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Preface 

Quantum Mechanics is a theory of Mechanics, a branch of 
Physics that deals with the Motion of bodies and associated 
physical quantities such as Energy and Momentum. Quantum 
Mechanics has had enormous success in explaining many of the 
features of our world. The individual behaviour of the Microscopic 
Particles that make up all forms of matter can often only be 
satisfactorily described using Quantum Mechanics. 

Quantum mechanics is important for understanding how 
individual atoms combine to form chemicals. It provides 
quantitative insight into chemical bonding processes by explicitly 
showing which molecules are energetically favourable to which 
others, and by approximately how much. This book is intended 
to provide a comprehensive coverage of the major aspects of 
quantum mechanics. The most likely audience for the book 
consists of students and teachers of modern physics, mechanics 
and engineering. 

Shivam Prabhakaran 
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Introduction to Quantum Physics 

For centuries, man has wondered on phenomena and processes 
happening around him. As time passed, he was successful in applying 
his intuition and common sense in comprehending the stars, galaxies 
and their behaviour, but they fail in the microscopic world of 
molecules, atoms and sub-atomic particles. 

Quantum theory provides us with the rules and regulations of 
the miniature world. These rules are phenomenally successful in 
accounting for the properties of atoms, molecules, and their 
constituents, and form the basis of understanding the fundamental 
properties of all matter. In fact, one may say that the greatest success 
story of the 20th-century physics is to confirm that this theory works, 
without a single exception, in spite of critical examination by some 
of the best minds spanning decades of time. 

The conceptual foundation of quantum theory is mysterious. It 
led to intense debates among scientists, and confused many. Niels 
Bohr, one of the most prominent scientists in this domain, once 
remarked, "You have not studied quantum mechanics well if you 
aren't confused by it." Albert Einstein, the greatest physicist of the 
20th century, never approved of this theory. Bizarre though it may 
seem, quantum physics has led physicists step by step to a deeper 
view of the reality, and has answered many fundamental questions. 

Quantum physics is a branch of science that deals with discrete, 
indivisible units of energy called quanta as described by the Quantum 
Theory. There are five main ideas represented in Quantum Theory: 

1. Energy is not continuous, but comes in small but discrete 
units. 
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2. The elementary particles behave both like particles and like 
waves. 

3. The movement of these particles is inherently random. 
4. It is physically impossible to know both the position and 

the momentum of a particle at the same time. 
S. The atomic world is nothing like the world we live in. 

While at a glance this may seem like just another strange theory, 
it contains many clues as to the fundamental nature of the universe 
and is more important then even relativity in the grand scheme of 
things (if anyone thing at that level could be said to be more important 
then anything else). Furthermore. it describes the nature of the 
universe as being much different then the world we see. As Niels 
Bohr said, "Anyone who is not shocked by quantum theory has not 
understood it." 

Particle / Wave Duality 

Particle/wave duality is perhaps the easiest way to get aquatinted 
with quantum theory because it shows, in a few simple experiments, 
how different the atomic world is from our world. 

First let's set up a generic situation to avoid repetition. In the 
centre of the experiment is a wall with two slits in it. To the right we 
have a detector. What exactly the detector is varies from experiment 
to experiment, but it's purpose stays the same: detect how many of 
whatever we are sending through the experiment reaches each point. 
To the left of the wall we have the originating point of whatever it is 
we are going to send through the experiment. That's the experiment: 
send something through two slits- and see what happens. For 
simplicity, assume that nothing bounces off of the wails in funny 
patterns to mess up the experiment. 

First try the experiment with bullets. Place a gun at the 
originating point and use a sandbar as the detector. First try covering 
one slit and see what happens. You get more bullets near the centre 
of the slit and less as you get further away. When you cover the other 
slit, you see the same thing with respect to the other slit. Now open 
both slits. You get the sum of the result of opening each slit. The 
most bullets are found in the middle of the two slits with less being 
found the further you get from the centre. 
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Well, that was fun. Let's try it on something more interesting: 
water waves. Place a wave generator at the originating point and 
detect using a wave detector that measures the height of the waves 
that pass. Try it with one slit closed. You see a result just like that of 
the bullets. With the other slit closed the result is the same. Now try 
it with both slits open. Instead of getting the sum of the results of 
each slit being open, you see a wavy pattern; in the centre there is a 
wave greater then the sum of what appeared there each time only 
one slit was open. Next to that large wave was a wave much smaller 
then what appeared there during either of the two single slit runs. 
Then the pattern repeats; large wave, though not nearly as large as 
the centre one, then small wave. This makes sense; in some places 
the waves reinforced each other creating a larger wave, in other places 
they canceled out. In the centre there was the most overlap, and 
therefore the largest wave. In mathematical terms, instead of the 
resulting intensity being the sum of the squares of the heights of the 
waves, it is the square of the sum. 

While the result was different from the bullets, there is still 
nothing unusual about it; everyone has seen this effect when the waves 
from two stones that are dropped into a lake in different places 
overlap. The difference between this experiment and the previous 
one is easily explained by saying that while the bullets each went 
through only one slit, the waves each went through both slits and 
were thus able to interfere with themselves. 

Now try the experiment with electrons. Recall that electrons are 
negatively charged particles that make up the outer layers of the atom. 
Certainly they could only go through one slit at a time, so their pattern 
should look like that of the bullets, right? Let's find out. Place an 
electron gun at the originating point and an electron detector in the 
detector place. First try opening only one slit, then just the other. 
The results are just like those of the bullets and the waves. Now open 
both slits. The result is just like the waves. 

There must be some explanation. After all, an electron couldn't 
go through both slits. Instead of a continuous stream of electrons, 
let's tum the electron gun down so that at anyone time only one 
electron is in the experiment. Now the electrons won't be able to 
cause trouble since there is no one else to interfere with. The result 
should now look like the bullets. But it doesn't! It would seem that 
the electrons do go through both slits. 
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This is indeed a strange occurrence; we should watch them 
ourselves to make sure that this is indeed what is happening. So, we 
put a light behind the wall so that we can see a flash from the slit 
that the electron went through, or a flash from both slits if it went 
through both. Try the experiment again. As each electron passes 
through, there is a flash in only one of the two slits. 

Obviously the light is causing problems. Perhaps if we turned 
down the intensity of the light, we would be able to see them without 
disturbing them. When we try this, we notice first that the flashes 
we see are the same size. Also, some electrons now get by without 
being detected. This is because light is not continuous but made up 
of particles called photons. Turning down the intensity only lowers 
the number of photons given out by the light source The particles 
that flash in one slit or the other behave like the bullets, while those 
that go undetected behave like waves. 

Well, we are not about to be outsmarted by an electron, so instead 
ofloweringthe intensity ofthe light, why don't we lower the frequency. 
The lower the frequency the less the electron will be disturbed, so we 
can finally see what is actually going on. Lower the frequency slightly 
and try the experiment again. We see the bullet curve. After lowering 
it for a while, we finally see a curve that looks somewhat like that of 
the waves! There is one problem, though. Lowering the frequency of 
light is the same as increasing it's' wavelength, and by the time the 
frequency of the light is low enough to detect the wave pattern the 
wavelength is longer then the distance between the slits so we can no 
longer see which slit the electron went through. 

So have the electrons outsmarted us? Perhaps, but they have 
also taught us one of the most fundamental lessons in quantum 
physics - an observation is only valid in the context of the experiment 
in which it was performed. If you want to say that something behaves 
a certain way or even exists, you must give the context of this 
behaviour or existence since in another context it may behave 
differently or not exist at all. We can't just say that an electron is a 
particle, since we have already seen proof that Ihis is not always the 
case. We can only say that when we observe the electron in the two 
slit experiment it behaves like a particle. To see how it would behave 
under different conditions, we must perform a different experiment. 
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The Copenhagen Interpreta~on 
So sometimes a particle acts like a particle and other times it 

acts like a wave. So which is it? According to Niels Bohr, who worked 
in Copenhagen when he presented what is now known as the 
Copenhdgen interpretation of quantum theory, the particle is what 
you measure it to be. When it looks like a particle, it is a particle. 
When it looks like a wave, it is a wave. Furthermore, it is meaningless 
to ascribe any properties or even existence to anything that has not 
been measured. Bohr is basically saying that nothing is real unless it 
is observed. 

While there are many other interpretations of quantum physics, 
all based on the Copenhagen interpretation, the Copenhagen 
interpretation is by far the most widely used because it provides a 
'generic' interpretation that does not try to say any more then can be 
proven. Even so, the Copenhagen interpretation does have a flaw 
that we will discuss later. Still, since after 70 years no one has been 
able to come up with an interpretation that works better then the 
Copenhagen interpretation, that is the one we will use. We will 
discllss one of the alternatives later. 

The Wave Function 
In 1926, just weeks after several other physicists had published 

equations describing quantum physics in terms of matrices, Erwin 
Schrodinger created quantum equations based on wave mathematics, 
a mathematical system that corresponds to the world we know much 
more then the matrices. After the initial shock, first Schrodinger 
himself then others proved that thl! equations were mathematically 
equivalent. Bohr then invited Schrodinger to Copenhagen where they 
found that Schrodinger's waves were in fact nothing like real waves. 
For one thing, each particle that was being described as a wave 
required three dimensions. Even worse, from Schrodinger's point of 
view, particles still jumped from one quantum state to another; even 
expressed in terms of waves space was still not continuous. Upon 
discovering this, Schrodinger remarked to Bohr that "Had I known 
that we were not going to get rid of this damned quantum jumping, 
I never would have involved myself in this business." 

Unfortunately, even today people try to imagine the atomic world 
as being a bunch of classical waves. As Schrodinger found out, this 

) 
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could not be farther from the truth. The atomic world is nothing like 
our world, no matter how much we try to pretend it is. In many 
ways, the success of Schrodinger's equations has prevented people 
from thinking more deeply about the true nature of the atomic world. 

The Collapse of the Wave Function 

So why bring up the wave function at all if it hampers full 
appreciation of the atomic world? For one thing, the equations are 
much more familiar to physicists, so Schrodinger's equations are used 
much more often than the others. Also, it turns out that Bohr liked 
the idea and used it in his Copenhagen interpretation. Remember 
the experiment with electrons? Each possible route that the electron 
could take, called a ghost, could be described by a wave function. 
As we shall see later, the 'damned quantum jumping' insures that 
there are only a finite, though large, number of possible routes. When 
no one is watching, the electron take every possible route and 
therefore interferes with itself. However, when the electron is 
observed, it is forced to choose one path. Bohr called this the 
"collapse of the wave function". The probability that a certain path 
will be chosen when the wave function collapses is essentially the 
square of the path's wave function. 

Bohr reasoned that nature likes to keep its possibilities opep, and 
therefore follows every possible path. Only when observed is bature 
forced to choose only one path, so only then is just one path taken. 

The Uncertainty Principle 

If we are going to destroy the wave pattern by observing the 
experiment, then we should at least be able to determine exactly where 
the electron goes. Newton figured that much out back in the early 
eighteenth century; just observe the position and momentum of th(.' 
electron as it leaves the electron gun and we can determine exactly 
where it goes. 

Well, fine. But how exactly are we to determine the position 
and the momentum of the electron? If we disturb the electrons just 
in seeing if they are there or not, how are we possibly going to 
determine both their position and momentum? Still, a cle>;er enough 
person, say Albert Einstein, should be able to come up with 
something, right? 
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Unfortunately not. Einstein did actually spend a good deal of 
his lite trying to do just that and failed. Furthermore, it turns out that 
if it were possible to determine both the position and the momentum 
at the same time, Quantum Physics would collapse. Because of the 
latter, Werner Heisenberg proposed in 1925 that it is in fact physically 
impossible to do so. As he stated it in what now is called the 
Heisenberg Uncertainty Principle, if you determine an object's 
position with uncertainty x, there must be an uncertainty in 
momentum p, such that xp > hl4pi, where It is Planck's constant 
(which we will discuss shortly). In other words, you can determine 
either the position or the momentum of an object as accurately as 
you like, but the act of doing so makes your measurement of the 
other property that much less. Human beings may someday build a 
device capable oftransporting objects across the galaxy, but no one 
will ever be able to measure both the momentum and the position of 
an object at the same time. This applies not only to electrons but 
also to objects such as tennis balls and toasters, though for these 
objects the amount of uncertainty is so small compared to there size 
that it can safely be ignored under most circumstances. 

The EPR Experiment 

"God does not play dice" was Albert Einstein's reply to the 
Uncertainty Principle. Thus being his belief, he spent a good deal of 
his life after 1925 trying to determine both the position and the 
momentum of a particle. In 1935, Einstein and two other physicists, 
Podolski and Rosen, presented what is now known as the EPR paper 
in which they suggested a way to do just that. The ide:! is this: set up 
an interaction such that two particles are go off in opposite directions 
and do not interact with anything else. Wait until they are far apart, 
then measure the momentum of one and the position of the other. 
Because of conservation of momentum, you can determine the 
momentum of the particle not measured, so when you measure its 
position you know both its momentum and position. The only way 
quantum physics could be true is if the particles could communicate 
faster than the speed of light, which Einstein reasoned would be 
impossible because of his Theory of Relativity. 

In 1982, Alain Aspect, a French physicist, carried out the EPR 
experiment. He found that even if information needed to be 
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communicated faster than light to prevent it, it was not possible to 
determine both the position and the momentum of a particle at the 
same time. This does not mean that it is possible to send a message 
faster than light, since viewing either one of the two particles gives 
no information about the other. It is only when both are seen that we 
find that quantum physics has agreed with the experiment. So does 
this mean relativity is wrong? No, it just means that the particles do 
not communicate by any means we know about. All we know is that 
every particle knows what every other particle it has ever interacted 
with is doing. 

The Quantum and Planck's Constant 
So what is that h that was so importantce in the Uncertainty 

Principle? Well, technically speaking, its 6.63 x 10-34 joule-seconds. 
It's call Planck's constant after Max Planck who, in 1900, introduced 
it in the equation E=hv where E is the energy of each quantum of 
radiation and v is its frequency. What this says is that energy is not 
continuous as everyone had assumed but only comes in certain finite 
SizeS based on Planck's constant. 

At first physicists thought that this was just a neat mathematical 
trick Planck used to explain experimental results that did not agree 
with classical physics. Then, in 1904, Einstein used this idea to explain 
certain properties oflight-he said that light was in fact a particle with 
energy E=hv. After that the idea that energy isn't continuous was taken 
as a fact of nature-and with amazing results. There was now a reason 
why electrons were only found in certain energy levels around the 
nucleus of an atom. Ironically, Einstein gave quantum theory the push 
it needed to become the valid theory it is today, though he would spend 
the rest of his life trying to prove that it was not a true description of 
nature. 

Also, by combining Planck's constant, the constant of gravity, 
and the speed of light, it is possible to create a quantum of length 
(about 10-35 metre) and a quantum of time (about 10-43 sec), called, 
respectively, Planck's length and Planck's time. While saying that 
energy is not continuous might not be too startling to the average 
person, since what we commonly think of as energy is not all that 
well defined anyway, it is startling to say that there are quantities of 
space and time that cannot be broken up into smaller pieces~ Yet it is 
exactly this that gives nature a finite number of routes to take when 
an electron interferes with itself. 
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Although it may seem like the idea that energy is quantized is a 
minor part of quantum physics when compared with ghost electrons 
and the uncertainty principle, it really is a fundamental statement 
about nature that caused everything else we've talked about to be 
discovered. And it is always true. In the strange world of the atom, 
anything that can be taken for granted is a major step towards an 
'atomic worldview'. 

Schrodinger's Cat 

There was a problem with the Copenhagen interpretation? Well, 
you now know enough of what quantum physics is to be able to 
discuss what it isn'l, and by far the biggest thing it isn't is complete. 
Sure, the math seems to be complete, but the theory includes 
absolutely nothing that would tie the math to any physical reality we 
could imagine. Furthermore, quantum physics leaves us with a rather 
large open question: whal is reality? The Copenhagen interpretation 
attempts to solve this problem by saying that reality is what is 
measured. However, the measuring device itself is then not real until 
it is measured. The problem, which is known as the measurement 
problem, is when does the cycle stop? 

Remember that when we last left Schrodinger he was muttering 
about the 'damned quantum jumping.' He never did get used to 
quantum physics, but, unlike Einstein, he was able to come up with 
a very real demonstration of just how incomplete the physical view 
of our world given by quantum physics really is. Imagine a box in 
which there is a radioactive source, a Geiger counter (or anything 
that records the presence of radioactive particles), a bottle of cyanide, 
and a cat. The detector is turned on for just long enough that there is 
a fifty-fIfty chance that the- radioactive material will decay. If the 
material does decay, the Geiger counter detects the particle and 
crushes the bottle of cyanide, killing the cat. If the material does not 
decay, the cat lives. To us outside the box, the time of detection is 
when the box is open. At that point, the wave function collapses and 
the cat either dies or lives. However, until the box is opened, the cat 
is both dead and alive. 

On one hand, the cat itself could be considered the detector; its 
presence is enough to collapse the wave function. But in that case, 
would the presence of a rat be enough? Or an amoeba? Where is the 
line drawn? On the other hand, what if you replace the cat with a 
human (named 'Wigner's friend' after Eugene Wigner, the physicist 
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who developed many derivations of the Schrodinger's cat experiment). 
The human is certainly able to collapse the wave function, yet to us 
outside the box the measurement is not taken until the box is opened. 
If we try to develop some sort of 'quantum relativity' where each 
individual has his own view of the world, then what is to prevent the 
world from getting "out of sync" between observers? 

While there are many different interpretations that solve the 
problem ofSchrodinger's Cat, one of which we will discuss shortly, 
none of them are satisfactory enough to have convinced a majority 
of physicists that the consequences of these interpretations are better 
than the half dead cat. Furthermore, while these interpretations do 
prevent a half dead cat, they do not solve the underlying measurement 
problem. Until a better intrepretation surfaces, we are left with the 
Copenhagen interpretation and its half dead cat. We can certainly 
understand how Schrodinger feels when he says, "I don't like it, and 
I'm sorry I ever had anything to do with it." 

The Infinity Problem 
There is one last problem that we will discuss before moving 

on to the alternative interpretation. Unlike the others, this problem 
lies primarily in the mathematics of a certain part of quantum physics 
called quantum electrodynamics, or QED. This branch of quantum 
physics explains the electromagnetic interaction in quantum terms. 
The problem is, when you add the interaction particles and try to 
solve Schrodinger's wave equation, you get an electron with infinite 
mass, infinite energy, and infinite charge. There is no way to get rid 
of the infinities using valid mathematics, so, the theorists simply 
divide infinity by infinity and get whatever result the guys in the lab 
say the mass, energy, and charge should be. Even fudging the math, 
the other results of QED are so powerful that most physicists ignore 
the infinities and use the theory anyway. As Paul Dirac, who was 
one of the physicists who published quantum equations before 
Schrodinger, said, "Sensible mathematics involves neglecting a 
quantity when it turns out to be small-not neglecting it just because 
it is infinitely great and you do not want it!". 

Many Worlds 
One other interpretation, presented first by Hugh Everett III in 

1957, is the many worlds or branching universe interpretation. In 
this theory, whenever a measurement takes place, the entire universe 
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divides as many times as there are possible outcQmes of the 
measurement. All universes are identical except for the outcome of 
that measurement. Unlike the science fiction view of 'parallel 
universes', it is not possible for any of these worlds to interact with 
each other. 

While this creates an unthinkable number of different worlds, it 
does solve the problem of Schrodinger's cat. Instead of one cat, we 
now have two; one is dead, the other alive. However, it has still not 
solved the measurement problem. If the universe split every time 
there was more than one possibility, then we would not see the 
interference pattern in the electron experiment. So when does it split? 
No \alternative interpretation has yet answered this question in a 
satisfactory way. 

Classical Physics from Newton to Einstein 

The Scientific Method 

The scientific method has four major components: 

1. The assumption of an external, objective reality that can 
be observed. 

2. Quantitative experiments on the external objective reality 
in order to determine its observable properties, and the 
use of induction to discover its general principles. 

3. Validation of the results of the$e measurements by 
widespread communication and publication so that other 
scientists are able to verify them independently. Although 
scientists throughout history have communicated and 
published their results, the first scientist to articulate the 
need for publishing the details of his experimental methods 
so that other scientists could repeat his measurements was 
English chemist Robert Boyle, who was strongly 
influenced by the views of Bacon. 

4. Intuiting and formulating the mathematical laws that 
describe the external objective reality. The most universal 
laws are those of physics, the most fundamental science. 
English natural philosopher Isaac Newton was the first 
scientist to formulate laws that were considered to apply 
universally to all physical systems. 
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The last three of these components were all developed in the 
remarkably brief period from 1620 to 1687, and all by Englishmen! 

Newton's Laws and Detenninism 
In order to understand quantum physics, we must first 

understand classical physics so that we can see the differences 
between them. 

There are two fundamental assumptions in classical physics. The 
first fundamental assumption is that the objective world exists 
independently of any observations that are made on it. To use a 
popular analogy, a tree falling in the forest produces a sound whether 
or not it is heard by anyone. While it is possible that observations of 
the objective world can affect it, its independence guarantees that 
they do not necessarily affect it. 

The second fundamental assumption of classical physics is that 
both the position and velocity of an object can be measured with no 
limits on their precision except for those of the measuring instruments. 
In other words, the objective world is a precise world with no intrinsic 
uncertainty in it. As we shall see later, quantum theory abandons 
both of these fundamental assumptions. 

Isaac Newton was the first important scientist both to do 
fundamental experiments and to devise comprehensive mathematical 
theories to explain them. He invented a theory of gravity to explain 
the laws of German astronomer and mathematician Johannes Kepler 
which describe the planetary orbits, made use of the famous free­
fall experiments from the leaning tower of Pisa by Italian scientist 
GaliJeo Galilei, and invented the calculus in order to give a proper 
mathematical framework to the laws of motion that he discovered. 
Newton considered himself to be a natural philosopher, but 
contemporary custom would accord him the title of physicist. Indeed, 
he, probably more than any other scientist, established physics as a 
separate scientific discipline because of his attempts to express his 
conclusions in terms of universal physical laws. 

His three laws of motion can be written as follows: 
1. A body moves with constant velocity unless there is a 

nonzero net force acting on it. 
2. The rate of change of the velocity of a body is proportional 

to the force on the body. 
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3. If one body exerts a force on another body, the second -
body exerts an equal and opposite force on the first. 

In order to use these laws, the properties of the forces acting on 
a body must be known. As an example of a force and its properties, 
Newton's law of gravitation states that the gravitational force between 
two bodies, such as the earth and the moon, is proportional to the mass 
of each body and is inversely proportional to the square of the distance 
between them. This description of the gravitational force, when used 
together with Newton's second law, explains why the planetary orbits 
are elliptical. Because of Newton's third law, the force acting on the 
earth is equal and opposite to the force acting on the moon. Both bodies 
are constantly changing their speeds and directions because of the 
gravitational force continually acting on them. 

For more than 200 years, after many experiments on every 
accessible topic of macroscopic nature, Newton's laws came to be 
regarded by physicists and by much of society as the laws that were 
obeyed by all phenomena in the physical world. They were successful 
in explaining all motions, from those of the planets and stars to those 
of the molecules in a gas. This universal success led to the widespread 
belief in the principle of determinism, which says that, if the state of 
a system of objects (even as all-encompassing as the universe) is 
known precisely at any given time, such as now, the state of the 
system at any time in the future can in principle be predicted precisely. 
For complex systems, the actual mathematics might be too 
complicated, but that did not affect the principle. Ultimately, this 
principle was thOUght to apply to living beings as well as to inanimate 
objects. Such a deterministic world was thought to be completely 
mechanical, without room for free will, indeed without room for even 
any small deviation from its ultimate destiny. If there was a God in 
this world, his role was limited entirely to setting the whole thing 
into motion at the beginning. 

Intrinsic to the principle of determinism was the assumption that 
the state of a system of objects could be precisely described at all 
times. This meant, for example, that the position and velocity of each 
object could be specified exactly, without any uncertainty. Without 
such exactitude, prediction of future positions and velocities would 
be impossible. After many, many experiments it seemed clear that 
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only the inevitable imprecision in measuring instruments limited the 
accuracy of a velocity or position measurement, and nobody doubted 
that accuracies could improve without limit as measurement 
techniques improved. 
Thennodynamics and Statistical Mechanics, 
Entropy and the Direction of Time 

Thermodynamics is the physics of heat flow and of the 
interconversion between heat energy and other forms of energy. 
Statistical mechanics is the theory that describes macroscopic 
properties such as pressure, volume and temperature of a system in 
terms of the average properties of i~s microscopic constituents, the 
atoms and molecules. Thermodynamics and statistical mechanics are 
both concerned with predicting the same properties and describing 
the same processes, thermodynamics from a macroscopic point of 
view, and statistical mechanics from a microscopic point of view. 

In 1850, the German physicist Rudolf Clausius proposed the 
first law of thermodynamics, which states that energy may be 
convert~d from one form to another, such as heat energy into the 
mechanical rotation of a turbine, but it is always conserved. Since 
1905 when German-Swiss-American physicist Albert Einstein 
invented the special theory of relativity, we know that energy and 
matter can be converted into each other. Hence, the first law actually 
applies jointly to both matter and energy. This law is probably the 
most fundamental one in nature. It applies to all systems, no matter 
how small or large, simple or complex, whether living or inanimate. 
We do not think it is ever violated anywhere in the universe. No new 
physical theory is ever proposed without checking to see whether it 
upholds this law. 

The second law of thermodynamics can be stated in several 
ways. The first statement of it, made by Rudolf Clausius in 1850, is 
that heat can flow spontaneously from a hot to a cold object but it 
cannot spontaneously pass from a cold to a hot object. The second 
statement of the second law was made later by Scottish physicist 
William Thomson Kelvin and German physicist Max Planck: Heat 
energy cannot be completely transformed into mechanical energy, 
but mechanical energy can be completely transformed into heat 
energy. The third statement of the second law depends on a new 
concept, that of entropy. 

1 
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Entropy is related to the amount of disorder and order in the 
system. Decreasing entropy is equivalent to decreasing disorder or 
disorganization (increasing order or organization) of an object or 
system; while increasing entropy is equivalent to increasing disorder 
or disorganization. 

It turns out that the second law ofthermodynamics can be stated 
in the following way: Natural processes of an isolated macroscopic 
system normally proceed in the direction of maximum probability 
(maximum disorder), which is the direction of maximum number of 
distinguishable arrangements of the system. (It is highly improbable, 
although not totally impossible, for them to proceed in the opposite 
direction.) The forward direction of time is the direction in which 
entropy increases. Thus, the second law of thermodynamics can be 
restated in terms of entropy: Natural processes of an isolated 
macroscopic system always proceed in the direction of increasing 
entropy ( disorder). 

The direction of time can also be inferred from the first two 
statements of the second raw of thermodynamics: (l) The 
unidirectional flow of heat from hot to cold bodies, and (2) the 
possibility of total conversion of mechanical energy to heat energy, 
but not the -reverse. 

A mistake made by some people is to think that the second law 
applies to individual objects or systems, such as automobiles, plants, 
or human bodies, even if they are not isolated from the rest of the 
universe, and that this is the reason that such objects decay and 
disintegrate with time. This is a fallacy, however, because the second 
law does not prevent the entropy of an individual object from 
continuously decreasing with time and thus becoming more ordered 
and organized as long as it receives energy from something else in 
the universe whose entropy continues to increase. In our solar system, 
it is primarily the sun's entropy that continually increases as its fuel 
is burned and it becomes more disordered. 

An extremely important property of Newton's laws is that they 
are time reversal invariant. What this obscure-sounding term means 
is that, if the direction of time is reversed, the directions of motion 
of all particles are also reversed, l!1ld this reversed motion is 
completely allowed by Newton's laws. In other words, the motion in 
reversed time is just as valid as the motion in forward time, and nature 
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. herself does not distinguish between the two. A simple example of 
this is the time-reversed motion of a thrown baseball, which follows 
a parabolic trajectory in either the forward or the reversed direction. 
Without seeing the act of throwing, and without air resistance, we 
would not be able to distinguish the forward parabola from the 
reversed parabola. Another way to state it is that a movie of a thrown 
baseball seems just as valid to us if it is run in the reverse direction 
as in the forward direction. Time reversal invariance is also apparent 
in the seemingly random motion of the molecules in a gas. If we 
could see their motion in a movie and then reverse it, we could not 
distinguish between the forward motion and the reversed motion. 

However, if we consider the motion of an object containing 
many ordered particles (for example, with a recognizable size, shape, 
position, velocity, and orientation), we encounter a different 
phenomenon. It is easy to tell the difference between the reversed 
and forward motions of a person, a horse, a growing plant, a cup 
falling from a table and breaking, and most other examples from 
everyday life. Another example is the free expansion of a gas that 
initially is confined to one side of a box by a membrane. If the 
membrane is broken, the gas immediately expands into the other side 
(initially assumed to be evacuated), and we can easily tell the time 
reversed motion from the forward motion. In all of these cases, the 
motion at the individual molecule level is time reversal invariant, 
but it is clear that the gross motion of the macroscopic object is not. 

Our question now is, "Why does nature seem to be time reversal 
invariant at the individual, or few, particle level, but apparently not 
at the level of many particles contained in an ordered system such as 
any common macroscopic object?" In classical physics, irreversibility 
is always due to the second law of thermodynamics, which determines 
the forward direction of time. The forward direction is apparent after 
the cup has fallen and broken because the broken cup is more 
disordered (has higher entropy) than the unbroken cup. However, 
even before the cup breaks, a detailed calculation would show that 
the entropy of the combined system of cup, gravitational force, and 
earth increases as the cup falls. The entropy of the system of moving 
horse or person, gravitational force, earth, and surroundings increases 
with time because the motion dissipates energy and increases the 
disorder in the body, earth, and surroundings. 
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Electro~~eti~ 

French physicist Charles Augustin de Coulomb discovered the 
force law obeyed by stationary, electrically charged objects between 
1785 and 1791. In 1820, Danish physicist Hans Christian Oersted 
discovered that an electric current produces a magnetic field, and 
showed that a magnetic field exerted a force on a current-carrying wire. 
From 1820 to 1827, French physicist Andre Ampere extended these 
discoveries and developed the mathematical relationship describing the 
strength of the magnetic field as a function of current. In 1831, English 
chemist and physicist Michael Faraday discovered that a changing 
magnetic field, which he explained in terms of changing magnetic lines 
of force, produces an electric current in a wire. This was a giant step 
forward because it was the forerunner of the concept of force fields, 
which are used to explain all forces in nature today. 

These disparate phenomena and theories were all pulled together 
into one elegant theory by Scottish physicist James Clark Maxwell 
in 1873. Maxwell's four equations describing the electromagnetic 
field are recognized as one of the great achievements of 19th century 
physics. Maxwell was able to calculate the speed of propagation of 
the electromagnetic field from his equations, and found it to be 
approximately equal to the speed oflight. He then proposed that light 
is an electromagnetic phenomenon. Because electromagnetic fields 
can oscillate at any frequency, he concluded that visible light occupied 
only a very small portion of the frequency spectrum of 
electromagnetic radiation. The entire spectrum includes radio waves 
of low-frequency, high-frequency, very-high frequency, ultra-high 
frequency, and microwaves. At still higher frequencies are infrared 
radiation, visible light, ultraviolet radiation, x-rays, and gamma rays. 
All of these are fundamentally the same kind of waves, the only 
difference between them being the frequency of the radiation. 

Now we ask, what is the electromagnetic field, anyway? Is it a 
physical object? To answer that question, we must understand what 
we mean by the term physical object. One definition is that it is 
anything that carries force, energy, and momentum. By this definition 
the electromagnetic field is a physical object because it carries force, 
energy, and momentum. However, this merely defines the 
electromagnetic field in terms of other things that require their own 
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definitions. Force, energy, and momentum can only be defined in 
terms of the operations necessary to measure them and these 
operations require physical objects on which to make the 
measurements. Thus, all physical objects are defined in terms of other 
physical objects, so the definition is circular. This is another indication 
that the concept of objective reality is nothing but a concept. . . . . . . . . · . . . . 
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These parameters are related by the following equation: v=Af 
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Fig.2 Electromagnetic waves of all frequencies and wavelengths 

Waves 
In the 1800s, it was known that light had a wave-like nature, and 

classical physics assumed that it was indeed a wave. Waves are traveling 
oscillations. Examples are water waves, which are traveling surface 
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oscillations of water; and waves on a tightly stretched rope, which are 
traveling oscillations of the rope. Waves are characterized by three 
parameters: wavelength (I), oscillation frequency (t), and velocity (v). 

It was not known what the oscillating medium was in the case of 
light, but it was given the name' ether.' Maxwell had assumed that the 
ether provided an absolute reference frame with respect to which the 
velocity of any object or wave could be measured. In 1881, German­
American physicist Albert Michelson and American physicist Edward 
Morley performed ground-breaking experiments on the velocity of 
light. They found that the velocity of light on the earth always had the 
same constant value regardless of the direction of motion of the earth 
about the sun. This violated the concept, which was prevalent at the 
time, that the measured velocity of any object, be it particle or wave, 
depends on the observer's velocity relative to the velocity of the other 
object. This concept is demonstrated in everyday life when our 
observation of another car's velocity depends on the velocity of our own 

- car. Thus, the measured velocity of light relative to the ether was 
expected to depend on the direction of motion of the earth relative to 
the velocity ofthe ether. But, the constancy of the velocity oflight meant 
that the concept of the ether had to be abandoned because the ether 
velocity could not be expected to change with the observer's velocity 
in just such a way that the velocity oflight always had the same value. 
Thus, in the case of light waves, physicists concluded that there is no 
material medium that oscillates. 

Relativity 

Implicit in the preceding discussion of classical physics was the 
assumption that space and time were the contexts in which all physical 
phenomena took place. They were absolute in the sense that no 
physical phenomena or observations could affect them, therefore they 
were always fixed and constant. 

In 1905, the German-Swiss-American physicist Albert Einstein 
revolutionized these ideas of time and space by publishing his theory 
of special relativity. In this theory, he abandoned the concept of the 
ether, and with that the concept of the absolute motion of an object, 
realizing that only relative motion between objects could be measured. 
Using only the assumption of the constancy of the velocity of light 
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in free space, he showed that neither length nor time is absolute. 
This means that both length and time measurements depend on the 
relative velocities of the observer and the observed. 

An observer standing on the ground measuring the length of an 
airplane that is flying by will obtain a minutely smaller value than 
that obtained by an observer in the airplane. An observer on earth 
comparing a clock on a spaceship with his clock on earth will see 
that the spaceship clock moves slower than the earth clock. 

For an object having a mass, the special theory produced the 
famous relationship between the total energy (E) of the object, 
which includes its kinetic energy, and its mass (m): 

E=mc2 

where c is the velocity of light in a vacuum. Einstein's special 
theory has been confirmed by thousands of experiments, both direct 
and indirect. 

In Einstein's special theory of relativity, even though space and 
time were no longer separately absolute, they were still Euclidean. 
This mea'}t that two straight lines in space-time which were parallel 
at one point always remained parallel no matter what the gr(j,vitational 
forces were. 

In 1915, Einstein completed his greatest work, the general theory 
of relativity. Whereas the special theory deals with objects in uniform 
relative motion, i.e., moving with constant speed along straight lines 
relative to each other, the general theory deals with objects that are 
accelerating with respect to each other, i.e., moving with changing 
speeds or on curved trajectories. Examples of accelerating objects 
are an airplane taking off or landing, a car increasing or decreasing 
its speed, an elevator starting up or coming to a stop, a car going 
around a curve at constant speed, and the earth revolving around the 
sun or the moon revolving around the earth at constant speed. 

A particularly important example of acceleration is that of an 
object free-falling in the earth's gravity. A free-falling object is one 
that is acted upon only by the gravitational force, without air friction 
or other forces. All free-falling objects at the same spot in the earth's 
gravitational field fall with the same acceleration, independent of 
the mass or material of the object. A free-falling object, such as an 
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astronaut in a spaceship, does not experience a gravitational force 
(i.e., he/she experiences weightlessness), hence we can say that the 
acceleration of free-fall cancels out the gravitational force. Another 
way to state this fact is that a gravitational force is equivalent to an 
acceleration in the same direction. This is Einstein's famed 
equivalence postulate, which he used in discovering general relativity. 

The equivalence postulate applies to all objects, even light 
beams. Consequently, the path of a light beam is affected by a 
gravitational field just like the trajectory of a baseball. However, 
because of the very high speed of the photons in a light beam (3xl08 

metres/second, or 186,000 miles/second), their trajectories are bent 
by only very tiny amounts in the gravitational fields of ordinary 
objects like the sun. 

Because all types of objects are affected in exactly the same 
way by gravity, an equivalent way of looking at the problem is to 
replace all gravitational forces by curved trajectories. The curved 
trajectories are then equivalent to curving space itself! This is the 
second key concept that Einstein used in the general theory of 
relativity. The result is that the general theory replaces the concept 
of gravity with the curvature of space. The curvature of a light beam 
around an individual star or galaxy is xrery small and difficult to 
measure. Even the whole universe curves the trajectory of a light 
beam only a little. 

Clear evidence that the force of gravity is nothing but a concept 
is given by the fact that it can be replaced by another concept, the 
concept of the curvature of space. Less clear is that the body 
sensations that we normally associate with the force of gravity are 
also nothing but concepts. 

Speaking of the universe as a whole, what are the effects of 
curved space? The principal effect is that light beams no longer travel 
in straight lines. Hence, if two light beams start out parallel, they 
will eventually either converge or diverge. If they diverge, we say 
that space has negative curvature, and if they converge, we say 
that it has positive curvature. Zero curvature corresponds to parallel 
light beams always remaining parallel. This implies a Euclidean, or 
flat, space. 
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The electromagnetic field is nothing but a concept, we can now 
say that space is also nothing but a concept! It is a concept that allows 
us to conceptualize the separation of objects (which are nothing but 
concepts) and it allows us to predict the trajectories of light beams. 

The curvature ofthe universe as a whole depends on the average 
mass density and on the expansion rate of the universe. The fact that 
the universe is expanding was discovered by American astronomer 
Edwin Hubble in 1929, 14 years after Einstein published his general 
theory of relativity. 

Whether the space of our universe has positive or negative 
curvature is a matter for experimental determination. In practice, it 
is too difficult to do this by measuring the curvature of light beam 
trajectories, but the curvature can be calculated if the average mass 
density and the expansion velocity are known. The average mass 
density cannot easily be measured directly because we are unable to 
see matter that is not emitting light, so the average mass density in a 
galaxy, for example, must be calculated from the trajectories of the 
motion of visible stars in the galaxy. Such measurements indicate 
that there is a large amount of matter in the universe that does not 
shine with its own or reflected light. This is called dark matter. 

Until 1998, it was thought that the universe was expanding at a 
constant rate, but in 1998 it was discovered that it is actually 
expanding at an accelerating rate rather than a constant one. This 
acceleration cannot be explained if the universe contains only 
ordinary and dark matter because these produce a gravitational force 
which is attractive, whereas an accelerating expansion requires a 
repulsive force. This repulsive force represents a 'dark energy' density 
in addition to the energy densities of ordinary and dark matter. Both 
dark matter and dark energy are presently being intensively 
investigated both theoretically and experimentally because they could 
be the result of new physical laws operating. 

There are powerful theoretical reasons for believing that the 
curvature of our space is neither positive nor negative but is exactly 
zero. Zero curvature requires a certain value of the average mass 
density including both visible and dark matter. A larger value implies 
a positive curvature, and a smaller value implies a negative curvature. 
The density of visible matter by itself is not high enough to produce 
a zero or positive curvature. 
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In discovering the special theory of relativity, Einstein was 
heavily influenced by the positivism of Austrian natural philosopher 
Ernst Mach. Positivism is the philosophy that states that the only 
useful concepts are those that depend directly on empirical 
observation. This attitude is derived from the belief that the only 
objective, external reality that exists is one that can be directly 
observed, such as macroscopic objects. In inventing and explaining 
the special theory, Einstein followed the positivist approach and made 
extensive use of the empirical definitions of measurements of time 
and space, and he incorporated those definitions into the mathematics, 
which describe how length and time vary with the relative velocity 
of observer and observed. In this way, Einstein was able to avoid the 
concept of space except as being the context of measurements of 
length and time. 

However, Einstein abandoned positivism when he developed 
the general theory of relativity, and it is unlikely that he could have 
developed it without doing so. His concept of general relativity 
depended essentially on an intuitive leap from the empirical 
operations of measuring the force of gravity and the accelerations of 
objects to a theoretical model of space which was curved and in which 
there were no gravitational forces. He likely could not have done 
this without believing that space was objectively real rather than being 
merely the context for making measurements of length and time. 

In addition to curved space, a physicist who adhered to the 
positivist philosophy would not have discovered the electron, the 
atom, or quantum waves. Einstein's intuitive leap is an example of 
an essential aspect of the work of scientists. The individual 
experiments that scientists perform are always very specific to a 
particular problem in particular circumstances. Any attempt to 
comprehend the results of many such experiments on many similar 
topics would be futile without some kind of unifying model that is 
presumed to represent some aspect of the external, objective reality 
affecting those experiments. 

For example, force fields are theoretical models of gravitational 
or electromagnetic forces, and curved space-time is a model of space­
time that accounts for the gravitational force. There are other models 
that account for the weak and strong forces that act on elementary 
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particles. And there are models of the nucleus, the atom, molecules, 
solids, crystals, and gases. All of these models are highly 
mathematical, because mathematics is the universal language of 
physics. 

When a model is found that accurately accounts for experimental 
observations, there is a strong tendency to think of the model itself 
as the external, objective reality. Thus, both physicists and the general 
public routinely speak of elementary particles, nuclei, and atoms as 
being real objects, rather than simply as mathematical models. We 
shall see later that this tendency creates innumerable problems in 
trying to understand the true nature of Reality. 

In classical physics, objects interact with each other through their 
force fields, which are also objects in external, objective reality. For 
example, the atoms and molecules in a solid, liquid, or gas are held 
together by the electromagnetic force. Charged particles also interact 
through the electromagnetic force. It turns out that all physical objects, 
which are nothing but concepts, interact with each other through their 
force fields, which are also nothing but concepts. 

As revolutionary as Einstein's general theory of relativity was, 
it did nothing to change the belief that we as observers stil11ive within 
the context of space-time even though space-time is no longer thought 
to be absolute and unchanging. This means, for example, that we as 
objects are still subject to the experience of separation and isolation 
from other objects, and to the experience of aging and the ultimate 
death of the body. It took an even more revolutionary theory, the 
quantum theory, to begin to shake these imprisoning beliefs. 

2D Electron Gas 

As was mentioned, quantum well structures have found 
important applications in novel semiconductor devices. In such 
structures, a thin region of a narrow gap semiconductor is sandwiched 
between layers of a wide band gap semiconductor or surrounded by 
a wide band gap semiconductor. 

Let us first consider electrons in a narrow gap semiconductor 
layer, such as is shown in figure. If this layer is thin enough, the 
motion of carriers in the direction perpendicular to the 
heterointerfaces is quantized, meaning that this motion involves 
discrete (quantum) energy levels. In this case, electrons propagating 
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in the narrow gap semiconductor are often referred to as a two­
dimensional electron gas. Electrons in an unrestricted semiconductor 
are sometimes called a three-dimensional electron gas. Electrons 
propagating often called a quantum wire are called a one-dimensional 
electron gas. 
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Fig. 3 (a) GaAs layer sandwiched between AIGaAs layers, (b) GaAs region 
surrounded by AIGaAs, and (c) corresponding band diagram. 

(AIGaAs has a wider energy gap than GaAs). 

The lowest energy levels for a square potential well can be 
estimated as follows: 

;r2t/ 
EJ -Ec =---2 / 

2mnd 
Here j is the quantum number labelling the levels, and d is the 

thickness of the quantum well. For the quantization to be important, 
the difference between the levels should be much larger then the 
thermal energy kaT, that is, 

;r2h2 

---2 »KnT 
2mnd 

Using this condition, we find, for example, that in GaAs where 
mn/me = 0.067, the levels are quantized at room temperature when 
d =150 E. 



26 Quantum Mechanics 

In the direction parallel to the heterointerfaces, the electronic 
motion is not restricted. Hence, the wave function for a two­
dimensional electron gas can be presented as 

If/ = f(y)exp(ikxx + ik=z) 

where f (y) may be approximated by: 

(2)1/2 ( . ) 
f(y)= d sin d y 

The term exp(ik x x + ikzz) in the wave function describing the 
electronic motion in directions x and z is similar to that of free 
electrons. This is understandable since electrons move freely in these 
directions. The dependence ofthe electron energy on the wave vector 
for a two-dimensional electron gas is given by 

n(k; +k;) 
E - E = --'---~ 

.I 2m n 
The ~-component is absent in last equation since the motion in 

the y-direction is quantized. Each quantum level, Ej' corresponds to 
an energy subband. 
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Fig.4 Energy Levels (bottoms of subbands), Density of States for 
Quantum Well Structure. and Energy Versus k = (k,/ + kz

2)1/2 for 
Two-dimensional Electron Gas in GaAs Quantum Well. 

The density of states for each subband can be found using an 
approach similar to that used above for a three-dimensional density 
of states, that is, by counting the number of states with wave vectors 
k between k and dk. The corresponding area in k-space is equal to 
2rrkdk. The density of allowed states is equal to the number of allowed 
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values of k in this area in k-space times two (the factor of 2 takes 
into account the two possible values of spin). The density of allowed 
points in k-space for the unit size sample is 1/(21tf Hence, the total 
number of states with values of k between k and k + dk is 

dN = 2 x 21rkdk 

(21r )2 

Taking into account that 

k= ~2mn(E-Ej) 
h 

where Ej is the bottom of the jill subband and 

kkdk = m
ll
dEI1i2 

we obtain 

where the density of states, D, for one subband is given by D = m,~ 
1rh 

The states of the first (bottom) subband overlap with the states 
of the second (from the bottom) subband for energies larger than the 
second energy level, and so on. As a consequence, the overall density 
of states has a 'staircase' shape. With an increase in the well 
thickness, d, the steps in Fig. 4 gradually decrease and merge into an 
envelope parabolic function, which is equal to the three-dimensional 
density of states function multiplied by d. 

1D Electron Gas 

Let us now consider a one-dimensional quantum wire where 
electron motion in two directions (y and z) is quantized and in one 
direction (x) electrons are free to move. The wave function y(x, y, z) 
and dispersion relation En1 ,n2.k are now given by 

'I' = f(y)f( z )exp(ikx - x) 
where fey) and fez) are functions localized within the cross 

section of the quantum wire, 
h2k2 2h2 21,;2 h2k2 

E E E 1 2 
Tt X 1r Tt .2 1r,1 .2 fI x 

- C = I I +--=---? I) +---2'2 +--
2m/! 2mnd; 2mnd= 2111n 
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Where it and i2 are quantum numbers related to quantization in 
the y and z directions, dy and dz are dimensions of the quantum wire 
in the y and z directions, and where we assume that the dispersion 
relation for the electron energy in each subband is parabolic. 

The density of states for a one-dimehsional subband can be 
found by using an approach similar to that used above for a two­
dimensional density of states, that is, by counting the number of 
states with wave vectors k between k and dk. For a one-dimensional 
system, the density of allowed points in k-space for a unit size 
sample is 1/(21t). Hence, the total number of states with k between k 
and k + dk is 

[An additional factor of 2 appears here because there are two 
directions ofk: positive and negative.] Using equation, 

m1l2dE 
dk= n 

1i~2( E - EiI ,i2) 
where Eil ,i2 is to the bottom of the subband corresponding to the 
quantum numbers it and i2. Hence, 

Jim l / 2dE 
dN= n OdE 

7i1i~ E - EiI ,i2 

Where the density of states is given by 

Ji I/~ 
n(E) = mn -

7i1i~ E - EiI ,i2 

Below we compare the densities of states for three-dimensional, 
two-dimensional and one-dimensional electron gases in GaAs. 
Consider only the two lowest subbands for the two-dimensional and 
one-dimensional electron gases. 

If we choose the cross section of the GaAs quantum wire 
containing the one-dimensional gas to be equal to 100 E xl00 E. 
then the lowest energies in the two lowest subbands are equal to 0.112 
eV and 0.280 eV. The dependencies of these densities of states on 
energy. 

Of course, the densities of states for one-, two-, and three­
dimensional electron gases have ditferent dimensions. If we make, 
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for example, 105 parallel identical quantum wires per cm then the 
two-dimensional density of states in all these wires will be 105 greater 
than Wand will be more comparable to D. In similar way, we can 
consider many identical parallel layers containing two-dimensional 
gas and then multiplying D by the number of layers per cm, we can 
obtain the three-dimensional density of states, which will be more 
comparable to g. 
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Fig. 5 Densities of States Versus Energy for Three-dimensional (g), 
Two-dimensional (D), and One-dimensional (W) Electron Gases in GaAs 

Conduction band. Only the Two lowest Sub bands are accounted for 
Two-dimensional and One-dimensional Electron Gases. 

Once we find the densities of states we can calculate the electron 
concentration in the conduction band. However, energy states in the 
valence band may play an equally important role. 
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Tailoring Electronic Properties of Materials by 
N anostructuring 

Electrons confined to nanostructures give rise to low­
dimensional quantum well states, which modify the density of states. 
States at the Fermi level trigger electronic phase transitions, such as 
magnetism and superconductivity. 

How fine does a solid need to be structured to have an impact 
on its electronic properties? The wavefunction of electrons is going 
to change when they are confined to dimensions comparable with 
their wavelength. As an estimate we may see the Fermi wavelength 
of a simple free-electron gas. It decreases with increasing carrier 
density. Therefore, confinement and quantization phenomena are 
visible in semiconductors already at dimensions greater than 200 nm, 
whereas in metals they typically are seen at 1 nm. 

In fact, the Fermi wavelength of typical metals has atomic 
dimensions, but beat frequencies with the lattice can be an order of 
magnitude larger. A related way of reasoning considers the formation 
of low-dimensional electronic states by quantization. 

Confining electrons to small structures causes the continuous 
bulk bands to split up into discrete levels, for example quantum well 
states in a slab. For N atomic layers in the slab there are N levels. In 
order to exhibit two-dimensional behaviour there should be only a 
single level within ±kT of the Fermi level. Several levels within the 
Fermi cut-off would already approach a three-dimensional continuum. 
For a coarse estimate of the corresponding slab thickness, one may 
set the energy E of the lowest level equal to kT. For room temperature 
(E = kT = 0.026 eV), one obtains a de Broglie wavelength I = hlp = 
h/(2mE)I12 = 1.23 nm /(E/eV)I12 = 8 nm, which is comparable with 
the spatial extent of the lowest quantum state. Thus, both the high 
electron density and the requirement of room-temperature operation 
for quantum devices point to dimensions of a few nanometres. 

Superlattice Devices 

To use a semiconductor superlattice based on a periodic structure 
of alternating layers of semiconductor materials with wide and narrow 
band gaps. The first superlattices were fabricated using an AlGaAs/ 
GaAs material system. 
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x Fig. 7 AIGaAs-GaAs Superlattice. 

Let us first review what is happening in one individual quantum 
well formed in the GaAs layer sandwiched between two AIGaAs 
barrier layers. If the GaAs layer thickness is small enough, then 
electronic motion in the quantum well is quantized in the direction 
perpendicular to the heterointerfaces. The carriers move freely in the 
direction parallel to the heterointerfaces so that the wave function is 
proportional to exp[i(~x + ~z)f(Y). Here ~ and ~ are components 
of the wave vector in the plane of the superlattice, x and z are the 
coordinates in the superlattice plane, and y is the coordinate 
perpendicular to the superlattice plane. As was discussed, each energy 
level found for a quantum well from the solution of the one­
dimensional Schrodinger equation corresponds to a subband of states 
with the density of states, 0, in each subband given by 

D= mn 
7rh 2 

If the thickness of the wide-band-gap barriers layers is small 
enough so that electrons may tunnel through, then the situation 
becomes similar to what happens when individual atoms are brought 
together in a crystal. In this case, individual levels in the quantum 
wells are split into bands (called the minibands). In a crystal, the 
periodic atomic potential leads to band formation. In a superlattice, 
an artificial, human-made periodical potential causes the formation 
of minibands. 

To create an artificial periodic potential in a semiconductor 
crystal using periodic n-type and p-type doped layers. Such a 
super lattice is called a doping superlattice. 

Superlattice structures have been be used in field effect 
transistors where several quantum wells provide parallel conducting 
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channels, increasing the device current carrying capabilities and, 
hence, the output power. Super lattices are also used for 
photodetectors and for novel light-emitting diodes. 

5upe!IattIce Chamel 
Fig. 8 Heterostructure Field Effect Transistor 

with a Superlattice Channel. 

In heterostructure devices, superlattice buffers are used to create 
an intermediate layer between a substrate and an active layer. This 
allows us to alleviate strain caused by lattice constant mismatch and 
to obtain a much better quality active layer material. 

Arrawshows 
the lasing transition 

DIstance 

Fig. 9 Active Region of Quantum 
Cascade Laser. 



2 

Max Planck's 
Revolutionary Hypothesis 

Quantum RevolutiOl. 

Over three hundred years ago, Sir Isaac Newton revolutionized 
the study of the natural world by putting forth laws of nature that 
were stated in mathematical form for the first time. 

By the start of the 20th century, physicists had worked with 
Newton's laws so thoroughly that some of them thought that they 
were coming to the end of physics. In their opinion, not much was 
left to do to make physics a complete system. Little did they know 
that the world they described was soon to be understood in a 
completely different way. The quantum revolution was about to 
happen. 

This revolution was begun by a very unlikely person, a physicist 
named Max Phmck, who was very conservative in all his views. It 
speaks well of Planck's intellectual honesty that he was able to accept 
the reality of what he discovered, even though he found the 
consequences of his discoveries distasteful and unpleasant for the 
rest of his life. 

Born in 1853, Max Planck came from a conservative and 
respectable family in Kiel, Germany. Young Max was very bright, 
and had a variety of fields from which to choose to study for his 
professional life. Planck chose physics because he felt that it was 
the field in which he was most likely to do some original work. At 
the young age of 21, he received his doctorate in physics from the 
University of Munich. 
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Planck was investigating the properties of heat- and Iight­
emitting bodies. Classical physics had theories which predicted that 
the brightness of a body increases continuously as the frequency of 
its electromagnetic radiation is increased. 

Frequency 

Fig. 1 Intensity vs. Frequency Plot. 
Unfortunately, experiments revealed a totally different picture. 

The brightness did increase initially, but only up to a limit. Then, 
actu,ally, it began to fall. We thus get a bell-shaped curve if we plot 
frequency against brightness. 

Besides, another observation was made: as bodies become 
hotter, their maximum brightness shifts towards higher frequencies. 
This is why an object, heated to 300-400°C, emits mostly infrared or 
heat waves. As the temperature is increased, the object appears to be 
red, then orange, and finally white or even blue. 

Classical theories totally failed to explain this discrepancy 
between the known facts and the observations. Then, in the winter 
of 1900, Max Planck found a solution to this problem. Planck ushered 
in the quantum era by making a bizarre assumption: 

Emission and absorption of energy can occur only in discrete 
amounts. 

This might seem totally unsurprising to you, but believe me, it 
shook the scientists of that period. Planck himself did not know he 
would end up with this statement! 

Imagine for a moment that you are a sculptor, and you have 
obtained a piece of stone in the shape of a cube. To begin your 
sculpture, you take a chisel and place its edge against the stone, and 
then strike the chisel with a hammer. What do you imagine would 
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happen? I think you would imagine that a piece of the stone would 
be split off, as well as some smaller splinters and pieces of stone. 
Imagine instead that when you struck the stone, it broke into hundreds 
of small cubes, each one of them exactly the same size, 3 centimetres 
per side. Wouldn't you be surprised, even shocked? Imagine 
furthermore that no matter how hard you tried, these smaller cubes 
could not be broken into smaller pieces at all! 

We think that the reaction that a sculptor would have in such a 
circumstance would be similar to what Planck and other physicists 
felt upon discovering that energy only occurred in discrete amounts. 
It was a completely unexpected discovery, and yet it was only the 
beginning of what would come later. 

Planck called these discrete lumps as 9uanta. This was against 
the entire worldview that had been built from the time of Newton 
onward. In the physics that had been built up since the time of 
Newton, and indeed in the minds of most thinkers before Newton, 
matter and energy were thought to be smooth and continuous. Even 
by the time of Planck, the idea that matter could be ultimately broken 
down into tiny indivisible 'atoms' was only held by a few physicists. 

The Beginning of Quantum Physics 

Physicists measure the spectrum (the intensity of light as a 
function of wavelength , or colour) of a light source in a spectrometer. 
The figure below ~hows a schematic drawing of a simple prism 
spectrometer. White light comes in from the left and the prism 
disperses the light into its colour spectrum. 

Fig. 2 Spectrum 

In the late 1800s, physicists were making accurate measurements 
of the spectra of the emissions from black bodies (objects which are 
opaque, or highly absorbing, to the light they emit). Good examples 
of black bodies are the sun, the filament of an incandescent lamp, 
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and the burner of an electric stove. The colour of a black body depends 
on its temperature, a cool body emitting radiation oflong wavelengths, 
i.e., in the radio frequency range or in the infrared which are invisible 
to the eye, a warmer body emitting radiation which includes shorter 
wavelengths and appearing deep red, a still warmer body emitting 
radiation which includes still shorter wavelengths and appearing 
yellow, and a hot body emitting even shorter wavelengths and 
appearing white. The emissions are always over a broad range of 
colours, or wavelengths, and their appearance is the net result of 
seeing all of the colours at once. 

Ok 

Spec1ral curves for black body radiators 
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Fig. 3 Spectral Curves for Black Body Radiators 

Classical physics could not explain the spectra of black bodies. 
It predicted that the intensity of emitted light should increase rapidly 
with decreasing wavelength without limit (the 'ultraviolet 
catastrophe'). In the figA, the curve labelled 'Rayleigh-Jeans law' 
shows the classically expected behaviour. 

However, the measured spectra actually showed an intensity 
maximum at a particular wavelength, while the intensity decreased 
at wavelengths both above and below the maximum. In order to 
explain the spectra, in 1900 the German physicist Max Planck was 
forced to make a desperate assumption for which he had no physical 
explanation. As with classical physics, he assumed the body consisted 
of vibrating oscillators (which were actually collections of atoms or 
molecules). 
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However, in contrast to classical physics, which assumed that 
each oscillator could absorb an arbitrary amount of energy from the 
radiation or emit an arbitrary amount of energy to it, Planck was 
forced to assume that each oscillator could receive or emit only 
discrete, quantized energies (E), such that 

E = hf(Planck's formula) 

where h (Planck's constant) is an exceedingly small number whose 
value we do not need to present here, and f is the frequency of 
vibration of the oscillator (the number of times it vibrates per second). 
Each oscillator is assumed to vibrate only at a fixed frequency 
(although different oscillators in general had different frequencies), 
so if it emitted some radiation, it would lose energy equal to hf, and 
if it absorbed some radiation, it would gain energy equal to hf. Planck 
did not understand how this could be, he merely made this empirical 
assumption in order to explain the spectra. The figure above shows 
Planck's prediction; this agreed with the measured spectra. 

Also in the late 1800s, experimental physicists were measuring 
the emission of electrons from metallic objects when they shined light 
on the object. This is called the photoelectric effect. These 
experiments also could not be explained using classical concepts. 
These physicists observed that emission of electrons occurred only 
for light wavelengths shorter than a certain threshold value that 
depended on the metal. Classically, however, one expected that the 
emission should not depend on wavelength at all, but only on 
intensity, with greater intensities yielding more copious emission of 
electrons. 
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Fig. 5 Emission of electron 
In one of a famous series of papers in 1905, Einstein explained 

the photoelectric effect by starting with Planck's concept of quantized 
energy exchanges with light radiation, and making the startling 
assumption that these quantized exchanges were a direct result of 
the quantization of light itself, i.e., light consisted of discrete bundles 
of energy called photons, rather than the continuous waves which 
had always been assumed by classical physicists. However, these 
bundles still had a wave nature, and could be characterized by a 
wavelength, which determined their colour. He also used Planck's 
relationship between energy and frequency (E = hf) to identify the 
energy of the photon, and he used the relationship between velocity, 
frequency, and wavelength that classical physics had always used 
(v = If, where now v = c = velocity of light). 

In classical physics, the electromagnetic field connects charged 
particles to each other. In quantum physics, the force field,s of classical 
physics are quantized, and the quanta of the fields then become the 
force carriers. For example, photons are the quanta of the 
electromagnetic field. In quantum physics, it is the photons that 
connect charged particles to each other. 

The Development of Quantum Mechanics 
In addition to measuring the spectra of blackbody radiation in 

the 19th century, experimental physicists also were familiar with the 
spectra emitted by gases through which an electrical discharge (an 
electric current with enough energy to strip some of the electrons 
from the atoms of the gas) was passing. Examples of such discharges 
are the familiar neon sign, in which the gas is neon; and the 
fluorescent light bulb, in which the gas is mercury vapour (the 
fluorescent light bulb has special coatings on the inner walls which 
change the spectrum of the light). The spectra of such light sources 
consist of emissions at discrete, separated wavelengths, rather than 
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over a continuous band of wavelengths as in blackbody spectra. These 
spectra are called line spectra because of their appearance when they 
are viewed with a spectrometer. 
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Fig. 6 Black Body and Line Spectra Black Body 

When classical physics was applied to such a model of the atom, 
it predicted that the electrons could not remain in stable orbits about 
the nucleus, but would radiate away all of their energy and fali into 
the nucleus, much as an earth satellite falls into the earth when it 
loses its kinetic energy due to atmospheric friction. In 1913, after 
Danish physicist Niels Bohr had learned of these results, he 
constructed a model of the atom that mad~ use of the quantum ideas 
of Planck and Einstein. He proposed that the electrons occupied 
discrete stable orbits without radiating their energy. The discreteness 
was a result vf the quantization of the orbits, with each orbit 
corresponding to a specific quantized energy for the electron. The 
electron was required to have a certain minimum quantum of energy 
corresponding to a smallest orbit; thus, the quantum rules did not 
permit the electron to fall into the nucleus. However, an electron 
could jump from a higher orbit to a lower orbit and emit a photon in 
the process. The energy of the photon could take on only the value 
corresponding to the difference between the energy of the electron 
in the higher and lower orbits. An electron could also absorb a photon 
and jump from a lower orbit to a higher orbit if the photon energy 
equaled the difference in orbit energies. Bohr applied his theory to 
the simplest atom, the hydrogen atom, which consists of one electron 
orbiting a nucleus of one proton. 
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The theory explained many of the properties of the observed 
line spectrum of hydrogen, but could not explain the next more 
complicated atom, that of helium, which has two electrons . 
Nevertheless, the theory contained the basic idea of quantized orbits, 
which was retained in the more correct theories that came later. 

In the earliest days of the development of quantum theory, 
physicists, such as Bohr, tried to create physical pictures of the atom 
in the same way they had always created physical pictures in classical 
physics. However, although Bohr developed his initial model of the 
hydrogen atom by using an easily visualized model, it had features 
that were not understood, and it could not explain the more 
complicated two-electron atom. The theoretical breakthroughs came 
when some German physicists who were highly sophisticated 
mathematically, Werner Heisenberg, Max Born , and Pascual Jordan 
largely abandoned physical pictures and created purely mathematical 
theories that explained the detailed features ofthe hydrogen spectrum 
in terms of the energy levels and the intensities of the radiative 
transitions from one level to another. The key feature of these theories 
was the use of matrices instead of ordinary numbers to describe 
physical quantities such as energy, position, and momentum. 

The step of resorting to entirely mathematical theories that are 
not based on physical pictures was a radical departure in the early 
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days of quantum theory, but today in developing the theories of 
elementary particles it is standard practice. Such theories have become 
so arcane that physical pictures have become difficult to create and 
to picture, and they are usually developed to fit the mathematics rather 
than fitting the mathematics to the physical picture. Thus, adopting 
a positivist philosophy would prevent progress in developing models 
of reality, and the models that are intuited are more mathematical 
than physical. 

Nevertheless, in the early 1920s some physicists continued to 
think in terms of physical rather than mathematical models. In 1923, 
French physicist Louis de Broglie reasoned that if light could behave 
like particles, then particles such as electrons could behave like waves, 
and he deduced the formula for the wavelength of the waves: 

A == hlp 

where p is the momentum (ma~s x velocity) of the electron. 
Experiments subsequently verified that electrons actually do behave 
like waves in experiments that are designed to reveal wave nature. 

In physics, if there is a wave then there must be an equation 
that describes how the wave propagates in time. De Broglie did not 
find it, but in 1926 German physicist Erwin Schrodinger discovered 
the celebrated equation that bears his name. The Schrodinger equation 
allows us to calculate precisely the Schrodinger wave at all points in 
space at any future time if we know the wave at all points in space at 
some initial time. In this sense, even quantum theory is completely 
deterministic. 

Schrodinger verified his equation by using it to calculate the 
line emission spectrum from hydrogen, which he could do without 
really understanding the significance of the waves. In fact, 
Schrodinger misinterpreted the waves and thought they represented 
the electrons themselves. However, such an interpretation could not 
explain why experiments always showed that the photons emitted 
by an atom were emitted at random rather than predictable times, 
even though the average rate of emission could be predicted from 
both Heisenberg's and Schrodinger's theories. It also could not 
explain why, when an electron is detected, it always has a weIl­
defined position in space, rather than being spread out over space 
like a wave. 
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Fig. 8 Schrodinger misinterpreted the waves 

The proper interpretation was discovered by German physicist 
Max Born, who suggested that the wave (actually, the absolute value 
squared of the amplitude or height of the wave, at each point in space) 
represents the probability that the electron will appear at that specified 
point in space if an experiment is done to measure the location of 
the electron. Thus, the Schrodinger wave is a probability wave, not 
a wave that carries force, energy, and momentum like the 
electromagnetic wave. Born's interpretation introduces two extremely 
important features of quantum mechanics: 

1. From the wave we can calculate only probabilities, not 
certainties (the theory is probabilistic, not deterministic). 

2. The wave only tells us the probability of finding something 
if we look, not what is there if we do not look (quantum 
theory is not a theory of objectively real matter although 
Born thought the Schrodinger wave was objectively real). 

The first feature violates the second fundamental assumption 
of classical physics, i.e., that both the position and velocity of an 
object can be measured with no limits on their precision except for 
those of the measuring instruments. The second feature violates the 
first fundamental assumption of classical physics, i.e., that the 
objective world exists independently of any observations that are 
made on it. 
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Uncertainty and Complementarity 
As Born proposed, quantum theory is intrinsically probabilistic 

in that in most cases it cannot predict the results of individual 
observations. However, it is deterministic in that it can exactly predict 
the probabilities that specific results will be obtained. Another way 
to say this is that it can predict exactly the average values of measured 
quantities, like position, velocity, energy, or number of electrons 
detected per unit time in a beam of electrons, when a large number 
of measurements are made on identical electron beams. It cannot 
predict the results of a single measurement. This randomness is not 
a fault of the theory-it is an intrinsic property of nature. Nature is 
not deterministic in the terms thought of in classical physics. 

Another feature of the quantum world, the world of microscopic 
objects, is that it is intrinsically impossible to measure simultaneously 
both the position and momentum of a particle. This is the famous 
uncertainty principle of Heisenberg, who derived it using the 
multiplication rules for the matrices that he used for position and 
momentum. For example, an apparatus designed to measure the 
position of an electron with a certain accuracy in following diagram. 
The hole in the wall ensures that the positions of the electrons as 
they pass through the hole are within the hole, not outside of it. 

__________ JJ-------------------~ . 
electrOns ••••••••••••••••••••••••••••••• detector 

--- ---- U- -- ------ ----
Fig. 9 Electrons Beam on Detector 

So far, this is not different from classical physics. However, 
quantum theory says that if we know the position q of the electron to 
within an accuracy of Aq (the diameter of the hole), then our 
knowledge of the momentum p ( = mass x velocity) at that point is 
limited to an accuracy Ap such that 

(Ap)(Aq»h (Heisenberg uncertainty relation) 

In other words, the more accurately we know the position of 
the electron (the smaller Aq is), the less accurately we know the 
momentum (the larger.1p is). Since momentum is mass times velocity, 
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the uncertainty in momentum is equivalent to an uncertainty in 
velocity. The uncertainty in velocity is in the same direction as the 
uncertainty in position. In the drawing above, the unceltainty in 
position is a vertical uncertainty. This means that the uncertainty in 
velocity is also a vertical uncertainty. This is represented by the lines 
diverging (by an uncertain amount) after the electrons emerge from 
the hole (uncertain vertical position) rather than remaining parallel 
as they are on the left. 

Likewise, an experiment designed to measure momentum with 
a certain accuracy will not be able to locate the position of the particle 
with better accuracy than the uncertainty relationship allows. 

Notice that in the uncertainty relationship, if the right side equals 
zero, then both ~p and ~q can also be zero. This is the assumption 
of classical physics, which says that if the particles follow parallel 
trajectories on the left, they will not be disturbed by the hole, and 
they wiII follow paralIel trajectories on the right. 

If we divide both sides of the uncertainty relation by the mass 
m of the particle, we obtain 

(~v)(~q»h/m 

Here we see that the uncertainties in velocity v or position q are 
inversely proportional to the mass ofthe particle. Hence, one way to 
make the right side effectively zero is to make the mass very large. 
When numbers are put into this relationship, it turns out that the 
uncertainties are significant when the mass is microscopic, but for a 
macroscopic mass the uncertainty is unmeasurably small. Thus, 
classical physics, which always dealt with macroscopic objects, was 
close to being correct in assuming that the position and velocity of 
all objects could be determined arbitrarily accurately. 

The uncertainty principle can be understood from a wave picture. 
A wave of precisely determined momentum corresponds to an 
infinitely long train of waves, all with the same wavelength, as is 
shown in the first of the two wave patterns below. This wave is spread 
over alI space, so its location is indeterminate. 

A wave of less precisely detennined momentum can he obtained 
by superposing waves of slightly different wavelength (and therefore 
slightly different momentum) together, as is shown in the second of 
the two patterns above. 
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This results in a wave packet with a momentum spread ~p 
(uncertainty ~p), but which is bunched together into a region Qfwidth 
~x (uncertainty ~x) instead of being spread over all space. 

The uncertainty relation is closely related to the complementarity 
p'rinciple, which was first enunciated by Bohr. This principle states 
that quantum objects (objects represented by quantum wavefunctions) 
have both a particle and a wave nature, and an attempt to measure 
precisely a particle property will tend to leave the wave property 
undefined, while an attempt to measure precisely a wave property 
will tend to leave the particle property undefined. In other words, 
particle properties and wave properties are complementary properties. 
Examples of particle properties are momentum and position. 
Examples of wave properties are wavelength and frequency. A precise 
measurement of momentum or position leaves wavelength or 
frequency undefined, and a precise measurement of wavelength or 
frequency leaves momentum or position undefined. 

Complementarity and uncertainty strongly imply that the electron 
(or any other 'particle') is neither a particle nor a wave. If so, what is 
it? So far, we have neglected the role of the observer in all measurements. 
When we take that into account, in fact there are actually neither particles 
nor waves. But if there are no observed objects, and there are only 
observations, then there is no external objective reality. 
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Fig. 11 Interference of Wave 

Waves and Interference 
Let us review the concept of the probability wave. The quantum 

wave does not carry energy, momentum, or force. Its sole interpretation 
is that from it we can calculate the probability that a measurement will 
yield a particular result, e.g., that photographic film will measure a 
specific position of an electron in an electron beam, or that a Geiger 
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counter will yield a specific number of gamma rays from a radioactive 
source. It is only during a measurement that a particle appears. Prior 
to the measurement, what exists is not something that can be determined 
by either quantum theory or by experiment, so it is a metaphysical 
question, not a question of physics. However, that does not mean that 
the metaphysical answer does not have considerable impact in both the 
scientific world and one's personal world. 

Suppose we do an experiment in which machine gun bullets 
are fired at a wall with two holes in it. The probability P 12 of finding 
a bullet from either hole at the backstop to the right of the wall is 
equal to the probability PI of finding a bullet from hole 

1. Plus the probability P2 of finding a bullet from hole. 
2. The probability distributions are simply additive. 

When we are dealing with waves, we have a different rule. The 
superposition principle is one that is obeyed by all waves in material 
media provided their amplitudes are not too great, and is rigorously 
obeyed by all electromagnetic waves and quantum waves. It says that 
the net wave amplitude or height at any point in space is equal to the 
algebraic sum of the heights of all of the contributing waves. In the 
case otwater waves, we can have separate waves due to the wake of 
a boat, the splashing of a swimmer, and the force of the wind. At 
any point on the surface of the water, the heights of the waves add, 
but it is important to include the sign of the height, which can be 
negative as well as positive. 

Fig. 12 Crest Added to a Crest Gives a Higher Crest. 

The height of the trough of a water wave is negative while the 
height of a crest is positive. When a crest is added to a crest, the 
heights add to give a higher crest, as is shown below. When a trough 
is added to a crest, the heights tend to cancel. They cancel exactly if 
the heights of the crest and the trough are exactly equal but opposite 
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in sign. When a trough is added to a trough, a deeper trough is created. 
When a crest is not lined up with either a crest or a trough, an 
intermediate wave is created. 

V r\ V 1\ 
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~ V ~ V 

Fig. 13 Crest Added to a Trough Gives Cancellation. 

Fig. 14 Two Waves Added out of Phase Give an Intermediate Wave. 

The superposition principle leads to the phenomenon of 
interference. The superposition, or sum, of two waves with the same 
wavelength at a point in space where both waves have either positive 
or negative heights results in a summed wave with positive or negative 
height greater than that of either one. This is called constructive 
interference. If the individual heights have opposite signs, the 
interference is destructive, and the height of the summed wave is 
smaller than the largest height of the two. 

Fig. 15 Looking down on a Water Wave. The Bright Lines are 
Crests, the Dark ones are Troughs. 
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Fig. 16 Interference of Two Water Waves. 

Crests added to crests form higher crests. Troughs added to 
troughs form deeper troughs. 

An important measurable property of classical waves is power, 
or intensity (power per unit area). Power is proportional to the square 
of the wave amplitude, and is always positive. Interference of classical 
waves is illustrated in the middle panel of Fig., where the intensity 1)2 
atthe absorber is plotted. Notice the radical difference between the graph 
of 112 for the water waves and the graph of P 12 for the bullets. The 
difference is due to interference. Likewise, when we observe light 
waves, we also observe the intensity distribution, not the wave 
amplitude. 

For quantum waves, we already know that the property that is 
proportional to the square of the wave amplitude is probability. We 
now need to find out what interference implies for the measurement 
of probabilities. 

Let YI and Y2 be the amplitudes, or heights, of two probability 
waves representing indistinguishable particles measured at the same 
point in space. (In quantum theory, these amplitudes are generally 
complex quantities. For simplicity, here we assume they are real.) 
The sum of these two heights is simplYlJI = lJI 1 + lJI2' so the probability 

is lJI2 = (lJIt + lJI2) 2 = lJIl 2 + 2lJ11lJ12 + lJI2 2 

This equation has a simple interpretation. The first term on the 
right is simply the probability that the first particle would appear if 
there were no interference from the second particle, and vice versa 
for the last term. Thus these two terms by themselves could represent 
the probabilities for classical particles like bullets, even though we 
do not ordinarily represent them by waves. If the middle term did not 
exist, this expression would then just represent the sum of two such 
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classical probabilities. In Fig., it would represent the probability that 
a bullet came through either the first hole or the second hole and 
appeared at a particular point on the screen. 

" Fig. 17 Probability of Bullet from Hole. 

The middle term on the right is called the interference term. 
This term appears only for wave phenomena and is responsible for 
destructive or constructive interference since it can be either negative 
or positive. If destructive interference is complete, the middle term 
completely cancels the other two terms (this will happen ifYI = -Y2)' 
Probability distributions for waves are completely different from those 
for bullets because of interference. The probability distribution for 
electrons has the same shape as the intensity distribution of the water 
waves shown in the middle figure because both distributions are 
derived from the square of algebraically summed wave amplitudes. 

... . ,'" . : 
Fig. 18 Actual Electron Impacts. 

We can now state an important conclusion from this discussion. 
Whenever we observe interference, it suggests the existence of real, 
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external, objective waves rather than merely fictitious waves that are 
only tools for calculating probabilities of outcomes. 

Remember that when we detect quantum waves, we detect 
particles. Since we are detecting particles, it may seem that the particle 
must come from one hole or the other, but that is incorrect. The 
particles that we detect do not come from the holes, they appear at 
the time of detection. Prior to detection, we have only probability 
waves. 

What happens if we try to see whether we actually have electrons 
to the left of the detection screen, perhaps by shining a bright light 
on them between the holes and the detection screen, and looking for 
reflected light from these electrons? If the light is intense enough to 
see every electron this way before it is detected at the screen, the 
interference pattern is obliterated, and we see only the classical 
particle distribution shown in the top figure. Any measurement which 
actually manifests electrons to the left of the screen, such as viewing 
them under bright light, eliminates the probability wave which 
originally produced the interference pattern. After that we see only 
particle probability wave distributions. 

Schrodinger's Cat Paradox 

This thought experiment was originally created by Schrodinger 
in an attempt to show the possible absurdities if quantum theory were 
not confined to microscopic objects alone. Schrodinger thought the 
wave properties of the microworld could be transmitted to the 
macroworld if the former is coupled to the latter. 

~ -2\\ Observer 

~>t{;b~<;>{}~.!: ~---~ r;;.' 
I~" jl" -,_' 

, , ;" . \ ~~ 

alpha decay .' :' . ~ _ ~-' 
.:~ ,:." . 

Geiger Counter Cat 

Fig. 19 Cat Paradox. 
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Imagine a closed box containing a single radioactive nucleus 
and a particle detector such as a Geiger counter. We assume this 
detector is designed to detect with certainty any particle that is emitted 
by the nucleus. The radioactive nucleus is microscopic and therefore 
can be described by quantum theory. Suppose the probability that 
the source will emit a particle in one minute is 112=50 per cent. The 
period of one minute is called the half-life of the source. Since the 
wavefunction of the nucleus is a solution to the Schrodinger equation 
and must describe all possibilities, after one minute it consists of a 
wave with two terms, one corresponding to a nucleus with one emitted 
particle, and one corresponding to a nucleus with no emitted particle, 
both measured at the same point in space: 

1/J = 1/J1 (particle) +1/J2 (no particle) 

where, for simplicity, we again assume the wavefunctions are real 
rather than complex. Now, 1/J 12 is the probability that a measurement 
would show that a particle was emitted, and 1/J/ is the probability 
that it would show that no particle was emitted. 

The remaining items in thl" hox are all macroscopic, but because 
they are nothing more than collections of microscopic particles (atoms 
and molecules) that obey quantum theory, we assume they also obey 
quantum theory. 

If macroscopic objects do not obey quantum theory, we have 
no other theory to explain them. Classical physics is inadequate 
because it cannot explain the following experimental observations: 
Interference fringes have been directly produced with 
buckminsterfullerenes ('buckyballs') consisting of 60 carbon atoms 
and 48 fluorine atoms (C60F48 ). Many much larger systems also show 
quantum effects. A superconducting quantum interference device 
(SQUID) containing millions of electrons was made to occupy 
Schrodinger's cat states. Ferromagnetism, superconductivity, and 
superfluidity all are quantum phenomena which occur in macroscopic 
systems. 

Hence, we assume the Geiger counter can also be described by 
a wavefunction that is a solution to the Schrodjnger equation. The 
combined system of nucleus and detector then must be described by 
a wavefunction that contains two terms, one describing a nucleus 
and a detector that has detected a particle, and one describing a 
nucleus and a detector that has not detected a particle: 
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t/J = t/J1(detected particle) + t/Jino detected particle) 

Both of these terms must necessarily be present, and the resulting 
state y is a superposition of these two states. Again, t/J 12 and t/J22 are the 
probabilities that a measurement would show either of the two states. 

Put into the box a vial of poison gas and connect it to the detector 
so that the gas is automatically released if the detector counts a 
particle. Now put into the box a live cat. We assume that the poison 
gas and cat can also be described by the Schrodinger equation. The 
final wavefunction contains two terms, one describing a detected 
particle, plus released gas and a dead cat; and one describing no 
detected particle, no released gas, and a live cat. Both terms must be 
present if quantum theory can be applied to the box's contents. The 
wavefunction must describe both a dead cat and a live cat: 

t/J = t/J1(detected particle, dead cat) + t/Jino detected particle, 
live cat) 

After exactly one minute, you look into the box and see either a live 
cat or a dead one, but certainly not both! What is the explanation? 

Until there is an observation, there is no cat, live or dead! There 
is only a wavefunction. The wavefunction merely tells us what 
possibilities will be presented to the observer when the box is opened. 
The observation itself manifests the reality of either a live cat or a 
dead cat (this is called reality). 

Now we must ask why the observer himlher self is not included 
in the system described by the Schrodinger equation, so we put it in 
the following equation: 

t/J = t/J 1( detected particle, observer sees dead cat) + t/Jino detected 
particle, observer sees live cat) 

We know that the observer can observe only a live or a dead cat, not 
both. (The interference term 2t/J1t/J2 does not contribute because it 
represents the observation of a live cat superimposed on a dead cat. 
Such an observation would be contrary to our experience and 
therefore cannot be allowed by the theory.) Hence, something about 
the observer cannot be described by the Schrodinger equation. What 
is this property? The one distinguishing property that is not described 
by quantum theory is consciousness. Hence, some physicists conclude 
that it must be consciousness which defines an observation. 
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Until now, this discussion has assumed that the observer but 
not the cat is conscious. But what if the cat is conscious? Then its 
own consciousness will define a continuous set of observations as 
long as it is alive. However, there is a 50 per cent probability that 
the poison gas will be released and will kill it within one minute. If 
that happens, its consciousness disappears. One could say that the 
cat's own consciousness killed it (but of course, without it, there 
would not have been a cat). 

Live animals are not needed to show Schrodinger's paradox. 
The poison gas and cat can be omitted because the detector is assumed 
to be a macroscopic device that changes state upon detection of a 
microscopic particle. If the outside observer sees that the detector is 
in one state (by reading an indicator) prior to closing the box, and 
in either the same or a different state after reopening the box, the 
paradox is again demonstrated. Prior to reopening the box, the 
contents are in a superposition of two quantum waves. After opening 
the box, the observer sees that the detector is in one state or the other, 
not both. 

Bell's Theorem, the Aspect-Groblacher Experiments 
and the Nonlocality of Reality 

One of the principles considered most sacred by Einstein and 
indeed by most physicists up until the 1980s is the principle of local 
causality, or locality for short. This principle (which comes from 
Einstein's theory of special relativity) states that no physical effect 
can be transmitted with a velocity faster than light. Also implied, 
but not always stated, is the principle that all physical effects must 
decrease as the distance between the source of the effect and the 
observer increases. In practice, this principle prohibits not only all 
instantaneous action-at-a-distance, but also anyaction-at-a-distance 
when the distances are so large that the longest-range known force 
that can transmit signals, the electromagnetic force, cannot feasibly 
produce the effect. If the particles of a system are assumed to be 
independent of each other except for physical effects that travel no 
faster than the velocity of light, the system is said to be local. This 
means, e.g., that if a measurement is made on one particle, the other 
particles cannot be affected before a local signal from the first particle 
can reach them. 
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In addition to locality, the other strongly held principle was the 
principle of objective reality. This principle states that there is a reality 
that exists whether or not it is observed. Prior to the discovery of 
quantum mechanics, this meant that this reality consisted of material 
particles or waves that always had definite physical properties, and 
which could become known either by making a measurement or by 
calculation using classical laws and a known initial state. For example, 
a particle always had a definite position and velocity prior 
to measurement, even though they may not have been known until a 
measure-ment or calculation was made. We call this strong 
objectivity. After the development of quantum mechanics, those who 
believe in an observer-created reality believe that only a wavefunction 
exists prior to an observation but this is still considered to be 
objectively real. However, its physical parameters, such as position 
and velocity, are indefinite until a measurement is made. This is called 
weak objectivity. 

Weak objectivity was difficult enough to accept by some 
physicists, but quantum theory predicted something else that was even 
harder to accept that reality is non local. This means that a 
measurement on one particle in a nonlocal system is correlated with 
a measurement on any of the other particles in the system even if no 
local signal passes from the first measurement to the second. For 
example, a measurement of the position of one particle in a nonlocal 
system is correlated with a position measurement of any of the other 
particles, indepeildent of any local signals. A nonlocal system of 
particles is described by a wavefunction formed by a superposition 
of individual particle wavefunctions in such a way that all of the 
individual waves are locked together into a coherent whole. In such 
a coherent superposition, it is no longer possible to identify the 
individual particle components. The system behaves as a whole rather 
than as a collection of independent particles. We shall describe an 
example ofa nonlocal system when we discuss Bell's theorem below. 

Einstein could never accept a reality which was non local or 
which was indefinite. His paper written with Podolsky and Rosen in 
1935 was an attempt to use a thought experiment to show that, 
because quantum mechanics could not describe a reality which was 
both local and definite, the theory was incomplete. 



56 Quantum Mechanics 

Following the EPR paper, many physicists expended a great 
deal of effort in trying to devise theories that were complete, namely, 
theories that assumed that parameters like position and velocity are 
at all times definite even if they are unknown, and which at the same 
time gave results that agree with quantum theory. (These are called 
hidden variable theories, which by definition assume strong 
objectivity.) None of these theories found general acceptance because 
they were inelegant, complicated, and awkward to use, and the best­
known version also turned out to be extremely nonlocal. 

John Bell, brilliant, creative Northern Ireland physicist, devised 
a way to determine experimentally whether reality could be described 
by local hidden variable theories, and derived an inequality that was 
valid only if local hidden variable theories were valid. Furthermore, 
this inequality depended only on experimentally measured quantities, 
hence it was independent of any specific theory. Any violation of 
the inequality would prove that reality cannot be both strongly 
objective and local. 

Many experiments were subsequently done to test his inequality, 
with the results that it was always violated, thus showing that ifthere 
is a strongly objective reality, it could not be local. In addition, the 
experiments always gave results that were consistent with the 
predictions of quantum theory. The best of these experiments were 
done by a group led by French physicist Alain Aspect in 1981-82. 
These results have far-reaching implications in the interpretation of 
quantum theory. 

The Aspect experiments used pairs of photons, the two photons 
of each pair being emitted in opposite directions from a calcium 
source. These photon pairs had the property that the polarization 
directions (the vibration directions, which are always perpendicular 
to the propagation direction) of the two photons of a pair were always 
parallel to each other, but the polarization directions of different pairs 
were randomly distributed. 

The two sides of the experiment were 12 metres apart. Each 
side had two detectors, to detect photons with two different 
polarization directions. Each detector separately recorded an equal 
number of photons for all polarization directions, showing that the 
photons were completely unpolarized. Now assume the detectors were 
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wired to measure only coincidence counts, i.e., photons were recorded 
only if they were detected approximately simultaneously at A and 
B. Bell's inequality says that, if reality is local, a certain function S 
of these coincidence counts, measured for all four combinations of 
the two polarization angles AI, A2 and the two polarization angles 
B 1, B2, must be between -2.0 and +2.0. The experiments yielded a 
value for Sexpt of2.70 ± 0.015. Thus Bell's inequality was violated. 

Thus, the system in the Aspect experiments cannot be both 
strongly objective and local. This result is independent of whether 
or not quantum theory is valid. 

These experiments could not distinguish between a reality that 
is not strongly objective but is local; one that is nonlocal but is 
strongly objective; and one that is neither strongly objective nor local. 
Furthermore, the measured value of the function S was always in 
agreement with the predictions of quantum theory (SQM = 2.70 ± 
0.05), which assumes that the photons are described by 
wavefunctions. 

A B 

Fig. 20 Correlations between the Polarizations. 

Bell's function F is a measure of the correlations between the 
polarizations (vibration directions) measured at the two sides A and 
B. The existence of correlations does not itself prove that reality is 
indefinite or non local. In fact, correlations can exist between 
measurements at the two sides whether the photons are local ?nd 
definite ('real' photons) or whether they are nonlocal and indefinite. 
If they are local and definite, correlations will exist if the two 'real' 
photons emitted by the source are individual particles that are 
polarized parallel (or perpendicular) to each other. If they are nonlocal 
and indefinite, correlations can exist if the system is described by a 
wavefunction that is a coherent superposition of the waves of the 
two photons (an 'entangled pair'). Because such a wavefunction 
represents a coherent whole rather than individual particles, it permits 
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correlations that are greater than can exist with local, definite photons. 
That is why S is greater for entangled photons than for local, definite 
photons, and why the measured violation of Bell's inequality is 
consistent with photons described by quantum theory. 

Now we must ask whether any class of hidden variable theories, 
which are all designed to be strongly objective, can be excluded by 
experiment. To help answer this question, an inequality similar to 
Bell's inequality was recently devised by Tony Leggett. The result 
disallowed the assumed class of hidden variable theories. 

Groblacher et al. concluded that no hidden variable theory that 
is not counterintuitive (that is not bizarre) can describe reality. Ifso, 
then reality cannot be strongly objective, i.e., it can have no definite 
properties before measurement. The Aspect and Groblacher 
experiments taken together strongly imply that reality is both 
indefinite and nonlocal. This conclusion is independent of whether 
or not quantum theory is valid. 

In a nonlocal system, a measurement made at one end of the 
system is correlated with a measurement made at the other end even 
if no local signal passes between the two. It might be thought that, 
because nonlocal correlations can exist between events occurring at 
two different points, observers at these two points could use these 
correlations to communicate instantaneously with each other in 
violation of Einstein's special theory of relativity. However, the 
nonlocality of quantum theory implies a correlation between data sets, 
not a transmission of information at greater than light velocities. Thus, 
the special theory is not violated. We can see this by realizing that 
the photons detected at either A or B alone occur completely 
randomly both in time and in polarization. Consequently, observer 
A sees no information in his data alone, and likewise with observer 
B. It is only by later comparing these two random sets of data that a 
correlation between the two sets can be discovered. 

There can be strong correlations between two random sets that 
cannot be discovered by looking at one set alone. This is illustrated 
by the example of random stereograms which, when first viewed, 
100'<: like near-random patterns of coloured dots. However, there are 
actually two separate near-random patterns present, and they are 
displaced from each other by a distance roughly equal to the spacing 
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between a person's eyes. Thus, by looking at the pattern with the 
direction of the eyes nonconvergent as iflooking some distance away, 
the two eyes see different patterns. The correlations between the 
patterns are discerned by the brain, and a three-dim~nsional image 
is seen. 
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Path Integrals in 
Quantum Mechanics 

Huygen's Picture of Wave Propagation 

If a point source of light is switched on, the wavefront is an 
expanding sphere centered at the source. Huygens suggested that this 
could be understood if at any instant in time each point on the 
wavefront was regarded as a source of secondary wavelets, and the 
new wavefront a moment later was to be regarded as built up from 
the sum of these wavelets. For a light shining continuously, this 
process just keeps repeating. 

Sample secondary 
wavelets 

Wavefront 
J4.j~---at time t 

Fig. J Huygen's Picture of how a Spherical Wave Propagates: Each point 
on the Wave Front is a Source of Secondary Wavelets that 

Generate the new Wave Front. 

What use is this idea? For one thing, it explains refraction the 
change in direction of a wavefront on entering a different medium, 
such as a ray of light going from air into glass. 



Path Integrals in Quantum Mechanics 61 

If the light moves more slowly in the glass, velocity v instead 
of c, with v < c, then Huygen's picture explains Snell's Law, that 
the ratio of the sines of the angles to the normal of incident and 
transmitted beams is constant, and in fact is the ratio c/v. This is 
evident from Fig. 2 below: in the time the wavelet centered at A has 
propagated to C, that from B has reached D, the ratio of lengths ACI 
BD being c/v. But the angles in Snell's Law are in fact the angles 
ABC, BCD, and those right-angled triangles have a common 
hypotenuse BC, from which the Law follows. 

WA 

W, 

Fig. 2 Hugens' explanation of refraction: Showing two Wavelets from the 
Wavefront AB. Ws is slowed down compared with W N Since it is 
Propagating in glass. This turns the Wave front through an Angle. 

_---:==~~B 
9" 

c 

A 

Fig. 3 Refraction of Wave. 

Where the air meets the glass, the two rays, separated by a small 
distance CD = d along that interface, will look parallel: 

Fermat's Principle of Least Time 
We will now temporarily forget about the wave nature of light, 
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and consider a narrow ray or beam of light shining from point A to 
point B, where we suppose A to be in air, B in glass. Fermat showed 
that the path of such a beam is given by the Principle of Least Time: 
a ray of light going from A to B by any other path would take longer. 
How can we see that? It's obvious that any deviation from a straight 
line path in air or in the glass is going to add to the time taken, but 
what about moving slightly the point at which the beam enters the 
glass? 

AC=d sin 8
1 

,..-_______ ---, 

................... \.C 
91 

ray 2 

BD=d sin 9, 

AC 
ray 1 

Fig. 4 : Magnified View of 2 rays Passing Through interface: ray 1 is the 
Minumum Time Path. Rays Encounter Interface Distance CB=d Aparts. 

(Feynman gives a nice illustration: a lifeguard on a beach spots 
a swimmer in trouble some distance away, in a diagonal direction. 
He can run three times faster than he can swim. What is the quickest 
path to the swimmer?) 

Moving the point of entry up a small distance d, the light has to 
travel an extra d sin B\ in air, but a distance less by d sin B2 in the 

glass, giving an extra travel time M = d sin B\ Ie· d sin B2 I v. For the 

classical path, Snell's Law givessinB\ IsinB2 = n = elv, so 
M= 0 to first order. But if we look at a series of possible paths, each 
a small distance d away from the next at the point of crossing from 
air into glass, M becomes of order die away from the classical path. 

Suppose now we imagine that the light actually travels along 
all these paths with about equal amplitude. (This actually is what 
Huygen's picture suggests: if we imagine the wavefront to generate 
secondary wavelets every picosecond, say, we can visualize the paths 
as zigzags with steps of length 3 mm.) What will be the total, 
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contribution of all these paths at B? Since the times along the paths 
are different, the signals along the different paths will arrive at B 
with different phases, and to get the total wave amplitude we must 
add a series of unit 2D vectors, one from each path. (Representing 
the amplitude and phase of the wave by a complex number for 
convenience for a real wave, we can take the real part at the end.) 

When we map out these unit 2D vectors, we find that in the 
neighbourhood of the classical path, the phase varies little, but as 
we go away from it the phase spirals more and more rapidly, so those 
paths interfere amongst themselves destructively. 

This is the explanation of Fermat's Principle only near the path 
of least time do paths stay approximately in phase with each other 
and add constructively. So this classical path rule has an underlying 
wave-phase explanation. In fact, the central role of phase in this 
analysis is sometimes emphasized by saying the light beam follows 
the path of stationary phase. 

The Principle of Least Action 

Confining our attention for the moment to the mechanics of a 
single nonrelativistic particle in a potential, with Lagrangian L = T -
V, the action S is defined by 

12 

S = JL(x,x)dt, 
11 

Newton's Laws of Motion can be shown to be equivalent to the 
statement that a particle moving in the potential from A at lito B at 
12 travels along the path that minimizes the action. This is called the 
Principle of Least Action: for example, the parabolic path followed 
by a ball thrown through the air minimizes the integral along the 
path of the action T-V where T is the ball's kinetic energy, V its 
gravitational potential energy (neglecting air resistance, of course). 
Note here that the initial and final times are fixed, so since we'll be 
summing over paths with different lengths, necessarily the particles 
speed will be different along the different paths. In other words, it 
will have different energies along the different paths. 

With the advent of quantum mechanics, and the realization that 
any particle, including a thrown ball, has wave like properties, the 
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rather mysterious Principle of Least Action looks a lot like Fermat's 
Principle of Least Time. Recall that Fermat's Principle works because 
the total phase along a path is the integrated time elapsed along the 
path, and for a path where that integral is stationary for small path 
variations, neighbouring paths add constructively, and no other sets 
of paths do. If the Principle of Least Action has a similar explanation, 
then the wave amplitude for a particle going along a path from A to 
B must have a phase equal to some constant times the action along 
that path. If this is the case, then the observed path followed will be 
just that of least action, for only near that path will the amplitudes 
add constructively, just as in Fermat's analysis of light rays. 

Going from Classical Mechanics to Quantum Mechanics 
Of course, if we write a phase factor for a path eicS where S is 

the action for the path and c is some constant, c must necessarily 
have the dimensions of inverse action. Fortunately, there is a natural 
candidate for the constant c. The wave nature of matter arises from 
quantum mechanics, and the fundamental constant of quantum 
mechanics, Planck's constant, is in fact a unit of action. It turns out 
that the appropriate path phase factor is. 

That the phase factor iSeislk,rather thaneislk, say, can be 

established :~sidering the i"ble slit experiment for electrons. 

Fig. 5 Ddouble Slit Experiment for Electronsouble Slit 
Experiment for Electrons. 

Suppose electrons from the top slit, Path I, go a distance D to 
the detector, those from the bottom slit, Path II, go D + d, with d« 
D. Then if the electrons have wavelength A, we know the phase 
difference at the detector is 2trd / A, • To see this from our formula 
for summing over paths, on Path I the action S = Et = Y217lV1

2t, and 
VI = Dlt, so 

Sl = Y217lJil/t. 
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For Path II, we must take v2 = (D + d)lt. Keeping only terms ofleading 
order in dID, the action difference between the two paths 

S2 - SI = mDdlt 

So the phase difference 

S2 -S\ mvd 2npd 2nd 
h =-h-=-h-=T' 

This is the known correct result, and this fixes the constant 
mUltiplying the actionlh in the expression for the path phase. 

In quantum mechanics, such as the motion of an electron in an 
atom, we know that the particle does not follow a well-defined path, 
in contrast to classical mechanics. Where does the crossover to a 
well-defined path take place? Taking the simplest possible case of a 
free particle (no potential) of mass m moving at speed v, the action 
along a straight line path taking time t from A to B is Yzmv2t. If this 
action is of order Planck's constant h, then the phase factor will not 
oscillate violently on moving to different paths, and a range of paths 
will contribute. In other words, quantum rather than classical 
behaviour dominates when Yzmv2t is of order h. But vt is the pa,th 
length L, and mvlh is the wavelength A, so we conclude that we 
must use quantum mechanics when the wavelength hlp is significant 
compared with the path length. Interference sets in when the 
difference in path actions is of order h, so in the atomic regime many 
paths must be included. 

Feyrunan (in Feynman and Hibbs) gives a nice picture to help 
think about summing over paths. He begins with the double slit 
experiment for an electron. We suppose the electron is emitted from 
some source A on the left, and we look for it at a point B on a screen 
to the right. In the middle is a thin opaque barrier with the familiar 
two slits. Evidently, to find the amplitude for the electron to reach B 
we sum over two paths. Now suppose we add another two-slit barrier. 
We have to sum over four paths. Now add another. Next, replace the 
two slits in each barrier by several slits. We must sum over a multitude 
of paths! Finally, increase the number of barriers to some large 
number N, and at the same time increase the number of slits to the 
point that there are no barriers left. We are left with a sum over all 

. possible paths through space from A to B, mUltiplying each path by 
the appropriate action phase factor. 
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In fact, the sum over paths is even more daunting than this 
picture suggests. All the paths going through these many slitted 
barriers are progressing in a forward direction, from A towards B. 
Actually, if we're summing over all paths, we should be including 
the possibility of paths zigzagging backwards and forwards as well, 
eventually arriving at B. We shall soon see how to deal systematically 
with all possible paths. 

The Free Electron Propagator 

As a warm up exercise, we consider an electron confined to 
one dimension, with no potential present, moving from at time 0 to x 
at time t. (This is speaking loosely we mean, as explained previously, 
that the initial state of the electron is a normalizable state, such as a 
Gaussian, concentrated closely at. The propagator then represents 
the probability amplitude, that is, the wave function, at point x after 
the given time t.) The propagator is given by 

hv(x,t)) =U(t)IV/(x,t = 0)), 

or, in Schrodinger wave function notation, 

V/(x,t) = JU( x,t;xl ,f = 0 )V/( Xl ,f = 0 )dx'. 
It is clear that for this to make sense, as 

t~O, U(x,f;i,O)~g(x-x') 

(XIU(f,O)lx') = 1 eilclc2112m _dk (xlk)(klx') 
27! 

-00 

OOJ -i1clc2112m dk -Ik(x-x') = e -e 
27! 

-00 

= ~ m eim(x-xi 12kt 

27!nit 

Now let us think about the sum over paths. Let us assume that 
the classical path dominates, and that only paths in its neighbourhood 
contribute, and all the other paths do is multiply the effect of the 
single classical path by some function of time. (This arbitrary seeming 
assumption depends heavily on knowing the answer in advance. The 
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classical path, of course, corresponds to motion from x' to x at a 
constant speed v = (x - x')/I. The action along this path is therefore 
EI, where E is the classical energy Y2 mv2, giving 

U( I · '0) - A' i"~x-x,)2/2kt x, ,x, - e 

This gives the correct exponential term! The prefactor AA can 
be determined from the requirement that as I goes to zero, U must 
approach a 0 -function. This gives the correct prefactor, identical to 
the one found previously. 

However, we have been lucky in more interesting situations, 
the classical path doesn't give all the information, and we really must 
address the issue of integrating over all paths. 

Proving that the Sum-Over-Paths Definition 
of the Propaglltor is Equivalent to the 
Sum-Over-Eigenfunctions Definition 

The first step is to construct a practical method of summing over 
paths. Let us begin with a particle in one dimension going from x' at 
time t' to x at time I. The paths can be enumerated in a crude way, 
reminiscent of Riemann integration: divide the time interval I' to I 

into N equal intervals each of duration 

E, tl = to +£, t2 = to +2£, .... , tN = t so on. 

Next, define a particular path from x to x' by specifying the 
position of the particle at each of the intermediate times, that is to 
say, it is at XI at time II' x2 at time 12 and so on. Then, simplify the 
path by putting in straight line bits connecting Xo to XI' XI to x2' etc. 
The justification is that in the limit of E going to zero, taken at the 
end, this becomes a true representation of the path. 

The next step is to sum over all possible paths with a factor eiS / k 

for each one. The sum is accomplished by integrating over all possible 
values of the intermediate positions Xl' X2' ... xN_I and then taking N 
to infinity. 

The action on the zigzag path is 

s= Jdt(.!.mx-2 -V(x)~ z:[m(Xi+1 -xil &V(Xi+~+X)] 
t' 2 i 2& 
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We define the 'integral over paths' written by JD[ x(t)] 

lim I <L>J J J dxl dxN _1 
r ..... O -() '" -( ) ••• -( ) 
N ..... ~ B & B & B & 

--<Xl 

where we haven't yet figured out what the overall weighting 

factor B ( &) is going to be. (It is standard convention to have that 
extra outside.) 

To summarize: the propagator U(x,t;x', 1') is the contribution to 
the wave function at x at time t from that at x' at the earlier time t'. 

Consequently, U(x,t,x',t') regarded as a function of x, t is, in fact, 

nothing but the Schrodinger wave function Iff (x,t), and therefore 

must satisfY Schrodinger's equation 

ili£.U(X,t;x"t')(-~ 0
2

2 + V(x»)U(x,t;X',t')' at 2m Ox 

We shall now show that definingU (x,t;x',t') as a su!ll over 
paths, it does in fact satisfy Schrodinger's equation, and furthermore 
goes to a-function as time goes to zero. 

U(x,t;x',t') = JD[ x(t)Ji~X(t)J/k 

_lim _1_ <L>J f f dxl dxN _1 is(x., .. ,xN-dlk 

-~'jl", B(&)--<Xl ... B(&) .... B(&) e 

We shaIl establish this equivalence by proving that it satisfies the 
same differential equation. It clearly has the same initial value I' as 

and t coincide, it goes to t5 (x-x') in both representations. 

To differentiate U (x,t;x',t') with respect to t, we isolate the 
integral over the last path variable, xN_I: 

[
inl(X-XN_lf _!...TV(X+XN-l)] 

. "JdxN-1 21e k 2 ( , ') U(x,t,x,t)= B(&)e U xN_I,t-&,x,t 

Now in the limit & going to zero, almost all the contribution to 
this integral must come from close to the point of stationary phase, 

that is, xN_1 = x. In that limit, we can take U (XN _I ,t-& ,x',t') to be a 
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slowly varying function of x N-J' and replace it by the leading terms 
in a Taylor expansion about x, so 

U(x,l;x',I') = 

The xN_J dependence in the potential V can be neglected in leading 
order that leaves standard Gaussian integrals, and 

( .' 1\ I ~27rliC (I ic V() icii iJ )U( .' ') UX,I,X,I)=-() -.- -- x +--2 x,l-c,xt. 
B c -1m Ii 2m ax 

Taking the limit of c going to zero fixes our unknown normalizing 
factor, 

B(C)=~2~liC 
-1m 

giving 

ili~U(x,l;x"I') =(-~ a: + V(x»)U(x,t'x"t') at 2m ax ' 
thus establishing that the propagator derived from the sum over paths 
obeys Schrodinger's equation, and consequently gives the same 
physics as the conventional approach. 

The Path Integral for the Free Particle 
The required correspondence to the Schrodinger equation result 

fixes the unknown normalizing factor, as we've just established. This 
means we are now in a position to evaluate the sum over paths 
explicitly, at least in the free particle case, and confirm the somewhat 
handwaving result given above. 

The sum over paths is 

( .' ') - J [ ()] is[x(t)Jlk _lim I <XlJ f fdx1 
U x,l,x ,I - D x t e -}.r~", B(c) --<Xl ••• (c) 
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" m(.~'i+;-X; )2 
dxN-1't 2kt --e 
B(&) 

Let us consider the sum for small but finite E. In particular, 
we'll divide up the interval first into halves, then quarters, and so 
on, into 2n small intervals. The reason for this choice will become 
clear. 

Now, we'll integrate over half the paths: those for i odd, leaving 
the even xi values fixed for the moment. The integrals are of the fonn 

00 (ia/2)[(x-y)2+(y-z)2]= (iaI2)(x2 +z2 ) 00 iai-iay(x+z) 
,~ e'~ 

00 ~ _ax2 +bx 7r b2 14a 
using the standard result J dxe = -;;e . 

-«J 

Now put in the value a = mlh& : the factor ~ ~ = ~7r~& 
-lQ -1m 

~27rh& cancels the nonnalization factor B ( & ) -.- except for the factor 
-1m 

of 2 inside the square root. But we need that factor of 2, because 
we're left with an integral over the remaining even numbered paths 
exactly like the one before except that the time interval has doubled, 
both in the nonnalization factor and in the exponent, & ~ 2& . 

So we're back where we started. We can now repeat the process, 
halving the number of paths again, then again, until finally we have 
the same expression but with only the fixed endpoints appearing. 
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Translation and Rotation Operators 

As a warm up to analyzing how a wave function transforms 
under rotation, we review the effect of linear translation on a single 

particle wave functionfll(x). We have already seen an example of 
this: the coherent states of a simple harmonic oscillator discussed 
earlier were (at t = 0) identical to the ground state except that they 
were centered at some point displaced from the origin. In fact, the 
operator creating such a state from the ground state is a translation 
operator. 

The translation operator 1{a) is defined at that operator which 

when it acts on a wave function ketlfll(x») gives the ket 
corresponding to that ..vave function moved over by a, that is, 

T(a )lfII(x») = IfII(x - a»), 
so, for example, if fII(x) is a wave function centered at the origin, 

T(a) moves it to be centered at the point a. 
We have written the wave function as a ket here to emphasize 

the parallels between this operation and some later ones, but it is 
simpler at this point to just work with the wave function as a function, 
so we will drop the ket bracket for now. The form of 1{a) as an 
operator on a function is made evident by rewriting the Taylor series 
in operator form: 

d a2 d 2 

fII(X - a) = fII(x) -a-\f/(x) +---2 fII(X) - ... 
dx 2! dx 
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d 
-a-

=e dx",(x) 

= T(a)",(x) 

Quantum Mechanics 

Now for the quantum connection: the differential operator 
appearing in the exponential is in quantum mechanics proportional 
to the momentum operator ( p = ihd / dx ) so the translation operator 

T(a) = e-lTplli 

An important special case is that of an infinitesimal translation, 

T (s) = e -IT pIli = 1- is P / h 

The momentum p is said to be the generator of the translation. 

T (E) I xo) = I Xo l' ~ 

Here I x) denotes a delta-function type wave function centered 
at x. It might be better if he had written T(E)O(X-XO) = v(x - Xo - E), 
then we would see right away that this translates into the wave 

ftinction transformation T(t)8(x-xo) = a(x - Xo -E), the sign of now 
obviously consistent with our usage above. 

It is important to be clear about whether the system is being 
translated by a, as we have done above or whether, alternately, the 
coordinate axes are being translated by a, that latter would result in 
the opposite change in the wave function. Translating the coordinate 
axes, along with the apparatus and any external fields by -a relative 
to the wave function would of course give the same physics as 
translating the wave function by +a. In fact, these two equivalent 
operations are analogous to the time development of a wave function 
being described either by a Schrodinger picture, in which the 
bras and kets change in time, but not the operators, and the 
Heisenberg picture in which the operators develop but the bras and 
kets do not change. To pursue this analogy a little further, in the 
'Heisenberg' case 

x ~ T- J (s)xT(s) = e'Tplkx-etTplk = x + is[p,x]/ h = x + s 

and 1t is unchanged since it commutes with the operator. So there 
are two possible ways to deal with translations: transform the bras 
and kets, or transform the operators. We shall almost always leave 
the operators alone, and transform the bras and kets. 
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We have established that the momentum operator is the 
generator of spatial translations (the generalization to three 
dimensions is trivial). We know from earlier work that the 
Hamiltonian is the generator of time translations, by which we mean 

'I'(t+ a) = e-1H2Ik'l'(t). 

It is tempting to conclude that the angular momentum must be 
the operator generating rotations of the system, and, in fact, it is easy 
to check that this is correct. Let us consider an infinitesimal 
rotation 158 about some axis through the origin (the infinitesimal 
vector being in the direction of the axis). A wavefunction 'I'(r) 
initially localized at Yo will shift to be localized at Yo + t5ih , 
where t5ro = 158 x ro So, how does a wave function transform under 
this small rotation? Just as for the translation case, 
'r{r)~'I'{r-t5r). If you don't understand the minus sign, reread 
the discussion on translations and the sign of E. 

Thus 

~ ~ i ~~ ~ 
'I'{r) ~ 'I'{r)--t5 r p'l'{r) 

Ii 

to first order in the infinitesimal quantity, so the rotation operator 

R( t58)'I'{r) = (1 -it58 x r.p )'1' (F) 

(1-it58.rxp )'I'(r) 

= (1- it58.i)V' (F). 

If we write this as 

R (158)'1' (r) = e -i"" t 'I' (F) 

it is clear that a finite rotation is given by mUltiplying together a large 
number of these operators, which just amounts to replacing t5B by B 
in the exponential. Another way of going from the infinitesimal 
rotation to a full rotation is to use the identity 
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lim (1 + AB)N = eAB 
N-.+a:> N 

which is clearly valid even if A is an operator. 

We have thereIore established that the orbital angular 

momentum operator I is the generator of spatial rotations, by which 
we mean that if we rotate our apparatus, and the wave function with 
it, the appropriately transformed wave function is generated by the 

action of R( 0) on the original wave function. It is perhaps worth 
giving an explicit example: suppose we rotate the system, and 
therefore the wave function, through an infinitesimal angle oOz about 

the z-axis. Denote the rotated wave function by lflrot(x, y). Then 

IfI rot (x,y) = (1- i( 00, )L, )1fI( x,y) 

(1-~(OII.)(-i{~ -y !)))V'(x. y) 

(1-(011.)(( x ~ -y !) ))V'(x.y ) 

= lfI{x + (oO.)y,y - (00, )x) 

That is to say, the value of the new wave function at (x, y) is 
the value of the old wave function at the point which was rotated 
into (x, y). 

Quantum Generalization of the Rotation Operator 

However, it has long been known that in quantum mechanics, 
orbital angular momentum is not the whole story. Particles like the 
electron are found experimentally to have an internal angular 
momentum, called spin. In contrast to the spin of an ordinary 
macroscopic object like a spinning top, the electron's spin is not just 
the sum of orbital angular momenta of internal parts, and any attempt 
to understand it in that way leads to contradictions. 

To take account of this new kind of angular momentum, we 
A A 

generalize the orbital angular momentum I to an operator] which 
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is defined as the generator of rotations on any wave function, 
including possible spin components, so 

-~oiJ . 
R(O)I{I(r)=e k ·jl{l(r). 

This is of course identical to the equation we found for L, but 
there we derived if from the quantum angular momentum operator 
including the momentum components written as differentials. But 
up to this point l{I(r) has just been a complex valued function of 
position. From now on, the wave function at a point can have several 
components, so it is in some vector space, and the rotation operator 
will operate in this space as well as being a differential operator with 
respect to position. For example, the wave function could be a vector 
at each point, so rotation of the system could rotate this vector as 
well as moving it to a different r. 

To summarize: l{I(r) is in general an n-component function at 

each point in space, R(oO) is an n x n matrix in the component space, 
and the above equation is the definition of J. Starting from this 
definition, we will find fs properties. 

The first point to make is that in contrast to translations, rotations 
do not commute even for a classical system. Rotating a book 
through 7r/2 first about the z-axis then about the x-axis leaves it in a 
different orientation from that obtained by rotating from the same 
starting position first 7r12 about the x-axis then 7r/2 about the z-axis. 
Even small rotations do not commute, although the commutator is 
second order. Since the R-operators are representations of rotations, 
they will reflect this commutativity structure, and we can see just 
how they do that by considering ordinary classical rotations of a real 
vector in three-dimensional space. 

Rx(O)[~ co~O -s~noJ'RY(O)=[ co~o ~ Si~OJ' 
o sinO cosO -sinO 0 cosO 

[

COS 0 - sin 
0 O~J 

R, (0) Si~O co~o 
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The matrices rotating a vector B by about the x, y and z axes 
are in the limit of rotations about infinitesimal angles (ignoring higher 
order terms), 

~(&)~l+&[~ ~ o 0) o 0, 

o 0 

R.(&)~l+&[r ~1 
It is easy to check that 

[R. (&).R, (&)l ~ &' [r -1 0) o 0, 

00' 
which can also be written 

Rx (&), Ry (& ) = Rz (&2 ) R. ( & ) Rx ( & ). 
The rotation operators on quantum mechanical kets must, like 

all rotations, follow this same pattern, that is, we must have 

((I-i-&Jx )(1-i&/. )(1-i&2Jz )(1-i&Jy )(l-i&Jx ) )IV') = 0 

where we have used the definition of the infinitesimal rotation 

~erator on kets, R( 80) V' (r) = e-~ j V'(r). The zeroth and first­

order terms in e all cancel, the second-order term gives 

[J,,JyJ = ihJz • The general statement is: 

[J"J, ] = ih&lj!Jk 

This is one of the most important formulas in quantum mechanics. 

Consequences of the Commutation Relations 

The commutation formula [ J,,J} ] = ih&yJk which is, after all, 
a straightforward extension of the result for ordinary classical 
rotations, has surprisingly far-reaching consequences: it leads directly 
to the directional quantization of spin and angular momentum 
observed in atoms subject to a magnetic field. 
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It is by now very clear that in quantum mechanical systems such 
as atoms the total angular momentum, and also the component of 
angular momentum in a given direction, can only take certain values. 
Let us try to construct a basis set of angular momentum states for a 
given system: a complete set of kets corresponding to all allowed 
values of the angular momentum. Now, angular momentum is a vector 
quantity: it has magnitude and direction. Let's begin with the 
magnitude, the natural parameter is the length squared: 

P=P+P+P. , , z 

Now we must specify direction but here we run into a problem. 
Jx- Jy and Jz are all mutually non-commuting, so we cannot construct 
a set of common eigenkets of any two of them, which we would need 
for a precise specification of direction. They do all commute with J2, 
since it is spherically symmetric and therefore cannot be affected by 
any rotation (and, it's easy to check this commutation explicitly). 

The bottom line, then, is that in attempting to construct eigenkets 
describing the different possible angular momentum states of a 
quantum system, the best we can do is to find the common eigenkets 
of J2 and one direction, say Jz. The commutation relations do not 
allow us to be more precise about direction, analogous to the 
Uncertainty Principle for position and momentum, which also comes 
from noncommutativity of the relevant operators. 

We conclude that the appropriate angular momentum basis is 
the set of common eigenkets of the commuting Hermitian matrices 
J2, Jz: 

Ladder Operators 

J2Ia,b) = ala,b) 

Jz la,b) = bla,b) 

The sets of allowed eigenvalues a, b can be found using the 
'ladder operator' trick previously discussed for the simple harmonic 
oscillator. It turns out 

J. =J. ±i/, 

are closely analogous to the simple harmonic oscillator raising and 
lowering operators at and a. 
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J+ and J_ have commutation relations with J=: 

[J=,J.] ± 1iJ. 

and they of course commute with J2, as do J::, Jx and Jy. 

Therefore, J. operating on I a, b) cannot affect the value of a. But 
they do change the value of b: 

J,,J. la,b) = [J"K.]I a,b) + JJ, la,b) 
~ ±1iJ. la,b) + bJ. la,b) 
= (b ± Ii )J.la,b) 

so if la, b> is an eigenket of J_ with eigenvalue b, J± la, b> is either 
zero or an eigenket of J=- with eigenvalue b ± h, that is, 

J± la, b) = C±la, b ± h) whereC.(a,b) is a normalization constant, 

taking the initial la, b) to be normalized. Just as with the simple 
harmonic oscillator, we have to find these normalization constants 
in order to compute matrix elements. All the physics is in the matrix 
elements. 

The squared norm of J± la, b) 

IIJ. la,b)W = la,b)IJ:J.lla,b) =la,b)IJJ.lla,b) 

= f -J: =F1iJ, 

from which 

IIJ.I a,b)ir = (a,bl J' - J: +- 1iJ/ a,b) = a - b2 +- lib, 

recalling that(a,b/a,b) = 1. 

Now a, being the eigenvalue of a sum of squares of Hermitian 
operators, is necessarily nonnegative, and b is real. Hence for a given 
a, b is bounded: there must be a bmax and a (negative or zero) bmin. But 
this must mean that 

IIJ + I a, bmax )112 
= a - b;ax -Ilbmax = 0 T 

Note that for a given a, bmax and bmin are determined uniquely 
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there cannot be two kets with the same a but different b annihilated 
by J+. It also follows immediately that a = bmax (b max + h) and 
bmin = -bmax Furthermore, we know that if we keep operating on la, 
bmin> with J+. we generate a sequence of kets with J= eigenvalues 
bmin + h, bmm + 3h, bmin + 3h, .... This series must terminate, and the 
only possible way for that to happen is for bmax to be equal to 
bmin + nh with n an integer, from which it follows that bmax is either 
an integer or half an odd integer times Ii. 

At this point, we switch to the standard notation. We have 
established that the eigenvalues of J= form a finite ladder, spacing 
1i. We write them as, andj is used to denote the maximum value of 

m, so the eigenvalue of J\a = j{j + I)h' . Both j and m will be 
integers or half odd integers, but the spacing of the ladder of m values 
is always unity. Although we have been writing with we shall 

henceforth follow convention and write Ij,m). 
~, 

The operators J J have a common set of orthonormal eigenkets , , 

Ij,m), 

;'Ij,m) =j(j+l)Ii'lj,m) 

J= Ij,m) = mhlj,m) 

(j,mlj,m)=1 

where j, m are integers or half integers. The allowed quantum 
numbers m form a ladder with step spacing unity, the maximum value 
of m is j, the minimum value is -j. 

Normalizing 1+ and f-
It is now straightforward to compute the normalization factors 

needed to find matrix elements: 

and, so 

IIJ.lj,m)II' = (j,mjJ' -J: =t/iJ,lj,m) 

= (j{J + l))h' -m(m ± l)h')(j,mlj,m), 

J. Ij,m) = ~ j{j + 1) - m(m + l)lilj,m + 1) 

J_lj,m) = ~j{j + 1) - m(m + I)lilj,m -1) 
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With these formulas, and the base set of normalized eigenkets 

/j,m) , we are in a position to construct explicit matrix representations 
of the angular momentum algebra for any integer or half integer value 
of angular momentumj. 

Historical Note 
The use of m to denote the component of angular momentum in 

one direction came about because a Bohr-type electron in orbit is a 
current loop, with a magnetic moment parallel to its angular 
momentum, so the m measured the component of magnetic moment 
in a chosen direction, usually along an external magnetic field, and 
m is often called the magnetic quantum number. 
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Orbital Eigenfunctions: 
2-D and 3-D 

Orbital Angular Momentum Eigenfunctions 
... 2 

We know that the operators J J have a common set of 

eigenkets I},m), ;2 1},m) =}(1 + 1)~21~,m), J. I},m) = mhl},m) 
where}, m are integers or half odd integers, and we found the matrix 
elements of (and hence those of Jx' Jy ) between these eigenkets. This 
purely formal structure, therefore, nails down the allowed values of 
total angular momentum and of any measured component. But there 
are other things we need- to know: for example, how is an electron in 
a particular angular momentum state in an atom affected by an 
external field? To compute that, we need to know the wave function. 

If a system has spherical symmetry, such as an electron in the 
Coulomb field of a hydrogen nucleus, then the Hamiltonian Hand 

the operators;2 -J have a common set of eigenkets I E,},m). The , . . 

spherically symmetric Hamiltonian is unchanged by rotation, so must 

commute with any rotation operator, [ H';2] = 0 and [H,}.] = 0 . 

Recall that commuting Hermitian operators can be diagonalized 
simultaneously and therefore have a common set of eigenkets. 

Fortunately, many systems of interest do have spherical 
symmetry, at least to a good approximation, the basic example of 
course being the hydrogen atom, so the natural set of basis states is 
the common eigenkets of energy and angular momentum. It turns 
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out that even when the spherical symmetry is broken, the angular 
momentum eigenkets may still be a useful starting point, with the 
symmetry breaking treated using perturbation theory. 

Two-Dimensional Models 

As a warm-up exercise for the complications of the three­
dimensional spherically symmetric model, it is worth analyzing a two­
dimensional circularly symmetric model, that is, 

h
2 (82 82

) HIjI(x,y) = - 2M ax2 + 8y2 IjI(X,y) + VUX2 + l )1jI(X,y) 

= EIjI( x,y). 
(In this section, we'll denote the particle mass by M, to avoid 

confusion with the angular momentum quantum number m + but be 
warned you are often going to find m used for both in the same 
discussion!) 

The two-dimensional angular momentum operator is 

L - - .~( 8 8) = r x p = XPy - YP. = Zft X 8y - y ax 

It is a straightforward exercise to check that for the circularly­
symmetric Hamiltonian above, 

[H.L] = 0 

To take advantage of the circular symmetry, we switch to circular 

variables (r,~) ,where 

r = Jx2 + l ,~= tan-' (y/ x),sox = rcos~,y = rsin~. 
Transforming the Hamiltonian and angular momentum into (r,~) 
coordinates, 

h
2 

(8
2 

I 8 I 8
2

) HIjI(r'~)=-2M &2 +;& +;z 8~2 1jI(r,~)+V(r)ljI(r,~) 

= EIjI (r,~) and L = -ih :~ . 
The angular momentum eigenfunctionsljl. (r,~) satisfy 

LIjI. (r,~) = -ih :0 1jI .. (r,~) = mhljl .. (r,~) 
equivalent to Lim) = mlilm). So 1jI .. (r,~) = R(r)e"', and for this to 
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be a single-valued wave function, m must be an integer. (This also 
ensures the hermiticity of the operator the integration-by-parts check 

has canceling contributions from ~ = 0 and ~ = 27r .) 

Notice this means that any function of r multiplied bYe"; is an 
eigenfunction of angular momentum with eigenvalue, and in fact any 
eigenfunction of L with eigenvalue mh must be of this form. So we 
can factor out the r-dependence, and write a complete set of 
orthonormal eigenfunctions of L, normalized by integrating around 
the circle: 

<1> .. (~) = k e''';,~ an integer. 

It is interesting to note that this would be a complete set of wave 
functions for a particle confined to a ring rather like the original Bohr 
orbits. In fact, nanotech rings in which electrons have wave functions 
like this can now be manufactured. Note also that in such rings one 

can also have rea/wave functions .J1/7r sin m~,.J1i1i cos m~, which 
are still energy eigenstates, but not angular momentum eigenstates, 
since they are standing waves, linear superpositions of waves going 
around the ring in opposite directions. 

The common eigenstates of the Hamiltonian and the angular 
momentum evidently have the form 

IE,m) = 'l'EI" (r,~) = REIH (r )<1>., (~). 

We should emphasize that although the angular part of the wave 
function does not depend on the radial potential, the radial 

component RE,m (r) does depend on the angular momentum m. This 

becomes obvious on putting this'I'E,m (r,~) into the(r,~) version 
of Schrodinger's equation, 

h
2 

(0
2 

1 1 1 0
2

) 
-- -2 +--+ 2"-2 RE m (r)<1>m (~)+ V(r) REm (r)<1>m (~) 

2M Or r or r o~ , 

= ERE,m (r)<1>m (~) 

noting that 0
2 

I 0~2 = _m2, and canceling out the common factor 

<1>m (~) to give 
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/i
2 (d2 

1 d m
2 

) 
- 2M dr2 +7- dr -7 RE,m(r)+ V(r)RE,m(r) =ERE,m(r). 

In this one-dimensional equation for the radial wave function 

RE,m (r), the angular momentum term 1i2 m2 /2Mr2 = L2 /2Mr2 

evidently is equivalent to a repulsive potential. It's called the 
'centrifugal barrier' and is easy to understand from classical 
mechanics. To see this, consider a classical particle bound (in two 
dimensions) by an attractive central force V(r). Split the momentum 
into a radial component Pr and a component in the direction 

perpendicular to the radius, P.l. The angular momentum L = rp.l and 

is constant (since the force is central). The energy 

ir p2 -L p2r L2 
E= 2M + 2M +V(r)= 2M + 2Mr2 +V(r) 

substituting P.l = LI r. Since L = mli, the angular part is exactly 
equivalent to the above Schrodinger equation. 

But what about the radial part? Why isn't pr, just equal to 
-ilia/ar, and p2r equal to 112a2 /ar2? We know the more 
complicated differentiation with respect to r in the Schrodinger 
equation above must be correct, because it carne 

froma2 /8x2 + a2 / a/ and r = ~x2 + / ' ¢ = tan -1(y/ x). 

To see why Pr equal to -ilia / ar is incorrect, even though it 

satisfies [r,Pr] = in, recall what happens in x-space. We argued there 

that Px = -ino / 8x for a plane wave because from the photon analogy, 
acting on the plane wave state CeiPxx I k this operator gives the rate of 
change of phase and therefore the momentum. But a radial wave is 
a little different: picture a photon wave corning out of a single slit 
having width far less than the photon wavelength. It will radiate 
outwards with equal amplitude in all directions (180°) but the wave 
amplitUde will decrease with distance from the slit to conserve 
probability. For a long (narrow) slit, this i~ essentially a two­
dimensional problem, so the wave function will be 

If/ (r) == Ce1pr I k -k. We know that if we measure the momentum of 
photons at different distances from the slit we'll get the same result, 
the wavelength isn't changing, and that determines the phase 
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behaviour. However, the operator -ino / or picks up an extra term 

from differentiating the .rr, so it is obviously not giving us the 
momentum. Fortunately, this is easy to fix: we define the operator 

A .~ ( 0 I) Pr =-/u -+-
or 2r 

which eliminates the extra term, and still satisfies [r, prj = ill. 

However, there is still a small problem. Ifwe substitute this Pr 
in the classical expression for the energy, following the procedure 
we used successfully to find Schrodinger's equation in Cartesian 
coordinates, we find 

p2r L2 
H = 2M + 2Mr2 + V(r) 

2(01)2 
-n or + 2r L2 V ( ) = +--+ r 

2M 2Mr2 

\ _n2( 0
2 +!x~ __ I_) 

or2 r Or 4r2 L2 
= 2M + 2Mr2 + V(r) 

This is almost but not quite the same as the equation we found 
by transforming from Cartesian coordinates. The difference is the 
term n2 /8Mr2 . So which is right? Actually our first one was right 
this second one, derived directly from the classical Hamiltonian, does 
give the same result in the classical limit, because the difference 
between them vanishes for fl ~ 0 . We conclude that beginning with 
the classical Hamiltonian, and replacing dynamical variables with 
the appropriate quantum operators, cannot guarantee that we get the 
correct quantum Hamiltonian: it might be off by some ternl of order 
n. This would become evident in predicting properties of truly 
quantum systems, such as atomic energy levels. Problems of this kind 
are common in constructing quantum theories starting from a classical 
theory: essentially, in a classical theory, the order of variables in an 
expression is irrelevant, but in the quantum theory there can only be 
one correct order of noncommuting variables such as 0/ or and r in 
any expression. 
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What can we say about the radial wave function RE,m (r)? If 
both the energy and the potential at the origin are finite, then for 
small r RE,m (r) ~ Ar lll or Ar-lII • However, the wave function cannot 

be discontinuous, so RE,lII (r) ~ Arlml. To make further progress in 

finding the wave function, we need to know the potential. Specific 
examples will be analyzed in due course. It is interesting to note that 

the allowed wave functions, proportional to rm eim? /n~ ,m > 0, are 

( )

111 

the complex functions zm, z' if the two-dimensional space is 

mapped into the complex plane. Representing many-electron wave 
functions in the plane in this way was a key to understanding the 
quantum Hall effect. 

Orbital Eigenfunctions in 3-D 

The Angular Momentum Operators in Sphericfll Polar 
Coordinates 

The angular momentum operator L = r x p = ihr x V . 
In spherical polar coordinates, 

x = rsinOcos~ 
y = rsinOsin~ 
z =rcosO 

ds2 = dr 2 + r 2d02 + r2 sin2 Od~2 

the gradient operator is 
- ~a ~la ~ 1 a 
V=r-+O--+~---

ar r ao rsinO a~ 
where now the little hats denote unit vectors: r is radially outwards, iJ 
points along a line of longitude away from the north pole (and 

therefore in the direction of increasing 0) and ¢ points along a line 
of latitude in an antic10ckwise direction as seen looking down on 

the north pole (that is, in the direction of increasing ~). r,iJ,¢ form 
an orthonormal local basis, and 

r x iJ = ¢, r x iJ = - iJ 
- ~a ~ 1 a 

rxV=~--O---. 
ao sinO a~ so 
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(Explicitly, ~ = (-sin(J,cos(J,O) and 

o = (cos o cos (J, cos Osin (J, - sinO). 

87 

The vector ~ has zero component in the z-direction, the vector 0 
has component-sinO in the z-direction, so we can immediately 
conclude that 

L= =(rxpt =-(ihrxVt = iii :(J 

just as in the two-dimensional case. 

The operator 

L2 = _h2 (~~ _ 0_1_~).(~~ _ 0_1_~) 
00 sin 0 0(J 00 sin 0 0(J 

To evaluate this expression, we use ~2 = 1, 02 = 1, ~ x 0 = 0 but 
we must also check the effects of the differential operators in the 
first expression on the variables in the second, including the unit 

vectors. Notice o¢ I 00 = 0, 00 I 00 is in the r-direction, o¢ I 00 is a 

horizontal unit vector pointing inwards perpendicula(, to ¢' and 

having component -cos 0 in the 0 -direction, 001 o¢ = ~cosO . 
Therefore, the only 'differentiation of a unit vector' term that 

2 A 1 o~ a 2 a 
contributec; to L2 ish O--x--=-h cotO-. The 

sin 0 0(J 00 00 

~ O. h' O' OA I a -'b h' 'f' ~O actmg on t e sm 10 - ---- oontn utes not 109 
u sinO 0(J 

because ~ x 0 = O. 

Therefore 

L2 =_h2 -+cotO-+---
(

0
2 a 1(

2
) 

002 00 sin2 0 0(J2 

2 ( 1 o. a I (
2

) 
= -h sin 0 00 sm 

0 00 + sin 2 0 0(J2 

Now, we know that L2 and Lz have a common set of eigenkets 
(since they commute) and we've already established that those of Lz 
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are <D (91) = etm; I J2i , with m an integer, so the eigenkets of L2 must 

have this same 91 dependence, so they must be of the form 

0i (B) <D (91), where 0i (B) is a (suitably normalized) solution of 
the equation 

_.I_~sinBd0i (B) -;C-0i (B) = -/(1 + 1)0i (B) 
smB dB dB sm2 B 

more conveniently written 

sinB~sinB d0i (B) (/(1 + l)sin2 B - m2 )07' (B) = o. 
dB dB 

Finding the m = I Eigenket of L 2, Lz 

The easiest wave function to find was that of the ground state, 
the solution of the linear equation QI/fo = 0, and the other state wave 
functions could then be found by applying the creation operator in 
differential form the necessary number of times. 

A similar strategy works here: we find the highest state on the I 

ladder, m = I, the state 1/,/), from the equation L+ 1/,/) = 0, where 

L+ = Lx + iLy . So we need to find L+ = ili(rx VL· 
F rxV-J.~-B_l_~ 

rom - 'I' oB sinB 091" 
we have 

(rxV) =J.~-B _1_~ 
+ 'I' oB + sin B 091 ' , 

and using 

~ = (-sin91,cos 91, O),B = (cosBcos91, cos Bsin 91, -sinB), we see 

that ~+, the component of ~ in the + direction, is 

~+ = ¢x + ¢y = ii; , and similarly B + = cos Bei
; • 

Therefore, ( 0 0 ) 
L+ = liei; - + i cot B-

oB 091 

L+ = lie;; (~- i cot B~) 
oB 091 



Orbital Eigenfunctions: 2-D and 3-D 89 

So, 

that is, 

(:0 -lcotO )eHo)=o. 

The solution to this equation is 

eHO)=N(sinOi 
where N is the normalization constant. The m :1= 1 wave functions are 
generated by applying the lowering operator L_ 

Normalizing the m = I Eigenket 

The standard notation for the normalized eigenkets Il,m) is 

lfm (0,;) = ef (O)em (;) • These functions, being eigenkets of 
Hermitian operators with different eigenvalues, must satisfy 

x 2x J J (O,;)lfN/(O,;)sinOdOd;= JlfN/"(0,¢)I/111 (O,;)dQ = c5l1c5N/IIl' 
0-0;-0 

So, our first job is to normalize eHO) = N(sinOi 
(taking <1>/ (;) = ei/; / J2i already normalized) 

z IN2
1 f(sinO)2I+1 dO = I 
o 

The integral can be evaluated using the substitution p = cos 0 
1 / 

to give J( 1- p2) dp, then making the further 
-I 

1 
I 2£+1 f 1 ( )' substitution u = "2(1- p) to give 2 u 1-u du, which can be 

o 
integrated by parts to give 

INI2 221+1 (/!)2 (21 + I)! = I. 

Therefore, 

Ii (0,;) =(-1)' ((21+ l)!)+(Sino)' ei/; =c,(sinO)' ei/O 
41Z" 2 l! 
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where we have fixed the sign in accord with the standard convention, 
and we will denote the rather c!lmbersome normalization constant 
by c/. 

Notice that for large values of I, this function is heavily weighted 
around the equator, as we would expect for a given total angular 
momentum one gets a maximum component in the z-direction when 
the motion is concentrated in the x, y plane. This looks like a Bohr 
orbit. 

Finding the Rest of the Eigenkets 

Now thatl/,/) is normalized, we can automatically produce 

correctly normalized I/,m) 's, since we know the matrix element of 

the lowering operator between normalized states. We don't have to 
do any more integrals. 

For example, L -1/,/) = h.fiiI/,I-1) , equivalently (the h 's of 
course cancel) 

y,1-1 (e - "') = (-1) e-i ; (~-icote~)y,1 
I Y'.J2i oe o(J I 

That is, 

y,1-1 (e - "') = c e- I
; (~- icote~)sinl ex eli; 

I Y' I oe o(J 

- -1(/-1); r;::;21 • I-I e e - cle ".tot SID cos 

(both terms giving equal contributions). 

Note that this function is actually zero on the equator, but for 
large I it peaks close to the equator (on both sides). 

In principle, we can reapply this differential operator over and 

over to generate all the I/,m) states, but this gets very messy. 
However, there is a neat theorem concerning the lowering operator 
that makes it all straightforward: 

L _ i m; f (e) = ei(m-I); (Sin I-III e d sin ltl e] f (e) 
d( cose) 
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So, L_eim; sin' (0) =ei('-I);(sin l
-' 0 d sin' o)sin' (0) 

d( cosO) 
and applying the operator again, 

(L _ 2)im; sin' (0) = L _ i('-I); (sin l-' 0 d sin' o)sin' (0) 
d (cosO) 

_ 1(/-2); ( . 2-1 0 d . I-I 0)( . I-I 0 d . I 0) . 1(0) - e Sin ( ) Sin Sin ( ) Sin Sin 
d cosO d cosO 

= ei
(/-2); (Sin 2-1 0 d

2 
sinl O)Sinl CO). 

d2 (cosO) 

So the point of introducing this odd-looking representation of 
the lowering operator is that the sin I-I term in the middle is exactly 
cancelled when the operator is applies twice, and similar cancellations 
occur on repeating the operation, giving the (relatively) simple 
representation: 

(I+m)! -im;. -me d l
-

m 
• '21e yt (e,(J) =CI ( e SIn , SIn 

21)!(I-m)! d(cose)-m 
(Where did all those factorials come from? They're the product 

of all the inverse square root factors in 

I 
Il,m -I) = ~ L Il,m) for the number of 

(l+m)(l-m+l) -, 

lowerings necessary.) 

Note that for m = 0 the function is 

y,.()( ) ~ d' .21 II e,(J =c, -( ) ,SIn e, 
21 ! d (cos e) 

and in fact not a function of (J at all. This isn't surprising, since it 
has zero angular momentum about the z-direction, the 

appropriate <D«(J) is just constant. 

For m=-lthe differentiation becomes trivial, because, writing 

d 21 
2 I 

cos e = J.l , the differentiation becomes dIll (1 - J.l ) and only the 

term survives, giving 
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If-1 (e,¢) = (-I)' ele-if
; sin1 e. 

Of course, this could also have been found from the linear 

equation L -' I, -I) = 0 , and we could have equally generated all the 
states by applying L+ to this state. In fact, this gives a different but 

of course equivalent expression for the y/" ( e, ¢) : 

(l-m)' dl+1II 
ym(e¢)=(-I)et . el/n~sinme sin 21 e 

I , (2/)!(1 + m)! d(cose)l+m 

Relating the Y, m,s to the Legendre Functions 

The Legendre polynomials Pn (cos e) are defined by: 

1 d n 

Pn(cose) =-n- n sin
2n e, or 

2 n! d (cos e) 

p ( ) __ 1 ~(1- 2)2-
"P -2n 'd n f.l n. f.l 

where P = cose, so dp = -sinede. From this form, it is easy to 

show that Pn (1) = 1 (all n differentiations must take out a (1- f.l2) 

factor to give a nonzero contribution), and Pn (p) must have n zeros 

in the interval (-1, I). Pn (p) alternates between an even function 
~and an odd function. 

The normalization of the Pn (f.l) 's is 

\ ( 1 )2 \ d 2 2 
= J{p"(f.l))2 dp= 2nn! Jdf.ln (f.l2 -1) dp 

( 
1 )2 \ d 2 

, "d" 2 2 
= (-1) - J-(p- -I) -(p -I) dp 

2" n! _\ dpn dpn 

( 
1 )2 1 

= (2n)! -,,-, J(p2 -I r dp 
2 n. -1 

2 
=--

211 + 1 

where in that last line we used the result for the integral obtained 

earlier in this lecture for normalizing ti. 
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Doing the same repeated integration by parts for two different 
Legendre polynomials proves they are orthogonal, 

1 

fPm ('U)Pn ('u)d,u =0, m:t:n. 
-I 

The associated Legendre functions are defined (for nand m zero 
or positive integers, n ~ m ) by: 

pm ( ) = (1- )111/2 dill P ( ) n,u ,u d ,um m ,u 

( 
2 )m/2 

= (-1 r I-,u d
n
+

m 
(1_,u2)n. 

2nn! d,un+m 

Following Messiah in requiringlfO (0,0) be real and positive, 

we find 0 ~ 21 + I 
If (O,B)= -PI (cos B) 

41r 

where the coefficient just reflects the differing normalization 
conventions. Similarly, the spherical harmonics with nonzero mare 
proportional to the associated Legendre functions (the odd 'ones are 
not polynomials in cosB. 
The Spherical Harmonics as a Basis 

We have found explicit expressions for the spherical harmonics: 
an orthonormal set of eigenfunctions of L2 and Lz defined on the 
surface of a sphere, 

- 2-J j Yt"O(B,¢)lfnl(B,¢)sinBdBd¢ = flfm'O(B,¢)Y!"(B,¢)dQ 
B-09l-0 

They form a complete set: 

or 
00 I 

00 I 

III1,m)(I,ml=1 
I=Om-! 

I Ilflllo (B,¢)lfm (B',¢') = ~(cosB-cosB')~(¢-¢')= ~(Q- fl') 
I=Om-! 
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in the notation of Messiah, where n refers to a point on the spherical 
surface. 

(Formal proof of the completeness is given in Byron and Fuller, 
Mathematics a/Classical and Quantum Physics.) 

The above equation could also be written 
'" I L L (B,¢ll,m)(l,mIB',¢)=(B,¢IB',¢') 

1-0111--1 

o(cosB -cosB')o(¢ -¢') 

where the ketIB',¢') is to be understood as a localized ket, the 

spherical-surface version of I x), normalized by its £5.function inner 

product with the bra IB,¢), exactly analogous to (xix') = o(x-x'), 
bearing in mind that the infinitesimal area element is -d (cos B)d¢ , 
(a positive quantity in the relevant interval, 0 to 1!). 

This completeness means that any reasonable function on the 
surface of the sphere can be expressed as a sum over spherical 
harmonics with appropriate coefficients, in other words the spherical 
generalization of a Fourier series. 

In fact, L2 is equivalent to '112 on the spherical surface, so the yt' 
are the eigenfunctions of the operator '112. Just as in one dimension 

the eigenfunctions of d 2 / dx2 have the spatial dependence of the 
eigenmodes of a vibrating string, the spherical harmonics have the 
spatial dependence of the eigenmodes of a vibrating spherical balloon. 
Of course, to describe the displacement of the balloon skin (which 
must be real!) with these eigenfunctions, we can no longer use the 
eigenfunctions of the z-component of angular momentum, since they 
are complex except in the trivial zero case. We must rearrange the 

eigenfunctions of L2, for example replacing the pair i; ,e-i; with 

1 
cos; ,sin; . These real solutions, essentially .J2 (1/,/) ± 1/ ,-/)), have 

I nodal lines (zeroes) of longitude. Moving down one notch in Iml, 

the (real) state with Iml = I-I has 1-1 longitudinal nodes, but has 

added a latitudinal node: the equator. Then Iml = 1- 2 has /-2 
longitudinal nodes, 2 latitudinal nodal lines there are always I nodal 
lines total. 
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Some of these modes of vibration have been bbserved in the 
sun after a sunspot storm. The spherical harmonics are also used in 
analyzing the cosmic background radiation. 

Some LolV Order Spherical Harmonics 

Let's look in more detail at the lowest order spherical harmonics, 
from our general formulas. 

o 1 
Yo = J4i 

lJI = {T sin ()ei¢ vS; 
lJo = {3 cos () V4; 
v-I n;. () -i¢ 
.II = -sm e 

8n 

122 = ~ 15 sin2 ()i'¢, Yi = - (l5 sin ()cos ()e'¢ , 
32n vS; 

11 = ~ I:n 3{ cos2 
() -I) 

y2-
2 = ~ 15 sin2 ()e-2i¢ ,12-1 = _ (l5 sin ()cos ()ifl 

32n vS; 
It is often useful to write the Y/' in terms of Cartesian 

coordinates, 

so 

and 

(x,y,z) = (rsin()cos;,rsin()sin;,rcos()) 

I( ) n; x+iy O( ) H; z lJ x,y,z =- -x--,lJ x,y,z = -x-
8n r 4n r 

n; x-iy 
(x,y,z)= -x--

8n r 

2 Rf5 ( .)2 I ~5 ( .) 0 ftf( 2 ) Y2 = - X+ly ,Y2 =- - X+lY Z'Y2 = - 3z -I ,etc. 
32n 8n 16n , , , 

i 
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The Yl m as a Basis of the l = 1 Subspace 

The y1m are the I = I eigenstates of L2 and Lz• But what if we'd 
chosen to look for the common eigenstates of L2 and Lx instead? 
What I = I state has zero angular momentum component in the 

direction of the x-axis? Clearly it will be f-f. x;- , in other words 

the previous Y10 with z replaced by x, because after all, our labeling 
of axes was arbitrary. 

Now, ffx;- isjust(I+.J2)(_1(1 +1(-1) 

In fact, any I = I state, with a specified component in any direction, 
can be written as 

alll,l) +ao 11,0) +a_III,-I) = Lam II,m). 
This can be seen as follows: an I = 1 state has to be linear 

inxlr,ylr,zlr (any quadratic term would give rise to !lbout an 

appropriate axis, call that the z-axis, so m = 2 and I must be 2 or 
greater), and any such state can be written as a linear combination of 

(x + ;y)1 r,(x- iy)1 r,z I r . 

The bottom line, then, is that the Y1 m do indeed provide a 
complete basis for the I = I space of eigenstates of L2. 

Representing the Rotation Operator within 
the l = 1 Subspace 

Recall that we originally introduced the angular momentum 
operator by defining it as the generator of infinitesimal rotations when 
acting on any wave function, including multicomponent wave 
functions. We found, using the commutativity properties of ordinary 
rotations, that the vector components] of had to satisfy 

[Jx,JyJ = i1iJ=, etc., and from that we deduced the possible sets of 
eigenvalues of the commuting pair of operators]2 ,Jx 
were)(} + 1)1i2 for ]2, with} an integer of half an odd integer, and 
for each such } the allowed eigenvalues of J= were 
mh,m = -},-} + I, ... ,+}. 
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Back to the I = 1 angular wave functions: we have 
established that any such function can be written 

alll,I)+aoll,O)+a_dl,-I)= Lamll,m), and so is a vector in a 

three-dimensional space spanned by the set 11,m). In other words, 
the wave function is a three-component object. The angular 
momentum operator must therefore be a matrix operator in this three­
dimensional space, such that, by definition, the effect of an 

infi"i:;:;~~:~:)o:;u(lt~mJ :O[":'Jwave function is: 

a_I a_I 

The unitary rotation operator acting in the I = 1 subspace, 
iO) 

u(R(ii)) = e-T , has to be a 3 x 3 matrix. The standard notation 

for its matrix elements is: 

so the rotated ket is 
, _" (I) ,_ 

am' - L..J Dm'mam' ora - Da. 
m',m 

To evaluate this matrix explicitly, we must expand the 
exponential and we need the matrix elements ofJ=,J+,J_ between 

the statesI1,m) which we already know. 

Now, the basis of the three-dimensional space is just the common 

eigenkets of j2 ,J=, in this case identical to j2 ,J=. We know the 

matrix elements of J=,Jf ,J_ between states from the earlier lecture, 

so it is simple to find the matrixIJ,m) representations of the 
components of J in this space: 

J~I) =~(~ ~ ~l' J}l) = iii (~ ~l ~olJ J2
010 

J2
0 
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[
1 0 OJ J~I) =h 0 0 0 

o 0 -1 

We have added the superscript (1) because this representation 
of the infinitesimal rotation operators is specific to j = 1 
(representations for general values of j are as (2j + 1) x 

(2j + 1 )matrices, reflecting the dimensionality of the space spanned 
by the 2j + 1 distinct m values). 

Expanding the exponential is not difficult, because by inspection 

(J~I) / h r = (J~I)h), so from spherical symmetry (A x ](1) / tz t 
= ( ij x J(I) / h) for a unit vector in any direction. The result is: 
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Niels Bohr and Quantum Atom 

So far we have seen that quantum physics deals with 
electromagnetic radiation - that is to say, light. But at the beginning 
we said that quantum physics tells us that material things are 
described by quantum physics. So what happened to matter? 

Niels Bohr happened to matter. Bohr was a Danish physicist 
whose parents were both scientists. Apparently young Niels grew 
up in an atmosphere that was favourable to science. He received his 
doctorate in 1911 from the University of Copenhagen. 

One can see just by looking at Niels Bohr's early academic life 
(though there are many other indicators) that the 'atomic theory' of 
matter - that is to say that matter is made up of tiny atoms - had 
gone from being scientifically marginalised to being at the heart of 
physics in a very short time. Bohr's doctoral thesis was concerned 
with the inadequacy of classical (that is to say, Newtonian) physics 
for describing the behaviour of matter at the atomic level. 

In the 19th century, physicists who saw some value in the atomic 
theory thought of the atom as a tiny undivided and indivisible unit 
of matter, the smallest possible unit into which something could be 
broken down. Experiments dealing with the photoelectric effect, 
along with other observations, strongly suggested that the atom had 
some internal structure, since particles called 'electrons' were being 
emitted from them. 

Rutherford's Model and Its Drawbacks 
A model of the atom was described by the British physicist 

Ernest Rutherford in 1911, and is known as the Solar System model. 
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It is very simple, and is still used to teach elementary atomic structure 
to school children. 

1. An atom consists of a central nucleus. This nucleus is 
composed of positively charged protons, and electrically 
uncharged (neutral) neutrons. 

2. Negatively charged electrons revolve round the nucleus 
in definite orbits. 

3. The orbits themselves can be at any distance from the 
nucleus. 

4. In any atom, the number of protons is equal to the number 
of electrons, and hence it is electrically neutral. 

Fig. 1 Rutherford's Atomic Model. 

Rutherford used the laws of motion that had been set forward 
by Sir Isaac Newton to describe the atom. According to Rutherford's 
description, the electrons of an atom could occupy one of an infinite 
number of orbits, in accordance with Newton's laws. There were 
problems with Rutherford's description of the atom from the 
beginning. Let us find out two drawbacks of Rutherford's theory. 

Inherent Instability of the Atom 
According to Rutherford's theory, electrons could orbit the 

nucleus at any distance. When the electrons circle round the nucleus, 
they are constantly changing their direction. According to classical 
electrodynamics (which deals with the motion of electrons), such 
electrons which either constantly change their direction or their 
velocity or both should continuously emit radiation. While doing so, 
they should lose energy, and thus spiral into the nucleus. This means 
every atom is unstable, quite contrary to our observation. 
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Fig. 2 Rutherford ' s Atom is Inherently Unstable. 

Atomic Spectra 

Rutherford's description of the atom could not be entirely correct 
because it did not account for some observations that had already 
been made. Perhaps the most important of these observations 
concerned the behaviour of certain gases. These gases at low pressure 
emit light in a set of discrete bands of the electromagnetic spectrum. 
This is quite different from the radiation emitted by solids, which is 
spread evenly across the electromagnetic spectrum. The radiation 
emissions of these gases were important because they showed that 
at least under some circumstances, the orbits of the electrons could 
not be at just any distance from the nucleus, but were confined to 
discrete distances (or energy states). 

A 

B .~ ~ l ' :.. - :- ,.y • , . -Fig. 3 Continuous Spectrum and B. linc Spectrum of Hydrogen . 

If the electrons in these gases were free to orbit at any distance, 
then the light emitted from them would have been spread evenly 
across the electromagnetic spectrum. Instead. what experimenters saw 
was that the light from these gases showed a distind lille pattern. 
That is to say that the light being emitted was only seen in a certain 
set of wavelengths, with empty spaces in between. 

These line-spectra were different for each gas, and was found 
to be the characteristic of its atom. Today, astronomers use line­
spectra to detect the elements present in stars. 

Bohr's Explanation 

Niels Bohr quickly seized upon this problem and used it to 
propose a quantized description of the atom. 
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1. Bohr proposed that while circling the nucleus of the atom, 
electrons could only occupy certain discrete orbits, that is 
to say, energy levels. Bohr used Max Planck's equations 
describing quanta of radiation to determine what these 
discrete orbits would have to be. As long as electrons stay 
in these energy levels, they are stable. 

2. Further, Bohr said electrons give or take energy only when 
they change their energy levels. If they move up, they take 
energy (say from light), and if they move down, they 
release energy. 

3. Furthennore, Bohr also said that an electron which is not 
in its native energy level (in other words, which has been 
excited to a higher energy level) always has to fall back 
to its original, stable level. 

Bohr interpreted the lines in the spectra of gases as formed by 
the transitions of electrons to and from various energy-levels. This 
has been verified thoroughly with the hydrogen atom, and found to 
be correct. Bohr's formulae agreed excellently with observed line 
positions. 

Wavelength 

Une 
Spectrum 

Fig. 4 Bohr's Explanation of Line Spectra. 

Imagine that you are taking a walking along a beach. As you 
walk along, you see a sand-castle that someone has built. As you get 
closer to the sand castle, you discover that you can only stand three 
metres, two metres, or one metre from the sand castle. You cannot 
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stand at one and a half rneters, nor can you stand at two and three 
quarters of a rnetre frorn the sand castle. No rnatter how hard you 
try, sorne rnysterious force keeps you at one of those three distances. 
In everyday life such a situation is absurdly irnpossible. In the physics 
of the very srnall, it is a necessity. 

This description in which electrons can only occupy certain 
orbits is called the shell model of the atorn, because Bohr described 
the possible orbits of the electrons as orbitals or shells. When an 
atorn of a gas released energy, an electron would rnove down to a 
lower orbit (requiring less energy), and when an atorn acquired 
energy, an electron would rnove up to a higher energy level. But 
these orbits or shells were discrete, like the distances frorn the sand 
castle. The orbits were not a srnooth, continuous series of possibilities 
as one finds in the everyday world, but rather a set of distinct states 
separated frorn each other, rnuch like the separation of the quanta of 
electrornagnetic radiation that Planck had discovered. This caused 
the distinct lines in the spectrurn. 

The Simple Harmonic Oscillator 
The sirnple harmonic oscillator, a nonrelativistic particle in a 

1 
potential"2 kx2 is an excellent rnodel for a wide range of systerns in 

nature. In fact, not long after Planck's discovery that the black body 
radiation spectrurn could be explained by assurning energy to be 
exchanged in quanta, Einstein applied the same principle to the sirnple 
harmonic oscillator, thereby solving a long-standing puzzle in solid 
state physics the rnysterious drop in specific heat of all solids at low 
ternperatures. Classical therrnodynarnics, a very successful theory in 
rnany ways, predicted no such drop with the standard equipartition 
of energy, kT in each rnode (potential plus kinetic), the specific heat 
should rernain rnore or less constant as the ternperature was lowered 
(assurning no phase change). 

To explain the anornalous low tern perature behaviour, Einstein 
assurned each atorn to be an independent (quanturn) sirnple harmonic 
oscillator, and, just as for black body radiation, he assurned the 
oscillators could only absorb or ernit energy in quanta. Consequently, 
at low enough ternperatures there is rarely sufficient energy in the 
arnbient therrnal excitations to excite the oscillators, and they freeze 
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out, just as blue oscillators do in low temperature black body 
radiation. Einstein's picture was later somewhat refined the basic 
set of oscillators was taken to be standing sound wave oscillations 
in the solid rather than individual atoms (making the picture even 
more like black body radiation in a cavity) but the main conclusion 
the drop off in specific heat at low temperatures was not affected. 

The Classical Simple Harmonic Oscillator 

The classical equation of motion for a one-dimensional simple 
harmonic oscillator with a particle of mass m attached to a spring 
having spring constant k is 

The solution is 

d2x 
m-=-kx. 

dt2 

x = Xo sin(tVt + b), tV = jf, 
and the momentum p = mv has time dependence 

p = mxotVcos( tV! + b). 
The total energy 

(1I2m)(p2 +m2tV2x2}=E 

is clearly constant in time. 

It is often useful to picture the time-development of a system in 
phase space, in this case a two-dimensional plot with position on 
the x-axis, momentum on the y-axis. Actually, to have (x,y) 
coordinates with the same dimensions, we use (mtVx, p) . 

It is evident from the above expression for the total energy that 
in these variables the point representing the system in phase space 
moves clockwise around a circle of radius ~2mE centered at the origiil. 

Note that in the classical problem we could choose any point 

(mtVx, p), place the system there and it would then move in a circle 
about the origin. In the quantum problem, on the other hand, we 

cannot specify the initial coordinates (mtVx, p) precisely, because of 
the uncertainly principle. The best we can do is to place the system 
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initially in a small cell in phase space, of size ~ x tlp = h / 2. In fact, 
we shall find that in quantum mechanics phase space is always 
divided into cells of essentially this size for each pair of variables. 

Schrodingler's Equation and the Ground State 
Wave Function 

From the classical expression for total energy given above, the 
Schrodinger equation for the quantum oscillator follows in standard 
fashion: 

What will the solutions to this Schrodinger equation look like? 

Since the potential ~mlV2x2 increases without limit on going away 

from x = 0, it follows that no matter how much kinetic energy the 
particle has, for sufficiently large x the potential energy dominates, 
and the (bound state) wavefunction decays with increasing rapidity 
for further increase in x. (Obviously, for a real physical oscillator 
there is a limit on the height of the potential we will assume that 
limit is much greater than the energies of interest in our problem.) 

We know that when a particle penetrates a barrier of constant 
height Vo (greater than the particle's kinetic energy) the wave function 

decreases exponentially into the barrier, as e-ax , where 

a = ~2m(Vo - E)/ h2 
. But, in contrast to this constant height barrier, 

the 'height' of the simple harmonic oscillator potential continues to 
increase as the particle penetrates to larger x. Obviously, in this 
situation the decay will be faster than exponential. If we assume it is 
more or less locally exponential, but with a local a varying with Vo' 
neglecting E relative to Vo in the expression fora suggests thata 
itself is proportional to x (since the potential is proportional to xl, 
and a oc.JV) so maybe the wavefunction decays as e-(constant)x2 ? 

To check this idea, we insert 'I' (x) = e-x2/2b2 in the Schrodinger 

equation, using 

d 2
", 1 x2 

dx2 = - b2 '" + 71'1' 
to find 
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- ::( - b~ + ;:}V(X) + lmaNI" (x) = EI"(x) 

The If/ (x) is just a factor here, and it is never zero, so can be 
cancelled out. This leaves a quadratic expression which must have 
the same coefficients of xc, Xl on the two sides, that is, the coefficient 
of Xl on the left hand side must be zero: 

li2 moi {1t 
2mb4 = -2-,sob = V;;; . 

This fixes the wave function. Equating the constant terms fixes 
the energy: 

li2 1 
E=--2 =-liOJ. 

2mb 2 
So the conjectured form for the wave function is in fact the exact 

solution for the lowest energy state! (It's the lowest state because it 
has no nodes.) 

Also note that even in this ground state the energy is nonzero, 
just as it was for the square well. The central part of the wave fun~tion 
must have some curvature to join together the decreasing wave 
function on the left to that on the right. This 'zero point energy' is 
sufficient in one physical case to melt the lattice helium is liquid 
even down to absolute zero temperature (checked down to 
microkelvins!) because the wave function spread destabilizes the solid 
lattice that will form with sufficient external pressure. 

Higher Energy States 

It is clear from the above discussion of the ground state 

that b = ~ Ii is the natural unit of length in this problem, and that 
mOJ 

of energy, so to investigate higher energy states we reformulate in 
dimensionless variables, 

q =i=x~mliOJ, OJ = Ii~. 
Schrodinger's equation becomes 

d~~q) =(q2 -2E)If/(q). 
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Deep in the barrier, the c term will become negligible, and just 
as for the ground state wave function, higher bound state wave 

functions will have e _(2 /2 behaviour, multiplied by some more slowly 

varying factor (it turns out to be a polynomial). 

Exercise: find the relative contributions to the second derivative 

from the two terms in xne-x2/2 For given n, when do the contributions· 

involving the first term become small? Define 'small'. The standard 

approach to solving the general problem is to factor out the e-(2 /2 

term, 'I'(q) = h(q)e-(2/2 giving a differential equation for h(q): 

d 2h dh 
--2q-+(2w-l)h=O 
dq2 dq . 

We try solving this with a power series in 

q :h(q) = ho +h,q +h2q2 = ..... 

Inserting this in the differential equation, and requiring that the 

coefficient of each power qn vanish identically, leads to a recurrence 

formula for the coefficients hn: 

h = (2n + I - 2w) h 
n+2 (n + 1)( n + 1) n. 

Evidently, the series of odd powers and that of even powers are 
independent solutions to Schrodinger's equation. (Actually this isn't 
surprising: the potential is even in x, so the parity operator P 
commutes with the Hamiltonian. Therefore, unless states are 
degenerate in energy, the wave functions will be even or odd in x.) 
For large n, the recurrence relation simplifies to 

2 
hn+2 ~ -hn' n» c. 

n 

The series therefore tends to 

2n q2n q2(n-') 2 

L( )( ) 2q2L-( -) =e( . 2n-2 2n-4 .. .4 n-l ! 

Multiply this by the e _(2 12 factor to recover the full wavefunction, 

we find 'I' diverges for large q as +(2/2. 
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Actually we should have expected this for a general value ofthe 
energy, the Schrodinger equation has the solution 

~ Ae+(2 12 + Be-(2 12 at large distances, and only at certain energies 

does the coefficient A vanish to give a normalizable bound state 
wavefunction. 

So how do we find the nondiverging solutions? It is clear that 
the infinite power series must be stopped! The key is in the recurrence 
relation. 

If the energy satisfies 
26 = 2n + 1, n an integer, 

then hn+2 and all higher coefficients vanish. This requirement in 
fact completely determines the polynomial (except for an overall 
constant) because with 26 == 2n + 1 the coefficients hm for m < n are 
determined by 

(2m + 1- 26) (2m + 1- (2n + I)) 
hm+2 == (m+l)(m+2)hm == (m+l)(m+2) h",. 

This nth order polynomial is called a Hermite polynomial and 

written Hn (;). The standard normalization of the Hermite 

polynomials Hn (;) is to take the coefficient of the highest power;n 

to be 2n. The other coefficients then follow using the recurrence 
relation above, giving: 

Ho (;) == I, HI (;) == 2;, H2 (;) == 4;2 - 2,H3 (;) = 8;3 -12;,etc. 

So the bottom line is that the wavefunction for the nth excited 

1 
state, having energy 6 = n + 2' is'l'n (;) = CnHn (;)e-(2 12. It can be 

shown that. Using this, beginning with the ground state, one can easily 
convince oneself that the successive energy eigenstates each have 
one more node the nth state has n nodes. This is also evident from 
numerical solution using the spreadsheet, watching how the wave 
function behaves at large x as the energy is cranked up. The 
spreadsheet can also be used to plot the wave function for large n, 
say n = 200. It is instructive to compare the probability distribution 
with that for a classical pendulum, one oscillating with fixed 
amplitude and observed many times at random intervals. For the 
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pendulum, the probability peaks at the end of the swing, where the 
pendulum is slowest and therefore spends most time. The n = 200 
distribution amplitude follows this pattern, but of course oscillates. 
However, in the large n limit these oscillations take place over 
undetectably small intervals.The classical pendulum when not at rest 
clearly has a time-dependent probability distribution it swings 
backwards and forwards. This means it cannot be in an eigenstate of 
the energy. In fact, the quantum state most like the classical is a 
coherent state built up of neighbouring energy eigenstates. 

Operator Approach to the Simple Harmonic Oscillator 

Having scaled the position coordinate x to the dimensionless 

; by; = x I b = x.J mOl Iii , let us also scale the momentum from p 

to 1r = -id I d; (so 1r = bplli = pi .JlimOl). 

The Hamiltonian is 

H - p2 +m2Ol2 x2 _liOl( 2 ):2) - -- 1r +." . 
2m 2 

Dirac had the brilliant idea of factorizing this expression: the 

obvious thought (;2 + 1(2) = (; + i1r)(; - i1r) isn't quite right, 

because it fails to take account of the rioncommutativity of the 
operators, but the symmetrical version 

H = liOl [(; + i1r)(; - i1r) + (; - i1r)(; + i1r)] 
4 

is fine, and we shall soon see that it leads to a very easy way of 
finding the eigenvalues and operator matrix elements for the 
oscillator, far simpler than using the wave functions we found above. 
Interestingly, Dirac's factorization here of a second-order differential 
operator into a product of first-order operators is close to the idea 
that led to his most famous achievement, the Dirac equation, the basis 
of the relativistic theory of electrons, protons, etc. 

To continue, we define new operators a, at by 

a=;+~1r = ~(mOlx+iP),at =;-~1r = ~(mOlx-iP). 
" 2 2limOl " 2 2nmOl 

From the commutation relation [i1r,;] = I it follows that 
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[a, at] = 1 Therefore the Hamiltonian can be written: 

H = lia{ a t a + ~) = lia{ N + ~). where N = at a. 

Note that the operator N can only have non-negah've eigenvalues, 
since 

Now 

[N,at] =ataat _atata=at [ a,at]=at 

Suppose Nhas an eigenfunctionlv) with eigenvalue v, 

Nlv) =v Iv), 

From the two equations above 

Nat Iv) = at Nlv)+at Iv) = (v + l)at Iv) 

so at Iv) is an eigenfunction of N with eigenvalue v + 1 . Operating 

with again and again, we climb an infinite ladder of eigenstates 
equally spaced in energy is often termed a creation operator, since 
the quantum of energy added each time it operates is equivalent to 
an added photon in black body radiation (electromagnetic oscillations 

in a cavity). It is easy to check that the state al v) is an eigenstate 
with eigenvalue v -1 , provided it is nonzero, so the operator a takes 
us down the ladder. However, this cannot go on indefinitely we have 
established that N cannot have negative eigenvalues. We must 

eventually reach a state Iv) for which al v) = 0 the operator a 
annihilates the state. (At each step down, a annihilates one quantum 
of energy so a is often called an annihilation or destruction operator.) 

Since the norm squared of alv), 

lalv)1
2 =(vlat 

alv) = (vlNlvJ = vl(vlv), 

and since (vi v) > 0 for any nonvanishing state, it must be that 

the lowest eigenstate (the I v) for which a I v) =0) has v = 0 . It follows 
that the v's on the ladder are the positive integers, so from this point 
on we relabel the eigenstates with n in place of v. 
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That is to say, we have proved that the only possible eigenvalues 
of N are zero and the positive integers: 0, I, 2, 3 .... N is called the 
number operator: it measures the number of quanta of energy in the 
oscillator above the irreducible ground state energy (that is, above 
the 'zero-point energy' arising from the wave-like nature of the 
particle). 

Since from above the Hamiltonian 

H=hW( ata+~)=hO{ N +~) 
the energy eigenvalues are 

Hln)=( n+~}wln). 
It is important to appreciate that Dirac's factorization trick and 

very little effort has given us all the eigenvalues of the Hamiltonian 

H = h; (7r2 +;2). 

Contrast the work needed in this section with that in the standard 
Schrodinger approach. We have also established that the lowest 

I 
energy state 10), having energy "2 hw , must satisfy the first-order 

differential equation that is, 

(; + i7r)IO >= (; + :; )VlO (;) = 0. 

The solution, unnormalized, is 

Vlo (;) = Ce-(2/2. 

(In fact, we've seen this equation and its solution before: this 
was the condition for the 'least uncertain' wave function in the 
discussion of the Generalized Uncertainty Principle.) 

We denote the normalizedsetofeigenstatesI0),II),12), .... ln) .... 

with (nln) = 1. Now at In) = Cn In + I) and Cn is easily found: 

ICnl = Ici (n + lin + I) = (nlaatln) = (n + I), 
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Therefore, if we take the set of orthonormal 

statesIO),II),12), .... ln) ..... as the basis in the Hilbert space, the only 

nonzero matrix elements of(n + llat ln) =.In + 1 are That is to say, 

o 0 0 ° 
.Jio ° 0 0 

at = 0 J2 
o o 

o 0 

Jj 0 

(The column vectors in the space this matrix operates on have 
an infinite number of elements: the lowest energy, the ground state 
component, is the entry at the top of the infinite vector so up the 
energy ladder is down the vector!) 

The adjoint ° -Ii 
o 

a= 0 

o 

o 
o 
o 

o 
J2 
o 
o 

o 
o 
Jj 

o 

So, aln) = .mIn -1). 
For practical computations, we need to find the matrix elements 

of the position and momentum variables between the normalized 
eigenstates. Now 

x=.JhI2mOJ(at +a), p=i.JmOJhl2(at +a) 

so ° .Ji 0 0 

.Ji 0 J2 0 
x = .,Jr-hl-2-mOJ-1 0 J2 ° Jj 

o 0 Jj 0 
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0 -JI 0 0 

JI 0 -J2 0 

p = i.JmOJ1i12 0 J2 0 -J) 
0 0 J) 0 

These matrices are, of course, Hermitian (not forgetting the i 
factor in p). 

To find the matrix elements between eigenstates of any product 

of x's and p's, express all the x's and p's in terms of a's and at's, to 

give a sum of products of a's and at's. Each product in this sum 

can be evaluated sequentially from the right, because each a or at 
has only one nonzero matrix element when the product operates on 
one eigenstate. 

NonnaZizing the Eigenstates in x-space 

The normalized ground state wave function is 

'1'0 (;) = C-,2 /2 = (:: )e-nlOJX2
/2k, 

where we have gone back to the x variable, and normalized using 
00 

J e-
ax2 

dx = .J 1r I a . 

To find the normalized wave functions for the higher states, they 

are first constructed formally by applying the creation operator at 

repeatedly on the ground state using(nlat In -I)$" 

at (atr 
In)= rln - 1)= ... r; 10). 

"n "n! 
Now 
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We need to check that this expression is indeed the same as the 
Hermite polynomial wave function derived earlier, and to do that we 
need some further properties of the Hermite polynomials. 

Some Properties of Hermite Polynomials 

The mathematicians define the Hermite polynomials by: 

2 dn 
2 

lin (~) = (-t e' d~n e-' 
SO, HO (~) = I, HI (~) = 2~, H2 (~) 

= 4~2 - 2, H3 (~) = 8~3 -12~, etc. 

It follows immediately from the definition that the coefficient 
of the leading power is 2n. 

It is a straightforward exercise to check that Hn is a solution of 
the differential equation 

( d22 -2~!!-.+2n)Hn(~)=O, 
d~ d~ 

so these are indeed the same polynomials we found by the series 
solution of Schrodinger's equation earlier (recall the equation for 
the polynomial component of the wave function was 

d 2h dh 
--2~-+(2n-l)h=O 
d~2 d~ , 

with 2tV = 2n + 1 ). 

We have found'l'n(~) in the form 

We shall now prove that the polynomial component is exactly 
equivalent to the Hermite polynomial as defined at the beginning of 
this section. 

We begin with the operator identity: 

( ~ _ ~) = _e,2 12 :~ e _,2/2 
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Both sides of this expression are to be regarded as operators, 
that is, it is assumed that both are operating on some function f (;) . 

Now take the nth power of both sides: on the right, we find, for 
example, 

since the intermediate exponential terms cancel against each other. 

So: 

and substituting this into the expression for'l'n (;) above, 

1 (mOJ)~ ) _,;212 ~mOJ ~2n n! ;rn Hn (; e , with; = r:x. 

This established the equivalence of the two approaches to 
Schrodinger's equation for the simple harmonic oscillator, and 
provides us with the overall normalization constants without doing 

integrals. (The expression for'l'n (;) above satisfies ~'I'i dx = 1.) 

2 d n 
2 

Use Hn(;)=(-re' d;n e-' to prove: 

(a) The coefficient of;n is 2n. 

(b) H~ (;) = 2nHn_1 (;) 
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00 

(d) J e-,2 H; (q)dq = 2n n!.[;i 

00 dn 

(Hint: rewrite as 1 Hn (q)( -r dqn e-,2 d( then integrate by 

parts n times, and use (a).) 

It's worth doing these exercises to become more familiar with 
the Hermite polynomials, but in evaluating matrix elements (and 
indeed in establishing some of these results) it is almost always far 
simpler to work with the creation and annihilation operators. 

Use the creation and annihilation operators to find (nlx4 In). 
This matrix element is useful in estimating the energy change arising 
on adding a small nonharmonic potential energy term to a harmonic 
oscillator. 
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Time-dependent Wave Functions 

The set of normalized eigenstatesIO),II),12), ... ln) ... discussed 
above are of course solutions to the time-independent Schrodinger 
equation, or in ket notation eigenstates of the 

Hamiltonian H In) = ( n + ~) nO) In). Putting in the time-dependence 

explicitly, In,t)=eIH/kln,t=o)=e-{n+i)mtln)' It is necessary to 

include the time dependence when dealing with a state which is a 
superposition of states of different energies, such as 

(lIJ2)(lo)+II)), 
which then becomes. 

(1/ J2) (e-1aJt /21 0)) + (e-3Iml /211)). 
Expectation values of combinations of position and/or 

momentum operators in such states are best evaluated by expressing 
everything in terms of annihilation and creation operators. 

Solving Schrodinger's Equation in Momentum Space 
In the lecture on Function Spaces, we established that the basis 

of I x) states (eigenstates of the position operator) and that oflk) states 
(eigenstates of the momentum operator) were both complete bases 
in Hilbert space (physicist's definition) so we could work equally 
well with either from a formal point of view. Why then do we almost 
always work in x-space? Well, probably because we live in x-space, 
but there's another reason. The momentum operator in the x-space 
representation is p = -itui / dx, so Schrodinger's equation, written 
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(p2 / im + V (x)'I' ( x ) = E'I' (x) , with p in operator fonn, is a second­
order differential equation. Now consider what happens to 
Schrodinger's equation if we work in p-space. Since the operator 

identity [x, p] = iii is true regardless of representation, we must have 

x = ifid / dp. So for a particle in a potential V(x) , writing 
Schrodinger's equation inp-space we are confronted with the nasty 

looking operator V(iM / dp)! This will produce a differential 
equation in general a lot harder to solve than the standard x-space 
equation so we stay in x-space. 

But there are two potentials that can be handled in momentum 

space: first, for a linear potential V (x) = -Fx , the momentum space 
analysis is actually easier it's just a first-order equation. Second, for 
a particle in a quadratic potential a simple harmonic oscillator the 
two approaches yield the same differential equation. That means that 
the eigenfunctions in momentum space (scaled appropriately) must 
be identical to those in position space. The simple harmonic 
eigenfunctions are their own Fourier transfonns! 

Time-dependent Solutions: Propagators and 
Representations 

We've spent most of the course so far concentrating on the 
eigenstates of the Hanliltonian, states whose time-dependence is 
merely a changing phase. We did mention much earlier a 
superposition of two different energy states in an infinite well, 
resulting in a wave function sloshing backwards and forwards. It's 
now time to cast the analysis of time dependent states into the 
language of bras, kets and operators. We'll take a time-independent 
Hamiltonian H, with a complete set of orthononnalized eigenstates, 
and as usual 

'Ii a'l'(x,t) 1i
2 a

2
'1'(x,t) () ( ) 

I = 2 + V x 'I' x,t . 
at 2m ax 

Or, as we would now write it 

iii ! 1'I'(x,t)) = HI 'I' (x,t)) . 

Since His itself time independent, this is very easy to integrate! 
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1 IfI(x, t») = e -iH(I-IO)/k IIfI(x,to»). 

The exponential operator that generates the time-dependence is 
called the propagator, because it describes how the wave propagates 
from its initial configuration, and is usually denoted by U: 

1",( x,t») = U(t - to )11fI( x,to »). 
It's appropriate to call the propagator U, because it's a unitary 
operator: 

U(t -to) = e -iH(t-to)/k, 

so Ut(t_to)=e-iH'(I-lo)/k =e-;H(I-lo)/k =U-I(t-.lo). 

Since H is Hermitian, U is unitary. It immediately follows that 

(1fI( x,1 )11fI( x») = (Ifl (x, to )IU t U (I - to )11fI (x,to») 

(Ifl (x, to )1", (x,to») 

the norm of the ket vector is conserved, or, translating to wave 
function language, a wave function correctly normalized to give a 
total probability of one stays that way. (This can also be proved from 
the Schrodinger equation, of course, but this is quicker.) 

This is all very succinct, but unfortunately the exponential of a 
second-order differential operator doesn't sound too easy to work 
with. Recall, thoug/1, that any function of a Hermitian operator has 
the same set of eigenstates as the original operator. This means that 
the eigenstates of e -;H(I-IO)1 k are the same as the eigenstates of H, 

and ifHllfln) = Enllfln)' then 

• -,H (I -/0 )1 k IVI n) = e -iE n (I - '0)1 k IVI n) 

This is of course nothing but the time dependent phase factor 
for the eigenstates we found before and, as before, to find the time 
dependence of any general state we must express it as a superposition 
of these eigenkets, each having its own time dependence. But how 
do we do that in the operator language? Easy: we simply insert an 
identity operator, the one constructed from the complete set of 
eigenkets, thus: 
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1'1' (t)) = e -H(t-to)1 k II'I' n) ('I'n 1'1' (to)) 
n-i 

i:e -lEn (1-10)1 k 1'1' n) ('I'n 1'1' (to)) . 
n-I 

Staring at this, we see that it's just what we had before: at the 
initial time' t = to, the wave function can be written as a sum over 
the eigenkets: 

1'I'(to)) = II'I'n (to))('I'n (to)I'I' (to)) = ICn l'I'n (to)) 

with Cn = ('I'n 1'1'), Ilcl = 1, and the usual generalization for 

continuum eigenvalues, and the time development is just given by 
inserting the phases: 

1'I'(t)) = I CneiEn(t-tO) 1 k l'I'n (to)). 

The expectation value of the energy E in 1'1'), 
(E) = ('I'IHI'I') = Ilcl En 

and is (of course) time independent. 

The expectation value of the particle position x is 

('I'(t)lxl'l' (t)) = IC~Cmei(En-Em)(t-to)/k ('I'n (to )1 xl 'I'm (to)) 
n,m 

and is not in general time-independent. (It is real, of course, on adding 
the (n,m) term to the (m,n) term.) This analysis is only valid for a 
time-independent Hamiltonian. The important extension to a system 
in a time-dependent external field, such as an atom in a light beam. 

The Free Particle Propagator 
To gain some insight into what the propag~tor U looks like, 

we'll first analyse the case of a particle in one dimension with no 
potential at all. 

We'll also take to = 0 to make the equations less cumbersome. 

For a free particle in one dimension E = p2 12m = h,2k2 12m the 
energy eigenstates are also momentum eigenstates, we label them 

Ik), so 
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Let's consider what seems the simplest example. 

Suppose that at I = 10 = 0, a particle is at xo: 
",(x,t = 0) = 8(x -.xa) = l.xa): what is the probability amplitude for 
finding it at x at a later time I? 

~ im(xo-x)2t K 
= -e 

21r1ii1 

using the standard identity for Gaussian integrals, 

j dke _a/c
2

+bk = ~i2/4a. 
-<>0 

On examining the above expression, though, it turns out to be 
nonsense! Noting that the term in the exponent is pure 

imaginary,I",(x,t)1
2 

=mI21r1it independent of x! This particle 

apparently instantaneously fills all of space, but then its probability 
dies away as 111. 

Notice first that I", (x, 1)12 
is constant throughout space. This 

means that the normalization, ~'" (x, 1)1
2 

dx = 00 ! And, as we've seen 

above, the normalization stays constant in time the propagator is 
unitary. Therefore, our initial wave function must have had infinite 
norm. That's exactly right we took the initial wave function 

",(x,t = 0) = 8(x -xo) = l.xa). 
Think of the 0 -function as a I imit of a function equal to 11 .d 

over an interval of length .d, with.d going to zero, and it's clear the 
normalization goes to infinity as 1/.d . This is not a meaningful wave 
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function for a particle. Recall that continuum kets like I xo) are 

normalized by (xlx')=o(x-x'), they do not represent wave 
functions individually notmalizable in the usual sense. The only 
,meaningful wave functions are integrals over a range of such kets, 

such as J dxlfl ( x ) Ix) . In an integral like this, notice that states Ix) 

within some tiny x-interval of length ox, say, have total weight 

lfI(x)ox, which goes to zero as ox is made smaller, but by 

, writinglfl(x,t=O)o(x-xo)=lxo) we took a single such state and 
gave it a finite weight. This we can't do. 

Of course, we do want to know how a wave function initially 
localized near a point develops. To find out, we must apply the 
propagator to a legitimate wave function one that is normalizable to 
begin with. The simplest "localized particle" wave function from a 
practical point of view is a Gaussian wave packet, 

_X,2/ 2d 2 

( '0) - iPoX'/k_e __ ~ 'l'x, -e 114' 

(1!d 2 
) '. 

We used!!. in place of here. 

The wave function at a later time is then given by the operation 
of the propagator on this initial wave function: 

_x,2/U2 

( ) - JU( .' 0) 'poX'lk e dx' IfI x,t - x,t,x, e 1/4 

(nd
2 

) 

~ 
2 _x,2/2d2 

= ~ Je,m{x-x') 12kt e'Pox'1 k e dx'. 
2nnit (nd2 )1/4 

Note first that since this is justllfl(x,t») = U(t)\IfI(x,t = 0») 
written explicitly in terms of Schrodinger wave functions, 

'. lfI(x,t) = fU(x,t;x',O)IfI(x',O)dx' 

it is evident that U(x. t; x' 0) -, <5(x - x') as t ~ O. This is just 
equivalent to the operator statement that e-IHllk ~ 1, the unit operator, 
as t~ O. 
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The integral over xl is just another Gaussian integral, so we use 
the same result, 

""fdx l -ax,2+bx ' ~ b2
/40 e = -e 

a . 
-00 

Looking at the expression above, we can see that 

b = - : .( x - p;t). a = 2~2 - ~~ . 
This gives 

-1/4 (' 2) tr l1nx 
'I' (x, t) = ( iliJ) exp 21it exp 

d 1+-
md2 

where the second exponential is the tenn i 2 
140 • As written, the small 

t limit is not very apparent, but some algebraic rearrangement yields: 

'I'(x,t) = tr-
1/4 

exp[ (x-potlm2) 1 
~ d ( 1 + ilit I md2 

) 2d
2 

( 1 + ilit I md
2 

) 

expC~o (x- Pot 12m») 

Written this way, it is evident that the expression goes to the 
initial wave packet for t going to zero, as of course it must. 

Although the phase in the above expression for'l'(x,t) has 
contributions from all three tenns, the main phase oscillation is in 
the third term, and one can see the phase velocity is one-half the 
group velocity, as discussed earlier. 

The resul!ing probability density: 

«-Po' 1 m)2 

1'1' (x,t)1 2 = 1 ,.exp-~/2+k2,21 ",2u
2 

~"(d2 +n,2t2 Im 2d 2) 

This is a Gaussian wave packet, having a width which goes 
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as lit I md for large times, where d is the width of the initial packet 

in x-space so Ii I md is the spread in velocities (L\ v) within the packet, 

hence the gradual spreading in (L\v)t x-space. 

It's amusing to look at the limit of this as the width d of the 
initial Gaussian packet goes to zero, and see how that relates to our 
t5 -function result. Suppose we are at distance x from the origin, and 
there is initially a Gaussian wave packet centered at the origin, width 
d « x. At time t ~ mxd I !i , the wave packet has spread to x and 

has IV' (x, t )12 
of order l/x at x. Thereafter, it continues to spread at a 

linear rate in time, so locally IV' (x, t )12 
must decrease as lit to 

conserve probability. In the t5 -function limit d ~ 0, the wave 
function instantly spreads through a huge volume, but then goes as 
lit as it spreads into an even huger volume. 

Schrodinger and Heisenberg Representations 
Assuming a Hamiltonian with no explicit time dependence, the 

time-dependent Schrodinger equation has the form 

ifi ! IV' (x,t)) = HIV'(x,t)) 

and as discussed above, the formal solution can be expressed as: 

Now, any measurement on a system amounts to measuring a 
matrix element of an operator between two states (or, more generally, 
a function of such matrix elements). 

In other words, the physically significant time dependent 
quantities are of the form 

(qJ(t)IAIV'(t)) = (qJ(O)leiHt'k Ae'Hllk IV'(O)) 
where A is an operator, which we are assuming has no explicit time 
dependence. 

So in this Schrodinger representation, the time dependence of 
the measured value of an operator like x or p comes about because 
we measure the matrix element of an unchanging operator between 
bras and kets that are changing in time. 
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Heisenberg took a different approach: he assumed that the ket 
describing a quantum system did not change in time, it remained at 

11f/(0»), but the operators evolved according to: 

AH (t) = e'Hllk AH (O)e-IHllk . 

Clearly, this leads to the same physics as before. The equation 
of motion of the operator is: 

in dAH (t) = [ AH (t),H J. 
dt 

The Hamiltonian itself does not change in time energy is 

conserved, or, to put it another way, Hcommutes with e-iHllk. But 

for a nontrivial Hamiltonian, say for a particle in one dimension in a 
potential, 

H = p2 12m +V(x) 

the separate components will have time-dependence, parallel to the 
classical case: the kinetic energy of a swinging pendulum varies with 
time. (For a particle in a potential in an energy eigenstate the 
expectation value ofthe kinetic energy is constant, bunhis is not the 
case for any other state, that is, for a superposition of'different 
eigenstates.) Nevertheless, the commutator of x, P will be time­
independent: 

[Xh (t),PH (/)J = i Ht1k [XH {O),PH {O)JeiHllk 

= iHII kihe-iHllk = ih 

(The Heisenberg operators are identical to the Schrodinger 
operators at t = 0.) 

Applying the general commutator result 

[A,BC] =[A,B]C +B[A,C], 

[
XH (t), p2 H (I)] = ilipH (I) 

2m m 

so, 

dxH (I) PH (I) 
---'--'- = --

dl m 

and since [ XH(I),PH (I)J = ih, PH (I) = -itid I dxH (I), 
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dPHd~dt) = i~ [PH (t),V(XH (t»)J - V'V(XH (t»). 

This result could also be derived by writing Vex) as an expansion 
in powers of x, then taking the commutator with p. 

Notice from the above equations that the operators in the 
Heisenberg Representation obey the classical laws of motion! 
Ehren/est IS Theorem, that the expectation values of operators in a 
quantum state follow the classical laws of motion, follows 
immediately, by taking the expectation value of both sides of the 
operator equation of motion in a quantum state. 

Simple Harmonic Oscillator in the Heisenberg 
Representation 

For the simple harmonic oscillator, the equations are easily 
integrated to give: 

xH (t) = XH (O)cosOJt + (PH (0)1 mOJ )sinOJt 

PH (t) = PH (0) cos OJt - mOJxH (O)sinOJt. 
We have put in the H subscript to emphasize that these are 

operators. It is usually clear from the context that the Heisenberg 
representation is being used, and the subscript H may be safely 
omitted. 

The time-dependence of the annihilation operator a is: 

a(t) = e,Htl 
k a(0)e-1Htl 

k 

with 

H=liOJ{at(t)a(t)+ ~). 
Note again that although H is itself time-independent, it is 

necessary to include the time-dependence of individual operators 
within H. 

so, 

iii ~ a(t) = [ a(t), HJ = liOJ[ a(t ),a t (t )a(t) ] 

= liOJ[ a(t), at (t) Ja(t) = liOJa(t) 

a(t) = a( O)e-iOJt . 
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Actually, we could have seen this as follows: if\n) are the energy 
eigenstates of the simple harmonic oscillator, 

e-,Hllk In) = e-mkmllk In) = e-IIlW1 In). 

Now the only nonzero matrix elements of the annihilation 
operator a between energy eigenstates are of the form 

(n -tla(t)ln) = In -l)e,HII k a(O)e-H11 kin) 

= illl{n-I)t (n -l\a(O)\n)e-WnI = (n -l\a(O)\n)e-iWl 

Since this time-dependence is true of all energy matrix elements 
(trivially so for most ofthem, since they're identically zero), and the 
eigenstates of the Hamiltonian span the space, it is true as an operator 
equation. 

Evidently, the expectation value ofthe operator aCt) in any state 
goes clockwise in a circle centered at the origin in the complex plane. 
That this is indeed the classical motion of the simple harmonic 
oscillator is confirmed by recalling the definition 

q +i7r 1 . 
a = fi = ~ (mcox + lP) , so the complex plane corresponds 

to the (mcox, p) phase space discussed near the beginning of the 
lecture on the Simple Harmonic Oscillator. The time-dependence of 

the creation operator is just the adjoint equation: at (t) = at (0) iWl. 



8 

Simple Harmonic Oscillator 

Consider a macroscopic simple harmonic oscillator, and to keep 
things simple assume there are no interactions with the rest of the 
universe. We know how to describe the motion using classical 
mechanics: for a given initial position and momentum, classical 
mechanics correctly predicts the future path, as confirmed by 
experiments with real (admittedly not perfect) systems. But from the 
Hamiltonian we could also write down Schrodinger's equation, 
and from that predict the future behaviour of the system. Since we 
already know the answer from classical mechanics and experiment, 
quantum mechanics must give us the same result in the limiting case 
of a large system. 

It is a worthwhile exercise to see just how this happens. 
Evidently, we cannot simply follow the classical method of 
specifying the initial position and momentum the uncertainty 
principle won't allow it. What we can do, though, is to take an 
initial state in which the position and momentum are specified as 
precisely as possible. Such a state is called a minimum uncertainty 
state. 

In fact, the ground state of a simple harmonic oscillator is a 
minimum uncertainty state. This is not too surprising it's just a 
localized wave packet centered at the origin. The system is as close 
to rest as possible, having only zero-point motion. What is surprising 
is that there are excited states of the pendulum in which this ground 
state wave packet swings backwards and forwards indefinitely, a 
quantum realization of the classical system, and the wave packet is 
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always one of minimum uncertainty. Recall that this doesn't happen 
for afree particle on a line in that case, an initial minimal uncertainty 
wave packet spreads out because the different mome"ntum 
components move at different speeds. But for the oscillator, the 
potential somehow keeps the wave packet together, a minimum 
uncertainty wave packet at all times. These remarkable quasi-classical 
states are called coherent states, and were discovered by Schrodinger 
himself. They are important in many quasi-classical contexts, 
including laser radiation. 

Our task here is to construct and analyse these coherent states 
and to find how they relate to the usual energy eigenstates of 
the oscillator. 

Classical Mechanics of the Simple Harmonic Oscillator 
To define the notation, let us briefly recap the dynamics of the 

classical oscillator: the constant energy is 
2 

E=L+!lcx2 
2m 2 

or 

p2 + (mwx)2 =2mE, w=.Jklm. 

The classical motion is most simply described in phase space, 

a two-dimensional plot in the variables (mwx, p). In this space, the 

point (mwx, p) corresponding to th~ position and momentum of the 
oscillator at an instant of time moves as time progresses at constant 
angular speed in a clockwise direction around the circle of 
radius .J2mE centred at the origin. 

Phase space is usually defined in terms of the variables (x,p), 

but in describing the simple harmonic oscillator, the pair (mwx, p) 
are more convenient. 

This motion is elegantly described by regarding the two­
dimensional phase space as a complex plane, and defining the 
dimensionless complex variable 

mwx+ip 
Z = --;:::====-

.J2nmw . 

The time evolution in phase space is simply z(t) = zoe-ICIJ/ . 
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The particular choice of(quantum!) scaling factor in defining z 
amounts to defining the unit of energy as hw, the natural unit for 
the oscillator: it is easy to check that if the classical 

energy E = ( n + k )hW then the dimensionle'ss Izl2 is simply the 

number (which is of course very large, so the Y2 is insignificant). 

Minimum Uncertainty Wave Packets 
The Generalized Uncertainty Principle that any minimum uncer­

tainty one-dimensional wave function (so !1p x llx = h12) for a 
particle must satisfy the linear differential equation (here 
jJ =-ifid Idx) 

(jJ - (p) )'I'(x) = A(X -(x))'I' (x) 

where (x), (p), A are constants, and A is pure imaginary. The equation 
is easy to solve: any minimum uncertainly one-dimensional wave 
function is a Gaussian wave packet, having expectation value of 

momentum (p), centered at (x) and having width ( llx2 ) = -Ii I 2iA . 

(llx is defined for a state I '1') by (llx2) = 1 '1') (x - (x) )21 '1') .) That is 

to say, the minimum uncertainly solution is: 

'I' (x) = Ce'(p)x/ k e'A(X-(x))2/ 2k = Ce'(p)x / k e -(x_(x))2/4k(6Xi 

with C the normalization constant. 

In fact, the simple harmonic oscillator ground 

() (mw)~ -m(j)x2/2k . • h' . . 
state '1'0 x = trli e IS Just suc a mlmmum uncertamty 

state, with 

A - imw, (x) = (p) = 0; (llx)2 = _li_, (!1p)2 = limw ,/:lp x llx =!!:.. 
2mw 2 2 

Furthermore, it is easy to see that the displaced ground 

state '1'0 (x - (xo)) = Ce -m(j)(x-(xo))2 12k (writing the normalization 

constant (mw I 1r h)~ = c ) must also be a minimum uncertainty state, 

with the same A = imw. Of course, in contrast to the ground state, 
this displaced state is no longer an eigenstate of the Hamiltonian, 
and any such initial state will change with time. 
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(Both these states have the same spread in x-space 

(Llx)2 = Ii / 2mw, and the same spread in p-space, the only difference 

in the p direction being a phase factor e'p(XO)I k for the displaced state.) 

What about the higher eigenstates of the oscillator Hamiltonian? 
They are not minimally uncertain states for the nth state, 
I:J.p x Llx = nli / 2 , 

as is easily checked using 

.!..( 1:J.p)2 /2m =.!.. k( Llx f ~ .!..nliw. 
222 

So, if we construct a minimally uncertain higher energy state, it 
will not be an eigenstate of the Hamiltonian. 

Time Development of a Coherent State: The 
Role of the Annihilation Operator 

In this section, we shall establish a remarkable connection 
between minimally uncertain oscillator states and the annihilation 
operator, then use properties of that operator to find the time­
development of the minimally uncertain states. 

Suppose that at t = 0 the oscillator wave function is the 
minimum uncertainty state 

'II (x, t = 0) = Ce'(po)x I k e,.I.(x-(xo})2 12k = Ce'(Po)x I he -mro(x-(xo})2 12k 

centred at(po),mw(xo) in phase space (as defined above for the 
classical oscillator), and with A. = imm to give it the same spatial 
extent as the ground state. 

From the preceding section, this'll (x, 0) satisfies the minimum 
uncertainty equation 

(p - (Po))'11 (x, 0) = imm( x - (xo))'11 (x, 0) . 
Rearranging this equation (and multiplying by -i) shows it in a 

different light: 

(mmx + ip)'II (x, 0) = (mm(xo) + i(po))'11 (x,O) . 

This is an eigenvalue equation! The wave packet 'II (x,O) is an 

eigenstate of the operator (mwx + ip) with eigenvalue 
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(mlD(XO) + i(Po)). Ins nQt, of course, an eigenstates of either p or x 
taken individually. 

Furthermore, the operator (mlDx + ijJ) is just a constant times 
the annihilation operator recall 

A 1 ( A .A) a = r;:;;:::--- mlDX + Ip . 
v21imlD 

Therefore, this minimally uncertain initial wave packet '1/ (x, 0) 
is an eigenstate of the annihilation operator a, with eigenvalue 

(mlD(Xo) + i (po))/ .J21imlD . By the way, it's ok for to have complex 

eigenvalues, because a is not a hermitian operator. 

We can now make the connection with the complex plane 
representation of the classical operator: the eigenvalue 

(mlD(Xo) + i(po))/ .J21imlD 

is precisely the dimensionless complex parameter zo! 

This means that if we have a minimal uncertainty oscillator wave 
packet 

'1/( x,t = 0) = Cei(Po)xi k e-mOJ (X(XO))2 / 2k 

having the same spatial extent as the ground state, centred 

atmlD(xo),(po) in phase space, and we write 

mlD(Xo) + i (Po) 
Zo = .J21imlD 

then 

a'l/(x,t = 0) = zo'l/(x,t = 0). 
That is to say, the eigenstates of the annihilation operator a are 

all those minimal uncertainty wave packets that have the same spatial 
width as the oscillator ground state. 

Turning now to the time development of the state, it is convenient 
to use the ket notation 

IV/(x,t = 0)) = l(xo),(Po)) 
with I x, p) denoting a minimum uncertainly wave packet having those 

expectation values of position and momentum. 
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The time development of the keto as usual, is given by 

IIf/(x,t») = e-iHI1 k I(Xo), (Po)). 

We shall show thatllf/(x,t») remains an eigenstate of the 
annihilation operator for all times t: it therefore continues to be a 
minimum uncertainty wave packet! 

The key point in establishing this is that the annihilation operator 
itself has a simple time development in the Heisenberg representation, 

A ( ) iHI I k A -IHI I k A -IOJI a t =e ae =ae. 
To prove this, consider the matrix elements of a (t) between any 

two eigenstates In) of the Hamiltonian 

Hln) = ( n + ~ )IiOJln) 
so, i(m+.!. )"OJII k I(n+.!.)kOJlI k 

(mla(t)ln)=e 2r (mlaln)e 2 = (n-Ilaln)e-i/!ll . 

Since the only nonzero matrix elements of the annihilation 

operator(mla(t)ln) are for m=n-l, and the energy eigenstates form 

a complete set, this simple time dependence is true as an operator 
equation 

It is now easy to prove that 

1 If/(x, f») = e-iHII k I(xo), (Po)1 
is always an eigenstate of a: 

allf/(x,t») = ae-iHII k I(Xo ),(Po)) 

= e-iH/lk (elH/lk ae-IHllk )1(xo),(Po)} 

= iHllk e-IOJI al(xo),(po)) 

= iHllke-iOJl (mOJ(Xo) + i(Po))1 ~2nnu» l(xo),(Po)) 

= (e- iOJl (mOJ(Xo) + i (Po))1 ~21imOJ )11f/(x,t »). 
Therefore the annihilation operator, which at t = 0 had the 

eigenvalue 
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corresponding to a minimal wave packet centred at (mllJ(xo) ,(Po) ) 
in phase space, evolves in time t to another minimal packet (because 
it's still an eigenstate of the annihilation operator), and writing 

I(x(t)) ,(p(t))) = e-1H11 
k I (xo) ,(Po)), 

the new eigenvalue of a 
(mllJ( x(t) + i(p(t))) (mllJ( xo) + i(Po)) -Irot -irot 

z(t)= ~ = ~ e =z(O)e 
" 2ftmllJ 2ftmllJ 

Therefore, the centre of the minimal wave packet in phase space 
follows the classical path in time. This is made explicit by equating 
real and imaginary parts: 

(x(t)) = (xo) cos mt + ((Po) / mm )sinmt, 

(p(t)) = (Po) cos OJt - mm(xo) sin mt. 
So we've found Schrodinger's 'best possible' quantum 

description of a classical oscillator. 

Coherent States and the Classical Limit 
The phase space of a classical simple harmonic oscillator is 

conveniently parameterized using the complex variable 

z = ( mmx + ip) / ~ 2limm . If the oscillator is initially at zo' it will 

describe a circle in the complex plane z (t) = zoe -.rot • 

If a quantum simple harmonic oscillator is initially in a minimum 
uncertainty state having the same spatial width as the oscillator ground 
state, and the state has expectation values of position and momentum 

denoted by (mOJ (xo), (Po) ), then it is an eigenstate of the 

annihilation operator a with eigenvalue 

zo = (mro(xo) + i(po))/ ~2IimO), 

and we label it I zo) , 
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We have established that as this state develops in time, the wave 
function continues to be a minimal uncertainty wave packet having 
constant spatial width, and hence continues to be an eigenstate of 
the annihilation operator, and that the centre of the wave packet in 
phase space follows exactly the path of the classical oscillator, 

alzo)=zlz), z=zoe lOJI 

A Remark on Notation 

We have chosen to work with the original position and 
momentum variables, and the complex parameter expressed as a 
function of those variables, throughout. We could have used the 
dimensionle!'s variables introduced in the lecture on the simple 
harmonic oscillator, 

~ = xl b = x../mrol Ii, 1t = bhl Ii = pi ../limro,il = (~+ in)1 Ji. 
This would of course also give z = (~ + iTt).J2 a more compact 

representation, but one more thing to remember. 
It's also common to denote the eigenstates of a by 

a., ill a.) = 0.1 a.), very elegant, but we've used z to keep reminding 
ourselves that this eigenvalue, unlike most of those encountered in 
quantum mechanics, is a complex number. Finally, some use the 

dimensionless variables X = ../2 Ii I mrox, p = ~1/(2mroli )p, 
differing from ~,Tt by a factor of .J2. The eigenvalue equation for 
the annihilation operator is very neat in this notation: 

alz) = (X = ip)1 z). 
The Translation Operator 

It's worth repeating the exercise for the simple case of the 
oscillator initially at rest a distance (xo) from the centre. This gives 
a neat tie-in with the translation operator. 

Let us then take the initial state to be 

where \VI) (x) is the ground state wave function so we've moved the 

packet to the right by (XII)' 
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Now do a Taylor series expansion (taking(xo) to be the 

variable!): 

_ d (xo)2 d2 
\jI ( X - (xo) ) - \jI 0 ( Xo ) - (xo) dx \jI ( x ) + 2! dx2 \jI 0 ( x ) - ... 

d -(xo)-
=e dT\jIo(x). 

d 
It's clear from this that the translation operator e -(xn}d; shifts 

the wave function a distance (xo) to the right. 

Since p = -ilid I dx, the translation operator can also be 

written as e -i(Xo}filk , and from this it can be expressed in terms of 
A At . a,a ,Since 

A 1 ( A .A) At 1 ( A .A) a= ~ mroX+lp ,a = ~ mroX+lp , 
V 2hmoo v 2hmro 

(p, X being Hermitian) so. 

A )hmro (At A) p=l -- a -a . 
2 

Therefore the displaced ground state wave function can be 

written 

\jIo (x - (Xo)) = e -'(Xo)fi1k\jlo (x) 

(xo)v'mco/2k(ot -0) () = e \jIo x 

= /o(ot -o)\jIo (x) 

for real Zo = (xo).J moo / 211 , since (Po) is zero for this initial state 

(the wave function is real). 

In the ket notation, we have established that the minimal 
uncertainty state centered at xO' and having zero expectation value 
for the momentum. is 
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But it's not exactly obvious that this is an eigenstate of a with 
eigenvalue zo! (As it must be.) 

It's worth seeing how to prove that just from the properties of 
the operators but to do that, we need a couple oftheorems concerning 
exponentials of operators. 

First, if the commutator [A,B] commutes with A and B, then 
I 

aA+B = eAe B e -"i[A,B]. This result simplifies the right hand side of 

the above equation, for 

e :o(at-a) 10,0) = ezoot e-zoOe-za2[at,at]/2Io,0) 

= e-z~l2ez.at 10,0) 

where we have used e-Znalo,O) =10,0). 

This is simpler, but it's still not obvious that we have an 

eigenstate of a: we need the commutator [ a, eZo
ot 

] . 

The second theorem we need is: if the commutator of two 

operators [ A, B] = c itself commutes with A and B, then 

[ A, eAB 
] = AceAB 

• 

This is easily proved by expanding the exponential. 
Applying this to our case, 

[ ] 
"t At zOa 

A zOa = ZOe 
a,e 

It follows immediately thate-zg/2ezo.if 10,0) is indeed an 

eigenstate of a with eigenvalue Zo = (xo).J m()) / 2h. 

(It must also be correctly nonnalized because the translation 

(xo),O) = /°(0
1 
-0) 10,0) 

is a unitary operation for real zo') 

How do we generalize this translation operator to an arbitrary 

state, with nonzero (x), (p ) ? Thinking in terms of the complex 
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parameter space z, we need to be able to move in both the x and the 
p directions, using both p = -ilid / dx and x = -ilid / dp . This is 
slightly tricky since these operators do not commute, but their 
commutator is just a number, so this will only affect the overall 
normalization. 

Furthermore, both p and x are combinations of a, a f , so for 

the generalization of e -i(Xo)j1lk from real (xo) to complex z to be 

unitary, it must have an antihermitian combination ofa,af in the 

exponent a unitary operator has the form U = eiH , where H is 
Hermitian, so iH is antihermitian. 

We are led to the conclusion that 

conveniently labeling the coherent state using the complex parameter 
z of its centre in phase space. Since this generalized translation 
operator is unitary, the new state is automatically correctly 
normalized. 

The Energy Eigenstates 
The equation above suggests the possibility of representing the 

displaced state I z) in the standard energy basis In). We can simplify 
with the same trick used for the spatial displacement case in the last 

1 
section, that is, the theorem eA+B = eAeBe -i[A,B) where now 

A = zaf
, B = -zoa: 

Iz) = e=t-=·o 10) = e-I=1212e=ot e-='o 10) = e-l=\212e=ot 10) 

usinge-z
'
o 10) = \0) since alO) = O. 

It is now straightforward to expand the exponential: 

Iz) = e -M'l2e,,' 10) = e->;'12 [1 + za t + (z:~)' + .. }o) 
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and recalling that the normalized energy eigenstates are 

we find 

2 ( 2 3 J I z) = e -izi 12 10) + z + II) + .5t 12) + ~ 13) + .... . 

Time Development of an Eigenstate of a 
Using the Energy Basis 

139 

Now that we have expressed the eigenstate 1 z) as a sum over 
the eigenstates 1 n) of the Hamiltonian, finding its time development 
in this representation is straightforward. 

Since In(t)) = e-inmt In), 
2 ( 2 -2imt 3 -3iOJt J 

Iz(t))=e-lzaI/2 10) + zoe-iOJt 11)+ z05r 12)+ zo~ I~)+ ... 

which can be written 

equivalent to the result derived earlier. 

Some Properties of the Set of Eigenstates of a 
In quantum mechanics, any physical variable is represented by a 

Hermitian operator. The eigenvalues are real, the eigenstates are 
orthogonal (or can be chosen to be so for degenerate states) and the 
eigenstates for a complete set, spanning the space, so any vector in the 
space can be represented in a unique way as a sum over these states. 

The operator a is not Hermitian. Its eigenvalues are all the 
numbers in the complex plane. The eigenstates belonging to different 
eigenvalues are never orthogonal, as is immediately obvious on 
considering the ground state and a displaced ground state. The overlap 
does of course decrease rapidly for states far away in phase space. 

The state overlap can be computed using 

I z(t)) = e-lzl/2ezOt 10): 



140 Quantum Mechanics 

.. ·t 
and we can then switch the e-lI'iJ ,e=lI operators using the 

theorem eB eA = eA eB e -[A.B), then since we're left with 

(wlz) = (0 I ew'ze-lwI2/2e-lzI2/2 10), 

from which l(wlz)12=e-lw-zI2. 

Finally, using, 

Iz) ~ ,-1,,'/2 (10)+ z+ 11)+ ~12)+ ~13)+ .. J 
we can construct a unit operator using the I z) , 

1 = J fdxdY Iz)(zl 
1r 

where the integral is over the whole complex plane z = x + iy (this 
x is not, of course, the original position x, recall for the wave function 

just displaced along the axis Zo = (xo).j mm / 2n ). Therefore, 

thelz) span the whole space. 

Some Exponential Operator Algebra 

Suppose that the commutator of two operators A, B 

[A,B]=c, 
where c commutes with A and B, usually it's just a number, for 
instance 1 or in. 

Then 

[A,eABJ=[ A,I +;tB+(A? 12!)B2 +(;t3/3!)B3 + ... ] 

=Ac+(;t2/2!)2Bc+(;t3/3)3B2c+ ... 

= AceAB . 
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That is to say, the commutator of A with i·B is proportional 

to eAB itself. 

That is reminiscent of the simple harmonic oscillator 

commutation relation [ H, at] = lima t which led directly to the ladder 

of eigenvalues of H separated by lim . Will there be a similar' ladder' 
of eigenstates of A in general? . 

Assuming A (which is a general operator) has an eigenstatela) 
with eigenvalue a, 

Ala)=ala) 

Applying [ A,eAB ] = AceAB to the eigenstate la): 

Therefore, unless it is identically zero eA.B I a), is also an 

eigenstate of A, with eigenvalue a + AC. We conclude that instead 
of a ladder of eigenstates, we can apparently generate a whole 
continuum of eigenstates, since A can be set arbitrarily. 

To find more operator identities, premultiply[ A,eA.B ] = AceA.B 

bYe-A.B to find: 

e-A.B ABA.B = A +A[A,B] 

=A+2c. 

This identity is only true for operators A, B whose commutator 
c is a number. (Well, c could be an operator, provided it still 
commutes with both A and B). 

I 
A B A B --[A, B) 

e + =e e e 2 

The proof (due to Glauber, given in Messiah) is as follows: 

Take f(x) = eAxeBx
, 

df I dx = AeAx eBx + AeAx eBx B 

=f(x)(e-BXAeBx +B) 

= f(x){A +[A,B]+ B). 
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It is easy to check that the solution to this first-order differential 
equation equal to one at x = 0 is 

() 
x(A+B) .!.x2[A.B] 

f x =e e2 

so taking x = 1 gives the required identity, eA+B = eAeH e - ~[A,/J] 

It also follows that eB eA = eA eB e -[ A,B] provided as always that 
[A, B] commutes with A and B. 
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The Hydrogen Atom 

Energy and the Hydrogen Atom 
In 1885 a Swiss secondary school teacher named Johann Jacob 

Balmer published a short note (entitled "Note on the Spectral Lines 
of Hydrogen", Annalen der Physik und Chemie 25, 80-5) in which 
he described an empirical formula for the four most prominent 
wavelengths of light emitted by hydrogen gas. These wavelengths 
had been measured with great precision by Vogel and Huggins, giving 
the four values 6562.10, 4860.74, 4340.10, and 4101.20 Angstroms 
(10-10 (11). Balmer's note does not make clear whether he was also 
aware of the measured series limit, "'-00 = 3645.6 A, or whether he 
deduced this himself. In any case, one can find by numerical 
experimentati()n that the four characteristic wavelengths are closely 
proportional to the following products of small primes. 

1512 = 23 x 33 X 33 x 7 1120 = 25 x 5 x 7 

945 = 33 x 5 x 7 

Three of these are divisible by 23, three are divisible by 5, three 
are divisible by 7, and two are divisible by 33. Thus we can easily 
express these numbers as simple fractional multiples of 840 = 
23x3x5x7, which corresponds to the series limit "'-00 = 3645.6 A. It 
may have been just this kind of numerical experimentation that led 
Balmer to recognize that the four prominent wavelengths are given 
very closely by (915)"'-00' (16/12)"'-00' (25/21)"'-00' and (36/32)"'-00' He 
also noticed that the numerators of the coefficients are consecutive 
squares, and each denominator is 4 less than the numerator. He 
speculated that the pattern would continue up to the series limit, which 
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is indeed the case. In terms of the wave number 1C (=IO .. ), Balmer's 
formula can be written as 

K ~ ~: e:~~' J ~ R1f(:'- ;, J n~ 2; j ~3,4,5 ... 
where R = n2/Aoo with n = 2. The parameter RH is now called 
Rydberg's constant for hydrogen, and the best empirical value is 
10967757.6 m-l. As Balmer also speculated, if we take different 
values of n we get different series of spectral lines. The series with n 
= 1,2,3,4, and 5 are now known as the Lyman, Balmer, Paschen, 
Brackett, and Pfund series, respectively, which characteristic the 
spectral lines of the hydrogen atom. (The Balmer series was observed 
first because its frequencies are in the visible and near ultra-violet 
range.) This is an outstanding example of a successful empirical fit 
(like Bode's Law in astronomy) for a class of physical phenomena 
that was not based on any underlying physical model or theory, i.e., 
no reason was known for why wavelengths of light emitted from a 
hydrogen atom, should exhibit this pattern. 

In classical terms a hydrogen atom consists of a proton and an 
electron bound together by their mutual electrical attraction. To keep 
them from collapsing together, we might imagine that the electron is 
revolving in 'orbit' around the proton, similar to a planet revolving 
around the Sun, with the centrifugual force balancing the electrical 
attraction. However, this model is not satisfactory, because the 
electron would be continuously accelerating, and according to 
classical theory an accelerating charge radiates energy in the form 
of electro-magnetic waves. As a result, the orbiting electron would 
very quickly radiate away all of its kinetic energy and spiral into the 
proton. Thus the existence of stable atoms was inexplicable in the 
context of classical physics, as was the characteristic set of discrete 
energy levels of atoms. 

By the early 1900s it had become clear that classical 
electrodynamics was inadequate to account for the behaviour of either 
the electromagnetic field or of elementary particles. In 1900 Max 
Planck had shown in his study of black-body radiation that it is 
necessary to quantize the energy of electromagnetism in order to avoid 
the 'untra-violet catastrophe', and he introduced the fundamental 
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constant h. In 1905 Einstein made the even more radical proposal 
that in some respects electromagnetic wave energy propagates as if 
it consists of small packets (photons) with many of the characteristics 
of particles, each photon having an energy E related to the wave 
frequency v by E = h v. 

In 1913 Niels Bohr developed a new representation of the 
hydrogen atom by combining classical ideas with a few additional 
postulates that were suggested by the nascent quantum concepts of 
Planck and Einstein. First, he assumed that the angular momentum 
of an electron in orbit around the nucleus must be an integer multiple 
of II (Planck's constant h divided by 21r). It follows that only a certain 
set of discrete energy levels may occur. Second, he assumed that an 
electron radiates energy only when it makes a transition from one 
stable orbit to another of lower energy. If L1E is the difference in 
energy levels, then he assumed that the transition resulted in the 
emission of a photon with this amount of energy, and hence with the 
frequency v= L1Elh in accord with Einstein's postulate. Armed with 
these postulates, Bohr reasoned that an electron of mass m orbiting 
a proton (of much greater mass) at radius r would satisfy the classical 
force balance 

e2 v2 

41l'lior2 = m-; 

and the total energy (kinetic plus potential) has the classical value 

1 2 
E= -mv +(-e)V 

2 

e2 e2 e2 

--------
81l'lior 41l'lior 81l'lior 

Likewise the angular momentum has the classical value 

~me2r . 
L = mvr = 41l'lio 

Bohr then imposed his quantization assumption, asserting that 

L must be an integer multiple ofli Setting L = nil and solving the 
above equation for r, we get 

41l'lion21i2 
r= --"---

me2 



146 Quantum Mechanics 

Substituting into the expression for the energy E gives the 
corresponding ql,lantized energy levels of the hydrogen atom 

me4 

E= 
n 2 ( 4il"&O)2 112 n2 

This provides a nice rationale for Balmer's empirical formula, 
because it implies that the frequency of the emitted light when an 
electron makes a transition from the jth to the nth energy level is 

n"~" 2h(4::)'h'C, -),) 
Since A. v = c we have K = vic and therefore 

k" (h~:;C )( n1, - ), )-

Actually, to be more accurate, the mass m in this expression 
should be replaced with the "reduced mass" mM/(m+M) where Mis 
the'mass of the proton (or, more generally, the nucleus), just as in 
classical orbital mechanics. Then the coefficient in the above 
expression is identified with Rydberg's constant RH for the hydrogen 
atom, and using the values of the fundamental constants 

c = 2.99792458 X 108 mls 

h = 6.626176 X 10-34 j X s 

eo = 8.854187818 X 10 -12 F/m 

e = 1.6021892 X 10-19 C 

m = 9,109534 X 10-31 kg 

m = 1.67264 X 10-27 kg 
we can compute 

( 
mM) e

4 

RH = -3 -,,-= 10967757.78 m-l. 
m+M h &OC 

This is in remarkable agreement with the measured value of 
10967757.6 ± 1.2 m-1 from spectroscopic data. Nevertheless, Bohr's 
model of the atom is not completely satisfactory, paltly because of 
the ad hoc nature of its premises, and also because it's representation 
of electrons as tiny particles with definite trajectories is not viable in 
a wider context. 
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A somewhat plausible justification for Bohr's quantization 
postulate came in 1924 when Louis de Broglie developed the idea 
that particles of matter on the smallest scale exhibit wave-like 
properties, complementing Einstein's suggestion that electro­
magnetic waves exhibit particle-like properties. The de Broglie 
wavelength for the matter wave corresponding to a particle with 
momentum p is it = hlp, and if we stipulate that the circumference 
21fT of a circular orbit of radius r must be an integer multiple of the 
wavelength, we have 21fT/it = 2mp/h = n for some positive integer n. 
Since the angular momentum is L = pr, this immediately gives Bohr's 
quantization postulate L = ntl. This 'orbital wave quantization' is 
illustrated for n = 1 through 5 in the figures below. 

00000 
n=1 n=2 n=3 n=4 n=5 

However, despite the plausibility of this approach, Bohr's model 
of th~ hydrogen atom, even with de Broglie's justification and with 
subsequent refinements by Sommerfeld, is now considered obsolete, 
having been superceded by ~ more thorough-going wave mechanics 
developed by Erwin Schrodinger in 1925. (This new theory was 
subsequently shown to be essentially identical to the 'matrix 
mechanics' already developed by Werner Heisenberg in 1924.) 

Schrodinger's wave mechanics postulates that a particle is 
characterized by a complex-valued wave function qJ(x,y,z,t) whose 
squared norm at any point equals the probability density for the 
particle to be found at that point. (The probability interpretation of 
Schrodinger's wave function was first proposed by Max Born.) In 
addition, Schrodinger postulated that, in a region where there is a 
potential field V(x.y.z. t), the wave function \jI of a particle is governed 
by the equation 

112 [a
2
", a

2
", a

2
",] --- ---+ --+ -- + V", 

2m ax 2 ay2 az 2 

= ·loa", 
IfI-at 
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It's possible to give a plausibility argument for this equation, 
but here we will just take it as given. Expressing the spatial Laplacian 
(the quantity in the square brackets) in tenns of polar coordinates, 
and considering just the radial part, this equation is 

_~[_l ~(r2 alf/(r, t))] + V(r,t)lf/(r,t) = itz alf/(r,t) 
2m ,.2 ar ar at 

Furthennore, if the potential field V does not change with time, 
we can separate the variables by expressing 'P(r, t) as a product ofa 
spatial part and a temporal part, i.e., we have functions rp (r) and 
oJ..t) such that IJ'(r, t) = cp(r)ro(t). Substituting into the above equation 
and dividing through by 'P(r'!) gives 

tz2 [_1 ~(r2 drp(r))]+V(r) _ ~ dw 
2mrp(r) r2 dr dr - w(t) dt 

Since rand t are independent, the left and right hand sides 
of this equation must both equal a constant, which we will call 
E, so the time-independent radial Schrodinger equation in this simple 
case is 

-~: [:' ! (r' d~r))] + V(r )9>(r) ~ E9>(r) 

Now, as mentioned previously, for the region around a charged 
proton the potential energy due to the Coulomb force is given by 

e2 

V(r)=---
41rBor 

Inserting this into the Schrodinger equation, evaluating the 
nested derivatives, and re-arranging terms, we get 

d
2

rp 2 drp 2m[ e
2 1 --+--+~ --+E rp=O (I) 

dr2 r dr tz2 41rBor 

For sufficiently large values of r the terms with r in the 
denominator will be negligible, so the equation will reduce to 

d 2 rp 2m 
--+-Erp =0 
dr 2 tz2 

which has the solution 
rp (r) = e-cr 
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I 2111£ Where C = C = --.,-. , lI-

To exploit this asymptotic result, and without loss of generality, 
we can consider a general solution of the form cp(r) = F(r)e-Cr. 
Substituting into the Schrodinger equation, evaluating the derivatives, 
and dividing through by e-Cr, we get 

where 

d
2
F +2('!'_C)dF +3.(B-C)F=O 

dr2 r dr,. 

, 
me­

B= 
4JCCO,,2 

If the function F(r) is analytic it can be represented by a power 
series, i.e., it can be expressed in the form 

F(r) = fll ~ f,r + fr + ... 

Substituting into the equation for F, collecting terms by powers 
of r, and setting the coefficients of these terms to zero, we arrive at 
the conditions 

kC-B 
fie = 2 k (k + 1) fic-I for k = I, 2, .... 

For sufficiently large k these expressions approach Ik = [2el 
(k+l)1tk_I' which is the series for e2Cr, and hence F(r)e-Cr goes to 
eCr, which increases to infinity as r increases. Therefore, in order to 
give a solution that goes to zero as r goes to infinity, we must impose 
the requirement that the series for F(r) terminates after a finite number 
of terms. This occurs if and only if nC = B for some positive integer 
n. Hence the necessary and sufficient condition for the solution to 
approach zero as r increases is 

~
2 2mE me 

n - h2 = 4JCcoli2 

Squaring both sides and solving for E gives the allowable energy 
levels 
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Which is identical to the discrete energy levels of Bohr's model 
discussed previously. It's worth noting that the quantization of energy 
levels here is not the result of quantized angular momentum or orbital 
standing-waves. It arises from an analysis of the purely radial 
component of the Schrodinger wave equation of the ground state, 
which is spherically symmetrical and has an angular quantum number 
of zero. 

Superficially it isn't obvious that the 'realistic solutions' of must 
be quantized, so it's worthwhile to examine the solution technique 
more closely to understand clearly how the quantization arises. First, 
notice that if we had tried to find a series solution of directly by 
inserting a series rti,.r) = 'Po + 'PI r + 'P2,.2 + ... we would have arrived 
at a set of conditions involving three consecutive coefficients. This 
can be seen by inspection, because when we carry out the 
differentiations and collect the coefficients of ,.1<, any term of the 
original differential equation of the form rs tflrpldt4 contributes a 
quantity involving 'Pk+q-s' Hence the four terms of contribute 
quantities involving 'Pk+2' 'Pk+2' 'Pk+I' and 'Pk respectively. In contrast, 
the four terms of contribute quantities involvingik+2,ik+2,ik+I' and 
ik+1 respectively, so the power series conditions enable us to 
determine eachik+2 as a multiple ofik+I' We originally motivated 
the solution form F(r)e.,;r based on the asymptotic solution for large 
r, but we could also have justified it based on the fact that this 
transformation leads to a differential equation whose power series 
solution is subjected to conditions on just two consecutive 
coefficients. The fact that such a transformation exists is crucial for 
the quantization. 

This leads us to consider the general conditions in which such 
a transformation exists. Suppose we have a second-order differential 
equation of the form 

d 2y dy 
a(x)-2 + P(x)-+y(x)y =0 

dx dx 
where a., 13, and y are rational functions of x. Since we can 

multiply through by arbitrary polynomials in x, we can assume 
without loss of generality that a., 13, yare polynomials in x. If we 
postulate a solution of the form y(x) = j(x)#<x) and substitute into 
this equation, we get 

[a]/+[2ag+p]/+[ag+ag+pg+y]! = 0 
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In order for the series solution for j(x) to have conditions on 
just the sets of two consecutive coefficients, there must be an integer 
d such that the coefficient of I" contains only terms in rt+ I and rt+ 2, 

and the coefficient off' contains only terms in rt and rftl, and the 
coefficient of f contains only terms in rt. We seek a function g(x) 
such that these conditions are satisfied. In the case of equation we 
have (after multiplying through by r) an equation of the fonn with 
a(x) = x, P(x) = 2, and rex) = 2B - C2x where Band C are the 
constants defined previously. Therefore, from the condition on a, 
we see that d is either 0 or 1, so we need a function g(x) such that 
2xg' + 2 involves only terms in xo and xl, or only terms in xl and x2. 
Since it certainly involves a term in xo, the remaining term must be 
in xl, so g'(x) must be a constant. Also, the coefficient off must be 
in xo (Le., a constant), so we have x(g'i + 2g' + 2B - C2x = K. 
Therefore we must have (g')2 = (C)2, which leads to the 
transformation y(x) = j(x)e-CX as expected. 

The superiority ofthe wave mechanical model of the hydrogen 
atom over Bohr's model is immense, because it not only duplicates 
and (in a sense) "explains" the quantized energy levels, it actlially 
gives the complete probability density functions for the various . 
possible stationary states. Using the recursive formula. we can 
evaluate the coefficients of the polynomial F(r) for each value of the 
quantum number n. Combining these polynomials with the 
exponential parts, we have the wave functions of the first few states. 

9'1 (r) = fa e_Cr 

fP2(r) = (l - Cr)fo e-Cr 

9'3(r) = (1-2cr+%C2r2)/oe-cr 

9'ir) = (1- 3Cr + 2C2r2 _~C3r3 )/0 e-cr 

9's(r) = (1- 4Cr + 4C2r2 _jc3r3 )/0 e-Cr 

Recall that B = nC and B is composed entirely of fundamental 
constants, independent of n, and it has units of inverse length. Letting 
ao denote the length liB = lI(nC), and using m instead of the more 
accurate reduced mass, we have 
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a = o me2 

and we can substitute ll(nao) for C in the preceding wave functions 
and clear fractions. In terms of the normalized radius parameter 
p = rlao the wave functions are 

lPl (P) = 10 e-P 

rpz(P) = (2-p) 1 e-p/2 

'P3(P) = (27-18p + 2p2) fo e-tx3 
27 

fc 
lP4(P) = (192 - 144p + 24p2- pJ) 19

0
2 e-tx4 

'Ps(p) = (9375 -7500p + ISOOp2 - IOOp3 + 2p4) 9{~S e-txS 

Each of these wave functions includes a constant factorfo. To 
determine the value of this factor, recall that the squared norm of the 
wave function is the probability density, and so the integral of this 
quantity over all of space must equal I. The volume of an incremental 
spherical shell of radius r and thickness dr is 4 m2dr so the probability 
integral is 

~ ~ 

f41l"r 2 {lPn (r »)2 dr = 41l"a03 fp2 {lPn (p)l dp = I 
o 0 

For example, to find the constant factor fo for the case n = I we 
insert the wave function into this equation and evaluate the integral 
to give 

00 2 
41l"a03/02 fp2 (e-p

) dp = 1l"a03/02 = I 
o 

Therefore we have 10 =: (1[a0
3)-II2, and the complete wave 

function for the ground state of the hydrogen atom is 

e_r1oo 

rplr):: ~ 
V1l"ao-

In accord with our choice of nom ali zing factors, the probability 
density for finding the electron in an incremental shell of radius r is 
o,,(r) = 41[rZq>_n(rl This is plotted in the figure below for the first 
few values of n. 
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Throughout this discussion we've ignored the angular 
components of the electron's wave function, 'effectively assuming 
that it has zero angular momentum, so the only non-zero quantum 
number was the radial one. This was all based on taking just the 
radial part of the Laplacian in the Schrodinger equation. If we had 
taken the angular parts we would have found that those too are 
associated with quantum numbers 0, I ,2, ... , and they contribute to 
the overall orbital wave function. However, the essential features of 
Schrodinger's approach to the hydrogen atom are already apparent 

in the purely radial part. 

The Wave Equation and Permutation of Rays 

The usual wave equation in one space and one time dimension 
is 

8x2 c2 8t2 

This same equation applies to spherically symmetrical waves 
in three-dimensional space if we replace x with the radial distance r 
from the centre of the disturbance, and if we replace the wave function 
If! with ¢ = rlf!. Therefore, the solution of the above equation is 
relevant to many important physical phenomena. The general 
analytical solution is not difficult to find, but we can gain useful 
insights into wave propagation if we consider this equation in the 
form of finite differences. 
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For any point x, t in the medium we can consider the four 
neighbouring points at incremental distances in space and time. 

x, t+dt 

Fig. 2 Distance in Space and time 

Expressing the second partial derivative of the wave function 
with respect to x in terms of finite differences around the central 
point, we have 

If/(X, t)-If/(x-dx,t) 

dx 

If/(x+dx, t)-21f/(x, t)+If/(x-dx,t) 

(dx
2

) 

Likewise the second partial derivative of the wave function with 
respect to t can be represented in the form 

If/ (x,t+dt) - 21f/ (x,t) + If/ (x,t -dt) 

(dt 2
) 

If we then choose our units of space and time so that dx = edt, 
we can substitute these finite difference expressions into the wave 
equation, simplify, and multiply through by (dt)2 to give 

ip(x, t + dt) + ip(x, t - dt) = Ip{x, dx, t) + Ip{x - dx, t) 

Notice that the value of the wave function at the central point 
drops out, so the finite difference equation operates only on the four 
corners of the surrounding cell. Thus the wave equation simply 
expresses the requirement tilat the sum of the values of the wave 
function just before and just after a given event equals the sum of 
the values on either side of the event. (The average of its neighbours 
in time equals the average ofits neighbours in space.) With this simple 
rule, we can examine how a disturbance propagates. 
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Fig. 3 Grid of such Wave function at the central point. 
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The values shown in each node of the grid represent the value 
of the wave function at that point in space and time. A disturbance 
of magnitude I is posited at the origin, with zero specified at every 
other spatial location at that instant. (Alternately, we can specify zero 
for every other instant at the origin.) Assuming both spatial and 
temporal symmetry, the resulting propagation of this disturbance is 
indicated by the nodes marked with' 1I2'. Since the space increment 

\ 
dx equals c times the time increment, and since the disturbance 
propagates at ± dx/dt, this shows that the disturbance propagates with 
the speed c. Also, it's clear that solutions of the wave equation are 
linear, in the sense that the sum of any two solutions is another 
solution. 

It's often most useful to express the basic difference equation 
in one of the two forms 

/fI...x, t + dt) - /fI...x + dx, t) = /fI...x - dx, t) - /fI...x, t - dt) 

/fI...x, t + dt) - IfI{x - dx, t) = IfI{x + dx, t) - IfI{x, t - dt) 

These equations show explicitly that the change in the wave 
function along one edge of a diamond cell equals the change along 
the opposite edge . 

Fig. 4 Diamond Cell 
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By transitivity with adjoining cells, it immediately follows that 
the change in the wave function is invariant along opposite edges of 
any rectangular region oriented orthogonally to these cells. 
Consequently, the sums of the wave function values on opposite 
vertices of any such rectangular region are equal. 

Ijf, 

Ijf, 

Fig. 5 Rectangular Region 

In general we have lj/(x, t) + !p(x + eLltI + eLlt2, t + Lltl + Llt2) 

== !p(x + e,1ll , t + ,112 for any intervals ,1/1 and ,1/2, no matler how 
large. It's interesting that partial differential equations are often 
regarded as characteristic of local processes, and the wave equation 
is the archetype partial differential equation, but we find that the basic 
relationships can just as well be expressed in non-local form. This 
illustrates how problematical it is to define a flow of causality for a 
deterministic process, even when the governing equation can be 
expressed in the form of a partial differential equation. It also suggests 
that the 'topology of implication' of the wave function is not 
Euclidean, but is more accurately represented by the indefinite 
'metric' of Voigt and Lorentz, with singular measures along the 
diagonals. 

Of course, as d' Alembert observed, in terms of the coordinates 
u = x + I and v = x - t the wave equation (with unit e) reduces to 

a2lj/ -- = 0 allav 
which implies that cl;J!a, is strictly a function of ll, and likewise t31f1/ 
iV is strictly a function of 1'. Consequently the entire solution can be 
expressed as the sum of two single-variable functions, lj/(x, I) = 

f{x + I) + g(x - t). Another way of encoding this solution is to say 
that to each point x in the one-dimensional space we assign two 
values, Clj// ell and Clj/lcl,. The entire spacetime solution is projected 
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(along lines of constant u and lines of constant v) from this single 
time-slice. Also, notice in particular that if If{u, v) is a solution of 
the wave equation, then so is If{au, f3v) for any constants a, p. 

It's not difficult to show that if If{x, t) is a solution of the wave 
equation in terms of x and t, and if we postulate a linear transformation 
between x, t and X, T of the form 

x = AX + BT t = ex + DT 

then If{x, I) is a solution of the wave equation in terms of X and T if 
and only if 

A2 + e2 = B2 + v2 Ae = BD 

From this it follows that 

(A + e 2) = (B + D)2 (A--C? = (B-D? 

and therefore we have (A + C) = ±(B + D) and (A -- C) = ±(B - D). 
Consequently the transformation from x,t to X,T can be written in 
the form 

x + t = (A + C)(X + I) x - t = (A - C)(X - I) 

which confirms that any re-scaling of the u,v variables preserves the 
solution. 

Although the Voigt-Lorentz transformation is singled out as the 
continuous linear inevitable transformation that preserves the wave 
equation, it's obvious from the preceding that the wave equation is 
actually preserved by a much larger class of transformations. In fact, 
returning to our finite difference grids, we can see that the wave 
equation is preserved under any permutation of the constant-u lines, 
and under any permutation of the constant-v lines (i.e., the lines of 
constant x + t and of constant x - t). In physical terms, the wave 
equation if preserved under any permutation of the light rays. 

With two spatial dimensions and one time dimension we have 
a pencil of light rays intersecting at each point, forming forward and 
backward cones. Again the transverse derivatives are constant along 
light rays, so the entire spacetime solution can be represented by the 
projection onto a single time slice, where at each point we have a 
range of angles from 0 to 2Jl'. In effect, this is a three dimensional 
space where one of the dimensions is finite and curled up 
cylindrically. A light ray in spacetime maps to a single point in this 
projected space, whereas a point (event) in spacetime can be regarded 
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as the entire pencil of rays that intersect at that point, which imply 
that it maps to thread that wraps around the cylindrical dimension of 
the projected space as illustrated below. 

x 
y -+ .-

a=21t 

light ray 
Fig. 6 Pencil of Light Rays Intersecting 

With three spatial dimensions and one time dimension the rays 
of light comprise an expanding shell of light converging on and 
emanating from each point (event). These rays can be projected onto 
a single 3D time slice with a closed curled-up dimensional spherical 
surface at each point. In other words, it can be modeled as E3 x S2' 
the Cartesian product of three-dimensional Euclidean space and two­
dimensional spherical surface. Again each individual light ray is a 
point in this projected space, whereas the pencil of rays intersecting 
at a given event maps to a closed manifold that wraps around the 
spherical sub-space. (If at each point in the three-dimensional space 
we have not only the two-dimensional manifold of spatial directions, 
but also a spin orientation about each direction, then the full 
six-dimensional space can be represented by the Cartesian product 
E3 x S2 x S\.) 

In full 3+ 1 dimensional spacetime the spherically symmetrical 
wave equation can be reduced to the same form as the 1 + 1 dimensional 
equation, except that the space wave function is normalized by r, and 
the parameter x is replaced with the radius r, so each 'light ray' actually 
represents a sequence of expanding and converging shells. The above 
reasoning shows that we can permute any ofthese spatially concentric 
sequences of shells and still preserve the wave equation. Of course, we 
can also apply a Lorentz transformation and then a permutation, so we 
can effectively permute any two 'pencils' oflight shells that are within 
each others past or forward light cones. In this sense, we could say that 
two events (associated with their respective light cones) are causally 
ordered if and only if they can be permuted while preserving the wave 
equation. 
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Does Relativistic Mass Imply Special Relativity? 

In a collection of essays on the subject of special relativity 
Richard Feynman presents the formula for relativistic mass 

m = ~1_v2/c2 
and then remarks that: For those who want to learn just enough about 
it so they can solve problems, that is all there is to the theory of 
relativity-it just changes Newton's laws by introducing a correction 
factor to the mass. 

Unfortunately he gives no explicit explanation of this assertion. 
Later he discusses how the relativistic mass formula can be derived 
from the Lorentz transformation, but that's the reverse of what's 
needed to support the above claim, i.e., he needs to show that the 
Lorentz transformation follows from the relativistic mass formula. 

Whenever you see a sweeping statement that a tremendous 
amount can come from a small number of assumptions, you always 
find that it is false. There are usually a large number of implied 
assumptions that are far from obvious if you think about them 
sufficiently carefully. 

Nevertheless, he did claim that all of special relativity follows 
from, so it's interesting to consider in what sense this claim is valid. 
Some authors-especially those who disapprove of the notion of 
'relativistic mass' -have argued that Feynman was simply wrong, i.e., 
they assert that special relativity does not follow from relativistic mass. 

worldline of 
particle with 
velocity - v 

Fig. 7 Space Time. 

worldline of 
particle with 
velocity + v 

x 
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To examine this question, let's consider two identical 
neutral particles, each of mass mo' initially sitting side-by-side, at 
rest at the spatial origin of an inertial coordinate system S. Since 
the particles have v = 0, the combined mass of the two particles 
is presumably just 2mo' and their total momentum is zero. Now 
suppose that at the time t = ° these two particle somehow push against 
each other, and begin moving away from the origin in opposite 
directions at the speed v. 

The total momentum is still zero, but according to the total 
relativistic mass of the two particles is now 

2% 
m -

101- ,)1-v2 

At this point, from the standpoint of classical Newtonian 
mechanics augmented by the relativistic mass formula, we are faced 
with an apparent violation of the conservation of 'mass', because 
the relativistic mass has increased due to the acquired speed v of the 
particles. The apparent increase in relativistic mass ofthe particles is 

2mo[p -I] = %V2 +~mov4 + 
I-v 4 

Of course, based on what we've said so far, we also have a 
violation of the conservation of energy, because initial the two 
particles were are rest (zero kinetic energy), and then they acquired 
the speed v, and we gave no indication of the source of this energy. 
One possibility is that there is a massless spring compressed between 
the two particles, which are held together (initially) by a latch, as 
illustrated below. 

When the latch is released at time t = 0, the spring drives the 
particles apart. Thus the original and final configurations have the 
same energy, initially stored as potential energy in the compressed 
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spring, and later in the form of kinetic energy of the particles. 
According to Newtonian mechanics (augmented with relativistic 
mass) the final kinetic energy of the two particles is 

K= ~ 
\jl-v~ 

1 
m v2 +-m v4 + o 2 0 

Thus to the second order the kinetic energy imparted to the 
particles equals the increase in the relativistic mass of the particles. 
It isn't hard to show that the energy originally contained in the 
compressed massless spring must contribute actual rest mass to the 
original configuration. In other words, the total rest mass of the two 
particles latched together with the compressed massless spring 
between them must be greater than 2mo' 

To show this, consider the same two particles, but this time the 
latched pair originally has a speed u in the positive x direction, and 
then at time t = 0 the latch is released, as indicated in the spacetime 
diagram below. 

worldline of 
particle with 

velocity w( -v) worldline of 
particle with 
velocity w(v) 

Fig. 9 Veiocity of Particle. 

Now, a system of inertial coordinates for which the particles 
were originally at rest will be defined such that the two particles 
acquire the speed v is opposite directions when the latch is released. 
However, with respect to the original system of inertial coordinates, 
it's clear that the speeds cannot equal simply u + v and u - v. We 
can say only that the final speeds (for any given u) will be w(v) and 
we-v) for some function w, which we know must be linear fractional 
because these are the only entire meromorphic bijections. 
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Thus for any given u we have 

a+bv 
w(v) = -­

c+dv 

Quantum Mechanics 

where a,b,c,d are functions of u. For conservation of relativistic 
momentum with respect to the original coordinates, we must have 

M u rnow(v) rnow(-v) 
~==o== +-r======== 
~1-u2 = JI-w(v)2 JI-w(-v)2 

where Mo is the total rest mass of the initial configuration of the two 
particles plus the massless compressed spring between them (with 
energy to propel the particles to the speed v when unlatched). Inserting 
the linear fractional form of w into this equation and simplifying, 
we get 

M u rno ( a + bv) rno ( a - bv) 
~==o= + ---,================= 
~1-u2 = J(c+dv)2 -(a + hv)2 ~(c-dv)2 -(a-bv)2 

Without loss of generality we can set c = 1 (since we can 
divide through the linear fractional transformation by c). Also, in 
the case v = 0 we have Mo = 2mo and the above equation reduces to 

2mou 2rnoa 

~1-u2 = ~1-a2 
so we must have a(u) = u. Furthermore, we note that the 

denominators on the right side are equal to each other if and only if 
ab = cd, so if we set ub = d the full equation becomes 

2mo 

We know that b(u) equals or approaches 1 as u goes to zero, so 
evidently the rest mass Mo of the two particles plus the energy capable 
of propelling them to the speed v is not 2mo but rather 

2rno 
M- ~ 

0- v'1-v2 

Thus conservation of momentum requires that the rest mass of 
the original configuration consist not just of the rest masses of the 
two particles, but also a contribution equal to the energy necessary 
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to propel them apart at the speed v. We suggested an ideal massless 
spring to represent this energy, but the above argument applies to 
any form of energy (e.g., a small amount of gunpowder, accounting 
for the chemical energy). Hence we are forced to conclude that energy 
itself has inertia, and bound energy contributes to the rest mass of an 
object. It follows that relativistic mass is simply a measure of the 
energy of a system, so the conservation of energy is equivalent to 
the conservation of relativistic mass. Furthermore, for consistency 
with the relativistic mass formula and the conservation of momentum, 
we must have a = d = u and b = c = 1, so the speeds (with respect to 
the original coordinates) of the two particles when unlatched must 
be given by 

u+v u-v 
w(v) = -- w(-v) = --

l+uv l-uv 

whereas the speeds of those particles with respect to the inertial 
coordinate system in terms of which the original configuration was 
at rest are simply +v and -v by the definition of inertial coordinates. 
This expression for composition of velocities leads, in tum, to the 
Lorentz transformation as the relationship between relatively moving 
systems of inertial coordinates. 

In summary, we've shown that the relativistic mass formula, 
combined with conservation of momentum in the Newtonian context, 
does indeed imply special relativity, at least to the extent of implying 
the equivalence of mass and energy, and the Lorentz transformation 
relating relatively moving systems of inertial coordinates. It might 
be argued that we have considered only mechanical systems, and 
can't conclude anything about (for example) the propagation oflight 
from equation. However, we've seen that implies all forms of energy 
have inertia. For example, we could imagine a pulse oflight bouncing 
between the mirrored surfaces of the two particles when latched 
together, and we would find that the energy of that pulse of light 
contributes to the rest mass of the bound configuration, just as did 
the energy of a compressed spring. Hence a pulse of light is an inertial 
entity, and must satisfy conservation of momentum, so it too must 
propagate in conformity with equation, which of course involves the 
constant c, defined as the speed of light. Hence we have tacitly 
introduced electromagnetism into the relativistic mass formula. 
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The usefulness (and even the validity) of the concept of 
'relativistic mass', as distinct from 'rest mass' , has often been debated, 
but it seems to be overlooked by both sides that at least some (and 
perhaps all) of the rest mass of typical physical entities ultimately 
consists of relativistic mass. For example, the 'rest mass' ofa billiard 
ball at a given temperature consists partly of the relativistic mass of 
the molecules comprising the ball, since those molecules are in motion 
even while the ball is stationary. Also the binding energy of 
molecules, and various other forms of potential energy, contribute 
to the rest mass, so the idealized image of 'rest mass' as a primitive 
attribute of some localizable entity seems fundamentally misguided. 
The idea of invariant rest mass is perhaps best adapted to the study 
of sub-atomic particles, since those entities come closest to being 
irreducible, and hence the assignment of a primitive invariant rest 
mass to such entities often seems justified. However, even in this 
context we know an electron and a positron can annihilate each other, 
giving off electromagnetic energy, leaving no 'matter' at all. Of 
course, it remains possible to define the 'rest mass' of the total emitted 
electro-magnetic energy, but in so doing we are identifying a rest 
mass for the combination of multiple entities (photons), each of which 
has zero rest mass. If effect, this rest mass consists entirely of 
relativistic mass. 

Special Relativity 
An inertial coordinate system is a system of space and time 

coordinates in terms of which the resistance to acceleration of any 
given object at rest is the same at every location and in all directions. 
In other words, we define inertial coordinate systems in such a way 
that the inertia of material objects is homogeneous and isotropic. 
Homogeneity implies that every material body free of external 
influence moves at constant speed in a straight line, and isotropy 
implies that if two identical material objects initiaIIy adjacent and at 
rest act to repel each other, they acquire equal speeds in opposite 
directions. Given one inertial coordinate system we can construct 
infinitely many others by means of arbitrary fixed translations and 
spatial rotations, which leave the speed of every object unchanged. 
Such an equivalence class of inertial coordinate systems is called an 
inertial reference frame. It's important to recognize that the definition 
of an inertial reference frame not only identifies inertial motion with 
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straight paths of constant speed, it also establishes an operational 
definition of simultaneity (i.e., the synchronization of times at 
spatially separate events), because inertial isotropy implies that we 
can use identical physical objects acting against each other to 
synchronize clocks equidistant from their centre of mass (relying on 
the equilibrium configurations of solid objects at rest to define 
distances). 

Given this definition of inertial reference frames, the principle 
of relativity asserts that for any material particle in any state of motion 
there exists an inertial reference frame--called the restframe of the 
particle-with respect to which the particle is instantaneously at rest 
(i.e., the change of the spatial coordinates with respect to the time 
coordinate is zero). This principle is usually extended to include 
reciprocity, meaning that for any two systems Sl and S2 of inertial 

• coordinates, if the spatial origin of Sl has velocity l' with respect to 
S2' then the spatial origin of S2 has velocity -v with respect to Sl' 
The existence of this class of reference frames. and the viability of 
the principles of relativity and reciprocity, are inferred from 
experience. Once these principles have been established, the 
relationship between relatively moving inertial coordinate systems 
can then be considered. 

Let [t,x,y,z] signify a system of inertial coordinates in the rest 
frame of particle p, and likewise let [I ',x ',y ',z'] signify a system of 
inertial coordinates in the rest frame of a particle p' moving with 
speed v relative to [f,x,y,.:::]. By means of a fixed translation we can 
make the origins of these two C'oordinate systems coincide, and by a 
fixed spatial rotation we can spatially align the x and x' axes. For 
simplicity, we will consider particles and motions confined to the 
x, x' axes. The question naturally arises as to how these two 
coordinate systems are related to each other for a given relative 
velocity v. Since, by definition, inertial motions are straight lines 
with respect to both systems, the relations between two inertial 
coordinate systems must be linear functions of the form 

x' = Ax + BI. I' = ex + Dt 

for constants A,B,C,D (for a fixed v). A stationary object in the rest 
frame of p' has a constant value of x', so the differential d'(' = Adx + 

Bdt = 0 implies dx/dl = -BfA = v and hence B = -vA. The inverse of 
the above transformation is 
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Dx'-Bt' -Cx'-A(' 
x = AD-BC t = AD-BC 

Evaluating the velocity of a stationary object in the frame of p with 
respect to the frame of p' leads to dx'ldt' == BID = -v (by reciprocity) 
and hence D == A. 

Letting Jl denote the quantity AD - BC, and substituting for B 
and D, we haveA2 + vAC== Jl, so we have C== (Jl-A2)/(vA). Ifwe 
define (l == Aim, then the original transformation can be written in 
the form 

x' = ma (x - "l t' = ma(t -[ ~::21]vx J 
and the inverse transformation has the form 

a a ( , [a 2 -I] ,) 
x = j.l (x' + vf) t = j.l (+ v2a 2 vx 

Ifwe replace v with -v these two transformations are exchanged, 
except for the factor j.l, so if we are to have spatial isotropy we must 
have j.l equal to 1. This leaves undetermined only the expression in 
square brackets. (Remember that the parameter a is a function of v, 
but it is a constant for any fixed v.) Letting k denote this quantity, 

we have [( al-l)/( va )2] == k, from which we get a == 11 ,../I _ kv2 ,and 

the general transformation can be written in the form 

x-vt t-kvx 
x'= ~1_kv2 t' = ~1-kv2 

Any two inertial coordinate systems must be related by a 
transformation of this form, where v is the mutual speed between 
them. Also, note that 

x' x-VI 
(' t-kvx 

Given three systems of inertial coordinates with the mutual speed 
v between the first two and u between the second two, the 
transformation from the first to the third is the composition of 
transformations with parameters kv and ku' Letting x", t' denote the 
third system of coordinates, we have by direct substitution 
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The coefficient of I in the denominator of the right side must be 
unity, so we have ku = kv' and therefore k is a constant for all v, with 
units of an inverse squared speed. Also, the coefficient of I in the 
numerator must be the mutual speed between the first and third 
coordinates systems. These identifications are necessary and 
sufficient to make the transformation be of the required form. 

Now, ifk is non-zero, we can make its magnitude equal to unity 
by a suitable choice of units for distance and time, so the only three 
essentially distinct cases to consider are k = -I, O. or + l. If k = -I 
this transformation is simply a Euclidean rotation in the xt plane 
through an angle () = invtan( v). In other words, with k = -I the above 
equations can be written in the form 

x' = -sin(q) t + cos(q) x t' = cos (q) t + sin (q) x 

On the other hand, with k = 0 the general transformation reduces 
to the Galilean space-time transformation, i.e., we have 

x' = x - vI t' = t 

The :emaining case is with k = + I, which gives the so-called 
Lorentzian transformation 

x-vI t -vx 
x' - -=== t' = -:=== - .Jl-v2 .Jl-v2 

We wish to determine which of these represents the correct 
relation between relatively moving inertial coordinate systems. The 
Euclidean transformation (i.e., the case k = -1) is easy to rule out 
empirically, because we cannot turn around in time as we can in 
space. However, it isn't as easy to distinguish empirically between 
the Galilean and Lorentzian transformations, especially if the value 
of k in ordinary units of space and time is extremely close to zero. 
As a result. Newtonian mechanics was based for many years on the 
assumption that k = O. 
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It was not until the late 19th century that sufficiently precise 
experimental techniques became available to determine that the true 
value ofk is not zero. In ordinary units it has the value (1.11)10-17 

second2/metre2 (which happens to equal IIc2 where c is the speed at 
which electromagnetic waves propagate in vacuum). This implies 
that relatively moving systems of inertial coordinates are related 
according to the Lorentzian transformation. It follows that the 
constant-t surfaces of two relatively moving systems of inertial 
coordinates are skewed, although the skew is so slight it's nearly 
impossible to detect in most ordinary circumstances. 

It was also found that Maxwell's equations of electromagnetism 
- which were developed without knowledge of the Lorentz 
transformation-are actually invariant with respect to the Lorentz 
transformation. Hence all the phenomena of electromagnetism and of 
mechanical inertia are relativistic with respect to precisely the same 
class of transformations. Furthermore, it was found that whatever 
fQrces are responsible for the stability of matter (which was known 
to be inexplicable in terms of electromagnetism alone) are also invariant 
with respect to the Lorentz transformation. Naturally this led to 
the hypothesis that all physical phenomena, including gravity and any 
other physical forces that may exist, are invariant with respect to the 
Lorentz tranformation. Subsequently this hypothesis has been 
confirmed for gravity, for the strong and weak nuclear forces, and for 
all quantum mechanical processes. In fact, no violation of Lorentz 
covariance in any physical phenomenon has ever been detected (despite 
strenuous efforts). 

Notice that for any incremental interval whose components are 
(dt, dx) with respect to one particular system of inertial coordinates, 
and (dt', dx') with respect to any other system of inertial coordinates, 
we have 

(dt')2 - (dx')2 = (dt)2 - (dx? 

This signifies that the quantity (dt)2 - (dx)2 is invariant with respect 
to all inertial coordinate systems. Since there exists a system of inertial 
coordinates with respect to which the spatial component dx is zero, 
it follows that the above invariant quantity is the square of the time 
differential dt along a path with respect to the rest frame ofthe path. 
This particular time differential is an invariant quantity, called the 
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proper time of the interval (usually denoted by drto distinguish it 
from an arbitrary inertial time coordinate). It's easy to see that the 
inertial path between any two events has the maximum lapse of proper 
time. Any non-inertial path between those same two events will have 
a lesser lapse of proper time. In general, the lapse of proper time 
along the path of any physical entity corresponds precisely to the 
advance in the phase of the entity's quantum wave function. 
According to quantum mechanics, the wave function encodes 
everything knowable about a physical system, and there are no 
underlying structures or 'hidden variables', so the proper time along 
any interval actually is physical time. 

When people first hear about special relativity they often wonder 
if it's necessary to think in terms of coordinate systems whose 
constant-t surfaces are skewed. They point out that it's possible to 
construct a set of relatively moving coordinate systems that all share 
a common time coordinate. However, if two relatively moving 
systems of coordinates share a common time parameter, they cannot 
both be inertial coordinate systems. The definition of an inertial 
coordinate system already imposes a specific set of constant-t surfaces 
for any given time axis in order to make inertia isotropic (Le., the 
same in all spatial directions). We are certainly free to think in terms 
of non-inertial coordinate systems, but then we must be careful to 
remember that inertia is not isotropic with respect to such coordinate 
systems. 

One major shortcoming with the way in which special relativity 
is usually taught is that inertial coordinate systems (and frames) are 
usually not fully defined. They are typically characterized simply as 
coordinate systems that are 'not accelerated', which is to say, 
coordinate systems in terms of which inertia is homogeneous. It's 
vitally important to realize that being unaccelerated is a necessary 
but not a sufficient condition for a coordinate system to be inertial, 
because there exist coordinate systems with spatial axes oblique to 
the time axes (relative to the inertial orientation). In such systems, 
all inertial motion has uniform speed in a straight line, but 
nevertheless the coordinates are not (in general) inertial, because 
although Newton's first law of motion is satisfied, his second and 
third laws are not (even quasi-statically). In other words, inertia is 
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not generally isotropic with respect to oblique coordinates. For any 
given time axis there is a unique orientation of the spatial axes 
compatible with inertial isotropy. This shows the significance of 
Einstein's statement at the beginning of Part I of his 1905 paper on 
electrodynamics: "Let us take a system of coordinates in which the 
equations of Newtonian mechanics hold good." It is significant that 
he does not limit this to just Newton's first law. Of course, one result 
of Einstein's paper is that Newton's laws as traditionally formulated 
are valid only quasi-statically, but the point is that he's clearly 
referring to systems of coordinates in terms of which inertia is not 
only homogeneous but also isotropic, because without isotropy 
Newton's third law is not even quasi-statically valid. 

Students are often told that Einstein and/or Poincare were the 
first to introduce operational definitions of simultaneity, but in fact 
there has always been an operational definition of simultaneity for 
inertial coordinates, because there is a unique simultaneity compatible 
with inertial isotropy for any given time axis. Galileo himself 
explained this in his "Dialogues on the Two Chief World Systems". 
What the discoveries of Bradley, Fizeau, Maxwell, Michelson, etc., 
made clear was that the propagation of electromagnetic disturbances 
is isotropic with respect to the same class of coordinate systems (the 
inertial coordinate systems) in terms of which mechanical inertia is 
isotropic. 

In addition, they found that the value of k is not exactly zero 
(coincidentally at about the same time that Planck discovered that 
the value of h is not exactly zero), and consequently there is an 
invariant speed, equal to, for the set of inertial coordinate systems. 
From this we immediately have the concept of proper time, which is 
identified with the phase of the quantum wave function along any 
given timelike path. 

Another common misconception is that we cannot assert the 
empirical isotropy of the one-way speed of light with respect to 
inertial coordinates. It's actually quite possible to demonstrate this 
one-way isotropy. Simply observe that two identical particles acting 
on each other reach any given distance from their common centre of 
mass co:ncident with two pulses of light emanating from that centre. 
Obviously this does not demonstrate the one-way speed of either the 
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particles or the light pulses, but it does demonstrate that if we define 
a system of coordinates such that mechanical inertia is isotropic (i.e., 
an inertial coordinate system), then the one-way speed of light is also 
isotropic with respect to that system of coordinates. 

Quantum Entanglement and Bell's Theorem 
A simple description of the essential non-classical nature of 

quantum entanglement is given in Entangled Choices. For a more 
detailed and technical analysis, consider the quantum spin of an 
electron (or any spin-1I2 particle), which is always found to have 
either the value n+/2 or -n12 in the direction of measurement, 
regardless of the direction we choose to measure. (This was first 
shown for silver atoms in the famous Stern-Gerlach experiment, and 
has subsequently been verified for many other kinds of particles.) 
Thus an electron manifests one of only two possible spin states, which 
we may call 'spin up' and 'spin down'. It's convenient to represent 
these states as orthogonal unit vectors 

(up) = [~] (down) [~] 
In general an electron's spin state, 'P, at any instant can be 

represented by a linear combination of those two possible observable 
states. The choice of a measurement direction is equivalent to 
choosing a 'basis' for expressing the spin components of the state 
If/. For any particular basis we can express the state in the form 

where c1 and c2 are complex constants. These constants encode 
the probability that the chosen measurement will yield either result. 
The probability is simply the norm of the respective coefficient. For 
example, if c1 = a + ib and we let c1 * denote the complex conjugate, 
a - ib, then the probability of a measurement on this basis yielding 
'spin up' is equal to the norm, i.e., the product c1 *c1 = a2 + b2. 

Likewise the probability of finding' spin down' on this basis is c2 *c2. 

Since these are the only two possilities, we have 

c 1 *cI + c2 *c2 = I 
As always in quantum mechanics, each possible measurement 

basis is associated with an operator whose eigenvalues are the 
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possible results of the respective measurement. For a given xyz 
basis of orthogonal space coordinates we can represent the three 
principle measurements (Le., measurements along the three axes) by 
the matrices 

Sx =~[~ ~] Sy =~[~ ~i] Sz =~[~ ~1] 
The eigenvalues of the measurement operator corresponding to 
whichever measurement direction we choose determine the 
coefficients c l and c2' which represent the probabilities ofthe possible 
outcomes. 

To see how this works, suppose IfFl is the initial state vector of 
the electron, and we decide to perform a spin measurement 
corresponding to a particular operator S. The result is given by 

applying S to Pi, using ordinary matrix multiplication, to give the 

new state vector If2 : S Pi = If2 . 
Since If2 is either pure 'spin up' or pure 'spin down' in the direction 
of measurement represented by S, it follows that a subsequent 
measurement in the same direction must yield the same result, so 

If2 must be such that: S If2 = If2 
for some constant .Ii, (since state vectors are equivalent up to length). 
Thus the constant .Ii, is an eigenvalue of the measurement operator 
S, and 'I'z is the corresponding eigenvector. 

The outcome of is unambiguous, because the eigenvector on 
the right side is the same as the eigenvector on the left side. However, 
since the arbitrary initial state Pi in is not in general an eigenvector 
of S, it can yield either of the eigenvectors of S. This reveals the 
probabilistic aspect of quantum mechanics. 

The eigenvectors of S constitute a basis for the space of possible 
state vectors, so IfFl can be expressed as a linear combination of those 
eigenvectors. If we let If2 and 1f2' denote the eigenvectors, then we 
can express Pi as 

Pi = Cl If2 + C2 1fF2' 

Again, the norm of each complex coefficient gives the probability 
that S applied to Pi will lead to the respective eigenstate. 
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For the three principle direction spin operators S , S , --
~ x x 

and S x presented above, the eigenvectors corresponding to+hl2 or 
-h12 : 

-h12 +h/2 

Sx ~[~l] 1 rl] 
F2l1 

Sy ~[ ~i] ~[~] 
S [~] [~] 

Each pair of eigenvectors constitutes a basis for the state space, so 
we can express the electron's state vector as a linear combination of 
the basis vectors for the desired measurement, and the coefficients 
give the probability of that measurement yielding either 'spin up' or 
'spin down'. We can think of these probabilities as the projections 
of the initial state vector onto the orthogonal axes of the chosen 
measurement basis. 

Of course, we aren't restricted to measurements along one of 
the principle axes. We can measure the spin of the electron along 
any spatial axis, and each such measurement is represented by an 
operator. We also note that these directions are purely relative to the 
state of the particle in question. To illustrate, suppose a stream of 
electrons is moving along the y axis and we perform spin 
measurements on these particles in the z direction, which establishes 
the z component of the particle's spin vector. Ifwe filter out all those 
particles with 'spin down' in the z direction, we are left with a stream 
of particles all having 'spin up' in the z direction. Now suppose we 
perform a spin measurement on the remaining particles along the 
direction in the xz plane at an angle q with the positive z axis. In 
accord with the interpretation of probabilities as the projections of 
the state vector onto the basis axes, we infer that the measurement 
operator for spin in this direction is given by the projections of the x 
and z operators 

~ . ~ ~ h[COS(B) sin (B) 1 
Sq=sm(B)Sx+cos(B)SY="2 sin (B) -COS (B) 
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Naturally the eigenvalues of this operator are +h/2 and -h/2, and it's 
easy to show that the corresponding eigenvectors are 

[

COS (BI2)] [-Sin (BI2)] 
sin (B/2) and COS (BI2) 

respectively. Each particle subjected to this measurement will have 
the initial state vector indicating 'spin up' in the z direction, and we 
can express that initial vector as a linear combination of these basis 
vector. 

[1] = c
1
[COS(812)] + [-Sin(8/2)] 

o sin(8/2) COS (8/2) 
Which implies that the coefficients are c1 = cos(q/2) and c2 = 

-sin(q/2). Consequently, the probabilities of 'spin up' and 'spin 
down' for a measurement of such a particle along the q direction are 
cos(q/2)2 and sin(q/2)2 respectively. 

These quantum mechanical predictions (which have been well 
supported by experiment) have some remarkable implications. In the 
preceding example we established the initial state vector by 
performing a me~:urement in the z direction and considering only 
particles that yielded 'spin up' in that direction. Then we subsequently 
performed a measurement at an angle q relative to the positive z 
direction, and the probabilities of the outcomes were found to be a 
function of the angle q between those two measurements. An 
essentially equivalent experiment can be performed by examining 
the spins of two spin-1I2 particles emitted in opposite directions from 
the decay of a singlet state with zero total spin. In such a case 
conservation of angular momentum requires that the spin state vectors 
of the individual particles are precisely opposite, so if we measure 
the spin of one of these particles along a certain direction and find 
'spin up' in that direction, then the other particle must have pure 
'spin down' in that direction. Thus, by measuring the spin of one 
particle and reducing its state vector to one of the eigenvectors of 
the chosen measurement basis, we automatically 'collapse the 
wavefunction' of the other particle onto this same basis. 

At first this process may not seem very mysterious, since it's 
easy to imagine that the two coupled particles are 'programmed' with 
opposite spins, such that they will always give opposite results when 
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measured along any given direction. However; a careful analysis of 
the quanltIm mechanical predictions for all possible combinations 
of measurement angles reveals the need for a profound shift in the 
classical view of the world. 

If the measurement of one particle along a fixed direction (in 
the xz plane) yields 'spin down', then the other particle is purely 
'spin up' in that direction. Consequently if we perform a measurement 
on the other particle along a direction at an angle of () from the first 
measurement, we've already seen that the probability of 'spin up' is 
cos( () 12Y. and the probability of spin down in sine () 12)2. In a similar 
way we can show that if the measuremer.t of the first particle yields 
'spin up', then the other particle is purely 'spin down' along that 
direction, and a measurement of that other particle along a direction 
at an angle q relative to the first will yield 'spin up' with probability 
sine () 12)2 and spin down with probability cos( () /2Y.. 

Hence the probability that the measurements of these two 
particles at angles differing by (}will both give the same result (both 
up or both down) is sin( () 12Y., and the probability that they will yield 
opposite results (one up and one down) is cos«(}12)2. The angie q 
between the two measurements can be expressed as a-fJ where a is 
the angle of the measurement performed on one of the particles and 
fJ is the angle of the measurement performed on the other. The two 
particles emitted from a singlet state are said to be entangled, because 
regardless of how far apart they travel before the spin measurements 
are made, the joint results will exhibit these joint probabilities. 

From a classical standpoint we would imagine that each particle 
emerges from the singlet state with, in effect, a set of pre-programmed 
instructions for what spin to exhibit at each possible angle of 
measurement, or at least what the probability of each result should 
be. The usual approach to analyzing these phenomena classically is 
to stipulate that a particle's pre-programmed instructions for 
responding to a measurement at a given angle must be definite and 
unambiguous (rather than probabilistic) because we classically regard 
the two measurement angles as independent, which implies that the 
measurement on the 'other' particle could be at the same angle as 
our measurement of this particle, and the particles must give opposite 
results in that case. Likewise the measurement on the 'other' particle 
could be 180 degrees away from our measurement of this particle, 
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and the particles must give equal results in that case. Of course, the 
individual measurements can each be either 'spin up' or 'spin down' 
in both of these cases, so in principle they could still be probabilistic 
tendancies, but classically we have no way of ensuring perfect 
correlation (or perfect anti-correlation) of the joint results of spacelike 
separated events other than by definitely pre-programming the spins 
of each particle for each possible measurement angle. 

From this assumption it follows that the instructions to one 
particle are just an inverted copy of the instructions to the coupled 
particle. In other words, for each measurement angle from 0 to 21r 
the pre-programmed response to a spin measurement for one particle 
is the opposite of the pre-programmed response of the other particle 
at that angle. Furthermore, since we have perfect correlation if our 
measurements are at angles that differ by 180 degrees, it follows that 
the pre-programmed instructions for each particle are individually 
anti-symmetric at a phase angle of 180 degrees. For example, if a 
particle's programmed response for a measurement at angle a is 'spin 
up', then the programmed response of that same particle for a 
measurement at angle a + 1r must be 'spin down'. Hence we can 
fully specify the instructions to both particles by simply specifying 
the instructions to one of the particles for measurement angles ranging 
from 0 to 1r. 

The simplest function that satisfies the conditions stated so far 
is constant 'spin up' over the range from 0 to 1r for one of the 
particles. This gives the total 'response programmes' of both particles 
shown below: 

"spin up" I "spin down" Particle 1 

"spin down" "spin up" Particle 2 

o 1t 21t 

Naturally we can take the absolute orientation of this profile as 
arbitrary relative to our measurements. Unfortunately this simple 
profilt'! doesn't give the correct joint correlations for measurement 
angles that differ by amounts other than 0 or 180 degrees. Ifwe define 
the correlation exhibited by the measurements results of a set of particle 
pairs as the number of agreements minus the number of disagreements, 
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all divided by the total number of pairs, then it's easy to see that the 
correlation yielded by pairs with the above instruction profiles (oriented 
randomly) varies linearly as a function of the difference between the 
measurement angles. The correlation is-l if the angles differ absolutely 
by 0, the correlation is zero if the angles differ by trl2 (90 degrees), 
and the correlation is + 1 if the angles differ by p (180 degrees). In 
general, for measurement angles differing by 8, the correlation is 
C( 8)=(2/7%)1 8t-J. In contrast, since the quantum mechanical predictions 
for agreement and disagreement are sine 812)2 and cos( 8/2)2 
respectively, the quantum mechanical prediction for the correlation is 

sin(912)2 -cos(912)2 = l-cos(9) l-cos(9) = -cos (9) 
sin(912)2 +cos(9/2)2 2 2 

A plot of the simple linear correlation profile and the quantum 
mechanical profile is shown. 

1~----~----~--~~----~ 

-cos(9) 

-1 ......... . 
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These profiles agree only for measurements differing by 0,1112, 
and 1!. For all other cases the simple pre-programmed linear model 
fails to match the predictions of quantum mechanics-which have 
been amply verified by experiments. This raises the interesting 
question of whether any pre-programmed response profile can 
reproduce the predictions of quantum mechanics. Suppose each 
particle is programmed with a more complicated profile of responses 
as a function of the measurement angle. In general we could partition 
the angular range from 0 to tr into n arbitrary segments, alternating 
between 'spin up' and 'spin down'. Together with the perfect 
correlation and anti-correlation requirements at angluar differences 
of 0 and 7r, this suffices to determine the putative response profiles 
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of both particles over the entire range from 0 to 2tr. Letting Sea) 
denote the spin result (+ 1 for up and -I for down) at the measurement 
angle a for one of the particles, and letting sea) denote the spin result 
of the other particle, we have Sea) = -sea) and Sea) = -S(a+tr). The 
two results agree for measurement angles ex and 13 if S( a)s(fJ) = +1, 
and they disagree if S(a)s(fJ) = -1. The absolute values of a and p 
are taken to be arbitrary, so the probability of agreement for all cases 
where p - a = 0 for any fixed 0 is given by integrating the quantity 

l+S(a)s(p) = I-S(a)S(p) = l-S(a)S(a+O) 

2 2 2 
from a = 0 to tr. (The result is symmetrical for a - p = e, and for the 
range from tr to 2tr.) Therefore, equating this with the quantum 
mechanical result, we must have 

~ f 1-S(a)s(a+O)da=sin(~)2 = l-cos(O) 
tr a-O 2 2 2 

which implies 

1 tr -- f S(a)S(a+O)da =-cos(O) 
tr a=O 

This is just the correlation between the two measurements. If 
Sea) = +1 on the entire interval from a = 0 to 7t (and therefore Sea) 
= -1 for all a from 7t to 27t), the left hand side can be split into two 
integrals, one extending from a = 0 to tr - 0 with an argument of 
+ 1, and the other from a = tr- 0 to 7t with an argument of -I. Hence 
the left side reduces to (2/ tr)O - 1, as we saw earlier, and this does 
not match the quantum mechanical prediction. In particular, we note 
that the rate of change of the quantum correlation near e = 0 is zero, 
whereas the rate of change of the correlation for based on our simple 
S function has a positive slope at 0 = O. This is because the increase 
in correlation is proportional to the increase in 0, arising from the 
transition at a = tr- O. Clearly this rules out every fixed S function, 
because if any more transitions are added to the pre-programmed 
instructions, the slope of the resulting correlation will increase 
proportionately. 

The solid bars at the bottom signify the angular regions where 
'spin up' has been pre-programmed for this particle. Since there are 
three times as many transitions, the slope of correlation versus angle 
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is three times as great as in the basic case considered previously. 
This is true regardless of how these transitions are distributed. 

This S function has nine transitions, so the initial slope is nine 
times as great as the baseline case. We're forced to conclude that no 
pre-programmed set of results for the range of possible measurement 
angles can possibly reproduce the quantum mechanical predictions 
(and experimental results). Equation does have the formal solution 

Sea) =J2 sin (a) 

but of course this S function isn't restricted to the discrete values + I 
and -I, so it can't be directly interpreted as a spin indicator. 

Many treatments of quantum entanglement discuss 'hidden 
variables', and they derive inequalities involving the correlations as 
functions of these putative variables. In a sense, these variables are 
redundant, because the essence of the so-called 'local realistic' 
premise is that each particle emerges from the singlet state with 
definte instructions for the spin it will exhibit for each possible 
measurement angle. This implies that the only relevant free variable 
is the reference orientation, since the instruction profile can be 
oriented in any direction (relative to the measurements) with 
uniformly distributed probability. Integrating the product of spins over 
the entire angular range with a fixed difference angle must yield the 
correlation of the two spin measurements. 

It might be argued that we need not assume any single particle 
exhibits the quantum mechanical probabilities, because these 
probabilities can only be evaluated by performing multiple 
measurements, so we might imagine that it's necessary to evaluate the 
results over a sequence of particle pairs, rather than just a single pair. 
Moreover, we might think that this sequence could possess 'memory', 
making the results of successive pairs dependent. However, in principle 
we could prepare a large number of particle pairs in an identical way, 
in spacelike-separated locations, and perform measurements on the 
pairs independently (again based on the naive conventional concept 
of local realism). According to quantum mechanics we would still 
expect the combined results to satisfy the same correlations. This 
implies that each particle pair must embody the overall propensities 
that we expect to find manifested in multiple trials. 
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Nevertheless, it's worthwhile to review the traditional derivation 
of Bell's inequality based on the premise that each particle emerging 
from the singlet state possesses a definite spin as a function of the 
measurement angle and some 'hidden variable' m associated with 
that pair. We _assume an arbitrary probability density function /KJ.L), 
which gives the probability density for any given pair of particles 
being produced with that value of /1. The observed spins of the two 
particles are denoted by S(a, /1) and s(j3, /1), where ex and ~ are the 
angles of the respective measurements. As before, the perfect anti­
correlation of the two particles measured at the same angle (according 
to quantum mechanics) implies that S(a, /1) = -s(a, /1). (In our 
previous discussion the implicit 'hidden variable' was simply the 
absolute reference angle for the measurements, with a uniform 
probability density over the range from /1 = 0 to 2 Jr, but we can argue 
more generally for any hidden variable with any probability density 
over any range.) 

Now we consider the pairwise spin correlations for three 
different angles, a, p, and t/J. If one member of each coupled pair of 
particles has its spin measured at the angle a and the other is measured 
at the angle t/J, the correlation between the measurements is given by 

C (ex, <1» = JS(a,/1~(¢,/1)t5(/1)d/1 
where the integral is evaluated over the full range of m. Likewise if 
one particle is measured at b and the other at f, the correlation is 

C (~, <1» = JS(P,/1~(¢,/1)t5(/1)d/1 
Taking the difference between these two, we have 

C( a,¢) -C(P,¢) = Js( ¢,/1)[ S( a,/1) - S(P,/1) Jt5(/1 )d/1 

Since every spin value is either + I or -1, it follows that S( a, /1)2 = 1, 
so the value of S(j3, /1) in this expression can be written as S(a, /1)2 
S(j3, /1), and we can then factor out from the square brackets to give 

C(a,t/J)-C(P,t/J) = Js(t/J,.u)s(a,.u)[l-S(a,.u )S(P,.u)]c5(.u)d.u 

Now we take the absolute value of both sides, and make use of the 
obvious fact that the absolute value of a definite integral of a function 
is less than or equal to the integral of the absolute value of the 
function, we have the inequality 
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IC(a,qS)-C(p,qS)1 ~ ~s(;,,u)S(a,,u)[ l-S(a,,u )S(P,,u )J8(,u )Id,u 

Conventionally, a probability density function always has a non­
negative real value, so we stipulate that d(m) is non-negative. Also, 
since the product S( a, ,u) S(p, ,u) is always + I or -I, the quantity in 
the square brackets is always either +2 or O. The leading factors, 
s(;, ,u) S( a, ,u), always equal + I or -1, so they determine the sign of 
the integrand, which is discarded by taking the absolute value. Hence 
the expression reduces to 

IC(a,;) -C(p,;)1 ~ j[1-S(a,,u )S(P,,u)}5(,u)d,u 

Replacing S(P,Il) by -S(P,Il), and splitting the integral into two parts, 
give 

IC(a,;)-C(p,;)1 ~ J8(,u)d,u + JS(a,,u)s(p,,u )8(,u )d,u 
The first integral is simply 1, since /VI) is a probability density 
function, and the second integral is the correlation for two entangled 
particles measured at the angles a and p. Hence we can subtract this 

\ 

from both sides to give Bell's inequality 

IC(a,;)-C(p,;)I-C(a,p) ~ 1 

We can evaluate the left hand function assuming the quantum 
mechanical correlation C(x,y) = -cos(x-y). This gives Icos(a-¢) -
cos<P--;)1 + cos( a-p)o The coloured regions represent that cases 
where this quantity exceeds 1, and therefore violates the above 
inequality. The maximum violations occur in the four white regions, 
where the function attains the value of about 1.5. 

A different approach to analyzing quantum entanglement is to 
assume that each particle is pre-programmed not with a definite result 
for each measurement angle, but with a probability of yielding 
specific results. Needless to say, this model will be incompatible with 
the premise of independence of measurement angles, because a 
probabilistic model can't automatically enforce the perfect 
correlations and anti-correlations predicted by quantum mechanics 
at ()= 0 and fr. Still, the previous discussion has shown that the naive 
premises of 'local realism and free choice' are untenable anyway, so 
it's worthwhile to examine a probabilistic scheme. 
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Thus we imagine that the first particle contains a functionj{a) 
that represents the probability of yielding spin up for the measurement 
angle a. Likewise the second particle is programmed with the function 
g(fJ) that represents the probability of yielding 'spin up' for the 
measurement angle p. In these terms we can express the probabilities 
of agreement and disagreement as 

Pr{agree} = f(a)g(.8)+[I- f(a)][I-g(.8)] 

= sin( a; .8) = I-cos;a - .8) 

Pr {disagree} = f(a)[ 1-g(P)] + [1- f(a )]g(P) 

= cos( a;.8r = I+cos;a-
p) 

If we double the 'disagree' equation and subtract 1 from both sides 
we get 

[1-2f(a)][1-2g(P)]=1-2COS( a;pr = -cos(a-p) 

Incidentally, if we expand the right-hand side using the trigonometric 
angle addition formula, we get the interesting expression 

[1-2f(a )J[I-2g(p)J+sin(a )sin(p) +cos(a )cos(p) =0 

which could be regarded as an 'inner product' of vectors with the 
components of the form sin(a), cos(a), and 1 - 2j{a). 

Returning to the original 'disagree' equation, if we assume the 
functions f and g individually possess derivatives, and if a and ~ are 
independent variables (as is classically the case for two freely chosen 
measurement angles), we can take the partial derivative with respect 
to p at any constant a to give 

sin (a-P) = 2g (fJ) [1-2f(a)] 
Solving for 1 - 2j{a), substituting into equation, and re-arranging 
terms gives 

2g(.8) 
1-2g(.8) = -tan (a - P) 

Similarly we can derive the relation 
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2j(fJ) 
1-2/(fJ) = tan(a-p) 

It's interesting that the expressions on the left side of these 
equations are formally the same as the queing theory 'transition rates' 
of the functions 2g and 2/ if we identify these functions with the 
state probabilities and the arguments a and f3 with the model time. 

In any case, notice that these equations theoretically imply that 
each of the two entangled particles contains enough information to 
enable someone to compute the measurement angle at the other 
particle. For example, the second equation can be solved for f3 to 
give 

f3 = a - invtan ( 2j (() ) 1 
1-2/ a 

Hence, assuming the particle contains the complete function/, 
and assuming this function possesses derivatives, it follows that the 
measurement angle f3 at the other particle is a deterministic function 
of the measurement angle a at this particle. This contradi~ts the 
premise that a and f3 are independent variables, so the only possible 
conclusion is that one or more of our basic assumptions were wrong. 
One questionable assumption was that not only does each particle 
'contain' its respective function if or g), but that these functions are 
differentiable. This need not be the case. Continuous but nowhere­
differentiable functions are 'Nell-known in mathematics, and we could 
postulate that / and g are such functions. 

On the other hand, if we rule out such exotic functions, it seems 
that the only remaining possibility is that, even though we may believe 
we are free to choose the two separate measurement angles 'freely' 
and independently, they are actually deterministically linked. In other 
words, not only are the particles entangled, but so are our 'free' 
choices of measurement bases for those particles. This analysis 
suggests a much more deterministic universe than is commonly 
conceived, regardless of whether it's possible to extract the 
information about fand its derivative from the particle. (These 'free' 
choices may even be space like separated, but of course this does not 
imply any violation of special relativity, because it is only necessary 
to assume that the choice events share a common event in their causal 
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pasts, which is always the case provided we are willing to go back 
far enough.) 

Suppose we differentiate equation again with respect to p at 
constant a to give 

-cos(a - p) = 2g(P)[1-2/(a)] 

The left hand side is equal to (J-2f)(J-2g), so we can make this 
substitution, cancel the factor of (1-2f), and re-arrange terms to arrive 

at g(P) + g(P) = .!. 
2 

This has the particular solution g(fJ) = 112, and we can add this to 
the homogeneous solution to give the total general solution 

1 -p 'p g(fJ) = - + C,e' + C2e-' 
2 

Since this function signifies the probability of 'spin up', we 
expect it to be real-valued and in the range from 0 to 1. Hence we 
can set C, = C2 = 114 to give 

1 +cos(P) 
g(fJ)= -_ ............ 

2 
Applying the same analysis toj{a) and setting C, = C2 = -1/4 gives 

l-cos(a) 
/(a) = 2 

If we then substitute these expressions back into the original 'agree' 
and 'disagree' formulas, we find that in both cases they reduce to 

cos(a- {J) = cos(a) cos(P) 

Comparing this with the trigonometric identity 

cos(a - p) = cos (a ) cos(p)+sin(a )sin(p) 

we see that it is not generally satisfied unless a or P is a multiple of 
n, in which case it is trivially satisfied. One way around this impasse 
is to postulate slightly more general functions for/and g, namely, 

l+cos(a+ao) () l+cos(P+Po) 
j{ a) = g p = ---'.'-----~ 

2 2 
where ao and Po are constant phase angles for a given pair of 



The Hydrogen Atom 185 

particles. Substituting these functions into the basic 'agree' and 
'disagree' equations gives the single condition 

[1 + cos(ao)cos(Po) Jcos(a )cos(P) 

- [sin (ao )cos(Po) JSin (a )cos(P) 
-[ cos( ao)sin(Po) Jcos( a )sin(p) 

+f I +sin(ao)sin(po) lsin(a )sin(p) = 0 

This can also be expressed as a null line element 

[ () 
. ( )J[l +cos(ao)cos(Po) -sin(ao}cos(po) 1 

cos a SIn a . 
-cos( ao )sin (Po) I + sin (ao }SIn (Po) 

[
COS(P)] = 0 
sin(p) 

Where the determinant of the coefficient matrix is 1 + cos (ao - Po)' 
It can also be expressed in the form of a Mobius transformation 
between the tangents of a and P as follows: 

The similarity parameter of the transformation is 
1 - cos(ao - Po), whereas the normalized trace is tan 
« ao - Po)!2). 

Huygens' Principle 

~ wave front at 'me' + A' 

wave front at time t 

Fig. II 
This drawing depicts the propagation of the wave 'front', but 

Huygens' principle is understood to apply equally to any locus of 
constant phase (not just the leading edge of the disturbance), all 
propagating at the same characteristic wave speed. This implies that a 
wave doesn't get 'thicker' as it propagates, i.e., there is no diffusion of 
waves. For example, if we tum on a light bulb for one second, someone 
viewing the bulb from a mile away will see it 'on' for precisely one 
second, and no longer. Similarly, the fact that we see sharp images of 
distant stars and galaxies is due to Huygens' principle. However, it's 
worth noting that this principle is valid only in spaces with an odd 
number of dimensions. Ifwe drop a pebble in a calm pond, a drcular 
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wave on the tWo-dimensional surface of the pond will emanate outward, 
and ifHuygens' principle was valid in two dimensions, we would 
expect the surface of the pond to be perfectly quiet both outside and 
inside the expanding spherical wave. But in factthe surface of the pond 
inside the expanding wave (in this two-dimensional space) is not 
perfectly calm, its state continues to differ slightly from its quiescent 
state even after the main wave has passed through. This excited state 
will persist indefinitely, although the magnitUde rapidly becomes 
e},.tremely small. The same occurs in a space with any even number of 
dimensions. Of course, the leading edge of a wave always propagates 
at the characteristic speed c, regardless of whether Huygens' principle 
is true or not. In a sense, Huygens' principle is more significant for what 
it says about what happens behind the leading edge of the disturbance. 
Essentially it just says that all the phases propagate at the same speed. 

From this simple principle Huygens was able to derive the laws 
of reflection and refraction, but the principle is deficient in that it 
fails to account for the directionality of the wave propagation in time, 
i.e., it doesn't explain why the wave front at time t + Dt in the above 
figure is the upper rather than the lower envelope of the secondary 
wavelets. 

Why does an expanding spherical wave continue to expand 
outward from its source, rather than re-converging inward back 
toward the source? Also, the principle originally stated by Huygens 
does not account for diffraction. Subsequently, Augustin Fresnel 
elaborated on Huygens' principle by stating that the amplitude of 
the wave at any given point equals the superposition of the amplitudes 
of all the secondary wavelets at that point. The Huygens-Fresnel 
principle is adequate to account for a wide range of optical 
phenomena, and it was later shown by Gustav Kirchoff how this 
principle can be deduced from Maxwell's equations. Nevertheless. 
it does not actually resolve the question about 'backward' propagation 
of waves, because Maxwell's equations themselves theoretically 
allow for advanced as well as retarded potentials. It's customary to 
simply discount the advanced waves as 'unrealistic', and to treat the 
retarded wave as if it was the unique solution, although there have 
occasionally been interesting proposals, such as the Feynman­
W'heeler theory, that make use of both solutions. 

Incidentally, as an undergraduate, Feynman gave a seminar on 
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this 'new idea' at Princeton. Among the several 'monster minds' in 
attendance was Einstein, to whom the idea was not so new, because 
30 years earlier Einstein had debated the significance of the advanced 
potentials with Walther Ritz. In any case, the Huygens-Fresnel 
principle has been very useful and int1uential in the field of optics, 
although there is a wide range of opinion as to its scientific merit. 
Many people regard it as a truly inspired insight, and a fore-runner 
of modem quantum electro-dynamics, whereas others dismiss it as 
nothing more than a naive guess that sometimes happens to work. 

Melvin Schwartz wrote: Huygens' principle tells us to consider 
each point on a wavefront as a new source of radiation and add the 
'radiation' from all of the new 'sources' together. Physically this 
makes no sense at all. Light does not emit light; only accelerating 
charges emit light. Thus we will begin by throwing out Huygens' 
principle completely; later we will see that it actually does give the 
right answer for the wrong reasons. 

Whether we have now actually found the true 'reason' for the 
behaviour of light is debatable, and ultimately every theory is ,based 
on some fundamental principle(s), but it's interesting how widely 
the opinions on various principles differ. It could be argued that the 
'path integral' approach to quantum field theory-according to which 
every trajectory through every point in space is treated equivalently 
as part ofa possible path ofthe system-is an expression of Huygens' 
principle. It's also worth reflecting on the fact that the quantum 
concept of a photon necessitates Huygens' principle, so evidently 
quantum mechanics can work only in space with an odd number of 
dimensions. 

Setting aside these weighty considerations, it's interesting to 
review the mathematical content of Huygens' original principle. The 
usual wave equation for a scalar field y(x P x2, .. ,xn,t) in n space and 1 
time dimension is 

fyllf/ = 021f/ 

ox2 ot 2 
n 

(We've chosen units of time and space so that the wave velocity 
is 1.) If we consider a spherically symmetrical wave we have 

If/ = If/(r, t) where r2 = x~ xi + ... + x; 
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For future reference, notice that 

82 2 2 8r Xj r r -- Xj 
-a =- and ax2 = r3 

xI r j 

for every index j from 1 to n. It follows that 

n (8r)2 n (8
2
r) n-l ~ fu. =1 and ~ 8x~ =-r 

J=I J ;-1 J 

Returning to the basic wave equation, and assuming", is strictly 
a function of rand t, we have the following partial derivatives with 
respect to each of the space variables: 

8t;/ 8t;/ 8r 82t;/ 8t;/ 82r ar 82t;/ 
- -- --=--+---
fuj = 8r fuj fu; 8r ax; fuj 8xjar 

Since partial differentiation is commutative, the second factor 
in the last term of the right-hand equation can be written as 

8
2
t;/ 8 (Bt;/ 8r) Bt;/ 8

2
r Br 8

2
t;/ 

arfuj = 8r a; 8xj = a; 8r8xj + 8xj 8r 2 

8
2
r 8 (ar) 

Now, since arfu. = fu. ar = 0 
J J 

the preceding mixed partial is simply 

82t;/ ar 82t;/ 
arfu. = fu. ar2 

J J 

Substituting back into the expression for the second partial 
derivative of 'I' with respect to ~., we have 

82tp _ 8tp 82~ +( 8r )2 82t;/ 
. fu] - 8r 8Xj 8Xj 8r2 

Summing all these partials for j = 1 to n gives 

~ 82
t;/ 8t;/ n 82r 82t;/ n ( ar )2 

L..J- =-L-2+-2 L­
j=1 ar ar j=18Xj 8r j=1 fuj 

= (n-l)8t;/ +8
2

1/
1 

r 8r ar2 
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Hence the spherically symmetrical wave equation in n spatial 
dimensions can be written as 

a
2

'11 + (n -I ) a'll = a2
'11 

ar2 r ar at2 

Now suppose we define a new scalar field by the relation «r,t) 
= ,;c IfA..r,t) where k is some fixed constant. The partial derivative of 
this scalar field with respect to rare 

a'" am _ 
_ 'I' = rk _Y'_ + krk I'll 
ar a 

a
2
¢ = rk a

2
1f/ + 2krk-1 a'll + k(k _1)rk-2'11 

ar2 ar2 ar 
Notice that if we set k=(n-I)/2, and if we divide through this second 
partial by ,;c, we have 

1 a
2
¢ = a

2
'11 +(n-I)a'll + (n-l)(n-3)'II 

r(n-I)/2 ar2 ar2 r ar 4r2 

This is nearly the same as the left-hand side of the spherically 
symmetrical wave equation, except for the last term. Hence we can 
write the wave equation in the form 

1 a2 ¢ ( n -1)( n - 3) a21f/ 
r(n-l)/2 &2 4r2 'II = at2 

Furthermore, we can multiply through by ,;c = ,.<n-I)12 to put 
this in the equivalent form 

a2¢ _ (n-I)(n-3) ¢ = a2¢ 
ar2 4r2 at2 

If n equals I, meaning that we have just a single space 
dimension, then r = xl and/= y, so we expect the second term on 
the left hand side to vanish identically, as indeed it does, leaving us 
with just the original one-dimensional wave equation, with the well­
known general solution 

If/(r, t) = .f{r - t) + g(r -i- t) 

For arbitrary functions f and g. However, we might not have 
anticipated that the second term in the transformed wave equation 
also vanishes if n equals 3, i.e., in the case of three spatial 
dimensions. In this case the spherically symmetrical wave equation 
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once again reduces to a one-dimensional wave equation, although in 
the modified wave function / = ry. Hence the general solution in 
three space dimensions is 

f(r-t) g(r+t) 
l{/ (r, t) = + .:::....!.-...!... 

r r 
The fact that this solution is divided by r signifies that the 

magnitude of the wave tends to drop as r increases (unlike the one­
dimensional case, in which a wave would theoretical propagate 
forever with undiminished strength). Focusing onjust the 'retarded' 
component of the wave,j{r - t)lr, the fact that the time parameter t 
appears only in the difference r - t implies that the (attenuated) wave 
propagates in time with a phase velocity of precisely 1, because for 
any fixed phase b we have r - t = f3 and so drldt for this phase point 
is I. Consequently if/is a single pulse, it will propagate outward in 
a spherical shell at precisely the speed 1, i.e., on the light cone. 
Conversely, it can be shown that the wave function at any point in 
space and time is fully determined by the values and derivatives of 
that function on the past light cone of the point. Any wave equation 
for which this is true (i.e., for which disturbances propagate at a single 
precise speed) is said to satisfy Huygens' principle. The connection 
with Huygens' original statement about secondary wavelets is that 
each wavelet-with the same speed as the original wave-represents 
a tiny light cone at that point, and Huygens' principle asserts that 
light is confined to those light cones. 

It's worth noting that in the above derivation we were able to 
reduce the polar wave equation to a simple one-dimensional equation 
by taking advantage of the fact that an unwanted term vanished when 
the number of space dimensions is n = 3 (or n = 1). For the case of 
two dimensional space this doesn't work (nor would it work with 
four space dimensions). We can still solve the wave equation, but 
the solution is not just a simple spherical wave propagating with unit 
velocity. Instead, we find that there are effectively infinitely many 
velocities, in the sense that a single pulse disturbance at the origin 
will propagate outward on infinitely many 'light cones' (and sub­
cones) with speeds ranging from the maximum down to zero. Hence 
if we lived in a universe with two spatial dimensions (instead of 
three), an observer at a fixed location from the origin of a single 
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pulse would 'see' an initial flash but then the disturbance 'afterglow' 
would persist, becoming less and less intense, but continuing forever, 
as slower and slower subsidiary branches arrive. (It's interesting to 
compare and contrast this 'afterglow' with the cosmic microwave 
background radiation that we actually do observe in our 3+ 1 
dimensional universe. Could this glow be interpreted as evidence of 
an additional, perhaps compactified, spatial dimension? What would 
be the spectrum of the glow in a non-Huygensian universe? Does 
curvature of the spatial manifold affect Huygens' principle?) 

It turns out that Huygens' principle applies only with one time 
dimension and n = 3,5, 7 .. , or any odd number of space dimensions, 
but not for any even number of space dimensions. (The case n = 1 is 
degenerate, because a pulse has only one path to take.) To see why, 
let's return to the general spherically symmetrical wave equation in 
n space dimensions 

a
2
1f/ +(n-l)alf/ =_1 a

2
1f/ 

&2 r ar e2 at2 

and consider a solution of the form If/(r, t) = j(r)g(t). (Naturally not 
all solutions are separable in this way, but since the wave equation 
is linear, we can construct more general solutions by summing a 
sufficient number of solutions of the separable form f(r)g(t).) 
Inserting this into the wave equation and expanding the derivatives 
by the product rule gives 

gd
2

[ +(n-l)gdf =f_l d
2
g 

dr r dr e2 dt2 

Dividing through by fg gives 

J... d 2J +J...(n-l)dJ __ 1_d
2
g 

f dr2 J r dr - ge2 dt2 

Notice that the left hand side is strictly a function of r, and the 
right hand side is strictly a function of I.Since r and t are independent 
variables, the left and right sides must both equal a constant, which 
we will denote by K. Hence we have two separate ordinary differential 
equations 
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If Kis positive or zero the right hand equation gives 'run-away' 
solutions for g(t), whereas if Kis negative we can choose scaling so 
that K= -1 and then get) satisfies the simple harmonic equation, whose 
solutions include functions of the form sin(ct) and cos(ct). The left 
hand equation can be re-written in the form 

d 2f df 
r dr2 + ( n -I) dr + rf = 0 

If we multiplied this through by r, it would be in the form of 
what is called Bessel's equation, named after Friedrich Wilhelm 
Bessel, the German astronomer who (incidentally) was the first person 
to determine the distance tt) a star. In 1838 he determined the distance 
to the star called '61 Cygni' based on the parallax as viewed from 
the Earth at six-month intervals. Bessel functions are solutions of a 
standard Bessel equation, just as the ordinary trigonometric functions, 
sine and cosine, are solutions of the differential equation y" + Y == O. 

To solve the above equation we can assume a series solution of 
the form 

f(r) = cot4 + c1t4+1 + cfl+2 + ... 

for some integer q (which may be positive, negative, or zero) such 
that Co is non-zero. The derivatives of this function are 

df = qcorq- I +( q + l)c1rq +(q+ 2)C2rq+1 + ... 
dr 

d 2f 
dr2 = q(q-l)corq-2 +(q+l)qclrq- I 

+ (q + 2)(q + 1)c2r't+ ... 

Substituting these into the differential equation, and collecting 
terms by powers of r, we get 

co[ q(q -l)+(n-I)q]rq- I +c1 [(q + l)q +(n-l)(q+ l)]rq 

+[{( q+ 2)(q+ I) +(n-I)(q+ 2)}C2 +co ]rq+1 

+[{(q+3)(q+2)+(n-I)(q+3)}C3 +cI Jrq+2 + ... 

The coefficient of each power of r must vanish, and since Co is non­
zero, the expression for the first coefficient implies q(q - 2 + n) = O. 
This is called the indicial equation, because it determines the 
acceptable value(s) of q. In this case we must have either q = 0 or 
else q == 2 - n. If q = 0 then the coefficient oft4 equals cj (n-1), so 
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either n = 1 or else C J = O. On the other hand, if q = 2 - n, then the 
coefficient of,.q equals c J(3-n), so either n = 3 or else again C J = O. 
We've already seen that the original differential equation has a 
particularly simple analytical solution when n (the number of space 
dimensions) equals either 1 or 3, so we need not consider them here. 
For all other value of n, we must have C J = O. (Of course, even with 
n = 1 or 3, we are free to set cJ = 0.) 

Now, examining the coefficients of the higher powers of r, we 
see that in general the coefficient of ,.q+m is of the form 

{(q+m+ l)(q+m}+(n-l)( q+m+ l}}Cm+1 +cm-l 

Inserting q = 0, setting the overall coefficient to zero, and solving 
for C m+ J gives 

-Cm-l 

Cm+I = (m+l)(m+n-l) 

for m = 0, 1, 2, ... Since Co is, by definition, the first non-zero 
coefficient, it follows that c-1 is zero, and therefore C I = O. Moreover, 
applying the above formula recursively, we see that all the cj 
coefficients for odd indices j must vanish. On the other hand, the 
coefficients with even indices are given recursively by 

-1 -1 -1 
c2 =c04(n+2) c4 =c2 4(n+2) C6 =c46(n+4} 

and so on. Notice that if n = 1 the denominators are 1 x2, 3x4, 5x6, 
... , etc., so the general non-zero coefficient of the solution can be 
written simply as 

giving the solution 

C. =c (_l)i 
2J 0 (2j)! 

f(r) =Co (1- ~(2 + ~(4 - ... ) 

Hence the solution is simply fir) = Co cos(r). Recall that get) 
has solutions of the form cos(ct) and sin(ct), and we can create a 
solution given by the sum of two separable solutions, so, for example, 
one solution is 

~r,t) = h (r)gJ (ct) + h (r)g2(ct) 

= cos (r) cos(ct) + siner) sin(c) = cos(r-ct) 
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Similarly if n = 3 the denominators of the recursive formulas 
are 2·3, 4·5, 6·7, ... , etc., so the general non-zero coefficient is 

giving the solution 

( -1)j 

C2j = Co (2j + I)! 

f(r) = ~(r- ;{3 + ;{5 -... J 
so in this case we have j{r) = Co sin(r)lr. Combining this with suitable 
sdlutions for get) as in the case of n = 1, we can arrive at overall 
soiutions such as !p(r, t) = cos(r-ct)lr. This shows (again) that the 
cases of 1 and 3 spatial dimensions lead to especially simple solutions. 

In general, for arbitrary positive integer n, the coefficient c 2j is 
of the form 

(-l)j 
c2j = Co (2)(4)(6) ... (2j)[{n)(n+2) ... {n+2)(j-l)] 

Notice that for n = 1 the factors in the square brackets are consecutive 
odd integers, and they can be interleaved between the consecutive 
even integers to give a pure factorial product. Likewise for n = 3 the 
odd and even factors can be interleaved to give a pure factorial 
product. For higher odd integers we can interleave the factors in the 
same way, although there will be a fixed number of leading even 
factors and the same number of trailing odd factors that don't overlap. 
For example, with n = 7 the coefficient c12' after re-arranging the 
six even and six odd factors in the denominator 

(_1)6 Co 

(2)(4).[(6)(7)(8)(9)(10)(II)(12)(13)J.(15)(17) 
Taking advantage of this interleaving, we can express the general 

coefficient (for sufficiently large]) with odd n > 3 in the form 

co(n-l)! 1 

C2j = 2(n-3)/2( n~3}(2j+3)(2j+5) ... (2j+n-2) 

( -1)j 

(2j + I)! 
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For any fixed n, the first factor on the right is just a constant, 
and the second factor is just one over a polynomial of degree (n - 3)/ 
2 in the index j. Therefore, after some number of terms, the series 
solution goes over to a simple factorial form with a polynomial 
divisor. It can be shown that the resulting function.f{r) is such that 
Huygens' principle is satisfied, so this implies that the principle is 
satisfied for any odd number of space dimensions. 

In contrast, if the number of space dimensions is even, we do 
not have interleaving of the factors in the denominator of the 
coefficients. In this case we can only re-write in the form 

c ~ ~o (~-l} (_l)i 
2j 22J j{~-l+ j} 

For example, in the case n = 2 (Le., two spatial dimensions) we 
have the coefficients 

This gives the function 

[ 
1 (r2 J 1 (r2 J2 1 ( r2 J3 ] 

f(r) = Co 1- (1!)2 4 + (2!) 4 - (3!)2 4 + ... 

This is the Bessel function of order zero, often denoted as Jo' A plot 
of this function is shown below. 

1 

0.5 . 

f(r) 

o 

-{).5'------'------'-------''-------' 
o 5 10 15 

Fig. 12 Bessel Function 
20 
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For positive arguments r, the Bessel function Jo(r) can be 
expressed as 

2 00 

Jo(r) = 7r fSin(cosh{O)r)dO 
o 

Multiplying through by the temporal solution g(t) = sin(ct) gives 

I 00 

lfI{r,t) = 7r f[ cos( cosh{ O)r -ct) - cos( cosh{ O)r +ct) JdO 
o 

Hence, instead of the solution being purely a function of r ± ct 
as in the case of odd dimensions, we find that it is an integral of 
functions of cosh( B)r ± ct. Each value of 0 corresponds to a 
propagation speed of C/cosh( 0), so the speeds vary from c down to 
zero. This signifies that the wave function at any event is correlated 
not just with the wave function on its 'light cone', but with the wave 
function at every event inside its light cone. 

It would be interesting to work out the connections between 
Huygens' principle and the zeta function (whose value can only be 
given in simple closed form for even arguments) and the Bernoulli 
numbers (which are non-zero only for even indices). It's also 
interesting to note the analogy between Huygens' spherical wavelets 
centred on the boundary of the wave front and the technique of 
analytic continuation, by which we expand the boundary of an 
analytic region by means of disks of convergence centred on or near 
the boundary of the existing analytic region. 

Paul Dirac gave an interesting general argument for a much 
stronger version of Huygens' principle in the context of quantum 
mechanics. In his Principles o/Quantum Mechanics he noted that a 
measurement ofa component of the instantaneous velocity ofa free 
electron must give the value ±c, which implies that electrons (and 
massive particles in general) always propagate along null intervals, 
i.e., on the local light cone. At first this may seem to contradict the 
fact that we observe massive objects to move at speeds much less 
than the speed of light, but Dirac points out that obsefved velocities 
are always average velocities over appreciable time intervals, whereas 
the equations of motion of the particle show that its velocity oscillates 
between +c and -c in such a way that the mean value agrees with 
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the average value. He argues that this must be the case in any 
relativistic theory that incorporates the uncertainty principle, because 
in order to measure the velocity of a particle we must measure its 
position at two different times, and then divide the change in position 
by the elapsed time. To approximate as closely as possible to the 
instantaneous velocity, the time interval must go to zero, which 
implies that the position measurements must approach infinite 
precision. However, according to the uncertainty principle. the 
extreme precision of the position measurement implies an approach 
to infinite indeterminacy in the momentum, which means that almost 
all values of momentum-from zero to infinity-become equally 
probable. Hence the momentum is almost certainly infinite, which 
corresponds to a speed of ±c. This is obviously a very general 
argument, and applies to all massive particles. 

According to Newton's laws, the incremental work dW done 
by a force f on a particle moving an incremental distance dx, dy, dz 
in 3-dimensional space is given by the dot product. 

dW = If d ... + 1;.dy + fzd= 

Now suppose the particle is constrained in such a way that its position 
has only two degrees of freedom. In other words, there are two 
generalized position coordinates X and r such that the position 
coordinates x, y, and z of the particle are each strictly functions of 
these two generalized coordinates. We can then define a generalized 
force F with the components F x and F y such that 

dW = F,dX + FrlY 

The total differentials of x, y, and z are then given by 

d'C~dX+ ax dr dy=~dX+ 8y dz=~dX+~dY 
ax ar ax ay ax ay 

Substituting these differentials into and collecting terms by dX and 
dr, we have 

_ (fax + f ~ + f az) dX 
dW - x ax .)' ax . = ax 

+(1 ax +/ ay +/ az )dr 
x ar Yar = ar 

Comparing this with Equation, we see that the generalized force 
components are given by 
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ax 8y az ax Oy az 
Fv=+-+f-+f- F. = +-+/,-+/-

-, Jx ax Y ax = ax Y J x ay Y ay = ay 
Now, according to Newton's second law of motion, the individual 
components of force for a particle of mass mare 

dx dj; di 
fc = m dt ' !y = m dt ' fz = m dt 

Substituting into the expression for ~y gives 

(
dX ax dj; Oy dZ az) 

Fx = m dt ax + dt ax + dt ax 
and similarly for F y' Notice that the first product on the right side 
can be expanded as 

~:~ = :t(x:;)-x~(:;J 
and similarly for the other two products. Since x and X are both strictly 
functions of t, it follows that partial differentiation with respect to t 
is the same as total differentiation, and so the order of differentiation 
in the right-most term of can be reversed (because partial 
differentiation is commutative). Hence Equation can be written as 

dx ax d (. a) . a (dx) 
dt ax = dt x ax - x ax dt 

Substituting this (and the corresponding expressions for the other 
two products) into equation, we get 

Fx d (. ax . Oy . az J (. ax . ay . ai J 
-;;; = dt x ax + Y ax + z ax - x ax + Y ax + z ax 

Variations in x,y,z and X at constant t are independent of t 
(since each of these variables is strictly a function of t), so we have 

ax ax Oy ay az ai 
ax=ax ax=ax ax=ax 

Making these substitutions into gives 

Fy d (. ax . ay . az J (. ax . aj; . ai) 
-'- =- x-. +y-. +Z-. - x-+y-+z-
III dt" ax ax ax ax ax ax 

Each term now contains an expression of the form r(orirs). 
which can also be written as r(r2/2)/cs. so the overall expression 
can be re-written as 
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The quantity inside the square b;-ackets is simply the kinetic 
energy, conventionally denoted by T. Thus the generalized force Fx' 
and similarly the generalized force F y, can be expressed as 

F, =~(OT)_ aT F. =~(OT)_ aT 
.\ dt ax ax y dt at oy 

These are the Euler-Lagrange equations of motion, which are 
equivalent to Newton's laws of motion. (Notice that if Xis identified 
with x in equation, then Fx reduces to Newton's expression for lx, 
and likewise for the other components.) 

If the total energy is conserved, then the work done on the 
particle must be converted to potential energy, conventionally denoted 
by V, which must be purely a function of the spatial coordinates x,y,z, 
or equivalently a function of the generalized configuration 
coordinates X,Y, and possibly the derivatives of these coordinates, 
but independent of the time t. (The independence of the Lagrangian 
with respect to the time coordinate for a process in which energy is 
conserved is an example of Noether's theorem, which asserts that 
any conserved quantity, such as energy. corresponds to a symmetry, 
i.e., the independence ofa system with respect to a particular variable, 
such as time.) If the potential depends on the derivatives of the 
position coordinate~ it is said to be a velocity-dependent potential, 
as discussed in the note on Gerber's Gravity. However, most 
potentials depend only on the position coordinates and not on their 
derivatives. In that case we have 

OV oV 
dW=-dV=- ax dX- oY dl' 

Comparing this with equation, we see that 

OV oV 
Fx= - ax Fy= - OY 

and therefore the Euler-Lagrange equations for conservative systems 
can be written as 

_ oV -!!.J OT)_ aT _ oV _~(aT)_ aT 
OY - dtlax ax oy - dti\.[;fT oY 
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Rearranging terms, we have 

a(T-V)=~(a~) a(T-V)=~(a~) 
ax dt ax ay dt ay 

Furthermore, since V is purely a function of the configuration 
variables, independent of their rates of change, we can just as well 
substitute (T-V) in place of T on the right sides of these equations, 
so in terms of the parameter L = T - Vthese equations can be written 
simply as 

aL d (aL) aL d (aL) 
ax = dt ax ay = dt ay 

The quantity L is called the Lagrangian. This derivation was 
carried out for a single particle moving with two degrees of freedom 
in three-dimensional space, but the same derivation can be applied 
to collections of any number of particles. For a set of N particles 
there are 3N configuration coordinates, but the degrees of freedom 
will often be much less, especially if the particles form rigid bodies. 
Letting q l' q 2' .. , q n denote a set of generalized configuration 
coordinates for a conservative physical system with n degrees of 
freedom, the equations of motion of the system are 

~~:t(~)N~ ... n 

where L is the Lagrangian of the system, i.e., the difference between 
the kinetic and the potential energies, expressed in terms of the 
generalized coordinates and their time derivatives. These equations 
are usually credited jointly to Euler along with Lagrange, because 
although Lagrange was the first to formulate them specifically as 
the equations of motion, they were previously derived by Euler as 
the conditions under which a point passes from one specified place 
and time to another in such a way that the integral of a given function 
L with respect to time is stationary. This is a fundamental result in 
the calculus of variations, and can be applied to fairly arbitrary 
functions L . 

To illustrate the application of these equations, consider a simple 
mass-spring system, consisting of a particle of mass m on the x axis 
attached to the end of a massless spring with spring constant k and 



The Hydrogen Atom 201 

null point at x = O. For any position x, the spring exerts a force equal 
to F = lex, and the potential energy is the integral of force with respect 
to displacement. Similarly the kinetic energy is the integral of the 
inertial force F = ma with respect to displacement. Thus the kinetic 
and potential energies of the system are 

T = Jm dv dx = m jvdv = ..!..,nv2 V = Jlexdx = ..!..1ex2 

~ 2 2 

Therefore the Lagrangian of the system is 

1 .2 1 2 
L(x. x) ="2mx -"21ex 

The partial derivatives are 

aL = -kx aL = m:X 
ax ax 

Substituting into Lagrange's equation, we get the familiar 
equation of harmonic motion for a mass-spring system 

d (.) .. 
-/ex = dt mx = mx 

Of course, this simply expresses Newton's second law, F = ma, for 
the particle. It's also equivalent to the fact that the total energy 
E = T + V is constant, as can be seen by differentiating E with respect 
to t and then dividing through by dx/dt. 

The equivalence between the Lagrangian equation of motion 
(for conservative systems) and the conservation of energy is a general 
consequence of the fact that the kinetic energy of a particle is strictly 
proportional to the square of the particle's velocity. Of course, in 
terms of the generalized parameters, it's possible for the kinetic 
energy to be a function of both q and q, but since the transformation 
dx = (oX/oq)dq between x and q is equivalent to dx/dt = (Ox/cq) 
dq/dt, it follows that for a fixed configuration the kinetic energy is 
proportional to the squares of the generalized velocity parameters. 
Therefore, in general, we have 

aT . =2T= aL . 
8q

q 
8q q 

where we've made use of the fact that the potential energy V (for 
conservative systems) is independent of q. Now, the total energy is 
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E = T + V = 2T - L, so the conservation of energy can be expressed 
in the form 

d(2T-L) d(2T)_dL=O 
dt dt dt 

The two terms on the right hand side can be expanded as 

d(2T) _ ~(8L 'J = 8L .. + . ~(8LJ 
-d B·

q c· q 
qd o' ~ t q q t q 

dL 8Ldq 8Ldq 
--+--

dt = 8q dt 8q dt 

Substituting into the previous equation and dividing through 
by q (applying analytic continuation to remove the singularity when 
q = 0), we see that the conservation of energy implies 

!!.-(8L)_ 8L = 0 
dt 8q oq 

which is just Lagrange's equation of motion. Of course, the same 
derivation applies to any number of particles, and their generalized 
coordinates. 

The correspondence between the conservation of energy and 
the Lagrangian equations of motion suggests that there might be a 
convenient variational formulation of mechanics in terms of the total 
energy E = T + V (as opposed to the Lagrangian L = T-V). Notice 
that the partial derivative of L with respect to x' is the momentum of 
the particle. In general, given the Lagrangian, we can define the 
generalized momenta as 

8L 8T 8(T+V) 
Pj = 8qj = 8qj" = 8qj 

(The partial of V is zero, so it's inclusion and sign in this definition 
is a matter of convention.) Thus to each generalized configuration 
coordinate qj there corresponds a generalized momenta Pi' In our 
simple mass-spring example with the single generalized coordinate 
q = x, the total energy H = T + V in terms of these conjugate 
parameters is 
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The function H(q, p) is called the Hamiltonian of the system. 
Taking the partial derivatives of H with respect to p and q, we have 

8H _ p 8H _ kq 
8p - m 8q -

Notice that, in this example,pim equals q' (essentially by definition, 
since p = mv), and kq equals + p' (by the equation of motion). In 
general it can be shown that, for any conservative system with 
generalized coordinates q} and the corresponding momenta Pp if we 
express the total energy H in terms of the qj and Pp then we have 

8H . 8H . 
-8 =qj -a = -Pj 
'Pj qj 

These are Hamilton's equations of motion. Although they are strictly 
equivalent to Lagrange's and Newton's equations, the equations of 
Hamilton have proven to be more suitable for adaptation to quantum 
mechanics. The Lagrangian and Hamiltonian formulations of 
mechanics are also notable for the fact that they express the laws of 
mechanics without reference to any particular coordinate system for 
the configuration space. Of course, in their original forms, they 
assumed an absolute time coordinate and perfectly rigid bodies, but 
with suitable restrictions they can be adapted to relativistic mechanics 
as well. 

In quantum mechanics, a pair of conjugate variables qj' Pj' such 
as position and momentum, generally do not commute, whIch means 
that the operation consisting of a measurement of q} followed by a 
measurement of Pj is different than the operation of performing these 
measurements in the reverse order. This is because the eigenstates 
corresponding to the respective measurement operators are 
incompatible. As a result, the system cannot simultaneously have both 
a definite value of qj and a definite value of Pj" 

Fourier Transforms and Uncertainty 
The function exp(-x2) has no simple closed-form indefinite 

integral, but the related function x exp(-x2) does have a simple 
integral, namely, 
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This identity can be used to evaluate the definite integral of 
exp( -x2) from x = .-J'J to + Xi. Letting Q denote the value of this 
definite integral, we can write 

[ 

00 J[ 00 1 00 00 _(x2+y2) 
Q2= _[e-XZdx _[e-Y:c/y = _[_Ie dxd.y 

In terms of polar coordinates on the x, y plane we have x = r 
cos( 8) and y = r sine 8), and therefore x2 + ),2 = ? The Jacobian of 
the transformation is 

l
oxlor Oxloel= cos (e) -r sin(e)'j-==r 
Oylor Oyloe sin (e) rcos(B) 

so the incremental area element is 

dA = dxdy = r dr d () 

hence the double integral expressed in terms of r, q coordinates is 
27r 00 

Q2= J Je-
r2

rdrd() 
o 0 

Making use of equation to evaluate the interior definite integral, 
we have 

27r[00 J 27r 1 
Q2= J Je-

r2
rdr de~ J~~=Jr 

o 0 0 -

Therefore the definite integral of exp( _x2) from -00 to 00 is 
00 

Q= J; = J e-
x2

dx 
-0'0 

More generally, if we replace the exponent _x2 with -ax2 + bx 
+ c, we can define the parameter 

X 
r; __ b_ 

y= va 2fa 

in terms of which we can write 

0'0, (b2-4ac)/(4a) <Xl, : r; I e-a.l-+bc+Cdx= e I -y- dy=e(b -4ac)/(4a) v; 
-0'0 fa -0'0 a 
This definite integral is particularly useful when considering the 
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Fourier transform of a normal density distribution. Recall that for 
any functionj{x) we can define another function F(y) that satisfies 
the relations 

1 ooJ ()iXY 
F6~ = J2; f x dx 

-0) 

00 

I J F( ) -ixYd 
F(x) = J2; -00 y e y 

These two functions are a Fourier transform pair, i.e., each of 
them is the Fourier transform of the other. Now, ifj(x) is the normal 
probability density function 

e-[x-,u]2 2a2 

f(x) = aJ2; 
then the Fourier transform is 

1 00 2 _ -- J e-[X-II]/2u2+ixy dx 
F(y) - 2:r0" 

-00 

so the exponent in the integral is of the form -ax2 + bx + c with 
a = 11202, b = iy + pld, and c = -}l/(2d). Hence the Fourier 
transform of the normal density distribution is 

/h(2C72) e _(Y_illlu
2
)2/(2/u

2
) 

e 
F(y) = ~.j2; 

0" 
Choosing our scales so that the mean of f is zero, i.e., so that f.1 = 0, 
the above expression reduces to 

e-y2/(2/u2) 

F(y) = 1 ~ 
-,,2:r 
a 

In other words, the Fourier transform of the normal distribution 
with mean zero and standard deviation O"is also a normal distribution 
with mean zero, but with standard deviation 11 a: This shows that the 
variances ofthefand F distributions satisfy the 'uncertainty relation' 
var(f) var(F) = 1. This equality is the limiting case of a general 
inequality on the product of variances of Fourier transform pairs. In 
general, iff is an arbitrary probability density distribution and F is 
its Fourier transform, then 
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va,. (f) var (F) ~ 

Notice that/and F are just two different ways of characterizing the 
same distribution, one in the amplitude domain and the other in the 
frequency domain. Given either of these distributions, the other is 
completely determined. 

The relation between conjugate variables (such as position and 
momentum) in quam}:W.l mechanics can be expressed in terms of the 
relation between Fourier transform pairs. Consider a physical system 
with just one degree of freedom, represented by the operator q, and 
let p denote the operator for the corresponding momentum (Le., the 
generalized momentum of q in the usual Hamiltonian formulation). 
The basic commutation relation between these operators is 

qp - pq = Ii 

Notice the symmetry between the p and q operators if we replace i 
with -i. The usual Schrodinger representation of this system takes 
the observable q as a 'diagonal' operator, i.e., with the eigenvalues 
specified explicitly, and then the corresponding momentum operator 
is defined as 

.Ii d 
p= 1 -

dq 
However, we could (in theory) just as well take p as a diagonal 
operator, and then q would be given by 

.Ii d q= 1 -
dp 

Dirac referred to this as the momentum representation of the 
system. This again shows the symmetry between q and p under an 
exchange of i and -i. Indeed if we let <q1S> and <PIS> for any given 
state S denote the probability amplitudes that measurements 
corresponding to the operators q and p will return the eigenvalues q 

and p respectively, then we find 

(pIS) = * 1 (qIS)e-iqpllidq 
-co 

(qIS) = * 1 (pIS)e-iqPllidp 
-co 
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In other words, the probability amplitude distributions of two 
conjugate variables are simply the (suitably scaled) Fourier transforms 
of each other. We saw previously that the dispersions (variances) of 
two density distributions that comprise a Fourier transform pair satisfy 
the inequality (2), so the variances of the probability amplitude 
distributions of conjugate observables in quantum mechanics satisfy 
such an inequality. Thus Heisenberg's uncertainty principle for 
conjugate pairs of observables follows directly from the fact that those 
observables are essentially the Fourier transforms of each other. 

Of course, this attribute of Fourier transform pairs is purely 
mathematical, and has no a priori applicability to pairs of observables 
such as position and momentum, or time and energy. The physical 
content of quantum mechanics is based on the two relations 

E= hOJ p= hk 

where E is energy, p is momentum (in one dimension),1i is Planck's 
(reduced) constant, OJ is the frequency with units second-I, and k is 
the wave number with units metre-I. These relations were introduced 
in the early 1900s by Planck, Einstein, and Broglie to account for 
non-classical phenomena such as cavity radiation and the photo-
electric effect, both of which depend on the particle-like behaviour 
of entities that had previously been modeled as waves, as well as 
phenomena involving wave-like behaviour of material particles. 
These are the relations that associate the familiar observables of 
energy, momentum, space, and time, with the frequency domain. 
Indeed in terms of the characteristic time r = 1/ OJ and distance 
A = 11k the above relations can be written as 

rE = AP = h 

which already clearly reveals the conjugacy of time and energy, and 
of distance and momentum. In view of this, it isn't surprising to find 
that the product ofthe dispersions of two conjugate observables (such 
as position and momentum) cannot be less than one quanta of action, 
represented by h . 

In a sense, there is also a conjugacy between space and time­
two observable that had been regarded as disjoint and independent 
prior to the early 1900s. In special relativity the inertial space and 
time intervals dx and dt between two events are components of a 

" 
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single invariant spacetime interval ds between those events. These 
intervals are related according to the Minkowski metric, which can 
be written in the fonn 

(
dx ds l(dx dS) 1 
dt + dt) dt - dt = c2 

This can be regarded as an 'uncertainty relation' for space and 
time. In general, physics was based, prior to 1900, on the premise 
that Ii and 1/c2 were both zero. With the advent of quantum mechanics 
and special relativity, it was realised that they both have non-zero 
values, although they are extremely small in tenns of ordinary units. 

Spherical Waves in Higher Dimensions 

As discussed in the section on Huygens' principle, if we separate 
the solutiony(r,t) of the usual wave equation in n-dimensional space 
(with one time dimension) into a time component and a spatial 
component, we have y(r,t) = j(r)g(t), and the spatial and temporal 
components satisfy the individual equations 

d 2f df d 2 

r-2 +(n-l)-+erf=O ----t+Ciig=O 
dr dr dt 

where k is a constant with units of lIdistance and ro is a constant 
with units of I/time. Thus the temporal component satisfies the simple 

j hannonic equation, with a general solution of the fonn g(/) = g, eU/JI 

+ g] e-illJt where g, and g] are arbitrary constants. In just one spatial 
dimension (n = 1) the spatial equation also reduces to the simple 
hannonic equation, with the general solutionj(r) = Jj eikr + Ii e-ikr 

for constants Jj and Ii. Combining these, we get the wave function 

If/{r.t) = (fieikr + f2e-,kr )(gJimt + g2e-1mt) 

= figJi(kr+mt) + fig2ei(kr-mt) + /igJe-i(kr-mt) + /ig2e- i (kr+mt) 

Thus the solution is a sum of functions of the quantities kr + OJ{ 

and kr - mi. If we require that f and g are real-valued, then get) = g, 
cos(wt),j(r) =Jj cos(kr), and 

Ij/(r,t) = 2f,g,[cos(kr + mt) + cos(kr - mt)] 

More generally, we can verify by direct substitution that the one­
dimensional wave equation is satisfied by any function of the fonn 

Ij/(r, t) = A(ml - kr) + B(ml + kr) 
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where A (x) and H(x) are quite arbitrary functions. In effect, Huygens' 
principle can be read directly from this equation, since it implies that 
a pulse disturbance propagates sharply at a constant speed. We 
also know that with three spatial dimensions (n = 3) the general 
spatial solution is j(r) = cos(kr)/r, and again Huygens' principle 
applies. We asserted that a similar result obtains for any odd number 
of spatial dimensions. To show this more explicitly, recall that spatial 
equation is 

d 2f df 
r-+(n-I)-+k2rf=O 

dr2 dr 

We assumej(r) has a power series expansion 

f(r) = crf'l + c1r1+q + cr+q + c3,J + q + ... 

where Co is the first non-zero coefficient and q is non-negative 
(to ensure that fer) is finite at r = 0). Inserting this series and its 
derivatives into equation and setting the coefficient of each power 
of r to zero, we get the conditions 

coq(q - 2 + n) = 0 

cl(q + l)(q - I + n) = 0 

c2(q + 2)(q + n) + J2.co = 0 

c3(q + 3)(q + n + \) + ~cI = 0 

ciq + 4)(q + n + 2) + J2.c2 = 0 

and so on. Since Co is stipulated to be non-zero, and since we are 
requiring q to be non-negative, the first of these conditions implies 
q = 0, and so the second implies c I = O. The remaining conditions 
give cj + 2 as a multiple of cp so it follows that cj = 0 for all odd j. 
The coefficients with even indices are then given by 

-k2co -k2c2 -k2c4 

c2 = (2)(n) C4 = (4)(n+2) c6 = (6)(n+4) 

With n = 3 the spatial component of the wave function is 
therefore 
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_ Co [kr _ (kr)3 + (kr)5 _ (krf + ... ] 
- kr 1! 3! 5! 7! 

= Co sin(kr) 
kr 

On the other hand, in a five-dimensional space, we have n = 5, 
and the spatial part of the wave function is 

1+--r2 + r4 + r6 + 

l 
(k2 ) ( k2)2 ( k2 )2 1 

fs(r) = Co (2.5) (2.5)( 4.7) (2.5)( 4.7)( 6.9) ... 

-(:;3 [(7.!: -(7.1: + (7.;; -(~;: + .. J 
Putting s = kr and letting a(s) denote the expression inside the 

last square brackets, we see that 

Ida 
-- =sin(s) 
s ds 

Multiplying through by s and integrating, we find that a(s) = 
sin(s) - s cos(s), so we have 

f.M - 3co 3 [sin(kr) -krcos(kr)] 
sr - (kr) 

The same general approach allows us to determine the c1osed­
form expression for !n(r) for any odd number of dimensions n. For 
example, in seven spatial dimensions (n = 7) we have the series 
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Again puttings = kr and letting a(s) denote the expression inside 
the last square brackets, we see that 

~ ~ (~ ~;) = sin (s) 

Multiplying and integrating twice gives 

a(s) = 3sin(s) - 3scos(s) -s2sin(s) 

Therefore, the spatial part of the spherical solution of the wave 
equation in seven space dimensions is 

f M- 15COs[3sin(kr)-3krCOS(kr)-(kr)2sin(kr)] 
7 r - (kr) 

The same approach leads to the solution in nine space 
dimensions 

J; (J') - 105C~ [15sin( kr) -15krcos( kr) - 6( kr)2 
9 r - (kr) 

sin ( kr ) + ( kr ) 3 
cos ( kr ) ] 

and so on. In general, the spatial part of the spherical wave solution 
in n dimensions has the form 

f,,(r) = (:):~2[ AnCkr}sin(kr)-krBn(kr)cos(kr)] 

where the constant Kn equals (n - 2)(n - 4) ... , and the expressions 
An<!cr) and Bn(kr) denote 'even' polynomials in kr. These polynomials 
for the first several odd values of n are listed below. 

AI(s) = 0 BI(s) = -1 

A3(s) = B3(s) = 0 

As(s) = Bs(s) = 1 

A7(s) = 3-s2 B7(s) = 3 

A9(s) = 15-6s2 B9(s) = 15-s2 

All(s) = 105 - 45s2 + s4 BIl(s) = 105 - 45s2 + s4 

A l3(s) = 945 - 420s2 + 15s4 B l3(s) = 945 - 105s2 + s4 

In general, for odd n greater than 1, these polynomials can be 
expressed as 
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~ ( }j 2 ( m - j) 2 . 
A ( ) ~ -1 s J 

lm+3 s = j=O 2m- j j!( m - j}! 

(11I;.!l12 -1 j 2( m - j) -I]! s2j 

B1m+is) = to ( ) 2m- 1- j J1{m-l- j)! 

Interestingly, referring to the article on proving that 1r is 
iI'rational, we see that the spatial functions fn(r) for odd integers n 
greater than 1 can also be expressed (up to a constant factor) as a 
simple integral 

+1 k 

fik+3= f(1-x2) cos(rx}dx 
-I 

The figure 13 shows fn(r) for spaces of one, three, and five 
dimensions. 

f(r) 

f(O) 0 

-0.5 

r 20 

We can use linear combinations of solutions of this form to 
generate arbitrary waveforms. 

As an aside, although the case of negative n presumably has no 
physical significance (negative dimensions?), we note that a similar 
approach enables us to solve equation for these cases as well. If n is 
even, the coefficients are undefined (because they involve a division 
by zero), but we get well-defined functions for odd n. The solutions 
for the first couple of odd negative values of n are 

f...l(r) = co[l-cos(kr) - kr sin(kr)] 

L,.)~ "0 [1 + k: "+t(3cos(kr)+ 3kr sin (kr )) -(kr)' COS(kr) 1 
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These solutions increase to infinity as r increases, unlike the solutions 
for positive n, which drop to zero as r increases. 

Returning to positive dimensions, there's an interesting 
relationship between the 'basis functions' of the general spherical 
wave solutions in successive odd dimensions. The wave equation in 
spherical coordinates in n-dimensional space can be written in terms 
of the differential operator. 

a2 n-l a a2 
o =-+-----

n ar2 r ar aP 
A function 'If(r,t) is a solution of the n-dimensional wave 

equation if and only if 

Onlf/(r,t) = 0 

Knowing the general form ofthe spatial part/"(r), and the simple 
temporal part for all n, we can write a b<bic combined space-time 
solution for odd n as 

¢n(r,t)= nl-2 [ An (r )sin (r ± I) - rBn (r )cos(r ±/) ] 
r 

where Air) and Bn(r) are the polynomials defined previously. By 
direct substitution it can be verified that successive odd basis solutions 
are related by 

o"fn = (n-m)¢n+2 
This is a remarkable fact, signifying that a basis solution for n 

space dimensions not only satisfies the wave equation everywhere 
in n-dimensional space, it also satisfies the wave equation in spaces 
of every odd number of dimensions at every radius and time for which 
the basis solution for n +2 dimensions vanishes. Hence there is an 
infinite sequence of expanding (or contracting) discrete shells on 
which any basis solution satisfies the wave equation for spaces of 
all odd dimensions. 

In the special case m = 1 the spherical wave operator reduces to 

a2 a2 

0=---
I ar2 al2 

and we have the recurrence 

/"+2= (n~t Ol)¢n 
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We refer to the ¢n as basis solutions, because it's easy to see 
that if ¢n(r,/) is a solution, then so is k¢nvr,jt) for any constants k 
and j. For example, each of the following expressions are solutions 
for n = 5: 

sin(r±t) 
r2 

cos(r±t) sin(2[r±t]) 

(2r)2 
cos( 2[r ± t]) sin(3[r ± t]) cos(3 [r ± t]) 

(21')2 (3r)2 (3r)3 
and so on. Any linear combination of these solutions is also a solution, 
so by means analogous to Fourier series we can construct arbitrary 
functions of the form 

a:> 

F.(r + t) = ~:Ck cos(k(r +t)) 
k=\ 

a:> 

F.(r+t)= ~>kcos(k(r+t)) 
k=\ 

and similarly for Gs(r - t) and GcCr - t). The analogous functions 
can be constructed from the basis solutions for any odd n, so the 
spherical wave equation in n space dimensions is satisfied by 

~ (r)Fs (r +t)-rB 
n (r)Fc (r +/) 

y(r,t) = n-2 
r 

~ (r )Gs (r -t) _rB n (r )Gc (r -I) 
+ n-2 r 

for arbitrary functions F and G. Notice that the greater of the degree 
of An and the degree of rBn is (n - 3)/2, so the lowest inverse power 
of r is (n - 2) - (n - 3)/2 = (n -1)/2. This is consistent with the fact 
that the energy of a wave is proportional to the square of the 
amplitude, so the energy per unit 'area' of the spherical wave drops 
in inverse proportion to ,Jl-I, which is the dimension of the surface 
of a sphere in n-dimensional space. 

It's interesting that, for odd space dimensions greater than 3, 
the amplitude contains formal terms that drop in inverse proportion 
to higher powers of r as well. This is in a sense misleading, because 
the amplitude (and hence the energy per unit area) is continuously 
changing as the wave propagates to greater values of r, and at the 
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same time the value of the wave function is changing with phase. 
The wave function is not actually periodic, so the correspondence 
between energy and 'amplitude' contains an ambiguity, which 
manifests itself in the higher-order terms in higher dimensions. 

Waves in Ascending and Descending Dimensions 
There are some remarkable relationships between elementary 

spherically ~ymmetrical solutions of the wave equation in spaces of 
different dimensions. As discussed in the note on spherical waves in 
higher dimensions, by the separation of variables we can split the 
wave equation into spatial and temporal parts, and the spatial part 
fir) satisfies the differential equation. 

d
2 I + (n -I) dl + I = 0 

dr2 r dr 
where n is the number of spatial dimensions. Letting In denote a 
solution of in a space of n dimensions (and one time "dimension), the 
function given by 

n dln{r) 
g(r)== ----

r dr 
is a solution of in space of n + 2 dimensions. To prove this, note that 
the definition of g(r) implies (after multiplying through by -nl,. and 
differentiating) 

i: = -!:..g ~ = -.!.{rg+g) j = -2.{rg+2g) 
In n n n II n 

where dots signify jerivatives with respect to r. Also, differentiating 
equation gives 

... (n-I)r.. (n-I). . 
In + In - 2 In + In = 0 

r 

Substituting for the derivatives of In from the preceeding 
expressions, we get 

(n-I) (n-I) 
rg + 2 g + (rg + g) - 2 rg + rg = 0 

r r 

Simplifying this expression, we get 

in= 0 

which proves that g(r) is a solution in space of n + 2 dimensions. 
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Thus we have a sequence of solutions in ascending dimensions 
n dfn(r) 

f,,+lr) = - --d-­
r r 

Interestingly, this can also be expressed as a sequence of (scaled) 
solutions in descending dimensions. To see this, use equation to 
replace the left side of, and then mUltiply through by -rln to give 

: [rln+2 +(n+l)in+2J = in 

Integrating both sides, we get (up to a constant of integration) 

;[rin+2 + nfn+2 ] = f" 

Now we multiply through by rn-I to give 

I [ nj,' n-Ij, J - r n+2 + nr n+2 = f"rnoo / 
n 

The expression inside the square brackets is simply the derivative 
of ~1n+2' so this can be written as 

1 d( rn fn+2} 
(r" 2fn )= 

nr dr 
Thus if we define the scaled wave function Fn(r) = ~-21n(r), 

we have 
1 dFn+2 

F =----
n nr dr 

In other words, Fn is simply a scaled derivative of Fn+2, so this gives 
a sequence of solutions in descending space dimensions, by a formula 
very similar to equation. 

At this point we should note that the negative sign in is 
potentially misleading, because the negation can be accomplished 
either by multiplying by negative 1 or by applying a phase shift to 
the periodic parts of the function, specifically by subtracting Jrfrom 
the phase. A generalized diffeientiation operator applied to the sine 
or cosine function amounts to a simple phase shift, and this just 
happens to give negation when the phase shift is Jr. Therefore, instead 
of writing equation with a leading factor of -1, we will write it with 
a leading factor of f/T 1, where (/J is a linear phase shift operator 
defined by 

g(cp(x») g(cp(x)+Jr) 
cp k = k 

x X 
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where g is a periodic function. Linearity means that f/{a+b) = f/{a) 
+ f/{b). For example, 

</>( Sin(r}+:;""(3r) ) ~ (Sin(r+Ir)+;;:OS(3r+Ir) ) 

Using this operator, we will take as the general form of equation the 
expression 

f. = (f)-I !!.. din 
n+2 r dr 

We can make use of either to derive simple explicit expressions 
for elementary wave solutions in n dimensions, for both odd and even 
values of n. First, notice that in view of the identity we can express 
equations 

and in the form 

~ dFn+2 _\ din 
Fe = n d( 2) f. = 2<1> n-2 n r n+2 r 

Given the elementary one-dimensional solution F/(r), the left 
hand relation allow us to determine a sequence of solutions by 
repeated integration as follows 

1 (211 + 1) 
F (r)-

3 - 2n+1 2n 11! 

r2 

Fs(r) = % f fJ(u)d(u
2

) 
u2=0 

r2 

Fs(r) = % f Fs(u)d(u
2

) 
u2=0 

and so on. Now, in one-dimensional space we have the elementary 
solution i/r) = cos(r), which in scaled form is F/r) = cos(r)/r. 
Therefore we have 

2 2 
1 r 1 r cos(U) 

Fir) ="2 J F\(u)d(u2
) ="2 f u 2udu=sin(r) 

u2-0 1/2=0 
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and hence 13(r) = sin(r)/r as expected. Integrating again (with the 
appropriate scale factor) on F3 gives Fs' and so on. Thus, using 
Cauchy's fonnula for repeated integration, we can express F2n+3 by 
perfonning the integration n+ 1 times. The product of the leading 

scale factors is (~)(%)(%)...(2n2+1) = 2~+1 (22::!1) 

so the repeated integrations give the fonnula 
2 

_ (2n+l) rJ(r2_u2)nF,(u)d(u2) 
F1n,/r) - 22n+1 (n!)2 u2=0 I 

(2n+ I) r
J 
( )n = r2 _u2 cos(u)du 

22n (n!)2 u=o 

Factoring an r2n out of the integrand and making the substitution 
x = u/r, this can be re-written as 

2n+1 (2n+l) If ( 2)n () 
F (r) = r 2n+1 f. (r) = r 2 1- x cos xr dx 

2n+3 2n+3 22n (n!) x=O 

The natural generalization of this (n+ 1 )th order integral is to 
allow n to be a non-integer n, and replacing the factorial of n with 
the gamma function of n+ I. Thus we arrive at 

r(2v+2) IJ ( )V 
1- x2 cos( xr)dx 

F2v+3(r) = 22vr(v + 1)2 x=o 

For space of two dimensions we set v = -112 in the above 
fonnula to give the solution 

_ r(O) If (I_X2)-lf2 

Fir) - 2-1r(1/2)2 x=o 

2 If cos(xr) 
cos (xr )cU = - r.--; dx 

1t x=o vI-x2 

This agrees with the result found in the note on Huygens' principle 
by means of a series evaluation, pnd we note that it is the lowest­
order Bessel function. i.e.,h(r) = Jo(r). 

Incidentally, with regard to equation, it's worth noting 
the identity 
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I 2 ( )2 J (1- x2 r dx = 2 vr v + 1 
x=o r(2v+l) 

Thus equation can be written in the form 
I 

J (1 - x2 r cos ( xr ) dx 
x=o 

x=o 
which shows that the wave function is the mean of cos(xr) on the 
interval from x = 0 to I with the density proportional to (i-x2) v. 

An alternative approach to developing wave solutions in n 
dimensions is to use the ascending sequence of solutions given by 
equation, beginning with the elementary one-dimensional solution 
!i(r) = cos(r), as follows 

f,(r) = <l>-I.!.~(cos(r)) = sin(r) 
3 r dr r 

r = <l>_I~~(sin(r)) = 3sin(r)-rcos(r) 
fs( ) r dr r r3 

r(r)- <l>_I~~(3sin(r)-cos(r)) 
J7 - r dr r3 

3sin (r) - 3rcos(r) - r2 sin (r) 
=15--~~----~~--~~ 

r 5 

and so on. Thus the ascent from n dimensions to n+ 2 dimensions is 
given by applying the differential operator 

d id cp-I!!. __ 2Clr n---
2
-

r dr - d(r ) 

Applying this operator n times to a one-dimensional solution 
gives an expression for a 2n+ 1 qimensional solution. So, on this basis, 
our expression for higher-dimensional solutions is 

(211!)[ d lit _ CP-I1 __ --- cos(r) 
f 2n+l(r)- (r2) d(r2) 
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Since each differentiation (with respect to,-2) raises the number 
of space dimensions by two, we need to apply a half-order 
differentiation to produce solutions for spaces with even numbers of 
dimensions. Using the Left Hand Rule for fractional differentiation, 
we first perform a half-integration on siner) with respect to ,-2 by 
means of Cauchy's formula, which gives 

d-1/2 r2 -1/2 

d(r2f 1l2 cos(r) = f(:12)u
2

!a (r2 _u
2

) cos(u)d(u2) 

-1/2 
2 rJ(2 2) 

= J; u=o r -u cos(u)udu 

Dividing out the ,-2, and making the substitution x = u/r, and noting 
that du = r dx, this can be written as 

d-1/2 - I 
---:--:-=-cos(r) 2 f ( 2)-1/2 

( 
2 )-112 = r 1- x cos(xr )xrdx 

d r v7r u=o 

We now need to perform one whole differentiation with respect to 
,-2, and we can do this inside the integration. Noting that 

_d_[xrcos(xr)] = _I _d [xrcos(xr)] 
d(r2) 2r dr 

cos(xr) - xr sin (xr ) 
=x--~~---~~ 

2r 
we finally arrive at the half-derivative of cos(r) 

d l/2 I 

( 2t2 sin(r) = I,-- J (1- x2rIl2 

d r rv;c u=o 

x[ cos( xr) - xr sin (xr) Jdx 

Inserting this into equation with n = 112 giv~s 

2 I

J 
sin(xr)+xrcos(xr) 

f - xdx 
ir) = ;cr r:--:J1_ 2 u=o vI-X· 

This again equals the Bessel function Jo(r), although the equivalence 
is non-trivial. Thus we can arrive at consistent results using the 
sequence of solutions related by differentiation in either the ascending 
or descending space dimensions. 
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The correspondences between solutions in higher and lower 
dimensions is essentially one-to-one, and all the solutions in higher 
dimensions can be mapped down to (or up from) a solution in one 
dimension. Using the series solution technique described in the note 
on Huygens' principle, it can be shown that all one-dimensional 
solutions are of the form 

fi(r} = Co cos(r} + c) sin(r} 

for some constants Co and C /. So, returning to equation, generalizing 
to non-integer orders by replacing n with the real value v and 
replacing the factorials with gamma functions, and inserting the 
general one-dimensional solution in place of the special solutions 
cos(r}, we have 

[ l
v 

v r(2v+l) d 
f (r)= cP- ( ) -(-) [cocos(r)+cJsin(r)] 
2n+ I r v + 1 d r2 

The phase shift and differentiation operators are commutative, 
so we can apply the shift to the basic argument, and write this in the 
form 

[ j
v 

r(2v+l) d 
f (r)= ( ) -( 2) [cocos(r-V1r)+Clsin(r-VlT)] 
2n+1 r v+l d r 

This shows that for any given number of space dimensions there is a 
two-parameter family of solutions. Also, for any choice of those two 
parameters we can vary the number of dimensions continuously. 

Propagation of Pressure and Waves 

Consider a linear sequence of N point-like particles, each of 
mass m, connected by springs with spring constants k as illustrated 
below for N = 5. 

m m m m m m 

k k k k k 
······l· .. · .. · .... ············ .... ············t·················t··················I··················I······· 

leo X1 X2 X3 x4 
Fig. 14 Propagation of Waves 

The position of the jth particle at any given time t is x.(t}. The 
equilibrium length of each spring is L, and the particles are aIr initially 
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at rest at the locations xlO) = jL. We will take as a boundary condition 
that Xs is rigidly held in its position, so xs(t) = 5L for all t. Also, the 
left-most mass will be driven so that xo(t) = vt beginning at the time 
t = 0. The equations of motion for the remaining four particles are 

mil = k((x2-xl}-L) -k ((xl-xO) -L) 

mX2 = k((x3-x2}-L) -k ((~-xl) -L) 

mX3 = k((xcx3}-L) -k ((x3-x2) -L) 

mX4 = k((xs-x4}-L) -k ((xCx3) -L) 

Letting aJZ denote the ratio kim, and re-arranging terms, the 
equations can be expressed in matrix form as 

XI -2 1 0 0 Xl vt 

x2 1 -2 1 0 x2 0 
= + 

0)2 X3 0 1 -2 1 x3 0 

o 0 1 -2 x4 SL 

The parameter co (equal to the square root of kim) has units of 
rad/sec, and represents the characteristic rate of phase change for 
this system. It's easy to see that this system of linear differential 
equations has the particular solutionX(t) = pet) where P is the column 
vector with components 

S-j 
p(t) = jL + -s-vt j=l, 2, 3 4 

so we just need to solve the homogeneous system to arrive at the 
complete solution. Letting M denote the coefficient matrix, the 
homogeneous system can be written symbolically as 

g-w2MX=O 

so the eigenvalues can be expressed symbolically as ±O)Ml/2. 
However, determining the square root of a matrix is not trivial. A 
more practical approach is to solve for the squares of the eigenvalues 
of the original matrix equation. The trial solution xP) = Af?J, where 
Aj has units of length and I has units of time-I, leads to the 
characteristic equation 
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o o 

o 1 

del 

1 -2-(~r o 

-2-(~r 
o 0 1 -2-(~r 

"((~rJ +s((~rJ +2{ (~)')' +20( (~)}5 
The quartic in (AJw)2 factors into two quadratics, which can be 

solved to give the eight purely imaginary eigenvalues of the system 

. J3-J5 . J3+J5 ~s =±IW -- ~6 =±UlJ --
, 2' 2 

::I. -+. Js-J5 "3 7 - _lW ---, 2 
. Js-J5 A48 = ±uv ---, 2 

Letting Pj denote A/(iW), we can take advantage of the fact that 
the eigenvalues come In conjugate imaginary pairs to express the 
solution of the homogeneous equation in the form 

4 
"" ( iOJPJ.' + -iOJPJ.' ) xP) = L...J Cj,ke Cj ,k+4e 
k=l 

where the coefficients Cj,k are complex constants. This can be 
expressed as a sum of real-valued sine and cosine functions of real 
arguments, but we find that the coefficients of the cosine terms must 
all vanish (to satisfy the conditions of the problem), so we are left 
with an expression of the form 

4 

x(t)= LAj,ksin(lOPkt) 
] k=l 

So, combining the homogeneous solution with the particular 
solution, we know that each of the mass particle positions is of the 
form xP)=Aj,lsin(rjwt) + Aj,2sin(r2wt) + Aj,3sin(r3wt) 



224 Quantum Mechanics 

N-j 
+ A 3sin(r4wt) + jL + --vt 

I. N 
where the coefficients Aj,k are to be determined by the initial 
conditions. (The cosine terms are all zero.) Making use of the 
sequence of differentiated system equations 

X =arMX+ U{+ N~j v forn =l} =arMX+UX =arMX etc. 

and letting x?) denote the nth derivative of xP) at t = 0, we can 
construct the following table of initial conditions: 

n xo(n) (n) 
XI . x}n) X3(n) X4(n) xs(n) 

0 0 1 2 3 4 5 

v 0 0 0 0 0 

2 0 0 0 0 0 0 

3 0 w2v 0 0 0 0 

4 0 0 0 0 0 0 

5 0 _2(04V w4v 0 0 0 

6 0 0 0 0 0 0 

7 0 Sw6v -4w6v w6v 0 0 

8 0 0 0 0 0 0 

9 0 -14w8v 14w8v -6w8v w8v 0 

10 0 0 0 0 0 0 

Our general solution automatically satisfies the even-ordered 
derivatives, because we have set all the coefficients of the cosine 
terms to zero, so we need only equate the odd-ordered derivatives 
in the table to the corresponding derivatives of the general solution 
at t = 0 

xP)(O) = AJ.klw)n + AJir2w)n + Aj,3(r3w)n + Aj,ir4w)n 

{ + Nl~ j v for n = I} 
This leads to the system of equations 

OJPI OJ~ OJA3 

(OJPI )3 ( OJ~)3 (OJAS 

( OJPI)5 (OJ~)5 (OJAS 

(OJPlf (OJ~f (OJ~f 

OJA4 

(OJ,1,4 )3 

(OJA4 )5 

(OJA4 f 
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[A]T = 

-4v -3v 

5 5 

-oiv 0 

-2v 

5 

0 

-v 
5 

o 
-2m2v m4v 0 o 
-5m2v 4m6v -m6v 0 

225 

The jth row of the left-hand matrix is a multiple of wlJ- 1, whereas 
the jth row of the right-hand matrix is a multiple of w2j-2. Also, the 
right hand matrix is a multiple ofv. Therefore, if we solve this system 
by bringing the inverse of the leading matrix over to the right side, 
we can eliminate all the appearances of v and w in the matrices, and 
simply apply a factor of v/w to the result, so the transpose of the 
coefficient matrix A is given by 

r ~:~ AJ3 A23 A33 A43 

L AI4 A24 A34 A44 

[~~5 Y -r -~o/51 
-5 4 -\ 

Recall that the values of P.J are solutions of 

(p2)4 _ 8(p2)3 + 2 I (p2f - 20(p2) + 5 = 0 

-I 

As discussed in Linear Fractional TransfoJ'!l1ations, polynomials 
of this type (with coefficients from diagonals of Pascal's triangle) 

have the trigonometric solution 'j= 2cas (;~),j =1,2, ... , N-l 

where N = 5 in our example. (We take just one of the square roots of 
each root rl of the (N-l)th degree polynomial.) Thus if we let R 
denote the matrix whose inverse is taken in the above equation, we 
can state the components of R explicitly as 

R =(2cas( j7r ))21-1 
1,/ 2N '. 
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Obviously the components of R are dimensionless. The right-most 
factor in the preceding matrix equation, which we will denote by C, 
represents the definition of the initial conditions and the particular 
solution. The elements of the first row are simply (N-j)/N, and the 
magnitudes of the elements on the remaining rows can be generated 
recursively by the relation Cm+l , n = -Cm, n-I + 2Cm, n -Cm, n+I 

Thus after the first row we append the first N-2 rows and N-1 
columns of the array 

-1 0 o 
-2 o 
-5 4 -1 

-14 14 --6 

-42 48 -27 

-132 165 -1l0 
-429 572 -429 

-1430 2002 -1638 

o 
I 

o 
0 

8 

44 
208 

910 
etc 

o 
o 
0 
0 

-1 

-10 
65 

-350 

o o o 
o o o 
0 0 0 
0 0 0 
0 0 0 

0 0 
12 -1 0 
90 -14 

The numbers in the first column are obviously the (negative) 
Catalan numbers, as are the sums of the numbers in each row. Notice 
that the recurrence relation applies to the first row with the fractional 
terms as well, and can be exercised in reverse to generate the infinite 
sequence of previous rows. The components of C are, of course, 
dimensionless. 

In terms of the matrices defined above the positions of the N-1 
mass particles as a function of time are given by the row vector 

XT(/) = pT (t)+~E(t)R-IC 
OJ 

where E(/) is the dimensionless row vector with the components 

~(t) = sin( 2COs(;; )OJt) j = 1, 2, ... , N-1 

Recall that PP) = jL + (J -j/N)vt, so if we express the speed v 
in the form nL where n is the number of 'L-distances' per unit time, 
and if we note that the homogeneous part of the solution is also a 
multiple of v, we can divide through by L to give the fully 
dimensionless equation 
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XT (I) pT (I) V 
-- = --+-E(t)R-IC 

L L (j) . 

where the elements of the first term on the right side are j + (J-j/ 
N)nl. The coefficient (n/{j)) is the ratio of two parameters, each with 
units of time-1 , but the parameter n signifies a number ofL-distances 
moved by Xo per unit time, whereas aJ represents a number of phase 
radians per unit time. Multiplying either of these by the length L gives 
something with units of speed. The quantity Ln equals the speed v of 
xo' and the quantity LaJ is a characteristic speed related to the phase 
of the system itself. We will denote this speed by c, and refer to it as 
the acoustic speed of the system, because it is the speed at which 
pressure disturbances propagate through the system. To see this, recall 
that the speed of sound in a material medium is 

c= ~:~ 
where p is the pressure and p is the density. Our mass-spring system 
is just one-dimensional, but we can arbitrarily assign it a cross­
sectional area of A, and we can let x denote a small deviation in the 
length of a spring from its null-force length L. In these terms, the 
pressure (force per area) is p = kxlA and the density (mass per volume) 
is p = ml(A(L-x)). From this we have 

dp k dp 111 

dx = A d; = A(L-x)2 ~ AL2 

m 

and therefore 

c= ~:~ =L~ =Lw 

To give an intuitive idea of why LaJ should be the phase speed 
for wave propagation, consider an infinite sequence of mass-springs, 
and suppose each mass particle is in steady sinusoidal motion, 
oscillating about its null position, so the particles are always separated 
by a distance close to the null distance L. The equation of motion for 
each particle is of the form 

mXj = k(xj _l - 2x + xj +l ) 

Letting tP denote the uniform phase shift from one mass to the 
next, i.e., the phase shift over a distance L, we can put 
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Xj_lt) = sin(Wt - j) 
X/I) = s~n(Wt) 

xj+lt) = sm(Wt+ j) 
Substituting into the equation of motion and simplifying, we get 

k k 
d=2(l-cos(f)- =4 sin(¢l2)2-

m m 
and therefore, since ,p is small because two adjacent particles will 
not be far out of phase, we have 

il = 2 sin(¢l2) fk -;::: ¢ [k = tjJoJ V;; V-;;; 
Dividing through by ,p gives ill,p, which represents the phase 

change, expressed in units of time-I, over the distance L from one 
particle to the next. Therefore, (il/t/i)L = mL = c is the phase velocity, 
in agreement with the fluid-mechanical derivation. 

As one would expect, if the speed v of particle Xo is small 
compared with c, the result is a quasi-static compression of all the 
particles, for the case N = 5 with vic = 1/50 and vic = 1120. 

6 ct 6 ct 

vIc = 1/20 

Fig. IS 

However, as the ratio of vic increases, we can begin to see the dynamic 
propagation delay. The figure are for vic = 1110 and vic = 115. 

6 6.--.~.--,--~~ 

vIc = 1/4 

2 3 t 4 2 3 t 4 5 

Fig. 16 
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In each case the particles are not appreciably affected until nearly 
the time when the 'ct' line reaches them. In other words, the 
compression effect propagates at the same speed c as do acoustic 
waves. 

Incidentally, it's possible for the particles to pass each other 
dynamically, because the restorative spring force is null for a mutual 
distance of one unit length, and varies linearly away from that 
condition. There is nothing singular about the zero-length condition 
of these idealized springs. A different type of model could be based 
on, say, mutual inverse-square repulsion, whicb goes to infinity as 
the separation goes to zero, so the particles could never pass each 
other. However, classical force laws of that type do not apply just 
to neighbouring particles but to all the other particles, as instantaneous 
forces at a distance, so for purposes of illustrating how pressure 
propagates strictly by 'contact forces' it is more convenient to 
represent the mutual forces as springs (not to mention the fact that 
the infinite potentials of ideal point-like particles are probably not 
realistic either). 

As we increase the ratio of vic still further, we continue to see 
that the pressure propagates at essentially the speed c, the cases 
vic = 112 and vic = 1. 

6 6r-~---r--.--'--~ 

X 

41------7 

2 

The fact that there is almost no response at the jth mass particle 
until x/O)/c after the particle at x = ° begins to move might seem 
counter-intuitive at first, because we know the jth particle begins to 
move as soon as the (i-l)th particle begins to move, so they should all 
begin to move at time t = 0. Of course, this supposition relies on our 
assumption that each spring transmits force instantaneously as a 
function of the distance between its endpoints. To model a realistic 
spring we would need to account for the finite acoustic prop;;tgation 
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speed of the spring itself, treating each small part of the spring as an 
element with a certain mass and restorative force. But we have not done 
this, so there ought to be some instantaneous action at a distance, and 
indeed if we examine the initial time period closely, by plotting 
In(xp) - j) versus t and In(t) , we can see that the motion does begin 
for all the particles at t == o. (The plots below are for vic == 114.) 

5 

In (xj(t)-j) 

2 3 t 4 

In (xj(t)-j) 

Fig. 18 

012 
In(t) 

These plots also show that the motion of the jth particle is 
exponentially small until a characteristic time that is proportional to 
the distance from the source ofthe disturbance, consistent with the fact 
thatthe jth particle is virtuall y unmoved until xi 0)/ c after the disturbance 
begins. This is true even though we are modeling each spring as an 
instantaneous force transmitter. 
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If we increase the number of particles and springs we will 
gradually approach a truly continuous medium in which the distances 
over which the forces propagate instantaneously approach zero. For 
example, the case N = 9. 

Again we see that the disturbance essentially propagates at the 
acoustic speed c, but now cutoff at the ct line is even sharper. We 
can show this by comparing the response of the 6th particle in the 
N = 9 case with the response of the 2nd particle in the N = 3 case, 
normalized to the same total distance. 

7r---~---r--~--r-~--~~~--~ 

6.5 x2 for N = 3 

6 I--------=--
x.,for N = 9 

5.5 
vIc = 1/4 

5 0 0.5 1.5 2 
Fig. 20 

2.5 t 3 3.5 

As expected, the position x"t) with N=9 makes a much sharper 
corner at the acoustic propagation line than does the position x it) 
with N = 3. As we continue to increase N (the number of spring­
mass elements into which we divide the overall distance), the corner 
becomes progressively sharper. In the limit as N goes to infinity­
which represents the situation in which all instantaneous force-at-a­
distance has been eliminated-the response approaches perfect flatness 
until reaching the acoustic propagation line. 

Thus, despite the fact that there is some non-zero instantaneous 
response (albeit fantastically small) in the discrete model for any finite 
N, no matter how large, the acoustic propagation speed becomes an 
absolute limit as those segments are reduced to zero. One implication 
is that, if we take the speed of light as an absolute limit on the 
propagation speed for any energy or information, then the speed limit 
must apply down to infintessimal scales. On the other hand, the non­
zero probability amplitude for a photon to traverse a very small 
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distance at a speed greater than c (according to quantum electro­
dynamics) could be interpreted as a propensity for 'action at a 
distance' over those small distances. 

Maxwell included some interesting comments on this subject 
in his Treatise on Electricity and Magnetism. After deriving the 
general time-dependent equations for electromagnetic disturbances 
in terms of the parameters C, K; and J1 (the specific conductivity, the 
specific capacity for electrostatic induction, and the magnetic 
permeability of the medium, respectively), he considers the 
propagation of such disturbances in two different limiting cases. First, 
he considers propagation with C = 0, i.e., in a non-conducting 
medium (of which the vacuum would be one example), and shows 
that the disturbances propagate at the speed 

1 
V= ~KJ1 

It so happens that the numerical value of this expression equals. 
the speed of light. It was the crowning achievement of Maxwell's 
electrodynamic theory that he was able to derive the speed of light 
in terms of these parameters of electricity and magnetism. Then in 
Article 801 he considers "the case of a medium in which the 
conductivity is large in proportion to the inductive capacity. In this 
case we may leave out the term involving K in the equations of Article 
783, and they then become 

dF 
V2 F + 47CJ1C- = 0 

dt 
[and the same for the other components]. Each of these equations is 
of the same form as the equation of the diffusion of heat given in 
FOl,lrier's Traite de la Chaleur." Maxwell then goes on to discuss 
the analogy between heat transfer and the diffusion of electromagnetic 
quantities. For an infinite medium whose initial conditions are known, 
Fourier had already solved this equation. The value of F at any given 
point at the time t is the weighted average of the values at every 
other point, where the weight assigned to a point at a distance r is 

e-1tf.1Cr2 / t 

, Thus at the initial time t = 0 each point just has its own arbitrarily 
defined value, because the weights for all other point with r greater 
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than ° are zero. As time increases, the radius r for which there is a 
significant weight increases-in proportion to the square root of the 
time. The exponential dependence on time corresponds to the linearity 
of the logarithmic plots shown above for the motion of the mass 
particles ahead of the acoustic speed. Then Maxwell makes the 
interesting remarks. 

There is no determinate velocity which can be defined as the 
velocity of diffusion. If we attempt to measure this velocity by 
ascertaining the time requisite for the production of a given amount 
of disturbance at a given distance from the origin of disturbance, we 
find that the smaller the selected value of the disturbance the greater 
the velocity will appear to be, for however great the distance, and 
however small the time, the value of the disturbance will differ 
mathematically from zero. This peculiarity of diffusion distinguishes 
it from wave-propagation, which takes place with a definite velocity. 
No disturbance takes place at a given point till the wave reaches that 
point, and when the wave has passed, the disturbance ceases for ever. 

This is reminiscent of how, with our mass-spring 'diffusion' 
system, if we examine the initial portion ofxP) more and more closely 
to determine precisely when it begins to Change, we find that it has 
non-zero change for all t greater than 0, although the magnitude of 
the change is exponentially small prior to the delay time of Die. Thus, 
just as Maxwell says, if we define our threshold small enough, the 
speed of propagation can be as great as we choose. However, this is 
only because our model contains implicit action-at-a-distance 
elements. As noted above, each spring is considered to exert equal 
and opposite forces at both ends strictly as a function of the difference 
between the instantaneous positions of the ends. In the limit of a 
pure contact medium with no extended instantaneous elements, this 
effect disappears, and the acoustic speed limit becomes absolute for 
the propagation of any disturbance. It's odd that Maxwell should have 
regarded the lack of an absolute speed limit in his artificial 'diffusion' 
example as having physical significance, because he had already 
shown that the propagation speed for waves was inversely 
proportional to the square root of K, whereas in the diffusion example 
he explicity applies the approximation K = 0, i.e., he assumes in this 
case that the speed of light is infinite, so it should come as no surprise 
that there is no upper bound on the speed of diffusion under this 
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assumption. Had he worked out the speed of diffusion for non-zero 
K, he would have found that it does. not exceed the speed of wave 
propagation, as illustrated by the simple mass-spring model. 

This highlights the profound qualitative difference between the 
propagation of disturbances in a model with an arbitrarily large (yet 
finite) number of "distant-action" springs versus the propagation in 
a continuous model. The former has (in principle) no upper bound 
on propagation speed, whereas the latter exhibits a strict speed 
limitation of c for the propagation of any disturbance. The reason 
for this profound difference involves subtle aspects of mathematical 
limits, convergence, and existence of functions-the very issues that 
Fourier is often accused of having overlooked in his treatment of 
heat flow by means of Fourier series. We can explain these issues by 
examining the power series expressions for xP). Recall our table of 
derivatives of these functions at t = O. If we consider xP) as a power 
series in t with constant coefficient, then the nth derivative is n! times 
the coefficient of t". Thus we have the following power series for 
the normalized position functions: 

v 
xo(t) - 0 = -( mt) 

c 

x\(t) -1 = (2-(mt)3 _3..(mt)5 +2-(mt)7 
L 3! 5! 7! 

_ 14 (mt)9 + 42 (mtt _ ... ) 
9! III 

~(t) -2 = ~(2-(mt)5 _~(mt)7 + 14 (mt)9 _ 48 (mtt _ ... ) 
L c 5! 7! 9! III 

x3 (t) -3 = ~(~(mtf _~(mt)9 + 27 (mtt - ... J 
L c 7! 9! III 

The lowest-degree term of each successive function is two 
powers of wt above that of the previous function, which corresponds 
to the fact that each successive function differs significantly from 
zero only at progressively larger values of wt. The 'knee' of each 
curve occurs when wt exceeds j. Multip:ying both quantities by L, 
replacing mL with c, and dividing both quantities by c, we find that 
the normalized position function differs significantly from zero only 
when t exceedsjUc. 
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Nevertheless, each of these functions is, strictly speaking, non­
zero for all positive values of t. In other words, for any finite j there 
is instantaneous action. But what about the limit as N goes to infinity, 
and not just countable infinity but a continuum? In that case the 
normalized position function for a particle at the distance D from 
the origin has no finite-degree term, i.e., it is rigorously zero until 
the time Die, so there is no instantaneous action at a distance. This 
is an example of the 'limit paradox', which is resolved by noting 
that the limit of a set need not be an element of the set, and need not 
share all properties of the elements of that set. 

Forces and Waves 
Consider an illuminated charged sphere resting at the origin of 

a system x,y,z of inertial coordinates, and a small test particle moving 
with speed v in the positive x direction at a fixed y coordinate. 

y 
p 

...... ~ v 

· · · · · · · · · · · · a\ . Actual position 
and source of \ Apparent source 

'. of light waves 
attraction ~ \/ 

x 
Fig. 11 Aberration of Forces 

If the distance between the two objects is sufficiently great, the 
light (electromagnetic waves) emanating from the sphere will consist 
of essentially planar horizontal waves when it reaches the test 
particle. Since the particle is moving tangentially with speed v, the 
angle of the incoming light will be affected by aberration, such that 
the apparent source of the light (from the point of view of the test 
particle as it crosses the y axis) is at an angle a. = arcsin(vlc) ahead 
of the actual position of the sphere. However, the direction of the 
electrical force exerted by the sphere on the test particle points directly 
toward the actual position of the sphere. Thus, the incoming 
electromagnetic waves from the sphere experience aberration, but 
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the electromagnetic force of attraction to the sphere does not. This 
sometimes misleads people into thinking that the force somehow 
propagates instantaneously (to account for the absence of aberration). 

The test particle to be at rest, and the charged sphere to be 
moving in the negative x direction with speed v. From this point of 
view, if D denotes the distance from the sphere to the particle, then 
at any time t the particle 'sees' the sphere at the location it occupied 
at a time t - Die, because Die is how long it take for light to travel 
the distance D. 

Position of 
source at time t 

y 

. . 
P 

f ' • . 
· · · ~ D 

(l~ . 
\ Position of source 
~ at time t -DIe 

~ \/ 
v ~.. X 

Fig. 22 Aberration of Waves. 

Just as before, the light arrives at the (stationary) particle P from 
a direction differing from the true current direction of the source at 
time t by the angle a. Also, since we have simply changed coordinate 
systems, which can have no effect on any physical attributes, we know 
the electromagnetic force on the particle at the time t points directly 
toward the sphere's actual (not apparent) position at that time. 

The absence of aberration in the direction of the electromagnetic 
force does not indicate that the force propagates infinitely fast. (In 
fact, the concept of a 'moving force' is not even well defined.) The 
force on a test particle at any given instant is due to the 
electromagnetic field in the immediate vicinity of the particle at that 
instant. In general the field at any given place and time consists of 
contributions from multiple sources at a variety of distances. The 
number of sources and their distances matter only insofar as they 
determine the electromagnetic field. The field of the charged sphere 
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with respect to the rest frame of the sphere is an electro-static 
configuration (no magnetic field) with spherical symmetry centred 
on the source. A uniformly moving charged test particle in this field 
is subjected to a force proportional to (and therefore pointing in the 
same direction as) the electric field vector at its present location, so 
the force obviously points directly towards the source at all times. 

On the other hand, in terms of the rest frame of the test particle 
the charged sphere is in uniform motion and the electromagnetic field 
has both electric and magnetic components. However, since the test 
particle is at rest with respect to these coordinates, it does not 
experience any magnetic force, so again the force on the particle is 
proportional to the electric field vector. To determine the direction 
of this force we need to know how the components of the electric 
field transform from one system of inertial coordinates to another. 
As explained in Force Laws and Maxwell's Equations, if EX' Ey' and 
Ez are the components of the electric field at a given point with respect 
to the x,y,z,1 coordinates, then the components with respect to a 
similarly oriented system of inertial coordinates x ',y ',z ',I' moving 
with speed v in the positive x direction are 

Ey' -vBz Ez - vBy 

Ex' = ExEy'= ~1-V2 Ez·= ~1-v2 
Of course, we also have 

x-vt 
x'= c-z y' =yz'=z 

vl-v-
In the unprimed coordinates (the rest frame of the charged 

sphere) we know the electric field components at the location of the 
test particle point directly toward the origin, which means EX' EY' 
and Ez are proportional to the coordinates x, y, and z of the test 
particle. Also, since the magnetic field is zero with respect to the 
unprimed coordinates, and since the origins of the two coordinate 
systems coincide at t = 0, we have 

Ex' Ex ~1-v2 !..~I-v2 =~ 
Ey' = Ey = y y' 

Similarly it follows that Ex,/Ez• = x'/z' and Ey.!Ez• = y'/z', 
confirming that the electric field vector at every lpcation points 
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directly toward the instantaneous source with respect to the rest frame 
of the test particle (relative to which the source is moving with 
a speed v). Thus the absence of 'force aberration' for objects in 
fully developed inertial motion is an immediate consequence of 
Lorentz covariance. 

The qualifier 'fully developed' is necessary, because every 
object is instantaneously at rest with respect to some inertial frame, 
but the object's field in its current rest frame is spherical and satisfies 
the steady-state relations only out to a distance D = cL1t where Dt is 

,the length of time the object has been unaccelerated. This highlights 
the fact that although the field of an object exists and acts at a distance 
from the object, changes in the field propagate at the finite speed c. 
When an object changes its state of motion, the field must 
change accordingly, and these changes propagate outward from the 
source at the speed c. In the far field these changes propagate in the 
form of waves. 

One thing that sometimes puzzles people about the lack of force 
aberration is that they tend to regard the electric field as the gradient 
of a potential, aild they know the equi-potential surfaces for a 
uniformly moving charged particle are contracted in the direction of 
motion so they form ellipsoids instead of spheres, and clearly the 
spatial gradient of this potential does not point towards the centre 
(except for lines parallel or perpendicular to the axis of motion). 
The explanation is that the electric field vector equals the spatial 
gradient of the potential field only if the field is stationary, i.e., 
unchanging with time. If the field is changing with time, the full 
expression for the electric field must include an additional term to 
account for this, i.e., we have 

1 aA 
E = -V f--::& 

Where A signifies the vector potential of the electromagnetic field. 
The second term on the right hand side represents the effect of the 
changing potential with time. Using the Lorentz gage 

1 a¢ 
V·A = --­

c at 
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the field equations for the electromagnetic potentials are 

1 a2¢ V2¢ ____ =-4pr 
c2 at2 

2 1 a2 A v 
V A---- =-4pr-

c2 at2 c 

239 

It follows that, if v is constant (and has been for a sufficiently 
long time), and we are given a solution ¢(x,y,z, t) for the scalar 
potential, we can mUltiply this solution by vic to give a solution of 
the vector potential 

¢ 
A= -v 

c 
Therefore, under these conditions, the time-dependent term in 

the last equation for E can be written as 

1 aA v a¢ 
-;;a; = 2a; 

Now, by definition, the total derivative of ¢ along any 
incremental path dx,dy,dz,dt is 

a¢ a¢ a¢ a¢ 
df= -dx+-dy+-dz+-dt ax By az at 

Dividing by dt and solving for the partial of ¢ with respect to t gives 

a¢ = c¢ _ (a¢ ax + a¢ By + a¢ az) 
at at ax at By at az at 

Taking dxldt etc., as the components of the sphere's velocity v, 
the total derivative d¢ldt represents the change in fwith time along a 
co-movingworldline, and since the (fully developed) field is stationary 
with respecttothe rest frame ofthe sphere, we havedtf/dt = O. Therefore 
the partial offwith respect to t equals the negative of the dot product 
ofthe spatial gradient of ¢ with the velocity v, so the previous expression 
for the time-dependent electric field is 

E= -V¢+-;-(v.V¢) 
C 
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We are considering the case when the sphere's motion is in 
the positive x direction, so we have v= (v, 0, 0) and the above expression 
becomes. 

E~ -[(l-;:)Z, :' z 1 
A surface of constant q, is a stationary sphere in the rest frame of 

the source, so it transforms to an ellipsoid due to contraction in the 
direction of motion. 

i 
1 

1 

y 

i 

I 
.Jl- v2 I 

Fig. 23 

h 

The equation of this cross-section is 

(pJ+y'~1 

x 

x 

where we have chosen units so thatc = 1. Taking the differential of both 
sides gives 

2x 
--dx+2ydy=o 
I-v2 

The slope of the normal to the ellipse at the point (x, y) is the 
negative reciprocal of dy/dx, which is 

dx h y 
- dy = b = (1-v2

)-:; 

According to our expression for E(r, t), we begin with the 
gradient of f and then reduce the x component by the factor (1 - vl), 
where we still have c = 1. Thus we have 
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h Y Y 
- = (1- V2) (_ 2) =-a x 1 v x 

This confirms that the electromagnetic force exerted by the field 
of the moving charged sphere on the test particle at time t is directed 
toward the position of the sphere at the same time t. This is a natural 
consequence of Lorentz covariance, and does not imply any 
instantaneous transfer of energy or information. 

It's true that, in quantum theory, the electromagnetic force can 
be considered to be mediated by photons, but these are virtual 
photons, which are actually just analytical components of the field. 
In effect these virtual photons form a cloud around the source particle, 
and they 'exist' only within the uncertainty envelope. An 
electromagnetic interaction between two electrons, for example, is 
modeled as an exchange of photons between the overlapping fields 
of two particles. It is not represented by a photon traversing from 
one particle to the other. Virtual photons don't even possess definite 
trajectories through space and time. They are conceptual entities 
arising in the quantization of the electromagnetic field. 

t 

x 
y 

Fig. 24 Equipotential surface 

Another point that sometimes puzzles people is why an equi­
potential sphere transforms to an ellipsoid under a Lorentz 
transformation, whereas a spherical wave of light transforms to a 
spherical wave under the same transformation. The reason is that 
an equi-potential sphere is stationary, whereas a wave of light is 
expanding. 
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A side view showing the intersections of these two surfaces with 
two difference planes of simultaneity. 

t' I 
/ t'-k' , ..... ---I -,. 

i ~ ...... ' 

I .... R. r·' 
; 

Fig. 24 Two Diffrerent Planes. 

x 

The source of the light pulse and the potential field moves along 
- the t axis. With respect to the x, t coordinate system the expanding 

spherical shell of light coincides with an equi-potential sphere at the 
time t = k with the diameter AB. However, with respect to the x', t' 
coordinate system the left-most point of the expanding sphere of light 
just touches the left-most point of the equi-potential sphere at the 
point A and time t' = k'. At this time the right-most point of the light 
sphere is at C, whereas the right-most point of the equi-potential 
surface is at D. The 'centre' of the expanding light sphere (with 
respect to the primed coordinates) moves along the t' axis, whereas 
the centre of the potential still moves along the t axis. This illustrates 
why the coincidence of the light and the equi-potential spheres (at a 
particular instant) with respect to one frame of reference does not 
imply that they ever coincide with respect to another frame of 
reference. The wavefront of the light pulse is always spherical with 
respect to both systems of inertial coordinates, whereas the equi­
potential surfaces are spherical only with respect to the rest frame of 
the source. 
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Electrons in One Dimension 

In 1964, Little suggested that it might be possible to synthesize 
a room temperature superconductor using organic materials in which 
the electrons travelled along certain kinds of <:hains, effectively 
confined to one dimension. 

The first satisfactory theory of' ordinary' superconductivity, that 
of Bardeen, Cooper and Schrieffer (BCS) had appeared a few years 
earlier, in 1957. The key point was that electrons became bound .. 
together in opposite spin pairs, and at sufficiently low temperatures 
these bound pairs, being boson like, formed a coherent condensate 
all the pairs had the same total momentum, so all travelled together, 
a supercurrent. The locking of the electrons into this condensate 
effectively eliminated the usual single-electron scattering by 
impurities that degrades ordinary currents in conductors. 

But what could bind the electrostatically repelling electrons? 
The answer turned out to be lattice distortions, as first suggested by 
Frohlich in 1950. An electron traveling through the crystal attracts 
the positive ions, the consequent excess of local positive charge 
attracts another electron. The strength of this binding, and hence the 
temperature at which the superconducting transition takes place, 
depends on the rapidity of the lattice response. This was confirmed 
by the isotope effect: lattice response time obviously depends on the 
inertia of the lattice, the BCS theory predicted that for a 
superconducting element with different isotopic varieties, the ratio 
of the superconducting transition temperatures for pure isotopes 

T2 /Tj was equal to ~MI / M2 ' M 1,M2 being the ion masses, the 
I 
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lighter isotope having the higher transition temperature. This was 
indeed the case. 

Little's idea was that the build up of positive charge by a passing 
electron could be speeded up dramatically if instead of having to 
move ions, it need only rearrange other electrons. Unfortunately, there 
were no obvious three-dimensional candidate materials. However, 
if the conduction electrons moved along a one-dimensional 
chain, polarizable side chains might be attached, and rearrangement 
of the electronic charge distribution in these side chains would 
respond very rapidly to a passing conduction electron, building up a 
local positive charge. If this worked, order of magnitude arguments 
suggested possible enhancement of the transition temperature by 

a factor .J M / m over ordinary superconductors, m being the electron 
mass. 

In the 1970's, various organic materials were synthesized and 
tested, beginning with one called TTF-TCNQ, in which a set of 
polymer-like long molecules donated electrons to another set, leaving 
one-dimensional conductors with partially filled bands, seemingly 
good candidates for superconductivity. Unfortunately, on cooling 
these materials surprisingly became insulators rather than 
superconductors! This was the first example of a Peierls transition, 
a widespread phenomenon in quasi one-dimensional systems. 

The basic mechanism of the Peierls transition can be understood 
with a simple model. It is a nice example of applied second-order 
perturbation theory, including the degenerate case. We examine the 
model and the result below. 

It should be added that in some newer materials the Peierls 
transition is (unexpectedly) suppressed under high pressure, and 
superconductivity has in fact been observed in organic salts, but so 
far only at transition temperatures around one Kelvin, Little's dream 
is not yet realized. 

Second-Order Perturbation Theory 
To understand how a one-dimensional conductor might turn into 

an insulator at low temperatures, we must first become familiar with 
the simplest model of a one-dimensional conductor: 

2 

H=lf'+ V= L+V(x) 
2m 



Electrons in One Dimension 245 

with HO a gas of noninteracting electrons on a line, and V periodic, 

that is V ( x + a) = v ( x ) , the potential from a line of ions spaced a 
apart. We'll take the system to have N ions in a total length L, so L 
= Na and to keep the math simple, we'll require periodic boundary 
conditions. 

Total sysUm J.IIgth L = Na for Nioll$ 

• • 
/mghborillg iollS dislane. a apart 

Fig. 1 Lonic Potentian seen by electrons 
in one-dimensional system. 

The physics here is that without the potential, the electron 
eigenstates are plane waves. The effect of the lattice potential is to 
partially reflect the waves, like a diffraction grating, generating 
components at different wavelengths. This effect becomes particularly 
important when the electron wavelength matches twice the ion 
spacing. For that case, the reflected and original waves have the same 
strength, the electron is at a standstill. 

The eigenstates of JfJ are then 

( ) l'j 'IL 21m Ik)O = /Te,a,withe' =l,sok=--, n 
vL L 

being an integer. The unperturbed energy eigenvalues, 

HO Ikn)(O) =E~ I kn)(O) , 

1i2k2 

are just £!l =--
2m 

This is to be understood as 

HO Ik/O) =E~ Iknt), 

1i2k2 2Kn 
with ~ = 2m and kn =T 

We are following standard practice here. We shall also write. 

ff(k)meaningff(kn). It's worth plotting the (E, k) curve: 
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E=lh'!'lIo 

Fig. 2 Energy Mamentum (E,K) Curve for a free 
Electror in One Cimension. 

Suppose we have ions with two electrons each to contribute to 
this one-dimensional (supposed) conductor. Assuming they move into 
these plane wave states, in the system ground state they will fill up 
the lowest energy states up to a maximum k-value denoted by ±kF (F 
stands for Fermi, this is the Fermi momentum.) Where is it? 

We know there will be a total of 2N electrons. We also know 
that the allowed values of k, from the boundary conditions, are 
kn = 2nn / L , with n an integer. In other words, the allowed k's are 
uniformly spaced 2nn / L apart, meaning they have a density of 
L / 2n in k-space, so the total number between ±kF is LkF / n . The 
2N electrons will have N of each spin, each k-state can take two 

electrons (one of each spin), so LkF / n = N = L / a, and kF = n/ a . 

To do perturbation theory, we must find the matrix elements of 
Vex) between eigenstates of H 0: 

(O\k'lvlkiO) = ~ Je,(k-k')V{x)dx 

This is just the Fourier component vk-k of V(x).If Vex) is periodic 
with period a, Vk "# 0 only if k = nk, n an integer, k = 2ma. In other 
words, if a function is periodic with spatial period a, the only non­
zero Fourier components are those having the same spatial period a. 

Therefore, 

v (x) = L VnkcinKk and V nk = V-nK VSince V(x) is real; 
n 

K= bela. 
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The n = 0 component of V(x) is of no interest it is just a constant 
potential, and so can be taken to be zero. Note that this eliminates 

the trivial first order correction E! =(0) (klvlk/O) to the energy 

eigenvalues. 

We shall consider only the components n = + I and n = -I of 
V(x), it turns out that the other components can be treated in similar 
fashion. For n = + I, , the potential only has nonzero matrix elements 
between the plane wave state k and k + k, k - k respectively. 

So, the second-order correction to the energy is: 

Ei = II(O)(klvlk')(O)t 
k-k 

1 (0) (k I v I k + K) (0)1
2 

1 (0) (k I v I k _ K) (0)1
2 

= 0 0 + 0 0 
EK -Ek- K EK -Ek- K 

IVkl2 Iv - kl2 

= 0 0 + 0 0 
Ek - Ek+K Ek - Ek- K 

This result is reasonable provided the terms are small, that is, 
the energy differences appearing in the denominators are large 
compared to the relevant Fourier component VK. However, this cannot 
always be true! Notice that the state k =;r/a has exactly the same 

IVkl2 Iv - kl 2 

unperturbed energy & as the state = EO _ EO + EO _ EO : in 
k k+K k k-K 

this case, nondegt:;nerate perturbation theory is clearly wrong. In fact, 

even for states close to, the energy denominator E~ - EZ-
k 

is small 

compared with the numerator lV_kI2, so the series is not converging. 

Quasi-degenerate Perturbation Theory Near the Critical 
Wavelength 

The good news is that, despite the many states near k = 1t / a and 
k = -1t / a that are close together in energy, for anyone state k near -
1t / a the potential only has a nonzero matrix element to one other 
state close in energy, the state k - K, that is k = -21t / a . The strategy 
now is to do what might be called quasi-degenerate perturbation 
theory: to diagonalize the ful1 Hamiltonian in the subspace spanned 

by these two stateslk/O),lk-k)(O). Other states with non-zero 
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matrix elements to these states are relatively much further away in 
energy, and can be treated using ordinary perturbation theory. 

The matrix elements of the full Hamiltonian in the subspace 
spanned by these two states are: 

Diagonalizing within this subspace gives energy eigenvalues: 

Fig. 3 

Notice that, provided 

IEZ -EZ-kl»I~I, 
to leading order this gives back E± = E~ ,E~_k the order depending 

on k. However, as k approaches xl a, 

IE~ -EZ-kl 
becomes of order, and the energies deviate from the unperturbed 

values. If k is approaching from below, Ek = E _ < E~ , and the 

lower energy is pushed downwards by the perturbation: This is a 
common occurrence with almost degenerate states, perturbations 
cause the energy levels to 'repel' each other. 
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For k =1tIa,E~_k =E~-27Cla =i; At this value of k, the 
unperturbed states are exactly degenerate, and the perturbation lifts 

the degeneracy to give E± = E~I a ± IVk I· 
Energy Gaps and Bands 

The energy jump, or gap, of 21V ~ at Ikl = pIa means that there 
are no plane wave type eigenstates with energies in that range 
attempting to integrate Schrodinger's equation in the periodic 
potential for such an energy gives exponentially growing and 
decaying solutions. Such energy gaps in fact are present in real 
crystalline solids, the allowed energies are said to be in 'bands'. The 
lowest band for our model is from k = 1tIa to 1tIa Since the allowed 
values of k are given by k = 21l1'11L, the spacing between adjacent k's 
is 27t1 L and the total number of k's in the lowest band is Lla = N, 
the same as the number of atoms. Since each electron has two spin 
~tes, this implies that a one-dimensional crystal of divalent atoms 
wiH just fill the lowest band with electrons. Therefore, any outside 
field can only excite an electron to a different state if an energy of at 
least 21V ~ is supplied for a small electric field, the filled band of 
electrons will remain in the ground state, there will be no current 
This material is an insulator. 

On the other hand, if monovalent atoms are used, it is clear that 
the lowest band is only half full, adjacent empty electron states are 
available. The electrons are free to accelerate if an external field is 
applied. Barring the unexpected, this one-dimensional crystal would 
be a metal. 

Let us now examine how the periodic potential alters the 
eigenstates. Ignoring the small corrections from plane waves outside 

the I k)(O) ,I k - K)(O) subspace, the eigenstates to this order have the 
form 

where 
o 

ak-K E_ -Ek 
--=---:-• .....!!.. 

ak VK 
from the diagonalization of the 2 x 2 matrix representing the 
Hamiltonian in the subspace. 
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As k increases from 0 towards , the plane wave initially 
proportional to eikx has a gradually increasing admixture of 

/( k- 2x I a)x , until at k = 1t I a the two have equal weight meaning that 

the eigenfunction is now a standing wave. In fact, there are two 
standing wave solutions at k = 1t I a, corresponding to the energies 
below and above the gap. Taking the atoms to have an attractive 
potential, the lower energy wave has a probability distribution peaking 
at the atomic positions. The diffractive scattering that gives a left­
moving component to a right moving wave is known as Bragg 
scattering. It also manifests itself in the group velocity of the 

electronic excitations, Vgroup = droldk = {lIh)dEldk. An electron 
injected into a one-dimensional metal would not be a plane wave 
state, but a wavepacket traveling at the group velocity. It is evident 
that for an injected electron with mean value of k close to ;rIa, the 
electron will move very slowly into the metal. This is to be expected 
the eigenstates become standing waves as k ~ 1t I a . 

. For three-dimensional crystals, the situation is far more 
complicated, but many of the same ideas are relevant. Electron waves 
are now diffracted by whole planes of atoms, and the three­
dimensional momentum space is divided into Brillouin zones, with 
planes having an energy gap across them. 

The Peierls Transition: How Cooling a Conductor 
can Give an Insulator 

As mentioned in the introduction, substances very close to 
monovalent one-dimensional crystals have been synthesized, and it 
has been found surprisingly that at low temperatures many of them 
undergo a transition from metallic to insulating behaviour. What 
happens is that the atoms in the lattice rearrange slightly, moving 
from an equally-spaced crystal to one in which the spacing alternates, 
that is, the atoms form pairs. This is called dimerization, and costs 
some elastic energy, since for identical atoms the lowest state must 
be one of equal spacing for any reasonable potential. However, the 
electrons are able to move to a lower energy state by this manoeuvre. 

Total system length 1= Na (as before) for N ions 

System now has longer period: 2a 

Fig. 4 Lonie Potential seen by Electrons in a Dimensional System. 
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Just how this happens can be understood using the perturbation 
theory analysis above. For equally spaced atoms, the electrons half­
fill the band, that is, they fill it up (two electrons, one of each spin, 

per state) to Ikl = 1t I 2a . 

The crucial point is that if the atoms move together slightly into 
pairs, the crystal has a new period 2a instead of a. This means that 
the potential now has a nonzero component at k = -1t I a , with a 
nonzero matrix element between the states k = 1t/2a and 
k = -1t I 2a , and so on. From this point, we can rerun the analysis 

above, except that now the gaps open up at Ikl = 1t I 2a instead of at 

Ik l=1tla. 

The important point is that if the electrons fill all the states to 

Ikl = 1t/2a, and none beyond (as would be the case for monovalent 

atoms) then the opening of a gap atlkl = 1t/2a means that all the 

electrons are in states whose energy is lowered. To find the total 
energy benefit we need to integrate over k . 

Filled electron states E2 = ~/]Q + hvq (free electrons) 

k = 1C/la 
Fig. 5 Change in Electronic Energy levels near k = 1t/2a from 
Dimerizatzation: in this region, the Tree Electron curve is approximated 
with a straight line: q = k -1t I 2a 

Calculating the Electronic Energy Gained by 
Doubling the Lattice Period 

It is evident from the above that most of the contribution comes 

from fairly close to k = 1t/2a (and of course symmetrically 

k.= -1t/2a). Since we want to find the total lowering in energy, let 
us study first the bare energy as a function of k, that is, the energy 
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with no potential present. Of course, there isn't much to say: 

E~ = tl k 2 12m . However, the physics of these one-dimensional 
systems concerns only excitations near the 'Fermi surface', the 
boundary between filled (low energy) states at zero temperature and 
empty states. This 'Fermi surface' is in fact just two points in one 
dimension: k = ±1t/2a. In the neighbourhood of these two Fermi 
points, it is an excellent approximation to replace the gently curving 

E~ = h2 k 2 12m by straight line approximations the slope being dEl 

dk = I?klm=hplm = hv. 

Linearizing in the neighbourhood of k = 1t 12a, then, we take 

E2 = P1n12a +hv (Ie-1t /2a) = E.:l2a + hvq. 

where, q = k -1t/2a 

just k measured from the Fermi point 1t 12a. The variable q is 
negative for the relevant states, since they are on the lower energy 
side. The density of states in k-space is a constant 2 x L 121t = L Ix , 
remembering the two spin states per k-value. Recall 

but now k = xl a and the lowering of energy of the electrons 
(counting it as a pOsitive quantity) is: 

W2a 0 Ldk 
2 f (Ek -Ek- K )-

o 1t 

~ {~(E2 -Ef-K)+ (Ef -:2-K r +IVKf J~ 
where the extra factor of2 counts the symmetrical contribution from 
the left-hand gap. (In examining the above expression, recall that 

for the k > 0 states we are interested in, k > x/2a,iZ - EZ-k IS 

negative. The integrand on the right-hand side is still positive, very 

small for small k, reaching a maximum ofJVKI at k = x/2a) Putting 
in our linearized energy approximation, 
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2 I 2 -IVKI 1 Ld L V V 
El-K= M~IVkl J --q = I kl 1n~ +hv(lc-1t12a) 

-D 2hv 1t I q I hv D 

= E!2a+ hvq, 

and remembering that now 

. ~_K=e:.2a-hv(lc-1t12a) =E!2a- hvq. 

Since o 0 
Ex/2a = E-x/2a ' 

(E~ - E~_k ) = 2vhq 
Substituting these linearized values in the integral for the total 

energy lowering: 

where in terms of the variable q we have set the lower limit of 
integration at -D: we can safely be vague about this lower limit, as 
the integral tums out to be logarithmic. 

Since the integral is over negative numbers, and we have taken 
the positive square root, it is zero for zero VK, as it must be. 

The integral can be done exactly, but it is more illuminating to 

divide the range ofintegration into IVhql :s; IVk I and Ivhql > IVk I, then 
estimate the contributions from these two ranges separately. 

First, consider Ivhql :s;IVkl· Here the integrand is of order IVkl, 
and the region Aq of integration corresponding to Ivhql:s; IVk I is of 
order so the integral over this range is of order. 

Second, in the region Ivhql :s;IVkl, we can write 

2 f{vhq+~{vhq)2 +\Vl )Ldq/1t 

= 2' vhq+lvhql 1+ \Vkl~ 11 dq/1t Jl (vhq) r 
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and expand the square root term. The leading terms cancel since q 
is negative, and the main contribution comes from the next term. 
This gives: 

The important thing here is the logarithm. For sufficiently small 
IVk I, this large (negative) term will dominate any term which is just 

proportional to Vk2. But the elastic energy cost of the lattice 
'dimerizing' the atoms forming pairs, so that the distance between 
atoms alternates on going along the chain must be proportional to 

Vk2. This leads to the conclusion that some, probably small, 

dimerization is always going to happen a one-dimensional equally 
spaced chain with one electron per ion is unstable. 


	Preface
	Contents
	Introduction to Quantum Physics
	Max Planck's Revolutionary Hypothesis
	Path Integrals in Quantum Mechanics

	Angular Momentum
	Orbital Eigenfunctions:2-D and 3-D
	Niels Bohr and Quantum Atom
	Time-dependent Wave Functions
	Simple Harmonic Oscillator
	The Hydrogen Atom
	Electrons in One Dimension



