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PHYSICAL CONSTANTS AND UNITS

Name

Angstrom

Atomic mass unit
Avogadro's number
Boltzmann constant
Bohr magneton

Bohr radius

Calorie

Coulomb constant
Electron charge
Electron mass
Electronvolt
Fine-structure constant
Gauss

Gravitational constant
Permeability of vacuum
Permittivity of vacuum
Planck's constant

Rydberg constant

Speed of light
Universal gas constant

Notation

A
amu
N
k

A

Value

10 m

1,660.107 kg
6,022.10® mol™
1,381.10® JK
9,274.10% J.T"
0,529.10" m

419 J

8,99.10° N.m?*/C?
1,602.10" C
9,109.10°" kg
1,602.10™ J
1/137,036=7,297.10"
10* T

6,67.10"" N.m” kg™
47,107 N.s%/C?
8,854.10"% C*N.m’
6,626.10™ J.s
1,055.10™ J.s
1,097.10" m™!
2,17.10™" T=13,6 eV
3,27.1015 s
2,998.10° m/s

8,31 J/mol.K
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B magnetic induction
B complex amplitude
b semiminor axis of an ellipse
C constant quantity
G superposition coefficients
C complex coefficients (amplitude of the oscillation of g, with w,)
c constant
d constant
distance between two point sources
d.d electrical dipole moment
aw probability of finding object in an element of volume dV’
dr element of the displacement (change of all co-ordinates)
ds magnitude of the element of the displacement dr
E energy
E, energy of the state with quantum number n
E, rotational energy
& intensity of the electrical field
54 normalised (dimensionless) energy of a particle
e charge of the electron
eccentricity
F,F force
F, tangential component of the force
F, normal component of the force
F, magnetic force
F, force acting of the particle o
G gravitational force
G, gravitational constant

g Lande factor (gyromagnetic ratio)
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h=h/2rm

v, T,)

J,J

Jin

L.L,

- Ly §

S 3 83 3
S

Rl

Lande factor for the orbital magnetic moment

Lande factor for the spin magnetic moment
Lande factor for the total magnetic moment

Hamilton's function
operator of Hamilton
non-perturbed operator of Hamilton

in AH', where AH' is the operator of perturbation

Hermite polynomials
height

Planck's constant

current
spectral distribution

total angular momentum

probability flux

total quantum number

probability flux of the impacting particles
probability flux of the reflected particles
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PREFACE

This book has emerged from an undergraduate course as well as a graduate one,
which I have taught for a number of years. Recently, many universities have
experimented by bringing quantum theory forward in the curriculum and we follow their
example. This book is intended to serve as an introduction to theoretical mechanics and
quantum mechanics for chemists. I have included those parts of quantum mechanics
which are of greatest fundamental interest and utility, and have developed those parts of
classical mechanics which relate to and illuminate them. I try to give a comprehensive
treatment wherever possible. The book would acquaint chemists with the quantum
structure of the basic object of chemistry, the atom. My intention is to bridge the gap
between classical physics, general and inorganic chemistry, and quantum mechanics.

For these reasons:

1. I present in one course the basics of theoretical mechanics and quantum mechanics,
to emphasise the continuity between them;

2. I have chosen the topics of theoretical mechanics based upon two criteria:

a) usefulness for chemical problems:

— two-body problem;

— rotational motion of a charged particles (free and in an atom);

— interaction of a magnetic field with a magnetic dipole;

— details of small oscillations and oscillations of molecules;

b) the need for transition from classical to quantum mechanics:

— basics of Lagrangian mechanics;

— basics of Hamiltonian mechanics;

3. I give detailed explanation of an application of the quantum method to simple
systems: one-dimensional potential, harmonic oscillator, hydrogen atom, and hydrogen-
like atoms.

4. The basics of representation theory and elements of matrix mechanics are given;

5. Perturbation theory is developed,;

6. The interaction of an atom with a magnetic field is explained physically;

7. The generalisation to many-particle systems is presented in the last two chapters.

The purpose is to give the student a manual for a self-learning course. My teaching
experience during all these years gave me a reason to believe that the pedagogical
features, the manner of introduction of the new concepts and phenomena, and the search
of meaning in the different categories, make this book suitable for independent work.

I use widely the classical interpretation in my presentation of the phenomena, and I
stress that this is only a presentation. Despite that the words “description”, ‘happens,”
and so on, refer to concepts of classical physics, such an interpretation helps the students
very much to understand the meaning of the characteristics and/or phenomena, but it
does not affect the university level of the course.

For every lecturer the axiomatic method of exposition of quantum mechanics is both
tempting and elegant. But it is effective only for an audience which is well-grounded in
mathematics and physics. Traditionally, students in chemistry have modest knowledge of
physics and mathematics. Therefore, I have started quantum mechanics from the basics.
This is partly compensated by a detailed explanation of the historical sources of quantum
mechanics. Then again, because I could assume only minimal skills in mathematics, I
chose to present the beginning of quantum mechanics by asking certain questions of
about nature and answering through an experimental observation. It is shown how these
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observations logically lead to certain remarkable conclusions. In this manner, I introduce
the wave function before the Schroedinger equation.

For the readers who would like to broaden their understanding of the subject:

— I point concrete chapters in the references at the beginning of every chapter;

— I give a list of references with brief comments at the end of the book.

I hope the book would be useful for

— chemistry undergraduate and graduate students;

— chemists in general (the matter is rigorously exposed and the book could be used
also by professional chemists);

— other readers, especially engineering students;

— “specialists, who have not been taught or have been taught scanty quantum
mechanics; for them the book is useful because the information from other disciplines,
such as mathematics, general physics, electrodynamics, and so on, is given in a
concentrated form, and they are not forced to make inquiries in other books” (an opinion
of the referee to the Bulgarian edition of the book).

In my opinion, the most typical characteristics of this book are the following:

— theoretical mechanics and quantum mechanics are combined in one book (in the
majority of classical mechanics books the level is too high or they are directed toward the
technical disciplines and are not suitable for the introduction of quantum-mechanical
principles);

— the different topics and parts of the book are connected with each other; the book,
despite being a composite of two kinds of mechanics, is wholesome (I would mention
here the words of Prof. Liboff in the preface of his book (R. L. Liboff, Introductory of
Quantum Mechanics, Holden-day Inc., 1980) “Physics is not a sausage that one can cut
into little pieces”); the material is presented rigorously and continuously; this is a
university level course;

— it provides a necessary minimum of mechanics for chemists; obviously the
introductory course on mechanics cannot cover the whole field, and my selection of
problems was made according to their utility for chemists, their physical importance,
pedagogical value, as well as historical impact on the development of the field.

— very often the mathematical manipulations obscure the physics of the matter; I tried
to avoid this and to see the physics in every mathematical category and equation
whenever possible;

— the pedagogical features of the book, some of which are not usually found in books
at this level; they were proven to be very successful in the classroom; such a feature are:

— the detailed outlines at the beginning of each chapter (given in the contents of the
chapters);

— each chapter ends with a summary;

— each chapter is followed by a quiz of self-assessment questions, the answers of
which are in the text — they help the readers assess how well they have met the various
objectives;

— a varied set of thoroughly tested problems is included at the end of each chapter;
these problems form an integral part of the course (we solved these problems during
seminars and I usually give some of them at exams);

— non-typical for mechanics topics are included (for example, interference and
diffraction, magnetic dipole moment, mathematical information for the variation,
different equations and mathematical functions, and so on) in order to have full and
consistent explanation;

— the mathematical derivations and the solutions of the equations are given in detail
and at the university level,
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— there are many summary tables, vector interpretations, and diagrams of angular
momenta (orbital, spin and total) and their coupling;

— “the book is useful to beginners with a felicitous selection and distribution of the

material,” according to the referee to the Bulgarian edition of the book.

The material of the classical mechanics has a fragmentary character. This choice is
made because of the needs of both the chemistry students and quantum mechanics. The
small volume and the desire for logical consistency impose an abstraction, to some
extent.

At the number of some sections there are additional signs: with an asterisk are
denoted the more complicated sections (they can be omitted at first reading) and with a
plus - the sections which are considered in the seminars. The literature pointed in each
chapter is cited with its number, and the literature at the end of the book - with the letter
"R" and a number, both in square brackets.

Sofia Stefan Ivanov
January 2005
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Chapter 1

LAGRANGIAN FUNCTION AND LAGRANGE’S
EQUATIONS

1.1

1.2

1.3

1.4

Two Methods for Studying of the Mechanical Motion: Newtonian and
Lagrangian

Basic objects in mechanics; particle, solid body and continuous
medium; mechanical state and the problem of the mechanics;, Newton
method — a frame, motion equation, initial conditions; degrees of
freedom, generalized co-ordinates and generalized velocities;
configuration and phase space; Lagrangian method, advantages. 4

Hamilton’s Principle and Lagrange’s Equations
Action integral — Hamilton’s principle; the conception of a functional
and variation;, Lagrange’s equation; as consequence of Hamilton

principle; characteristics of the Lagrangian function — additivity,
product with a constant, derivative; Lagrange function and total
derivative of the function of co-ordinates. 7

Lagrangian Function for a Free Particle

General properties of space and time (homogeneity and isotropy of
space and homogeneity of time) and the Lagrangian function; Galilean
transformations; the function invariance at these transformations;
Lagrangian function for a free particle and for a system of
noninteracting particles. 12

Lagrangian Function for a System of Interacting Particles

Conservative system,; Langrangian function for a conservative system,
kinetic and potential energy, the Lagrange’s equation and the Newton’s
equation, potential and conservative force, potential energy and
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constant, conversion from Cartesian to generalized co-ordinates,
kinetic and potential energy, generalized potential. 15

1.5* Lagrangian Function for a Charged Particle in Electromagnetic Field
Lorentz force; scalar and vector potential of the electromagnetic field;
Lorentz calibration; generalized potential of the electromagnetic field;
Lagrangian function for a charged particle in electromagnetic field. 18

1.6 Some Mechanical Values and the Lagrangian
Momentum and the Lagrangian; force and the Lagrangian generalized
momentum and generalized force; total energy and the Lagrangian. 20

1.7" Lagrangian Function and Lagrange’s Equations in Commonly Used
Co-ordinates
Lagrangian in a concrete problem; Lagrangian function and the
Lagrange’s equation in polar, cylindrical and spherical co-ordinates; a
table of these results. 22

SUGGESTED READING

1. Kibble, T. W., Classical mechanics, McGraw-Hill Book Co., 2nd ed., 1988, Section 1.2,
Chapter 11.

2. Fetter, A. L., J. D. Walecka, Theoretical Mechanics of Particles and Continua, McGraw-
Hill Book Co., 1980, Sections 13, 15 and 17.

3. Landau, L. D. and E. M. Lifshitz, Mechanics, Pergamon Press, 2nd ed., 1969, Chapter 1.

1.1  TWO METHODS FOR STUDYING OF THE
MECHANICAL MOTION: NEWTONIAN AND
LAGRANGIAN

The basic objects studied in mechanics are particles (particle points),
solid states and continuous medium. A particle is a body, whose dimensions
can be neglected at a given level of description. Of course this neglecting
depends on the conditions of the problem. The molecules can be treated as
particles while studied in their translational motion (e.g., in a solution), but
not while analyzing their oscillations, which are defined by their constituent
atoms and the distances between them. (Sometimes instead of a particle is
used a material point.) A group of particles, whose motion is free or
constrained by some conditions, often defined as constraints, is called a
mechanical system. In particular, if a group of particles is united by solid
constraints such that the shape and volume of the system does not change,
they form a solid state. Most complicated for studying is the continuous
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medium, because it is a system with infinite number of particles. In this
course we will limit ourselves to considerations of the motion of a particle
and systems of finite number of particles. The problems of solid state and
continuous medium won’t be considered.

If we give the position and the velocities of all system particles in a fixed
moment of time, we define the state of the system. The basic problem of
classical mechanics is, knowing the state of the mechanical system in the
initial moment of time and the laws to which the motion of the system obeys,
to determine its state in any subsequent moment. For the solution of this
problem in the approach of Newton, first it is necessary to have a reference
frame. With it very often is associated a Cartesian co-ordinate system.
Second, necessary are equations, in which the acceleration is related to the
co-ordinates and velocities, i.e., the equations of motion. These equations are
obtained from the Newton's laws. Since these laws are central to our
subsequent work, we will briefly review them.

I law: There exist reference frames, in which if upon a body is not acted
by another material object, i.e. a force (a measure for an influence) such as
another material body or a force field, the body remains in rest or in uniform
motion. Such reference frames are called inertial frames.

Newton's first law simply asserts that such inertial frames exist. We
would like to underline that the first law of Newton introduces the term
"inertial frame" and this law does not result from the second law (an error,
which is often made).

II law: Under the action of the forces ¥, F, , ..., F  a particle of mass m

n
gains an acceleration a with a direction of its resultant force F = ZF,. and
i=1

a value equal to this resultant force divided by its mass:
v F _F

a= E m. (113)
i=1

This relation is written for the case when the mass is conserved and
constant in time. If this is not so (for example, in relativistic mechanics) we
write instead of Eq. (1.1a) the following

dp dmv
F=9P _dmv. (1.1b)
dt dt
Here p = mv is the momentum.
111 law: To each action there is an equal and opposite reaction.
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Or, if particle 1 acts on particle 2 with a force ¥,,, then particle 2 acts
on particle 1 with a force —F,, and ¥, =-F,,.

For the description of a system of N particles are necessary 3N
differential equations of second order. Hence, for the complete Newton
description besides the reference frame and motion equations are necessary
also 6N constants. These constants are determined by the initial conditions.
Thus, for the Newtonian method are necessary a reference frame, 3N
equations and 6N initial constants - the values of the co-ordinates x; and the
velocities v, =dx,/dt=x at t=0 (i=1,2,...,3N).

The number of independent values necessary for the determination of a
mechanical system’s position is called the number of degrees of freedom. In
the considered case we have s =3N degrees of freedom. In the presence of
constraints the degrees of freedom are s =3N —r.

When =0 very often are used Cartesian co-ordinates. But this is not
necessary. Depending on the conditions of the problem, it may appear that
the choice of some other co-ordinates is more suitable. Any s independent
quantities, q,,4q,,...,q;,-..q, which determine completely a system of s deg-

rees of freedom, are called generalized co-ordinates. Their time derivatives
41> Gs»-s G, ... 4, are called the generalized velocities of the system.

The generalized co-ordinates allow a very useful representation. It
consists in the following: an s-dimensional space is introduced, along the
axes of which one plots the values of the generalized co-ordinates g, (g,

stands for all co-ordinates, g, =gq,,q,,....q,). Such a space is called a

configuration space or g-space. Naturally, taking into account everyday
experience, it may be difficult to imagine such a space. But going from one-
dimensional (linear space) to two-dimensional (plane) space and to three-
dimensional (real) space, and remembering the four-dimensional space with
three spatial co-ordinates and one time co-ordinate (which is so useful in
relativity theory), it is not difficult to imagine the s-dimensional configu-
ration space. By the way, the 4-dimensional space is also configuration
space. By analogy with the configuration space, one can introduce the phase
space. It is 2s-dimensional space and a co-ordinate system is introduces in
it, along the axes of which are plotted s generalized co-ordinates and s
generalized momenta, which we shall discuss later on (Section 6.2).

In the Lagrangian method, with every mechanical system one associates
a function of the generalized co-ordinates, the generalized velocities and
time:

![//zgf(ql, Qoseoos Qysoee Qs Gosoees G t) (1.2)
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or, briefly, ¥ =!j//(qj, q; t), where ¢, =4y, q,,-,q, - This function is called

Lagrangian function, or simply Lagrangian.

Knowing the Lagrangian function, we can describe the motion of the
system with the help of equations involving the partial derivatives of the
function. These equations are called Lagrange's equations.

It is natural to ask, if we have the powerful method of Newton, why use
another method, such as the Lagrangian method? The answer lies in the
advantages of the Lagrangian method.

The number of Newton's equations necessary for the description of a
system of N particles is 3NV. The number of Lagrange's equations for the
description of the same system is 3N-r, where » is the number of constraints.
The constraints, which are unknown, don't enter in Lagrange's equations. In
this case the solution gives information only for the motion of the system,
without determining the action of the constraints. Under the action of a
constraint we understand the force with which this constraint acts on the
mechanical system. For most mechanical systems we are not interested in
this action.

The Lagrangian function can be used not only for a system with finite
number of degrees of freedom, but also for a system with infinite such num-
ber, such as the continuous medium. Moreover, it may be used with success
for the description of nonmechanical medium, e.g., for electromagnetic and
other fields. The method of Lagrange possesses greater generality and the
significance of the Lagrangian function goes out of the frame of classical
mechanics. This is so, because the Lagrange's equations can be obtained with
the help of more general variational principle - the Hamiltoin's principle. In
theoretical mechanics it has the role of Newton's law, i.e., it is taken as a
fundamental statement of mechanics. Hamilton's principle is applied also to
nonmechanical systems, e.g., for electromagnetic fields and for fields of
elementary particles.

1.2  HAMILTON’S PRINCIPLE AND LAGRANGE’S
EQUATIONS

Thus, according to the method of Lagrange every mechanical system is
characterized by the function gf(qj, q; t). The time integral of the

Lagrangian on the interval from time t, to time t, is called action:

S=jfﬁ(qj,q,,t)dt. (1.3)

4
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The integration is performed from the moment ¢, in which the position
of the system is characterized with the values of the generalized co-ordinates
q; (#,) to the moment ¢, , in which these values are ¢ ; ).

According to Hamilton's principle the system moves in a way such that
the functions ¢; (t) have a form, which ensures that the action (1.3) has the

minimum possible value. In Fig. 1-1 is shown a system with one degree of
freedom, for simplicity.

q q[3}“}

Figure 1-1. Hamilton principle.

The particle could move from the point / to the point 2 in different trajec-
tories ¢(r), q(l)(t), q(z)(t), q(3 )(t) with the corresponding action S,S,,S,, S,
(S<S8, <8, <S,). According to Hamilton's principle the particle will move
along the trajectory of minimal action, i.e. along g, (t) with an action S.

The action is a functional. In order to see what this means, we shall
briefly review some parts of functional analysis.

It is known that if to every number x of one group of numbers is
associated another number y, this number y is a function of x, and we write
y=y(x). If to every function y(x) from some group of functions is

associated a number @, then ® is a functional of y(x) and we write
o= d>|: y(x)] . In the functional the role of the argument is performed by

the function. By the analogy to the increment Ax=x—x, (or to dx) of the
function argument, we shall introduce the quantity

& = y(x)—y(x) (1.4)

The functions y(x) and y, (x) are two functions of the considered class of
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functions. The difference (1.4) of these functions is called the variation of the
function y(x) and is denoted as 8y(x) or 0y . The variation is a function

of x. If we differentiate this function by x, then according to (1.4) we obtain:
(6y) =y (x)= ¥ (x). (1.5)

Here y’ stands for the derivative with respect to x, to distinguish it from
the derivative with respect to # denoted as x. As the right-hand side
represents the variation of the function y'(x) , from (1.4) we obtain:

6y)Y =6y (1.6)

The derivative of the variation is equal to the variation of the derivative.
By analogy to the differential of a function dy=y(x+dx)—y(x), we
introduce the variation 6@ of the functional @ :

5®:¢[y(x)+5y]—(l>[y(x)]. (1.7)

Continuing with the analogy, we can say that as the differential becomes
zero at the extremum of the function, so the variation becomes zero at the
extremum of the functional. (The introduced term of a variation @ (1.7)
needs mathematical precision (see e.g., [2], Section 17); here we present
only the concept of it.)

After these few concepts from functional analysis, let’s return to
Hamilton's principle. Suppose that in a one-dimensional system the function

q =q(t) is that for which S has a minimum. This means that S increases
when ¢(7) is replaced with the function of the form ¢(z)+8g(¢). The

variation & (¢) is a small function in all intervals from time 7, to time 7,. As
we are interested in functions describing the motion from the position /
(moment ¢, ) to the position 2 (moment ¢, ), the function q(t) passes through
the corresponding points / and 2 in Fig. 1-1, i.e.

8q(t,)=04q(1,)=0. (1.8)

The change of the action S when replacing ¢ with g+0d¢q, i.e. the
variation 6§ of the functional, is determined by the difference

6S=j!j%(q+5q,q+6q,t)dt—j!14(q, q,t)dt. (1.9)

4 4
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We expand the Lagrangian of the first integral by d¢g and ¢ and reduce
Eq. (1.9) to

(o oy
8§S=||=08q+—25q |d. (1.10)
Jl(&q g ]

4

Taking into account that from (1.6) it follows that 5q':%5q, and

integrating the second term by parts, we obtain

[ sgar = [ 2L asq =22 54
;04 9q

R doy
3 %4 -]

6g——dt. 1.11
th 0q ( )

4 4
According to (1.8), the first term in the right-hand side of (1.11) is equal to
zero. Substituting (1.11) in (1.10) and taking into account Hamilton's
principle (the minimum action), we get

Yoy d oy
6S=|| ——-——106qgdt=0. 1.12
J(aq dt an 1 (1-12)

As 0q is an arbitrary function, this (8.5 =0) is possible only if

a0y _oF _ (1.13)

If the system has s degrees of freedom with generalized co-ordinates ¢,

and generalized velocities ¢;, Eq. (1.13) can be easily generalized, as the

generalized co-ordinates and velocities are independent and in (1.9) are
varied s different functions ¢,(7) (i=12,..,s). Then we shall obtain s
equations of the form (1.13).

L o0 i=12,..,s (1.14)

These equations are known as Lagrange's equations. These are s
equations of second order for unknown functions q, (t) and the general

solution has 2s constants. For their determination are necessary the initial
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conditions. Giving the values of all co-ordinates and velocities at =0 they
can be determined, which fully defines the motion of the mechanical system.

Let's summarize briefly the method of Lagrange. For a system with s
degrees of freedom we choose s generalized co-ordinates q ;. To this system

we associate the Lagrangian function gf(q 24 t) (in the following sections

we shall see how we can find it). Knowing this function, we can write
Lagrange's equations (1.14), which are the equations of motion. It is
necessary to add to it the initial conditions - the values of the generalized co-
ordinates and velocities at t =0.

Here we shall consider some general properties of the Lagrangian. The
Lagrangian possesses the property of additivity. If the system consists of two
non-interacting parts 4 and B, each of which has its Lagrangian, then the ¥
of the whole system is equal to the sum of the two Lagrangians:

=9+, (1.15)

From Lagrange's equations (1.14), it is obvious, that multiplying of the
Lagrangian by a constant C does not change them. Hence, for the description
of motion, with the same success one can use the function C¥. We note that
when we consider a single isolated system we can multiply ¥ by different
constants. But when we consider different isolated parts of one mechanical
system (or different isolated mechanical systems), their Lagrangian functions
can not be multiplied by different constants but only with one and the same
constant. This condition is imposed by the property of additivity. Only when
we multiply the different parts of the system with one and the same constant
C, we will obtain the Lagrangian function of the whole system as C%,
which leads to the same Lagrange's equations as ¥ . Multiplying of the
Lagrangian function by one and the same constant is equivalent to an
arbitrary choice of the measured units of the physical quantities. Finally, we
shall prove one very important property of the Lagrangian function: if we
add to the Lagrangian function the total time derivative of any function of
the co-ordinates and time, the equations (1.14) remain unchanged.

Let's consider the function ¥ (q, c'],t) and create from it the function
9(q,4,t) (it is read ¢ tilde) by adding the total time derivative of some

function f(g, t)) of the co-ordinates and time, i.e.,

7(q,4.1)=9(q, q’,t)+%f|:q(t),t]. (1.16)

Let's find the action S, which corresponds to #(q, ¢,):
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].97 q,q,t)dt—Jlg/ q, q,l)dl+j f q, )

(1.17)
=S f[CI(tz)> tz]_f[Q(tl)a tl]'

The action S differs from the action S, which corresponds to the function
%(q,q,t), by f[q (4,), tz]—f[q (7)), ’1] . This difference disappears when
the variation is taken, and, consequently, the variations
8S and &5 coincide, from which it follows that the equations (1.14), being

a consequence of the minimum of the action (65 =85 =0), do not change.
We have proved that the Lagrangian function is defined to within accuracy
of adding to it the total time derivative of an arbitrary function of the co-
ordinates and time.

1.3 LAGRANGIAN FUNCTION FOR A FREE
PARTICLE

While studying the Lagranian function of a free particle we shall choose
an inertial reference frame. Such a function could depend on the position, i.e.

on the radius-vector r, and the time 7 of the particle, i.e. #(r,v,7). With

respect to an inertial reference frame space is homogeneous and isotropic
and time is homogeneous. For space this means that all points and directions
are equivalent, and for time, that all instants are identical. These properties
determine some properties of the sought Lagrangian function. The
homogeneity of space means that the function does not depend on the
distance 7, and the isotropy means that it does not depend on the radius-
vector r. The homogeneity of time means that ¥ does not depend on ¢. The
only remaining dependence is that on the velocity v. But since space is
isotropic, the Lagrangian depends only on the value of the velocity, but not
on its direction, i.e. it depends on the square of the velocity vector v =v*.
Thus, from the properties of space and time, we conclude that

y=9(v*). (1.18)

To proceed further we need to recall the transformation and principle of
Galileo. If r and r' are respectively the radius-vectors of the particle in two
inertial reference frames, a non-moving K and a system K', moving with
velocity u with respect to K (Fig. 1-2), then
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r=r'+ut,
v=v +u, (1.19)
t=r.

Here v and V', ¢ and ¢' are the velocities and the times of the particle
respectively in the systems K and K’ (it is supposed that in the initial moment
O and O’ coincide). Formulae (1.19) are called Galilean transformations.
Galileo's principle is the following:

The fundamental laws of mechanics are equally in form in arbitrary
reference frames related through the Galilean transformations. In the sys-

ZVK Z'WK'
;)
o'

u(t) v
X"

o

Figure 1-2. In the inertial reference frames K and K’, the radius-vectors, velocities and times
of the particle P are related through the Galileo's transformations and the fundamental laws
have the same form.

tem K the Lagrangian is given in (1.18) and in the system K’ we will denote
it as ¥'= y/(v'z ) According to Galileo's principle, ¥’ = gf(v'z ), and
according to the properties of the Lagrangian function, ¢' can differ from
the ¥ by the total time derivative of any function of the co-ordinates r and

the time ¢. With that the equations (the laws) of the motion do not change.
Suppose that K’ moves with infinitesimal velocity € (u=g) with respect to

K. Then
v=v'+eg (1.20)

and for the Lagrangian function we obtain

y=9(vV*)=2(v+2ve+e’). (1.21)
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We expand the Lagrangian in a Taylor series about €, limiting ourselves
with the linear terms:

97 (v*
g(v)=2(v )+%2v'€+0(82 )- (1.22)

In the left-hand side is the Lagrangian # in the system K and the first
term in the right-hand side is ¢ in K. The equations of motion (1.14) in
both systems would not change, as the Galilean principle demands, if the
second term in the right is the total time derivative of a function of the co-
ordinates and the time. As € is a constant quantity and v’ is a time

derivative of the position, this can be possible if 0% (v'2 ) / ov? does not

depend on the velocity, i.e.,

oy (v?
%:C, V=9(V?)=Cv" (1.23)

Thus we proved that after a Galilean transformation with infinitesimal
velocity the Lagrangian function for the free particle

¢ =0 (1.24)

satisfies Galileo's principle. The Lagrangian function is an invariant also at a
finite velocity u. In fact

¢=Cv =C(V+u) =V +2CVu+Cu?,
(1.25)
¥= 9/+i(2Cr’u +Cu’t) .
dt

Since the second term in the right of the last equation is a total time
derivative, it can be neglected and consequently ¥ = ¢’

The constant C is chosen such that C=m/2, where m is the mass of the
particle (the choice is defined by the requirement that Lagrange's equations
lead to the Newton's ones). This is possible according to the mentioned in
Section 1.2 property of the function ¥ that it can always be multiplied by an
arbitrary constant. Finally, for the Lagrangian of a free particle we have

¢ = (1.26)

2
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The quantity 7 = mv’ / 2 is called kinetic energy of the particle. We shall

note that due to the additivity of the Lagrangian of a system of
noninteracting particles, ¢ has the form

2
f/j:z%. (1.27)

With the index o=1,2,3...., N we denote the number of particles, and
withi, j, k,I we denote the number of the generalized co-ordinates.

The sum 7' = Zmavé / 2 is the kinetic energy of the system.

1.4 LAGRANGIAN FUNCTION FOR A SYSTEM OF
INTERACTING PARTICLES

We shall consider a closed system of particles. In such a system the
particles may interact with one another, but they may not interact with other
material objects outside the system. The interaction of the particles depends
only on their mutual positions. This interaction can be described by a
function, which depends on the particle co-ordinates. We shall denote this
function as U =U(r,,r,,...,ry). It can be shown that such a mechanical

system can be described by a Lagrangian function of the form (1.27) to
which is added the function -U. Then for the Lagrangian function we have

2

sz%—U(rl,rz,...,rN) (1.28)

The term Zmavj, /2, as for the noninteracting particles, is called the
o

kinetic energy and the function U is called the potential energy. Of course,
we did not prove rigorously that the Lagrangian function has the form (1.28).
We simply added the function —U, and from logical considerations it is
evident that it has the dimension of the sum, i.e. the dimension of energy.
From general physics, it is known what represents both terms in (1.28). But
here we have began with Hamilton's principle and for the energy have
mentioned in Section 1.3. Therefore, it is not accidental to call the term

Zmavj, /2 kinetic energy and the function U - potential energy. The

meaning of these terms and the reason to call them so will be explained in
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the following chapter. And the right to introduce the function U we shall
illustrate by substituting ¥ from (1.28) into Lagrange's equations and
persuading ourselves that this Lagrangian correctly describes the motion of a
closed system. Actually, by substituting the function ¥ from (1.28) into the
Lagrange's equations

doy or

—— =0, a=12,..,N, (1.29)
dtor, or,
we obtain
v, ——aU (1.30)

m,—%=——,
“ dr or,

1.e. the equation of motion in Newton's form.
The vector in the right, defined as a gradient of the function -U, is called
the force, acting upon the particle o. We shall denote it with F, :

F, __U (1.31)
or,

Here we note that the derivative with respect to r, means gradient:
aa—UEgradUEVU. (1.32)
r

We shall represent the force acting on the particle o through its
components F,, , F, and F,_, along the axes X, ¥, and Z:
U 03U ,3U
ox ay, oz

o o

.0 0 0 _
F,=xF, +yF, +2F, = (1.33a)

Here x”,y’ and z° stand for the unit vectors along the X, Y, Z axes,

respectively. The components of the force are expressed through the function
U in the following way:

F=-9Y i_123..3N (1.33b)

X;
X,

1
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The force, defined by the relation (1.31) (or (1.33)), is called a potential
force. When such a force depends explicitly on time, it is called
nonstationary, and when it does not depend on time, it is called a stationary
potential force or conservative force. Systems, in which only conservative
forces act, are called conservative.

We shall note one property of the potential energy U, which follows from
the universality of Hamilton's principle: the function U is defined to within
an addition to it of an arbitrary constant. Such addition does not violate
Hamilton's principle, i.e. it does not influence the mathematical criterion for
its validity - the variation of S to be equal to zero (65 =0), and conseque-
ntly it does not change the equations of motion. This property of the poten-
tial force is a partial case of the property (1.16) of the Lagrangian function.

We obtained the Lagrangian function in Cartesian co-ordinates. But as it
was mentioned in Section 1.1, very often the generalized co-ordinates are
more suitable for the motion analysis. It may be convenient to be able to
express it in generalized co-ordinates ¢,. It such a case it would be

necessary to go from the »=3N variables x; to the s—r variables g, . Let's
consider the equations relating Cartesian and generalized co-ordinates:

X, =X, (ql(t), g, (2), - q, (t)) =X, (qj (t)), i=12,3,..,n (1.34)

We shall begin with the transformation of the kinetic energy - the sum in
the relation (1.28) for the function ¥ . Differentiating (1.34) by time, we
shall express Cartesian velocities through generalized ones

i :Z%qk, i=1,2,3,...n. (1.35)

Substituting (1.35) into the relation of the kinetic energy, we obtain

Nm,ve Emx  Im[ ox, ]
T=2 T 7—27[2@%)

i=1 k=1

Lom, (S ox, m, ox, ox,
_ 7[k s kz E” J ZCqulzz 3. 0.

(1.36)

or

T=T(q,.,q,-)=;n, (a,)dd, (1.37)
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L m; 0X, OX,
where )=y ——L—L and is a function of ¢. since
Y (q j ) =) 3q, 99, Yu q,;
X, =X, (q ; ) We shall note also that under the summation by i of m, we have

m =m,=my;=m,_, m,=ms=m,=m,_, and so on.

The transformation of the potential energy is trivial - we substitute (1.34)
in U (xj) and obtain U (q ; ) Substituting in (1.28) the relations for

T (q e c']j.) and U (q e t) , we obtain the sought Lagrangian function

J](qj,c]/.)zT(qj,q/.)—U(q/,). (1.38)

The form of the Lagrangian function is the same when the energy
depends explicitly on time:

9(q,-4,.1)=T(q,.4,.1)-U(q;.1)- (1.39)

We obtained ¥ =T —U for conservative forces. But in the beginning it
was underlined, that Lagrange's method is very general and it applies also to
non-mechanical systems. Can we find ¥ for the system in which the forces
are non-conservative, e.g., depending on the velocities of the particles? It
turns out that this is possible if the forces can be represented in the following
form:

oU"  doU”

F=-2 43U
dq, dt 9g,

(1.40)

In this case the "potential energy" U" is a function of the generalized co-
ordinates and velocities, U" =U" (q 4 j,t). The function U is called the

generalized potential of the system.

1.5* LAGRANGIAN FUNCTION FOR A CHARGED
PARTICLE IN ELECTROMAGNETIC FIELD

Consider a charged particle of charge e moving in an electric field & and
a magnetic field B. The Lorentz force acts on the particle:

F =e&+evxB. (1.41)
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Its x-component has the following form:
F,=et, +e(yB,—zB)), (1.42)

and the other two components are obtained by cyclic transformation of
X, v, z. We shall show that this force can be written in the form (1.40). To do

this, we shall use the known results from the theory of electromagnetic field,
according to which it is always possible to find a scalar potential ®(r,7) and
a vector potential A (r,7) through which the electric and magnetic fields are
expressed:

8=—VCI>—aa—?, B=VxA. (1.43)

For the components ¢ and B_ we get

a4
00 4, __ 404,

& =——-

, 9 p=-%5E T 1.44
S R Vet R WP (149)

The other components of & and B are expressed in a similar way. The
potentials @ and A are not single valued and allow some arbitrariness.
This permits the introduction of additional relation between them, the so
called gauge condition of Lorentz:

va+ L% o, (1.45)

¢’ ot
And now, let us consider the function
U'(r,r,1)=e®@(r,1)—efA(r,1). (1.46)
We shall prove that it is a generalized potential. From (1.46) we readily get

—_—_ea_q)+e xai_k %4_2%
x ) ox |

(1.47)
d(au . A 94 . oA
— —— |=—¢ —at +— x+—y+— zZ |.

ox dy 0z
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In the second relation we took into account that 4 depends on time also

through the co-ordinates of the particle. Adding term by term in both
relations and taking into account (1.44), we get

QU d(U_ (9P 4,
dx dt\ dx dx Ot
8Ay 04 JdA. 0JA
ol - 2| 2T |k +e(3B. - 2B,).
NIRRT, B

But this is the expression for F in the form of (1.42). Consequently, we
are persuaded that the Lorentz force can be represented in the form (1.40)
with the function U" =U" (r,¥,7) (1.46). Then the Lagrangian function of a
particle in electromagnetic field has the following form:

(1.48)

£ﬁ=%ml"2—ed>(r,t)+ei‘A(r,t). (1.49)

The second and the third terms represent the energy, which the particle has
in the electric and magnetic fields, respectively.

1.6 SOME MECHANICAL VALUES AND THE
LAGRANGIAN

Let us differentiate the Lagrangian function in Cartesian co-ordinates
with respect to the components x, of the arth particle:

N
K

=mx,=p, i=1,2,3. (1.50)

X.

NS

Or in a vector form

99 99 _,, (1.51)

oF v

The momentum of the particle is equal to the derivative of the Lagrangian
function with respect to its velocity.
When we differentiate the Lagrangian function with respect to x, we

obtain the component of the potential force F, acting on the particle:
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=F, i=12, 3. (1.52)

By analogy with (1.51) and (1.52), we introduce the quantity P,

Y
P= 1.53
By (1.53)

i

which is called a generalized momentum, and the quantity Q.,

0=22, (1.54)
dq

i

which is called a generalized force.

With the help of the generalized momentum and the generalized force the
Lagrange's equations (1.14) can be represented in Newton's form (compare
with Eq. (1.1b)):

dF,

—=0 (1.55)

Using the Lagrangian function in Cartesian co-ordinates

¥ = Z(m,.fcz )/ 2-U (x ; ) , we can show that the total energy E is expressed

by the function ¥ in the following way:

E= 3—% —9. (1.56)
llax

Actually

-2

a—x—Sﬂ Zm —2%+U(x,)=T(x,)+U(x,)=E. (1.57)
=1 OX i=1

By analogy with (1.56), we shall express the total energy in generalized
co-ordinates:
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4-%(q;. q;) - (1.58)

It can be shown that in the same way we can express the energy E also
for an open system, i.e. when the considered system interacts with another
one or is in an external field:

I el ULk PR S 159

We shall take on the consideration of conservative laws in the next
chapter. Here we shall only note that the relation (1.59) for the total energy
is more general than the known from general physics £=7+U , and it can
be used in cases when the energy can not be divided into kinetic and
potential parts (e.g., in quantum mechanics).

1.77 LAGRANGIAN FUNCTION AND LAGRANGE’S
EQUATIONS IN COMMONLY USED CO-
ORDINATES

In order to find the Lagrangian function in concrete problems we proceed
in the following way. We choose independent generalized co-ordinates for

the system and maintain the form of the functions x, =ux; (q j,t) and
X, =X, (q 4, ,t) . Substituting them in the relation of the Lagrangian function
¢=T ()'cj)—U (xj. ) , we get the function in generalized co-ordinates

5[]:f(q/’q./’t):T(qj’q/’t)_U(qj’t)'

If in the obtained expression for ¥ there are terms, which do not depend
on ¢, and ¢, they are rejected since they do not contribute to the derivatives
of ¥ with respect to the generalized co-ordinates and velocities and
consequently they do not influence Lagrange's equations. Finding ¥ is
substantially easier when we can relate the displacement element of the
particle and the differential dg; of the generalized co-ordinates.

In polar co-ordinates p, @ under the elementary change of p and ¢ by
dp and d¢ the particle moves from point P to point P’ (Fig. 1-3). The
displacement is a diagonal of the rectangle built upon dp and pdo, i.c.
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(ds)' =(dp)’ +p*(do)’. (1.60)

B

[{.“
pdyp < £

P

Figure 1-3. The displacement element ds in polar co-ordinates.

We divide by (dr)’

dsY (dpY (doY
=122+ ik 1.61
(dt) ( dt ) P dt (1.61)
and for the square of the velocity we obtain

Vi=pl+p’¢. (1.62)

Thus, a particle of mass m has the kinetic energy
7=Lm? =lm(p2+p2<p2). (1.63)
2 2

Consequently, if the particle is in a central field with a potential energy
U (p) its Lagrangian can be written as follows:

9(p.p.9)=ym(p* +P*6*)-U (p). (1.64)

Substituting ¥ (p, p, @) into (1.14) we obtain Lagrange's equations:
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mp —mp@> +‘9—U=0, (1.65a)
dp
d, ,.
— =0. 1.65b
m dt(p ) (1.65b)

In a cylindrical co-ordinate system p, ¢, z (Fig. 1-4), the displacement

Z

18]

X ANy ' dp 3
Ju;

6

)

Figure 1-4. Displacement element in cylindrical co-ordinates.

element ds, on the plane, which is a result of increasing p and ¢ by
dp and do, is the same as in polar co-ordinates. Due to this displacement,
the particle moves from F, to A . Taking into account the increase dz in z-
direction, the particle displaces into P,, and the displacement is a diagonal
of the rectangle, built on dz and ds, . Hence,

(ds) =(dz)’ +(ds,)" =(dz) + p* (d@)’ +(dp)’. (1.66)
We divide by (dt )2 and obtain the velocity

V=2 +ppi+p’. (1.67)

The Lagrangian function for the particle of mass m in a central field
U (p,z) has the following form:
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) oM 2.2 22
sz(p,z,p,¢)—5(z +p’¢" +p*)-U(p.z). (1.68)

Deriving Lagrange's equations in this case I leave to the reader.

Finally, we consider spherical co-ordinates, r,¢,60 . Since later on we
shall often encounter them, let us recall the connection between Cartesian
and spherical co-ordinates (Fig. 1.5). From the figure it is obvious that

2/ STsy,

C
R
‘.-,\“ rsin f sin @

Figure 1-5. Cartesian (x, y, z) and spherical (7, ¢, 0) co-ordinates of the point P.

x=rsinfcosQ, (1.69a)
y=rsin@sing@, (1.69b)
z=rcosb. (1.69¢)

To find ds, we shall take into account that with the change 46 of 6
(Fig.1-6) the particle displaces with »d@ , with the change d¢ of ¢ with

rsin@de , and with the change dr of r with dr. It is clear that the
displacement element dfs (POP3) is a diagonal of the parallelepiped with
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sides equal to the displacement elements rd6® (P,F), rsinfde (PP,)
and dr (P,P,). Hence

(ds)’ =r*(dO) +r*sin’6(do)’ +(dr)’. (1.70)

(We would like to note that the volume element is dV =r’sin@ddOdr.)

Dividing this relation by (dr)’, we obtain the velocity in spherical co-

ordinates:

V=72 + 1207 + ¥ sin® 0¢°. (1.71)

Z
r.f,: rdt
Y.
FRA S 2% i
. B ‘ ode
% P
P Z
S~ df
L o P . %
.1 sin g T
£ ?

Figure 1-6. Displacement element in spherical co-ordinates.

Then, the Lagrangian function of a particle of mass m in the field with
potential U (r) is
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9(r.6, f,é,go):%(ffz +7°6” +7sin” 69> ) - U (r). (1.72)

Knowing !j%(r,@,;*,é,(p), we can readily obtain Lagrange's equations,

which are given in Table 1-1.
Here we shall note an error, which is often made by students. The value
of the radius-vector r of the particle in polar co-ordinates is equal to the

linear co-ordinate p, i.e. |r| =r=p. Therefore p,p and r,¢ are
equivalent. In a cylindrical system (p,¢,z) the value » of the vector r
differs from p, r # p, and the use of the co-ordinates r, @, z is not correct
in the case when the radius-vector of the particle position is denoted as r.

SUMMARY

In Lagrangian mechanics for a system of s degrees of freedom we choose
s physical quantities ¢,,q,,...,q,,...q,, which are called generalized co-
ordinates and their derivatives - generalized velocities. To every mechanical
system is associated a Lagrangian function y/(q 9 j,t), the generalized co-
ordinates and velocities being independent. According to Hamilton's

principle the mechanical system moves in such a way that the action S is
minimal, i.e.

5S=_2[!1%(qj,qj,t)dt=0.

4

The Lagrange's equations, which are the equations of motion, follow
from here, and read:

The Lagrangian function is an additive one. Also, we can multiply it by a
constant and add % f (q i t) f (qj, t) is an arbitrary function) without

changing the equations of motion.
The Lagrangian functions of a free particle and a system of
noninteracting particles are, respectively

2

2
mv mv
¢ = , =N Ta'a
> 27
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For particles interacting with potential energy U (r/.), the Lagrangian

function in Cartesian co-ordinates is

y=3 "0 ()

and in generalized co-ordinates,

g’}(q/’q.j’t):T(qi’q.j) (qj,t) zy"’( )q"q’ (q/.,t).

The Lagrangian function of a charged particle in electromagnetic field
depends on the scalar and vector potential of the field:

Sﬂz%mi’z—ed)(r,t)+ei'A(r,t).

In commonly used co-ordinate systems: Cartesian, cylindrical and

spherical, the Lagrangian functions and Lagrange's equations are given in
Table 1-1.

The momentum and energy of a system are expressed through ¥ in the

following way

XA S 09
=) — E=) —¢-¢%.
o al.'a’ gaql ql
QUESTIONS

1.

What is necessary for the description of the mechanical motion in

Newtonian mechanics?

What represents the method of Lagrange?

What do represent: the generalized co-ordinates and velocities; the

configuration and phase spaces?

What are the advantages of the method of Lagrange over the Newtonian

method?

Why can the Lagrangian function be multiplied by the constant without

changing the equations of motion?

df (r,b)
dt

Why can we add to the Lagrangian a function , without changing

the equations of motion?
Why can we add any constant to the potential energy of a system and
how does this affect the Lagrangian function and Lagrange's equations?
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8.

9.

10.

11.

12.

Chapter 1

Why does the Lagrangian function of a free particle depend only on v’
butnoton v and r?

What does it mean that the Lagrangian function is an invariant with
respect to the Galilean transformation? Give an example.

What is a potential? Can the Lagrangian function for a system of
nonpotential forces be found?

What is a generalized potential? What is the generalized potential for the
electromagnetic field?

What are the displacement elements and the volume elements in
cylindrical and spherical co-ordinates?

PROBLEMS

. Find the Lagrangian function and Lagrange's equations for a particle of

mass m in a potential field U (r).
Find the Lagrangian function and Lagrange's equations for a particle of
mass m in a potential field U (p) in polar co-ordinates.

. Find the Lagrangian function and Lagrange's equations for a particle of

mass m in a potential field U (r) in cylindrical co-ordinates.
Find the Lagrangian function and Lagrange's equations for a particle of
mass /m in a potential field U (r) in spherical co-ordinates.

. Find the Lagrangian function, Lagrange's equations and the generalized

co-ordinates of the electron in the hydrogen atom, assuming that the
proton is immobile (mp — oo).
Find the Lagrangian function, Lagrange's equations and the generalized

co-ordinates of a simple pendulum of mass m and length /, using the
declination angle ¢ as a generalized co-ordinate.

. Find the Lagrangian function, Lagrange's equations and the generalized

co-ordinates for a particle of mass m, attached to the spring of negligible
mass with a force constant « (the system lies on a frictionless horizontal
table).

The Lagrangian function of a charged particle moving with a relativistic
velocity v ~ ¢ in an electromagnetic field has the following form:

¥ =-mc*\1-7*/c* —e®(r,t)+efA(r,t). Show that in the
nonrelativistic case, v << ¢, this function has the form (1.49).
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CONSERVATION LAWS

2.1 Conservation of Energy
Constants of motion; cyclic co-ordinates; cyclic co-ordinates and the
constants of motion, constants, originating from the basic properties of
space and time; the homogeneity of time and the conservation of
energy; kinetic, potential and total energy; conservative systems and
forces; rate of change; conservative force and potential energy;
necessary and sufficient condition for a conservative force. 32

2.2 Conservation of Momentum
The homogeneity of space and translation of a system; conservation of
momentum, conservation of the momentum components in a field; rate
of change; centre of mass. 36

2.3 Conservation of Angular Momentum
The isotropy of space, elementary rotation and a variation of the
Lagrangian; conservation of angular momentum, rate of change, parity
and angular momentum. 38
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2.1 CONSERVATION OF ENERGY

The state of a mechanical system is completely defined by s generalized
co-ordinates g, and s generalized velocities ¢;, i.e. by 2s quantities. Du-

ring the motion of the system they are changed. But for the different systems
some of these quantities and/or functions of them remain constants, which
are determined by the initial conditions. They are called constants of the
motion.

Some constants of the motions can be found from the form of the
Lagrangian function. If it does not depend explicitly on some of the
generalized co-ordinates, e.g., on ¢, , from the Lagrange's equations (1.14) it

is obvious that

%¥=0 2.1
q;

Consequently the generalized momentum P, is a constant of the motion

1

P =——=const. (2.2)

Such co-ordinates, on which the Lagrangian function does not depend,
are called cyclic.

Particularly important role in mechanics plays those constants of the mo-
tion whose constancy follows from the basic properties of space and time -
homogeneity and isotropy. These constants are known as basic conservation
laws of the corresponding quantities. Their general characteristic is their
additivity. The energy comservation is connected with the homogeneity of
time, the momentum conservation - with space homogeneity, and the
angular-momentum conservation - with space isotropy. We shall note that
homogeneity means equal properties in any point and the isotropy means
equal properties in any direction. Because of their generality the
conservation laws are powerful means in mechanics. They do not depend on
the form of the trajectory and on the character of the acting forces and can be
used even when these forces are unknown.

We shall consider the motion constant, originating from time
homogeneity. The Lagrangian function of a closed system according to this
can not depend on time. Actually, time homogeneity means an equality of all
instants of time. Therefore, the mechanical properties of the system do not
change: if we replace one instant of time with another without changing the
co-ordinates and the velocities of the particles, the Lagrangian function
remains the same.
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For a closed system the Lagrangian function does not depend on time and
therefore the total derivative with respect to time can be written in the
following way:

s P
ﬂ_za/ 2 0y i (2.3)
i= 1 i=1 aql
[¢ 7%
From Lagrange's equation (1.14) we express % through %g—L and
q,' qi

replace it in Eq. (2.3) to obtain

d ¥ o7
ar i 2.4
dl z(dt aq,}] za' 7 @4)

i=1 i=1 i

or

S d [ 0¥ ay _d 0¥ .
—| —¢ -9 |=0. 2.5
;dt(aq,.qj dt dt,l(aq, J 3)

The quantity in the brackets remains unchanged and it is a constant of the
motion. By definition this quantity is called energy:

7%
E= a;./’q,. — % = const. (2.6)
g,
We shall prove that the energy can be represented as the sum of the
functions T (qj, q j) and U (q j), introduced in the previous section. For this

[¢
purpose we shall determine the sum za—/ql for the Lanragian function of

the form (1.38):

0¥ . 0 ..
> —q.=Y—| Y rudd-U(q,) i Z Z%/q,q,
g dq; 7

i i

+Z’Ykiq'kq.i J: Z(Zyﬂq‘iq'l + Z%/q'icb Jz 22%1%41 =2T.
k i\ I il

2.7)

Replacing (2.7) and (1.38) into (2.6), we get
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E=2T(q/.,q'/.)—T(qj,q’/.)+U(q/)=T(qj,q/.)+U(q/). (2.8)

We proved that the energy of the system consists of two different terms -
kinetic energy T (q 9 j) and potential energy U (q j). In Cartesian co-

ordinates the kinetic energy depends only on the velocities of the particles,
T (Vs Vyyeer vy )= 2m,v. /2, and the potential energy depends on their co-

ordinates, U (rl, r,,.. rN). We shall underline that this analysis relates to

mechanical energy.

We have persuaded ourselves that the conservation of energy is valid for
a closed system - in the derivation we used a Lagrangian function, which
does not depend on time. This condition is also valid for a system in a
constant (with respect to time) external potential field. Hence the
conservation law is valid also for such a system. The acting forces in such
systems are conservative.

Because of the importance of the conservative systems in chemistry we
shall consider with more detail the rate of change of the energy and the
character of the acting forces in such systems. We shall underline once more
that this is a system in a constant field, depending only on the co-ordinates.
Consider a particle in an external field with kinetic energy

T=mi*/2= m(jc2 +5° +z'2)/2 and potential energy U(x, y, z). The rate of
change of the kinetic energy is

T =m(x%+ 3+ 2 ) = mit = iF (2.9)

where we used Newton's second law, mr=F. Here F is the acting
conservative force and the quantity ¥F defines the rate of change of the
kinetic energy. The change dT of the kinetic energy on the interval dr is
defined by the work element of the force F under the displacement dr:

dT = drF = dA. (2.10)

The conservative force F(r) depends only on the particle position. This

fact is not sufficient to ensure energy conservation. But the last is guaranteed
for a conservative system. Therefore, we shall find the sufficient condition
F(r) to be a conservative force. Let us find the rate of change of the

potential energy:

U(x,y,z)=—x)'c+—y+—z'. (2.11)
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Remembering that gradU =VU is a vector

LU, U U,

VU X z, 2.12
ox dy y 0z (2-12)
we can represent (2.11) as a scalar product:
U=rVU. (2.13)

Differentiating the equation E=T7+4+U =const (the law of energy
conservation) and taking into account (2.9) and (2.13), we obtain

r(F+VU)=0. (2.14)
This condition is valid for any velocity of the particle and hence
F(r)=-VU. (2.15)
In terms of components, this reads

U _ U, _ U

F:C: _, =, =T .
dy ! oz 0z

(2.16)

The force F is a conservative, if it is stationary (it does not depend on
time) and can be represented as a gradient of a function, depending on the

co-ordinates, (2.15). For any scalar function f (r) we have curl[gradf (r)] =
VxVf =0, and hence, according to (2.15), we can write for the force F(r)

V xF(r)=curlF(r)=0. (2.17)

Thus, the necessary and sufficient condition to ensure the force F(r) to
be a conservative force is its curl to vanish. In this case such a function
U(x, y, z)of the co-ordinates can always be found, so that F(r)=-VU.
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2.2 CONSERVATION OF MOMENTUM

The law of conservation of momentum in a closed system originates from
the homogeneity of space. Consider a translation Jr of all particles of the
system. Because of the homogeneity of space such translation can not
change the mechanical properties of the system, i.e. the Lagrangian function
should retain its form. (Here we shall note that we write or, but not dr,

because r is a function of time, r = r(t) .) Such a displacement by or in an

open system would cause a change in the particles’ positions with respect to
interacting with them bodies and/or fields. Hence, the translation dr does

not cause a change of the Lagrangian function ¢, i.e. 6# =0, only in a
closed system:

0¥ 0¥
=Y —or =6ry —=0. 2.18
; ar, ° ; or, @19
For an arbitrary function of time 5r(t), Eq. (2.18) is satisfied if

D o _ 0. (2.19)

o or,
Using Lagrange's equation (1.14), we get

D o 5 d I onst. (2.20)

QE % dtov,

Hence, the quantity 0%/d v, does not change

3y
p=ZaV = const, 2.21)

or substituting the Lagrangian function in Cartesian co-ordinates, we get

p= Zmava = Zpa =const. (2.22)

Thus, originating from the homogeneity of space, we have reached the
following law: the momentum of particles in a closed system does not
change, i.e. it is a constant of motion. Separate components of the
momentum can conserve also in an external field (respectively, an external
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interaction), if the potential energy does not depend on the corresponding
Cartesian co-ordinates. In other words, if along the co-ordinate x; the

corresponding component of the resultant force F is zero, F_ =0, then
p, =const. For example, if the system of particles is near the Earth

surface, the tangential component of the external component F, along this
surface is zero and the law of the momentum conservation is valid for the
component p,, but is not valid for the normal component p,, because
F,=-G #0 (where G is a gravity force).

We shall obtain the rate of change of the momentum of the system
particles by differentiating with respect to time:

d 3y oy
=277 2T _F. 2.23
Pe=diov. or, © 223

There is a change in both the particles’ momentum and the total momen-
tum of the open system only when the applied force is different from zero.

In a mechanical system there exists a point, which always, independently
of the form of the system motion, moves with such a velocity u that
multiplying w by the total mass of the system M =3Xm,, we get the

momentum of the system. This point is called the centre of mass or the centre
of gravity. The definition of the radius-vector of the centre of mass is:

R= 2l = 2.l . (2.24)

z m,, M

It moves with a velocity

u=R= zﬁ";"f“ = zn];“v‘" . (2.25)

Multiplying by M, we obtain
Mu = Zmava =p, (2.26)

1.e., the introduced in (2.24) point in fact moves with such a velocity, which
multiplied by the mass M of the system gives its momentum.
For a system of two particles the centre of mass is shown in Fig. 2-1.
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The centre of mass possesses a very useful property: in the absence of
external forces its velocity in any inertial reference frame is constant.
Actually, for a closed system we have

. m,x,
quzz — =2p” =P _ const. (2.27)
M M M
my [ 24 my
0 T4 x T, X
a
Z
m,y
o
Ty
R
Ty
r,
v
X b

Figure 2-1. The centre of mass of a system of two particles of mass m, and m,: a) two
particles with co-ordinates x, and x, have a centre of mass with a co-ordinate
x = (m,x, +m,x, )/(m, +m,); b) two particles, whose positions are determined by the vectors

r, and r, have the position of the centre of mass R = (m,r, +m,r, )/(m, +m, ).

If we choose the frame K' with an origin at the centre of mass (so called
CM-frame) and moving with the system, the momentum p' of the
mechanical system in it would be equal to zero, i.e. p'=0. This is so, for
example, for a freely moving nucleus at the radioactive o -decay. The
properties of the centre of mass make the reference frame connected with it
very useful for the solution of many problems. For example, the problem of
elastic and inelastic collision of two bodies (see Chapter 3), and so on.

2.3 CONSERVATION OF ANGULAR MOMENTUM

This law originates from space isotropy. As a result of this isotropy, the
mechanical properties of a closed system of particles do not change under an
arbitrary rotation of the system in space, and the Lagrangian function
remains constant. Thus, after an infinitesimal rotation its variation is equal to
zero, i.e., 6¢ =0.
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Let us rotate by an infinitesimal angle a particle with co-ordinates
r,0,¢, (Fig. 2-2). We shall represent this angle as a vector 8¢, directed
along the axis of a rotation, so that the rotation, looked from its top, is in the
positive direction, i.e. the rotation is counter-clockwise. Let's find the
displacement dr due to such a rotation. It is seen from Fig. 2-2 that

Z -

Figure 2-2. Under the rotation of a particle with co-ordinates 7, 8, ¢ by an infinitesimal angle
Jg, its position changes by | or [=rsinddg.

|5r| = rsin60¢. (2.28)

But as r and 6¢ are vectors, we can write (2.28) in a vector form (right-
handed co-ordinate system):

Or =98¢ xr. (2.29)

We have shown that any vector, whose beginning is on the rotation axis,
changes under the rotation 8¢ according to (2.29).

The dependence (2.29) is valid also for a vector arbitrarily located on the
axis of a rotation (for a proof see, e.g., Appendix VI in [2]). So, the change
of the velocity has the same form:

OV=0QXV. (2.30)

Under the rotation by an angle d¢ the Lagrangian function does not
change, i.e.,
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0y oy
0¥ = —or,+—90v, |=0. 2.31
;(ara rOC + 8Va VOC J ( )

In this equation we take into account that d%/dr,=p,,
d¥/dv, =p, and use the Egs. (2.29) and (2.30):

89 = Z(pa(Sra +pa5va)=2[l'3a (8¢ xr, )+p, (89 xV, )]

) J (2.32)
=3¢ (r, xp, +V, ><pm)=8(p524(r(Z xp, ) =0.
Since 8@ =0, 6% =0 is equivalent to
— > (r, X =0. 2.33
gy 20 xPa) (2:33)
Under the motion of the closed system the vector quantity
L=Y(r,xp,) (2.34)

remains constant. This quantity is called angular momentum (sometimes a
moment of the momentum). It is obvious that L =L, i.e. the quantity L
is additive.

The vector product (2.34), which defines the angular momentum, can be
conveniently represented in the form of a matrix. For a particle it is the
following

0 0 0

<
N

X
L=|x (2.35)
p

z
P,

ISR
<

X

Its components, the angular momenta about the X-, Y- and Z-axes, are

L =yp. —z2p,
L =zp —xp,, (2.36)

Lz :xpy_ypx'
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In order to find the rate of change of the angular momentum of a particle,
we differentiate (2.34) with respect to time:

L:m%(rxi‘):m(i’xi‘+rxi‘). (2.37)

The first vector product in the right is zero because it is a product of the
vector r with itself. The second product is the moment of acting on the
particle force F (it is called torque):

mrxXr¥=rxF=N. (2.38)

Thus we obtain the important result that the rate of change of the angular
momentum is equal to the moment of the applied force:

L=N. (2.39)

It is useful to compare it with the rate of change of the momentum p=F

(the quantity L in the rotation motion plays the same role as p in the
translational motion, thus the reason to call L. an angular momentum is
obvious). Since the definition of the vector product depends on the choice of
right- or left-handed co-ordinate system, the directions of L and N also
depend of this choice. They will be reversed in the left-handed system.
Vectors of this type are known as axial vectors in contrast with the ordinary,
or polar vectors, whose directions are defined independently of the choice of
the co-ordinate system. Axial vectors are often associated with a rotation
about a given axis. The direction of rotation around the axis (clockwise or
counter clockwise) has physical meaning, but the direction of the vector
along the axis has no physical meaning.

Thus, using space isotropy, we obtain the following conservation law: the
angular momentum of a closed system of particles remains constant.

The law of conservation of angular momentum (of all its components)
with respect to the origin of a co-ordinate system is valid in a closed system.
We proved this result, since under a rotation the properties of a closed
system do not change. But this is possible also in an external field, i.e. in an
open system, if the field possesses a symmetry axis. Then, under a rotation
about this axis the mechanical properties of the system won't change.
Therefore, the projection of an angular momentum on this axis, defined with
respect to any axis point, remains constant. Example of such partial
conservation of angular momentum is the fields of central or axial
symmetries. In the first case we have a field in which the potential energy
depends only on the distance to a fixed point, called the centre of the field.
An arbitrary rotation of the mechanical system does not change its
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mechanical properties, since the positions of the particles with respect to the
centre remain unchanged. Hence, the angular momentum remains constant
with respect to the centre of the field, but not with respect to any point. And
the mechanical moment has only a component along the rotational axis.
According to the previous paragraph, the conservative component in a field
with axial symmetry along the Z-axis is L,, the beginning of the co-ordinate

system can be any point on the Z-axis.

Finally, we can summarize the results: originating from the basic
properties of time (homogeneity) and space (homogeneity and isotropy), we
obtained seven constants of motion: energy, three components of the linear
momentum, and three components of the angular momentum.

SUMMARY

The functions of the generalized co-ordinates and generalized velocities,
which remain unchanged during the system’s motion, are called constants of
motion. Constants of motion are generalized momenta, corresponding to the
cyclic co-ordinates (those on which the Lagrangian function does not depend
explicitly).

The energy of a closed system and of a system in a constant force field,
remains unchanged because of the homogeneity of time:

oy . .
Eza—qqi —sz(qj,qj)+U(qj)=const.
Such systems are called conservative. Conservative forces act in them.
The rate of change of the kinetic energy is determined by the rate of change
of the work of the acting force 7 =rF, i.e. by the power. The force acting on
the particle a is conservative if it can be represented in the form

F,(r,)=-VU(r,) (in this case the total energy T+U is constant).
Necessary and sufficient condition for the existence of such a function
Ulr,),is VxF(r,)=0.

The momentum of the closed mechanical system remains constant as a
consequence of homogeneity of space:

P= ;STW = zmava = g‘pa = const.

o

In an open system the total force determines the rate of change of the
momentum P=F. In such a system the separate components of the
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momentum p; remain constant if the components of the force in the
corresponding co-ordinates x; are zero: F,=0. The momentum of a

mechanical system in the reference frame of the centre of mass, whose
radius-vector is by definition R=Xm,r,/M, is zero. In any reference

frame (an inertial one) the centre of mass moves with a constant velocity R,
and the momentum of the system is p = X m i, = MR.
The angular momentum L=3Y(r,xp,) of a closed system remains

constant, because of isotropy of space. The rate of change of the angular
momentum of an open system is equal to the torque of the applied forces:

L=N.Ifina given direction the components of the torque N, =0, then the

corresponding components of the angular momentum in this direction are
also conserved in open systems. These are systems with different types of
symmetry (central or axial) and the components of the angular momentum
with respect to the centre or to the symmetry axis remain constant.

QUESTIONS

1. What does homogeneity of time and homogeneity and isotropy of space
mean?

2. Why the law of conservation of energy, which has been proved for a
closed system, is true also in an external constant potential field?

3. In which cases is the law of momentum conservation valid in an open
system?

4. In what reference frame is the momentum of a mechanical system equal
to zero?

5. Suppose that two atoms with equal masses and equal but reversed
velocities, are collided. Will the velocities of the atoms remain equal
after the collision, if:

a) before and after the collision the atoms are excited;
b) as a result of the collision one or both atoms are excited;
¢) before the collision one or both atoms were excited?

6. When can the law of angular-momentum conservation be applied in an
open system?

7. A charged particle is in the field of an unlimited charged plane XY .
Which components of its momentum and angular momentum are
conserved under its motion?

8. Which components of the momentum and the angular momentum of a
charged particle are conserved under its motion in the field of an infinite
solenoid?

9. Which component of the angular momentum of the electron of a
hydrogen atom is conserved under its motion in the field of the proton?
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PROBLEMS
1. Find the Cartesian components L, L, L, and the square I? of the

angular momentum in cylindrical co-ordinates p, @, z.

. Find the cylindrical components L _, L, L. and the square L* of the

p b (p b
angular momentum in Cartesian co-ordinates x, y, z.

. Knowing the Lagrangian function in cylindrical co-ordinates (see Table

1-1), prove that L, =0%/d¢ .
Find the Cartesian components L, L , L  and the square I* of the

x> Hy»

angular momentum in spherical co-ordinates.

. Find the spherical components L,, L,, L, and the square [* of the

angular momentum in Cartesian co-ordinates x, y, z.
A proton of energy m pvg / 2 moves toward a heavy nucleus of charge

Ze . The impact parameter is equal to . What is the minimal distance of
the proton from the nucleus?
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CENTRAL CONSERVATIVE FORCES

3.1

3.2

33

One-Dimensional Motion
One-dimensional motion — Lagrangian, constants of motion, finite and
infinite (potential well and potential barrier) and periodic motions. 46

The Two-Body Problem

Two particles in Lab-frame and CM-frame; Lagrangian function and
Lagrange’s equation in CM-frame, reduced mass; from motion of two
particles to motion of one particle; relative motion of two particles;
motion in CM-frame and in Lab-frame. 48

Central Conservative Forces

Central conservative forces, inverse square forces - gravitational and
electrostatic, nuclear forces; conservation of angular momentum and
motion in a plane, angular and generalized momenta, the law of areas;
conservation of energy, radial equation of energy; effective potential
energy, centrifugal energy, energy and character of motion. 52

3.4* Orbits of Motion

Effective potential energy and repulsion; potential energy, centrifugal
and effective potential energy at attraction; effective energy and total
energy — different orbits: hyperbola, parabola, ellipse and circle;
equation of conic section; eccentricity — type of the orbit; orbits of
particles with reduced mass, m, and m, in the CM-frame. 56

3.5* Elastic Collisions

Collisions — scattering and capture; elastic collisions; velocities and
momenta in CM-frame and Lab-frame; momentum diagrams; scattering
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angle; scattering angle on the mass. 62

3.6* Scattering of Particles. Formula of Rutherford
Scattering — differential cross-section; differential cross-section via
solid angle; differential cross-section of a particle with reduced mass
and of real particles; scattering in Coulomb field,; Rutherford formula;
experiment,; impact of a light particle on a heavy particle. 67
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3.1 ONE-DIMENSIONAL MOTION

One-dimensional motion is motion of a system with one degree of
freedom. The general form of the Lagrangian function is already known:

=v(9)¢*-U(q). (3.1
In Cartesian co-ordinates (3.1) transforms into
.2

m:’"; ~U(x). (3.2)

We could write the corresponding Lagrange's equation, which is of
second order. This equation of motion can be integrated in general. But we
already know its first constant of motion, expressed by the conservation law

-2

’"; +U(x)=E. (3.3)

This differential equation is integrated by the method of separation:

% = %[E—U(x)] or (3.4)
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‘= EJL
m JE—U(x)

We integrated an equation of motion of second order and, therefore,
obtained two constants, £ and const.
Although the relation (3.5) is obtained in a general form, it allows us to

make some conclusions about the character of motion. Suppose that U (x)

+ const. (3.9

has the form, shown in Fig. 3-1. Since the kinetic energy is positive,

ir.'

~

Iy Iy Iy Y

Figure 3-1. The motion is possible if U(x)<E, i.e. in the intervals x, <x<x, and x> x,, but

not possible if U(x)>E (x, <x<ux,). In the points 4, B and C (turning points), U (x)=E.

the motion is possible only if U (x)< E, i.e. in the interval x,x, and x> x, .
The regions x<x, and x,x, are forbidden. At the points 4, B and C,
U (x) = FE and the velocity of the particle is equal to zero. These points are

called turning points. If the motion is limited by two such points, it is called
finite motion and is confined to a given region. If the region is unlimited or
is limited only from one side the motion is infinite (x > x; ).

As an illustration, we shall consider two cases of the given form of the
potential-energy curve. The first is the potential well, which corresponds to
an attractive force, directed to the centre of the well. (We shall note that

since U (x) 1s determined to within an a constant, it is convenient to choose
that constant such that U (x)— 0 at x — e, as shown in Figs. 3-2 and 3-3.)

Two types of motion are possible. If £ is negative (£ = E, in Fig. 3-2), the
motion is finite and is confined to a finite region - the particle oscillates
between the two boundary points x, and x, in which U (x)=E,. When the
energy of the particle is equal to the depth of the well —U, it is at rest at the
point x=0. If the particle starts its motion far out to the left with
velocity vits energy is E=FE,=mv’/2 and its motion is infinite. The
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particle accelerates when it moves to the centre of the well and decelerates
further from the centre. Far from the centre it reaches the initial velocity v.

The second case is the potential barrier (Fig. 3-3). It illustrates a repulsive

force directed outward from the centre. There are also two types of motion.

U U

Er Fa

Figure 3-2. Potential well. Figure 3-3. Potential barrier.

If the motion starts far out to the left with velocity v, such that
E=E =mv/2<U, (U, is the barrier height), the particle will reach the
point E, =U(x), then it will reverse its direction and will continue to move
towards —eo, finally reaching velocity —v,. If E=E,=mv,/2>U, the
particle will have enough energy to overcome the barrier and in the far right
it will reach velocity v, .

The one-dimensional finite motion has a periodic character. Because of
time isotropy (replacing ¢ with —¢ does not change the Lagrangian function
(3.2) and the equation of motion) the motion is reversible. Therefore the time
for the motion from x, to x, equals the time for the motion from x, to x,.

The period is equal to twice the time of the transition of the interval x,x,, or

r=am | — %

(3.6)

Ne=roh

where x, and x, are the solutions of the equation U (x)= E and both 7 and

x, and x, are functions of the energy E.

3.2 THE TWO-BODY PROBLEM

The two-body problem takes a very important place both in physics and
chemistry. We shall consider a system of two interacting particles of masses
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m, and m, . Suppose that in the laboratory frame (Lab-frame) the positions
of the particles are given with the radius-vectors R, and R,, and of the
centre of mass, with R (Fig. 3-4a).

m, C 1y 1

Figure 3-4. Two-body problem:
a) Origin of the laboratory reference frame (Lab-frame) O, and the position vectors of the
particles of masses m, and m,, R, and R,, respectively, and the position of the centre of

mass C, R; r, and r, are the position vectors of the particles in the centre-of mass frame

(CM-frame) with an origin in the point C; r is the relative-position vector (|r| is the particle
separation) - it begins from m, and is directed to m, ;

b) the relative-position vector r determines the position of the reduced mass m in CM-
frame.

We shall perform analysis in CM-frame with an origin at point C. In it,
the positions of particles with masses m, and m, are r, and r,, respectively.
The separation of particles is determined by the value of the relative position

vector r, which is the difference between their position vectors in both
frames (see Fig. 3-4a). In CM-frame we have

r=r —r,. (3.7)

Since the potential energy of two interacting particles depends only on
their separation, the Lagrangian function may be written as

.2 .2
m.r, m,r.
_ Nl + 2

P=—Th+ = ~U(Jr, -1,)). (3.8)

According to (2.24) (in the CM-frame R=0), we obtain
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myx, + m,r, =0. (3.9)

From (3.7) and (3.9), we relate the positions of both particles with the
relative vector r:

r = r, r=-— r. (3.10)
m, + m, m, +m,

Substitution into (3.8) yields for the Lagrangian function

zzf;—U@L (3.11)
where
P mym, :m1m2’ {%ZL_FL} (3.12)
m, +m, M m.m.m,

is called a reduced mass (the sigh ~ is read tilde). The Lagrange's equation is

2
mi§=—aU&) (3.13)
dt or

Thus, the two-body problem reduces to the problem of motion of an
imaginary body with a mass 7 and a position vector r, which is the relative
vector of the first particle with respect to the second one (Fig. 3-4b).

Thus to find the trajectories of two bodies it is enough to solve the
problem of motion of one body, which has the reduced mass of both bodies.
The reduced mass is smaller than any of the two masses. For a diatomic mo-
lecule, for which the masses of atom are m, =m, =m , the reduced mass is

i =mj2. (3.14)

If we have a light and a heavy particle, so that m <<m,, then the
reduced mass is

PR zmp—ﬂq. (3.15)
m, +m2
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If m, stands for the electron mass and m, =1836m, for the proton mass,

the reduced mass of the hydrogen atom is

m=m, 1—L =m,. (3.16)
1836

It is evident that in the case of a light and a heavy particle, the reduced
mass is very close to the light particle’s mass.
The function (3.11) and Lagrange's equation (3.1) describe the motion of

a body with mass 7 in the potential field U (r). Our problem is to find the
vector r as a function of time. The Lagrangian function leads to two
equations for the determination of the two vectors r, and r, as functions of

time. We reduced the problem of two bodies to the problem of one body.
This problem is readily solved, but in order to interpret correctly the motion
of both particles we have to remember the following:

First, from the Eq. (3.13) we can determine r (t) . Recall that r is a vector
pointed from particle m, to particle m, . Thus we shall determine the motion
of m, with respect to m,, as m, is fixed at rest in the inertial reference
frame. However, Eq. (3.13) does not contain the mass m,, but the reduced
mass , and in the right side the term —dU/dr is the force, acting on the
mass m, , but not on the reduced mass (according to the third Newton's law
the force dU/dr acts on mass m, ).

Second, after having found r, we can determine the motion of both
particles m, and m, in the CM-frame, using Eq. (3.10). In other words, we
shall obtain the radius-vectors r,(¢) and r,(7), which define the trajectories
with respect to the immobile centre of mass. Once again, recall that r(r)

determines the trajectory of m, with respect to m,, i.e. the particle of m,

would be immobile.

Third, the Lagrangian function (3.11) is written in CM-frame and
contains only the relative motion of the particles. Since the system of two
particles is a conservative one, the centre of mass moves with a constant
velocity R, which according to (2.24) is determined by the initial condition
R, (0) and R,(0). In the Lab-frame the positions of m, and m, are

determined by the vectors R+r, and R+r, and their velocities with
R+¥ and R+, , respectively. Or, in Lab-frame the trajectories of m, and

. m m
m, are determined by the vectors R+ ——2—r and R————r.

m, +m, m, +m,
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3.3 CENTRAL CONSERVATIVE FORCES

A force F is said to be central if is directed towards or away from a fixed
point. In this course we shall mainly deal with central forces acting
according to the law of inverse squares:

F=- (3.17)

C

P
The electrostatic and gravitational forces, acting between two immobile
particles has such form. If one of the particles is positioned at the origin of

the co-ordinate system and the other at a distance r, these central forces are
always directed along the radius-vector r:

po-Cpo_Cr (3.18)

2 2 .
r r-r

For the gravitational force between two particles of masses m, and m,,
we have C=G,mm,, where G,=6,67.10""" N.m’/kg’ is the gravitational
constant, and for the electrostatic force between two charges q, and q,,

C=q,q,/4re, , where g, is the permittivity of the vacuum. These forces
are conservative and can be expressed through the potential energy

__9u(r) __C
F=—"0 U(r)=— (3.19)

We have chosen the arbitrary constant of U so that U(e)=0. It is

preferable to deal with the scalar U () than with the vector F(r).

We shall note that C >0 corresponds to attractive forces (a gravitational
force or an electrostatic one between charges of opposite signs) and C <0
corresponds to repulsive forces (an electrostatic force between charges of
equal signs). In atomic physics another central force plays a basic role — the
nuclear force. From experiments on scattering of elementary particles, it is
known that the nuclear force acts on a small distance between two nucleons
(protons or neutrons) with a potential energy

_Cexp(-r/n)

7

U(r)= (3.20)
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Here 7,=2.10"" m, C=10"" J.m. It is easy to see evaluate that at
r <r, the nuclear force between two protons dominates the Coulomb force

of their repulsion. We shall note that (3.20) is an approximation.
Since central forces are always collinear to the radius-vector r, their
torque is zero

N=rxF=0. 3.21)
According to (2.39) this means that the angular momentum is constant
L =rXxmr = const, (3.22)

where m is the reduced mass of the particles interacting with the force
(3.18). This is the law of conservation of angular momentum and it contains
two statements: that its direction is constant and that its magnitude is
constant. The angular momentum is perpendicular to the plane of motion -
the vector L is along the normal to the plane of r and r . Hence the statement
that the direction of L is constant implies that r and ¥ must always lie in a
fixed plane, which is perpendicular to L. From here it is evident that the
orbit of the particle lies entirely in one plane. The description of such motion
requires only two variables, which may be taken as the polar co-ordinates r
and ¢ . Then the Lagrangian function can be written as

y:%(rz +1%9?)-U(r). (3.23)

The co-ordinate ¢ is a cyclic co-ordinate (see Section 2.1) and the
generalized momentum P, =0%/d¢ is a constant of the motion:

— 2 —
B, =mr°¢ = const. (3.24)

We shall verify that this quantity is equal to the angular momentum. The
velocity ¥ (3.22) has components in the directions of the unit vectors r” and

¢°. Indeed, as it is shown in Fig. 3-5 the displacement dr of the particle,
due to the increments of the elements dr and d¢, can be represented as

dr =drr’ +rde @’ (3.25)

and dividing by dt, we obtain
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o

dr
rde@”

\d

0] r /

Figure 3-5. The motion of a particle of a reduced mass  in a central field with a centre O is

performed in a plane, normal to L and is described with the polar co-ordinates » and ¢ (r°

and ¢° are corresponding unit vectors). At the elementary change of the co-ordinates with
dr and d¢ the particle displaces with dr .

., .0
v=—-=7/r1 + . 3.26
5 ST rroe (3.26)

The substitution of (3.26) into the expression for L (3.22) yields
L=rxmv=rr’xm(ir’ +r¢e°)=0+mr’g(r' x@")=mr’gz’.(3.27)

The magnitude of L is L=L_ =7r’¢. We proved that under the motion
in central-force field the generalized momentum F, has a meaning of

angular momentum:
— T =P =l
L=L =F,=mr¢. (3.28)

The law of conservation of angular momentum has an interesting
geometrical interpretation. When the angle ¢ changes by an amount d¢ the

position vector r sweeps out an area dS (Fig. 3-5):
ds =r’dep/2. (3.29)

The rate of change of this area, which is called an area velocity or a
sector velocity, is

as 1, L
_— = = ——=const. 3.30
a2 T (330
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For equal intervals of time the radius-vector sweeps equal surface. This
law is known as second Kepler's law of the motion of the planets. As we
saw, it is valid for any central force, not only for a gravitational one.

The forces acting according to the inverse-square law are central and
conservative ones. Besides the law of angular-momentum conservation, the
law of the conservation of energy is also valid:

E=%(% +79*)+U (r). (3.31)

We have found two constants of motion (3.28) and (3.31), which express
the laws of conservation of angular momentum and energy. (These constants
of motion are very often called first integrals of the motion, as they contain
first derivatives of the co-ordinates.) Important information can be obtained
directly from these equations, without solving them to determine » and ¢ as

functions of time. Eliminating ¢ in (3.31) with the help of (3.28), we obtain
an equation for 7 and 7 only:

2

E:%W + 2L +U(r). (3.32)

~ 2
mr

Often this is called a radial equation, underlying that it indicates the
energy balance only under the change of the distance r to the centre. Compa-
ring this equation with (3.3), we see that it has the same form as the equation

of energy for one-dimensional motion with "potential energy" U (r):

~ I?
V()=

+U(r). (3.33)

This energy is called effective potential energy.
It is easy to explain the physical meaning of the additional term L’ / 2mr?

in U(r). Taking the value of L from (3.28), it can be represented as
ﬁ1r2¢/2. This term is different from zero only for motion along ¢, i.e.

rotation. This is the reason to call the additional energy I’/2/r’ a
centrifugal energy. Despite that in (3.32) the motion is represented as one-
dimensional (radial), the motion along ¢, i.e. the rotation, is present non-

explicitly in the term o< *. The angular momentum is a constant, but it exists
as a consequence of the motion along ¢, i.e., of the fact that ¢ #0.The
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effective potential energy can be used for qualitative analysis, just as U (x)
can be used in a one-dimensional motion. When

2

0(r)=

+U(r)<E. (3.34)

2mr’

and U(r")=U(r")=E the motion is finite and is bounded in the region
r'<r<r". Both solutions of the equation determine the minimal and
maximal distance from the centre, and the orbit lies between them. Under the

conditions (3.34) and U (r')=E, the motion is semi-infinite in the region
r>r' with the turning point 7. If U(r) has a minimum and E is equal to
Umin , then 7 is always zero (see (3.32)) and r is fixed at the position of the
minimum. In this case the particle moves along a circle around the centre.

3.4* ORBITS OF THE MOTION

In order to determine the character of motion we have to know the form
of the function U (r) in (3.33). The centrifugal energy is always positive. In

the case of a repulsive force, the function of the potential U (r)=-C/r

(C<0) is positive for any . Then the effective potential energy U (r) de-

creases monotonically from +eo atr=0 to 0 at » =c (Fig. 3-6). There is
no minimum and the circular motion is not possible. For any (positive) value
of E there is a minimal distance r=r_ (the distance of closest approach)
which is the only solution of the equation U (r)= E, but there is no maximal
distance. If the radial velocity is such that the particle approaches the centre,
it will move with an orbit in which the value radius-vector » will decreased
to r,. and after that it will increases to infinity. It is known (and later on
will be proved) that such an orbit is a hyperbola (Fig. 3-6b). If the force is
attractive (C > 0) the effective potential energy takes the form

I r c
+UM) =5 = (3.35)

25’ mr r

u(r)

From the summation of the potential and centrifugal energy we obtain the
curve U (r), which possesses a minimum (Fig. 3-7). Equating the derivative

dU (r)/dr to zero, we determine r,, at which U (r) is minimal
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]

=

r(rmin ] T

Trmin T C

a b

Figure 3-6. Repulsive central conservative force:
a) the effective potential energy is monotonically decreasing function;
b) the orbit of the particle is hyperbola; b is the impact factor; the angle y, determining the
deflection from the initial particle direction, is a scattering angle, r,, is the minimal distance

of the centre to the orbit, which is symmetrical with respect to the line defining r:

min *

du ? P m_U
()__ L ,Cy L Umm:_iLTz (;0). (3.36)

Figure 3-7. The effective potential energy U (r) is a sum of the potential energy U(r) and

the centrifugal energy I2/2/ir* , and it possesses a minimum U, ,, = U (r)/2 at r=r,
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The form of the curve U (r) allows the determination of the character of

the motion. We shall note that the curve is symmetrical with respect to the
force centre O (Fig. 3-8a).

hyperbola
parabola
ellipse

circle

Figure 3-8. a) View of the effective potential energy U (r) for bodies with equal reduced
masses and angular moment L, but different energies £. The corresponding orbits are: £ >0

- a hyperbola, E=0 - a parabola, E<O - an ellipse, E=U
points D" and D"".

- a circle. All orbits go through the

min

At E >0 the motion is unbounded and the minimal distance to the centre
Ois r,, =r,. The orbit is a hyperbola.

At E =0 the motion is unbounded and the minimal distance to the centre
Ois r,,, =r,. The orbit is a parabola.

At E <0 the motion is finite and holds in the region »_, <r<r__, where

max ?

7

min

=1 and r,, =r.. The orbit is an ellipse.
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At E=U,_, the motion is finite with a constant minimal distance » =7, .

The orbit is a circle.

And now, let us show that the orbits are indeed such. In order to find the
equation of the orbit, we have to eliminate the time from the constants of
motion (3.28) and (3.32), and obtain the equation which relates » and ¢ .

From (3.32) at U (r)=—C/r we readily find

2
pedr_ 2 g C L (3.37).
dt m ro 25t

We rewrite (3.28) as dt=demr’/L. Substituting it into the last
equation, we get

- dr + const. (3.38)

This equation relates » and ¢, i.e., it is the equation of the orbit. We
rewrite it in the form

2

Q= J. Lér - dr + const. (3.39)

2mE + Cmy _(_Cm + L

L L r

and use the substitutions
2ME +| —— Cir ) —a, [CEmL L, _der =du. (3.40)
L L r r
This yields

= arccos— + const. (3.41)

w——JJ—

Returning to the initial variable » we represent the relation between r and
¢ 1in the following form
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~ 2
_C7m+£ 1+ L l _1+£

L1 _arecos———CMT_ _arccos I (3.42)

~ \2 ) 2
e € w 260
L C'm

where we substituted L’/Ciin=r, =p (see (3.36)) and \[1+2L°E/C i =e.

We set the initial angle ¢, =0 (it determines the orientation of the orbit).
The final form of the equation of the orbit is

¢ = arccos

p/r=1+ecos. (3.43)

This is the conventional representation of a conic section with the focus
in the centre of the field; the quantity p is called the parameter of the orbit

and e is called eccentricity. The parameter determines the size of the conic
section and the eccentricity - its form. Depending on the values of e we
obtain the four types of orbits:

e>1 -ahyperbola,

e=1 - aparabola,

0<e<l1 -anellipse,

e=0 -acircle.

Taking into account (3.36) we can write for the eccentricity

e=f1--£ = it ~E , (3.44)
Umin ‘Umjn

from where it is evident that the conditions for e, which determine different
types of orbits precisely coincide with the conditions for £ in Fig. 3-8.

We shall note that the obtained orbits are the orbits of a body moving
around another immobile body. In order to find the real orbits around the
centre of mass (Fig. 3-9), we have to return to the equations (3.10).

The radius-vector value of the reduced mass changes as (see (3.43))

P — (3.45)
1+ecos@

According to (3.10), r, has the same direction and its magnitude is
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pm, I »n
m, +m, 1+ecosp 1+ecos@

(3.46)

The particle moves along an ellipse and the direction of its radius-vector
r, coincides with the direction of r.

In any moment the vector r, is opposite to r (3.10). Therefore, when r is

oriented at an angle ¢, the vector r, is oriented at an angle ¢, =7 +¢@.
Then from (3.10) and (3.45) we get

__m 1 __ D
m +m, l+ecos(T+¢) l—ecose

(3.47)

h

The orbit is also an ellipse and m, moves so that both particles are on the
line passing through the centre of mass at any moment (Fig. 3-9).

Figure 3-9. The orbits of particles with masses 7, m, and m, (m :m,=2:3) in CM-frame
with an origin at the point C: a) ellipses (if m, <<m,, the ellipses are contained in one
another!); b) hyperbolas (an attractive force); c) hyperbolas (a repulsive force). r, and r, are

radius-vectors of the particles m, and m, , r is a radius-vector of the reduced mass 71 .
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3.5* ELASTIC COLLISIONS

One of the most important ways to obtain information about very small
bodies is to bombard them and measure the number of particles reflected in a
given direction. The angular distribution of scattered particles depends on
the target form and the nature of the force between it and the particles. In
order to interpret the results of similar experiments, it is necessary to know
how to calculate the angular distribution when the force is known.

We shall first analyse the case of a single act, when only one particle
impacts on a target (also a particle). In the next section we will introduce the
characteristic of a scattering of a particle flow by a central field, and will
consider the important case of scattering by a Coulomb potential field.

The collision is a process, described by a special case of the two-body
problem. In the beginning the particles are far from each other, as a result of
which their motion is uniformly linear. As they approach each other, the

interaction U (r) influences strongly their motion, and it becomes non-

uniformly curvilinear. After that, they go to infinity, moving uniformly and
linearly, or remain at a finite distance from each other. In the first case we
speak about scattering, and in the second about the capture of a particle. We
shall underline that the collision does not necessarily mean a mechanical
contact between the particles, but change of direction and/or the motion
character due to their interaction.

We shall consider an elastic collision between two particles. The
collision is elastic when it is not accompanied by a change of the internal
energy of the particles. Hence, there is not a kinetic-energy loss due to the
collision.

In the problem of scattering we have to use two reference frames
simultaneously: Lab-frame, in which the initial values p, and p, of the

momenta are given, and their values p', and p', after the collision are

sought, and CM-frame, which is suitable for the analysis. In the last frame
we shall denote the quantities with index "" (e.g., v,, is the velocity of the
first particle in the CM-frame before the collision) and with prime, the
quantities after the collision.

In the Lab-frame let the second particle before the collision to be at rest,
i.e. v, =0. Thus, according to (2.25) and (3.10), the velocities of the centre
of mass u in the Lab-frame, and of the particles in the CM-frame are,
respectively,

— 2y, vy =, (3.48)
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For the momenta of both particles after multiplying their velocities by
m, and m, we have

Py =MV, P,y =—MV,. (3.49)

The total momentum of the particles in the CM-system, as expected, is
zero. From the conservation of momentum law, it follows that after the
collision the momenta of the particles will also differ by sign, p',, =—p'y -
Due to energy conservation, unchanged remain also their magnitudes
|p'm| =|p'20|. Hence, the momenta of the particles in the CM-frame are only

turned off to the angle y without changing their values. (Fig. 3-10). Deno-

P2o

Figure 3-10. Scattering of the particles in CM-frame: the momenta before the collision
p,, and p,, are equal and opposite p,, =-Pp,, ; the momenta after the collision remain the

same but they are turned off to the angle y .

ting with e’ a unity vector of the velocity of the particle m, after the
collision, we can write the velocities of both particles in the following form:

m m
v, =—=>—ve’, v, =——"1—ve’ (3.50)
m, +m, m, +m,

Adding to these velocities the velocity u of the centre of mass, we shall
obtain the particles’ velocities after the collision in the Lab-frame. The
corresponding expressions for the momenta have the following form

r_ m, 0
P, = p, + pe,
ml + m2 ml + m2
(3.51a)
, ml m2 0
= | be,
ml + m2 ml + m2

or
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’ ml 0 ml ’
pl =—p1 +p10e :—pl +p10’

m, +m, m, +m, (3.51b)
’ m2 0 _ m2 ’
2= P, — P = P =Py

ml +m2 ml +m2

The obtained relations become very clear, when they are shown
graphically. Then they are called momentum diagrams. Let's represent the

vector p, by the line 4B as the sum of 40=""1P1_ and o =-"2P1
m, +m, m, +m,

(Fig. 3-11a). We shall draw a circle with a centre in point O and radius

\ O D /
g ma
b ]

I
my + ma ! my + msa

Lmax -7
| .~

my

D
my + msg

msa

P
my + ma2

my msy
]

1 P
Ty -+ 12 my + ma

Figure 3-11. Momentum diagram of an elastic collision between the particles m, and m, : a)
m, <m,, bym >my, c) m=m, Here p, and p'| are the momenta of m, in Lab-frame
before and after the collision; p', is the momentum of m, in Lab-frame after the collision;
p', is the momentum of m, in CM-frame after the collision and e’ is the unity vector in its
direction; m,p,/(m, +m,)=p,, is the momentum of m, in CM-frame before the collision
(P llp,); x is the scattering angle of m, and m, in CM-frame; 6, and 6, - scattering

angles of m, and m, in Lab-frame.
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P 1 < m, , the point A is in the circle (Fig. 3-11a), but if m, > m, ,
m, +m,

the point 4 is outside of it (Fig. 3-11b). From the point O, at an angle y
with respect of p,we plot a unity vector, along which direction the first
particle moves after the collision (in the CM-frame). Then OC will represent
€ P11,

m, +m,

the vector , the line AC - the vector p', and CB - the vector p',in

full agreement with formulae (3.51).

Let's find the scattering angles. They are determined by the deflection of
the particles after the collision. In the Lab-frame the scattering angle of
particle m, is 6,, between the vectors p, and p',, and of particle m, is 6,,

between the vectors p, and p',. The scattering angle y in the CM-frame
is the angle between the vectors p',,=mv', and p, (p,||p,, ). The sum
0, +0, determines the angle between both particles after the collision. The
scattering angles 6, and 6, can be expressed through . For the
determination of ¥ we have to know both the law of interaction between the

particles and the initial conditions. For the angle 6, from
A4ADC and AODC we obtain

pm, .
. —1——siny
(ano. CD OCsiny _ m, +m, (3.52)
' 4D AO+0OD  pm L P Cosx’ '

m, +m2 m, +m2

and after dividing the nominator and the denominator by p,/(m, +m,), we
have

m, sin y

tan0, = (3.53)

m, +m, cos

For the scattering angle 6, from the isosceles ABOC triangle we obtain

g. =" X (3.54)
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Since the scattering angle y in the CM-frame can change from 0 to 7,

the scattering angle of the particle m, in Lab-frame can change from
w/2 to 0.

More complex is the case of the scattering angle 6, of particle m, - from
the diagram it is seen that the cases m, <m, and m, >m, lead to different
pictures. In the first case 6, is equal to zero at y =0, then monotonically
increases with an increase of )y (remaining always less than ) up to a
value 0, =7 at y =m . At the same time the difference between 6, and y is
as small as the relation m2, /m, is smaller - when m, /m, — 0, then 6, — .

If m, >m,, for small y the angle 6, grows when y increases, but to
some limited value, corresponding to y, at which the vector p', becomes
tangent to the circle. Further increase of y leads to the decrease of 6,, and
at y =m it becomes zero. Consequently, for the scattering of a heavier
particle, the scattering angle 6, can not be bigger than 6, (the point C’in
Fig. 3-11b correspond to this case):

Imax

sing, =2 (3.55)
m

Imax
1

In the particular case when the masses of the particles are equal, m, =m,,
formula (3.53) is substantially simplified:

tan @, LY S tanl (3.56)
1+cosy 2
and, hence,
X T X
6 =%, 9, ="-24, 3.57
=5 0= (3.57)

In other words, in Lab-frame, in the case of equal masses, the angle
between particles after the scattering is 7/2 .
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3.6%* SCATTERING OF PARTICLES. FORMULA OF
RUTHERFORD

In Section 3.2 we showed that the problem of the motion of two
interacting particles reduced to the problem of the motion of a particle with
reduced mass 7. Knowing the trajectory of the reduced particle, we can
calculate the trajectories of both particles. We shall use this method for an
investigation of the scattering of two particles m, and m, . Let us return to

Fig. 3-6b. The scattering angle y is a function of the impact parameter b,
xX= )((b) In the experiment with microparticles the impact parameter b can

not be determined. Therefore, we must use a statistical approach to
scattering.

Let us suppose that a beam of particles impinges on the force centre. We
shall characterise the beam through its incident flux # - the number of
particles crossing unit transverse area per unit time (here » is the particle-
flux density). The number of particles dN, , scattered under an angle lying

between y and y+dy (Fig 3-12) can be found experimentally. These are
particles with an impact parameter lying within » and b+ bdb and their

Figure 3-12. Particles with an impact parameter lying between b and b+db will be scattered
under an angle lying between y and y+dy.

number is equal to the number of particles, passing through the ring of radius
b and width db, i.e.

dN, = n2mbdb. (3.58)

This number is not convenient for the scattering characterisation, as it
depends on the flux density. Therefore we introduce the relation
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dN,
do ()= *2mbdb, (3.59)

which determines the relative number (fraction) of particles, scattering at an
angle y+y+dy. This relation has dimension of area and is called

differential cross section. It is an important characteristic of the scattering
process and uniquely determines the type of scattering field.

The total cross section o is defined as the ratio of the particle number N,
scattered per unit time under any angle, to the density flux of the incident
particles:

N
ozzzfd j— dy. (3.60)

The scattering angle is a function only of the impact parameter b and,
which is the same, the impact parameter b is the function only of the angle y.
Hence,

dy (b db
dy=220) g o gy =) 4, 3.61)
db dy

Changing variables from b (3.58) to y, we shall write the differential
cross section in the following form:

do =27b( )()‘— dy. (3.62)

The absolute value sign is needed because db/dy is typically negative

(the particles with large b are less deflected, as can be seen in Fig. 3-12).
Very often it is more convenient to use the solid angle dQ instead of

dy (Fig. 3-13). For this transformation we shall return to the quantity dN, ,

and we shall note that it can be seen as the number of particles flowing in a
solid angle dQ =2z sin ydy (such is the value of the solid angle between

the cones with angles y and y + dy).Substituting in (3.61) 2xdy with
dQ/siny, we express do through dQ:

b(x)|db
sin y d)(

do = Llaa. (3.63)
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We remind to the reader that this is the differential cross section in the
CM-frame (the centre-of-mass frame) of the particle with 7 .

rdx

T sin X

Figure 3-13. The differential cross section is defined as the fraction of particles scattered for
unit time at angles from y to y+dy (or, which is the same, in the solid angle dQ=2rsinydy
between the cones of angles y and y+dy) to the flux density of the incident beam.

The most important case for determination of a cross section in classical
mechanics is the scattering of charged particles in a Coulomb field.

In this case the cross section is obtained in the form of elementary
functions and it is most interesting that the obtained classical cross section
preserves its form during the transition to quantum mechanics.

For the determination of the scattering angle we shall use the results from

Section 3.4. We shall consider the repulsive potential field U (r)=-C/r

(where C <0). The scattering angle y can be expressed by the angle 2¢,
between the asymptotes of the trajectory (Fig.3-6b):

X =7 =20, (3.64)

The angle ¢, is the polar angle of the nearest to the centre point, point 4.
For the determination of the angle ¢, we use Eqs. (3.38) and (3.42):

L a1
0, = J r dr = arccos L_r ) (3.65)

e - C I’ 5V
min \/2m(E+)—2 \/2”71E+(Cm)
r r L

is the positive solution of Eq. (3.34). We

substitute this solution into (3.65) and take into account the conservation
laws of energy and angular momentum:

Tmin

The minimal distance r

min
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)
E= mzvm , L=mv_b. (3.66)

Here v is the unperturbed particle velocity (the initial or the final one),
L.e. at r — oo (see Fig. 3-6). For the angle ¢, we obtain

= arccos—1 . (3.67)
P

(ﬁivib ]2
14| =2
C

Using the trigonometry formula arctan x = arccos (1/ V1+x? ) (for x=0)
we easily determine the impact parameter b as a function of ¢, :

b= |C| tan @, . (3.68)

~ 2

oo

Changing ¢, with |7r - )(| / 2 and squaring it, we get

2

C X
b*=—cot* £, 3.69
m*v? 2 ( )

=

We differentiate with respect to y and substitute the result into (3.62) or
(3.63). Finally, for the differential cross section we obtain

¢ Yeosd c Y do
do ZH(WJ 2 d%, or do =(?J —dx (370)
< S1

. m°y .
SlIl3 — * n4 —-

Formulae (3.70) are the celebrated Rutherford formulae, used by him to
analyse the experimental results of a-particle scattering by heavy nuclei.
With these experiments was established the planetary model of the atom. As
can be seen from (3.67), at the constant solid angle d€2=const the quantity

dosin® (/2)=const, which was verified experimentally.
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The experiments also verified that the number of scattered particles (i.e.
the differential cross section) quickly decreases with both the increase of the

scattering angle (as 1/ sin® (x/2)) and with the magnitude of the a-particle

energy (as 1/ E?). For small angles the differential cross section is large.

This is due to the Coulomb field, which is weak far from the centre, but
decreases sufficiently slowly. Therefore it acts on many particles, which
exhibit small deflections due to this action. The cross section does not

depend on the sign of the coefficient C (dG < C? ) , so the obtained result is
valid for both Coulomb repulsion and Coulomb attraction between the
particles m, and m, . The experiment verified also that do is proportional to

the square of the charge of the nucleus.
Formulae (3.70) give the differential cross section in the CM-frame. The
transformation to the Lab-frame is done with formulae (3.53) and (3.54).

Finding do(6,) is trivial, but the determination of do (6,) is difficult. For
the most interesting case of a scattering of light particle by a heavy one
(m, <<m,), when m=m, and y =6,, we obtain from (3.70) the differential
cross section of the light particle

2
do=[C | 92 (3.71)
4F . 46
sSin —

where E =mV’ / 2 is the energy of the incident particle.

SUMMARY

One-dimensional motion in a potential field U (x) of a particle of energy
E is bounded in a region x,x, by the conditions E>U (x),U(x,)=E and
U(x,)=E.

Central conservative forces of interaction between two bodies are
directed along the line connecting their centres and depend only on the
distance between them. Such forces are the gravitational, Coulomb and
nuclear forces.

The two-body problem, in which the interaction is determined by the
central conservative forces, can be reduced to the problem of one particle

(with a reduced mass i =mm,/(m, +m,) and a relative radius-vector of a

particle with respect to another, r=r,—r,) in the field of the central



72 Chapter 3

conservative force. The motion of a particle in such a field occurs in a plane
and both the energy and angular momentum are conserved. The angular
momentum, which is this case is an orbital one (It is due to the orbital
motion, but not to a spin, for instance) is normal to the plane of the motion:

L=mr*g. A two-dimensional problem (a motion in a plane) can be reduced
to a one-dimensional radial motion in a field of an effective potential energy

U(r):

2

25’

U(r)=

+U(r).

The additional term L’/2#” is called a centrifugal energy and is due to
the rotation along ¢ . The effective potential energy for the one-dimensional

radial motion plays a role analogous to U(r) for one-dimensional motion.
For repulsion U(r)>0 and the motion is infinite, and for attraction

U(r)<0 and the character of the motion depends on the relation of the total

particle energy to the effective potential energy. The orbits (curves of second
order) are the following:

E >0 -ahyperbola,

E =0 -aparabola,

U, <E<O0 -anellipse,

E=U_ -acircle.

Knowing the orbit of a particle of reduced mass allows the determination
of the real orbit of the particle in the CM-frame (centre-of-mass frame). The
motion has a constant area velocity, i.e. for equal time intervals the radius-
vector sweeps equal areas:

as 1 ,.
— =—r"( =const.
dt 2

Hence, the angular velocity along a circle is constant, but along other
trajectories it changes, approaching its maximum in the perigee (the minimal
distance to the focus).

As two particles approach each other, interacting by a central force, they
scatter, and the light particle can scatter at any angle, while for the heavy one
the scattering angle has a maximum. As a characteristic of the scattering we
use the differential cross section, which for the Coulomb field is determined
by the Rutherford's formula.

We have persuaded ourselves that the two-body problem (including
scattering) in CM-frame is substantially simplified. This concerns more
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complex systems. Therefore it is better to solve the problem in the CM-
frame and after that to do a transformation to the desired frame.

QUESTIONS

1. What are the conditions for finite/infinite motion?

2. Why the one-dimensional motion is a periodic one?

3. What is a character of motion if a particle of energy E approaches: a) a
potential well of depth U (x); b) a potential barrier of height U (x)?

4. For interaction between a light and a heavy particle of masses
m, and m, (m, <<m, ), respectively, which mass determines the

reduced mass?
5. The two-body problem is reduced to the motion of the reduced mass
with radius-vector r (Eq. (3.3). What is the physical meaning of: a) the

vector r; b) the force —0U (r)/or?

6. How will you find the Lagrangian function of two particles in Lab-frame,
knowing it in CM-frame?

7. Knowing the radius-vector of a particle with a reduced mass, how will
you determine the position of the masses m, and m, in: a) CM-frame;
b) Lab-frame?

8. Why does the particle trajectory, moving due to the action of a central
force, lie in a plane?

9. What is the physical meaning of the generalized momentum F, of the

particle in the central force field?

10. Which is the direction of the angular momentum in the central force
field?

11. The radial equation of the energy (3.2) is one-dimensional (it depend
only on r). Is the particle motion, described by this equation, also one-
dimensional?

12.Why is the additional term /27 in the effective potential energy

called centrifugal energy?

13. How will you explain physically that due to the repulsion from the force
centre, the particle can not move along a closed curve (in particular,
along a circle), but as a result of an attraction it can do so?

14. Explain graphically why are different orbits obtained when the particles
have different values of the total energy with respect to the effective
potential energy?

15.1f you know the instant position of one of the particles and the centre of
mass, can you show where is found: a) the second particle; b) the particle
of the reduced mass?
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16.How is the momentum of the particles changed as a results of an elastic
collision in the CM-frame?

17. What are the scattering angles in the CM- and the Lab-frames, when the
light particle of mass m, impinges on the heavy one of mass m,

(m, <<m,)?

PROBLEMS

1. A particle of mass m and a velocity v moves in the central field
U(r)=xr’ /2.

a) What is its effective potential? Plot it together with its components.
b) What condition satisfies the effective potential at the circle motion?
¢) Find the radius and the angular velocity of the circular motion.

2. An electron of velocity v, passes through a point P at a distance b from
an atomic nucleus O (here v, L PO). Through the relation of v, to the
velocity v, of the circle motion through this point, find at which value
of [ is the orbit a closed or an open curve. For the orbits, which are an

ellipse, a circle and a hyperbola, plot the curve for the effective
potentials and show the position of the point P on them.

3. Alfa-particle of energy 2.107" J is scattered off an Al atom at an angle
6, =x/2. Find the minimal distance b between the particle and the
nucleus?
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4.1* ROTATING FRAMES

Up till now we used only the inertial reference frame, in which the laws
of motion take on a simple form, expressed in Newton's law. However,
many problems are solved much easier in non-inertial frame. (Here we shall
consider only a rotating about a fixed axis.) Namely, they represent an
interest from the point of view of this course. Applying the rotational
motion, we shall consider a charged-particle motion in a constant magnetic
field and simultaneously in such a field and an electric field of a point
charge. These problems are very important for our further presentation.

Consider two reference frames with a common origin O: an inertial frame
K and a non-inertial frame K', rotating with an angular velocity @ = const
with respect to K. For the sake of definiteness we shall assume that the
angular velocity is directed along the axis Z (Fig. 4-1). The values in K' we
shall denote with prime.

Z=2")
fw

Figure 4-1. The co-ordinate frame K' (x’)'z') rotates around the inertial co-ordinate frame
K(x,y,z) with an angular frequency w, directed along the Z-axis. When both frames have a
common origin O, the radius-vectors of the particle coincide, r =r'. Its velocity in K’ is v'
and in K'itis v=v'+@Xxr.

The radius-vectors of a fixed point r and r' in the frames K and K'
coincide:

r=r. 4.1)
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If in the K’ frame r' is a fixed vector, i.e. it does not change with time,
and therefore, v'=r'= 0, the velocity v in the K frame is determined by the
rotation of the non-inertial frame (Fig.4-1):

v=mp=wrsinb, (4.2a)

or in a vector form
V=@®XTr. (4.2b)

If r'=r'(¢), the particle moves with a velocity v'. Then, in the inertial

frame K its velocity is a sum of the velocity v' in K' and the velocity of the
rotating frame @Xr:

v=v +oxr. 4.3)

To analyse the rotating motion we must know the motion equation in the
rotating frame. This equation we could obtain from Lagrange's equation for
the function ¥. It is readily found, as in the Lagrangian function of a
particle (3.23) we replace r and v with r' and v' according to (4.1) and
(4.3). We shall use another way, which is not so consistent, but is easier - it
avoids a straightforward but long vector calculation.

First, we shall note that when any vector, whose origin coincides with the
origin of the frames and is the same in both frames, changes in K and K'
differently. If in the rotating frame b is a vector and, hence, its change is
zero, d'b'=d'b =0,then in the immobile system K its change is

db =dexb. (4.4)

Here the angle by which the frame K’ changes for the interval df is
represented by the vector d¢. (We shall note that the elementary
infinitesimal rotations can be assigned both a magnitude and a direction
along the axis of rotation, i.e. they are vectors; at the same time the angle is a
scalar - for details, see e.g., [R2], Section 7. There is a total analogy with the
variation Or in Section 2.3 (see (2.29) and Fig. 2-2.)

Dividing by dt , we shall obtain in the inertial system K the rate of change
of any fixed in the K' frame vector b:

—=mXb. 4.5
7 (4.5)
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If in the K' frame the vector b is not fixed and its change is d'b # 0, then
in the immobile frame K its change will be:

db=d'b+dexb. (4.6)

After dividing by df, we obtain the rate of change of the vector b in the
K frame:

9 _9D 4 oxb. (4.7)

It can be proved that the same dependence is valid also for a vector which
does not pass trough the origin of both frames. When b =r, we obtain the
dependence (4.3), which can be written in the following form:

v=d _dT | oxr. (4.8)
dr  dr

We apply formula (4.7) to the vector v:

2 ]
ﬂ:d_zr:ﬂmxv, (4.9)
dt dt dt

We shall find the derivative of vector v (4.8) in the K’ frame:

d'v_d"r
dt di

+OXV'. (4.10)

On the other hand, multiplying (4.8) vectorially by @ we obtain
OXV=0XV+ox(oxr). 4.11)
Substituting of (4.10) and (4.11) in (4.9) leads to the following result:

2 72
%=%+2(mxv’)+mx(mxr). (4.12)

On the left-hand side we have the acceleration in the inertial frame K and
on the right-hand side - the acceleration in the non-inertial frame K’ Hence,
the acceleration, as seen by an inertial observer, differs from that seen by an
observer in the rotating frame. Two additional terms in the right (the second
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and the third ones) owe to the inertial forces, originating from the uniform
rotating of K'. The second term is called Coriolis acceleration and the third
one - centrifugal (normal) acceleration. The Coriolis acceleration vanishes
unless the particle moves in the rotating frame along a direction different
from o, but in contrast, the centrifugal acceleration remains even when the
particle is at rest in K'. Multiplying the right- or left-hand side by the particle
mass and equating it to the acting force, we obtain the equation of motion in
K and K' frames, respectively.

4.2 PARTICLE IN A UNIFORM MAGNETIC FIELD
A charge q, which moves with a velocity v in a magnetic field B, is

acted upon by a magnetic Lorentz force, proportional to its velocity and
perpendicular to it:

F, =qvxB. (4.13)

This formula is written in the SI system (in CGSE (Gauss') system it has

the form F,, = 9yxB ). The equation of motion is
c

av
m— =qvXxB. 4.14
P q ( )

In a constant and a uniform magnetic field the relation (4.14) has exactly
the form of (4.5):

N _ OxV, (4.15)
dt
where
w=0 =-1B (4.16)
m

In the Gauss' system @, =—qB/mc. Consequently, according to the
conclusions of the preceding section, the vector of the velocity of the charge
q rotates around the direction B with a constant angular velocity ®,,

which is called a cyclotron frequency or gyrofrequency. Sometimes it is
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called the Larmor frequency of rotation, in contrast to the Larmor frequency
of precession, which will be considered in the next section.

We shall note that at relativistic velocities the cyclotron frequency
decreases

_ Bq
mo?”

o, (4.17)

where m, is the mass of the particle at rest.

From Eq. (4.16) it is obvious that for positively charged particle ® and B
are antiparallel, but for negatively charged particle they are parallel (Fig. 4-
2a).

Projection of the orbit
on the axis Z

: %
Vi - Projection of the orbit

+ T p=Ctyxp o0 the XY-plane
-

a b
Figure 4-2. Motion of a charged particle in constant uniform magnetic field: a) v LB - the
particle moves along the circle of a radius 7, =mv/qB with an angular frequency
®,=qB/m, the positively and the negatively charged particles rotating in opposite

directions; b) v has a longitudinal component along B - the particle moves along the spiral
line.

When the particle velocity is perpendicular to B, the particle motion is
along a circle of radius 7., called cyclotron radius:

r=t =" (4.18)
o, qB
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When v has both perpendicular, v, , and parallel, v, components (Fig
4.2b), the motion is along a spatial curve - a helix (spiral). The motion along
the Z-axis is uniform and the projection on the plane is a circle of radius
r.=v, /o,

43 LARMOR EFFECT

Consider the influence of the magnetic field on the charged particle of
mass m, and charge -q, in the Coulomb field of a point charge q,
(m, — oo and consequently m =m,). In essence, this is the problem of the
influence of a magnetic field on the electron in an atom, which moves in the
Coulomb field of the nucleus.

Before considering this problem we shall analyze the motion of the
charge -q, in the Coulomb field of q,. Using the results of Sections 3.3 and
3.4 we shall consider the more interesting case of a bounded motion. Then,
the orbit of the charged particle is an ellipse or a circle. These are the
classical trajectories of an electron in the field of the nucleus. The motion is
periodic, and integrating (3.30), we readily obtain the period 7 :

2m,S
L

. (4.19)

We recall that L stands for the angular momentum, and S - for the area,
swept by the radius vector for one period, i.e. the area, bounded by the orbit.

For a motion along a circle the area is S=m; and along an ellipse -
S =rmab, where a and b are respectively semimajor and semiminor axes (Fig.
4-3). According to (3.36) for a motion along a circle L* = Ciir, and in the
considered case of a Coulomb field for m, — oo we obtain

L= koa,a,m,7,
(4.20)

[koz ! =9.10°N.m*/C2, 80:8,85.1012C2/(N.m2)].
4re,

Substituting L into (4.19) we determine the angular velocity:

2 2
o? =(2—”) =L g, W% 4.21)

2 4 3
T mr, m;
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l ra=all+e) EP'I,=EJ’[|---(’}

Figure 4-3. The motion of a charged particle along an ellipse in the field of a point opposite
charge: a and b are, respectively, the semimajor and the semiminor axes of the ellipse, e - the
eccentricity, v, and v, - the velocities in the apogee and the perigee.

a

For an H atom the angular frequency, estimated for the radius of Bohr
r=a,~=5.10"m is on the order @,=4.10"s" (at q,=q,=|e|
=1,6.10" C, m, =m, =9,1.10"" kg).

For a motion along an ellipse according to the law of the area velocity,

the angular velocity is not constant - it approaches a minimum in the apogee
(the furthest point from q, ) and a maximum in the perigee (the nearest point

to q,). It is given by the same relation (4.21) replacing 7, in the perigee
with r, = a(l—e) and in the apogee with r, = a(l1+e) (Fig. 4-3).
Let us now turn on a weak magnetic field B=Bz" (later on we will

determine more accurate how weak). The equation of the motion, including
the electrical and the magnetic force is

d*r q.q dr
m —=—k, —-2r—q,—xB. 4.22
a2 07,3 q; i ( )

Let us write this equation in the rotating frame, whose angular frequency
is @ . According to (4.8) and (4.12), we get

|2 '
A ox®T ox(oxr)=—k, ILT_GfdX 0B 423)
dt dt mr’ r m1 dt

If we choose the angular frequency

(,):___qlB:&B’ (4.24)
2m, 2m,
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the Eq. (4.23) is simplified a lot. The terms o d'r/dt are cancelled and the
last terms on the right and left are added. Thus, we get

d”r q,9 q,B 2
=—k, 22y 2= | 2°%(rxz°). 4.25
dr’ * mr? 2m, ( ) (423)

We have taken into account that B = Bz’ and changed the sign before the
term 2@ (d'r/dt) due to the exchange of the positions of both vectors and
before @x(wxr) due to the exchange of the positions of the vectors
o and r in the brackets. We shall also note that the second term in the last
equation contains the vector r: z°x (r xz° ) =r.

For a weak magnetic field the term with the square of B can be neglected

in comparison to the term determined by the electrical field. For this it is
necessary that

2
(ﬁJ =’ <<k, 2 gy D (4.26a)

3 3
2m, 1T mr,

For a motion along a circle this condition, after taking into account
(4.21), reduces to

0 << @,. (4.26b)
Thus, from (4.25) we obtain the approximate equation

dIZ r q1q2

— _k
L ar " mr?

r. 4.27)

This is the equation of motion of a particle in a central Coulomb field
(3.13). As we have shown in Section 3.4, the orbit of the bounded motion of
a particle under the action of a central force is an ellipse (a partial case of it
is a circle).

Consequently, the orbit in the rotating frame is an ellipse. In an inertial
frame this ellipse slowly precesses with an angular frequency @, because
according to (4.26) the frequency of the ellipse precession, i.e. the angular
frequency of the rotation of the frame K’, is negligibly small compared to the
angular velocity of the particle motion along the orbit. In Fig. 4-4 is shown
the orbit precession in Lab-frame in the partial case when the B is normal to
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the plane of the orbit. In the general case, when B is inclined, the plane of
the orbit precesses around the direction of B (see Section 4.4). According to
(4.26) the ellipse axis will turn only by a small angle for one turnover.

Figure 4-4. Precession of an orbit of a charged particle, moving in a Coulomb field of a point
charge and a weak magnetic field B, normal to the plane of the orbit.

This phenomenon is known as Larmor effect and the angular frequency
of the precession,

0, = —ﬁ. (4.28)
2m,

is called Larmor frequency of precession, or simply Larmor frequency. We
shall note that it is two times smaller than the cyclotron frequency @, (4.16).

The Larmor precession is a basis for the observable changes in the
spectra emitted by atoms in the presence of a magnetic field. The changes in
the spectrum are known as the Zeeman effect.

The Larmor precession of atomic systems is of great interest. Let us see if
the condition q,B/2m, << ®, (4.26) is valid. Written for the magnetic field,

it reads B<< |2mla)0 /ql|. Then, for the hydrogen atom we have
m =m,=92.10"" kg, q,=q,=[¢=1,6.10""C, @, =4.10° s (sec the

estimate after (4.21)). Thus, we get B<<4.10°T. Field of B~10° T are
record ones and the condition (4.26) is satisfied.

4.4* INTERACTION OF A MAGNETIC DIPOLE WITH
A MAGNETIC FIELD

We would like to find out what would the motion be, if the vector B was
inclined with respect to the plane of the motion of the charged particle. It is
logical to expect a change of the angular momentum in this case. Actually,
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the magnetic force F, (4.13), which creates a force moment, acts on the
charge - q, and according to Eq. (2.39) the moment changes as follows:

%:N:erm = —rx(ixB). (4.29)

It is necessary for the analysis to recall some results from
electrodynamics. We note that the motion of the charge along a close curve
(for the sake of simplicity we shall consider the motion along a circle of
radius 7)) is equivalent to the circular current loop
I=-q,/t=—q,/Qm,/v). Tt is well known that such a current has a
magnetic dipole moment

p=1ISn’, (4.30)

where S is the area, closed by the loop current and n° is a unit vector normal
to this area. So, for the magnetic moment of a moving charge —q, we have

__Yan n

S 4.31)

Hence, the atom in which the electron (—q, =—¢) moves in the electrical

field of the nucleus, is equivalent to a magnetic dipole.
The angular moment of the charge is

L= (rxmv)=mrvn’. (4.32)
1 170

Then, we can express the magnetic moment W through the mechanical
moment L:

p=—Jyp, (4.33)
2m,

We have concluded that the magnetic moment p corresponds to the

orbital angular momentum L. This is a part of a more general statement that
to any rotary motion of a charged particle correspond both a mechanical
moment and a magnetic moment. They are always proportional, but the
coefficient of proportionality g between them,
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pu=—gL, (4.34)
depends on the type of the rotation. A circular current loop is equivalent to a

magnetic dipole. It is known that in the uniform magnetic field the torque N
influences such a dipole

N=puxB, or N =uBsin6, (4.35)

where the angle 6 is shown in Fig. 4-5.

B

Fin

Figure 4-5. Magnetic dipole (a permanent magnet), which is equivalent to an electron in an
atom, in external uniform magnetic field B. The dipole is acted upon by a torque N, which is
created by the pairs of magnetic forces F,, and -F,.

Then, according to (4.33) and (4.35), for the angular momentum we have

dL —q,
—=N=puxB=—-+(LXxB), 4.36
dt . 2’"1( ) (4.36)
or
dL _ q
—=——(BXL 4.37
. 2m1( ) (4.37)

Taking into account (4.24) we can write for the change of the angular
moment the following:

2 —(0,xL) (4.38)
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But this, remembering (4.5), denotes that the vector L rotates with an
angular velocity ®,. Since the vector of the angular velocity is directed

along the magnetic field, it is obvious that L rotates around the vector B.
With this its magnitude does not change. In fact, taking the dot product of L
with (4.37) we get

2
L£=l£=0, |L|=const. (4.39)
dt 2 dt

Thus, when a charged particle with an angular momentum L is placed in
an external uniform magnetic field, the vector L starts to precess with a
permanent angular velocity around the axis of the magnetic field exactly in
the same way as a mechanical top precesses in the gravitational field of the
Earth (for details see [1], Section 11.3).

At this precession the particle receives an additional potential energy U.
Let's turn to the magnetic analogue of Fig. 4-5. If the torque N, originating
from the pair of magnetic forces, did not act, the magnetic dipole would be
in the state with minimal energy, i.e. it would orient at an angle
60=90° - and U =0. In order to determine the angle 6, we have to

calculate the work, which is necessary to turn the dipole from 90° to the
angle 6:

6 6 6
U= [Nd6 = [uBsin6do = uB [sin6do = -uBcos,

90° 90° 90°

or U=-nB

(4.40)

Let us summarise what we have written up to here. 4 charged particle
—q, moves under the action of a central force (the Coulomb interaction

force with the charge). Its orbital angular momentum is constant and
perpendicular to the orbit plane. The particle motion is equivalent to the
circular current loop, which creates a magnetic dipole in the direction of L
(Fig. 4-6). The magnetic field at an angle 6 to the angular moment gives
rise to a torque N. Under the influence of this torque the magnetic dipole
changes its orientation. As a consequence, the vector L precesses around B
with Larmor frequency ®, and simultaneously with it and the "nailed on" by

the law of angular-momentum conservation orbit.

From the point of view of mechanics, the Larmor effect is a partial case
of a more general and important phenomenon - the precession of the axis of
rotation under the action of a weak force. The best-known example of such a
motion is the precession of the gyroscope.
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Finally, let us see what happens with a magnetic dipole, i.e. with an atom,

Figure 4-6. Larmor precession of a particle —q, , moving along the circular orbit p in uniform

magnetic field B. The vector L describes a reversed cone, as its generating line, and the base
of this cone is described by the arrow of L (p is the magnetic moment, N - the torque, @, -

the frequency of the precession); N is perpendicular to the plane of the vectors p and B.

in nonuniform magnetic field. In this case the force is determined by the
dipole moment and the gradient of the field acting on it:

F = (ugrad)B = (uV)B. (4.41)

For example, if the inhomogeneity of the magnetic field is in the
direction of the axis Z, then only in this direction will the force influence the
atom: F, =0, F, =0, F, =u_ 0B, /dz. By studying the atom motion in an

external magnetic field, we can determine its magnetic moment.

SUMMARY

If an inertial frame and a rotating frame with an angular velocity ® have
common origin, then the vectors, starting at this point and coinciding in both
frames change, in general, differently. The relation determining the rate of
change of a vector b in an inertial frame K is
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where db/dt is the rate of change of the vector in the rotating frame K". It is

clear from here that when the radius-vectors of the particle coincide in both
frames, its velocities and accelerations differ. In the rotating frame the
acceleration has two additional terms (the centrifugal and the Coriolis
accelerations), due to the inertial forces.

A charge in a uniform constant magnetic field, normal to its velocity,
moves along a circle with an angular frequency equal to the cyclotron
frequency

When the velocity of the charge has a longitudinal component (along the
external magnetic field), the orbit is a helix, the projection of the orbit
normal to the plane of B is cyclotron circumference.

The magnetic field normal to the plane of the charge motion causes a
precession of the orbit with an angular frequency

qB
=

known as Larmor precession frequency. The Larmor precession leads to the
observable Zeeman effect.

If the magnetic field is inclined with respect to the plane of the motion,
then the orbit plane, the angular momentum and the magnetic moment
precess with the same frequency o, . Physically, the precession is due to the

interaction between the external magnetic field and the magnetic moment of
the circular current loop. (A mechanical analogue of the Larmor precession
is the precession of a gyroscope.) The vector of the mechanical moment
describes a cone and its arrow - the circumference with a frequency equal to
the Larmor one.

QUESTIONS

1. Is it true that all vectors in an inertial frame and a rotating frame, which
have common origin, coincide?
2. If two vectors in the K- and K '-frames coincide, are their changes equal?
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3. Are equal or different the radius-vectors, the velocities and the
accelerations of a particle in an inertial and a rotating frames?

4. How does a charge move in a uniform magnetic field when its velocity:
a) is perpendicular to the magnetic field;
b) has a component along the magnetic field?

5. Is the motion of a charged particle uniform along a closed line in the field
of a fixed charge?

6. What is Larmor precession?

7. What is the difference between the cyclotron frequency and the Larmor
frequency of the precession, physically and mathematically?

8. Explain physically why does the plane of the orbit of a charge in a
Coulomb field precesses in an external weak magnetic field?

9. What is the cone of the precession?

10. Do the angular frequencies of a charge rotation and of an arrow of the
vector L in an external magnetic field differ (see Fig. 4-6)?

11.Does the vector of the angular momentum L change at Larmor
precession? If it does, how and why?

PROBLEMS

1. Determine the cyclotron frequency of an electron in a magnetic field

B =10" Cs. Find the frequency of the periodical motion and the
corresponding wavelength in space. What is the cyclotron radius of an

electron moving with velocity 10® cm/s normal to such a field?

2. What will the change of the angular frequency @ and the linear one v of
the electron of a hydrogen atom in an external magnetic field B? Do the
calculation for B=10" T

3. Calculate the magnetic moment u, the gyromagnetic rate g, the velocity
and the Larmor frequency of precession ®, , of an electron in a hydrogen
atom, moving along the circumference of the Bohr radius
r=a,=0,5.10""m in a magnetic field B=10*T

4. The average magnetic moment of Fe is u =2.10"J/T.

a) Assuming that this moment is due to the circular current loop of one
electron, moving along a circumference, find the electron velocity.

b) Find the total magnetic moment of all electrons in 1 cm® metal,
assuming that they are oriented in one direction.
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5.1 ONE-DIMENSIONAL HARMONIC
OSCILLATIONS

Consider the motion of a system with one degree of freedom around its
equilibrium position. The system is in equilibrium if the resultant force
acting on it is equal to zero. For a conservative force, according to (1.31),

this means that the potential energy U (g) has a minimum or a maximum at

this point - dU/dg =0. Suppose that the system now undergoes a small
displacement from equilibrium. Let us choose the co-ordinate g at the point

of equilibrium such that ¢ =0. We expand U (g) in Taylor series:
1
U(q)=U(O)+U'(0)q+EU"(O)q2+... (5.1
where with primes we denote differentiation with respect to ¢. In the extre-

mum we have U'(0)=0. We choose the arbitrary constant in U (g) such

that U(0)=0. Then, around the equilibrium point we can write

approximately
Kq’ "
Ulg)== x=U"(0). (5.2)

The kinetic energy in a one-dimensional system according to (1.37) has
the following form:

T=y(q)d". (5.3)

For a small displacement from equilibrium we can expand in Taylor
series the coefficient y(g):
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7(0)=7(0)+7'(0)g+3"(0)g* +..=7(0) = (5:4)

Then, for the kinetic energy we can write

T= (5.5)

3

We shall note that in the case of a linear co-ordinate the constant m is the
mass.
Knowing the potential and kinetic energies, we can determine the

Lagrangian function ¥ =mq* / 2-Kq” /2. Its corresponding equation (see
Eq. (1.13)) is:

mg+xg=0. (5.6)

Although this equation is elementary, we shall discuss the solution in
detail, for similar methods also apply to more complex systems of many
degrees of freedom. It is a linear differential equation, i.e. it contains only
linear terms in the variable ¢ and its derivatives. Such equations have an
important property - their solutions satisfy the superposition principle: if
¢,(t) and g, (¢) are solutions, then so is any linear combination of them:

q(t):alql (l)+a2q2 (t) (5.7)

Here a, and a, are constants. Moreover, if ¢,(¢) and ¢, (¢) are linearly
independent (i.e. ¢,(t)# C,q,(1)+C,; C, and C, are constants), then (5.7) is
a general solution. Our aim is to find two independent solutions
%(t) and Q2(t)~

Consider first the case k <0, which means that U(g) has a maximum at
g =0 (this is unstable equilibrium). Then, Eq. (5.6) can be written as

i-Bq=0, B>=-2. (5.8)
m

. . . . _pt
The partial solutions of this equation are g, = e’ and q,=e g . The
general solution is a linear combination of these functions
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qzéAeﬁ’ﬁL%Be_ﬂ’. (5.9)

We introduced the factor 1/2 - it is up to us whether to use the arbitrary
constants A, B or A/2, B/2. The solution shows that a small displacement

leads to exponential increase of ¢ with time. In other words, the equilibrium
is unstable, as expected when U(g) has a maximum.

Now, let us consider the case x>0. The potential energy has a
minimum at ¢ =0, and, consequently, this is a stable equilibrium. Then Eq.

(5.6) becomes
.. 2 2 _ K
G+w,g=0, w;=—. (5.10)
m

The functions sinw,t and cosw,t are partial solutions of this equation
(substituting them in Eq. (5.10), we see that the equality is maintained).

Therefore, the general solution is

q =ccost +dsinay, (5.11)

in which the arbitrary constants ¢ and d are obtained from the initial
conditions. If at =0 the initial generalized co-ordinate is ¢(0)= g, and the

initial generalized velocity is ¢(0)=¢,, then

c=q,, d=Z)—°. (5.12)

0

For Cartesian co-ordinates we have c=x, d =x,/®,.
To obtain an alternative form of (5.11) we rewrite it in the form

q= c(cos w,t + isin wot) , (5.13)
¢

and set d/c=tand . Then we have

€ _cos(w,t—8)

=c(cosm,t+tand sinw,t)=
g=c(cose )= s (5.14a)

=V +d’ cos(wyr—8).
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Introducing the notation ¢ +d”* = a , we finally get
g=acos(m,t+6). (5.14b)
The new arbitrary constants a,d are related to ¢, d by
c=cosd, d=-asind. (5.15)

The constant a is called the amplitude and it defines the maximum dis-
placement of the co-ordinate ¢. The motion is an oscillation with a period 7 :

T="". (5.16)

The quantity & is called phase angle (or simply phase) and @, -

angular or cyclic frequency. The subscript "0" is to denote that this is
natural frequency, underlying that it depends only on the system parameter
(see (5.10)). The periodic motion has such an angular velocity when the
system is in a stable equilibrium state, without any external influence. The
system can undergo also other oscillations with frequency @ imposed by an
outer force. These are forced oscillations, unlike the natural ones with
frequency , . The /inear frequency v is the number of oscillations per unit

time:
(5.17)

When ¢ is a linear co-ordinate (e.g., ) we can determine the force,
which acts on the one-dimensional system:

F=- =K. (5.18)

It always points to the centre of the stable equilibrium, and depends only on
the displacement from it. It is obvious that when ¢ is a Cartesian co-ordinate,
this is a central potential force (Section 3.4). The quantity x is called a force
constant.

We have analysed the motion of a one-dimensional system around a
stable equilibrium when the displacement is small. This is harmonic motion,
i.e., a cosine (5.13) or sine law (6 =7/2 in (5.14b)).



96 Chapter 5

A one-dimensional system which moves around a stable equilibrium
position at a small displacement from it, with a force proportional to this
displacement and directed always to the equilibrium position while the
displacement changes according to the harmonic law, is called a harmonic
oscillator. Eq. (5.10) is an equation of the oscillator.

The solution of this equation (5.10), except in the form (5.11) or (5.13),
can be represented also in a complex form:

1~y 1o
q:EAe’“°’+EBe (5.19)

Here and later on with the sigh "~" (tilde) we will denote a complex
number. Substituting (5.19) in Eq. (5.10), we readily confirm that it is really
a solution. Of course, ¢ must be a real number. The sum of two complex

numbers is real when they are complex conjugates. Hence A and B are
complex conjugates. Let us set

A=c—id, B=A =c+id. (5.20)
Here the sign "*" (it is read asterisk) means complex conjugate.

Recalling Euler's formula "' = coswt tisinwt , we get from (5.19) and
(5.20) Eq. (5.11):

1, o L e si
9=7 (c—id)(cosw,t+isin@,t )+§ (c+id ) (cosm,r—isinwyt) (5.21)

=ccosm,t +dsinwyt.

Of course (5.19) can also be transformed into (5.14b). But then we must
represent the complex constants in a polar form:

A=ae®, B=ae™. (5.22)
We shall note that A=8". Substituting into (5.19) we get

q= %aei(w0f+6) + %aei(wotﬂs) (523)

and taking into account FEuler’s formula we obtain (5.14b), i.e.
g=acos(w,t+9).
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Another useful representation can be obtained by noting that the sum of
two complex conjugate numbers is equal to twice the real part of one of
them, i.e.

q=2Re(%,zleiw°' JzRe(ile"”"'). (5.24)

)

Here A =ae” is called complex amplitude. Very often it is written

G=Ae”. (5.25)
Moreover, the sign for the complex number ~ is omitted, i.e.
q=A4e"", (5.26)

where ¢ and A4 are complex numbers, and it is implicit that the real
quantity is g = Re(Aein' )

Example: Consider the oscillation of a diatomic molecule. Two atoms of
masses m, and m,, connected in a stable molecule, interact via Coulomb

forces of attraction. The motion can be described by the two-body problem
(Section 3.2), which is reduced to the motion of one particle of reduced mass
in a potential field with an effective energy. The effective potential energy
(Fig. 3-7) has a minimum. At small displacement from it we have harmonic
oscillations. We shall show this. The potential energy in the equilibrium can
be presented according to (5.1) and (5.2), as a quadratic function of the
difference r —r, between the real distance r and the equilibrium distance r, :

U(|r—r0|)=§(|r—ro|)2. (5.27)

Of course, this is valid only for small displacement from equilibrium:
|r —r0| <<1,. Then we shall obtain the motion equation of the particle with
mass equal to the reduced mass 7 of the molecule ( (7 = mm, /(m, +m,))
from Eq. (3.13), replacing the force 0U/dr with the corresponding potential
force F=-0U/d(r—r,):

d’ oU

I’;l?(l'—l'o):—m. (528)



98 Chapter 5

Since the atoms are rotated around the centre of mass (see Section 3.4),
for the determination of this force in the general case we must take into
account also the change of direction of r —r,. But this leads to an equation

of the type (3.32), which includes also the centrifugal energy:

1 _(d ’ r B
Em(E(r—rO)) +m+U(|r—ro|)—E. (5.29)

Fortunately, things in a molecule are simpler. As we shall see in the
Second part (Section 14.6) the rotational energy is much smaller than the
oscillation energy (it is called also vibrational energy). This means that a full
turn (an ellipse or a circumference) occurs much more slowly than a full
oscillation. The oscillation of the two atoms is a quick process and for a
period the change of the direction r —r, is negligibly small. Then the force,

corresponding to the potential (5.27) is determined by the relationship

du

—K(r—ro). (5.30)

This force is directed along the line, connecting the two atoms. Now, it is
easy to write the motion equation of the particle with reduced mass i :

ﬁfld—z(r—r )Elﬁd—z(r—r)r():—lc(r—r)ro (5.31a)
dt, ‘ dt, ’ o '

or
2
nﬁ;]—t(r—ro):—lc(r—ro). (5.31b)

2

We recall that r’ is unit vector along the direction of r and r, is the

equilibrium radius-vector. We obtained the equation of motion of a harmonic
oscillator with frequency

1

o, =(§ )2. (5.32)
m

We recall that x is the force constant.



5. SMALL HARMONIC OSCILLATIONS 99

5.2* OSCILLATIONS OF A SYSTEM OF PARTICLES

Consider the motion of a system of s degrees of freedom around
equilibrium. Let us choose the origin of the co-ordinate system of
generalized co-ordinates in the centre of equilibrium, i.e. the origin of the co-
ordinate system is at the point g, =0. By analogy with the preceding

section, we shall expand the energy in Taylor series:

U(qi)zU(0)+Zg—Z q,q; +-- (5.33)

T dq iaqk

I« U
4q; +EZ
0

0

Here we also choose the arbitrary constant such that U/(0)=0; the second

term is equal to zero because of the equilibrium. Then for the potential
energy at small displacement we obtain

1 °’U
U(‘Ii ) = _ZKikqiqk’ Ky =

K, =———— 5.34
2% “ aqiaqk ( )

0
To obtain (5.4) and (5.5), we write the series of y, and the kinetic
energy:

m.
=1y (0=,

97,
Yix (ql'):%k (0)+2%
il (5.35)

i

1
T, (qj)zggmikqiqk‘

Thus, U and T allow us to write the Lagrangian function in the form

1 1
¥ = Ezmikq,-qk —EZK,-kql-qk- (5.36)

ik ik

To obtain the motion equation we need the derivatives 0%/dg; and
0%/9q; . For this we must find the ordinary differential of the function ¥ :

1 ] L 1
ay = Y myg,dg, + EZ my dq,q, — 52 Kid;dq; — 52, Kidq;q,-(5.37)
ik ik

ik ik
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Here i and k are subscripts, which go from 1, 2, ... to s. Changing the
subscript letters does not change the sum. Hence, we can change the places
of the subscripts in (5.37) to obtain

d¥ =" mydqq, — Y Kydqq,, (5.38a)
ik ik

or

dy = Z(dq,-Zmiqu )—2( dg, Y’ K,y ) (5.38b)

1

We divide by dg, and dg, and obtain the sought derivatives:

oy oy
_— m. 7 , ——= K. . 539
ac},- ; o 861,- Zk‘, [ ( )

which allows us to obtain Lagrange's equation

zmik4k+z’<iqu :0 l:L 29"'7 S. (540)
k=1 k=1

This a system of s homogeneous differentiation equations with constant
coefficients. Its solution in complex form reads:

G, =Ce™, k=12,.,s. (5.41)

This is a partial solution. After substituting it into the system (5.40) we
obtain

i(x,.k —0’'m, )G, =0 i=1,2,..s, (5.42)

k=1

i.e. we obtained s homogeneous algebraic equations for the unknown
constant C;. A system of homogeneous equations has a nonzero solution if

its determinant is equal to zero:
‘Kik - wzmik‘ =0, (5.43a)

or in explicit form
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2 2 2
Ky—om, K,—-0Om, .. K,—0Omg
Ky —@'my, Ky —®'m K, —@'m
21 21 22 22 et 2s 2s
: )= 0. (5.43b)
2 2
Ksl o msl KSZ w msZ KSS o mss

This is the so-called characteristic equation. It is an algebraic equation of sth
order with respect to the unknown quantity @’ and has s roots
w?,wf,wf,...w‘f. The angular frequencies co,2 (1:1, 2,...,s) are natural

frequencies of the considered system of s degrees of freedom. Substituting
every one of these roots into Eq. (5.40), we find the unknown coefficient

C, , obtaining each ®, as a combination of the CN',i’s .

The solution of the system (5.42) for the unknown @k ’s can be written
in the following form

C/ =4 kin=12,.,s., (5.44)

where ¢, is an arbitrary complex constant and 4, is the signed minor of the

element x,, —®;m,, in the determinant of the system

> (kp—0’m,)Ci=0 i,1=1,2,..,s. (5.45)

k

We shall note that # is chosen arbitrary, but such that at least one of the
signed minors 4’, is different than zero.

Returning to g, (5.41) and taking into account the found values of ao,2

and C, , we write the solution of the sought co-ordinate as follows:
Ge=D.Gi =D CAne”, k=12,..s. (5.46)
k !

This is the solution in complex form. We use the results of the preceding
section to determine the real values. Since all the terms of the system

determinant (5.43) are real, then 4, is also real. Hence, writing ¢, in a
polar form

¢ =ce”, (5.47)
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we finally obtain the real solution of the motion equation of the system with
s degrees of freedom around equilibrium:

g =ReY GALe™" =Y Ay Recie ™)=Y Alc cos(w+8;) (5.48)
/ / /

From this solution follows a very important conclusion:

The change of each generalized co-ordinate represents a superposition of
all s harmonic oscillations, whose frequencies are the natural frequencies of
the system.

5.3 NORMAL CO-ORDINATES AND NORMAL
MODES

It is natural to raise the question: can we not choose the generalized co-
ordinates in such a way, that each of them undergoes only one simple
oscillation?

Let us present the solution for the co-ordinate g, (5.48) as follows:

4 =D, A, (5.49)
)

We can consider the &, as new generalized co-ordinates. Each of them
undergoes a harmonic oscillation with a frequency ; :

& =c, cos(wt+3,) (5.50)
and hence it satisfies the equation
&+’ =0, 1=1,2,.,s. (5.51)

This is the answer to our question. By a convenient choice we can define
such generalized co-ordinates, which at the small displacement of the system
from equilibrium undergo simple harmonic oscillations. Such co-ordinates
are called normal co-ordinates and the corresponding oscillations - normal
oscillations (normal modes). Any periodic motion of the system can be
represented as linear combination (superposition) of normal oscillations
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(normal modes). (Sometimes (especially in the old books) the normal co-
ordinates (oscillations) are called also principal ones.)

Let us turn to mathematics. We know that the potential energy is a
quadratic function of the generalized co-ordinates:

1 ..
U =22 Kudidys (5.52)
ik

and the kinetic energy is a quadratic function of the generalized velocities
1 .
T=2 2 mudid (5.53)
ik

Also, ¢, =g, (5 j). We pass to the new variables &;, each of which is a
function of the ¢, , i.e. (qj).

It can be proven (see, e.g., [4], Section 22) that this conversion can be
done by a linear transformation:

& = zbiqu ) (5.54)
k

for which the quadratic forms of 77 and U of the new variables have
diagonal form (without mixed products £&, and &£, ):

T=%Zéjf, U=%Z)L,§f. (5.55)

Then, for the Lagrangian function and the corresponding equation we
have

7= X E - T A (5.56)
& +A¢& =0, (5.57)

where A, =@, and ®, are the natural frequencies of the system. These

equations give the normal oscillations &, = ¢, cos(w,z +8,) (5.50).
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On the base of the Egs. (5.57) and (5.54) we can do two important
conclusions:
1. in each normal mode one normal co-ordinate only is oscillating;
2. in each normal mode all co-ordinates q; (see Eq. (5.54)) are oscillating

with the same frequencies.

5.4* COUPLED OSCILLATORS

The classical problem of the coupled pendulums is a very good
illustration of the results of the preceding section for a system of two degrees
of freedom, s=2. One encounters many physical systems, which may be
described as two harmonic oscillators which are approximately independent,
but with some kind of relatively weak coupling between them.

Here we shall consider the system, shown in Fig. 5-1, which consists of
two identical pendulums, each of them with mass m and a length /, coupled
by a weak spring of elasticity £ . When the spring is neither expanded nor
contracted its natural length is equal to the distance between the pendulums,
which are in equilibrium

Figure 5-1. Two identical pendulums of mass m and a length / coupled through a weak spring
of elasticity k. The potential energy of each of them is determined by their height relative to
the equilibrium position, and by the expansion or compression of the spring: x;-x,, where x,
and x, are the displacements from equilibrium.

We shall first solve the problem in arbitrary generalized co-ordinates and
after that in normalized co-ordinates. We choose for generalized co-
ordinates the displacements x, and x, from equilibrium.

The potential energy of each of the pendulums is a sum of two terms - the
potential energy in the gravitational field, mgh (/4 stands for the height

through which it is raised), and the potential energy of the spring
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k(x, —x,) / 2 arising from its compression and extension. We shall write
the potential energy U of the system, assuming that U =0 at equilibrium:

U =mgh +mgh 2+lk(x1 -X, )2
2 ) (5.58)
=mgl(l—cos(pl)+mgl(1—cos(p2)+5(x1 - X, )2.

The inspection of Fig. 5-1 shows that sin¢ =x// and for small displacement

2 1/2
x/l=singp =tanp <<1, we can set cosq)z(l—sinzgo)m:[l—(f))

- (1/2)(x2/l2 ) Substituting this into (5.58) yields:

_1 (@Jrk) X2 ! (@%)x2 — hox,x,. (5.59)

The kinetic energy at small displacement is as follows:

Tzlmxf +%m§c§. (5.60)

Thus, the Lagrangian for the system of coupled pendulums undergoing
small displacements takes the form

1 1
L=T=U=_m m (% +x2)—§(7+k)(xf+x§)+%2kxlx2. (5.61)

To obtain the Lagrange’s equation we use the results of the preceding
section. The comparison of L with (5.36) gives the following results for the

coefficients m, and x,, :
(5.62)

Substituting them in the motion equation (5.40) yields:
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mx, +

VT

$+k)xl —kx, =0,
(5.63)
ms, +($+k)x2 — x, =0.

We see that the co-ordinate x, enters in the equation for the change of

x, and the co-ordinate x, enters in the equation for x,. So we need to solve

a system of two coupled equations. Before doing this we shall recall the
physical significance of the terms of the system (5.63). The first term m¥ is

the resultant force, acting on the pendulum. The second term, (mg/!)x, is

the normal component of the gravitational force, i.e. the force, defining the
oscillation of the uncoupled pendulum. The third (kx,) and the fourth terms

define the elastic force of the spring, acting, correspondingly, to the first
pendulum (k(x, —x,)) and to the second pendulum (—k(x,—x,)). The

opposite signs before k(x, —x,) in both equations reflect the evident fact

that the extended or compressed spring acts in different directions on both
pendulums.

We shall pass to complex variables and shall seek the solution of the
system (5.63) in the following form (compare with (5.61)):

% =Ce", % =Ce". (5.64)

We substitute in (5.63), cancel of the common factor exp(ia)l) and obtain

the system of equations for C, and C, :

($+k—mw2 )él —kC, =0,
(5.65)
—kC, (% +k—mw’ Jéz = 0.

This system possesses nontrivial solution only if its determinant
vanishes:
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($+k—ma)2) (k)
(k) ($+k—mw2)

=0. (5.66)

Or, the characteristic equation for @ is as follows:

2
o -2 &K w2+g—2+2k—g=o. (5.67)
I m / Im

The roots of this equation are

w =5, w =842k (5.68)
l Pl Tm

We obtained two natural frequencies for the coupled oscillator. We
replace @’ in (5.65) with ] and the system for C, and C, takes the form:

kCY —kCY =0,
3 ) (5.69)
—kC" +kCM =0.
The evident solution is
C=CV=ce™, (5.70)

where ¢, is the module and &, is the argument of an arbitrary complex
constant. Then the partial solutions X, and X, of (5.64), corresponding to

the natural frequency @, , take the form

)71(1) _ Clei(w]t+5])’ )72(1) — Clei(wltﬂ%)_ (5.71)

The real part of this solution will give the displacements x, and x, of the
pendulum

xV=¢ cos(@r+8,), xV=c cos(wr+8,) (5.72)
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Now, replacing @’ in (5.65) with a)l2 , 1.e. with the square of the second
natural frequency, we get

(5.73)
, —kC?-kcP=0,
This syste ~ _ , . m is satisfied if
~kCP -k CP =0.
@1(2) - _@2(2) =c,e® (5.74)
The corresponding to @; complex solutions (5.64) are
FO =g Q@) 52 o pi0arrd) (5.75)
1 2 > 2 2 :
and their real parts are
xP =¢, cos(wt+6,), x¥=—c,cos(wi+6,) (5.76)

The sum of the solutions (5.71) and (5.75) will give the general solution of
the original system of differentiation equation (5.63):

x =xV+x? =¢ cos(@r +8,)+c, cos(@r +8,), .
x, =x+x? = ¢ cos(ays +8,)-c, cos(w,r +6,) ‘

We obtained what we had proven in Section 5.2 for the general case - the
change of each of the two generalized co-ordinates is a linear superposition
of the natural oscillations with frequencies @, and w, (5.68).

Now, let us to pass to the normal co-ordinates & and &,. According to
(5.54) they are expressed as a linear combination of x; and x, so that U
and 7 have diagonal form. We choose

51:x1+x27

(5.78)
52 =X T Xy,

and substituting x, =(1/2)(&, +&,) and x, =(1/2)(&, —¢&,) into (5.59) and
(5.60) we verify that U and T take the form (5.55):
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1(mg ., 1(mg 2
U=—|— I +=| —+lk|S;,
2(21)51 2(21 K
Img lmé2

2
2251 2277

(5.79)

In normal co-ordinates, instead of the system of equations (5.63) we
analogously obtain two independent equations:

mél +$§1 =0,
(5.80)
mé, +($+2k)52 =0.

Unlike (5.63), each of these equations describes different harmonic
oscillators. By analogy with (5.13), we write the solutions as follows:

& =ccos(wr+6,), & =c,cos(m,t+3,). (5.81)

To understand the physical significance of the oscillations, described by
equations (5.80), we shall consider the case when one of the normal co-
ordinates does not change with time. If for any moment of time &, =0, i.e.

X, = x,, then the motion is described by the first equation of (5.80). In this

case the frequency of the oscillation is that of a single free pendulum. Fig.5-
2 illustrates this motion, which oscillates with the frequency of the free
pendulum, because the spring has a fixed length (it is neither extended nor
compressed) and plays no role, whatsoever. As we expect for the normal co-
ordinates, both pendulums swing with equal frequency. They always
oscillate in phase. These "in phase” oscillations are also called
antisymmetric, because the displacements with respect to the position of the
centre of mass are antisymmetric - when one pendulum approaches the
centre, but the other moves away with a frequency

0= =[5 (5.82)

If & =0at all time, i.e. x, =—x,, the motion is completely described by
the second equation of (5.80). The frequency of these oscillations
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(5.83)

depends on the elasticity of the spring, because at all time it is either
extended or compressed. The pendulums swing "out of phase" (Fig. 5-3).
"Out of phase" oscillations are called symmetric, because the displacements
with respect to the position of the centre of mass are symmetric - the pen-

dulums either approach the centre or move away from it at the same time.

\d Lo/

Figure 5-2. In phase or antisymmetric (with
respect to the equilibrium position of the
centre of mass) oscillations with frequency

®,=+/g/l are described by the Eq.
& +(g/1)é =0 for the normal co-ordinate

E=x+x,.

Lo

Figure 5-3. Out of phase or symmetric (with
respect to the equilibrium position of the
centre of mass) oscillations with frequency

o, =+/g/l+2k/m are described by the Eq.
& +(g/1+2k/m)E, =0 for the normal co-

ordinate &, =x, —x, .

In the considered system of coupled oscillators there are two normal
modes — antisymmetric and symmetric with frequency respectively @, and

W, . At the excitation of the given normal mode all system components

oscillate with its own frequency. The normal modes are independent and
they do not exchange energy. At the normal oscillation the pendulums also
do not exchange energy.

This however does not mean that the same pendulums can not exchange
energy. On the contrary the spring ensures their active coupling and any
change of the co-ordinates x;, and x, can be represented as a superposition
of these two normal oscillations. We shall analyse this with a concrete
example.

We choose the initial conditions such that ¢, =¢, =2a and 6, =6, =0.

Then, for the displacements x;, and x, we obtain

- +
x= %(5#52 )=acosm,t+acos®t =2acos 9 Zw" tcos Zw" 1,(5.84a)
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=5 (& —&,)=acosw,t — acosm,t=2asin a)s—za)a rsin " Pay (5.84b)

Now, let us set the system in motion by displacing the first pendulum (the
right hand one) at a distance x, =2a and releasing it. Fig. 5-4 demonstrates

that the initial displacement of the coupled oscillators ( x, =2a,x, =0) may

(=
& + &2

i
AL

=10 > 2a - > (- > - - -

Figure 5-4. The displacement of one pendulum by a distance 2a is shown as a superposition
of the two normal modes, i.e. the sum of the two normal co-ordinates, x, = (1/2)(&, +¢&,)

that their values in the initial moment, in which they are shown, are respectively & =2a and
&, =2a.

be considered as a superposition of the "in phase" mode (x, =x, =a so that
x,+x,=£ =2a) and the "out of phase" mode (x,=-x,=a so that

x, —x, =&, =2a). The motion of the first pendulum is described by (5.84a)
and of the second - by (5.84b).

In Fig. 5-5 are shown the curves of the dependencies x,(¢) and x,(¢).

£}

«\Aﬂw@va%%%

gl M
AR

Figure 5-5. The change of the displacements of each pendulum with time: with decreasing of
the amplitude of the displacement x, from 2a to 0, the amplitude of the displacement x,

increases from 0 to 2a, and at this moment the second pendulum acquires all the energy of
the first pendulum (the last is shown by the dash line).
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Both displacements oscillate with a frequency (@, +®,)/2 and with a

slow amplitude modulation. We see that after releasing the first pendulum
x, follows a cosine law, (5.84a). Its amplitude varies also as a cosine, but

with a low frequency, which is half the difference between the normal mode
frequencies, ((, —, )/2). After the initial moment the amplitude decreases.

At the same time the displacement x,(¢) vibrates as a sine function, but its
amplitude builds up to 2a and then decays with low frequency (o, —®,)/2 .
The new state (see dashed line in Fig. 5-5) has a maximal amplitude of x, (¢)
(i.e. x, =2a) and a minimal amplitude of x, (t) (i.e. x, =0), and it may be
also shown as a superposition of the normal modes (Fig. 5-6). At this state

'y
Iy
b

1]
g

=20 = ry =0 (- > (- > - -—( -

Figure 5-6. The displacement x, at the moment #'in Fig. 5-5 is shown as a superposition of

the two normal modes, ie. as the difference between the normal co-ordinates
x, =(1/2)(§, —&,) , whose values at the moment t' are &, =2a, £, =—2a .

the first pendulum has come momentarily to rest, and the second is
oscillating with an amplitude of 2a. Thus, the first pendulum (with a
displacement x,(z)) transmits all its energy to the second one (with a
displacement x, (r)) and stops, when the amplitude of X, (t) reaches 2a. The

situation then reverses and the energy of the second pendulum returns to the
first one. The whole process is then repeated indefinitely. The phenomenon
of slow variation of the amplitude is known as beats, which occur between
two oscillations of nearly equal frequencies. When the coupling is very
weak, k/m<<g/l, the normal-mode frequencies differ insignificantly and

the beats have frequency (0,—®,)/2<<®,, but the pendulums swing with
frequency (a)s+ w, )/ 2=, , almost equal to the frequency of an
independent pendulum.
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5.5 VIBRATIONS OF MOLECULES

In this section we deal with the classical theory of molecular oscillations.
The total energy of a molecule can be considered as a sum of different parts
corresponding to the different molecular motions: translational, associated
with the translation of the whole molecule; vibrational, defined by the
periodic changes of the relative positions of the nuclei; rotational, due to the
periodic changes of the orientation of the whole molecule; electronic, which
includes the electron motion of the electrons in the individual atoms. In
quantum mechanics it is proven that it is possible to divide the total energy
into such parts, since the interaction between the different motions is weak.
Here we shall consider the atoms as stable particles, i.e. we won't be
interested in electron motion.

We shall first define the number and type of the degrees of freedom of an
N-atom molecule. Generally, it has 3N degrees of freedom. Three of them
belong to the translational motion, which can be described by the three co-
ordinates of the centre of mass. The degrees of freedom of the rotational
motion are also three, one per rotation around each axis. Consequently, the
degrees of freedom of the vibrational motion remain 3N — 6. They are called
vibrational degrees of freedom.

For a linear molecule the rotation around its line is negligibly small (the
size of the nuclei (almost all mass is in them) is essentially smaller than the
distance between the atoms), and the vibrational degrees are 3N —5. It is
convenient to consider separately the longitudinal and transverse
oscillations. For the longitudinal motion (along the molecular axis) the
degrees of freedom are N, one of which is translational and N —1are
vibrational. From all these 3N —5 degrees of freedom, the degrees of the
transverse vibrations (to the molecular axis) are (3N —5)—(N—1)=2N -4 .

Since a linear molecule has an axis of symmetry, the transverse oscillations
are in mutually perpendicular directions, which differ only by orientation.
Therefore, N -2, i.e. twice less, natural frequencies correspond to the
2N —4 degrees of freedom.

For the analysis it is convenient to eliminate the translational and
rotational motions, so that the motion equation describes only the
oscillations. To eliminate the translational motion we go to the frame in
which the molecular momentum is zero. This is a CM-frame (see Section
3.2)), in which the centre of mass is at rest:

p=MR=0, (MzZma, R=2mara/M=const). (5.85)
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Since we consider small displacement Ar,, from the equilibrium position

ry, of each atom, its radius-vector may be seen as r, =r,, +Ar,. The

condition p =0 means that R is constant and, hence,
z m,x, =const = z my¥,. (5.86)
o o

It is evident from this relationship that the condition for the elimination
of the translational motion can be written as follows:

Y m,Ar, =0. (5.87)

The elimination of the rotational motion means that the angular
momentum is zero (L =0), i.e.,

L= m,(r,xv,)=Y m,(r,,XAr, )XAf,

5.88
zzma(raOXAfa):%Zma(raOXAra)zo‘ ( )

Going from the equality to the approximate equality we neglected the
quadratic term o< Ar, XAr, . From (5.88) it is obvious that the condition

L =0 means that the sum under the sign of differentiation is constant. In the
initial moment, =0, this constant is zero (5 r, = 0) and, hence, the
condition of the elimination of the rotational motion is the following:

Y m, (r,,xAr,)=0. (5.89)

For the equation of the vibartional motion of a given molecule we need,
except for the conditions (5.87) and (5.89), also the kinetic and the potential
energy of the atoms. To determine the potential energy of the longitudinal
oscillation we recall the problem of Section 5.1 for a diatomic molecule. The
acting force there is analogous to the elastic force of a spring of elasticity & .
Therefore, the diatomic molecule can be represented as a system of two
particles of masses equal to the masses of the atoms and connected with a
spring. The maximal and minimal distances between the atoms correspond to
the maximal extension and the maximal compression of the spring (Fig. 5-7).
The potential energy is
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U (Ar) =%K(Ar)2 , (5.90a)
where the force constant is determined by
d’U

= . 5.90b
Ty (5200

Ar=0

equilibrium
state

i my My
extension —-— 5 -

. 14 My
compression et
position of the centre of mass
a b

Figure 5-7. The oscillation of a diatomic molecule: a) analogy between the oscillations of a
molecule of atoms of masses m, and m, and particles, connected with a spring. In both cases

the potential energy has the form U =« (Ar) /2 ; b) conditional notation of the oscillations.

Similarly, we can interpret a three-atomic molecule. In that case we
represent the three atoms of the molecule connected by two springs. The
oscillations will obey the laws of two coupled oscillators, studied in the

n

preceding section. We observe two types of longitudinal oscillations - "in
phase" (antisymmetric) and "out of phase" (symmetric) (Fig. 5-8).
For the potential energy of these oscillations we can write
K 2 2
U=3[(n—rz) (=) | (5.91)

where 7,7, and r, stand for the displacements of the corresponding atoms

from the equilibrium position.

For the transverse oscillations of a linear molecule the potential energy is
defined by “bending" of the molecule. Similarly to the plate lamina, the
potential energy of a three-atomic molecule 4BA4, at a given distance /
between the atoms, depends on the angle of the displacement from the line
(Fig. 5-9):
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’
K 2
m, | m g m 4 m 4 | gy ™,
1 12 3 1 2 3
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TS SRS R R R R R R AR R R I LILLIIL
| 2 3 1 2 3
equilibrium position cquilibrium p(){iilinn
of the centre of mass of the centre of mass
1 2 3 | 2 3
-—— - o -
O < -
1 2 3 1 2 3
a b

Figure 5-8. Analogy between the longitudinal oscillations of a linear symmetric molecule
ABA and particles connected with springs, with conditional notation of the oscillations: a)
symmetric oscillations; b) antisymmetric oscillations.

The analogy with the potential energy of a shearing strain in the solid
state is evident.

Figure 5-9. The potential energy of the transverse oscillations of a linear three-atomic
molecule depends on the degree of its strain, i.e. on the angle J, as a measure of the

2
displacement of the angle 4B4 from n: U = (K'/Z)(Bl)2 = (I('/Z)I:(y2 - )2 +(»,—» )2] ;

m, and m, are the masses of the atoms; / is the distance between them; y,, y,, y, are the

transverse co-ordinates of the atoms.

The atoms of multiatomic molecules oscillate as the masses of coupled
oscillators. The normal oscillations of two three-atomic molecules (CO, and

H,0) and their frequencies are shown in Fig. 5-10.
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""@" *" "'@—" w, = 4,16.10** s7!

-O—- © -0~ wy = T,05.101% s~

Wy = 2.10%% §~!

wp =11,27.10" s71  w; =4,78.10" s~*

Figure 5-10. Normal oscillations of the three-atomic molecule of CO, and H,O.

SUMMARY

At small displacement of a mechanical system of one degree of freedom
from its stable equilibrium position, its kinetic and potential energies are
quadratic functions:

Kq’
; U(q)= 5

and the equation of motion

.. 2 2 _ K
Gg+w,qg=0, w,=—.
m
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has the harmonic solution
g=acos(wyi+9) .

This is called harmonic oscillator with a natural angular frequency @, .
The displacement from the equilibrium distance between the atoms of a

molecule changes harmonically. Very often it is used the complex form of
the harmonic-oscillations, writing

zwor

qu

where 4=ae is a complex amplitude, and the quantity ¢ is the real part

of G, i.e.q=Rej= Re(ﬁe”"“’ ) .

In a system of s degrees of freedom of arbitrary generalized co-ordinates,
the change of each co-ordinate is a superposition of s harmonic oscillations
with their corresponding natural frequencies. But we can choose such co-
ordinates so that their change can be described by simple harmonic
oscillations. They are called normal co-ordinates and normal oscillations. In
normal co-ordinates both the kinetic and potential energy have diagonal
form. When in a system a normal oscillation is excited, all particles of the
system oscillate with equal frequency. Moreover when a fixed normal
oscillation is excited, one normal co-ordinate only is oscillating.

Two coupled pendulums, similarly to the longitudinal oscillations of a
three-atomic molecule, have two normal co-ordinates:

€1=x1+x2» ézle_xz

and two normal oscillations, antisymmetric and symmetric. Any periodic

motion of the coupled pendulums (molecules) can be described as a
superposition of the normal oscillations.

While doing the analysis of the oscillations of a molecule, by using the
conditions

ZmaAra:O, Zm I, XAr,)=0

one can eliminate the translational and rotational motions.
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QUESTIONS

1. What is the change of the co-ordinate ¢ of a system of one degree of

freedom for a displacement from an equilibrium, which is: a) stable; b)
unstable?

2. What is a harmonic oscillator?

. What is a natural frequency of the oscillation? What is natural oscillation?

4. Why for a small displacement r of the electron in a hydrogen atom can we
represent the force acting on the electron in the form F o< 7, while the
interaction force between the electron and the proton is a Coulomb force
Focl/r??

5. An atom of a positron is hydrogen-like atom, in whose nucleus instead of
a proton there is a positron: a particle of electron mass, but of the positive
charge e . Hence the force constants of the hydrogen and the positron are
equal. Are the spectra of the radiation (the absorption) of both atoms
equal? Why?

6. What is understood under complex amplitude?

7. What can be said about the quantities x and 4, when the distance

[98)

between the atoms of a diatomic molecule obeys the law x = 4e™"?

8. What is the change for small displacement from equilibrium of the
generalized co-ordinate of a system with s degrees of freedom?

9. What is the difference between ordinary and normal co-ordinates?

10.How can a periodic motion be described if the normal co-ordinates are
known?

11.What does define the potential energy of two coupled pendulums?

12.Do the forces, acting on two coupled oscillators differ by their: a)
magnitude; b) directions?

13.Does the elastic force of the coupling influence the frequencies of the
antisymmetric and symmetric oscillations?

14.Can the energy of a coupled oscillator be transmitted from one normal
mode to another? And from one pendulum to another?

15.How many vibrational degrees of freedoms has a linear three-atomic
molecule? How many of them are longitudinal and how many transverse?
How many are the natural frequencies of the oscillations?

16.How many vibrational degrees of freedom has a diatomic molecule?

17.How can the translational motion of a molecule be eliminated?

18.How is determined the potential energy of a three-atomic molecule for: a)
longitudinal oscillations; b) transverse oscillations?
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PROBLEMS

1.

9]

Find the oscillation law for a particle of mass m and potential energy
U(x)=rx’ / 2. Express the amplitude and initial phase of the oscillation
through the initial values x, and v, of the co-ordinate and the velocity.

. Find the ratio between the oscillation frequencies of diatomic molecules

with atoms of different isotopes. The masses of the isotopes are: m,, m,

' '
and m,',m,".

. Find the kinetic and potential energies of a harmonic oscillator as a

function of time. Find their mean values and verify that T =U.

. Find the laws and frequencies of oscillation of two identical pendulums of

mass m and a length /, coupled by a spring of elasticity k at a distance
b from the hanging points? Use the displacements x, and x, as the
generalized co-ordinates.

. Solve the fourth problem, using normal co-ordinates.
. From spectral measurements it is known that the frequencies of oscillation

of the molecules of HF and HCI are, respectively,
Vi =0/2r =1,202.10" s and Via =0/2r=0,8.10" s
Find the force constants k. and &k, of both molecules and their ratio.

Knowing that the length of the molecule HF is 1A and its energy of
dissociation is 6 eV, try to evaluate the correctness of the obtained force
constant.

. Find the frequencies of the longitudinal oscillations of a linear three-

atomic molecule 4BA , whose potential energy depends only on the
distances ABand BA.

. Find the frequencies of the transverse oscillations of a linear three-atomic

molecule ABA . Suppose that its potential energy depends only on the
angle ABA.

. Find the frequencies of the antisymmetric oscillations of a linear three-

atomic molecule 4BA . Suppose that its potential energy depends on the
distances AB, BA and the angle ABA.
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6.1 HAMILTONIAN FUNCTION AND HAMILTON’S
EQUATIONS

Up till now we have got acquainted with the Lagrangian function and
Lagrange's equation, satisfied by it. In Lagrange’s method a mechanical
system is described by s equations of second order. Solving them, we
determine the generalized co-ordinates, from which, ftrivially by
differentiation, we get the generalized velocities. Thus, in Lagrangian
mechanics, the mechanical system is described by the generalized co-
ordinates and generalized velocities, which in Lagrange's equation are
assumed to be independent.

This is not the only possible description. Hamilton obtained the equations
of motion, in which independent variables are the generalized co-ordinates
and the generalized momenta. It appears that such a description has some
advantages, especially for problems of transition from classical to quantum
mechanics.

Hamilton’s equations can be obtained from the principle of least action.
Not only do they give possibilities to solve specific problems in mechanics,
but they are also very useful in supplying fundamental postulates in such
fields as quantum mechanics, statistical mechanics and celestial mechanics.
They are differential equations of first order and are more "transparent" than
Lagrange’s equations. On the other hand, their number necessary to describe
a system with s degrees of freedom is 2s, which is greater than the number
of Lagrange's equations.

We shall obtain Hamilton's equations, starting from the Lagrangian
function and Lagrange's equations. Let us determine the exact differential of
the Lagrangian as a function of the co-ordinates and velocities (it is
supposed that ¥ does not depend explicitly on time):

Y
dy - Z—dq, zidq, ©.1)

1
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Recalling the definition of the generalized momentum (1.53) and
Lagrange's equation, we express P, and R through the Lagrangian:

p=2 p-2 6.2)
0, g,

Then we substitute the derivative in the exact differential d¥ and instead of
(6.1) obtain:

dy =7 Pdg,+) Pdj, =Y Fdg,+ d(ZP,-q,- )—Zq‘,-dP,-. (6.3)

After some simple mathematical procedures, we obtain:

d(ZP,-dq,- —w)= D4, dP~ Pdyg;. (6.4)

The function in the brackets is defined as Hamilton's function or
Hamiltonian:

H(q;.P,)= ZPq 7(q,.4;) - (6.5)

Here ¢, =g, (q j,Pj) and the Hamiltonian is a function of generalized co-

ordinates ¢; and generalized momenta P,. It plays a central role in

theoretical mechanics. If time does not appear explicitly in Egs. (1.34), then
the Hamiltonian is the total energy of the system (see Eq. (1.58). (This
corresponds to a time-independent potential and time-independent
constraints - for details and proof see [2], Section 20.) Here, an example of a
Hamiltonian of a particle in a potential field U (x, v, z) is the following:

H(xj,Pj)zﬁ(sz +P} +P’)+U(x,y.2) . (6.6)

Taking into account (6.5), the exact differential (6.4) becomes:

dH =Y g,dP- Pdyg, . (6.7)

On the other hand, we can write for the exact differential of the function H
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oH oH

i i i

and comparing (6.7) and (6.8), we obtain

g =— P=——. (6.9)

We have obtained 2s equations of motion of first order for the variables
g; and P,. These equations are called Hamilton's equations. They allow the

determination of the unknown g; (t)’s and Pj(t)’s, i.e. the generalized co-

ordinates and generalized momenta.

For their formal simplicity and symmetry these equations are called
canonical equations and their generalized co-ordinates and the relative
generalized momenta - canonical conjugates. In the most general case the
Hamilotian can depend on time, i.e. H=H (q j,Pj,t). Then its total

derivative with respect to time is

dH _OH 5 OH 5O 6.10)

d o &g &R

Substituting the values of g, and P, from Hamilton's equations (6.9), we

get

aH _oH (6.11)
dr ot

From here we can make a very important conclusion: if the function of
Hamilton does not depend explicitly on time, it is a constant of the motion.
We shall note that this is not obvious since H depends implicitly on time

through the ¢;’s and Pj ’s. However, this is expected - the Hamiltonian is
the energy of the system, i.e. if the energy does not depend explicitly on
time, the system is conservative and dH/dt represents the law of

conservation of energy.
We shall underline one more peculiarity of the Hamiltonian. The result
from the second equations of (6.2) and (6.9) is
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oH . oy oH oy
—=-P=-—, Oof —=——,
dq, dq, dg,  dq;

i=1,2,..,s. (6.12)

It is obvious that the generalized co-ordinates which are cyclic for the
Lagrangian &, are also cyclic for the Hamiltonian H . This means that the
respective  generalized momenta are constants of the motion:

Pk =0, B, =const, when dH/dt=0.

6.2 CONCEPT OF CANONICAL
TRANSFORMATIONS, PHASE SPACE AND
LIOUVILLE’S THEOREM

We derived Lagrange's equations from the principle of least action
(Section 1.2) using arbitrary generalized co-ordinates g,. We recall that g,

stands for the set of all the generalized co-ordinates ¢, g,, ..., ¢, . In Lagran-
ge's method the generalized co-ordinates g; and the generalized velocities
g; are independent variables. Since the choice of the g s is arbitrary,

Hamilton's principle would have physical meaning only if its consequences
do not depend on this choice. Indeed, the general form of Lagrange's
equations does not change for an arbitrary transformation from generalized
co-ordinates to other co-ordinates, i.e., for a transformation of the form

7=4(q), i=12,.,s. (6.13)

For such a transformation the function gf(qj, q j) transforms in !j/(q}, q'/)

and the new generalized velocities are functions of the original generalized
co-ordinates and generalized velocities:

q9; — q; — J)(qj,c]/.),
l (6.14)
¢, — ¢, — 9(d.4). (4/=4/(a,). 4=4(a,.4,))

The same, of course, is valid for Hamilton's equations - they remain
invariant for a transformation (6.13). Independent variables in Hamilton's
equations are the generalized co-ordinates and generalized momenta (unlike
the generalized velocities in Lagrange's equations). For such
transformations, (6.13), the Hamiltonian H (q j,Pj) is transformed in
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H '(q' j,P'j), and the new generalized momenta P'; are functions of the

original generalized co-ordinates and generalized momenta:

gLt p (g, P),
. (6.15)
gLl Ly (g, P, (61§=61?(qf)»”f,: ,.'(q_,,P_,)).

It appears that Hamilton's equations allow a much wider class of
transformations - they remain invariant with respect to some (but not all)
transformations "mixing" the co-ordinates g; and momenta P, (compare

with ¢, (g, )):

q,,P,——H(q,.P,),
\’ (6.16)

’

q;.,Pj’—>H'(q;,Pj'), (Qf=CIf((]jvft}), F :Pi,(q.i’P.i>)'

These transformations are called canonical transformations. We shall
emphasize once more that for them Hamilton's equations retain their form.
Here, both the original generalized co-ordinates ¢; and theirs corresponding

momenta P;,and ¢'; and P';, are canonical conjugate co-ordinates.

The canonical transformations are transformations of the generalized co-
ordinates and generalized momenta into new variables - the generalized co-
ordinates and generalized momenta ¢'; and P';, each of them being a
function of the original variables, and Hamilton's equations remain invariant.
Below, the term "state of the system" will be very important for us. To know
the state of a system in classical mechanics at a given instant of time, is to
know, at that instant, so many dynamical variables, that the values of all
dynamical variables may be predicted uniquely. Knowing the values of the
generalized co-ordinates at a given moment, is to know the location and
orientation of the system at that moment. These dynamical variables are not
enough for the description of the system. This is because in the following
instant of time these quantities will be determined by the motion of the
system. In classical mechanics the location and orientation, and the motion,
of a system at a given instant specify its state at that instant.

For a particle in three-dimensional space the classical state A is given by
six quantities. Conditionally we can write:

Az(x, ¥, Z, X, j/,z'), (6.17)
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or in terms of momenta (Fig. 6-1)

A:(x,y,z,px,py,pz) . (6.18)

=

A

F

Figure 6-1. The classical state of a free particle is determined by 6 quantities
(652,05 D, P.) -

The state of a system of two particles moving in a plane is determined by
eight quantities:

Az(xpylvxva/zapx,aPy,,pxzvpyz) . (6.19)

The set of generalized co-ordinates of a given system is not unique. So,
the description of the system state A is also not unique. For instance, the
state A (6.17) in Cartesian representation can be written as

A= (x, Vs Zy Pys Pys P ), (6.20a)

and in spherical-polar representation, as

A=(r6,9,P.P.P,). (6.20b)

rotes o

However, all representations of the state of a fixed system contain equal
number of variables. The canonical transformations lead to a change of the
representation of the state:

9, — q P

6.21
A:(qj’Pj) — A= (qf’ J/)' ( )

Getting ahead of our exposition, we shall mention that in quantum
mechanics for the description of the state of an electron in an atom are
necessary four quantities:

A=(E,L’,L.S). (6.22)
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Here E stands for the total energy, I* and L_ - for the square and the z-

component of the angular momentum, S - for the electron spin.

In classical mechanics we can represent the state A of the system of s
degrees of freedom as a 2s-dimensional vector (i.e. a vector with 2s
components). It is natural for such representations to use 2s-dimensional
space with mutually perpendicular axes on which we plot the variables g,

and P, . A fixed point in this 25 -dimensional space corresponds to any given

state of the system, i.e., to any set of the canonical variables. Conversely, a
fixed state, that is the values of co-ordinates and momenta, corresponds to a
point in this space. The introduced 2s-dimensional space, called phase
space (the configuration space is s -dimensional one - see Section 1.1), is
such that unique and reversible correspondence exists between its points and
the system state. To the motion of a mechanical system we correspond a line
in phase space, which is called phase trajectory.

Example: Consider the phase space of a harmonic oscillator (for instance
a simple pendulum, (Fig. 6-2)). In Fig. 6-2c is shown its phase trajectory in
the phase space x, p .

Figure 6-2. Phase trajectory of a simple pendulum: a) the real trajectory is a part of a
circumference (the arc 44"); b) the co-ordinate x changes according to a harmonic law
x=xgcoswt; c) the trajectory in the phase space (in this case 2s-dimensional phase space - a
phase plane) is an ellipse.

Analogous to the volume element in the Cartesian space, here the product
of differentials

dV =dqdgq, ...dq.dPdP, ...dP, (6.23)

represents the volume element in the phase space. The integral J.dV in a

given region of the phase space represents the volume of this region. Every
point of a given region o of the phase space moves according to the motion
equation of the considered mechanical system. If at the instant ¢ the phase
volume of the region ¢ (Fig. 6-3) is
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v = [ dxdP = j Ij dxdP, (6.24)

x R

then at the instant ¢' the points of s will occupy a new region o', whose
volume is

V= jdde = T}fdde, (6.25)

-
x R

}')2 . L ./'/
()
Py |

. ] f)
Iy Iy I Iy

Figure 6-3. Phase volume: at the instant of time # the region ¢ occupies the volume jdde R

o

and at the instant 7' - it occupies the volume Idde; according to the Liouville's theorem

o

these two volumes are equal.

During the motion, the region volume does not change. It can be proven
(see [R3], Section 8.8) that the phase volume is a constant quantity. This is
the content of Liouville's theorem, which can be formulated as follows: The
volume of a phase-space region, which is determined by the points depicting
the different states of identical mechanical systems (an ensemble of systems),
is constant. In other words, during the motion of the systems of the
ensemble, its volume does not change.

6.3* HAMITONIAN OF A CHARGED PARTICLE IN AN
ELECTROMAGNETIC FIELD

As an example of Hamilton's function, we shall obtain the Hamiltonian
of a charged particle of mass m and charge e, using the definition (6.5) for
H . To do this we need the Lagrangian and the generalized momentum of
the particle. In Section 1.5 we obtained Lagrange's function (1.49):
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¥ =T —e® +evA. (6.26)

We recall that ® and A are the scalar and vector potentials of the
electromagnetic field. The components P. of the momentum of the particle

can be found by differentiating the Lagrangian with respect to the
generalized velocities x;:

po9¥_or, I(vA) (6.27)
ox, ox, ox,

1 1

As VA = Zy'ckAk then d(VA)/0X, = A, and substituting it in (6.27), we
X

obtain for the generalized momentum

P=9 feh =mi +ed, (6.28)
X,

1

We substitute this momentum, (6.28), and the Lagrangian (6.28) in the
definition (6.5), and get:

H=YxP-¢,
(6.29)

X,

1

H:Z(gl+eAi }'c,.—(T—ed>+eVA).

But according to (2.7), 2(8T /0%, )%, =2T , and after substituting it in

(6.29), the Hamitonian takes the form

H=T-e®=T(x,y,2,P, P, P, )+e®(x,,z). (6.30)

x2Lyo

Thus, the Hamiltonian of a charged particle is a sum of its kinetic and
potential energies, expressed by the co-ordinates and momenta.
Now, we shall obtain the explicit form of T (P) From (6.28) we

determine the component of the mechanical momentum p, =m,x; through
the corresponding components P. of the generalized momentum:

mi =P—ed (6.31a)
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or
p=P-cA. (6.31b)

We substitute X; from (6.31a) in the expression of the kinetic energy

T=Ym,x?/2 and as a result we get:

(P—eA)’

2m,

P—ed)
TZZ( lznj ) _ (6.32)

Taking into account (6.32) in (6.30), we finally obtain the Hamiltonian of the
charged particle in an electromagnetic field:

—P _ eA)2 +ed

i —{ (6.33)

2m

e

We shall note that the conjugate to the co-ordinate x canonical
momentum does not coincide with the usual mechanical momentum
p, =m,v, of the particle. The generalized momentum P is the mechanical
momentum plus an electromagnetic contribution —eA . The difference
between P and m,v is due to the field, so —eA has a field character. In this

sense we could say that m,v has a material character.

6.4. POISSON BRACKET

Consider the two functions F (qj.,Pj,t) and G(q j,Pj,t) of the canonical

variables and the time. The Poisson bracket {F,G} of two functions F and G
is defined as

oF oG JF oG
F.Gl= e 6.34
vt Z(ap.aq,. o aP,.] (€9

Where do we meet these and why are they necessary? To answer these
questions, let us take the function F (q j,Pj,t) and find its total time-

derivative:



132 Chapter 6
d—F=a—F+Z o+l p | (6.35)
dt ot '\ dq, " OP

After substitution of ¢, and P from Hamilton's equations (6.9), the total
derivative takes the form:

d_F:a_F+Z 8_F8_H_8_F8_H i (6.36)
dt ot “\ dq, OP 9P, dq,

or according to the definition (6.34) of the Poisson bracket,
dF  OF
—=—-+1H,F}. 6.37
=g TUL ] (6.37)

For an arbitrary dynamical variable, i.e. for an arbitrary function F of the
generalized co-ordinates and momenta, and of time, the total time derivative
is equal to its partial derivative plus the Poisson bracket of the Hamiltonian
and the function F.

If the dynamical quantity is a constant of the motion, i.e. dF'/dt =0, then

%_f - {H,F). 638)

We can consider (6.38) as a condition for F' to be a constant of the motion.
If a constant of the motion ' does not depend explicitly on time, then

{H,F}=0, (6.39)

1.e., its Poisson bracket with the Hamiltonian is equal to zero.

The Poisson bracket allows writing Hamilton's equations in an elegant
and symmetric way. Actually, for any function F and the canonical
variables from (6.34), taking into account dg; /0P, =0 and 0P,/dgq; =0, we

can write

oF oF
{Fg}=2L. {r.py=-2L

. 6.40
oF, dg, (©49

Replacing F with H , and comparing with (6.9), we can write Hamilton's
equations through the Poisson bracket:
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[

¢,={H,q,}, B={H,P}. (6.41)

The following properties are characteristic for the Poisson bracket:

. antisymmetry

{F,G}=-{G, F}, (6.42a)
and as a consequence,

{F,F}=0; (6.42b)
equality to zero of the bracket of a function and a constant

{F.C}=0; (6.43)
linearity with respect to both arguments (functions), e.g.,

{F, +F,,G}={F,G}+{F,,G}, {CF,G}=C{F,G}; (6.44)

a distributive property with respect to a multiplication, similarly to the
rule of product differentiation

{FF, G} =F{F,G}+ K {R, G},

(6.45)
{F,GG,}=G{F,G,}+G,{F,G};

the partial derivative with respect to time is taken according to the rule
of differentiation of a product

O 11 oo [OF %],

when we take as an argument of the Poisson bracket the canonical va-
riables, besides (6.40) and (6.41), we have the following dependencies:

{a,9:1=0, {p.R}=0, {4, R}=8,, 6, ={?j il:;‘{i’ (6.4

where §,, is the symbol of Kronecker;
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7. the Poisson bracket is invariant with respect to the canonical
transformation from the variables ¢, P; to q;,Pj'

{F’ C}q;/’PJ - {F’ C}q;’P; ) (648)

(This paragraph can be omitted at first reading). The Hamiltonian method
is extremely powerful tool in classical mechanics. Moreover, it provides the
most direct transition between classical mechanics and quantum mechanics.
In this course we shall see that the Hamiultonian function is of great
importance in quantum mechanics. The first attempts to explain the
quantization of the periodic system were connected with the canonical
variables (see Sections 8.2 and 8.3). To address the quantization of quantum
objects Schroedinger, Dirac and others, developed subsequently a canonical
quantization procedure (see interesting details of this development in [R32]
Section 24). The canonical prescription is to replace the classical Poisson

bracket with a quantum-mechanical Poisson bracket {A,B}% {ﬁ,é}z
%[ﬁ,é] (here [,Ql,f?]:ﬁf?—f?ﬁ is the commutator of the operators
i

A and é); for details see sections 10.2, 11.3 and 11.4, this is only an
illustration. For example, replacing the Poisson bracket in (6.47) we obtain
[@i,gk]=[1§,ﬁk]=0, [c},.,lsk]zih&k , which in Cartesian co-ordinates are
exactly the Eqs. (10.60)+(10.63) (Chapter 10 of this course). The
relationship between the canonical conjugate pairs is of central importance
in quantum mechanics. There is an "uncertainty principle" in it (Section
10.9), according to which it is impossible to measure both terms of such a
pair simultaneously with arbitrary accuracy.

6.5 HAMILTONIAN AND HAMILTON’S EQUATIONS
IN CARTESIAN, CYLINDRICAL AND SPHERICAL
CO-ORDINATES

Energy, Hamiltonian, and angular momentum take an important place not
only in classical mechanics, but also in quantum mechanics. We shall
consider these for a free particle of mass m in three often used co-ordinate
systems: Cartesian, cylindrical and spherical.

a) Cartesian co-ordinate system
1. Co-ordinates: x, y,z.

2. Generalized velocities: x,y,z.

3. Components of the velocity v and the momentum p =mv :
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V. =X, vyz)‘/, v, =2z,
. . . (6.49)
p,=mx, p, =my, p.=mz.

4. Kinetic energy and Lagrangian:

m , my ., ) .2
T=—v=—x"+y +27), ¥ =T. 6.50
> 2( P +2) (6.50)

5. Generalized momenta:

@ q q
Px:%=m& P :a;g:my P =ai=mz'. (6.51)
X

6. Physical significance of the generalized momenta:
P=p, P=p, P=p. (6.52)

7. Function of Hamilton:

Since we consider a free particle, H =T +U =T . Expressing the velocity
through the momentum we obtain
)= P 1

L (PP ). (6.53)

H(x,y,z,P,P, P
(y 2m  2m

shxsfys L

8. Cyclic co-ordinates: x,y,z.
The Hamiltonian does not depend on x,y,z and the corresponding
canonical conjugate momenta are constants of the motion:

P =p =const, P ,=p =const, F =p. =const (6.54)

9. Hamilton's equations:

OH __. OH__ . oH___
x ooy T P T s
o _ oM (629

- = x’
ap, ap,
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b) Cylindrical co-ordinate system
1. Co-ordinates: p,@,z.

2. Generalized velocities: p,,z.
3. Components of the velocity v and the momenta p =mv :

The components v, and v, are determined trivially. Changing the co-

P
ordinate @ by d¢ the position of the particle changes by pde (Fig. 6-4)
and, consequently, we can write for the velocity and the momentum

Z

P

Figure 6-4. In a cylindrical co-ordinate system the radius-vector r of a given point lies on the
plane, defined by the unit vectors p” and z°; the third unit vector ¢° is normal to this plane,
and r has no component along it.

V=P, v, =pg. v.=i,

. . . 6.56
Py, =mp, p,=mpy, p,=mz. ( )
4. Kinetic energy and Lagrangian:
m , _ mg., 2.2 | -2
T=—v =— + +z7), ¥ =T. 6.57
> =3 (0> +p°¢* +2°) (6.57)
5. Generalized momenta:
o7 oY ). oy .
P =—=mp, P=—=m , ) =—=mz. 6.58

6. Physical significance of the generalized momenta:
The components P, and P, coincide with the corresponding

components p, and p, of the momentum p, but F, is equal to the

projection L, of the angular momentum along the Z-axis.
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We shall verify this. As it is seen in Fig. 6-4, the radius-vector r of a
particle whose position is at the point P, has components only along two
axes of the cylindrical co-ordinate system, p and z:

r=pp’+zz". (6.59)
However the velocity of the particle has three components (see (1.66)):
- < 0 0 0
V=Ir=pp +po@ +zz . (6.60)

For the vector L we have

pO (PO ZO
L=rxmv=mlp 0 z|, (6.61)
p pp z

from where we readily determine

L.=mp’¢, ie L. =P,. (6.62)

z 4

We have verified that the generalized momentum F, is equal to the z-

component of the angular momentum L.
Finally, for the generalized momenta we can write

_ - _ 2. .
Pp_mp_pp9 l)(p_mp (p_Lz7 ])z_mz_pz‘ (663)

7. Function of Hamilton
If, from (6.58) we determine the components p, p¢ and z of the

velocity v through P, F,,P,, p , and substitute them in (6.57), we will obtain

the energy of the particle through its generalized momenta, which are
canonical conjugates to the co-ordinates p,¢ and z:

1 (.. B
H(p,(D,z,Pp,P¢,I°Z)=E{Pp +p—“’2+PZ (6.64)

or according to (6.63):
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H( P.P.P)=—| P Ly p? 6.6
PP,z L, Ly, L _E p+?+ z ( )

8. Cyclic co-ordinates: ¢ and z.
The canonical conjugates corresponding to these co-ordinates, are
constants of the motion, i.e. the z-components of the angular momentum L_

and the momentum p_ are constants:

— 25 — — s — —
F,=mp°¢ =L, =const, P, =mz=p, =const. (6.66)

9. Hamilton's equations:

M __p H__p H__p
op P 0e 7 oz 667
o (e
op, " op, 7 oP

¢) Spherical co-ordinate system
In spherical co-ordinates we shall consider the motion of a particle in a
central field U(r) (this is an example for the basic object of chemistry, the

atom).
1. Co-ordinates: ,0,¢.
2. Generalized velocities: f,é,(p.
3. Components of the velocity v and the momenta p =mv :
Changing the co-ordinates by dr, d@ and d¢, the radius-vector of the
particle changes by dr,rd8 and rsin8d¢o (see Fig. 1-6 and formulae (1.70)

and (1.71)). Dividing these displacement elements by df we obtain the
velocity components, and multiplying the last by m we get the momentum
components:

v,=F,  vg=r18, v,=rsinbf ¢,

: P 6.68
p,=mr, p,=mro, P, =mr sin@ ¢. ( )
4. Kinetic energy and Lagrangian

T =%v2 =%(f2 +r76% +r7sin’0 ¢*), ¢=T-U(r). (6.69)
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5. Generalized momenta

. q

P
00 ? 00

o

6. Physical significance of the generalized momenta.

The generalized momentum P, is equal to the r-component of the me-
chanical momentum. We shall verify that the generalized momentum £, is
equal to the L, -component of the angular momentum and the generalized
momentum £, - to the component of angular momentum along Z -axis. For
this purpose we determine the components of the angular momentum in a
spherical co-ordinates. Taking into account the components of the momen-
tum from (6.66) and that the radius-vector r =7r’ of a particle has only one

component (!) along r (see Fig 6-5), we readily determine the angular
momentum

r0 90 (PO
L=rxmv=mjr 0 0 , (6.71)
iore rsin@ @

and its components are

L =0,
Ly =—mr’sin6 ¢, (6.72)
L,= mro .
L+et us determine the projection of L along the Z-axis. The unit vector
(p0 is perpendicular to the Z -axis (q)0 1 z° in Fig. 6-5), and the projection
of L, = qD(po along the Z -axis is zero. Thus the projection of L along the

Z -axis is determined only by (Le )z . In Fig. 6-5 it is evident that

z

L =(L,). =|L9|cos(%—9)= mr’ sinzeq'):P(p. (6.73)

Finally, we have for the three components of the generalized momentum
the following:

P.=mi=p, PB=mr@=L, P,=mr’sin@¢=L,. (6.74)
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The common feature in the three considered co-ordinate systems is that
the generalized momenta, canonically conjugated to the linear co-ordinates,
are components of the mechanical momentum and the ones canonically
conjugated to the angular co-ordinates are components of the angular
momentum.

7
2’ Z_¢
2
N N
Ls ‘ 10
9 ‘ (PO
N\
9
O—
S — y
P

X
Figure 6-5. In a spherical co-ordinate system the angular momentum has only two
components L =Z1,0° +L(pq)". The projection of L along the Z-axis is determined by L,,

because ¢’ Lz’ and, consequently, L, L OZ .

7. Function of Hamilton:
Here we proceed in a similar way to the determination of the Hamiltonian

in the cylindrical system, adding the potential energy U (r) According to
(6.69) and (6.70), we have

2 2 P
H(r’ea(pa])wp P):T+U(7')=P—r+ Pe [

, +Ul(r) (6.75
0" 2m  2mr?  2mr’sin’0 ( )( )

The expression of the kinetic energy, respectively the Hamiltonian,
through the angular momentum in spherical co-ordinates is very useful,
especially in quantum mechanics. To find this dependence we note that the
vector of the momentum can be represented as a sum of two mutually

perpendicular vectors: p,, along the radius-vector (pr |r), and p 1>
tangential to the sphere of the radius r (p, Lr):
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P=p,+p,. (6.76)

The kinetic energy, expressed through these two components, has the
following form

2 2 2
P _P P (6.77)
2m 2m  2m

At the same time, for the angular momentum we can write
L=rxp=rx(p,+p, )=rxp,, (6.78a)

or L:rpL:>pl=£. (6.78b)
r

As a result of substituting p, in the relationship for 7' (6.77), we get for
the kinetic energy and the Hamiltonian, respectively,

2 2
T=§—’+2L -
m 2mr
) P (6.79)
Hzp—’+—2+U(r).
2m  2mr

8. Cyclic co-ordinate: ¢ .
A constant of the motion is the generalized momentum F,, i.e. angular-

momentum component L_, according to (6.73):
2 einl0 = ] —
F,=mr-sin”0 ¢ =L, =const. (6.80)

9. Hamilton's equations

or 96 dp ° s
M, M g M (@5
op, OB 0P Y

The main results for a free particle in Cartesian, cylindrical and spherical
co-ordinate systems, are presented in Table 6-1.
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SUMMARY

The function of Hamilton plays a fundamental role in mechanics:
H(q,.Pt)=3 P4, = 9(q,.4;.)-

To each generalized co-ordinate ¢; corresponds a generalized
momentum P, =9d%/dq,. Such a pair, ¢, and P, is called canonical
conjugate. The Hamiltonian satisfies Hamilton's canonical equations

oH . OoH

A~ Y- FJ  — P[7
or, " g,

which are the equations of motion. For a conservative system, the function
of Hamilton is interpreted as the total energy of the mechanical system

Hlq,.P;)=Tlg;.P,)+Ulg;).

If the function of Hamilton does not depend explicitly on time it is a
constant of the motion. The generalized momentum, canonically conjugate
to a cyclic co-ordinate, is also a constant of the motion.

For a system of s degrees of freedom, it is convenient to use 2s-
dimensional space with mutually perpendicular axes ¢,,P;, called phase

space. During the motion of a set of many conservative systems with one
and the same Hamiltonian, occupying a given region, the form of this region
changes, but its volume remains constant (Liouville's theorem).

The Hamilton function of a free particle is

-2 L rp i)

H\x,y,z,P.,P,,P
(y 2m  2m

shxsdysdz

The Hamiltonian of a charged particle in an electromagnetic field is
expressed by a vector and a scalar potential:

H="(P-cAY +e.
2m

The representation of a particle’s kinetic energy in spherical system is:
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p, L
2m 2mr?

T=

The Hamiltonian of a particle in central field U(r) in spherical co-
ordinate system plays an important role in quantum mechanics:
2 })92 P

P
H(r,@,(p,R,F;,P(p) T+U(r):2;n+2mr 2mr2:in29+U(r)'

In that case the generalized momentum £, is equal to the L_-component of

the angular momentum and is a constant of the motion.
The definition of Poisson's bracket for functions F' and G is

If a physical quantity, which does not depend explicitly on time, is a constant
of the motion, then

{H,F}=0,

1.e. its Poisson bracket with the Hamiltonian is equal to zero.

QUESTIONS

1. In its general form, the Hamiltonian depends on time explicitly and
through the generalized co-ordinates and momenta, H = H (q j t) t)

How does H change with time when it does not depend exp11c1tly on it?

2. Do the cyclic co-ordinates of the Lagrangian and the Hamiltonian for the
same mechanical system differ?

3. Which quantity is a constant of the motion for a cyclic co-ordinate?

4. How is the state of a mechanical system determined in classical
mechanics?

5. What is the condition for a quantity, which is independent of time, to be a
constant of the motion?

6. What is the kind of the generalized momentum, canonically conjugate to
the generalized co-ordinate g ?

7. What are the constants of motion of a free particle in Cartesian,
cylindrical and spherical co-ordinates?
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8. What components possess the radius-vector in cylindrical and spherical
co-ordinate systems?

9. What is the physical meaning of the generalized momentum canonically
conjugate to: a) the linear co-ordinate; b) the angular co-ordinate?

10.How is, in spherical co-ordinates, the kinetic energy of a particle in a
central potential related to the angular momentum?

PROBLEMS
1. Using the vector relation L = (r><p)2 =r?p? sin’ (r,p)z rip+ (rp)2 ,
verify that the energy of a free particle in spherical co-ordinates is:

2 2

E=H=24

B 2m  2mr

~, where p =(pr)/r.

2. Prove that the Poisson bracket for the x - and y-components of the
angular momentum is equal to the value of its z -component with a
negative sign: {LX,Ly }z —-L_.

3. Find the Hamiltonian of a particle of mass m moving in one-
dimensional constant homogeneous potential field U (x)

4. Find the kinetic and potential energies and the Hamiltonian of the
harmonic oscillator.

5. Find the Hamiltonian of a particle of mass 7, moving on the surface of
a sphere of radius 7, the so-called space rotator.

6. Find the kinetic and potential energies and the Hamiltonian of an
electron in the Coulomb field of a point charge + Ze .

7. Find the Hamiltonian of the hydrogen atom, reducing the two body
problem to the one body problem.

8. Prove that the Hamiltonian H =(P-eA)’ /2mﬁ +e® of a charged particle in

0A
an electromagnetic field &,B, where & = grad® — a— and B =curlA,
t
at non-relativistic velocity leads to the known equation of motion, i.e. to
the canonical equation identical to the equation m % =e(#+(vxB))

(see [R15], Appendix 24).
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7.1 EVIDENCE OF THE INADEQUACY OF
CLASSICAL PHYSICS

At the end of the XIX century an opinion predominated among the
physicist that their science was near competition - the basic laws were
discovered and it remained only to apply them to the concrete problems. At
the background of the big success a few hard nuts to crack remained - few
experimental results were fully unexplained by classical physics. But from
the motion of the astronomy bodies to the motion of the freely falling bodies,
of rotating bodies on an inclined plane or of oscillating bodies around
equilibrium, classical physics ensures the adequate picture. The dynamics of
the charged particles in electromagnetic fields, the oscillations of coupled
oscillators and of membranes, the deformation of solid states, the acoustic
waves in gases, the fluids flow, the heat, the kinetic theory of the gases are
only a part of the phenomena to which classical conception was applied
successfully - a triumph for the scientists.

At the beginning of the last century some scientists found explanations
one after another for the problems, unsolved by classical physics (the
blackbody radiation, the photoelectric effect, the specific heat of solids, the
structure of the atom, Compton effect). But these explanations were in
striking contradiction with classical physics. Classical physics was in a
condition of a tangle and dimness. Quantum mechanics was born with a lot
of dramatism and rapture. It differed radically from classical mechanics and
suggests fundamentally a new way for the knowledge of the nature. It is
difficult with a few words to express the difference between the basics of the
two manners - the classical and the quantum. Here we shall mention two
important topics.

The famous Newton laws about the motion lay down in the basic of
classical mechanics. These laws can be "derived", they can be confirmed
experimentally as well as the predicted by them results. Quantum mechanics
was developed on the basic of assumption, of the postulates. They arise out
of the result of the intuition and of the analogy with the classical conception
and could not be checked experimentally. But the experiment confirms the
predicted results on the base of these postulates. The service belongs to the
genius, to the founders of quantum mechanics, who were capable to suggest a
method, a conception for prediction of the behaviour of physical system with
microscopic dimensions. This quantum conception stands a test not only of
the experimental results, explained by classical physics, but also of any
others, showing the inadequacy of classical mechanics.

In classical mechanic the measurements in principle are repeatable. The
disturbance of the system by the measurement may be made negligible value.
In quantum mechanics the precise effect of the disturbance is unknown and
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unpredictab le. This lead to the unrepeatable results of the measurements and
to uncertainty of the measurements value. For example, the measurement of
the position of the microscopic object leads to uncertainty of the momentum.
It is obvious that the concept of the trajectory, which is so important for
classical mechanics, simply loses its meaning.

In this chapter we shall shortly consider the essence of the problems,
whose explanation place the beginning of quantum mechanics.

7.1.1 Blackbody radiation

Blackbody fully absorbs incident on it electromagnetic radiation,
independently on the wavelength, at the same time it reflects nothing. The
absorbing and emitting properties are reversible. This means that the
blackbody is the best emitter of energy with arbitrary frequency compared
with any other body. A close approximation to a perfect blackbody is a
cavity with a small hole. A negligible amount of the incident radiation will
be reflected back through this small hole and the inner walls of the cavity
will absorb almost the whole incident radiation. If the walls of the cavity are
heated to a temperature 7j, they will emit the radiation and a small fraction
of it will pass through the hole. The radiation emitted by the hole has
blackbody spectrum. We note that the radiation is in thermal equilibrium
with the walls of the cavity. The electromagnetic field inside is a
superposition of standing electromagnetic waves. The amplitude of the
standing waves obeys a sinusoidal law. From the view of the energy
changing, these waves have the behaviour of harmonic oscillator analyzed in
Chapter 5. Therefore we can apply the classical laws of usual mechanical
oscillators. The average kinetic energy in thermal equilibrium according to

these laws is T =kT,/2 where k =1,38.10™ J/K is Boltzmann's constant
and 7 is the absolute temperature. For the harmonic oscillator the average

potential energy is equal to average kinetic energy (Chapter 5, the problem
3). Then the total average energy is

E =T, (7.1)

The number of the oscillators (of the standing waves) at a given

frequency v per unit volume is 8wv’/c’ (for the derivation and for the
details see [R15], Chapter 5 and Appendices 33, 34). Then the average total
energy /(v,T;) of the radiation in the frequency interval v,v +dv per unit

volume and at the temperature 7 is
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2
10,7 =k, (1.2)

3
C

This is the well-known Rayleigh-Jeans formula for the blackbody radiation.
A few years before them, in 1832, Wien proved that the spectral distribution

1(v,T,) of the radiation obeyed the following law:

[, T)) =v3f(%} (7.3)

0

As the consequence of Wien's formula we obtain, that in the maximum of
the curves of the spectral distribution /(V,7,) as a function of the
frequency, the dot AT} is constant, i. e. AT =cT,/v =const . Really, with

the increasing temperature the maximums of the experimental curves shift to
higher frequencies (Fig. 7.1).

I(v)d
2000 K

~ 4000 —7000 A

1750 K

1 2 3 4

—

6 T <10 »

on

Figure 7-1. Spectral distribution of the blackbody radiation at different temperatures. The
maximum of the each curve shifts to the higher frequency with increasing 7; .

Rayleigh-Jeans formula describes correctly only the initial interval of the
spectral distribution - /(V)ecv?. At high frequency it is in total
contradiction with the experiment. More than this, according to classical
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physics the energy _[1 (v)dv will be infinitely large, which obviously is
0

nonsense. Ehrenfest calls the disagreement between the theory and the
experiment at high frequency (ultraviolet band) an ultraviolet catastrophe for
classical physics.

7.1.2 The photoelectric effect

The ejection of electrons from a surface by the action of light is called
photoelectric effect. The phenomenon was discovered by Heinrich Hertz in
1887. It is well known by the course of general physics and therefore we
shortly shall summarize its basic.

1. If the frequency v of the incident light is kept constant, the photoelectric
current 7, increases with increasing intensity / of the light.

2. Photoelectrons are emitted within less than 10~ s after the surface is
illuminated by light.

3. For a given element, the emission of the photoelectrons takes place only
above a certain minimum frequency vy, called a threshold frequency.

4. The maximum kinetic energy 7, . of photoelectrons is independent of

ax

the intensity of the incident light - the stopping potential V/; (the potential
at which the photocurrent becomes zero) is the same for the light of

different intensities (Fig. 7-2a),i.e. T, = ‘eVO‘.

5. The maximum kinetic energy 7, .. of the photoelectrons depends of the

frequency of the incident light. The stopping potential is different for
different frequencies, even though the intensity of the light is the same
(Fig. 7-2b).

6. The dependence of the kinetic energy is linear one on the frequency v, as
shown in Fig. 7-2¢ for different metals: cesium, potassium and tungsten.
The analytical relation is following:

T =av+b. (7.4)

7. Here a is the slope of the straight line and it is the same for all elements,
while b is the intercept with the axis Y and it is different for different
elements.

The classical theory explains point 1, contradicts points 2+5 and can not
explain point 6 at all.
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Figure 7-2. Photoelectric effect: a) at a fixed frequency (v = const ) the stopping potential ¥

is the same for different intensities of the incident light; b) the stopping potential and, hence,
the kinetic energy of photoelectrons are function of the frequency of light even though its
intensity is fixed (/=const); c) a linear dependence of the maximum kinetic energy 7,,, of

photoelectrons on the frequency v for different metals ( 7,

max

=av+b).

7.1.3 The dependence of specific heat on temperature

Here we shall consider the specific heat of solids. As theirs atoms
oscillate around the lattice points each atom has 3 vibrational degrees of

freedom. A mole of a solid consists of N, atoms and has 3N, degrees of
freedom. We saw in Chapter 5 that classically each degree has an average
energy kT, (kT,/2 kinetic energy and k7, /2 potential energy). Thus the
internal energy of a mole of a solid should be E =3N kT, =3RT,, where

N, is Avogadros number, k is Boltzmann's constant and R is a gas constant
(R = 8,31 J/mol.K). From here, the molar specific heat should be a constant

¢ =3R =25 J/mol.K. This is the law of Dulong and Petit. The molar heat
for many monatomic substances is approximately 3R at room temperature.
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But for many solids the law of Dulong and Petit is not satisfied. Moreover, it
is found experimentally that for all solids the specific heat is function of

temperature and c < T, (Fig. 7-3).

7.1.4 Atomic spectrum and structure of an atom

At the end of XIX century it was known that the atom can absorb the
electromagnetic radiation and pass into excited states. Atoms in an excited
energy state do not remain there and emit excess energy in the form of elect-

3R .
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Figure 7-3. The specific heat of diamond as a function of temperature. It is obvious the
inadequacy of classical physics (the dashed line) to the experimental results (the crosses). The
solid lines are plotted according to the theory of Debye.

romagnetic radiation. At this the spectrum of any material's atom consists of
discrete lines. In contrast to the continuous spectrum of electromagnetic
radiation, for instance, of the surface of blackbody, the free atoms emit only
a number of discrete wavelengths - generally they can be a lot. When the
additional energy is large enough the atom ejects an electron - a particle with

negative charge and small mass (~10~" from the atom mass). It was naturally
to suggest that in a neutral atom the electrons were tied with the positive-
charge "atomic core". At excitation the electrons begin to oscillate, as a
result of which one sees the emitted atomic spectrum. According to the
classical theory the frequency of the radiation should be equal to the the
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frequency of the electron oscillation or multiple value of it (let recall the
string, which oscillates with frequencies v, 2v,, 3v,, ...). But experimentally

one observed the frequencies, which are not multiple to one or to a few
frequencies. This suggested assuming as many degrees of freedom, as the
number of the spectral line emitted by the atom. But even for the simplest
atom (hydrogen) a number of the degrees of freedom becomes innumerable.

Investigation of the spectra of each kind of atom shows that it has its own
characteristic spectrum, i.e. its own combination of spectral lines. Thus the
spectrum is a characteristic of the type of atom. Atomic spectra became a
useful tool for identification of their characteristic lines. And this transforms
spectroscopy in a very useful addition to the traditional techniques of
chemical analysis. Chiefly for this reason in the last years of XIX century the
scientists expended great efforts in measuring wavelength of line spectra of
the elements. Experimental measurements were difficult, because the spectra
consisted of hundreds of lines and were very complicated, especially for the
multielectron atoms.

The spectrum of hydrogen atom is relatively simple because it consists of
a single proton and a single electron. The visible part of the hydrogen
spectrum is shown in Fig. 7-4. We see that the lines exhibit definite
regularities. They group in the so-called spectral series. In the figure is shown

Ha Hg H, Hs H,H H .

11118

Figure 7-4. The visible part of the hydrogen spectrum.
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the first series, which was discovered by J. J. Balmer in 1885. The space
between the wavelength of the adjustment lines continuously decreases with
decreasing wavelengths. Each series converges to the so-called series limit of
the wavelengths. For the Balmer's series, shown in the figure, this is 3456,8
A. The regularity of the H spectrum tempted Balmer to find an empirical
formula for the wavelengths of the series:



158 Chapter 7

2

A=3645,6—— A, (7.5)
n =4

where n=3,4,5,.... For n=3 we have H, line, for n=4 - H; and so on.

For n=c0 one obtains the series limit A =36455A. A little later Rydberg
expressed Balmer series in more convenient form:

| 1 1
v EI:R(Z_Z_}?_Z], (7.6)

where v* shows the number of wavelengths per unit length and is called

spectroscopic frequency (the reciprocal wavelength) and R is the Rydberg
constant, the most recent value of which is

R=10967757+12m"™". (7.7)

Formulae of the type of (7.6) were found for a number of series for H
spectrum. For instance, we show five series of lines in Table 7-1.

Table 7-1. Some of the spectrum series in the hydrogen atom

Series of Wavelength ranges Formulae Value of the number n
L Ultraviolet =2,3,4, ...
yman raviole VE= R LZ_LZ n
1 n
Balmer Near ultraviolet VEe 1 1 n=3,4,5, ...
and visible T2 2
Pashen Infrared 1 1 n=4,5,6, ...
VE=R -
3 n
Brackett Infrared 1 1 n=5,6,7, ..
ViR —5-—
4 n
Pfund Infrared 1 1 n=6,17,8, ...
v¥=R FEa—
n

All these formulae strongly suggest that the spectroscopic frequency (the
reciprocal wavelength) can be written as a difference of two terms, each of
the form

R
=,
n

T(n)= n=1,23,. (7.8)
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This statement amounts to the Ritz combination principle. The two terms

T(m) and T(n) combine to produce a spectral line at a spectroscopic
frequency given by

v =T(m)—T(n)= R(iz—iz),
m n

m=1,2,3..., n=123..., n>m.

(7.9)

The inadequacy of classical physics becomes quite obvious at the
explanation of the atom structure. In 1912 Ernest Rutherford on the series of
experiments with positively charged o -particles, which shot through thin
metallic foils, made the following conclusion:

1. The a -particle are scattered by strong Coulomb repulsion;
2. "Atomic core" with almost the whole mass of the atom is positively
charged and is concentrated in a small region in the centre with radius

1072 =10 e¢m; it is called the nucleus;

3. The structure of the atom is like the Solar system, the electrons being
circling around the nucleus as the planets - around the Sun.

Classical physics is in contradiction to the results of the experiments and
with the suggested in their basis planetary model of the atom. The electron
circling around the "atomic core", i.e. around the nucleus, ought to collapse
into the nucleus, because it radiates electromagnetic waves and loses energy.
This is in contradiction with the observed stability of the atom.

Really, if the orbit of the electron in the atom around the nucleus is a
circle of radius » then the atom has an electric dipole moment d = er . Due to
the dipole radiation the energy of the electron £ does not remain constant,
but decreases and consequently the orbit radius also decreases. As the

relative estimate shows the electron should lose his energy only for 107%s.
Then the radiation frequency which is reciprocal to the radius in the degree
3/2) (the third law of Kepler) should change continuously and no discrete
lines in the atom spectrum would be observed.

Let us summarize the results of the Rutherford planetary model from the
classical point of view:
— the atom can not be stable; more than this it ought to lose all its energy

for very short time -10~ s;

— the frequency of the radiation which is reciprocal to orbit radius in the
degree 3/2 (the third law of Kepler) must be continuous; this is in
contrary to the observed discrete line spectrum.
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7.1.5 Roentgen rays and the Compton effect

In 1895 the German scientist Wilhelm Roentgen discovered that when the
electron, accelerated by the potential V, strikes a metallic target, a highly
penetrating radiation is emitted. The rays were called X-rays because nobody
knew what this radiation was. Experimentally were found outstanding
features of X-rays spectrum:

1. At relatively not high energy of the electrons the spectrum was

continuous up to a certain maximum frequency v, which is

proportional to the potential V- v __ = const|V| .

2. When V increases at a given value of V discrete lines superimpose on the
continuous X-ray spectrum. These lines are different for different atoms
and do not depend of the potential V. But for this discrete spectrum the

maximum limit frequency v, retains.

In 1912 von Laue confirmed the wave character of the X-rays. But the
existence of the high frequency limit and its dependence on V can not be
explained by classical physics.

The classical theory shows helplessness and at the explanation of the X-
rays scattering by free electrons. According to classical electrodynamics
when an electromagnetic wave of frequency v is incident on a free charged
particle (in our case this is an electron) the last one begins to oscillate with
the same frequency v. In turn, the oscillating electron reradiates an
electromagnetic wave of a frequency v, i.e. of the frequency of the incident
wave. So, from the point of view of the classical theory the scattered by the
free-electron wave should have the frequency of the incident wave, but the
experimental observations show that the frequency of scattered wave v' is
less than the one of the incident wave v - v'<v (or wavelength A'>1).
This effect was explained by American physicist Arthur Compton and
therefore is called Compton effect. The schematic sketch of the experiment
is shown in Fig. 7-5a. A beam of monochromatic X-rays is obtained from the
source S. After the collimator C (a slit system) it is made incident on the
target 7 made of something (for instance of carbon) in which the outer
electron are almost free, i.e. their binding energy is negligible to the energy
of the incident wave. The results for the wavelength of the scattered wave at
different angles are shown in Fig. 7.5b. The points are experimentally
measured values and the lines are calculated by Compton on the base of
quantum hypothesis of Plank (see the next section 7.2)
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Figure 7-5. Compton effect: a) Compton's experimental arrangement: S - a X-rays tube, C - a
collimator, T - a target, D - detector of scattering radiation; b) scattering of the K, line of

molybdenum (wavelength A ) on the carbon at angles 45°, 90° and 135°. Here A' stands for
the wavelength of the scattered wave.
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7.2 THE FIRST STEPS IN QUANTUM MECHANICS

At the beginning of the XX century one by one the phenomena out of the
scope of classical physics found explanations by new ideas. But for classical
physics the ideas were strange even scandalous ones. With these ideas the
"hard nuts", on which it stumbles, were explained. In a short time the se-
parate ideas form the fundamental of new mechanics - quantum mechanics.
Chronically, the basic moments of the quantum-mechanics creation are:

1901 Planck Blackbody radiation

1905 Einstein Photoelectric effect

1907 Einstein . .

1912 Debye } 1907 Specific heat of solids

1913 Bohr Quantum theory of an atom and spectra
1922 Compton Photon scattering on electrons

1924 Pauli Exclusion principle

1925 de Broglie Matter waves

1926 Schroedinger Wave equation

1927 Heisenberg Uncertainty principle

1927 Davisson and Germer Experimental verification of wave
properties of electrons
1927 Born Interpretation of the wave function

In this section we shall consider in details the new explanation of the
phenomena, exposed in the previous section.

7.2.1 Planck’s hypothesis and the blackbody radiation -
quanta

For the explanation of blackbody radiation Max Planck has introduced
absolutely incredible assumption that the energy of the emitted and absorbed
radiation with frequency v can not be arbitrary but only a discrete set of
energy. The radiation with frequency v exists only in multiples of Av -

nhv or (nhw=n(h/2r)2mv). The constant h (7i=h/2x), which has the
value ©=6,626.10"*J.s (1=1,055.10"*J.s), is called Planck's constant and
the bundle of energy

E=hv=ho (7.10)

is called an energy quantum or (later) a photon (in 1926 the chemist Gilbert
Lewis suggested the name "photon"). The expression (7.10) is called the
Planck radiation law. Postulating that the energy is quantized, Planck



7. THE SOURCES OF QUANTUM MECHANICS 163

defined the spectrum of the blackbody, which coincide with the experimental
one (Fig. 7-1). For a given frequency v all the quanta have the same
energies; the quanta of high frequencies have high energies and the quanta of
low frequencies - low energies. When a blackbody is in thermal equilibrium,
the atoms (molecules) within it will emit radiation with frequency v only if
they have energy equal or greater than 4v . From the Maxwell-Boltzmann
distribution it is clear, that for low frequency many atoms correspond to this
condition, but as v increases the number of atoms (molecules) having
energy in excess of /v decreases. Therefore /(v) does not increase with

increasing v, but goes to zero asymptotically. Thus ultraviolet catastrophe
predicted by classical physics is avoided.
According to the Maxwelll-Boltzmann distribution if there are N,

particles in a system in equilibrium, the number of atoms N, with energy
E, attemperature 7, is as follows:

N, =N, exp[—]fT" ] (7.11)
0

Using for the energy his quantum hypothesis £, = 4v, Planck calculated

the mean energy and arrived at the following formula for the spectral
distribution of the blackbody radiation:

8mhv? 1

I(v)= .
v) ¢ exp(hv/kT,))—1

(7.12)

This is the famous Plank radiation law. In Fig. 7-6 the theoretical formula

I(A)

! \ | \ | !
0 1 2 3 4 5 6 A, pm

Figure 7-6. Comparison between the experimental blackbody spectrum (open dots) and the
theoretical Plank's radiation expression (continuous curve). The agreements between them
confirms the Planck quantum hypothesis.
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and the experimental points are compared. It is obvious that the agreement
is very good. Such agreement is observed at the value of Plank constant

h=6,625.10"" J.s.

7.2.2 Quanta and the photoelectric effect

Einstein did the next step. For the explanation of photoelectric effect he
applied the Planck hypothesis as he went further. Namely, he suggested that
electromagnetic waves were not only emitted and absorbed in the form of
bundles that existed as quanta, but also exist in the form of quanta. These
quantizied electromagnetic waves were later called photons. When the light
incidents on a metallic surface the electron absorbs a photon of energy hv .
For the escaping of the surface it uses up an amount of energy w, called the
work function of the metal. The rest of energy of the absorbed photon
appears as kinetic energy of the electron. Its possible maximum is:

=™ gy~ (7.13)

We receive the linear dependence (7.4) of the kinetic energy of the pho-
toelectrons on the frequency. Comparison shows that % is the slope a and -w
is the intercept b of the straight line 7__ (v) (see the text under Fig. 7-2c¢).

max

On the other hand we can obtain the Planck's constant from the experimental
results. This value agrees with the value of 4 obtained by fitting Planck
radiation law (7.10) to the spectrum of the blackbody radiation. Thus the
quantum hypothesis explains point (6) of section (7.1.2). The explanation of
points (1) to (5) is simple and logical and therefore we leave it to the reader.

7.2.3 Quanta and the specific heat of solids

We see that according to classical physics the specific heat of solids
should not depend on the temperature, which is in disagreement with the
experimental results. In 1907 Albert Einstein proposed the solids to be
treated as a set of harmonic oscillators with frequency v, which energy was
discrete, i.e. it was quantizied. The essence of the problem of the specific
heat is the same as the radiation of blackbody. According to the Planck's
hypothesis the heating (the cooling) of bodies is accompanied with
absorption (emission) of quanta by them. As soon as the solids consist of
oscillators with energy hv, at low temperature the transmitted energy
consists of low energetic quanta, which can not excite the oscillators.
Therefore the specific heat decreases (Fig. 7-3). Einstein assumed that the
solids consist of oscillators with fixed frequency. The obtained theoretical
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results agree with the observed specific heat over a wide range of
temperatures. However at low temperatures the theoretical specific heat was
in disagreement with its observed variation. This was made more precise by
Debye in 1912. Like the proposal of Planck for the blackbody he treated the
solid as a set of oscillators with various frequencies. The comparison be-
tween the theory of Debye and the experimental results is shown in Fig. 7-3.

7.2.4 The Bohr’s theory of the atom and the atomic
spectrum

In 1913 Neils Bohr took a decisive step further, applying Planck's idea
for the quantizying of the energy to other observable, namely to the angular
momentum. On the base of his famous postulates, which were rather strange
from the point of view of classical physics, he suggested a model of the
atom, which was in a very good agreement with the known at that time
spectroscopic data (in particular with these of H spectrum). These postulates
are following:

1. An electron in an atom can move in certain circular orbits around the
nucleus under the influence of Coulomb attraction between them. These
orbits are called allowed stationary states (they are discrete) and the
motion in them obeys the laws of classical mechanics.

2. Instead of the infinity of orbits which would be possible in classical
mechanics, the allowed orbits are only those for which the orbital angular
momentum is equal to an integral multiple of 72 (Ai=h/2r):

L=nh, n=1,2,3,.. (7.14)

3. An electron moving in such an allowed orbit does not radiate
electromagnetic energy, despite of the fact that the motion is with
constant acceleration. Thus in allowed stationary orbits (states) the total
energy remains constant.

4. An electron moves on from the orbit (state) of initial higher energy £ to
the orbit (state) of final lower energy £’ with a jump (not continuously)
emitting only one photon (quantum) of energy /v so that

W=E-E" (7.15)

The first postulate confirms the existence of the atomic nucleus (it passed
only one year from the famous experiment of Rutherford about the scattering
of the a-particles). The second postulate introduces the quantization. It is
important to note the difference between Bohr's quantization of the orbital
angular momentum of an atomic electron moving under the influence of the

Coulomb force (o< 1/7*) and Plank quantization of energy of the oscillator
(this can be the motion of electron which moves under the influence of the
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harmonic force). The third postulate is needed to prevent the instability of an
atom, predicted by classical electromagnetic theory. In the experiments
atoms are observed to be stable. The fourth postulate is just Einstein's
postulates combined with the law of conservation of energy - the energy of
photon Av is equal to the difference between the energy of the initial and the
final electron states.

These postulates are a mixture of classical and non-classical physics. It is
supposed that an electron moves in circular orbit obeying the laws of
classical mechanics, but the idea for the discreteness (the quantization) of
angular momentum is included. It is supposed that the electron obeys one of
the laws of classical electromagnetic theory (the Coulomb law) but it does
not obey the other law (namely the law for the emission of electromagnetic
radiation of a moving with the acceleration charged body). But we should
not be surprised that the laws of classical physics, which were based on our
experience with macroscopic system, are not entirely valid when we analyze
the microscopic systems like the atoms.

The Bohr's postulates give the possibility to receive clear expression for
the spectral term (7.8) and to determine the known spectral lines of the hyd-
rogen atom. We shall consider in details these questions in the next chapter.

7.2.5 Photons and Compton effect

The next who dares to use the unusual quanta of Planck was American
physicist A. Compton. With them he successfully explained the scattering of
X-rays on the free electrons and thus obtained a dramatic confirmation of the
particle-like nature of radiation. The word "dares" is not random. Despite the
success of the theory of the quanta the physicists considered them as a
newcomers. In this sense the known exclamation of Schroedinger is very
indicative: "If we are going to save these accursed quantum jumps I regret
that in generally have had deal with the quantum theory".

Compton uses the suggestion of Einstein the light to be considered as a
beam of photons of energy /v . Then according to theory of relativity the
energy E and the momentum p of the photons can be written as follows:

E=hv, E=pc — p:h—v. (7.16)
c

And here as at the photoeffect (despite there not so obviously) we
consider the photons of electromagnetic waves as particles
(corpuscles). The idea of the wave and particle characteristics of one
material object is the second basic idea of quantum mechanics (after
the idea of discreteness). At such an interpretation of the photons the
scattering of the X-rays may be considered as an elastic collision
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between the photon and the electron (Fig. 7-7). Then the momentum
conservation law in x- and y-direction and the energy conservation

law require following:

v '

—=——cos0 + p, cosa,

c c
w' . .

0=—-s5in0 — p, sinc, (7.17)
c

hv=hv'+T,.

From these three equations we can express the scattering wave

¥ Y

\VARVEAVE I 0 ‘ X

e Pe = MUV

Figure 7-7. Scattering of X-rays can be considered as a collision between a photon and an
electron. Here the sign "'" stands for the values after the collision and p,, T,, m and m, are

the momentum, the kinetic energy, mass and rest mass of the electron, respectively.

through the incident one. First, we eliminate the angle o and rewrite the
first two equations in the form:

p.ccosa=hv —hv'cos0,
(7.18)

p.csina=hv'sin6.
Squaring and adding these equations, we find

PR =) + (') = 2(hv)(hv ") cos6. (7.19)
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By using the third equation we obtain the total relativistic energy of
the recoiling electron

E=E_ +mc’=(hv—-h")+mc’, (7.20)

which from the theory of relativity is equal to

E=\pc +mc". (7.21)
We equate Egs. (7.20) and (7.21) and square:

pct =(hv—hv'yY =2(hv —hv"Ymc’. (7.22)
Now we equate Egs. (7.19) and (7.22) and solve for Av':

W= hv (7.23)

1+ y1—cost)
m

2
C

e

By using relation AV = A'v'=c¢ we may turn on from the frequency to
the wavelength and to obtain for the change in the wavelength:

l'=l+i(l—cose) . (7.24)
m.c

e

Thus Compton confirms theoretically the experimental fact that the
scattering wavelength 1A' is longer than the incident wavelength
(A'> A) and it depends on scattering angle 0 - (A(0)).

7.3 WAVES VERSUS PARTICLES - DUAL NATURE OF
THE RADIATION

The old dispute in classical physics for the essentiality of the light
(weather it is a beam of particles (corpuscles) or represents a wave)
terminated with the victory of the supporters of the wave character of
the light. It formed an opinion that the light was electromagnetic wave
and the theory of radiation of Maxwell-Lorentz appeared. The
experiment of diffraction and the interference of the light were
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decisive. We shall remind them shortly (the details may be seen in H. J.
Pain, The Physics of Vibrations and Waves, 2nd Edition, John
Wiley&Sons, 1976, Chapter 10).

All waves display the phenomena of interference and diffraction.
These phenomena arise from the superposition of waves from separate
sources. The difference between interference and diffraction is merely
of scale. In the interference from N narrow slits of separation d >> 4,
each slit may be seen as the source of single waves (a point source) and
the interference picture is a result of the superposition of the waves
from these sources. In diffraction from a slit (source), the aperture o is
of the order of the wavelength A and according to Huygens' principle
every point of the wave front in the slit represents a source of
secondary waves and the resultant diffraction picture is a superposition
of these secondary waves. (We shall note that at these cases the
sources at the interference are separated and at the diffraction are
continuously placed). For the interference from N equal sources (slits) of
separation d (Fig. 7-8) and each of intensity 7/ (the square of the amplitude)

the intensity at the distant point P in a direction 8 from the slits is:

sin (NﬂdsmG)
2
I=1 A )y s NB g (md e, (7.25)
. z(ﬂdsme) sin® 8’ 2
sin®| ==

When one have two slits (Young slit's experiment) the intensity is
as follows

sin*2f8
sin’

I=1

=41 cos’ B. (7.26)

At the diffraction from a slit with a finite width a picture is obtained as at
the interference from N (N — oo) point sources continuously placed in
the slit. We would like to underline that the phenomenon of
interference lays in the basis of an every diffraction picture. The
intensity of radiation is:

sin’ o
=[O —
o

a= %sin@ , (7.27)

d
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Figure 7-8. Interference from N equal sources of separation d. The separation between
principal maxima is dsin@=nd (n=01%2,.) and their intensity is /=N2I . With

increase of the number N of the sources the principal maxima increase (/< N?) and their
width decrease (o< 1/ N ).

where / is the intensity of the central maximum (Fig. 7-9a).

The intensity of the diffraction pattern from two equal slits (N =2)
of width a and separation d is as follows:
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Figure 7-9. Diffraction pattern: a) from a single slit of width a - the diffraction maxima are
atasin® =mA ; b) from two equal slits of the same width at the distance d - the interference
fringes, defined by the condition dsin@ =nA , are modified by the envelope of a single slit
diffraction pattern.

-2
1,=41," % cos? B. (7.28)
o

The presence of the interference is obviously - 7, o< cos® B (compare
with (7.26)). Together with this we have diffraction from a slit of width a -
I, o<sin’a/a’”. As a result we see the interference picture from two slits in

which interference fringes are modified by the envelope of a single slit
diffraction pattern (Fig. 7-9b). We shall note that when the slit is circle one
the considered diffraction patterns present concentric light and dark rings.
After a short return to the classical wave theory let deal again with the
difficult phenomena of Section 7.1. The consideration of the light as an
electromagnetic wave could not explain the blackbody radiation, the
photoelectric effect and the Compton effect. Only the introduction of the
energy bundles (quanta or photons) gives the possibility to explain it. At the
analysis of Compton effect besides energy of these photons we prescribe
them momentum. As the energy, the mass and the momentum are
characteristics of the particles, the photons should be considered as particles
(corpuscles). But then will they (the particles) be able to explain diffraction
and interference? In fact what are the photons - particles or waves? There
arises quite strange situation in which the optical phenomena split on the two
groups, the one of them can be explained only by particles and the other -
only by waves. In classical physics these points of view are mutually
exclusive. This confrontation was called wave-particle duality. Classical
physics considers two types of motion - of particles and waves.
Consequently it defines two categories of objects - matter and radiation. The
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matter consists of particles, which are localized in space, and their motion
with the defined trajectory obeys Newton's laws. The wave motion is
nonlocalized. The wave is without restriction and it has not a trajectory. On
contrary of the matter the radiation can not be divided on separate particles,
which save its space localization in time. The radiation obeys the
electromagnetic theory of Maxwell and the phenomena diffraction and
interference shows that it has wave character.

Namely these two phenomena we may use in classical physics as a
criterion to differ particles and waves. Such criterion significantly will ease
us to understand the strangeness and dual character of the microscopic
world.

Fig. 7-10 shows a thought experiment on the transition of a beam of
classical particles from the source S through the slits 4; and A4,.
Shutting consecutively the slits 4, and 4, we obtain the intensities /;
and /7, of the particles (the number of particles through the unity surface
for time 1 s) on the screen £. When the both slits are open the beams

£ E E

Ayt T :l
v - 7

Figure 7-10. Transition of a beam of classical particles trough two slits 4, and 4, (S - source,
E - screen, I - intensity): a) the slit 4, is closed; b) the slit 4, is closed; c) the both slits are
opened - their intensities add, i.e. the total intensity is /,, =1, +1,.

from 4, and 4, superimpose themselves and the measured intensity is
a sum of the both intensities:

I,=1,+1,. (7.29)

Let consider the same experiment, but instead of a source of particles to
have a source of waves (Fig 7-11). The wave is characterized by the wave
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function y(r,?) (for example,y (r,?)=constexp[i(kr—w¢) for a plane wave.
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Figure 7-11. Transition of a wave trough two slits 4; and 4,: a) the slit 4, is closed; b) the slit
A, is closed; c) the both slits are opened the interference-diffraction picture is not the sum of
the both diffraction picture, i. e. the total intensity is not a sum of the separate
intensities [, =1, +1,.

The intensity of the wave (the wave energy through the unity surface
normally to the propagation for time 1 s) is defined by the square of the
module of the wave function:

To<lyl. (7.30)

If the photons are particles, then the luminosity upon the screen should be
determined by their number 7 o< n, but if they are waves - by the square of

amplitude / o< |l//|2 . In our experiment we have
I, #1+1,, (7.31)

i.e. the total intensity is not the sum of the both intensities - we observe
well known diffraction-interference picture. Here we shall note that the
same values of the wave are added:

Via =V, 1y, (7.32)

For example, when one has an electromagnetic wave, the intensities
of the electrical field are added (not the intensities of the waves).
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So we have very important criterion: when the beams of classical
particles are superimposed their intensities add and when the waves
are superimposed the meanings of the oscillating values are added but
their intensities do not are added.

Let us now apply the criterion to the photons, i.e. to conduct the
double slits experiments with the photons. In the real experiment one
uses for the slits the distance between the atoms in a single crystal (this
ensures the identity of the slits). The first experiment was conducted by
Laue in 1912 with Roentgen quanta. He obtained the result of Fig. 7-
11. Consequently the photons are waves. Nevertheless the photoeffect
and the effect of Compton exist?! Then we may arrange the additional
test for the photon. We shall launch the photons in our experiment one
by one. Let one of the slits to be covered up. When the photons strike
the screen one by one we observe a separate flashes and there is no
diffraction picture. This means that the photons are particles (even
when the intensity of the wave is very weak, the last exhibits
diffraction properties). Instead of clearing the matters, our test makes
them more strange and incomprehensible. One photon has the
behaviour of a particle, but the beam of photons - of a wave. More than
this, if we launch the photons one by one a long time so theirs numbers
is equal to the photons number at short exposition we shall obtain the
same diffraction pattern as at this short exposition (Fig. 7-12).

Figure 7-12. Experiment with photons in which the individual electrons are only
emitted one at a time. The distribution of the photons coincides with the intensity of the
diffraction pattern.

If the both slits are opened we also observe flashes of the separate
photons on the screen. But when we increase the number of photons
these flashes form the typical diffraction-interference picture of the
double slits (Fig. 7-13).
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Figure 7-13. Growth of the interference-diffraction picture (only the central maximum
is shown) when a beam of photons is incident on a double-slit system. The
photographic plate is struck by: a) 28 photons: b) 1000 photons; c¢) 10 000 photons; d)
10°® photons. (Note that the width of the slits and the separation between them in the
case d) is different than in the other cases.)
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The photons have clearly expressed dual character. In one case they
have the behaviour of the particles, but in other - of the waves. The
idea for particle-wave duality of the photons was raised firstly by
Einstein in 1917 when he suggested the introduced by Plank quanta to
be considered as peculiar particles with the energy E =hw and
momentum p =hw/c (the photons one call them after 1923).

7.4 DE BROGLIE’S WAVES. WAVE-PARTICLE
DUALITY

Let summarize the principal problems considered up to now. The
Maxwell's theory for the electromagnetic waves and the experiments of
Hertz prove the wave nature of the radiation. However this wave
theory can not explain some experimental facts as the spectrum of
blackbody radiation, photoelectric effect, the specific heat of solids and
the Compton effect. For their explanation one suggests the hypothesis
of the quanta (the photons), according to which the radiation has
discrete character and exhibit particles-like properties. To every
electromagnetic wave with frequency v and wavelength A can be
associated energy £ and momentum p so that:

E=hw=hv, p=hk= (7.33)

h
R

Discreteness and wave-particle dualism are two basic ideas, which
have not an analogue in classical physics and which development leads
up to quantum mechanics.

In 1924 Louis de Broglie did the next step. He suggested that if the
radiation had a particle-like nature, then it should follow from basic
concepts of symmetry that particles ought to posses a wave-like nature.
Moreover he went out to suggest that the same basic relationships
about the energy and the momentum should exist in the both case.
Thus the frequency and the wavelength of the waves in order to be
associated with particles ought to be related to their energy and
momentum by the same relation as Eqgs. (7.33):

v=E/h, A=h/p, or

(7.34)
w=E/h, k=p/h

Thus for particles the equalities (7.33) have a real physical sense if
they are read from right to the left. So we get to the fundamental
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connection between particles and waves. The waves associated with
particles are called de Broglie's waves. Then, taking into account the
relativistic character of the energy, de Broglie maintains the connection
between the phase v, and the group v, velocities of these waves with

the velocity v of the particles.
Substituting the wave characteristics v and A and taking into

account that E = mc’> we obtain

:AV:—:—:
p my

v (7.35)

2 2
E mc c

h —

P v

As always v<c, the phase velocities of the de Broglie's waves is
greater than the velocity of light.

According to the definition, the group velocity is v, =dw/dk.

Passing from wave to particles characteristic and finding the derivation
oE /dp , we obtain following:

0E  pc? dw J0E mvc?
w B Tw T we T

2_ 22 24
E°=pc”+m;c,

The group velocity of the de Broglie's wave is equal to the particle
velocity.

If de Broglie's suggestion is correct, the wavelength of the
associated wave with a microscopic particle is A =4/ p . For example,

for an electron after it has been accelerated through say 150 volts it is
A=1A and for some atoms at room temperature it is as follows: for H
it is A=1,2A (for the molecule H, it is A=084A), for He it is
A=07A, for Ag - A=0,06A. For an observation of the diffraction of

the wave with such small wavelength one needs slits of the same order.
Therefore the crystal lattice of some element (the atoms have a spacing
of several angstroms between them) appears to be suitable.

The first experimental proof of the existence of matter wave was
being undertaken by Davisson and Germer in 1927. Their brilliant
experiment is shown on Fig. 7-14. A beam of electrons is directed onto
the surface of nickel crystal. The electrons have been elastically
scattered from the crystal surface. Angular distribution of the scattered
electrons has been measured. The electron scattering was found to have
very pronounced maxima and minima. For the distribution they
received a diffraction picture of dark and light rings which intensity
decreased out of the centre. The explanation of this is trivial if accept
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the hypothesis of de Broglie, that with the electron can be associated a
wave with wavelength A. A study of Fig. 7-14 indicates that the path-
length difference for rays, which have been scattered from successive
layers of nickel, is given by 2dsinf . At the condition (Bragg relations)

2dsinf =nA,
(7.37)

2dsin@ = (n +%)l

i e Tt o n
Figure 7-14. The experiment of Davisson and Germer: a beam of electrons incidents
on at monocrystal (a); The electrons reflected from successive atomic layers with a
path-length A =2dsin6 interfere according to the de Broglie hypothesis and as a result

one get the diffraction picture (b).

one obtains correspondingly bright and dark rings.

The experiment of Davisson and Germer is a realization of the con-
sidered experiment criterion and proves that the particles, such as elec-
trons, exhibit wave-like properties. More than this, in 1949 Russian
physicist Fabricant passed weak electron beam through the diffraction
apparatus, which corresponded, to our criterion. The time interval bet-
ween two electrons was larger than the pass time (the time from source

to the screen) 10* time. In fact the electrons pass individually. The re-
gistration was made by the fluorescent screen. The result was analo-
gous to the corresponding experiment with photons and the view was
analogous to the Fig 7-12 and Fig. 7-13 (the difference was only in wa-
velength). Like the photons the electrons were registered as particles.
But after a long exposition (many electrons) their distribution on the
screen forms a diffraction pattern and fall into their bands (rings).

A lot of experiments prove dual character of the microscopic ob-
jects. (To the last ones we relate the photons, the molecules, the atoms
and the elementary particles.) /¢ is remarkable that one and the same
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object once exhibit wave properties (the photons and the electrons
diffract when they pass through the slits of enough small dimensions -
the diffraction grating or the crystal lattices), but the other time -
particle properties (the photons - the photoelectric effect and the effect
of Compton, the electrons - for example in the cathode-ray tube).
Sometimes a microscopic object exhibits itself as a wave (for example
at the propagation), but some times - as particles (for example at the
registration). But this does not mean "it behaves as it wants". Quantum
mechanics allows defining in which experiments it will appear as a
particle and in which - as a wave. In modern physics the wave-particle
dualism is understood as potential possibility of the microscopic object
to exhibit these or those properties in the dependence of the outer
conditions (in particular plus the measurement and the observe
conditions). Clearly and shortly the essence of the dualism is expressed
by V. A. Fock in the article "For Interpretation of Quantum
Mechanics" (V. A. Fock, Philosophy Question of the Modern Physics,
Moscow, AS of SU (in Russian)) so: "One may say that the potential
possibility exists for atomic objects to appear or as a particle, or as a
wave on dependence of the outer condition. The wave-particle dualism
consists namely, in this potential possibility of different appearing of
the property inhered of the microscopic object. Every other, literal
understanding of this dualism as some model is not correct".

The microscopic object is neither a particle nor a wave. It is a
peculiar object, which can appear wave-like and particle-like properties
depending on the conditions.

Let us summarize some important properties of the dualism. The
phenomenon of interference is inhered to all microscopic objects. It
cannot be explained by the interaction of the microscopic objects
between them, i.e. neither by their collective properties, but by the
properties of the separate, individual microscopic object. From the
experiment-criterion it is clear that it is impossible to predict in which
point of the screen the single microscopic object will fall. But one can
predict the behaviour of the great number of the microscopic objects,
i.e. how they will be distributed on the screen.

The interference-diffraction picture is obtained and when the microscopic
objects are launched one by one to the double slits (see /,,on Fig. 7-11).

This picture is not a sum of the pictures when one of the slits is covered up,
i.e.l,, # 1, +1,. Therefore we are forced to recognize that the photon passes

some how through both slits at the same time. If we suppose that it passes
through only one of the slits we must admit that it "knows" about the exis-
tence of the other slit and it is influenced by this knowledge. Of course from
such concept the phenomena do not become clearer and more obvious. It is
impossible to imagine how this happens, but the experimental fact remains.
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At the end, when we have a notation for the basic ideas - a
discreteness and a wave-particle dualism - we shall underline the fun-
damental role of the Planck's constant. First it serves as a measure of
the discreteness of the microscopic systems. It defines the bundle hv of
the radiation energy and the step h/2r of changing of the orbital an-
gular momentum. It serves and as a measure of the limit of the micros-
copic phenomena (the quantum phenomena) and the macroscopic
phenomena (the classical phenomena). For example, if the orbital
angular momentum is much greater that # the quantization may be
neglected and the angular momentum may be considered as classical
one. In this aspect it is interesting to note that the intrinsic angular
momentum S can not be essentially large. Therefore the quantization
can not be neglected and the spin has not a classical analogue!

Second it plays the role of a connection between the wave (@, k)

and particles' (E, p) properties of the microscopic objects: E =hwo,
p =7k, We would like to underline that one and the same constantplays

the both roles. This fundamental fact results from the intrinsic unity of
the both basic ideas of quantum mechanics.

SUMMARY

The principal difficulties of classical physics when it tries to explain
the properties of the microworld are in the following phenomena: the
blackbody radiation, the photoelectric effect, the specific heat of solid
state, the atomic spectra and the atom structure, the X-rays and the
Compton effect. In all these phenomena the difficulties arise from the
mechanism of interaction of the mater with radiation.

The main particularity of the phenomena of the microscopic world
consists of character discreteness, appearing in the existence of an
indivisible quantum of action 4. This discreteness of the action is one
of the most fundamental properties of the Nature. In macroscopic scale
h is infinitesimal value and neglecting it we can consider dynamical
values classically as exactly defined and changing continuously. In
atomic and subatomic physics # can not be neglected and the
phenomena are purely quantum ones. The discreteness, i.e. the
quantization is observed as at the radiation (quanta /v ) as at the matter
(the gauntization of the energetic levels and the orientation of the
angular momentum of the electrons in the atoms and etc.).

In some experiments the photons exhibit as wave (interference and
diffraction), but in others - as particles (a photoelectric effect, a
Compton effect). The same appears for microscopic particles as well.
They may interfere and diffract (a diffraction of electrons and
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neutrons) or register as particles on the screen, on the photographic
plate or in Wilson camera. Microscopic objects can exhibit as waves
or as particles depending of the conditions. The compatibility of these
properties is not possible in classical physics. The wave-particle
dualism is the second basic idea in quantum mechanics.

Planck, Einstein, Bohr and de Broglie did the first suggestions and
hypothesis, which led to the development of these ideas.

P 1 an c k - the energy emission and the absorption of
electromagnetic radiation are discrete with quanta 7@

EF=ho.

Eistein - the light is a beam of Planck quanta (photons); later:
the photons (the quanta) with an angular frequency @ and a wavelength
A can be considered as particles of energy £ and a momentum p

E=hw, p=hk.

B o h r - the quantization (the discreteness) is character for the atom
- the energies between the energetic levels are equal to the Planck
quanta; the space quantization is multiple to the Planck constant.

De Broglie - as the photons with a frequency v and a
wavelength 4 can appear as particles with energy £ and momentum p
so the microscopic particles with energy £ and a momentum p can
appear as waves with a frequency v and a wavelength 21
(V=E/h,A=2r/k=h/p) - wave-particle dualism.

QUESTIONS

1. What could not explain classical physics in the blackbody radiation?

2. Which is the experimental and theoretical (classical) dependence of the
specific heat of solid state on the temperature?

3. Why is not the Rutherford's model realistic one according to classical
physics?

4. What is the relation between the wavelength of the incident and
scattering wave, when Roentgen wave are scattered by free electrons?

5. What is the idea of Planck for explanation of blackbody radiation?

6. What is new in comparing the suggestion for the explanation of
photoelectric effect with the idea of Planck?

7. How do you explain physically the increase of the wavelength of the
scattered wave of the Compton effect using the Planck's quanta?
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8. What do you understand when it is said that the phenomenon interference
is presented in every diffraction?

9. How do the diffraction patterns from one and two slits (apertures) differ?

10.What is the income of the diffraction and of the interference of photons,
passing trough two slits?

11.What are the basic categories of classical objects and how do they differ
from one another?

12.What is the principal difference in passing of particles and wave through
two slits?

13.In what does the dualism consist of the electrons, passing one by one
through two slits? Through which slit does a single electron pass?

14.What is the connection of the group velocity of de Broglie waves with the
particle properties of the microscopic objects?

15.What does the experiment of Davisson and Germer prove?

16.How does modern quantum mechanics interpret the dual character of the
microscopic objects?

17.Which are the both basic ideas of quantum mechanics?

18.What is the role of the Planck constant in the both basic ideas of quantum
mechanics?

PROBLEMS

1. In a photoelectric-effect experiment, it is found that when the surface of
sodium metal is illuminated with light of wavelength A =4200 A, the
stopping potential is V, =0,65 V. When a metal is illuminated with light
of wavelength 1 =3100 A, the stopping potential is ¥, =1,69 V.
Calculate Planck constant for these data.

2. Calculate the de Broglie wavelength associated with an electron with a
kinetic energy of 150 eV.

3. Obtain the dependencies w(k), Vo (k) and Vg (k) for the de Broglie plane

wave, which describes the free motion of a particle of rest mass .

4. Find out the wavelength of the de Broglie wave for a nonrelativistic
particle of mass m, and temperature 7; .

5. The photons with a wavelength A =0,024 A impinge on free electrons.
Calculate the wavelength of the photon that scattered at the angle 30° and
kinetic energy of the electron. Which will be these values at the
scattering angle 120°?

6. How many infrared light quanta with the wavelength A =10 um (the
frequency v =3.10" s ') are necessary to heat 1 mol water from
temperature of 0 °C to 100 °C?
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8.1 BOHR’S MODEL

As it has been mentioned the difficult problem of the stability of the atom
has been solved by the Bohr's postulates. The verification of these postulates
as of any set of postulates can be found only by comparing the predictions
that can be done from the postulates with the results of the experiment. In
this section we consider some of these predictions and compare them with
the data from Section 7.2.

Let us consider an atom, consisted of a nucleus of charge +Ze and mass
M and a single electron of charge -e and mass m,. Such atoms are, for
instance, hydrogen atom with Z =1, a singly ionized helium atom with
Z =2, a doubly ionized lithium atom with Z =3, etc. (The ionized atoms
having only single electrons are called hydrogen-like ions.) According to
Bohr the electron revolves in a circular orbit around the nucleus. Initially we
shall suppose that the mass of electron is completely negligible compared to
the mass of nucleus, i.e. the nucleus remains fixed in space. The second
Netown's law for the circular motion of the electron gives

0 2 :me

2 2
Ze v, (8.1)
r

where v is the speed of the electron and r is the radius of its orbit. This is
merely the equation F' =m_,a. The Coulomb force acts on the electron and

keeps it in its orbits by the normal acceleration. As the acting force is central
one (see (3.18)) the orbital angular momentum of the electron must be a
constant. Applying the second Bohr's postulate to the L =m,vr we have

m,vr =nh, n=12 3, .. (8.2)
Finding v and substituting it into (8.1), we obtain

242 2 2
n'h n-a, h
V= =
2 b
kym, Ze Z

=a,, n=1,2,3 .. (8.3)

2
0"

Now from the Eq. (8.2) it is easy to define the speed v of the electron
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nh kyZe®
m,r nh

. n=1,23, .. (8.4)

y=

The application of the Bohr's rules of the angular-momentum quantization is

restricted to allowed ones of the radii o< n” (8.3). Replacing the known
values of the constants we obtain for the radius of the smallest orbit (r=1) of
the hydrogen atom (Z=1) as follow

2
n=a, =l =0,53.10"m=0,5 A. (8.5)

kym e

A little further on we shall show that the electron has minimal total
energy on the orbit with n=1. Therefore we may interpret this radius as a
radius of a hydrogen atom in its normal state. The other methods gives an
estimate of the order of magnitude 1 A. So the Bohr's postulates predict a
reasonable size for the H atom. For the orbital speed v in the normal state we

obtain from (8.4) 2,2.10° m/s. It is apparent from the Eq. (8.4) that this is
the maximal possible velocity for the electron of the hydrogen atom. This
velocity is much smaller than the velocity of light (~1%) and this fact allows
to use classical mechanics for the H atom in Bohr's model. At the same time
Eq. (8.4) shows that for large values of Z the electron velocity becomes
relativistic. And an other interesting conclusion from this equation - the
quantum number # cannot take the value n=0.

Knowing the velocity of the electron and the force between it and the
nucleus, we can find the total energy of the electron. The potential energy at
a given distance from the nucleus is

3 k,Ze*
e

U= (8.6)

The potential energy of the electron is zero when it is in the infinitely
distance from the nucleus and the sign is negative because the Coulomb
force is attractive. From (8.1) we obtain for the kinetic energy the following:

2
T= lmev2 = koZe .
2 2r

Then the total energy E of the electron is

(8.7)




186

Chapter 8
2
E=U+T=-}7% __p (8.8)
r
Substituting in this formula  from (8.3), we have
kim Z%e* 1 7R

E=-—""<— == n=123, .. 8.9

! 20t n’ n’ 85

Substituting the value of m,, k,, e and i we receive for the constant R
approximately

472
R= m;hzko =2,17.10" T =13,6 eV. (8.10)

From the expression (8.9) we can do an important conclusion: the quantiza-
tion of the orbital angular momentum leads to the quantization of the total
energy of the electron. The energy-level diagram is shown in Fig. 8-1. With
the increasing quantum number 7 the total energy becomes less negative.

E n

0 — o0

—1.36.107* J = —0,85 eV 4
—2.41.107'% J = —1,51 eV 3
—5,42 .10 J = —=3,39 eV 2
—21,7.107% J = 13,6 eV 1

Figure 8-1. An energy-level diagram for the hydrogen atom.
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And it approaches zero as n approaches infinity. The normal state of any sys-
tem is the state with lowest energy. From the diagram we see that this is the
state with n=1. From Egs. (8.9) and (8.10) for the H atom (Z=1) we obtain

E=-R=-136 eV, (8.11)

which very well fits the experimentally obtained binding energy for H atom.
Let us consider the next situation. Initially an electron moves in an orbit

with quantum number #,; then it changes its state to one with number n,

(n,>n;). When the electron makes such transition it emits the

electromagnetic radiation of frequency v. Using the Bohr's model, namely
the fourth postulate, and (8.11) we obtain

E-F 2
y2 Bt B (ZR L1 gl L1 (8.12)
h h \n, n n, n
where Z stands for
2 4
%EﬁzkoLef:;zmo” s (8.13)
h 4mh

Going to spectroscopic frequency (see (7.6)) we can write (8.12) in the
following form:

2(/
vt 2 ﬂ{%_%). (8.14)

c \ny n

The expressions (8.9) and (8.12) allow concluding:

1. The state with the lowest energy, which is called ground state
(sometimes it is called normal state) is the state with n=1.

2. The states, in which n>1 have higher energy and they are called exited
states. In some physical processes the electron receives additional energy
and it makes transition to these states.

3. Any physical system tends to the lowest energy. Thus, an electron in an
excited state makes the series of transitions to the states of lower energy.
At every transition the difference of energy AE between levels is emitted
as a photon with the frequency v = AE/h under the form of the
electromagnetic radiation. For example, the electron is exited into state
n =6 and transits successively to the states n=4, n=3, n=2 and
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n=1. Four lines of the hydrogen spectrum are emitted with frequency
givenby (8.12) (Z=1) for n,=6 and n, =4, n,=4 and n, =3,
nm =3 and n,=2,and n,=2 and n, =1.

4. During the measurement of the atom's spectrum a very large number of
atoms are excited and then successively deexcited. So all possible tran-

sitions occur and the complete spectrum is emitted. The frequencies of
the spectral lines are defined by (8.12). For emission spectrum n; > n, .

When Bohr suggested his hypothesis the Balmer series had been well
known. Therefore let us consider the series of spectral lines of hydrogen with
n,=2 and any n, >2. According to (8.14) the spectroscopic frequencies of

these lines are following:

R 1 1
vi=—| ——— |, n.=3,4,5,.. 8.15
c (22 n ] ' (8.15)

This coincides with the phenomenological formula (7.6) for the Balmer
series if the relation

; 2 4
R kym,e

c 4nh’c (8.16)
is equal to the experimentally found Rydberg constant R (7.7). Substituting
the constants in (8.16) we found that %« very good agrees with the
experimental value of R. Thus the Bohr's model does not only explains the
spectral lines but also gives the explicit view of the Rydberg constant
through well known physical constants:

r=A_2 _Kme (8.17)

Here we would like to note that the introduced constants R (8.10) and
# (8.13) are received by multiplying Rydberg constant with other constants
- respectively by chand c. Customarily the three constant values are called
Rydberg constants, being expressed R inm™, % ins”' and R in J or eV.

According to Bohr each of the known series for the H atom (Table 7-1)
arises as the transitions of an electron to the fixed final state n,. The first
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five series are shown in Fig. 8-2. Only the lines of the Balmer series are in

7 EeV)
— —=——-—————— 0
T T — — 0,85
| R R 218
(R.1R] _3.39
\
1 1 — 13,6
Lyman Balmer Paschen
T R P —
[ T T I I I ] 1
1000 1300 2000 3000 5000 10000 20000 A(A)
T S 7 \ I R
3000 2400 1700 1000 500 200 v(10" Hz)

Figure 8-2. Energy-level diagram for hydrogen with some of the possible transitions (top)
and the corresponding spectral lines for the shown three series.

the visible region. This is the reason why the other series were discovered
only after they had been predicted by Bohr theory (these series were named
after the scientists who experimentally discovered them). This was a great
triumph for Bohr's model.

We have obtained for one-electron atom the spectrum (8.14) for arbitrary
Z. If we take singly ionized helium atom for which Z =2, we obtain the
spectrum that agrees very well with the experimentally obtained one. The
spectrum of He' ‘is analogous to the spectrum of the hydrogen, but

frequencies of the lines are four (Z* =4 ) times as great.

Above we assumed the mass of the nucleus to be infinitely larger than the
mass of an electron. Now we shall evaluate this approximation, taking into
account that the nucleus mass is in fact finite. In such a case the electron and
the nucleus move around the their common centre of the mass. According to
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the analysis performed in Chapter 3, we can use the results, obtained for the
fixed nucleus replacing in them the mass of the electron m, with the reduced

mass m of the system:

m,M
m,+M

(8.18)

m=

Here M is the mass of the nucleus. Because of this fact the Rydberg constant
is actually less than that evaluated by (8.17) by a factor 1/ (1 +m/M ) For the

hydrogen atom it is only with 1/2000 fraction less than R :

m

R

A (8.19)
m

e

Here R, stands for the Rydberg constant of a single-electron atom with
reduced mass m .

8.2 INTERPRETATION OF THE QUANTIZATION
RULES

The Sections 7.2 and 8.1 have given evidence, that the energy of an
electron in an atom is quantizied. If E is to be quantized, some restriction has
to place on fixed series of values, such as »,v or some functions of them.
Bohr had chosen to restrict the angular momentum. But no indication has
been given of why this should be so or how the values, which the energy
may have, can be calculated. The Bohr'r postulates are in the base of the so-
called old quantum mechanic which is a mix of classical mechanic and rules
of quantization. Now it has been replaced by new quantum mechanics,
which is described in the following chapters. But the old quantum mechanics
is of great historical interest and is extremely useful in giving a qualitative
description of the behavior of the atoms. So we think that it is well worth
understanding it and their qualitative picture would be very helpful to the
chemists. The old quantum mechanics is exposed in details in the book of
Sommerfeld [R33].

In 1916 Wilson and Sommerfeld, trying to solve the mystery of the
Bohr's postulates, suggested a rule for quantization:

For a given physical system any co-ordinates, which is a periodic
function of time, satisfied the quantum condition
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$Pdg=n,h, (8.20)

where ¢ is one of the generalized co-ordinate, P, is a generalized
momentum canonically conjugated with it, #, is an integer quantum number

and the integration is taken over one period of the co-ordinate q.

Planck has considered the blackbody radiation as the set of the sinusoidal
waves and therefore let illustrate the quantization rules by an example of
one-dimensional harmonic oscillator with mass m. According to Section 5.2
its total energy as a function of the co-ordinate x and the momentum p_ (for

the oscillator the canonically conjugated momentum p_ of the co-ordinate x
is equal to the mechanical momentum (see Section 6.5)) is:

2

2
E=T+U=2 B (8.21)
2m 2

In phase space (x, p, -plane) this is the equation of the ellipse (Fig. 6-2¢)
with the semiaxes a=~2E/k and b=+2mE - x*/a*+p>/b*=1. The
value of the integral Cﬁ p.dx is equal to the area of this ellipse 7ab :

S[)pxdx =mab. (8.22)

Substituting in this equation the semiaxes a and b we obtain:

$pdx=2nE/w,, (8.23)

where w, =+k/m 1is a natural angular frequency of the oscillator. If now
we apply the Wilson-Sommerfeld quantization rule (the co-ordinate x is a

periodical function of time) we have:

$pdx=2nE/w,=nh=nh =  E=nh. (8.24)

Thus using the Wilson-Sommerfeld quantization rule we obtain Planck's
quantization law.
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As a second example we shall consider the Bohr's rule of the angular-mo-
mentum qauntization. We shall show that it can be deduced from the Wil-
son-Sommerfeld rule. According to the Bohr's model the electron of hydro-
gen is revolving around the proton in a circular orbit with the constant angu-
lar momentum L. The angular co-ordinate ¢ is a periodic function of time.

As the function of time it increases linearly from zero to 2z in one period
and this is repeated in each succeeding period. The generalized momentum
for the co-ordinate ¢ is angular momentum L (see Table 6-2). The Wilson-

Sommerfeld quantization rule (8.20) for the considered case becomes
96Ld<p=nh. (8.25)

But as the angular momentum is constant (see for details Section 3.3) the
simple integral on the left side is equal to 27zL. Hence from (8.25) we have

nh

2rl = nh, = L=—
2

= nh. (8.26)

But this is a Bohr's quantization rule and in the old quantum mechanics it
can be deduced by the Wilson-Sommerfeld quantization rule. The physical
meaning of the Bohr's quantization rule was given in 1924 by de Broglie.
According to his hypothesis a wave is associated to every particle. But an
electron in atom is shut up in a confined space, and the associated wave is
therefore a standing wave. According to Bohr's model the electron in an
atom moves in a circle. This does not correspond to the reality, since the
electron in atom, as the new quantum mechanics shows, is not constrained to
move in a circle. But this gives an elegant and simple connection between
the quantization ant the wave properties of the electron. Consider the
electron at point P in the Fig. 8-3a, at a distance x from some fixed point O
on the circle, measured along the circumference. The wave, which describes
it moving around the circle with velocity v, is

v=coswr+kx) k=my/h.. (8.27)

The plus or minus represents that the wave can propagate in either
direction, i.e. the electron can traverse the orbit in either direction. The both
waves superimpose and form the standing wave. This wave is fully
analogous to the standing wave of a string secured at both ends. But if the
wave function is to come back to the same value on going round the circle,
so that it is single valued, an integral number of wavelengths must fit into the
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a b

Figure 8-3. Wave function of a particle on a circle. a) A continuous single-valued solution of
the equation, which does describe a physical state - this is an n (n=5) equivalent of a standing
de Broglie wave. b) A solution which does not describe a physical state.

circumference. Otherwise there will be a misfit (Fig. 8-3b). So, it follows
that

nAd=2mr . (8.28)

Here r is the radius of the circle and # is an integer. Using (7.34) for the
electron (A =h/m,v), this gives

m,yvr=nh, (8.29)

which is the Bohr's condition for the quantization of the angular momentum.

There is however one important difference between this condition and the
Bohr's postulates (7.14). There is no reason why # should not have the value
zero in Eq. (8.29). Actually, the new quantum mechanics shows the angular
momentum in the state with minimal energy is zero.

We shall consider one more example, from which one can see, that the
Wilson-Sommerfeld rule is connected with the requirement that the de Brog-
lie waves form a standing wave. Consider a particle of mass m, which moves
freely along the X-axis from x=0 to x=a. We can imagine that the free
electron moves in one-dimensional piece of metal. The particle bounces back
and forth between the ends of the region with constant magnitude of the
momentum p, = p, which only changes its sign. As the co-ordinate x is a

periodical function, we can apply the Wilson-Sommerfeld quantization rule:



194 Chapter 8

Cﬁpxdxzcﬁpdxzpidxzp2a=nh = n%=2a. (8.30)

But according to (7.34) 4/p is just the de Broglie wavelength of the particle:
n—=a. (8.31)

Thus an integral number of de Broglie half wave fits the trajectory of the
particle in one traversal of the region, giving the possibility the waves with
successive traversals to be in phase and hence to set up a standing wave.

The considered example has an interesting result. For the energy of the
particles we easy obtain:

2 2712 212
p_nmh _mh (8.32)

- 2m B 8ma’ B 2ma*

The discussed example is identical to the problem of particle in the
infinite square well potential. In quantum mechanics this problem can be
solved exactly (Section 12.2). The obtained here result coincides with the
precise result within the coefficient. It is important to underline that the
energy of the particle is quantizied.

8.3 SOMMERFELD’S MODEL

We know from classical mechanics that electron in hydrogen atom can
move in elliptic orbits (Section 3.4). Assuming the elliptical motion in polar
co-ordinate » and ¢, which are periodical functions of time, we can apply

the Wilson-Sommerfeld's rule. At this, a generalized momentum for the co-
ordinate ¢ is angular momentum L and for co-ordinate » - the r-

component p, of the momentum p, and we can write the following:

$Ldp=nh,  p.dr=nh. (8.33)
The first quantum condition is the same as about the circular motion and
we know the restriction on the angular momentum:

L=nph,  n,=123,.. (8.34)

[
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The second relation gives the relationship between angular momentum
and semiaxes of the ellipse (see Fig. 4-3):

La/b-)=nh, n =0,1,2,3,.. (8.35)

Here a and b are the semimajor and semiminor axes of the ellipse. In the
Bohr-Sommerfeld model the Bohr quantization (7.14) for angular
momentum for a circular orbit is replaced by two quantum conditions: one
for radial momentum p, with radial quantum number », and one for

angular momentum L, with azimutal quantum number 7, .

Sommerfeld has used third equation (the details can be seen in [R35]),
which gives him possibility to find the three unknown quantities - semimajor
and semiminor axes a and b and also the energy of the electron. The
complete analysis shows that the energy depends only on the sum of the two
quantum numbers:

n=n,+n,, n=123,.. (8.36)

The quantum number # is called principal quantum number. For our short
exposition it is enough to give only the energy:

252 4
kymZe

E=
2n’h?

(8.37)

Here m is the reduced mass (8.18) of the electron and the nucleus. The
energy depends on principal quantum number #, but not on numbers #, and

n,. To each value of n there are n different allowed orbits, which have the
same energy. Thus, when n=1, n, =1 and n, =0 the orbit is circular;
when n=2, either n,=2 and n,=0 or n,=1 and n, =1 (two orbits);
when n=3 there are three possible orbits, corresponding to the azimuthal
numbers n, =1, 2,3. For this values of » the orbits are shown in Fig. 8-4.

The similar phenomenon is observed in planetary and satellite motion, which
is governed by the gravitational force. It is the inverse square force, i.e. it is
change analogous to the acting in the atom Coulomb force as 1/7>.

Here we shall note that, as we shall see later, quantum mechanics proves
that an electron in an atom can have angular momentum L =0, i.e. n,=0.
The visualization of the Bohr-Sommerfeld model is very useful. In order to

use it for qualitative illustrations we are forced to imagine the case with
L=0 as "the motion" along a line segment forward and backward in
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relation to the nucleus (see Fig. 14-7). This interpretation is present in Fig.
8.4. We underline that this is an imagination, not reality.

ng=2

=]
ntPnO

s

Figure 8-4. The elliptical Bohr-Sommerfeld orbits for n=1, 2, 3. The indicated by the dot
nucleus is located at the focus of the ellipses. To illustrate the motion with L=0 which is
proved both by new quantum mechanics and experimentally we are forced to imagine the
elctron motion as a "motion" along a line segment forward and backward.

The analysis above in the frame of the Bohr-Sommerfeld model shows
that the energy of the electron does not depend on the angular momentum,
i.e. it is defined only by the quantum number # and the state with fixed » and
consequently with energy E, in reality consists of » state with this energy

but with different angular momenta. The introduction of elliptical orbits does
not introduce any new energy levels. The problem of the splitting of the
spectral lines, which has been experimentally proven, remains. Sommerfeld
showed that it could be solved if relativistic effects are taken into account.
The electron in a circular orbit has constant velocity, but the electron in an
elliptical orbit has different velocities in different positions, accelerating up
when the electron is near the nucleus and slowing down when it is far away.

This will lead to the relativistic variation of the mass of the order (v/c)z.
Due to this the elliptical path actually becomes a precessing ellipse, i.e. a

rosette, analogous to that in Fig. 4-4. The precession rate depends on L, i.e. it
depends on n,. Hence energy of the electron depends except on quantum

number 7, also and on n,. Sommerfeld showed that the energy is equal to

2 ~r72 4 272
Jhmze |y oz ) L3 (8.38)

2n’h’ n |\n, 4n

E=




8. OLD QUANTUM MECHANICS 197

The quantity a is a number, which is expressed by fundamental physical
constants and is called the fine structure constant:

2
ke 7297107 =L (8.39)
137
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Fig. 8-5 shows the energy-level diagram for the first three level of the
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Figure 8-5. Energy-level diagram with relativistic correction that leads to the fine structure -
the transitions with dashed lines are not allowed and with solid lines are allowed.

hydrogen atom in which the relativistic effects are taken into account. Lines
corresponding to the transitions represented by the solid lines are in very
good agreements with the experimentally observed ones. The lines
corresponding to the transitions represented by the dashed lines are not
found experimentally in the spectrum. Only those transitions are observed
for which n, changes by unity - An, ==I.

8.4 SUCCESS AND FAILURES OF THE OLD
QUANTUM THEORY

The ideas in the first steps of quantum mechanics, briefly presented in the
Chapter 7 as well the exposition in this chapter are the foundations of the old
quantum mechanics. Most generally it could be said that this is the classical
consideration combined with different rules of quantization of Plank, of
Bohr, of Wilson-Sommerfeld. In many aspects this theory was very
successful. It was more successful than may be apparent to the readers,
because we have not mentioned here many good applications of the old
quantum mechanics, which were confirmed by the experiment.
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One of the most impressive achievements of the old quantum mechanics
was the quantized energy of the atomic electron, which had been observed in
the experiment. The expression (8.9) gives the allowed energy value for the
electron in an one-electron atom, not for the electrons in a multielectron
atom or in atoms combined in molecules or solids. But the quantization is
true for all atoms and for this matter for the molecules and the solids. The
quantization is by no means restricted to hydrogen. It has survived the
introduction of the new quantum mechanics and as we shall see in Chapter
14 has been confirmed by it though the orbital theory which Bohr used to
calculate E, for the simplest atom of H. This was amply confirmed by
experiment and now we shall describe some of the experimental evidence.

The experiment of Franck and Hertz has confirmed the discrete character
of the energy of an atom. The apparatus which they have used is shown
schematically in Fig. 8-6a. The electrons are emitted by the heated cathode
C. Then they are accelerated by a potential ¥, towards the anode 4, made as
a grid. Some electrons pass through this grid and if they have enough energy
to overcome the small retarding potential 7, between A and the plate P
reach P. The tube 7 is filled at low pressure with the vapors of the element
under investigation. The resulting current is indicated by the ammeter 1.

The experiment is carried out by the mercury vapor. The result is shown
in Fig. 8-6b. At low voltage the current increases with increasing voltage V, .
But when V|, reaches 4,9 V there is a sudden decrease in the current. This
shows that in this case the electrons have enough energy to cause inelastic
collisions with atoms of Hg. In this case the electron gives up the greater part
of its energy to the atom, causing the excitation of the latest. When such
electrons reach anode A4 they have not enough energy to overcome the small
retarding potential V, . At further increase of V), the electrons gain enough

Figure 8-6. The experiment of Franck and Hertz, proving that the atomic energy is
quantizied: a) schematic of the apparatus; b) the dependence of the current on the accelerating
voltage.
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kinetic energy to reach the plate P and the current /, increases once again.

If the electrons have enough energy they can cause more than one inelastic

collision. Thus we can expect peaks in the current at 4,9 V, 2.49=98 V,

3.4,9=14,7 V, etc. We can see in Fig.8-6b the abrupt droppings of the current

just beyond these voltages.

This interpretation is in accordance with the existence of the discrete
energy level of the Hg atom. Let us suppose that first excitation state is with
the energy level 4,9 eV larger than that of the ground state. Then the atom
simply can not accept the energy of the striking electron, if the last has the
energy smaller than 4,9 eV. If the changing of energy between the ground
state and the first excitation level is really 4,9 eV there should be a line in the
Hg spectrum with the photon with energy 4,9 eV. Frank and Hertz found in
the experiment that when the energy of the electron is slightly above 4,9 eV
only a single line is seen in the spectrum, namely the line with 2536 A,
corresponding exactly to the photon with such energy.

The old quantum theory explains many elementary aspects of the atomic
spectra of hydrogen and hydrogen-like ions. But many aspects of physics of
atoms, mainly of many electron atoms, remained unexplained, which did not
permit it to develop as consecutive and self-consistent theory. Some of
unexplained aspects are following:

1. The behavior of the systems, which are not periodic (the theory tell us
how to treat systems which are periodic by using the Wilson-
Sommerfeld quantization rules).

2. The spectra of atom, having more than one valence electron (the theory is
only successful for one-electron atom and it treats approximately the
alkali elements (Li, Ka, Rb, Cs), which have one valence electron, but it
fails badly for other multielectron atoms).

3. The intensities of different transitions (the theory does not tell us how to
calculate the rate of these transitions and it can not always tell us which
transitions are observed and which are not).

4. All of the effects of the magnetic field on atomic spectra (the theory
explains only the simplest cases, but not all).

5. The logical reason for using the different quantum numbers.

The entire theory is intellectually unsatisfying - it is not consecutive and
consistent. These difficulties have been overcome by the development of
quantum mechanics. But in many cases the old quantum mechanics is
frequently employed as the first approximation, because its mathematical
procedures are considerably less complicated than those in quantum
mechanics and it is helpful the visualizing many processes in atomic world.
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SUMMARY

The old quantum mechanics is in essence a classical theory to which are
added the quantization rules and the dual character of the macroscopic
object. Dispite of its classical character it has remarkable achievements. This
is due to the using of the two basic ideas for discreteness and duality of the
matter object. Many phenomena irresistible for classical physics find their
explanation through the quantization rules of Planck, Bohr and Wilson-
Sommerfeld and through the de Broglie waves.

The Bohr postulates give the possibility to determine the radius, the
velocity and the energy of the electron at its motion in the allowed orbit. The
energy is defined by the quantum number n:

2 2 4
E=-tmZe 1 193
2h n
The Bohr's model explains all spectral lines of the hydrogen atom and
expresses the Rydberg constant through the known constant physical values:

v 11 AR kyjme
V*Z—ZR —2——2 5 nf<ni’ R:—:—:%
c n, n ¢ ch Amnc
The Wilson-Sommerfeld quantization rule generalizes the Bohr's
quantization rule for every generalized co-ordinate ¢, which is the periodical
function of time:

Cf)quq =nh,

where F, is a generalized momentum associated with g, n, is an integer

q
quantum number. This rule allows Sommmerfeld to widen the Bohr's model,
to which besides the circular orbits he adds and elliptic ones. The widen
model very often is called Bohr-Sommerfeld model. With taking into
account the relativistic correction of the mass in the motion along the elliptic
orbits the new model allows to determine the fine structure of the atomic
spectrum. It depends on so-called constant of the fine structure

2
kye

c

o=

=7,297.197° = L.
137



8. OLD QUANTUM MECHANICS 201

The old quantum mechanics have had the decisive role in the creation of
the modern concept of the microscopic words. With its accessible
mathematics and the visualize ability today it takes an important place in the
education at the understanding of the complicated categories and objects of
quantum mechanics.

QUESTIONS

1. How do the radius, the velocity and the energy of the electron depend on
the quantum number # in the Bohr's model?

2. What is the physical meaning of the radius of Bohr?

Why the quantum number # can not be zero?

4. Which are the basic conclusions that can be done about the physics of
hydrogen in the Bohr's model?

5. How can the hydrogen spectrum be explained by the Bohr's model?

6. How do the finite mass of nucleus influence the Rydberg constant and the
hydrogen spectrum?

7. To the quantization of which variable does lead the Wilson-Sommerfeld
rule, if we apply it to harmonic oscillator?

8. How can you explain the rule of Bohr's quantization by the de Broglie
waves?

9. What is new in Sommerfeld's model compared to the Bohr's model?

10. How does the atomic spectrum change when Sommerfeld made the
relativistic correction of the electron mass?

11.How does Sommerfeld explain the splitting of spectral lines?

12. What is the interpretation of the results of the Franck-Hertz experiment?

13. What is new in the old quantum mechanics compared with classical
mechanics?

[98)

PROBLEMS

1. Determine the Rydberg constant for deuterium. What is the relationship
between its spectrum and the hydrogen spectrum?

2. Compare the gravitational force and the Coulomb force between the
electron and the proton in the ground state in the hydrogen atom. Is it
correct to neglect the gravitational force?

3. Determine the energy, the momentum and the wavelength of the photon,
which is emitted from the hydrogen atom at the transition from a state
with 7 =10 to the ground state.

4. Using the Bohr'h model, find for the electron in the ground state of the
hydrogen atom: a) the force, acting on it: b) the quantum number and the
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orbital radius; c) the linear velocity and the angular one; d) the
momentum and the angular momentum; e) the potential and the kinetic
energies; f) the total energy.

5. Applying Bohr's model to a singly ionized helium atom, find its spectrum
and determine the relationship between this spectrum and the hydrogen
spectrum.

6. In the Franck-Hertz experiment the Hg atom after the collision with a 4,9
eV electron emits a photon with the wavelength 2536 A. Calculate the
value of 4 from this experimental result and compare with Planck's
values.
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9.1 STATISTICAL INTERPRETATION OF THE DE
BROGLIE’S WAVES

The experiments with double slits have been persuaded ourselves that the
electron is connected with a wave process. The wave properties of the elec-
tron appear in the fact that the both slits influence its motion. As the result
of this we observe the diffraction picture. But it is not correct to equalize the
electron with some wave. If this would be true, the single electron would
form the whole diffraction picture. Nevertheless that it would be weak.

At the experiment the single electron incidents in one point of the plate
as a particle. The place of the falling up of an electron and a particle obeys
totally different laws (for particles (7.29) and Fig. 7-11 and for electrons
(7.31) and (7.32) and Fig. 7-12). The behaviour of the particle exhibits itself
both when there is a single particle and when there are many of them. When
there is a single electron it fixes as a particle and its wave properties exhibit
only when there are many of them (including many times singles).

The wave properties of the electron are completely explained with the de
Broglie wave. But this wave does not appear in the experiment with one
single electron. Then the question arises how to interpret the wave.

One of the first interpretations belongs to Schroedinger: microscopic
particle consists by a wave packet, localized in space. If we take waves of
the quantity 4 with different wavenumbers from k-Ak to k+Ak and add them
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we obtain a wave packet R, the centre of which moves like a particle with
the group velocity of the wave (Fig. 9-1):

A= A,cos[w(k)— kx],
k+Ak 9.1
R, = j A4, cos[w(k) — kx]dk.

k—Ak

But the de Broglie waves are waves with dispersion, i.e. their phase ve-

— — i\

a b

Figure 9-1. The wave packet is lokalized in space (a), but because of the dispersion it spreads

(b).

locity v, depends on the wave number k. Actually using the expression

(7.36) for the energy of the microscopic particle and the expression k= p/#
we can determine v, (k):

E mict  p’c’ mect 5,
wzgz\/ 7;2 + = 7;2 +k*c*,

o [md
Voh :;: h;)kZ +cf :vph(k)'

As the result of the dispersion, the wave packet spreads (at the end it
disappears).

Classical physics suggests a different interpretation - are not the de
Broglie waves an analogue of the acoustic waves in the air? But then the
diffraction picture would depend on the intensity of the incident beam of the
particles. We saw in the Chapter 7 that this did not happen - the experiment
shows that at final intensity and at small intensity but with increase expositi-
on the picture is the same. The number of passing particles is important. The

9.2)
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hydrogen atom has only one electron but it exhibits wave properties. It is
obvious that the wave is not connected with particles, forming the medium
(by analogy with the wave in a lake).

The analysis of the experiments of the diffraction of the microscopic par-
ticles leads Max Born to a probability interpretation of the de Broglie wa-
ves. Let us remember the experiment about the interference of the electrons.
We can not say where a single electron will fall on. But if we pass into
double slit many times by one electron, the distribution of the electrons will
correspond to the distribution of the intensity of the interfered by double slit
de Broglie waves. There, where the interference picture has a maximum, the
most particles fall on and vice versa. On one hand we have the probability
for finding the particles, and on other hand - the intensity of the wave. At
this, the probability of finding the particle increases, achieves its maximum,
decreases and achieves its minimum there, where the intensity of the wave
has the same behaviour. Max Born makes a conclusion that the intensity of
the de Broglie wave which is determined by the square of the amplitude,
in every place is proportional to the probability to find a particle in this place.

The experiments with two slits prove that the falling on the screen of the
single electron has accidental character - it can absolutely accidentally fall
on into this or that point of the diffraction patterns. It is obvious that the
behavior of the electron have to be characterized by some probability
function. But as the blackening of the plate on one hand is proportional to
the incident particles, and on other hand - to the intensity of the de Broglie
wave, it is clear that this probability may be expressed by the properties of
the wave. To do this we have to be able fo describe the wave, ie. to
associate with it some function, called wave function.

9.2 THE WAVE FUNCTION

We need a function to describe both the probability and the wave charac-
ter of the quantum object. To this object we correspond some wave. As the
square of the amplitude of this wave, which defines its intensity, is
proportional to the probability of finding the quantum object to the position
near the point x, y, z in given moment of time it is clear that this is a function
of the co-ordinates and time:

v(x,y,2,0)=y(r,0). 93)

This function is called a wave function or w-function (psi-function). The
simplest case is that of a free particle, which is described by a plane wave
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with a wave function
w(r,7) = Aexp[—i(wt —kr)] = 4 exp[—é(Et - pr):l. (9.4)

In general case w(r, f) is a complicate function of the co-ordinates and
time and it has nothing in common with the functions, describing the
classical waves. The physical meaning of the square of the y-function
dv s
proportional to the probability to find the microscopic particle at moment t

in element of volume dV near the point x, y, z.
Let us denote this probability with dW. Then

according to the Max Born is following: the value |l//(x, V,2,t)

dW o< |y (r,0)| dV . 9.5)

This physical interpretation clearly indicates that the wave described by
the w-function differs essentially from the waves known in classical physics.

2, but

not the y-function itself. In most general case the wave function is complex
and therefore

This peculiarity exhibits in the fact, that the physical meaning has |1//

AV =y(r,Op *(r,0)dV. (9.6)

lw(r,)

As according to (9.5) it determines the space-time distribution, it is
obvious that the functions

w(r,t) and Ay(r,t) 9.7

describe one and the same distribution. If we integrate |1//(r,t)2 over all

possible co-ordinates within the total volume ¥ we obtain some number N

*dV=N. 9.8)

[lw(r,0)

Taking into account (9.7) we can find new wave function

Y =N"y (0, 9.9)
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which will describe the same probability distribution and then

[lwPav =1, (9.10)

14

Such a function is called normalized and (9.10) is the condition for
normalization.

Example: We consider a normalized wave function of particles with an
energy E and a momentum p, which has one degree of freedom and moves
in direction x from 0 to a. The wave function has the view of (9.4)

l//(x,t):Aexp[—%(Et—px)]. 9.11)

According to the normalization condition

a a 2 a
1=[ [y, 0 dbe =] de=[|A dc=|4[a  (9.122)
0 0 0

Aexp [—%(Et - px)]

or  A=1/\a. (9.12b)
The wave function for the considered example is the next
l//(x,t):Lexp[—i(Et—px)]. (9.13)
Ja h
For the normalized wave function (9.5) is written as equality:

dW =|y(e.0)f dV =y(r, 0y *(r,0)dV

or (9.14a)

2

Here p(r,t)de/dV=|l//(r,t) is the probability density. The

probability to find the particle in the volume V" is
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W= [aw =y .oy *@.ndv. (9.15)

We note the normalized wave function (9.10) is determined within
the phase factor exp(icr), where o is any real function of the co-

ordinates and of time & =¢(r,7). This is so, because |exp(ia)| =1.
The wave function possesses significant properties in space and

time:

a) finiteness - y takes finite values in all points of space (completely
rigorously said ¥ must be quadratically integrable function, as
according to its physical interpretation the integral J|l//|2 dV should

to be finite);
b) single valuedness - in every point of space v has a single value;

¢) continuity - y is differentiable in every point of space.

9.3 THE WAVE FUNCTION OF A PARTICLE SYSTEM

Let us have two particles with positions r,(x,,y,,z) and r,(x,,»,,2,).
The both particles are described by the following wave function:

V(X V15 215X,, V525, ) Y (K, T,0). (9.16)

The probability to have at the same time the first particle in the element
of volume dV, near the point x,,y,,z and the second - in the element dV,

near the point x,,y,,z, is
dW (x,x,,.0) = |y (x,x,.0) dV,dV,. (9.17)

The corresponding density of probability is

dw(r,,r,,t)
av.dv

2

p(rlsrzat)E |l//(r13r2>t) (918)

The condition for the normalization of the w-function of the both
particles, moving correspondingly in the volumes ¥, and V, is
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[ [lw.r,0f avav, =1. (9.19)

nr

It is not difficult to generalize the expressions (9.16+9.19) for the system
of N particles with radius-vectors r,,r,,...,r,. To such a system we shall

correspond the wave function

VI, 0y, .1y, D) =Y(r,,0). (9.20)

As in the first part of this book the subscript j stands here for all radius-
vectors. For one, two or many particles it should not be any principal
difference. Then the interpretation of y/(r,7) and of w(r;,7) should be the

same, i.e. for the normalized y(r;,?) -function the value

w1, .y, 0 dVidV,...dV, (9.21)

defines the probability in the moment ¢ of time the first particle to be in a
element of the volume dV| near the point r,, the second - in dV, near the

point r, and so on or:
dw =y (x;,0 )y *(x;,0)dV,,dV,...dV,. (9.22)

The condition for normalization is

Hj l(r,.0)

Vv Ty

Cdvdv,..dv, =1 (9.23)

If we integrate on the volume of the allowed regions of motion of all
particles with the exception of one of them, e.g. of the first, we obtain:

Cdv,..dv,. (9.24)

aw,=dv, [ .. lw(x,.0)
v, Py

This is the probability of the first particle to be in the element 4V, while

the others particles are in arbitrary positions.
Now let us consider a system of N noninteracting particles, each of
which is described correspondingly by the wave function v (r,,?),

v, (r,1),....,w,(ry,t) and the system - by the function (9.20). The proba-
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bility of the first particle to be in element of the volume dV, is dW,

=|l//1(rl,t) ? dV,, of the second particle to be in dV, - dW, =|1//2 (r,,,1) ? dav,

etc. According to the rule for the multiplying the probabilities, the
probability dW to observe these N events is

AW =dw dw,..aw,

5 5 5 (9.25)
=y, (6.0 dV |y, (0,0 @V, (0] dV
Expressing dW through the y(r;,7) we get
l//(rprz:"-:rNst):lljl(rl:l)sWz(r1st)’-'-’WN(rN’t)a (926)

1.e. the wave function of the noninteracting particles is equal to the
product of the wave functions of the separate particles.

94 MEASUREMENT, EIGENSTATES AND
EIGENVALUES OF THE OBSERVABLES

Mechanically, describing a system means first, describing the state in a
given fixed time and second, describing the change of the state in time, i.e.
the motion. It has been mentioned in Section 6.2, that the state is completely
defined by the values of the generalized co-ordinates and momenta in given
time, particularly by the Cartesian co-ordinates and momenta. In such a case
classically the state is described by the 2s-dimensional vector A in the phase
space. The knowing of the state A(7,)in some initial moment #, allow us to
calculate all physical quantities, characterizing the system, and with the laws
of the mechanics to define its state A(7) in any moment of time ¢.

In Sections 9.2 and 9.3 we have seen that the behaviour of the quantum
objects is described by the wave function y(r,,7). Further it will become

clear, that this function implies an information not only about the character
of the motion of the system, but as well as for the values of physical
quantities (usually in quantum mechanics they are called observables) which
defines it. Therefore, the state of a quantum mechanical system in any time ¢
is described by the wave function y(r,,t), which is called also the state

function.
In classical mechanics for the description of the initial state is necessary
to measure the co-ordinates and momenta of the particles. They principally
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can be measured simultaneously with desired high accuracy and their values
can be obtained independently of the order of the measurement. The
determination of the state in classical mechanics is trivial in some sense.

This is not the way in quantum mechanics. The determination of the state
different to classical mechanics is a principal question, which goes on the
importance out of the dynamical problems. The measurement of a quantum
mechanical system essentially differs from that of classical one. In quantum
mechanics under the measurement one realizes every interaction of the
quantum objects with a classical apparatus. As every apparatus consists of
the quantum objects, in which their specific properties can appear, the
classical is that apparatus which quantum properties can be neglected.

In classical physics every measurement is repeatable, that is the results
by the subsequent repeated measurement coincide. For example, let us
measure the position of the classical particle, which starts at point A(x,,»)

with a momentum p (Fig. 9-2a), by the slit in point B(x,,y) and by the ruled

Yi E

) 1 ;
A QI—... 0 O--nnne _'-_0

Figure 9-2. Measurement of the co-ordinates of the classical particle, moving horizontally of
the axis X with a momentum p. The measurements are repeatable: a) a measurement by a slit;
b) measurement by a "look" - the momentum of the photon is much smaller than the particle
momentum.

screen E at x =x, (the particle makes a track on it).

The measurement of the observables of quantum objects is not always
repeatable. As when in the experiment on the passing of electrons through
the one slit (aperture) the defining of the y co-ordinate by this slit is repeat-
able. The measurement of the position of passing electrons by the screen is
not repeatable - it gives different results (see the described in the Section
7.4 experiment of Fabricant and Fig. 7-13). Every measurement changes the
state of the electron and this changing principally can not be made
negligibly small, as the energy of the interaction is £ = A . Before the slit
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the electron is in the state with fixed momentum p_ (p, =0), but behind the
slit it can have different values of the transverse component p , as a result of

which it fall on the different places of the diffraction picture. The interaction
between the electron and the classical apparatus, the slit, changes the
momentum with ¢ ~ 4/ A . In the classical scale #/A is negligibly small, but
in the small-scale system (microscopic system) this changing is compared
with the particle momentum. But can one, instead by the slit to determine
the electron position, without doing anything with it, but simply to "look" at
it? So, we can determine the position of the classical particle as well (Fig. 9-
2b). It is enough to look at the scale behind the trajectory (Fig 9-3).

Figure 9-3. The determination of the position of the electron in the point P by a "look". In
order to "see" the electron, it has to be "illuminated". The scattered by such illumination
photon of the momentum p=h/2 changes unpredictably the electron momentum - the
measurement is not repeatable and the electron falls on different places of the screen E.

In order to "see" the electron, it has to be "illuminated", i.e. at least one
photon has to fall on it. But the photon has momentum #/4, which is com-
pared with the momentum of the electron. As the result of its scattering, the
electron will obtain an additional momentum (see the Compton effect in the
Section 7.2). In the subsequent experiments the electron falls on different
positions on the screen E. The position on the screen E is unpredictable (but
the probability is predictable). The measurement of the momentum p is not

repeatable. By doing measurement we disturb the electron. The essence of
the problem is that we have not enough "delicate and tender" agents for
observation of the small-scale object. It is impossible, in principle, to have
such agents, i.e. it is impossible to make measurements, which do not at the
same time disturb the system in a generally unpredictable way. When we
measure the position of a large-scale body (Fig. 9-2), the momentum of the
photon is negligibly small compared with the momentum of the body
h/A<<p.
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The character of the measurement in quantum mechanics depends on the
state of the system. In one state it can be repeatable, but in another - unre-
peatable (for example, the measurement of the position before and behind
the slit (Fig. 7-2a)). The measurement of the values of some observables may
be simultaneously repeatable. But there are such observables which in no
possible state are simultaneously repeatable (for example, x and p_). Such

observables are called, respectively, compatible and incompatible.

For a given quantum system a restriction exists on the number of inde-
pendence observables, which are compatibles. The maximal number
depends on the same system. All independent observables, for which is
possible repeatable measurement form a complete set of observables. The
number of observables in this complete set is equal to the degrees of
freedom of the given quantum system. For example, for one particle the next
complete sets are possible (without spin): a) x,y,z; b)p.,p,,p.;

¢)E,p_,L_. Every state of a quantum mechanical system is characterized by

that complete set of independent observables, which are simultaneously
measured in this state.

When the measurement of the given observable is repeatable, such
observable is defined or certain; when the measurement is not repeatable it
is undefined or uncertain. If we add to the complete set of observables: a) a
independent observable, it will be uncertain: b) a dependent observable, it
will be certain.

The state, in which the observable f is certain, i.e. its measurement is
repeatable, is called eigenstate. The value f,, which f obtains - eigenvalue

and wave function y,, which describes this state - eighenfunction:

state 1% 2 3¢ .. N" eigenstates;
value of f 4 A fioe Sy eigenvalues;
wave function v, v, v, .. Y, eigenfunctions.

In the state, in which the measurement of the observable is not
repeatable we obtain different values, but always one of the eigenvalues.
The experiment shows that an observable could not have another values.

The problems in quantum mechanics essentially differ from classical
ones. Here are some examples:

1. To define the possible complete set of observeables for a given system.
2. To find the wave function for a given complete set of observeables.
3. What are the expectation values of given observable?

The set of eigenstates of the observable is called spectrum. The spectra

can be as follows:
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a) D escrete: for instance the energy of quantum oscillator
E=n+1/2)kv, n=0,1,2,3,..).

0 w/2 3Ww/2 Shwi2 Thv/2 E

L | L
] i 1 >

b): Continuous: for instance, the momentum of free electron - in the
fixed range all values of momentum are possible.

0 b P p

I | I

| r | >
¢) Comp ounds: for instance, the energy of the electron in the atom
- in a bound state it is discrete, but in an ionized state it is continuos.

-E, -E, -E E

| I [ W

| T >

Usually at the measurement of the observable f in different eigenstates,
described by the eigenfunctions ¥, , we obtain different eigenvalues:

v, Y, = h#EL (9.27)

Such states are called nondegenerate states and respectively eigenvalues -
nondegenerates. If at the measurement of the observable f in different
eigenstates we obtain equal eigenvalues, for instance f,, i.e.

v 2y, but £ =7, (9.28)

they are called degenerate states and degenerate eigenvalues. If to one

eigenvalue f, correspond N different eigenfunctions l//f,”,l//f,z), ...,l//}N ), this

1

eigenvalues is N-fold degenerate.

9.5 THE SUPERPOSITION PRINCIPLE

A superposition of the waves means simply a superimposition of them.
The phenomena is well known in classical physics (in particularly it leads to
the considered in Chapter 7 interference). Let us recall the vibrations of
coupled oscillators (Figs. 5-1 + 5-3). We saw in Section 5.4, that two normal
modes are possible: antisymmetric modes with the angular frequency @,
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& =2acosw ¢ (9.29)

and symmetric modes with the angular frequency o,
&, =2acoswt . (9.30)

As the result of superposition (superimposition) of these two normal
modes the other kind of vibrations is possible, which is the linear
combination of the asymmetric and the symmetric vibrations. For example:

1 1 1 1
—& +—C, =x, =—2acos® t+—2acosm.t . 9.31
251 252 1 2 a 2 s ( )

The vibration of the both oscillators for such superposition is shown in
Fig. 5-5.
Two kinds vibrations of linear symmetric molecule - symmetric x, and

antisymmetric x, - are shown in Fig. 5-8:

x,=A cosm.t,
(9.32)
x,=A, cosm,t.

Here x, is the sum and x, is a difference of the displacements of the

atoms from the equilibrium positions and scripts a and s are related to the
asymmetric and the symmetric vibrations. It is also possible to have an
oscillation of the molecule, which is a superposition of these two
oscillations:

xX=x,+x,. (9.33)

And now let us return to the diffraction of quantum object from two slits
(Fig. 7-12). Before the slits the particles (photons or electrons) can be in
different states, which differ by the value and the direction of the
momentum. The state with momentum p, which corresponds to the fixed de
Broglie wave, is described with wave function v (r,?).

After passing trough the one of the two slits the beam of particles can be
considered as conical beams of the different momenta. In every narrow
cone, where the momentum of the particles is fixed, they obtain additional
transverse momentum - different for different cones. Due to this addition we
obtain the set of conical beams with momenta p,,p,,...,p, (only one of

them cannot be obtained). The state of the particles in the conical beams, in
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which the particles have equal momenta, is described by the de Broglie
wave of fixed wavelength, i.e. by the functions y, (r,2),y,, (r,0),....y,, (r,1).
In this we can persuade ourselves as with a slit separate the one of the coni-
cal beams with the momentum p, and direct it to two slits - as the result we

obtain again the same diffraction picture. On the other hand this whole set is
an unified wave field and it is expressed with one wave functiony/(r,#). The

conclusion is obvious: the state of the diffraction from two slits is a super-
position of the states of free particles described by the de Broglie waves:

y(r,f)= ZC( pv, (r). (9.34)

The new state (the diffraction picture) is a superposition of the states
with rigorously certain momenta. The superposition appears also when the
particles pass through the both slits (Fig. 7-12b). When the second slit is
closed, the state is described by the wave function y,(r,7)and the proba-

bility density to find the particle in the point r of the screen is as follows:

2

Py (r,0) =, (r,0) (9.35)

When the first slit is closed, the state is described by ,(r,)and the
probability density is analogue to the (9.35):

2

(9.36)

p,(r,1) =|l//2(l‘,t)

Despite of the fact that small scale systems obey probability laws, the
densities p, and p, are not summarized, but the amplitude of the states are

or according to Dirac the amplitude of the probabilities:

Vi, (r,0)= Cy, (r,0)+ Gy, (r,0), (C1 =C, = D,

s (9.37)
P00 =| W, (.0 # py(r,0) + p, (r,0).

The considered examples of the diffraction are partial cases of the
principle of the superposition. According to it, if the systems could be found
in the states with wave functions y,(r,t),y,(x,1),....y, (x,t), it can be found
and in the state with the wave function y(r,t), which is the linear

combination of the functions y,(r,t) :

V(0= Y, Cy,(r0), 9.38)
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The coefficients C, can be arbitrary, but they have to obey the condition
of normalization of the wave function:

[lwof av =] ‘2 Cy,| av=1. (9.39)

In classical physics the superposition is a consequence of the linearity of
the system. The linear oscillations of such a system are described by the
system of linear differential equation and its general solution is a linear
combination of partial solutions. This is the mathematical formulation for
the principle of superposition. Because of these reasons we can expect that
the wave function will obey a linear differential equation.

Let look wider to the superposition principle from the linear-algebra
point of view. We are interested in the physical quantity f (very often one
speaks about a dynamical variable or about an observable). From the
experiment we know the eigenvalues f,f,,...,f,, measured in the

corresponding eigenstates Y/ .,y ,,....¥ ,, . We can consider the set of wave

functions, describing all possible eigenstates, as a linear vector space on the
axes of which we plot the functions themselves. The wave functions are
bases of this space. The analogue with the configuration space is very sue -
there we plot the generalized co-ordinates, but here - the wave functions of
the eigenstates. In the linear space, like the scalar product ab of two vectors,
we shall introduce the scalar product of two functions ¢ and y:

(@.¥) = [o*waV. (9.40)

We are going further with the analogy. As far as two orthogonal vectors
in the real space have zero scalar product x,x, =0 (x, Lx,, i #k), the sca-

lar product of the two different basis functions from the linear space is zero:
(w,.y,)=0, i#k. 9.41)

When i =k, the scalar product according to the normalization is equal to
the unity:

* 2
W)= v, dv=[ly, | av=1. (9.42)

The equalities (9.41) and (9.42) can be united as follows:
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1, i=k,

w,)=8,., &, = 9.43
(V,.W,)=0, i« {m " (9.43)

Here 9, is Kronecker's symbol. The eigenfunctions of certain physical

quantity form an orthonormal system of functions.

In general the set of quadratic integrated functions w forms Hilbert space
([4], Section 3.3) - it is infinitely dimension linear vector space, in which the
scalar product is defined (9.40).

Very often the scalar product (9.40) is written in "bra" and "ket"
notation, which had been introduced by Dirac:

(plw)=[o*yar. (9.44)

This is a product of two elements <(p| ("bra" element) and |l//> ("ket"

element). The names of these elements form the "bra-ket" (bracket). Every
expression in integral representation can be written in Dirac notation. For
instance, the orthonormality relation is written as:

J“% *y,dV =(v,|v,)=86,. (9.45)

Every possible wave function y can be expanded in terms of orthogonal
complete set of functions y,, which are bases of the linear space:

w:qu. (9.46)

From the normalization condition and using (9.43), we obtain

fw*ar =] (ZCZWZ. Yav, JdV =Y C:C [y, dv
k ! k,l

=Y ¢, =Y|c] =1
k., k

(9.47)

We have already underlined that the coefficients C, are arbitrary, but
they satisfy the normalisation condition. For them the normalisation is

;mfﬂ. (9.48)
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It is obvious that |Ck| <1. The mathematical condition Jl// *wdlV
= 2|Ck |2 =1 is a condition for the completeness of the basis (the studious
k

reader will find details, for instance in [R34], Chapter 3).
To understand the physical meaning of the coefficients C, let us

consider a state with wave function w(r), in which we measure the

observable f. If this state does not coincide with the one of eigenstate
(v(r)#y, (r), i=12,..,n), we shall measure the eigenvalues f; with the

respective probabilities W, :

measured value fis fos fis o S
probability w, W, W, .., W.

If y(r)=y, (r), i.e. the measurement is in one of the eigenstate vy, ,
then W, =1 and W, =0(i#k).

According to the superposition principle in this case we can write

v(r)=0y, +0y, +..+ly, +.+0y, ,

(9.49)
C,=1, C=0, i#k

Consider the non-eigenstate w(r), which is a superposition of two states
v, andy, :

y(r)= Cllllfl + Czl//f2 . (9.50)
From the condition for the normalization of the coefficients we have:
2 2
|| +|C,| =1 (9.51)

Measuring the observable f'in this state, we obtain for the values f, and
f, respectively the probabilities W, and W,. The probability to obtain
f. (n#1,2) is zero, 1. e. W =0, and therefore

W, +W,=1. (9.52)

The comparison between (9.51) and (9.52) hints the assumption
W, = |Ck

Let us generalize for the non-eigenstate, which is a superposition of »
eigenstates:

2 . . . .
, which is confirmed in the experiment.
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y(r)=Y.Cy, ). 9.53)

From the measurements we obtain one of the eigenvalues f,, f,,..., f,
with a probability W, W,,...,W . These probabilities are determined by the
square of the module of corresponding superposition coefficient:

W, =W(f=r)=|C,

Lo Yme=Yycl|=1 (9.54)
k k

Namely, this equality expresses the physical meaning of the coefficients
C, - the square |C,.|2 (i=1,2,...,n) determines the probability of

measurement in the non-eigenstate ith eigenvalue.

9.6* SUPERPOSITION OF STATES WITH A
CONTINUOUS SPECTRUM

As an example of a continuous variable we shall take the momentum of a
free particle, which can accept any value on the interval —oo,+co. In one-

dimensional case this free particle is described by the wave function v,

(9.11). Let try to normalize this function:

Jlw.f dx{lfllz dx=|A|21dH°°- 0 (9.55)

—oo

From all our discussions up to here, based on the experiments we reach
the conclusion, that this integral is the probability W of finding the particle
in the given range (—oo, 4+ o). But here W — o which is physical absurdity.
The way out was found by Dirac. The normalization of the wave function of
continuous variable has to be done in a way to escape this divergence. The
problem is not to change the wave function and the probability distribution,
but to find such a condition that enables us to obtain suitable constant
before the wave function: consty,(r,?). In the connection with the physical

meaning of the wave function we want to choose much suitable constant.
For the discrete variables the wave functions are orthonormal (for simplicity
we consider one-dimensional case):
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1, m=n,

9.56
0, m#n. ( )

[vow,av=s,, = {

By analogy with the expression (9.56) Dirac introduces the normaliza-
tion condition for the wave function of a state with a continuous variable.
The wave functions ¥, (x,7) and ¥ ,.(x,7) correspond to the states with two

fixed values of the momentum p and p’. Then, by analogy we have
fl//}ivl//,;dx =6(p-p", 9.57)

where 8(p—p') is called Dirac delta function. The function has the
properties as follows:

. 0, x#a,
1. 6(p-pY)= '
™, X=da,

xléaéx‘-z’

2. T5(x—a)dx={1’

0, a<xora>x,;

X

3 [ F(x)6(e—ayd = F (a);

LT
4. 6(]{)_%:[.%6 dx;
5. x5(x)=0.

Using the normalization (9.57) and the property 4. we determine the
coefficient 4 of the y, -function (9.11):

5(p—p')=IQA*Aexp[—i(%—%)]exp[i(%—p?'x)]dx

=n |4 exp[i(p—p')%]d(%)z A 2m8(p-p) = (9.58)

1
2

A=

Fi
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Finally, for the normalized wave function of the de Broglie wave of a
free particle we have:

1 i
x,t)= exp| ——(Et— px)|. 9.59
e RG] O3
For the three-dimensional motion the wave function becomes:

v, (r.7)= ! — exp[—%(Et—pr)] ) (9.60)

(27h)

The superposition of the states with the continuous momentum we
present by analogy with the superposition of discrete states, replacing the
summation with integration:

v (xt)= [ C(pY, (xr)dp= A C(p)exp[—%(Et—px)]dp
~ = 9.61)

1 o .
Zm J‘go(p,t)exp(%px)dp,

where ¢ (p,t)= C(p)exp(—%Et]. When we know the function ¢ (p,t), i.e.

C(p), we can determine l//(x,t). If we know lll(x,t), we can determine
(p( p,t). For this it is enough to recall the Fourier transformation for
functions U (k) and V' (x):

U(k)=(%j/2 1V(x)exp(—ialoc)dx,

(9.62)

1/2
o
Vix)=]— U (k)exp (iotkx ) dk.
(9= 35 ) Jowemtaks
According to this transformation we obtain from (9.61) the following:

(D(p,t):ﬁ jw(x,t)exp(—%px)dx. (9.63)



224 Chapter 9

As the knowing of the function ¢@(p,t) allows the determining v (x,7),

this function determines the state of the system. In other words it is a wave
function of the system. But it depends on the momentum and is determined

in "momentum space" unlike of l//(x,t), which is determined in the real

space (the co-ordinate space). So the wave function (p( p,t) determines the

probability distribution of the particle momentum.
On the one hand the blacking of the plate in the point M is proportional

to the number of particles with co-ordinate x,,, i.e. o< |l// (xM,t)|2 dx
E|1/1M|2dx . On the other hand, the blacking is proportional to the probability

the particles to have momentum p,,, 1. €. o |(t)(pM,z‘)|2 dp (Fig. 9-4). So,

with the same success we can use the wave function y (x, ) in the co-ordi-

Figure 9-4. The blacking in point M is proportional to the number of the particles with co-

. 2 . L .
ordinates x,, - o< |l//(xM,t)| dx. But in the same time it can be determined by the number of

the particles with the momentum p,, , which is proportional to |(p( pM,t)|2 dp .

nate representation or the wave function @(p,t) in the momentum

representation. It is logically to suppose that the co-ordinates and the
momenta are not privileged dynamical variables and the wave function can
be expressed in the space of other variables, for instance of the energy, of
the angular momentum and etc. This topic is considered in Section 15.1.
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SUMMARY

The de Broglie waves are "particular waves". In these waves nothing
oscillates. The wave function of these waves has not physical meaning, it is
not itself a physical quantity. The waves have a statistical, a probabilistic
character - the square of the module of the wave function in a given place
determines the probability to find the particle in this position. The de
Broglie waves are the waves of the probability. In quantum mechanics
normalized w-functions are used in the connection of the physical meaning
of the wave function:

[y (r.0f av=1.
vV

The motion of a free particle is described by the wave function of the
plane wave:

y (r,1)=const exp[ —i (¢ —kr) | = const exp [—%(Et - pr):l .

The wave function is a single-valued function of the co-ordinates of the
particle and time and it is finite and differentiable.

The measurement in quantum mechanics can be repeatable and
unrepeatable. In the first case the system is in eigenstate and for a certain
quantity at the measurement we obtain only one value - the eigenvalue. The
eigenstate is characterized by the complete set of observables and is
described by the eigenfunction y.

One of the fundamental principle governing the quantum states is called
the superposition principle. It states that quantum mechanical system, which
can take on the discrete states v, is also able to occupy the state

WZZC,'W;'

The square of the module of the coefficients |C,.|2 determines the

probability to measure the value f, of the observable f in this non-
eigenstate. All eigenfunctions of the physical system are orthonormal:

(l//ial//k)z 5ik'
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When the observable has continuous spectrum the normalization is made
by the J-function

[V (2w, ()=6(p-p)

and for the superposition instead of the sum we have the integration of the
eigenfunctions.

QUESTIONS

1. Why the Schroedinger's interpretation is not correct?

2. Why the de Broglie wave is not interpreted as the wave of particles like
the acoustic wave?

3. Physically to what is proportional the intensity of the wave of quantum

particles, passing through double slit?

Does the wave function have physical meaning?

Why is the wave function normalized?

Which are the properties of the wave function?

What is the connection between the wave function of the system of

noninteracting particles and the functions of the separate particles?

What is the principal difference between the measurements in classical

and quantum mechanics?

9. What do you understand under the eigenstates and eigenvalues of the
observable?

10. What are the values of the observable in measurement in the non-
eigenstate?

11.How does appear the superposition principle in the oscillations of tree
atomic linear symmetric molecule?

12.How does appear the superposition principle at the diffraction of the
electrons from one or two slits?

13. What do you understand under the orthonormal wave functions?

14. What is the physical meaning of the coefficients C, in the expression

Nk

o

v (r,t)= ZC,.I//,. (r,2)?

15.How is the wave function of the free particle normalized?
16. What does mean the wave function in the momentum space?



9. THE WAVE FUNCTION 227

PROBLEMS

1. Prove that y *(x,#)y (x,¢) is always real number - positive or zero.

2. The state of the particle is described by the y-function v = Ae"“”ef(xz/za)

where angular frequency w and the "length" a are known constant. Find
the normalized wave function.

3. Normalize the wave function y (x)= Asin(27x/L) in the interval
O<x<L.

4. The eigenstates of the particle of mass m in one-dimensional potential
well are described with the wave functions

vy (x)= /%sinznTx, n=1,2,...,

to which correspond energy E (n=1,2,...). The particle is in the state
with wave function v (x,0)=(3y, +v,)/5. Is that function normalized?

What kind of energy values will be measured in this state? With what
probability will be measured those values?

5. Can the functions sin¢@ and tan¢ be wave functions?

6. What restriction has to be imposing on the function exp(im¢g) to be it a
wave function?

7. We are interested in the observable F and in a single measurement we
have obtained F' = F, . Can we conclude that before the measurement the

particle has been found in the state F'=F, ?
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10.1 MEAN VALUES AND OPERATORS

In the experiments on a diffraction of the electrons we persuaded
ourselves that their momenta after the slit (the slits) are different. The
momentum of the separate electron is unpredictable. But can we find the
mean momentum of the electrons? This is the particular case of more general
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question. If the system is in non-eigenstate W (r) and we measure the
eigenvalues f, f,,..., f, of the observable f with the corresponding

probability W,,W,,..., W, , the question is how to find the mean value ]_‘ . By
the definition it is:

f=X Wt (10.1)
k
which according to (9.54) can be written as:
TEDY AN/ Netows (10.2)
k k

The coefficient C, describes "the specific gravity" of the eigenstate v,
in the considered non-eigenstate y . Let define C, through the wave
functions y, and y . For this purpose let find their scalar product:

(vw)=[viwdr =y ¥ CwdV = v Cy,dV =C,. (10.3)

Taking the complex conjugated of this relation, we obtain for the
conjugate coefficient C; following:

C=Jwwyar=Jvyar=(wy,) (104)
We substitute C, into (10.2)

F=XCthfvydar=[yY Cryadr. (10.5)

We are interested in the state l//=2Ckl//k. Let suppose, that the
function ch /v, in the integral of (10.5) is obtained as a result of the

mathematical operation over v , i. e.

fw=YC tv.. (10.6)
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Here we denote with /} an operator, which is related to f . From the

relation (10.5) we obtain for the mean value / of the observable f:

F=[v (r)fw(r)ar. (10.7)

To define the mean value of the observable f* in the non-eigenstate, it is
enough to know the wave function y(r) and the operator f .

When the considered system is in the ith eigenstate, it is described by the
wave function y, :

v=vy,, C =1, C, =0, k#i (10.8)

1

and then according to (10.6) we have

v, =fw. (10.9)

The observables are described by operators. To each — quantum-
mechanical variable corresponds an operator. The operators of the
dynamical quantities satisfy the same relations and equalities as the
corresponding classical quantities do. These statements represent the second
postulate in quantum mechanics; let us remember the first one - the state of
every quantum mechanical object is described by the wave function.

The question for the correspondence between the experimental measured
dynamical variables and the known mathematical categories is fundamental
for every physical theory. But the same physics can not define which
mathematical categories correspond to the dynamical variables. In classical
mechanics these are scalars, vectors and tensors in the real space. The
"visualizability" and the "tangibility" of the classical phenomena naturally,
almost intuitively have led to this correspondence. In quantum mechanics,
where the visualizability is lacked, for the realization of the fact, that to the
quantum-mechanical variable corresponds an operator the physicists have
passed a long and difficult way.

Let us consider two examples of operators. To take the co-ordinate x,

which is continuous value. For the mean value of the x in the state y (x)
according to (10.1) we obtain

Xy

X= ]%xdW(x) = Jx|l// (x)|2 dx =]gl//* (x)xy (x)dx. (10.10)

X X X
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On the other hand, according to the (10.7) we have
% = [y (x) iy (x)dx. (10.11)

From the comparison of (10.10) and (10.11) it is clear, that the operator
X of the co-ordinate x is equal to its value:

Xy =xy, X=x. (10.12)
Let find the operator of the component of the momentum over X, i.e. p_.

In the state of free movement a microparticle is described by the plane wave
of de Broglie (for example, before the slit in the diffraction experiment):

v(x)=y, = \/;n_hexp[—%(El—pxx)]. (10.13)

As the particle is in an eigenstate, the probability to have momentum p_

is ‘C p‘ =1 and according to the definition of the operator (10.6)

ﬁxw(x):pxw(x)szl//px‘ (10‘14)

Differentiating (10.13) over x we obtain:

0 i
SV = (10,152
or
h o
7&1[/% prl[/px. (1015b)

By the comparison of (10.15b) with (10.14) for the operator of the x-
component of the momentum we obtain

2 =—ihi (10.16)
ox
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The other two components of the momentum are written by analogy with
p. (see Section 10.5).

10.2 OPERATORS IN QUANTUM MECHANICS

In the most general sense the operator is the rule through which we
correspond to the function y other function @ , i.e.

A

Y= 21(p, A —an operator. (10.17)

Not all of the operators are suitable for quantum mechanics. To indicate
adequately the property of the microscopic objects, they have to respond to
some conditions. Firstly, the operators in quantum mechanics should satisfy
the superposition principle. Secondly, as it can be seen from the example of
the momentum (10.15b), at the action of the operator on the wave function
one obtains a real number. The linear operator responds to the first
requirement and the Hermitian operators - to the second one.

Let have operator A and two arbitrary functions u(x) and v(x).

Operator A is a linear operator if the next condition is fulfilled.
A[Cu (x)+ Cyv(x) | = Cdu(x) + Cydv(x), (10.18)

where C, and C, are arbitrary constant. The result of the action of the

operator on the linear combination of the both functions is equal to the linear
combination of the action of the operator on each of the functions.

We would like to underline, that the operator f , which we have
introduced in (10.6) to define the mean value J_‘ , 1s a linear one. Actually,
for non-eigenstate with a wave function u/:ZCkl//k according to the

definition (10.6) and the expression (10.9) we have
Jv=YCfw, =2.Clv. (10.19)
k k

If two operators satisfy the condition

Ju* (x)zzlv(x)dx)="‘v(x)f3*u* (x)dx), (10.20)
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they are called adjoint. When A=B then (10.20) becomes
[ (x) Av(x)dx) = [v(x) 3w’ (x)d), (10.21)

and the operator A is called self-adjoint or Hermitian.
The operator C is asum of the operators A and B if

Cy = Ay + By (10.22a)
or symbolically
C=A+B. (10.22b)
The operator Cisa product of two operators A and B, if
Cy=A4By, C=4B. (10.23)

The product of two operators depends on the order of the multipliers. For

example, if A= iai and B=x, then
X

Cy = A(By) = iéi(xy/) =iy + ix%—w =(i+ ixéi)l//,
* * * (10.24)

é't// = é(zzll//) = ixa—l// = ixi y.
ox ox

Obviously, CzC ', 1.e. AB#BA. 1t is important to realize that the
product of two operator in general does not commute. The algebra of the
linear operators in quantum mechanics is algebra of noncommutative
quantities. The term commutator takes a very important place in it. The

commutator [IZU.‘A?] of two operators A and B is defines by the difference of
the products AB and BA:

[AB]= AB- BA. (10.25)
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If the operator [211-?] is equal to zero - [/]Z?] =0, i.e. if the commutator is

zero, A and B are commutative operators, but if [211%’];&0 they are non

commutative operators. An arbitrary operator always commutes with a
constant and with itself.

Finally we shall note that when A and B are Hermitian operators, their
product in the general case is not a Hermitian operator. It can always be
represented in the following way:

1 . N an

C=AB=—(4B+ 21)+1(AB—BA) or
2 2 (10.26)
C=F+G, F=1(iB+BA). G=1(iB-BA).
2 2

A

The operator F is a Hermitian one, and the operator G is not a

Hermitian one, but the operator iG is a Hermitian operator:

ié:é(ﬁé—éﬁ). (10.27)

The product of a Hermitian operator A with a constant, as well its square
- constA and A’ - are Hermitian operators.

10.3 EIGENVALUES AND EIGENFUNCTIONS OF THE
OPERATORS

In Section 10.1 we have shown (see (10.9)), that as a result of acting of
the operator /} of the observable f on its eigenfunction y, the last is
multiplied by the eigenvalue f, of this observable:

1

Jv.=rfv. (10.28)

Mathematically the expression (10.28) is an equation of the unknown
function y,. We can obtain its solution if we add the boundary conditions.
The functions, which are a solution of the Eq. (10.28), are called
eigenfunctions of the operator f and numbers [, at which the equation has

a solution - eigenvalues of the operator /} )
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Example: We look for the eigenfunction and the eigenvalues of the ope-

2

rator -—
dx

. To determine them we have to solve the equation of the string:

—u. +k'u =0. 10.29
dxz i i i ( )
If a stands for the string length (0 <x < a) the boundary conditions have

the following form:

u,(0)=0, u,(a)=0. (10.30)
The solution of the Eq. (10.29) is well known:
u, = Asink,x + Bcosk,x. (10.31)
From the boundary conditions we obtain:
(10.32)

B=0, Asink,a=0

Le. ka=in, k=in/a, i=1,2,...
Taking into account this, the solution (10.31) deduces to the following:

u=Asin’" x, i=1,2,.. (10.33)
a
2

So for the operator 7 we have obtained the following eigenfunc-
A3

tions and eigenvalues:

.1l . ..
u,=Asin—=ux, wu,=Asin—=ux, .., u,=Asin—ux, ,
a a a
(10.34)
n’ 2 2 n’ 2_ 2 :
2 2 _
kl =1 5 k2 =2 > 5 ki =1 >
a a

Let us summarise briefly the results of the Section 9.2 and the results of
this chapter up to now. To every physical quantity we attach an operator and
to the state of the system - a wave function. The states in which the
measurement of the physical quantity fis reproducible one, are defined by us
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as eigenstates. They are described by the wave functions y, and in the
measurement of the observable f, one obtains the values f,. The last ones
satisfy the Eq. (10.28). In this equation the functions y, and the values f,

are the eigenfunctions and eigenvalues of the operator /} )

The set of the eigenvalues of the operator are called a spectrum of the
operator. If to the n different eigenfunctions of one operator correspond one
and the same eigenvalue the spectrum is n-fold degenerate.

Now it is clear why the operators in quantum mechanics are Hermitian
ones. In Eq. (10.28) the values f;, i.e. the measured ones in the experiment

eigenvalues of the observable f, are real numbers, but always real
eigenvalues have namely the Hermitian operator.
The eigenfunctions of the Hermitian operator are orthogonal. We shall

prove this. Let y, and y, are two eigenvalues of the operator f and

/. are its corresponding eigenvalues. Then we can write the equation
(10.28) for y, and the complex conjugate equation for vy, :

A

fl//k szl//ka

(10.35)
Fvi=tv..

*

We multiply the first equation to v, , the second to vy, , substrate two
obtained equations and integrate to the variables x:

[vi fydx =, /v dx = [(f, = £ v w.dx. (10.36)

Because of the Hermicity of the operator the left part of this equation is
equal to zero and therefore:

[ = Powiydc=0. (10.37)
As f, # f, , the condition of the orthogonality is as follows:
Jviydx=0  izk (10.38)

If we add the normalization condition, we obtain that the eigenfunctions of
one operator form the orthonormal system (9.43):

Jviydx=3,. (10.39)



10. OPERATORS 239

For a continuous observable, the orthogonal condition has the form
(9.55).

The system of the eigenfuctions of a Hermitian operator creates a
complete system. This means that every function y(x) can be represented as

a linear combination of the eigenfunctions:
w(x)=2_c,.y/,. (x). (10.40)

Earlier, in Section 9.5, we proposed the possibility of such expansion,
taking into account the superposition principle. Now on the basis of the
properties of the linear operators we can state that such expansion is always
possible.

If the function of the state y(x) and the eigenfunction of the operator ]A”
of the observable f are known, it is possible to be found the coefficients C,
of the relative gravity of the eigenstate y, . The knowing of the C, give us

the possibility to define the probability W, :|Ck|2 (9.51). In fact when we
multiply (10.40) to y; and then integrate to dx, we obtain C, (see (10.3)):

Jl//,fl//dx:ZCkéik =C,. (10.41)

Having the mathematical apparatus of the operators and their eigenfunc-
tions and eigenvalues, we are able to answer the question whether two obser-
vables M and N can be measured simultaneously. Let the wave function of
the state to be y;, and it to be eigenfunction of the operators M and N, i.e.

My, =My,.  Ny,=Ny, (10.42)

We act on the second equation with the operator M and on the first -
with the operator N and the second result is subtracted from the first result:

mv/i _NMWi =NiMW_MiNWi =NMy, - M Ny,

L (10.43)
=(NM,~MN)y,=0 or (MN—-NMy,=0.

The condition is fulfilled for the arbitrary wave function and therefore

A A

MN — NM =[MN]=0. (10.44)
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Two observables are simultaneously measurable if their operators
commute.

Finally we shall notice that as a matter of fact the first three sections of
this Chapter are an introduction to the mathematical basics of quantum
mechanics. The reader can find a complete exposition of this question in the
Chapter 4 of the book of W. Greiner [1].

10.4 OPERATORS OF THE CO-ORDINATES AND THE
MOMENTUM AND THEIR EIGENFUNCTIONS
AND EIGENVALUES

In the considered example in Section 10.1 we have proved that the
operator of the co-ordinate x is the same co-ordinate x (10.12). Following
this, we can choose any of the co-ordinates x, y, z for a relative operator and
can write

X=x, y=y, z=2z. (10.45)

Transmitting from the projections x, y, z to the vector r we obtain

r=r. (10.46)
In general, using the proof for X =x, we can proof that the operator of

every physical quantity f, which depends only on the co-ordinates, i.e.
/= f(x,p,z) is the same function:

A

f=r(xy.z). (10.47)

To define the eigenfunction of the operator x we write the equation for
its eigenfunction

qy,(x)=xy, (x). (10.48)

And now let remember the introduced in Section 9.6 Dirac's function.
According to the relation for the variable x —x" (property 5.) we can write

(x=x)0(x—x")=0. (10.49)

This equation can be written in another way:
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x6(x—x")=x"6(x—x"). (10.50)

After replacing x with X we obtain
0 (x—x)=x"6(x—-x"). (10.51)

From the comparison of this equation with the Eq. (10.48) it is clear that
the eigenfunction of the operator x = x is o-function*®

y(x)=0(x-x), 10.52)

where x” is the value of the co-ordinate x.
For the operators of the momentum components according to the (10.16)
we have

p. =—ih—, p, =—ih—, p.=—ih—. (10.53)

Let us multiply the equalities (10.53) by the relative orts x”,y’,z’ and
then to sum them up. As a result we obtain the operator of the momentum

0 0 0
p=—in| x' —+y’'—+2z"— |=-inV. 10.54
p=—i (x 8x+y 8y+z az] i ( )

Squaring the equalities in (10.53) and summing them up, we obtain the
operator p’:

2> 9° 9°
=0+ p>+ PP =—h| —+—+—— |==A’V>=—R’A.  (10.55
p =p,+p,+p; [axz e azz] ( )

Here A=V’ is the operator of Laplace.
Let write the equation of the eigenfunction vy, (x) for the operator p_:

*This eigenfunction of the operator X is in a co-ordinate representation, i.e. in an
eigenrepresentation (see Section 15.1). The eigenfunction of the operator in an
eigenrepresentation is always o-function.
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ﬁxv/px (X) = pxwpx (X),
3 (10.56)
_lhgwpx (x): rY,, (x)

Here we shall note that in quantum mechanics the operators of the
momentum and its components - (10.54) and (10.53) - are customary
denoted respectively with p and p_,p ,p.. Strictly speaking, we have to

write the operators P and IA’X,IA’},,IA’Z, i.e. the operators of the general

momentum, canonically conjugated to the co-ordinates r and x, y,z. This is
possible as far as in Cartesian co-ordinates the general momentum P is equal
to the mechanical momentum p. This will help the curious readers not to be
misled by the form of the operator of Hamilton for the charged particle in
electromagnetic field (see (10.104)).

The wave function of the free particle with momentum p_

1 i
= = - 10.57
Y=y, (x) o exp( - pxx) (10.57)

satisfies Eq. (10.56). This can be checked readily, if we substitute (10.57) in

(10.56). Consequently, it is the eigenfunction of the operator p = —ihai. In
X

this p_ can take arbitrary value in the interval
—o0 < p_ < oo, (10.58)

These values are eigenvalues of the operator p_ . On the analogy of this we
can prove that the eigenfunction of the operator p =—ihV is

b
l//p(r)—mf eXP(hpr)- (10.59)

Let find the commutators of the considered so far operators. Two
arbitrary co-ordinates, for example x and y, commute, i.e. their commutator

[%,7] is equal to zero. Really

[%, 7w =2y - Py = 20w) — Gy =y — yxy =0,

10.60
[.5]= &2 =0, 1oen
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The operators of every two components of the momentum commute,
because they are independent one from other, and the order of the
differentiation can be changed:

[p,,D,]=P.P,— P,D, =0. (10.61)

Do the operators of the co-ordinate and the momentum commute? First,
let consider the commutator of the momentum component with the unlike
co-ordinate:

A AR PR oy 0
V. W =y(py)—p,OW)=y| —ih—— |+ih—(y)=0,
[ lv v v ox 8x( V) (10.62)
[9.p.]=3p,~ p.7=0.
The momentum components commute with unlike co-ordinates.
Secondly, let consider the momentum component p_ and its relative co-

ordinate x. Operating with the operator of the commutator [, p, | for the
function y , we obtain

A A Arn ~ it a a
[% b Jv = 3(b.y) = b.(y) = —ihx -y + ih——(xyr) = iy (10.63a)
(%, p,]|=in.

>

The relation between every two similar co-ordinate and momentum
component is the same:

[y.p,]1=ih,
[2,p.]1=ih.

<>
:B>

(10.63b)

The momentum components do not commute with their relative co-
ordinate.

10.5" ANGULAR-MOMENTUM OPERATOR

The knowledge of the operators of the co-ordinate and the momentum is
of essential significance for the determination of the operators of an arbitrary
physical quantity. It is enough this quantity to be represented as a function of
the co-ordinates and the momentum components, and the last ones to be

replaced with their operators. Then for the angular-momentum operator L
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and its components according to the definition (2.34) and the relations (2.36)
we obtain the following operator:

A

L=rxp=—iirxV

- . . 0 0

L =yp. —zp, =—ih| y——z— |,

«=Yb.— 2P, Y3 Zay]

A, 9 9 (10.64)
L =zp —xp. =—ih| z——x— |,

y = 2Px TP ox 82)

. 0 0
L =xp —yp. =—ih|l x——-y— |

. =Xp, = VP, > yax]

For the square of the angular momentum we get:

Peb+f+L
=1’ yi—zi ST ORI z_hz xi—yi ] (10.65)
oz dy I oz P = |

Let see what are the commutating properties of the obtained operators.
We shall take the operators of two of the components, for example

L}, and ]:x . For their commutator according to (10.64) we have:

[L,.L.1=(zp, = xp.)(xp, — yb,) — (xp, — ¥p, (2D, — xP.)
=zp,(p,x—xp,) + yp.(xp, — p.X) (10.66)
= zp (=ih)+ yp,(~ih) = ih(—zp, + yp,) = ihL..

We use the commutator (10.63a) [%, p,|=ih. By analogy we obtain also
the other commutators of the components of the angular momentum:

[L,.L)=ihL,,
[L.,L1=ihL,,

(10.67)
(L, L]=inL..

The operators of the angular-momentum components do not commute.
The three commutation relations can be represented in a vector form

inL = LxL, (10.68a)
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or in a matrix form

=1
=1
=1

»
N

>

~>
> o<

ih(x"L, +y"L, +2°L. )= (10.68b)

=
<
N

>
>

~>

To define the commutators [Z,,Z’] (i=x,y,z) we shall use (10.67). We
multiply its last equality on the right and on left by the operator iy :

S T (10.69)
"L.=LL.L —ihL,L..

After subtracting these equations we obtain:

A Az_l;:

2
Xy y

™~

L =ih(LL +LL). (10.70)

By analogy from the second commutator of (10.67) after multiplying by

A

L, we obtain:
LI>-I*L =—in(LL +L L). (10.71)

We add the relation (10.70) to (10.71) and take into account that
L2 -f =0

LPP-PL =0. (10.72)

Choosing other two commutators from (10.67) we obtain similar
expression for ]:y and ]:Z:

[L.1=0, [L,[']=0, [L.']=0. (10.73)

The operators of the angular-momentum components commute with the
operator of the square of the angular momentum.

The angular momentum as an integral of the motion takes a very
important place in the problems with central forces (see Chapter 3). From
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here it is clear its significance in the analysis of the atoms and atomic
systems, in which namely such forces act. In connection with this we should

add that very often both of the operators of the component ix,i), and iz and

the operator I? are necessary in the spherical co-ordinates.

To obtain these operators we have to express the connections both of
the Cartesian co-ordinates with spherical ones (see (1.69) and Fig. 1.5) and
of the spherical co-ordinates upon the Cartesian ones:

x=rsinf cosQ, y=rsinfsin@, z=rcos0,
10.74
rZ =x2 +y2+22’ C059=£, tan(p:z ( )
r X

Using these relations we easy may express the derivative of the spherical
co-ordinate upon the Cartesian:

—r=sin9 CosQ, i=sin9 sin @, gzcose,
ox dy oz
8_9=cosq)cos@, 8_9:sm(pc059’ 8_9=_sm9, (10.75)
ox r dy r oz r
dp__sing  0dp__cosp  dp
ox rsing’ dy rsing’ dy
. 0 9 0
Now we can easy obtain the operator —, — and —:
ay 0z
9 9 00 90
ox Oxdr dx dB Ox @
=sinecos(pai+cos(p0059%_ s1f1(098i’
r r rsinf ¢ (10.76)
0 . , . 0 sinpcos® d cosp d
—=sinfsingp—+ —_—t
)y or r 00 rsin6 Jdo
0 sinf 9
—=cosf0—-— —
oz or r 90

. . ... d 0 J . .
We substitute the derivative —,— and P into the expressions of the
X dy 4

operators for angular-momentum components (10.64) and obtain them in the
spherical co-ordinates form:
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A . 0 0
L =ih| sinp—+cotf cosp— |,
i oy

el
iy :—ih(cosqo%—cote sin(p%} (10.77)
L= i
g

By analogy substituting (10.76) into (10.65) we might obtain also the
operator I?. We shall obtain it by another way using two ladder operators
L, and L_:

P =i +if, =he| 2 ticoto-L |
g 00

o)
5 ¢ " (10.78)
L =L —il, =he™|-——+icotd— |
! 00 oQ
The product of these operators is:
LL =(L +iL,)(L,~il,)=L +L —iL,.L,]. (10.79)

Expressing the square of the angular-momentum operator I’ through the
operator LlLl (and also through the ]:Z) we get

P=L+D+L=LL +L-hL. (10.80)

And now we shall obtain the product of the ladder operators L:Li. We

use (10.80) and carefully differentiate strictly keeping the order of operators
in the products:
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We substitute . from (10.77) and L_L_from (10.81) into (10.80) and

obtain the square of the angular-momentum operator I? in spherical co-
ordinates:

2 2
I =-n az+cotei+ L
20 00 sin’@ ago

2
=—h{— I 9 sm9i 12 8_2 .
sin@ 96 20 | sin” 6 dp
The operator
2
A=t bl 9 fGned 4L 9 (10.83)
sin@ 00 00 ) sin’0 9’

is called the operator of Legendre. Often instead of A we uses the operator

(10.82)

Ay, = V;(P =—A, called Laplacian upon the sphere or an angular Laplacian:
L =wA=-1"A,,. (10.84)

The operator A, , is the angular part of the operator of Laplace A in the

0.9
spherical co-ordinate system:

_19d(,0 1 1 9 d 1 0
r + sinf— [+ ———
P orl or sinf 00 00 ) sin’@ d¢’
(10.85)
_1a(,0 +LA _ Ay,
» or ar PO TR

The operator A, is the radial Laplacian.

10.6 EIGENVALUES AND EIGENFUNCTIONS OF THE
OPERATORS L. AND

We shall start with the component L_ of the angular momentum. The

equation for the eigenfunctions of the operator ﬁz appears as
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Y = Ly, (10.86)

The solution of this equation is:

v(p)= AeXP(i;Z ® ) (10.87)

From the condition of single-valued function (Section 9.2) -
v(@)=y (¢ +27) - we obtain:

Aexp(lilz go): Aexp[l];; ((p+27r):|, (10.88a)

or

exp(l; 2;:):1. (10.88b)

The values of the component L_ at which this condition is satisfied, are

the eigenvalues of the operator ]:Z :

L =mh, m=0,£1,%2,... (10.89)

z

The z-component of the angular momentum quantizied and it can have
only discrete values, equal to the integral h. Taking into account these
values in (10.87), the eigenfunction becomes:

v () = Aexp(imp). (10.90)

With the determination of the constant 4 from the condition of
normalization we get the final solution of the problem:

T|l//(q))|2d(p = 2] A \e""*’fd(p = AZngo oA =1= A=—— (10.91)
0

5 5 21

The normalized eigenfunctions of the operator L have the following form
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v(p)= \/;_77: exp (img). (10.92)

The equation for the eigenfunction of the operator I? of the square of the
angular momentum after taking into account (10.84), becomes:

n I?
AV/=?V/- (10.93)
The explicit view of this equation is

2 2
LY (ENPICER P AR (10.94)
sin 00 00 ) sin“0dp” h

This equation has a solution satisfying the finiteness of the wave function
(Section 9.2) only for determined values of L/7# , namely:

L2
S=I0eD, =012, (10.95)

2

and its solutions are spherical functions Y, (6,¢) (they are called also
spherical harmonics; see, for example [2], Appendix V):

v, 0,0)=Y, 0,9), m=0,1,2,.. (10.96)

Spherical functions are eigenfunctions of the operators I* and the
condition (10.96) determines its eigenvalues:

r'=I1(+hn*, 1=0,1,2,.. (10.97)

The number 1 is called an orbital quantum number. Both the spectrum of the
square of the angular momentum L’ and that of the z-component L_ are

discrete ones. The operators I? and ]:Z commute (10.74) and have common
eigenfunctions, i.e.

LY, (6,9)=hmY, (6,90), m=0,1,2,.. (10.98)

z"Im
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If we fix the square of the angular momentum L* =/(/+1)4*, i.e. the
number /, the component L_ may have 2/+1 values:

L =mh, m=0,t1,+2, ..+l (10.99)

z

In other words, 2/+1 z-components values of L and relspectively 2/ +1
wave functions, which differ on m, correspond to the state with fixed angular

momentum. The spectrum of the operator I s (2/+1)-fold degenerate.
Physically this means, that the angular momentum vector with a fixed value,
i.e. with a fixed number [, can have 21+1 orientations in space.

10.7 VECTOR INTERPRETATION OF THE ANGULAR
MOMENTUM

The angular momentum is a vector. The value of this vector is
determined by L* . Taking into account the experimentally measured values
of I’ we can measure anyone of the Cartesian component of L . Let assume,
that we consider the state with fixed values of L’ and L. (the corresponding
operators of these quantities commute (10.73)). However the values of the
two other components of the angular momentum L and L, are indefinites.
Their corresponding operators do not commute (10.67). In other words, at
simultaneous experimental measuring we obtain fixed values of I’ and L.
and different values of L. and L, . The situation, of course is, totally
different in classical mechanics - for example, the angular momentum of the

rotating wheel in one plane around fixed centre has determined values of
both the vector and of its three components. Can the classical model be used

in the presentation of the quantum mechanical moment with fixed L* and L,
and undefined L, and L, ? If both the wheel and together with it the vector

L precesses around the Z-axis, the values of L and L. will be fixed but not
these of L, and L, . The model of the vector of the angular momentum with
fixed value, precessing around Z-axis and having fixed L_-component and
indefinite L - and L, -components (Fig.10-1b) is a good visual
representation of the quantum mechanical angular momentum. We,
however, shall underline that this is only one presentation, but not the real

precessing of the vector L. In fact it lies on the cone of the precession and
another useful presentation shows it is spread over it.
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Figure 10-1. The vector representation of the angular momentum: a) angular momentum of
the rotating wheel in one plane around fixed centre; b) classical vector representation of the
quantum mechanical angular momentum - vector L precesses around the Z-axis.

The vector representation of the state with /=2 is shown in Fig. 10-2. We
note that we are forced to accept the precession of the vector with zero Z-
component for the same reason as for the other orientations.

Figure 10-2. Vector representation of angular momentum in the state with /=2. In all possible
orientations, including this with zero L.-component, the vector L precesses around Z-axis.
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In Section 10.6 we have established that the value of L is determined by
the number /. It is referred as the orbital quantum number. The number m,
which determines the value of the component L  of the moment L, is
referred as the azimuthal or magnetic quantum number. In quantum
mechanics the state of a particle with a fixed angular momentum, i.e. with
fixed / is denoted except numerically and literately. The states with different
angular momentum, theirs literal denotes and the possible components are
given in the Table 10-1.

Table 10-1. Quantum numbers and the observables, which they determines, and theirs values

The value of the

orbital number/ | 0 1 2 3 4

Literal symbol s p d f g

The value of

L=nfl(l+1) [0 | n/2 6 12 20

The value of the

magnetic

number m 0 0,+1 | 0,x1,£2 0,£1,+£2,£3 0,£1,+£2,£3,+4
The value of

Lz=mh 0 | 0,k |0,xh,£2h |0,xh,£2A,£3h |0,th, =2k, £3h, 4%
Multiplicity

of the

degeneration 0 3 5 7 9

So, at fixed orbital quantum number /, i.e. at fixed value of the vector of
the orbital moment, it can have only 2/+1 orientations in the space. In this
case one speaks about space quantization. Conveniently and obviously these
orientations are represented by vector diagrams. For s-, p-, d- and f- states of
a particle these diagrams are shown in Fig. 10.3. To construct the diagram,
for example of the p-state, from the beginning O of the Z-axis we draw the

half circle with the radius equal to L="7.//(/+1)= /2 and then construct
three orientations of the vector L, so that its components to the Z-axis to be
respectively —7%, 0 and 7. Similarly we construct the diagrams of the rest

states as well.
The angle, which the vector L makes with the Z-axis, is determined by
the quantum numbers / and m:

L
cosf =—= mh n

L ni(1+1) ) JI(+1)

(10.100)
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=0

Figure 10-3. Vector diagrams of the angular momentum for different states: s-, p-, d- and f-
states.

For given value of L, i.e. for /, the maximum value of m is /. But
m=1<,/I(I+1). Therefore the vector of the angular moment L never align

itself completely in the direction of Z-axis.

10.8 ENERGY OPERATORS

Firstly we shall determine the operator of the kinetic energy of a particle
with mass m, . Substituting momentum components into classical expression

for the kinetic energy 7 (e.g. in (6.53)) with theirs operators, we obtain:

2m, : _Zm0 o’ oy o 2m,

2 2 2 2 2
- (Pr+p)+p)= f (a A )=—h V2. (10.101a)

The kinetic-energy operator is expressed by the operator of Laplace:

B n "
T=- Vi=- A. (10.101b)
2m, 2m,
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In spherical co-ordinates using (10.85) we can write the operator of the
kinetic energy as follows:

2 2 r2
Fo_ in 20 LR N (10.102)
2myr* or\ or ) 2m,r* 7 2myr

i.e. the operator T represents by the operator of the radial kinetic energy and
the operator of the square of the angular momentum. The separation of the

kinetic energy in quantum mechanics to radial energy f’r and centrifugal

energy I*/2my* fully corresponds to both parts of the kinetic energy in
classical mechanics (6.79). We shall note that in quantum mechanics the
centrifugal energy [*/2m,r* customary is called rotational energy.

The operator of the total energy is a sum of the operator T and the
operator of the potential energy U . As U depends only on the co-ordinates
its operator is the same function U . Consequently the operator of Hamilton
in Cartesian and spherical co-ordinates can be written as follows:

2

A A

H::T+U(x,y,z):—2h

1
r—2A+U(x,y,z),

) L (10.103)
H==T + L 2=—h—i2— rr— —h—izA9¢+U(r).
2myr 2myr=or\ or ) 2myr-

Very important in quantum mechanics is the operator of the total energy
of charged particle in electromagnetic field. We shall obtain it substituting
physical quantities in the classical Hamiltonian (6.33)

H= (P—eA)2 / 2m, +e® by theirs operators. Remembering the comments
for p and P in Section 10.4, for the operator P we can write P =-iaV.

The vector potential A is a function of the co-ordinates and therefore A=A.
Then for the operator of Hamilton we can write

f=_! (P-eA) +e®=——(-itV -cA) +e®. (10.104)

2m, 2m,

Now we shall define the eigenfunctions and the eigenvalues of the
operator of the kinetic energy in one-dimensional motion:
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¥y _p
2m, x> 2m,

Ty=T¢p — — V. (10.105)

The solution of this equation is the function w, (x) (10.57) and the
eigenvalues of the energy forms the continuos spectrum from —oo to +eo .

For three-dimensional motion the operator T has the form (10.101) and
the equation for its eigenfunction

2 2

Ay =Ly (10.106)
2m,

m,

has the solution v, (r) (10.59), which describes the plane wave of de

Broglie. The momentum p of a free particle has an arbitrary value from —oo
to +oo and the energy spectrum is continuous.

10.9 THE HEISENBERG UNCERTAINTY PRINCIPLE

We know that the state of a system is described by a wave function and
the physical quantities - by operators. When the measurement of one quantity
is repeatble, in the experiment we get the eigenvalues of its operator, and the
wave function of the state is the eigenfunciton of the operator. In this case
the physical quantity is defined. When the measurement is not repeatble, we
obtain different values, but always one of the eigenvalues of quantity's
operator. The same quantity is undefined. The two quantities are compatible,
i.e. they are simultaneously measured, when their operators commute. The
set of the eigenfunctions of these quantities forms a complete set of
functions.

When the operators of two observables A and B do not commute they are
undefined. Let the commutator of the corresponding Hermitian operators

Aand B obeys the relation
AB—-BA=iC, (10.107)

where é:(ﬁé—f?;l ) / iis a Hermitian operator (problem 3). Does the connec-

tion exist in the uncertainties of both observables 4 and B in the state y(x)?

We shall characterize the uncertainties of both observables with the
minimal possible product of their fluctuations. As a measure for the de-
viation of measured values of 4 and B from the mean value we shall use the
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root-mean-square deviations (the dispersions) A4 =+ 54% and AB= \ 5B .
Here 60 4 and 6B stand for the deviations from the mean value:

SA=A-A, SA =A 244+ 4> = A - 4,

B - (10.108)
8B=B—-B, &6B*=A4"-2BB+B*=B’-B".
Without loosing the generality we can set
A=0, B=0. (10.109)

This is a question of choice of the co-ordinate system and of the initial
point of reading. In this case the values of quantities 4 and B are equal to
their deviations:

A=864, B=§B. (10.110)

In order to find the connection between the uncertainties 6 4 and 6 B we
consider the integral

2
dx, (10.111)

I(a)=”(a§1—il§)y/

where o is an arbitrary real number and the /(a)20.
We represent the integral as a product of complex conjugate factors and
use the fact that operators A and B are Hermitian ones:

1) = J(erd=iB)y (o +iB Yy
= [vord(oud—iB)yds+ [y'iB (oud—iB (10.112)
It

=J.l//* [azgz +aé+é2]‘/’dx:oczz+a5+§.

In this derivation we use the expression (10.107).
A necessary and sufficient condition the integral

I(@)=0* 4> +aC + B, (10.113)
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which is a square trinomial in respect to a, to be positive, is the discriminant
of the trinomial to be negative

454268 >C° — ﬁﬁz%éz N AAAB%\E\. (10.114)

The condition (10.114) is known as the uncertainty relation of
Heisenberg for two incompatible quantities. It is also called uncertainty
principle. 1t states that if measurement of A is uncertain by the amount AA,
then the measurement of B is uncertain by the amount AB, such that

AAABZ‘@‘ /2. The more precisely we measure 4, the more we give up

ability to determine B accurately. If 4 is exactly known, we know nothing at
all about B, i.e. if AA=0, AB =<0, and vice versa. The uncertainty relation
is a consequence of the basic principles of quantum mechanics and is related
to any two physical quantities which operators do not commute.

Let us consider one concrete example with the co-ordinate y and momen-

tum component p, . According to (10.63b) the operator C in this case is

A

c=2B Ty, (10.115)

1

and the Heisenberg relation can be written as
h
AyApyzE. (10.116)

The product of the root-mean-square deviations (the dispersions) of the
co-ordinate and the corresponding component of the momentum in the same
direction are larger or equal to fi/2 . Obviously it is not possible to make an

experiment, in which simultaneously Ap, =./0 pi =0and Ay=4/6y” =0.
The localization of the particle give the uncertainty of the momentum and the
particle with the precise momentum is spread in the space. This makes
impossible the use of the term trajectory in quantum mechanics.

We shall illustrate the Heisenberg relation with the experiment on the
diffraction of the electron by a slit (Fig. 10-4). Before the slit the electron is
in the state with certain momentum p =p,p =0, p =0, which is

described by the plane de Broglie wave = Aexp[i(pr - Et)/ h] . The
probability to find the particle in the volume element dV is
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dw =|y[ av =|4] av (10.117)

It does not depend on the co-ordinates and it is the same in all the space.
The particles with the precise determined momentum have totally uncertain
co-ordinates, which is in conformity with the uncertainty relation (10.116).

Let try to fix the co-ordinate y by the slit of the width a. Then we shall
see the well-known diffraction pattern. As it is symmetrical we can write that

p_y=0 and p, =Ap,. We shall do the estimation by the first diffraction

maximum. Its limit is defined by the angle 6, i.e. by the first diffraction mi-

v

electron — =
beam o

=S

Figure 10-4. The measurement of the co-ordinate y of a beam of electrons by the slit leads to
its decay on conical beams with different p, momentum. The limit momentum of the first dif-

fraction maximum is defined by the electron, which fall in the first minimum, i.e. by the £0.

nimum. At this angle the rays from the both halves of the slit (two by two)
interfere destructively as their path difference is 4/2, i.e.

9ing =2 (10.118)
2 2

As the y-component of the momentum in the minimum is psin@ , it changes
from the —psin@ to psin@. Hence, from (10.118) we obtain for the
deviation from the averaged value p =0 the following

(10.119)

Ak
a Cl'

h h
Ap, = psin@ =—sinf =—
p, = psin ;Lsm n
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As the deviation of the co-ordinate y is Ay =a/2, we can write

ApyAyz%%zg, (10.120)

i.e. our estimation is very close to the calculated value (10.116).
It is clear, that with the decreasing the slit width and so the precise fixing
of the co-ordinate y the uncertainty of p, increases. Because of the diffrac-

tion the precise measurement of the co-ordinate y leads to a bigger uncer-
tainty of the momentum p, . The wave particle duality places the limit of the

simultaneous measurement of the position and the momentum of the particle.
The uncertainty relation is a consequence from the specific character of
the microscopic object, namely from its dual character.

SUMMARY
The state of a system in quantum mechanics is described by a wave
function and the physical quantity (the observable) - by an operator (Table

10-2). The values of the quantity, which are measured in the experiment, are

Table 10-2. Basic operators and theirs eigenfunctions and eigenvalues

Physical Operator Eigenfunctions Eigenvalues
quantity
Co-ordinate x x v(x)=6(x—x) —oo <X <o
Radius-vector r r y(r)=6(r-r) 0<|r|<eo
Momentum x- _in i 1 i oc <
component, p, o y(x)= an P 5 P Py
. y/(r)zéexp i.pr

Momentum p —ihV ,(27171)3 h 0<|p|<ee
Angular
momentum z- ., 0 1 ) B
component, L, —zh% v(p)= e exp (img) L. =mh
Square of the
angular
momentum WA =-1"A,, v(0.0)=Y,,(6.0) L =rI(+1)
Kinetic energy, n’ 1 i P’

-—A w(r):—exp(—pr) 0< <o
T 2m, N 2m,
Total :
L;):a;nergy, - 2 A+U(r) v and E depend on the view of U (r)
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eigenvalues of its operator, and the wave functions of the state are
eigenfunctions of the operator or a linear combination of them. From the
measurement in the eigenstate we obtain certain eigenvalues of the quantity
(of its operator) and in the non-eigenstate - different values, but always one
of the eigenvalues. Two physical quantities (observables) are compatible, i.e.
simultaneously measured, if their operators commute.

Linear Hermitian operators are used in quantum mechanics. They obey
the superposition principle and their eigenvalues are real numbers.

The operator A is Hermitian if it satisfies the condition
Ju (x);lv(x)a’x = Jv(x)zzl*u (x)dx.

The average value of the physical quantity f'is defined by its operator and
the wave function of the state

7= v (0) Jw (e)av.

The eigenfunctions of an operator form a complete orthonormal set of
functions.

The dispersions (root-mean-square deviation) A4 and AB of two
incompatible quantities 4 and B satisfy the Heisenberg uncertainty principle

AAAB > ‘5 ‘ / 2, where C is defined by the operatoré = [/Alf?]/ i. Applied for

the co-ordinate x and the momentum p _, the uncertainty principle

h
AxAp .2—
px_2

leads to an inapplicability of the term trajectory in quantum mechanics.

QUESTIONS

1. How is average value of the observable expressed by:
a) superposition coefficients C, ; b) its operator?
2. What kind of operators are used in quantum mechanics and why?
Which operators are Hermitian?
4. If two operators are Hermitian, are the operators of their:
a) sum Hermitian; b) product Hermitian?
5. What is the commutator of two operators?
6. Do the following operators commute:

98]



262 Chapter 10

a) x and p;b) z and p; c¢) x and y; d) p, and p ?

7. How are the operators of the angular-momentum components obtained?
8. Do the next operators commute:
a) operators of the angular-momentum components;
b) operators of the angular-momentum components with the operator of
the square of angular momentum?
9. How are the operators of the energy obtained for:
a) a free particle; b) a charged particle in electromagnetic field?

10. What are the eigenfunctions and the eigenvalues of an operator?

11. What is the complete set of functions?

12. What is the necessary and sufficient condition two quantities to be
compatible?

13. What is the kind of spectrum of: a) the momentum components; b) the
momentum: c¢) the components and the square of the angular moment; d)
the energy of the free particle?

14. What is the degeneracy?

15. At the fixed value of the square of angular momentum L (fixed /) the
component L_has 2/+1 values. What does this mean physically?

16. What is the connection between the uncertainties of two incompatible
quantities?

17. How can you explain physically the Heisenberg uncertainty relation for
the momentum and the co-ordinate of a particle?

PROBLEMS

1. Prove that the operator p_ of the x-component of the momentum is
Hermitian.
2. Prove that the commutator of the operator p_ and of the operator of the

arbitrary physical quantity f'(x,y,z), which depends only on the co-
22
ox
3. Prove that if the operators A and B are Hermitian, the operator
C= (fllg’ - l%,zl)/z is also Hermitian.

ordinates, satisfies the condition p,_f (x,,2)— f (x,y,2)p, =

4. Taking into account that the product of two Hermitian operators can be
present as AB = (/]ﬁ’ + }2’1:1)/2 + (/]f? —ZALZI)/2 =F+G, prove that the

operators F' and iG are Hermitian.
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5. Prove that the component L, of the angular momentum commutes with

the operator of the square of angular momentum L : iyiz - iziy =0.

6. Knowing the connection between the Cartesian and the spherical polar

co-ordinates x=rsinfcos@, y=rsinfsin@, z=rcosf, prove that

i =-in2

2 ¢

7. Knowing the connection between the Cartesian and the spherical polar
co-ordinates (problem 6.) prove that:

]:Xzih singoi+cot9c0sq)i ,
00 0@

L =—ih cos(pi—cotesin(t)i .
i 20 oQ

8. Knowing the operators L:, iy and iz in the spherical co-ordinates

(problems 6. and 7.) prove, without using the ladder operators ]:+ and L,

2
that 22 =119 ging 0 |, L9 1
sin@ 90 00 ) sin“0 do

h2 aZ
— +U(x) is Hermitian.
2m, dx

9. Prove that the operator of Hamilton H=-

10. Obtain the Hamiltonian for the H-atom.
11. Obtain the Hamiltonian for the harmonic oscillator.
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11.1 THE SCHROEDINGER WAVE EQUATION

The knowledge of the wave function of a quantum-mechanical system
allows us to describe its state. The operator f of the observables gives us

the possibility to define what values can accept this observable and what is
their probability distribution. But knowing the state of given quantity in
certain instant is not enough. It is necessary to know the behaviour, i.e. the
changes of state in time as well. Then we can determine how the observables
change in time. So, the question, which we put on, is how the wave function

v changes in time. Said in other words, if in an instant =0 it is y(r,0)
what will be y(r,7)?

In classical mechanics the equations of motion allow us, if we know the
state in a given instant, to define it in every subsequent instant of time. In
Newton mechanics the basic equation of motion (the second Newton's law)
allows, if we know the co-ordinates and the velocities of the particles in a
given instant of time, to define them in an arbitrary subsequent instant. In
Hamilton mechanics, if we know the canonical conjugate general co-
ordinates and momenta in the instant # we can define them in the arbitrary
instant of time by Hamilton's equations.

By analogy, in quantum mechanics, in order to know the change of the
state, it is necessary to know the equation, which is satisfied by the wave
function y . For this we shall pay attention to the causality in quantum

mechanics. In classical mechanics if we know the values of a quantity in an
instant =0, we can precisely determine its values in the instant ¢ In
quantum mechanics if we know the probability distribution of a given
quantity in the instant t =0, we can determine its probability distribution in
every instant t. In other words, in quantum mechanics the causality has
statistical, probabilistic character unlike its deterministic character in
classical mechanics.

The wave function satisfies the Schroedinger equation. This is a basic
statement in quantum mechanics. The Schroedinger equation can not be
derived - it is postulated (as the second Newton's law is postulated). Some
properties of Schroedinger equation can be established form the peculiarity
of the quantum-mechanical systems.
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OF THE OBSERVABLES

Acording to the superposition principle, if the system can be in the states
with the wave functions y,,y,,y,,...,y, it can be found and in the state

with wave function y = ZC,.I//,. . All these functions obey the Schroedinger

equation. This is possible if the equation is linear.

The state in the given instant =0, i.e. the wave function ¥ (r,0) in this
instant (one constant with respect to time) determines the casual state in the
instant 7, i.e. the wave function y (r,7). This is possible only if the Schroe-
dinger equation is of the first order in respect to time, i.e. it contains a deri-
vative oy /ot . If, e.g. it were of the second order the two constants would be
obtained. Then in order to know the state in the instant 7, the wave function
at r=0,ie y (r,O) , would be insufficient - one more quantity is necessary.

We shall obtained the Schroedinger equation using of the wave function
of the free particle with the momentum p:

w(r,;)=ﬁexp[-é(m-pr)]
= ﬁem[—%(ﬂ - px—p,y- pr)]-

(11.1)

We emphasize this is not a way that represents a proof but the illustration
of the Schroedinger equation. We can subsequently determine as follows:

Loy i
h""=in| ——Ey |=Ey,
l ot l( h W) v

h2 h2 a2 a2 82
L NP 11.2
2m v Zm(ax2 dy> oz’ }U (112)

We equalize the left-hand parts of these equations and obtain that the
wave function (11.1) obeys the equation:

., oy n
h—=——Ay. 11.3
! ot 2m v ( )
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As H for a free particle has a form ﬁz—hz/ZmA, the Eq. (11.3)
becomes

z’haa—lilzﬁl//(r,t). (11.4a)

This is the equation of Schroedinger. 1t is satisfied not only by the wave
function of a free particle but by any wave function y (r,7) of arbitrary
quantum system.

If the system has the potential energy U (r) and hence the Hamiltonian

becomes H = —(h2 / 2m>A +U (r), the Schroedinger equation take a form:

mM=[—"’—2A+U(r)]w(r,z). (11.4b)
ot 2m

If w -function has harmonic time dependence on time, i.e.

l//(r,t)zl//(r)exp(—%Et ), (11.5)
the Eq. (11.4b) reduces to
Aw(r)+2h_’j’[E—U(r)]w(r)=o, (11.6a)

or written by the Hamiltonian H,we get
Hy (r)=Ey (r). (11.6b)

The Eq. (11.6) is called a time-independent equation of Schroedinger, while
the Eq. (11.4) - time-dependent equation. Sometimes they are called
correspondingly stationary and general equation of Schroedinger.

We have underlined that the Schroedinger equation is postulated.
Accurate exposition of quantum mechanics begins with the postulates, which
we have reached following our way of exposition. Let us sum up the basic
statements in quantum mechanics:

1. The state of the quantum-mechanical objects is described by a wave
function (I postulate).
2. The obseravbles are described by operators (Il postulate).
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3.
4.

The operators of the observables are Hermitian (Il postulate).
The eignfunctions of a Hermitian operator f , which are the solutions to

the equation fl//,. = fy,, form the complete set (in the general case

infinite) of linear independent functions (IV postulate).
The arbitrary function y can be represented as a linear combination of

these functions y = Z Cvy,.

The eigenfunctions are orthonormal (y,,y, )= J“K v, dr=9, .

. In states, in which the measurement of the observable f'is repeatable, for it

we obtain one of the values f,, f,, f;, ..., f,, which are eigenvalues of the
operator f ; these states are described by the wave functions

vV, V,,V,, ...y, , which are eigenfunctions of the operator j} : f v=1fy,.

. In a state, in which the measurement of the observable is unrepeatable, for

it we obtain different values f,, f,, f;, ..., f, , but always one of the ei-

genvalues f, of the operator f ; such state is a superposition of the eigen-

1

states wzz Cy, and the probability to measure the value f, is Wf;:|Ci|2.

. In a state, which is described by a wave function y , the mean value (the

expectation value) of the observable fis f = Jl//* f wdV (V postulate).

. If two observables are compatible, their operators commute and have the

common set of eigenfunctions; if they are incompatible - their operators
do not commute and their dispersion are connected by the Heisenberg
uncertainty principle.

. The wave function satisfies the Schroedinger equation (VI postulate).

11.2 STATIONARY STATE

By the definition, the stationary state is such a state, for which the

Hamiltonian H does not depend on time.

Considering for simplicity one-dimensional motion, we can write the

Schroedinger equation with the operator H , which is time-independent on
time as follows:

VD By (). (1.7)
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This equation can be solved by the method of the separation of the
variables. The solution is found as a product of two functions: w(x),

depending only on x and ¢ (¢) depending only on #:

w(x,0)=y (x)o(1). (11.8)

Substituting it in (11.7), we get:

,-m,,(x)a‘g_f’):(p(t)gl,,(x), (11.9)

We divide both sides of this equation to y (x)¢() and obtain:

do(t)
in ¢a(ft) :i];’zi’;) (11.10)

On the left-hand side we have a function of time, and on the right-hand
side - the function of the co-ordinate, i.e.

ihaq)a—ft):const(p(t), (11.11a)
Hy (x)=consty (x). (11.11b)

The Eq. (11.11b) is an equation for the eigenfunctions of the operator
H . Let they be w,(x),w,(x),w;(x),...w, (x). For each of them the
number constants determine the eigenvalues of the operatorf] , 1.e. of the
energy operator: const = £, E,, E,, ..., E, ; respectively the functions v, (x)
are partial solutions of the Eq. (11.11b). For each of these solutions v, (x),
the Eq. (11.11a)

00, (t)
ot

in =E,, (1) (11.12)

has correspondingly a partial solution

o(t)=A4, exp(—%Ekt} (11.13)



11. THE SCRHOEDINGER EQUATION AND TIME DEPENDENCE 271
OF THE OBSERVABLES

Hence the partial solution of the origin Eq. (11.7), according to (11.8) is
i
w¢(x¢)=q@(x)expf-gzgz} (11.14)

As the Eq. (11.7) is linear, its general solution is a superposition of the
partial solutions:

W@ﬂzzq%u@=zq%@kmp%@@ (1L.15)

Coefficients C, do not depend on time ¢ and the co-ordinate x and
according to (10.3) are determined as follows:

C, = [y (x.)w (x.)dx. (11.16)

From the solution of the equation of the stationary state we can make the
following conclusion about general properties of such a state, independently
of the concrete quantum system:

1. The energy of the system determines the time dependence. For eigenstate,

i.e. for the state with determined energy (for example E, ), this

dependence is harmonic:

j E
o(t)=4, exp(—éEkt):Ak exp(—iw,t), o, 57". (11.17)
Here w, stands for the angular frequency.
2. The probability density does not depend on time
dw,
P, = dxk =y, (x.0)y, (x)=p, (x). (11.18)

3. The mean value of the observable. i.e. the expectation value, which not
depends on time ( f # f(7); f# f(t) ), does not change with time:
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7= jw ()7 (ot )
= Izk: Ciy; (x)exp(%Ekt )Z‘ C.fv, (x)exp(—%E,t )dx
= Ciew{ e R o £ i (v (o

(11.19)

k

. i i 2 —=

=), exp(%EktJZC,f, exp(—EE,t)(Sk, =YIC[ £ =1 (1)

k / k

4. In a stationary state with the wave function y(x,7) (11.15) the
probability ¥, to measure the value f; of the observable f does not
depend on time. In fact, according to (9.52) this probability is constant:

w, =lc[. (11.20)

5. The spectrum of the energy of the stationary state in central symmetrical
field depends on the sign of the energy (e.g., see [R14], Section 49).
When the total energy of the system is negative E <0, it has a discrete

spectrum, the eigenfunctions y, (x) of the operator A not being zero
only in the limited region. Such state is called bound. When the total

energy is positive £ >0, then y(x)e< exp(%pxx), i.e. y(x) represents

a plane wave. The probability density does not depend on x: then
p(x)= |1//(x) |2 =const and the energy has a continuous spectrum. The

state 1s called free.

11.3* DERIVATIVE OF AN OPERATOR WITH RESPECT
TO TIME

The direct application of the term derivative to the precise values of a
quantum-mechanical quantity is impossible. But it can be applied to the
mean values of the observable (see, for example [3], Section 26). The mean

value / of the quantity fcan be expressed through the function y (x,t) and
the operator j} (10.7) and it is defined in every instant: more than this as

v ,w and f are continuous function of time, it is also continuous. This
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mean value varies with time. This is strange as then we make one wonder
how quickly it varies, i.e. what is the rate of its change. This means to

determine the time derivative of the mean value f :

cg a7 _[l// (x,7) fl//(x t)dx = J.alV—Xt) S (x,1)dx

! S (11.21)
+oo . 1
v (x,t)gl//(x,t)dx+ Tw (v0) f%dx

The function y (x,7) satisfies the Schroedinger equation and v (x,7) -

its complex conjugate form:

w iy =-in2Y (11.22)

Hy =ih
"”at or

We determine oy /df and dy” /dr and after substituting them in (11.21)

we obtain:
i:—%jﬂ*y/*ﬂ/dx+Iw*%wdx+%fw*ﬁf]wdx. (11.23)

In the first integral we change the places of H " and f‘ v and apply the

rule for a hermiticivity to the operator H

J v (e fyGend= [ Jy (e) oy = (xot)dv

. (11.24)
= [ (.t Hf  (x,) dx
Substituting into (11.23), we get
daf T\ T JH-Hf
—f;= Jv (x,t)a—];y/(x,t)dx+ [v (x,t)%l//(x,t)dx
h (11.25)

—Jw xt(af leth (x, )dx).
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We introduce the designation

fl:l_l:[f‘_[f‘al:[]_ T 0
R TALUE (11.26)

As we can see further, in quantum mechanics the operator { f JH }

performs the same role as the Poisson bracket in classical mechanics.

Therefore the operator { /} JH } is called quantum-mechanical bracket of

Poisson and the relation (11.26) is considered as the definition. Finally for
the time derivative of the mean value of f we obtain

d _f f [ s
7];:J;y/*(x,t)(a—];+{f,H}]l//(x,t)dx. (11.27)

The operator of / ot +{ 7 H } of a quantity is written in the brackets. In

classical mechanics the total time derivative from f'(see Chapter 6) is

g _Y

" §+{f,H}. (11.28)

The operator of this quantity is df’ /dt and it is equal to the operator
of / 8t+{ f.H } In such way, on the basis of the analogy with classical

mechanics, we introduce the time derivative of an operator:

%=%+{fﬁ}. (1129)

Taking into account this we can write (11.27) as

df % df df
4 I ve (o) Ly (uryae=2. (11.30)

The last equality we have written on the basis of the definition of the mean
value of the quantity df /dt (10.7).

So, looking for the reply of the question to what is equal the derivative of
the f, we suddenly have reached an interesting result: the time derivative of
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the mean value of an observable is equal to the mean value of time
derivative of this value.

Finally we shall note, that when the operator f does not depend
explicitly on time, its total derivative is

daf | o;
E_{f,H}, (11.31)
i.e. it is equal to the Poisson quantum-mechanical bracket of ]A’ and

Hamilton's operator H.

11.4 CONSTANTS OF THE MOTION

In classical mechanics the quantity f is a constant of the motion if the
total derivative of f in respect to time is equal to zero: df/dt=0. By

analogy, in quantum mechanics f'is a constant of the motion if d/} /dt=0:

G_V 15
5_5+{f,H}_o. (11.32)

When f does not depend explicitly on time, the condition (11.32) reduces to

{7.10}=0, (11.33)

A

i.e. fis a constant of the motion, if the Poisson's bracket of the operator f
and Hamilton's operator H is equal to zero.

When fis a constant of the motion, i.e. when (11.32) is satisfied we
obtain for the derivative of mean value f , according to (11.30), as follows:

df -
=0, = t. 11.34
” f =cons ( )

The mean value of a given quantity, which is a constant of the motion,
does not change with time. We shall underline the difference between the
constants of the motion in classical mechanics and quantum mechanics: In
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the first case the same quantity remains constant in time, but in the second -
its mean value.
We shall note one more peculiarity in the case when f does not depend

explicitly on time. In this case { f JH }=0 and according to (11.26) the
commutator | ]A‘ JH ] is also equal to zero - [ ]A‘ JH ]=0. The last one means

that the operators f and A have common eigenfunctions w, (x):

/}Wk (x):fkl//k (x),

. (11.35)
Hy, (x)=Ey, (x).

Let in this case ( f does not explicitly depend on time) consider the state with
a function ¥ (x,7). Let expand these functions in eigenfunctions y, (x):

l//(x,t)zzk“ck (), (x). (11.36)

Every function C,(¢)y,(x) satisfies the Schroedinger equation.
Substituting into this equation (for example, in (11.7) and taking into
account (11.35), we obtain for C, (t) an equation, which is fully analogous

to (11.12) and its solutions - to (11.13):
c (1)=c¢, exp(—%Ekt} (11.37)

In essence we have a stationary state, for which according to (11.36) and
(11.37) we can write

i
v (x,t)= ZCk (), (x)= ZCk exp(—EEkt Jl//k (x). (11.38)
k k
From this equation it follows that C, is equal to C, (¢) at =0

C, =C,(0). (11.39)

The probability to find the value f, of the observable f is

w, =|c. () =|c.[ =[c, (o). (11.40)
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A conclusion: if the observable f'is a constant of the motion and does not
depend explicitly on time, in the non-eigenstate Y (x,t) the probability W,

to measure the eigenvalue f, does not depend on time.

We shall consider some concrete constants of the motion of quantities,
which do not depend explicitly on time.

Example 1: The total energy of a system, which does not depend on time.
For Hamiltonian, which does not depend explicitly on time, we get:

At g gy UL (11.41)

1.e. the energy is a constant of the motion. The equality dH /dt=0 expresses
the law of the energy conservation.
Example 2: The momentum of a particle in a constant potential field

U (x, y,z)zconst. As the potential energy is determined correct to the
constant, we can put U (x, y,z)=0 and then
v _ P P’
H="—+U(x,y,z)=". (11.42)
2m 2m
The operators p,, p,, p. and p> commute with the operator H . Hence,

for their Poisson's brackets with the operator H (11.33) we have
{b.i}=0, {p,.A}=0, {p.A}=0, {p*.A}=0. (1143

The momentum p and its components p,, p , p. are constants of the

motion.
Example 3. The component L_ of the angular momentum and its value L

(or ') in a spherically symmetrical field with the potential U (r) . In such a
field the Hamiltonian can be written as (see (10.101)+(10.103)):

2 u(r). (11.44)

The operators ﬁz and I* do not depend on r. Besides this

L. commutes with 72 and hence



278 Chapter 11

| .8 |=in{L..f}=o0,
11.45
[iz,ﬁ]]zih{iz,ﬁ}zo. (14

In a spherically symmetrical field L. and L are constants of the motion.

SUMMARY

It is postulated in quantum mechanics that the wave function satisfies the
time dependent Schroedinger equation:

L0y A
h—=Hy/(r,t),
B v(r1)

where H is the Hamiltonian of the system. When the system has a potential
energy U (r) the operator A has the form A :—(h2 /2m>A+U(r). Itisa

linear differential equation, which is of the first order in respect to time.

The states, in which the Hamiltonian does not depend explicitly on time,
are called stationary states. In these states the wave function has harmonic
dependence on time:

l//(r,t):l//(r)exp(—%Et}

The equation, which is satisfied by the space part of the wave function, is
called time-independent Schroedinger equation or stationary equation.

Ay (r)=Ey(r) or Al//(r)+2h—T[E—U(r)]1//(r)=0.

In stationary states:
— the energy of the system determines single-dependence on time;
— the probability density does not depend on time;

— the mean value / of a observable, which does not depends on time
(f # f(t)) , is a constant;
— the probability /¥, to measure the value f; of the observable f does not

depend on time;
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— the energy spectrum in central symmetrical field is discrete, when the total
energy of the system is negative (bound state), and continuous, when the
total energy of is positive (free state).

The time derivative from the mean value of the observable is equal to the
mean value of the time derivative of this quantity:

d _t df df
—= #(x, )=y (x,1)dx=—.
dt _J;ll/ (x )dtW(x ) dt
The total time derivative of an operator is:

df of [~ A
§-247)

o SH-Hf _[f.H]
{f’H}_ in  ih

is the Poisson quantum-mechanical bracket of the operators f and H. In

quantum mechanics they perform the role analogous to this of the Poisson
bracket in classical mechanics.
The physical quantity f is a constant of the motion if the total time-

derivative of the operator /} is equal to zero: df /dt =0 . When its operator
f does not depend on time, i.e. af /dt =0 and the Poisson bracket of the

operator /} and the Hamiltonian is equal to zero, it is a constant of the

motion.
The mean value of an observable, which is a constant of the motion, does

not vary in time (f;tf(t)).

QUESTIONS

Why is the Schroedinger equation necessary?

Why the Schroedinger equation is from the first order in respect to time?
Why is the Schroedinger equation linear?

Which is the form of: a) the time-dependent (the general) Schroedinger
equation; b) the time-independent (the stationary) Schroedinger
equation?

bl el e
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=

8.

9.

. Which is the dependence on time of the wave function, satisfying the

stationary Schroedinger equation?

What are the properties of the stationary state?

What is determined the character of the energy spectrum in the stationary
state from?

To what is equal the time-derivative of the mean value of a quantum-
mechanical value?

What is the Poisson bracket in quantum mechanics?

10. What is the condition for the constant of the motion in quantum

mechanics?

11. Which is the physical significance of the constant of the motion?
12. Explain which physical quantity are constants of the motion and which of

them are constants of the motion in the next case: a) a system with
Hamiltonian, independent on time; b) the particle in the constant field; c)
the particle in spherically symmetric field?

11. PROBLEMS

. Show through the direct substitution, that the Schroedinger equation is

satisfied by the wave function y (x,7) =y (x)exp(—iEt/ 1), if y(x)

satisfies the stationary Schroedinger equation with the potential U (x).

. Prove that the state, formed by the superposition of two stationary states

v (x,t)=y, (x)exp(—iE 1/ )+, (x)exp(—iE,t/h), is not stationary.
Does the probability density y* (x,7)y (x,7) depends on time?

What is the Poisson bracket for the operators p, and %, p, and y?
Show that, if the functions , (x,¢), ¥, (x,7) and W, (x,¢) are solutions
of the Schroedinger equation with the potential U (x) , then every linear
combination y, (x,)=cy, (x,1)+cy, (x,1)+cy, (x,7) isalsoa
solution of this equation.

The quantum-mechanical system consists by two independent parts, who-
se stationary states are described by v, (x,#) and , (x,7). The
Hamitonian of the system can be represented as

H(x,x,)=H, (x)+H,(x,), where f,(x,) and H, (x,) are the
Hamiltonians of the independent subsystems (1) and (2). Prove that the
stationary state of the system is described by the wave function

(50 =y, (0w, ().
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12.1 MOTION IN A CONSTANT POTENTIAL FIELD

Let us consider the one-dimensional motion of the particle of mass m in
the potential field, which is constant in respect to the co-ordinate x and
independent in time:

U(x)=const =U. (12.1)

The Hamiltonian of the system can be written as:

A2 2 2

~ D he 0

H=2+U(x)=———+U. 12.2
2m ) 2m ox> (12.2)

It does not depend on time. Hence, the Schroedinger equation (11.4a) has
a stationary solution:

(12.3)

:*-‘| Iy

l//(x,l):l//(x)exp(—%El)zl/l(x)exp(—ia)t), o=

We substitute the solution in Eq. (11.4a) and after eliminating the ex-
ponential multiplier exp(—iE#/#) we have received the equation for y(x):

Ly 2B (x)=0. (12.4)
ox h

i.e. in a constant potential field the equation has the form:

%W(X)Jrkzw(ﬂﬂv =22 (E-U) (12.5)
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The solution of this equation depends on the sign of &”:
a)at k% >0,i.e. £>U , the solution of the Eq. (12.5) is harmonic

¥, (x)= Aexp(ikx)+ Bexp(—ikx). (12.6)

b)at k* <0,i.e. E<U ,weput —k*=x? (in this chapter x is not a force
constant) and

K :;—T(U—Eb 0. (12.7)

The solution of the equation is a linear combination of exponential functions:
v (x)=Aexp(xx)+ Bexp(—k x). (12.8)

In (12.6) and (12.8) A4 and B are arbitrary constants, which are defined by
the boundary conditions.

Using the solutions (12.6) and (12.8) let's try to analyze the motion of a
free particle. The potential energy of such a particle is zero, U =0.

2
a) kzzil—TE:;j; >0, or E>O0.

The solution (12.6) can be expressed through the energy E or through the
momentum p._ :

l//(x)zAexp(%\/ZmEx)+Bexp(—%\IZmEx), (12.92)
l//(x)zAexp(%pxx)+Bexp(—%pxx} (12.9b)

In the three cases (12.6), (12.9a) and (12.9b) the solution is represented
as a superposition of the partial solution w,(x) and y,(x), ie.

w(x)=y,(x)+w,(x), where w,(x) and y, (x) are, respectively
v, (x)= Aexp(ikx)= Aexp(%\/ZmEx)z Aexp(%pxx ),
(12.10)

¥, (x)=Bexp(—ikx)= Bexp(—%\/ZmEx)z Bexp(—%pxx ]

The general solution is not an eigenfunction of the operator p_:
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ﬁxv/('x) = ﬁle (x)+ ﬁxWZ (x) = prl (x)_prZ (x) # pxl//(x) (121 1)

The partial solution w,(x) is an eigenfunction of the operator p_ with the
eigenvalue 7k of the momentum:

b (x)=nky,(x) — p, ="k (12.12)

The solution ,(x) is also an eigenfunction of the operator p_, but with
another eigenvalue of the momentum - — 7k :

P, (x)=-hky,(x) — p, =-nk. (12.13)

The solutions v, (x) and w,(x) are correspondingly only the space

parts of the wave functions y,(x,7) and y,(x,¢). Adding the time-
dependent function (12.3), we obtain the de Broglie plane waves:
iEt .
y, (x.0)=y, (x)exp(—7)= Aexp[—i(wrt —kx)],
(12.14)

v, (5.0)=v, (x)exp(-§)=Bexp[-i(w;m)].

The first solution y,(x) corresponds to the de Broglie wave, travelling in
the direction of the positive x, ant the second v, (x) - to the de Broglie wave,
travelling in the negative direction of the axis X. In the corpuscle language
this means, that v, (x) describes the particle with a positive momentum 7k
(12.12) and y, (x) - the particle with a negative momentum -7k (12.13).

We shall add that the functions y,(x) and y,(x) are the

2 2

eigenfunctions of the Hamilton's operator H :—2—8—2. The operators
m ox

p, and H commute with A and hence the momentum p, and the energy
E are the constants of the motion.
b) k* <0, E<O.

In this case, according to (12.7) we can write:

_ 2m|E]

K?=-k* 2

: (12.15)
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and for the solution of the equation (12.5) -

J2m|E| J2m|E]| N (12.16)
n n ' ‘

v (x)=Aexp x |Bexp| —

This function according to the properties of the wave function is limited,
including at x — teo. From the condition of the limitedness at x — +oo it
follows that 4 =0, and at x > —e - B=0. So, at the negative energy
(E<0) the wave function of a free particle is l//(x):O. But physically

|l//(x)|2 represents the probability density p(x) in the point of the co-

ordinate x (see Chapter 8). It is clear that this density is zero for all possible
values of x. Conclusion: a free particle with negative energy does not exist.

12.2 THE INFINITE SQUARE WELL POTENTIAL

We shall analyze the motion of the quantum particle of mass m in an
infinite square potential well, i.e. in the region 0<x <a, where U(x)=0.

At x<0 and x=>0 the potential U (x)eoo. As in the both regions the

potential field is constant, the Hamiltonian of the system does not depend
explicitly on time. Hence the wave function satisfies the time-independent
equation of Schroedinger (12.4).

At x<0 and x>0 it can be written in the next form:

S+ 22 By -y () =0, (12.17)
X h

The only one way to satisfy this equation is to put y(x)=0 in the given
region. This yields:

w(0)=0, w(a)=0, (12.18)
which are the boundary conditions of the wave equation

0’ 2
STVEHRY(0)=0, K zh—TE. (12.19)

in the region xe (0,a). The solution of this equation is:
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v, (x)=Adexp(ikx)+ Bexp(—ikx). (12.20)
From the boundary condition at x =0 we obtain:
B=-4 (12.21)
The substitution of (12.21) into (12.20) yields:
w (x) = A[ exp (ikx) — exp(—ikx) ] . (12.22)

We multiply and divide by 2i and then use the Euler's formula. As the
result we obtain:

w(x)=A'sinke, A'=2id, (12.23)

From the boundary condition at x =a we have:

A'sinka=0, (12.24a)
or
ka=nt, n=1,23,.. (12.24b)

We shall note that » =0 is a solution of the Eq. (12.19) and this leads to
l//(x): 0 which physically means that there is not a particle in the well. This

solution does not correspond to the physical condition of the problem and
therefore is rejected in (12.24b).
Finally for the solution of the Eq. (12.19) we obtain:

v (x)=A'sin " x. (12.25)
a

The constant 4" is determined by the condition of normalization:

1=j|‘/f|2dx J|A| sin® 2% xax = |4’ JMd
0 a

=|A'|2£ = A':\/z.
2 a

(12.26)
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Thus the normalized wave functions of the particle inside the infinite
potential well are:

w(x) = |2 sin"x. (12.27)
a a

Substituting the values of k, from (12.24b) into k* = 2mE / h* we obtain:

TR,

E _n*, n=1,23.. (12.28)

n

" 2ma

The energy of the quantum particle in an infinite potential well is
quantizied. The number n is called a quantum number.

The spectrum of the quantum particle in an infinite potential well is
discrete, while that of classical particle is continuous. The energy levels are
nonequidistant - the space between them grows with the increasing the
energy, i.e. with the increasing the quantum number #:

'R
- 2

AE =E, —E, (2n+1). (12.29)

2ma

The energy values relate as the square of the integer:
E :E,:E,:..E =1:4:9:.n". (12.30)

Here we shall note that as the energy values (12.28) and the space
between the energy levels (12.29) are significant if the mass of the particle
and/or the well width a are small enough quantities. For example, for an

electron (m, =9,1.107" kg ) in a well of width a=10"""m (here a=2q,,
where g, is the radius of Bohr) one gets E,=r°.034eV and
AE,=(2n+1).0,34 eV~leV. At such small values of mass m, and the
width a the discrete character of the energy is clearly expressed. But if this
electron is in the well of the width @ =107 m (a macroscopic size), then

E =n>0,3410"eVand E,=(2n+1)0,34.10"°eV. The values of the

energy and of the space between the energy levels are so insignificant, that
practically we can consider the energy as a continuous quantity. The
physical significance of the solution (12.27) becomes obvious after
expressing the function y(x) through the exponential functions according to

the Euler's formula:
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J2m|E J2m|E
l//(x)=i\/§ exp # —%x . (12.31)
rva

x [Bexp

The general solution is a superposition from two de Broglie waves with
the wavelength A=2n/k=2ma/nmw=2a/n: the one with the wave

function y* (x)=constexp(inwx/a), travelling along the axis X and the

other with the wave function y~ (x)=constexp(—inmx/a), travelling in the

reverse direction. As a result of the superposition the standing de Broglie
wave (12.22) is produced.

Let us consider in detail the first three states. The state with the minimal
particle energy is called a ground state. The ground state has quantum
number » =1and a wave function and energy as follow:

n’h?
2ma’®

/4
v(x)= —smax E . =E =

min (12.32)
For a comparison we recall, that in classical mechanics the minimal
particle energy in the well is zero E;fm =0, i.e. the particle can be at rest.

The probability density in the ground state is:

dw, (x

p, = _| @f ——sm %x (12.33)

Let us determine the classical probability density. The probability
dW* (x) to find the particle in the interval dx is proportional to the time

interval dt , during which it is found there: W o< dt. Passing to the equality
and substituting df =dx/v, we get:

AW (x) =< dx = const dx, (12.34)
v

where c is constant and v is the velocity of the classical particle. For p“ (x):

dWcI
p (x):Jzizconst. (12.35)
dx 1
The probability of the classical particle is one and the same in every point
of the well 0< x<a and does not depend on the energy when E #0. When
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E =0 and the particle is at rest in the point x, (an initial position) the
probability density is p(x)=8(x—x,).
The wave function y,(x) (12.32) and p,(x) (12.33) are shown in Fig.

12-1. For comparison in the same figure the standing wave of a string,
secured at both ends is shown.

A=2/3L

’Lfl 3 \/ ‘w.ﬁ

z=0 z=a =10 z=a =0 x=L
a b C

Figure 12-1. The wave functions v, (x) (a) and the probability densities p, (x) of the first

three state of the particle in infinite potential well with the width a (b) and the standing waves
in a string, secured at the both ends (c).

By analogy for the state with » =2 and n =3 we can write:

21 2 2 2,2
n=2: E,= 27”2 =4E , y,(x)=,|=sin"Zx, p,==sin’ L x,
32m621h2 Z 3a Z 3a (1230
n=3 E,=""U 9F y,(x)=,|"sin"2x, p,=—sin’ .
a a a a a

These states are also shown in Fig 12-1.

The points, in which y, (x): 0, are called nodes of the wave function. In
the region 0<x<a the function y,(x) has no nodes, y,(x) has 1 node,
¥;(x) has 2 nodes and so on, v, (x) has (2—1) nodes. We note that with the

increasing the number of the nodes the state energy also increases.
Let sum up the results for the particle motion in an infinite potential well:
1. The energy of the particle has discrete character.

2. Theenergy E, = (ﬂ2h2 /2ma’ )n2 is determined by the quantum number

n, which has the values n=1,2,3...
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3. The energy levels are nonequidistant, AE, =(7°#*/2ma’ )(2n+1).

4. The minimal possible energy is different from zero, E,;, = E, #0.
5. In the ground state (£ = E,;,, = E, ) the probability to find the particle in

every point of the well is different from zero.
6. The quantization of the energy shows its worth at sufficiently small mass

of the particle and/or width of the well.

12.3 THE STEP POTENTIAL

In this section we shall solve another simple problem with one-
dimensional potential. Like the problem of an infinite potential well, it is
interesting with the illustration of a new quantum effect, which has no
analogy in classical mechanics. In this case this is the penetration of the
particle in the region of the potential greater than its energy.

We shall consider the potential with the form shown in Fig. 12-2:

U(x)=0, x<0,

U(x)=U, x20. (1237)

We designate the region x <0 with 1 and the region x>0 with 2.

Ul(z)

U

) @

Figure 12-2. The potential step.

The Hamiltonian of the system

~_ R 9
H=———+Ulx 12.38
2m ox* ) ( )
does not depend on time and the wave function w(x) satisfies the time-

independent Schroedinger equation (see Eq. (12.4)):
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Sy () + E-U@ ()=, (12.39)
X h

Firstly we shall consider the case E >U . Then the solution of the Eq.
(12.39) in the two regions is, respectively:

v, (x)=Aexp (ik,x)+ Bexp(—ik,x), klz,fz;ZE, x<0,

2m(E U

(12.40)
v, (x)=Cexp(ik,x)+ Dexp(-ik,x)

The term Dexp(—ik,x) together with the time-dependent factor
exp(—ikEt/h), i.e. Dexp|-i(k,x+,t)], represents the wave travelling in

the direction of decreasing x in the region x >0 . As there is not such a wave
in this region we set D =0.The interpretation of the other terms with the
amplitudes 4, B and C are shown in Fig 12-3a.

U(z)  Ue)
Aeli«-!z C.(::!\:_).z: Aﬁtkl.r (:.VE—KJ(:

- _-—
— 3 —tky
Be thyx Be thia

e U
@ wil2) @ ¢a(2) @ ti(e) @ ()
0 X 0 X
a) E>U b) E<U

Figure 12-3. The interpretation of the solutions of the problem with a potential step:
Aexplik,x) - the incident de Broglie wave, Bexpl(ik,x)- the reflected wave, Cexpl(ik,x) - the

refracted (transmitted) wave, C exp(—ioc) - the attenuated wave.

The solutions y, (x) and y, (x)are the wave functions of the system in
region 1 and 2, respectively. The requirement of the continuity gives:

¥, (O) =V, (0)9

0=y 0) (124D
ox ox

From these equations we find two algebraic equations:
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C,
ky c. (12.42)
ky

p=ti=k A4, C= 2k (12.43)
k +k, k +k,
The quantity
. hk
=y ()] =2y () =~ ()] (12.44)

determines the probability flux, which is the probability per second that a
particle will be found crossing some reference point travelling in a particular
direction. The incident, reflected and transmitted probability fluxes are,
respectively:

2’ j |B

Jin = %|A S %|c|2 : (12.45)
m m

" oom
The ratio j,/j,, =R represents the reflection coefficient and the ratio

Jo!Jyn =T -transmission coefficient or transparency of the step (here 7 is

not energy as in Eq. (1.36)). For these coefficients from (12.43)+(12.45) we
find:

Rziz‘ﬁl_(kl—kz)j,
Jn 14 2(kl+k2) ) (12.46)
T:l&:k&ngﬁé Ak Akk,

jin kl A k] (k1+k2)2 (k1+k2)2

The result shows that R >0 - there is a probability the particle to reflect
even though the total energy of the particle is greater than the height of the
potential step. It is surprising, because a classical particle would not be
reflected if it had enough energy to pass the step height. We would like to
underline that the reflection is connected with the potential discontinuity, but
not with the fact that U(x) becomes larger. At a corresponding discontinuity
a classical wave will reflect, too. So the effect of the reflection of
microscopic particle is the manifestation of its wavelike properties.
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It is clear that R+T =1, which expresses the physical condition for the
conservation of the particle number - the sum of the reflected and

transmitted fluxes is equal to the incident flux:

_ ke Tiky

|A| = |B| |c| (12.47)
Now let us consider the case when the particle energy is smaller than step
height £ <U. The solution of the Schroedinger equation (12.39) is

v, (x)=Aexp(ik,x)+ Bexp(—ik,x), x<0,

2m(U—E) (1248)

v, (x)=Cexp(-kx), k= FERE x<0.

For y,(x) we use (12.8), in which the constant before exp(ix) is equal
to zero (D=0), as at x — o the wave function y,(x) must be finite. The

interpretation of the solution (12.48) is shown in Fig. 12-3b.
The boundary conditions allow to determine B and C through A4:

p=fizik oo 2k (12.49)
k +ik k +ik

The probability density of the particles in the region 2 is

2
p(x)=w, (x) = K| AP exp(-2xx). (12.50)
k' +x

In classical physics the region 2 is forbidden (see Chapter 3). However,
in quantum mechanics the particles can penetrate in classically forbidden
region. The effect is purely quantum and there is not classical analogous.

The values of B and C (12.49) allow using (12.46) to determine the
coefficient of reflection and transmission:

R:H:l, T=0. (12.51)

The wave is fully reflected and therefore the transmission coefficient is
equal to zero. The particles penetrate to the certain destination and then are
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reflected. The probability to find them in the region 2 differs from zero, but
theirs flux is zero.

12.4* THE FINITE SQUARE WELL POTENTIAL

We shall consider the problem of motion of a particle with energy £ in a
square well with the width a and depth U < E (Fig. 12-4). Inside the well
the potential is zero:

U, x<-al/2, or x=+al/2,
U(x)z (12.52)

0, -a/2<x<+da/2.

U(z)d
U+

—af2 0 +a/2 X

Figure 12-4. The finite square well.

Here the choice of origin of the co-ordinate axes, different from the case
of the infinite potential well (in the middle of the well), is determined only
by the reason of mathematically easier and more clearly visualized solution.
As we shall see further that the equation of the finite well can be solved only
graphically or numerically.

This type of well is very often used in quantum mechanic as a model of
potential forces with a finite radius of action and without any influence over
the region out of this radius. Out of the region of force action the potential
can be considered as constant. Although with such simple potential some
details of the motion are lost, the essential features of binding the particle by
a certain force in a certain region remain. For example, the motion of a
neutron in a nucleus can be successfully approximated by assuming the
neutron motion in a square well potential with depth 50 MeV and width

~107"* m. On the ground of the discussion of an infinite well and a potential
step we can assume that the wave function will describe the de Broglie
standing waves with integer half waves inside the well and exponential
attenuated wave out of it.
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The solution of the Schroedinger equation can be written as follows:

v (x)=Asinkx+ Bcoskx, —a/2<x<al2, (12.53a)
v (x)=Cexp(kx)+Dexp(—kx), x<-al2, (12.53b)
v (x)=Fexp(kx)+Gexp(—kx), x>a/2. (12.53c)

Here k =~2mE/h* and k =+2m({U - E)/h*.
For the determination of the unknown constants firstly we shall use the
finiteness of the wave function. Obviously, at x — Feo this requirement gives

D=0, F=0 (12.54)

From the requirement of the continuity of the wave function and its
derivative at x =—a/2 and x = a/2 one obtains the boundary conditions
of the form (12.41). They give four equations for the constant
A,B,Cand G:

—Asin(ka/2) + Bcos(ka/2)= Cexp(-Kkal2), (12.55a)
Ak cos(ka/2)+ Bksin (ka/2) = Cx exp(~Ka/2), (12.55b)
Asin(ka/2)+ Bcos(ka/2)=Gexp(—ka/2), (12.55¢)
Ak cos(ka/2)— Bksin (ka/2) = -G exp(—ka/2). (12.55d)

Subtracting from the Eq. (12.55¢) the Eq. (12.55a) and adding these two
equations we obtain

24sin(ka/2)=(G - C)exp(-Kka/2), (12.56a)
2Bcos(ka/2) = (G + C)exp(—ka/2) (12.56b)

Performing similar procedure with the Egs. (12.55d) and (12.55b), we get

2Bksin(ka/2)=(G + C)exp(-ka/2), (12.57a)
2A4kcos(ka/2)=—(G - C)kexp(—ka/2). (12.57b)

We divide (12.57a) by (12.56b) and (12.57b) by (12.56a):

ktan(ka/2)=x, (12.58a)
kot (ka/2) = —x . (12.58b)
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It is easy to see that two equations (12.58) can not be satisfied
simultaneously. If they could, then the equation, obtained by adding them

ktank—;+kcotk—;:0, (12.59)

would be valid. Let multiply the last equation by tan (ka/ 2) :
ktanzk—2a+k:0 = tanzk—zaz—l. (12.60)

This cannot be like this, because according to the conditions of the
problem k and a are real numbers. This way, only two possibilities remain:
the Eq. (12.58b) has a solution, but Eq. (12.58a) has not or the Eq. (12.58a)
has a solution, then Eq. (12.58b) has not. So, the eigenfunctions of the finite
well form two classes of functions. For the first class (we take the first
equation of (12.58))

ktank—zazrc, A4=0, G-C=0. (12.61)

With these results the Eq. (12.55¢) is reduced to

Bcosk—;:Gexp(—%): G:Bcosk—zaexp(%J:C, (12.62)

and finally for the wave function we get:

¥, (x)=Bcos(kx), —a/2<x<al2,

¥, (x)=[Bcos(ka/2)exp(ka/2)]exp(kx), x<-al2, (12.63)
l//l(x)=[Bcos(ka/2)exp(r<a/2)]exp(—1<x), x>al2.

Inside the well the wave function 1is an even function

(cos(kx)=cos(-kx)).
For the second class

kcot%=—r€, B=0, G+C=0. (12.64)
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In this case the Eq. (12.55¢) is reduced to:
Asink—zazGexp(—%): GzAsink—zaexp(%Jz—C, (12.65)

and the wave functions are

v, (x)= Asin(kx), —al2<x<al2,
v, (x)= [—Asin(ka/)exp(Ka/2)]exp(Kx), x<-al2, (12.66)
v, (x)=4sin(ka/)exp(xa/2)|exp(-kx), x>al2.
Inside the well the wave function is an odd function®
(sin (kx) = —sin(—kx)).
To determine the eigenvalues of the energy, we shall consider firstly the

Eq. (12.61). Writing k£ and « in an explicit form and multiplying by a/2, we
obtain

2 2 _E 2
\/’"E“ tan\/mEa =1/’"(U )a”. (12.67)
2h° 2h* 2h*

After setting

2 2
£= % p(&)=¢1ge, q(g)=\/m2(2? - (12.68)

the Eq. (12.67) becomes:

*By solving the problem of an infinite potential well we obtained two classes of solu-
tions and there the question of the parity of the waves functions did not arise. This is due to
the choice of the beginning of the X-axis - there it coincides with the well wall, but here it
is in the middle of the well. So in the last case the well potential U(x) is an odd function of
the co-ordinate x (the reader can find details in [R19, Section 6.8 and in [3], Section 48).
Of course the problem of the finite well potential can be solved similarly to the problem of
the infinite well setting x=0 to coincide with the well wall (see for example Pain H. J., The
Physics of Vibrations and Waves, 2nd ed., John Wiley & Sons, 1976, Chapter 12).
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mUa* 3
21

p(&)= g, or p(&)=q(&). (12.69)

The points of intersection of the functions p(£) and ¢(£) define the
values of £ which are the solutions of (12.69). Such graphical solution is
illustrated in Fig. 12-5a. The function p(g) has zeros at £=0,m, 27x,... and
the asymptotes at £=m/2,3m/2,57/2,... If we write the third equation of

(12.68) in the form q2(8)+ g’ =mUaz/2h2 it becomes clear that q(Z) is a

quarter-circle of a radius mUa’ / 2h* . We can see from Fig. 12-5a that the
number of solutions depends of this radius. In Fig. 12-5a is shown the case

51 51
. p(€) p(&) p(€) . r(€) r(€) r(€)
q(€)

1N

(3]
T

[av]
T

Figure 12-5. A graphical solution of the equation for eigenvalues of the energy of the
particle in the square potential well with a finite depth: a) p(g )= q(g ) (even wave function

v, (x)andy, (x)); b) -Ecotg€=gq(€) (odd wave function v, (x)).

when /mUa /27‘12 =4 . Then we have two solutions: £ =1,25 and £ = 3,60.

For these values we get from the first equation of (12.68) the eigenvalues of
the of the energy:

2 2 2
E:gZ 2h2:g2 27;1 zUz(l’js) z0’098U’

U
"“’2 e (12.70)
E=g 2" zUz(3’6OJ ~0,808U.
mUa 4

For the second class solutions, corresponding to odd functions, we shall
obtain the eigenvalues as the solution of the first equation of (12.64). Eva-
luating & and x (12.53) and multiplying it by a/2, this equation becomes:
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mEa*
2h°

gcotgl = - or r(&)=4q(¢). (12.71)

The solution is similar to that of the Eq. (12.69). Graphical solution of
Eq. (12.69) is illustrated in Fig. 12-5b. It is clear from the figure that for

E<Uif 1/mUa2/ 2h* <m/2 there is no eigenvalues corresponding to the
odd eigenfunctions. However, if /2<\/mUa?/2h* <3m/2 there is one
eigenvalue; if 377/2 gm <571/2 - two and so on. In the figure the
case, when the radius of the circle is equal to 4 (w/mUa2/2h2 :4Jis

illustrated. It is seen that in this case the single solution is £ =2,47 and the
odd wave function v, has eigenvalues

2 2
E=E, =& 21 U= 2,47 = 0,383U. (12.72)
: mUa? 4

The eigenvalues and the eigenfunction of the considered case with three
allowed bound states are shown in Fig. 12-6.

‘lf’g
U ! / \ 1
] s T N
Es Yo
0
B>
L2
1'-'1 /\
| 0 | |
—af2 0 +a/2 —af2 0 +a/2
a b

Figure 12-6. The eigenvalues (a) and the eigenfunctions (b) of three allowed bound states of
the particle in the potential well with finite depth at /mUa’ / 2h* =4 and E<U.

We see that in the potential well with a finite depth the number of the
allowed bound state is restricted. These bound states have discrete
eigenvalues of energy E <U. When the potential wave is very shallow
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or/and very narrow only a single eigenvalue of energy is allowed, which
corresponds to the state with even wave function. With increasing values

\mUd? / 2h* | i.e. with increasing values of the well depth and/or well width,

the number of the bound states increases, as firstly the state with odd wave
function appears, then the one with even etc. (there are excellent illustrations
in Brandt, S., H. D. Dahmen, The Picture Book of Quantum Mechanics,
John Wiley & Sons, 1985, Section 6.5).

As we can see from the analytical expressions (12.63) and (12.66) and
from Fig. 12-6b, the solutions of the Schroedinger equation are de Broglie
standing waves. But in this case the analogy with a string is not so much
complete as in the case of the infinite potential well (Fig. 12-a, c). Firstly, let
consider the particulars of the standing waves within the well. As higher is
the eigenvalue of the energy, more numerous are the oscillations of the
corresponding wave function and higher is its wave number k. This is so,

because inside the well the wave number k is proportional to E'?. The
particle in the case, shown in Fig. 12-6 does not have a fourth bound state,
because the necessary value of wave number and hence of E"? would be
too large to satisfy the condition £ <U. At the lowest energy state the wave
function w,(x) does not have nodes, at the second energy level the wave

function ,(x) has one node, and at the third - two nodes etc. The nodes

however have not the same position along X-axis as the nodes in an infinite
well. Now let consider those parts of the wave function, which are in the
regions outside the well. In classical mechanics at £ < U these are forbidden
domains and the particles cannot penetrate in them, because their kinetic

energy becomes negative - p>/2m=E—U <0. With the increasing E the

parameter K = w/2m(U -F )/ 7> decreases and the wave functions penetrate

more and more inside the classically forbidden domain.
Finally let sum up the results for the particle in the square potential well
with a finite depth:
1. The energy of the particle at £ <U has a discrete character.
2. The energy levels are nonequidistant.
3. The number of the bound states depends on the depth U and the width of

the well - at \\mUa’ / 2h* <m/2 there is only one bound state and with
increasing the parameter  mUa’ / 2h* this number becomes larger.

4. The minimal possible energy is different from zero, £E_, =FE, #0.

5. Inthe ground state (£ = E_, = E,) the probability to find the particle in

every point of the well is different from zero.
6. The probability to find the particle in a classically forbidden domain is
different from zero.



12. MOTION IN ONE-DIMENTIONAL POTENTIAL 301

12.5° THE POTENTIAL BARRIER

In this section we shall consider a rectangular potential barrier (Fig.12-7),
which potential can be written as follows:

Ux)=0, x<0,
Ux)=0 0ZxZa, (12.73)
Ux)=0 x>a.

The particle with mass m and energy £ <U moves from — oo along the X-

U(z)
’_\(Ilk_l.' Ce KT + }r)r— KT F{_:k.r

e —

‘U(I—-lk_!.

@D ¥ (=) @ va(z) @ vs(z)

0 a X

Figure 12-7. A potential barrier with height U and width a: in region 1 U (x)z 0, x<0;in
region 2 U(x)=U, x<0<a;inregion3 U(x)=0, x>a.

axis. In corresponding regions the time independent Schroedinger equation
at £ < U has the following solutions:

v, (x)= Aexp(ikx)+ Bexp(—ikx), k= 2:1_2E’ x<0,

2m(U —-E
¥, (x)=Cexp(kx)+Dexp(—Kkx), K‘=1/%, 0<x<0,(12.74)
v, (x)=Fexp(ikx), x>a.

The interpretation of the solutions (Fig.12-7) is similar to that one of the
problem with a potential step. The part of the incident de Broglie wave

Aexp(ikx), reaching the barrier reflects - Bexp(—ikx), and the other part
transmits in the region 3 - F exp(ikx). The wave function y, (x) describes

the penetration of the quantum particle in the classically forbidden domain.
We already know that there is some probability to find quantum particle in
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region 2, nevertheless that for a classical particle region 2 is an excluded
region.

The requirement for continuity of the wave function at x=a and
x =0 leads to the next boundary condition:

¥, (0)=v,(0), v,(a)=v;(a),
12.75
aa_xllll (O)Zailllz (0)’ aa_xlllz (a):illf3 (a). ( :

X ox

These conditions together with the solutions (12.7) give the following
system of the algebraic equations for the coefficients 4, B, C, D and F :

A+B=C+D, (12.76a)
ikA—ikB=x C -k D, (12.76b)
exp(ka)C +exp(—ka)D =exp(ika)F, (12.76¢)
kexp(ka)C —exp(—«a)D =ik exp(ika)F. (12.76d)

We shall solve the system in the next way. Multiplying (12.7a) by k¥ and
successively summing up and subtracting with (12.7b) we obtain

(k+ik)A+(x—ik)B=2xC, (12.77a)
(k—ik)A+(k +ik)B=2kD. (12.77b)

Now multiplying (12.7c) by x and successively summing up and
subtracting with (12.7d) we obtain

2k C = (k + ik )exp (ika — ka)F, (12.78a)
2k D = (K — ik )exp(ika+xa)F, (12.78b)

Replacing 2xC and 2xD from (12.78) into (12.77), we find the
connection between A4, B, F :

(K +ik) A+ (x —ik) B = (x + ik )exp (ika—ka)F, (12.79a)
(K —ik) A+ (x +ik) B = (k — ik )exp (ika+ka)F. (12.79b)

From term by term summing up and subtracting of these equation we get:

ik(24+2B) =[ (k+ik) exp(—Kka) + (k—ik) exp(ka) |exp (ika) F, (12.80a)
ik(24-2B) =[(k+ik) exp(—ka) — (k—ik) exp(ka) |exp (ixa) F . (12.80b)
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Let find the dependence of the transmitted-wave amplitude on the
amplitude of the incident on the barrier wave. We multiply (12.80a) by ik
and (12.80b) by x and sum up the obtained equations. As the result we get:

4ixk exp (—ika)
F= . . A (12.81)
(k +ik) exp(—ka)—(x —ix) exp(xa)

In the most physical problems, which must be interpreted with the
potential in the form (12.73), it appears that xa >>1. At this condition
(12.81) reduces to:

4ixk exp (—ika)
Jo A, xa>l. (12.82)
(K —ik) exp(xa)

The coefficient 7 of the transmission, called a barrier penetration, is
following:
. F 2 2.2
T:#:Q = JOFK p(<2xa) =T, exp(~2xa). (12.83)
Ju AT (K +x?)

Note that here 7', is not temperature as in Eq. (7.1). We shall give the

physical interpretation in the next section. Here we shall only note that
quantum particle penetrates in the region 2 and transmits through it in the
region 3, which is impossible for the classical particle.

Here we shall pay attention to an important phenomenon in quantum
mechanics - the scattering. In classical mechanics if the energy of particle £
is less than the energy U of the inhomogeneity, it will reflect; if £>U , it
will transmit. In sections 12.2+12.5 we have persuaded ourselves that the
quantum particle because of its wave properties is reflected by every
inhomogeneity and transmits through it even if £ <U. In other words it
scatters from such inhomogeneity. Transmitting from the square well and
barrier to the spherical geometry, quantum mechanics creates the model of
the scattering of the real particle by another particle.

12.6 THE TUNNEL EFFECT AND ALPHA-DECAY

In the problem with the potential barrier of a height U and a width a at
the energy of the quantum particle £ <U we observe the effect which is
unknown in classical physics, namely the penetration of the particles through
the barrier (Fig. 12-8). Because of the wave character of the quantum
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particle, the probability to find it behind the potential step at x=0 is
different from =zero (see Section 12.3). The probability decreases
exponentially and if the width of the barrier is not too large, than behind it,
i.e. in the region x > a, this probability is a finite value.

VAVAVAVAVA
@ ® ®

Figure 12-8. Tunnel effect - the penetration of a quantum particle of energy E through the
barrier U (U>FE) in the region 3, which is inaccessible for the classical particle.

It appears that in the most practical cases the coefficient of the
transmission T=|l//3|2/|l//1|2 has the form (12.83):

TzToexp(—ZKa)zToexp(—%.mm(U—E)a), (12.84)

where 7j, is a value of the order of unity.

The region 0 <x<a in Fig. 12-8 is a forbidden domain for a classical
particle. According to (12.84) the quantum particle of mass m and energy E,
which impinge on the potential barrier of the height U and width a, has a
certain probability to penetrate through the barrier and to appear on its other
side. The particle can leak through the barrier if as there were a hole in it.
The tranmsition of the quantum particle through the potential barrier of a
height greater than its total energy, i.e. through the classically forbidden
domain, is called tunnelling or a tunnel effect (in Fig. 12-8 the real part of
the wave function is drawn).

The rectangular well is an idealization. When we have a real barrier, e.g.
as in Fig. 12-9, we deal in the next way. We approximate the real barrier

Figure 12-9. Approximation of real potential barrier by series of the square potential barriers.

with rectangular barriers of a depth dx and a height U(x). The barrier
penetration of the rectangular barriers of a depth dx and a height U is
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2
T=T. ——.2m(U,—E)dx | 12.85
=T ~2 (U~ ) (1245

The coefficient of the transmission of the whole barrier is obtained by
multiplying the expressions of such form for all elements dx of the real
barrier. The exponents are summed up and we get:

T:Toexp{—%ifﬂﬂm[U(x)—E] }dx. (12.86)

We shall consider a few examples of tunnel phenomena.

Example 1. A cold (autoelectronic) emission of the electron. In the absen-
ce of outer electrical field the electrons are confined within the metal by an
energy barrier formed by the work function (see the discussion of the pho-
toelectric effect in Chapter 7). In other words their potential energy on the
metal boundary changes with a jump from 0 to U,. When the electric field
with intensity & is applied, the electron potential energy is changed and it
becomes U =U, —& (Fig. 12-10). The triangle barrier with a finite width is

[-'{1:)11

metal surface —=

e

Figure 12-10. At the present of the external electrical field & the potential at the metal
surface becomes U = U, —éx - the triangle potential barrier is formed. The electron penetrates

through it due to the tunnel effect.

formed, so that at a short distance from the surface of the metal the potential
energy is less than the energy of the electrons inside the metal. Now
although the electrons cannot classically penetrate the barrier of the metal
surface they can pass through by quantum-mechanical tunnelling and
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as a result we observe a cold electron emission. With the increasing the field
intensity the barrier width decreases and the barrier penetration increases -
autoelectronic current increases.

Example 2. The transitions of N atom in the ammonia molecule, NH, .
Fig 12-11 illustrates schematically the structure of this molecule. It consists
by three-H atoms arranged in a plane on equal distances from N atom. There
are two completely equivalent equilibrium positions arranged on the both si-

Figure 12-11. The both possible situations N and N' of the nitrogen atom and its potential
energy in the ammonia molecule.

des of the plane of H atoms. The potential energy of N atom has two
minima, corresponding to two equilibriums. These minima are
symmetrically disposed with respect to the maximum at x=0. This
maximum, creating the barrier between these two regions, is due to
Coulomb's forces of repulsion acting on N atom, when it penetrates in the
plane of H atoms. In the frame of classical physics these forces do not allow
to N atom to cross the barrier. But due to the tunnelling this atom can
penetrate through the barrier in the classically forbidden domain. If it is
initially on one side, it will appear on the other side and vice versa. In fact
the N atom oscillates back and forth through the H-atom plane with a
frequency v = 2,3786.10° Hz. The high accuracy at the determination of this
frequency, which is based on the small width of the corresponding spectral
line, allows using the frequency as a standard in the first atomic clock.
Example 3. Radioactive o — decay . In 1928 the Russian physicist George
Gamow gave the most famous example of quantum mechanical tunnelling in
the explanation of the decay of the radioactive nuclei, which emit o -
particles. If we suppose that an o — particle exists in the parent nucleus (in

reality it forms at the decay of the nucleus) its potential energy can (Fig. 12-
12) be written as follows:
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U,=const, r<r,,

U(r)=12(z-2)e, _ (12.87)

r

where Z and , are respectively the number of neutrons and the radius of the
parent nucleus and k,=1/4ne,. The potential U(r) at r<r, is due to
nucleus forces and at » > r;, - to the Coulomb repulsive forces.

U(r)

2.
U:MZ—JEM
\K\ r
_ E

To 'T'J r

Uy

Figure 12-12. Model of the potential of a-particles in the process of a-decay - the particle in
the parent nucleus is in the potential well due to the nucleus forces and at the decay it must
overcome the potential barrier formed by the act of the electrostatic repulsive forces between
a-particle and the daughter nucleus.

The experimental investigation of the decay shows, that this phenomena
is conditioned by the internal forces of the nucleus and the number of the
nuclei which decay in time df is proportional to the number of the nuclei in
the moment # and to the interval df :

dN = -, Ndt. (12.88)

Here A, is the constant of the radioactive decay. After the integration we
readily obtain the Curie law on the radioactive decay:

N =N, exp(-At). (12.89)

The constant A, can be connected with the period of half-life 7,,, of the
decay. Under the half-life7,,, we understand time for which the number of
the nuclei decreases two times, i.e.
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N, exp(-A,7,,,)= %NO =N, exp(-In2) (12.90)

The connection between A, and 7,,, is clear:

In2 0,693
Tis :T:T- (12.91)

0 0

Now we shall connect A, and 7,,, with the barrier penetration. If we
assume that for 1 s nth part of o -particles reach the barrier (the point 7, in

Fig. 12-12), the nucleus should emit »7 -part of the number of its o -
particle. The barrier penetration is defined by the expression (12.86), where
the integration is from 7, to # (see Fig. 12-12). From N nuclei dN will be

decayed for the interval dt :
dN =—-nTNdt . (12.92)
By the comparison of (12.88) and (12.92) we can write

A, =nT, (12.93)

0

or according to (12.86)

A, =nexp(—%]‘1/2m(U—E)dr ] (12.94)

For the final determination of A, we have to know ». Finding » is a difficult

problem. But this value can be estimated using the classical consideration.
For 1 s the part ~v/r, of the a-particle will reach the beginning of the

barrier. According to the Heisenberg's uncertainty relation mvr, =# and for

n we get
nzl=i2. (12.95)
ro mrn

Finally for the constant of the radioactive o -decay we obtain:
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h 2]
e exp{—EJ1/2m(U—E)dr]. (12.96)

A, =

The a-decay of Uranium
s U—"5Th+3He+4,2 MeV (12.97)

has half-life T, = 0,45.10" years. The estimation with the formula (12.92)
for 7,=10"" m and barrier height 2(Z-2)e’k,/r,=26 Mev gives

T =29.10" years, which illustrates very well the possibilities of the

1/2

theory if we take into account the estimation character of (12.91).

SUMMARY

The wave function of the state of the quantum particle of mass m in a
constant one-dimensional potential field U (x)= const =U satisfies the

stationary Schroedinger equation

L)+ 2 (E- Uy (v)=0

The form of the solution depends on the relation between the energy £ of
the particle and the potential U of the field. When E >U the solution is a
linear combination of two harmonic functions:

2m
N

v, (x)= Aexp(ikx)+ Bexp—(ikx), K’ (E-U)>0.

When E <U the solution is a linear combination of two exponential
functions:

v (x)=Aexp(kx)+ Bexp(—kx), Kk =;—’§’(U—E)> 0.

The energy of the particle in the free state can be only positive.
The solutions of the Schroedinger equation for the infinite potential well

v, (x)= %sin%x
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are standing de Broglie waves.

In comparison with the classical particle the quantum particle manifests
principally new properties - its energy is quantizied and its minimal energy
is different from zero. The quantization of the energy shows its worth at
sufficiently small mass of the particle and/or width of the well. The energy
levels are defined by the quantum number #:

_ ﬂzhz P

E n’, n=12,3,..

n

- 2
2ma

When the quantum particle impinges on the potential step of the height U
and its energy £ is smaller than U, it penetrates in the classically forbidden
domain E <U . The effect is completely quantum and has not a classical
analogue.

When the particle is in the potential well with a finite depth to the
character for the infinite well properties are added new quantum characters:
— the number of its bounded states depends on the depth U and on the

width a of the well - with increasing U and/or of @ their number

Increases;

— the particle penetrates in the classically forbidden domain - the
probability to find it in this region is different from zero.

When the quantum particle of the energy £ incident on the potential
barrier of the height U and width ¢ and E<U we observe the effect
unknown in classical physics - the penetration of the particle through the
barrier. The penetration of the quantum particle through the potential barrier
of the larger height than particle total energy, i.e. through the classically
forbidden domain, is called the tunnel effect. With the tunnel effect are
explained many phenomena for which classical physics is helpless - the
autoelectronic emission, the transitions of N atoms in the molecule of NH,

molecule, the radioactive a-decay etc.

The systems with one-dimensional constant (in the given region) are the
simplest model of the real physical systems, in which the quantum properties
of the microscopic word appear.

QUESTIONS

1. How does the solution depend of the stationary Schroedinger equation for
the particle in the constant uniform field on its energy?

2. What are the solutions at £<U andat E>U ?

. Why cannot the free particle have negative energy?

4. What is the energy spectrum in the infinite potential well?

98]
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5.

6.

7.

8.

9.

How do the probabilities of the quantum and the classical particles in the
potential well differ?

How does the space between the energy levels depend on the quantum
number #n?

Does the energy discrete character of the particle depend on its mass and
on the well width?

What is the behaviour of the quantum and of classical particles, when
they incident on the potential step (at £ <U andat £ >0)?

Compare the behaviour of classical and quantum particles, when they
pass through the potential barrier?

10.What is the tunnel effect?

PROBLEMS

1.

The states of the particle of mass m in an infinite potential well are
described by standing de Broglie waves, which have integer half waves
along the width of the well. Taking into account this fact and the
connection between the wavelength and the particle momentum p, prove
the quantization of its energy.

. Two of the allowed states of the particle, which motion is free, but strictly

limited in the region of the width a, are described with the wave
eigenfunctions ¥, and y,, which are shown in Fig. 12-1a. When the

particle is in the state with y, its energy is 4 eV. What is its energy in the
state with y; ? What is the minimal allowed energy of the particle in this
system?

. Find the energy E, of the ground state, the difference between the

energies E, — E, and the wavelength of the photon with energy E, — E|
of an electron in one-dimensional infinite potential well of the width 1 A.

. For the particle of mass m in the one-dimensional infinite potential well

of width a find the average values of its co-ordinates x, of x?, of its
momentum p and of p*.

The electron beam of a linear density 10" electrons/ m?, after its
acceleration by the potential difference 100 V, incidents on the potential

step of the height U =50 V. Find the incident, reflected and transient
current.

. The electron beam of an energy 2 eV incidents on the potential step of the

height 20 eV. To what distance from the beginning of the step will the
beam density decrease e times?
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13.1* THE SOLUTION OF THE OSCILLATOR
EQUATION

In Chapter 5 we have considered the motion of the classical harmonic
oscillator. Let remember briefly its results. The motion of the particle of the
mass m, whose potential energy is near the position of the stable equilibrium,
has the form

U(x)= . (13.1)
For a small deviation from an equilibrium it is valid the equation
. 2 2 _ K
X+wyx=0, w;=—. (13.2)
m

This equation has a harmonic solution
x=acos(w,r+05). (13.3)
The energy of the oscillator is defined as follows:

. 2 2 2.2
my KX _ p,  mw,x

E=T+u="8 (13.4)
2 2 2m 2
The function of Hamilton is:
2 2.2
H =P 10X (13.5)
2m 2
In the turning points x =*a the total energy is a potential one:
2.2

2
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The region
x’>a (13.7)

is a forbidden domain for the classical oscillator.

Let now consider the quantum mechanical form of the problem of the
harmonic oscillator. According to (13.5) the operator of Hamilton has the
following form:

2.2 2 2 2.2
mw;x~ _ h° 9" mw)x

_nt 9 13.8
2 2m ox* 2 ( )

~2
=2y
2m
The theory of the quantum oscillator is very important in quantum
physics as the Hamiltonian of the form (13.8) is used in all problems, in
which the oscillations are quantizied. For example, we find it in the
oscillations of molecules and crystals, in quantum electrodynamics and in
the quantum field theory. The problem of the quantum oscillator is a
beautiful illustration of the formalism and the basic principles of quantum

mechanics. Therefore we shall expose this problem in details.

The Hamiltonian (13.8) is not the explicit function of time and hence the
oscillator wave function satisfies the time-independent Schroedinger

equation I:Il//(x):El//(x), ie.

2

y(x)—" sy (x) =0, (13.9)

Iy (x) , 2m
ox’ W

The multiplying this equation by 7#/maw, gives:

h dy(x) 2
+
mw. — ox* 10

[ [

mo x*
Oy ()

Ey(x) =0. (13.10)

The ratio 7/mw, has the dimension of the square length
[/ mw, ]| = MU TT/(MT") =1 . We set:

=¢. (13.11)

With the new dimensionless quantities, dimensionless co-ordinate £ and
dimensionless energy £, the Eq. (13.9) is reduced to:
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Iy (&)
JE?

+(e-& )y (£)=0. (13.12)

We first discuss the asymptotic form of the solution when & is very large
so the equation is approximately:

Oy,

3 —E%_ =0. (13.13)

The solution of this equation is:

£

wo=e 2, (13.14)

Actually, after finding the second derivation

£
—az;l/“ =+fe 2,
25 .. (13.15)
aaZ‘/; =& T de =&y,

and taking into account £ — +e, we are readily persuaded that (13.14)

satisfies the Eq. (13.13).
The solution with the "+" at & — oo increases indefinitely. Such a wave

function does not satisfy the condition of the finiteness (Section 9.2). Hence

&
asymptotically (& — ) the wave function has the form y_=e 2. We
seek the solution of (13.12) in the following form:

&
v(&)=n(&)e 2, (13.16)

where n(é) is an unknown function. Finding the second derivative of
(13.16)
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W) _om 5 5

&) 9

2., & & &
(é) 811 _éan —ez+€nez

2 +ne 2 (=€),

(13.17)

azj “oe ¢ o

and substituting it in (13.12) we get for the unknown function 1(&):

35” 255 (e-1)n=0. (13.18)

We seek for the solution in the form:

§)=iak5"- (13.19)

k=0

Finding the first and the second derivatives of the power series 1 (5)

77 N k-1

=2 aks,
(13.20)

= ak(k

k=0
and replacing them in (13.18) we have:
S ak (k-1)E" 2Zakkéjk +(E=k) Y a &t =0, (13.21)
k=0 k=0

For every value of £ the relation (13.12) can be only satisfied if all

powers of & are equal to zero. For the coefficients before £™ this means:
a,.,(m+2)(m+1)-2a,m+(£-1)a, =0, (13.22a)

or
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e Cl)
a,.,= (m+2)(m+2)am' (13.22b)

If we know g, we can determine a,,, and then a,, etc. All even
coefficients a,, q,, a,,...,a,, can be determined, if we know a,, and
a,,ds, a,, ..., a,, . -1if we know a,. Two constants are necessary as the Eq.

(13.18) is one of the second order.

Two power series of the even and odd powers correspond to two partial
solutions of the differential equation (13.18). For clarification of the
character peculiarities of the oscillator is enough to consider one of these
solutions. Let assume that a, =0, g, # 0. Then the partial solution

2

w(&)=n(S)e Z%ké“ 5 (13.23)

is expressed by the even powers.

At great & the sum Za“éjz" increases indefinitely as exp (52 ) (for the
0

proof see [2]). Hence the asymptotic solution y (& — eo)e< &' appears to
be infinite. The function does not satisfy the condition of the finiteness of
the wave function (Section 9.2). The problem is that the series a,,** is too

long. We note, however, that if a ,, =0, then all next terms a,.,,a,,,,... €tc.

n+4° “'n+6°

will be equal to zero. Hence the series may be restricted to the nth term
(a,#0)if

_ 2n- (e-1) 0 (13.24)
T ) (mr) ‘

This is equivalent to the condition
£=2n+1, n=0,1,2,3... (13.25)

The Eq. (13.18) at the condition (13.25) for the parameter £ has as a
solution the polynomial 17(&) with the coefficients, determined by (13.22).

The polynomials 717(&) are called Hermite polynomials:
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n,(&)=40(&) . (13.26)

The constants 4, are determined by the normalization condition of the
wave function y (&) (13.16):

X 1 h
A = / o = / 13.27a
" N2ar  \ 2" nr \ mo, ( )

and the Hermite polynomials - by the formula

_ n g2 dne_éz

We shall once again underline, that the Hermite polynomials (13.26) are
the solution of the Eq. (13.18) only at the condition (13.25):

&= 2E =2n+1, n=0,1,2,3..., (13.28a)
ha,
i.e. at
1 1
E = n+§ hw, = n+5 hv, . (13.28b)
The number n=0,1,2,3,... is called the quantum number of the

oscillator. The nth state is described with the wave function y, (£):

_ —% X _ 1 h n %d”ek
v, (§)=4e 2, (8)= e /mwo (-1)"e e (13.29)

The energy of the quantum oscillator is quantizied. It has discrete
character. The energy levels are equidistant

AE,=E, —E,=ho,=hv,. (13.30)
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and at the transition between every two adjacent levels (from the higher to
the lower) the photon of energy /v, is emitted, where v, is the oscillator

frequency.

13.2  GROUND STATE AND ZERO-POINT ENERGY

The state with minimum energy is called a ground state. The quantum
oscillator has minimal energy in the state with »=0:

(13.31)

At n=0 from (13.27) we easy obtain #, =1 and hence the wave function
in the ground state is following:

&

w,(6)=4e *. (13.32)

The probability density of this state is:

po=()=lw(C) =42¢*. (13.33)

The functions v, (§) and p, (&) are shown in Fig. 13-1. The wave

function and the probability density are different from zero in a classically
forbidden domain (the shaded regions). The probabili