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Preface

This book can be regarded as a concise introduction to basic quantum mechan-
ics: free particle, bound states, and scattering in one and in three dimensions,
two-particle systems, special functions of mathematical physics. But the book
can also be seen as an extensive user’s guide for INTERQUANTA, the Inter-
active Program of Quantum Mechanics, which we will abbreviate henceforth
as IQ. The book also contains a large number of exercises. The program
can be used in two ways. By working through (at least a part of) these exer-
cises, the user of IQ explores a computer laboratory in quantum mechanics
by performing computer experiments. A simpler way to use IQ is to study
one or several of the ready-made demonstrations. In each demonstration the
user is taken through one chapter of quantum mechanics. Graphics illustrat-
ing quantum-mechanical problems that are solved by the program are shown,
while short explanatory texts are either also displayed or can be listened to.

INTERQUANTA has a user interface based on tools provided by the Java
programming language. With this interface using the program is essentially
self-explanatory. In addition, extensive help functions are provided not only
on technical questions but also on quantum-mechanical concepts. All in all
using INTERQUANTA is not more difficult than surfing the Internet.

The modern user interface is the main improvement over older versions of
IQ.! Moreover, new physics topics are added and there are also new graphical
features.

The present version of INTERQUANTA is easily installed and run on
personal computers (running under Windows or Linux) or Macintosh (running
under Mac OS X).

We do hope that by using INTERQUANTA on their own computer many
students will gain experience with different quantum phenomena without hav-
ing to do tedious calculations. From this experience an intuition for this im-
portant but abstract field of modern science can be developed.

Siegen, Germany Siegmund Brandt
February 2003 Hans Dieter Dahmen
Tilo Stroh

!'S. Brandt and H. D. Dahmen, Quantum Mechanics on the Personal Computer, Springer,
Berlin 1989, 1992, and 1994; Quantum Mechanics on the Macintosh, Springer, New York
1991 and 1995; Pasocon de manebu ryoushi nikigacu, Springer, Tokyo 1992; Quanten-
mechanik auf dem Personalcomputer, Springer, Berlin 1993
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1. Introduction

1.1 Interquanta

The language of quantum mechanics is needed to describe nature at the atomic
or subatomic scale, for example, the phenomena of atomic, nuclear, or particle
physics. But there are many other fields of modern science and engineering in
which important phenomena can be explained only by quantum mechanics,
for example, chemical bonds or the functioning of semiconductor circuits in
computers. It is therefore very important for students of physics, chemistry,
and electrical engineering to become familiar with the concepts and methods
of quantum mechanics.

It is a fact, however, that most students find quantum mechanics difficult
and abstract, much more so than classical point mechanics. One easily detects
the reason for this by recalling how students learn classical mechanics. Be-
sides learning from lectures, they draw on experience from everyday life, on
experiments they perform in the laboratory, and on problems they solve on pa-
per. The important concept of a mass point is nothing but that of a very small
stone. The experience with throwing stones helps to understand mechanics.
Additional experiments are very direct and simple and there is a wealth of
problems that are easily solved.

All this is different with quantum mechanics. Although — for all we know
— elementary particles are point-like, the concept of the trajectory of a mass
point breaks down and has to be replaced by a complex probability amplitude.
This function cannot be measured directly; its properties have to be inferred
indirectly from experiments involving optical spectra or counting rates, and
so forth. Finally, nearly all nontrivial problems pose severe computational
difficulties and require approximative or numerical methods. Thus, students
can do only a few problems.

Many quantum-mechanical problems can, however, be quickly solved nu-
merically by computer. The answer is often very easy to analyze if presented
in graphical form. We have written an interactive program taking alphanu-
meric input defining quantum-mechanical problems and yielding graphical

S. Brandt et al., Interactive Quantum Mechanics
© Springer Science+Business Media New York 2003



2 1. Introduction

output to produce a large number of illustrations for an introductory textbook
on quantum mechanics.!

Here we present an improved and generalized version of this program,
which we call INTERQUANTA (IQ for short) — the interactive program
of quantum mechanics. The program has a convenient, essentially self-
explanatory user interface written in the Java programming language? and
running on a Java virtual machine (VM). Moreover, there is extensive online
help. IQ can be used in two rather different ways. While studying ready-
made demonstrations, the user is only an interested onlooker. In the interac-
tive mode, on the other hand, the user determines what happens. He or she
can solve quantum-mechanical problems of his or her own choice. Users can
work through a complete computer laboratory in quantum mechanics. This
can be done at leisure at home on one’s own computer or on that of a friend.
Often it is more fun if two or three students join to define their problems,
solve them, and discuss the solutions. In the computer laboratory students de-
fine and solve a quantum-mechanical problem, analyze the result, change one
or several parameters of the original problem, study the next result, and so on.
Using the program on a large variety of problems of different types, students
gain experience in quantum mechanics because they performed computer ex-
periments and at the same time solved problems by numerical methods.

Of course, IQ can also be used in organized courses run by a tutor or for
demonstrations in lectures.

1.2 The Structure of This Book

This book consists of a main text and several appendixes. Chapters 2
through 8 of the main text are devoted to the various physics subjects cov-
ered by IQ. Each chapter begins with a section “Physical Concepts” in which
the relevant concepts and formulae are assembled without proofs. Although
this book is in no way intended to be a textbook, this section is needed to
allow a precise definition of what the program does and also a clear formula-
tion of the exercises. The following sections of each chapter are devoted to
specific physics topics that can be tackled with IQ and give details on the user
interface as far as they are of particular interest for the physics topic at hand.
Each chapter is concluded by a collection of exercises. Chapter 9 is devoted to
the special functions of mathematical physics relevant to quantum mechanics.
In Chap. 2 there is in addition a section “A First Session with the Computer”,
which in an informal way provides a minimum of general knowledge of IQ.

1'S. Brandt and H.D. Dahmen, The Picture Book of Quantum Mechanics, 3" edition,
Springer, New York 2001
2 Java is developed by Sun Microsystems, Inc. For details see http: //java.sun.com



1.4. The Computer Laboratory 3

Chapter 10 contains hints for the solution of some exercises. It begins with a
section on the different possibilities for choosing units for physical quantities.
Its content is useful in many exercises for determining numerical values of
input parameters and for correctly interpreting the numerical results of com-
putations by IQ.

Appendix A is a systematic guide to IQ. Appendix B contains technical
information on the installation of the program.

1.3 The Demonstrations

IQ provides ready-made demonstrations for the following physics topics cor-
responding to Chaps. 2 through 9 of this book:

e free particle motion in one dimension,

e bound states in one dimension,

e scattering in one dimension,

e two-particle systems,

e free particle motion in three dimensions,
e bound states in three dimensions,

e scattering in three dimensions,

o functions of mathematical physics.

Each demonstration contains many example plots and explanatory text (writ-
ten or spoken). See Appendix A.1.12 for information about how to run a
demonstration, and Appendix A.11 for how to prepare your own demonstra-
tion files.

1.4 The Computer Laboratory

The course itself consists in working through (some of) the exercises given
in the different chapters of this book. For most of the exercises an initial
descriptor is provided with properly chosen graphics and physical parameters.
The students are asked to run IQ with this descriptor, study the graphical
output, and answer questions for which they usually have to change some
parameter(s), run IQ again, and so on. At any stage they can store away
their changed descriptors for later use. They can also take hardcopies of all
graphical output to perform measurements on or simply file them, preferably
with some comments. In many exercises it is intended to draw the attention
of the student to a particular feature of the plot. This is usually attempted by
asking a question that can in most cases be answered by qualitative arguments.
Most of these are answered in Chap. 10. Of course, students may define and
solve problems not contained in the lists of exercises given.



4 1. Introduction

1.5 Literature

Because in the introductory sections “Physical Concepts” we present only a
very concise collection of concepts and formulae, the user of IQ is urged to
study the physics topics in more detail in the textbook literature. Under the
heading “Further Reading” at the end of our introductory sections we refer
the user to the relevant chapters in the following textbooks:

Abramowitz, M., Stegun, I. A. (1965): Handbook of Mathematical Func-
tions (Dover Publications, New York)

Alonso, M., Finn, E. J. (1968): Fundamental University Physics, Vols. 1-3
(Addison-Wesley, Reading, MA)

Kittel, C., Knight, W. D., Ruderman, M. A., Purcell, E. M., Crawford, F.
S., Wichmann, E. H., Reif, F. (1965): Berkeley Physics Course, Vols. I-IV
(McGraw-Hill, New York)

Brandt, S., Dahmen, H. D. (2001): The Picture Book of Quantum Mechanics
(Springer-Verlag, New York)

Feynman, R. P., Leighton, R. B., Sands, M. (1965): The Feynman Lectures
on Physics, Vols. 1-3 (Addison-Wesley, Reading, MA)

Fliigge, S. (1971): Practical Quantum Mechanics, Vols. 1,2 (Springer-Verlag,
Berlin, Heidelberg)

Gasiorowicz, S. (1974): Quantum Physics (John Wiley and Sons, New York)
Hecht, E., Zajac, A. (1974): Optics (Addison-Wesley, New York)
Merzbacher, E. (1970): Quantum Mechanics (John Wiley and Sons, New
York)

Messiah, A. (1970): Quantum Mechanics, Vols. 1,2 (North-Holland Publish-
ing Company, Amsterdam)

Schiff, L. I. (1968): Quantum Mechanics (McGraw-Hill, New York)



2. Free Particle Motion in One Dimension

Contents: Description of a particle as a harmonic wave of sharp momentum and as
a wave packet with a Gaussian spectral function. Approximation of a wave packet
as a sum of harmonic waves. Analogies in optics: harmonic light waves and light
wave packets. Discussion of the uncertainty principle.

2.1 Physical Concepts

2.1.1 Planck’s Constant. Schrodinger’s Equation
for a Free Particle

The fundamental quantity setting the scale of quantum phenomena is Planck’s

constant
h=6626x10"*)s | h=h/2n

A free particle of mass m and velocity v traveling in the x direction with mo-
mentum p = mv and kinetic energy E = p?/2m has a de Broglie wavelength
A = h/p. The harmonic wave function

Yp(x,t) = exp l:—%(Et— px):l 2.1

1
Qrh)l/2
is called a Schrodinger wave. It has the phase velocity

vp=E/p=p/2m

Schrodinger waves are solutions of the Schridinger equation for a free parti-
cle

) 9 h2 2
lhé—t‘ﬁp(x, t) = o Wlﬁp(xy 1) =Typ(x, 1) (2.2)
with
h2 82
" 2m 0x?

being the operator of the kinetic energy.

5
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2.1.2 The Wave Packet. Group Velocity. Normalization

Since the equation is linear in v, a superposition

N
Y, 1) =Y waip, (x, 1) (23)

n=1

of harmonic waves v, corresponding to different momenta p, each weighted
by a factor w, also solves the Schrédinger equation. Replacing the sum by an
integral we get the wave function of a wave packet

1/f(x,t)=/ fF(P)Ypx —x0,0)dp 2.4

which is determined by the spectral function f(p) weighting the different
momenta p. In particular, we consider a Gaussian spectral function

_(p - PO)Z:I

1
fp) = m exp [ 302 (2.5)

with mean momentum po and momentum width o .
Introducing (2.5) into (2.4) we get the wave function of the Gaussian wave
packet
Yx, 1) = M(x, 1)e?®D (2.6)

with the amplitude function

2
M(1) = (i oxp [—(’C’Z’T”m] 2.7
and the phase
1 ol ¢ po «a
¢(x, 1) = 7 |:P0 + 52 E;n“(x — X0 — Uol‘)i| (X—XO_UOIH'EUOI—E (2.8)
with group velocity
vo = po/m 29

localization in space given by
2 4 2
o2 = Lo 1+ ‘_Lilit_
* = 402 Rm)

2
tana = ——~t
Am

and
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The initial spatial width at r = 0 is thus oxo = #/(20)). In terms of oy the
time-dependent width becomes

2 2
o2(1) = 02 (1 + h—t—) : (2.10)

The absolute square of the wave function, which is the product of the wave
function v with its complex conjugate yr*,

o(x, 1) =Y (x, DY*&x, 1) =¥ (x, 0 (2.11)

is interpreted in quantum mechanics as the probability density for observing
the particle at position x and time ¢. It fulfills the normalization condition

/OO olx,)dx =1 , (2.12)

which states that the probability of observing the particle anywhere is one.
Computing the probability density for the wave function (2.6) we find

0(r. 1) = ——exp [_w]
’ \/Eo—x(t) 2U)c2(t)

This is the probability density of a Gaussian distribution, Sect. 9.1.11, with
time-dependent mean or expectation value

(2.13)

(x(1)) =x0 + %t (2.14)

and the time-dependent width (2.10).
The widths o, and o, of the wave packet are connected by Heisenberg’s

uncertainty relation
Ox0p = h/2 (2.15

the equality holding for a Gaussian wave packet and t = O only.

2.1.3 Probability-Current Density. Continuity Equation

Although in this chapter we deal with a free particle, i.e., the motion of a
particle in the absence of any force, the concepts introduced in this and the
following sections can also be applied to the motion of a particle under the
influence of a force. We therefore generalize the Schrodinger equation to

2 92

.0
1h§¢(x, 1) = —%ﬁw(x, H+Vyx,t) 2.16)

where V (x) is the potential energy or simply the potential of the force F (x)
acting on the particle, F(x) = —dV (x)/dx.



8 2. Free Particle Motion in One Dimension

Because the total probability (2.12) does not change, the probability den-
sity ¢(x, r) has to be connected to a probability-current density j(x,t) by a
continuity equation

_do(x,1) _ 8j(x,1)

2.17
at ax ( )
The probability-current density is
. h b ™
Jx, 1) = — w*—‘”—w (2.18)
2mi ox dax

[This equation is derived by computing the left-hand side of (2.17) us-
ing (2.11) and taking the time derivatives of ¢ and ¢* directly from the
Schrodinger equation (2.16) and its complex conjugate. ]

If o(x, t) is known, then j(x,?) can be computed directly from (2.17).
For a Gaussian wave packet one obtains

d{x(r)) 1 dox(?)
dt ox(t) dt

Jx, 1) = |: (x — (X(t)))] olx,r) . (2.19)

In relations (2.13) and (2.19) we considered a free Gaussian wave packet.
If a force acts on the packet, in general, it loses its Gaussian shape. For
two special forces, namely, the constant force, Sect. 4.1.18, and the harmonic
force, Sect. 3.1.7, their general form remains unchanged. Only the time de-
pendences of the mean (x(¢)) and the width o, (#) change.

2.1.4 Quantile Position. Quantile Trajectory

In classical mechanics the position x(t) of a point particle is well-defined and
so is its time derivative v(t) = dx(¢)/dz, the velocity. In quantum mechanics
only the probability density o(x, t) of the position x is known. From this
we have already derived the probability-current density. We will now show
that mathematical statistics allow us to define a position xp(¢), the quantile
position, and its time derivative, the quantile velocity. [This section is based
on the following publication: S. Brandt, H. D. Dahmen, E. Gjonai, T. Stroh,
Physics Letters A249, 265 (1998).]

For any probability density o(x) the quantile associated with the proba-
bility Q is defined by

xQ
sz e(x)dx . (2.20)

For the time-dependent probability density o(x, t) and the time-independent
probability P,0 < P < 1, we define the time-dependent quantile position by

o .
/ olx,t)dx =P . 2.21)
xp(t)
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At the time ¢ the probability to observe a particle described by o(x, t) to the
right of xp(t),1.e., atx > xp(t), is P. The probability to observe it to the left
of xp(t)is Q =1— P.
The function
xp =xp(t) (2.22)

defines the quantile trajectory of the quantile position x p(¢) in the x, ¢ plane.
For a Gaussian wave packet (2.13) it can be easily calculated. Using the
complementary error function erfc(x), Sect. 9.1.11, we have

o0 1 xp(t) — (x(t)))
P= ) dx = —erfc | ———27
/xp(z)g(x g 2° C( V2o, (2)

This equation can be used to determine xp(fp) at a given time 7y for a given
probability P. At time ¢ the quantile position is

o (1)
ox (%)
We consider the time derivative of (2.21). Taking into account the time

dependence of the lower limit and the time independence of the integral we
obtain

xp(t) = (x (1)) + (xp(to) — (x(10))) . (2.23)

dxp ()
dr

© do(x',t dP
Q(x,)dx,_ _o

o(xp(?), 1) +/ =—
d xp () ot dr

The continuity equation (2.17) allows us to replace do/9t by —3j/dx. The
integration can then be performed yielding

dxp(t) _ j(xp(®), 1)

= (2.24)
dr o(xp(1), 1)

This is the differential equation for the quantile trajectory. For a specific
solution an initial condition is needed. It is the initial quantile position x p (fy)
for a given probability P at time f.

2.1.5 Relation to Bohm’s Equation of Motion

We differentiate (2.24) once more with respect to time and multiply it by the
particle mass m,

Cap() _ d j@p@®).n U1
a2 Mot ox

(2.25)

x=xp(t)

By writing the right-hand side as the negative spatial derivative of a potential
U (x, t), we have given the equation the form of Newton’s equation of motion.
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The potential U(x, ¢) is determined by using the expressions for g, (2.11),
and j, (2.18), and making use of the Schrédinger equation (2.16) to eliminate
expressions of the type 3y /3¢ and 3y */dt. The result is

Ux,t) = V(x) + Volx, 1)

Here V (x) is the potential appearing in the Schrodinger equation and

R 320(x, 1) 1 do(x, 1)\?
VQ(x’t)_4mg(x,t)< 9x2 _2Q(x,t)( ax ) (2.26)

is the time-dependent quantum potential introduced by David Bohm. For a
Gaussian wave packet (2.13) it is

B 1 [(x — (x(t)))? }
- -1
2m 202(t) 202(t)

Vo(x, 1) = (2.27)

Bohm did not use the quantile concept. He wrote (2.25) in the form -

d2x(t) U (x, 1)
2 0x
and thus formally connected quantum mechanics with Newton’s equation of
classical mechanics. The price to pay for this connection is twofold. (i) The
existence of a quantum potential Vqo(x, t) has to be assumed. (ii) For the
solution of (2.28) the two initial conditions, the particle’s position xg = xo(¢)
and velocity vg = v(fp) at a time #p, have to be known. In quantum mechanics
this is impossible because of the uncertainty principle.
We would like to stress here that Bohm’s particle trajectories are iden-
tical to our quantile trajectories, which are defined within the conventional
framework of quantum mechanics.

(2.28)

2.1.6 Analogies in Optics

We now briefly consider also a harmonic electromagnetic wave propagating in
vacuum in the x direction. The electric field strength is (written as a complex
quantity — the physical field strength is its real part)

Ei(x,t) = Egexp[—i(wt — kx)] (2.29)

where the angular frequency » and the wave number k are related to the
velocity of light in vacuum c and the wavelength A by

w=clkl] , A=2nc/w . 2.30)

In analogy to (2.3) and (2.4) we can again form superpositions of harmonic
waves as a weighted sum
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N
E(x,t) =) wnE,(x,1) (2.31)
n=1
or as a wave packet
Ex,1) = /Oo fE)Er(x,t)dk . (2.32)

As spectral function for the wave number k we choose a Gaussian function
that is slightly different from the form (2.5),

1 (k — ko)?
k) = exp | ————— . (2.33
f o P [ 207 )
Integration of (2.32) yields
"kz 2 .
E = Egexp —7(ct — x)° | exp[—i(wot — kox)] (2.34)
and )
2 2 (ct — x)
with the relation
oo =1/2 (2.36)

between the spatial width o, and the width o} in wave number of the electro-
magnetic wave packet. The importance of (2.35) becomes clear through the

relation ¢
w = ?O E? (2.37)

where w is approximately the energy density of the electromagnetic field (av-
eraged over a short period of time) and & is the electric field constant.’

Further Reading

Alonso, Finn: Vol. 2, Chaps. 18,19; Vol. 3, Chaps. 1,2

Berkeley Physics Course: Vol. 3, Chaps. 4,6; Vol. 4, Chaps. 5,6,7
Brandt, Dahmen: Chaps. 2,3,7

Feynman, Leighton, Sands: Vol. 3, Chaps. 1,2

Fliigge: Vol. 1, Chap. 2

Gasiorowicz: Chaps. 2,3

Hecht, Zajac: Chaps. 2,7

Merzbacher: Chaps. 2,3

Messiah: Vol. 1, Chaps. 1,2

Schiff: Chaps. 1,2

! This statement only holds for short average wavelengths, Ao < 0.
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2.2 A First Session with the Computer

In this section we want to give you a first impression of how the program is
used. For a systematic guide to IQ see Appendix A.

We assume that IQ is already installed on your computer. If it is not,
follow the Installation Guide in Appendix B. Also, most probably the IQ
symbol featuring the letter # is displayed on the computer’s desktop.

2.2.1 Starting I1Q

You simply start IQ by clicking (once or twice — depending on your operating
system) on the IQ symbol on the desktop. For the case that the IQ symbol
is not present on the desktop, the start-up procedure is described in the file
ReadMe. txt on the CD-ROM.

The 1Q main frame, Fig. 2.1, appears on your desktop. It carries the main
toolbar, i.e., arow of buttons. In its title bar it carries the name of the currently
open descriptor file.

[ 1ntesQuanta | Descriptor File is: 10_Free_Particle. des |- [Of x]

Descriptor File| Descriptor | Edit Descriptor Fils | Print Run Demo| Customize|Help

Fig. 2.1. IQ main frame with main toolbar

A descriptor is a set of data that completely defines a plot produced
by IQ. Each descriptor file contains several descriptors. (If the IQ main
frame displayed on your desktop does not contain the descriptor file name
1D Free Particle.des, then press the button Descriptor File. A file chooser
opens in which, with the mouse, you can select that file.)

Usually, a small frame is now displayed offering you an introductory
demonstration of how to use IQ. Just press the Start button.

2.2.2 An Automatic Demonstration

Press the button Run Demo. A file chooser opens. Select the file
1D Free Particle(Sound).demo

if you have loudspeakers at your computer. Otherwise select
1D Free Particle(NoSound).demo.

Next, a dialog box is displayed giving you the choice between automatic or
step by step. Select automatic. Lean back, relax, and watch (and listen to) our
demonstration.
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2.2.3 A First Dialog

2.2.3.1 Selecting a Descriptor Press the button Descriptor in the IQ main
frame. A descriptor selection panel opens containing a list of the titles of all
descriptors on the selected descriptor file. Move the mouse cursor to the first
line of the list and press the mouse button, i.e., select the first descriptor on
the descriptor file. A graphics frame opens. It contains the plot corresponding
to the descriptor, the descriptor title in the title bar, and five buttons.

2.2.3.2 Changing Parameters Press the button Parameters in the graphics
frame. A parameter panel appears that carries all the information contained
in the descriptor. It is composed of several subpanels. The plot corresponds
to Fig. 2.2. It shows the motion of a free quantum-mechanical wave packet.
That is the topic of Sect. 2.3. Here we just want to give an idea of the dia-
log. So, press the radio button Real Part of Wave Function near the bottom of
the parameter panel. Then press Plot either in the parameter panel or in the
graphics frame and observe the change in the plot.

Next, press again Descriptor in the IQ main frame and again select the first
descriptor from the list. You then have on your desktop two graphics frames,
one showing the time development of Re v, the other showing that of lvr|2,
and you can compare the two plots directly. You may discard the plot with
Re y by pressing the close button in its title bar.

For the remaining graphics frame open the parameter panel and in it the
subpanel Wave Packet. Near the middle there is a field labeled p_0 carrying
the numerical value 1. Using mouse and keyboard change that to 3, press
Plot, and observe the change.

Now, for the third time, select the first descriptor on the descriptor file thus
opening another graphics frame. In its parameter panel press Graphics, then
Accuracy. In the field n_y replace 9 by 19 and plot. The function |y (x, )2
is now shown for 19 values of the time . Then, in the parameter panel, press
Physics followed by Multiple Plot. There, set Number of Rows and Number of
Columns to 2 and plot again. The graphics frame contains four plots each with
a different set of parameters for the mean momentum po and the momentum
width o, of the wave packet.

2.2.3.3 Help Press the button Help in the IQ main frame. A window is
opened in which a special version of the ‘Acrobat® Reader’ displays the text
of this book. It is opened on the page with the beginning of Appendix A, A
Systematic Guide to 1Q. Using the tools of the reader you can access all of
the information in the text.

2.2.3.4 Context-Sensitive Help The contents of the parameter panel depend
very much on the physics topic chosen. Therefore, special help is provided
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for it. Select a subpanel of the parameter panel. (Selection is indicated graph-
ically in the tag field by a thin frame around the name of the subpanel, e.g.,
Physics or Comp. Coord..) Now, press the F1 key on the keyboard. A page
relevant to the selected subpanel is displayed.

2.2.3.5 Closing IQ Press the close button in the title bar of the 1Q main
frame.

2.3 The Free Quantum-Mechanical
Gaussian Wave Packet

Aim of this section: Demonstration of the propagation in space and time of a
Gaussian wave packet of Schrodinger waves ¥, (2.6). Illustration of the probability-
current density j(x, ¢), (2.19), and Bohm’s quantum potential Vq(x, 1), (2.27). II-
lustration of quantiles x p(¢), (2.21), and the quantile trajectory.

Because this is the first physics topic for which use of the program is ex-
plained, we will present the explanation in a rather detailed way.

The parameter panel is displayed (once you press the button Parameters
in the graphics frame, see Sect. A.1.7) with the subpanel Physics—Comp.
Coord. visible. This subpanel is present for every physics topic chosen and
is always visible when the parameter panel is first displayed. Usually there
are more Physics subpanels (in the present case there is a total of four). All
of them are explained in sections like one devoted to the physics topic. The
other subpanels, Graphics, Background, and Format, are more or less the same
for all physics topics and are explained in Sects. A.5 through A.7.

2.3.1 The Subpanel Physics—Comp. Coord.

This subpanel contains three items:

e The meaning of the Computing Coordinates. There are three lines of text
explaining the meaning of the computing coordinates x, y, z in terms of
physics. (In our case x is position x, y is time ¢, and z a function of x and ¢
determined in the third item below.)

¢ The Ranges of Computing Coordinates. This item consists of six numbers.
Four of them, x_beg, x_end, y_beg, and y_end define the ranges of the com-
puting coordinates x and y, whereas z_beg and z_end (together with Z_beg
and Z_end on the subpanel Graphics—Geometry) define scale and offset in
z, see Sect. A.2.

e Under the heading Function Shown is you find a set of radio buttons (i.e.,
buttons of which one and only one is on) allowing you to select one of the
following functions:
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Free Wave Packet

Fig. 2.2. Plot produced with descriptor Free quantum-mechanical Gaussian wave
packet on file 1D Free Particle.des

— Absolute Square of Wave Function |y (x, 1)|?,

— Real Part of Wave Function Re v/ (x, t),

— Imaginary Part of Wave Function Im v (x, 1),

— Probability-Current Density j (x, 1),

- Bohm’s Quantum Potential Vo (x, ).

Immediately after selection, the selected function is shown as computing
coordinate z in the field Computing Coordinates. To produce a plot of the
selected function, you have to press the Plot button.

2.3.2 The Subpanel Physics—Wave Packet

The Gaussian wave packet is completely determined by three values charac-
terizing it at the initial time ¢z = 0, the mean position xo, the mean momentum
Ppo, and the momentum width o, Instead of py, the energy Ey = pg /2m may
be given as input value. Instead of o, the fraction frac = o,/pg may be
given as input value if pg # O.

The subpanel Physics—Wave Packet begins with two sets of radio buttons
allowing the choice of input quantities for pg and o, as discussed above. Un-
der the heading Wave Packet you find the numerical values of five quantities.
The first is the mean position xq. It is followed by pg and o, (or, possibly,
Ey and frac, depending on the choices of input variables). The next two, Apg
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(or AEp) and Ao, (or Afrac), are used in a multiple plot only in which py is
incremented horizontally from plot to plot and o, is incremented vertically.

Under the heading Constants you many change the numerical values of
Planck’s constant h and the particle mass m. Usually, they are best left at
their default values # = 1, m = 1. Under the heading Graphical ltems there
are two more numerical values, one for the dash length of the zero line drawn
for each function graph and one for the radius of the circle symbolizing the
position of the classical particle on that line. Both quantities are given in
world coordinates and are usually left at their default values.

2.3.3 The Subpanel Physics—Quantile

The contents of this subpanel are used only if the function Absolute Square
of Wave Function was chosen on the subpanel Physics—Comp. Coord.. Under
the heading Quantile Motion you can select either Not Shown or Shown. The
Quantile is defined by the probability P = 1 — Q. If you choose to show the
quantile motion, the area x > xp(¢) under the curve o(x,t) = |¥(x, t)l2 is
hatched and the quantile trajectory xp = xp(¢) appears in the x, ¢ plane.

Example Plot on Descriptor 1D_Free Particle.des

e Free quantum-mechanical Gaussian wave packet (see Fig. 2.2)

2.4 The Free Optical Gaussian Wave Packet

Aim of this section: Demonstration in space and time of a Gaussian wave packet
of electromagnetic waves E, (2.34).

This section is the analogue in optics to Sect. 2.3 and is therefore kept short.
On the subpanel Physics—Comp. Coord. you can select to display the Ab-
solute Square, the Real Part, or the Imaginary Part of the complex electric field
strength.
On the subpanel Physics—Wave Packet you find the parameters xg (initial
mean position) and o} (width in wave number) as well as the increments Akg
and Aoy (used in a multiple plot only).

Example Descriptor on File 1D_Free Particle.des

o Free optical Gaussian wave packet (see Fig. 2.3)

2.5 Quantile Trajectories

Aim of this section: Illustration of the quantile trajectories xp = xp(¢), (2.23), for
various values of the probability P as a set of 2D function graphs in the xp, ¢ plane.
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Free Wave Packet

Ok :05,

Fig. 2.3. Plot produced with descriptor Free optical Gaussian wave packet on file
1D Free Particle.des

Free Wave Packet: Quantile Trajectories
X
i DO = /‘) ><O = _5, OO = 05
30 T T T T T
20 r .
0 r 8
0 r B
7/IO 1 1 1 1 t
0 5 10 15 20 25 30

Fig. 2.4. Plot produced with descriptor Free wave packet, quantile trajectories on
file 1D _Free Particle.des
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On the subpanel Physics—Quantiles you find the Range of P defined by the
two values P_beg and P_end and the Number of Trajectories defined by n_Traj.
Trajectories are drawn for P = Ppeg, for P = Pend, and for other values
of P placed equidistantly between these two limits. The subpanel offers the
possibility either to draw all trajectories in the same color or to draw one
trajectory, corresponding to a given value of P, in a special color.

The contents of the subpanel Physics—Wave Packet are as described in
Sect. 2.3.2.

Example Descriptor on File 1D Free Particle.des

e Free wave packet, quantile trajectories (see Fig.2.4)

2.6 The Spectral Function
of a Gaussian Wave Packet

Aim of this section: Graphical presentation of the spectral wave function (2.5) and
(2.33) for both quantum-mechanical and optical Gaussian wave packets.

f(p):(Qn)*w‘op_wexp(v(p—po)z/éopz)
py =2.5, o, =05

P

1 —

T

f(p)

10

Fig. 2.5. Plot produced with descriptor Spectral function on file 1D _Free Particle-
.des
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On the subpanel Physics—Comp. Coord. you can select to show the spectral
function f(p) of a quantum-mechanical or the spectral function f(k) of an
optical wave packet. The parameters defining the wave packet are given on
the subpanel Physics—Wave Packet. They were described in detail in Sect.
2.3.2 (for the optical wave packet the wave number k takes the place of the
momentum q).

Example Descriptor on File 1D Free Particle.des

e Spectral function (see Fig. 2.5)

2.7 The Wave Packet as a Sum
of Harmonic Waves

Aim of this section: Construction of both quantum-mechanical and optical wave
packets as a superposition of harmonic waves of the form (2.3) and (2.31), respec-
tively.

Figure 2.6 in the background shows a series of harmonic waves v, of different
momenta p, and different weight factors w,. In the foreground the sum (2.3)
of all wave functions is shown. Technically, the figure is a plot of the type
surface over Cartesian grid in 3D, Sect. A.3.1. The grid is formed only by n,
lines along the x direction. (The number 7, is given as N_y on the subpanel
Graphics—Accuracy.) Two of these lines are missing to clearly separate the
graph of the sum ) _, ¥, in the foreground from the graphs of the individual
terms ¥, in the background. Accordingly, the values for p, are

Pn=po— foop+ndAp , n=0,1...,N ,
with
2fs0p
N -1
(For an optical wave packet replace p by k.) Here f, is a positive number of

reasonable size, e.g., fo = 3.
The weight factor w, is chosen to be

_ 2
W, = eXp l:_ (pn — Po) }

Ap = , N=ny-3

2
40p

for the quantum-mechanical wave packet and

[ (kn—ko)Z]
w, =exp| ————

2
20}
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Wave Packet as Sum of Harmonic Waves

Re ¥ = 1(Re Y), t = 1,

Fig. 2.6. Plot produced with descriptor Wave packet as sum of harmonic waves on file
ID_Free_Particle.des

for the electromagnetic wave packet, where pgp and ¢, are mean value and
width in momentum of a quantum-mechanical wave packet and k¢ and oy the
mean value and width of the wave number for an optical wave packet.

On the subpanel Physics—Comp. Coord. you can choose between a quan-
tum-mechanical and an optical wave packet and ask to display either the Real
Part or the Imaginary Part of the wave functions.

The subpanel Physics—Wave Packet contains the parameters of the packet
and is essentially identical to the one explained in Sect. 2.3.2. It is different,
however, with respect to a multiple plot. Now the time is varied: For the first
plot the time is ¢t = fo = 0. It is increased by Delta t for every successive
plot. Moreover, the subpanel Physics—Wave Packet carries the parameter
Jfo needed for the approximation of the Gaussian wave packet as a sum of
harmonic waves.

All waves ¢, at t = fyp = 0 have the same phase at x = xp. These
points are marked by little circles of radius R. The waves 1/, move with time
and so do the points of constant phase. Whereas quantum-mechanical waves
¥, have different velocities v, = p,/m, the electromagnetic waves all have
the velocity c. Therefore, the optical wave packet moves without dispersion,
whereas the quantum-mechanical one disperses.
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Remarks: 1. The finite sum ¥ = YV W, (E = 3_ E,) is an approxi-
mation of a Gaussian wave packet if N is large and f,, is at least equal to 3.
No attempt has been made to normalize this wave packet. For very small N
it becomes evident that ¥ (or E) is periodic in x. For larger N the period is
longer than the x interval plotted. 2. Do not use a scale in y because here it is
not meaningful.

Example Descriptor on File 1D_Free Particle.des

e Wave packet as sum of harmonic waves (see Fig. 2.6)

2.8 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by press-
ing Run Demo in the main roolbar and selecting one of the two demo files
ID Free Particle.

(ii) For the following exercises use descriptor file 1D_Free Particle.des.

(iii) Some of the exercises contain input parameters in physical units. In exer-
cises with dimensionless input data the numerical values of the particle mass
and of Planck’s constant are meant to be 1 if not stated otherwise in the exer-
cise.

2.3.1 Plot the time development of the absolute square of a Gaussian wave
packet using descriptor 4.

2.3.2 Increase the mean momentum pg by a factor of 2 and describe the effect
on the change of the group velocity.

2.3.3 Repeat Exercise 2.3.1; plot (a) the real part and (b) the imaginary part
of the wave function. (c¢) Give a reason why after some time the wavelength
of the front part of the real and imaginary parts of the wave packet are shorter
than close to the rear end.

2.3.4 Repeat Exercise 2.3.2 for the real part of the wave function. Explain the
change of wavelength observed.

2.3.5 (a) Repeat Exercise 2.3.1 but increase the momentum width o, by a
factor of 2. Explain the change in shape of the wave packet as time passes.
(b) Repeat the exercise, halving the momentum width. (¢) Study also the real
and imaginary parts.

2.3.6 Repeat Exercise 2.3.1. Show quantile positions and quantile trajectories
for (a) P = 0.8, (b) P = 0.5, (¢) P = 0.2 for the wave packet of Exercise
2.3.1. Use descriptor 7.
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2.3.7 Repeat Exercise 2.3.6 for P = 0.001. Explain why the quantile trajec-
tory for large ¢ runs backward in x, while (x(¢)) runs forward.

For the following exercises study Sect. 10.1 ‘Units and Orders of Magnitude’.

2.3.8 Plot (a) the real part, (b) the imaginary part, and (c) the absolute square
of a wave packet of an electron with velocity 1 ms~! and absolute width
op = 0.5 x 10712eVsm~! moving from an initial position xp = —2mm
for the instants of time ; = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 ms. Start from de-
scriptor 8, which already contains the correct time intervals. (d) Calculate the
momentum pg of the electron. (e) Why is the spreading of the wave packet
relatively small in time? (f) What is the physical unit along the x axis?

2.3.9 Repeat Exercise 2.3.8 (a—d) with velocity 3 ms~! for the instants of time
t;, =0,0.25,0.5,0.75, 1, 1.25, 1.5, 1.75, 2 ms. Start from descriptor 9.

2.3.10 Plot (a) the real part, (b) the imaginary part, and (c) the absolute square
of the wave function of an electron of velocity 2.11 ms™! and a relative width
of o, = 0.75pg of the corresponding momentum pg for a period 0 < ¢ <
2ms in steps of 0.25ms. The initial position is xp = —2mm. Start with
descriptor 9. (d) Calculate the momentum pg of the electron. (e) What is the
order of the magnitude along the x axis? (f) Why do the real and imaginary
parts look so different from the earlier exercises and from the picture of the
initial descriptor? (g) Why are there small wavelengths to either side of the
wave packet?

2.4.1 Plot the optical wave packet corresponding to the quantum-mechanical
one of Exercise 2.3.1. What is the essential difference between this plot and
the one obtained in Exercise 2.3.1?

2.4.2 Double the mean wave number kg of the optical wave packet.

2.4.3 Repeat Exercise 2.4.1; plot (a) the real part and (b) the imaginary part
of the optical wave packet.

2.4.4 Repeat Exercise 2.4.2 for the real part of the optical wave packet.

2.4.5 Adapt Exercise 2.3.5 to the optical wave packet.

2.5.1 For the wave packet of Exercise 2.3.1 draw a set of quantile trajectories
for P =0.1,0.2,...,0.9 using descriptor 3.

2.5.2 Repeat Exercise 2.5.1 but for P = 0.001, 0.5, 0.999.

2.5.3 Extend Exercise 2.5.2 by creating a 2 x 2 multiple plot with Apg = 2,
Ao, = 0.5. Note the values of pg and o}, for which the quantile trajectory
for P = 0.001 runs backward.

2.5.4 Determine the asymptotic behavior of xp (¢) for t — oo from (2.23) and
compare the result with the findings of Exercise 2.5.3.

2.5.5 Determine the asymptotic behavior of the quantum potential Vg(x, )
for ¢t — oo and connect it to the result you obtained in Exercise 2.5.4.
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2.6.1 Plot the spectral function corresponding to Exercise 2.3.1 using descrip-
tor 11.

2.6.2 Perform the necessary changes to get the spectral function of the optical
wave packet of Exercise 2.4.1.

2.6.3 Plot the spectral functions corresponding to Exercises 2.3.2,2.4.2,2.3.5,
245.

2.6.4 (a) Plot the Gaussian spectral function of an electron of velocity vp =
Ims™! and vp = 3ms~! for the two widths 5, = 0.5 x 10712eVsm~! and
op = 10712 ¢V sm~! in a multiple plot with four graphs. Start with descriptor
12. (b) Calculate the corresponding momenta. (¢) What is the physical unit
at the abscissa? (d) Calculate the corresponding kinetic energies.

2.6.5 (a) Plot the Gaussian spectral function of an electron of kinetic energy
E = leV and E = 3eV for the two widths 6, = 0.5 x 107%eVsm™! and
op = 107%eV sm™! in a multiple plot with four graphs. Start with descriptor
13. (b) Calculate the corresponding momenta. (c) What is the physical unit at
the abscissa? (d) Calculate the corresponding velocities of the electron. (e) To
what order is the use of the nonrelativistic formulas still allowed?

2.6.6 Repeat Exercise 2.6.4 for a proton for the two widths 0, = 0.5 x
10~%eVsm~! and op = 10~° eV sm™!. Start with descriptor 14.

2.6.7 Repeat Exercise 2.6.5 for a proton for the two kinetic energies £ =
1keV and E = 3keV and the two widths ¢, = 0.5 x 103eVsm™! and
op = 1073 eVsm~!. Start with descriptor 15.

2.7.1 Plot a wave packet approximated by a finite sum of harmonic waves
using descriptor 5.

2.7.2 Study the time development of the harmonic waves and their sum by
doing plots for various times (you may do this by using the multiple plot
facility). Study the phase velocities of the different harmonic waves and the
group velocity of the wave packet.

2.7.3 Repeat Exercises 2.7.1 and 2.7.2 for electromagnetic waves.

2.7.4 Repeat Exercise 2.7.1. Now, gradually, decrease the number of terms in
the sum. Why is the resulting sum periodic in x?



3. Bound States in One Dimension

Contents: Introduction of the time-dependent and stationary Schrodinger equa-
tions. Computation of eigenfunctions and eigenvalues in the infinitely deep square-
well potential, in the harmonic-oscillator potential, and in the general step potential.
Motion of a wave packet in the deep square-well potential and in the harmonic-
oscillator potential.

3.1 Physical Concepts

3.1.1 Schridinger’s Equation with a Potential.
Eigenfunctions. Eigenvalues

The motion of a particle under the action of a force given by a potential V (x)
is governed by the Schrodinger equation

iHEW(x 1) = —Ez— -z?z—xlf(x H+Veyy(x,t) . 3.1
ot ’ 2m 9x? ’ ’
With the Hamiltonian
H=T+V (3.2)
it reads 5
ihgw(x, t)y=Hy(x,t) . 3.3)

Separation of the variables time ¢ and position x by way of the expression for
stationary wave function

Y@, 1) =e " gpx) (34)
leads to the stationary Schridinger equation
h2 2
“om Epr(X) + V(x)¢pe(x) = Egg(x) (3.5)
or equivalently
Hop(x) = E@e(x) (3.6)

for the eigenfunction ¢g (x) of the Hamiltonian belonging to the energy eigen-
value E.

24
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3.1.2 Normalization. Discrete Spectra. Orthonormality

The Hamiltonian H is a Hermitian operator for square-integrable functions
¢(x) only. These can be normalized to one, i.e.,

+o00
/ P*x) p(x)dx =1 . 3.7
—0o0

For normalizable eigenfunctions the eigenvalues E of H form a set {Ey, E>,
...} of discrete real values. This set is the discrete spectrum of the Hamil-
tonian. The corresponding eigenfunctions are called discrete eigenfunctions
of the Hamiltonian. We will label the eigenfunction belonging to the eigen-
value E = E, by ¢,(x). The eigenfunctions ¢, (x), ¢, (x) corresponding to
different eigenvalues E, # E,, are orthogonal:

/QDZ(X) Ym(x)dx =0 . 3.8)

Together with the normalization (3.7) we have the orthonormality of the dis-
crete eigenfunctions

[ ¢,f(x) Qom(x)dx == 5mn . (39)

For potentials V (x) bounded below, i.e., Vo < V(x) for all x, the eigenvalues
lie in the domain £ > Vj. For potentials bounded below, tending to infinity
at x — —oo as well as x — 400, all eigenvalues are discrete.

For potentials bounded below tending to a finite limit V (—o00) or V (+00)
at either x — +o00 or x — —o00, the discrete eigenvalues can occur in the
interval Vy < E, < V, with V; = min(V (+00), V(—0)).

3.1.3 The Infinitely Deep Square-Well Potential

0 ,-d/2<x<d/)2

oo , elsewhere ’ (3.10)

Vix) = {

d: width of potential.

This potential confines the particle to an interval of length d. The eigenfunc-
tions of the Hamiltonian with this potential are

on(x) =+/2/d cos(nex/dy , n=1,35,... |,

on(x) =+/2/d sin(nax/d) , n=2,46,... |, (3.11)
belonging to the eigenvalues
1 (hnm\*
E,=—|— , =1,2,3,... . 3.12
"= ( d ) n ( )

The discrete energies E, are enumerated by the principal quantum number 7.
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3.1.4 The Harmonic Oscillator
Vix) = ngxZ , (3.13)

m: mass of particle,
w: angular frequency.

The eigenfunctions of the Hamiltonian of the harmonic oscillator are

2
On(x) = (ﬁZ"n!ao)'l/an (i) exp (—%) , n=012,... ,
09

99
(3.14)
belonging to the eigenvalues
En=(n+3})ho (3.15)
n: principal quantum number » of the harmonic oscillator,
H, (x): Hermite polynomial of order n,
0o = +/h/mo: width of ground-state wave function.
3.1.5 The Step Potential
Vi>0 ,x<x1=0 region 1
Vs , X1 <X < X2 region 2
Vix)=1: . (3.16)
VN1 ,xN—2 <X <XN_] region N—1
Vw=0,xny_1<x region N

The potential possesses discrete eigenvalues E; for E < 0, which can again
be enumerated by a principal quantum number /.

For an eigenfunction. ¢;(x) belonging to the eigenvalue E; the de Broglie
wave number in region m is

kim = |v2m(E; = V)/h| for E; >V, (3.17)
kim=1ikim , kim= |N2m(Vy — ED/R| for E; <V, '

The wave function @;(x) is then given for all the N intervals of constant po-
tential by
o (x) , regionl
@rp(x) , region?2
pi(x) ={: . (3.18)
QYIN—1 , region N —1
QIN , region N

For E # V,, the piece ¢;,, of the wave function,
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Ol (X) = ApeXm* L Bipehim® - x < x <xpm (3.19)

consists for E; > V,, of a right-moving and a left-moving harmonic wave and
for V,, > E; of a decreasing and an increasing exponential function. For
E; =V, the piece ¢y, is a straight line

Oim(xX) = Aim + Bimx . X1 X <Xm . (3.20)

Because of the normalizability (3.7), the bound-state wave function ¢;(x)
must decrease exponentially in the regions

m=1:¢y=Bpe"”* , —oco<x<x1=0,

m=N:@nN=Ane N | xy_ 1 <x<o00 |, (3.2

i.e., All = 0, BlN =0.

The requirement of exponential behavior stipulates E < 0. The co-
efficients Ay, By, are determined from the requirement of the wave func-
tion being continuous and continuously differentiable at the values x,,, m =
1,..., N — 1. For E # Vy,, V,u11, these continuity conditions read

Almelklmxm + By ekimim — Alm-i-lelklm“x'" + Blm+le—lklm+1xm :

klm (Alm eiklmx'" - Blme_iklmxm)

. . 3.22
= kimt1(Aimyr€lim+1%m — By, g e~ kine1%m) (3:22)

If E; =V, or E; = V,,4, the left-hand or right-hand side has to be replaced
by using (3.20). The system represents a set of 2(N — 1) linear homogeneous
equations for 2(N — 1) unknown coefficients A;,, B;,. It has a non-trivial
solution only if its determinant D(FE) vanishes. This requirement leads to a
transcendental equation for the eigenvalues E; present in the wave numbers
kim- In general, its solution can be obtained numerically only and is calculated
by the computer by finding the zeros of the function

D = D(E) (3.23)

that coincide with the values E; at which the determinant vanishes. Once the
eigenvalue E; is determined as a single zero of the transcendental equation,
the system of linear equations can be solved yielding the coefficients A;,;, Binm
as functions of one of them. This undetermined coefficient is then fixed by
the normalization condition (3.7). The number of the eigenstates ¢;(x) of
step potentials is finite; thus, they do not form a complete set. In Chap. 4 we
present the continuum eigenfunctions that supplement the ¢;(x) to a complete
set of functions.
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3.1.6 Time-Dependent Solutions

Because the time-dependent Schrodinger equation (3.1) is linear, the time-de-
pendent harmonic waves, (3.4),

Yn(x, 1) = e Enllhg, (x) (3.24)

can be superimposed with time-independent spectral coefficients w, yielding
the solution

Yix, 1) =Y wpe F g, (x) (3.25)

of the Schrodinger equation. Because the eigenfunctions ¢, (x), with n be-
longing to the discrete spectrum, confine the particle to a bounded region in
space, the solutions y(x, t) do so for all times.

3.1.7 Harmonic Particle Motion. Coherent States.
Squeezed States

For the time t = 0 we choose an initial Gaussian wave packet:

(x — x0)? }

) O = 1 _ -
w(x ) (2”)1/40x0 exp { 40_)620

(3.26)

Xp : initial mean position,
ox0: initial width of wave packet.

The initial mean momentum is zero. We decompose ¥ (x, 0) into a sum over
the complete set of real eigenfunctions ¢, (x) of the harmonic oscillator,

0
V.0 = wip) . (3.27)
=0
The orthonormality condition (3.7) is used to determine the coefficients

+oo
wy, =/ On(x) Y(x,0)dx . (3.28)

The time-dependent solution ¥ (x, ¢) is then given with these coefficients by
(3.25). This expansion can be summed up. For brevity we present only its
absolute square explicitly:

(3.29)

— 2
o, 1) = [y (x, 0 = _M}

2o (1) "”‘p{ 202(1)
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It represents a Gaussian wave packet moving with a mean position
(x(2)) = xgcos wt (3.30)

oscillating harmonically in time and with an in-general time-dependent width

0x(t) = — = (4o + 1 + (doh — 1) cosQut)/? (3.31)

«/_ 0r0
010 = 0x0/0y: relative initial width of wave packet,
op = /h/mw: ground-state width.

The time-dependent width itself oscillates with double angular frequency 2w
about an average width

- 0o 4 172
0 =————(4os+1) . 3.32
2«/§ar0 0 ( )

The coherent state is distinguished by a time-independent width o = 6¢/~/2.
It is of central importance in quantum optics and quantum electronics, e.g., in
lasers and quantum oscillations in electrical circuits. States with oscillating
widths are called squeezed states.

3.1.8 Quantile Motion in the Harmonic-Oscillator Potential

Equation (3.29) is identical to (2.13). Only the time dependences of mean
{(x(2)) and width o, (¢) are different. Keeping this difference in mind all results
of Sects. 2.1.3 and 2.1.4 about the probability-current density j(x, t) and the
quantile trajectories xp = xp(¢) remain valid for a Gaussian wave packet in
a harmonic-oscillator potential.

3.1.9 Particle Motion in a Deep Square Well

For time ¢ = 0 we choose an initial wave packet with a bell shape,

Ny
Y, 0) =) wypn(x) | (3.33)

n=N;

@n(x): eigenfunctions of infinitely deep square well,
wy: spectral weights.

The spectral weights w, are taken as the values of a Gaussian spectral dis-
tribution in momentum space at the discrete values k, = nx/d of the wave
numbers allowed in the infinitely deep square well. The Gaussian is centered
at po. Its complex phase factor puts at # = O the initial position expectation
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value of the wave packet to x = xp. The result is a ‘Gaussian’ wave packet
inside the infinitely deep square well. The explicit formulae for the spectral
weights used are

wy, = 2m)V/* /-‘o.r[e—arz(pod/h+nn)2 einmxo/d

n e—arz(pod/h—””)ze_i””x()/d] , n=13)5... ,
W = —i(27) /4 S0 pod/hnm)? ginmxo/d
_ 6—0,2(Pod/h_””)ze_i"nm/d] , n=24,6,... |, (334)

Xp: expectation value of initial position,

po: expectation value of initial momentum,
d: width of potential,

oxo: initial width of wave packet,

o0y = 0y0/d: relative initial width,

N1, Na: lower and upper limits of summation.

For reasonable localization of the wave packet within the deep well, the rela-
tive initial width o, must be small compared to one. The moving wave packet
is obtained from the time-dependent solution (3.25) with the spectral weights
(3.34). In the harmonic oscillator the expectation values of position and of
momentum of the wave packet coincide with its classical position and mo-
mentum.

For a wave packet in the infinitely deep square well, the motion of the
classical particle is after some time drastically different from the motion of
the position expectation value of the wave packet. The reason for this phe-
nomenon is the broadening of the wave packet. As soon as its width substan-
tially exceeds the width of the well, the probability density of the particle fills
the whole well and its position expectation value just rests at the center of the
well. Thus, the original amplitude of the oscillating expectation value within
some inner range of the well decreases to zero and the particle rests at the
center of the well.

However, the broadening of the wave packet in the infinitely deep square
well cannot go on forever as in the case of the free motion of a particle. In the
infinitely deep square well, all time-dependent processes are periodic in time
with the period 77. This can be calculated with the following arguments. The
energy of the ground state of an infinitely deep square well is

K 72
~2m 4%

The corresponding angular frequency w1 = E;/k determines a period 77 for
all time-dependent processes in this system:

Eq

T\ =27 /w) = 4md?/(wh) = 8md*/ h
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This means, in particular, that after the time 7 a wave packet moving in the
well assumes its initial shape, i.e., the shape it had at + = 0. The classical
particle of momentum pg and mass #m bouncing back and forth between the
two walls of the well has the bouncing period

T, = 2d/vo = 2md/ po

At the time T, the wave packet has regained its initial width so that its posi-
tion expectation values show again the bouncing behavior of the initial narrow
wave packet. However, its location coincides with the classical particle only
if the quantum-mechanical and classical periods T; and T, are compatible.
Actually, after half the quantum-mechanical period the wave packet already
assumes its original width, however with the opposite of the initial momen-
tum. Because the classical particle position and the expectation value of the
wave packet have to coincide at times 0, Ty, 27}, ..., the initial momentum
po must be chosen so that

=M1, , M=12,... ,

i.e.,
—MEh=
pPo=Moa" ="

Further Reading

Alonso, Finn: Vol. 3, Chaps. 2,6

Berkeley Physics Course: Vol. 4, Chaps. 7,8
Brandt, Dahmen: Chaps. 4,6,7

Feynman, Leighton, Sands: Vol. 3, Chaps. 13,14,16
Fliigge: Vol. 1, Chap. 2A

Gasiorowicz: Chaps. 3,4

Merzbacher: Chaps. 3,4,5,6

Messiah: Vol. 1, Chaps. 2,3

Schiff: Chaps. 2,3,4

3.2 Eigenstates in the Infinitely Deep
Square-Well Potential
and in the Harmonic-Oscillator Potential

Aim of this section: Computation and presentation of the eigenfunctions (3.11)
and eigenvalue spectrum (3.12) for the deep square-well potential (3.10) and of the
eigenfunctions (3.14) and eigenvalues (3.15) for the harmonic-oscillator potential
(3.13).
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E  Stationary States in Deep Square Well
A
p(x)
8 7 | |
i | |
6 | I
4 | I
. | |
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04 L _ _
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Fig. 3.1. Plot produced with descriptor Eigenstates in deep square well on file
1D Bound States.des

Stationary States in the Harmonic-0Oscillator Potential

lp(x)I?
E
A
6__ — = - g = .
5__ R N N g
A__ ~ o el — =
3_

Fig. 3.2. Plot produced with descriptor Eigenstates in harmonic oscillator on file
1D Bound States.des
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A plot similar to Fig. 3.1 or Fig. 3.2 is produced, which may contain the
following items in a plane spanned by the position coordinate x and the en-
ergy E:

e the potential V (x) shown as a long-stroke dashed line,

o the eigenvalues E, shown as short-stroke horizontal dashed lines,

e the eigenfunctions ¢, (x) or their squares as 2D function graphs for which
the graphical representations of the eigenvalues serve as zero lines,

e the term scheme shown as a series of short lines at the positions E, on the
right-hand side of the scale in E.

On the subpanel Physics—Comp. Coord. you can select either the Deep
Square Well or the Harmonic Oscillator potential and you can choose to plot
the eigenfunctions ¢ (x) or their squares |¢(x)|%. Finally there is a maximum
energy E_max up to which the four items listed above are shown. (It is usually
best left at its default value.)

On the subpanel Physics—Variables you find

o the Potential Parameter, i.c., the width d of the square well or the frequency
w of the harmonic oscillator,

e the numerical values of the Constants # and m,

e as Graphical Item a parameter |_DASH determining the length of the dashes
in the graphical representation of the potential and the eigenvalues,

e a Scale Factor s for the graphical representation of the wave functions or
their absolute squares [because they are plotted in the x, E plane, techni-
cally speaking E = E, + s¢,(x) is plotted],

e a choice of Items to be Plotted consisting of four check boxes allowing you
to select some or all of the items listed at the beginning of this section.

Example Descriptors on File 1D Bound States.des

e Eigenstates in deep square well (see Fig. 3.1)
e Eigenstates in harmonic oscillator (see Fig. 3.2)

3.3 Eigenstates in the Step Potential

Aim of this section: Computation and presentation of eigenfunctions ¢;(x), (3.18),
and the corresponding eigenvalues of bound states in a step potential V (x), (3.16).
The value of the determinant D(E), (3.23), is also shown as a function of the en-
ergy E.

A plot similar to Fig. 3.3 or Fig. 3.4 is produced containing some or all of the
items potential, eigenvalues, eigenfunctions, and term scheme. Because the
eigenvalues are found by a numerical search for the zeros in the determinant
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Bound States in Step Potential

p(x)

Fig. 3.3. Plot produced with descriptor Eigenstates in step potential on file 1D_-
Bound States.des

Bound States in a Quasiperiodic Step Potential
- p(x)
0

5 E

~10

~15
| | 1 | o
0 5 10 15 20

Fig. 3.4. Plot produced with descriptor Eigenstates in quasiperiodic potential on
file 1D_Bound States.des
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D = D(E), a graph of the function D = D(E) can be shown as a further
item.

On the subpanel Physics—Comp. Coord. you can choose to plot the eigen-
functions ¢ (x) or their squares |@(x)|?. There are also four Search Parameters
needed by the program to perform the numerical search for the eigenvalues.
These are the energies E_min and E_max (defining the range of E in which
the search is done), the number of intervals N_Search into which this interval
is divided for a coarse search, and a parameter epsilon that is used for a fine
search within intervals in which the coarse search found a zero.

On the subpanel Physics—Variables you find (as in Sect. 3.2) the numer-
ical values for the Constants % and m, the Graphical ltem used to determine
the dash lengths for eigenvalues and potential, the Scale Factor for the eigen-
function, and a choice of Items to be Plotted. In addition there is information
about the graphical representation of the Function D=D(E). It may be Shown
or Not Shown. Because it is plotted in the x, E plane, technically speaking
the function x = xp + spD(E) is presented. Here x_D is the position in x
corresponding to D = 0 and s_D is a scale factor.

On the subpanel Physics—Potential the step potential is described. To
facilitate input we distinguish between two Types of Potential:

e Arbitrary potential: Here the potentials Vi, V3, ..., Vy_1 and the region
borders x1, x3, . .., xy_1 are set individually in the field Regions. The Num-
ber of Regions is N. Its maximum value is 10.

e Quasiperiodic potential: Here we have a simple repetitive structure of Nw
wells of width dw and potential Vyy separated by Nw — 1 barriers of width
dg and potential Vg. The Number of Wells is N_W. Its maximum value is
10. The numerical values for the widths dw, dg and the potentials Vi, Vg
are set in the field Regions.

For both types of potential the potential V; in region 1, i.e., for x < x; = 0,
is in the field Potential in Region 1.

Example Descriptors on File 1D _Bound States.des

e Eigenstates in step potential (see Fig. 3.3)
e Eigenstates in quasiperiodic potential (see Fig. 3.4)

3.4 Harmonic Particle Motion

Aim of this section: Demonstration of the motion of coherent states and squeezed
states in the harmonic-oscillator potential. Presentation of absolute square (3.29) of
the wave function and also of its real and imaginary part.
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Motion of Wave Packet in Harmonic—0Oscillator Potential

0 = 05 0y/{2

Fig. 3.5. Plot produced with descriptor Harmonic particle motion on file 1D Bound -
States.des

On the subpanel Physics—Comp. Coord. you can select one of the following
functions for plotting:

e Absolute Square of Wave Function |y (x, 1)|?,
o Real Part of Wave Function Re v (x, 1),

e Imaginary Part of Wave Function Im v (x, 1),
o Probability-Current Density j (x, 1),

e Bohm’s Quantum Potential Vi (x, 7).

On the subpanel Physics—Variables you find four groups of variables:

e The group Harmonic Oscillator contains only the circular frequency w.
e The group Wave Packet contains the initial mean position xg and a quantity
fo- It expresses in a convenient way the initial width in x,

Ox0 = fcrUO/‘/E »

with og being the ground-state width.
e The group Constants contains the numerical values used for # and m.
o The group Graphical ltems contains quantities influencing the appearance of
the two additional graphical items in the plot:
— A zero line for the function is shown. It is a dashed line spanning the
range —xo < x < xp. Its dash length is determined by |_DASH.
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Harmonic Oscillator: Quantile Trajectories
X
P %o = 1, w, = 31415, oy = 0.797896

T T T

Fig. 3.6. Plot produced with descriptor Harmonic oscillator, quantile trajectories
on file 1D Bound States.des

— The position of the classical particle corresponding to the wave packet is
shown as a little circle of radius R.

The contents of the subpanel Physics—Quantiles are as described in Sect.
2.3.3.

Example Descriptors on File 1D Bound States.des

e Harmonic particle motion (see Fig. 3.5)
e Harmonic particle motion, quantile shown

3.5 Harmonic Oscillator: Quantile Trajectories

Aim of this section: Illustration of the quantile trajectories xp = xp(z) for the
motion of a Gaussian wave packet in a harmonic-oscillator potential.

On the subpanel Physics—Variables you find the circular frequency w of the
Harmonic Oscillator, the initial mean position xq of the Wave Packet, and the
factor f, (so that the initial width is f; times the width of a wave packet
formed by the oscillator’s ground state).

The content of the subpanel Physics—Quantiles is as described in Sect.
2.5.
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Example Descriptor on File 1D _Bound States.des

e Harmonic oscillator, quantile trajectories (see Fig. 3.6)

3.6 Particle Motion in the Infinitely Deep
Square-Well Potential

Aim of this section: Study of the motion of a wave packet (3.33) in the deep
square-well potential.

The sum (3.33) extends over integer values # ranging from
Ny =Ny — 500

to
N> = Ny + 509

with Ng as the nearest integer in the neighborhood of the number | pg|d/(Ar).
The number oy is the nearest integer of 1/o;. If N; turns out to be less than

one, N is set to one.

On the subpanel Physics—Comp. Coord. you can select to show the abso-

lute square of the wave function or its real or its imaginary part.

On the subpanel Physics—Variables there are four groups of parameters:

e The group Square Well contains the width d of the well.

e The group Wave Packet contains the initial mean position xp, the initial

mean momentum py, and the initial spatial width o, of the packet.
e The group Constants contains the numerical values of % and m.

e The group Graphical ltems refers to the three additional items shown in the

plot.

— The potential V (x) is indicated by a dashed horizontal line indicating the
bottom and two dashed vertical lines indicating the walls of the potential.
The dash length is given by |_DASH, the height of the vertical lines by H.

— The position of the corresponding classical particle moving in the well

with initial conditions xg, pg indicated by a circle of radius R.

~ The position of the quantum-mechanical expectation value indicated by

a triangle. The extension of the triangle is also given by R.

Example Descriptor on File 1D_Bound_States.des

e Particle motion in deep square well (see Fig. 3.7)
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Motion of Wave Packet in Deep Square Well
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Fig. 3.7. Plot produced with descriptor Particle motion in deep square well on file
1D Bound States.des

3.7 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by press-
ing Run Demo in the main toolbar and selecting one of the demo files
1D Bound States.

(ii) For the following exercises use descriptor file 1D Bound States.des.
(iii) Some of the exercises contain input parameters in physical units. In exer-
cises with dimensionless input data the numerical values of the particle mass
and of Planck’s constant are meant to be 1 if not stated otherwise in the exer-
cise.

3.2.1 Plot (a) the eigenfunctions, (b) the probability densities of an infinitely
deep square-well potential of width d = 3 for the energy range 0 < E; <
Emax, Emax = 30. Start from descriptor 9.

3.2.2 What are the expectation values of position and momentum of the eigen-
functions of problem 3.2.1?

3.2.3 Rewrite the eiggnfunctions @n(x) of (3.11) in terms of the functions
(p,(li)(x) = (1/v/d)et"™*/4 n = 1,2 3, ..., possessing nonvanishing mo-
mentum expectation values p,(li) = thm/d. (a) Why are the wave func-
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tions <p,$:t) (x) not among the eigenfunctions of the infinitely deep potential?
(b) What is the classical interpretation of the eigenfunctions ¢, (x) in terms of
the go,(,i) (x)?

3.2.4 Calculate the eigenfunctions and eigenvalues in the energy range 0 <
E; < Enax = 2eV for an electron in the infinitely deep square-well potential
of width (a) 3nm, (b) 5nm. Start from descriptor 10. (c) Calculate a rough
estimate of the ground-state energy using Heisenberg’s uncertainty relation.

3.2.5 Repeat Exercise 3.2.4 for a proton for the energy range 0 < E; < Epx,
Eax = 1 meV. Start from descriptor 11.

3.2.6 (a) Plot the wave functions and the energy levels E; in the range 0 <
E; < Enax, Emax = 20eV, for an electron (mass m.) in an infinitely deep
potential of width d = 3a. Here, a = fic/ (amec?) = 0.05292nm is the
Bohr radius of the innermost orbit of the hydrogen atom. Read off the energy
E of the lowest eigenfunction ¢;. Start with descriptor 12. (b) Calculate
the potential energy of an electron in Coulomb potential V (r) = —a«kic/r
at the Bohr radius »r = a. (c) Calculate the sum of the kinetic energy £
of the lowest eigenfunction ¢; as determined in (a) and the potential energy
as calculated in (b). Compare it to the binding energy of the electron in the
hydrogen ground state.

3.2.7 Plot the eigenfunctions of the harmonic oscillator for an electron with
the angular frequencies (a) v = 105 s L, b)w =1.5x 108571, (0) 0 =
2 x 1015571, and (d-f) the corresponding probability densities. Start with
descriptor 13. (g) What is the physical unit of the energy scale? (h) Calculate
the spring constants D = mew?. (i) What is the physical unit of the x scale?
(j) Why is the probability density highest close to the wall of the potential?

3.2.8 Plot (a,b) the eigenfunctions, (c,d) the probability density of a pro-
ton in the harmonic-oscillator potential V = Dx?/2 with the constants
D = 0.1eVm2and D = 1keV m™2, respectively. Start from descriptor
14. (e) Calculate the angular frequency w of the oscillator. (f) Calculate the
width of the ground state of the harmonic oscillator, o9 = vVAm~lw~!.

3.3.1 Plot (a) the eigenfunctions, (b) the probability distributions for a square-
well potential of width d = 4 and depth Vy = —6. Start from descriptor 15.
(c) Read the energy eigenvalues E; off the screen and calculate the differences
A =E; — V.

3.3.2 Repeat Exercise 3.3.1 for the widths (a,b,c) d = 2, (d,e,f) d = 6. Start
from descriptor 15.

3.3.3 (a) Calculate the lowest energy eigenvalues E; in the infinitely deep
square well for the widths d = 2, 4, 6. (b) Compare the E l’ to the differences
A; for the square-well potentials of Exercises 3.3.1, 3.3.2 of corresponding
widths. (c) Explain why the separation of the eigenvalues E; is smaller than
that of the E;.
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3.3.4 Plot (a) the eigenfunctions, (b) the probability densities of a double-well
potential
0,x<0
—4,0<x <1.625
Vix) =41 —1.33,1.625 <x < 1.875
—~4,1.875<x <35
0,35<x
Start with descriptor 16. (¢) Why is the third eigenfunction a horizontal
straight line in the central region? (d) Why have the two lowest eigenfunctions
energies close to each other? (e) Why are they symmetric and antisymmetric?

3.3.5 Plot (a) the eigenfunctions, (b) the probability densities of a double-well
potential
0,x<0
—4,0<x<1
Vx)=1-133,1<x <2
—4.,2<x <35
0,35<x
Start with descriptor 16. (¢) Why do the wave functions exhibit no symmetric
pattern?

3.3.6 Plot (a) the eigenfunctions, (b) the probability densities of an asymmet-
ric double-well potential

0,x<0

-572,0<x <1
Vix) = -1,1<sx<15
—4,15<x<35

0,35<x
Start with descriptor 16. (¢) Why is the ground-state wave function given by
a straight line in the second well?

3.3.7 Plot the eigenfunctions in a set of asymmetric potential wells given by
the potentials
0,x<0
—4,0<x<1
Vxy=41-133,1<x<2 ,
—4.,2<x<d
0,d=<x
where the right edge d istobe setto (a)d = 4, (b1)d = 4.7, (b2) d = 4.8,
(b3)d =49, (b4)d = 5, (¢) d = 6. Start from descriptor 16. In order to
facilitate a direct comparison of the plots (b1-b4) show them in a combined
plot; see Appendix A.9. An example of a mother descriptor is descriptor 17,
which quotes the descriptors 9,10,11,12. Try it out. Now modify descriptor
16 according to question (b1) and append the modified descriptor. Repeat this
procedure for (b2), (b3), (b4). By pressing the button Descriptor you will get
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the list of titles of all descriptors and at its end the four descriptors just stored
away and their numbers. Enter these four numbers in the subpanel Table of
Descriptors of descriptor 17. (d) Now plot descriptor 17 and thus the graphs
corresponding to (b1-b4) in a combined plot. (e) Explain the behavior of the
second and third eigenstate in terms of admixtures of eigenstates in the two
single wells.

3.3.8 Repeat Exercise 3.3.7 for the probability densities.

3.3.9 We consider a quasiperiodic potential that consists of r equal potential
wells of width 1 and depth —15 with a separation of 0.5. Plot the wave func-
tions in an increasing number of equal wells (@) r = 1, (b) r = 2, (¢) r = 3,
Dr=4@r=5Or=6@r=7,0r=8@r =9, §r =10
Start from descriptor 18. (k) Give a qualitative reason for the occurrence of
two bands of states in the quasiperiodic potential.

3.3.10 Repeat Exercise 3.3.9 for a quasiperiodic potential with 10 wells of
width 0.2 and depth —50 and separation of 0.15 between the wells for & =
0.658 and m = 5.685. (a) Plot the term scheme. Start from descriptor 18.
(b) Plot the wave functions of the lowest band. (c¢) Plot the wave functions
of the second-lowest band. (d) Plot the wave functions of the highest band.
(e) Explain the symmetry structure of the wave functions in a band. Start
from the form of the wave functions in the wide square-well potential that is
obtained by taking all the walls out.

3.3.11 (a—d) Repeat Exercise 3.3.10 (a—d) for a quasiperiodic potential of a
depth of —40 and with the value —>5 for the potential in the regions of the inter-
mediate walls separating the narrow wells. Start from descriptor 18. (e) Show
the two highest states of the lowest band in a separate plot. Switch off the
plotting of the potential. (f) Why are the two highest states separated from the
lower eight by a somewhat larger energy gap?

3.4.1 Plot (a) the real part, (b) the imaginary part, (¢) the absolute square of a
wave packet initially at rest moving in a harmonic-oscillator potential. For %
and particle mass use the default values. The oscillator frequency is w = 7.
The initial data of the wave packet are the initial location xg = —3 and the rel-
ative initial width f; = 0.5. Start from descriptor 19. (d) What is the period
of the time evolution of the wave function? (e) What is the period of the time
evolution of the absolute square? (f) What is the most general requirement
for the periodicity of a wave function describing a physical process periodic
in time?

3.4.2 Plot the absolute square of the wave packets initially at rest at xo = —6
moving in a harmonic-oscillator potential of angular frequency w = 7 for the
three relative widths (a) f, = 0.5, (b) f = 2, (¢) f» = 1 for two periods
of the oscillation. Start from descriptor 20. (d) Explain the oscillation of the
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widths observed in (a) and (b) in terms of a classical particle with inaccurately
known initial values of location and momentum.

3.4.3 Plot (a) the real part, (b) the imaginary part, (¢) the absolute square of a
wave packet initially at rest in the central position of the harmonic-oscillator
potential. Choose the relative initial width as f, = 1.75. Start with descriptor
20. (d) Why does the wave packet periodically change its width?

3.4.4 (a,b,c) Repeat Exercise 3.4.3 (a,b,c) for the relative width f, = 1.
(d) Why does the wave packet not change its width over time?

3.4.5 Display the quantile motion for P = 0.5, 0.7, 0.9. Use descriptor 6.

3.5.1 Display quantile trajectories using descriptor 7. For the wave-packet
parameters used in that descriptor the trajectories with P = 0.1 and P =
0.9 stay practically constant for half an oscillator period. (a) Explain this
effect qualitatively. (b) Use descriptor 6 with the wave-packet parameters of
descriptor 7 to check your explanation. (c) Plot the quantile trajectories for
P =0.05, 0.1, 0.15 to study the behavior for P somewhat smaller and larger
than the special case P = 0.1.

3.6.1 Plot the motion of a ‘Gaussian’ wave packet with initial values xo = 0,
po =5, ox0 = 0.75 in an infinitely deep square-well potential of width d =
10 for the time intervals given in time steps At = 0.5. Choose (a) 0 < ¢ < 10,
(b) 10 <t < 20, (c) 20 < ¢ < 30. Start from descriptor 21. (d) Why does the
wave packet disperse in time? (e) Why does the wave exhibit a wiggly shape
when close to the wall?

3.6.2 Plot the motion of a ‘Gaussian’ wave packet with initial values xo = 0,
po = 5, o0 = 0.5 in an infinitely deep square-well potential of width d = 10
for the time intervals (a) 0 < ¢t < 10, (b) 10 < ¢ < 20, (¢) 20 < ¢ < 30,
d)30 <t <40,(e)40 <t <50,(f) 50 <t <60, (g) 60 < < 70,
(h)70 <t <80, 80 <t <90,()9 <t <100, (k) 100 < ¢ < 110,
M 110 < ¢ < 120, (m) 120 < ¢t < 130 in time steps At = 1. Start from
descriptor 21. (n) Calculate the time 7 in which the initial wave packet is
re-established. (o) Look at the wave packet at time 77/2. (p) Why do the
classical position of the particle and the position expectation value of the wave
packet coincide only at the beginning of the motion. (q) Why are there long
time intervals in which the position expectation value is almost at rest?

3.6.3 Plot the motion of a ‘Gaussian’ wave packet in an infinitely deep square
well for the initial values xo = 2, po = 5.184, o0 = 0.5, for a particle of
mass 1 (A = 1) in time steps of Az = 0.5 for the intervals (a) 0 < ¢ < 10,
(b) 58.66 < ¢ < 68.66, (¢) 122.32 < ¢t < 132.32. Start from descriptor 19.
(d) Why does the expectation value of the wave packet at t = 63.66 coincide
with the position of the classical particle?

3.6.4 Plot the motion of a ‘Gaussian” wave packet in the infinitely deep square
well with initial conditions xg = 2, pg = 1.09956, o, = 0.6. (a) Start with a
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plot of the motion of the position expectation value of the wave packet during
the time interval 0 < ¢ < 127.32. Subdivide this interval into 40 time steps.
To make the wave function disappear set zeng = 1. For the projection angles
choose ¥ = 60 and ¢ = —90. Start from descriptor 21. One observes a
time interval during which the expectation value of the position of the wave
packet is almost at rest. (b) What is the expectation value of the energy of
the wave packet during this interval? (¢) What is the approximate expectation
value of the momentum of the wave packet during this time interval? Plot
the probability density of the ‘Gaussian’ wave packet (set zZeng back to 0.001)
for(d)0 <71 <20,()20 <t <40,(f)40 <t < 60, (g) 60 <1 < 80,
(h) 80 < ¢ < 100, (i) 100 < < 120, (§) 120 < ¢ < 140.

3.6.5 (a—g) Repeat Exercise 3.6.4 (a, d, e, ..., j) with xg = 0, pp = 10.9956,
ox0 = 0.6, for a particle of mass m = 10. Start from descriptor 21. (h) Why
does the position expectation value of the wave packet in this case follow the
motion of the classical particle much longer than in Exercise 3.6.47



4. Scattering in One Dimension

Contents: Continuum eigenfunctions and continuous spectra. Boundary conditions
and stationary solutions of the Schrodinger equation for step potentials. Continuum
normalization. Motion of wave packets in step potentials. Transmission and reflec-
tion coefficients. Unitarity and Argand diagram. Tunnel effect. Resonances.

4.1 Physical Concepts

4.1.1 Stationary Scattering States. Continuum Eigenstates
and Eigenvalues. Continuous Spectra

For a potential with at least one finite limit

V(+00) = lim V(x) or V(-00)= xiigloo V(x) 4.1)

there are normalized eigenstates ¢, only for energies £ < V., = min(V (4-00),
V(—00)). In addition to these discrete eigenvalues with normalizable eigen-
functions the Schrodinger equation with a potential satisfying (4.1) also pos-
sesses eigenvalues with eigenfunctions that are not normalizable. Their fall-
off for large values of | x| is not sufficiently fast for the integral of the absolute
square |¢|? extended over the whole x axis to have a finite value. Therefore,
these eigenfunctions are not normalizable and do not represent actual physical
states. The eigenvalues E belonging to the non-normalizable eigenfunctions
are no longer discrete points but form continuous sets of values, e.g., intervals
or a half axis of energy values. The set of continuous eigenvalues is called the
continuous spectrum, the corresponding non-normalizable eigenfunctions are
called continuum eigenfunctions ¢ (E, x). They are solutions of the stationary
Schrodinger equation (3.6)

Ho(E,x) = (T +V)p(E,x) = E¢(E, x) . 4.2)

If a nonsingular potential fulfills the relation V(x) < V. only for a finite
number of regions of finite lengths on the x axis, the continuous spectrum is
bounded by
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V.<E . 4.3)

Normalizable solutions of the time-dependent Schridinger equation can be
formed as linear superpositions of these continuum eigenfunctions.

4.1.2 Time-Dependent Solutions
of the Schrodinger Equation

Because the continuum eigenfunctions ¢(E, x) are not normalizable, they
extend over the x axis to 400 or —oo, depending on the values of V(+400)
and V (—o00). Thus, the continuum eigenfunctions can be used to form moving
wave packets far away from the region where the potential actually exerts a
force on the particle, i.e., in regions of constant or almost constant potential:

Yx,0) = /00 w(E) ¢(E,x)dE . 4.4)
Ve

The time-dependent solution of the Schrodinger equation having ¥ (x, 0) as
initial state at £ = O then takes the form

w(x,t)=/oow(E)e_iE’/h(p(E,x)dE . (4.5)
Ve

4.1.3 Right-Moving and Left-Moving Stationary Waves
of a Free Particle

Equation (2.1) describes the harmonic wave associated with a particle of mass
m and momentum p. Because E = p?/2m is quadratic in p, (2.1) represents

two solutions p = =£|p|, with |p|] = ‘«/ZmEI, for each energy value E.

Thus, the wave functions (2.1) can also be interpreted as belonging to one of
two sets,

1 i
Y (E, x, 1) = Wexp {—g(Et - |P|x)} ,

1 i
W_(E,x, I)ZWCXP{—E(EI'FIPIX)} . (46)

With a spectral function being different from zero for positive values of p
only, the superposition (2.4) formed with ¥4 (E, x, t) represents a right-
moving wave packet, i.e., a wave packet propagating from smaller x values
to larger ones. For the same spectral function the wave packet formed with
Y_(E, x,t) is left moving, i.e., propagating from larger to smaller x values.
Actually, the two harmonic waves themselves propagate to the right and to
the left, respectively. In analogy to (3.4) they can be factorized:
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Vi(E, x, 1) =e Et/hg (E, x)

o+ (E, x) = Quh)~/2eHilplx/h 4.7

that is into a solely time-dependent exponential and eigenfunctions ¢4 (E, x),
@_(E, x) of the kinetic energy T, i.e., the Hamiltonian H = T of a free
particle,

Hopi(E,x) = Epi(E,x) . (4.8)

The time-dependent solutions vy (x, #), superpositions of the stationary
waves ¢4 (E, x),

Yilx, 1) = / w(p)e Ep (E(p), x)dp | (4.9)

only represent right-moving wave packets. Analogously, replacing ¢4 by ¢—
leads to left-moving wave packets. For ¢+ = O and real w(p) these wave
packets are centered around x = 0. If we want to place a right-moving wave
packet at t = fg around x = xo, we have to substitute ¢+ with ¢ — 7y and the
Gaussian spectral function f(p), (2.5), with

w(p) = f(p)e Px/h (4.10)

This allows us to construct the wave packets incident on a step potential.
The eigenfunctions belonging to different energy eigenvalues E, E’ are
orthogonal,

/ PL(E' x)p+(E,x)dx =0 , (4.11)

o0

as are those for equal energy eigenvalues but different subscript signs, e.g.,

/ @i(E, x)g_(E,x)dx =0 . (4.12)

The stationary wave functions ¢ _(E, x) are two continuum eigenfunctions
to the same energy eigenvalue E, which is therefore called two-fold degener-
ate.

4.1.4 Orthogonality and Continuum Normalization
of Stationary Waves of a Free Particle. Completeness

Because the integral over the absolute squares |4 |% or |@_|? does not exist,
a normalization to unity is not possible. The normalization of discrete eigen-
functions is replaced by the continuum normalization

/_oo P (EP), ))ps(E(p), x)dx = 8,8(p — p)) 4.13)
s =+ R S/ =%
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This ensures that the normalization of the wave packet is equal to one if the
spectral function w(p) is correctly normalized to one,

f w(pw(pydp =1 . 4.14)

The set of functions ¢;(E, x) is complete: any absolute-square-integrable
function ¢ (x) can be represented by an integral (Fourier’s theorem):

b0 =Y /O wy(p) o5 (E(p), x)dp . (@.15)
s=%

4.1.5 Boundary Conditions
for Stationary Scattering Solutions in Step Potentials

In the step potential, (3.16), the wave numbers k;, (3.17), determine the solu-
tions (3.18) for given E. The stationary solutions

@i(E,x) =¢j+(E, x) +¢;-(E, x) (4.16)

are superpositions of two exponentials of opposite exponents in the region j,
Xj—1 =x <Xxj:

9ir(E, x) = A} | ¢; (E,x)=Bje " | 4.17)

The scattering of a right-moving wave packet incident from —oo is possible
for E = Vi = 0. We have to distinguish two cases: £ > Vy and E < Vy.

i) For E > Vy, ky = |/2m(E = V) /h

oN(E, x) = Ajeltnx (4.18)

, an outgoing wave

propagates inside the region x > xy_1, i.e., to the right of the step potential.

i) For E < Vy, ky = iky, ky = |«/2m(VN — E)/h|, there is only an
exponentially decreasing wave function

on(E, x) = Aye ™ N* (4.19)
in the region x > xy_;.

The scattering of a left-moving wave packet incident from +o0 is possible
for E > Vy. Again, we have to distinguish two cases: £ > V| = 0 and
E <V = 0.
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)For E>V, =0, k1 = ,\/ZmE /h', there exists only an outgoing wave in

the region —00 < x < x1 = 0:
¢1(E, x) = Bje™% % (4.20)

fi)For E < V; =0, ki =ik, k1 = |«/2m|E|/h|, there exists only a wave
function
¢1(E, x) = Bje“'* 4.21)

decreasing exponentially toward —oo in the region —oo < x < x; = 0.

In the following discussion we shall restrict ourselves to right-moving incom-
ing waves. For this scattering situation the boundary condition is given by
(4.18) or (4.19) depending either on the relation E > Vy or E < Vy.

4.1.6 Stationary Scattering Solutions in Step Potentials

The stationary solutions of the Schrodinger equation for a right-moving in-
coming wave incident on a step potential (3.16) with N regions is of the form

o1(E,x) = A/leiklx + B{e_?k”‘ region 1
0 (E,x) = A/ze‘kzx + Bie7*2* region 2 @22
on(E, x) = A/NeikN" region N

The (2N — 1) coefficients A/j, B;. are again determined from the requirement
of the wave function being continuous and continuously differentiable at the
values x,,, m = 1, ..., N — 1. This leads once more to the conditions (3.22)
for E # V,,, Vyuy1. For E = V,,, or E = V41, (3.20) has to be used. Again
this yields 2(N — 1) linear algebraic equations, now, however, for 2N — 1)
coefficients A’j, B;.. Thus, for every value E > Vy = 0, a number of 2(N — 1)
coefficients can be determined as functions of one of them. We single out the
coefficient A] as the independent one. Its size determines the amplitude of the
right-moving wave coming in from —oo. Thus, it regulates the strength of the
incoming current. It will either be fixed in (4.25) below by a normalization,
or simply be set to one.

Because for any real value E > Vi = O of the energy we find a stationary
solution in the step potential, all values £ > V form the continuous spectrum
of the Hamiltonian. All corresponding stationary solutions ¢(E, x) are con-
tinuum eigenfunctions with right-moving outgoing waves. There is a further
set of eigenfunctions of £ > Vy for scattering processes where the incoming
particles move in from +oc which we do not further discuss.
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4.1.7 Constituent Waves

The pieces ¢;(E, x) in region j (x;—1 < x < xj) of the stationary wave
function @ (E, x) consist of a right-moving and a left-moving constituent wave

9j+(E,x) = A" and @; (E,x)=Bje " | (4.23)

if E > V;. For E < V; the wave number becomes imaginary: k; = ix;, k;
real. In this case,

@j+(E, x) = A’je_’cfx and ¢;_(E,x)= B}e"f"
represent a decreasing and an increasing exponential, respectively,

X : position variable,

kj = in, Kj= |,/2m(Vj — E)/h| : wave vector for E < Vj,

A’;, B} : complex amplitudes.

4.1.8 Normalization of Continuum Eigenstates

As all eigenvectors of Hermitian operators the continuum eigenfunctions be-
longing to different eigenvalues E, E’ are orthogonal,

+00
/ o*(E', x)p(E,x)dx =0 . (4.24)

The normalization condition for continuum eigenfunctions for E = E’ is in
analogy to (4.13) given by (E = p?/2m, E' = p’?/2m)

+00
/ O *(E', x)p(E,x)dx =8(p' — p) . 4.25)

Again this ensures that the normalization of a right-moving wave packet is
unity if the spectral function w(p) is normalized as in (4.14). It is the nor-
malization (4.25) that fixes the independent coefficient A] in the stationary
scattering solution (4.22).

4.1.9 Harmonic Waves in a Step Potential

The time-dependent waves
Y(E, x,1) = e Eho(E x) (4.26)

¢(E, x): right-moving incident wave function (4.22),
E = p?/2m: energy eigenvalue,
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X: position,
t: time,

are solutions of the time-dependent Schrodinger equation. In the regions j
with E > V; they are harmonic waves. Also the time-dependent stationary
waves can be decomposed into time-dependent right-moving and left-moving
constituent waves,

Vit (E, x,t) =e B, (B x)
. 4.2
Vi (E,x.1) = e Ehg. (E, x) (4.27)

4.1.10 Time-Dependent Scattering Solutions
in a Step Potential

If we want to describe a particle coming in from the left by a right-moving
Gaussian wave packet of spatial width o, as in classical mechanics, we have
to set at the initial time ¢ = 0 its position to xp and its average momentum to
po. This is accomplished with the time-dependent superposition

Yx, 1) = f w(p)e P p(E(p), x) dp (4.28)
of the continuum eigenfunctions ¢ (£, x) with the Gaussian spectral function

_(p—po)?

= Wp{ o}

— ipxo/h} , (4.29)

E = p?/2m: energy,

p: momentum,

X position,

t: time,

po: momentum expectation value of incident wave packet,
xp: position expectation value of incident wave packet,

o, = hi/20,9 momentum width of incident wave packet,
oxo: spatial width of initial wave packet,

@(E, x): right-moving stationary scattering wave.

The constituent waves ¥;+(E, x,t), ¥;_(E, x, t) of the wave packet can be
formed with the stationary constituent waves

Yir(x, 1) = f w(pe Ehg . (E(p),x)dp (4.30)

which are right-moving or left-moving.
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4.1.11 Transmission and Reflection. Unitarity.
The Argand Diagram
For E > Vy,ie., ky = |/2m(E — Vy)/h

in the following way:

, the solution (4.22) is interpreted

i) A] elk1* is the right-moving harmonic wave coming in from —oo.
ii) Al elk¥* is the transmitted wave. It is right moving, going out to +0o.
iii) Bie_lkl" is the reflected wave. It is left moving, going out to —oo.

For E < Vy, ie., ky = ikn, ky = |/2m(Vy — E)/h
(4.22) contains the term

, the solution

AlefNT = Al e NE (4.31)

which represents an exponentially decreasing function in the region N. It
approaches zero for x — +o0o. Thus, there is no transmission for £ < Vy.
The incoming wave A’leiklx is totally reflected to produce the left-moving
reflected wave Bie_ik”‘ , which goes out to —oo.

For E > Vy the complex functions Ay = ki/knA\(E) and B) =
Bj{(E) are called the transmission and reflection coefficients, respectively.
Their normalization is fixed by setting the independent coefficient A} = A} =
1. They depend on the energy E of the incoming wave and fulfill the unitarity
relation

|ANP+IBiP =147 =1 . (4.32)

This relation states that, for varying energy E, the complex quantities Ay (E)
and B;(E) move inside a circle of radius 1 around the origin in the complex
plane. This representation of the coefficients Ay, B; in the complex plane is
known as the Argand diagram. The coefficients Ay and B; are also called
the scattering-matrix elements or S-matrix elements of transmission and re-
flection, respectively. Accordingly, (4.32) is called a unitarity relation of the
S matrix. A detailed discussion of the physical interpretation of the promi-
nent features of the Argand diagram, e.g., in relation to resonances, is given
in Sect. 10.2.

For E < Vy the complex function Bj(E) is the reflection coefficient.
There is no transmission of a wave that goes out to infinity. For the normal-
ization A| = 1 the reflection coefficient fulfills for E < Vy the unitarity
relation

Bil> = AP =1 . (4.33)

Thus, for E < Vy, the complex reflection coefficient Bj(E) moves for vary-
ing energy E on the unit circle in the complex plane.

Related quantities are the transition-matrix elements or T -matrix elements
Tt, Tr of transmission and reflection,
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Tr(E) = (AN(E) — 1)/2i and Tr(E)= Bi1(E)/2i . (4.34)
The T -matrix elements fulfill the 7-matrix unitarity relation
InTr = |Tr* + | (4.35)

This states that the element 71(E) moves for varying energy E inside a circle
of radius 1/2 with its center at the point i/2 in the complex plane. The element
Tr(E) varies inside the circle of radius 1/2 around the origin of the complex
plane.

4.1.12 The Tunnel Effect

We consider a simple potential with three regions,

0 ,x <x;=0regionl
Vix)=4{ Vo,0<x <d region2 (4.36)
0 ,d=<x region 3

X: position coordinate,
d: width of potential,
Vo > 0: potential height.

For energies 0 < E < Vj a classical particle will be reflected. Quantum
mechanics allows a nonvanishing transmission coefficient A3,

AE(Vo— E
A3 = Vo — £) , x:’,/zm(vo—E)/h‘ .

4E (Vo — E) + V§ sinh? kd
(4.37)

Thus, there is a nonvanishing probability of the particle being transmitted
from region 1 into the classically forbidden region 3, if £ < Vj. This phe-
nomenon is called the tunnel effect.

For general potentials, the tunnel effect means that penetration through a
repulsive wall is possible if the incident energy is larger than the potential on
the other side of the wall.

4.1.13 Resonances

In step potentials with N regions and V; = 0, transmission is possible for
positive energies if E > Vy. The transmission coefficient Ay varies with the
energy E of the incident particle.

The maxima of the absolute square |A ~|? of the transmission coefficient
are called transmission resonances. The energies at which these maxima oc-
cur are the resonance energies. Because of the unitarity relation (4.32) the
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absolute square |B; |2 of the reflection coefficient exhibits a minimum at the
resonance energy of transmission. Therefore, in a plot of the energy depen-
dence of the absolute square of the wave function, transmission resonances
can be recognized at energies where the interference pattern of the incoming
and reflected wave in the region 1 is least prominent or absent.

4.1.14 Phase Shifts upon Reflection at a Steep Rise
or Deep Fall of the Potential

We study the reflection and transmission in two adjacent regions / and [ + 1
with large differences in the values V;, V4 of the potentials:

Vi, xj-1 <x < x;region/

Vidr, x1 < x < x4 regionl +1 (4.38)

Vix) = {

A particle with the kinetic energy E is incident on the potential step at x = x;.
The wave function in the regions / and [ + 1 is given by

@i(E, x) = AjeM* 4+ Ble7Hx
Qir1(E, x) = Aj, ek 4 B emhx (4.39)
The continuity conditions to be satisfied at x = x; are

1 Jdkixy to—ikixp At iky41x1 ’ —iky41x1
Ape™ + Bie T = Ay et 4 By e

ki1

1 ik /—ik ’ ik ’ —ik
Ale X - Ble 11 = kl (Al+lel 10 _— Bl+le b l+lxl) . (440)

This leads to the solutions

A;eik’x’ = 1 (1 + —kl+1) A;+1eik’+‘x’ + 1 (1 — ——kl+1) Bl/+1e_ik’“x’ ,

2 k; 2 ki
. 1 k ; 1 k i
Bl/e—lklxl — E (1 _ lk-ll-l) A;+le1k,+1x1 + 5 (1 + lk-ll-l) Bl/+le—1k1+1x1

4.41)

i) Reflection and transmission at a sudden increase in potential energy (V; <

Vit1).

For a particle with kinetic energy E > V4 closely above the potential value
Vi+1 inthe region (I4-1), the quotient of the wave numbers satisfies k;1/k; <
1. In this case (4.41) yields

Bje ki x Aleihi¥ for E > Vi . (4.42)

We conclude that the reflected wave, i.e., the left-moving constituent wave in
region /,
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@o-(E, x) = Bje kx| (4.43)

does not show a phase shift compared to the incident wave, i.e., to the right-
moving constituent wave in this region,

o+ (E, x) = Ajelh* (4.44)

The analogous situation in optics is the reflection of light on a ‘thinner
medium’, which does not exhibit a phase shift either. The analogy rests on the
relation of the wave numbers &; and &7 in the two adjacent regions. In optics
and in quantum mechanics reflection on a thinner medium requires k; > k;41.
Actually, to obtain a vanishing phase shift in quantum mechanics the relation
has to be stronger, i.e., k; > kjy1.

ii) Reflection and transmission at a sudden decrease in potential energy (V; >
VieD).

For a particle of kinetic energy E > V; close above the potential value V; in
the region /, the quotient of wave numbers satisfies k;+1/k; >> 1. For kinetic
energies E slightly larger than V, (4.41) then leads to the relation

Bje ¥ ~ Al for E>V (4.45)

which is tantamount to a phase shift of m between the reflected wave, i.e., the
left-moving constituent wave in region /,

(pl*(E, X) — Bl/e—ik[x ~ _A;eZiklxl—ik[x — A;e—i(klx—Zklxl-HT) , (446)
and the incident or right-moving constituent wave in this region,
o+ (E, x) = Ajelh* (4.47)

This corresponds to the reflection of light on a denser medium (Sect. 4.9,
‘Analogies in Optics’). Both the quantum-mechanical and the optical situation
are characterized by k; < k;4;. In quantum mechanics the phase shift upon
reflection on a ‘denser medium’ approaches the value & for the limiting case
k; < ky41 only.

iii) Reflection at a high potential step.

A particle with a kinetic energy E satisfying V; < E < V41 is only reflected
at x = xj; there is vanishing transmission, i.e., A;+1 = 0. In region (I + 1)
the wave number is imaginary, k;+| = ix;+1, and, furthermore, «;1/k; > 1.
This leads to the relation

B/~ —A; for Vi<E <L Vigyr - (4.48)

As under ii), we conclude that the reflected wave in region / suffers a phase
shift of 7. This situation is analogous to the reflection at a fixed end.
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4.1.15 Transmission Resonances upon Reflection
at ‘More- and Less-Dense Media’

We investigate a simple repulsive potential of three regions,

0 x<0 region 1
Vix) ={ Vp>0 0<x <x; =dregion2 . (4.49)
0 x1 <x region 3

A particle of kinetic energy E slightly larger than Vj is incident on this po-
tential from the left. Reflection occurs at x = O and x = d. At x = O the
reflection occurs as in optics on a ‘thinner medium’; thus, the reflected wave
in region 1 suffers no phase shift. At x = d reflection occurs on a ‘denser
medium’ and thus with a phase shift of 7 for the reflected wave in region 2.
The left-moving constituent wave ¢1-(E, x) in region 1 can be thought of as
consisting of two parts interfering with each other: the one reflected at x = 0
on a thinner medium and the other reflected at x = d on a denser medium
and transmitted into region 1 at x = 0. The phase difference of the two parts
consists of the phase shift 7 upon reflection on the denser medium at x = d
and the phase shift due to the longer path k2(2d) of the wave in region 2. The
total phase shift amounts to

8§ =2kyd+m . (4.50)

For destructive interference of the two parts making up the reflected, i.e., left-
moving, constituent wave ¢1-(E, x) in region 1, this phase difference has to
be equal to an odd multiple of w. Thus, a transmission resonance for the
potential (4.49) under the condition E — Vy < Vp occurs if

2kod+m=Q2l+1)x or ky=lIrn/d for 1=1,2,3,... . (451)
For the corresponding wavelength we find
M=2rn/ky=2d/] , 1=12,3,... , 4.52)

i.e., whenever the wavelength in region 2 is an integer fraction of twice the
width of the step potential, transmission is at a maximum. The largest wave-
length for which this happens is just twice the width of the potential region. It
should be remembered, however, that the validity of the simple formula (4.51)
hinges on the condition k, < k; at resonance energy Ej, i.e.,

lh% < 2mE, . (4.53)

Under this condition the resonance energies of the kinetic energy of the inci-
dent particles are
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1 (hr)?
E=Vo+P—(—=]) . 4.54
1=Vt 5 ( y ) 4.54)
The spacing of the resonances increases like /% for not too large values of the
integer /.

4.1.16 The Quantum-Well Device
and the Quantum-Effect Device

Two developments in circuit elements based on the tunnel effect are the
quantum-well device and the quantum-effect device. For an introductory ar-
ticle we refer the reader to R. T. Bates “Quantum-Effect Device: Tomorrow’s
Transistor?” in Scientific American Vol. 258, No. 3, p. 78 (March 1988).

A quantum-well device (QWD) with one-dimensional confinement is an
arrangement of five layers of material, Fig. 4.1a. The two outer layers are
n-doped gallium arsenide, GaAs. The two slices to the left and right of the
middle layer are made of aluminum gallium arsenide, AlGaAs. The middle
slice is gallium arsenide, GaAs. The band structure of AlGaAs is such that
no classical electron current flowing in the outer n-doped GaAs can pass it.
The middle layer acts like a potential well between the two AlGaAs layers,
which act like two barriers. Thus, the one-dimensional potential representing
the quantum-well device possesses five regions with Vi =0, V2 > 0, V3 <
V2, V4 = V2, V5 = 0, Fig. 4.1b.

The electrons in the first region, usually called the emitter, can be trans-
mitted into the fifth region, the collector, only if their initial energy in region 1

n-doped n-doped
GaA
GaAs AlGaAs (szes) AlGaAs GaAs
(emitter) (collector)
(2)
X1 X2 X3 X4
%3 Va

V3 I
il o Lo

1 1 (b) | 1 1 ©)

X1 X2 X3 X4 X1 X2 X3 X4

Fig. 4.1. Quantum-well device: (a) layers of different materials, (b) potential at zero voltage,
(c) potential with voltage between emitter and collector
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matches a resonance energy in the well. In this case the tunnel effect through
the barrier (region 2) into the well (region 3) and from here through the sec-
ond barrier (region 4) into region 5 leads to a sizable transmission coefficient.
The adaptation of the resonance energy in the well can be facilitated by con-
necting the material in regions 1 and 5 to a battery. By varying the voltage
between emitter and collector, Fig. 4.1c, the potential can be changed and thus
the resonance energy. This effect can be used to steer the current through the
quantum-well device.

Another possible way to influence the current is to connect a third electri-
cal contact (base) to the middle layer (region 3) of the quantum-well device.
This contact can be used to change the potential V3 in the well for a fixed
voltage between emitter and collector. A circuit element of this kind is called
a quantum-effect device.

4.1.17 Stationary States in a Linear Potential

‘We consider the potential
Vx) = —mgx (4.55)

corresponding to a constant force F = mg. The stationary Schrodinger equa-
tion reads

2mdx?

Introducing the classical turning point

K2 d?
( — mgx) ox)=Epx) . (4.56)

xt=—FE/mg

of a particle with total energy E and the dimensionless variable

1/3
£ = x o — h? /
_KO ’ 0= 2m2g ’

we give the Schrodinger equation the form

d2
(@ n g) $E =0 , $@&) =@tk +x1)

It is solved by the Airy function Ai(£), Sect. 9.1.7, multiplied by a normaliza-
tion constant:

ml/2 1/3
g1/2h2>

Returning to the stationary wave function we find

¢(E) = NAi(-§) N=(

0(x) = NAI (—x ZOXT) . (4.57)

Note that the wave function ¢(x) is a real function of x.
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4.1.18 Wave Packet in a Linear Potential

Also in the linear potential one can have a Gaussian wave packet with the
probability density

_ 2
CRCION ] @58)

1
oG, 1) = ¥ (x, DI} = e"p[ 202(0)

\/ﬂax ()
familiar from the free Gaussian wave packet, Sect. 2.1.2, and from the Gauss-
ian wave packet in the harmonic oscillator potential, Sect. 3.1.7. We denote
by xo = (x(0)) the initial mean position, by py = (p(0)) the initial mean
momentum, and by oo = 0 (0) the initial spatial width. The time-dependent
mean

(x(@) = x0+ 221 4 42 (4.59)
m 2

is identical to the position x(¢) of a classical particle with the initial conditions
x0, po- The time dependence of the spatial width o, (¢) is the same as for the
free wave packet,

K2 2 4040 £2
o2(t) = 02, (1 + Hﬁ) =02 (1 + —”m : (4.60)
x0

Remember that for ¢+ = 0 the widths in position and momentum are related by
0x00p0 = h/2.

4.1.19 Quantile Motion in a Linear Potential

Equation (4.58) is identical to (2.13). Only the time dependence of the mean
(x (1)) is different. Keeping this difference in mind all results of Sects. 2.1.3
and 2.1.4 about the probability-current density j(x,?) and the quantile tra-
jectories xp = xp(f) remain valid for a Gaussian wave packet in a linear
potential.

Further Reading

Alonso, Finn: Vol. 3, Chap. 2

Berkeley Physics Course: Vol. 4, Chaps. 7,8
Brandt, Dahmen: Chaps. 4,5,7

Feynman, Leighton, Sands: Vol. 3, Chaps. 9,16
Fliigge: Vol. 1, Chap. 2A

Gasiorowicz: Chap. 5

Merzbacher: Chaps. 3,4,5,6

Messiah: Vol. 1, Chaps. 2,3

Schiff: Chaps. 2,3,4
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Tunnel Effect, Stationary States

Fig. 4.2. Plot produced with descriptor Stationary 1D Scattering on file 1D_Scatter-
ing.des

4.2 Stationary Scattering States
in the Step Potential

Aim of this section: Computation and demonstration of the stationary solution
@(E, x), (4.22), and of the stationary constituent solutions ¢;+(E, x), (4.23), of
the Schrodinger equation for a right-moving incoming wave in a step potential as a
function of position x and energy E or momentum p.

A plot similar to Fig. 4.2 is produced. It contains graphical representations of

o the step potential V (x) as long-stroke dashed line,

o the total energy E as short-stroke dashed line,

o the stationary wave function ¢ (x), displayed as |¢(x)|?, Re ¢(x), or Im ¢ (x)
for which the short-stroke line serves as zero line.

Technically, the plot is of the type surface over Cartesian grid in 3D. The
number of energies and wave functions shown is given by n_y on the subpanel
Graphics—Accuracy.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to
show either the Absolute Square or the Real Part or the Imaginary Part of the
wave function.

On the subpanel Physics—Wave you can choose to show the solution valid
in the full x range or the right-moving or the left-moving constituent wave
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valid only in one of the potential regions. You can choose whether the y
coordinate represents momentum or energy and you can set the position xg
for which the phase of the incident wave vanishes.

On the subpanel Physics—Misc. you find under Constants the numerical
values of % and m, under Graphical ltem a variable £pasy that determines the
dash lengths used for the graphical representations of potential and energy,
and under Scale Factor the factor s used to scale the graphical representation
of the wave function.

On the subpanel Physics—Potential you find all the parameters determin-
ing the step potential, the number N of regions, the boundaries x; between
region i and region i + 1, and the potential V;.

Example Descriptor on File 1D_Scattering.des

e Stationary 1D scattering (see Fig. 4.2)

4.3 Time-Dependent Scattering
by the Step Potential

Aim of this section: Computation and demonstration of a time-dependent harmonic
wave ¥ (E, x, t), (4.26), coming in from the left and scattered by a step potential and
of the right-moving and left-moving constituent waves ¥+ (E, x, ), (4.27). Study
of the time development of a Gaussian wave packet ¥ (x, t), (4.28), scattered by a
step potential. Study of the constituent waves ¥+ (x, t), (4.30).

A plot is produced showing for various instances in time either a harmonic
wave, Fig. 4.3, or a wave packet, Fig. 4.4, scattered by a step potential. Also
the constituent solutions ¥+ can be displayed. Note that the constituent so-
lutions ¥+ have physical significance only in region j although they are
drawn in the complete x range determined by the C3 window, unless you re-
strict the range to region j. Note also that only the sum v; is a solution of the
Schrodinger equation.

As in Sect. 2.7, for the computation of the Gaussian wave packet, the
integration over p has to be performed numerically and is thus approximated
by a sum:

) N
W(x,t>=f FPWp.dp — ApY_ F(p)¥p,(x.1)
o n=0

2fs0p
N -1
Here f, is a reasonably large positive number, e.g., fo = 3.
Again the solution obtained numerically as a sum with a finite number of
terms will be periodic in x. That is, only in a limited x region you will get

Pn = pPo — foap +ndp , Ap= (4.61)
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Harmonic Wave Falling on a Repulsive Potential Step

Fig. 4.3. Plot produced with descriptor Time-dependent 1D scattering: harmonic
wave on file 1D Scattering.des

a good approximation to the true solution. The patterns for ¥ (x) [or ¥4 (x)
and ¥ ;_(x)] will repeat themselves (quasi-)periodically along the x direction,
the period Ax becoming larger as Ny, increases. You will have to make sure
that the x interval of your C3 window is small compared to Ax.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to
show either the Absolute Square or the Real Part or the Imaginary Part of the
wave function.

On the subpanel Physics—Wave (Packet) you find the following items.

e Full/Constituent Solution — Here you can choose to plot ¢ or ¥4 or ¥;_.
In the latter two cases, of course, the Region Number ; has to be given.

¢ Incoming Wave — Here you can choose between Harmonic Wave and Wave
Packet. In the latter case the number Niy, 1 < Nint < 200, determines the
number N = 2Niy + 1 of terms in the sum approximating the momentum
integral for the wave packet and f, is the other parameter needed for the
numerical approximation of the wave packet, see (4.61).

o Input for Momentum Expectation — You can choose to use either directly
the momentum expectation pg as input or the corresponding energy Eg =
pé /2m. For the harmonic wave, of course, pg is just the momentum.

o Width in Momentum is Given — As for the free Gaussian wave packet you
may choose to give the width either as Fraction of p_0, i.e., you enter
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Effect

Tunnel

pg =4, o, =04, xo =-0, 0,0 =125

p

Fig. 4.4. Plot produced with descriptor Time-dependent 1D Scattering: wave packet
onfile 1D Scattering.des

f = op0/po or in Absolute Units, i.e., you enter oo directly. (This item
is available only if an incoming wave packet was chosen.)
o Harmonic Wave/Wave Packet — depending on the choice above. Here you
find the numerical values characterizing the incoming wave or wave packet.
They are
— a position xg (For the wave packet, it is the initial position expectation
value, the phases of all waves in the sum are set to zero there. For the
harmonic wave, in the same way, it fixes the phase.),

— the momentum py (or the corresponding energy Eop),

— for a wave packet only: the momentum width 0,0 (or the corresponding

fraction f = 0,0/ po).

The subpanel Physics—Misc. is as in Sect. 4.2 but there is an additional
Graphical Item, namely, the radius R of a circle drawn at the position of the
classical particle. The circle is drawn only together with the absolute square
of the wave function of a packet.

The subpanel Physics—Potential is as in Sect. 4.2.

Example Descriptors on File 1D_Scattering.des

e Time-dependent 1D scattering: harmonic wave (see Fig. 4.3)
o Time-dependent 1D scattering: wave packet (see Fig. 4.4)
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4.4 Transmission and Reflection.
The Argand Diagram

Aim of this section: Presentation of the complex transmission coefficient Ay (E)
and the complex reflection coefficient By (E) and of the complex T-matrix elements
of transmission 77(E) and of reflection TR (E), see (4.34).

If C(E) is one of these quantities, we want to illustrate its energy dependence
by four different graphs,

e the Argand diagram Im {C(E)} vs. Re {C(E)},

o the real part Re {C(E)} as a function of E,

e the imaginary part Im {C(E)} as a function of F,
e the absolute square |C(E )|2 as a function of E.

It is customary to draw an Argand diagram (Im {C(E)} vs. Re {C(E)}) and
graphs Im {C(E)} and Re {C(E)} in such a way that the graphs appear to be
projections to the right and below the Argand diagram, respectively. You can
do that by producing a combined plot using a mother descriptor, which in turn
quotes several individual descriptors (see Appendix A.9) as in the example
plot, Fig. 4.5.

All four plots in Fig. 4.5 are of the type 2D function graph. The Argand
diagram (top left) is a parameter representation x = x(p), y = y(p). The
two plots on the right-hand side are Cartesian plots y = y(x). The plot in the
bottom-left corner is an inverse Cartesian plot x = x(y).

On the subpanel Physics—Comp. Coord. you can select to compute one of
the four functions

It (E), Tr(E), AN(E), Bi(E)

You can further choose the type of 2D function graph you want to produce:

e Argand diagram,

°y=y(x),

o x = x(y).

For the latter two types of function graph you still can choose to present as

dependent variable the Absolute Square, the Real Part, or the Imaginary Part
of the function selected.

On the subpanel Physics—Variables you find three items:

o Phase-Fixing Position — At x( the phase of the incoming wave is zero.

o Constants — the numerical values of % and m.

¢ Range of Independent Variable in Argand Diagram — The variable is the en-
ergy E. It is varied between the boundaries Epeg and Eeng.



4.4. Transmission and Reflection. The Argand Diagram 65

Im Ay

A
1

N

Y P I R

-1 -5 0 5 1 0 5 10 15 20
—DE
—= Re Ay 1Ay?
A
i ] 8 I
- 4 46_
5 — —
: ] Aot 1
- 4 ‘2, -
l»]o L N 0 L [ITTEEN RN B AR
0 5 0 15 20
E F B — E
Sr N
S
C . | ! 1
: . 1

20

|

|
ul
o
ul

Fig. 4.5. Combined plot produced with descriptor Argand diagram: combined plot on
file ID_Scattering.des. This descriptor quotes four other descriptors to generate the indi-
vidual plots

On the subpanel Physics—Potential you find all parameters defining the
step potential, namely, the number N of regions, the boundaries x; between
the regions, and the constant potentials V; in the regions.

Example Descriptors on File 1D _Scattering.des

e Argand diagram: combined plot (see Fig. 4.5, this is a mother descrip-
tor quoting the four descriptors listed below, each describing one of the four
plots in the combined plot)

e Argand diagram: imaginary part vs. real part

e Argand diagram: imaginary part

e Argand diagram: real part

e Argand diagram: absolute square
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Fig. 4.6. Plot produced with descriptor Stationary wave in linear potential on file
1D Scattering.des

4.5 Stationary Wave in a Linear Potential

Aim of this section: Presentation of the stationary wave function ¢(x), (4.57), in a
linear potential V = —mgx.

A plot similar to Fig. 4.6 is produced showing the linear potential V = —mgx
as a long-stroke dashed line and, for various values of the energy E, the wave
function ¢(x). In each case the energy E is shown as a short-stroke dashed
line, which also serves as a zero line for the wave function.

On the subpanel Physics—Comp. Coord. you can choose to show the ab-
solute square, the real part, or the imaginary part of ¢ (x). (Note that the latter
is always zero.)

On the subpanel Physics—Variables there are four items:

e Acceleration — Here you find the numerical value of the acceleration.
e Linear Potential — You can choose whether the potential is
— Shown (as in Fig. 4.6) or
— Not Shown.
In the former case the wave function is shown as z = E + s¢(x) where s is
a scale factor, see below.
o Scale Factor — contains the scale factor s just mentioned.
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o Constants — contains the numerical values of the constants % and m.

Example Descriptor on file 1D Scattering.des

e Stationary wave in linear potential (see Fig. 4.6)

4.6 Gaussian Wave Packet in a Linear Potential

Aim of this section: Illustration of the motion of a wave packet (4.58) in a linear
potential including quantile motion.

On the subpanel Physics—Comp. Coord. you can choose to plot one of five
different quantities as in Sect. 2.3.1.

The subpanel Physics—Wave Packet is as described in Sect. 2.3.2.

The subpanel Physics—Pot. contains three of the four items described in
Sect. 4.5 (for the subpanel Physics—Variables).

The subpanel Physics—Quantile is as described in Sect. 2.3.3.

Example Descriptor on file 1D _Scattering.des

e Wave packet in linear potential (see Fig.4.7)

Wave Packet in a Linear Potential

Po :6, 0 207071, qg = -25

p

Fig. 4.7. Plot produced with descriptor Wave packet in linear potential on file
ID Scattering.des
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X Free Fall: Quantile Trajectories
A po = 4, xo = -2, o, = 07071, g = -3
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Fig. 4.8. Plot produced with descriptor Linear potential: quantile trajectories on
file ID_Scattering.des

4.7 Quantile Trajectories in a Linear Potential

Aim of this section: Presentation of quantile trajectories xp = xp(?), Sect. 4.1.19,
for the motion of a Gaussian wave packet in a linear potential.

On the bottom of the subpanel Physics—Comp. Coord. you find the Accelera-
tion g, the parameter of the linear potential V (x) = —mgx.

The subpanels Physics—Quantiles and Physics—Wave Packet are as de-
scribed in Sect. 2.5.
Example Descriptor on file 1D _Scattering.des

e Linear potential: quantile trajectories (see Fig. 4.8)

4.8 Exercises

Please note:

(i) You may watch a semiautomatic demonstration of the material of this
chapter by pressing the button Run Demo and selecting one of the demo files
1D Scattering.

(ii) For the following exercises use descriptor file 1D_Scattering.des.
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(iii) If not stated otherwise in the exercises the numerical values of the mass
of the particle and of Planck’s constant are put to 1.

4.2.1 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of
the scattering wave function for the potential

0,x<0O
Vxy=42,0<x <2

0,2<x
Start from descriptor 20. (d) Why is the wave function a linear function in
the region of the potential for one of the energies? (e) Explain the trend of the
transmission coefficient for increasing energies in the plot.

4.2.2 (a,b,c) Repeat Exercise 4.2.1 (a,b,c) for the potential

0,x<0
Vix) =42,0<x<0.5

0,05<x
(d) Why does the tunnel probability increase in comparison with Exercise
4.2.1?7 (e) Why is the absolute square constant in the region beyond the po-
tential? (f) Why does the absolute square show a wave pattern in the region
to the left of the potential wall?

4.2.3 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of
the scattering wave function for the potential

0,x<0

2,0<x<0.5
Vix)=4{0,05<x <15

2,15<x<?2

0,2<x
Start from descriptor 20. (d) Why is the amplitude of the wave pattern of
the absolute square to the left of the double well very small for one of the
energies? At which energy does this phenomenon occur?

4.2.4 Study (a) the real part, (b) the imaginary part, (c) the absolute square
of the wave function in the potential of Exercise 4.2.3 in the neighborhood of
the particular energy determined in 4.2.3 (d). Choose in particular the energy
interval 1.08 < E < 1.14. Start from descriptor 21. (d) Why does the
resonance phenomenon occur at the value 1.12 for the energy? (e) Is there
another resonance at lower energies?

4.2.5 Study the resonances of a repulsive double-well potential:
0,x<0O
25,0<x <05
Vix) = 0,05<x<?25
25,25<x<3
0,3<x
(a) Plot the absolute square of the wave function in the energy region 0.4 <
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E < 2.4 in 10 intervals. In which energy regions do you see indications for
the occurrence of resonances? Determine their energies roughly by changing
the limits of the energy interval. Start from descriptor 21. (b) Plot the absolute
square of the wave function in the neighborhood of the first resonance as an
interval of 0.04 in steps of 0.008 energy units. Place the interval in such a
way that the resonating wave function comes out best. (c¢) Plot the real part of
the wave function in the interval of (b). (d) Repeat (b) for the neighborhood
of the second resonance. Choose an interval of 0.5 energy units in steps of
0.1. (e) Plot the real part of the wave function in the interval of (d). (f) What
distinguishes the two resonances from each other? How is the difference in
the two wave functions correlated to their difference in energy?

4.2.6 Study the resonances of an asymmetric triple-well potential:
(0,x <0

7,0<x <05

0,05<x<25
Vix)=437,25<x<3
0,3<x<45
7,45<x<S5
0,5<x
Plot the absolute square of the wave function in the energy regions (a) 0.01 <
E<101,(b)1.01 < E <201,(c)2.01l < E <3.01,(d)3.01 < E <4.01,
(e)4.01 < E <5.01,(0) 5.01 < E <6.01,(g) 6.01 < E < 7.01, in steps of
AE = 0.1. Find the energies of the resonances in these regions. Start from
descriptor 21. For (h-1) start from descriptors 22, 23, ..., 26, respectively.
(h) Plot the first resonance in the left-hand well as one of the center lines in a
set of 10 lines with an energy resolution 0.01. (i) Plot the second resonance
in the left-hand well as the center line in a set of 10 lines with an energy
resolution 0.01. (j) Plot the third resonance in the left-hand well as the center
line in a set of 10 lines with an energy resolution 0.05. (k) Plot the first
resonance in the right-hand well in a set of 10 lines with an energy resolution
of 0.02. (1) Plot the second resonance in the right-hand well in a set of 10
lines with an energy resolution of 0.05.

4.2.7 Plot the transmission probability |Ax|? for the potential of Exercise
4.2.6. Start from descriptor 27. Determine the energies of the maxima of
|Ay|? and compare them with the resonance energies of Exercise 4.2.6.

4.2.8 Study the resonance behavior in a double-well potential corresponding
to the left-hand potential of Exercise 4.2.6:

0,x <0

7,0<x<0.5
Vx)=40,05<x <25

7,25<x<3

0,3<x
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Plot the absolute square of the wave function in the energy regions (a) 0.01 <
E<101,(0)1.01 < E <201,(c)2.01 < E <3.01,(d)3.01 < E <401,
(€)4.01 < E <501, 5.01 < E <6.01, (g) 6.01 < E <7.01, in steps of
AE = 0.1. Find the energies of the resonances in these regions. Start from
descriptor 18. (h) Plot the first resonance as one of the center lines in a set of
10 lines with an energy resolution 0.01. (i) Plot the second resonance as one
of the center lines in a set of 10 lines with an energy resolution 0.01. (j) Plot
the third resonance as one of the center lines in a set of of 10 lines with an
energy resolution 0.05.

4.2.9 Plot the transmission probability |Ay|? for the potential of Exercise
4.2.8. Start from descriptor 27. Determine the energies of the maxima of
|Ay|? and compare them with the resonance energies of Exercise 4.2.8.

4.2.10 (a—i) Repeat Exercise 4.2.8 (a—1) for the double-well potential corre-
sponding to the right-hand potential of Exercise 4.2.6:

0,x <25

7,25<x<3
Vix)=10,3<x <45

7,45<x <5

0,5<x
Start from descriptor 21. Choose as energy resolution in (a-g) AE = 0.1,
(h) AE = 0.02, (i) AE = 0.05.

4.2.11 Plot the transmission probability |Ay|? for the potential of Exercise
4.2.10. Start from descriptor 27. Determine the energies of the maxima of
|An|? and compare them to the resonance energies of Exercise 4.2.10.

4.2.12 We consider a potential with five steps (a model of the quantum-well
device)

Vi, x <0 regionl

Vo, 0 <x < 0.5 region 2
Vix) ={ V3, 0.5 <x < 1region 3

Vs, 1 <x < 1.5region4

Vs, 1.5 <x region5
For the potential values V; =0, V, = 7, V3 = —0.5, V4 = 6.5, Vs = —1,
the energy Es for a transmission resonance is E.s = 3.67. Plot the absolute
square of the wave function for (a) ‘zero voltage’, V| =0, Vo =7, V3 = 0,
Vo = 17, Vs = 0, (b) a voltage below resonance, Vi = 0, V, = 7, V3 =
—0.25, V4 = 6.75, Vs = —0.5, (c) resonance voltage, V; = 0, V, = 7,
Vs = —0.5, V4 = 6.5, Vs = —1, (d) a voltage above resonance, V| = 0,
Vo, =17, V3 = —=0.75, V4 = 6.25, Vs = —1.5. Start from descriptor 20.
(e) For comparison put the descriptors (a—d) into one combined plot. Start
from the mother descriptor 25. (f) The voltage U at the quantum well is
given by the difference U = V| — V5. The variation of the voltage is AU =
AV) — AVs = — AVs5 because the potential V; is kept fixed in the cases (a—
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d). The electric current / through the quantum-well device is proportional
to the absolute square |As|? of the coefficient As: I = «a|As|?. Thus, the
variation A/ of the electric current is proportional to the variation A|As|?
of the absolute square of the coefficient As: AI = aA|As|?. For a given
variation AU = — AVs of the voltage the quotient R = AU/AI = AVs5/Al
of AU and the corresponding variation Al of the electric current is called
the differential resistance. It is given by R = (1/a)AU/ A|As|?. What is the
trend of the differential resistance that can be learned for AU = 0.5 from the
comparison of the situations (ab), (bc), (cd)?

4.2.13 Use the potential of Exercise 4.2.12 with the potential parameters at
resonance V; = 0, Vo = 60, V3 = -2, V4 = 58, V5 = —4. There is
a lowest transmission resonance in this step potential at £7 = 8.464. Plot
the absolute square of the wave function in the neighborhood of the lowest

resonance for (a) a voltage below resonance, Vi = 0, Vo = 60, V3 = —1.95,
V4 = 58.05, Vs = —3.9, (b) a voltage close below resonance, Vi = 0,
Vo =60, V3 = —1.993, V4 = 58.007, Vs = —3.986, (¢) resonance voltage,
Vi=0 V, =60, V3 = =2, V4 = 58, Vs = —4, (d) a voltage above

resonance, Vi = 0, V, = 60, V3 = —2.007, V4 = 57.993, V5 = —4.014.
Start from descriptor 20. (e) For comparison put the graphs (a—d) into one
combined plot. Start from the mother descriptor 28. (f) Why is the variation
of the differential resistance much faster than in Exercise 4.2.12?

4.2.14 Repeat Exercise 4.2.13 for a much higher voltage between emitter and
collector so that the step potential has at E.s = 8.464 the parameters V| = 0,
Vo = 60, V3 = —33.25, V4 = 26.75, V5 = —66.5. Plot the absolute square
of the wave function in the neighborhood of (a) the voltage below resonance,
Vi =0, V, =60, V3 = —33.1, V4 = 269, V5 = —66.2, (b) the voltage
below resonance, Vi = 0, V, = 60, V3 = —33.2, V4 = 26.8, Vs = —66.4,
(c) the resonance voltage, Vi = 0, Vo, = 60, V3 = —33.25, V4 = 26.75,
Vs = —66.5, (d) the voltage above resonance, Vi = 0, V, = 60, V3 = —33.3,
V4 = 26.7, Vs = —66.6. Start from descriptor 20. (e) For comparison put
the plots (a—d) into one combined plot. Start from the mother descriptor 28.
(f) Why is the variation of the differential resistance for this second resonance
slower than for the lowest resonance as studied in Exercise 4.2.13?

4.2.15 This exercise models a quantum-effect device. Make use of the po-
tential of five regions of Exercise 4.2.12. Plot the absolute square of the
wave function for different voltages at the base (region 3), i.e., for the dif-

ferent potential values V3 (a) below resonance, V3 = —1.9, (b) slightly below
resonance, V3 = —1.98, (¢) at resonance, V3 = —2, (d) above resonance,
V3 = —2.03, whereas the potential values in the other regions remain un-

changed at V| = 0, V, = 40, V4 = 38, V5 = —4. Start from descriptor 20.
(e) Put the four plots (a—d) into one combined plot. Start from the mother
descriptor 28. (f) For the case of a quantum-effect device the variation of the
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potential V3 leads to achange AU = — A V3 in the voltage U = V;—V3. Thus,
the differential resistance [see Exercise 4.2.12 (f)] is accordingly defined as
R = AU/AI = —AV3/AI. What is the trend of the differential resistance
that can be learned from the comparison of the situations (ab), (bc), (cd)?

4.2.16 Make use of the potential of five regions as in Exercise 4.2.12. The
potential in four of the five regions is kept fixed to the values V; = 0, V, =
10, V4 = 9.5, V5 = —1. In region 3 the potential values are changed. Plot the

absolute square of the wave function (a) below resonance, V3 = —0.2, (b) at
resonance, V3 = —0.5, (c) slightly above resonance, V3 = —0.8, (d) above
resonance, V3 = —1. Start from descriptor 20. (e) Put the four plots (a—d)

into one combined plot. Start from mother descriptor 28.

4.2.17 Use a potential of seven regions

Vi, x<0 region 1

Vo, 0 <x < 0.5region 2

Vi, 0.5 < x < 1region3

Vix) =1 Vs, 1 <x < 1.5region4

Vs, 1.5 < x < 2region 5

Ve, 2 <x < 2.5region 6

| V7, 25 <x region 7

The values Vi = 0, V, = 10, V4 = 95, Vs = 9, V; = —1 are kept
fixed. The values in the regions 3 and 5 are varied: (a) below resonance
V3 = V5 = —0.35, (b) at resonance V3 = V5 = —0.5, (c¢) slightly above reso-
nance V3 = V5 = —0.65, (d) above resonance V3 = V5 = —0.75. Start from
descriptor 20. (e) Put the four plots (a—d) for the absolute square of the wave
function into one combined plot. Start from mother descriptor 28. (f) Why
is the variation of the differential resistance in this case much faster than in
Exercise 4.2.16?

4.3.1 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of a
harmonic wave of momentum pg = 2.2 for the time range 0 < ¢ < 6 in the
potential

0,x<0
VO =132.0<x
Start from descriptor 29. (d) Why does the wave function look similar to the
reflection of a wave on a fixed end?
4.3.2 (a,b,c) Repeat Exercise 4.3.1 (a,b,c) for the potential

0,x<0

V) =1_-3000,0 < x
(d) Why does the wave function look similar to the reflection of a light wave
on a denser medium?
4.3.3 (a,b,c) Repeat Exercise 4.3.1 (a,b,c) for a potential

0,x<0
V(x)={32,0§x
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for a harmonic wave of momentum py = 8 for the time range 0 < ¢t < 6.
Start from descriptor 29. (d) Why does the reflection pattern now look like
one at a thinner medium?

4.3.4 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of a
harmonic wave of momentum pog = 1.2 for the time range O < ¢t < 6 in the
potential of Exercise 4.2.2. Start from descriptor 29. (d) Why do the plots of
Exercise 4.2.2 (c) at pg = 1.2 and 4.3.4 (c) look alike?

4.3.5 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of
a harmonic wave of momentum pg = 1.2 for the time range 0 < ¢t < 6
in the potential of Exercise 4.2.3. Start from descriptor 29. (d) Why is the
amplitude of the real part of wave function to the right of the potential barrier
time independent? (e) Why is the amplitude of the real part of the wave
function to the left of the potential barrier time dependent?
4.3.6 Plot the motion of the wave packet incident on a step potential
Vix) = {0 ,x <0

6,x>0
for the width o, = 0.3 and the energies (a) E = 2, (b) E = 6.5, (¢) E = 8.
Start from descriptor 30. (d) Describe the trend of the reflection probability.
(e) Why is the transmitted wave packet in (b) faster than the classical particle?

4.3.7 Plot the motion of a wave packet incident on a down-step potential

0, x<0
Vix) = —6, x>0
for the width 0, = 0.3 and the energies (a) E = 1, (b) E = 2, (¢c) E = 4.
The initial position expectation value of the wave packet is xo = —6. Start

from descriptor 30.

4.3.8 (a—c) Repeat Exercise 4.3.7 for the potential
0, x<0
Vix) = {—12, x>0
(d) Why does the reflection probability increase with the height of the step
(see Exercise 4.3.7)?

4.3.9 Plot the transmission probability | A y|? for the potential

0, x<0
Vixy=116, 0<x <4

0,4<x
for the energy range 15 < E < 22. Determine the energies of the four trans-
mission resonances (|Ax| = 1) in this energy range. Start from descriptor

31.

4.3.10 (a,b) Plot the scattering of the wave packet of width o, = 0.05 at the
repulsive square-well potential of Exercise 4.3.9 for the lowest two resonance
energies determined in Exercise 4.3.9. Choose eight intervals in the time
range 0 < ¢ < 12. Start from descriptor 30. (¢) Explain the occurrence of the
resonance phenomena. Give a qualitative argument for the energies at which
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they occur. (d) For the last four consecutive time instants determine the ratios
of the maxima of the wave functions within the range of the barrier. Explain
why these ratios are approximately equal.

4.3.11 (a) Plot the scattering of the wave packet of width o, = 0.05 at the
repulsive square-well potential of Exercise 4.3.9 for the third resonance en-
ergy determined in Exercise 4.3.9. Choose eight intervals in the time range
0 <t < 12. (b) Study the time range 8 < ¢ < 12 in eight intervals. Start
from descriptor 30.

4.3.12 (a) Repeat Exercise 4.3.11 (a) for the fourth resonance energy deter-
mined in Exercise 4.3.9. Choose eight intervals in the time range 0 < ¢ < 8.
(b) Study the time range 6 < ¢t < 8 in eight intervals. Start from descriptor
30. (c) Why is the exponential decay faster with higher resonance energy?
Compare with the result of Exercises 4.3.7 and 4.3.8 and look at the Argand
diagram of Exercise 4.3.9.

4.3.13 In the energy range 0 < E < 40 study the energy dependence of the
complex transmission amplitude (a) |A N2 (descriptor 32), (b) Re Ay (de-
scriptor 33), (¢) Im Ay (descriptor 34), (d) Im Ay vs. Re Ay in an Argand
plot (descriptor 35) for the potential

0,x<0O
Vix)=1-16,0<x <4

0,4<x
(e) Put the above plots into one multiple plot with the positioning (d) upper-
left field, (c) upper-right field, (b) lower-left field, (a) lower-right field. Start
from descriptor 36. (f) Relate the prominent features of the absolute square
and of the real and imaginary parts to the ones of the Argand plot.

4.3.14 Study the energy dependence of the quantities (a) |Tt|?, (b) Re Tr,
(¢) Im 71, (d) Im Tt vs. Re Tt in an Argand plot for the potential of Exer-
cise 4.3.13. Use the same descriptors as in Exercise 4.3.13. (e) Put the above
plots into one multiple plot with the same positioning as in Exercise 4.3.13 (e).
Start from descriptor 36. (f) Relate the behavior of this quantity to the com-
plex transmission amplitude Ay.

4.3.15 Repeat Exercise 4.3.14 for the complex reflection amplitude Bj.
4.3.16 Repeat Exercise 4.3.14 for the quantity 7TR.

4.3.17 Repeat Exercise 4.3.13 with the energy range 0 < E < 1 for the
potential

0,x<0
Vix)=4¢4-5,0<x <1

0,1<ux
Determine the energy of the lowest resonance.
4.3.18 Plot the bound states in the potential of Exercise 4.3.17 and determine
their energy eigenvalues, see Sect. 3.3. Start from descriptor 37.
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4.3.19 Plot the time development of a wave packet under the action of the po-
tential of Exercise 4.3.17. The wave packet comes in from the initial position
xo = —6 at ¢ = O with the energy £ = 0.1 and the absolute width o, = 0.05.
The time ranges are (a) 0 < r < 40, (b) 40 <t < 80, (¢) 80 < ¢ < 120.
They should be subdivided into eight intervals each. Start from descriptor 38.
(d) Using also the result of Exercise 4.3.18 interpret the behavior of the wave
function inside the potential region.

4.3.20 (a—e) Repeat Exercise 4.3.13 (a—e) for the potential

0, x<0

16, 0<x <02
Vix) = 0,02<x<22

16, 22<x <24

0, 24<x

(f) Determine the four lowest resonance energies.

4.3.21 Plot the time development of the wave packet under the action of the
potential of Exercise 4.3.20 starting at 1 = 0 at xp = —6 with the lowest
resonance energy and the relative width o,/po = 0.3. (a) Plot nine instants
in the time range 0 < ¢ < 16. Start from descriptor 39. (b) Plot 11 instants in
the time range 8 < ¢ < 24. Change the range in x to —3 < x < 3. Start from
descriptor 40.

4.3.22 Repeat Exercise 4.3.21 for the second resonance energy for the relative
widtho =0.15. (@)0 <7 <6,(b)5S <t <9.
4.3.23 Repeat Exercise 4.3.21 for the third resonance energy for the relative
widthop,/po=0.1. @)0<t <4,(b)2 <t <4.
4.3.24 Repeat Exercise 4.3.21 for the fourth resonance energy for the relative
widtho,/po=0.05. ()0 <r <3,(b)2.5 <t <3.
4.3.25 Study the behavior of a wave packet in a five-step potential modeling
a quantum-effect device

Vi, x <0 region 1

V2,0 < x < 0.5 region 2
V(x) =14 V3,0.5 <x < 1region 3

V4,1 <x < 1.5region4

Vs, 1.5 <x < 2region 5
The potential values V; = 0, V;, = 10, V4 = 10.5, V5 = 1, remain unchanged.
The value in region 3 varies (a) below resonance, V3 = 1.5, (b) slightly below
resonance, V3 = 1, (c¢) at resonance, V3 = 0.5, (d) above resonance, V3 =
—0.5. For the above cases (a—d) plot the absolute square of the wave function
of a wave packet with the initial data at t = 0: Eg = 5.410, o, = 0.01py,
xo = —6, moving in the interval —50 < x < 50 during the time interval
0 <t < 20 in time steps of 1. Start from descriptor 30. (e) Put the four plots
(a—d) into a combined plot. Start from mother descriptor 36.
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4.4.1 In the range 0.1 < E < 40 study the energy dependence of the com-
plex transmission amplitude. Plot (a) |Ay|* (descriptor 32) and read off the
resonance energies, (b) Re Ay (descriptor 33), (¢) Im Ay (descriptor 34),
(d) Im Ay vs. Re Ay in an Argand plot (descriptor 35) for the potential

0,x<0O
Vix)=116,0<x <1

0,1<x
(e) Put the above plots into one multiple plot with the positioning (d) upper-
left field, (c) upper-right field, (b) lower-left field, (a) lower-right field. Start
from descriptor 36. (f) Relate the prominent features of the absolute square
and of the real and imaginary parts to the ones of the Argand plot. (g) Cal-
culate the resonance energies according to (4.54) and compare them to the
values read off |A y|? in (a).
4.4.2Intherange 0.1 < E < 40 study the energy dependence of the quantities
@) |Tr)?, (b) Re T, (c) Im Tr, (d) Im Tt vs. Re Tt in an Argand plot for the
potential of Exercise 4.4.1. Use the same descriptors as in Exercise 4.4.1.
(e) Put the above plots into one multiple plot with the same positioning as in
Exercise 4.4.1 (e). Start from descriptor 36. (f) Relate the behavior of this
quantity to the complex transmission amplitude Ay .
4.4.3 Repeat Exercise 4.4.2 for the complex reflection amplitude Bj.
4.4.4 Repeat Exercise 4.4.2 for the quantity TRr.
4.4.5 Repeat Exercise 4.4.1 for the potential

0,x<O
Vix)=116,0<x <2

0,2<x
4.4.6 Repeat Exercise 4.4.2 for the potential of Exercise 4.4.5.
4.4.7 Repeat Exercise 4.4.6 for the complex reflection amplitude Bj.
4.4.8 Repeat Exercise 4.4.6 for the quantity 7r.
4.4.9 Explain qualitatively the differences in the behavior of the quantities
Apn, Tt, By, Tr for the two potentials used in Exercises 4.4.1-4.4.4 and Ex-
ercises 4.4.5—4.4.8, respectively. In particular, argue why the distances of the
energies at which |Ax|? = 1 vary with the potential the way it is observed in
Exercises 4.4.1 and 4.4.5.
4.4.10 Repeat Exercise 4.4.1 for the potential

0,x<O
Vix)=4{16,0<x <4

0,4<x
4.4.11 Repeat Exercise 4.4.2 for the potential of Exercise 4.4.10.
4.4.12 Repeat Exercise 4.4.11 for the complex reflection amplitude Bj.

4.4.13 Repeat Exercise 4.4.11 for the quantity Tr.
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4.4.14 In the ranges (a) 0 < E < 60, (b) 0 < E < 15 plot the energy
dependence of the absolute square |Ay|? of the transmission amplitude for a
quasiperiodic potential of nine regions with four square wells of width 1 and
depth —44 and three separating walls of width 0.2 and depth 0. (¢) Why do
the lowest transmission resonances form a band of four?

4.5.1 Produce a plot with descriptor 9. (a) Describe the difference between
the curves of ¢(E, x) shown for different fixed values of E. (b) Leaving the
plot on the screen produce a second plot with descriptor 9 and, for this plot,
change the sign of the acceleration g. Explain the symmetry between the two
plots.

4.5.2 Produce side by side (using descriptor 9) two plots of ¢(E, x) for g =3
and g = 1.5. Explain the difference between them. [Compute the momentum
p(E, x) of aclassical particle with total energy E at a point x and translate it
into a de Broglie wavelength.]

4.6.1 Produce a plot with descriptor 10. (a) Show Re ¢ (x, ¢). (b) Show the
probability-current density j(x, ).

4.6.2 (a) Use descriptor 10 to display quantile positions for P = 0.8. (b) Turn
the plot into a multiple plot with two rows and two columns.

4.7.1 Produce a plot of quantile trajectories using descriptor 11. The middie
trajectory (for P = 0.5) corresponds to the motion of a classical particle in a
linear potential. Is that true also for the other trajectories?

4.9 Analogies in Optics

For a right-moving plane wave of light vertically incident on glass or other
dielectrics we study reflection and refraction. We choose the x axis normal to

the plane surface of the glass. The dielectric may consist of layers 1,2, ..., N
of different refractive indices n}, ..., n}y. This divides the x axis into N
regions:
n=1,x<x1=0 region 1
ny , X1 <X < Xxp region 2
nxy=14: . (4.62)
AN—1 ,XN—2 <Xx <xy_jregion N —1
ny ,XNC1 < X region N

For simplicity we have set n; = 1. Hereby, all the different n; are relative
refractive indices ny = nj/n}, with n, (¢ = 1,..., N) being the absolute
refractive index. For all further considerations in this system we may suppress
the coordinates y and z so that we deal with a one-dimensional problem. The
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complex electric field strength (2.29) can be factorized into time-dependent
and purely x-dependent factors

Ec(w,x,1) =e “'Eyw,x) ., Ejw,x)=A4A" | k=ow/c
4.63)
The time-independent factor Eg(w, x) is called the stationary electric field
strength. For k > 0, the real part of E.(w, x, t),

Re E.(w, x,t) = |A|cos(wt —kx —a) , 4.64)

represents a right-moving harmonic wave. Here we have decomposed the
complex amplitude A into modulus |A| and phase a:

A=Al . (4.65)
Therefore, for k > 0 we call
A" = Eg (w, x) (4.66)

a ‘right-moving’ stationary electric field strength. By the same token, for
k>0, .
Ae™* = E;_(w, x) (4.67)

is called a ‘left-moving’ stationary field strength.

If a right-moving incoming monochromatic light wave of angular fre-
quency w and wave number k = w/c falls onto the arrangement of dielectrics
(4.62), we have an outgoing wave in region N,

EN(a),x,t)zA;veikNx , ky=nyki , regionN (4.68)

only. For all other regions there is a reflected left-moving wave in addition
to the right-moving one. Thus, the stationary electric field in any region ¢,
1 < ¢ < N — 1, is a superposition:

E¢(w,x) = Ape** + Bje ¢ ky=neky , regiont . (4.69)
The complex electric field strength is given by
Ec(w,x,1) = e " Eg(w, x) (4.70)
with
Filw,x) ,x <x1=0
Exw,x) ,0<5x <x
Es(w,x) =1 . , 4.71)
En(w,x), xny—1 <x

w = cyky © angular frequency (£ = 1,..., N),
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ke = ngk1 = n/zk : wave number in region £,
ce = c¢/nf = c1/ng : speed of light in region £,
¢ : speed of light in vacuum,

n, : absolute refractive index,

ng = ny/n : relative refractive index.

The expression (4.70) solves Maxwell’s equations if the coefficients A},
and BE in (4.69) are determined such that the function Eg(w, x) is continuous
and continuously differentiable at the end points of the regions 1, ..., N — 1,
ie.,

E¢(w, x¢) = Egy1(w, x¢)

dEe J 4Bt o =1 N- (4.72)
— W, X = )
dx ¢ dx ¢

This yields a system of equations

Al eikgxz +B/e—ikgx5 — Al eik[+1xg + Bl e—ik[+1xz
14 L £+1 £+1

r ik ik /o ik b ke, 4.73)
ke(Ajeikexe — pre=ikexty — g, | (A, elkent _ gy e~ikirixe)

for£ =1,..., N — 1. The condition (4.68) in region N is implemented by
setting By = 0. The (2N — 1) coefficients A}, Bé are determined by the
system (4.73) of (2N — 2) equations. Choosing again A] as the independent
variable, determining the incoming flux of light, (4.73) constitutes a system of
(2N — 2) inhomogeneous linear equations, the term with A’ being the inho-
mogeneity. Its solution yields the coefficients A, ..., A}, and By, ..., By_,
as functions of the wave number k = k; of the incident wave.

The energy density of the electromagnetic field of light in vacuum aver-
aged! over one period T = 27 /w is given by (2.37). In glass with refractive
index ny it is

280
wy = ”sze E; . 4.74)

The average density of the energy flux in the wave in glass is
€0 .\
S¢ = wycy = ngC—2—Ez E;, |, “4.75)

where ¢y = c/ny is the speed of light in glass. Because of the discontinuity
of n when passing from one material to the other, neither of the two quantities
is continuous. Therefore, we plot in addition to Re E; and Im E. the absolute
square EZE_.

For stationary waves the current densities S of the electromagnetic energy
of right-moving and left-moving waves are proportional to the squares of the
transmission and reflection coefficients

I See footnote on page 11.
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Ap = «/ngAZ , Bpy= JrTgBé . 4.76)

Current conservation of the electromagnetic energy simply states that the sum
of the transmitted and reflected currents is equal to the incoming current. As
a conventional normalization we shall set A; = 1. Then the conservation of
the current of electromagnetic energy leads to the unitarity relation

AN+ B2 = A1 =1 (4.77)

which is of the same form as (4.32) for the transmission and reflection coeffi-
cients in one-dimensional quantum mechanics.

A transmission resonance occurs for those values of the wave number k&
for which |A | is at a maximum and | B;}| therefore at a minimum. For three
regions with refractive indices ny, n2, n3, the resonant wave numbers can be
determined by simple arguments. In this arrangement there are two surfaces
at x; (= 0) and x,(= d) where reflection occurs. The coefficient |B;] is at a
minimum if the two waves reflected at x; and x; interfere destructively in the
region x < x1; = 0 to the left of x; = 0. Because there is a phase shift of &
for reflection on a denser medium, we have to distinguish two cases:

i)

l=n<ny<nsy or l=n>ny>n3 . 4.78)
In these cases the relative phase shift of the two waves reflected at x; and x» is
simply given by 8 = 2kad, ko = nak. For maximally destructive interference
the phase shift § has to be equal to odd multiples of 7,

dkod = @m+1)m or ky = (ZL;;—D—” . m=0,1,2,... . (479)
For the wavelength X, in region 2 we find in terms of the thickness of the
material

Ay =4d/2m+1) . (4.80)
The resonant wavelengths in region 2 are odd fractions of 4d. The longest
resonant wavelength (m = 0) is then four times the thickness of the middle
layer of material. This is the well-known d = A/4 condition that ensures a
minimization of reflection for light of this wavelength in an optical system
with three different refractive indices. It is used to produce antireflex lenses,
etc., by coating the surface of the glass with a material transparent for visible
light and a thickness of d = A/4 for an average wavelength of the visible
spectrum. In order to achieve the absence of reflection for this wavelength
— and therefore, little reflection for neighboring wavelengths — the refractive
indices have to be chosen suitably according to

ny = ./niny . 4.81)
For coated lenses in air #n; is the refractive index of air, n; that of the coating,
and n3 that of the glass.
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ii)
l=ny<ny>n3 or l=ny>n<ny . (4.82)

For these cases in addition to the relative phase shift § = 2k,d caused by the
difference 24 in the length of the light path there is the phase shift of & from
the reflection at the denser medium. For maximally destructive interference
we find the condition

2kpd4+nm=02m+1)nr or ky=mn/d , m=12,... . (4.83)
For the wavelength X, in region 2 we find

M=2d/m . (4.34)

The longest resonant wavelength is 2d. All others are integer fractions of 2d.

The stationary waves can be superimposed to form a wave packet of finite
energy content in analogy to (2.32). Using the harmonic electric field strength
(4.70), with the stationary field strength (4.71), we find that

Ec(x,t) = Eg f Fk)e *0E (w, x, 1) dk (4.85)

is a Gaussian wave packet centered at # = 0 around the initial position x = xp,
if we choose the Gaussian spectral function

2
exp I:—u)—il . (4.86)

2
20’k

1
k) =
fo ==

Further Reading

Alonso, Finn: Vol. 3, Chaps. 19,20

Berkeley Physics Course: Vol. 3, Chaps. 4,5,6
Brandt, Dahmen: Chap. 2

Feynman, Leighton, Sands: Vol. 2, Chaps. 32,33
Hecht, Zajac: Chaps. 4,7,8,9

4.10 Reflection and Refraction
of Stationary Electromagnetic Waves

Aim of this section: Computation and demonstration of the stationary electric field
Ej, (4.71), for a right-moving incoming wave in a system (4.62) of dielectrics as a
function of position x and wave number k.
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Harmonic Light Wave Incident on Glass Plate

Fig. 4.9. Plot produced with descriptor Stationary 1D scattering (optics) on file
ID_Scattering.des

This section is the analog in optics of Sect. 4.2. A plot similar to Fig. 4.9 is
produced showing the stationary electric field strength E(k, x) as a function
of x for various values of the wave number k in the x, k plane. Zero lines
are shown as dashed lines. The horizontal lines crossing them indicate the
boundaries between media with different refractive index.

On the subpanel Physics—Wave you can choose to show the full solution
or the right-moving or left-moving constituent wave in one of the media. You
can also set the position xg for which the phase of the incident wave vanishes.

On the subpanel Physics—Misc. there are two Graphical ltems, the dash
length of the zero lines and the height of the vertical lines separating the re-
gions with different media.

On the subpanel Physics—Media you find the parameters defining the sys-
tems of media. These are the number N of regions, the boundaries x; between
region i and region i + 1, and the refractive indices #;.

Example Descriptor on File 1D Scattering.des

e Stationary 1D scattering (optics) (see Fig.4.9)
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Harmonic Light Wave Falling on a Glass Surface

Re Ec(k,x,{)

-+

/v

Fig. 4.10. Plot produced with descriptor Time-dependent 1D scattering (optics):
harmonic wave on file 1D_Scattering.des

4.11 Time-Dependent Scattering of Light

Aim of this section: Computation and demonstration of a time-dependent harmonic
wave (4.63) coming in from the left and reflected and refracted into right-moving and
left-moving constituent waves. Study of the time development (4.85) of a Gaussian
wave packet scattered by system of different dielectrics. Study of the constituent
waves.

This section is the analog in optics of Sect. 4.3. A plot is produced showing for
various instances in time either a harmonic wave, Fig. 4.10, or a wave packet,
Fig. 4.11, of light scattering by a system of media with different refractive
index. Also the constituent solutions E¢j+ can be displayed.

Asin Sect. 2.7, for the computation of a wave packet, the integration over
k has to be performed numerically and is thus approximated by a sum of N
terms,

00 N
B = [ f0Batrndk > AKY fGabp i)
—o0 n=0

2 fs0r

kn =ko — foor +nAk Ak:N—l

4.87)

Here f, is areasonably large positive number, e.g., fo = 3.
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Light Wave Packet Falling on Glass Plate

1E (X,UIZ

—

Fig. 4.11. Plot produced with descriptor Time—-dependent 1D scattering (optics):
wave packet onfile 1D Scattering.des

Again the solution will be periodic in x. That is, only in a limited x re-
gion you will get a good approximation to the true solution. The patterns for
Ec(x,t) [or Ecj(x,t) and E¢;_(x,t)] will repeat themselves periodically
along the x direction, the period Ax becoming larger as Nj,; increases. You
will have to make sure that the x interval of your C3 window is small com-
pared to Ax.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to
show either the Absolute Square or the Real Part or the Imaginary Part of the
complex electric field strength.

The subpanel Physics—Wave (Packet) carries the following items:

e Full/Constituent Solution — You can choose to plot E¢ or E¢j or E¢j_. If
you want to plot a constituent wave, you have to give the region j for which
it is valid.

¢ Incoming Wave — You can choose either a Harmonic Wave or a Wave Packet.
The number Ny, 1 < Nijnt < 200, determines the number N = 2N,; + 1 of
terms and f; is the other parameter needed in the numerical approxmation
of the wave packet, see (4.87).
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o Width in Wave Number is Given — You may choose to give the width either
as Fraction of k_0, i.e., you enter f = o}/ ko, or in Absolute Units, i.e., you
enter oyo directly. (This item is available only if an incoming wave packet
was chosen.)

o Harmonic Wave/Wave Packet — depending on the choice above. Here you
find the numerical values for the incoming wave or wave packet:

— a position xg for which the phase of the incoming wave (for a packet: of
all waves in the sum) vanishes,

— the wave number ko,

— for a wave packet only: the width o in wave number (or the correspond-
ing fraction f = oo/ ko).

The subpanel Physics—Misc. contains two Graphical ltems, the dash
length of the zero lines and the height of the vertical lines separating different
media.

The subpanel Physics—Media is as in Sect. 4.10.

Example Descriptors on File 1D_Scattering.des

e Time-dependent 1D scattering (optics): harmonic wave
(see Fig. 4.10)

o Time-dependent 1D scattering (optics): wave packet
(see Fig. 4.11)

4.12 Transmission, Reflection,
and Argand Diagram for a Light Wave

Aim of this section: Presentation of the complex transmission coefficient Ay (k)
and the complex reflection coefficient B (k), see (4.76).

If C(k) is one of these quantities, we want to illustrate its wave-number de-
pendence by four different graphs,

o the Argand diagram Im {C (k)} vs. Re {C (k)},

o the real part Re {C(k)} as a function of £,

o the imaginary part Im {C (k)} as a function of %,
e the absolute square |C (k) |2 as a function of k.

It is customary to draw an Argand diagram (Im {C(k)} vs. Re {C (k)}) and
graphs Im {C(k)} and Re {C(k)} in such a way that the graphs appear to be
projections to the right and below the Argand diagram, respectively. You can
do that by using a mother descriptor, which in turn quotes several individual
descriptors (see Appendix A.9) as in the example plot, Fig. 4.12.

All four plots in Fig. 4.12 are of the type 2D function graph. The Argand
diagram (top left) is a parameter representation x = x(p), y = y(p). The
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Im Ay

-1 -5 0 5 1 0 s
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—& Re Ay 1Ay
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Fig. 4.12. Combined plot produced with descriptor Argand diagram (optics): com-
bined plot on file 1D_Scattering.des. This descriptor quotes four other descriptors to
generate the individual plots situated in the top-left, top-right, bottom-left, and bottom-right
corners, respectively

two plots on the right-hand side are Cartesian plots y = y(x). The plot in the
bottom-left corner is an inverse Cartesian plot x = x(y).

On the subpanel Physics—Comp. Coord. you can select to compute one of
the two functions

An(k), Bi(k)
You can further choose the type of 2D function graph you want to produce:
v =),
o x =x(y).

For the latter two types of function graphs you still can choose to present as
dependent variable the Absolute Square, the Real Part, or the Imaginary Part
of the function selected.
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On the subpanel Physics—Variables you find two items,

o Phase-Fixing Position — At x; the phase of the incoming wave is zero.
o Range of Independent Variable in Argand Diagram — The variable is the wave
number k. It is varied between the boundaries kpeg and keng.

On the subpanel Physics—Media you find all parameters defining the sys-
tem of media, namely the number N of regions, the boundaries x; between
the regions, and the constant refractive indices # in the regions.

Example Descriptors on File 1D_Scattering.des

e Argand diagram (optics): combined plot (see Fig. 4.12, this is a
mother descriptor quoting the four descriptors listed below, each describ-
ing one of the four plots in the combined plot)

e Argand diagram (optics): imaginary part vs. real part

e Argand diagram (optics): imaginary part

e Argand diagram (optics): real part

e Argand diagram (optics): absolute square

4.13 Exercises

Please note:

(i) For the following exercises use descriptor file 1D_Scattering.des.

(ii) In many exercises we use refractive indices with numerical values much
larger than available in ordinary dielectrics like glass.

4.10.1 Plot (a) the real part, (b) the imaginary part, (¢) the absolute square of
the stationary electric field strength in vacuum vertically incident on glass of
refractive index ny = 2 extending from x = 0 to infinity. As the range for the
wave numbers choose 0.1 < k < 5. Start from descriptor 41. (d) Why is the
wavelength in region 2, x > 0, shorter than in region 1, x < 0? (e) Why is
the absolute square constant in region 2? (f) What is the origin of the wiggly
pattern in region 1?7 :

4.10.2 (a,b,c) Repeat Exercise 4.10.1 (a,b,c) for np = 10. Start from descrip-
tor 41. (d) Why is the transmission of light into region 2 close to zero?

4.10.3 (a,b,c) Repeat Exercise 4.10.1 (a,b,c) for n; = 0.1. Start from de-
scriptor 41. This case corresponds to the reflection and refraction of a wave
propagating inside an optically denser medium (n; = 1) incident on a ten-
times-thinner medium (1 = 0.1). (d) Why is the transmission into the thin-
ner medium large?

4.10.4 Determine the phase shift between the incident and reflected wave for
(a) reflection at an optically denser medium ny = 10, (b) reflection at an
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optically thinner medium 7, = 0.1. To this end compare the phases of the
incoming and reflected constituent waves in region 1 with each other. Choose
a wave-number range 0.01 < k < 5 in six wave-number intervals of equal
length. Start from descriptor 41.

4.10.5 Plot (a) the real part, (b) the imaginary part, (c¢) the absolute square of
the stationary electric field strength for a sheet of glass of thickness d = 1
and refractive index 2. In the domain behind the glass choose n = 1. Di-
vide the wave-number range 0.001 < k& < 37/2 into six intervals of length
w/4. Start from descriptor 41. (d) What is the phenomenon behind the
absence of wiggles of the absolute square in region 1 for the wave num-
ber k = n/2,7,3mw/2?7 (e) Why do the resonances in this case occur at
A=2d/m,m=1,2,3,...7

4.10.6 (a,b,c) Repeat Exercise 4.10.5 (a,b,c), however, with a denser medium
with n = 4 behind the glass. Start from descriptor 41. (d) Why do the
transmission resonances occur at values A = 4d/(2m + 1)? (e) Why is the
square of the electric field in region 3 different from region 1?

4.11.1 Plot the motion of (a) the real part, (b) the imaginary part, (c) the
absolute square of a harmonic light wave for different refractive indices in
three regions: n1 = 1, x < 0O;np =2,0 <x < 1;n3 = 1,1 < x for the
wave number k = 5w /4. Choose the time range 0.001 < ¢ < 1 and the x
range —4 < x < 4. Start from descriptor 42. (d) Why are the amplitudes of
the electric field strength time independent in region 3? (e) Why is this not so
in region 1?

4.11.2 Plot the real parts of the constituent waves for Exercise 4.11.1: (a) E1 4,
(b) E1—,(c) Ery,(d) Er—, (€) E34, (f) E3_. Start from descriptor 42. (g) Why
is there no constituent wave E3_7?

4.11.3 Repeat Exercise 4.11.1 (a,b,c) for k = 37 /2.

4.11.4 (a—f) Repeat Exercise 4.11.2 (a—f) for k = 37/2. (g) Why is there no
constituent wave E_?

4.11.5 A light wave packet of kg = 7.854 and relative width oy / kg = 0.01 is
incident on glass of refractive index n = 4 and thickness d = 9.9 mounted
between x = 0.1 and x = 10. Its initial position is xo = —15. Plot the
time dependence of the absolute square of the electric field strength of the
wave packet for 10 intervals between (a) 0 < ¢t < 60 and (b) 60 < ¢ < 120.
The interference pattern upon reflection is resolved only for sufficiently high
accuracy. Start from descriptor 43. (¢) By which factor is the speed of the
wave packet in the glass slower than in vacuum? (d) Why is the amplitude of
|E.|? inside the glass plate so much smaller than in vacuum? (e) Why does
the width of the wave packet shrink upon entering the glass?

4.11.6 (a,b) Repeat Exercise 4.11.5 (a,b), however, with two additional layers
of refractive index n = 2 for 0 < x < 0.1 and the other for 10 < x < 10.1.
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Start from descriptor 43. (¢) Why does practically no reflection occur at any
of the surfaces of the regions of different refractive index?

4.11.7 (a) Repeat Exercise 4.11.5 (a) for coated glass layer 1 (coating): 0 <
x < 0.1,n; = 1.2247; layer 2 (glass): 0.1 < x < 10,n; = 1.5; layer 3
(coating): 10 < x < 10.1,n3 = 1.2247. As the average wave number kg
of the wave packet, choose 12.826. Start from descriptor 43. (b) Calculate
the thickness of a coating of the above refractive index for visible light of a
vacuum wavelength A = 550 nm.

4.11.8 (a) Repeat Exercise 4.11.7 (a) without the coating. Start from descrip-
tor 43. (b) Why is the reflected part of the wave packet so much smaller than
in Exercise 4.11.5?

4.11.9 (a) Repeat Exercise 4.11.7 (a) for a wave number 1.5 times larger.
(b) Explain why coatings of actual optical lenses often reflect bluish light.

4.12.1 Study the transmission and reflection coefficients of an arrangement
of dielectrics of three regions for a range in wave number, 0.001 < k < 30:
region 1: n; = 1; region 2: 0 < x < 0.1, np = 2; region 3: 0.1 < «x,
n3 = 4. Start from descriptor 44. Plot (a) the absolute square |Ay|? of
the transmission coefficient, (b) the absolute square |B;|? of the reflection
coefficient, (c) the Argand diagram of A, (d) the Argand diagram of B;. For
(c) and (d) start from descriptor 45. (e) Read the wave numbers of resonant
transmission off the graph and compare them with the values given by the
(2m + 1)A /4 = d condition.

4.12.2 Repeat Exercise 4.12.1 for the choice of refractive indices ny =
1.2247,n3 = 1.5.



5. A Two-Particle System:
Coupled Harmonic Oscillators

Contents: Wave function of two distinguishable particles. Hamiltonian of two
coupled oscillators. Separation of center-of-mass and relative coordinates. Station-
ary two-particle wave functions and eigenvalues. Initial Gaussian wave packet for
distinguishable particles. Time evolution of the Gaussian wave packet. Marginal
distributions. Wave functions for distinguishable particles. Symmetrization and an-
tisymmetrization. Pauli principle. Bosons and Fermions. Normal oscillations.

5.1 Physical Concepts

5.1.1 The Two-Particle System

The wave function of a two-particle system in one spatial dimension, ¥ (x1,
X2, 1), s a function of two coordinates x1, x; and the time ¢. The Hamiltonian

H=T1+T1T+V(x1, x2) G.1)
consists of the two kinetic energies

> 92
T' = - — N | = 1, 2 y 52
! 2m; 8xi2 l -2)

and the potential energy V (x1, x2) of the two particles. The time-dependent
Schrodinger equation has the usual form

., 0
iho W (e, xo,1) = Hyp(xy, x2, 1) (5.3)
With the separation of time and spatial coordinates
¥(x1, x2, 1) = e gp(x1, x2) (5.4)

we obtain the stationary Schrédinger equation
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Hopg(x1, x2) = Epg(x1, x2) (5.5)

for the stationary wave function ¢g(x1, x2).

In the following we shall deal with two particles of equal mass m; =
my = m throughout. These particles are bound to the origin by harmonic-
oscillator potentials

k k
mao=5ﬁ , wuﬁ=5ﬁ (5.6)

with the same spring constants k > 0. In addition they are coupled to each
other through the harmonic two-particle potential

Vet —x) = S(x1 — x2)? 5.7)
with the coupling constant «. Thus the Hamiltonian reads
H =T+ T+ Vi(x1) + Va(x2) + Ve(x1 — x2) . (5.8
With the fotal mass M and the reduced mass (.,
M=2m , wu=m/2 |, 5.9
and center-of-mass coordinate R and relative coordinate r,
R=0x1+x)/2 , r=x—x , (5.10)
the Hamiltonian can be separated into two terms,
H=Hy+H, |, (5.11)

each depending on one coordinate only:

h? @2 R @2 1 [k
Hg=—— —+kR?> , H=—— —+-(= 2 (512
R + r 20 dr2+2(2+/c)r (5.12)

Both the center-of-mass motion and the relative motion are harmonic os-
cillations. They can be separated by factorizing the stationary wave function

pE(x1, x2) = UN(Ruy(r) (5.13)

where N and n are the quantum numbers of the center-of-mass and relative
motion, respectively. The factors fulfill the stationary Schrodinger equations

HRUN(R) = (N + %) hwr UN(R)

Hyuy(r) = (n + %) Ry uy(r) .19
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with the angular frequencies
oy =k/m , @ =k+24)/m . (5.15)

The eigenvalue in (5.5),
E=Ey+E, |, (5.16)

is the sum of the eigenvalues
Ey=(N+1)hor and E,=(n+1)ho, (5.17)

of the center-of-mass and relative motion. The eigenfunctions Uy (R) and
uy, (r) are the eigenfunctions (3.14) of harmonic oscillators of single particles
with the angular frequencies wg and w,, respectively.

5.1.1.1 Entanglement If there is no coupling, i.e., for k = 0, the eigenstates
(5.13) of the system of two oscillators are just products of two single-particle
oscillator eigenstates,

Ye(x1,x2) = 9, (x1)@E,(x2) ., E=E + E;

Such a simple factorization does not hold, however, for the eigenfunctions of
the system if the two oscillators are coupled, i.e., if they interact with each
other. The appearance of a two-particle wave function, which is not simply
the product of the single-particle wave functions of the two particles forming
the system, was called entanglement by Schrodinger who first discussed the
situation. For ¥ # O the wave function (5.13) are entangled states. - Such
states could be used in possible future quantum computers.

5.1.2 Initial Condition for Distinguishable Particles

For the moment we assume that the two particles are distinguishable, e.g.,
that one is a proton and the other one a neutron. As the generalization of
the initial condition of the single-particle oscillator we take a Gaussian two-
particle wave packet

1 1
exp | ——————
V2mo102(1 — c2)1/4 P { 4(1 — ¢2?)

y I:(xl — (x1))? _ 2C(x1 — {x1)) (2 — (x2)) n (x2 — (x2))?

Y(xy, x2,0) =

2 2 ]
oy o1 02 o5

X1, x2: coordinates of particles 1 and 2,

o1, 07 widths in xq, xo of Gaussian wave packet,
c: correlation between x; and x3, —1 < ¢ < 1,
(x1), {(x2): position expectation values.
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5.1.3 Time-Dependent Wave Functions
and Probability Distributions
for Distinguishable Particles

The time evolution of the above initial wave function can be calculated by
expanding ¥ (x1, x2, 0) into a sum over the complete set of eigenfunctions
Un(R)un(r),

[e.¢] o0
Y1, x2,0) = D D wnaUn(Run(r) (5.19)
N=0n=0
which determines the coefficients wy,. The time-dependent solution of the
Schrédinger equation is given by
o [o¢]
Va0 =) ) wyee  EVEAUN (Ryun(r) . (520)
N=0n=0
For brevity we discuss only the absolute square of the time-dependent wave
function:
op(x1, X2, 1) = [ (x1, x2, )2

1 en ] 1 x1 — (x1(1)))?
T 2001 - M) 2 TP | 20— | T o)

(x1 — (x11)) (x2 — (x2(8)))  (x2 — (x2(1)))?
o1() oa(t) o2(t)

It differs from the absolute square of ¥ (x1, x2, 0) only through the time de-
pendence of the expectation values (x1(¢)), (x2(t)), the widths o1(¢), o2(),
and the correlation c¢(¢). For ¢t = 0 they assume the values of the initial wave
packet (5.18). The quantity op(x1, x2, t) is the joint probability density for
finding at time 7 the distinguishable particles 1 and 2 at the locations x; and
Xxo, respectively.

—2¢(2) 5.21)

5.1.4 Marginal Distributions for Distinguishable Particles

The probability distribution of particle 1, independent of the position of par-
ticle 2, is given by

+oo
QDl(x1,1)=/ op(x1, x2,t)dxy . (5.22)

—00
Consequently, the probability density opa(x2, #) of particle 2, independent of
the position of particle 1, is given by integrating op(x1, x2, ) over x:

+o0
QDZ(XZJ):/ op(x1, x2,t)dx; . (5.23)

-0
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5.1.5 Wave Functions for Indistinguishable Particles.
Symmetrization for Bosons.
Antisymmetrization for Fermions

For indistinguishable particles (e.g., two protons) the Hamiltonian is symmet-
ric under permutations of the coordinates x; and x; of the particles 1 and 2:

H(xy, x2) = H(x2, x1) . (5.24)

Because the particles cannot be distinguished by measurement, all measurable
quantities are symmetric in the particles 1 and 2. To ensure the symmetry of
the expectation values, the two-particle wave functions of indistinguishable
particles are symmetric for bosons:

¥B(x1, X2, 1) = YB(x2, X1, 1) (5.25)

or antisymmetric for fermions:

YE(x1, x2,1) = —Yr(x2, x1, 1) . (5.26)

The requirement of antisymmetrization is the Pauli principle. Its most impor-
tant physical implication is that two indistinguishable fermions cannot occupy
the same state or be at the same position:

Yr(x,x,t) =0 . (5.27)

Because of the symmetry of the Hamiltonian (5.24), time-dependent wave
functions for bosons or fermions can be obtained by symmetrization or anti-
symmetrization of the time-dependent solution (5.20):

Y, F(x1, X2, 1) = NB,F%W(M, x2, 1) Y, x1,8)] . (5.28)

The factor Np r ensures the normalization of the boson or fermion wave func-
tion. The probability density for bosons and fermions is given by

oB(x1, X2, 1) = |¥p(x1, x2, 1)|* = |Np[*[os(x1, x2, ) +01(x1, X2, )] (5.29)
and

or(x1, x2, 1) = [Yr(x1, x2, D2 = [Np*los (xr, x2, 1) — o1(x1, 22, )],
(5.30)
where
os(x1, %2, 1) = 3lop(x1, X2, 1) + op(x2, X1, 1)] (5.31)
is the symmetrized probability density of distinguishable particles. The term
o1 is the interference term
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o1(x1, x2,t) = %[llf*(xl, x2, DY (x2, X1, 1) + ¥ (x2, x1, Y (x1, x2, )]
(5.32)
Whereas gg, or, 0s > 0, the interference term o1 can assume positive and
negative values. The joint probability densities pg (x1, X2, t) and gr(x1, X2, )
are both symmetric under permutation of x; and x».

5.1.6 Marginal Distributions of the Probability Densities
of Bosons and Fermions

Because the joint probability densities gp and gr are symmetric in x; and x2,
there is only one marginal distribution for bosons and one for fermions:

o0
QB(x,f)=/ oB(x, x2, 1) dxp (5.33)
—o0
and
[o,¢]
QF(x,t)=/ or(x, x2,)dxy . (5.39)
-0

Their physical significance is that they give the probability for finding one
of the two particles at the position x independent of the position of the other
one. Of course it is possible to compute marginal distributions also for the
densities ps and oy although these have no direct physical significance:

oo
Qs,l(x,t)=/ os,1(x, x2, ) dxz . (5.35)

—oQ0

5.1.7 Normal Oscillations

In our system of two identical oscillators in one dimension, with a harmonic
coupling, the two normal oscillations of classical mechanics are:

i) the oscillations of the center of mass with a time-independent relative coor-
dinate, and
ii) the oscillation in the relative motion with the center of mass at rest.

The initial conditions (with the two particles initially at rest) that correspond
to the two normal oscillations are:

i) identical initial positions x19 = xy¢ for the two particles, and
ii) opposite initial positions x1g = —x9 for the two particles.

In quantum mechanics also, these initial positions lead to the corresponding
normal oscillations for the expectation values of the positions (x1(¢)), (x2(¢))
of the two particles.
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Further Reading

Alonso, Finn: Vol. 3, Chaps. 4

Brandt, Dahmen: Chaps. 8,9

Feynman, Leighton, Sands: Vol. 3, Chaps. 4
Gasiorowicz: Chap. 8

Merzbacher: Chap. 20

Messiah: Vol. 2, Chap. 14

Schiff: Chap. 10

5.2 Stationary States

Aim of this section: Computation and presentation of the stationary wave function
@E(x1, x2) = Un(R)un(r), (5.13).

A plot like Fig. 5.1 is produced showing the eigenfunction of two coupled
harmonic oscillators as surface over the x;, x; plane. Also shown as a dashed
line is an ellipse given by E = V(xq, x3). It is the boundary of the region
accessible in classical mechanics.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to
plot either ¢ or |¢|?.

Fig. 5.1. Plot produced with descriptor Coupled harmonic oscillators: stationary
states on file Two_Particles.des
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On the subpanel Physics—Variables you find the three variables charac-
terizing the system of Coupled Oscillators:

o the spring constant & of the individual oscillators,
o the spring constant ¥ of coupling,
e the mass m of the oscillators.

The quantum numbers N and n are determined by the position of an indi-
vidual plot within a multiple plot. The column index within a multiple plot is
N, the row index is n.

Example Descriptor on File Two_Particles.des

e Coupled harmonic oscillators: stationary states (see Fig. 5.1)

5.3 Time Dependence of Global Variables

Aim of this section: Illustration of the time dependence (x1(z)) and (x2(z)) of the
position expectation values, the time dependence o1 () and o2 (¢) of the widths in x
and x7, and of the time dependence c(¢) of the correlation coefficient.

The time dependence of the selected global variables is presented as a 2D
function graph. On the bottom of the subpanel Physics—Comp. Coord. you
can select to plot one of the five global variables. You may also choose to plot
all five in a multiple plot.

On the subpanel Physics—Variables you find eight parameters:

o the spring constant k of the individual oscillators, the spring constant ¥ of
coupling, and the mass m of the oscillators,

o the initial values (for + = 0) of the five global variables, i.e., {x19), {x20),
010, 020, €0 ‘

Example descriptor on File Two Particles.des

e Coupled harmonic oscillators: global variables (see Fig. 5.2)

5.4 Joint Probability Densities

Aim of this section: Illustration of the joint probability densities op(x;, x2, t),
oB(x1, X2, t), 0F(x1, X2, t) for a system of coupled harmonic oscillators composed
of two distinguishable particles, two identical bosons, or two identical fermions,
(5.21), (5.29), (5.30). [It is also possible to illustrate the functions gs(x, x2, t) and
o1(x1, x2, t) given by (5.31) and (5.32).]

A plot similar to Fig. 5.3 is produced showing, in general for several times
t =1y, 1o + At, o+ 2At, .. ., asection of the x, xo plane with the following
items:
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<x4(t)> 5 i .
2.5 E
T 0 \/\/l\—pﬂvl\/\—‘» t
-25 ¢
_5 - -
0 10 20
<x{t)> 5 . .
25 E
T O‘\—A/\/\/_\f\”_b t
-25F E
_5 - -
0 10 20

0,(t) 2

0 t
0 10 20
c(t) 5 .
25 § E
P .
-25¢ E
-5 . L
0 10 20

Fig. 5.2. Plot produced with descriptor Coupled harmonic oscillators: global vari-
ables on file Two_Particles.des

o the joint probability density as surface over the x1, x2 plane,

e the marginal distributions as curves over two of the edges of the the x1, x2
plane,

e a trajectory in the x|, x; plane showing the time development of the corre-
sponding classical system since the time ty [the position for 7y is indicated
by a full circle, for o + At, ... by an open circle; for the current time the
classical positions x1(¢), x2(¢) are also shown as circles on the margins].

On the bottom of the subpanel Physics—Comp. Coord. you can choose one
of the five probability densities o; (x1, x3, ), where i stands for the five indices
D (distinguishable particles), B (identical bosons), F (identical fermions), S
(symmetrized probability density), and I (interference term).

On the subpanel Physics—Variables there are four groups of variables:

e Coupled Oscillators — Here you find the dynamic variables k, «, and m of
the system and the initial conditions {(x10), {x20), 010, 020, and cy.
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Fig. 5.3. Plot produced with descriptor Coupled harmonic oscillators: joint prob-
ability density onfile Two_Particles.des

o Time — You can enter the time #( for the first plot and the time interval A¢
between successive plots.

o Graphical ltem — This is the radius R of the circle indicating the classical
position of the system.

« For Distinguishable Particles Only — You can choose to show the covariance
ellipse because in that case the probability density is a Gaussian distribution
of x1 and x;.

Example Descriptor on File Two_Particles.des

e Coupled harmonic oscillators: joint probability density (see
Fig. 5.3)

5.5 Marginal Distributions

Aim of this section: Illustration of the marginal distributions gp1(x, t), op2(x2, ¢),
gB(x,t), gr(x,t), os(x, ), o1(x,t) discussed in Sect. 5.1, (5.22), (5.23), (5.33),
(5.34), (5.35).

A plot similar to Fig. 5.4 is produced, showing for various times ¢ one of
the marginal distribution of a system of coupled harmonic oscillators. Also
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Coupled Harmonic Oscillators

+)
QF(X; '
A A
L /+/;//0/ ‘v
/%:#”: _

Fig. 5.4. Plot produced with descriptor Coupled harmonic oscillators: marginal
distribution on file Two_Particles.des

shown for every time are a dashed zero line, the positions of the corresponding
two classical particles as small circles, and a short vertical line indicating the
equilibrium position x = 0.

On the bottom of the subpanel Physics—Comp. Coord. you can choose
between the following six types of marginal distribution:

op1(x1,1), op2(x2,1), oB(x, ), gr(x, 1), os(x, 1), o1(x, 1)

On the subpanel Physics—Variables there are two groups of variables:

o Coupled Oscillators — Here you find the dynamic variables k, «, and m of
the system and the initial conditions {x19), {(x20), 10, 020, and cp.

o Graphical ltems — These are the dash length £pasy of the zero line (which
is also the length of the short vertical line) and the radius R of the circles
indicating the positions of the classical oscillators.

Example Descriptor on File Two_Particles.des

e Coupled harmonic oscillators: marginal distribution (see Fig.
5.4)
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5.6 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo and selecting one of the demo files Two_Particles.

(ii) For the following exercises use descriptor file Two_Particles.des.
(iii) The numerical value of Planck’s constant is put to 1.

5.2.1 Plot the stationary wave functions of two uncoupled oscillators with
k = 2, m = 1 for the quantum numbers N = 0, 1, n = 0, 1 in a multiple plot.
Start from descriptor 5.

5.2.2 Plot the stationary wave functions of two uncoupled oscillators with
k = 2,m = 1, in four multiple plots for the quantum numbers (a) N = 0, 1,
n=01 MGN=0,1,n=2,3)N =2,3,,n=0,1,d N =23,
n = 2,3. Start from descriptor 5. (e) What determines the number and
location of the node lines of the wave functions?

5.2.3 (a—d) Repeat Exercise 5.2.2 (a—d) with m = 2. (e) Which effect on the
wave functions does the doubling of the mass have?

5.2.4 (a-d) Repeat Exercise 5.2.2 (a—d) with nonvanishing coupling x = 2.
(e) How does the coupling affect the wave function?

5.2.5 (a—d) Repeat Exercise 5.2.2 (a—d) with nonvanishing attractive coupling
k = 5. (e) How does the coupling affect the wave function? (f) Which
correlation in the particle coordinates x1, x2 do you observe?

5.2.6 (a—d) Repeat Exercise 5.2.2 (a—d) with nonvanishing repulsive coupling
k = —0.6. (e) How does the repulsive coupling affect the wave function?
(f) Which correlation in the particle coordinates x1, x3 do you observe?

5.2.7 (a) Plot in a multiple plot the probability density of two coupled oscil-
lators with £ = 2, m = 1 for the quantum numbers N = 1,2, n = 1, 2 for
the spring constant ¥« = 5 of the coupling. Start from descriptor 5. (b) Why
are the outer maxima in the plot for N = 2, n = 2 higher than the inner ones?
(c) Why are the widths of the inner maxima smaller than the ones of the outer
maxima? (d) Why does the region where the probability density is essentially
different from zero not in all plots evenly fill the region of possible classical
orbits given by the dashed ellipse?

5.2.8 (a) Repeat Exercise 5.2.7 (a) with repulsive coupling x = —0.6.
(b) Why do the locations of the maxima of the probability density form a
rectangular grid in the x1, x, plane?

5.2.9 Plot in multiple plots the probability density of two coupled oscillators
withk = 1, m = 1, « = 4 for the quantum numbers (a) N = 2,3,n =0, 1,
bN=2,3n=23,N=4,5n=0,1,d N =4,5n=2,3. Start
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from descriptor 5. (e) Calculate the total energies of the coupled oscillators
for the above quantum numbers. (f) Compare the plots for N = 5, n = 0 with
N = 2,n = 2. Explain why the graphs for high N and small n extend mainly
along one of the principal axes of the dashed ellipse.

5.3.1 Consider a system of two uncoupled harmonic oscillators with mass
m = 1 and spring constants £k = 2, « = 0. (a) Plot the time dependence of
i) the position expectation values (x;(¢)), (x2(¢)}, ii) the widths o7 (¢), 02 (¢) in
x1 and x;, iii) the correlation coefficient c(¢) for the initial values {x19} = 3,
{x20) = 0, o190 = 1.01, 099 = 0.5, ¢g = 0. Start from descriptor 6. (b) Why
is the expectation value (x2(z)) equal to zero? (c¢) Why do the widths o (z),
o2(t) vary with time? (d) Why is the correlation c¢(¢) equal to zero?

5.3.2 (a) Repeat Exercise 5.3.1 for nonvanishing correlation cp = 0.2. Start
from descriptor 6. (b) Explain the time dependence of the correlation.

5.3.3 Repeat Exercise 5.3.1 for nonvanishing (xp9) = 3 and o719 = oy =
00/~/2, where o9 = «/fi/mw is the ground-state width of the uncoupled os-
cillators. Start from descriptor 6. (a) Calculate o/+/2. (b) Plot the global
quantities (x1(z)), (x2(¢)), o1(t), 02(2), c(t). (¢) Why are the widths o (¢),
o2(t) time independent? (d) Do you expect time-independent widths also for
nonvanishing correlation?

5.3.4 (a) Repeat Exercise 5.3.3 for nonvanishing correlation cp = 0.4. Start
from descriptor 6. (b) Why do the widths o1(¢), 02(¢) no longer remain time
independent? (¢) Why does the correlation c(¢) change periodically?

5.3.5 (a) Repeat Exercise 5.3.3 for the anticorrelation co = —0.4. Start from
descriptor 6. (b) Explain the difference between the correlation c(z) of this
exercise and of Exercise 5.3.4.

5.3.6 (a) Repeat Exercise 5.3.1 for nonvanishing (x;0) = 1.5 and o190 = 020 =
oo/ V2, where oy = Jh/mo is the ground-state width of the uncoupled os-
cillators. Start from descriptor 6. (b) Why is the result qualitatively similar to
that in Exercise 5.3.3?

5.3.7 Consider the system of two coupled oscillators. Choose the same initial
data as in Exercise 5.3.1, however, take a nonvanishing spring constant x =
0.5 for the coupling of the two oscillators. Start from descriptor 6. (a) Plot the
global quantities. (b) Explain the behavior of the time-dependent expectation
values (x1(z)), (x2(¢)). (c) Why does the correlation ¢(z) become different
from zero as time increases?

5.3.8 Repeat Exercise 5.3.7, however, with equal initial widths o9 = 029 =
0.5. Start from descriptor 6.

5.3.9 (a) Repeat Exercise 5.3.8, however, with initial positions (x1g) = 3,
(x20) = —3. Start from descriptor 6. (b) What oscillation do the expectation
values (x1(¢)), (x2(¢)) perform?
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5.3.10 (a,b) Repeat Exercise 5.3.9 (a,b), however, with strong initial anticor-
relation ¢o = —0.95. Start from descriptor 6.

5.3.11 Repeat Exercise 5.3.9 with strong positive correlation cp = 0.95. Start
from descriptor 6.

5.3.12 (a) Repeat Exercise 5.3.9 with initial position expectation values
{x10) = 3, {x20) = 3 and vanishing initial correlation co = 0. Start from
descriptor 6. (b) What kind of oscillation do the two position expectation
values perform?

5.4.1 Plot the joint probability density op(x1, x2) for two uncoupled harmonic
oscillators of distinguishable particles of mass m = 1 and spring constant
k = 2 for the initial values (x19) = 3, {(x20) = 0, o1 = 1.0, 0o = 0.5,
co = 0in two 2 x 2 multiple plots (a) for the times t, = nAt,n =0, 1,2, 3,
At = 0.501, and (b) for the times t, = nAt, n = 4,5,6,7, Ar = 0.501.
Start from descriptor 7. (¢) Why are the axes of the two-dimensional Gauss
distributions parallel to the coordinate axes?

5.4.2 (a,b) Repeat Exercise 5.4.1 (a,b) for (x29) = 3, co = 0.8, and the step
width Ar = 0.55536. Start from descriptor 7. (¢) Why are the axes of the
two-dimensional Gauss distribution no longer parallel to the coordinate axes?
(d) How does the positivity of the initial correlation cg show in the plots?

5.4.3 Plot the joint probability density op(x1, x2) for two uncoupled harmonic
oscillators of distinguishable particles of mass m = 1 and spring constant
k = 2 for the initial values {x19) = —2, {xp0) = 3,010 = 1,020 = 0.5, ¢c0 =
—0.8 in two 2 x 2 multiple plots (a) for the times ¢, = nAt,n =0, 1, 2, 3,
At = 0.501, and (b) for the times ¢, = nAt, n = 4,5,6,7, Ar = 0.501.
Start from descriptor 7. (¢) How does the negative initial correlation show in
the plots?

5.4.4 (a,b) Repeat Exercise 5.4.1 (a,b) for a coupling spring constant ¥ = 0.8.
Start from descriptor 7. (¢) Which effect showing in the plots is due to the
coupling of the two oscillators?

5.4.5 (a,b) Repeat Exercise 5.4.1 (a,b) for a coupling spring constant x = 1.5.
Start from descriptor 7. (c¢) Why does the amplitude in the variable x, grow
faster than in the plots of Exercise 5.4.4?

5.4.6 (a,b) Repeat Exercise 5.4.1 (a,b) for a coupling spring constant ¥ = 3.
Start from descriptor 7. (¢) What causes the change of the initially uncorre-
lated Gauss distribution to a correlated one?

5.4.7 (a,b) Repeat Exercise 5.4.1 (a,b) for a coupling spring constant k = 5.
Start from descriptor 7. (c¢) Why does the expectation value (circle) in the
x1, x2 plane oscillate more often than in the former exercises?

5.4.8 (a,b) Repeat Exercise 5.4.1 (a,b) for a coupling spring constant ¥ = 10.
Start from descriptor 7. (c) Why is the Gaussian distribution most narrow
when its position expectation values (x;), (x2) are close to zero?
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5.4.9 Plot the joint probability density op(x;, x») for two coupled harmonic
oscillators of distinguishable particles of mass m = 1, spring constant £k = 2,
and coupling spring constant « = 20 for the initial conditions (x19) = 3,
{x20) = —3, 01 = 1.0, 02 = 0.5, ¢ = 0in two 2 x 2 multiple plots (a) for
t, = nAt,n =0,1,2,3, At = 0.2, and (b) for¢t, = nAt,n = 4,5,6,7,
At = 0.2. Start from descriptor 7. (¢) What particular kind of oscillation do
you observe?

5.4.10 (a,b) Repeat Exercise 5.4.9 (a,b) for a coupling spring constant x =
20 and a step width of At = 0.2. Take as initial values for the position
expectation values (x19) = 3, (x20) = 3. Start from descriptor 7. (¢) What
particular kind of oscillation do you observe? (d) Why is the motion so much
slower than in Exercise 5.4.9?

5.4.11 (a,b) Repeat Exercise 5.4.1 (a,b) for a repulsive coupling spring con-
stant « = —0.8 and step width Ar = 0.5. Start from descriptor 7. (¢) How
does the repulsive coupling between the two oscillators make itself felt in the
plots?

5.4.12 (a,b) Repeat Exercise 5.4.1 (a,b) for a repulsive spring constant ¥ =
—0.95 and step width Ar = 2. Start from descriptor 7. (¢) Why does the
initially uncorrelated Gauss distribution develop a correlation of the kind ob-
served?

5.4.13 (a,b) Repeat Exercise 5.4.1 (a,b) for bosons. (¢) Why do you initially
observe two humps? (d) What creates the very high peak in the plots where
the two bosons are close together?

5.4.14 (a,b) Repeat Exercise 5.4.2 (a,b) for bosons. (¢) Why do you observe
only one hump in the plots?

5.4.15 (a,b) Repeat Exercise 5.4.3 (a,b) for bosons. (c) How does the correla-
tion show in the initial double humps?

5.4.16 Repeat Exercise 5.4.4 for bosons.

5.4.17 (a,b) Repeat Exercise 5.4.8 (a,b) for bosons. (¢) How does the strong
attractive coupling show in the plots?

5.4.18 (a,b) Repeat Exercise 5.4.9 (a,b) for bosons. (¢) How is the difference
from the graphs for distinguishable particles explained?

5.4.19 (a,b) Repeat Exercise 5.4.10 (a,b) for bosons. (¢) Why do you observe
quick oscillations of the width in (x2 — x;) of the Gaussian hump?

5.4.20 Repeat Exercise 5.4.11 for bosons.

5.4.21 (a,b) Repeat Exercise 5.4.1 (a,b) for fermions. (c) Why is the joint
probability always exactly zero along the line x; = x»?

5.4.22 Repeat Exercise 5.4.4 for fermions.
5.4.23 (a,b) Repeat Exercise 5.4.8 (a,b) for fermions.
5.4.24 (a,b) Repeat Exercise 5.4.9 (a,b) for fermions.
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5.4.25 (a,b) Repeat Exercise 5.4.10 (a,b) for fermions, however, for a9 =
070 = 1. (¢) Why does the joint probability distribution vanish?

5.4.26 (a,b) Repeat Exercise 5.4.10 (a,b) for fermions and nonvanishing initial
correlation. (¢) Why does the joint probability density still vanish?

5.4.27 (a,b) Repeat Exercise 5.4.10 (a,b) for fermions and vanishing correla-
tion ¢cg = O and different initial widths o7 = 1, o2 = 0.2. (c) Why does the
existence of a fermion wave function with identical expectation values for the
two fermions not contradict the Pauli principle?

5.5.1 Study the marginal distributions of two distinguishable particles of equal
mass m = 1 in two coupled oscillators (k = 2, x = 0.8) with the initial
conditions {xj9) = 3, {(x20) = 0, 010 = 1, o929 = 0.5, ¢¢ = 0. (a) Plot the
marginal distribution gp(x1, t) of particle 1 for the time interval 0 < ¢ < 4in
ten steps. Start from descriptor 8. (b) Plot the marginal distribution gp> (x3, t)
of particle 2 for the same interval. Start from descriptor 9. (c¢) For simpler
comparison plot both distributions (a), (b) as a combined plot (a) above (b).
Start from mother descriptor 10.

5.5.2 (a—c) Repeat Exercise 5.5.1 (a—c) for a longer time interval 0 < ¢t < 10.
5.5.3 Study the marginal distributions of indistinguishable particles with the
same parameters as in Exercise 5.5.1. (a) Plot the marginal distribution for
bosons. (b) Plot the marginal distributions for fermions. (c¢) For comparison,
plot both distributions above each other in a double plot. (d) What are the
differences in the two plots? (e) Why are these differences so marginal?



6. Free Particle Motion in Three Dimensions

Contents: Description of the three-dimensional motion of a free particle of sharp
momentum by a harmonic plane wave. Schrodinger equation of free motion in three
dimensions. Gaussian wave packet. Angular momentum. Spherical harmonics as
eigenfunctions of angular momentum. Radial Schrédinger equation of free motion.
Spherical Bessel functions. Partial-wave decomposition of plane wave and Gaussian
wave packet.

6.1 Physical Concepts

6.1.1 The Schrodinger Equation of a Free Particle
in Three Dimensions. The Momentum Operator

Classical free motion in three dimensions can be viewed as three simultane-
ous one-dimensional motions in the coordinates x, y, z. In quantum mechan-
ics the situation is the same. Three-dimensional free motion is viewed as
three one-dimensional harmonic waves (2.1) propagating simultaneously in
the coordinates x, y, z of the position vector r:

1 i (p?
#0 = e (g5 )

(7 (A 6.
SR IE Y VAR R B R B O VA '

Because the kinetic energy E of the particle is given by
E=(p;+p}+p)/2M =p°/2M . 6.2)

M mass of particle,
p = (px, Py, Pz): momentum of particle.
The expression (6.1) can be rewritten in the form

1

1 . ‘
r,t) = —i(Et—p-r1)/h — —i(wt—Kk-r) .
Yp(r, 1) e @renyi’ ; (6.3)
107
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w = E /k: angular frequency of the wave function,
k = p/h: wave-number vector.

The phase velocity of this wave is
v=p/2M . 6.4)

The wave function (6.3) is the solution of the free Schrodinger equation in
three dimensions

ih%w(r, t)y=Ty(r,t) 6.5)

having the same formal appearance as (2.2). However, the operator T of the
kinetic energy is now that of a particle in three dimensions,

m: (82 3% 37
Tr=———=+-—=+=— . 6.6
2M <8x2 + ay? + 8z2) (6.6)
With the help of the gradient operator
a 9J 0
V=|— —, — 6.7
dx 0y 9z
it takes the form
h? h?
T=—--Vie——A (6.8)
2M 2M

i.e., a multiple of the Laplacian A.
The wave function (6.3) lends itself to the factorization

Yp(r, 1) = e E/ g, (1) (6.9)

into a time-dependent exponential and a stationary wave function

ipr/h __ ;eiki‘ ] (610)

@O = 2 T Gani

If we choose the unit vector e, in the z direction parallel to the wave-number
vector kK = p/h, we have k = ke,, and the stationary wave assumes the
simple form

1 ikz
qop(r) = WC . (611)

This is a complex function of the coordinate z only. It can be decomposed
into real and imaginary parts,

¢p(r) =Regp(r) +ilmep(r) (6.12)

with
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1
coskz , Imep(r) = ——5 sinkz . (6.13)

(2mh)3/2

1
RO = Gy

On inserting (6.9) into the time-dependent equation (6.5) we obtain

h2
Tep(r) = Egp(r) or — wA(pp(r) = Eg@p(r) (6.14)
as the stationary (time-independent) Schrodinger equation for the stationary
wave function ¢p(r). Equation (6.14) is also viewed as an eigenvalue equa-
tion, where E is the continuous eigenvalue of the kinetic energy and @p(r) a
continuum eigenfunction of the operator T of the kinetic energy.

In accordance with the classical relation for the kinetic energy, T =

p2 /2M, of a single particle with momentum p we conclude from (6.8) that
R ha . _ha . RO

A=_V9 "e's = T > -
P i 1E Px 10x Py

Pr=—— 6.15
iay " P*T % (©.19)

is the momentum operator. The stationary wave function (6.10) is a contin-
uum eigenfunction of the momentum operator

. h
pep(r) = Yv‘ﬂp(r) = pyp(r) (6.16)
or in components
N ha
Pxpp(r) = Ta‘/’p(r) = pxpp(r) , etc. (6.17)

6.1.2 The Wave Packet. Group Velocity. Normalization.
The Probability Ellipsoid

The wave function (6.3) does not correspond to an actual physical situation,
because the norm of a plane wave diverges. A physical particle corresponds
to a wave packet formed with a spectral function as in (2.4),

v o) = f F@eE g r — 1) (6.18)

r = (x, y, z): position vector,

ro = (X0, Yo, Zo): initial position expectation value of wave packet at t = 0,
p = (px, Py, Pz): momentum vector,

f(p): spectral function of wave packet.
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We choose again a Gaussian spectral function in three dimensions as a prod-
uct

F® = fx(px) fy(py) fo(P2) (6.19)
of three Gaussians, one for every coordinate a = x, y, z,
1 (Pa — Pa0)?
Ja(pa) = ——7—75 exp {—“4—2“ , (6.20)
(2m) “op, % pa

Pa: a coordinate of momentum, a = x, y, z,
Pao: expectation value of momentum,
0p,: width of Gaussian spectral function f,.

The factors in front of the exponential of (6.20) normalize the spectral func-
tion f(p) to one,

ffz(p)d3p=1 , (6.21)

and thus the wave packet (6.18):

/Iw(r,t)|2d3r=1 . (6.22)

Because of the factorization of the time-dependent exponential and of the
stationary wave function ¢p into factors depending on one momentum com-
ponent only, the integral in (6.18) yields the wave function of the three-
dimensional Gaussian wave packet,

Y(r, 1) = My (x, DD M (y, )P YD M, (7, el @D | (6.23)

where the explicit expressions for the modulus M, and the phase ¢, can be
derived easily from (2.7) and (2.8).
The absolute square of ¥ (r, t) yields the probability density

_ x— (N2 - ON* @— (@)
e(r, 1) = (27)3/ %0040, exp l:_ 202 - 2ay2 - 2072

(6.24)
for a particle at the position r at time ¢. The position expectation value

(r() = ((x(@)), (y(®), {z(0)))

is given by
r@t)) =ro+ve . (6.25)

This represents the motion of a particle with constant velocity

v=po/M (6.26)
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along a straight line, starting at + = 0 with the initial position rg. The velocity
v is called the group velocity because it determines the propagation of a wave
packet or wave group. It is different from the phase velocity (6.4).

The width of the Gaussian is time dependent:

2
o2(t) = 02 + 1 , a==x,v,7 , (6.27)
a a 2M o4

040 = h/20,,: initial width of wave packet in the coordinate a = x, y, z.

The plots produced with IQ refer to the two-dimensional distribution

+o00
o(x,y, 1) =/ o(x,y,z,t)dz , (6.28)

—0

which represents the probability density for a particle having at time ¢ the
coordinates x and y irrespective of z. The explicit result for o(x, y, t) is

T et S NP
6.1.3 Angular Momentum. Spherical Harmonics
Angular momentum is a vector L = (L,, Ly, L) of the form
L=rxp ; (6.30)
in components
Ly=yp,~zpy , Ly=zpy—xp;, , L;y=xpy—ypx . (6.31)

In quantum mechanics the momentum p is a multiple of the del or nabla op-
erator, see (6.15), so that the operator of angular momentum L is given by

. A
L=frxp=-rxV . (6.32)
i

Its three components

;o _h( 8 3 P
=7 %y) 0 T

R 9 (6.33)
=—|lx— —y— .

g dy Y ax

do not commute with each other. Instead, they satisfy the commutation rela-

tions
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Ly, L,0=ikl, , [Ly Ll=ihl, , [L, Ly=ikl, . (6.34)
Each of these components does commute, however, with the square
LP=02+12+12 (6.35)
of the angular-momentum vector L,

M2, L,0=0 , a=x,vy,z . (6.36)

Polar coordinates (radius r, polar angle ©#, azimuth ¢) are related to Car-
tesian coordinates (x, y, z) by

x=rsindcosgp , y=rsindsing , z=rcos? . (6.37)

Using these polar coordinates the components and the square of L have the
representations

L in (S' 0 + cotan ¢ cos 9
=1 1mnge— CcO - [

x \ @80 (pa(p

iy =in(cosp tan § sin g
=ik [ cos¢p— — cotan ¥ sin p— ,

y Yo0 Y90

L,=—-ih— (6.38)

2= w20 (o2 )4 2 il (6.39)
- sin® 90 30/ " sin?oop?] '
Thus, the eigenfunctions of L2and L . are the spherical harmonics Y, (9, @)

depending on ¥ and ¢ only, with the two indices relating to the eigenvalues
of the square and the z component of angular momentum,

LYy = 06 + DAYy, , £=0,1,2,... (6.40)

LYo =mhYe, , —£<m<£{ . (6.41)

The angular-momentum quantum number ¢ is interpreted as the modulus of
angular momentum and m — usually called magnetic quantum number — as its
z component. Together with (6.39), (6.40) is up to a factor h? identical with
(9.15) of Chap. 9, which deals with mathematical functions. The details of
the spherical harmonics Yy, are given there.
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6.1.4 The Stationary Schrodinger Equation
in Polar Coordinates. Separation of Variables.
Spherical Bessel Functions.
Continuum Normalization. Completeness

The stationary Schrodinger equation (6.14) of a free particle can be expressed
in polar coordinates where the kinetic energy is

K% 1 32

wrart +

2 Mr21:2:| ¢(r) = Ep(r) (6.42)

Te(r) = |:—

and where the square L2 of angular momentum is given by (6.39). Separation
of the radial variable r and the angles ¥ and ¢ is achieved by factorization:

() = Re(r)Yem (9, ¢) . (6.43)

Then, the radial wave function Ry(r) satisfies the free radial Schridinger
equation

K2 [1 d? L +1)

—— = ——|Rk=ER, , 0o . 6.44
2M rdrzr r2 :I ¢ ¢ e ( )

It is equivalent to, k> = 2M E /h?,

d? d _
rl s Ret, 1) +2r —Re(k, 1) + [K%r® — €€ + DIRe(k,7) =0 . (645)
r r

Choosing x = kr as a dimensionless variable and setting z,(x) ~ Ry(k, r),
we arrive at the differential equation (9.30) of Chap. 9 for the spherical Bessel
functions z¢(x).

The kinetic energy of radial motion, Tred — _ (B2 /2M)yr—! (d?/dr?)r,isa
Hermitian operator only for wave functions that are not singular at r = 0. This
requirement restricts the R, (k, r) to be proportional to the spherical Bessel
Jfunctions of the first kind jg:

2
Retk,r) = \/;kjg(kr) . (6.46)

The factor in front of j; in (6.46) ensures a continuum normalization of the
kind
o0
f Ro(k, )Re(K', ryr?dr = 8(k' — k) . (6.47)
0
The eigenfunctions g, (k, r) of the kinetic-energy operator T belonging to

the energy eigenvalue E = A%k?/2M and to the angular-momentum quantum
numbers £, m are called free partial waves,
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Pem(k, 1) = Re(k, r)Yem (D, ¢) . (6.48)
These eigenfunctions exhibit a continuum normalization in &,
f Py Ky OVpem (k, 1) AV = 8(k" — k)8ee8mm - (6.49)

Their completeness relation (9.18) reads
o0
Z / 0pn ks ) pm ke, )2 dk = 83(F — 1) . (6.50)
£,m 0
It allows a decomposition of wave functions into free partial waves.

6.1.5 Partial-Wave Decomposition of the Plane Wave
The stationary plane wave of momentum p = £k has the form

eip-r/h - eik-r - eikr cos ¥ (6.51)
In a system of polar coordinates with the z axis in the direction of k, the above

formula shows that there is no ¢ dependence. Thus, a decomposition into free
partial waves @zo(k, 1), (6.48), containing only the spherical harmonics (9.16)

withm =0,
126 + 1
Ye()(l?, (p) = 4+ Pg(COS 19) . (6.52)
TT

is possible. Here Py is a Legendre polynomial. One obtains

o0 o0
elkT _ gikrcos® _ Zgw — Ziﬁ(zg + 1) je(kr)Py(cos ) (6.53)
£=0 £=0

r: radius vector,

k: wave vector of plane wave,

cos ® = k - r/kr: cosine of polar angle,

£: angular-momentum quantum number,

Py (cos #): Legendre polynomial of order £,

Je(kr): spherical Bessel function of first kind of order £, (9.31).

6.1.6 Partial-Wave Decomposition
of the Gaussian Wave Packet

The Gaussian wave packet (6.18) at time ¢ = 0 is decomposed into free partial
waves starting from the completeness relation (6.50):
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Y(r,0) = Z Z / bem(k) je(kr) Yem @, @)k2dk . (6.54)

Z 0 m=—¢

The probability Wy, of finding a contribution of angular momentum £, m
irrespective of the wave number & is given by

2
Wem = — / bt (k)bem (k> dk . (6.55)

For a Gaussian wave packet with a probability sphere, i.e., oy = 0y = 0; =
o (1), the probability Wy, is given by

Wem = exp{-033?] |21, 1 @3k @e+ 1)
204k 2

= |m|) m 12 1 —om
x (£+| D! IPZ (cos ¢ )I e , (6.56)

rp = aﬁo + bb: initial position expectation value,

ko unit vector in the direction of wave- vector expectation value,
b: unit vector, perpendlcular to ko, ko b= 0,

k= (k2 —r3 /4a0) + (ko - 0)?/0g,

2 = k§ +r§/40y,

P associated Legendre function with complex argument,

Iy, 1: modified Bessel function.
2
The complex vector
1
K = ko — i—2r0 (6.57)
20

is decomposed into

k =Kk{ejcosg +eysing’} . (6.58)

The quantity « is the complex square root
. 2 1
= (ko - La> - — P . (6.59)

The complex angle ¢’ is defined by

1 1
cos¢ = ;(el k) , sing = ;(eg-/c) . (6.60)
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So far m was the quantum number of the z component of angular momentum,
i.e., the quantization axis was the z axis. For an arbitrary quantization axis we
rotate the coordinate system

A

e1=—k0 , e2:b s €3 =€ X e

into the system 71, 12, n3 with the transformation

3
nj = Z e R;;
i=1
The matrix R;; represents a rotation with the angle ©# about the axis

a=—e sing +ecosp |, (6.61)

i.e., ¥ and ¢ are the polar and azimuthal angles of the unit vector n3 in the
original system e, e;, e3. With this we define the complex angle ¢” through
its cosine,

cos@” = Rizcos@ + Ryzsing’ |

and the quantity

_ (R +iRip)cos ¢’ + (Ro1 +iRpp) sing’
- sin "

¢
Here
Ry =cosz9+(1+cos1§‘)sin2g0 ,
Riy=Ry;=—( —cos?)cospsing ,
Ry =cos? + (1 —cos ) cos? ©

R13 = -—R31 = Sinl?COS(O s
R23 = —R32 = sin ¢ Sil’l(p :
R33 = cos ¥

The quantization axis with respect to which m is defined is 3. The marginal
distribution

£ 2
252 b4 A
We= > Wen=e %" /20§k21g+1/2(002k2)(26+1)Pg <_k2) (6.62)

m=—~{

describes the weight of the contribution of the angular momentum £ in the
wave packet.
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Further Reading

Alonso, Finn: Vol. 3, Chap. 3

Berkeley Physics Course: Chaps. 7,8
Brandt, Dahmen: Chaps. 10,11

Feynman, Leighton, Sands: Vol. 3, Chap. 18
Fliigge: Vol. 1, Chaps. 2B,2C

Gasiorowicz: Chaps. 9,10,11

Merzbacher: Chap. 9

Messiah: Vol. 1, Chap. 9, Vol.2, Chap. 13
Schiff: Chaps. 2,4

6.2 The 3D Harmonic Plane Wave

Aim of this section: Illustration of the stationary harmonic wave (6.11). The illus-
tration can be presented as a surface over a Cartesian grid or as a surface over a polar
grid.

A plot similar to Fig. 6.1 or Fig. 6.2 is produced. The type of plot (Cartesian
or polar grid) depends on the type of descriptor that you select. You cannot
change the plot type without changing the descriptor.
On the bottom of the subpanel Physics—Comp. Coord. you can select for
plotting one of the three functions
Ieikz 12’ Re eikz’ Im eikZ

On the subpanel Physics—Variables you can choose whether the Input is
Taken directly as the Wave Number k or as the Energy E from which £ is then
computed. The relation between the two quantities is

k =~2ME/h

The numerical value for k (or E) is found in a field labeled Wave Number /
Energy.

Please note: In all computations of quantum mechanics in 3D we set
A=1, M=1
For the present case that implies k = v2E.

Example Descriptors on File 3D_Free Particle.des

e 3D harmonic wave: surface over Cartesian grid (see Fig. 6.1)
e 3D harmonic wave: surface over polar grid (see Fig. 6.2)
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Harmonic Wave

Re{e™)

Fig. 6.1. Plot produced with descriptor 3D harmonic wave: surface over Cartesian

grid onfile 3D Free Particle.des

Harmonic Wave

Re{e™®)

Fig. 6.2. Plot produced with descriptor 3D harmonic wave: surface

on file 3D_Free Particle.des
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I Rel(2+ DY (kPP (cos®)), N = 3

Fig. 6.3. Plot produced with descriptor Plane wave as sum of spherical waves on file
3D Free Particle.des

6.3 The Plane Wave Decomposed
into Spherical Waves

Aim of this section: Decomposition (6.53) of a plane wave into spherical waves.

For r < N/k the decomposition (6.53) can be approximated by a sum with a
finite number of terms,

N

N
bt = el N "y = i Q20+ 1) jetkr) Pe(cos )
£=0 =0

On the subpanel Physics—Comp. Coord. you can select to compute either
the term ¢, or the finite sum Z?’ZO ¢¢. Moreover, you can choose to show
either the absolute square or the real part or the imaginary part of that function.

On the subpanel Physics—Variables there are four fields:

e a choice whether the Input is Taken as wave number & or energy E,

e the numerical value k (or E) for the Wave Number / Energy,

o an Angular Momentum — this is £ if you choose to compute a single term ¢;.
Itis N if you choose to plot the sum Y5 @,
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Fig. 6.4. Plot produced with descriptor Free 3D wave packet: surface over Carte-
sian gridonfile 3D Free Particle.des

e an explanation For Multiple Plot: The angular momentum (£ or N) is taken
for the first plot in a multiple plot. It is successively increased by one for
each subsequent plot.

Example Descriptor on File 3D_Free Particle.des

e Plane wave as sum of spherical waves (see Fig. 6.3)

6.4 The 3D Gaussian Wave Packet

Aim of this section: Illustration of the probability density o(x, y, ), (6.29), and
the corresponding wave function ¥ (x, y, t).

A plot similar to Fig. 6.4 is produced depicting various aspects of the wave
function (|¥|?, Re ¥, or Imv) in the x, y plane for a Gaussian wave packet.
The expectation value of the packet moves freely in the x, y plane. In a mul-
tiple plot the situation is shown for times ¢t = 0, At, 2As, . ... If the display
of |1ﬂ|2 is chosen, additional graphical items are displayed. These are

o the position of the classical particle (as full circle for t = 0, as open circle
fort = At,2A¢,..)),
o the trajectory of the classical particle,
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e the covariance ellipse of the Gaussian probability distribution.
On the subpanel Physics—Wave Packet you find five items:

o Initial Position — the coordinates xg, yo of the position expectation value at
t=0,

o Initial Velocity — the components vy, vyo of mean velocity at ¢t = 0,

o Initial Width — the widths o0, 00 inx and y atz = 0,

o Graphical Item — the radius R of the circle indicating the position of the
classical particle,

o Time Step — the time difference Ar between the situation shown in succes-
sive plots.

Example Descriptor on File 3D_Free Particle.des

e Free 3D wave packet: surface over Cartesian grid (see Fig.6.4)

6.5 The Probability Ellipsoid

Aim of this section: Drawing for times 79, 7o + At, .. ., fo+ (N — 1) At the ellipsoid
having the principal axes of lengths oy, oy, o; parallel to the coordinate axes, see
(6.27), which characterizes a 3D Gaussian wave packet with (uncorrelated) widths
Oy, Oy, 0.

A plot similar to Fig. 6.5 is produced. It is of the type probability-ellipsoid
plot, Sect. A.3.7. A 3D (uncorrelated) Gaussian packet can conveniently be
represented by its probability ellipsoid, which is centered at the position ex-
pectation value ((x), (y), (z)) and has the half-axes oy, 0y, 0;. The probability
density has a constant value ¢ = ¢ on the surface of the ellipsoid and is > ¢
inside and < ¢ outside the ellipsoid. As the wave packet develops in time, the
ellipsoid changes its position and shape. In the plot it is drawn for the times
t = 1o, tg + At, .... Also drawn for these times is the position of the cor-
responding classical particle, i.e., the center of the ellipsoid as a small circle
(full for ¢ = #9, open for later times) and the trajectory of the classical particle.

The subpanel Physics—Wave Packet contains three groups of parameters:

o Initial Position, Velocity, and Width — This group contains the components
X0, Y0, 2o of the initial (time ¢ = 0) position expectation value and the
components vy, Vyg, Uz Of the initial velocity expectation value as well as
the initial widths o0, 0,0, 00

e Time — Here you find the time o for which the first ellipsoid is shown at the
time At, i.e., the time difference between ellipsoids adjacent to each other.
In total N ellipsoids are drawn.

o Graphical ltem — This is the radius R of the circle indicating the position of
the classical particle.
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Free 3D Gaussian Wave Packet

Fig. 6.5. Plot produced with descriptor Free 3D wave packet: ellipsoids on file
3D_Free Particle.des

Example Descriptor on File 3D Free Particle.des

e Free 3D wave packet: ellipsoids (see Fig. 6.5)

6.6 Angular-Momentum Decomposition
of a Wave Packet

Aim of this section: Computation and presentation of the probabilities W, and W,
that a particle represented by a wave packet of spherical symmetry has the angular-
momentum quantum numbers £ and m, respectively; see (6.55) and (6.62).

A plot similar to Fig. 6.6 is produced showing as a 3D column plot, Sect.
A.3.8. In an £, m plane the probabilities Wy,, and — at the high m margin — the
probabilities W, are represented as columns. The wave packet has its initial
position expectation value (xo = a, yop = b, zo = 0) in the x, y plane. The

momentum expectation value (px = —po, py = 0, p; = 0) has only an x
component. This configuration ensures that for b > 0, pp > 0 the classical
angular momentum (L, = 0, L, = 0, L, = bpp) points in z direction.

The orientation of the quantization axes is given by its polar angle ¢ and its
azimuth ¢.
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Fig. 6.6. Plot produced with descriptor Free 3D wave packet: angular-momentum de-
composition on file 3D _Free Particle.des

On the subpanel Physics—Wave Packet there are three groups of parame-
ters:

e Wave Packet — Here you find the four parameters pg (absolute value of the
momentum expectation value), o¢ (initial width of the spherically symmet-
ric packet), a (x component of initial position), » (impact parameter).

o Quantization Axis — This is given by its polar angle ¢ and its azimuth ¢.

o Maximum Angular-Momentum Quantum Number — The W, and W, are
shown in the range 0 < £ < £pax.

Example Descriptor on File 3D_Free Particle.des

o Free 3D wave packet: angular-momentum decomposition (see Fig.
6.6)

6.7 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo and selecting one of the demo files 3D _Free Particle.

(ii) For the following exercises use descriptor file 3D_Free Particle.des.
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(iii) The numerical values of the particle mass and of Planck’s constant are
putto 1.

6.2.1 Plot the three-dimensional plane wave in a Cartesian plot for the wave
number k = 2 for the interval 0 < x < 27 (a) real part, (b) imaginary part,
(c) absolute square. Start from descriptor 1.

6.2.2 Plot the three-dimensional plane wave in a polar plot for the wave num-
ber k = 2 for the radial interval 0 < r < 27: (a) real part, (b) imaginary part,
(c) absolute square. Start from descriptor 2.

6.3.1 Study the partial waves for different £ appearing in the decomposition of
the plane harmonic wave for (@) £ =0, (b)£ =1,(c) £ =2,...,(1) £ = 13,
(m) £ = 20. Start from descriptor 3. For even (odd) values of ¢ the real
(imaginary) part of the partial waves is nonvanishing. (n) Calculate the min-
imal classical angular momentum in units of # for a particle of wave number
k = 2 that does not enter the radial domain O < r < 2m. (0) Plot the partial
wave for £ = 13. (p) Why does the partial wave become more and more
suppressed in the central region (r close to zero) for increasing £?

6.3.2 Study the sums of partial waves for different N approximating the plane
harmonic wave for@d N =0, (b)) N =1, .., kN =10,) N = 13,
(m) N = 20. Start from descriptor 3. (n) How fast does the region in which
the plotted partial sum resembles a plane harmonic wave grow in radius with
increasing N?

6.4.1 A three-dimensional Gaussian wave packet in the x, y plane has the
initial position xo = —2, yo = —2, initial velocity vy = 4, vyo = 4, initial
width 0,9 = 0.5, o0 = 0.5. Plot for the times ¢+ = 0 and z = 1 (a) the
absolute square, (b) the real part, (c) the imaginary part of the wave function.
Start from descriptor 4. (d) Calculate the spatial widening of the wave packet
with time (M =1, h = 1).

6.4.2 (a—d) Repeat Exercise 6.4.1 for the initial position xo = —2, yo = —2,
initial velocity vyo = 4, vyo = 2, initial width 0,0 = 0.25, oyp = 0.8.
(e) Calculate the vector of classical angular momentum of a particle with the
initial expectation values of the wave packet (M =1, & = 1).

6.4.3 (a,b,c) Repeat Exercise 6.4.1 (a,b,c) for the initial position xg = —4,
yo = —3, initial velocity vyo = 4, vyo = 3, initial width 0,0 = 0.1, 0y = 0.3
for At = 1.5. (d) Explain the different speeds by which the main axes of
the covariance ellipse grow. (e) Which direction do the ripples in the real and
imaginary part of the wave function possess?

6.4.4 A wave packet at rest is to be plotted with the initial parameters xo = O,
yo = 0, vx0 = 0,vy0 = 0,000 = 1, 0y0 = 1 for At = 2.5. Plot (a) the
absolute square, (b) the real part, (c) the imaginary part. Start from descriptor
4. (d) Why does this wave packet exhibit a rotationally invariant structure?
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6.5.1 (a) Plot the probability ellipsoids of a particle with the initial conditions
x0=-3,y0=—-2,20 =—1,v50=5,vy0 =15,v,0 = 1,040 = 1.0, 090 =
1.05, 0,0 = 2 for three instants in time, ¢t = 0, 1, 2. Start from descriptor 5.
(b) Calculate the angular-momentum vector of the classical particle with the
above initial data (M =1, & = 1).

6.5.2 Plot the probability ellipsoids of a particle with the initial conditions
x0=-3,y0=—2,20 = —1,ux0 =5, vy0 = 1.5, v;0 = 1, ox0 = 0.25,
oyo = 0.35, 0,0 = 0.5 for three instants in time, ¢ = 0, 0.8, 1.6. Start from
descriptor 5.

6.5.3 (a) Plot the probability ellipsoids of a particle with the initial conditions
X0 = -5y =-2,20 = —1, vx0 = 5, v0 = 1.5, v,0 = 1, 00 = 1.8,
oy = L.5, 0,0 = 1 for the three instants in time, t = 0, 1, 2. Start from
descriptor 5. (b) Why does the ellipsoid enlarge much more slowly in time
relative to its initial size than in Exercise 6.5.2?

6.5.4 (a) Plot the probability ellipsoids for a spherical wave packet at rest
with the widths 0,0 = oy0 = 00 = 0.2 for four instants in time, ¢t =
0,0.2,0.4, 0.6. Start from descriptor 5. (b) Why does the radius of the sphere
grow almost linearly over time only for later times?

6.6.1 (a) Plot the probabilities Wy,,, W, of the partial-wave decomposition for
the quantization axis fi pointing in the z direction of a wave packet with initial
conditions pp = 1.5, 00 = 1, a = 2, b = 0.6667. Start from descriptor 6.
(b) Calculate the angular-momentum vector of a classical particle possessing
the above initial data (A = 1). (¢) Calculate the angular momentum for a par-
ticle with the impact parameters b’ = b+o0p and b” = b—oy. (d) Interpret the
results of (b) and (c) in terms of the partial probabilities Wy,, as plotted in (a).

6.6.2 (a) Plot the probabilities Wy,,, Wy of the partial-wave decomposition
for the quantization axis h pointing in the z direction for a wave packet with
initial conditions po = 3, g = 0.5, a = 2, b = 0.3333. Start from descriptor
6. (b) Why does the plot look the same as in Exercise 6.6.1 (a)?

6.6.3 (a) Plot the probabilities W,,,, W, of the partial-wave decomposition
for the quantization axis fi pointing in the z direction for a wave packet with
initial conditions pg = 3, o9 = 1, a = 2, b = 0.3333. Start from descriptor
6. (b) Why are the Wy, =0form =£ —1,£—3,..., —€ + 1 for the wave
packets investigated so far? (c) Why has the distribution of the Wy, and the
W, widened compared to Exercise 6.6.2?7



7. Bound States in Three Dimensions

Contents: Introduction of the Schrodinger equation with potential. Partial-wave
decomposition. Spherical harmonics as eigenfunctions of angular momentum. Ra-
dial Schrodinger equation. Centrifugal barrier. Normalization and orthogonality of
bound-state wave functions. Infinitely deep square-well potential. Spherical step
potential. Harmonic oscillator. Coulomb potential. Harmonic particle motion.

7.1 Physical Concepts

7.1.1 The Schriodinger Equation for a Particle
under the Action of a Force. The Centrifugal Barrier.
The Effective Potential

The Schrodinger equation (6.5) of a free particle of mass M introduced in
Sect. 6.1 contains the kinetic energy 7 as the only term in the Hamiltonian
operator. Under the action of a conservative force F(r) = —VV (r) the Hamil-
tonian H contains both the kinetic energy T and the potential energy V (r),

2

H=T+V(r)=—2h—MA+V(r) . (7.1)

The Schrodinger equation for the three-dimensional motion under the action
of a force then reads

'ha = th \%4 7.2
g0 =~ A+ VE | yan (7.2)

With a separation of time and space coordinates,
y,n =" opr) (7.3)
the stationary Schrodinger equation is an eigenvalue equation,
Hypg(r) = E@g(r)
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or

h2
<_ﬁl—A + V(r)) 9™ = Epp(r) . (7.4)

Again E is the energy eigenvalue, ¢ (r) the corresponding eigenfunction.
For a spherically symmetric potential

Vir)=V()

a further separation of radial and angular coordinates by means of an eigen-
function corresponding to the energy eigenvalue E and the angular-momentum
quantum numbers £, m,

QEem(Y) = REe(r) Yem (D, @) (7.5)

is carried out along the same lines as in Sect. 6.1. We arrive at the radial
Schrodinger equation for the radial wave function Rge(r),

P 1 + V) Y Ree(r) = EREy(r) 0 (7.6)
—_— r = , > , .
2Mrdr2 T e e 4
with the effective potential
B2 L +1)
vy = ——— 1y . 7.7
S = S V) (71.7)

The first term of the left-hand side of (7.6) represents the kinetic energy of the
radial motion

T = p2)2M (7.8)
with the operator of radial momentum
R afl a
pr=- <— + —-) . 7.9
1 \r 0dr

The first term of (7.7) is the centrifugal barrier. It corresponds to the rota-
tional energy relative to the origin of the coordinate frame,

T =1220 (7.10)

of a particle with squared angular momentum L2Yy, = A%4(€ + 1)Yyy and
a moment of inertia ® = Mr? with respect to the origin. The second term
is the spherically symmetric potential V (r) of the force F(r) = —VV(r) =
—e, dV (r)/dr acting on the particle. Because the centrifugal barrier is a re-
pulsive potential (for £ > 1), it tends to push the particle away from the origin
r=0.

The solutions of (7.6) are physical for r > 0. The radial kinetic energy is
a Hermitian operator, i.e., a physical observable, only for wave functions free
of singularities at r = 0. This requirement represents the boundary condition
for solutions of the Schrodinger equation at r = 0.
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7.1.2 Bound States. Scattering States.
Discrete and Continuous Spectra

We denote by V the value of the spherically symmetric potential far out,
Voo = lim V(r) . (7.11)
r—>0o0

We consider potentials only for which the intervals in r, for which V(r) <
E < V4 for any given energy value have a finite total length. Then there are
two types of solution:

i) bound states for E < V. there exist only solutions at discrete energy
eigenvalues E,;; the integer n is the principal quantum number used to
enumerate the eigenvalue, £ is the quantum number of angular momentum;

il) scattering states for E > V,: there is a continuous spectrum of eigenval-
ues Eg(k); it fills the domain Vo < E,(k).

In this chapter we deal with bound states only.
The radial wave function for a bound state with energy eigenvalue E,;
will be denoted by R,¢(r). It satisfies the radial Schrédinger equation

h? 1 d? off
s a2 T Vi (r) | Rne(r) = EngRne(r) . (7.12)
In the domains in r where Veeff(r) > E, the integral over the absolute square
of the wave function must be finite, otherwise the contributions to the potential
energy coming from these domains would diverge. Thus, the integral over the
absolute square of the bound-state wave function over the range 0 < r < o©
must be finite so that the integral over the absolute square of the radial bound-
state function can be normalized to one:

o0
/ Ry (DRy(r)rrdr=1 . (7.13)
0
Because the radial kinetic energy and the effective potential energy in (7.12)
are Hermitian operators, the eigenfunctions R, are orthogonal for different

principal quantum numbers, so that together with (7.13) we have the orthonor-
mality relation for the radial bound-state wave functions:

o0
f RYy(r)Rue(r)r? dr = 8, (7.14)
0
The total bound-state wave functions

Pnem () = Ry (r)Yem (9, @) (7.15)
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are orthonormal in all three quantum numbers », £, m,

/¢:/g/m/(r)(pn2m (rydv = Sn/n O¢re Smm (716)

because of the orthonormality of the radial wave functions (7.14) and of the
spherical harmonics (9.18).
The probability density

Ontm (®) = |@nem (@®)* = |Rue (M| Yem (D, @) 2 (7.17)

of a bound state described by the wave function ¢, ¢, (r) is a function of » and
¥ only. Because of (9.16) and (9.17) the ¢ dependence vanishes upon taking .
the absolute square of the spherical harmonics

204+1 (£ —|m])!
47 (£ + |m|)!

2 im| 2
Yem (3, 0)|> = (Pz (cosz?)) . (7.18)

Moreover, the probability density is a function of the modulus |m| of the mag-
netic quantum number. Altogether we have

20+ 1 — |m|)!
4 (£ + m|)!

2
Onem(r, ®) = | Rue(r)[? (P (cos 19)) . (1.19)

r: radial variable,

U': polar angle,

R, ¢ (r): radial wave function,

PelmI (cos ¥): associated Legendre function,
n: principal quantum number,

£: quantum number of angular momentum,
m: magnetic quantum number.

The zeros of the radial wave function, R,¢(r;) = O, appear in a plot of
Onem (r, ) over the coordinate plane of » and 9 as circular node lines of
radius r;. The zeros of the spherical harmonics, Y, (%}, ¢) = 0, appear as
node rays originating at the origin under the polar angles ;.

7.1.3 The Infinitely Deep Square-Well Potential

The infinitely deep square-well potential

0 ,r<a
oo, r >a

V() ={

confines the particle to a sphere of radius a. The solutions R, (r) of the radial
Schrédinger equation have to vanish for values r > a, otherwise they would
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give rise to infinite contributions of the potential energy for » > a. Thus, we
are looking for solutions of the radial Schrédinger equation

B2 1 d? off
—-2—-1‘7;—(1—,37 + V() ) Rue(r) = Ene(r) , O<r<a , (720

in the range 0 < r < a only. The solution has to be free of singularities
at r = 0 and has to vanish at r = a. This allows only for spherical Bessel
functions of the first kind jg(kr). The wave number & has to be determined
in accordance with the boundary condition at r = a. Thus, k = k,¢ has to be
chosen so that it is a zero of the Bessel function, i.e., jg(kyea) = 0. With the
normalization to one the solution is given by

5. ,1-172
Rop(r) = | | SUer1Cnea)?] " etkner) 0P a5
0 ,r>a

The energy eigenvalue is determined by the wave number,
Ene = B2k2,/2M . (7.22)

The principal quantum number n = 0, 1,2, ... is equal to the number
of nodes (zeros) of the spherical Bessel function j;(k,¢r) in the domain 0 <
r < a. The wave numbers k,; increase monotonically with n, as does the
energy eigenvalue E,,. A simple heuristic argument behind this is that the
radial kinetic-energy contribution increases with increasing curvature of the
wave function. The curvature itself grows monotonically with the number of
nodes.

7.1.4 The Spherical Step Potential

For many applications a potential with stepwise constant values with N re-
gions is a sufficient approximation:

Vi ,0=<r<n region 1
Vo, . n<r<n region 2
Vir)=4: : . (7.23)
VN_1,rN—2 <r <ry_jregion N — 1
Vv ,ry_1=<r region N

The eigenfunction
Onem(¥) = Rug(r)Yem (9, @)

belonging to the energy eigenvalue E,; is determined by the radial wave func-
tion Rp¢(r), which is a solution of the radial Schrodinger equation (7.12).
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Because the potential (7.23) is a stepwise constant function with N regions,
Ry¢(r) consists of N pieces Ryeq(r),q =1,..., N,

Ronn(r) ,0<r<nr region 1
Rupp(r) ,ri<r<n region 2
Rye(r) = 1 : : . (7.29)
Ryen_1(r) ,rN—2 <r <ry_jregion N — 1
Rpen(r) ,ry-1=r region N

The piece Ry ¢4 (r) fulfills the free radial Schrodinger equation

K21 d? £(€ + 1)A?
___.______r e —
2M r dr? 2Mr2

) Rneqg(r) = (Epe — Vq)Ran (ry . (725

For the solution R,¢, three cases have to be distinguished:

i) In regions with E,, > V, we obtain a real wave number

kneg = ‘,/2M(E,,g — Vq)/hl . (7.26)

The solution is a linear superposition of the two linearly independent spherical
Bessel functions j; and n¢, (9.31), (9.32),

Ran (r) = Anqu((knfqr) + anqné(knfqr) . (7.27)

ii) In regions with E,; < V, the wave number is purely imaginary:

kntg = ikntg »  Kntg = “/ZM(Vq _ Eng)/h‘ . (7.28)

The solution is a linear combination of the two linearly independent Hankel
functions A5, (9.33), (9.34),

Ratg(r) = Anegh' " (ikcnegr) + Bagghl ™ (knegr) . (7.29)

For the imaginary argument the Hankel functions are products of functions
Cz: (ikpeqr), which are complex factors multiplied by real polynomials of r1,
and of decreasing or increasing exponential functions,

A (ikneqr) = C?W : (7.30)

Kneg?

see (9.35), (9.36), (9.41).
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iii) The special case E,¢ = V,; of vanishing wave number leads to the solution
Rnﬂq (r) = Anfqre + Bneqr_(e-'-l) . (7.31)

The solution (7.24) has to satisfy two boundary conditions:

i) At the origin r = 0: there is an absence of singularities, as already discussed
in this section. Because the spherical Bessel function 7y is singular at r = 0,
see (9.40), this requires

B =0 , ie, Rpe(r) = Ane1jelknerr) . (7.32)

ii) In region N, ry_; < 'r: for bound states the energy eigenvalue E,; is
smaller than V., i.e., E,y < Vu, so that the wave function (7.29) in this
region is given by (7.30). The radial wave function has to vanish sufficiently
fast for r — oo to allow for the normalization (7.13). This is taken care of by
putting

Bun =0 , ie, Run(r) = Anunh™ (Gknegr) . (1.33)
The remaining discussion runs very much parallel to Sect. 3.1. The continuity
of the function R,,(r) and its derivative at the positions rq, ..., ry—1 poses
2(N — 1) conditions analogous to (3.22),
Rnoq(rg) = Rneg+1(rg) (7.34)
and dR dR
nlq nég+1
= (ry) = T—(rq) (7.35)
for the 2N — 2 unknown coefficients A,¢1, Ane2, Bneo, ..., Apen—1, Bnen—1,

Apen. For every value £ of angular momentum this is a homogeneous sys-
tem of 2N — 2 linear equations for an equal number of unknowns. It has a
nontrivial solution only if its determinant

Dy = Dy(E) (7.36)

vanishes. This leads to a transcendental equation for the energy eigenvalues
Engt
Di(Ene) =0 . (7.37)

In general, its solutions can only be found numerically; they are calculated
by the computer. Once the eigenvalue E,; is determined as a single zero of
(7.37) the system of linear equations (7.34), (7.35) can be solved yielding the
coefficients A,gy, Bney as a function of one of them. This last undetermined
coefficient is then fixed by the normalization condition (7.13).

The set of eigenfunctions of step potentials with Vy < oo is finite, thus
they do not form a complete set. In Chap. 8 we present the continuum eigen-
functions supplementing the discrete ones to a complete set of functions.
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7.1.5 The Harmonic Oscillator

The three-dimensional harmonic oscillator is described by the spherically
harmonic potential

1
V(r) = EMa)zrz , (7.38)

r: radius,
w: angular frequency,
M: mass of particle.

The radial eigenfunctions of the harmonic oscillator are, see (9.50),

£/2
r? r? 12 T 2
Rye = Npge > eXpl —- 3 Lnr — , (7.39)
oy 20, oy

0§ = h/(Mw): ground-state width of oscillator,
ny = (n — £)/2: radial quantum number,

n: principal quantum number,

£: angular-momentum quantum number,

Lf,:q/ 2, Laguerre polynomial, see (9.47),

n l2m e+
Ny = 3 normalization constant.  (7.40)
V2 + £) + Doy

The principal quantum number
n=2n+¢ , n=0,1,2,... , (7.41)
determines the energy eigenvalues of the bound states,
En=(n+3)ho . (7.42)

The eigenfunctions (7.39) form a complete set of functions of the radial vari-
able r. The full three-dimensional wave function is again obtained as a prod-
uct of the radial wave function R, ¢ and the spherical harmonic Y,,:

Onem () = Rn,f Y, @) . n=2n+¢ . (7.43)

They form a complete set of functions of the radius vector r.

Of course, the Hamiltonian of the three-dimensional harmonic oscillator
can be treated as a sum of three Hamiltonians of one-dimensional oscillators
(3.13) in the Cartesian coordinates x, y, and z. This leads to eigenfunctions

P inans @) = Oy (XDPn, Py (2) (7.44)
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which are products of one-dimensional oscillator wave functions @, (3.14).
Clearly, they belong to energy eigenvalues

E,=(n+3)ho , n=n+n+n3 , (7.45)

determined by the principal quantum number n, which is now simply the
sum of the three principal quantum numbers ny, na, n3 of the three one-
dimensional oscillators. Also the set (7.44) of eigenfunctions is complete.
In fact, the eigenfunctions @,¢,(r), (7.43), to a given eigenvalue E,, can be
superimposed as a linear combination of eigenfunctions (p,’” non (T) belonging
to the same energy eigenvalue. Thus, their indices ny, ns, n3 have to satisfy
the relation ny +ny +n3 = n.

7.1.6 The Coulomb Potential. The Hydrogen Atom

In the hydrogen atom an electron of mass M, carrying elementary charge
(—e) moves under the attractive Coulomb force of a proton of a mass M,
about 2000 times as heavy as the electron. The Coulomb potential

U@r) = - (7.46)

yields the potential energy of the electron upon multiplication with the charge
of the electron,
e’ 1

dmegr

Vir)=—-eU@) = — , (7.47)

r: radial variable,
e: elementary charge,
gg: electric-field constant.

The constant ¢?/(47eg), having the dimension of action times velocity, can
be expressed in units /¢ having the same dimension:

&2
= ohc (7.48)
4 ey
A = h/2m: Planck’s constant,
c: velocity of light.
The proportionality factor
a=1/137 (7.49)

is Sommerfeld’s fine-structure constant. The Coulomb potential energy now
reads o
V@)= —hc— . (7.50)
r
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The bound-state solutions R,¢(r) of the radial Schrodinger equation (7.12),
fulfilling the boundary condition without singularities at » = 0 and sufficient
decrease for r — 00, are given by

2 -1 f2r\ r\ aerr (27
Rne(r)_n2a3/2 (n+ 0! (E) eXp(_—E)L"_e_l na

(7.51)

r: radial variable,

n: principal quantum numbern =1,2,3, ...,

£: angular-momentum quantum number £ =0, 1, ...,n — 1,
a=h/(@Mc) = 0.5292 x 10719 m: Bohr radius,

M = MyM./(Mp + M) ~ M.: reduced mass of electron,
Mp: proton mass,

Me.: electron mass,

o = e2/(4meghc) = 1/137: Sommerfeld’s fine-structure constant,
e: elementary charge,

A: Planck’s constant,

&o: electric-field constant,

L’I‘]: Laguerre polynomial, see (9.47), (9.52).

The energy eigenvalues depend solely on the principal quantum number n:

1 ,a?

The factor in front of n~2 has the numerical value Mc?a/2 = 13.65¢eV.

7.1.7 Harmonic Particle Motion

In Sect. 6.1 we introduced the three-dimensional Gaussian wave packet of mo-
mentum expectation value pg. Its probability distribution can be characterized
by the probability ellipsoid, as discussed in Chap. 6. We calculate the motion
of a Gaussian wave packet with uncorrelated initial widths oy, oy, 0,0 of
initial momentum expectation value pp under the action of a harmonic force
(7.38). The center of the probability ellipsoid, which is initially at rest, moves
like

x(t) = xgcoswt + % sinwt

w
y(t) = ypcoswt + Pyo sinwt (7.53)
Mw
z(t) = zpcos wt + Pz0 sinwt
w

which represents the motion on an ellipse about the origin in the plane con-
taining the point r = 0 and the initial position ro = (xo, Y0, o) and being
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tangential to the initial momentum po = (pxo0, Pyo0, Pz0). As we have learned
in Sect. 3.1, (3.31), the width of a one-dimensional harmonic oscillator oscil-
lates with 2w, twice the oscillator frequency.

Further Reading

Alonso, Finn: Vol. 3, Chap. 3

Berkeley Physics Course: Vol. 4,8

Brandt, Dahmen: Chaps. 11,13

Feynman, Leighton, Sands: Vol. 3, Chap. 19
Fliigge: Vol. 1, Chap. 1D

Gasiorowicz: Chaps. 12,17

Merzbacher: Chap. 10

Messiah: Vol. 1, Chaps. 9,11

Schiff: Chaps. 3,4

7.2 Radial Wave Functions in Simple Potentials

Aim of this section: Illustration of the radial wave function R,;(r), the energy
eigenvalue spectrum E,¢, the potential V (r) and the effective potential Veeff(r) for
four types of potential: the infinitely deep square well, (7.21), (7.22), the square
well of finite depth, (7.27) for N = 2, the harmonic oscillator, (7.39), (7.42), and the
Coulomb potential, (7.51), (7.52).

A plot similar to Figs. 7.1-7.4 is produced, which may contain the following
items in a plane spanned by the radial coordinate r and the energy E:

e the potential V (r) and the effective potential fof(r) as dashed lines of dif-
ferent dash lengths,

e the eigenvalues E,; shown as short-stroke horizontal dashed lines,

e the radial wave functions Ry (r) (or simple functions of these) as 2D func-
tion graphs for which the graphical representations of the eigenvalues serve
as zero lines,

e the term scheme shown as a series of short lines at the positions E,; on the
right-hand side of the scale in E.

On the subpanel Physics—Comp. Coord. you can select the Type of Po-
tential (deep square well, square well of finite depth, harmonic oscillator,
Coulomb) and the way the Eigenfunction is Shown (R2,, Ry, r2R2,, r Rye).

ne’

On the subpanel Physics—Variables there are four items:

o Graphical item — The parameter £pasy determines the length of the dashes
in the graphical representation of the potentials and the eigenvalues.
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Three-Dimensional Deep Square Well
E

A Ro.(r) , L =0

100 A

Fig. 7.1. Plot produced with descriptor Radial wave functions: deep square-well
potential on file 3D_Bound States.des

Three-Dimensional Square-Well Potential with Finite Depth

RZ(r) =0

Fig. 7.2. Plot produced with descriptor Radial wave functions: square well of fi-
nite depthon file 3D_Bound States.des
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Three-Dimensional Harmonic Oscillator

Fig. 7.3. Plot produced with descriptor Radial wave functions: harmonic oscillator
on file 3D_Bound States.des

Coulomb Potential

rR,(r) , L =2

Fig. 7.4. Plot produced with descriptor Radial wave functions: Coulomb potential
on file 3D_Bound States.des
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e Scale Factor — The factor s determines the scale for the graphical represen-
tation of the wave functions. [Because these are plotted in the r, £ plane,
technically speaking £ = E,; + s R,¢(r) is plotted.]

o Clipping Rectangle for Potential — The lines showing the potential and the
effective potential are normally drawn only inside the ‘box’ given by the
ranges of the world coordinates X and Y. You can extend that box to the
left by the fraction f_X- of its original length in X. Similarly, f_X+,f_Y-, f Y+
extend the box to the right, bottom, and top, respectively.

o Items to be Plotted — Here you find four check boxes allowing you to select
some or all of the items listed at the beginning of this section.

The subpanel Physics—Potential contains three items:

e Angular-Momentum Quantum Number — For a multiple plot the value £ is
taken for the first plot and incremented by one successively from plot to
plot.

o Potential — Here you find the parameters for the chosen potential (the radius
a for the deep square well, the radius a and the depth Vj for the square well
of finite depth, the circular frequency w for the harmonic oscillator, and the
fine-structure constant « for the Coulomb potential).

e Search Parameters — There are three parameters determining the display and
the accuracy in the computation of eigenvalues and eigenfunctions:

— A maximum number of N_max eigenvalues is displayed. (Counting be-
gins with the lowest eigenvalue for the given angular momentum £.)

~ Eigenvalues are computed and shown only for energies smaller than
E_max.

— For the square-well potential of finite depth there is also the parameter
N_Search used for the numerical computation of the eigenvalues. The
range between the minimum of the potential and Epax is divided into
Nsearch intervals. The algorithm can find at most one eigenvalue in an
interval. Thus, if eigenvalues are dense Ngearcn has to be large.

Example Descriptors on File 3D_Bound States.des

e Radial wave functions: deep square-well potential
(see Fig. 7.1)

e Radial wave functions: square well of finite depth
(see Fig. 7.2)

e Radial wave functions: harmonic oscillator (see Fig. 7.3)

e Radial wave functions: Coulomb potential (see Fig.7.4)
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3D Step Potential
rR,(r) ,

H

3D Step Potential
rR,(r)

1l
~

0 1 2 3 4 0 2 3 4
¢ 3D Step Potentlal ¢ 3D Step Potential
rR,.(r) , L =2 A rR,(r) , L =3
5 5 1 !
0 01
-5 -5 =
-10 104
15 -15
~20 -20
r T T T T r r T T T T r
0 1 2 3 4 0 1 2 3 4

Fig. 7.5. Plot produced with descriptor Radial wave functions in step potential on
file 3D_Bound States.des

7.3 Radial Wave Functions in the Step Potential

Aim of this section: Computation and presentation of the radial wave function
Ry¢, (7.27), the energy-eigenvalue spectrum E,,¢, the potential V (r) and the effective
potential V;’ff(r) for the spherical step potential (7.23).

A plot similar to Fig. 7.5 is produced. As in Sect. 7.2 it may contain inanr, E
plane:

e the potential V (r) and the effective potential Veeff(r),
o the eigenvalues E,y,

e the radial wave functions R,¢ (or functions thereof),
e the term scheme next to the E axis.

On the subpanel Physics—Comp. Coord. you can select the way the Eigen-
function is Shown (R2,, Ru¢, r?R2,, r Rue).

The subpanel Physics—Variables is as described in Sect. 7.2.
The subpanel Physics—Potential contains five items:

¢ Angular-Momentum Quantum Number — Contains the value £. In a multiple
plot it is taken for first plot and incremented by one for every additional
plot.
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e Number of Regions — Contains the number N of different regions in the
spherical step potential (7.23),2 < N < 5.

o Regions — Here you find the boundaries 7; between regions and the potential
values V; for the different regions of the potential (7.23).

o Search Parameters — As described in Sect. 7.2 N_max is the maximum
number of eigenvalues displayed. FEigenvalues are computed only for
E < E_max. The range between the minimum of the potential and Epax
is divided into N_Search intervals. The algorithm searching for eigenvalues
can find at most one eigenvalue in an interval.

o Function D=D(E) — The eigenvalues E,; are found numerically as the zeros
of the functions D¢(E) = 0, (7.36). The function D;(E) may be Shown
or Not Shown. Because it is plotted in the r, E plane, technically speaking
the function r = rp + sp D¢(E) is presented. Here r_D is the position in r
corresponding to D = 0 and s_D is a scale factor.

Example Descriptor on File 3D_Bound States.des

e Radial wave functions in step potential (see Fig. 7.5)

7.4 Probability Densities

Aim of this section: Illustration of the probability density (7.17) describing a par-
ticle in an eigenstate of a spherically symmetric potential.

A plot similar to Figs. 7.6 to 7.9 is produced. It shows the probability density
Onem (7, U) of the eigenstate with quantum numbers #, £, m in a simple spher-
ically symmetric potential. The plot is of the type surface over polar grid in
3D. In addition to the probability density the plot contains

e the radial nodes as dashed lines,

o the polar nodes as dashed lines,

o in the case of a square-well potential the edge of the potential r = a as a
continuous line.

On the subpanel Physics—Comp. Coord. you can select the Type of Po-
tential (deep square well, square well of finite depth, harmonic oscillator, or
Coulomb).

On the subpanel Physics—Autom. Scale you can switch on (or off) an Au-
tomatic Scale. If it is on, the range in the computing coordinate z is set auto-
matically to extend from Zpeg = O t0 Zheg = SOmax. Here s is a Scale Factor on
the bottom of the subpanel and gmax is the maximum value which g4, (r, ¥)
can assume. This autoscale facility is particularly useful in multiple plots.
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Infinitely Deep Spherical Square—Well Potential Infinitely Deep Spherical Sguare—Well Potential

Infinitety Deep Sphericat Square-Well Potential

24, D)

Fig. 7.6. Plot produced with descriptor Probability density: deep square-well po-
tential on file 3D Bound States.des
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Fig. 7.7. Plot produced with descriptor Probability density: square-well potential
of finite depthon file 3D_Bound States.des
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Fig. 7.8. Plot produced with descriptor Probability density: harmonic oscillator
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Fig. 7.9. Plot produced with descriptor Probability density: Coulomb potential on

file 3D Bound States.des
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On the subpanel Physics—Potential you find three items:

o the Quantum Numbers n, ¢, m of the bound state (in a multiple plot £ is
incremented by one for each row and m for each column),

e the parameters of the Potential (radius a for the deep square well, radius a
and depth Vj for the square well of finite depth; for the harmonic oscillator
the circular frequency is set to @ = 1; for the Coulomb potential the fine-
structure constant is setto ¢ = 1),

e the Search Parameter which is used for the square well potential of finite
depth only. The total energy range between Epi, = Vo and Epax = O is
divided into N_Search intervals. In the search for the eigenvalues E,; at
most one eigenvalue can be found in an interval.

Example Descriptor on File 3D _Bound States.des

e Probability density: deep square-well potential (see Fig. 7.6)

e Probability density: square-well potential of finite depth
(see Fig. 7.7)

e Probability density: harmonic oscillator (see Fig. 7.8)

e Probability density: Coulomb potential (see Fig. 7.9)

7.5 Contour Lines of the Probability Density

Aim of this section: Generation of a plot with a line of constant probability density,
Onem (r, ©) = const, in the x, z plane for eigenstates in simple spherically symmetric
potentials.

In Sect. 7.4 plots of the complete functions gn¢, (r, ) are described. A quick
impression of the function is obtained by a contour-line plot in 2D, Sect.
A.3.4. This is a plot of the line g,¢m = c in the x, z plane with ¢ being a
suitably chosen constant. An example is Fig. 7.10. By ‘suitable’ we mean
the following: The x, z plane is divided into regions by node lines r; = const
and node rays ¥ = const, i.e., two families of lines on which gnem = O.
The constant ¢ has to be so small that a contour line appears in each region.
In other words: Since ¢ has a maximum in each region, ¢ should be chosen
smaller than the smallest of all these maxima.

On the subpanel Physics—Comp. Coord. you can select the Type of Po-
tential (deep square well, square well of finite depth, harmonic oscillator, or
Coulomb) and set the Rho Value o = ¢ corresponding to the contour line.

The subpanel Physics—Potential is as described in Sect. 7.4.

Example Descriptors on File 3D_Bound States.des

e Contour lines: deep square well
e Contour lines: square well of finite depth
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Fig. 7.10. Plot produced with descriptor Contour lines: hydrogen atom on file 3D_-
Bound States.des

e Contour lines: harmonic oscillator
e Contour lines: hydrogen atom (see Fig. 7.10)

7.6 Contour Surface of the Probability Density

Aim of this section: Generation of a plot with a surface of constant probability den-
sity onem = const, in x, y, z space for eigenstates in simple spherically symmetric
potentials.

The subject of Sect. 7.5 which was the construction of a line gnep (r, ¥) = ¢
in the x, z plane is extended to the construction of a surface g,em (x, v, 2) = ¢
in x, y, z space. For the choice of a suitable value of the constant ¢ we refer to
Sect. 7.5. The plot produced is of the type contour-surface plot in 3D, Sect.
A.3.5. An example is Fig. 7.11.
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Fig. 7.11. Plot produced with descriptor Contour surface: hydrogen atom, rho321 on
file 3D_Bound States.des

On the subpanel Physics—Comp. Coord. you can select the Type of Po-
tential (deep square well, square well of finite depth, harmonic oscillator, or
Coulomb) and set the Rho Value ¢ = ¢ corresponding to the contour surface.

The subpanel Physics—Potential is as described in Sect. 7.4.

Attention: The computer time needed for a contour-surface plot may be
several minutes. The progress in the construction is reported in the title bar of
the graphics frame.

Example Descriptors on File 3D_Bound States.des

e Contour surface: deep square well, rho321

e Contour surface: square well, rho32l

e Contour surface: harmonic oscillator, rho321

e Contour surface: hydrogen atom, rho321 (see Fig. 7.11)

7.7 Harmonic Particle Motion

Aim of this section: Illustration of the motion (7.53) of a Gaussian wave packet
in a harmonic-oscillator potential by plotting the probability ellipsoid at times #,
to + At, . ... (The illustration is restricted to wave packets with uncorrelated widths
Ox, 0y, 07. The probability density is then simply a product of three one-dimensional
densities as treated in Sect. 3.4.)
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Fig. 7.12. Plot produced with descriptor Harmonic particle motion (ellipsoids) on
file 3D_Bound States.des

A plot similar to Fig. 7.12 is produced. It is of the type probability-ellipsoid
plot, Sects. A.3.7 and 6.5.

On the bottom of the subpanel Physics—Comp. Coord. you find the Period
of the Harmonic Oscillator.

The subpanel Physics—Wave Packet is as in Sect. 6.5.

Example Descriptors on File 3D_Bound States.des

e Harmonic particle motion (ellipsoids) (see Fig. 7.12)

7.8 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo and selecting one of the demo files 3D_Bound States.
(i) For the following exercises use descriptor file 3D _Bound States.des.

(iii) The numerical values of the particle mass and of Planck’s constant are
putto 1.
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7.2.1 Use a multiple 2 x 2 plot to plot for the angular momenta £ =0, 1, 2, 3,
the radial wave functions of the infinitely deep square-well potential of radius
a = 0.9. Plot (a) the radial wave function R,¢, (b) r Ru, (¢) R2,, (d) r*R2,.
Start from descriptor 19.

7.2.2 (a—d) Repeat Exercise 7.2.1 (a—d) for the values £ = 4,5,6,7. Start
from descriptor 20. (e¢) Why are the wave functions for small values of r the
more suppressed the higher the values ¢ of angular momentum?

7.2.3 (a—d) Repeat Exercise 7.2.1 (a—d) with a width a = 0.5 of the infinitely
deep potential for an energy range 0 < E < 200. Start from descriptor 19.
(e) Why are the energy eigenvalues bigger for a smaller radius of the well?

7.2.4 (a—d) Repeat Exercise 7.2.3 (a—d) for the angular momenta ¢ = 4,5, 6, 7
in the energy range 0 < E < 1000. Start from descriptor 20.

7.2.5 (a—d) Repeat Exercise 7.2.1 (a—d) for a potential depth V; = —100.
Start from descriptor 11. (¢) Why are the differences A; = E; — Vj of the
energy eigenvalues E; and the potential depth Vj in this potential in the range
0 < E < 100 smaller than the eigenvalues in the infinitely deep square well
of Exercise 7.2.1?7

7.2.6 (a—d) Repeat Exercise 7.2.2 (a—d) for a potential of finite depth Vy =
—100. Start from descriptor 19. (e) Why do the wave functions exhibit for
small » values the same behavior as those of the infinitely deep square well?

7.2.7 Plot for a harmonic-oscillator potential V = Mw?r?/2 with the oscil-
lator frequency @ = 1 in the energy range 0 < E < 15for¢ = 0,1,2,3
(a) the radial wave function R,;, (b) rR,¢, (¢) R;%e’ (d) rzRﬁe. Start from
descriptor 3. (e) Explain in classical terms why the probability density per
radial shell, rzRfle, for large £ is largest close to the maximal elongation of

the radial oscillator.

7.2.8 (a—d) Repeat Exercise 7.2.7 (a—d) for the angular momenta £ = 4, 5, 6, 7.
(e) Why do the lowest energy eigenvalues no longer occur for larger £?

7.2.9 (a—d) Repeat Exercise 7.2.7 (a—d) for the angular momenta £ = 20, 21,
22, 23 for the lowest energy eigenvalues.

7.2.10 Repeat Exercise 7.2.7 for the angular momenta £ = 40, 41, 42,43,
Plot for the few lowest energy eigenvalues (a) the radial wave functions Ry,
(b) ¥Ry, (¢) R;%e’ (d) rzRﬁz. (e) Approximate the effective potential for
higher values £ of the angular momentum by an oscillator potential having its
minimum at the minimum of Veg(r). (f) Explain why the plotted wave func-
tions look very similar to one-dimensional oscillator wave functions. (g) What
is the effective oscillator frequency wet for the shifted approximate oscillator?
(h) How are the £ independence of wes and the equal spacing of the energy

levels related?

7.2.11 Plot for a Coulomb potential with @ = 1 in the range 0 < r < 30
for the lowest three energy levels (a) the radial wave function R,¢, (b) rR,¢,
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(c) Riz, (d rzsz. Start from descriptor 4. Use double plots for the presenta-
tion of the angular momenta ¢ = 0, 1. (e) Calculate the energies of the lowest
three levels for the two angular momenta.
7.2.12 (a—e) Repeat Exercise 7.2.11 (a—e) for £ = 2, 3.
7.2.13 (a—d) Repeat Exercise 7.2.11 (a—d) for £ = 20. (e) Calculate the equiv-
alent oscillator potential by an expansion of the effective potential about its
minimum. (f) Calculate the energy levels in the approximating oscillator po-
tential for n, < £ and compare them with the exact Balmer formula. (g) Com-
pare the position of the minimum with the value according to the formula for
the Bohr radii.
7.2.14 (a—d) Repeat Exercise 7.2.11 (a—d) for £ = 40.
7.3.1 The potential has the form
-20, O0=<r<1.5

0,15<r<?25
~10,25<r <35

0,35<r
Plot for £ = 0 (a) the wave function Ry, (b) r Rue, (¢) R2,, (d) r*R2,. Start
from descriptor 5. (e) Why is the wave function of the third state essentially
different from zero only in the second well?

7.3.2 (a—d) Repeat Exercise 7.3.1 (a—d) for £ = 1.
7.3.3 (a—d) Repeat Exercise 7.3.1 (a—d) for £ = 2.

Vir) =

7.3.4 For the potential
100, O0<r <05
Vir)=1-20,05<r<1.5
0,15=<r

plot in a 2 x 2 plot for the angular momenta £ = 0, 1, 2, 3 (a) the wave
function Ry, (b) Rﬁz. Start from descriptor 5. (¢) Why does the energy of the
second state vary so much less with increasing angular momentum than in a
single potential well without the repulsive hard core below r = 0.5?

7.4.1 (a) Plot the probability densities g,¢,, in an infinitely deep square well
of radius ¢ = 0.9 with a multiple plot forn = 1, £ =0,m = 0and n = 1,
£ =1,m =0, 1. Start from descriptor 21. (b) Explain the significance of the
node lines in the polar angle .

7.4.2 Repeat Exercise 7.4.1 (a) forn = 2.

7.4.3 (a) Repeat Exercise 7.4.1 (a) for n = 3. (b) What are the node half-
circles correlated to?

7.4.4 Repeat Exercise 7.4.1 (a) forn = 1, £ =2, m = 0,1 and n = 1,
£ =3, m = 0, 1. Which is the correlation between ¢ node lines and quantum
numbers?

7.4.5 (a) Repeat Exercise 7.4.1 (a)forn =1, £ =2, m=2andn =1, £ =3,
m = 2, 3. (b) At which angles do the © node lines occur?
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7.4.6 Repeat Exercise 7.4.1 (a) forn = 1, £ = 15, m = 15 in a single plot.
7.4.7 (a) Repeat Exercise 74.1 (a) forn = 1, £ = 15, m = 0 in a single
plot. (b) Explain the difference in this plot and the one of Exercise 7.4.6 (a)
in terms of classical angular momenta.

7.4.8 (a) Plot the probability densities 0,¢n in a three-dimensional harmonic
oscillator with a multiple plot forn, = 1,£ =0,m =0andn, = 1,¢ = 1,
m = 0, 1. Start from descriptor 8. (b) Why is the decrease of the wave
functions with growing r slower than for Exercise 7.4.1?

7.4.9 Repeat Exercise 7.4.8 (a) for n, = 2.
7.4.10 Repeat Exercise 7.4.8 (a) forn, =0, £ = 15, m = 15.
7.4.11 Repeat Exercise 7.4.8 (a) forn, =0,£ = 15,m = 0.

7.4.12 (a) Plot the probability densities g, in a Coulomb potential for the
quantum numbers n = 1, £ = 0, m = 0. Start from descriptor 9. (b) Why do
no states existforn =1, £ =1,m = 1?

7.4.13 (a) Repeat Exercise 7.4.12 using a multiple plot for the probability
densities for the quantum numbers n = 2, £ = 0,m = 0andn = 2,¢ =1,
m = 0, 1. (b) How do the nodes and the quantum numbers correspond to
each other?

7.4.14 (a) Repeat Exercise 7.4.12 (a) forn = 15, £ = 14, m = 14. Make
sure you extend your plot to large values of r by changing the C3 window in
x and y. (b) Why do you need a very large scale factor in z (unless you use
the autoscale facility) to see the peak in the probability density? (¢) Why does
the region of large values of p,4, occur at large r?

7.4.15 Repeat Exercise 7.4.12 (a) forn = 15, £ = 14, m = 0.

7.5.1 (a) Plot the contour lines for the deep square-well eigenstate with prin-
cipal quantum number n = 3 using descriptor 10. (b) Keep that plot on the
screen and produce the corresponding plot for n = 2. (¢) Now add the plot
for n = 1. (d) Compare the plots in terms of radial and polar nodes.

7.5.2 Repeat Exercise 7.5.1 for a square well of finite depth using descriptor
11.

7.5.3 Plot descriptor 10 (deep square well) and leave the plot on the screen.
Now plot descriptor 11 (square well of finite depth). (a) Compare the radial
extension of the contour lines. (b) Reduce the depth of the well to Vo = —3.
Discuss the slight change in radial extension (best visible for p310). Why are
there no plots for £ = 2?

7.5.4 Plot descriptor 12 (harmonic oscillator). You will get a plot for n; = 1.
Produce the corresponding plots for n, = 0,2, 3. Describe the change in
radial extension.

7.5.5 Plot descriptor 13 (Coulomb potential). Produce similar plots for n =
1,2,3, 4.
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7.6.1 Plot descriptor 17. After a computing time of up to several minutes (!)
you will get a contour-surface plot of the state n = 3, £ = 2, m = 1 for the
electron in the hydrogen atom. (a) Switch off the hidden-line technique in
the subpanel Graphics—Hidden Lines and plot again. Plotting will be much
faster. (b) Changeton = 3,£ =2, m = 0. (¢c) Change ton = 4, { = 2,
m = 0 and plot. The surface does not fit into the range of computing coor-
dinates. Therefore, on the subpanel Physics—Comp. Coord. replace every 20
by 30 (keeping the sign). Plot again. (d) Switch the hidden-line technique
on again and plot. (e) All plots displayed so far show the contour surface in
the half-space y > 0. To see it in full space set ypeg = —30, Ypeg = —1,
@end = 360. (You find these quantities on the subpanels Physics—Comp. Co-
ord., Graphics—Geometry, and Graphics—Accuracy, respectively.) To check
these settings you may first plot with hidden lines off and later, if satisfied,
with hidden lines on.

7.6.2 Plot (a) descriptor 14, (b) descriptor 15, (¢) descriptor 16. With each of
them you may perform a set of steps similar to those of Exercise 7.6.1.

7.7.1 (a) Plot the motion of a three-dimensional Gaussian wave packet in a
spherically symmetric harmonic-oscillator potential. As initial conditions use
XQ=3,yo= 1,20=2,Px0"—‘ l,py0=2,P10=3f0rT= 1, 15 = 0,
Ar = 0.1, N = 1. Start from descriptor 18. (b) Calculate the classical angular
momentum (%A = 1) for the initial conditions under (a).

7.7.2 Repeat Exercise 7.7.1 (a) for T = 0.5.

7.7.3 (a) Repeat Exercise 7.7.1 (a) for the initial conditions xg = 5, yo = 0,
20 =0, pxo = =2, pyo = 0, p,o = 0 for the time intervals Az = 0.1667 for
N = 4 positions. (b) Calculate the classical angular momentum.

7.7.4 Repeat Exercise 7.7.1 (a) for the initial conditions xo = 0, yo = 0,
20 = 0, pxo = 5, pyo = 0, p;o = 0 and the time intervals Ar = 0.0833 for
N = 10 positions.

7.7.5 (a) Repeat Exercise 7.7.4 for a Gaussian wave packet at rest, xg = 0,
yo=0,20=0, pxo =0, pyo =0, poo =0,0,0 =0.2,040 =0.3,0,0 = 1.4,
for the time interval Az = 0.25 for two positions (N = 2). (b) Why does the
shape of the wave packet change from prolate to oblate?



8. Scattering in Three Dimensions

Contents: Radial scattering wave functions. Boundary and continuity conditions.
Solutions for step potentials. Scattering of plane harmonic waves. Scattering-matrix
element. Partial scattering amplitude. Scattered wave as sum over partial waves.
Scattering amplitude as sum over partial scattering amplitudes. Differential cross
section. Total cross section. Partial cross sections. Scattering amplitude and phase.
Unitarity and the Argand diagram.

8.1 Physical Concepts

8.1.1 Radial Scattering Wave Functions

Besides the bound states as discussed in Chap. 7 there are continuum states for
potentials with Vo, < 00, (7.11). These states will be studied in this chapter
for a spherically symmetric step potential

Vi ,0<r <r regionl
Vo, ,r1 <r < ryregion 2

vin=1. o . 8.1)
Vn,ry—1 <r region N

Scattering states are continuum eigenfunctions of the stationary Schrodinger
equation (7.12) for eigenvalues E > V, i.e., in the case of the step potential
(8.1) for all the values E > Vy.

The wave number in the N regions is

D)if E > V,:
ke = |\2M(E = Vp)/n| 8.2)

or
i) if £ < V:

ke=iky o Kq=|\2M (Vg = E)/n| . 8.3)
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The radial wave function of angular momentum £ consists again of N pieces

Ry (k1, r) ,0<r<n region 1
Ry (ka, 1) L, rM<r<n region 2
Re(k,r) =4 : . (84)
Roen_1(kn_1,7) ,rN_2 <r < ry—_pregion N — 1
Ryn(kn, ) JIN-1 =7 region N

Here we have put
k= kN ) 0 =< k < oo s

as the wave number in the region N of incident and reflected wave.
The pieces Re,(ky,r), g = 1,..., N, of the wave function in the N re-
gions have the form

Riq (kqv r)= AquE(qu) + Bﬁan(qu) . (8.5)

For k, real,ie., £ > V. the spherical Bessel functions j; and n, are real so
that Ry, (kg, r) is a real function if Ag, and By, are real coefficients, as will
turn out in the following. Alternatively, with the help of (9.38), (9.39) the
pieces Ry,(ky,7), g = 1,..., N, of the wave function can be expressed in
terms of spherical Hankel functions, see Sect. 9.1.6,

Reg(kg, 7) = Deghl (kgr) + Fegh'" (kyr) (8.6)
with the coefficients
1 _ 1 ,
Dy, = _E(A“’ —iBy) and Fypy = Z(Aeq +iByg) . 8.7

For k4 real, ie., E > V,,

e—iqu

h (kgry = C; (8.8)

q"

is an incoming spherical wave, i.e., a spherical wave propagating from large
values of the radial distance r in region q toward the origin »r = 0. Analo-

gously, for k, real
ikyr

€
WP (kgr) = CF

kor (8.9)

is an outgoing spherical wave, i.e., a spherical wave propagating from small

values r in region q outward. Thus, in analogy to the one-dimensional case,

the wave function in a region g with k, real can be interpreted as a superposi-

S
¢

tion of an incoming, h,(;) , and an outgoing, , complex spherical wave.
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For scattering wave functions we have E > Vy, so that in region N the
wave number kp is real and hﬁ—) (knr) is the incident spherical wave, whereas

h§+) (knr) is the reflected spherical wave, of angular momentum £. For imag-
inary wave numbers k; = ikp, ie., E < V4, g # N, the scattering wave
R4 (ikg, r) in region g is a linear superposition of the real functions, see
9.41),

i—(f—l)h(_) (lK r) . i—(Z—l)C—ﬂ if+1h(+)(iK r) _ il+1c+ e’

£ q’ /= £ r ’ 14 q’/ = ¢,
(8.10)

Thus, for real coefficients (£i)~“*Di(4¢y £1Beg)/2 in

Reglikg, r) = % [(Aeq = iBegh{ Ggr) = (Arq +1Beg)h(P (ikgr) |
8.11)
the radial wave functions Ry, (i, r) are real. The physical interpretation of
Ry, (ikq, r) in a region g with E < 'V, is again the tunnel effect. Even though
the total radial energy of the particle is lower than the potential barrier the
wave penetrates the wall of height V,,.

8.1.2 Boundary and Continuity Conditions. Solution
of the System of Inhomogeneous Linear Equations
for the Coefficients

The two boundary conditions for scattering solutions are

i) At r = 0: Ry (k1, r) is free of singularities, Sect. 7.1. This requires
By =0 , ie., Re(ky,r)=Agpjetkir) , (8.12)

since the n,(k r) possess a singularity at r = 0.

ii) Atr — o0, i.e., inregion N we have to have an incoming and an outgoing
spherical wave. This is fulfilled by (8.6) in region N. For given boundary
conditions for large r we may assume that the coefficients Agy of the Bessel
functions jg(kr) in region N are known quantities. Further below in this
section we shall discuss the choice of the Ayy for the boundary condition
posed by an incoming plane wave.

As in Sect. 7.1, for the scattering solutions, the radial wave function
also has to be continuous and continuously differentiable at the points ry, ry,
..., rN—1 where the pieces Ry, (k;, r) have to be matched. The continuity
conditions pose 2(N — 1) inhomogeneous linear algebraic equations for the
2(N — 1) coefficients A1, A, Bea, ..., Aen—1, Ben—1, Beny. The coef-
ficient Agy given by the boundary condition constitutes the inhomogeneity
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of the system. Thus the 2(N — 1) unknown coefficients are uniquely de-
termined by the inhomogeneous linear equations in terms of the coefficient
Agn. The coefficient Agy can be chosen to be real. The functions j, and
ng are real in the regions with real kg, ie., E > V,, and the (:I:i)‘filhﬁi)
are real in the regions with imaginary k, = iky, i€, E < V;. Because
the coefficients of the linear system of 2(N — 1) equations are real, the so-
lutions A1, Agp, Beo, ..., Aen—1, Ben—1, Ben are real coefficients and thus
real functions of the incoming wave number k. Thus, the radial wave function
R¢(k, r) is a real function of k and r.

8.1.3 Scattering of a Plane Harmonic Wave

For the usual scattering experiment the particles possess a momentum p suffi-
ciently sharp to describe the incoming particles by a three-dimensional plane
harmonic wave with wave vector k = p/h. We choose the z direction e; of
the polar coordinate frame parallel to the momentum, i.e., p = hk = hke,.
The plane wave has the form (cos ¥ =k - r/kr)

(p(k, r) — eik-l‘ — eikZ — eierOSl? . (8.13)

According to (6.53) it can be decomposed into partial waves,

o0
ok, 1) = elkreos? — Z(ze + Ditje(kr) Pi(cos ®) . (8.14)
=0

This means that the incoming plane wave in region N is equivalently well
described by a set of partial waves of angular momentum ¢ and magnetic
quantum number m = 0. The radial wave function jy(kr) is a superposition
(9.38),

1 -

jelkr) = = [hff)(kr) — A} )(kr)] , (8.15)

i
of incoming and outgoing spherical waves ziihﬁ_)(kr) and %hf) (kr). The
incoming radial wave in region N is thus

. 1 _
Riy(k,r) = —ihfg Ykry (8.16)

for the moment leaving aside the weight factor (2¢ + 1)i¢ in the partial-wave
decomposition (8.14). To have the term (8.16) as the incoming spherical
wave in the solution of the Schrodinger equation we divide Ry (k, r), (8.4),
by (A¢ny — iB¢y) and obtain for the £th radial wave function

1
RV Kk, r)= ————Rek, 7). (8.17)
A¢ny —iBen
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Its piece in region N is then given by

1 1
RP &, r) = —Ehﬁ ) (kr) + Z&g(lc)lzf)(lcr) : (8.18)
The coefficient Aow 4 iB
eN +1D¢N
Seth) = ———r7— (8.19)
AN — 1BeN
being a function of the incoming wave number & = p/h, is called the

scattering-matrix element S; of the fth partial wave. It is the angular-
momentum projection of the § matrix. The function Réj\}) (k, r) can also be
rephrased in terms of jg(kr):

R (k,r) = je(kr) + %(Sz(k) — DA kr) . (8.20)

The coefficient |
fe(k) = Z(Se(k) -1 (8.21)

is called the partial scattering amplitude. It determines the effect of the po-
tential V (r) on the £th partial wave jg(kr) in the decomposition (8.14) of the
incoming plane wave. The representation (8.20) is the appropriate form for
the construction of the full three-dimensional stationary wave

e, 1) =) gelk, 1) (8.22)
£=0
with
@k, r) = (2¢ + iR (k, r) Py(cos 9) (8.23)

being the partial stationary wave of angular momentum £. The stationary
wave is the superposition

o &, r) = *T 4+ n(k, 1) (8.24)

of the incoming three-dimensional plane harmonic wave and the scattered
wave

o
ntk,r) =) netk.r) . (8.25)
£=0
The £th scattered partial wave ne(k, r) is given by

ne(k, ) = 2€ + D[RSV (k, r) — je(kr)]Pe(cos ©) . (8.26)

In region N the piece of the scattered partial wave ngy (k, r) has the explicit
representation

nen(k, ¥) = € + D)if £ (kr) Pe(cos #) . (8.27)
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For far out distances kr > 1 in region N, the function ngn(k, r), and
thus 7. (K, r), is dominated by the asymptotically leading term of the Hankel
function .

(+) e
hy '(kr) — i . , kr—>oc . (8.28)
r

This leads to the asymptotic representation

ikr
Py(cos®) , kr —> o0 . (8.29)

1
nek, r) - (20 + I)Efe(k)

r

In region N the total scattered wave is given by (8.25) and (8.27):
o0
nk, 1) =Y ne(k, 1)
£=0

o.¢]
=Y @0+ Dif fa)h( (kr)Po(cos®) , ryoi<r . (830)
=0
For asymptotic r values in region N, i.e., for kr > 1, the asymptotic
representation is again obtained from (8.28) yielding

ikr
nk,r) = fk, %) - (8.31)
with the scattering amplitude read off (8.29):
1 o0
[k, v) = A Z(ZZ + 1) fe(k)Pe(cos ) . (8.32)
£=0

This determines the modulation of the scattered spherical wave r~! exp(ikr)
in the polar angle .

Because of the fall-off of (8.31) the infinite sum (8.32) can be approxi-
mated by a finite sum :

L
nk,r)~ Y nek,r) , L>hkry-1 (8.33)
£=0

The stationary wave @) (k, r) is best approximated by inserting (8.33) in
(8.24),

L
ek, 1) ~ T+ ek, r) (8.34)
£=0

The density of particles driven by the potential out of the original beam
into the direction ¥ is given by |5 (K, r)|?, which is asymptotically (kr > 1)
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Ink, v)|* = | f(k, )I*/r® . (8.35)

The current AI of particles passing through a small area Aa vertical to the
ray from the scattering potential to the position of Aa at angle ¢ and distance
ris

A
Al = |n(k, v)*vAa = | f(k, 0)|2v—f =|fk,»)|*vAR2 .  (8.36)
r
The quantity
Aa
AR == (8.37)
r

is the solid angle under which Aa appears, seen from the origin.
The incident current density is the incident particle density times its ve-
locity,
i=le* Pv=v . (8.38)

Thus, the current Al of particles scattered into the solid angle A2 can be
written as
Al = |fk,9)PAR2 [ . (8.39)

The proportionality constant between the initial current density j and the cur-
rent through the solid-angle element AS2 is the differential scattering cross
section do /d$2:

do
Al = — A2 . 8.40
a0 2% (8.40)
Thus we identify
do 5
— = |fk, 9 (8.41)

dse
as the differential cross section for particles of momentum p = %K on a scat-
terer described by the potential V(r). The scattering amplitude f(k, ¥) is
given by (8.32).
The total scattering cross section is the integral of (8.41) over the total
solid angle 4 :

do +1
atotzf—d.Q =27r/ [k, ®)|>dcos® . (8.42)
ds2 1
Using the orthogonality (9.10) of the Legendre polynomials,
+1 2
Py D) Py(cos?)dcos? = Sere 8.43
/_1 & (cos ) Py( )dcos TR (8.43)

we get, using (8.32),

4 [o.0] o0
o = T3 2 Qe+ DIfetk) = o (8.44)
=0 =0
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with the partial cross section of angular momentum ¢:

4
o0 = k—’;(ze +DILBP (8.45)

8.1.4 Scattering Amplitude and Phase. Unitarity.
The Argand Diagram

In Chap. 4 we derived current conservation as the basis for the conservation of
probability. In three dimensions the same chain of arguments is valid. How-
ever, simple physical arguments lead to the same conclusion without calcula-
tions. Elastic scattering of particles on a spherically symmetric potential con-
serves particle number, energy, and angular momentum. Thus the magnitude
of the velocity remains unaltered in the scattering process. Because the parti-
cle number and angular momentum are conserved, this leads to conservation
of the current density of the spherical waves of angular momentum £. Thus
the incoming current of a spherical wave is only reflected upon scattering but
keeps its magnitude. Therefore, the complex scattering-matrix element S, de-
termining the relative factor between incoming and outgoing spherical waves
in region N must have the absolute value one. This is the unitarity relation
Jor the scattering-matrix element Sy:

SES, =1 . (8.46)

The scattering-matrix element can only be a complex phase factor, which is

conventionally written as .
S = e (8.47)

with the scattering phase &, of the (th partial wave. This is directly verified
by (8.19), which also shows that S, has modulus one:

Agn +1Bey

SZ = eZisg = - . (8.48)
A¢N —1BgN
The phase itself is then given by
A B
cosdyp = 2l sind; = Al (8.49)

vV A%N + BezN Y A%N + BZZN
The partial scattering amplitude fy(k) is given by (8.21) in terms of the

scattering-matrix element S,;. With (8.47) one easily expresses f¢(k) in terms
of the scattering phase &;:

fok) =€ sinde . (8.50)
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Starting from (8.46), (8.21) yields the unitarity relation for the scattering am-
plitude

Im fo(k) = | fe(k)* . (8.51)

This relation is verified by using (8.50) directly. The unitarity relation is easily
interpreted in the complex plane spanned by the real and imaginary parts of

fe(k):

1\ 1
(Re fo(k))? + (Im Sfe(k) — 5) =7 - 8.52)
This represents a circle of radius 1/2 about the center (0, 1/2) in that plane.
This circle is again referred to as the Argand diagram of elastic potential
scattering. The analogy to Sect. 4.1 is obvious.

8.1.5 Coulomb Scattering

We consider the scattering of a particle of charge g = e by a Coulomb field
originating from a charge Q = =e at the origin. The potential is

621

1
= :l:ahc— , (8.53)
4 gr

Vir) =

see Sect. 7.1.6. The potential is attractive, i.e., negative if g and Q carry dif-

ferent signs. Otherwise it is repulsive. The corresponding effective potential

is

h2 £ +1 h
“+1 4 @he

( r)= 5 (8.54)
r r
The radial Schrodinger equatlon reads
n? 1 d? ff
|: T Vi (r) | Retk,r) = ERg(k,r)
with k = +/2M E /A. Solutions exist for all positive energies E,
Ay .
Re(k,r) = Lk (kry T F (€ + 1 +in|2(€ + D) |2) . (8.55)
r

Here
a(a+1) z2
Fa|blg=1+-——+——-
(alblz) = +b1' e i
is the confluent hypergeometric function. The series defining it converges for
all complex values of z. The factor Ay is

14

A 2 e bre 41 4 i)
=— ¢ i
YN 1
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with I"(z) being Euler’s Gamma function. The dimensionless parameter 7 is

" 1 h
= _— , arR —
" kag B aMc

with ap the Bohr radius.
In analogy to (8.22) the stationary partial waves are

ve(K, 1) = (2¢ + Dite® Ry(k, r) Po(cos 9) (8.56)

where the so-called Coulomb scattering phase 8y resulting from the asymp-
totic behavior of Ry(k, r) is

1. I'¢+1+in

p==—=In———F—

2 I'(t+1—in)
Here, as in Sect. 8.1.3, it is assumed that the incoming wave runs in z direc-
tion, k = ke;.

The total stationary wave, the Coulomb wave function, is

ok, 1) =Y gik1) . (8.57)
£=0

Its asymptotic form is given by

i{kr cos ©+nIn[kr(1—cos #)]}

ok, r) > e r(1 —cos )| - co

and exhibits the long range of the Coulomb potential Zice/r through the log-
arithmic term in the exponent. The infinite sum (8.57) can be replaced by a
finite sum

L
ok, 1)~ ) go(k, ) (8.58)
£=0

for small r, r < L/(Rk).

Further Reading

Alonso, Finn: Vol. 3, Chap. 7

Berkeley Physics Course: Vol. 4, Chaps. 8,9
Brandt, Dahmen: Chaps. 11,12,14,15
Feynman, Leighton, Sands: Vol. 3, Chaps. 19
Fliigge: Vol. 1, Chap. 1D

Gasiorowicz: Chaps. 11,24

Merzbacher: Chaps. 11,19

Messiah: Vol. 1, Chaps. 10,11

Schiff: Chap. 5
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Jo) Re(r)

Fig. 8.1. Plot produced with descriptor 3D scattering in step pot., R El, E fixed,
1 running on file 3D_Scattering.des

8.2 Radial Wave Functions

Aim of this section: Presentation of the spherical step potential V (r), (8.1), and of
the radial wave function Rg¢(k, r), (8.4), in that potential.

A plot similar to Fig. 8.1 or Fig. 8.2 is produced displaying the spherical step
potential V (r) as a long-dash broken line, the total energy E as a short-dash
horizontal line, and the radial wave function Ry(k, r) (or a simple function
thereof) as a continuous line.

On the subpanel Physics—Comp. Coord. you can select the way the Radial
Wave Function is Shown (as R%e, REy, rZR%e, or r Rg¢). Moreover, you can
choose to Plot the Result for

1. fixed energy E, various values of angular momentum £ (i.e., over an r, £
plane like in Fig. 8.1) or for

2. fixed angular momentum ¢, various values of energy E (i.e., over an r, E
plane like in Fig. 8.2).

Please note: If you choose option 1, make sure that you draw R, (r) for
every integer value of £ in your range of £: Choose integers for Ypeg, Yena (On
the subpanel Physics—Comp. Coord.) and set n,, (on the subpanel Graphics—
Accuracy) equal to | Ypeg — Yend| + 1.
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\/(r), E RE,3(F)

Fig. 8.2. Plot produced with descriptor 3D scattering in step pot., R El, 1 fixed,
E running on file 3D_Scattering.des

On the subpanel Physics—Variables there are five items:

o You can choose whether the Input Below (in the next item) is Taken as wave
number k or energy E.

o Wave Number / Energy — Corresponding to the choice in the item above the
input field is labeled k or E. Input is enabled only if the option ‘fixed energy’
was chosen on the subpanel Physics—Comp. Coord..

o Angular-Momentum Quantum Number — Input for the quantum number £ is
enabled only if the option ‘fixed angular momentum’ was chosen on the
subpanel Physies—Comp. Coord.. In a multiple plot the value of £ is taken
for the first plot and incremented by one from plot to plot.

o Graphical ltem — contains the quantity ¢pasg which determines the dash
length of the broken lines.

¢ Scale Factors — Because the wave function Rgy(r) is plotted in an », E plane
with the total energy Eio as zero line, technically speaking the function
E = Ei + sREge(r) is shown. The scale factor s can be adjusted here.

On the subpanel Physics—Potential you find the Number of Regions N of
the spherical step potential (8.1), 2 < N < 5. Under the heading Regions
you find the boundaries r; between regions and the potential values V; for the
different regions.
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Example Descriptors on File 3D_Scattering.des

e 3D scattering in step pot., R El, E fixed, 1 running
(see Fig. 8.1)

e 3D scattering in step pot., R El, 1 fixed, E running
(see Fig. 8.2)

8.3 Stationary Wave Functions
and Scattered Waves

Aim of this section: Presentation of the stationary wave function e (r, ), (8.22),
approximated as e'¥? + Zf=0 ne(r, 9), (8.34), the partial waves gy (r, ), (8.23), the

scattered spherical wave n(r, ), (8.30), approximated as Zf=0 ne(r, ¥), the partial
scattered waves n¢(r, ©), (8.26), (8.29).

A plot is produced showing the function selected and in addition one or
several circular arcs corresponding to the step positions r; of the step potential.

On the subpanel Physics—Comp. Coord. you can select as the Function
Computed

o the partial stationary wave gy, .
e the stationary wave ¢ approximated by ei? 4 Z%:o ne,
o the scattered wave n approximated by Zé:o Ne.

Moreover, you can choose the way the selected Function is Shown (absolute
square, real part, imaginary part).

R PSRN
VAN
iy 'z“‘:\\\““i‘%\\\\\
sty

||ll,l!

_¢5::‘.'.';'I’;;,’;;;, ;

s

Fig. 8.3. Plot produced with descriptor 3D scattering in step pot., |phi|**2 on file
3D_Scattering.des
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Re oqr,®) Re o4r,®)

Fig. 8.4. Plot produced with descriptor 3D scattering in step pot., phi 1 on file
3D _Scattering.des

LbnG 12, L = 5

<

Fig. 8.5. Plot produced with descriptor 3D scattering in step pot., |eta|**2 on file
3D _Scattering.des

On the subpanel Physics—Variables there are three items:

e You can choose whether the Input Below (in the next item) is Taken as wave
number k or energy E.

o Wave Number / Energy — Corresponding to the choice in the item above the
input field is labeled k or E.

o Angular-Momentum Quantum Number — This is the quantum number £ (if
you choose to plot a partial wave ¢; or 1) or the upper index L in the sum
approximating ¢ or # (if you choose to plot one of these two functions). In
a multiple plot the input value of £ (or L) is taken for the first plot. It is
successively incremented by one from plot to plot.

The subpanel Physics—Potential is as described in Sect. 8.2.
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Re nolr,®) Re nyr,®)

e

Fig. 8.6. Plot produced with descriptor 3D scattering in step pot., eta_l on file
3D_Scattering.des

Example Descriptors on File 3D_Scattering.des

e 3D scattering in step pot., |phi|**2 (see Fig.8.3)
e 3D scattering in step pot., phi_l (see Fig. 8.4)
e 3D scattering in step pot., |eta|**2 (see Fig.8.5)
e 3D scattering in step pot., eta 1 (see Fig. 8.6)

8.4 Differential Cross Sections

Aim of this section: Illustration of the differential cross section do/ds2, (8.41).

A plot similar to Fig. 8.7 is produced showing, over a plane spanned by the
variables cos ¢ and E, various curves do(cosv)/dS2 for equidistant fixed
values of E. For the same fixed values of E dashed lines do/d§2 = O are
also shown. The differential cross section is computed according to (8.41).
The scattering amplitude f (k, ) appearing in that equation is approximated
by replacing the infinite sum (8.32) by a finite sum in which the index £ runs
from¢ =0to £ = L. '

On the subpanel Physics—Variables you find

o the Angular-Momentum Quantum Number L, i.e., the upper index of the sum
used in the approximation of do/d$2 (In a multiple plot this value of L is
used for the first plot and incremented by one for every following plot.),

e as Graphical ltem the dash length £pasy of the zero lines.

The subpanel Physics—Potential is as described in Sect. 8.2.
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Fig. 8.7. Plot produced with descriptor 3D scattering in step pot., dsigma/dOmega
on file 3D_Scattering.des

Example Descriptor on File 3D Scattering.des

e 3D scattering in step pot., dsigma/dOmega (see Fig. 8.7)

8.5 Scattering Amplitude. Phase Shift.
Partial and Total Cross Sections

Aim of this section: Ilustration of the complex partial scattering amplitude
Je, (8.21), (8.50), in the following graphs: the Argand diagram Im {f,(E)} vs.
Re{fe(E)}; Re{fe(E)} as function of energy E; Im{ f¢(E)} as function of energy
E; |f((E)|2 as function of energy E as well as the phase shift 8;(E), (8.49), as a
function of energy E; the partial cross section oy (E), (8.45), as a function of energy
E; and the total cross section oy, (8.44), approximated by oot = Z?:() op(E) as a
function of energy E.

On the bottom of the subpanel Physics—Comp. Coord. there are two fields
with choices to select from:

o Curve Shown is of Type. The type can be
— Argand diagram: Im f;(E) vs. Re f¢(E),
— y = y(x) — normally chosen if Argand diagram is not selected,
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0 > Ref, 0

(8]
[=}
(8]

w2

—————> Ref, ——

Fig. 8.8. Combined plot produced with descriptor 3D scattering in step pot., Ar-
gand, combined plot on file 3D_Scattering.des. This descriptor quotes four other de-
scriptors which generate the four individual plots

— x = x(y) — only chosen to produce plot Re f;(E) as plot below Argand
diagram (bottom-left plot in Fig. 8.8).

e Function Computed is — This choice is enabled only if the Argand diagram
was not selected. You then choose to plot one of the six functions | f¢ (E )|2,
Re f¢(E), Im fo(E), 8¢(E), 0e(E), Y o 0¢(E).

On the subpanel Physics—Variables you find the

e Angular-Momentum Quantum Number ¢ [or L if you chose to plot Zf:o
o¢(E)], which, in case of a multiple plot, is taken for the first plot and
incremented by one for every successive plot, and the

o Range of E in Argand Diagram — input for the boundaries Epeg, Eeng Of that
range is enabled only if Argand diagram was selected as curve to be shown.

The subpanel Physics—Potential is as described in Sect. 8.2.
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Fig. 8.9. Part of plot produced with descriptor 3D scattering in step pot., delta 1l
on file 3D_Scattering.des
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Fig. 8.10. Part of plot produced with descriptor 3D scattering in step pot., sigma 1
on file 3D_Scattering.des

Remarks: It is customary to draw an Argand diagram [Im { f;(E)} vs.
Re { f¢(E)}] and graphs Im { f¢(E)} and Re {f;(E)} in such a way that the
graphs appear to be projections to the right and below the Argand diagram,
respectively. You can do that by using a mother descriptor, which in turn
quotes several individual descriptors (see Appendix A.9) as in the example
plot, Fig. 8.8.

Example Descriptors on File 3D _Scattering.des

e 3D scattering in step pot., Argand, combined plot
(see Fig. 8.8, this is a mother descriptor quoting the next four descriptors
listed below, each describing one of the four plots in the combined plot)

e 3D scattering in step pot., Argand, imaginary part vs. real
part

e 3D scattering in step pot., Argand, imaginary part

e 3D scattering in step pot., Argand, real part

e 3D scattering in step pot., Argand, delta 1

e 3D scattering in step pot., delta 1 (see Fig.8.9)
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Fig. 8.11. Plot produced with descriptor 3D scattering in step pot., sigma_tot on
file 3D_Scattering.des

e 3D scattering in step pot., sigma 1 (see Fig. 8.10)
e 3D scattering in step pot., sigma tot (see Fig.38.11)

8.6 Coulomb Scattering: Radial Wave Function

Aim of this section: Presentation of the Coulomb potential V (r), (8.53), and of the
radial wave functions Ry (k, r), (8.55), in that potential.

A plot similar to Fig. 8.12 or Fig. 8.13 displaying the Coulomb potential V (r)
as a long-dash broken line, the total energy E as a short-dash horizontal line,
and the radial wave function (or a simple function thereof) as a continuous
line.

Please note: The numerical values of «, A, and M are set equal to one
and cannot be changed.

On the subpanel Physics—Comp. Coord. you can select the way the Radial
Wave Function is Shown (as R%e’ REey, rZR%e, or r Rgg). Moreover, you can
choose to Plot the Result for

1. fixed energy E, various values of angular momentum £ (i.e., over an r, £
plane like in Fig. 8.12) or for
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Fig. 8.12. Plot produced with descriptor Coulomb scattering, R E1, E fixed, 1 run-
ning on file 3D_Scattering.des

rRelk,r)

Fig. 8.13. Plot produced with descriptor Coulomb scattering, R El1, 1 fixed, E run-

ning on file 3D_Scattering.des
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2. fixed angular momentum ¢, various values of energy E (i.e.,overanr, E
plane like in Fig. 8.13).

Please note: If you choose option 1, make sure that you draw Rg,(r) for
every integer value of £ in your range of £: Choose integers for Ypeg, Yend (0N
the subpanel Physics—Comp. Coord.) and set n, (on the subpanel Graphics—
Accuracy) equal to | ypeg — Yend| + 1.

On the subpanel Physics—Variables there are six items:

¢ Under the heading Coulomb Potential is you can choose between Attractive
and Repulsive.

e You can choose whether the Input Below (in the next item) is Taken as wave
number & or energy E.

e Wave Number / Energy — Corresponding to the choice in the item above the
input field is labeled k or E. Input is enabled only if the option ‘fixed energy’
was chosen on the subpanel Physics—Comp. Coord..

e Angular-Momentum Quantum Number — Input for the quantum number £ is
enabled only if the option ‘fixed angular momentum’ was chosen on the
subpanel Physics—Comp. Coord.. In a multiple plot the value of £ is taken
for the first plot and incremented by one from plot to plot.

o Graphical ltem — contains the quantity £pasy which determines the dash
length of the broken lines.

o Scale Factor — Because the wave function Rgg(r) is plotted in an r, E plane
with the total energy E as zero line, technically speaking the function
E = Et + s REge(r) is shown. The scale factor s can be adjusted here.

Example Descriptors on File 3D_Scattering.des

e Coulomb scattering R El, E fixed, 1 running (see Fig. 8.12)
e Coulomb scattering R "El, 1 fixed, E running (see Fig. 8.13)

8.7 Coulomb Scattering: 3D Wave Function

Aim of this section: Presentation of the stationary Coulomb wave function p(k, r),
(8.57), approximated as ¢ = Zf:o @¢, (8.58), and of the partial stationary waves
¢e(k, 1), (8.56).

On the subpanel Physics—Comp. Coord. you can select as the Function Com-
puted:

e the partial stationary wave ¢y or
o the Coulomb wave ¢ approximated as Z(%:o -

Moreover, you can choose the way the selected Function is Shown (absolute
square, real part, imaginary part).



8.8. Exercises 173

On the subpanel Physics—Variables there are four items:

o Under the heading Coulomb Potential is you can choose between Attractive
and Repulsive.

¢ You can choose whether the Input Below (in the next item) is Taken as wave
number k or energy E.

o Wave Number / Energy — Corresponding to the choice in the item above the
input field is labeled k or E.

o Angular-Momentum Quantum Number — This is the quantum number £ (if
you chose to plot a partial wave ¢;) or the upper index L in the sum approx-
imating ¢ (if you chose to plot ¢). In a multiple plot the input value of £
(or L) is taken for the first plot. It is successively incremented by one from
plot to plot.

Please note: The numerical values of «, 4, and M are set equal to one
and cannot be changed.

Example Descriptors on File 3D_Scattering.des

e Coulomb scattering |phi|**2 (see Fig. 8.14)

S
N\iy’,,;o

y
',

ITbe(r, N2, L = 25 -

Fig. 8.14. Plot produced with descriptor Coulomb scattering, |phi|**2onfile3D_Scat-
tering.des

8.8 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo and selecting one of the demo files 3D_Scattering.
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(ii) For the following exercises use descriptor file 3D _Scattering.des.

(iii) The numerical values of the particle mass and of Planck’s constant are
putto 1.

8.2.1 Plot the free radial wave functions for the momentum p = 0.75 and the
angular momenta (a) £ = 0,1,2,...,10, (b) £ = 11,12,...,20, (¢) £ =
21,22, ..., 30. Start from descriptor 19. (d) Why is the wave function close
to zero in a range adjacent to r = 0 and why does this range grow with
increasing £?

8.2.2 Plot the free radial wave functions for the energy range 0.01 < E < 10
for(@}f{ =0,b)2=1,()¢ =2,(d)¢ = 3, (e) £ = 10. Start from
descriptor 20.

8.2.3 Repeat Exercise 8.2.2 for the energy range 0.01 < E < 1 and for the
angular momenta (a) £ = 6, (b) £ = 8, (¢) £ = 10. (d) Why does the range of
very small values of the wave function decrease with increasing energy if £ is
kept fixed?

8.2.4 Plot the radial wave functions with angular momentum £ = O for the
repulsive potential

10,0<r <6
Vi = 0,6<r
for 10 energy values for the range (a) 1 < E < 10, (b) 9 < E < 12. Start
from descriptor 20.

8.2.5 (a) Plot the phase shift §, for the repulsive potential of Exercise 8.2.4
for the energy range 0.001 < E < 30 for the angular momentum ¢ = (. Start
from descriptor 21. (b) Read the energy values of the first two resonances off
the plot.

8.2.6 Plot the radial wave functions for the angular momentum £ = O for an
energy range about (a) the first, (b) the second resonance as determined in
Exercise 8.2.5 (b) for the potential of Exercise 8.2.4. Start from descriptor 20.

8.2.7 Repeat Exercise 8.2.5 for angular momentum £ = 1.
8.2.8 Repeat Exercise 8.2.6 for angular momentum £ = 1.

8.2.9 (a,b) Repeat Exercise 8.2.5 (a) and (b) for the lowest resonance in angu-
lar momentum £ = 2. (¢) Why do the resonance energies for resonance wave
functions with the same number of radial nodes increase with increasing an-
gular momentum?

8.2.10 Repeat Exercise 8.2.6 for the lowest resonance in angular momentum
=2
8.2.11 Plot the radial wave functions for the potential
0,0<r<15
Vir)y=4310,15<r <2
0,2<r



8.8. Exercises 175

in the energy range 0.01 < EF < 20for(a)£ =0, (b) £ =1, (c) £ = 2,
(d) £ = 10. Start from descriptor 20.
8.2.12 Plot the radial wave functions for the potential of Exercise 8.2.11 for
the values 0 < £ < 10 for the energies (a) E =0.1,(b) E =1,(c) E =9.9,
(d) E = 20. Start from descriptor 19.
8.2.13 Plot the phase shift 8, for the potential of Exercise 8.2.11 for the energy
range 0.01 < E < 40 for the angular momenta (a) £ = 0,(b)£ = 1,(c) £ = 2,
(d) £ =23,(e) £ =6, (f) £ = 8 and for the energy range 0.01 < E < 60 for
the angular momenta (g) £ = 10, (h) £ = 13. Start from descriptor 21.
8.3.1 Plot the absolute square of the wave function, |¢(r, ¥)|?, as a function
of the radial variable r and the polar angle ¢ for the repulsive potential
V(r)={6,0§r<2

0,2<r
for the energy values (a) £ = 3, (b) E = 6.5, (c) E = 10. Start from
descriptor 22.

8.3.2 Plot the absolute square of the wave function, |¢(r, 9)|2, for the potential
of Exercise 8.3.1 for the energy of the lowest resonance in (@) £ = 0 (Eyes =
7, ()€ =1 (Ers = 8-5)3 (©) € =2 (Ews = 10)3 de=3 (Eres = 11-9)-
Start from descriptor 22.

8.3.3 Plot the partial wave functions ¢,(r, ?) for the potential of Exer-
cise 8.3.1 for the energy £ = 3 and the angular momenta (a) £ = 0, (b) £ = 1,
@=2,@e=3,((=40HL=5@L{=06ML=7 ()¢ =28.
Start from descriptor 22.

8.3.4 Repeat Exercise 8.3.3 for a free particle [i.e., V(r) = 0 everywhere] and
compare the results with the ones of 8.3.3.

8.3.5 Repeat Exercise 8.3.3 for the energy £ = 9 and compare the results
with the ones of 8.3.4.

8.3.6 Repeat Exercise 8.3.1 for the absolute square of the scattering wave
In(r, 9)12.

8.3.7 Repeat Exercise 8.3.2 for the absolute square of the scattering wave
In(r, 9)I%.

8.3.8 Repeat Exercise 8.3.3 for the partial scattering waves n¢(r, 9).

8.3.9 Repeat Exercise 8.3.5 for the partial scattering waves ne(r, 9).

8.3.10 Plot the partial scattering waves n,(r, ) for the potential of Exer-
cise 831for(@ ¢ =0,E =7, 0L =1,E=7 ()¢ =2,FE =1,
Me=3E=7,(&){=0,E=85H¢=1,E=85,(g)¢ =2, E =8.5,
he=3E=850¢=0E=10,(j))¢=1,E=10,(k) £ =2, E =10,
Me¢ =3E=10,m<¢ =0,FE =119, M) ¢ = 1,E = 11.9,
©0¢=2,E=11.9,(p) ¢ =3, E=11.9. Start from descriptor 21.
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8.4.1 For the repulsive spherically symmetric potential
V(r)={3,05r<2

0,2<r
plot the differential cross section do/dS2 for the energy range 0.001 < E < 6
divided into 10 intervals for the summation of angular momentaupto (a) L =
0,(b) L=1,(¢c)L=2,...,() L = 8. Start from descriptor 7. (j) Why is
the differential cross section obtained in (a) independent of cos ©?
8.4.2 Repeat Exercise 8.4.1 for a summation up to L = 30 for the energy
ranges (a) 40 < E < 50 and (b) 4000 < E < 5000. Start from descriptor 7.
(c) Calculate the wavelengths (M = 1, A = 1) for E = 50 and E = 5000.
(d) How does the cross section in the forward direction decrease for increasing
energy?
8.4.3 For the attractive spherically symmetric potential
Vi) = -3,0<r<?2

0,2<r

plot the differential cross section do/dS2 for the energy range 0.001 < E < 6
divided into 10 intervals for the summation of angular momenta up to (a) L =
0, L=1()L=2,...,(i) L =8. Start from descriptor 7.
8.4.4 Repeat Exercise 8.4.3 for a summation up to L = 30 for the energy
ranges (a) 40 < E < 50 and (b) 4000 < E < 5000. Start from descriptor 7.
(c) Compare the results with those in Exercise 8.4.2.

8.4.5 Compare the differential cross sections for the repulsive and attractive
potentials of Exercises 8.4.1 and 8.4.3 for low energies 0.001 < F < 0.1.
Plot for the repulsive potential (a) L =0, ..., (d) L = 3 and for the attractive
potential (e) L =0, ..., (h) L = 3. Start from descriptor 7. (i) Why are the
cross sections for the attractive potential at low energies larger than those for
the repulsive potential?

8.5.1 For the potential

3,0<r<?2
Vi) = {0 2<r
plot for £ = 0 and 0.001 < E < 6 (a) the Argand plot fy(E), (b) Im fo(E),
(c) Re fo(E), (d) 80(E), (e) the combined plot of (a—d). Start from the de-
scriptors (a) 9, (b) 10, (c) 11, (d) 12, (e) 8. (f) Read the lowest resonance
energy off the plot of the phase §g.
8.5.2 (a—e) Repeat Exercise 8.5.1 (a—e) for the energy range 0.001 < E < 20.
(f) Read the two lowest resonance energies E), E; and the corresponding
phase values 8¢1, 8oz off the plot for 8o. (g) Calculate the values fo(E1),
Jo(E>) from the phases 81, 80;.
8.5.3 (a—e) Repeat Exercise 8.5.2 (a—) for £ = 1. (f) Read the lowest reso-
nance energy off the plot of the phase §;.
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8.5.4 (a—e) Repeat Exercise 8.5.2 (a—e) for £ = 2. (f) Read the lowest res-
onance energy off the plot of the phase 8;. (g) Explain the increase of the
lowest resonance energies as £ increases from O to 2.

8.5.5 For the potential
0,0<r<?2

Vin=14{4,2<r<25
0,25<r

plot for £ = 0 and 0.001 < E < 20 (a) the Argand plot fy(E), (b) Im fo(E),
(¢) Re fo(E), (d) 6o(E), (e) the combined plot of (a—d). Start from the de-
scriptors (a) 9, (b) 10, (c) 11, (d) 12, and (e) 8. (f) Read the lowest resonance
energies off the plot of the phase 8g. (g) Give a rough estimate of the reso-
nance energies by calculating the bound-state energies of an infinitely deep
square well of width 2.

8.5.6 (a—e) Repeat Exercise 8.5.5 (a—e) for £ = 1.
8.5.7 (a—e) Repeat Exercise 8.5.5 (a—e) for £ = 2.

8.5.8 Plot for the potential of Exercise 8.5.5 in the energy range 0.001 < E <
8 the partial cross sections o for (a) £ = 0,1,2,3,(b) £ = 4,5,6,7. Start
from descriptor 14.
8.5.9 Plot for the potential

0,0<r<?2
Vr)=310,2<r <25

0,25<r
in the energy range 0.001 < E < 20 the partial cross sections oy for
@¢=0,1,2,3 (b) £ = 4,5,6,7. Start from descriptor 14. (c) What is
the significance of the small peaks in the plot? (d) For zero angular momen-
tum calculate the first few energy eigenvalues of an infinitely deep square well
of equal width. (e) Why are the energy values of the peaks for £ = 0 in the
plot (a) smaller than the energies calculated under (d)?

8.5.10 (a) Plot for the potential of Exercise 8.5.5 in the energy range 0.001 <
E < 8 the total cross section obtained by summation of angular momenta up
to L = 15. Start from descriptor 14. (b) Compare the value for £ = 0.001
with the value of the partial cross section oy at this energy. (c) Calculate the
total classical cross section for the scattering on a hard sphere of radius 2.5.
8.5.11 Plot for the repulsive square-well potential

Vo,0<r <2
V“)z{o,zgr
in the energy range 107> < E < 0.01 the total cross section oy for the
summation up to L = 3 for (a) Vp = 10, (b) Vp = 100, (¢) Vy = 1000,
(d) Vp = 10000, (e) Vo = 100000. Start from descriptor 14. Read the values
of oot at E = 1073 off the plots. (f) Compare the values with the limiting
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formula o (E = 0) = 4mwd? for an infinitely high repulsive square-well
potential of width d. ‘

8.6.1 Produce a plot with descriptor 16. Leave it on the screen. Produce
a second plot and change the potential from attractive to repulsive. The two
plots on the screen look rather similar but there are subtle differences. Explain
them.

8.6.2 Produce a plot with descriptor 17. Set £ = 10. Explain the behavior
of the radial position ro(E) where the function r R1g(k, ) starts to be signifi-
cantly different from zero.

8.7.1 Produce a plot with descriptor 18. Study the contributions of the differ-
ent partial waves ¢y by setting the angular momentum to zero and producing
a multiple plot with 5 rows and 5 columns (a) for ¢, (b) for Zﬁzo ©r.

8.7.2 Repeat Exercise 8.7.1 for an attractive potential.



9. Special Functions of Mathematical Physics

Contents: Discussion of the most important formulae and construction of plots
for some functions of mathematical physics relevant to quantum mechanics. These
functions are Hermite polynomials, Legendre polynomials and Legendre functions,
spherical harmonics, Bessel functions and spherical Bessel functions, and Laguerre
polynomials. Directly related to some of these and also discussed are the eigenfunc-
tions of the one-dimensional harmonic oscillator and the radial eigenfunctions of the
harmonic oscillator in three dimensions and of the hydrogen atom.

9.1 Basic Formulae

9.1.1 Hermite Polynomials

The Hermite polynomials are solutions of the differential equation

d’H dH,
47~ X tH, =0, =01 . 9.1)

They can be computed from the recurrence relation
Ho(x)=1 , Hi(x)=2x |,

H,(x) =2xH,_1(x) —2(n — 1)H,2(x) , n=2,3,... , (9.2
or from Rodrigues’ formula
n

Hy(x) = (—1)"e* d(in e 9.3)

and satisfy the orthogonality relation

/ Hy)Hp(x)e ™ dx=0 , n#m . (9.4)

179

S. Brandt et al., Interactive Quantum Mechanics
© Springer Science+Business Media New York 2003



180 9. Special Functions of Mathematical Physics

9.1.2 Harmonic-Oscillator Eigenfunctions

The eigenfunctions of the one-dimensional harmonic oscillator also known as
the Hermite—Weber functions are

2
On(x) = (V7 2"nlog) "% H, x exp X , n=0,12,... ,
00 202

0
9.5)
with
op=+Vh/mw

where m and w are the mass and angular frequency, respectively. The eigen-
functions are orthonormal,

f On(X)Pm(x)dx = 8pm . 9.6)

—00
9.1.3 Legendre Polynomials and Legendre Functions
The Legendre polynomials solve the differential equation

d2P,(x) dP,(x)

2 —
1 —-x%) 2 —2x P +l+1DP(x)=0 , £=0,1,2,... .
9.7
They follow from the recurrence relation
Px)=1 , Px)=x |,
€+ DPr1(x) = 2L+ DxPe(x) —£P1(x) , £=1,2,... , (98)
or from Rodrigues’ formula
1 dt .,
and satisfy the orthogonality relation
1
/ Pi(x)P,(x)dx =0 , £#n . (9.10)
-1

The associated Legendre functions are solutions of the differential equation

d> P dpy m?
2 £ £
(l—x)dx2 —2xv+|:.£(ﬁ+1)—ﬁ-x—2i|P£"=0 )
£=0,1,2,... , m=0,1,...,¢ . 9.11)

With Plp (x) = Py(x) they can be obtained from the recurrence relation
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P™(x (2’") — x2yn2

’

L+ DxP(x) = —m+ I)PZ‘H(x) +E+m)P" (x) (9.12)
or from

Plr(x) = (1— xz)m/zdi—'tnpe(x) . (9.13)

They are orthogonal:

1
/P,;"(x)Pg"(x)dx=o . L#n . (9.14)
-1

9.1.4 Spherical Harmonics

The spherical harmonics solve the differential equation

1 8 . 0Yem 1 3%m
— s L+ 1Yy, =0 9.15
535 505 + o 992 +LUl+DYep 9.15)

and can be expressed by the associated Legendre functions,

[2¢ +1 (¢ —m)! .
Yom(, ) = (=1)™ 4—+Ee—+-"—%P;"(cos 9™, 0<m<t
T m).

9.16)
For negative m values one defines
Yom = (—l)mYZ|m| , m<0 . ©.17)
The first few spherical harmonics are
Y()():; Y10= -3—00519
' NZT 2 ; Van ’
Yiq1= _1/5% sin® el | Yo0= 1671(3 cos?y —1) ,
Yo1=— gs sin® cos ¥ el? | Yo0=./ 3125 sin? © e2i®
The spherical harmonics are orthonormal,
+1 2
f 1 /0 Ye*/m/(ﬁ, VYo (P, @)dcos¥ dp = 8pedmim - (9.18)

The absolute square of a spherical harmonic is directly proportional to the
square of the associated Legendre function with the same indices, (9.16):

20+ 1 —m)!

T Am €+ )|[P£n(COSﬁ)]2 . (9.19)

Yem (D, 9)|* =
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9.1.5 Bessel Functions

Bessel’s differential equation

&Z,(x)  dZ,(x)
2 v v
X ) X o +
is solved by the Bessel functions of the first kind J, (x), of the second kind
(also called Neumann functions) N,(x), and of the third kind (also called

Hankel functions) H,fl)(x) and Hlfz) (x), which are complex linear combina-
tions of the former two. The Bessel functions of the first kind are

e v . (—l)kx2k
Mx)‘(i) §4"k!1"(v+k+1) ; ©.21)

x2 = v)Zy(x) =0 (9.20)

where I"(z) is Euler’s Gamma function
o0
rz+n= / tfe”tdr . 9.22)
0
It fulfills the relations
ry=1, rge=vo , re+bh=2@ , (9.23)
which lead for integer arguments n > 1 to the identification
'n+1)=n! . (9.24)
The Bessel functions of the second kind are

Ny(x) =

[Ju(x)cosvmr — J_,(x)] . (9.25)

smvmw

For integer v = n
Jon(x) = (=1)"Jn(x) (9.26)

and N, (x) has to be determined from (9.25) by the limit v — n. The modified
Bessel functions are defined as

L(x)=e "2, %x) , —m<agx<m/2 . 9.27)
The Hankel functions are defined by
HO(x) = J,(x) +iNy(x) (9.28)

HP(x) = J,(x) —iNy(x) . (9.29)
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9.1.6 Spherical Bessel Functions

The differential equation

d? d
x* ji(zx) +2x Zjix) + [xz — L+ 1)] z2e(x) =0 (9.30)

with integer £ is solved by the spherical Bessel functions of the first kind

Je(x) = ,/%Jul/z(X) , (9.31)

the spherical Bessel functions of the second kind (also called spherical Neu-
mann functions)

ne(x) = —,/%Nul/z(x) = (=D (x) (9.32)

and the spherical Bessel functions of the third kind (also called spherical Han-
kel functions of the first and second kind)

Ry () = ne(x) +ije(x) = ilje(x) — ine(x)] = \/7 Hy)\ () . (9.33)

h (@) = ne(x) — ije(x) = —lm(x)+me<x>]——1,/ Hé%)l/2<x>

(9.34)
The spherical Hankel functions can be written in the form
) N e:tix
hy ' (x) =C, Pl (9.35)
where .
. I (C+s)! .
+ _ £ s
Ci = (i) Z 5 g T (9.36)
is a polynomial in 1/x. Expliculy, the first few Hankel functions are
e:D:i)c ) 1 e:I:i)c
AP =-— , nP = (:Fl + —) : (9.37)
x x/) x
By inversion of (9.33) and (9.34) we obtain
e = 52 [0~ O] (9.38)

and
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1 -
ne(x) = 3 [P @ +r7w] (9.39)
of which the first few are simply
. sin x . sinx cosx
Jo(x) = s Jilx) = 5 )
x x x
Cos x cosx  sinx
no(x) = , mx) =—
x X X

The behavior of the spherical Bessel and Neumann functions for small x is

12

. X -
]g(x) — W . ng(x) - (2£ — 1)”x (e+1) . x—>0 ,
(9.40)

with
24+DN=1x3x5x.---x2¢L+1)

The hgi) for purely imaginary argument x = in can be expressed as

£
. 1 (€ +s)! Fn
h® (i) = (zFl)““Z T 'E £+3’ +) SCT . 94D

Thus ie"'lhl(f) (in) is a real function of 5. Its asymptotic behavior for large n
is —n
i#hPhn) > — . oo . (9.42)
n

Introducing the result (9.41) into (9.38) and (9.39) we get for the spherical
Bessel and Neumann functions expressions which can be made explicitly real
by appropriate powers of the imaginary unit:

(=)jeln) . ilngdin)

9.1.7 Airy Functions

Closely related to the Bessel functions are the Airy functions Ai(x) and Bi(x).
They are solutions of the differential equation

d2
(@ - X) f(X) =0
and are given by

1 2 2
5«/; I_y/3 (—x3/2) — I3 (_x3/2)} , x>0
Ai(x) = 1 3 3 3 )
IVE -3 (§|x|3/2) + Jis3 (glxlm)} , x<0
(9.43)
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and

X 2 2
\/;{1_1/3 (§x3/2>+11/3 (§x3/2)} s x>0
Bi(x) =

2 2
\/g {1_1/3 (§|x|3/2) — Jis3 (§|x|3/2)} , x<0

9.1.8 Laguerre Polynomials
The Laguerre polynomials solve the differential equation

d?L%(x)
dxz

dLY (x)

x +(a+1—x)T+nLg(x)=0

They are given by the recurrence relation
Lix)y=1 , Li=a+1—-x ,

(n+ DL () = @n+a+1—x)LEx) — (1 + ) LI (x)
or by the explicit formula

n

LEx) =) (=1)

j=0

I'(@+n+1x/
Frn—j+HIr(e+j+Dj!

or by Rodrigues’ formula
1 e d"
o _ n+a ,—x
L,,(X)———n!x—a—] —(x""%e™)

and satisfy the orthogonality relation

oo
f LI(x)Ly(x)x“e ™ dx=0 , n#m
0

9.1.9 Radial Eigenfunctions of the Harmonic Oscillator

185

9.44)

(9.45)

(9.46)

9.47)

(9.48)

(9.49)

The radial eigenfunctions of the three-dimensional harmonic oscillator are

Rur(@) = Nueo® exp (—0%/2) L (?)
with

Nat =/ (rel28+42) [([208 + np) + 111/703),
Cm+DN=1%x3x5%x---x 2m+1),

(9.50)



186 9. Special Functions of Mathematical Physics

¢ = r/oo,

r: radial distance from origin,

00 = +/A/Mw: ground-state width,
ne= (n—20)/2,

n: principal quantum number,

£: angular-momentum quantum number.

They are orthonormal:

o0 r r 2
Rul— VRue| — Vrodr =68, . 9.51)
0 i} [¢]4]

9.1.10 Radial Eigenfunctions of the Hydrogen Atom

The radial eigenfunctions of the electron in the hydrogen atom are
2r\* r 2r
Rue(r) = N, (—) exp (-— ) L2, (—) 9.52)
na na na
with

Nue = 20— €= DI (n + 0/(a>*n?),
n: principal quantum number,

£: angular-momentum quantum number,
a: Bohr’s radius,

r: radial distance from origin.

They are orthonormal:

f Rue(P) Rpe (X dr = 8, . (9.53)
0

9.1.11 Gaussian Distribution and Error Function
The probability density of a Gaussian distribution with mean xo and width o

1S
1 (x — x0)?
vt 39

Its distribution function or cumulative probability distribution is the mono-
tonically increasing function

fx) =

F(X)=/x fGHdx' 3 F(-00)=0 , F(o0)=1

For the special values xo = 0, 0 = 1/+/2 the probability density takes the
simple form
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1 2
f&x) = ﬁe

Two integrals, closely related to the distribution function F (x) of this partic-
ular probability density, are the error function

erf(x) = — / Ty (9.55)

xX) = — .
VT Jo

and the complementary error function

erfc(x):% / e dx . (9.56)

9.1.12 Binomial Distribution and Poisson Distribution

We consider a simple experiment, e.g., the throwing of a coin, which yields
one of two possible results labeled

k=0 , k=1
The probabilities to obtain these results are
Pk=D=p , Pk=0)=1-p

If one performs » independent experiments, then the probability to obtain k
times the result « = 1 is

P(k):W;:(Z)pka—p)"—k , k=0,1,....n |, (9.57)
with
!
Ve L = 1x2x3x--xn , O=11=1
k)~ ki(n — k)

The set of probabilities (9.57) is the binomial distribution. In the limit
n— oo , A=np=const

it turns into the Poisson distribution

k

A
Pk, 1) = Fe*A ) (9.58)

Further Reading

Messiah: Vol. 1, Appendix B
Abramowitz, Stegun, Chaps. 6,7,8,9,10,14,22,26
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Fig. 9.1. Plot produced with descriptor Hermite polynomials on file Math Functions-
.des

9.2 Hermite Polynomials and Related Functions

Aim of this section: Illustration of the Hermite polynomials H, (x), (9.2), and of
the eigenfunctions ¢, (x) of the one-dimensional harmonic oscillator, (9.5).

At the bottom of the subpanel Physics—Comp. Coord. you can select between

o Hermite Polynomials H, (x) and
o Eigenfunctions of 1D Harmonic Oscillator ¢, (x).

On the subpanel Physics—Variables you find the Index n. If you ask for
a multiple plot, this value of n is taken only for the first plot. It is increased
successively by 1 for every further plot. If you choose the harmonic-oscillator
functions you can decide to plot either ¢, (x) or (¢, (x))2.

Example Descriptors on File Math Functions.des

e Hermite polynomials (Fig.9.1)
e Eigenfunctions of 1D harmonic oscillator
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Fig. 9.2. Plot produced with descriptor Associated Legendre functions on file Math -
Functions.des

9.3 Legendre Polynomials and Related Functions

Aim of this section: Illustration of the Legendre polynomials P¢(x), (9.8), the as-
sociated Legendre functions P;*(x), (9.12), and the absolute squares | Y, 12, (9.19),
of the spherical harmonics.

At the bottom of the subpanel Physics—Comp. Coord. you can select between

e Legendre Polynomials P;(x),
e Associated Legendre Functions P;"(x),
e Absolute Squares |Y,,,|* of the Spherical Harmonics.

On the subpanel Physics—Variables you find — for the choice P; — the
Index £. For the choices P,” and |Yem|? you find the Indices £ and m. In a
multiple plot these values are taken for the first plot. For the choice P; the
index £ is incremented by 1 for each further plot. For the choices P;" and
|Yem|? the index £ is increased horizontally (from column to column) and the

index m vertically (from row to row).

Example Descriptors on File Math Functions.des

e Legendre polynomials
e Associated Legendre functions (see Fig. 9.2)
e Absolute squares of spherical harmonics
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Fig. 9.3. Plot produced with descriptor Spherical harmonics as surfaces over Car-
tesian gridon file Math Functions.des

9.4 Spherical Harmonics:
Surface over Cartesian Grid

Aim of this section: Illustration of the spherical harmonics Y, (4, ), (9.16), as
surfaces over a Cartesian grid spanned by ¢ and ¢.

At the bottom of the subpanel Physiecs—Comp. Coord. you can select to dis-
play one of three aspects of the function:

o the Absolute Square |Y;,, (9, ¢)|?,
e the Real Part Re Y,,,, (%, @), or
o the Imaginary Part Im Y;,,, (9, ¢).
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Under the heading Indices you find the two indices £ and m.

In a multiple plot the index m is incremented by 1 from column to column.
In the first row the selected aspect of the function is shown, in the second row
the next aspect (i.e., the one following in the list above — if the list is exhausted
the first in the list is taken), and so on.

Example Descriptor on File Math Functions.des

e Spherical harmonics as surfaces over Cartesian grid (see Fig.
9.3)

9.5 Spherical Harmonics: 2D Polar Diagram

Aim of this section: Illustration of the absolute value |Yy,,| or the absolute square
| Yem |2, (9.19), of the spherical harmonics as 2D polar diagram.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to plot

o |Yin|? or
® [Yeml.

5
Zo5 t g
-25 p

.5 I

Y,

-5-250 25 5
—> X
1Y 4,0l 1Y 44
5 ———
1
s : R
NS S
_25 F i i
_5 P
-5-250 25 5
—> x
1Y 5l 1Yy 4 1Yy,
1 — 5 T . ——
1 I I
5t o R s+ ! g zos b ! E
|
Poloe] top < I HEO,
-5 F j -25 f | 1 -25 | ‘ 1
1 L _5 N _5 L
-1-50 5 1 -5-250 .25 5 ~5-250 25 5
— X —> X —> X

Fig. 9.4. Plot produced with descriptor Spherical harmonics as 2D polar diagrams
on file Math Functions.des
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These two functions depend only on the polar angle ¢ and are non-negative
everywhere. They can therefore be illustrated as 2D function graph of the
type polar diagram, see Sect. A.3.3.

On the subpanel Physics—Variables you find the two Indices £ and m. In
a multiple plot £ is incremented by one from row to row and m from column
to column.

Example Descriptor on File Math Functions.des

e Spherical harmonics as 2D polar diagrams (see Fig. 9.4).

9.6 Spherical Harmonics: Polar Diagram in 3D

Aim of this section: Illustration of the absolute value |Yg,,| or the absolute square
| Yem |2, (9.19), of the spherical harmonics as polar diagram in 3D.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to plot
e |Yom|? or

o [Yeml.

There you also find the values of the Indices £ and m. In a mulitiple plot £ is
incremented by one from row to row and m from column to column.

1Y gl
1Y 4ol 1Yyl
,:k\}“.’l/%i
TN
1Y Py ANz

\“» \t\\w//ﬁ/’l\j‘s

A
(A
\ &

Fig. 9.5. Plot produced with descriptor Spherical harmonics: polar diagram in 3D,
cut open on fileMath Functions.des
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There is an Automatic Scale facility. If it is switched on, the scale factor
between world and computing coordinates is set automatically to a reason-
able value. (More precisely, the surface shown in world coordinates will just
touch a cube with a half-edge length which is the maximum of the absolute
values of Xvpeg, Xend, Ybeg> Yend> Zbeg» Zend Which define the ranges of world
coordinates.)

Example Descriptors on File Math Functions.des

e Spherical harmonics: polar diagram in 3D
e Spherical harmonics: polar diagram in 3D, cut open
(see Fig. 9.5)

9.7 Bessel Functions and Related Functions

Aim of this section: Illustration of the Bessel function J,(x), (9.21), and of the
modified Bessel function I,,(x), (9.27), for integer index n. Illustration of the spher-
ical Bessel functions j;(x), (9.31), and spherical Neumann functions rng(x), (9.32),
for purely real and purely imaginary arguments, and of the spherical Hankel func-

tions of the first kind hf), (9.41), for purely imaginary arguments.

On the bottom of the subpanel Physics—Comp. Coord. you can select one of
the following functions:

Bessel Function Bessel Function 1 Bessel Function
T T T T T T T T T T T
Jo Jy 2
‘r 0 T 0 [\7/\/\,47/\/\/\/& ‘r 0 Z\/\/\Aﬁv‘\/\ﬁ
] L 1 ) L _1 | | L ) ] L L . .
0 0 20 30 40 S0 0 10 20 30 40 50 0 0 20 30 40 50
—> x - x x
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T T T T 1 T T T T 1 T T T T
I3 By Js
o AAAAANAA | T ARAANAA] | o FASAAAAAN
] | 1 L 1 1 1 | | . 1 L s ) L
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Bessel Functien Bessel Function Bessel Function
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s I Js
f o~ fors P o
1 . 1 1 L 1 L 1 1 L 1 1 1 | L
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
— x B x X

Fig. 9.6. Plot produced with descriptor Bessel function on file Math Functions.des
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o Bessel Functions J,(x),

o Modified Bessel Functions 7,,(x),

o Spherical Bessel Functions j;(x),

o Spherical Neumann Functions n,(x),

o Spherical Hankel Functions of purely imaginary argument i“lh?) (ix),
o Spherical Bessel Functions of purely imaginary argument (—i)* j, (ix),
o Spherical Neumann Functions of purely imaginary argument i**1n, (ix).

On the subpanel Physics—Variables you find the Index n or £ which can
only be a non-negative integer. For a multiple plot it is incremented by one
from plot to plot.

Example Descriptors on File Math Functions.des

e Bessel function (see Fig. 9.6)

e Modified Bessel function

e Spherical Bessel function

e Spherical Neumann function

e Spherical Hankel function of purely imaginary argument
e Spherical Bessel function of purely imaginary argument
e Spherical Neumann function of purely imaginary argument

9.8 Bessel Function and Modified Bessel Function
with Real Index

Aim of this section: Illustration of the Bessel function J,,(x), (9.21), and of the
modified Bessel function 7,,(x), (9.27), as surfaces over a Cartesian grid spanned by
the (real) argument x and the (real) index v.

At the bottom of the subpanel Physics—Comp. Coord. you can choose one of
the two functions

o Bessel function J,(x),
o Modified Bessel function 7, (x).

There is also a Cut-Off Facility, which, if On, limits the surface shown to the
Range of Computing Coordinates in z.

Example Descriptors on File Math Functions.des

e Bessel function J(x,nu) (see Fig. 9.7)
e Modified Bessel function I(x,nu)
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Fig. 9.7. Plot produced with descriptor Bessel function J(x,nu) on file Math Func-
tions.des

9.9 Airy Functions

Aim of this section: Illustration of the Airy functions Ai(x), (9.43), and Bi(x),
(9.44).

On the subpanel Physics—Comp. Coord. you can select one of the two func-
tions

¢ Airy function Ai(x),
e Airy function Bi(x).
Example Descriptors on File Math Functions.des

e Airy function Ai(x) (see Fig. 9.8)
e Airy function Bi(x)

9.10 Laguerre Polynomials

Aim of this section: Illustration of the Laguerre polynomials L% (x), (9.46). II-
lustration of the radial eigenfunctions R, ¢(0), (9.50), of the three-dimensional har-
monic oscillator (oo = 1). Illustration of the radial eigenfunctions R, (o), (9.52),
of the electron in the hydrogen atom, where the Bohr radius is set equal to 1.
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Fig. 9.8. Plot produced with descriptor Airy function Ai(x) on file Math Functions-
.des
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Fig. 9.9. Plot produced with descriptor Laguerre polynomials on file Math Functions-
.des
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On the bottom of the subpanel Physics—Comp. Coord. you can select one of
the three functions: '

o Laguerre Polynomials L,
 Radial Eigenfunctions of 3D Harmonic Oscillator R, ¢,
o Radial Eigenfunctions of Hydrogen Atom R,,.

On the subpanel Physics—Variables you find the two Indices for the se-
lected function. In a multiple plot the first index is incremented by one from

column to column and the second index from row to row.

Example Descriptors on File Math Functions.des

e Laguerre polynomials (see Fig. 9.9)

e Radial eigenfunctions of 3D harmonic oscillator
e Radial eigenfunctions of hydrogen atom

9.11 Laguerre Polynomials as Function of x
and the Upper Index «

Aim of this section:

THustration of the Laguerre polynomials LS (x), (9.46), as

surfaces over a Cartesian grid spanned by x and «.

Laguerre Polynomial

Laguerre Polynomial

“\
XK
M@ P
ORI
R O

Fig. 9.10. Plot produced with descriptor Laguerre polynomial L(x,alpha) on file

Math Functions.des
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On the bottom of the subpanel Physics—Comp. Coord. you find the lower
index n (which in case of a multiple plot is incremented by one from plot to
plot). There is also a Cut-Off Facility, which, if On, limits the surface shown to
the Range of Computing Coordinates in z.

Example Descriptor on File Math Functions.des

e Laguerre polynomial L(x,alpha) (see Fig. 9.10)

9.12 Gaussian Distribution

Aim of this section: Illustration of the probability density f(x), (9.54), of the
Gaussian distribution.

On the subpanel Physics—Comp. Coord. under the heading Variables you find
the mean X_0 and the width sigma_x of the distribution.

You may show a total of n graphs. The first has the width sigma_x. It is
incremented by Delta_sigma_x from graph to graph.

Example Descriptor on File Math Functions.des

e Gaussian distribution (see Fig. 9.11)
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Fig. 9.11. Plot produced with descriptor Gaussian distribution onfileMath Functions-
.des
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Fig. 9.12. Plot produced with descriptor Complementary error function erfc(x) onfile
Math Functions.des

9.13 Error Function and Complementary
Error Function

Aim of this section: Illustration of the error function erf(x), (9.55), and of the
complementary error function erfc(x), (9.56).

On the subpanel Physics—Comp. Coord. you can select one of the two func-
tions

o Error Function erf(x),
o Complementary Error Function erfc(x).

Example Descriptors on File Math_Functions.des

e Error function erf(x)
e Complementary error function erfc(x) (see Fig. 9.12)

9.14 Binomial Distribution

Aim of this section: Illustration of the binomial probability P (k) = W[, (9.57).
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On the subpanel Physics—Comp. Coord. under the heading Variables you find
the parameter p which determines the binomial distribution for a given value
of n. The distribution is shown in one plot for all values of n between n = 0
and n = n_max. In a multiple plot the parameter p is increased by Delta p
from plot to plot.

Example Descriptor on File Math Functions.des

e Binomial distribution (see Fig. 9.13)
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Fig. 9.13. Piot produced with descriptor Binomial distribution onfileMath Functions-
.des

9.15 Poisson Distribution

Aim of this section: Ilustration of the Poisson probability distribution P (k, 1),
(9.58).

For a fixed value of the parameter A, the distribution P(k, 1) is represented
by a histogram, which is a set of columns of the height

P@, %), P(1,%), ..., P(kmax, A)

We show several such histograms for different values of A by placing these
sets of columns in a plane spanned by & and A, see Fig. 9.14.
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Fig. 9.14. Plot produced with descriptor Poisson distribution on fileMath Functions-
.des

In the subpanel Physics—Comp. Coord. you find the Range of the Param-
eter A defined by the values A_beg and A_end and the number of histograms
n_HIST shown within that range. The Range in k extends between £ = 0 and
k = k_max.

Example Descriptor on File Math Functions.des

e Poisson distribution (see Fig. 9.14)

9.16 Simple Functions of a Complex Variable

Aim of this section: Illustration of simple complex functions of one complex vari-
able, i.e., w = w(z). The complex variable z = x +iy = re/¥ hasreal part Re z = x,
imaginary part Im z = y, absolute value |z| = r, and argument arg z = ¢. Presented
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Fig. 9.15. Plot produced with descriptor Function of complex variable, surface
over Cartesian grid: w = exp(z) onfileMath Functions.des

are plots of Re w, Imw, |w|, and arg w as surfaces over the complex plane spanned
by x and y. Plots can be of type surface over Cartesian grid or surface over polar
grid. The functions are €%, log z, sin z, cos z, sinh z, cosh z, 2", and z!/%.

On the subpanel Physics—Comp. Coord. you can select one of the following
complex functions of the complex variable z = x + iy:

o w = e’

e w = log z (= In z, natural logarithm),
e w =sing,

® W =COSZ,

e w = sinh z (hyperbolic sine),

e w = cosh z (hyperbolic cosine),

e w = 7", n integer,

e w = z!/" n positive integer.

As Aspect of the Function Plotted you can choose one of the four real
quantities derived from the complex quantity w:

e Re w, the real part of w,

e Im w, the imaginary part of w,
e |w|, the absolute value of w,

e arg w, the argument of w.
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Fig. 9.16. Plot produced with descriptor Function of complex variable, surface
over polar grid: w = z**3 on file Math Functions.des

In a multiple plot the aspect chosen is used for the first plot, the next
aspect in the list for the second plot, etc. If the list is exhausted the first aspect
is taken, etc.

There is a Cut-Off Facility, which, if switched On, limits the quantity shown
to the range of computing coordinates in z.

The subpanel Physics—Variables is needed only for the two functions
w = z" and w = z!/". It contains the integer n in the exponent of these
functions. The function w = z!/” is not single-valued. One can ‘decompose’
it into n single-valued functions by plotting it separately over n different Rie-
mann sheets. The number n_Sheet which can take integer values between 1
and n labels the Riemann sheet chosen.

Plot Type For the graphical representation, the plot types surface over Car-
tesian grid in 3D and surface over polar grid in 3D are available. The plot
type depends on the descriptor you begin with.

Example Descriptors on File Math Functions.des

e Function of complex variable, surface over Cartesian grid:
w = exp(z) (see Fig. 9.15)

e Function of complex variable, surface over polar grid: w =
z**3 (see Fig. 9.16)
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9.17 Exercises

Please note:

(1) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo and selecting one of the demo files Math Functions.

(i) For the following exercises use descriptor file Math Functions.des.

9.2.1 Plot in a 2 x 2 multiple plot the Hermite polynomials H,(x) for
(@n=91011,12, (b) n = 13, 14,15, 16, (¢) n = 20,21, 22,23. Start
from descriptor 1. (d) How many zeros does H,(x) possess?

9.2.2 Plot in a 2 x 2 multiple plot the eigenfunctions of the harmonic oscillator
for (@) n =9, 10, 11, 12, (b) n = 13, 14, 15, 16, (¢) n = 20, 21, 22, 23. Start
from descriptor 2.

9.3.1 Plot in a 2 x 2 multiple plot the Legendre polynomials Py(x) for
@ ¢ = 9,10,11,12, (b) £ = 13, 14,15, 16, (c) £ = 20,21,22,23. Start
from descriptor 3. (d) How many zeros does the polynomial P;(x) possess?
9.3.2 Plot in a 4 x 4 multiple plot the associated Legendre functions P;"(x)
for@Q£ =4 m=0,... £ =T, m=3, b)L=4m=4,..,L =17,
m = 7. Start from descriptor 4. (c) How many zeros does the function P}" (x)
exhibit?

9.4.1 Plot the real and imaginary part of the spherical harmonic functions for
£ = 2 and its absolute square in a 3 x 3 multiple plot. Start from descriptor 6.
9.5.1 Plot as polar diagrams in a 3 x 3 multiple plot the absolute square | Y, |
of the spherical harmonic function for (a) £ = 4, m = 0 as plot in the upper-
left field; (b) £ = 4, m = 4 as plot in the upper-left field. Start from descriptor
7.

9.6.1 Repeat Exercise 9.5.1 but produce polar plots in 3D starting from de-
scriptor 8.

9.6.2 Repeat Exercise 9.6.1, but start from descriptor 9.

9.7.1 Plot the Bessel functions J,(x) in a 5 x 5 multiple plot for n =
0,1,...,25. Start from descriptor 10.

9.7.2 Repeat Exercise 9.7.1 for the modified Bessel functions 7,,(x) starting
from descriptor 11. (Adjust the scale in x by setting xepq to a suitable value.)
9.7.3 Plot in a 2 x 2 multiple plot the spherical Bessel functions j¢(x) in the
range 0 < x < 50for(a)£ =9, 10, 11, 12, (b) £ = 13, 14, 15, 16. Start from
descriptor 12.

9.7.4 Plot in a 2 x 2 multiple plot the spherical Neumann functions ny(x) in
the range O < x < 50 for (a) £ = 9, 10, 11, 12, (b) £ = 13, 14, 15, 16. Start
from descriptor 13.
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9.7.5 Plot in a 2 x 2 multiple plot the spherical modified Hankel functions
i“*1h™(ip) in the range 0 < x < 20 for (a) £ = 9,10,11,12, (b) £ =
13, 14, 15, 16. Start from descriptor 14.

9.7.6 Plot in a 2 x 2 multiple plot the spherical modified Bessel functions
(—i)ejg(ig) in the range 0 < x < 20 for (a) £ = 9,10,11,12, (b) £ =
13, 14, 15, 16. Start from descriptor 15.

9.7.7 Plot in a 2 x 2 multiple plot the spherical modified Neumann func-
tions i*Tln(ig) in the range 0 < x < 20 for (a) £ = 9,10, 11, 12,
(b) £ = 13, 14, 15, 16. Start from descriptor 16.

9.9.1 Plot the Airy functions using descriptors 19 and 20.

9.10.1 Plot the Laguerre polynomials L% (x) in a 2 x 2 multiple plot for the
index values (@) n = 3, ¢ =0,1;n =4, =0, lintherange 0 < x < 11,
MMn=3a=2,3;n=4,a = 2,3 inthe range 0 < x < 13. Start from
descriptor 21.

9.10.2 Plot in a 3 x 3 multiple plot the radial eigenfunctions of a spheri-
cally symmetric harmonic oscillator in the range 0 < x < 8 for the angular
momenta £ = 1,2, 3 for the principal quantum numbers (a) n = 3,4, 5,
(b) n = 6,7, 8. Start from descriptor 22.

9.10.3 Plot in a 3 x 3 multiple plot the radial eigenfunctions of the hydrogen
atom in the range 0 < x < 60 for the principal quantum numbers n = 3,4, 5
and (a) £ =0, 1, 2, (b) £ = 3,4, 5. Start from descriptor 23.

9.11.1 Plot the Laguerre polynomials LS (x) in a 2 x 2 multiple plot for the
range 0 < x < 10 with « as a running index in the range 0 < o« < 5 and for
n=4,5,6,7. Start from descriptor 24.

9.12.1 Plot a Gaussian distribution using descriptor 25. (a) Produce graphs
for more values of o by setting n equal to 5. (b) Change x¢ by setting it to 2,
-3.

9.13.1 Plot the two error functions using descriptors 26, 27.

9.14.1 Plot a binomial distribution using descriptor 28. Produce a 3 x 3 mul-
tiple plot for p = 0.1,0.2,...,0.9.

9.15.1 Produce a set of Poisson distributions for several values of A using
descriptor 29. Change the range of Ato (a) 0 < A < 1,(b)9 < A < 10.
Observe the characteristic difference in the shape of the distribution in these
two domains of A.

9.16.1 Plot w = e using descriptor 30. Leave the plot on the screen and
produce additional plots for w = log z, sinz, cos z, sinh z, cosh z. Compare
them.

9.16.2 Plot w = z> using descriptor 31. Leave the plot on the screen and

produce additional plots for w = 0, 21, 22, 2%, 2°. Compare them.



10. Additional Material and Hints
for the Solution of Exercises

10.1 Units and Orders of Magnitude

10.1.1 Definitions

Every physical quantity g can be expressed as a product of a dimensionless
numerical value gn, and its unit q,,,

g = qNuQu - (10.1)

The index u specifies the particular system of units used. We may factorize
the numerical value
qNu = qMu % 1075 (10.2)

into a mantissa gm, and a power of ten with the integer exponent gg,. The fac-
torization (10.2) is by no means unique, but it is understood that the mantissa
is not too far from one, say 0.001 < |gm, | < 1000.

It is important that numerical values used in the computer all have simi-
lar exponents because, otherwise, the result of computation may have severe
rounding errors. Moreover, numbers with very small or very large exponents,
typically |gg,| = 38, cannot be represented at all with simple techniques. Nu-
merical values that we use as input in computer programs should therefore
have exponents close to zero, say |gg,| < 5.

In mechanics and quantum mechanics one can choose three physical quan-
tities to be basic quantities, define units for them as basic units, and derive
the units of all other quantities from these basic units.

10.1.2 SI Units

In the international system of weights and measures (SI) the basic quantities
are length, mass, and time with the basic units meter (m), kilogram (kg), and
second (s), respectively.

The SI units of the more important physical quantities and the numerical
values of some constants of nature are given in Table 10.1.
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Table 10.1. SI units
| SI Units (Based on m, kg, s)

Quantity Unit
Energy 1Eg = Im?kgs™2
Length lésy=1m
Time Ttgy =15
Angular Frequency 1ws = 1t§11 =1571
Action 1Agt = 1Egitg; = 1 m? kg g1
Velocity lvgr = 1451ty = Ims™!
Mass 1 Mgy = 1kg
Momentum 1 pst = 1 Mgpvg; = I mkgs™!

Constants
Planck’s Constant % = finstAsi , HAnst = 1.055 x 10734
Speed of Light c=cCNSIVSI ,  CNsI = 2.998 x 108
Electron Mass Me = Monsi Mgt ., Menst =9.110 x 10731
Proton Mass My = MpnstMsp . Mpnst = 1.673 x 10727
Bohr Radius a=ansifst , ansi=0.5292x 10710
Energy of Hydrogen E; = EinsiEst , Einst = 2.180 x 1018
Ground State

10.1.3 Scaled Units

Unfortunately, the constants typical of quantum phenomena, listed at the bot-
tom of Table 10.1, all have very large or small exponents in SI units. A simple
way out of this problem is the use of scaled units, i.e., units multiplied by suit-
able powers of 10. We reformulate the factorization (10.1) and (10.2),

qd = 4gNuQu = gMu X IOqE"qu = gMu X loq}/iu X 10‘?Euqu
= gmu x 10%q), = g, q, - (10.3)

by writing the exponent gg, as a sum of two integers,
9B« = qg, + qEu - (10.4)
where g, is chosen close to zero, and thus defining a scaled unit
q, = 107q, (10.5)
and the corresponding numerical value
AR = v X 107 (10.6)

The decomposition (10.4) of the exponent is not unique. It has to be chosen
in such a way that the numerical values (10.6), multiplied by a scaled unit,
are not too far away from unity, i.e., that exponents gy, are close to zero, say
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Table 10.2. Scaled SI units
| Examples of Scaled SI Units |

with a choice of scale factors with a choice of scale factors
for action, mass, velocity for action, mass, energy
El =My vZ = 107¥m?kgs™2 | Eg = 1078 Eg = 1078 m? kgs~2
£s = Ag/Mg; VSI 107%m &5 = Ag/\/Eg Mg = 1071m
—20 16 ¢
tSI = Agt/Mg; VS& 107s tyy = Agy/Egp = 107
wy = l/tSg 0g5-1 wgy = 1/t = 1016 s_1
Ay =10 4ASI 1073 m?kgs™! | Ag = 1074 Agr = 107> m? kgs™!
vy =108 vg; = 108 ms~! vl = /E§ /Mg = 106 ms~!
My = 10730 Mg = 1073%kg Mg = 10730 Mg = 1073%kg
P _M'SI vl = 1072 mkgs™! Pl = /Eg My = 107 mkgs™!
Constants
R = 1.055Ag, h = 1.055 Ay,
c =2.998 v c=299.8 v
M. =0.9110 M, M. = 0.9110 M
M, = 1673 My, M, = 1673 MY,
a=5292¢ a = 0.5292 £
Ey = 0.000218 B, E; = 2.180 Ef

lgg, | < 5. Since three basic units can be chosen, three scaling exponents g,
may also be chosen. All other scaling exponents are fixed by this choice.

As examples in Table 10.2 we give two sets of scaled SI units. The set in
the left column is based on the choice of scale factors for action, mass, and
velocity,

Ay =10%Ag , Vg=108vsg , Mg=10""Mg ,
which ensures that %, ¢, and M. have numerical values close to unity. For the

set in the right column,

G=107%Ag , Eg=10"%Eg , Mg =10""Mg
were chosen. Note that in this case the powers of 10 of the scale factors for
g1 and M, have to be chosen either even for both or odd for both to ensure

that the square roots appearing will again be integer powers of 10.

10.1.4 Atomic and Subatomic Units

Scaling factors, or at least scaling factors with large absolute powers of 10,
are unnecessary if one chooses units that are ‘natural’ to the system studied.
One selects three quantities typical for the system and sets their numerical
values equal to one. For questions of atomic physics it is most natural to
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Table 10.3. Atomic units
[ Atomic Units (Based on fing = cNa = Mena = 1)
1E, = IM, v = Mcc? = 8.188 x 10~ “m?kgs~2
10, =1A,/My vy =h/Mcc = ke = 3.863 x 10~ m
Ity =1A,/M, v? = ke/c = 1.288 x 10721 5
lw, = 1171 =0.7764 x 10?1 571
1A, =k =1.055x 1073* m?kgs~!
1vy,=c¢=2998 x 108 ms~!
IM, = M, =9.110 x 1073 kg
I1pa=1Myvya=Mcc=2731 x 1002 mkgs™!

Constants
h =hNaAa =hAns1Ast , FAna=1—> A, =lhinsiAst
=1.055 x 1073 m?kgs~!

C=CNaVa =CNSIVSI > CNa=1— vy =cNsiAsI =2.998 x 108 ms™!
Me = MenaMa = MensiMst ,  MeNa = 1 — My = Menst Mgy

=9.110 x 1031 kg
My = MpNaMa = MpnsiMst . Mpna = Mpnst Msi/M, = 1836
a=anata =ansifs1 , ana=ansilsi/ta =137.0

Ei = EiNaEa = EnsiEst ., Eina = Einsi Esi/Ea = 2.662 x 1075

choose Planck’s constant, the velocity of light, and the electron mass as these
quantities. The so-defined atomic units are listed in Table 10.3. All actions
are expressed in multiples of 7, all velocities in multiples of ¢, and all masses
in multiples of M. The unit of length is

18, =h/Mec =%.=3.863x10"%m

which is called the Compton wavelength of the electron. The Bohr radius is
137 x.. The unit of time is the time it takes for a light pulse to traverse one
unit of length.

Many phenomena in nuclear physics are best treated in subatomic units,
which are obtained by using #, ¢, and the proton mass M} as basic units,
Table 10.4.

10.1.5 Data-Table Units

Often energies of atomic systems are given in electron volts,
leV =1.602 x 107" m?kgs™2

A system of units based on the electron volt, the meter, and the second, which
we call data-table units (which we identify by an index d), is presented in
Table 10.5. You need scale factors in order to use this system. Table 10.6
contains two useful sets of scaled data-table units.
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Table 10.4. Subatomic units
[ Subatomic Units (Based on /ins = cNs = MpNs = 1)
1Es = 1M v2 = My c? = 1.504 x 10719 m? kgs=2
16 =1Ay/My vy = B/Mpc = kp =2.103 x 10716m
1ty = 1A,/M, v2 = kp/c = 7.015 x 10755
lwg =161 =1.426 x 10% 57!
1Ag=h =1.055 x 10-3* m?kgs~!
1vs =c=2.998 x 108 ms~!
1M = Mp = 1.673 x 10727 kg
1ps = 1M vy = Mpc =5.016 x 107 mkgs~!
Constants

h = hns As = Binst Ast . Ans = 1 — Ay = hnst Ast

=1.055 x 1073 m?kgs~!
C=CNsVs = CNSIVSI » CNs = 1 — vg = cnst Ast = 2.998 x 108 ms™!
Me = MonsMs = Menst Ms1 . Mens = Menst Ms1/Ms = 5.445 x 1074
Mp = MpNs Mg = Mpnst Mst . Mpns = 1 — Mg = Mpns1 Mst

=1.673 x 10727 kg

a =ansfs = ansi £s1 , ans = ansi €si/fs = 2.516 x 10°
E1 = E\nsEs = EinsiEs1 , Eins = Einsi Es1/Es = 1.449 x 1078

Table 10.5. Data-table units
| Data Table Units (Based on eV, m, s)

Quantity Unit
Energy 1Eg=1eV
Length 14g=1m
Time Itg=1s
Angular Frequency lawg =1 tgl =1s"!
Action 1A =1Egtg =1eVs
Velocity lvg=1£4t7' = 1ms~!
Mass 1My =Eqvy?=1eVs?m2
Momentum Ips=1Mgvg=1leVsm™!

Constants
Planck’s Constant i =fiNngAq , Fng = 0.6582 x 10~1°
Speed of Light c=cNdVd ., CNd = 2.998 x 108
Electron Mass Mo = MnaMy , Meng = 5.685 x 10712
Proton Mass My = MpnaMa . Mpng = 1.044 x 1078
Bohr Radius a=anafq , ang=0.5292x 10710
Energy of Hydrogen E; = E\ngEg ., Eing = —13.61
Ground State

A different system of units still (which we identify by an index ¢) mea-
sures masses in units 1 M, = 1eV/c?. It is obtained through the following
set of equations:
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Table 10.6. Scaled data-table units
Examples of Scaled Data-Table Units

with a choice of scale factors
for energy, length, and mass
suitable for problems of
atomic physics

with a choice of scale factors
for energy, length, and mass
suitable for problems of
nuclear physics

Eé =1leV

£i=10"¢4=10"m

= £,/My/E; = 10755
wj=1/t) =105 7!

Al =€, /MyE; =10"15eVs
vy = /Ei/M; = 10°ms~!

M} =10"12My = 10712eVm~2s?
Py = EjM;=10"%eVvm!s

E, = 10%Eq = | MeV
€y =10""¢3=10""m
ty = £3/My/Ej = 10215
Wy =1/t; = 10571
—15
A} =€, /M{E; = 10"5eVs
vy = JEy/Mj = 10"ms™!
M) =108 My = 1078 eVm25?
py = EiM, = 107 7eVm~'s

Constants
i = 0.6582 A:i A = 0.6582 A(,:l
c=1299.8 vé ¢ =29.98 Vé
M = 5.685 Mfi M. = 0.0005685 Mé
M, = 10440 M:i M, =1.044 M(/:l

a=0.05292¢,
Ei| = —13.61E]

a=0.5292 x 1074 z;d
Ey = —13.61 x 107 °E/

eV
M = MngMy = MygeVsPm™2 = MNd—2—(02 s2m™2
c

= Mng(2.998 x 10%)2eV/c? = Mn.eV/c?

My, = Mng x 8.988 x 10'6

or
leV/c? =8.988 x 10'%eVs?m™2 = 1.783 x 107 °kg

In units eV /c? the electron and proton mass are

M. =0.5110 x 10%eV/c* , M, =938.3 x 10%eV/c?

10.1.6 Special Scales

The Hydrogen Atom The energy spectrum in the hydrogen atom is given by
(7.52). In Sect. 7.2 we use atomic units but we allow a change of the input
value /. What, then, is the meaning of the energy scale in Fig. 7.4 in the
default case o = 1? If the right-hand side of (7.52) is written with ’? replaced
by 1, it means that a factor o is missing in the equation. We absorb this factor
into the energy unit by defining a new unit

Ej = a?E, =5.328 x 107°E,
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where E, is the energy in atomic units. For the lowest eigenvalue in Fig. 7.4
(which has £ = 2 and then n = 3) we read off E3 = 0.0555E;, =
2.957 x 107%E, as expected since E3 = éEl and E; = 2.662 x 1075 E,,
see Table 10.3.

The Harmonic Oscillator Similarly the energy scale of the harmonic-
oscillator eigenvalue spectrum described by (7.45) and shown in Fig. 7.3 for
the default value of w = 1w, in atomic units can be interpreted as the spectrum
of an oscillator with arbitrary angular frequency @ = wnNaw, if the numerical
values on the energy scale are given the units

Ey = EyonNa

10.2 Argand Diagrams and Unitarity
for One-Dimensional Problems

10.2.1 Probability Conservation and the Unitarity
of the Scattering Matrix

Scattering processes in one spatial dimension offer a simple study of the prop-
erties of the § matrix. In stepwise constant potentials of the kind (3.16) the
wave function is of complex exponential form in the various regions. We rep-
resent the wave functions in the region 1 of vanishing potential far to the left
as

@1(x) = Ajef1* 4 Bje~ik1x (10.7)
and in the region N far to the right as
on(x) = Aye*vr 4 Bhe kx| (10.8)

Here, we have also included the term B;ve_ikN * representing a wave com-
ing in from large values of x propagating to the left. Obviously, there are two
physical scattering situations:

i) incoming right-moving wave at negative x values represented by the term
A’leik“‘: the outgoing waves are the transmitted wave A},eik’” and the
reflected wave B{e_ikl" ;

ii) incoming left-moving wave at large positive x values, represented by the
term Bl’ve‘ikN *. the outgoing waves are the transmitted wave Bje~*1* and
the reflected wave A yelk¥*.

For real potentials V(x) every solution of the time-dependent Schrodinger
equation keeps the normalization at all times. Thus, the integral of the proba-
bility density over the whole x axis does not change with time. This is inter-
preted as probability conservation. It can also be expressed as the conserva-
tion of the probability-current density
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h a ]
j(x,t) = — — - —y* 10.9
J(x, 1) i (llf axl/f Waxlﬁ) (10.9)
through a continuity equation
dg | 9j
—+==0, 10.10
at + ax ( )
where
o(x,t) =y (x, Y (x, 1) (10.11)

is the probability density. For stationary states
U(x, 1) = e FEp(x) (10.12)

the probability density ¢ and current density j are time independent and prob-
ability conservation is tantamount to

%j(x) —0 , (10.13)

i.e., the probability-current density is constant in x.
For the wave functions (10.7), (10.8) this means

ki(|A}12 — |B]1%) = kn(|A 1> = |By|%) (10.14)
or
2 2
k k
/k—flvA;V + B2 = A2+ %B}V (10.15)

for arbitrary values of A} and Bj,. We associate the quantities on either side
of the above equation with the absolute squares of the components of two-
dimensional complex vectors

AN) kv gty (Al) Ay
= , =\ & . (10.16)
(Bl ( B By V By

The equation (10.15) derived from current conservation then states the equal-
ity of the length of these two vectors. Thus, they may be related by a complex

2 x 2 matrix
S11 812
S =
<521 Szz)

An\ _ A
(Bl ) = <BN> , (10.17)

which is unitary, i.e., S and its adjoint

defined by
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t i1 531
- () (1019
fulfill the relation
sst=1 (10.19)
or * * * *
SuSiy+ 812812 SuSy TS5 Y _ (10} (10.20)
ST+ 550570 821551 + 52,55, 01

The unitary matrix S is called the scattering matrix or S matrix. If we consider
the amplitudes A; and By given to be one or zero, we have two cases:

i) wave coming in from the left:

Ar=1 , By=0 , Ay=Sun , Bi=S51 , (10.21)

i.e., 811 is the transmission coefficient and S,; the reflection coefficient for a
right-moving incoming wave;
ii) wave coming in from the right:

Ay=0 , By=1 , Ay=Sr2 , B =S8 , (10.22)

i.e., S12 is the reflection coefficient and S»; the transmission coefficient for a
left-moving wave.

10.2.2 Time Reversal and the Scattering Matrix

Invariance under time reversal implies that ¢*(x) is also a solution of the sta-
tionary Schrodinger equation with the real potential V (x). Because of the
change of the sign of the exponents in the wave functions, incoming and out-
going waves are interchanged and we find that the scattering matrix also re-
lates the vectors

(A’f) =5 (A*N) B (521 SnJ\Ay) (1023

By complex conjugation we find

BN g% By _ ikl Sikz By
()= (2)-GD(E)

or, by rearranging,
Ay S32 551 (AN
= . 10.25
(BN) ( 25 B, ( )

Putting this into the form of (10.17) we have
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AN 53 551 A )
= . 10.26
( B ) ( 12 511 By (1926

So, by comparison, we find the relation

-1
Sll Sl2 _ S;Z Sik]
(Szl Szz) - (srz v (1027
Because of the unitarity of the S matrix, we have S 1 = §T and thus
St S5\ _ (55255
(S;a sp) “\shsh) (10:29)

so that time-reversal invariance is equivalent to
Sit=3582 . (10.29)

The time-reversal-invariant S matrix has the particular form

S11 S12
S = . 10.30
<S21 511) ( )

For real potentials, time-reversal invariance holds true. Thus (10.21), (10.22),
(10.29) show that the transmission coefficients for right-moving and left-mov-
ing incoming waves are equal in this case. Just as a side remark we note that
space-reflection symmetry reduces S further to

S12 = S5 (10.31)

so that the spatial-reflection invariance leads to

S11 812
S = . 10.32
(512 511) ( )

10.2.3 Diagonalization of the Scattering Matrix

We return to the time-reversal invariant form (10.30) and investigate the re-
strictions of unitarity (10.20):
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