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PREFACE

This book has emerged from an undergraduate course as well as a graduate one,

which I have taught for a number of years. Recently, many universities have

experimented by bringing quantum theory forward in the curriculum and we follow their

example. This book is intended to serve as an introduction to theoretical mechanics and

quantum mechanics for chemists. I have included those parts of quantum mechanics

which are of greatest fundamental interest and utility, and have developed those parts of

classical mechanics which relate to and illuminate them. I try to give a comprehensive

treatment wherever possible. The book would acquaint chemists with the quantum

structure of the basic object of chemistry, the atom. My intention is to bridge the gap

between classical physics, general and inorganic chemistry, and quantum mechanics.

For these reasons:

1. I present in one course the basics of theoretical mechanics and quantum mechanics,

to emphasise the continuity between them;

2. I have chosen the topics of theoretical mechanics based upon two criteria:

a) usefulness for chemical problems:

 two-body problem;

 rotational motion of a charged particles (free and in an atom);

 interaction of a magnetic field with a magnetic dipole;

 details of small oscillations and oscillations of molecules;

b) the need for transition from classical to quantum mechanics:

 basics of Lagrangian mechanics;

 basics of Hamiltonian mechanics;

3. I give detailed explanation of an application of the quantum method to simple

systems: one-dimensional potential, harmonic oscillator, hydrogen atom, and hydrogen-

like atoms.

4. The basics of representation theory and elements of matrix mechanics are given;

5. Perturbation theory is developed;

6. The interaction of an atom with a magnetic field is explained physically;

7. The generalisation to many-particle systems is presented in the last two chapters.

The purpose is to give the student a manual for a self-learning course. My teaching

experience during all these years gave me a reason to believe that the pedagogical

features, the manner of introduction of the new concepts and phenomena, and the search

of meaning in the different categories, make this book suitable for independent work.

I use widely the classical interpretation in my presentation of the phenomena, and I

stress that this is only a presentation. Despite that the words “description”, ‘happens,”

and so on, refer to concepts of classical physics, such an interpretation helps the students

very much to understand the meaning of the characteristics and/or phenomena, but it

does not affect the university level of the course.

For every lecturer the axiomatic method of exposition of quantum mechanics is both

tempting and elegant. But it is effective only for an audience which is well-grounded in

mathematics and physics. Traditionally, students in chemistry have modest knowledge of

physics and mathematics. Therefore, I have started quantum mechanics from the basics.

This is partly compensated by a detailed explanation of the historical sources of quantum

mechanics. Then again, because I could assume only minimal skills in mathematics, I

chose to present the beginning of quantum mechanics by asking certain questions of

about nature and answering through an experimental observation. It is shown how these
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observations logically lead to certain remarkable conclusions. In this manner, I introduce

the wave function before the Schroedinger equation.

For the readers who would like to broaden their understanding of the subject:

 I point concrete chapters in the references at the beginning of every chapter;

 I give a list of references with brief comments at the end of the book.

I hope the book would be useful for

 chemistry undergraduate and graduate students;

 chemists in general (the matter is rigorously exposed and the book could be used

also by professional chemists);

 other readers, especially engineering students;

 “specialists, who have not been taught or have been taught scanty quantum

mechanics; for them the book is useful because the information from other disciplines,

such as mathematics, general physics, electrodynamics, and so on, is given in a

concentrated form, and they are not forced to make inquiries in other books” (an opinion

of the referee to the Bulgarian edition of the book).

In my opinion, the most typical characteristics of this book are the following:

 theoretical mechanics and quantum mechanics are combined in one book (in the

majority of classical mechanics books the level is too high or they are directed toward the

technical disciplines and are not suitable for the introduction of quantum-mechanical

principles);

 the different topics and parts of the book are connected with each other; the book,

despite being a composite of two kinds of mechanics, is wholesome (I would mention

here the words of Prof. Liboff in the preface of his book (R. L. Liboff, Introductory of

Quantum Mechanics, Holden-day Inc., 1980) “Physics is not a sausage that one can cut

into little pieces”); the material is presented rigorously and continuously; this is a

university level course;

 it provides a necessary minimum of mechanics for chemists; obviously the

introductory course on mechanics cannot cover the whole field, and my selection of

problems was made according to their utility for chemists, their physical importance,

pedagogical value, as well as historical impact on the development of the field.

 very often the mathematical manipulations obscure the physics of the matter; I tried

to avoid this and to see the physics in every mathematical category and equation

whenever possible;

 the pedagogical features of the book, some of which are not usually found in books

at this level; they were proven to be very successful in the classroom; such a feature are:

 the detailed outlines at the beginning of each chapter (given in the contents of the

chapters);

 each chapter ends with a summary;

 each chapter is followed by a quiz of self-assessment questions, the answers of

which are in the text – they help the readers assess how well they have met the various

objectives;

 a varied set of thoroughly tested problems is included at the end of each chapter;

these problems form an integral part of the course (we solved these problems during

seminars and I usually give some of them at exams);

 non-typical for mechanics topics are included (for example, interference and

diffraction, magnetic dipole moment, mathematical information for the variation,

different equations and mathematical functions, and so on) in order to have full and

consistent explanation;

 the mathematical derivations and the solutions of the equations are given in detail

and at the university level;



xxiii

 there are many summary tables, vector interpretations, and diagrams of angular

momenta (orbital, spin and total) and their coupling;

 “the book is useful to beginners with a felicitous selection and distribution of the

material,” according to the referee to the Bulgarian edition of the book.

The material of the classical mechanics has a fragmentary character. This choice is

made because of the needs of both the chemistry students and quantum mechanics. The

small volume and the desire for logical consistency impose an abstraction, to some

extent.

At the number of some sections there are additional signs: with an asterisk are

denoted  the more complicated sections (they can be omitted at first reading) and with a

plus - the sections which are considered in the seminars. The literature pointed in each

chapter is cited with its number, and the literature at the end of the book - with the letter

"R" and a number, both in square brackets.

Sofia                                                                                                            Stefan Ivanov

January 2005
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Chapter 1

LAGRANGIAN FUNCTION AND LAGRANGE’S

EQUATIONS

1.1 Two Methods for Studying of the Mechanical Motion: Newtonian and

Lagrangian

Basic objects in mechanics; particle, solid body and continuous

medium; mechanical state and the problem of the mechanics; Newton

method – a frame, motion equation, initial conditions; degrees of

freedom, generalized co-ordinates and generalized velocities;

configuration and phase space; Lagrangian method, advantages. 4

1.2 Hamilton’s Principle and Lagrange’s Equations

Action integral  Hamilton’s principle; the conception of a functional

and variation; Lagrange’s equation; as consequence of Hamilton

principle; characteristics of the Lagrangian function  additivity,

product with a constant, derivative; Lagrange function and total

derivative of the function of co-ordinates. 7

1.3 Lagrangian Function for a Free Particle

General properties of space and time (homogeneity and isotropy of

space and homogeneity of time) and the Lagrangian function; Galilean

transformations; the function invariance at these transformations;

Lagrangian function for a free particle and for a system of

noninteracting particles. 12

1.4 Lagrangian Function for a System of Interacting Particles

Conservative system; Langrangian function for a conservative system,

kinetic and potential energy; the Lagrange’s equation and the Newton’s

equation, potential and conservative force, potential energy and
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constant, conversion from Cartesian to generalized co-ordinates,

kinetic and potential energy, generalized potential. 15

1.5* Lagrangian Function for a Charged Particle in Electromagnetic Field

Lorentz force; scalar and vector potential of the electromagnetic field;

Lorentz calibration; generalized potential of the electromagnetic field;

Lagrangian function for a charged particle in electromagnetic field. 18

1.6  Some Mechanical Values and the Lagrangian

Momentum and the Lagrangian; force and the Lagrangian generalized

momentum and generalized force; total energy and the Lagrangian. 20

1.7
+
 Lagrangian Function and Lagrange’s Equations in Commonly Used

Co-ordinates

Lagrangian in a concrete problem; Lagrangian function and the

Lagrange’s equation in polar, cylindrical and spherical co-ordinates; a

table of these results. 22

SUGGESTED READING

1. Kibble, T. W., Classical mechanics, McGraw-Hill Book Co., 2nd ed., 1988, Section 1.2,

Chapter 11.

2. Fetter, A. L., J. D. Walecka, Theoretical Mechanics of Particles and Continua, McGraw-

Hill Book Co., 1980, Sections 13, 15 and 17.

3. Landau, L. D. and E. M. Lifshitz, Mechanics, Pergamon Press, 2nd ed., 1969, Chapter 1.

1.1 TWO METHODS FOR STUDYING OF THE

MECHANICAL MOTION: NEWTONIAN AND

LAGRANGIAN

The basic objects studied in mechanics are particles (particle points),

solid states and continuous medium. A particle is a body, whose dimensions

can be neglected at a given level of description. Of course this neglecting

depends on the conditions of the problem. The molecules can be treated as

particles while studied in their translational motion (e.g., in a solution), but

not while analyzing their oscillations, which are defined by their constituent

atoms and the distances between them. (Sometimes instead of a particle is

used a material point.) A group of particles, whose motion is free or

constrained by some conditions, often defined as constraints, is called a

mechanical system. In particular, if a group of particles is united by solid

constraints such that the shape and volume of the system does not change,

they form a solid state. Most complicated for studying is the continuous
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medium, because it is a system with infinite number of particles. In this

course we will limit ourselves to considerations of the motion of a particle

and systems of finite number of particles. The problems of solid state and

continuous medium won’t be considered.

If we give the position and the velocities of all system particles in a fixed

moment of time, we define the state of the system. The basic problem of

classical mechanics is, knowing the state of the mechanical system in the

initial moment of time and the laws to which the motion of the system obeys,

to determine its state in any subsequent moment. For the solution of this

problem in the approach of Newton, first it is necessary to have a reference

frame. With it very often is associated a Cartesian co-ordinate system.

Second, necessary are equations, in which the acceleration is related to the

co-ordinates and velocities, i.e., the equations of motion. These equations are

obtained from the Newton's laws. Since these laws are central to our

subsequent work, we will briefly review them.

I law: There exist reference frames, in which if upon a body is not acted

by another material object, i.e. a force (a measure for an influence) such as

another material body or a force field, the body remains in rest or in uniform

motion. Such reference frames are called inertial frames.

Newton's first law simply asserts that such inertial frames exist. We

would like to underline that the first law of Newton introduces the term

"inertial frame" and this law does not result from the second law (an error,

which is often made).

II law: Under the action of the forces 1 2 n, ,  ..., F F F  a particle of mass m

gains an acceleration a  with a direction of its resultant force ∑
=

=
n

i

i

1

FF and

a value equal to this resultant force divided by its mass:

.
1 mm

n

i

i
FF

a == ∑
=

(1.1a)

This relation is written for the case when the mass is conserved and

constant in time. If this is not so (for example, in relativistic mechanics) we

write instead of Eq. (1.1a) the following

.
dt

dm

dt

d vp
F == (1.1b)

Here vp m=  is the momentum.

III law: To each action there is an equal and opposite reaction.
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Or, if particle  acts on particle 2 with a force 12F , then particle 2 acts

on particle  with a force 21F−  and 2112 FF −= .

For the description of a system of N particles are necessary 3N

differential equations of second order. Hence, for the complete Newton

description besides the reference frame and motion equations are necessary

also 6N constants. These constants are determined by the initial conditions.

Thus, for the Newtonian method are necessary a reference frame, 3N

equations and 6N initial constants - the values of the co-ordinates 
i

x  and the

velocities xdtdxv
ii

≡= /  at ( )Nit 3...,2,,10 == .

The number of independent values necessary for the determination of a

mechanical system’s position is called the number of degrees of freedom. In

the considered case we have Ns 3=  degrees of freedom. In the presence of r

constraints the degrees of freedom are rNs −= 3 .

When 0=r  very often are used Cartesian co-ordinates. But this is not

necessary. Depending on the conditions of the problem, it may appear that

the choice of some other co-ordinates is more suitable. Any s independent

quantities, 
si

qqqq ...,...,,, 21 , which determine completely a system of s deg-

rees of freedom, are called generalized co-ordinates. Their time derivatives

1 2, , ..., , ...
i s

q q q q  are called the generalized velocities of the system.

The generalized co-ordinates allow a very useful representation. It

consists in the following: an s-dimensional space is introduced, along the

axes of which one plots the values of the generalized co-ordinates 
j

q  (
j

q

stands for all co-ordinates, 1 2, , ...,
j s

q q q q≡ ). Such a space is called a

configuration space or q-space. Naturally, taking into account everyday

experience, it may be difficult to imagine such a space. But going from one-

dimensional (linear space) to two-dimensional (plane) space and to three-

dimensional (real) space, and remembering the four-dimensional space with

three spatial co-ordinates and one time co-ordinate (which is so useful in

relativity theory), it is not difficult to imagine the s-dimensional configu-

ration space. By the way, the 4-dimensional space is also configuration

space. By analogy with the configuration space, one can introduce the phase

space. It is 2s-dimensional space and a co-ordinate system is introduces in

it, along the axes of which are plotted s generalized co-ordinates and s

generalized momenta, which we shall discuss later on (Section 6.2).

In the Lagrangian method, with every mechanical system one associates

a function of the generalized co-ordinates, the generalized velocities and

time:

( )1 2 1 2, , ..., , ... , , ..., ,
s s

q q q q q q t=L L (1.2)
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or, briefly, ( )tqq
jj
,,LL = , where 1 2, , ...,

j s
q q q q≡ . This function is called

Lagrangian function, or simply Lagrangian.

Knowing the Lagrangian function, we can describe the motion of the

system with the help of equations involving the partial derivatives of the

function. These equations are called Lagrange's equations.

It is natural to ask, if we have the powerful method of Newton, why use

another method, such as the Lagrangian method? The answer lies in the

advantages of the Lagrangian method.

The number of Newton's equations necessary for the description of a

system of N particles is 3N. The number of Lagrange's equations for the

description of the same system is 3N-r, where r is the number of constraints.

The constraints, which are unknown, don't enter in Lagrange's equations. In

this case the solution gives information only for the motion of the system,

without determining the action of the constraints. Under the action of a

constraint we understand the force with which this constraint acts on the

mechanical system. For most mechanical systems we are not interested in

this action.

The Lagrangian function can be used not only for a system with finite

number of degrees of freedom, but also for a system with infinite such num-

ber, such as the continuous medium. Moreover, it may be used with success

for the description of nonmechanical medium, e.g., for electromagnetic and

other fields. The method of Lagrange possesses greater generality and the

significance of the Lagrangian function goes out of the frame of classical

mechanics. This is so, because the Lagrange's equations can be obtained with

the help of more general variational principle - the Hamiltoin's principle. In

theoretical mechanics it has the role of Newton's law, i.e., it is taken as a

fundamental statement of mechanics. Hamilton's principle is applied also to

nonmechanical systems, e.g., for electromagnetic fields and for fields of

elementary particles.

1.2 HAMILTON’S PRINCIPLE AND LAGRANGE’S

EQUATIONS

Thus, according to the method of Lagrange every mechanical system is

characterized by the function ( )tqq
jj
,,L . The time integral of the

Lagrangian on the interval from time 1t  to time 2t  is called action:

( )
2

1

, , .

t

j j

t

S q q t dt= ∫L  (1.3)
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The integration is performed from the moment 1t , in which the position

of the system is characterized with the values of the generalized co-ordinates

( )1tq
j

 to the moment 2t , in which these values are ( )2tq
j

.

According to Hamilton's principle the system moves in a way such that

the functions ( )tq
j

 have a form, which ensures that the action (1.3) has the

minimum possible value. In Fig. 1-1 is shown a system with one degree of

freedom, for simplicity.

Figure - . Hamilton principle.

The particle could move from the point to the point 2 in different trajec-

tories ( ) ( )( ) ( )( ) ( )( )tqtqtqtq
321 ,,,  with the corresponding action 321 ,,, SSSS

( )1 2 3S S S S< < < . According to Hamilton's principle the particle will move

along the trajectory of minimal action, i.e. along ( )tq
j

 with an action S.

The action is a functional. In order to see what this means, we shall

briefly review some parts of functional analysis.

It is known that if to every number x of one group of numbers is

associated another number y, this number y is a function of x, and we write

( )xyy = . If to every function ( )xy  from some group of functions is

associated a number Φ , then Φ  is a functional of ( )xy  and we write

( )y xΦ = Φ ⎡ ⎤⎣ ⎦ . In the functional the role of the argument is performed by

the function. By the analogy to the increment 1xxx −=Δ  (or to dx ) of the

function argument, we shall introduce the quantity

( ) ( ).1 xyxyy −=δ (1.4)

The functions ( )y x  and ( )1y x  are two functions of the considered class of
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functions. The difference (1.4) of these functions is called the variation of the

function ( )y x  and is denoted as ( )y xδ  or yδ . The variation is a function

of x. If we differentiate this function by x, then according to (1.4) we obtain:

( ) ( )1( ) .y y x y xδ ′ ′ ′= − (1.5)

Here y′  stands for the derivative with respect to x, to distinguish it from

the derivative with respect to t, denoted as x . As the right-hand side

represents the variation of the function ( )'y x , from (1.4) we obtain:

( ) .y yδ δ′ ′= (1.6)

The derivative of the variation is equal to the variation of the derivative.

By analogy to the differential of a function ( ) ( )dy y x dx y x= + − , we

introduce the variation δΦ  of the functional Φ :

( ) ( ) .y x y y xδ δΦ = Φ ⎡ + ⎤ − Φ ⎡ ⎤⎣ ⎦ ⎣ ⎦ (1.7)

Continuing with the analogy, we can say that as the differential becomes

zero at the extremum of the function, so the variation becomes zero at the

extremum of the functional. (The introduced term of a variation Φ  (1.7)

needs mathematical precision (see e.g., [2], Section 17); here we present

only the concept of it.)

After these few concepts from functional analysis, let’s return to

Hamilton's principle. Suppose that in a one-dimensional system the function

( )q q t=  is that for which S has a minimum. This means that S increases

when ( )q t  is replaced with the function of the form ( ) ( )q t q tδ+ . The

variation ( )tδ  is a small function in all intervals from time 1t  to time 2t . As

we are interested in functions describing the motion from the position 

(moment 1t ) to the position 2 (moment 2t ), the function ( )q t  passes through

the corresponding points and 2 in Fig. 1-1, i.e.

( ) ( )1 2 0q t q tδ δ= = . (1.8)

The change of the action S when replacing q with q qδ+ , i.e. the

variation Sδ  of the functional, is determined by the difference

( ) ( )
2 2

1 1

, , , , .

t t

t t

S q q q q t dt q q t dtδ δ δ= + + −∫ ∫L L (1.9)
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We expand the Lagrangian of the first integral by  and q qδ δ  and reduce

Eq. (1.9) to

2

1

.

t

t

S q q dt
q q

δ δ δ⎛ ⎞∂ ∂= +⎜ ⎟∂ ∂⎝ ⎠
∫

L L
(1.10)

Taking into account that from (1.6) it follows that 
d

q q
dt

δ δ= , and

integrating the second term by parts, we obtain

22 2 2

1 1 11

tt t t

t t tt

d
qdt d q q q dt

q q q dt q
δ δ δ δ∂ ∂ ∂ ∂= = −

∂ ∂ ∂ ∂∫ ∫ ∫
L L L L

. (1.11)

According to (1.8), the first term in the right-hand side of (1.11) is equal to

zero. Substituting (1.11) in (1.10) and taking into account Hamilton's

principle (the minimum action), we get

2

1

0.

t

t

d
S qdt

q dt q
δ δ⎛ ⎞∂ ∂= − =⎜ ⎟∂ ∂⎝ ⎠∫

L L
(1.12)

As qδ  is an arbitrary function, this ( 0Sδ = ) is possible only if

0.
d

dt q q

∂ ∂− =
∂ ∂
L L

(1.13)

If the system has s degrees of freedom with generalized co-ordinates 
j

q

and generalized velocities 
j

q , Eq. (1.13) can be easily generalized, as the

generalized co-ordinates and velocities are independent and in (1.9) are

varied s different functions ( ) ( )  1, 2, ...,
i

q t i s= . Then we shall obtain s

equations of the form (1.13).

0 1, 2, ..., .
i i

d
i s

dt q q

∂ ∂− = =
∂ ∂
L L

(1.14)

These equations are known as Lagrange's equations. These are s

equations of second order for unknown functions ( )j
q t  and the general

solution has 2s constants. For their determination are necessary the initial
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conditions. Giving the values of all co-ordinates and velocities at 0t =  they

can be determined, which fully defines the motion of the mechanical system.

Let's summarize briefly the method of Lagrange. For a system with s

degrees of freedom we choose s generalized co-ordinates 
j

q . To this system

we associate the Lagrangian function ( ), ,
j j

q q tL (in the following sections

we shall see how we can find it). Knowing this function, we can write

Lagrange's equations (1.14), which are the equations of motion. It is

necessary to add to it the initial conditions - the values of the generalized co-

ordinates and velocities at 0t = .

Here we shall consider some general properties of the Lagrangian. The

Lagrangian possesses the property of additivity. If the system consists of two

non-interacting parts A and B, each of which has its Lagrangian, then the L

of the whole system is equal to the sum of the two Lagrangians:

.
A B

= +L L L (1.15)

From Lagrange's equations (1.14), it is obvious, that multiplying of the

Lagrangian by a constant C does not change them. Hence, for the description

of motion, with the same success one can use the function CL . We note that

when we consider a single isolated system we can multiply L  by different

constants. But when we consider different isolated parts of one mechanical

system (or different isolated mechanical systems), their Lagrangian functions

can not be multiplied by different constants but only with one and the same

constant. This condition is imposed by the property of additivity. Only when

we multiply the different parts of the system with one and the same constant

C, we will obtain the Lagrangian function of the whole system as CL ,

which leads to the same Lagrange's equations as L . Multiplying of the

Lagrangian function by one and the same constant is equivalent to an

arbitrary choice of the measured units of the physical quantities. Finally, we

shall prove one very important property of the Lagrangian function: if we

add to the Lagrangian function the total time derivative of any function of

the co-ordinates and time, the equations (1.14) remain unchanged.

Let's consider the function ( ), ,q q tL  and create from it the function

( ), ,q q tL  (it is read L tilde) by adding the total time derivative of some

function ( ),  t)f q  of the co-ordinates and time, i.e.,

( ) ( ) ( ), , , , , .
d

q q t q q t f q t t
dt

= + ⎡ ⎤⎣ ⎦L L (1.16)

Let's find the action S , which corresponds to ( ), ,q q tL :
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( ) ( ) ( )

[ ] [ ]

2 2 2

1 1 1

2 2 1 1

, , , , ,

( ), ( ), .

t t t

t t t

d
S q q t dt q q t dt f q t dt

dt

S f q t t f q t t

= = +

= + −

∫ ∫ ∫L L

(1.17)

The action S  differs from the action S, which corresponds to the function

( ), ,q q tL , by ( ) ( )2 2 1 1, ,f q t t f q t t⎡ ⎤ − ⎡ ⎤⎣ ⎦ ⎣ ⎦ . This difference disappears when

the variation is taken, and, consequently, the variations

  and  S Sδ δ coincide, from which it follows that the equations (1.14), being

a consequence of the minimum of the action ( 0S Sδ δ= = ), do not change.

We have proved that the Lagrangian function is defined to within accuracy

of adding to it the total time derivative of an arbitrary function of the co-

ordinates and time.

1.3 LAGRANGIAN FUNCTION FOR A FREE

PARTICLE

While studying the Lagranian function of a free particle we shall choose

an inertial reference frame. Such a function could depend on the position, i.e.

on the radius-vector r, and the time t of the particle, i.e. ( ), , tr vL . With

respect to an inertial reference frame space is homogeneous and isotropic

and time is homogeneous. For space this means that all points and directions

are equivalent, and for time, that all instants are identical. These properties

determine some properties of the sought Lagrangian function. The

homogeneity of space means that the function does not depend on the

distance r, and the isotropy  means that it does not depend on the radius-

vector r. The homogeneity of time means that L  does not depend on t. The

only remaining dependence is that on the velocity v. But since space is

isotropic, the Lagrangian depends only on the value of the velocity, but not

on its direction, i.e. it depends on the square of the velocity vector 2 2
v=v .

Thus, from the properties of space and time, we conclude that

( )2
v=L L . (1.18)

To proceed further we need to recall the transformation and principle of

Galileo. If r and 'r  are respectively the radius-vectors of the particle in two

inertial reference frames, a non-moving K and a system 'K , moving with

velocity u with respect to K (Fig. 1-2), then
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,

,

.t t

′= +
′= +

′=

r r ut

v v u (1.19)

Here v and v', t and t' are the velocities and the times of the particle

respectively in the systems K and K' (it is supposed that in the initial moment

O and O' coincide). Formulae (1.19) are called Galilean transformations.

Galileo's principle is the following:

The fundamental laws of mechanics are equally in form in arbitrary

reference frames related through the Galilean transformations. In the sys-

Figure -2. In the inertial reference frames K and K', the radius-vectors, velocities and times

of the particle P are related through the Galileo's transformations and the fundamental laws

have the same form.

tem K the Lagrangian is given in (1.18) and in the system K' we will denote

it as ( )2
v′ ′ ′=L L . According to Galileo's principle, ( )2

v′ ′=L L , and

according to the properties of the Lagrangian function, 'L  can differ from

the L  by the total time derivative of any function of the co-ordinates r and

the time t. With that the equations (the laws) of the motion do not change.

Suppose that K' moves with infinitesimal velocity (u= ) with respect to

K. Then

′= +v v (1.20)

and for the Lagrangian function we obtain

( ) ( )2 2 2' 2 .v v ε′= = + +vL L L (1.21)
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We expand the Lagrangian in a Taylor series about εεεε, limiting ourselves

with the linear terms:

( ) ( ) ( ) ( )
2

2 2 2

2
2 0 .

v
v v

v
ε

′∂
′ ′= + +

′∂
v

L

L L (1.22)

In the left-hand side is the Lagrangian L  in the system K and the first

term in the right-hand side is ′L  in K ′ . The equations of motion (1.14) in

both systems would not change, as the Galilean principle demands, if the

second term in the right is the total time derivative of a function of the co-

ordinates and the time. As is a constant quantity and ′v  is a time

derivative of the position, this can be possible if ( )2 2
v v′ ′∂ ∂L  does not

depend on the velocity, i.e.,

( ) ( )
2

2 2

2
, .

v
C v Cv

v

′∂
′ ′ ′= = =

′∂

L

L L (1.23)

Thus we proved that after a Galilean transformation with infinitesimal

velocity the Lagrangian function for the free particle

2
Cv=L (1.24)

satisfies Galileo's principle. The Lagrangian function is an invariant also at a

finite velocity u. In fact

( )

( )

22 2 2

2

2 ,

2  .

Cv C Cv C Cu

d
C Cu t

dt

′ ′ ′= = + = + +

′ ′= + +

v u v u

r u

L

L L

(1.25)

Since the second term in the right of the last equation is a total time

derivative, it can be neglected and consequently .′=L L

The constant C is chosen such that 2C m= , where m is the mass of the

particle (the choice is defined by the requirement that Lagrange's equations

lead to the Newton's ones). This is possible according to the mentioned in

Section 1.2 property of the function L  that it can always be multiplied by an

arbitrary constant. Finally, for the Lagrangian of a free particle we have

2

2

mv=L . (1.26)
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The quantity 2 2T mv=  is called kinetic energy of the particle. We shall

note that due to the additivity of the Lagrangian of a system of

noninteracting particles, L  has the form

2

2

m vα α

α
= ∑L . (1.27)

With the index 1, 2, 3 ...., Nα =  we denote the number of particles, and

with , , ,i j k l  we denote the number of the generalized co-ordinates.

The sum 2 2T m vα α
α

= ∑  is the kinetic energy of the system.

1.4 LAGRANGIAN FUNCTION FOR A SYSTEM OF

INTERACTING PARTICLES

We shall consider a closed system of particles. In such a system the

particles may interact with one another, but they may not interact with other

material objects outside the system. The interaction of the particles depends

only on their mutual positions. This interaction can be described by a

function, which depends on the particle co-ordinates. We shall denote this

function as ( )1 2, , ...,
N

U U= r r r . It can be shown that such a mechanical

system can be described by a Lagrangian function of the form (1.27) to

which is added the function -U. Then for the Lagrangian function we have

( )....,,,
2

21

2

N
U

vm
rrr−= ∑

α

αα
L (1.28)

The term 2 2m vα α
α
∑ , as for the noninteracting particles, is called the

kinetic energy and the function U is called the potential energy. Of course,

we did not prove rigorously that the Lagrangian function has the form (1.28).

We simply added the function –U, and from logical considerations it is

evident that it has the dimension of the sum, i.e. the dimension of energy.

From general physics, it is known what represents both terms in (1.28). But

here we have began with Hamilton's principle and for the energy have

mentioned in Section 1.3. Therefore, it is not accidental to call the term
2 2m vα α

α
∑  kinetic energy and the function U - potential energy. The

meaning of these terms and the reason to call them so will be explained in
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 the following chapter. And the right to introduce the function U we shall

illustrate by substituting L  from (1.28) into Lagrange's equations and

persuading ourselves that this Lagrangian correctly describes the motion of a

closed system. Actually, by substituting the function L  from (1.28) into the

Lagrange's equations

0, 1, 2, ...,
d

N
dt α α

α∂ ∂− = =
∂ ∂r r

L L
, (1.29)

we obtain

,
d U

m
dt

α
α

α

∂= −
∂

v

r
(1.30)

i.e. the equation of motion in Newton's form.

The vector in the right, defined as a gradient of the function -U, is called

the force, acting upon the particle . We shall denote it with αF :

.
U

α
α

∂= −
∂

F
r

(1.31)

Here we note that the derivative with respect to αr  means gradient:

grad .
U

U U
∂ ≡ ≡ ∇
∂r

(1.32)

We shall represent the force acting on the particle  through its

components ,   and  
x y z

F F Fα α α , along the axes X, Y, and Z:

0 0 0 0 0 0 .
x y z

U U U
F F F

x y z
α α α α

α α α

∂ ∂ ∂= + + = − − −
∂ ∂ ∂

F x y z x y z (1.33a)

Here 0 0 0,   and  x y z  stand for the unit vectors along the X, Y, Z axes,

respectively. The components of the force are expressed through the function

U in the following way:

, 1, 2, 3, ..., 3 .
i

x

i

U
F i N

x

∂= − =
∂

(1.33b)
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The force, defined by the relation (1.31) (or (1.33)), is called a potential

force. When such a force depends explicitly on time, it is called

nonstationary, and when it does not depend on time, it is called a stationary

potential force or conservative force. Systems, in which only conservative

forces act, are called conservative.

We shall note one property of the potential energy U, which follows from

the universality of Hamilton's principle: the function U is defined to within

an addition to it of an arbitrary constant. Such addition does not violate

Hamilton's principle, i.e. it does not influence the mathematical criterion for

its validity - the variation of S to be equal to zero ( 0Sδ = ), and conseque-

ntly it does not change the equations of motion. This property of the poten-

tial force is a partial case of the property (1.16) of the Lagrangian function.

We obtained the Lagrangian function in Cartesian co-ordinates. But as it

was mentioned in Section 1.1, very often the generalized co-ordinates are

more suitable for the motion analysis. It may be convenient to be able to

express it in generalized co-ordinates 
j

q . It such a case it would be

necessary to go from the 3n N=  variables 
i

x  to the s r−  variables 
k

q . Let's

consider the equations relating Cartesian and generalized co-ordinates:

( ) ( )( ) ( )( )1 2( ), , ..., , 1, 2, 3, ..., .
i i s i j

x x q t q t q t x q t i n= ≡ = (1.34)

We shall begin with the transformation of the kinetic energy - the sum in

the relation (1.28) for the function L . Differentiating (1.34) by time, we

shall express Cartesian velocities through generalized ones

1

, 1, 2, 3, ..., .
s

i

i k

k k

x
x q i n

q=

∂
= =

∂∑ (1.35)

Substituting (1.35) into the relation of the kinetic energy, we obtain

2
2 2

1 1 1 1

1 1 1 ,

2 2 2

2 2

N n n s

i i i i

k

i i k k

n s s

i i i i i i

k l k l

i k l k l ik l k l

m m x m x
T q

q

m x x m x x
q q q q

q q q q

α α

α = = = =

= = =

⎛ ⎞∂= = = ⎜ ⎟∂⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂

= =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

v

(1.36)

or

( ) ( )
,

, ,
j j kl j k l

k l

T T q q q q qγ= = ∑ (1.37)
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where ( )
2

n

i i i

kl j

i k l

m x x
q

q q
γ ∂ ∂

=
∂ ∂∑ , and 

kl
γ  is a function of 

j
q  since

( )i i j
x x q= . We shall note also that under the summation by i of 

i
m  we have

1 2 3 1 4 5 6 2,m m m m m m m mα α= == = = = = =  and so on.

The transformation of the potential energy is trivial - we substitute (1.34)

in ( )j
U x  and obtain ( )j

U q . Substituting in (1.28) the relations for

( ),
j j

T q q  and ( ),
j

U q t , we obtain the sought Lagrangian function

( ) ( ) ( ), , , .
j j j j j

q q T q q U q= −L  (1.38)

The form of the Lagrangian function is the same when the energy

depends explicitly on time:

( ) ( ) ( ), , , , , .
j j j j j

q q t T q q t U q t= −L (1.39)

We obtained T U= −L  for conservative forces. But in the beginning it

was underlined, that Lagrange's method is very general and it applies also to

non-mechanical systems. Can we find L for the system in which the forces

are non-conservative, e.g., depending on the velocities of the particles? It

turns out that this is possible if the forces can be represented in the following

form:

* *

.
i

i i

U d U
F

q dt q

∂ ∂= − +
∂ ∂

(1.40)

In this case the "potential energy" U ∗  is a function of the generalized co-

ordinates and velocities, ( ), ,
j j

U U q q t
∗ ∗= . The function U

∗  is called the

generalized potential of the system.

1.5* LAGRANGIAN FUNCTION FOR A CHARGED

PARTICLE IN ELECTROMAGNETIC FIELD

Consider a charged particle of charge e moving in an electric field EEEE  and

a magnetic field B. The Lorentz force acts on the particle:

.e e= + ×F v BEEEE (1.41)
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Its x-component has the following form:

( ),
x x z y

F e e yB zB= + −E (1.42)

and the other two components are obtained by cyclic transformation of

, , .x y z We shall show that this force can be written in the form (1.40). To do

this, we shall use the known results from the theory of electromagnetic field,

according to which it is always possible to find a scalar potential ( ),tΦ r  and

a vector potential ( ), tA r  through which the electric and magnetic fields are

expressed:

, .
t

∂= −∇Φ − = ∇ ×
∂
A

B AEEEE (1.43)

For the components   and  
x x

BE  we get

, .
yx z

x x

AA A
B

x t y z

∂∂ ∂∂Φ= − − = − −
∂ ∂ ∂ ∂

E (1.44)

The other components of   and  BEEEE  are expressed in a similar way. The

potentials   and  Φ A  are not single valued and allow some arbitrariness.

This permits the introduction of additional relation between them, the so

called gauge condition of Lorentz:

2

1
0.

c t

∂∇ + =
∂

A (1.45)

And now, let us consider the function

( ) ( ) ( )* , , , , .t e t e t= Φ −U r r r rA r (1.46)

We shall prove that it is a generalized potential. From (1.46) we readily get

*

*

,

.

yx z

x x x x

AA AU
e e x y z

x x x x x

A A A Ad U
e x y z

dt x t x y z

∂⎛ ⎞∂ ∂∂ ∂− = − + + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂∂ = − + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

(1.47)
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In the second relation we took into account that 
x

A  depends on time also

through the co-ordinates of the particle. Adding term by term in both

relations and taking into account (1.44), we get

( )

*

.

x

y x xz

x z y

AU d U
e

x dt x x t

A A AA
e y z e yB zB

x y x z

∂∂ ∂ ∂
∂ ∂ ∂ ∂

∂ ∂ ∂∂
∂ ∂ ∂ ∂

Φ⎛ ⎞⎛ ⎞− + = − −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞+ − + − = + −⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦

E

(1.48)

But this is the expression for 
x

F  in the form of (1.42). Consequently, we

are persuaded that the Lorentz force can be represented in the form (1.40)

with the function ( ), ,U U t
∗ ∗= r r  (1.46). Then the Lagrangian function of a

particle in electromagnetic field has the following form:

( ) ( )21
, , .

2
m e t e t= − Φ +r r rA rL (1.49)

The second and the third terms represent the energy, which the particle has

in the electric and magnetic fields, respectively.

1.6 SOME MECHANICAL VALUES AND THE

LAGRANGIAN

Let us differentiate the Lagrangian function in Cartesian co-ordinates

with respect to the components 
i

x  of the thα  particle:

,    1, 2, 3.
i i

i

mx p i
x

∂
∂

= = =L
(1.50)

Or in a vector form

.
∂ ∂
∂ ∂

≡ = p
r v

L L
(1.51)

The momentum of the particle is equal to the derivative of the Lagrangian

function with respect to its velocity.

When we differentiate the Lagrangian function with respect to 
i

x  we

obtain the component of the potential force 
i

F  acting on the particle:
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( )
,     1, 2, 3.

j

i

i i

U x
F i

x x

∂∂
∂ ∂

= − = =L
(1.52)

By analogy with (1.51) and (1.52), we introduce the quantity 
i

P

,
i

i

P
q

∂
∂

= L
(1.53)

which is called a generalized momentum, and the quantity 
i

Q ,

,
i

i

Q
q

∂
∂

= L
(1.54)

which is called a generalized force.

With the help of the generalized momentum and the generalized force the

Lagrange's equations (1.14) can be represented in Newton's form (compare

with Eq. (1.1b)):

.i

i

dP
Q

dt
= (1.55)

Using the Lagrangian function in Cartesian co-ordinates

( ) ( )2 / 2
n

i j

i

m x U x= −∑L , we can show that the total energy E is expressed

by the function L  in the following way:

1

n

i

i i

E x
x

∂
∂=

= −∑ L
L . (1.56)

Actually

( ) ( ) ( )
2

2

1 1 1 2

n n n

i i

i i i j j j

i i ii

m x
x m x U x T x U x E

x

∂
∂= = =

− = − + = + =∑ ∑ ∑L
L . (1.57)

By analogy with (1.56), we shall express the total energy in generalized

co-ordinates:
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( ) ( ),

1

,  .
s

j j

i j j

i i

q q
E q q q

q

∂
∂=

= −∑
L

L (1.58)

It can be shown that in the same way we can express the energy E also

for an open system, i.e. when the considered system interacts with another

one or is in an external field:

( ) ( )
1

, ,
, ,  .

s
j j

i j j

i i

q q t
E q q q t

q

∂
∂=

= −∑
L

L (1.59)

We shall take on the consideration of conservative laws in the next

chapter. Here we shall only note that the relation (1.59) for the total energy

is more general than the known from general physics E T U= + , and it can

be used in cases when the energy can not be divided into kinetic and

potential parts (e.g., in quantum mechanics).

1.7
+

LAGRANGIAN FUNCTION AND LAGRANGE’S

EQUATIONS IN COMMONLY USED CO-

ORDINATES

In order to find the Lagrangian function in concrete problems we proceed

in the following way. We choose independent generalized co-ordinates for

the system and maintain the form of the functions ( ),
i i j

x x q t=  and

( ), ,
i i j j

x x q q t= . Substituting them in the relation of the Lagrangian function

( ) ( )j j
T x U x= −L , we get the function in generalized co-ordinates

( ) ( ) ( ), , , , ,
j j j j j

q q t T q q t U q t= = −L L .

If in the obtained expression for L  there are terms, which do not depend

on   and  
i i

q q  they are rejected since they do not contribute to the derivatives

of L  with respect to the generalized co-ordinates and velocities and

consequently they do not influence Lagrange's equations. Finding L  is

substantially easier when we can relate the displacement element of the

particle and the differential 
j

dq  of the generalized co-ordinates.

In polar co-ordinates ,ρ ϕ  under the elementary change of ρ  and ϕ  by

d ρ and dϕ  the particle moves from point P to point P' (Fig. 1-3). The

displacement is a diagonal of the rectangle built upon d ρ  and dρ ϕ , i.e.
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( ) ( ) ( )2 2 22 .ds d dρ ρ ϕ= + (1.60)

Figure -3. The displacement element ds in polar co-ordinates.

We divide by ( )2
dt

2 2 2

2ds d d

dt dt dt

ρ ϕρ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
(1.61)

and for the square of the velocity we obtain

2 2 2 2.v ρ ρ ϕ= + (1.62)

Thus, a particle of mass m has the kinetic energy

( )2 2 2 21 1
.

2 2
T mv m ρ ρ ϕ= = + (1.63)

Consequently, if the particle is in a central field with a potential energy

( )U ρ  its Lagrangian can be written as follows:

( ) ( ) ( )2 2 21
, , .

2
m Uρ ρ ϕ ρ ρ ϕ ρ= + −L (1.64)

Substituting ( ), ,ρ ρ ϕL  into (1.14) we obtain Lagrange's equations:
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2 0,
U

m m
∂ρ ρϕ
∂ρ

− + = (1.65a)

( )2 0.
d

m
dt

ρ ϕ = (1.65b)

In a cylindrical co-ordinate system , , zρ ϕ  (Fig. 1-4), the displacement

Figure -4. Displacement element in cylindrical co-ordinates.

element 1ds  on the plane, which is a result of increasing   and  ρ ϕ  by

  and  d dρ ϕ , is the same as in polar co-ordinates. Due to this displacement,

the particle moves from 0P  to 1P . Taking into account the increase dz  in z-

direction, the particle displaces into 2P , and the displacement is a diagonal

of the rectangle, built on dz and 1ds . Hence,

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 22

1 .ds dz ds dz d dρ ϕ ρ= + = + + (1.66)

We divide by ( )2
dt  and obtain the velocity

2 2 2 2 2 .v z ρ ϕ ρ= + + (1.67)

The Lagrangian function for the particle of mass m in a central field

( ),U zρ  has the following form:
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( ) ( ) ( )2 2 2 2, , , , .
2

m
z z U zρ ρ ϕ ρ ϕ ρ ρ= + + −L (1.68)

Deriving Lagrange's equations in this case I leave to the reader.

Finally, we consider spherical co-ordinates, , ,r ϕ θ . Since later on we

shall often encounter them, let us recall the connection between Cartesian

and spherical co-ordinates (Fig. 1.5). From the figure it is obvious that

Figure -5. Cartesian (x, y, z) and spherical (r, , ) co-ordinates of the point P.

sin cos ,x r θ ϕ= (1.69a)

sin sin ,y r θ ϕ= (1.69b)

cos .z r θ= (1.69c)

To find ds, we shall take into account that with the change dθ  of θ
(Fig.1-6) the particle displaces with rdθ , with the change dϕ  of ϕ  with

sinr dθ ϕ , and with the change dr  of r with dr . It is clear that the

displacement element ds ( )0 3P P  is a diagonal of the parallelepiped with
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sides equal to the displacement elements ( ) ( )0 1 1 2 ,   sin  rd P P r d PPθ θ ϕ

( )2 3and   dr P P . Hence

( ) ( ) ( ) ( )2 2 2 22 2 2sin .ds r d r d drθ θ ϕ= + + (1.70)

(We would like to note that the volume element is 2 sin .dV r d d drθ ϕ θ= )

Dividing this relation by ( )2
dt , we obtain the velocity in spherical co-

ordinates:

2 2 2 2 2 2 2sin .v r r rθ θϕ= + + (1.71)

Figure -6. Displacement element in spherical co-ordinates.

Then, the Lagrangian function of a particle of mass m in the field with

potential ( )U r  is
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( ) ( ) ( )2 2 2 2 2 2, , , , sin .
2

m
r r r r r U rθ θ ϕ θ θϕ= + + −L (1.72)

Knowing ( ), , , ,r rθ θ ϕL , we can readily obtain Lagrange's equations,

which are given in Table 1-1.

Here we shall note an error, which is often made by students. The value

of the  radius-vector r of the particle in polar co-ordinates is equal to the

linear co-ordinate ρ , i.e. .r ρ= =r  Therefore ,   and  r,ρ ϕ ϕ  are

equivalent. In a cylindrical system ( , , )zρ ϕ  the value r of the vector r

differs from ρ , r ρ≠ , and the use of the co-ordinates , ,r zϕ is not correct

in the case when the radius-vector of the particle position is denoted as r.

SUMMARY

In Lagrangian mechanics for a system of s degrees of freedom we choose

s physical quantities 1 2, , ..., , ...
i s

q q q q , which are called generalized co-

ordinates and their derivatives - generalized velocities. To every mechanical

system is associated a Lagrangian function ( ), ,
j j

q q tL , the generalized co-

ordinates and velocities being independent. According to Hamilton's

principle the mechanical system moves in such a way that the action S is

minimal, i.e.

( )
2

1

, , 0.

t

j j

t

S q q t dtδ = =∫L

The Lagrange's equations, which are the equations of motion, follow

from here, and read:

0, 1, 2, ..., .
i i

d
i s

dt q q

∂ ∂− = =
∂ ∂
L L

The Lagrangian function is an additive one. Also, we can multiply it by a

constant and add ( ) ( ),    ( ,
j j

d
f q t f q t

dt
 is an arbitrary function) without

changing the equations of motion.

The Lagrangian functions of a free particle and a system of

noninteracting particles are, respectively

2

2

mv=L ,
2

2

m vα α

α
= ∑L .
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For particles interacting with potential energy ( )j
U r , the Lagrangian

function in Cartesian co-ordinates is

( )
2

2
j

m v
U r

α α

α
= −∑L

and in generalized co-ordinates,

( ) ( ) ( ) ( ) ( )
,

, , , , , .
j j j j j kl j k l j

k l

q q t T q q U q t q q q U q tγ= − = −∑L

The Lagrangian function of a charged particle in electromagnetic field

depends on the scalar and vector potential of the field:

( ) ( )21
, , .

2
m e t e t= − Φ +r r rA rL

In commonly used co-ordinate systems: Cartesian, cylindrical and

spherical, the Lagrangian functions and Lagrange's equations are given in

Table 1-1.

The momentum and energy of a system are expressed through L  in the

following way

1

,           .
s

i

ia i

E q
qα

∂ ∂
∂ ∂=

= = −∑ ∑p
r

L L
L

QUESTIONS

1. What is necessary for the description of the mechanical motion in

Newtonian mechanics?

2. What represents the method of Lagrange?

3. What do represent: the generalized co-ordinates and velocities; the

configuration and phase spaces?

4. What are the advantages of the method of Lagrange over the Newtonian

method?

5. Why can the Lagrangian function be multiplied by the constant without

changing the equations of motion?

6. Why can we add to the Lagrangian a function 
( ,t)df

dt

r
, without changing

the equations of motion?

7. Why can we add any constant to the potential energy of a system and

how does this affect the Lagrangian function and Lagrange's equations?



30 Chapter 

8. Why does the Lagrangian function of a free particle depend only on 2
v

but not on   and  ?v r

9. What does it mean that the Lagrangian function is an invariant with

respect to the Galilean transformation? Give an example.

10.What is a potential? Can the Lagrangian function for a system of

nonpotential forces be found?

11.What is a generalized potential? What is the generalized potential for the

electromagnetic field?

12.What are the displacement elements and the volume elements in

cylindrical and spherical co-ordinates?

PROBLEMS

1. Find the Lagrangian function and Lagrange's equations for a particle of

mass m in a potential field ( )U r .

2. Find the Lagrangian function and Lagrange's equations for a particle of

mass m in a potential field ( )U ρ  in polar co-ordinates.

3. Find the Lagrangian function and Lagrange's equations for a particle of

mass m in a potential field ( )U r  in cylindrical co-ordinates.

4. Find the Lagrangian function and Lagrange's equations for a particle of

mass m in a potential field ( )U r  in spherical co-ordinates.

5. Find the Lagrangian function, Lagrange's equations and the generalized

co-ordinates of the electron in the hydrogen atom, assuming that the

proton is immobile ( )p
m → ∞ .

6. Find the Lagrangian function, Lagrange's equations and the generalized

co-ordinates of a simple pendulum of mass m and length l, using the

declination angle  as a generalized co-ordinate.

7. Find the Lagrangian function, Lagrange's equations and the generalized

co-ordinates for a particle of mass m, attached to the spring of negligible

mass with a force constant  (the system lies on a frictionless horizontal

table).

8. The Lagrangian function of a charged particle moving with a relativistic

velocity ~v c  in an electromagnetic field has the following form:

( ) ( )2 2 21 / , , .mc r c e t e t= − − − Φ +r rA rL  Show that in the

nonrelativistic case, v c<< , this function has the form (1.49).
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CONSERVATION LAWS

2.1 Conservation of Energy

Constants of motion; cyclic co-ordinates; cyclic co-ordinates and the

constants of motion; constants, originating from the basic properties of

space and time; the homogeneity of time and the conservation of

energy; kinetic, potential and total energy; conservative systems and

forces; rate of change; conservative force and potential energy;

necessary and sufficient condition for a conservative force. 32

2.2 Conservation of Momentum

The homogeneity of space and translation of a system; conservation of

momentum; conservation of the momentum components in a field; rate

of change; centre of mass. 36

2.3 Conservation of Angular Momentum

The isotropy of space, elementary rotation and a variation of the

Lagrangian; conservation of angular momentum; rate of change; parity

and angular momentum. 38
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2.1 CONSERVATION OF ENERGY

The state of a mechanical system is completely defined by s generalized

co-ordinates 
j

q  and s generalized velocities ,
j

q  i.e. by 2s  quantities. Du-

ring the motion of the system they are changed. But for the different systems

some of these quantities and/or functions of them remain constants, which

are determined by the initial conditions. They are called constants of the

motion.

Some constants of the motions can be found from the form of the

Lagrangian function. If it does not depend explicitly on some of the

generalized co-ordinates, e.g., on 
i

q , from the Lagrange's equations (1.14) it

is obvious that

0.
i

d

dt q

∂ =
∂
L

(2.1)

Consequently the generalized momentum 
i

P  is a constant of the motion

const.
i

i

P
q

∂= =
∂
L

(2.2)

Such co-ordinates, on which the Lagrangian function does not depend,

are called cyclic.

Particularly important role in mechanics plays those constants of the mo-

tion whose constancy follows from the basic properties of space and time -

homogeneity and isotropy. These constants are known as basic conservation

laws of the corresponding quantities. Their general characteristic is their

additivity. The energy conservation is connected with the homogeneity of

time, the momentum conservation - with space homogeneity, and the

angular-momentum conservation - with space isotropy. We shall note that

homogeneity means equal properties in any point and the isotropy means

equal properties in any direction. Because of their generality the

conservation laws are powerful means in mechanics. They do not depend on

the form of the trajectory and on the character of the acting forces and can be

used even when these forces are unknown.

We shall consider the motion constant, originating from time

homogeneity. The Lagrangian function of a closed system according to this

can not depend on time. Actually, time homogeneity means an equality of all

instants of time. Therefore, the mechanical properties of the system do not

change: if we replace one instant of time with another without changing the

co-ordinates and the velocities of the particles, the Lagrangian function

remains the same.
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For a closed system the Lagrangian function does not depend on time and

therefore the total derivative with respect to time can be written in the

following way:

1 1

.
s s

i i

i ii i

d
q q

dt q q= =

∂ ∂= +
∂ ∂∑ ∑L L L

(2.3)

From Lagrange's equation (1.14) we express 
i

q

∂
∂
L

 through 
i

d

dt q

∂
∂
L

 and

replace it in Eq. (2.3) to obtain

1 1

,
s s

i i

i ii i

d d
q q

dt dt q q= =

⎛ ⎞∂ ∂= +⎜ ⎟∂ ∂⎝ ⎠
∑ ∑L L L

(2.4)

or

1 1

0.
s s

i i

i ii i

d d d
q q

dt q dt dt q= =

⎛ ⎞ ⎛ ⎞∂ ∂− = − =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
∑ ∑L L L

L (2.5)

The quantity in the brackets remains unchanged and it is a constant of the

motion. By definition this quantity is called energy:

const.
i

i

E q
q

∂= − =
∂
L

L (2.6)

We shall prove that the energy can be represented as the sum of the

functions ( ) ( )
jjj

qUqqT and, , introduced in the previous section. For this

purpose we shall determine the sum ∑ ∂
∂

i

i

i

q
q

L
 for the Lanragian function of

the form (1.38):

( )
,

,

2 2 .

i kl k l j i il l i

i i k l i li i

ki k i il i l il i l il i l

k i l l i l

q q q U q q q q
q q

q q q q q q q q T

γ γ

γ γ γ γ

⎛ ⎞∂ ∂ ⎛= − =⎜ ⎟ ⎜∂ ∂ ⎝⎝ ⎠
⎞ ⎛ ⎞+ = + = =⎟ ⎜ ⎟
⎠ ⎝ ⎠

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

L

(2.7)

Replacing (2.7) and (1.38) into (2.6), we get
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( ) ( ) ( ) ( ) ( )2 , , ,
j j j j j j j j

E T q q T q q U q T q q U q= − + = + . (2.8)

We proved that the energy of the system consists of two different terms -

kinetic energy ( )
jj

qqT ,  and potential energy ( )
j

qU . In Cartesian co-

ordinates the kinetic energy depends only on the velocities of the particles,

( ) 2

1 2, , ..., / 2
N

T v v v m vα α= ∑ , and the potential energy depends on their co-

ordinates, ( )1 2, , ...,
N

U r r r . We shall underline that this analysis relates to

mechanical energy.

We have persuaded ourselves that the conservation of energy is valid for

a closed system - in the derivation we used a Lagrangian function, which

does not depend on time. This condition is also valid for a system in a

constant (with respect to time) external potential field. Hence the

conservation law is valid also for such a system. The acting forces in such

systems are conservative.

Because of the importance of the conservative systems in chemistry we

shall consider with more detail the rate of change of the energy and the

character of the acting forces in such systems. We shall underline once more

that this is a system in a constant field, depending only on the co-ordinates.

Consider a particle in an external field with kinetic energy

( )2222 2/ zyxmmT ++== r /2 and potential energy ( )zyxU ,, . The rate of

change of the kinetic energy is

( )T m xx yy zz m= + + = =rr rF (2.9)

where we used Newton's second law, m =r F . Here F is the acting

conservative force and the quantity rF  defines the rate of change of the

kinetic energy. The change dT of the kinetic energy on the interval dt is

defined by the work element of the force F under the displacement dr:

.dT d dA= =rF (2.10)

The conservative force ( )F r  depends only on the particle position. This

fact is not sufficient to ensure energy conservation. But the last is guaranteed

for a conservative system. Therefore, we shall find the sufficient condition

( )rF  to be a conservative force. Let us find the rate of change of the

potential energy:

( ), , .
U U U

U x y z x y z
x y z

∂ ∂ ∂= + +
∂ ∂ ∂

(2.11)
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Remembering that gradU U= ∇  is a vector

0 0 0 ,
U U U

U
x y z

∂ ∂ ∂∇ = + +
∂ ∂ ∂

x y z (2.12)

we can represent (2.11) as a scalar product:

.U U= ∇r (2.13)

Differentiating the equation const=+= UTE  (the law of energy

conservation) and taking into account (2.9) and (2.13), we obtain

( ) 0U+ ∇ =r F . (2.14)

This condition is valid for any velocity of the particle and hence

( ) U= −∇F r . (2.15)

In terms of components, this reads

,    ,    .
x y x

U U U
F F F

y z z

∂ ∂ ∂= − = − = −
∂ ∂ ∂

(2.16)

The force F is a conservative, if it is stationary (it does not depend on

time) and can be represented as a gradient of a function, depending on the

co-ordinates, (2.15). For any scalar function ( )rf  we have ( )curl[grad ]f ≡r

0f∇ ×∇ = , and hence, according to (2.15), we can write for the force ( )rF

( ) ( ) .0curl =≡×∇ rFrF (2.17)

Thus, the necessary and sufficient condition to ensure the force ( )rF  to

be a conservative force is its curl to vanish. In this case such a function

( )zyxU ,, of the co-ordinates can always be found, so that ( ) U= −∇F r .
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2.2 CONSERVATION OF MOMENTUM

The law of conservation of momentum in a closed system originates from

the homogeneity of space. Consider a translation rδ of all particles of the

system. Because of the homogeneity of space such translation can not

change the mechanical properties of the system, i.e. the Lagrangian function

should retain its form. (Here we shall note that we write rδ , but not rd ,

because r is a function of time, ( )trr = .) Such a displacement by rδ  in an

open system would cause a change in the particles’ positions with respect to

interacting with them bodies and/or fields. Hence, the translation rδ  does

not cause a change of the Lagrangian function L , i.e. 0=Lδ , only in a

closed system:

.0=
∂
∂=

∂
∂= ∑∑

α α
α

α α

δδδ
r

rr
r

LL
L (2.18)

For an arbitrary function of time ( )trδ , Eq. (2.18) is satisfied if

.0=
∂
∂∑

α αr

L
(2.19)

Using Lagrange's equation (1.14), we get

const
d

dtα αα α

∂ ∂= =
∂ ∂∑ ∑
r v

L L
. (2.20)

Hence, the quantity α∂ ∂ vL does not change

const,
α α

∂= =
∂∑p

v

L
 (2.21)

or substituting the Lagrangian function in Cartesian co-ordinates, we get

∑ ∑==
α α

ααα pvp m =const. (2.22)

Thus, originating from the homogeneity of space, we have reached the

following law: the momentum of particles in a closed system does not

change, i.e. it is a constant of motion. Separate components of the

momentum can conserve also in an external field (respectively, an external
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interaction), if the potential energy does not depend on the corresponding

Cartesian co-ordinates. In other words, if along the co-ordinate 
i

x  the

corresponding component of the resultant force F is zero, 0
i

x
F = , then

const.=
ix

p  For example, if the system of particles is near the Earth

surface, the tangential component of the external component τF  along this

surface is zero and the law of the momentum conservation is valid for the

component τp , but is not valid for the normal component 
n

p , because

0≠−= GF
n

 (where G is a gravity force).

We shall obtain the rate of change of the momentum of the system

particles by differentiating with respect to time:

.α
αα

α F
rv

p =
∂
∂=

∂
∂= LL

dt

d
(2.23)

There is a change in both the particles’ momentum and the total momen-

tum of the open system only when the applied force is different from zero.

In a mechanical system there exists a point, which always, independently

of the form of the system motion, moves with such a velocity u that

multiplying u by the total mass of the system αmM ∑= , we get the

momentum of the system. This point is called the centre of mass or the centre

of gravity. The definition of the radius-vector of the centre of mass is:

.
M

m

m

m ∑
∑

∑ == αα

α

αα rr
R (2.24)

It moves with a velocity

.
M

m

M

m ∑∑ === αααα vr
Ru (2.25)

Multiplying by M, we obtain

,pvu == ∑ ααmM (2.26)

i.e., the introduced in (2.24) point in fact moves with such a velocity, which

multiplied by the mass M of the system gives its momentum.

For a system of two particles the centre of mass is shown in Fig. 2-1.
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The centre of mass possesses a very useful property: in the absence of

external forces its velocity in any inertial reference frame is constant.

Actually, for a closed system we have

const.
m

M M M

α α α= = = = =∑ ∑r p p
u R (2.27)

Figure 2-1. The centre of mass of a system of two particles of mass :and 21 mm  a) two

particles with co-ordinates 
21 and xx  have a centre of mass with a co-ordinate

( ) ( )
212211 mmxmxmx ++= ; b) two particles, whose positions are determined by the vectors

1r  and 
2r have the position of the centre of mass ( ) ( )

212211 mmmm ++= rrR .

If we choose the frame 'K  with an origin at the centre of mass (so called

CM-frame) and moving with the system, the momentum 'p  of the

mechanical system in it would be equal to zero, i.e. 0'=p . This is so, for

example, for a freely moving nucleus at the radioactive α -decay. The

properties of the centre of mass make the reference frame connected with it

very useful for the solution of many problems. For example, the problem of

elastic and inelastic collision of two bodies (see Chapter 3), and so on.

2.3 CONSERVATION OF ANGULAR MOMENTUM

This law originates from space isotropy. As a result of this isotropy, the

mechanical properties of a closed system of particles do not change under an

arbitrary rotation of the system in space, and the Lagrangian function

remains constant. Thus, after an infinitesimal rotation its variation is equal to

zero, i.e., 0.δ =L
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Let us rotate by an infinitesimal angle a particle with co-ordinates

ϕθ ,,r , (Fig. 2-2). We shall represent this angle as a vector , directed

along the axis of a rotation, so that the rotation, looked from its top, is in the

positive direction, i.e. the rotation is counter-clockwise. Let's find the

displacement r due to such a rotation. It is seen from Fig. 2-2 that

Figure 2-2. Under the rotation of a particle with co-ordinates r, ,  by an infinitesimal angle

, its position changes by | r |=rsin .

sin .rδ θδϕ=r (2.28)

But as r and are vectors, we can write (2.28) in a vector form (right-

handed co-ordinate system):

δ = ×r r . (2.29)

We have shown that any vector, whose beginning is on the rotation axis,

changes under the rotation  according to (2.29).

The dependence (2.29) is valid also for a vector arbitrarily located on the

axis of a rotation (for a proof see, e.g., Appendix VI in [2]). So, the change

of the velocity has the same form:

δ = ×v v . (2.30)

Under the rotation by an angle δϕ  the Lagrangian function does not

change, i.e.,
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0.α α
α α α

δ δ δ
⎛ ⎞∂ ∂= + =⎜ ⎟∂ ∂⎝ ⎠

∑ r v
r v

L L
L (2.31)

In this equation we take into account that αα pr =∂∂L ,

αα pv =∂∂L and use the Eqs. (2.29) and (2.30):

( ) ( ) ( )

( ) ( ) 0.
d

dt

α α α α α α α α
α α

α α α α α α
α α

δ δ δ= + = ⎡ × + × ⎤⎣ ⎦

= × + × = × =

∑ ∑

∑ ∑

p r p v p r p v

r p v p r p

L

(2.32)

Since 0≠δϕδϕδϕδϕ , 0=Lδ  is equivalent to

( ) .0∑ =×
α

αα pr
dt

d
(2.33)

Under the motion of the closed system the vector quantity

( )∑ ×=
α

αα .prL (2.34)

remains constant. This quantity is called angular momentum (sometimes a

moment of the momentum). It is obvious that αLL ∑= , i.e. the quantity L

is additive.

The vector product (2.34), which defines the angular momentum, can be

conveniently represented in the form of a matrix. For a particle it is the

following

0 0 0

.

x y z

L x y z

p p p

=
x y z

(2.35)

Its components, the angular momenta about the X-, Y- and Z-axes, are

.

,

,

xyz

zxy

yzx

ypxpL

xpzpL

zpypL

−=
−=
−=

(2.36)
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In order to find the rate of change of the angular momentum of a particle,

we differentiate (2.34) with respect to time:

( ) ( ).d
m m

dt
= × = × + ×L r r r r r r (2.37)

The first vector product in the right is zero because it is a product of the

vector r  with itself. The second product is the moment of acting on the

particle force F (it is called torque):

.NFrrr =×=×m (2.38)

Thus we obtain the important result that the rate of change of the angular

momentum is equal to the moment of the applied force:

.NL = (2.39)

It is useful to compare it with the rate of change of the momentum Fp =
(the quantity L in the rotation motion plays the same role as p in the

translational motion, thus the reason to call L an angular momentum is

obvious). Since the definition of the vector product depends on the choice of

right- or left-handed co-ordinate system, the directions of L and N also

depend of this choice. They will be reversed in the left-handed system.

Vectors of this type are known as axial vectors in contrast with the ordinary,

or polar vectors, whose directions are defined independently of the choice of

the co-ordinate system. Axial vectors are often associated with a rotation

about a given axis. The direction of rotation around the axis (clockwise or

counter clockwise) has physical meaning, but the direction of the vector

along the axis has no physical meaning.

Thus, using space isotropy, we obtain the following conservation law: the

angular momentum of a closed system of particles remains constant.

The law of conservation of angular momentum (of all its components)

with respect to the origin of a co-ordinate system is valid in a closed system.

We proved this result, since under a rotation the properties of a closed

system do not change. But this is possible also in an external field, i.e. in an

open system, if the field possesses a symmetry axis. Then, under a rotation

about this axis the mechanical properties of the system won't change.

Therefore, the projection of an angular momentum on this axis, defined with

respect to any axis point, remains constant. Example of such partial

conservation of angular momentum is the fields of central or axial

symmetries. In the first case we have a field in which the potential energy

depends only on the distance to a fixed point, called the centre of the field.

An arbitrary rotation of the mechanical system does not change its
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mechanical properties, since the positions of the particles with respect to the

centre remain unchanged. Hence, the angular momentum remains constant

with respect to the centre of the field, but not with respect to any point. And

the mechanical moment has only a component along the rotational axis.

According to the previous paragraph, the conservative component in a field

with axial symmetry along the Z-axis is 
z

L , the beginning of the co-ordinate

system can be any point on the Z-axis.

Finally, we can summarize the results: originating from the basic

properties of time (homogeneity) and space (homogeneity and isotropy), we

obtained seven constants of motion: energy, three components of the linear

momentum, and three components of the angular momentum.

SUMMARY

The functions of the generalized co-ordinates and generalized velocities,

which remain unchanged during the system’s motion, are called constants of

motion. Constants of motion are generalized momenta, corresponding to the

cyclic co-ordinates (those on which the Lagrangian function does not depend

explicitly).

The energy of a closed system and of a system in a constant force field,

remains unchanged because of the homogeneity of time:

( ) ( ), const.
i j j j

i

E q T q q U q
q

∂= − = + =
∂
L

L

Such systems are called conservative. Conservative forces act in them.

The rate of change of the kinetic energy is determined by the rate of change

of the work of the acting force Fr=T , i.e. by the power. The force acting on

the particle is conservative if it can be represented in the form

( ) ( )ααα rrF U−∇=  (in this case the total energy UT +  is constant).

Necessary and sufficient condition for the existence of such a function

( )αrU , is ( ) .0=×∇ αrF

The momentum of the closed mechanical system remains constant as a

consequence of homogeneity of space:

const.mα α α
α α αα

∂= = = =
∂∑ ∑ ∑p v p
v

L

In an open system the total force determines the rate of change of the

momentum Fp = . In such a system the separate components of the
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momentum 
i

p  remain constant if the components of the force in the

corresponding co-ordinates 
i

x  are zero: 0=
i

F . The momentum of a

mechanical system in the reference frame of the centre of mass, whose

radius-vector is by definition Mm ααrR ∑= , is zero. In any reference

frame (an inertial one) the centre of mass moves with a constant velocity R ,

and the momentum of the system is .Rrp Mm
a

=∑= α

The angular momentum ( )αα prL ×∑=  of a closed system remains

constant, because of isotropy of space. The rate of change of the angular

momentum of an open system is equal to the torque of the applied forces:

.NL =  If in a given direction the components of the torque 0=
i

N , then the

corresponding components of the angular momentum in this direction are

also conserved in open systems. These are systems with different types of

symmetry (central or axial) and the components of the angular momentum

with respect to the centre or to the symmetry axis remain constant.

QUESTIONS

1. What does homogeneity of time and homogeneity and isotropy of space

mean?

2. Why the law of conservation of energy, which has been proved for a

closed system, is true also in an external constant potential field?

3. In which cases is the law of momentum conservation valid in an open

system?

4. In what reference frame is the momentum of a mechanical system equal

to zero?

5. Suppose that two atoms with equal masses and equal but reversed

velocities, are collided. Will the velocities of the atoms remain equal

after the collision, if:

a) before and after the collision the atoms are excited;

b) as a result of the collision one or both atoms are excited;

c) before the collision one or both atoms were excited?

6. When can the law of angular-momentum conservation be applied in an

open system?

7. A charged particle is in the field of an unlimited charged plane XY .

Which components of its momentum and angular momentum are

conserved under its motion?

8. Which components of the momentum and the angular momentum of a

charged particle are conserved under its motion in the field of an infinite

solenoid?

9. Which component of the angular momentum of the electron of a

hydrogen atom is conserved under its motion in the field of the proton?
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PROBLEMS

1. Find the Cartesian components 
zyx

LLL ,,  and the square 2
L  of the

angular momentum in cylindrical co-ordinates .,, zϕρ
2. Find the cylindrical components 

z
LLL ,, ϕρ  and the square 2

L  of the

angular momentum in Cartesian co-ordinates .,, zyx

3. Knowing the Lagrangian function in cylindrical co-ordinates (see Table

1-1), prove that ϕ∂∂= L
z

L .

4. Find the Cartesian components 
zyx

LLL ,,  and the square 2
L  of the

angular momentum in spherical co-ordinates.

5. Find the spherical components ϕθ LLL
r

,,  and the square 2
L  of the

angular momentum in Cartesian co-ordinates .,, zyx

6. A proton of energy 22
0vm

p
 moves toward a heavy nucleus of charge

Ze . The impact parameter is equal to b. What is the minimal distance of

the proton from the nucleus?
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CENTRAL CONSERVATIVE FORCES

3.1 One-Dimensional Motion

One-dimensional motion  Lagrangian, constants of motion; finite and

infinite (potential well and potential barrier) and periodic motions. 46

3.2 The Two-Body Problem

Two particles in Lab-frame and CM-frame; Lagrangian function and

Lagrange’s equation in CM-frame; reduced mass; from motion of two

particles to motion of one particle; relative motion of two particles;
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3.1 ONE-DIMENSIONAL MOTION

One-dimensional motion is motion of a system with one degree of

freedom. The general form of the Lagrangian function is already known:

( ) ( )2
q q U qγ= −L . (3.1)

In Cartesian co-ordinates (3.1) transforms into

( )
2

2

mx
U x= −L . (3.2)

We could write the corresponding Lagrange's equation, which is of

second order. This equation of motion can be integrated in general. But we

already know its first constant of motion, expressed by the conservation law

( )
2

.
2

mx
U x E+ = (3.3)

This differential equation is integrated by the method of separation:

( )2dx
E U x

dt m
= ⎡ − ⎤⎣ ⎦        or (3.4)



3. CENTRAL CONSERVATIVE FORCES 47

( )
2

const.
dx

t
m E U x

= +
−∫ (3.5)

We integrated an equation of motion of second order and, therefore,

obtained two constants, E and const.

Although the relation (3.5) is obtained in a general form, it allows us to

make some conclusions about the character of motion. Suppose that ( )U x

has the form, shown in Fig. 3-1. Since the kinetic energy is positive,

Figure 3- . The motion is possible if U(x)<E, i.e. in the intervals
1 2 3 and  x x x x x< < > , but

not possible if ( )U x E>  (
2 3x x x< < ). In the points A, B and C  (turning points), ( ) .U x E=

the motion is possible only if ( )U x E< , i.e. in the interval 1 2x x  and 3x x> .

The regions 1 2 3  and  x x x x<  are forbidden. At the points A, B and C,

( )U x E=  and the velocity of the particle is equal to zero. These points are

called turning points. If the motion is limited by two such points, it is called

finite motion and is confined to a given region. If the region is unlimited or

is limited only from one side the motion is infinite ( 3x x> ).

As an illustration, we shall consider two cases of the given form of the

potential-energy curve. The first is the potential well, which corresponds to

an attractive force, directed to the centre of the well. (We shall note that

since ( )U x  is determined to within an a constant, it is convenient to choose

that constant such that ( ) 0U x →  at x → ∞ , as shown in Figs. 3-2 and 3-3.)

Two types of motion are possible. If E is negative ( 1E E=  in Fig. 3-2), the

motion is finite and is confined to a finite region - the particle oscillates

between the two boundary points 1x  and 2x  in which ( ) 1U x E= . When the

energy of the particle is equal to the depth of the well 0U− , it is at rest at the

point 0.x =  If the particle starts its motion far out to the left with

velocity v its energy is 2

2 / 2E E mv= =  and its motion is infinite. The
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particle accelerates when it moves to the centre of the well and decelerates

further from the centre. Far from the centre it reaches the initial velocity .v

The second case is the potential barrier (Fig. 3-3). It illustrates a repulsive

force directed outward from the centre. There are also two types of motion.

      Figure 3-2. Potential well. Figure 3-3. Potential barrier.

If the motion starts far out to the left with velocity 1v , such that
2

1 1 0/ 2E E mv U= = <  ( 0U  is the barrier height), the particle will reach the

point ( )1E U x= , then it will reverse its direction and will continue to move

towards −∞ , finally reaching velocity 1v− . If 2

2 2 0/ 2E E mv U= = >  the

particle will have enough energy to overcome the barrier and in the far right

it will reach velocity 2v .

The one-dimensional finite motion has a periodic character. Because of

time isotropy (replacing t with t−  does not change the Lagrangian function

(3.2) and the equation of motion) the motion is reversible. Therefore the time

for the motion from 1x  to 2x  equals the time for the motion from 2x  to 1.x

The period is equal to twice the time of the transition of the interval 1 2x x , or

( )
2

1

2

x

x

dx
m

E U x

τ =
−∫ , (3.6)

where 1x  and 2x  are the solutions of the equation ( )U x E= and both τ  and

1x  and 2x  are functions of the energy E.

3.2 THE TWO-BODY PROBLEM

The two-body problem takes a very important place both in physics and

chemistry. We shall consider a system of two interacting particles of masses
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1m  and 2m . Suppose that in the laboratory frame (Lab-frame) the positions

of the particles are given with the radius-vectors 1R  and 2R , and of the

centre of mass, with R (Fig. 3-4a).

Figure 3-4. Two-body problem:

a) Origin of the laboratory reference frame (Lab-frame) O, and the position vectors of the

particles of masses 
1m  and 

2m ,
1R and 

2R , respectively, and the position of the centre of

mass C, R;
1r  and 

2r are the position vectors of the particles in the centre-of mass frame

(CM-frame) with an origin in the point C; r is the relative-position vector (|r| is the particle

separation) - it begins from 
2m  and is directed to 

1m ;

b) the relative-position vector r determines the position of the reduced mass m  in CM-

frame.

We shall perform analysis in CM-frame with an origin at point C. In it,

the positions of particles with masses 1m  and 2m  are 1r  and 2r , respectively.

The separation of particles is determined by the value of the relative position

vector r, which is the difference between their position vectors in both

frames (see Fig. 3-4a). In CM-frame we have

1 2.= −r r r (3.7)

Since the potential energy of two interacting particles depends only on

their separation, the Lagrangian function may be written as

( )
2 2

1 2 2
1 2 .

2 2

i
m m

U= + − −r r
r rL (3.8)

According to (2.24) (in the CM-frame R=0), we obtain
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1 1 2 2 0.m m+ =r r (3.9)

From (3.7) and (3.9), we relate the positions of both particles with the

relative vector r:

2 1
1 2

1 2 1 2

, .
m m

m m m m
= = −

+ +
r r r r (3.10)

Substitution into (3.8) yields for the Lagrangian function

( )
2

,
2

m
U r= −r

L (3.11)

where

1 2 1 2

1 2

m m m m
m

m m M
= =

+
,

1 2

1 1 1

m m m

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
(3.12)

is called a reduced mass (the sigh ~ is read tilde). The Lagrange's equation is

( )2

2
.

U rd
m

dt

∂
= −

∂
r

r
(3.13)

Thus, the two-body problem reduces to the problem of motion of an

imaginary body with a mass m  and a position vector r, which is the relative

vector of the first particle with respect to the second one (Fig. 3-4b).

Thus to find the trajectories of two bodies it is enough to solve the

problem of motion of one body, which has the reduced mass of both bodies.

The reduced mass is smaller than any of the two masses. For a diatomic mo-

lecule, for which the masses of atom are 1 2m m m= = , the reduced mass is

2.m m= (3.14)

If we have a light and a heavy particle, so that 1 2m m<< , then the

reduced mass is

1 2 1
1 1

11 2 2

2

1
1 .

1

m m m
m m m

mm m m

m

⎛ ⎞
= = ≈ −⎜ ⎟+ ⎝ ⎠+

(3.15)
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If 
e

m  stands for the electron mass and 1836
p e

m m=  for the proton mass,

the reduced mass of the hydrogen atom is

1
1 .

1836
e e

m m m
⎛ ⎞= − ≈⎜ ⎟⎝ ⎠

(3.16)

It is evident that in the case of a light and a heavy particle, the reduced

mass is very close to the light particle’s mass.

The function (3.11) and Lagrange's equation (3.1) describe the motion of

a body with mass m  in the potential field ( )U r . Our problem is to find the

vector r as a function of time. The Lagrangian function leads to two

equations for the determination of the two vectors 1r  and 2r  as functions of

time. We reduced the problem of two bodies to the problem of one body.

This problem is readily solved, but in order to interpret correctly the motion

of both particles we have to remember the following:

First, from the Eq. (3.13) we can determine ( )tr . Recall that r is a vector

pointed from particle 2m  to particle 1m . Thus we shall determine the motion

of 1m  with respect to 2m , as 2m  is fixed at rest in the inertial reference

frame. However, Eq. (3.13) does not contain the mass 1m , but the reduced

mass m , and in the right side the term U−∂ ∂r  is the force, acting on the

mass 1m , but not on the reduced mass (according to the third Newton's law

the force U∂ ∂r acts on mass 2m ).

Second, after having found r, we can determine the motion of both

particles 1 2  and  m m  in the CM-frame, using Eq. (3.10). In other words, we

shall obtain the radius-vectors ( ) ( )1 2  and  t tr r , which define the trajectories

with respect to the immobile centre of mass. Once again, recall that ( )tr

determines the trajectory of 1m  with respect to 2m , i.e. the particle of 2m

would be immobile.

Third, the Lagrangian function (3.11) is written in CM-frame and

contains only the relative motion of the particles. Since the system of two

particles is a conservative one, the centre of mass moves with a constant

velocity R , which according to (2.24) is determined by the initial condition

( ) ( )1 20   and  0R R . In the Lab-frame the positions of 1 2  and  m m  are

determined by the vectors 1 2  and  + +R r R r  and their velocities with

1 2  and  + +R r R r , respectively. Or, in Lab-frame the trajectories of 1m  and

2m  are determined by the vectors 2

1 2

  and
m

m m
+

+
R r rR

21

1

mm

m

+
− .
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3.3 CENTRAL CONSERVATIVE FORCES

A force F is said to be central if is directed towards or away from a fixed

point. In this course we shall mainly deal with central forces acting

according to the law of inverse squares:

2
.

C
F

r
= − (3.17)

The electrostatic and gravitational forces, acting between two immobile

particles has such form. If one of the particles is positioned at the origin of

the co-ordinate system and the other at a distance r, these central forces are

always directed along the radius-vector r:

0

2 2
.

C C

r r r
= − = − r

F r (3.18)

For the gravitational force between two particles of masses 1m  and 2m ,

we have 0 1 2C G m m= , where 11 2 2

0 6,67.10   N.m / kgG
−=  is the gravitational

constant, and for the electrostatic force between two charges   and  
1 2
q q ,

04C πε=
1 2
q q , where 0ε  is the permittivity of the vacuum. These forces

are conservative and can be expressed through the potential energy

( ) ( ), .
U r C

U r
r

∂
= − = −

∂
F

r
(3.19)

We have chosen the arbitrary constant of U so that ( ) 0.U ∞ = It is

preferable to deal with the scalar ( )U r  than with the vector ( )F r .

We shall note that 0C >  corresponds to attractive forces (a gravitational

force or an electrostatic one between charges of opposite signs) and 0C <
corresponds to repulsive forces (an electrostatic force between charges of

equal signs). In atomic physics another central force plays a basic role – the

nuclear force. From experiments on scattering of elementary particles, it is

known that the nuclear force acts on a small distance between two nucleons

(protons or neutrons) with a potential energy

( ) ( )0exp - /
.

C r r
U r

r
= − (3.20)
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Here 15 27

0 2.10  m,  10  J.m.r C
− −≈ ≈  It is easy to see evaluate that at

0r r≤  the nuclear force between two protons dominates the Coulomb force

of their repulsion. We shall note that (3.20) is an approximation.

Since central forces are always collinear to the radius-vector r, their

torque is zero

0.= × =N r F (3.21)

According to (2.39) this means that the angular momentum is constant

const,m= × =L r r (3.22)

where m  is the reduced mass of the particles interacting with the force

(3.18). This is the law of conservation of angular momentum and it contains

two statements: that its direction is constant and that its magnitude is

constant. The angular momentum is perpendicular to the plane of motion -

the vector L is along the normal to the plane of r and r . Hence the statement

that the direction of L is constant implies that r and r  must always lie in a

fixed plane, which is perpendicular to L. From here it is evident that the

orbit of the particle lies entirely in one plane. The description of such motion

requires only two variables, which may be taken as the polar co-ordinates r

and ϕ . Then the Lagrangian function can be written as

( ) ( )2 2 2 .
2

m
U rϕ= + −r rL (3.23)

The co-ordinate ϕ  is a cyclic co-ordinate (see Section 2.1) and the

generalized momentum Pϕ ϕ= ∂ ∂L  is a constant of the motion:

2 const.P mrϕ ϕ= = (3.24)

We shall verify that this quantity is equal to the angular momentum. The

velocity r  (3.22) has components in the directions of the unit vectors 0
r and

0.ϕϕϕϕ  Indeed, as it is shown in Fig. 3-5 the displacement dr  of the particle,

due to the increments of the elements  and dr dϕ , can be represented as

0 0
d dr rdϕ= +r r (3.25)

and dividing by dt , we obtain
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Figure 3-5. The motion of a particle of a reduced mass m in a central field with a centre O is

performed in a plane, normal to L and is described with the polar co-ordinates   and  r ϕ ( 0
r

and 0  are corresponding unit vectors). At the elementary change of the co-ordinates with

dr  and dϕ  the particle displaces with dr .

0 0 .
d

r r
dt

ϕ= = +r
v r (3.26)

The substitution of (3.26) into the expression for L (3.22) yields

( ) ( )0 0 0 2 0 0 2 00 .m r m r r mr mrϕ ϕ ϕ= × = × + = + × =L r v r r r z (3.27)

The magnitude of L is 2 .
z

L L mr ϕ= = We proved that under the motion

in central-force field the generalized momentum Pϕ  has a meaning of

angular momentum:

2 .
z

L L P mrϕ ϕ= = = (3.28)

The law of conservation of angular momentum has an interesting

geometrical interpretation. When the angle ϕ  changes by an amount dϕ  the

position vector r sweeps out an area dS  (Fig. 3-5):

2 2.dS r dϕ= (3.29)

The rate of change of this area, which is called an area velocity or a

sector velocity, is

21
const.

2 2

dS L
r

dt m
ϕ= = = (3.30)
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For equal intervals of time the radius-vector sweeps equal surface. This

law is known as second Kepler's law of the motion of the planets. As we

saw, it is valid for any central force, not only for a gravitational one.

The forces acting according to the inverse-square law are central and

conservative ones. Besides the law of angular-momentum conservation, the

law of the conservation of energy is also valid:

( ) ( )2 2 2 .
2

m
E r r U rϕ= + + (3.31)

We have found two constants of motion (3.28) and (3.31), which express

the laws of conservation of angular momentum and energy. (These constants

of motion are very often called first integrals of the motion, as they contain

first derivatives of the co-ordinates.) Important information can be obtained

directly from these equations, without solving them to determine r and ϕ  as

functions of time. Eliminating ϕ  in (3.31) with the help of (3.28), we obtain

an equation for r and r only:

2
2

2

1
( ).

2 2

L
E mr U r

mr
= + + (3.32)

Often this is called a radial equation, underlying that it indicates the

energy balance only under the change of the distance r to the centre. Compa-

ring this equation with (3.3), we see that it has the same form as the equation

of energy for one-dimensional motion with "potential energy" ( ) :U r

( )
2

2
( ).

2

L
U r U r

mr
= + (3.33)

This energy is called effective potential energy.

It is easy to explain the physical meaning of the additional term 2 22L mr

in ( )U r . Taking the value of L from (3.28), it can be represented as

2 2.mr ϕ  This term is different from zero only for motion along ϕ , i.e.

rotation. This is the reason to call the additional energy 2 22L mr  a

centrifugal energy. Despite that in (3.32) the motion is represented as one-

dimensional (radial), the motion along ϕ , i.e. the rotation, is present non-

explicitly in the term 2.L∝ The angular momentum is a constant, but it exists

as a consequence of the motion along ,ϕ  i.e., of the fact that 0.ϕ ≠ The
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effective potential energy can be used for qualitative analysis, just as ( )U x

can be used in a one-dimensional motion. When

( )
2

2
( )

2

L
U r U r E

mr
= + ≤ . (3.34)

and ( ) ( )' "U r U r E= =  the motion is finite and is bounded in the region

' ".r r r≤ ≤  Both solutions of the equation determine the minimal and

maximal distance from the centre, and the orbit lies between them. Under the

conditions (3.34) and ( )'U r E= , the motion is semi-infinite in the region

'r r≥  with the turning point r'. If ( )U r  has a minimum and E is equal to

minU , then r  is always zero (see (3.32)) and r is fixed at the position of the

minimum. In this case the particle moves along a circle around the centre.

3.4* ORBITS OF THE MOTION

In order to determine the character of motion we have to know the form

of the function ( )U r  in (3.33). The centrifugal energy is always positive. In

the case of a repulsive force, the function of the potential ( )U r C r= −

( )C 0<  is positive for any r. Then the effective potential energy ( )U r  de-

creases monotonically from   at 0  to  0  at  r r+∞ = = ∞  (Fig. 3-6). There is

no minimum and the circular motion is not possible. For any (positive) value

of E there is a minimal distance minr r= (the distance of closest approach)

which is the only solution of the equation ( ) ,U r E= but there is no maximal

distance. If the radial velocity is such that the particle approaches the centre,

it will move with an orbit in which the value radius-vector r will decreased

to minr  and after that it will increases to infinity. It is known (and later on

will be proved) that such an orbit is a hyperbola (Fig. 3-6b). If the force is

attractive ( )0C >  the effective potential energy takes the form

( )
2 2

2 2
( ) .

2 2

L L C
U r U r

mr mr r
= + = − (3.35)

From the summation of the potential and centrifugal energy we obtain the

curve ( )U r , which possesses a minimum (Fig. 3-7). Equating the derivative

( )/dU r dr  to zero, we determine 0r , at which ( )U r  is minimal
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Figure 3-6. Repulsive central conservative force:

a) the effective potential energy is monotonically decreasing function;

b) the orbit of the particle is hyperbola; b is the impact factor; the angle , determining the

deflection from the initial particle direction, is a scattering angle, 
minr is the minimal distance

of the centre to the orbit, which is symmetrical with respect to the line defining 
minr .

( ) ( )2 2 2
0

0 min3 2 2
0,    , .

2 2 2

dU r U rL C L C m
r U

dr mr r Cm L
= − + = = = − = (3.36)

Figure 3-7. The effective potential energy ( )U r  is a sum of the potential energy ( )U r  and

the centrifugal energy 2 22L mr , and it possesses a minimum ( )min 0 / 2U U r=  at 
0.r r=
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The form of the curve ( )U r  allows the determination of the character of

the motion. We shall note that the curve is symmetrical with respect to the

force centre O (Fig. 3-8a).

Figure 3-8. a) View of the effective potential energy ( )U r  for bodies with equal reduced

masses and angular moment L, but different energies E. The corresponding orbits are: 0E >
- a hyperbola, E=0 - a parabola, E<0 - an ellipse, E=

min
U - a circle. All orbits go through the

points D" and D"'.

At 0E >  the motion is unbounded and the minimal distance to the centre

O is min A
r r= . The orbit is a hyperbola.

At 0E =  the motion is unbounded and the minimal distance to the centre

O is min B
r r= . The orbit is a parabola.

At 0E <  the motion is finite and holds in the region min maxr r r≤ ≤ , where

min C
r r=  and 'max .

C
r r=  The orbit is an ellipse.
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At minE U=  the motion is finite with a constant minimal distance 0r r= .

The orbit is a circle.

And now, let us show that the orbits are indeed such. In order to find the

equation of the orbit, we have to eliminate the time from the constants of

motion (3.28) and (3.32), and obtain the equation which relates r and  .ϕ
From (3.32) at ( ) /U r C r= −  we readily find

2

2

2
.

2

dr C L
r E

dt m r mr

⎛ ⎞
≡ = + −⎜ ⎟

⎝ ⎠
(3.37).

We rewrite (3.28) as 2 /dt d mr Lϕ= . Substituting it into the last

equation, we get

2

2

2

const.

2

L r
dr

C L
m E

r r

ϕ = +
⎛ ⎞+ −⎜ ⎟⎝ ⎠

∫ (3.38)

This equation relates r and ϕ , i.e., it is the equation of the orbit. We

rewrite it in the form

2

2 2
const.

2

L r
dr

Cm Cm L
mE

L L r

ϕ = +
⎛ ⎞ ⎛ ⎞+ − − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ (3.39)

and use the substitutions

2

2

2
2 , , .

Cm Cm L Ldr
mE a u du

L L r r

−⎛ ⎞ ⎛ ⎞+ = − + = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(3.40)

This yields

2 2
arccos const.

du u

aa u

ϕ = − = +
−∫ (3.41)

Returning to the initial variable r we represent the relation between r and

ϕ  in the following form
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2

2 2
2

2

1
1 1

arccos arccos arccos ,

2
2 1

LCm L

Cm rL r r

e
Cm El

mE
L C m

ϕ
− +− + − +

= = =
⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

p

(3.42)

where we substituted 2

0L Cm r= ≡ p  (see (3.36)) and 2

21 2 /L E C m e+ = .

We set the initial angle 0 0ϕ =  (it determines the orientation of the orbit).

The final form of the equation of the orbit is

1 cos .r e ϕ= +p (3.43)

This is the conventional representation of a conic section with the focus

in the centre of the field; the quantity p  is called the parameter of the orbit

and e is called eccentricity. The parameter determines the size of the conic

section and the eccentricity - its form. Depending on the values of e we

obtain the four types of orbits:

1e >  - a hyperbola,

1e =  - a parabola,

0 1e< <  - an ellipse,

0e =  - a circle.

Taking into account (3.36) we can write for the eccentricity

min min

1 1 ,
E E

e
U U

= − = + (3.44)

from where it is evident that the conditions for e, which determine different

types of orbits precisely coincide with the conditions for E in Fig. 3-8.

We shall note that the obtained orbits are the orbits of a body moving

around another immobile body. In order to find the real orbits around the

centre of mass (Fig. 3-9), we have to return to the equations (3.10).

The radius-vector value of the reduced mass changes as (see (3.43))

.
1 cos

r
e ϕ

=
+
p

(3.45)

According to (3.10), 1r  has the same direction and its magnitude is
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2 1
1

1 2

1

1 cos 1 cos

m
r

m m e eϕ ϕ
= =

+ + +
p p

. (3.46)

The particle moves along an ellipse and the direction of its radius-vector

1r  coincides with the direction of r.

In any moment the vector 2r  is opposite to r (3.10). Therefore, when r is

oriented at an angle ϕ , the vector 2r  is oriented at an angle 2 .ϕ π ϕ= +
Then from (3.10) and (3.45) we get

( )
2 2

2

1 2

1

1 cos 1 cos

m
r

m m e eπ ϕ ϕ
= =

+ + + −
p

.  (3.47)

The orbit is also an ellipse and 2m  moves so that both particles are on the

line passing through the centre of mass at any moment (Fig. 3-9).

Figure 3-9. The orbits of particles with masses ( )1 2 1 2,  and    : 2 : 3m m m m m =  in CM-frame

with an origin at the point C: a) ellipses (if 
1 2m m<< , the ellipses are contained in one

another!); b) hyperbolas (an attractive force); c) hyperbolas (a repulsive force). 
1 2  and  r r  are

radius-vectors of the particles 
1 2 and  m m , r is a radius-vector of the reduced mass m .
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3.5* ELASTIC COLLISIONS

One of the most important ways to obtain information about very small

bodies is to bombard them and measure the number of particles reflected in a

given direction. The angular distribution of scattered particles depends on

the target form and the nature of the force between it and the particles. In

order to interpret the results of similar experiments, it is necessary to know

how to calculate the angular distribution when the force is known.

We shall first analyse the case of a single act, when only one particle

impacts on a target (also a particle). In the next section we will introduce the

characteristic of a scattering of a particle flow by a central field, and will

consider the important case of scattering by a Coulomb potential field.

The collision is a process, described by a special case of the two-body

problem. In the beginning the particles are far from each other, as a result of

which their motion is uniformly linear. As they approach each other, the

interaction ( )U r  influences strongly their motion, and it becomes non-

uniformly curvilinear. After that, they go to infinity, moving uniformly and

linearly, or remain at a finite distance from each other. In the first case we

speak about scattering, and in the second about the capture of a particle. We

shall underline that the collision does not necessarily mean a mechanical

contact between the particles, but change of direction and/or the motion

character due to their interaction.

We shall consider an elastic collision between two particles. The

collision is elastic when it is not accompanied by a change of the internal

energy of the particles. Hence, there is not a kinetic-energy loss due to the

collision.

In the problem of scattering we have to use two reference frames

simultaneously: Lab-frame, in which the initial values 1 2  and  p p  of the

momenta are given, and their values 1 2'   and  'p p  after the collision are

sought, and CM-frame, which is suitable for the analysis. In the last frame

we shall denote the quantities with index 0" "  (e.g., 10v  is the velocity of the

first particle in the CM-frame before the collision) and with prime, the

quantities after the collision.

In the Lab-frame let the second particle before the collision to be at rest,

i.e. 2 0.=v  Thus, according to (2.25) and (3.10), the velocities of the centre

of mass u in the Lab-frame, and of the particles in the CM-frame are,

respectively,

1 2 1
1 10 1 20 1

1 2 1 2 1 2

, , .
m m m

m m m m m m
= = = −

+ + +
u v v v v v (3.48)
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For the momenta of both particles after multiplying their velocities by

1 2  and m m  we have

10 1 20 1, .m m= = −p v p v (3.49)

The total momentum of the particles in the CM-system, as expected, is

zero. From the conservation of momentum law, it follows that after the

collision the momenta of the particles will also differ by sign, 10 20' ' .= −p p

Due to energy conservation, unchanged remain also their magnitudes

10 20' ' .=p p  Hence, the momenta of the particles in the CM-frame are only

turned off to the angle χ  without changing their values. (Fig. 3-10). Deno-

Figure 3- 0. Scattering of the particles in CM-frame: the momenta before the collision

10 20  and  p p are equal and opposite 
10 20-=p p ; the momenta after the collision remain the

same but they are turned off to the angle χ .

ting with 0
e  a unity vector of the velocity of the particle 1m  after the

collision, we can write the velocities of both particles in the following form:

0 02 1
10 1 20 1

1 2 1 2

, .
m m

v v
m m m m

′ ′= = −
+ +

v e v e   (3.50)

Adding to these velocities the velocity u of the centre of mass, we shall

obtain the particles’ velocities after the collision in the Lab-frame. The

corresponding expressions for the momenta have the following form

01 2
1 1 1

1 2 1 2

01 2
2 1 1

1 2 1 2

,

,

m m
p

m m m m

m m
p

m m m m

′ = +
+ +

′ = −
+ +

p p e

p p e

(3.51 )

or
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01 1
1 1 10 1 10

1 2 1 2

02 2
2 1 10 1 10

1 2 1 2

,

.

m m
p

m m m m

m m
p

m m m m

′ ′= + = +
+ +

′ ′= − = −
+ +

p p e p p

p p e p p

(3.51b)

The obtained relations become very clear, when they are shown

graphically. Then they are called momentum diagrams. Let's represent the

vector 1p  by the line AB as the sum of 1 1 2 1

1 2 1 2

  and  
m p m p

AO OB
m m m m

= =
+ +

(Fig. 3-11a). We shall draw a circle with a centre in point O and radius

Figure 3- . Momentum diagram of an elastic collision between the particles 
1 2  and  m m : a)

1 2m m< , b) 21 mm > , c) 
1 2.m m=  Here 

1 1  and  'p p  are the momenta of 
1m  in Lab-frame

before and after the collision; 
2'p  is the momentum of 

2m  in Lab-frame after the collision;

10'p  is the momentum of 
1m  in CM-frame after the collision and 0

e  is the unity vector in its

direction; ( )2 1 1 2 10m m m+ =p p  is the momentum of 
1m  in CM-frame before the collision

( )10 1||p p ; χ  is the scattering angle of 
1 2  and  m m  in CM-frame; 

1θ  and 
2θ - scattering

angles of 
1m  and 

2m  in Lab-frame.
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2 1

1 2

m p

m m+
.  If 1 2m m< , the point A is in the circle (Fig. 3-11a), but if 1 2m m> ,

the point A is outside of it (Fig. 3-11b). From the point O, at an angle χ
with respect of 1p we plot a unity vector, along which direction the first

particle moves after the collision (in the CM-frame). Then OC will represent

the vector 0 1 2

1 2

p m

m m+
e

, the line AC - the vector 1'p  and CB - the vector 2'p in

full agreement with formulae (3.51).

Let's find the scattering angles. They are determined by the deflection of

the particles after the collision. In the Lab-frame the scattering angle of

particle 1m  is 1θ , between the vectors 1 1  and  'p p , and of particle 2m  is 2θ ,

between the vectors 2 2  and  'p p . The scattering angle χ  in the CM-frame

is the angle between the vectors 10 1 10 1' '   and  m=p v p ( )1 10||p p . The sum

1 2θ θ+  determines the angle between both particles after the collision. The

scattering angles 1 2  and  θ θ  can be expressed through χ . For the

determination of χ  we have to know both the law of interaction between the

particles and the initial conditions. For the angle 1θ  from

  and  ADC ODCΔ Δ  we obtain

1 2

1 2
1

1 1 1 2

1 2 1 2

sin
sin

tan ,

cos

p m

m mCD OC

p m p mAD AO OD

m m m m

χ
χθ

χ

+= = =
+ +

+ +

(3.52)

and after dividing the nominator and the denominator by ( )1 1 2p m m+ , we

have

2
1

1 2

sin
tan .

cos

m

m m

χθ
χ

=
+

(3.53)

For the scattering angle 2θ  from the isosceles BOC triangle we obtain

2
2

π χθ −= . (3.54)
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Since the scattering angle χ  in the CM-frame can change from 0 to π ,

the scattering angle of the particle 2m  in Lab-frame can change from

/ 2  to  0.π
More complex is the case of the scattering angle 1θ  of particle 1m  - from

the diagram it is seen that the cases 1 2 1 2  and  m m m m< >  lead to different

pictures. In the first case 1θ  is equal to zero at 0χ = , then monotonically

increases with an increase of χ  (remaining always less than )χ  up to a

value 1θ π=  at χ π= . At the same time the difference between 1   and  θ χ is

as small as the relation 1 2/m m  is smaller - when 1 2/ 0m m → , then 1 .θ χ→
If 1 2m m> , for small χ  the angle 2θ  grows when χ increases, but to

some limited value, corresponding to ,χ  at which the vector 1'p  becomes

tangent to the circle. Further increase of χ  leads to the decrease of 1θ , and

at χ π=  it becomes zero. Consequently, for the scattering of a heavier

particle, the scattering angle 1θ  can not be bigger than 1maxθ  (the point C' in

Fig. 3-11b correspond to this case):

2
1max

1

sin .
m

m
θ = (3.55)

In the particular case when the masses of the particles are equal, 1 2m m= ,

formula (3.53) is substantially simplified:

1

sin
tan tan

1 cos 2

χ χθ
χ

= =
+

(3.56)

and, hence,

1 2, .
2 2 2

χ π χθ θ= = − (3.57)

In other words, in Lab-frame, in the case of equal masses, the angle

between particles after the scattering is 2π .
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3.6* SCATTERING OF PARTICLES. FORMULA OF

RUTHERFORD

In Section 3.2 we showed that the problem of the motion of two

interacting particles reduced to the problem of the motion of a particle with

reduced mass m . Knowing the trajectory of the reduced particle, we can

calculate the trajectories of both particles. We shall use this method for an

investigation of the scattering of two particles 1m  and 2m . Let us return to

Fig. 3-6b. The scattering angle χ  is a function of the impact parameter b,

( ).bχ χ=  In the experiment with microparticles the impact parameter b can

not be determined. Therefore, we must use a statistical approach to

scattering.

Let us suppose that a beam of particles impinges on the force centre. We

shall characterise the beam through its incident flux n - the number of

particles crossing unit transverse area per unit time (here n is the particle-

flux density). The number of particles dNχ , scattered under an angle lying

between   and  dχ χ+ (Fig 3-12) can be found experimentally. These are

particles with an impact parameter lying within b and b bdb+  and their

Figure 3- 2.  Particles with an impact parameter lying between b and b+db will be scattered

under an angle lying between and +d .

number is equal to the number of particles, passing through the ring of radius

b and width db, i.e.

2 .dN n bdbχ π= (3.58)

This number is not convenient for the scattering characterisation, as it

depends on the flux density. Therefore we introduce the relation
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( ) 2
dN

d bdb
n

χσ χ π≡ , (3.59)

which determines the relative number (fraction) of particles, scattering at an

angle .dχ χ χ÷ + This relation has dimension of area and is called

differential cross section. It is an important characteristic of the scattering

process and uniquely determines the type of scattering field.

The total cross section  is defined as the ratio of the particle number N,

scattered per unit time under any angle, to the density flux of the incident

particles:

.
N d

d d
n d

σσ σ χ
χ

= = =∫ ∫ (3.60)

The scattering angle is a function only of the impact parameter b and,

which is the same, the impact parameter b is the function only of the angle .

Hence,

( ) ( )
  or  .

d b db
d db db d

db d

χ χ
χ χ

χ
= = (3.61)

Changing variables from b (3.58) to χ , we shall write the differential

cross section in the following form:

( )2 .
db

d b d
d

σ π χ χ
χ

= (3.62)

The absolute value sign is needed because /db d χ  is typically negative

(the particles with large b are less deflected, as can be seen in Fig. 3-12).

Very often it is more convenient to use the solid angle dΩ  instead of

d χ  (Fig. 3-13). For this transformation we shall return to the quantity dNχ ,

and we shall note that it can be seen as the number of particles flowing in a

solid angle 2 sind dπ χ χΩ =  (such is the value of the solid angle between

the cones with angles  and ).dχ χ χ+ Substituting in (3.61) 2  dπ χ  with

d sin ,χΩ  we express dσ  through :dΩ

( )
.

sin

b db
d d

d

χ
σ

χ χ
= Ω (3.63)
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We remind to the reader that this is the differential cross section in the

CM-frame (the centre-of-mass frame) of the particle with m .

Figure 3- 3.  The differential cross section is defined as the fraction of particles scattered for

unit time at angles from to +d (or, which is the same, in the solid angle d =2 sin d

between the cones of angles and +d ) to the flux density of the incident beam.

The most important case for determination of a cross section in classical

mechanics is the scattering of charged particles in a Coulomb field.

In this case the cross section is obtained in the form of elementary

functions and it is most interesting that the obtained classical cross section

preserves its form during the transition to quantum mechanics.

For the determination of the scattering angle we shall use the results from

Section 3.4. We shall consider the repulsive potential field ( )U r C r= −
(where 0)C < . The scattering angle χ  can be expressed by the angle 02ϕ
between the asymptotes of the trajectory (Fig.3-6b):

02 .χ π ϕ= − (3.64)

The angle 0ϕ  is the polar angle of the nearest to the centre point, point A.

For the determination of the angle 0ϕ  we use Eqs. (3.38) and (3.42):

min

min

2

0 2 2

2

arccos .

2 2
r

r

L Cm L

r L r
dr

C L Cm
m E mE

r r L

ϕ

∞

∞ − +
= =

⎛ ⎞ ⎛ ⎞+ − +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫ (3.65)

The minimal distance minr  is the positive solution of Eq. (3.34). We

substitute this solution into (3.65) and take into account the conservation

laws of energy and angular momentum:
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2

, .
2

mv
E L mv b

∞
∞= = (3.66)

Here v∞  is the unperturbed particle velocity (the initial or the final one),

i.e. at r → ∞  (see Fig. 3-6). For the angle 0ϕ  we obtain

0
2

2

1
arccos

1
mv b

C

ϕ
∞

=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

. (3.67)

Using the trigonometry formula ( )2arctan arccos 1 1x x= +  (for 0)x ≥

we easily determine the impact parameter b as a function of 0ϕ :

02
tan .

C
b

mv
ϕ

∞

= (3.68)

Changing 0ϕ  with 2π χ−  and squaring it, we get

2
2 2

2 4
cot .

2

C
b

m v

χ

∞

= (3.69)

We differentiate with respect to χ  and substitute the result into (3.62) or

(3.63). Finally, for the differential cross section we obtain

2 2

2 2 2 2
3 4

cos
2 ,   or  .

sin sin
2 2

C C d
d d d d

m v m v

χ

σ π χ σ χχ χ
∞ ∞

⎛ ⎞ ⎛ ⎞ Ω= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(3.70)

Formulae (3.70) are the celebrated Rutherford formulae, used by him to

analyse the experimental results of -particle scattering by heavy nuclei.

With these experiments was established the planetary model of the atom. As

can be seen from (3.67), at the constant solid angle constdΩ =  the quantity

( )4sin 2 constdσ χ = , which was verified experimentally.



3. CENTRAL CONSERVATIVE FORCES 71

The experiments also verified that the number of scattered particles (i.e.

the differential cross section) quickly decreases with both the increase of the

scattering angle (as ( )41 sin 2χ ) and with the magnitude of the -particle

energy (as 21 )E . For small angles the differential cross section is large.

This is due to the Coulomb field, which is weak far from the centre, but

decreases sufficiently slowly. Therefore it acts on many particles, which

exhibit small deflections due to this action. The cross section does not

depend on the sign of the coefficient C ( )2
d Cσ ∝ , so the obtained result is

valid for both Coulomb repulsion and Coulomb attraction between the

particles 1 2 and m m . The experiment verified also that dσ is proportional to

the square of the charge of the nucleus.

Formulae (3.70) give the differential cross section in the CM-frame. The

transformation to the Lab-frame is done with formulae (3.53) and (3.54).

Finding ( )2dσ θ  is trivial, but the determination of ( )1dσ θ  is difficult. For

the most interesting case of a scattering of light particle by a heavy one

( )1 2m m<< , when 1m m≈  and 1χ θ≈ , we obtain from (3.70) the differential

cross section of the light particle

2

4 1

,
4

sin
2

C d
d

E
σ θ

Ω⎛ ⎞= ⎜ ⎟⎝ ⎠
(3.71)

where 2

1 2E m v∞=  is the energy of the incident particle.

SUMMARY

One-dimensional motion in a potential field ( )U x  of a particle of energy

E  is bounded in a region 1 2x x  by the conditions ( ) ( )1,E U x U x E> =  and

( )2 .U x E=
Central conservative forces of interaction between two bodies are

directed along the line connecting their centres and depend only on the

distance between them. Such forces are the gravitational, Coulomb and

nuclear forces.

The two-body problem, in which the interaction is determined by the

central conservative forces, can be reduced to the problem of one particle

(with a reduced mass ( )1 2 1 2m m m m m= +  and a relative radius-vector of a

particle with respect to another, 1 2 )= −r r r  in the field of the central
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conservative force. The motion of a particle in such a field occurs in a plane

and both the energy and angular momentum are conserved. The angular

momentum, which is this case is an orbital one (It is due to the orbital

motion, but not to a spin, for instance) is normal to the plane of the motion:
2 .L mr ϕ=  A two-dimensional problem (a motion in a plane) can be reduced

to a one-dimensional radial motion in a field of an effective potential energy

( ) :U r

( )
2

2
( ).

2

L
U r U r

mr
= +

The additional term 2 22L mr  is called a centrifugal energy and is due to

the rotation along ϕ . The effective potential energy for the one-dimensional

radial motion plays a role analogous to ( )U r  for one-dimensional motion.

For repulsion ( ) 0U r >  and the motion is infinite, and for attraction

( ) 0U r <  and the character of the motion depends on the relation of the total

particle energy to the effective potential energy. The orbits (curves of second

order) are the following:

0E >  - a hyperbola,

0E =  - a parabola,

min 0U E< <  - an ellipse,

minE U=  - a circle.

Knowing the orbit of a particle of reduced mass allows the determination

of the real orbit of the particle in the CM-frame (centre-of-mass frame). The

motion has a constant area velocity, i.e. for equal time intervals the radius-

vector sweeps equal areas:

21
const.

2

dS
r

dt
ϕ= =

Hence, the angular velocity along a circle is constant, but along other

trajectories it changes, approaching its maximum in the perigee (the minimal

distance to the focus).

As two particles approach each other, interacting by a central force, they

scatter, and the light particle can scatter at any angle, while for the heavy one

the scattering angle has a maximum. As a characteristic of the scattering we

use the differential cross section, which for the Coulomb field is determined

by the Rutherford's formula.

We have persuaded ourselves that the two-body problem (including

scattering) in CM-frame is substantially simplified. This concerns more
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complex systems. Therefore it is better to solve the problem in the CM-

frame and after that to do a transformation to the desired frame.

QUESTIONS

1. What are the conditions for finite/infinite motion?

2. Why the one-dimensional motion is a periodic one?

3. What is a character of motion if a particle of energy E  approaches: a) a

potential well of depth ( )U x ; b) a potential barrier of height ( )U x ?

4. For interaction between a light and a heavy particle of masses

1 2  and  m m ( )1 2m m<< , respectively, which mass determines the

reduced mass?

5. The two-body problem is reduced to the motion of the reduced mass m

with radius-vector r (Eq. (3.3). What is the physical meaning of: a) the

vector r; b) the force ( ) ?U r−∂ ∂r

6. How will you find the Lagrangian function of two particles in Lab-frame,

knowing it in CM-frame?

7. Knowing the radius-vector of a particle with a reduced mass, how will

you determine the position of the masses 1 2  and  m m  in: a) CM-frame;

b) Lab-frame?

8. Why does the particle trajectory, moving due to the action of a central

force, lie in a plane?

9. What is the physical meaning of the generalized momentum Pϕ  of the

particle in the central force field?

10.Which is the direction of the angular momentum in the central force

field?

11.The radial equation of the energy (3.2) is one-dimensional (it depend

only on r). Is the particle motion, described by this equation, also one-

dimensional?

12.Why is the additional term 2 22L mr  in the effective potential energy

called centrifugal energy?

13.How will you explain physically that due to the repulsion from the force

centre, the particle can not move along a closed curve (in particular,

along a circle), but as a result of an attraction it can do so?

14.Explain graphically why are different orbits obtained when the particles

have different values of the total energy with respect to the effective

potential energy?

15. If you know the instant position of one of the particles and the centre of

mass, can you show where is found: a) the second particle; b) the particle

of the reduced mass?
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16.How is the momentum of the particles changed as a results of an elastic

collision in the CM-frame?

17.What are the scattering angles in the CM- and the Lab-frames, when the

light particle of mass 1m  impinges on the heavy one of mass 2m

( )1 2m ?m<<

PROBLEMS

1. A particle of mass m  and a velocity v moves in the central field

( ) 2 2.U r rκ=
a) What is its effective potential? Plot it together with its components.

b) What condition satisfies the effective potential at the circle motion?

c) Find the radius and the angular velocity of the circular motion.

2. An electron of velocity 
P

v  passes through a point P at a distance b from

an atomic nucleus O (here )
P

v PO⊥ . Through the relation of 
P

v  to the

velocity 0v  of the circle motion through this point, find at which value

of β  is the orbit a closed or an open curve. For the orbits, which are an

ellipse, a circle and a hyperbola, plot the curve for the effective

potentials and show the position of the point P on them.

3. Alfa-particle of energy 152.10−  J is scattered off an Al atom at an angle

1 2.θ π=  Find the minimal distance b between the particle and the

nucleus?
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4.1* ROTATING FRAMES

Up till now we used only the inertial reference frame, in which the laws

of motion take on a simple form, expressed in Newton's law. However,

many problems are solved much easier in non-inertial frame. (Here we shall

consider only a rotating about a fixed axis.) Namely, they represent an

interest from the point of view of this course. Applying the rotational

motion, we shall consider a charged-particle motion in a constant magnetic

field and simultaneously in such a field and an electric field of a point

charge. These problems are very important for our further presentation.

Consider two reference frames with a common origin O: an inertial frame

K and a non-inertial frame K', rotating with an angular velocity const=ω
with respect to K. For the sake of definiteness we shall assume that the

angular velocity is directed along the axis Z (Fig. 4-1). The values in 'K  we

shall denote with prime.

Figure 4- . The co-ordinate frame K' (x',y',z') rotates around the inertial co-ordinate frame

K(x,y,z) with an angular frequency , directed along the Z-axis. When both frames have a

common origin O, the radius-vectors of the particle coincide, 'rr = . Its velocity in K' is v'

and in K it is '= + ×v v r .

The radius-vectors of a fixed point 'and rr  in the frames K and K'

coincide:

.rr ′= (4.1)



4. ROTATING MOTION OF A CHARGED PARTICLE 77

If in the K' frame r' is a fixed vector, i.e. it does not change with time,

and therefore, ,0'' == rv  the velocity v  in the K frame is determined by the

rotation of the non-inertial frame (Fig.4-1):

sin ,v rω ρ ω θ= = (4.2a)

or in a vector form

.= ×v r (4.2b)

If ( )t'' rr = , the particle moves with a velocity '.v  Then, in the inertial

frame K its velocity is a sum of the velocity v' in 'K and the velocity of the

rotating frame :×r

.rvv ×+′=  (4.3)

To analyse the rotating motion we must know the motion equation in the

rotating frame. This equation we could obtain from Lagrange's equation for

the function L'.  It is readily found, as in the Lagrangian function of a

particle (3.23) we replace vr and  with 'and' vr  according to (4.1) and

(4.3). We shall use another way, which is not so consistent, but is easier  - it

avoids a straightforward but long vector calculation.

First, we shall note that when any vector, whose origin coincides with the

origin of the frames and is the same in both frames, changes in K and 'K

differently. If in the rotating frame b is a vector and, hence, its change is

zero, ' ' ' 0,d d= =b b then in the immobile system K its change is

.d = ×b d b (4.4)

Here the angle by which the frame K' changes for the interval dt is

represented by the vector d . (We shall note that the elementary

infinitesimal rotations can be assigned both a magnitude and a direction

along the axis of rotation, i.e. they are vectors; at the same time the angle is a

scalar - for details, see e.g., [R2], Section 7. There is a total analogy with the

variation δ r in Section 2.3 (see (2.29) and Fig. 2-2.)

Dividing by dt , we shall obtain in the inertial system K the rate of change

of any fixed in the 'K frame vector b:

.
d

dt
= ×b

b  (4.5)
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If in the K' frame the vector b is not fixed and its change is 0' ≠bd , then

in the immobile frame K its change will be:

' .d d= + ×b b d b  (4.6)

After dividing by dt , we obtain the rate of change of the vector b in the

K frame:

'
.

d d

dt dt
= + ×b b

b  (4.7)

It can be proved that the same dependence is valid also for a vector which

does not pass trough the origin of both frames. When rb = , we obtain the

dependence (4.3), which can be written in the following form:

'
.

d d

dt dt
= = + ×r r

v r  (4.8)

We apply formula (4.7) to the vector v:

2

2

'
.

d d d

dt dt dt
= = + ×v r v

v (4.9)

We shall find the derivative of vector v (4.8) in the K' frame:

2

2

' '
'.

d d

dt dt
= + ×v r

v (4.10)

On the other hand, multiplying (4.8) vectorially by we obtain

( )' .× = × + × ×v v r (4.11)

Substituting of (4.10) and (4.11) in (4.9) leads to the following result:

( ) ( )
2 2

2 2
2 .

d d

dt dt

′ ′= + × + × ×r r
v r (4.12)

On the left-hand side we have the acceleration in the inertial frame K and

on the right-hand side - the acceleration in the non-inertial frame K'. Hence,

the acceleration, as seen by an inertial observer, differs from that seen by an

observer in the rotating frame. Two additional terms in the right (the second
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and the third ones) owe to the inertial forces, originating from the uniform

rotating of K'. The second term is called Coriolis acceleration and the third

one - centrifugal (normal) acceleration. The Coriolis acceleration vanishes

unless the particle moves in the rotating frame along a direction different

from , but in contrast, the centrifugal acceleration remains even when the

particle is at rest in K'. Multiplying the right- or left-hand side by the particle

mass and equating it to the acting force, we obtain the equation of motion in

K and K' frames, respectively.

4.2 PARTICLE IN A UNIFORM MAGNETIC FIELD

A charge q , which moves with a velocity v in a magnetic field B, is

acted upon by a magnetic Lorentz force, proportional to its velocity and

perpendicular to it:

.BvF ×= qm (4.13)

This formula is written in the SI system (in CGSE (Gauss') system it has

the form BvF ×=
c

m

q
). The equation of motion is

.Bv
v ×= q

dt

d
m (4.14)

In a constant and a uniform magnetic field the relation (4.14) has exactly

the form of (4.5):

,
d

dt
= ×v

v (4.15)

where

.
c

m
≡ = − B

q
(4.16)

In the Gauss' system .
c

mc= − Bq  Consequently, according to the

conclusions of the preceding section, the vector of the velocity of the charge

q  rotates around the direction B with a constant angular velocity cωωωω ,

which is called a cyclotron frequency or gyrofrequency. Sometimes it is
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called the Larmor frequency of rotation, in contrast to the Larmor frequency

of precession, which will be considered in the next section.

We shall note that at relativistic velocities the cyclotron frequency

decreases

,

1

1
,

2

20

c

v
m

B
c

−

== γ
γ

ω q
(4.17)

where 0m  is the mass of the particle at rest.

From Eq. (4.16) it is obvious that for positively charged particle and B

are antiparallel, but for negatively charged particle they are parallel (Fig. 4-

2a).

Figure 4-2. Motion of a charged particle in constant uniform magnetic field: a) Bv ⊥  - the

particle moves along the circle of a radius 
c

r mv B= q  with an angular frequency

c
B mω = q , the positively and the negatively charged particles rotating in opposite

directions; b) v has a longitudinal component along B - the particle moves along the spiral

line.

When the particle velocity is perpendicular to B, the particle motion is

along a circle of radius ,
c

r  called cyclotron radius:

.
c

c

v mv
r

Bω
= =

q
(4.18)
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When v has both perpendicular, ⊥v , and parallel, ||v , components (Fig

4.2b), the motion is along a spatial curve - a helix (spiral). The motion along

the Z-axis is uniform and the projection on the plane is a circle of radius

.
cc

vr ω⊥=

4.3 LARMOR EFFECT

Consider the influence of the magnetic field on the charged particle of

mass 1m  and charge 1q-  in the Coulomb field of a point charge 2q

( ∞→2m  and consequently 1
~

mm ≈ ). In essence, this is the problem of the

influence of a magnetic field on the electron in an atom, which moves in the

Coulomb field of the nucleus.

Before considering this problem we shall analyze the motion of the

charge 1q-  in the Coulomb field of .2q Using the results of Sections 3.3 and

3.4 we shall consider the more interesting case of a bounded motion. Then,

the orbit of the charged particle is an ellipse or a circle. These are the

classical trajectories of an electron in the field of the nucleus. The motion is

periodic, and integrating (3.30), we readily obtain the period τ :

.
2 1

L

Sm=τ (4.19)

We recall that L  stands for the angular momentum, and S  - for the area,

swept by the radius vector for one period, i.e. the area, bounded by the orbit.

For a motion along a circle the area is 2
0rS π=  and along an ellipse -

,S abπ= where a and b are respectively semimajor and semiminor axes (Fig.

4-3). According to (3.36) for a motion along a circle 0
2 ~

rmCL =  and in the

considered case of a Coulomb field for ∞→2m we obtain

( )

2

0 1 2 1 0

9 2 2 12 2 2

0 0

0

1
9.10 N.m /C , 8,85.10 C / N.m .

4

L k m r

k ε
πε

−

=

⎛ ⎞
≡ = =⎜ ⎟

⎝ ⎠

q q

(4.20)

Substituting L  into (4.19) we determine the angular velocity:

.
2

3
01

21
04

0
2
1

22

2
0

rm
k

rm

L qq==⎟
⎠
⎞⎜

⎝
⎛=

τ
πω (4.21)
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Figure 4-3. The motion of a charged particle along an ellipse in the field of a point opposite

charge: a and b are, respectively, the semimajor and the semiminor axes of the ellipse, e  - the

eccentricity,   and  
a p

v v  - the velocities in the apogee and the perigee.

For an H atom the angular frequency, estimated for the radius of Bohr

m10.5
11

0
−≈= ar  is on the order 

-116

0 s10.4≈ω  (at 1 2 | |e= =q q

-19 -31

1 21,6.10  C,  9,1.10  kgm m= = = ).

For a motion along an ellipse according to the law of the area velocity,

the angular velocity is not constant - it approaches a minimum in the apogee

(the furthest point from 2q ) and a maximum in the perigee (the nearest point

to 2q ). It is given by the same relation (4.21) replacing 0r  in the perigee

with ( )ear
p

−= 1  and in the apogee with ( )ear
a

+= 1  (Fig. 4-3).

Let us now turn on a weak magnetic field 0
zB B=  (later on we will

determine more accurate how weak). The equation of the motion, including

the electrical and the magnetic force is

.13
21

02

2

1 B
r

r
r ×−−=

dt

d

r
k

dt

d
m q

qq
(4.22)

Let us write this equation in the rotating frame, whose angular frequency

is ω . According to (4.8) and (4.12), we get

( )
2

1 2 1
02 2

1 1

' ' ;
2 .

d d d
k

dt dt m r r m dt

⎛ ⎞+ × + × × = − − + × ×⎜ ⎟⎝ ⎠
r r r r

r r B
q q q

(4.23)

If we choose the angular frequency

1 1

1 1

,
2 2m m

−= − =B B
q q

(4.24)
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the Eq. (4.23) is simplified a lot. The terms dtrd /'∝  are cancelled and the

last terms on the right and left are added. Thus, we get

( )
2

2
0 01 2 1

02 3

1 1

'
.

2

Bd
k

dt m r m

⎛ ⎞
= − − × ×⎜ ⎟

⎝ ⎠

r
r z r z

q q q
(4.25)

We have taken into account that 0
zB B= and changed the sign before the

term ( )2 'd dt× r  due to the exchange of the positions of both vectors and

before ( )× ×r  due to the exchange of the positions of the vectors

randωωωω  in the brackets. We shall also note that the second term in the last

equation contains the vector r: ( )0 0 .× × =z r z r

For a weak magnetic field the term with the square of B can be neglected

in comparison to the term determined by the electrical field. For this it is

necessary that

2

21 1 2 1 2
0 03 3

1 1 1 02

B
k k

m m r m rα

ω
⎛ ⎞

= << ≤⎜ ⎟
⎝ ⎠

q q q q q
. (4.26a)

For a motion along a circle this condition, after taking into account

(4.21), reduces to

.0ωω << (4.26b)

Thus, from (4.25) we obtain the approximate equation

2

1 2
1 02 3

1

'
.

d
m k

dt m r
= −r

r
q q

(4.27)

This is the equation of motion of a particle in a central Coulomb field

(3.13). As we have shown in Section 3.4, the orbit of the bounded motion of

a particle under the action of a central force is an ellipse (a partial case of it

is a circle).

Consequently, the orbit in the rotating frame is an ellipse. In an inertial

frame this ellipse slowly precesses with an angular frequency ,ω  because

according to (4.26) the frequency of the ellipse precession, i.e. the angular

frequency of the rotation of the frame K', is negligibly small compared to the

angular velocity of the particle motion along the orbit. In Fig. 4-4 is shown

the orbit precession in Lab-frame in the partial case when the B is normal to
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the plane of the orbit. In the general case, when B is inclined, the plane of

the orbit precesses around the direction of B (see Section 4.4). According to

(4.26) the ellipse axis will turn only by a small angle for one turnover.

Figure 4-4. Precession of an orbit of a charged particle, moving in a Coulomb field of a point

charge and a weak magnetic field B, normal to the plane of the orbit.

This phenomenon is known as Larmor effect and the angular frequency

of the precession,

1

.
2

L

m
= − Bq

(4.28)

is called Larmor frequency of precession, or simply Larmor frequency. We

shall note that it is two times smaller than the cyclotron frequency 
c

ω  (4.16).

The Larmor precession is a basis for the observable changes in the

spectra emitted by atoms in the presence of a magnetic field. The changes in

the spectrum are known as the Zeeman effect.

The Larmor precession of atomic systems is of great interest. Let us see if

the condition 1 1 02B m ω<<q (4.26) is valid. Written for the magnetic field,

it reads 1012 qωmB << . Then, for the hydrogen atom we have

31
1 10.2,9 −==

e
mm  kg, 19

21 10.6,1 −=== eqq C, 16
0 10.4≈ω -1s  (see the

estimate after (4.21)). Thus, we get 510.4<<B T. Field of 310~B  T are

record ones and the condition (4.26) is satisfied.

4.4* INTERACTION OF A MAGNETIC DIPOLE WITH

A MAGNETIC FIELD

We would like to find out what would the motion be, if the vector B was

inclined with respect to the plane of the motion of the charged particle. It is

logical to expect a change of the angular momentum in this case. Actually,
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the magnetic force 
m

F (4.13), which creates a force moment, acts on the

charge 1q-  and according to Eq. (2.39) the moment changes as follows:

( ).m

d

dt
= = × = − × ×L

N r F r r B (4.29)

It is necessary for the analysis to recall some results from

electrodynamics. We note that the motion of the charge along a close curve

(for the sake of simplicity we shall consider the motion along a circle of

radius 0r ) is equivalent to the circular current loop

( )vrI 011 2// πτ qq −=−= . It is well known that such a current has a

magnetic dipole moment

0 ,IS=μ n (4.30)

where S is the area, closed by the loop current and 0
n  is a unit vector normal

to this area. So, for the magnetic moment of a moving charge 1q−  we have

1 0
0.

2

v r
= −μ n

q
(4.31)

Hence, the atom in which the electron ( )e−=− 1q  moves in the electrical

field of the nucleus, is equivalent to a magnetic dipole.

The angular moment of the charge is

( ) 0

1 1 0 .m m r v= × =L r v n (4.32)

Then, we can express the magnetic moment μμμμ  through the mechanical

moment L:

1

1

.
2m

= −μ L
q

(4.33)

We have concluded that the magnetic moment μ  corresponds to the

orbital angular momentum L. This is a part of a more general statement that

to any rotary motion of a charged particle correspond both a mechanical

moment and a magnetic moment. They are always proportional, but the

coefficient of proportionality g between them,
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Lg−=μμμμ , (4.34)

depends on the type of the rotation. A circular current loop is equivalent to a

magnetic dipole. It is known that in the uniform magnetic field the torque N

influences such a dipole

, or sin ,N μB θ= × =N μ B (4.35)

where the angle θ  is shown in Fig. 4-5.

Figure 4-5. Magnetic dipole (a permanent magnet), which is equivalent to an electron in an

atom, in external uniform magnetic field B. The dipole is acted upon by a torque N, which is

created by the pairs of magnetic forces Fm and -Fm.

Then, according to (4.33) and (4.35), for the angular momentum we have

( )1

1

,
2

d

dt m

−= = × = ×L
N μ B L B

q
(4.36)

or

( ).
2 1

1
LB

L ×=
mdt

d q
(4.37)

Taking into account (4.24) we can write for the change of the angular

moment the following:

( ).L

d

dt
= ×L

L (4.38)
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But this, remembering (4.5), denotes that the vector L rotates with an

angular velocity .
L

 Since the vector of the angular velocity is directed

along the magnetic field, it is obvious that L rotates around the vector B.

With this its magnitude does not change. In fact, taking the dot product of L

with (4.37) we get

21
0, const.

2

d d

dt dt
= = =L L

L L (4.39)

Thus, when a charged particle with an angular momentum L is placed in

an external uniform magnetic field, the vector L starts to precess with a

permanent angular velocity around the axis of the magnetic field exactly in

the same way as a mechanical top precesses in the gravitational field of the

Earth (for details see [1], Section 11.3).

At this precession the particle receives an additional potential energy U.

Let's turn to the magnetic analogue of Fig. 4-5. If the torque N, originating

from the pair of magnetic forces, did not act, the magnetic dipole would be

in the state with minimal energy, i.e. it would orient at an angle

90  - and 0Uθ = ° = . In order to determine the angle θ , we have to

calculate the work, which is necessary to turn the dipole from °90  to the

angle :θ

μB−=

−==== ∫∫∫

U

BdBdBNdU

or

,cossinsin
000 909090

θμθθμθθμθ
θθθ

. (4.40)

Let us summarise what we have written up to here. A charged particle

1q−  moves under the action of a central force (the Coulomb interaction

force with the charge). Its orbital angular momentum is constant and

perpendicular to the orbit plane. The particle motion is equivalent to the

circular current loop, which creates a magnetic dipole in the direction of L

(Fig. 4-6). The magnetic field at an angle θ  to the angular moment gives

rise to a torque N. Under the influence of this torque the magnetic dipole

changes its orientation. As a consequence, the vector L precesses around B

with Larmor frequency 
L

ω  and simultaneously with it and the "nailed on" by

the law of angular-momentum conservation orbit.

From the point of view of mechanics, the Larmor effect is a partial case

of a more general and important phenomenon - the precession of the axis of

rotation under the action of a weak force. The best-known example of such a

motion is the precession of the gyroscope.
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Finally, let us see what happens with a magnetic dipole, i.e. with an atom,

Figure 4-6.  Larmor precession of a particle 
1−qqqq , moving along the circular orbit in uniform

magnetic field B. The vector L describes a reversed cone, as its generating line, and the base

of this cone is described by the arrow of L (     μμμμ is the magnetic moment, N - the torque, 
L

ω  -

the frequency of the precession); N is perpendicular to the plane of the vectors μ and B.

in nonuniform magnetic field. In this case the force is determined by the

dipole moment and the gradient of the field acting on it:

( ) .grad)( BBF ∇≡= μμμμμμμμ (4.41)

For example, if the inhomogeneity of the magnetic field is in the

direction of the axis Z, then only in this direction will the force influence the

atom: .,0,0 zBFFF
zzzyx

∂∂=== μ  By studying the atom motion in an

external magnetic field, we can determine its magnetic moment.

SUMMARY

If an inertial frame and a rotating frame with an angular velocity ωωωω  have

common origin, then the vectors, starting at this point and coinciding in both

frames change, in general, differently. The relation determining the rate of

change of a vector b in an inertial frame K is
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'
,

d d

dt dt
= + ×b b

b

where d dtb  is the rate of change of the vector in the rotating frame K'. It is

clear from here that when the radius-vectors of the particle coincide in both

frames, its velocities and accelerations differ. In the rotating frame the

acceleration has two additional terms (the centrifugal and the Coriolis

accelerations), due to the inertial forces.

A charge in a uniform constant magnetic field, normal to its velocity,

moves along a circle with an angular frequency equal to the cyclotron

frequency

.
c

m
= − B

q

When the velocity of the charge has a longitudinal component (along the

external magnetic field), the orbit is a helix, the projection of the orbit

normal to the plane of B is cyclotron circumference.

The magnetic field normal to the plane of the charge motion causes a

precession of the orbit with an angular frequency

,
2

L

m
= − Bq

known as Larmor precession frequency. The Larmor precession leads to the

observable Zeeman effect.

If the magnetic field is inclined with respect to the plane of the motion,

then the orbit plane, the angular momentum and the magnetic moment

precess with the same frequency 
L

. Physically, the precession is due to the

interaction between the external magnetic field and the magnetic moment of

the circular current loop. (A mechanical analogue of the Larmor precession

is the precession of a gyroscope.) The vector of the mechanical moment

describes a cone and its arrow - the circumference with a frequency equal to

the Larmor one.

QUESTIONS

1. Is it true that all vectors in an inertial frame and a rotating frame, which

have common origin, coincide?

2. If two vectors in the K- and 'K -frames coincide, are their changes equal?
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3. Are equal or different the radius-vectors, the velocities and the

accelerations of a particle in an inertial and a rotating frames?

4. How does a charge move in a uniform magnetic field when its velocity:

a) is perpendicular to the magnetic field;

b) has a component along the magnetic field?

5. Is the motion of a charged particle uniform along a closed line in the field

of a fixed charge?

6. What is Larmor precession?

7. What is the difference between the cyclotron frequency and the Larmor

frequency of the precession, physically and mathematically?

8. Explain physically why does the plane of the orbit of a charge in a

Coulomb field precesses in an external weak magnetic field?

9. What is the cone of the precession?

10.Do the angular frequencies of a charge rotation and of an arrow of the

vector L in an external magnetic field differ (see Fig. 4-6)?

11.Does the vector of the angular momentum L change at Larmor

precession? If it does, how and why?

PROBLEMS

1. Determine the cyclotron frequency of an electron in a magnetic field
410=B Cs. Find the frequency of the periodical motion and the

corresponding wavelength in space. What is the cyclotron radius of an

electron moving with velocity 810 cm/s normal to such a field?

2. What will the change of the angular frequency ω  and the linear one ν of

the electron of a hydrogen atom in an external magnetic field B? Do the

calculation for 310B =  T.

3. Calculate the magnetic moment ,μ the gyromagnetic rate g, the velocity

and the Larmor frequency of precession 
L

ω , of an electron in a hydrogen

atom, moving along the circumference of the Bohr radius
10

0 10.5,0 −== ar m in a magnetic field 410=B T.

4. The average magnetic moment of Fe is 2310.2 −=μ J/T.

a) Assuming that this moment is due to the circular current loop of one

electron, moving along a circumference, find the electron velocity.

b) Find the total magnetic moment of all electrons in 1 3cm  metal,

assuming that they are oriented in one direction.
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ordinates; Lagrange’s equations and their solutions; normal co-ordi-

nates; Lagrange’s equations in normal co-ordinates and their solu-
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5.1 ONE-DIMENSIONAL HARMONIC

OSCILLATIONS

Consider the motion of a system with one degree of freedom around its

equilibrium position. The system is in equilibrium if the resultant force

acting on it is equal to zero. For a conservative force, according to (1.31),

this means that the potential energy ( )U q  has a minimum or a maximum at

this point - 0U q∂ ∂ = . Suppose that the system now undergoes a small

displacement from equilibrium. Let us choose the co-ordinate q  at the point

of equilibrium such that 0=q . We expand ( )U q  in Taylor series:

( ) ( ) ( ) ( ) 21
0 ' 0 '' 0 ...

2
U q U U q U q= + + + (5.1)

where with primes we denote differentiation with respect to .q  In the extre-

mum we have ( )' 0 0U = . We choose the arbitrary constant in ( )qU  such

that ( ) .00 =U  Then, around the equilibrium point we can write

approximately

( ) ( )
2

, '' 0 .
2

q
U q U

κ κ= = (5.2)

The kinetic energy in a one-dimensional system according to (1.37) has

the following form:

( ) 2 .T q qγ= (5.3)

For a small displacement from equilibrium we can expand in Taylor

series the coefficient ( )qγ :
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( ) ( ) ( ) ( ) ( )21
0 ' 0 '' 0 ... 0 .

2 2

m
q q qγ γ γ γ= + + + ≈ ≡ (5.4)

Then, for the kinetic energy we can write

2

.
2

mq
T = (5.5)

We shall note that in the case of a linear co-ordinate the constant m is the

mass.

Knowing the potential and kinetic energies, we can determine the

Lagrangian function 22 22
qqm κ−=L . Its corresponding equation (see

Eq. (1.13)) is:

0mq qκ+ = . (5.6)

Although this equation is elementary, we shall discuss the solution in

detail, for similar methods also apply to more complex systems of many

degrees of freedom. It is a linear differential equation, i.e. it contains only

linear terms in the variable q and its derivatives. Such equations have an

important property - their solutions satisfy the superposition principle: if

( ) ( )tqtq 21 and  are solutions, then so is any linear combination of them:

( ) ( ) ( )1 1 2 2 .q t a q t a q t= + (5.7)

Here 21 and aa  are constants. Moreover, if ( ) ( )tqtq 21 and  are linearly

independent (i.e. ( ) ( ) 212112 and; CCCtqCtq +≠  are constants), then (5.7) is

a general solution. Our aim is to find two independent solutions

( ) ( )tqtq 21 and .

Consider first the case 0κ < , which means that ( )qU  has a maximum at

0=q  (this is unstable equilibrium). Then, Eq. (5.6) can be written as

.,0 22

m
qq

κββ −==− (5.8)

The partial solutions of this equation are 
tt

eqeq
ββ −== 21 and . The

general solution is a linear combination of these functions
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1 1
.

2 2

t t
q Ae Be

β β−= + (5.9)

We introduced the factor 1/2 - it is up to us whether to use the arbitrary

constants BA,  or 2,2 BA . The solution shows that a small displacement

leads to exponential increase of q with time. In other words, the equilibrium

is unstable, as expected when ( )qU  has a maximum.

Now, let us consider the case 0>κ . The potential energy has a

minimum at 0=q , and, consequently, this is a stable equilibrium. Then Eq.

(5.6) becomes

2 2

0 00, .q q
m

κω ω+ = = (5.10)

The functions tt 00 cosandsin ωω  are partial solutions of this equation

(substituting them in Eq. (5.10), we see that the equality is maintained).

Therefore, the general solution is

0 0cos sin ,q c t d tω ω= + (5.11)

in which the arbitrary constants c and d are obtained from the initial

conditions. If at 0=t  the initial generalized co-ordinate is ( ) 00 qq =  and the

initial generalized velocity is ( ) ,0 0qq =  then

0
0

0

, .
q

c q d
ω

= = (5.12)

For Cartesian co-ordinates we have 0,  0 0/c x d x ω= = .

To obtain an alternative form of (5.11) we rewrite it in the form

⎟
⎠
⎞⎜

⎝
⎛ += t

c

d
tcq 00 sincos ωω  , (5.13)

and set δtan=cd . Then we have

( ) ( )

( )

0 0 0

2 2

0

cos tan sin cos
cos

cos .

c
q c t t t

c d t

ω δ ω ω δ
δ

ω δ

= + = −

= + −
(5.14a)
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Introducing the notation adc =+ 22 , we finally get

( )0cos .q a tω δ= + (5.14b)

The new arbitrary constants δ,a  are related to c, d  by

cos , sin .c d aδ δ= = −  (5.15)

The constant a is called the amplitude and it defines the maximum dis-

placement of the co-ordinate q. The motion is an oscillation with a period τ :

0

2
.

πτ
ω

=  (5.16)

The quantity δ  is called phase angle (or simply phase) and 0ω  -

angular or cyclic frequency. The subscript "0" is to denote that this is

natural frequency, underlying that it depends only on the system parameter

(see (5.10)). The periodic motion has such an angular velocity when the

system is in a stable equilibrium state, without any external influence. The

system can undergo also other oscillations with frequency ω  imposed by an

outer force. These are forced oscillations, unlike the natural ones with

frequency 0ω . The linear frequency ν is the number of oscillations per unit

time:

01
.

2

ων
τ π

= = (5.17)

When q is a linear co-ordinate (e.g., r ) we can determine the force,

which acts on the one-dimensional system:

( )
.

U r
F r

r
κ

∂
= − = −

∂
(5.18)

It always points to the centre of the stable equilibrium, and depends only on

the displacement from it. It is obvious that when q is a Cartesian co-ordinate,

this is a central potential force (Section 3.4). The quantity κ  is called a force

constant.

We have analysed the motion of a one-dimensional system around a

stable equilibrium when the displacement is small. This is harmonic motion,

i.e., a cosine (5.13) or sine law ( 2πδ =  in (5.14b)).
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A one-dimensional system which moves around a stable equilibrium

position at a small displacement from it, with a force proportional to this

displacement and directed always to the equilibrium position while the

displacement changes according to the harmonic law, is called a harmonic

oscillator. Eq. (5.10) is an equation of the oscillator.

The solution of this equation (5.10), except in the form (5.11) or (5.13),

can be represented also in a complex form:

00
1 1

.
2 2

i ti t
q Ae Be

ωω −= + (5.19)

Here and later on with the sigh "~" (tilde) we will denote a complex

number. Substituting (5.19) in Eq. (5.10), we readily confirm that it is really

a solution. Of course, q must be a real number. The sum of two complex

numbers is real when they are complex conjugates. Hence BA
~

and
~

 are

complex conjugates. Let us set

*, .A c id B A c id= − = = + (5.20)

Here the sign "*" (it is read asterisk) means complex conjugate.

Recalling Euler's formula cos sini t
e t i t

ω ω ω± = ± , we get from (5.19) and

(5.20) Eq. (5.11):

( )( ) ( )( )0 0 0 0

0 0

1 1
cos sin cos sin

2 2

cos sin .

q c id t i t c id t i t

c t d t

ω ω ω ω

ω ω

= − + + + −

= +
(5.21)

Of course (5.19) can also be transformed into (5.14b). But then we must

represent the complex constants in a polar form:

, .i i
A ae B ae

δ δ−= = (5.22)

We shall note that *~~
BA = . Substituting into (5.19) we get

( ) ( )0 0
1 1

2 2

i t i t
q ae ae

ω δ ω δ+ − += +  (5.23)

and taking into account Euler’s formula we obtain (5.14b), i.e.

( )0cos .q a tω δ= +
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Another useful representation can be obtained by noting that the sum of

two complex conjugate numbers is equal to twice the real part of one of

them, i.e.

( )0 0
1

2Re Re .
2

i t i t
q Ae Ae

ω ω⎛ ⎞= =⎜ ⎟⎝ ⎠
(5.24)

Here δi
aeA =~

is called complex amplitude. Very often it is written

0 .
i t

q Ae
ω= (5.25)

Moreover, the sign for the complex number ~ is omitted, i.e.

0 ,
i t

q Ae
ω= (5.26)

where q  and A  are complex numbers, and it is implicit that the real

quantity is ( )ti
Aeq 0Re

ω= .

Example: Consider the oscillation of a diatomic molecule. Two atoms of

masses 1m  and 2m , connected in a stable molecule, interact via Coulomb

forces of attraction. The motion can be described by the two-body problem

(Section 3.2), which is reduced to the motion of one particle of reduced mass

in a potential field with an effective energy. The effective potential energy

(Fig. 3-7) has a minimum. At small displacement from it we have harmonic

oscillations. We shall show this. The potential energy in the equilibrium can

be presented according to (5.1) and (5.2), as a quadratic function of the

difference 0rr −  between the real distance r and the equilibrium distance 0r :

( ) ( )2

0 0 .
2

U
κ− = −r r r r (5.27)

Of course, this is valid only for small displacement from equilibrium:

00 r<<− rr . Then we shall obtain the motion equation of the particle with

mass equal to the reduced mass m
~  of the molecule ( ( )( )2121

~
mmmmm +=

from Eq. (3.13), replacing the force U r∂ ∂  with the corresponding potential

force ( )0 :U= −∂ ∂ −F r r

( ) ( )
2

02

0

.
d U

m
dt

∂− = −
∂ −

r r
r r

(5.28)
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Since the atoms are rotated around the centre of mass (see Section 3.4),

for the determination of this force in the general case we must take into

account also the change of direction of 0rr − . But this leads to an equation

of the type (3.32), which includes also the centrifugal energy:

( )
( )

( )
2 2

0 02

0

1
.

2 2

d L
m U E

dt m

⎛ ⎞− + + − =⎜ ⎟⎝ ⎠ −
r r r r

r r

(5.29)

Fortunately, things in a molecule are simpler. As we shall see in the

Second part (Section 14.6) the rotational energy is much smaller than the

oscillation energy (it is called also vibrational energy). This means that a full

turn (an ellipse or a circumference) occurs much more slowly than a full

oscillation. The oscillation of the two atoms is a quick process and for a

period the change of the direction 0rr −  is negligibly small. Then the force,

corresponding to the potential (5.27) is determined by the relationship

( ) ( )0

0

.
dU

F r r
d r r

κ= − = − −
−

(5.30)

This force is directed along the line, connecting the two atoms. Now, it is

easy to write the motion equation of the particle with reduced mass :~
m

( ) ( ) ( )
2 2

0 0

0 0 0

2 2

,
d d

m m r r r r
dt dt

κ− ≡ − = − −r r r r (5.31a)

or

( ) ( )
2

0 0

2

.
d

m r r r r
dt

κ− = − − (5.31b)

We recall that 0
r  is unit vector along the direction of r and 0r  is the

equilibrium radius-vector. We obtained the equation of motion of a harmonic

oscillator with frequency

1

2

0 .
m

κω ⎛ ⎞= ⎜ ⎟⎝ ⎠
(5.32)

We recall that κ  is the force constant.
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5.2* OSCILLATIONS OF A SYSTEM OF PARTICLES

Consider the motion of a system of s degrees of freedom around

equilibrium. Let us choose the origin of the co-ordinate system of

generalized co-ordinates in the centre of equilibrium, i.e. the origin of the co-

ordinate system is at the point 0=
j

q . By analogy with the preceding

section, we shall expand the energy in Taylor series:

( ) ( )
2

0 0

1
0 ...

2
i i i k

i ii i k

U U
U q U q q q

q q q

∂ ∂= + + +
∂ ∂ ∂∑ ∑ (5.33)

Here we also choose the arbitrary constant such that ( ) 00 =U ; the second

term is equal to zero because of the equilibrium. Then for the potential

energy at small displacement we obtain

( )
2

, 0

1
, .

2
i ik i k ik ki

i k i k

U
U q q q

q q
κ κ κ ∂= = =

∂ ∂∑ (5.34)

To obtain (5.4) and (5.5), we write the series of 
ik

γ  and the kinetic

energy:

( ) ( ) ( )

( )
0

,

0 ... 0 ,
2

1
.

2

ik ik

ik i ik i ik

i l

ik j ik i k

i k

m
q q

q

T q m q q

γγ γ γ∂
= + + ≈ ≡

∂

=

∑

∑
(5.35)

Thus, U and T allow us to write the Lagrangian function in the form

.
2

1

2

1

,,

ki

ki

ikki

ki

ik
qqqqm ∑∑ −= κL (5.36)

To obtain the motion equation we need the derivatives 
i

q∂∂L  and

i
q∂∂L . For this we must find the ordinary differential of the function L :

.
2

1

2

1

2

1

2

1

,,,,

ki

ki

ikki

ki

ikki

ki

ikki

ki

ik
qdqdqqqqdmqdqmd ∑∑∑∑ −−+= κκL (5.37)
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Here i and k are subscripts, which go from 1, 2, ... to s. Changing the

subscript letters does not change the sum. Hence, we can change the places

of the subscripts in (5.37) to obtain

, ,

,
ik i k ik i k

i k i k

d m dq q dq qκ= −∑ ∑L (5.38a)

or

.
i ik k i ik k

i i

d dq m q dq qκ⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ ∑L (5.38b)

We divide by 
ii

dqqd and  and obtain the sought derivatives:

, ,
ik k ik k

k ki i

m q q
q q

κ∂ ∂= =
∂ ∂∑ ∑L L

(5.39)

which allows us to obtain Lagrange's equation

....,,2,10
1 1

siqqm

s

k

s

k

kikkik
==+∑ ∑

= =

κ (5.40)

This a system of s homogeneous differentiation equations with constant

coefficients. Its solution in complex form reads:

, 1, 2, ..., .i t

k k
q C e k s

ω= = (5.41)

This is a partial solution. After substituting it into the system (5.40) we

obtain

( )2

1

0 1, 2, ..., ,
s

ik ik k

k

m C i sκ ω
=

− = =∑ (5.42)

i.e. we obtained s homogeneous algebraic equations for the unknown

constant 
j

C
~

. A system of homogeneous equations has a nonzero solution if

its determinant is equal to zero:

0
2 =−

ikik
mωκ , (5.43a)

or in explicit form



5. SMALL HARMONIC OSCILLATIONS 101

2 2 2

11 11 12 12 1 1

2 2 2

21 21 22 22 2 2

2 2 2

1 1 2 2

...

...
0.

. . . . . . . . . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . .. . . . . . . . . .

...

s s

s s

s s s s ss ss

m m m

m m m

m m m

κ ω κ ω κ ω

κ ω κ ω κ ω

κ ω κ ω κ ω

− − −

− − −
=

− − −

(5.43b)

This is the so-called characteristic equation. It is an algebraic equation of sth

order with respect to the unknown quantity 2ω  and has s roots
22

3
22 ...,,, 21 s

ωωωω . The angular frequencies ( )sl
l

...,,2,12 =ω  are natural

frequencies of the considered system of s degrees of freedom. Substituting

every one of these roots into Eq. (5.40), we find the unknown coefficient

k
C
~

, obtaining each 
l

ω  as a combination of the ,sl

k
C .

The solution of the system (5.42) for the unknown 
k

C ’s  can be written

in the following form

....,,2,1,,~~
, snlkAcC

l

nkl

l

k
== , (5.44)

where 
l

c
~  is an arbitrary complex constant and l

nk
A  is the signed minor of the

element 
nklnk

m
2ωκ −  in the determinant of the system

( )2
0 , 1, 2, ..., .

l

ik ik k

k

m C i l sκ ω− = =∑ (5.45)

We shall note that n is chosen arbitrary, but such that at least one of the

signed minors l

nk
A  is different than zero.

Returning to 
k

q
~  (5.41) and taking into account the found values of 2

l
ω

and l

k
C , we write the solution of the sought co-ordinate as follows:

....,,2,1,~~~
skeAcqq

ti

l

l

nkl

k

l

kk
l === ∑∑ ω

(5.46)

This is the solution in complex form. We use the results of the preceding

section to determine the real values. Since all the terms of the system

determinant (5.43) are real, then l

nk
A  is also real. Hence, writing 

k
c
~  in a

polar form

,~ li

ll
ecc

δ= (5.47)
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we finally obtain the real solution of the motion equation of the system with

s degrees of freedom around equilibrium:

( ) ( ).cosRe~Re ∑∑∑ +=== +

l

lll

l

nk

ti

l

l

l

nk

ti

l

l

nklk
tcAecAeAcq lll δωδωω

(5.48)

From this solution follows a very important conclusion:

The change of each generalized co-ordinate represents a superposition of

all s harmonic oscillations, whose frequencies are the natural frequencies of

the system.

5.3 NORMAL CO-ORDINATES AND NORMAL

MODES

It is natural to raise the question: can we not choose the generalized co-

ordinates in such a way, that each of them undergoes only one simple

oscillation?

Let us present the solution for the co-ordinate 
k

q  (5.48) as follows:

.
l

l

l

nkk
Aq ξ∑= (5.49)

We can consider the 
l

ξ  as new generalized co-ordinates. Each of them

undergoes a harmonic oscillation with a frequency :
l

ω

( ).cos
llll

tc δωξ += (5.50)

and hence it satisfies the equation

.,..,2,1,02
sl

lll
==+ ξωξ (5.51)

This is the answer to our question. By a convenient choice we can define

such generalized co-ordinates, which at the small displacement of the system

from equilibrium undergo simple harmonic oscillations. Such co-ordinates

are called normal co-ordinates and the corresponding oscillations - normal

oscillations (normal modes). Any periodic motion of the system can be

represented as linear combination (superposition) of normal oscillations
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(normal modes). (Sometimes (especially in the old books) the normal co-

ordinates (oscillations) are called also principal ones.)

Let us turn to mathematics. We know that the potential energy is a

quadratic function of the generalized co-ordinates:

,

1
,

2
ik i k

i k

U q qκ= ∑ (5.52)

and the kinetic energy is a quadratic function of the generalized velocities

,

1
.

2
ik i k

i k

T m q q= ∑ (5.53)

Also, ( )
jii

qq ξ= . We pass to the new variables 
j

ξ , each of which is a

function of the 
j

q , i.e. ( )
jl

qξ .

It can be proven (see, e.g., [4], Section 22) that this conversion can be

done by a linear transformation:

∑=
k

kikl
qb ,ξ (5.54)

for which the quadratic forms of T  and U  of the new variables have

diagonal form (without mixed products 
kiki

ξξξξ and  ):

∑ ∑== .
2

1
,

2

1 22
lll

UT ξλξ (5.55)

Then, for the Lagrangian function and the corresponding equation we

have

2 21 1
,

2 2
l l l

ξ λ ξ= −∑ ∑L (5.56)

,0=+
lll

ξλξ (5.57)

where 2
ll

ωλ =  and 
l

ω  are the natural frequencies of the system. These

equations give the normal oscillations ( )
llll

tc δωξ += cos  (5.50).
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On the base of the Eqs. (5.57) and (5.54) we can do two important

conclusions:

1. in each normal mode one normal co-ordinate only is oscillating;

2. in each normal mode all co-ordinates 
j

q (see Eq. (5.54)) are oscillating

with the same frequencies.

5.4* COUPLED OSCILLATORS

The classical problem of the coupled pendulums is a very good

illustration of the results of the preceding section for a system of two degrees

of freedom, 2=s . One encounters many physical systems, which may be

described as two harmonic oscillators which are approximately independent,

but with some kind of relatively weak coupling between them.

Here we shall consider the system, shown in Fig. 5-1, which consists of

two identical pendulums, each of them with mass m  and a length l , coupled

by a weak spring of elasticity k . When the spring is neither expanded nor

contracted its natural length is equal to the distance between the pendulums,

which are in equilibrium

Figure 5- . Two identical pendulums of mass m and a length l coupled through a weak spring

of elasticity k. The potential energy of each of them is determined by their height relative to

the equilibrium position, and by the expansion or compression of the spring: x1-x2, where x1

and x2  are the displacements from equilibrium.

We shall first solve the problem in arbitrary generalized co-ordinates and

after that in normalized co-ordinates. We choose for generalized co-

ordinates the displacements 1x  and 2x  from equilibrium.

The potential energy of each of the pendulums is a sum of two terms - the

potential energy in the gravitational field, mgh  ( h  stands for the height

through which it is raised), and the potential energy of the spring
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( )2

1 2 2k x x−  arising from its compression and extension. We shall write

the potential energy U  of the system, assuming that 0=U  at equilibrium:

( )

( )

2

1 2 1 2

2

1 2 1 2

1

2

(1 cos ) (1 cos ) .
2

U mgh mgh k x x

k
mgl mgl x xϕ ϕ

= + + −

= − + − + −
(5.58)

The inspection of Fig. 5-1 shows that lx=ϕsin  and for small displacement

sin tan 1x l ϕ ϕ= ≈ << , we can set ( )
1/ 2

2
1/ 2

2cos 1 sin 1
x

l
ϕ ϕ

⎛ ⎞⎛ ⎞= − = −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
( )( )2 21 1/ 2 x l≈ − . Substituting this into (5.58) yields:

.)(
2

1
)(

2

1
21

2
2

2
1 xkxxk

l

mg
xk

l

mg
U −+++= (5.59)

The kinetic energy at small displacement is as follows:

2 2

1 2

1 1
.

2 2
T mx mx= + (5.60)

Thus, the Lagrangian for the system of coupled pendulums undergoing

small displacements takes the form

( ) ( )2 2 2 2

1 2 1 2 1 2

1 1 1
2 .

2 2 2

mg
L T U m x x k x x kx x

l

⎛ ⎞= − = + − + + +⎜ ⎟⎝ ⎠
(5.61)

To obtain the Lagrange’s equation we use the results of the preceding

section. The comparison of L  with (5.36) gives the following results for the

coefficients 
ik

m  and 
ik

κ :

11 22 11 22

12 21 12 21

, ,

0, .

mg
m m m k

l

m m k

κ κ

κ κ

= = = = +

= = = = −
(5.62)

Substituting them in the motion equation (5.40) yields:
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1 1 2

2 2 1

0,

0.

mg
mx k x kx

l

mg
mx k x kx

l

⎛ ⎞+ + − =⎜ ⎟⎝ ⎠
⎛ ⎞+ + − =⎜ ⎟⎝ ⎠

(5.63)

We see that the co-ordinate 2x  enters in the equation for the change of

1x  and the co-ordinate 1x enters in the equation for 2x . So we need to solve

a system of two coupled equations. Before doing this we shall recall the

physical significance of the terms of the system (5.63). The first term xm  is

the resultant force, acting on the pendulum. The second term, ( )mg l x , is

the normal component of the gravitational force, i.e. the force, defining the

oscillation of the uncoupled pendulum. The third ( )1kx  and the fourth terms

define the elastic force of the spring, acting, correspondingly, to the first

pendulum ( )( )21 xxk −  and to the second pendulum ( )( )21 xxk −− . The

opposite signs before ( )21 xxk −  in both equations reflect the evident fact

that the extended or compressed spring acts in different directions on both

pendulums.

We shall pass to complex variables and shall seek the solution of the

system (5.63) in the following form (compare with (5.61)):

1 1 2 2, .
i t i t

x C e x C e
ω ω= = (5.64)

We substitute in (5.63), cancel of the common factor ( )tiωexp  and obtain

the system of equations for 1 2  and  :C C

2

1 2

2

1 2

0,

0.

mg
k m C kC

l

mg
kC k m C

l

ω

ω

⎛ ⎞+ − − =⎜ ⎟⎝ ⎠
⎛ ⎞− + − =⎜ ⎟⎝ ⎠

(5.65)

This system possesses nontrivial solution only if its determinant

vanishes:
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( )

( )

2

2

0.

mg
k m k

l

mg
k k m

l

ω

ω

⎛ ⎞+ − −⎜ ⎟⎝ ⎠ =
⎛ ⎞− + −⎜ ⎟⎝ ⎠

(5.66)

Or, the characteristic equation for ω  is as follows:

2
4 2

2
2 2 0.

g k g kg

l m l lm
ω ω⎛ ⎞− + + + =⎜ ⎟⎝ ⎠

(5.67)

The roots of this equation are

2 2

1 2,           2 .
g g k

l l m
ω ω= = + (5.68)

We obtained two natural frequencies for the coupled oscillator. We

replace 2ω  in (5.65) with 2
1ω  and the system for 21

~
and

~
CC  takes the form:

( ) ( )

( ) ( )

1 1

1 2

1 1

1 2

0,

0.

kC kC

kC kC

− =

− + =
(5.69)

The evident solution is

( ) ( ) ,
~~

1

1

1

2

1

1

δi
ecCC == (5.70)

where 1c  is the module and 1δ  is the argument of an arbitrary complex

constant. Then the partial solutions 1
~
x  and 2

~
x  of (5.64), corresponding to

the natural frequency 1ω , take the form

( ) ( ) .~,~ )(

1

1

2

)(

1

1

1
1111 δωδω ++ == titi

ecxecx (5.71)

The real part of this solution will give the displacements 1x  and 2x  of the

pendulum

( ) ( ) ( ) ( ).cos,cos 111

1

2111

1

1 δωδω +=+= tcxtcx (5.72)
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Now, replacing 2ω  in (5.65) with 2
1ω , i.e. with the square of the second

natural frequency, we get

(5.73)

This syste

( ) ( )

( ) ( )

2 2

1 2

2 2

1 2

0,

0.

k C k C

k C k C

− − =

− − =
m is satisfied if

( ) ( ) 22 2

1 2 2 .i
C C c e

δ= − = (5.74)

The corresponding to 2
2ω  complex solutions (5.64) are

( ) ( )2 2 2 2
2 2( ) ( )

1 2 2 2,i t i t
x c e x c e

ω δ ω δ+ += = − (5.75)

and their real parts are

( ) ( ) ( ) ( ).cos,cos 222

2

2222

2

1 δωδω +−=+= tcxtcx (5.76)

The sum of the solutions (5.71) and (5.75) will give the general solution of

the original system of differentiation equation (5.63):

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ).coscos

,coscos

222111

2

2

1

22

222111

2

1

1

11

δωδω
δωδω

+−+=+=

+++=+=

tctcxxx

tctcxxx
(5.77)

We obtained what we had proven in Section 5.2 for the general case - the

change of each of the two generalized co-ordinates is a linear superposition

of the natural oscillations with frequencies 21 andω  (5.68).

Now, let us to pass to the normal co-ordinates 21 and ξξ . According to

(5.54) they are expressed as a linear combination of 21   xandx  so that U

and T  have diagonal form. We choose

1 1 2

2 1 2

,

,

x x

x x

ξ
ξ

= +
= −

(5.78)

and substituting ( )( ) ( )( )1 1 2 2 1 21/ 2   and  1/ 2x xξ ξ ξ ξ= + = −  into (5.59) and

(5.60) we verify that U  and T  take the form (5.55):
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2 2

1 2

2 2

1 2

1 1
| ,

2 2 2 2

1 1
.

2 2 2 2

mg mg
U k

l l

m m
T

ξ ξ

ξ ξ

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= +
(5.79)

In normal co-ordinates, instead of the system of equations (5.63) we

analogously obtain two independent equations:

1 1

2 2

0,

2 0.

mg
m

l

mg
m k

l

ξ ξ

ξ ξ

+ =

⎛ ⎞+ + =⎜ ⎟⎝ ⎠

(5.80)

Unlike (5.63), each of these equations describes different harmonic

oscillators. By analogy with (5.13), we write the solutions as follows:

( ) ( )1 1 1 1 2 2 2 2cos , cos .c t c tξ ω δ ξ ω δ= + = + (5.81)

To understand the physical significance of the oscillations, described by

equations (5.80), we shall consider the case when one of the normal co-

ordinates does not change with time. If for any moment of time 02 =ξ , i.e.

21 xx = , then the motion is described by the first equation of (5.80). In this

case the frequency of the oscillation is that of a single free pendulum. Fig.5-

2 illustrates this motion, which oscillates with the frequency of the free

pendulum, because the spring has a fixed length (it is neither extended nor

compressed) and plays no role, whatsoever. As we expect for the normal co-

ordinates, both pendulums swing with equal frequency. They always

oscillate in phase. These "in phase" oscillations are also called

antisymmetric, because the displacements with respect to the position of the

centre of mass are antisymmetric - when one pendulum approaches the

centre, but the other moves away with a frequency

1 .
a

g

l
ω ω= = (5.82)

If 01 =ξ at all time, i.e. 21 xx −= , the motion is completely described by

the second equation of (5.80). The frequency of these oscillations
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2

2
.

s a

k

m
ω ω ω= = + (5.83)

depends on the elasticity of the spring, because at all time it is either

extended or compressed. The pendulums swing "out of phase" (Fig. 5-3).

"Out of phase" oscillations are called symmetric, because the displacements

with respect to the position of the centre of mass are symmetric - the pen-

dulums either approach the centre or move away from it at the same time.

Figure 5-2. In phase or antisymmetric (with

respect to the equilibrium position of the

centre of mass) oscillations with frequency

lg
a

=ω  are described by the Eq.

( )1 1/ 0g lξ ξ+ =  for the normal co-ordinate

211 xx +=ξ .

Figure 5-3. Out of phase or symmetric (with

respect to the equilibrium position of the

centre of mass) oscillations with frequency

2 /
s

g l k mω = +  are described by the Eq.

( )2 22 0g l k mξ ξ+ + =  for the normal co-

ordinate 
212 xx −=ξ .

In the considered system of coupled oscillators there are two normal

modes – antisymmetric and symmetric with frequency respectively 
a

ω  and

s
ω . At the excitation of the given normal mode all system components

oscillate with its own frequency. The normal modes are independent and

they do not exchange energy. At the normal oscillation the pendulums also

do not exchange energy.

This however does not mean that the same pendulums can not exchange

energy. On the contrary the spring ensures their active coupling and any

change of the co-ordinates 21   xandx  can be represented as a superposition

of these two normal oscillations. We shall analyse this with a concrete

example.

We choose the initial conditions such that acc 221 ==  and 021 == δδ .

Then, for the displacements 21   xandx  we obtain

( )1 1 2

1
cos cos 2 cos cos ,

2 2 2

s a s a

s
x a t a t a t tα

ω ω ω ωξ ξ ω ω − +
= + = + = (5.84a)
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( )2 1 2

1
cos cos 2 sin sin .

2 2 2

s a s a

s
x a t a t a t tα

ω ω ω ωξ ξ ω ω − +
= − = − = (5.84b)

Now, let us set the system in motion by displacing the first pendulum (the

right hand one) at a distance ax 21 =  and releasing it. Fig. 5-4 demonstrates

that the initial displacement of the coupled oscillators ( ax 21 = , 02 =x ) may

Figure 5-4. The displacement of one pendulum by a distance 2a is shown as a superposition

of the two normal modes, i.e. the sum of the two normal co-ordinates, ( )( )1 1 21 2x ξ ξ= + , so

that their values in the initial moment, in which they are shown, are respectively a21
=ξ  and

.22 a=ξ

be considered as a superposition of the "in phase" mode ( axx == 21  so that

axx 2121 ==+ ξ ) and the "out of phase" mode ( axx =−= 21  so that

axx 2221 ==− ξ ). The motion of the first pendulum is described by (5.84a)

and of the second - by (5.84b).

In Fig. 5-5 are shown the curves of the dependencies ( ) ( )txtx 21 and .

Figure 5-5. The change of the displacements of each pendulum with time: with decreasing of

the amplitude of the displacement 
1x  from a2  to 0 , the amplitude of the displacement 

2x

increases from 0  to a2 , and at this moment the second pendulum acquires all the energy of

the first pendulum (the last is shown by the dash line).
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Both displacements oscillate with a frequency ( ) 2
as

ωω +  and with a

slow amplitude modulation. We see that after releasing the first pendulum

1x  follows a cosine law, (5.84a). Its amplitude varies also as a cosine, but

with a low frequency, which is half the difference between the normal mode

frequencies, ( )( )2
as

ωω − . After the initial moment the amplitude decreases.

At the same time the displacement ( )tx2  vibrates as a sine function, but its

amplitude builds up to 2a and then decays with low frequency ( ) 2
as

ωω − .

The new state (see dashed line in Fig. 5-5) has a maximal amplitude of ( )tx2

(i.e. ax 22 = ) and a minimal amplitude of ( )tx1  (i.e. 01 =x ), and it may be

also shown as a superposition of the normal modes (Fig. 5-6). At this state

Figure 5-6. The displacement 
2x  at the moment 't in Fig. 5-5 is shown as a superposition of

the two normal modes, i.e. as the difference between the normal co-ordinates

( )( )2 1 21 2x ξ ξ= − , whose values at the moment t' are aa 2,2 21
−== ξξ .

the first pendulum has come momentarily to rest, and the second is

oscillating with an amplitude of a2 . Thus, the first pendulum (with a

displacement ( )tx1 ) transmits all its energy to the second one (with a

displacement ( )tx2 ) and stops, when the amplitude of ( )tx2  reaches a2 . The

situation then reverses and the energy of the second pendulum returns to the

first one. The whole process is then repeated indefinitely. The phenomenon

of slow variation of the amplitude is known as beats, which occur between

two oscillations of nearly equal frequencies. When the coupling is very

weak, lgmk <</ , the normal-mode frequencies differ insignificantly and

the beats have frequency ( ) 2
s a a

ω ω ω− << , but the pendulums swing with

frequency ( )
aas

ωωω ≈+ 2 , almost equal to the frequency of an

independent pendulum.
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5.5 VIBRATIONS OF MOLECULES

In this section we deal with the classical theory of molecular oscillations.

The total energy of a molecule can be considered as a sum of different parts

corresponding to the different molecular motions: translational, associated

with the translation of the whole molecule; vibrational, defined by the

periodic changes of the relative positions of the nuclei; rotational, due to the

periodic changes of the orientation of the whole molecule; electronic, which

includes the electron motion of the electrons in the individual atoms. In

quantum mechanics it is proven that it is possible to divide the total energy

into such parts, since the interaction between the different motions is weak.

Here we shall consider the atoms as stable particles, i.e. we won't be

interested in electron motion.

We shall first define the number and type of the degrees of freedom of an

N-atom molecule. Generally, it has 3N degrees of freedom. Three of them

belong to the translational motion, which can be described by the three co-

ordinates of the centre of mass. The degrees of freedom of the rotational

motion are also three, one per rotation around each axis. Consequently, the

degrees of freedom of the vibrational motion remain 3 6N − . They are called

vibrational degrees of freedom.

For a linear molecule the rotation around its line is negligibly small (the

size of the nuclei (almost all mass is in them) is essentially smaller than the

distance between the atoms), and the vibrational degrees are .53 −N  It is

convenient to consider separately the longitudinal and transverse

oscillations. For the longitudinal motion (along the molecular axis) the

degrees of freedom are N , one of which is translational and 1−N are

vibrational. From all these 53 −N  degrees of freedom, the degrees of the

transverse vibrations (to the molecular axis) are ( ) ( ) 42153 −=−−− NNN .

Since a linear molecule has an axis of symmetry, the transverse oscillations

are in mutually perpendicular directions, which differ only by orientation.

Therefore, 2−N , i.e. twice less, natural frequencies correspond to the

42 −N degrees of freedom.

For the analysis it is convenient to eliminate the translational and

rotational motions, so that the motion equation describes only the

oscillations. To eliminate the translational motion we go to the frame in

which the molecular momentum is zero. This is a CM-frame (see Section

3.2)), in which the centre of mass is at rest:

0, , / const .M M m m Mα α α
α α

⎛ ⎞= = = = =⎜ ⎟
⎝ ⎠

∑ ∑p R R r (5.85)
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Since we consider small displacement αrΔ  from the equilibrium position

α0r  of each atom, its radius-vector may be seen as αα rrr Δ+= 0a
. The

condition 0=p  means that R  is constant and, hence,

∑ ∑==
α α

αααα .const 0rr mm (5.86)

It is evident from this relationship that the condition for the elimination

of the translational motion can be written as follows:

∑ =Δ
α

αα 0rm . (5.87)

The elimination of the rotational motion means that the angular

momentum is zero ( 0=L ), i.e.,

( ) ( )

( ) ( )
0

0 0 0.

m m

d
m m

dt

α α α α α α α

α α α α α α

= × = × Δ × Δ

≈ × Δ = × Δ =

∑ ∑
∑ ∑

L r v r r r

r r r r

(5.88)

Going from the equality to the approximate equality we neglected the

quadratic term αα rr Δ×Δ∝ . From (5.88) it is obvious that the condition

0=L  means that the sum under the sign of differentiation is constant. In the

initial moment, 0=t , this constant is zero ( )0
a

δ =r  and, hence, the

condition of the elimination of the rotational motion is the following:

( ) .00 =Δ×∑ ααα rrm (5.89)

For the equation of the vibartional motion of a given molecule we need,

except for the conditions (5.87) and (5.89), also the kinetic and the potential

energy of the atoms. To determine the potential energy of the longitudinal

oscillation we recall the problem of Section 5.1 for a diatomic molecule. The

acting force there is analogous to the elastic force of a spring of elasticity k .

Therefore, the diatomic molecule can be represented as a system of two

particles of masses equal to the masses of the atoms and connected with a

spring. The maximal and minimal distances between the atoms correspond to

the maximal extension and the maximal compression of the spring (Fig. 5-7).

The potential energy is
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( ) ( )21
,

2
U r rκΔ = Δ (5.90a)

where the force constant is determined by

( )
2

2

0

.

r

d U

d r

κ
Δ =

=
Δ

(5.90b)

Figure 5-7. The oscillation of a diatomic molecule: a) analogy between the oscillations of a

molecule of atoms of masses 
21 and mm  and particles, connected with a spring. In both cases

the potential energy has the form ( ) 2
2

rU Δ= κ ; b) conditional notation of the oscillations.

Similarly, we can interpret a three-atomic molecule. In that case we

represent the three atoms of the molecule connected by two springs. The

oscillations will obey the laws of two coupled oscillators, studied in the

preceding section. We observe two types of longitudinal oscillations - "in

phase" (antisymmetric) and "out of phase" (symmetric) (Fig. 5-8).

For the potential energy of these oscillations we can write

( ) ( )2 2

1 2 2 3 ,
2

U r r r r
κ ⎡ ⎤= − + −⎣ ⎦ (5.91)

where 1 2 3,   and  r r r  stand for the displacements of the corresponding atoms

from the equilibrium position.

For the transverse oscillations of a linear molecule the potential energy is

defined by “bending" of the molecule. Similarly to the plate lamina, the

potential energy of a three-atomic molecule ABA, at a given distance l

between the atoms, depends on the angle of the displacement from the line

(Fig. 5-9):
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( ) ( )2
.

2
U U l

κβ β
′

= = (5.92)

Figure 5-8. Analogy between the longitudinal oscillations of a linear symmetric molecule

ABA and particles connected with springs, with conditional notation of the oscillations: a)

symmetric oscillations; b) antisymmetric oscillations.

The analogy with the potential energy of a shearing strain in the solid

state is evident.

Figure 5-9. The potential energy of the transverse oscillations of a linear three-atomic

molecule depends on the degree of its strain, i.e. on the angle β , as a measure of the

displacement of the angle ABA from :π ( )( ) ( ) ( ) ( )
2

2 2 2

2 1 2 3
' 2 ' 2U l y y y yκ β κ ⎡ ⎤= = − + −⎣ ⎦ ;

A
m  and 

B
m  are the masses of the atoms; l  is the distance between them; 

321 ,, yyy  are the

transverse co-ordinates of the atoms.

The atoms of multiatomic molecules oscillate as the masses of coupled

oscillators. The normal oscillations of two three-atomic molecules ( 2CO  and

OH2 ) and their frequencies are shown in Fig. 5-10.
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Figure 5- 0. Normal oscillations of the three-atomic molecule of 
2CO  and 

2H O .

SUMMARY

At small displacement of a mechanical system of one degree of freedom

from its stable equilibrium position, its kinetic and potential energies are

quadratic functions:

2

,
2

mq
T = ( )

2

2

q
U q

κ= ,

and the equation of motion

2 2

0 00, .q q
m

κω ω+ = =
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has the harmonic solution

( )0cos  .q a tω δ= +

This is called harmonic oscillator with a natural angular frequency 0ω .

The displacement from the equilibrium distance between the atoms of a

molecule changes harmonically. Very often it is used the complex form of

the harmonic-oscillations, writing

ti
eAq 0

~~ ω= ,

where ti
aeA

δ=~
 is a complex amplitude, and the quantity q  is the real part

of ( )0,   i.e. Re Re  .
i t

q q q Ae
ω= =

In a system of s degrees of freedom of arbitrary generalized co-ordinates,

the change of each co-ordinate is a superposition of s harmonic oscillations

with their corresponding natural frequencies. But we can choose such co-

ordinates so that their change can be described by simple harmonic

oscillations. They are called normal co-ordinates and normal oscillations. In

normal co-ordinates both the kinetic and potential energy have diagonal

form. When in a system a normal oscillation is excited, all particles of the

system oscillate with equal frequency. Moreover when a fixed normal

oscillation is excited, one normal co-ordinate only is oscillating.

Two coupled pendulums, similarly to the longitudinal oscillations of a

three-atomic molecule, have two normal co-ordinates:

1 1 2 2 1 2,          x x x xξ ξ= + = −

and two normal oscillations, antisymmetric and symmetric. Any periodic

motion of the coupled pendulums (molecules) can be described as a

superposition of the normal oscillations.

While doing the analysis of the oscillations of a molecule, by using the

conditions

∑ =Δ
α

αα 0rm , ( ) 00 =Δ×∑ ααα rrm

one can eliminate the translational and rotational motions.
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QUESTIONS

1. What is the change of the co-ordinate q  of a system of one degree of

freedom for a displacement from an equilibrium, which is: a) stable; b)

unstable?

2. What is a harmonic oscillator?

3. What is a natural frequency of the oscillation? What is natural oscillation?

4. Why for a small displacement r of the electron in a hydrogen atom can we

represent the force acting on the electron in the form rF ∝ , while the

interaction force between the electron and the proton is a Coulomb force
2

1 rF ∝ ?

5. An atom of a positron is hydrogen-like atom, in whose nucleus instead of

a proton there is a positron: a particle of electron mass, but of the positive

charge e . Hence the force constants of the hydrogen and the positron are

equal. Are the spectra of the radiation (the absorption) of both atoms

equal? Why?

6. What is understood under complex amplitude?

7. What can be said about the quantities x  and A , when the distance

between the atoms of a diatomic molecule obeys the law i t
x Ae

ω= ?

8. What is the change for small displacement from equilibrium of the

generalized co-ordinate of a system with s  degrees of freedom?

9. What is the difference between ordinary and normal co-ordinates?

10.How can a periodic motion be described if the normal co-ordinates are

known?

11.What does define the potential energy of two coupled pendulums?

12.Do the forces, acting on two coupled oscillators differ by their: a)

magnitude; b) directions?

13.Does the elastic force of the coupling influence the frequencies of the

antisymmetric and symmetric oscillations?

14.Can the energy of a coupled oscillator be transmitted from one normal

mode to another? And from one pendulum to another?

15.How many vibrational degrees of freedoms has a linear three-atomic

molecule? How many of them are longitudinal and how many transverse?

How many are the natural frequencies of the oscillations?

16.How many vibrational degrees of freedom has a diatomic molecule?

17.How can the translational motion of a molecule be eliminated?

18.How is determined the potential energy of a three-atomic molecule for: a)

longitudinal oscillations; b) transverse oscillations?
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PROBLEMS

1. Find the oscillation law for a particle of mass m  and potential energy

( ) 22
xxU κ= . Express the amplitude and initial phase of the oscillation

through the initial values 0x  and 0v  of the co-ordinate and the velocity.

2. Find the ratio between the oscillation frequencies of diatomic molecules

with atoms of different isotopes. The masses of the isotopes are: 1 2,m m

and 1 2', 'm m .

3. Find the kinetic and potential energies of a harmonic oscillator as a

function of time. Find their mean values and verify that .UT =
4. Find the laws and frequencies of oscillation of two identical pendulums of

mass m  and a length l , coupled by a spring of elasticity k at a distance

b  from the hanging points? Use the displacements 1x  and 2x  as the

generalized co-ordinates.

5. Solve the fourth problem, using normal co-ordinates.

6. From spectral measurements it is known that the frequencies of oscillation

of the molecules of HF and HCl are, respectively,
14 -1 14 -1

HL HCl2 1,202.10  s           and          2 0,8.10  s . ν ω π ν ω π= = = =
Find the force constants HF HCL  and  κ κ of both molecules and their ratio.

Knowing that the length of the molecule HF is 1Å and its energy of

dissociation is 6 eV, try to evaluate the correctness of the obtained force

constant.

7. Find the frequencies of the longitudinal oscillations of a linear three-

atomic molecule ABA , whose potential energy depends only on the

distances AB and BA .

8. Find the frequencies of the transverse oscillations of a linear three-atomic

molecule ABA . Suppose that its potential energy depends only on the

angle ABA.

9. Find the frequencies of the antisymmetric oscillations of a linear three-

atomic molecule ABA . Suppose that its potential energy depends on the

distances ,AB BA  and the angle ABA.
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6.1 HAMILTONIAN FUNCTION AND HAMILTON’S

EQUATIONS

Up till now we have got acquainted with the Lagrangian function and

Lagrange's equation, satisfied by it. In Lagrange’s method a mechanical

system is described by s equations of second order. Solving them, we

determine the generalized co-ordinates, from which, trivially by

differentiation, we get the generalized velocities. Thus, in Lagrangian

mechanics, the mechanical system is described by the generalized co-

ordinates and generalized velocities, which in Lagrange's equation are

assumed to be independent.

This is not the only possible description. Hamilton obtained the equations

of motion, in which independent variables are the generalized co-ordinates

and the generalized momenta. It appears that such a description has some

advantages, especially for problems of transition from classical to quantum

mechanics.

Hamilton’s equations can be obtained from the principle of least action.

Not only do they give possibilities to solve specific problems in mechanics,

but they are also very useful in supplying fundamental postulates in such

fields as quantum mechanics, statistical mechanics and celestial mechanics.

They are differential equations of first order and are more "transparent" than

Lagrange’s equations. On the other hand, their number necessary to describe

a system with s degrees of freedom is s2 , which is greater than the number

of Lagrange's equations.

We shall obtain Hamilton's equations, starting from the Lagrangian

function and Lagrange's equations. Let us determine the exact differential of

the Lagrangian as a function of the co-ordinates and velocities (it is

supposed that L does not depend explicitly on time):

.
i i

i i

d dq dq
q q

∂ ∂= +
∂ ∂∑ ∑

i i

L L
L (6.1)
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Recalling the definition of the generalized momentum (1.53) and

Lagrange's equation, we express 
i

P  and 
i

P  through the Lagrangian:

, .
i i

i i

P P
q q

∂ ∂= =
∂ ∂
L L

(6.2)

Then we substitute the derivative in the exact differential Ld  and instead of

(6.1) obtain:

.
i i i i i i i i i i

i i i i i

d Pdq Pdq Pdq d Pq q dP
⎛ ⎞= + = + −⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑L (6.3)

After some simple mathematical procedures, we obtain:

.
i i i i i

i i i

d Pdq q dP Pdq
⎛ ⎞− = −⎜ ⎟
⎝ ⎠
∑ ∑ ∑L (6.4)

The function in the brackets is defined as Hamilton's function or

Hamiltonian:

( ) ( ), ,  .
j j i i j j

H q P Pq q q= −∑
i

L (6.5)

Here ( )
jjji

Pqqq ,=  and the Hamiltonian is a function of generalized co-

ordinates 
j

q  and generalized momenta 
j

P . It plays a central role in

theoretical mechanics. If time does not appear explicitly in Eqs. (1.34), then

the Hamiltonian is the total energy of the system (see Eq. (1.58). (This

corresponds to a time-independent potential and time-independent

constraints - for details and proof see [2], Section 20.) Here, an example of a

Hamiltonian of a particle in a potential field ( )zyxU ,,  is the following:

( ) ( ) ( )2 2 21
, , ,  .

2
j j x y z

H x P P P P U x y z
m

= + + + (6.6)

Taking into account (6.5), the exact differential (6.4) becomes:

 .
i i i

i i

dH q dP Pdq= −∑ ∑ (6.7)

On the other hand, we can write for the exact differential of the function H
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i i

i ii i

H H
dH dP dq

P q

∂ ∂= −
∂ ∂∑ ∑ , (6.8)

and comparing (6.7) and (6.8), we obtain

, .
i i

i i

H H
q P

P q

∂ ∂= = −
∂ ∂

(6.9)

We have obtained s2  equations of motion of first order for the variables

j
q  and 

j
P . These equations are called Hamilton's equations. They allow the

determination of the unknown ( )tq
j

’s and ( )tP
j

’s, i.e. the generalized co-

ordinates and generalized momenta.

For their formal simplicity and symmetry these equations are called

canonical equations and their generalized co-ordinates and the relative

generalized momenta - canonical conjugates. In the most general case the

Hamilotian can depend on time, i.e. ( )tPqHH
jj
,,= . Then its total

derivative with respect to time is

 .
i i

i ii i

dH H H H
q P

dt t q P

∂ ∂ ∂= + +
∂ ∂ ∂∑ ∑ (6.10)

Substituting the values of 
j

q  and 
j

P  from Hamilton's equations (6.9), we

get

 .
dH H

dt t

∂=
∂

(6.11)

From here we can make a very important conclusion: if the function of

Hamilton does not depend explicitly on time, it is a constant of the motion.

We shall note that this is not obvious since H  depends implicitly on time

through the 
j

q ’s and 
j

P ’s. However, this is expected - the Hamiltonian is

the energy of the system, i.e. if the energy does not depend explicitly on

time, the system is conservative and dtdH  represents the law of

conservation of energy.

We shall underline one more peculiarity of the Hamiltonian. The result

from the second equations of (6.2) and (6.9) is
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,     or     ,     1, 2, ..., .
i

i i i i

H H
P i s

q q q q

∂ ∂ ∂ ∂= − = − = − =
∂ ∂ ∂ ∂

L L
(6.12)

It is obvious that the generalized co-ordinates which are cyclic for the

Lagrangian L , are also cyclic for the Hamiltonian H . This means that the

respective generalized momenta are constants of the motion:

0,  const,
k k

P P= =  when 0=∂∂ tH .

6.2 CONCEPT OF CANONICAL

TRANSFORMATIONS, PHASE SPACE AND

LIOUVILLE’S THEOREM

We derived Lagrange's equations from the principle of least action

(Section 1.2) using arbitrary generalized co-ordinates 
j

q . We recall that 
j

q

stands for the set of all the generalized co-ordinates 
s

qqq ...,,, 21 . In Lagran-

ge's method the generalized co-ordinates 
j

q  and the generalized velocities

j
q  are independent variables. Since the choice of the ,s

j
q  is arbitrary,

Hamilton's principle would have physical meaning only if its consequences

do not depend on this choice. Indeed, the general form of Lagrange's

equations does not change for an arbitrary transformation from generalized

co-ordinates to other co-ordinates, i.e., for a transformation of the form

( ), 1, 2, ..., .
i i i

q q q i s′ ′= = (6.13)

For such a transformation the function ( )
jj

qq ,L  transforms in ( )
jj

qq ′′′ ,L

and the new generalized velocities are functions of the original generalized

co-ordinates and generalized velocities:

( )

( ) ( ) ( )( )

, ,

, , , , .

j j j j

j j j j i i i i j j

q q q q

q q q q q q q q q q q

⎯⎯→ ⎯⎯→

↓

′ ′ ′ ′ ′ ′ ′ ′ ′⎯⎯→ ⎯⎯→ = =

L

L

(6.14)

The same, of course, is valid for Hamilton's equations - they remain

invariant for a transformation (6.13). Independent variables in Hamilton's

equations are the generalized co-ordinates and generalized momenta (unlike

the generalized velocities in Lagrange's equations). For such

transformations, (6.13), the Hamiltonian ( )
jj

PqH ,  is transformed in
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( )
jj

PqH ','' , and the new generalized momenta 
i

P'  are functions of the

original generalized co-ordinates and generalized momenta:

( )

( ) ( ) ( )( )

,

, ', ' '

, ,

, ,  ,  , .

j i

j i

q q

j j j j

q q

j j j j i i j i i j j

q P H q P

q P H q P q q q P P q P

∂ ∂

′ ∂ ∂

⎯⎯⎯⎯⎯⎯→ →

↓
′ ′′ ′ ′ ′ ′ ′ ′⎯⎯⎯⎯⎯⎯→ → = =

L , L /

L L /

(6.15)

It appears that Hamilton's equations allow a much wider class of

transformations - they remain invariant with respect to some (but not all)

transformations "mixing" the co-ordinates 
j

q  and momenta 
j

P  (compare

with ( )
ji

qq' ):

( )

( ) ( ) ( )( )

, , ,

, , , , , , .

j j j j

j j j j i i j j i i j j

q P H q P

q P H q P q q q P P P q P

⎯⎯→

↓
′ ′′ ′ ′ ′ ′ ′ ′⎯⎯→ = =

(6.16)

These transformations are called canonical transformations. We shall

emphasize once more that for them Hamilton's equations retain their form.

Here, both the original generalized co-ordinates 
j

q  and theirs corresponding

momenta 
j

P , and 
jj

Pq 'and' , are canonical conjugate co-ordinates.

The canonical transformations are transformations of the generalized co-

ordinates and generalized momenta into new variables - the generalized co-

ordinates and generalized momenta 
jj

Pq 'and' , each of them being a

function of the original variables, and Hamilton's equations remain invariant.

Below, the term "state of the system" will be very important for us. To know

the state of a system in classical mechanics at a given instant of time, is to

know, at that instant, so many dynamical variables, that the values of all

dynamical variables may be predicted uniquely. Knowing the values of the

generalized co-ordinates at a given moment, is to know the location and

orientation of the system at that moment. These dynamical variables are not

enough for the description of the system. This is because in the following

instant of time these quantities will be determined by the motion of the

system. In classical mechanics the location and orientation, and the motion,

of a system at a given instant specify its state at that instant.

For a particle in three-dimensional space the classical state ΛΛΛΛ  is given by

six quantities. Conditionally we can write:

( ), , , , , ,x y z x y z=ΛΛΛΛ (6.17)
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or in terms of momenta (Fig. 6-1)

( ), , , , ,  .
x y z

x y z p p p=ΛΛΛΛ (6.18)

Figure 6- . The classical state of a free particle is determined by 6 quantities

( , , , , , )
x y z

x y z p p p .

The state of a system of two particles moving in a plane is determined by

eight quantities:

( )
1 1 2 21 1 2 2, , , , , , ,  .

x y x y
x y x y p p p p=ΛΛΛΛ (6.19)

The set of generalized co-ordinates of a given system is not unique. So,

the description of the system state ΛΛΛΛ  is also not unique. For instance, the

state ΛΛΛΛ  (6.17) in Cartesian representation can be written as

( )
zyx

pppzyx ,,,,,=ΛΛΛΛ , (6.20a)

and in spherical-polar representation, as

( ), , , , ,  .
r

r P P Pθ ϕθ ϕ=ΛΛΛΛ (6.20b)

However, all representations of the state of a fixed system contain equal

number of variables. The canonical transformations lead to a change of the

representation of the state:

( ) ( )
         , ,  ,

, ,  .

j j j j

j j j j

q P q P

q P q P

′ ′→

′ ′= → =Λ ΛΛ ΛΛ ΛΛ Λ
(6.21)

Getting ahead of our exposition, we shall mention that in quantum

mechanics for the description of the state of an electron in an atom are

necessary four quantities:

( )2, , ,  .
z

E L L S=ΛΛΛΛ (6.22)
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Here E  stands for the total energy, 2
L  and 

z
L  - for the square and the z-

component of the angular momentum, S  - for the electron spin.

In classical mechanics we can represent the state ΛΛΛΛ  of the system of s

degrees of freedom as a s2 -dimensional vector (i.e. a vector with 2s

components). It is natural for such representations to use s2 -dimensional

space with mutually perpendicular axes on which we plot the variables 
j

q

and
j

P . A fixed point in this s2 -dimensional space corresponds to any given

state of the system, i.e., to any set of the canonical variables. Conversely, a

fixed state, that is the values of co-ordinates and momenta, corresponds to a

point in this space. The introduced s2 -dimensional space, called phase

space (the configuration space is s -dimensional one - see Section 1.1), is

such that unique and reversible correspondence exists between its points and

the system state. To the motion of a mechanical system we correspond a line

in phase space, which is called phase trajectory.

Example: Consider the phase space of a harmonic oscillator (for instance

a simple pendulum, (Fig. 6-2)). In Fig. 6-2c is shown its phase trajectory in

the phase space px, .

Figure 6-2.  Phase trajectory of a simple pendulum: a) the real trajectory is a part of a

circumference (the arc AA'); b) the co-ordinate x changes according to a harmonic law

x=x0cos t; c) the trajectory in the phase space (in this case 2s-dimensional phase space - a

phase plane) is an ellipse.

Analogous to the volume element in the Cartesian space, here the product

of differentials

ss
dPdPdPdqdqdqdV ...... 2121= (6.23)

represents the volume element in the phase space. The integral ∫ dV  in a

given region of the phase space represents the volume of this region. Every

point of a given region σ  of the phase space moves according to the motion

equation of the considered mechanical system. If at the instant t  the phase

volume of the region  (Fig. 6-3) is
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2 2

1 1

,

x P

x P

V dxdP dxdP

σ

= =∫ ∫ ∫ (6.24)

then at the instant 't  the points of s  will occupy a new region 'σ , whose

volume is

2 2

1 1

,

x P

x P

V dxdP dxdP

σ

′ ′

′ ′ ′

′ = =∫ ∫ ∫ (6.25)

Figure 6-3. Phase volume: at the instant of time t the region occupies the volume ∫
σ

dxdP ,

and at the instant t' - it occupies the volume ∫
'σ

dxdP ; according to the Liouville's theorem

these two volumes are equal.

During the motion, the region volume does not change. It can be proven

(see [R3], Section 8.8) that the phase volume is a constant quantity. This is

the content of Liouville's theorem, which can be formulated as follows: The

volume of a phase-space region, which is determined by the points depicting

the different states of identical mechanical systems (an ensemble of systems),

is constant. In other words, during the motion of the systems of the

ensemble, its volume does not change.

6.3* HAMITONIAN OF A CHARGED PARTICLE IN AN

ELECTROMAGNETIC FIELD

As an example of Hamilton's function, we shall obtain the Hamiltonian

of a charged particle of mass m  and charge e , using the definition (6.5) for

H . To do this we need the Lagrangian and the generalized momentum of

the particle. In Section 1.5 we obtained Lagrange's function (1.49):
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.T e e= − Φ + vAL (6.26)

We recall that AandΦ are the scalar and vector potentials of the

electromagnetic field. The components 
i

P  of the momentum of the particle

can be found by differentiating the Lagrangian with respect to the

generalized velocities 
i

x :

( )
.

i

i i i

T
P e

x x x

∂∂ ∂= = +
∂ ∂ ∂

vAL
(6.27)

As ∑=
k

kk
AxvA then ( )

ii
Ax =∂∂ vA , and substituting it in (6.27), we

obtain for the generalized momentum

.
i i e i i

i

T
P eA m x eA

x

∂= + = +
∂

 (6.28)

We substitute this momentum, (6.28), and the Lagrangian (6.28) in the

definition (6.5), and get:

( )

,

.

i i

i

i i

i i

H x P

T
H eA x T e e

x

= −

⎛ ⎞∂= + − − Φ +⎜ ⎟∂⎝ ⎠

∑

∑ vA

L

(6.29)

But according to (2.7), ( )∑ =∂∂
i

ii
TxxT 2 , and after substituting it in

(6.29), the Hamitonian takes the form

( ) ( ), , , , , , , .
x y z

H T e T x y z P P P e x y z= − Φ = + Φ (6.30)

Thus, the Hamiltonian of a charged particle is a sum of its kinetic and

potential energies, expressed by the co-ordinates and momenta.

Now, we shall obtain the explicit form of ( )PT . From (6.28) we

determine the component of the mechanical momentum 
iei

xmp =  through

the corresponding components 
i

P  of the generalized momentum:

e i i i
m x P eA= − (6.31a)
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or

.e= −p P A (6.31b)

We substitute 
i

x  from (6.31a) in the expression of the kinetic energy

22
ie

xmT ∑=  and as a result we get:

( ) ( )2 2

.
2 2

i

i e e

P eA e
T

m m

− −
= =∑ P A

(6.32)

Taking into account (6.32) in (6.30), we finally obtain the Hamiltonian of the

charged particle in an electromagnetic field:

( )2

.
2

e

e
H e

m

−
== + Φ

P A
(6.33)

We shall note that the conjugate to the co-ordinate x  canonical

momentum does not coincide with the usual mechanical momentum

xex
vmp =  of the particle. The generalized momentum P  is the mechanical

momentum plus an electromagnetic contribution e− A . The difference

between P and v
e

m is due to the field, so e− A  has a field character. In this

sense we could say that v
e

m has a material character.

6.4. POISSON BRACKET

Consider the two functions ( ) ( ), ,   and  , ,
j j j j

F q P t G q P t  of the canonical

variables and the time. The Poisson bracket { }GF ,  of two functions F and G

is defined as

{ }, .
i i i i i

F G F G
F G

P q q P

⎛ ⎞∂ ∂ ∂ ∂= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∑ (6.34)

Where do we meet these and why are they necessary? To answer these

questions, let us take the function ( )tPqF
jj
,,  and find its total time-

derivative:
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.
s

i i

i i i

dF F F F
q P

dt t q P

⎛ ⎞∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂⎝ ⎠
∑ (6.35)

After substitution of 
ii

Pq and   from Hamilton's equations (6.9), the total

derivative takes the form:

,
s

i i i i i

dF F F H F H

dt t q P P q

⎛ ⎞∂ ∂ ∂ ∂ ∂= + −⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
∑ (6.36)

or according to the definition (6.34) of the Poisson bracket,

{ }, .
dF F

H F
dt t

∂= +
∂

(6.37)

For an arbitrary dynamical variable, i.e. for an arbitrary function F  of the

generalized co-ordinates and momenta, and of time, the total time derivative

is equal to its partial derivative plus the Poisson bracket of the Hamiltonian

and the function F.

If the dynamical quantity is a constant of the motion, i.e. ,0=dtdF then

{ }, .
F

H F
t

∂ = −
∂

(6.38)

We can consider (6.38) as a condition for F  to be a constant of the motion.

If a constant of the motion F does not depend explicitly on time, then

{ }, 0,H F =  (6.39)

i.e., its Poisson bracket with the Hamiltonian is equal to zero.

The Poisson bracket allows writing Hamilton's equations in an elegant

and symmetric way. Actually, for any function F  and the canonical

variables from (6.34), taking into account 0and0 =∂∂=∂∂
iiii

qPPq , we

can write

{ } { }, , , .
i i

i i

F F
F q F P

P q

∂ ∂= = −
∂ ∂

(6.40)

Replacing F  with H , and comparing with (6.9), we can write Hamilton's

equations through the Poisson bracket:
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{ } { }, , , .
i i i i

q H q P H P= = (6.41)

The following properties are characteristic for the Poisson bracket:

1. antisymmetry

{ } { }, ,F G G F= − , (6.42a)

and as a consequence,

{ }, 0;F F = (6.42b)

2. equality to zero of the bracket of a function and a constant

{ }, 0;F C = (6.43)

3. linearity with respect to both arguments (functions), e.g.,

{ } { } { } { } { }1 2 1 2, , , , , ,F F G F G F G CF G C F G+ = + = ; (6.44)

4. a distributive property with respect to a multiplication, similarly to the

rule of product differentiation

{ } { } { }
{ } { } { }

1 2 1 2 2 1

1 1 2 1 2 2 1

, , , ,

, , , ;

F F G F F G F F G

F G G G F G G F G

= +

= +
(6.45)

5. the partial derivative with respect to time is taken according to the rule

of differentiation of a product

{ }, , , ;
F G

F G G F
t t t

∂ ∂ ∂⎧ ⎫ ⎧ ⎫= +⎨ ⎬ ⎨ ⎬∂ ∂ ∂⎩ ⎭ ⎩ ⎭
(6.46)

6. when we take as an argument of the Poisson bracket the canonical va-

riables, besides (6.40) and (6.41), we have the following dependencies:

{ } { } { }
⎩⎨
⎧

=
≠====

,,1
,,0

,,,0,,0,
ki

ki
PqPPqq

ikikkikiki
δδ  (6.4

where 
ik

δ  is the symbol of Kronecker;
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7. the Poisson bracket is invariant with respect to the canonical

transformation from the variables 
jj

Pq ,  to ,
j j

q P′ ′

{ } { }
, ,

, , .
j j j j

q P q P
F C F C ′ ′=  (6.48)

(This paragraph can be omitted at first reading). The Hamiltonian method

is extremely powerful tool in classical mechanics. Moreover, it provides the

most direct transition between classical mechanics and quantum mechanics.

In this course we shall see that the Hamiultonian function is of great

importance in quantum mechanics. The first attempts to explain the

quantization of the periodic system were connected with the canonical

variables (see Sections 8.2 and 8.3). To address the quantization of quantum

objects Schroedinger, Dirac and others, developed subsequently a canonical

quantization procedure (see interesting details of this development in [R32]

Section 24). The canonical prescription is to replace the classical Poisson

bracket with a quantum-mechanical Poisson bracket { } { }=→ BABA ˆ,ˆ,

1 ˆ ˆ[ , ]A B
i

 (here ˆ ˆ ˆˆ ˆ ˆ[ , ]A B AB BA= −  is the commutator of the operators

BA ˆandˆ ); for details see sections 10.2, 11.3 and 11.4, this is only an

illustration. For example, replacing the Poisson bracket in (6.47) we obtain

ˆ ˆ ˆˆ ˆ ˆ[ , ] [ , ] 0,   [ , ]
i k i k i k ik

q q P P q P i δ= = = , which in Cartesian co-ordinates are

exactly the Eqs. (10.60)÷(10.63) (Chapter 10 of this course). The

relationship between the canonical conjugate pairs is of central importance

in quantum mechanics. There is an "uncertainty principle" in it (Section

10.9), according to which it is impossible to measure both terms of such a

pair simultaneously with arbitrary accuracy.

6.5
+

HAMILTONIAN AND HAMILTON’S EQUATIONS

IN CARTESIAN, CYLINDRICAL AND SPHERICAL

CO-ORDINATES

Energy, Hamiltonian, and angular momentum take an important place not

only in classical mechanics, but also in quantum mechanics. We shall

consider these for a free particle of mass m  in three often used co-ordinate

systems: Cartesian, cylindrical and spherical.

a) Cartesian co-ordinate system

1. Co-ordinates: zyx ,, .

2. Generalized velocities: zyx ,, .

3. Components of the velocity v  and the momentum vp m= :



6. HAMILTONIAN MECHANICS 135

,          ,           ,

,      ,        .

x y z

x y z

v x v y v z

p mx p my p mz

= = =

= = =
(6.49)

4. Kinetic energy and Lagrangian:

( )2 2 2 2 ,            T.
2 2

m m
T v x y z= = + + =L  (6.50)

5. Generalized momenta:

.,, zm
z

Pym
y

Pxm
x

P
xxx

=
∂
∂==

∂
∂==

∂
∂= LLL

 (6.51)

6. Physical significance of the generalized momenta:

,      ,      .
x x y y z z

P p P p P p= = = (6.52)

7. Function of Hamilton:

Since we consider a free particle, TUTH =+= . Expressing the velocity

through the momentum we obtain

( ) ( )
2

2 2 21
, , , , ,

2 2
x y z x y z

P
H x y z P P P P P P

m m
= = + + . (6.53)

8. Cyclic co-ordinates: zyx ,, .

The Hamiltonian does not depend on zyx ,,  and the corresponding

canonical conjugate momenta are constants of the motion:

const,      const,      const.
x x y y z z

P p P p P p= = = = = = (6.54)

9. Hamilton's equations:

, , ,

, , .

x y z

x y z

H H H
p p p

x y z

H H H
x y z

p p p

∂ ∂ ∂= − = − = −
∂ ∂ ∂
∂ ∂ ∂= = =
∂ ∂ ∂

(6.55)
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b) Cylindrical co-ordinate system

1. Co-ordinates: z,,ϕρ .

2. Generalized velocities: z,,ϕρ .

3. Components of the velocity v  and the momenta vp m= :

The components 
z

vv andρ  are determined trivially. Changing the co-

ordinate ϕϕ dby  the position of the particle changes by ϕρd  (Fig. 6-4)

and, consequently, we can write for the velocity and the momentum

Figure 6-4. In a cylindrical co-ordinate system the radius-vector r of a given point lies on the

plane, defined by the unit vectors 0 and z0; the third unit vector 0 is normal to this plane,

and r has no component along it.

.,,

,,,

zmpmpmp

zvvv

z

z

===
===

ϕρρ
ϕρρ

ϕρ

ϕρ  (6.56)

4. Kinetic energy and Lagrangian:

( )2 2 2 2 2 ,            T.
2 2

m m
T v zρ ρ ϕ= = + + =L  (6.57)

5. Generalized momenta:

.,, 2
zm

z
PmPmP

z
=

∂
∂==

∂
∂==

∂
∂= LLL ϕρ

ϕ
ρ

ρ ϕρ  (6.58)

6. Physical significance of the generalized momenta:

The components 
z

PP andρ  coincide with the corresponding

components 
z

pp andρ  of the momentum p, but ϕP  is equal to the

projection 
z

L  of the angular momentum along the Z-axis.
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We shall verify this. As it is seen in Fig. 6-4, the radius-vector r of a

particle whose position is at the point P , has components only along two

axes of the cylindrical co-ordinate system, zandρ :

0 0 .zρ= +r zρρρρ  (6.59)

However the velocity of the particle has three components (see (1.66)):

0 0 0.zρ ρϕ= = + +v r zρ ϕρ ϕρ ϕρ ϕ (6.60)

For the vector L  we have

0 0 0
      

    0     z ,

      

m m

z

ρ
ρ ρϕ

= × =
z

L r v

ρ ϕρ ϕρ ϕρ ϕ
 (6.61)

from where we readily determine

.i.e.,2
ϕϕρ PLmL

zz
==  (6.62)

We have verified that the generalized momentum ϕP  is equal to the z -

component of the angular momentum L.

Finally, for the generalized momenta we can write

2,       ,      .
z z z

P m p P m L P mz pρ ρ ϕρ ρ ϕ= = = = = =  (6.63)

7. Function of Hamilton

If, from (6.58) we determine the components    and  zρ ρϕ,,,,  of the

velocity v through , ,
z

P P Pρ ϕ ρ, , and substitute them in (6.57), we will obtain

the energy of the particle through its generalized momenta, which are

canonical conjugates to the co-ordinates :and zϕρ,,,,

( ) ,
2

1
,,,,, 2

2

2

2

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++=

zz
P

P
P

m
PPPzH

ρ
ϕρ ϕ

ρϕρ (6.64)

or according to (6.63):
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( ) .
2

1
,,,,, 2

2

2
2

⎟⎟⎠

⎞
⎜⎜⎝

⎛
++=

z

z

z
P

L
P

m
PPPzH

ρ
ϕρ ρϕρ  (6.65)

8. Cyclic co-ordinates: zandϕ .

The canonical conjugates corresponding to these co-ordinates, are

constants of the motion, i.e. the z-components of the angular momentum 
z

L

and the momentum 
z

p  are constants:

const.const,2 ======
zzz

pzmPLmP ϕρϕ (6.66)

9. Hamilton's equations:

, , ,

, , .

z

z

H H H
P P P

z

H H H
z

P P P

ρ ϕ

ρ ϕ

ρ ϕ

ρ ϕ

∂ ∂ ∂= − = − = −
∂ ∂ ∂
∂ ∂ ∂= = =
∂ ∂ ∂

(6.67)

c) Spherical co-ordinate system

In spherical co-ordinates we shall consider the motion of a particle in a

central field ( )rU  (this is an example for the basic object of chemistry, the

atom).

1. Co-ordinates: , ,r θ ϕ .

2. Generalized velocities: ϕθ ,,r .

3. Components of the velocity v  and the momenta vp m= :

Changing the co-ordinates by ,   and  dr d dθ ϕ , the radius-vector of the

particle changes by ,   and  rsindr rd dθ θ ϕ  (see Fig. 1-6 and formulae (1.70)

and (1.71)). Dividing these displacement elements by dt  we obtain the

velocity components, and multiplying the last by m  we get the momentum

components:

.sin,,

,sin,,

ϕθθ
ϕθθ

ϕθ

ϕθ

mrpmrprmp

rvrvrv

r

r

===
===

(6.68)

4. Kinetic energy and Lagrangian

( ) ( )2 2 2 2 2 2 2sin , .
2 2

m m
T v r r r T U rθ θ ϕ= = + + = −L (6.69)
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5. Generalized momenta

ϕθ
θ

θ
θ ϕθ

222 sin,, mrPmrPrm
r

P
r

=
∂
∂==

∂
∂==

∂
∂= LLL

. (6.70)

6. Physical significance of the generalized momenta.

The generalized momentum 
r

P  is equal to the r-component of the me-

chanical momentum. We shall verify that the generalized momentum θP  is

equal to the -componentLϕ  of the angular momentum and the generalized

momentum ϕP  - to the component of angular momentum along Z -axis. For

this purpose we determine the components of the angular momentum in a

spherical co-ordinates. Taking into account the components of the momen-

tum from (6.66) and that the radius-vector 0
r=r r  of a particle has only one

component (!) along r (see Fig 6-5), we readily determine the angular

momentum

0 0 0

0 0

sin

m m r

r r rθ θ ϕ
= × =

r

L r v

ϕϕϕϕ
, (6.71)

and its components are

.

,sin

,0

2

2

θ
ϕθ

ϕ

θ
mrL

mrL

L
r

=
−=

=
(6.72)

L+et us determine the projection of L along the Z-axis. The unit vector
0ϕϕϕϕ  is perpendicular to the Z -axis ( 00

z⊥ϕϕϕϕ  in Fig. 6-5), and the projection

of
0ϕϕϕϕϕϕ L=L  along the Z -axis is zero. Thus the projection of L along the

Z -axis is determined only by ( )
zθL . In Fig. 6-5 it is evident that

( ) 2 2cos sin .
2

z z
L L mr Pθ θ ϕ

π θ θ ϕ⎛ ⎞= = − = =⎜ ⎟⎝ ⎠
L (6.73)

Finally, we have for the three components of the generalized momentum

the following:

zrr
LmrPLmrPprmP ====== ϕθθ ϕϕθ sin,,

22
. (6.74)
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The common feature in the three considered co-ordinate systems is that

the generalized momenta, canonically conjugated to the linear co-ordinates,

are components of the mechanical momentum and the ones canonically

conjugated to the angular co-ordinates are components of the angular

momentum.

Figure 6-5. In a spherical co-ordinate system the angular momentum has only two

components 0 0
L Lθ ϕ= +L . The projection of L along the Z-axis is determined by θL ,

because 0 0⊥ z  and, consequently, OZϕ ⊥L .

7. Function of Hamilton:

Here we proceed in a similar way to the determination of the Hamiltonian

in the cylindrical system, adding the potential energy ( )rU . According to

(6.69) and (6.70), we have

( ) ( ) ( ).
sin222

,,,,,
222

22

rU
mr

P

mr

P

m

P
rUTPPPrH

r

r
+++=+=

θ
ϕθ ϕθ

ϕθ (6.75)

The expression of the kinetic energy, respectively the Hamiltonian,

through the angular momentum in spherical co-ordinates is very useful,

especially in quantum mechanics. To find this dependence we note that the

vector of the momentum can be represented as a sum of two mutually

perpendicular vectors: 
r

p , along the radius-vector ( )rp
r

|| , and ⊥p ,

tangential to the sphere of the radius r ( )rp ⊥⊥ :
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.⊥= +
r

p p p (6.76)

The kinetic energy, expressed through these two components, has the

following form

2 22

.
2 2 2

r
p pp

T
m m m

⊥= = + (6.77)

At the same time, for the angular momentum we can write

( ) ,⊥ ⊥= × = × + = ×
r

L r p r p p r p (6.78a)

or .
L

L rp p
r

⊥ ⊥= ⇒ = (6.78b)

As a result of substituting ⊥p  in the relationship for T (6.77), we get for

the kinetic energy and the Hamiltonian, respectively,

( )

2 2

2

2 2

2

,
2 2

.
2 2

r

r

p L
T

m mr

p L
H U r

m mr

= +

= + +
(6.79)

8. Cyclic co-ordinate: ϕ .

A constant of the motion is the generalized momentum ϕP , i.e. angular-

momentum component 
z

L , according to (6.73):

.constsin
22 ===

z
LmrP ϕθϕ (6.80)

9. Hamilton's equations

, , ,

, , .

r

r

H H H
P P P

r

H H H
r

P P P

θ ϕ

θ ϕ

θ ϕ

θ ϕ

∂ ∂ ∂= − = − = −
∂ ∂ ∂
∂ ∂ ∂= = =
∂ ∂ ∂

(6.81)

The main results for a free particle in Cartesian, cylindrical and spherical

co-ordinate systems, are presented in Table 6-1.



142 Chapter 6



6. HAMILTONIAN MECHANICS 143

SUMMARY

The function of Hamilton plays a fundamental role in mechanics:

( ) ( ), , , , .
j j i i j j

H q P t Pq q q t= −∑
i

L

To each generalized co-ordinate 
i

q  corresponds a generalized

momentum 
ii

qP ∂∂= L . Such a pair, 
i

q  and 
i

P , is called canonical

conjugate. The Hamiltonian satisfies Hamilton's canonical equations

,,
i

i

i

i

P
q

H
q

P

H −=
∂
∂=

∂
∂

which are the equations of motion. For a conservative system, the function

of Hamilton is interpreted as the total energy of the mechanical system

( ) ( ) ( )
jjjjj

qUPqTPqH += ,, .

If the function of Hamilton does not depend explicitly on time it is a

constant of the motion. The generalized momentum, canonically conjugate

to a cyclic co-ordinate, is also a constant of the motion.

For a system of s  degrees of freedom, it is convenient to use s2 -

dimensional space with mutually perpendicular axes 
jj

Pq , , called phase

space. During the motion of a set of many conservative systems with one

and the same Hamiltonian, occupying a given region, the form of this region

changes, but its volume remains constant (Liouville's theorem).

The Hamilton function of a free particle is

( ) ( )222
2

2

1

2
,,,,,

zyxzyx
PPP

mm

P
PPPzyxH ++== .

The Hamiltonian of a charged particle in an electromagnetic field is

expressed by a vector and a scalar potential:

( )21
.

2
H e e

m
= − + ΦP A

The representation of a particle’s kinetic energy in spherical system is:
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2 2

2
.

2 2

r
p L

T
m mr

= +

The Hamiltonian of a particle in central field ( )rU  in spherical co-

ordinate system plays an important role in quantum mechanics:

( ) ( ) ( )
22

2 2 2
, , , , , .

2 2 2 sin

r

r

PPP
H r P P P T U r U r

m mr mr

ϕθ
θ ϕθ ϕ

θ
= + = + + +

In that case the generalized momentum ϕP  is equal to the 
z

L -component of

the angular momentum and is a constant of the motion.

The definition of Poisson's bracket for functions F  and G  is

{ }, .
i i i i i

F G F G
F G

P q q P

⎛ ⎞∂ ∂ ∂ ∂= −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∑

If a physical quantity, which does not depend explicitly on time, is a constant

of the motion, then

{ }, 0,H F =

i.e. its Poisson bracket with the Hamiltonian is equal to zero.

QUESTIONS

1. In its general form, the Hamiltonian depends on time explicitly and

through the generalized co-ordinates and momenta, ( ) ( )( ).,, ttPtqHH
jj

=
How does H  change with time when it does not depend explicitly on it?

2. Do the cyclic co-ordinates of the Lagrangian and the Hamiltonian for the

same mechanical system differ?

3. Which quantity is a constant of the motion for a cyclic co-ordinate?

4. How is the state of a mechanical system determined in classical

mechanics?

5. What is the condition for a quantity, which is independent of time, to be a

constant of the motion?

6. What is the kind of the generalized momentum, canonically conjugate to

the generalized co-ordinate q ?

7. What are the constants of motion of a free particle in Cartesian,

cylindrical and spherical co-ordinates?
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8. What components possess the radius-vector in cylindrical and spherical

co-ordinate systems?

9. What is the physical meaning of the generalized momentum canonically

conjugate to: a) the linear co-ordinate; b) the angular co-ordinate?

10.How is, in spherical co-ordinates, the kinetic energy of a particle in a

central potential related to the angular momentum?

PROBLEMS

1. Using the vector relation ( ) ( ) ( )22222222 ,sin rpprprL +==×= prpr ,

verify that the energy of a free particle in spherical co-ordinates is:

2 2

2
,

2 2

r
p L

E H
m mr

= = +  where ( ) .
r

p r= pr

2. Prove that the Poisson bracket for the x - and y -components of the

angular momentum is equal to the value of its z -component with a

negative sign: { }
zyx

LLL −=, .

3. Find the Hamiltonian of a particle of mass m  moving in one-

dimensional constant homogeneous potential field ( )xU .

4. Find the kinetic and potential energies and the Hamiltonian of the

harmonic oscillator.

5. Find the Hamiltonian of a particle of mass m , moving on the surface of

a sphere of radius r , the so-called space rotator.

6. Find the kinetic and potential energies and the Hamiltonian of an

electron in the Coulomb field of a point charge Ze+ .

7. Find the Hamiltonian of the hydrogen atom, reducing the two body

problem to the one body problem.

8. Prove that the Hamiltonian ( )2
2

e
H e m e= − + ΦP A  of a charged particle in

an electromagnetic field B,EEEE , where 
t∂

∂−Φ= A
gradEEEE  and AB curl= ,

at non-relativistic velocity leads to the known equation of motion, i.e. to

the canonical equation identical to the equation ( )( )Bv ×+= EEEEe
dt

dv
m

(see [R15], Appendix 24).
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7.1 EVIDENCE OF THE INADEQUACY OF

CLASSICAL PHYSICS

At the end of the XIX century an opinion predominated among the

physicist that their science was near competition - the basic laws were

discovered and it remained only to apply them to the concrete problems. At

the background of the big success a few hard nuts to crack remained - few

experimental results were fully unexplained by classical physics. But from

the motion of the astronomy bodies to the motion of the freely falling bodies,

of rotating bodies on an inclined plane or of oscillating bodies around

equilibrium, classical physics ensures the adequate picture. The dynamics of

the charged particles in electromagnetic fields, the oscillations of coupled

oscillators and of membranes, the deformation of solid states, the acoustic

waves in gases, the fluids flow, the heat, the kinetic theory of the gases are

only a part of the phenomena to which classical conception was applied

successfully - a triumph for the scientists.

At the beginning of the last century some scientists found explanations

one after another for the problems, unsolved by classical physics (the

blackbody radiation, the photoelectric effect, the specific heat of solids, the

structure of the atom, Compton effect). But these explanations were in

striking contradiction with classical physics. Classical physics was in a

condition of a tangle and dimness. Quantum mechanics was born with a lot

of dramatism and rapture. It differed radically from classical mechanics and

suggests fundamentally a new way for the knowledge of the nature. It is

difficult with a few words to express the difference between the basics of the

two manners - the classical and the quantum. Here we shall mention two

important topics.

The famous Newton laws about the motion lay down in the basic of

classical mechanics. These laws can be "derived", they can be confirmed

experimentally as well as the predicted by them results. Quantum mechanics

was developed on the basic of assumption, of the postulates. They arise out

of the result of the intuition and of the analogy with the classical conception

and could not be checked experimentally. But the experiment confirms the

predicted results on the base of these postulates. The service belongs to the

genius, to the founders of quantum mechanics, who were capable to suggest a

method, a conception for prediction of the behaviour of physical system with

microscopic dimensions. This quantum conception stands a test not only of

the experimental results, explained by classical physics, but also of any

others, showing the inadequacy of classical mechanics.

In classical mechanic the measurements in principle are repeatable. The

disturbance of the system by the measurement may be made negligible value.

In quantum mechanics the precise effect of the disturbance is unknown and
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unpredictab le. This lead to the unrepeatable results of the measurements and

to uncertainty of the measurements value. For example, the measurement of

the position of the microscopic object leads to uncertainty of the momentum.

It is obvious that the concept of the trajectory, which is so important for

classical mechanics, simply loses its meaning.

In this chapter we shall shortly consider the essence of the problems,

whose explanation place the beginning of quantum mechanics.

7.1.1 Blackbody radiation

Blackbody fully absorbs incident on it electromagnetic radiation,

independently on the wavelength; at the same time it reflects nothing. The

absorbing and emitting properties are reversible. This means that the

blackbody is the best emitter of energy with arbitrary frequency compared

with any other body. A close approximation to a perfect blackbody is a

cavity with a small hole. A negligible amount of the incident radiation will

be reflected back through this small hole and the inner walls of the cavity

will absorb almost the whole incident radiation. If the walls of the cavity are

heated to a temperature 0T , they will emit the radiation and a small fraction

of it will pass through the hole. The radiation emitted by the hole has

blackbody spectrum. We note that the radiation is in thermal equilibrium

with the walls of the cavity. The electromagnetic field inside is a

superposition of standing electromagnetic waves. The amplitude of the

standing waves obeys a sinusoidal law. From the view of the energy

changing, these waves have the behaviour of harmonic oscillator analyzed in

Chapter 5. Therefore we can apply the classical laws of usual mechanical

oscillators. The average kinetic energy in thermal equilibrium according to

these laws is 0 / 2T kT=  where 
2310.38,1 −=k  J/K is Boltzmann's constant

and
0

T  is the absolute temperature. For the harmonic oscillator the average

potential energy is equal to average kinetic energy (Chapter 5, the problem

3). Then the total average energy is

.0kTE = (7.1)

The number of the oscillators (of the standing waves) at a given

frequency ν  per unit volume is 2 38 / cπν (for the derivation and for the

details see [R15], Chapter 5 and Appendices 33, 34). Then the average total

energy 0( , )I Tν  of the radiation in the frequency interval , dν ν ν+  per unit

volume and at the temperature 
0

T  is
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.
8

),( 03

2

0 kT
c

TI
πνν = (7.2)

A few years before them, in 1832, Wien proved that the spectral distribution

),(
0

TI ν  of the radiation obeyed the following law:

3

0

0

( , ) .I T f
T

νν ν
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

(7.3)

As the consequence of Wien's formula we obtain, that in the maximum of

the curves of the spectral distribution ),(
0

TI ν  as a function of the

frequency, the dot 
0

Tλ  is constant, i. e. const/00 == νλ cTT . Really, with

the increasing temperature the maximums of the experimental curves shift to

higher frequencies (Fig. 7.1).

Figure 7-1. Spectral distribution of the blackbody radiation at different temperatures. The

maximum of the each curve shifts to the higher frequency with increasing 0T .

Rayleigh-Jeans formula describes correctly only the initial interval of the

spectral distribution - 2)( νν ∝I . At high frequency it is in total

contradiction with the experiment. More than this, according to classical

This is the well-known Rayleigh-Jeans formula for the blackbody radiation.
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physics the energy 
0

( )I dν ν
∞

∫  will be infinitely large, which obviously is

nonsense. Ehrenfest calls the disagreement between the theory and the

experiment at high frequency (ultraviolet band) an ultraviolet catastrophe for

classical physics.

7.1.2 The photoelectric effect

The ejection of electrons from a surface by the action of light is called

photoelectric effect. The phenomenon was discovered by Heinrich Hertz in

1887. It is well known by the course of general physics and therefore we

shortly shall summarize its basic.

1. If the frequency v of the incident light is kept constant, the photoelectric

current i
p

 increases with increasing intensity I of the light.

2. Photoelectrons are emitted within less than 910 − s after the surface is

illuminated by light.

3. For a given element, the emission of the photoelectrons takes place only

above a certain minimum frequency ν0, called a threshold frequency.

4. The maximum kinetic energy maxT  of photoelectrons is independent of

the intensity of the incident light - the stopping potential V0  (the potential

at which the photocurrent becomes zero) is the same for the light of

different intensities (Fig. 7-2a), i.e. T eVmax = 0 .

5. The maximum kinetic energy maxT  of the photoelectrons depends of the

frequency of the incident light. The stopping potential is different for

different frequencies, even though the intensity of the light is the same

(Fig. 7-2b).

6. The dependence of the kinetic energy is linear one on the frequency ν, as

shown in Fig. 7-2c for different metals: cesium, potassium and tungsten.

The analytical relation is following:

max .T a bν= +  (7.4)

7. Here a is the slope of the straight line and it is the same for all elements,

while b is the intercept with the axis Y and it is different for different

elements.

The classical theory explains point 1, contradicts points 2÷5 and can not

explain point 6 at all.
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Figure 7-2. Photoelectric effect: a) at a fixed frequency ( const=ν ) the stopping potential 0V

is the same for different intensities of the incident light; b) the stopping potential and, hence,

the kinetic energy of photoelectrons are function of the frequency of light even though its

intensity is fixed (I=const); c) a linear dependence of the maximum kinetic energy maxT of

photoelectrons on the frequency ν for different metals (
maxT a bν= + ).

7.1.3 The dependence of specific heat on temperature

Here we shall consider the specific heat of solids. As theirs atoms

oscillate around the lattice points each atom has 3 vibrational degrees of

freedom. A mole of a solid consists of 
A

N  atoms and has 
A

N3 degrees of

freedom. We saw in Chapter 5 that classically each degree has an average

energy
0

kT  ( 2/
0

kT  kinetic energy and 2/
0

kT  potential energy). Thus the

internal energy of a mole of a solid should be 
00

33 RTkTNE
A

== , where

A
N  is Avogadros number, k is Boltzmann's constant and R is a gas constant

( 31,8≈R

253 ≈= Rc  J/mol.K. This is the law of Dulong and Petit. The molar heat

for many monatomic substances is approximately R3  at room temperature.

J/ mol.  K).  From here, the molar specific heat should be a constant
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But for many solids the law of Dulong and Petit is not satisfied. Moreover, it

is found experimentally that for all solids the specific heat is function of

temperature and 
3

0Tc ∝  (Fig. 7-3).

7.1.4 Atomic spectrum and structure of an atom

At the end of XIX century it was known that the atom can absorb the

electromagnetic radiation and pass into excited states. Atoms in an excited

energy state do not remain there and emit excess energy in the form of elect-

Figure 7-3. The specific heat of diamond as a function of temperature. It is obvious the

inadequacy of classical physics (the dashed line) to the experimental results (the crosses). The

solid lines are plotted according to the theory of Debye.

romagnetic radiation. At this the spectrum of any material's atom consists of

discrete lines. In contrast to the continuous spectrum of electromagnetic

radiation, for instance, of the surface of blackbody, the free atoms emit only

a number of discrete wavelengths - generally they can be a lot. When the

additional energy is large enough the atom ejects an electron - a particle with

negative charge and small mass (~
410−

from the atom mass). It was naturally

to suggest that in a neutral atom the electrons were tied with the positive-

charge "atomic core". At excitation the electrons begin to oscillate, as a

result of which one sees the emitted atomic spectrum. According to the

classical theory the frequency of the radiation should be equal to the the
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frequency of the electron oscillation or multiple value of it (let recall the

string, which oscillates with frequencies ...,3,2, 000 ννν ). But experimentally

one observed the frequencies, which are not multiple to one or to a few

frequencies. This suggested assuming as many degrees of freedom, as the

number of the spectral line emitted by the atom. But even for the simplest

atom (hydrogen) a number of the degrees of freedom becomes innumerable.

Investigation of the spectra of each kind of atom shows that it has its own

characteristic spectrum, i.e. its own combination of spectral lines. Thus the

spectrum is a characteristic of the type of atom. Atomic spectra became a

useful tool for identification of their characteristic lines. And this transforms

spectroscopy in a very useful addition to the traditional techniques of

chemical analysis. Chiefly for this reason in the last years of XIX century the

scientists expended great efforts in measuring wavelength of line spectra of

the elements. Experimental measurements were difficult, because the spectra

consisted of hundreds of lines and were very complicated, especially for the

multielectron atoms.

The spectrum of hydrogen atom is relatively simple because it consists of

a single proton and a single electron. The visible part of the hydrogen

spectrum is shown in Fig. 7-4. We see that the lines exhibit definite

regularities. They group in the so-called spectral series. In the figure is shown

Figure 7-4. The visible part of the hydrogen spectrum.

the first series, which was discovered by J. J. Balmer in 1885. The space

between the wavelength of the adjustment lines continuously decreases with

decreasing wavelengths. Each series converges to the so-called series limit of

the wavelengths. For the Balmer's series, shown in the figure, this is 3456,8

Å. The regularity of the H spectrum tempted Balmer to find an empirical

formula for the wavelengths of the series:
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2

2
3645,6

4

n

n
λ =

−
Å, (7.5)

where ...,5,4,3=n . For 3=n  we have αH  line, for 4=n  - βH  and so on.

For ∞=n  one obtains the series limit 5,3645=λ Å. A little later Rydberg

expressed Balmer series in more convenient form:

*

2 2

1 1 1
,

2
R

n
ν

λ
⎛ ⎞≡ = −⎜ ⎟⎝ ⎠

(7.6)

where *ν  shows the number of wavelengths per unit length and is called

spectroscopic frequency (the reciprocal wavelength) and R is the Rydberg

constant, the most recent value of which is

-1m2,110967757 ±=R . (7.7)

Formulae of the type of (7.6) were found for a number of series for H

spectrum. For instance, we show five series of lines in Table 7-1.

Table 7-1. Some of the spectrum series in the hydrogen atom

Series of Wavelength ranges    Formulae Value of the number n

Lyman Ultraviolet
⎟
⎠
⎞⎜

⎝
⎛ −=

22

1

1

1
*

n
Rν

n=2, 3, 4, ...

Balmer Near ultraviolet

and visible
⎟
⎠
⎞⎜

⎝
⎛ −=

22

1

2

1
*

n
Rν

n=3, 4, 5, ...

Pashen Infrared
⎟
⎠
⎞⎜

⎝
⎛ −=

22

1

3

1
*

n
Rν

n=4, 5, 6, ...

Brackett Infrared
⎟
⎠
⎞⎜

⎝
⎛ −=

22

1

4

1
*

n
Rν

n= 5, 6, 7, ...

Pfund Infrared
⎟
⎠
⎞⎜

⎝
⎛ −=

22

1

5

1
*

n
Rν

n=6, 7, 8, ...

All these formulae strongly suggest that the spectroscopic frequency (the

reciprocal wavelength) can be written as a difference of two terms, each of

the form

2
( ) , 1,  2,  3, ...

R
T n n

n
= = (7.8)
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This statement amounts to the Ritz combination principle. The two terms

T(m) and T(n) combine to produce a spectral line at a spectroscopic

frequency given by

2 2

1 1
* ( ) ( ) ,

1, 2, 3 ..., 1, 2, 3 ..., .

T m T n R
m n

m n n m

ν ⎛ ⎞= − = −⎜ ⎟⎝ ⎠
= = >

(7.9)

The inadequacy of classical physics becomes quite obvious at the

explanation of the atom structure. In 1912 Ernest Rutherford on the series of

experiments with positively charged α -particles, which shot through thin

metallic foils, made the following conclusion:

1. The a -particle are scattered by strong Coulomb repulsion;

2. "Atomic core" with almost the whole mass of the atom is positively

charged and is concentrated in a small region in the centre with radius
1112 1010 −− − cm; it is called the nucleus;

3. The structure of the atom is like the Solar system, the electrons being

circling around the nucleus as the planets - around the Sun.

Classical physics is in contradiction to the results of the experiments and

with the suggested in their basis planetary model of the atom. The electron

circling around the "atomic core", i.e. around the nucleus, ought to collapse

into the nucleus, because it radiates electromagnetic waves and loses energy.

This is in contradiction with the observed stability of the atom.

Really, if the orbit of the electron in the atom around the nucleus is a

circle of radius r  then the atom has an electric dipole moment rd e= . Due to

the dipole radiation the energy of the electron E  does not remain constant,

but decreases and consequently the orbit radius also decreases. As the

relative estimate shows the electron should lose his energy only for 810− s.

Then the radiation frequency which is reciprocal to the radius in the degree

3/2) (the third law of Kepler) should change continuously and no discrete

lines in the atom spectrum would be observed.

Let us summarize the results of the Rutherford planetary model from the

classical point of view:

– the atom can not be stable; more than this it ought to lose all its energy

for very short time - 810− s;

– the frequency of the radiation which is reciprocal to orbit radius in the

degree 3/2 (the third law of Kepler) must be continuous; this is in

contrary to the observed discrete line spectrum.
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7.1.5 Roentgen rays and the Compton effect

In 1895 the German scientist Wilhelm Roentgen discovered that when the

electron, accelerated by the potential V, strikes a metallic target, a highly

penetrating radiation is emitted. The rays were called X-rays because nobody

knew what this radiation was. Experimentally were found outstanding

features of X-rays spectrum:

1. At relatively not high energy of the electrons the spectrum was

continuous up to a certain maximum frequency maxν  which is

proportional to the potential V - max const Vν = .

2. When V increases at a given value of V discrete lines superimpose on the

continuous X-ray spectrum. These lines are different for different atoms

and do not depend of the potential V. But for this discrete spectrum the

maximum limit frequency maxν  retains.

In 1912 von Laue confirmed the wave character of the X-rays. But the

existence of the high frequency limit and its dependence on V can not be

explained by classical physics.

The classical theory shows helplessness and at the explanation of the X-

rays scattering by free electrons. According to classical electrodynamics

when an electromagnetic wave of frequency ν  is incident on a free charged

particle (in our case this is an electron) the last one begins to oscillate with

the same frequency ν . In turn, the oscillating electron reradiates an

electromagnetic wave of a frequency ν , i.e. of the frequency of the incident

wave. So, from the point of view of the classical theory the scattered by the

free-electron wave should have the frequency of the incident wave, but the

experimental observations show that the frequency of scattered wave 'ν  is

less than the one of the incident wave ν  - νν <'  (or wavelength λλ >' ).

This effect was explained by American physicist Arthur Compton and

therefore is called Compton effect. The schematic sketch of the experiment

is shown in Fig. 7-5a. A beam of monochromatic X-rays is obtained from the

source S. After the collimator C (a slit system) it is made incident on the

target T made of something (for instance of carbon) in which the outer

electron are almost free, i.e. their binding energy is negligible to the energy

of the incident wave. The results for the wavelength of the scattered wave at

different angles are shown in Fig. 7.5b. The points are experimentally

measured values and the lines are calculated by Compton on the base of

quantum hypothesis of Plank (see the next section 7.2)
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Figure 7-5. Compton effect: a) Compton's experimental arrangement: S - a X-rays tube, C - a

collimator, T - a target, D - detector of scattering radiation; b) scattering of the Kα  line of

molybdenum (wavelength λ ) on the carbon at angles 45˚, 90˚ and 135˚. Here 'λ  stands for

the wavelength of the scattered wave.
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7.2 THE FIRST STEPS IN QUANTUM MECHANICS

At the beginning of the XX century one by one the phenomena out of the

scope of classical physics found explanations by new ideas. But for classical

physics the ideas were strange even scandalous ones. With these ideas the

"hard nuts", on which it stumbles, were explained. In a short time the se-

parate ideas form the fundamental of new mechanics - quantum mechanics.

Chronically, the basic moments of the quantum-mechanics creation are:

1901  Planck

1905  Einstein

⎭⎬
⎫

Debye1912
Einstein1907

1907

1913  Bohr

1922  Compton

1924  Pauli

1925  de Broglie

1926  Schroedinger

1927  Heisenberg

1927  Davisson and Germer

1927  Born

Blackbody radiation

Photoelectric effect

Specific heat of solids

Quantum theory of an atom and spectra

Photon scattering on electrons

Exclusion principle

Matter waves

Wave equation

Uncertainty principle

Experimental verification of wave

properties of electrons

Interpretation of the wave function

In this section we shall consider in details the new explanation of the

phenomena, exposed in the previous section.

7.2.1 Planck’s hypothesis and the blackbody radiation -

quanta

For the explanation of blackbody radiation Max Planck has introduced

absolutely incredible assumption that the energy of the emitted and absorbed

radiation with frequency ν  can not be arbitrary but only a discrete set of

energy. The radiation with frequency ν exists only in multiples of hν  -

orνnh ( )( )2 2n n hω π πν= . The constant ( )/ 2h h π≡ , which has the

value 
34

10.626,6
−=h J.s (

34
10.055,1

−= J.s), is called Planck's constant and

the bundle of energy

ων == hE (7.10)

is called an energy quantum or (later) a photon (in 1926 the chemist Gilbert

Lewis suggested the name "photon"). The expression (7.10) is called the

Planck radiation law. Postulating that the energy is quantized, Planck
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defined the spectrum of the blackbody, which coincide with the experimental

one (Fig. 7-1). For a given frequency ν  all the quanta have the same

energies; the quanta of high frequencies have high energies and the quanta of

low frequencies - low energies. When a blackbody is in thermal equilibrium,

the atoms (molecules) within it will emit radiation with frequency ν  only if

they have energy equal or greater than νh . From the Maxwell-Boltzmann

distribution it is clear, that for low frequency many atoms correspond to this

condition, but as ν  increases the number of atoms (molecules) having

energy in excess of νh decreases. Therefore )(νI  does not increase with

increasing ν , but goes to zero asymptotically. Thus ultraviolet catastrophe

predicted by classical physics is avoided.

According to the Maxwelll-Boltzmann distribution if there are 0N

particles in a system in equilibrium, the number of atoms 
n

N  with energy

n
E  at temperature 0T  is as follows:

0

0

exp .n

n

E
N N

kT

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
(7.11)

Using for the energy his quantum hypothesis νhE
n

= , Planck calculated

the mean energy and arrived at the following formula for the spectral

distribution of the blackbody radiation:

3

3

0

8 1
( ) .

exp( / ) 1

h
I

c h kT

π νν
ν

=
−

(7.12)

This is the famous Plank radiation law. In Fig. 7-6 the theoretical formula

Figure 7-6. Comparison between the experimental blackbody spectrum (open dots) and the

theoretical Plank's radiation expression (continuous curve). The agreements between them

confirms the Planck quantum hypothesis.
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and the experimental points are compared. It is obvious  that the agreement

is very good. Such agreement is observed at the value of Plank constant
34

10.625,6
−=h  J.s.

7.2.2 Quanta and the photoelectric effect

Einstein did the next step. For the explanation of photoelectric effect he

applied the Planck hypothesis as he went further. Namely, he suggested that

electromagnetic waves were not only emitted and absorbed in the form of

bundles that existed as quanta, but also exist in the form of quanta. These

quantizied electromagnetic waves were later called photons. When the light

incidents on a metallic surface the electron absorbs a photon of energy νh .

For the escaping of the surface it uses up an amount of energy w, called the

work function of the metal. The rest of energy of the absorbed photon

appears as kinetic energy of the electron. Its possible maximum is:

2

max

max .
2

mv
T h wν= = − (7.13)

We receive the linear dependence (7.4) of the kinetic energy of the pho-

toelectrons on the frequency. Comparison shows that h  is the slope a and -w

is the intercept b of the straight line max ( )T ν  (see the text under Fig. 7-2c).

On the other hand we can obtain the Planck's constant from the experimental

results. This value agrees with the value of h obtained by fitting Planck

radiation law (7.10) to the spectrum of the blackbody radiation. Thus the

quantum hypothesis explains point (6) of section (7.1.2). The explanation of

points (1) to (5) is simple and logical and therefore we leave it to the reader.

7.2.3 Quanta and the specific heat of solids

We see that according to classical physics the specific heat of solids

should not depend on the temperature, which is in disagreement with the

experimental results. In 1907 Albert Einstein proposed the solids to be

treated as a set of harmonic oscillators with frequency , which energy was

discrete, i.e. it was quantizied. The essence of the problem of the specific

heat is the same as the radiation of blackbody. According to the Planck's

hypothesis the heating (the cooling) of bodies is accompanied with

absorption (emission) of quanta by them. As soon as the solids consist of

oscillators with energy h , at low temperature the transmitted energy

consists of low energetic quanta, which can not excite the oscillators.

Therefore the specific heat decreases (Fig. 7-3). Einstein assumed that the

solids consist of oscillators with fixed frequency. The obtained theoretical
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results agree with the observed specific heat over a wide range of

temperatures. However at low temperatures the theoretical specific heat was

in disagreement with its observed variation. This was made more precise by

Debye in 1912. Like the proposal of Planck for the blackbody he treated the

solid as a set of oscillators with various frequencies. The comparison be-

tween the theory of Debye and the experimental results is shown in Fig. 7-3.

7.2.4 The Bohr’s theory of the atom and the atomic

spectrum

In 1913 Neils Bohr took a decisive step further, applying Planck's idea

for the quantizying of the energy to other observable, namely to the angular

momentum. On the base of his famous postulates, which were rather strange

from the point of view of classical physics, he suggested a model of the

atom, which was in a very good agreement with the known at that time

spectroscopic data (in particular with these of H spectrum). These postulates

are following:

1. An electron in an atom can move in certain circular orbits around the

nucleus under the influence of Coulomb attraction between them. These

orbits are called allowed stationary states (they are discrete) and the

motion in them obeys the laws of classical mechanics.

2. Instead of the infinity of orbits which would be possible in classical

mechanics, the allowed orbits are only those for which the orbital angular

momentum is equal to an integral multiple of  )2/( πh= :

,     n 1, 2, 3, ...L n= = (7.14)

3. An electron moving in such an allowed orbit does not radiate

electromagnetic energy, despite of the fact that the motion is with

constant acceleration. Thus in allowed stationary orbits (states) the total

energy remains constant.

4. An electron moves on from the orbit (state) of initial higher energy E  to

the orbit (state) of final lower energy E' with a jump (not continuously)

emitting  only one photon (quantum) of energy νh so that

'.h E Eν = − (7.15)

The first postulate confirms the existence of the atomic nucleus (it passed

only one year from the famous experiment of Rutherford about the scattering

of the -particles). The second postulate introduces the quantization. It is

important to note the difference between Bohr's quantization of the orbital

angular momentum of an atomic electron moving under the influence of the

Coulomb force ( 2/1 r∝ ) and Plank quantization of energy of the oscillator

(this can be the motion of electron which moves under the influence of the
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harmonic force). The third postulate is needed to prevent the instability of an

atom, predicted by classical electromagnetic theory. In the experiments

atoms are observed to be stable. The fourth postulate is just Einstein's

postulates combined with the law of conservation of energy - the energy of

photon νh is equal to the difference between the energy of the initial and the

final electron states.

These postulates are a mixture of classical and non-classical physics. It is

supposed that an electron moves in circular orbit obeying the laws of

classical mechanics, but the idea for the discreteness (the quantization) of

angular momentum is included. It is supposed that the electron obeys one of

the laws of classical electromagnetic theory (the Coulomb law) but it does

not obey the other law (namely the law for the emission of electromagnetic

radiation of a moving with the acceleration charged body). But we should

not be surprised that the laws of classical physics, which were based on our

experience with macroscopic system, are not entirely valid when we analyze

the microscopic systems like the atoms.

The Bohr's postulates give the possibility to receive clear expression for

the spectral term (7.8) and to determine the known spectral lines of the hyd-

rogen atom. We shall consider in details these questions in the next chapter.

7.2.5 Photons and Compton effect

The next who dares to use the unusual quanta of Planck was American

physicist A. Compton. With them he successfully explained the scattering of

X-rays on the free electrons and thus obtained a dramatic confirmation of the

particle-like nature of radiation. The word "dares" is not random. Despite the

success of the theory of the quanta the physicists considered them as a

newcomers. In this sense the known exclamation of Schroedinger is very

indicative: "If we are going to save these accursed quantum jumps I regret

that in generally have had deal with the quantum theory".

Compton uses the suggestion of Einstein the light to be considered as a

beam of photons of energy νh . Then according to theory of relativity the

energy E and the momentum p of the photons can be written as follows:

,
h

E h pc p
c

νν= = → = . (7.16)

And here as at the photoeffect (despite there not so obviously) we

consider the photons of electromagnetic waves as particles

(corpuscles). The idea of the wave and particle characteristics of one

material object is the second basic idea of quantum mechanics (after

the idea of discreteness). At such an interpretation of the photons the

scattering of the X-rays may be considered as an elastic collision
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between the photon and the electron (Fig. 7-7). Then the momentum

conservation law in x- and y-direction and the energy conservation

law require following:

'
cos cos ,

'
0 sin sin ,

' .

e

e

e

h h
p

c c

h
p

c

h h T

ν ν θ α

ν θ α

ν ν

= +

= −

= +

(7.17)

From these three equations we can express the scattering wave

Figure 7-7. Scattering of X-rays can be considered as a collision between a photon and an

electron. Here the sign " ' "  stands for the values after the collision and , T , m and m  are

the momentum, the kinetic energy, mass and rest mass of the electron, respectively.

through the incident one. First, we eliminate the angle  and rewrite the

first two equations in the form:

cos 'cos ,

sin 'sin .

e

e

p c h h

p c h

α ν ν θ
α ν θ

= −
=

(7.18)

Squaring and adding these equations, we find

2 2 2 2( ) ( ') 2( )( ')cos .
e

p c h h h hν ν ν ν θ= + − (7.19)
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By using the third equation we obtain the total relativistic energy of

the recoiling electron

2 2( ') ,
ke e e

E E m c h h m cν ν= + = − + (7.20)

which from the theory of relativity is equal to

2 2 2 4 .
e e

E p c m c= + (7.21)

We equate Eqs. (7.20) and (7.21) and square:

2 2 2 2( ') 2( ') .
e e

p c h h h h m cν ν ν ν= − − − (7.22)

Now we equate Eqs. (7.19) and (7.22) and solve for 'νh :

2

' .

1 ( )(1 cos )
e

h
h

h

m c

νν ν θ
=

+ −
(7.23)

By using relation c== ''νλλν  we may turn on from the frequency to

the wavelength and to obtain for the change in the wavelength:

' (1 cos )
e

h

m c
λ λ θ= + − . (7.24)

Thus Compton confirms theoretically the experimental fact that the

scattering wavelength ' is longer than the incident wavelength 

( λλ >' ) and it depends on scattering angle  - ( ( )).

7.3 WAVES VERSUS PARTICLES - DUAL NATURE OF

THE RADIATION

The old dispute in classical physics for the essentiality of the light

(weather it is a beam of particles (corpuscles) or represents a wave)

terminated with the victory of the supporters of the wave character of

the light. It formed an opinion that the light was electromagnetic wave

and the theory of radiation of Maxwell-Lorentz appeared. The

experiment of diffraction and the interference of the light were
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decisive. We shall remind them shortly (the details may be seen in H. J.

Pain, The Physics of Vibrations and Waves, 2nd Edition, John

Wiley&Sons, 1976, Chapter 10).

All waves display the phenomena of interference and diffraction.

These phenomena arise from the superposition of waves from separate

sources. The difference between interference and diffraction is merely
of scale. In the interference from N narrow slits of separation λ>>d ,

each slit may be seen as the source of single waves (a point source) and

the interference picture is a result of the superposition of the waves

from these sources. In diffraction from a slit (source), the aperture is

of the order of the wavelength  and according to Huygens' principle

every point of the wave front in the slit represents a source of

secondary waves and the resultant diffraction picture is a superposition

of these secondary waves. (We shall note that at these cases the

sources at the interference are separated and at the diffraction are

continuously placed). For the interference from N equal sources (slits) of

separation d (Fig. 7-8) and each of intensity 
s

I (the square of the amplitude)

the intensity at the distant point P in a direction from the slits is:

2

2

2
2

sin
sin

sin
, sin .

sin sin
sin

s s

N d

N d
I I I

d

π θ
β πλ β θ

π θ β λ
λ

⎛ ⎞
⎜ ⎟ ⎛ ⎞⎝ ⎠= = ≡ ⎜ ⎟⎛ ⎞ ⎝ ⎠
⎜ ⎟⎝ ⎠

(7.25)

When one have two slits (Young slit's experiment) the intensity is

as follows

2
2

2

sin 2
4 cos .

sin
s s

I I I
β β

β
== = (7.26)

At the diffraction from a slit with a finite width a picture is obtained as at

the interference from N ( ∞→N ) point sources continuously placed in

the slit. We would like to underline that the phenomenon of

interference lays in the basis of an every diffraction picture. The

intensity of radiation is:

2

0 2

sin
, sin

d

a
I I a

α π θ
α λ

= ≡ , (7.27)
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Figure 7-8. Interference from N equal sources of separation d. The separation between

principal maxima is ,...)2,1,0(sin ±±== nnd λθ  and their intensity is 
s

INI
2= . With

increase of the number N of the sources the principal maxima increase )( 2
NI ∝  and their

width decrease ( N/1∝ ).

where 0I  is the intensity of the central maximum (Fig. 7-9a).

The intensity of the diffraction pattern from two equal slits ( 2=N )

of width a and separation d is as follows:
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.cos
sin

4 2

2

2

0 β
α

α
II

d
=

Figure 7-9. Diffraction pattern: a) from a single slit of width a - the diffraction maxima are

at λθ ma =sin ; b) from two equal slits of the same width at the distance d - the interference

fringes, defined by the condition λθ nd =sin , are modified by the envelope of a single slit

diffraction pattern.

.cos
sin

4 2

2

2

0 β
α

α
II

d
= (7.28)

The presence of the interference is obviously - β2cos∝
d

I (compare

with (7.26)). Together with this we have diffraction from a slit of width a -
22 /sin αα∝

d
I . As a result we see the interference picture from two slits in

which interference fringes are modified by the envelope of a single slit

diffraction pattern (Fig. 7-9b). We shall note that when the slit is circle one

the considered diffraction patterns present concentric light and dark rings.

After a short return to the classical wave theory let deal again with the

difficult phenomena of Section 7.1. The consideration of the light as an

electromagnetic wave could not explain the blackbody radiation, the

photoelectric effect and the Compton effect. Only the introduction of the

energy bundles (quanta or photons) gives the possibility to explain it. At the

analysis of Compton effect besides energy of these photons we prescribe

them momentum. As the energy, the mass and the momentum are

characteristics of the particles, the photons should be considered as particles

(corpuscles). But then will they (the particles) be able to explain diffraction

and interference? In fact what are the photons - particles or waves? There

arises quite strange situation in which the optical phenomena split on the two

groups, the one of them can be explained only by particles and the other -

only by waves. In classical physics these points of view are mutually

exclusive. This confrontation was called wave-particle duality. Classical

physics considers two types of motion - of particles and waves.

Consequently it defines two categories of objects - matter and radiation. The
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matter consists of particles, which are localized in space, and their motion

with the defined trajectory obeys Newton's laws. The wave motion is

nonlocalized. The wave is without restriction and it has not a trajectory. On

contrary of the matter the radiation can not be divided on separate particles,

which save its space localization in time. The radiation obeys the

electromagnetic theory of Maxwell and the phenomena diffraction and

interference shows that it has wave character.

Namely these two phenomena we may use in classical physics as a

criterion to differ particles and waves. Such criterion significantly will ease

us to understand the strangeness and dual character of the microscopic

world.

Fig. 7-10 shows a thought experiment on the transition of a beam of

classical particles from the source S through the slits A1 and A2.

Shutting consecutively the slits A1 and A2 we obtain the intensities I1

and I2 of the particles (the number of particles through the unity surface

for time 1 s) on the screen E. When the both slits are open the beams

Figure 7-10. Transition of a beam of classical particles trough two slits A1 and A2 (S - source,

E - screen, I - intensity): a) the slit A2 is closed; b) the slit A1 is closed; c) the both slits are

opened - their intensities add, i.e. the total intensity is 1 2 1 2I I I= + .

from 1A  and 2A  superimpose themselves and the measured intensity is

a sum of the both intensities:

2121 III += . (7.29)

Let consider the same experiment, but instead of a source of particles to

have a source of waves (Fig 7-11). The wave is characterized by the wave
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function ),( trψ  (for example, ( , ) const exp[ ( )t i tψ ω= −r kr  for a plane wave.

Figure 7-11. Transition of a wave trough two slits A1 and A2: a) the slit A2 is closed; b) the slit

A1 is closed; c) the both slits are opened the interference-diffraction picture is not the sum of

the both diffraction picture, i. e. the total intensity is not a sum of the separate

intensities 1 2 1 2I I I= + .

The intensity of the wave (the wave energy through the unity surface

normally to the propagation for time 1 s) is defined by the square of the

module of the wave function:

2ψ∝I . (7.30)

If the photons are particles, then the luminosity upon the screen should be

determined by their number nI ∝ , but if they are waves - by the square of

amplitude 
2ψ∝I . In our experiment we have

2121 III +≠ , (7.31)

i.e. the total intensity is not the sum of the both intensities - we observe

well known diffraction-interference picture. Here we shall note that the

same values of the wave are added:

2121 ψψψ += . (7.32)

For example, when one has an electromagnetic wave, the intensities

of the electrical field are added (not the intensities of the waves).
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So we have very important criterion: when the beams of classical

particles are superimposed their intensities add and when the waves

are superimposed the meanings of the oscillating values are added but

their intensities do not are added.

Let us now apply the criterion to the photons, i.e. to conduct the

double slits experiments with the photons. In the real experiment one

uses for the slits the distance between the atoms in a single crystal (this

ensures the identity of the slits). The first experiment was conducted by

Laue in 1912 with Roentgen quanta. He obtained the result of Fig. 7-

11. Consequently the photons are waves. Nevertheless the photoeffect

and the effect of Compton exist?! Then we may arrange the additional

test for the photon. We shall launch the photons in our experiment one

by one. Let one of the slits to be covered up. When the photons strike

the screen one by one we observe a separate flashes and there is no

diffraction picture. This means that the photons are particles (even

when the intensity of the wave is very weak, the last exhibits

diffraction properties). Instead of clearing the matters, our test makes

them more strange and incomprehensible. One photon has the

behaviour of a particle, but the beam of photons - of a wave. More than

this, if we launch the photons one by one a long time so theirs numbers

is equal to the photons number at short exposition we shall obtain the

same diffraction pattern as at this short exposition (Fig. 7-12).

Figure 7-12. Experiment with photons in which the individual electrons are only

emitted one at a time. The distribution of the photons coincides with the intensity of the

diffraction pattern.

If the both slits are opened we also observe flashes of the separate

photons on the screen. But when we increase the number of photons

these flashes form the typical diffraction-interference picture of the

double slits (Fig. 7-13).
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Figure 7-13. Growth of the interference-diffraction picture (only the central maximum

is shown) when a beam of photons is incident on a double-slit system. The

photographic plate is struck by: a) 28 photons: b) 1000 photons; c) 10 000 photons; d)

106 photons. (Note that the width of the slits and the separation between them in the

case d) is different than in the other cases.)



176 Chapter 7

The photons have clearly expressed dual character. In one case they

have the behaviour of the particles, but in other - of the waves. The

idea for particle-wave duality of the photons was raised firstly by

Einstein in 1917 when he suggested the introduced by Plank quanta to

be considered as peculiar particles with the energy ω=E  and

momentum cp /ω=  (the photons one call them after 1923).

7.4 DE BROGLIE’S WAVES. WAVE-PARTICLE

DUALITY

Let summarize the principal problems considered up to now. The

Maxwell's theory for the electromagnetic waves and the experiments of

Hertz prove the wave nature of the radiation. However this wave

theory can not explain some experimental facts as the spectrum of

blackbody radiation, photoelectric effect, the specific heat of solids and

the Compton effect. For their explanation one suggests the hypothesis

of the quanta (the photons), according to which the radiation has

discrete character and exhibit particles-like properties. To every

electromagnetic wave with frequency and wavelength can be

associated energy E and momentum p so that:

.,
λ

νω h
kphE ==== (7.33)

Discreteness and wave-particle dualism are two basic ideas, which

have not an analogue in classical physics and which development leads

up to quantum mechanics.

In 1924 Louis de Broglie did the next step. He suggested that if the

radiation had a particle-like nature, then it should follow from basic

concepts of symmetry that particles ought to posses a wave-like nature.

Moreover he went out to suggest that the same basic relationships

about the energy and the momentum should exist in the both case.

Thus the frequency and the wavelength of the waves in order to be

associated with particles ought to be related to their energy and

momentum by the same relation as Eqs. (7.33):

/ , / , orE h h pν λ= =
(7.34)

Thus for particles the equalities (7.33) have a real physical sense if

they are read from right to the left. So we get to the fundamental

ω = =E k/ , p / .
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connection between particles and waves. The waves associated with

particles are called de Broglie's waves. Then, taking into account the

relativistic character of the energy, de Broglie maintains the connection

between the phase 
ph

v  and the group 
g

v  velocities of these waves with

the velocity v  of the particles.

Substituting the wave characteristics ν  and λ  and taking into

account that 2
mcE =  we obtain

.
22

v

c

mv

mc

p

E
v

ph
==== λν (7.35)

As always cv < , the phase velocities of the de Broglie's waves is

greater than the velocity of light.

According to the definition, the group velocity is kv
g

∂∂= /ω .

Passing from wave to particles characteristic and finding the derivation

pE ∂∂ / , we obtain following:

v
mc

mvc

p

E

k
v

E

pc

p

E
cmcpE

g
==

∂
∂=

∂
∂==

∂
∂+=

2

22
42

0
222 ,,

ω
. (7.36)

The group velocity of the de Broglie's wave is equal to the particle

velocity.

If de Broglie's suggestion is correct, the wavelength of the

associated wave with a microscopic particle is ph /=λ . For example,

for an electron after it has been accelerated through say 150 volts it is
1=λ Å and for some atoms at room temperature it is as follows: for H

it is 2,1=λ Å (for the molecule H2 it is 84,0=λ Å), for He it is

7,0=λ Å, for Ag - 06,0=λ Å. For an observation of the diffraction of

the wave with such small wavelength one needs slits of the same order.

Therefore the crystal lattice of some element (the atoms have a spacing

of several angstroms between them) appears to be suitable.

The first experimental proof of the existence of matter wave was

being undertaken by Davisson and Germer in 1927. Their brilliant

experiment is shown on Fig. 7-14. A beam of electrons is directed onto

the surface of nickel crystal. The electrons have been elastically

scattered from the crystal surface. Angular distribution of the scattered

electrons has been measured. The electron scattering was found to have

very pronounced maxima and minima. For the distribution they

received a diffraction picture of dark and light rings which intensity

decreased out of the centre. The explanation of this is trivial if accept
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the hypothesis of de Broglie, that with the electron can be associated a

wave with wavelength . A study of Fig. 7-14 indicates that the path-

length difference for rays, which have been scattered from successive
layers of nickel, is given by θsin2d . At the condition (Bragg relations)

2 sin ,

1
2 sin ( )

2

d n

d n

θ λ

θ λ

=

= +
(7.37)

Figure 7-14. The experiment of Davisson and Germer: a beam of electrons incidents

on at monocrystal (a); The electrons reflected from successive atomic layers with a

path-length θsin2d=Δ interfere according to the de Broglie hypothesis and as a result

one get the diffraction picture (b).

one obtains correspondingly bright and dark rings.

The experiment of Davisson and Germer is a realization of the con-

sidered experiment criterion and proves that the particles, such as elec-

trons, exhibit wave-like properties. More than this, in 1949 Russian

physicist Fabricant passed weak electron beam through the diffraction

apparatus, which corresponded, to our criterion. The time interval bet-

ween two electrons was larger than the pass time (the time from source

to the screen) 410  time. In fact the electrons pass individually. The re-

gistration was made by the fluorescent screen. The result was analo-

gous to the corresponding experiment with photons and the view was

analogous to the Fig 7-12 and Fig. 7-13 (the difference was only in wa-

velength). Like the photons the electrons were registered as particles.

But after a long exposition (many electrons) their distribution on the

screen forms a diffraction pattern and fall into their bands (rings).

A lot of experiments prove dual character of the microscopic ob-

jects. (To the last ones we relate the photons, the molecules, the atoms

and the elementary particles.) It is remarkable that one and the same
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object once exhibit wave properties (the photons and the electrons

diffract when they pass through the slits of enough small dimensions -

the diffraction grating or the crystal lattices), but the other time -

particle properties (the photons - the photoelectric effect and the effect

of Compton, the electrons - for example in the cathode-ray tube).

Sometimes a microscopic object exhibits itself as a wave (for example

at the propagation), but some times - as particles (for example at the

registration). But this does not mean "it behaves as it wants". Quantum

mechanics allows defining in which experiments it will appear as a

particle and in which - as a wave. In modern physics the wave-particle

dualism is understood as potential possibility of the microscopic object

to exhibit these or those properties in the dependence of the outer

conditions (in particular plus the measurement and the observe

conditions). Clearly and shortly the essence of the dualism is expressed

by V. A. Fock in the article "For Interpretation of Quantum

Mechanics" (V. A. Fock, Philosophy Question of the Modern Physics,

Moscow, AS of SU (in Russian)) so: "One may say that the potential

possibility exists for atomic objects to appear or as a particle, or as a

wave on dependence of the outer condition. The wave-particle dualism

consists namely, in this potential possibility of different appearing of

the property inhered of the microscopic object. Every other, literal

understanding of this dualism as some model is not correct".

The microscopic object is neither a particle nor a wave. It is a

peculiar object, which can appear wave-like and particle-like properties

depending on the conditions.

Let us summarize some important properties of the dualism. The

phenomenon of interference is inhered to all microscopic objects. It

cannot be explained by the interaction of the microscopic objects

between them, i.e. neither by their collective properties, but by the

properties of the separate, individual microscopic object. From the

experiment-criterion it is clear that it is impossible to predict in which

point of the screen the single microscopic object will fall. But one can

predict the behaviour of the great number of the microscopic objects,

i.e. how they will be distributed on the screen.
The interference-diffraction picture is obtained and when the microscopic

objects are launched one by one to the double slits (see 1 2I on Fig. 7-11).

This picture is not a sum of the pictures when one of the slits is covered up,

i.e. 1 2 1 2I I I≠ + . Therefore we are forced to recognize that the photon passes

some how through both slits at the same time. If we suppose that it passes

through only one of the slits we must admit that it "knows" about the exis-

tence of the other slit and it is influenced by this knowledge. Of course from

such concept the phenomena do not become clearer and more obvious. It is

impossible to imagine how this happens, but the experimental fact remains.
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At the end, when we have a notation for the basic ideas - a

discreteness and a wave-particle dualism - we shall underline the fun-

damental role of the Planck's constant. First it serves as a measure of

the discreteness of the microscopic systems. It defines the bundle νh  of

the radiation energy and the step π2/h  of changing of the orbital an-

gular momentum. It serves and as a measure of the limit of the micros-

copic phenomena (the quantum phenomena) and the macroscopic

phenomena (the classical phenomena). For example, if the orbital

angular momentum is much greater that  the quantization may be

neglected and the angular momentum may be considered as classical

one. In this aspect it is interesting to note that the intrinsic angular

momentum S can not be essentially large. Therefore the quantization

can not be neglected and the spin has not a classical analogue!

Second it plays the role of a connection between the wave ( ,ω k )

and particles' ( p,E ) properties of the microscopic objects: ,E ω=
=p .  We would like to underline that one and the same constant plays

the both roles. This fundamental fact results from the intrinsic unity of

the both basic ideas of quantum mechanics.

SUMMARY

The principal difficulties of classical physics when it tries to explain

the properties of the microworld are in the following phenomena: the

blackbody radiation, the photoelectric effect, the specific heat of solid

state, the atomic spectra and the atom structure, the X-rays and the

Compton effect. In all these phenomena the difficulties arise from the

mechanism of interaction of the mater with radiation.

The main particularity of the phenomena of the microscopic world

consists of character discreteness, appearing in the existence of an

indivisible quantum of action h. This discreteness of the action is one

of the most fundamental properties of the Nature. In macroscopic scale

h is infinitesimal value and neglecting it we can consider dynamical

values classically as exactly defined and changing continuously. In

atomic and subatomic physics h can not be neglected and the

phenomena are purely quantum ones. The discreteness, i.e. the

quantization is observed as at the radiation (quanta νh ) as at the matter

(the qauntization of the energetic levels and the orientation of the

angular momentum of the electrons in the atoms and etc.).

In some experiments the photons exhibit as wave (interference and

diffraction), but in others - as particles (a photoelectric effect, a

Compton effect). The same appears for microscopic particles as well.

They may interfere and diffract (a diffraction of electrons and

k
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neutrons) or register as particles on the screen, on the photographic

plate or in Wilson camera.  Microscopic objects can exhibit as waves

or as particles depending of the conditions. The compatibility of these

properties is not possible in classical physics. The wave-particle

dualism is the second basic idea in quantum mechanics.

Planck, Einstein, Bohr and de Broglie did the first suggestions and

hypothesis, which led to the development of these ideas.

P l a n c k - the energy emission and the absorption of
electromagnetic radiation are discrete with quanta ω

.ω=E

E i s t e i n - the light is a beam of Planck quanta (photons); later:

the photons (the quanta) with an angular frequency and a wavelength

can be considered as particles of energy E and a momentum p

., kpE == ω

B o h r - the quantization (the discreteness) is character for the atom

- the energies between the energetic levels are equal to the Planck

quanta; the space quantization is multiple to the Planck constant.

D e  B r o g l i e - as the photons with a frequency  and a

wavelength can appear as particles with energy E and momentum p

so the microscopic particles with energy E and a momentum p can

appear as waves with a frequency  and a wavelength 

( phkhE //2,/ === πλν ) - wave-particle dualism.

QUESTIONS

1. What could not explain classical physics in the blackbody radiation?

2. Which is the experimental and theoretical (classical) dependence of the

specific heat of solid state on the temperature?

3. Why is not the Rutherford's model realistic one according to classical

physics?

4. What is the relation between the wavelength of the incident and

scattering wave, when Roentgen wave are scattered by free electrons?

5. What is the idea of Planck for explanation of blackbody radiation?

6. What is new in comparing the suggestion for the explanation of

photoelectric effect with the idea of Planck?

7. How do you explain physically the increase of the wavelength of the

scattered wave of the Compton effect using the Planck's quanta?
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8. What do you understand when it is said that the phenomenon interference

is presented in every diffraction?

9. How do the diffraction patterns from one and two slits (apertures) differ?

10.What is the income of the diffraction and of the interference of photons,

passing trough two slits?

11.What are the basic categories of classical objects and how do they differ

from one another?

12.What is the principal difference in passing of particles and wave through

two slits?

13.In what does the dualism consist of the electrons, passing one by one

through two slits? Through which slit does a single electron pass?

14.What is the connection of the group velocity of de Broglie waves with the

particle properties of the microscopic objects?

15.What does the experiment of Davisson and Germer prove?

16.How does modern quantum mechanics interpret the dual character of the

microscopic objects?

17.Which are the both basic ideas of quantum mechanics?

18.What is the role of the Planck constant in the both basic ideas of quantum

mechanics?

PROBLEMS

1. In a photoelectric-effect experiment, it is found that when the surface of

sodium metal is illuminated with light of wavelength 4200=λ Å, the

stopping potential is 65,00 =V  V. When a metal is illuminated with light

of wavelength 3100=λ Å, the stopping potential is 69,10 =V  V.

Calculate Planck constant for these data.

2. Calculate the de Broglie wavelength associated with an electron with a

kinetic energy of 150 eV.

3. Obtain the dependencies ( ) ( )kvk
ph

,ω  and ( )kv
g

 for the de Broglie plane

wave, which describes the free motion of a particle of rest mass 0m .

4. Find out the wavelength of the de Broglie wave for a nonrelativistic

particle of mass 0m  and temperature 0T .

5. The photons with a wavelength 024,0=λ Å impinge on free electrons.

Calculate the wavelength of the photon that scattered at the angle 30˚ and

kinetic energy of the electron. Which will be these values at the

scattering angle 120˚?

6. How many infrared light quanta with the wavelength 10=λ  μm (the

frequency 133.10ν =  s 1− ) are necessary to heat 1 mol water from

temperature of 0 ˚C to 100 ˚C?
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8.1 BOHR’S MODEL

As it has been mentioned the difficult problem of the stability of the atom

has been solved by the Bohr's postulates. The verification of these postulates

as of any set of postulates can be found only by comparing the predictions

that can be done from the postulates with the results of the experiment. In

this section we consider some of these predictions and compare them with

the data from Section 7.2.

Let us consider an atom, consisted of a nucleus of charge +Ze and mass

M and a single electron of charge -e and mass 
e

m . Such atoms are, for

instance, hydrogen atom with 1=Z , a singly ionized helium atom with

2=Z , a doubly ionized lithium atom with 3=Z , etc. (The ionized atoms

having only single electrons are called hydrogen-like ions.) According to

Bohr the electron revolves in a circular orbit around the nucleus. Initially we

shall suppose that the mass of electron is completely negligible compared to

the mass of nucleus, i.e. the nucleus remains fixed in space. The second

Netown's law for the circular motion of the electron gives

2 2

0 2
,

e

Ze v
k m

r r
= (8.1)

where v  is the speed of the electron and r is the radius of its orbit. This is

merely the equation amF
e

= . The Coulomb force acts on the electron and

keeps it in its orbits by the normal acceleration. As the acting force is central

one (see (3.18)) the orbital angular momentum of the electron must be a

constant. Applying the second Bohr's postulate to the vrmL
e

=  we have

...,3,2,1, == nnvrm
e

(8.2)

Finding v and substituting it into (8.1), we obtain

22 2 2

0
02 2

0 0

, , 1, 2, 3, ...
e e

n an
r a n

k m Ze Z k m e
= = ≡ =  (8.3)

Now from the Eq. (8.2) it is easy to define the speed v of the electron
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...,3,2,1,
2

0 === n
n

Zek

rm

n
v

e

(8.4)

The application of the Bohr's rules of the angular-momentum quantization is

restricted to allowed ones of the radii 2
nr ∝  (8.3). Replacing the known

values of the constants we obtain for the radius of the smallest orbit (n=1) of

the hydrogen atom (Z=1) as follow

2
10

1 0 2

0

0,53.10 m 0,5
e

r a
k m e

−= ≡ = ≈  Å. (8.5)

A little further on we shall show that the electron has minimal total

energy on the orbit with n=1. Therefore we may interpret this radius as a

radius of a hydrogen atom in its normal state. The other methods gives an

estimate of the order of magnitude 1 Å. So the Bohr's postulates predict a

reasonable size for the H atom. For the orbital speed v in the normal state we

obtain from (8.4) 
6

10.2,2  m/s. It is apparent from the Eq. (8.4) that this is

the maximal possible velocity for the electron of the hydrogen atom. This

velocity is much smaller than the velocity of light (~1%) and this fact allows

to use classical mechanics for the H atom in Bohr's model. At the same time

Eq. (8.4) shows that for large values of Z the electron velocity becomes

relativistic. And an other interesting conclusion from this equation - the

quantum number n cannot take the value n=0.

Knowing the velocity of the electron and the force between it and the

nucleus, we can find the total energy of the electron. The potential energy at

a given distance from the nucleus is

r

Zek
U

2
0−= . (8.6)

The potential energy of the electron is zero when it is in the infinitely

distance from the nucleus and the sign is negative because the Coulomb

force is attractive. From (8.1) we obtain for the kinetic energy the following:

.
22

1
2

02

r

Zek
vmT

e
== (8.7)

Then the total energy E of the electron is
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2

0 .
2

k Ze
E U T T

r
= + = − = − (8.8)

Substituting in this formula r from (8.3), we have

2 2 4 2

0

2 2 2

1
, 1,2,3, ...

2

e

n

k m Z e Z
E n

n n

ℜ= − = − = (8.9)

Substituting the value of and,, 0 ekm
e

 we receive for the constant ℜ
approximately

4 2
180

2
2,17.10 J 13,6

2

e
m e k

h

−ℜ = = =  eV. (8.10)

From the expression (8.9) we can do an important conclusion: the quantiza-

tion of the orbital angular momentum leads to the quantization of the total

energy of the electron. The energy-level diagram is shown in Fig. 8-1. With

the increasing quantum number n the total energy becomes less negative.

Figure 8-1. An energy-level diagram for the hydrogen atom.
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And it approaches zero as n approaches infinity. The normal state of any sys-

tem is the state with lowest energy. From the diagram we see that this is the

state with n=1. From Eqs. (8.9) and (8.10) for the H atom (Z=1) we obtain

6,13−=−ℜ=E  eV, (8.11)

which very well fits the experimentally obtained binding energy for H atom.

Let us consider the next situation. Initially an electron moves in an orbit

with quantum number 
i

n ; then it changes its state to one with number 
f

n

(
fi

nn > ). When the electron makes such transition it emits the

electromagnetic radiation of frequency . Using the Bohr's model, namely

the fourth postulate, and (8.11) we obtain

2
2

2 2 2 2

1 1 1 1i f

f i f i

E E Z
Z

h h n n n n
ν

⎛ ⎞ ⎛ ⎞− ℜ≡ = − = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
R , (8.12)

where R stands for

.s10.27,3
4

1-15

3

42
0 ≈=ℜ≡
π

emk

h

e
R (8.13)

Going to spectroscopic frequency (see (7.6)) we can write (8.12) in the

following form:

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−==

22

2 11
*

if
nnc

Z

c

Rνν . (8.14)

The expressions (8.9) and (8.12) allow concluding:

1. The state with the lowest energy, which is called ground state

(sometimes it is called normal state) is the state with 1=n .

2. The states, in which 1>n  have higher energy and they are called exited

states. In some physical processes the electron receives additional energy

and it makes transition to these states.

3. Any physical system tends to the lowest energy. Thus, an electron in an

excited state makes the series of transitions to the states of lower energy.

At every transition the difference of energy EΔ  between levels is emitted

as a photon with the frequency hE /Δ=ν  under the form of the

electromagnetic radiation. For example, the electron is exited into state

6=n  and transits successively to the states 4=n , ,3=n 2=n  and
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1=n . Four lines of the hydrogen spectrum are emitted with frequency

given by (8.12) ( 1=Z ) for 6=
i

n  and 4=
f

n , 4=
i

n  and 3=
f

n ,

3=
i

n  and 2=
f

n , and 2=
i

n  and 1=
f

n .

4. During the measurement of the atom's spectrum a very large number of

atoms are excited and then successively deexcited. So all possible tran-

sitions occur and the complete spectrum is emitted. The frequencies of

the spectral lines are defined by (8.12). For emission spectrum 
fi

nn > .

When Bohr suggested his hypothesis the Balmer series had been well

known. Therefore let us consider the series of spectral lines of hydrogen with

2=
f

n  and any 2>
i

n . According to (8.14) the spectroscopic frequencies of

these lines are following:

2 2

1 1
* , 3, 4, 5,...

2
i

i

n
c n

ν
⎛ ⎞

= − =⎜ ⎟
⎝ ⎠

R
 (8.15)

This coincides with the phenomenological formula (7.6) for the Balmer

series if the relation

c

emk

c

e

3

42
0

4π
=R

(8.16)

is equal to the experimentally found Rydberg constant R  (7.7). Substituting

the constants in (8.16) we found that c/R  very good agrees with the

experimental value of R. Thus the Bohr's model does not only explains the

spectral lines but also gives the explicit view of the Rydberg constant

through well known physical constants:

c

emk

chc
R

e

3

42
0

4π
=ℜ== R . (8.17)

Here we would like to note that the introduced constants ℜ  (8.10) and

R  (8.13) are received by multiplying Rydberg constant with other constants

- respectively by ch and c. Customarily the three constant values are called

Rydberg constants, being expressed R  in m
-1

, R  in s
-1

 and ℜ  in J or eV.

According to Bohr each of the known series for the H atom (Table 7-1)

arises as the transitions of an electron to the fixed final state 
f

n . The first



8. OLD QUANTUM MECHANICS 189

five series are shown in Fig. 8-2. Only the lines of the Balmer series are in

Figure 8-2.  Energy-level diagram for hydrogen with some of the possible transitions (top)

and the corresponding spectral lines for the shown three series.

the visible region. This is the reason why the other series were discovered

only after they had been predicted by Bohr theory (these series were named

after the scientists who experimentally discovered them). This was a great

triumph for Bohr's model.

We have obtained for one-electron atom the spectrum (8.14) for arbitrary

Z. If we take singly ionized helium atom for which 2=Z , we obtain the

spectrum that agrees very well with the experimentally obtained one. The

spectrum of He
+ .

is analogous to the spectrum of the hydrogen, but

frequencies of the lines are four ( 42 =Z ) times as great.

Above we assumed the mass of the nucleus to be infinitely larger than the

mass of an electron. Now we shall evaluate this approximation, taking into

account that the nucleus mass is in fact finite. In such a case the electron and

the nucleus move around the their common centre of the mass. According to
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the analysis performed in Chapter 3, we can use the results, obtained for the

fixed nucleus replacing in them the mass of the electron 
e

m with the reduced

mass m
~  of the system:

.~

Mm

Mm
m

e

e

+
= (8.18)

Here M is the mass of the nucleus. Because of this fact the Rydberg constant

is actually less than that evaluated by (8.17) by a factor ( )Mm+1/1 . For the

hydrogen atom it is only with 1/2000 fraction less than ℜ :

.
~

~ ℜ=ℜ
e

m
m

m
(8.19)

Here 
m
~ℜ  stands for the Rydberg constant of a single-electron atom with

reduced mass m
~ .

8.2 INTERPRETATION OF THE QUANTIZATION

RULES

The Sections 7.2 and 8.1 have given evidence, that the energy of an

electron in an atom is quantizied. If E is to be quantized, some restriction has

to place on fixed series of values, such as vr,  or some functions of them.

Bohr had chosen to restrict the angular momentum. But no indication has

been given of why this should be so or how the values, which the energy

may have, can be calculated. The Bohr'r postulates are in the base of the so-

called old quantum mechanic which is a mix of classical mechanic and rules

of quantization. Now it has been replaced by new quantum mechanics,

which is described in the following chapters. But the old quantum mechanics

is of great historical interest and is extremely useful in giving a qualitative

description of the behavior of the atoms. So we think that it is well worth

understanding it and their qualitative picture would be very helpful to the

chemists. The old quantum mechanics is exposed in details in the book of

Sommerfeld [R33].

In 1916 Wilson and Sommerfeld, trying to solve the mystery of the

Bohr's postulates, suggested a rule for quantization:

For a given physical system any co-ordinates, which is a periodic

function of time, satisfied the quantum condition
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,
q q

P dq n h=∫ (8.20)

where q is one of the generalized co-ordinate, 
q

P  is a generalized

momentum canonically conjugated with it, 
q

n  is an integer quantum number

and the integration is taken over one period of the co-ordinate q.

Planck has considered the blackbody radiation as the set of the sinusoidal

waves and therefore let illustrate the quantization rules by an example of

one-dimensional harmonic oscillator with mass m. According to Section 5.2

its total energy as a function of the co-ordinate x and the momentum 
x

p  (for

the oscillator the canonically conjugated momentum 
x

p  of the co-ordinate x

is equal to the mechanical momentum (see Section 6.5)) is:

2 2

.
2 2

x
p x

E T U
m

κ= + = + (8.21)

In phase space (
x

px, -plane) this is the equation of the ellipse (Fig. 6-2c)

with the semiaxes 2 /a E κ=  and mEb 2=  - 1// 2222 =+ bpax
x

. The

value of the integral 
x

p dx∫  is equal to the area of this ellipse abπ :

x
p dx abπ=∫ . (8.22)

Substituting in this equation the semiaxes a and b we obtain:

02 /
x

p dx Eπ ω=∫ , (8.23)

where 0 / mω κ=  is a natural angular frequency of the oscillator. If now

we apply the Wilson-Sommerfeld quantization rule (the co-ordinate x is a

periodical function of time) we have:

02 /
x x

p dx E n h nh E nhπ ω ν= = ≡ ⇒ =∫ . (8.24)

Thus using the Wilson-Sommerfeld quantization rule we obtain Planck's

quantization law.
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As a second example we shall consider the Bohr's rule of the angular-mo-

mentum qauntization. We shall show that it can be deduced from the Wil-

son-Sommerfeld rule. According to the Bohr's model the electron of hydro-

gen is revolving around the proton in a circular orbit with the constant angu-

lar momentum L. The angular co-ordinate ϕ is a periodic function of time.

As the function of time it increases linearly from zero to 2  in one period

and this is repeated in each succeeding period. The generalized momentum

for the co-ordinate ϕ is angular momentum L (see Table 6-2). The Wilson-

Sommerfeld quantization rule (8.20) for the considered case becomes

Ld nhϕ =∫ . (8.25)

But as the angular momentum is constant (see for details Section 3.3) the

simple integral on the left side is equal to .2 Lπ  Hence from (8.25) we have

.
2

,2 n
nh

LnhL ≡=⇒=
π

π (8.26)

But this is a Bohr's quantization rule and in the old quantum mechanics it

can be deduced by the Wilson-Sommerfeld quantization rule. The physical

meaning of the Bohr's quantization rule was given in 1924 by de Broglie.

According to his hypothesis a wave is associated to every particle. But an

electron in atom is shut up in a confined space, and the associated wave is

therefore a standing wave. According to Bohr's model the electron in an

atom moves in a circle. This does not correspond to the reality, since the

electron in atom, as the new quantum mechanics shows, is not constrained to

move in a circle. But this gives an elegant and simple connection between

the quantization ant the wave properties of the electron. Consider the

electron at point P in the Fig. 8-3a, at a distance x from some fixed point O

on the circle, measured along the circumference. The wave, which describes

it moving around the circle with velocity v, is

( ) ./cos vmkkxt
e

=±= ωψ . (8.27)

The plus or minus represents that the wave can propagate in either

direction, i.e. the electron can traverse the orbit in either direction. The both

waves superimpose and form the standing wave. This wave is fully

analogous to the standing wave of a string secured at both ends. But if the

wave function is to come back to the same value on going round the circle,

so that it is single valued, an integral number of wavelengths must fit into the
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Figure 8-3. Wave function of a particle on a circle. a) A continuous single-valued solution of

the equation, which does describe a physical state - this is an n (n=5) equivalent of a standing

de Broglie wave. b) A solution which does not describe a physical state.

circumference. Otherwise there will be a misfit (Fig. 8-3b). So, it follows

that

rn πλ 2= . (8.28)

Here r is the radius of the circle and n is an integer. Using (7.34) for the

electron ( vmh
e

/=λ ), this gives

nvrm
e

= , (8.29)

which is the Bohr's condition for the quantization of the angular momentum.

There is however one important difference between this condition and the

Bohr's postulates (7.14). There is no reason why n should not have the value

zero in Eq. (8.29). Actually, the new quantum mechanics shows the angular

momentum in the state with minimal energy is zero.

We shall consider one more example, from which one can see, that the

Wilson-Sommerfeld rule is connected with the requirement that the de Brog-

lie waves form a standing wave. Consider a particle of mass m, which moves

freely along the X-axis from 0=x  to ax = . We can imagine that the free

electron moves in one-dimensional piece of metal. The particle bounces back

and forth between the ends of the region with constant magnitude of the

momentum pp
x

= , which only changes its sign. As the co-ordinate x is a

periodical function, we can apply the Wilson-Sommerfeld quantization rule:
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2 2
x

h
p dx pdx p dx p a nh n a

p
= = = = ⇒ =∫ ∫ ∫ . (8.30)

But according to (7.34) h/p is just the de Broglie wavelength of the particle:

an =
2

λ
. (8.31)

Thus an integral number of de Broglie half wave fits the trajectory of the

particle in one traversal of the region, giving the possibility the waves with

successive traversals to be in phase and hence to set up a standing wave.

The considered example has an interesting result. For the energy of the

particles we easy obtain:

2

2

22

2

222

282
n

mama

hn

m

p
E

π=== . (8.32)

The discussed example is identical to the problem of particle in the

infinite square well potential. In quantum mechanics this problem can be

solved exactly (Section 12.2). The obtained here result coincides with the

precise result within the coefficient. It is important to underline that the

energy of the particle is quantizied.

8.3 SOMMERFELD’S MODEL

We know from classical mechanics that electron in hydrogen atom can

move in elliptic orbits (Section 3.4). Assuming the elliptical motion in polar

co-ordinate r  and ϕ , which are periodical functions of time, we can apply

the Wilson-Sommerfeld's rule. At this, a generalized momentum for the co-

ordinate ϕ  is angular momentum L  and for co-ordinate r  - the r -

component 
r

p  of the momentum p , and we can write the following:

, .
r r

Ld n h p dr n hϕϕ = =∫ ∫ (8.33)

The first quantum condition is the same as about the circular motion and

we know the restriction on the angular momentum:

, 1, 2, 3, ...L n nϕ ϕ= = (8.34)
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The second relation gives the relationship between angular momentum

and semiaxes of the ellipse (see Fig. 4-3):

...,3,2,1,0,)1/( ==−
rr

nnbaL (8.35)

Here a and b are the semimajor and semiminor axes of the ellipse. In the

Bohr-Sommerfeld model the Bohr quantization (7.14) for angular

momentum for a circular orbit is replaced by two quantum conditions: one

for radial momentum 
r

p  with radial quantum number 
r

n  and one for

angular momentum Lϕ  with azimutal quantum number nϕ .

Sommerfeld has used third equation (the details can be seen in [R35]),

which gives him possibility to find the three unknown quantities - semimajor

and semiminor axes a and b and also the energy of the electron. The

complete analysis shows that the energy depends only on the sum of the two

quantum numbers:

r
n n nϕ= + ,          ...,3,2,1=n  (8.36)

The quantum number n is called principal quantum number. For our short

exposition it is enough to give only the energy:

22

422
0

2

~

n

eZmk
E −= . (8.37)

Here m
~  is the reduced mass (8.18) of the electron and the nucleus. The

energy depends on principal quantum number n, but not on numbers 
r

n  and

nϕ . To each value of n there are n different allowed orbits, which have the

same energy. Thus, when 1=n , 1nϕ =  and 0=
r

n  the orbit is circular;

when 2=n , either 2nϕ =  and 0=
r

n  or 1nϕ =  and 1=
r

n  (two orbits);

when 3=n  there are three possible orbits, corresponding to the azimuthal

numbers 1, 2, 3nϕ = . For this values of n the orbits are shown in Fig. 8-4.

The similar phenomenon is observed in planetary and satellite motion, which

is governed by the gravitational force. It is the inverse square force, i.e. it is

change analogous to the acting in the atom Coulomb force as 2/1 r .

Here we shall note that, as we shall see later, quantum mechanics proves

that an electron in an atom can have angular momentum 0=L , i.e. 0nϕ = .

The visualization of the Bohr-Sommerfeld model is very useful. In order to

use it for qualitative illustrations we are forced to imagine the case with

0=L  as "the motion" along a line segment forward and backward in
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relation to the nucleus (see Fig. 14-7). This interpretation is present in Fig.

8.4. We underline that this is an imagination, not reality.

Figure 8-4.  The elliptical Bohr-Sommerfeld orbits for n=1, 2, 3. The indicated by the dot

nucleus is located at the focus of the ellipses. To illustrate the motion with L=0 which is

proved both by new quantum mechanics and experimentally we are forced to imagine the

elctron motion as a "motion" along a line segment forward and backward.

The analysis above in the frame of the Bohr-Sommerfeld model shows

that the energy of the electron does not depend on the angular momentum,

i.e. it is defined only by the quantum number n and the state with fixed n and

consequently with energy 
n

E  in reality consists of n state with this energy

but with different angular momenta. The introduction of elliptical orbits does

not introduce any new energy levels. The problem of the splitting of the

spectral lines, which has been experimentally proven, remains. Sommerfeld

showed that it could be solved if relativistic effects are taken into account.

The electron in a circular orbit has constant velocity, but the electron in an

elliptical orbit has different velocities in different positions, accelerating up

when the electron is near the nucleus and slowing down when it is far away.

This will lead to the relativistic variation of the mass of the order ( ) 2
/v c .

Due to this the elliptical path actually becomes a precessing ellipse, i.e. a

rosette, analogous to that in Fig. 4-4. The precession rate depends on L, i.e. it

depends on nϕ . Hence energy of the electron depends except on quantum

number n, also and on nϕ . Sommerfeld showed that the energy is equal to

2 2 4 2 2

0

2 2

1 3
1 .

2 4

k mZ e Z
E

n n n nϕ

α⎡ ⎤⎛ ⎞
= − + −⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

(8.38)
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The quantity is a number, which is expressed by fundamental physical

constants and is called the fine structure constant:

2
30 1

7,297.10 .
137

k e

c
α −≡ = ≈ (8.39)

Fig. 8-5 shows the energy-level diagram for the first three level of the

Figure 8-5. Energy-level diagram with relativistic correction that leads to the fine structure -

the transitions with dashed lines are not allowed and with solid lines are allowed.

hydrogen atom in which the relativistic effects are taken into account. Lines

corresponding to the transitions represented by the solid lines are in very

good agreements with the experimentally observed ones. The lines

corresponding to the transitions represented by the dashed lines are not

found experimentally in the spectrum. Only those transitions are observed

for which nϕ  changes by unity - 1nϕΔ = ± .

8.4 SUCCESS AND FAILURES OF THE OLD

QUANTUM THEORY

The ideas in the first steps of quantum mechanics, briefly presented in the

Chapter 7 as well the exposition in this chapter are the foundations of the old

quantum mechanics. Most generally it could be said that this is the classical

consideration combined with different rules of quantization of Plank, of

Bohr, of Wilson-Sommerfeld. In many aspects this theory was very

successful. It was more successful than may be apparent to the readers,

because we have not mentioned here many good applications of the old

quantum mechanics, which were confirmed by the experiment.
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One of the most impressive achievements of the old quantum mechanics

was the quantized energy of the atomic electron, which had been observed in

the experiment. The expression (8.9) gives the allowed energy value for the

electron in an one-electron atom, not for the electrons in a multielectron

atom or in atoms combined in molecules or solids. But the quantization is

true for all atoms and for this matter for the molecules and the solids. The

quantization is by no means restricted to hydrogen. It has survived the

introduction of the new quantum mechanics and as we shall see in Chapter

14 has been confirmed by it though the orbital theory which Bohr used to

calculate 
n

E  for the simplest atom of H. This was amply confirmed by

experiment and now we shall describe some of the experimental evidence.

The experiment of Franck and Hertz has confirmed the discrete character

of the energy of an atom. The apparatus which they have used is shown

schematically in Fig. 8-6a. The electrons are emitted by the heated cathode

C. Then they are accelerated by a potential 0V  towards the anode A, made as

a grid. Some electrons pass through this grid and if they have enough energy

to overcome the small retarding potential 
r

V  between A and the plate P

reach P. The tube T is filled at low pressure with the vapors of the element

under investigation. The resulting current is indicated by the ammeter I.

The experiment is carried out by the mercury vapor. The result is shown

in Fig. 8-6b. At low voltage the current increases with increasing voltage 0V .

But when 0V  reaches 4,9 V there is a sudden decrease in the current. This

shows that in this case the electrons have enough energy to cause inelastic

collisions with atoms of Hg. In this case the electron gives up the greater part

of its energy to the atom, causing the excitation of the latest. When such

electrons reach anode A they have not enough energy to overcome the small

retarding potential 
r

V . At further increase of 0V  the electrons gain enough

Figure 8-6.  The experiment of Franck and Hertz, proving that the atomic energy is

quantizied: a) schematic of the apparatus; b) the dependence of the current on the accelerating

voltage.
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kinetic energy to reach the plate P and the current 
p

I  increases once again.

If the electrons have enough energy they can cause more than one inelastic

collision. Thus we can expect peaks in the current at 4,9 V, 2.4,9=9,8 V,

3.4,9=14,7 V, etc. We can see in Fig.8-6b the abrupt droppings of the current

just beyond these voltages.

This interpretation is in accordance with the existence of the discrete

energy level of the Hg atom. Let us suppose that first excitation state is with

the energy level 4,9 eV larger than that of the ground state. Then the atom

simply can not accept the energy of the striking electron, if the last has the

energy smaller than 4,9 eV. If the changing of energy between the ground

state and the first excitation level is really 4,9 eV there should be a line in the

Hg spectrum with the photon with energy 4,9 eV. Frank and Hertz found in

the experiment that when the energy of the electron is slightly above 4,9 eV

only a single line is seen in the spectrum, namely the line with 2536 Å,

corresponding exactly to the photon with such energy.

The old quantum theory explains many elementary aspects of the atomic

spectra of hydrogen and hydrogen-like ions. But many aspects of physics of

atoms, mainly of many electron atoms, remained unexplained, which did not

permit it to develop as consecutive and self-consistent theory. Some of

unexplained aspects are following:

1. The behavior of the systems, which are not periodic (the theory tell us

how to treat systems which are periodic by using the Wilson-

Sommerfeld quantization rules).

2. The spectra of atom, having more than one valence electron (the theory is

only successful for one-electron atom and it treats approximately the

alkali elements (Li, Ka, Rb, Cs), which have one valence electron, but it

fails badly for other multielectron atoms).

3. The intensities of different transitions (the theory does not tell us how to

calculate the rate of these transitions and it can not always tell us which

transitions are observed and which are not).

4. All of the effects of the magnetic field on atomic spectra (the theory

explains only the simplest cases, but not all).

5. The logical reason for using the different quantum numbers.

The entire theory is intellectually unsatisfying - it is not consecutive and

consistent. These difficulties have been overcome by the development of

quantum mechanics. But in many cases the old quantum mechanics is

frequently employed as the first approximation, because its mathematical

procedures are considerably less complicated than those in quantum

mechanics and it is helpful the visualizing many processes in atomic world.
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SUMMARY

The old quantum mechanics is in essence a classical theory to which are

added the quantization rules and the dual character of the macroscopic

object. Dispite of its classical character it has remarkable achievements. This

is due to the using of the two basic ideas for discreteness and duality of the

matter object. Many phenomena irresistible for classical physics find their

explanation through the quantization rules of Planck, Bohr and Wilson-

Sommerfeld and through the de Broglie waves.

The Bohr postulates give the possibility to determine the radius, the

velocity and the energy of the electron at its motion in the allowed orbit. The

energy is defined by the quantum number n:

2 2 4

0

2 2

1
, 1,2,3,...

2
e

n

k m Z e
E n
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The Bohr's model explains all spectral lines of the hydrogen atom and

expresses the Rydberg constant through the known constant physical values:
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The Wilson-Sommerfeld quantization rule generalizes the Bohr's

quantization rule for every generalized co-ordinate q, which is the periodical

function of time:

,
q q

P dq n h=∫

where 
q

P  is a generalized momentum associated with q,
q

n  is an integer

quantum number. This rule allows Sommmerfeld to widen the Bohr's model,

to which besides the circular orbits he adds and elliptic ones. The widen

model very often is called Bohr-Sommerfeld model. With taking into

account the relativistic correction of the mass in the motion along the elliptic

orbits the new model allows to determine the fine structure of the atomic

spectrum. It depends on so-called constant of the fine structure

.
137

1
19.297,7 3
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The old quantum mechanics have had the decisive role in the creation of

the modern concept of the microscopic words. With its accessible

mathematics and the visualize ability today it takes an important place in the

education at the understanding of the complicated categories and objects of

quantum mechanics.

QUESTIONS

1. How do the radius, the velocity and the energy of the electron depend on

the quantum number n in the Bohr's model?

2. What is the physical meaning of the radius of Bohr?

3. Why the quantum number n can not be zero?

4. Which are the basic conclusions that can be done about the physics of

hydrogen in the Bohr's model?

5. How can the hydrogen spectrum be explained by the Bohr's model?

6. How do the finite mass of nucleus influence the Rydberg constant and the

hydrogen spectrum?

7. To the quantization of which variable does lead the Wilson-Sommerfeld

rule, if we apply it to harmonic oscillator?

8. How can you explain the rule of Bohr's quantization by the de Broglie

waves?

9. What is new in Sommerfeld's model compared to the Bohr's model?

10.How does the atomic spectrum change when Sommerfeld made the

relativistic correction of the electron mass?

11.How does Sommerfeld explain the splitting of spectral lines?

12.What is the interpretation of the results of the Franck-Hertz experiment?

13.What is new in the old quantum mechanics compared with classical

mechanics?

PROBLEMS

1. Determine the Rydberg constant for deuterium. What is the relationship

between its spectrum and the hydrogen spectrum?

2. Compare the gravitational force and the Coulomb force between the

electron and the proton in the ground state in the hydrogen atom. Is it

correct to neglect the gravitational force?

3. Determine the energy, the momentum and the wavelength of the photon,

which is emitted from the hydrogen atom at the transition from a state

with 10=n  to the ground state.

4. Using the Bohr'h model, find for the electron in the ground state of the

hydrogen atom: a) the force, acting on it: b) the quantum number and the
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orbital radius; c) the linear velocity and the angular one; d) the

momentum and the angular momentum; e) the potential and the kinetic

energies; f) the total energy.

5. Applying Bohr's model to a singly ionized helium atom, find its spectrum

and determine the relationship between this spectrum and the hydrogen

spectrum.

6. In the Franck-Hertz experiment the Hg atom after the collision with a 4,9

eV electron emits a photon with the wavelength 2536 Å. Calculate the

value of h from this experimental result and compare with Planck's

values.
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9.1 STATISTICAL INTERPRETATION OF THE DE

BROGLIE’S WAVES

The experiments with double slits have been persuaded ourselves that the

electron is connected with a wave process. The wave properties of the elec-

tron appear in the fact that the both slits influence its motion. As the result

of this we observe the diffraction picture. But it is not correct to equalize the

electron with some wave. If this would be true, the single electron would

form the whole diffraction picture. Nevertheless that it would be weak.

At the experiment the single electron incidents in one point of the plate

as a particle. The place of the falling up of an electron and a particle obeys

totally different laws (for particles (7.29) and Fig. 7-11 and for electrons

(7.31) and (7.32) and Fig. 7-12). The behaviour of the particle exhibits itself

both when there is a single particle and when there are many of them. When

there is a single electron it fixes as a particle and its wave properties exhibit

only when there are many of them (including many times singles).

The wave properties of the electron are completely explained with the de

Broglie wave. But this wave does not appear in the experiment with one

single electron. Then the question arises how to interpret the wave.

One of the first interpretations belongs to Schroedinger: microscopic

particle consists by a wave packet, localized in space. If we take waves of

the quantity A with different wavenumbers from k- k to k+ k and add them
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we obtain a wave packet 
k

R , the centre of which moves like a particle with

the group velocity of the wave (Fig. 9-1):
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ω
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= −

= −∫
(9.1)

But the de Broglie waves are waves with dispersion, i.e. their phase ve-

Figure 9-1. The wave packet is lokalized in space (a), but because of the dispersion it spreads

(b).

locity 
ph

v  depends on the wave number k. Actually using the expression

(7.36) for the energy of the microscopic particle and the expression /k p=
we can determine 

ph
v (k):

2 4 2 42 2
2 20 0

2 2 2

2 4
20

2 2

,

( ).
ph ph

m c m cE p c
k c

m c
v c v k

k k

ω

ω

= = + = +

= = + =

(9.2)

As the result of the dispersion, the wave packet spreads (at the end it

disappears).

Classical physics suggests a different interpretation - are not the de

Broglie waves an analogue of the acoustic waves in the air? But then the

diffraction picture would depend on the intensity of the incident beam of the

particles. We saw in the Chapter 7 that this did not happen - the experiment

shows that at final intensity and at small intensity but with increase expositi-

on the picture is the same. The number of passing particles is important. The
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hydrogen atom has only one electron but it exhibits wave properties. It is

obvious that the wave is not connected with particles, forming the medium

(by analogy with the wave in a lake).

The analysis of the experiments of the diffraction of the microscopic par-

ticles leads Max Born to a probability interpretation of the de Broglie wa-

ves. Let us remember the experiment about the interference of the electrons.

We can not say where a single electron will fall on. But if we pass into

double slit many times by one electron, the distribution of the electrons will

correspond to the distribution of the intensity of the interfered by double slit

de Broglie waves. There, where the interference picture has a maximum, the

most particles fall on and vice versa. On one hand we have the probability

for finding the particles, and on other hand - the intensity of the wave. At

this, the probability of finding the particle increases, achieves its maximum,

decreases and achieves its minimum there, where the intensity of the wave

has the same behaviour. Max Born makes a conclusion that the intensity of

The experiments with two slits prove that the falling on the screen of the

single electron has accidental character - it can absolutely accidentally fall

on into this or that point of the diffraction patterns. It is obvious that the

behavior of the electron have to be characterized by some probability

function. But as the blackening of the plate on one hand is proportional to

the incident particles, and on other hand - to the intensity of the de Broglie

wave, it is clear that this probability may be expressed by the properties of

the wave. To do this we have to be able to describe the wave, i.e. to

associate with it some function, called wave function.

9.2 THE WAVE FUNCTION

We need a function to describe both the probability and the wave charac-

ter of the quantum object. To this object we correspond some wave. As the

square of the amplitude of this wave, which defines its intensity, is

proportional to the probability of finding the quantum object to the position

near the point x, y, z in given moment of time it is clear that this is a function

of the co-ordinates and time:

( , , , ) ( , )x y z t tψ ψ≡ r . (9.3)

This function is called a wave function or -function (psi-function). The

simplest case is that of a free particle, which is described by a plane wave

the de Broglie wave which is determined by the square of the amplitude, 

 in every place is proportional to the probability to find a particle in this place.
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with a wave function

( , ) exp[ ( )] exp ( ) .
i

t A i t A Etψ ω ⎡ ⎤= − − = − −⎢ ⎥⎣ ⎦
r kr pr (9.4)

In general case (r, t) is a complicate function of the co-ordinates and

time and it has nothing in common with the functions, describing the

classical waves. The physical meaning of the square of the -function

according to the Max Born is following: the value 
2

( , , , )x y z t dVψ  is

proportional to the probability to find the microscopic particle at moment t

in element of volume dV near the point x, y, z.

Let us denote this probability with dW. Then

2
( , ) .dW t dVψ∝ r (9.5)

This physical interpretation clearly indicates that the wave described by

the -function differs essentially from the waves known in classical physics.

This peculiarity exhibits in the fact, that the physical meaning has 
2ψ , but

not the -function itself. In most general case the wave function is complex

and therefore

2
( , ) ( , ) *( , ) .t dV t t dVψ ψ ψ=r r r (9.6)

As according to (9.5) it determines the space-time distribution, it is

obvious that the functions

( , )   and   ( , )t A tψ ψr r (9.7)

describe one and the same distribution. If we integrate 
2

( , )tψ r  over all

possible co-ordinates within the total volume V we obtain some number N

2
( , )

V

t dV Nψ =∫ r . (9.8)

Taking into account (9.7) we can find new wave function

1/ 2'( , ) ( , ),t N tψ ψ−=r r (9.9)
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which will describe the same probability distribution and then

2' 1.
V

dVψ =∫ (9.10)

Such a function is called normalized and (9.10) is the condition for

normalization.

Example: We consider a normalized wave function of particles with an

energy E and a momentum p, which has one degree of freedom and moves

in direction x from 0 to a. The wave function has the view of (9.4)

( , ) exp ( ) .
i

x t A Et pxψ ⎡ ⎤= − −⎢ ⎥⎣ ⎦
(9.11)

According to the normalization condition

2

2 2 2

0 0 0

1 ( , ) exp ( )

a a a

i
x t dx A Et px dx A dx A aψ ⎡ ⎤= = − − = =⎢ ⎥⎣ ⎦∫ ∫ ∫ (9.12a)

or       1 .A a= (9.12b)

The wave function for the considered example is the next

1
( , ) exp ( ) .

i
x t Et px

a
ψ ⎡ ⎤= − −⎢ ⎥⎣ ⎦

(9.13)

For the normalized wave function (9.5) is written as equality:

2
( , ) ( , ) *( , )dW t dV t t dVψ ψ ψ= =r r r

   or (9.14a)

( , ) .dW t dVρ= r
(9.14b)

Here 
2

( , ) / ( , )t dW dV tρ ψ= =r r  is the probability density. The

probability to find the particle in the volume V' is
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' '

( ', ) ( , ) * ( , ) .
V V

W V t dW t t dVψ ψ= =∫ ∫ r r (9.15)

We note the normalized wave function (9.10) is determined within

the phase factor exp( )iα , where α  is any real function of the co-

ordinates and of time ( ),tα α= r . This is so, because ( )exp 1iα = .

The wave function possesses significant properties in space and

time:

a) finiteness - ψ takes finite values in all points of space (completely

rigorously said ψ  must be quadratically integrable function, as

according to its physical interpretation the integral 
2

dVψ∫  should

to be finite);

b) single valuedness - in every point of space ψ has a single value;

c) continuity - ψ  is differentiable in every point of space.

9.3 THE WAVE FUNCTION OF A PARTICLE SYSTEM

Let us have two particles with positions 1 1 1 1( , , )x y zr  and 2 2 2 2( , , )x y zr .

The both particles are described by the following wave function:

1 1 1 2 2 2 1 2( , , , , , , ) ( , , ).x y z x y z t tψ ψ≡ r r (9.16)

The probability to have at the same time the first particle in the element

of volume 1dV  near the point 1 1 1, ,x y z  and the second - in the element 2dV

near the point 2 2 2, ,x y z  is

2

1 2 1 2 1 2( , , ) ( , , ) .dW t t dV dVψ=r r r r (9.17)

The corresponding density of probability is

21 2
1 2 1 2

1

( , , )
( , , ) ( , , ) .

dW t
t t

dV dV
ρ ψ≡ =r r

r r r r (9.18)

The condition for the normalization of the -function of the both

particles, moving correspondingly in the volumes 1V  and 2V  is
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1 2

2

1 2 1 2( , , ) 1.
V V

t dV dVψ =∫ ∫ r r (9.19)

It is not difficult to generalize the expressions (9.16÷9.19) for the system

of N particles with radius-vectors 1 2, , ..., .
N

r r r  To such a system we shall

correspond the wave function

1 2( , , ..., , ) ( , ).
N j

t tψ ψ≡r r r r (9.20)

As in the first part of this book the subscript j stands here for all radius-

vectors. For one, two or many particles it should not be any principal

difference. Then the interpretation of ( , )tψ r and of ( , )
j

tψ r  should be the

same, i.e. for the normalized ( , )
j

tψ r -function the value

2

1 2 1 2( , , ..., , ) ...
N N

t dV dV dVψ r r r (9.21)

defines the probability in the moment t of time the first particle to be in a

element of the volume 1dV  near the point 1r , the second  - in 2dV  near the

point 2r  and so on or:

1 2( , ) *( , ) , ... .
j j N

dW t t dV dV dVψ ψ= r r (9.22)

The condition for normalization is

1 2

2

1 2... ( , ) ... 1.

N

j N

V V V

t dV dV dVψ =∫ ∫ ∫ r (9.23)

If we integrate on the volume of the allowed regions of motion of all

particles with the exception of one of them, e.g. of the first, we obtain:

2

2

1 1 2... ( , ) ... .

N

j N

V V

dW dV t dV dVψ= ∫ ∫ r (9.24)

This is the probability of the first particle to be in the element 1dV  while

the others particles are in arbitrary positions.

Now let us consider a system of N noninteracting particles, each of

which is described correspondingly by the wave function 1 1( , ),tψ r

2 1( , ), ..., ( , )
N N

t tψ ψr r  and the system - by the function (9.20). The proba-
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bility of the first particle to be in element of the volume 1dV  is 1dW

2

1 1 1( , )t dVψ= r , of the second particle to be in 2dV  - 
2

2 2 12 2( , )dW t dVψ= r

etc. According to the rule for the multiplying the probabilities, the

probability dW  to observe these N events is

1 2

2 2 2

1 1 1 2 2 2

...

( , ) ( , ) ..., ( , ) .

N

N N N

dW dW dW dW

t dV t dV t dVψ ψ ψ

=

= r r r
(9.25)

Expressing dW through the ( , )
j

tψ r  we get

1 2 1 1 2 1( , ,..., , ) ( , ), ( , ), ..., ( , ),
N N N

t t t tψ ψ ψ ψ=r r r r r r (9.26)

i.e. the wave function of the noninteracting particles is equal to the

product of the wave functions of the separate particles.

9.4 MEASUREMENT, EIGENSTATES AND

EIGENVALUES OF THE OBSERVABLES

Mechanically, describing a system means first, describing the state in a

given fixed time and second, describing the change of the state in time, i.e.

the motion. It has been mentioned in Section 6.2, that the state is completely

defined by the values of the generalized co-ordinates and momenta in given

time, particularly by the Cartesian co-ordinates and momenta. In such a case

classically the state is described by the 2s-dimensional vector ΛΛΛΛ in the phase

space. The knowing of the state 0( )tΛΛΛΛ in some initial moment 0t  allow us to

calculate all physical quantities, characterizing the system, and with the laws

of the mechanics to define its state ( )tΛΛΛΛ in any moment of time t.

In Sections 9.2 and 9.3 we have seen that the behaviour of the quantum

objects is described by the wave function ( , )
j

tψ r . Further it will become

clear, that this function implies an information not only about the character

of the motion of the system, but as well as for the values of physical

quantities (usually in quantum mechanics they are called observables) which

defines it. Therefore, the state of a quantum mechanical system in any time t

is described by the wave function ( , )
j

tψ r , which is called also the state

function.

In classical mechanics for the description of the initial state is necessary

to measure the co-ordinates and momenta of the particles. They principally
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can be measured simultaneously with desired high accuracy and their values

can be obtained independently of the order of the measurement. The

determination of the state in classical mechanics is trivial in some sense.

This is not the way in quantum mechanics. The determination of the state

different to classical mechanics is a principal question, which goes on the

importance out of the dynamical problems. The measurement of a quantum

mechanical system essentially differs from that of classical one. In quantum

mechanics under the measurement one realizes every interaction of the

quantum objects with a classical apparatus. As every apparatus consists of

the quantum objects, in which their specific properties can appear, the

classical is that apparatus which quantum properties can be neglected.

In classical physics every measurement is repeatable, that is the results

by the subsequent repeated measurement coincide. For example, let us

measure the position of the classical particle, which starts at point 0( , )A x y

with a momentum p (Fig. 9-2a), by the slit in point 1( , )B x y and by the ruled

Figure 9-2. Measurement of the co-ordinates of the classical particle, moving horizontally of

the axis X with a momentum p. The measurements are repeatable: a) a measurement by a slit;

b) measurement by a "look" - the momentum of the photon is much smaller than the particle

momentum.

screen E at 2x x=  (the particle makes a track on it).

The measurement of the observables of quantum objects is not always

repeatable. As when in the experiment on the passing of electrons through

the one slit (aperture) the defining of the y co-ordinate by this slit is repeat-

able. The measurement of the position of passing electrons by the screen is

not repeatable - it gives different results (see the described in the Section

7.4 experiment of Fabricant and Fig. 7-13). Every measurement changes the

state of the electron and this changing principally can not be made

negligibly small, as the energy of the interaction is E ω= . Before the slit
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the electron is in the state with fixed momentum 
x

p ( 0
y

p = ), but behind the

slit it can have different values of the transverse component
y

p , as a result of

which it fall on the different places of the diffraction picture. The interaction

between the electron and the classical apparatus, the slit, changes the

momentum with ~ /c h λ . In the classical scale /h λ  is negligibly small, but

in the small-scale system (microscopic system) this changing is compared

with the particle momentum. But can one, instead by the slit to determine

the electron position, without doing anything with it, but simply to "look" at

it? So, we can determine the position of the classical particle as well (Fig. 9-

2b). It is enough to look at the scale behind the trajectory (Fig 9-3).

Figure 9-3. The determination of the position of the electron in the point P by a "look". In

order to "see" the electron, it has to be "illuminated". The scattered by such illumination

photon of the momentum p=h/  changes unpredictably the electron momentum - the

measurement is not repeatable and the electron falls on different places of the screen E.

In order to "see" the electron, it has to be "illuminated", i.e. at least one

photon has to fall on it. But the photon has momentum h/ , which is com-

pared with the momentum of the electron. As the result of its scattering, the

electron will obtain an additional momentum (see the Compton effect in the

Section 7.2). In the subsequent experiments the electron falls on different

positions on the screen E. The position on the screen E is unpredictable (but

the probability is predictable). The measurement of the momentum 
y

p  is not

repeatable. By doing measurement we disturb the electron. The essence of

the problem is that we have not enough "delicate and tender" agents for

observation of the small-scale object. It is impossible, in principle, to have

such agents, i.e. it is impossible to make measurements, which do not at the

same time disturb the system in a generally unpredictable way. When we

measure the position of a large-scale body (Fig. 9-2), the momentum of the

photon is negligibly small compared with the momentum of the body

/h pλ << .
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The character of the measurement in quantum mechanics depends on the

state of the system. In one state it can be repeatable, but in another - unre-

peatable (for example, the measurement of the position before and behind

the slit (Fig. 7-2a)). The measurement of the values of some observables may

be simultaneously repeatable. But there are such observables which in no

possible state are simultaneously repeatable (for example, x and
x

p ). Such

observables are called, respectively, compatible and incompatible.

For a given quantum system a restriction exists on the number of inde-

pendence observables, which are compatibles. The maximal number

depends on the same system. All independent observables, for which is

possible repeatable measurement form a complete set of observables. The

number of observables in this complete set is equal to the degrees of

freedom of the given quantum system. For example, for one particle the next

complete sets are possible (without spin): a) , ,x y z ; b) , ,
x y z

p p p ;

c) , ,
z z

E p L . Every state of a quantum mechanical system is characterized by

that complete set of independent observables, which are simultaneously

measured in this state.

When the measurement of the given observable is repeatable, such

observable is defined or certain; when the measurement is not repeatable it

is undefined or uncertain. If we add to the complete set of observables: a) a

independent observable, it will be uncertain: b) a dependent observable, it

will be certain.

The state, in which the observable f is certain, i.e. its measurement is

repeatable, is called eigenstate. The value 
i

f , which f obtains - eigenvalue

and wave function 
i

ψ , which describes this state - eighenfunction:

state 1 st 2 nd 3 rd   ... N
th eigenstates;

value of f 1f 2f 3f    ...
N

f eigenvalues;

wave function 1ψ 2ψ 3ψ    ...
N

ψ eigenfunctions.

In the state, in which the measurement of the observable is not

repeatable we obtain different values, but always one of the eigenvalues.

The experiment shows that an observable could not have another values.

The problems in quantum mechanics essentially differ from classical

ones. Here are some examples:

1. To define the possible complete set of observeables for a given system.

2. To find the wave function for a given complete set of observeables.

3. What are the expectation values of given observable?

The set of eigenstates of the observable is called spectrum. The spectra

can be as follows:
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a) D e s c r e t e: for instance the energy of quantum oscillator
( 1/ 2) , 0,1, 2, 3, ...).E n h nν= + =

0 / 2hν 3 / 2hν 5 / 2hν 7 / 2hν E

b): C o n t i n u o u s: for instance, the momentum of free electron - in the

fixed range all values of momentum are possible.

0
1p 2p p

                       ~~~~~~~~~~~~~

c) C o m p o u n d s: for instance, the energy of the electron in the atom

- in a bound state it is discrete, but in an ionized state it is continuos.

1E−
2E−

3E− E

                                         ~~~~~~~~~

Usually at the measurement of the observable f in different eigenstates,

described by the eigenfunctions 
i

f
ψ , we obtain different eigenvalues:

1 2 1 2.
f f

f fψ ψ≠ → ≠ (9.27)

Such states are called nondegenerate states and respectively eigenvalues -

nondegenerates. If at the measurement of the observable f in different

eigenstates we obtain equal eigenvalues, for instance 0f , i.e.

1 2

(1) (2) (1) (2)

0 0, but ,
f f

f fψ ψ≠ = (9.28)

they are called degenerate states and degenerate eigenvalues. If to one

eigenvalue
i

f  correspond N different eigenfunctions 
(1) (2) ( ), , ...,

i i i

N

f f f
ψ ψ ψ , this

eigenvalues is N-fold degenerate.

9.5 THE SUPERPOSITION PRINCIPLE

A superposition of the waves means simply a superimposition of them.

The phenomena is well known in classical physics (in particularly it leads to

the considered in Chapter 7 interference). Let us recall the vibrations of

coupled oscillators (Figs. 5-1 ÷ 5-3). We saw in Section 5.4, that two normal

modes are possible: antisymmetric modes with the angular frequency 
a

ω
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1 2 cos
a

a tξ ω= (9.29)

and symmetric modes with the angular frequency 
s

ω

2 2 cos
s

a tξ ω= . (9.30)

As the result of superposition (superimposition) of these two normal

modes the other kind of vibrations is possible, which is the linear

combination of the asymmetric and the symmetric vibrations. For example:

1 2 1

1 1 1 1
2 cos 2 cos

2 2 2 2
a s

x a t a tξ ξ ω ω+ ≡ = + . (9.31)

The vibration of the both oscillators for such superposition is shown in

Fig. 5-5.

Two kinds vibrations of linear symmetric molecule - symmetric 
s

x  and

antisymmetric 
a

x - are shown in Fig. 5-8:

cos ,

cos .

s s s

a a a

x A t

x A t

ω
ω

=
=

(9.32)

Here 
a

x  is the sum and 
s

x  is a difference of the displacements of the

atoms from the equilibrium positions and scripts a and s are related to the

asymmetric and the symmetric vibrations. It is also possible to have an

oscillation of the molecule, which is a superposition of these two

oscillations:

.
a s

x x x= + (9.33)

And now let us return to the diffraction of quantum object from two slits

(Fig. 7-12). Before the slits the particles (photons or electrons) can be in

different states, which differ by the value and the direction of the

momentum. The state with momentum p, which corresponds to the fixed de

Broglie wave, is described with wave function ( , )
p

tψ r .

After passing trough the one of the two slits the beam of particles can be

considered as conical beams of the different momenta. In every narrow

cone, where the momentum of the particles is fixed, they obtain additional

transverse momentum - different for different cones. Due to this addition we

obtain the set of conical beams with momenta 1 2, , ...,
n

p p p  (only one of

them cannot be obtained). The state of the particles in the conical beams, in
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which the particles have equal momenta, is described by the de Broglie

wave of fixed wavelength, i.e. by the functions 
1 2
( , ), ( , ),..., ( , ).

n
p p p

t t tψ ψ ψr r r

In this we can persuade ourselves as with a slit separate the one of the coni-

cal beams with the momentum 
i

p  and direct it to two slits - as the result we

obtain again the same diffraction picture. On the other hand this whole set is

an unified wave field and it is expressed with one wave function ( , )tψ r . The

conclusion is obvious: the state of the diffraction from two slits is a super-

position of the states of free particles described by the de Broglie waves:

( ) ( )( , )
i

i p

i

t C pψ ψ= ∑r r . (9.34)

The new state (the diffraction picture) is a superposition of the states

with rigorously certain momenta. The superposition appears also when the

particles pass through the both slits (Fig. 7-12b). When the second slit is

closed, the state is described by the wave function 1( , )tψ r and the proba-

bility density to find the particle in the point r of the screen is as follows:

2

1 1( , ) ( , ) .t tρ ψ=r r (9.35)

When the first slit is closed, the state is described by 2 ( , )tψ r and the

probability density is analogue to the (9.35):

2

2 2( , ) ( , ) .t tρ ψ=r r (9.36)

Despite of the fact that small scale systems obey probability laws, the

densities 1ρ  and 2ρ  are not summarized, but the amplitude of the states are

or according to Dirac the amplitude of the probabilities:

1,2 1 1 2 2 1 2

2

1,2 1,2 1 2

( , ) ( , ) ( , ) , ( 1),

( , ) ( , ) ( , ) ( , ).

t C t C t C C

t t t t

ψ ψ ψ

ρ ψ ρ ρ

= + = =

= ≠ +

r r r

r r r r

. (9.37)

The considered examples of the diffraction are partial cases of the

principle of the superposition. According to it, if the systems could be found

in the states with wave functions 1 2( , ), ( , ),..., ( , )
n

t t tψ ψ ψr r r , it can be found

and in the state with the wave function ( , )tψ r , which is the linear

combination of the functions ( , )
i

tψ r :

( , ) ( , ).
i i

i

t C tψ ψ= ∑r r (9.38)
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The coefficients 
i

C  can be arbitrary, but they have to obey the condition

of normalization of the wave function:

2

2
( , ) 1.

i i

i

t dV C dVψ ψ= =∑∫ ∫r (9.39)

In classical physics the superposition is a consequence of the linearity of

the system. The linear oscillations of such a system are described by the

system of linear differential equation and its general solution is a linear

combination of partial solutions. This is the mathematical formulation for

the principle of superposition. Because of these reasons we can expect that

the wave function will obey a linear differential equation.

Let look wider to the superposition principle from the linear-algebra

point of view. We are interested in the physical quantity f (very often one

speaks about a dynamical variable or about an observable). From the

experiment we know the eigenvalues 1 2, ,..., ,
n

f f f  measured in the

corresponding eigenstates 1 2, ,...,
f f f n

ψ ψ ψ . We can consider the set of wave

functions, describing all possible eigenstates, as a linear vector space on the

axes of which we plot the functions themselves. The wave functions are

bases of this space. The analogue with the configuration space is very sue  -

there we plot the generalized co-ordinates, but here - the wave functions of

the eigenstates. In the linear space, like the scalar product ab of two vectors,

we shall introduce the scalar product of two functions and :

( , ) * .dVϕ ψ ϕ ψ= ∫ (9.40)

We are going further with the analogy. As far as two orthogonal vectors

in the real space have zero scalar product 0
i k

=x x ( ),
i k

i k⊥ ≠x x , the sca-

lar product of the two different basis functions from the linear space is zero:

( , ) 0, .
i k

f f
i kψ ψ = ≠ (9.41)

When i k= , the scalar product according to the normalization is equal to

the unity:

2
*( , ) , 1

i k i k kf f f f f
dV dVψ ψ ψ ψ ψ= = =∫ ∫ . (9.42)

The equalities (9.41) and (9.42) can be united as follows:
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1, ,
 ( , ) ,

0,    .i k
f f ik ik

i k

i k
ψ ψ δ δ

=⎧
= = ⎨ ≠⎩

(9.43)

Here 
ik

δ is Kronecker's symbol. The eigenfunctions of certain physical

quantity form an orthonormal system of functions.

In general the set of quadratic integrated functions  forms Hilbert space

([4], Section 3.3) - it is infinitely dimension linear vector space, in which the

scalar product is defined (9.40).

Very often the scalar product (9.40) is written in "bra" and "ket"

notation, which had been introduced by Dirac:

* dVϕ ψ ϕ ψ≡ ∫ . (9.44)

This is a product of two elements ϕ  ("bra" element) and ψ  ("ket"

element).  The names of these elements form the "bra-ket" (bracket). Every

expression in integral representation can be written in Dirac notation. For

instance, the orthonormality relation is written as:

*
i k i k ik

dVψ ψ ψ ψ δ≡ =∫ . (9.45)

Every possible wave function  can be expanded in terms of orthogonal

complete set of functions 
n

ψ , which are bases of the linear space:

.
i

i f

i

Cψ ψ= ∑ (9.46)

From the normalization condition and using (9.43), we obtain

* * * *

,

2*

,

*

1.

k l k lk f l f k l f f

k l k l

k l kl k

k l k

dV C C dV C C dV

C C C

ψ ψ ψ ψ ψ ψ

δ

⎛ ⎞= =⎜ ⎟
⎝ ⎠

= = =

∑ ∑ ∑∫ ∫ ∫

∑ ∑
(9.47)

We have already underlined that the coefficients
k

C  are arbitrary, but

they satisfy the normalisation condition. For them the normalisation is

2
1.

k

k

C =∑ (9.48)
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It is obvious that 1.
k

C ≤  The mathematical condition * dVψ ψ∫
2

1
k

k

C= =∑  is a condition for the completeness of the basis (the studious

reader will find details, for instance in [R34], Chapter 3).

To understand the physical meaning of the coefficients 
k

C  let us

consider a state with wave function ( )ψ r , in which we measure the

observable f. If this state does not coincide with the one of eigenstate

( ( ) ( ), 1, 2, ...,
i

f
i nψ ψ≠ =r r ), we shall measure the eigenvalues 

i
f  with the

respective probabilities 
i

W :

measured value 1 2 3, , , ..., ,
n

f f f f

probability 1 2 3, , , ..., .
n

W W W W

If ( ) ( )
k

f
ψ ψ=r r , i.e. the measurement is in one of the eigenstate 

k
f

ψ ,

then 1
k

W =  and 0 ( )
i

W i k= ≠ .

According to the superposition principle in this case we can write

1 2
( ) 0. 0. ... 1. ... 0. ,

1, 0, .

k n
f f f f

k i
C C i k

ψ ψ ψ ψ ψ= + + + + +

= = ≠

r
(9.49)

Consider the non-eigenstate ( )ψ r , which is a superposition of two states

1f
ψ  and 

2f
ψ :

1 21 2( ) .
f f

C Cψ ψ ψ= +r (9.50)

From the condition for the normalization of the coefficients we have:

2 2

1 2 1.C C+ = (9.51)

Measuring the observable f in this state, we obtain for the values 1f  and

2f  respectively the probabilities 1W  and 2.W  The probability to obtain

( 1, 2)
n

f n ≠  is zero, i. e. 0
n

W = , and therefore

1 2W W+ =1. (9.52)

The comparison between (9.51) and (9.52) hints the assumption
2

k k
W C= , which is confirmed in the experiment.

Let us generalize for the non-eigenstate, which is a superposition of n

eigenstates:
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( ) ( ).
i

i f

i

Cψ ψ= ∑r r (9.53)

From the measurements we obtain one of the eigenvalues 1 2, , ...,
n

f f f

with a probability 1 2, , ...,
n

W W W . These probabilities are determined by the

square of the module of corresponding superposition coefficient:

2 2
( ) , 1.

k k k k k

k k

W W f f C W C≡ = = = =∑ ∑ (9.54)

Namely, this equality expresses the physical meaning of the coefficients

k
C  - the square 

2

i
C ( 1, 2, ..., )i n=  determines the probability of

measurement in the non-eigenstate ith eigenvalue.

9.6* SUPERPOSITION OF STATES WITH A

CONTINUOUS SPECTRUM

As an example of a continuous variable we shall take the momentum of a

free particle, which can accept any value on the interval ,−∞ + ∞ . In one-

dimensional case this free particle is described by the wave function 
p

ψ
(9.11). Let try to normalize this function:

2 2 2
. (!)

p
dx A dx A dxψ

∞ ∞ ∞

−∞ −∞ −∞

= = → ∞∫ ∫ ∫ (9.55)

From all our discussions up to here, based on the experiments we reach

the conclusion, that this integral is the probability W of finding the particle

in the given range ( ,−∞ + ∞ ). But here W → ∞  which is physical absurdity.

The way out was found by Dirac. The normalization of the wave function of

continuous variable has to be done in a way to escape this divergence. The

problem is not to change the wave function and the probability distribution,

but to find such a condition that enables  us to obtain suitable constant

before the wave function: const ( , )
p

tψ r . In the connection with the physical

meaning of the wave function we want to choose much suitable constant.

For the discrete variables the wave functions are orthonormal (for simplicity

we consider one-dimensional case):



222 Chapter 9

*
1, ,

0, .
m n mn

m n
dV

m n
ψ ψ δ

=⎧
= = ⎨ ≠⎩∫ (9.56)

By analogy with the expression (9.56) Dirac introduces the normaliza-

tion condition for the wave function of a state with a continuous variable.

The wave functions ( , )
p

x tψ  and ' ( , )
p

x tψ  correspond to the states with two

fixed values of the momentum p and p'. Then, by analogy we have

*

' ( ')
p p

dx p pψ ψ δ= −∫ , (9.57)

where ( )'p pδ −  is called Dirac delta function. The function has the

properties as follows:

1.
0, ,

( ')
, ;

x a
p p

x a
δ

≠⎧
− = ⎨∞ =⎩

2.
2

1

1 2

1 2

1, ,
( )

0, or ;

x

x

x a x
x a dx

a x a x
δ

≤ ≤⎧
− = ⎨ < >⎩

∫

3. ( ) ( )
2

1

( ) ;

x

x

F x x a dx F aδ − =∫

4. ( ) 1
;

2

ikx
k e dxδ

π

∞

−∞

= ∫
5. ( ) 0.x xδ =

Using the normalization (9.57) and the property 4. we determine the

coefficient A of the 
p

ψ -function (9.11):

( )

( ) ( )2 2

'
' * exp exp

exp ' 2 '

1
                                 .

2

Et px Et p x
p p A A i i dx

x x
A i p p d A p p

A

δ

πδ

π

∞

−∞
∞

−∞

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− = − − −⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎛ ⎞= − = − ⇒⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

=

∫

∫ (9.58)
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Finally, for the normalized wave function of the de Broglie wave of a

free particle we have:

( ) ( )1
, exp

2
p

i
x t Et pxψ

π
⎡ ⎤= − −⎢ ⎥⎣ ⎦

. (9.59)

For the three-dimensional motion the wave function becomes:

( )
( )

( )3/ 2

1
, exp

2

i
t Etψ

π
⎡ ⎤= − −⎢ ⎥⎣ ⎦p

r pr . (9.60)

The superposition of the states with the continuous momentum we

present by analogy with the superposition of discrete states, replacing the

summation with integration:

( ) ( ) ( ) ( ) ( )

( )

, , exp

1
, exp ,

2

p

i
x t C p x t dp A C p Et px dp

i
p t px dp

ψ ψ

ϕ
π

∞ ∞

−∞ −∞
∞

−∞

⎡ ⎤= = − −⎢ ⎥⎣ ⎦

⎛ ⎞= ⎜ ⎟⎝ ⎠

∫ ∫

∫
(9.61)

where ( ) ( ), exp
i

p t C p Etϕ ⎛ ⎞≡ −⎜ ⎟⎝ ⎠
. When we know the function ( ),p tϕ , i.e.

( )C p , we can determine ( ),x tψ . If we know ( ),x tψ , we can determine

( ),p tϕ . For this it is enough to recall the Fourier transformation for

functions ( )U k  and ( )V x :

( ) ( ) ( )

( ) ( ) ( )

1/ 2

1/ 2

exp ,
2

exp .
2

U k V x i kx dx

V x U k i kx dk

α α
π

α α
π

∞

−∞

∞

−∞

⎛ ⎞= −⎜ ⎟⎝ ⎠

⎛ ⎞= ⎜ ⎟⎝ ⎠

∫

∫
(9.62)

According to this transformation we obtain from (9.61) the following:

( ) ( )1
, , exp .

2

i
p t x t px dxϕ ψ

π

∞

−∞

⎛ ⎞= −⎜ ⎟⎝ ⎠∫ (9.63)
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As the knowing of the function ( ),p tϕ  allows the determining ( ),x tψ ,

this function determines the state of the system. In other words it is a wave

function of the system. But it depends on the momentum and is determined

in "momentum space" unlike of ( ),x tψ , which is determined in the real

space (the co-ordinate space). So the wave function ( ),p tϕ  determines the

probability distribution of the particle momentum.

On the one hand the blacking of the plate in the point M is proportional

to the number of particles with co-ordinate 
M

x , i.e. ( ) 2

,
M

x t dxψ∝
2

M
dxψ≡ . On the other hand, the blacking is proportional to the probability

the particles to have momentum 
M

p , i. e. ( ) 2

,
M

p t dpϕ∝  (Fig. 9-4). So,

with the same success  we can use the wave function  ( ),x tψ

Figure 9-4. The blacking in point M is proportional to the number of the particles with co-

ordinates 
M

x - ( ) 2

, .
M

x t dxψ∝  But in the same time it can be determined by the number of

the particles with the momentum 
M

p , which is proportional to ( ) 2

,
M

p t dpϕ .

nate representation or the wave function ( ),p tϕ  in the momentum

representation. It is logically to suppose that the co-ordinates and the

momenta are not privileged dynamical variables and the wave function can

the angular momentum and etc. This topic is considered in Section 15.1.

 in the co-ordi-

be expressed in the space of other variables, for instance of the energy, of
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SUMMARY

The de Broglie waves are "particular waves". In these waves nothing

oscillates. The wave function of these waves has not physical meaning, it is

not itself a physical quantity. The waves have a statistical, a probabilistic

character - the square of the module of the wave function in a given place

determines the probability to find the particle in this position. The de

Broglie waves are the waves of the probability. In quantum mechanics

normalized -functions are used in the connection of the physical meaning

of the wave function:

( ) 2

, 1
V

t dVψ =∫ r .

The motion of a free particle is described by the wave function of the

plane wave:

( ) ( ) ( ), const exp const exp
i

t i t Etψ ω ⎡ ⎤= ⎡− − ⎤ = − −⎣ ⎦ ⎢ ⎥⎣ ⎦
r kr pr .

The wave function is a single-valued function of the co-ordinates of the

particle and time and it is finite and differentiable.

The measurement in quantum mechanics can be repeatable and

unrepeatable. In the first case the system is in eigenstate and for a certain

quantity at the measurement we obtain only one value - the eigenvalue. The

eigenstate is characterized by the complete set of observables and is

described by the eigenfunction .

One of the fundamental principle governing the quantum states is called

the superposition principle. It states that quantum mechanical system, which

can take on the discrete states 
i

ψ , is also able to occupy the state

.
i i

i

Cψ ψ= ∑

The square of the module of the coefficients 
2

i
C  determines the

probability to measure the value 
i

f  of the observable f in this non-

eigenstate. All eigenfunctions of the physical system are orthonormal:

( ), .
i k ik

ψ ψ δ=
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When the observable has continuous spectrum the normalization is made

by the -function

( ) ( )*

' ( ')
p p

x x p pψ ψ δ
∞

−∞

= −∫

and for the superposition instead of the sum we have the integration of the

eigenfunctions.

QUESTIONS

1. Why the Schroedinger's interpretation is not correct?

2. Why the de Broglie wave is not interpreted as the wave of particles like

the acoustic wave?

3. Physically to what is proportional the intensity of the wave of quantum

particles, passing through double slit?

4. Does the wave function have physical meaning?

5. Why is the wave function normalized?

6. Which are the properties of the wave function?

7. What is the connection between the wave function of the system of

noninteracting particles and the functions of the separate particles?

8. What is the principal difference between the measurements in classical

and quantum mechanics?

9. What do you understand under the eigenstates and eigenvalues of the

observable?

10.What are the values of the observable in measurement in the non-

eigenstate?

11.How does appear the superposition principle in the oscillations of tree

atomic linear symmetric molecule?

12.How does appear the superposition principle at the diffraction of the

electrons from one or two slits?

13.What do you understand under the orthonormal wave functions?

14.What is the physical meaning of the coefficients 
i

C  in the expression

( ) ( ), ,
i i

i

t C tψ ψ= ∑r r ?

15.How is the wave function of the free particle normalized?

16.What does mean the wave function in the momentum space?
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PROBLEMS

1. Prove that ( ) ( )* , ,x t x tψ ψ  is always real number - positive or zero.

2. The state of the particle is described by the -function 
( )2 / 2x ai t

Ae e
ωψ −= ,

where angular frequency  and the "length" a are known constant. Find

the normalized wave function.

3. Normalize the wave function ( ) ( )sin 2 /x A x Lψ π=  in the interval

0 x L< < .

4. The eigenstates of the particle of mass m in one-dimensional potential

well are described with the wave functions

( ) 2 2
sin , 1, 2, ...,

n

x
x n

L L

πψ ψ = =

to which correspond energy 
n

E  ( 1, 2, ...n = ). The particle is in the state

with wave function ( ) ( )2 9,0 3 / 5.xψ ψ ψ= +  Is that function normalized?

What kind of energy values will be measured in this state? With what

probability will be measured those values?

5. Can the functions sinϕ  and tanϕ  be wave functions?

6. What restriction has to be imposing on the function exp( )imϕ  to be it a

wave function?

7. We are interested in the observable F and in a single measurement we

have obtained 
k

F F= . Can we conclude that before the measurement the

particle has been found in the state 
k

F F= ?



Chapter 10

OPERATORS

10.1 Mean Values and Operators

Mean values in quantum mechanics; a presentation by coefficients 
k

C ;

operator; mean value of an observable by an operator; operators and

observables; operators of the co-ordinate and of the momentum. 230

10.2 Operators in Quantum Mechanics

Definition; linear and Hermitian operators in quantum mechanics;

sum; product; commutator. 234

10.3 Eigenvalues and Eigenfunctions of Operators

Eigenvalues and eigenfunctions; operators; orthonormal functions of a

Hermitian operator; compatible observables. 236

10.4 Operators of the Co-ordinates and the Momentum and Their

Eigenfunctions and Eigenvalues

Operators ˆˆ ˆ ˆ, ,  and ( )x y z f r ; eigenfunction of x̂ ; operators ˆˆ ˆ ˆ, , ,
x y z

p p p p

and
2

p̂ ; eigenfunction of the operator 
2

p̂ ; the commutator of the

position and the momentum operators. 240

10.5
+
 Angular-Momentum Operator

Operators 
2ˆ ˆ ˆ ˆ, ,  and 

x y z
L L L L ; commutators of the angular-momentum

components; commutators of the Cartesian components of L̂  with
2

L̂ ;



230 Chapter 10

Cartesian components in spherical co-ordinate; 
2

L̂  in spherical co-

ordinates. 243

10.5 Eigenvalues and Eigenfunctions of the Operators ˆ
z

L and 2
L̂

Eigenvalues and eigenfunctions of ˆ
z

L ; an equation for eigenfunctions

of
2

L̂ ; spherical harmonics; angular-momentum spectrum; degeneracy

and its physical meaning. 248

10.6 Vector Interpretation of the Angular Momentum

Vector interpretation of the angular momentum; an example of the state

with 2l = ; letter notations of the states with different l ; space

quantization and vector diagrams. 251

10.7 Energy Operators

The kinetic energy operator T̂ ; the operators for radial and rotational

motions; operator of Hamilton; Hamiltonian of charged particle in an

e. m. field; eigenvalues and eigenfunctions for the operator T̂ of a free

particle. 254

10.8 The Heisenberg Uncertainty Principle

Incompatible observables; dispersion; the Heisenberg uncertainty

principle for two arbitrary observables; the Heisenberg principle for

position and momentum; experiment demonstration with a diffraction

by a slit. 256

SUGGESTED READING

1. Greiner, W., Quantum Mechanics - An Introduction, Vol. 1, Springer-Verlag, 1989,

Chapter 4.

2. Blokhintsev, D. I., Principles of Quantum Mechanics, Allyn and Bacon, 1964, Sections

15÷18, 20, 24÷27.

3. Dicke, R. H. and J. P. Witke, Addison-Wesley Publishing Co., 1973, Chapter 6.

4. Spolsky, E. V., Atomic Physics, Vol. 1, 2, Mir Publishing House, 1963, §6, 21.

10.1 MEAN VALUES AND OPERATORS

In the experiments on a diffraction of the electrons we persuaded

ourselves that their momenta after the slit (the slits) are different. The

momentum of the separate electron is unpredictable. But can we find the

mean momentum of the electrons? This is the particular case of more general
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question. If the system is in non-eigenstate ψ ( )r  and we measure the

eigenvalues 1 2, , ...,
n

f f f  of the observable f  with the corresponding

probability 1 2, , ...,
n

W W W , the question is how to find the mean value f . By

the definition it is:

,
k k

k

f W f= ∑ (10.1)

which according to (9.54) can be written as:

2 *
.

k k k k k

k k

f C f C C f= =∑ ∑ (10.2)

The coefficient 
k

C  describes "the specific gravity" of the eigenstate 
k

ψ
in the considered non-eigenstate ψ . Let define 

k
C  through the wave

functions 
k

ψ  and ψ . For this purpose let find their scalar product:

( ), .
k k k

k i i k k k

i

dV C dV C dV Cψ ψ ψ ψ ψ ψ ψ ψ∗ ∗ ∗= = = =∑∫ ∫ ∫ (10.3)

Taking the complex conjugated of this relation, we obtain for the

conjugate coefficient 
k

C
∗  following:

( )( ) , .
k

k k k
C dV dVψ ψ ψ ψ ψ ψ∗ ∗ ∗ ∗= = =∫ ∫ (10.4)

We substitute 
k

C
∗  into (10.2)

.
k k k k k

k
k k

f C f dV C f dVψ ψ ψ ψ∗ ∗= =∑ ∑∫ ∫ (10.5)

We are interested in the state ∑=
kk

C ψψ . Let suppose, that the

function 
k k k

C f ψ∑  in the integral of (10.5) is obtained as a result of the

mathematical operation over ψ , i. e.

ˆ .
k k k

k

f C fψ ψ≡ ∑ (10.6)
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Here we denote with f̂  an operator, which is related to f . From the

relation (10.5) we obtain for the mean value f  of the observable :f

( ) ( )ˆ .f f dψ ψ∗= ∫ r r r (10.7)

To define the mean value of the observable f in the non-eigenstate, it is

enough to know the wave function ( )rψ  and the operator f̂ .

When the considered system is in the ith eigenstate, it is described by the

wave function 
i

ψ :

, 1, 0,
i i k

C C k iψ ψ= = = ≠ (10.8)

and then according to (10.6) we have

ˆ .
i i i

f fψ ψ= (10.9)

The observables are described by operators. To each  quantum-

mechanical variable corresponds an operator. The operators of the

dynamical quantities satisfy the same relations and equalities as the

corresponding classical quantities do. These statements represent the second

postulate in quantum mechanics; let us remember the first one - the state of

every quantum mechanical object is described by the wave function.

The question for the correspondence between the experimental measured

dynamical variables and the known mathematical categories is fundamental

for every physical theory. But the same physics can not define which

mathematical categories correspond to the dynamical variables. In classical

mechanics these are scalars, vectors and tensors in the real space. The

"visualizability" and the "tangibility" of the classical phenomena naturally,

almost intuitively have led to this correspondence. In quantum mechanics,

where the visualizability is lacked, for the realization of the fact, that to the

quantum-mechanical variable corresponds an operator the physicists have

passed a long and difficult way.

Let us consider two examples of operators. To take the co-ordinate x,

which is continuous value. For the mean value of the x in the state ( )xψ
according to (10.1) we obtain

( ) ( ) ( ) ( )
2 2 2

1 1 1

2

.

x x x

x x x

x xdW x x x dx x x x dxψ ψ ψ∗= = =∫ ∫ ∫ (10.10)
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On the other hand, according to the (10.7) we have

( ) ( )
2

1

ˆ .

x

x

x x x x dxψ ψ∗= ∫ (10.11)

From the comparison of  (10.10) and (10.11) it is clear, that the operator

x̂  of the co-ordinate x is equal to its value:

ˆ ˆ, .x x x xψ ψ= = (10.12)

Let find the operator of the component of the momentum over X, i.e. ˆ
x

p .

In the state of free movement a microparticle is described by the plane wave

of de Broglie (for example, before the slit in the diffraction experiment):

( ) ( )1
exp .

2
x

p x

i
x Et p xψ ψ

π
⎡ ⎤≡ = − −⎢ ⎥⎣ ⎦

(10.13)

As the particle is in an eigenstate, the probability to have momentum 
x

p

is 1
p

C =  and according to the definition of the operator (10.6)

( ) ( )ˆ .
x

x x x p
p x p x pψ ψ ψ= ≡ (10.14)

Differentiating (10.13) over x we obtain:

,
x x

x

p p

ip

x
ψ ψ∂ =

∂
(10.15a)

or

.
x x

p x p
p

i x
ψ ψ∂ =

∂
(10.15b)

By the comparison of (10.15b) with (10.14) for the operator of the x-

component of the momentum we obtain

ˆ .
x

p i
x

∂= −
∂

(10.16)



234 Chapter 10

The other two components of the momentum are written by analogy with

ˆ
x

p  (see Section 10.5).

10.2 OPERATORS IN QUANTUM MECHANICS

In the most general sense the operator is the rule through which we

correspond to the function ψ  other function ϕ , i.e.

ˆ ˆ, an operator.A Aψ ϕ= − (10.17)

Not all of the operators are suitable for quantum mechanics. To indicate

adequately the property of the microscopic objects, they have to respond to

some conditions. Firstly, the operators in quantum mechanics should satisfy

the superposition principle. Secondly, as it can be seen from the example of

the momentum (10.15b), at the action of the operator on the wave function

one obtains a real number. The linear operator responds to the first

requirement and the Hermitian operators - to the second one.

Let have operator Â  and two arbitrary functions ( )u x  and ( )v x .

Operator Â  is a linear operator if the next condition is fulfilled:

( ) ( ) ( ) ( )1 2 1 2
ˆ ˆ ˆ ,A C u x C v x C Au x C Av x⎡ + ⎤ = +⎣ ⎦ (10.18)

where 1C  and 2C  are arbitrary constant. The result of the action of the

operator on the linear combination of the both functions is equal to the linear

combination of the action of the operator on each of the functions.

We would like to underline, that the operator f̂ , which we have

introduced in (10.6) to define the mean value f , is a linear one. Actually,

for non-eigenstate with a wave function 
k k

Cψ ψ= ∑  according to the

definition (10.6) and the expression (10.9) we have

ˆ ˆ .
k k k k k

k k

f C f C fψ ψ ψ= =∑ ∑ (10.19)

If two operators satisfy the condition

( ) ( ) ( ) ( )*ˆ ˆ) ) ,u x Av x dx v x B u x dx
∗ ∗=∫ ∫ (10.20)
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they are called adjoint. When ˆ ˆA B=  then (10.20) becomes

( ) ( ) ( ) ( )*ˆ ˆ) ) ,u x Av x dx v x A u x dx
∗ ∗=∫ ∫ (10.21)

ˆ

The operator Ĉ  is a sum of the operators Â  and B̂  if

ˆ ˆ ˆC A Bψ ψ ψ= + (10.22a)

or symbolically

ˆ ˆ ˆC A B= + . (10.22b)

The operator Ĉ  is a product of two operators Â and B̂ , if

ˆ ˆ ˆ ˆˆ ˆ, .C AB C ABψ ψ= = (10.23)

The product of two operators depends on the order of the multipliers. For

example, if Â i
x

∂=
∂

 and B̂ x= , then

( )ˆ ˆ ˆ( ) ,

ˆ ˆˆ' ( ) .

C A B i x i ix i ix
x x x

C B A ix ix
x x

ψψ ψ ψ ψ ψ

ψψ ψ ψ

∂ ∂ ∂⎛ ⎞= = = + = +⎜ ⎟∂ ∂ ∂⎝ ⎠
∂ ∂⎛ ⎞= = = ⎜ ⎟∂ ∂⎝ ⎠

(10.24)

Obviously, ˆ ˆ 'C C≠ , i.e. ˆ ˆˆ ˆ .AB BA≠  It is important to realize that the

product of two operator in general does not commute. The algebra of the

linear operators in quantum mechanics is algebra of noncommutative

quantities. The term commutator takes a very important place in it. The

commutator ˆ ˆ[ ]AB  of two operators Â  and B̂  is defines by the difference of

the products ˆ ˆAB  and ˆB̂A :

ˆ ˆ ˆˆ ˆ ˆ[ ] .AB AB BA= − (10.25)

and the operator A  is called self-adjoint or Hermitian.
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If the operator ˆ ˆ[ ]AB  is equal to zero -  ˆ ˆ[ ] 0AB = , i.e. if the commutator is

zero, Â  and B̂  are commutative operators, but if ˆ ˆ[ ] 0AB ≠  they are non

commutative operators. An arbitrary operator always commutes with a

constant and with itself.

Finally we shall note that when Â  and B̂  are Hermitian operators, their

product in the general case is not a Hermitian operator. It can always be

represented in the following way:

( ) ( )
( ) ( )

1 1ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ or
2 2

1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ, , .
2 2

C AB AB BA AB BA

C F G F AB BA G AB BA

= = + + −

= + = + = −
(10.26)

The operator F̂  is a Hermitian one, and  the operator Ĝ  is not a

Hermitian one, but the operator ˆiG  is a Hermitian operator:

( )ˆ ˆ ˆˆ ˆ .
2

i
iG AB BA= − (10.27)

The product of a Hermitian operator Â  with a constant, as well its square

- ˆconst A  and 2
Â - are Hermitian operators.

10.3 EIGENVALUES AND EIGENFUNCTIONS OF THE

OPERATORS

In Section 10.1 we have shown (see (10.9)), that as a result of acting of

the operator f̂  of the observable f on its eigenfunction 
i

ψ  the last is

multiplied by the eigenvalue 
i

f  of this observable:

ˆ .
i i i

f fψ ψ= (10.28)

Mathematically the expression (10.28) is an equation of the unknown

function 
i

ψ . We can obtain its solution if we add the boundary conditions.

The functions, which are a solution of the Eq. (10.28), are called

eigenfunctions of the operator f̂  and numbers 
i

f  at which the equation has

a solution - eigenvalues of the operator f̂ .
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Example: We look for the eigenfunction and the eigenvalues of the ope-

rator 
2

2

d

dx
− . To determine them we have to solve the equation of the string:

2
2

2
0.

i i i

d
u k u

dx
+ = (10.29)

If a stands for the string length ( 0 x a≤ ≤ ) the boundary conditions have

the following form:

(0) 0, ( ) 0.
i i

u u a= = (10.30)

The solution of the Eq. (10.29) is well known:

sin cos .
i i i

u A k x B k x= + (10.31)

From the boundary conditions we obtain:

0,           sin 0
i

B A k a= = (10.32)

i.e. , / , 1, 2, ...
i

k a i k i a iπ π= = =
Taking into account this, the solution (10.31) deduces to the following:

sin ,                1, 2,...
i

u A x i
a

π= = (10.33)

So for the operator 
2

2

d

dx
−  we have obtained the following eigenfunc-

tions and eigenvalues:

1 2

2 2 2
2 2 2 2 2 2

1 22 2 2

1. 2. .
sin , sin , ..., sin , ...,

1 , 2 , ..., , ...

i

i

i
u A x u A x u A x

a a a

k k k i
a a a

π π π

π π π

= = =

= = =
(10.34)

Let us summarise briefly the results of the Section 9.2 and the results of

this chapter up to now. To every physical quantity we attach an operator and

to the state of the system - a wave function. The states in which the

measurement of the physical quantity f is reproducible one, are defined by us
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as eigenstates. They are described by the wave functions 
i

ψ  and in the

measurement of the observable f, one obtains the values 
i

f . The last ones

satisfy the Eq. (10.28). In this equation the functions 
i

ψ  and the values 
i

f

are the eigenfunctions and eigenvalues of the operator f̂ .

The set of the eigenvalues of the operator are called a spectrum of the

operator. If to the n different eigenfunctions of one operator correspond one

and the same eigenvalue the spectrum is n-fold degenerate.

Now it is clear why the operators in quantum mechanics are Hermitian

ones. In Eq. (10.28) the values 
i

f , i.e. the measured ones in the experiment

eigenvalues of the observable f, are real numbers, but always real

eigenvalues have namely the Hermitian operator.

The eigenfunctions of the  Hermitian operator are orthogonal. We shall

prove this. Let 
i

ψ  and 
k

ψ  are two eigenvalues of the operator f̂  and 
i

f ,

k
f  are its corresponding eigenvalues. Then we can write the equation

(10.28) for ψ  and the complex conjugate equation for 
i

ψ :

ˆ ,

ˆ .

k k k

i i i

f f

f f

ψ ψ

ψ ψ∗ ∗ ∗

=

=
(10.35)

We multiply the first equation to 
i

ψ ∗ , the second to 
k

ψ , substrate two

obtained equations and integrate to the variables x:

ˆ ˆ ( ) .
i k k i k i i k

f dx f dx f f dxψ ψ ψ ψ ψ ψ∗ ∗ ∗ ∗− = −∫ ∫ ∫ (10.36)

Because of the Hermicity of the operator the left part of this equation is

equal to zero and therefore:

( ) 0.
k i i k

f f dxψ ψ∗− =∫ (10.37)

As 
i k

f f≠ , the condition of the orthogonality is as follows:

0 .
i k

dx i kψ ψ∗ = ≠∫ (10.38)

If we add the normalization condition, we obtain that the eigenfunctions of

one operator form the orthonormal system (9.43):

.
i k ik

dxψ ψ δ∗ =∫ (10.39)
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For a continuous observable, the orthogonal condition has the form

(9.55).

The system of the eigenfnctions of a Hermitian operator creates a

complete system. This means that every function ( )xψ can be represented as

a linear combination of the eigenfunctions:

( ) ( ) .
i i

i

x C xψ ψ= ∑ (10.40)

Earlier, in Section 9.5, we proposed the possibility of such expansion,

taking into account the superposition principle. Now on the basis of the

properties of the linear operators we can state that such expansion is always

possible.

If the function of the state ( )xψ  and the eigenfunction of the operator f̂

of the observable f are known, it is possible to be found the coefficients 
k

C

of the relative gravity of the eigenstate 
k

ψ . The knowing of the 
k

C  give us

the possibility to define the probability 
2

k k
W C=  (9.51). In fact when we

multiply (10.40) to 
i

ψ ∗  and then integrate to dx , we obtain 
k

C  (see (10.3)):

.
k k ik k

i

dx C Cψ ψ δ∗ = =∑∫ (10.41)

Having the mathematical apparatus of the operators and their eigenfunc-

tions and eigenvalues, we are able to answer the question whether two obser-

vables M and N can be measured simultaneously. Let the wave function of

the state to be 
i

ψ  and it to be eigenfunction of the operators M and N, i.e.

ˆ ˆ, .
i i i i i i

M M N Nψ ψ ψ ψ= = (10.42)

We act on the second equation with the operator M̂  and on the first -

with the operator N̂ and the second result is subtracted from the first result:

( )
ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ0 or     ( ) 0.

i i i i i i i i i i i

i i i i ii

MN NM N M M N N M M N

N M M N MN NM

ψ ψ ψ ψ ψ ψ

ψ ψ

− = − = −

= − = − =
(10.43)

The condition is fulfilled for the arbitrary wave function and therefore

ˆ ˆ ˆ ˆ ˆ ˆ[ ] 0.MN NM MN− = = (10.44)
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Two observables are simultaneously measurable if their operators

commute.

Finally we shall notice that as a matter of fact the first three sections of

this Chapter are an introduction to the mathematical basics of quantum

mechanics. The reader can find a complete exposition of this question in the

Chapter 4 of the book of W. Greiner [1].

10.4 OPERATORS OF THE CO-ORDINATES AND THE

MOMENTUM AND THEIR EIGENFUNCTIONS

AND EIGENVALUES

In the considered example in Section 10.1 we have proved that the

operator of the co-ordinate x is the same co-ordinate x (10.12). Following

this, we can choose any of the co-ordinates , ,x y z  for a relative operator and

can write

ˆ ˆ ˆ, , .x x y y z z= = = (10.45)

Transmitting from the projections , ,x y z  to the vector r we obtain

ˆ .=r r (10.46)

In general, using the proof for x̂ x= , we can proof that the operator of

every physical quantity f, which depends only on the co-ordinates, i.e.

( ), ,f f x y z=  is the same function:

( )ˆ , , .f f x y z= (10.47)

To define the eigenfunction of the operator x̂  we write the equation for

its eigenfunction

( ) ( )ˆ .
x x

x x x xψ ψ′ ′′= (10.48)

And now let remember the introduced in Section 9.6 Dirac's function.

According to the relation for the variable x x′−  (property 5.) we can write

( ) ( ) 0x x x xδ′ ′− − = . (10.49)

This equation can be written in another way:
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( ) ( ).x x x x x xδ δ′ ′ ′− = − (10.50)

After replacing x with x̂  we obtain

ˆ ( ) ( ).x x x x x xδ δ′ ′ ′− = − (10.51)

From the comparison of this equation with the Eq. (10.48) it is clear that

the eigenfunction of the operator x̂ x=  is -function*

( ) ( ),x x xψ δ ′= − 10.52)

where x′  is the value of the co-ordinate x.

For the operators of the momentum components according to the (10.16)

we have

ˆ ˆ ˆ, , .
x y z

p i p i p i
x y z

∂ ∂ ∂= − = − = −
∂ ∂ ∂

(10.53)

Let us multiply the equalities (10.53) by the relative orts 0 0 0, ,x y z  and

then to sum them up. As a result we obtain the operator of the momentum

0 0 0ˆ .i i
x y z

⎛ ⎞∂ ∂ ∂= − + + = − ∇⎜ ⎟∂ ∂ ∂⎝ ⎠
p x y z (10.54)

Squaring the equalities in (10.53) and summing them up, we obtain the

operator 2
p̂ :

2 2 2
2 2 2 2 2 2 2 2

2 2 2
ˆ ˆ ˆ ˆ .

x y z
p p p p

x y z

⎛ ⎞∂ ∂ ∂= + + = − + + = − ∇ = − Δ⎜ ⎟∂ ∂ ∂⎝ ⎠
(10.55)

Here 2Δ = ∇  is the operator of Laplace.

Let write the equation of the eigenfunction ( )
x

p
xψ  for the operator ˆ

x
p :

*This eigenfunction of the operator x̂  is in a co-ordinate representation, i.e. in an

eigenrepresentation (see Section 15.1). The eigenfunction of the operator in an

eigenrepresentation is always -function.
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( ) ( )

( ) ( )

ˆ ,

.

x x

x x

x p x p

p x p

p x p x

i x p x
x

ψ ψ

ψ ψ

=

∂− =
∂

(10.56)

Here we shall note that in quantum mechanics the operators of the

momentum and its components - (10.54) and (10.53) - are customary

denoted respectively with ˆ ˆ ˆ ˆ and  , , .
x y z

p p pp  Strictly speaking, we have to

write the operators ˆ ˆ ˆ ˆ and , ,
x y z

P P PP , i.e. the operators of the general

momentum, canonically conjugated to the co-ordinates  and , , .x y zr This is

possible as far as in Cartesian co-ordinates the general momentum P is equal

to the mechanical momentum p. This will help the curious readers not to be

misled by the form of the operator of Hamilton for the charged particle in

electromagnetic field (see (10.104)).

The wave function of the free particle with momentum 
x

p

1
( ) exp

2
x

p x

i
x p xψ ψ

π
⎛ ⎞= = ⎜ ⎟⎝ ⎠

(10.57)

satisfies Eq. (10.56). This can be checked readily, if we substitute (10.57) in

(10.56). Consequently, it is the eigenfunction of the operator ˆ .
x

p i
x

∂= −
∂

 In

this 
x

p  can take arbitrary value in the interval

.
x

p−∞ < < +∞ (10.58)

These values are eigenvalues of the operator ˆ .
x

p  On the analogy of this we

can prove that the eigenfunction of the operator ˆ i= − ∇p  is

3

1
( ) exp .

(2 )

iψ
π

⎛ ⎞= ⎜ ⎟⎝ ⎠
p

r pr (10.59)

Let find the commutators of the considered so far operators. Two

arbitrary co-ordinates, for example x and y, commute, i.e. their commutator

[ ]ˆ ˆ,x y  is equal to zero. Really

[ ]
[ ]

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ, ( ) ( ) 0,

ˆ ˆ ˆˆ ˆ ˆ, 0.

x y xy yx x y yx xy yx

x y xy yx

ψ ψ ψ ψ ψ ψ ψ= − = − = − =

= − =
(10.60)
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The operators of every two components of the momentum commute,

because they are independent one from other, and the order of the

differentiation can be changed:

ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 0.
x y x y y x

p p p p p p= − = (10.61)

Do the operators of the co-ordinate and the momentum commute? First,

let consider the commutator of the momentum component with the unlike

co-ordinate:

[ ] ( )

[ ]

ˆ ˆ ˆ ˆ ˆ ˆ, ( ) ( ) 0 ,

ˆ ˆ ˆ ˆ ˆ ˆ, 0.

x x x

x x x

y p y p p y y i i y
x x

y p yp p y

ψψ ψ ψ ψ∂ ∂⎛ ⎞= − = − + =⎜ ⎟∂ ∂⎝ ⎠
= − =

(10.62)

The momentum components commute with unlike co-ordinates.

Secondly, let consider the momentum component 
x

p  and its relative co-

ordinate x . Operating with the operator of the commutator [ ]ˆ ˆ,
x

x p  for the

function ψ , we obtain

[ ] ( )

[ ]

ˆ ˆ ˆ ˆ ˆ ˆ, ( ) ( ) ,

ˆ ˆ, .

x x x

x

x p x p p x i x i x i
x x

x p i

ψ ψ ψ ψ ψ ψ∂ ∂= − = − + =
∂ ∂

=
(10.63a)

The relation between every two similar co-ordinate and momentum

component is the same:

ˆ ˆ[ , ] ,

ˆˆ[ , ]  .

y

z

y p i

z p i

=

=
(10.63b)

The momentum components do not commute with their relative co-

ordinate.

10.5
+

ANGULAR-MOMENTUM OPERATOR

The knowledge of the operators of the co-ordinate and the momentum is

of essential significance for the determination of the operators of an arbitrary

physical quantity. It is enough this quantity to be represented as a function of

the co-ordinates and the momentum components, and the last ones to be

replaced with their operators. Then for the angular-momentum operator L̂



244 Chapter 10

and its components according to the definition (2.34) and the relations (2.36)

we obtain the following operator:

ˆ ˆ

ˆ ˆ ˆ ,

ˆ ˆ ˆ ,

ˆ ˆ ˆ .

x z y

y x z

z y x

i

L yp zp i y z
z y

L zp xp i z x
x z

L xp yp i x y
y x

= × = − ×∇

⎛ ⎞∂ ∂= − = − −⎜ ⎟∂ ∂⎝ ⎠
∂ ∂⎛ ⎞= − = − −⎜ ⎟∂ ∂⎝ ⎠

⎛ ⎞∂ ∂= − = − −⎜ ⎟∂ ∂⎝ ⎠

L r p r

(10.64)

 For the square of the angular momentum we get:

2 2 2 2

22

2 2 2

ˆ ˆ ˆ ˆ

.

x y z
L L L L

y z z x x y
z y x z y x

= + +

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞= − − − − − −⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

(10.65)

Let see what are the commutating properties of the obtained operators.

We shall take the operators of two of the components, for example

ˆ ˆ and 
y x

L L . For their commutator according to (10.64) we have:

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] ( )( ) ( )( )

ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )

ˆˆ ˆ ˆ ˆ( ) ( ) (

y z x z y x y x x z

y x x z x x

y z

L L zp xp xp yp xp yp zp xp

zp p x xp yp xp p x

zp i yp i i zp

= − − − − −

= − + −

= − + − = −

(10.66)

We use the commutator (10.63a) [ ]ˆ ˆ
x

the other commutators of the components of the angular momentum:

ˆ ˆ ˆ[ , ] ,

ˆ ˆ ˆ[ , ] ,

ˆ ˆ ˆ[ , ] .

y z x

z x y

x y z

L L i L

L L i L

L L i L

=

=

=

(10.67)

The operators of the angular-momentum components do not commute.

The three commutation relations can be represented in a vector form

ˆ ˆ ˆ ,i = ×L L L (10.68a)

y z x

x p, .= i  By analogy we obtain also

+ yp ) = i L .
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or in a matrix form

( )
0 0 0

0 0 0ˆ ˆ ˆ ˆ ˆ ˆ .

ˆ ˆ ˆ

x y z x y z

x y z

i L L L L L L

L L L

+ + =

x y z

x y z (10.68b)

To define the commutators ( )2ˆ ˆ[ , ]  , ,
i

L L i x y z=  we shall use (10.67). We

multiply its last equality on the right and on left by the operator ˆ
y

L :

2

2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .

x y y x y z y

y x y x y y z

L L L L L i L L

L L L L L i L L

= +

= −
(10.69)

After subtracting these equations we obtain:

2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ).
x y y x z y y z

L L L L i L L L L− = + (10.70)

By analogy from the second commutator of (10.67) after multiplying by

ˆ
z

L  we obtain:

2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ).
x z z x z y y z

L L L L i L L L L− = − + (10.71)

We add the relation (10.70) to (10.71) and take into account that
2 2ˆ ˆ ˆ ˆ 0 :

x x x x
L L L L− =

2 2ˆ ˆ ˆ ˆ 0
x x

L L L L− = . (10.72)

Choosing other two commutators from (10.67) we obtain similar

expression for ˆ ˆ and 
y z

L L :

2 2 2ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 0, [ , ] 0, [ , ] 0.
x y z

L L L L L L= = = (10.73)

The operators of the angular-momentum components commute with the

operator of the square of the angular momentum.

The angular momentum as an integral of the motion takes a very

important place in the problems with central forces (see Chapter 3). From
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here it is clear its significance in the analysis of the atoms and atomic

systems, in which namely such forces act. In connection with this we should

add that very often both of the operators of the component ˆ ˆ ˆ,  and 
x y z

L L L  and

the operator 2
L̂  are necessary in the spherical co-ordinates.

To obtain these operators we have to express the connections both of

the Cartesian co-ordinates with spherical ones (see (1.69) and Fig. 1.5) and

of the spherical co-ordinates upon the Cartesian ones:

2 2 2 2

sin cos , sin sin , cos ,

, cos , tan .

x r y r z r

z y
r x y z

r x

θ ϕ θ ϕ θ

θ ϕ

= = =

= + + = =
(10.74)

Using these relations we easy may express the derivative of the spherical

co-ordinate upon the Cartesian:

sin cos , sin sin , cos ,

cos cos sin cos sin
, , ,

sin cos
, , 0.

sin sin

r r r

x y z

x r y r z r

x r y r y

θ ϕ θ ϕ θ

θ ϕ θ θ ϕ θ θ θ

ϕ ϕ ϕ ϕ ϕ
θ θ

∂ ∂ ∂= = =
∂ ∂ ∂
∂ ∂ ∂= = = −
∂ ∂ ∂
∂ ∂ ∂= − = − =
∂ ∂ ∂

(10.75)

Now we can easy obtain the operator ,  and 
x y z

∂ ∂ ∂
∂ ∂ ∂

:

cos cos sin
sin cos ,

sin

sin cos cos
sin sin ,

sin

sin
cos .

r

x x r x x

r r r

y r r r

z r r

θ ϕ
θ ϕ

ϕ θ ϕθ ϕ
θ θ ϕ

ϕ θ ϕθ ϕ
θ θ ϕ

θθ
θ

∂ ∂ ∂ ∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂= + −
∂ ∂ ∂

∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂
∂ ∂ ∂= −
∂ ∂ ∂

(10.76)

We substitute the derivative ,   and  
x y z

∂ ∂ ∂
∂ ∂ ∂

 into the expressions of the

operators for angular-momentum components (10.64) and obtain them in the

spherical co-ordinates form:
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ˆ sin cot cos ,

ˆ cos cot sin ,

ˆ .

x

y

z

L i

L i

L i

ϕ θ ϕ
θ ϕ

ϕ θ ϕ
θ ϕ

ϕ

⎛ ⎞∂ ∂= +⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂= − −⎜ ⎟∂ ∂⎝ ⎠
∂= −

∂

(10.77)

By analogy substituting (10.76) into (10.65) we might obtain also the

operator 2ˆ .L  We shall obtain it by another way using two ladder operators

L̂+  and L̂− :

ˆ ˆ ˆ cot ,

ˆ ˆ ˆ cot .

i

x y

i

x y

L L iL e i

L L iL e i

ϕ

ϕ

θ
θ ϕ

θ
θ ϕ

+

−
−

⎛ ⎞∂ ∂= + = +⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂= − = − +⎜ ⎟∂ ∂⎝ ⎠

(10.78)

The product of these operators is:

( )( ) 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] .
x y x y x y x y

L L L iL L iL L L i L L+ − = + − = + − (10.79)

Expressing the square of the angular-momentum operator 2
L̂  through the

operator ˆ ˆL L+ −  (and also through the ˆ
z

L ) we get

2 2 2 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ .
x y z z z

L L L L L L L L+ −= + + = + − (10.80)

And now we shall obtain the product of the ladder operators ˆ ˆL L+ − . We

use (10.80) and carefully differentiate strictly keeping the order of operators

in the products:

2

2 2
2 2

2 2

ˆ ˆ cot cot

cot cot .

i i i
L L e i e ie

i

ϕ ϕ ϕθ θ
θ ϕ θ ϕ

θ θ
θ θ ϕ ϕ

− −
+ −

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂= − + − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠
⎛ ⎞∂ ∂ ∂ ∂= − + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

(10.81)
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We substitute ˆ
z

L  from  (10.77) and ˆ ˆL L+ −  from (10.81) into (10.80) and

obtain the square of the angular-momentum operator 2
L̂  in spherical co-

ordinates:

2 2
2 2

2 2 2

2
2

2 2

1ˆ cot
sin

1 1
sin .

sin sin

L θ
θ θ θ ϕ

θ
θ θ θ θ ϕ

⎛ ⎞∂ ∂ ∂= − + +⎜ ⎟∂ ∂ ∂⎝ ⎠
⎧ ⎫∂ ∂ ∂⎛ ⎞= − +⎨ ⎬⎜ ⎟∂ ∂ ∂⎝ ⎠⎩ ⎭

(10.82)

The operator

2

2 2

1 1ˆ sin
sin sin

θ
θ θ θ θ ϕ

⎧ ⎫∂ ∂ ∂⎛ ⎞Λ = − +⎨ ⎬⎜ ⎟∂ ∂ ∂⎝ ⎠⎩ ⎭
(10.83)

is called the operator of Legendre. Often instead of Λ̂  we uses the operator
2

, ,
ˆ

θ ϕ θ ϕΔ ≡ ∇ = −Λ , called Laplacian upon the sphere or an angular Laplacian:

2 2 2

,
ˆ ˆ .L θ ϕ= Λ = − Δ (10.84)

The operator ,θ ϕΔ  is the angular part of the operator of Laplace Δ  in the

spherical co-ordinate system:

2
2

2 2 2 2

,2

,2 2 2

1 1 1 1
sin

sin sin

1 1
.

r

r
r r r r

r
r r r r r

θ ϕ
θ ϕ

θ
θ θ θ θ ϕ

⎧ ⎫∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞Δ = + +⎨ ⎬⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎩ ⎭
Δ∂ ∂⎛ ⎞= + Δ = Δ +⎜ ⎟∂ ∂⎝ ⎠

(10.85)

The operator 
r

Δ  is the radial Laplacian.

10.6 EIGENVALUES AND EIGENFUNCTIONS OF THE

OPERATORS ˆ
z

L AND
2

L̂

We shall start with the component 
z

L  of the angular momentum. The

equation for the eigenfunctions of the operator ˆ
z

L  appears as
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.
z

i L
ψ ψ
ϕ

∂ =
∂

(10.86)

The solution of this equation is:

( ) exp .z
iL

Aψ ϕ ϕ⎛ ⎞= ⎜ ⎟⎝ ⎠
(10.87)

From the condition of single-valued function (Section 9.2) -

( ) ( )2ψ ϕ ψ ϕ π= +  - we obtain:

( )exp exp 2 ,z z
iL iL

A Aϕ ϕ π⎛ ⎞ ⎡ ⎤= +⎜ ⎟ ⎢ ⎥⎝ ⎠ ⎣ ⎦
(10.88a)

or

exp 2 1.z
iL π⎛ ⎞ =⎜ ⎟⎝ ⎠

(10.88b)

The values of the component 
z

L  at which this condition is satisfied, are

the eigenvalues of the operator ˆ
z

L :

, 0, 1, 2, ....
z

L m m= = ± ± (10.89)

The z-component of the angular momentum quantizied and it can have

only discrete values, equal to the integral . Taking into account these

values in (10.87), the eigenfunction becomes:

( )( ) exp .A imψ ϕ ϕ= (10.90)

With the determination of the constant A from the condition of

normalization we get the final solution of the problem:

( )
2 2 2

22 2 2 2

0 0 0

1
2 1 .

2

im
d A e d A d A A

π π π
ϕψ ϕ ϕ ϕ ϕ π

π
= = = = ⇒ =∫ ∫ ∫ (10.91)

z
The normalized eigenfunctions of the operator L  have the following form
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( )1
( ) exp .

2
imψ ϕ ϕ

π
= (10.92)

The equation for the eigenfunction of the operator 2
L̂  of the square of the

angular momentum  after taking into account (10.84), becomes:

2

2
ˆ .

Lψ ψΛ = (10.93)

The explicit view of this equation is

2 2

2 2 2

1 1
sin 0.

sin sin

Lθ ψ
θ θ θ θ ϕ

∂ ∂ ∂⎛ ⎞ + + =⎜ ⎟∂ ∂ ∂⎝ ⎠
(10.94)

This equation has a solution satisfying the finiteness of the wave function

(Section 9.2) only for determined values of /L , namely:

2

2
( 1), 0,1, 2, ...

L
l l l= + = (10.95)

and its solutions are spherical functions ( , )
lm

Y θ ϕ  (they are called also

spherical harmonics; see, for example [2], Appendix V):

( , ) ( , ), 0,1, 2, ...
lm lm

Y mψ θ ϕ θ ϕ= = (10.96)

Spherical functions are eigenfunctions of the operators 
2

L̂  and the

condition (10.96) determines its eigenvalues:

2 2( 1) , 0,1, 2, ...L l l l= + = (10.97)

The number l is called an orbital  quantum number. Both the spectrum of the

square of the angular momentum 2
L  and that of the z-component 

z
L  are

discrete ones. The operators  2
L̂  and ˆ

z
L  commute (10.74) and have common

eigenfunctions, i.e.

ˆ ( , ) ( , ), 0,1, 2, ...
z lm lm

L Y mY mθ ϕ θ ϕ= = (10.98)
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If we fix the square of the angular momentum 2 2( 1) ,L l l= +  i.e. the

number l, the component 
z

L  may have 2 1l +  values:

, 0, 1, 2, ...., .
z

L m m l= = ± ± ± (10.99)

In other words, 2 1l + z-components values of L and relspectively 2 1l +
wave functions, which differ on m, correspond to the state with fixed angular

momentum. The spectrum of the operator 2
L̂  is ( 2 1l + )-fold degenerate.

Physically this means, that the angular momentum vector with a fixed value,

i.e. with a fixed number l, can have 2 1l +  orientations in space.

10.7 VECTOR INTERPRETATION OF THE ANGULAR

MOMENTUM

The angular momentum is a vector. The value of this vector is

determined by 2
L . Taking into account the experimentally measured values

of 2
L  we can measure anyone of the Cartesian component of L . Let assume,

that we consider the state with fixed values of 2
L  and 

z
L  (the corresponding

operators of these quantities commute (10.73)). However the values of the

two other components of the angular momentum 
x

L and
y

L  are indefinites.

Their corresponding operators do not commute (10.67). In other words, at

simultaneous  experimental measuring we obtain fixed values of 
2

L  and 
z

L

and different values of 
x

L  and 
y

L . The situation, of course is, totally

different in classical mechanics - for example, the angular momentum of the

rotating wheel in one plane around fixed centre has determined values of

both the vector and of its three components. Can the classical model be used

in the presentation of the quantum mechanical moment with fixed 2
L  and 

z
L

and undefined 
x

L  and 
y

L ? If both the wheel and together with it the vector

L  precesses around the Z-axis, the values of 2
L  and 

z
L  will be fixed but not

these of 
x

L  and 
y

L . The model of the vector of the angular momentum with

fixed value, precessing around Z-axis and having fixed 
z

L -component and

indefinite 
x

L - and 
y

L -components (Fig.10-1b) is a good visual

representation of the quantum mechanical angular momentum. We,

however, shall underline that this is only one presentation, but not the real

precessing of the vector L . In fact it lies on the cone of the precession and

another useful presentation shows it is spread over it.
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a            b
Figure 10-1. The vector representation of the angular momentum: a) angular momentum of

the rotating wheel in one plane around fixed centre; b) classical vector representation of the

quantum mechanical angular momentum - vector L precesses around the Z-axis.

The vector representation of the state with l=2 is shown in Fig. 10-2. We

note that we are forced to accept the precession of the vector with zero Z-

component for the same reason as for the other orientations.

Figure 10-2. Vector representation of angular momentum in the state with l=2. In all possible

orientations, including this with zero Lz-component, the vector L precesses around Z-axis.
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In Section 10.6 we have established that the value of L is determined by

the number l. It is referred as the orbital quantum number. The number m,

which determines the value of the component 
z

L  of the moment L, is

referred as the azimuthal or magnetic quantum number. In quantum

mechanics the state of a particle with a fixed angular momentum, i.e. with

fixed l is denoted except numerically and literately. The states with different

angular momentum, theirs literal denotes and the possible components are

given in the Table 10-1.

Table 10-1. Quantum numbers and the observables, which they determines, and theirs values

The value of the

orbital number l 0 1 2 3 4

Literal symbol s p d f g

The value of

( )1)L l l= + 0 2 6 12 20

The value of the

magnetic

number m 0 0, 1± 0, 1, 2± ± 0, 1, 2, 3± ± ± 0, 1, 2, 3, 4± ± ± ±

The value of

L m
z

= 0 0, ± 0, , 2± ± 0, , 2 , 3± ± ± 0, , 2 , 3 , 4± ± ± ±

Multiplicity

of the

degeneration 0 3 5 7 9

So, at fixed orbital quantum number l, i.e. at fixed value of the vector of

the orbital moment, it can have only 2 1l +  orientations in the space. In this

case one speaks about space quantization. Conveniently and obviously these

orientations are represented by vector diagrams. For s-, p-, d- and f- states of

a particle these diagrams are shown in Fig. 10.3. To construct the diagram,

for example of the p-state, from the beginning O of the Z-axis we draw the

half circle with the radius equal to ( )1 2L l l= + =  and then construct

three orientations of the vector L, so that its components to the Z-axis to be

respectively , 0  and  − . Similarly we construct the diagrams of the rest

states as well.

The angle, which the vector L makes with the Z-axis, is determined by

the quantum numbers l and m:

( ) ( )
cos .

1 1

z
L m m

L l l l l

θ = = =
+ +

(10.100)
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Figure 10-3. Vector diagrams of the angular momentum for different states: s-, p-, d- and f-

states.

For given value of L, i.e. for l, the maximum value of m is l. But

( )1m l l l= < + . Therefore the vector of the angular moment L never align

itself completely in the direction of Z-axis.

10.8 ENERGY OPERATORS

Firstly we shall determine the operator of the kinetic energy of a particle

with mass 0m . Substituting momentum components into classical expression

for the kinetic energy T (e.g. in (6.53)) with theirs operators, we obtain:

( )
2 2 2 2 2

2 2 2 2

2 2 2

0 0 0

1ˆ ˆ ˆ ˆ .
2 2 2

x y z
T p p p

m m x y z m

⎛ ⎞∂ ∂ ∂= + + = − + + = − ∇⎜ ⎟∂ ∂ ∂⎝ ⎠
(10.101a)

The kinetic-energy operator is expressed by the operator of Laplace:

2 2
2

0 0

ˆ .
2 2

T
m m

= − ∇ = − Δ (10.101b)
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In spherical co-ordinates using (10.85) we can write the operator of the

kinetic energy as follows:

2 2 2
2

,2 2 2

0 0 0

ˆ1 1ˆ ˆ ,
2 2 2

r

L
T r T

m r r r m r m r
θ ϕ

∂ ∂⎛ ⎞= − − Δ = +⎜ ⎟∂ ∂⎝ ⎠
(10.102)

i.e. the operator T̂  represents by the operator of the radial kinetic energy and

the operator of the square of the angular momentum. The separation of the

kinetic energy in quantum mechanics to radial energy ˆ
r

T  and centrifugal

energy 2 2

0
ˆ / 2L m r  fully corresponds to both parts of the kinetic energy in

classical mechanics (6.79). We shall note that in quantum mechanics the

centrifugal energy 2 2

0
ˆ / 2L m r customary is called rotational energy.

The operator of the total energy is a sum of the operator T̂  and the

operator of the potential energy U . As U  depends only on the co-ordinates

its operator is the same function U . Consequently the operator of Hamilton

in Cartesian and spherical co-ordinates can be written as follows:

( ) ( )

( )

2

2

0

2 2 2
2

,2 2 2

0 0 0

1ˆ ˆ , , , , ,
2

ˆ 1 1ˆ ˆ .
2 2 2

r

H T U x y z U x y z
m r

L
H T r U r

m r m r r r m r
θ ϕ

== + = − Δ +

∂ ∂⎛ ⎞== + = − − Δ +⎜ ⎟∂ ∂⎝ ⎠

(10.103)

Very important in quantum mechanics is the operator of the total energy

of charged particle in electromagnetic field. We shall obtain it substituting

physical quantities in the classical Hamiltonian (6.33)

( )2

02H e m e= − + ΦP A  by theirs operators. Remembering the comments

for ˆˆ   and  p P  in Section 10.4, for the operator P̂  we can write ˆ .i= − ∇P

The vector potential A is a function of the co-ordinates and therefore ˆ =A A .

Then for the operator of Hamilton we can write

( ) ( )
2 2

0 0

1 1ˆ ˆ .
2 2

H e e i e e
m m

= − + Φ = − ∇ − + ΦP A A (10.104)

Now we shall define the eigenfunctions and the eigenvalues of the

operator of the kinetic energy in one-dimensional motion:
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22 2

2

0 0

ˆ   .
2 2

x
p

T T
m x m

ψψ φ ψ∂= → − =
∂

(10.105)

The solution of this equation is the function ( )
x

p
xψ  (10.57) and the

eigenvalues of the energy forms the continuos spectrum from −∞  to +∞ .

For three-dimensional motion the operator T̂  has the form (10.101) and

the equation for its eigenfunction

2 2

0 0

 .
2 2

p

m m
ψ ψ− Δ = (10.106)

has the solution ( )ψ
p

r  (10.59), which describes the plane wave of de

Broglie. The momentum p of a free particle has an arbitrary value from −∞
to +∞  and the energy spectrum is continuous.

10.9 THE HEISENBERG UNCERTAINTY PRINCIPLE

We know that the state of a system is described by a wave function and

the physical quantities - by operators. When the measurement of one quantity

is repeatble, in the experiment we get the eigenvalues of its operator, and the

wave function of the state is the eigenfunciton of the operator. In this case

the physical quantity is defined. When the measurement is not repeatble, we

obtain different values, but always one of the eigenvalues of quantity's

operator. The same quantity is undefined. The two quantities are compatible,

i.e. they are simultaneously measured, when their operators commute. The

set of the eigenfunctions of these quantities forms a complete set of

functions.

When the operators of two observables A and B do not commute they are

undefined. Let the commutator of the corresponding Hermitian operators

ˆ ˆ and  A B  obeys the relation

ˆ ˆ ˆˆ ˆ ,AB BA iC− = (10.107)

where ( )ˆ ˆ ˆˆ ˆC AB BA i= − is a Hermitian operator (problem 3). Does the connec-

tion exist in the uncertainties of both observables A and B in the state ( )xψ ?

We shall characterize the uncertainties of both observables with the

minimal possible product of their fluctuations. As a measure for the de-

viation of measured values of A and B from the mean value we shall use the
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root-mean-square deviations (the dispersions) 2
A AδΔ = and 2

B BδΔ = .

Here Aδ  and Bδ  stand for the deviations from the mean value:

2 2 2 2 2

2 2 2 2 2

,      A 2 ,

,      2 .

A A A A AA A A A

B B B B A BB B B B

δ δ

δ δ

= − = − + = −

= − = − + = −
(10.108)

Without loosing the generality we can set

0,            0.A B= = (10.109)

This is a question of choice of the co-ordinate system and of the initial

point of reading. In this case the values of quantities A and B are equal to

their deviations:

,          .A A B Bδ δ= = (10.110)

In order to find the connection between the uncertainties  and A Bδ δ  we

consider the integral

( ) 2
ˆ ˆ( ) ,I A iB dxα α ψ= −∫ (10.111)

where α is an arbitrary real number and the ( ) 0.I a ≥
We represent the integral as  a product of complex conjugate factors and

use the fact that operators ˆ ˆ and A B  are Hermitian ones:

( ) ( )
( ) ( )

( ) ( )
( )

*

2 2 2

2 2 2 2 2 2

ˆ ˆˆ ˆ( )

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆˆ ˆ ˆ

ˆ ˆ ˆ .

I A iB A iB dx

A iB A dx i A iB B dx

A A iB dx iB A iB dx

A i AB BA B dx

A C B dx A C B

α α ψ α ψ

α ψα ψ α ψ ψ

ψ α α ψ ψ α ψ

ψ α α ψ

ψ α α ψ α α

∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗

∗

= − +

= − + −

= − + −

⎡ ⎤= − − +⎣ ⎦
⎡ ⎤= + + = + +⎣ ⎦

∫
∫ ∫
∫ ∫
∫
∫

(10.112)

In this derivation we use the expression (10.107).

A necessary and sufficient condition the integral

2 2 2( ) ,I A C Bα α α= + + (10.113)
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which is a square trinomial in respect to , to be positive, is the discriminant

of the trinomial to be negative

2 2 2 2 2 21 1
4             .

2 2
A B C A B C A B Cδ δ δ δ≥ → ≥ → Δ Δ ≥ (10.114)

The condition (10.114) is known as the uncertainty relation of

Heisenberg for two incompatible quantities. It is also called uncertainty

principle. It states that if measurement of A is uncertain by the amount AΔ ,

then the measurement of B is uncertain by the amount BΔ , such that

2A B CΔ Δ ≥ . The more precisely we measure A, the more we give up

ability to determine B accurately. If A is exactly known, we know nothing at

all about B, i.e. if 0AΔ = , BΔ = ∞ , and vice versa. The uncertainty relation

is a consequence of the basic principles of quantum mechanics and is related

to any two physical quantities which operators do not commute.

Let us consider one concrete example with the co-ordinate y and momen-

tum component 
y

p . According to (10.63b) the operator Ĉ  in this case is

ˆ ˆ
ˆ y y

yp yp
C

i

−
= = (10.115)

and the Heisenberg relation can be written as

.
2

y
y pΔ Δ ≥ (10.116)

The product of the root-mean-square deviations (the dispersions) of the

co-ordinate and the corresponding component of the momentum in the same

direction are larger or equal to / 2 . Obviously it is not possible to make an

experiment, in which simultaneously 2 20 and 0 .
y y

p p y yδ δΔ ≡ = Δ ≡ =

The localization of the particle give the uncertainty of the momentum and the

particle with the precise momentum is spread in the space. This makes

impossible the use of the term trajectory in quantum mechanics.

We shall illustrate the Heisenberg relation with the experiment on the

diffraction of the electron by a slit (Fig. 10-4). Before the slit the electron is

in the state with certain momentum ,  0,  0,
x y z

p p p p= = =  which is

described by the plane de Broglie wave ( )exp /A i Etψ = ⎡ − ⎤⎣ ⎦pr . The

probability to find the particle in the volume element dV is
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2 2
dW dV A dVψ= = (10.117)

It does not depend on the co-ordinates and it is the same in all the space.

The particles with the precise determined momentum have totally uncertain

co-ordinates, which is in conformity with the uncertainty relation (10.116).

Let try to fix the co-ordinate y by the slit of the width a. Then we shall

see the well-known diffraction pattern. As it is symmetrical we can write that

0  and  
y y y

p p p= = Δ . We shall do the estimation by the first diffraction

maximum. Its limit is defined by the angle θ , i.e. by the first diffraction mi-

Figure 10-4. The measurement of the co-ordinate y of a beam of electrons by the slit leads to

its decay on conical beams with different
y

p momentum. The limit momentum of the first dif-

fraction maximum is defined by the electron, which fall in the first minimum, i.e. by the ∠ .

nimum. At this angle the rays from the both halves of the slit (two by two)

interfere destructively as their path difference is /2, i.e.

sin .
2 2

a λθ = (10.118)

As the y-component of the momentum in the minimum is sinp θ , it changes

from the sinp θ−  to sinp θ . Hence, from (10.118) we obtain for the

deviation from the averaged value 0p =  the following

sin sin .
y

h h h
p p

a a

λθ θ
λ λ

Δ = = = = (10.119)
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As the deviation of the co-ordinate y is / 2y aΔ = , we can write

,
2 2

y

h a h
p y

a
Δ Δ = = (10.120)

i.e. our estimation is very close to the calculated value (10.116).

It is clear, that with the decreasing the slit width and so the precise fixing

of the co-ordinate y the uncertainty of 
y

p  increases. Because of the diffrac-

tion the precise measurement of the co-ordinate y leads to a bigger uncer-

tainty of the momentum 
y

p . The wave particle duality places the limit of the

simultaneous measurement of the position and the momentum of the particle.

The uncertainty relation is a consequence from the specific character of

the microscopic object, namely from its dual character.

SUMMARY

The state of a system in quantum mechanics is described by a wave

function and the physical quantity (the observable) - by an operator (Table

10-2). The values of the quantity, which are measured in the experiment, are

Table 10-2. Basic operators and theirs eigenfunctions and eigenvalues

Physical

quantity

Operator Eigenfunctions Eigenvalues

Co-ordinate x x ( ) ( )x x xψ δ ′= − x−∞ < < ∞

Radius-vector r r ( ) ( )ψ δ ′= −r r r 0 < < ∞r

Momentum x-

component, 
x

p
i

x

∂−
∂ ( ) 1

exp
2

x

i
x p xψ

π
⎛ ⎞= ⎜ ⎟⎝ ⎠ x

p−∞ < < ∞

Momentum p i− ∇ ( )
( )3

1
exp

2

iψ
π

⎛ ⎞= ⎜ ⎟⎝ ⎠
r pr

0 < < ∞p

Angular

momentum z-

component, 
z

L
i

ϕ
∂−

∂
( ) ( )1

exp
2

imψ ϕ ϕ
π

=
z

L m=

Square of the

angular

momentum 2 2

,
ˆ

θ ϕΛ = − Δ ( ) ( ),, ,
l m

Yψ θ ϕ θ ϕ= 2 2 ( 1)L l l= +

Kinetic energy,

T

2

0
2m

− Δ ( )
( )3

1
exp

2

iψ
π

⎛ ⎞= ⎜ ⎟⎝ ⎠
r pr

2

0

0
2

p

m
< < ∞

Total energy,

E H= ( )
2

0
2

U r
m

− Δ +   and Eψ  depend on the view of ( )U r
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eigenvalues of its operator, and the wave functions of the state are

eigenfunctions of the operator or a linear combination of them. From the

measurement in the eigenstate we obtain certain eigenvalues of the quantity

(of its operator) and in the non-eigenstate - different values, but always one

of the eigenvalues. Two physical quantities (observables) are compatible, i.e.

simultaneously measured, if their operators commute.

Linear Hermitian operators are used in quantum mechanics. They obey

the superposition principle and their eigenvalues are real numbers.

The operator Â  is Hermitian if it satisfies the condition

( ) ( ) ( ) ( )*ˆ ˆ .u x Av x dx v x A u x dx
∗ ∗=∫ ∫

The average value of the physical quantity f is defined by its operator and

the wave function of the state

( ) ( )ˆ .f f dVψ ψ∗= ∫ r r

The eigenfunctions of an operator form a complete orthonormal set of

functions.

The dispersions (root-mean-square deviation)   and  A BΔ Δ  of two

incompatible quantities A and B satisfy the Heisenberg uncertainty principle

2A B CΔ Δ ≥ , where C is defined by the operator ˆ ˆ ˆ[ ]C AB i= . Applied for

the co-ordinate x and the momentum 
x

p , the uncertainty principle

2
x

x pΔ Δ ≥

leads to  an inapplicability of the term trajectory in quantum mechanics.

QUESTIONS

1. How is average value of the observable expressed by:

a) superposition coefficients 
k

C ; b) its operator?

2. What kind of operators are used in quantum mechanics and why?

3. Which operators are Hermitian?

4. If two operators are Hermitian, are the operators of their:

a) sum Hermitian; b) product Hermitian?

5. What is the commutator of two operators?

6. Do the following operators commute:
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a) ˆ ˆ ˆ ˆ  and  ;  b)    and  ;  c)    and  ;   d)   and  ?
x y x y

x p z p x y p p

7. How are the operators of the angular-momentum components obtained?

8. Do the next operators commute:

a) operators of the angular-momentum components;

b) operators of the angular-momentum components with the operator of

the square of angular momentum?

9. How are the operators of the energy obtained for:

a) a free particle; b) a charged particle in electromagnetic field?

10.What are the eigenfunctions and the eigenvalues of an operator?

11.What is the complete set of functions?

12.What is the necessary and sufficient condition two quantities to be

compatible?

13.  What is the kind of spectrum of: a) the momentum components; b) the

momentum: c) the components and the square of the angular moment; d)

the energy of the free particle?

14.What is the degeneracy?

15.At the fixed value of the square of angular momentum 2
L  (fixed l) the

component 
z

L  has 2 1l + values. What does this mean physically?

16.What is the connection between the uncertainties of two incompatible

quantities?

17.  How can you explain physically the Heisenberg uncertainty relation for

the momentum and the co-ordinate of a particle?

PROBLEMS

1. Prove that the operator ˆ
x

p  of the x-component of the momentum is

Hermitian.

2. Prove that the commutator of the operator ˆ
x

p  and of the operator of the

arbitrary physical quantity ( ), ,f x y z , which depends only on the co-

ordinates, satisfies the condition ( ) ( )ˆ ˆˆ ˆ, , , ,
x x

f
p f x y z f x y z p

x

∂− = −
∂

.

3. Prove that if the operators ˆ ˆ  and  A B  are Hermitian, the operator

( )ˆ ˆ ˆˆ ˆC AB BA i= −  is also Hermitian.

4. Taking into account that the product of two Hermitian operators can be

present as ( ) ( )ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ/ 2 / 2AB AB BA AB BA F G= + + − ≡ + , prove that the

operators ˆˆ   and  iF G  are Hermitian.
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5. Prove that the component 
y

L  of the angular momentum commutes with

the operator of the square of angular momentum 2
L :

2 2ˆ ˆ ˆ ˆ 0
y y

L L L L− = .

6. Knowing the connection between the Cartesian and the spherical polar

co-ordinates sin cos , sin sin , cos ,x r y r z rθ ϕ θ ϕ θ= = =  prove that

ˆ .
z

L i
ϕ
∂= −

∂
7. Knowing the connection between the Cartesian and the spherical polar

co-ordinates (problem 6.) prove that:

ˆ sin cot cos ,

ˆ cos cot sin .

x

y

L i

L i

ϕ θ ϕ
θ ϕ

ϕ θ ϕ
θ ϕ

⎛ ⎞∂ ∂= +⎜ ⎟∂ ∂⎝ ⎠
⎛ ⎞∂ ∂= − −⎜ ⎟∂ ∂⎝ ⎠

8. Knowing the operators ˆ ˆ ˆ,    and  
x y z

L L L  in the spherical co-ordinates

(problems 6. and 7.) prove, without using the ladder operators ˆ ˆ and L L+ − ,

that 
2

2 2

2 2

1 1ˆ sin .
sin sin

L θ
θ θ θ θ ϕ

⎧ ⎫∂ ∂ ∂⎛ ⎞== − +⎨ ⎬⎜ ⎟∂ ∂ ∂⎝ ⎠⎩ ⎭

9. Prove that the operator of Hamilton ( )
2 2

2

0

ˆ
2

H U x
m x

∂= − +
∂

 is Hermitian.

10.  Obtain the Hamiltonian for the H-atom.

11.  Obtain the Hamiltonian for the harmonic oscillator.
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11.1 THE SCHROEDINGER WAVE EQUATION

The knowledge of the wave function of a quantum-mechanical system

allows us to describe its state. The operator f̂  of the observables gives us

the possibility to define what values can accept this observable and what is

their probability distribution. But knowing the state of given quantity in

certain instant is not enough. It is necessary to know the behaviour, i.e. the

changes of state in time as well. Then we can determine how the observables

change in time. So, the question, which we put on, is how the wave function

ψ  changes in time. Said in other words, if in an instant 0t =  it is ( ),0ψ r

what will be ( ),tψ r ?

In classical mechanics the equations of motion allow us, if we know the

state in a given instant, to define it in every subsequent instant of time. In

Newton mechanics the basic equation of motion (the second Newton's law)

allows, if we know the co-ordinates and the velocities of the particles in a

given instant of time, to define them in an arbitrary subsequent instant. In

Hamilton mechanics, if we know the canonical conjugate general co-

ordinates and momenta in the instant t we can define them in the arbitrary

instant of time by Hamilton's equations.

By analogy, in quantum mechanics, in order to know the change of the

state, it is necessary to know the equation, which is satisfied by the wave

function ψ . For this we shall pay attention to the causality in quantum

mechanics. In classical mechanics if we know the values of a quantity in an

instant 0t = , we can precisely determine its values in the instant t. In

quantum mechanics if we know the probability distribution of a given

quantity in the instant 0t = , we can determine its probability distribution in

every instant t. In other words, in quantum mechanics the causality has

statistical, probabilistic character unlike its deterministic character in

classical mechanics.

The wave function satisfies the Schroedinger equation. This is a basic

statement in quantum mechanics. The Schroedinger equation can not be

derived - it is postulated (as the second Newton's law is postulated). Some

properties of Schroedinger equation can be established form the peculiarity

of the quantum-mechanical systems.
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Acording to the superposition principle, if the system can be in the states

with the wave functions 1 2 3, , , ...,
n

ψ ψ ψ ψ  it can be found and in the state

with wave function 
i i

i

Cψ ψ= ∑ . All these functions obey the Schroedinger

equation. This is possible if the equation is linear.

The state in the given instant 0t = , i.e. the wave function ( ),0ψ r  in this

instant (one constant with respect to time) determines the casual state in the

instant t, i.e. the wave function ( ),tψ r . This is possible only if the Schroe-

dinger equation is of the first order in respect to time, i.e. it contains a deri-

vative / tψ∂ ∂ . If, e.g. it were of the second order the two constants would be

obtained. Then in order to know the state in the instant t, the wave function

at 0t = , i.e. ( ),0ψ r , would be insufficient - one more quantity is necessary.

We shall obtained the Schroedinger equation using of the wave function

of the free particle with the momentum p:

( )
( )

( )

( )
( )

3

3

1
, exp

2

1
exp .

2
x y x

i
t Et

i
Et p x p y p z

ψ
π

π

⎡ ⎤= − −⎢ ⎥⎣ ⎦

⎡ ⎤= − − − −⎢ ⎥⎣ ⎦

r pr

(11.1)

We emphasize this is not a way that represents a proof but the illustration

of the Schroedinger equation. We can subsequently determine as follows:

2 2 2 2 2

2 2 2

22 22 2

2 2 2

,

2 2

.
2 2

yx z

i
i i E E

t

m m x y z

pp p p
E

m m

ψ ψ ψ

ψ ψ

ψ ψ ψ

∂ ⎛ ⎞= − =⎜ ⎟∂ ⎝ ⎠
⎛ ⎞∂ ∂ ∂− Δ = − + +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞
= − − − − = =⎜ ⎟⎜ ⎟⎝ ⎠

(11.2)

We equalize the left-hand parts of these equations and obtain that the

wave function (11.1) obeys the equation:

2

.
2

i
t m

ψ ψ∂ = − Δ
∂

(11.3)
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As Ĥ  for a free particle has a form 2ˆ 2H m= − Δ , the Eq. (11.3)

becomes

( )ˆ , .i H t
t

ψ ψ∂ =
∂

r (11.4a)

This is the equation of Schroedinger. It is satisfied not only by the wave

function of a free particle but by any wave function ( ),tψ r  of arbitrary

quantum system.

If the system has the potential energy ( )U r  and hence the Hamiltonian

becomes ( ) ( )2ˆ / 2H m U r= − Δ + , the Schroedinger equation take a form:

( ) ( ) ( )
2,

, .
2

t
i U r t

t m

ψ
ψ

∂ ⎡ ⎤
= − Δ +⎢ ⎥∂ ⎣ ⎦

r
r (11.4b)

If ψ -function has harmonic time dependence on time, i.e.

( ) ( ), exp ,
i

t Etψ ψ ⎛ ⎞= −⎜ ⎟⎝ ⎠
r r (11.5)

the Eq. (11.4b) reduces to

( ) ( ) ( )2

2
0,

m
E U r

h
ψ ψΔ + ⎡ − ⎤ =⎣ ⎦r r (11.6a)

or written by the Hamiltonian Ĥ , we get

( ) ( )ˆ .H Eψ ψ=r r (11.6b)

The Eq. (11.6) is called a time-independent equation of Schroedinger, while

the Eq. (11.4) - time-dependent equation. Sometimes they are called

correspondingly stationary and general equation of Schroedinger.

We have underlined that the Schroedinger equation is postulated.

Accurate exposition of quantum mechanics begins with the postulates, which

we have reached following our way of exposition. Let us sum up the basic

statements in quantum mechanics:

1. The state of the quantum-mechanical objects is described by a wave

function (I postulate).

2. The obseravbles are described by operators (II postulate).
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3. The operators of the observables are Hermitian (III postulate).

4. The eignfunctions of a Hermitian operator f̂ , which are the solutions to

the equation 
ii

ff ψψ =ˆ , form the complete set (in the general case

infinite) of linear independent functions (IV postulate).

The arbitrary function ψ can be represented as a linear combination of

these functions 
i i

i

Cψ ψ= ∑ .

The eigenfunctions are orthonormal ( ),
i k i k ik

dψ ψ ψ ψ δ∗= =∫ r .

5. In states, in which the measurement of the observable f is repeatable, for it

we obtain one of the values 1 2 3, , , ...,
n

f f f f , which are eigenvalues of the

operator f̂ ; these states are described by the wave functions

1 2 3, , , ...,
n

ψ ψ ψ ψ , which are eigenfunctions of the operator ˆ :f ˆ
i i

f fψ ψ= .

6. In a state, in which the measurement of the observable is unrepeatable, for

it we obtain different values 1 2 3, , , ...,
n

f f f f , but always one of the ei-

genvalues 
i

f  of the operator f̂ ; such state is a superposition of the eigen-

states 
i i

i

Cψ ψ=∑ and the probability to measure the value 
i

f  is 
2

i
f i

W C= .

7. In a state, which is described by a wave function ψ , the mean value  (the

expectation value) of the observable f is ˆf f dVψ ψ∗= ∫  (V postulate).

8. If two observables are compatible, their operators commute and have the

common set of eigenfunctions; if they are incompatible - their operators

do not commute and their dispersion are connected by the Heisenberg

uncertainty principle.

9. The wave function satisfies the Schroedinger equation (VI postulate).

11.2 STATIONARY STATE

By the definition, the stationary state is such a state, for which the

Hamiltonian Ĥ does not depend on time.

Considering for simplicity one-dimensional motion, we can write the

Schroedinger equation with the operator Ĥ , which is time-independent on

time as follows:

( ) ( ),
ˆ .

x t
i H xt

t

ψ
ψ

∂
=

∂
(11.7)
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This equation can be solved by the method of the separation of the

variables. The solution is found as a product of two functions: ( )xψ ,

depending only on x and ( )tϕ  depending only on t:

( ) ( ) ( ), .x t x tψ ψ ϕ= (11.8)

Substituting it in (11.7), we get:

( ) ( ) ( ) ( )ˆ .
t

i x t H x
t

ϕ
ψ ϕ ψ

∂
=

∂
(11.9)

We divide both sides of this equation to ( ) ( )x tψ ϕ  and obtain:

( )

( )
( )

( )
ˆ

.

t

H xt
i

t x

ϕ
ψ

ϕ ψ

∂
∂ = (11.10)

On the left-hand side we have a function of time, and on the right-hand

side - the function of the co-ordinate, i.e.

( ) ( )const ,
t

i t
t

ϕ
ϕ

∂
=

∂
(11.11a)

( ) ( )ˆ const .H x xψ ψ= (11.11b)

The Eq. (11.11b) is an equation for the eigenfunctions of the operator

Ĥ . Let they be ( ) ( ) ( ) ( )1 2 3, , , ...,
n

x x x xψ ψ ψ ψ . For each of them the

number constants determine the eigenvalues of the operator Ĥ , i.e. of the

energy operator: 1 2 3const , , , ...,
n

E E E E= ; respectively the functions ( )k
xψ

are partial solutions of the Eq. (11.11b). For each of these solutions ( )k
xψ ,

the Eq. (11.11a)

( ) ( )k

k k

t
i E t

t

ϕ
ϕ

∂
=

∂
(11.12)

has correspondingly a partial solution

( ) exp .
k k

i
t A E tϕ ⎛ ⎞= −⎜ ⎟⎝ ⎠

(11.13)
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Hence the partial solution of the origin Eq. (11.7), according to (11.8) is

( ) ( ), exp .
k k k

i
x t x E tψ ψ ⎛ ⎞= −⎜ ⎟⎝ ⎠

(11.14)

As the Eq. (11.7) is linear, its general solution is a superposition of the

partial solutions:

( ) ( ) ( ), , exp .
k k k k k

k k

i
x t C x t C x E tψ ψ ψ ⎛ ⎞= = −⎜ ⎟⎝ ⎠

∑ ∑  (11.15)

Coefficients 
k

C  do not depend on time t and the co-ordinate x and

according to (10.3) are determined as follows:

( ) ( ), , .
k k

C x t x t dxψ ψ∗= ∫ (11.16)

From the solution of the equation of the stationary state we can make the

following conclusion about general properties of such a state, independently

of the concrete quantum system:

1. The energy of the system determines the time dependence. For eigenstate,

i.e. for the state with determined energy (for example 
k

E ), this

dependence is harmonic:

( ) ( )exp exp ,
k k k k

i
t A E t A i tϕ ω⎛ ⎞= − = −⎜ ⎟⎝ ⎠

.k

k

Eω ≡ (11.17)

Here 
k

ω  stands for the angular frequency.

2. The probability density does not depend on time

( ) ( ) ( ), .k

k k k k

dW
x t x x

dx
ρ ψ ψ ρ∗= = = (11.18)

3. The mean value of the observable. i.e. the expectation value, which not

depends on time ( ( ) ( )ˆ ˆ;f f t f f t≠ ≠ ), does not change with time:
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( ) ( )

( ) ( )

( ) ( )

( )2

ˆ, ,

exp exp

exp exp

exp exp .

k k k l l l l

k l

k k l l l k l

k l

k k l l l kl k k

k l k

f x t f x t dx

i i
C x E t C f x E t dx

i i
C E t C f E t x x dx

i i
C E t C f E t C f f t

ψ ψ

ψ ψ

ψ ψ

δ

+∞
∗

−∞
+∞

∗ ∗

−∞
+∞

∗ ∗

−∞

∗

=

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= − = ≠⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

∫

∑ ∑∫

∑ ∑ ∫

∑ ∑ ∑

(11.19)

4. In a stationary state with the wave function ( ),x tψ  (11.15) the

probability 
i

f
W  to measure the value 

i
f  of the observable f does not

depend on time. In fact, according to (9.52) this probability is constant:

2
.

i
f i

W C= (11.20)

5. The spectrum of the energy of the stationary state in central symmetrical

field depends on the sign of the energy (e.g., see [R14], Section 49).

When the total energy of the system is negative 0E < , it has a discrete

spectrum, the eigenfunctions ( )k
xψ  of the operator Ĥ  not being zero

only in the limited region. Such state is called bound. When the total

energy is positive 0E > , then ( ) exp
x

i
x p xψ ⎛ ⎞∝ ⎜ ⎟⎝ ⎠

, i.e. ( )xψ  represents

a plane wave. The probability density does not depend on x: then

( ) ( ) 2

constx xρ ψ= =  and the energy has a continuous spectrum. The

state is called free.

11.3* DERIVATIVE OF AN OPERATOR WITH RESPECT

TO TIME

The direct application of the term derivative to the precise values of a

quantum-mechanical quantity is impossible. But it can be applied to the

mean values of the observable (see, for example [3], Section 26). The mean

value f  of the quantity f can be expressed through the function ( ),x tψ  and

the operator f̂  (10.7) and it is defined in every instant: more than this as

ˆ, and fψ ψ∗  are continuous function of time, it is also continuous. This
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mean value varies with time. This is strange as then we make one wonder

how quickly it varies, i.e. what is the rate of its change. This means to

determine the time derivative of the mean value f :

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

,ˆ ˆ, , ,

ˆ ,ˆ, , , .

x tdf d
x t f x t dx f x t dx

dt dt t

x tf
x t x t dx x t f dx

t t

ψ
ψ ψ ψ

ψ
ψ ψ ψ

∗+∞ +∞
∗

−∞ −∞

+∞ +∞
∗ ∗

−∞ −∞

∂
= =

∂

∂∂+ +
∂ ∂

∫ ∫

∫ ∫
(11.21)

The function ( ),x tψ  satisfies the Schroedinger equation and ( ),x tψ ∗  -

its complex conjugate form:

Ĥ i
t

ψψ ∂=
∂

, ˆ .H i
t

ψψ
∗

∗ ∗ ∂= −
∂

(11.22)

We determine / tψ∂ ∂  and / tψ ∗∂ ∂  and after substituting them in (11.21)

we obtain:

ˆ1 1ˆ ˆˆ ˆdf f
H f dx dx fH dx

dt i t i
ψ ψ ψ ψ ψ ψ

+∞ +∞ +∞
∗ ∗

−∞ −∞ −∞

∂= − + ∗ + ∗
∂∫ ∫ ∫ . (11.23)

In the first integral we change the places of ˆˆ  and H fψ ψ∗ ∗  and apply the

rule for a hermiticivity to the operator Ĥ

( ) ( ) ( )

( ) ( )

ˆ ˆˆ ˆ, ( , ) , ,

ˆˆ, , .

H x t f x t dx f x t H x t dx

x t Hf x t dx

ψ ψ ψ ψ

ψ ψ

+∞ +∞
∗ ∗

−∞ −∞
+∞

−∞

∗ = ∗

= ∗

∫ ∫

∫
(11.24)

Substituting into (11.23), we get

( ) ( ) ( ) ( )

( ) ( )

ˆ ˆ ˆˆ ˆ
, , , ,

ˆ ˆ ˆˆ ˆ
, , .

df f fH Hf
x t x t dx x t x t dx

dt t i

f fH Hf
x t x t dx

t i

ψ ψ ψ ψ

ψ ψ

+∞ +∞
∗ ∗

−∞ −∞

+∞
∗

−∞

∂ −= +
∂

⎛ ⎞∂ −= +⎜ ⎟⎜ ⎟∂⎝ ⎠

∫ ∫

∫
(11.25)
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We introduce the designation

{ }ˆ ˆ ˆˆ ˆ ˆ[ , ] ˆ ˆ, .
fH Hf f H

f H
i i

− = = (11.26)

As we can see further, in quantum mechanics the operator { }ˆ ˆ,f H

performs the same role as the Poisson bracket in classical mechanics.

Therefore the operator { }ˆ ˆ,f H  is called quantum-mechanical bracket of

Poisson and the relation (11.26) is considered as the definition. Finally for

the time derivative of the mean value of f we obtain

( ) { } ( )
ˆ

ˆ ˆ, , , .
df f

x t f H x t dx
dt t

ψ ψ
+∞

−∞

⎛ ⎞∂= ∗ +⎜ ⎟⎜ ⎟∂⎝ ⎠
∫ (11.27)

The operator { }ˆ ˆ ˆ,f t f H∂ ∂ +  of a quantity is written in the brackets. In

classical mechanics the total time derivative from f (see Chapter 6) is

{ }, .
df f

f H
dt t

∂= +
∂

(11.28)

The operator of this quantity is ˆ /df dt  and it is equal to the operator

{ }ˆ ˆ ˆ/ ,f t f H∂ ∂ + . In such way, on the basis of the analogy with classical

mechanics, we introduce the time derivative of an operator:

{ }ˆ ˆ
ˆ, .

df f
f H

dt t

∂= +
∂

(11.29)

Taking into account this we can write (11.27) as

( ) ( )
ˆ

, , .
df df df

x t x t dx
dt dt dt

ψ ψ
+∞

−∞

= ∗ =∫ (11.30)

The last equality we have written on the basis of the definition of the mean

value of the quantity /df dt  (10.7).

So, looking for the reply of the question to what is equal the derivative of

the f , we suddenly have reached an interesting result: the time derivative of
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the mean value of an observable is equal to the mean value of time

derivative of this value.

Finally we shall note, that when the operator f̂  does not depend

explicitly on time, its total derivative is

{ }ˆ
ˆ ˆ, ,

df
f H

dt
= (11.31)

i.e. it is equal to the Poisson quantum-mechanical bracket of f̂  and

Hamilton's operator Ĥ .

11.4 CONSTANTS OF THE MOTION

In classical mechanics the quantity f is a constant of the motion if the

total derivative of f in respect to time is equal to zero: / 0df dt = . By

analogy, in quantum mechanics f is a constant of the motion if ˆ / 0df dt = :

{ }ˆ ˆ
ˆ ˆ, 0.

df f
f H

dt dt

∂= + = (11.32)

When f̂ does not depend explicitly on time, the condition (11.32) reduces to

{ }ˆ ˆ, 0,f H = (11.33)

i.e. f is a constant of the motion, if the Poisson's bracket of the operator f̂

and Hamilton's operator Ĥ is equal to zero.

When f is a constant of the motion, i.e. when (11.32) is satisfied we

obtain for the derivative of mean value f , according to (11.30), as follows:

0,
df

dt
= const .f = (11.34)

The mean value of a given quantity, which is a constant of the motion,

does not change with time. We shall underline the difference between the

constants of the motion in classical mechanics and quantum mechanics: In
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the first case the same quantity remains constant in time, but in the second -

its mean value.

We shall note one more peculiarity in the case when f does not depend

explicitly on time. In this case ˆ ˆ{ , } 0f H =  and according to (11.26) the

commutator ˆ ˆ[ , ]f H  is also equal to zero - ˆ ˆ[ , ] 0f H = . The last one means

that the operators ˆ ˆ and f H have common eigenfunctions ( )k
xψ :

( ) ( )
( ) ( )

ˆ ,

ˆ .

k k k

k k k

f x f x

H x E x

ψ ψ

ψ ψ

=

=
(11.35)

Let in this case ( f does not explicitly depend on time) consider the state with

a function ( ),x tψ . Let expand these functions in eigenfunctions ( )k
xψ :

( ) ( ) ( ), .
k k

k

x t C t xψ ψ= ∑ (11.36)

Every function ( ) ( )k k
C t xψ  satisfies the Schroedinger equation.

Substituting into this equation (for example, in (11.7) and taking into

account (11.35), we obtain for ( )k
C t  an equation, which is fully analogous

to (11.12) and its solutions - to (11.13):

( ) exp .
k k k

i
C t C E t

⎛ ⎞= −⎜ ⎟⎝ ⎠
(11.37)

In essence we have a stationary state, for which according to (11.36) and

(11.37) we can write

( ) ( ) ( ) ( ), exp .
k k k k k

k k

i
x t C t x C E t xψ ψ ψ⎛ ⎞= = −⎜ ⎟⎝ ⎠

∑ ∑ (11.38)

From this equation it follows that 
k

C  is equal to ( )k
C t  at 0t = :

( )0 .
k k

C C= (11.39)

The probability to find the value 
k

f  of the observable  f  is

( ) ( )2 22
0 .

k
f k k k

W C t C C= = = (11.40)
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A conclusion: if the observable f is a constant of the motion and does not

depend explicitly on time, in the non-eigenstate ( ),x tψ  the probability 
k

f
W

to measure the eigenvalue 
k

f  does not depend on time.

We shall consider some concrete constants of the motion of quantities,

which do not depend explicitly on time.

Example 1: The total energy of a system, which does not depend on time.

For Hamiltonian, which does not depend explicitly on time, we get:

{ }ˆ ˆ ˆ[ , ]ˆ ˆ, 0,
dH H H

H H
dt i

= = = (11.41)

i.e. the energy is a constant of the motion. The equality ˆ / 0dH dt = expresses

the law of the energy conservation.

Example 2: The momentum of a particle in a constant potential field

( ), , constU x y z = . As the potential energy is determined correct to the

constant, we can put ( ), , 0U x y z = and then

( )
2 2ˆ ˆˆ , , .

2 2

p p
H U x y z

m m
= + = (11.42)

The operators 2ˆ ˆ ˆ ˆ, , and 
x y z

p p p p  commute with the operator Ĥ . Hence,

for their Poisson's brackets with the operator Ĥ (11.33) we have

{ }ˆˆ , 0,
x

p H = { }ˆˆ , 0,
y

p H = { }ˆˆ , 0,
z

p H = { }2 ˆˆ , 0.p H = (11.43)

The momentum p  and its components , ,
x y z

p p p  are constants of the

motion.

Example 3. The component 
z

L  of the angular momentum and its value L

(or 
2

L ) in a spherically symmetrical field with the potential ( )U r . In such a

field the Hamiltonian can be written as (see (10.101)÷(10.103)):

( ) ( ) ( ) ( ) ( )
2

2

ˆ ,
ˆ ˆ ˆ, , .

2
r

L
H T r U r T r U r

mr

θ ϕ
θ ϕ= + = + + (11.44)

The operators 2ˆ ˆ  and  
z

L L  do not depend on r. Besides this

2ˆ ˆ  commutes with  
z

L L  and hence
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{ }
{ }2 2

ˆ ˆ ˆ ˆ, , 0,

ˆ ˆ ˆ ˆ, , 0.

z z
L H i L H

L H i L H

⎡ ⎤ = =⎣ ⎦
⎡ ⎤ = =⎣ ⎦

(11.45)

In a spherically symmetrical field 
2 and  

z
L L  are constants of the motion.

SUMMARY

It is postulated in quantum mechanics that the wave function satisfies the

time dependent Schroedinger equation:

( )ˆ ,i H t
t

ψ ψ∂ =
∂

r ,

where Ĥ  is the Hamiltonian of the system. When the system has a potential

energy ( )U r  the operator Ĥ  has the form ( ) ( )2ˆ / 2H m U r= − Δ + . It is a

linear differential equation, which is of the first order in respect to time.

The states, in which the Hamiltonian does not depend explicitly on time,

are called stationary states. In these states the wave function has harmonic

dependence on time:

( ) ( ), exp .
i

t Etψ ψ ⎛ ⎞= −⎜ ⎟⎝ ⎠
r r

The equation, which is satisfied by the space part of the wave function, is

called time-independent Schroedinger equation or stationary equation.

( ) ( )Ĥ Eψ ψ=r r    or ( ) ( ) ( )2

2
0

m
E U r

h
ψ ψΔ + ⎡ − ⎤ =⎣ ⎦r r .

In stationary states:

– the energy of the system determines single-dependence  on time;

– the probability density does not depend on time;

– the mean  value f  of a observable, which does not depends on time

( )( )f f t≠ , is a constant;

– the probability 
i

f
W  to measure the value 

i
f  of the observable f does not

depend on time;
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– the energy spectrum in central symmetrical field is discrete, when the total

energy of the system is negative (bound state), and continuous, when the

total energy of is positive (free state).

The time derivative from the mean value of the observable is equal to the

mean value of the time derivative of this quantity:

( ) ( )
ˆ

, , .
df df df

x t x t dx
dt dt dt

ψ ψ
+∞

−∞

= ∗ =∫

The total time derivative of an operator is:

{ }ˆ ˆ
ˆ ˆ, ,

df f
f H

dt t

∂= +
∂

where

{ } ˆ ˆ ˆˆ ˆ ˆ[ , ]ˆ ˆ, .
fH Hf f H

f H
i i

−= =

is the Poisson quantum-mechanical bracket of the operators ˆ ˆ  and  f H . In

quantum mechanics they perform the role analogous to this of the Poisson

bracket in classical mechanics.

The physical quantity f is a constant of the motion if the total time-

derivative of the operator f̂ is equal to zero: ˆ / 0df dt = . When its operator

f̂ does not depend on time, i.e. ˆ / 0f t∂ ∂ =  and the Poisson bracket of the

operator f̂  and the Hamiltonian is equal to zero, it is a constant of the

motion.

The mean value of an observable, which is a constant of the motion, does

not vary in time ( )( )f f t≠ .

QUESTIONS

1. Why is the Schroedinger equation necessary?

2. Why the Schroedinger equation is from the first order in respect to time?

3. Why is the Schroedinger equation linear?

4. Which is the form of: a) the time-dependent (the general) Schroedinger

equation; b) the time-independent (the stationary) Schroedinger

equation?
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5. Which is the dependence on time of the wave function, satisfying the

stationary Schroedinger equation?

6. What are the properties of the stationary state?

7. What is determined the character of the energy spectrum in the stationary

state from?

8. To what is equal the time-derivative of the mean value of a quantum-

mechanical value?

9. What is the Poisson bracket in quantum mechanics?

10.What is the condition for the constant of the motion in quantum

mechanics?

11.Which is the physical significance of the constant of the motion?

12.Explain which physical quantity are constants of the motion and which of

them are constants of the motion in the next case: a) a system with

Hamiltonian, independent on time; b) the particle in the constant field; c)

the particle in spherically symmetric field?

11. PROBLEMS

1. Show through the direct substitution, that the Schroedinger equation is

satisfied by the wave function ( ) ( ) ( ), exp /x t x iEtψ ψ= − , if ( )xψ
satisfies the stationary Schroedinger equation with the potential ( )U x .

2. Prove that the state, formed by the superposition of two stationary states

( ) ( ) ( ) ( ) ( )1 1 2 2, exp / exp /x t x iE t x iE tψ ψ ψ= − + − , is not stationary.

Does the probability density ( ) ( ), ,x t x tψ ψ∗  depends on time?

3. What is the Poisson bracket for the operators ˆ ˆ  and   ,
x

p x ˆ ˆ  and  
y

p y ?

4. Show that, if the functions ( ) ( ) ( )1 2 3, ,  ,  and  ,x t x t x tψ ψ ψ  are solutions

of the Schroedinger equation with the potential ( )U x , then every linear

combination ( ) ( ) ( ) ( )1 1 1 2 2 3 3, , , ,x t c x t c x t c x tψ ψ ψ ψ= + +  is also a

solution of this equation.

5. The quantum-mechanical system consists by two independent parts, who-

se stationary states are described by ( ) ( )1 2,   and  ,x t x tψ ψ . The

Hamitonian of the system can be represented as

( ) ( ) ( )1 2 1 1 2 2
ˆ ˆ ˆ,H x x H x H x= + , where ( ) ( )1 1 2 2

ˆ ˆ  and  H x H x  are the

Hamiltonians of the independent subsystems (1) and (2). Prove that the

stationary state of the system is described by the wave function

( ) ( ) ( )1 2, , ,x t x t x tψ ψ ψ= .
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12.1 MOTION IN A CONSTANT POTENTIAL FIELD

Let us consider the one-dimensional motion of the particle of mass m in

the potential field, which is constant in respect to the co-ordinate x and

independent in time:

( ) .const UxU == (12.1)

The Hamiltonian of the system can be written as:

( ) U
xm

xU
m

p
H +

∂
∂−=+=

2

222

22

ˆˆ . (12.2)

It does not depend on time. Hence, the Schroedinger equation (11.4a) has

a stationary solution:

( ) ( ) ( ) ( ), exp exp ,          .
i E

x t x Et x i tψ ψ ψ ω ω⎛ ⎞= − = − ≡⎜ ⎟⎝ ⎠
(12.3)

We substitute the solution in Eq. (11.4a) and after eliminating the ex-

ponential multiplier ( )/exp iEt−  we have received the equation for ( )xψ :

( ) ( ) ( )
2

2 2

2
0,

m
x E U x

x
ψ ψ∂ + − =

∂
(12.4)

i.e. in a constant potential field the equation has the form:

( ) ( ) ( ).2
,0

2

22

2

2

UE
m

kxkx
x

−≡=+
∂
∂ ψψ (12.5)
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The solution of this equation depends on the sign of 2
k :

a) at ,0
2 >k i.e. E U> , the solution of the Eq. (12.5) is harmonic

( ) ( ) ( )1 exp exp .x A ik x B ik xψ = + − (12.6)

b) at ,02 <k i.e. E U< , we put 22 κ=− k  (in this chapter κ  is not a force

constant) and

( ) .0
2

2

2 >−= EU
mκ (12.7)

The solution of the equation is a linear combination of exponential functions:

( ) ( ) ( )exp exp .x A x B xψ κ κ= + − (12.8)

In (12.6) and (12.8) A and B are arbitrary constants, which are defined by

the boundary conditions.

Using the solutions (12.6) and (12.8) let's try to analyze the motion of a

free particle. The potential energy of such a particle is zero, .0=U

a) 0.Eor,0
2

2

2

2

2 >>== x
p

E
m

k

The solution (12.6) can be expressed through the energy E or through the

momentum 
x

p :

( ) exp 2 exp 2 ,
i i

x A mE x B mE xψ ⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(12.9a)

( ) exp exp .
x x

i i
x A p x B p xψ ⎛ ⎞ ⎛ ⎞= + −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(12.9b)

In the three cases (12.6), (12.9a) and (12.9b) the solution is represented

as a superposition of the partial solution ( ) ( )1 2  and  x xψ ψ , i.e.

( ) ( ) ( ),21 xxx ψψψ +=  where ( ) ( )1 2  and x xψ ψ  are, respectively

( ) ( )

( ) ( )

1

2

exp exp 2 exp ,

exp exp 2 exp .

x

x

i i
x A ikx A mE x A p x

i i
x B ikx B mEx B p x

ψ

ψ

⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞= − = − = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (12.10)

The general solution is not an eigenfunction of the operator 
x

p̂ :
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( ) ( ) ( ) ( ) ( ) ( )1 2 1 2
ˆ ˆ ˆ .

x x x x x x
p x p x p x p x p x p xψ ψ ψ ψ ψ ψ= + = − ≠ (12.11)

The partial solution ( )x1ψ  is an eigenfunction of the operator 
x

p̂  with the

eigenvalue k  of the momentum:

( ) ( ) .ˆ
11 kpxkxp

xx
=→= ψψ (12.12)

The solution ( )x2ψ  is also an eigenfunction of the operator 
x

p̂ , but with

another eigenvalue of the momentum - k− :

( ) ( ) .ˆ
22 kpxkxp

xx
−=→−= ψψ (12.13)

The solutions ( ) ( )1 2  and  x xψ ψ  are correspondingly only the space

parts of the wave functions ( ) ( )1 2,  and ,x t x tψ ψ . Adding the time-

dependent function (12.3), we obtain the de Broglie plane waves:

( ) ( ) ( )

( ) ( ) ( )

1 1

2 2

, exp exp ,

, exp exp .

iEt
x t x A i t kx

iEt
x t x B i t kx

ψ ψ ω

ψ ψ ω

⎛ ⎞= − = ⎡− − ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠
⎛ ⎞= − = ⎡− + ⎤⎜ ⎟ ⎣ ⎦⎝ ⎠

(12.14)

The first solution ( )x1ψ  corresponds to the de Broglie wave, travelling in

the direction of the positive x, ant the second ( )x2ψ  - to the de Broglie wave,

travelling in the negative direction of the ax s X. In the corpuscle language

this means, that ( )x1ψ  describes the particle with a positive momentum k

(12.12) and ( )x2ψ  - the particle with a negative momentum k−  (12.13).

We shall add that the functions ( ) ( )1 2  and  x xψ ψ  are the

eigenfunctions of the Hamilton's operator 
2

22

2
ˆ

xm
H

∂
∂−= . The operators

ˆˆ   and  
x

p H  commute with Ĥ  and hence the momentum 
x

p  and the energy

E are the constants of the motion.

b) ,0
2 <k 0<E .

In this case, according to (12.7) we can write:

2 2

2

2
,

m E
kκ = − = (12.15)
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and for the solution of the equation (12.5) -

( )
2 2

exp exp .
m E m E

x A x B xψ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟= −
⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(12.16)

This function according to the properties of the wave function is limited,

including at ±∞→x . From the condition of the limitedness at +∞→x  it

follows that 0=A , and at −∞→x  - .0=B  So, at the negative energy

( 0<E ) the wave function of a free particle is ( ) 0=xψ . But physically
2

( )xψ  represents the probability density ( )xρ  in the point of the co-

ordinate x (see Chapter 8). It is clear that this density is zero for all possible

values of x. Conclusion: a free particle with negative energy does not exist.

12.2 THE INFINITE SQUARE WELL POTENTIAL

We shall analyze the motion of the quantum particle of mass m in an

infinite square potential well, i.e. in the region ,0 ax <<  where ( ) 0U x = .

At 0x≤ and  0x ≥  the potential ( ) .∞→xU  As in the both regions the

potential field is constant, the Hamiltonian of the system does not depend

explicitly on time. Hence the wave function satisfies the time-independent

equation of Schroedinger (12.4).

At 0  and  0x x≤ ≥  it can be written in the next form:

( )
2

2 2

2
( ) ( ) ( ) 0 .

m
x E x x

x
ψ ψ ψ∂ + − ∞ =

∂
(12.17)

The only one way to satisfy this equation is to put 0)( =xψ  in the given

region. This yields:

(0) 0, ( ) 0,aψ ψ= = (12.18)

which are the boundary conditions of the wave equation

2
2 2

2 2

2
( ) ( ) 0, .

m
x k x k E

x
ψ ψ∂ + = ≡

∂
(12.19)

in the region ( )ax ,0∈ . The solution of this equation is:
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( ) ( ) ( )1 exp exp .x A ik x B ik xψ = + − (12.20)

From the boundary condition at 0=x  we obtain:

B A= − . (12.21)

The substitution of (12.21) into (12.20) yields:

( ) ( ) ( )exp exp  . x A ikx ikxψ = ⎡ − − ⎤⎣ ⎦ (12.22)

We multiply and divide by i2  and then use the Euler's formula. As the

result we obtain:

( ) sin ,      2 ,x A kx A iAψ ′ ′= ≡ (12.23)

From the boundary condition at ax =  we have:

sin 0,A ka′ = (12.24a)

or

,    
n

k a nπ=    ...,3,2,1=n (12.24b)

We shall note that 0=n  is a solution of the Eq. (12.19) and this leads to

( ) 0=xψ  which physically means that there is not a particle in the well. This

solution does not correspond to the physical condition of the problem and

therefore is rejected in (12.24b).

Finally for the solution of the Eq. (12.19) we obtain:

( ) sin .
n

n
x A x

a

πψ ′= (12.25)

The constant A' is determined by the condition of normalization:

2 2 22

0 0 0

2

1 cos2
1 ' sin '

2

2
'     ' .

2

a a a

n
k xn

dx A xdx A dx
a

a
A A

a

πψ −
= = =

= ⇒ =

∫ ∫ ∫
(12.26)
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Thus the normalized wave functions of the particle inside the infinite

potential well are:

2
( ) sin .

n
x x

a a

πψ = (12.27)

Substituting the values of 
n

k  from (12.24b) into 22 /2mEk = we obtain:

2 2
2

2
,    =1,2,3...

2
n

E n n
ma

π= (12.28)

The energy of the quantum particle in an infinite potential well is

quantizied. The number n is called a quantum number.

The spectrum of the quantum particle in an infinite potential well is

discrete, while that of classical particle is continuous. The energy levels are

nonequidistant - the space between them grows with the increasing the

energy, i.e. with the increasing the quantum number n:

( )
2 2

1 2
2 +1 .

2
n n n

E E E n
ma

π
+Δ = − = (12.29)

The energy values relate as the square of the integer:

2

1 2 3: : : ... 1:4:9:..: .
n

E E E E n= (12.30)

Here we shall note that as the energy values (12.28) and the space

between the energy levels (12.29) are significant if the mass of the particle

and/or the well width a are small enough quantities. For example, for an

electron ( kg10.1,9 31−=
e

m ) in a well of width m10 10−=a  (here 02aa = ,

where 0a  is the radius of Bohr) one gets eV34,0.2
nE

n
=  and

( )2 1 .0,34 eV~1eV
n

E nΔ = + . At such small values of mass 
e

m and the

width a the discrete character of the energy is clearly expressed. But if this

electron is in the well of the width m10 2−=a (a macroscopic size), then

eV10.34,0. 162 −= nE
n

and ( ) eV10.34,0.12 16−+= nE
n

. The values of the

energy and of the space between the energy levels are so insignificant, that

practically we can consider the energy as a continuous quantity. The

physical significance of the solution (12.27) becomes obvious after

expressing the function ( )xψ  through the exponential functions according to

the Euler's formula:
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( )
2 21 2

exp exp .
2

m E m E
x x B x

i a
ψ

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥⎜ ⎟ ⎜ ⎟= −

⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
(12.31)

The general solution is a superposition from two de Broglie waves with

the wavelength :/2/2/2 nanak === πππλ  the one with the wave

function ( ) ( )const exp /x in x aψ π+ = , travelling along the axis X and the

other with the wave function ( ) ( )const exp /x in x aψ π− = − , travelling in the

reverse direction. As a result of the superposition the standing de Broglie

wave (12.22) is produced.

Let us consider in detail the first three states. The state with the minimal

particle energy is called a ground state. The ground state has quantum

number 1=n and a wave function and energy as follow:

2
( ) sin ,x x

a a

πψ =
2 2

min 1 2
.

2
E E

ma

π= = (12.32)

For a comparison we recall, that in classical mechanics the minimal

particle energy in the well is zero ,0min =cl
E  i.e. the particle can be at rest.

The probability density in the ground state is:

( ) 21 2

1

2
( ) sin .

dW x
x x

dx a a

πρ ψ= = = (12.33)

Let us determine the classical probability density. The probability

)(xdW
cl to find the particle in the interval dx  is proportional to the time

interval dt , during which it is found there: .dtW
cl ∝ Passing to the equality

and substituting vdxdt /= , we get:

( ) const ,cI c
dW x dx dx

v
= = (12.34)

where c is constant and v is the velocity of the classical particle. For ( ):cI
xρ

( ) ( )
const.

cI

cI
dW x c

x
dx v

ρ = = = (12.35)

The probability of the classical particle is one and the same in every point

of the well ax <<0  and does not depend on the energy when .0≠E  When
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0=E and the particle is at rest in the point 0x (an initial position) the

probability density is ( ) ( )0xxx −= δρ .

The wave function ( )x1ψ  (12.32) and ( )x1ρ  (12.33) are shown in Fig.

12-1. For comparison in the same figure the standing wave of a string,

secured at both ends is shown.

Figure 12-1. The wave functions ( )x
n

ψ  (a) and the probability densities ( )x
n

ρ  of the first

three state of the particle in infinite potential well with the width a (b) and the standing waves

in a string, secured at the both ends (c).

By analogy for the state with 2=n  and 3=n  we can write:

2 2 2
2

2 1 2 22

2 2 2
2

2 1 3 32

2 2 2 2 2
2: 4 , ( ) sin , sin ,

2

3 2 3 2 3
3: 9 , ( ) sin , sin .

2

n E E x x x
ma a a a a

n E E x x x
ma a a a a

π π πψ ρ

π π πψ ρ

= = = = =

= = = = =
(12.36)

These states are also shown in Fig 12-1.

The points, in which ( ) 0=x
n

ψ , are called nodes of the wave function. In

the region ax <<0  the function ( )x1ψ  has no nodes, ( )x2ψ  has 1 node,

( )x3ψ  has 2 nodes and so on, ( )x
n

ψ  has ( )1−n  nodes. We note that with the

increasing the number of the nodes the state energy also increases.

Let sum up the results for the particle motion in an infinite potential well:

1. The energy of the particle has discrete character.

2. The energy ( )2 2 2 2/ 2
n

E ma nπ=  is determined by the quantum number

n, which has the values ...3,2,1=n
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3. The energy levels are nonequidistant, ( )( )2 2 2/ 2 2 1
n

E ma nπΔ = + .

4. The minimal possible energy is different from zero, .01min ≠= EE

5. In the ground state ( 1min EEE == ) the probability to find the particle in

every point of the well is different from zero.

6. The quantization of the energy shows its worth at sufficiently small mass

of the particle and/or width of the well.

12.3 THE STEP POTENTIAL

In this section we shall solve another simple problem with one-

dimensional potential. Like the problem of an infinite potential well, it is

interesting with the illustration of a new quantum effect, which has no

analogy in classical mechanics. In this case this is the penetration of the

particle in the region of the potential greater than its energy.

We shall consider the potential with the form shown in Fig. 12-2:

( )
( )

0,    0,

,    0 .

U x x

U x U x

= <

= ≥
(12.37)

We designate the region 0<x  with 1 and the region 0>x  with 2.

Figure 12-2. The potential step.

The Hamiltonian of the system

( )xU
xm

H +
∂
∂−=

2

22

2
ˆ (12.38)

does not depend on time and the wave function ( )xψ satisfies the time-

independent Schroedinger equation (see Eq. (12.4)):
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( ) ( ) ( )
2

2 2

2
( ) 0,

m
x E U x x

x
ψ ψ∂ + − =

∂
(12.39)

Firstly we shall consider the case E U> . Then the solution of the Eq.

(12.39) in the two regions is, respectively:

( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 2

2 2 2 2 2

2
exp exp ,   ,             0,

2
exp exp ,   ,   0 .

mE
x A ik x B ik x k x

m E U
x C ik x D ik x k x

ψ

ψ

= + − = <

−
= + − = <

(12.40)

The term ( )xikD 2exp −  together with the time-dependent factor

( )exp /ikEt− , i.e. ( )[ ]txkiD 22exp ω+− , represents the wave travelling in

the direction of decreasing x in the region 0>x . As there is not such a wave

in this region we set .0=D The interpretation of the other terms with the

amplitudes A, B and C are shown in Fig 12-3a.

Figure 12-3.  The interpretation of the solutions of the problem with a potential step:

( )xikA 1exp  - the incident de Broglie wave, ( )xikB 1exp - the reflected wave, ( )xikC 2exp  - the

refracted (transmitted) wave, ( )xC κ−exp  - the attenuated wave.

The solutions ( )1 xψ  and ( )2 xψ are the wave functions of the system in

region 1 and 2, respectively. The requirement of the continuity gives:

( ) ( )
( ) ( ).00

,00

21

21

ψψ
ψψ

xx ∂
∂=

∂
∂

=
(12.41)

From these equations we find two algebraic equations:
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,

,

1

2
C

k

k
BA

CBA

=−

=+
(12.42)

by which we determine B and C through A:

.
2

,
21

1

21

21
A

kk

k
CA

kk

kk
B

+
=

+
−= (12.43)

The quantity

( ) ( ) ( )2 2 2p k
j v x x x

m m
ψ ψ ψ= = = (12.44)

determines the probability flux, which is the probability per second that a

particle will be found crossing some reference point travelling in a particular

direction. The incident, reflected and transmitted probability fluxes are,

respectively:

.,,
222121

C
m

k
jB

m

k
jA

m

k
j

trrin
=== (12.45)

The ratio Rjj
inr

=/  represents the reflection coefficient and the ratio

Tjj
intr

=/  - transmission coefficient or transparency of the step (here T  is

not energy as in Eq. (1.36)). For these coefficients from (12.43)÷(12.45) we

find:

( )
( )

( ) ( ) .
44

,

2

21

21
2

21

2
1

1

2

2

1

2

2

21

2

21

2

kk

kk

kk

k

k

k

A

C

k

k

j

j
T

kk

kk

A

B

j

j
R

in

tr

in

r

+
=

+
===

+
−===

 (12.46)

The result shows that 0>R  - there is a probability the particle to reflect

even though the total energy of the particle is greater than the height of the

potential step. It is surprising, because a classical particle would not be

reflected if it had enough energy to pass the step height. We would like to

underline that the reflection is connected with the potential discontinuity, but

not with the fact that ( )xU  becomes larger. At a corresponding discontinuity

a classical wave will reflect, too. So the effect of the reflection of

microscopic particle is the manifestation of its wavelike properties.
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It is clear that ,1=+ TR  which expresses the physical condition for the

conservation of the particle number - the sum of the reflected and

transmitted fluxes is equal to the incident flux:

.
222121

C
m

k
B

m

k
A

m

k
j
in

+== (12.47)

Now let us consider the case when the particle energy is smaller than step

height .UE <  The solution of the Schroedinger equation (12.39) is

( ) ( ) ( )

( ) ( ) ( )
1 1 1

2 2

exp exp ,              0,

2
exp ,   ,   0 .

x A ik x B ik x x

m U E
x C x x

ψ

ψ κ κ

= + − <

−
= − = <

(12.48)

For ( )x2ψ  we use (12.8), in which the constant before ( )xκexp  is equal

to zero ( 0=D ), as at ∞→x  the wave function ( )x2ψ  must be finite. The

interpretation of the solution (12.48) is shown in Fig. 12-3b.

The boundary conditions allow to determine B and C through A:

.
2

,
1

1

1

1
A

ik

k
CA

ik

ik
B

κκ
κ

+
=

+
−= (12.49)

The probability density of the particles in the region 2 is

( ) ( ) ( )
2

2 21
2 2 2

1

4
exp 2

k
x x A x

k
ρ ψ κ

κ
= = −

+
. (12.50)

In classical physics the region 2 is forbidden (see Chapter 3). However,

in quantum mechanics the particles can penetrate in classically forbidden

region. The effect is purely quantum and there is not classical analogous.

The values of B and C  (12.49) allow using (12.46) to determine the

coefficient of reflection and transmission:

.0,1 === T
A

B
R (12.51)

The wave is fully reflected and therefore the transmission coefficient is

equal to zero. The particles penetrate to the certain destination and then are



294 Chapter 12

reflected. The probability to find them in the region 2 differs from zero, but

theirs flux is zero.

12.4* THE FINITE SQUARE WELL POTENTIAL

We shall consider the problem of motion of a particle with energy E  in a

square well with the width a and depth EU < (Fig. 12-4). Inside the well

the potential is zero:

( ) ,    

0,     2 2.

U x
U x

- a/ x a/

⎧
= ⎨ < < +⎩

(12.52)

Figure 12-4. The finite square well.

Here the choice of origin of the co-ordinate axes, different from the case

of the infinite potential well (in the middle of the well), is determined only

by the reason of mathematically easier and more clearly visualized solution.

As we shall see further that the equation of the finite well can be solved only

graphically or numerically.

This type of well is very often used in quantum mechanic as a model of

potential forces with a finite radius of action and without any influence over

the region out of this radius. Out of the region of force action the potential

can be considered as constant. Although with such simple potential some

details of the motion are lost, the essential features of binding the particle by

a certain force in a certain region remain. For example, the motion of a

neutron in a nucleus can be successfully approximated by assuming the

neutron motion in a square well potential with depth 50 MeV and width

~ m.10 14− On the ground of the discussion of an infinite well and a potential

step we can assume that the wave function will describe the de Broglie

standing waves with integer half waves inside the well and exponential

attenuated wave out of it.

≤ −a / 2,   or  x ≥ +a / 2,
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The solution of the Schroedinger equation can be written as follows:

( ) sin cos , / 2 / 2,x A kx B kx a x aψ = + − < < (12.53a)

( ) ( ) ( )exp exp , / 2,x C x D x x aψ κ κ= + − < − (12.53b)

( ) ( ) ( )exp exp , / 2.x F x G x x aψ κ κ= + − > (12.53c)

Here ( ) ./2and/2 22
EUmmEk −== κ

For the determination of the unknown constants firstly we shall use the

finiteness of the wave function. Obviously, at x → ∞ this requirement gives

0 0D ,       F .= = (12.54)

From the requirement of the continuity of the wave function and its

derivative at 2and2/ a/xax =−=  one obtains the boundary conditions

of the form (12.41). They give four equations for the constant

:and,, GCBA

( ) ( )sin( / 2) cos / 2 exp / 2 ,A ka B ka C aκ− + = − (12.55a)

( ) ( )cos( / 2) sin / 2 exp / 2 ,Ak ka Bk ka C aκ κ+ = − (12.55b)

( ) ( )sin( / 2) cos / 2 exp / 2 ,A ka B ka G aκ+ = − (12.55c)

( ) ( )cos( / 2) sin / 2 exp / 2 .Ak ka Bk ka G aκ κ− = − − (12.55d)

Subtracting from the Eq. (12.55c) the Eq. (12.55a) and adding these two

equations we obtain

( )2 sin( / 2) ( )exp / 2 ,A ka G C aκ= − − (12.56a)

( ).2/exp)()2/cos(2 aCGkaB κ−+= (12.56b)

Performing similar procedure with the Eqs. (12.55d) and (12.55b), we get

( )2 sin( / 2) (Bk ka G= + (12.57a)

( )2 cos( / 2) ( ) exp / 2 .Ak ka G C k aκ= − − − (12.57b)

We divide (12.57a) by (12.56b) and (12.57b) by (12.56a):

( )tan / 2k ka κ= , (12.58a)

( )cot / 2k ka κ= − . (12.58b)

C)exp −κ a / 2 ,
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It is easy to see that two equations (12.58) can not be satisfied

simultaneously. If they could, then the equation, obtained by adding them

0
2

cot
2

tan =+ ka
k

ka
k , (12.59)

would be valid. Let multiply the last equation by ( )2/tan ka :

.1
2

tan0
2

tan 22 −=⇒=+ ka
k

ka
k (12.60)

This cannot be like this, because according to the conditions of the

problem k and a are real numbers. This way, only two possibilities remain:

the Eq. (12.58b) has a solution, but Eq. (12.58a) has not or the Eq. (12.58a)

has a solution, then Eq. (12.58b) has not. So, the eigenfunctions of the finite

well form two classes of functions. For the first class (we take the first

equation of (12.58))

tan ,     0, 0.
2

ka
k A G Cκ= = − = (12.61)

With these results the Eq. (12.55c) is reduced to

cos exp cos exp ,
2 2 2 2

ka a ka a
B G G B C

κ κ⎛ ⎞ ⎛ ⎞= − ⇒ = =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(12.62)

and finally for the wave function we get:

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1

1

cos , / 2 / 2,

cos / 2 exp / 2 exp , / 2,

cos / 2 exp / 2 exp , / 2.

x B kx a x a

x B ka a x x a

x B ka a x x a

ψ

ψ κ κ

ψ κ κ

= − < <

= ⎡ ⎤ < −⎣ ⎦
= ⎡ ⎤ − >⎣ ⎦

(12.63)

Inside the well the wave function is an even function

( ( ) ( )kxkx −= coscos ).

For the second class

cot ,       0,       0.
2

ka
k B G Cκ= − = + = (12.64)
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In this case the Eq. (12.55c) is reduced to:

,
2

exp
2

sin
2

exp
2

sin C
aka

AG
a

G
ka

A −=⎟
⎠
⎞⎜

⎝
⎛=⇒⎟

⎠
⎞⎜

⎝
⎛−= κκ

(12.65)

and the wave functions are

( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2

2

2

sin , / 2 / 2,

sin / exp / 2 exp , / 2,

sin / exp / 2 exp , / 2.

x A k x a x a

x A ka a x x a

x A ka a x x a

ψ

ψ κ κ

ψ κ κ

= − < <

= ⎡− ⎤ < −⎣ ⎦
= ⎡ ⎤ − >⎣ ⎦

(12.66)

Inside the well the wave function is an odd function ∗

( ( ) ( )sin sinkx kx= − − ).

To determine the eigenvalues of the energy, we shall consider firstly the

Eq. (12.61). Writing k and κ in an explicit form and multiplying by a/2, we

obtain

( ) 22 2

2 2 2
tan .

2 2 2

m U E amEa mEa −
= (12.67)

After setting

( ) ( )
2 2

2

2 2
,       ,       

2 2

mEa mUa
p tg q= = = −E E E E E E (12.68)

the Eq. (12.67) becomes:

*By solving the problem of an infinite potential well we obtained two classes of solu-

tions and there the question of the parity of the waves functions did not arise. This is due to

the choice of the beginning of the X-axis  - there it coincides with the well wall, but here it

is in the middle of the well. So in the last case the well potential U(x) is an odd function of

the co-ordinate x (the reader can find details in [R19, Section 6.8 and in [3], Section 48).

Of course the problem of the finite well potential can be solved similarly to the problem of

the infinite well setting x=0 to coincide with the well wall (see for example Pain H. J., The

Physics of Vibrations and Waves, 2nd ed., John Wiley & Sons, 1976, Chapter 12).
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( ) ( ) ( )
2

2

2
,    or   .

2

mUa
p p q= − =E E E E (12.69)

 The points of intersection of the functions ( )Ep  and ( )Eq  define the

values of E  which are the solutions of (12.69). Such graphical solution is

illustrated in Fig. 12-5a. The function ( )Ep  has zeros at ...,2,,0 ππ=E  and

the asymptotes at ...,2/5,2/3,2/ πππ=E  If we write the third equation of

(12.68) in the form ( ) 2222 2mUaq =+ EE it becomes clear that ( )Eq  is a

quarter-circle of a radius 22 2mUa . We can see from Fig. 12-5a that the

number of solutions depends of this radius. In Fig. 12-5a is shown the case

Figure 12-5. A graphical solution of the equation for eigenvalues of the energy of the

particle in the square potential well with a finite depth: a) ( ) ( )EE qp =  (even wave function

( ) ( )xx 31 andψψ ); b) ( )EE-E qg =cot  (odd wave function ( )x2
ψ ).

when 42 2 =mUa . Then we have two solutions: 25,1≈E  and 60,3≈E .

For these values we get from the first equation of (12.68) the eigenvalues of

the of the energy:

22 2
2 2

2 2

22
2

2

2 2 1,25
0,098 ,

4

2 3,60
0,808 .

4

E U U
ma mUa

E U U
mUa

⎛ ⎞= = ≈ ≈⎜ ⎟⎝ ⎠

⎛ ⎞= ≈ ≈⎜ ⎟⎝ ⎠

E E

E

(12.70)

For the second class solutions, corresponding to odd functions, we shall

obtain the eigenvalues as the solution of the first equation of (12.64). Eva-

luating κandk (12.53) and multiplying it by 2a , this equation becomes:
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( ) ( )
2

2

2
cot   or    r .

2

mEa
g q= − =E E E  E E (12.71)

The solution is similar to that of the Eq. (12.69). Graphical solution of

Eq. (12.69) is illustrated in Fig. 12-5b. It is clear from the figure that for

UE < if 22 22 π<mUa  there is no eigenvalues corresponding to the

odd eigenfunctions. However, if 2322 22 ππ <≤ mUa  there is one

eigenvalue; if 25223 22 ππ <≤ mUa  - two and so on. In the figure the

case, when the radius of the circle is equal to 4 ⎟⎠
⎞⎜⎝

⎛ = 42 22
mUa is

illustrated. It is seen that in this case the single solution is 472,≈E  and the

odd wave function 2ψ has eigenvalues

.383,0
4

47,22
2

2

2
2

2 UU
mUa

EE ≈⎟
⎠
⎞⎜

⎝
⎛≈== E (12.72)

The eigenvalues and the eigenfunction of the considered case with three

allowed bound states are shown in Fig. 12-6.

Figure 12-6. The eigenvalues (a) and the eigenfunctions (b) of three allowed bound states of

the particle in the potential well with finite depth at 42 22 =mUa  and .UE <

We see that in the potential well with a finite depth the number of the

allowed bound state is restricted. These bound states have discrete

eigenvalues of energy .UE <  When the potential wave is very shallow
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or/and very narrow only a single eigenvalue of energy is allowed, which

corresponds to the state with even wave function. With increasing values

22 2mUa , i.e. with increasing values of the well depth and/or well width,

the number of the bound states increases, as firstly the state with odd wave

function appears, then the one with even etc. (there are excellent illustrations

in Brandt, S., H. D. Dahmen, The Picture Book of Quantum Mechanics,

John Wiley & Sons, 1985, Section 6.5).

As we can see from the analytical expressions (12.63) and (12.66) and

from Fig. 12-6b, the solutions of the Schroedinger equation are de Broglie

standing waves. But in this case the analogy with a string is not so much

complete as in the case of the infinite potential well (Fig. 12-a, c). Firstly, let

consider the particulars of the standing waves within the well. As higher is

the eigenvalue of the energy, more numerous are the oscillations of the

corresponding wave function and higher is its wave number k. This is so,

because inside the well the wave number k is proportional to 2/1
E . The

particle in the case, shown in Fig. 12-6 does not have a fourth bound state,

because the necessary value of wave number and hence of 2/1
E , would be

too large to satisfy the condition .UE <  At the lowest energy state the wave

function ( )x1ψ  does not have nodes, at the second energy level the wave

function ( )x2ψ  has one node, and at the third  - two nodes etc. The nodes

however have not the same position along X-axis as the nodes in an infinite

well. Now let consider those parts of the wave function, which are in the

regions outside the well. In classical mechanics at UE < these are forbidden

domains and the particles cannot penetrate in them, because their kinetic

energy becomes negative - 02/2 <−= UEmp . With the increasing E the

parameter ( ) 2/2 EUm −=κ  decreases and the wave functions penetrate

more and more inside the classically forbidden domain.

Finally let sum up the results for the particle in the square potential well

with a finite depth:

1. The energy of the particle at UE <  has a discrete character.

2. The energy levels are nonequidistant.

3. The number of the bound states depends on the depth U and the width of

the well - at 22 22 π<mUa  there is only one bound state and with

increasing the parameter 22 2mUa this number becomes larger.

4. The minimal possible energy is different from zero, .01min ≠= EE

5. In the ground state ( 1min EEE == ) the probability to find the particle in

every point of the well is different from zero.

6. The probability to find the particle in a classically forbidden domain is

different from zero.
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12.5
+

THE POTENTIAL BARRIER

In this section we shall consider a rectangular potential barrier (Fig.12-7),

which potential can be written as follows:

( ) 0 0 ,

( ) 0 .

U x x a

U x x a

= <
= ≤ ≤
= >

(12.73)

The particle with mass m and energy UE <  moves from ∞− along the X-

Figure 12-7. A potential barrier with height U and width a: in region 1 ( ) 0=xU , 0<x ; in

region 2 ( ) axUxU ≤≤= 0, ; in region 3 ( ) axxU >= ,0 .

axis. In corresponding regions the time independent Schroedinger equation

at UE <  has the following solutions:

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

1 2

2 2

2

2
exp exp ,    ,     0

2
exp exp ,  ,  0 0,

exp ,                                            .

mE
x A ikx B ikx k   x ,

m U E
x C x D x x

x F ikx x a

ψ

ψ κ κ κ

ψ

= + − = <

−
= + − = ≤ ≤

= >

(12.74)

The interpretation of the solutions  (Fig.12-7) is similar to that one of the

problem with a potential step. The part of the incident de Broglie wave

( ),exp ikxA  reaching the barrier reflects - ),exp( ikxB −  and the other part

transmits in the region 3 - ( )ikxF exp . The wave function ( )2 xψ  describes

the penetration of the quantum particle in the classically forbidden domain.

We already know that there is some probability to find quantum particle in

U x( ) 0, x 0,
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region 2, nevertheless that for a classical particle region 2 is an excluded

region.

The requirement for continuity of the wave function at ax =  and

0=x leads to the next boundary condition:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2 2 3

1 2 2 3

0 0 , ,

0 0 , .

a a

a a
x x x x

ψ ψ ψ ψ

ψ ψ ψ ψ

= =
∂ ∂ ∂ ∂= =
∂ ∂ ∂ ∂

(12.75)

These conditions together with the solutions (12.7) give the following

system of the algebraic equations for the coefficients FDC,BA and,, :

,A B C D+ = + (12.76a)

,ikA ikB C Dκ κ− = − (12.76b)

( ) ( ) ( )exp exp exp ,a C a D ika Fκ κ+ − = (12.76c)

( ) ( ) ( )exp exp exp .a C a D ik ika Fκ κ κ− − = (12.76d)

We shall solve the system in the next way. Multiplying (12.7a) by κ  and

successively summing up and subtracting with (12.7b) we obtain

( ) ( ) 2ik A ik B Cκ κ κ+ + − = , (12.77a)

( ) ( ) 2 .ik A ik B Dκ κ κ− + + = (12.77b)

Now multiplying (12.7c) by κ  and successively summing up and

subtracting with (12.7d) we obtain

( ) ( )2 exp ,C ik ika a Fκ κ κ= + − (12.78a)

( ) ( )2 exp .D ik ika a Fκ κ κ= − + (12.78b)

Replacing 2   and  2C Dκ κ  from (12.78) into (12.77), we find the

connection between FBA ,, :

( ) ( ) ( ) ( )exp ,ik A ik B ik ika a Fκ κ κ κ+ + − = + − (12.79a)

( ) ( ) ( ) ( )exp .ik A ik B ik ika a Fκ κ κ κ− + + = − + (12.79b)

From term by term summing up and subtracting of these equation we get:

[ ] ( )(2 2 ) ( )exp( ) ( )exp( ) exp ,i A B ik a ik a i a Fκ κ κ κ κ κ+ = + − + − (12.80a)

[ ] ( )(2 2 ) ( )exp( ) ( )exp( ) exp .i A B ik a ik a i a Fκ κ κ κ κ κ− = + − − − (12.80b)
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Let find the dependence of the transmitted-wave amplitude on the

amplitude of the incident on the barrier wave. We multiply (12.80a) by ik

and (12.80b) by κ and sum up the obtained equations. As the result we get:

( )
( ) ( ) ( ) ( )2 2

4 exp
.

exp exp

i k ika
F A

ik a i a

κ
κ κ κ κ κ

−
=

+ − − −
(12.81)

In the most physical problems, which must be interpreted with the

potential in the form (12.73), it appears that .1>>aκ  At this condition

(12.81) reduces to:

( )
( ) ( )2

4 exp

exp

i k ika

ik a

κ
κ κ

−

−
(12.82)

The coefficient T of the transmission, called a barrier penetration, is

following:

( )
( ) ( )

2 2 2

02 2
2 2

16
exp 2 exp 2 .tr

in

Fj k
T a T a

j A k

κ κ κ
κ

= = = − = −
+

(12.83)

Note that here 0T  is not temperature as in Eq. (7.1). We shall give the

physical interpretation in the next section. Here we shall only note that

quantum particle penetrates in the region 2 and transmits through it in the

region 3, which is impossible for the classical particle.

Here we shall pay attention to an important phenomenon in quantum

mechanics - the scattering. In classical mechanics if the energy of particle E

is less than the energy U of the inhomogeneity, it will reflect; if UE > , it

will transmit. In sections 12.2÷12.5 we have persuaded ourselves that the

quantum particle because of its wave properties is reflected by every

inhomogeneity and transmits through it even if .UE <  In other words it

scatters from such inhomogeneity. Transmitting from the square well and

barrier to the spherical geometry, quantum mechanics creates the model of

the scattering of the real particle by another particle.

12.6 THE TUNNEL EFFECT AND ALPHA-DECAY

In the problem with the potential barrier of a height U and a width a at

the energy of the quantum particle UE < we observe the effect which is

unknown in classical physics, namely the penetration of the particles through

the barrier (Fig. 12-8). Because of the wave character of the quantum

F A≈ − ,    κ a >1.
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particle, the probability to find it behind the potential step at 0=x  is

different from zero (see Section 12.3). The probability decreases

exponentially and if the width of the barrier is not too large, than behind it,

i.e. in the region ax > , this probability is a finite value.

Figure 12-8. Tunnel effect - the penetration of a quantum particle of energy E through the

barrier U (U>E) in the region 3, which is inaccessible for the classical particle.

It appears that in the most practical cases the coefficient of the

transmission 
2 2

3 1T ψ ψ= has the form (12.83):

( ) ( )0 0

2
exp 2 exp 2 ,T T a T m U E aκ ⎛ ⎞= − = − −⎜ ⎟⎝ ⎠

(12.84)

where 0T  is a value of the order of unity.

The region ax <<0  in Fig. 12-8 is a forbidden domain for a classical

particle. According to (12.84) the quantum particle of mass m and energy E,

which impinge on the potential barrier of the height U and width a, has a

certain probability to penetrate through the barrier and to appear on its other

side. The particle can leak through the barrier if as there were a hole in it.

The transition of the quantum particle through the potential barrier of a

height greater than its total energy, i.e. through the classically forbidden

domain, is called tunnelling or a tunnel effect (in Fig. 12-8 the real part of

the wave function is drawn).

The rectangular well is an idealization. When we have a real barrier, e.g.

as in Fig. 12-9, we deal in the next way. We approximate the real barrier

Figure 12-9. Approximation of real potential barrier by series of the square potential barriers.

with rectangular barriers of a depth dx  and a height ( )xU . The barrier

penetration of the rectangular barriers of a depth dx  and a height U  is
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( )2
exp 2 .

i oi i
T T m U E dx

⎛ ⎞= − −⎜ ⎟⎝ ⎠
(12.85)

The coefficient of the transmission of the whole barrier is obtained by

multiplying the expressions of such form for all elements dx  of the real

barrier. The exponents are summed up and we get:

( )
2

1

2
exp 2 [ ] .

x

o

x

T T m U x E dx

⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎝ ⎠

∫ (12.86)

We shall consider a few examples of tunnel phenomena.

Example 1. A cold (autoelectronic) emission of the electron. In the absen-

ce of outer electrical field the electrons are confined within the metal by an

energy barrier formed by the work function (see the discussion of the pho-

toelectric effect in Chapter 7). In other words their potential energy on the

metal boundary changes with a jump from 0  to 0U . When the electric field

with intensity E  is applied, the electron potential energy is changed and it

becomes xUU E−= 0  (Fig. 12-10). The triangle barrier with a finite width is

Figure 12-10.  At the present of the external electrical field E  the potential at the metal

surface becomes xUU E−=
0

- the triangle potential barrier is formed. The electron penetrates

through it due to the tunnel effect.

formed, so that at a short distance from the surface of the metal the potential

energy is less than the energy of the electrons inside the metal. Now

although the electrons cannot classically penetrate the barrier of the metal

surface they can pass through by quantum-mechanical tunnelling and
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as a result we observe a cold electron emission. With the increasing the field

intensity the barrier width decreases and the barrier penetration increases -

autoelectronic current increases.

Example 2. The transitions of N atom in the ammonia molecule, 3NH .

Fig 12-11 illustrates schematically the structure of this molecule. It consists

by three-H atoms arranged in a plane on equal distances from N atom. There

are two completely equivalent equilibrium positions arranged on the both si-

repulsive Coulomb forces on the N atom in the plane of the H atoms. In on

Figure 12-11.  The both possible situations N and N' of the nitrogen atom and its potential

energy in the ammonia molecule.

des of the plane of H atoms. The potential energy of N atom has two

minima, corresponding to two equilibriums. These minima are

symmetrically disposed with respect to the maximum at 0=x . This

maximum, creating the barrier between these two regions, is due to

Coulomb's forces of repulsion acting on N atom, when it penetrates in the

plane of H atoms. In the frame of classical physics these forces do not allow

to N atom to cross the barrier. But due to the tunnelling this atom can

penetrate through the barrier in the classically forbidden domain. If it is

initially on one side, it will appear on the other side and vice versa. In fact

the N atom oscillates back and forth through the H-atom plane with a

frequency 
610.3786,2=ν  Hz. The high accuracy at the determination of this

frequency, which is based on the small width of the corresponding spectral

line, allows using the frequency as a standard in the first atomic clock.

Example 3. Radioactive decayα − . In 1928 the Russian physicist George

Gamow gave the most famous example of quantum mechanical tunnelling in

the explanation of the decay of the radioactive nuclei, which emit α -

particles. If we suppose that an particleα −  exists in the parent nucleus (in

reality it forms at the decay of the nucleus) its potential energy can (Fig. 12-

12) be written as follows:
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( ) ( ) 2

const, ,         

2 2
, ,

o o

o

o

U r r

U r Z e k
r r

r

= ≤⎧
⎪= ⎨ −

≥⎪⎩

(12.87)

where 0and rZ  are respectively the number of neutrons and the radius of the

parent nucleus and 00 4/1 πε=k . The potential ( )rU  at 0rr <  is due to

nucleus forces and at 0rr >  - to the Coulomb repulsive forces.

Figure 12-12.  Model of the potential of -particles in the process of -decay - the particle in

the parent nucleus is in the potential well due to the nucleus forces and at the decay it must

overcome the potential barrier formed by the act of the electrostatic repulsive forces between

-particle and the daughter nucleus.

The experimental investigation of the decay shows, that this phenomena

is conditioned by the internal forces of the nucleus and the number of the

nuclei which decay in time dt  is proportional to the number of the nuclei in

the moment t and to the interval dt :

.NdtdN
o

λ−= (12.88)

Here 0λ  is the constant of the radioactive decay. After the integration we

readily obtain the Curie law on the radioactive decay:

( )tNN
oo

λ−= exp . (12.89)

The constant 0λ  can be connected with the period of half-life 2/1τ  of the

decay. Under the half-life 2/1τ we understand time for which the number of

the nuclei decreases two times, i.e.
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( ) ( ).2lnexp
2

1
exp 2/1 −==−

oooo
NNN τλ (12.90)

The connection between 2/10 and τλ  is clear:

1/ 2

ln 2 0,693
.

o o

τ
λ λ

= = (12.91)

Now we shall connect 0 1/ 2 and  λ τ  with the barrier penetration. If we

assume that for 1 s nth part of α -particles reach the barrier (the point 0r  in

Fig. 12-12), the nucleus should emit nT -part of the number of its α -

particle. The barrier penetration is defined by the expression (12.86), where

the integration is from 0r  to 1r  (see Fig. 12-12). From N nuclei dN will be

decayed for the interval dt :

dN nTNdt= − . (12.92)

By the comparison of (12.88) and (12.92) we can write

,nT
o

=λ (12.93)

or according to (12.86)

( )
12

exp 2 .

o

r

o

r

n m U E drλ
⎛ ⎞

= − −⎜ ⎟⎜ ⎟⎝ ⎠
∫ (12.94)

For the final determination of 0λ  we have to know n. Finding n is a difficult

problem. But this value can be estimated using the classical consideration.

For 1 s the part 0/~ rv  of the -particle will reach the beginning of the

barrier. According to the Heisenberg's uncertainty relation ≈0mvr  and for

n  we get

.
2

oo mrr

v
n =≡ (12.95)

Finally for the constant of the radioactive α -decay we obtain:
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( )
1

2

2
exp 2 .

o

r

o

o r

m U E dr
mr

λ
⎛ ⎞

= − −⎜ ⎟⎜ ⎟⎝ ⎠
∫ (12.96)

The -decay of Uranium

MeV2,4HeThU 4
2

234
90

238
92 ++→ (12.97)

has half-life 
10

10.45,0
2/1

=τ  years. The estimation with the formula (12.92)

for 14
0 10

−=r  m and barrier height ( ) 2

0 02 2 26Z e k r− =  Mev gives

10
10.9,2

2/1
=τ  years, which illustrates very well the possibilities of the

theory if we take into account the estimation character of (12.91).

SUMMARY

The wave function of the state of the quantum particle of mass m in a

constant one-dimensional potential field ( ) constU x U= =  satisfies the

stationary Schroedinger equation

( ) ( ) ( )
2

2 2

2
0.

m
x E U x

x
ψ ψ∂ + − =

∂

The form of the solution depends on the relation between the energy E of

the particle and the potential U of the field. When UE >  the solution is a

linear combination of two harmonic functions:

( ) ( ) ( )1 exp exp ,x A ikx B ikxψ = + − ( )2

2

2
0.

m
k E U= − >

When E U<  the solution is a linear combination of two exponential

functions:

( ) ( ) ( )exp exp ,x A x B xψ κ κ= + − ( ) .0
2

2

2 >−= EU
mκ

The energy of the particle in the free state can be only positive.

The solutions of the Schroedinger equation for the infinite potential well

( ) 2
sin

n

n
x x

a a

πψ =
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are standing de Broglie waves.

In comparison with the classical particle the quantum particle manifests

principally new properties - its energy is quantizied and its minimal energy

is different from zero. The quantization of the energy shows its worth at

sufficiently small mass of the particle and/or width of the well. The energy

levels are defined by the quantum number n:

...,3,2,1,
2

2

2

22

== nn
ma

E
n

π

When the quantum particle impinges on the potential step of the height U

and its energy E is smaller than U, it penetrates in the classically forbidden

domain UE < . The effect is completely quantum and has not a classical

analogue.

When the particle is in the potential well with a finite depth to the

character for the infinite well properties are added new quantum characters:

– the number of its bounded states depends on the depth U and on the

width a of the well - with increasing U and/or of a  their number

increases;

– the particle penetrates in the classically forbidden domain - the

probability to find it in this region is different from zero.

When the quantum particle of the energy E incident on the potential

barrier of the height U and width a and UE <  we observe the effect

unknown in classical physics - the penetration of the particle through the

barrier.  The penetration of the quantum particle through the potential barrier

of the larger height than particle total energy, i.e. through the classically

forbidden domain, is called the tunnel effect. With the tunnel effect are

explained many phenomena for which classical physics is helpless - the

autoelectronic emission, the transitions of N atoms in the molecule of 3NH

molecule, the radioactive -decay etc.

The systems with one-dimensional constant (in the given region) are the

simplest model of the real physical systems, in which the quantum properties

of the microscopic word appear.

QUESTIONS

1. How does the solution depend of the stationary Schroedinger equation for

the particle in the constant uniform field on its energy?

2. What are the solutions at UE <  and at UE > ?

3. Why cannot the free particle have negative energy?

4. What is the energy spectrum in the infinite potential well?
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5. How do the probabilities of the quantum and the classical particles in the

potential well differ?

6. How does the space between the energy levels depend on the quantum

number n?

7. Does the energy discrete character of the particle depend on its mass and

on the well width?

8. What is the behaviour of the quantum and of classical particles, when

they incident on the potential step (at 0atand >< EUE )?

9. Compare the behaviour of classical and quantum particles, when they

pass through the potential barrier?

10.What is the tunnel effect?

PROBLEMS

1. The states of the particle of mass m in an infinite potential well are

described by standing de Broglie waves, which have integer half waves

along the width of the well. Taking into account this fact and the

connection between the wavelength and the particle momentum p, prove

the quantization of its energy.

2. Two of the allowed states of the particle, which motion is free, but strictly

limited in the region of the width a, are described with the wave

eigenfunctions 32 andψψ , which are shown in Fig. 12-1a. When the

particle is in the state with 2ψ its energy is 4 eV. What is its energy in the

state with 3ψ ? What is the minimal allowed energy of the particle in this

system?

3. Find the energy 1E  of the ground state, the difference between the

energies 12 EE −  and the wavelength of the photon with energy 12 EE −
of an electron in one-dimensional infinite potential well of the width 1 Å.

4. For the particle of mass m in the one-dimensional infinite potential well

of width a find the average values of its co-ordinates x, of 2
x , of its

momentum p and of 2
p .

5. The electron beam of a linear density 1510  electrons/ 2m , after its

acceleration by the potential difference 100 V, incidents on the potential

step of the height 50=U  V. Find the incident, reflected and transient

current.

6. The electron beam of an energy 2 eV incidents on the potential step of the

height 20 eV. To what distance from the beginning of the step will the

beam density decrease e times?
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13.1* THE SOLUTION OF THE OSCILLATOR

EQUATION

In Chapter 5 we have considered the motion of the classical harmonic

oscillator. Let remember briefly its results. The motion of the particle of the

mass m, whose potential energy is near the position of the stable equilibrium,

has the form

( )
2

.
2

x
U x

κ= (13.1)

For a small deviation from an equilibrium it is valid the equation

2 2

0 00, .x x
m

κω ω+ = = (13.2)

This equation has a harmonic solution

( )cos
o

x a tω δ= + . (13.3)

The energy of the oscillator is defined as follows:

2 2 2 2

.
2 2 2 2

x o
mx x p m x

E T U
m

κ ω= + = + = + (13.4)

The function of Hamilton is:

2 2 2

.
2 2

x o
p m x

H
m

ω= + (13.5)

In the turning points x a= ±  the total energy is a potential one:

2 2

.
2
o

m x
E U

ω= = (13.6)
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The region

2 2
x a> (13.7)

is a forbidden domain for the classical oscillator.

Let now consider the quantum mechanical form of the problem of the

harmonic oscillator. According to (13.5) the operator of Hamilton has the

following form:

2 2 2 2 2 2 2

2

ˆˆ .
2 2 2 2

x o o
p m x m x

H
m m x

ω ω∂= + = − +
∂

(13.8)

The theory of the quantum oscillator is very important in quantum

physics as the Hamiltonian of the form (13.8) is used in all problems, in

which the oscillations are quantizied. For example, we find it in the

oscillations of molecules and crystals, in quantum electrodynamics and in

the quantum field theory. The problem of the quantum oscillator is a

beautiful illustration of the formalism and the basic principles of quantum

mechanics. Therefore we shall expose this problem in details.

The Hamiltonian (13.8) is not the explicit function of time and hence the

oscillator wave function satisfies the time-independent Schroedinger

equation ( ) ( )ˆ ,H x E xψ ψ=  i.e.

( ) ( ) ( )
2 2 2 2

2 2 2

2
0.o

x m m x
E x x

x h

ψ ωψ ψ
∂

+ − =
∂

(13.9)

The multiplying this equation by 0/ mω  gives:

( ) ( ) ( )
2 2

2

2
0.o

o o

x m x
E x x

m x

ψ ωψ ψ
ω ω

∂
+ − =

∂
(13.10)

The ratio 0/ mω  has the dimension of the square length

[ ] ( )2 2 -1 2

0/ ML T T/ MT Lmω −= = . We set:

2

0

0 0 0

2
, .

x E
x

m x
ξ

ω ω
≡ ≡ ≡ E (13.11)

With the new dimensionless quantities, dimensionless co-ordinate ξ  and

dimensionless energy E , the Eq. (13.9) is reduced to:
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( ) ( ) ( )
2

2

2
0.

ψ ξ
ξ ψ ξ

ξ
∂

+ − =
∂

E (13.12)

We first discuss the asymptotic form of the solution when ξ  is very large

so the equation is approximately:

2
2

2
0.

ψ ξ ψ
ξ

∞
∞

∂ − =
∂

(13.13)

The solution of this equation is:

2

2 ,e

ξ

ψ
±

∞ = (13.14)

Actually, after finding the second derivation

2

2 2

2

2
2 22 2

2

,e

e e

ξ

ξ ξ

ψ ξ
ξ

ψ ξ ξ ψ
ξ

±
∞

± ±
∞

∞

∂ = ±
∂

∂ = ± ≈
∂

(13.15)

and taking into account ,ξ → ±∞  we are readily persuaded that (13.14)

satisfies the Eq. (13.13).

The solution with the "+" at ξ → ±∞ increases indefinitely. Such a wave

function does not satisfy the condition of the finiteness (Section 9.2). Hence

asymptotically (ξ → ±∞ ) the wave function has the form 

2

2e

ξ

ψ
−

∞ = . We

seek the solution of (13.12) in the following form:

( ) ( )
2

2 ,e

ξ

ψ ξ η ξ
−

= (13.16)

where ( )η ξ  is an unknown function. Finding the second derivative of

(13.16)
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( )
( ) ( )

( )

2 2

2 2 2 2

2 2

2 2
22 2 2 2

2 2

,

2

e e

e e e e

ξ ξ

ξ ξ ξ ξ

ψ ξ η η ξ
ξ ξ

ψ ξ η ηξ η ξ η
ξ ξ ξ

− −

− − − −

∂ ∂= + −
∂ ∂

∂ ∂ ∂= − − +
∂ ∂ ∂

(13.17)

and substituting it in (13.12) we get for the unknown function ( )η ξ :

( )
2

2
2 1 0

η ηξ η
ξ ξ

∂ ∂− + − =
∂ ∂

E . (13.18)

We seek for the solution in the form:

( ) .k

k

k o

aη ξ ξ
∞

=

= ∑ (13.19)

Finding the first and the second derivatives of the power series ( )η ξ :

( )

1

0

2
2

2
0

,

1

k

k

k

k

k

k

a k

a k k

η ξ
ξ

η ξ
ξ

∞
−

=

∞
−

=

∂ =
∂

∂ = −
∂

∑

∑
(13.20)

and replacing them in (13.18) we have:

( ) ( )2

0 0 0

1 2 0.k k

k k k k

k k k

a k k a k k aξ ξ ξ ξ
∞ ∞ ∞

−

= = =

− − + − =∑ ∑ ∑ (13.21)

For every value of ξ  the relation (13.12) can be only satisfied if all

powers of  ξ  are equal to zero. For the coefficients before  mξ  this means:

( )( ) ( )2 2 1 2 1 0
m m m

a m m a m a+ + + − + − =E , (13.22a)

or
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( )
( )( )2

2 1

2 2
m m

m
a a

m m
+

− −
=

+ +
E

. (13.22b)

If we know 
m

a  we can determine 2m
a +  and then 4m

a +  etc. All even

coefficients 2 4 6 2, , , ...,
m

a a a a  can be determined, if we know 0a , and

3 5 7 2 1, , , ...,
m

a a a a +   - if we know 1a . Two constants are necessary as the Eq.

(13.18) is one of the second order.

Two power series of the even and odd powers correspond to two partial

solutions of the differential equation (13.18). For clarification of the

character peculiarities of the oscillator is enough to consider one of these

solutions. Let assume that 1 00, 0.a a= ≠ Then the partial solution

( ) ( )
2 2

22 2
2

0

.k

k

k

e a e

ξ ξ

ψ ζ η ξ ξ
∞− −

=

= = ∑ (13.23)

is expressed by the even powers.

At great ξ  the sum 2 2

0

k k
a ξ

∞

∑  increases indefinitely as ( )2exp ξ  (for the

proof see [2]). Hence the asymptotic solution ( ) 2 2
e

ξψ ξ → ∞ ∝  appears to

be infinite. The function does not satisfy the condition of the finiteness of

the wave function (Section 9.2). The problem is that the series 2

2

k

k
a ξ  is too

long. We note, however, that if 2 0
n

a + = , then all next terms 4 6, , ...
n n

a a+ +  etc.

will be equal to zero. Hence the series may be restricted to the nth term

( 0
n

a ≠ ) if

( )
( )( )2

2 1
0

2 1
n n

n
a a

n n
+

− −
= =

+ +
E

. (13.24)

This is equivalent to the condition

2 1, 0,n n= + =E 1, 2, 3… (13.25)

The Eq. (13.18) at the condition (13.25) for the parameter E  has as a

solution the polynomial ( )η ξ  with the coefficients, determined by (13.22).

The polynomials ( )η ξ  are called Hermite polynomials:



13. THE HARMONIC QUANTUM OSCILLATOR 319

( ) ( )n n
Aη ξ ξ= H  . (13.26)

The constants 
n

A  are determined by the normalization condition of the

wave function ( )ψ ξ  (13.16):

0

0

1

2 ! 2 !
n n n

x
A

mn n ωπ π
= = (13.27a)

and the Hermite polynomials  - by the formula

( ) ( )
2

2

1
n

n

n n

d e
e

d

ξ
εξ

ξ

−

= −H . (13.27b)

We shall once again underline, that the Hermite polynomials (13.26) are

the solution of the Eq. (13.18) only at the condition (13.25):

0

2
2 1, 0,

E
n n

ω
= = + =E 1, 2, 3…, (13.28a)

i.e. at

0 0

1 1

2 2
n

E n n hω ν⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
. (13.28b)

The number 0,1, 2, 3, ...n =  is called the quantum number of the

oscillator. The nth state is described with the wave function ( ) :
n

ψ ξ

( ) ( ) ( )
2

2 2

2 2

0

1
1

2 !

n x
n

n n n nn

d e
A e e

m dn

ξ
ξ ξ

ψ ξ ξ
ω ξπ

−
−

= = −H . (13.29)

The energy of the quantum oscillator is quantizied. It has discrete

character. The energy levels are equidistant

1 0 0n n n
E E E hω ν+Δ = − = = .  (13.30)
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and at the transition between every two adjacent levels (from the higher to

the lower) the photon of energy 0hν  is emitted, where 0ν  is the oscillator

frequency.

13.2 GROUND STATE AND ZERO-POINT ENERGY

The state with minimum energy is called a ground state. The quantum

oscillator has minimal energy in the state with 0 :n =

0
min 0

2
E E

ω= = . (13.31)

At 0n =  from (13.27) we easy obtain 0 1=H  and hence the wave function

in the ground state is following:

2

2
0( )

o
A e

ξ

ψ ξ
−

= . (13.32)

The probability density of this state is:

( ) ( ) 22 2

0 0A e
ζρ ζ ψ ζ −= = = . (13.33)

The functions ( ) ( )0 0  and  ψ ξ ρ ξ  are shown in Fig. 13-1. The wave

function and the probability density are different from zero in a classically

forbidden domain (the shaded regions). The probability density of the

classical oscillator with the minimal energy ( min 0cl
E = ) is a -function:

( ) ( ).clρ ξ δ ξ=
At the minimal energy 0E  of the quantum oscillator the classical

oscillator would move in the region ( )( )0 0 0 0U Eξ ξ ξ ξ− < < + ± = . The

character distinction of the quantum oscillator from the classical one is that it

penetrates in the classically forbidden domain.

The lowest energy is another difference, but very essential one between

both oscillators. For the classical oscillator it is min 0cl
E =  and corresponds to

the energy of the rested particle in the equilibrium point. For this state the

probability density is -function ( ) ( )clρ ξ δ ξ=  and the probability to find

the particle in this point is a unity:
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( ) ( ) ( ) 1cl
W d dξ ρ ξ ξ δ ξ ξ

∞ ∞

−∞ −∞

= = =∫ ∫ . (13.34)

The minimal energy of the quantum oscillator 0E , called zero-point

energy, is its intrinsic characteristic. This is the lowest energy, which the

quantum oscillator in general can have. This energy can not be decreased or

removed. At the first glance the decreasing of the natural angular frequency

0 / mω κ=  would decrease the energy 0 0 / 2E ω= . But this means either

decreasing the force constant κ  or increasing the mass m. This is equivalent

to the change the same oscillator, the its essence.

Figure 13-1. Wave function ( )0ψ ξ  (a) and the probability density ( )0ρ ξ  (b) of the ground

state. The points ( )( )0 0 0U Eξ ξ± =  are turning points of the classical oscillator of energy

0 ;cl
E E=  the region ξ ξ ξ− < < +  - a permissible domain for such an oscillator, 2 2

0
ξ ξ> - a

forbidden domain.

The zero-point energy is proven experimentally by the crystal scattering

of light. With the decreasing the crystal temperature 0T  according to the

classical theory the oscillation amplitude has to decrease and to vanish

finally. The experiment shows that at decreasing 0T  the scattering frequency

tends to a threshold value, from which one concludes the atom oscillations

do not stop.

The zero-point energy of the quantum oscillator can be obtained from the

Heisenberg uncertainty condition (Section 10.9): / 2p xΔ Δ ≥ , which can be

written in the form:
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( ) ( )2 2 2 / 4 .p xΔ Δ ≥ (13.35)

We admit that 0p =  and hence .p p pδ = −  Then the dispersion square

will be ( )2 2
p pΔ =  (see Section 10.8). By analogy for the co-ordinate x,

admitting 0,x = we obtain ( )2 2
x xΔ = . Hence (13.35) can be written as

2
2 2 ,      or

4
p x ≥ (13.36a)

2
2

2
.

4
x

p

=    (13.36b)

We substitute 2
x  from (13.36b) in the expression for the average

oscillator energy:

2 2 2 2 2 2

0 0

2
.

2 2 2 8

p m x p m
E

m m p

ω ω= + = + (13.37)

We calculate the derivative of ( )2
E E p=  with respect to 2

p  and

equal it to zero. From here we determine that at 2

0 / 2p mω=  the average

energy  of the oscillator is minimal:

2 2

0 0 0
min 0

0

2
.

4 8 2

m m
E E

m m

ω ω ω
ω

= + = = (13.38)

This pure quantum effect - the minimal energy, different from zero - we

have established for the square infinite well.

13.3 EIGENSTATES OF THE HARMONIC

OSCILLATOR

Let us consider 1n =  state. From (13.27) we determine a polynomial 1H

2 2 2 2

1 ( 1) 2 2 .
d

e e e e
d

ξ ξ ξ ξ ξ ξ
ξ

− −= − = =H (13.39)
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The wave function ( )1ψ ξ , the probability density ( )1ρ ξ  and the energy

1E  in this are, relatively:

( )
( ) ( )

2

2

2
1 1

2 2 2

1 1 1

1 0

2 ,

4 ,

3
.

2

A e

A e

E

ξ

ξ

ψ ξ ξ

ρ ξ ψ ξ ξ

ω

−

−

=

= =

=

(13.40)

The wave function ( )1ψ ξ  has one node at 0ξ = , i.e. ( )1 0 0ψ = . Its plot

as well as the plot of ( )1ρ ξ  are shown in Fig. 13-2.

Figure 13-2. The wave function ( )1ψ ξ  (a) and the probability density ( )1ρ ξ  of the state

with 1n = : the quantum one ( )1ρ ξ  and the classical one ( )
1

clρ ξ  (b): 
1 1

ξ ξ ξ− < < +  - a

classical permissible domain.

Let determine the probability of the classical oscillator of energy 1E E= .

The probability to find the particle in the region between x  and x dx+  is

( ) 0 ,
2

dt dx
dW x

v

ω
τ π

= =  (13.41)

where 2 /τ π ω=  is the period of the oscillations and v  is the particle

velocity. Its energy is ( )2 / 2E mv U x= +  and expressing v  through E we

obtain for ( )1ρ ξ :



324 Chapter 13

( ) ( )

( )
( )

2

const const
.

2

cl cl
dW x

x
dx

E U x
m

ρ ρ ξ
ξ

= = ⇒ =
−⎡ − ⎤⎣ ⎦

E

(13.42)

The plot of the classical probability density is shown in Fig.13-2b.

At 2n =  from (13.23b) we get for the polynomial 2H

2 2 2 2

2

2
2

2
2 4 2.

d d
e e e e

d d

ξ ξ ξ ξξ ξ
ξ ξ

− −= = − = −H  (13.43)

The wave function and the energy of the state with 2n =  are relatively:

( ) ( )
2

2 2
2 2

2 0.

4 2 ,

5

2

A e

E

ξ

ψ ξ ξ

ω

−
= −

=
(13.44)

The function ( )2ψ ξ  has two nodes (Fig. 13-3):

Figure 13-3. The state of the quantum oscillator with n=2: a) the wave function ( )2ψ ξ ; b)

the probability density: the quantum one ( )2ρ ξ  and the classical one ( )
2

clρ ξ .

2 2
0.

2 2
ξ ψ

⎛ ⎞
= ± ⇒ ± =⎜ ⎟⎜ ⎟⎝ ⎠

(13.45)
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In the states with large values of the quantum number n  the distribution

of the quantum probability density ( )n
ρ ξ  approaches the classical one  (Fig.

13-4).

Figure 13-4.  The probability density of the quantum oscillator ( )n
ρ ξ  and of the classical

oscillator ( )
n

clρ ξ  of the same energy at a great number n ( 61n = ).

And before summarizing the basic results of the quantum oscillator we

shall make one useful comparison with the string oscillation (Fig. 13-5).

The analogy between the de Broglie waves and the string waves is

obvious. We note that the number of the half waves ( )n
xψ  is equal to n .

We shall summarize the basic results of the quantum oscillator:

1. The energy spectrum is discrete.

2. The energy ( ) 01/ 2
n

E n ω= +  is determined by the quantum number n,

which has the values 0,1, 2, 3 ...n =  (compare with the infinite well of the

energy ( )2 2 2 2/ 2
n

E ma nπ= and the quantum number 1, 2, 3 ...n =  (see

Section 12.2).
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Figure 13-5. Wave function ( )n
ψ ξ  of the quantum oscillator (a) and the standing waves of

the string (b); ( )y x  is the string deviation.

3. The energy levels are equidistant, 0n
E E ωΔ = Δ = (compare with the in-

finite well, where they are nonequidistant, ( )( )2 2 2/ 2 2 1 )
n

E ma nπΔ = + .

4. The minimal possible energy is different from zero, min 0 0.E E= ≠
5. In the ground state ( min 0E E E= = ) the probability to find the quantum

oscillator in every point of the classically permissible domain is different

from zero.

6. The quantum oscillator penetrates in the classically forbidden domain.

13.4* COUPLED QUANTUM-MECHANICAL

OSCILLATORS AND VAN DER WAALS FORCES

The solution of the quantum oscillator problem in Section 13.2 leads us

to the conclusion that even at the absolute zero temperature the oscillator

possesses the energy 0 / 2E ω=  called zero-point energy. This fact is

curiously enough from the classical point of view, but the experiment

verifies its existence. It is particularly interesting that the existence of the

zero-point energy unexpectedly explains the intermolecular and the

interatomic attractive forces, known as van der Waals forces. They are well

known in classical physics and are expressed through the known equation of

van der Waals:
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( ) 02
,

a
p V b RT

V

⎛ ⎞+ − =⎜ ⎟⎝ ⎠
(13.46)

where p, V and 0T  are the pressure, the volume and the temperature of the

fluid, a and b are constants and R is the universal gas constant. The term
2/a V  describes the attractive force between the molecules.

In the frames of classical physics many attempts are made to explain

these forces, prescribing them an electrical origin. The neutral molecules are

considered as electric dipoles and in more power systems as quadrupoles.

But the consistence of the theoretical and experimental results meets the

insuperable obstacles. Moreover, with such a concept cannot be explained

the attractive forces between the inertial gases. They possess the high degree

of the electrical symmetry and is impossible to have a permanent dipole or

quadrupole moment. But all of them can be condensed into liquids and hence

their molecules interact with the van der Waals forces.

The difficulties can be removed if one considers not only the permanent

electrical dipoles but also the induced, due to the oscillations, dipole

moments. Let consider two molecules, which charges in rest are spherically

symmetrically distributed, so they do not interact. If we displace the charged,

the molecule will acquire a dipole moment and will begin to interact. Such a

displacement arises at zero-oscillations, which always exist. The appearance

of the dipole moment in one molecule induces a dipole moment in another

one, the quickly changing moments are found to be in phase, which in its

turn originates the attractive force. Such is the qualitative explanation of the

attractive intermolecular forces. We shall show that this simple physical

picture allows maintaining the quantitative law for interaction between the

molecules.

Let consider the idealized model of the coupled oscillator, using the two

dipoles situated along the line of the distant r  each from other. The masses

of the charged are equal 1 2m m m= = . Because of the oscillations the electric

charges are displaced correspondingly to 1x  and 2x  (Fig. 13-6). Every

charge interacts with the all others. The energy of the interaction is

determined by the attraction of the opposite charges and the repulsion of the

like charges. According to the Coulomb law it is

2 2 2 2

0 0 0 0
12

1 2 2 1

2

0

1 2 2 1

1 1 1
1 .

1 1 1

k e k e k e k e
U

r x r x r x x r

k e

x x x xr

r r r

= − − + +
− + + −

⎛ ⎞
⎜ ⎟

= − − + +⎜ ⎟−⎜ ⎟− + +
⎝ ⎠

(13.47)
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(For 0k  see (4.20)). As 1 2,r x x>> , we can represent the fraction in the

brackets as power series, according to the formula

( ) 1 2 31 1 ...x x x x
−± = + + (13.48)

Restricting only to the first three terms, we get for the potential energy of the

Figure 13-6. Two molecules interact as two electrical dipoles, which are due to the molecule

oscillations.

dipole interaction:

2

0
12 1 2 1 23

2
.

k e
U x x x x

r
κ= − = − (13.49)

Here we set 2 3 2 3

0 02 / 2 / 4 .k e r e rκ πε= =
Separately every one of the dipoles represents the quantum oscillator

with the force constant 1κ , the natural frequency 0ω  and the following

potential energies:

2 2 2 2 2 2

1 1 1 0 1 2 1 2 0 2

1 1 1 1
, ,

2 2 2 2
U x m x U x m xκ ω κ ω= = = = (13.50)

where

2 1 1 1 2
0

1 2

2
and

2

m m m
m

m m m m

κ κω = = = =
+

(see (5.27) and (5.32)).

The potential energy of two coupled oscillators is a sum of the potential

energies of the separate oscillators and the energy of the dipole interaction:

2 2 2

1 2 12 0 1 0 2 1 2

1 1
.

2 2
U U U U m x m x x xω ω κ= + + = + − (13.51)
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Now we can write the function of Hamilton for the coupled oscillators:

( )
2 2

2 2 21 2
1 2 0 1 2 1 2

1
.

2 2 2

p p
H T T U m x x x x

m m
ω κ= + + = + + + − (13.52)

Hence the operator of Hamilton is

( )
2 2 2

2 2 2

0 1 2 1 22 2

1 2

1ˆ .
2 2

H m x x x x
m x x

ω κ
⎛ ⎞∂ ∂= − + + + −⎜ ⎟∂ ∂⎝ ⎠

(13.53)

Here 1 2 and x x  are displacements of the both oscillators from the equilibrium

position and 0ω  is the natural frequency of every one of these (equal)

oscillators with mass m .

We introduce normal co-ordinates (see Section 5.4):

( )

( )

1 1 2

2 1 2

1
,

2

1
.

2

x

x

ξ ξ

ξ ξ

= +

= −
(13.54)

From these expressions we can obtain two useful relations for
2 2

1 2 1 2  and  x x x x+ , squaring the two equalities and then summing them up

and multiplying them:

2 2 2 2

1 1 1 2

2 2 2 2

1 1 1 2

,

1
( ).

2

x x

x x

ξ ξ

ξ ξ

+ = +

= −
(13.55)

The Hamiltonian is expressed through the derivatives with respect to

1 2  and  .x x  It is necessary to pass to the derivative of the new co-ordinates

1 2  and  .ξ ξ  We determine the derivative 1/ ξ∂ ∂  of the function

( ) ( )1 1 2 2 1 2, , ,x xψ ψ ξ ξ ξ ξ= ⎡ ⎤⎣ ⎦ :

1 2

1 1 1 2 1

.
x x

x x

ψ ψ ψ
ξ ξ ξ

∂ ∂ ∂ ∂ ∂= +
∂ ∂ ∂ ∂ ∂

(13.56)

According to (13.54)
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1 2

1 1

1 1
, .

2 2

x x

ξ ξ
∂ ∂= =
∂ ∂

(13.57)

Substituting (13.57) into (13.56), we get:

1 1 2

1
.

2 x x

ψ ψ ψ
ξ

⎛ ⎞∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂⎝ ⎠
(13.58)

Differentiating on 1ξ  and taking into account (13.57), for the second

derivation on 1ξ  we obtain the following expression:

2 2 2 2

2 2 2

1 1 1 2 2

1
2

2 x x x x

ψ ψ ψ ψ
ξ

⎛ ⎞∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
(13.59)

and similarly with respect to 2ξ

2 2 2 2

2 2 2

2 1 1 2 2

1
2 .

2 x x x x

ψ ψ ψ ψ
ξ

⎛ ⎞∂ ∂ ∂ ∂= − +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
(13.60)

From the last two equalities it follows that

2 2 2 2

2 2 2 2

1 2 1 2

.
x xξ ξ

⎛ ⎞∂ ∂ ∂ ∂+ = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
(13.61)

Using (13.55) and (13.61), we may write the Hamiltonian (13.53)

through the variables 1 2 and ξ ξ :

( ) ( )
2 2 2

2 2 2 20
1 2 1 22 2

1 2

ˆ
2 2 2 2

m
H

m m

ω κξ ξ ξ ξ
ξ ξ
∂ ∂= − − + + − −

∂ ∂
(13.62a)

or

2 2 2 2
2 2 2 2

0 1 0 22 2

1 2

ˆ .
2 2 2 2

m m
H

m m m m

κ κω ξ ω ξ
ξ ξ
∂ ∂⎛ ⎞ ⎛ ⎞= − + − − + +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

(13.62b)
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The operator Ĥ  is a sum of the operators 1 2
ˆ ˆ  and  H H :

1 2

2 2
2 2

1 1 12

1

2
2 2

2 22

2

ˆ ˆ ˆ ,

1ˆ ,
2 2

1ˆ ,
2 2

H H H

H m
m

H m
m

ω ξ
ξ

ω ξ
ξ

= +

∂= − +
∂

∂= − +
∂

(13.63)

where we have set

2 2 2 2

1 0 2 0, .
m m

κ κω ω ω ω= − = + (13.64)

The operators 1 2
ˆ ˆ  and  H H  are Hamiltonian, describing the normal

oscillations 1 2  and  ξ ξ , i.e. the oscillations of harmonic oscillator with

natural frequencies 1 2  and  ω ω  and with equations

1

1 1 1 1 1

2

2 2 2 2 2

ˆ ( ) ( ),

ˆ ( ) ( ).

H E

H E

ψ ξ ψ ξ

ψ ξ ψ ξ

=

=
(13.65)

The energies of these two oscillators according to (13.28) are

1

2

1

1 1 1

2

2 2 2

1
,         0,1, 2, ...

2

1
,        0,1, 2, ...

2

n

n

E n n

E n n

ω

ω

⎛ ⎞= + =⎜ ⎟⎝ ⎠
⎛ ⎞= + =⎜ ⎟⎝ ⎠

(13.66)

These energies 
1 2

1 2 and  
n n

E E  are eigenvalues of the operators 1 2
ˆ ˆ and H H

and the eigenvalues En of the operator 1 2
ˆ ˆ ˆH H H= +  are the sum of

1 2

1 2 and  
n n

E E :

1 2

1 2

n n n
E E E= + . (13.67)

Hence for the minimal energy of the coupled oscillator we can write:
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( )1 2 0
0 0 0 1 2 2 2

0 0

1 1 .
2 2

E E E
m m

ω κ κω ω
ω ω

⎛ ⎞
= + = + = − + +⎜ ⎟⎜ ⎟⎝ ⎠

(13.68)

Because the potential energy of the interaction is significantly lower than

the potential energy of each of the oscillator (the connection is weak) the

second terms in the radicals are small 2

0mκ ω<<  and we can expand (13.68)

according to the formula

( )
1

2 3
2

1 1 1
1 1 ...

2 8 16
x x x x± = ± − ± − (13.69)

As a result of this we obtain:

( )
2 4

0 0 0 22 3 2 3 6
0 0 0

.
8 2 4

e
E

m m r

κω ω
ω πε ω

= − = − (13.70)

If the both oscillators of the natural frequencies 0ω  do not interact their

common energy would be:

0 0
0 0.

2 2
E

ω ω ω= + = (13.71)

The comparison of (13.71) and (13.70) leads to a very important result. Be-

cause of the interaction of two quantum oscillators their energy decreases.

The additional term in (13.70) is a function on the distance between the both

oscillators and plays the role of a potential energy between them:

( )
( )

4

2 62 3

0 0

1

2 4

e
U r

rmπε ω
= − . (13.72)

This potential energy corresponds to the additional force of the attraction

(the minus sign!) between the oscillators:

( )
4

2 7 72 3

0 0

( ) 3 1 1
.

4

U r e
F

r r rmπε ω
∂= − = − ∝ −

∂
(13.73)

Namely this additional force is the force of van der Waals of the

attraction between the atoms and/or the molecules.
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The atomic systems (the atoms and the molecules) represent quantum

oscillators, which minimal energy even in the ground state is different from

zero. Owing to this zero-point energy their dipole moments (which

according to classical physics are equal to zero) have finite values,

nevertheless they are very small. These dipole moments interact with the

attractive forces. The attractive forces (the forces of van der Waals) are

owed to the existence of the zero-point energy of the quantum oscillators.

SUMMARY

Replacing 
x

p  in the function of Hamilton of the classical oscillator with

the operator ˆ
x

p  we determine the operator of Hamilton of the quantum

harmonic oscillator:

2 2 2 2 2 2 2

0 0

2

ˆˆ .
2 2 2 2

x
p m x m x

H
m m x

ω ω∂= + = − +
∂

The solution of the stationary Schroedinger equation with such

Hamiltonian is:

( ) ( )
2

2
n n n

A e

ξ

ψ ξ ξ
−

= H ,

where ( )n
ξH  are the Hermite polynomials.

The energy of the quantum oscillator is quantizied and its values are

determined by the quantum number n:

0 0

1 1

2 2
E n n hω ν⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

.         0,1, 2, 3, ...n =

The energy levels are equidistant:

1 0 0n n n
E E E hω ν+Δ = − = = .

The ground state of the quantum oscillator, i.e. the state with the minimal

energy, is the state with the quantum number 0n = . The minimal energy of

the quantum oscillator

0

1
,

2
E ω=
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which is called zero-point energy, is its intrinsic (or internal) characteristic.

This is the lowest energy, which the given oscillator in general can possess.

The minimal energy of the classical oscillator is equal to zero.  The zero-

point energy is an essential distinction of the quantum oscillator from the

classical one. Another characteristic distinction is that the wave function and

the probability density are different from zero in the classically forbidden

domain. This means that the quantum oscillator penetrates into the

classically forbidden domain.

The existence of the zero energy explains the attractive intermolecular

and interatomic forces, known as van der Waals forces.  According to

classical physics the atoms and the molecules with high degree of symmetry

have zero permanent dipole moment and between them attractive forces do

not act. From the point of view of quantum mechanics the atoms and the

molecules represent quantum oscillators, which lowest energy in the ground

state is different from zero. Due to this zero-point energy their dipole

moments have finite values, nevertheless they are very small. These dipole

moments interact with the attractive forces, i.e. the attractive forces (the

forces of van der Waals) are due to the zero-point energy of the quantum

oscillators.

QUESTIONS

1. Which is the Hamiltonian of the quantum harmonic oscillator?

2. What are the eigenfunctions of the quantum harmonic oscillator?

3. Which is the energy spectrum of the quantum harmonic oscillator?

4. Compare the ground state of the quantum oscillator with that of the

classical one, which has: a) the same energy; b) the lowest energy.

5. Which values are possible for the quantum numbers of the oscillator and

the particle in an infinite well?

6. Compare the energy spectrum of a quantum harmonic oscillator and a

particle in infinite potential well.

7. Compare the probability density of the first three states of the quantum

oscillator and a particle in: a) an infinite potential well; b) a potential well

of finite depth.

8. What is a zero-point energy?

9. How does the energy of the oscillator change with increasing the numbers

of the wave-function nodes?
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PROBLEMS

1. Calculate the zero-point energy of the mathematical pendulum of a length

10 m in the gravitational field of the Earth.

2. The mathematical pendulum of mass 0,5m = kg and a length 1l =
oscillates with an amplitude 0,05 m. Estimate the following quantities: a)

the frequency of oscillation; b) the energy of oscillation; c) the

approximate value of the quantum number of the oscillation; d) the energy

space between adjacent allowed energy.

3. The force constant of the HF molecule is 29.10κ =  N/m (we shall note

that the force constant of a typical diatomic molecule is in the order of
310 N/m). Estimate the zero-point energy of the molecule oscillation.

4. For the HF molecule from the problem 3. estimate: a) the energy

difference between the ground and the first excited level; b) the energy of

the photon, emitted from the transition of the molecule from the first

excited level to the ground one; c) the photon frequency and compare it

with the frequency of the classical oscillations of the system; d) the

wavelength of the emitted electromagnetic wave.

5. The distance between the excited vibrational states of CO molecule is

2170 -1cm  (the distance is given with the numbers of the wavelength in 1

cm). Calculate the force constant of the molecule.

6. Find the first five eigenfunctions ( )n
xψ  of the quantum oscillator using

the dependence (13.29) for ( )n
ψ ξ .

7. With direct replacing into the Eq. (13.9) prove that the eigenfunction

( )2 xψ  and the eigenvalue 2E  are its solution.

8. The initial state of the quantum oscillator is described by the wave

function ( ) ( ), 0x xψ ϕ= . Which is the wave function ( ),
n

x tψ ?

9. The superposition state of the quantum oscillator is described by the wave

function ( ) ( ) ( )( )0 1

1
, , , .

2
x t x t x tψ ψ ψ= +  Prove that the average value

of x is 0const cos .x tω=
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14.1* PARTICLE MOTION IN A CENTRAL

SYMMETRIC FIELD

In Chapter 3 we have considered the motion in a central symmetric field

(CSF). In such a field the potential energy depends only on the distance to

the force centre - . We have presented energy E of the particle as a sum of

the radial kinetic energy 
r

T , the centrifugal energy 2 2
02L m r  and the

potential energy ( )U r :

( )
2

2
0

.
2

r

L
E T U T U r

m r
= + = + + (14.1)

Here 0m  is a particle mass and L is its angular moment.
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Going to the quantum-mechanical problem we firstly write the

Hamilton's operator. According to (14.1) its form is

( )
2

2
0

ˆ
ˆ ˆ

2
r

L
H T U r

m r
= + + (14.2)

or (see Section 10.8)

( )
2 2

,2

2 2
0 0

1ˆ
2 2

H r U r
m r r mr r

θ ϕΔ∂ ∂⎛ ⎞= − − +⎜ ⎟∂ ∂⎝ ⎠
. (14.3)

The Hamiltonian does not depend on shalland therefore the wave

function in CSF satisfies the stationary Schroedinger equation:

( ) ( )ˆ , , , , .H r E rψ θ ϕ ψ θ ϕ= (14.4)

We already know three constants of the motion for the Hamiltonian

(14.3) (see Example 3 in Section 11.4). In fact the operators 2ˆ ˆ ˆ,   and  
z

H L L

commute with Ĥ :

2ˆ ˆ ˆ ˆ ˆ ˆ', 0,      , 0,      , 0
z

H H L H L H⎡ ⎤ ⎡ ⎤ ⎡ ⎤= = =⎣ ⎦ ⎣ ⎦ ⎣ ⎦ (14.5)

and the quantities 2,    and  
z

E L L  are constants of the motion. We shall also

notice that they are simultaneously measured. When two operators commute

they have common eigenfunctions. Hence, the eigenfunctions of the

operators 2
L and 

z
L  are eigenfunctions of the Hamiltonian Ĥ . We have

found these functions in Section 10.6 - these are the spherical functions

( , )
lm

Y θ ϕ  (10.96). They can be presented explicitly by Legendre polynomials

(for details see Appendix V in [3]):

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( )

| |
2 22

1
, , P cos P cos ,

2

l- m ! 2 11
P 1 1 ,     = .  

l- m !42 !

m m m m im

lm l l m l l

m l m
l

m m

l ll l m

Y e

ld

l d

ϕϕ θ ϕ θ ϕ θ ϕ θ
π

ξ ξ ξ
πξ

+

+

= = Α Φ = Α

+
= − − Α

(14.6)
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The eigenvalues of 2ˆ ˆ and 
z

L L  are determined correspondingly by orbital l

and by magnetic m quantum numbers:

( )2 2 1 ,      0,1, 2, ...

,               0, 1, 2, ..., .
z

L l l l

L m m l

= + =
= = ± ± ±

(14.7)

We shall seek the solution of the Schroedinger equation

( )
2 2

,2

2 2
0 0

1

2 2
r U r E

m r r mr r

θ ϕψ ψ ψ ψ
Δ∂ ∂⎛ ⎞− − + =⎜ ⎟∂ ∂⎝ ⎠

(14.8)

in the form:

( ) ( ) ( ), , , .
lm

r R r Yψ ψ θ ϕ θ ϕ= =  (14.9)

Substituting from (14.9) into (14.8) and taking into account (14.6) and

(10.99), we obtain

( ) ( ) ( ) ( )
2

2 0

2 2 2
0

121
0.

2

R r l lm
r E U r R r

r rr m r

⎡ ⎤⎛ ∂ ⎞ +∂ + − − =⎢ ⎥⎜ ⎟∂ ∂ ⎢ ⎥⎝ ⎠ ⎣ ⎦
(14.10)

This is the equation for the unknown radial part of the wave function

(14.9). It does not depend on the magnetic quantum number. From this we

can make an important conclusion. If in any CSF the particle moves with a

fixed angular moment ( ( )1L l l= + ), i.e. with a fixed l, ( 2 1l + ) different

spherical functions ( , )
lm

Y θ ϕ  with magnetic quantum numbers

0,  1,  2,  ..., m l= ± ± ±  will correspond to this moment. In other words

2 1l +  eigenfunctions have one eigenvalue ( )1L l l= +  of the angular

moment. In every CSF there is ( 2 1l +

is clear - at a fixed angular moment (fixed orbital quantum number l) are

possible 2 1l +  components along the Z-axis, i.e. 2 1l +  different orientation

of the angular momentum.

The general statement for stationary states is valid for the CSF: at 0E >
the energy spectrum is continuos and at 0E <  the spectrum is discrete.

To solve the equation (14.10) we have to know the concrete field, i.e. the

form of ( )U r . Some conclusions can be made from the general equation -

)-fold degeneracy with respect to m -

this generation is called normal. The physical meaning of this degeneracy
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for example that of the motion with constant radius 0 constr r= = . The

system with such a motion is called the quantum rotator. Setting

( ) const 0U r = =  we obtain from (14.8) the equation of the quantum rotator:

( ) ( )
2

2
0 0

ˆ
, , .

2

L
E

m r
ψ θ ϕ ψ θ ϕ= (14.11)

Here the total energy coincides with the centrifugal energy 2 2
0 02L m r

(see the last two paragraphs of the Section 3.3). In quantum mechanics it is

called rotational energy and we may write it in the form:

( ) ( )2 22

2 2
0 0 0 0

1 1
.

22 2
l

l l l lL
E

Im r m r

+ +
= == = (14.12)

Here 2
0 0I m r=  is the inertial moment. The spectrum of the rotational

energy is discrete. It is determined by the orbital quantum number l. The

rotational energy levels are nonequidistant:

( )2

1 2
0 0

1
.

l l l

l l
E E E

m r
+

+
Δ = − = (14.13)

The distance between them increases with the increasing the number l.

14.2* ELECTRON IN A COULOMB FIELD

We shall consider the motion of the electron in a Coulomb field. If we

assume that the nucleus is infinitely massive, i.e. it remains fixed in space

this will be the motion of the electron in the atom of the hydrogen, and in so

called hydrogen-like ions: a singly ionized helium atom, a doubly ionized

lithium atom, etc. Such is the motion of a negative charged meson with a

mass 207
e

m mμ =  around the proton in the atom of the meson-hydrogen.

The potential energy of the electron in the field of the point charge Ze

depends only on the distance r between the both charges:
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( )
2

0
0

0

1
,      .

4

k Ze
U r k

r πε
= − ≡ (14.14)

Then, according to (14.3), for the Hamltonian of the electron we get:

22 2
,2 0

2 2

1ˆ .
2 2

e e

k Ze
H r

m r r m rr r

θ ϕΔ∂ ∂⎛ ⎞= − − +⎜ ⎟∂ ∂⎝ ⎠
(14.15)

In this case for the equation of the radial wave function we can write:

( ) ( ) ( )
2 2

2 0 0

2 2 2
0

121
0.

2

R r l lm k Ze
r E R r

r r rr m r

⎡ ⎤⎛ ∂ ⎞ +∂ + − + =⎢ ⎥⎜ ⎟∂ ∂ ⎢ ⎥⎝ ⎠ ⎣ ⎦
(14.16)

We shall look for the solution in the form:

( ) ( )
.

X r
R r

r
= (14.17)

For the first term of the Eq. (14.16) after substituting R, we get:

( ) ( ) ( )

( ) ( ) ( ) ( )

2 2

2 2 2

2 2

2 2 2

1 1 1

1 1
.

R r X r X r
r r

r r r r rr r r

X r X r X r X r
r

r r rr r r

⎡ ⎤⎛ ∂ ⎞ ⎛ ∂ ⎞∂ ∂= −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⎛ ⎞∂ ∂ ∂ ∂

= + − =⎜ ⎟⎜ ⎟∂ ∂∂ ∂⎝ ⎠

(14.18)

We return to the Eq. (14.16) and taking into account (14.17) and (14.18)

we obtain the equation for the function ( )X r :

( ) ( ) ( )
2 2 2

0

2 2 2
0

12
0.

2

e
X r l lm k Ze

E X r
rr m r

⎡ ⎤∂ +
+ − + =⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
(14.19)

This equation can be simplified if we pass to the dimensionless

parameters. We shall use for the dimensionless values the combination of

constants 0, ,   and  .
e

m e k The value a has a dimension of a length

( [ ] La = ):
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2

2
0 e

a
k Zm e

= . (14.20)

At 1Z = , i.e. for the H atom 10
0 0,5.10a a

−= = m is the Bohr radius. Let

designate the value of the potential energy on the distance a with 
a

U :

( )
0

2 2 2 4
20 0

2

0

2 ,

27,2 eV ,         1, .

e

a

a

k Ze Z m k e
U Z

a

U Z a a

= = = ℜ

= = =
(14.21)

For the transition to the Rydberg's constant ℜ  see (8.10).

We introduce the dimensionless variables - energy E  and the radius ξ :

22

2 2 4 2 2
0

1 2
,      .

2

e

a e

m a EE E r

U naZ m k e n
ξ= = = = − =E (14.22)

Here n is a number. We write the sign minus in 21 2n= −E because we

consider the bound state and expect the negative values of the energy.

Multiplying the Eq. (14.19) to 2 2 / 4n a , we get:

( ) ( ) ( )
2 22 2 2 2

0

2 2 2 2

12 2
0

4 4

e e
X r l lm m k Zen a n a

E X r
rr r

⎡ ⎤∂ +
+ − + =⎢ ⎥∂ ⎣ ⎦

. (14.23)

Using the Eqs. (14.22) and (14.20) in this equation we obtain the

dimensionless equation for the function ( )X ξ :

( ) ( ) ( )
2

2 2

11
0.

4

X l l n
X

ξ
ξ

ξξ ξ
∂ ⎡ + ⎤

+ − − + =⎢ ⎥∂ ⎣ ⎦
(14.24)

As in the problem with the quantum oscillator we firstly determine the

asymptotic behaviour of the function ( )X ξ  at large ξ . For ξ → ∞  function

( )X Xξ ∞→ ∞ ≡  satisfies the next equation
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2

2

1
0,

4

X
X

ξ
∞

∞
∂ + − =
∂

(14.25)

which is obtained from (14.24) neglecting the terms 2
1 ,  1  ξ ξ∝ . The

solution of (14.25) is:

( )exp / 2X ξ= − . (14.26)

By an analogy we find the asymptote of X at small ξ . For 0ξ →  the

function ( ) 00X Xξ → ≡  satisfies the equation

( )2
0

02 2

1
0,

l lX
X

ξ ξ
+∂ − =

∂
(14.27)

which has the partial solution

1
0 .

l
X ξ += (14.28)

In this case we are convinced to take the second derivative of 0X

( ( )'' 1
0 1 l

X l l ξ −= + ) and to substitute it in (14.27). (The partial solution

( )1lξ − +
 at small ξ  increases indefinitely and does not satisfy the property for

the finiteness of the wave function (Section 9.2) and therefore we do not

consider it). The solution of (14.24) for every ξ  is looked for similarly to

the problem for the oscillator as the product of the asymptotic functions

0.X X∞  to an unknown function ( )
0

k

k

k

Cη ξ ξ
∞

=
= ∑ :

( ) ( ) 1 12 2

0

.l k l

k

k

X e e C

ξ ξ

ξ η ξ ξ ξ
∞− −+ + +

=
= = ∑ (14.29)

To determine the unknown coefficients 
k

C  we shall find ( )"X ξ  and

shall substitute this quantity in (14.24). For the derivatives we obtain:
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( ) ( )

( ) ( )

( ) ( )( )

12 2

0 0

2

12 2
2

0 0

12 2

0 0

1
1 ,

2

1 1
1

4 2

1
1 1 .

2

k l k l

k k

k k

k l k l

k k

k k

k l k l

k k

k k

X
e C e C k l

X
e C e C k l

e C k l e C k l k l

ξ ξ

ξ ξ

ξ ξ

ξ
ξ ξ

ξ
ξ

ξ ξ
ξ

ξ ξ

∞ ∞− −+ + +

= =

∞ ∞− −+ + +

= =

∞ ∞− −+ + −

= =

∂
= − + + +

∂

∂
= − + +

∂

− + + + + + +

∑ ∑

∑ ∑

∑ ∑

(14.30)

Substituting (14.29) and (14.30) into (14.24), we have:

( ) ( )( )

( )

1

0 0

1

0 0

1 1

1 0 .

k l k l

k k

k k

k l k l

k k

k k

C k l C k l k l

l l C n C

ξ ξ

ξ ξ

∞ ∞
+ + −

= =
∞ ∞

+ − +

= =

− + + + + + +

− + + =

∑ ∑

∑ ∑
(14.31)

The equation (14.31) has a nontrivial solution for 
k

C  when the

coefficients before the same powers of ξ  are equal to zero. For the

coefficients before 1kξ +  we have:

( ) ( )( ) ( )1 11 2 1 1 0.
k k k k

C k l C k l k l l l C nC+ +− + + + + + + + − + + = (14.32)

From here we find the recurrence formula for the coefficients

1 and  
k k

C C + :

( )
( )( ) ( )1

1
.

2 1 1
k k

k l n
C C

k l k l l l
+

+ + −
=

+ + + + − +
(14.33)

In such a way, according to the Eqs. (14.16) and (14.29) we obtain for the

dimensionless radial function:

( ) ( )
2

0

,k l

k

k

X
R e C

ξξ
ξ ξ

ξ

∞− +

=
= = ∑ (14.34)
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where the coefficients 
k

C  are determined by (14.33). According to the

properties of the wave function this radial function is limited. But the obtai-

ned by us a radial wave function ( )R ξ  at ξ → ∞  increases indefinitely as

( ) 2

0

   and   .k

k

k

C e R e

ξ
ξ

ξξ ξ
∞

→∞
=

⎯⎯⎯→ ∝∑
To avoid this divergence, we shall interrupt the power series

( )
0

k

k

k

Cη ξ ξ
∞

=
= ∑ as we did in the problem of the oscillator.

Let at 
r

k n=  (here 
r

n  is an integer) the coefficient 0
r

n
C ≠ , but the

coefficient 
1

0
r

n
C

+
= , i.e. according to (14.33)

1 0.
r

n l n+ + − = (14.35)

The number 
r

n  is called the radial quantum number.

Because and
r

n l  are integers, the number n, introduced in the relation

(14.22) is also an integer:

1,     1,  2, 3, ...

1.

r
n n l n

n l

= + + =

≥ +
(14.36)

Finally for the solution of the radial wave function equation we get (see

(14.34)):

( ) 2

0

r

r

n

l k

n L k

k

R e C

ξ

ξ ξ ξ
−

=
= ∑ . (14.37)

The power series 
0

r
n

k

k

k

C ξ
=
∑  can be expressed through the polynomials of

Laguerre:

( )

( ) ( )

r

2 1
n

0

2 12 1 (2 1)

A L ,

1
L .

!

r

r

r

r

r r

n

k l

k n

k

n

l nl l

n n

r

C

d
e e

n d

ξ ξ

ξ ξ

ξ ξ ξ
ξ

+

=

+ ++ − + −

≡

=

∑
(14.38)
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In the dimensional variables ( 2 )r naξ =  the function ( )
r

n l
R r  is

( )
0

2 2
.

r

r

lr kn

na
n l k

k

r r
R r e C

na na

−

=

⎛ ⎞= ⎜ ⎟⎝ ⎠
∑ (14.39a)

At fixed   and   
r

n l  the number n is uniquely determined by (14.36) and

the radial function can be expressed by it:

( ) 2 1
- -1

2 2
A L .

r

lr

lna
n l nl n l

r r
R r e

na na

− +⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(14.39b)

Finally, according to (14.9), for the wave function ( ), ,rψ θ ϕ  of the

particle in a Coulomb field we obtain:

( ) ( )2 1
- -1

2 2
, , A L , .

lr

lna
nlm nl n l lm

r r
r e Y

na na
ψ θ ϕ θ ϕ

− +⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
(14.40)

Here the constants 
nl

A  are determined by the condition of the

normalization.

The obtained functions are eigenfunctions of the operator of Hamilton

(14.15). For their eigenvalues, according to (14.21) and (14.22), we get

2 2 4 2
0

2 2 2

1
,     1, 2, 3, ...e

n

Z m k e Z
E n

n n

ℜ= − = − = (14.41)

The values of the number n are written according to (14.36). The energy

of the charged particle in a Coulomb field is quantizied. It is uniquely

determined by the integer n, which is called a principle quantum number.

14.3 SPECTRUM OF THE ENERGY OF THE

HYDROGEN ATOM AND THE HYDROGEN-LIKE

IONS

Up to here the hydrogen-like ions have been analysed without taking into

account the motion of the nucleus. Therefore the expressed theory is valid

only for the infinite mass of the nucleus. Strictly speaking, even more for

light elements as hydrogen and singly ionized helium, this can be accepted
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only as first order of approximation of the problem. The finite nucleus mass

leads to the explanation of many experimental results.

The one-electron atom contains two particles. This fact causes no

difficulty at all, if it used the reduced mass technique. In Section 3.2 we have

proved, that in the frame of centre of the mass the two-body problem reduces

to the one-dimensional problem of the particle with reduced mass m .

According to the obtained results for the electron of mass 
e

m  and radius-

vector 
e

r  about the nucleus of mass M and radius-vector 
n

r  in the CM-frame

we can write

22
0 ,    .

2

e

e

k Ze m Mp
H m

m r m M
= − ≡

+
(14.42)

Here m  is the reduced mass of the electron and the nucleus, Z is the

nucleus charge number, 
e n

= −r r r  is the relative radius-vector of the

electron in respect to the nucleus and p is the momentum of the particle with

mass m . The Hamiltonian in this case with the accuracy of replacing the

mass 
e

m  with m  coincides with the Hamiltonian (14.15):

22 2
,2 0

2 2

1ˆ .
2 2

k Ze
H r

m r r m rr r

θ ϕΔ∂ ∂⎛ ⎞= − − −⎜ ⎟∂ ∂⎝ ⎠
(14.43)

It is clear that the equation for the radial wave function of hydrogen-like

atoms is obtained from the equation (14.16) for this wave function in a

Coulomb field, replacing 
e

m  with m . The same, of course, is valid for all

relations in Section 14.2. Therefore the eigenfunctions of the Hamiltonian

(14.43) are the functions (14.40) and we obtain its eigenvalues 
n

E  as

replacing 
e

m  with m  in the relations of Section 14.2.

2 2 4
0

2 2 2

1
13,6 eV,     1, 2, 3, ...m

n

Z mk e
E n

n n

ℜ= − = − = − = (14.44)

For the H atom the Rydberg's constant ( )/
m e

m mℜ = ℜ =

( )( )p e p
m m m+ ℜ  slightly differs from ℜ  - in the numerical value the

difference is in the fourth sign; here 
p

m  is the proton mass.

The energy spectrum of the hydrogen atom is discrete. The energy levels

of the atom are determined by the principal quantum number n. Energy of

the ground state (n=1) is
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1 13,6 eV.
m

E = −ℜ = − (14.45)

From here it becomes clear the physical meaning of the Rydberg's

constant - it is equal to the value of the minimal energy of H atom, i.e. to the

energy in the ground state with 1n = .

The energy levels are nonequidistant. The space between them decreases

with increasing n:

( ) ( )1 2 2 2 32

1 1 2 1 1
.

1 1
n n n m m

n
E E E

n nn n n
+

⎛ ⎞ +⎜ ⎟Δ = − = ℜ − = ℜ ∝
⎜ ⎟− +⎝ ⎠

(14.46)

When the energy of the electron is positive 0E ≥ , it is in the free state.

The condition 0
n

E =  is valid for n → ∞ . The minimal energy, which has to

give to the electron up in order to pass from the bound ground state into a

free one , is called an ionization energy 
i

E  of the H atom:

1 1 13,6 eV.
i

E E E E∞= − = = (14.47)

In a free state ( )0E >  the energy has a continuos spectrum.

As we have already underlined that the H atom is described by the wave

functions ( ), ,
nlm

rψ θ ϕ  (14.10), which are the eigenfunctions of the operator

of Hamilton (14.43). The fact, that three quantum numbers arise, is a

consequence of the fact that the stationary Schroedinger equation for the

hydrogen contains three independent variables - one for each space co-

ordinates. The eigenfunctions are determined by the numbers , ,n l m , while

the eigenvalues of Ĥ  depend only on the principal quantum number. At this

for fixed n the maximum allowed value of the orbital quantum number l

according to (14.36) is

max 1.l n= − (14.48)

The number of the allowed values of l is

0,1, 2, 3, ..., 1.l n= − (14.49)

Its wave function corresponds to each l at a given n. Therefore to n

different wave functions correspond one eigenvalue 
n

E  of the energy. There

is n-fold degeneracy on the orbital quantum number l. This is unexpected,



350 Chapter 14

because in the process of the problem solution we reached to the equation

(14.24) and it depends on the l. This degeneracy is called accidental or

anomalous. It is characteristic only for a Coulomb field. Physically it

expresses the independence of the electron energy on the angular momentum

L. Of course, the Coulomb field is CSF and the normal degeneracy on m is

also characteristic for it. In fact 
n

E  depends neither on l, nor on m. To every

l correspond 2 1l +  states with different orientation of the angular

momentum L . As at a given n the orbital quantum number l accepts the

values from 0 to 1n −  the general number of the states is 
2

n . Really, using

the formula for the arithmetic progression we readily obtain

( ) ( )1
2

0

1 2 1 1
2 1 .

2

n

l

n
l n n

−

=

+ − +
+ = =∑ (14.50)

Allowed values of the orbital and of the magnetic quantum numbers and

the multiplicity of the degeneracy at fixed n are shown in Table 14-1.

Table 14-1. Quantum numbers, states and the multiplicity of the degeneracy of the H atom

n 1 2 3

l 0    0                 1 0                1                               2

Spectroscopic

notation 1S 2S               2P   3S           3P                             3D

m 0     0            -1, 0, 1 0         -1, 0, 1                -2, -1,  0, 1, 2

Multiplicity of

the degeneracy 1

 1        +        3

4

   1      +      3            +                 5

9

The letter indication for different values of l is the same as in Section

10.7. But when it relates to the spectral indication of the state one uses

capital letters (see below (16.34), Fig. 17-7, Fig. 17-8 etc.). For example, 3p-

electron denotes an electron of a level 3p, but P-electron - one of the

electrons in the p-state independently which is the value of its energy (P is a

part of the spectral term 
2 1s

j
n P

+
 (see 16.34)).

The state of H atom ( , , )
nlm

rψ θ ϕ  is completely defined if we know the

quantum numbers ,    and  .n l m This is equivalently to know the three

physical quantities 2
,   and 

z
E L L :

( )2 2
z2

      ,                            ,           ,

,           1 ,            .m

n

n  l                  m

E L l l L m
n

ℜ
= = + =
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Here 2,   and 
z

E L L  form a complete set of physical quantities. The Table

14-1 and the diagram of the states (Fig 14-1) together with the energy

spectrum permit us to build the diagram of the energetic level (Fig. 14-2). If

the electron is in an excited state 1n > , then at the transition to the lower

energetic level it radiates. The quantum theory of the radiation allows to

state that not all transitions are allowed, but only such for which the orbital

quantum number changes with unity: 1lΔ = ± . The conditions, defining

which transitions are allowed, are called selection rules. The allowed transi-

Figure 14-1. Diagram of the states for the H atom, illustrating 2
n -fold degenerate states

corresponding to the principal quantum number n.

tions to the levels 1 ,  2 ,  2 , 3  and 4s s p d f  are shown in Fig 14-2.

At the transition from level n to level m the energy 
mn

E  and the

spectroscopic frequency are respectively

2 2

*

2 2

1 1

 1, 2, 3, ....
1 1

m m

m

E
m n

n m m m

R
m n

ν

⎫⎛ ⎞= ℜ −⎜ ⎟⎪⎝ ⎠⎪ = + + +⎬
⎛ ⎞ ⎪= −⎜ ⎟ ⎪⎝ ⎠ ⎭

(14.51)
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Figure 14-2. Energy levels and some allowed transitions in the H atom.

At the transitions to the level 1s  one obtains Lyman series

2

*

2

1
1

 2, 3, 4, ...
1

1

m m

m

E
n

n

R
n

ν

⎫⎛ ⎞= ℜ −⎜ ⎟⎪⎝ ⎠⎪ =⎬
⎛ ⎞ ⎪= −⎜ ⎟ ⎪⎝ ⎠ ⎭

(14.52))

The energy of the transition is given in the first row and its spectroscopic

frequency / cν ν∗ =  - in the second row. The analogous dependencies can be

written for the energy and the spectroscopic frequency at: 2m =  - Balmer

series, 3m =  - Paschen series, 4m =  - Brackett series, 5m = - Pfund series

etc.

The lowest spectroscopic frequency (respectively the greatest

wavelength) for the given series is called a resonance frequency (resonance
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wavelength). The resonance frequencies and wavelengths of the series of

Lyman and Balmer are

*
r max

max

*
r max

max

1 1 3 4
1 ,      ,

4 4 3

1 1 1 4 36
,    .

4 9 36 4

r

r

R R
R

R R
R

ν λ λ
λ

ν λ λ
λ

⎛ ⎞= = − = = =⎜ ⎟⎝ ⎠
⎛ ⎞= = − = = =⎜ ⎟⎝ ⎠

(14.53)

The highest spectroscopic frequency (respectively the lowest

wavelength) is called threshold frequency (wavelength). The threshold

frequencies and wavelengths of the series of Lyman and Balmer are

*
min

min

*

min

1 1
,      ,

1 4
,      .

4
inin

R
R

R

R

ν λ λ
λ

ν λ λ
λ

∞ ∞

∞ ∞

= = = =

= = = =
(14.54)

The spectral line of the resonance and threshold wavelength (respectively

6562,8
r

λ = Å and 3645,6λ∞ = Å) of the Balmer series are shown in Fig 7-4.

At the beginning of this Chapter we have underlined that conducted

above analysis is valid for the hydrogen-like ions He ,  Li
+ ++

 etc. and for

meson-hydrogen. Using the consideration at the beginning of this section,

we obtain their energy replacing in (14.41) 
e

m  with ( )/
e e

m m M m M= + :

2 2 4 2
0

2 2 2

1
,     1, 2, 3, ...e m

n

Z m k e Z
E n

n n

ℜ
= − = − = (14.55)

(Note that the Rydberg constant for the hydrogen-like ions of mass of the

nucleus M differs from that of the hydrogen atom (compare with Eq. (14.44)

and the relations after it). As the Rydberg's constant 
m

ℜ  for the hydrogen-

like ions slightly differs from ℜ , the values of the energy and of the

spectroscopic frequency is 2
Z  times greater than these of the hydrogen: for

He+ ( )2Z =  - 4 times, for Li++ ( )3Z =  - 9 times etc.

In the atom of meson-hydrogen there is a negatively charged μ-meson

with mass 207
e

m mμ =  instead of an electron. In both cases the reduced

masses are equal to masses of the light particles: for the hydrogen 
e

m m≈
and for the meson-hydrogen m mμ≈ . Therefore the values of the Rydberg's
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constant for both atoms are proportional to these masses - for the hydrogen

e
mℜ ∝  and for the meson-hydrogen mμ μℜ ∝ . Hence the values of the

energy and of the spectroscopic frequencies of the meson-hydrogen atom are

207 times larger than the corresponding values of the hydrogen.

14.4 PROBABILITY DISTRIBUTION OF THE

ELECTRON

The found in Section 14.2 wave functions ( ), ,
nlm

rψ θ ϕ  allow to be

determined radial and angular distribution of the hydrogen electron. In  the

analysis of these distributions very often are used terms "orbital" and

"electron cloud". The orbital is synonym of the wave function ( ), ,
nlm

rψ θ ϕ .

The orbital of H atom is

( ) ( ) ( ) ( ) ( ), , , cos .
m im

nlm nl lm lm nl l
r R r Y A R r P e

ϕψ θ ϕ θ ϕ θ= = (14.56)

The distribution of the density ( ), ,
nlm

rρ θ ϕ  of the probability is illustra-

ted with an electron cloud. Let us determine the radial and angular electron

clouds, i.e. the radial and the angular distribution of the probability density.

The probability to find the electron in the volume element dV near the point

, ,r θ ϕ is

( ) ( ) ( ) ( ) ( ) 22, , , , .
nlm nl lm nl lm

dW r dW r dW R r Y dVθ ϕ θ ϕ θ ϕ= = (14.57)

The volume element dV  in spherical co-ordinates has following form

(see Fig. 1-6):

2 2sindV r d d dr r d drθ θ ϕ= = Ω , (14.58)

where dΩ  stands for the space angle: sind d dθ θ ϕΩ = .

( ) ( )2 2 .
nl nl

dW r R r r dr= (14.59)

It is clear that for radial density of the probability ( )nl
rρ we can write

( ) ( ) ( )2 2
.

nl

nl nl

dW r
r R r r

dr
ρ = (14.60)
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Taking into account (14.40) we can easy determine the wave function for

the ground state with the quantum numbers 1 and 0 :n l= =

( ) 0

10 3

2
0

2
.

r

a
R r e

a

−
= (14.61a)

Consequently for the electron cloud ( )10 rρ  in the ground state we can

write:

( ) 0

2

2
10 3

0

4
.

r

a
r e r

a
ρ

−
= (14.61b)

The radial wave function ( )10R r  and the electron cloud ( )10 rρ  are

shown in Fig. 14-3.

Figure 14-3. Radial wave function ( )10R r  and radial probability density (electron cloud)

( )10 rρ  for the ground state of the H atom ( 1n =  and  0l = ).

The radius of the maximal radial density of the probability is determined

by equalling to zero the derivative ( )10 rρ :

( )

( )

0

22
10 2

3
00

10 10max 0

4 2
2 0,

   at   .

r

a
d r r

r e r
dr aa

r r a

ρ

ρ ρ

−⎛ ⎞
= − =⎜ ⎟

⎝ ⎠
= =

(14.62)

The radius of Bohr determines the position of the electron-cloud

maximum in the ground state of H atom.
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The results, obtained in Section 14.2, allow to determine similarly to

( )10R r  and ( )10 rρ  the wave functions and the electron clouds of the states

with any   and  n l . For 3n =  they are shown in Fig. 14-4.

Figure 14-4. Radial wave function ( )10R r  and radial probability density (electron cloud)

( )10 rρ  at 3n =  for the states: ( ) ( ) ( )3  0 ,   3  1   and  3  2 ;S l P l D l= = =  for convenience at

the comparison they are non-dimensional: ( ) ( )0

2/3

000 /and/ arRaRaraP
nlnlnlnl

== ρ .

Comparing the cloud 30 32 and ρ ρ , it is not difficult to note that with

increasing the orbital quantum number the region of the cloud decreases. We

shall give quality explanation of this effect using the semi-classical concept.

The region of the particle position at given energy is defined by the effective

potential energy ( )U r  of the both particles, which are interacted by the

central forces (see (3.33)). Taking into account the quantization of the

angular momentum ( )1L l l= + , we get:

( ) ( )
2 2

0

2

1
.

2
r r l

l l k e
E T T U r

rmr

+
= + − ≡ + (14.63)

This is a classical formula and behind the r we have to understand the

average radius of the electron cloud. The using of the classical formula helps
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to build the useful qualitative idea. In fact, as we have persuaded ourselves,

in quantum mechanics it is not possible to divide the atom energy to the

kinetic and potential ones. Because of the wave character of the object we

can not merely determine which part of the energy is kinetic and which -

potential. The effective potential energy depends on the orbital quantum

number l. It increases with the increasing l and at a fixed 
n

E  the radial

region of the cloud decreases (Fig. 14.5). At a fixed electron energy, i.e. at

fixed principal quantum number n, with a changing of l the redistribution of

the energy form in (14.63) takes place. Not only the rotational energy

changes, but also the potential energy of the interaction due to the changing

of the average radius (with the increasing l it decreases).

Figure 14-5. "Shrinkage" of the electron cloud with the increasing l (from 0l =  to 2l = );

in the state with 0l =  the cloud fills the region 10 r÷ , but with 2l =  - the region

min maxr r÷  and ( ) ( )max min 1 0r r r− < − . The shaded regions define classically forbidden

domain for the electron in the state 2n
ψ with energy 2n

E E= .

Really, from the strictly quantum treatment we can determine the average

radius of the electron in the 
nl

ψ - state as ( )
0

nl
r r r drρ

+∞

= ∫  and obtain:

( )2
0

2

11
1 1 .

2
nl

l ln a
r

Z n

⎡ ⎤⎛ + ⎞
= + −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
(14.64)
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The average radius of the state with 3n =  is shown with an arrow in Fig.

14-4. It is interesting to compare the average radius with Bohr formula (8.3).

We can see that the average radius of the cloud has approximately the size of

the Bohr-orbital radius.

Now we shall go to the angular distribution of the electron cloud. From

(14.5) it is easy to determine the probability ( )lm
dW θ :

( ) ( ) 2
, .

lm lm
dW Y dθ θ ϕ= Ω (14.65)

It is clear that the angular density depends only on the angle θ  and for

the cloud ( )lm
ρ θ  we have

( ) ( ) ( ) 2
, .

lm

lm lm

dW
Y

d

θ
ρ θ θ ϕ= =

Ω
(14.66)

The concrete form of the functions ( ),
lm

Y θ ϕ  we define through the

associated Legendre polynomials (see Section 10.6). For the states with the

principal quantum number 0,1, 2, 3n =  the functions ( ),
lm

Y θ ϕ  are shown in

Table 14-2.

Table 14-2. First few angular functions of the H atom

( ) ( )
( ) ( )!2 1

, cos
4 !

m i m

lm l

l ml
Y P e

l m

ϕθ ϕ θ
π

⎡ ⎤−+= ⎢ ⎥+⎢ ⎥⎣ ⎦

( )

1 1 1

2 2 2
0,0 1,0 1, 1

1 1 1

2 2 22 2 2
2,0 2, 1 2, 2

3,0

1 1 3 1 3
,                 cos ,                sin ,

4 2 2 2

1 5 1 15 1 15
3cos 1 , sin cos ,  sin ,

4 2 2 4 2

1 7

4

i

i i

Y Y Y e

Y Y e Y e

Y

ϕ

ϕ ϕ

θ θ
π π π

θ θ θ θ
π π π

π

±
±

± ±
± ±

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛= ( ) ( )
1 1

3 22 2
3, 1

1 1

2 2 3 32 2
3, 2 3, 3

1 21
5cos 3cos ,                   sin 5cos 1 ,

8

1 105 1 35
sin cos ,                           sin ,

4 2 8

i

i i

Y e

Y e Y e

ϕ

ϕ ϕ

θ θ θ θ
π

θ θ θ
π π

±
±

± ±
± ±

⎞ ⎛ ⎞− = −⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠



14. THE TWO-BODY PROBLEM - A HYDROGEN ATOM AND A

DIATOMIC MOLECULE

359

Fig. 14-6. Polar diagrams of the electron cloud of the H atom: the distance from the origin of

the co-ordinate system to a point on the surface seen under the angles  and  is equal to
2

( ,lmY θ ϕ .
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The cloud 
lm

ρ  does not depend on the polar angle ϕ  because of the

exponential dependence of 
lm

Y  on ϕ  - ( , ) im

lm
Y e

ϕθ ϕ ∝ . Hence, the angular

distributions of the cloud in the different states are rotational surfaces (r is

fixed). For the states , , and s p d f  they are shown in Fig.14-6. We shall

note, however, that the dependence of the magnetic quantum number m

remains, because the associated Legendre polynomials and consequently the

spherical functions depend on this number.

14.5 HYDROGEN-LIKE ATOMS

The hydrogen-like atoms are atoms with one outer electron, which is

called valence or optic one. These are alkali metals Li ( )3Z = , Na ( )11Z = ,

K ( )19Z = , Rb ( )37Z =  and Cs ( )55Z = . The common properties, which

united the hydrogen-like atoms, are following:

1. The chemical properties are determined mainly by the valence electron.

2. The optical properties (the optical levels and the transitions between them:

emission and absorption ones) are determined by the optical electron.

3. The inner electrons form the stable inert core, which is similar to those of

the inert elements and slightly is influenced by the outer electron.

4. The core of electrons is spherically symmetric.

In the hydrogen-like ions ( He ,Li etc.
+ ++

) the single electron moves in the

nucleus Coulomb field. In the hydrogen-like atoms the outer electron moves

in the net field of the nucleus and the core electrons. Strictly seen, the

problem of the hydrogen-like atoms is a multielectron problem. However the

properties 3. and 4. allow this problem to be reduced approximately to the

problem of the electron motion in the central symmetric field. Really, the

theory and the experiment show that if we remove from the hydrogen-like

atoms the outer electron it is formed the stable shell of the inert gas (e.g.,

for Li+ - the electron shell of He), which has spherical symmetry and very

slightly is influenced by the outer actions. Therefore approximately we can

assume that the outer electron does not influence the core electrons and

consider its motion in the central symmetric field of the nucleus and of the

spherically symmetrical distributed core electrons.

The problem will be solved if the potential energy of the valence electron

is known. Taking into account this reason we can represent it in the form

( )
2

0 .
k Ze

U r
r

= − (14.67)
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Here Ze  is the effective charge, determined by the nucleus charge Ze+
and the core-electrons charge ( )Z r− , which is restricted by a sphere of a

radius r:

( ) ( ) 2

0

,     - - 4 ( ) .

r

Ze Ze Z r e Z r e e r r drπ ρ= − = ∫ 14.68)

The radial probability density of the inner electrons ( )rρ  can be

determined by  quantum mechanics. For example, for Li
+  this is the solution

of the motion of the two electrons in the nucleus field (see Section 18.2).

Moreover, ( )rρ  can be measured experimentally (see [3], Section 79).

The inner electrons shield the nucleus field. This shielding plays very

important role. It removes the accidental degeneracy, i.e. the degeneracy on

l. For the explanation of this interesting fact we shall use the qualitative

semi-classically ideas based on the Bohr-Sommerfeld model. The electron in

the H atom moves in the Coulomb field of the nucleus, turning it to circle or

elliptic orbits. In the hydrogen-like atoms the valence electron, moving

around the nucleus can penetrate the core of the inner electrons (penetrating

orbit) or avoid completely it non-penetrating orbit. When the orbit is non-

penetrating, the electron moves in a Coulomb field:

( ) ( )
2

01 1,      .
k e

Z Z Z U r
r

= − − = = − (14.69)

Hence the problem reduces to the hydrogen-atom problem and we would

expect the same energetic spectrum. For the penetrating orbit the effective

charge is larger than unity 1Z >  and depends on the power of the

penetration. An example with the penetrating of 3s- and 3p-orbits and the

non-penetrating 3d-orbit of the sodium atom Na is shown in Fig. 14-7 (for

comparison we show in the same figure the orbits of the hydrogen atom).

Here we shall note that this is a qualitative picture. In the semi-classical

model of Bohr-Sommerfeld the electron cannot have the angular

momentum 0L = . But from the rigorous quantum mechanical treatment we

are persuaded that this is possible (s-state). It is obvious that the "orbit" of

this state can be represented by the line passing through the nucleus (there is

no rotation and 0L = ).

From the figure we see that with decreasing the angular momentum L the

power penetration increases and Z  also increases from 1 to Z. In other

words the effective charge Z  shows dependence of l, i.e. 
l

Z Z= . Hence,
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according to (14.67) the potential energy of the penetrating orbit also

depends on the orbital number:

( )
2

0 .l

l

k Z e
U r

r
= − (14.70)

Figure 14-7. Semi-classical picture of: a) the electron core and the penetrating 3s- 3p-orbits

and the non-penetrating 3d-orbit of Bohr of the valence electron of Na atom; the electron orbit

of the atom of H, which unlike the atom of Na has no inner shell.

With decreasing l the potential energy becomes more negative. In the

frames of this concepts the total energy also depends on l and instead of

energy 2 2
/

n
E Z R n= −  of Coulomb field it may be written as

2
, 2

.
n l l

R
E Z

n
= − (14.71)

The actual probability-density distributions 3l
ρ  ( 0,1, 2l = ) of the

valence electron as well as the inner electrons of Na atom (Fig. 14-8) justify

the use of the semi-classical orbits for the explanation of the energy

spectrum. The last ones merely illustrate the actual penetrating and non-

penetrating of the radial charge-density distributions ( )nl
rρ  (of the valence

electron) into the charge-density distribution of core electrons. Or saying

with others words, the visualised semi-classical representation of the
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penetrating and non-penetrating orbits corresponds to the penetrating and

non-penetrating valence electron cloud.

Figure 14-8. The radial charge-probability-density distribution (the electrons clouds) of the

inner electrons (shaded area) and of the state 3s, 3p and 3d of the valence electron of Na atom;

the electrons clouds 3s and 3p are penetrating and 3d is non-penetrating one.

The energy levels of the sodium atom are shown in Fig. 14-9. For the sta-

Figure 14-9. Diagram of the energy levels of Na atom - for non-penetrating orbits (clouds)

they coincide with the energy levels of the H atom and for penetrating orbits (clouds) the

anomalous degeneracy is removed.

tes 3 , 4 , 5d d d  etc., 4 , 5f f  etc. they coincide with the energy levels of the



364 Chapter 14

H atom. These are non-penetrating clouds. For the penetrating electron

clouds (for example, of the states 3  and  3s p ) the role of the removing the

degeneracy on the l through  the shielding of nucleus field by core electrons

is obvious - then 3 3s p
E E≠  (compare with 4 4s p

E E= ).

14.6 POTENTIAL ENERGY OF A DIATOMIC

MOLECULES

The obtained results of the analysis of the two-body system, interacting

through the central forces, permit us to determine the diatomic molecule

spectrum. We shall not analyze in details the complicate and wide topics of

the diatomic molecule. The molecule consists of many particle and for the

solution of such systems different approximation theory are used. We shall

give the idea for one of them, qualitatively considering the potential energy

of the diatomic molecule and then considering in details its spectrum.

The atomic nuclei are heavier than electrons. Therefore the motion of the

molecule particles can be divided into two kinds: the slow motion of the

nuclei and the quick motion of the electrons. During the motion of the

electrons the co-ordinates of the nuclei are changed so slowly that they can

be considered as fixed. This approximation is called adiabatic or an

approximation of Born-Oppenheimer.

The adiabatic approximation permits to "divide" the motion of the

electrons and the nuclei and to reduce the origin equation of the molecule

into two simpler equations: for the electron subsystem and for the nuclei.

Important peculiarity of the nucleus equation is that the electron-subsystem

energy plays the role of the potential energy for the nuclei.

Let note this potential energy with ( )U r . From the physical point of

view we may found its qualitative kind. At a small distance 0r →  the repul-

sive force between the nuclei predominate and U → ∞ .  At large distance

the atoms are independent - they don't interact each other and 0U → . As at

some distance the atoms are in the bound state, it is obvious that ( )U r  has a

minimum. The Born-Oppenheimer theory permits to determine with high

accuracy the dependence ( )U r . The typical dependence of the potential

energy versus the destination between the atoms is shown in Fig. 14-10.

Let return to the adiabatic model. After dividing the motion we have two

particles (nuclei) with masses   and  
A B

m m , the potential interaction force

being define by the potential ( )U r . We can solve such a problem - it

reduces to the motion of the particle with the reduced mass

( )A B A B
m m m m m= +  in a central symmetric field (Sections 14.1 and 14.3).
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Figure 14-10. Potential energy of the diatomic molecule versus the distance between the

atoms; the equilibrium position is denoted with 0r .

The Hamiltonian of the molecule is:

( ) ( )
2 2 2

,2

2 2 2

ˆ 1ˆ ˆ .
2 22

r

L
H T U r r U r

m r r mmr r r

θ ϕΔ∂ ∂⎛ ⎞= + + = − − +⎜ ⎟∂ ∂⎝ ⎠
(14.72)

The wave function satisfies the stationary Schroedinger equation and the

variables can be divided:

( ) ( )
( ) ( ) ( )

ˆ , , , , ,

, , , .
lm

H r E r

r R r Y

ψ θ ϕ ψ θ ϕ

ψ ψ θ ϕ θ ϕ

=

= =
(14.73)

Using the results of Section 14.2 we can write the equation of the

function ( ) ( )X r rR r= :

( ) ( ) ( ) ( )
2 2

2 2 2

12
0.

2

X r K Km
E U r X r

r mr

⎡ ⎤∂ +
+ − − =⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
(14.74)

Here instead of l we write K, which is the orbital number of the molecule.

Similar to the electron orbital number it takes the values 0,1, 2, ...K = This

number very often is called a rotational quantum number of the molecule.

The effective potential energy depends on the rotational number:
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( ) ( )2

2

1
.

2
k

K K
U U r

mr

+
= + (14.75)

At small K ( ~ 1K ) the position of the potential energy minimum is

changed negligibly (Fig. 14.11a) and we can consider that

0k
r r≈ (14.76)

Figure 14-11. Effective potential energy of two particles: a) of a diatomic molecule for

different rotational numbers ( 2 2
0 0~ 1, 2 2 2k kK r r mr mr I≈ ⇒ ≈ = ( 0I I≡ )); b) of the H atom

for different orbital number l; (at ( )00  the function  K U r=  of the molecule has a minimum,

but at ( )00 the function l U r=  of the H atom coincides with the Coulomb attractive

energy!).

For example, for the molecule of HF we have 0 0,929r = Å, 5 0,94r = Å

and 10 0,969r = Å. At higher K values the effective potential energy becomes

positive and the molecule dissociates. We shall underline that despite of the

qualitative resemble of the dependencies of the effective potential energies of

the diatomic molecule and the hydrogen atom and the electrical character of

the interaction between the two compound particles the mechanism is

different and in the ground states (relatively at) 0  0K and l= =  the curves

( )U r  are different.
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14.7* VIBRATIONAL AND ROTATIONAL LEVELS OF A

DIATOMIC MOLECULE

Let us treat the case when the rotational energy is not large ( )~ 1K , i.e.

when the effective potential energy ( )k
U r  slightly differs from ( )U r . Then

the equilibrium radius of the molecule 
k

r  can be found by the minimum of

the ( )U r :

( ) ( )2

3

1
0.k

dU r K KdU

dr dr mr

+
= − = (14.77)

The solution of this equation is 
k

r  and at small K we have 0k
r r≈  (14.76).

Let us consider the small deviations from the equilibrium position:

0 .
k

r r r r r− ≈ − << (14.78)

We introduce a new variable

.
k

r r r≡ −  (14.79)

Through it the equation (14.74) for the function ( )X r  is:

( ) ( ) ( )
22

2
( ) .

2
k

X r
U r X r EX r

m r

∂
− + =

∂
(14.80)

For the considered small deviations from the equilibrium states we

expand in series the function ( )k
U r :

( ) ( ) ( )

( ) ( ) ( )

2

2

2

0

2 2
2

2 2

0

1
0 ...

2

1 1
0 ...

22

k

k k

r

k

k
r

U r
U r U r

r

K K U r
U r

mr r

=

=

∂
= + +

∂

+ ∂
= + + +

∂

(14.81)

As an essence the restriction with the terms 2
r∝  is a parabolic

approximation and it is valid for small r , i.e. near the 
k

r . In the expansion

we have taken into consideration that in point 0r =  the effective potential
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energy has a minimum (14.76). The coefficient before 2
r  is constant, which

we set equal to 2 2
k

mω , i.e.

2
2

2

0

( )
.k

k

r

U r
m

r
ω

=

∂
=

∂
(14.82)

The substitution of (14.81) and (14.82) into Eq. (14.74) reduces it to the

following one:

( ) ( ) ( ) ( )
2 2 2 22

2

1
(0) .

2 2 2

k

k

X r K K m r
U X r EX r

m Ir

ω⎡ ⎤∂ +
− + + + =⎢ ⎥

∂ ⎢ ⎥⎣ ⎦
(14.83)

Here 2
k k

I mr=  is the inertial moment of the particle of reduced mass m

and destination from the centre of mass equal to 
k

r . After substituting

( ) ( )2 1
0 ,

2
k

K K
E E U

I

+
≡ − − (14.84)

the Eq. (14.83) becomes:

( ) ( ) ( )
2 2 22

2
.

2 2

k
X r m r

X r EX r
m r

ω∂
− + =

∂
(14.85)

This is the equation for the quantum oscillator of the natural frequency

k
ω  (see Section 13.1). Hence the functions (13.29) are its solution:

( ) ( )
2

2  ,         .
v v v

k

r
X A e

m

ξ

ξ ξ ξ

ω

−
= ≡H (14.86)

Here ( )v
ξH  are the Hermite polynomials and the constants 

v
A  are

determined by (13.27a) according to the normalization condition.  The

analysis of the quantum oscillator, conducted in Section 13.1, allows us to

write the energy of the molecule oscillation as a half-integer of quanta :
k

ω
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1
.

2
v k

E v ω⎛ ⎞= +⎜ ⎟⎝ ⎠
(14.87)

The number v, which is an analog to the quantum number n of the

harmonic oscillator, takes the values

0,1, 2, ...v = (14.88)

and is called a vibrational quantum number.

Substituting (14.87) into (14.84) we obtain the total molecule energy:

( ) ( )2 11
.

2 2
vk k k

k

K K
E U r v

I
ω

+⎛ ⎞= + + +⎜ ⎟⎝ ⎠
(14.89)

Here the potential energy ( ) ( )0 0U U r≡ =  again is expressed through

the variable r, i.e. ( ) ( )0U U r→ .

At fixed rotational energy, i.e. at fixed rotational number K, changing the

vibrational number 0,1, 2, ...,v = we obtain the vibrational energy levels of

the diatomic molecule (Fig. 14.12).

Figure 14-12. Vibrational levels of a diatomic molecule are equidistant. At vibrational

transitions (allowed are the transitions 1vΔ = ± ) the spectral line of the emission ( 1vΔ = + )

and the absorption ( 1vΔ = − ) is single one (the absorption spectral line is shown).

The harmonic vibrational levels are equally spaced one from another and

those transitions are allowed for where v changes by unity:
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1.vΔ = ± (14.90)

The energy 
k

ω  is emitted or absorbed ones. At small K according to

(14.82) and (14.76) the vibrational quantum 
k

ω  very slightly differs from

the vibartional quantum of the ground state:

0.
v k

E ω ωΔ = ≈ (14.91)

The wavelengths of the vibrational lines of the diatomic molecules are in

infrared region and most of them are between 2500 and 50000 Å.

For the excited molecules with large v the vibrational levels do not satisfy

Eq. (14.87) as with the increasing energy the parabolic approximation

becomes of the less and less applied. But when v is not great this

approximation is good enough for molecules with nuclei much heavier than

the hydrogen nucleus. For the ion 2H+  this approximation is unsatisfactory as

the vibrational motion is spread on the distance almost coinciding with the

potential well width at 0v = . The oscillations no longer satisfy the harmonic

law - they become anharmonics. In this case the precise values of the

vibrational energetic levels can be obtained at numerically solving the Eq.

(14.74). Other initial approximations, better than the parabolic one, are used

to model the potential energy near the real curve. A good approximation is

the potential of Morse. In Fig. (14.13) it is compared the real potential with

the Morse's one. It is obvious that this potential is an excellent

approximation in the region ( ) 0U r < . A remarkable property of

Figure 14-13. The Morse potential is an excellent approximation to the real potential energy

of diatomics. At high energy the molecule oscillations are anharmonic and the energy levels

are not equidistant.
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Morse's potential is that the Schroedinger equation can be explicitly solved

with it. Anharmonic corrections, erased in this approximation (also in other

approximations) and allowing decrease of the slope of the right part of the

curve ( )U r ) are proportional to ( )2
1/ 2v− + . Because of the negative

corrections of the energy the distance between the vibrational levels

decreases and they become nonequidistants.

At a fixed vibrational energy, i.e. at a fixed vibrational number v,

changing 0,1, 2, ...,K =  we obtain the rotational energy levels (Fig.14-14):

( ) ( )
2 2

01 1 ,     .
2 2

r k

k

E E K K K K I I
I I

= = + ≈ + ≡ (14.92)

Figure 14-14. The rotational energy levels of a diatomic molecule are nonequidistants. The

transitions with =±1 are allowed - only absorption transitions and corresponding spectral

lines are shown.

Rotational levels are nonequidistants and the distance between two

neighboring levels increases while increasing K:

( )( ) ( ) ( )
2 2

1 1 2 1 1 .
2 2

k k k

k k

E E E K K K K K
I I

+Δ = − = ⎡ + + − + ⎤ = +⎣ ⎦ (14.93)
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The difference between the levels is measured in units ( )2
k

I I I≈ .

This quantity represents the smallest possible rotational energy at 1K =  and

hence determines the value of the rotational quantum. For the most

molecules the rotational quantum has the value from 5 -410   to  10−  eV. For

example, for the molecule of CO, which equilibrium radius and inertial

moment are relatively 0 1,13r =  Å and 2 46
0 1,46.10I mr

−= =  kg. 2m , the

lowest rotational level has energy 23 -4
1 7,61.10  J 5,07.10  eVE

−= =  (as a

comparison for the CO molecule we have 2
0 ~ 8,4.10  eVω − ).

Only those rotational transitions are allowed, for which the quantum

number K changes with unity:

1.KΔ = ± (14.94)

The wavelength of the rotational lines of the diatomic molecules are in

the region 1mm - 1 cm (as a comparison at vibrational spectrum ~ 1 mλ μ ).

Both the experimental and the theoretical results from the research of the

energy of the diatomic molecule show that the vibrational quantum (14.91)

is essentially greater than the rotational one 2 :
r

Iω ≡

2

0 0: ~ : ~ 100 :1.
r

I
ω ω ω (14.95)

For example, for the molecule of CO we have 2
0 8,84.10  eVω −=  and

2 2
0 : / 1,6.10 .Iω =
Taking into account the vibrational and the rotational energies of the

molecule we can find its vibrational-rotational levels of it:

( )
2

0

1
1 .

2 2
vvr r

k

E E E v K K
I

ω⎛ ⎞= + = + + +⎜ ⎟⎝ ⎠
(14.96)

We shall underline once again that 2
0 ~ 10  eVω − , while

2 4/ ~ 10  eV.I
−  Consequently, every vibrational level has its "fine"

structure, which is shown on Fig. 14-15.

We shall pay attention that (14.96) determines only the vibrational-

rotational levels, but not the energy of the molecule. The potential energy

( )U r of the interaction between the atoms (14.89) enters into the total

energy. The energy of the ground state of the molecule we determine from

(14.89) at 0 and 0 :v K= =
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( )00 0 0 / 2.E U r ω= + (14.97)

Figure 14.15. Vibrational-rotational energy levels of a diatomic molecule - to each vibrational

level correspond many rotational levels.

The energy of the dissociation 
d

E  is equal to 00.E− Taking into account

that ( ) 0U r <  (the atoms are attracted) we can write for 
d

E  the following

( )00 0 0 / 2.
d

E E U r ω= − = − (14.98)

For the hydrogen molecule 4,38 eV.
d

E ≈

14.8 SPECTRA OF A DIATOMIC MOLECULE

The quantum of the photon, which is absorbed at the transition from the

initial state of energy ( )
i i

vr v ri
E E≡  to the final state of energy ( )

f f
vr v rf

E E≡

( )
i i f f

v r v r
E E< , is determined by the vibrational and rotational quantum

numbers of the both states. For the energy of the quantum of the absorption

at a vibrational-rotational transition we obtain
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( ) ( ) ( )
2

0 1 1 .
2f f i i

v r v r f i f f i i
E E v v K K K K

I
ω ω ⎡ ⎤= − = − + + − +⎣ ⎦ (14.99)

We shall pay attention that we treat only the motion of the nuclei, i.e. we

consider that the electron state is not changed. In other words, at the

transitions (14.99) the electron term of the molecule remains constant.

The selection rules, defining the allowed vibrational-rotational

transitions are following:

1,      1.v KΔ = ± Δ = ± (14.100)

Fig. 14-16 illustrates both the levels of the diatomic molecule with

Figure 14-16. Vibrational-rotational transitions of the diatomic molecule between the

vibrational levels 0v =  and 1v = . The spectral line 0 does not exist, because the transition

K=0 (the dashed line) is forbidden. The lines in right of 0 belong to the R-branch and in the

left of v0 - to the P-branch.

1, 2, 3, 4, 5K <  for the vibrational levels with 0 and  1v v= =  and the

spectral lines, corresponding to 1 and  K 1.vΔ = Δ = ± The vibrational-

rotational transitions are divided into two branches: P-branch, for which

1,  and -branch, K RΔ = − for which 1KΔ = +  the two branches differ from
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each other in polarization of the radiation. From (14.99) we obtain the

spectral lines  and 
P R

ν ν  of both branches:

( )

0

0

,      1, 2, 3, ... ,
2

1 ,      0,1, 2, 3. ...
2

P i i

R i i

K K
I

K K
I

ν ν
π

ν ν
π

= − =

= + + =
(14.101)

The line 0ν  does not exit, as in the diatomic molecule the transitions for

which 0KΔ =  are not allowed. The spaces between the lines both in P- and

in R-branch are equal to 2 Iν πΔ = . Hence, from the spectral lines of the

vibrational-rotational transition we can find the distance between atoms in

the molecule. This, of course, is possible, and at for the rotational transition -

see (14.93).

In Section 14.6 we have underlined that the energy of electrons defines

the potential energy of the nuclei. If the electrons of the atoms are in the

state with the principal quantum number n, the energy level will be defined

by the electron energy
n

E , the vibrational 
v

E  and the rotational 
r

E :

( )
2

0

1
1 .

2 2
n

k

E E v K K
I

ω⎛ ⎞= + + + +⎜ ⎟⎝ ⎠
(14.102)

The space between the levels of the molecule electrons is few

electronvolts, i.e. it is of the order of the space between atom-electron levels.

The transitions lead to absorption or emission of the photons, the frequency

of which is in the visible and ultraviolet spectra. The electron transition

changes the configuration of the electron cover and hence changes the

attractive force between the nuclei. This leads to changing of their

vibrational and rotational motions. Therefore at an electron transition the

vibrational-rotational states of the molecules are changed.

The selection rules of these transitions are

1, 0,

at 0 0 - forbidden,

 - arbitrary.

K

K K

v

Δ = ±
= Δ =

Δ
(14.103)

At a transition from the state with quantum numbers ,   and  n v K and

energy (14.102) to the state with quantum numbers ', '  and 'n v K and energy
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( )
2

' 0

1
' ' ' ' 1

2 2
n

k

E E v K K
I

ω⎛ ⎞= + + + +⎜ ⎟⎝ ⎠
(14.104)

is emitted a quantum 'nn
ω :

( ) ( )
'

' 0

'

         1 ' ' 1 .
2

nn e v r

e r

nn

E E E E E

v K K K K

ω
ωω ω

= − = Δ + Δ + Δ

= + Δ + ⎡ + − − ⎤⎣ ⎦
(14.105)

It is clear that the spectral line is defined not only by the rotational and

vibrational quanta but also by optical one '
e

nn
ω , which is due to the change

of the molecule-electron state.

For the electron transitions is valid Frank-Condon principle, according to

which during the transition the distance between the nuclei remains constant.

We shall not analyze this principle (for details see [5], Section 14.8). We

shall notice only that due to the transitions 0KΔ =  to the known R- and P-

branches of the spectrum a new branch appears - Q-branch.

The diatomic molecule spectrum is defined by three kinds of quanta:

optical, vibrational and rotational. The energy of these quanta differs very

much, the largest energy belonging of the optical transition:

2 4
0: : ~ 1: : ~ 1:10 :10 .e e e

r

mol mol

m m

m m
ω ω ω − − (14.106)

Therefore the spectrum has a band character (Fig. 14.17). The optical

Figure 14-17. Band spectrum of the diatomic molecule. The bands consist from great number

of spectral lines situated near one to another.

line of the electron transition stands at the head of every series of bands.

Near such a line many vibrational lines are situated and to every of the

vibrational lines there is a great number of rotational ones.

According to the spectroscopic combination principle (see (7.8)) the

frequency of every spectral line can be represented as a difference of two
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terms: ( ) ( ).mn
T m T nν = −  Not every combination of terms gives the

frequency corresponding to the observed spectral line. The analysis of the

spectra shows that in the most cases there are peculiar "selection rules": only

some transitions are found to be "allowed". The others are "forbidden", i.e.

the corresponding spectral lines are not observed.  The quantum radiation

theory (which is out of scope of this book; see, for example [3], Chapter 15

or [R23], Chapter 22)) defines rigorously the transitions between which

states are allowed or forbidden. The transitions are accomplished with

determined probability, if so-called matrix elements of dipole moment (see

Section 15.1) of the corresponding states and 
m n

ψ ψ  differ from zero:

0.
mn m n

er e dVψ ψ∗= ≠∫ r (14.107)

This matrix element for a combination of many states is equal to zero.

The transition between them is not possible as its probability (of the

transition) is equal to zero. Only in determined cases the matrix element

appears to be different from zero and the transition is possible. Such

transitions are called allowed. The conditions for the possibility to realize

such transitions impose some requirements on the quantum numbers. These

requirements - the restrictions, on the quantum numbers of the initial and the

final state of the possible transition are called selection rules. In every

concrete system (quantum oscillator, hydrogen atom, hydrogen-like ion,

diatomic molecule etc.) they are obtained from (14.107) taking the

corresponding wave functions of the system states. Namely in such way the

used selection rules of the analyzed system are obtained.

The quantum character of the diatomic molecule spectrum permits to be

explained the behavior of the specific heat of the diatomic gases at a tempe-

rature change. The diatomic molecule posses 6 degrees of freedom - 3 tran-

slational, 2 rotational and 1 vibrational. According to the classical theory

energy of each translational and rotational degree of freedom is equal to

0 / 2.kT The energy of the vibrational degree is 0kT  because two equal kinds

of energy - kinetic and potential ( )( )02 / 2kT , correspond to it. So at

temperature 0T  one expects the diatomic molecule energy to be 07 / 2kT  and

the specific heat - 7 / 2k . But the experiment shows such specific heat only

at very high temperatures. At intermediate temperatures the specific heat is

5k/2 and at low ones falls to 3k/2.

We have persuaded ourselves that the value of the vibrational motion

energy, i.e. the vibrational quantum 0ω , is much higher than the one of the

rotational motion. If at the temperature 0T  the average energy of the

translational molecule motion 03 / 2kT  is less than 0ω , the molecule oscil-
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lations canot be excited. In this case we can consider the molecule as a solid

state ("a weight") with 5 degrees of freedom. Very often it is said that the

oscillations "freeze". The temperature of "freezing" 0T , i.e. the temperature

at which the oscillations cannot be excited, is determined by the condition

0 0

3
.

2
v

kT ω≤ (14.108)

For the 2H  molecule the temperature of "freezing" is 0 4300 K.
v

T =
Namely, this high value is the reason the specific heat of the gas to be equal

not to 7 2,  but to 5 / 2k k  at the usual temperatures.

With decreasing the temperature we reach the point at which the energy

of the translational motion appears less than the rotational quantum 2 / .I

Then the rotation cannot be excited and by analogy with the vibrational

motion we say that the rotation "freezes". In this case the molecule remains

only with 3 degrees of freedom (namely these of the translational motion).

The temperature of the "freezing" of the rotational motion 0r
T  is determined

by the inequality

2

0

3
.

2
r

kT
I

≤ (14.109)

At this condition the specific heat of the diatomic molecule is 3 / 2k  and

it is due only to the translational motion.

SUMMARY

The Hamiltonian of two particles, being interacted with central forces is

( ) ( )
2 2 2

,2

2 2 2

ˆ 1ˆ ˆ .
2 22

r

L
H T U r r U r

m r r mmr r r

θ ϕΔ⎛ ⎞∂ ∂= + + = − − +⎜ ⎟∂ ∂⎝ ⎠

The Schroedinger equation ( ) ( )ˆ , , , ,H r E rψ θ ϕ ψ θ ϕ=  for such

Hamiltonian allows obtaining an explicit solution for the angular part of the

wave function even when the explicit potential energy ( )U r  is not known:

( ) ( ) ( ) ( ) ( )1
, , cos cos .

2

m m m m im

lm ml l l l
Y A P A P e

ϕψ θ ϕ θ ϕ θ ϕ θ
π

= = Φ =

In every CSF one observes ( )2 1l + -fold degeneracy on m, which is

called normal degeneracy. To a given value L of the angular moment

corresponds 2l+1 wave functions with a different dependence on the polar
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angle . Physically this degeneracy means that at a fixed angular momentum

(fixed orbital quantum number l) 2l+1 components on the Z-axis are

possible, i.e. L has 2l+1 different orientations in the space.

The motion of the particle with mass 0m  in CSF on a sphere of radius

0 constr =  is called quantum rotator. The energy levels of the quantum rota-

tor are nonequidistant and they are defined by the orbital quantum number l:

( ) ( )2 22

2 2
0 0 0 0

1 1
.

22 2
l

l l l lL
E

Im r m r

+ +
= = =

The Schroedeinger equation of motion of the electron of mass 
e

m  in the

Coulomb field of the nucleus of mass M and charge Ze  yields for the wave

functions and the energy levels:

( ) ( )2 1
n-l-1

2 2 4 2
0

2 2 2

2 2
, , A L , ,

1
,               1, 2, 3, ...

2

lr

lna
nlm lm

m

n

r r
r e Y

na na

Z mk e Z R
E n

n n

ψ θ ϕ θ ϕ
− +⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= − = =

At a given n to every l corresponds its one eigenfunction. Consequently n

different wave functions correspond to the eigenvalue 
n

E  of the energy. N-

fold degeneracy on the orbital quantum number l is observed in every

Coulomb field. It is called accidental or anomalous. Physically this

degeneracy expresses the independence of the electron energy on the angular

momentum L.

According to the selection rules those transitions are allowed, for which

the orbital quantum number changes with unity, i.e. 1lΔ = ± . The spectral

lines of given series of H atom are formed at the transition of the electron to

the given fixed level. The lowest frequency from the given series is called

resonance frequency and the highest - the threshold frequency.

The probability-density distribution ( ), ,
nlm

rρ θ ϕ  of the atom electron is

called electron cloud and the wave function ( ), ,
nlm

rψ θ ϕ  - orbital.

In the hydrogen-like atoms the single outer electron (valence electron)

moves in the net field of the nucleus and the inner electrons. The penetrating

outer electron in the core of inner electrons removes the anomalous

degeneracy on l. For the states with a nonpenetrating electron the valence

electron has the energy of the corresponding state of the H atom.

Both the electron motion and the rotation and the oscillation of their

nuclei define energy level of the diatomic molecule:
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( )
2

0

1
1 .

2 2
n

k

E E v K K
I

ω⎛ ⎞= + + + +⎜ ⎟⎝ ⎠

Here 
n

E  is the energy of the electron state, ( ) 01/ 2v ω+  is the

vibrational  one and ( ) 21 / 2
k

K K I+  - rotational energy of the molecule.

If the electron state of the molecule is not changed, the next vibrational-

rotational transitions are allowed:

1,          1.v KΔ = ± Δ = ±

At the changing of the electron state of the molecule the selection rules

are the following:

1, 0,

at 0     0 - forbidden,

 - arbitrary.

K

K K

v

Δ = ±
= Δ =

Δ

As the quanta, corresponding to the different kinds of motion, differ

essentially

2 4
0: : ~ 1: : ~ 1:10 :10 ,e e e

r

mol mol

m m

m m
ω ω ω − −

the spectrum has a band character (Fig. 14.17).

The results of the considered in the last chapters quantum mechanical

systems are summarized in Table 14-3.

QUESTIONS

1. Which quantum numbers does the rotator energy depend on?

2. What kind of degeneracy is observed in a central symmetric field?

3. What kind of degeneracy is observed in a Coulomb field?

4. What is the physical meaning of the normal and anomalous degeneracy?

5. Which quantum numbers determine the particle in a Coulomb field?

6. What are the eigenfunctons of the quantum rotator?

7. What values can the quantum numbers n, l, m take and what quantity

they determine?

8. By which quantum number is described the hydrogen atom?

9. What is an orbital? What is an electron cloud?

10. Which state is ground?

11. What is the ground state of the H atom characterised with?
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12. What is the radius of the maximal probability density of the ground

state?

13. Which ions are hydrogen-like?

14. What is the difference between the hydrogen-like ions and atoms?

15. What are penetrating and non-penetrating orbits?

16. When do the energy levels of the hydrogen-like atoms coincide with the

levels of the hydrogen?

17. What is common and different in the spectra of the hydrogen and the

hydrogen-like atoms?

18. What is the essence of Born-Oppenheimer theory?

19. Show the form of the effective potential energy of the diatomic molecule

when: a) there is no rotation; b) there is weak rotation; c) there is force

rotation.

20. What determines the rotational energy?

21. What determines the vibrational energy?

22. How the rotational and the vibrational levels are situated?

23. What are the selection rules for vibrational-rotational transitions?

24. What are the selection rules for transitions, including changes of the

electron state of the diatomic molecule?

PROBLEMS

1. Find the angular wave functions ( ),ψ θ ϕ  for the electron charge in CSF

for the states with 0  and  1,  i.e.l l= = ( ) ( )00 10, ,  , ,ψ θ ϕ ψ θ ϕ

( )11 , ,ψ θ ϕ ( )1 1 ,ψ θ ϕ− , knowing

( ) ( ) ( )2 22
1

1 1 ,      cos .
2 !

m l m
l

m

l l l m

d
P

l d

ξ ξ ξ ξ θ
ξ

+

+
= − − =

2. For the electron of H atom find the radial wave function ( )10R r , the

orbital 100ψ and the radial charge distribution ( )10 rρ , knowing

( )

( ) ( ) ( )

0

r

r

2l 1
n

0 0

2 1 2 12l 1
n

2 2
L ,

1
L ,       1.

!

r

r

r

lr

na

nl nl

n

l l n

rn

r

r r
R r A e

na na

d
e e n n l

n d

ξ ξξ ξ ξ
ξ

−
+

− + + ++ −

⎛ ⎞ ⎛ ⎞
= ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

= = − −
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3. Find the average radius of the electron and the radius of the maximum

density of the electron cloud in the ground state of H atom

( )1, 0, 0 ,n l m= = =  which is described by the wave function

0

100 3/ 2
0

1 2
.

4

r

a
e

a
ψ

π

−
=

4. The electron in the proton Coulomb field is in a state, which is described

by a wave function

( ) ( ) ( ) ( ) ( )100 211 210 21 1

1
4 3 10

6
r r r r rϕ ψ ψ ψ ψ −⎡ ⎤= + − +⎣ ⎦ .

What are the expectation and the average values of: a) the energy E ; b)

the square of the orbital angular momentum 2
L ; c) the component of the

z
L ?

5. For the electron in H atom  in a state with 3n =  find:

- the multiplicity of the degeneracy;

- the number of wave-function nodes;

- the energy of the state (also for the electron in +He );

- the wavelengths of the allowed emission transitions.

6. Find the ionization energy of the ions He   and  Li+ ++ .

7. For hydrogen find the most probable distance of the electron from the

nucleus in the state 2 .s

8. Calculate semi-classically the rotational energy of the diatomic molecule

with the masses of atoms  and 
A B

m m  and distance r between them.

9. The molecule HCl shows a strong absorption line of 3465 mλ μ= .

Accepting that this is due to the vibrational motion, calculate the force

constant of the molecule.

10. The equilibrium distance between two nuclei of 2H  molecule is

0 0,75r = Å and its force constant is 
3

5,136.10  N/m.κ =  Calculate: a)

the moment of inertia and the energy of the lowest rotational level; b)

angular velocity of rotation; the emission frequency at the rotational

transition from a level 2K =  to a level 1K = ; c) the distance between

the nuclei in the states; d) the frequency of oscillations; e) the space

between the vibrational levels.

11. Solve the problem 10. for CO molecule, which has a length 0 1,13r =  Å

and a force constant 
2

1,87.10  N/m.κ =
12. The distance between two adjacent lines of the emission spectrum of

1 35H Cl  molecule is 20,68 -1cm . Calculate the distance between the

spectral lines of 2 35H Cl  molecule.
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15.1* ELEMENTS OF MATRIX MECHANICS

In Section 9.6 we have touched a very important question - we have seen

that the state of a given system can be described by two different functions,

( ) ( )  and  x C pψ . Essentially this is the wave function in different

representations. The state of the system, described by the wave function

( )xψ , can be represented as a superposition of the eigenstates of free

particles with momentum p  which are described by the functions ( )p
xψ  of

the form (10.57):

( ) ( ) ( ) ( )1
exp ,

2
p

i
x C p x dp C p px dp

h
ψ ψ

π

∞ ∞

−∞ −∞

⎛ ⎞= = ⎜ ⎟⎝ ⎠∫ ∫ (15.1)

where

( ) ( ) ( )p
C p x x dxψ ψ

∞
∗

−∞

= =∫ ( )1
exp

2

i
x px dx

h
ψ

π

∞

−∞

⎛ ⎞−⎜ ⎟⎝ ⎠∫ . (15.2)

The function ( )xψ  is a wave function in co-ordinate representation. If we

know ( )xψ  we can determine ( )C p  using (15.2) and vice versa - if we

know ( )C p  we can determine ( )xψ  from (15.1), i.e. with the equal success

we can use the one or the another function. The function ( )C p  is

determined in the momentum space and is called the wave function in

momentum representation. Equations (15.1) and (15.2) determine the rules

for transformation of the wave function from one representation into another

one (in this case from x-representation (co-ordinate representation) to p-

representation (momentum representation)) and vice versa). (We note that

the example is for the state with the continuous quantity.)
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Before discussing the wave function in arbitrary representation, we shall

say a few words about the eigenfunctions of a continuous quantity A  in A-

representation, i.e. in eigenrepresentation. Above we have written the wave

functions in co-ordinate representation. In eigenrepresentation they are

always δ -functions. For example, the eigenfunction of a free particle (one-

dimensional motion) with a momentum 'p  in x-representation and p-

representation is respectively:

( )

( ) ( )

'

'

1
exp ' ,        -representation;

2

' ,                       -representation.

p

p

i
x p x x

p p p p

ψ
π

ϕ δ

⎛ ⎞= +⎜ ⎟⎝ ⎠
= −

(15.3)

Let us consider the state with the physical quantity M, which has discrete

values. The operator of this quantity has the eigenfunctions

( ) ( ) ( ) ( )1 2 3, , , ... , ...
n

x x x xψ ψ ψ ψ (15.4)

We shall note that in the general case the number of the ψ -functions is

infinite (in Section 9.6 we have underlined that these functions form infinite

vector space). The ψ -functions form a complete set, which can be used as a

basis. Any wave function in co-ordinate representation may be expanded in

terms of the basis functions ( )n
xψ :

( ) ( ).
k

M k

k

x C xψ ψ= ∑ (15.5)

The eigenfunctions ( )n
xψ  are also in co-ordinate representation. The

coefficients 
k

M
C  determine uniquely the wave function ( )xψ , i.e. they

determine uniquely the state. In this sense they are equivealent to the wave

function, however in M-representation. (If we had the eigenfunctions

( )
k

f
xψ  of the operator f̂ , the coefficient 

k
f

C  of the expantion

( ) ( )
k k

f f
x C xψ ψ= ∑  would determine the wave function ( )xψ  in f-

representation.)

It is obvious that the wave function ( )xψ may be represented as a

column matrix:
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( )

1

2

3 ,
.

.

.

M

M

M

C

C

C
xψ = (15.6)

which determines the function in M-representation. So, the wave function

( )xψ  in M-representation is a column matrix, whose terms are the

superposition coefficients in the expansion of ( )xψ  in the eigenfunctions of

the operator of this quantity.

It turns out that using the Fourier transformation (for the continuous

quantity) or the matrix (15.6) we may describe the state of a system in

different representation. The following question arises: how does an operator

change under such a transformation?

We will determine the form of the operator N̂  of the quantity N  in x-

representation, starting from the dependence ( ),N x p  and going to the

operator form, ( )ˆ , /N x i x− ∂ ∂  (see Section 10.5). Acting with the operator

N̂  on the function ( )xψ we obtain the function ( )xϕ :

( ) ( )ˆ , .x N x i x
x

ϕ ψ∂⎛ ⎞= −⎜ ⎟∂⎝ ⎠
(15.7)

Here the functions ( )xψ  and ( )xϕ  and the operator N̂  are given in x-

representation. Let's find N̂ , for example, in M-representation. Label the

eigenfunctions and the eigenvalues of the operator M̂  as follows:

( ) ( ) ( ) ( )1 2 3

1 2 3

, , , ... , ...

,  , ,    ... ,     ...

n

n

x x x x

M M M M

ψ ψ ψ ψ
(15.8)

Then, expand the wave functions ( )xϕ  and ( )xψ  in terms of the basis

functions ( )k
xψ :

( ) ( )

( )

,

( ) .

k k

k

k k

k

x b x

x c x

ϕ ψ

ψ ψ

=

=

∑

∑
(15.9)



5. PERTURBATION THEORY AND STARK EFFECT 389

Here 1 2 1 2, , ...,  and , , ...,
n n

b b b c c c  are the functions ( )xϕ  and ( )xψ  in M-

representation. After taking into account (15.9), Eq. (15.7) can be written in

the following form:

( ) ( )ˆ ,
k k k k

k k

b x N c xψ ψ=∑ ∑ (15.10a)

or ( ) ( )ˆ .
k k k k

k k

b x c N xψ ψ=∑ ∑ (15.10b)

Multiplying by ( )i
xψ ∗  and integrating over dx , we obtain as a result

( ) ( ) ( ) ( )ˆ .
k i k k i k

k k

b x x dx c x N x dxψ ψ ψ ψ
∞ ∞

∗ ∗

−∞ −∞

=∑ ∑∫ ∫ (15.11)

The eigenfunctions ( )k
xψ  of the operator M̂  form a complete set and

the integral from the left-hand side is equal to 
ik

δ . Hence,

( ) ( ) .
k i k k ik i

k k

b x x dx b bψ ψ δ
∞

∗

−∞

= =∑ ∑∫ (15.12)

We set

( ) ( )ˆ .
i k ik

x N x dx Nψ ψ
∞

∗

−∞

≡∫ (15.13)

After taking into account (15.12) and (15.13), the relation (15.11)

becomes

.
i ik k

k

b N c= ∑ (15.14)

Here 
i

b  is the function ( )xϕ  in M-representation and 
k

c  - the function

( )xψ  in M-representation. It is logically to consider the matrix 
ik

N (15.13)

as the operator N̂  in M-representation, which in explicit form is
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11 12 13

21 22 23

31 32 33

...

...

...
ˆ

. . . .

. . . .

. . . .

N N N

N N N

N N N
N N= = . (15.15)

We shall underline that in order to obtain the matrix elements 
ik

N , i.e. in

order to obtain N̂  in M-representation, it is necessary to use in (15.13) the

eigenfunctions of the operator M̂ .

We have settled that in quantum mechanics is possible to a given quantity

N  instead of the operator to correspond the matrix N . This idea was first

suggested by Heisenberg. Together with the matrix N  the following

matrices are considered:

1. The matrix  N
∗

 is the complex conjugate matrix of N , if each element

of the matrix N
∗

is obtained in the following way from the

corresponding element of the matrix N :

( ) .
ik

ik

N N
∗ ∗= (15.16)

The matrix N is transposed of N , if the rows of N  are obtained

from the columns of N  and the columns of N  from the rows of N :

( ) .
ik ki

ik

N N N≡ = (15.17)

The matrix N
+

is the adjoint of N , if N
+

 is obtained from N  by

complex conjugating and then transposing:

( ) .
ik

ik ki
ik

N N N N
+ + ∗ ∗≡ = = (15.18)

Self-adjoint or Hermitian is a matrix N  which is equal to his adjoint

matrix N
+

:

.N N
+= (15.19)

2.

3.

4.
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We shall show that at this condition the operator N̂ is Hermtian. For

every element of the Hermitian matrix we can write

( ) .
ik ki

ik

N N N
+ ∗= = (15.20)

According to (15.13) for the matrix elements  and 
ik ik

N N
∗  we have

( ) ( )

( ) ( ) ( ) ( )

ˆ ,

ˆ ˆ .

ik i k

ki k i k i

N x N x dx

N x N x dx x N x dx

ψ ψ

ψ ψ ψ ψ

∞
∗

−∞

∗∞ ∞
∗ ∗ ∗ ∗

−∞ −∞

=

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

∫

∫ ∫
(15.21)

Substituting it into (15.20) we obtain

( ) ( ) ( ) ( )ˆ ˆ .
i k k i

x N x dx x N x dxψ ψ ψ ψ
∞ ∞

∗ ∗ ∗

−∞ −∞

=∫ ∫ (15.22)

This is the condition (10.21) for Hermitian character of N̂ .

Now let us consider how to find an operator in its eigenrepresentation.

We shall start from the matrix elements 
mn

N  (15.13) of the operator N̂ . In

its eigenrepresentation the functions ( )i
xψ  are eigenfunctions of the same

operator N̂ . Then

( ) ( ) ( ) ( )ˆ
i k i k k k ik

x N x dx x N x dx Nψ ψ ψ ψ δ
∞ ∞

∗ ∗

−∞ −∞

= =∫ ∫ . (15.23)

where 
i

N  are the eigenvalues of the operator N̂ .

Therefore in its eigenrepresentation the matrix of the operator has a

diagonal form and the values of the diagonal elements are equal to the

eigenvalues of the operator:

1

2

3

0 . . . .

0 0 . . .

. 0 0 . .
ˆ

. . 0 . . .

. . . . . .

. . . . . .

N

N

N
N N= = . (15.24)
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We shall consider two concrete examples of operators in their

eigenrepresentation - the operators Ĥ  of a particle in an infinite square well

and the quantum harmonic oscillator.

The energy levels in the infinite well (Section 12.2), i.e. the eigenvalues

of the Hamiltonian have the form:

2 2
2 2

12
.

2
n

E n n E
ma

π= = (15.25)

Hence in E-representation the operator Ĥ  has the following form

1

1 0 . . . .

0 4 0 . . .

. 0 9 0 . .
ˆ

. . 0 . . .

. . . . . .

. . . . . .

N N E= = . (15.26)

For the oscillator the eigenvalues of the energy are ( )0 1/ 2
n

E nω= +
and the matrix of the Hamiltonian in eigenrepresentation is

0

1/ 2 0 . . . .

0 3/ 2 0 . . .

. 0 5 0 . .
ˆ

. . 0 . . .

. . . . . .

. . . . . .

N N ω= = . (15.27)

The more interested reader can find a more detailed presentation in [1].

15.2* PERTURBATION THEORY

In many practical problems encountered in quantum mechanics, the

Hamiltonian of the analyzed system can be represented as a sum of two

operators:

0ˆ ˆ ˆ ',H H Hλ= + (15.28)
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where the eigenfunction of the operator 0
Ĥ  are known and the operators Ĥ

and 0
Ĥ  do not differ appreciably. The additional operator ˆ 'Hλ  is in some

sense small compared to 0
Ĥ . This means that under the action of the

operators ˆ 'Hλ  the system state, described by the eigenfunctions of 0
Ĥ ,

changes weakly. The criterion, that establishes the smallness of ˆ 'Hλ
compared to 0

Ĥ  will emerge further. Mathematically this is ensured by the

dimensionless parameter λ , which is an infinitesimal parameter, so that
2 3 ...λ λ λ>> >> The operator ˆ 'Hλ  is called perturbation Hamiltonian or

merely perturbation and the operator 0
Ĥ unperturbed Hamiltonian. The

theory that seeks the approximate eigenfunctions of the total operator Ĥ is

called perturbation theory.

Perturbation theory begins with the statement that the eigenfunctions and

eigenvalues of the unperturbed Hamiltonian are known - they are solutions

of the Schroedinger equation with 0
Ĥ :

0 0 0 0ˆ .
k k k

H Eψ ψ= (15.29)

The functions 0

k
ψ  are the eigenfunctions of the operator 0

Ĥ  and 0

k
E  are

its eigenvalues (further we shall consider discrete eigenvalues only). The

functions 0

k
ψ  form a complete set of orthonormal functions.

We seek the solution of the Schroedinger equation with Ĥ :

( )0ˆ ˆ ˆ .H E H H Eψ ψ λ ψ ψ′= ⇒ + = (15.30)

Let's assume that the unperturbed system is in the state 0

i
ψ  with energy

0

i
E . In other words we seek the eigenfunctions and the eigenvalues of Eq.

(15.30), which at ˆ ' 0H =  transform to the eigenfunctions 0

i
ψ , when the

eigenvalues 0

i
E  of Eq. (15.29) describe the unperturbed system. Let's label

the unknown eigenfunctions and eigenvalues with  and 
i i

Eψ , respectively.

We expand the unknown wave function 
i

ψ  in terms of the basis

functions 0

k
ψ , i.e. in terms of known functions of the unperturbed system:

0.
i k k

k

Cψ ψ= ∑ (15.31)

Replacing this into (15.30) and taking into account (15.29), we obtain
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( )0 0 0ˆ .
k k k i k k

k k

H C C E Eλ ψ ψ′ = −∑ ∑ (15.32)

Multiplying the equation by 0*

m
ψ  and integrating over the whole space of

changing of the nondependent variables (for a simplicity they are omitted in

the further expressions), we obtain:

( )0 0 0ˆ .
k m k k i k km

k k

C H dV C E Eλ ψ ψ δ∗ ′ = −∑ ∑∫ (15.33)

We have used the fact that the eigenfuctions are orthonormal:

0 0 .
m k km

dVψ ψ δ∗ =∫ (15.34)

The integral in the left-hand side of (15.33) according to (15.13)

determines the matrix elements '

mk
H  of the operator ˆ 'H  in 0

E -

representation:

0 0ˆ .
mk m k

H H dVψ ψ∗′ ′= ∫ (15.35)

Taking this into account into (15.33), we obtain the Schroedinger

equation (15.30) in a matrix form:

( )0
0.

m mm i m mk k

k m

E H E C H Cλ λ
≠

′ ′+ − + =∑ (15.36)

Here according to (15.6) the coefficients 
k

C  form a column matrix for

the function ψ  in 0
E -representation. (For convenience we have separated

the term '

mm m
H Cλ from the sum.)

As we have already underlined, we shall consider small perturbations

under which the system does not change appreciably. This means that the

energy levels and the wave function of the perturbed system (i.e. the

coefficients 0  in 
i

C E -representation are close to the values for the

unperturbed system. We expand the unknown quantities  and 
i k

E C in power

series of the small parameter λ :

0 (1) 2 (2) ...,
i i i i

E E E Eλ λ= + + + (15.37a)
0 (1) 2 (2) ..., 1,2,3,...

k k k k
C C C C kλ λ= + + + = (15.37b)



5. PERTURBATION THEORY AND STARK EFFECT 395

The unknown wave functions 
i

ψ  also can be expanded in similar powers

0 (1) 2 (2) ...
i i i i

ψ ψ λψ λ ψ= + + + (15.37c)

To avoid further misunderstanding we shall emphasize that 0

k
E  (see

(15.29)) are the eigenenergies of the corresponding unperturbed states 0

k
ψ ,

and the value (0)

i
E  are the zeroth order approximations of the energies 

i
E  of

the perturbed state! In general the number in the parenthesis shows the order

of the approximation. For example, (2)
E  means the second order in the

expansion of the small parameter λ .

We substitute (15.37) into (15.36) up to the order λ , and omitting the

higher powers:

( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )

0 1 00 (0)

1 00 (0) 20 0.

m i m mm i m

m i m mk k

k m

E E C H E C

E E C H C

λ

λ
≠

⎡ ′− + −⎣
⎤′+ − + + =⎥⎦

∑

(15.38)

This equation can be solved by the method of successive approximations.

Setting 0λ =  we obtain the solution in zeroth order approximation:

( ) ( )00 (0) 0, 1,2,3,...
m i m

E E C m− = = (15.39)

This is the matrix Schroedinger equation of the unperturbed system and
0

m
E  are the diagonal matrix elements of the operator 0

Ĥ  in its

eigenrepresentation. We are interested in the change of eigenvalue and the

eigenfunction of the ith state, i.e. 0

i
E  and 0

i
ψ  under the perturbation ˆ 'H . It

is clear from (15.39) (and also from (15.29) and (15.31)) that the solution is

(0) 0 (0), .
i i m mi

E E C δ= = (15. 40)

To find the first order approximation we substitute (0)

i
E  and (0)

m
C  into

(15.38), and then equate the coefficients before λ  to zero:

( ) ( ) ( )1(1) 0 (0)
0, 1,2,3,..., .

mm i mi m i m mk ki

k m

H E E E C H m nδ δ
≠

′ ′− + − + = =∑ (15.41)
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For m i=  we obtain the first-order corrections (1)

i
E  to the unperturbed

energies (0)

i
E :

(1) , 1, 2, 3, ...,
i ii

E H i′= = (15.42)

and for m i≠  we obtain the coefficients (1) :
m

C

( )1

(0) 0
, .mi

m

i m

H
C m i

E E

′
= ≠

−
(15.43)

For the application of the perturbation theory we assumed that the

perturbation is "small", i.e. the energy levels, the coefficients and the wave

functions are not changed significantly. We can express this in the following

way (see (15.37b):

0 0
1,mi

i m

H

E E
λ

′
<<

−
(15.44)

i.e. the method of the perturbations theory is applicable if the matrix

elements of the perturbation are small compared to the difference between

the corresponding unperturbed energy levels.

The coefficients (1)

i
C cannot be determined by this formula. We shall find

them from the normalization of the perturbed wave functions 
i

ψ . Taking

into account (15.31), (15.37b) and (15.43), we readily show that within first-

order approximation these functions take the following form:

( )10 0 0

(0) 0
.mi

i i i i m

m i i m

H
C

E E
ψ ψ λ ψ ψ

≠

′⎛ ⎞
= + +⎜ ⎟−⎝ ⎠

∑ (15.45)

From the normalization of these functions follows that (see, for example,

[2], Section 67) that

( )1
0.

i
C = (15.46)

Substituting this into (15.45) we obtain the first-order correction (1)

i
ψ  to

the wave function 
i

ψ :
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( )1 0

0 0
.mi

i m

m i i m

H

E E
ψ λ ψ

≠

′
=

−∑ (15.47)

According to this equation, the expansion (15.37c) would make sense if

the coefficients of expansion are much smaller than 1, i.e. ' 0 0

mi i mi
H E Eλ << − .

We obtain the same condition as (15.44).

Taking into account (15.42), (15.37a) and (15.35), we obtain the energy

of the ith state in the first-order approximation:

( )0 00 0ˆ .
i i ii i i i

E E H E H dVλ ψ λ ψ∗′ ′= + = + ∫ (15.48)

By analogy with the first-order approximation of the eigenfunctions

(15.45) and the eigenenergy (15.48), we can obtain the approximations of

second order, third order etc.

Finally, we shall underline that the described method is applicable if the

levels 0

i
E are not degenerate. For degenerate states the perturbation method

must be modified, which we shall do in the next section.

15.3* TIME-INDEPENDENT DEGENERATE

PERTURBATION THEORY

Let 0
Ĥ  describe degenerate eigenstates. Suppose, for example, that in

unperturbed system the level 0

i
E  is f-fold degenerate. Then the eigefunctions

( )0 0 0 0

1 2, , ..., or , 1, 2, ...,
i i if i

fαψ ψ ψ ψ α = correspond to the eigenenergy 0

i
E .

What will happen at the presence of a perturbation?

We can give following qualitative answer. The degeneracy can always be

traced to some symmetry of the system. This symmetry is also a

characteristic of the Hamitonian. For example, the Hamiltonian in central

symmetric field does not depend on the angular-momentum direction - we

observe normal degeneracy. In the most general case the perturbation does

not posses such symmetry. Therefore, the interaction energy of the different

states with the perturbation in the degenerate system is not the same, hence

splitting of the degenerate levels is observed.

The change in energy levels under the influence of the perturbation

accompanies by a change in the wave functions of the degenerate state.
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Let us consider a concrete example. The states 2 p  of the H atom with

three different orientations of the angular momentum (at 1, 0,1m = − ) is

degenerate (see Section 14.3). In an external magnetic field B, because of the

its interaction with the orbital magnetic moment 
l

μ , the atom receives

additional energy 
l

UΔ = −μ B  (4.40). The vectors of the magnetic moment

and the orbital angular momentum are collinear (Section 4.4). The energy of

the state, in which L and B are parallel ( 1m = ) increases -

( )/ 2
l e

U e mΔ = − =μ B LB ; the energy of the state, in which L and B are

antiparallel ( 1m = − ) decreases and in the state, in which they are

perpendicular ( 0m = ), the energy is not changing.

In degenerate states the functions which form the complete set depend on

both indices k (15.31) and on the indices . Therefore, in the expansion of

the wave function
i

ψ  of the perturbed system to the eigenfunctions 0

iαψ  of

the unperturbed system, the sum is double and the coefficients depend on

both indices (compare with (15.31):

0

,

,       1, 2, 3, . . . , ,       1, 2, 3, . . . , .
i k k

k

C k n fα α
α

ψ ψ α= = =∑ (15.49)

In Eq. (15.36) we did not impose constraints, concerning the degeneracy

for the unknown energies and the coefficients of the perturbed system. That

equation is valid both for nondegenerate and for degenerate states. The

comparison of the expansions of the nondegenerate states (15.31) and

degenerate states ((15.49) shows that it is necessary a replacement, for

nongenerate systems in Eq. (15.36) the single indices with double ones:

,m m α→ and β,kk → . We shall recall that  and α β change from 1 to f

and  and m k - from 1 to n. With this replacement in non-generate system the

Eq. (15.36) becomes

( )0

, , 0,
m m m i m m k k

k m

E H E C H Cα α α α β β
β α

λ λ
≠

′+ − + =∑ (15.50)

where

0 0

,
ˆ

m k m k
H H dVα β α βλ ψ λ ψ∗′ ′= ∫ (15.51)

are the matrix elements of the perturbation.

Let us analyze the ith state as in the previous section. When the

degeneracy is absent, the function of the perturbed system in 0th order

approximation coincides with the one of the unperturbed system. Due to the
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lack of a perturbation the degenerate system can appear in every one of the

states ( )0   1, 2, 3, ...,
i

fαψ α =  or in a superposition of them. (All (!) these

states have an energy 0
E .) Therefore here all coefficients (0)

C  are different

from zero:

( )0 0 0, 1, 2, 3, . . . , ,
i i

C C fα α α= ≠ = (15.52.a)

( )0
0, .

m
C m iα = ≠ (15.52b)

As in the nondegenerate states, the energy in the 0th order approximation

is equal to that of the energy of unperturbed system: (0) 0

i i
E E= .

We could proceed as in the previous section - to substitute (0) 0 and 
m i

C Eα

into (15.50) (we would obtain the analogue of Eq. (15.38)). However we

shall proceed a little differently. We shall substitute in Eq. (15.50) only the

coefficients (15.52). After taking into account the terms different than zero,

we obtain

( ) ( ) ( )0 00

, ,

,

0.
i i i i i ia i i

E H E C H Cα α α β β
β α

λ λ′ ′+ − + =∑ (15.53)

In these equations 
i

E  is assumed to be energy of the 1st order

approximation, i.e. unperturbed energy plus the correction in the 1st

approximation. To be clear we write the equations for different alpha's:

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0 00

1, 1 1 1, 2 2 1,

0 00 (0)

2, 1 1 2, 2 2 1,

0 0 0 (0)

, 1 1 , 2 2 ,

. . . 0, 1,

.. . 0, 2,

.

.

.

. . . 0, .

i i i i i i i i i if if

i i i i i i i i i if if

if i i if i i i if if i if

E H E C H C H C

H C E H E C H C

H C H C E H E C f

λ λ λ α

λ λ λ α

λ λ λ α

′ ′ ′+ − + + + = =

′ ′ ′+ + − + + = =

′ ′ ′+ + + + − = =

(15.54)

This is a linear homogeneous system of equations for the unknown

coefficients (0)

i
C α . It has a nontrivial solution if its determinant is equal to

zero:
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0

1, 1 1, 2 1,

0

2, 1 2, 2 2,

0

, 1 , 2 ,

...

...

. . . .
0

. . . .

. . . .

...

i i i i i i i if

i i i i i i i if

if i if i i if if i

E H E H H

H E H E H

H H E H E

λ λ λ
λ λ λ

λ λ λ

′ ′ ′+ −
′ ′ ′+ −

=

′ ′ ′+ −

. (15.55)

We have obtained an algebraic equation of fth power for the energies 
i

E ,

which is often called a secular equation. This equation has  f solutions:

1 2 13, , , . . . , .
i i i if

E E E E E= (15.56)

As the matrix elements are small, proportional to λ , these solutions are

very close to each other. Thus, under the influence of the perturbation, the f-

fold degenerate state of energy 0

i
E  splits up into f close-lying states. Thus,

the perturbation removes the degeneracy. If some solutions are equal to zero,

then the degeneracy is partly removed.

To obtain the wave functions of the perturbed states of energies 
i

E α , we

substitute the solutions 
i

E α  (15.56) into Eqs. (15.53). The obtained system

of equations enables us to determine the coefficients (0)

i
C α . For each (0)

i
C α  we

get  f solutions (0)

i
C αβ  ( 1, 2, ..., fβ = ). The wave function is determined from

(15.49), taking into account that the sum on k drops out since according to

(15.52b) for k i≠ the coefficients (0)

k
C α are equal to zero:

( ) ( )0 0 0

1

.
f

i i i
Cα αβ β

β
ψ ψ

=

= ∑ (15.57)

To 0th order approximation the eigenfunctions of the perturbed

degenerate states are a linear combination of the eigenfunctions of the

unperturbed states.

15.4* THE STARK EFFECT

As an example of the splitting of the degenerate levels we shall consider

the H atom in an electric field. Experiments show that under the influence of

an electric field, the spectral lines of an atom split. This phenomenon was
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first noticed by Stark in 1913 (he observed the splitting of Balmer lines in an

electric field of a strength 1000 000=E V/m) and it is called the Stark effect.

The experiments have shown that the influence of the electric field on

hydrogen and other atoms depends on the electric field strength. Moreover,

the result of this influence is different for hydrogen and other atoms. The

energy levels of H atom in weak field E  split proportionally to the first

power of E (i.e. ∝E ; this is so-called linear Stark effect) but those of all

other atoms  - proportionally to the second power of the 
2
E  (i.e. 

2∝E ; this

is the so-called quadratic Stark effect). Physically this difference can be

easily understood. The electric dipole moment d of the hydrogen atom is

different than zero. The electric field EEEE  interacts with the dipole and it

receives an additional energy EΔ = dEEEE . Typically, in the multielectron atom

there is not a degeneracy in l and the average dipole moment is zero.

Therefore the Stark effect is not observed in weak electric fields. In strong

fields, however, the atoms are polarized and the induced dipole moment is

proportional to the E , i.e. d ∝E . The energy is proportional to 2
E , i.e.

2
EΔ = ∝d EEEEE  as a result of the interaction of the field with this induced

dipole moment.

The Stark effect is inexplicable in the framework of classical theory.

Only quantum mechanics can give an explanation of this phenomenon. We

shall treat in details the linear Stark effect for the second level of the H atom.

The external electric field 8 9~ 10 10÷E V/m, which is necessary for the Stark

effect, is much smaller than the inner field nuclE , caused by the nucleas of the

H atom: 1110.5/ 2
0nucl ≈=

o
aekE V/m. The potential energy W of the electron

in the external field is treated as the perturbation. The states with 2n =  have

an energy 0

2 / 4E R= − (the index "0" notices that there is no perturbation).

These are the 2s - and 2 p -states, which are described by the wave functions

200 210 211 21 1., ,  and ψ ψ ψ ψ − (15.58)

The level 0

2E  is 4-fold degenerate. Using for convenience the designation

from the previous sections, we set

0 0 0 0

200 21 210 22 211 23 21 1 24,    ,    ,    .ψ ψ ψ ψ ψ ψ ψ ψ−≡ ≡ ≡ ≡ (15.59)

In other words, we have labeled the functions of the degenerate states as
0

iαψ , where i=2, and 1, 2, 3, 4α = . Using  (14.40) and Table 14-1, we can

express these functions in an explicit form:
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0 0

0 0

/ 2 / 20 0

21 23
3 3

0 00 0

/ 2 / 20 0

22 24
3 3

0 00 0

1 1
1 , sin ,

2 22 2 4

1 1
cos , sin .

2 22 2 4

r a r a i

r a r a i

r r
e e e

a aa a

r r
e e e

a aa a

ϕ

ϕ

ψ ψ θ
π π

ψ θ ψ θ
π π

− −

− − −

⎛ ⎞
= − =⎜ ⎟

⎝ ⎠

= =
(15.60)

Before writing the secular equation for this system, we shall determine

more accurately the perturbation operator. The electron of the hydrogen

atom in homogeneous electric field along the Z-axis (the centre of the co-

ordinate system coincides with the nucleus) acquires an additional potential

energy cosE e e z e r θΔ = = =r E EEEEE . Hence, its Hamiltonian is

( )
2

0ˆˆ ˆcos ,
2

ˆ cos .

e

p
H U r e r H H

m

H e r

θ λ

λ θ

′= + + = +

′ ≡

E

E

(15.61)

For its matrix elements (see (15.51)) we can write:

2

0 0 2

, 2 ,2 2 2

0 0 0

cos sin ,
16

, 1,2,3,4.

e
W H e r r drd d

π π

α β α β α βλ ψ θψ θ θ ϕ
π

α β

∗ ∗

∞

≡ =

=

∫ ∫ ∫
E

E
(15.62)

At the integration over the polar angle  leads to zero for all integrals

with different magnetic quantum numbers because of the orthonormality of

the wave functions on . From all matrix elelments only 12 21  and  W W are

different than zero, i.e. those which contain in their integrands the states with

magnetic quantum number 0m = , namely 0 0

21 22  and  ψ ψ . As the functions
0 0

21 22  and  ψ ψ  are real, these two matrix elements are equal:

0

2 4
/ 2

12 21 04

0 00 0 0

1 cos sin 3 .
16 2

r ae r r
W W e drd d e a

a a

π π

θ θ θ ϕ
π

∞
− ⎛ ⎞

= = − = −⎜ ⎟
⎝ ⎠

∫ ∫ ∫
E

E (15.63)

The final result is obtained after the 5-fold integration by parts over r (the

integration over and  is trivial).

After taking into account this result and the zeros for the remaining

matrix elements, the secular equation reduces to the following:
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( )
2 21

12 2

2

2

2 2 2

2 2 12

0 0

0 0

0 0 0

0 0 0

        ( ) ( ) 0.

E E W

W E E
E

E E

E E

E E E E W

−
−

Δ =
−

−

⎡ ⎤= − − − =⎣ ⎦

(15.64)

This equation has 4 roots:

0

21 2 0

0

22 2 0

0 0

23 3 4 2

3 ,

3 ,

.

E E E e a

E E E e a

E E E E

+

−

≡ = −

≡ = +

= = =

E

E (15.65)

The degeneracy is partly removed - only in l. For example, consider the

state with fixed l for the above system with 1l = . Then, substituting the

functions 0 0 0

22 23 24,  and ψ ψ ψ  into (15.61) we see that all matrix elements Wαβ ,

which in this case strongly depend on the magnetic number m, are equal to

zero. From physical point of view the partial removal of the degeneracy

could be expected for the following reason. Without an electric field

unperturbed Hamiltonian is spherically symmetric. Namely, the degeneracy

is due to this symmetry. The perturbation posseses an axial symmetry over

the elctrical-field vector EEEE , i.e. along the axis Z. The perturbation does not

remove entirely the symmetry and part of the degeneracy remains.

In Fig. 15-1 are shown both the splitting of the level 2n =  and of the

Figure 5- . Splitting of the level n = 2 of the H atom in an electric field EEEE . As a

consequence the Stark effect is observed - the splitting of the spectral line: a) without an

electric field, b) with a constant elctric field.
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resonance Lyman line. The energy level 0

2E  splits in three sublevels and the

resonance line in three lines , which is the Stark effect.

The condition (15.45) for the applicability of perturbation theory is

satisfied even for a very strong field. For example, for 910=E  V/m we have
1

03 3.10E a e
−Δ = ≈E eV. At the same time 0 0

2 1 10E E− ≈ eV and,

consequently, 0 0

2 1 ,E E EΔ << − which is the condition of applicability in this

case.

SUMMARY

A function ( )xψ  can always be expanded over a complete set of

eigenfunctions ( )k
xψ  of an operator M̂ :

( ) ( )
k

M k
x C xψ ψ= ∑ .

The set of coefficients 
k

C  completely determines the function ( )xψ .

Therefore we can use these coefficients instead of the function ( )xψ . We

say that the set 
k

C  is the function ( )xψ  in M-representation. An arbitrary

function ( )xψ  in M-representation is a one column matrix, whose elements

are superposition coefficients in the expansion of ( )xψ  over the

eigenfunctions of the operator M̂  of the quantity M. The eigenfunctions of

the operator in an eigenrepresentation are always δ -function.

Not only the functions, but also the operators can be given in different

representations. Operator N̂  in M-representation is given by a matrix, whose

elements are determined in the following way:

( ) ( )ˆ .
i k ik

x N x dx Nψ ψ
∞

∗

−∞

≡∫

Here ( )i
xψ  and ( )k

xψ  are eigenfunctions of the operator M̂ .

In eigenrepresentation the operator matrix is diagonal and the values of

its elements are equal to the eigenvalues of the operator.

Very often the Hamiltonian of a quantum system can be represented as a

sum of two operators:

0ˆ ˆ ,H H Hλ ′= +
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where is a small parameter. The operator ˆ 'Hλ  is called a perturbation

operator and the operator 0
Ĥ  - an unperturbed Hamiltonian. The theory for

the determination of the total-Hamiltonian's approximate eigenfunctions is

called perturbation theory. The perturbation method is applicable if the

matrix elements of the perturbation operator are small with respect to the

distance between the corresponding levels of the unperturbed system:

0 0
1.mi

i m

H

E E
λ

′
<<

−

Perturbation theory shows that in the first order approximation the perturbed

ith state is described by all eigenfunctions 0

k
ψ  of the unperturbed

Hamiltonian:

( )10 0 0

(0) 0
.mi

i i i i m

m i i m

H
C

E E
ψ ψ λ ψ ψ

≠

′⎛ ⎞
= + +⎜ ⎟−⎝ ⎠

∑

(The unperturbed state is described by the function 0

i
ψ .) Its energy is

changed by a small correction '

ii
Hλ

( )0 00 0ˆ .
i i ii i i i

E E H E H dVλ ψ λ ψ∗′ ′= + = + ∫

For a degenerate system under the influence of perturbation the degenerate

level 0

i
E  is split in sublevels. The perturbation removes the degeneracy fully

or partly. A degenerate system has always some degree of symmetry. This

symmetry is characteristic also for its Hamiltonian. In the most general case

perturbations do not posses such symmetry. Therefore, the influence of the

perturbation on the different states of the degenerate system is not the same.

A result of this perturbation influence is the splitting of the degenerate

levels. If the perturbation does not have any symmetry the degeneracy is

fully removed. If its symmetry is of lower degree than the system, the

removal is partial. If its symmetry is the same as the system the degeneracy

remains.

When an atom (for example hydrogen) is located in electric field EEEE  the

last plays a role of a perturbation. Without electric field unperturbed

Hamiltonian of the atom is spherically symmetric and its states are

degenerate. The perturbation posseses the axial symmetry along the vector of

the electric field EEEE . Due to the electric field the degenerate levels split and

the degeneracy is partly removed. This splitting is known as Stark effect.
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QUESTIONS

1. What does it mean to have a function in different representations?

2. How does a function look in A-representation?

3. What does an eigenrepresentation mean?

4. What are the wave eigenfunctions of a state of a continuous physical

variable in an eigenrepresentation?

5. Give the operator N̂  in M-representation.

6. What is the form of an operator in an eigenrepresentation?

7. What is the essence of perturbation theory?

8. How do we determine the solution of the perturbed Schrodienger

equation?

9. What is the criterion of validity of perturbation theory?

10.What is the change of the energy levels of a nondegenerate state and a

degenerate state within the first order approximation?

11.What is the change of the wave function of a non-degenerate state and a

degenerate state in first order approximation in the presence of a

perturbation?

12.How does a perturbation influence the degeneracy of a system?

13.What is the Stark effect?

14.How does the level 2n =  of the H-atom split in electric field?

15.How does the Stark effect in the hydrogen and other atoms differ?

16.Why does the electric field remove only partly the degeneracy of the

hydrogen?

17.Starting from the interaction between a dipole and an electric field,

explain physically why the matrix elements of the state 0m ≠  for the

linear Stark effect are equal to zero.

PROBLEMS

1. Determine in the energy representation the Hamilton operators of: a) a

particle in an infinite square potential well; b) a quantum rotator; c) a

quantum harmonic oscillator; d) a hydrogen atom.

2. The H atom in its ground state is in constant homogeneous electric field

E , which is directed along the Z-axis. Prove that with an accuracy within

the first order approximation the energy of the ground state is not

changed.

3. The energy of interaction between an electric dipole with a dipole

moment d and an electric field is E = −dEEEE . Using the result of Section

15.4, determine the dipole moments of the states with energies

 and  E E+ − (15.65).
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4. Find the wave functions of the perturbed levels with energy  and  E E+ −

(15.65) of the hydrogen atom in electric field.

5. Find the correction EΔ  to the energy 1E  of the ground state of the

hydrogen-atom electron, which is due to the gravitational interaction

between the proton and the electron. Determine the relation 1/E EΔ .



Chapter 16

SPIN

16.1 Spin, Spin Matrices and Spin Functions

Experimental results – the Stern-Gerlach experiment and two traces;

magnetic and electric interaction; spin – an intrinsic angular momen-

tum of the electron; analogy between the orbit and spin angular mo-

mentum; spin operators in 
z

S -representation; the Pauli matrices; the

state of the atom and four observables; spin functions; the spinors. 410

16.2 Addition of Angular Momenta in Quantum Mechanics

Addition of classical angular momenta; maximal sum of two angular

momenta; minimal sum; vector diagram; the addition rule of angular

momenta. 416

16.3 Total Angular Momentum

Addition of the spin and orbital momenta; quantum numbers j and 
j

m ;

quantum numbers for an electron in an atom; orbital, spin and total
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16.1 SPIN, SPIN MATRICES AND SPIN FUNCTIONS

In classical mechanic we have been persuaded that an electron with an

orbital angular momentum L has a magnetic dipole moment μ. Due to this

magnetic moment an electron interacts with a magnetic field. It is logical to

expect that an electron with an orbital angular momentum equal to zero,

0=l , will not interact with a magnetic field. This is true both for a free

electron and an electron in an atom in s-state. In 1922 Otto Stern and Walter

Gerlach conducted an experiment, whose results were unexpected. Their

experimental scheme is shown in Fig. 16-1. A beam of Ag atoms passes

through an inhomogeneous magnetic field. The outer electrons of the atoms

are in s-state. Their orbital angular momentum is zero (the total orbital

angular momenta of the remain electrons, which form a completely filled

subshell, is equal to zero - this question is discussed in detail in Chapter 19).

After passing through the inhomogeneous magnetic field the electron beam

Figure 16-1. The Stern-Gerlach experiment.
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is registered by the screen on which two bright traces are observed. This ex-

perimental result could not be explained with the known until then quantum-

mechanics methods. It was clear that something is not accounted for.

Another experimental result confirmed this doubt. An observation with a

sensitive apparatus proved that many spectral lines are actually doublets.

Instead of the Lyman line, a double line is observed (see Fig. 17-8). The

transition of the first excited level of Na to the ground state ( sp 33 → ; see

Fig. 17-9) leads not to a single line but to a well known yellow doublet,

consisting of two very close lines 5890 Å and 5896 Å. The distance λΔ
between the lines is very small in comparison to the wave length , i.e.

310~/ −Δ λλ . When we obtained the energy levels (Chapter 13) we

accounted for the electrostatic interaction between the nucleus and the

electron, but not for the magnetic one. The interaction energy of the nuclear

electric and the magnetic fields with the electrons are of the order
310~/ −

cv  ( v  is the electron velocity), i.e. of the order λλ /Δ . It is logical

to assume that the line splitting is due to the magnetic interaction.

Both the effect of Stern-Gerlach and the doublet lines can be explained if

the electron in s-state possesses another (besides the orbital) angular

momentum. These facts and several other experimental results motivated

Goudsmit and Uhlebeck in 1925 to hypothesize that every electron has, in

addition to the orbital angular momentum L, an intrinsic angular momentum

S (spin). The picture is analogous to the motion of the Earth - it has an

orbital angular momentum, because of the rotation around the Sun and an

intrinsic angular momentum, because of its spinning about its own axis. The

spin of electron is a quantum quantity which has no the classical analog.

The intrinsic angular momentum of the electron is an inner characteristic

It cannot be taken away, like its charge e. This intrinsic characteristic has

vector property - it may have different orientations. Judging by the

experimental results of Stern and Gerlach, the spin can have two components

over the Z-axis (over the physically given direction). The spin is mechanical

moment of the momentum. Because of this its mathematical description is

equivalent to the formalism of the orbital angular momentum (we shall

underline that every quantum mechanical moment obeys this formalism).

The number analogous to the orbital number l defines the spin magnitude -

this quantum number s is called a spin quantum number. The number of the

components of L is equal to 12 +l . Consequently, taking into account the

result of the Stern-Gerlach experiment for the component number of S, we

obtain 212 =+s . From here we determine the spin quantum number

2/1=s . Unlike the orbital number l, which is an integer, the spin number is

half-integer. (In general, from the equality ka =+12  it is clear that for an

odd k (odd number of components) the number a is an integer and for an



412 Chapter 16

even k (even number of components) a is half-integer.) The components are

defined by the magnetic spin number 
s

m (an analog of the orbital number

m). It takes the values from -s to +s through the unity, i.e. 2/1±=
s

m . For

the magnitude of the spin and its components over the Z-axis we can write

( ) 1 1
1 1 3,

2 2 2

.
2

z s

S s s

S m

⎛ ⎞= + = + =⎜ ⎟⎝ ⎠

= = ±

(16.1)

The spin is described by the operator Ŝ , which has three components:

ˆ ˆ ˆ,   and  .
x y z

S S S  Two allowed orientations of the spin vector are shown in

Fig. 16-2a. Similarly to the orbital angular momentum the quantities
2  and  

z
S S  are compatible, while ˆ ˆ and  

x y
S S  are incompatible (Fig. 16-2b).

Figure 16-2. The vector diagram (a) and the vector interpretation of the electron spin (b). Two

orientations of the spin are allowed; the magnitudes of the spin S and of the component 
z

S

are determined, while 
yx

SS and  can vary.

The characteristic feature of one angular momentum operator is its

commutation with the operators of its components. Therefore the operators

zyx
SSSS ˆandˆ,ˆ,ˆ2

 obey the same commutation relations as the operators

zyx
LLLL ˆandˆ,ˆ,ˆ2

 do.

The analogy between the spin and the orbital angular momentum allows

us to write the following:
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( )

2 2 2 2

2

Orbital angular momentum
ˆ ˆ ˆ ˆ( )

1 ,

0  1,  2, ...,

,

- magnetic number,

0,  1,  2, ...,
ˆ ˆ ˆ ˆ ,

ˆ ˆ[ ] 0,   ,  ,  z,

ˆ ˆ ˆ[ ] ,

ˆ ˆ ˆ[ ] ,

ˆ ˆ ˆ[ ] ,

j

x y z

z

x y z

x j

x y z

z x y

y z x

L , L , L ,

L l l

l ,

L m

m

m

L L L L

L L x x y

L L i L

L L i L

L L i L

= +
=

=

= ± ±
= + +

= =

=
=
=

L

( )

2 2 2 2

2

 Spin angular momentum
ˆ ˆ ˆ ˆ ( )

 1 ,

 1/ 2,

 ,

 - magnetic spin number

 1/ 2

ˆ ˆ ˆ ˆ ,

ˆ ˆ [ ] 0,   ,  ,  z,

ˆ ˆ ˆ [ ] ,

ˆ ˆ ˆ [ ] ,

ˆ ˆ ˆ [ ] .

j

x y z

z s

s

s

x y z

x j

x y z

z x y

y z x

S , S , S ,

S s s

s

S m

m

m

S S S S

S S x x y

S S i S

S S i S

S S i S

= +
=

=

= ±
= + +

= =

=
=
=

S

              (16.2)

According to the shown analogy the operator of the z-component of spin

ˆ
z

S  has two eigenvalues: / 2  and  / 2− . According to the representation

theory (Section 15.1) the operator ˆ
z

S  in eigenrepresentation (see (15.15) has

the following form:

0
2ˆ .

0
2

z z
S S= =

−
(16.3)

In the same 
z

S -representation the ˆ ˆ and  
x y

S S  are written as follows:

ˆ
x x

S S= =
0 0

2 2ˆ, .

0 0
2 2

y y

i

S S

i

−
= = (16.4)

Very often the matrices ,   and
x y z

σ σ σ  are used instead of the

matrices (16.3) and (16.4), which are connected with the corresponding

operators in the following way:

ˆ ˆ , , , .
2

xj xj j
S x x y zσ= = (16.5)
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Comparing (16.5) with (16.3) and (16.4) we obtain

0 1 0 1 0
ˆ ˆ ˆ, , .

1 0 0 0 1
x x y y z z

i

i
σ σ σ σ σ σ

−
= = = = = =

−
(16.6)

These are called Pauli matrices.

Until now we have described the state of an atom electron by the wave

function ( ), ,
nlm

x y zψ  or equivalently, by the three quantities 2,  and 
z

E L L .

The discovery of the intrinsic angular momentum S of the electron shows

that it has a fourth degree of freedom. Its state can be characterized by the

fourth quantities 2, ,  and 
z z

E L L S , correspondingly by the quantum numbers

, ,  and  
s

n l m m . They form a complete set of physical quantities. As S is

singly expressed by 
z

S  (this is not the case for the orbital angular

momentum) the giving of 
z

S  defines S and generally speaking the spin state.

Then the wave function will depend on one more argument 
z

S :

( ), , , .
s

nlmm z
x y z Sψ ψ= (16.7)

The spin variable has only two values / 2 and / 2−  and therefore we

could say that instead of the function (16.7) there are two wave functions.

Commonly they are represented as a column matrix:

1

2

,
ψ

ψ
ψ

=
1

2

, , , ,
2

, , , .
2

x y z

x y z

ψ ψ

ψ ψ

⎛ ⎞= ⎜ ⎟⎝ ⎠
⎛ ⎞= −⎜ ⎟⎝ ⎠

(16.8)

The energy of the spin motion is negligible compared to the orbital

motion. This allows us to consider both motions independently and to

present the function (16.7) as a product of the coordinate wave function

( ), ,
nlm

x y zψ  and the spin function ( )z
X S :

( ) ( ) ( ), , , , , .
s

nlmm z nlm z
x y z S x y z X Sψ ψ ψ= = (16.9)

We can write an analogous equality for the functions 1 2  and  ψ ψ  in

(16.8). They differ by the spin functions: ( )z
X S+ , for the spin-up (further

we shall call it the positive orientation of the spin - 
2

z
S = ) and ( )z

X S− , for
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the spin-down (further we shall call it the negative orientation of the spin -

2
z

S = − ):

( ) ( ) ( )

( ) ( ) ( )
1

1

, , , , , ,
2

, , , , , .
2

nlm z

nlm z

hx y z x y z X S

hx y z x y z X S

ψ ψ ψ

ψ ψ ψ

+

−

= =

= − =
(16.10)

The functions ( )z
X S±  are eigenfunctions of the operator ˆ

z
S :

( ) ( )

( ) ( )

( ) ( )

ˆ ,

1
,   ,    ,

2 2

1
, , .

2 2

z z s z

s z z z

s z z z

S X S m X S

h
m S X S X S

h
m S X S X S

+

−

=

= = =

= − = − =

(16.11)

If the electron is in a state described by the wave function 1ψ , the

probability to measure a spin / 2
z

S =  is equal to unity, and a spin

/ 2
z

S =  - to zero. Taking into account that the function ( ), ,
nlm

x y zψ  is

normalized we easy obtain

( )

( )

22 2

22 2

, , .1 1,
2 2 2

, , .1 0.
2 2 2

z nlm

z nlm

h
W S X x y z dV X

h
W S X x y z dV X

ψ

ψ

+∞

+ +
−∞

+∞

+ +
−∞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − = = − =⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

∫

∫
(16.12)

This, together with similar considerations for ( )z
X S− , allows us to write

1, 0,
2 2

0, 1.
2 2

X X

X X

+ +

− −

⎛ ⎞ ⎛ ⎞= − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞+ = − =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

(16.13)

The eigenfunctions ( ) ( )  and  
z z

X S X S+ −  of the operator ˆ
z

S  can be used

as a basis. For such a basis the expansion (15.5) for ( ) ( )  and  
z z

X S X S+ −

takes the following form:
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1. 0. ,

0. 1. .

z k k z z z

k

z k k z z z

k

X S C X S X S X S

X S C X S X S X S

+ + −

− + −

= = +

= = +

∑
∑

(16.14)

Hence, according to (15.6) the functions ( ) ( )  and  
z z

X S X S+ −  in 
z

S -

representation can be written as follows:

( ) ( )1 0
, .

0 1
z z

X S X S+ −= = (16.15)

Very often they are written in the form of the Pauli matrices (16.6)

( ) ( )1 0 0 0
, .

0 0 1 0
z z

X S X S+ −= = (16.16)

and are called spinors.

16.2 ADDITION OF ANGULAR MOMENTA IN

QUANTUM MECHANICS

In the previous section we established that the electron has two angular

momenta: L and S.  It is natural to pose the question for its total angular

momentum, which is a sum of both angular momenta. But for the sum of

two angular momenta, because of their quantum character (more accurately

said, because of their space quantization), we cannot use the rule for

summation of two vectors from classical mechanics. Therefore, first we shall

establish the rules for summation of two orbital angular momenta

1 2 and  L L  in quantum mechanics.

In classical mechanics the total angular momentum L is a vector sum of

1 2 and  L L  (Fig. 16-3).

In quantum mechanics the vectors 1 2 and  L L  can accept only discrete

directions. Depending of their orientation in space we obtain different

orientations and correspondingly different magnitudes of the total vectors L.
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In addition, the total vector L also cannot be arbitrary oriented, but its

Figure 16-3.  The classical addition of the angular momenta. The addition of the both vectors

L1 and L2 gives the resultant vector L.

components over the Z-axis must be integer multiples of . So, we add the

angular momentum 1L  with quantum numbers 1 1  and  l m to the angular

momentum 2L  with quantum numbers 2 2 and  l m  and expect to obtain the

angular momentum L  with quantum numbers   and  l m :

( )1 1 1 1 1 1 1 1 1 1: 1 ,   ,   , 1, . . . ,0, . . . , ,
z

l L l l L m m l l l= + = = − − +

( )2 2 2 2 2 2 2 2 2 2: 1 ,     ,  , 1, . . . ,0, . . , ,   
z

l L l l L m m l l l= + = = − − + (16.17)

( ): 1 ,           ,     , 1, . . . ,0, . . . , .   
z

l L l l L m m l l l= + = = − − +

Let us try to connect the unknown l and m with the given

1 2 1 2, ,  and , .l l m m We shall note that the maximum possible projection of an

orbital angular momentum with the quantum number l is

max max .
z

L m l= = (16.18)

We have already underlined that depending on the orientation of

1 2  and  L L  the different total vectors are obtained. First, we shall determine

among them these with maximal and minimal magnitudes max min and  L L .

Orient the vectors 1 2 and  L L  in a way to have maximal projections over the

Z-axis. If these projections are with equal directions the sum 1 2+L L  will
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determine the vector L with the maximal magnitude maxL . If the projections

are with opposite directions the sum 1 2+L L  will determine the vector L

with the minimal magnitude minL . Every other combination of possible

orientations of the two angular momenta 1 2+L L  will give the total vector

with a magnitude lower than maxL  and larger than minL .

Let's find the maximal projection 
maxmax z

L  of the vector maxL , which is a

sum of maximal projections
max max1 2 and  

z z
L L  of the vectors 1 2  and  L L  (Fig.

16-4):

max max maxmax 1 2 .
z z z

L L L= + (16.19)

Figure 16-4. Adding of L1 and L2, oriented so that their projections over Z-axis are maximal

and with equal directions, we obtain the maximal possible angular momentum Lmax. This

angular momentum with the orbital number lmax =l1+ l2 can have 2lmax+1 orientations with

respect to the Z-axis.

According to (16.18) these projections can be determined by the orbital

quantum numbers:

.

,

,

222

111

maxmaxmax

maxmax

maxmax

maxmax

lmL

lmL

lmL

z

z

z

==
==

==
(16.20)

After substituting these values in (16.19) we obtain

( )
maxmax max 1 2 max 1 2 .

z
L l l i l l l= = + ⇒ = + (16.21)
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The resultant vector maxL  is an orbital angular momentum and it can be

oriented in max2 1l +  different ways with respect to the Z-axis. Hence, the

magnitude of the vector is

( )max max max max 1 21 ,L l l l l l= + = + . (16.22)

Now, let's determine the minimal summed up vector minL , which as we

have already mentioned, is obtained when 1 2 and  L L  have maximal, but

oppositely oriented projections. Its maximal projection 
maxmin z

L  over Z-axis

(Fig. 16-5) is

max max max

max max

min 2 1

min 2 1

,

.

z z z
L L L

l m m

= −

= −
(16.23)

Substituting (16.18) in the right-hand side of the last equality, we deter

Figure 16-5. Adding L1 and L2, oriented so that their projections with respect to the Z-axis are

maximal but with opposite directions, we obtain minimal possible total angular momentum

Lmin with orbital number lmin =l1+ l2, which can have 2lmin+1 orientations with respect Z-axis.

mine the orbital number minl  of the minimal orbital angular moment:

min 2 1.l l l= − (16.24)

For our discussion we choose 2 1l l>  (see Fig. 16-4 and Fig. 16-5). If

1 2l l>  instead of (16.24) we can write min 1 2l l l= − . It is clear that in the

general case we shall write
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min 2 1l l l= − . (16.25)

All other possible orientations of 1 2 and  L L  give the remaining total

angular momenta L with orbital numbers l, whose values are integers in the

interval min maxl l÷ , i.e.

1 2 1 2 1 2 1 2

2 1 2 1 2 1 1 2

, 1, 2, . . . , ,

, 1, 2, . . . , .

l l l l l l l l l

l l l l l l l l l

= − − + − + +

= − − + − + +
(16.26)

Adding two quantum mechanical moments with orbital numbers 1 2 and l l

we obtain 1 1 22 1 (for  )l l l+ <  or 2 2 12 1 (for  )l l l+ <  different total moments.

Let us summarize: adding two quantum  angular momenta with  orbital

numbers 1 2   l and l  we obtain different angular momenta with the quantum

numbers l, which have values

1 2 1 2 1 2 1 2, 1, 2, . . . , .l l l l l l l l− − + − + + (16.27)

Constants of the system motion, whose parts have the angular momenta

1 2  and  L L , are 2 2 2

1 2, ,  and 
z

L L L L . Both components  and 
x y

L L  and the x

and y-components of 1 2  and  L L  are indeterminated. The vector interpreta-

tion (Fig. 16-6) visually illustrates this. In the figure the vector L precesses

Figure 16-6. Vector interpretation of the sum 
21

LLL +=  of two angular momenta - the

vectors 
1L  and 

2L precess around the vector L , and L  - around the axis Z.
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about the Z-axis, because 1 and  L L  are determined; 1 2 and  L L  precess

about L, because 1 2 and  L L  are determined, but all their components are

undetermined.

16.3 TOTAL ANGULAR MOMENTUM

The electron has an orbital angular momentum L and a spin angular

momentum S. From the summation of these momenta we obtain the total

angular momentum of the electron, which is denoted as J:

+ =L S J . (16.28)

According to the rule of quantization of angular momentum the total

angular momentum is

( )1J j j= + (16.29)

and the number j, which is called total quantum number, takes values from

    l sl s to− +  through the unity, i.e.

1 2

1
  for  0,

2

1 1
 ,        for   0.

2 2

j l

j l j l l

= =

= − = + ≠
(16.30)

The case 0l =  is trivial - simply there is no summation (the one of the

vectors is zero). In the general case we obtain two different total angular

momenta with the corresponding quantum numbers

( )

( )

1 1 1 1

2 2 2 2

1
1 , ,

2

1
1 , .

2

J j j j l

J j j j l

= + = −

= + = +
(16.31)

The angular momentum 1J  is obtained when the components of the

vectors L and S are with opposite directions and the angular momentum 2J

when the components are with equal directions. One can say that in the sum

2J  the vectors L and S are parallel (Fig. 16-7a) and in the sum 1J  -

antiparallel (Fig. 16-7b).
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It can be shown strictly that , ,   and  
z

J J L S  are constants of the motion.

This is clear from the vector interpretation in Fig 16-7.

Figure 16-7. The total angular momentum of the electron has two values: a) J2 (for j2=l+1/2),

when L and S are parallel; b) J1 (at j1=l-1/2), when L and S are antiparallel.

The components of the total angular momentum, similarly the orbital and

spin angular momenta, are determined by a number, which is called the total

magnetic quantum number and denoted by 
j

m :

.
z j

J m= (16.32)

The possible values of 
j

m  are from -j to +j through the unity. For 
1j

m

and
2j

m they are respectively (see (16.31))

1

2

1 1 1 1 1
, 1, . . . , , , . . . , ,

2 2 2 2 2

1 1 1 1 1
, 1, . . . , , , . . . , .

2 2 2 2 2

j

j

m l l l

m l l l

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − − − + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + − + + − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(16.33)

We shall note that the total angular momentum of an electron is half-

integer and therefore has not a zero component (similarly to its spin angular

moment.

Let's make a brief summary for the quantum numbers, which

characterized the state of the electron in H-atom, using the results from the

previous and present chapters. It is presented in Table 16-1.
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Table 16-1. Quantum numbers and the corresponding physcal quantities

Nota-

tion

Quantum

numbers

Values Characterized

quantity

Dependence of the

quantity

n principal 1, 2, 3, ... E
2/ nE

n
−ℜ=

l orbital 0, 1, 2, 3,..., n - 1 L ( )1+= llL

m magnetic -l, -l + 1,..., 0,..., l Lz
mL

z
=

s spin 1/2 S ( )1+= ssS

ms magnetic

spin -1/2, 1/2 Sz sz
mS =

j total l - 1/2, l + 1/2 J ( )1+= jjJ

mj total

magnetic -j, - j + 1,..., i1/2, 1/2,   ,  j Jz jz
mJ =

In spectroscopy the electron state is denoted with so called terms, which

are of the following kind:

2 1s

j
n L

+
, (16.34)

where L is the letter notation of the orbital quantum number: S, P, D, F etc.

The origin of these letters is spectroscopic. In the analysis of the hydrogen

spectrum we have seen that the spectral-line series are obtained from the

transition to fixed level. Similar series were observed for the other elements

even before quantum mechanics. The series were called: sharp s, principal p,

diffuse d, fundamental f etc. With the development of quantum mechanics it

became clear that these series correspond to the transitions to the states with

corresponding orbital numbers: 0,s −  1,p −  2,d −  3f −  etc.

The number 2 1s +  in the term notation shows the multiplicity of the

energy level.

Now, let us find the total angular momentum for two specific cases - the

electron states with 0  and  1l l= = . For the state 0l =  the quantum

numbers and the angular momenta are as follows:

1 1 1
0, , , ,

2 2 2

1 1
0, 3, 1 3, .

2 2 2 2 2

j

z

l s j m

L S J J

= = = = ±

⎛ ⎞= = = + = = ±⎜ ⎟⎝ ⎠

(16.35)
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For 0L =  the vector diagram does not differ from that in Fig. 16.2,

which is expected - the total angular momentum coincides with spin. For the

p-state we get

1 2 1 2

1 2 1 2

1 1 3 1 1 3
1, , , , , , ,

2 2 2 2 2 2

3 3 15 3
3, , , , , .

2 2 2 2 2 2

j j

z z

l s j j m m

L S J J J J

= = = = = ± = ± ±

= = = = =± =± ±
(16.36)

The terms of the states with quantum numbers 1 2  and   j j  are 2

1/ 2P

2

3/ 2and P . The vector diagrams of both terms are shown in Fig. 16-8.

Figure 16-8. Vector diagrams of the total angular momentum of the 2P1/2 and 2P3/2 terms.

Both total angular momenta do not have a zero projection.

16.4 LS AND JJ COUPLING

In the atom of helium there are two electrons. The angular momenta are

four: 11, SL  of the one electron and 22 , SL  of the other electron. Their sum

determines the total momentum of the system with two electrons. In classical

mechanics the sum of the angular momentum vectors does not depend on

their order. In quantum mechanics because of the specific rule for the

summation of the angular momenta, due to their quantum character, the

result depends on the order of the addition. The order of addition is

determined by the nature of interaction between the electrons. If the energy

of the interaction is small, the orbital motion of each of the electrons is

practically not perturbed by the other and it may be considered as
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independent. Then, the orbital and spin angular momenta of each electron

are added and the total angular momentum is a sum of the total momenta of

both electrons:

1 1 1

1 2

2 2 2

.
+ = ⎫

⇒ + =⎬+ = ⎭

L S J
J J J

L S J
(16.37)

Such  kind of interaction is called JJ coupling. It is illustrated in Fig. 16-

9. The electrons retain their independence and the vectors and  
i i

L S  of each

of them precess about the corresponding total angular momentum 
i

J . On the

other hand, the total momentum precesses about Z-axis to satisfy the angular

momentum uncertainty principle (not shown in the figure). The total angular

momentum J and its z-component 
z

J  are constants of the motion.

When the interaction between two electrons is very strong, the orbital

angular momenta and the spin angular momenta unite separately in the

vectors of the total orbital angular momentum L and the total spin angular

momentum S, and then the last are summed to form the total angular

momentum of the system:

1 2

1 2

.
+ = ⎫

⇒ + =⎬+ = ⎭

L L L
L S J

S S S
(16.38)

This kind of interaction is called LS coupling. It is shown in Fig. 16-10.

Figure 16-9. The scheme of the JJ coupling.      Figure 16-10. The scheme of the LS coupling.
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The vectors 1 2 and  L L  precess about the vector L and the spin angular

momenta 1 2 and  S S  about S. On the other hand the angular momenta L and

S precess about J, which in its turn precesses about the Z-axis. As in the JJ

coupling, here J and 
z

J  are constants of motion. This coupling is often

called Russel-Sounders coupling by the names of its discoverers.

The LS coupling dominates in the atoms in the beginning and the middle

of the periodic table. It is encountered more often. The JJ coupling

dominates at the heavy elements.

We shall consider the LS coupling between two electrons, one in p-state

and another in d-state. Addition of both angular momenta 1 2 and  L L with

quantum numbers

1 21 and 2,l l= = (16.39)

according to the rule of summation of the mechanical moments (16.27) leads

to an angular momenta with the following orbital numbers l

2 1 1 2, ..., ,

1, 2, 3.

l l l l l

l

= − +
=

(16.40)

Similarly, the addition of the spin angular momenta with the spin

quantum numbers 1 2 1/ 2s s= =  leads to spin S with the spin numbers:

0,1.s = (16.41)

The total quantum number j of the total angular momentum J according

to the rule of a summation of mechanical moments, namely of the orbital

angular momentum with a quantum number l (16.40) and the spin angular

momentum with a number s, has the following values:

1,      1, 1,      0,1, 2,

0 2,     2,           1 2,      1, 2, 3,  

3,      3, 3,      2, 3, 4.

l j l j

s l j s l j

l j l j

= = = =⎧ ⎧
⎪ ⎪= = = = = =⎨ ⎨
⎪ ⎪= = = =⎩ ⎩

In general 12 terms are obtained:

3 3 3

0 1 2

1 1 1 3 3 3

1 2 3 1 2 3

3 3 3

2 3 4

        

0  ,           1  ,   ,  ,

,   ,   .

P , P , P ,

s P , D F , s D D D

F F F

⎧
⎪

= → = → ⎨
⎪
⎩
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The vector interpretation of the LS coupling between two electrons,

whose terms are 3
3

2
3

1
3 and, DDD , is illustrated in Fig. 16-11.

Figure 16-11. Vector model of the LS coupling for D-terms of two electrons: a) 3D1; b) 3D2; c)
3
D3.

We shall note that in Fig. 16-11 the terms 3
3

1
3 and DD  are obtained for

the same orientation of L ( 2with =m ) and 2
3
D  for a different orientation of

L ( 1with =m ).

The term 2
3
D  can be obtained also for an orientation with 2=m . In that

case  the vector of the spin angular momentum will have a zero projection,

i.e. .0=
s

m

SUMMARY

To explain the results of the Stern-Gerlach experiments and the presence

of many doublet lines in the atom spectrum Goudsmit and Uhlebeck

hypothesized that every electron has an intrinsic angular momentum S,

which is called spin. The spin is a quantum quantity which does not have a

classical analog (therefore the operator of the spin cannot be obtained in a

standard way, like for example, the operators ˆ ˆ  and  L H , and cannot be

expressed through the co-ordinates).

All kinds of quantum mechanical angular momenta obey the same laws

and are described with equal mathematical formalism. Both their magnitude
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and the magnitude of their components are determined by quantum numbers.

For the spin they are the spin quantum number 2/1=s and magnetic spin

quantum numbers 2/1±=
s

m . Analogously to the known orbital angular

momentum, for the magnitudes of the spin angular momentum and its

components we obtain:

( ) 1 1
1 1 3,                  .

2 2 2 2
z s

S s s S m
⎛ ⎞= + = + = = = ±⎜ ⎟⎝ ⎠

The spin is described by the operators of the square of the spin 2
Ŝ  and of

its components .ˆandˆ,ˆ
zyx

SSS  Usually the operators 
zyx

SSS ˆandˆ,ˆ are given

in
z

S -representation (two-dimensional matrices). These matrices, divided by

2/ , give the Pauli matrices 
jx

σ :

,        , , .
2

xj xj j
S x x y zσ= =

The spin state is completely determined by the eigenfunctions ( )
z

SX +

and ( )
z

SX −  of the operator 
z

Ŝ . In 
z

S -representation these functions, which

are column matrices, are written in the form of Pauli matrices and are called

spinors.

By a summation of two angular momenta with quantum numbers

1 2 and  l l  total angular momenta with quantum numbers l

1 2 1 2 1 2 1 2, 1, 2, . . . ,l l l l l l l l− − + − + +

are obtained.

This is the rule of the angular-momenta addition in quantum mechanics.

By an addition of the orbital angular momentum L and the spin angular

momentum S of an electron, the total angular momentum of the electron J is

obtained. The magnitude and components of the total angular momentum are

determined by the total quantum number j and the total magnetic number

j
m :

( )1 ,            .
z j

J j j J m= + =

In the spectroscopic notation the electron state is given by the following

terms:
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j

s

Ln

12 +
,

where L is the letter notation of the orbital quantum number and 2s+1

determines the multiplicity of the energy levels.

The total angular momentum of two or more electrons depends on the

kind of their interaction. If the energy of the interaction is small, the

electrons can be considered as independent. Then the orbital and spin

angular momenta of each electron are added and the total angular

momentum of the system is the sum of the total angular momenta of the both

electrons. Such an interaction is called JJ coupling. It is characteristic of the

heavy elements and dominates at the end of the periodic table.

When the interaction between two electrons is very strong the orbital and

spin angular momenta are united separately in vectors called orbital angular

momenta L, and spin angular momenta S, of the atom. Such an interaction is

called LS coupling. It dominates in the beginning and the middle of the

Mendeleev table.

QUESTIONS

1. What is a spin?

2. Why do we conclude from the Stern-Gerlach experiment that the spin

quantum number is half-integer?

3. What are the values of the spin number and the magnetic spin number?

4. What are the possible orientations of the spin vector and what is its

magnitude?

5. What is the form of the operator 
z

Ŝ  in eigenrepresentation?

6. How are angular momenta added in quantum mechanics?

7. What is the total angular momentum of an electron called and what are

the possible values of its total quantum number?

8. What is the difference between the vectors of the total angular

momentum and the orbital angular momentum?

9. What is the vector model of the total angular momentum?

10.Which quantum numbers do we use for a description of the electron state

of the atom and which quantities do they determine?

11.What is a spectral term and what is the meanings of its notations?

12.What is the difference between the JJ coupling and the LS coupling?

13.What are the vector interpretations of the JJ coupling and the LS

coupling?
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PROBLEMS

1. Find the angle between the spin vector and the Z-axis.

2. For d-electron in single-electron atom find:

a) the quantum numbers ;and, jsl

b) the angular momenta JSL and, , and plot their vector diagrams;

c) the angles between L and S.

3. For the term 2/5D  find the possible values of zand Jm
j

. Can the spin

number of this term take the value 1/ 2, 0?s s= =
4. For an s-electron and a p-electron find the spectral terms for LS coupling

and plot the vector diagrams of the angular momenta L, S and J.

5. Calculate the total angular momentum of two electrons with orbital

quantum numbers 2and1 21 == ll for JJ coupling. Plot the vector

diagrams for the total angular momenta and their vector interpretation.

6. What are the possible values of l of three p-electrons?

7. Prove that ( ) ( ) ( )1 1 1
2

j j l l s s= ⎡ + − + − + ⎤⎣ ⎦LS .
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INTERACTION OF AN ELECTRON IN AN

ATOM WITH A MAGNETIC FIELD

17.1 A Magnetic Field and an Electron in an Atom

Rotational move of an electron – current, magnetic dipole, orbital

angular momentum; Lande g-factor, spin and orbital magnetic

moments; precessions of the moments – frequency; potential energy of

interaction; an explanation of the Stern-Gerlach experiment. 432

17.2 The Spin-Orbit Interaction

The interaction of the magnetic field of the nucleus with the spin

of the electron; spin-orbit interaction – fine structure; examples –

H and Na; relativistic effects for H; selection rules and their
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lines. 438

17.3 Normal Zeeman Effect

Normal Zeeman effect at 0=S and 0≠S ; energy levels; transitions

and spectral lines of the normal Zeeman effect for s-, p- and d-states for

S=0; energy levels and transition between 3p- and 3s-states of Na in
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17.4* Coupling to the Electromagnetic Field

Schroedinger equation for an electron with a spin – Pauli equation;

nonstationary Pauli equation in uniform magnetic field; linearization;

stationary solutions – eigenfunctions and eigenvalues of the energy. 448
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17.5 Anomalous Zeeman Effect

Interaction of the magnetic field with the total magnetic moment of the

electron; anomalous Zeeman effect; splitting of the levels; H-atom in a

weak magnetic field – energy levels, transitions and selection rules;

anomalous effect for Na, energy levels and transitions. 451
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17.1 A MAGNETIC FIELD AND AN ELECTRON IN AN

ATOM

In Section 4.4 we have realised that the motion of a charge particle in a

loop is equivalent to a circle current, which has magnetic dipole moment μ

(4.30). This magnetic moment is explicitly connected with the angular

momentum of the particle (4.33). Hence, an electron with the charge e and

an orbital angular momentum L produces a magnetic field of a magnetic

dipole (Fig. 17-1) with magnetic moment

Figure 17-1. The orbital motion of the electron in the atom is equivalent to the current in a

loop (a). This current produces a field of a magnetic dipole, which lines of force are in

analogy with those of the current magnetic dipole (b).
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.
2

l

e

e

m
= − Lμμμμ (17.1)

This permits us to interpret the electron in the atom as a small magnet

(Fig. 17-1b), which turns out to be a very useful qualitative description.

The formula (17.1) determines the magnetic moment, which is due to the

orbital angular momentum (according to Bohr to the orbital motion). It has

been established in Chapter 16 that the electron in an atom possesses two

more angular momenta - spin angular momentum S and total angular

momentum J. The magnetic dipole moments are also associated with them

by analogy with (17.1), namely - μs due to the spin motion and 
j

μ  due to the

total (the orbital + the spin) circular motions.

Because the angular momenta L, S and J are quantizied, the

corresponding magnetic dipole moments also take discrete values.

According to (17.1) the orbital magnetic moment μ
l
 and its component 

lz
μ

take the following values:

( )1 , .
2 2

l lz

e e

e e
l l m

m m
μ μ= + = (17.2)

Hence, for 0  0,  
l

l μ= → =  for 1  2 / 2 ,  
l e

l e mμ= → = for

2l = → 6 / 2
l e

e mμ =  etc. The values of the z-component are

multiplied by 2
e

e m . The quantity / 2
e

e m  consists only of universal

constants and is used as the unit of magnetic moment. It is called Bohr

magneton and is equal to

23 20,927.10 J/T (or A.m ).
2 4

B

e e

e eh

m m
μ

π
−= = = (17.3)

Using (17.1) and (17.3) we can present the magnetic dipole moment of

the electron in the following form:

.B

l
L

μ= (17.4)

Here we shall underline that this relationship is written for the values

 and  
l

Lμ . The vectors μl and L have opposite directions (Section 4.4)

μ
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because of the negative charge of the electron. According to (17.4) the ratio

/
l

Lμ  does not depend on the electron state. The ratio (17.4) can be written

in the form:

/
1.

/

l B

L

μ μ
= (17.5)

On the left-hand side we have the ratio of two quantities, taken in their

quantum units. The ratio of the magnetic moment in Bohr-magneton units to

the angular momentum in  units is called giromagnetic ratio g or g-factor

of Lande. For the orbital magnetic moment the giromagnetic ratio g is equal

to unit

/
, 1.

/

l B

l l
g g

L

μ μ
= = (17.6)

For the magnetic dipole moment we have

( )1 .l B

l l l B
L g l l

μ μμ μ μ= ⇒ = + (17.7)

By analogy with (17.6) we can write for the spin magnetic moment

/
,

/

s B

s
g

S

μ μ = (17.8a)

or in a vector form

.
s

B

g
μ

= − S
(17.8b)

The magnetic moment can be measured very precisely. In its expression

gs remains the only unknown quantity, i.e. we can determine the spin g-

factor. It appears to be equal to 2 (more accurately to 2,00231923). In

respect to the magnetic moment the spin motion is twice more effective than

the orbital one: 2
s l

g g= . For the spin magnetic moment it follows from

(17.8) that

( 1) .
s s B s B

S
g g s sμ μ μ= = + (17.9)

sμ
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As we have already mentioned, the total angular momentum relates to the

total magnetic dipole moment 
j

μ . The relationship (17.6) is also valid for it,

i.e. the ratio of the magnetic dipole moment 
j

μ  in units of 
B

μ  to the total

angular momentum J in units of  is equal to the Lande factor 
j

g :

/
( 1).

/

B

j

jj B

j j B

g
g g j j

J

μμ μ
μ μ= ⇒ = = + (17.10)

In this case the Lande factor 
j

g  can be calculated (see for example [4],

Section 14.7). It depends on quantum numbers ,  and s l j , as follows:

( 1) ( 1) ( 1)
1 .

2 ( 1)
j

j j s s l l
g

j j

+ + + − += +
+

(17.11)

Finally, making a summary of the three different cases, we can write:

10, 0 ( 1),   1;
l l B

l s g l l gμ μ≠ = → = + = (17.12a)

0,    0  ( 1),     2;
s s B s

l s g s s gμ μ= ≠ → = + = (17.12b)

0, 0 ( 1), ( , ).
j j B j j

l s g j j g g j l sμ μ≠ ≠ → = + = (17.12c)

Considering an electron in an atom as a magnetic dipole moment permits

us to answer the question of what is going to happen to it as a result of the

application of an external magnetic field B. From the analysis of Section 4.4

it follows, that the dipole would experience a torque N (4.25) and it would

start to precess. The precession frequency of the orbital magnetic moment

l
μ  is equal to its Larmor frequency 

L
ω  (4.28). The precession is shown in

Fig. 17-2, where the electron is shown as a small magnet.

The exact analysis shows that the frequencies of the precession of the

vectors L, S and J during the interaction of the external magnetic field with

the corresponding dipole moments differs in their g-factors:

; ; .
2 2 2

l l L l s s L s j j L j

e e e

eB eB eB
g g g g g g

m m m
ω ω ω ω ω ω= = = = = = (17.13)

As 2
s l

g g= , it follows that S precesses around B twice more quickly than

L. The precession frequency of J depends on the 
j

g -factor (17.11). Under
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Figure 17-2. Under the influence of the magnetic field B the electron orbital angular momen-

tum L precesses with an angular frequency l = gl L at an angle  around Z-axis (cos  =Lz/L).

the influence of the magnetic field B the magnetic dipole receives an

additional potential energy (4.40). For this additional energy of interaction of

the magnetic field with the orbital magnetic dipole we get:

1 1

cos

2 2

.

l l l l

e e

z

B l B L

e e LB
U g g

m m

L
g B mg B mg

θ

μ μ ω

Δ =− = =

= = =

LB
μ B

(17.14)

By analogy, for the interaction of the spin with the total magnetic dipole,

we obtain for the additional potential energy:

,
s s s B s s L

U m g B m gμ ωΔ = = (17.15a)

.
j j j B j j L

U m g B m gμ ωΔ = = (17.15b)

Performed semi-classical analysis (classical law + the Bohr rule of quan-

tization) allows us to explain the Stern-Gerlach experiment, i.e. to answer

the question what is happening to an electron in an inhomogeneous external
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field. In an uniform field the couple of forces N

m
F  and S

m
F  (Fig. 17-3a) acts

on the magnetic dipole, which is due to the spin angular momentum S.

Figure 17-3. A magnetic bar equivalent to the spin magnetic dipole of an electron (L = 0 and

S≠0) in a magnetic field. In a uniform magnetic field (a) there is only precession but not a

translational motion. In an inhomogeneous field the bar moves along the +Z-axis (b) or along

the -Z-axis (c) depending on the spin orientation.

The magnitudes of these forces are equal (because of the uniformity of the

field) but they are antiparallel. They cause the precession of the spin angular

momentum S, without changing the position of the electron. When the field

is inhomogeneous (Fig. 17-3b,c) the two forces are different. (Note that here

the form of the poles is vice versa of that one in Fig. 16-1.) Some of the

electrons in the magnetic field have a negatively orientated spin, such that

the northern pole of the equivalent magnet bar is turn upwards (Fig. 17-3b).

For them N S

m m
>F F  and the electron (the atom) moves along the +Z-axis.

When some of the electrons have a positively oriented spin, the southern

pole of the equivalent magnet bar is in the stronger field (Fig. 17-3c) and
N S

m m
<F F  - the electron (the atom) moves along the -Z-axis.

We can easily determine the net force, which acts on the equivalent mag-

netic bar, i.e. the force, acting on the electron. According to (17.15a) the

electron in B-field gains an additional potential energy 
s

UΔ . This additional

potential energy is equivalent to a force, which act to the electron. In the

Stern-Gerlach experiment the inhomogeneity determines the field gradient

( ) 0grad  dB/dz .=B s Consequently, for the force acting on the electrons we

have
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( ) .
z s s s B

d dB
F U m g

dz dz
μ= Δ = − (17.16)

As a result of the action of this force on the two possible orientations of

the spin ( 1/ 2
s

m = ± ) with respect to B, the electron beam is divided in two

beams and we observe two tracks on the registering screen (Fig. 16-1).

17.2 THE SPIN-ORBIT INTERACTION

The basic interaction between the electron and the nucleus, which is

realised through their charges, is electrostatic. But there is another additional

interaction, due to the nuclear charge's relative motion with respect to the

electron, and its spin. It is qualitatively explained by the semi-classical

theory of Bohr. If for simplicity we take the atom of hydrogen and consider

the electron motion in a circle, then the orbital motion of this negative

charge produces at the nucleus a magnetic field Be. In the rest frame of the

electron, in which the nucleus moves with respect to it (Fig.17-4), the

positive charge of the last produces at the electron the magnetic field Bn.

Figure 17-4. The motion of an electron in a Bohr-type orbit in a nuclear reference frame (a).

The same motion in the electron reference frame (b) - from the electron point of view the

nucleus moves around it and creates a magnetic field Bn.

Because the charges of the electron and the nucleus are equal but opposite

and the velocity directions of the electron and the nucleus in the given mo-

ment are opposite, both fields are equal 
e n

= =B B B . We can formally talk

about the interaction between the spin and orbital (equal to one of the

nuclear!) magnetic moment. The interaction between the nucleus magnetic

field and the electron spin magnetic moment is called a spin-orbit

interaction.

Let us consider these topics quantitatively. The motion of the charged

nucleus in the fixed frame with the velocity v− is equivalent to the current

element .e= −j v  According to Ampere's law it produces a magnetic field
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0 0

3 3
.

4 4

e

r r

μ μ
π π

× ×= = −j r v r
B (17.17)

As a result of the interaction of this magnetic field with the spin magnetic

dipole of the electron, the latest receives an additional energy:

.
s

UΔ = −μ B (17.18)

This energy is, however, in the reference frame in which the electron is at

rest. Meanwhile we are interested in the energy in the reference frame, in

which the nucleus is at rest. As the motion is relativistic, it is necessary to do

a Lorentz transformation. In the frame of the nucleus the additional energy is

twice less:

1
.

2
s

UΔ = − μ B (17.19)

This magnetic field can be expressed through the electron orbital angular

momentum .
e e

m m= × = − ×L r v v r  Multiplying the numerator and the

denominator of (17.17) by 
e

m , we obtain:

0 0

3 3
.

4 4

e

e e

e m e

r m r m

μ μ
π π

×= − =v r
B L (17.20)

Substituting B in (17.19) and taking into account that 2
s

g =  in the

relation for 
s

μ , we get:

2

2 2 3

0

1
.

4 2
e

e
U

m c rπε
Δ = SL (17.21)

This formula is equivalent to (17.15a), where the nuclear magnetic field

is in the implicit form:

1 1
, , .

2 2
s s s B s s L s

U m g B m g mμ ωΔ = = = − + (17.22)

The spin and the orbital angular momentum (through the scalar product

SB in (17.21)) determine quantitatively the interaction of an electron with
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the magnetic field of a nucleus, which is the reason to call it spin-orbit

interaction.

As we can see from (17.22), for the positively orientated spin the energy

of the state 0l ≠  increases by 
s B

U BμΔ = , and for the negatively orientated

spin it decreases by 
s B

U BμΔ = − . Of course, this can be obtained from

(17.21). This addition is essentially less than the state energy of the electron:

n
U EΔ << . Actually, determining in (17.21) the product SL (for example for

1l =  (see problem 16.2)) and substituting r from (8.3), we obtain for the

ratio 
n

U

E

Δ
 at ~ 1n  (for E see (14.41)):

2
2

2 50

2

1

1
5,325.10 .

137

k cU

E e
α −⎛ ⎞Δ ≈ ≡ = =⎜ ⎟

⎝ ⎠
(17.23)

All levels with 0l ≠  are split in two very close levels (Fig. 17-5). The

energy of the s-state does not change:

0 0 0.l B U= ⇒ = ⇒ Δ = (17.24)

Figure 17-5. Due to the spin-orbit interaction the singlet level of the state l 0 becomes a

doublet.

The set of the energy levels without taking into account the spin gives the

energy structure of the atom.  The levels, formed by splitting of the level of

the energy are called multiplet. The set of the energy levels, which are

obtained by taking account the spin-orbit interaction, is called a fine

structure. The splitting of the levels is quadratic in the constant α , which is

determined only by the universal constants and is called the fine structure

constant.

The energy levels of the hydrogen at 2n =  are shown in Fig. 17-6.

Because of the spin-orbit interaction the degeneracy in l is removed  - the

energy of the term 2

3/ 2P  (a positive spin, 1/ 2
s

m = ) increases and of the

term 2

1/ 2P  (a negative spin, 1/ 2
s

m = − ) decreases. At the same time the

energy of the s-state remains unchanged.
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Figure 17-6. Splitting of the level n =2 of the hydrogen atom as a result of the spin-orbit

interaction and the relativistic effects.

We have already determined that the relative change of energy is

proportional to 2α . From (8.37) and (8.4) it is obvious that v cα = , where

v  is the velocity of the hydrogen electron in the first Bohr orbit. Hence, the

splitting is an effect ( )2
v c∝ , i.e. it is of the order of the relativistic

corrections of its mass. Therefore it is correct to analyze the spin-orbit

interaction in the relativistic approximation. For this it is necessary to solve

the wave equation of Dirac, which is out of the scope of this book. Due to

these relativistic effects and the spin-orbit interaction the level 2n =  does

not split in three, but in two sublevels (Fig.17-6). The influence of the spin-

orbit interaction on some levels of the valence electron of Na is illustrated in

Fig. 17-7.

Figure 17-7. Fine structure of the levels with n = 3 of the Na atom.
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We have already discussed (Chapter 14, Sections 14.3 and 14.5) the

selection rules which give the possibility to determine the allowed transitions

in the energy structure of H atom and the hydrogen-like atom. The picture

becomes more complicated for the transitions between the sublevels of the

fine structure as the energy depends already on the quantum numbers s and j.

The allowed transitions in this case determined by quantum mechanics. But

like in Chapter 14, we will not derive them. The theory shows that for the

allowed transitions the quantum numbers change as follows:

– the total quantum number j and the total magnetic quantum number 
j

m :

1, 0jΔ = ± ,

but the transition from 0
in

j =  to 0
f

j =  is forbidden,

1, 0
j

mΔ = ± ;

– the orbital quantum number l and the magnetic quantum number 
j

m :

1lΔ = ± ,

1,0mΔ = ± ;

– the spin number:

0sΔ = .

We shall underline that during an absorption or an emission of a photon,

the spin of the electron does not change. The transition 0lΔ =  of the H atom

is always forbidden.

Let us apply the selection rules to the fine structure in Fig. 17-6 and

Fig.17-7. In the H atom without taking into account the spin, for the transi-

tion from 2p to 1s we observe the resonance line of Lyman *

αν  (Fig. 17-8).

Figure 17-8. Taking into account the spin-orbit interaction (and the relativistic effects) the

line *

αν  of the Lyman series transforms into a doublet.

With the LS coupling the level 1s does not change – we obtain the singlet

state 1

1/ 2S , but the level 2p becomes a doublet: 2

3/ 2P  and 2

1/ 2P . As a result

of this, the singlet line of the structure without spin appears as a doublet with

frequencies *

1ν  and *

2ν  of the corresponding transitions:
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* 2 2

1 1/ 2 1/ 2,

* 2 2

2 3/ 2 1/ 2,

1, 0,

1, 1.

P S l j

P S l j

ν
ν

→ Δ = Δ =
→ Δ = Δ =

(17.25)

Here * * * -1

2 1 0,365 cmν ν νΔ = − = and in wavelength 45,3.10  nmλ −Δ = .

We shall underline that the splitting of the spectral line is a small quantity in

a comparison to the wave length λ  of the line *

a
ν  ( 121,6 nmλ = ):

5/ 0,45.10λ λ −Δ ≈ .

Here we shall note one peculiarity of the notation of the level

multiplicity. The number 2 1s +  gives the real multiplicity only when s l< ,

but not when s l> . In the last case the notation 2 1s +  in the terms 2 1s
S

+  is

conditional.

And now let us see what are the possible transitions between the

sublevels of the fine structure of the terms 3 , 3   and  3S P D  in the Na atom

(Fig. 17-9).

Figure 17-9. Allowed transitions between the levels 3d, 3p and 3s in the Na atom.

The line corresponding to the transition 3 3p s→ , transforms into a

doublet, which is due to the transitions:

2 2

3/ 2 1/ 2
2 2

1/ 2 1/ 2

3 3 ,      1, 1,

3 3 ,          1, 0.

P S l j

P S l j

→ Δ = Δ =
→ Δ = Δ =

(17.26)

The line, corresponding to the transition 3 3d p→ , transforms into a

triplet, which is due to the next transitions:

2 2

3/ 2 1/ 2

2 2

5 / 2 3/ 2

2 2

3/ 2 3/ 2

3 3 , 1, 1,

3 3 , 1, 1,

3 3 , 1. 0.

D P l j

D P l j

D P l j

→ Δ = Δ =

→ Δ = Δ =

→ Δ = Δ =

(17.27)

The transition 2 2

5 / 2 5 / 23 3D P→  is forbidden because 2jΔ = . The both

spectral lines corresponding to the transitions (17.26) are known as yellow
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doublet of Na with the wavelength 1 5895,92λ = Å and 2 5889,95λ = Å and

6λΔ ≈  Å.

And at last we shall underline that the multiplicity of the levels and of the

spectral lines are different, which is obvious from Fig. 17-9.

17.3 NORMAL ZEEMAN EFFECT

The splitting of the singlet spectral line of the atomic structure without

spin into a triplet in the fine structure under the influence of a magnetic field

is called a normal (or a simple) Zeeman effect. Such a splitting is observed

in two different cases:

1. when the summed spin of the electrons of the atom is equal to zero, but

the orbital angular momentum is different than zero, 0 0S ,  L= ≠ ;

2. when the spin and the orbital angular momentum are different from zero

and the external magnetic field is strong enough , 0,   0S L≠ ≠ .

Let us consider the both cases in detail.

1. 0, 0S L= ≠
In this case the external magnetic field interacts with the orbital angular

momentum. Each level of the atomic structure with energy 
nl

E  will receive

an additional energy UΔ :

1 1 .
l l l B L

U m g B m gμ ωΔ = = (17.28)

Here the index l in 
l

m  underlines the fact that magnetic quantum

numbers 
l

m  corresponds to the fixed orbital number l. It is obvious that

under the influence of the magnetic field this level splits in 2 1l +  sublevels.

Let us consider the two levels with the orbital quantum numbers

1 2  and  l l . During the transition from the sublevels of 2l  to the sublevels of

1l  quanta will be emitted with energy:

( ) ( ) ( ) ( )
2 2 1 1 2 1 2 1

.
nl l nl l nl nl l l l L

E U E U E E g m mω ω= +Δ − +Δ = − + − (17.29)

Taking into account that the 1
l

g =  and 
2 1 0nl nl

E E ω− =  (here 0ω  stands

for the frequency of the spectral line without the magnetic field), we obtain

for the frequency ω :

( )
2 10 0 .

l l L L
m m mω ω ω ω ω= + − = + Δ (17.30)
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But according to the selection rules 1,0mΔ = ± , i.e. the transitions are

allowed where 
2 1l l

m m−  takes values 1, 0,1− . Hence the spectral line 0ω
splits into three lines:

0

0 0 0

                

                 

,    ,    .
L L

ω

ω ω ω ω ω

↓

− −

(17.31)

Such a triple line is called a triplet of Lorentz. We shall emphasize that

this splitting for 0S =  is obtained independently of the magnitude of the

magnetic field, while for 0S ≠  - only for a strong field.

2. 0,  0S L≠ ≠
For a strong enough magnetic field the energy of the interaction with the

orbital angular momentum (with the orbital magnetic dipole) and the spin

angular momentum (the spin magnetic dipole) is essentially greater than the

energy of the spin-orbit interaction. Then we can neglect the last, i.e. the

sublevels of the fine structure, and we can think that an energy level without

spin in an external magnetic field splits as a result of the interaction of the

magnetic field with the orbital and spin angular momenta.  In other words,

the magnetic field is so strong, that it breaks the LS coupling and interacts

separately with L and S.

Without and with a weak magnetic field B the vectors L and S precess

around J and ,  ,    and  
z

J J L S  are constants of the motion, but in a strong

magnetic field B they (the vectors L and S) precess around B and

,  ,   and 
z z

L L S S  are constants of the motion.

In a strong magnetic field B the levels (without spin and without

magnetic field) with quantum numbers l and s receives an additional energy

l
UΔ  and 

s
UΔ  as a result of its interaction with the spin and the orbital

angular momentum:

,

.

l l l L

s s s L

U m g

U m g

ω
ω

Δ =
Δ =

(17.32)

Or, in summary, the additional energy is

( 2 )
l s l s L

U U U m m ωΔ = Δ + Δ = + . (17.33)
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We have used that 1
l

g =  and 2
s

g = .

For the transition from the level with 2l  and 2s  to the level with 1l  and

1s  a quantum is emitted with energy:

2 2 2 1 1 1
[ ( 2 ) ] [ ( 2 ) ]

nl l s L nl l s L
E m m E m mω ω ω= + + − + + . (17.34)

Figure 17-10.  The normal Zeeman effect for S = 0 - arbitrary magnetic field: a) transitions

from  p-state (l = 1) to s-state (l = 0); b) nine allowed transitions from d-state to p-state give

only three lines because the sublevels are equidistant.

If we denote with 0ω  the frequency of the transitions between the energy

levels (without spin and without magnetic field), i.e. ( )
2 10 nl nl

E Eω = − ,

from (17.34) we get for ω :

2 1 2 10 [( )] 2( )]
l l s s L

m m m mω ω ω= + − + − . (17.35)

But according to the selection rules 0,   1,  0
s l

m mΔ = Δ = ± . Hence, the

spectral line splits into the Lorentz triplet ( ) ( )0 0 0,    and  
L L

ω ω ω ω ω− + .

Let us consider the allowed transitions for the normal Zeeman effects

both at 0S =  and at 0S ≠ . In the first case ( 0S = ) we take three energy

levels from the atom structure without magnetic field: ,  and s p d . When we

apply the magnetic field the s-level remains unchanged, the p-level splits in
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three (three orientations of L) sublevels and the d-level splits in five (five

orientations of L) sublevels - Fig. 17-10. The spaces between the sublevels

of p- and d-states are equal and they are 
L

ω .

According to the selection rules ( )1, 0lΔ = ±  the transitions from p- to s-

sublevels and from d- to p-sublevels are allowed. Three transitions are

allowed from p- to s-sublevels ( )1, 0mΔ = ±  and nine - from d- to p-

sublevels.

The following transition are forbidden:

:   2,  2,   1,    1,    2,    2,

:      1,     0,     1,  1,    0,  1,

:   3,  2,  2,    2,   2,     3.

d

p

m

m

m

− − −

↓
− −

Δ − − −

Besides, nine transitions d p→  are allowed, the spectral lines are only

three because of the equal spacing between the sublevels.

The normal Zeeman effects for 0S ≠  and 0L ≠ is illustrated with the

levels 3p and 3s of the Na atom (Fig. 17-11).

Figure 17-11. Normal Zeeman effect for the resonance line 3p → 3s of the Na atom. Six

transitions are allowed, but as they are two by two equal, only three spectral lines are

observed. Note that only the transitions for which ms = 0, i.e. without change of the spin

state, are allowed.
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Six transitions are allowed, which are two by two equals. They are the

transitions between the sublevels with equal spins: the lines 1, 2, 3 with

1/ 2
s

m = −  and 4, 5, 6 with 1/ 2
s

m = . Instead of line 0ω  of the transition

p s→  we obtain a Lorentz triplet.

17.4* COUPLING TO THE ELECTROMAGNETIC

FIELD

In Section 6.3 we obtained the function of Hamilton of the charged

particle in an electromagnetic field and in Section 10.8 - the operator of

Hamilton. Using the result of the last section we can write the operator of

Hamilton for the electron in an electromagnetic field:

( )2

0

1ˆ ˆ .
2

e

H e e
m

= − + Φp A (17.36)

This operator does not take into account the electron spin. Because due to

its spin an electron in a magnetic field gains additional energy UΔ  (see

(17.15a)), it has to be added to the Hamiltonian 0Ĥ . (We neglect the spin-

orbit interaction; from Section 17.2 it is clear that it is a subject to relativistic

quantum mechanics, i.e. it is put of scope of this book). Using (17.8b) and

passing to operators we can write this energy in the following form:

ˆˆ ˆ ˆ .
s B

e e

e e
U

m m
μΔ = − = = =μ B SB B B (17.37)

(The quantity B depends only on the co-ordinates and its operator is

equal to the same classical quantity.) For the transition from Ŝ  to the Pauli

operator ˆ  we use (16.5). Then according to (17.34) the Hamiltonian of the

electron with a spin takes the following form:

0
ˆ ˆ ˆ .

B
H H μ= + B (17.38)

Substituting this operator in the Schrodinger equation we get the equation

for an electron with a spin, which is known as Pauli equation:

( )21
ˆ ˆ

2
B

e

i e e
t m

ψ μ ψ
⎡ ⎤∂ = − + Φ +⎢ ⎥∂ ⎣ ⎦

p A B . (17.39)
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Now we shall consider an atom with a single valence electron in external

uniform magnetic field. As in Chapter 14 we shall use the notation ( )U r  for

the potential energy in the electrostatic field of the nucleus, i.e. ( )U r e≡ Φ .

The external magnetic field is along the Z-axis, i.e. ( )0, 0, B=B . Then for

the vector-potential components we can write

, , 0.
2 2

x y z

B B
A y A x A= − = = (17.40)

Substituting (17.40) into rot= = ∇ ×B A A , we see that this vector

potential corresponds to the magnetic field with components 0,
x

B =  0,
y

B =

z
B B= . For this vector potential the Pauli equation takes the form:

( )

( ) ( )

2
2

2
2 2 2

2 2

ˆ .
8 2

e e

z

e e

ie B
i U r x y

t m m y x

e e
B x y B

m m

ψ ψ ψ ψ

ψ σ ψ

⎛ ⎞∂ ∂ ∂= ∇ + − −⎜ ⎟∂ ∂ ∂⎝ ⎠

+ + +
(17.41)

For a very large interval of magnetic-field values the energy of its

interaction with the electron is substantially smaller than the electrostatic

energy of interaction. Therefore the quadratic term in the magnetic field

( 2
B∝ ) can be neglected. According to (10.64) the operator

( )/ /i x y y x∂ ∂ − ∂ ∂  in the third term on the right-hand side of the equation is

the operator of the z-component of the angular momentum

ˆ .
z

i x y L
y x

⎛ ⎞∂ ∂− − =⎜ ⎟∂ ∂⎝ ⎠
(17.42)

Taking into account the above states and denoting by 0Ĥ  the

Hamiltonian of the electron without external magnetic field

( )
2

2

0
ˆ ,

2
e

H U r
m

= ∇ + (17.43)

we get from (17.41)
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( )0
ˆ ˆ ˆ .

2
z z

e

eB
i H L

t m

ψ ψ σ ψ∂ = + +
∂

(17.44)

Up to this section of the present chapter we considered the interaction of

the electron in an atom with a magnetic field qualitatively on the basis of the

Bohr theory. It is seen from (17.44), that actually this interaction leads to an

additional energy of the orbital and the spin magnetic dipole, which has a

total angular momentum ˆ ˆ+L :

( ) ( )2 .
2

l s z z

e

eB
U L S

m
Δ = − = − + = +μB μ μ B (17.45)

For the stationary states with energy E we shall search for a wave

function in the following form:

( ) ( ), , , , , , exp .
z

Et
x y z t x y z S iψ ψ ⎛ ⎞= −⎜ ⎟⎝ ⎠

(17.46)

Substituting this into (17.44) we obtain the stationary equation of the

electron with spin in an external magnetic field:

( )0
ˆ ˆ ˆ

2
z z

e

eB
H L

m
ψ σ ψ ψ+ + = (17.47)

As from (16.16) and (16.8) it follows that

1 1

2 2

1 0
ˆ ,

0 1
z

ψ ψ
σ ψ

ψ ψ
+

= =
− −

(17.48)

Eq. (17.47) can be written as two separate equations for 1ψ  and 2ψ :

0 1 1 1

0 2 2 2

ˆ ˆ( ) ,

ˆ ˆ( ) .

L z

L z

H L E

H L E

ψ ω ψ ψ

ψ ω ψ ψ

+ + =

+ − =
(17.49)

Without electron spin and magnetic field ( 0
L

ω = ) we obtain as solutions

of these equations the eigenfunctions and the eigenvalues of 0Ĥ . In both

cases they are equal:

E .
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( ) ( )1 2

1 2 .

, ,
nlm nl lm

nl

R r Y

E E E

ψ ψ ψ θ ϕ= = =
= =

(17.50)

We must remember that in the general case the energy of an atom with a

single valence electron depends also on the orbital number l (see Section

14.5).

As the wave function 
nlm

ψ  is an eigenfunction of the operator

( )ˆ ˆ
z z nlm nlm

L L mψ ψ= , it is a solution of Eqs. (17.49). But in the case of an

external magnetic field the states with different spins have different

eigenvalues of the energy:

( )

( )

, 1

, 2

1
2. 1 , ,

2 2

1
2. 1 , .

2 2

nlm nl L nl L z

nlm nl L nl L z

E E m E m S

E E m E m S

ψ ω ω

ψ ω ω

⎛ ⎞= + + = + + =⎜ ⎟⎝ ⎠
⎛ ⎞= + − = + − = −⎜ ⎟⎝ ⎠

(17.51)

Because of the magnetic field the energy depends on the orientation of

the magnetic moment, i.e. of the angular momentum with respect to the field

direction. As a result, the degenerate (without a field) levels split. And due to

the selection rules, instead of a singlet line we obtain a Lorentz triplet

(17.30). Finally we shall note that classical physics obtains a correct result

for the energy of the electron of the atom in external magnetic field (4.40). It

can explain the normal Zeeman effect (17.30) by the precession of the

angular momentum about the magnetic field, which physically corresponds

to the precession of the electron orbit. This quantum formula (17.30) does

not contain the Planck constant  and therefore the result coincides with the

classical one.

17.5 ANOMALOUS ZEEMAN EFFECT

In a weak magnetic field the additional potential energy of the electron is

smaller than the energy difference between two adjacent levels of the fine

structure. In this case the weak magnetic field interacts with the magnetic

dipole moment 
j

μ  or, i.e. with the total angular momentum. This interaction

is called an anomalous Zeeman effect. The change of the energy is

determined by the formulae:

j j B j j L
U m g B m gμ ωΔ = = . (17.52)
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For each term with a fixed total quantum number the orientation of the

vector J, i.e. the number of 
j

m , determines the number of the splitting of the

levels as a result of the influence of the field. In the general case, a state with

an orbital number l, the level of which when taking into account spin-orbit

interaction splits in two sublevels with 
1

2
j l= + 1

2
j l= − . The result of

the influence of the weak magnetic field is shown in Fig. 17-12.

Figure 17-12. Anomalous Zeeman effect for the electron with orbital number l; the level

1

2
j l= +  splits in 2 2l +  sublevels with an interval U

+Δ  and the level 
1

2
j l= −  on 2l

sublevels with an interval ( )U U U
− + −Δ Δ > Δ .

The state with a positive spin, i.e. with 1/ 2j l= + , has 2 2l +
components of the total angular momentum J:

1 1 3 1 1 1
,  ,  ,  ...,  - ,  ,  ..., .

2 2 2 2 2 2
j

m l l l l
⎛ ⎞= − + − + − + + +⎜ ⎟⎝ ⎠

(17.53a)

The state with a negative spin, i.e. with 1/ 2j l= − , has 2l  components

of the total angular momentum J:

1 3 5 1 1 1
,  ,  ,  ...,  ,  ,  ..., .

2 2 2 2 2 2
j

m l l l l
⎛ ⎞= − − − + − + − + −⎜ ⎟⎝ ⎠

(17.53b)

Hence, in weak magnetic field B the two atomic levels of the fine

structure split in 4 2l +  sublevels.

Let us consider two concrete examples of an anomalous Zeeman effect

for the states 1 ,  2   and  2s s p  of the H atom and for 3 ,  3   and  3ds p  of the

Na atom.
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The level with 2n =  of the fine structure of the H atom splits in 2

sublevels with 3 terms (see Fig. 17-6) and the level with 1n =  does not

change. In a weak magnetic field the term 2

3/ 22 P  splits in 4 sublevels and

the other three terms 2

1/ 21 S , 2

1/ 22 S , 2

1/ 22 P  - in 2 sublevels (Fig. 17-13). The

change of the energy UΔ , and consequently the space between the

Figure 17-13. Anomalous Zeeman effect in the H atom (
LB

B ωμ ==E ). Transitions for

which 0,1,1 ±=Δ=Δ ml  are allowed. The doublet (17.25) splits as follows: *

1ν  in 4 lines and

*

2ν  in 6 lines.

levels, is different for each term, because UΔ  depends on 
j

g  and according

to (17.11) the total g-factor is determined by the quantum numbers

,     and  .j l s  Let us  determine 
j

g  for the four terms. First, we shall note

that the terms 2/1
21 S  and 2/1

22 S  have equal numbers slj and,  and, hence,

the same g-factor. For 
j

g  we easy obtain

2

3/ 2

2 2 2

1/ 2 1/ 2 1/ 2

15 / 4 3/ 4 2 4
2 ,      1 ;

2.15/ 4 3

2 ,      2 3;             1 ,  2 ,    2.

j

j j

P g

P g S S g

+ −= + =

= =
(17.54)
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Substituting into (17.52), we obtain the change in energy for every value

of
j

m  in all states and the spaces  between the sublevels of the terms:

.21

;
3

2
2and2;

3

4
2

2/1

2

2/1

2

2/1

2

2/3

2

E

EE

=Δ→

=Δ→=Δ→

S

SPP
(17.55)

Here .
LB

B ωμ ==E

The sublevels which are obtained due to the anomalous Zeeman effect in

H atom, are shown in Fig. 17-13. We shall underline once again that they are

not equidistant. Applying the selection rules (Section 17.2) we establish that

instead of the doublet in Fig. 17-6, as a result of the influence of the

magnetic field B, we obtain 10 lines.

In an analogous way we obtain the splitting of the levels of the three

terms 2/1
23 S , 2/1

23 P , 2/3
23 P  and the allowed transitions of the anomalous

Zeeman effect in the Na atom (Fig. 17-14). We have used the g-factors of

Figure 17-14. Anomalous Zeeman effect in Na. Both lines of the yellow doublet split

correspondingly on 4 and 6 lines.

hydrogen terms (17.54), because 
j

g  does not depend on the principal

quantum number.
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SUMMARY

Each rotation motion of a charged particle can be treated as a current in a

loop, which corresponds to a magnetic dipole with a magnetic moment

uniquely determined by the angular momentum, charge and mass of the

particle. As the electron in the atom has three different angular momenta L,

S and J, it possesses three magnetic moments corresponding to the orbital,

spin and total rotation motions: 
jsl

μμμ and, . In atomic physics the

magnetic moment is expressed in the units of 
eB

me 2/=μ . This quantity is

called a magneton of Bohr. The ratio between the magnetic dipole moment

in units of the Bohr magneton and the angular momentum in units of  is

called g-factor of Lande. The magnetic dipole moments have the following

form:

).,(;2;1

,)1(,)1(,)1(

1 sljgggg

jjgssgllg

jjs

BjjBssBll

===
+=+=+= μμμμμμ

In an external magnetic field B the dipoles precess with frequencies:

.
2

;
2

;
2

e

jLjj

e

sLss

e

lLll
m

eB
gg

m

eB
gg

m

eB
gg ====== ωωωωωω

As a result the electron gains an additional potential energy:

,
LssBsss

gmBgmU ωμ ==Δ
.

LjjBjjj
gmBgmU ωμ ==Δ

A charged particle with a spin in an electromagnetic field is described by

the Pauli equation:

( )21
ˆ ˆ

2
B

e

i e e
t m

ψ μ ψ
⎡ ⎤∂ = − + Φ +⎢ ⎥∂ ⎣ ⎦

p A B .

Applied to the stationary state of the electron, it is divided to two

equations for positively and negatively oriented spin with respect to the Z-

axis:

( ) ( )0 1 1 1 0 2 2 2
ˆ ˆ ˆ ˆ,         .

L z L z
H L E H L Eψ ω ψ ψ ψ ω ψ ψ+ + = + − =

,1 LBll
mgBmgU ωμ ==Δ
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In the frame in which the electron is at rest, the relative motion of the

positively-charged nucleus produces a magnetic field. It interacts with the

spin magnetic moment of the electron (spin-orbit interaction), so that all

energy levels split in two very close energy sublevels. The set of the levels,

which are obtained as the result of the spin-orbit interaction, is called a fine

structure. The relative change in energy is proportional to the square of the

fine-structure constant 2α . The interaction of the magnetic field with an

electron in an atom is called the Zeeman effect. There are two Zeeman

effects, normal and anomalous.

The normal effect of Zeeman defines the splitting of the singlet spectral

line in triplet under the influence of the external magnetic field. It is

observed at:

1. 0L,0 ≠=S  and an arbitrary magnetic field;

2. 0L,0 ≠≠S  and a strong magnetic field.

In the first case the external magnetic field interacts with the orbital

magnetic moment of the electrons. Each level of the atom structure with

energy 
nl

E  gains an additional energy 
l

UΔ  and splits in ( )12 +l  sublevels.

In the second case the magnetic field is so strong that the interaction energy

with the orbital and the spin moments is much greater than the energy of

spin-orbit interaction. Here the magnetic field is strong enough to remove

the LS coupling and to separately interact with L and S. The level with fixed

l splits in ( )( )212 ++l  sublevels.

Despite the multiplicity of the sublevels only three lines are observed in

both cases. This is due to the equidistant levels and the selection rules.

The interaction of a weak magnetic field with an electron in a atom is

called an anomalous Zeeman effect. In this case the potential energy which

is gained by the electron, is less than the difference between the energies of

two adjacent levels of the fine structure. The weak external magnetic field

interacts with the magnetic dipole moment 
j

μ or, in other words, with the

total angular momentum. As a result, the levels of the fine structure with

fixed l splits in )24( +l  sublevels.

QUESTIONS

1. What is the Bohr magneton?

2. Which are the dipole moments of the electron and what is their cause?

3. What is a Lande factor?

4. How can you explain the additional energy of an electron in an external

magnetic field?

5. Why in an inhomogeneous magnetic field the electron beam is divided in

two parts?



17. INTERACTION OF AN ELECTRON IN AN ATOM WITH A

MAGNETIC FIELD

457

6. What is the physical nature of the spin-orbit interaction?

7. What is called a fine structure?

8. What are the selection rules for the transitions between the levels of the

fine structure?

9. Are the S-terms doublets? Why?

10. In which cases is the normal Zeeman effect observed? What is the

distance between the sublevels?

11.Why for the normal Zeeman effect for 9 allowed transitions we observe

only three spectral lines?

12.What do we call an anomalous Zeeman effect?

13.What is the difference between the normal and the anomalous Zeeman

effect from the energy point of view?

14.  What are the distances between the sublevels for the anomalous Zeeman

effect: a) for a fixed j; b) for different j's?

15.What equation describes the state of the charged particle with a spin in an

electromagnetic field?

PROBLEMS

1. Estimate the additional energy of an electron of an H atom in a state with

2=n  and 1=l in the nuclear magnetic field. Estimate the field

magnitude.

2. A line with 73,4226=λ Å is radiated for the transition from P- to S-level

in Ca atom. The normal Zeeman effect is observed when the Ca atom is

in an external magnetic field with magnitude 410.4=B  Gs. Calculate the

wavelengths of the spectral lines and the differences between them?

3. Determine the possible transitions from 3p-sublevels to 3s-sublevels for

the Zeeman effect for the resonance line of Na in a strong magnetic field.

4. The resonance line of Lyman has a wavelength 1216=λ Å. For the mag-

netic field 410=B T find the splitting of its corresponding levels in units

of B
B

μ , as well as the allowed transitions and the wavelengths of the

spectral lines.

5. For the terms 2/3
2

2/1
2

2/1
2 and, PPS  for an anomalous Zeeman effect

calculate: a) the splitting in the units of 
L

ω ; b) the allowed transitions;

c) the splitting of the spectral lines for the transitions 2/1
2

2/1
2

SP →  and

2/1
2

2/3
2

SP →  in the units of 
L

ω .

6. Express the Lande factor 
j

g  for the interaction of a magnetic field with

the total moment of an electron, with the quantum numbers.
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18.1 IDENTICAL PARTICLES

In classical mechanics particles with an identical nature (for example two

molecules of oxygen) are distinguishable in principle. We can number or

name them, for example A and B at the instant 0t  and then trace their

trajectories. So, at the instant 1t  we can say which particle is A and which B.

In quantum mechanics the situation is totally different. Due to the

uncertainty principle the term trajectory loses its meaning. Even if we

identify particles at the instant 0t  as A and B, after some time at the instant

1t , because of the overlapping of the probability density, we cannot say

where is A and where is B (Fig. 18.1).

Figure 18-1. At the instant t0 we identify: a) two classical particles A and B; b) two quantum

particles A and B. At the instant t1, tracing the trajectories of the classical particles, we can

establish that A has co-ordinate x1 and B - x2. For the quantum particles at the instant t1 we

cannot say which of the them (A or B) has a co-ordinate x1 and which - x2 , due to the overlap

of the probability density.

In quantum mechanics particles lose their individuality and are

indistinguishable. In classical physics we can follow the motion of a

compound particle of a system by taking motion pictures of the system.

Identical particles can be distinguished from each other by procedures which

do not affect their behavior. In quantum mechanics this cannot be done
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because the uncertainty principle does not allow us to observe the motion of

the particles (for example of an electron) without changing of the behavior

of these particles. As we have seen in Section 9.4 the photon, which is used

to illuminate the scene of a motion picture, interacts with an electron in an

unpredictable manner. The behavior of the quantum particles (in this case

electrons) is significantly affected by any attempt to distinguish them.

Consider a specifies example: two identical particles, each of them with

mass m, are in an infinite square potential well of width a. Particle A is in the

state with quantum number 1n  and B - with 2n (Fig. 18-2). According

Figure 18-2.  Two particles A and B in the states n1 = 1 and n2 = 2, respectively, in an infinite

potential well (a); their probability densities in these states - A in n1 and B in n2 - (b); the same

probability densities, when the states of A and B are exchanged, that is, A is in state n2 and B

is in state n1 - (c).

to the conclusions in Section 12.2 we can write for wave functions,

probability densities and energies of two particles

( ) ( )

( ) ( )

1 1 1

2 2

2 21 1
1

2 22 2
2

2 2
sin , sin , ,

2 2
sin , sin , ,

n A A n A A n

n B B n B B

n n
x x x x E n E

a a a a

n n
x x x x E n E

a a a a

π πψ ρ

π πψ ρ

= == =

= == =
(18.1)

where .2/ 222
maE π=

The distributions ( ) ( )
1 2

  and 
n A n B

x xρ ρ  for 1 1n =  and 22 =n  are shown

in Fig. 18-2b.

The wave function of the state of the two noninteracting particles

( )
BAnn

xx ,
21

ψ  is a product of the functions ( )
An

x
1

ψ  and ( )
Bn

x
2

ψ :

( )
1 2 1 2

1 22
, sin sin .

n n n n A B A B

n n
x x x x

a a a

π πψ ψ≡ = (18.2)
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Now let us exchange the positions of the particles - let B be in the state

1n  and A - in the state 2n . Then, instead of (18.1) we get:

( ) ( )

( ) ( ) .,sin
2

,sin
2

,,sin
2

,sin
2

2
2
2

222

1
2
1

121

222

111

EnEx
a

n

a
xx

a

n

a
x

EnEx
a

n

a
xx

a

n

a
x

nAAnAAn

nBBnBBn

===

===

πρπψ

πρπψ
(18.3)

The distributions ( ) ( )
AnBn

xx 21 and ρρ  for 11 =n  and 22 =n  are shown

in Fig. 18-2c. The wave function ( )
BAnn

xx ,
12

ψ  is obtained by analogy with

(18.2), i.e. with ( )
2 1

,
n n A B

x xψ :

( ) .sinsin
2

, 12

1212 BABAnnnn
x

a

n
x

a

n

a
xx

ππψψ =≡ (18.4)

So, we have two states, in which the positions of the two identical

particles have been exchanged. Let us try by physical means to distinguish

the states from one another. If we position the measuring device for example

in the point x (Fig. 18-2b, c) we shall register in both cases a particle with

energy 1E  and a probability density ( )1 x dxρ  and a particle with energy 2E

and a probability density ( )2 x dxρ . But in both cases we cannot say which

particle (A or B) has energy 1E  and which - 2 14E E= . Both states are

indistinguishable by physical means because of the indistinguishability of

the particles.

Here we shall note one more interesting characteristic of these identical

particles. The energies of the states 
1221

and
nnnn

ψψ are

( )
( )

1 2

2 1

2 2 2 2

1 1 2 1 1 2 1

2 2 2 2

2 1 1 1 2 1 1

,

,

n n

n n

E n E n E n n E

E n E n E n n E

= + = +

= + = +
(18.5)

i.e. they are equal. These energies are eigenvalues of the Hamiltonian of the

system

2 2ˆ ˆˆ ˆ ˆ ,
2 2

A B

AB A B

p p
H H H

m m
= + = + (18.6)

and functions 
1221

and
nnnn

ψψ  are its eigenfunctions. One value of the energy

(18.5) corresponds to two wave functions (18.2) and (18.4). The energy is

two-fold degenerated. This degeneracy is called exchange degeneracy.
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Let us generalize the above discussion for two particles to a system of N

identical particles in a state with a wave function

1 2( , , ..., , ..., , ..., )
i k N

x x x x xψ  and energy E. When we exchange the position

of particles i and k the system is described by the wave function

)...,,...,,...,,,( 21 Nik
xxxxxψ , and it has the same energy. The exchange

degeneracy is observed here too.

18.2 SYMMETRIC AND ANTISYMMETRIC STATES

For the exchange of two particles' co-ordinates we shall introduce the

operator P̂ , which is called the operator of permutation. Let us return to the

example with the two-particle function ( )21, xxψ . By definition the operator

P̂  exchanges the co-ordinates of the two particles:

( ) ( )1 2 2 1
ˆ , , .x x x xψ ψ=P (18.7)

If we designate the eigenvalue of this operator with λ  we can write the

equation for its eigenfunction:

( ) ( )1 2 1 2
ˆ , , .x x x xψ λψ=P (18.8)

Then, applying the operator P̂  once again we get:

( ) ( )1 2 1 2
ˆ ˆ ˆ[ , ] , .x x x xλ ψ=P P P (18.9)

According to the definition of the operator (18.7), on the left-hand side

we get ( )21, xxψ  and on the right-hand side, using (18.8), we get

( )21
2 , xxψλ :

( )2

1 2 1 2( , ) ,  .x x x xψ λ ψ= (18.10)

Therefore, the operator P̂  has two eigenvalues

1,2 1.λ = ± (18.11)

So, we obtain
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( ) ( ) ( )
( )

1 2

1 2 2 1

1 2

,
ˆ , ,

, ,

x x
x x x x

x x

ψ
ψ ψ

ψ

+⎧⎪= = ⎨
−⎪⎩

P (18.12)

i.e. the wave function is symmetric or antisymmetric with respect to the

exchange of the space co-ordinates of two particles. This means that two

kinds of systems of particles exist: systems with wave function that change

their sigh upon the exchange particles and system whose wave functions re-

main unchanged upon such an exchange. The functions 
1 2

( , )
n n A B

x xψ  (18.2)

and ( )
BAnn

xx ,
12

ψ  (18.4) are neither symmetric nor antisymmetric. But by

wave functions of individual particles we can construct linear combinations

which will be the eigenfunctions of the Hamiltonian with eigenvalues

( ) 1
2
2

2
1 Enn + . Two of these combinations have special meaning in physics.

They are:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 2 1 2

1 2 1 2

1
,  ,

2

1
,  .

2

s A B n A n B n B n A

a A B n A n B n B n A

x x x x x x

x x x x x x

ψ ψ ψ ψ ψ

ψ ψ ψ ψ ψ

⎡ ⎤= +⎣ ⎦

⎡ ⎤= −⎣ ⎦

(18.13)

The function ( ),
s A B

x xψ  is symmetric:

( ) ( )
ABsBAs

xxxx ,, ψψ = , (18.14)

an the function ( )
BAa

xx ,ψ  is antisymmetric

( ) ( ).,,
ABaBAa

xxxx ψψ −= (18.15)

The Hamiltonian of the two particles does not change while

interchanging of their positions. Then

( ) ( )ˆ ˆˆ ˆ ,H Hψ ψ=P P (18.16)

from where we can conclude that the operator of the permutation commutes

with the Hamiltonian:

.0ˆˆˆˆ =− HH PP (18.17)

In Section 11.4 we have proved that if the operator of a given quantity

does not depend on time and commutes with the Hamiltonian this quantity is
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a constant of the motion. Therefore, the parity of the ψ -function remains

constant in time. In other words, a system of identical particles is described

either by a symmetric wave function 
s

ψ , or by an antisymmetric 
a

ψ .

It is logically to suppose that the parity depends on the nature of the

particles. Actually Pauli managed to prove that particles with an integer spin

are described by the symmetric wave functions and with half-integer spin -

by antisymmetric wave functions. The first obey the statistics of Bose-

Einstein and are called bosons, and the second - the statistics of Fermi-Dirac

and are called fermions. Fermions are the elementary particles with spin

number 2/1=s  - electrons, positrons, protons, neutrons, neutrinos, muons,

and bosons are the photons ( )1=s , π - and K-mesons ( )0=s . When we have

a complex particle it is necessary to calculate its net spin. For example, for

the H atom the net spin number according to the rules for addition of angular

momenta can be either 0 or 1. Consequently, the hydrogen is a boson.

For fermions the following important result can be proved (see [2]): In a

system of identical fermions there can never be more than one fermion in the

same quantum state.

This is equivalent to the famous Pauli's exclusion principle, which was

first empirically formulated for the electrons in multielectron atom on the

basis of the atomic spectra.

Applied to the electrons in an atom, the Paul's principle states that in an

atom there can only be one electron in a quantum-mechanical state with the

fixed numbers , ,     
s

n l m and m . In the state with the fixed , ,   and  n l m , there

can be two electrons with the opposite spins 2/1±=
s

m . The exclusion

principle is a consequence of the indistinguishability of identical particles.

18.3 SPIN FUNCTIONS OF HELIUM

Classical mechanics has been helpless trying to explain the atomic

structure. The semi-classical mechanics of Borh, which in is a classical

theory plus some rules for quantization, has been successfully applied to the

H atom. But it has suffered a crash in its explanation of the helium atom, and

generally, of multielectron atoms. The principal difficulties arose before it.

Quantum mechanics did explain the structure of multielectron atoms, even

though some difficulties also arose. But those are only some numerical

difficulties.

The helium atom consists of a nucleus of charge 2=Z  and two

electrons, which we can label 1 and 2. To solve the problem of the He atom

it is necessary first to find its Hamiltonian. It can be written in the following

form:
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ˆ ˆ ,
e m

H T U U= + + (18.18)

where T̂  is the operator of the kinetic energy of the two electrons, 
e

U  is the

electrostatic potential energy and 
m

U  - the potential energy due to the

magnetic interactions. The last include: the spin-orbit interaction of each of

the electrons, the interaction of the magnetic field of one of electrons (due to

its orbital motion) with the spin magnetic dipole moment of the other elec-

tron (the spin-other's orbit interactions ( )21sl  and ( )12sl ), the interaction bet-

ween their orbital angular momenta (orbit-orbit interactions), as well as the

interactions between their spin angular momenta (spin-spin interaction), i.e.:

1 1 2 2 1 2 2 1 1 2 1 2
.

m l s l s l s l s l l s s
U U U U U U U= + + + + + (18.19)

In the previous chapter we convinced ourselves that the potential energy

m
U  of the magnetic interactions is substantially smaller than the electrostatic

one:

.
m e

U U<< (18.20)

Neglecting the magnetic interactions of the electrons, which move in the

nucleus Coulomb field (Fig. 18-3), we have for the Hamiltonian:

1 2

2 2 22 2

0 0 0

1 2 1 2

2 2ˆ .
2 2

r r

e e

k e k e k e
H

m m r r r
= − Δ − Δ − − + (18.21)

The neglect of the small magnetic interactions means also that the spins

Figure 18-3. Atom of helium.
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of the electrons do not influence their positions. Or, in others words, the

space and spin variables are independent. Then we can seek the solution of

the Schroedinger equation with a Hamiltonian (18.21) by the method of

separation of variables:

( ) ( ) ( )1 2 1 2 1 2 1 2, , , , , ,
z z z z

S S X S Sψ = Φr r r r (18.22)

where ( )21, rrΦ  is a space wave function and ( )
zz

SSX 21 ,  a spin wave

function.

We are not going to solve the Schroedinger equation, but we will restrict

ourselves to finding the spin function ( )
zz

SSX 21 , . The wave function ψ ,

which describes the state of both electrons is antisymmetric because they are

fermions. Two cases are possible for antisymmetric ψ -function: antisym-

metric space + symmetric spin functions and symmetric space + antisym-

metric spin functions:

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( , , , ) ( , ) ( , ),

( , , , ) ( , ) ( , ).

i

a z z a s z z

ii

a z z s a z z

S S X S S

S S X S S

ψ
ψ

= Φ

= Φ

r r r r

r r r r

(18.23)

In Section 16.1 we have found that the spin state of an electron is

described by two functions: ( ) ( )  and  
z z

X S X S+ − , corresponding to the

positively ( )2/1=m  and to the negatively ( )2/1−=m  oriented spins. As we

have neglected the spin interaction, we can present the spin function of the

two electrons as a product of the spin functions of the different electrons:

( ) ( )1 2 1 2, ( ) ,
z z z z

X S S X S X Sα α= (18.24)

where α  takes the values ±  for the one and for the other electron.

Hence, four combinations are possible:

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2

1 2 1 2

, ( ) ,     ,

, ( ) ,    ,

, ( ) ,    ,

, ( ) ,     .

i

z z z z

ii

z z z z

iii

z z z z

iv

z z z z

X S S X S X S

X S S X S X S

X S S X S X S

X S S X S X S

+ +

− −

+ −

− +

= ↑↑

= ↓↓

= ↑↓

= ↓↑

(18.25)

In the right-hand side of each function are shown the directions of the

two electron spins. The functions   and  i ii
X X  are symmetric, while the

functions   and  iii iv
X X  are neither symmetric nor antisymmetric. But in the
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previous sections' example the situation has been fully analogous. Therefore,

we shall use the symmetric and antisymmetric functions from example

(18.13). By analogy, we can construct similar functions from iviii
XX and .

As the result we have three symmetric spin functions (to which corresponds

an antisymmetric space function) and one antisymmetric spin function (to

which corresponds a symmetric space function):

( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2

1 2 1 2

1 2 1 2 2 1

1 2 1 2 2 1

, ( )  ,

, ( )  ,

1
, ( ) ( )  ,

2

1
, ( ) ( )  .

2

i

s z z z z

ii

s z z z z

iii

s z z z z z z

iv

z z z z z z

X S S X S X S

X S S X S X S

X S S X S X S X S X S

X S S X S X S X S X S

+ +

− −

+ − + −

+ − + −

=

=

= +⎡ ⎤⎣ ⎦

= −⎡ ⎤⎣ ⎦

 (18.26)

The physical meaning of the symmetric and antisymmetric spin states

shall become clear through the vector interpretation in the next section.

18.4 VECTOR INTERPRETATION OF THE SPIN

STATES. PARAHELIUM AND ORTHOHELIUM

For each electron there are two possible states of its spin - positively and

negatively oriented (Fig. 18-4). In both these cases the vector of the spin

angular momentum precesses around the Z-axis (according to the vector

interpretation of angular momentum - Fig. 10-2. Both the value of this

angular momentum and its Z-component are determinate and the

components   and  
x y

S S  are indeterminate.

a) );(,2/,2/1
zzs

SXSm +==  b) 1/ 2,   / 2,   ( ).
s z z

m S X S−= − = −

Figure 18-4. Vector interpretation of the state of an electron with positive (a) and negative (b)

spin.
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And now to consider two electrons with spins 21 and SS . In the state with

i

s
X  both spins are positively oriented (Fig.18-5). Their vectors precess

around the total spin S and it precesses around Z-axis. We shall note that the

addition of both angular momenta with the spin numbers 1 1/ 2  ands =

2 1/ 2s =  results in two possible total momenta with numbers.

For 1=s  the vector S  has three orientations, which are shown in Fig.

18-5. For these three states the quantities of 21,,, SSSS
z

 are determinate and

yx
SS ,  and the three components of the spin of the each of the electrons are

indeterminate. The symbolic notations of the spin are shown in circles

(compare with (18.25)).

a) ;,,1 i

szs
XSm ==   b) ;,,1 ii

szs
XSm −=−=      c) .,,1 iii

szs
XSm −=−=

Figure 18-5. Vector interpretation of the spin symmetric states of the electrons in He; 
z

S -

component of the total spin is positive (a), negative (b) or zero (c).

As it can be seen from Fig. 18-5a,b, the spins of electrons are always

positive in the state i

s
X  and negative in the state ii

s
X . The state iii

s
X  in Fig.

18-5c is a linear combination (a superposition) of two possible states of the

spins and therefore 1 2  and  
z z

S S  can be both positive and negative. The

precession of the vectors 1 2  and  S S  around the vector S ensures this.

The state with the total quantum number 0=s  is also a superposition. In

it 1 2 3 / 2, 0,  and 0
z

S S S S= = = = . Meanwhile the components

zyx
SSS 111 ,,  and 

zyx
SSS 222 ,,  are indeterminate. The interpretation in Fig.

18-6 corresponds to these conditions. The precession around the X- and Y-

axes ensures the indeterminacy of the components of the two spins.

This analysis allows us to make the conclusion that two states of helium

exist:
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a) the state symmetric by co-ordinates ( )( )21,rr
s

Φ  and antisymmetric by

spin ( )( )
zza

SSX 21 ,  with a total spin 0=S  (antiparallel spins);

b) the state antisymmetric by co-ordinates ( )( )21,rr
a

Φ  and symmetric by

spin ( )( )
zzs

SSX 21 ,  with a total spin 1=S  (parallel spins); in this case the

spin states are three and they correspond to three different orientation of

the spin.

Figure 18-6.  Vector interpretation of the antisymmetric spin state of the two electrons in the

atom of helium.

The state with the antiparallel spins is a singlet and the one with parallels

spins a triplet.

In Section 18.2 we have seen that because of the operator commutation

of the permutation with the Hamiltonian, the character of the symmetry is

preserved. Then, if the helium exists in antisymmetric spin state it cannot

transform into a helium in a symmetric state. And vice versa, if the helium

exists in a symmetric spin state it cannot transform into a helium in an

antisymmetric state. The impression is created that there are two kinds of

helium. This is verified by experiment. The helium with antiparallel spins

(antisymmetric spin state) is called parahelium. The helium with parallel

spins (symmetric spin state) is called orthohelium.

Which of these states is a ground state of the atom of helium? Recall that

in all considered until now quantum-mechanical systems (a potential well, a

rotator, a harmonic oscillator, and an atom of hydrogen) the lowest energy

state is described by a spatial wave function without nodes. But the

antisymmetric wave function of helium ( )21,rr
a

Φ  has a node at 21 rr = . In

fact, because

( ) ( )1 2 1 2, , ,
a a

Φ = −Φr r r r (18.27)

at rrr == 21
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( ) ( ) .0)(,, =Φ⇒Φ−=Φ rrrrr
aaa

(18.28)

Hence, the symmetric spatial state has lower energy. This state is

antisymmetric by spin, i.e. this is parahelium. So the ground state of the

helium atom, i.e. the state with the minimal possible energy is parahelium.

The energy levels of this state with 4<n  are shown in Fig. 18.7. The energy

of the ionization of He atom is 24,47 eV. The ground state, the term 0
11 S  has

energy 24,47 eV and the lower energetic level of the orthohelium, the term

1
32 S  has an energy of 19,77 eV higher than it.

Naturally, a question arises how to obtain orthohelium. We already stated

that the transition between the para- and orthohelium is impossible.

However, we neglected the magnetic interactions. Only in that case the

spatial and the spin variables are separated and the transition from the state
i

a
ψ  to the state ii

a
ψ  (see (18.23)) is impossible. We described the states,

respectively, by the spatial wave functions ( ) ( )1 2 1 2,   and  ,
a s

Φ Φr r r r  and

the transition between them would mean that the parity changed!). But the

magnetic interactions, however weak, exist, i.e. theoretically the transition

from the state i

a
ψ  to the state ii

a
ψ  is possible. In this case (taking into

account the magnetic interactions) the wave functions ( i

a
ψ  and ii

a
ψ !) are

antisymmetric and for such a transition the parity would be saved and the

spin would remain unchanged. As magnetic interactions are very weak, the

probability of such a transition is small.

As an illustration we shall consider a qualitative example of the photon

impact on a He atom. It can be proved that the energy of the interaction of a

photon with the magnetic moment of an electron 
m

E  is cv /  time smaller

than the energy of its interaction with the charge of the electron 
e

E  ([4],

Section 121):

1
~ .

100

m

e

E v

E c
≈ (18.29)

The probability of transition is proportional to the square of the

perturbation energy. Therefore the ratio between the probabilities of the

transition due to the magnetic interaction and of transition due to the electric

interaction (without a change of the spin) is of the order of 410− . The

probability of a transition accompanied by a change of the spin is negligible

and the conversion of orthohelium into parahelium through the absorption of

a photon is practically impossible.
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Figure 18.7. The energy levels of the two helium states: parahelium and orthohelium.

But it can occur due to a bombardment with an electron. Of course the

above analysis cannot be used for such a case. This is already a problem of

three electrons. The incident electron can take the place of one of the atomic

electrons of the parahelium. In such an exchange the electron spin could be

changed: the parahelium could transform into orthohelium.

SUMMARY

Identical particles in quantum mechanics lose their individuality and are

indistinguishable. If in a potential well we have two particles A and B with

energies 1E  and 2E , measuring the energy would produce either 1E  or 2E .

But we cannot say which particle (A or B) has the energy 1E  and which 2E .
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The both particles are indistinguishable by physical means.

If in a system of identical particles in a state described by a wave

function )...,,...,,...,,,( 21 Nki
xxxxxψ  and an energy E we could exchange

the position of particles i and k, the system would be described by the wave

function )...,,...,,...,,,( 21 Nik
xxxxxψ  and would have the same energy.  The

energy is 2-fold degenerate. This degeneracy is called exchange degeneracy.

It is observed in systems of identical particles when exchanging the positions

of any two of them.

The parity is a constant of the motion. A system of identical particles can

be either in a symmetric or in an antisymmetric state. Particles with an

integer spin (bosons) are described by symmetric wave functions and

particles with half-integer spin (fermions) - with antisymmetric ones. The

fermions obey the principle of Pauli: two fermions of a given system cannot

be in one and the same state.

For the addition of two spin moments with numbers 2/11 =s  and

2/12 =s  the total spin has two quantum numbers: 0=s  (antiparallel spins)

and 1=s  (parallel spins). The state with antiparallel spins is a singlet and

the one with parallel spin is a triplet. The helium atom with antiparallel spins

of its electrons is called parahelium and the one with parallel spins of its

electron - orthohelium. The ground state of helium, i.e. the state with

minimal possible energy, is parahelium. The conversion of orthohelium into

parahelium by an absorption of a photon is practically impossible to be

achieved. But it is possible to achieve it by a bombardment of a He atom

with an electron.

QUESTIONS

1. Why are identical particles in quantum mechanics indistinguishable?

2. What is exchange degeneracy?

3. What do the symmetric and antisymmetric wave functions represent?

4. Which are the eigenvalues of the operator of permutation?

5. Why cannot the parity of particles change?

6. Which particles are fermions and which bosons?

7. To which kind does the hydrogen atom belong?

8. Which kind of particles are obey the Pauli's principle? What does this

principle state?

9. What is the relation between the energies of the magnetic and the

Coulomb interactions in  the He atom?

10.What are the character and the general form of the wave function of the

electrons in a He atom?
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11.Which spin functions characterize the possible orientations of the

electron spins in the He atom?

12.How would you interpret in a vector form the spin of one electron and of

the symmetric and the antisymmetyric states of the helium electrons?

13.Why are the levels of a parahelium singlets?

14.How can we conclude which kind of helium is in the ground state?

15.How can you explain that the symmetric states are three and the

antisymmetric - one?

16.Are transitions from parahelium to orthohelium possible?

PROBLEMS

1. Prove that the number of bosons, filling an infinite potential well is pro-

portional to its energy E and the number of photons is proportional to
3/1

E .

2. What would be the energy of the ground state of a He atom if we neglect

the spin-orbit interaction and the interaction between its electrons?

3. Within the same approximation as in problem 2, find the wave function

of the ground state.

4. Determine the wavelength of the two lines in the spectrum of a single

ionized He atom which correspond to the first two lines of the Balmer

series of the H atom.

5. The energy of the full (double) ionization of He is equal to 78,98 eV.

Find the energy of the single ionization of the He atom and the ionization

energy of the ion +He .
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19.1 MULTIELECTRON ATOMS – THE HARTREE

THEORY

In the previous chapter, neglecting the magnetic interaction, we managed

to analyze the spin state of He atom. For the full analysis it is necessary to

solve the Schroedinger equation (18.21) of He atom. In that case we would

find the two-particle wave function ( )21, rrΦ . As we have already mentioned

in Section 18.3, the exact solution of this problem is impossible. This is true

for all atoms with more than two electrons. We should note once more that

these difficulties are only computational. Different approximation methods

are developed for solving the Schroedinger equation. Here we shall consider

the essence of one of them  - the method of self-consistent field more called

the field method of Hartree-Fock. The rigorous approach for obtaining the

Hartree-Fock equations is based on the variational principle. We will adduce

only the physical meaning of it. The spatial distribution of the electrons in an

atom changes continuously, but in a stationary state the probability density

remains constant. Therefore, each electron creates some field, which can be

considered as constant. Then, the motion of each electron can be thought as

being independent in the average field of the nucleus and of all other

electrons. Or, in other words, each electron possesses its wave function and

its set of quantum numbers. Then the N-particle wave function of an N-

electron atom can be represented as a product of single-particle wave

functions of the states of each one electron:

1 2 31 2 3 1 2 3( , , ,..., ) ( ) ( ) ( ) ... ( )
N

N n n n n N
ψ ψ ψ ψ ψ=r r r r r r r r . (19.1)
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Here ( )
ini

rψ  is the wave function of the ith electron, which is in a state

with quantum numbers 
i

n . The interaction between the electrons is taking

into account by including it in the Hamiltonian. The operator of Hamilton for

separate electron which moves in the field of the nucleus and all other

electrons can be written as follows:

( ) ( ).
2

ˆ
2

iii

e

rUrU
m

H Σ+−Δ−= (19.2)

Here ( )
i

rU  is the potential energy of the electron in the Coulomb field

of the nucleus and ( )
i

rUΣ  is the electrostatic energy of the interaction

of the ith electron with the others. If the probability density of an

arbitrary kth electron is 
2

k
n

ψ its charge density ( )
k

e

k
rρ  is distributed in

space according to the law ( ) 2

k
nk

e

k
eψρ =r .

According to the Coulomb law, the energy of interaction between the ith

and the kth electron is

( )
2

2

0
 .

k
n

ik i k

i k

k e
U r dV

ψ
=

−∫
r r

(19.3)

It is obvious that to determine the energy of interaction with all electrons

it is necessary to sum up these energies:

( )
2

2

0
.

k
n

i k

k i i k

k e
U r dV

ψ
Σ

≠

=
−∑∫

r r
(19.4)

Then the Hamiltonian takes the following form:

( )
2

22
0ˆ  ,

2

k
n

i i i k

k i i k

k e
H U r dV

m

ψ

≠

= − Δ − +
−∑∫

r r
(19.5)

and the function ( )
i

n i
ψ r  satisfies the stationary Schroedinger equation

( ) ( ) .,...,3,2,1,,ˆ NiEH
innni ii

== rr
i

ψψ (19.6a)
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The general form of this equation, written through the potential energy

( )
is

rU , which unites the potential energies in the field of the nucleus and the

electrons ( ) ( ) ( )( )
iiis

rUrUrU Σ+−= , does not differ from the (14.10) for the

H atom:

( ) ( ) ( ) ( )
2

,     =1,2,3,..., .
2 i i i i

i i ii n s i n n n
U r E i N

m
ψ ψ ψ− Δ + =r r r (19.6b)

In this equation for the function ( )
ini

rψ  the wave functions of the remai-

ning electrons enter through the Hamiltonian 
i

Ĥ , i.e. through ( )i
U rΣ , which

in the potential energy ( )s i
U r . The function ( )

ini
rψ  in its turn enters in the

Schroedinger equation of the remaining electrons. The relations (19.6) are in

essence a system of equations for the functions ( )
knk

rψ  ( , ..., N,,k 321= ).

The system (19.6) for determining of the electron wave functions is

known as the Hartee approximation. In it, the identity of the electrons is not

taken into account. To account for it, it is necessary to use the antisymmetric

wave functions similar to those of the atom of He. Fock did this. Therefore

the method carries the names of the both scientists.

The following method is used to solve the system (19.6). We choose an

initial wave function for each electron separately. Usually they are chosen as

wave functions of the hydrogen electron. Then, we use them to determine

the energy of interaction ( )
i

rUΣ  (19.4) and the  Hamiltonians (19.5).

Then, with the new Hamiltonians 
i

Ĥ  we find the functions ( )
ini

rψ ,

which differ from the starting ones (the functions of the hydrogen atom)

These wave functions represent the next approximation to the exact wave

function )...,,,,( 321 N
rrrrψ . With their help we again calculate the potential

(19.4) and the Hamiltonian (19.5) and then solve the system (19.6). We

repeat these operations until the results converge, that is, the results have to

be self-consisted.

The method of the self-consistent field allows us to describe the state of a

multielectron atom with single-particle wave function instead of a multi-

particle one )...,,,,( 321 N
rrrrψ . This gives us the possibility to describe the

state of an atom with the quantum numbers s, ,   and  mn l m  of separate

electrons.

We shall present a short review of the results of Hartree-Fock theory: 1)

the angular dependence; 2) the radial dependence and 3) the electron energy

in multielectron atom.

1) The wave functions, which are obtained by the Hartree-Fock method,

are closely connected with the eigenfunctions considered in Chapter 14 for a

one-electron atom. Actually the eigenfunctions of Hartree can be written as
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( ) ( ) ( ) ( )ϕωϕθψψ ,,,
lmnlnlmin

YrRr
i

=≡r . (19.7)

For the sake of brevity the index i after the sign ≡  has been omitted.

The spherical functions ( )ϕθ ,
lm

Y , describing the angular dependence, are

the same as in a one-electron atom. This is so because the Schroedinger

equation (19.6) for a multielectron atom does not differ from the

Shroedinger equation (14.10) for a one-electron atom as far as angular

dependencies on θ  and ϕ  are concerned. Hence, all conclusions, related to

the θ - and ϕ -dependencies of the eigenfunctions of a one-electron atom

can be applied directly to the θ - and ϕ -dependencies of the eigenfunctions

of a multielectron atom.

The sum of the probability density of states with single-electron wave

functions of fixed ln and  and all possible m, is spherically symmetric (see

problem 1 for 1and2 == ln ). According to the previous paragraph this is

also true for the wave functions of a multielectron atom. When a

multielectron atom is in its ground state, the quantum states with low

energies are filled with electrons. This means that for almost all values of

  and  n l  there are electrons in states with all possible values of m. Hence,

the sum of the probability densities of these electrons is spherically

symmetric; such is their charge distribution. At least a few electrons in the

highest energetic states, for which not all-possible values of m are filled, can

make a contribution to the asymmetry of the charge distribution.

2) The dependence of the eigenfunctions of an electron in a multielectron

atom on r is not the same as in a one-electron atom. The reason is that the

net potential 
s

U  which enters in the differential equation for ( )rR
nl

, does

not have the same r-dependence as the Coulomb potential in a one-electron

atom. A typical example for the radial distribution of a multielectron atom is

shown in Fig. 19-1. These are the results of the Hartree-Fock method for the

atom of argon with .18=Z  The value ( ) ( ) ( ) ( )rlrrRl
nlnl

ρ122122 22 +=+  is

plotted on the vertical axis. Here ( )r
nl

ρ  is the radial probability density to

find the electron with the quantum numbers n and l in the position with

radial co-ordinate r. As for each fixed l there are 12 +l  possible values of m

and for each of them there are two values of 
s

m , the value ( ) ( )rl
nl

ρ122 +  is

a radial probability density for the states with quantum numbers n and l,

multiplied by the numbers of electrons for which the Pauli's principle

permits to occupy these states. In the ground states of the argon two

electrons are in the state with 1  and  0n l= = , two - with 2  and  0n l= = ,

six - with 2  and  1n l= = , two - with 3  and  0n l= =  and six - with 3n =
and  1l = . These are the states, which are filled in the ground state of the

atom, because as how we shall see later they have the lowest possible

energy.
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Figure 19-1.  The radial probability densities for the filled quantum states of argon, according

to the Hartree-Fock theory, as a function of r, which is normalized with the Bohr radius a0.

For each fixed value of n the probability density is concentrated mainly in a limit layer called

a shell.

The radial probability density ( )rρ  of the atom 
18

Ar is shown in Fig. 19-

2. It is a sum of the probability densities of each populated state, multiplied

by the number of electrons in it. Physically ( )rρ  gives the probability to find

an arbitrary electron in the region between r  and r dr+ . The figure also

shows indirectly through the effective charge number ( )rZ , the net potential

)(rU
s

. The relationship between these two quantities (see also (14.67)) is as

follows:

( ) 2

0
( ) .

s

k Z r e
U r

r
= − (19.8)

3) The results of the Hartree-Fock theory show that the energy of the

electron in a multielectron atom depends both on the principal number n and

on the orbital number l, i.e. 
nl

EE = . We have already reached such con-
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Figure 19-2.  The total radial probability densities ( )rρ  of the argon and the effective charge

( )rZ , which determines the net potential ( )rU
s

.

clusion in Section 14.5 for a special case of the multielectron atoms namely,

the hydrogen-like atoms.

19.2 SHELL STRUCTURE OF THE ATOM

Theory and experiment show that the electrons which have the same

energy are characterized by approximately the same average distance from

the nucleus. In this sense the electrons with states of equal energy produce

layer structures from the nucleus. The atom has a layered structure.

A shell is called a set of the quantum states with fixed principal quantum

number n. The shell with given n is denoted with capital Latin letter:

.notationletter
7,654321

QPONMLK

n =
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In fact, from the plots of ( )r
nl

ρ  in Fig. 19-1 it is clear that the probability

density of all electrons with an equal number n is significant in the same

range of r. These electrons are situated in a spherical layer, which as we

have already said, is called a shell.

For the estimation of the shells we shall use formula (19.8). For the argon

atom we shall take the values of ( )rZ  from Fig. 19-2. This approach gives a

rough but very useful approximation of the results of the Hartree-Fock

theory. In this approach all electrons from the shell n are moving in the field

of the Coulomb potential:

,)(
2

0

r

eZk
rU

n

s
−= (19.9)

where 
n

Z  is a constant equal to the effective charge number ( )rZ  for the

average value of r for the shell (for "the radius" of the shell). Very often 
n

Z

is called the effective charge number of the shell. For the argon

atom ( )18=Z  from Fig. 19-2 we find:

.3,8,16 121 ≈≈≈ ZZZ (19.10)

The Schroedinger equation (19.6) for the potential (19.9) has a solution

for the eigenvalues of the energy, coinciding with the energy (14.55) of the

one-electron atom:

( )2 4 2 2 4 2 2
0 0

2 2 2 2 2 2
13,6 eV.

2 2

e n n n
mk Z r e m k Z e Z Z

E R
n n n n

≈ − ≈ − = − = − (19.11)

After substituting (19.10) for the atom of Ar we obtain 2

1 16E ≈−
13,6 eV 3500 eV,× ≈− 2

2 4 13,6 eV 220 eVE ≈− × ≈− and 2

3 1 13,6 eVE ≈− ×
eV.14−≈  This estimate differs from the exact results, obtained by the

Hartree-Fock theory by about 20%.

In the example which we considered for the argon atom ( )18=Z , the

effective charge of the inner shell ( )1=n  is 161 =Z . The calculations within

the Hartree-Fock theory show that in all multielectron atoms 21 −≈ ZZ . For

the outermost shell of the argon ( 3=n ) we have obtained small number for

the effective charge: 33 ≈Z . This is so, because an electron in the outermost

shell is almost completely shielded from the nuclear charge by the inner
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electrons. It appears that for all multielectron atoms the effective charge of

the outermost shell with the quantum number n is .nZ
n

≈
In the multielectron atoms, inner shells with small n have very small

radius because for these shell the shielding by the remain electrons is weak

and the electrons are attracted almost fully by the positively charged nucleus.

The Hartree-Fock theory predicts that the radius of the K-shell ( )1=n  is

approximately ( )2−Z  times smaller than the hydrogen radius. (This result is

a very rough approximation for large Z, because of the relativistic effects

which are not taken into account. In this case the relativistic effects are very

important because the electrons of the inner shells of atoms with large Z

have energies comparable to the rest energy eV.10.5 52 ≈cm
e

) Using the

same rough method, we substitute in the equation for an one-electron atom

1 2  and  1Z Z n≈ − ≈  and obtain for the average radius:

21

0
2

−
≈≈

Z

r

Z

an
r

H . (19.12)

The index H relates to the hydrogen; here 
H

r  stands for its average

radius. For the outermost shell, substituting in (19.12) for 1Z  the effective

charge nZ
n

≈  we obtain the following:

.0
0

2

0

2

na
n

an

Z

an
r

n

≈≈≈ (19.13)

This is a very interesting result. Although it is a crude estimate, it

correctly expresses the fact that the radius of the outermost shell increases

very slowly with the atomic number. Hartree calculations show that even for

elements of highest atomic number, their outermost shell radius is only three

times larger than the radius of the hydrogen. Since the average radius of the

outermost shell defines the size of the atom, the above statement can be used

to estimate atomic sizes.

Using the crude method we can find the energy of the innermost and the

outermost shells. For the K-shell, according to (19.11) it is equal to ( )2
2−Z

times the energy of the hydrogen electron with quantum number 1=n :

.)2(
2

)2(~

1
2

2

422
0

Hz
EZ

eZkm
E −=−−≈ (19.14)

Similarly, for an electron of the outermost nth shell we get
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H

n

z
E

ekm

n

eZkm
E 12

42
0

22

422
0

2

~

2

~
=−≈−≈ . (19.15)

The energy of an electron from the outermost populated shell is

comparable to the energy of the electron in the ground state of the hydrogen.

A subshell - a set of the quantum state with fixed principal quantum

number n and orbital quantum number l.

Electrons with equal quantum numbers n and l are called equivalent

electrons. Relationship (14.64) shows that the average radii of equivalent

electrons, i.e. the electrons of a subshell, are exactly equal to each other. And

according to the curve ( )rZ  in Fig. 19-2 this means that they have equal

effective charges. Using (19.11), this in its turn means that the states of a

subshell possess equal energy
nl

E , which depends on both the principal and

the orbital quantum numbers.

The number of states in a subshell is defined by the allowed orientations

of the orbital angular momentum. For a fixed orbital number they are

12 += lN
l

 states with equal n and l, but with different m. Taking into

account the exclusion Pauli's principle that in every state ,   and  n l m  there

can be two electrons, we can determine the number of electrons in a given

shell. The states in a given shell, their number and the number of electrons

are presented in Table 19-1.

Table 19-1. The states, the numbers of states and the electrons in the subshells

Subshell

    l  Letter notation

The states with the magnetic

quantum number m=

Number of

states

Number of

electrons

   0

  1

  2

  3

  4

s

 p

 d

 f

 g

                               0

                        –1,  0,  1

                 –2,  –1,  0,  1,  2

          –3,  –2,  –1,  0,  1,  2,  3

    –4,  –3,  –2,  –1,  0,  1,  2,  3,  4

1

3

5

7

9

2

6

10

14

18

The number of the subhells in a shell n is equal to the number of the

shell, i.e. n. The states in a given shell differ by their orbital angular

momentum and its orientations. While calculating the multiplicity of the

degeneracy of the hydrogen atom (Section 14.3) we determined the number

of possible states 2
nN

n
= . According to the Pauli's principle the number of

electrons in the shell is 22nN
e

n
= .

The shells, subshells, number of the states and number of electrons in

them are given in Table 19-2.
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The order of subshells in increasing energy will allow us to establish the

order of filling them with electrons. To within first order, it is natural to

neglect the energy of the electrons and consider that the energy of the atom

is equal to the sum of the electron energies in the Coulomb field of the

nucleus. The energy of the electron in the Coulomb field of the nucleus is

well known (14.41) and therefore it is not difficult to find the distribution

(with minimal energy) of the electrons in different states, taking into account

the Pauli's exclusion principle. As a result we obtain the ideal scheme of the

shell filling, which essentially differs from the real scheme, but its

consideration is useful.

We know from the hydrogen atom that the energy of the state increases

with n. Therefore we expect in the ideal scheme to subsequently fill the

shells K, L, M, N, O, P, Q (here we pointed the shells, which are observed in

the real existing elements in Nature and artificial created ones).

Table 19-2. The subshells and the numbers of states and electrons in sells

Shell

    n  Letter notation

Subshells

in a shell

Number of states Number of

electrons

   1

  2

  3

  4

 5

K

L

M

N

O

1s

2s,  2p

3s,  3p,  3d

4s,  4p,  4d,  4f

5s,  5p,  5d,  5f,  5g

1

4

9

16

25

2

8

18

32

50

On the basis of the states of three hydrogen-like atoms considered in Section

14.5, we would expect inside the shell, i.e. at fixed n, the filling would

"ideally" form s, p, g, f, g, etc. subshells. The ideal filling would occur when

subshells are ordered in an increasing order in the following way:

1 1 ,2 3 ,3 ,3 4 ,4 ,4 ,4 5 ,5 ,5 ,5 ,5
.

K L M N O

s s p s p d s p d f s p d f g
E⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→

(19.16)

This ideal order however is in contradiction with the rule of filling that

every subsequent electron fills the state with a minimal possible energy (rule

2. in the next Section 19.3).

In fact, the energy increases with both n and l. But to answer the

question, how are the states ordered, we must solve the quantum-mechanical

problem of N electrons in an atom. We know that this is very difficult
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problem. Therefore, we are forced to use empirical data in particular

chemical and spectroscopic data, for the ionisation potentials of the atoms.

This attaches to the periodic-table theory a semi-empirical descriptive

character. Therefore, it is better not to speak about a theory but about an

explanation of the periodic system.

One of the most important semi-empirical rules, which allow us to order

the subshells in increasing energy, is the rule of Madelung. It states:

The energy of the subshell increases with increasing the sum ln + and

for subshells with the same ln + , the subshell with the larger n has larger

energy.

Let's order the subshells according to the increasing the sum n l+
(Table19-3), applying the second part of the Madelung's rule to the sum with

equal n l+ .

Table 19-3. The subshells ordering according to the Madelung's rule, i.e. to the real scheme

n+l of the state Subshells

7

6

5

4

3

2

1

4s, 5d, 6p, 7s

   4d, 5p, 6s

        3d, 4p, 5s

                               3p, 4s                          E↑
  2p, 4p, 5s

                                 2s

                                 1s

The subshells, ordered by increasing energy have the following order:

1 ,2 ,2 ,3 ,3 ,4 ,3 ,4 ,5 ,4 ,5 ,6 ,4 ,5 ,6 ,7 ,5 ,6
E.

s s p s p s d p s d p s f d p s f d
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯→

(19.17)

Comparing to the ideal order (19.8) we note the deviation at the subshells

dfdfdd 6,5,5,4,4,3 , which are underlined. The breaking of the ideal

order is observed in d- and f-subshells.

How can we explain the breaking of the ideal order of filling? It can be

readily explained by the presence of the orbital angular momentum

( )( )1+= llL  of the electron. In essence, this is the same qualitative

explanation, which we used in Section 14.4. The energy of an atomic

electron depends not only on its potential energy in the net field of the

nucleus and the electron core, but also on its rotational energy

2

2

2

2

2

)1(

2 rm

ll

rm

L
E

ee

r

+== . (19.18)
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In such a way we can consider its motion in a central symmetric field with

an effective energy )(
~

rU
l

 (see Section 3.3):

2

2

2

)1(
)()(

~

rm

ll
rUrU

e

l ++−= , (19.19)

where )(rU−  is the potential energy of the field of the nucleus and the

electron core. With increasing l, as the electrostatic and the rotational

energies are with opposite sign, the effective energy increases, i.e. it

becomes less negative. This means that the bond of the electron with the

nucleus decreases. For this reason the electrons from the 3d-subshell have

smaller energy than the electron of 4s-subshell. The rotational energy of the

electrons of the d- and f-subshell is a few times larger than that of the p-

subshell (we are not speaking of rotational energy of s-electrons, which is

zero).

The orbital angular momentum changes not only the electron energy. The

curve of the effective potential energy )(
~

rU
l

, which determines

qualitatively the motion, is also changed. Therefore, another interesting

phenomenon is observed - the immersion of the d- and f-subshell. Both the

order and the immersion of these subshells are plotted in Fig. 19-3. Both

phenomena are connected with the change of )(
~

rU
l

 at different l (compare

with Fig. 14-11b).

Figure 19-3. With increasing l the curve of the effective potential changes due to the

increasing of the rotational energy. Therefore, the level 3d appears above the level 4s (in

breaking the ideal order) and the electrons of this subshell are inner in respect to close s- and

p-electrons (from the subshell 4s and 4p), i.e., the d-subshell sinks.
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We have to underline once more that the analysis done above is

qualitative. This analysis and the well-known chemical and physical

properties of the atoms allow us to make a number of conclusions. We shall

not consider them in detail, but shall only summarize them:

1. The subshells s and p are outer.

2. The number of electrons in the outer subshells is from 1 to 8 - they are

called valence electrons; the outer subshell can not have more than 8

 electrons.

3. The subshells d and f are inner.

4. Many chemical and physical properties of atoms with the same outer

subshells differ insignificantly.

5. The periods of the Mendeleev system are defined by filling of the outer

subshells.

19.3 ELECTRONIC CONFIGURATION AND THE

PERIODIC TABLE

The preceding analysis allows us to formulate the following general rules

for the structure of the Mendeleev table:

1. The structure of the atoms is defined by the atom number Z, i.e. by the

charge of the nucleus. The isotopes of a given element have one and the

same electronic structure.

2. With the increasing of the atomic number, i.e. increasing the electrons in

the atom, the electrons gradually fill the states with minimal possible

energy.

3. The number of electrons filling of the energy levels is limited by the

Pauli's exclusion principle.

4. The energy of the kth electron, being in the net field of the nucleus and

the remaining electrons, i.e. in spherically symmetric field, is determined

by the principal quantum number 
k

n  and the orbital quantum number 
k

l .

Electrons with equal n and l have the same energy.

5. The electrons in the atom have a layered structure - they are grouped in

shells and subshells.

Here we shall underline the important role of the Pauli's exclusion

principle. The subshell 1s is the subshell with lowest energy. If the exclusion

principle did not existed, all electrons in multielectron atoms would be in the

subshell of lowest energy, i.e. in the subshell 1s. Then, all atoms would have

spherically symmetrical distributions of their charge. Such a distribution

would not produce an external electric field and according to Fig. 19-5 the

atoms would have a very high first exited state. In other words, all atoms

would be similar to the noble gases and therefore there would be no
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chemical compounds. So, if electrons did not obey the Pauli's exclusion

principle the entire universe would be completely different.

Most of the properties of the chemical elements are periodic functions of

their atomic number Z. First, Mendeleev in 1869 suggested that this periodi-

city could be made most apparent and convincing by the periodic table of the

elements. A present-day version of this table is shown in Fig.19.4. Let us

consider two columns of elements in this table. The elements in the first

column are alkalis and have a valence of plus one. The elements in the last

column are noble gases and have a valence of zero. Generally, the elements

with similar chemical and physical properties are in the same column. The

discovery of the periodic table has been a great event in the history of

chemistry and its interpretation has been a significant contribution to the

development of physics. Here our task is to interpret the properties of the

multielectron atoms within the Hartree-Fock theory. This represents the

quantum mechanical interpretation of the basis of inorganic chemistry and of

much of organic chemistry, atomic physics and solid state physics.

The distribution of the electrons by the subshells is called an electron

configuration. When the energy order in the subshells is known (19.17), it is

easy to find the electron configuration. The configuration is denoted by the

quantum numbers n and l of the subshell, which in the self-consistent theory

define its energy and number of electrons. We have to emphasize that the

real scheme (19.17) does not give the order of all subshells in every atom but

only of those, which are outer. For example, the energy of 4s-subshell is

lower than the energy of 3d-subshell in the atom of K and in the following

few atoms in the periodic table. But for the atoms following even further in

the table, the subshell 3d has lower energy than the 4s-subshell, because for

these atoms it is inner (Fig. 19-5). From this figure it is clear that the

completely filled d- and f-subshells obey the ideal scheme of order (19.16).

The considered example allows us to conclude that if the d- and f-subshells

are outer, the electrons are ordered by the real scheme (19.17), but if d- and

f-subshells are inner the electrons are ordered by the ideal scheme (19.16).

The configuration of the elements of the first two periods of the

Mendeleev table is the following:

The periodic table in Fig. 19-4 is divided vertically into columns. Each

column has a label of the subshell, which is filled by the elements of this

column according to the real scheme (19.17). But there are certain excep-

tions in which the last few electrons of the atoms have a different subshell

than would be predicted by the real scheme. The configurations of these

exceptional atoms in Fig. 19-4 are labeled below their chemical symbol.
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Figure 19-5. Relative energy of the subshells of the multielectron atoms as a function of the

atomic number Z. Each curve starts at the value of Z for which the corresponding subshell

begins to be occupied. When d- and f-subshell are outer the order of the subshells is shown on

the left (real scheme); when d- and f-subshell are inner, it is shown on the right (ideal

scheme).

The first exception occurs at the fourth row, which begins with K19 .

There is nothing exceptional about its configuration (there is no label below

K19 ). Then, listing in order of the lowest energy subshell, i.e. applying the

real scheme (19.17), we obtain the configuration:

.433221:K 16262219
spspss

In Ca20  one electron is added to the 4s-subshell. The 4s is now full. The

closed subshell with the next highest energy is the 3d subshell. Adding 1, 2

or 3 electrons we consecutively obtain Sc21 , Ti22  or V23 . These

configurations obey the real scheme and the configuration for V23  is

.3433221:V 326262223
dspspss
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Adding one more electron, we expect that it will be in the next element in

the 3d subshell, retaining the configuration of the remaining subshell. But

the next element Cr24 is with a label 5134 ds  below the chemical symbol,

which means that the configuration of this atom does not end as would be

expected, but instead is:

.3433221:Cr 516262224
dspspss

For the next elements the subshell 3d is filled with the level 4s remaining

with one electron only (for example, 1016262229 3433221:Cu dspspss ).

Here the real scheme is violated. From Cr24 the energy of the 3d subshell is

lower than the energy of the 4s subshell (Fig. 19-5). Since the real scheme is

valid for every s- and p-subshell and none of the configurations is

exceptional for elements in the first two columns and in the first three rows

of the last six columns, it is accepted to ascribe to the configuration the real

order (see above example with Cu29 ); nevertheless, the energy of the 3d

subshell is lower than the energy of the 4s subshell and 3d is positioned after

4s. The reader can find an excellent explanation of the configurations of

other elements in [1], Section 9-7.

19.4 HUND’S RULE

Knowing how the subshells are ordered, consider the states of the

electrons inside them. Let us take two subshells, s and p. Three different

states are possible in the s-subshell - two with one electron, but with

different orientations of the spin and one with two electrons with opposite

oriented spins:

(19.20)

Four quantum numbers are written for each states - n, L, mL and mS  (L,

mL and mS are the quantum numbers of the atom: the orbital, the magnetic

and the magnetic spin numbers; for the separate electrons they are

correspondingly, n, l,
l

m m≡  and ms). The first two states are energetically

equivalent - they differ only by the orientation of the spin; the third state is

with two electrons which according to the Pauli's principle have opposite

spins.

The arrangement of the electrons in an s-subshell does not create

problems as it has only one state. In some sense it is trivial. Not the case for

p-subshell - there are three states in it. We shall begin the analysis of a p-

subshell with two electrons in it. Some physical considerations will help us
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to reach the rules of the arrangements of electrons in a subshell. The first

such subshell (2p) in the periodic system is in the atom of C6 , which has the

configuration 222 221 pss . So, our analysis relates also to the distribution of

both valence electrons in the atom of C6 .

The number of possible states of the two electrons in the subshell is 15:

(19.21)

Which one of these states has the lowest energy? We ask this question while

neglecting the spin-orbit interaction. It is equivalent to the question: does the

choice of the spin states influence the electrostatic energy of the electron

system? The reply is: yes, via the Pauli's principle. The choice of the spin

states influences indirectly the distribution of the electron states inside the

subshell and different distributions have different electrostatic interaction

energy.

Indeed, two electrons with the same spins ( )↓↓↑↑ or  according to the

Pauli's exclusion principle cannot be found in one state, i.e. cannot have

equal quantum numbers mln and, . But this means that they cannot be found

in one and the same place in space. At the same time if they are in a state

with antiparallel spins - they can be found at the same place. The

electrostatic repulsion force between two close electrons is greater than

between two distant electrons. In the case of antiparallel spins larger positive

term is added to the negative electrostatic energy of the interaction of the

electrons with the nucleus than in the case of parallel spins. Therefore the

states with parallel spins are with lower energy, i.e. they are energetically

more advantageous. These are the states in the first column of (19.21); the

states in the second column have the same energies - the difference is only in

the orientation of the spins. In Fig. 19-6 are represented the states with the

Figure 19-6. States with parallel spins of two p-electrons (only the positively oriented

electrons are shown) and their corresponding electron clouds nlm.
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parallel spins together with their electron clouds. In the state a) the electron

clouds coincide and the repulsion is greater than in the states b) and c).

Hence the states b) and c) have the lowest energy among the possible 15

states of the 2 electrons in the p-subshell (19.21). These two states differ

from one another only by orientation of the total orbital momenta: in b) it is

positive and in c) negative.

Let's see what the total spin and orbital angular momenta are of both

electrons in the energetically most advantageous states. According to the rule

of summation of angular momenta, the total spin can have a spin number

1,0=S . In the energetically most advantageous states the spin number S of

the atom is maximal: 1=S . Two electrons with orbital numbers 121 == ll

(we consider a p-subshell) can have total orbital number 2,1,0=L . But in

the state with lower energy (parallel spins) Pauli's principle does not permit

both electrons to have the same magnetic numbers m, which is equivalent to

prohibition of the state .2=L  The state in which 0=L  (in Fig. 19-6 this is

case a)) was rejected above as the electron clouds in it coincide. From three

possible cases the energetically most advantageous state is that with 1=L .

From Fig. 19-6b and Fig. 19-6c it is seen that the state with the maximal

orbital angular momentum has the lowest energy (among the electron levels

allowed by the Pauli's principle).

So, we reached the first Hund's rule: in a given subshell the minimal

energy belongs to the state with maximal spin, and for equal spins - the state

with the maximal orbital angular momentum.

From the above qualitative discussion and the Hund's rule it is clear that

in the atom only one of the possibilities with regard to the total spin and the

total orbital angular momentum is realized. This is so because additional

conditions - the Pauli's principle and the requirement for lower energy - are

added to the general rule of summation of angular momenta (see Section

16.2). These additional conditions reduce the general rule to a simpler rule.

Let us try to establish the rule for determining the orbital and the spin

numbers of the atom.

The vector interpretations of the three states of Fig. 19-6 are plotted in

Fig. 19-7.

After summation of the orbital angular momenta 1L  and 2L  of both

electrons with orbital numbers 121 == ll  and magnetic numbers

1,0,1−=
li

m ( )2,1=i , we obtain the orbital angular momentum 
a

L  of the

atom with an orbital quantum number L:

)1(,21 +=+= LLL
aa

LLL . (19.22)



19. PERIODIC TABLE 495

From the considered examples it is clear that the orbital quantum number

of the atom is determined not by the general rule of summation of angular

momenta (Section 16.2) but by the following rule:

k

k

L m= ∑ . (19.23)

The orbital quantum number of the atom is equal to the absolute value of

the sum of the magnetic numbers of the separate electrons.

Figure 19-7. Total orbital angular momenta of the states with parallel spins.

Summing up the spin angular momenta 1S  and 2S  of both electrons with

spin numbers 1 2 1/ 2s s= =  and magnetic spin numbers 
1 2

1/ 2
s s

m m= = , we

obtain the spin 
a

S  of the atom with a spin quantum number S:

1 2 ,     ( 1)
a a

S S S= + = +S S S . (19.24)
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The spin quantum number of the atom is determined not by the general

rule of summation of angular momenta but by the reduced rule through the

magnetic spin numbers 
ks

m :

ks

k

S m= ∑ . (19.25)

The spin number of the atom is determined by the reduced rule as the

absolute value of the sum of the magnetic spin numbers 
ks

m of the separate

electrons.

The arrangements of the electrons which fill the p-subshell of the

elements in the second period of the periodical system, B, C, N, O, F and Ne,

are shown in Table 19-4. As it can be seen from the example with Ne, for a

completely filled subshell all angular momenta of the atom (orbital 
a

L , spin

a
S  and total 

a
J ) are equal to zero. The filled subshells do not change the

atomic angular momenta - the last are determined only by the valence

electrons. Therefore, usually only the configuration and the distribution of

the valence electrons are given.

Table 19-4. The electron configuration and the arrangement in the p-subshell of the second

period of the periodic table

The same distributions, but with negative spins, are energetically

completely equivalent to the shown ones. I leave the justification of these

distributions on the basis of Hund's rule to the reader.
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19.5 FINE STRUCTURE OF THE MULTIELECTRON

ATOMS

In the previous section we considered the states with different L and S

which belong to one and the same electron configuration. They have

different energy due to the different electrostatic interactions between

electrons in different states. The energy differences between the states of one

configuration are usually substantially smaller than the energy differences

between the states of two different configurations. The order of the states in

increasing energy is determined by the Madelung rule. The presence of the

spin-orbit interaction of the electrons leads to additional splitting of the

energetic levels. As a result of this interaction the levels of one and the same

configuration and of one and of the same values of L and S split in a row of

levels with different values of the total quantum number J of the atom.

Let us consider the state P
3  of the C atom, which was analyzed in

Section 19.4. According to (19.23) and (19.25) the orbital and spin angular

momenta are

2)1(,2)1( =+==+= SSSLLL
aa

. (19.26)

The total angular momentum of the atom, 
a

J  is a sum of the spin and

orbital angular momenta

)1(, +=+= JJJ
aaaa

SLJ . (19.27)

The quantum number of the atom (often called internal) according to the

rule of a summation of angular momenta (Section 16.2) takes the following

values:

SLS LSLSLJ +++−−= 1,-...,,1, . (19.28)

The number of states with different total angular momenta is defined by the

smaller of the two quantum numbers L and S:

a)  2 1  when  :   ,  1,  ...,  1, ,

b)  2 1  when  :  ,  1,  ...,  , .

S S L J L S L S L S - L S

L S L J S L S L S L - 1 S L

+ < = − − + + +
+ > = − − + + +

 (19.29)

In case a) there is a physically fixed direction by the strongest angular

momentum (the orbital) and the number 12 +S  shows the number of the

possible orientations of the spin with respect to the orbital angular momen-
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tum (also with respect to the total angular momentum). In case b) there are

12 +L  orientations of the orbital angular momentum with respect to the spin

angular momentum. The internal number can take the values 2,1,0=J  and

the level 2p splits in the three close levels 2
3

1
3

0
3 and, PPP . This set of split

levels forms a multiplet, which is called fine structure of level .3
P

For the additional energy of splitting we can use formula (17.21), which

we write in the form

,
LS a a

U AΔ = L S (19.30)

where 
LS

A is a constant which depends on L and S but not on J. As the vec-

tor J is a sum of the vectors L and S, which we can write according to

elementary geometry

( )2 2 21

2
a a a a a

= − −L S J L S , (19.31)

and consequently for the energy UΔ we obtain

( ) ( ) ( )
2

1 1 1  .
2

LS
U A J J L L S SΔ = ⎡ + − + − + ⎤⎣ ⎦ (19.32)

It is clear from this expression that the distance Δ  between two adjacent

levels (e.g. between Jth and (J-1)th levels) depends only of the coefficient

LS
A  and the internal number J:

2

1 .
J J LS

U U A J−Δ = Δ − Δ = (19.33)

This dependence is known as the Lande rule of the intervals.

Two configurations of the equivalent electrons which are mutually

supplementing to make a full subshell, have a state 2 1S

J
L

+  of one and the

same type. For example, such are the configurations of 6 8C  and O .

Actually, the configurations of the outer subshells of 26 2-C p  and of

48 2-O p are supplementing to make a full p-subshell with 6 electrons. The

constant 
LS

A  can be: a) positive - then the state with the minimum value of

SLJ −=  has lower energy and the multiplet is called normal; b) negative -

then the state with the maximum value of SLJ +=  has lower energy and

the multiplet is called reversed. It is found empirically that when a subshell
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is filled less than a half, 0>
LS

A  and a normal multiplet arises, but when the

subshell is filled more than a half 0<
LS

A  and a reversed multiplet arises.

(We note that when a subshell is half-full 0=L  and there are no

multiplets!) This is the content of the second Hund's rule, which defines the

order of the fine-structure level:

In the fine-structure levels a lower energy belongs to: a) the level with

minimal internal number SLJ −=min , if the subshell is filled less than a

half and b) the level with maximal internal number SLJ +=max , if the

subshell is filled more than in a half.

In the example with C and O the electrons are 2 and 4 out of 6 possible.

In the C atom the subshell is completed less than half and the ground state is

with minJ , i.e. with the term 0
3
P  (Fig.19-9a). In the O atom the subshell is

completed more than half and the level with maxJ has lower energy. From

Fig. 19-8b it is clear that according to (19.23) and (19.25) in O 1 L =
and 1S = . Hence, the possible values of the internal number are 2,1,0=J

and 2max =J . The ordering of the levels of O is shown in Fig.19-8b.

Figure 19-8. Energy levels of the fine structure of the atom of: a ) 6C - a normal triplet; b) 8O

a reversed triplet. The distance between the levels is determined by the Lande rule of the

interval.

For  the heavier elements the position of the levels predicted by the LS

coupling starts to deviate from the experimental results and the LS coupling

becomes inadequate. The reason for this lies in the fact that the energy of the

electrostatic interaction is proportional to Z (more accurately to Z(r) (19.8)),

but the energy of the spin-orbit interaction increases as 4
Z . For the light

elements the spin-orbit interaction can be neglected. But with increasing Z

the spin-orbit interaction plays a greater role. For the heavy elements it

becomes stronger than the electrostatic interaction.

For this reason, the JJ coupling in such cases replaces the LS coupling.

For the JJ coupling the states of the separate electrons are described by the

quantum numbers 
j

mjln ,,, , the total number having two values

2/1
2,1

±≡= ljj  (compare with the quantum number 
s

mmln ,,,  of the
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electron at LS coupling). Because of the spin-orbit interaction the energy of

the state +j  differs so much from the energy of the state −j  that the

energetic levels of the electrons are defined not by ,n l  as in LS coupling,

but by n, l, j. The levels are ordered in a totally different way. This problem

is out of scope of this book and won't be analyzed in details.

We shall only note that when one of the magnetic interactions plays an

important role we must also take into account other interactions mentioned

in the discussion of helium in Section 18.3 (see (18.19) and the comments

about this formula). From the magnetic interaction - a spin-other's-orbit

interaction, an orbit-orbit interaction, a spin-spin interaction - the only one

which does not cause splitting but only a shift is the last one. For correct and

adequate description of it, it is necessary to take into account also relativistic

effects. Experiments show that the beginning and the middle of the periodic

system are well described by the LS coupling and the end - by the JJ

coupling. Passing from the middle toward the heavier elements the energy

levels take values intermediate to the predicted by LS and JJ coupling.

SUMMARY

One of the most widely used methods for solving the Schroedinger

equation of multielectron atoms is the approximation of Hartree-Fock, or the

self-consisting field. This method allows describing the atom instead by a

many particle wave function ),...,,,( 321 N
rrrrψ , with a single particle wave

function )(...)(),(),( 321 321 Nnnnn N
rrrr ψψψψ of each electron. This provides a

possibility to describe the atomic state by the quantum numbers

s
mmln and,, of the separate electrons. The interaction between the electrons

is accounted both in the equations and in the Hamiltonians.

The results of the Hartre-Fock theory show that the energy of he

multyelectron atom is defined by the principal quantum number n and orbital

quantum number l. Electrons of the same energy approximately are the same

distance from the nucleus. The atom has layered structure  - the electrons are

placed in shells and subshells. The inner shells with small n have small

radius because they experience a strong attraction by the positively charged

nucleus. With increasing n, the radius of the outer shell (of the atom)

increases very slowly and for the heaviest elements is only three times

greater than that of hydrogen.

For the construction of the periodic system the following empirical rules

are used:

1. The structure of atoms is defined by the atomic number Z, i.e. by the

charge of the nucleus.
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2. With increasing atom number, i.e. with increasing number of electrons in

the atom, the electrons gradually fill the states with minimal possible

energy.

3. The energetic order of the subshells follows the Madelung rule:

1 ,2 ,2 ,3 ,3 ,4 ,3 ,4 ,5 ,4 ,5 ,6 ,4 ,5 ,6 ,7 ,5 ,6s s p s p s d p s d p s f d p s f d

4. While filling the energetic levels, the number of electrons is limited by

the Pauli's exclusion principle.

5. The electrons in the subshells are arranged according to the first Hund's

rule.

6. The order of states in the approximation of the fine structure follows the

second Hund's rule.

7. The energetic levels of the fine structure are nonequidistant and the space

between them is determined by the Lande rule of the intervals.

QUESTIONS

1. What is the essence of the self-consistent method?

2. How are the electron states in an atom described?

3. On which quantum numbers does the energy depend?

4. Why do atoms have layered structure?

5. How many electrons has one subshell or one shell?

6. Which is the ideal order of filling of the atomic states?

7. For which subshells is the ideal order violated and how can this be

explained?

8. How can we approximately estimate the range of the electron cloud?

9. Why do the d- and f-subshells contract?

10.Which subshells are inner and which outer?

11. What defines the periods (the rows) of the Mendeleev system?

12. What is called an electron configuration?

13.How do spins influence the electrostatic energy of interaction between

electrons?

14.Which states of an atom - with parallel or with antiparallel spins are more

stable?

15.Explain physically which of the states with parallel spins of two electrons

in a p-subshell have lower energy?

16.What do the Hund's rules state?

17.How are the orbital and spin numbers of an atom described?

18.Why the rules for additions of orbital and spin angular momenta of the

electrons in an atom differ from the general rule of addition of angular

momenta?

19.Why does the JJ coupling occur in the heavy elements?
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PROBLEMS

1. Prove that the average probability density of a system of degenerate

states corresponding to the energy 2E  does not depend on the angles

ϕθ and .

2. Using formulae for rough estimate, determine the average radii of the K-

shell and the outer shell of the atom Pb82 .

3. Estimate approximately the energy of an electron in: a) the inner shell

and b) the outer shell of In49 .

4. Using the first and the second Hund's rules obtain the arrangements of

the electrons and the term order in the atom of Ti22 .

5. Determine the possible values of the total angular momentum in the state

D5 .

6. Using the Hund's rules determine the term of the ground state of the

element with a configuration of unfilled subshell: a) 3
nd ; b) 6

nd .

7. Find the ratio of spaces between the term of C6 .

8. For the atom of Cs55  find: a) the electron configuration; b) the order of

states; c) , ,  and 
a S z

S S m S , and construct the vector diagram of the 
a

S ;

d)
azLa

LmLL and,, , and construct the vector diagram of the 
a

L ; e)

azJa
JmJJ and,, , and construct the vector diagram of the

a
J ; f) the

possible vector interpretation of 
aa

SLJ
a

+= ; g) the terms; h) the fine

structure; i) the splitting of levels in a strong magnetic field; j) the

splitting of levels in a weak magnetic field.
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of Hamilton, 255, 282, 314, 329,

339, 342, 348, 365, 392, 402, 448,
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of the momentum, 233-234, 240
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Pauli equation, 449

Pauli principle, 465

Pauli spin matrices, 414
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Principal quantum number (see

quantum number)

Probability, 206, 207

Probability density, 208

Probability flux, 292

Quantum numbers,

of angular momentum, 165, 194-

195, 250, 253, 495

of angular-momentum projection,

249, 412, 422

of energy in H atom, 350

of molecule rotation, 365

of molecule vibration, 369

of oscillator, 319

of potential well, 287

of rotator, 341

of spin, 412, 495

of total moment, 421, 422, 497

principal, 195, 347

Radial energy equation, 55

Radial momentum, 140-141, 195

Radial probability, 354, 479

Index



Radial wave function for H atom,

347

Rayleigh-Jeans formula, 153

Rectangular potential barrier, 301 ff.

Rectangular potential well, 285 ff.,

294 ff.

Reduced mass, 50, 190, 348, 368

Reference frame (see Frame of

reference)

Relative position, 49

Relativistic corrections, 196, 441

Representations, 224-225, 386-392,

413, 415

Resonance frequency, 352

Ritz combination principle, 159

Rotating frame, 76 ff.

Rotator, 341

Russell-Saunders coupling (see LS

coupling),

Rutherford atom, 159

Rutherford cross section, 70

Rutherford formula, 67 ff., 70

Rutherford scattering, 67-71

Rydberg constant, 158, 186-188

Scalar potential, 19, 130, 448

Scattering, 67 ff., 160, 167, 321

Scattering angle, 57, 64-71, 168,

Schroedinger equation,

general properties of, 266 ff.

time-dependent (stationary), 268

time-independent (general), 268,

Selection rules, 351, 374, 375, 377,

442

Shell, 481

Shell structure of the atom, 481 ff.

Sommerfeld model, 194 ff.

Spectra, 156-159, 189, 215, 238,

272, 347 ff., 376

Spectral distribution of blackbody,

153

Spectral term, 158-159

Spherical co-ordinates, 25-28, 138-

142, 246 251, 255

Spherical energy operator, 255

Spherical harmonics, 245

Spin angular momentum, 411-413

components, 411-413

eigenstates of, 415

matrix representation of operators,

413-414

Spin number, 411-413

Spin-orbit interaction, 438 ff.

Spinor, 416

Spin wave functions, 414-416

Splitting of the level, 400, 440-444,

497-500

in electrical field, 400-404

in magnetic field, 444-455

Square well (see Rectangular

potential well)

Stern-Gerlach experiment, 410

Standing wave, 152, 192-194, 289,

294, 300, 326

Stark effect, 400 ff.

State,

classical, 126-128

quantum, 127, 211-212, 214-215,

268-269

Stationary state, 269 ff.

Subshell, 484
Superposition coefficient, 2118-221

Superposition, principle, 216 ff.

Symmetric oscillations, 110

Symmetric wave function, 464, 468

Symmetry, 41, 403

Term notation, 423

Threshold frequency, 353

Torque, 41

Tunneling, 303-309

Two-body problem, 48 ff., 97, 348,

364

Ultraviolet catastrophe, 154

Uncertainty principle, 256 ff.
Unit vector, 16, 52, 53, 85, 98, 137,

139, 241, 245

Index512
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Variations, calculus of, 8-10, 39-

40
Vector potential, 19, 130, 448

Vibrations (see Diatomic

Molecule, Normal modes,

Oscillator)

Wave equation, 266 ff., 269, 448
Wave function, 206 ff., 268-269

interpretation, 207

of the diatomic molecule, 365, 368

of the H atom, 347, 354

of the oscillator, 319

of the particle in potential step,

291, 293

f the particle in potential well, 287,

296

properties, 209

Wave packet, 204-205

Wien's law, 153

Work function, 164, 305

X rays, 160 ff.

Yellow doublet of sodium, 443-444

Zeeman effect, 84, 446, 451

anomalous, 451 ff.

normal, 446 ff.

Zero energy, 321
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