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Introduction and overview

Quantum mechanics is our most successful physical theory. It underlies our very
detailed understanding of atomic physics, chemistry, and nuclear physics, and the
many technologies to which physical systems in these regimes give rise. Addi-
tionally, relativistic quantum mechanics is the basis for the standard model of ele-
mentary particles, which very successfully gives a partial unification of the forces
operating at the atomic, nuclear, and subnuclear levels.

However, from its inception the probabilistic nature of quantum mechanics, and
the fact that “quantum measurements” in the orthodox formulation appear to re-
quire the intervention of non-quantum mechanical “classical systems,” have led to
speculations by many physicists, mathematicians, and philosophers of science that
quantum mechanics may be incomplete. Among the Founding Fathers of quantum
theory, Einstein and Schrodinger were both of the opinion that quantum mechanics
is in some way unsatisfactory, and this view has been amplified in more recent pro-
found work of John Bell, among others. In an opposing camp, many others in the
physics, mathematics, and philosophy communities have attempted to provide an
interpretational foundation in which quantum mechanics remains a complete and
self-contained system. Among the Founding Fathers, Bohr, Born, and Heisenberg
maintained that quantum mechanics is a complete system, and a number of re-
cent proposals have been made to improve upon or to provide alternatives to their
“Copenhagen Interpretation.” The debate continues, and has spawned an enormous
literature. While it is beyond the scope of this book to give a detailed review of all
the proposals that have been made, to set the stage we give a brief discussion of the
measurement problem in Section 1, and we survey some of the current proposals
to revise the interpretational foundation of quantum mechanics in Section 2.

The rest of this book, however, is based on the premise that quantum mechan-
ics is in fact not a complete system, but rather represents a very accurate asymp-
totic approximation to a deeper level of dynamics. Motivations for pursuing this
track are given in Section 3. The detailed proposal to be developed in this book
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is that quantum mechanics is not a complete theory, but rather is an emergent
phenomenon arising from the statistical mechanics of matrix models that have a
global unitary invariance. We use “emergent” here in the sense that it is used
in condensed matter, molecular dynamics, and complex systems theory, where
higher level phenomena (phonons, superconductivity, fluid mechanics, etc.) are
seen to arise or “emerge” as the expressions, in appropriate dynamical contexts,
of an underlying dynamics that at first glance shows little resemblance to these
phenomena. Initial ideas in this direction were developed by the author and col-
laborators in a number of papers dealing with the properties of what we termed
“generalized quantum dynamics” or, in the terminology that we shall use in this
exposition,“trace dynamics.” The purpose of this book is to give a comprehensive
review of this earlier work, with a number of significant additions and modifica-
tions that bring the project closer to its goal. We shall also relate our proposal
to a substantial body of literature on stochastic modifications of the Schrédinger
equation, which we believe provides the low energy phenomenology, expressed
in terms of experimentally accessible observables, for the pre-quantum dynamics
that we develop here. A quick overview of what we intend to accomplish in the
subsequent chapters is given in Section 4, and some brief remarks on the history
of this project are given in Section 5.

Certain sections of this book are more technical in that they involve some knowl-
edge of supersymmetry techniques and, although included for completeness, are
not essential to follow the main line of development; these are marked with an as-
terisk (*) in the section head. The exposition of the text is based on dynamical vari-
ables that are matrices in complex Hilbert space, but many of the ideas carry over
to a statistical dynamics of matrix models in real or quaternionic Hilbert space, as
sketched in Appendix A. Discussions of other topics needed to keep our treatment
self-contained are given in further appendices, and our notational conventions are
reviewed in the introductory paragraphs preceding Appendix A.

1 The quantum measurement problem

Quantum mechanics works perfectly well in describing microscopic phenomena,
and even in describing phenomena in which many particles act coherently in one
or a small number of quantum states, as in Bose—Einstein condensates, superfluids,
and superconducting Josephson junctions. Conceptual problems arise only when
one tries to apply the rules of quantum mechanics simultaneously to a microscopic
system and to the macroscopic apparatus that is measuring the state of the mi-
croscopic system; this is the origin of the notorious “quantum measurement prob-
lem.” We shall give here a simplified, “bare bones” description of the measurement
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problem, taking as an example a variant of the familiar Stern—Gerlach experiment.
(For a selection of papers on the measurement problem, see the reprint volume
Wheeler and Zurek, 1983.)

Consider a source emitting spin-1/2 particles with polarized spins, so that all
particles have spin component up along the x axis; that is, the initial beam is in
a state with Sy = 1/2. (We shall see in a moment how this is accomplished in
practice.) The particles then go through an inhomogeneous magnetic field aligned
along the z axis, which splits the beam into two spatially displaced components,
corresponding to components of the beam with spin component S, = 1/2 and
S, = —1/2, as shown in Fig. 1a. The quantum mechanical description of what has
happened so far is simply the spin state decomposition (with appropriate phase
conventions)

1S, =1/2) = %asz = 1/2) 1S, = —1/2)). (1a)
At this point no measurement has been made; if we pass the split beams through
a second inhomogeneous field with the direction of inhomogeneity reversed, as in
Fig. 1b, and devote great care to the isolation of the beams from environmental in-
fluences, the two components of the beam merge back into one and what emerges
from the combined apparatus is the original state |S, = 1/2). (An analysis of is-
sues involved in achieving spin coherence, and further references, are given in
Sculley, Englert, and Schwinger, 1989.)

To make a measurement, one must intercept one or both beams with a macro-
scopic measuring apparatus that absorbs the beam and registers a count in some
form. When the measuring apparatus A intercepts both beams, we get the con-
ventional Stern—Gerlach setup pictured in Fig. 1c. This is described, in the von
Neumann (1932) model of measurement, by the evolution of the initial state
|Sy = 1/2)|Ainitia]) into a state in which the measured system and the apparatus
are entangled

1
V2

where |A4) is an apparatus state with a count shown on the upper counter and
none on the lower counter, while |A_) is an apparatus state with a count shown on
the lower counter and none on the upper counter.

Once an apparatus intervenes in this way, two salient features become apparent.
The first is that it is impossible in practice to coherently recombine the total sys-
tem consisting of beam and apparatus so as to regain the initial state |S, = 1/2).
This feature, that the two legs of the apparatus have decohered, can be understood

(1S; = 1/2)|A4) + 1S = —=1/2)|A-)), (1b)
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within the framework of quantum mechanics: since the apparatus state is a com-
plex, large system, reversing the joint evolution of beams and apparatus with suf-
ficient accuracy to preserve interference requires an unachievable control over the
apparatus state. This is all the more so because in general the apparatus is in in-
teraction with an external environment, into which phase coherence information is
rapidly dissipated, making a coherent recombination of the beams a practical im-
possibility. In density matrix language, the off-diagonal components of the density
matrix, when traced over the internal states of the apparatus and the environment,
rapidly vanish because of decoherence effects, leaving just diagonal components
that represent the probabilities for seeing the apparatus register an up or a down
S, spin component. (For further discussions of decoherence theory, see Harris and
Stodolsky, 1981; Joos and Zeh, 1985; Zurek, 1991; and Joos, 1999.)

The second salient feature is that while there are definite probabilities for the ap-
paratus to register a spin up or a spin down component, the outcome of any given
run of a particle through the apparatus cannot be predicted; part of the time it regis-
ters in the “up” counter, and part of the time it registers in the “down” counter. (In
the above example, the probabilities for registering “up” and “down” are both 1/2,
but for general orientations of the apparatus axis the probabilities will be sin” 6 /2
and cos? #/2, with 6 the angle by which the inhomogeneous magnetic field is ro-
tated with respect to the x axis.) This unpredictability of individual outcomes is
the origin of the quantum measurement problem. If we maintain that quantum me-
chanics should apply to both the particle passing through the apparatus and to the
measuring apparatus itself, then the final state at time ¢ is described by a unitary
evolution U = exp(—i Ht) applied to the initial state, and this describes a superpo-
sition as in Eq. (1b), not an either—or choice between outcomes that are described
by orthogonal states in Hilbert space. Since environmental decoherence effects still
involve a unitary evolution (in an enlarged Hilbert space describing the system, ap-
paratus, and environment), they cannot account for this either—or choice observed
in the experimental outcomes. (See Adler, 2003b for a more detailed discussion of
this point, and for extensive literature references. For an opposing viewpoint, see
the review of Zurek, 2003.)

It is not necessary for the apparatus to intercept both beams for a measurement
problem to be apparent. Consider the apparatus illustrated in Fig. 1d, which in-
tercepts only the “down” leg of the experiment. If the particles are gated into the
apparatus at definite time intervals, then a count on the “down” meter indicates that
a particle has been detected there, and subsequent downstream measurements in
the “up” leg will detect no particle there. If there is no count on the “down” meter
(i.e., a “down” meter anti-coincidence), then one can say with certainty that the
particle has passed through the “up” leg of the apparatus and is in a polarized state
|S; = 1/2); this is how one produces a polarized beam. Decoherence accounts for
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Figure 1 Beam paths through variants of the Stern-Gerlach experiment. Where
the beams separate or recombine, there are magnetic fields that are not shown. a.
Spin up and down components are separated and continue to propagate. b. Spin
up and down components are separated, propagate, and then are coherently re-
combined. c. Spin up and down components are separated and each impinges on
a detector. d. Spin up and down components are separated, the down component
impinges on a detector, while the up component continues to propagate, produc-
ing a spin up polarized beam.

the fact that we cannot in practice reconstitute the original state |S, = 1/2), but it
cannot account for the stochastic pattern in which polarized particles emerge from
the “up” leg of our apparatus.

There are two conventional ways to try to avoid the measurement dilemma just
stated. The first is to assert that quantum mechanics has only a statistical interpre-
tation, and should only be applied to describe the statistical properties of multiple
repetitions of an experiment, but not to any individual run. However, with the ad-
vent of our ability to trap individual particles for long periods, and to manipulate
their quantum states (e.g., the particle emerging from the “up” beam in Fig. 1d
could be run into a trap, and manipulated there), this interpretation of quantum me-
chanics becomes dubious. The second is to adopt the Copenhagen interpretation,
and to state by fiat that the unitary state vector evolution of quantum mechanics
does not apply to measurement situations. One then adds to the unitary evolution
postulate a second postulate, that of state vector reduction, which states that after a
measurement one sees a unit normalized state corresponding to the measurement
outcome | ), with a probability given by the Born rule Py = [{ f |W)|? as applied
to the initial state | W) being measured.

While perfectly consistent for all experiments that have been performed to date,
the Copenhagen interpretation is at odds with the our belief that quantum mechan-
ics should have universal applicability, and should describe the behavior of large
systems (such as a measuring apparatus) as well as microscopic ones. It also has
the bizarre feature of erecting a probabilistic theory, without an underlying sample
space of individual events, the coarse-grained behavior of which is described by the
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probabilities. In all other applications of probability theory, probabilities emerge
from the fact that one cannot observe, or chooses not to observe, individual details
which deterministically specify the outcomes. Quantum mechanics is unique in
that probabilities (or in some formulations, expectation values) are introduced as a
postulate, without emerging by some well-defined rule from an underlying sample
space of predictable individual events.

There are two logical possibilities for dealing with the problems just sketched.
The first is to maintain that quantum mechanics is exactly correct, but in need
of an improved conceptual foundation. One way to do this is to generalize the
Copenhagen interpretation, so as to eliminate the apparently arbitrary distinction
between “system” and “apparatus,” and to give a set of extended interpretive rules
with general applicability. This is the goal of the “consistent histories” approach
to quantum foundations. Another way to do this is to extend the kinematic rules of
quantum mechanics so as to give a concrete specification of a hidden sample space,
that is constructed so as to be in principle unobservable, which leads to Born rule
probabilities because full details of the sample space cannot be seen. This is what
is done in certain versions of the “many worlds” approach, and in the Bohmian
and Ax—Kochen approaches to quantum theory.

The second logical alternative is to consider the possibility that quantum me-
chanics is only a very accurate approximation to a deeper level of dynamics,
which in turn gives a unified understanding of both unitary Schrodinger evolu-
tion and measurement dynamics. In this case the sample space that is created is
not constructed so as to be unobservable, and detectable deviations from quantum
mechanics become possible, leading to experimental constraints on the model pa-
rameters. As in any approach that proceeds by creating a sample space, there are
so-called “hidden variables,” and so important constraints imposed by no-go the-
orems coming from the work of Kochen and Specker (1967), Bell (1964, 1987),
and others, have to be observed.

In Section 2 immediately following, we shall briefly describe the approaches
that proceed from the assumption that quantum theory is exact but requires a new
conceptual foundation. In Section 3 we shall give motivations for considering the
possibility that quantum mechanics is in fact not an exact, final theory, which leads
into the main themes of this book.

2 Reinterpretations of quantum mechanical foundations

A number of approaches to the reinterpretation of quantum foundations, assum-
ing that quantum theory is exact, have been explored in recent years. Our aim in
this section is to give a brief overview with entry points to the relevant literature,
without attempting either a detailed exposition or a critique.
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2.1 Histories

The histories approach is a generalization of the Copenhagen interpretation, that
replaces the imprecise notions of an “apparatus” and a “measurement” with more
precise concepts based on histories. The basic objects in this approach are time-
dependent projectors Ej (tx) associated with events (defined as properties at given
times) occurring in a history, and the probability of a history is then postulated to
be given by

p=TIE,(ty) ... Es(t)pE1(t1) ... Ex(ta)], (2a)

with p the initial density matrix. This definition, supplemented by the notion of a
family of decohering histories, which describes mutually exclusive evolutions with
probabilities that sum to unity, can be argued to lead to all of the usual properties
of quantum mechanical probabilities. In this interpretation, state vector reduction
appears only as a Bayesian statistical rule for relating the density matrix after a
measurement to that before the measurement. Detailed accounts of the histories
approach can be found in the book of Griffiths (2002), the review and books
of Omnes (1992, 1994, 1999), and the lectures of Hartle (1992). The histories
approach involves no enlargement of the basic mathematical apparatus of quantum
mechanics, and may still be relevant as a detailed description of quantum behavior
even if quantum mechanics turns out to be an approximation to a deeper level of
dynamics.

The three approaches that we discuss next all enlarge the mathematical structure
of quantum mechanics, so as to create a sample space which forms the basis for
the probabilistic interpretation. However, in all three cases the attributes that dis-
tinguish “individuals” in the sample space are not observable, so that there are no
predictions that differ from those of standard quantum mechanics. Because these
theories reproduce the results of quantum mechanics, it is evident that the assump-
tions of the Kochen and Specker (1967) and Bell (1964) no-go results are evaded.
In the Bell case, for example, this results from nonlocality in the construction of
the hidden sample space.

2.2 Bohmian mechanics

In Bohmian mechanics (Bohm, 1952), in addition to the Schrodinger equation for
the N-body wave-function ¥ (q1, ..., gn, t) that obeys

Loy Ko,
ih— - = <— > %vqk + V) v, (2b)

k=1
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one enlarges the mathematical framework by introducing hidden ‘“particles”
moving in configuration space with coordinates Qy and velocities
_dOk

h
Vg = s = m—kImVQk logy¥(Q1,..., On, t). (2¢)

The state of the individual system is then specified by giving both the wave func-
tion and the coordinates Qy of the hidden particles. If the probability in configu-
ration space is assumed to obey the Born rule p = ||* at some initial time, the
Bohmian equations then imply that this continues to be true at all subsequent times.
Arguments have been given that the Bohmian initial time probability postulate
follows from considerations of “typicality” of initial configurations. For detailed
expositions, see Bub (1997), Diirr, Goldstein, and Zanghi (1992), and Diirr,
Goldstein, Tumulka, and Zanghi (2003).

2.3 The Ax—Kochen proposal

Ax and Kochen (1999) extend the mathematical framework of quantum theory to
encompass the “individual,” by identifying the ray with the quantum ensemble,
and the ray representative, i.e., the U (1) phase associated with a particular state
vector, with the individual. They then give a mathematical construction to specify
a unique physical state from knowledge of the toroid of phases. They argue that if
the a priori distribution of phases is assumed to be uniform, then their construction
implies that the probabilities of outcomes obey the usual Born rule.

2.4 Everett’s “many worlds” interpretation

In the “many worlds” interpretation introduced by Everett (1957), there is no state
vector reduction, but only Schrodinger evolution of the entire universe. In this
interpretation, to describe N successive quantum measurements requires consid-
eration of an N-fold tensor product wave function. The mathematical framework
can be enlarged to create a sample space by considering the space of all possible
such tensor products, and defining a suitable measure on this space. This proce-
dure, given in the De Witt and Graham (1973) versions of many worlds, is the
basis for arguments obtaining the Born rule as the probability for the occurrence
of a particular outcome, that is, as the probability of finding oneself on a particular
branch of the universal wave function.

Since the reinterpretations of quantum theory sketched here all aim, by con-
struction, to reproduce the entire body of predictions of nonrelativistic quantum
theory, they cannot be experimentally falsified (unless deviations from quantum
theory are eventually established). Thus, apart from issues of the extent to which
they can be generalized to encompass relativistic quantum field theory, the choice
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between them is somewhat a matter of taste. Rather than join in the already exten-
sive literature debating their strengths and weaknesses, we shall proceed now to
consider an alternative possibility, that quantum mechanics is in fact not an exact,
complete structure.

3 Motivations for believing that quantum mechanics is incomplete

As surveyed in the preceding section, one approach to the quantum measurement
problem and associated “paradoxes” of quantum theory is to continue to assume
that quantum mechanics is exactly correct, and to attempt to supply it with a new
foundational interpretation. However, there is another logical possibility, which
is to suppose that quantum mechanics is not exactly correct, but represents an
extremely accurate approximation to a qualitatively different level of dynamics.
Since quantum theory is an extraordinarily successful physical theory, one can ask
why try to replace it with something else? We respond to this question by listing
a number of motivations for considering the possibility that quantum mechanics,
and quantum field theory, may require modification at a deeper level.

3.1 Historical precedent

The historical development of physics contains many examples of theories that
seemed to be exact in the context for which they were developed, only to require
modification when applied to a larger arena of phenomena. Newtonian mechanics
and Galilean relativity appeared to be exact in the context of planetary orbits, until
the need for their special and general relativistic extensions became apparent in the
early twentieth century. Classical predictability appeared to be exact in the con-
text of classical mechanics, thermodynamics, and statistical mechanics, until con-
fronted with the problems of the blackbody radiation spectrum and the discreteness
of spectral lines at the end of the nineteenth century. The Landau mean field theory
of critical phenomena was considered to be exact, until confronted with experi-
mental data showing anomalous critical scaling, requiring the modern Kadanoff—
Fisher—Wilson theory of critical phenomena for its explanation. Given these
historical precedents, there seems to be no compelling reason to assume that quan-
tum mechanics is immune to the general rule, that theories are only valid within a
given regime, and may require modification when extended beyond that regime.

3.2 The quantum measurement problem

As we have discussed in Section 1, the unitary evolution of standard quantum
mechanics does not describe what happens when measurements are made, but
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conventionally has to be supplemented by an additional postulate of nonunitary
state vector reduction when a “measurement” is performed by a “classical” ap-
paratus. As many authors have stressed, an economical resolution of the mea-
surement “paradoxes” would be achieved if one could find a more fundamental
underlying dynamics, from which the unitary evolution and the state vector reduc-
tion aspects of conventional quantum mechanics would emerge in a natural way
in the appropriate physical contexts. Such a resolution should show in a natural
way why quantum mechanics is probabilistic, by endowing it with an underlying
sample space, and should show how probabilities become actualities for individual
outcomes.

3.3 What is the origin of “canonical quantization”?

The standard approach to constructing a quantum field theory consists in first writ-
ing down the corresponding classical theory, and then “quantizing” it by reinter-
preting the classical quantities as operators, and replacing the classical Poisson
brackets by —i /7 times the corresponding commutators or anticommutators. How-
ever, since quantum theory is more fundamental than classical theory, it seems
odd that one has to construct it by starting from the classical limit; the canonical
quantization approach has very much the flavor of an algorithm for inverting the
classical limit of quantum mechanics. Moreover, it is known through the theorem
of Groenewold and van Hove (for a recent review, see Giulini, 2003) that the Dirac
recipe of replacing Poisson brackets by commutators cannot consistently be ap-
plied to general polynomials in the canonical variables, but only to the restricted
class of second-order polynomials. Additionally, what is the origin of Planck’s
constant /1?7 One might hope that in a new theory underlying quantum mechanics,
one would work with operators from the outset and proceed directly to operator
equations of motion without first starting from the classical limit, and that one
would also achieve an understanding of why there is a fundamental quantum of
action.

3.4 Infinities and nonlocality

An outstanding problem in quantum mechanics (or more specifically, in quantum
field theory) is the presence of infinities arising from the local structure of the
canonical commutation/anticommutation relations, and an outstanding puzzle in
quantum mechanics is the nonlocality seen, for example, in Einstein, Podolsky,
and Rosen (1935) type experiments. Both of these considerations motivate many
studies that have been made of quantum foundations, and in our view suggest that
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quantum mechanics may arise from a deeper level of physics that is substantially
nonlocal.

3.5 Unification of quantum theory with gravitation

There are a number of indications that conventional quantum field theory must
be modified in a profound fashion in order for it to be successfully combined
with gravitational physics. In generic curved spacetimes, it is not possible to give
a precise formulation of the particle production rate, nor is there necessarily a
well-defined concept of conserved energy. As is well known, when conventionally
quantized, general relativity leads to a non-renormalizable quantum field theory.
Another indication that quantum field theory must be modified when combined
with gravitational physics is provided by recent ideas on “holography,” which sug-
gest that the association of degrees of freedom with volume subdivisions must
break down near the Planck energy. These problems are among the motivations
for replacing quantum field theory by a quantized theory of strings, but it is possi-
ble that modification of the rules of quantum theory will also be needed to give a
fully successful unification of the forces. In other words, in addition to exploring
“pre-geometrical” theories to explain quantum gravity, one may have to explore
“pre-quantum mechanical” theories as well.

3.6 The cosmological constant

Another indication that quantum mechanics may have to be modified to deal with
gravitational phenomena is provided by the problem of the cosmological constant.
In conventional quantum field theory it is very hard to understand why the ob-
served cosmological constant is 120 orders of magnitude smaller than the natural
scale provided by the Planck energy. Either unbroken scale invariance or unbro-
ken supersymmetry would forbid the appearance of a cosmological constant, but
they also forbid the appearance of a realistic particle mass spectrum, and so in
conventional quantum theory they do not provide a basis for solving the cosmo-
logical constant problem. The difficulty that arises here can be formulated as a
mismatch between the single constraint needed — a sum rule dictating the vanish-
ing of the cosmological constant — and the infinite number of constraints arising
from having conserved operator scale and conformal transformation generators or
a conserved operator supercurrent. One possible way to resolve the cosmological
constant problem would be to find a deeper level of theory, in which the single
constraint needed to resolve the cosmological constant problem is matched, in a
naive counting sense, to the constraint arising from imposing scale invariance or
supersymmetry on that deeper level.
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3.7 A concrete proposal

Last, but not least, we have a concrete proposal for ~ow to replace quantum me-
chanics by a deeper level of physical theory, that will have significant implications
for all of the issues just listed. Our proposal, already noted in the introductory para-
graphs, is that quantum mechanics is an emergent phenomenon arising from the
statistical mechanics of matrix models with a global unitary invariance. To be more
specific now, our idea is to start from a classical dynamics in which the dynamical
variables are non-commutative matrices or operators. (We will use the terms matrix
and operator interchangeably throughout this book, and do not commit ourselves as
to whether they are finite N x N dimensional, or infinite dimensional as obtained
in the limit N — o0.) Despite the non-commutativity, a sensible Lagrangian and
Hamiltonian dynamics is obtained by forming the Lagrangian and Hamiltonian
as traces of polynomials in the dynamical variables, and repeatedly using cyclic
permutation under the trace, which restricts the dynamical variables to be “trace
class,” and is the motivation for calling the resulting dynamics “trace dynamics.”
We further assume that the Lagrangian and Hamiltonian are constructed without
use of non-dynamical matrix coefficients, so that there is an invariance under si-
multaneous, identical unitary transformations of all of the dynamical variables, that
is, there is a global unitary invariance. We assume that the complicated dynami-
cal equations resulting from this system rapidly reach statistical equilibrium, and
then show that with suitable approximations, the statistical thermodynamics of the
canonical ensemble for this system takes the form of quantum field theory. Specif-
ically, the statistical thermodynamics of the underlying trace dynamics leads to the
usual canonical commutation/anticommutation algebra of quantum mechanics, as
well as the Heisenberg time evolution of operators, and these in turn, imply the
usual rules of Schrodinger picture quantum mechanics. The requirements for the
underlying trace dynamics to yield quantum theory at the level of thermodynamics
are stringent, and include both the generation of a mass hierarchy and the exis-
tence of boson—fermion balance. We cannot at this point give the specific theory
that obeys all of the needed conditions; this is a topic for future work. There may
of course be no theory that satisfies our conditions, but our hope is that there will
be at least one underlying theory that fits into the general framework developed
here.

The proposal just sketched corresponds to the relations between classical me-
chanics, quantum mechanics, and the underlying “trace dynamics” theory that is
qualitatively pictured in Fig. 2. At the top level is classical mechanics, for which
the dynamical variables are all commutative. Classical dynamical variables are
usually represented as ordinary numbers, but they can also be represented as ma-
trices in a Hilbert space, in which case they must all be taken as proportional to
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the unit matrix. Through the canonical quantization procedure one arrives at the
middle level of quantum mechanics and quantum field theory, from which one
recovers classical mechanics by taking a classical limit in which (passing over
many subtleties) Planck’s constant effectively approaches zero. In quantum me-
chanics the dynamical canonical coordinate and momentum variables are a special
class of infinite matrices which obey the canonical commutation/anticommutation
relations. Our proposal is that there is another level, more basic than quantum
mechanics, governed by a global unitary invariant trace dynamics. Here the dy-
namical variables are completely general matrices, with no a priori assumption
of commutativity properties. From the equilibrium statistical mechanics of trace
dynamics, the rules of quantum mechanics emerge as an approximate thermody-
namic description of the behavior of low energy phenomena. “Low energy” here
means small relative to the natural energy scale implicit in the canonical ensemble
for trace dynamics, which we identify with the Planck scale, and by “equilibrium”
we mean local equilibrium, permitting spatial variations associated with dynamics
at the low energy scale. Brownian motion corrections to the thermodynamics of
trace dynamics then lead to fluctuation corrections to quantum mechanics which
take the form of stochastic modifications of the Schrodinger equation, that can ac-
count in a mathematically precise way for state vector reduction with Born rule
probabilities.

The remainder of this book consists of a detailed development of the ideas just
outlined and diagrammed in Fig. 2.

4 An overview of this book

As a guide to the reader, we give here a brief overview of the book.

In Chapter 1 we introduce our notation for the non-commutative matrices that
form the dynamical variables of trace dynamics. Bosonic variables are represented
by ordinary complex matrices, while fermionic variables are represented by com-
plex Grassmann matrices. We then give the basic bilinear and trilinear cyclic trace
identities that are used in subsequent derivations. We next show, by using the cyclic
invariance of the trace of a polynomial (or more generally, a meromorphic func-
tion) in the dynamical variables, that one can consistently define an operator which
gives the derivative of a trace quantity with respect to an operator. Using this op-
erator derivative, we formulate a trace dynamics analog of classical Lagrangian
and Hamiltonian dynamics, which gives a classical dynamics of matrix models,
and we show that in this dynamics the trace Hamiltonian H = TrH is conserved.
We construct a generalized Poisson bracket appropriate to trace dynamics, dis-
cuss its properties, and give some applications. Finally, we contrast the dynami-
cal equations for the non-commuting matrices of trace dynamics with the unitary
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Figure 2 Diagrammatic relations between the various theories discussed in this
book: classical mechanics, quantum mechanics and quantum field theory, trace
dynamics (also called generalized quantum dynamics), and stochastically modi-
fied Schrodinger picture quantum mechanics.

evolution obtained by assuming a Heisenberg picture dynamics, in which the dy-
namical variables obey the usual canonical commutators/anticommutators of quan-
tum mechanics.

In Chapter 2 we explore further conserved quantities in trace dynamics. We
show that when there are equal numbers of fermionic canonical coordinate and
momentum factors in each term in the trace Hamiltonian, then there is a conserved
trace fermion number N. We next consider the class of trace dynamics models
that are global unitary invariant, that is, have a trace Hamiltonian that is con-
structed from the matrix dynamical variables using only c-number coefficients,
thus excluding the use of non-dynamical matrices as coefficients. For this class
of models, we show that there is a conserved operator with the dimensions of ac-
tion, which we call C , which is equal to the sum of bosonic commutators [g, p]
minus the corresponding sum of fermionic anticommutators {q, p}, and which is
the conserved matrix-valued Noether charge corresponding to the assumed global
unitary invariance. This operator plays a fundamental role in our argument for an
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emergent quantum mechanics. With the usual fermionic adjointness assignment C
is anti-self-adjoint (but for alternative adjointness assignments C can have a self-
adjoint part, which we assume, if present, to be very small). We proceed to give the
four-current analogs of N and C when the trace Lagrangian is specialized to de-
scribe continuum spacetime theories, and also discuss the trace energy-momentum
tensor 7, which is a conserved quantity when the underlying trace dynamics is
Poincaré invariant. In this case the conserved charge C is also Poincaré invariant,
which explains why later on, when we assume that the low energy statistical ther-
modynamics is dominated by the C term in the canonical ensemble, with the H
term, which defines the preferred frame implicit in the canonical ensemble, effec-
tively decoupled, a Poincaré invariant quantum field structure emerges. As a sim-
ple illustrative example of the trace dynamics formalism we consider the model
in which a Dirac fermion matrix field is coupled to a scalar Klein—-Gordon ma-
trix field. Finally, we discuss the symmetry properties of the conserved quantities
under interchange of fermionic canonical coordinates and momenta.

In Chapter 3 (which can be omitted on a first reading), we continue the discus-
sion of specific models that illustrate the formalism of trace dynamics, this time in
the context of theories with global supersymmetry. In succession, we discuss the
trace dynamics analogs of the Wess—Zumino model, the supersymmetric Yang—
Mills model, and the so-called “matrix model for M-theory.” Finally, we briefly
describe difficulties encountered in attempting to extend this discussion to theo-
ries, such as supergravity, with local supersymmetry.

In Chapter 4 we begin the analysis of the statistical mechanics of matrix models.
We open by pointing out how our procedure differs from conventional approaches
to matrix models (see, e.g., Brézin and Wadia, 1993), in which the classical dy-
namics of these models is canonically quantized. By contrast, in developing an
emergent quantum theory we treat the classical dynamics of matrix models as fun-
damental, and analyze its consequences by using an appropriate generalization of
statistical mechanics. To introduce statistical methods, we first define a natural
measure for matrix phase space, and show that this measure obeys a generalized
Liouville theorem. This then allow us to apply statistical mechanical methods, in
which we maximize the entropy subject to constraints, to derive the canonical en-
semble for trace dynamics, in which the generic conserved quantities H, N, and
C appear multiplied by Lagrange multipliers that represent generalized “tempera-
tures.” At this point we specialize the ensemble to one that has maximal symmetry

consistent with the ensemble average (C)av being non-zero, which we show im-

plies that (C)ay can be written as ieffi, with iefr an anti-self-adjoint matrix with
square —1, and with # the real positive factor defined by this polar decomposition

of (C)av. The matrix i.f will play the role of i in our argument for an emer-
gent quantum theory and, as suggested by the notation, # will play the role of the
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reduced Planck’s constant. We continue the statistical analysis by showing that
the canonical ensemble can also be derived by starting from the microcanonical
ensemble, and considering the equilibrium of a large subsystem in contact with
a much larger “bath.” We then give a discussion (which can be omitted on a first
reading) of gauge fixing in the canonical ensemble for trace dynamics models with
a local gauge invariance. Finally, we discuss the implications of the fact that the
canonical ensemble only partially breaks the assumed global unitary invariance;
this analysis plays an important role in establishing, in the next chapter, a corre-
spondence between canonical ensemble averages in trace dynamics and Wightman
functions in an emergent quantum field theory. First we formulate the need for a
global unitary fixing in general terms, and then (in a section which can be omit-
ted on first reading) give a detailed construction of global unitary fixings for the
partition function.

Chapter 5 contains the heart of our argument for the emergence of quantum
field theory from trace dynamics. The basic observation, developed through the
detailed derivations of this chapter, is that since the conserved operator C is a sum
of bosonic commutators minus a sum of fermionic anticommutators, the equipar-
titioning of C in canonical ensemble averages leads to an effective canonical com-
mutator (anticommutator) structure for the bosonic (fermionic) dynamical operator
variables. We proceed in analogy with the standard equipartition theorems of sta-
tistical mechanics, which we show can be viewed as simple Ward identities. We
begin by deriving a general Ward identity for trace dynamics, and showing that
its structure can be augmented by varying external source terms in the canonical
ensemble. We then show that if we make a low energy approximation, in which we
assume that the underlying trace Hamiltonian (or Lagrangian) is such that there is
a decoupling of contributions arising from variation of the H term in the canonical
ensemble, so that the averaged dynamics is dominated by the C term, the struc-
ture of quantum theory emerges. The reason that dynamical information can be
extracted from equilibrium averages is that the trace dynamics equations of mo-
tion, in Hamiltonian form, take the first-order form x = F,, with x a particular
phase space variable and with F, an operator function of all of the phase space
variables. Hence by showing that, within our approximations, the canonical en-
semble average of F, times a universal constant, in the presence of sources, is
equal to the corresponding canonical ensemble average of [x, H], we learn that
X is equivalently given by the usual Heisenberg evolution formula of quantum
mechanics. The universal constant, which plays the role of i times the reduced
Planck constant in the emergent quantum theory, is given by the ensemble aver-
age (C)av. In Chapter 4, this quantity was represented in polar form as i.frfi, with
ieff @ matrix square root of —1 and with the parts of the dynamical variables that
commute with ¢ identified as the effective canonical variables of the emergent
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quantum theory. With these identifications, a correspondence between canonical
ensemble averages in trace dynamics, and Wightman functions in an emergent
quantum field theory, can be established. We note that, although polynomials in
the dynamical variables in general depend of the choice of unitary fixing imposed
in Chapter 4, the Wightman functions and more generally transition probabilities
can be expressed in terms of trace quantities that are independent of the unitary
fixing. An examination of alternative Ward identities shows that our decoupling
approximation involves nontrivial constraints on the behavior of the underlying
theory, including certain support properties in operator phase space, and a require-
ment of boson—fermion balance which strongly hints at a need for supersymmetry.
Up to this point the emergent quantum theory is in the Heisenberg picture; we then
proceed to derive the Schrodinger equation for the emergent quantum theory. Fi-
nally, we discuss the Kochen—Specker (1967) and Bell (1964) “no-go” arguments
for hidden variable theories, and show how their assumptions are evaded by our
statistical mechanical argument for an emergent quantum theory.

In Chapter 6 we analyze Brownian motion corrections to the emergent quantum
theory, thereby making contact with a long line of investigations of phenomeno-
logical stochastic Schrodinger equations pioneered by Pearle (1976, 1979, 1984,
1989), Ghirardi, Rimini, and Weber (1986), Ghirardi, Pearle, and Rimini (1990),
Gisin (1984, 1989), Diési (1988a,b, 1989), and Percival (1994). Making simple
models for the form of the fluctuation terms in the Ward identities arising from C,
we give scenarios for deriving the standard localization and energy-driven stochas-
tic Schrodinger equations. We then review the proof that these equations are mem-
bers of a general class of stochastic equations that leads to state vector reduction
with Born rule probabilities, and review the formulas needed to estimate reduction
rates in the energy-driven and localization models. We discuss the phenomenol-
ogy of the energy-driven equation, giving constraints on its stochastic parameter
coming from current experiments, and giving a critical survey of mechanisms that
have been proposed to produce the energy dispersion needed for rapid state vector
reduction in measurement contexts. We finally briefly survey the phenomenology
of the localization approach, referring the reader to the recent reviews of Bassi and
Ghirardi (2003) and Pearle (1999b) for a more detailed treatment. We conclude
that as of this writing the localization model is favored, both because the assump-
tions needed to derive it within our framework are more robust, and because there
are unresolved problems with the mechanisms that have been proposed to explain
reduction in the energy-driven model.

Finally, in Chapter 7 we indicate how our proposal for an emergent quantum
theory addresses the motivational questions raised above in Section 3, and discuss
some of the issues that will be relevant for future developments. We again em-
phasize here that, while we have given a general framework in which an emergent
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quantum theory may appear, we have not identified the specific theory in which all
our requirements are realized.

We conclude this overview by noting work of other authors that also consid-
ers the premise that quantum mechanics may be modified at a deeper level. Both
't Hooft (1988, 1997, 1999a,b, 2001a,b, 2002, 2003) and Smolin (1983, 1985,
2002) have proposed models for the emergence of quantum theory from an under-
lying level of dynamics. While their basic philosophy is very similar to that of this
book, the details of what they do differs substantially, and neither the statistical
mechanical canonical ensemble nor the conserved operator C play a role in their
analyses. 't Hooft proposes that beneath quantum theory there is a deterministic
classical, chaotic dynamics, with a set of attractors that determine the effective
emergent quantum theory. Smolin considers classical matrix models, with an ex-
plicit stochastic noise along the lines of that used by Nelson (1969, 1985) giving
rise to the quantum behavior. Despite the evident differences, there may be ele-
ments of their approaches that will ultimately be seen to share common ground
with ours. At a phenomenological level, Bialynicki-Birula and Mycielski (1976)
and Weinberg (1989a,b,c) have considered nonlinear, deterministic modifications
of the Schrodinger equation, and comparison of their models with experiment
(Bollinger et al., 1991) sets strong bounds on such possible modifications to con-
ventional quantum theory. Their models have been shown by Polchinski (1991),
Gisin (1989, 1990), and Gisin and Rigo (1995), to have the problem of predicting
superluminal signal propagation. When we discuss phenomenological modifica-
tions of the Schrodinger equation in Chapter 6, the only nonlinearities will appear
in fluctuating, stochastic terms, for which the experimental bounds are very weak,
and which do not give rise to superluminal signal propagation.

5 Brief historical remarks on trace dynamics

I close this introductory chapter with some brief historical remarks on trace dy-
namics, and on how the proposal that it can serve as a foundation for quantum
theory came about.

First of all, the idea of using a trace variational principle to generate operator
equations goes back to the inception of quantum mechanics; see Born and Jordan
(1925), who in Section 2 of their paper introduce a symbolic differentiation of op-
erator monomials under a trace that is identical to the bosonic case of the one used
here. They did not develop this idea further, and it remained unnoticed for many
years. A Hamiltonian variational principle based on this idea was later used by
Kerman and Klein (1963) to generate equations of motion for many-body physics.
I am indebted to A. Klein for bringing these references to my attention several
years ago; see Klein, Li, and Vassanji (1980) and Greenberg et al. (1996) for
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further references to many-body theory applications. None of these early refer-
ences erect the full apparatus for trace dynamics constructed here in Chapters 1
and 2.

The idea of using the operator derivative of a trace as the basis for formulating
a new dynamical theory, as opposed to as a tool for studying standard quantum
theory, first appeared in a paper (Adler, 1979) in which I made an unsuccessful at-
tempt to formulate a dynamics for the Harari—-Shupe preon model. I subsequently
returned to trace dynamics, under the name “generalized quantum dynamics,” in
conjunction with the writing of my book Quaternionic Quantum Mechanics and
Quantum Fields (Adler, 1995) for two reasons. First of all, I was unable to find any
extension of the canonical quantization procedure to quaternionic Hilbert space,
and so was led to study trace dynamics as a way to generate operator equations
of motion directly, without canonically quantizing a classical theory. In this con-
nection, the Hamiltonian version of trace dynamics and the generalized Poisson
bracket were formulated (Adler, 1994), and the Jacobi identity for the generalized
Poisson bracket was subsequently proved by Adler, Bhanot, and Weckel (1994).
Secondly, an anonymous publisher’s reviewer for the 1995 book raised the issue
of whether quaternionic Hilbert space might ameliorate the measurement prob-
lems of quantum mechanics. The answer turned out to be “no,” because quater-
nionic quantum theory simply substitutes quaternion unitary for complex unitary
Schrédinger evolution, and so the need for a separate state vector reduction pos-
tulate persists. Investigating this issue suggested, however, that trace dynamics,
which is not equivalent to a unitary evolution, might lead to a resolution of the
measurement problem. However, further development of this notion required a
way to get back from the more general trace dynamics to quantum mechanics. The
attempts to do this in Section 13.6 of the 1995 book only worked for one degree
of freedom, and did not have an obvious extension to systems with many degrees
of freedom, although in hindsight the discussion of Egs. (13.90a—f) of that section
anticipated the form of the conserved operator C. (For a recent paper along similar
lines, see Starodubtsev, 2002.)

At this point a crucial ingredient was supplied by Millard (personal commu-
nication, 1995), who as part of a thesis investigation (Millard, 1997) of trace dy-
namics theories with Weyl-ordered Hamiltonians, discovered the existence of the
conserved operator C. Its structure was immediately suggestive of an equiparti-
tion argument for the emergence of quantum mechanics from trace dynamics, and
this was developed in detail in the paper of Adler and Millard (1996), which pro-
vides the basis for much of the material in Chapters 2 through 5 of this book.
Further progress was made in papers with other collaborators, in particular Adler
and Horwitz (1996), which constructed the microcanonical ensemble for trace dy-
namics and used this to rederive the canonical ensemble, and Adler and Kempf
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(1998), which reexpressed the general argument for conservation of C given by
Adler and Millard (1996) in terms of global unitary invariance, gave a group-
theoretic characterization of the maximally symmetric canonical ensemble, and
showed that there is a consistency requirement of boson—fermion balance. A key
remaining obstacle was that in the paper of Adler and Millard (1996), the canon-
ical ensemble averages of products of dynamical variables associated with spa-
tial points were identified with vacuum expectations of operators in the emergent
field theory, and with this putative correspondence it was not possible to estab-
lish the Wightman spectral condition. In the spring of 2001, I revisited the entire
program, and discovered the need to take account of the fact that the canonical
ensemble does not fully break the assumed global unitary invariance, as noted in
Adler and Kempf (1998) and as discussed in detail in Section 4.5. Thus the un-
restricted canonical ensemble averages correspond to traces, rather than vacuum
expectations, of operator products, which is why there was an obstacle to identify-
ing them with Wightman functions. When the integrations defining the canonical
ensemble are restricted to break this residual unitary invariance, it becomes pos-
sible to set up a consistent correspondence between the trace dynamics canonical
ensemble averages of operator products, and the vacuum expectations of the corre-
sponding operator products in the emergent quantum theory; my discovery of this
fact, as well as other technical progress made in the course of the 2001 research,
led to the decision to write this book. The full details of the global unitary fix-
ing, given in Section 4.6 and Appendix G, were worked out in Adler and Horwitz
(2003) during the final stages of my work on the book manuscript.

Finally, I make an historical and notational comment on the method by which
fermions are introduced into the theory. In all of the papers in the trace dynam-
ics program before 1997, fermions were introduced through a (—1)% operator in-
sertion in the trace, rather than by use of a Grassmann algebra as done in Adler
and Kempf (1998) and in this book. The principal results of the older work are
unaffected by this change, but certain details are altered. Also, in this book we
consistently use an adjoint convention in which two Grassmann odd grade matri-
ces x1 and x» obey (x1x2) = — X; XlT . This convention is implicit in Adler and
Horwitz (2003), but the older papers, such as Adler (1997a,b), as well as the first
draft of this book that appeared on the Los Alamos archive as hep-th/0206120,
use a convention in which (x1x2)' = X2T XIT . The results of this book (except for
Appendix G) can be readily expressed in this second convention by the inclusion
of additional factors of i in various places.
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Trace dynamics: the classical Lagrangian and
Hamiltonian dynamics of matrix models

In this chapter we set up a classical Lagrangian and Hamiltonian dynamics for
matrix models. The fundamental idea is to set up an analog of classical dynam-
ics in which the phase space variables are non-commutative, and the basic tool
that allows one to accomplish this is cyclic invariance under a trace. Since no as-
sumptions about commutativity of the phase space variables (such as canonical
commutators/anticommutators) are made at this stage, the dynamics that we set
up is not the same as standard quantum mechanics. Quantum mechanical behavior
will be seen to emerge only when, in Chapters 4 and 5, we study the statistical
mechanics of the classical matrix dynamics formulated here.

In Section 1.1, we introduce our basic notation for bosonic and fermionic ma-
trices, and give the cyclic identities that will be used repeatedly throughout the
book. In Section 1.2, we define the derivative of a trace quantity with respect to an
operator, and give the basic properties of this definition. In Section 1.3, we use the
operator derivative to formulate a Lagrangian and Hamiltonian dynamics for ma-
trix models. In Section 1.4, we introduce a generalized Poisson bracket appropriate
to trace dynamics, constructed from the operator derivative defined in Section 1.2,
and give its properties and some applications. Finally, in Section 1.5 we discuss the
relation between the trace dynamics time evolution equations, and the usual uni-
tary Heisenberg picture equations of motion obtained when one assumes standard
canonical commutators/anticommutators.

1.1 Bosonic and fermionic matrices and the cyclic trace identities

We shall assume finite-dimensional matrices, although ultimately an extension to
the infinite-dimensional case may be needed. The matrix elements of these matri-
ces will be constructed from ordinary complex numbers, and from complex anti-
commuting Grassmann numbers. Just as a complex number can be decomposed
into real and imaginary parts, ¢ = cg + ic; with cg j real, a complex Grassmann
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number can be decomposed into real and imaginary parts, x = xg + i x; with xg. s
real. Real Grassmann numbers are built up as products of a basis of real Grass-
mann elements xp, x2, ... which obey the anticommutative algebra {x;,, x5} = 0,
an algebra which implies in particular that the square of any Grassmann element
vanishes (for a further discussion of Grassmann algebras and references, see the
introduction to the Appendices). Clearly a product of an even number of Grass-
mann elements commutes with all elements of the Grassmann algebra, while the
product of an odd number of Grassmann elements anticommutes with any other
product constructed from an odd number of Grassmann element factors. Thus the
Grassmann algebra divides into two sectors: unity, together with the all products
of an even number of Grassmann elements, form what is called the even grade
sector of the Grassmann algebra, while all products of an odd number of Grass-
mann elements form what is called the odd grade sector of the algebra. Any even
grade element commutes with any even or odd grade element, while two odd grade
elements anticommute with one another. Grassmann elements are a familiar fea-
ture in the field theory literature on path integrals and supersymmetry, where even
grade Grassmann elements represent bosonic fields, while odd grade Grassmann
elements represent fermionic fields. Even or odd grade Grassmann elements can
be combined with complex number coefficients; we will then speak of even or odd
grade elements of the Grassmann algebra over the complex numbers.

Let By and B; be two N x N matrices with matrix elements that are even grade
elements of a Grassmann algebra over the complex numbers, and let Tr be the
ordinary matrix trace, which obeys the cyclic property

TeB1By = Y (BDmn(Bum = Y _(B2)um(BD)mn = TrB2 By (1.1a)

m,n m,n

Similarly, let x; and x» be two N x N matrices with matrix elements that are
odd grade elements of a Grassmann algebra over the complex numbers, which
anticommute rather than commute, so that the cyclic property for these takes the
form

Trxixe = Y 0mn(Xum == Y (XDum(X0mn = =Trxax1.  (1.1b)
m,n m,n

Since the even and odd grade elements of a Grassmann algebra over the complex
numbers commute, one has a final bilinear cyclic identity

TrBx = Trx B. (1.1¢)

We shall refer to the Grassmann even and Grassmann odd matrices B, x as being
of bosonic and fermionic type, respectively. Clearly, operators that are of mixed
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bosonic and fermionic type can always be linearly decomposed into components
that are purely bosonic or purely fermionic in character.

The extra minus sign that appears in the odd grade case of Eq. (1.1b) has impli-
cations for the adjoint properties of matrices. Letting Of be a matrix of grade g,
we define the adjoint by

(O8N = (O9)F (1.1d)

nm?>

that is, irrespective of the grade g, we define the matrix adjoint as the complex
conjugate * of the matrix with row and column labels transposed. Letting now (’)f !
and ng be two matrices of grade g1 and g» respectively, this definition implies that

(Of1(9§2)’1;m — ((’)flogz)::m — Z(Ofl)Zk(ng)Zm
X

= (=D Y (O (O = (=DFE Y (O k(O D
k 3

= (—hse 8T8, (1.1e)

so that as a matrix statement we have
O Ot = (—~naeotost, (1.1f)
Tt

Thus, two odd grade matrices x; and x» obey the adjoint rule (x;x2)t = — X2 X1»
and a general string of matrices obeys the rule

(O8 ... Of)F = (—Zi<issiof T o8t (1.1g)

The difference between the adjoint convention used in this book, and one in which
there is no grading factor in Eqgs. (1.1e—g), is discussed in the introduction to the
Appendices.

The cyclic/anticyclic properties of Eqgs. (1.1a—c) are the basic identities from
which further cyclic properties can be derived. For example, from the basic bilinear
identities one immediately derives the trilinear cyclic identities

TrB1[By, B3] = TrBy[ B3, B1] = TrB3[ By, B>],
TrBi{B2, B3} = TrB>{B3, B1} = TrB3{Bi, By},
TrB{x1, x2} = Trx1[x2, Bl = Trxa[x1, B,

Trxi{B, x2} = Tr{x1, B} x2 = Tr[x1, x21B,
Trx[B1, B2l = TrBa[x, B1] = TrBi[ B2, x1.

Trx{B1, B2} = TrBa{x, B} = TrB{B2, x},
Trxi{x2. x3} = Trxa{x3, x1} = Trxz{x1, x2},
Trx1lx2, x31 = Trxalxs, x11 = Trxslx1, x2l,

(1.2)
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which are used repeatedly in trace dynamics calculations. In these equations,
and throughout the text, [X, Y] = XY — Y X denotes a matrix commutator, and
{X, Y} = XY + Y X amatrix anticommutator.

1.2 Derivative of a trace with respect to an operator

The basic observation of trace dynamics (Born and Jordan, 1925; Adler, 1994,
1995) is that, given the trace of a polynomial P constructed from non-commuting
matrix or operator variables (we shall use the terms “matrix” and “operator” in-
terchangeably throughout the book), one can define a derivative of the complex
number TrP with respect to an operator variable O by varying and then cyclically
permuting so that in each term the factor §O stands on the right. This gives the
fundamental definition

STiP = Tro Lt 500 (1.32)
P =Tr , 3a
80
or in the condensed notation that we shall use henceforth, in which P = TrP
5P
§P =Tr—460, 1.3b
Y] (1.3b)

which for arbitrary infinitesimal 6O defines the operator P/§O. In general we
will take O to be either of bosonic or fermionic (but not of mixed) type, and we
will construct P to always be an even grade element of the Grassmann algebra.
(When P is fermionic, we can always make it bosonic by multiplying it by a
c-number auxiliary Grassmann element «.) With these restrictions, for §O of the
same type as O, the operator derivative SP/3O will be of the same type as O,
that is, either both will be bosonic or both will be fermionic. Although we have
introduced Egs. (1.3a,b) for polynomials P, the definition immediately extends to
functions expressible as power series in polynomials, and by use of the operator
identity X! = —X 18X X!, to meromorphic functions of polynomials in the
dynamical variables as well.

Let us illustrate the fundamental definition of Egs. (1.3a,b) with some simple
examples. Suppose that P is a bosonic monomial containing only a single factor
of the operator O, so that P has the form

P = AOB, (1.3¢)

with A and B operators that in general do not commute with each other or with O.
Then when O is varied, the corresponding variation of P is §P = A(§O)B, and
so cyclically permuting B to the left we have

0TrP = egTrBASO,

OF _ .BA (1.3d)
sO  BEA '
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where eg = 1 when the operator B is bosonic, and where eg = —1 when the op-
erator B is fermionic. Note that since we are taking P to be bosonic, the operator
product AQ is of the same bosonic or fermionic type as B, so we have €ep = €40
and could equally well write

sP

E :GA(QBA, (1.36)
which is the result that we would obtain by cyclically permuting ASO to the right
in the expression for §TrP. As a second illustration, suppose that P is a bosonic
monomial containing two factors of the operator O that is being varied, and so has
the general structure

P =A0BOC, (1.3f)

with A, B, and C operators that in general do not commute with each other or
with O. Then applying the chain rule of differentiation, when O is varied the cor-
responding variation of P is 6P = A(SO)BOC + AOB(§O)C. Thus we have in
this case

STrP = Tr(ea0BOCA(S0) 4+ ecCAOB(80)),
5P

s = €A0BOCA +ecCAOB. (1.3g)

with ec = 1(—1) according as whether C is bosonic (fermionic), and with €40 =
1(—1) according as whether the product AQ is bosonic (fermionic). The general-
ization to the case when P contains No factors of O follows the same pattern, with
8 P now consisting of a sum of N terms, in each of which a different factor O is
varied. In each of these terms, the factors are then cyclically permuted so that §O
stands on the right, identifying (by comparison with Eq. (1.3b)) the contribution
of the term in question to 6P/50.

The definition of Eq. (1.3b) has the important property that if §P vanishes for
arbitrary variations 8O of the same type as O, then the operator derivative §P/§O
must vanish. To see this, let us expand 6P/5O in the form

5P
= = C,K, (1.4a)
0= 2

with the K, distinct Grassmann monomials that are all c-numbers (i.e., multiples
of the N x N unit matrix), and with the C,, complex matrix coefficients that are
unit elements in the Grassmann algebra. Let us choose §O to be an infinitesimal o
times C ,T,, with « a real number when O is bosonic, and with « a Grassmann ele-
ment not appearing in K, when O is fermionic. (There must be at least one such el-
ement, or else K, would make an identically vanishing contribution to Eq. (1.3b),
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and could not appear in the sum in Eq. (1 .4a).) We then have

0= ZTrcj,cn Ko, (1.4b)
n

and since the coefficients of all distinct Grassmann monomials must vanish sepa-
rately, we have in particular

0="TrC{C). (1.4c)

This implies the vanishing of the matrix coefficient C,, and letting p range over
all index values appearing in the sum in Eq. (1.4a), we conclude that

5P
5O

When O is bosonic, a useful extension of the above result states that the van-

0. (1.4d)

ishing of &P for all self-adjoint variations 6O, or alternatively, for all anti-self-
adjoint variations §O, still implies the vanishing of §P/§O. To prove this, split
each C,, in Eq. (1.4a) into self-adjoint and anti-self-adjoint parts, C,, = C;* + C3*,
with €32 = C5*1 and € = —C2. For self-adjoint 8O, Eq. (1.1a) implies
that TrC;*60 is real, and TrC3**8O is imaginary, and so by the reasoning of
Egs. (1.4a—c), the vanishing of 6P implies that both of these traces must van-
ish separately. Taking O = C}' then implies the vanishing of C}}', while taking
80 = iC}* then implies the vanishing of C7*. A similar argument, with the role
of reals and imaginaries interchanged (or equivalently, with multiplication of O by
the c-number i) applies to the case in which §O is restricted to be anti-self-adjoint.

In our applications, we shall often consider trace functionals P that are real,
which will be true when the adjointness properties of the operators from which P
is constructed imply that P — P is either zero or is an operator with identically
vanishing trace. Real trace functionals P have the important property that when O
is a self-adjoint bosonic operator, then 6P/5O is also self-adjoint. To prove this,
we make a self-adjoint variation §O, and use the reality of P to write

SP SP t
_ or _ i
0 = ImTréP « lr|:608(’) 60) (5(9) i|

TrsO op JAY (1.5)

=Tr — = . .
80 50

This implies, by the extension given in the preceding paragraph, that the anti-self-

adjoint part of §P/§O must vanish. Similarly, when P is real and §O is anti-self-
adjoint, then §P/§Q is also anti-self-adjoint.
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1.3 Lagrangian and Hamiltonian dynamics of matrix models

We can now proceed to use the apparatus just described to set up a Lagrangian
and Hamiltonian dynamics for matrix models. Let L[{g,}, {¢-}] be a Grassmann
even polynomial function of the bosonic or fermionic operators {g,} and their time
derivatives {g, }, which are all assumed to obey the cyclic relations of Egs. (1.1a—c)
and (1.2) under the trace. The discrete index r labels the matrix degrees of freedom
for a general matrix dynamics, and in later field theory applications will be taken
as a label of infinitesimal spatial boxes. Just as a classical dynamical system can
have any number of degrees of freedom, the numbers np and nr of bosonic and
fermionic operators {g, } are arbitrary, and are unrelated to the dimension N of the
matrices that represent these operators. From L, we form the trace Lagrangian

L[{g:}, {g-}]1 = TrL[{q,}, {gr}], (1.6a)

and the corresponding trace action

S = /dtL. (1.6b)

We shall assume that the trace action is real valued, which requires that L be self-
adjoint up to a possible total time derivative and/or a possible term with vanishing
trace, such as a commutator. That is, we require

d
L—L"= AL+ (42, Ag], (1.6¢)

with A1 2 3 arbitrary. Requiring that the trace action be stationary with respect to
variations of the g,s that preserve their bosonic or fermionic type, and using the
definition of Eq. (1.3b), we get

SL
0=25S= /dtTrZ (—5q, + 7561,) , (1.7a)

or after integrating by parts in the second term and discarding surface terms

SL  d 8L
o:as:/dmz<——58—,) 8qy. (1.7b)
qr

For this to hold for general same-type operator variations d¢,, the coefficient of
each d¢q, in Eq. (1.7b) must vanish for all ¢, giving the operator Euler-Lagrange
equations

—_Z o (1.7¢)
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Because, by the definition of Eq. (1.3b), we have

(),
3‘]}’ ij B B(Qr)ji ’ '

for each r the single Euler—Lagrange equation of Eq. (1.7¢) is equivalent to the N2

Euler—Lagrange equations obtained by regarding L as a function of the N2 matrix

element variables (g, ) j;. (For future reference, we note that the identity of Eq. (1.8)

still holds when L is replaced by a general complex valued trace functional A.)
Let us now define the momentum operator p, conjugate to g, by

SL

=, (1.92)
8qr

Pr

so that the Euler—Lagrange equations take the form §L /g, = p,. Since the La-
grangian is Grassmann even, p, is of the same bosonic or fermionic type as g,. We
can now introduce a trace Hamiltonian H by analogy with the usual definition

H=Tr) pg —L. (1.9b)

In correspondence with Eq. (1.8), the matrix elements (p,);; of the momentum op-
erator p, just correspond to the momenta canonical to the matrix element variables
(qr) ji- Performing general same-type operator variations, and using Eq. (1.9a) and
the Euler—Lagrange equations, we find from Eq. (1.9b) that

SL SL
SH =Tr ) ((pr)gr + progr) —Tr Y (qu, + qu'r)
r r r
=Tr ) (Gpr)dr — prigr)
e
=Tr) (erdrpr — prqr). (1.9¢)
e

Therefore the trace Hamiltonian H is a trace functional of the operators {g,} and
{pr}

with the operator derivatives
SH ) SH .
— =Py, — =€y, (1.10b)
8%’ Spr

where €, = 1(—1) according to whether g,, p, are bosonic (fermionic).
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1.4 The generalized Poisson bracket, its properties, and applications

Letting A and B be two bosonic trace functionals of the operators {g,} and {p,}, it
is convenient to define the generalized Poisson bracket

<8A B B 8A>

{A,B} =Tr €
Xr: ’ 8qr Spr  3qr Spr

(1.11a)

Then using the Hamiltonian form of the equations of motion, one readily finds that
for a general bosonic trace functional A[{g,}, {pr}, ¢], the time derivative is given
by
d A SA . SA |
= T ~ 49+ ——Pr
3qr Spr

0A ((SA SH S§A 8H)

Tr —— — —

— \dqr Opr Oprdqr

0A (8A sH SH 5A>
= — +Tr & | — -
ot T 8qr dpr  8qr Spr
0A
=2 i (1.11b)

In particular, letting A be the trace Hamiltonian H, which has no explicit time de-
pendence when the Lagrangian has no explicit time dependence, and using the fact
that the generalized Poisson bracket is antisymmetric in its arguments, it follows

that the time derivative of H vanishes

d
—H=0. 1.12
T (1.12)

An important property of the generalized Poisson bracket is that it satisfies the
Jacobi identity

(A, {B,C}} +{C,{A,B}} + {B, {C,A}} = 0. (1.13a)

This can be proved algebraically in a basis independent way following Adler,
Bhanot, and Weckel (1994), as explained in Appendix B, and can also be proved
(Adler, 1994, App. A) by inserting a complete set of intermediate states into the
trace on the right of Eq. (1.11a) and using the complex valued analogs of Eq. (1.8),

giving
SA 6B 6B SA
o =3 o |Go) o)~ ()L G
m,n,r qr mn Pr nm qr mn Pr nm

d0A oB B 0A
- Y o _ . (1.13b)
M a(Qr)nm a(pr)mn a(Qr)nm a(pr)mn
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In the second line of Eq. (1.13b), the generalized Poisson bracket has been reex-
pressed as a sum of classical Poisson brackets in which the matrix elements of
qr, pr are the classical variables (which, depending on whether r is a bosonic or
fermionic index, are both either even or odd elements of a Grassmann algebra),
and the Jacobi identity of Eq. (1.13a) then follows from the Jacobi identity for
the classical Poisson bracket (as extended to a Grassmann algebra). As a result of
the Jacobi identity, if Qp and Q are two conserved charges with no explicit time
dependence, that is if

d d
0=—Qi=(QuH), 0="0Q:=(QH). (1.13¢)

then their generalized Poisson bracket {Qg, Q2} also has a vanishing generalized
Poisson bracket with H, and is conserved. This has the consequence that Lie alge-
bras of symmetries can be represented as Lie algebras of trace functionals under
the generalized Poisson bracket operation.

More generally, the Jacobi identity implies that trace dynamics has an under-
lying symplectic geometry that is preserved by the time evolution generated by
the trace Hamiltonian, in analogy with corresponding symplectic structures in
classical dynamics. This is discussed in more detail in Appendix C, following
Adler and Wu (1994). Although it will not play a role in the sequel, we note
for completeness that if the algebra of trace functionals is extended so as to be
closed under multiplication as well as addition of trace functionals, then the opera-
tor variational derivative and the generalized Poisson bracket both obey the Leibniz
product rule

5(AB)  SA 5B
= -

—B+A—,
3qr dqy qr
5(AB SA ’B
(AB) _ oA, 5B
dpr dpr Pr
{AB, C} = {A, C}B + A{B, C}. (1.14)

Hence the extended algebra of trace functionals forms a so-called Poisson algebra
(see, e.g., Giulini, 2003) under the combined operations of ordinary multiplication
of traces and the generalized Poisson bracket.

It will be useful at this point to introduce a compact notation for the op-
erator phase space variables, which emphasizes the symplectic structure. Let
us introduce the notation x| = g1, Xo = p1,X3 = ¢2,X4 = P2, ...,X2D—1 = gD,
X2p = pp, where by convention we list all of the bosonic variables before all of the
fermionic ones in the 2 D-dimensional phase space vector x,, with D = ng + np.
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The generalized Poisson bracket of Eq. (1.11a) can now be rewritten as

(A, B} = TrZ( Ors 5 ) (1.15a)

r,s=1

and the operator Hamiltonian equations of Eq. (1.10b) can be compactly rewritten
as

2D
SH
% = Z“’”a_' (1.15b)
s=1

)
The numerical matrix w,s that appears here is given by
a)=diag(QB,...,QB,QF,...,QF), (1.163)

with the 2 x 2 bosonic and fermionic matrices Qp and Q2f given respectively by

523=<_01 é) QF=—((1) (1)) (1.16b)

It is easy to verify that the matrix w obeys the properties

2
(@)rs = —€,8r5, g = —€rWpy = —€5Wyyg,

(a)4)rs = Ors, Zwrswrt = Za)srwtr = 0st- (L.17)
r 7

Henceforth, as in Eq. (1.17), we shall not explicitly indicate the range of the sum-
mation indices; the index r on g,, p, will be understood to have an upper summa-
tion limit of D, while the index r on x, will be understood to have an upper limit
of 2D.

Using this compact notation one can formally integrate the trace dynamics
equations of motion. Let j. be a constant source matrix of the same bosonic or
fermionic type as x,, and let us define

X, = Trjrx,, (1.18a)
so that
85X,
= 8y jir- (1.18b)
Sxy

Then the Hamiltonian equations of motion of Eq. (1.15b) can be rewritten, follow-
ing Adler and Horwitz (1996), as

X, =Tejpir =Tr ) Srujri

u

X SH
=Tr) oy = (X H = ~(HX,), (1.18¢)

N
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which expresses X, as a generalized Poisson bracket with the trace Hamiltonian.
We can now formally integrate the equation of motion for X, (#) by writing

X, (1) =exp(—{H, ... }H)X,(0)exp({H, .. .}1)

= X,(0) — 1{H, X, (0)} + 3 (H, (H, X, 0))

—ét3{H, H, {H, X, (0)}}} +... (1.19)

1.5 Trace dynamics contrasted with unitary Heisenberg picture dynamics

In general, the matrix dynamics specified by Eqgs. (1.15b) and (1.19) is not unitary,
in other words, Eq. (1.19) is not equivalent to an evolution of the form

x(1) = Ul ()x, () U (1), (1.20a)

for some unitary U (¢). Expressed in generator form, by writing U (¢) as U(t) =
exp(—iGt), the evolution of Eq. (1.15b) is not equivalent to a Heisenberg picture
time evolution (with i = 1)

xr(t) =[G, x-(1)]. (1.20b)

As a concrete example, consider the case with two degrees of freedom and the
trace Hamiltonian H = Tri{q1, p2}[q1, p1], with p1, p2, and g1 bosonic operators.
Then from Eq. (1.10b) we compute

a1 = il{q1, p2}. q1],

G2 = ilq1, [q1, p11},

p1 = —i({p2. [q1, p11} + [p1. {q1. p2}]). (1.20¢)

p2=0,
which clearly cannot be represented in the unitary evolution form given in
Eq. (1.20b) for any choice of generator G. This statement holds true even
when Eq. (1.20c) is simplified by assuming the canonical algebra [g,, ps] = 6,5,

lgr, gs]1 = [pr, ps] = 0 (which involves an extension of the algebra of dynamical
variables to ones that are not trace class), so that the equations of motion read

q1 =0,
g2 = —2q1, (1.20d)
p1 =0,

p2=0.
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These equations cannot be represented, for any choice of G, as a Heisenberg evo-
lution x = i[G, x] for all x = ¢q1, g2, p1, p2, since the second line in Eq. (1.20d)
implies, assuming the canonical algebra, that G must contain a term proportional
to p2q1, whereas the third line in Eq. (1.20d) implies, together with the canoni-
cal algebra, that G has no dependence on ¢! Equations (1.20d) can, however, at
one instant of time be represented as different Heisenberg evolutions for the two
canonical pairs g1, p and g2, p>

q1 =i[G1, q1],
] = ] G 9 9
qz l'[ 2, q2] (1.20¢)
p1 =[Gy, p1l,
p2 = i[Ga, p2l,
with G; = 0 and G» = —{q1, p2}, a statement that we shall see can be extended

to the general case. The restriction of Eq. (1.20e) to one instant of time is re-
quired because, in this example, although the first time derivatives of the rela-
tions [q1, p1] =i, [q2, p2] =i, 91, g2] = 0, and [p, p2] = O are consistent with
the equations of motion of Egs. (1.20d,e), the first time derivative of the relation
[p1, g2] = 0 s not, since

[P1, 2] + [p1, g2] = —2[p1, q1]1 = 2i # 0. (1.201)

In general, as we shall remark again below, multiple Heisenberg-like evolution
does not preserve an initially assumed canonical algebra, and so can be used to
represent the trace dynamics equations of motion only at one instant of time.
There is, however, a special case, discussed in Adler and Millard (1996), in
which the trace dynamics and the unitary Heisenberg picture evolutions coin-
cide. Let us consider a special class of operator Hamiltonians called Weyl-ordered
Hamiltonians, in which the bosonic operators are all totally symmetrized with re-
spect to one another and to the fermionic operators, and in which the fermionic
operators are totally antisymmetrized with respect to one another. (Note that in
the conventional quantum mechanical application of Weyl ordering, in which op-
erators such as gy and p, commute according to the canonical algebra, their
products do not need to be symmetrized; in trace dynamics, since no a priori
commutativity properties are assumed, Weyl ordering requires the symmetriza-
tion/antisymmetrization of all operator products.) Clearly, the most general Weyl-
ordered Hamiltonian which is a polynomial in the operator phase space variables
{x,} will be a sum of terms, which may be of different degrees, each obtained
by Weyl ordering a distinct monomial in the phase space variables. The contri-
bution of all such monomials of degree n may be simply represented by a gen-
erating function G, constructed as follows. Let o, r=1,...,2D be a set of
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parameters which are real numbers when €, = 1 and which are real Grassmann
numbers, which anticommute with each other and with all of the fermionic phase
space variables, when €, = —1. Then if we form

Gn=g". g=) o (1.21a)
N

the coefficient of each distinct monomial in the parameters o, will be a distinct
Weyl-ordered polynomial of degree n in the phase space variables {x,}. Corre-
sponding to the operator generating function G,,, we define a trace functional gen-
erating function

G, = TrG,. (1.21b)

The part of G, which is even in the Grassmann parameters is then a generating
function for all non-vanishing trace functionals that correspond to the bosonic
Weyl-ordered monomials generated by G,.

Let us now compare the trace dynamics equations of motion produced by G,
for general operators {x, }, with the corresponding Heisenberg picture equations of
motion produced by G, when the phase space variables {x,} are assumed to obey
the standard canonical algebra of quantum mechanics. In our compact phase space
notation, this algebra takes the form

XpXs — € XsXp = L€, Wy,

[x,,i] = 0, (1.22a)

where we adopt the convention that if only one of x,, x; is bosonic, it is taken to
be the operator x,; alternatively, we can rewrite the first line of Eq. (1.22a) with no
restrictions on the indices r, s by including a factor oy, giving

[x,, 055 ] = i@ys0y. (1.22b)

As noted above, imposition of the canonical algebra involves an extension outside
the algebra of trace class matrix dynamical variables, since taking the trace of
Eq. (1.22b) leads to an inconsistency if one simultaneously assumes the validity of
cyclic permutation under the trace.

Applying the equations of motion of Eq. (1.15b) with G,, playing the role of the
trace Hamiltonian, we get

X = Za)” = anng IO'S. (1.23a)
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On the other hand, from the canonical algebra of Eq. (1.22b) we find, for both
bosonic and fermionic x,, that

[xr, gl =10 w0y, (1.23b)

which in turn implies that

[xr, Gnl = ngn_li Zwrsas- (1.23¢)
s

But the Heisenberg picture equations of motion for the phase space variables, tak-
ing G, as the operator Hamiltonian, are

X, =[Gy, x], (1.23d)
which substituting Eq. (1.23c) becomes

ir= ) wng" oy, (1.23¢)
S

in agreement with Eq. (1.23a). We can now sum over all generating function con-
tributions G,, weighted by c-number coefficients to obtain a general Weyl-ordered
Hamiltonian H, which has a corresponding trace Hamiltonian H = TrH, which
respectively generate the Heisenberg picture equation of motion

xXr =1i[H, x;] (1.24a)

and the corresponding trace dynamics equation of motion of Eq. (1.15b).

Thus, for Weyl-ordered Hamiltonians formed with c-number coefficients, we
conclude that the trace dynamics equations of motion generated by H agree with
the Heisenberg picture equations of motion generated by H, on an initial time slice
on which the phase space variables are canonical. It is also evident that on this time
slice

[H,i] = 0. (1.24b)

But since Eq. (1.24b) guarantees that the Heisenberg picture equations of mo-
tion preserve the canonical algebra on the next time slice, integrating forward in
time step by step then implies that trace dynamics agrees with Heisenberg pic-
ture dynamics at all subsequent times, and therefore can be extended to a unitary
dynamics in this case.

When H is not Weyl ordered, as we have seen above, one can give explicit
examples in which the trace dynamics equations of motion do not correspond to
a unitary evolution, even when extended to the canonical algebra. The example of
Eq. (1.20c) required the use of two pairs of canonical variables g; 2, p12; using
our Weyl-ordering result, we shall now show that any trace dynamics for a single
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pair of bosonic variables ¢, p, when extended to the canonical algebra [¢, p] = i,
always can be represented as a unitary Heisenberg evolution. We shall proceed
by induction, and assume that the result has been proved for any trace dynamics
generated by a trace Hamiltonian H = TrH of degree n or less in p and g. Now
consider a trace Hamiltonian of degree n + 1, and suppose that the result has been
proved for those degree n + 1 trace Hamiltonians that can be reduced to Weyl-
ordered form by at most k interchanges of p and ¢g. This hypothesis is true for k =
0, i.e., the case in which we start from a degree n + 1 Weyl-ordered Hamiltonian.
Consider now a trace Hamiltonian H,,41 x4+1 which is of degree n 4 1 and which
requires k + 1 interchanges of p and ¢ to reduce it to Weyl-ordered form. Doing
the first of these k + 1 interchanges of p and g we have

H, 11641 = Hyp1 1+ iTrX[q, pl, (1.25a)

with X a self-adjoint polynomial of degree n — 1, where we have used the fact that
irrespective of the position of the g and p that are being interchanged, the resulting
commutator can always be cyclically permuted to the right. Varying Eq. (1.25a) we
have

OHy 1 k41 = 0Hy1 1 +iTr(6X[q, pl + X[dq, pl + Xlq, dp)). (1.25b)

Now that we have taken variations, we can simplify the first term on the right-
hand side by assuming the canonical algebra, so that after using cyclic invariance
to rearrange the second and third terms on the right we get

SHy 1641 = SHpp1 6 — X +iTr([p, X18q + [X, q1dp). (1.25¢)
Thus Eq. (1.25¢) implies that

. SH SH X
b= ntlkl _ OMntlk + = +i[X, pl,
8q 8q 8q
SH SH X
q. = Lkt = ntlk - o + l[Xv CI] (125d)
sp sp p

Now let us use the induction hypothesis, which states that the trace dynamics
equations generated by both H,, 41 x and X simplify, over the canonical algebra,
to Heisenberg picture equations of motion with generators G,1 x and G x respec-
tively. Thus we have

p =ilGnt1k, pl —ilGx, pl+ilX, pl = i[Gpt1,k+1, P,

q =ilGnt1k,q) —ilGx,ql +ilX. gl = i[Gnyik+1, 9], (1.26a)

where we have defined

Gnt1h+1 = Guy1x — Gx + X, (1.26b)
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completing the induction. Therefore any trace dynamics in a single pair of bosonic
dynamical variables ¢, p simplifies, when extended over the canonical algebra, to
a unitary Heisenberg dynamics.

When more than one canonical pair of bosonic or fermionic dynamical vari-
ables is present, the inductive argument just given generalizes in the following
way. The key step of Eq. (1.25a) now contains a sum of commutators of each
bosonic variable with all other bosonic and fermionic variables, and of anticom-
mutators of each fermionic variable with all other fermionic variables. The cyclic
rearrangements and inductive strategy used above now can be used to prove that
when restricted to the canonical algebra, the general trace dynamics equations of
motion can be expressed at one instant of time as a multiple Heisenberg-like evolu-
tion with different generators linking each distinct pair of operators. For example,
considering for simplicity just the case in which only bosonic dynamical variables
are present, Eq. (1.25a) generalizes to

Hypigr = Hopx +iTe Y (Xglar gs]+ XEglpr psl + X5l4r. psD).

rs
(1.27a)
Here the Xs are independent bosonic generators for each pair of index labels, and
we have followed the usual convention of denoting antisymmetry in subscripted
indices by [ ]. The inductive argument then shows that when simplified over the
canonical algebra, at one instant of time the trace dynamics equations of motion
take the form of a multiple Heisenberg-like evolution

q'r =i Z ([Gggrv QS] + 2[G%yr]’ pS])’

R
pr=1i_(IG). ps1+2[G[.q, 451). (1.27b)

with the generators G obtained by combining the generators X with the generators
Gu+1.k and Gy furnished by the inductive hypothesis. In the most general case,
the generators appearing in Eq. (1.27b) are all distinct, but in special cases some
can be zero or identical to others. When fermionic as well as bosonic variables
are present, there will be additional terms in Eq. (1.27a) involving commutators
of bosonic variables with fermionic variables, and anticommutators of fermionic
variables with one another, each with an independent operator coefficient, which
give rise to corresponding additional terms in Eq. (1.27b).

The restriction to one instant of time is needed because the evolution of
Eq. (1.27b) does not preserve the structure of the canonical algebra (as is eas-
ily seen by application of the Jacobi identity for commutators), and so the trace
dynamics equations of motion, for an asymmetric Hamiltonian in the many vari-
able case, cannot be replaced by a canonical evolution even with the complicated
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generator structure given in Eq. (1.27b). However, because of the indicated index
antisymmetry of G[lr 5 and G[zr s> When only one bosonic canonical pair is present
the evolution of Eq. (1.27b) reduces to the much simpler Heisenberg evolution of
Eq. (1.26a), and so we recover our previous result.

The result of Eq. (1.27b) shows that when two or more canonical pairs of dy-
namical variables are present, in general Weyl ordering of the Hamiltonian is
needed for the trace dynamics equations of motion to simplify, when extended
over the canonical algebra, to unitary Heisenberg ones. When the trace dynam-
ics equations of motion for the generic case of an unsymmetrized Hamiltonian
are extended to the canonical algebra, the tightly constrained Heisenberg evolu-
tion found in the Weyl-ordered case, in which each dynamical variable evolves
with the same Hamiltonian generator, “fragments” into independent evolutions for
each dynamical variable. This phenomenon is relevant because non-Weyl-ordered
Hamiltonians appear in models of physical interest, such as the supersymmetric
Yang—Mills models described in Sections 3.2 and 3.3, and the non-supersymmetric
but operator gauge invariant models discussed in Appendix E, all of which involve
commutator terms in the construction of their Hamiltonians. More generally, the
fact that the trace dynamics equations of motion are not a unitary Heisenberg evo-
lution plays a role in Chapter 6, where we argue that the leading corrections to
an approximation of a unitary Heisenberg evolution take the form of rapidly fluc-
tuating terms in the Schrodinger equation, that provide the theoretical basis for
stochastic localization models for state vector reduction.

To conclude this discussion, we emphasize that in the remainder of this
book we will not assume that the matrix variables obey canonical commuta-
tion/anticommutation relations. They are instead assumed to be completely gen-
eral trace class matrix operators with no special commutativity/anticommutativity
properties. An effective canonical algebra will be seen to hold as an approxima-
tion only for averages of the matrix variables over a statistical mechanical canoni-
cal ensemble. The discussion of this section then shows that, for a trace dynamics
generated from a Weyl-ordered Hamiltonian, this effective canonical algebra and
Heisenberg dynamics gives equations of motion that agree with those arising from
the underlying trace dynamics.
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Additional generic conserved quantities

We have seen in Chapter 1 that the trace Hamiltonian H is always a conserved
quantity in the dynamics of matrix models. In this chapter we introduce two struc-
tural restrictions on the form of the trace Hamiltonian (or Lagrangian), which lead
to two further generic conserved quantities. The first conserved quantity, discussed
in Section 2.1, is a trace quantity N analogous to the fermion number operator in
field theory, and the second, introduced in Section 2.2, is an operator C that is
reminiscent of the canonical commutator/anticommutator structure of field theory.
These conserved quantities play a central role in the statistical mechanical analysis
of Chapters 4 and 5, where we shall see that when the low energy dynamics is ef-
fectively dominated by C, with the trace quantities H and N effectively decoupled,
then the statistical thermodynamics of matrix models has the structure of quantum
field theory.

When the index r labeling the dynamical variables is a spatial box label, and
when the corresponding trace Lagrangian is Poincaré invariant, there will be ad-
ditional conserved quantities that play the role of trace generators of the Poincaré
group under the generalized Poisson bracket introduced in Section 1.4. These con-
served quantities are all charges associated with corresponding conserved currents,
as discussed in Section 2.3. To illustrate the general trace dynamics formalism in
action, and to give examples of all of the conserved quantities introduced in this
Chapter, in Section 2.4 we analyze in detail the simple trace dynamics model de-
fined by coupling a Dirac fermion to a scalar Klein—-Gordon field. Finally, in Sec-
tion 2.5 we discuss the symmetry properties of the conserved quantities under the
interchange of fermionic canonical coordinates and momenta.

2.1 The trace “fermion number’ N

Although we shall allow the trace Hamiltonian to have arbitrary polynomial de-
pendences on the bosonic variables, let us for the moment restrict the fermionic

39
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structure to have the bilinear form found in all renormalizable quantum field the-
ory models, by taking H to have the form

H=TrH =Tr Z (prqsBirs + prBarsqs) + purely bosonic. (2.1a)

r.seF

Here the notation € F indicates a sum over only the fermionic operator phase space
variables, and Bj , are general polynomials in the bosonic variables. (Requiring
self-adjointness of H places restrictions on the form of Bj,s and By, that are
given in Eq. (2.4f) below, but are not needed for the conservation argument that
follows.) From Eq. (2.1a) and the Hamilton equations of Eq. (1.10b), we have for
fermionic r, s

. SH

Ps = ——— =— Z(Blrspr + prBars),
85 reF

. SH

qr = — = Z(QSBlrs + Berq_v)- (2.1b)
Spr seF

Let us now define the trace quantity N by

1, . .
N= ElTr Z[qr, prl= lTrZQrPr = _lTrZPrQr- (2.2a)

reF refF refF

Then for the time derivative of N we have, from the second of the three equivalent
forms of N

N=iTr) @Grpr+4rpr). (2.2b)
reF

which on substituting the fermion equations of motion of Eq. (2.1b) becomes

N=iTr ) [Bas. qspr] = 0. 2.3)

r,seF

Thus, N is a conserved trace quantity when the trace Hamiltonian has the bilin-
ear fermionic structure of Eq. (2.1a). Inverting the Legendre transformation of
Eq. (1.9b), the corresponding trace Lagrangian is

L=TrL = TI‘Z prgr — Tr Z (PrqsBirs + prBarsqs) + purely bosonic.
reF r,seF

(2.4a)
In order for the kinetic part of L to be self-adjoint up to a total time derivative, we
assign adjointness properties of the fermionic variables according to

pr = q:, (2.4b)
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which gives

(Prdn' = (gl¢)" = =gl
d
= f]j qr — E(q: qr) = prqr + total time derivative, (2.4¢)

as needed. (A more general construction of the fermionic kinetic Lagrangian,
and a correspondingly more general assignment of adjointness properties of the
fermionic variables, will be taken up at the end of Section 2.2.) Substituting
Eq. (2.4b) into Eq. (2.4a), the trace Lagrangian takes the form

L=TrY g/ —Tr Y (qlqsBirs + ¢} Barsqs) + purely bosonic.  (2.4d)

reF r,seF

Correspondingly, substituting Eq. (2.4b) into Eq. (2.2a) for N we get

—zTrZ[qr,q, =iTr) qrq) =~iTr) qlg.. (24

refF reF reF

showing that, since N is the trace of a self-adjoint quantity, it is real when the
fermionic adjointness properties are assigned as in Eq. (2.4b). From Eq. (2.4d), we
see that with the fermionic adjointness assignment of Eq. (2.4b), self-adjointness
of L and H requires that

Ber = BT

2sr ?

Blrs = _BT

1sr »

all 7, s. (2.4f)

The resemblance of N to a fermion number operator suggests that it will be
conserved even when H is not bilinear, as long as each monomial in H has equal
numbers of fermionic operators p, and g5, with any values of the mode indices
r, s. This is indeed the case, and can be seen as follows. Let H,, op be a mono-
mial term in H containing exactly n, factors of fermionic gs, and n, factors of
fermionic ps, with any values of the indices r, ... labeling fermionic degrees of
freedom. Then by a simple counting argument (an application of Euler’s theorem
for homogeneous functions) we have

SH
Trz R = ngHp, n,,

refF
Trz Moy ny pr=npHy n,. (2.5a)

reF
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Hence denoting by N, ,.n, the contribution of H,_ ,, to N=iTr}, cr(Grpr+
qr pr) , we have by use of Eq. (1.10b)

. 6H éH
qu,np = _iTrZ [Mpr + Qrﬂ}

reF Spr 3qr
SH SH
=—iTry [ ;q’n” pr ;q’"” Qri|
reF pr Qr
= —i(ny — "q)an,n,,- (2.5b)

Hence if H is constructed solely from monomials which have equal numbers of
fermionic gs and ps, so that n, = n, for all monomial terms in H, then the trace
quantity N remains conserved. This gives the most general structural restriction on
H leading to conservation of N.

An alternative derivation of the conservation of N in the general case shows its
role as a Noether charge. When the numbers of fermionic operators p, and g are
matched in every monomial, the trace Lagrangian

L=Tr Z qu gr + terms with no time derivatives of fermions (2.5¢)
refF

will be invariant under the substitutions ¢, — exp(ia)g, and qu — exp(—ioa)qsT
with o a real constant. When « is time dependent, this substitution results, to first
order in «, in a shift in the trace Lagrangian

L—> L+iaTr) glq =L—aN. 2.5d)

reF

The standard Noether’s theorem argument (an exposition of which, in the context
of continuum spacetime models, will be given below in Section 2.3) then tells us
that the coefficient of « in Eq. (2.5d) is a conserved charge, which again shows
that N is a constant of the motion.

2.2 The conserved operator C

As a second structural specialization, let us restrict the class of matrix models
under consideration to those in which the only non-commuting matrix quantities
are the Lagrangian dynamical variables g, gy, or their Hamiltonian equivalents
qr, ps, for general index values r, s. In other words, we shall assume that the trace
Lagrangian and Hamiltonian are constructed from the dynamical variables using
only c-number complex coefficients, excluding the more general case in which
fixed matrix coefficients are used. With this restriction, we shall show that there is
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a generic conserved operator

C Z[Qrv prl— Z{Qrv pr}= Z(érQrpr Prqr) = Zxrwrvxw (2.6)
reB reF

with the notation € B, € F denoting respectively sums over bosonic and fermionic
operator phase space variables. The existence of the conserved quantity C was first
discovered by Millard (personal communication, 1995 and thesis, 1997) under the
more restrictive assumption of a bosonic theory with a Weyl-ordered (i.e., sym-
metrized) Hamiltonian, but was soon seen to hold (Adler and Millard, 1996, and
with a Noether formulation Adler and Kempf, 1998) under the less restrictive con-
ditions assumed here.

When the Lagrangian and Hamiltonian are constructed using only c-number
fixed coefficients, there is a bosonic global unitary invariance which preserves the
adjointness proper’ues of the dynamlcal variables (in the sense that when we set
yv=U fx,U, then yr U Txr U .) That is, if there are no fixed matrix coefficients,
then the trace Lagrangian obeys

LI{UYq, U}, (U4, U}] = Lifg,}, (g, )], (2.7a)
and the trace Hamiltonian correspondingly obeys
H[{(U'q, U}, (U p, U}l = Hlig,}, {p,}], (2.7b)

with U a constant unitary N x N matrix. Let us now find the conserved charge
corresponding to this global unitary invariance. Setting U = exp A, with A an anti-
self-adjoint bosonic generator matrix, and expanding to first order in A, Eq. (2.7b)
implies that

H[{g, — [A, ¢ 1}, {pr — [A, pr1}] = Hl{g/}, {pr}]. (2.8a)

But applying the definition of the variation of a trace functional given in Eq. (1.3b),
Eq. (2.8a) becomes

Trz <——[A a1 - —[A pr]) =0, (2.8b)
which by use of the cyclic identities of Eqs. (1.2) yields
TrA Y °H € 5H+5H LD P (2.8¢)
‘ 54, qr r4r 5q, 5p, Pr rPr 5, = L. .

Since the generator A is an arbitrary anti-self-adjoint N x N matrix, the matrix
that multiplies it in Eq. (2.8c) must vanish, giving the matrix identity

SH JH JH JH
Z —qr —€q¢r—+ —pr—€pr— | =0. (2.9a)
= 8qr (Sqr Spr Spr
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But now substituting the Hamilton equations of Eq. (1.10b), Eq. (2.9a) takes the
form

0= Z (—=Prqr + €9y pr + €:4rpr — Prqr)
=

d
= dr § (—Prqr + €9 pr)
r

= % (Z[qr, prl= lar, pr}) : (2.9b)

reB reF

completing the demonstration of the conservation of C. An analogous demonstra-
tion can be given starting from global unitary invariance of the trace Lagrangian
L. In place of Eq. (2.8b) one finds

SL SL
Tr ——I[A a1 — —I[A, g ]) =0, (2.9¢)
Xr: < 8qr C]r 8qr o
and in place of Eq. (2.9a) one has
SL S éL . . SL
Z ~—4r —€&qr—+ —4r —&4r— | =0. (2.9d)
r 8qr 8qr 84, 3qr

Substituting the Euler—Lagrange equations of Eq. (1.7c), together with the defini-
tion of the canonical momentum from Eq. (1.9a), then leads again to Eq. (2.9b).

In Egs. (2.7a,b) we have assumed that U is a time-independent unitary matrix.
When U and A are time dependent, under the substitution g, — ¢, — [A, g ] the
time derivative of ¢, transforms according to ¢, — ¢, — [A, ¢,] — [A, gr], and
the trace Lagrangian changes, to first order in A, by

SL .
L — L—Trzg[z\,q,]. (2.9¢)
r r

Substituting Eq. (1.9a) and using the cyclic identities of Egs. (1.1a,b) and (1.2),
the added term can be rewritten as

—Tr > pr(Agr — grA) = —TrA > (€grpr — prgr) = —TtAC.  (2.9f)
r r

Application of the standard Noether’s theorem argument then tells us that the co-
efficient of A in Eq. (2.9f) is a conserved charge, which exhibits the role of the
conserved quantity C as the conserved Noether charge associated with global uni-
tary invariance.

Assigning adjointness properties to the fermionic variables as in Eq. (2.4b), and
taking the bosonic variables g, to be self-adjoint (or anti-self-adjoint), which for
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areal trace Lagrangian implies that the corresponding bosonic p;, are respectively
self-adjoint (or anti-self-adjoint), we see that the conserved operator C is anti-self-
adjoint

C=-Cl. (2.10a)

(A more general adjointness structure for C, corresponding to an alternative as-
signment of fermion adjointness properties, will be discussed shortly.) Also, from
the bilinear cyclic identities of Egs. (1.1a,b), we see that C is traceless

TrC = 0. (2.10b)

Corresponding to the fact that C is the conserved Noether charge in any matrix
model with a global unitary invariance, it is easy to see (Adler and Horwitz, 1996;
Adler and Millard, 1996) that C can be used to construct the generator of global
unitary transformations of the Hilbert space basis. Consider the trace functional

Ga = TrAC, (2.11a)

with A a fixed bosonic anti-self-adjoint operator, which can be rewritten, using
cyclic invariance of the trace, as

Ga=-Tr) [A. plgr =Tr Y prlA. gl (2.11b)

Hence for the variations of p, and ¢, induced by using G as canonical genera-
tor, which by definition (see Eq. (2.13a) below) have a structure analogous to the
Hamilton equations of Eq. (1.10b), we get

8G A 6GA

Spr=— = [A, prl, 3qr = €
8qr Spr

=[A, gr]. (2.11¢c)

Comparing with Egs. (2.7b) and (2.8a), we see that these have just the form of an
infinitesimal global unitary transformation.

The generalized Poisson bracket of the trace generators of two infinitesimal
global unitary transformations G and Gy can be computed (Adler and Horwitz,
1996) by combining Eq. (2.11c) with the definition of the bracket in Eq. (1.11a),
with the result

8Ga 8Gyx
{Ga,Gyx) = Trzr:er < 50 5m (A < 2))

=Tr) &(—I[A plelS. g ] — (A & )

= Trzpr[[A» Z]v Qr] = G[A,E]' (2123)
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Hence the Lie algebra of the generators G under the generalized Poisson bracket
is isomorphic to the algebra of the matrices A under commutation. Equation
(2.12a), which is an analog of the “current algebra™ group properties of integrated
charges in quantum field theory, can be generalized (Adler and Horwitz, 1996) to
an analog of the local current algebra of quantum field theory as follows. Let us

write
= c,
r

Cr=¢€9pr — DPrqr, (2.12b)
and let us define a “local” trace generator G 4. , by
Ga., = TrAC,. (2.12¢)

Then a straightforward calculation, similar to that leading to Eq. (2.12a), shows
that

{GA;r, GE;S} = CSI’SG[A,E];F' (2'12d)

In addition to the canonical generators for global unitary transformations given
in Egs. (2.11a—), we can also define general canonical transformations. Letting
G = TrG, with G self-adjoint but otherwise arbitrary, a general infinitesimal
canonical transformation is defined, in analogy with Eq. (2.11c), by

s _ %G

pr - Sqr )
G

8qr = €r—, (2.13a)
Spr

which is the natural extension to trace dynamics of an infinitesimal canonical
transformation in classical mechanics. In terms of the symplectic variables x, in-

troduced in Section 1.4, Eq. (2.13a) can be written in the compact form

Sxy = Z a),s 8x (2.13b)

N

Letting A = A[{x,}] be an arbitrary trace functional, we find immediately that to
first order under a canonical transformation

A+ 5A = A[{x, + 6x,)]

SA
=A+TI'Z géxr
r

_A+Tr28x a),s—
r

=A+{A, G}, (2.14a)
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that is
SA = {A, G}. (2.14b)

Comparing Eq. (2.13b) with Eq. (1.15b), we see that when G is taken as Hd¢, with
H the trace Hamiltonian and d¢ an infinitesimal time step, then §x, = x,dt gives
the small change in x, resulting from the dynamics of the system over that time
step. So, as expected, the Hamiltonian dynamics of the system is a special case of
a canonical transformation.

Let us now consider canonical transformations with generators G which are
global unitary invariant, that is, which are constructed from the {x,} using only
c-number non-dynamical coefficients. Global unitary invariance implies that these
generators obey

{G,GA} =0, (2.15)

with G, the global unitary generator of Eq. (2.11a). But using Eq. (2.14b),
Eq. (2.15) has the alternate interpretation that G is invariant under a canonical
transformation G which is global unitary invariant, and since the anti-self-adjoint
matrix A is arbitrary, this implies that C is invariant under any canonical trans-
formation with a global unitary invariant generator. (This could also have been
deduced by a calculation in direct analogy with Egs. (2.7a) through (2.9b).) This
invariance group of C has the following significance. Consider a Poincaré invari-
ant trace dynamics field theory with a global unitary invariant trace Lagrangian,
examples of which are given in Sections 2.3 and 2.4 and Chapter 3 below. In such
a theory, there is a set of trace functional Poincaré generators, that represent the
Poincaré group under the generalized Poisson bracket operation, without any as-
sumption of canonical commutators/anticommutators for the underlying dynami-
cal variables {x,}. These Poincaré generators are global unitary invariant (that is, if
the Lagrangian involves only c-number non-dynamical coefficients, this property
carries over to the trace energy-momentum tensor and to the trace Poincaré gener-
ators), and so we can conclude from the above discussion of canonical invariance
that C is Poincaré invariant. This will be seen explicitly in the examples given in
Sections 2.3 and 2.4 and Chapter 3, and will play a role in our later analysis of
the emergence of quantum behavior from the statistical dynamics of global unitary
invariant matrix models.

For each phase space variable ¢,, p,, let us define the classical part ¢g-, p¢ and
the non-commutative remainder g/, p.., by

.1 .1
gy = NTrQr, pr= ﬁTrpr,

g, =qr—qf, p,=pr— DL, (2.16a)
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so that bosonic gy, py are c-numbers, fermionic g5, py are Grassmann c-numbers,
and the remainders are traceless

Trq, = Trp, = 0. (2.16b)

Then since gf, p¢ commute (anticommute) with g;, p; for r, s both bosonic
(fermionic), we see that the classical parts of the phase space variables make no
contribution to C, and Eq. (2.6) can be rewritten as

C=>lg..p1—Y g p}. (2.16¢)

reB reF

Thus C depends only on the non-commutative parts of the matrix phase space
variables.

We conclude this section by showing that the argument for the adjointness prop-
erties of C can be generalized, allowing for the possibility that C can have a
component which is self-adjoint, when we allow a more general assignment of
fermionic adjointness properties than that of Eq. (2.4b). Let us consider a trace
Lagrangian which has a fermionic kinetic term of the form

Lyin = Tr Z QIArsq-A‘a (2.17a)

r,seF

with A, for each r, s an N x N constant matrix. This trace Lagrangian will be
real, up to a total time derivative, provided that the set of matrices A,s obeys

Ay = Al (2.17b)

The momentum p; canonically conjugate to g; is

JL
ps ==Y af A, (2.17¢)
3qs refF

and the kinetic Lagrangian takes the form

Liin = Tr Y _ psds, (2.17d)
seF

which is clearly global unitary invariant as a function of the phase space variables
X, even though L was not global unitary invariant when expressed in terms of the
original variables g, q,T . Let us now suppose that the remaining terms in L also
have the property that they are global unitary invariant when expressed in terms
of the phase space variables x,; then the trace Hamiltonian H will also be global
unitary invariant. The argument of Egs. (2.7b) through (2.9b), which does not make
use of the adjointness assignment of Eq. (2.4b), then implies that C of Eq. (2.6) is
still conserved.
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To see when the possibility of a self-adjoint component of C can be realized,
we consider the fermionic part Cr, for which we have

Cr=—) (g5 ps} == Y @sa} Ars + a4} Arsay),

seF r,seF
éi" = Z (AIsQrCI;r + CIJAJr[sQV) = Z (Ars%q;r + quAquS)’ (2.18a)
r,seF r,seF

where in rewriting C‘TF in the second line we have used the condition of Eq. (2.17b).
Adding the two equations, we get

Cr+Ch=="lgq]. Asl. (2.18b)

r,seF

showing that when the right-hand side of Eq. (2.18b) is non-zero, the operator C is
no longer anti-self-adjoint. As a direct check that the commutator on the right-hand
side of Eq. (2.18b) is self-adjoint, we have

i
(Z lgsq], Ars]) =— > (Al arql1 == ) [Ay. qrq]]

r,seF r,seF r,seF

= Z [qu;9 Agr]l = Z [%q:v Apgl. (2.18¢)
r,seF r,seF
When A, is a c-number for all r, s, then the right-hand side of Eq. (2.18b) van-
ishes, and C is anti-self-adjoint. Thus, with the c-number choice

Ars = &ys, (2-18d)

which trivially satisfies the condition of Eq. (2.17b) and corresponds to the fermion
kinetic structure and adjointness assignment used in Eqs. (2.4a,b), we recover our
earlier conclusion that C is anti-self-adjoint. Throughout most of this book we
shall use this simple choice of A,, and we shall see that an anti-self-adjoint C
naturally leads to an emergent quantum dynamics. However, in Chapter 6, where
we consider stochastic corrections to the Schrodinger equation, we shall consider
the possibility that C can have a self-adjoint part as well.

As a very simple example of a nontrivial trace action that has a conserved C
that is not anti-self-adjoint, consider

1.
L="Tr¢"AG+¢B) + 5192], (2.192)

with A = A" a fixed matrix and with B = —BT an anti-self-adjoint bosonic
operator. Then with g5 = g, pr = q'A, and g = B, pp = B, the correspond-
ing trace Hamiltonian is

1
H =Tr(=prqrqs + 5 P3), (2.19b)
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which is a global unitary invariant function of its arguments. Thus the operator
C =lgs, pBl — (qF, PF} (2.20a)

is conserved, as can be checked explicitly by use of the operator equations of
motion

qr = —qFqB, PF = 4BDF,

4gB = PB. PB = DFYF- (2.20b)

However, when A is not a c-number, the calculations of Egs. (2.18b,c) show that
C has a piece that is self-adjoint

C+Cl=1[4,q9¢"1=1A, qrprA™"1. (2.21a)

The anti-self-adjoint and self-adjoint parts of C are separately conserved, as we
readily verify from the equations of motion of Eq. (2.21)

d ) .
E(CIFPF) =q4rpr +qrpr =0. (2.21Db)

We complete this discussion by exploring whether there is a connection be-
tween time-reversal noninvariance and the appearance of a self-adjoint piece in C.
Let us define the anti-unitary time-reversal transformation 7, in analogy with the
standard definition for fermion fields, by

TiTH = —i,
TQr(t)TT = ZUrqus(_t)v
seF
TqiT" =) ql(-nUj,. (2.22a)
seF

Here U, is a unitary matrix for each r, s, and we note that under a linear superpo-
sition of the g, with complex coefficients, one obtains an antilinear superposition
of the corresponding g (—t), that is, a superposition with complex conjugated co-
efficients. With this definition, we find that the transformation of the expression
appearing in Eq. (2.17a) for the fermionic kinetic energy is

7 ( > Al Awdgs <r>) 7!

r,seF

=T ( Z q}L(t)AmnaZQn(t)) TT

m,neF

=Y Y 4l (=DU), AL, Unsdige(—1). (2.22b)

r,seF m,neF

Hence the kinetic action f dtLkin, will be form-invariant under time-reversal
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provided
Arg=— > Ul AsUs= > UL AL U, (2.22¢)

m,neF m,neF

where in the second equality we have substituted the condition of Eq. (2.17b), and
where the superscript T denotes a transpose of the matrix structure of A,,,, but
does not act on the summation indices m, n. Referring to Eq. (2.18a) and applying
the transformations of Eq. (2.22a) to evaluate TCr ()T T, we find that

TCrT +Cr(=n = Y (= as(=0q) (=D A
r,seF
= Y Unas(=0g/(=0U}, A%, ). (2.220)
m,neF
When Eq. (2.22c¢) can be satisfied by matrices U, that are c-numbers for each
r, s, the factor Uy in the second term on the right-hand side of Eq. (2.22d) can
be commuted through to the right. We can then use the condition of Eq. (2.22¢)
to conclude that the two terms on the right-hand side of Eq. (2.22d) cancel, so
that 7Cr(1)TT + Cp(—1) = 0 and CF is time-reversal odd. Since this is also the
behavior expected for the bosonic part of C (bosonic gs are time-reversal even,
while bosonic ps are time-reversal odd), we conclude that C is time-reversal odd
when Eq. (2.22c¢) can be satisfied with c-number matrices U,.

The condition of Eq. (2.22c) is evidently satisfied by the c-number matrix
U,s = §;s when we make the simplest choice A,; = §,5 of Eq. (2.18d). So in
this case, which corresponds to the simplest fermionic adjointness assignment of
Eq. (2.4b), C is purely anti-self-adjoint and is time-reversal odd. If we instead take
the somewhat more general choice A,y = A, with A = — AT, and also take U,
to have the form U,y = §,5U, then Eq. (2.22¢) simplifies to

A=-Ula*u =-UutATU, (2.22¢)

with the superscript T denoting the matrix transpose. This condition can be sat-
isfied, but requires U to have a nontrivial matrix structure. For example, if we
let 01,2,3 denote the standard Pauli spin matrices, and take A = At = AT = o3,
then the condition of Eq. (2.22e) is satisfied by taking either U = o7 or U = 0».
In this case U,y cannot be commuted through to the right in the second term on
the right-hand side of Eq. (2.22d), and C has a term which is time-reversal even.
We conclude that the generalization of the fermionic kinetic term and adjointness
assignment that leads to the presence of a self-adjoint piece in C also, in general,
leads to time-reversal violation.

To summarize the analysis so far, associated with a generic trace dynamics
model there are three generic conserved quantities, irrespective of whether the
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degree of freedom index r plays the role of a spatial index. The trace Hamiltonian
H is always conserved, independent of structural assumptions. When each mono-
mial in H or L has equal numbers of fermionic operators p, and g;, there is a con-
served trace “fermion number” N given by Eq. (2.2a). When H is global unitary
invariant, the corresponding Noether charge gives a conserved operator C with the
dimensions of action, given by Eq. (2.6). When fermionic adjointness is assigned
in the simplest manner, as in Eq. (2.4b), the operator C is anti-self-adjoint and
is odd under time-reversal. For more general fermionic adjointness assignments,
as in Eqs. (2.17a—d), the operator C can have a self-adjoint part, and there is in
general a violation of time-reversal symmetry.

2.3 Conserved quantities for continuum spacetime theories

Up to this point we have taken the index r labeling degrees of freedom to be a dis-
crete index. Let us turn now to the case of continuum spacetime theories, in which r
is a composite label indicating the spatial point x and the field variable g, evaluated
at that point, so that we have the correspondence ¢, () <> g¢(X,t) = g¢(x), where
in the final expression we have adopted a four-vector notation (X, = x%) = x.
We shall consider in this section spacetime theories which are trace dynamics
analogs of standard local field theories, in which the trace Lagrangian is con-
structed only from the field variables g, (x) and their first spacetime derivatives
0,qe(x) = 9qe(x)/dx*. Thus we have

L= /d3xﬁ({CIe(X)}, {0uqe()}), (2.232)

with £ the trace Lagrangian density. Requiring the trace action defined by
Eq. (1.6b) to be invariant with respect to variations of the fields that vanish at
spatial infinity, we have

sL
0=23S= /d4xTrZ(m qe(0) + & qe(x)aaqu(x)), (2.23b)

n

which after an integration by parts gives

4 5L
/ d xTrZ (56]@()6) 68qu(x)> 8q(x). (2.23¢)

Requiring this to hold for general same-type operator variations §g¢(x) then gives
the operator Euler—Lagrange equations

SL SL
— 9, —
3qe(x) 80,q0(x)

(2.23d)
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Working from the trace Lagrangian of Eq. (2.23a), let us now derive analogs of
the standard Noether’s theorem, by considering transformations that leave the trace
Lagrangian invariant. We begin by considering an internal symmetry transforma-
tion with an infinitesimal c-number parameter «(x), under which the dynamical
variables transform as

qe(x) = qe(x) + a(x)Ag(x),
Opqe(x) = 9uqe(x) + a(x)du Ap(x) + dpa(x)Ag(x), (2.24a)

with Ay (x) specified functions constructed from the dynamical variables. Substi-
tuting Eq. (2.24a) into the trace Lagrangian, we see that the change in the trace
Lagrangian is given by

L—>L+/d3xX:Tr[()t(x)((S f) e(x)+$u e(X))
uq

+ da(x) Ag(x)]. (2.24b)

8L
89uqe(x)

From the coefficient of 9, a(x), we extract a local trace current J# given by
Ly
JFx) =Tr Y ———Ag(x). (2.24¢)
; 80,qe(x)

Calculating the divergence of this current and simplifying by use of the Euler—
Lagrange equations of Eq. (2.23c), we get

8L 8L
0" (x) = TrZ(,L(SaM A+ e(x)>

5L
=T A — 0, A . 2.24d
r;<8qz(x) OOt Saeo ‘(x)) (2:244)

We see that the right-hand side of Eq. (2.24d) is identical with the coefficient
of a(x) in the change in the trace Lagrangian in Eq. (2.24b). Hence when the
trace Lagrangian is invariant under the transformation of Eq. (2.24a) for constant
a(x), the trace current J#* defined by the variation of the trace Lagrangian for non-

constant «(x) is conserved.
As an application, let us consider a trace Lagrangian with a fermionic structure

analogous to that of Eq. (2.5¢)
L= Tr/d3 D (= Ve)y e (x))

teF
+ terms with no time derivatives of fermions (2.25a)

where y# are the Dirac gamma matrices, ¥, = Wz ¥?, and where in our metric
conventions (y?)> = —1. Suppose that this trace Lagrangian is invariant under
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the fermionic rephasings {; — exp(i«)v and wg , — exp(—i a)wg ,, for arbitrary
£, ¢’ and with constant «. This will be true if in each term of L, for each factor
Y¢ there is also a factor wg ;. When « is not a constant, to first order the trace
Lagrangian will then change under this rephasing according to

L—>L—i / d*x8,aTre Y Py(x)y (). (2.25b)

LeF

The Noether analysis of Eqs. (2.24a—d) then tells us that the coefficient of —9,«
in Eq. (2.25b) gives a conserved trace current N* (x)

NE(x) =iTr Y ()" Ye(x), (2.25¢)
teF
which obeys
3. N"(x) =0, (2.25d)

so that the spatial integral of the time or zero component of this current gives a
conserved trace charge N

N = /d3xN0(x) =—i / Px Y yleye), N=aN=0. (225
teF

Let us next consider the Noether’s theorem analog that follows when the trace
Lagrangian is global unitary invariant. In this case the relevant infinitesimal trans-
formation has an operator-valued parameter A(x), and from Eq. (2.8a) takes the
form

ge(x) = qe(x) — [A(x), qe(x)],
Oqe(x) = 9uqe(x) — [A(x), 0uge(X)] — [0, A(X), ge(x)].  (2.26a)
Substituting the transformation of Eq. (2.26a) into the trace Lagrangian, and using

the cyclic identities to permute factors of A and 9, A to the right, we find that the
trace Lagrangian transforms according to

L—>L-Tr / d*x(DA + CH9, M), (2.26b)

where we have defined

- SL 8L 8L 8L
D= Z (Geqe— — —qe + €0uqe 3#‘”) ;

- 5qr  dq 80uqe 80

. 5L 8L

CH = (quZ — qg). (2.26C)
XZ: 30,q¢  60,qe
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Calculating the divergence of CH, and simplifying by using the Euler—Lagrange
equations of Eq. (2.23d) then gives

3,C* = D. (2.264)

Thus, when the trace Lagranglan is global umtary invariant for constant A,
which requires the vanishing of D, the current C*, obtained as the coefficient
of —9,, A(x) in the variation of L for non-constant A (x), is conserved. The corre-
sponding conserved charge is

C= [ @8 = [ @5 Y (ewarre — puao. @27
¢
where in the continuum case the canonical momentum is defined by
(x) o (2.27b)
po(x) = ——. .
8doqe(x)

When the trace Lagrangian density £ is Poincaré invariant, there are further
generic conservation laws, beyond the ones just discussed that are associated with
internal symmetry invariances. We derive these by following the standard textbook
treatments (see, e.g., Bjorken and Drell, 1965 and Weinberg, 1995). We consider
first the consequences of a translation of the system by an infinitesimal constant
displacement a*, so that

L(x) = L{ge(x)}, {9uqe(x)}) (2.28a)
is shifted to
L(x+a) = L»(qe(x + a)}, {0uqe(x + a)})
~ L{qe +a° 9oqe}, {0uqe + a% 05 9uqe}). (2.28b)

Subtracting Eq. (2.28a) from Eq. (2.28b) and using Eq. (2.23d), we get to first
order in g the identity

5L 8L
a®0,L(x) = Trz <8—a680qg + 59ds a“aaaﬂq@)

5L
—T & 990
rZ( “53 Ja LRI qu)

SL
=a’9,T 0 . 2.28
@ o r;(“’uqé Uqg) (2:280)

Since a? is arbitrary, factoring it away gives the identity

3, T =0, (2.29a)
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with the trace energy-momentum tensor density 7 given by

THh =

3% g, (2.29b)

where n*? = diag(1, 1, 1, —1) is the Minkowski metric. Conservation of the den-
sity 79 implies that there is a conserved trace energy-momentum four-vector P°
defined by

P’ = / d>x7%, (2.29¢)

the time component of which gives the conserved trace Hamiltonian

SL
H=P'=-L+ / d3xTr88 30¢. (2.30)

0q¢

We consider next the consequences of a four-space rotation of the system,
with an infinitesimal rotation parameter w,, = —w,, so that the coordinate x,
is shifted to x|, = x,, + w,,x". Under this shift, the field g, (x) is shifted by an
amount

8qe = qe(x") = qe(x) — (1/2)wpy Z o m (), (2.31a)

with Xy, a matrix characterizing the intrinsic spin structure associated with the
field g,. By reasoning identical to that used in the case of a translational shift, we
find the formula

8L = wepx"3° L
=Tr) 0 ——35 2.31b
rZ A<5aq 6]6) (2.31b)

Substituting Eq. (2.31a) for dg¢ and doing some algebra, and using the fact that the
rotation parameter w,, is a general antisymmetric tensor, we get the identity

MR =0, (2.322)

with the trace generalized angular momentum density M*°# given by

SL
M = (P — XL+ Ty S0, [(x”a” —x*0%)qe + ) Egnl:qm]
l m

_ G HTRO _ O Ty Z 5000 = qm. (2.32b)
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From the conservation of the trace density M*°#, we learn that the spatial integral
of the A = 0 component of this density is a conserved charge

MK = / d>x M1, (2.32¢)

which together with P’ gives the complete set of Poincaré generators. Since we
have seen that the generalized Poisson bracket of any two conserved charges is
also a conserved charge, and since there are no further bosonic charges associated
with Poincaré invariance, we know on general grounds that the trace Poincaré gen-
erators will form a closed Lie algebra under the action of the generalized Poisson
bracket. Clearly, this Lie algebra will be in fact the Lie algebra of the Poincaré
group, since it must be isomorphic to the algebra of the translational and rotational
transformations parameterized by a* and w*”, but verifying this by direct compu-
tation of generalized Poisson brackets in any specific model involves, in general, a
great deal of algebra.

The canonical formalism for constructing 7#" gives an energy-momentum ten-
sor which is not symmetric in its indices, whereas the trace energy-momentum
tensor that couples to gravitation through the metric must be symmetric. This prob-
lem can be dealt with, as in the standard field theory context, by adding a suitable
conserved asymmetric trace tensor to 7", so as to give a sum that is symmetric,
conserved, and leads to no change in the trace four-momentum P¥. Let @421V (x)
be a trace tensor that is antisymmetric in the indices u and p, and let us form the
total energy-momentum tensor 7" according to

,2;(/)?) S 8'0@[”/0]‘)- (2.33a)

Because of the antisymmetry of ® in u and p, the total tensor thus defined is still
conserved on the u index

WTh' = 8, T" + 0,9,0UN = 0. (2.33b)

Also, because of the antisymmetry of ®, when ;& = 0 the added term contains only
spatial derivative terms, which vanish when integrated over three space, and so the
energy-momentum four-vector calculated from 7;/{" is the same as that calculated
from 71",

Let us now show that we can construct a © that renders 7,%," symmetric. The
basic observation is that Egs. (2.32a,b) and (2.29a), when combined, give the fol-
lowing expression for the antisymmetric part of 7"

1 8L

1
_E(Tﬂv _ TVM) = EapTI' ng/};qm (2343)
tm
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This motivates the choice

1 5L 8L 8L
O =TT g T oy Binn — e P ) G340
Lm

which is antisymmetric in i and p, and the final two terms of which are symmetric
in u and v. Thus by Eq. (2.34a), we have

1
3,0l — —E(T“" — T"%*) + symmetric in p and v, (2.34¢)

and so when 8/,@[/"0]” is added to 7", it just removes the antisymmetric part of
T, leaving an expression that is completely symmetric in  and v.

There is one further “improvement” that can be made to the canonical energy-
momentum tensor. If ¢ is a self-adjoint scalar field, then

ATH = — (313" — 3,0 ") Trpp? (2.35a)

has the correct dimensions to be an addition to the energy-momentum tensor, and
is symmetric, divergenceless on both the ¢ and v indices, and when . = 0 involves
only spatial derivatives. Hence any numerical multiple of Eq. (2.35a) can be freely
added to the canonical energy-momentum tensor. The theory of scale and con-
formal invariance (Callan, Coleman, and Jackiw, 1970) shows, in fact, that when
scalar fields are present, for each self-adjoint scalar field we must add Eq. (2.35a),
multiplied by a factor of 1/6, to the canonical energy-momentum tensor, in order
to get the energy-momentum tensor for a scalar theory that is scale and conformal
invariant in the massless limit. We shall not give the proof of this assertion, but
will illustrate it with a concrete example in the next section.

2.4 An illustrative example: a Dirac fermion coupled
to a scalar Klein—-Gordon field

To gain familiarity with the trace dynamics formalism, and to illustrate the con-
served quantities introduced in Sections 2.1 through 2.3, we formulate in this sec-
tion a trace dynamics analog of a simple field theory model, in which a Dirac
fermion field v is coupled to a self-adjoint scalar Klein—Gordon field ¢. Since
these are taken in trace dynamics to be matrix operator fields, ¢ (x) is a general
N x N self-adjoint Grassmann even grade matrix, and each spinor component
Yr(x) of ¥(x) is a general N x N Grassmann odd grade matrix. Letting Tr de-
note the trace over the N-dimensional matrix space, the trace Lagrangian for this
model is

L= /d3xTr[—%8M¢8“¢ - %m2¢2 —yytouy +myy

A — —
— 20"+ @Y + 220V e ] (2.362)
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with ¥ = ¥Ty0 as in Eq. (2.25a). In classical field theory with commutative fields
the interaction terms with couplings g1 and g would not be distinct, but here, since
¢ and the spinor components of i/ are generic non-commuting matrices, the two
orderings represent different interactions. Forming the variation of the trace action
S, integrating by parts, and using the cyclic identities, we find

58S = / d*xTr(Apdd + SU Ay + Ay, (2.36b)
and so the Euler-Lagrange equations of motion take the form

A _ _

0= Ay =0,0"¢ —m’¢p — ¢’ ~ gy v+ g0y,

0=Ay =—y"ouy +my + g1V + 296,

0=Ay = Yy +my + g1 d + 20 (2.36¢)

Here, and in the following equations, the notation ¥/ and WT indicates transposi-
tion of ¥ and ¥ with respect to their Dirac spinor indices only, with no action on
the matrix structure of the Dirac spinor components.

We can now go over to a Hamiltonian formalism, by exhibiting the time deriva-
tive terms of the trace Lagrangian

_ 3 (10— o
L= dx 2(¢) vyt 4+ ..., (2.37a)
which shows that the canonical momenta are

po=9¢. py=—vy' =yl py=o0. (2.37b)

Thus we find that the trace Hamiltonian is

H= fd3xTr(p¢,¢'> + py¥) — L

A — _
+ 528t = g1 VeY — 27V e). (2.37¢)

and the conservation of this can be verified directly by using the Euler—Lagrange
equations of Eq. (2.36¢).

The trace Lagrangian of Eq. (2.36a) has equal numbers of ¥ and ¥ factors
in each term, and is global unitary invariant, and so will have the generic con-
served internal symmetry currents discussed in Section 2.3. To identify the trace
fermion number current, we replace ¥ — ¥ +iay and ¥ — ¥ — i in the
trace Lagrangian, and pick out the coefficient of —d,«. This gives

N* = iTryryH oy, (2.38a)
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which by use of the Euler-Lagrange equations is seen to be conserved
Nt =0. (2.38b)

The corresponding conserved trace fermion number is
N = / d3xN0 = —j / dxTryty. (2.38¢)

Similarly, to identify the current C# associated with global unitary invariance,
we substitute ¢ — ¢ — [A, ¢, ¥ — ¥ — [A, V], and ¥ — ¥ — [A, ¥] into the
trace Lagrangian, and pick out the coefficient of —d,, A. This gives

Cl =~ "1+ Wy + ¥y, (2.39%)
which again by use of the Euler-Lagrange equations is seen to be conserved
aMC‘ﬂ =0. (2.39b)

The corresponding conserved charge is
o / PO = / Bx(—lg, %91 + T Ty +Ty'w)
- /aﬂx(w, 1— Ty +yty)
= [ @6, po1 = 1. poD. (2.390)

in agreement with the general recipe of Eq. (2.6).

We turn next to properties of the energy-momentum tensor. Since the Dirac
matrix manipulations needed to symmetrize the fermionic part of the energy-
momentum tensor are not relevant for the points we wish to illustrate, let us sim-
plify the model so that we are dealing just with the trace dynamics analog of the
scalar ¢* model, with trace Lagrangian density

1 1 A
L=Tr|—=8,00"¢ — ~m*¢p* — —¢* 2.40
r[2u¢¢ Ay U (2.40a)
and with Euler-Lagrange equations
A
0=0,0"¢p —m?p — g¢3- (2.40b)

The symmetrized, “improved” energy-momentum tensor for this model is

1
TH =LA T 0" — (09 ~ 9507 n"V) Trgp2. (2.40c)
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This is readily verified, by use of the Euler—Lagrange equation of Eq. (2.40b) and
the cyclic identities, to be conserved

T =9, T"" =0, (2.404)
and to have a Lorentz trace that is given just by the scalar field mass term
NuwT" = —m*Trg?. (2.40e)

We note, however, that there is no operator energy-momentum tensor that is both
conserved and has a trace that vanishes when the mass m is zero. To see this, let us
form the obvious symmetrized candidate

1 = [ = S0,0070 — 6 — 229t + 30490 + " p0"e)
—%(a“av S L (2.41a)
so that
THY = Treh”. (2.41b)
Then we find that
Mt = —m?¢?, (2.41c)

so that the trace vanishes when m = 0, but the operator candidate of Eq. (2.41a) is
not conserved
ny __ A v 3 v 2 2/qv 3qv

O™’ = ﬁ[(8 $)P” — P P)Pp” — ¢~(3 P)p + 70 1. (2.41d)
The right-hand side of Eq. (2.41d) is non-vanishing because in general the matrix
0"¢ does not commute with the matrix ¢, but by the cyclic identities, it vanishes
inside a trace. Hence in trace dynamics, although there is always a conserved trace
energy-momentum tensor, in general there is no conserved operator analog. In
Chapter 7 we will relate this fact to a suggestion that the cosmological constant
problem, which has not been solvable within quantum field theory, may find a
solution in an underlying trace dynamics. (This suggestion was made in Adler
(1997¢), but the attempt there to give a calculation of the induced cosmological
constant is not correct, since it did not take account of the necessity, discussed in
the Introduction and in Section 4.5 below, to fix a residual global unitary invariance
of the canonical ensemble.)
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2.5 Symmetries of conserved quantities under pr < g

We close this chapter by discussing the symmetries of the various generic con-
served quantities under the interchange, within each fermionic canonical pair, of
the canonical coordinate with the corresponding canonical momentum. We begin
with the trace fermion number N, defined in Eq. (2.2a) by

N = —iTrZ Prdr. (2.42a)
refF

If we interchange p, <> ¢, for each fermionic canonical pair, this becomes

N— —iTr) qpr=iTry_ prgr = —N, (2.42b)
rel rel
where we have used the cyclic property of the trace given in Eq. (1.1b). Thus N is
odd under interchange of fermionic canonical coordinates and momenta. Turning
next to the generic conserved operator C, since Eq. (2.6) tells us that the fermionic
contribution to C is

Cr == {ar. pr}, (2.420)
reF

we learn that C is even under the interchange of fermionic canonical coordinates
and momenta.

Finally, let us consider the trace Hamiltonian H. Here the behavior under pr <
qr is structure dependent. If we consider the bilinear Hr introduced in Eq. (2.1a),
with

Hr =Tr Z (Prqs Birs + prBarsqs), (2.43a)

r,seF

then under interchange of all pg with g this becomes

HF — Tr Z (qrpsBlrs +querps)

r,seF
= —Tr Z (psBirsqr + psqrBars) = —Tr Z (PrqsBasr + prBisrqs)-
r,seF r,seF
(2.43b)
Hence HF will be even under the interchange if we have
Bli’S - _B2.S‘l’7 all ra S’ (243(:)

and will be odd under the interchange if

Biys = Bogr, allr,s. (2.43d)
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The even case of Eq. (2.43c) is physically relevant for continuum field theories
in which r is a spacetime box label. To see this we note that the standard Dirac
fermion kinetic Hamiltonian

Hp in = / xTryy - 0y, (2.442)

given in Eq. (2.37c¢), can be rewritten using Eq. (2.37b) as

Hr kin = f BxTrepyy'7 - oy (2.44b)

Using the Majorana representation Dirac gamma matrices given in Appendix D,
we see that in Majorana representation y°7 is a symmetric matrix in its spinor
indices. Since the partial derivative 3 changes sign under integration by parts, we
see that Eq. (2.44b) corresponds to the case of Eq. (2.43c), and thus in Majorana
representation Hr i, is even under interchange of pr with ¢gr. When interactions
are included, a similar analysis shows that

Hy = [ @¥TresTl6s. v) + gplipslon. v) + ey 17 - 1.0,

(2.44¢)
with ¢s, ¢p, and A respectively self-adjoint bosonic scalar, pseudoscalar, and vec-
tor matrix fields, gives an interaction trace Hamiltonian that is also even in Majo-
rana representation under interchange of pr and gr. Thus the usual commutator
form for a vector gauge field coupling, and symmetrized scalar and pseudoscalar
field couplings, lead to a fermionic trace Hamiltonian Hf that is even in Majorana
representation under interchange of fermionic canonical coordinates and momenta.
Therefore, when the purely bosonic terms are included, we obtain in this case a to-
tal Hamiltonian H that is even under this interchange. We shall refer to these results
in our statistical mechanical discussion later on.
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Trace dynamics models with global supersymmetry™

In Section 2.4, we illustrated the trace dynamics formalism by constructing the
trace dynamics analog of a simple field theory model, in which a Dirac fermion in-
teracts with a scalar Klein—Gordon field. Much of the recent literature in quantum
field theory has concerned itself with supersymmetric theories, in which invari-
ance under the Poincaré group has been extended to invariance under the graded
Poincaré group, and theories of this type are considered likely to play a central
role in the ultimate unification of the forces. Our aim in this chapter (which can
be omitted on a first reading) is to show that the trace dynamics formalism natu-
rally extends to globally supersymmetric theories. Specifically, we shall see that,
when there is a global supersymmetry, there is a conserved trace supersymmetry
current with a time-independent trace supercharge Q,,, that together with the trace
four momentum obeys the Poincaré supersymmetry algebra under the generalized
Poisson bracket of Eq. (1.11a). We shall illustrate this statement with three con-
crete examples, the trace dynamics versions (Adler 1997a,b) of the Wess—Zumino
model (Section 3.1), the supersymmetric Yang—Mills model (Section 3.2), and the
so-called “matrix model for M theory” (Section 3.3). These three examples are
worked out using component field methods; we close in Section 3.4 with a short
discussion of a superspace approach, and of the obstruction that prevents the con-
struction of a trace dynamics theory with local supersymmetry.

3.1 The Wess—Zumino model

We begin with the trace dynamics transcription of the Wess—Zumino model. We
follow the notational conventions of West (1990), except that we normalize the
fermion terms in the action differently, and always use the Majorana representation
1.2.3 are real symmetric and y°, iy> are
real skew-symmetric. (For useful cyclic identities satisfied by this representation
of the y matrices, see Appendix D.) The trace Lagrangian for the Wess—Zumino

for the Dirac gamma matrices, in which y
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model is

1 1 1 1
L= /d3xTr (—E(aMA)2 — @B = iy + 5P+ 3G

—m(AF +BG — xx)

— A[(A% — BZ)F+G{A,B}—2)Z(A—iy5B)X]>, (3.1)

with A, B, F, G self-adjoint N x N Lorentz scalar matrices and with x a Grass-
mann four-component column vector spinor, each spin component of which is a
self-adjoint Grassmann N x N matrix. The notation ¥ is defined by ¥ = x 7y,
with the transpose T acting only on the Dirac spinor structure, so that x 7 is the
four-component row vector spinor constructed from the same N x N matrices that
appear in . The numerical parameters A and m are respectively the coupling con-
stant and mass. Equation (3.1) is identical in appearance to the usual Wess—Zumino
model Lagrangian, except that we have explicitly symmetrized the term G{A, B};
symmetrization of the other terms is automatic (up to total derivatives that do not
contribute to the action) by virtue of the cyclic property of the trace.

Taking operator variations of Eq. (3.1) by using the recipe of Eq. (1.3b), the
Euler-Lagrange equations of Eq. (1.7¢) take the form

?A=mF + A»{A, F} + {B, G} — 2% x),
3’B =mG + A(—{B, F}+{A, G} +2ixvs5x),

yHoux =myx + 2({A, x} —i{B, ysx}). (3.2)
F =mA + M(A? — B?),
G =mB + MA, B}.
Transforming to Hamiltonian form, the canonical momenta of Eq. (1.9a) are
py=—-xv"=x".
pa = 00A, (3.3)
pB = 0B,
and the trace Hamiltonian is given by
1 — — N —
H= fd3xTr (E[p%\ + %+ (VA2 + (VB + pyy’7 - Vi
l 2 2y oo, 0 .
+ 2(F +G%) —mxx —Apyy {A—iysB, x} ], (3.4a)

in which F" and G are understood to be the functions of A and B given by the final
two lines of Eq. (3.2), and where we have taken care to write H so that it is mani-
festly symmetric in the identical quantities p, and x T The trace three-momentum



66 Trace dynamics models with global supersymmetry

13, which together with H forms the trace four-momentum P° of Eq. (2.29¢), is
given by

P= —/d3xTr(pA%A + pVB+ py V). (3.4b)

while the conserved trace quantity N of Eq. (2.4e) and the conserved operator C
of Eq. (2.6) are given respectively by

N = —i/d3xTrXTX,

= /d3x<[A,pA] + B, prl = [, Py, (3.50)

with a contraction of the spinor indices in the final term on the second line of
Eq. (3.5a) understood. The corresponding expressions for the conserved currents
N# and C*, of which N and C are the charges, are

N = iTrxy" x,
CH=—[A,0"A] —[B, "Bl +xv"x + xT Gry"T (3.5b)
= —[A, 8" A] — [B, 9" Bl + 2xy"x.

with 7' indicating a transpose acting only on the Dirac spinor indices, and where
the simplification leading to the final line is possible because x is a Majorana
spinor. Equations (3.4a,b) are clearly formed from the usual field-theoretic ex-
pressions for the Hamiltonian and three-momentum by taking the trace, and sym-
metrizing factors where this is not already implicit from the cyclic properties of
the trace. Exactly the same procedure can be used to form the full trace energy-
momentum tensor density 7 4.
Let us now perform a supersymmetry variation of the fields given by

A =¢yx, 6B =icysy,

1
dx = E[F+iy5G+)/M3M(A+i)/5B)]€, (3.6)
SF =eyta, x, 8G =ieysy"o,x,

with € a c-number Grassmann spinor (i.e., a four-component spinor, the spin com-
ponents of which are 1 x 1 Grassmann matrices). Substituting Eq. (3.6) into the
trace Lagrangian of Eq. (3.1), a lengthy calculation shows that when € is constant,
the variation of L vanishes. The calculation parallels that done in the conventional
c-number Lagrangian case, except that the cyclic properties of the trace and cyclic
identities obeyed by the Majorana representation y matrices (see Appendix D) are
used extensively in place of commutativity/anticommutativity of the fields. When
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€ is not constant, the variation of L is given by
SL = / d>xTr(J*d,€),

T = =gy [(y"8, + m)(A +iysB) + (A> — B> +iys{A, B)]. (3.7a)

which identifies the trace supercharge Q,, as
Q. E/d3xTrJ_0a

= d3xTrl( +xDlva A+ivsB)+A(A%2 — B2 +iys(A, B
= 5 (Px+ X )8y +m)(A+iysB) + A +iys{A, BY)a.
(3.7b)

Here « is a constant auxiliary c-number Grassmann spinor that has been inserted
to make the argument of the trace a bosonic quantity, and we have again taken
care to express Q, symmetrically in the identical quantities p, and xT. It is
straightforward to check, using the equations of motion and the cyclic identity,
that J* = TrJ* is a conserved trace supercurrent, which implies that the trace su-
percharge is time independent.

It is now straightforward (but tedious) to check the closure of the supersym-
metry algebra under the generalized Poisson bracket of Eq. (1.11a), which for the
Hamiltonian dynamics of the Wess—Zumino model gives

| 9Qe8Qs | 8Qu8Qs <~ 6Qu 8Qs
Qo Qp) _Tr[ 5A opa | OB ops d; 5x9 8p ya e 5)}
= ay’BH —ayp - P, (3.8a)

with H and P the trace Hamiltonian and th