under the heading of electron
self-energy.

Consider the quantum process in which a single photon of momentum
k is emitted and reabsorbed by a virtual electron with initial and final mo-
mentum p. In the interim between emitting and reabsorbing the photon the
electron has momentum q = p − k. According to Feynman’s rules, Section
11.3, the amplitude for this process is

iSF (p)
∫

d4k

(2π)4
(−ieγµ)

( −igµν

k2 + iε

)
i(6 p− 6 k + m)

(p− k)2 −m2 + iε
(−ieγν)iSF (p)

(11.51)

= iSF (p)
[
−ie2

∫
d4k

(2π)4
γµ(m+ 6 p− 6 k)γµ

(−k2 − iε)(m2 − (p− k)2 − iε)

]
SF (p)

≡ iSF (p)Σ(p)SF (p)

The last equality implicitly defines the divergent quantity Σ, know as a
“self-energy insertion.” It is clearly divergent, since there are five powers of
k in the numerator and only four in the denominator. We will eventually
evaluate it, but for the time being I would like to investigate some of its
general properties. Such as term would arise in perturbation theory as a
second-order correction to the electron propagator. We could define a “more
nearly exact” propagator

iS′F (p) ≈ iSF (p) + iSF (p)Σ(p)SF (p)

I say “more nearly exact” meaning that iS′F (p) contains all the second-
order corrections that would arise in the usual perturbation expansion of
the propagator. We could make an even better approximation by including
another self-energy insertion.

iS′F ≈ iSF + iSF ΣSF + iSF ΣSF ΣSF

This is not quite correct, even to fourth order, since I have ignored the dia-
gram in which the electron emits another photon before reabsorbing the first.
Diagrams of this sort are called “overlapping divergences.” Such diagrams
present a huge additional complication, but “sufficient unto the day is the
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evil thereof.” I will ignore them. My conclusions will still be qualitatively
correct.

I can go on adding diagrams like this ad infinitum. The sum would look
like this.

iS[1 + ΣS + ΣSΣS + (ΣS)3 + · · · ] (11.52)

(I have suppressed the F subscript and well as the (p) to make the equations
easier to read.) This looks like the familiar geometric series (1 − x)−1 =
1 + x2 + x3 + · · · , so I am tempted to write

iS′ = iS
1

1− ΣS
(11.53)

The question is, what does it mean to divide by a 4 × 4 matrix? You can
regard (11.53) as notational shorthand for (11.52). Here are some further
observations.

• It’s clear from (11.52) that Σ has the form

Σ = mA(p2)+ 6 pB(p2) (11.54)

It’s true that A and B are infinite, but let’s ignore that for the time
being. Furthermore

S =
6 p + m

p2 −m2

(I will ignore the iε’s for the time being also. I don’t want to distract
you with details. I promise I haven’t forgotten them and will put
them back when necessary.) It follows that [S, Σ] = 0. Therefore the
following forms are equivalent.

S′ = S
1

1− ΣS
=

1
1− ΣS

S =
S

1− ΣS
(11.55)

• Since 6 p 6 p = p2 it makes sense to write in the same spirit

S =
6 p + m

p2 −m2
=

6 p + m

(6 p−m)(6 p + m)
=

1
6 p−m

, (11.56)

and finally
S−1 =6 p−m. (11.57)

The propagator can now be rewritten

iS′ =
iS

1− ΣS

S−1

S−1
=

i

6 p−m− Σ
(11.58)
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Leaving aside the fact that Σ is infinite, there is still a strange pathology
in (11.57). Every propagator we have encountered so far has had a pole at
the mass of the particle. It is almost axiomatic that a propagator is the
probability amplitude for the particle to propagate from x to y such that
p2 = m2 on the mass shell. It must be that the series of self-energy terms we
have summed has modified the mass of the particle. We have to confess that
at least in the context of perturbation theory, the m that appears in the
Hamiltonian is not the physical mass of the particle. We call the m in the
Hamiltonian the “bare” mass and the mass that marks the pole of the exact
propagator, the “dressed” or physical mass, which I will call m. It seems
that given the bare mass, we should be able to calculate the physical mass
or vice versa. The fact that Σ is infinite makes this permanently impossible.
We have not faced up to this problem so far, because we have always worked
at the lowest non-trivial order of perturbation theory. To that order we can
assume the the bare and physical masses are identical, and everything works
out OK. As soon as we include the self-energy terms, we must keep track
of both m and m. Worse yet, the same sort of thing happens when we
calculate higher-order corrections to the electron-photon vertex. There we
find that the charge e put into the Hamiltonian is not the physical charge of
the electron but some “bare” charge, and again we must keep track of the
e’s and e’s.

The agenda of keeping track of these corrections goes by the name “renor-
malization.” It is a remarkable fact that all the infinite corrections brought
about by all loop diagrams to all orders of perturbation theory can swept un-
der the rug of these two constants. A theory for which this is possible is said
to be “renormalizable.” It is an article of faith that no non-renormalizable
theory can be completely right, however useful it might be phenomenologi-
cally. Fermi’s theory of weak interactions, which we will study in the next
chapter, is a good example. It explains nuclear beta decay quite nicely, but
it would require an infinite number of infinite constants to take care of all
the loops! It was eventually modified by the addition of the intermediate
vector bosons. The resulting theory is called the “standard model.” It is
renormalizable and right! It is also possible to do quantum field theory with
gravitons. The theory at least predicts Newton’s law of gravitation. To this
extent it is correct. It is non-renormalizable, however, and we have no idea
what the true theory might be.

It is necessary to rewrite (11.58) in such a way that the physical mass
appears in the denominator. To this end we expand the self energy term as
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follows.

Σ(6 p) = Σ(m) + (6 p−m)Σ′(m) + (6 p−m)2R(p2) (11.59)

This is the key equation, and it deserves some comment.

• It looks like a power series expansion about the point 6 p = m, but in
fact, 6p can never equal m, since m is diagonal and 6p never is. Rather,
(11.59) defines implicitly what is meant by R(p2). I will sometimes
write it

Σ(6 p) = Σ(m) + ( 6 p−m)Σ′(m) + ΣR(6 p) (11.60)

In which case it defines ΣR. By construction ΣR(m) = 0.

• It appears that in the term Σ′ we have differentiated with respect to a
matrix! That is not so strange as it seems. The point is that p2 =6 p2.
For example, the A(p2) term in (11.54) can be differentiated as follows.

A′(m) =
dA(p2)

d 6 p

∣∣∣∣
6p=m

=
dA(p2)

dp2

d 6 p2

d 6 p

∣∣∣∣
6p=m

= 2m
dA(p2)

dp2

∣∣∣∣
p2=m2

(11.61)

Strictly speaking, Σ(m) and Σ′(m) are both infinite, so the operations
in (11.60) and (11.61) are not well defined. Our strategy for giving them a
precise meaning works as follows. I will introduce an additional parameter
ε into (11.51) in such a way the the integrals converge for ε > 0. It will
turn out that A(p2) and B(p2) in (11.54) can each be split into two parts.
One part will depend on ε. It becomes infinite as ε → 0, but for ε 6= 0 it is
a well-behaved mathematical expression. The other part will depend on p2

but not on ε. It is finite, calculable, and important. I am about to show that
all the epsilon-dependent terms can be lumped together with the bare mass
to give the physical mass m and a new epsilon-dependent term Z2 called
the wave function renormalization factor, which cancels out in any complete
calculation of a Feynman diagram. The point is that all these calculations
are done with finite (though epsilon-dependent) terms, and when the time
comes to calculate some physical quantity such as a cross section or reaction
rate, there are no epsilon-dependent terms remaining.

Now substitute (11.60) into (11.58)

iS′ =
−i

m + Σ(m)− 6 p + (6 p−m)Σ′(m) + ΣR
(11.62)
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I looks like the “real” mass is m = m+Σ(m). We need one further constant.4

Z−1
2 ≡ 1− Σ′(m) (11.63)

Equation (11.62) can be rewritten

iS′ =
i(6 p + m)
p2 −m2

Z2

1 + (m− 6 p)Z2R(p2)
(11.64)

The looks like the “bare” propagator iS (with m replaced by m) multiplied
by a factor, which, if Z2 were not epsilon-dependent, would be finite and
calculable. Before we set ε = 0, however, Z2 is finite, and we can show why it
does not appear in the final result of any complete calculation of a Feynman
diagram. First consider the Z2 in the denominator of (11.64). You can see
from (11.51) that Σ is proportional to e2. We must confess again the the e
that appears in the Hamiltonian is not the measured charge of the electron,
but rather a “bare” charge, which is modified by all the loop diagrams to all
orders of perturbation theory. Part of this modification is due to Z2. Let’s
tentatively define a “dressed” charge, e =

√
Z2e. Then Z2 disappears from

the denominator because it is absorbed into Σ. The Z2 disappears from the
numerator when we realize that our virtual electron will not be observable
until it couples to a photon at each end. (Draw some Feynman diagrams
to convince yourself this is true.) Each electron-photon vertex comes with
a factor of e, so the entire diagram is proportional to e2Z2 = e2.

Now I will evaluate the very difficult integral (11.51). Notice that the
denominator is the product of two factors that can be labelled

A = m2 − (p− k)2 − iε B = −k2 − iε

Feyman realized that a four-dimensional integral can be simplified by making
it five-dimensional. The trick is

1
AB

=
∫ 1

0

dz

[Az + B(1− z)]2
≡

∫ 1

0

dz

D2
(11.65)

The term D can be simplified by completing the square. Define kµ ≡ k′µ +
zpµ. Then

D = C2 − k′2 where C2 ≡ z[m2 − p2(1− z)]

4This is standard notation. There are other Z’s, but since we are only dealing with
the electron self-energy part, these other constants don’t arise.
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With these substitutions, the numerator of (11.51) becomes

N(p, z) = γµ[m+ 6 p(1− z)− 6 k′]γµ

I can delete the 6 k′ term using the familiar argument that an odd function
integrated over even limits yields zero. Using the fact that γµγµ = 4, gives
us the final form of the numerator function.

N = 2[2m− 6 p(1− z)] (11.66)

With all these definitions the self-energy term becomes

Σ(p) = −ie2

∫ 1

0
dzN(p, z)

∫
d4k

(2π)4
1

(C2 − k2 − iε)2
(11.67)

The integral can be done for integer dimension d using the remarkable for-
mula5

∫
ddk

(2π)d

1
(C2 − k2 − iε)n

=
i

(4π)d/2

Γ(n− d/2)
Γ(n)

(
1

C2

)n−d/2

(11.68)

Here Γ is the Euler gamma function defined by

Γ(α) ≡
∫ ∞

0
dt tα−1e−t (11.69)

If α is an integer, say n, Γ(n) = (n−1)!, and in general Γ(α) = (α−1)Γ(α−1).
It’s useful to get Maple to plot this function for you. You will see that Γ
interpolates smoothly between the integer values of α. You will also see that
Γ(0) = ∞. We expected that. The integral (11.67) has to diverge. Now
of course, the integral on the left side of (11.68) only makes sense when d
is an integer, but the expression on the right interpolates smoothly between
integer values of d. Even if d is only infinitesimally less than four, it is still
finite. Now define ε ≡ 4− d. For our purposes, n = 2.

Γ(n− d/2)
Γ(n)

=
Γ(3− d/2)

2− d/2
=

2
ε

Σ(p) =
2e2

(4π)2

∫ 1

0
dzN

C−ε

ε
(11.70)

Insert the expansion
C−ε = 1− ε ln C + O(ε2)

5This is proved in Gross, Relativistic Quantum Mechanics and Field Theory, page 344



11.5. INTRODUCTION TO RENORMALIZATION 203

Σ(p) =
2e2

(4π)2

∫ 1

0
dzN( 6 p, z)

(
1
ε
− ln C(p2, z)

)
+ O(ε) (11.71)

The integrals in (11.71) are easy enough to do, although the resulting ex-
pressions are not very illuminating. The important point is that Σ(6 p) can
be divided up as follows.

Σ(6 p) = (mB1+ 6 pB2)/ε + Σ̃(6 p) (11.72)

where Σ̃(6 p) does not contain ε and so remains finite in the limit ε → 0. B1

and B2 are simple constants. When we expand Σ(6 p) using (11.60), ΣR(6 p)
is as promised, finite. Thus we can absorb all the infinite terms into the
two constants m and Z2, and calculate ΣR( 6p)and R(p2) which are, again as
promised, finite and important.
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Chapter 12

Weak Interactions

The field of nuclear physics began with the study of radioactive decay. There
were three identifiable processes called α- β- and γ-decay corresponding
to the emission of alpha particles, electrons, and photons respectively. In
retrospect, they manifest the strong, weak, and electromagnetic forces, the
three forces that operate at the level of nuclei and particles. Gravity is too
weak to have any effect, and there has never been any convincing evidence
of a “fifth force.”

Consider some generic nucleus that undergoes β-decay, say NXZ . By
1930 the process was believed to be1 NXZ →N XZ+1 + e−. Unfortunately,
the energy spectrum of the emitted electron looks something like the sketch
in Fig. 1. If there were only two particles in the final state, all the elec-
trons should have the energy marked Emax. Several wild hypotheses were
put forward to explain this including the suggestion that energy and/or mo-
mentum were not conserved in these reactions. In 1930 W. Pauli suggested
that β-decay was in fact a three-body reaction, NXZ →N XZ+1 + e− + ν̄.
The ν̄ was a hitherto unknown particle, which Pauli called the “neutron.”
The neutron as we know it is a constituent of nuclei, so the name was later
changed to “neutrino.” The particle would have to have zero charge and
spin h̄/2 to conserve charge and angular momentum. So far as one could
tell from the endpoint energy, it had to have a very small mass. Since it
has proved very difficult to detect, it must interact weakly with ordinary
matter.2 Now we know that there are actually three kinds of neutrinos all

1There is a similar decay in which a positron is emitted. This is harder to recognize,
however, because the positron immediately captures an electron forming positronium.
This decays quickly into two or three photons.

2I have written ν̄ rather than ν, because in this case, the particle is actually an an-
tineutrino. The distinction between neutrinos and antineutrinos is a subtle matter, to
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Electron Energy

Events Emax

Figure 12.1: The β-decay energy spectrum

with very small masses, but for the time being I will consider only one kind,
the so-called electron neutrino and make the very good approximation that
it is massless.3

It is ironic that whereas the radioactive decay of nuclei was the first evi-
dence of the operation of nuclear forces, it is also so very complicated that no
first-principles calculation could ever reproduce the lifetimes and branching
ratios of these decays. Nuclei are very complicated objects, and the strong,
electromagnetic, and weak forces are inextricably entangled in all of these
processes. The “scientific method” dictates that we should understand the
simplest instances first. These turn out to be the purely leptonic decays
such as µ → e + ν + ν̄ where the strong interactions play no role. I would
like to postpone that reaction for a bit and follow a more historical line of
development. We know that once outside of a nucleus, a neutron will decay,
n → p + e− + ν̄ in about 13 minutes. This process is complicated slightly
by the effect of the strong interactions, but no nuclear physics is involved,
and this was the first decay to be studied quantitatively.

By the mid 1950’s it was believed that neutron decay as well as all
the other weak interactions known at the time could be described by the
interaction Hamiltonian

Hint =
G√
2
Jα(x)J†α(x) (12.1)

which I will return later.
3“Sufficient unto the day is the evil thereof.”
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Figure 12.2: e+ + e− → µ+ + µ− via one photon exchange

where
G = 1.166× 10−5GeV−2 (12.2)

is the universal weak coupling constant or Fermi constant. This is modelled
after the electromagnetic interactions that we have already studied. For
example the process e+ + e− → µ+ + µ− shown in Fig. 2 can be described
by the matrix element

Mint = −ie(v̄eγ
αue)Dαβ(ūµγβvµ) = −ieJα

e DαβJβ
µ (12.3)

where Dαβ is the photon propagator. Fermi suggested that protons and
neutrons (collectively called nucleons) and electrons and neutrinos (collec-
tively called leptons) could also constitute currents just as the electrons and
muons do in (12.3). The weak current Jα consists of a leptonic part lα and
a hadronic part hα,

Jα(x) = lα(x) + hα(x). (12.4)

The are three different leptons, the e, µ and τ , so lα consists of a sum
of three separate currents. Likewise there are many hadrons that undergo
weak decay, so in principle hα should be a sum of of all the corresponding
currents. In this way (12.1) describes many different processes. There will
be purely leptonic process such as muon decay, semileptonic processes like
neutron decay, and many purely hadronic processes such as Λ → p + π
and K → π + π. It is now known that the weak interactions are mediated
by the exchange of vector bosons just as the electromagnetic interactions
are mediated by the exchange of the photon. The bosons, however, are



208 CHAPTER 12. WEAK INTERACTIONS

ν

n

p

e
-

Figure 12.3: Feynman diagram for neutron decay

extremely heavy, so for ordinary nuclear processes, the propagator collapses
into a single constant that is absorbed into G. Weak decays therefore are
essentially point-like interactions. Neutron decay, for example, is described
by the Feynman diagram Fig 13.3.

Equation (12.1), the so-called “current-current interaction,” had its suc-
cesses, but there is much more to the story. For one thing, (12.1) does not
allow the nucleon’s spin to flip, at least not in the nonrelativistic limit. The
spin frequently does flip in nuclear β-decay, so other interaction terms must
be considered. It is also non-renormalizable so it is at best a low-energy
approximation.

12.1 Parity Violation

By far the most profound modification of (12.1), however, has to do with
parity. Until 1956 it was assumed that parity was conserved in all interac-
tions. Roughly speaking, this means that the mirror image of any allowed
process is also an allowed process with all the same reaction rates. In more
mathematical terms, there is an operation called parity conjugation, which
has two effects: first it replaces xµ with x′µ = (ct,−x), and second, it
replaces every wave function or quantum field ψ(x) with a new function
ψ′(x′) that describes the particle or system in the mirror-reflected world.
The statement that parity is conserved is equivalent to saying that this
transformation leaves all the equations of motion form invariant. In 1956
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Lee and Yang pointed out that there was no evidence that this was true for
the weak interactions. It was shown shortly thereafter that weak interac-
tions violate this principle maximally.4 This was done by polarizing 60Co
nuclei in a strong magnetic field. 60Co β-decays emitting an electron. It
was found that the intensity distribution of the emitted electrons could be
described by the formula

I(θ) = 1− 〈J〉 · p/E = 1− v cos θ (12.5)

Here J is the nuclear spin and p the momentum of the electron. The impor-
tant point about (12.5) is that the distribution is not symmetric between the
forward (with respect to the nuclear spin or magnetic field) and backward
direction. This in itself is proof that parity is not conserved. To see how
this follows, imagine viewing the experiment in a mirror held perpendicular
to the nuclear spin. Since angular momentum has the form L = x × p, it
does not change sign under parity conjugation. Its mirror image is identical
to the real thing. It is an example of a pseudo- or axial vector. The elec-
tron distribution, however, does change. In this world it is peaked in the
direction opposite to J . In the mirror world it is peaked along J . Ergo,
parity is not conserved. Parenthetically, 60Co also undergoes γ-decay, and
the photon distribution is symmetric between the forward and backward
directions. This is because electromagnetic interactions do conserve parity.

That was a simple argument, but incorporating parity into the theory
of relativistic electrons requires a some formalism. Our postulate of form
invariance requires that the Dirac equation in the mirror reflected world
should be

(iγµ∂′µ −m)ψ′(x′) = 0 (12.6)

Multiply the ordinary Dirac equation on the left by γ0.

γ0(iγµ∂µ −m)ψ(x) = (iγµ∂′µ −m)γ0ψ(x) = 0 (12.7)

In order for (12.6) to be true, it must be that

ψ′(x′) = γ0ψ(x) (12.8)

In Chapter 9.4 we touched briefly on the five bilinear forms that can be
constructed with Dirac spinors. I showed that ψ̄ψ transforms like a scalar
under Lorentz transformations and that ψ̄γµψ transforms like a vector. I
also introduced the γ5 matrix and made some vague remarks to the effect

4I will explain eventually what I mean by this
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that it had something to do with parity. For easy reference, here are its
definition and properties.

γ5 = iγ0γ1γ2γ3 (12.9)

(γ5)† = γ5 (12.10)

(γ5)2 = 1 (12.11)

{γ5, γ5} = 0 (12.12)

Let’s take a look at ψ̄γ5ψ. Under parity conjugation,

ψ̄(x)γ5ψ(x) → ψ̄′(x′)γ5ψ′(x′) = ψ̄(x)γ0γ5γ0ψ(x) = −ψ̄(x)γ5ψ(x) (12.13)

It is, as claimed, a pseudo scalar. In the same way it can be shown that
ψ̄γµγ5ψ is a pseudo- or axial vector.

How are we to modify (12.1) to accommodate parity violation? At first
sight one could replace γα by γαγ5 making the currents into pseudovectors.
But since the Hamiltonian is a product of two such currents, the minus
signs cancel, and parity conjugation has no effect. In principle one could
use all five of the bilinear forms in arbitrary linear combinations, and in the
case of some nuclear β-decay, that possibility must be taken seriously. In
order to understand the fundamental nature of weak interactions, however,
it is useful to look at reactions in which there are no strong interactions
to complicate things. There are a few purely weak decay processes, and
the most accessible is ordinary muon decay, µ → e + ν + ν̄. After much
experimental work it is clear that the way to construct purely leptonic weak
currents is as follows.

lµ = ūeγ
µ 1

2(1− γ5)vν (12.14)

This is called the V-A or vector minus axial vector interaction. This precise
form is tied up with the properties of the neutrino to which we now turn.

12.2 Neutrinos

We know that there are three kinds of neutrinos called the electron neutrino,
the muon neutrino, and the tau neutrino. There is considerable indirect
evidence that they all have some small mass, which from a theoretical point
of view is both a complication and an embarrassment. The neutrino that
appears in (12.14) is the electron neutrino whose mass is a tiny fraction of an
electron volt. Except for those experiments involving neutrinos from the sun
or from outer space, this mass is completely negligible, and it will simplify
our work considerably if we ignore it. In this limit, half of the neutrino
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spinor is “missing,” and the role of the 1
2(1− γ5) in (12.14) is to “delete” it.

In order to see what this means, it is useful to reconstruct the Dirac spinors
according to a different plan.

The gamma matrices are defined by their anticommutation relations,
but there are several different matrix representations that have the same
relations. The choice given in Equations 9.6 and 9.7 is called the Dirac or
standard representation. When spinors are constructed with this choice, the
third and fourth components are proportional to p/(E + m) and so vanish
in the low-energy limit. There is another important representation called
the Weyl or chiral representation.5

γ0 =
(

0 1
1 0

)
γi =

(
0 σi

−σi 0

)
γ5 =

( −1 0
0 1

)
(12.15)

The important difference is that γ0 is diagonal in the standard representa-
tion, and γ5 is diagonal in the chiral representation.

The Dirac equation in the limit m = 0 and in momentum space is simply
6 pu = 0. Using the representation (12.15) this is

[
0 E − σ · p

E + σ · p 0

] [
φ
χ

]
= 0. (12.16)

The determinant of the coefficient matrix must vanish, and so E = ±|p|.
Concentrate on the positive-energy solution for the time being. We are left
with

χ = σ · p̂ χ (12.17)

φ = −σ · p̂ φ

In this limit the upper and lower components decouple. The operator σ · p
represents the component of spin along the particle’s direction of motion.
Its eigenvalues are called helicity. According to (12.17), massless particles
are helicity eigenstates. The spin is either aligned parallel to the direction
of motion (positive helicity, right-handed particles) or antiparallel (negative
helicity, left-handed particles).

Let us refine our notation somewhat and use λ = ±1 to represent the
helicity. Introduce the helicity eigenstates defined by

σ · p φλ = λ|p|φλ

σ · p χλ = λ|p|χλ

(12.18)

5Beware. There are several different sign conventions used by other authors.
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Massless positive-energy spinors are then

u(p, λ = 1) =
(

0
φ+

)
u(p, λ = −1) =

(
φ−
0

)
(12.19)

The matrix γ5 is called the chirality operator.6 In the chiral representa-
tion the operator 1

2(1± γ5) has a simple structure.

1
2(1 + γ5)u =

[
0 0
0 1

] [
φ
χ

]
=

[
0
χ

]
(12.20)

1
2(1− γ5)u =

[
1 0
0 0

] [
φ
χ

]
=

[
φ
0

]

Clearly the 1
2(1 ± γ5)’s are acting like projection operators. Let’s be brief

and write P± ≡ 1
2(1 ± γ5). These operate like any God-fearing projection

operators. For example, P 2
+ = P+, P+P− = 0, and P+ + P− = 1. The fact

that uν in (12.14) is always multiplied by P− means that only left-handed
neutrinos interact.

P−uν(λ = 1) =
(

0
0

)
P+uν(λ = −1) =

(
φ−
0

)
(12.21)

So far as one can tell from the form of the interaction, it might be that
neutrinos come in two helicity states, but somehow only the left-handed
states are allowed to participate. In fact, neutrinos only interact weakly and
always with the 1

2(1− γ5) in front of the spinor, so whether or not there are
positive helicity states is something of a metaphysical question.7 It is these
“missing” or non-interacting helicity states that are directly responsible for
parity violation. If we take the neutrino spinor to be

P−uν =
[

φ−
0

]
(12.22)

then the parity conjugation operation (12.8) forces us to conclude that

P−u′ν = P−γ0uν =
[

0
0

]
(12.23)

6The word “chirality” comes from the Greek meaning “hand.” Nonetheless, the terms
right- and left-handed refer to helicity not chirality.

7The fact that the left-handed rather than right-handed states interact was established
in a classic experiment by Goldhaber et al (1958) described in Perkins, Introduction to
High Energy Physics, Addison-Wesley 1987
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When I said that parity was violated maximally, I meant that the right side
of (12.23) is zero without any remaining small components.8

12.3 Chirality, Helicity and Electrons

This simple association of chirality with helicity in (12.19) does not hold for
massive particles. The Dirac equation in our new basis including the mass
term is [ −m E − σ · p

E + σ · p −m

] [
φ
χ

]
= 0 (12.24)

(E + σ · p)φ = mχ

(E − σ · p)χ = mφ

It’s convenient to take φ and χ to be helicity eigenstates. Equations (12.24)
become

1
m

(E + λ|p|)φλ = χλ (12.25)

The complete spinors are

u(λ) = C




φλ

E+λ|p|
m φλ


 =

1√
2m




√
E − λ|p| φλ

√
E + λ|p| φλ


 (12.26)

The normalization constant C is chosen according to our convention that
ūu = 1. Now look at the relative sizes of the upper and lower components.

√
E − |p|√
E + |p| =

√
E2 − |p|2
E + |p| =

m

E + |p| ≈
m

2E
(12.27)

which vanishes in the limit m → 0 or equivalently the limit |p| À m.9 In
this limit

P−u(λ = 1) =
1√
2m

(
0
0

)
(12.28)

P−u(λ = −1) =
1√
2m

( √
2E φ−

0

)

8Now you see why the neutrino mass is such a problem. The statement is not quite
correct.

9It is still meaningful to take the limit m → 0 despite the factor of 1/
√

2m. The point is
that all physical results depend on bilinear products like ūu. Because of our normalization
condition, all the m’s cancel.
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The point is that for |p| À m, the P− in the interaction suppresses the
positive helicity components by the factor m/2E. It is easy to show that if
u1 and u2 are any two spinors,

ū1γ
µP−u2 = P−ū1γ

µu2 = P−ū1γ
µP−u2 (12.29)

so that in this limit, only the left-handed components of all fermions partic-
ipate in the interaction.

One can construct the spinors for antiparticles by repeating the pro-
cedure with E replaced by −E in (12.16) and (12.24). Equation (12.17)
becomes

φ = −σ · p̂ φ (12.30)

χ = σ · p̂ χ

The signs have changed. Massless righthanded antiparticles have negative
chirality. Only right-handed antineutrinos participate in weak interactions.
Equation (12.26) becomes

v(λ) = C



− 1

m(E + λ|p|)χλ

χλ


 =

1√
2m



−

√
E + λ|p|χλ

√
E − λ|p|χλ


 . (12.31)

(Remember that v̄v = −1.) For |p| À m, the negative helicity components
are suppressed by m/2E.

The missing helicity state in the neutrino wave function also causes
charge conjugation symmetry to be violated. According to (12.20), neutri-
nos have negative helicity. Equation (9.59) shows that the charge-conjugate
state must also have negative helicity, but we have just showed that the
helicities of massless antiparticles are opposite to those of particles. Nega-
tive helicity antineutrinos don’t exist, or if they do, they don’t participate.
The combination of parity conjugation and charge conjugation is a different
story. The helicity operator σ · p is odd under parity conjugation, so the
helicity of a parity-conjugated state is opposite to that of the original state.
Two minuses make a plus, right? Weak interactions are invariant under CP .

Well – almost. There is a “superweak” component to the weak inter-
actions that does violate CP. It is so weak that it only manifests itself in
the decays of the neutral K and B mesons, and then only because of a
complicated set of fortuitus circumstances. CP violation is one of the most
profound discoveries of particle physics in recent years. It is believed to be
the origin of the preponderance of matter over antimatter in the universe.
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12.4 Lepton Number

I mentioned (without explanation) that ordinary muon decay µ− → e− +
ν + ν̄, requires a neutrino and an antineutrino in the final state. I also
stated (again without explanation) (12.14) that the lepton current should
be lµ = ūeγ

µ 1
2(1−γ5)vν rather than say lµ = ūeγ

µ 1
2(1−γ5)uµ, both of which

are allowed by Feynman’s rules. How is one to know about these things?
The following reactions and decays all conserve energy and charge, but

none have ever been observed.

π0 6→ µ+ + e−

µ− 6→ e− + γ

µ− 6→ e+ + e− + e−

µ− + p 6→ p + e−

ν̄ + n 6→ p + e−

(12.32)

The last reaction seems impossible to realize, but there’s a trick. Park a
swimming pool full of cleaning fluid in front of a nuclear reactor. Reactors
produce mostly antineutrinos, so one looks for the reaction

ν̄ +37 Cl →37 A + e−

This can be identified since 37Ar is a radioactive gas that can be separated
from the liquid and its radioactivity measured. This is a heroic experiment,
but it’s been done, and the reaction just doesn’t occur. What is “wrong”
with these reactions? The (almost) obvious guess is that these leptons carry
some sort of additive quantum numbers that in (12.32) just don’t add up.
First of all, muons can’t decay into electrons, so there must be some measure
of “muonness” and “electronness” that must be conserved. As a convention,
we say that negative electrons have an electron number = +1, and positrons
have electron number = −1. Similarly, negative muons have muon number
= +1, and positive muons have muon number = −1. (There is also a tau
lepton, so it must carry a tau number assigned in the same way.) Reactions
like e+ + e− → γ + γ are allowed, since γ’s are not leptons, and so all their
lepton numbers are zero. What are we to make of µ− → e− + ν̄ + ν? We
have to acknowledge that neutrinos also carry lepton number and that all
neutrinos are not created identical. There must be electron neutrinos that
carry electron number just as electrons do, as well as muon neutrinos and
tau neutrinos. The complete set of quantum numbers is given in Table 13.1.
The correct way to specify muon decay is µ− → e−+ ν̄e + νµ. Now it’s clear
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e− νe µ− νµ τ− ντ

ne 1 1 0 0 0 0
nµ 0 0 1 1 0 0
nτ 0 0 0 0 1 1

Table 12.1: Standard lepton number assignments. Antiparticle lepton num-
bers have the opposite sign. All other particles have zero lepton number.

µ−

νµ

e
-

ν
e

Figure 12.4: Muon decay µ− → e− + νµ + ν̄e. The solid lines represent the
flow of muon number current. The dotted lines represent electron number
current.

that both sides of the reaction have nµ = 1 and ne = 0.

Lepton numbers also resolve the question raised above regarding the
construction of lepton currents. You will recall that the conservation of
charge was a key requirement in constructing currents for electromagnetic
currents. Take for example, the term jα

e = v̄eγ
αue in (12.5) illustrated in

Figure 13.2. It represents an electron current that “flows” up the electron
leg of the diagram and down the positron leg. Conservation of charge means
that you can trace the current along this path following the arrows without
lifting your pencil from the page. In the same way lepton number represents
a kind of “charge” that must be conserved. In Figure 13.4 I have illustrated
muon decay using solid lines to represent the flow of muon number and
dotted lines to represent electron number current. The complete matrix
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element for muon decay is then

M =
4G√

2
ūνγ

α 1
2(1− γ5)uµ ūeγα

1
2(1− γ5)uµ (12.33)
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Chapter 13

The Electroweak Theory

13.1 Weak interaction of quarks

From the point of view of quarks, ordinary neutron decay, n → p + e− + ν̄,
amounts to a process in which a down quark beta decays into an up quark
and a lepton pair, d → u+e−+ν̄. When allowance is made for the differences
in mass and phase space, the strength of this reaction is almost the same
as the purely leptonic process µ → e + ν + ν̄. We can construct weak V-A
currents for these processes as follows,

jµ(lepton) ∝ ū(ν)γµ 1
2(1− γ5)u(e) (13.1)

∝ ν̄LγµeL

jµ(quark) ∝ ū(u)γµ 1
2(1− γ5)u(d) (13.2)

∝ ūLγµdL

Notice the condensed notation: ūL is the left-handed projection of the up
quark. At this point I am not concerned with whether this is a u-type or a
v-type spinor. Of course that is important when doing an exact calculation,
but you have Feynman’s rules to figure that out. Here I am trying to present
an idea with a minimum of notational complications. By the same token,
∝ means “proportional to.” The constant of proportionality will be all-
important, but not now. Finally, notice that the projection operator, 1

2(1−
γ5) projects the left-handed components of both spinors as shown in class.

The currents in (13.1) and (13.2) are both “charged currents,” in the
sense that the currents change charge in the process of the interaction. Put
it another way, they couple to charged intermediate vector bosons. Until
the 1970’s it was believed that there were no neutral current interactions,

219
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since processes like K0 → µ+µ− seem to be forbidden. The K0 carries
one unit of strangeness, however, so this is an example of a strangeness-
changing interaction, and these are forbidden. With the advent of high-
energy neutrino beams it became possible to see reactions such as νµ +N →
νµ + X, where N is some heavy nucleus, and X stands for some hadronic
”stuff.” In terms of quarks, these are examples of the reaction ν +q → ν +q.
(q stands for any quark.) There is no reason to believe that these interactions
have the pure V-A form, so the correspondinq currents are

jµ(leptonic neutral current) ∝ ν̄γµ 1
2(1− γ5)ν (13.3)

jµ(neutral hadronic current) ∝ q̄γµ 1
2(cV − cAγ5)q (13.4)

The constants cV and cA have been determined experimentally with inelastic
neutrino scattering. As a consequence of (13.4), weak neutral currents have
both right- and left-handed components.

13.2 Weak Isospin

The electroweak theory per se does not involve quarks, nonetheless, the
following facts established in the previous section are foundational.

• Weak leptonic currents and weak charged hadronic currents have only
left-handed components.

• The weak, neutral, hadronic currents that they couple to have both
right- and left-handed components.

Electrons, of course, also have both right- and left-handed components, but
only the left-handed components participate in the weak interactions. Or
so it seems. The underlying idea of the electroweak theory is that the weak
and electromagnetic interactions are closely related, and the relationship is
cemented by the marriage of the right-handed piece of the electron current
and the right-handed piece of the weak, neutral, hadronic current.

To bring this marriage about I will define

J+
µ ≡ ν̄LγµeL (13.5)

J−µ = (J+
µ )† = ēLγµνL (13.6)

The notation J+(J−) means that the initial lepton gains (loses) one unit of
charge in the course of the interaction. It does this by coupling to a negative
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(positive) intermediate vector boson. It is customary to use the formalism
of spin or isospin to combine these various currents. To this end, define the
“spinor,”

χL =
(

ν
e−

)

L

, (13.7)

and raising and lowering operators,

σ± = 1
2(σ1 ± σ2) (13.8)

σ+ =
(

0 1
0 0

)
σ− =

(
0 0
1 0

)

The σi’s are the usual Pauli spin matrices. Then

J i
µ ≡ χ̄Lγµ

1
2σiχL J±µ ≡ χ̄Lγµσ±χL (13.9)

This is familiar angular momentum physics in an unfamiliar context. Think
of χL as a Pauli spinor. We can combine two spin-1/2 doublets to make a
spin-1 triplet and a spin-0 singlet. In this case, the underlying quantity is
not spin but something conventionally called ‘weak isospin.” The currents
J±µ are two components of the triplet. The third member is

J3
µ ≡ χ̄Lγµ

1
2σ3χL = 1

2 ν̄LγµνL − 1
2 ēLγµeL (13.10)

This J3
µ is a weak neutral current, but it can’t be the whole story, because

the complete neutral weak current has right-handed components. The key
idea is to split up the electron current into right- and left-handed pieces.

jem
µ = −ēγµe = −ēγµ

1
2(1− γ5)e− ēγµ

1
2(1 + γ5)e (13.11)

= −ēRγµeR − ēLγµeL

Despite the fact that it contains electron spinors, jem
µ is a neutral current

for reasons explained previously. Notice in this particular definition I have
not included the electron charge. In (13.11) e is just the electron spinor.
Suppose the “missing” right-handed components of the weak neutral current
actually come from the right-handed components of the electromagnetic
current. This is the idea, but it plays out in ways that are rather subtle.

We assume that in addition to charge and the third component of isotopic
spin, there is a third “good quantum number” called hypercharge or Y . The
three are related by

Q = T 3 + Y/2 (13.12)
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lepton T T 3 Q Y

νe
1
2

1
2 0 -1

e−L 1
2 −1

2 -1 -1
e−R 0 0 -1 -2

Table 13.1: Weak quantum number assignments

According to Noether’s theorem, for every conserved charge there is a con-
served current. The currents in this case must be related by

jem
µ = J3

µ + 1
2jY

µ (13.13)

The new current jY
µ is called the weak hypercharge current.1 The quantum

numbers are given in Table 12.1. Similar assignments can be made for the
quarks.

13.3 The Intermediate Vector Bosons

In conventional QED, the interactions are mediated by the photon field Aµ

and the basic interaction vertex is −ieJµ. In electroweak theory there are
four currents, the three components of J i

µ and the hypercharge current jY
µ .

In the conventional notation they couple to vector boson fields as follows

−ig
(
J i

)µ
W i

µ − i
g′

2
(
jY

)µ
Bµ (13.14)

The two new coupling constants g and g′ will be related to the Fermi coupling
constant and the electric charge later on. The fields W i and B are assumed
to be massless. They acquire mass through a mechanism called spontaneous
symmetry breaking, which will be explained in a subsequent chapter. The
so-called Weinberg angle θW , is another constant that must be determined
from experiment. The particles that are detected in the laboratory are the
photon which is massless, two heavy charged bosons, the W±’s, and the
even heavier neutral vector boson, the Z0. Their fields are related to those
in (13.15) as follows

W±
µ =

√
1
2(W 1

µ ∓ iW 2
µ) (13.15)

Aµ = Bµ cos θW + W 3
µ sin θW (13.16)

Zµ = −Bµ sin θW + W 3
µ cos θW

1There is a strong hypercharge also.
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The neutral current piece of (13.14) is

−ig
(
J3

)µ
W 3

µ − i
g′

2
(
jY

)µ
Bµ (13.17)

= −i(g sin θW J3
µ + g′ cos θW jY

µ /2)Aµ − i(g cos θW J3
µ − g′ sin θW jY

µ /2)Zµ

Since Aµ is the actual photon field, the current coupled to it must be jem
µ

from (13.13). This can only be so if

g′ cos θW = g sin θW = e (13.18)

Whatever it is that couples to the Z0 must be the complete neutral weak
current, which I will call JNC

µ . The last term in (13.17) can be rewritten

−ig

[
cos θW J3

µ −
sin2 θW

cos2 θW
(jem

µ − J3
µ)

]
Zµ = −i

g

cos θW
JNC

µ Zµ (13.19)

where
JNC

µ ≡ J3
µ − sin2 θW jem

µ (13.20)

As promised JNC
µ inherits its right-handed components from jem

µ and its left-
handed components form J3

µ and jem
µ .

13.4 The Feynman Rules

Now that the smoke has cleared, we are left with the following interactions.

• Two charged IVB’s, the W±’s, coupling to the weak charged current.
The interaction term in (13.14) can be rewritten using (13.6), (13.9),
and (13.15) as

−ig
[
(J1)µW 1

µ + (J2)µW 2
µ

]
= −i

g√
2
(JµW+

µ + Jµ†W−
µ ) (13.21)

• One neutral IVB, the Z0, coupled to JNC with coupling constant
g/ cos θW . Typically we write the vertex function

−i
g

cos θW
γµ 1

2(cV − cAγ5) (13.22)

The constants cV and cA can be determined from based on the charge
and isotopic spin of the particles that make up JNC.
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• The photon coupling to the electromagnetic current with the usual
constant e.

The Feynman rules from Section 11.3 require the following additions.

1. At each vertex at which a W± couples to a charged current, insert the
vertex factor

−i
g√
2
γµ 1

2(1− γ5) (13.23)

At each vertex at which a Z0 couples to a neutral current, insert the
vertex factor

−i
g

cos θW
γµ 1

2(cV − cAγ5) (13.24)

2. For each virtual W or Z insert the propagator

i(−gµν + pµpν/M2)
p2 −M2

(13.25)

3. For each free W or Z insert the spin polarization tensor εµ(λ). When
summing over the polarization state λ use the completeness relation

∑

λ

ε(λ)∗
µ (p)ε(λ)

ν (p) = −gµν +
pµpν

M2
(13.26)

The other rules are unchanged.



Chapter 14

Symmetry Breaking

Consider an atom with a spherically symmetric potential. Because of the
symmetry, the energy eigenstates are independent of the m and ms quantum
numbers. Put it another way, the SU(2) symmetry of the Hamiltonian
causes these states to be degenerate. If we put the atom in an external
magnetic field, the degeneracy is removed and the energies become functions
of both m and ms. The system is still symmetric about the direction of the
field, so the imposition of the external field has broken the symmetry from
SU(2) down to U(1). This sort of symmetry breaking is called the Wigner
Mode.

There are several other ways to break symmetry that are more relevant
to this chapter. Try standing a straight flexible rod upright and press down
on the top of it with a force F . Let’s assume that the rod remains straight for
some minimal force, but beyond some threshold force Fc the rod “buckles,”
and assumes a curved shape. The symmetry is broken, the rod is no longer
straight, but there are an infinite number of equivalent states corresponding
to the possible orientations of the rod. We can summarize this as follows:

1. A parameter (in this case F ) assumes some critical value. Beyond that
value,

2. the symmetric situation becomes unstable, and

3. the ground state is degenerate.

The second example is the ferromagnet. The atoms in a ferromagnet
interact through a spin-spin interaction

H = −
∑

i,j

JijSi · Sj

225
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which is a scalar and therefore invariant under rotations. The ground state
however, is one in which all the spins are aligned, and this is clearly not ro-
tationally invariant. The direction of spontaneous magnetisation is random,
and all the degenerate ground states may be reached from a given one by
rotation. The spontaneous magnetisation disappears at high temperature,
when the ground state becomes symmetric.

It is clear that the general situation here is the same as in our first exam-
ple, the relevant parameter here being T . These two examples exhibit what
is known as “spontaneous symmetry breaking. In both cases the system pos-
sesses a symmetry (rotation symmetry) but the ground state in not invariant
under that symmetry; rather, it changes into one of the other (degenerate)
ground states.

14.1 A Simple Example

Consider a classical self-interacting real scalar field φ with a Lagrangian
density

L =
1
2
(∂µφ)(∂µφ)− 1

2
µ2φ2 − 1

4
λφ4 (14.1)

We assume λ > 0 so that there is a finite minimum energy. This Lagrangian
is invariant under the discrete transformation

φ → −φ. (14.2)

There are two quite different cases depending on the sign of µ2. The po-
tential for µ2 > 0 has a single minimum, V (φ) = 0 at φ = 0. This point
corresponds to the ground state, so in quantum mechanical terms

〈φ〉0 = 〈0|φ|0〉 = 0

Expanding the Lagrangian about 〈φ〉0 to second order gives

L ≈ 1
2
(∂µφ)(∂µφ)− 1

2
µ2φ2 (14.3)

which is the Lagrangian density of a free scalar field of mass µ. The pertur-
bations induced by the φ4 term can be thought of as oscillations about the
origin.

Now consider the case µ2 < 0. Now the potential has minima at

〈φ〉0 = ±
√
−µ2

λ
≡ ±v. (14.4)
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Now there are two degenerate vacuum states. The minima at 〈φ〉0 = ±v are
equivalent and either may be chosen as the classical ground (vacuum) state
of the system. Once this choice has been made, the vacuum is no longer
invariant under the transformation (2). This is a new form of symmetry
breaking: the Lagrangian is invariant but the vacuum state is not. This
is called the Goldstone mode, spontaneous symmetry breaking, or hidden
symmetry.

Let’s choose
〈φ〉0 = +v. (14.5)

We can no longer do perturbation theory by expanding the Lagrangian about
〈φ〉0 = 0, since the slightest perturbation about this point would send the
system plunging down into one of the two minima. It makes more sense to
shift the field by defining

ξ(x) ≡ φ(x)− 〈φ〉0 = φ(x)− v. (14.6)

In terms of this new variable the vacuum state is 〈ξ〉0 = 0, and the La-
grangian density is (neglecting constant terms)

L = L0 − λvξ3 − 1
4
λξ4 (14.7)

We can think of the ξ3 and ξ4 terms as perturbations of the free-field La-
grangian

L0 =
1
2
(∂ξ)2 − λv2ξ2 (14.8)

which is the Lagrangian for a free scalar field with mass mξ =
√
−2µ2.

(Remember that µ2 < 0.)
This is a toy model, of course, but it illustrates many of the features of

spontaneous symmetry breaking as it manifests itself in quantum mechan-
ics.1

1. There is a nonzero expectation value of some field in the vacuum state.

2. The resulting classical theory has a degenerate vacuum, with the choice
among the equivalent vacuum states completely arbitrary.

3. The transition from a symmetric vacuum to a degenerate vacuum typ-
ically occurs as a phase transition as some order parameter (µ2 in the
example) is varied.

1I am copying almost verbatim from Mike Guidry, Gauge Field Theories John Wiley
& Sons (1991)



228 CHAPTER 14. SYMMETRY BREAKING

4. The chosen vacuum state does not possess the same symmetry as the
Lagrangian.

5. After we have expanded the Lagrangian around the chosen vacuum,
the original symmetry is no longer apparent. The degenerate vacua
are related to each other by symmetry operations, which tells us that
the symmetry is still there, but it is not manifest; it is hidden.

6. The masses of the particles appearing in the theory with and without
the spontaneous symmetry breaking may differ substantially. We say
that the masses have been acquired spontaneously in the latter case.

7. Once the theory develops degenerate vacua the origin becomes an un-
stable point. Thus the symmetry may be “broken spontaneously” in
the absence of external intervention.

14.2 Goldstone Bosons

The transformation (2) was discrete. The next generalization makes use of
a continuous global gauge transformation. For this we will need a complex
or non-Hermitian field. In previous chapters we used Hermitian scalar fields
for spin zero particles. In terms of second quantization, this means that the
particle is its own antiparticle. If the particle caries charge or some other
quantum number that is different for particles and antiparticles, then the
field must be non-Hermitian (as is the case with electron fields). Take the
Lagrangian to be

L = (∂µ)†(∂µφ)− µ2φ†φ− λ(φ†φ)2 (14.9)

The λ terms represents self interaction. Under normal circumstances, we
would regard µ as a mass. Here µ2 is just a parameter, since we are going to
make µ2 < 0. This Lagrangian is invariant under the group of global gauge
transformations,

φ(x) → φ′(x) = eiΛφ(x). (14.10)

Using polar coordinates ρ2 = φ†φ, we may identify a potential

V (ρ) = µ2ρ2 + λρ4. (14.11)

As before, set µ2 < 0. The minima now occur in the complex φ plane on a
circle of radius

|φ|2 =
−µ2

2λ
≡ a2 (14.12)
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The shape of the potential has been likened to a Mexican hat or perhaps the
bottom of a champagne bottle. There is now an infinity of degenerate ground
states, corresponding ro different positions on the ring of minima in the
complex φ plane, and the symmetry operation (10) relates one to another.
In the quantum theory, where φ becomes an operator, this condition refers
to the vacuum expectation value of φ.

|〈0|φ|0〉|2 = a2. (14.13)

We could choose any point in the minimum and expand the Lagrangian
about that point. For simplicity, we choose the real axis Re(φ) = a, and
expand around it to investigate the spectrum. It is convenient to work in
polar “coordinates”

φ(x) = ρ(x)eiθ(x), (14.14)

so the complex field φ is expressed in terms of two real scalar fields ρ and θ.
In quantum language, we choose the vacuum state

〈0|φ|0〉 = a (14.15)

where a is real; then

〈0|ρ|0〉 = a, 〈0|θ|0〉 = 0 (14.16)

Now let us put
φ(x) = [ρ′(x) + a]eiθ(x) (14.17)

We regard ρ′ and θ as “small” displacements from the point φ = a. Substi-
tute (17) into (9)and keeping only the quadratic terms gives

L = (∂µρ′)(∂µρ′)+(ρ′+a)2(∂µθ)(∂µθ)−4λa2ρ′2+O(ρ′3)+ constants (14.18)

The coefficient of the square of the field in a free-field Lagrangian is the
mass squared of the corresponding particle. In this case the ρ′ field has a
mass given by

m2
ρ′ = 4λa2 (14.19)

There is no term in θ2, so θ is a massless field. As a result of spontaneous
symmetry breaking, what would otherwise be two massive fields (the real
and imaginary parts of φ), become one massive and one massless field. The
difference between the two coordinates is easy to visualize. It requires no
energy to displace a particle in the θ direction, but it does cost energy to dis-
place ρ′ against the restoring force of the potential. The θ particle is known
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as a Goldstone boson. This phenomenon is general: spontaneous breaking
of a continuous symmetry entails the existence of a massless particle. This
is the Goldstone theorem.

Try the same thing in cartesian coordinates. Introduce two real fields φ1

and φ2.

φ = a +
φ1 + iφ2√

2
, (14.20)

so that the vacuum expectation values of both fields are zero. Then

L =
1
2
(∂µφ1)2+

1
2
(∂µφ2)2−2λa2φ2

1−
√

2λφ1(φ2
1+φ2

2)−
λ

4
(φ2

1+φ2
2)

2 (14.21)

The φ2 field is massless, but the φ1 has a mass squared of 4λa2, the same
as (19).

There is an analogy here to spin waves in a ferromagnet. Spin waves are
periodic variations in M . Because the forces in a ferromagnet are of short
range, it costs very little energy excite such a wave. Such a wave could carry
zero energy in the limit of infinite wavelength, i.e. it’s a massless excitation.

14.3 A More Abstract Look

There is a profound result regarding symmetries known as Noether’s theo-
rem, to the effect that there is a conserved current associated with each gen-
erator of a continuous symmetry. The proof is simple: consider a Lagrangian
composed of several fields, which we call φa. Our symmetry transformation
changes each field ay an infinitesimal δφa. since L does not change, we have

0 = δL =
δL
δφa

δφa +
δL

δ(∂µφa)
δ(∂µφa)

The equations of motion are

δL
δφa

= ∂µ
δL

δ(∂µφa)

so we can combine the two and get

0 = ∂µ

(
δL

δ(∂µφa)
δφa

)
(14.22)

If we define
Jµ ≡ δL

δ(∂µφa)
δφa (14.23)
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Then (22) says that ∂µJµ = 0. (We are also assuming that repeated a’s are
summed.) (We have already used this argument to get the electron current
in Dirac theory.)

To make this more concrete, imagine that the N fields make up a mul-
tiplet,

φ ≡




φ1

φ2
...

φN


 ,

and the Lagrangian contains terms like (∂φ)2 = (∂µφa)(∂µφa), and φ2 =
φaφa, arranged in the form

L =
1
2

[
(∂φ)2 −m2φ2

]− c2(φ2)2 − c3(φ2)3 − · · · (14.24)

(Unless otherwise stated, repeated indices are summed.) This Lagrangian
will be invariant under a “rotation,” φa → Rabφb, where R is a member of the
rotation group SO(N). (This is sometimes called an “internal symmetry.”)
We can write R = eiθ·X where the Xi are the group generators. Under a
infinitesimal transformation φa → Rabφb ≈ (1+θiXi)abφb, or in other words,
we have the infinitesimal change δφa = θiXi

abφb. Equation (23) assures us
that the N(N − 1)/2 currents

J i
µ = (∂µφa)Xi

abφb (14.25)

are conserved. So there is one conserved current, J i, for each of the N
generators of the symmetry group.

For every conserved current there is a conserved “charge”

Q ≡
∫

d3xJ0 =
∫

d3x
δL

δ(∂0φa)
δφa (14.26)

We notice that δL/δ(∂0φa) = πa, the canonically conjugate field. The equal-
time commutation relation then gives the elegant result

i[Q,φa] = δφa (14.27)

We are now in a position to prove the Goldstone theorem. The charges
defined by (26) are conserved, they are constant in time. Therefore,

[H, Q] = 0 (14.28)
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Let the vacuum (or ground state in quantum mechanics) be denoted by |0〉.
We can always write H|0〉 = 0. (The vacuum must be an eigenstate of the
Hamiltonian. If it should happen that H|0〉 = c, we could always redefine
the Hamiltonian H → H − c.) Normally the vacuum is invariant under the
symmetry transformation, eiθQ|0〉 = |0〉, or in other words Q|0〉 = 0.

In the previous examples, we had to choose a specific vacuum that was
not invariant under the symmetry transformation; i.e. Q|0〉 6= 0. So what is
this state, Q|0〉? Clearly, it’s a zero-energy eigenstate of the Hamiltonian.

HQ|0〉 = [H, Q]|0〉 = 0 (14.29)

I claim it corresponds to a massless particle. Consider the state

|ψ(k)〉 =
∫

d3xeik·xJ0(x, t)|0〉 (14.30)

We make use of the fact that the momentum operator P satisfies

[P , φ(x)] = −i∇φ(x), (14.31)

where φ(x) could be any field operator including J(x). Then

P |ψ(k)〉 =
∫

d3xeik·xPJ0(x, t)|0〉

=
∫

d3xeik·x[P , J0(x, t)]|0〉 = −i

∫
d3xeik·x∇J0(x, t)|0〉

Integration by parts then gives

P |ψ(k)〉 = k|ψ(k)〉 (14.32)

Evidentally |ψ(k)〉 describes a particle with momentum k. In the limit that
k goes to zero, (30) becomes

lim
k→0

|ψ(k)〉 = Q|0〉 (14.33)

We know from (29) that Q|0〉 is a state of zero energy. This relationship
between momentum and energy is the signature of a massless particle.

In general there will be as many conserved charges as there are generators
in the symmetry group. For each one of these charges that does not leave
the vacuum invariant, i.e. those for which Qi|0〉 6= 0, there will be one of
these massless Goldstone bosons.
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14.4 Non-Relativistic Field Theory

Field theory is necessary whenever particles are created and destroyed. This
is bound to happen at relativistic energies, but it can happen at very low
energy, if the “particles” represent some collective phenomena. Spontaneous
symmetry breaking can occur in solids and liquids. In fact, superconductiv-
ity and superfluidity are outstanding examples of the mechanism. In order
to study these examples, we will have to have a low-energy version of the φ4

theory discussed previously. Start with the Lagrangian

L = (∂Φ)†(∂Φ)−m2Φ†Φ− λ(Φ†Φ)2 (14.34)

When λ = 0 this gives the Kline-Gordon equation

(∂2 + m2)Φ = 0. (14.35)

We can turn this into Schrodinger’s equation as follows. Define

Φ = e−iωtϕ(x, t) (14.36)

∂Φ
∂t

= e−iωt

(
−im +

∂

∂t

)
ϕ

∂2Φ
∂t2

= e−iωt

(
−im +

∂

∂t

)2

ϕ

The low-energy approximation consists in setting ∂2ϕ/∂t2 = 0. Then (35)
becomes

−∇
2

2m
ϕ = i

∂ϕ

∂t
, (14.37)

which is Schrodinger’s equation.
The same technique works on the Lagrangian, but we must be careful

about the normalization.

Φ =
1√
2m

e−imtϕ(x, t) (14.38)

First note that

∂Φ†

∂t

∂Φ
∂t

−m2Φ†Φ =
1

2m

[
(im +

∂

∂t
)ϕ†(−im +

∂

∂t
)ϕ−m2ϕ†ϕ

]
(14.39)

≈ i

2

(
ϕ†

∂ϕ

∂t
− ∂ϕ†

∂t
ϕ

)
→ iϕ†∂0ϕ
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The last step required an integration by parts. The final result is

L = iϕ†∂0ϕ− 1
2m

∂iϕ
†∂iϕ− g2(ϕ†ϕ)2 (14.40)

where g2 = λ/4m2. (Relativistic is beautiful. Non-relativistic is ugly.)
It’s often useful to write the fields in terms of polar coordinates.

ϕ =
√

ρeiθ (14.41)

The Lagrangian is

L =
i

2
∂0ρ− ρ∂0θ − 1

2m

[
ρ(∂iθ)2 +

1
4ρ

(∂iρ)2
]
− g2ρ2 (14.42)

ρ and θ should be thought of as independent fields, just like ϕ and ϕ†. In
this case the canonical momentum is

δL
δ(∂0θ)

= −ρ, (14.43)

so the equal-time commutation relation is

[ρ(x, t), θ(x′, t)] = iδ(x− x′) (14.44)

We can normalize the wave function so that

N =
∫

ρ(x, t) dx = number of bosons (14.45)

then
[N, θ] = i (14.46)

In other words, number is conjugate to phase angle.
What sort of interactions do these Lagrangians describe? There is a hint

in (42). The interaction Hamiltonian is

Hint = −Lint = g2ρ2

Since ρ represents the density of bosons, we can see that packing bosons
together costs energy, i.e. bosons repel regardless of the sign of λ. We
can learn more about this with a complicated argument from Zee I.3. Let’s
use the generating functional formalism from Fall quarter to calculate the
propagator for a Lagrangian such as (34). Look at

Z =
∫

D[Φ]ei
R

d4xL(Φ) (14.47)
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Last quarter you proved that

∏

i

∫
dxi e

i
2

x·A·x+iJ ·x =
(

(2πi)N

det[A]

)1/2

e−
i
2

J ·A−1·J (14.48)

We learned to generalize equations such as this by replacing the coordinates
with fields.

∫
D[ϕ]ei

R
d4x( 1

2
ϕ·A·ϕ+J ·ϕ) ∝ e−

i
2

R
d4x J ·A−1·J (14.49)

Our strategy will be to introduce a new “auxiliary” field called σ which has
the effect of transmitting the repulsive between the bosons. To see how this
works, make the following substitutions in (49):

J → 2ΦΦ† ϕ → σ A → 2/λ

Then

1
2
ϕ ·A · ϕ + J · ϕ → σ2/λ + 2σΦΦ† − 1

2
J ·A−1 · J → 2σΦΦ†

The identity (49) becomes
∫

D[σ]ei
R

d4x[2σΦΦ†+σ2/λ] = e−i
R

d4xλ(ΦΦ†)2 (14.50)

The right side of (50) contains the boson interaction term λΦΦ†, the left
side represents a σ “particle” coupling to the Φ. Using this in (47) gives

Z =
∫

D[φ]D[σ] exp
{

i

∫
d4x[(∂Φ)2 −m2Φ2 + 2σΦΦ† + σ2/λ]

}
(14.51)

To put it another way, we have a new Lagrangian2

L = (∂Φ)2 −m2Φ2 + 2σΦΦ† + σ2/λ (14.52)

It contains a scalar Φ particle obeying the Klein-Gordon equation. We know
that the exchange of such a particle will produce a force of range ∼ m−1. It
is coupled to a σ particle via the 2σΦΦ† term, so presumably the exchange
of a σ will produce a force between two Φ’s, although it’s not clear at this

2Zee calls the transition from (47) to (52) the Hubbard-Strantonovic transformation.
I will have to take his word for it.
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point what the range and sign may be. To determine these things I will first
review Zee’s argument from Section I.3-4 regarding the Φ.

Introduce the Fourier transform

Φ(x) =
∫

d4p

(2π)2
e−ipxΦ̃(p). (14.53)

Then ∫
d4x [(∂Φ)2 −m2Φ2] =

∫
d4p Φ̃2(p)(p2 −m2) (14.54)

We have learned to extract the propagator from this integral. The argument
briefly is this:

Z[J ] = Z[0]eiW [J ] = 〈0|e−iH(T−T ′)|0〉 (14.55)

W [J ] = −1
2

∫
d4xd4yJ(x)J(y)D(x− y) (14.56)

D(x− y) =
∫

d4p

(2π)4
eip(x−y)

p2 −m2 + iε
(14.57)

Let’s put two delta function sources in (56) and see how they affect one
another.

J(x) = δ(3)(x− x1) + δ(3)(x− x2)

W [J ] will contain terms with δ(3)(x−x1)δ(3)(y−x2) and δ(3)(x−x2)δ(3)(y−
x1) representing the interaction between the two sources. Substitute them
into (56)

W = −
∫

dx0

∫
dy0

∫
dp0

2π
eip0(x−y)0

∫
d3p

(2π)3
eik·(x1−x2)

k2 −m2 + iε

Integrate over y0 to get δ(p0), then integrate over p0.

W =
∫ T/2

−T/2
dx0

∫
d3k

(2π)3
eik·(x2−x1)

k2 + m2
(14.58)

Have another look at (55). It seems that 〈0|e−iHT |0〉 ought to be some-
thing like e−iET where E is the energy due to the presence of the two sources
acting on one another. Since this is just a qualitative argument that should
do for now. In this spirit then −iRT = iW . (58) gives us

E = −
∫

d3k

(2π)3
eik·(x2−x1)

k2 + m2
(14.59)
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This contains two great truths: (1) a negative potential means an attractive
force, and (2) the range of the force is ∼ 1/m. The integral can be done
easily. The result is

E = − 1
4πr

e−mr. (14.60)

Now go back to the Lagrangian (52). We have just analyzed the free Φ
field, and the interaction term speaks for itself, but what are we to make of
the free σ field? There is nothing in the Lagrangian but σ2/λ. Let’s repeat
the steps from (52) to (57)

σ(x) =
∫

d4p

(2π)2
e−ipxσ̃(p) (14.61)

∫
d4x

1
λ

σ2(x) =
1
λ

∫
d4pσ̃2(p) (14.62)

Compare this with (54). The momentum space propagator is simply +λ.
The Fourier transform of this is the delta function. The force is repulsive
and zero-range.

14.5 Spontaneous Breaking of Local Symmetry

The situation is quite different when the broken symmetry is a local or gauge
symmetry. Let’s revisit the model from equations (9) and (10), this time
with the transformation

φ → eiΛ(x)φ. (14.63)

We discussed this in the chapter on quantum electrodynamics. The La-
grangian will remain invariant only if there is an additional massless field
Aµ. Moreover, this field must appear in the Lagrangian through the replace-
ment

∂µ → ∂µ + ieAµ, (14.64)

and in the kinetic energy term −1
4FµνFµν , where Fµν = ∂µAν − ∂νAµ.

Substituting this into (9) gives

L = [(∂µ + ieAµ)φ]†[(∂µ − ieAµ)φ]− µ2φ∗φ− λ(φ∗φ)2 − 1
4
FµνF

µν (14.65)

As before, we treat φ as a complex classical field and µ2 as a parameter that
can be positive or negative.
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The equations of motion for the Aµ field can be found from the Euler-
Lagrange equations

∂µ
δL

δ(∂µAν)
− δL

δAν
= 0 (14.66)

The resulting equation is

2Aν − ∂ν(∂µAµ) = jν (14.67)

where
jν = iq

[
φ†∂νφ− (∂νφ†)φ

]
− 2q2φ†φAν (14.68)

For the time being, I will use the Lorentz gauge condition ∂µAµ = 0. If we
take φ to be real with constant value

φ =
√

ρ̄ (14.69)

a simple result emerges.

2Aµ = jµ = −2q2ρ̄Aµ, (14.70)

which is the equation for a free vector particle of mass M =
√

2ρ̄q. Consider
for a moment the static case. (70) becomes

∇2B = M2B (14.71)

In one dimension this would give

B = B0e
−Mx. (14.72)

In other words, the magnetic field is screened out by the currents. We
might say that the magnetic field has developed a “mass.” This is the origin
of the Meisner effect in superconductors. The boson field φ is a coherent
many-body wave function consisting of Cooper pairs.

How could this be relevant to particle physics? What is there in free
space that is like the Bose-Einstein condensate in a superconductor? Per-
haps an analogy will help. Maxwell noticed that in some sense, something
like current flows between the plates of a capacitor when it is charging or
discharging. He therefore postulated a displacement current

Jd =
∂E

∂t
.
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Is there really a current flowing between the plates? It depends on what you
mean by “really.” In the same sense we will postulate vacuum screening cur-
rents. They come about through the mechanism of spontaneous symmetry
breaking.

In the second-quantized version of quantum field theory, we represent
the field operators in terms of creation and annihilation operators.

φ̂ =
∫

d3k√
(2π)32ωk

[e−ikxâ(k) + eikxâ†(k)] (14.73)

with the understanding that

〈0|â(k)|0〉 = 〈0|â†|0〉 = 0 (14.74)

i.e. the vacuum is the state in which there are no particles. (I am temporar-
ily using “hats” to emphasize that we are dealing with operators rather than
classical fields.) In the path integral formulation, the vacuum was regarded
as the lowest energy state, cf. Section 2.4. The two are not necessarily the
same thing. In superconductors, for example, the ground state is one in
which all the Cooper pairs are in their lowest energy state. It would not
make sense to represent this state with a field operator of the form (73). It
is at least plausible under these circumstances that 〈0|φ̂|0〉 6= 0. The generic
classical φ4 Lagrangian (65) we have been considering is a phenomonolog-
ical model for such systems. If −µ2 is taken as a positive parameter, the
minimum energy state appears at |φ| = a, where

a =

√
−µ2

2λ
(14.75)

In polar form, the ground state wave function is

φ̂ = |φ̂|eiθ̂(x). (14.76)

Any phase is possible, the Lagrangian is still symmetric, but the system
will choose some vacuum, and this will break or hide the symmetry. The
most familiar example of this symmetry breaking is the ground state of a
ferromagnet below the transition temperature. The spin-spin interaction is
invariant under rotation, but once the spins have “decided” to align them-
selves in one particular direction, the symmetry is apparently broken.

Let us assume then along with the high-energy physics community, that
there is some field φ̂ called the Higgs field that fills space and has a non-zero
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vacuum expectation value. We choose the vacuum phase θ = 0. In the
vicinity of this point we can write

φ̂ = a + ĥ (14.77)

The implication is that 〈0|φ̂|0〉 = a is a constant given by (75), and ĥ is a
quantum field. Inserting (77) into (67) (with ∂µÂµ = 0) gives

2Âµ = −2q2a2Âµ + terms depending on h (14.78)

Compare with (70), the photon has acquired a mass M =
√

2q2a2.
This argument seems to depend on the gauge condition ∂µÂµ = 0, so

we have lost gauge invariance. Can we have our mass and gauge invariance
too? To answer this question, first combine (76) and (77) so that

φ̂ = aeiθ̂(x) + terms depending on ĥ (14.79)

and substitute into the operator forms of (67) and (68)(again ignoring ĥ).

2Âµ − ∂ν(∂µÂµ) = −2q2a2(Âν + q−1∂ν θ̂) (14.80)

Let’s define
Âν → Â′ν = Âν + q−1∂ν θ̂ (14.81)

This is just a gauge transformation after all, and we know that the left side
of (80) is gauge invariant, so

(2−M)Â′ν − ∂ν(∂µÂ′µ) = 0. (14.82)

Differentiating with respect to ∂ν reveals

∂νÂ
′ν = 0, (14.83)

so we can have our proverbial cake and eat it too.

(2 + M2)Â′ν = 0 (14.84)

Gauge transformations are customarily written

Âµ → Â′µ = Âµ − ∂µχ̂µ, (14.85)

so we have simply chosen the gauge χ̂ = −θ̂/q.
Conclusions:
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• Setting θ = 0 in (76) breaks the rotational symmetry of the theory
but it does not break gauge invariance, because any choice of θ can be
compensated by an equivalent gauge transformation of Aµ.

• By allowing the photon to interact with a scalar field with a non-zero
vacuum expectation value, we enable the photon to acquire a mass.

So far, we have only looked at the free-particle component of the theory.
We can get an idea of the interactions by substituting the complete form of
(77) into (68).

(2 + M2)Âν = −4q2aĥÂν − 2q2ĥ2Âν (14.86)

There is no such thing as a relativistic superconductor, of course, this ex-
ample is only intended to illustrate the ideas behind the Higgs mechanism.
Equation (86) is intended to illustrate one final point. There is a new par-
ticle, the ĥ or Higgs boson, and it couples to the photon field in a specific
way. The mechanism not only produces the mass, it decides the form of the
interaction.

Suppose we did not set θ̂ = 0 but kept it around as an additional particle?
This would change the equations of motion and hence the propagator. This
is not necessarily a bad thing, because the renormalization properties of
the theory are more transparent with other choices of the gauge function θ̂.
This is the key to the remarkable fact that gauge theories are renormalizable.
This a technical issue that will not be covered in these lectures.

In the absence of the gauge field, the vacuum is at

|φ| = a =
(−µ2

2λ

)
(14.87)

As in (20) we introduce two real fields φ1 and φ2 and substitute into (36).
Keeping only the quadratic terms, we have

L = −1
4
FµνF

µν + e2a2AµAµ +
1
2
(∂µφ1)2 +

1
2
(∂µφ2)2

−2λa2φ2
1 +

√
2eaAµ∂µφ2 + · · · (14.88)

Now it appears from the second term that the photon has developed a mass
m2 = e2a2. The φ1 field has a mass, and φ2, the Goldstone boson, is
massless, but it couples to the “photon” with a derivative coupling. This
suggests that the photon could simply turn itself into a φ2. Let’s count the
degrees of freedom. Originally we had
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2 (complex scalar field)
+2 (transverse field for massless photon)

4

After the spontaneous symmetry breaking we have

1 (φ1, a massive scalar field)
1 (φ2 a massless scalar field)

+3 (massive vector field Aµ)
5

Something is wrong. A degree of freedom seems to have been gained in the
spontaneous symmetry breaking. This is an illusion, as can be make obvious
by an appropriate change of gauge. The φ2 field, however, can be removed
by means of a gauge transformation. Putting an infinitesimal Λ in (34) gives

φ′1 = φ1 − Λφ2

φ′2 = φ2 + Λφ1 +
√

2Λa (14.89)

We can always choose Λ so that φ′2 = 0. This will affect the higher-
order terms, of course, but for the moment we are only concerned with
the quadratic terms. Simply set φ2 = 0 in (38)

L = −1
4
FµνF

µν + e2a2AµAµ +
1
2
(∂µφ1)2 − 2λa2φ2

1 + · · · (14.90)

There are now only two fields. A massive spin-one “photon” and a massive
scalar field, the φ1. The Goldstone boson has disappeared. This is called
the Higgs mechanism.



Chapter 15

LNAGS and the Standard
Model

These notes are intended to summarize the last few lectures on local non-
abelian gauge fields (LNAGS) and the standard model. They will not be a
substitute for your own careful notes.

We have been considering the consequences of the transformation

ψ → ψ′ = eigτ ·α/2ψ (15.1)

Here τ represent the three Pauli spin matrices, here interpreted as isospin
operators, and ψ represents some generic two-component spinor. The La-
grangians we have used all have the “kinetic energy” term

(∂µψ)†(∂µψ) (15.2)

In order to keep (2) invariant under the transformation (1), desperate mea-
sures are called for. We need to introduce a triplet of massless spin-one
fields

W µ = (Wµ
1 , Wµ

2 ,Wµ
3 ), (15.3)

and construct with them the “covariant derivative”

Dµ = ∂µ + igτ ·W µ/2 (15.4)

These fields must satisfy additional constraints so that

D′µψ′ = eigτ ·α(x)/2Dµψ (15.5)

One consequence of these constraints is that the W µ fields interact with
themselves. As a practical measure, we can derive the correct Lagrangian

243
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and equations of motion by simply replacing ∂u → Dµ wherever it appears.
The Lagrangian also has to be modified by the addition of the “free-particle”
energy1

Fµν = ∂µWν − ∂νWµ − gWµ ×Wν (15.6)

15.1 Spontaneously broken global SU(2) symme-
try

The W particles will eventually acquire a mass via the Higgs mechanism.
Let us first see how the massless precursors of the W ’s arise as goldstone
bosons from spontaneously broken local SU(2) symmetry. We consider an
SU(2) doublet, not of fermions this time, but of bosons.

φ =
(

φ+

φ0

)
=

(
(φ1 + iφ2)/

√
2

(φ3 + iφ4)/
√

2

)
(15.7)

If these are interpreted as particle creation and annihilation operators, φ+

destroys a positive particle or creates a negative antiparticle, whereas φ−

destroys a neutral particle or creates a neutral antiparticle.
The Lagrangian we choose is the generic “phi to the fourth” interaction

L = (∂µφ†)(∂µφ) + µ2φ†φ− λ

4
(φ†φ)2 (15.8)

This has a classical minimum at

(φ†φ)min = 2µ2/λ ≡ v2/2, (15.9)

which we interpret as a condition on the vacuum expectation value of φ†φ

〈0|φ†φ|0〉 = v2/2 (15.10)

Notice that (8) is invariant under the transformation (1) and also under a
separate global U(1) transformation

φ → φ′ = e−iyαφ, (15.11)

where α is separate from α = (α1, α2, α3). The constant y is included for
later use. It will stand for the weak hypercharge. The full symmetry is then
referred to as SU(2)× U(1).

1“Free-particle” is in quotes because the particles are still interacting with themselves.
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There are infinitely many ways of implementing (10), all summarized by
the equation,

〈0|φ†φ|0〉 = 〈0|(φ2
1 + φ2

2 + φ2
3 + φ2

4)|0〉 = v2. (15.12)

There is an important subtlety here. We have to choose 〈0|φi|0〉 6= 0 for
at least one of the fields φi. Since there are four independent symmetry
transformation that leave the Lagrangian invariant, we expect four massless
fields. It is inevitable, however, that any choice we make will be invari-
ant under one of these four transformations, and hence the corresponding
particle will remain massive. We choose

〈0|φ|0〉 =
(

0
v/
√

2

)
. (15.13)

In this case the vacuum remains invariant under the combined transforma-
tion of the third component of the SU(2) transformation (1) plus the U(1)
transformation (11)

(1/2 + t3)〈0|φ|0〉 = 0 (15.14)

and hence

〈0|φ|0〉 → 〈0|φ|0〉′ = exp[iα(1/2 + t3)]〈0|φ|0〉 = 〈0|φ|0〉 (15.15)

As usual t3 = τ3/2. I am using lower case t for weak isospin. The point is
that the vacuum is invariant under (15) so the corresponding field will not
acquire a mass.

We now need to consider oscillations about (10) in order to see the
physical particle spectrum. We parameterize these as

φ = exp(−iθ(x) · τ/2v)
(

0
(v + H(x))/

√
2

)
(15.16)

Now φ is invariant under the SU(2) gauge transformations, and clearly
setting θ = 0 is such a transformation, so consider it done and write

φ =
(

0
(v + H(x))/

√
2

)
(15.17)

As a consequence of the gauge symmetry (11), the Lagrangian will con-
tain an additional massless vector field, which we call Bµ. Our Lagrangian
now is

L = (Dµφ)†(Dµφ) + µ2φ†φ− λ

4
(φ†φ)2 − 1

4
Fµν · F µν − 1

4
GµνG

µν (15.18)
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where
Dµ = ∂µ + igτ ·W µ/2 + ig′yBµ/2 (15.19)

Gµν = ∂µBν − ∂νBµ (15.20)

and Fµν is given by (6). Substitute (19), (6), and (20) into (18) and keep
only terms that are quadratic in the fields. We find

L =
1
2
(∂µH)(∂µH)− µ2H2

−1
4
(∂µW1ν − ∂νW1µ)(∂µW ν

1 − ∂νWµ
1 ) +

1
8
g2v2W1µWµ

1

−1
4
(∂µW2ν − ∂νW2µ)(∂µW ν

2 − ∂νWµ
2 ) +

1
8
g2v2W2µWµ

2

−1
4
(∂µW3ν − ∂νW3µ)(∂µW ν

3 − ∂νWµ
3 )− 1

4
GµνG

µν

+
1
8
v2(gW3µ − g′Bµ)(gWµ

3 − g′Bµ) (15.21)

The fields W3 and B are mixed in a way that suggests that neither of
them are real physical fields. They can be unmixed by introducing

Zµ = cos θW Wµ
3 − sin θW Bµ (15.22)

and
Aµ = sin θW Wµ

3 + cos θW Bµ (15.23)

The resulting Langrangian is

L =
1
2
∂µH∂µH − µ2H2

−1
4
(∂µW1ν − ∂νW1µ)(∂µW ν

1 − ∂νWµ
1 ) +

1
8
g2v2W1µWµ

1

−1
4
(∂µW2ν − ∂νW2µ)(∂µW ν

2 − ∂νWµ
2 ) +

1
8
g2v2W2µWµ

2

−1
4
(∂µZν − ∂νZµ)(∂µZν − ∂νZµ) +

1
8
v2(g2 + g′2)ZµZµ− 1

4
FµνF

µν (15.24)

where
Fµν = ∂µAν − ∂νAµ (15.25)

and
tan θW = g′/g (15.26)
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This is the “free-particle” Lagrangian for the vector fields. Now that
the smoke has cleared, we see the consequences of our various maneuvers.
The three W particles that were initially massless have acquired masses,
although W3 has done so by mixing with the B particle. We are left with
a single massless particle, the A, which we identify with the photon. The
masses and coupling constants can be read off the Lagrangian. This is left
as an exercise.

Anyhow, these are the “messenger particles.” But whose messages do
they carry? The answer, of course, is the leptons and quarks. How they fit
in is the subject of the next section.

15.2 Quarks and Leptons

The Dirac Langrangian is

L = ψ̄(i∂µγµ −m)ψ (15.27)

Because of our gauge hypothesis we must replace ∂µ → Dµ where Dµ is
given by (19), but now ψ is a two component object containing the rele-
vant fermion fields. We have discussed weak interaction processes in which
leptons scattered from leptons and those in which leptons scattered from
quarks. Our new Lagrangian should include both processes, so we must
construct ψ’s with both quarks and leptons. We have in hand several clues
to help us do this.

• The ψ’s should transform as doublets under the weak isospin group
SU(2)W .

• Leptonic transitions associated with charged currents change leptons
into neutrinos and vice versa. For example, νe ↔ e or νµ ↔ µ. This
suggests that these should be doublets of the group.

• We also talked about the quark doublet,

q =
(

u
dc

)
=

(
u

d cos θc + s sin θc

)
, (15.28)

where θc is the Cabibo angle.

• Consider a process like e++d → νe+u resulting from the exchange of a
W+. The current that raises the quark charge from down (q = −1/3)
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to up (q = 2/3) is

Jµ =
g√
2

q̄γµ

(
τ+

2

)
1
2
(1− γ5)q (15.29)

=
g√
2

ūLdL cos θc +
g√
2

ūLsL sin θc

The 1
2(1 − γ5) projects out the left-handed parts of the quark wave

functions
1
2
(1− γ5)q ≡ qL (15.30)

So far as we know, there is no process that connects right and left-
handed states, so we can write

J+µ =
g√
2

q̄Lγµ

(
τ+

2

)
qL (15.31)

We can combine charge raising, charge lowering and neutral-current
terms by defining the operators

τ±

2
=

σ1 ± iσ2

2
τ0

2
=

σ3

2
(15.32)

With this, (31) can be written more compactly as

Jαµ =
g√
2

q̄Lγµ τα

2
qL, (15.33)

which also includes the neutral-current contribution.

Here then is the family portrait.

leptons
(

νe

e−

)

L

(
νµ

µ−

)

L

(
ντ

τ−

)

L

(15.34)

quarks
(

u
dc

)

L

(
c
sc

)

L

(
t
bc

)

L

(15.35)

The subscript “c” on the d, s, and b remind us that these are not pure
quark states, but rather they are mixed according to a scheme that we
haven’t time to discuss. The symbols that appear in these arrays stand for
the Dirac spinors u and v with the left-handed parts projected out. For
example “e−” stands for 1

2(1− γ5)ue(k, λ). (λ is the spin index.)
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The couplings of the gauge fields to these left-handed doublets is given
simply by

Lint = iψ̄′Dµγµψ (15.36)

where ψ and ψ′ stand for any of the doublets in (34) and (35), and Dµ is
given by (19). There is a technical point regarding the W ’s however. W1 and
W2 are real fields, and as such they don’t represent the physical particles.
The real charged particles are given by

W± =
W1 ± iW2√

2
(15.37)

The
√

2 in the denominator is an indirect consequence of the normalization
we chose in (7). As a consequence, the vertex factor that appears whenever
a W couples to a quark or lepton is

−i
g√
2
γµ 1− γ5

2
(15.38)

Still unaccounted for are the right-handed components of the fermion
fields. There is at present no evidence for any weak interactions coupling
the the right-handed field components and it is therefore natural that all ‘R’
components are singlets under the weak isospin group. The ‘R’ components
do interact via the U(1) field Bµ: it is this that allows electromagnetism
to emerge free of parity violating γ5 terms. Just for the record then, the
right handed fields are eR, µR, τR, uR, dR, sL, cR, tR, and bR, all with weak
isospin, t = 0. We will not have time this quarter to consider any of the
interactions of these fields.


