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Preface

In 1993, Yakir Aharonov, Lev Vaidman and Jeeva Anandan discovered an impor-
tant new method of measurement in quantum mechanics, the so-called protective
measurement. Distinct from conventional measurements, protective measurement
is a method for measuring the expectation value of an observable on a single quan-
tum system. By a series of protective measurements, one can even measure the
wave function of a single quantum system. In this way, theoretical analysis of
protective measurement may lead to a new and deeper understanding of quantum
mechanics. Moreover, its experimental realization may also be useful for quantum
information technology.

This book is an anthology celebrating the 20th anniversary of the discovery of
protective measurement. It begins with a clear and concise introduction to stan-
dard quantum mechanics, conventional measurement and protective measurement,
and contains fourteen original essays written by physicists and philosophers of
physics, including Yakir Aharonov and Lev Vaidman, the two discoverers. The
topics include the fundamentals of protective measurement, its meaning and appli-
cations, and current views on the importance and implications of protective mea-
surement. The book is accessible to graduate students in physics and chemistry.
It will be of value to students and researchers with an interest in the meaning of
quantum theory and especially to physicists and philosophers working on the foun-
dations of quantum mechanics.

When I contacted potential contributors to this anthology, one of them replied,
“Protective measurements are something I know nothing about.” Indeed, as one
referee of this book also admitted, although protective measurement has attracted
attention over the last 20 years and has raised many interesting questions, it is still
an under-studied aspect of quantum mechanics. In recent years the associated field
of weak measurement has seen significant increased activity, and the latest Pusey—
Barrett—Rudolph theorem has also caused many people to revisit the question of the
reality of the wave function. Can protective measurement, like weak measurement,

xiii



xiv Preface

be performed in laboratories in the near future? Do protective measurements antic-
ipate the Pusey—Barrett—Rudolph theorem? What, if any, are the implications of
protective measurements for the ontological meaning of the wave function and the
nature of quantum reality? I hope this anthology will arouse more researchers’
interest in protective measurement and its implications, and further open up a new
line of research in the foundations of quantum mechanics.

I wish to express my warm thanks to Baichun Zhang, Yidong Liu and Miao
Tian for helpful discussions, which inspired me to take up the project of editing an
anthology about protective measurement and relevant topics. [ am grateful to Yakir
Aharonov and Lev Vaidman for their support for the project. I thank all contributors
for taking the time to write these new essays in the anthology. I also thank Simon
Capelin of Cambridge University Press for his kind support as I worked on this
project, and the three referees who gave helpful suggestions on how the work could
best serve its targeted audience. Finally, I am deeply indebted to my wife Huixia
and my daughter Ruiqi for their unflagging love and support.

Shan Gao
Beijing, 2013
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1

Protective measurement: an introduction

SHAN GAO

Protective measurement, in the language of standard quantum mechanics, is a
method to measure the expectation value of an observable on a single quantum sys-
tem (Aharonov and Vaidman, 1993; Aharonov, Anandan and Vaidman, 1993). For
a conventional impulsive measurement, the state of the measured system is strongly
entangled with the state of the measuring device during the measurement, and the
measurement result is one of the eigenvalues of the measured observable. By con-
trast, during a protective measurement, the measured state is protected by an appro-
priate procedure so that it neither changes nor becomes entangled with the state of
the measuring device appreciably. In this way, such protective measurements can
measure the expectation values of observables on a single quantum system, and
in particular, the wave function of the system can also be measured as expecta-
tion values of certain observables. It is expected that protective measurements can
be performed in the near future with the rapid development of weak measurement
technologies (e.g. Kocsis et al., 2011; Lundeen et al., 2011). In this chapter, we
will give a clear introduction to protective measurement in quantum mechanics.

1.1 Standard quantum mechanics and impulsive measurement

The standard formulation of quantum mechanics, which was first developed by
Dirac (1930) and von Neumann (1955), is based on the following basic principles.

1 Physical states
The state of a physical system is represented by a normalized wave function
or unit vector |(7)) in a Hilbert space.' The Hilbert space is complete in the
sense that every possible physical state can be represented by a state vector in
the space.

! The Hilbert space is a complete vector space with scalar product. The common notion of state includes both
proper vectors normalizable to unity in the Hilbert space and so-called improper vectors normalizable only to
the Dirac delta functions.
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2 Physical properties
Every measurable property or observable of a physical system is represented
by a Hermitian operator on the Hilbert space associated with the system. A phys-
ical system has a determinate value for an observable if and only if it is in an
eigenstate of the observable (this is often called the eigenvalue—eigenstate link).
3 Composition rule
The Hilbert space associated with a composite system is the tensor product
of the Hilbert spaces associated with the systems of which it is composed.
Similarly, the Hilbert space associated with independent properties is the tensor
product of the Hilbert spaces associated with each property.
4 Evolution law

(1) Linear evolution
The state of a physical system [y(#)) obeys the linear Schrodinger equation
ind W (1)) /Ot = H [ (t)) (when it is not measured), where 7 is Planck’s con-
stant divided by 2, and H is the Hamiltonian operator that depends on the
energy properties of the system.

(2) Non-linear collapse evolution
If a physical system is in a state |y) = > ; ¢; |a;), where |a;) is the eigenstate
of an observable A with eigenvalue a;, then an (impulsive) measurement of
the observable A will instantaneously and randomly collapse the state into
one of the eigenstates |a;) with probability |c;|*. This is called the collapse
postulate, and the non-linear stochastic process is called the reduction of the
state vector or the collapse of the wave function.

The link between the mathematical formalism and experiments is provided by
the Born rule. It says that the probability of the above measurement of the observ-
able A yielding the result ¢ is |c;|>. For a continuous property such as position x, the
probability of obtaining a measurement result between x and x + dx is |<x|w)|2dx.
Note that the Born rule can be derived from the collapse postulate by resorting to
the eigenvalue—eigenstate link, but it does not necessarily depend on the postulate.

The conventional impulsive measurements can be formulated as follows.
According to the standard von Neumann procedure, measuring an observable
A in a quantum state |i/) involves an interaction Hamiltonian

Hy = g(n)PA (1.1)

coupling the measured system to an appropriate measuring device, where P is the
conjugate momentum of the pointer variable X of the device. The time-dependent
coupling strength g(¢) is a smooth function normalized to f drg(r) = 1 during the
measurement interval 7, and g(0) = g(r) = 0. The initial state of the pointer at
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t = 0 is supposed to be a Gaussian wave packet of eigenstates of X with width wy,
centered around the eigenvalue xg, which is denoted by |¢(xp)).

For an impulsive measurement, the interaction Hj is of very short duration and
so strong that it dominates the rest of the Hamiltonian (i.e. the effect of the free
Hamiltonians of the measuring device and the measured system can be neglected).
Then the state of the combined system at the end of the interaction can be written as

it =7) = e P ) Ig(xo)) - (1.2)
By expanding |¢) in the eigenstates of A, |a;), we obtain
=7y = > e i la)1g(x0)), (1.3)

i
where c; are the expansion coefficients. The exponential term shifts the center of
the pointer by a;:

=1y = > cila lg(xo + ). (1.4)
This is an entangled state, where the eigenstates of A with eigenvalues a; get corre-
lated to measuring device states in which the pointer is shifted by these values a;.
Then, by the collapse postulate, the state will instantaneously and randomly col-
lapse into one of its branches |a;) |¢(xo + a;)) with probability |ci|*. This means that
the measurement result can only be one of the eigenvalues of the measured observ-
able A, say a;, with a certain probability |c;|*>. The expectation value of A is then
obtained as the statistical average of eigenvalues for an ensemble of identically
prepared systems, namely (A) = 3 ; lcila;.

1.2 Weak measurement

Impulsive measurements are only one kind of quantum measurement, for which
the coupling between the measured system and the measuring device is very strong,
and the results are only the eigenvalues of an observable. We can also perform other
kinds of measurement by adjusting the coupling strength. An interesting exam-
ple is weak measurement (Aharonov, Albert and Vaidman, 1988; Aharonov and
Vaidman, 1990), for which the measurement result is the expectation value of the
measured observable.

A weak measurement is a standard measuring procedure with weakened cou-
pling. Like impulsive measurements, the interaction Hamiltonian is also given by
(1.1) for a weak measurement. The weakness of the interaction is achieved by
preparing the initial state of the measuring device in such a way that the conjugate
momentum of the pointer variable is localized around zero with small uncertainty,
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and thus the interaction Hamiltonian (1.1) is small. As a simple example, let the
initial state of the pointer in position space be:

(xIg) = (wim)~/4e= 1215, (1.5)
The corresponding initial probability distribution is
Pi(x) = (Wim) /2, (1.6)

Expanding the initial state of the system |i/) in the eigenstates |a;) of the measured
observable A, [) = }; cila;), then after the interaction (1.1) the state of the system
and the measuring device is:

t=1) = W2 Y elagye G, (1.7)
0
i
The probability distribution of the pointer variable corresponding to the final state
(1.7) 1s:

Pi(x) = (wpm) ™12 ) Jeifrem e, (1.8)
i

In the case of an impulsive measurement, this is a weighted sum of the ini-
tial probability distribution localized around various eigenvalues a;. Therefore, the
reading of the pointer variable at the end of the measurement always yields a value
close to one of the eigenvalues. By contrast, the limit of weak measurement corre-
sponds to wy > q; for all eigenvalues ;. Then we can perform the Taylor expan-
sion of the sum (1.8) around x = O up to first order and rewrite the final probability
distribution of the pointer variable in the following way:

— — —(x=%": e Pa)? w2
Pi(x) ~ im) ™2 D leiP[1 = (x = ) fwg] & (wir) ™ 2emC Rkl e - (1.9)
i

This is the initial probability distribution shifted by the value }; lcil*a; (Aharonov
and Vaidman, 2008). It indicates that the result of the weak measurement is the
expectation value of the measured observable in the measured state:

(A) = WiAw) = > leila;. (1.10)

Certainly, since the width of the pointer wave packet is much greater than the
shift of the center of the pointer, namely wg > (A), the above weak measurement of
a single system is very imprecise. However, by performing the weak measurement
on an ensemble of N identically prepared systems the precision can be improved
by a factor VN. This scheme of weak measurement has been realized and proved
useful in quantum optical experiments (see, e.g. Kocsis et al., 2011; Lundeen et al.,
2011).

Although weak measurements, like conventional impulsive measurements, also
need to measure an ensemble of identically prepared quantum systems, they are
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conceptually different. For impulsive measurements, every identically prepared
system in the ensemble shifts the pointer of the measuring device by one of the
eigenvalues of the measured observable. By contrast, for weak measurements,
every identically prepared system in the ensemble shifts the pointer of the mea-
suring device directly by the expectation value of the measured observable.

1.3 Protective measurement

Protective measurements are improved methods of weak measurements in the
sense that they can measure the expectation values of observables on a sin-
gle quantum system (Aharonov and Vaidman, 1993; Aharonov, Anandan and
Vaidman, 1993). For an impulsive measurement, if the measured system, prior to
the measurement of an observable A, is not in an eigenstate of A, then its state will
be invariably entangled with the state of the device due to the interaction. A protec-
tive measurement differs from an impulsive measurement (as well as from a weak
measurement) in that the measured state is protected from being entangled and
changed appreciably when the measurement is being made. A universal protection
scheme is via the quantum Zeno effect. Let’s see how this can be done.

1.3.1 Measurements with artificial protection

Let |) be an arbitrary known state of a single quantum system at a given instant
t = 0. To protect this state from being changed, we make projective measure-
ments of an observable P(r), for which |y) is a non-degenerate eigenstate, a large
number of times which are dense in the measurement interval [0, 7] (Aharonov,
Anandan and Vaidman, 1993). For example, P(¢) is measured in [0, 7] at times
t, = (n/N)t,n = 1,2,...,N, where N is an arbitrarily large number. At the same
time, we make an impulsive measurement of observable A in the interval [0, 7],
which is described by the interaction Hamiltonian (1.1). The initial state of the
pointer is supposed to be a Gaussian wave packet of width wq centered at initial
position xg, denoted by |¢(xp)).

Then the branch of the state of the combined system after 7, in which each
projective measurement of P(z,) results in the state of the measured system being
in |¢), is given by

It = 1) = W) (Wle FVHOD__yy ulen M H) gy (i
x e iV A 1y |6(x0))

i

= ) (Wle BREIPA 1y yle i H8EIPA 1y
x & 1 REPA 1y 16 (xo)). (1.11)
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Thus in the limit of N — oo, we have

It = 1) = gy e i b SOUADIPI G0y — ) [6(xo + (AD)) . (1.12)

Since the total probability of other branches is proportional to 72 /N to first order of
N, the above state will be the state of the combined system after r when N — oo.
This demonstrates that for an arbitrary but known state of a quantum system at a
given instant, we can protect the state from being changed via the quantum Zeno
effect by frequent projective measurements, and an independent measurement of
an observable A, which is made at the same time, yields the expectation value of
the observable in the measured state.

By a conventional impulsive measurement on a single quantum system, one
obtains one of the eigenvalues of the measured observable, and the expectation
value of the observable can only be obtained as the statistical average of eigen-
values for an ensemble of identically prepared systems. Thus it seems surprising
that a protective measurement can yield the expectation value of the measured
observable directly from a single quantum system. In fact, the appearance of expec-
tation values as measurement results is quite natural when the measured state is not
changed and the entanglement during conventional measurements does not take
place as for protective measurements (Aharonov, Anandan and Vaidman, 1993). In
this case, the evolution of the combining state is

[(0)) 16(0)) — W (2)) lo(0)) . 1 > 0, (1.13)

where |/()) is the same as [/(0)) up to a phase factor during the measurement inter-
val [0, 7]. The interaction Hamiltonian is still given by (1.1). Then, by Ehrenfest’s
theorem we have

d
3, W OOIX W DP(1)) = OWO)IA Y(0)) . (1.14)
where X is the pointer variable. This further leads to

(P(MIX |6(1)) = (#(0)IX [¢(0)) = (W (0)IA |[¢(0)) . (1.15)

This means that the shift of the center of the pointer of the device gives the expec-
tation value of the measured observable in the measured state.

1.3.2 Measurements with natural protection

In some special cases, the universal protection procedure via the quantum Zeno
effect is not necessary, and the system’s Hamiltonian can help protect its state from
changing when the measurement interaction is weak and adiabatic. For example,
for a quantum system in a discrete non-degenerate energy eigenstate, the system



Protective measurement: an introduction 7

itself supplies the protection of the state due to energy conservation. By the adia-
batic theorem, the adiabatic interaction during the measurement ensures that the
measured system cannot make a transition from one discrete energy eigenstate
to another. Moreover, according to first-order perturbation theory, for any given
value of P, the energy of the measured energy eigenstate shifts by an infinitesimal
amount: §E = (H;) = g(1)P{A), and the corresponding time evolution e 4/ then
shifts the pointer by the expectation value (A). For degenerate energy eigenstates,
we may not use the universal protection procedure either. The simplest way is to
add a protective potential to change the energies of other states and lift the degen-
eracy. Then the measured state remains unchanged, but is now protected by energy
conservation like non-degenerate energy eigenstates.

As a simple example, we consider a quantum system in a discrete non-
degenerate energy eigenstate |E,). In this case, the system itself supplies the
protection of the state and no artificial protection is needed. The interaction Hamil-
tonian for a protective measurement of an observable A in this state is also given by
(1.1) as for conventional impulsive measurements. But differently from impulsive
measurements, for which the interaction is very strong and almost instantaneous,
the protective measurements make use of the opposite limit where the interaction
of the measuring device with the system is weak and adiabatic, and thus the free
Hamiltonians cannot be neglected. Let the total Hamiltonian of the combined
system be

H = Hs + Hp + Hj, (116)

where Hg and Hp are the free Hamiltonians of the measured system and the mea-
suring device, respectively, and Hy = g(t)PA is the interaction Hamiltonian. As
before, we suppose the time-dependent coupling strength g(#) is a smooth function
normalized to f drg(t) = 1 in the measurement interval [0, T'], and g(0) = g(T) = 0,
and the initial state of the pointer is a Gaussian wave packet of width wq centered
at initial position xp, denoted by |¢p(xp)).

The state of the combined system after 7" is then given by

=Ty = b HOU|Ey 160x0)y (1.17)

By ignoring the switching on and switching off processes, the full Hamiltonian
(with g(¢#) = 1/T) is time-independent and no time-ordering is needed.” Then we
obtain

i

It = Ty = e n"T |E,) |p(x0)), (1.18)

2 The change in the total Hamiltonian during these processes is smaller than PA/T, and thus the approximate
treatment given below is valid. For a more strict analysis see Dass and Qureshi (1999).
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where H = Hs + Hp + PA/T. We further expand |¢(xp)) in the eigenstate of Hp,
’E‘Jj> and write

It=T) = e—%HTch |Eq) IES). (1.19)

J

Let the exact eigenstates of H be |‘Pk,m) and the corresponding eigenvalues be
E(k,m); we have

f=T)= > c; Y e HEEMT P B, EDNy ). (1.20)

j k.m

Since the interaction is very weak, the total Hamiltonian H can be thought of as
Hy = Hs+ Hp perturbed by PA/T. Using the fact that PA/T is a small perturbation
and that the eigenstates of Hy are of the form |E;)|E%), the perturbation theory
gives

[Pim) = IEYEy,) + O1/T),
E(k,m) = E; + ES + %(AMP),“ +0(1/T?). (1.21)

Note that it is a necessary condition for (1.21) to hold that |E}) is a non-degenerate
eigenstate of Hs. Substituting (1.21) in (1.20) and taking the limit 7 — oo yields

— (B, T+EYT+(A),(P);
6= T = & B ETHETT PN By EY), (1.22)
J
For the case where P commutes with the free Hamiltonian of the device,’ i.e.,
[P, Hp] = 0, the eigenstates |E‘Ji‘) of Hp are also the eigenstates of P, and thus the
above equation can be rewritten as

It = Ty = € #ET=RHDT =3P | By 15y . (1.23)

It can be seen that the third term in the exponent will shift the center of the pointer
by an amount (A),:

It = Throeo = e WE T35 1By 160 + (A))). (1.24)

This indicates that the result of the protective measurement is the expectation value
of the measured observable in the measured state, and moreover, the measured state
is not changed by the protective measurement (except for an overall phase factor).

It is worth noting that since the position variable of the pointer does not commute
with its free Hamiltonian, the pointer wave packet will spread during the measure-
ment interval. For example, the kinematic energy term P?/2M in the free Hamilto-
nian of the pointer will spread the wave packet without shifting the center, and the

3 For the derivation for the case [P, Hp] # 0 see Dass and Qureshi (1999).
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width of the wave packet at the end of interaction will be w(T) = [%(wg + MTZ; )]%
(Dass and Qureshi, 1999). However, the spreading of the pointer wave packetocan
be made as small as possible by increasing the mass M of the pointer, and thus it

will not interfere with resolving the shift of the center of the pointer in principle.

1.3.3 Measurements of the wave function of a single system

Since the wave function can be reconstructed from the expectation values of a
sufficient number of observables, the wave function of a single quantum system
can be measured by a series of protective measurements. Let the explicit form of
the measured state at a given instant ¢ be y/(x), and the measured observable A be
(normalized) projection operators on small spatial regions V,, having volume v,:

L ifxev,
A - Vn . (1 25)
0, ifxé¢V,.
A protective measurement of A then yields
1
W= [ wwka. (126)
Vn Jv,

which is the average of the density p(x) = l/(x)[* over the small region V,,. Similarly,
we can measure another observable B = %(AV + VA). The measurement yields

)= | @ vu-pwa = [ w2
Vn Jy, 2mi Vo Jv,
This is the average value of the flux density j(x) in the region V,. Then when
v, — 0 and after performing measurements in sufficiently many regions V,, we can
measure p(x) and j(x) everywhere in space. Since the wave function ¥ (x, f) can be
uniquely expressed by p(x, ) and j(x, ) (except for an overall phase factor), the
whole wave function of the measured system at a given instant can be measured by

protective measurements.

1.4 Further discussion

Protective measurement is a surprising measuring method, by which one can mea-
sure the expectation value of an observable on a single quantum system, even if
the system is not in an eigenstate of the measured observable. This remarkable
feature makes protective measurements quite distinct from conventional impulsive
measurements. It is unsurprising that there appeared numerous objections to the
validity and meaning of protective measurements (see, e.g. Unruh, 1994; Rovelli,
1994; Ghose and Home, 1995; Uffink, 1999, 2013). Although misunderstandings
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have been clarified (Aharonov, Anandan and Vaidman, 1996; Dass and Qureshi,
1999; Vaidman, 2009; Gao, 2013), it is still debatable whether protective mea-
surement has important implications for our understanding of quantum mechanics,
especially for the ontological status of the wave function. In the following, we will
emphasize three key points that may help us understand protective measurement,
and briefly review the current state of debate on its possible implications.

First of all, a single quantum system being in an arbitrary known state can
be protectively measured in principle. The state of the system being protected to
be unchanged permits the state as well as the expectation values of observables in
the state to be measurable. In this sense, protective measurements are not a special
kind of quantum measurement, but the very way to measure the actual state of a
quantum system at a given instant. By comparison, a non-protective measurement
such as an impulsive measurement will change the measured state, and the result-
ing measurement outcome (i.e. one of the eigenvalues of the measured observable)
does not reflect the original state of the measured system. Besides, when a quan-
tum system interacts with another system under non-protective conditions, its state
also evolves in time, and thus the expectation values of observables do not manifest
themselves explicitly in the interaction either. For example, the interaction between
two charged quantum systems is not directly dependent on the expectation values
of their charges, but described by the potential terms in the Schrodinger equation
(see Chapter 15).

Next, a realistic protective measurement can never be performed on a single
quantum system with absolute certainty. For example, for a realistic protective
measurement of an observable A on a non-degenerate energy eigenstate whose
measurement interval 7 is finite, there is always a tiny probability proportional to
1/T? of obtaining a different result (A),, where L refers to a normalized state in
the subspace normal to the measured state as picked out by first-order perturbation
theory. However, this effect can be made arbitrarily small when the measurement
interval T is arbitrarily long. In this sense, an ideal protective measurement can
measure the expectation values of observables on a single quantum system with
certainty in principle.

Thirdly, we stress that the validity of the scheme of protective measurements
does not rely on the standard von Neumann formulation of measurements. In the
above formulation of protective measurement, the measuring system can be a
microscopic system such as an electron, and the shift of the center of the wave
packet of the measuring system is only determined by the Schrédinger equation.
Since the state of the measured system is not changed during the protective mea-
surement, a large number of identically prepared measuring systems can be used
to protectively measure the original measured system, and the centers of their
wave packets have the same shift. Then the shift can be read out by conventional
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impulsive measurements of the ensemble of these measuring systems, for which
the probability distribution of the results satisfies the Born rule. In summary, the
scheme of protective measurement is only based on the Schrédinger equation and
the Born rule, and especially, it is independent of whether wave function collapse
is real or apparent.

Finally, we will briefly review the current state of debate on the implications of
protective measurement for the reality of the wave function (see also Chapter 2).
According to the standard view, the expectation values of observables are not the
physical properties of a single system, but the statistical properties of an ensemble
of identical systems. This seems reasonable if there exist only conventional impul-
sive measurements. An impulsive measurement obtains one of the eigenvalues of
the measured observable, and the expectation value can only be defined as a sta-
tistical average of the eigenvalues for an ensemble of identical systems. However,
there exist other kinds of quantum measurement, and in particular, protective mea-
surements can measure the expectation values of observables from a single system.
Therefore, it seems that the expectation values of observables should be taken as the
physical properties of a single quantum system. Moreover, since the wave function
can be reconstructed from the expectation values of a sufficient number of observ-
ables, this result will further imply that the wave function represents the physical
state of a single quantum system.

Several authors, including the discoverers of protective measurements, have
given a similar argument as above (Aharonov and Vaidman, 1993; Aharonov,
Anandan and Vaidman, 1993; Anandan, 1993; Dickson, 1995). According to
Aharonov and Vaidman (1993), the existence of protective measurements provides
a strong argument for associating physical reality with the wave function of a
single system, and challenges the standard view that the wave function has phys-
ical meaning only for an ensemble of identical systems. Anandan (1993) further
argued that protective measurement refutes an argument of Einstein in favor of the
ensemble interpretation of quantum mechanics. In addition, according to Dickson
(1995), protective measurement provides a reply to scientific empiricism about
quantum mechanics (see also Chapter 8).

However, these analyses have been neglected by most researchers, and they are
also subject to some objections (Unruh, 1994; Dass and Qureshi, 1999; Lewis,
Chapter 7; Schlosshauer and Claringbold, Chapter 13). There are mainly two objec-
tions to the above implications of protective measurements. The first one claims
that since an unknown state of a single system cannot be protectively measured,
protective measurements do not have implications for the ontological status of the
wave function (Unruh, 1994). According to the second objection, that a realis-
tic protective measurement can never be performed on a single quantum system
with absolute certainty, an ontological status for the wave function is precluded
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(Dass and Qureshi, 1999; Schlosshauer and Claringbold, Chapter 7). These objec-
tions will be answered in this volume by several authors (Vaidman, Chapter 2;
Hetzroni and Rohrlich, Chapter 10; Gao, Chapter 15). According to their analy-
sis, protective measurements will help unveil the reality and meaning of the wave
function, and lead to a new and deeper understanding of quantum mechanics.
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Fundamentals and applications
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Protective measurement of the wave function
of a single system

LEV VAIDMAN

My view on the meaning of the quantum wave function and its connection to
protective measurements is described. The wave function and only the wave func-
tion is the ontology of the quantum theory. Protective measurements support this
view although they do not provide a decisive proof. A brief review of the discovery
and the criticism of protective measurement is presented. Protective measurements
with postselection are discussed.

2.1 Introduction

In the first graduate course of quantum mechanics I remember asking the question:
“Can we consider the wave function as a description of a single quantum system?”
I got no answer. Twelve years later, in South Carolina, after I completed my Ph.D.
studies at Tel Aviv University under the supervision of Yakir Aharonov in which
we developed the theory of weak measurements [1], I asked Aharonov: Can we use
weak measurement to observe the wave function of a single particle?

At that time I had already become a strong believer in the many-worlds interpre-
tation (MWI) of quantum mechanics [2] and had no doubt that a single system is
described by the wave function. Yakir Aharonov never shared with me the belief in
the MWI. When we realized that using what is called now protective measurement,
we can, under certain conditions, observe the wave function of a single quantum
system, he was really excited by the result. At 1992 I was invited to a confer-
ence on the Foundations of Quantum Mechanics in Japan where I presented this
result: “The Schrodinger wave is observable after all!”’[3]. Then I went home to Tel
Aviv where I finished writing a letter which received mixed reviews in Phys. Rev.
Lett., while Jeeva Anandan, working on the topic with Aharonov in South Carolina,
wrote a paper accepted in Phys. Rev. A [4]. After acceptance of the PRA paper it
was hard to fight the referees in PRL, but PLA accepted it immediately [5].

15
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I do not think that protective measurements provide a decisive answer to my
question in the graduate school. I came to believe that a single quantum particle
is completely described by its Schrodinger wave before understanding protective
measurements. And after the publication of our work on protective measurement,
many physicists still view it as an open question. This manifests in the enormous
interest to the Pusey, Barrett, and Rudolph (PBR) paper [6] entitled “On the reality
of the quantum state” which puts strong constraints on the ensemble interpretation.
Also, one of the “most read” Nature papers is “Direct measurement of the quantum
wavefunction” [7].

The method of protective measurement provides a plausibility argument: it is
more natural to attribute the wave function to a single particle when there is a pro-
cedure to observe it. It is not a decisive argument because there are some limitations
on the measurability of the wave function of a single particle. The quantum state
has to be “protected”, so it is possible to argue that what is measured is not the
wave function, but the “protection procedure”. Still, I can argue that it is better to
say that we measure the quantum state and not its “protection” because there are
many different protections for the same wave function, all of which give rise to the
same measurement results. Moreover, a protection procedure frequently protects
many different wave functions, but the protective measurement finds the one which
is present.

2.2 Why I think that the quantum wave function describes a single quantum
system (and everything else)

I want to believe that Science is capable of explaining everything. We should not
explain every detail since we cannot store all the required information. I think it
is enough to have a theory which can, given an unlimited storage and computa-
tional power, explain everything. The theory should agree with experiment. More
specifically, any experiment, simple enough to allow us to predict its outcome the-
oretically, should be in agreement with the theory. Classical physics is not such a
theory since many experiments like particle interference, atom stability, etc. contra-
dict classical physics. Quantum mechanics is such a theory. There is no experiment
today contradicting its prediction. The ontology of quantum theory is [¥') and this
is why I believe it is real.

Accepting that there is no ontology beyond the wave function, we admit that
every time we perform a preparation procedure of a particular quantum state, we
end up with exactly the same situation. The failure of Bell inequalities, the PBR
theorem and related results [8, 9] support this view. Then, a measurement on an
ensemble of identically prepared systems can be viewed as a measurement of the
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wave function of each system. So, even without protective measurements one can
accept the reality of the wave function of a single quantum system.

What might prevent us from considering quantum wave function as real is the
collapse of the wave function at quantum measurement. Today there is no satis-
factory physical explanation of the collapse and it is not plausible that such an
explanation will be achieved due to non-locality and randomness of the collapse.

The approach according to which the wave function is not something real, but
represents a subjective information, explains the collapse at quantum measurement
perfectly: it is just a process of updating the information the observer has. This
approach seems to be highly attractive. The problem is that it has not been suc-
cessful until now. No one provided an answer to the question: “Information about
what?” No good candidate for the underlying ontology has been proposed. Bell
inequalities related to quantum measurements performed on entangled particles
suggest that such an ontology, if we insist on locality, does not exist. Bell him-
self, however, never gave up looking for it. He even introduced the concept: local
beables [10]. But in spite of much effort, no attractive theory of beables has been
constructed.

One may say that a successful theory of non-local beables is provided by the
de Broglie—-Bohm theory; however, it does not make the wave function epistemic.
Bohmians frequently say that “positions” represent primary ontology, but the wave
function is still an ontology. And in some setups (surrealistic trajectories [11], weak
measurements [12], protective measurements [13]) it is the wave function which
provides an explanation of the observed results.

Quantum theory not only corresponds extremely well to our observations, it is
also a very elegant theory except for the collapse of the wave function. In 1998 1
heard Gottfried saying at a conference in Erice [14] that: “The reduction postulate
is an ugly scar on what would be a beautiful theory if it could be removed.” I firmly
believe it can be removed. There is no experimental evidence for the collapse, only
our prejudice that there are no multiple copies of every one of us. Removal of
the collapse leads to the MWI. According to the MWI everything is a wave. The
Universe is a highly entangled wave. It has natural decomposition into branches
corresponding to different worlds in which macroscopic objects are described by
well-localized wave functions. “Inside” a branch every photon emitted from a sin-
gle photon source is described by its wave function; the same wave function which
everyone will associate with photons emitted by a laser replacing the single photon
source.

What are the alternatives? Only a minority remained with a hope of complet-
ing the ontology of quantum theory with “hidden variables”. A consistent option
is to accept that quantum theory is not about what Nature is, but about what we
can say about it, as Bohr preached. This approach developed into a popular trend
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of Qbism [15], a kind of metaphysical nihilism: “In the quantum world, maximal
information is not complete and cannot be completed.” This nihilism seems unnec-
essary, because we are given an unprecedentedly successful deterministic theory of
everything, the theory of a quantum wave function.

2.3 What is and what is not measurable using protective measurement

If we are given a single system in an unknown quantum state, there is no way to find
out what this state is. It would contradict the no-cloning theorem: if we can find out
what the state is, we can prepare many other systems in this state. However, if we
are given a single system in a “protected” quantum state, we can find out its state.

In general, a single system might not have a description as a pure state. Formally,
we can consider a situation when our system is entangled with another system, and
the pure state of the composite systems is protected. Then we can observe the
density matrix of our system which provides its complete description. However,
if the systems are separate, then the locality of interactions disallows an efficient
protection.

We can specify the wave function of the system by the expectation values of a
set of variables. Thus, measuring these expectation values is equivalent to the mea-
surement of the wave function. However, to argue that protective measurements
help us in viewing the wave function of a single system as a “real” entity, we need
weak measurements of projections on small regions of space to provide the spatial
picture of the wave function directly. Also, weak measurements of local currents
[16] allow specification of the phase of the wave function. Of course, only the
relative phase can be found; the overall phase is unobservable.

If the wave function has a support in separate regions, the situation is less clear.
Local currents do not allow us to reconstruct the relative phase between these
regions. Another problem is the protection of such a state. Clearly, a local clas-
sical potential cannot lead to such protection: energy cannot depend on the relative
phase. Although some non-local states can be measured using local interactions
with the help of measuring devices with entangled parts [17], many other states
cannot be measured in a non-demolition way [18].

A non-local state of equal superposition of spatially separated wave packets
\%(IA) + |B)) can be protected using non-local measurements. If it is a photon
state it can be “swapped” to a Bell state of two spins [19]. Bell states can be
measured in a non-demolition way using measurements of modular sums of spins
(G‘? + 0'?) mod 2, (0'? + U?)mod2 [17]. Such measurements require measuring
devices with entangled parts. Measurement of a fermion wave function requires
also an antiparticle with known phase [20]. Even if the protection of a particular
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wave function is possible, it might not be enough for performing a protective mea-
surement of this wave function. Non-local weak measurements are difficult and
current proposals [21, 22] are not efficient. The superposition of wave packets of
unequal weight, @|A)+f|B), 0 < |a| < |B], cannot be measured in a non-demolition
way [18], so in this case there is no protection procedure.

The main motivation for protective measurements was a slogan: “what is observ-
able is real”. I, however, do not fully support it. I do look for an ontology that can
explain all of what we observe, but I do not want to constrain “observation” to
instantaneous non-demolition measurements. I am ready to view the relative phase
between two spatially separated parts of the wave function as “real”, even if it can
be observed only later, when the wave packets overlap.

2.4 The methods of protective measurements and the information gain

There are two methods for the protection of states: first, when it is a non-degenerate
eigenstate of some Hamiltonian; second, based on the quantum Zeno effect, that
frequent measurements of a variable for which the state is a non-degenerate eigen-
state are performed. The strength of the protection is characterized by the energy
gap to a nearby eigenstate and the frequency of measurements in the Zeno type
protection. If the strength of the protection is known, the weakness parameter of
weak measurements of the wave function can be calculated. Then, the whole wave
function can be found. If the protection strength is not known, we can choose a
weakness parameter, make the weak measurement of the wave function and then
repeat it. If the result is the same, we know that the measurement is successful. If
not, we should ask for another sample. Even if we need several systems, still, it is
not a measurement on a large ensemble.

In the process of protective measurement we gain some information: the wave
function is specified by many more parameters than the strength of the protection.
There is also some gain of information beyond the information the party which
arranges the protection must have. For protection it is enough to know that the
state is one of the set of orthogonal states. After the protection and the weak mea-
surement we will know which state of the set is given.

Probably, the Zeno-protection method is easier to understand. First, consider a
measurement of the wave function on an ensemble. To know the absolute value of
the wave function in a particular point, the projection on a small region of space
around this point is measured, and the value is the ratio of the number of times the
particle was found there to the number of trials. On every measurement, one of the
eigenvalues of the projection operator, O or 1, is obtained. The statistical average
provides the absolute value of the wave function there.
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The projection measurement can be modeled by a von Neumann procedure in
which at each trial a pointer, well localized at zero, shifts to 1 or remains at 0.
When the uncertainty of the pointer is small, A <« 1, we know with certainty the
outcome of each trial. In the corresponding weak measurement, the pointer remains
at 0 if the particle is not there, and it is shifted by a small value €, € < A, if it is
present there. The analysis of weak measurements shows that, up to a very good
approximation, after the interaction with one system, the meter is shifted by €|i/|”.
If we test now that the system remained in its original state, the probability of the
failure is of the order of €2/A2. Now, we repeat this procedure with an ensemble
of N = 1/e systems using the same measuring device. At the end, the pointer will
show the desired value ||> with almost unchanged uncertainty A. The probability
that all the systems will be found in their original state after the interaction is
(1 — €2/A?)V¢. If we make € < A?, the probability of even one failure goes to
zero. It means that we can use the same system every time. This is the Zeno-type
protective measurement.

Instead of the test by the projection on the state of interest, we can make mea-
surements for which the state we want to measure is one of the eigenstates. If we
know that we start with this state, we only need to perform measurement inter-
actions without actually looking at the result. The procedure ensures that we will
have our state for the duration of the procedure.

This procedure is different from a measurement on an ensemble not only because
we use just one system. Although we have multiple couplings we do not get multi-
ple outcomes and we do not calculate a statistical average as in the standard ensem-
ble measurements.

The Zeno-type protection is more of a theoretical construction. Performing fre-
quent verification measurements might be a very difficult if not impossible task.
Another type of protection is to have a Hamiltonian with non-degenerate eigen-
states. Experimentally, such a protection is much simpler. We have a system with a
non-degenerate ground state. Then we just have to wait a long enough time (which
can be reduced using some cooling procedure) and the wave function of the ground
state is there and protected. It does not require much prior knowledge. Weak mea-
surement coupling after a long enough time will provide the information about the
wave function. Adiabatic switching of the weak coupling on and off will allow us
to make the procedure faster.

In recent years, there has been great progress with cooling ions and atoms
in traps. Science magazines frequently show pictures of what looks like a wave
function of a trapped particle. But, as far as I understand, these pictures look like
a “wave cloud” because of the width of the photons which are scattered by the
ions. As far as I know, no protective measurements have been performed yet.
Recent “wave function microscopy” [23] which used a photoionization imaging
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was also an ensemble measurement. Although I have no doubts about what the
outcomes of protective measurements will be, I think it is of interest to make
an effort to perform them, especially since many are reluctant to associate a
wave function with a single system. I hope that some protective measurements
will be performed in the near future, maybe along the lines of Nussinov’s
proposal [24].

The discussion above is about measurement of a stationary wave function. Pro-
tective measurements require some period of time to observe the wave function
which is supposed to be constant during this period. Can it shed light on the ques-
tion of the reality of a non-stationary wave function? If evolution is slow, unitary,
and the protection is strong, then we can observe the wave function (with some
limited precision) “in real time”. If we start with the preselected state at the begin-
ning of the protection procedure, it will ensure that the wave function will change
in time appropriately and the weak coupling of the measurement of the wave will
not disturb it significantly. A non-unitary evolution which includes “collapses” of
the wave function cannot be observed in this way. The weak coupling will not be a
problem, but we cannot ensure by any protection procedure that the wave function
will collapse to the right state. This is one more reason not to believe that there is a
collapse of a quantum state in Nature.

2.5 Protective measurement and postselection

Protective measurements support the approach according to which the reality of a
quantum system is its wave function. Aharonov and I argued in many publications
that the complete description of a quantum system is a two-state vector consisting
of forward and backward evolving wave functions [25]. How can these apparently
contradicting approaches peacefully coexist?

In the Zeno-type protective measurement, the backward evolving wave function
is identical to the forward evolving wave function. Even if we postselect some
other state, the last verification measurement “collapses” the backward evolving
state to be identical to the forward evolving one. It cannot be any other eigenstate
of the protection measurement since the measurement specifies both forward and
backward evolving states.

For the Hamiltonian-type protection the situation is different. We may start, say,
with a ground state of a harmonic oscillator and after performing a protective mea-
surement of the wave function, measure the particle position. Whatever outcome
we get, the backward evolving wave function will be very different from the for-
ward evolving wave function. It will not be a stationary state, but an oscillating
wave function.
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Protective measurements cause almost no entanglement between the system and
the measuring device, so the postselection according to the position of the particle
should not change the outcomes of our protective measurements which constitute a
picture of the forward evolving wave function. Weak coupling during a long period
of time of the projection on every place x shows, at the end, the value of |y(x)|>.
For all outcomes of the postselection measurement we get the same (approximately
correct) result of the density of the wave there. (The postselection which is very
far from the center will correspond to some distorted picture since the weak cou-
pling of protective measurements creates some small entanglement.) However, if
we test whether during all the interaction time the coupling was to the same value,
we will discover that this is not so (see Chapter 3). To make this test we should
perform these protective measurements on a large pre- and postselected ensemble
with all systems originally in the ground state. We should consider a sub-ensemble
of particles postselected at localized state at position x. In this experiment, we
will look at the pointer not at the end, but at various intermediate times. This
will allow us to find the position of the pointer as a function of time. We will
see that the pointer does not move in the same way during the time of the mea-
surement. Sometimes it moves fast and sometimes it almost stops. It depends on
the backward evolving wave function ¢(x), which changes with time. The pointer
“feels” the weak value of the projection operator (P,),, = ¢*(x)y¥(x)/{$l¥) and
it changes with time due to the time dependence of the backward evolving wave
function.

This analysis suggests that the Hamiltonian protective measurement does not
really measure the density of the wave function, but it measures a time average of
a particle density which actually changes with time. To avoid this difficulty we can
add a postselection of the state |/) at the end of the protective measurement. We
know that it will succeed with certainty and then the weak measurement pointer
will move with the same velocity during the whole process. Indeed, with the post-
selection, the weak measurements show a weak value of the pre- and postselected
system. When the backward wave function is identical to the forward wave func-
tion, the weak value is equal to the expectation value, and it shows the density of
the forward evolving wave function.

In the framework of the MWI, there is, however, a satisfactory explanation of the
situation even without postselection of the original state [i/). Let us consider again
the case of the postselection measurement of position. Indeed, in every one out
of the different worlds with postselection in different positions, the protective mea-
surement measures the time average of the particle density as it is given by the weak
value of the projection on a particular location. However, the time averages are sub-
jective to the observers in worlds with different postselection positions. These are
not objective realities. The objective reality is in the universe which incorporates
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worlds with all possible outcomes of the postselection measurement. In this world,
the backward evolving wave function is identical to the forward evolving wave
function [26]. To test this we can just look at the preselected ensemble only, with-
out postselection. In this case the pointer will move with constant small velocity
ending in the final value ().

In the world with a postselection, subjective reality is best described by the two-
state vector. The protective measurement described above showed just the forward
evolving wave; we observe Izﬁ(x)l2 and can also observe the local current defined by
¥(x). This is because only the preselected forward evolving wave was protected.
A different postselected state cannot be orthogonal (such postselection is impos-
sible) and thus it cannot be protected by the same Hamiltonian or by the Zeno
measurements. The backward evolving state ¢(x) changes with time. The effective
coupling to the pointer is through a weak value which oscillates, but after aver-
aging, it roughly reproduces the expectation value corresponding to the forward
evolving wave. If, instead of the protection Hamiltonian of the preselected state
we arrange protection by another Hamiltonian (or frequent measurements) which
protects the postselected backward evolving state, then our weak coupling of the
measurement procedure will yield the backward evolving state ¢(x). The forward
evolving state will change in time and will lead to oscillating weak values averag-
ing to the expectation values corresponding to ¢(x).

At first, it seems that it is impossible to observe the two-state vector on a single
system because the same Hamiltonian cannot protect both the forward evolving
and the non-orthogonal backward evolving wave functions. Usually, all Hamitoni-
ans are Hermitian so they protect the same set of forward and backward evolving
wave functions. However, if we pre- and postselect the whole system including
the protection device, then for weak coupling the effective Hamiltonian will be the
weak value of the Hamitonian. The weak value of the Hermitian operator might be
a complex number. Then, the effective Hamiltonians responsible for evolution of
the forward and the backward evolving states are different. Thus, we can, in this
way, arrange protection of both forward and backward evolving wave functions
even if they are different. This is the protection of the two-state vector [27].

The possibility of protecting the two-state vector does not necessarily mean that
we can directly observe the two-state vector. The weak coupling to the projection
on a particular location x will yield its weak value (P,),, = ¢*(x)¥(x)/{pl¥). Since
weak measurements do not disturb each other significantly, we can measure in
parallel weak values of other variables. Protection of the two-state vector will allow
us then to view the full “weak measurement reality” [28] specified by the two-state
vector. This will allow to reconstruct the two-state vector, but not in a direct way as
it was in the protective measurement of the forward (or backward) evolving wave
function.



24 Lev Vaidman

I have to note that the protective measurement of the two-state vector reality is
a highly theoretical concept. Its implementation in the laboratory requires a highly
improbable result of the postselection measurement.

2.6 Critique of protective measurement

There have been many papers criticizing our work on protective measurement.
According to Paraoanu [29] it has been established that the protective measure-
ment program does not work: “Clearly, to think about the wave function as real,
we would have to be able to measure it on a single quantum system. The question
of whether this is possible was first raised in the context of the so-called “protec-
tive” (weakly disturbing) measurements in the early 1990s, where it was answered
in the negative [2].” He relies on Alter and Yamamoto’s paper [30] which analyzes
the case when the quantum wave function is not protected and, not surprisingly,
shows that in this case the wave function cannot be found [31]. Another reference
of Paraoanu is “Impossibility of measuring the wave function of a single quantum
system” by D’Ariano and Yuen [32]. Their claim is that an unknown and unpro-
tected quantum state cannot be found (due to the no-cloning theorem). Regarding
protective measurement they actually say that it works, given that the protection
Hamiltonian is known. They add that the known protection Hamiltonian means
that its eigenstates are known and that we can find which of the eigenstates is given
without breaking the no-cloning theorem and without the need for a weak coupling
of protective measurements. They did not distinguish between the party which can
find the state and the party that protects the state and do not consider the case
that all that is known is the strength of the protection of the state. Another work
Paraoanu cites is a paper with a provocative title by Uffink: “How to protect the
interpretation of the wave function against protective measurements.”’[33]. How-
ever, Gao recently criticized this paper [34] and Uffink retracted the main part of
his objection [35].

There are also authors who praised protective measurements. Unruh [36] viewed
protective measurement as a demonstration of the reality of certain operators and
not of the wave function, but he admitted that “protective measurement has broad-
ened our understanding of the quantum measurement process.” Ghose and Home
[37] in “An analysis of the Aharonov—Anandan—Vaidman model” wrote: “the AAV
scheme serves to counteract the orthodox belief that quantum mechanics does not
say anything empirically meaningful about an individual system.” Dickson [38]
considered protective measurement as “a good reply for the realist” against the
empiricist.

It seems that many of the criticisms follow from misunderstanding triggered by
the somewhat misleading examples in our PRA paper [4]. One of the examples
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was a particle in a superposition of two wave packets which is difficult to observe
using protective measurement. The example was technically correct, since there
was some tunneling wave connecting the wave packets such that they were only
“almost” separate. The Stern—Gerlach experiment had its own difficulties, in par-
ticular, related to the divergenceless nature of the magnetic field.

Probably the most harsh criticism was a comment by Rovelli [39]: “We argue
that the experiment does not provide a way for measuring noncommuting observ-
ables without a collapse, does not bear on the issue of the “reality of the wave
function,” and does not add any particular insight into our understanding (or non-
understanding) of quantum mechanics.” I hope, however, that after reading my paper
the following quotation of Rovelli’s comment makes his misunderstanding evi-
dent: “To make the problem particularly evident, consider the following experimen-
tal arrangement, which is entirely equivalent to the Aharonov—Anandan—Vaidman
experiment as far as the interpretation of quantum mechanics is concerned. First,
measure the polarization of a quantum particle. Second, write the outcome of this
measurement on a piece of paper. At this stage assume that we do not know the
polarization and we do not know what is written on the piece of paper. Then make
the following protected measurement: Read what is written on the piece of paper.”

After our clarification [40], Dass and Qureshi in a paper [41] “Critique of pro-
tective measurements’ “looked at earlier criticisms of the idea, and concluded that
most of them are not relevant to the original proposal.” They argued, however, that
“one can never perform a protective measurement on a single quantum system with
absolute certainty. This clearly precludes an ontological status for the wave func-
tion.” I agree that protective measurements do not provide absolute certainty, but as
I explained above, this does not prevent me from attributing an ontological status
to the wave function.

Protective measurements do not provide a decisive argument for the ontology of
the wave function. However, they definitely provide a deep insight into the process
of quantum measurement and they strengthen significantly the realist interpretation
of the wave function of a single particle. I hope that some protective measurements
will be performed in the near future. I believe that they will lead to a significant
progress in understanding quantum reality.

This work has been supported in part by grant number 32/08 of the Binational
Science Foundation and the Israel Science Foundation Grant No. 1125/10.
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Protective measurement, postselection and the
Heisenberg representation

YAKIR AHARONOV AND ELIAHU COHEN

Classical ergodicity retains its meaning in the quantum realm when the employed
measurement is protective. This unique measuring technique is re-examined in the
case of post-selection, giving rise to novel insights studied in the Heisenberg rep-
resentation. Quantum statistical mechanics is then briefly described in terms of
two-state density operators.

3.1 Introduction

In classical statistical mechanics, the ergodic hypothesis allows us to measure
position probabilities in two equivalent ways: we can either measure the appro-
priate particle density in the region of interest or track a single particle over a long
time and calculate the proportion of time it spent there. As will be shown below,
certain quantum systems also obey the ergodic hypothesis when protectively mea-
sured. Yet, since Schrodinger’s wave function seems static in this case [1, 2, 3],
and Bohmian trajectories were proven inappropriate for calculating time averages
of the particle’s position [4, 5], we will perform our analysis in the Heisenberg
representation.

Indeed, quantum theory has developed along two parallel routes, namely the
Schrodinger and Heisenberg representations, later shown to be equivalent. The
Schrodinger representation, due to its mathematical simplicity, has become more
common. Yet, the Heisenberg representation offers some important insights which
emerge in a more natural way, especially when employing modular variables [6].
For example, in the context of the two-slit experiment it sheds a new light on the
question of momentum exchange [7, 8, 9]. Recently studied within the Heisen-
berg representation are also the double Mach—Zehnder interferometer [10] and the
N-slit problem [11]. As can be concluded from [11], the Heisenberg representation
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prevails in emphasizing the non-locality in quantum mechanics, thus providing us
with insights about this aspect of quantum mechanics as well.

Equipped with the backward evolving state-vector within the framework of two-
state-vector formalism (TSVF) [12], the Heisenberg representation becomes even
more powerful since the time evolution of the operators includes now information
from the two boundary conditions. Furthermore, when performing post-selection,
deeper understanding of the quantum system becomes available, such as the past
of a quantum particle [13, 14].

Post-selection does not change the protective measurement’s results, but sug-
gests interpreting them differently, thus enabling us to effectively sketch two wave
functions rather than one in the Schrodinger representation. In the Heisenberg
representation, a full description of time-dependent operators emerges which
enables further insights. Choosing a specific final state amounts to outlining
another (sometimes, completely different) history for the same initial state, that is,
a different set of characterizing weak values. In what follows, we use the Heisen-
berg representation to study protective measurements with post-selection. This
way, we regain quantum ergodicity and describe two-state ensembles coupled to a
heat bath.

The rest of the chapter is organized as follows: Section 3.2 discusses the differ-
ences between classical and quantum ergodicity. Section 3.3 describes protective
measurement in the Heisenberg representation. Cases of post-selection and external
protection are analyzed. In Section 3.4 we show how to describe quantum statis-
tical mechanics in terms of two-state vectors. Protective measurement is utilized
for studying the two-state density operator and the resulting ensemble averages.
Section 3.5 summarizes the main contributions of this work into a coherent descrip-
tion of protective measurement in the Heisenberg representation.

3.2 Classical and quantum ergodicity

We begin by examining a classical gas, i.e. an ensemble of N point-like particles.
Each individual particle is characterized by its position and momentum, so that in
each moment the system can be described by a point in 6/ N-dimensional phase-
space. The time average of a certain property A over a time interval of length 7T is
given by:
n .
A = lim ! A(ﬂ) (3.1

n—oon — n

Therefore, in order to accurately find A we ought to perform a large number of
A measurements at different times.
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Under the ergodic assumption [15] this average is equivalent to the ensemble
average at a certain moment:

N o4
= gl
(A) = Z - (3.2)
j=1
More generally,
(A) = f Adu, (3.3)

where u is some finite, non-zero probability measure.

Is this reasoning applicable also in the quantum realm? First, in order to incor-
porate uncertainty, the phase-space should be partitioned into hypercubes of vol-
ume 7%V, Second, a practical question has to be addressed: how to perform all the
measurements needed for an accurate time average on a single particle without dis-
turbing it? This is where a resolution can be achieved with the help of protective
measurement suggested for the first time by Aharonov and Vaidman in 1993 [1]
and further developed in [2, 3, 16, 17]. Moreover, using protective measurement it
was argued that the wave function should be understood as describing the (discon-
tinuous, random in nature) ergodic motion of a single particle [18].

3.3 Protective measurement in the Schrodinger
and Heisenberg representations

Protection of the state in the case of discrete non-degenerate spectrum of energy
eigenstates was shown to be a consequence of energy conservation when the mea-
surement is sufficiently slow and weak [2]. Protection can be achieved also in more
general cases by utilizing a protective interaction term in the Hamiltonian. This
possibility of performing a dense set of measurements without affecting the mea-
sured state, allowed “observing” of the wave function [1]. In the Schrodinger rep-
resentation it seems that the evolution of the wave function was tightly restricted,
which let us later obtain its form everywhere in space. Putting it in more formal
terms, protective measurement can be carried out by applying an interaction Hamil-
tonian of the form:

Hine = g(O)pPy;, (3.4

with g(tr) = 1/T for a period of T smoothly approaching zero before and after
the measurement, where p is the momentum of the measuring pointer, Py, is the
projection operator into the set V;, and V = }’; V; is the total space region. Let us
assume that the system in question is a harmonic oscillator, and the initial wave
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function is the ground state |¢i,) = |0), i.e. Y(x) = n4e=>12 (throughout the
calculations we used Vii/mw = 1).

Suppose also that we are interested in some remote V; centered around xg > 1,
i.e. far from the origin. The particle has a small probability of being found in that
place, but when the measurement is long enough, we would find that the state of
the pointer propagated in time according to:

U = e i), (3.5)

although the energy has only changed negligibly for each p:

(Py)p

O = (Hin) = —

(3.6)

This way we can gain knowledge of |i/;,) of a single particle in V;. Repeating
this measurement for all V; we would finally be able to sketch |[i;,) in V.

Here we introduce post-selection in the form of slicing past events using a cer-
tain final state [19, 20]. By this we mean grouping together all the experiments
which ended at the same state. What does it change? Clearly, the results of the
protective measurement do not change, giving rise to the same observation of the
wave function. The ontology, however, turns out to be different. Our initial state
was |[Yin) = |0). When performing the trivial post-selection, that is, [¥fn) = |Win),
within the Schrodinger representation we believe that the protective measurement
probed a static (up to a changing phase) eigenstate of the oscillator having a small
probability of being found in V;. Hence, the pointer translation grew slowly but
surely according to Eq. (3.5). However, suppose we post-select a different final
state which is some coherent state |a) (since coherent states form an overcomplete
basis, this can be done approximately by defining the appropriate POVM). In our
experiment, the final measurement will allow finding of the initial state as a coher-
ent state |a) with probability e1F/2 In the position representation, the coherent
state is denoted at every moment by [21]:

@a(x, 1) = 1 * exp{-iO(x, 1) — %[x — V2|o| cos(wt — 5)]2 1, (3.7

where @ = |aje! and

2
Ox, 1) = %t - % Sin[2(wf — 6)] + V2Jalx sin(wr — 6). (3.8)

The same result of Eq. (3.5) suggests now a significant motion along the har-
monic well of this backward evolving coherent state. As was shown in [22, 23],
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any sufficiently weak coupling between a pointer and an observable O of a pre-
and post-selected quantum system is a coupling to a weak value:
(P (D)|0|Di(1))

(Ofl@;)
where |®;) and (®¢| are the pre- and post-selected states respectively. In order to

demonstrate the movement of the pointer we shall assume its coupling to the real
part of the weak value and find out:

0" (1) = (3.9)

Re{P}, (1)} = Re {m (?Ollfﬁi‘f;“(t»} , (3.10)
that is:
Re{P}, (1)) ~ n~ 26l =20072 cos = ()10~ Vel cos@T-+0)I°/2, 3.11)
where
o WT .
2(t) = - + - sin[2(w(T — 1) + 0)] — \/Elalxo sinfw(T — 1) + d]. (3.12)

Due to the oscillations of the post-selected coherent state, the pointer translation
can be understood now to be non-linear. According to Eq. (3.11) the pointer move-
ment seems oscillatory (it moves each time the backward evolving coherent state
“pushes” it), which is quite different from the case of trivial post-selection where
it moved linearly, so it finally reaches the same place as earlier, but with an altered
history. A comparison between the expectation value of the pointer readings in the
case of trivial post-selection and in the case of @ post-selection is shown in Fig. 3.1.
For illustration purposes, the following parameters were chosen: xop = 1, @ = 2.5,
w=1Hzand T = 100 s. We assume that the width of the pointer’s wave function
is large enough so that the measurement can be considered weak.

In order to better understand the movement which arises from Eq. (3.11) we
compare the results of the above a =2.5 post-selection to post-selection of @ =1
(while the other parameters remain the same). The forward and backward evolving
states are now closer, so due to their higher scalar product, the weak value, and
hence the amplitude of oscillations, both decrease (see Fig. 3.2). Another compar-
ison is drawn between the above case of searching for the wave function at xop = 1
to the case of searching at xo =1.5. The chances of finding the particle there are
now smaller, and therefore, the expectation value is lower (see Fig. 3.3).

Utilizing Bohr’s correspondence principle, we could relate classical and quan-
tum ergodicity: if instead of the ground state we had chosen a highly excited
state (or alternatively, large a for the final state), we know, according to the
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8.2

Figure 3.1 Pointer readings for two post-selections. The pointer readings are
shown for the trivial post-selection (linear graph) and for the a post-selection
(oscillatory graph). Despite the different shape, they eventually reach approxi-
mately the same point.
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Figure 3.2 A comparison between @ = 2.5 (high amplitude) and @ = 1 (low
amplitude).

correspondence principle, that the classical time the oscillator spends in V; would
be proportional to the relative number of harmonic oscillators, out of a large
ensemble, that could be found instantaneously within this interval.

This dynamic interpretation can be better understood within the Heisenberg rep-
resentation. First, we know that the operators X and p change in time just like the
classical variables x and p, hence ergodicity and correspondence arise naturally.
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Figure 3.3 A comparison between xy = 1 (upper) and xo = 1.5 (lower).

Second, each projection operator Py, (f) can be evaluated as a time-dependent
matrix using the oscillator eigenstates:

PY(0) = &7 ml Py In), (3.13)

which in contrast to the evolution of the state seems very oscillatory. However,
during the measurement interval, all the off-diagonal entries tend to zero, and Py,
becomes approximately time-independent and diagonal. Therefore, after a long
time its diagonal values directly indicate ensemble averaging, thus expressing
quantum ergodicity. This could also be understood from the coherent states evo-
lution which covers all phase space, thus allowing the operators in the Heisenberg
representation to take any possible value. Slicing past results according to all the
possible future results divides the ensemble to several distinct sub-ensembles, each
of which has a different weak value and hence a different history of the measuring
pointer.

Another discrepancy between the two representations apparently arises in the
case when the initial state is a superposition of different energy eigenstates. Arti-
ficial Zeno-type protection is needed in the form of very frequent projective mea-
surement on the state, which will preserve it by halting its evolution (the time scale
of intervals between consecutive protections must be much smaller than the time
scale of changing the wave function due to its Hamiltonian). In the Schrodinger
representation, it seems that the state rarely changes due to this procedure; hence
protective measurements are performed again and again on one and the same static
state. In contrast, calculation in the Heisenberg representation describes the image
of subsequent abrupt changes of the operator we wish to measure.
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3.4 Statistical mechanics with two-state vectors

Assume now the system is coupled to a heat bath of temperature 7 = (k8)~! and
allowed to reach equilibrium. The system will be described by the Boltzmann ther-
mal density operator:

< 3.14
For the harmonic oscillator discussed above it equals [24]:
p= (1) % e n)n. (3.15)
n=0

If the measuring time is longer than the period of thermal fluctuations, the pro-
tective measurement will indicate the correct mixed state; that is, the pointer will
move according to the thermal average of the measured quantity. Alternatively,
one can switch off the coupling to the thermal bath before performing the mea-
surement, and then the measurement will select a single pure state, rather than a
mixture, according to the Boltzmann distribution.

Recalling the mapping between the averages calculated with this operator and
the expectation values of the pure state [24]:

g = 1= ey, (3.16)
n=0
we can perform protective measurements of this state and find out expectation
values of thermal ensembles without disturbing them. A single protective mea-
surement was shown until now to describe the wave function of a single particle,
and here it allows us to acquire knowledge about a large ensemble coupled to a
heat bath.

What is the time-symmetric version of this density operator? The TSVF [12]
enables us to describe a quantum system in between two strong measurements
with the aid of weak measurements [22]. It is a symmetric formulation of quantum
mechanics ascribing equal footing to the initial (forward evolving) and final (back-
ward evolving) wave functions. The two-state vector (®| |[¥) was shown in [25] to
give rise to the density operator:

_ [P@OXPO)]
p(1) = ————,

(OF)
which evolves according to the von Neumann equation just like the one-state den-
sity operator:

(3.17)

., 0p
h— =[H,p]. 3.18
ih— [H, p] (3.18)
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In the double coordinate system it was shown to be:

lhap(x,’ x”? t)

81‘ = [H(X/, P/) - H(X”, P//)]P(x/a x”’ t)’ (319)

where p(x’, X", 1) = (xX'|p(H)|x"").
The two-state density operator enables the calculation of weak values as follows:

_ Tr(Ap)
Y Tr(p)

(3.20)

Examining now a canonical ensemble with inverse temperature 7 = (k8)~", the
two-state density p would take the form:

. exp{—BlH(X', p") — H(x", p")]}
Tr(exp{-BlH(x", p’) — H(x", p")]})’

(3.21)

thus allowing us to calculate ensemble- and hence time-averages in the two-state
Heisenberg representation when employing protective measurement.

3.5 Discussion

The wave function as observed by protective measurement gains its meaning only
when very long measurements or measurements over a large ensemble are per-
formed. It is not possible to measure instantaneously the wave function of a single
particle. This suggests that the wave function has either a statistic or an ergodic
meaning. However, operators in the Heisenberg representation do allow a descrip-
tion of a single quantum particle at a single time. In addition, when pre- and post-
selection are performed, the measuring pointer describes a distinct history of the
system, depending on both backward and forward evolving wave functions. Fur-
thermore, a single protective measurement allows us to find the thermal state of
an ensemble coupled to a heat bath, which leads to a full description of two-state
thermal ensembles.
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4

Protective and state measurement: a review

GENNARO AULETTA

In this chapter, I summarize the general way in which the measurement process can
be cast (by making use of effects and amplitude operators). Then, I show that there
are two main problems with the state measurement: (i) how to avoid the disrup-
tive back action on the state of the measured system during detection and (ii) how
to extract complete information from this state. In order to deal with them I first
introduce quantum non-demolition (QND) measurement and examine the problem
whether the entire probability distribution of the measured observable is not altered
by a QND measurement, which would allow repeated QND measurements with
different observables to extract the whole information from the measured system.
However, 1 show that this is not the case. Then, I deal with protective measure-
ment as such and show that a reversible measurement is in fact not a measurement.
However, by taking advantage of statistical methods (and therefore by renouncing
measurement of the state of a single system), we can indeed reconstruct the wave
function but only by partially recovering the information contained in the state.
Two further prices to pay are to admit the existence of negative quasi-probabilities
due to the interference terms and to make use of unsharp observables for guaran-
teeing informational completeness.

4.1 Introduction

The aim of this chapter is a review of the developments related to the measurement
of the state vector and the problems that have been raised in this context.
Traditionally, the state vector or the wave function describing quantum systems
has been considered as a formal tool for calculating the probabilities associated
with certain events like measurement outcomes, but few scholars have tried to
attribute to it an ontological status. It is well known how many difficulties are
related to an attempt at assigning a kind of reality to the state of quantum systems.
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Nevertheless, a major concern of some physicists has been precisely the query
about the physical significance of this entity. If we want to approach this problem,
it is quite natural to ask whether there is a way to measure the state vector. In fact, if
we assume that this is kind of reality, we should be able to find certain experimen-
tal contexts in which it makes a difference to make such an ontological attribution
[3, chapter 28].

In the following, I first present a general formalism for measurement (Section
4.2), then I introduce the quantum non-demolition measurement (Section 4.3).
The core of the chapter is represented by an analysis of protective measurement
(Section 4.4). On such a basis, the issue about the relation between measurement
and reversibility is raised (Section 4.5). In Section 4.6 the method for reconstruct-
ing the wave function of a quantum system is shown, while in Section 4.7 the prices
to pay are summarized. Finally, in Section 4.8 I draw some synthetic conclusions.

4.2 Measurement in general

We recall that quantum mechanically, in order to recover the information about an
object system, we need the coupling with an apparatus. I shall show now that clas-
sically we have a similar situation. Here, we have an unknown parameter k£ whose
value we wish to know and some data d pertaining to a set D at our disposal. This is
a very important point, since we never have direct access to things (whose proper-
ties are described by k) but always to things through data [5, chapter 2]. These data
can be represented by the position of the pointer of our measuring apparatus or sim-
ply by the impulse our sensory system has received, or even by the way we receive
information about the position of the pointer through our sensory system. It does
not matter how long this chain may be. The important point is a matter of princi-
ple: we can receive information about objects and events only conditionally on the
data at our disposal. Let us consider a classical example. Suppose that we wished
to know exactly what the distribution of matter was in the early Universe. We can
know this by collecting data about the cosmic microwave background radiation we
receive now. This again shows a very important common point between quantum
and classical physics that is not well understood, and which has been pointed out by
Wheeler’s delayed choice thought-experiment [25]. We cannot receive any infor-
mation about past events unless they are received through present effects (data).
This is an equivalent formulation of what we have said before, since any event,
represented by a parameter k, can be known only through a later effect due to the
finite speed of light. As a matter of fact, all of our perceptual experience is medi-
ated and slightly delayed in time. Moreover, we always have experience only of a
part of the possible effects produced by events.
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Obviously, once we have observed or acquired data, we must perform an infor-
mation extrapolation that allows us to have an “informed guess” about the value
k of the parameter. This is the process of information selection. As we know, the
joint probability ¢(J, k) that we select the event j while having an event represented
by the value k of an unknown parameter (i.e., the probability that both event k and
event j occur) is given by

0(: k) = p(jlkpk), 4.1

where ¢(jlk) is the condition probability of the selection event j given the source
event represented by k. Now, by taking into account the data d that are somehow
the interface between the source event k and our selection event j we may express
the probability ¢(jlk) as [16]

Pk = " o), (4.2)
deD
where the summation is over all the data d pertaining to the set D. By substituting
the above expression into Eq. (4.1) we obtain

(k) = > plildpdiop)

deD

= > ol k). (4.3)
deD
We note that Eq. (4.3) can be considered as a generalization of the well-known
formula

p() = ) p(ldp(d), (4.4)
deD

and it reduces to the latter when ¢(k) = 1, i.e., when the value & of the parameter is
known with certainty. It is important to stress that the two conditional probabilities
9(jld) and p(d|k) are quite different. The probability ¢(d|k) represents how faithful
our data are given the source event k, that is, how reliable our apparatus (or sensory
system) is. Instead, the probability ¢(jld) represents our ability to select a single
event j which can be used to interpret the data d in the best way. Moreover, using
the Bayes theorem we express @(k|j) in terms of (j|d) and p(d|k) as

- pp(jlk)
k| j) = 222
okl j) o)

k
- YOS b *5)

() &

In other words, we can invert the kind of question we pose and try to infer the
unknown value k of the parameter conditioned on having selected the event j.
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Having made these considerations, we immediately see that Eq. (4.2) or (4.3)
represents the classical analogue of the quantum measurement process. The con-
ditional probability p(d|k) corresponds to the coupling between the object system
and the apparatus in quantum mechanics. Obviously, the difference between the
classical and the quantum case is that, when we have an entanglement, we can
have a perfect correlation between the apparatus and the object system, which is
difficult to obtain in classical situations.

We would like now to show that the counterpart of the conditional probability
9(jlk) in quantum mechanics is indeed the probability of a final detection event,
which, given a certain experimental context (a premeasurement), allows us to
finally ascribe a property to the object system (the system that has been measured).
Suppose that the initial state of the apparatus is some ready state |Ag) while the state
of the object system is some superposition state |/s). Then, the premeasurement
step takes the form

Ws) Aoy — " ¢jlivlaj, (4.6)
J

where the |j)s are the system states representing the eigenstates of some system
observable to be measured and the |a;)s are respectively the apparatus states. In the
density matrix formalism the initial state of the subject system and the apparatus
appearing on the left-hand side of the transformation (4.6) may be described by the
(factorized) density matrix pspa, where

Ps = Ws)ys| and  pa = |Ag){Aol. 4.7)

As usual we assume that the entanglement between the object system and the appa-
ratus created during the premeasurement step is the result of a unitary transforma-
tion. Indeed, I remind the reader that only the final step of selection or detection is
not unitary. Therefore, we have the following unitary transformation:

pspa > Uipspal, (4.8)
where U, is the time evolution operator whose form depends on the coupling of the

system and the apparatus. It is easy to find that in the case under consideration we
have

Oipspal] = > Il @laXaj+ ) ejcil ikl @la)arl.  (4.9)

J Jj*k

Just before the detection, the probability that the apparatus will read the value a,,
is given by

0(am) = Tra[P,, Trs(Uipspall)], (4.10)
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where f’am = |la){am| is the projector to the apparatus state |a,,). Note that the pre-
vious probability only takes into account correlated terms due to the entanglement
between object system and apparatus. The above result can be verified quite easily.
Indeed, the partial trace over the system will sum only the diagonal terms in the
system Hilbert space Hs, while the subsequent application of the projector I3am
projects out a single term in the apparatus Hilbert space Hj, yielding

Py, Trs(Uipspal))= el lam¥am. (4.11)

Finally, tracing out the apparatus, we shall get the probability, which, in our case,
is simply given by |c,,|*. Using the cyclic property of the trace and the fact that Trg
does not act on the apparatus, we may rewrite Eq. (4.10) as

So(am) = Tr.?l[pa,,, TrS(Ut/A)SﬁA U:)]
= Tra|Trs(0] Pa, Uipspa)]
= Tra| Trs(U) lam)aml Ops)pal- (4.12)

It is convenient to define the Hermitian operator E,, in the system-apparatus
Hilbert space by

E, =Trg(0! P, Ups), (4.13)
in terms of which the above equation can be written as

9(am) = Tra(Enpa). (4.14)

The projection-like operator £, is called the effect operator (or effect for short),
which plays an important role in the theory of generalized measurement [18, 8].
From the definition (4.13), it follows that

YEi=1, (4.15)
J
where [ is the identity operator (in the apparatus Hilbert space %) and use has
been made of the completeness relation for the apparatus states:

Z Py =1 (4.16)
j
It can be shown that £ | 1s positive semidefinite, i.e.,
(PAlEjlpa) =0 forall |pa) € Ha. 4.17)

However, unlike the projectors, the effect operators in general do not satisfy the
requirement of orthogonality, that is,

EEy # 6 jkEx. (4.18)
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Moreover, substituting ps = |¥s){(¢¥s| into Eq. (4.13), we can explicitly calculate
the trace over the system to obtain

E = Trs(Ulan)anl Uilys)(ws))
= > (KO lan)anl Oy lys) wslky

k=0,1
= Ws|U |am)an| Uilwrs)
=9t B, (4.19)
where
D = (anlUils), 85 = (s|O7 ay). (4.20)

These expressions do not represent probability amplitudes because the time evolu-
tion operator U, describes the coupling of the apparatus and the system, whereas
the kets |a,,) and |s) represent respectively only the apparatus state and the system
state. As a result, 9, is called the amplitude operator. From its definition, it is clear
that the amplitude operator 9, describes the three steps of the measurement of a
given observable:

(1) preparation of the initial state of the system (i.e., the input |i/s));

(i1) unitary time evolution (i.e., coupling or premeasurement) that entangles the
system with the apparatus and allows us to select an observable (i.e., the pro-
cessing represented by U,);

(iii) detection by the apparatus (i.e., the output |a,,)) that allows us to assign a
property to the system.

We can also summarize what is said here by writing
NG9
p =
A p(am)
NG

where p,” is the state of the apparatus after the detection corresponding to the value
an. Let the parameter m be associated with one of the detection outcomes a,, that
corresponds to the apparatus state |a,,) and the parameter k with one of the state
vectors |y) in a given orthonormal basis for the object system. Then, following a
similar analysis as above and using Eqs. (4.14) and (4.19), we have

p(mlk) = Tra@upad) ). (4.22)

Dmpat 4.21)

where

St = {aml Uil (4.23)

Therefore, we have shown that the amplitude operator 19mk is the quantum mechan-
ical counterpart of the classical conditional probability ¢(jlk) given by Eq. (4.2).
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This formalism also allows a new understanding of quantum mechanical formal-
ism that fits very well with our treatment in terms of information [14]. We may take
any ket |y) as the input state and any bra {¢| as the output state. In this way, any
projector [ ){y] is a selection act while any scalar product {¢[y) means a possible
transition (and therefore any coefficient ¢, = (pl)) means a transition amplitude).
In the case in which it is equal to zero, it mean a forbidden transition (as a matter of
fact any measurement deals with the collapse into one of the components of an ini-
tial superposition). If whenever () = 0 and {p>|) = 0 we also have {(¢|y) = 0,
this means that |¢) is a coherent superposition of |¢;) and |¢;). Any operator that
is in between an input and an output (like the above amplitude operators or, more
generally, {(©|O)) is the operation that bridges between input and output. When
input and output coincide, i.e. (¢/|Oly), we have the probability amplitude that the
transformation O does not change the state |i/), that corresponds to the mean value
of O in that state.

4.3 Quantum non-demolition measurement

When we are now interested in a measurement of the state vector, we have two
distinct problems: (i) how to avoid the disruptive back action on the state of the
measured system during detection and (ii) how to extract the complete informa-
tion from this state. Actually, the two problems are interconnected, since in order
to extract the complete information we need several measurement steps and it
is mandatory to avoid the disruption of the state in each of these measurement
steps. Now the question is: if we avoid back action, can we guarantee extraction
of the whole information? These two different issues have been dealt with in two
different areas of research: quantum non-demolition measurement and protective
measurement, respectively. So, let us start with the first approach. A quantum non-
demolition (QND) measurement is a measurement in which an apparatus extracts
information only on the observable to be measured and transfers the whole back
action on the canonical conjugate observable. In other words, the observable to be
measured remains unperturbed, while the canonically conjugate one is perturbed
precisely to the minimal extent allowed by the uncertainty relations. In order to
examine the properties of a QND measurement, we need to introduce first the con-
cept of indirect measurement [4, section 9.11][7].

4.3.1 Indirect measurement

We can treat this aspect by making use of the previous formalism. An indirect
measurement is characterized by two different steps: first, a system S interacts
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with another quantum system Sp, the quantum probe, whose initial state has been
accurately prepared on purpose in advance. This is an intermediate system with
which the object system S interacts, and from which the apparatus A extracts
information about S. During the first step there is no reduction at all, and the evo-
lution is completely unitary, resulting in a correlation between S and Sp. In other
words, the system and the probe become entangled. The second step consists of a
direct measurement of some chosen observable of Sp: the state of the probe (and
therefore, due to the entanglement, also of the object system) is reduced and the
information acquired.
Let us now introduce two conditions referring to the two steps defined above:

e the reduction, i.e. the second step of the measurement, should begin only
when the unitary evolution, i.e. the first step, has already finished;

o the second step should not contribute significantly to the total error of the mea-
surement.

If these conditions are satisfied, we can infer the magnitudes of the error in the
measurement and therefore of the perturbation (back action) of S from an analysis
of the first step only, i.e. of the unitary evolution, because the only source of error
is due to the intrinsic uncertainties of the initial state of Sp.

We can describe the indirect measurement in a formal way as follows. Let the
first step be represented in analogy with transformation (4.8) by the transformation

pspp - UpsppU7 (4.24)
where pgpp is the total density matrix of the system S + Sp, and U, is the cou-

pling unitary—evolution operator. The corresponding state of Sp alone, after the
interaction, is given by the reduced density matrix

pr = Trs (UipspeUy) - (4.25)

Suppose that we want to measure the observable & on S. Thanks to the entangle-
ment, it is possible to achieve a one-to-one correspondence between the observable
X of § and a carefully chosen observable of Sp, say p,. We can then perform a
“direct” measurement of p, on Sp. Since this measurement contributes negligibly
to the experiment’s overall error, we can idealize it as arbitrarily accurate. Then,
we can infer from the value of p, on Sp the value x, of the observable X on S.
Because of the one-to-one correspondence we can use X as a substitute for p, and
hence use x,, not only as the inferred value of % but also as the result of a mea-
surement on Sp itself, that is, the associated eigenstate of the probe can be denoted
by |xm). In other words, it is a kind of EPR-like procedure. Just before the second
step of the measurement, the probability distribution of the measured value xy, in
analogy with the probability (4.12) is given by
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P(m) = Trs, [ Pr,fp| = Trs, [ oml Trs(UipsppU))] . (4.26)
which, using the linearity and the cyclic property of the trace, can be rewritten as
(m) = Trs [ECem)ps| (4.27)
where, in a analogy with Eq. (4.13), we have
E(xm) = Trs, | U ) (x| Uspp | - (4.28)

The back action of the entire two-step measurement on S is embodied in the final
state of the object system. In fact, the above considerations imply that such a nor-
malized final state is

1 N N
A(f) A oA 7T
Py (Xm) = P (Xm|UipsppU; |xm) - (4.29)
If we expand the initial state of Sp as
pp = will) , (4.30)
k

where |k)(k| are some projectors on the probe’s Hilbert space, then, by substituting
this expression into Eq. (4.29), we obtain

1 A N
() _ ~ ot
75 i) = = ; wid ()P () (4.31)

where, in analogy with Eqgs. (4.20), we have

B (xm) = (xml Ul . (4.32)

4.3.2 OND measurement

Now we can discuss the QND measurement. The central ingredient that makes
the QND procedure realizable is just the two-step measurement process described
previously [7]. It is then clear that some features of the indirect measurement
also characterize the QND measurement. In general, we may say that, in a QND
measurement, the system S interacts only with a probe Sp, and the interaction
between S and Sp is such that Sp is influenced only by one observable, or a set of
observables, that are not affected by the back action of Sp on S. More precisely,
the system’s observables which influence the probe must all commute with each
other — i.e. they should belong to the same complete set of observables.

Moreover, a QND measurement can be performed only on observables that are
conserved during the object’s free evolution, i.e. on constants of motion. In the
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absence of external forces, the observable is conserved both during the measure-
ment (because the back action is transferred to the canonically conjugate observ-
able only) and during the unitary evolution between consecutive measurements
(because it is an integral of motion). The above considerations imply that a QND
measurement does not add any perturbation to the observable to be measured, so
that the uncertainty of the measured observable after the measurement is only a
consequence of the a priori uncertainty of its value.

Then, the observable Onp associated with a QND measurement must satisfy two
requirements:

e at any time it must commute with itself at a different time,
[Onp(), Onp ()] = 0, 1 # 1, (4.33)
e it must commute with the time-displacement unitary operator U,:
(0] Oxp U - Oxp) ) = 0, (4.34)

where |i/) is the probe’s initial state and the expression between brackets is the
Heisenberg-picture change in Oxp produced by the interaction between S and
Sp. Equation (4.34) represents a necessary and sufficient condition of a QND
observable.

We can therefore say that a QND measurement is characterized by the repeatabil-
ity, so that the first measurement — which determines the values for all subsequent
QND ones — is a preparation of S in the desired state, and the others are the deter-
mination of the value. As a consequence, we have

Onp(t) = fi|Onp (1), (4.35)

where #; is some arbitrary time after the initial 7y (the time of the first measure-
ment), and f; is some real-valued function. Note that condition (4.35) implies con-
dition (4.33).

4.3.3 No measurement without a measurement

We have seen that a QND measurement does not add any perturbation to the mea-
sured observable. This means that the standard deviation of the probability dis-
tribution of the measured observable is not altered by a QND measurement. One
might think that the entire probability distribution of the measured observable is
not altered by a QND measurement. If this were the case, then repeated QND mea-
surements of the same observable could increase the amount of information which
we can extract from the system. By repeating this procedure with different observ-
ables, we could extract complete information from the state vector of the target
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system. Here, I show that if a QND measurement performed on a system S does

not alter the probability density of the measured observable, then the measurement

process does not provide any information about the measured observable itself.
Let us start from the definition of the amplitude operator given by Eq. (4.32):

B, £s) = (Xl U1(fim, 25) W) (4.36)

where 1y, is the measured observable of the probe (meter), xy, is its measured value,
Xs is the (QND) observable of the system S, and |y/,) is the initial state of the appa-
ratus. In Eq. (4.36) we have explicitly introduced the dependence of the amplitude
operator, which completely describes the measurement, on Xs through the unitary
operator U;.

The QND condition for a back-action-evading measurement then means that Xs
and 9 share the same eigenstates:

9(Fs, xm) |vs) = O (xm, x5) |xs) (4.37a)

9" (s xm) lvs) = 0" (xs, xm) |xs) (4.37b)

After a measurement on the meter which gives the result x,,, in analogy with
Eq. (4.21) the system is described by the density matrix

1
©(xXm)

Y () = s, xm)ps? (xs, xm) (4.38)

where 9(x,) may be written as
() = Trs [B(Es, xm)psd (Es, xm))|
= f duxs (xsld(Es, xm)psd (Es, Xm)lxs) - (4.39)

Now, the probability density of the measured observable after the measurement is
given by
Pr(xs) = (x5]pY (xm)lxs)

1 ~ ~
= )<xs|ﬁ<fcs,xm>psﬁ*<xs,xm)|xs>. (4.40)

Applying the QND conditions (4.37a) we obtain

[9(xs, xm)l* 9(xs) 5 (4.41)

pr(xs) = o)

where p(xg) is the initial state’s a priori probability distribution of Xg, given by

p(xs) = Tr| E(xm)ps)- (4.42)
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If we require that the probability density (4.41) does not change due to the mea-
surement process, i.€. pr(xs) = P(xs), then

[9(xs, xm)I* = 9(Xim) (4.43)

must hold. However, ¢(x,) is not a function of xg (the eigenvalues of the measured
observable) and therefore also the eigenvalues ¥(xs, xy,) of 19()?5, Xm) are indepen-
dent of xs. Since the operator 9 must completely describe the measurement pro-
cess, if its eigenvalues are independent of the eigenvalues of xs, the measurement
obviously gives no information about Xs, unless the initial state is already an eigen-
state of the measured observable. In conclusion, evading the back-action does not
guarantee the necessary accumulation of information that would allow us to speak
of measurement of the state vector. Are there other ways to address this problem?

4.4 Protective measurement of the state

It is Aharonov and co-workers [1, 2] (see also [4, section 15.1]) who have tried
this path. The main idea is that of protective measurement, i.e. a measurement of
the wave function during which it is prevented from changing noticeably by means
of another interaction which it undergoes at the same time. The reason for this
approach is the following: since the wave function is an elusive entity and, as we
have seen, any attempt at measuring a quantum system will in general alter the
initial state, a protective measurement could ensure us the preservation of the state
allowing us to simultaneously extract some information about it.

Let us assume that we wish to measure an observable O on a system in the state
ls) = 2 cjlo;), where the states |o;) are eigenkets of 0, so that

Oloj)y = ojlo}), (4.44)

and that the interaction between the apparatus A and the system S is a part of the
total Hamiltonian by the Hamiltonian

Ha.s=Ho+Hzas+Hxn , (4.45)
where
Has = H = (340 (4.46)

18 the interaction Hamiltonian, I:IO is the free Hamiltonian of the system, H 7 18 the
Hamiltonian of the apparatus, X# is the one-dimensional pointer observable, and
& represents the coupling function, i.e. &(¢) is non-zero only in the interval [0, 7]
(duration of the interaction). In general, such an interaction leads to an entangled
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state, which may be written as

[¥(7)) = Z ciloplazy . (4.47)
J
where

la;y = e~(/Meoita|p gy (4.48)

are states of the apparatus ‘A which, for sufficiently large &, are orthogonal for
distinct eigenvalues a; of the pointer observable. The apparatus A is in the initial
state |Ag).

Let us now consider the case in which no entanglement takes place. Therefore,
in the place of Eq. (4.47), we write the factorized state

IS(0)IA0)) = [s(M)IA®@)), 1> 0. (4.49)

In this case, there is no reduction of the wave function. Instead, we would have the
equation of motion

d A
d_l<§(I)I<A(t)lﬁxﬂ|§(t)>|A(t)> = —&(1)(s10ls(1)), (4.50)

where p7 is the observable canonically conjugate to 5 and, in the Heisenberg
picture,

dwq_l

oA
bl =5 |75l = -0 (4.51)

where the commutation relations position—-momentum and Eq. (4.46) have been
used. Equation (4.51) shows that p7' changes by different amounts for distinct
eigenvalues o;, and by Eq. (4.50) we can determine (c(D)|0lg(1)) by the change
in the apparatus’ momentum.

A protective measurement can be made in two different ways.

(1) If |¢(¥)) is a non-degenerate eigenstate of the Hamiltonian H, then the inter-
action is assumed to be sufficiently weak and A changes slowly so that |¢(£))
is nearly equal to |¢(0)) up to a phase factor for ¢ € [0, 7]. Then, following
the adiabatic theorem, |¢(¢)) remains an eigenstate of the Hamiltonian and no
entanglement takes place.

(i) If we have an arbitrary evolution, so that |¢(f)) is not necessarily an eigen-
state of the Hamiltonian, we can operate in the following manner. If |gy(¢))
is the evolution of |¢) determined by the unperturbed Hamiltonian Hy of the
system S, then one can measure an observable O’ (1), for which |¢o(#)) is a non-
degenerate eigenstate, a large number of times which are dense in the interval
[0,7] — say at times #, = (n/N)t,n = 1,2,...,N, where N is an arbitrarily
large number. Then, |¢(#)) does not noticeably depart from |gy(#)) — it is a sort
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of quantum Zeno effect [9, 19]. Now consider the branch of the combined sys-
tem evolution in which each measurement of O’(z,) results in the state |co(t,))
of S:

W0 = | | Pon0nlA©) = | [ PonUiclAo@),  (4.52)
N N
where
Pox = lso(tn)Xso(tn)l, (4.53)
0, = e nvim), (4.54)
0,4 = e i nENI20, (4.55)

and |Ao(7)) is the state of A when it evolves under the Hamiltonian H#. We
now calculate explicitly the last expectation value in Eq. (4.52) up to second
order in 1/N and find

(go(t)leF V0 1)y = 1 — E—s<r1>xﬂ<0> - s(t )235(0%)

212 N2
=1- ——s(n )2a(0)
LT P2 (00 — - T s 22
2h2N28 1Az 22 N2
_iz 1 ~
= emineiA0) 1 _ TRkl 2RLA0?|
(4.56)
where we have made use of the fact that
AO? = (0% — (0 . 4.57)

In the limit N — oo, where the product of the factors in the term containing
AO? approaches 1, Eq. (4.52) reads

T

'¥(1))0 = lso(™) exp [—% f die(n)f (0)

0

|Ao(7)) . (4.58)

In this limit, the considered branch undergoes a unitary evolution and there-
fore the contribution from other branches — giving rise to states different from
|so(2)) — vanishes. From the exponential operator in Eq. (4.58), the momentum
of the apparatus is shifted by an amount (see also Eq. (4.51))

T

AT = - f dt(Oye(r) . (4.59)

0
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Therefore, by measuring 57, (O) can be determined. Then, according to the present
approach, by repeating this experiment with different observables, the wave func-
tion of a single system may be determined up to an overall phase factor. Moreover,
since a protective measurement as proposed by Aharonov and coworkers should
not give rise to entanglement between the system and the apparatus nor lead to a
collapse, it could allow us in principle to distinguish between two non-orthogonal
states, provided that both are protected.

The question naturally arises whether this proposal aimed at measuring the state
of a quantum system implies that we should treat it as an observable. In other
words, does this approach imply that we should consider the quantum state in clas-
sical terms? Let us suppose that this is the case. We know that the density matrix
describing a pure state is a projector like Poy, i.e. it is an observable. So, why
one can measure a projector but should not obtain information about the state? The
question is: what are the possible values that we would obtain by measuring a pro-
jector? Obviously, 0 or 1. If we obtain 0, we know that the system has not passed
a certain test (say a vertical polarization filter), whereas if we obtain 1, we know
that it has passed it. However, if the system before the test was in a superposition
state of, say, vertical and horizontal polarization, we have a non-zero probability
that it passes and a non-zero probability that it does not pass the test. Therefore, if
we obtain a 0, we are not able to distinguish whether the system before the mea-
surement was in a horizontal polarization state or in a superposition of vertical
and horizontal polarization, and, similarly, if we obtain 1, we cannot distinguish
between a previous vertical or superposed polarization state. In conclusion, the
measurement of a projector (which, of course, is always possible) is not able to
discriminate between non-orthogonal states. In other words, given an unknown
state, we cannot decide which projector, if measured, would allow us to determine
it. So, it does not seem that we can discriminate among non-orthogonal states by
measuring projectors.

4.5 Measurement and reversibility

If through a protective measurement we can avoid a collapse and keep the dynam-
ics of the system as ruled by unitary operators (or reversible operations), the natural
question arises whether we can extract any information from a system when per-
forming a reversible measurement. Nielsen and Caves [20] have shown that this is
not possible. We have a unitarily reversible measurement — on a subspace H of the
state space H of the original problem — if there exists a unitary operator U acting
on Hy such that

~ Ops
P Ps

7 4.60
s = U Ti9ps ] (+.60)
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for all ps whose support lies in Ho. This means that the POVM E = 979, when
restricted to Hy, is a positive multiple of the identity operator on Hy, i.e.

Py EPy, = * Py, (4.61)

where 7 is a real constant satisfying 0 <7 < 1 and 137.[0 is the projector onto Hy. In
other words, we have

Py + Py =1, (4.62)

where IA’(HOL projects onto the subspace that is complementary to Hy. Then, the

operator 9 can be written as
& = nU Py, + 1913745 , (4.63)

where U is some unitary operator acting on the whole 7. The conclusion, however,
is that we have

Tr [psD] = Tr [ps | = o (4.64)

for all density operators whose support lies in Hp, and 7> takes the meaning of
the probability of occurrence of the result represented by 9. In other words, the
probability of occurrence of any measurement result represented by ¢ is the same
for all states |y) (such that p = |/){¥|) that are normalized in that subspace.

Summarizing, an ideal measurement is reversible if and only if no new infor-
mation about the prior state is obtained from the measurement. Given the result
as stated by Eq. (4.64), each state is equally likely. As a consequence, a reversible
ideal measurement cannot be considered as a true measurement.

4.6 Quantum state reconstruction

The conclusion of the previous section seems very unsatisfactory for protective
measurement. Nevertheless, the idea that we can reconstruct the state of a quantum
system was promising. However, we need also to renounce considering a quantum
state in classical terms, as I show now. In this section, I discuss a few methods
which allow the reconstruction of the quantum state on a large set of identical
systems. Royer [22, 23] analyzed the problem in general terms. The problem can be
cast as follows. Given a well-defined preparation procedure and a certain number
of identical systems, is it possible to determine experimentally (to measure) the
state which such a procedure forces the systems to be in? Due to the one-to-one
correspondence between the Wigner function (W-function) and the density matrix
of a system, this is possible if one is able to determine the W-function. Indeed, there
are circumstances where a direct measurement of the W-function is simply more
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convenient. In other words, the measurement of the Wigner function or any other
of the methods discussed in the present section are only possible if one performs a
large number of measurements, each one on a single element of a set of identically
prepared systems.

Let us first make use of the following formalism. Generally speaking, any oper-
ator O may be represented in the following form:

0= > 1HIOwH , (4.65)

ik
where {|n)} is an arbitrary basis on the underlying Hilbert space. In this way, oper-
ators may be considered as — not necessarily normalized — ‘vectors’ in a super

Hilbert space, which is the direct product of the original Hilbert space H and its
dual H*. In fact, Eq. (4.65) may be rewritten as

0= ) Oulixk, (4.66)
ik

where
Oj = (jlOIk) . (4.67)

Therefore, we may associate with any operator O an S-ket |0} and an S-bra {O),
defined by

0V =>" 0l k), (4.68a)
Jik
(0] = Z Oy ikl (4.68b)
Jik
where
|, kb = 1 j)<kl} s (4.692)
{J Kl = {1kl (4.69b)

represent the basis in which the S-ket (and the S-bra) is expanded. Their scalar
product may be represented as

{1, m|j, k} = Ul j)}Xklm) = 61, j6km » (4.70)
from which the generalized scalar product follows:
{010’} = Tr(070) . (4.71)
From Eq. (4.71) it follows that we may reformulate Eq. (4.67) as
(IO = {j, KlO} . (4.72)



56 Gennaro Auletta

As a consequence of the introduction of S-kets and S-bras, the operators acting on
the S-kets and S-bras are called superoperators.

Let us limit ourselves to a one-dimensional system. whose phase state is repre-
sented by position ¥ and momentum p, [4, section 15.4]. Let us define the parity
operator about the origin:

+00 +00

= deI —x)x| = fdpxl = Px)XPxl (4.73)

—00 —00

where —co < x < 400, —00 < p, < +oco. We may build the operator f[xp about the
phase-space point (x, p,) by making use of the displacement operator

Dxp — et (Pri=xpy) , (4.74)
which helps us to write
M., = Dy, 11D7) (4.75)
where
+00
A h M 1 1
I, = 5 fdx'e”‘ Pr|x + 5hx’> (x— Ehx’l
e 1 1
=3 f dp e |py + Ehp;> (px = 5hpi
+00 +00
_n f dp’ f o P =0 (e=p) (4.76)
4r . ’

‘x + %hx’> and | Dx + %hp;> being eigenkets of position and momentum, respec-
tively. It follows indeed that

1A_[xp(je - x)ﬁxp =—(X-x), ﬁxp(ﬁx - Px)ﬁxp =—(px—Dpo) > 4.77)

that is, f[xp is the parity operator about the phase-space point (x, p,). This allows

me to introduce the S-vectors
.n 2 .
XD} = %lnxp} . 4.78)

The key point of the following discussion is that the Wigner function

1 - pxx’
W p) = — L A’ (x + X |plx — xyeR 5 (4.79)
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where p describes the state of the system under observation, is the expectation
value of the parity operator f[xp (see Eq. (4.71)):

L | N
Watx. pae 1) = (ML)} = — (M), - (4.80)
where fpr is Hermitian. Since obviously ﬁ)ch =1, f[xp is an observable whose
eigenvalues are +1. A complete set of eigenstates [y ,),n = 1,2,.. ., satisfying
Moy, = (D", (4.81)

may be obtained by displacing in phase space any complete orthogonal set of kets
[¥") of definite parity about the origin:

W5, = Daplt™) (4.82a)
Y(=x) = (D" (%) . (4.82b)

An immediate consequence of Eq. (4.81) is
My = Y (=1"WiWL (4.83)

This formalism allows us to rewrite Eq. (4.80) as
W; = ! D" o0y 4.84
pxpat) = — > DWW, - (4.84)
n

We try now to measure Wj(x, py, t) at some definite time (e.g. ¢ = 0). This can be
done by measuring each transition probability (¢, |p(0)|y;,) following the method
introduced by Lamb. A simple approach is possible if we choose the [")s to be
eigenstates of the Hamiltonian
A=y, (4.85)
2m
where V(—x) = V(x) is a symmetric potential. Then, the |1//§p)s are eigenstates of
the displaced Hamiltonian
- 2

H,, = D,HD) = % + V(- x), (4.86)
so that measuringAthe set (wﬁplﬁ(O)lwﬁp) (or f[xp) becoInes equivalent to measuring
the Hamiltonian H,,. A suitable method to measure H,, almost in the strict sense
is as follows. First, we place ourselves in a reference frame moving with uniform
speed v = pf/m relative to the preparation apparatus A. By virtue of the Galilei
transformations, the observed density operator (for 7 < 0) is

) = D;;pif)(t)ﬁw’pi . (4.87)
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At time 7 = 0 we turn on the potential V(x — x/) in the moving frame. The eigen-

states of
A
2m

+ V@i - (4.88)

Hyg =
are
Dysoly™) = W o) (4.89)
with corresponding energies E,. Then, at times # > 0 we obtain
) = e i iopf () it

= Y e i EE e S K B O o)
m,n

= D e n BT E Y W K O ) (4.90)
m,n o o
where we have made use of the transformation (4.87) for p(0). Now, the transition
probabilities

W D O ) = W PO, ) 4.91)

are time independent, so that we have a long time available to perform a mea-
surement of H «f o referring to the set {It//zf,o)} and “find” the particle in one of the
states pertaining to this set. Repeating the measurement many times will allow us
to build the distribution (4.91), from which Wﬁ(xf, pfc, 0) can be deduced by means
of Eq. (4.84). What has been done is a measurement of Wﬁ(xf, pt,0) by measuring

Wi (x',0,1) = Wo(x" + v, pl, 1) (4.92)

at t = 0 in the moving frame. In conclusion, applying the same procedure over and
over again with different values of x" and pf, it is in principle possible to reconstruct
the Wigner function on any relevant region of the phase space.

What we have learnt is that any reconstruction of the state requires statistical
methods applied to several systems prepared in the same state. In other words, we
cannot extract this information from the measurement of a single system. More-
over, the information that we can extract by using statistical methods is never the
whole information potentially contained in the initial state of the systems. This
raises the issue whether and eventually in which conditions we can speak of infor-
mational completeness. Moreover, the Wigner function (and any other joint distri-
bution of quantum conjugate observables) presents interference terms that affect
the way in which we can consider the state. The latter two problems will be the
object of the next section.
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4.7 Unsharpness and negative quasi-probabilities

We shall consider now two further prices to pay for reconstructing the wave func-
tion of a quantum system, in terms of both:

e unsharpness of the observables and
e negative quasi-probabilities.

The problem of quantum state reconstruction raises the question of the extent to
which an observable’s measurement informs us about the state of a given system.
Stated in other terms, we may ask ourselves whether the probability distributions
of a certain set of observables are sufficient to determine the state of a quantum
system, i.e. to discriminate between different states. Such a question leads naturally
to the concept of informational completeness [15, 21]. A family of self-adjoint
operators {0y} is said to be informationally complete if

Tr [pOx| = Tr |9/ Ox| . V&, (4.93)

implies that p = p’ on a Hilbert space H. It is possible to show that sharp observ-
ables are not informationally complete.

We recall, instead, that unsharp observables are the result of a smearing opera-
tion on sharp ones [8, 10, 11, 12]. Now, this smearing operation on sharp observ-
ables, say p and t, can be understood as a coarse-graining operation on a set of
sharp observables. This operation can have an informationally complete refinement
as a result.

About the issue of quasi-probabilities, we can see from Fig. 4.1 that the Wigner
function can assume negative values, which is classically not allowed. In fact, this
would imply a kind of negative probability [13, 24]. It is true that we can make use
of these negative probabilities only for conditional probabilities and intermediate
steps in order to ensure that the final probabilities of events are positive. Neverthe-
less, we can at most say that we deal with negative quasi-probabilities. Moreover,
if we do and, at the same time, we want to assign an ontological status to the
quantum state, the latter could not be of a classical kind. Resuming, in order to
reconstruct the wave function of a quantum system we need to consider both con-
jugate observables like position and momentum. However, since these observables
do not commute, which implies that relative to at least one of them the state is a
superposition, there are interference terms, and those interference terms determine
that the joint function can assume negative values. This leads us to admit negative
quasi-probabilities, which implies that the quantum state cannot be considered in
classical terms.

Both problems (the use of unsharp observables for dealing with informational
completeness and the necessity to involve negative quasi-probabilities) have a com-
mon root that has been called quantum features [6], i.e. those non-local, specifically
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Im(a)

Figure 4.1 (a) Representation of the W-function of a coherent state |a) = |2).
It is a bidimensional Gaussian centered at the point @y = (2,0) in the complex
plane (R(a),I(a)). (b) Representation of the W-function of a number state |n)
with n = 4, i.e. with the number of photons equal to the mean number of pho-
tons in the coherent state (a). Its annular shape shows the phase-invariance of the
number state. Note that there are regions where the function becomes negative.
(c) W-function representation of a squeezed state |, &) with @ = 2 and where
& = 0.8 is the squeezing factor.

quantum interdependencies that are present in every quantum phenomenon and that
in entanglement assume the form of quantum discord [27]. What is sad is that such
features, although contributing to the probabilities of final detection events, can
never be directly detected but can be experimentally ascertained by making use of
the resources so far mentioned.

4.8 Conclusion

What we have learnt is that we cannot have direct evidence of, i.e. directly mea-
sure, a quantum state of a single system. Our experience is only connected with the
experimental values of observables, and any time we measure an observable we
can only make a partial experience of a system under a certain perspective but we
can never have a complete experience that would be represented by an observation
of the state vector. In other words, the quantum state is not an observable in the
classical sense. However, since this feature of the quantum state is not due to sub-
jective ignorance but rather to an intrinsic characteristic of the microscopic world,
there are no definitive reasons to deny the reality of a quantum state. In fact, we
need to admit that the quantum state is intrinsically affected by non-local features
as expressed by the interference terms [6] and those terms forbid both a classical
interpretation of the state and a classical measurement of the latter.

Given these provisos, it makes perfect sense to deal with the measurement of the
quantum state, provided that we:
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make use of statistical methods;
accept the partiality of our information acquiring (and therefore make use of

generalized POVMs or unsharp observables);

accept the consequence of quantum interference terms, i.e. negative quasi-

probabilities.

I think that future developments of protective measurement satisfying these
requirements could be very promising.
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5

Determination of the stationary basis from protective
measurement on a single system

LAJOS DIOSI

We generalize protective measurement for protective joint measurement of several
observables. The merit of joint protective measurement is the determination of the
eigenstates of an unknown Hamiltonian rather than the determination of features
of an unknown quantum state. As an example, we precisely determine the two
eigenstates of an unknown Hamiltonian by a single joint protective measurement
of the three Pauli matrices on a qubit state.

5.1 Introduction

Protective measurement is one of the unexpected consequences of the strange struc-
ture of quantum mechanics. According to general wisdom, we cannot gain infor-
mation on the unknown state p of a single quantum system unless we distort the
state itself. In particular, we cannot learn the unknown state of a single system
whatever test we apply to it. It came as a surprise that in weak measurements [1]
the expectation value (A) of an observable A can be tested on a large ensemble of
identically prepared unknown states in such a way that the distortions per single
systems stay arbitrarily small (see [2], too). An indirectly related surprise came
with the so-called protective measurements [3, 4, 5] capable of testing (A) at least
in an unknown eigenstate of the Hamiltonian A at arbitrarily small distortion of the
state itself. Interesting debates followed the proposal as to the merit of protective
measurement in the interpretation of the wave function of a single system instead
of a statistical ensemble (see, e.g., [6] and references therein).

My work investigates an alternative merit of protective measurement. First I con-
struct joint protective measurements of several observables A, A, ... and re-state
the original equations for them in a general form. Then I show that the straightfor-
ward task that a single joint protective measurement solves on a single system is
the determination of the eigenstates of an otherwise unknown Hamiltonian.
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5.2 Joint protective measurement of several observables

Consider a single quantum system in state p, and suppose that its Hamiltonian has
discrete non-degenerate spectrum wi, wy, . .. :

A= w,ln)nl (5.1)

with eigenstates |n). Consider a set of Hermitian observables Ay, A,, ... For later
convenience, introduce their expectation values in the stationary eigenstates:

<A(l/>l’l = <n|A(l |n‘> ’ a = 19 23 e (52)

To simultaneously measure the observables Ai,A,, ..., we use von Neumann

detectors with the canonical variables (%1, py), (X1, p1), . .., with vanishing Hamil-

tonians. We prepare the detectors in state pp initially, such that the pointer variables

X1, X2, ... are of zero mean and of small dispersions dx;, dx», ..., respectively. The
conditions

0 < 0xe < [Agdn — (Aadml (5.3)

must be satisfied for as many pairs n # m as possible for each detectora = 1,2, .. .,
to ensure that a maximum set of (A, )1, (A, )2, ... can be distinguished by the detec-
tors. Now we introduce the usual coupling K = 3, poA,/T between the observ-
ables and the detectors, respectively, with the factor 1/7" where 7 is the duration of
the protective measurement.

Let us evaluate the composite unitary dynamics in the interaction picture. The
observables and the coupling become time-dependent:

Ag(t) = e A e (5.4)
N l v . -
NOES= Z Pada(D). (5.5)

The unitary transformation after time 7 reads

T
Ur =T exp (—i f f((t)dt)
0
~ . (T dr
=T exp (—1 Z P fo Ao,(t)?] i (5.6)

where 7 stands for time-ordering. Inserting
Aoty = D" @ n) (nldy ) (m, (5.7)
n,m

we find that the contribution of the off-diagonal elements become heavily sup-
pressed when T|w, — w,,| > 1 is satisfied for all n # m. The ideal protective
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measurement requires 7 = oo; the corresponding unitary dynamics contains the
contribution of diagonal elements (5.2) only:

(A]oo = Z exp (_1 Z ﬁa(Aa>n] |I’l> (n|. (58)

n

Observe that the eigenvalues w, of the Hamiltonian play no role, only the eigen-
states |n) do. The dynamics of joint protective measurement of (a finite number
of) observables Ay, As, ... is captured by U.. It will entangle the system with the
detectors in such a way that the pointer variables X1, X5, ... get shifted by the expec-
tation values of (A;),, (A2),, ..., taken in each eigenstate |n) in turn. The readout
of the detectors will obtain the outcomes

x1 = (A)p £ 6x1, x3=(A2)y £6x2, ... (5.9)

with probability |<n|w)|2. The terms +06x;, +6xy, ... indicate statistical errors. The
above outcomes mean that we have occasionally (i.e., whenever the thresholds (5.3)
disclose the ambiguity of n) collapsed the state p of the system into |n) {n| and we
have precisely (i.e., at arbitrary small errors) measured the expectation values of
A, A, ... inthe stationary state |n) of H.

Let us test the above dynamics on the uncorrelated pure initial state |yp) /) of
the system+detectors compound:

o) Wy — Uso D) ) - (5.10)

Let us introduce the wave function Y p(xy, x2, ... ) of the detectors. If we substitute
(5.8) and multiply both sides of (5.10) by {(x1, x2,...|, we get

YD, X, )W) — > g = (A, x2 = (b, ) In) (i),

This shows that, under the conditions (5.3) on the initial wave function
Yp(x1, x2,...) of the detectors, the state on the r.h.s. prepares the von Neumann
measurement of 7 and (A;),, (A2),, ... In particular, the initial probability density
P(x1,%2,...) = Yp(x1, X2, ...)I> changes like this:

P(x1,x,...) — D KnldPPCxr = (A, 2 = (Ao, ).

Formally, this expression is the statistical mixture corresponding to a von Neumann
projective measurement of the stationary basis resulting in the outcome n with
probability [(n|)]>. In each term the initial positions of the pointers get shifted
by the expectation values of the corresponding observables in the given post-
measurement eigenstate |n). The eigenvalues w, themselves do not appear in the
result, since they already canceled from the unitary dynamics U.., as we observed
before.
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5.3 Protective measurement of the stationary basis

We are going to show that a single joint protective measurement determines the
eigenstates of the unknown Hamiltonian. Our example is a single qubit in an
unknown initial state

1 . ~
ﬁ:5(1+§6"), 151 <1, (5.11)
with unknown spatial polarization vector §. Unknown is the Hamiltonian as well:
H=0¢3 |8 =1, (5.12)

with unknown strength Q and unknown direction € of the external “magnetic” field.
The Hamiltonian has two unknown eigenvalues +Q and eigenstates |+):

S

o [-éc
>

H=Q+) +|-Q|-) (-] =Q (5.13)

Now we prepare three von Neumann detectors and couple them to the three qubit
observables A, = 6, fora = 1,2,3, respectively. Their joint protective measure-
ment is described by the unitary operator (5.8):

U = exp (—iK) 14) (+] + exp (=ip(F)-) =) (-1, (5.14)

With <c;*'>i = <+|c;*' |[+) = ¢, the coupling shows the following simple dependence
on the unknown parameter & of H:

A

U = exp(=ip @) |+) (+| + exp(+ip &) |-) (-I. (5.15)
This unitary operator acts on the initial uncorrelated state:
pop — UspppUL. (5.16)

Let the state pp be constrained by 6x;,0xz,0x3 < 1; see (5.3). Inserting (5.15)
and taking the diagonal matrix element (4] ... |)E’) of both sides, we get the resulting
change of the initial pointer statistics P(¥) = (x|0p |x):

P(X) — K+[p [+)PP(X¥ = &) + (~Ip |- P(X + &), (5.17)
Expressing [(x[p |+) | via (5.11) and (5.13), the final statistics of the pointers
X1, X2, X3 becomes

1 > > 1 _z e
S p— )+ — P+ d). (5.18)

If we read out the three detectors, the outcome is X ~ +¢€ with probability (1+€ 5)/2,
respectively. We have thus determined the spatial direction € of the external field at
arbitrary high precision up to its sign, however. The precision of the measured com-
ponents eq, e, e3 is given respectively by the initial dispersions dxy,0x2, 0x3 < 1;
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it does not depend on the initial state p of the qubit. The strength Q of the field
remains unknown while the obtained knowledge of +& means that we have pre-
cisely inferred the two stationary states |+). Our protective measurement collapses
the system, exactly like an ideal von Neumann measurement of 4 would do, into
one of the two stationary states, but we cannot learn into which one of the two.

5.4 Summary

I have generalized the concept of protective measurement for joint protective mea-
surement of a (possibly finite) number of observables, determined the correspond-
ing unitary operation and its action on the arbitrary uncorrelated initial state of the
system and the detectors. I have shown that on a single qubit of unknown state and
unknown Hamiltonian, the two stationary states can be determined in a single joint
protective measurement of the three Pauli matrices. The post-measurement state of
the qubit is just like it would be after a projective measurement of A. This result
may certainly be generalized for higher dimensional systems as well. In fact, the
full Hamiltonian can always be determined on a single system if, e.g., we perform a
suitable sequence of standard measurements. Yet the surprising feature of the joint
protective measurement is that the stationary states can be determined in a single
step and in a transparent model.

This work was supported by the Hungarian Scientific Research Fund under
Grant No. 75129 and the EU COST Action MP1006.
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6

Weak measurement, the energy—momentum tensor
and the Bohm approach

ROBERT FLACK AND BASIL J. HILEY

In this chapter we show how the weak values, (az(t)lﬁl:,l/(to))/(m(t)lt,//(to)), are
related to the T°%(x, t) component of the energy—momentum tensor. This enables
the local energy and momentum to be measured using weak measurement tech-
niques. We also show how the Bohm energy and momentum are related to 7% (zx, 1)
and therefore it follows that these quantities can also be measured using the same
methods. Thus the Bohm “trajectories” can be empirically determined, as was
shown by Kocsis ef al. (2011a) in the case of photons. Because of the difficulties
with the notion of a photon trajectory, we argue the case for determining exper-
imentally similar trajectories for atoms where a trajectory does not cause these
particular difficulties.

6.1 Introduction

The notion of weak measurement introduced by Aharonov, Albert and Vaidman
(1988) and Aharonov and Vaidman (1990) has opened up a radically new way of
exploring quantum phenomena. In contrast to the strong measurement (von Neu-
mann, 1955), which involves the collapse of the wave function, a weak measure-
ment induces a more subtle phase change which does not involve any collapse. This
phase change can then be amplified and revealed in a subsequent strong measure-
ment of a complementary operator that does not commute with the operator being
measured. This amplification explains why it is possible for the result of a weak
spin measurement of a spin-1/2 atom to be magnified by a factor of 100 (Aharonov
et al., 1988; Duck, Stevenson and Sudarshan, 1989). A weak measurement, then,
provides a means of amplifying small signals as well as allowing us to gain new,
more subtle information about quantum systems.

One of the new features that we will concentrate on in this chapter is the pos-
sible measurement of the 7%(a, f) components of the energy—momentum tensor.

68
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In Section 6.3.2 we show that these components are related to the real part of the
weak value (P*(f))w through the expression

RPA(D)w = T(a, 1), (6.1)
where the weak value is defined by

(@@®)|P (1))
H W=
A (@Ol(to))

This allows us not only to discuss, but also to actually measure, the local properties
of the energy, E(x,t), and the momentum, P(x, ). These results are in contrast
with the standard treatments, which only discuss the global properties, using the
expressions

E(t) = f Tz, nd>x and  P/(t) = f Tz, nd’x.

The use of these global quantities is usually justified by claiming that in quantum
mechanics, it is only through these global quantities that energy and momentum
can be uniquely defined and conserved (Schweber, 1961).

However, we can show that the local energy and momentum can also be con-
served. The way to do this comes from a surprising direction — the Bohm approach
(Bohm, 1952a, 1952b). Critically examining the mathematical structure in the sim-
ple case of the non-relativistic, spin-zero particle, we find the real part of the
Schrodinger equation under polar decomposition gives the quantum Hamilton—
Jacobi equation (qHJ),' namely,

oS _(VS)?

ot 2m
where Q is a novel form of energy, which we call the quantum potential energy.
This takes the form

+0+V=0, (6.2)

V2R(x, 1)
)= ———"—"7"——.
Q@0 =~ R0
If we now follow Bohm and define
Pg(x,t) :=VS(x,1) and Eg(x,t) := =0,S (x, 1), (6.3)

we then find that the qHJ equation becomes a simple local energy conservation
equation

Eg(z, 1) = (Pg(z, ) /2m + Oz, 1) + V(z, 1),

! We use 7 = 1 throughout this chapter.
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provided we regard the quantum potential energy as a new quality of energy appear-
ing only in the quantum domain. Indeed, when Q = 0, we have the classical equa-
tion for the conservation of energy. In this case S becomes the classical action and
we recapture the classical equations of motion.

Hiley and Callaghan (2010a, 2010b) have shown further that Bohm’s conjec-
tured expressions for the momentum and energy given by (6.3) can be put on a
firmer footing by showing that

pPL(x,n)=T%@,1)  and  pEg(z,0) = T%,0), (6.4)

where p is the probability density and where expressions for P’é and Eg are
obtained from the expressions of the Lagrangian for the Pauli and Dirac parti-
cles respectively. A more detailed explanation of these results will be given in
Section 6.3.

Thus our results hold not only for Schrodinger particles, but also for Pauli and
Dirac particles. The corresponding real parts of the Pauli and Dirac equations give
rise to their respective qHJ equations. Both these equations contain their corre-
sponding expressions for the quantum potential energies (see Hiley and Calaghan,
2012). Thus the quantum potential energy, the existence of which was regarded as
ad hoc by Heisenberg (1958) and unnecessary by Diirr e al (1996), plays a vital
role in the conservation of local energy and is at the heart of quantum theory.

A comparison of Equations (6.1) and (6.4) shows the relation between the weak
values and the parameters introduced by Bohm; for example, the weak value (P, )w
is exactly the x-component of the Bohm momentum. Indeed, Leavens (2005),
Wiseman (2007) and Hiley (2012) have already shown that this is a particular
example of a more general result applicable to the Schrodinger particle so that
analogous weak values can be found for the corresponding Bohm energy and Bohm
kinetic energy. Similar relations also apply to relativistic particles with spin (Hiley
and Callaghan, 2012). This shows that these quantities are not arbitrarily added
“philosophical” terms, but actually correspond to entities that can be measured in
the laboratory.

Thus the Bohm approach, introduced originally to show that it is possible to pro-
vide a realistic model of quantum phenomena without the need for the observer to
play an essential role in the theory, can no longer be criticized on the grounds that
it uses unobservable terms like the Bohm momentum and Bohm energy. In some
cases these quantities have been measured using weak measurement techniques
(Kocsis et al., 2011a). Furthermore, the criticism that the notion of particles fol-
lowing unobserved “trajectories” adds no new physical content to the theory can
also no longer be sustained. Thus what appeared to be an empty physical theory
actually adds new insight to standard quantum mechanics, and is not in opposition
to it as is often perceived. It actually enriches the standard theory.
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The recent experimental results of Kocsis et al (2011a) confirm that the usual
criticism can no longer hold. These authors empirically determine an ensemble
of what they call “photon trajectories” in regions of interference where standard
arguments using the uncertainty principle would suggest that the interference must
be destroyed (see Figure 6.1).

Although the notion of a trajectory for a photon is not without its own difficulties,
these photon “trajectories” have a striking resemblance to the particle trajectories
calculated in Philippidis, Dewdney and Hiley (1979) for a Schrodinger particle in
the Bohm model (see Figure 6.2). The question we want to discuss in this chapter
is whether we can use these techniques for atoms rather than photons. In this case

Transverse coordinate[mm]

i i i i i i
3000 4000 5000 6000 7000 8000
Propagation distance[mm)]

Figure 6.1 Experimentally produced photon ‘“trajectories” (see Kocsis et al.,
2011a).

Figure 6.2 Theoretical Schrodinger particle trajectories (see Philippidis et al.,
1979).
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difficulties associated with photon trajectories do not arise. Using atoms in the non-
relativistic region will enable us to make a direct comparison with the theoretical
calculations of Philippides et al. (1979). We discuss our experimental proposals in
Section 6.5.

6.2 Quantum measurement
6.2.1 von Neumann measurement

The usual notion of a quantum measurement, the von Neumann measurement,
involves a process in which the wave function “collapses” into one of the eigen-
functions of the operator whose value is required. Let us recall how this works
in some detail to enable us to directly contrast it with what is involved in a weak
measurement.

Suppose we want to measure a property of our system which is described by
an operator A such as, for example, the spin of a particle. One way to determine
this is to pass the particle through an inhomogeneous Stern—Gerlach magnetic field
which deflects the particles according to their spin state. If the particles are initially
traveling along the y-axis, then we orient the field in a transverse direction relative
to the line of flight, say, along the z-axis. The field then separates the particles into
their two spin states. The “pointer reading” then corresponds to the position of the
final two peaks, spin up and spin down.

With the Stern—Gerlach experiment (SG) in mind, we follow Bohm (1951) and
use the interaction Hamiltonian Hy = g(r)Z &, so that the position operator Z
is coupled to the spin operator 6. g(¢) is some function describing the strength
of the interaction. The problem then is to solve the Schrodinger equation using
this Hamiltonian. We remind readers of how this is done in a standard (strong)
measurement simply to contrast it to a weak measurement.

We introduce the time development operator, U(t, fy), to determine the final ket
|¥(r)) from some initial ket |¥(7p)), so that

(1)) = U1, 10)[¥(10)).

U(t, tp) satisfies

out, .
% = SiHOU(1 1)

which gives the solution

U(t, tp) = exp [—if H(t')dt'].
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We now substitute the interaction Hamiltonian with the condition
!
n= f g(t)dt’ = DA,
1o

where D is a measure of the strength of the interaction and Af is the time the
interaction is active. This gives the final state as

¥(1)) = exp|~inZ | ¥(10)). (65)

Then
Glvo) = [ @exp-in2 o] e 1wz
so that we have

W(z, 1) = exp [—inzd-;| ¥(z, t).

Let us choose the total initial spin state to be

2
Wz, 10) = (2. 10) ) caléin),

n=1

where |&,) are the eigenkets of &, viz. 6|&,) = a,lé,) where, for a spin-half sys-
tem, a, takes the value +1 or —1. The final state will be

Y(z,1) = ciy(z—n) + c_yY(z +n). (6.6)

Thus we are left with two sharply peaked wave packets, one centered at n = DAt
and the other at = —DA¢. In the case when the initial wave function is Gaussian,
[W(ty)) = f exp [—%] |z’)dz’, the final wave function in the momentum represen-
tation would take the form

¢(p,1) = Ay exp[—(A2)*(p* — )] + A— exp[—(A2)*(p* + n)]. (6.7)

If the interaction is sufficiently strong to ensure the two wave packets are
well separated, the “pointer” position can distinguish the two spin states (see
Figure 6.3).

Each particle will end up in one of the wave packets and will be detected at the
appropriate point on the screen. This means that at each detection, the wave func-
tion “collapses” into one or other of the two packets described in Equation (6.6),
in which it then remains. It is this process that is called a von Neumann or strong
measurement.
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Classical

prediction What was

actually observed e e

Furnace

Inhomogeneous
magnetic field

Figure 6.3 Diagram of the classic Stern—Gerlach experiment. A beam of silver
atoms is produced in a furnace and passed through a very strong inhomogeneous
magnetic field. The beam is split into its two spin components.

weak strong
SG.z S.G. x

e

=4

Figure 6.4 The modified SG apparatus to observe and measure the weak value
for spin-1/2 particles. The diagram clearly shows the three stages of the weak
measurement process; preparation, weak and strong (Duck et al., 1989).

6.2.2 Example of weak measurements for spin

In order to make a weak measurement, we must reduce the strength of the field of
the Stern—Gerlach magnet to the point where the two wave packets do not com-
pletely separate, but still overlap so that interference effects will be present. More
precisely, if the incident wave packet is a Gaussian, the spatial part of the pack-
ets become separated in the z-direction. If the separation of their centers is, say, a
distance a, and this is less than the width, Az, of the incoming wave packet, the
packets will interfere. Detailed calculations sketched below show that the resulting
beam approximates to a Gaussian, but with its center displaced by an amount that
depends on the weak value (o, )w = (&|G|&i)/(Eelé).

Further interesting results can be obtained if we introduce a further Stern—
Gerlach magnet to make a strong measurement in, say, the x-direction. In this
case the beam is split into two, this time along the x-direction. If these two beams
are allowed to separate completely, then we see two Gaussians whose centers are
displaced from two Gaussians that would have been produced if the weak Stern—
Gerlach magnet had not been in place. The displacements of each packet enable
the weak value (o, )w = (&|G5;|&1)/(&¢|éi) to be measured.
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Figure 6.4 illustrates how all of this comes about. A beam of neutral atoms,
moving along the y-axis, produced from an oven, are first polarized at an angle
a to the x-axis. The beam then passes through an inhomogeneous magnetic field
oriented along the z-axis, SGz, which produces a small separation along the z-axis.
By small here we mean the center of each packet is separated by less than the width
of each packet.

Finally, the weakly separated packets enter another magnet, SGx, this time with
its field oriented along the x-axis. Here a strong measurement takes place along the
x-axis. Note that SGz and SGx are measuring conjugate variables.

6.2.3 Details of the weak measurement of spin

Having outlined what the outcome of a weak measurement of spin will give us,
let us now look into the details. We start, again, with the interaction Hamiltonian
Hy = g(t)Z6,, which, as we have seen, gives a final state

W)l = 27 y(ao)I&).
Now multiplying through by (&| we find
WD) = Ele™ I (10).
Expanding the expontional in the first term on the r.h.s. of this equation, we find
nZ)" &loT'ié)
ml (&l

el = @ty S 8
m=0

We can now rewrite this expression as
(in
m

(€I = (grléy) [eHIv 4 N !) (W =], (©68)
m=2

where ((0;)")w is the “weak value” of the operator (5,)" (see Aharonov et al.,
1988). When the term involving the sum },,_, in Equation (6.8) is small and can
be neglected, we can write the final state at the position z in the form

(&l 1) = (g,

If we choose the initial position wave function to be a Gaussian so that

72
[y (20)) = fexp [—4(1Z)2]Iz')dz’

in the z-representation, then we have

2
1) = eE@w __= ‘
Uz, =e exp[ e
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Recall that the weak value can be a complex number (o~ )w = R{o)w +iI{(0,)w.
This means that the imaginary part of the weak value shifts the real part of the
wave function to be centered around z=2(Az)*J (o, )w since, in this case, the wave
function is

(z +2(A°nT{oHw)’
4(Az)?

Y(z,1) ocexp |~

If we want to evaluate the real part of the weak value, we need to consider a
wave function in the p-representation when we find

¢(p, 1) o exp[—(A2)*(p — nR{(oHw)*]. (6.9)

In order to analyze the results further we must pass the beam through a Stern—
Gerlach magnet aligned in the x-direction. This will split the beam into two com-
ponents which will enable us to measure either

(+x161&7) (=x16-I€7)

(OCIWx) = —— or (TIW(x) = ———

(+x1€7) (=xlé)

If the final screens shown in Figure 6.4 are placed sufficiently far from the last
magnet (strong SGx), so that the displacement in the x-direction will be greater
than width of the wave packet, we will be able to measure the displacement of each
beam from which we can determine the respective weak values.

Let us now compare the result given by Equation (6.9) with the first term of
Equation (6.7). We see that the centroid of the Gaussian is shifted by an amount
that depends upon the initial angle of polarisation a. Duck et al. (1989) show that
by a specific choice of «, the difference can be greater by a factor of 70.

What we see from the above results is that although the spin part of the quantum
state has collapsed, the spatial part does not collapse, it is shifted as a whole. The
shift of the maximum gives us the weak value, (o;)w. This is a clear example of
what Aharonov and Vaidman (1993, 1995) call a “protected” wave function.

Of course, in actually carrying out the experiment we have to ensure that the
neglected terms in Equation (6.8) are satisfied. Also, care must be taken to ensure
that the terms dB,/dx and 0B, /dy, which cannot vanish because of the condition
V- B =0, are taken into account. Detailed discussions of these effects is presented
in Aharonov, Albert and Vaidman (1988) and in Duck, Stevenson and Sudarshan
(1989) and will not be discussed further here.

If all these conditions are satisfied, the theory predicts that the x-displacement
is greater than expected, producing an amplification effect. If the separation of the
spin-z-up and spin-z-down wave packets produced in a normal Stern—Gerlach is d,
then the weak measurement process should separate them by up to a distance 70d.

We see here how the amplification generated by the weak measurement comes
about. Notice that no external amplification process is being used, only a subtle
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manipulation of the wave function of the atom occurs. In a sense this could be
viewed as self-amplification with the advantage that no noise is generated, unlike
real-life amplifiers where irreducible distortion of the signal is inevitable. As we go
deeper and deeper into the atomic and sub-atomic world, signals are getting smaller
and smaller. Therefore the weak measurement technique could offer the possibility
of a new way of making observations that are hidden by insufficient resolution and
the noise of the measuring instruments.

6.2.4 Experimental realization of weak Stern—-Gerlach
measurement using photons

The first experiments to test these ideas have used optical analogues. For example
Ritchie, Story and Hulet (1991) used a Gaussian-mode laser source and the Stern—
Gerlach magnets were replaced by optical polarizers. The weak measurement was
performed by a thin birefringent-crystalline quartz plate as shown in Figure 6.5.
The analysis produces a new feature which must be taken into account.

The laser light traveling, in this case, along the z-axis is polarized at an angle «
to the x-axis. The electric field of the input light is

2+2

E; = Egexp [— ol ] (cos aZ + sinay),

A2
where A is the width of the beam. The birefingent plate is a plane-parallel uniaxial
crystal whose optic axis is along the x-axis, so that the ordinary ray goes straight
through, while the extraordinary ray is deflected in the y-direction. As a result the
two components corresponding to different polarization states become separated

Figure 6.5 Weak Stern—Gerlach measurement using photons (Ritchie ef al. 1991).
P, and P, are the polarisers, OA is the thin uniaxial birefringent crystal responsi-
ble for the weak effect.
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by a distance a, which is made small compared with the overall beam width A. The
emerging beam is then described by

2 2 2
— —_ + . —_
Ew = Epexp [A—);] [cos @ exp [(yTa)] e'% + sinaexp [A_yz] g] .
Here ¢ is the phase difference arising from the difference in the optical path lengths
of the two rays.
The post selection is made using a polarizer aligned at an angle 8 to the x-axis.
The resulting wave function is
2

2
- -(y+
E¢ = Egexp [A—);] [cosacos,Bexp ¥

. _y2
e’ + sina sinBexp [F”

X(cos BE + sin BY).

Thus we see in this example that there are two distinct effects produced by the
uniaxial crystal. First, there is a deflection in the y-direction of one component
of the beam relative to the other. Second, there is a new feature, namely, a phase
change between the two components due to the difference of the speeds in the two
components in the crystal. In the magnetic analogue discussed earlier, only one
of these effects is present, namely, a deflection between the two spin components.
There is no phase factor change in the magnetic case.

If we choose @ = B, we find the two Gaussians add constructively to produce
an intensity that is approximately an unshifted Gaussian. Suppose we rotate the
second polarizer to an angle 8 = a+n/2+€ with € < 1 and suppose a/2A < € <« 1;
the interference will produce a single Gaussian with its center shifted by the weak
value (S y)w ~ acot(e)/2, which is much larger than a. In the actual experiments
an amplification of about 100 could be achieved.

To summarize, a weak measurement involves measuring a change of phase of
the wave function produced by an operator rather than inducing a collapse of the
wave function into an eigenfunction of that particular operator. But this does not
mean that we have avoided a strong measurement altogether. The final stage of the
measurement is a strong measurement; in the case we are discussing, it is a spin
measurement in the x-direction. This final process collapses the spin part of the
wave function, but leaves the form of the spatial part unchanged but displaced as
a whole. It is from this displacement that the weak value can be found. Notice, to
find the shape of the wave function we must perform a series of measurements on
different particles, each being produced with the same initial wave function. The
fact that the result is obtained statistically is not a problem. A pair of numerical
values can be given to the weak values.

Having illustrated how weak measurements can be realized, we now need to
explain exactly how these weak values are related to the conventional approach
(see Hosoya and Shikano, 2010) and then to show how these weak values are
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related to the Bohm energy and momentum used in the Bohm model (see Bohm
and Hiley, 1993).

6.2.5 Weak values

Let us now examine the meaning of weak values defined by

AD)w = (pIAI (1))
(POl (t0))

in more detail. From their very definition, it seems rather strange to call them “val-
ues”, as they are complex numbers. They are weighted transition probability ampli-
tudes and we can use them to give us an expression for the probability amplitude
of going from [) to |¢). This latter state is called the “post-selected” state. Again
the weighting function, (@), in the denominator is strange, since its magnitude
depends on the relation between the pre- and post-selected states. This means that
in some situations it can be chosen to make the weak value large by choosing the
post-selected state |¢(7)) to be nearly orthogonal to the initial state |(zy)), giving
rise to the amplification discussed earlier.

To bring out the meaning of weak values more clearly, let us first note that
the usual expression for the mean value of the Hermitian operator A, sometimes
known as a bilinear invariant, is a weighted sum of transition probability ampli-
tudes (¢ J-|A|1,//) and we can write

WAy = > Wig ) 1),
J

where |¢;) is a complete set of orthonormal states.
However, the mean value can also be written in the form (see Hosoya and
Shikano, 2010)

(@jly) (¢ lAlp)
(@l (pjlwry

Here p j(¢) is the probability of finding the system in the state |¢;). Now we can see
that if |¢p;) and [) are close to being orthogonal, the probability of finding a large
weak value is small even though the “weak value” itself may be large. In other
words, large numerical values for the weak value make a correspondingly small
contribution to the overall mean value. The puzzling feature is why these weak
values should be of any interest at all. Before going on to discuss this, let us make
one more point.

To obtain a more comfortable feel for the weak values, notice the special case
when we choose the |¢;) to be a set of eigenfunctions of the operator A, ie. Ala )=
ajla;), then we obtain the standard result

WlAlp) = Z<w|¢j>( )<¢,~|A|w> = D Pi®) (6.10)
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WIAl) = ) pi@a;.

Thus the meaning of post-selection with a set of eigenstates of A, namely |a i), 18
very clear, but the meaning when a different set of states, |i/;), are post-selected
is still not clear. However, certain weak values do have a specific meaning in the
context of the Bohm model, as we now show, but first we must have a closer look
at the meaning of bilinear invariants from a more general point of view.

6.3 Bilinear invariants
6.3.1 Bilinear invariants of the second kind

So far we have confined our discussion to bilinear invariants of the form ((MAlz//).
However, Takabayasi (1955) points out that when the operators A are represented
as derivatives, we need to introduce what he calls “bilinear invariants of the sec-
ond kind” in order to have a complete specification of a quantum system. These
invariants can be written in the form

O™ + Y (Oy").

Here we have written a generic 0 for operators like 8/0x, 8%/0x%, 8/dt,... If we
take the plus sign, we will simply have a derivative, which will give us a bilinear
invariant of the first kind. Taking the minus sign gives us a bilinear invariant of the
second kind. We will follow convention and write this as

WG = O — oY),

To understand the meaning of these invariants we need to return to consider the
energy—momentum tensor.

6.3.2 The energy—momentum tensor

As is well known, the Schrodinger equation can be derived from the Lagrangian

1 i :
L=-5-Vy" -V + L@ ~ G W]~ Vi'y.
m 2

The details will be found in Heisenberg (1949). Using the energy—momentum ten-

sor defined by
oL oL
TH — _ o’ P ,
{6@#@ Y aan” Y }
we find the momentum density can be written as

. oL . oL .
0j — _ J o
! {a@%)a Y oY }
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Because
oL I, oL _l
o - Y M G T a”

we find
% = Ly aly — ydyr].
2
We see immediately that this is the expression for the current, as expected. If we
write 9/ = -V, we immediately recognise that 7% (z, 1) is the Bohm momentum,

ps(x,t) = VS(x,1), or the so-called “guidance condition”, as can be easily seen
by writing ¢ = Rexp[iS]. A similar argument using

TOO — %[lp*aow _ wa()w*]

gives the Bohm energy, Eg(x, ) = —0,S (x, t). Thus the Bohm energy and momen-
tum are nothing but the energy—momentum density derived from the standard
expression for the energy—momentum tensor. Hiley and Callaghan (2012) have
shown that similar relationships hold for the Pauli and Dirac particles.

In the standard approach the energy, E, is defined as

E@t) = f Tz, Hdx (6.11)
while the momentum P/ is defined by

Pi(r) = f T%(x, 1)d> x. (6.12)

These quantities are not a function of position but are global quantities. Thus the
conventional theory is concerned with the global energy and momentum, whereas
the Bohm approach focuses on the local expressions, Eg(x, 1), P{3 (a, t). Conserva-
tion of global energy and momentum is achieved through

d
T fTO“(a:,t)d3x =0, u=0,1,2,3.

As we have already pointed out in Section 6.1, conservation of local energy
is achieved using the quantum Hamilton—Jacobi Equation (6.2) (see Hiley and
Callaghan, 2012). The differences between these two approaches to the notion of
particle number has been discussed by Colosi and Rovelli (2009).

6.3.3 Weak values and the T (x, ) components of the
energy—momentum tensor

We will now show how the T°%(z, t) components of the energy—momentum tensor
are related to weak values. To do this we take Equation (6.10) and replace the
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operator A with the momentum operator Fx, while replacing (4| by (x|. This means
we are investigating the weak value of the momentum at a post-selected position x.
Then

= (P (1)

Polu(0)) = AR g
WPy = [ ot el
Now we can write

(P (1)) = f (P 1X )X T (1)dx’

However, we use (xlFxlx’) = —iV,6(x — x’) again, so that

(P (1)) = =iV (x, 1).
If we now write Y(x, £) = R(x, £)e’* ) we find

(P (1)
(xly (1))

where p(x, 1) = [¥(x, 7)|? is the usual probability density. If we now form a bilinear
invariant of the second kind by writing

—
WPl
APWD) _ g sixn. 6.13

G0 (- 2) 613

we see that this invariant is, in fact, the 7°'(z,) component of the energy—
momentum tensor which also happens to be the x-component of the Bohm momen-
tum (Leavens, 2005; Wiseman, 2007). The imaginary part of the weak value is
the osmotic velocity which is generally ignored, but see Bohm and Hiley (1989)
for further details.

If we formally introduce the time operator P,, the real part of the weak value
(Py)w gives T%(x, r) and hence the Bohm energy, while the real part of (Pt2 Yw gives
the Bohm kinetic energy plus the quantum potential (Leavens, 2005). The corre-
sponding expressions for a particle with spin has been presented in Hiley (2012).

Having seen the relevance of weak values, we now need to show how they can
be realized experimentally.

= VS (x, 1) = 1Vp(x, 1)/ 2p(x, 1),

6.4 Weak measurements with photons
6.4.1 The experiment of Kocsis et al.

Weak measurements have already been made on very weak photon beams in a
beautiful experiment by Kocsis et al. (2011a) (see Figure 6.1). Polarized single
photons are split by a 50-50 beam splitter before being re-coupled using two colli-
mated fiber couplers that act as two slits. After the photon has passed through the
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screen containing the two slits, the real part of the weak value of the transverse
momentum is measured at various points. From these values a set of stream lines
are constructed which have a striking similarity to the trajectories calculated by
Philippidis, Dewdney and Hiley (1979) for a Schrodinger particle described by the
Bohm model (see Figure 6.2).

The weak measurement of the momentum was made by introducing a thin slither
of birefringent calcite crystal into the photon beam immediately after the two slits.
The calcite was thin enough and placed with its optical axis suitably oriented so
that the ordinary and extraordinary ray were still overlapping after they left the
crystal. This process induces a phase change in the beam that can be calculated
using the interaction Hamiltonian HI = gP S 1, where 25 1 = [HY}H| — |[V){V]].
Here |H) and |V) are the horizontal and vertical components of the polarization of
the photon. This gives the final state of the photons to first order to be

o D (i is
o) * =2 e IH)Y + V)],
where we have written ¢ = DTA’(PX)W, the theoretical value of the phase. In the
Kocsis et al. experiment, the phase was written as ¢ = {(Py)w where { is some
factor that depends on the details of the experimental setup, as discussed in Kocsis
etal. (2011b).

To measure this phase factor, we need to perform a strong measurement using
S3 = |R)YR| — |[L){L|. Here |R) and |L) are the right and left circularly polarized
states respectively. Then we find that

(§3) = sin[{(Pr)w].

The weak value of the transverse momentum can then be found from the difference
in the counts of the number of right-hand photons and left-hand photons arriving
at a point through the relation

1 . (Ig=1,
P)w = — HE =
(Pow 7 sin (IR +IL)

This then determines the transverse momentum at a series of points in the inter-
ference region. From these values, together with the momentum along the axis,
Kocsis et al. (2011a) construct the momentum stream lines, as explained in detail
in their paper.

6.4.2 The meaning of the stream lines

The question that must now be addressed is precisely what meaning can be attached
to these stream lines in the case of photons. Since we are here dealing with the
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electromagnetic field, a weak measurement of the momentum will give values of
the Poynting vector of this field at various points after the field has passed through
the thin calcite crystal used to perform the weak measurement. The experiment of
Kocsis et al. (2011a) is dealing with single photons, posing the question “What is
the meaning of the Poynting vector when a single photon is involved?”

To make the discussion more transparent, let us consider first a measurement
that would determine the 7%(z.f) component, namely, the electromagnetic energy.
If the beam was a monochromatic plane wave composed of many photons, we
would argue, along with Dirac (1927), that if we divide this value by the number
of photons, we could determine the energy carried by a single photon.

This type of argument has already been used in the Beth (1936) experiment to
measure mechanically the spin of a photon. In this experiment a circularly polar-
ized beam of light is reflected back by a mirror after passing through a quartz
wave plate. If the quartz wave plate is fixed to the mirror and the combined sys-
tem attached to a quartz fiber, the change of the beam’s angular momentum in the
wave plate at reflection will produce a torque in this fiber. The change of angular
momentum taking place in the quarter-wave plate induces a torque on the quartz
wave plate, causing it to rotate through an angle that enables the change in angu-
lar momentum of the reflected beam to be measured. When one divides this value
by the number of photons in the beam, we find that each photon carries a unit of
angular momentum as expected.

Since in the Kocsis et al. experiment only a single photon enters the apparatus at
a time, the weak measurement of the energy will give a value for the energy carried
by a single photon. A corresponding measurement of the momentum will give us
the momentum of a single photon.

We are now faced with an interesting question: “What is the meaning of the
energy and momentum of a photon at a point?” The photon has a sharply defined
energy and momentum so it could be argued that the uncertainty principle would
forbid us the talk about a photon at a sharply defined position. Detailed discussions
of these problems can be found in Cook (1982), Mandel (1983) and Roychoudhuri,
Kracklauer and Creath (2008).

In the Bohm approach, sharp “values” can be simultaneously attributed to
an object (the beables), but if we try to attribute a simultaneous position and
momentum to a photon while maintaining the field values for the energy, 7% =
(E* + B?)/8x, and momentum, 7% = (B x E)!/4rn, we run into trouble. This
problem has already been pointed out by Bohm, Hiley and Kaloyerou (1987)
and by Bohm and Hiley (1993), but its significance does not seem to have been
appreciated so we will briefly outline the problem using a simple example.

Consider the special case in which B is parallel to E so that ExX B = 0. Assume
further that E and B are in the x! direction. This means that under Lorentz boost
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in the x!' direction, we will still have E’ parallel to B’ so that (E’ x B’) = 0. It
follows that the velocity of the photon is zero in a whole range of Lorentz frames,
which makes little sense. Indeed, no meaning can be given to a photon at rest in
general. This gives rise to serious doubts as to whether one can think of the photon
as a particle even in the Bohmian sense.

Indeed, this was one of the reasons why Bohm (1952b), Bohm, Hiley and
Kaloyerou (1987) and Bohm and Hiley (1993) proposed that photons, and bosons
in general, should be treated in terms of a field. This meant developing a Bohmian
approach to quantum field theories (Bohm et al., 1987). This theory treats the
field ¢(x*) and its conjugate momentum 7(x*) as the beables. The dynamics is
introduced in terms of a super-Schrodinger equation, which, in turn, leads to a
super-quantum Hamilton—Jacobi equation together with a super-quantum potential
which organizes the fields to produce the quantum effects. We will not discuss
this approach here but the details for a scalar field can be found in Bohm, Hiley
and Kaloyerou (1987) while those for the electromagnetic field can be found in
Kaloyerou (1994). A simplified account can also be found in Bohm and Hiley
(1993).

For our purposes here, all we need to know is how the concept of a photon
arises in Bohm’s approach to the field. When an atom emits a quantum of energy,
the energy disperses by spreading into the global electromagnetic field so that the
energy of the field increases by Av. This energy is not localized and this is reflected
in standard quantum field theory where an integral over all space is performed as
shown in Equations (6.11) and (6.12).

The atom absorbs energy from the field through the action of the super-quantum
potential. This potential is non-local and sweeps up a quantum of energy, hv, from
the field, causing an appropriate local transition in the atom. It is the structure of the
energy levels in the atom that determines the amount of energy absorbed or emitted.
More details can be found in Bohm, Hiley and Kaloyerou (1987) and Kaloyerou
(1994).

This is a radically different way of understanding the concept of a photon from
the usual one, although even in the more conventional case there is no clear view
as to how we are to understand the physical nature of the photon (see Roychoud-
huri, Kracklauer and Creath, 2008). Not only does it avoid the difficulties we have
discussed above, but it also offers an explanation for the coherent state where,
although the quantum state of the field is well-defined, the number of photons it
contains is not. If photons existed as well-defined actual entities then it is hard to
understand why the number of entities in a definite state should be ambiguous.
A further advantage to this approach is that the non-local nature of the quantum
potential gives an account of the EPR effect, as was shown in detail in Bohm ef al.
(1987).
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Returning to the photons considered in the experiment of Kocsis ef al., we note
that the individual photons are described by a Gaussian wave packet, indicating that
the photons are not mono-energetic, a small spread of frequencies is involved. In
order to find the weak value of the momentum at any point, we must place a detec-
tor at that point and it is by counting photons that the weak values are determined.
So in terms of this model, the stream lines that Kocsis ef al. (2011a) construct are
simply energy—momentum flow lines and do not imply that photons actually follow
these flow lines.

6.4.3 Schrodinger particle trajectories

The objections that we have raised against photon trajectories do not apply to
atoms. If we assume that atoms can be described by the Schrédinger equation,
then, as we have already pointed out, the Bohm approach allows us to calculate
trajectories in a two-slit interference experiment, as was shown by Philippidis et al.
(1979).

An atom, with its finite rest mass, can be brought to rest and can thus have a
simultaneous position and momentum, even though we will not be able to measure
these values simultaneously using a von Neumann-type strong measurement. How-
ever, as we have seen in Section 6.3.3, this simultaneous momentum is the Bohm
momentum, which is not an eigenvalue of the momentum operator in the state
under consideration, but the weak value defined in Equation (6.13). This means
that this momentum can be measured by making the appropriate weak measure-
ment of the momentum operator. Since atoms move relatively slowly, the question
of Lorentz invariance will not arise, so that we can discuss the notion of a particle
trajectory without encountering the problems that beset the notion of a photon tra-
jectory. Thus in this case a measurement of the appropriate weak values will allow
us to construct an ensemble of trajectories which can then be compared with the
theoretical calculations of Philippidis et al. (1979).

6.5 Conclusions

In this chapter we have discussed how weak measurements give new information
about quantum processes. In particular we have shown how weak values give new
information about spin and about energy and momentum. In fact we have shown
that a weak value of the energy and momentum operators using position as a post-
selection gives us values for the {0, 1} components of the energy—momentum tensor
TH (z, t). In turn we showed that the Bohm energy, Eg(z, ), and the Bohm momen-
tum, Pg(x, t), are simply related to the appropriate values of 7% (zx, ). Thus values
for these Bohm variables can be obtained by the measurement of the corresponding
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weak values, showing that the Bohm approach is not a return to classical notions. It
gives us information about the local energy and momentum, whereas the standard
interpretation gives us information about their global properties.

To date the weak measurement techniques described in this chapter have been
applied only to optical systems such as Young’s two slit experiment (Kocsis ef al.,
2011a) and the optical analogue of the classic Stern—Gerlach experiment (Ritchie
et al., 1991). What has not yet been demonstrated is the use of weak measurements
for particles with non-zero rest mass obeying the Schrodinger equation. Results
here will enable us to make a direct comparison with the theoretical predictions of
the Bohm model.

With this objective in mind we propose to carry out a series of experiments
starting with a modified SG apparatus shown in Figure 6.4. We plan to confirm that
the amplification factors that are measured correspond to those predicted. We then
plan to apply the method to a modified Young’s slits apparatus aiming to reproduce
the “photon trajectories” found by Kocsis et al. (2011a), only in our case we will
use atoms. This will open the possibility of employing the technique to observe
weak effects assumed to be beyond our reach using conventional techniques. In
this way we believe that we can make experiments that observe quantum effects
that were once thought to be impossible.
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Meanings and implications






7

Measurement and metaphysics

PETER J. LEWIS

7.1 Introduction

It is a prima facie reasonable assumption that if a physical quantity is measurable,
then it corresponds to a genuine physical property of the measured system. You
can measure a person’s mass because human beings have such a property. You can
measure the average mass of a group of people because groups of people have such
a collective property. And so on.

Now it would be truly surprising — miraculous, perhaps — if you could determine
the average mass of a group of people by making measurements on just one of
them. To ascribe such a statistical property to an individual looks like a category
mistake. At first glance, protective measurements seem to pull off just such a mir-
acle, determining, for example, the expectation value of position for an ensemble
of particles via a measurement performed on one of them. The lesson we are sup-
posed to draw, of course, is that expectation values are not statistical properties at
all, despite their name. Rather than being an average over an ensemble of systems,
the expectation value of position for a particle is a physical property of the individ-
ual system, and the wave function, as the bearer of these properties, is a physical
entity (Aharonov, Anandan and Vaidman, 1993).

The protective measurement procedure has been challenged (Uffink, 1999; Gao,
2013; Uffink, 2013), but for present purposes I will assume that protective mea-
surements exist, at least in principle, that are capable of revealing “statistical”
properties like expectation values in a single measurement. My aim here is not
to challenge the existence of such a physical procedure, but rather to explore the
arguments that connect the existence of protective measurements with conclusions
concerning the nature of physical reality. What protective measurements are sup-
posed to show is that “epistemological” interpretations of the quantum state are
untenable — that the wave function of a system must instead be interpreted “onto-
logically” (Aharonov, Anandan and Vaidman, 1993: 4617).
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But what exactly are the epistemological and ontological interpretations con-
trasted here? There are at least two distinct possibilities.' First, the epistemologi-
cal interpretation could be identified with an empiricist attitude towards quantum
mechanics in general — taking the theory as a recipe for generating the probabilities
of measurement results. Here the contrast is with scientific realism, construed as
the view that quantum mechanics is in some sense a true description of the physical
world. However, Dickson (1995) has convincingly argued that protective measure-
ment cannot decide between empiricism and realism about quantum mechanics,
since protective measurement is entirely consistent with empiricism.” Hence I set
this construal of the argument aside.

Second, the contrast between the epistemological and ontological interpretations
of the wave function could be construed within an overall scientific realist atti-
tude towards quantum mechanics in terms of the distinction between a statistical
description and a categorical description of the physical system in question. Under
this construal, the ontological interpretation is that the wave function is a descrip-
tion of the properties of a single physical entity, whereas the epistemological inter-
pretation is that the wave function is a description of the distribution of properties
over an ensemble of similar physical systems.

Taken in this way, the argument in favor of the ontological interpretation is more
interesting. At first glance, though, it is still somewhat puzzling, since the con-
clusion of the argument is already the standard position among realist interpreta-
tions of quantum mechanics, prior to any consideration of protective measurement.
No-go theorems (e.g. Bell, 1964; Kochen and Specker, 1967) are taken to show that
it is impossible to interpret the wave function as a statistical distribution of prop-
erties over an ensemble of similar systems. Interference phenomena seem to show
that elements of the wave function physically interact with each other, and hence
that the wave function is something like a physically real field. Indeed, all three
of the major realist research programs in the foundations of quantum mechanics —
Bohmian, Everettian and GRW - take the wave function to be a real dynamical
entity.’

Perhaps the intention is just to put the last nail in the coffin of ensemble interpre-
tations. However, my goal here is to show that even though ensemble interpreta-
tions face formidable (and well-known) obstacles, protective measurements don’t
lead to any additional difficulties. Rather, they provide us with a nice illustration

! Aharonov, Anandan and Vaidman take the target of their argument to be the position that “the wave function
represents at least partially our knowledge of the system” (1993: 4617), but this isn’t decisive between the
two construals I outline here.

2 Dickson does contend, though, that protective measurement puts realism and empiricism “back on an even
footing”, since it counteracts the support for instrumentalism provided by ordinary impulsive measurement
(1995: 135).

3 However, it is worth noting that some Bohmians argue that the wave function is a physical law rather than a
physical entity (Diirr, Goldstein and Zanghi, 1996).
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of a conclusion for which we had considerable indirect evidence already, namely
that quantum mechanics leads to a blurring of the distinction between the intrinsic
properties of a system and the statistical properties of the ensemble of which it is
a member. This conclusion goes for all realist interpretations of the quantum state,
both the mainstream ones that take the wave function to be a real field and the
more conjectural ones that take the wave function to describe our knowledge of an
ensemble.

7.2 Bohm’s theory

Although the usual target of arguments from protective measurement is ensemble
interpretations of the wave function, protective measurements have also been used
to argue against the tenability of Bohm’s theory (Aharonov, Englert and Scully,
1999). The argument against Bohm’s theory begins from a protective measurement
that measures the wave function intensity in a small region around x = 0 for a
particle whose wave function is spread out along the x axis. Wave function inten-
sity, of course, is connected via the Born rule to the statistical properties of the
system; in this case, it tells us the probability of finding the particle close to x = 0
if we measure its position using a standard impulsive measurement. The fact that
the wave function intensity itself can be directly measured seems to show that the
wave function intensity is a physical property of the system.

By itself, this is no argument against Bohm’s theory, since Bohm’s theory
already takes the wave function intensity to be a real physical property of the
system; it is the wave function that pushes the particle around. Rather, the argu-
ment concerns the physical details of the measurement interaction. The protective
measurement is effected by a Hamiltonian that links the state of the measured
particle with the state of a second particle that acts as a pointer. In particular, the
Hamiltonian contains a weak, long-lasting coupling term in the region around
x = 0 between the two particles. This interaction induces a shift in the wave packet
of the pointer particle proportional to the wave function intensity of the measured
particle in the x = O region.

What (supposedly) makes this interaction problematic for Bohm’s theory is that
the Bohmian particle configuration for the system never passes through the x = 0
region. The interaction Hamiltonian is such that the measured particle and the
pointer particle only interact within the x = 0 region. So the Bohmian particle con-
figuration for the system cannot represent the actual particle motions during a pro-
tective measurement. Protective measurements, so the argument goes, cannot be
given a physically acceptable Bohmian analysis.

I think this argument involves a misunderstanding of the role of particles in the
Bohmian theory. Bohmian particles are not dynamically active entities; they do not
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act on each other or on the wave function. Their role is passive and phenomenolog-
ical; they are pushed around by the wave function and correspond to the observed
outcomes of our measurements. So the fact that the particle configuration does not
pass through the x = O region is irrelevant to the explanation of the dynamical
behavior of the system, since the particles are dynamically inert. All the action lies
in the evolution of the wave function, construed as a real field. The wave function
surely exists (in part) in the x = 0 region, and the dynamical behavior of the wave
function in this region, under the influence of the Hamiltonian, explains the motion
of the wave packet for the pointer particle. The only role of the Bohmian particle
configuration is to pick out one precise location in this wave packet as representing
the observed outcome of the measurement.*

The confusion arises, I suspect, because the Hamiltonian itself is derived from
an analogous interaction in classical mechanics, and in the classical case the inter-
action really does occur between particles at x = 0. In classical mechanics, the
particles are dynamically active — the locus of forces. Classically, if the particles
did not pass through the interaction region, the interaction could not occur. The
Bohmian particles take on the phenomenological role of the classical particles;
their configuration corresponds to the observed outcome of a measurement. But
they do not take on the dynamical role of the classical particles; that role is taken
on by the wave function.

It is instructive to compare the protective measurement to standard two-slit inter-
ference, in which the particle passes through one slit or the other and the wave
function passes through both slits. Suppose the Bohmian particle passes through
the left-hand slit. Its trajectory is affected by whether or not the right-hand slit is
open, even though the particle doesn’t pass through the right-hand slit. One might
try to parlay this into an objection to Bohm’s theory — how could the particle be
affected by the state of a slit it doesn’t go near? — but clearly this would be unfair
to the theory. The particle trajectory is not intended to be a dynamical explanation,
as it is in classical mechanics.

This is not to say that Bohm’s theory is unproblematic. In systems with more
than one particle, the motion of one particle depends on the location of all the other
particles, no matter how distant. This makes it hard to square Bohm’s theory with
special relativity, since the location of distant particles right now is undefined in
special relativity. This problem certainly arises in protective measurements, since
they involve more than one particle, but it is hardly a special problem for protec-
tive measurements, and it was well-known before protective measurements were
postulated (e.g. Bell, 1971).

4 Indeed, this minimal role for the particle configuration has been exploited by Everettians seeking to argue
that the Bohmian particles are redundant (e.g. Brown and Wallace, 2005).
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7.3 Contextual properties

So Bohm’s theory suffers from no special problem explaining protective measure-
ments, but only generic problems of an explicitly non-local theory. And Bohm’s
theory is particularly useful in making explicit the distinction between contextual
and non-contextual properties of quantum systems. Since this distinction will be
important later, it is worth considering in detail how contextual properties arise in
Bohm’s theory.

A contextual property is one whose value depends on the context in which it is
measured. The x-spin of a particle prepared in an eigenstate of z-spin provides a
simple example of a contextual property in Bohm’s theory.” Suppose the x-spin of
the particle is measured using a Stern—Gerlach device; if the particle is spin-up it is
deflected upwards, and if it is spin-down it is deflected downwards. Since Bohm’s
theory is a deterministic theory, the possible trajectories of the Bohmian particles
cannot cross in configuration space (as an intersection between trajectories would
amount to indeterminism). In a single-particle experiment like that envisioned here,
the configuration space is just ordinary three-space. This means that if the particle
starts out in the upper half of the wave packet, it is deflected upwards, and if it starts
out in the lower half it is deflected downwards (because otherwise the trajectories
would cross). So (one might think), spin-up particles are just those that are located
in the upper half of the wave packet.

But now suppose we rotate the Stern—Gerlach device by 180° around the paths of
the particles, so that spin-down particles are deflected upwards and spin-up parti-
cles are deflected downwards. Consider again a particle that starts out in the upper
half of the wave packet; by the same argument as before, it must be deflected
upwards. But now this particle is recorded as a spin-down particle. That is, a par-
ticle that starts out in the upper half of the wave packet will manifest itself as a
spin-up particle if the Stern—Gerlach device is one way up, but a spin-down parti-
cle if the device it the other way up. The spin of the particle depends on the context
in which it is measured.

This way of putting things makes it sound as if spin in Bohm’s theory is a prop-
erty of particles, albeit of a peculiar kind. But this is somewhat misleading. In fact,
rather than saying that spin is a (contextual) property of the measured system, it is
more accurate to say that the measured system doesn’t really have a spin property —
that nothing in its pre-measurement state corresponds to the observed spin value.
After all, the orientation of the Stern—Gerlach device can’t affect the earlier state of
the measured system, so prior to the measurement there can be no fact of the mat-
ter about whether the system has the spin-up property or the spin-down property.
However, contextuality doesn’t arise for a particle residing in a wave packet that is

> My exposition here follows Albert (1992).
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an eigenstate of x-spin. In such a case, the entire wave packet is deflected up (say),
taking the particle with it, and if the Stern—Gerlach device is rotated, the entire
wave packet is deflected down, again taking the particle with it. Here it does seem
appropriate to ascribe a spin property to the system. And presumably the bearer
of this spin property is the wave function, since, as noted above, the particles are
causally inert in Bohm’s theory. So all in all, it seems that spin is a property that the
wave function possesses in Bohm’s theory, but only when the wave function takes
certain forms (the spin eigenstates).

Similar considerations apply to the protective measurement described in the pre-
vious section. In this measurement, the wave packet of the measured particle is con-
fined within a box centered on x = 0 in the ground state (Aharonov, Englert and
Scully, 1999: 138). The protective measurement effectively measures an observ-
able for which this state is an eigenstate whose eigenvalue is the wave intensity
around x = 0 (Uffink 1999: 3479). The measurement outcome is recorded in the
position of the pointer particle, which let us suppose moves along its y-axis.

But now suppose that the wave packet of the measured particle is initially a
superposition of the ground state and the first excited state. This wave packet is
not an eigenstate of the observable measured by the protective measurement; the
ground state has large wave intensity around x = 0, but the first excited state has
small wave intensity here. (For this reason the measurement would not count as
protective, since it disturbs the measured system.) Hence the pointer particle ends
up in a superposition of two distinct positions; its wave function has significant
intensity in two distinct regions, close to y = 0 and far from y = 0. If the pointer
wave function is initially concentrated close to y = 0, then the wave function splits
into two packets, one of which moves up and the other of which stays put. Consider
the motion of Bohmian particles in this case. Since Bohmian trajectories cannot
cross, if the particle starts in the upper half of the initial wave packet it moves
up, and if it starts in the lower half it stays put.® Now consider what happens if
the direction of the measurement Hamiltonian is reversed; the term in the pointer
superposition corresponding to the ground state moves down rather than up, so
particles that start in the lower half of the initial wave packet move and those in the
upper half stay put. For a given initial configuration of the Bohmian particles, then,
whether the measurement indicates that the wave intensity close to x = 0 is small
or large depends on the orientation of the measuring device.

So, just like x-spin, the property measured by this protective measurement is
contextual according to Bohm’s theory. And again, since the state of the measured

6 Matters are complicated slightly here by the fact that we are dealing with a two-particle system inhabiting a
six-dimensional configuration space. Bohmian trajectories cannot cross in this configuration space. However,
since the Bohmian trajectories are practically stationary in the coordinates of the measured particle
(Aharonov, Englert and Scully, 1999: 144), this amounts to the condition that the trajectories do not cross in
the coordinates of the pointer particle.
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system can’t depend on measurements that have yet to be performed on it, to say
that a property is contextual is tantamount to saying that it doesn’t exist at all; the
pre-measurement system lacks a property corresponding to wave intensity at the
origin. As before, this contextuality doesn’t arise when the state of the measured
particle is an eigenstate of the measured observable (so that the measurement is
genuinely protective). In that case, it is appropriate to ascribe a wave intensity
property to the system, where the bearer of the property is the wave function rather
than the particle. That is, the wave intensity measured by this protective measure-
ment is a property that the wave function sometimes possesses — a property that it
possesses when it is in the ground state, but does not possess when it is a superpo-
sition of the ground and first excited states.

One might object to this conclusion on the grounds that the measurement just
described is not a protective measurement (as noted above), since it disturbs the
measured system. A genuine protective measurement is available that measures
the wave intensity around the origin for the superposition state; this requires a
different Hamiltonian to ensure that the measurement is non-disturbing.” On the
basis of this genuine protective measurement, one might reasonably infer that since
the wave intensity can be measured in the superposition state, the wave function
possesses a wave intensity property for this state too. However, it is equally true
that one can measure the spin property of a particle in a superposition of distinct
x-spin eigenstates without disturbing its state. Suppose the particle is initially in
a symmetric superposition of x-spin eigenstates. Then one can measure the spin
property of this particle without disturbing it by rotating the Stern—Gerlach device
by 90°, since the symmetric superposition of x-spin eigenstates is an eigenstate of
spin along the z-axis. But of course, although the particle has a z-spin property in
this state, it does not have an x-spin property (and we know this because an x-spin
measurement on the z-spin eigenstate is contextual).

A similar thing can be said in the case of wave intensity measurements. Although
one can perform a non-disturbing measurement that returns a wave intensity value
for the superposition state, the corresponding property that this state possesses
cannot be the same as the property measured by the original protective measure-
ment on the ground state. Whatever property the original protective measurement
measures, the superposition of ground and protective states lacks it, since the mea-
surement on this state is contextual. The superposition state has a related property,
measured by the new protective measurement, one that perhaps has an equal claim
to be called “wave intensity”. Hence wave intensity, like spin, is best thought of as

7 Tt might be argued that the only difference in the Hamiltonian between the two measurements is the
protective term that ensures that the measured state remains undisturbed. That is, the term in the Hamiltonian
that defines the measured property remains unchanged. But it would need to be shown that a principled
distinction can be drawn between these various parts of the Hamiltonian — one that does not beg the question
by assuming that the measured property remains the same.
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a family of related properties, not a single property, and different protective mea-
surements measure different wave intensity properties.

The upshot of this argument is that although Bohmians typically take the wave
function to be a physical entity, its property structure is quite complex. In particu-
lar, the intensity of the wave function around a particular point in (configuration)
space is perfectly well defined in the theory, but can generate disparate measure-
ment results depending on how it is measured, indicating that it should not be
viewed as a single possessed property of the system. That is, although the wave
function underlies the physical properties of a system, in the sense that a differ-
ence in physical properties requires a difference in the wave function, it does not
follow that all the mathematical properties of the wave function correspond to sim-
ple physical properties of the system. The contextual nature of wave intensity in
Bohm’s theory explored above suggests that even though wave intensity can be
measured via a protective measurement, it should not be regarded as a simple phys-
ical property of the system.

7.4 Ensemble interpretations

In the previous section I argued that we have to be careful in our inference that the
result of a protective measurement corresponds to a property of the measured sys-
tem. So far, though, nothing I have said challenges the basic argument that protec-
tive measurements show that the wave function is a physical entity, and hence rule
out ensemble interpretations of the wave function. Even though the wave intensity
property can be contextual, there is no contextuality when the state is an eigenstate
of the protective measurement operator. So the existence of protective measure-
ments shows that there exist measurements that reveal “statistical” properties like
wave intensity, and reveal them with certainty without disturbing the measured
system. Hence we can turn Einstein’s criterion of reality against him. Einstein
famously held that “if, without in any way disturbing a system, we can predict
with certainty (i.e., with probability equal to unity) the value of a physical quantity,
then there exists an element of reality corresponding to that quantity” (Einstein,
Podolsky and Rosen, 1935: 777). Since protective measurements allow us to pre-
dict the values of wave function properties with certainty (and without disturbing
the system), there must be elements of reality corresponding to these properties,
undermining Finstein’s own hope that the wave function can be interpreted as a
statistical description of an ensemble rather than a physical entity.

As noted above, however, ensemble interpretations were apparently ruled out by
the no-go theorems long before the advent of protective measurements. Still, there
are those who continue to hold out hope. One prominent strategy for evading the
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no-go theorems is to invoke retrocausality — the hypothesis that causal influences
can travel from later events to earlier events, as well as in the usual fashion from
earlier events to later events (Cramer, 1986; Kastner, 2013; Price, 1994; Price and
Wharton, 2013; Sutherland, 2008; Wharton, 2010). How does this strategy fare
against the challenge of protective measurement?

It is important to note that contextuality is typically ubiquitous in retrocausal
theories. Since causal influences can travel from later measurement events to ear-
lier system preparation events, it is always possible for the initial state of a system
to reflect the measurements that will later be performed on it.® Unlike the contex-
tuality that emerges in Bohm’s theory, retrocausal contextuality can in principle
even affect systems in eigenstates of the measured observable. For example, sup-
pose that the state of a one-particle system is prepared in the spin-up eigenstate of
x-spin. Then if the x-spin of the system will later be measured, the possessed prop-
erties of the system must correspond to x-spin-up, in the sense that those possessed
properties will bring about the spin-up result with certainty. But if the x-spin of the
particle will not later be measured, this fact can affect the earlier possessed proper-
ties of the particle, so they might differ from those that correspond to x-spin-up.

Consider what this means for the protective measurement of wave intensity dis-
cussed above. Like Bohm’s theory, retrocausal theories ascribe determinate trajec-
tories to a set of particles, but unlike Bohm’s theory, there is no wave function steer-
ing the particles. So retrocausal theories cannot avail themselves of the response to
Aharonov, Englert and Scully I gave on behalf of Bohm’s theory; since there is no
wave function in a retrocausal theory, the particles themselves must be the dynami-
cally active entities. A further disanalogy with Bohm’s theory is that we cannot rule
out the possibility of particle trajectories crossing in the retrocausal case; since we
have as yet no explicit dynamics for a retrocausal theory, we cannot know whether
a fully formulated retrocausal theory would be deterministic. But the crucial dis-
analogy with Bohm’s theory is that any property can be contextual in a retrocausal
theory, even the position of a particle, and even if the quantum state is an eigenstate
of the observable to be measured.

Given this last point, it immediately follows that the property measured by a pro-
tective measurement can be contextual according to a retrocausal theory. That is,
the possible particle trajectories can be sensitive to the kind of measurement that
will be performed on the system. If a protective measurement is performed, this
later fact can (in principle) cause the earlier particle trajectories to all pass through
the region around x = 0, and hence deflect the pointer particle via the interaction
Hamiltonian. If, on the other hand, a standard impulsive measurement is performed
on the system, this later fact can (in principle) cause the earlier particle trajectories

8 Indeed, this is precisely how retrocausal theories evade the no-go theorems (Price, 1994).
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to be statistically distributed according to the wave function intensity, so that the
wave function can be interpreted epistemically. In the latter case, presumably only
a small proportion of the particle trajectories pass through the region around x = 0.
(The caveat “in principle” is a huge one here, of course, since nobody has suc-
ceeded in explicitly constructing such a theory.)

What should we make of the ontological status of contextual properties in retro-
causal theories? In Bohm’s theory, I suggested that contextual properties are strictly
speaking not properties of the system at all, since the state of the system now cannot
depend on the measurements that will be performed on it later. But in a retrocausal
theory, the state of the system now can depend on the measurements that will be
performed on it later, so there is no barrier to contextual properties being genuine
possessed properties of the system. And since there is no wave function in a retro-
causal theory, these contextual properties have to be possessed properties of the
particles in the system.

There is something a little strange in this, perhaps: the “wave intensity” property
measured by the protective measurement is in fact the property of a particle, not a
wave. But it is surely no stranger than “particle” properties like spin turning out to
be properties of the wave function in Bohm’s theory, GRW and Everett. In GRW
and Everett “particles” are really just manifestations of the wave function; the wave
function mimics particles under certain circumstances. Even in Bohm’s theory, par-
ticle properties other than position are carried by the wave function. Retrocausal
theories manifest the opposite effect; particles sometimes mimic the properties we
might otherwise attribute to the wave function. The ontology underlying a partic-
ular measurement result depends on the theory used to explain that result; it can’t
be read off the measurement itself.

One might object that the fact that the particles in retrocausal theories have prop-
erties like “wave intensity” that can be measured using protective measurements
means that the wave function in effect still exists, since wave-like properties are
still physically instantiated. But it is worth noting that the contextuality of retro-
causal theories means that only those “wave-like” properties whose values will be
determined by protective measurements on the system are actually instantiated. A
typical system subject only to impulsive measurements will have no such proper-
ties. A system subject to the above protective measurement will have a property
corresponding to wave intensity at the origin, but not (for example) to the expec-
tation value of position. In non-retrocausal theories like Bohm’s theory the state
cannot depend on which measurements will be performed on the system, and so all
possible wave function properties must be instantiated at once. Only in this latter
case must we postulate the wave function as a physical entity.

Of course, there are formidable obstacles to be faced by any ensemble interpre-
tation of the quantum state. While retrocausal theories have long been proposed,
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nobody has yet succeeded at explicitly formulating the dynamics for such a theory.
Perhaps it will prove to be impossible. My point here is only that protective mea-
surements provide no new argument against ensemble interpretations; any interpre-
tation that can bypasses the no-go theorems by appealing to contextual properties
can thereby also evade the protective measurement argument for the reality of the
wave function.

7.5 Ensemble properties and individual properties: a blurring of the lines

Suppose an ensemble interpretation of quantum mechanics along the lines given in
the previous section is possible. Then protective measurements can be explained
without postulating a genuinely wave-like entity; the motion of the particle can
fully explain the result. But there is still an air of mystery surrounding this account
of protective measurement. The result of the protective measurement lines up with
a genuinely statistical property — the proportion of particles one would find close
to x = 0 were one to perform a series of ordinary impulsive measurements on
an ensemble of similarly prepared particles. What explains this agreement, if the
protective measurement itself just records the value of a possessed property of the
particle? How can the properties of a single particle reflect the statistical properties
of an ensemble of particles?

What I wish to suggest is that this agreement is somewhat mysterious for all
the major realist traditions for interpreting quantum mechanics, so there is nothing
special about ensemble interpretations in this regard. The Bohmian, Everettian and
GRW programs also explain the result of the protective measurement in terms of a
possessed property of the system, albeit a property of the wave function. So these
theories also face the problem of how a possessed property of an individual system
can reflect the statistical properties of an ensemble of similarly prepared systems.
Postulating an entity that is spread out in configuration space as the bearer of the
property does not solve the problem of how the actual wave-intensity property
reflects the statistical properties of sets of unactualized impulsive measurements.

The mystery is deepest in Everettian quantum mechanics. There are no parti-
cles in the Everettian theory, so the result of the protective measurement described
above is explained by a property of the wave function. What if an ordinary impul-
sive measurement is performed on the same system? Then the Schrédinger dynam-
ics drives the wave function into a set of (practically) non-interacting branches,
one for each possible outcome. The wave intensity of these branches matches the
wave intensity of the corresponding elements of the original measured state — so,
for example, if an impulsive measurement is performed to determine whether the
particle is close to x = 0, the intensity of the “yes” branch will be the same as
the wave intensity of the measured state close to x = 0. But now comes the tricky
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part: it needs to be established that the intensity of a branch corresponds to its prob-
ability. There is a well-known research program seeking to establish this (Deutsch,
1999; Wallace, 2012), but it remains controversial. There is certainly no obvious
explanatory link between the intensity of a branch — which is a possessed prop-
erty of a single entity — and the frequency of a given outcome in an ensemble.
If the Deutsch—Wallace program succeeds, it does so by uncovering a surprising
explanatory link here; if it does not succeed, it is because there is no such link at all.

Bohmian and GRW theories are built on the assumption that the Everettian
explanation fails, and both attempt to add such an explanation by modifying quan-
tum mechanics. The GRW collapse law is a stochastic law tailored specifically
to connect wave intensity with the probability of recording the associated result
were an ordinary impulsive measurement to be performed on the state. That is, the
connection between the possessed properties of the wave function and the statisti-
cal properties of impulsive measurements is established by fiat. Whether one finds
this genuinely explanatory probably depends on one’s general feelings about the
explanatory status of brute propensities (Dorato and Esfeld, 2010). Bohmian inter-
pretations use much the same strategy. The Bohmian dynamical law is formulated
specifically to ensure that the particle positions are always statistically distributed
according to wave function intensity, hence connecting wave function intensity
with the statistics of ordinary impulsive measurements in the required way. Again,
this connection is established by fiat.

In this context, the explanation embodied by a putative ensemble interpretation
does not look so bad after all. The explanation for the agreement between the result
of the protective measurement and the statistical distribution of impulsive mea-
surement results is that the retrocausal dynamics takes all the particle trajectories
through the x = 0 region in the protective case, but distributes them so that only a
small proportion of them pass through this region in the impulsive case. Whether
the dynamical law that accomplishes this shares the ad hoc flavor of the GRW
and Bohmian dynamical laws remains to be seen; as yet we have no such law. It
is promising, I think, that retrocausal theories are being developed based on the
Feynman path construction, in which a quantum system probes all possible paths
between two points (Wharton, Miller and Price, 2011). This makes it more plausi-
ble that a substantive explanation might be found whereby the present state of the
system reflects the statistical properties of future possibilities. But even if no such
explanation is forthcoming and the law establishes the link by fiat, it is in good
company.

The main virtue of the literature on protective measurement, it seems to me, is
to bring to the fore the rather remarkable connection between ensemble properties
and individual properties in quantum mechanics. Prior to quantum mechanics, one
would have said that applying a statistical property like an expectation value to
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an individual system is just a category mistake; statistical properties only properly
apply to ensembles of identically prepared systems. But the postulation of the wave
function as a physical entity by Everettian, Bohmian and GRW quantum mechanics
means that statistical properties like expectation values are reflected in the actual
properties of a single system. Protective measurements do not provide a new argu-
ment for this conclusion, but they make it manifest in a remarkably direct way.

But the link between the existence of protective measurements and the existence
of the wave function as a physical entity should not be overstated. Some property of
the measured system must correspond to the result of the protective measurement,
but the protective measurement itself provides no evidence that the property must
be instantiated by a wave-like entity rather than a particle. That is, measurement
alone can’t tell you what exists; rather, you have to look at the best theoretical
explanation of the measurement results, and infer what exists from the ontological
commitments of that theory. It is true that wave function explanations are dominant
at the moment, but they are far from problem-free, and retrocausal particle-only
explanations remain a promising alternative.
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Protective measurement and the explanatory gambit

MICHAEL DICKSON

Quantum theory has traditionally — and not altogether unreasonably — been taken
as a challenge to “realism” about physical theories. At the very least, the ways in
which it is often formulated, presented and used suggest a non-realist understand-
ing of the theory because the significance of the “state” of a system is described in
terms of a catalogue of predictions. While protective measurement does not force
one to give up on this standard view, it does support an alternative contention,
namely, that the state of a physical system (a wave function, for example) has a
somewhat more direct physical significance. I conclude with what I take to be the
upshot of these observations for approaches to interpreting quantum theory and
evaluating those interpretations.

8.1 Introduction

In 1993 I wrote an article (Dickson, 1995) about the scheme for protective
measurement first described (to my knowledge) by Aharonov, Anandan and
Vaidman (1993). There I claimed that protective measurement makes “realism”
about quantum theory more attractive than it might otherwise have been. I still
believe some form of that claim to be true, and I am grateful to the editor and to
Cambridge University Press for the opportunity to say so in the manner that I'm
inclined to now, 20 years later.

Of course, the debates about the interpretation of quantum theory have moved
on quite a bit in the intervening time. We’ve seen a rise to prominence of “sub-
jectivist” interpretations, largely based on developments in quantum information
theory (but with its own historical precedents, as Timpson (2010) has pointed out —
see Fuchs (2002) for a landmark paper in the modern development, and Timpson
(2013) for a thorough overview and evaluation). The various “many-somethings”
(worlds, minds, perspectives, whatever) interpretations have, arguably, seen a rise
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in fortune as well. Nonetheless, while there may be a shift of emphasis in the con-
temporary discussions, the fundamental challenge to interpretation has remained
steady: as it is frequently used and formulated, quantum theory seems to beg for
some form of non-realist (subjectivist, instrumentalist, empiricist) interpretation,
and yet often those interpretations have a hard time making sense of the fact that
quantum theory is also naturally taken to be about — and is ultimately measured
against experimental determinations of — the way the physical world is, indepen-
dently of us, our instruments, or our epistemological scruples.

In my view, protective measurement gives a gentle nudge away from facile sub-
jectivist, instrumentalist, or empiricist interpretations of quantum theory, though it
does no damage to more careful and sophisticated versions of those views. It does,
however, pose a challenge to them, insofar as it reminds us in a very precise way
that quantum theory is, or at any rate certainly appears to be, somehow, about “how
the world is” (including parts of the world not within the ken of the empiricist), an
appearance that must be explained by these interpretations.

In the next section, I say a bit more carefully what I take some of these vari-
ous positions (realism, empiricism, etc.) to be, and also say something more about
how quantum theory has traditionally been understood to bear on them (an under-
standing that I more or less share). Then, in the subsequent section, I review the
idea of protective measurement, and point out where it suggests a slight change
to this traditional understanding. In the final section, I step back and evaluate the
situation, saying something more general about the challenges facing any attempt
to “interpret” quantum theory.

8.2 Realisms and non-realisms

There are too many approaches to quantum theory (and nuances to those
approaches) to review them all here. I will choose a few from a spectrum of
possibilities, as representatives of the whole.

The first position is “realism”, which, as I shall use the term, is the position
that some appropriate version of quantum theory should be understood as making
literally true, or approximately true, statements about the physical world. There
are, in other words, physical things (or classes of them) that serve as referents for
the “objects” that appear in the theory, and those physical things (or members of
the relevant classes) have properties that correspond more or less directly to the
predicates that appear in (some appropriate version of) the theory. Realists take
one of two approaches. Either they provide a formulation of the theory that differs
from the standard formulations used by physicists, and argue for (or in any case,
adopt) a realist position as regards that alternative formulation, or they accept a
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standard formulation and accept the apparently bizarre consequences of a realist
stance towards it.

For example, Bohmians (see, e.g., Bohm and Hiley, 1993, or Diirr, Goldstein,
and Zanghi, 1997) and advocates of the various “dynamical collapse” theories (see,
e.g., Ghirardi, Rimini and Weber, 1986, or Pearle, 1989) provide non-standard for-
mulations, in an explicit attempt to find a theory whose objects and predicates
might plausibly be understood in a realistic manner, typically, though not neces-
sarily, describing some form of mass or energy distributed in space and evolving
over time in a manner consistent with the predictions of standard quantum theory.
Whether they succeed on physical terms and whether they succeed at being plausi-
bly realistic are of course matters of debate, but whether their approach is more or
less as described here is, I think, undisputed.

My description is not meant to be pejorative in any way. To some, “altering”
quantum theory is some sort of sin against the theory that is to be avoided if pos-
sible. (The claim is often made by advocates of the many-somethings approach,
alongside the claim that the many-somethings approach adds nothing to the theory.)
I see no reason to take this view, but if you do, and if you have some form of real-
ist tendency, you might be inclined towards the many-somethings interpretations,
which purport to leave quantum theory “untouched” and realistically interpreted.
(It isn’t clear to me that they do either, but for an extended argument to the con-
trary, see, e.g., Wallace (2012). Indeed, I’m a bit skeptical that the very idea of an
interpretation’s “leaving the theory untouched” makes much sense.) On this view,
the state is taken to represent “reality”, though in the end it is not entirely clear (to
me) what that “reality” consists. Advocates of the many-somethings views suggest
that decohered “branches” of the state of a system (ultimately, the Universe) corre-
spond to “worlds” that are (or at least, some of which are) more or less the way a
naive realist might suppose, but as far as I can tell the view leaves unspecified any
account of how we are to understand the (ontological) nature of the collection of
such worlds, much less the nature of a system that has not experienced decoherence
(and none of them has, perfectly), apart from the use of colorful language such as
“multiverse”.

So, in the end, I'm not quite sure where to place the many-somethings inter-
pretations as regards protective measurement, the most natural account of which
involves (so I shall argue) the assertion that there is some sort of causal interaction
between something that answers to “the wave function of the system” and an appa-
ratus. On the other hand, in Bohm’s theory and in the dynamical collapse theories,
it is at least superficially clear what it would mean for such a causal interaction to
occur, i.e., how it is possible.

In any case, all of these realist positions have costs, and from a non-realist
perspective, the costs are ultimately attributable to the misguided attempt to
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understand quantum theory as describing a “way the world is”. Here I consider
three such approaches.

On the subjectivist approach, quantum theory is (primarily) about “information”,
or “subjective degrees of belief” (these two things being sometimes identified,
sometimes not). In one form, as described (and later criticized) by Timpson, the
view is that

The quantum state ascribed to an individual system is understood to represent a compact
summary of an agent’s degrees of belief about what the results of measurement interven-
tions on a system will be, and nothing more.

(Timpson, 2008, section 2.1, emphasis original.)

The view is not entirely non-realist about the theory as a whole — some room is left
for the theory to be telling us something about “how the world is”, but the quantum
state, at least, is understood in this entirely subjectivist way. (“Subjectivist”, here,
is being used in the sense of the subjectivist interpretation of probability.)

The constructive empiricist approach, due primarily to van Fraassen (1980,
1991), takes the view that the aim of science is not literal truth (or approximate
truth) about all of the matters under its purview. Rather, science aims at truth
only about directly observable matters of empirical fact, a goal van Fraassen calls
“empirical adequacy”. Now, there is plenty to ponder here, about the limits of
observation, but it is clear that for van Fraassen, the quantum state of, say, a
hydrogen atom, is not among those things that are directly observable. Instead, van
Fraassen offers a “modal” interpretation of the state.

It is important, for van Fraassen, to offer some understanding of the quantum
state, because according to constructive empiricism, we are to take the theoretical
claims about unobservables literally. (They are not, for example, elliptical claims
about sense data, as some positivists might have held, or about measuring appara-
tuses and procedures, as some early operationalists might have held.) Hence there
is real work for the constructive empiricist to do, namely, to spell out this literal
understanding of quantum states. Van Fraassen’s motivating idea

is to deny neither the determinism of the total system evolution [apparatus plus measured
system] nor the indeterminism of outcomes, but to say that the two are different aspects
of the total situation. Specifically, we can deny the identification of value-attributions to
observables with attributions of states; the state can then develop deterministically, with
only statistical constraints on changes in the values of the observables.

(van Fraassen, 1991, 273.)

While there are subtleties to consider, the main result of this approach is that
the significance of the quantum state is twofold. First, it is used to determine
the (completely deterministic) dynamics of a system (in the usual way, via the
Schrodinger equation). Second, it is used (via an algorithm that need not
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concern us) to determine which properties a system could have at any moment. At
least in typical measurements, the prescription for this determination is designed to
yield a set of possible properties that seems to correspond with the properties that
one is inclined to suppose are being probed by the measurement. Quantum theory
is understood as ascribing, probabilistically, one of these possible properties to the
system.

The instrumentalist approach to quantum theory is in agreement with van
Fraassen about the aim of science (empirical adequacy rather than literal truth)
but does not agree about the literal understanding of state-ascriptions (and other
theoretical claims). Instead, the instrumentalist views the theory — or some parts
of the theory — as tools, in a straightforward sense. They are built (or found), like
tools, and used for a specific (in this case, predictive or explanatory) purpose,
and are not to be read as descriptions of the world. One who is instrumentalist
about the quantum state, then, does not take it to be a description of the world,
but a tool used for predictive or explanatory (or perhaps some other) theoretical
purpose. In its most common form, instrumentalism takes the quantum state to be
a kind of dynamical catalogue of the possible results of possible experiments (and
their probabilities). Hence, whatever else it might be, it is not a description of a
property of a thing in the world with which one might interact. (Philosophers of
physics tend to dismiss instrumentalism as silly, or already refuted long ago; they
also tend to suppose that the instrumentalist automatically has a solution to the
interpretive problems of quantum theory. Both moves are a mistake, in my view,
but I will not, here, attempt to develop a more interesting (and vulnerable) version
of instrumentalism.)

Each of these non-realist approaches (and to some extent Everettian many-
somethings approaches as well) is traditionally motivated by and framed in terms
of the standard, simplified, account of measurement, where we consider a sys-
tem in a state, [i), and the measurement of a physical property represented by
a self-adjoint operator, F, and it is supposed that what quantum theory tells us
about “what it is to be in the state [)” is that, after the measurement, the system
will be found (by us) to be in one of the eigenstates, |f;) of F, each with proba-
bility [(@]f;)?. Or at any rate, each of these interpretations has traditionally been
aimed at trying to make sense of the undeniable and widespread success of that
understanding of “what it is to be in the state |y/)”.

But what if there is another understanding of what it is to be in the state |i/), one
that arises quite naturally from the quantum formalism itself and does not appear
to be describable in terms of ascribing one of several possible properties to the sys-
tem (probabilistically)? Then it is an open question how the various approaches —
realist, subjectivist, constructivist, instrumentalist — will fare in their attempts to
make sense of it.
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8.3 Protective measurement

Indeed there is an alternative (or perhaps better, supplementary) understanding
of “what it is to be in the state |/)”, a possibility brought to light by Aharonov,
Anandan and Vaidman (1993), in the form of so-called “protective measurement”.
The basic idea is simple: it may be possible to “protect” the wave function of a
system from collapsing during a measurement. If so, then, by appropriate measure-
ments, we can begin to build up a picture of the wave function itself via a series
of interactions that, for all the world, look like they are best understood as interac-
tions between the measurement apparatus and the wave function of the measured
system.

It is easy to forget (and I think that until the appearance of Aharonov, Anandan
and Vaidman’s paper, many of us had forgotten) that the standard account of mea-
surement is based on (or at any rate, is most plausibly justified, theoretically, in
terms of) a particular model of a measurement interaction, the so-called “impul-
sive” model. In this model, the exchange of energy between the apparatus and the
system is described in terms of an interaction Hamiltonian, and the broad-brushed
features of the interaction are characterized by the duration and strength of the
interaction. The standard idea (as worked out, for example, in London and Bauer
(1939), Bohm (1951), and von Neumann (1955)) is that the interaction is very
short and very strong, the so-called “impulsive” model of measurement. In con-
trast, Aharonov, Anandan, and Vaidman (1993) consider measurement interactions
that are (relatively) long, and weak.

Let’s begin with a quick review of the standard idea. We write the total Hamil-
tonian for a (to be) measured system and the measuring apparatus as

Hio = Hs + Hy + Hj,

where Hj is the (free) Hamiltonian for the (to be measured) system, Hy is the (free)
Hamiltonian for the measuring apparatus, and Hj is the interaction Hamiltonian
(between the two systems). Let H; = g(f)(P ® A), where P is an observable of
the apparatus (the momentum observable, as it will turn out), A is an observable of
the (to be measured) system, and g(#) is a function that characterizes the strength
of the interaction as a function of time. One simple way to proceed is to let g(¢) =
v f(t), where y is a constant that characterizes the “overall strength” of interaction,
and f(r) characterizes the degree of coupling over time. As an approximation, we
say that f(¢) is zero everywhere except inside some region of interaction, [0, 7], and
without loss of generality we presume that f(¢) is normalized, so that fOT f(ode = 1.

Let the initial total state of the compound system be [¥(0)) = [¥(0)) |[x(0))
(leaving the tensor product implicit and letting ¢ refer to the (to be) measured
system, and y to the apparatus). If we presume that y is “large” and 7 is “small”,
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then the Schrodinger equation together with standard mathematical manipulations
yield a final state for the compound system, at the time 7, of

(1) = Z(aklsb(O)) lax) 1€k »
k

where the |a;) are the eigenstates of A (presumed, here, for simplicity, to be non-
degenerate) and the |£) are states of the apparatus given by

&) = e VP [(0)) .

That is, they are spatial translations of the apparatus (a “pointer”), each by an
amount yag. (See Dickson, 1995, for a slightly more careful and more general
account, and for references to texts that deal with the technical matters.)

This “impulsive” model yields the standard account of measurement, in which
the combined system ends up in a superposition of compound states in each of
which (under a natural interpretation) the apparatus indicates a value, ay, and the
measured system is in the corresponding eigenstate of A, |ax). And thus, so the
standard story goes, [if) provides a “catalogue” of possible results of the measure-
ment, and assigns a probability (|(1,//|ak)|2) to each. Once the apparatus is found to
be in the state |£), then, according to standard usage, the entire system “collapses”
to the state |ag) |£x). This “collapse”, upon measurement, of the state to just one of
the terms merely reflects which item in the catalogue turned up.

Let’s contrast that scheme for measurement interactions with the scheme for
protective measurements. The set-up is the same, but now we will consider what
happens to the compound system when 7y is small and 7 is large. Let’s suppose,
as well, that [(0)) is the ground state of a one-dimensional harmonic oscillator,
whose Hamiltonian is therefore Hs. (I will return to the role and status of this
assumption later.) Let’s now take the interaction Hamiltonian to be

Hy =yf(Q® A, (8.1

where Q is the position of the apparatus (e.g., a “pointer” position) and A is again
some observable of the system (and henceforth I leave tensor products implicit).
The solution to the Schrodinger equation for times, 7, just after 7 is

¥ (D)) = exp [i(HsT + Hnf +yQA)] (arly(0)) lax) [y (0)) (8.2)

where the gy are the eigenvectors of A. Appealing to an argument made by Schiff
(1968, 289-291), if v is small enough, the energy imparted to the measured system
(essentially by the term exp[—iyQA7], though some care is required because the
largeness of 7 means that we cannot ignore the other terms) during the interaction
is not additive, and is thus adiabatically negligible — it will not excite the measured
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system out of its ground state. So we need consider the effect of the evolution
operator on |y(0)), which yields (after a little manipulation)

¥ () ~ Z [(0)) 1)) (8.3)
k

where

k(1)) = exp [—i(HwT +yQA)] [x(0)) . (8.4)
An application of the Schrddinger equation yields

d
3 YOIP (@) = =g O)IA(0)) (8.5)

so that we can use the “pointer momentum” of the apparatus (which could be, for
example, a probe particle) to measure ((0)|A (0)). Equation (8.3) shows that
after this measurement, the state of the measure system is unchanged; therefore,
I’1l just write it as [i).

So let A be the projection, P, onto a small region of space. Then our protective
measurement reveals (/|Pa [), which, in a position representation (i.e., write [i)
as a wave function) is

fA Y (Ow(x)dx, (8.6)

i.e., the number that we would normally associate with the probability that the
system would be found in the region A, were we to look for it there. By measuring
P, for various regions, A, we could, in principle, begin to build up a spatial picture
of the (modulus-squared of the) wave function. We could even then go on to do the
very same thing with observables that do not commute with position. (There is no
violation of the Uncertainty Principle — quantum theory predicts that if our picture
of the wave function in a position representation is sharply peaked, for example,
then it will be found to be spread out in a momentum representation.)

There are a few observations to make here. First, Aharonov, Anandan and Vaid-
man (1993) offered some other means of “protecting” the state of the system during
measurement. I will not comment on those other methods here.

Second, the scheme is not foolproof. The adiabatic approximation is just that, an
approximation. There will always be a non-zero probability that something goes
wrong (e.g., that the system is excited out of its ground state, in our example).
(See, e.g., Dass and Qureshi, 1999.) Nothing in what I say here or later is damaged
by this observation, for the only point that matters, for now, is that a protective
measurement could (according to quantum theory) be made, successfully.

Third, in the scheme discussed here, one does need to know the state of the mea-
sured system prior to measuring it. That knowledge would presumably come from
a preparation or a measurement (of, say, the energy of the harmonic oscillator),
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and presumably the correct model for such a preparation or measurement is the
impulsive model. But then what has the subsequent protective measurement really
told us about the state of the measurement system that we did not already know?
Nothing! So is it really even a measurement?

I will not quibble (much) over terminology, for it matters not, for my point,
whether the subsequent manipulations of the system “count” as a genuine mea-
surement. (Were I to quibble, I would observe that one could, for example, put a
system in the ground state then tell somebody else that the state (unknown this sec-
ond observer) is “protected”. That person could then discover the state, and surely
what he or she does is “discovery by measurement”.) What matters for me, here,
is that it appears, for all the world, that over the course of the series of protective
measurements, the “thing in the world” with which we are interacting, and whose
properties are being discovered, is the wave function. The “catalogue” view of the
“meaning” of the wave function does not appear to be particularly illuminating in
this case. So let us turn, finally, to that point and address it in slightly more detail.

8.4 The explanatory gambit

The “collapse upon measurement” that is part of the standard account of (impul-
sive) measurement should, and does, get realists worked up, for a number of famil-
iar reasons, the most fundamental being that, for a realist, “what happens in the the-
ory” is supposed to reflect, somehow, “what happens in the world”; and it is hard
to see how traditional collapse of this sort could happen, physically. (It violates the
basic dynamics of the theory; it is inherently discontinuous, which is normally a
recipe for physical disaster; it wreaks havoc on any attempt to describe the world
in a manner that is consistent with relativity theory; and it’s just downright odd,
depending, as it does, on the potentially problematic notion of “measurement”.)
As I suggested earlier, realistic interpretations of the theory are motivated by the
desire to escape this problem.

And escape it they do, in various ways that I rehearsed earlier. But there is always
a cost. These costs are familiar from discussions of the merits (or lack of merits)
of various interpretations, which I will not rehearse here. (Much of what I said on
these points in Dickson (1998) remains true; of course, plenty of additional discus-
sion has occurred since then.) The fact is that “realist” interpretations, in various
ways, stretch credulity in ways that call into question at least their explanatory
power, if not their coherence.

Consider this example. In Bohm and Hiley’s (1993) version of Bohm’s theory,
the quantum potential (which is responsible for the specifically quantum behavior
of particles) has a veneer of classicality. For example, it figures in the equation of
motion in more or less the same way that classical potentials do. But underneath,
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the quantum potential has some pretty bizarre properties. For example, it has no
source. It is, in a fairly robust sense, non-local. And more. Bohm and Hiley are
of course willing to embrace these properties and take them as discoveries. Others
are more apt to apply modus tollens. To them, explanation of non-local correla-
tion in terms of the quantum potential amounts to reducing the perplexing to the
mysterious.

In my view (but I will not make the case here), all realistic interpretations face
the same issue: they are committed to an account of the physical world that many
will find unexplanatory, in the sense that the proposed explanans is at least as much
in need of explanation as the explanandum.

Considerations such as these can easily drive one to some form of a non-realist
interpretation. While quite different in their commitments, the non-realist inter-
pretations are in agreement about a lack of commitment in realist-style explana-
tions of quantum behavior. In particular, if one is not wedded to the idea that the
theory straightforwardly describes how the world is — and therefore one is not
(necessarily) bothered if something that happens “in the theory” does not look
like something that could plausibly happen “in the world” — then one might not
be bothered by “collapse”, at least in the sense that one might not be bothered by
explaining it. (One might still be worried about formulating a more precise version
of the collapse postulate, or even concerned to eliminate it from the theory. Van
Fraassen, for example, seems to have a concern in this vicinity.)

However, this is not to say that non-realists are not committed to explanation in
some form. For example, the general form of an instrumentalist explanation of the
success of a physical theory is that the theory was designed to be a successful tool
(and insofar as humans are not too terrible at making tools, it is to be expected that
a concerted effort to make a tool that performs a given task — such as predicting the
outcomes of experiments — will succeed'). Indeed, it is hard to see what the point of
a non-realist interpretation would be if not to understand something about physical
theories, including their success. Moreover, given the close connection between
understanding and explanation, one would therefore expect that non-realists have
a concern with explaining something about quantum theory.

Given that there is some concern with explanation (and if there is no such con-
cern, it is hard to see how the non-realist is playing anything like the “interpreta-
tion game”), the problem that is posed for non-realists by protective measurement
is as follows. As I mentioned above, non-realist accounts are motivated by the
“catalogue” view of the quantum state, and they employ some form of it in their
account of quantum theory, and therefore in their account of how and why quantum

! The preceding sentence might sound like an endorsement of the view that “explaining X amounts to
“making X seem expected or unsurprising”. I think that there is something to this notion, but do not mean to
be endorsing it as an account of explanation.
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theory generates the predictions it does for various measurements. Moreover, the
catalogue account makes good sense of the generic non-realist contention that we
should not understand measurement in terms of some realistic and causal account
of the interaction between a measuring apparatus and the properties of the mea-
sured system. To put it the other way around, the non-realist has a pretty good
explanation (“pretty good” from his or her own perspective) of the standard quan-
tum theoretic account of measurement in terms of the “catalogue” afforded by the
quantum state: quantum theory invokes the catalogue account of the quantum state
because to invoke something else (such as a causal interaction between the appara-
tus and properties of the measured system) would belie a misunderstanding of the
(non-realist!) nature of science.

But protective measurement throws a wrench into these works. The catalogue
account of the quantum state does a terrible job of explaining what is going on in
a protective measurement. Consider again the sequential (protective) measurement
of P, (for different A), discussed in the previous section. Each one appears, for all
the world, to be the measurement of a feature of the “actual” wave function of a
single system, and whatever items in a catalogue might be, they do not appear to
be capable of explaining such an appearance.

Of course, the non-realist can always retreat and point out that at some point,
an impulsive measurement will be made (for example, of the momentum of the
pointer), and the rest of the “internal” interactions are just “some stuff that hap-
pens” in the theory, not to be characterized as a measurement. Such a position is
of course logically available, as is a retreat from the catalogue view in favor of a
less specific form of non-realism. However, in both cases, the non-realist’s account
becomes less explanatorily powerful. In contrast, one who is realist about the quan-
tum state is not only not bothered by protective measurement, but takes glee in the
fact that it appears very amenable to being explained in terms of a causal interaction
between real properties of a quantum system (its quantum state) and a measuring
apparatus.

So what’s the upshot? There is no easy answer. This, I contend, is the explanatory
gambit in quantum theory, and it arises in a variety of specific forms: interpretations
that make good sense of one aspect of the theory tend to do poorly on others. For
a time (or so I contend), non-realist interpretations had something of an upper
hand. (As a matter of sociological fact, amongst philosophers of physics, it seems
that a majority were realist, but this fact (if true) says more about a widespread
commitment to realism than it does about the goodness of fit between realism and
quantum theory.) Protective measurement — especially if its implementation in the
laboratory becomes widespread — goes a good way towards redressing this balance,
not (to my mind) to the point of giving realist interpretations the upper hand, but to
the point of leveling the playing field.
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Realism and instrumentalism about the wave function:
how should we choose?

MAURO DORATO AND FEDERICO LAUDISA

9.1 Introduction

It is not exaggeration to claim that one of the major divides in the foundations of
non-relativistic quantum mechanics derives from the way physicists and philoso-
phers understand the status of the wave function. On the instrumentalist side of
the camp, the wave function is regarded as a mere instrument to calculate prob-
abilities that have been established by previous measurement outcomes.' On the
other “realistic” camp, the wave function is regarded as a new physical entity or
a physical field of some sort. While both sides agree about the existence of quan-
tum “particles” (the so-called theoretical entities), and therefore reject the radical
agnosticism about them preached by van Fraassen (1980), the various “realistic”
(and consequently, instrumentalist) philosophies of quantum mechanics are typ-
ically formulated in different, logically independent ways, so their implications
need to be further investigated.

For instance, on the one hand it seems plausible to claim that a realistic stance
about the wave function is not the only way to defend “realism” about quantum
theory. One can support a “flash” or a “density-of-stuff” ontology (two variants
of GRW), or an ontology of particles with well-defined positions (as in Bohmian
mechanics), as primitive ontologies for observer-independent formulations of
quantum mechanics (Allori, Goldstein, Tumulka and Zanghi, 2008). “Primitive
ontologies”, as here are understood, are not only a fundamental ground for other
ontological posits, but also entail a commitment to something concretely existing
in spacetime (see also Allori, 2013). On the other hand, however, it is still debated

' Among representatives of this form of instrumentalist, one can cite, among many others, Bohr (1972-2006)
and Rovelli (1996). For Bohr’s antirealism about quantum theory (and realism about quantum entities) see
Faye (1991). For Rovelli’s analogous stance, we refer the reader to Dorato (2013). For an exposition of
Rovelli’s relational interpretation, see Laudisa and Rovelli (2013). Here, we don’t worry about the tenability
of the distinction between entity realism and theory realism.
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whether such primitive ontologies can be autonomous from some form of realism
about the wave function (Albert, 1996).

In order to discuss this problem, we begin with a preliminary clarification of the
meaning of “realism” and “instrumentalism” in physics, which are often subject
to ideological and abstract discussions that often have little to do with the practice
of physics (Section 9.2). In the following sections we present the various forms
that a realism about the wave function can take; namely, in Section 9.3 we assess
configuration-space realism (Albert, 1996), or wave function-space realism (North,
2013), a form of realism that might be backed up by Psillos’ (2011) realist and “lit-
eralist” attitude toward the abstract models postulated by physics. In Section 9.4
we discuss what we call W-nomological realism — or realism about the guiding law
of Bohmian mechanics — as a consequence of a more general primitivism about
physical laws defended in Maudlin (2007).” Considering the wave function of the
Universe as a nomological object is a way of defending this position (Goldstein and
Zanghi, 2013, p. 96). In Section 9.5 we present a form of indirect wave-function
realism, according to which the wave function indirectly refers to real physical
properties, for instance in virtue of the eigenvalue—eigenvector link: “the wave
function doesn’t exist on its own, but it corresponds to a property possessed by
the system of all the particles in the Universe” (Monton, 2006, p. 779). The recent
dispositionalism about quantum properties seems a way to formulate this position
(Dorato, 2007b; Dorato and Esfeld, 2010; Esfeld, Lazarovici, Hubert and Diirr,
2013). In Section 9.6 we evaluate a much debated wave-function realism, accord-
ing to which the quantum state (as described by the wave function) is independent
of the knowledge of the observer, so that it is more than mere “information” that
observers have about the system (Pusey, Barrett and Rudolph, 2012).

A natural question is which of these various ways of formulating realism about
the wave function (RWF for short) is more plausible, in the hypothesis that they are
all independent of each other. Providing an answer to this question (and therefore
to the problem whether instrumentalism about the wave function is not the most
reasonable position to take) is the main target of our chapter.

9.2 Realism as a stance and its pluralistic consequences

Is it possible to discuss the ontological status of the wave function independently
of a specific interpretation of quantum mechanics? In order to answer this ques-
tion in the affirmative, some considerations on the realism/instrumentalism debate
seem appropriate.” In our opinion, to be a realist about physical theories in general

2 “T suggest to regard laws as fundamental entities in our ontology” (Maudlin, 2007, p. 18).

3 For lack of space, here they will be have to be taken for granted.
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is a stance (van Fraassen, 2002), that is, an attitude toward the aim of physical
theorizing. This assumption entails that there is no a priori guarantee that such
an aim will be accomplished in all cases or by all theories. Often, scientists and
philosophers are able to tell — and history can teach us — when a realist approach to
a given theory is justified or not. It then becomes not unreasonable to be instrumen-
talist about physical theory x and realist about theory y, according to the kind of
evidence (and other epistemic virtues) that x and y can boast.* Even more radically,
one can be instrumentalist about different components of the same physical theory:
Lange (2002), for example, argues convincingly that one ought be realist about the
electromagnetic field but antirealist about Faraday’s lines of force.

If we adopt the above-mentioned anti-ideological and pragmatic attitude toward
scientific realism in general, an evaluation of the pros and cons of the various kinds
of wave-function realism does not a priori force us to take a stand in favor of or
against a particular type of a primitive ontology for quantum theory. Our inquiry
can be important for evaluating the different interpretations of quantum mechan-
ics with respect to the status of the wave function; these interpretations and their
mutual relations in fact cannot be represented exclusively in terms of logical impli-
cations between the above mentioned primitive ontologies (PO) and the different
forms of wave-function realism (WFR). To exemplify, let us consider the two fol-
lowing possibilities.

(1) Let us suppose that the assumption of a primitive ontology requires some form
of realism about the wave function as a necessary condition (PO — WFR). If
this were the case, instrumentalists about the wave function could reject primi-
tive ontologies via a simple modus tollens. In this first alternative, the question
of inquiring into the reality of the wave function per se assumes a particular
importance, but Bohmian mechanics turns out to be a counter-example to the
claim that we need to treat the wave function as a robustly real entity in its own
right in order to be justified in assuming a primitive ontology.

(2) The converse implication (WFR — PO) amounts to assuming that an attri-
bution of some type of ontological status to the wave function presupposes a
primitive ontology of a sort as its necessary condition. Again, there seems to
be a counter-example to the complete generality of such an implication: in the
configuration space realism defended by Albert, elevating the configuration
space in which the wave function lives to the status of ultimate reality need
not imply the requirement of a primitive ontology of entities in spacetime as
the primary objects the theory is about, since the theory in the Albert sense is
primarily about the configuration space itself.

4 For this viewpoint, see Dorato (2007a).
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In both cases, anyway, establishing in what sense the wave function can be an
“element of reality” will have interesting implications for the kind of primitive
ontology that is more plausible to adopt. Since these brief remarks should suffice
to justify the focus of our chapter on wave-function realism, we can proceed to
discuss the various options at stake.

9.3 Realism about configuration space

John Bell once wrote about quantum mechanics: “no one can understand this the-
ory until he is willing to think of ¢ as a real objective field rather than just a “proba-
bility amplitude”. Even though it propagates not in 3-space but in 3N-space” (Bell,
1987, p. 128). David Albert takes inspiration from this passage, as in his view
(Albert, 1996, 2013), the wave function is regarded as a physical field. It is often
presupposed that since any physical field is an assignment of values to a space,
the space on which the field sits must be regarded as real. As is well known, how-
ever, the wave function can be an assignment of physical magnitudes (positions,
for Bohmian mechanics) to every point of 4D spacetime only if we have a one-
particle system. As soon as N particles are considered, the wave function lives in a
3N configuration space: “The sorts of physical objects that wave functions are, on
this way of thinking, are (plainly) fields — which is to say that they are the sorts of
objects whose states one specifies by specifying the values of some set of numbers
at every point in the space where they live, the sorts of objects whose states one
specifies (in this case) by specifying the values of fwo numbers (one of which is
usually referred to as an amplitude, and the other as a phase) at every point in the
Universe’s so-called configuration space” (Albert, 1996, p. 277).

One widely recognized, first problem with this view is how one can recover
tables and chairs occupying a 4-dimensional spacetime (namely POs in the sense
of Allori et al., 2008) from a 3N-dimensional configuration space. Using magic
words like “emergence” is not going to help: until a convincing explanatory sketch
of such an emergence is available, we submit that one has no reason whatsoever to
take configuration space realism seriously.

It could be replied that while science is a sophistication of common sense, it
is often capable of reaching conclusions that cast radical doubts on important
components of common sense. Our first argument against this reply is that the
stress in the previous sentence is on “components”. Notice the difference from
past episodes in the history of science. For example, when natural philosophers
discovered that the Earth is not stationary, they had to explain how it could be in
motion without us noticing it. The reconciliation of the scientific worldview with
the world of our senses was achieved via the introduction of the notion of iner-
tia. An analogous explanation was achieved of our natural belief in the worldwide
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nature of the present moment, which was later superseded by Einstein’s postula-
tion of the relativity of simultaneity. In fact, one can explain why we tend to believe
that the present moment has cosmic extension in terms of the speed of light and the
finite duration needed by our brain to process temporally successive light signals
(Dorato, 2011).

However, in the case of configuration space realism, it is the whole worldview of
common sense that is regarded as “misleading”, and since science relies on obser-
vations and therefore on common sense, the consequence that all our observations
are radically illusory cannot be accepted.

It must be admitted that quantum mechanics requires anyway an important sac-
rifice of elements of the manifest image; but in this regard even Everettian quantum
mechanics is in better shape with respect to the task of explaining the emergence
of our spacetime from configuration space, insofar as it can explain with the help
of decoherence why the local observer cannot perceive any interference with the
other worlds. In other words, if believing that the wave function is a physical entity
(a field) implies configuration realism, it could be argued by modus tollens that
the wave function is not physically real. Since the abstract or concrete ontological
status of the wave function will be discussed in later sections, let us assume that
the wave function might be neither concrete nor abstract, and yet a wholly new
physical entity (Maudlin, 2013). After all, why should we assume that something
is physical only if it is in 4D spacetime?

Two remarks are sufficient to create troubles for this assumption. First, the
case of strings, which live in compactified dimensions, is different from that of a
3N-dimensional field. Strings still live in spacetime, even though the latter is con-
ceived as being ten-dimensional or even 26-dimensional. The fact is that the extra
dimensions are too small to be “seen” (compactification). The second difficulty
is given by the fact that the problems that afflict configuration space realism also
arise in the case of a multidimensional (3N) physical field. How can we recover
a four-dimensional field (say the electromagnetic field) from the former? Until an
explanatory sketch is provided, there is no reason to reify the wave function by
requiring that the mathematical space needed to define it is the real stuff the Uni-
verse is made of. As Maudlin notes (2013, p. 152), mathematical representations
of physical phenomena are not a clear guide to ontology, since they often do not
guarantee even isomorphic relations between themselves and the latter. Further-
more, for obvious algorithmic reasons they must greatly simplify and idealize the
target they are a vehicle for, and so they are not necessarily similar to what they
are supposed to denote.

A different form of realism about the wave function has been defended by North
(2013), who distinguishes between configuration-space realism and wave-function
realism, a kind of ontic structural realism about the latter. Here we can afford to be
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brief about her interesting proposal, since she assumes rather than arguing that the
wave function “directly represents or governs” parts of the ontology of quantum
mechanics (North, 2013, p. 185). Her main stance is a form of epistemic primi-
tivism about laws, since she claims that dynamical laws of a theory are our main
guides to infer what exists according to the theory, and what exists at the funda-
mental level is the structure that is needed to formulate the laws. What is missing
in her semi-transcendental approach is the validation of the claim that there is only
one mathematical way to formulate the dynamic laws, a step that is necessary to
claim uniqueness also for the inferred physical structure. In fact she denies any
guiding role to Hilbert space (North, 2013, p. 191) and she does not even mention
other more algebraic and abstract formulations of quantum mechanics; but it is not
wholly clear on the basis of which criterion this selection is suggested: whether a
state space has too little or superfluous structure typically depends on the problem
at hand. And we want to add that, not by chance, such “uniqueness questions” are
a typical problem for any form of ontic structural realism, since it is highly diffi-
cult to prove that the same dynamical laws cannot be formulated by presupposing
a different mathematical structure.’

9.4 The wave function as a nomological entity

In Goldstein and Zanghi (2013), the wave function is defined as a “nomological
entity”, the primitive ontology being constituted by the positions of particles in
spacetime, or by the actual positions of the particle Q = (Qy, Q2, Q3, Q4,...,Qy)
in configuration space. Since the two authors are not terribly clear about what we
should mean by “nomological entity” (are physical laws entities?), it is important
to defend their position as best we can in order to overcome initial resistances of
philosophers to the infelicitous choice of the term.

First, evidence for a robust ontic status of ¥ is suggested by its role in Bohm’s
“guiding” equation: the velocity of any of the N particles is a function via ¥ of
the positions of all the other particles. Second, according to Goldstein and Zanghi,
the real nomological entity is properly speaking only the wave function of the Uni-
verse, since the Universe is “the only genuine Bohmian system” (Goldstein and
Zanghi, 2013, p. 94), the wave function of a subsystem being only definable in
terms of the wave function of the Universe and the whole set of configuration of
all the particles. Given the fundamental non-locality of the theory, this is only to be
expected, even though for all practical applications what one deals with in Bohmian

5 This problem is no less acute in spacetime theories, where general relativity can be formulated in a variety of
different mathematical formalisms (that of Riemannian differentiable manifolds, Einstein algebras, twistors,
non-commutative geometry and so on).
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mechanics are subsystems. Since this presupposes the possibility of attributing a
wave function to the Universe, it seems legitimate to ask whether this move is
legitimate,® given the present lack of a quantum theory of gravity, or even of a well-
worked out relativistic extension of Bohmian mechanics. Despite the fact that at the
moment the attribution of a wave function to the Universe is rather speculative, or
even devoid of any clear empirical meaning, for the sake of the argument we will
assume without further ado that our ontological quest is limited to a Newtonian,
non-relativistic spacetime, which possesses a privileged foliation.

Given these two clarifications, the real question (our third point) is of course how
to understand the ontological status of the wave function as a nomological entity.
It will not do to invoke vague metaphors like the wave function “choreographs” or
“governs” the motion of the particles, since laws strictly speaking do not govern
like kings: if they literally governed, they would have to be “external” (to continue
the metaphor) to what they govern. But if they are external, how can they affect
physical entities in the sense in which ¥ must “guide” the motion of particles?
This governing view seems a remnant of a theological, prescriptive rather than
descriptive conception of laws, motivated by the hypothesis that a Creator imposes
his own will to Nature, its creature (Dorato, 2005, chapter 1).

Abandoning, as it is fair to do, the literal interpretation of the term “governing”,
there is still an important question that needs to be raised apropos of the wave func-
tion regarded as a “nomological entity”: are nomic entities in general external or
internal to the entities and the properties that instantiate them? This issue is impor-
tant in order to clarify the property-first view of laws vs. nomic primitivism, and
therefore how we should understand Zanghi and Goldstein’s view of ¥ as nomolog-
ical. Moreover, it leads to specifying three different senses of “primitive”: the first
refers to the primitive ontology of spacetime-located entities the theory is about,
the second refers to the conceptually non-reductive character of the notion of law-
hood which the primitivism about laws is grounded upon and, finally, the sense in
which such “special” nomological entities as the wave functions are ontologically
primitive.

Non-metaphorically, the term “external”, when referred to laws, typically means
“independent or non-supervenient upon the entities and the properties they relate”,
while “internal” is therefore equivalent to “dependent on those entities and proper-
ties”. As Psillos put it, “external” means that the laws can vary while the properties
that they instantiate do not change (Psillos, 2006, p. 18) and this implies a sort
of quidditism. This is the view that there are properties P whose identity is inde-
pendent of, and can be detached from, their nomic or causal role R, so that it is

% In the Rovelli relational interpretation, for instance, such an attribution makes no sense (Laudisa and Rovelli,
2013; Dorato, 2013).
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not essential to a property that it plays a given nomic role. It should be admitted
that quidditism, exactly like heacceitism,’
it is certainly difficult to accept the view that the property P that electrons possess

cannot be ruled out a priori. However,

of being negatively charged — which entails the nomic role R to attract positively
charged bodies — could be detached from R in such a way that P would remain
the same even if governed by a different law (and therefore be characterized by a
different R). Be that as it may, the other horn of the dilemma (laws as internal to
properties) implies a “property-first” view on laws, and therefore the idea that laws
supervene on properties and relations of entities and cannot be ontically primitive,
let alone “govern” their instances.

Leaving aside the metaphysical complications of quidditism, for us it is important
to note that the choice between these two alternatives (“‘externalism’ or “internal-
ism” about laws) does not force one to be antirealist about laws,® a position
that would rule out the possibility that ¥ is a nomological entity in the sense
of Goldstein and Zanghi. Nevertheless, in the remainder of this section we will
assume that their view is committed to primitivism (or the non-supervenience of
laws on properties) for essentially two reasons. First, the “internal”, second alterna-
tive pushes toward nomic antirealism, since the properties or the powers of entities
could exhaust all the roles played by laws (Mumford, 2004). Second, the property-
first view of laws implied by internalism will be discussed in the next section.

Suppose then that wave-function realism is committed to some sort of ontic
primitivism about laws in the sense of Maudlin (2007). The problem is that once
one abandons the safe ground offered by the conceptual priority (or irreducibility)
of nomic concepts in the sense of Carroll (1994) (the second sense of primitive
above), it is not clear what ontic primitivism amounts to. On the one hand, we can-
not assume without further arguments that conceptual priority entails ontic priority,
since the concept of scientific law might be irreducible to other related concepts
(causation, counterfactuals, regularity, etc.), without implying any sort of ontic
primitivism about laws of nature.” On the other hand, if one does not want to beg
the question against primitivism, it must be admitted that there is a sense in which
ontic nomic primitivism cannot be further understood, precisely because the notion
of law is regarded as un-analyzable.

However, this irreducibility might be regarded as a serious deficiency of this
position for at least two reasons.

7 Quidditism is the view that properties have an intrinsic nature that is not exhausted by their causal role.
Heacceitism is the view that entities have an intrinsic identity that is not reducible to their properties. So two
individuals can be different even if they are qualitatively identical.

8 One could claim that laws exist but that they are just relations between entities that are primary and more
fundamental.

° The concept of knowledge might be irreducible to justified true belief, and yet knowledge is not ontically
primitive.
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(1) Itis true that we must start from somewhere, in mathematics as well as in phi-
losophy: it is the explanatory consequence of taking a notion A as primitive
that justifies the choice of A. However, mathematics relies on axioms, which
give an implicit definition of the axiomatized notions. In philosophy, on the
contrary, when we do not understand a notion (in this case “laws of nature
regarded as existent”), we seem to be in a different and more difficult predica-
ment. When a concept A is more obscure than a concept B, and we declare A
“primitive” — laws seem to be less intuitively understood than properties — we
run the risk of wanting to solve a philosophical problem without even trying.

This difficulty, however, can be solved: after all, intuitions about what is
obscure may vary. Let us then agree that a fair reading of “ontically primi-
tive” with respect to laws might mean, simply, that there are mind-independent
nomic facts that are the supervenience basis for the existence of those proper-
ties, dispositions, causal facts and the like that (according to the primitivists)
are mistakenly regarded as the truth-makers of the propositions that express
the “laws of science”.

(2) This formulation brings with itself the second difficulty. Since these (approx-
imately true) propositions regarded as truth-bearers in physics are typically
differential equations, for the primitivist about laws the existence of nomic
(physically necessary) facts must be contrasted with the existence of merely
contingent facts, typically lying in hypersurfaces of simultaneity, and specify-
ing the initial or boundary conditions to which the equations are applied. But
how can the primitivist distinguish between the modally loaded, nomic facts,
and the contingent facts, if both are facts? Clearly, ontic primitivists about
laws cannot ground the distinction between nomic and contingent truths on
the existence of physically possible worlds, lest law loses its primitivity. The
same applies to purely conceptual primitivism. Furthermore, note that in this
rendering, ontic primitivism has to be realist about the existence of facts and
must regard them as concrete entities, being in any case distinct from abstract
propositions.

If we apply these two objections to our problem, the difficulty should be obvious:
claiming that the wave function is an entity because the laws in which it appears
exist in a primitive sense is not convincing, because a physical hypothesis is made
to depend on a highly controversial metaphysical hypothesis.

9.5 The property-first view of the wave function: dispositionalism

We have seen that according to primitivism about, say, the guiding law of Bohmian
mechanics, there is in the quantum world a global, nomic fact instantiated by
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the world in question that determines the temporal development of an initial,
contingent configuration of particles belonging to a hypersurface of simultaneity.
According to the property-first view, it is instead the initial configuration of point-
particles in a background spacetime that, by instantiating a plurality of properties,
fixes the temporal evolution of whatever exists in the initial configuration. In
the literature, such properties have often been regarded as dispositions, so that
the subsequent behavior of the initial configuration of particles is given by their
manifestations.

Just to exemplify, in the case of flashy GRW, the disposition of non-massless
entities to localize in a flash, or in a region of spacetime in the mass-density read-
ing of GRW, is a spontaneous and an irreversible process. The flash or a certain
localized mass density in spacetime is the manifestation of the disposition in ques-
tion. In the case of Bohmian mechanics, each particle has a spontaneous disposition
to influence the velocity of the i-th particle in a non-local way, and the velocity of
that particle is the manifestation of the global disposition carried by the whole
configuration of particles (Esfeld, Lazarovici, Hubert and Diirr, 2013). Thus, on
Bohmian mechanics the configuration of all particles at a given time ¢ instantiates
a dispositional property that manifests itself in the velocity of each particle at #; the
universal wave function at ¢ represents that property, so that the latter is ontologi-
cally primary and the wave function refers to such a property.'’

The difference with GRW’s two primitive ontologies is that the dispositions in
the latter are really probabilistic propensities (GRW is irreducibly indeterminis-
tic), while in Bohmian mechanics they are sure-fire dispositions. But in both cases
(deterministic and indeterministic), the introduction of dispositional properties has
the advantage of avoiding a reification of the configuration space.

However, in both cases there are two difficulties that all these property-first views
share: (i) quantum dispositions are spontaneous but in standard situations classical,
typical dispositions need a stimulus (a stone breaking a window pane, with the
ensuing manifestation of fragility being the broken glass); (ii) physical laws, refer-
ring to or representing dispositions, are, unlike dispositions, time-symmetric.

The first difficulty (i) depends on how one defines dispositions, namely in a more
liberal or in a less liberal way, so as to encompass also spontaneous manifestations.
We think liberalism about this issue can be justified, in order not to beg the ques-
tion against dispositionalism. Any mass has a spontaneous disposition to move
inertially, even though the disposition to resist acceleration is manifested only in
the presence of a force (the stimulus). Likewise a radioactive material has a sponta-
neous disposition (a propensity) to decay, even though the decay can be accelerated
by bombarding the nucleus in an opportune way.

10" For a more detailed description of this view, see Dorato and Esfeld (2014).
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In the two GRW cases, the second difficulty (ii) could be more easily accommo-
dated by treating the new non-linear equations introduced by the dynamical reduc-
tion models as time-asymmetric laws, namely nomic irreversibilities that explain
or ground the less fundamental arrows of time (as suggested by Albert, 2000).
In the Bohmian case, the two main laws are time-symmetric, but one can hold that
the irreversible dispositions to influence the velocity of each particle correlate to
the arrow of becoming the successive occurrence of events given by the manifes-
tation of the dispositions. In this way, only one of the two directions of time is the
one in which the world unfolds, so that the temporal symmetrical feature would
involve only the laws of science and not the laws of nature, which would take part
in a universal process of becoming. Such a process can be regarded as either prim-
itive (Maudlin, 2007, chapter 3), or explained by the manifestation of the various
dispositions making true the laws of science (for the distinction between laws of
science and laws of nature, see Weinert, 1995).] I

9.6 The PBR theorem

As far as the controversy over the nature of the wave function is concerned, a new
twist to the debate was provided by the so-called PBR theorem (Pusey, Barrett and
Rudolph, 2012). According to a natural reading of this result, assuming the wave
function of a quantum system S as a mere catalogue of the information available
about S implies predictions that contradict those of quantum mechanics. As a con-
sequence — we might argue — the idea that a quantum state is not just information
about an entity but is a real entity itself should be taken seriously on physical and
mathematical grounds. As a matter of fact, neither the general framework of the
theorem nor the specific assumptions under which it is proved are innocuous, but
before attempting an assessment let us recapitulate the result. The main hypothesis
on the background is that “a system has a ‘real physical state’ — not necessar-
ily completely described by quantum theory, but objective and independent of the
observer” (Pusey, Barrett and Rudolph, 2012, p. 475). That such a state might be
not completely characterized by quantum theory implies that a wave function ¢ for
asystem S is taken to represent a preparation of the system itself: i fixes the “real”
state A non-uniquely but rather according to a probability distribution g, (A4). In the
PBR approach — inspired by the terminology introduced in Harrigan and Spekkens
(2010) — given two wave functions ¢ and ¢, we have two possible alternatives:
either the probability distribution (1) and ug(4) do overlap or they do not. In the
former case, there are values of the distributions that might be assigned to both
and ¢, something that testifies to an uncertainty on what the “real” state associated

' This point has been initially suggested in Dorato and Esfeld (2014).
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with either ¢ or ¢ might be; in the latter case, the non-overlapping testifies to the
lack of uncertainty: “informally, every detail of the quantum state is ‘written into’
the real physical state of affairs” (PBR, 2012, p. 476; Harrigan and Spekkens, 2010
speak of an epistemic view in the former case and of an ontic view in the latter).
Under the additional assumption that independently prepared systems have inde-
pendent physical states,'” PBR prove that, given two distinct quantum states ¢ and
¢, the overlapping of the respective uy (1) and ug(A) implies a contradiction with
the statistical predictions of quantum mechanics.

The PBR theorem is the n-th result of a long chain of no-go theorems, namely
results that in principle should clarify the fundamental structure of the theory, by
pointing out the boundaries that the theory itself is supposed not to violate when
satisfying a class of basic constraints. Even leaving aside the general significance of
the no-go strategy in the foundations of physics (Laudisa, 2014), there are several
critical points that need be emphasized. The first is the most obvious but, neverthe-
less, the most urgent: one may ask what is the meaning of the assumption according
to which “a system has a real physical state” when we lack a clear understanding
of what it means both for the wave function y and the “real” state A “to be real”.!?
If it means that it is more than mere information, we still haven’t been told much,
that is, we have not been told what it is and what its properties are. As a conse-
quence, the lack of a clear notion of what it takes for states like i or A to be “real”
implies that it is also completely unclear what it means that we cannot interpret yr
as mere information. It might be argued that, when we have ontic models, the quan-
tum states supervene on “real” states, namely no change in quantum states without
change in real states. Does this “supervenience” talk, however, help in understand-
ing what it means to be “real”, in the absence of an ontologically clear formulation
of quantum mechanics itself? In some sense, both - and A-sort of states are sup-
posed to carry with themselves an ontological stock that they in fact are unable to
justify. For consider even the case of classical mechanics, that in the PBR approach
is taken into account in order to explain the epistemic-versus-ontic view of states.
In the Newtonian dynamics of a single point particle in one dimension, the descrip-
tion consists of specifying a point in the relevant phase space, namely a pair {x(#p),
p(tp)) at some given initial time #y, where x(zp) is a position value and p(f) is a
momentum value at 7o: under the ideal assumption that we know all the forces at
work, we can determine any pair (x(¢), p(t)) at any given time ¢ by using either the
Newtonian or the Hamiltonian formulation of the dynamical laws. Now, it seems
very natural at first sight to make sense of a pair like (x(7), p(¢)) by stating that it is

12" That this assumption is indeed necessary is proved in Lewis, Jennings, Barrett and Rudolph (2012); see also
Schlosshauer and Fine (2012).

13 That this is a problem can be seen also if we realize that (as PBR themselves remark) an instrumentalist is
allowed to ignore the result of the PBR theorem, unlike the case, for instance, of the measurement problem,
which is at least partly a problem also for the instrumentalist.
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a clear instance of an “ontic state”, namely of “a state of reality”. Since, however,
that pair is in fact simply a point in an abstract, multi-dimensional configuration
space, it must be noted that in order for such a “classical” pair to be a “state of real-
ity”, a rather heavy assumption must be accepted, namely that what is “really” real
is not our three-dimensional experience but rather the manifold with an astronomi-
cal number of dimensions whose points are all the possible ontic states determined
by the classical dynamical laws. Therefore this reference to the supposedly more
familiar case of classical mechanics on phase space, far from serving the purpose
of PBR of enlightening the meaning of what a “real” state should be, shows that
there is a big gap between certain mathematical structures of the state space on one
side and the realm of “real” states (whatever they might be).

9.7 Conclusion

After presenting and discussing the main options available on the status of the
wave function in the foundations of quantum mechanics, it may be worthwhile try-
ing to recapitulate the general framework and possibly to draw some connections
among the different approaches. As far as the latter are concerned, they all display
a significant metaphysical flavor inasmuch as they all adopt robust metaphysical
assumptions concerning their respective target entities — namely the configuration
space, the laws of nature and natural properties; as to their respective plausibil-
ity, they can be evaluated on how well they fare with respect to our intuition and
common sense on one side and to the role they might play in the foundations of
quantum physics on the other.

If we start with the configuration space realism, we might argue that the weight
of the usual objection — according to which the reality at the level of the configura-
tion space would be hard to reconcile with the reality at the level of our ordinary,
three-dimensional experience of physical systems and processes — is debatable.
While common sense certainly sides with three-dimensional experience, it is also
true that the extent to which common sense is really “common” might be contro-
versial. Since common sense is a vague notion, certain tenets of common sense
might be subjective, as different people might have different views on what counts
as important in “common sense”. Furthermore, the abstractness of the configura-
tion space might also not be an unsurmountable problem in itself (one can adopt,
for instance, the motivations defended by Psillos, 2011).

The above-mentioned remark by Maudlin, however (namely that mathematics
is not often a safe guide to ontology), should be taken into due account (examples
abound: recall either the algebraic formulation of quantum field theory or the
quantum logic program). Moreover, a serious problem with the configuration
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space realism can be the attempt to supplement the thesis that the only reality is
configuration space with the highly controversial assumption of Humean super-
venience (HS for short; see Loewer, 1996; Darby, 2012): the latter assumption
would be supposed to dispense with the problem of what is the sense in which a
wave function “lives” and plays its statistical and dynamical role in a configura-
tion space, since according to a configuration-space+HS stance only the Lewisian
mosaic of facts would exist and nothing else (putting aside the problem of what is
a “fact” in configuration space: a point x = (g1, q2, ... ), the fact that a point x has
coordinates (¢q1, g2, . ..), or what?).

That we need not worry if, for good reasons, we are led to include abstract enti-
ties in the inventory of the world seems to apply also to the nomological approach
to the wave function. If we are prepared to contemplate a 3N-dimensional manifold
as the ultimate physical reality, no less prepared should we be to contemplate the
existence of nomological “entities”, whatever they might be. But this puts Gold-
stein and Zanghi nomological-entity realism on the same footing as Albert con-
figuration space realism. Both bet on abstract entities. Moreover, on the face of
possible objections — some of which have been mentioned before — to the primi-
tivist view of laws, on which the nomological approach seems to be most naturally
grounded, it might be remarked anyway that the primitivist view seems to have
at least an advantage over the property-first view in terms of both conceptual and
metaphysical economy. In fact, the dispositional reading of the property-first view
applied to quantum mechanics seems to imply a worldview in which the quantity
of dispositional properties amounts to the quantity of particles that are supposed
to display a certain behavior under certain conditions: instead of giving up laws
and having an astronomical number of particles, each with its bundle of disposi-
tional properties, would it not be “easier” to have a restricted number of laws that
account for the seemingly dispositional behavior of the particles? If, on the other
and, staying closer to the spirit of Esfeld er al. (2013), the many dispositions of
the single particle in question really amounted to a unique disposition of the whole
configuration space described by the wave function, then primitivism and global
dispositionalism would seem to converge and the distinction between properties-
first and laws-first might be purely verbal and lose some of its importance. The
global nomic fact that, according to primitivism, is instantiated by the quantum
world would correspond to the global disposition characterizing the configuration
space in the sense of Esfeld ef al.'*

Of course, any nominalistic philosopher of human sympathies would be inclined
to reject any form of commitment to abstract entities like laws or configuration
spaces, and embrace wave function instrumentalism sic et simpliciter. And also

14 For this claim, see Dorato and Esfeld (2014).
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this latter position is certainly not incompatible with what we know about the
physics of quantum theory. In a word, the most plausible moral to be drawn
at this point is that the metaphysics of ¥ is radically undetermined by quan-
tum physics and even by the sort of primitive ontology one adopts, a conclusion
which need not hold for all metaphysical claims in their relation with physical
theories.
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Protective measurement and the PBR theorem

GUY HETZRONI AND DANIEL ROHRLICH

Protective measurements illustrate how Yakir Aharonov’s fundamental insights
into quantum theory yield new experimental paradigms that allow us to test quan-
tum mechanics in ways that were not possible before. As for quantum theory itself,
protective measurements demonstrate that a quantum state describes a single sys-
tem, not only an ensemble of systems, and reveal a rich ontology in the quantum
state of a single system. We discuss in what sense protective measurements antic-
ipate the theorem of Pusey, Barrett, and Rudolph (PBR), stating that, if quantum
predictions are correct, then two distinct quantum states cannot represent the same
physical reality.

10.1 Introduction

Although protective measurements [1, 2] are a new tool for quantum theory and
experiment, they have yet to find their way into the laboratory; also theorists
have not put them to best use, beyond a 1993 paper by Anandan on “Protec-
tive measurement and quantum reality” [3]. In Section 10.2, we point out that
protective measurements offer new experimental tests of quantum mechanics, and
we review recent experiments attempting to measure quantum wave functions.
In Section 10.3, we present the Pusey—Barrett—Rudolph (PBR) theorem and dis-
cuss their conclusion that the quantum state represents physical reality, and in
Section 10.4, we discuss in what sense protective measurements anticipate this
conclusion.

10.2 Protective measurement: implications for experiment and theory

In 1926, Schrodinger postulated his equation for “material waves” in analogy
with light waves: paths of material particles — which obey the principle of least
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action — are an approximation to material waves, just as rays of light — which obey
the principle of least time — are an approximation to light waves [4]. But Born
soon discarded “the physical pictures of Schrodinger” [5] and gave the “material
wave” W(x,1) a new interpretation: [P(x,1)|* is the probability density to find a
particle at x at time ¢. Even Schrodinger was obliged to accept Born’s interpreta-
tion. But Born’s interpretation limits the correspondence between quantum theory
and experiment, in the following sense: for a single particle, Y(x, f) seems not to
be measurable; to measure a probability density, we need to prepare WY(x, ) on
an ensemble. Thus, part of what quantum theory describes — the wave function
Y(x,7) of a single particle — does not correspond to anything experiments can
measure. The paradigm of protective measurement [1, 2, 6], by contrast, makes the
correspondence explicit: experiments can measure the wave function of a single
particle! Protective measurements make it possible to measure the expectation
value of any operator A in any state [\¥) using a single system prepared in the state
|¥), and thus to reconstruct |¥). An ensemble of identical systems in the state |'V')
is not necessary. By the same token, the method of protective measurement allows
us to test quantum mechanics in ways that were never considered before, i.e. to
verify expectation values measured on an isolated system.

A recent experiment of Lundeen et al. [7, 8] measured the transverse spatial wave
function of a photon propagating as a plane wave. These authors do not mention
“protective measurement” — they refer only to “weak measurement” — and their
experiment differed from a protective measurement in two ways. First, the mea-
surement was applied to an ensemble of photons rather than to a single photon;
second, what they measured was not an expectation value but the weak value [9]
of the projection operator I, = |x){x| onto a transverse position x:

My, = PRGN TG0
Y () (pl¥y -

where W(x) is the (preselected) transverse wave function to be measured, |p) is a
(postselected) transverse momentum eigenstate with momentum p, and the post-
selected momentum is p = 0. Then the weak value is proportional to ¥(x) and the
initial wave function (both real and imaginary parts) is measured as a function of x.
Although the weak measurement of Lundeen et al. is not a protective measure-
ment, protective measurements are a form of weak measurement [10]. If the pre-
and postselected states |Wi,), [W5n) of a weak measurement of A are the same, the

measured weak value (A)y, is the expectation value of A in the state [W¥j,):
(YIAIY)

Ay = ———— = (A), 10.2

(Aw D) (A) (10.2)

where [Wq,) = [¥) = |Win). In a typical weak measurement, the pointer of a mea-
suring device is coupled to an ensemble of systems pre- and postselected in the

(10.1)
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state |'V'), and shifts as the expectation value (A) accumulates from all the systems
in the ensemble. (Note that, while the postselection in many weak measurements
is improbable, here the postselection is the most probable.) By contrast, a protec-
tive measurement is essentially a weak measurement repeated on the same system,
and the pointer shifts as the expectation value (A) accumulates from the repeated
measurement. Repeated post- and preselections insure the protection, and most-
probable postselections insure the adiabaticity. In effect, a repeated measurement of
A on a single system in the state [¥) yields the same result as single measurements
of A on an ensemble of systems pre- and postselected in the state |\V); however,
only the first kind of measurement — protective measurement — explicitly manifests
the quantum state of a single system.

A more recent experiment by Stodolna et al. [11] maps the nodal structure of the
n = 30 Rydberg level of hydrogen in a uniform electric field. (See also a related
experiment by Cohen et al. [12], and measurement of molecular wave functions
by Liiftner et al. [13]. These three papers, as well, do not mention protective mea-
surements.) An electron excited to this level is quasibound: classically, it cannot
escape, but it can escape via quantum tunnelling and then accelerate in the electric
field towards a phosphor screen and CCD camera. The measurement is not adia-
batic. The electrons, released from an initial beam of hydrogen atoms via photo-
ionization, image the Rydberg wave function on the screen. So, although the exper-
iment involves an ensemble of atoms, each atom contributes independently to the
measurement, i.e. reveals a different feature of the initial wave function.

Alongside the experimental development, protective measurements allow us to
develop new intuitions for quantum theory. They demonstrate that the members of
any ensemble of systems prepared in a given quantum state have much more in
common than what previous measurements showed. Not only do all systems pre-
pared in an eigenstate of an operator A yield the same eigenvalue when subjected
to a measurement of A; they yield the same expectation values for any operator
that can be measured on the system. Thus, an ensemble of systems prepared in a
given state share a “group identity” which is much richer than a shared eigenvalue:
it includes every expectation value that can be measured on the state. The next
two sections show that this group identity has implications for the ontology of the
quantum state.

10.3 The Pusey-Barrett—Rudolph (PBR) theorem

Probability distributions are often interpreted as subjective, i.e. as representing an
observer’s knowledge (or ignorance) about a system. Is this also the correct way to
interpret probabilities derived from quantum states? There seem to be good reasons
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to favor such an interpretation, because the alternative interpretation — that the
quantum state is no more than a description of the reality of a system — is disturb-
ing in several respects. As a description of reality, the quantum state apparently
exhibits instantaneous collapse over unbounded spatial regions. It also superposes
properties that are (classically) mutually exclusive. Entanglement implies that the
quantum state of a composite system cannot be reduced to states of the compo-
nent systems. These peculiarities are less troubling if the quantum state represents
information about a system, rather than the system’s actual physical state [14, 15].

Harrigan and Spekkens [16] gave this question a precise formulation. If the
quantum state is a representation of knowledge about an unknown and possi-
bly inaccessible physical state, it does not depend solely on the properties of
the system. It depends also on the information available to the observer. There-
fore, if the quantum state represents subjective knowledge, at least some physical
state has to be compatible with more than one guantum state. The probabilistic
nature of the predictions of quantum theory seems to allow for such compati-
bility, as long as the two quantum states that can represent one reality are not
orthogonal.

More formally, let A (which could be a number or a vector, and belongs to a
space denoted by A) be a complete specification of the physical state of a system,
e.g. of an atom. If a quantum state ['¥') of that system corresponds to a single A,
then [¥) as well is a complete specification of the physical state of the system.
But, in general, [¥) could correspond to a probability distribution py(A1) over the
values of A. If so, then the values of A play the role of hidden variables of a system
in the state |¥'). Now consider two possible states of the system, [¥) and |®). If
|[¥) and |®) are orthogonal, then their respective probability distributions, py(A)
and pg(A), must be non-overlapping, i.e. pg()pop(d) = 0 for all A. Otherwise,
a prediction of quantum theory — namely, that a measurement of the projection
operator Ilp = |D)(D| on a system prepared in the orthogonal state [¥') yields 0 —
will fail (since measuring devices respond only to the physical state). But if |¥)
and |®) are not orthogonal (and not identical), it is conceivable that [¥) and |®)
could overlap. If [¥) and |®@) overlap, so that for some A we have py(1)pe(d) # 0,
then the two distinct quantum states |V) and |®) could represent the same physical
reality A. Conversely, if py(1)pa(4) = 0 for all A and for any two distinct states |¥')
and |®), then quantum states represent physical reality.

What is beautiful about this formulation is that it cleanly pulls apart two differ-
ent questions about the quantum state. The first question — the title of the famous
EPR paper [17] and of Bohr’s reply [18] — is whether the quantum state is a com-
plete description of a physical state, i.e. whether one quantum state can represent
more than one physical state. (If a quantum state |¥) completely describes a phys-
ical state A, then [¥) cannot represent more than one physical state.) The second
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question is whether two quantum states can represent one and the same physical
state. The Pusey—Barrett—Rudolph (PBR) [19, 20, 21] theorem states that if the pre-
dictions of quantum mechanics are correct, then the answer to the second question
is negative, regardless of the answer to the first question: no two distinct quantum
states can represent the same physical reality, regardless of completeness.

The proof of the PBR theorem is technical. Here we try to motivate the proof
intuitively. We begin by assuming that two non-orthogonal but distinct qubit states,
|0 and |+), with (O]+) = 1/ V2, represent in all cases exactly the same physical
reality A € A. That is, both po(1) and p, (1) vanish for A # A. Particles in a mixture
of the states |0) and |+) are fed into a device that measures an operator with non-
degenerate eigenstates |0) and |1), where (0|1) = 0. Quantum mechanics predicts
that the device should sometimes find a particle in the state |1), but only if the
initial state was |+), never if the initial state was |0). But, by assumption, |0) and |+)
represent the same physical state A; hence there is no way the device can distinguish
them, and, if it finds any particle in the state |1), it must do so sometimes also
when the particle’s initial state was |0). Thus our assumption implies a violation of
quantum predictions.

So far, the proof was easy because we assumed that |0) and |[+) can only rep-
resent a single physical reality A. What if |0) and |+) correspond to overlapping
distributions po(1) and p(1)? Now the device could find particles in the state |1)
only for values of A for which p, (1) # 0 and po(1) = 0, i.e. not in the overlap of the
distributions. Hence the device need not violate quantum predictions: it finds the
state |1) only when the initial state is not |0). To contradict quantum predictions,
the device would have to measure an operator with a non-degenerate eigenstate |—)
orthogonal to |+) as well as the non-degenerate eigenstate |1) orthogonal to |0). Of
course, no Hermitian operator can have |1) and |-) as non-degenerate eigenstates.
What PBR showed, however, is that for a mixture of pairs of particles prepared in
the states |0) ® |0), |0) ® |+), [+) ® |0) and |[+) ® |+), there is a non-degenerate oper-
ator, on the four-dimensional Hilbert space spanned by these eigenvectors, with
the following property: each of these four preparations is orthogonal to one of the
operator’s eigenstates. Explicitly, the eigenstates are

€1) = %(I0>®|1> +|1)®10)), (10.3)

62) = % (Y@= +1)®+), (10.4)

I63) = % (H)eIh+[-)el0), (10.5)
1

) = —= (D)) + =) &l+). (10.6)
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Now the measuring device cannot avoid violating a prediction of quantum mechan-
ics every now and then. Note that the case of |0) and |+) is special, because without
the assumption (O|+) = 1/ V2 above, the states in Eq. (10.3) would not be orthog-
onal. The PBR proof of the general case is still more technical.
As an application of the PBR theorem, let us revisit the EPR paper [17]. Consider
an entangled state
L [10Ya ®1)p — |14 ®10)5] (10.7)
V2

of a particle pair shared by Alice and Bob, far apart in their respective laboratories.
If Alice measures |1)44(1| —10)44¢0| on her particle, she might leave Bob’s particle
in the state |0)p; but if she measures |[+)44(+| — |-)a4(—| on her particle, she might
leave Bob’s particle in the state |+)p, which is distinct from |0) 5 and not orthogonal
to it. The state |0) 5, claim EPR, must represent the same physical reality as the state
|[+) 5, since no influence, including Alice’s measurement, can propagate faster than
the speed of light. But according to the PBR theorem, if the predictions of quantum
mechanics are correct, then the state |0)g cannot represent the same reality as [+)p.
We see that the EPR assumption — according to which Alice’s measurement does
not disturb Bob’s particle — is incompatible with quantum mechanics. It is striking
that both Bell’s theorem [22, 23] and the PBR theorem imply that EPR’s demand
for locality (Einstein separability) is incompatible with quantum mechanics, even
though the PBR theorem does not mention locality.

10.4 Protective measurement, PBR and the reality of |\V)

Assuming that quantum predictions are correct, the PBR theorem implies that a
quantum state representing an individual system also represents a part or all of the
physical reality of that system. Independently, protective measurements make it
possible to measure expectation values, including the norm and relative phase of
the wave function itself, on an individual system. Since expectation values have
physical meaning, the PBR theorem and protective measurements both imply that
a quantum state represents physical reality. Would it be right to say that protective
measurements anticipate the PBR result? In this section, we show that the answer
to this question cannot be a simple Yes or No: although close in spirit, protective
measurements and the PBR theorem make different and complementary statements
about the physical reality of quantum states. First, however, we address the question
of what it means to represent physical reality —a question that is not straightforward
in quantum theory.

Hartle [15] claims that the quantum state is not an objective property of the
system, because no assertion about the state of the system “can be verified by
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measurements on the individual system without knowledge of the system’s pre-
vious history”. Indeed, if we are given a single system in an unknown quantum
state, protective measurements cannot identify its state, any more than other mea-
surements can. Hartle’s conclusion is therefore that a quantum state is a property
of an ensemble, but not a property of any individual system. (See also [24].) If so,
then neither the PBR theorem not protective measurements make any statement
about the reality of the quantum state of a single system.

Hartle’s criterion — measurability without prior knowledge — is suitable for the
classical world, but it rules out discussion of a single quantum system, and is thus
unsuitable for the quantum world. It does not allow attribution of any contingent
property to individual quantum systems. The quantum world requires a more subtle
criterion.

A better criterion for attributing a property to an individual quantum system is
that of EPR (italics in the original): “If, without in any way disturbing a system,
we can predict with certainty (i.e. with probability equal to unity) the value of a
physical quantity, then there exists an element of physical reality corresponding to
this physical quantity.” We cannot apply this criterion in the case considered by
EPR because of the failure of locality, but we can apply it here. For example, if we
have just found an isolated atom to be in an eigenstate of energy, we can be sure that
a second measurement of its energy will yield the same result, and we can therefore
attribute that energy to the atom. Similarly, via protective measurements we can
attribute to each quantum system a distinct reality defined by distinct properties.
Specifically, protective measurements can be used to probe an individual system in
the same way that other quantum measurements probe an ensemble.

How do we show that |'P') is a property of an ensemble? We prepare an ensemble
of systems in the state |¥), and perform measurements on that ensemble. We are
not totally ignorant of the preparation; on the contrary, we must know how the
state is prepared in order to assign the properties we find to |¥). If we were totally
ignorant of the preparation, we couldn’t even be sure of having an ensemble of
identical systems. We can view protective measurements in the same light, but
instead of preparing an ensemble of many systems in the state |\¥), we prepare
a single system in the state |'¥) and protect the state from changing during the
(extended) measurement. When we do so, and measure the expectation values of
any operator we wish, we obtain values that define the quantum state uniquely.
For example, a measurement of a projection operator |V){'Y| yields 1 in the state
[¥) and less than 1 in any other state. Since (protective) measurements on any
given quantum state yield expectation values that differ from measurements on any
distinct quantum state, each quantum state represents a distinct reality.

Thus protective measurements show the reality of a single system in a quantum
state. But can they be used to prove that two quantum states inevitably represent
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different realities? The answer to this question has to be negative, because if two
non-orthogonal states |¥1) and [¥,) are possible inputs for a single measuring
device, then the possible outputs cannot be orthogonal. Concretely, let us consider a
measuring device prepared in a neutral state |yo) and coupled to either [¥';) or [¥7).
To discriminate unambiguously between these two states, the measuring device
coupled to |¥;) must evolve into the respective pointer state |y;), where (y2|y1) = 0.
But then the initially non-orthogonal states |yo) ® V1) and |yo) ® |¥>2) must evolve
into the orthogonal states |y1) ® |'¥'1) and |y2) ® [W¥2), which is impossible with
unitary time evolution.

Thus the description of a quantum state via protective measurements leaves an
ambiguity, which we can summarize as follows. Suppose we prepare an ensemble
of systems in the state [¥'1), protect the state ['¥';), and measure a long list of observ-
ables. We will, in each case, obtain the expectation values of those observables in
the state |¥). However, if we prepare the ensemble of systems in the state V)
(neither identical nor orthogonal to [W¥;)) and protect the state |\¥'), the protection
will leave a fraction [(¥,|¥;)[* of the systems in the state [¥'1). Now if we measure
the same long list of observables, we will obtain a sub-ensemble of systems yield-
ing the expectation values of those observables in the state [¥;). We then cannot
eliminate the possibility that the reality A underlying some of the systems prepared
in the state |[¥») is compatible with [¥|) as well as [¥>); we do not have a no-go
theorem. One could consider deriving such a theorem by considering, as PBR do,
many systems prepared independently in either the state [¥'1) or in the state [\V>),
but such a derivation would have little to do with protective measurements.

This difference between protective measurements and the conclusion of PBR
demonstrates the inherent inaccessibility of quantum reality. We already knew that
orthogonal states represent different physical realities. We now know that non-
orthogonal states, as well, represent different physical realities. If they represent
different physical realities, which observable can we measure to distinguish one
physical reality from the other? Of course, there is no such observable; if there
were, two non-orthogonal states would be its non-degenerate eigenvectors. Uni-
tarity prevents us from distinguishing two non-orthogonal quantum states, and the
PBR theorem implies that this indistinguishability does not arise because two quan-
tum states can represent the same reality. They cannot.

To conclude, both protective measurements and PBR can be seen as partial
answers to a single question: what do two quantum systems, described by two
quantum states in a common Hilbert space, have in common? Protective measure-
ments tell us that if the two quantum states are the same, the systems have a lot
in common, namely the expectation values of all operators measurable on the sys-
tems. The PBR theorem tells us that if the two quantum states are different, the
systems are in physically different states.
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The roads not taken: empty waves, wave function
collapse and protective measurement in quantum theory

PETER HOLLAND

Two roads diverged in a wood, and I —

1 took the one less traveled by,

And that has made all the difference.
Robert Frost (1916)

11.1 The explanatory role of empty waves in quantum theory

In this chapter we are concerned with two classes of interpretations of quantum
mechanics: the epistemological (the historically dominant view) and the ontologi-
cal. The first views the wave function as just a repository of (statistical) information
on a physical system. The other treats the wave function primarily as an element
of physical reality, whilst generally retaining the statistical interpretation as a sec-
ondary property. There is as yet only theoretical justification for the program of
modelling quantum matter in terms of an objective spacetime process; that some
way of imagining how the quantum world works between measurements is surely
better than none. Indeed, a benefit of such an approach can be that “measurements”
lose their talismanic aspect and become just typical processes described by the
theory.

In the quest to model quantum systems one notes that, whilst the formalism
makes reference to “particle” properties such as mass, the linearly evolving wave
function ¢ (x) does not generally exhibit any feature that could be put into corre-
spondence with a localized particle structure. To turn quantum mechanics into a
theory of matter and motion, with real atoms and molecules consisting of particles
structured by potentials and forces, it is necessary to bring in independent physical
elements not represented in the basic formalism. The notion of an “empty wave” is
peculiar to those representatives of this class of extended theories which postulate
that the additional physical element is a corpuscle-like entity or point particle. For
clarity, we shall develop the discussion in terms of a definite model of this kind
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whose properties are well understood and which it is established reproduces the
empirical content of quantum mechanics: the de Broglie-Bohm theory, a prominent
representative of the class of ontological interpretations (Holland, 1993). Here,
material physical systems are postulated to consist of two components: a physically
real wave (described by (x)) governed by Schrodinger’s equation, and a point par-
ticle that is guided along a track x(#) by the wave (according to the law mx = VS,
where S is the quantal phase) but does not participate in the latter’s dynamics (one
can extend the model to include a back-reaction of the particle on the wave in a way
that is compatible with quantal predictions (Holland, 2006) but this is not needed
here). The position of the particle is the “observable” of the theory. Note that this
dualistic theory of matter discerns, and attributes ontological significance to, fea-
tures of the wave function — such as energy and force — that may not be meaningful
in other ontological interpretations (which therefore may be incommensurable).

If the Y-wave is incident on a beam-splitter and evolves into two spatially disjoint
components the particle will enter only one of them and the other, by virtue of not
containing the particle, will be “empty”. It is only in this sense that we shall say a
wave is empty — it still propagates energy and momentum of the field throughout
space and has the potential to subsequently act on its associated particle if it is
finite in a domain where the latter passes (the energy—momentum is only indirectly
observable through the effects of the wave on the particle).

To illustrate the active role of an empty wave we recall how it contributes
to the de Broglie-Bohm description of the two-slit experiment (Holland, 1993,
section 5.1). Referring to Fig. 11.1, a wave ¥(x) incident on a beam-splitter B

v (x)

Y

y(x)

B P

Figure 11.1 A particle traversing path 1 may arrive at an otherwise inaccessible
point X due to the action of the empty wave ¢,.
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splits into two packets ¢; and ¢, which separate sufficiently so that they do not
appreciably overlap before being recombined in the vicinity of a screen P. Two dis-
tinct routes, 1 and 2, are then available to a particle x passing through the interfer-
ometer. If the particle is detected at a point X above the symmetry axis A we know
that it traversed route 1 because the single-valuedness of the wave function forbids
the crossing of paths. Hence, after the splitting and prior to the recombination, ¢,
is an empty wave. But the point X may lie in a region not accessible to a particle
guided by ¢ alone, that is, in the case where ¥, is absent (this may be arranged,
for example, if | possesses nodes where i, is finite). Hence, the empty wave ¢,
has had a physical effect in bringing about an observable change in the state of the
corpuscle: when ¥, is present (absent) the particle can (cannot) land at X.

Notice that the claim that the empty wave has acted physically is a retrospec-
tive inference — we argue that it must have so functioned prior to the detection of
the particle in order that the result obtained could actually occur. Naturally, the
empty wave concept has meaning only within the model of quantum motion we
have employed to explain the functioning of the interferometer; the interference
phenomenon itself does not prove the “reality” of the empty wave.

It would clearly be advantageous if the historical dispute between the episte-
mological and ontological viewpoints could be made an empirical issue. In this
chapter we examine the impact of the empty wave concept on this problem. We
first emphasize the theoretical merits of the empty wave in enabling avoidance
of the wave function collapse hypothesis (Section 11.2) and in supplying concep-
tual precision in the application of quantum mechanics, with particular reference
to an example where protective measurements have been used in path detection
(Section 11.3). We then go on to address the problem of how the reality of an empty
wave might be demonstrated by its effect on other systems, and advance general
arguments against this possibility (Section 11.4). However, these arguments are not
conclusive and we describe how an alternative perspective in probing the empirical
implications of empty waves is provided by the notion of protective measurement
(Section 11.5).

11.2 Measurement: empty waves vs. wave function collapse

The empty wave concept extends easily to a many-particle system where it is a
key characteristic of the configuration space description. An analogue of a beam
splitter in configuration space will create a spectrum of waves and the system point
will distinguish one of them if they are non-overlapping packets. Note that the
physical particles composing the system point need not be located nearby in three-
dimensional space.



148 Peter Holland

A drawback of the epistemological interpretation is that it entails the hypothesis
that the wave function “collapses” at some stage in a measurement process as the
knowledge of the “observer” regarding the state of a system changes, a notion that
is hard to formulate unambiguously and consistently (e.g., in relation to relativity).
One of the virtues of the de Broglie-Bohm approach is that it provides a coherent
account of measurement that, in particular, dispenses with the problematic collapse
hypothesis through the use of empty waves.

The measurement problem of quantum mechanics arises when one attempts to
attribute definite outcomes to processes devoted to discovering information on a
quantum system (Holland, 1993, chapter 8). The measurement of an observable
represented by an operator A associated with a system having a coordinate x is
customarily modelled by an impulsive interaction generated by the Hamiltonian
H = fA(-ihd/dz), where 7 is the coordinate of the apparatus and f is a constant.
At first the system and apparatus are non-interacting so the total initial state is
Wo(x, 2) = Yo(x)do(z), where g (x) = X, caibq (x) is a superposition of eigenstates
of A, and ¢o(z) is the initial apparatus state (assumed to be a localized packet).
The impulsive interaction acts as a beam splitter in configuration space, generating
a spectrum of macroscopically distinct apparatus states each correlated with an
individual eigenfunction. If the period of interaction is 7" we obtain

¥z )= ) cata (6T o (7). (1L.1)

a

where ¢,(z, T) = ¢o(z — faT) represents a set of non-overlapping outgoing appa-
ratus packets. These packets are in turn coupled to many-body packets so that their
separation is amplified to the macroscopic scale. Each packet corresponds to a pos-
sible outcome of the measurement. But the state is a superposition of outcomes
and, in order to extract a definite result from the superposition, the hypothesis is
invoked in the epistemological interpretation that the state (11.1) “collapses” into
one of the summands, say the ath, with probability |c,|*:

> ot T b (3. T) = Yo (6, T) ¢ (2, T) (112)

a

(after normalization). This transformation is not described by the unitary evolution-
ary law of quantum mechanics (Schrodinger’s equation) and suggestions for how it
might come about have ranged from the intervention of an observer who becomes
aware of the outcome to modifications of the Schrodinger equation. But, even if it
is assumed that it does actually take place, the notion of collapse does not in itself
solve the measurement problem. For, to infer the outcome of the measurement, the
pointer of the apparatus must be assigned a location whose variation during the
interaction can be determined unambiguously. In contrast, according to its usual
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interpretation, the wave function attributed to the apparatus determines just the sta-
tistical frequency of measurement results. The wave function does not itself offer
a description of an autonomous moving object. One may attempt to address this
difficulty by invoking the feature that ¢o(z) is sharply peaked about a spacetime
orbit, that is, by making some kind of literal identification of the packet with the
particle. Then one is tacitly shifting the interpretation of the wave function towards
an ontological view, but not in a clearly consistent way — the eventual diffusion of
the packet, or the possibility of splitting it into disjoint parts, mean the “particle”
does not remain localized, for instance.

Another option is that the projection (11.2) does not take place. Rather, the cor-
rect wave function remains (11.1), so that all terms in the superposition continue
to be finite, but one is selected as representing the outcome of the measurement
because it carries some special attribute. This is the thesis of the de Broglie-Bohm
model.

In an ensemble of particle systems the probability density of presence in the ini-
tial state is [¥o(x, z)I*. Then, in the measurement, one of the outgoing summands
is singled out because the de Broglie—Bohm system point (x(¢), z(¢)) enters it (i.e.,
it occupies the region where the summand is finite). All the other packets are then
empty. In particular, the outcome of the measurement is the position z(¢). Since
the outgoing packets are non-overlapping, from the standpoint of the particles the
transformation (11.2) does in effect occur, even though the other ¢, s and ¢,s are
still finite (but empty). The Born probability formula follows since over an ensem-
ble the particle x enters the ath packet with relative frequency |c,|*>. Within this
approach, the entire measurement process may be treated by applying the usual
linear, unitary Schrodinger equation, and the single concept of particle trajectory
enables one to both avoid the collapse postulate and solve the problem of the def-
initeness of the pointer (and object) position. We shall return to the issue of distin-
guishing the epistemological and ontological views in this context in Section 11.5.

11.3 The art in quantum mechanics: path detection and conceptual precision
11.3.1 Theory of path detection

The de Broglie-Bohm theory is particularly suited to analyzing the interplay
between the observation of interference effects and the determination of the space-
time path of a quantum system. Path determination in such situations often requires
establishing that the system lies within a particular spatial region, rather than locat-
ing it using a precision position measurement. For example, in an interferometric
context the path may lie within one of two distinguishable beams traversing a
device. In that and other settings path detection may be achieved by entangling the
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Figure 11.2 A device for determining the path of particle x from the remote
detection of particle y using quantum entanglement.

system of interest with another system that has the characteristics of a detector,
i.e., that has macroscopically distinguishable states each of which is uniquely
coupled with one of the available beams. Here we discuss and attempt to resolve
a controversy that has arisen surrounding the application of the ideas of particle
trajectory and empty wave in a “which-path” context. It is shown that, if these
ideas are applied correctly according to the principles of the de Broglie-Bohm
theory, they provide a coherent and uncontroversial account of the functioning of
these devices.

An example of such a device arises in the spin % version of the EPR experiment.
Referring to Fig. 11.2, a source S generates a pair of oppositely moving particles
(with magnetic moments) in a singlet state. The particle with spatial coordinate y
(the detector) passes through a Stern—Gerlach magnet(s) on the right-hand side ori-
ented in any direction. If y is detected in the upper of the two beams emerging from
the magnet (path 1, spin up) then we may infer without further investigation that
particle x on the left-hand side pursues the lower beam (path 1), if it subsequently
passes through a Stern—Gerlach device oriented in the same direction. Notice that
in this example the determination of the path of x has been achieved via a remote
local action of the right-hand magnet. Indeed, in this example, the particles never
come near each other during the detection process (and the two may be located as
far apart as one desires so long as the entangled state is preserved). This is possible
because the local action on the magnetic moment of y does not exhaust the dynam-
ical influence of the right-hand magnetic field on the particles, which is mediated
also by the wave function. The latter carries information on the local interaction,
which is thereby transmitted to y (causing it to move along path 1 or 2) and (non-
locally) to x. It is essential to appreciate that, in this sort of example, the motions of
the particles x and y are correlated not because they act upon one another directly
as would be expected for two classically interacting particles but because they are
each guided by the wave function that carries an imprint of the entire experimental
context.

This remote action, whereby a detector locates the de Broglie-Bohm trajectory
of a particle with which it does not directly (classically) interact, or even come
near, was understood in the context of non-local EPR correlations in the 1980s
(see Holland, 1993, section 11.3 and references therein). However, a conceptually
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Figure 11.3 The path of particle x inferred from the excitation of detector y
depends on the prevailing quantum state: x traverses path 1 in case (a) and path 2
in case (b).

similar example of path detection in interferometry published subsequently has
occasioned some (unfounded) disquiet, as we now discuss.

The following is an elaboration of the discussion in Holland (1993, section 8.8).
Suppose in Fig. 11.1 we introduce a device in path 1 having wave function ¢(y)and
coordinate y(t) (see Fig. 11.3). The purpose of this device is to couple ¥ (x) and
¢(y) so that the distinct states of the latter allow us to learn along which beam, 1 or
2, x traverses the interferometer. Initially, the total wave function is

Y(x,2) =¥ (x)+ ¥ (0)] () >y (x,y) +¥; (x) ¢ (v) during interaction in path 1
=Y () ) +¥r (D) () (11.3)
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after the interaction in path 1, which is assumed to leave ¢ (x) essentially unal-
tered. It is required that the initial and final detector states are disjoint in the space
of their argument (y), ¢ N ¢’ = 0, in order that an unambiguous reading is obtained.
Then the two configuration-space summands to which they contribute are disjoint.
Thus, if y is found to lie in the excited state ¢’ (y), x must lie in ¢ (x). The possible
outcomes are as follows:

Y—=yed ) =>xey; (x),

(11.4)
Yo—YEPY) = xEY,(x).

The outcome in each trial is fixed uniquely by the initial positions xg, yo and the
total wave function . What can we conclude about the path the particle x took
through the interferometer?

To bring out how the inference drawn from the meter reading y depends on the
total wave function, we consider two possible final wave functions, corresponding
to two different experiments that differ in the location of the detecting screen: case
(a) when ¢ and ¥, overlap, and case (b) after ¢; and ¥, have recombined and,
following their natural evolution, passed through one another and separated. Then,
from (11.4), when the detector is excited, x may be deduced to pass along path 1
in case (a) and along path 2 in case (b).

It will be noted that, in case (b), x does not pass along the path (1) where the
detector is located, that is, an empty wave is associated with the excitation, and
the detector locates the particle in a region remote from it. We also find in case
(b) that when the detector is unexcited the particle passes through it. Although the
details of the devices in Figs. 11.2 and 11.3b differ, they display the same feature
of remote detection and for the same reason: correlated motion of the two particles
induced by the total wave function that expresses the entanglement of the detector
and object and develops into a sum of two disjoint product states in configuration
space.

11.3.2 Realism vs. surrealism

Englert, Scully and co-workers (Englert er al., 1992) have sought to use these
features of scenario (b) to argue that the de Broglie—-Bohm theory is not a “realis-
tic” description because the trajectories “may be macroscopically at variance with
the observed track of the particle”. They present their argument using a Stern—
Gerlach interferometer having a detector in each arm but the simpler set-up used in
Fig. 11.3b with scalar wave functions and a single detector (suggested by Dewdney
et al. (1993)) suffices. Their key claim is that for a path detection to occur a detec-
tor must fire due to a local interaction between it and the particle whose path
is desired, which must be at the detector’s location. In an alternative example
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(Aharonov et al., 1999), employing a protective measurement (see Section 11.5)
to effect a path detection,' they suggest that, in the de Broglie-Bohm theory, the
momentum transfer to the meter that is involved in the measurement process should
be accounted for by the action of the particle x and that, since the particle x in the
case they consider does not pass near the relevant point where the interaction “takes
place”, it cannot have this physical effect. Insofar as their criteria for path detection
are not obeyed by the de Broglie—Bohm theory, these authors introduce an artistic
metaphor and assert that the trajectories are “surreal”. What they seem to mean by
this mode of expression is that the trajectories are “wrong”. They suggest that the
de Broglie-Bohm model needs to specify additional criteria to determine when a
legitimate path detection is effected.

Of course, were it the case that a correct description of quantum path detection
entailed detectors functioning in the way Englert, Scully and co-workers claim,
that is, as involving purely local interactions that reveal the particle trajectory at the
location of the detector, this would be an awkward circumstance for the de Broglie—
Bohm description. What justifies the claim that a quantum trajectory theory must
display such characteristics?

In analyzing this question, the merits of the de Broglie-Bohm approach, in
prompting an examination of how language is employed in quantum theory, come
to the fore. In the application to protective measurement, Englert, Scully and
co-workers justify their claims through appeal to terms like “common quantum
sense” and “well localized interaction” as if they are unproblematic components
of a clear conceptual framework within which it is legitimate to judge the meaning
of the de Broglie-Bohm theory. But the true situation is the inverse of this: the
de Broglie-Bohm theory provides the means to assess the worth of a traditional
discourse that comprises an extraordinarily vague amalgam of words and concepts
tacked on to the quantum formalism. That is, the terms commonly used in quantum
mechanics are in fact highly problematic, in particular because they are not part
of, or mapped onto, a clear ontology. The purpose of the de Broglie—-Bohm theory
is precisely to address these shortcomings by providing a consistent framework
within which the meanings of terms commonly used in quantal discourse may be
assessed. For example, the “conventional view” expounded by these authors that
the excitation of a detector functioning through a “well localized interaction” is in
itself sufficient to claim that a particle passed through it is unfounded unless sup-
plemented by a physical model consistent with quantum mechanics that allows us
to formulate criteria in terms of which it is meaningful to draw such an inference.
What is the model of a “particle” for which it can be meaningfully asserted that
it “passes”? The conventional view fails to satisfy physicists’ natural desire for an

! Whether a protective measurement can be assimilated to a position measurement has been questioned by
Drezet (20006).
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unambiguous ontology and for want of an alternative its adherents often slip into
a classical discourse for which there is no justification in this context and which,
moreover, cannot be consistent. In his paper entitled “Do Bohm trajectories always
provide a trustworthy physical picture of particle motion?”, Scully (1998) answers
in the Abstract: “No. When particle detectors are included particles do not follow
the Bohm trajectories as we would expect from a classical type model.” And there
is the nub of the issue: these critics want interpretations of quantum theory to
conform to classical conceptions. A pre-quantum notion of interaction comprising
a local exchange of momentum (that has not been proven to be consistent with
quantum mechanics) is being invoked to judge a theory (that is proven to be con-
sistent) that indicates how a quite different non-classical notion of “interaction” is
necessary if the particle trajectory is to be deployed in a quantum context. In fact,
what these authors claim is the “observed track™ according to their classical model
may indeed not be the actual track based on a quantum model.

As emphasized in relation to the example of Fig. 11.2, in the de Broglie-Bohm
model the “interaction” is defined not just by the form of the Hamiltonian but is
an action mediated by the configuration space wave function, which implies (non-
locally) correlated motions in three-dimensional space. Thus, local Hamiltonians
have non-local effects. The statement of Aharonov et al. (1999) that . . . an inter-
action between the particle and the meter occurs undoubtedly ...” is the kind of
loose language objected to above. When one tries to make this notion precise, as in
the de Broglie—-Bohm theory, it is seen that it is not a meaningful statement. Rather,
one must say that there is an action by the wave function on the two particles which
causes them to evolve in a correlated manner so that from the path of one we may
infer the path of the other.

Even if particle x travels through the detector when the latter fires, as happens
with case (a), there is still no direct interaction between x and y, and the excitation
has not occurred because of the passage. Indeed, giving significance to the excited
as opposed to the unexcited state of the detector is misleading, for in both states one
can make an inference as to the path traversed. The fact that the assertion “click =
detection of passing particle” is generally unfounded does not so much signal a flaw
in the de Broglie-Bohm theory as alert us to the subtlety of the quantum theory of
detection that it reveals, in particular that the question of whether or not the particle
traverses the detector is irrelevant to the issue of path detection. The interaction
embodied in (11.3), governed by Schrodinger’s equation, occurs whether the wave
is empty or not. According to this theory, a path detector never directly records the
coordinates of the particle “measured” or its “passage”.

Indeed, the arbitrary requirement that in a scenario deemed to be one of “path
detection” the detected particle must pass in the vicinity of the detector, regardless
of the prevailing quantum state, would lead over an ensemble to distributions of
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readings at variance with those implied by [¥|. In contrast, the de Broglie-Bohm
description honours the quantal predictions faithfully. And no additional criteria are
needed to specify when a path detection occurs, beyond the reading of the meter y.

In the light of the above we can also assess the analysis of Dewdney et al. (1993)
who have described the detector as being “fooled” in case (b). In fact, this is some-
what misleading since in all cases the detector performs its function of indicating
the particle route; it is no more fooled in this case than in case (a) or in the example
of Fig. 11.2.

Distant actions of local interactions are at the heart of the explanatory framework
of the de Broglie—-Bohm theory and examples abound already in the single particle
case. For example, a particle approaching an infinite barrier (the local interaction
Hamiltonian) will be reflected without touching it. This happens because the wave
function carries information about the local potential (the barrier) to distant points
and guides a particle located there. This is not “surreal”; it just shows how quantum
theory transcends classical mechanism.

There is art in the de Broglie-Bohm picture but it is a subtle, non-classical
realism based on a concept of particle interaction for which there is no obvious
precedent in pre-quantum physics. The latter aspect is relevant to quantum path
detection because of the use of entanglement as a resource. Englert, Scully and
co-workers have neglected this feature and hence their criticism is unfounded. One
may not care for this aspect of the trajectory theory but to cite it as a blemish in
the de Broglie—-Bohm description the critic must propose a consistent alternative
ontology. As indicated above, in this connection it is not legitimate to invoke as
a benchmark “standard quantum mechanics” whose lack of precision was a key
motivation for the development of the casual theory in the first place. It has, in fact,
often been the lot of the de Broglie-Bohm interpretation to be reproached for seek-
ing to return to classical conceptions (by employing trajectories) only to be faulted
for not being classical enough (the trajectories do not do what the critic wants).

11.4 Evidence for empty waves: retrodiction vs. prediction
11.4.1 A general argument against the observability of empty waves

How could the reality of an empty wave be demonstrated? We shall explore here
the view that what is desired is a means of manipulating such an entity and its
interactions so as to measurably alter the future course of systems that may be
potentially influenced by it in a predictable way. Two potential methods present
themselves. The validity of either method would contradict the hypothesis of wave
function collapse. A first method is to bring the empty wave back to influence
its own associated particle once we have established the latter’s path. Applied to
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the measurement procedure described in Section 11.2, this would entail revers-
ing the process to achieve overlap of the outgoing macroscopic apparatus pack-
ets, a formidable technical challenge. A second method is to try to manipulate the
empty wave so as to influence another independent wave—particle composite, thus
increasing the size of the relevant Hilbert (and configuration) space. An argument
has been given (Holland, 1993, section 8.8) that for a general class of interactions
the latter method does not allow one to infer the reality of an empty wave, at least
according to the criterion of predictability stated above. We now recall this demon-
stration

Suppose an initial packet ¢(x) containing a particle with coordinate x(¢) is split
into two packets /1 (x) and ¥, (x) that subsequently separate so that eventually they
do not appreciably overlap (Fig. 11.4). The particle will join one or other of the
packets. Suppose that /| interacts with a detector having wave function ¢(z) and
coordinate z(¢) that can measure the position x, and that subsequently i, interacts
with some other system having wave function &(w) and actual location w(). Ini-
tially, the total wave function is

Y (xw,2) =1 () + ¥ (D]EW) ¢ (2) (11.5)

After the first interaction has commenced the wave function is non-factorizable:

P (x,w,2) = a(x,2EW) + ¥ () EW) @) . (11.6)

The function a (x,z) is entangled in its configuration space and evolves into a
superposition of sharply peaked functions of x (with z-dependent coefficients; see
(11.1)). If the corpuscle x lies in ¢ it will be found in a region where one of these
functions is finite and we then know i, is an empty wave (since ;| N, = 0).

Vi) A
> > E(w)
w(x) v, (x)

Figure 11.4 An unsuccessful method to detect an empty wave v, from its effect
on a system w.
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Now, if we bring in the second interaction, between x and w, the wave function
(11.6) becomes

Yx,w,2) =a(x, )W) +B(x,w) ¢ (2) . (11.7)

Since the two summands in (11.7) do not overlap, the system point is in one of
them. But we have detected that x(¢) is in the first summand so we conclude that
w(t) cannot be in the second. Hence, because the spatial structure of the function
relevant to the motion of the particle w (£(w)) is unaltered, ¥>(x) has no observable
effect on the particle behavior and we cannot prove the hypothesis of empty waves.

As in the case of Fig. 11.1, what is forbidden is the prediction of an effect of
the empty wave once x is detected; we can infer only the past action. As regards
the future evolution, empty packets interact only with other empty packets — the
particles of the other systems are in the same configuration space packet as the
particle of interest. All the empty packets do indeed interact with one another and
mutually modify their behavior, but this is unobservable since no particles are
involved (recall that in this theory the outcomes of experiments are the positions
of particles).

This feature of the configuration space dynamics is consistent with experience. If
empty waves could really alter the measurable properties of systems, experiments
would be constantly perturbed by background noise caused by extraneous y-fields
and it would be hard to justify the assumption of relative autonomy in which it is
legitimate to isolate segments of matter and ignore their environment.

That it is legitimate to draw retrospective inferences, which involve physical
elements not included in the predictive apparatus of quantum mechanics, is a fea-
ture of some conventional presentations. Thus, Heisenberg (1930) admitted the
possibility of reconstructing a trajectory in an interferometer. In both that case and
in the examples of empty wave behavior considered here, making correct retrodic-
tions requires adopting a consistent theory of quantum particle motion, or results
in contradiction with the statistical distributions of quantum mechanics may be
obtained (Holland, 1993, section 8.4.2).

11.4.2 A stronger argument

In the argument just presented against the observability of an empty wave, ¢ (x)
(¥,(x)) is non-empty (empty) throughout the process. One may envisage more
complex scenarios, such as are encountered with beams propagating through an
interferometer that separate and then recombine, where these roles may be reversed
for periods of the process, prior to the final stage when ¥, (x) is empty. This intro-
duces the possibility that, in a period when ¥ (x), say, is empty, we can introduce
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an interaction in its domain with a detector y so that an outcome of the entire pro-
cess is that the latter’s state alters observably. This raises an issue as to whether this
intermediate event could imply evidence for the reality of an empty wave. We shall
show that our result remains valid in this more general situation.

In fact, just this circumstance of reversed roles and intermediate interaction with
a detector is implicit in the arrangement of Fig. 11.3b and we shall present our
proof with reference to that. Including a detector z that interacts with x in the region
where ¥/ (x) is finite, the wave function (11.3), in the period after the waves ¢/ (x)
and ¥, (x) have passed through one another and no longer overlap, evolves into

Yxwy,0=a(xdd MEW +¥ DEMW (e @) . (11.8)

If x is detected by the detector z then it lies in the first summand and, since the
summands do not overlap, so does w (and y). Therefore, at this final stage the
packet ¥,(x) is an empty wave and an interaction between x and w (which induces
Yr(x)é(w) — B(x,w)) will not influence the future behavior of w, as argued in
the case of Fig. 11.4. Hence, we reaffirm our contention that a wave we know
to be empty cannot observably influence the future behavior of another physical
system.

As anticipated above, the novel element in this example is that over the course
of the process the status of ¥ (x) changes from empty, when it is party (along with
the potentials involved in the interaction) to the transformation ¢(y) — ¢’(y), to
non-empty, when it subsequently interacts with z (in cases where the latter makes
a detection). It has been argued by Hardy (1992) in connection with a similar
arrangement” that, since the then-empty wave ¥, is a (partial, in the case he con-
siders) cause of the observable change in y this is evidence that empty waves can
“manifest their reality”. However, according to our analysis this will not be so. It
is true that the empty wave ¢ contributed to y’s change in state, but because this
action occurred before the x-detection by z we cannot impute any greater reality to
the empty wave here than was possible in the case of, say, Fig. 11.1. Suppose we
include in the description of the process depicted in Fig. 11.1 the detection at the
screen P, and couple the detector to a light bulb that glows if the detector regis-
ters a detection at X. Then we may predict that, when the particle is detected at X,
the bulb will glow and this change in its state is caused by the past action of the
empty wave ¥,. The prediction embodied in the change in y in Fig. 11.3b is of a
similar type. We only know ¢; was empty, in the period when the change occurred,
after the z-detection. But by that stage there is no empty wave involved; the rele-
vant empty wave then is . It is therefore a retrospective inference that ; caused

2 The difference between the layouts of Fig. 11.3b and that of Hardy (1992) is the inclusion in the latter of a
beam-splitter in the region where /| and ¥, overlap. This introduces an additional interaction so that ¢/ is
only a partial cause of the transformation ¢ — ¢’. Fig. 11.3b is free of this complication.
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y’s variation. The empty wave certainly contributes to the theoretical account of
how the results come about (as analyzed in the de Broglie—Bohm approach) but if
the experiment was performed and the quantum predictions confirmed (hardly in
doubt) this would not provide evidence for the reality of empty waves.

Although the above results are general and not restricted in the systems to which
they apply, there is a caveat: they rest on the assumption that the final interaction
between x and w must be localized in a domain of configuration space remote from
the region where the first summand is finite. Although this is a natural assumption,
it is overly restrictive if we aspire to a comprehensive assessment of all conceiv-
able observable effects of empty waves. Another option is that the system w may
interact with both summands in xz-space in a way that maintains their disjointness
yet imparts to the first (system-point containing) summand an observable influence
depending on the second summand. This possibility is examined next.

11.5 Evidence for empty waves: protective measurement

Progress in attempts to demonstrate an ontological aspect of the wave function
came in 1993 when Aharonov and co-workers (Aharonov and Vaidman, 1993;
Aharonov et al., 1993; and Anandan, 1993; for reviews and clarifications see Dass
and Qureshi, 1999; and Gao, 2013) showed how a suitably adapted adiabatic inter-
action described by quantum mechanics provides a scheme to measure the expec-
tation values of operators pertaining to a system without appreciably disturbing its
quantum state. These interactions are therefore called “protective” measurements.
In certain circumstances this provides a technique for “measuring the wave func-
tion” of a single system as an extended object (this is not to be confused with the
possibility of reconstructing the wave function from a statistical ensemble of con-
ventional measurements (Holland, 1993, section 8.7)). Aharonov et al. infer from
this procedure, which reveals a property possessed by a single system prior to the
measurement, evidence for the ontological character of the wave function. Here we
shall point out how the protective measurement protocol, applied in the context of
the de Broglie-Bohm model, potentially provides additional support for the onto-
logical viewpoint, by devising a scheme that could distinguish between the empty
wave and wave function collapse hypotheses. This application was first suggested
by Holland (1994).

We first summarize the theory of protective measurements. Let the initial
moment of time be + = T and consider two interacting systems, an object and
a measuring apparatus, with initial wave functions a(x,T) and B(y,T), respec-
tively. Denote by B the operator pertaining to the object whose expectation value
is to be measured. Then, in the protective interaction envisaged by Aharonov and
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co-workers, the interaction Hamiltonian is H = g (r) yB and the initial combined
state ®(x,y, T) = a(x, T)B(y, T) evolves adiabatically at time ¢ into

t
D (x,y,1) = @ (x,0)B(y, 1) exp —(i/h)fg(t)y<1§>dt : (11.9)
T

Here g(7) is a function characterizing the interaction with f]f g(nHdr =1, and a(x, 1)
and B(y, t) are the wave functions obtained under free evolution of the two systems.
It will be observed that this is still a product state in that the variables x and y
have not become entangled. In particular, the object state is undisturbed by the
interaction. In contrast, the state of the apparatus has acquired a phase factor, which
implies an observable change in its momentum, depending on the expectation value
(B) = (a(1)|Bla(r)). Hence, information on the state a(x,7) can be gleaned from
the apparatus by measuring the change in its momentum. For example, we can
choose B = |xo){(xo| so that (B) = |a(xo, 1)|* and the shift in momentum is given by
f; g(Hla(xo, 1)?dt, the time-averaged square of the wave amplitude at the point x.

If @ is known to be a non-degenerate energy eigenstate, but is otherwise
unknown, it is possible to use this scheme to measure it for all values of its
argument (up to a gauge transformation) by suitable choices of B. It is to this
case that the notion of “measuring the wave function” of a single system using
the protective technique really applies. The method may also be applied to general
states but there are two caveats: (a) the full Hamiltonian that functions during the
protective process depends on the state (Aharonov et al., 1993), which implies
that we must first know a before we can investigate it, and (b) that investigation
reveals results about time averages of functions of the wave function rather than
instantaneous values. So, in the general case the protective scheme provides a way
to confirm our time-averaged prior information empirically. Our application of the
protective technique below falls into this category; when the protective interaction
commences the wave function is the result of a known state preparation procedure
(a conventional measurement process). The aspect of the protective process that is
important here is that any finite portion of the wave function of interest (obtained
by varying its argument) has a discernible effect on a measuring device.

By extending the range of the label x the scheme may be generalized in a
straightforward way to provide a protective measurement of a many-particle sys-
tem, which again may be applied in principle to any wave function. The formula
(11.9) remains the same if a single-component observable B is measured. It has
been argued that this extension supports the attribution of ontological significance
to the wave function in configuration space (Anandan, 1993).

We propose to apply this method to the wave function (11.1) that results
from a typical conventional measurement in the case where it is assumed the
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collapse (11.2) does not occur, that is, when (11.1) comprises the set of empty
waves generated by the measurement interaction in addition to the one correspond-
ing to the actual outcome. The initial wave function is then the function (11.1);
this is the wave function to which the protective interaction is applied (so that we
replace x above by x and z). Let us suppose that the configuration point (x, z) of
the de Broglie—Bohm model lies in the ath summand of ¥(x,z,7) and that we
determine this fact, and hence the location of particle x, by registering z. Then
the other summands are finite but empty from the moment the summands separate
and remain so independently of the registration of x. Hence, we may attempt to
apply the technique of Aharonov er al. to measure functions of the finite, empty
components of the total wave function and so provide empirical support for their
reality. To this end, fix attention on the a’th component, ¢’ # a, choose a point
(x0,20) € Yo (x,)pa(z,1) # 0 (so that ¥y~ (x0, H)Pa (20, 1) = 0 for all a” # a’), and
let the operator pertaining to the object (here the first object plus first detector) be
B = |z0)|x0)x0l{z0|. Then, from (11.9) we obtain

\P(Xa)’,Z,f) =

D Cathalx, Dz, t)l B

a

t (11.10)
X exp [—(i/h)yfT 8 Wa (x0, D (20, DI dt|.

To test whether in the first (conventional) measurement the wave function has
really collapsed then requires observing the momentum of the detector y, which
in the ontological interpretation has shifted by an amount depending on the finite
amplitude of the empty wave v (x, 1)y (2, 1).

This technique provides an alternative to the first method of testing for empty
waves mentioned at the start of Section 11.4 in that it is not necessary to get an
empty wave to overlap with the packet containing the system point. It is also not
necessary to seek to observe the superposition of outgoing states since we need
only select one for attention. There are, however, formidable difficulties of imple-
mentation. Some of the practicalities of the protective scheme, such as contami-
nation by entanglement and the problem of measuring the variation in the meter’s
state, have been discussed in the above references, particularly by Dass and Qureshi
(1999). A significant issue for the above proposal is that, for the selected outgoing
configuration space packet, the protective scheme is being applied to a macroscopic
object (through the detector coordinate z and its coupling to further many-body
systems). A possible arena in which to apply the scheme is that of the cases stud-
ied in Section 11.4. During a protective measurement, the wave function (11.6)
evolves into

W (x,w,2) = @ (x,2) & (W) e™PP2M 4y (x) 9 (2) & (w) PV (11.11)
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rather than (11.7). The system point remains in the first summand in (11.11) and
the detector coordinate w acquires a momentum p depending on the empty wave
amplitude ¥, (x) ¢ (z) . A similar result is obtained with the wave function (11.8)

It should be pointed out that a less stringent interaction than that of the protective
scheme may suffice for the purpose of observing the effect of an empty wave. The
key attribute used here is the ability to probe the quantum state as an extended
object; it may be permissible to allow the probed state to be modified by some
“quasi”-protective interaction, for example.

11.6 Conclusion

We have considered an aspect of the problem of how evidence may be gained to
support the contention that a quantum system has a particle component. The empty
wave, a concomitant of the particle model, is a useful theoretical element but in
generic situations its influence can at best be inferred retrospectively. This is con-
sistent with the fact that empty waves do not generally disturb physical systems.
But there are exceptions and we have described how this issue could potentially
be brought into the experimental arena when the special conditions of the proce-
dure used in a protective measurement are satisfied. Distinguishing collapse from
non-collapse models is theoretically feasible but technically demanding and the
challenge is to find a practical implementation of the protective method.
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12

Implications of protective measurement on de
Broglie—-Bohm trajectories

AURELIEN DREZET

12.1 Motivation

Protective measurements, which were defined by Aharonov and Vaidman in 1993
[1], played an important role in the discussion about the interpretation of quantum
mechanics. In 1999, following an early work by Englert et al. [28], Aharonov et
al. [5] wrote an article in which they showed that protective measurements can be
used to demonstrate the “surrealism” of Bohmian mechanics. Bohmian mechan-
ics, also known as the pilot-wave interpretation, is certainly the best-known hid-
den variable interpretation of quantum mechanics. It played a fundamental role in
the discovery by Bell of his famous non-locality theorem. Therefore, any attacks
against pilot-wave interpretation are particularly interesting and instructive to teach
us something new about the mysterious quantum universe. It is the aim of this
chapter to review the debate surrounding protective measurement and pilot-wave
theory (see also [22] and [29]) and to see if it is possible to reconcile the different
interpretations of the results given in [5].

12.2 A historical review of the pilot-wave interpretation

We first remind the reader of some basics about the de Broglie-Bohm “pilot-
wave” ontology and in particular about its curious history. De Broglie proposed
his approach to quantum mechanics in the period 1925-1927, i.e., at the beginning
of modern quantum physics as we know it. De Broglie based his interpretation
mainly on relativistic considerations and discovered along this path what is nowa-
days known as the “Klein—Gordon” equation:

m2
O¥(x, 1) = —h—gl}'(x, ) (12.1)

What is, however, puzzling is that the first calculations he did on this subject
in 1925 [16] were realized before the discovery by Schrodinger of his famous
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equation. In some way, we can therefore say that it is quantum wave mechanics
which was a development of pilot-wave theory and not the opposite [7].

More precisely, the starting idea of de Broglie [17] was that each single quantum
object is actually some highly localized singularity of a specific wave field W(x, #)
which should ultimately be solution of a yet unknown non-linear wave equation.
Following Einstein, who had already proposed similar ideas in 1909 [24] for pho-
tons (the so-called “Nadelstrahlung” concept), de Broglie started a research pro-
gram called “double solution” [19] in which each quantum is some ‘“bunched”
oscillating region of the field propagating as a whole like a particle (i.e. in modern
words: a soliton) and inducing a much weaker wave field in its surroundings. This
weaker field was supposed to be in “harmony of phases” with the singular field so
that both were locked to each other. Following this program the weaker field should
obey, far away from the core, a linear equation, e.g., Eq. (12.1), and subsequently
should act as a guiding or pilot wave for the singular part, i.e., determining its com-
plete dynamics. This was of course a very ambitious project and not surprisingly
de Broglie never succeeded in completing his theory [20]. Still, during his early
quest in 1927 he found a “minimalist solution” which is the foundation of what
we call nowadays the de Broglie—-Bohm interpretation of quantum mechanics. The
theory was introduced at the end of a long article about his double solution pro-
gram [19] and was subsequently presented during the fifth Solvay congress which
took place in Brussels (see [42], pp. 105-132). In pilot-wave mechanics, the wave
is everywhere reduced to its linear contribution, e.g., a solution of the Schrédinger
equation in the non-relativistic regime. The particle behaves like a point-like object
whose motion is completely determined by the linear wave. De Broglie was able
to define the equation of motion of the moving point-like particles (for the single
and many electron cases) and showed how to solve the dynamic equation for some
specific problems.

Consider for example a single electron described by Schrodinger’s equation:

32
2w = - AWK + VX, 1), (12.2)
ot 2my

If we know a solution of this equation written in polar form as W(x,f) =
a(x, 1)e’S ®D/" we can define a density of probability p(x, 1) = Y(x,)¥(x, )", i.e.,
px, 1) = a(x, )%, and a probability current J(x, 7) such as

P(x,0)"'VY(x,1) - Y(x,)VY(x,1)"

VSt
Jx, 1) =h - a(x, z)zﬁ. (12.3)
21m0 my
Using these equations de Broglie defined the velocity of the particle as
d Jx, 1) VS 1)
1) =—x(1) = = , 12.4
V() = 2x(0) 1) o (12.4)
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showing that in analogy with classical dynamics S (x(¢), ) plays the role of an
action (see also Madelung [35]). This analogy is even enforced when we insert
aand S in Eq. (12.2) to obtain

(VS (x,1)) W Aa(x(), 1)
21’1’l0

2
VDD = S D

0
—5,Sx(0,1) = (12.5)

We recognize the well-known Hamilton—Jacobi equation which in classical dynam-
ics determines the motion of the particle in an external potential V. However, there
is here an additional term Q(x,t) = —h>Aa(x, 1)/(2moa(x, 1)) called the quantum
potential by de Broglie. This potential is determined by the wave amplitude in
agreement with the pilot-wave idea. Importantly, Q is unchanged if the wave func-
tion is multiplied by a constant so that actually it is the form of the wave more
than its amplitude which has significance in this theory. Also, for a many-body
system the potential Q(x1, x2, ..., xn, ) depends in general in a non-local way on
the N particle coordinates. This can lead to some specific features such as non-
local entanglement, discussed in the context of the EPR paradox [26] or the Bell
inequality [9]. In particular, the fact that pilot-wave theory agrees with Bell’s the-
orem implies some kind of mysterious action at a distance between the particles.
We point out that de Broglie, contrary to Bohm, was very reluctant to introduce
non-locality in his ontological theory and that he expected to remove this feature
with his double solution program.

Importantly, the Hamilton—Jacobi analogy suggests that pilot-wave theory can
equivalently be written in Newton’s form. The second law for de Broglie’s dynam-
ics is indeed easily written as mog—;x(t) = =V[V(x(1),t) + Q(x(¢), t)] in full anal-
ogy with classical dynamics for a point-like particle. However, while this dynam-
ical law contains a second-order time derivative it is important to observe that for
practical purposes if W(x, ¢) is known then the first-order Eq. (12.4) is sufficient to
completely describe the trajectories. This is indeed done through integration of the
flow equations:

dx d dz  dr

= Y —— (12.6)
(x,1) S (x,1) S (x,1) mo
Ox dy 0z

for a given initial condition x(#y)) = Xo. This point is important because John
Bell [9] used pilot-wave theory mainly through the definition given by Eq. (12.4)
while other authors like Bohm and Vigier [15] and Bohm [11] insisted on the need
to use the quantum potential for a complete physical description of the particle’s
motion. This seems to indicate that the theory lacks a univocal axiomatic for this
foundation.

At the Solvay conference W. Pauli was probably the most reactive concern-
ing criticisms, but even potential followers like Einstein or the more “classical”
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Lorentz were not showing a too strong enthusiasm for the de Broglie pilot-wave
approach. Remarkably, due to internal mathematical difficulties of his “double
solution” program de Broglie only presented his pilot-wave version in Brussels.
This was certainly an honest choice but physically far less profound and less
impressive for this demanding audience. In particular, one of Pauli’s objections
concerned the arbitrariness of the dynamics law obtained by de Broglie. Indeed,
Pauli observed (see [42], pp. 134—135) that the dynamics proposed by de Broglie
has no precise foundation since the conservation current is not univocal, i.e. one
can add a divergence-free vector to J without changing the conservation law, and
Schrodinger asked further why we should not use instead of Eq. (12.4) a different
definition (see [42], p. 135), e.g., the energy—momentum tensor 7#¥(x, f) in order
to define a trajectory. This was indeed proposed by de Broglie himself for pho-
tons [18] (see, however, [34] for a modern perspective concerning this problem
and the difficulties about a covariant generalization of pilot-wave theory).

We also mention related critical comments concerning this foundation made
in 1952 by Pauli [38] and in 1955 by Heisenberg [33]. Both physicists indeed
complained by observing that for de Broglie and Bohm the particle position
plays a fundamental role that breaks the accepted symmetry between position and
momentum (symmetry which is at the heart of quantum formalism). This was
unacceptable for Heisenberg and Pauli, for whom position ¢ and momentum p
should be introduced an equal footing.

Of course, all these observations by Pauli, Schrodinger and Heisenberg are
not decisive remarks against the pilot-wave interpretation since the plausibility
or implausibility of the dynamics doesn’t constitute by itself a proof or disproof
of the theory: only experiments should have the last word. Nevertheless, together
these problems gave a strong feeling of discomfort to the audience of the Solvay
conference and to the first generations of quantum theorists. This discomfort never
really disappeared until recently.

12.3 The measurement theory and the adiabatic theorem
12.3.1 Einstein’s reaction

Beyond these interesting problems about axiomatics and foundations the most
critical part of the theory concerns of course its agreement with experimental
facts and the realism of the predictions given by the pilot-wave approach. Indeed,
if Schrodinger’s equation completely determines the particle motion through
Eq. (12.4) then we expect that both the usual “Copenhagen” approach and the
one of de Broglie should be experimentally equivalent. This was indeed later con-
firmed after the more detailed studies of measurement processes by David Bohm
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in 1952 [12]. Still, in 1927 de Broglie [19] already showed that the four-vector
current J¥, which naturally arises from wave equation (12.1) and formally leads
to the conservation law d,J¢ = 0 through the Noether theorem, can be used
to justify the statistical interpretation of quantum mechanics, i.e., the so-called
“Born’s probability rule”. Indeed, if for simplicity we limit ourselves to the non-
relativistic regime, the evolution equation (12.4) and the current conservation rule
0,0 + V - J = 0 imply the following: if at a given time the probability distribution
of a particle in space is given by a? then this will also be true at any time. If we
write a2(x(to), to) for the density of probability at xg = x(#p) and time fy we can
obtain by direct integration the density of probability at time ¢ for the point x(¢)
located along the de Broglie trajectory (see Eqs. (12.4) and (12.6)). We get

y &' Sx)1")

az(x(t),t)=a2(x(to),t0)-e_f’(’) m (12.7)

where A’ = 07/0x(')*. This is the same reasoning which is used in classical sta-
tistical mechanics, e.g., Liouville and Gibbs, to justify probability laws. In par-
ticular, if at a given time the wave functions of particles can be approximated by
uncorrelated plane waves then an “a priori” symmetry implies the homogeneity
of the probability distribution in space (this can be seen as an initial chaotic con-
dition a la Boltzmann, i.e., a “Stosszahlansatz”). The subsequent interaction pro-
cesses between the different particles will certainly create correlations between
them but then the deterministic evolution (e.g., Eq. (12.4) and its generalization for
the many-body problem) will maintain the probability interpretation for any other
time ¢ as we already said. This idea was further developed by Bohm [13], Bohm
and Vigier [15] and Nelson [37] in the 1950-1960s and more recently by Valen-
tini [44, 45] and Diirr, Goldstein and Zanghi [23] with different strategies.

This is certainly impressive, or at least promising, but the theory possesses some
other “repellant” features which were studied in recent years and are the subject of
the present chapter. One of them (already mentioned by Ehrenfest in [42], p. 136)
concerns the fact that in the ground state of a hydrogen atom (i.e. an s state) the
wave function is (up to the e £/ contribution) real. It implies that v = VS /mg = 0
i.e, the fact that the electron is at rest in the s-atom. From the point of view of the
de Broglie theory there is nevertheless no contradiction since the constant energy
E is given by E = —0,5 = V(x) + Q(x) and the variation of Q with x exactly com-
pensates the variation of V. The force F = —V[V + Q] therefore vanishes and the
electron is not accelerated. Still, this feature looked not realistic and played again
against de Broglie. Not surprisingly, after this period 1927-1928 de Broglie aban-
doned his theory and went back to it only after 1952 and the rediscovery by Bohm
of pilot waves. We point out that the “v = V§/my = 0” objection played also
a role in the “cold” reception of this theory by Pauli [38] and Einstein even after
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1952 (see also Rosen [39] who re-discovered, after de Broglie but before Bohm, the
pilot-wave concept and repudiated it for the same reasons as Einstein). In a paper
written for Max Born’s retirement from the University of Edinburgh [25] Einstein
discussed the example of a particle in an infinite 1D potential well which admits
wave functions

2 .
Y(x,1) = \/; sin (nx/L)e B/t (12.8)

associated with the energy E, = (hnn/ L)?/(2mg) forn = 0, 1, 2, etc. Clearly, here
again the velocity of the particle cancels. For Einstein this seemed to contradict
the fact that for large n an ontological theory like pilot-wave should “intuitively”
recover classical mechanics. However, in classical mechanics we have Q = 0 and
E = p?/(2mg) with p = mgv. This apparently fits well with the Schrodinger equa-
tion if we write p = fint/ L. Unfortunately, the pilot-wave theory of de Broglie and
Bohm implies p = mov = VS = 0and Q = (finn/L)?/(2mg) = E. Most remarkably,
this occurs independently of how large the quantum number r is and is therefore
in complete contradiction with what we intuitively expect in the classical regime.
Commenting further on Bohm’s attempt to reintroduce pilot-wave theory Einstein
once wrote to Born: “That way seems too cheap to me”. Still, we point out that nei-
ther de Broglie nor Bohm agreed with Einstein’s conclusion. For example, in his
book written with B. Hiley [14] Bohm replied that, independently of the details of
pilot-wave theory, any model attempting to preserve the particle localization in the
infinite potential well would ultimately contradict classical physics. This should
be the case since at fixed energy there are necessarily some nodes where the wave
function cancels and are therefore prohibited in the particle localization, i.e., cor-
responding to regions where the probability is zero. In the 1D case the potential
well is thus obviously separated into small spatial cells of size 1/2 = L/n where
the particle is confined and cannot escape because it cannot cross or even reach
the nodes. Therefore, in this context the expectation of Einstein appears illusory.
Still, the example of Einstein or the one of the s-atom constitute perfect illustra-
tions of the “surrealistic nature of the de Broglie-Bohm trajectory”. This qualifier
was given by Englert et al. after a very detailed paper [28] which discussed the
pilot-wave interpretation in the context of measurement theory.

12.3.2 Von Neumann’s strong measurements

The most important contribution of David Bohm to pilot-wave theory concerns his
interpretation of quantum measurements. In 1952 in a series of two well-known
papers [11, 12], he discussed the canonical von Neumann projective measurements
in the context of pilot-wave theory. He showed that there is nothing contradictory
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or impossible in attributing at the same time a position and a momentum to a
particle as soon as we accept that the so-called momentum measured is not in
general its actual momentum. This should be already clear from the definition
p(t) = mov(t) = VS which holds at any location x visited by the particle. The
plane-wave eigenstates [p) of the operator p = —iiV are completely delocalized
and according to the Heisenberg principle this prohibits a clean localization of the
particle. The agreement between the definition of de Broglie-Bohm on the one side
and of Heisenberg on the other side is re-established if we realize that in order to
measure the momentum associated with the operator p one must disturb the initial
wave function and separate the different plane wave contributions.

Consider once again the example of the infinite potential well. Bohm observes
that the wave function given by Eq. (12.8) can be formally expanded into plane
waves and the Fourier amplitudes (p) correspond to two well-localized wave
packets peaked near the momentum values p = =+hAn/L (in the classical limit
n — +oo we have [(p)|*> = [6(p — fin/L) + 6(p + hin/L)]/2). Bohm then supposed
that the walls or the well confining the particle instantaneously disappear without
disturbing the wave function in any appreciable fashion. The two wave packets
subsequently propagate freely and ultimately separate from each other. This makes
the packets spatially distinguishable and allows for a measurement of the particle
momentum p =~ +hn/L.

This example is of course a “gedanken” experiment and subsequent studies
made by Bohm and followers focused on the procedure of entanglement between
a pointer or meter and the analyzed quantum system.

This was first done in the context of von Neumann measurement, whose method
was well discussed by Bohm himself in his “orthodox” 1951 text book, e.g., for the
Stern—Gerlach experiment analysis [10]. The main idea can be easily illustrated by
considering the total Hamiltonian

H(t) = Hs + Hy — hig(H)eAs X, (12.9)

describing the interaction between a system S and a meter M. The operator Ag
acts only on S and corresponds to the variable we wish to measure. Xy is the
operator describing the meter. It represents here its position (e.g. the atom cen-
ter of mass in the Stern—Gerlach experiment). The coupling is also characterized
by a constant € introduced for the sake of the equation’s homogeneity and a
time-dependent function g(¢) characterizing the fast evolution of the measurement
protocol. Here, we impose for simplicity g(¢#) = 4(¢), i.e., an instantaneous mea-
surement. Before the interaction occurs at ¢+ = 0 we start, i.e., for t < 0, with two
decoupled and unentangled subsystems S and M described by the quantum state
[Win()) = |S(¢)) ® |M(1)). After the interaction occurs, i.e. for ¢t > 0, we obtain
the final state [P(t)) = Us(t,t = 0)Unm(t,t = 0)[¥4(0)), where Us(z,¢ = 0) and
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Unm(z, t = 0) are the evolution operators of the freely moving subsystems S and M
acting on

[P(0)) = e'AsOMO) 5 0y @ |M(0))

=3 f dpS (@M(p)e“™|ay & |p) (12.10)
a
or equivalently on

) =Y, [ dps@mpiarslp + heay

:ZfdpS(a)M(p—hea)la)@lp}. (12.11)

Here we used the expansion of the initial wave packets in the vector basis |a)
and |p) respectively and applied well-known properties of the translation operators
T(ha) = ei€aXu I particular, if we take M(p) = e -Ar® e obtain after the mea-
surement a series of shifted Gaussians M’(p) = e 2P0’ entangled with each
state |a). If the shift of each Gaussian is larger than their typical width 6p = 1/(2A)
(and if we can neglect the free space spreading of the pointer wave packets) it
will be possible to correlate the distribution |S (a)* of S with the distribution of
Gaussian centers in the momentum space of M. This is the basis of the von Neu-
mann measurement protocol which was translated into the ontological language of
pilot-wave theory by Bohm in 1952. For Bohm indeed, the entanglement directly
affected the particle trajectories of the two subsystems S and M but if we observe
the meter at a location near p =~ Tea it does not, however imply that S is actu-
ally in the state a. This apparently paradoxical result comes from the fact that in
pilot-wave theory the position of particles plays a more fundamental role than in
the usual interpretation. Therefore, we should be authorized to speak about mea-
surement only if we can correlate the studied variables a with the actual position
of the system S. Interestingly, both interpretations by von Neumann and Bohm of
the previous protocol will, however, eventually agree if the different wave pack-
ets of the subsystem S: ¢,(xs) in the base a, are not spatially overlapping. In a
more general way, if the entanglement between the system S and meter M pro-
duces after the interaction a sum of entangled states ’; cj¥si(xs)di(xm), where the
different wave functions for both particles are non-overlapping, we will then unam-
biguously be able to correlate the positions of S and M with the states labeled by
i. For most experiments this is, however, not the case and the so-called quantum
measurement cannot be considered as such in the context of pilot-wave theory. It is
therefore amazing to observe that the famous dictum of Wheeler, “No elementary
phenomenon is a phenomenon until it is an observed phenomenon”, which was
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given in the context of Bohr’s interpretation, finds also its plain significance in the
interpretation of de Broglie and Bohm. Paraphrasing Wheeler, we could then state
that “No measurement is a measurement until it is a position measurement”. It is
also worth mentioning that in the same texts quoted previously, both Pauli [38]
and Heisenberg [33] criticized this strange feature of the pilot-wave approach.
Heisenberg, in particular, pertinently commented that in the deterministic approach
of Bohm momentum and position are in general hidden and correspond therefore
to metaphysical superstructures without any physical implication.

12.3.3 Protective measurements

The previous discussion done in the context of orthodox von Neumann strong
projective measurements was extended in 1999 to the so-called weak protective
measurement domain by Aharonov, Englert and Scully in a fascinating paper [5].
The authors showed that in the considered regime the interpretation by pilot-wave
theory of the results implied some even more drastic surrealism than in the strong
coupling regime. To understand their motivation it is important to go back once
again to the origin of pilot-wave mechanics and to observe that if the wave guides
the particle during its motion then in some situations empty waves without par-
ticles should exist. For example, in the double-slit experiment the particle travels
through one hole but something should go through the second hole in order to dis-
turb the motion on the other side and induce interference. Of course, one can always
involve the quantum potential as an explanation but then one should explain why
this potential exists and the problem is therefore not removed. Many authors think-
ing about this problem claimed that the guiding wave should carry some energy and
the particle should get less and less energy while crossing an interferometer with
more and more gates and doors [20]. But, obviously, this is not what is predicted,
neither by quantum mechanics nor pilot-wave theory. Another point was that if the
empty wave reacts on the particle during the double-slit interference experiment,
why should it not also act on some other systems [41]? Could we detect an empty
wave? While working on this problem it was realized by L. Hardy [30, 31, 32]
that empty waves can sometimes have a physical effect on a second entangled
(measuring) system (his idea was actually an adaptation of Elitzur and Vaidman’s
“interaction free-measurement” protocol [27]) and he found during his research
a very fascinating Bell’s theorem without inequality involving strange non-local
features and questioning the possibility of building up a Lorentz invariant hidden
variable model. The result of Hardy is intriguing and also disappointing since,
again, it is an indirect effect on hidden variables which is observed. The empty
wave affects the dynamics of the second system but one must watch correlations
between events to see it (otherwise one could send faster-than-light signals with this
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non-local protocol). For those already not convinced by the pilot-wave approach
this definitely could not help. In a different but related context J. Bell in 1980
[9, pp. 111-116] studied the exotic behavior of Bohmian particles diffracted by a
screen and interacting with a complex detecting “which-path” device. It was shown
that the path followed by the particle is sometimes completely surrealistic and can
even reach the wrong detector (this is connected to the fact that the Bohmian tra-
jectory cannot cross in the configuration space). However, this cannot affect the
interpretation since this is again hidden and impossible to test experimentally. In a
subsequent paper by Englert et al. [28], already mentioned ([21] and [36]), it was
shown that the problem is deeper than Bell thought at first, and that this surreal-
ism exists even with simple particles interacting with Stern—Gerlach devices [40].
Therefore, to quote the authors: “the reality attributed to Bohm trajectories is not
physical, it is metaphysical” [28]. Lev Vaidman [43] wrote a very pedagogical
paper provocatively titled: “The reality in Bohmian quantum mechanics or can you
kill with an empty wave bullet?” In his paper, Vaidman explained with very symp-
tomatic and illustrative examples (such as slow bubble traces developing after the
passage of the particle even when the particle is not here but elsewhere) that if one
is living in a pilot-wave world then entanglement with meters and environment will
break all your convictions about causality and localization (i.e. in agreement with
Hardy’s conclusions).

His paper reviewing the argument presented in [5] showed also that if the empty
waves are involved in all these processes then one can actually measure an empty
wave function without the particle being present. This relies on protective measure-
ments of position which allow a measure of the wave function density Izﬁ(x)l2 of the
particle at x even if the pilot-wave trajectory never crosses the interaction region
centered on x. The concept of protective measurement is a beautiful idea which
was introduced by Y. Aharonov and L. Vaidman [1, 4] (see also [2] and [43]). The
principle relies on the possibility of adiabatically coupling the measuring device
M with the subsystem S in such a way as to induce no significant change in the
IS (0)) initial state while disturbing the meter state |M(0)) in an observable fashion.
In such an approach, the system S is therefore protected and it is easily shown that
one can use this kind of protocol to record information on some local observable
such as |¢(x)|2 or J(x). The specific example considered in [5] is based, once more,
on the infinite potential well but now with a very local interaction with a meter at
one point (i.e. 0 < x = xg < L) of the cavity. The total Hamiltonian is
-n* 9> W 0?

+ — — —heg(H)o(x — xp)X, (12.12)

A=
=52 maxe

where x is the coordinate of the particle of mass m in the box while X is the
coordinate of the meter with mass M > m. The coupling is monitored by the
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external parameter g(¢) such that f_ J;:o drg(t) = 1. If g(r) changes very fast one
goes back to the von Neumann regime but here g(#) changes very slowly, i.e.,
adiabatically, and it vanishes outside the interval [-7/2,+7 /2] where it has the
typical value g(f) = 1/T. The most characteristic feature of this interaction is of
course the presence of the Dirac function which implies a short-range coupling
existing only in the vicinity of x = xg. In order to solve the dynamical equation
we apply here the adiabatic approximation method [10] and we first search for
eigenstates of the equation HANOY(x, X, 1) = EQOY¥(x, X, 7). Inserting the “ansatz”
¥(x, X, 1) = ¢s(x, X, 1)elPX/" | \J(27h) we get the new equation:

2

P
|:E(t) - TW] ¢S(~xa X, t) =

2 92

%@gbs(x, X, 1) — heg(1)o(x — x0)X¢s(x, X, 1).

(12.13)

This is actually a 1D Green function problem with ¢ and X as parameters, and
Aharonov et al. solved it analytically [5]. Still, since we suppose the coupling to
be weak we can alternatively use (as they did as well) the first-order perturbation

approximation which leads to ¢(x, X, 1) ~ ¢,(x) = \/% sin (nx/L) and E,, p(X, t)—
P?/2M = (hnn/L)?/(2m) + 6E with

OF = —heg(t)X(n|6(% — xo)|n) = —heg(t)X|pn(x0). (12.14)

We point out that there is actually a small slope discontinuity at xq since for the 1D
Green function we must have

d¢S(~x’ X’ t)/dx|x0+(5 - d¢S(~x9 X! t)/dxlxo—5
= _2meg()Xdy(x0, X, 1)/ (12.15)

with 6 — 0. In the weak coupling regime we can neglect this effect and therefore
the cavity mode can fairly be considered as “protected”. The next step is to expand
the full system wave function by solving the Schrédinger equation iAd¥Y(¢)/dt =
H(#)¥(r) and using these eigenmodes labeled by the index n of the cavity mode
(here we will limit our analysis to n = 1) and P the “orthodox” momentum of the
pointer. We have

W(x, X, 1) = 2y pbp,p(1, X)W p(x, X, 1). (12.16)
In the adiabatic approximation we write the amplitude coefficients as

bup(t, X) = cpp(t, X)e~ Lo &7 Enp X/ (12.17)
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and we get here:

dpP ‘ P2
PO X, 1) = ¢s(x, X, 1) f ——— M(P)ePX e !
. N
el [, a7 [eg()XIpu(x0)P~Bu(?)] e iEnt/h (12.18)

with i8,(7) = (nl%ln) ~ (. In doing this calculation we supposed that the initial
state begins unentangled, i.e., as for the von Neumann procedure. This initial state
corresponds to the product of an undisturbed cavity mode n = 1 (i.e. ¢5(x, X, 1) ~

\/% sin(zx/L)) by a localized wave packet with Gaussian Fourier coefficient

M(P) « e’ The coupling is supposed to be slow and weak so that the energy
given by the interaction is not large enough to induce transition between different
eigenmodes. For t — +oo we thus get

W(x, X, 1) = ¢y(x, X, e Ertlh Py (X, 1) - elXInCol (12.19)

which shows that the main result of the interaction is to induce a phase kick to
the pointer wave packet Wm(X, 7). If we neglect the free space spreading of the
pointer wave packet this phase shift will impose a translation AP ~ +7ie|¢,(x)[* in
the Fourier space such as M’(P) = M(P — AP). This results in a protective mea-
surement where the local adiabatic coupling keeps the confined mode ¢,(x, X, #)
undisturbed.

Now comes the paradox: since the cavity mode is protected and since it cor-
responds to a de Broglie vanishing velocity of the particle S (i.e., dx(¢)/dt =
0,S(x,1)/m = 0) we deduce that the pointer M is disturbed by the local inter-
action centered at x = xg even though S never approaches this position. How could
that be? For Aharonov et al. one can hardly avoid the conclusion that Bohmian
trajectories are just a mathematical construct. The same conclusion was actually
given (although in a less technical way) in a previous paper [3] where the authors
concluded that the Bohmian trajectory contradicts the natural statement: “an empty
wave should not yield observable effects on other particles”. Indeed, the measuring
device recording |i/,(xo)|> in the “empty” region surrounding x, yields non-null
outcomes (identical conclusions were discussed in [6]). In his review paper [43],
Vaidman, however, considered the problem from a wider perspective and com-
mented that for him in the framework of Bohmian mechanics there is no funda-
mental problem since “these experiments are not good verification measurements”
so that Bohmian proponents have “a good defense”. Nevertheless, this looks mys-
terious or magical since one would like to find where the force acting on the pointer
comes from. Furthermore, even if one is not accepting the ontology proposed by de
Broglie’s pilot wave it was at least possible until now to accept its self-consistency.
Does protective measurement change the rules? Indeed, magical forces have no
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place in physics. In order to remove some of these ambiguities and magical fea-
tures I developed in a paper published in 2005 [22] a dynamical analysis of the
protective measurement discussed in [5] seen from the point of view of pilot-wave
theory. I will now summarize my reasoning using the calculations given before.
First, we observe that the quantum potential for the system given by Eq. (12.19) is:

2 SO XD 2 P X, D)
e — + e —
2m [W(x, X, 1)| 2M  |Y(x, X, 1)
—h2 2|¢x(x X, t)l L —hz axZ'lPM(Xa t)l
2m g, X, 0l 2M  [Pm(X, )|

Here, we fairly neglected the small contributions of terms containing the X deriva-
tives of |¢,(x, X, 1)|. Now, using Eqs. (12.13), (12.14) and the fact that ¢(x, X, 1) ~
¢1(x) is real we immediately get

O, X, 1) =

IZ

(12.20)

O, X, 1) =

(hn/L)*
5 = heg(OX|g1 (xo)’
m
12 (X, 1)
M YmX 1)
Now, the potential acting in the Hamilton—Jacobi equation is U = V + Q, where
V = —heg(t)o(x — x0)X is the “classical” local interaction potential associated with
the protective measurement protocol. Here, this leads therefore to

+ heg(H3(x — x0)X + —— (12.21)

Ux, X, 1) ~ — heg(t) X1 (x0)|* +

2M ¥mX, 1)

Remarkably, the local potential has been removed from the total Hamiltonian
because the singular term in V exactly compensates the one in Q. This implies that
from the framework of pilot-wave theory the interaction is highly quantum-like,
i.e., it has no classical analogue. This is even more clear in the Newton picture.
Newton’s law reads indeed md?x(r)/df? = F, and md*X(7)/d* = Fx and with the
definition for U this implies for the evolution of §

2 12 WX 1)
(hZ/L) —I” ax2ltm (12.22)

F,= —EU(x,X, 1 =0, (12.23)
Ox

i.e. the force applied on the Bohmian particle vanishes. This situation is exactly
similar to the one obtained in the Einstein example or in the s-state atom dis-
cussed by de Broglie, Pauli and Einstein. In each case the quantum potential
is constant over the region of interest so that the particle can indeed stay in
static equilibrium in full agreement with the de Broglie guidance condition
mdx(t)/dt = 0,S (x, X,t) = 0. The big difference is that in the protective mea-
surement there is actually a local force —%V but its effect is compensated by
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an additional quantum term in —%Q. Remarkably, the situation is completely
different for the meter M since we get

0
Fx = =22 U X,0) = +heg®)l¢1 (o), (12.24)

in agreement with the momentum kick AP = f dr' Fx(t') = +held; (x)|* introduced
previously. Therefore, the pointer deviation is completely justified from the point
of view of the de Broglie and Bohm approach. However, here the force applied on
M is of quantum origin and not the local and classical term —;—xV.

12.4 Conclusion

Finally, what can we deduce from this story? We reviewed pilot-wave theory and
showed that the surrealism objection is very old and goes back to the origin of the
theory. Einstein did not like this theory in part because the trajectories predicted in
general don’t follow our classical intuitions about dynamics. Later, this surrealism
was criticized because very often even causality is affected by pilot-wave theory.
This of course included non-locality as studied by Bell but also modifications of
our intuitions about what a trajectory in an interferometer should be. The work by
Aharonov et al. on protective measurements follows this strategy, and indeed, it
confirms that pilot-wave theory is not classical. Still, this theory is the only known
quantum ontology (Lev Vaidman will certainly not agree here) which is completely
self-consistent at the mathematical level and at the same time explains every exper-
imental fact (too many words could be said here about Everett’s interpretation [8]
and its problems associated with probabilities and this will be therefore omitted).
Of course, it is probably only a temporary expedient and pilot-wave theory has
no convincing or univocal relativistic generalization, but to quote Bell: “Should
it not be taught, not as the only way, but as an antidote to the prevailing compla-
cency?” [see 9, p. 160].

The author thanks Serge Huant for helpful suggestions during the preparation of
the manuscript of this chapter.
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Entanglement, scaling, and the meaning of the wave
function in protective measurement

MAXIMILIAN SCHLOSSHAUER AND TANGEREEN V. B. CLARINGBOLD

We examine the entanglement and state disturbance arising in a protective
measurement and argue that these inescapable effects doom the claim that pro-
tective measurement establishes the reality of the wave function. An additional
challenge to this claim results from the exponential number of protective mea-
surements required to reconstruct multi-qubit states. We suggest that the failure of
protective measurement to settle the question of the meaning of the wave function
is entirely expected, for protective measurement is but an application of the stan-
dard quantum formalism, and none of the hard foundational questions can ever be
settled in this way.

13.1 Introduction

From the start, the technical result of protective measurement has been suggested
to have implications for the interpretation of quantum mechanics. Consider how
Aharonov and Vaidman [2] chose to begin their original paper introducing the idea
of protective measurement:

We show that it is possible to measure the Schrodinger wave of a single quantum system.
This provides a strong argument for associating physical reality with the quantum state of
a single system ... .

Since then, the pioneers of protective measurement seem to have taken a more
moderate stance. Vaidman [42], in a recent synopsis of protective measurement,
concedes that

the protective measurement procedure is not a proof that we should adopt one interpretation

instead of the other, but it is a good testbed which shows advantages and disadvantages of
various interpretations.
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Notwithstanding this more subtle perspective and a number of critical studies of the
technical and foundational aspects of protective measurement,' Gao [21] has main-
tained, if not amplified, the force of Aharonov and Vaidman’s original argument:

An immediate implication is that the result of a protective measurement, namely the expec-
tation value of the measured observable in the measured state, reflects the actual physical
property of the measured system, as the system is not disturbed after this result has been
obtained. ... Moreover, since the wave function can be reconstructed from the expectation
values of a sufficient number of observables, the wave function of a quantum system is a
representation of the physical state (or ontic state) of the system.

Clearly, if we could reliably measure the unknown quantum state of a single quan-
tum system without changing that state, it would be entirely sensible — and per-
haps even inevitable — to admit the objective, physical reality of this state. Such
a measurement, however, is impossible, and no measurement scheme based on an
application of the standard quantum formalism, protective measurement included,
can rise above this intrinsic limitation [12].

It follows that whatever form the “measurement of the wave function™ takes
in protective measurement, it must be weaker than the condition we stated in the
previous paragraph: “If we could reliably measure the unknown quantum state of
a single quantum system without changing that state ... .” The italicized words
indicate possibilities for relaxing this condition. We might be content with mea-
surements that are not 100% reliable and may change the state, as long as the
disturbance can be made arbitrarily small (or unlikely). Or we might be able to
show that the measurement is possible only for certain quantum states, or under
certain conditions, or both.

Indeed, all of these concessions must be made in the case of protective mea-
surement [3, 13; see also 38, 40]. Of these, the fact that protective measurement
only works under carefully designed conditions and for special quantum states —
specifically, the system must be in a non-degenerate eigenstate of its Hamiltonian —
may well be of least concern. After all, if protective measurement allowed us to
operationally establish the reality of an unknown quantum state in certain situa-
tions, perhaps it would not be so far-fetched to extend this interpretation to the rest
of the states. The more serious issue, however, arises from the inevitable system—
apparatus entanglement in protective measurement. This entanglement introduces
an irreducible randomness into the readout; there is a non-zero probability for the
system to end up in a state different from the initial state. While this issue has been
pointed out before [6, 13], here we will take it up in more detail, by describing the
creation of entanglement in protective measurement (Section 13.2) and discussing

' See, for example, Schwinger [35], Rovelli [28], Samuel and Nityananda [29], Unruh [41], Dass and Qureshi
[13], Alter and Yamamoto [6], Uffink [38, 40].
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the implications for the claim that protective measurement suggests the reality of
the wave function (Section 13.3). In Section 13.4, we identify another, more subtle
challenge to this claim, namely, the exponential scaling of the number of protective
measurements required to reconstruct multi-qubit states. We end on a broader note
(Section 13.5), arguing that since protective measurement is an application of the
quantum formalism, it cannot settle significant foundational questions.

13.2 Theory of entanglement in protective measurement

Here we will go beyond the zeroth-order limit 7 — oo usually considered in protec-
tive measurement [2, 3, 13] and derive an expression for the final system—apparatus
state to first order in 1/T.

Consider two systems S and A described by self-Hamiltonians Hg and Hy,
respectively. System A plays the role of a measuring apparatus for S, in the sense
that we let S and A interact such that information about S can be transferred to A.
The interaction is generated by the interaction Hamiltonian

Hi(1) = g(DP® O, (13.1)

where P is the momentum operator of A (the canonical conjugate to the position
operator X), and O is an arbitrary observable of the system S. The function g(1),
with fOT g(®)dt = 1, describes the time-dependent strength of the interaction, with
g(t) =0fort < 0andt > T. Thus, T describes the duration of the measurement
interaction. In contrast with a standard impulsive (strong, von Neumann) measure-
ment, here T is taken to be very large. The normalization condition j(;T gndr =1
then implies that the magnitude of g(¢) will be small. This results in a weak adia-
batic coupling between the system and the apparatus. Neglecting the switching-on
and switching-off periods around # = 0 and ¢+ = 7 and assuming g(¢) remains
approximately constant for ¢ € [0, T], we can write g(t) = 1/T. Thus, the total
Hamiltonian can be treated as time-independent for the duration of the measure-
ment interaction,

A= A5+, + 1 (Pe0). (13.2)

To simplify the formal treatment from here on, let us assume that 4, commutes
with 2.2 Then we can find a set of simultaneous eigenstates {|A;)} of A, and P
such that

HplA)y = EMAY,  PIA) = ai|A)). (13.3)

2 This assumption is not necessary for a protective measurement to obtain [13].
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Therefore, the exact eigenstates of the full Hamiltonian A can be written in
product form as |E,§,(a,-)> |A;>, where the |E;f1(al~)> are the eigenstates of the system

part of A, which is given by
N N | N
Hé (ai) = Hg + TaiO. (134)

Note that ﬂg (a;), and thus also its eigenstates |E,§1(a,~)>, explicitly depend on the

eigenvalue a; of P.

Suppose now that S is initially in a non-degenerate eigenstate |n) of Hg (but not
necessarily of 0)® with eigenvalue E,, and let the pointer of A be described by
a Gaussian wave packet |¢(xp)) of eigenstates of X centered around xo. Thus, the
initial composite state of system and apparatus is

¥ =0)) = In) l¢(x0)) . (13.5)
Since H is time-independent, at r = T this state has evolved into (taking /2 = 1)
¥ =T)) =" |n)¢(x0)). (13.6)

Inserting a complete set of eigenstates |E;§l(al~)> |A;) of H, we obtain

WG =T)) = e 7| 37 |ES () 14 CAKES @il | In) 16(x0))

= e ((ES(anlnXAide(xo))) |ES @) 147

m,i

= > e Emal (CES (aplny(Adg(xo))) [E (@) 1Ay, (13.7)

where
E(m,a)) = E' + %afon(amO |Ep (@) + (En(ai)lHs |Es(ai)) (13.8)

are the eigenvalues of A corresponding to the states 'E;El(ai)> |A;).
By regarding Hj as a perturbation to Hs +H 4, we can write down the perturbative
expansion of the exact eigenstates |E;§1(ai)> |A;) of A,

(m'|0|m)

Em - Em'

1
[En (@) 1A:) = Im) 1A + L;m

|m’>]a,-|A,-)+O(1/T2). (13.9)

In the limit 7 — oo usually considered in the treatment of protective measure-
ment, we can therefore replace all states |E,Sn(a,-)> in Eq. (13.7) by the unperturbed

3 See the discussion by Uffink [38, 40] and Gao [20].
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eigenstates |m) of Hs. Reintroducing the operators H4 and P in the exponent of the
time-evolution operator, this results in the non-entangled final state

(B( = 1)) = ) e THETPOON (44 x)) In) 47

— e—iEnT |n> e—lﬂATe—1p<n|éln> Z<A1|¢(XO)> |l’l> |Al>
— oiEaT In) e—iI:IATe—iﬁ(nlélm l6(x0)) . (13.10)

Since e 1PA* s the translation operator, the term e=iP(nlOm) applied to the initial
wave packet |¢(xg)) will shift the center of the wave packet by an amount equal to
(|0 ny = (O),, which is the expectation value of O in the initial state |n) of the

system. Thus, to zeroth order, the final system—apparatus state is
W(r = T)) = e BT |ny e AT (g + (Oh)). (13.11)

This establishes the familiar main result of protective measurement: information
about the expectation value of O in state |1) has been transferred to the apparatus
(2,3, 13].

The crucial point, however, for our subsequent discussion is the observation that
for any finite value of 7', the system—apparatus state (13.7) is entangled, and there-
fore the initial state of the system, |n), has been changed. To explicitly see this,
we insert expansion (13.9) into Eq. (13.7). Keeping only terms up to O(1/T) and
using the first-order perturbative approximation to the energy eigenvalues E(m, a;),
E(m,a;) ~ E;“ + %a,-((j)m + E,,, we find (again reintroducing the operators Hy
and P)

1

(1t = T)) = BT ny e T |p(xg + (O)) + %e_iﬁAT > T

m#n

x [0 1n) BT T POn — (n] O ) e7EnT PO |y [B(x0)) . (13.12)

where |5(x0)> = Y, ailA;) (Ailg(xp)) is a distorted version of the initial pointer
wave packet [p(xp)) = X 14;) (Ailp(x0)). (One may also include the second-order
perturbative correction to the energy eigenvalues such that the argument of the
time-evolution operator is to first order in 1/7'; this correction, however, is im;le—
vant to the argument below and will therefore be neglected.) The operator e (@)
then shifts |$(xo)> by an amount (O), leading to the final state
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(= 1) = 57 Iy T [+ (03) + e TS E - "

m#n

x [(mlO Iny BT [3(x + (O))) = (IO Imy e [(xo + (Oym))| . (13.13)

The first term on the right-hand side is the familiar zeroth-order term of Eq. (13.11).
The second term represents quantum correlations between all other eigenstates
lmy # |n) of Hs and wave packets representing shifted apparatus pointers. Thus,
Eq. (13.13) describes an entangled superposition involving all possible energy
eigenstates {|m)} of the system correlated with pointer states. In particular, we see
that a readout of the apparatus pointer will indicate, with probability proportional
to 1/T2, the expectation value of O in a state |m) orthogonal to the initial state
|n) of the system, with the system then left in this orthogonal state |m) and not in
the initial state |n). We also see that, again with probability proportional to 1/772,
the apparatus pointer may indicate the expectation value of O in the initial state
|n) while the system has been projected onto the orthogonal subspace spanned by

13.3 Implications of entanglement in protective measurement

The finite system—apparatus entanglement arising in a protective measurement
entails that protective measurements can never transcend the irreducibly proba-
bilistic element inherent in any measurement of a (fully or partially) unknown
quantum state. The problem is not only that the quantum state reconstructed from
protective measurements may well be (unpredictably) different from the initial
state of the system we had set out to measure. The problem is also that even on
those occasions when the protective measurement succeeds — i.e., when the col-
lapsed state of the apparatus pointer indicates the expectation value corresponding
to the initial state of the system — we cannot infer from the readout of the pointer
that we have indeed obtained information about the initial state of the system,
rather than about any other state. This is so because there is no possibility of know-
ing whether we have succeeded: while the final pointer measurement may project
the system back onto its initial state, the readout itself cannot tell us whether this
has actually happened.

Gao [21] misses this important point when he suggests that “when the measure-
ment obtains the expectation value of the measured observable, the state of the
measured system is not disturbed.” But there is a crucial difference between a situ-
ation in which the system remains in the initial state throughout, and a situation in
which the system becomes entangled with the apparatus and, through a secondary
measurement and with probability less than one, is subsequently projected back
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onto the initial state. Only the former situation would permit conclusions about
having measured the initial state of the system, while it is the latter situation that
applies to protective measurements. Thus, pace Gao, the state of the measured sys-
tem is always disturbed in a protective measurement.

This undermines the claim that the reconstructed quantum state must be a real,
objective property, in the sense that it must have already existed prior to the mea-
surement [for a similar conclusion, see 5, 6, 13]. Indeed, any measurement worth
its name — any measurement that allows us to obtain new information about the
system — will entangle the system and the apparatus, thus introducing an element
of randomness and, in this sense, disturbing the initial state of the system; this is
as true for a protective measurement as it is for any other kind of quantum mea-
surement. Whether the measurement is strong, weak, protective, or “reversible”
[37, 25]; whether we perform a sequence of measurements on a single system or
just one measurement: the maximum possible information gain will always be the
same [12].*

Elaborating on his claim that protective measurement shows that “the wave func-
tion of a quantum system is a representation of the physical state of the system”,
Gao [21] dismisses concerns about state disturbance by arguing that the probability
for collapsing the system’s state to an orthogonal outcome “can be made arbitrarily
small in principle when T approaches infinity.” But, from the foundational point of
view relevant here, any non-zero value of this probability, no matter how small it
may be made, will spoil the claim that protective measurement permits us to learn
the initial state of the system and that it thus demonstrates the reality of the wave
function. The limit 7 — oo required for a reliable protective measurement can
never be attained — and if it could, we would only have time, so to speak, to pro-
tectively measure one observable, thus precluding the possibility of reconstructing
the wave function. It is impossible in principle to reliably determine the expecta-
tion values required to reconstruct the wave function; it is not just impossible in
practice. (We agree with Englert [15] that to call something “possible in princi-
ple” is simply meaningless. Either, whatever action is contemplated is possible in
practice, or it is impossible in principle.)

The issue at stake here bears some similarity to the situation in quantum tomog-
raphy, where a quantum state is reconstructed from projective measurements on an
ensemble of identically prepared systems. Of course, in the hypothetical case of
infinitely many measurements on an infinitely large ensemble, the state determina-
tion would be exact. But it is impossible in principle to generate such an ensemble,

4 Alter and Yamamoto [5] have constructed a scheme for measuring a single squeezed harmonic-oscillator
state in such a way that the final system—apparatus state is deterministically returned to a disentangled state.
But as the authors themselves point out, implementation of this scheme requires full a priori knowledge of
the state of the system, which means that no information is gained in such a “measurement” [see also 4, 6].
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or to carry out infinitely many measurements. Consider one more related, and this
time purely classical, example. It is well known that the concept of probability can-
not be derived from relative frequencies, simply because we cannot have an infinite
number of trials. For any finite number of trials, all we can say is that it is unlikely
that the measured relative frequency will deviate much from the probability we
have inferred from that frequency. “Unlikely”, however, already presumes a notion
of probability, making the derivation circular. To reply to this conclusion by saying
that one may consider infinitely many trials or infinitely large ensembles “in prin-
ciple” is to miss the point: we are, after all, aiming at a fundamental definition that
connects an abstract concept (probability) with what can be measured (relative fre-
quencies). Infinitely large ensembles simply do not exist, and no matter how large
we may make the ensemble, at the end we must make a quantitative, probabilistic
judgment about the correspondence between the theoretical probability value and
the relative frequency value.

The case of protective measurement highlights how vigilant one needs to be
when using results obtained from mathematical idealizations to justify conclusions
pertaining to fundamental questions of nature and interpretation. Just as in quantum
tomography, lack of accuracy may not matter as far as practical implementation is
concerned: a method that gives us an approximate picture is often all we need.
But in-principle lack of accuracy may become decisive when the very procedure is
claimed to have implications for our conceptual understanding of the theory itself.
It certainly is decisive in the case of protective measurement, refuting the claim
that protective measurement has demonstrated the ontological status of the wave
function. It follows that secondary claims based on this claim must fail, too; an
example is Gao’s [19] suggestion that protective measurement effortlessly estab-
lishes a result equivalent to the theorem derived by Pusey et al. [27] — namely, that
the wave function must be “uniquely determined by the underlying physical state.”

13.4 The scaling problem

We now turn our attention to the question of the number of protective measurements
of expectation values required to (approximately) reconstruct a wave function; in
particular, we will analyze how this number scales with the size of the system.
This, at first glance, may appear to be a question of purely practical concern.
However, as we will indicate below, it may have foundational implications as well.

5 1t should be mentioned that such a result does not conclusively follow from the theorem of Pusey et al. [27]
either; for critical discussions, see Colbeck and Renner [11], Hardy [23], Schlosshauer and Fine
[33, 34], Wallden [43].
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Consider a qubit described by an arbitrary density matrix p. In the Bloch repre-
sentation, this density matrix can be written as

1
;3:5(1[+n-6'). (13.14)

Here, I denotes the identity operator. The components of the operator & are given
by the Pauli operators &, &y, and &, and the real-valued components of the vector
n are given by the expectation values of &, &, and -, in the state p, i.e.,

ni=Te[dp) = 60y, i= Xz (13.15)

It follows that the density matrix of a qubit is uniquely determined by the three
expectation values (G )y, (G)p, and (&Z)ﬁ. We are free, of course, to choose other
triples of observables, as long as these observables form an informationally com-
plete set (i.e., as long as their expectation values uniquely determine the qubit
state). But we always need to measure the expectation values of three such observ-
ables to reconstruct an arbitary state p; no pair of observables will do.

In the general case of a d-dimensional Hilbert space, the measurement of the
expectation values of a minimum of n(d) = d?* — 1 observables will be required
to determine an arbitrary state p. Therefore, determining an arbitrary N-qubit state
requires at least

nN)y=d>-1=02N?-1=4" -1 (13.16)

expectation values to be measured, which means that the required number of mea-
surements grows exponentially with N. The number of observables can be reduced,
however, if prior information about the state p is available. For example, if p is
known to be pure, then the number of observables required to uniquely determine
the state only scales linearly with d [24, 10]. Protective measurement may avail
itself to such a reduction in the number of required measurements, since the system
has to be in a pure eigenstate of the self-Hamiltonian of the system. Even so, since
d = 2" for an N-qubit state, this still results in an exponential scaling behavior.

Since no concrete experimental realizations of protective measurement are
presently available, it is difficult to provide a good estimate of the time that
would be required to reconstruct the wave function of a multi-qubit system with a
degree of accuracy comparable to that typically achieved in quantum tomography.
Dickson [14] points out that the interaction time 7 may only need to be large on
an atomic scale; without giving further details, he provides an estimate of 107
seconds. But this value seems unduly low in light of the fact that even the impul-
sive measurements used in quantum tomography often take longer. For example,
Hiffner et al. [22] have carried out quantum tomography on an eight-qubit state
of trapped “°Ca™ ions, requiring 656,100 measurements and a total measurement
time of 10 hours, or about 0.05 seconds per measurement.
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Whatever estimates for the measurement duration 77 might be reasonable in
potential practical implementations of protective measurement, it is clear that
because of the exponential scaling, reconstructions of quantum states of large
systems (say, hundreds of qubits) would require astronomically long total mea-
surement times. Of course, this is no different from standard quantum tomography.
But contrary to protective measurement, quantum tomography has not been associ-
ated with the claim that it demonstrates the reality of the quantum state (the reason
being as we would expect the proponent of protective measurement to argue, that
quantum tomography works with ensembles, not single systems). Thus, there is a
much greater burden on protective measurement to show that its method for state
reconstruction has the suggested physical meaning and foundational implications.

To reconstruct a 100-qubit pure state would require the measurement of about
2190 ~ 10% expectation values, and even if we accept Dickson’s optimistic estimate
of T ~ 107 s for a single protective measurement, the time needed to measure such
a state would exceed the present age of the Universe by many orders of magnitude.
Is this merely a practical problem? We are not sure it is. Clearly, in contrast with the
discussion in the preceding section, the issue is no longer about the tension between
a strict mathematical limit and the inevitably finite version attainable in practice.
Yet, even if we assume that the Universe will continue to exist for a sufficiently long

2

time for such a large number of measurements to be carried out, there is certainly
no sense in which this experiment could ever be realized. As Englert [15] put it,

Statements like “In principle, I could solve the Schrodinger equation to predict the next
solar eclipse” are empty unless you can do it in practice.

By the same token, statements like “In principle, I could carry out a protective mea-
surement of a 100-qubit state to establish its reality” must be considered empty.
But if there is no possibility for this state to be measured, protectively or other-
wise, what can such a state possibly mean?® We must leave this question open; our
aim here has been to point out that even ostensibly mundane practical constraints
may have fundamental implications for the question of how and whether protective
measurement could decide the question of the ontological meaning of the wave
function.

13.5 Protective measurement and the quantum formalism

Protective measurement does not demonstrate the physical reality of the wave func-
tion. Should this result be surprising? Did we, and other authors [35, 28, 29, 41, 13,
6, 38, 40], really need to invoke various, ostensibly technical arguments to come to
this conclusion?

6 Aaronson [1] has posed a similar question in the context of quantum tomography.
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Quantum mechanics provides a formalism for relating and transforming prob-
ability assignments concerning outcomes of future measurements. The notion of
measurement and the existence of outcomes are all taken to be primitives of the
theory. (To repeat a popular analogy, this is just as in classical probability theory,
which neither explains the existence of dice and nor why throwing them results in
particular results.) To want to say more is to tack onto the quantum formalism a
story: of metaphysics, say, or of causation. But as the wealth of competing inter-
pretations of quantum mechanics shows, the choice of any such particular story is
hopelessly underdetermined by the quantum formalism itself. The formalism does
not mandate any particular ontological commitment toward the interpretation of its
elements, quantum states and their corresponding probabilities included.” When
we calculate probabilities from quantum states, we start from some initial quantum-
state assignment. But the question of what this assignment physically means or rep-
resents is of no relevance, because any probabilistic predictions derived from the
quantum formalism, using the initial state assignment, are insensitive to how we
choose to answer the question. We get the quantum formalism cranking to obtain
a new quantum state, and there is no reason to apply to this state an interpretation
different from the interpretation we chose to give our original state assignment.

The point here is that no application of the quantum formalism, and no observa-
tional data that is in agreement with the predictions of this formalism, can provide
definite answers to questions about the interpretation of the quantum state. Protec-
tive measurement is just such an application. Therefore, it is not equipped to settle
the significant foundational and interpretive questions, no matter how wishful the
thinking. (By “significant” we mean the hard questions — the question of the mean-
ing of the wave function, for example — rather than the “softer” questions about the
explanatory power or the reasonableness of individual interpretations of quantum
mechanics.)

Of course this is not to say that by milking the quantum formalism we cannot
produce something fresh. Quantum information theory and decoherence theory are
good examples, but they, just like protective measurement, have not answered the
hard interpretive questions; and they, too, could not be expected to do so. Quantum
information theory may have motivated new information-based interpretations of
quantum mechanics, but there are quantum information theorists who are Bohmi-
ans and others who are Everettians. Decoherence, it is to be remembered, is an
essentially technical result about the dynamics and measurement statistics of open
quantum systems. In particular, its predictively relevant part relies on reduced den-
sity matrices, whose formalism and interpretation presume the collapse postulate
and Born’s rule. Thus if we understand the quantum measurement problem as the

7 Indeed, one can construct a picture of quantum mechanics in which quantum states are nothing but a repre-
sentation of our personal beliefs about our future experiences when we interact with a quantum system [16].
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question of how to reconcile the linear, deterministic evolution described by the
Schrodinger equation with the occurrence of random, definite measurement out-
comes, then decoherence has certainly not solved this problem, as is now widely
recognized [30, 31]. What decoherence rather solves is a consistency problem: the
problem of explaining why and when quantum probability distributions approach
the classically expected distributions. But this is a purely practical problem, not
a game-changer for quantum foundations. To be sure, the picture associated with
the decoherence process has sometimes been claimed to be suggestive of particular
interpretations of quantum mechanics® or to pinpoint internal concistency issues
[30]. But it might be safer to say that certain interpretations (such as the Everett
interpretation) are simply more in need of decoherence to define their structure.
At the end of the day, any interpretation that does not involve entities, claims, or
structures in contradiction with the prediction of decoherence theory (which is to
say, with the predictions of quantum mechanics) will remain viable.

It follows that if we hope to make headway in foundational matters, we have
to consider theories beyond quantum mechanics and study how their predictions
match those of quantum mechanics. Reconstructions of quantum mechanics are
one example of this approach; they have shown that features traditionally regarded
as uniquely quantum — such as interference, Bell-type violations, no-signaling and
no-cloning constraints, and state disturbance through measurement — are generic
to entire classes of probabilistic theories. Another example is Bell’s theorem [7, 8],
although what exactly the experimentally measured violations of Bell’s inequali-
ties tell us about nature remains a matter of debate [32]. Like Bell’s theorem, the
PBR theorem [27] is based on the consideration of hidden-variables models and
accommodates a variety of conclusions [11, 23, 33, 34]. Thus, a decisive answer to
a foundational question may elude us even if we consider models beyond quantum
mechanics.

13.6 Concluding remarks

In response to Uffink’s [38] criticism of protective measurement, Gao [ 18] writes:

It seems that the errors in Uffink’s arguments were made at least partly due to his biased
philosophical opinions. Why protect the interpretation of the wave function against
protective measurements? Why make the different views on the meaning of the wave
function peacefully coexist? Is it not very exciting and satisfying if we can decide the issue
of the interpretation of the wave function someday? Is it not one of the ultimate objectives
of our explorations in quantum foundations?

8 Indeed, historically decoherence theory arose in the context of Zeh’s independent formulation of an
Everett-style interpretation [44, 9].
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To this, Uffink [39] replies:

Of course, [I agree fully] with Gao that such an alternative view would be much more
desirable. However, apart from the hot aspirations we might all have concerning the inter-
pretation of quantum theory, we also need the cool breeze of critical analysis before we
step forward.

Uffink’s attitude, like our own, is not meant to be pessimistic. It merely reflects
a realistic assessment of aims and means. Protective measurement is an ingenious
implementation of a quantum measurement, but a quantum measurement it never-
theless remains. As such, it simply cannot, even in principle, accurately determine
the wave function of a single system. In particular, we have pointed to two prob-
lems: the necessarily finite interaction time and the astronomically large number
of measurements required for bigger systems. The probabilistic, random element
of any quantum measurement remains; there cannot be any information gain with-
out disturbance. But only if perfectly reliable, non-disturbing state determination
were possible would protective measurement qualify as an arbiter in the question
of the nature of the wave function. As we have argued, the failure of protective
measurement to accomplish this goal is not surprising, for no application of the
quantum formalism can bypass the fundamental indifference of this formalism to
its interpretation.

If protective measurement had indeed established the reality of the wave func-
tion (or its direct correspondence with reality), then, without doubt, we would
have happily concurred with Gao’s [21] assessment of protective measurement as
a “paradigm shift in understanding quantum mechanics.” As it stands, however,
not only do all interpretive options remain on the table, but, in our view, protective
measurement also fails to nudge us one way or the other. If one does not already
believe in the reality of the wave function, then what does protective measurement
offer to change one’s mind? Not only does protective measurement fail to chal-
lenge the epistemic view of the wave function, but it also leaves untouched all the
features that make the epistemic view so attractive and powerful in the first place
[36, 17, 26]. To say so is not to diminish the practical usefulness of protective mea-
surement or to discourage its future exploration, but to recognize the fundamental
limitations when using the quantum formalism to provide its own interpretation.
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Protective measurement and the nature of the wave
function within the primitive ontology approach

VINCENT LAM

14.1 Introduction

One of the crucial issues about protective measurements is the extent to which they
provide (additional) grounds for some realist understanding of the wave function.
This issue is notoriously subject to debate, which is not the aim of this chapter.
Rather, this chapter aims at clarifying the further issue of the ontological picture
corresponding to the realist understanding of the wave function possibly suggested
by protective measurements. Oddly enough, proponents of a realist reading of
protective measurements remain in general rather vague about ontology (see for
instance Aharonov et al. (1993, 4624), who assimilate the wave function to an
“extended object” without further details, or the brief and somewhat unprecise
discussion in Dickson (1995, 135-136) of the interpretation of the wave function
within Bohmian mechanics (BM) and within the theoretical framework elaborated
by Ghirardi, Rimini and Weber (GRW); in this volume, Gao does propose a more
elaborated ontological model for quantum mechanics (QM) based on protective
measurements).

Despite this vagueness (or maybe because of it), it seems that the most obvious
ontological intuition resulting from protective measurements points towards some
form of straightforward realism about the wave function understood in the sense of
a real, physical field: indeed, protective measurements are claimed to allow mea-
suring expectation values of observables on a single quantum system, thereby pro-
viding the possibility of reconstructing (i.e. “measuring” in some sense) the wave
function of a single quantum system. Aharonov et al. (1996, 125) clearly express
this intuition: “We can observe the expectations values of operators, and we can
observe the density and the current of the Schrodinger wave. We can “see” in some
sense the Schrodinger wave. This leads us to believe that it has physical reality.”

Therefore, this kind of intuition seems in line with a realist conception of
the wave function, according to which the wave function is considered as a real
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(substantial, material in some sense) entity on its own (this view is often called
“wave function realism”). Despite its natural appeal (that is, realist attitude with
respect to the central theoretical entity of an empirically very successful theory —
moreover, according to the proponents of protective measurement, the theoreti-
cal entity in question is not a mere statistical device, but has direct observable
significance), such a realist understanding of the wave function faces several diffi-
culties. Of course, the main one is that the wave function is not defined on ordinary
3-dimensional space but on a higher dimensional space (the dimension of which
depends on the number of particles involved), so that considering the wave func-
tion as a real, physical field (often) implies admitting this so-called “configuration
space” in the fundamental ontology of QM. Although there is nothing incoherent
with such an abstract ontology itself, the main challenge is to provide an account in
this context of our daily “illusion” of macroscopic objects in 3-dimensional space
and evolving in time.

By contrast to the abstract ontology offered by wave function realism, there is a
recently much discussed approach to the ontology of QM according to which the
theory — and possibly any fundamental physical theory —is ultimately about entities
in 3-dimensional space (or 4-dimensional spacetime) and their temporal evolution.
Such an ontology postulating from the start matter localized in “usual” physical
space or spacetime is called “primitive ontology” in the recent literature on the
topic. According to the proponents of the primitive ontology approach to QM, it is
the best (realist) way to avoid the main difficulty of wave function realism: there
is no “illusion” or “appearance” of matter in 3-dimensional space to be explained,
since this fact is simply postulated from the start as the referent of the theory (i.e.
as what the theory is fundamentally about). Of course, this “postulate” is not the
whole story: the theory in question has to specify how matter is instantiated in
3-dimensional space (particles, fields, strings, loops, ...) and how it evolves in
time. And that’s where things get interesting: in all the proposed primitive ontolo-
gies for QM (the paradigmatic examples are of course BM and versions of GRW),
the wave function plays a central and crucial role in the time evolution of the prim-
itive ontology and in the account of non-locality. An important and difficult task
for the primitive ontologist is therefore to elucidate what the status of the wave
function can be in this context.

The aim of this contribution is to discuss the nature of the wave function and in
particular features revealed by protective measurements within the framework of
the primitive ontology approach to QM. The primary aim is not to argue in favor
of (or against) the primitive ontology approach to QM (see Ney and Albert (2013)
for a recent review of the debates around primitive ontology and wave function
realism); rather, the idea is to discuss protective measurements and the status of the
wave function in an ontologically serious way, and the primitive ontology approach
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offers an interesting opportunity to do so. We discuss in Section 14.2 the motivation
for the primitive ontology approach to QM and how a certain tension arises in
this context about the status of the wave function. In Section 14.3 we suggest that
an interpretation of the wave function within the framework of ontic structural
realism, providing a clear and coherent ontological picture, resolves this tension
and sheds some interesting light on the meaning of protective measurements and
related experimental set-up. A conclusion and a few broader comments follow in
Section 14.4.

14.2 Primitive ontology and the nature of the wave function
14.2.1 The main motivation for a primitive ontology

A primitive ontology for QM specifies explicitly what the theory is about, i.e. what
there is in the world according to QM, in terms of material entities localized in
3-dimensional space (or 4-dimensional spacetime) and their dynamics. There are
different such specifications, in particular within two of the three standard realist
conceptions of QM that take the measurement problem seriously: particles follow-
ing continuous deterministic trajectories within the framework of BM, a continuous
stochastic mass density field or stochastic point-like events (“flashes”) within GRW
(giving rise to two versions of GRW: GRWm and GRWfY). A primitive ontology in
the context of the Everett (or “many-worlds”) framework can possibly be defined
(for instance in terms of a deterministic mass density field, see Allori et al., 2011)
but its meaning is less transparent.

The main motivation for specifying a primitive ontology for QM is rather
straightforward: it provides a powerful and generic explanatory framework within
which familiar macroscopic objects localized in 3-dimensional space and their
(classical) behavior can be understood in terms of the behavior of (possibly fun-
damental) microscopic entities that are also localized in 3-dimensional space (in
particular, there is an explicit connection between the behavior of these micro-
scopic entities and what can be observed at the macroscopic level, for instance in
terms of measurement outcomes). Obviously, the details of this account depend
on the specific primitive ontology under consideration; the point is that such
an account in terms of a primitive ontology does not have to bridge substantial
explanatory gaps, for instance between macroscopic objects that are (or seem to
be) localized in 3-dimensional space and fundamental microscopic entities that
are not.

It is interesting to note that the primitive ontology approach to QM finds part
of its roots in Bell’s notion of “local beables”, which was introduced in the con-
text of his reflections on non-locality and the measurement problem (see the papers
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collected in Bell, 1987). To some extent, a primitive ontology is made up of local
beables — that is, of entities that “can be assigned to some bounded spacetime
region” (Bell, 1987, 53) — which can be directly related to the behavior of familiar
material objects, such as a measurement apparatus for instance, so that the mea-
surement problem simply does not arise within the framework of a primitive ontol-
ogy for QM (in this sense, the main motivation for a primitive ontology for QM is
that there is simply no quantum measurement problem in this context).

14.2.2 The central role of the wave function

However, the local beables alone (in 3-dimensional physical space) have no
explanatory power; the material entities that are localized in 3-dimensional phys-
ical space and that constitute the primitive ontology have no explanatory power
alone. The explanatory power of the primitive ontology approach to QM stems
from the local beables together with their temporal development or dynamics,
which crucially relies on the wave function. As a consequence, in this context, it
seems unavoidable to accept the wave function on top of or as “part of”’ the prim-
itive ontology, in some sense to be clarified (note that in principle it does seem
possible to consider the primitive ontology move within a purely Humean frame-
work where all quantum features, including the wave function and the features
related to quantum non-locality, supervene on the entire spacetime distribution of
local beables, see Miller (2013) — however, the standard difficulties related to the
explanatory power of Humeanism seem especially salient in the quantum case).
Let us consider BM as an illustration. Indeed, BM embodies the paradigmatic
example of a primitive ontology for QM; it will serve us as a very convenient
study case throughout this chapter. The Bohmian particles constitute the primi-
tive ontology (they obviously are local beables since they always have a definite
position in 3-dimensional physical space), but the temporal evolution of the total
configuration of the Bohmian particles crucially relies on the universal wave func-
tion through the Bohmian guiding equation or equation of motion. According to
this equation, Bohmian particles continuously evolve along determinate trajecto-
ries, but such that the velocity of each particle depends on the positions of all the
other particles: strictly speaking the velocity of each particle is a functional of
the universal wave function defined on the whole configuration. In particular, the
role of the wave function in this huge dynamical interdependence is central to the
Bohmian account of quantum non-locality, that is, to its explanatory power (more
on that below). Clearly, this crucial role of the wave function is shared by the other
main primitive ontologies of QM (e.g. GRWm and GRWfY); the wave function is
an irreducible part of what Allori et al. (2008) have identified as the “common
structure” of all the conceptions within the primitive ontology approach to QM.
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The “common structure” between GRWm, GRWf and BM is that the considered
theory is fundamentally about matter in spacetime, in contrast to, e.g., a wave func-
tion in a high-dimensional configuration space; however, the point here, which is
rather clear among the proponents of a primitive ontology for QM, is that the wave
function cannot be entirely dropped from the ontological picture (see, however,
the investigations in Dowker and Herbauts, 2005). The theoretical, explanatory,
ontological importance of the wave function therefore creates a tension within the
primitive ontology approach to QM: it raises the (old) issue of the ontological status
and the metaphysical nature of the wave function within the familiar ontological
picture offered by the primitive ontology framework, that of matter localized in
3-dimensional space and evolving in time.

14.2.3 Primary and secondary ontology

Before addressing the options available for the status of the wave function within
the primitive ontology approach to QM, it is interesting to mention a possible strat-
egy that has been put forward in order to alleviate this tension. The idea is to make a
distinction between a primary part and a secondary part of the ontology of QM (see
Maudlin, 2013; see also Allori, 2013): the primary part is the part of the ontology
that is “more directly and unproblematically related to empirical data”, whereas the
secondary part is “more remote from empirical data, and hence more speculative”
(Maudlin, 2013, 144). Within BM, the primary part of the ontology is constituted
by the Bohmian particles, which make up the measurement apparatuses displaying
definite measurement outcomes and, more generally, which ultimately make up
all empirical data; in this sense, the wave function does not belong to the primary
ontology, and its nature is therefore “more speculative”. It is interesting to note that
the first reason Maudlin (2013, 148) mentions for not considering the wave func-
tion (or quantum state) as part of the primary ontology is that “no experiment can
reveal or determine the exact quantum state of a given system”. Prima facie, pro-
tective measurements seem to provide a counterexample to this last claim, since a
“sufficient number of protective measurements performed on a single system allow
measuring its quantum wave function” (Vaidman, 2009, 506). So, on the one hand,
protective measurements seem to speak in favor of considering the wave function
(or quantum state) as part of the primary ontology of QM; but, on the other hand,
even within the framework of protective measurements, the epistemic access to the
wave function is indirect in the sense that it is mediated by the primary ontology
(e.g. Bohmian particles) making up the empirical data (moreover, strictly speak-
ing, protective measurements do not determine the exact wave function or quantum
state, but only up to a phase). In any case, the distinction between the primary and
secondary parts of the ontology of QM is epistemic, not ontological: in one way or
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another, in the context of the primitive ontology approach to QM, all agree that the
wave function is part of the ontology of the theory, so that the fundamental issue
of its metaphysical nature cannot be avoided.

14.2.4 The nature of the wave function

There are mainly three realist ways to understand the wave function as part of the
ontology of QM (see Belot, 2012), two of which are common within the primitive
ontology approach. The first one is the most straightforward: to consider the wave
function as a physical object on its own. It is also the most problematic from the
point of view of the primitive ontology approach. Indeed, within the framework
of BM, it amounts to recognizing the wave function as a physical object, possibly
not living in 3-dimensional space but in high-dimensional configuration space, in
addition to the Bohmian particles in 3-dimensional space, thereby considerably
inflating the ontology. The explanatory strength and simplicity of the primitive
ontology approach would then be significantly weakened, and some of the difficul-
ties of wave function realism — against which the primitive ontology approach was
originally designed — would reappear. It is therefore not surprising that this option
is commonly rejected within the framework of the primitive ontology approach
to QM.

The second understanding rather suggests to consider the wave function as a law-
like, nomological entity, that is, not as an additional substantial, physical entity in
space and time. This interpretation of the wave function is favored by some of the
most prominent current proponents of BM, who take as a heuristic argument the
analogy with the common interpretation of the Hamiltonian on phase space within
the framework of classical mechanics (see e.g. Diirr et al., 1997). So, within this
understanding and the Bohmian context, the wave function is taken as an aspect of
the Bohmian law of motion (guiding equation). However, this nomological inter-
pretation of the wave function faces an important difficulty: the wave function can
be time-dependent — a non-standard feature for a law-like entity, which requires
some clarifications. A related difficulty concerns the status of the Schrodinger
equation: what is the status of a law (the Schrodinger equation) that determines
the temporal evolution of a law-like entity (the wave function)? In order to deal
with these difficulties, the proponents of the nomological understanding of the
wave function within BM have deployed a strategy which contains three main
components. First, the crucial distinction between the universal wave function,
i.e. the wave function of the Universe (the wave function corresponding to all the
Bohmian particles in the Universe), and the effective wave functions correspond-
ing to (Bohmian) subsystems of the Universe. If the latter are epistemically crucial
(they are the ones that are dealt with in standard QM as well as for predictive
and operational purposes), only the former is ontologically fundamental strictly
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speaking (effective wave functions only possess a “derivative” status compared to
the universal wave function). Second, the expectation, based on the fundamental
timelessness of the Wheeler—-DeWitt equation in canonical quantum gravity, that
the universal wave function is static (and possibly unique). Third, the (informed)
conjecture that the time-dependent Schrodinger evolution is not fundamental, but
only effective in the sense of only arising for subsystems and their effective (“time-
dependent”) wave functions. Even if supported by good heuristic arguments, the
second and third components of this strategy remain speculative, making the purely
nomological interpretation of the wave function somewhat less attractive. More-
over, it seems that the exact ontological picture resulting from the nomological
understanding of the wave function depends on one’s metaphysical stance with
respect to laws, e.g. Humean or dispositional. There is no need to enter this ven-
erable metaphysical debate here. Suffice it to note that if a Humean approach in
this context is clearly not incoherent (leading to what could be called “quantum
Humeanism”), it can be argued that it would considerably weaken the explanatory
power of the conception, which is one of the main motivations for the primitive
ontology move in the first place. For instance, within this Humean framework, the
wave function and crucial quantum features such as quantum non-locality that are
encoded in the wave function would merely supervene on the whole distribution
of the relevant local beables in the entire spacetime, rather than being anchored
(and therefore “explained” in some sense) in the nature or properties of these
local beables postulated by the primitive ontology (see the comment above in Sec-
tion 14.2.2; see also the discussion in Esfeld et al., 2013).

The third understanding of the wave function precisely aims to do that: the idea
is to interpret the wave function in terms of the properties of — more precisely,
the relations among — the local beables. This understanding is appealing in the
primitive ontology context: indeed, for example, within the framework of BM,
the wave function determines through the Bohmian equation of motion (guiding
equation) the temporal development of the local beables, that is, the velocities
of the Bohmian particles. In this perspective, it is perfectly sensible to think of
the wave function as describing a fundamental property of the Bohmian particles
that determines their motion (this description possibly not being one-to-one, see
Belot, 2012, 78-80 and the discussion in Esfeld et al., 2013, Section 4). The main
worry for this understanding comes from the fact that, in this context, the wave
function encodes quantum non-locality, so that the fundamental property described
by the wave function is rather peculiar. In the Bohmian case, the (universal) wave
function is defined on the whole configuration of all Bohmian particles in the
Universe at a given time, so that the temporal development (the velocity) of each
particle depends strictly speaking on the positions of all the other particles at that
time through the (universal) wave function. Therefore, the wave function actually
describes a kind of holistic property of the whole configuration of particles (at a
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given time). We discuss in the next section how ontic structural realism can help to
clarify the nature of such a property, that is, the nature of the wave function in the
primitive ontology approach.

14.3 Quantum structure
14.3.1 Ontic structural realism and primitive ontology

Ontic structural realism (OSR) is a recently much debated conception in the meta-
physics of contemporary fundamental physics, in particular quantum theory. As a
metaphysical conception and interpretative framework for fundamental physics, its
development has been mainly motivated by various fundamental relational phys-
ical features, in particular background independence and gauge-theoretic diffeo-
morphism invariance in the general relativistic domain (see e.g. the contributions
by Pooley, Rickles and Stachel in Rickles et al., 2006, as well as Esfeld and
Lam, 2008) and permutation invariance (together with other symmetry consider-
ations), entanglement and non-locality in the quantum domain (see e.g. French and
Ladyman, 2003, Esfeld, 2004, Ladyman et al., 2007, chapter 3, Kantorovich, 2009,
Muller, 2011 and Lam, 2013). The broad ontological thesis of OSR that is moti-
vated by these relational features can be expressed in the following way: what there
is in the world at the fundamental level (or in the cases where OSR is relevant) are
physical structures, in the sense of networks of concrete physical relations among
concrete physical objects (relata), whose existence depends in some sense on rela-
tions in which they stand (on structures they are part of).

As mentioned above, it has been argued in the literature for some time now that
OSR provides a general interpretative framework for the generic relational features
of quantum entanglement and quantum non-locality as encoded in the violations of
Bell-type inequalities. Since (of course) quantum non-locality has to be accounted
for within the primitive ontology approach, it is no wonder that OSR is relevant in
this context. Indeed, on the one hand, a primitive ontology for QM (such as BM)
provides an ontological framework within which the general OSR understanding of
quantum non-locality can be specified (in particular the relata of the relevant quan-
tum structures can be specified). On the other hand, OSR provides the primitive
ontology approach to QM with a convincing way to interpret the wave function
and its encoding of quantum non-locality in this context (see Esfeld, 2014, for a
similar point of view).

14.3.2 The wave function as a physical structure

We have seen above that there is a tension about the wave function within the prim-
itive ontology approach to QM: if it clearly plays a central role in the explanatory
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scheme of the primitive ontology approach (in particular, in the account of non-
locality), it is not easy to anchor the wave function in the 3-dimensional physical
space (or 4-dimensional spacetime) in which the relevant local beables live — as
one would expect within the primitive ontology framework. OSR precisely pro-
vides such a spacetime anchorage for the wave function in the primitive ontology
approach to QM: in this context, the wave function can be understood as a physical
structure in spacetime whose relata are the local beables of the primitive ontology
under consideration (this spacetime anchorage is crucial from the primitive ontol-
ogy point of view; for a more abstract and controversial OSR interpretation of the
wave function, see French, 2013).

Let us illustrate how this account works in our study case, BM. The wave func-
tion is understood in terms of physical relations among all the Bohmian particles.
This huge network of physical relations (i.e. the physical structure described by
the wave function) constitutes the physical ground for (the explicit) quantum non-
locality in BM; in this fundamental quantum structure, each particle is strictly
speaking related to all the others (in a way described by the wave function), so
that its temporal development (its velocity) depends on the positions of all the
other particles (hence the BM account of the violation of Bell-type inequalities
in terms of the violation of parameter independence); note that, as mentioned in
Section 14.2.4, the notion of effective wave function captures the operationally rel-
evant aspects of such a huge dependence.

There are two aspects that jointly make this quantum structure, which is
described in the quantum formalism by the wave function, a structure in the
OSR sense. First, the quantum relations connecting all the Bohmian particles do
not supervene on any intrinsic properties of the particles; therefore, these quantum
relations and the corresponding quantum structure are fundamental and irreducible
in the sense that they cannot be merely understood in terms of (they cannot be
“reduced” to) the intrinsic properties of the relata, namely the Bohmian particles.
Second, even if some intrinsic individuality and identity can possibly be ascribed
to them (e.g. in virtue of their spacetime location, if one accepts that it can be
taken as an intrinsic feature), there is a sense in which Bohmian particles dynam-
ically depend on the structure they are part of, through the dependence on the
positions of all the other particles. Unlike the case of Newtonian gravity (where
some structuralist dependence among all Newtonian particles also obtains), this
dependence is strictly speaking not affected by spatial distance. So, in a sense, the
very existence of Bohmian particles dynamically depends on the structure they are
part of.

Furthermore, one could characterize Bohmian particles in terms of some dynam-
ical (diachronic) identity that depends on the whole configuration of particles,
that is, in terms of some non-intrinsic (structural, contextual) identity (about the
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notion of non-intrinsic identity in the context of OSR, see Lam, 2014). The tension
between this structural identity and the above mentioned intrinsic identity based on
the spacetime location is only apparent: besides the fact that its “intrinsicness” can
be put into question (it ultimately relies on the spacetime structure), this latter iden-
tity is dynamically inert, whereas the former plays a crucial dynamical and explana-
tory role, in particular in the account of quantum non-locality. Indeed, in this con-
text, quantum non-locality is accounted for in terms of the dynamics of the (relevant
part of the) quantum structure, within which the relata (i.e. the Bohmian particles)
are interdependent; this dynamical interdependence is here precisely encoded in
the notion of dynamical (or structural, contextual) identity. In this perspective, it
seems to make sense to claim that for each Bohmian particle, the fact of being this
very particle, which includes its own trajectory and dynamical features, depends
on the structure it is part of.

From the metaphysical point of view, the structural account of the wave func-
tion proposed here provides a clear metaphysical basis for the holistic aspects
mentioned within the framework of the property understanding at the end of Sec-
tion 14.2.4; in this sense, OSR helps to clarify the nature and the status of the wave
function — more precisely: what is represented by the wave function — within the
primitive ontology approach to QM. We now consider protective measurements in
this structuralist and primitive ontology (in particular, BM) context; more specifi-
cally, we discuss to what extent this structuralist point of view might help to clarify
the alleged difficulties for BM posed by protective measurements.

14.3.3 Protective measurements and primitive ontology:
probing the quantum structure

As mentioned in Section 14.1, protective measurements are often (somewhat
vaguely) understood as providing grounds for a realist interpretation of the wave
function, in the sense of directly probing the wave function itself (on a single
system). However, from a metaphysical point of view, protective measurements
by themselves cannot illuminate the nature of the wave function as long as the
measurement problem is not addressed (note that, despite their strong claims about
the reality of the wave function, Aharonov et al., 1996, 121, are clear that pro-
tective measurements do not help to solve the measurement problem). But in the
cases where a clear ontology for QM is provided (that is, in the cases where the
measurement problem is addressed, as within the primitive ontology framework),
protective measurements provide an interesting tool to investigate the nature of
the wave function. As Vaidman (2009, 506) puts it: “The protective measure-
ment procedure is not a proof that we should adopt one interpretation instead
of the other, but it is a good testbed which shows advantages and disadvantages
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of various interpretations.” In this perspective, it is natural to consider protective
measurement in the context of the primitive ontology approach to QM.

Indeed, protective measurements and weak measurements in general (together
with the “which-way” experiment set-up) have been extensively discussed in the
context of BM; in particular, they are supposed to highlight some unsatisfac-
tory features of BM (see e.g. Englert et al., 1992, Aharonov and Vaidman, 1996,
Aharonov et al., 1999). For instance, an important part of these thought experi-
ments crucially aims to show that an empty wave of a particle (i.e. a part of the
wave function without the actual particle position in its domain, e.g. after crossing
a beam splitter) can have observable effects, such as a trace of bubbles in a (slowly
developing) bubble chamber (leading to what has been called a “surrealistic trajec-
tory” in Englert et al., 1992; see also Vaidman, 2005 and references therein) or a
straightforward modification of the pointer’s position of a measuring device. These
alleged difficulties all ultimately rely on the above-mentioned tension about the
status of the wave function in the primitive ontology approach to QM, in particular
BM (see the end of Section 14.2.2). Indeed, the fathers of protective measurements
are themselves fully aware of this fact when they write: “Note, however, that the
difficulties we see follow mostly from a particular approach to the Bohm theory we
adopt, in which only the Bohmian particles correspond to the “reality” which we
experience, while the wave function is just a pilot wave which governs the motion
of the particle” (Aharonov and Vaidman, 1996, 141).

The OSR understanding of the wave function within the primitive ontology
(in particular, BM) framework elaborated in the preceding section provides the
wave function with a clear and robust ontological status that dissolves the above-
mentioned tension and that unproblematically accounts for weak and protective
measurements (as well as the related which-way measurement set-up). From this
structuralist point of view, these thought experiments can be merely understood as
specific ways to “directly” probe the quantum structure (in the precise OSR sense)
represented by the wave function (to some extent, within this framework, any quan-
tum measurement is a probing of the quantum structure through the behavior of its
relata, the relevant local beables). It is important to see that this direct probing is
unproblematic in the OSR and primitive ontology context, since the quantum struc-
ture represented by the wave function is a concrete physical structure in the usual
3-dimensional space among the local beables under consideration (e.g. Bohmian
particles); in particular the worries related to the possibility of directly observing
an abstract wave function living in 3/N-dimensional space simply do not arise here
(for such worries in the Bohmian case, see for instance Bosca, 2013, 56).

These thought experiments highlight in particular non-local effects in BM
that are at the roots of what the critics consider to be mysterious (“surrealistic’)
and unsatisfactory features. Let’s see how this comes about and how the OSR
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understanding of the wave function might dispel these worries. Very roughly, the
non-local features displayed in these measurement procedures stem from the fact
that, in these rather specific cases, the wave function corresponding to a Bohmian
particle can have an observable (measurable) effect where the Bohmian particle is
not located (note that these non-local features have to be distinguished from the
ones arising in the context of the violation of Bell-type inequalities, although they
all emanate from the wave function in the end). At first sight, this fact seems to
be very surprising, especially for “position measurements” recording what looks
like a trajectory (e.g. a trace in a bubble chamber) that completely differs from the
actual trajectory of the particle in question; hence the doubts about the reality and
meaning of the actual Bohmian positions and trajectory. Similarly, the protective
measurement set-up (roughly, measurement as a very weak “adiabatic” interaction
during a very long time) for the position of a Bohmian particle at rest shows that the
position measuring device can be triggered (i.e. the pointer’s position is modified)
in regions where the Bohmian particle is not located (so that the device seems to
record the position of the particle where it is not — if this makes any sense).

Of course, the last part of the last sentence does not make much sense. Three
important and interrelated points help to clarify the situation and highlight in
particular the role of the structuralist interpretation of the wave function in this
clarification. First, the notion of position measurement in the Bohmian context is a
subtle issue and we should be careful about it; for instance, Drezet (2006) argues
that we are not really dealing with a genuine Bohmian position measurement in
the above thought experiment involving a protective measurement (there is no
local interaction with the Bohmian particle), but rather a measure of some quantity
(density) directly related to the wave function itself (on this issue in the context of
“surrealistic trajectories”, see also Barrett, 2000). Second, as already mentioned
above, these at first sight surprising effects are best understood as non-local fea-
tures of the relevant wave function (e.g. the wave function corresponding to the
particle and the pointer); it is interesting to note that most of the commentators
agree on this understanding in terms of the wave function, whether or not they
find it satisfactory (see e.g. Dewdney et al., 1993, Barrett, 2000, Vaidman, 2005,
Drezet, 2006, and Boscd, 2013). Third, and most importantly for our aim here, the
structuralist interpretation of the wave function as a concrete physical structure
(in the precise OSR sense) does provide an entirely satisfactory account of the
non-local features displayed in these thought experiments. Indeed, from this struc-
turalist point of view, these non-local features are due to the inherently relational
nature of the quantum structure (represented by the wave function) under consid-
eration (see Section 14.3.2). For instance, in the protective measurement case, the
Bohmian particle that is being measured and the Bohmian particles constituting
the pointer of the measuring device are relata of the same quantum structure, which
is represented by the relevant wave function. The fact that, from the ontological
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point of view, one should, strictly speaking, only consider the universal wave func-
tion (see Section 14.2.4) does not alter the main point here — indeed, Norsen and
Struyve (2013) have recently convincingly suggested that what is being measured
in weak measurement procedures involving entangled systems precisely corre-
sponds to effective (conditional) wave functions. Now, the temporal development
(of the relevant quantum structure) corresponding to the protective measurement
interaction (in the region where the measured Bohmian particle is not located) is
such that the position of the pointer is modified through this interaction process and
even though the region in question does not contain the Bohmian particle that is
being measured (see the Bohmian analysis of the “wave function induced” motion
of the particle and the pointer in Drezet, 2006). Obviously, a similar structuralist
account can be provided in the case of “surrealistic” Bohmian trajectories.

The physics of the Bohmian account of these thought experiments is clear and
coherent — as pointed out in the early reaction of Diirr et al. (1993) to Englert
et al. (1992), it is interesting to note that no one actually claims that BM is shown
to be incoherent in these thought experiments, the objections being rather at the
metaphysical level. The structuralist understanding of the wave function suggested
here within the Bohmian account provides a clear and coherent ontological picture
of what is going on in these thought experiments — a convincing ontological picture
that dispels the metaphysical worries: these thought experiments are specific ways
to directly probe the relevant concrete quantum structure.

14.4 Conclusion and perspectives

In this chapter, we have discussed the nature of the wave function (for instance,
as unveiled by protective measurements) within the framework of the primitive
approach to QM, that is, within the realist interpretations of the theory — real-
ist solutions to the measurement problem — according to which QM is ultimately
about (material) entities localized in 3-dimensional physical space and evolving in
time. Within this primitive ontology framework, we have suggested a structuralist
understanding of the wave function in the sense of OSR and we have considered
protective measurements in this novel interpretative light. We have mainly taken
BM - the paradigmatic example of a primitive ontology for QM — as a convenient
study case for illustrating the interpretative relevance of this structuralist under-
standing. In particular, the explicit non-locality that is at the heart of the seemingly
counter-intuitive features revealed by protective measurements in the BM context
is naturally understood in terms of the relational features of the relevant quantum
structure. On this basis, we have suggested a clear interpretation of protective mea-
surements (and related weak measurements and other experimental set-ups involv-
ing “surrealistic trajectories”) in the framework of BM according to which these
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specific measurement procedures are best understood as specific (“direct”) ways
to probe the quantum structure (in a precise sense) represented by the relevant
(effective, conditional) wave function.

This interpretation of the wave function as representing a concrete physical
structure instantiated in spacetime can clearly be specified within the other stan-
dard primitive ontologies that have been proposed for QM, such as GRWm and
GRWT in particular. Indeed, the wave function is an irreducible part of what Allori
et al. (2008) have identified as the “common structure” of GRWm, GRWf and BM
(see Section 14.2.2). It would actually be an interesting project to specify in detail
the quantum structure represented by the wave function within the framework of
the other possible primitive ontologies besides BM in order to highlight the dif-
ferences among these realist interpretations of QM (in their treatment of quantum
non-locality in particular).

Despite the intuitive appeal (e.g. in terms of explanatory power) of the primitive
ontology approach to QM, we would like to conclude on a cautionary note. As
discussed in this chapter, such an ontology postulates from the start matter local-
ized in 3-dimensional space and evolving in time (or localized in 4-dimensional
spacetime); and, as discussed in this chapter, there are good reasons for doing so
in the context of QM, which is the primary target of this ontological and inter-
pretative move — reasons very similar to Bell’s motivation for introducing local
beables. At this point, all is fine. However, there are some expectations that the
primitive ontology framework remains valid for any fundamental theory, and in
particular any fundamental quantum theory. Now, when quantum theory is applied
to the gravitational field as described by the general theory of relativity (of course,
we still don’t have a complete quantum theory of the gravitational field, but only
various research programs; note that there is no compelling reasons for quantizing
the gravitational field, but only strong expectations), there is an on-going debate
in both physics and philosophy communities about the status of spacetime itself,
which is partly due to the very nature of the gravitational field within the general
theory of relativity. Without entering into this debate, we suggest that postulating
matter localized in spacetime from the start when dealing with the interpretation
(and the ontology) of a theoretical framework (that of quantum gravity) where the
very status of spacetime and its relationship to matter constitute crucial open issues
does not seem to be the right methodology.
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Reality and meaning of the wave function

SHAN GAO

The wavefunction gives not the density of stuff, but gives rather (on
squaring its modulus) the density of probability. Probability of what,
exactly? Not of the electron being there, but of the electron being found
there, if its position is ‘measured’. Why this aversion to ‘being’ and insis-
tence on ‘finding’? The founding fathers were unable to form a clear
picture of things on the remote atomic scale.

John S. Bell (1990)

15.1 Introduction

The physical meaning of the wave function is an important interpretative problem
of quantum mechanics. Notwithstanding nearly ninety years of development of the
theory, it is still an unsolved issue. During recent years, more and more research
has been done on the ontological status and meaning of the wave function (see,
e.g. Monton, 2002; Lewis, 2004; Gao, 2011a, 2011b; Pusey, Barrett and Rudolph,
2012; Ney and Albert, 2013). In particular, Pusey, Barrett and Rudolph (2012)
demonstrated that under certain non-trivial assumptions such as the preparation
independence assumption, the wave function of a quantum system is a represen-
tation of the physical state of the system.' This poses a further question, namely
whether the reality of the wave function can be argued without resorting to non-
trivial assumptions. Moreover, a harder problem is to determine the ontological
meaning of the wave function, which is still a hot topic of debate in the real-
istic alternatives to quantum mechanics such as the de Broglie-Bohm theory or
Bohmian mechanics (Belot, 2012).

In this chapter, we will first give a clearer argument for the reality of the wave
function in terms of protective measurements, which does not depend on non-trivial

' For more discussions about the Pusey—Barrett—Rudolph or PBR theorem, see Colbeck and Renner (2012);
Lewis et al. (2012); Schlosshauer and Fine (2012, 2013); Leifer and Maroney (2013); Patra, Pironio and
Massar (2013); Wallden (2013).
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assumptions and can also overcome existing objections. Next, based on an analysis
of the mass and charge properties of a quantum system, we will propose a new
ontological interpretation of the wave function. According to this interpretation,
the wave function of an N-body system represents the state of ergodic motion of N
particles. Moreover, the ergodic motion of particles is discontinuous and random in
nature, and the modulus squared of the wave function gives the probability density
that the particles appear in certain positions in space.

15.2 On the reality of the wave function

The ontological status of the wave function in quantum mechanics is usually ana-
lyzed in the context of conventional impulsive measurements. Although the wave
function of a quantum system is in general extended over space, one can only
detect the system in a random position in space by an (impulsive) position mea-
surement, and the probability of detecting the system in the position is given by
the modulus squared of the wave function there. Thus it seems reasonable for a
realist to assume that the wave function does not refer directly to the physical state
of the system but only relates to the state of an ensemble of identically prepared
systems. Although there are several interesting theorems such as the PBR theo-
rem which reject this epistemic view of the wave function, these theorems always
depend on some non-trivial assumptions. For example, the PBR theorem depends
on a preparation independence assumption (Pusey, Barrett and Rudolph, 2012). By
denying these non-trivial assumptions, one can still restore the epistemic view of
the wave function. Moreover, it has been demonstrated that additional assumptions
are always necessary to rule out the epistemic view of the wave function when
considering only conventional impulsive measurements (Lewis et al., 2012).
Thanks to the important discoveries of Yakir Aharonov and Lev Vaidman et
al., it has been known that there exist other kinds of quantum measurement such as
weak measurements and protective measurements (Aharonov, Albert and Vaidman,
1988; Aharonov and Vaidman, 1990, 1993; Aharonov, Anandan and Vaidman,
1993). In particular, by a series of protective measurements on a single quantum
system, one can detect the system in all regions where its wave function extends
and further measure the whole wave function of the system (Aharonov and Vaid-
man, 1993; Aharonov, Anandan and Vaidman, 1993). During a protective mea-
surement, the measured state is protected by an appropriate procedure (e.g. via the
quantum Zeno effect) so that it neither changes nor becomes entangled with the
state of the measuring device appreciably. In this way, such protective measure-
ments can measure the expectation values of observables on a single quantum sys-
tem, even if the system is initially not in an eigenstate of the measured observable,
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and the whole wave function of the system can also be measured as expectation
values of certain observables.

Since the wave function of a single quantum system can be measured by a series
of protective measurements, it seems natural to assume that the wave function
refers directly to the physical state of the system. Several authors, including the
discoverers of protective measurements, have given similar arguments supporting
this implication of protective measurements for the ontological status of the wave
function (Aharonov and Vaidman, 1993; Aharonov, Anandan and Vaidman, 1993;
Anandan, 1993; Dickson, 1995; Gao, 2013a). However, these analyses have been
neglected by most researchers, and they are also subject to some objections (Dass
and Qureshi, 1999; Chapters 7 and 13 of this volume). Here we will first present
a clearer argument for the reality of the wave function in terms of protective mea-
surements, and then answer these objections.

According to quantum mechanics, we can prepare a single measured system
whose associated wave function is ¢/(¢) at a given instant ¢. The question is whether
the wave function refers directly to the physical state of the system or merely to the
state of an ensemble of identically prepared systems. As noted above, this question
can hardly be answered by analyzing non-protective impulsive measurements of
the system, by each of which one obtains one of the eigenvalues of the measured
observable, and the expectation value of the observable as well as the value of y(¢)
can only be obtained by calculating the statistical average of the eigenvalues for an
ensemble of identically prepared systems. Now, by a protective measurement on
the measured system, we can directly obtain the expectation value of the measured
observable. Moreover, by a series of protective measurements of certain observ-
ables on this system, we can further obtain the value of (7). Since we can measure
the wave function only from a single prepared system by protective measurements,
the wave function represents the physical state of a single system. Similarly, the
expectation values of observables are also properties of a single system.

There are two possible objections to the above conclusion that protective mea-
surements support the reality of the wave function. The first is based on the require-
ment that the unknown state of a single system is measurable. It claims that since
the unknown state of a single quantum system cannot be protectively measured,
protective measurements do not have implications for the ontological status of the
wave function (see, e.g. Unruh 1994). However, this requirement is too stringent
(see also Chapter 10). If it were true, then no argument for the reality of the wave
function including the PBR theorem could exist, because it is a well-known result
of quantum mechanics that an unknown quantum state cannot be measured. On the
other hand, it is also worth noting that protective measurements alone cannot imply
the reality of the wave function (see also Chapters 7 and 13). In both the PBR theo-
rem and the above argument, a realist view of the relationship between theory and
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reality is implicitly assumed, according to which the theoretical terms expressed in
the language of mathematics connect to the entities existing in the physical world.
Under this assumption, when preparing a physical system with a given associated
wave function, the wave function refers either to the physical state of the system
or to the state of an ensemble of identically prepared systems. As argued above,
it is here that protective measurements help determine which interpretation is true.
This determination does not require that the wave function of the prepared system
is unknown beforehand.”

The second objection concerns realistic protective measurements (Dass and
Qureshi, 1999; Chapter 13 of this volume). A realistic protective measurement can
never be performed on a single quantum system with absolute certainty. For exam-
ple, for a realistic protective measurement of an observable A on a non-degenerate
energy eigenstate whose measurement interval 7 is finite, there is always a tiny
probability proportional to 1/T? of obtaining a different result (A), , where L refers
to a normalized state in the subspace normal to the measured state as picked out by
the first-order perturbation theory. It thus claims that the uncertainty precludes an
ontological status for the wave function. If in the argument one directly resorts to
the Einstein—Podolsky—Rosen criterion of reality (see, e.g. Chapter 10), according
to which “If, without in any way disturbing a system, we can predict with cer-
tainty (i.e. with probability equal to unity) the value of a physical quantity, then
there exists an element of physical reality corresponding to this physical quantity.”
(italics in the original) (Einstein, Podolsky and Rosen, 1935), then this objection
may be valid. However, one may avoid this objection by resorting to a somewhat
different criterion of reality, which seems more reasonable and also appropriate for
realistic protective measurements.

The new criterion of reality is that if, with an arbitrarily small disturbance on
a system, we can predict with probability arbitrarily close to unity the value of a
physical quantity, then there exists an element of physical reality corresponding
to this physical quantity. Although a realistic protective measurement with finite
measurement time 7 can never be performed on a single quantum system with
absolute certainty, the uncertainty and the disturbance on the measured system can
be made arbitrarily small when the measurement time 7 approaches infinity. Thus,
according to this criterion of reality, realistic protective measurements also support
the reality of the wave function. Note that in order to argue for the reality of the

2 Tt is worth emphasizing that knowing the wave function beforehand is not a weak point in our argument either
(which is often misunderstood by some authors). The reason is that the wave function is only a mathematical
object associated with the physical system, and we need to determine its physical meaning, e.g. whether or
not it represents the physical state of the prepared system. (In this sense, although the wave function is
known, the physical state of the system is still unknown, and what a protective measurement measures is also
an unknown physical state.) As we will see later, protective measurements may not only help answer this
question, but also be helpful for investigating the nature of the physical state described by the wave function,
for which the existing no-go theorems such as the PBR theorem cannot help much (see also Chapter 9).
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wave function in terms of protective measurements, it is not necessary to directly
measure the wave function of a single quantum system, and measuring the expec-
tation value of an arbitrary observable on a single quantum system is enough. If the
expectation values of observables are physical properties of a single quantum sys-
tem, then the wave function, which can be reconstructed from the expectation val-
ues of a sufficient number of observables, will also represent the physical property
or physical state of a single quantum system. This will avoid the scaling problem
(see Chapter 13).

In addition, it can be argued that the uncertainty of realistic protective measure-
ments does not prevent them from measuring the actual state of a single quantum
system. When a realistic protective measurement obtains a result, the state of the
whole system including the measured system and the measuring device collapses to
the state corresponding to this result (according to standard quantum mechanics),
in which the state of the measured system and the state of the measuring device are
correlated. When the result of a realistic protective measurement is wrong, such as
(A), with probability proportional to 1/72, the measured state collapses to the state
L. In this case, the result of the protective measurement does not reflect the origi-
nal measured state, but reflects the resulting new state. By contrast, when a realistic
protective measurement obtains the right result, namely the expectation value of the
measured observable in the measured state, the resulting state of the measured sys-
tem is still the original measured state, and the result of the protective measurement
reflects the original measured state. This means that, unlike conventional impulsive
measurements, the uncertainty of realistic protective measurements does not pre-
vent them from measuring the actual state of a single quantum system, which turns
out to be represented by its wave function, though it makes the probability of doing
so smaller than one.

Interestingly, we can also give another argument for s-ontology in terms of pro-
tective measurements, which is similar to the argument used by the PBR theorem
(Pusey, Barrett and Rudolph, 2012). For two arbitrary (protected) non-orthogonal
states of a quantum system, select an observable whose expectation values in these
two states are different. Then the overlap of the probability distributions of the
results of protective measurements of the observable on these two states can be
arbitrarily close to zero (e.g. when the measurement interval T approaches infin-
ity). If there exists a non-zero probability p that these two non-orthogonal states
correspond to the same physical state A, then when assuming the same A yields the
same probability distribution of measurement results as the PBR theorem assumes,
the overlap of the probability distributions of the results of protective measure-
ments of the above observable on these two states will be not smaller than p. Since
p is a determinate number, this leads to a contradiction. This argument, like the pre-
vious one, only considers a single quantum system, and thus avoids the preparation
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independence assumption used by the PBR theorem’. Note that the above
protective measurements on the two protected non-orthogonal states are the same.

Finally, we note that there might also exist other components of the underly-
ing physical state, which are not measureable by protective measurements and not
described by the wave function, e.g. the positions of the particles in the de Broglie—
Bohm theory. In this case, according to our argument, the wave function still rep-
resents the underlying physical state, though it is not a complete representation.
Certainly, the wave function also plays an epistemic role by giving the probabil-
ity distribution of measurement results according to the Born rule. However, this
role will be secondary and determined by the complete quantum dynamics that
describes the measurement process, e.g. the collapse dynamics in dynamical col-
lapse theories.

15.3 Meaning of the wave function

If the wave function represents the physical state of a single quantum system, then
what physical state does it represent? In this section, we will further investigate the
ontological meaning of the wave function. We will first analyze one-body systems
and then analyze many-body systems.

15.3.1 One-body systems

For a one-body quantum system, its spatial wave function in position x at instant
t, Y(x, 1), represents the physical state of the system in position x at instant ¢. This
means that for a one-body system, there is a physical entity spreading out over a
region of space where the spatial wave function of the system is not zero.* In the
following, we analyze the existing form of the physical entity. The analysis may
provide an important clue to the ontological meaning of the wave function.

First of all, we argue that for a one-body quantum system with mass m and
charge Q, the corresponding physical entity described by its wave function, Y¥(x, t),
is massive and charged, and the effective mass and charge density in each position
X is [Y(x, H)*m and |y(x, 1)]>Q, respectively.

3 Note that different from the present argument, the PBR argument does not rely on knowing the state being
prepared, and knowing the state being prepared does not help for the PBR argument either.

This is in accordance with the realist view on the relationship between theory and reality, according to which
the theoretical terms expressed in the language of mathematics represent the entities existing in the physical
world. Moreover, if a realist denies the existence of a physical entity in some region of space where the
spatial wave function of the system is not zero, then he or she will need a new entity different from that
described by the wave function and a new dynamics different from the Schrodinger equation to explain the
result of a local protective measurement made in the region (see the example given below). We will not
consider such theories here (see Chapter 7).

4
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The existence of effective mass and charge distributions can be seen from the
Schrodinger equation that governs the evolution of the system. The Schrodinger
equation for the system in an external electrostatic potential ¢(x) is

a2 [—h—2V2 + an(x)] W, 1). (15.1)

ot 2m
The electrostatic interaction term Qu(x)y/(x,t) in the equation indicates that the
physical entity described by y(x, ¢) has electrostatic interaction with the external
potential in all regions where ¥(x, f) is non-zero. The existence of electrostatic
interaction with an external potential in a given region means that there exists elec-
tric charge distribution in the region, which can interact with the potential and is
responsible for the interaction. Therefore, the physical entity described by ¥ (x, 1)
is charged in all regions where ¥(x, f) is non-zero.” In other words, for a charged
one-body quantum system, the corresponding physical entity described by its wave
function has effective charge distribution in space. Similarly, the existence of effec-
tive mass distribution can be seen from the Schrédinger equation for a one-body
quantum system in an external gravitational potential:

ihw = —h—2V2 +mVg(x) | w(x, 1). (15.2)

ot 2m
The gravitational interaction term mVg(x)¥/(x, t) in the equation indicates that the
(passive gravitational) mass of the system distributes throughout the whole region
where its wave function ¥(x, ) is non-zero. In other words, the physical entity
described by the wave function also has effective mass distribution.

The effective mass and charge distributions manifest more directly during a pro-
tective measurement, which can measure the actual physical state of a single quan-
tum system. Consider an ideal protective measurement of the charge of a quantum
system with charge Q in an infinitesimal spatial region dv around x,,. This is equiv-
alent to measuring the following observable:

0, ifx, €dv,
A= ) (15.3)
0, ifx, ¢dv.

During the measurement, the wave function of the measuring system, ¢(x, 1), will
obey the following Schrddinger equation:

2 ) 2
00 B Gy g & WG PR (15.4)

in
o M x— x|

5 On the other hand, the existence of effective charge distribution in all regions where ¥(x, ) is non-zero also
indicates that there is a physical entity there, which has effective charge distribution in space.
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where M and e are the mass and charge of the measuring system, respectively, and
k is the Coulomb constant. From this equation, it can be seen that the property of
the measured system in the measured position x, that is able to influence the mea-
suring system is |(x,, #)|>dvQ, the effective charge there.® This is also the result
of the protective measurement, (A) = |y (x,, )|*?dvQ. When divided by the volume
element, it gives the effective charge density |i/(x, NIF0.’

Now we will analyze the physical origin of the effective charge distribution.®
What kind of entity or process generates the effective charge distribution in space
or the physical efficiency of the quantity |/(x, £)[*dvQ? It can be expected that the
answer will help us understand the ontological meaning of [(x, 7)|? and the wave
function itself.

There are two possibilities: the effective charge distribution of a one-body
system can be generated by either (1) a continuous charge distribution with den-
sity |¥(x, HI20 or (2) the motion of a discrete point charge Q which spends time
l(x, )>dvdr in the infinitesimal spatial volume dv around x in the infinitesimal
time interval [z, + dt].” Correspondingly, the underlying physical entity is either
a continuous entity or a discrete particle. For the first possibility, the charge distri-
bution exists throughout space at the same time, while for the second possibility,

® Note that even in standard quantum mechanics, it is also assumed that the above interaction term indicates
that there is a charge |¥/(x,, H)[2dvQ in the region dv. If there exists no effective charge in the measured
position which is responsible for the shift of the pointer of the measuring device there, then a new entity
existing elsewhere (which is different from the entity described by the wave function) and a new dynamics
for the entity (which is different from the Schrodinger equation) will be needed for a realistic explanation

of the shift of the pointer. For example, suppose the measured wave function is localized in two widely
separated regions and the measurement is made in one region. If there is nothing in the measured region, then
the result of the protective measurement made there or the shift of the pointer of the measuring device there
can only be explained by the existence of certain entity in other regions via action at a distance. This will
require a wholly new theory different from quantum theories, which will not be considered here. Note that in
Bohmian mechanics, the Bohmian particles alone cannot fully explain the result of such a protective
measurement (cf. Esfeld et al., 2013).

Similarly, we can protectively measure another observable B = %(AV + VA). The measurements will give

the electric flux density jo(x,1) = %(WV(& — V™) everywhere in space (Aharonov and Vaidman, 1993).
Historically, the charge density interpretation for electrons was originally suggested by Schrodinger in his
fourth paper on wave mechanics (Schrodinger 1926). Schrodinger clearly realized that the charge density
cannot be classical because his equation does not include the usual classical interaction between the densities.
Presumably since people thought that the charge density could not be measured and also lacked a consistent
physical picture, this interpretation was soon rejected and replaced by Born’s probability interpretation. Now
protective measurements help re-endow the effective charge distribution of an electron with reality. The
question is then how to find a consistent physical explanation for it. Our following analysis may be regarded
as a further development of Schrodinger’s original idea to some extent. For more discussions on
Schrodinger’s charge density interpretation see Bacciagaluppi and Valentini (2009) and Gao (2013b).

Note that the expectation value of an observable at a given instant such as (A) = [(x,, H)|*dvQ is either the
physical property of a quantum system at the precise instant (like the position of a classical particle) or the
limit of the time-averaged property of the system at the instant (like the standard velocity of a classical
particle). These two interpretations correspond to the above two possibilities. For the latter, the observable
assumes an eigenvalue at each instant, and its value spreads all eigenvalues during an infinitesimal time
interval. Moreover, the time spent in each eigenvalue is proportional to the modulus squared of the wave
function of the system there. In this way, such ergodic motion generates the expectation value of the
observable in an infinitesimal time interval (see also Chapter 3). We will discuss later whether this picture of
ergodic motion applies to properties other than position.

N
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at every instant there is only a localized, point-like particle with the total charge of
the system, and its motion during an infinitesimal time interval forms the effective
charge distribution. Concretely speaking, at a particular instant the charge density
of the particle in each position is either zero (if the particle is not there) or singular
(if the particle is there), while the time average of the density during an infinitesi-
mal time interval around the instant gives the effective charge density. Moreover,
the motion of the particle is ergodic in the sense that the integral of the formed
charge density in any region is equal to the expectation value of the total charge in
the region.

In the following, we argue that the existence of a continuous charge distribu-
tion may lead to inconsistency. If the charge distribution is continuous and exists
throughout space at the same time, then any two parts of the distribution, like two
electrons, will arguably have electrostatic interaction described by the interaction
potential term in the Schrodinger equation. However, the existence of such elec-
trostatic self-interaction for a quantum system contradicts the superposition prin-
ciple of quantum mechanics (at least for microscopic systems such as electrons).
Moreover, the existence of the electrostatic self-interaction for the effective charge
distribution of an electron is incompatible with experimental observations as well.
For example, for the electron in the hydrogen atom, since the potential of the elec-
trostatic self-interaction is of the same order as the Coulomb potential produced
by the nucleus, the energy levels of hydrogen atoms would be remarkably different
from those predicted by quantum mechanics and confirmed by experiments if there
existed such electrostatic self-interaction. By contrast, if there is only a localized
particle at every instant, it is understandable that there exists no such electrostatic
self-interaction for the effective charge distribution formed by the motion of the
particle. This is consistent with the superposition principle of quantum mechanics
and experimental observations.

Here is a further clarification of this argument. It can be seen that the non-
existence of self-interaction of the charge distribution poses a puzzle. According to
quantum mechanics, two charge distributions, such as two electrons which exist in
space at the same time, have electrostatic interaction described by the interaction
potential term in the Schrodinger equation, but for the effective charge distribu-
tion of an electron, any two parts of the distribution have no such electrostatic
interaction. Facing this puzzle one may have two choices. The first one is simply
admitting that the non-existence of self-interaction of the effective charge distribu-
tion is a distinct feature of the laws of quantum mechanics, but insisting that the
laws are what they are and no further explanation is needed. However, this choice
seems to beg the question and is unsatisfactory in the final analysis. A more rea-
sonable choice is to try to explain this puzzling feature, e.g. by analyzing its rela-
tionship with the existing form of the effective charge distribution. The effective
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charge distribution has two possible existing forms after all. On the one hand, the
non-existence of self-interaction of the distribution may help determine which pos-
sible form is the actual one. For example, one possible form is inconsistent with
this distinct feature, while the other possible form is consistent with it. On the other
hand, the actual existent form of the effective charge distribution may also help
explain the non-existence of self-interaction of the distribution. This is just what
the above argument has done. The analysis establishes a connection between the
non-existence of self-interaction of the effective charge distribution and the actual
existent form of the distribution. The reason why two wave packets of an electron,
each of which has part of the electron’s charge in effect, have no electrostatic inter-
action is that these two wave packets do not exist at the same time, and their effec-
tive charges are formed by the motion of a localized particle with the total charge
of the electron. Since there is only a localized particle at every instant, it is under-
standable that there exists no electrostatic self-interaction of the effective charge
distribution formed by the motion of the particle. By contrast, if the two wave
packets with charges, like two electrons, existed at the same time, then they would
also have the same form of electrostatic interaction as that between two electrons. '’

To sum up, we have argued that for a one-body system, the physical entity
described by its wave function is a discrete, localized particle. At every instant
there is a particle with the mass and charge of the system, while during an infinites-
imal time interval around the instant the ergodic motion of the particle forms the
effective mass and charge distributions measurable by protective measurements,
and the spending time of the particle around each position in space is proportional
to the modulus squared of the wave function of the system there.

15.3.2 Many-body systems

In this section, we analyze many-body systems, and present further arguments sup-
porting the above interpretation of the wave function in terms of particle ontology.

For an N-body system, its wave function is defined in a 3N-dimensional config-
uration space. If the wave function describes a continuous entity, then this entity
exists in the 3N-dimensional configuration space. It has density and flux density
in the configuration space. This view is usually called wave function realism or
configuration space realism (Albert, 1996), and it has at least two problems, the
so-called “problem of perception” and the “problem of lacking invariances” (Mon-
ton, 2002; Lewis, 2004; Solé, 2013).!! The first problem is that this view needs
to explain the manifest three-dimensional character of our perception. The second

10" Note that this argument does not assume that charges which exist at the same time are classical charges and
they have classical interaction. By contrast, the Schrodinger—Newton equation, which was proposed by Didsi
(1984) and Penrose (1998), treats the mass distribution of a quantum system as classical.

T See Maudlin (2013) for other criticisms of wave function realism.



Reality and meaning of the wave function 221

problem is that the dynamical symmetries of the Schrédinger equation for an
N-body system include translations and rotations in three independent spatial
dimensions — not 3N, and this rich structure of configuration space is in want of
a reasonable explanation. Similarly to the case of one-body systems, the wave
function of an N-body system may also describe a discrete particle moving in the
3N-dimensional configuration space, and its motion forms the density and flux
density in the configuration space. For example, the density [¢(x1, X2, ..., X, )| is
formed by the motion of the particle which spends time [/(x1, x2, ..., xy, £)[>*dVdz in
an infinitesimal volume dV around (xi, x2, ..., xy) in the infinitesimal time interval
[z, ¢ + dt]. This view is another form of configuration space realism, and it also has
the above two problems.

In the following, we argue that what the wave function of an N-body system
describes is not a physical entity, either a continuous entity or a discrete particle, in
the 3N-dimensional configuration space, but N physical entities in 3-dimensional
space, and these entities are not continuous entities but discrete particles. First of
all, in the Schrodinger equation for an N-body system, there are N mass parame-
ters my, my, ..., my (as well as N charge parameters etc.). These parameters are not
natural constants, but properties of the system; they may be different for different
systems. Moreover, it is arguable that different mass parameters represent the same
mass property of different physical entities. If a system has N mass parameters,
then it will contain N physical entities. Therefore, an N-body system contains N
physical entities, and the wave function of the system describes the state of these
physical entities.'” Next, these N entities exist in 3-dimensional space, not in a 3N-
dimensional configuration space. The reason is that in the Schrédinger equation for
an N-body system, each mass parameter m; is only correlated with each group of
three coordinates (x;,y;,z;) of the 3N coordinates in configuration space. Third,
these N entities cannot be continuous entities, which are completely described by
density and flux density. The reason is that the density and flux density of N contin-
uous entities which are defined in 3-dimensional space are not enough to constitute
the (entangled) wave function defined in a 3N-dimensional configuration space.

Therefore, it is arguable that the wave function of an N-body system describes
the state of N discrete particles in 3-dimensional space (see also Monton, 2002;
Lewis, 2004). Concretely speaking, at a given instant, the positions of these N par-
ticles in 3-dimensional space can be represented by a point in a 3N-dimensional
configuration space. During an infinitesimal time interval around the instant, these
particles move in the real space, and correspondingly, this point moves in the

12 Note also that the wave function of an N-body system, which lives on a 3N-dimensional configuration space,
is not a complete description of the system (even though one assumes that the configuration space has a rich
structure that can group the 3N coordinates), as it contains no information about the masses and charges of
its N sub-systems. This point seems to have been neglected by most researchers.
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configuration space, and its motion, like the above case of a particle in config-
uration space, forms the density and flux density in the configuration space. This
interpretation of the wave function has no problems of configuration space realism.

It is worth noting that we can also protectively measure the charge density (and
electric flux density) of a many-body system in 3-dimensional space. A protective
measurement of the observable Zf\; | A; on an N-body system whose wave function
is Y(xy, x2, ..., XN, t) yields

N N
Dian=> f f QX1+ coos Xi 1 X Xi 1 oo Xy, DAV vy vy dyydy,
i=1 i=1

(15.5)

where Q; is the charge of the i-th subsystem. When divided by the volume ele-
ment dv, it yields the charge density in space. Moreover, the previous analysis
of electrostatic self-interaction also applies to many-body systems. Like a one-
body system, the effective charge distribution of an N-body system are arguably
generated by the ergodic motion of N charged particles, where the time spent by
particle 1 with charge Q; in an infinitesimal spatial volume dv; around x; and
particle 2 with charge Q> in an infinitesimal spatial volume dv, around x; ... and
particle N with charge Qy in an infinitesimal spatial volume dv, around xy is
[W(x1, X2, .er XN, H)|2dvy...dvydt in the infinitesimal time interval [z, 7 + df], or equiv-
alently, the spending time of the N particles in an infinitesimal volume dV around
each position (xi, x2, ..., xy) in the 3N-dimensional configuration space in the
infinitesimal time interval [¢, t+dt] is [ (x1, X2, ..., XN, 1)|>dVdr. Such ergodic motion
of particles may explain the entanglement between the sub-systems of the many-
body system. Its existence also shows that all dynamical possibilities of a quantum
universe can be properly represented in 3-dimensional space (cf. Albert, 1996).

15.3.3 Ergodic motion of particles

Which sort of ergodic motion? This is a further question that needs to be answered.
If the ergodic motion of particles is continuous, then it can only form the effective
mass and charge distributions during a finite time interval around a given instant.'?
But according to quantum mechanics, the effective mass and charge distributions at
a given instant are required to be formed by the ergodic motion of particles during
an infinitesimal time interval around the instant. Thus it seems that the ergodic
motion of particles cannot be continuous but must be discontinuous. This is at least
what the existing theory says. This conclusion can also be reached by analyzing a

13 For other objections to classical ergodic models see Aharonov and Vaidman (1993) and Aharonov, Anandan
and Vaidman (1993).
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specific example. Consider an electron in a superposition of two energy eigenstates
in two separate boxes. In this example, even if one assumes that the electron can
move with infinite velocity, it cannot continuously move from one box to another
due to the restriction of box walls. Therefore, any sort of continuous motion cannot
generate the effective charge distribution that exists in both boxes.'*

Since quantum mechanics does not provide further information about the posi-
tions of the particles at each instant, the discontinuous motion of particles described
by the theory is also essentially random. Moreover, the time spent by the N par-
ticles of an N-body system around N positions in 3-dimensional space being pro-
portional to the modulus squared of the wave function of the system there means
that the (objective) probability density for the particles to appear in the positions
is also proportional to the modulus squared of the wave function there (and for
normalized wave functions they are equal). This ensures that the motion of these
particles forms the right mass and charge distributions. In addition, from a logical
point of view, the N particles as a whole must also have an instantaneous property
(as a probabilistic instantaneous condition) which determines the probability den-
sity for them to appear in the N positions in space; otherwise the particles would
not “know” how frequently they should appear in each group of N positions in
space. This property is usually called indeterministic disposition or propensity in
the literature. >

In conclusion, we have argued that the ergodic motion of the particles of a quan-
tum system that forms its effective mass and charge distributions is discontinuous
and random, and the probability density for the particles to appear in every group
of positions is equal to the modulus squared of the wave function of the system
there.

15.3.4 Interpreting the wave function

According to the above analysis, microscopic particles such as electrons, which
are described by quantum mechanics, are indeed particles. Here the concept of
particle is used in its usual sense. A particle is a small localized object with mass
and charge, and it is only in one position in space at each instant. Moreover, the
motion of these particles is not continuous but discontinuous and random in nature.
We may say that an electron is a quantum particle in the sense that its motion is not

14" One may object that this is merely an artifact of the idealization of infinite potential. However, even in this
ideal situation, the ergodic model should also be able to generate the effective charge distribution by means
of some sort of ergodic motion of the electron; otherwise it will be inconsistent with quantum mechanics.
Note that the propensity here denotes single case propensity. In addition, it is worth emphasizing that the
propensities possessed by the particles relate to their objective motion, not to the measurements on them. By
contrast, according to the existing propensity interpretations of quantum mechanics, the propensities a
quantum system has relate only to measurements; a quantum system possesses the propensity to exhibit a
particular value of an observable if the observable is measured on the system.



224 Shan Gao

continuous motion as described by classical mechanics, but random discontinuous
motion as described by quantum mechanics.

Unlike deterministic continuous motion, the trajectory function x(¢#) can no
longer provide a useful description for random discontinuous motion of a particle.
It has been shown that the strict description of random discontinuous motion of a
particle can be given based on the measure theory (Gao, 2013b). Loosely speaking,
the random discontinuous motion of a particle forms a particle “cloud” extending
throughout space during an infinitesimal time interval around a given instant ¢, and
the state of motion of the particle at the instant is represented by the density and
flux density of the cloud, denoted by p(x, f) and j(x, 1), respectively, which satisfy
the continuity equation dp(x, t)/dt + V j(x,t) = 0. The density of the cloud, p(x, 1),
represents the probability density that the particle appears in position x at instant ¢,
and it satisfies the normalization condition f po(x,t)dv = 1.

As we have argued above, for a charged particle such as an electron the cloud is
an electric cloud, and p(x, t) and j(x, ), when multiplied by the total charge of the
particle, are the (effective) charge density and electric flux density measurable by
protective measurements, respectively. Thus we have the following relations:

p(x, 1) = [(x, 1), (15.6)

h
JGx, 1) = 2—[;0*(% DVY(x, 1) = Y(x, NV (x, D] (15.7)

mi
Correspondingly, the wave function /(x, ¢) can also be uniquely expressed by p(x, t)
and j(x, t) (except for an overall phase factor). This means that the wave function
W(x, 1) also provides a description of the state of random discontinuous motion of
a particle.

The description of the state of motion of a single particle can be extended to the
motion of many particles. The extension may explain the multi-dimensionality of
the wave function. At a given instant, a quantum system of N particles can be rep-
resented by a point in a 3N-dimensional configuration space. During an infinitesi-
mal time interval around the instant, these particles perform random discontinuous
motion in 3-dimensional space, and correspondingly, this point performs random
discontinuous motion in the configuration space and forms a cloud there. Then,
similarly to the single particle case, the state of the system is represented by the
density and flux density of the cloud in the configuration space, p(x1, x2, ..., XN, )
and j(xi, x2, ..., Xy, 1), where the density p(xy, x2, ...Xy, f) represents the probability
density that particle 1 appears in position xp, particle 2 appears in position xy, ...,
and particle N appears in position xy.'® Since these two quantities are defined in

16 When these N particles are independent, the density p(x1, x2, ..., Xy, f) can be reduced to the direct product of
the density for each particle, namely p(x1, x2, ..., Xy, 1) = Hﬁl p(xi, 1).
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the 3N-dimensional configuration space, the many-particle wave function, which
is composed of these two quantities, is also defined in the 3N-dimensional config-
uration space.

One important point needs to be emphasized here. Since the wave function in
quantum mechanics is defined at a given instant, not during an infinitesimal time
interval around a given instant, it should be regarded not simply as a description of
the state of motion of particles, but more suitably as a description of the disposi-
tional property of the particles that determines their random discontinuous motion
at a deeper level. In particular, the modulus squared of the wave function deter-
mines the probability density that the particles appear in every possible group of
positions in space. By contrast, the density and flux density of the particle cloud
in the configuration space, which are defined during an infinitesimal time interval
around a given instant, are only a description of the state of the resulting random
discontinuous motion of particles, and they are determined by the wave function.
In this sense, we may say that the motion of particles is “guided” by their wave
function in a probabilistic way.

15.3.5 On momentum, energy and spin

We have been discussing random discontinuous motion of particles in position
space. Does the picture of random discontinuous motion exist for other observables
such as momentum and energy? Since there are also momentum wave functions
etc. in quantum mechanics, it seems tempting to assume that the above interpre-
tation of the wave function in position space also applies to the wave functions
in momentum space etc. This means that when a particle is in a superposition of
the eigenstates of an observable, it also undergoes random discontinuous motion
among the eigenvalues of this observable. For example, a particle in a superposition
of momentum eigenstates also undergoes random discontinuous motion among all
momentum eigenvalues. At each instant the momentum of the particle is definite,
randomly assuming one of the momentum eigenvalues with probability given by
the modulus squared of the wave function at this momentum eigenvalue, and dur-
ing an infinitesimal time interval around the instant the momentum of the particle
spreads throughout all momentum eigenvalues.

However, there is also another possibility, namely that the picture of random
discontinuous motion exists only for position, while momentum and energy etc.
are not instantaneous properties of a particle and they do not undergo random dis-
continuous change either. There are several reasons supporting this possibility. The
first is that our previous arguments for random discontinuous motion of particles
apply only to position, not to other observables such as momentum and energy etc.
For example, since the interaction Hamiltonian for a many-particle system relates
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to the positions of these particles, not to their momenta and energies, the previous
analysis of electrostatic self-interaction applies only to position. Next, the Kochen—
Specker theorem requires that under certain reasonable assumptions only a certain
number of observables can be assigned definite values at all times (Kochen and
Specker, 1967). This strongly suggests that the picture of random discontinuous
motion exist only for a certain number of observables. Moreover, since there are
infinitely many observables and these observables arguably have the same status,
this may further imply that the picture of random discontinuous motion does not
exist for any observable other than position. Lastly, the meaning of observables as
Hermitian operators acting on the wave function lies in the corresponding ways to
decompose (and also to measure) the same wave function. For example, position
and momentum reflect two ways to decompose the same spatial wave function. In
this sense, the existence of random discontinuous motion for momentum will be
redundant.

Therefore, it seems more reasonable to assume that the picture of random dis-
continuous motion exists only for position. In this view, the position of a particle
is the only instantaneous property of the particle defined at instants (besides its
wave function), while momentum and energy are properties relating to the state of
motion of the particle (e.g. momentum and energy eigenstates), which is formed
by the motion of the particle during an infinitesimal time interval around a given
instant.!” Certainly, when a particle is in a momentum or energy eigenstate, we
may still say that the particle has definite momentum or energy, whose value is the
corresponding eigenvalue. Moreover, when a particle is in a momentum or energy
superposition state and the momentum or energy branches are well separated in
space, we may also say that the particle has definite momentum or energy in each
separated region.

Finally, we note that spin is a more distinct property. Since the spin of a free
particle is always definite along one direction, the spin of the particle does not
undergo random discontinuous motion, though a spin eigenstate along one direc-
tion can always be decomposed into two different spin eigenstates along another
direction. But if the spin state of a particle is entangled with its spatial state due to
interaction and the branches of the entangled state are well separated in space, the
particle in different branches will have different spin, and it will also undergo ran-
dom discontinuous motion between these different spin states. This is the situation
that usually happens during a spin measurement.

17" Note that the particle position here is different from the position property represented by the position
observable in quantum mechanics, and the latter is also a property relating only to the state of motion of the
particle such as position eigenstates. In addition, for random discontinuous motion the position of a particle
in a position superposed state is indeterminate in the sense of the usual hidden variables, though it does have
a definite value at each instant. Another way to see this is to realize that random discontinuous motion of
particles alone does not provide a way to solve the measurement problem. For further discussions see Gao
(2013b).
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15.4 Conclusions

Quantum mechanics is a physical theory about the wave function and its time evo-
lution. There are two main problems in the conceptual foundations of quantum
mechanics. The first one concerns the physical meaning of the wave function. The
second one is the measurement problem, which concerns the time evolution of the
wave function during a measurement. Although the meaning of the wave function
should be ranked as the first interpretative problem of quantum mechanics, it has
been treated as a marginal problem, especially compared with the measurement
problem. There are already several alternatives to quantum mechanics which give
basically satisfactory solutions to the measurement problem. However, these the-
ories at their present stages have not yet succeeded in making sense of the wave
function.

In this chapter, we propose a new approach for solving the problem of inter-
preting the wave function, which is to analyze the mass and charge properties of a
quantum system. First of all, with the help of protective measurements, we argue
that the wave function of a quantum system is a representation of the physical
state of the system. The argument does not depend on non-trivial assumptions and
also overcomes existing objections to the implications of protective measurements.
Next, we further analyze the ontological meaning of the wave function. The key
is to realize that the Schrodinger equation, which governs the evolution of a quan-
tum system, contains more information about the system than the wave function
of the system, which can help unveil the meaning of the wave function. An impor-
tant piece of information is the mass and charge properties of the system, which are
responsible for the gravitational and electromagnetic interactions between systems.
We first analyze the mass and charge distributions of a one-body quantum system.
It is argued that the mass and charge of a one-body system such as an electron is
distributed throughout space in efficiency, and the effective mass and charge distri-
butions manifest more directly during a series of protective measurements, which
indicate that the effective mass and charge density in each position is proportional
to the modulus squared of the wave function of the system there. By analyzing the
origin of the effective charge distribution, we further argue that the effective mass
and charge distributions are formed by the ergodic motion of a localized particle
with the total mass and charge of the system. Moreover, the ergodic motion of the
particle is discontinuous and random, and the probability density that the parti-
cle appears in every position is equal to the modulus squared of its wave function
there. We then analyze the mass and charge properties of a many-body system. It is
argued that the wave function of an N-body system describes the state of N discrete
particles in 3-dimensional space.

Based on these analyses, we propose a new ontological interpretation of the wave
function in terms of particle ontology. According to this interpretation, quantum
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mechanics, like Newtonian mechanics, also deals with the motion of particles in
space and time. Microscopic particles such as electrons are still particles, but they
move in a discontinuous and random way. The wave function describes the state of
random discontinuous motion of particles, and at a deeper level, it represents the
dispositional property of the particles that determines their random discontinuous
motion. Quantum mechanics, in this way, is essentially a physical theory of the
laws of random discontinuous motion of particles. It is a further and also harder
question what the precise laws are, e.g. whether the wave function undergoes a
stochastic and non-linear collapse evolution.
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