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Preface

Statistical mechanics is a fundamental part of theoretical physics. Not only does it
provide the basic tools for analyzing the behavior of complex systems in thermal
equilibrium, but also hints at, and is fully compatible with, quantum mechanics
as the theory underlying the laws of nature. In the process one encounters such
complex emergent phenomena as phase transitions, superfluidity, and supercon-
ductivity which are highly non-trivial consequences of the microscopic dynamics.
At the same time statistical mechanics poses conceptual problems such as how irre-
versibilty can appear from an underlying microscopic system governed by reversible
laws.

Historically, statistical mechanics grew out of classical thermodynamics with
the aim of providing a dynamical foundation for this phenomenological theory.
It thus deals with many-body problems starting from a microscopic model which
is typically described by a simple Hamiltonian. The power of statistical mechan-
ics lies in both its simplicity and universality. Indeed the same concept can be
applied to a wide variety of systems both classical and quantum mechanical. These
include non-interacting and interacting gases, chemical interactions, paramagnetic
and spin systems, astrophysics, and solids. On the other hand statistical mechanics
brings together a variety of different tools and methods used in theoretical physics,
chemistry, and mathematics. Indeed while the basic concepts are easily explained
in simple terms a quantitative analysis will quickly involve sophisticated methods.

The purpose of this book is twofold: to provide a concise and self-contained
introduction to the key concepts of statistical mechanics and to present the impor-
tant results from a modern perspective. The book is introductory in character, and
should be accessible to advanced undergraduate and graduate students in physics,
chemistry, and mathematics. It is a synthesis of a number of distinct undergraduate
and graduate courses taught by the authors at the University of Dublin, Trinity
College over a number of years.

ix



x Preface

Chapters 1 to 4 provide an introduction to classical thermodynamics and statis-
tical mechanics beginning with basic concepts such as Carnot cycles and thermo-
dynamic potentials. We then introduce the basic postulates of statistical mechanics
which are applied to simple systems. This part then ends with a classical treatment
of interactions in terms of a cluster expansion.

Although these techniques can provide us with considerable information about
many systems they are in general not sufficient for all purposes. Therefore, in
Chapters 5 and 6 we present a short self-contained account of the techniques used
in the numerical approach to the statistical mechanics of interacting systems. In
particular, Monte Carlo integration is reviewed in Chapter 5, while the powerful
method of symplectic integrators is described in Chapter 6.

The second part of the book is devoted mostly to quantum statistical mechanics.
In particular, in Chapter 7 Bose–Einstein and Fermi–Dirac systems are explained
in detail, including high- and low-temperature expansions, Bose–Einstein conden-
sation as well as blackbody radiation and phonon excitations in solids.

After introducing the basic concepts of classical and quantum statistical mechan-
ics we make a short excursion into astrophysics and cosmology in Chapter 8, where
we illustrate the importance of this formalism for a quantitative understanding of
important problems such as determining the surface temperature of stars, the sta-
bility of compact objects such as white dwarfs and neutron stars, as well as the
cosmic background radiation.

We then return to the main focus by systematically including interactions into
quantum statistical mechanics. For this, the framework of non-relativistic quantum
field theory is developed in Chapter 9, leading to a systematic, perturbative formal-
ism for the evaluation of the partition function for interacting systems. In addition,
in Chapter 10, we develop non-perturbative techniques which are used to give a
qualitative derivation of the phenomenon of superfluidity.

In Chapter 11 the path integral formulation of quantum mechanics and field
theory is described. The purpose of this chapter is to establish an intuitive link
between classical and quantum statistical mechanics and also to establish some
tools required in the treatment of critical phenomena in the last chapter.

Before that, however, we take another break in Chapter 12 with a critical review
of the material presented thus far. Among the issues analyzed in some detail are
the question of ergodicity, Poincaré recurrence, negative temperatures, and surface
effects.

The final chapter is then devoted to the important subject of phase transitions and
critical phenomena. After some general comments, Landau’s phenomenological
theory for phase transitions is introduced and then generalized, using the path
integral formalism, to compute critical exponents which, in turn, play a central role
in any quantitative discussion of phase transitions.



Preface xi

For the first half of the book a good knowledge of classical mechanics is assumed.
For the second part some practice with quantum mechanics will be necessary. The
aim is to present the concepts and methods of statistical mechanics with the help of
simple examples. These examples illustrate a variety of phenomena that can be ana-
lyzed within statistical mechanics. We have tried, wherever possible, to physically
motivate each step and to point out interconnections between different concepts.
When appropriate we have included a short paragraph with some historical com-
ments to place the various developments in this context.

We would like to thank Samik Sen for help in preparing the manuscript and
Seamus Murphy for help with the figures. Many thanks to Matthew Parry, Mike
Peardon, Fabian Sievers and Wolfgang Wieser for their help with the numerical
algorithms. Further thanks to Herbert Wagner for helpful comments and to Sean
Keating for a careful reading of the manuscript.
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1

The problem

We shall be concerned in this book with the modeling of physical systems containing
a large number of interacting particles. These physical systems include volumes of
gases, liquids, and solids, which may or may not be isolated from their surroundings.
The constituents making up these systems can be molecules, atoms, or elementary
particles like electrons and protons. The techniques we will develop in this book,
however, will be applicable to much broader classes of problems than those which
serve as our initial focus.

1.1 A molecular model

Let us begin with a concrete physical system containing N non-relativistic, identical
particles which interact pairwise. The Hamiltonian for such a system is

H = 1

2m

∑
i

|pi |2 + V (x1, . . . , xN ),

where xi and pi are the positions and momenta of the particles in the system,
and i = 1, . . . , N . The classical approach to solving this system involves integrat-
ing Hamilton’s equations of motion. A full solution, either analytic or numerical,
requires that the positions and momenta of all N particles be specified at some
particular time t0. The solution must then solve the equations to trace out the full
trajectories followed by all N particles in the system for some finite time interval
beyond t0.

To grasp the scope of the problem when addressed in this way, let us con-
sider some of the numbers involved. One gram of O2 gas contains about 2 × 1022

molecules. At typical atmospheric pressure and temperature this amount of gas will
occupy a volume of about 10 cm3. Clearly this represents a reasonably small amount
of gas. We see immediately that any analysis of this system which depends on inte-
grating the equations of motion is doomed to fail. There are just too many molecules

1



2 The problem

involved. Modern computers can execute individual calculations at a rate of approx-
imately one per nanosecond. Solving equations of motion takes many operations
per molecule. But as a lower bound, suppose it took a computer a nanosecond to
plot the motion of a single molecule in this gas for some period of its evolution.
The same computer would then require over 300 000 years to calculate the motion
of all 1022 molecules over the same time period!

The statistical approach to modeling systems with large numbers of degrees of
freedom involves describing the system’s properties using averages from a small set
of appropriate and relevant observables. The thought behind the statistical approach
is that the exact details of the behavior of any given degree of freedom has no sig-
nificant observable effect since there are so many degrees of freedom involved.
The only important variables of interest must involve averaging over many of the
degrees of freedom. Statistical mechanics is the formalization of this intuitive con-
cept. The problems to be addressed in describing statistical mechanics are threefold:
under what circumstances can the properties of a physical system be defined by the
behavior of an appropriate small set of variables, what are the appropriate sets of
relevant variables, and how can one calculate the properties of the system in terms
of these variables.

In what is to follow we will answer these questions in considerable detail. In the
process we will furthermore discover a number of so-called emergent phenomena,
that is physical properties, such as phase transitions or superfluidity of certain N -
particle systems which are not inherent in the microscopic 1-particle Hamiltonian,
but emerge in the limit when the number of particles and the size of the systems tends
to infinity. The framework for our answers will be built initially from the body of
work of Maxwell, Boltzmann, and Gibbs. The formal treatment of this framework
begins in Chapter 2. Before beginning that formal treatment, it is necessary to
describe the physical concept which is the precursor to statistical mechanics, that is
classical thermodynamics. It was developed early in the nineteenth century, and is
based wholly on experimental observations. What is particularly impressive about
classical thermodynamics is that most of the significant results in it were developed
independently of any detailed picture of the atomic nature of matter. Classical
thermodynamics axiomatizes the modeling of physical systems in four basic laws.
The following sections will present these laws of thermodynamics, provide modern
qualitative justifications for them, and discuss some of their simple consequences.

1.2 The basics of classical thermodynamics

Consider a gas of N identical molecules contained in a volume V . The modern view
of this gas is that the molecules are all in motion. For simplicity in the following
discussion we will assume that the molecules all behave like hard spheres, so
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that molecules move in straight lines with constant velocity except during the
process of collision. This motion results in constant collisions between molecules
themselves, and also between the molecules and the walls which contain them in the
volume V . At any given instant, one would expect that molecules will be scattered
throughout the volume. Different molecules will be moving in different directions.
Some molecules will be moving fast, and some will be moving slowly.

Suppose, at some particular instant, we focus on a molecule which is moving
very much faster than any of its neighbors, and follow the path of this molecule for
a short time. This molecule will collide with its neighbors as it moves, and because
its neighbors are moving more slowly, it will tend to slow down and lose energy in
these collisions. Its neighbors in turn will tend to speed up and gain energy. After a
number of collisions, therefore, we can expect that our molecule will have slowed
sufficiently that its momentum will become comparable to that of its neighbors,
and it will no longer stand out as a fast-moving molecule.

If we focus instead on a molecule which is moving slowly relative to its neighbors
then the opposite effect will occur. In collisions with its faster-moving neighbors, the
slowly moving molecule will tend to pick up energy. After a number of collisions the
molecule will have speeded up sufficiently that it also no longer appears exceptional
when compared with its neighbors.

Thought experiments of this kind can be applied to more general situations also.
Suppose for example that molecules in one half of the volume V are all moving rel-
atively fast, while molecules in the other half of the volume are all moving relatively
slowly. At the interface between the two halves of V , fast-moving molecules will be
colliding with slow-moving molecules. The arguments of the previous paragraphs
apply here, and we would expect that the slow-moving molecules at the inter-
face will speed up as a result of these collisions while the fast-moving molecules
will slow down. After a sufficient number of collisions, the distinction between
fast- and slow-moving molecules will wash out, and the interface region will con-
tain molecules which are moving at some common speed which is faster than the
original slow-moving half volume and slower than the original fast-moving half
volume. In effect, a third region will have been introduced into our system, and the
original interface will have become two interfaces. The process can of course be
expected to continue. After many more collisions we would expect this interface
region to expand to fill the whole volume, and the original slow- and fast-moving
regions to disappear and be replaced by a single region where all molecules are
moving at the same typical velocity.

As long as sufficient time is allowed to elapse, we can expect that any irregu-
larities in our system will tend to average out as a result of collisions. Individual
molecules moving with large momentum relative to their neighbors will slow down.
Individual molecules moving with small momentum relative to their neighbors will
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Figure 1.1 Sketch of averaging out of the density of molecules as a function of
time once the separation between the two volumes is removed.

tend to speed up. Similarly, blocks of molecules with large average momentum
relative to neighboring blocks will slow, losing average momentum, and blocks
moving with small average momentum relative to neighboring blocks will speed
up, gaining average momentum. After this sufficient time has elapsed, therefore,
we can expect that the system will appear homogeneous. Molecular momenta at
any one location in the system will be, on average, the same as molecular momenta
at any other location.

Momentum is only one of the properties which we can expect to average out
over a long timescale. Other properties such as molecular densities should average
also. If the system starts with a high density of molecules in one region and a low
density in a second region, then after some time we can expect that molecules will
migrate out of the high-density region into the low-density region until density also
averages out.

After a sufficient length of time, we can expect therefore that our system will
achieve a uniform state where the only important quantities of physical interest are
just those quantities which describe the typical average values in the system. For
a gas of molecules, these quantities should include the density of molecules at a
location, and the average momenta of those molecules.

All of the arguments just presented presuppose that the system we are describing
is left undisturbed for sufficient time so that this averaging process can complete.
We have implicitly presumed that there is no external source of disturbance which,
for example, continuously causes molecules at some points to speed up or slow
down relative to their neighbors. One of the basic assumptions of classical ther-
modynamics is that it is possible to arrange the environment of a physical system
is such a way that no such disturbances act on it. The system is then said to be
thermally isolated. Our thought experiments imply that, as long as sufficient time
is allowed to elapse, a thermally isolated system will rearrange itself in such a way
as to remove all atypical dynamics. At this time the system is said to be in ther-
mal equilibrium. Thermal equilibrium is the first fundamental concept in classical
thermodynamics and can be defined as follows:

Definition 1.1 A system is in thermal equilibrium if the state of the system does
not change under time-independent external conditions.



The basics of classical thermodynamics 5

A consequence of our picture of thermal equilibrium is that systems in thermal
equilibrium exhibit a uniform dynamics throughout. Since the dynamics is uniform,
the important parameters needed to describe that dynamics can be encapsulated in
a small number of variables, which directly or perhaps indirectly define things like
the average velocity and density of particles in the system. Classical thermodynam-
ics proposes that the different thermal equilibrium configurations of a system are
distinct thermodynamic states. Each such state is then describable in terms of the
values of a small number of state variables. These state variables (as we shall see
later) are related to quantities such as average molecular momenta and densities.
A change of state or thermodynamic transformation of a system then refers to a
change in the system from one state of thermal equilibrium to a different state of
thermal equilibrium. A change of state will always be signaled by a change in the
value of one or more of the state variables which define the different equilibrium
states.

The classical state variables which have been found experimentally to be suffi-
cient for describing the equilibrium thermal properties of a gas of molecules are:

(1) The number N of molecules.
(2) The volume V in which the molecules are contained.
(3) The pressure P of the gas.

Pressure measures the force per unit area that the gas exerts on the surface of any
object placed in the gas. It is determined by the rate at which molecules cross
uniform area, and is related to the mass and average velocity of the gas molecules.
In Système International (SI) units, the unit of volume is m3. The unit of pressure is
N/m2 or equivalently kg/(m s2). Atmospheric pressure is of the order 105 kg/(m s2)
at sea level. Atmospheric pressure is usually quoted in bars where 1 bar equals 105

kg/(m s2).
The state variables defining an equilibrium state are often called macroscopic

variables of the system, since they give general information about the very large
number of molecules which make a complete system. In contrast, variables which
describe details of an individual molecule’s dynamics, are called microscopic
variables. Classical thermodynamics deals only in macroscopic variables, and
almost exclusively with systems which are in thermal equilibrium, since state vari-
ables are only defined for such systems. A state in thermal equilibrium can be
uniquely defined by specifying values for all of its state variables. What makes
thermodynamics such a powerful tool is that the state variables do not depend on
the history of how the system reached a given equilibrium state. Consequently
one can choose a path ingeniously and in this way come to conclusions which
would have been very difficult or even impossible to reach by following another
path.
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1.3 The zeroth law of thermodynamics

Consider now what can happen when two thermally isolated systems which are
separately in equilibrium are brought into contact with each other. At the point or
surface of contact, we expect that the molecules from both systems will interact
with each other. These molecules may be completely free moving, or they may be
bound into separate solid walls for the materials contained in each separate system.
In either case, before contact, the systems are each separately in equilibrium, and
the molecules at the boundaries of each system will be moving with momenta which
are typical of their systems of origin. Once contact is established between the two
systems, molecules from one system will start to collide with molecules from the
second system. The averaging process which we have described as occurring within
a system will now begin to occur between systems. The two systems start behaving
like a single larger system, and so long as no further outside disturbances are
added we can expect that the larger combined system will eventually smooth out its
irregularities as before, and a new different thermal equilibrium will be reached for
the combined system. Thermal contact is defined to be contact of systems, which
allows this re-averaging process to occur.

In general, our intuition suggests that when two thermally isolated systems are
brought into thermal contact as just described, an averaging process will result,
and quantities such as average molecular momenta in each system will change
as our averaging process proceeds. There is however a special case to consider,
that occurs when two systems are brought into thermal contact, and no changes
in the individual systems are observed. For this to happen, the average molecular
velocities in the separate systems must already be correctly matched so that no
change occurs when they are brought into thermal contact. This view enables us
to generalize the concept of thermal equilibrium to include systems which are not
originally in thermal contact with each other. Two systems which are thermally
isolated and separately in thermal equilibrium are also in thermal equilibrium with
each other if, when the systems are brought into thermal contact, no changes occur
in the state variables describing the separate systems.

Having considered the possibilities which occur with two thermally isolated
systems, the next step is to look at what happens with three or more thermally
isolated systems. This leads to the zeroth law of classical thermodynamics:

The zeroth law Thermal equilibrium is transitive, i.e. if X , Y , and Z are three
thermal systems, and if X is in thermal equilibrium with Y , and X is in
equilibrium with Z , then Y is in thermal equilibrium with Z .

Within our molecular model, this law describes exactly what we would expect.
Thermal equilibrium implies matching of quantities such as average molecular
momenta between systems. If these are matched between X and Y , and between X
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X

YZ

Figure 1.2 Transitivity of thermal equilibrium: If X and Y are in thermal equilib-
rium and X and Z are in thermal equilibrium, then Y and Z are in equilibrium.

and Z , then they must be matched between Y and Z also. As we shall immediately
see, however, this law has a very profound consequence. In particular, it allows us
to define a thermometer.

Systems in equilibrium, as we have seen, are described by just a few state vari-
ables. In our example these are pressure, volume, and number of particles. Different
possible equilibrium configurations have different values for these state variables.
So long as we only look at a single system these state variables are sufficient. If,
however, we start to bring different systems into thermal contact, things get com-
plicated. Thermal contact can change the state of a system, changing therefore the
state variables describing that state. One of the fundamental pieces of information
which we shall need to know is how state variables will change when systems are
brought into contact. In principle, we can imagine doing a large number of exper-
iments for all possible pairs of systems and studying what actually happens, for
example, when a gas with one set of state variables is brought into thermal contact
with a second gas with a different set of state variables. In practice, this is impos-
sible. There are simply too many different possible systems, and too many ways
for them to interact. The zeroth law comes to the rescue. Whenever we need to
find how state variables change in a system in thermal contact, it is enough to con-
sider the special case of interactions of the system with a special reference system.
This reference system is the system X of the zeroth law and is normally called a
thermometer.

One simple thermometer is a system where a column of mercury is confined in a
long thin transparent tube. When this thermometer is brought into thermal contact
with any system, the significant effect in the thermometer is that the height of the
column of mercury changes until thermal equilibrium is established. This allows us
to label different equilibrium states of a system by specifying the particular value of
the height of the column of mercury for which equilibrium is established between the
thermometer and the system. The mercury thermometer is only one of the possible
thermometers that can be used. So directly indicating the particular equilibrium
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state by specifying this height is not reasonable. Instead we can introduce a new
state variable, the temperature.

Definition 1.2 Two systems which are in thermal equilibrium with each other are
said to have the same temperature.

Since temperature as defined is an abstract quantity, we are free to define its
numeric value any way we wish. Some common temperature scales are defined by
specifying a temperature value for water at its freezing point, and a temperature
value for water at its boiling point. The Fahrenheit scale specifies the freezing point
to be 32 ◦F, and the boiling point to be 212 ◦F. The Celsius scale specifies the freez-
ing point to be 0 ◦C, and the boiling point to be 100 ◦C. Notice that the units used are
completely arbitrary. We make an arbitrary decision that a particular system has a
particular temperature when in one state, and a different temperature when in a dif-
ferent state. Other possible temperature values can then be defined by interpolating
or extrapolating between these two reference values. For example a temperature of
50 ◦C can be defined as the temperature for which the column of mercury in a mer-
cury thermometer is exactly halfway between its height at 0 ◦C and 100 ◦C. A ther-
modynamic system will have temperature 50 ◦C if a mercury thermometer in ther-
mal contact with it has a column exactly this height. Clearly there is some ambiguity
in these definitions. Happily, we will resolve this later in this chapter. The SI stan-
dard temperature scale is the Kelvin scale. We will define this scale explicitly later
in this chapter. For the moment, we note that the Kelvin scale corresponds exactly
to the Celsius scale except for an offset which is given by 0 K = −273.15 ◦C.

The zeroth law has allowed us to introduce a new state variable, the temperature.
This variable is normally labeled T . Equilibrium states of our molecular gas are now
described by four variables: N , V , P , and T . As we saw in the last section, N , V , and
P are sufficient to describe the equilibrium state of a gas in isolation. We have now
introduced a new state variable T which also specifies the equilibrium state. We thus
expect T to be determined by the other state variables. The relationship which so
determines T is called an equation of state and can be expressed in the generic form

f (T, V, P, N ) = 0.

In particular, any substance with an equation of state of this type defines a
thermometer.

For a sufficiently dilute gas at high temperature, the equation of state takes the
explicit form

PV = NkT

where k is a constant of proportionality known as the Boltzmann constant. This
form of the equation of state is known as the perfect gas law. For macroscopic
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systems, N is a very large number. The standard macroscopic unit of measure for
molecule count is Avogadro’s Number NA given by

NA = 6.023 × 1023.

A mole of gas is defined to be that quantity of gas which contains NA molecules.
This quantity of gas will have mass of w grams, where w is the weight of an
individual molecule expressed in atomic mass units. Using NA we can rewrite the
equation of state for a gas as

PV = n RT ,

where R = NAk is known as the gas constant, and n = N/NA is the number of
gram moles of the gas. The numerical values of k and R are

k = 1.38 × 10−23 J/K R = 8.314 J/K per mol

1.4 The first law, heat

Let us return now to consider what happens when two systems are brought into
thermal contact. If they are in thermal equilibrium, that is, if they have the same
temperature, then we know that no change of state will occur. If they are not initially
in equilibrium then we expect both to change state. Since different equilibrium states
are labeled by different temperatures, this change of state is usually (but not always!)
indicated by a change in temperature. In this latter case, when thermal contact is
established, the individual molecules will find that there is a momentum mismatch
between them. Molecules in one system typically are moving slower than molecules
in the second system. As the thermal contact continues, this mismatch begins to
even out. Molecules in one system speed up on average, while molecules in the
second system slow down on average. The immediate consequence, of course, is
that a transfer of energy occurs between the two systems. Energy for a molecule
in our simple example is just its momentum squared divided by twice its mass. If
a molecule speeds up it gains energy, if it slows down it loses energy. Equally if
all the molecules on average speed up, the energy of the system containing them
increases, while if all the molecules on average slow down, the energy of the system
containing them decreases.

The energy transfer which proceeds by molecular interactions of this kind is
called heat. The symbol most often used to indicate heat in classical thermodynam-
ics is Q. Adding heat to a system will change its internal energy, and will also change
the equilibrium state of the system. As a result, when heat is added, at least some
of the state variables describing the system will change. The generic case is at least
that the temperature will change, and again generically this change in temperature
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V

P

Figure 1.3 Executing work on a gas of pressure P by reducing its volume by �V .

is found to be proportional to the amount of heat. If �T is the change in temperature
caused by the addition of an amount �Q of heat to a system, then we have

�Q = c�T .

The positive constant c here is the constant of proportionality and is called the
specific heat capacity or simply specific heat. In general the value of c depends
on the conditions under which the amount of heat �Q is added to the system.
For gaseous systems, there are two special cases which are encountered. If �Q is
added while keeping the volume fixed, then the specific heat is called specific heat
at constant volume, and labeled cV . If �Q is added while keeping the pressure
fixed, then the the specific heat is called specific heat at constant pressure, and
labeled cP . One point to note is that these relations between temperature change
and heat represent the generic case only. There are special cases where adding heat
does not change the temperature or, even more startling, causes a negative change
in temperature.

The classical unit used to measure heat is the calorie. This unit is defined to be
the quantity of heat which must be added to one gram of water at 3.5 ◦C to raise its
temperature by 1 ◦C. Heat is however a form of energy, so the modern SI unit to
use for heat is the joule (J ≡ kg m2/s2). One calorie is equal to 4.1855 J.

Heat is only one way to add energy to a thermodynamic system. An alternative
way is to do work on the system. For a gaseous system one simple way to do work
is to force it to contract in volume. This is illustrated in Figure 1.3. Since the gas is
at pressure P , it exerts a force P A perpendicular to any boundary surface of area
A which contains it. If the area of the wall which is moved in this figure is A, then
the distance the wall moves is �V/A. The work done, W , by the gas is therefore
force times distance moved

�W = (P A)(�V/A) = P�V .
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Adding heat or doing work on a thermodynamic system changes its energy, and
since energy is directly related to average molecular momenta this also will change.
As a result the state variables describing a thermodynamic system will change if
heat is added or work is done. There are two basic possibilities which we now need
to distinguish. State variables suffice to describe a thermodynamic system only if
that system is in equilibrium. During a transformation brought about by applying
heat or doing work, the system may change so rapidly that it is unable to maintain
equilibrium during the change. If, however, a thermodynamic transformation of
a system proceeds at a rate that allows the system to maintain equilibrium at all
times during the transformation, then the transformation is said to be quasi-static.
Any thermodynamic transformation can be made quasi-static if it is carried out
sufficiently slowly, since a system will always reach equilibrium provided it is
given sufficient time. In a quasi-static transformation all state variables are defined
throughout the transformation process. The alternative transformation possibility is
non-quasi-static. In this case, the system changes too rapidly to allow it to maintain
equilibrium during the transformation. Different parts of the system will exhibit
different average properties during such a transformation, and state variables such
as temperature and pressure will not be well defined during such a process.

Thermodynamic transformations can be further classified by the following
definitions:

Definition 1.3 A thermodynamic transformation is

(1) adiabatic if no heat is added to the system during the transformation, i.e.
�Q = 0,

(2) isothermal if the temperature T remains constant during the transformation.
Since T is only defined for systems in equilibrium, isothermal
transformations must be quasi-static,

(3) reversible if it is quasi-static, and if the transformation can be reversed in time
when the external conditions which drive the transformation are reversed in
time,

(4) cyclic if the state variables describing the final state are the same as those
which described the initial state.

The law of the conservation of energy valid in mechanics continues to hold for
thermodynamic transformations. As we have seen on the basis of an atomic model
of matter there are two basic ways to change the energy of a thermodynamic system,
adding heat or doing work. There are also a multiplicity of different ways in which
a transformation can proceed: quasi-statically, adiabatically, etc. We expect from
our model however that energy should be conserved in all of these possible methods
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and mechanisms of energy transfer. This is embodied in the first law of classical
thermodynamics:

The first law The internal energy U of any thermodynamic system is a state
variable, which means that for any infinitesimal transformation δQ, δW

dU = δQ − δW

is an exact differential.

In words, this equation states that the change in energy of a system is the heat
added minus the work done by the system. In any thermodynamic transformation,
the total energy of the system plus environment is conserved and the change in
the internal energy �U = U (B) −U (A) is independent of the transformation that
connects the two equilibrium states A and B.

An immediate corollary of the first law is the impossibility of a perpetuum mobile,
i.e. a transformation for which �U = �Q = 0 but �W �= 0, where �Q is the heat
added to the system, and �W is the work done by the system.

1.5 The second law, entropy

As far as the first law is concerned there is no restriction on the possibility of
transferring energy from one form into another provided the total amount of heat
energy is equal to the total amount of work energy in the process. It is experimentally
observed that work can be totally converted into heat and that heat can flow, with
no restrictions, from a hot body to a cold one. However, the reverse process of
converting heat into work or transfer of heat from a cold object to a hot object does
not occur. We have already described how interactions proceed for two systems
in thermal contact. We expect that the system with the relatively slowly moving
molecules will find that its molecules will speed up, and it will gain energy. The
system with the relatively fast-moving molecules on the other hand, will find that its
molecules tend to slow down and it will tend to lose energy. In other words, the cold
system, with slow-moving molecules, heats up. The hot system, with fast-moving
molecules, cools down. What we do not expect, however, is the opposite case with
the hot system heating further and gaining energy at the expense of the cold system
cooling further and losing energy.

It is a remarkable achievement in the development of classical thermodynamics
that this qualitative picture describing our expectation of how complex systems
interact can be formulated precisely into the second law which we will now describe.

The second law deals with fundamental properties of a system in thermal con-
tact with other systems. In order to abstract the details of these other systems we
introduce the concept of a heat reservoir or heat bath at temperature T . This is
defined to be a system from which heat can be removed or added without changing
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Figure 1.4 An engine which transforms heat entirely into work.

its temperature. The basic idea here is that we wish to concentrate on a given sys-
tem which interacts with its environment by exchanging heat. In principle, this
interaction can change the environment as well as the given system. We are, how-
ever, not interested in those cases where the environment changes significantly
since we would then have to be specific about the environment. Thus we define an
idealized environment which has a constant temperature, and an infinite capacity
to absorb or provide heat for our system without appreciable change. Physically,
we imagine that a reservoir is a very large thermodynamic system relative to the
system in which we are interested. Amounts of heat transfer which have signifi-
cant effects on our system are then too small to significantly alter the state of the
reservoir.

A system interacting with its surroundings will, according to the first law, change
energy as heat is added or work is done. We wish now to consider the special case
where a system begins in some state, interacts in diverse ways with its surroundings
and eventually returns to a new state which has the same energy with which the
system began. This allows us to focus on the kinds of change that a system can
undergo which are not simply due to change in energy. The second law addresses
what is possible. There are different formulations of the second law; we state two
of them.

The second law Kelvin–Planck statement: There exists no thermodynamic
transformation whose sole effect is to extract a quantity of heat from a given heat
reservoir and convert it entirely into work, Figure 1.4.
Clausius statement: There exists no thermodynamic transformation whose sole
effect is to extract a quantity of heat from a given cold reservoir and transfer it to a
hotter reservoir, Figure 1.5.

The key word in both statements is the word “sole.” If we consider a gas whose
internal energy is a function of temperature only then a reversible isothermal expan-
sion of this gas converts heat totally into work. For such a transformation �U = 0,
which immediately gives �Q = �W , i.e. in this expansion, heat �Q has been
totally converted to work �W . At the end of the process, however, the gas has
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Figure 1.5 An engine whose sole effect is to transport heat from T1 to T2, T2 > T1.

expanded. Thus the transformation does not solely result in the conversion of heat
into work. A gas expansion also occurs.

The second law has some very remarkable consequences. These include the
existence of a universal temperature scale which is completely independent of any
substance, and the existence of a completely new state variable for thermodynamic
systems called entropy. We will establish these consequences in a series of problems
and theorems.

Note the directionality contained in the second law. It does not allow heat to be
converted to work in a cyclic manner but it does allow work to be converted to heat.
Similarly it does not allow heat to be transferred from a cold to a hot reservoir in a
cyclic manner but it does allow heat to be transferred from a hot to a cold reservoir.

An idealized arrangement in which to discuss the consequences of the second
law is provided by a simple heat engine. This is a device which undergoes a cyclic
thermodynamic transformation during which it extracts heat of amount Q2 from
a reservoir at temperature T2, performs work of amount W , and ejects heat of
amount Q1 to a reservoir at temperature T1. The temperatures involved are ordered
so that T2 > T1. Since the transformation is by definition cyclic, the initial and final
thermodynamic states of the engine are the same, and we have �U = 0. The first
law then gives

Q2 − Q1 = W.

Thus the engine converts heat Q2 − Q1 into work W . A simple heat engine
is represented pictorially in Figure 1.6. A simple heat engine in which the
cyclic thermodynamic transformation involved is reversible is called a Carnot
engine.
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Figure 1.6 Carnot cycle.

The efficiency of a heat engine is the measure of how well it converts heat into
work. It is defined as the ratio, η, of work performed to heat extracted from the
reservoir

η = W

Q2
= Q2 − Q1

Q2
= 1 − Q1

Q2
.

Note that the first law requires that W ≤ Q2. The maximum efficiency possible
occurs when the engine ejects no heat, and converts all extracted heat into work. In
this case W = Q2, Q1 = 0, and η = 1. The Kelvin–Planck statement of the second
law expressly forbids this possibility, however, and therefore requires that all heat
engines must have η < 1.

We leave it as a problem to the reader (see Problem 1.4 ) to show that the Kelvin–
Planck statement and the Clausius statement of the second law are equivalent and
continue by describing a fundamental result that follows directly from the second
law and which states that

Theorem 1.1 No simple heat engine is more efficient than a Carnot engine.

Proof. Consider a simple engine E which absorbs heat Q2 from a reservoir at
temperature T2 and rejects heat Q1 to a reservoir at temperature T1 with T2 > T1.
This engine performs work WE = Q2 − Q1. Its efficiency is, by definition,

ηE = Q2 − Q1

Q2
= WE

Q2
.

Now consider a Carnot engine C operating between the same two reservoirs which
does the same amount of work WC = WE ≡ W by absorbing heat Q′

2 at T2 and
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Figure 1.7 A combined engine that has the sole effect of transporting heat between
T2 and T1.

ejecting heat Q′
1 at T1. The efficiency of the Carnot engine is

η = Q′
2 − Q′

1

Q′
2

= W

Q′
2

.

Suppose now that the Carnot engine is the less efficient, so that ηE > η. This
implies

W

Q2
>

W

Q′
2

=⇒ Q2 < Q′
2.

We now show that this is in contradiction to the second law. To establish this
result we run the Carnot engine in reverse so that it now absorbs Q′

1 at T1 and
rejects Q′

2 at T2. The combined effect of one cycle of the engine E and the Carnot
engine C running in reverse is to absorb net heat Q′

1 − Q1 from the reservoir at
temperature T1, eject net heat Q′

2 − Q2 > 0 to the reservoir at T2, and perform net
work WE − WC = 0. The sole effect, therefore, is to transfer Q′

2 − Q2 > 0 to the
reservoir at temperature T2 (see Figure 1.7). This heat must come from the reservoir
at temperature T1, since no net work is performed by the combined system. We have
arrived therefore at a violation of the Clausius statement of the second law. We must
therefore have ηE < η. Note that no violation occurs in this latter case, when the
Carnot engine is the more efficient. We find then that Q′

2 − Q2 < 0, and heat is
taken from the reservoir at the higher temperature rather than ejected to it. �

Corollary 1.2 All Carnot engines working between the same reservoirs, have the
same efficiency.

Proof. Consider two Carnot engines C1 and C2 working between the same reser-
voirs. Since C2 is a heat engine, we have according to the theorem ηC1 ≥ ηC2.
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Similarly we find ηC2 ≥ ηC1. Thus

ηC1 = ηC2 . �

When we introduced temperature in Section 1.3, we were careful to point out
that the scales we defined for temperature were arbitrary, and that they depended on
the particular physical system which was used as a thermometer. A Carnot engine
represents a physical system, and therefore can be used as a thermometer. The nice
feature of Carnot engines which distinguishes them as thermometers, however, is
the universality of efficiencies which we have just proved. This allows us to give a
universal definition of a thermodynamic temperature which is independent of the
substance used to measure it.

Definition 1.4 A Carnot engine defines an absolute temperature scale. In this
scale, the temperatures of two systems are related by connecting them with a
Carnot engine. We have

T1

T2
≡ Q1

Q2
= 1 − η.

where Q2 is the heat absorbed by the Carnot engine from the system at temperature
T2, and Q1 is the heat ejected from the Carnot engine at temperature T1.

With this definition temperature has taken on a quantitative interpretation which
goes beyond just distinguishing between hotter and cooler reservoirs. Of course, the
numerical value of temperature in the absolute scale is not defined by the preceding
considerations. In fact, this value is seen to be completely arbitrary, since our
definitions have involved only ratios. In SI units one takes 273.15 K as the numerical
value of the absolute temperature of the triple point of water. This choice fixes the
remaining arbitrariness and defines the Kelvin absolute scale of temperature.

An immediate corollary that follows from this definition together with the second
law is that

Corollary 1.3 No thermodynamic state with absolute temperature T ≤ 0 is
possible.

Proof. Observe that, by the Kelvin–Planck statement of the second law, we must
have η = 1 − Q1/Q2 < 1 since this statement requires that at least some heat Q1

has to be ejected by a cyclic engine. For temperatures measured with the absolute
temperature scale, we therefore have

0 <
T1

T2
= Q1

Q2
< 1.
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Thus all systems which can be connected by Carnot engines must have absolute tem-
peratures with the same sign, and since the triple point of water has a positive temper-
ature in the absolute scale, all other systems must also have positive temperatures. A
negative T1 would lead to η > 1 and thus violate the second law of thermodynamics.

Note further that the inequality T1/T2 > 0 is a strict inequality. The possibility
that T1 = 0 is excluded. No thermodynamic system, therefore, can have a zero
absolute temperature. All systems must have a strictly positive absolute temperature
(see Chapter 12 for further discussion on this point). �

From our definition of the thermodynamic temperature it is clear that

Q1

T1
= Q2

T2

holds for any Carnot process. Thus �Q/T is independent of which reversible path
is chosen to transform two states into each other. This suggests that we introduce a
new variable of state – the entropy.

Definition 1.5 The difference of the entropy �S ≡ S(B) − S(A) is defined as

�S ≡
B∫

A

δQ

T
,

where the integral is taken along the path of a reversible process.

Theorem 1.4 The entropy function is a state function, that is, it depends only on
the state of a system and not on the way the state was constructed.

Proof. Consider a system undergoing a reversible thermodynamic transforma-
tion which starts in state A, then passes through a sequence of different states,
B1, . . . , BN , and finally returns to state A. We imagine that an engine E is driving
this transformation, and that each of the intermediate states Bi have well-defined
temperatures Ti , and are occupied for short but finite time intervals. The system
will smoothly move between a series of different states during the transformation
process and the states Bi approximately represent the state a system occupies during
a short time interval. For each infinitesimal transformation we then have

�S = Qi

Ti
.

Now, let us take the limit when the discrete set becomes a continuum. We find then
that ∑

i

�Qi

Ti
→

∮
δQ

T
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Figure 1.8 Any reversible transformation can be approximated by a series of
Carnot cycles.

where
∮

denotes integration over a closed path. Recall that the transformation
which the system undergoes starts and ends at A. If the closed path describes a
reversible transformation we can approximate this contour to arbitrary accuracy by
a composition of Carnot cycles as in Figure 1.8. But since �Q/T sums to zero for
each Carnot cycle we have ∮

δQ

T
= 0,

so that the integral,

S(B) − S(A) =
∫ B

A,reversible

δQ

T

is found to be independent of the particular reversible path joining states A and B,
and so is a function of the path end points only. �

There is, in fact, a simple generalization of the theorem we just proved, known
as

The clausius inequality For any arbitrary engine E which operates between a
sequence of reservoirs at temperatures T1, T2, . . . , Tn absorbing (or ejecting) heat
Q1 at T1, Q2 at T2, . . . , Qn at Tn the following inequality holds,

∑
i

Qi

Ti
≤ 0.
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Proof. To prove this inequality we again replace an arbitrary thermodynamic trans-
formation by a series of infinitesimal transformations, but allow some or all of the
infinitesimal cycles to be irreversible. For such an engine Ei→i+1 the second law
implies the inequality

η = 1 + δQi

δQi+1
≤ ηreversible = 1 − Ti

Ti+1
.

Thus

δQi

Ti
+ δQi+1

Ti+1
≤ 0 .

Summing up all these inequalities then leads to the result. �

At the beginning of the section, we described the experimental fact that certain
processes in thermodynamic systems appear not to occur, even though they are
allowed energetically. For example, a hot system cools rather than heats further
when it comes into contact with a cold system. The second law places a fundamental
restriction on what is actually possible. As stated, the second law applies only to
a very special case: that of an engine connecting two heat reservoirs. However,
the introduction of the idea of entropy allows us to generalize the applications of
the second law, and we can now state a fundamental theorem which applies to all
systems and all thermodynamic transformations.

Theorem 1.5

(1) The entropy for an isolated system undergoing an irreversible change always
increases. The entropy is thus maximal at equilibrium.

(2) S is a concave function of (U, V, N ) (Figure 1.9).

Proof. Consider an arbitrary irreversible thermodynamic transformation, tI, which
transforms a system from a state A into a state B. Find a reversible thermodynamic
transformation, tR, which transforms the system back from B to A. Note that we
assume that such a reversible transformation is always possible to find. By the
Clausius inequality, we have∫ B

A,tI

δQ

T
+
∫ A

B,tR

δQ

T
≤ 0.

The contribution to this inequality coming from the integration over the reversible
path tR gives just the change in entropy between A and B, and we find therefore,

S(B) − S(A) ≥
∫ B

A,tI

δQ

T
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Figure 1.9 Sketch of the entropy function for fixed N .

If the system is thermally isolated as it undergoes the irreversible transformation
tI, then we have �Q = 0 during the transformation, and so

S(B) − S(A) ≥
∫ B

A,tI

δQ

T
= 0

which gives

S(B) ≥ S(A).

To prove the second part of the theorem we consider a pair of systems which are
separately in thermodynamic equilibrium. If we now take a fraction λ of one system
(0 ≤ λ ≤ 1) and bring it in thermal contact with a portion (1 − λ) of the second
system such that they are thermally isolated from the rest of the world the state
of maximum entropy will occur when the two subsystems are in equilibrium with
each other. Thus according to our above result

S(λU1 + (1 − λ)U2, λV1 + (1 − λ)V2, λN1 + (1 − λ)N2)

≥ λS(U1, V1, N1) + (1 − λ)S(U2, V2, N2) ,

which is equivalent to the statement that S is a concave function in variables
(U, V, N ). �

This theorem represents the full consequence of the second law of thermody-
namics. The essence of the second law is the statement that all adiabatic processes
(slow or violent, reversible or not) can be quantified by a unique entropy function,
S, on the equilibrium states of all macroscopic systems, whose increase is a neces-
sary and sufficient condition for such a process to occur. It is one of the few really
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Figure 1.10 Intersection of the tangent plane T�(p) and the entropy surface �.

fundamental physical laws in the sense that no deviation, however tiny, is permit-
ted. Its consequences are far-reaching. Since the entropy principle is independent
of any statistical mechanical model, it ought to be derivable from a few logical prin-
ciples without recourse to Carnot cycles, ideal gases and other assumptions about
such things as “heat”, “hot” and “cold”, “temperature”, “reversible processes”, etc.
Indeed, temperature is a consequence of entropy rather than the other way around,
as we will see in the next section.

1.6 Gibbs phase rule

An important observation is that the entropy is not, in general, strictly concave.
This means that equality is indeed possible in the last line of the proof of Theorem
1.5. As we will now see this property is related to the possibility of coexistence of
more than one phase, such as ice and water. In order to elaborate on this claim in
full generality we need to make use of two basic properties. The first is that each
equilibrium state corresponds to a point on the entropy surface, Figure 1.9, which
we will denote by �. The second property is that each point represents either a pure
phase or a unique mixture of pure phases. If this second property were not satisfied
then there would be no deterministic description of a thermodynamic state. We will
therefore assume that this is a property of all physical systems.

To decide if a given point, p, on� corresponds to a pure phase we can consider the
tangent plane T�(p), at the point p. Note that since (∂S/∂U ) = 1/T and (∂S/∂V ) =
P/T , the intersection T�(p) ∩� corresponds to constant temperature and pressure
which are just the quantities which are typically held fixed during a phase transition.
If the intersection T�(p) ∩� is a point, then p is a pure phase. More generally, if �

is not strictly concave, then this intersection can be a higher dimensional simplex,
i.e. a segment of a straight line or a triangle (see Figure 1.10).

In the case of a line we write p = λp1 + (1 − λ)p2, 0 ≤ λ ≤ 1, where p1 and
p2 are pure phases. In the case of a triangle we have p = λ1 p1 + λ2 p2 + λ3 p3,
λ1 + λ2 + λ3 = 1. That the intersection is necessarily of this form follows from the
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Figure 1.11 Phase diagram of a one-component fluid: (a) in the P, T plane; (b)
in the P, V plane; (c) in the S, V plane projected along the U -axis. The shaded
triangle in (c) parametrizes the mixture of three phases.

property that each equilibrium state which is not a pure phase is a unique mixture of
pure phases. In particular, this would not be the case if the boundary of T�(p) ∩�

were a circle.
As an illustration we consider the phase diagram of a one-component fluid (e.g.

water) in the P, T plane, the P, V plane, and in the S, V plane in Figure 1.11.
The line p1 p2 in Figure 1.10c corresponds to the mixture of two phases, while the
triangle p1, p2, p3 describes a mixture of three phases. Note that in the P, V plane
there is no unique decomposition of p into pure phases. In order to decompose p
uniquely we have to work with the variables S and V .

Let us now consider a fluid consisting of n types of molecules, e.g. H2O,
CO2, . . . In this case � is a higher-dimensional surface. We then consider the
entropy per mole, s(u, v, c1, . . . , cn−1), where u = U/

∑
i Ni , v = V/

∑
i Ni and

ci = Ni/
∑

i Ni are the concentrations. Thus � is a n + 1 dimensional hyper sur-
face. The intersection T�(p) ∩� is then a simplex of dimension d ≤ n + 1, rep-
resenting d + 1 coexisting phases. In particular, we conclude that at most n + 2
phases can coexist simultaneously. Furthermore, assuming that k phases coexist,
we define the degeneracy by the number, f, of variables that can be varied without
changing the composition of phases. Since the dimension of � is n + 2 we have

f ≤ n + 2 − k.

This is the Gibbs phase rule.

1.7 Thermodynamic potentials

In the development we have followed to describe the zeroth, first, and second
laws of thermodynamics we have defined thermodynamic state variables (and state
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functions) which depend on those state variables. For instance, a gas of molecules
is described by state variables such as the pressure P , the volume V , the number
of molecules N , and the temperature T . These variables, as we have seen, form an
over-complete set and so there exists an equation of state connecting them,

f (P, V, N , T ) = 0.

As an example, for a perfect (or ideal) gas, the equation of state is

PV = NkT .

More generally the equations of state are encoded in certain functions of the state
variables such as the internal energy U and the entropy S. The internal energy is
defined on any state of the system, whether in equilibrium or not. The entropy is
defined only on equilibrium states.

For the following we will confine our attention only to systems whose equi-
librium states are defined by the thermodynamic variables P, V, T and N . These
comprise a wide variety of solid, liquid, and gaseous systems, and so are not partic-
ularly restrictive. Since any equilibrium state can be defined by specifying values
for P, V, T, and N , the internal energy and entropy must be functions of these
variables,

U ≡ U (P, V, T, N ) and S ≡ S(P, V, T, N ).

Not all these variables are independent of course, since they are connected by the
equation of state. Thus we are at liberty to choose any set of variables which uniquely
define the different equilibrium states of the system. All other thermodynamic
functions can then be considered as functions of the independent set we have
chosen. For example, we can choose P, V , and N as the independent set, and we
would find that T, U, and S would all be functions of these three independent
variables. However the variables P, V, N , and T are not in any way special. The
variables U and S are also thermodynamic, and we are at liberty to choose these
also as members of our basic independent set. For example, we could choose T, S,
and N as the independent variables, and we would find U, P, and V would be
functions of these. There are clearly many different choices of variables available.
As we will now describe, the choice of an appropriate set of variables depends on
the external conditions imposed on the thermodynamical system we want to study.

Consider first the thermodynamic laws defining internal energy and entropy. The
first law, when applied to an infinitesimal transformation, states

dU = δQ − δW = δQ − PdV,

where we have used the fact that the work done by a system undergoing a volume
change is δW = PdV . The form of the second law which is most useful to us



Thermodynamic potentials 25

now is the statement that entropy increases in any irreversible transformation. In
differential form this is given by

dS ≥ 1

T
δQ.

For a reversible transformation, this becomes

dS = 1

T
δQ.

If we combine these two equations, we have for a reversible thermodynamic trans-
formation

dU = T dS − PdV .

Since we have already assumed, in defining entropy, that all equilibrium states of
a thermodynamic system can be connected by a reversible thermodynamic transfor-
mation, we now find that we can calculate the internal energy difference between
any states by integrating this last equation along a reversible path. As we move
along this reversible path, we find that U changes only when S or V changes. This
implies that the natural viewpoint to adopt for the internal energy is that it is a
function of S and V . So far we have not allowed the possibility that the number
of particles in our system can change, and we expect that adding particles would
also add energy, and that U must also change as N changes. The natural set of
independent variables to choose when describing the internal energy is therefore

U ≡ U (S, V, N ).

In addition we have from the equation for dU that,(
∂U

∂S

)
V,N

= T, and

(
∂U

∂V

)
S,N

= −P.

The subscripts V, N and S, N indicate the fact that the corresponding partial deriva-
tives must be evaluated while keeping V, N fixed in the first case, and S, N fixed in
the second case. We will denote the magnitude of the variation of U as the number
of particles in the system varies by the chemical potential µ,(

∂U

∂ N

)
S,V

= µ,

leading to the final formula for the differential of U allowing for a variable particle
number

dU (S, V, N ) = T dS − PdV + µdN .

We summarize properties of the internal energy U as a function of S, V , and N
by formulating the following theorem.
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Theorem 1.6

(1) U (S, V, N ) is homogeneous, U (λS, λV, λN ) = λU (S, V, N ).
(2) U is convex and is minimal at equilibrium.
(3) The derivatives of U with respect to S, V and N provide the complete set of

equations of state.

Thus U (S, V, N ) encodes the complete information about the system at thermo-
dynamic equilibrium. Such a function is called a thermodynamic potential.

Proof. The first property follows simply from the observation that U is an exten-
sive state variable depending only on variables which are themselves exten-
sive quantities. The second property follows from the concavity of S (see
Problem 1.5). Finally the third property is clear from the form of the differential
dU given above. �

Depending on the external conditions applied to the system, the variables
(S, V, N ) may not be best suited to describe the thermodynamics of the system.
For instance instead of a thermally isolated system we may want to consider a sys-
tem in contact with a thermal heat bath. Thus we seek a thermodynamic potential,
F(T, V, N ) say, such that

dF = dF(dT, dV, dN ).

Recalling that T = (∂U/∂S)V,N we find that

d (U − T S) = −SdT − PdV + µdN ,

so that

F(T, V, N ) = U (S, V, N ) − T S + const.

Setting the irrelevant constant to zero, F is just the Legendre transform of the
internal energy U with respect to S. The function F(T, V, N ) is called the Helmholtz
free energy and defines a thermodynamic potential equivalent to the internal energy
U , but expressed in the set of variables (T, V, N ). It is clear that F(T, V, N )
is a homogeneous function of the extensive variables (V, N ). Furthermore, we
have:

Lemma 1.7 For a system undergoing an infinitesimal transformation at constant
temperature during which no work is done, the change in the Helmholtz free
energy F satisfies

�F ≤ 0.
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Proof. To see this we start from the differential form of Clausius’ inequality

�S ≥ �Q

T
.

On the other hand we recall that from the first law we have

�U = �Q −�W.

Combining these two expressions we have

�Q = �U +�W ≤ T �S.

For changes at fixed temperature T

�(U − T S) +�W ≤ 0.

For changes during which no work is done �W = 0 and we have

�F = �(U − T S) ≤ 0

as claimed. �

The equations of state, in turn, follow from the following identities. For a gas
undergoing a reversible change, we have

S = −
(

∂ F

∂T

)
V,N

, P = −
(

∂ F

∂V

)
T,N

, and µ =
(

∂ F

∂ N

)
T,V

.

This follows simply by comparing

dF = dU − T dS − SdT = −SdT − PdV + µdN ,

and

dF =
(

∂ F

∂T

)
V,N

dT +
(

∂ F

∂V

)
T,N

dV +
(

∂ F

∂ N

)
T,V

dN .

We may also use the latter identity to express U in terms of S, that is

U = ∂

∂(1/T )

(
F

T

)
V,N

.

Consequently, recalling the definition of cV (see also Problem 1.2 ),

cV = −T

(
∂2 F

∂T 2

)
V,N

.

If, in addition to the temperature, the pressure is kept fixed then the appropriate
thermodynamic potential is the Gibbs free energy G:

G(T, P, N ) = U − T S + PV, dG = −SdT + V dP + µdN .
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For a system undergoing a transformation at constant temperature and pressure the
change in the Gibbs free energy G is a monotonously decreasing function

�G ≤ 0.

Indeed, we have already seen that

�(U − T S) +�W ≤ 0.

At constant pressure we then have �W = P�V so that

�G = �(U − T S + PV ) ≤ 0 ,

as claimed. The Gibbs free energy plays an important role for phase transitions and
chemical reactions. At fixed temperature and pressure the equilibrium condition of
a system at the interface of two different phases is dG = 0. Thus

µ1dN1 + µ2dN2 = 0

where µi and Ni are the chemical potential and number of molecules in each phase.
Because of the conservation of the total number of particles dN1 + dN2 = 0, we
conclude that equilibrium between two phases requires the two chemical potentials
to be equal,

µ1 = µ2.

Similarly, if several phases are present, such as, for example, at the triple point for
water, then equilibrium between any two phases then requires

µ1 = µ2 = · · · = µν

where ν is the number of phases. The number and types of phase that can coexist
simultaneously in different systems is determined by the Gibbs phase rule derived
in Section 1.6.

Finally, we may introduce a fourth thermodynamic potential, the enthalpy H ,

H (S, P, N ) = U + PV, dH = T dS + V dP + µdN .

We leave it as an exercise to the reader to show that the enthalpy is a monotonously
decreasing function in an adiabatic expansion with no work done.

To summarize, the functions S, F , G and H determine which transformations
are possible for thermodynamic systems subject to various external conditions. In
particular, for transformations in a thermally isolated system, S increases. This
means the equilibrium configuration of a thermally isolated system maximizes
S. For transformations where the temperature is kept fixed and no work is done,
F decreases. This means the equilibrium state for such changes minimizes F .
Similarly for changes which take place under conditions of constant temperature
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Figure 1.12 The corners of the square are labeled with the natural variables,
V, T, S, P in which the thermodynamic potentials “between” the two variables,
F, G, U, H are expressed. The diagonal lines indicate the Legendre transforms
which relate the various natural variables.

and pressure, the equilibrium state minimizes G. We will use these fundamental
properties throughout this book. A convenient way to remember how the different
thermodynamic potentials are related is to present the potential as in Figure 1.12.

1.8 The third law

In this chapter we have so far reviewed classical thermodynamics conveniently
described in terms of the zeroth, first, and second laws. The motivation for each of
these laws was our view of the random nature of the motion of atoms and molecules
in macroscopic matter. The arguments we presented were phenomenological. The
formal quantitative development of thermodynamics is the subject of statistical
mechanics which we begin to present in the next chapter.

We then introduced the important thermodynamic state functions, entropy S, the
free energy F, and the Gibbs free energy G. We also noted that each of the laws of
thermodynamics led to a state function, i.e. a function which depended only on the
equilibrium properties of the macroscopic system and not on its previous history.
The zeroth law led to the concept of temperature T . The first law introduced the
internal energy function U . The second law introduced the entropy function S. In
our development of the concept of entropy we were very careful to note that the
evaluation of entropy of a state gave only an entropy difference between that state
and some reference state. It was proposed by Nernst that the arbitrariness inherent
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in this reference state could be eliminated by introducing a new phenomenological
law. This law is the third law of thermodynamics.

The third law The entropy of any system can be taken to vanish as the system
approaches the absolute zero temperature.

This law proposes that we use as a reference state in any entropy calculation the
equilibrium state of that system which occurs when T → 0. We then eliminate the
arbitrariness in the definition of entropy by defining the entropy of this T → 0 state
to be

S(T → 0) = 0.

We will consider the experimental implications of the third law later in Chapter 7.
For the moment we will anticipate our later discussions by relating the ther-

modynamic variables introduced to dynamical variables. Historically the interpre-
tation of thermodynamic variables in terms of the dynamical properties of atoms
and molecules was achieved by introducing a model of a gas as a collection of
molecules called the kinetic theory of gases. It was then shown that the temperature
of a gas was related to the average kinetic energy of the molecules of the gas while
the internal energy of the gas was related to the total energy of the system. What
was not immediately clear was the dynamical interpretation of the entropy function.
This was provided by Boltzmann. Boltzmann’s interpretation of entropy also led
to the conclusion that the third law had a dynamical interpretation only in terms of
a quantum mechanical description.

We started this chapter by emphasizing the difference between the dynami-
cal state of a system and its thermodynamic state. For a gas of molecules the
dynamical state involved specifying 6N variables for N > 1020 molecules. The
thermodynamic state was described by a small number of variables such as the gas
temperature, the gas pressure, and the gas volume. From our remarks regarding the
interpretation of temperature and internal energy it follows that many dynamical
states correspond to the same thermodynamic state since clearly a gas of molecules
of fixed energy can be in many different dynamical configurations. For instance, a
molecule moving along the x axis with momentum p has the same kinetic energy
as a molecule moving with momentum p in the y direction. For a collection of
non-interacting molecules these are two different configurations having the same
energy. In studying the kinetic theory of gases, Boltzmann introduced a count, π ,
of the number of dynamical states that correspond to a given thermodynamic state
and showed that the entropy S was related to π by the formula

S = k ln π

where k is the Boltzmann constant.
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At first sight application of Boltzmann’s formula seems to impose a serious
practical difficulty. In a system of molecules described by continuous coordinates
and momenta, the dynamical states are infinite in number. Indeed for a system with
3N degrees of freedom there are ∞6N number of states since each position and
momentum components can take any real value. To determine S unambiguously
using Boltzmann’s relation seems hopeless.

A practical way out of this difficulty is to divide the phase space, that is the 6N
dimensional space of coordinates and momenta, of the system into cells each of vol-
ume τ . If we suppose that the dynamical states corresponding to molecules in a given
cell are equivalent, then the number of dynamical configurations corresponding to a
given thermodynamic state can be calculated in units of τ , and S can be determined
using Boltzmann’s formula. However, if the size of τ is changed π changes and this
introduces an ambiguity in S. There is no way of resolving this ambiguity using ideas
of classical mechanics. The situation is, however, saved by quantum mechanics.
The reason is that, in quantum theory, there is a canonical volume element τq = �

3

for phase space. When states are counted using this canonical volume, then we find

S(T → 0) = 0 =⇒ π = 1.

Thus, the third law of thermodynamics is simply a statement that the equilibrium
thermodynamic state of a system at absolute zero corresponds to a unique
dynamical state.

Problems

Problem 1.1 Calculate the work done by 10 grams of oxygen expanding from
2 liters to 10 liters isothermally at 300 K.

Problem 1.2 Show that for any thermodynamic system cV = (∂U/∂T )V,N and
cP = (∂ H/∂T )P,N , where H = U + PV . Show furthermore that for one mole of
an ideal gas cP − cV = R.

Problem 1.3 Calculate the dependence of the temperature of the atmosphere on
the height above sea level. Hint: since air is a poor conductor of heat you may
assume that air rises adiabatically in the atmosphere without exchange of heat.

Problem 1.4 Show that the Kelvin–Planck statement and the Clausius statement
of the second law are equivalent.

Problem 1.5 Using the result that the entropy is a concave function of (U, V, N )
show that the inverse function U (S, V, N ) is convex. Hint: show first that U is a
monotonously increasing function of S.
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Problem 1.6 Making use of the properties of the thermodynamic potentials show
that (∂S/∂V )T = (∂ P/∂T )V and (∂S/∂ P)T = − (∂V/∂T )P . These relations are
two examples of the so-called Maxwell relations which are the set of identities
obtained using the symmetry of the second derivatives of thermodynamic
potentials.

Problem 1.7 Stefan–Boltzmann law: in classical electrodynamics one shows that
the energy density and pressure of an electromagnetic field in a cavity are given by

E

V
= 1

8π
(E2 + B2) and P = 1

24π
(E2 + B2) = 1

3

E

V
,

where E and B are the electric and magnetic fields respectively. The chemical
potential vanishes since the particle number for electromagnetic radiation can
vary. Show that the density of internal energy u = U/V of the cavity at finite
temperature is proportional to T 4.

Problem 1.8 Show that the internal energy of a substance which obeys the
perfect gas law, PV = RT , is a function of temperature only and is independent
of the volume.

Problem 1.9 Show that the enthalpy is a monotonically decreasing function
during the process of an adiabatic expansion with no work done by the system.

Problem 1.10 Show that the equilibrium condition for the chemical reaction,
2H2 + O2 � 2H2O, at fixed temperature and pressure is given by
2µH2 + µO2 − 2µH2O = 0.

Problem 1.11 Determine the temperature dependence of the saturated vapor
pressure, that is of a system consisting of a liquid and its vapor in equilibrium.

Problem 1.12 Show that the third law of thermodynamics requires the thermal
capacity cP of a solid body at constant pressure to vanish at absolute zero.

Problem 1.13 Give an algebraic derivation of the Gibbs phase rule using the fact
that the Gibbs free energy in the phase r can be written as

Gr =
n∑

i=1

µir Nir ,

where µir , the chemical potential of the substance i in the phase r , is a
homogeneous function of T, P and Nir , i = 1, . . . , n. Generalize the phase rule
to the case when chemical reactions between the different molecules are
included.
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Historical notes

The fact that heat is a form of energy was established by Mayer, Joule, and Helmholtz
in the 1840s. Before that, heat was regarded as a fluid whose total amount was con-
served. Indeed, using such a heat fluid theory, Carnot in 1824 came to a reasonably
clear understanding of the limitations involved in the transformations of heat into
work. Carnot’s ideas form the basis of what is now the second law of thermody-
namics. The modern formulation of the second law was presented by Clausius in
1850. Clausius succeeded in converting the qualitative work of Carnot into the form
with which we are now familiar.

Boltzmann (1844–1906) decided to explore the consequences of an atomic theory
of matter and understand thermodynamics in atomic terms. In this he was spectac-
ularly successful. Boltzmann defined entropy as log π where π is the number of
microstates accessible to the system. From this definition all of thermodynamics
and statistical physics flows. Boltzmann also explained the second law of ther-
modynamics in statistical terms by introducing irreversibility as a postulate that
characterized randomness. The specific assumption he made was criticized as vio-
lating the inherent reversibility of the laws of mechanics used by Boltzmann to
describe atomic motion. Boltzmann strongly defended atomism against such criti-
cisms from those who felt that the hypothesis of an atomic structure for matter was
uncalled for and did not have any experimental basis. Those opposed to the atomic
hypothesis were the “Energists”. Boltzmann took his own life in 1906. It is said
that he was upset by the continuing criticism of the Energists and felt that his ideas
were not accepted by the community and that the battle against Energism was lost.

The third law, as it eventually became known, was proposed by Nernst in 1906.
Nernst was involved in work on the measurement of specific heats at the time. The
quantum nature of the third law was immediately realized.

Further reading

A self-contained account of classical thermodynamics can be found in E. Fermi,
Notes on Thermodynamics and Statistics, Phoenix (1966). Classic texts well worth
consulting are M. Planck, Thermodynamics, Dover (1945) and A. Sommerfeld,
Thermodynamics and Statistical Physics, Academic Press (1956). For a more recent
text with a detailed discussion of the principles of thermodynamics see J. R. Wal-
dram, The Theory of Thermodynamics, Cambridge University Press (1985) and
H. B. Callan, Thermodynamics and an Introduction to Thermostatistics, John Wiley
(1985). We have chosen in this book to present thermodynamics using the idea of
heat engines to get at the elusive concept of entropy. A more mathematical approach
based on the notion of “adiabatically inaccessible states in the neighborhood of a
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given state” was formulated by the mathematician Caratheodory. An account of the
second law of thermodynamics following Caratheodory can be found in W. Pauli’s
book on Thermodynamics and Kinetic Theory of Gases, MIT Press (1973) and
also R. Giles, Mathematical Foundations of Thermodynamics, Pergamon (1964).
A recent, mathematical account of the mathematical structure of the second law can
be found in E. H. Lieb and J. Yngvason, Notices of the Amer. Math. Soc. 45 (1998).
A personal but scholarly historical account of thermodynamics can be found in
C. Treusdell, Tragicomical History of Thermodynamics 1822-54, Springer (1980)
and, for the third law in particular, in J. Wilks, The Third Law of Thermodynamics,
Oxford University Press (1961). The history of theories of the properties of matter
starting with Boyle and ending with Landau and Onsager is given in S. Brush, A
Kind of Motion We Call Heat, North-Holland, Volumes I and II (1983).
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Statistical mechanics

2.1 Fundamental ideas

In this chapter we introduce the basic principles of statistical mechanics. As we
saw in Chapter 1 the basic problem is to find a relation between functions of
the microscopic variables of a macroscopic system and its macroscopic equilib-
rium thermodynamic variables. It is clear that, for instance, the position vector or
the momentum vector are not appropriate observables in thermodynamics as they
change with time and hence cannot themselves be related to equilibrium, time-
independent, thermodynamic variables. The simplest possibility is to try and relate
thermodynamic state variables to the conserved quantities of a microscopic system.
To be specific we take as our system a gas of N non-interacting identical molecules
of mass m. A conserved quantity for this system is the kinetic energy

EN =
N∑

i=1

|pi |2
2m

,

where pi is the momentum of the ith molecule. One possibility could thus be to
identify EN with the internal energy function U of the system. Such an identification
is indeed possible and leads to a formulation of statistical mechanics known as the
micro canonical ensemble. We will return to examine this possibility later. For the
moment we proceed somewhat differently. Although we know that EN is defined
we do not know the precise value which EN takes. Under these circumstances
it would be useful to know the probability, P(EN ), that the system has energy
EN . Once P(EN ) is known the average

∑
EN P(EN ) could be identified with the

internal energy function U and thus a bridge between the microscopic variables
present in EN and thermodynamics would be established. Transferring attention
from the mechanical variable EN to the probability function P(E) for the system
to have energy E is a key idea of statistical mechanics. The case where the energy
of the system is fixed at some value E0

N , for instance, corresponds to the special

35
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choice P(EN ) = C−1(E)δEN ,E0
N

where

δEN ,E0
N
=
{

1 if EN = E0
N

0 if EN �= E0
N

and C(E) is a phase space factor counting the number of states with energy E .
Different formulations of statistical mechanics correspond to different choices for
the probability. Justifying the choice made for the probability function associated
with a macroscopic system, in essence, corresponds to trying to understand how
thermal behavior can be obtained from a microscopic system governed by the laws
of mechanics or quantum mechanics. We will consider this aspect of statistical
mechanics briefly in Chapter 12. For the moment, we regard a choice for P(E) as
the basic postulate of statistical mechanics.

2.2 The canonical ensemble

We proceed to determine the form that P(E) must take on general grounds. Let
ρ(E) dDq dD p be the probability to find the system in a small volume of phase
space with energy E . The fact that ρ depends only on E but not on q and p is a
consequence of the postulate of equal a priori probability which expresses the fact
that all configurations with the same energy are equally probable. We furthermore
require that the probability function P(E) has the following property: if E1, E2 are
two energy values which the system can have then, since energy is only defined to
an additive constant E , we insist that

ρ (E1)

ρ (E2)
= ρ (E1 + E)

ρ (E2 + E)
.

The only function ρ, with this property is

ρ(E) ∝ e−βE .

Thus

P (E) = 1

Z N
C(E) e−βE ,

where

Z N (β) =
∑
q,p

e−βE =
∑

E

C(E)e−βE .

Here
∑

E represents a sum over all the allowed energy values of the system of N
particles. Z N (β) is known as the partition function. The form for P(E) we have just
obtained defines what is known as the canonical ensemble of statistical mechanics.
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It was first introduced by Gibbs. Note that E is a microscopic variable while the
constant β is a property of the thermal system. It determines the probability for a
system to be in a state with given energy E . By introducing a physical requirement
for the probability function P(E) we have been able to determine its form, but P(E)
itself does not have a simple interpretation in thermodynamics. However, we can
close this gap by making two identifications. The first is the natural identification
of the internal energy U with the average energy 〈E〉 of the system, defined as

〈E〉 ≡
∑

E

E Pβ(E)

= − ∂

∂β
ln Z N (β).

It is clear that 〈E〉 depends on the parameter β. In order to establish a quantitative
correspondence between mechanical and thermodynamic variables we need a ther-
modynamic interpretation for β. This is provided by the second identification. To
justify this identification we recall the following identity derived in Section 1.7 of
the last chapter

U =
[

∂

∂ (1/T )

(
F

T

)]
V

,

where U is the internal energy. Comparing the two formulas above and using the
identification U = 〈E〉 suggests that we identify β with 1/kT and relate the free
energy F to Z N (β) by the formula

F = − 1

β
ln Z N (β)

with β = 1/kT . Note that the dimensional parameter k is required for both sides
of the equation to have the same dimensions. Clearly, βE must be dimensionless,
that is kT must have the dimensions of energy. We have thus established a quanti-
tative correspondence between the microscopic definition of the energy E and the
thermodynamic potentials U and F . This link is provided by the partition function
which is the fundamental object in statistical mechanics. Note that the temperature,
introduced via the identification β = 1/kT is a global non-dynamical property of
the system.

We have set up the link between the microscopic dynamical variables and ther-
modynamics as quickly as possible by introducing the notion of probability into
the system. The validity of the prescription proposed above is justified by the many
successful applications of statistical mechanics. Establishing this correspondence
axiomatically based on the laws of classical (or quantum) mechanics is one of the
major problems in statistical mechanics. We will briefly discuss different views on
this problem in Chapter 12.
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We should also emphasize that in relating the thermodynamic potential to the
microscopic definition of the energy we have not made any use of the specific
expression for the energy in terms of the phase space variables. The prescription
described therefore applies to any system for which an expression for energy E
is available. The form for ρ(E) obtained on plausible, intuitive grounds is now
elevated to be a postulate of statistical mechanics valid for any system for which
a conserved energy E can be defined. The details of the microscopic system in
question are encoded in the phase space factor C(E). This will be illustrated for
the perfect gas in the next section.

2.3 The perfect gas

In this section we illustrate the basic concept of statistical mechanics for the case
of a perfect gas for which the thermodynamical properties are already known. In
the process we will determine the last remaining unknown, that is the dimensional
constant k that enters in the definition of the partition function. We consider a
system of N non-interacting molecules in a cubic box of side L and volume V = L3

with

E =
N∑

i=1

|pi |2
2m

.

We calculate the partition function Z N (β) and construct the free energy F for
the system. To calculate Z N (β) we are instructed to sum over all possible energy
values the system can have, multiplied by the canonical probability function, P(E),
which includes the phase space factor C(E). In our example E is independent of the
location of the molecules. However, in general we expect the molecules to interact
and hence E will depend on {pi }, the set of momenta the molecules have, as well
as the set {xi } of their locations. Then the sum over all possible energy values for
the system, multiplied by the phase space factor, must correspond to an integration
over all possible momenta and position variables of the N molecules contained in
a cubic box of side L and volume V = L3. Thus∑

E

C(E) = 1

h3N

∫
d3 p1

∫
d3 p2 . . .

∫
d3 pN

∫
d3x1 . . .

∫
d3xN .

The momentum integrals are over all of R3 whereas the integral over the posi-
tions of the molecules is, of course, restricted to the volume V = L3. The
factor h3N is introduced to make the right-hand side dimensionless. In the quantum
mechanical treatment this constant will be identified with Planck’s constant, but
for now it is just some constant with the dimension of an action. This 6N dimen-
sional space of position and momenta coordinates is the phase space of the system.
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Thus

Z N =
∑

E

C(E) e−βE

= 1

h3N

∫
d3 p1 . . .

∫
d3 pN

∫
d3x1 . . .

∫
d3xN e−

β

2m (p1
2+···+pN

2) .

As explained above, in the absence of interactions, the integral over the position of
each molecule just produces a factor V N so that

Z N = V N

(
1

h3

∫
d3 p e−

β

2m p2

)N

.

Each p-integration is thus a simple Gauss integral. Recalling the text book formula∫ ∞

−∞
e−

1
2 ax2

dx =
√

2π

a
,

we end up with the simple result

Z N = V N

(
2πm

βh2

) 3N
2

, β = 1

kT

for the partition function of a gas of non-interacting particles contained in a volume
V .

To continue we construct the free energy F for this system following the pre-
scription given in the previous subsection, that is

F = − 1

β
ln Z N = −NkT ln

(
V

λ3

)
,

where λ = h/
√

2πmkT . We thus have an explicit expression for the free energy as
a function of the volume V and the temperature T . To recover the equation of state
we recall that

P = −
(

∂ F

∂V

)
T

= NkT

V
.

Comparing this with the ideal gas equation of state from kinetic theory, PV = NkT ,
we then conclude that the constant of proportionality k introduced in the definition
of β is the same as the Boltzmann constant and that a perfect gas can be regarded
as a collection of N non-interacting molecules.

The quantity λ introduced above is known as the thermal wavelength of the
particle. The name suggests that this scale is quantum mechanical in nature. To see
how this comes about recall that the de Broglie wavelength of a particle of mass m
and kinetic energy Ekin is given by

λ = h

|p| =
h√

2m E
.
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Replacing the kinetic energy Ekin by the typical thermal energy Eth = 3kT , we get

λ = h√
6mkT

� h√
2πmkT

.

To give an example, the thermal wavelength of an electron at ambient tempera-
ture is λ � 10−9 m. It is amusing to note that, although we are presently working
strictly with classical statistical mechanics, two intrinsically quantum mechanical
constants have made their appearance, namely Planck’s constant and the de Broglie
wavelength. In the next two sections we will encounter more hints that statistical
mechanics and quantum mechanics are intrinsically linked together.

2.4 The Gibbs paradox

It turns out that there is, in fact, a problem with our identification in the last section
which we must resolve. This is known as the Gibbs paradox. Consider a gas con-
sisting of N identical molecules at temperature T . Suppose we introduce a fictitious
partition into the system so that there are N1 molecules in volume V1 on one side of
the partition and N2 molecules on the other side in volume V2 where N = N1 + N2

and V = V1 + V2. From our expression for Z N we have, for the free energies of
N1, N2 molecules, the expressions:

F1 = − 1

β
N1 ln

(
V1

λ3

)

F2 = − 1

β
N2 ln

(
V2

λ3

)
.

We may regard this as the initial configuration of the system. For the final con-
figuration we disregard the partition and consider the system as a collection of
N = N1 + N2 molecules in volume V = V1 + V2. The free energy is then given by

F = − 1

β
(N1 + N2) ln

(
V1 + V2

λ3

)
.

The change considered in this problem is reversible at fixed temperatures. We should
have no change in the free energy (Figure 2.1). However, using the expressions given

�F = F − (F1 + F2)

= − 1

β
N1 ln

(
V1 + V2

V1

)
− 1

β
N2 ln

(
V1 + V2

V2

)
< 0,

that is the free energy has decreased. This is a disastrous result. The process con-
sidered was fictitious. We could have introduced further fictitious subdivisions
F1 → F11 + F22, F2 → F21 + F22 which would lead to further reductions in F .
This indicates that the value of F depends on the path followed in its construction
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Distinguishable:

Partitioned Mixed Partitioned

If entropy is a measure of disorder, we expect no increase in entropy for truly identical particles.

For non-identical particles there is an obvious increase in disorder and hence entropy..

Indistinguishable:

Figure 2.1 Mixture of identical and non-identical gases. Only for non-identical
gases the entropy increases.

which contradicts the basic definition of a state function. Remember a state func-
tion depends only on the equilibrium state of the system and not on its past
history.

Gibbs resolved this paradox by noting that if, in the expression for F1, F2, and F
the volume term could be replaced by specific volume terms, then �F = 0, i.e.
if V1 is replaced by V1/N1, V2 by V2/N2, V1 + V2 by (V1 + V2)/(N1 + N2),
where V1/N1 = V2/N2 = (V1 + V2)/(N1 + N2), then �F = 0. Such a replace-
ment occurs if the expression for Z N is slightly modified. Namely if we take

Z N = 1

N !h3N

∫
d3N p

∫
d3N q e−β

∑
i Ei

and use Stirling’s approximation

N ! �
√

2π N N e−N ,

we indeed end up with

Z N =
(

V

λ3 N

)N eN

√
2π

.
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At this stage this modification is purely ad hoc, and is called proper Boltzmann
counting of states. However, in the quantum mechanical description such a factor
does indeed arise due to the indistinguishability of identical particles.

2.5 Thermal properties of the classical perfect gas

In this section we discuss some simple consequences which can be derived
straightforwardly from the partition function of the perfect gas. We begin by eval-
uating the internal energy and the entropy of the non-relativistic, perfect gas. As
explained at the beginning of this chapter we have

U = ∂

∂β
(βF) .

Substituting our result for F = −1/β ln Z N we find

U = 3

2
NkT .

This is an example of what is known as the equipartition of energy. In thermody-
namic equilibrium each degree of freedom contributes the same amount of energy,
1/2 (kT ), to the internal energy U . An immediate consequence of this result is that
the specific heat at constant volume is constant. Indeed

cV =
(

∂U

∂T

)
V

= 3

2
Nk.

Experimentally this result is reasonably well confirmed for noble gases at ambient
temperature.

Similarly we obtain for the entropy

S = −
(

∂ F

∂T

)
V

= Nk ln V + 3

2
Nk ln

(
2πmkT

h2

)
+ 3

2
Nk − k N (ln N − 1) .

Note that the expression for the entropy S has the property that as T vanishes, S
goes to −∞. This violates the experimentally valid requirement of the third law
of thermodynamics which states that S vanishes as T goes to zero. Thus it is clear
that a major revision of this formula is necessary where T is small (i.e. at low
temperatures). As we shall see in Chapter 7, a proper resolution of this problem
requires ideas from quantum theory.

To close this section, let us discuss how the equation of state is modified in a sit-
uation where a non-relativistic treatment is no longer justified. For this we note that
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as long as the Hamilton function H (x, p) is independent of x , i.e H (x, p) = E (p),
where E (p) is any arbitrary function of (p1 . . . pN ), then the volume dependence
of the free energy F is not modified. Indeed, the only modification in the parti-
tion function is that the thermal wave length λ will be replaced by an unknown
expression λ → λ(m, β, N ) where

(λ (m, β, N ))−3N = 1

N !h3N

∫
d3N p e−βE(p).

which is independent of V . Thus the pressure

P = −
(

∂ F

∂V

)
T

= NkT

V

is not modified. In particular, for a relativistic, perfect gas we have have

E(p) = c
∑

i

√
(pi )2 + m2c2 ,

so that the equation of state will be the same as for the non-relativistic gas.

2.6 Paramagnetic systems

A simple example of a system with an energy dispersion relation different from
that of a perfect gas is that of a paramagnetic system of magnetic moments. Such
a system can be regarded as a collection of N fixed magnetic dipoles each of
magnetic moment µ. In the presence of an external magnetic field B, these dipoles
experience a torque tending to align them in the direction of the field. The energy of
such an assembly of dipoles, neglecting their mutual interactions, can be taken to
be

E = −
N∑

i=1

µi · B = −µB
N∑

i=1

cos θi

where we take B to point along the z-axis and µ is equal to the absolute value of
µ. The partition function for such a system is then given by

Z N (β) =
∑

E

C(E) e−βE

with E as above.
The sum-over-energy configurations would correspond to integrating over all

angles that the dipoles can point to. This is the classical model. For a solid a
quantum treatment might be more appropriate as quantum effects become important
at short distances. Let us however for the moment consider the classical model.
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Then

Z N (β) =
N∏

i=1

[∫
d�i e

βµB cos θi

]

with
∫

d�i =
∫ π

0 sin θi dθi
∫ 2π

0 dφi where (θi , φi ) represent the direction of the ith
dipole. This gives

Z N (β) =
[

4π
sinh(βµB)

βµB

]N

.

We now observe that the mean magnetization of the system in the direction of the
external field is given by

Mz =<

N∑
i=1

µ cos θi >= 1

β

∂

∂ B
ln Z N (β) = NµL(βµB)

where L(x) is known as the Langevin function and is given by

L(x) = coth x − 1

x
.

Let us consider the classical model in the high-temperature region, that is, as x
tends to zero (x = βµB). Using

L(x) → x

3
− x3

45
+ · · ·

for small x , we have Mz = Nµ2/3kT B. A relevant quantity to compare with exper-
iment is the magnetic susceptibility

χ =
(

∂ M

∂ B

)
|B=0 = Nµ2

3kT
.

This result is in qualitative agreement with the experimentally observed magnetic
susceptibility at high temperatures. At low temperature, however, quantum effects
become important.

In order to get a taste of the predictions modified in a quantum mechanical
treatment we write

µ = µL

where L represents the angular momentum vector of a dipole in the external
magnetic field B pointing in the z-direction. In quantum mechanics the angular
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momentum operator has the property that Lz has eigenvalues m = − j ,− j + 1 ,

. . . , j − 1 , j .
Writing µ · B = µBm and introducing the parameter x = βµB j , the partition

function is given by

Z N (β) =
[

j∑
m=− j

e
mx

j

]N

.

That is the integration over angles in the classical case is replaced by the discrete
sum over the permitted values of m. Carrying out the sum we get

Z N (β) =
(

sinh
(
x + x

2 j

)
sinh

(
x

2 j

)
)N

.

This gives for the mean magnetic moment of the system

Mz = Nµj

[(
1 + 1

2 j

)
coth

((
1 + 1

2 j

)
x

)
− 1

2 j
coth

(
x

2 j

)]
.

This simple example illustrates how the ideas of statistical mechanics can be used
to analyze the thermal properties of different systems.

In the model we have just examined the quantum treatment involved simply
taking into account the fact that the energy configurations are to be determined
from the eigenvalues of a quantum operator. The significant difference between
the quantum and the classical model was that, in the classical system, the range of
possible energy configurations was infinite while, in the quantum case, the range
was discrete and finite.

2.7 The one-dimensional Ising model

We can refine the simple model for paramagnetism considered in the last section by
including an interaction between dipoles. The simplest model which includes such
interactions is the model introduced by Ising (1924). In this model, the N elementary
dipoles are represented by N spin variables Si , i = 1, . . . , N . Each of these spin
variables can take one of two values Si = ±1. The Hamiltonian for this system is

H = −g
N∑

i=1

Si Si+1 − B
N∑

i=1

Si .

The spins Si interact with an external magnetic field B but now they also interact
with each other. We imagine that the spins are arranged in a circle (Figure 2.2), and
that any given spin interacts only with its nearest neighbors. The circle is closed
by specifying that the neighbors of SN are SN−1 and S1. If we want this model
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Figure 2.2 One-dimensional spin chain with periodic boundary conditions.

to represent a ferromagnet then we should choose g > 0 so that the energy of the
system is lowered when spins point in the same direction.

Our basic problem is to evaluate the partition function as a sum over the set {c}
of all possible configurations

Z N =
∑
{c}

e−β H [c]

=
∑
{c}

N∏
i=1

eβ[gSi Si+1+ B
2 (Si+Si+1)]

where we have replaced
∑

i Si by
∑

i

( Si+Si+1

2

)
which is valid in view of SN+1 = S1.

To continue, let us introduce a convenient notation for the exponential of the energy.
We write

eβ[gSi Si+1+ B
2 (Si+Si+1)] ≡ 〈Si |P|Si+1〉.

The matrix P introduced is an example of what is known as a transfer matrix. Let
us write down P explicitly as a 2 × 2 matrix. We have[〈+1|P| + 1〉 〈+1|P| − 1〉

〈−1|P| + 1〉 〈−1|P| − 1〉
]
=
[

eβ[g+B] e−βg

e−βg eβ[g−B]

]
.

The partition sum is then expressed as a product of the transfer matrices

Z N =
∑
{c}
〈S1|P|S2〉〈S2|P|S3〉 . . . 〈SN |P|S1〉

=
∑

S1,S2,...,SN

〈S1|P|S2〉〈S2|P|S3〉 . . . 〈SN |P|S1〉
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where we note that the sum over configurations corresponds to a sum over all the
values which the variables S1, S2, . . . , SN can take. We have also used SN+1 = S1.
We now observe that 〈Si |P|Si+1〉 can be regarded as the PSi ,Si+1 matrix element of
a matrix P. From the rules of matrix multiplication it follows that

Z N =
∑

S1

〈S1|PN |S1〉 = Tr PN .

Thus determining Z N has been reduced to evaluating the trace of the N th power of
the transfer matrix P.

Now the trace of a matrix is an invariant under similarity transforms, i.e. P →
SPS−1 and the symmetric matrix P can be diagonalized by a suitable similarity
transform so that

Z N = Tr(SPS−1)N

= λN
+ + λN

−

= λN
+

[
1 +

(
λ−
λ+

)N
]

.

The eigenvalues of this matrix are easy to determine. They are

λ± = eβg
[
cosh β B ±

√
cosh2 (β B) − 2e−2βg sinh (2βg)

]
.

Since λ−/λ+ < 1 we have Z N → λN
+ , as N →∞. The free energy in this limit is

thus given by

F = −N

β
ln λ+ .

A simple calculation gives for the equilibrium magnetization M per spin

M = − 1

N

(
∂ F

∂ B

)

= sinh (β B)√
cosh2 (β B) − 2e−2βg sinh (2βg)

.

This function is plotted in Figure 2.3. The relevant quantity to compare with exper-
iment is the magnetic susceptibility

χ = ∂ M

∂ B
|B=0 = βe2βg .
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Figure 2.3 Magnetization as a function of B at two different temperatures, T1 > T2.

Thus the magnetic susceptibility diverges at zero temperature. This is to be expected:
in the absence of thermal fluctuation all spins will align with the external magnetic
fields however small this field is. On the other hand our result for the magnetization
shows that there is no spontaneous magnetization, in the absence of a magnetic field,
for any positive temperature. This is due to the fact that the increase in entropy, by
flipping a single spin, wins over the cost in energy to do this flip. We will come
back to this point in Chapter 13.

2.8 Applications in biology

The Ising model as well as other statistical models have found a variety of appli-
cations in molecular biology. To give a taste of this fascinating area we will model
two such systems using the Ising model: hemoglobin which carries the oxygen in
blood cells, and deoxyribonucleic acid (DNA) which is a very long molecule com-
posed of millions of atoms and which contains the genetic code of living organisms.
The role played by the Ising model in these systems is to model the cooperativity
which appears to be responsible for some observed properties in these molecules.
For instance it is observed experimentally that if a molecule of oxygen is already
bound to a hemoglobin molecule then this will increase the probability of binding
a second molecule. This is observed by measuring the percentage of oxygenated
hemoglobin as a function of the partial pressure sketched in Figure 2.4. This prop-
erty of hemoglobin is important to ensure that the molecule binds oxygen where it
is abundant, i.e. the lungs, and releases it where it is rare.

To model this phenomenon we consider a single molecule with N binding sites
for oxygen. In a realistic molecule, N = 4. To each site we associate an occupation
number ni ∈ {0, 1}, counting the number of oxygen molecules bound to this site.
We can relate this number to the spin variable Si in the Ising model by writing
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partial pressure

%

Figure 2.4 Proportion of oxygenated hemoglobin as a function of the partial
pressure of oxygen.

ni = 1/2(1 + Si ). The state of the molecule is then completely described by the
“spins” S1, . . . , SN , and the number of oxygen molecules bound to the hemoglobin
is given by M =∑N

i=1 1/2(1 + Si ).
Let us first consider the case when there is no interaction between the different

sites. We parametrize the probability for a site to be occupied or not by p(Si ) =
CeBSi , where B is a parameter to be determined and C = (2 cosh B)−1 to ensure
that the sum of the two probabilities add up to one. Up to the shift by N/2, the
expression for the average number of oxygen molecules bound to the hemoglobin
is thus identical with that for the total magnetization M , in the Ising model for
β = 1 and in the absence of nearest neighbor interactions (g = 0), that is

M = 1

2C N

∑
{Si }

N∑
i=1

(1 + Si ) e
B

N∑
r=1

Sr

= N

2
(1 + tanh B) .

But what is the interpretation of B in this model? For this we notice that z ≡ e2B is
the ratio of the probabilities of a site being occupied and empty respectively. This
suggests that we interpret z as a measure for the concentration of oxygen.

Next we take the interactions between neighboring binding sites for oxy-
gen into account. We shall assume that only nearest neighbors interact. This
assumption can be justified by the geometry and the chemical composition of the
hemoglobin molecule. In addition we will assume periodic boundary conditions. If
we parametrize the strength of the interaction, as in the Ising model, by the coupling
constant g we can read off the partition function for this model from the Ising model
result in Section 2.7, that is

Z N = λN
+ + λN

− ,
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Figure 2.5 Sketch of a double-stranded DNA with hydrogen bonds between the
two strands.

where λ+ and λ− are obtained from the corresponding expression in Section 2.7
after setting β = 1. The average occupation number M is thus given as before by

M = N

2
+ 1

2

∂

∂ B
log Z N .

The quantity of interest to compare with experiment is the filling fraction f (z) =
M/N . In the limit of large g this function takes the simple form

f (z) = zN

1 + zN
.

This result is known as the Hill equation and was originally introduced as a fit
to the experimental curve for the filling fraction. The Ising model is thus in qual-
itative agreement with the experimentally measured oxygen saturation curve for
hemoglobin.

Let us now turn to the deoxyribonucleic acid or DNA molecule. In the Watson–
Crick model this molecule is represented as a double-stranded helix with the two
strands attached to each other by hydrogen bonds as in Figure 2.5. The physical
phenomena which we would like to describe is the “melting” of DNA, that is the
breaking up of the hydrogen bonds as the temperature increases. Experimentally one
observes a sharp transition between the two regimes as the temperature increases
beyond 60 − 80 ◦C and it is thought that cooperative phenomena play an important
role in this process as well. Just like the occupation number in hemoglobin we
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can write the number of broken bonds as M =∑N
i=1 1/2(1 + Si ), where Si is

now the “spin” associated to each hydrogen bond. To continue we parametrize
the probability for a given hydrogen bond to be broken or not by p(Si ) = CeBSi ,
where B will now have to depend on the temperature T , since the probability of
breaking a bond increases with T . If we furthermore assume that the interaction
between different bonds is described by the Ising model interaction with strength
g then the average number of broken bonds is a gain given by M = (N/2) +
(1/2)(∂/∂ B) log Z N in complete analogy with the model for hemoglobin. However,
here, since the number of bonds N is of the order of 106, we can take the large N
result for the partition function in the Ising model, that is log Z N = Nλ+ where
λ+ is again obtained from the expression in the last section after setting β = 1.
Thus

M = 1

2

[
1 + sinh B√

cosh2(B) − 2e−2g sinh2(2g)

]
.

Finally we need to make an ansatz for the temperature dependence of B. The
simplest choice is B = a(T − T ∗) where a and T ∗ are fixed such as to fit the
experimental result.

While this model for DNA goes some way to fit the experimental data it is nowa-
days generally discarded as a model for DNA melting. One serious shortcoming
of the Ising model approximation is that it does not take into account the entropy
associated with loops of broken bonds between segments of bound strands. There
is a big phase space volume associated with the various geometric forms of such
loops which is not taken into account in this approximation. A popular model which
includes these configurations was proposed by Poland and Scheraga in 1966. This
model improves considerably on the simple approximation presented here but still
has some difficulties reproducing the first order transition (see Chapter 13) observed
in the melting of DNA at the transition temperature.

Problems

Problem 2.1 Compute cV (T ) and U (T ) for a relativistic gas of N non-interacting
particles with rest mass m.

Problem 2.2 Determine the chemical potential µ(T, P, c), where c = N/V for a
perfect gas in the canonical ensemble. Hint: use Stirling’s approximation
N ! � √

2π N N e−N , valid for large N .
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Problem 2.3 Show that the equipartition law〈
p2

i

2m

〉
= 1

2
kT,

holds for all components pi of a given particle in the classical canonical ensemble
with Hamiltonian

H ({qi }, {pi }) =
N∑

i=1

|pi |2
2m

+ V ({qi }).

Problem 2.4 Compute the partition sum for the one-dimensional Ising model
with free boundary conditions in the absence of an external magnetic field, B.
Calculate the correlation function

〈si s j 〉 = 1

Z N

∑
{s}

si s j e−β H ({s}).

Hint: introduce a position dependent coupling g(i).

Problem 2.5 For a d > 2 dimensional lattice the exact solution for the Ising
model is not known. One way to proceed is to make a molecular field
approximation. For this we consider the Hamiltonian for a particular spin Sj , that
is

H (Sj ) = −BSj − gSj

∑
i :neighbors of j

Si .

We then introduce the molecular field

BM F ≡ 1

N

N∑
i=1

〈Si 〉.

In the molecular field approximation one replaces the Ising model Hamiltonian by
an effective Hamiltonian for Sj given by

H (Sj ) = −(B + gnBM F )Sj

where n is the number of nearest neighbors. Find an implicit equation for BM F

and solve this equation for high temperatures T →∞. Calculate the magnetic
susceptibility χ for high temperatures in the molecular field approximation. The
result is known as Curie’s law.

Problem 2.6 Critical temperature and surface tension
In order to estimate the critical temperature of the two-dimensional Ising model
we approximate the Ising model as a solid on solid model. Concretely we
compare configurations with boundary conditions as shown.
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(1) Assuming only nearest neighbor interactions, what is the energy difference
�E , between the two configurations for a generic transition line,
parametrized by the height function hi , measuring the elongation of the
transition line from the straight line at the lattice site i = 1, . . . , N?

(2) Compute the difference in the free energy of the two configurations by
averaging over all possible transition lines weighted by e−β�E . Hint: for
simplicity we assume that hi can take all integer values between −∞
and ∞.

(3) Find an implicit equation for the critical temperature Tc for which the surface
tension,

σ (T ) ≡ �F

N

vanishes. Here N is assumed to be large.
(4) Compare the so-determined value for Tc with the critical temperature found in

the mean-field approximation and with the exact value, gβc = g/kB Tc =
1
2 log(1 +√

2).

Problem 2.7 Find the generalization of the Hill equation for finite nearest
neighbor interaction g by evaluating the filling fraction for N = 4 and g arbitrary.
The result reproduces a model suggested by Pauling in 1935.

Historical notes

The transition from the kinetic theory of gases, which tried to provide a mechanical
basis for the thermal properties of the gas, to statistical mechanics represents a shift
from mechanical models to a more abstract mathematical viewpoint. The problem
of how a mechanical system with time-reversal symmetry properties by a process of
averaging can become an irreversible system remains a major conceptual problem.
Indeed some feel such an endeavor is pointless and impossible. A satisfactory
resolution of the problem is still not available.

Historically, the kinetic theory of gases was only taken seriously after Clausius,
in 1857, suggested a realistic model for a gas. With the help of the model and some
ad hoc hypotheses, Clausius was able to make the model consistent with the then
known experimental results. The previous work of J. J. Waterston (1845) although
clear, written in an axiomatic style and full of insight, was generally unknown until
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a decade after his death. This was because Waterston’s paper submitted to the Royal
Society was rejected for publication by two referees who called it nonsense. Worse,
the Royal Society refused to return the manuscript to Waterston, who was thus
prevented from publishing the work elsewhere. J. Clerk Maxwell, after reading
Clausius’ paper in an English translation, thought of a way to refute the kinetic
theory by deducing consequences which could be shown experimentally to be
false. Maxwell thought he had such a result when he showed that a prediction of
Clausius’ model was that the viscosity of a gas should be independent of its density
and should increase with temperature. This prediction of density independence
was initially thought to be ruled out by experiments on the damping of pendulum
swings in air. However, to convince himself, Maxwell, in 1865, decided to measure
the effect and found to his surprise that the viscosity of air was indeed constant over
a wide range of densities. This result was subsequently confirmed by others. The
kinetic theory of gases had thus crossed a landmark. An unexpected prediction had
been confirmed by experiment.

Before 1865 Maxwell had already made a significant contribution to the kinetic
theory, converting it from a theory of a mechanical atomic nature to a statistical
theory. In 1860 Maxwell had determined the statistical distribution of molecules
of different velocities in a gas of temperature T , using abstract symmetry and
probability arguments for the distribution function. Conceptually, this work of
Maxwell was quite revolutionary. It showed the power of abstract symmetry
arguments.

Further reading

There are numerous excellent text books which describe the basic concepts of statis-
tical mechanics. A standard text with many applications is L. D. Landau and E. M.
Lifshitz, Statistical Physics, Pergamon (1959). Another classic text, which includes
a treatment of the Kramers–Wannier duality in two dimensions, is K. Huang, Sta-
tistical Mechanics, John Wiley (1987). For further reading about the interpretation
of entropy and applications to electromagnetism in matter see R. Balian, From
Microphysics to Macrophysics; Methods and Applications of Statistical Physics,
I & II, Springer-Verlag (1991). L. E. Reichl, A Modern Course in Statistical
Physics, Edward Arnold (1980), gives an encyclopedic treatment of statistical
mechanics. A well-written graduate-level text with a comprehensive set of prob-
lems is R. K. Pathria, Statistical Mechanics, Butterworth-Heinemann (1996). A
very readable text with many worked examples is C. Kittel and H. Kroemer, Ther-
mal Physics, Freeman (1980). For another modern text see W. Greiner, L. Neise and
H. Stocker, Thermodynamics and Statistical Mechanics, Pergamon Press (1995).
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Further applications of the Ising model to biology can be found in C. J. Thomp-
son, Mathematical Statistical Mechanics, Princeton University Press (1972). A
good modern book describing the physics of soft matter, using tools of statistical
mechanics is R. A. L. Jones, Soft Condensed Matter, Oxford Press (2002). For an
advanced text on further exactly soluble models see R. J. Baxter, Exactly Solved
Models in Statistical Mechanics, Academic Press (1982).
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Variations of a theme

In our discussion so far we described the canonical ensemble of N identical particles
or molecules. We found that from the canonical partition sum we can recover the free
energy which is one of the thermodynamic potentials introduced in the first chapter.
A natural question is whether there are other approaches to statistical mechanics
which are in turn related to other state functions such as the entropy. In this chapter
we will see that this is indeed the case. We will end up with the complete picture
of how different probability measures in statistical mechanics are related to the
various potentials in thermodynamics. In the process we will also uncover a simple
statistical interpretation of the entropy function in thermodynamics.

3.1 The grand canonical ensemble

In the previous chapter we considered a statistical system with a fixed number N
of identical molecules. We have argued that although the energy E of the system
is a constant its precise value is not known. Hence we considered the probability
P(E) that the system had energy E and used it to relate the average value of the
energy of the system (involving the microscopic properties of the system) to the
macroscopic thermodynamic variable U , the internal energy. In this section we will
generalize this approach to include a variable number of molecules, Figure 3.1. We
note that the number of particles N in a volume, although a constant, is similarly not
precisely known. In the spirit of what was done before we introduce a probability
function

P(EN , N ) = 1

Z�

C(EN , N ) e−β(EN−µN )

where

Z� =
∑

N

∑
EN

C(EN , N ) e−β(EN−µN )

56
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T

System A

Q

N

Reservoir

Figure 3.1 In the grand canonical ensemble exchange of energy and particles with
a reservoir is assumed.

and C(EN , N ) is the phase space factor for fixed energy and particle number. The
function P(EN , N ) is the probability that the system has N molecules and these
N molecules have a total energy EN . The parameters µ and β are undetermined at
the moment but will be identified with the temperature and the chemical potential.
Our procedure will be as before; that is, we identify the average value of the energy
with the internal energy U , and define the average number of molecules as a new
state function which we will also denote by N . We then have

1

Z�

∑
N

∑
EN

C(EN , N ) EN e−β(EN−µN ) = 〈E〉 = U

1

Z�

∑
N

∑
EN

C(EN , N ) N e−β(EN−µN ) = 〈N 〉.

We now observe that

− ∂

∂β
ln Z� = 〈E〉 − µ〈N 〉

while

∂

∂µ
ln Z� = β〈N 〉.

Combining these two equations we find for the average energy 〈E〉

〈E〉 = − ∂

∂β
ln Z� + µ

β

∂

∂µ
ln Z�.
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In order to establish a precise relation with thermodynamics we first need to gen-
eralize the family of thermodynamic potentials to include a variable number of
particles. This can be done using the following result:

Theorem 3.1 If � = U − T S − µN , where µ = (∂U/∂ N )S,V then � is a
thermodynamic potential and

S = −
(

∂�

∂T

)
µ,V

P = −
(

∂�

∂V

)
T,µ

N = −
(

∂�

∂µ

)
T,V

where µ is the chemical potential and N represents the number of molecules
present in the system.

Proof. We recall that the first law of thermodynamics for a gas of molecules is

dU = T dS − PdV + µdN

where µ is the chemical potential. Thus

� = U − T S − µN

is the Legendre transform of U with respect to S and N . Furthermore

d� = −SdT − P dV − Ndµ

which implies(
∂�

∂T

)
V,µ

= −S ,

(
∂�

∂V

)
T,µ

= −P ,

(
∂�

∂µ

)
T,V

= −N

and thus completes the proof. �

Since taking the Legendre transform twice is the identity transformation we can
express the internal energy U as the Legendre transform of � which we write
as

U = ∂

∂
(

1
T

) (�

T

)
− µ

∂

∂µ
�

= ∂

∂β
(β�) − µ

β

∂

∂µ
(β�) .
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Comparing this last equation with our expression for 〈E〉we get agreement provided
we identify

Z� = e−β�, β = 1

kT
,

and µ is identified with the chemical potential. The probability function P(E, N )
defines the grand canonical ensemble. By performing the partial sum over the
energy levels at fixed N we can write the grand canonical partition sum as a sum
over the canonical partition sums at fixed N

Z� =
∑

N

zN Z N ,

where z = eβµ is called the fugacity, and Z N =∑
EN

C(EN , N )e−βEN is the parti-
tion function for the canonical ensemble. We should point out that in carrying out∑

EN
, proper Boltzmann counting should be done, that is, for N molecules a factor

of 1/N ! has to be included in order to avoid the Gibbs paradox which we discussed
earlier.

We will find the grand canonical very useful when we calculate the equation of
state of a gas of interacting molecules in the next chapter. As a warm up we first
reconsider the perfect gas in this approach.

To begin with we recall that the canonical partition sum for a perfect gas at fixed
N is an integral over the 6N -dimensional phase space (p, q). The integral over q
just produced a volume factor V N whereas the integral over the momenta was a
3N -dimensional Gaussian integral producing a factor λ−3N . Taking the Boltzmann
counting factor 1/N ! into account to avoid the Gibbs paradox we arrive at the
simple expression for the grand canonical partition sum

Z� =
∞∑

N=0

zN

N !

V N

λ3N
.

This, however, is just the series expansion of the exponential function. We can thus
evaluate the sum over N to arrive at

Z� = exp

(
V z

λ3

)

and consequently for the grand canonical potential �

� = − 1

β
ln Z� = − 1

β

(
V z

λ3

)
.
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This allows us to express the pressure in terms of (T, µ) as

P = −
(

∂�

∂V

)
µ,T

= 1

β

( z

λ3

)
.

Thus we have, at this stage, related P to the temperature T and the fugacity z. In
order to get an equation relating P, V , and T we need to replace the fugacity z by
a function of V and T . This is done by using

N = −
(

∂�

∂µ

)
T,V

= V z

λ3
= V

λ3
eβµ.

Combining these two equations we then end up with the familiar identity

PV = NkT .

Thus we recover the equation of state for the perfect gas. Furthermore, we can solve
the second equation for µ, that is

µ = 1

β
ln

(
Nλ3

V

)
.

This result is relevant, for instance, to determine the equilibrium condition in chem-
ical reactions described in the first chapter.

3.2 Density fluctuations

We have just seen that the same equations of state for the perfect gas can be derived
either in the canonical, or in the grand canonical ensemble. This suggests that the
two descriptions are equivalent. We now want to show in full generality that when
the size of the system is large enough the two descriptions are indeed equivalent.
We will do this by showing that in this limit the fluctuations of the particle number
in the grand canonical ensemble is negligible.

Let us define the average value f̄ of an extensive physical observable f in a
statistical ensemble by

f̄ ≡
∑

n

f (n)ρ(n)

where the sum is over all states denoted by n, with a weight factor ρ(n), i.e. the
probability for the system to be in this state. We then decompose the system into R
large statistically independent subsystems (R is supposed to be large as well). Let
f =∑

a
fa and f̄a denote the average of f in the subsystem a, a = 1, . . . , R. We
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then have

f̄ =
∑

a

fa =
∑

a

f̄a � R f ∗

where we denote by f ∗ the average value of f̄ a . Let us now consider the fluctuations
� f ≡ f − f̄ . We then have

(� f )2 =
(

R∑
a=1

� fa

)2

=
R∑

a=1

(� fa)2 +
∑
a �=b

� fa� fb

= R(� fa)2

where the last equality follows from the fact that the mixed term in the second line
vanishes due to statistical independence of the different subsystems. Combining
these two equations, we then end up with√

(� f )2

f̄
∝ 1√

R
→ 0

as R tends to infinity. The ratio just introduced is called the root mean square,
or RMS-fluctuation, and measures the statistical fluctuations compared to the
expected value of the observable. Thus what we have just shown is that for
any physical observable the RMS-fluctuations tend to zero as the size of the
system tends to infinity. The key hypothesis we made in this derivation is that
the subsystems are statistically independent. If this hypothesis is not satisfied
then the proof fails. This situation can arise in thermodynamics in the pres-
ence of a phase transition with long-range correlations and will be discussed in
Chapter 13.

To prove the equivalence between the canonical and grand canonical ensemble
we then choose the particle number as the physical observable of interest, f ≡ N .
In this case the above result implies√

(�N )2

N
∝ 1√

R
→ 0 .

Thus for large systems it is irrelevant whether we impose fixed particle number
by hand or not since the contributions to the grand canonical partition sum from a
system with particle number different from the expected value are negligible.
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3.3 Entropy and the Boltzmann constant

We identified the average value of the energy in a system with the internal energy
function U . We also learnt how to calculate thermodynamic state functions like the
free energy F and the entropy S in terms of the microscopic model provided by
statistical mechanics but we have not analyzed the microscopic interpretation of
the thermodynamic function S except to state without discussion the interpretation
of S due to Boltzmann.

We recall that S was defined rather abstractly. From a discussion of the second
law, following a rather circuitous route, it was established that a thermodynamic sys-
tem contained a state function called the entropy. Furthermore this function attained
a maximum value for a closed system in its equilibrium state. Let us examine the
expression for the entropy S we obtained for a gas of non-interacting molecules.
From Z N = 1/N ! (V/λ3)

N = e−βF , where F is the free energy, it follows that

S ∼= k ln

(
V

λ3

)N

+ constant term.

We recall that the temperature-dependent length scale, λ3, is, roughly speaking, the
volume of a single molecule. We can then interpret this expression as follows. For
a collection of N non-interacting molecules, the energy of a molecule is indepen-
dent of where in V the molecule is located. Since the molecules do not interact,
the number of ways the state 〈EN 〉 can be realized for N molecules is thus pro-
portional to (V/λ3)N . The expression for the entropy S obtained thus implies that
S is proportional to the logarithm of the number of ways a state of given internal
energy can be constructed. The proportionality constant is Boltzmann’s constant
k. Therefore the statistical mechanics approach in this case makes contact with the
interpretation of entropy introduced by Boltzmann, which we stated in Chapter 1.
This interpretation is useful in describing phase transitions in Chapter 13 and in
describing the micro-canonical ensemble, to which we now turn.

3.4 Micro canonical ensemble

In going from the canonical to the grand canonical ensemble we replaced a system
with a fixed value for the number of molecules by a system which had a probability
P(N ) for containing N molecules. We then saw how such an approach could be
related to thermodynamics through the thermodynamic function �. It is reasonable
to ask if the canonical ensemble where the energy was treated in terms of probabil-
ities could be related to another ensemble where the energy had a fixed value. This
is indeed possible. The corresponding ensemble is known as the micro canonical
ensemble.
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p

q

Constant energy

Phase space volume ∆ Γ

Figure 3.2 The volume in the phase space with energy E0 −� < E < E0.

In the micro canonical ensemble the probability that the system has energy E is
given by (see Fig. 3.2)

P(E) =
{

1
��

for E0 −� < E < E0

0 otherwise

where �� is the volume of the region in phase space with E0 −� < E < E0, i.e.

�� =
∫

E0−�<E<E0

d3N x d3N p.

In order to establish the correspondence with thermodynamics in the micro canon-
ical ensemble we make the following identifications.

(1) The internal energy U is identified with E0.
(2) The entropy S is identified with k ln ��.

The first identification does not need further justification. Concerning the second
identification, we will now show that this identification is correct in the case of
the perfect gas. We consider a system of N non-interacting particles of mass m,
contained in volume V . In this case,

�� = V N
∫

E0−�≤E(p)≤E0

d3N p , E(p) = 1

2m

N∑
i=1

| pi |2 .

In geometrical terms �� = V N ×�D, where �D is the volume of the D = 3N − 1
dimensional sphere in momentum space with radius R = √

2m E0 and thickness
proportional to �. Fortunately the value of this volume is insensitive to �. This
is easy to show. Let us write the volume of the sphere in 3N dimensions as
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V (R) = C(D)RD with D = 3N − 1 and C(D) is the volume of the D dimensional
unit sphere. Then the volume of a shell of thickness � is given by

V� = V (R) − V (R −�)

= C(D)RD

[
1 −

(
1 − �

R

)D
]

.

For a normal gas, D � 3 × 1023 so it is a good approximation to set V� � C(D)RD,
so that

�� � V N C(D)RD.

To determine C(D) we prove the following lemma.

Lemma 3.2 The volume of the D-dimensional unit sphere C(D) is given by

C(D) = 2π
D+1

2

�( D+1
2 )

.

Proof. Consider

I (D + 1) =
∫ +∞

−∞
dx1...

∫ +∞

−∞
dxD+1e−(x2

1+···+x2
D+1) = π

D+1
2

On the other hand, in polar coordinates we can write

I (D + 1) =
∫ ∞

0
e−r2

r DC(D)dr

= 1

2
�

(
D + 1

2

)
C(D) .

Here r D−1C(D) is the surface area of a D-dimensional sphere. Comparing the two
expressions for I (D) we get

C(D) = 2π
D+1

2

�
(

D+1
2

) .
�

If we now substitute this result into the expression for �� we find

�� � π
D+1

2

�
(

D+1
2

) RDV N
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with equality when the number of particles tends to infinity. Consequently we have
for N

S � k ln ��

� k N ln
(
V π

3
2 (2mU )

3
2
)− 3N

2
ln

(
3N

2

)
+ 3N

2
,

where we have used the fact that R = √
2mU . If we now identify S with the entropy,

then we infer from the second law that

1

T
=
(

∂S

∂U

)
V

= 3Nk

2U
, i.e. U = 3

2
NkT

and

P = T

(
∂S

∂V

)
U

= T
∂

∂V
(Nk ln V ) = NkT

V
.

We have thus verified that the identification with the entropy is correct for the case
of the perfect gas.

It is possible to show on general grounds that the entropy function S defined
in this way is a concave function of (U, V, N ) which is maximal at equilibrium.
Furthermore, at equilibrium, S is an extensive function of (U, V, N ). Thus S has all
the properties of the entropy function we derived in Chapter 1 and therefore defines
a consistent thermodynamics.

We close this section by noting that it can again be shown, by estimating the
energy fluctuations, that the micro canonical and the canonical ensembles are equiv-
alent. We leave the proof of this assertion as an exercise to the reader.

3.5 The full picture

We have now described three different approaches to statistical mechanics, the
micro canonical, the canonical, and the grand canonical ensembles. Each of these
ensembles is related to certain thermodynamic potentials upon appropriate identi-
fication. The different approaches in statistical mechanics are summarized in Table
3.1.

We have seen that all three approaches to statistical mechanics are equivalent if
the size of the system considered is very large compared to the microscopic length
scales of these systems. From the point of view of thermodynamics this equivalence
is reflected in the equivalence of the corresponding thermodynamic potentials S,
F, and �. Therefore we can choose whichever of the ensembles provides the best
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Table 3.1. Summary of micro canonical, canonical, and grand canonical
ensembles in statistical mechanics.

Ensemble Probability Thermodynamics

micro canonical P(E) =
{ 1

��
E0 −� ≤ E ≤ E0

0 otherwise
S = k ln ��

E, N fixed �� = ∫
d3N p

∫
d3N x U = E0

E0 −� ≤ E ≤ E0 T = ∂S
∂V

canonical P(E) = C(E)
Z N

e−βE F = − 1
β

ln Z N = U − T S

T, N fixed Z N =∑
E

C(E) e−βE β = 1
kT

U =< E >= − ∂ ln Z N
∂β

grand canonical P(EN , N ) = C(EN )
Z�

e−β(EN−µN ) � = − 1
β

ln Z�

= U − T S − µN

T, µ fixed Z� = ∑
EN ,N

C(EN , N ) e−β(EN−µN ) µ = chemical potential

N = 1
β

∂ ln Z�

∂µ

approach to the concrete problem under consideration. For instance we will find
in the next chapter that the grand canonical ensemble is best suited to include
interactions between molecules in a realistic gas.

For completeness we should mention that in addition to the ensembles described
in this chapter there should also be an ensemble for which the corresponding ther-
modynamic potential is the Gibbs free energy G(T, P, N ). Such an ensemble exists
and is treated as a problem for the reader. It is normally omitted because it is rarely
used in practical applications.

Problems

Problem 3.1 Assuming that the chemical potential, µ, is independent of N for
fixed P and T , show that G = µN .

Problem 3.2 Show that the perfect gas law, PV = NkT , is recovered even if the
proper Gibbs counting factor of N! is omitted.
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Problem 3.3 Work done by magnetic moments: our definition of the energy for a
magnetic substance in Sections 2.6 and 2.7 suggests that the internal energy for a
magnetic substance is a function of S and B, i.e. U = U (S, B). This is consistent
with the observation that in the process of moving a magnetic substance through
an inhomogeneous magnetic field the internal energy varies as

dU = −
B1∫

B0

M dB .

With this interpretation the quantity −kT log Z is naturally interpreted as the free
energy F(T, B). This is the point of view taken in Section 2.7. However, there is
also an alternative interpretation where one considers the work done to magnetize
the substance. For this, consider a solenoid of length �, cross section A and n
windings per unit of length, through which a current j creates a vacuum magnetic
field B = (4π/c)nj . This solenoid is then filled uniformly with the magnetic
substance. Using Faraday’s law for the induced voltage by a varying magnetic
flux, V = −(4πn�A/c) dM/dt , compute the voltage induced as the magnetic
moment of the substance is changed by the amount �M . Show that the resulting
work done by the battery driving the current in the solenoid equals �W = B�M .
Thus

dU =
M1∫

M0

B dM .

Convince yourself that from this point of view it is natural to interpret the
partition sum in term of the Gibbs free energy as −kT log Z = G(T, B), with
M = −∂G/∂ B.

Problem 3.4 Information theoretic interpretation of the entropy (Jaynes’
Principle): consider a family of registers with each register consisting of bits
taking the values 0 and 1. We then define an entropy as S ≡ c ln �, where c is a
positive constant and � counts the number of possible states of registers. Clearly,
S defined in this way is a measure for the lack of information about the system.
For two systems A and B we have

(1) SA > SB ⇔ �A > �B

(2) S = 0 ⇔ � = 1
(3) SA + SB = SA∪B

We can similarly consider M equivalent physical systems (M →∞), with each
system taking one of its possible states Ei , i = 1, · · · , µ, with probability wi , i.e.
ni = wi M systems are in the state Ei .
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(1) Compute � for this ensemble.
(2) Using Stirling’s formula, express S for one system in terms of the wi ’s only.

The function of wi obtained in this way is called the Shannon function.
(3) Determine wi by maximizing S, subject to the condition

∑
i wi = 1, using the

method of Lagrange multipliers.
(4) Show that 0 ≤ S(wi ) ≤ c ln µ.
(5) Determine wi by maximizing S, subject to the condition

∑
i Eiwi = U ,

where U is the internal energy.

Problem 3.5 Show that the canonical and the micro canonical ensembles are
equivalent by calculating the energy fluctuations in the canonical ensemble.

Problem 3.6 Construct the partition sum of the “isothermal-isobar” ensemble
and discuss its relation to the Gibbs free energy.

Problem 3.7 Consider an ideal gas in the presence of a surface with N0

distinguishable sites capable of absorbing a single molecule of the ideal gas due to
a sink of potential energy, �E = −ε. Determine the fraction of occupied sites
f (T, P) ≡ n/N0. Hint: describe the surface as grand canonical ensemble. The
isothermal curve (P, f (P)) for fixed T is the so-called absorption isothermal of
Langmuir.

Historical notes

The problem of understanding the molecular basis of Maxwell’s distribution law
was taken up by Boltzmann who was able to extend Maxwell’s law to the case
where external fields such as gravity are present. Such considerations suggested
to Boltzmann that the basic principle of statistical mechanics was that the relative
probability of a molecular state with total energy E was e−E/kT . Boltzmann did
not succeed in proving this principle but one of his attempts to justify it involved
the extremely interesting idea of equal a priori probabilities: for a gas consisting of
M non-interacting molecules of total energy E , Boltzmann postulated that every
micro state of the system, defined by assigning N1 units of energy to particle 1,
N2 units of energy to particle 2, etc. such that the system has fixed energy E , has
equal probability. In modern day terminology, Boltzmann had introduced the micro
canonical ensemble.

The next major step in statistical mechanics came with Gibbs. In his book Ele-
mentary Principles of Statistical Mechanics (1902), Gibbs introduced the canonical
and the grand canonical ensembles and showed how they could be used to dis-
cuss the thermal properties of systems thus establishing the framework of modern
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statistical mechanics. A remark made regarding Gibbs’ book is worth repeating:
“A little book, little read because it is a little difficult.”

J. W. Gibbs was born in New Haven in 1839. He studied mechanical engineering
and went on to get the first Ph.D. in engineering in the United States in 1863. For
three years (1866–69) Gibbs toured Europe and attended lectures and seminars in
Paris, Berlin, and Heidelberg. Two years after returning from his European tour
Gibbs was appointed the first Professor of Mathematical Physics at Yale where he
spent the rest of his life. Gibbs formulated statistical mechanics clearly and his
way of understanding phase space, phase transitions and thermodynamic surfaces
using elegant geometrical constructions revolutionized the subject. It was only
after his work had been translated to German and French that his ideas received
wide recognition in Europe. Gibbs introduced the concept of chemical potential,
the concept of the ensemble, and he presented his work as providing a rational
foundation for thermodynamics. Besides his great work on thermodynamics and
statistical mechanics, Gibbs pioneered the use of vector analysis which he built on
the bases of the work of Grassmann and Hamilton.

A quotation from Gibbs may be of interest: “. . . The usual point of view in the
study of mechanics is that attention is mainly directed to the changes which take
place in the course of time in a given system... for some purposes, however, it is
desirable to take a broader view of the subject. We may imagine a great number
of systems of the same nature, but differing in the configurations and velocities
which they have ... here we may set the problem, not to follow a particular system
through its succession of configurations, but to determine how the whole number
of systems will be distributed among the various conceivable configurations. . . ”

Further reading

A thorough discussion of the various ensembles in classical statistical mechanics
can be found in K. Huang, Statistical Mechanics, John Wiley (1987). For a clear
mathematical treatment of statistical mechanics see C. J. Thompson, Mathematical
Statistical Mechanics, Princeton (1972). A careful discussion of magnetic systems
is found in C. Kittel, Thermal Physics, John Wiley (1969). A standard text on
ergodic theory in statistical mechanics is E. Farquhar, Ergodic Theory in Statisti-
cal Mechanics, John Wiley (1965). The use of probability theory to establish the
basic mathematical results for statistical mechanics can be found in A. I. Khinchin,
Mathematical Foundations of Statistical Mechanics, Dover (1949) and also N. S.
Krylov, Works on the Foundations of Statistical Physics, Princeton (1979).
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Handling interactions

4.1 Statement of the problem

Up to now we have applied the formalism of statistical mechanics to molecules
and particles without interactions. However, the formalism developed in the last
two chapters is not restricted to these cases. We will now study the effects of inter-
molecular interactions. Unfortunately, once interactions are included, it is no longer
possible to completely determine the canonical or grand canonical partition func-
tions analytically. In view of this we develop in this chapter an approximate method
for determining the grand canonical partition function known as the Ursell–Mayer
cluster expansion. In this approach the short range nature of the intermolecular
interactions is exploited. We start with the Hamiltonian H (x, p) for a system of N
identical molecules of mass m.

H (x, p) =
N∑

i=1

|pi |2
2m

+
∑
i< j

V (|xi − x j |).

Here |pi |2/2m represents the kinetic energy of the i th molecule while V (|xi − x j |) is
the interaction potential energy between molecules located at xi and x j respectively.
The interaction potential can in principle be determined in scattering experiments
and is assumed to be known. We show how this can be done in Chapter 9. Let us list
some general features of V (|x|), where |x| denotes the separation distance between
two molecules.

(1) V (|x|) leads to a large repulsive force at short distance. This means that a large amount
of energy is needed to push molecules very close together.

(2) V (|x|) leads to a weakly attractive force between molecules when they are close but
not too close together. These forces are responsible for binding molecules together to
form larger objects.

(3) V (|x|) rapidly approaches zero as the distance between the molecules increases beyond
some critical distance.

70
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A simple model which incorporates these features of V (|x|) is:

V (|x|) =


∞ if |x| ≤ a,

−V0 if a < |x| ≤ a + L,

0 if |x| > a + L.

In principle V (|x|) can be determined from scattering experiments, as we have
already stated, or it can be theoretically determined from the structure of the
molecules involved. The important point is that V (|x|) is not a small quantity.
This means that any method of calculating the effect of interactions on the equation
of state which regards V (|x|) as small is unreliable. We would like to introduce
a calculational approach in which the interaction effects can be introduced in a
step-by-step way, which exploits the short range nature of V (|x|) and the fact that
the attractive force between molecules is weak, i.e. V0 is small. This is done by
observing that it is not V (|x|) but e−βV (|x|) which is relevant in the partition func-
tion. For our model V (|x|) let us consider the variation of e−βV (|x|) − 1 ≡ f (|x|),
as a function of |x|. We have

f (|x|) =


−1 if |x| ≤ a,
βV0 if a < |x| ≤ a + L , assuming βV0 is small
0 if |x| > a + L .

4.2 Example: van der Waals equation of state

Before we develop the general theory let us consider the effect of such two-body
interactions on the equation of state, assuming that V0 and a are small in a sense to
be clarified below. Consider now the canonical partition sum

Z N = 1

N !h3N

∫
d3N p

∫
d3N x e−β

∑ |pi |2
2m e−β

∑
i< j V (|xi−x j |).

We begin by carrying out the momentum integrals which are the same as for the
perfect gas, i.e.

Z N = 1

N !
λ−3N

∫
d3N x e−β

∑
i< j V (|xi−x j |).

In the spirit of the cluster expansion, we then introduce fi j = e−βVi j − 1, where
Vi j = V (|xi − x j |). The canonical partition sum is then written as

Z N = 1

N !
λ−3N

∫
d3N x

∏
i< j

(1 + fi j ).
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Note that fi j is a bounded object. We then expand the above product to the first
order in fi j , i.e. ∏

i< j

(1 + fi j ) � 1 +
∑
i< j

( fi j ).

This is reasonable if V0 and the size a of the molecule are both small. Substituting
this expression in Z N we get

Z N � 1

N !
λ−3N

∫ (
1 +

∑
i< j

fi j

)
d3N x

= 1

N !
λ−3N

[
V N +

∑
i< j

∫
d3x1 · · ·

∫
d3xi · · ·

∫
d3x j · · ·

∫
d3xN fi j

]
.

We observe that the labels i and j are dummy labels which are summed over.
Furthermore ∫

d3x1 · · · d3xi · · · d3x j · · · d3xN fi j

gives the same result no matter which singular pair of labels i and j is chosen for
fi j . Then choosing i = 1, j = 2 we get

Z N � 1

N !
λ−3N

{
V N + N (N − 1)

2
V N−2 ·

∫
d3x1d3x2 f12

}

where N (N − 1)/2 � N 2/2 represents the number of terms in
∑

i< j and V N−2

is the result of integrating over the positions of the molecules that do not par-
ticipate in the interaction. To continue we note that f12 = f (|x1 − x2|) only
depends on the separation distance between x1 and x2. This suggests to change
to center of mass and relative coordinates, x = (x1 + x2)/2 and r = x1 − x2.
Then

Z N � 1

N !
λ−3N

{
V N + N 2V N−1

2

∫
d3r f (|r|)

}

= 1

N !
λ−3N V N

[
1 + N 2

2V
κ(β, a, L)

]

where

κ(β, a, L) = 4π

∫
r2dr f (|r|) = 4π

∫
r2dr

(
e−βV (|r|) − 1

)
.
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This integral is easily evaluated to give κ(β, a, L) = −A + Bβ, where

A = 4π

3
a3 , and B = 4π

3
((a + L)3 − a3)V0.

Thus

F = −1

β
ln Z N

= −1

β
ln

{
Z0

N

(
1 + N 2

2V
κ(β)

)}

where Z0
N = λ−3N V N/N ! is the partition sum for the perfect gas. Assume now that

V0 and a are small in the sense that N 2κ(β)/2V � 1. Then

F � − 1

β
ln Z0

N − 1

β
· N 2κ(β)

2V
= − 1

β
ln Z0

N − 1

β

N 2

2V
(−A + Bβ) .

The equation of state of a gas with interactions of the type just described is thus
given by

P = −
(

∂ F

∂V

)
T

= NkT

V
− N 2

2βV 2
(−A + Bβ)

which upon substitution of our results for A and B leads to

P = NkT

V
+
(

N 2 A

2V 2

)
· kT − N 2 B

2V 2

or (
P + N 2 B

2V 2

)(
V − N A

2

)
= NkT .

This equation of state is known as the van der Waals equation of state which
describes a realistic gas at low density and with a shallow attractive potential
between the molecules. The condition N 2κ(β)/2V � 1 implies that the particle
density times the volume taken by the hard core of the molecules is much smaller
than one. Note that the van der Waals equation of state can be written in the form
of the ideal gas law

PeffVred = NkT,

where Vred is “reduced” due to the finite size of the molecules and Pef f takes the
attraction between the molecules into account. In particular, the measured pressure
is reduced by the attractive force.
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4.3 General theory: the cluster expansion

In the example above we have seen how interactions modify the equation of state in
the case when the interactions can be treated as a small perturbation of the perfect
gas. In this section we now develop a formalism for systematically summing up
all contributions coming from the expansion of the partition sum in terms of the
perturbation fi j . This will lead us to a formalism called cluster expansion. We will
find that the grand canonical ensemble is best suited to perform the summation
explicitly. However, for the moment it will be convenient to concentrate on the
canonical partition sum at fixed N . As shown in the previous section we then
have

Z N = 1

N !
λ−3N QN

where

QN =
∫

d3N x
∏
i< j

(1 + fi j ).

We now develop a method to compute QN . In order to understand the structure
of QN it is useful to consider the first non-trivial case, N = 3, explicitly. We
have

Q3 =
∫

d3x1

∫
d3x2

∫
d3x3 (1 + f12) (1 + f13) (1 + f23) .

Let us rewrite Q3 as

Q3 = Q(1)
3 + Q(2)

3 + Q(3)
3

where Q(1)
3 refers to the terms in Q3 in which no interactions are present, i.e.

Q(1)
3 =

∫
d3x1

∫
d3x2

∫
d3x3 = V 3,

and Q(2)
3 refers to the terms in Q3 in which two molecules interact, i.e.

Q(2)
3 =

∫
d3x1

∫
d3x2

∫
d3x3 [ f12 + f13 + f23]

= 3V
∫

d3x1

∫
d3x2 f12

= 3V 2
∫

d3x f (x), f (x) = e−βV (|x|) − 1

where we have changed to the center of mass and relative coordinates, R =
1/2 (x1 + x2) and x = x1 − x2 respectively. Finally Q(3)

3 refers to the term in Q3 in
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which three molecules interact i.e.

Q(3)
3 =

∫
d3x1

∫
d3x2

∫
d3x3 [ f12 f13 + f12 f23 + f13 f23 + f12 f13 f23].

The decomposition of Q3 can be understood in terms of clusters. In this example
three molecules are involved. The first term Q(1)

3 can be described as consisting of
three 1-clusters, i.e. three non-interacting molecules. The second term Q(2)

3 can be
described as involving one 1-cluster and one 2-cluster. A 2-cluster represents two
molecules that interact. Each of these clusters contribute the same to Q(2)

3 which
explains the factor of 3 in the expression for Q(2)

3 . Finally for three molecules there is
only one 3-cluster possible, i.e. only one term in which all three molecules interact,
this is Q(3)

3 . This example suggests that we write Q3 as

Q3 = S (3, 0, 0) + S (1, 1, 0) + S (0, 0, 1)

=
∑

m1,m2,m3

S (m1, m2, m3) ,

3∑
l=1

lml = 3

where S (m1, m2, m3) refers to terms in Q3 in which there are m1 1-clusters, m2

2-clusters, and m3 3-clusters. The numbers m1, m2, m3 must satisfy the constraint
m1 + 2m2 + 3m3 = 3, since the total number of molecules in this example was
three.

After having set up the notation we are now ready to give the general expression
for QN , that is

QN =
∑

m1,m2,...

S (m1, m2, . . . , ml, . . . , m N )

subject to the constraint
∑N

l=1 lml = N . Here S (m1, m2, . . . , ml, . . .) represents a
term in QN which consists of m1 1-clusters, m2 2-clusters, . . . , ml l-clusters. This
is the cluster expansion representation for QN . It is convenient to represent clusters
pictorially as follows. We replace

∫
d3x1 by

1

and
∫

d3x1
∫

d3x2 f12 by

1 2

Note this is a 2-cluster. Then the terms in Q3 can be graphically represented as
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321 321

3 21 321

1

3

2

1

3

2 1

3

2

1

3

2

+ +

+

+

+

+

+

The last four terms together form a 3-cluster. Observe that the value of

1 2

does not depend on the labels 1 and 2 since the labels 1, 2 are integration variables.
We used this feature to note that

321 1 2 3

1 3 2=

=

This simplifies the expression for Q(2)
3 . To continue we define a cluster integral cl

as follows:

cl =
∫

d3x1 · · ·
∫

d3xl Cl(x1 · · · xl) ,
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where Cl(x1 · · · xl) represents an l-cluster, that is the sum of all possible contractions
between the l molecules. Note that cl ∝ V as a result of the integral over the center
of mass coordinate. The value of cl is independent of the particular set of l molecules
picked from N -molecules to form the l-cluster. We have already seen this for 2-
clusters in Q3.

For the sake of being explicit we look at one term in Q4 involving different
3-clusters, namely S (1, 0, 1, 0), and check that each one of these 3-clusters makes
the same contribution to S (1, 0, 1, 0). Recall S (1, 0, 1, 0) represents one 1-cluster
and one 3-cluster, involving altogether four molecules. We can get the contribution
to Q4 from S (1, 0, 1, 0) by using the definition of Q4 and picking out terms from
Q4 which involve interaction between groups of three molecules. We then find

Q4 =
∫

d3x1

∫
d3x2

∫
d3x3

∫
d3x4 (1 + f12) (1 + f13) (1 + f14)

(1 + f23) (1 + f24) (1 + f34) .

The contribution to Q4 from S (1, 0, 1, 0) is explicitly given by

S (1, 0, 1, 0) =
∫

d3x1

∫
d3x2

∫
d3x3

∫
d3x4

[ f12 f13 + f12 f14 + f12 f23 + f12 f24 + f13 f14 + f13 f23

+ f13 f34 + f14 f24 + f14 f34 + f14 f34 + f23 f24 + f23 f34

+ f24 f34 + f12 f23 f13 + f12 f14 f24 + f23 f34 f24 + f13 f34 f14].

All other terms in Q4 involve either interaction between more or less than three
molecules. We now observe that this expression can be written as the sum of four
3-clusters. Namely the clusters

(1) f12 f24 + f12 f14 + f14 f24 + f12 f14 f24

(2) f12 f23 + f13 f12 + f13 f23 + f12 f23 f13

(3) f23 f34 + f24 f34 + f24 f23 + f23 f34 f24

(4) f13 f34 + f14 f13 + f14 f34 + f13 f34 f14

Each one of these combinations gives the same contribution to S (1, 0, 1, 0) since
the labels distinguishing the contributions represent variables of integration only.
There are thus four 3-clusters each contributing the same to S.

We are now ready to calculate QN in terms of cluster integrals. A general term
S (m1, m2, m3, . . .) has the pictorial structure

m + + +2 m
. . .

3
m1
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with
∑

lml = N . The contribution such a graph makes to S (m1, m2, m3, . . .)
depends on the number of ways a configuration (m1, m2, . . .) can be realized mul-
tiplied by the value of the corresponding cluster integrals for any specific labeling.
For instance in the case of Q4 we found that for S (1, 0, 1, 0) there were four terms
each contributing the same to S (1, 0, 1, 0). We can thus write

S (m1, m2, . . . , ml, . . .) =
[
cm1

1 cm2
2 . . . cml

l . . .
]× S.

The first factor gives the value of any configuration containing m1 1-clusters, m2 2-
clusters and so on. S is the symmetry factor that counts the number of distinct ways
a configuration labeled by m1, m2, m3, . . . , ml, . . . can be realized. This number
S can be calculated by noting that there are N integrals

∫
d3xi in QN . Each one

of these pictorially corresponds to a box. A particular contribution corresponds to
labeling these boxes with integers between 1 and N . This can be done in N ! ways.
However, many labelings lead to the same configuration, for instance

21 2 1=

and

21 3 4

3 4 1 2= ( ) ( )

( )( )

We have to weed these out. This can be done by dividing N ! by configurations
which do not lead to distinct configuration of clusters. There are, as our simple
example demonstrates, two ways in which identical cluster decompositions can
be obtained. The first is if the labels within a given l-cluster are permuted among
themselves. This can be done in l! ways for each of the ml l-clusters present. The
second is if the ml clusters are permuted among themselves. This can be done in
ml! ways. Thus the number of distinct configurations S each of which contributes
the same to S (m1, m2, . . .) is

S = N !

(1!)m1 (2!)m2 . . . (l!)ml
· 1

m1!m2! . . . ml! . . .
.

Let us check if this formula gives the factor 4 we found for S (1, 0, 1, 0). We set
N = 4, m1 = 1, m3 = 1 and get S = 4. Thus in terms of the cluster integrals cl ,
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defined earlier we have

QN =
∑

m1,m2,...

∏
l

(cl

l!

)ml N !

ml!

subject to the constraint
∑

lml = N . We have thus reduced the calculation of the
partition sum Z N = QN/N !λ3N to a sum over cluster integrals cl which can be
evaluated on a computer. Note that the sum over the clusters is a constraint sum to
ensure that the total number of particles in the system equals N .

We can remove this complication if we consider the grand canonical partition
sum instead of the canonical one. The grand canonical ensemble partition function
is given by

Z� =
∞∑

N=0

zN

N !
QN

1

λ3N
.

Since in this expression N can range to ∞ we can write

Z� =
∑

m1,m2,...

∏
l

(
cl zl

l!λ3l

)ml 1

ml!
,

where we have used
∏

l λ
3mll = λ3N and now allow both the product over l as well

as the sum over ml’s to be unrestricted between l = 1 to ∞. Thus

Z� = exp

[ ∞∑
l=1

zlcl

l!λ3l

]
,

which is clearly simpler than the expression for Z N above. The grand canonical
potential is then simply

� = −PV = − 1

β
ln Z� = −kT

∞∑
l=1

zlcl

l!λ3l
.

This last expression makes the reduction of the problem of including two-body
interactions in a perfect gas to the computations of the cluster integrals most trans-
parent. We note in passing that the leading correction c2 can be computed exactly, as
an infinite power series for the so-called Lennard-Jones potential to be introduced
in Chapter 6.

4.4 Relation to experiment: the virial expansion

In our first look at the problem we found that including interactions modifies the
perfect gas law to the van der Waals equation of state. Now that we have presented
the general formalism to treat interactions it is of interest to see how the corre-
sponding equation of state is modified. Experimentally, deviations from perfect gas
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law behavior have been studied carefully. Generically, such deviations, for a gas of
molecules of mass m, are expressed as

Pv

kT
=

∞∑
l=1

al(T )

(
λ3

v

)l−1

where v = V/N , λ = h/
√

2π MkT . This expansion is known as the virial expan-
sion. Clearly, the first coefficient a1 = 1 since this gives the equation of state for an
ideal gas. The first correction to the ideal gas law is determined by a2. For example,
the experimental value for nitrogen at 100 K is a2λ

3 = 160 cm3/mol. Our theoreti-
cal task is to relate the experimentally determined virial coefficients al(T ) to some
function of the interaction potential between molecules.

In order to get the equation of state we need to express z in terms of (P, V, T ).
For this we use N = −(∂�/∂µ)V,T to get

1

v
= 1

λ3

∞∑
l=1

l bl z
l , where bl = λ3−3l

V l!
cl .

Combining this with our expression for PV in the last section we get

Pv

kT
=

∑
bl zl∑

l bl zl
.

We can now relate the virial coefficients al (T ) to the cluster integrals cl(T ) or bl (T )
by comparing this last expression with the virial expansion at the beginning of this
section. This leads to ∑

bl zl∑
bllzl

=
∑

al

(∑
n

bnnzn

)l−1

.

Evaluating both sides order by order in z and remembering that b1 = 1, the coef-
ficients al are determined recursively. After some straightforward though a little
tedious algebra one finds

a1 = 1
a2 = −b2

a3 = 4b2
2 − 2b3

a4 = −20b2
2 + 18b2b3 − 3b4

etc.

Thus the goal to relate the experimentally measured virial coefficients al to the
theoretical cluster integrals bl has been achieved. In fact, it can be shown that the
equations for the coefficients al simplify if they are expressed in terms of irreducible
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clusters. Concretely one finds

al = −(l − 1)birr
l l ≥ 2,

where birr
l is obtained from bl by retaining only those graphs which remain connected

if one line between any two circles is removed. For l = 3, for example, there is only
one such graph.

Problems

Problem 4.1 Calculate b2 and b3 for the potential

V (|x|) =
{
∞, |x| < a

0, |x| > a.

Problem 4.2 For a mixture of two gases with atomic fractions x1 and x2 such that
x1 + x2 = 1, show that the second virial coefficient is of the form

B = B11x2
1 + 2B12x1x2 + B22x2

2 .

Problem 4.3 Compute cV − cP for a gas with a van der Waals equation of state.

Problem 4.4 Show by explicit verification that a3 = −2birr
3 . Hint: use center of

mass and relative coordinates to evaluate the integral expression.

Problem 4.5 For an ideal gas we have U = U (T ) which implies that during a
free, adiabatic expansion the temperature does not change. Show that the leading
order correction to the Joule coefficient J = (∂T /∂V )U is given by

J = − RT 2

cV v2

(
d(a2λ

3)

dT

)
U

.

Further reading

A detailed description of classical and quantum cluster expansion can be found in
R. K. Pathria, Statistical Mechanics, Butterworth-Heinemann (1996) which also
includes a thorough discussion of calculations of higher-order terms in the clus-
ter expansion for both classical and quantum systems. Another reference for the
quantum cluster expansion is Huang, Statistical Mechanics, John Wiley (1987).
For further details on equations of state, virial expansion and the Joule–Thomson
expansion see e.g. W. Castellan, Physical Chemistry, Addison-Wesley (1971).
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Monte Carlo integration

In the canonical ensemble one defines expectation values of observables, A(p, q)
by expressions of the form

〈A〉 =
∫

d� exp(−β H )A∫
d� exp(−β H )

,

where the integral is over the phase space of the system. We have discussed a number
of analytical methods to evaluate these integrals in previous chapters. Although
these techniques can provide us with considerable information about statistical
mechanics systems they are in general not sufficient for all purposes. In particular,
this is the case when the interactions between molecules are strong such that they
can not be treated as a perturbation. In this chapter we will describe techniques to
evaluate canonical expectation values numerically on a computer.

5.1 Numerical integration techniques

Recall that the evaluation of the expectation value of A in the canonical ensemble
is essentially just the evaluation of an integral in a very high number of dimensions.
We will first consider two basic numerical techniques which are commonly used to
evaluate integrals, and discuss why these techniques fail in the present case. How-
ever, the reasons for failure of the techniques are quite informative, and will suggest
a workable integration technique which we will then describe. This workable tech-
nique is called Monte Carlo integration, and it is one of the two cornerstones of
numerical simulation of statistical mechanics systems. In the next chapter we will
develop the other cornerstone, molecular dynamics.

The most straightforward numerical technique to evaluate an integral of the form

I =
∫ b

a
dx f (x) ,

82
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is to split the interval from a to b into n equal segments each of length h where
h = (b − a)/n. If we define xk = a + kh, then the i th segment is bounded by xi−1 <

x < xi , and provided the function f is sufficiently smooth, we can approximate the
integral I by the sum

I ≈ h

2

n−1∑
i=0

( f (xi ) + f (xi+1)).

The limit as h → 0 of this formula is a possible definition of the Riemann integral
of f (x). For h finite, this formula can be evaluated on a computer, and a simple
numerical algorithm to approximate I is to evaluate this formula for a decreasing
sequence of values of h or equivalently an increasing sequence of values of n. When
h is sufficiently small, the results of these evaluations will normally converge to a
fixed value which becomes the numerical estimate of the integral I .

This integration technique works quite well for a function of a single variable
x . It can be extended to multidimensional integrals involving functions of more
than one dimension, but at a cost. Each separate dimension must be split into n
segments of size h as in the one-dimensional case, and the integral approxima-
tion becomes a multidimensional sum over all the dimensions in the problem. For
a one-dimensional problem, n + 1 function evaluations are required since n seg-
ments will share n + 1 endpoints. For a two-dimensional problem, (n + 1)2 function
evaluations will be required, and for an N -dimensional problem, (n + 1)N function
evaluations will be required. The problem is further complicated because the actual
integral required is obtained by taking the limit of the resulting multidimensional
sum as n gets large.

For a statistical system with N particles the integrals needed will be 6N -
dimensional integrals (3 coordinates, and 3 momenta per particle). Even for a
relatively small system with only 100 particles, the number of function evalu-
ations needed to evaluate a statistical mechanics average would be (n + 1)600.
This number of evaluations would take too long to complete on any imaginable
computer, and so the simplest numerical integration is not applicable to statistical
systems.

A second technique which is often used to evaluate integrals numerically is
based on random numbers. Many different algorithms exist by which a computer
can generate a sequence of numbers which behave as if they are random. Typically
one or more of these algorithms are encoded in a function rand() which returns
real values x uniformly distributed in the interval 0 ≤ x < 1. Executing a sequence
of calls of the form

preceding x = rand()
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in a computer program will produce a sequence of different values for the variablex.
These values will be uniformly distributed in the interval 0 ≤ x < 1. With sufficient
ingenuity, this basic rand() function can be used to generate random numbers
with any arbitrary probability distribution.

Consider now the problem of evaluating an N -dimensional integral over a region
R of the form ∫

R
dnx w(x) f (x)

where x = (x1, . . . , xn) is an n-component vector, w(x) is a weight function which
is positive over the region R, and f (x) is some function to be integrated. If we
define

Z =
∫

R
dnx w(x)

then

φ(x) = w(x)/Z

is a probability density function for points x over the region R. Modulo the constant
Z , the evaluation of the integral of f (x) is then just the evaluation of the expectation
value 〈 f 〉 of f for this probability density

〈 f 〉 =
∫

R
f (x)φ(x)dnx .

Computer random number generation techniques can now be used to generate
a sequence of independent vectors xi , i = 1, . . . , N distributed with this proba-
bility density. The quantities fi ≡ f (xi ), and f̄ ≡∑N

i=1 fi/N are then unbiased
estimators of the expectation value 〈 f 〉. To show this we simply need to evaluate
the expectation values of these estimators. The expectation value 〈 fi 〉 of fi is given
by the probability that xi takes the value x times the value f (x), summed over all
possible values of x

〈 fi 〉 =
∫

R
f (x)φ(x)dnx = 〈 f 〉.

The expectation value of f̄ then follows trivially since the different xi are inde-
pendent

〈 f̄ 〉 = 1

N

N∑
i=1

〈 fi 〉 = 〈 f 〉.

Next we calculate the variance of these estimators,

〈( fi − 〈 f 〉)2〉 = 〈
f 2
i

〉− 〈 f 〉2 = 〈 f 2〉 − 〈 f 〉2
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and

〈( f̄ − 〈 f 〉)2〉 = 〈 f̄ 2〉 − 〈 f 〉2

= 1

N 2

N∑
i=1

N∑
j=1

〈 fi f j 〉 − 〈 f 〉2

= 1

N 2

N∑
i=1

〈
f 2
i

〉+ 1

N 2

∑
i �= j

〈 fi f j 〉 − 〈 f 〉2

= 1

N
〈 f 2〉 + N (N − 1)

N 2
〈 f 〉2 − 〈 f 〉2

= 1

N
〈( f − 〈 f 〉)2〉.

The quantity 〈( f − 〈 f 〉)2〉 is completely determined since it is given by the integral:

〈( f − 〈 f 〉)2〉 =
∫

R
( f (x) − 〈 f 〉)2φ(x)dnx .

In order to get a good numerical algorithm for the integral we need a calculable
unbiased estimator whose variance can be made as small as we like. The estimator
f̄ is perfect for this purpose. Its variance is 1/N times a fixed quantity, and we can
therefore make this variance as small as we wish by making N sufficiently large.

The integration algorithm therefore proceeds by generating a large number of
independent points xi , i = 1 . . . N , evaluating fi = f (xi ) on these points, and cal-
culating f̄ =∑

i fi/N . Then f̄ is an estimator for the integral

Z−1
∫

R
dn x w(x) f (x).

This algorithm is called Monte Carlo integration. We note that the Monte Carlo
integration technique is a significant improvement on the Riemann sum technique
we first described. It can produce unbiased estimators of integrals normalized by
an appropriate factor Z with just a single function evaluation, and the unbiased
estimators improve as the number of function evaluations increases. The technique
has two basic problems however. First, it does not allow a direct evaluation of
the normalization factor Z . For statistical mechanics purposes this is unfortunate,
since it means that a direct evaluation of the partition function or its logarithm, and
therefore the free energy, is not possible with Monte Carlo integration. Second,
while it is possible, in principle, to find a direct numerical algorithm to generate
points in a large-dimensional phase space distributed according to a particular
probability density, in practice this is usually impossible to achieve with a realistic
computer and consequently Monte Carlo integration of the particular kind so far
described is only used in very special cases.
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5.2 Markov processes

The simple Monte Carlo integration we have described above depends on being able
to generate points within the multidimensional region we are integrating over and
distributed according to a given probability distribution. In a statistical mechanics
system, different points represent different possible states of the system. For a
system which has a phase space parameterized by 3N momentum variables, pi , i =
1 . . . N , and 3N coordinate variables xi , i = 1 . . . N , a state is specified by giving
values to all these 6N variables. The integral to be performed for such a system is
then

〈A〉 = Z−1
N

∫
d3N p d3N x e−β H A

Z N =
∫

d3N p d3N x e−β H

where H ≡ H (p, x) is the Hamiltonian. Our numerical problem is to generate
states distributed with probability density

φ(p, x)d3N p d3N x = Z−1
N e−β H (p,x)d3N p d3N x .

In the last section we have described the difficulties to produce workable algo-
rithms to generate independent states with this distribution. What is possible, how-
ever, is to generate a sequence of states each one of which is generated in a prob-
abilistic way from the immediately preceding state in the sequence. By carefully
adjusting the probabilistic transitions between neighbors in the sequence it is possi-
ble to adjust the weighting of states within the sequence so that they are distributed
according to any desired probability density. The process which controls this prob-
abilistic transition is called a Markov process, and it is the basis of all numerical
integration techniques in statistical mechanics.

To simplify the discussion of Markov processes, we will assume for the moment
that our statistical mechanics system has only a finite number of distinct states
which we label by an index i = 1 . . . Ns where Ns is the total number of states in
the system. For the system with continuous coordinates pi , xi , we can arrange
this by dividing the total phase space into hypercubes of volume �p3N�x3N

and we can specify states by specifying the identity of the particular hypercube
into which the momenta and coordinates of that state fall. So this assumption
does not limit the applicability of the techniques we are about to describe in any
way.

The problem we face is to find an algorithm which generates states from the set
of all states with a given probability distribution. Let φi be the required probability
for state i . Since the set of states i = 1 . . . Ns includes all possible states in the
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system we have

Ns∑
i=1

φi = 1.

The evaluation of the expectation 〈A〉 reduces to the evaluation of the sum

〈A〉 =
Ns∑

i=1

A(i)φi

where A(i) is the value of A on state i .
For the hypercube discrete system introduced above, for example, φi is given by

φi = 1

Z N
exp(−β H )�p3N�x3N

∣∣∣∣
i

where the notation |i denotes that the function on the right-hand side is to be
evaluated on the i th hypercube. The relation

∑
φi = 1 then becomes

∑
i

1

Z N
exp(−β H )�p3N�x3N

∣∣∣∣
i

= 1

and the definition for the expectation value of A becomes

〈A〉 =
∑

i

A|i
(

1

Z N
exp(−β H )�p3N�x3N

∣∣∣∣
i

)

These latter two equations are just discretized versions of the continuum definitions
of Z N and 〈A〉 given at the beginning of this section and can reasonably be expected
to approach their continuum values when �p and �x become small.

The basic idea underlying our integration technique to evaluate 〈A〉 is to generate
a sequence of states each one of which is produced in a probabilistic way from the
preceding state in the sequence. Start with any convenient initial state which we label
i0. Execute a transition to produce state i1. Execute a second transition to produce
i2. This can be repeated over and over to produce a sequence i0, i1, . . . , iτ , iτ+1, . . .

Since states in the sequence are time-ordered during the computation, the state i0 is
produced first, then the state i1, etc. It is convenient to think of the label τ specifying
position in the sequence as a time index.

Suppose the sequence is in state iτ at time τ . A completely general transition
rule to the next state in the sequence can be defined by specifying a matrix M whose
elements M ji (τ ) specify the transition probabilities that state i at time τ jumps to
state j at time τ + 1. The indices and argument of M allows for the possibility that
the transition probabilities can differ from step to step, that they can differ depending
on the state i at time τ , and that more than one possible state j is allowed for the
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result of the transition. A moment’s thought shows, however, that M must satisfy
two fundamental constraints. First, if the values of M are to represent transition
probabilities, they must all be real and positive.

M ji (τ ) ≥ 0 for all i , j , τ .

Second, we require that all transitions must produce an allowed state of the system,
so that the probability that state i at time τ jumps to j when summed over all
possible states j must be exactly one.

Ns∑
j=1

M ji (τ ) = 1.

These two properties will play an important role in the following and we therefore
introduce the following definitions:

Definition 5.1 A Markov matrix M is a matrix which satisfies the two conditions:
(i) M ji ≥ 0 for all i, j , and (ii)

∑
j M ji = 1 for all i .

Definition 5.2

(1) A process which uses M ji (τ ) to generate a sequence of states is called a
stochastic process.

(2) A Markov process is a stochastic process which uses the same transition
matrix at all times, i.e. M ji is independent of τ .

Markov processes are the stochastic processes normally used to integrate sta-
tistical mechanics averages. The restriction that M be τ independent allows us to
develop a connection between the process defined by M ji and the underlying state
probabilities φi which we wish to model. For the more general case this connection
is much more difficult to make, and so much harder to actually implement in a
computer program. In the following we therefore concentrate on Markov processes
defined by a Markov matrix M.

The problem we are now faced with is to establish the link between the proba-
bility density of a given statistical system and the corresponding Markov matrix M.
We begin by describing the conditions on M for the existence of a corresponding
probability density. This is contained in the following theorem.

Theorem 5.1 All eigenvalues λ of the transition probability matrix M have
modulus |λ| ≤ 1. Furthermore, if there exists a finite integer k ≥ 1 such that
0 < (Mk) j i < 1 for all i, j then there is a unique eigenvector of M with eigenvalue
λ = 1. This eigenvector can be normalized so that all its components are
non-negative, and sum to unity.
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Proof. If vi , i = 1 . . . Ns is an eigenvector of M with eigenvalue λ, then∑
i

M jivi = λv j .

Summing over the index j , we find∑
j

λv j =
∑

j

∑
i

M jivi =
∑

i

vi

where we have used property (ii) in Definition 5.1 to produce the rightmost term.
This equation implies either λ = 1 or

∑
j v j = 0. If we take the modulus of both

sides above we find ∑
i

|M ji ||vi | =
∑

i

M ji |vi | ≥ |λ||v j |.

Again summing over j , and using property (ii), this becomes∑
j

∑
i

M ji |vi | =
∑

i

|vi | ≥ |λ|
∑

j

|v j |.

This equation implies |λ| ≤ 1 and proves the first part of our theorem.
We now proceed to prove the existence of an eigenvector with eigenvalue 1 and

to show that this eigenvalue is non-degenerate. Existence of λ = 1 is equivalent to
the vanishing of the determinant of the matrix

Q =




M11 − 1 M12 · · · M1Ns

M21 M22 − 1 · · · M2Ns

· · ·
MNs 1 MNs 2 · · · MNs Ns − 1


 .

This however follows from the observation that the elements of each row of Q sum
up to zero by condition (ii), which implies that not all Ns rows of Q are linearly
independent.

On the other hand if φ is an eigenvector of M with eigenvalue 1, then clearly
Mkφ = φ. Now taking again the modulus of both sides we have∑

j

(Mk)i j |φ j | ≥ |φi |.

If we furthermore sum over the index i and use that
∑

i (Mk)i j = 1 we find∑
i j

(Mk)i j |φ j | =
∑

i

|φi |,

which together with the previous equation implies that
∑

j (Mk)i j |φ j | = |φi |. Thus
there exists an eigenvector, φ, with eigenvalue 1 and such that φi ≥ 0 for all i . In
fact since (Mk)i j > 0, for all i and j , the equation Mkφ = φ implies that φi > 0
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for all i . If we now assume that there exists a second eigenvector ψ with eigen-
value 1 for which we can assume without restricting the generality that ψi > 0
for all i , then, by linearity, φ+ αψ with α a real number, is also an eigen-
vector with eigenvalue 1. We can thus choose the value α such that one com-
ponent of φ+ αψ vanishes with the non-zero components being positive. This
however contradicts our previous conclusion that all components of this eigen-
vector have to be strictly positive. Thus the eigenvector with eigenvalue 1 is
unique. �

The Markov matrix M is said to be connected if the condition 0 < (Mk) j i <

1 is satisfied for some finite k and for all i, j . In concrete terms this condition
means that there is always a finite but not unit probability to jump from any state
i to any other state j providing a sufficient number of transitions are allowed.
Requiring connectivity allows us to exclude non-generic Markov matrices M which
do not allow access to all possible states of the system from a given starting state.
Examples of such non-generic matrices include the identity matrix M ji = δ j i , and
permutation matrices which just cycle between different states in a deterministic
manner.

If M is a connected transition matrix, we have shown there exists a unique vector
φ with components φi ≥ 0 such that∑

i

φi = 1

∑
i

Mi jφ j = φi .

Since the φi ’s are all positive, and since they sum to unity, these components can
be interpreted as probabilities. Furthermore, since all other eigenvalues of M have
magnitude less than unity, repeated multiplication of an arbitrary vector v by M
will project out the component of v which is parallel to φ and suppress all other
eigenvectors in v. Under multiplication by M the component of v parallel to φ

will replicate itself. All other components will be suppressed by at least a factor
equal in magnitude to that largest eigenvalue of M which is strictly less than unity.
The vector φ represents therefore the equilibrium which is reached after repeated
multiplications by M.

Definition 5.3 The unique eigenvector φ of a connected Markov matrix M which
has eigenvalue λ = 1 and which is normalized so that its components are positive
and sum to unity is called the equilibrium probability distribution of M.

Our original problem was to find a technique to generate states distributed accord-
ing to some specified probability distribution. What we have just shown is that any
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given connected Markov matrix has an equilibrium probability distribution asso-
ciated to it, so we now need to consider how to reverse this association and find a
Markov matrix which has our specified probability distribution as its equilibrium
distribution. For this it is convenient to replace the requirement of an equilibrium
distribution by the following stronger condition:

Definition 5.4 A Markov matrix M ji is said to satisfy detailed balance for a
probability density φ with components φi , i = 1 . . . Ns if

M jiφi = Mi jφ j for all i, j (no index sum implied).

The relation between this condition and the existence of an equilibrium
probability distribution is contained in the following theorem:

Theorem 5.2 If M satisfies detailed balance for the probability density φ and if M
is connected, then φ is the equilibrium probability distribution for M.

Proof. Summing the detailed balance defining relation over index i , we find∑
i

M jiφi =
∑

i

Mi jφ j = φ j

where we have used property (ii) of Markov matrices. Thus φ is an eigenvec-
tor of M with eigenvalue 1. Also by definition φ is a probability distribution,
and so must be the unique probability distribution which is M’s equilibrium
distribution. �

Detailed balance is a sufficient but not necessary condition that a transition matrix
M has a given probability distribution φ as its equilibrium probability distribution
(see Problem 5.5). Other less constraining conditions are possible but, as we shall
see in the next section, detailed balance has the very nice feature that it can be
imposed “on the fly” on an element by element basis when implemented in a
computer algorithm. Less constraining conditions on M require information about
many more of the elements of M for their implementation, and since M is a very large
matrix even for the simplest of systems, actual computation with these conditions
is impossible practically.

Transition matrices M satisfying detailed balance have considerable structure
which is useful for us to develop. Define the matrix � with components � j i

as

� = diag(φ1, · · · , φi , · · · )
that is, � is a diagonal matrix with components along the diagonal given by the
components of the probability density φ. The matrix � can be used to rewrite the
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detailed balance condition as:(
�− 1

2 M�
1
2
)

i j = φ
− 1

2
i Mi jφ jφ

− 1
2

j

= φ
− 1

2
i φi M jiφ

− 1
2

j (using detailed balance)

= φ
1
2
i M jiφ

− 1
2

j

=
[
(�− 1

2 M�
1
2 )T

]
i j

.

Therefore if M satisfies detailed balance, then S ≡ �− 1
2 M�

1
2 is real and symmetric.

On the other hand real symmetric matrices have the property that all eigenvalues of
a symmetric matrix are real and furthermore that all eigenvectors can be organized
into a complete orthonormal basis for the vector space on which the matrix acts.

The eigenvector of S with eigenvalue 1 has the components (φ
1
2
1 , . . . , φ

1
2
i , . . .).

More generally for a symmetric matrix S with eigenvalues λi , i = 1 . . . Ns , and if
Yi are orthogonal projection operators onto the one-dimensional spaces spanned
by the eigenvectors of S, then these two properties imply that S can be expressed
as a direct weighted sum

S =
∑

i

λi Yi ,

and as a result

M =
∑

i

λi Zi , Zi = �
1
2 Yi�

− 1
2 .

Note also that the matrices Zi are orthogonal projection operators, since Yi Y j =
δi j Y j immediately implies Zi Z j = δi j Zi .

We have therefore arrived at the result that a connected transition matrix M
which satisfies detailed balance for a probability distribution φ can be expanded
as a weighted sum of orthogonal projection operators. The weights in this sum
are the eigenvalues of M, and the projection operators project onto the orthogonal
eigenvectors of M. If we label the eigenvalues of M so that λ1 = 1, then we can
write

M = Z1 +
∑
i �=1

λi Zi ,

where the λi , i �= 1 are real and have modulus |λi | < 1, and Z1 has the components
(Z1)i j = φi , for all j .

Consider now a Markov process generated by a connected transition matrix M
which satisfies detailed balance. This process generates a sequence of states by
repeatedly applying M to an initial state. Suppose the initial state is i0. Applying
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M once produces a new state i1. The probability that i1 is a particular state j is
the probability that M generated a transition from i0 to j . This probability is M ji0

since this is just what the components of M are. Applying M a second time produces
a state i2. The probability that i2 is a particular state j is also calculable, but it is
a little more complicated than for i1. To determine it we must sum all the possible
ways that two successive transitions can arrive in the state j . The possibilities
are that i0 could go to k for any k in the first transition, then that k could go
to j in the second transition. The probability of this occurring is therefore given
by

∑
k M jk Mki0 = (M2) j i0 . The pattern produced by repeated application of M to

starting state i0 is now clear. If ia is the state which results after a steps, then the
probability that ia is a particular state j is (Ma) j i0 .

If we exclude the initial state i0, then τ applications of M will generate the
sequence {i1, i2, . . . , iτ }. The preceding analysis allows us to calculate the expected
number of times, N ( j, τ ), that state j will appear in this sequence of τ states. This
expected number is just the sum of the probabilities that each different state in the
sequence is equal to j and is given by

N ( j, τ ) = (M) j i0 + (M2) j i0 + · · · + (Mτ ) j i0 .

The representation of M in terms of projection operators allows us to evaluate this
expression. We have, for example,

M2 =
(

Z1 +
∑
i �=1

λi Zi

)(
Z1 +

∑
j �=1

λi Z j

)

= Z1 +
∑
i �=1

λ2
i Zi ,

since Z2
i = Zi , and Zi Z j = 0 if i �= j . Similar expressions hold for other powers of

M, so we can express N ( j, τ ) as

N ( j, τ ) =
τ∑

a=1

(Ma) j i0

=
τ∑

a=1

(
Z1 +

∑
i �=1

λa
i Zi

)
j i0

= τ (Z1) j i0 +
∑
i �=1

λi (1 − λτ
i )

1 − λi
(Zi ) j i0 .

Suppose now that A(i) is some function defined on the states i of our statistical
mechanics system. Our overall aim is to evaluate expectation values of A on a given
probability distribution �. These expectation values are defined to be

〈A〉 =
∑

A(i)φi .
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We now want to compare this with a numerical estimate of the expectation value
of A in terms of the Markov matrix. For this we define

Definition 5.5 The Markov integration estimate for 〈A〉 is the value obtained
when A is averaged over the states in the Markov sequence {i1, . . . , iτ }. If we
denote this estimate by Āτ we have

Āτ = 1

τ

τ∑
a=1

A(ia) .

In any given computer calculation the value of Āτ will depend, of course, on the
state i0 used to start the Markov process, on the particular transition matrix M used
for the process, and on the number of steps τ in the process. It will also depend on
the particular transitions which are generated as the process is executed. Remember
that the matrix M specifies transition probabilities only. When M is actually applied
at any given step, some particular transition must be chosen from all those allowed.
The particular transition chosen will depend on random numbers generated within
the computer during the course of the calculation. As a result the actual value of
Āτ generated by any given computer calculation is not a predictable quantity. This
is acceptable however since the whole calculation process is probabilistic, and we
can predict the expected value of Āτ if the results of a large number of independent
calculations are averaged. If we denote the process of averaging over calculations
by 〈· · · 〉Calc, then we have

〈 Āτ 〉Calc = 1

τ

∑
j

A( j)N ( j, τ ),

since N ( j, τ ) counts the average number of times that state j will appear in a
sequence of length τ . Using our result for N ( j, τ ) above we find

〈 Āτ 〉Calc =
∑

j

A( j)(Z1) j i0 +
1

τ

∑
j

A( j)

(∑
i �=1

λi
(
1 − λτ

i

)
1 − λi

(Zi ) j i0

)

=
∑

j

A( j)φ j + 1

τ

∑
j

A( j)

(∑
i �=1

λi
(
1 − λτ

i

)
1 − λi

(Zi ) j i0

)
.

To arrive at this last expression we have used the fact that Z1 has components
(Z1) j i = φ j for all i .

In the limit τ →∞ of a system with finite dimensional Markov matrix M, the
only term in this expression which survives is the term

∑
j A( j)φ j . This term is

exactly the expectation value we set out to calculate. The remaining terms are all
annihilated by the factor 1/τ → 0 as τ →∞. Although we have used detailed
balance in the derivation of this result, it is not hard to show that it holds for any
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Markov matrix. Thus our Markov integral estimate, averaged over independent
calculations, 〈 Āτ 〉Calc, produces the statistical mechanics expectation we need in
the limit τ →∞. By a calculation similar to the one we have just completed it is
also possible to show that the fluctuation in Āτ between independent calculations
goes to zero as τ →∞. This is of course to be expected since, as we have seen in
Chapter 3, fluctuations in the average of τ different measurements of a given variable
normally vanish like 1/

√
τ for τ large. It has the nice consequence, however, that

Āτ → 〈A〉 τ →∞
even when not averaged over independent calculations. This relation is our final
defining relation for Monte Carlo integration with Markov processes. It states that
the average of A evaluated on a sequence of states generated by a Markov process
will approach the statistical mechanics expectation of A as the number of states in
the Markov sequence goes to infinity.

To complete our task we still need to give a construction of a Markov matrix
for a given equilibrium distribution. In the next two sections we will see that such
matrices can be quite easily constructed for concrete systems making use of the
detailed balance condition.

5.3 The Ising model

As a simple example of the application of Markov integration techniques we will
consider the two-dimensional Ising model. This model describes a system of spins
which are arranged on the vertices of a square grid. Spins are identified by their
position on the square grid, and can take values ±1 only. We label the spin which
is located at the intersection of the i th vertical and j th horizontal grid line by
si, j , where i and j take integer values in the range 1 ≤ i, j ≤ L , and where L is
the length of the grid. Spins can interact with their nearest neighbors and with an
externally applied magnetic field B which is normally assumed to be constant over
the whole grid.

Any given spin will have four nearest neighbors. For si, j these nearest neighbors
are si−1, j , si+1, j , si, j−1, and si, j+1. We impose periodic boundary conditions on the
system when evaluating nearest neighbors. This is easily implemented by requiring
that the arithmetic which evaluates neighbors be executed modulo the length L of
the grid. Thus the nearest neighbors to spin sL ,L are sL−1,L , s1,L , sL ,L−1, and sL ,1

for example.
The Hamiltonian for the Ising model is

H = −g
∑
i, j

(si, j si+1, j + si, j si, j+1) − B
∑
i, j

si, j .
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States in the system are specified by specifying values for all L2 spins. Since each
spin has exactly two possible values, there are exactly 2L2

states possible, and the
Ising model therefore is an example of a statistical mechanics system which has a
finite discrete state space.

Function expectations in the canonical ensemble are given by

〈A〉 = Z−1
N

∑
states

exp(−β H )A

Z N =
∑
states

exp(−β H )

and typical functions A include the Hamiltonian H of the system, and the mag-
netization S =∑

i, j si, j . Our goal in this section is to find a numerical algorithm
to evaluate these expectation values. To do this we must find a Markov matrix M
for this system. This transition matrix must be connected so that we can access all
states of the system from a given starting state. Following our discussion in the last
section we will furthermore impose detailed balance for this transition matrix.

Consider first the possible states of the Ising model. These are specified by giving
values for all the possible spins in the system. Transitions between states can be
made by flipping (changing sign) of one or more of the spins in a given state. The
simplest possible transition is to flip a single spin, so we will consider now how to
build a Markov matrix using detailed balance which attempts to execute this simple
transition.

Below we will explain two approaches to construct a Markov matrix for this sys-
tem. First we introduce a simple procedure which leads to the so-called Metropolis
Markov matrix. A more sophisticated ansatz introduced in the second part will lead
to a heat bath Markov matrix.

In the present case, we have chosen a particular spin, spin si, j for example, and
wish to find a transition matrix M(i, j) which is to decide whether to flip that spin.
Let q denote the state of our system before the transition occurs, and let r denote
the state which results if spin si, j is flipped. Detailed balance requires that

M(i, j)rqφq = M(i, j)qrφr

where φq = exp(−βEq)/Z N , φr = exp(−βEr )/Z N and Eq and Er are the energies
of states q and r respectively. Note first that the factors Z N appearing in φq and
φr play no role in this equation. They are common to both sides and therefore
immediately cancel. Our detailed balance equation therefore becomes

M(i, j)rq exp(−βEq) = M(i, j)qr exp(−βEr ) .

A naive transition rule which we could now adopt is simply to always flip the spin
si, j . This rule corresponds to the choice M(i, j)rq = 1 = M(i, j)qr . Note that this
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choice is symmetric in the states q and r . This rule is certainly easy to implement
but it satisfies detailed balance only if the states q and r have the same energy. If
the energies of the two states are different, then detailed balance is not satisfied.
However, if the energies are different, then it is possible to distinguish q and r since
one of these states will have an energy greater than the other.

The Metropolis accept/reject algorithm uses this distinguishability to correct
detailed balance. The algorithm rule is to always accept a transition if the new
state has lower energy than the old, and to accept a transition with probability
exp(−β(Enew − Eold)) if the new state has greater energy than the old. This rule
adds an extra probability component to the Markov matrix defining the spin flip
transition. The probability of generating a transition now becomes the probability
of attempting a transition times the probability of accepting that attempt. Suppose,
for example, that we have Er < Eq . An attempted transition from q to r will always
succeed, while an attempted transition from r to q will succeed only some of the
time. The actual probabilities for both of these transitions are then

Mrq(i, j) = 1 Er < Eq
.

Mqr (i, j) = exp(−β(Eq − Er )) Er < Eq

Condition (i i) for a Markov matrix then requires that M(i, j)qq = 0 and M(i, j)rr =
1 − Mqr (i, j) respectively. Detailed balance is trivially satisfied since

Mrq(i, j)φq = exp(−βEq)

= exp(−β(Eq − Er )) exp(−βEr )

= Mqr (i, j)φr .

If the opposite case holds, that is Er > Eq , then the transition probabilities are
different

Mrq(i, j) = exp(−β(Er − Eq)) Er > Eq

Mqr (i, j) = 1 Er > Eq

where the diagonal elements are again determined by condition (i i). However,
detailed balance again holds.

A Metropolis algorithm attempts to execute a transition q → r which may or may
not succeed. The possible results of the transition therefore are that q → r or q → q .
If the system under consideration is such that there are more than two possible final
states after the transition (for instance if every individual spin can take more than
two values) then the Metropolis algorithm is usually defined by the Markov matrix

Mrq(i, j) = Wrq ×
{

1 Er < Eq

exp(−β(Er − Eq)) Er > Eq
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where Wrq = Wqr is has to be adjusted such that the total probability equals one
(condition (i i)).

An alternative algorithm to employ is the heat bath algorithm. This algorithm
allows multiple possible final states but tries to adjust the transition probabilities
to these final state so that an accept/reject step is not required. For a spin-flipping
transition the two possible final states are q and r . The heat bath algorithm chooses
the transition probability to state r to be proportional to exp(−βEr ) and that to q to
be proportional to exp(−βEq). Since only two final states are possible we have
therefore:

Mqq = exp(−βEq)/(exp(−βEq) + exp(−βEr ))

Mrq = exp(−βEr )/(exp(−βEq) + exp(−βEr )).

To check detailed balance we also need the probabilities for transitions which start
in state r . The possibilities are either that r → r or r → q. The corresponding
probabilities are given by

Mrr = exp(−βEr )/(exp(−βEq) + exp(−βEr ))

Mqr = exp(−βEq)/(exp(−βEq) + exp(−βEr )).

Comparing probabilities, it is simple to see that detailed balance is trivially satisfied
in this case.

Both the Metropolis and heat bath algorithms provide implementations of a
Markov matrix M(i, j) which attempts transitions involving the flip of a single spin
si, j . By construction these transition matrices will satisfy detailed balance. However,
since M(i, j) allows only a single spin to flip, it is not a connected Markov matrix.
Starting in any given state a single M(i, j) will only allow transitions between this
state and one other state in the system. All remaining states of the system will
remain inaccessible.

There are many possible solutions to this final problem. The simplest is to use a
compound transition matrix which is the tensor product of the single-spin Markov
matrices we have already generated. For example we can define the compound
matrix to be

M = M(1, 1) ⊗ · · · ⊗M(L , L).

This matrix is Markov, and has the same equilibrium probability distribution as the
individual spin-flip matrices M(i, j) (see Problem 5.6 ).

The compound matrix M is easily seen to be connected. It allows all possible spin
flips, so all states of the system are accessible from any given starting state. Since M
is a connected Markov matrix with the correct equilibrium probability distribution,
the sequence of states it generates can be used to evaluate the expectation averages
for the Ising model in the canonical ensemble.
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5.4 Implementation of the algorithm

Let us now describe how to implement the Metropolis algorithm for the two-
dimensional Ising model numerically on a computer. The first task is to set up
an array of L2 variables to parametrize the possible configurations. To continue one
programs an algorithm performing the following steps:

(1) Set up a counter counting from n = 1, · · · , L2 with each step representing a position
in the array.

(2) Choose an initial configuration, that is, initial values (±1) for the L2 variables using a
random number generator.

(3) Evaluate the energy of the initial configuration using the discrete Hamiltonian given at
the beginning of Section 5.3.

(4) Set the initial value of the counter to n = 1.
(5) Evaluate the energy of the configuration obtained after changing the sign of the nth

variable in the array.
(6) If the energy difference between the new configuration and the previous configuration is

less than or equal to zero, then the program should update the array by changing the sign
of the variable in question, increment the counter, n → n + 1 and then return to step (5).
If, however, the energy difference is bigger than zero one chooses a random number,
x , between 0 and 1, using the random number generator. Then, if exp(−β(Enew −
Eold)) ≥ x the array will be updated before incrementing the counter and the program
returns to step (5). If exp(−β(Enew − Eold)) < x then the array is not updated and the
program returns to step (5) after incrementing the counter.

(7) Once the counter has reached the last variable in the array (n = L2) the program eval-
uates the observable of interest (e.g. the energy) and returns to step (4).

In fact, the precise initial configuration is not particularly relevant since the Markov
process loses its memory after a few steps. However, ideally the initial configuration
should not be chosen to be totally atypical in order to save computer time. An
alternative to updating the spins in the array in order of increasing n, is to choose a
site randomly and repeat this process L2 times to generate a new configuration. It
would appear that another way to speed up the process is to update all spins before
doing the Metropolis test. However, this drastically reduces the acceptance rate and
should therefore be avoided.

The program set up in this way can now be used to evaluate the expectation
values of the various observables by evaluating the value of the observable in each
update of the complete array. In the case of the Ising model these expectation values
will depend on the temperature β and the external magnetic field B. Care should
be taken to take into account that when these external parameters are modified the
program will take a certain number of steps before settling near the new equilibrium
configuration. In the case at hand, the external parameters are t ≡ 1/βg and b ≡
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Figure 5.1 Fluctuations of the internal energy as a function of the time after
increasing the inverse temperature from 1 to 1.5 in numerical units.

β B. As an example we plot in Figure 5.1 the “measured” energy as a function of the
time after lowering the temperature. Taking this into account, the sampling period
necessary for measuring the various quantities can be shortened significantly if the
sampling is started after the system has settled into the new equilibrium state.

After the program has been “tuned”, that is the parameters have been set such
that fluctuations between different “runs”, i.e. different measurements of energy,
are reasonably small we can start with the quantitative analysis of the system. As
an example let us measure the specific heat, cV , as a function of temperature. This
quantity is interesting since it can be used to detect signatures of a phase transition.
We recall that cV is given in terms of the internal energy U by cV = ∂〈U 〉/∂T , where

〈U 〉 = 1

Z N

∑
states

H exp(−β H )

= − 1

Z N

∂ Z N

∂β
.

Thus,

cV = kβ2

(∑
states

H 2 exp(−β H )

Z N
− 〈U 〉2

)
.

But this last expression is just kβ2 times the variance of U introduced in Section 5.1,

Var(U ) = 〈(U − 〈U 〉)2〉 .
Thus we have the simple result, cV = kβ2Var(U ). In order to compute cV in the

Metropolis algorithm we then evaluate U and U 2 by sampling the Hamiltonian
H (ia) over the sequence of states ia , a = 1, · · · τ with the program set up above.
We plot the results as function of t in Figure 5.2.
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Figure 5.2 The specific heat, cV , as a function of temperature on 32 × 32 lattice
and a sampling period of 1 million steps at each temperature.

The interpretation of this result is interesting. We see that cV is peaked near
the temperature tc. On the other hand we have seen above that cV is a measure
of the variance of U . Thus we see that the fluctuations in the energy grow near
tc. This is the typical behaviour of a second-order phase transition (see Chapter
13). Thus Figure 5.2 suggests that the two-dimensional Ising model undergoes a
second-order phase transition at the critical temperature tc � 1.7. If we take the
values for the spins to be ±1/2 instead of ±1, then tc is rescaled by a factor (1/2)2

so that tc � 0.43.
Note that the plot of cV in Figure 5.2 is not at all smooth, in spite of having

averaged over a substantial number of updates. This is for two reasons: first since
cV itself is a variance, the fluctuations in cV are a measure of the “variance of
a variance”. This is one source of the problem, since variances of variances are
generally big. Second the algorithm we have used is not ideal for this purpose.
The result can be improved considerably by using a so-called “cluster” algorithm,
where a large block of spins is grown and then flipped in unison. Another possible
modification is to replace the canonical sampling by a micro canonical sampling
where a set of “demons” circulates around the lattice trying to flip spins. Each
carries a sack of energy ranging. Any energy change associated with a spin flip is
compensated by a change in this sack. If the demon’s sack cannot accommodate the
change, the flip is rejected. In this mode the temperature is not fixed, but calculated
from the average demon energy. We refer the reader to the literature at the end of
this chapter for further details about these algorithms. We finish this section by
noting that the two-dimensional Ising model has been solved exactly in a veritable
“tour de force” by L. Onsager in 1944. He did not care to publish the derivation
and so it was not until 1952 that C. N. Yang gave the first published derivation. The



102 Monte Carlo integration

two-dimensional Ising model has ever since played a prominent role as a testing
ground for various approximation schemes.

5.5 The Lennard-Jones fluid

Let us turn now from a system with discrete degrees of freedom to a system with
continuous degrees of freedom, and consider how the approach presented so far has
to be modified. The generic case now is a system described by coordinates qi and
momenta pi , with Hamiltonian given by H (p, q). Canonical expectation values are
now defined as integrals over the phase space of the system, and states are defined
by specifying the corresponding coordinates and momenta, (p, q). The space of
states is now obviously not discrete, and our analysis does not immediately apply.
However, we have already described a simple approximation which determines
how to proceed. This approximation is to divide the continuous phase space of the
system into a sequence of small discrete elements. For example we could divide
the phase space into a large number of hypercubes which have principal axes lying
along the momentum and coordinate axes of phase space. If we define the length of
a hypercube to be �pi on the edge parallel to the pi momentum axis, and �qi on
the edge parallel to the qi axis, then each hypercube will have volume

∏
i �pi�qi .

Each hypercube will contain very many different states of our system but, if the
hypercube is sufficiently small, we can expect that all these states are approximately
equivalent. As a result, we can adopt the view that each hypercube defines a single
distinct state with coordinates and momenta given, for example, by the center point
of the hypercube.

Mathematically, this approximation is nothing more than the statement that we
can approximate an integral over some volume by a sum of contributions from
sub-volumes. Thus

〈A〉 = Z−1
N

∫ ∏
i

dpi dqi

2π�
e−β H A

� Z−1
N

∑
s

∏
i

�pi�qi

2π�
(e−β H A)

∣∣
s

,

where

Z N =
∫ ∏

i

dpi dqi

2π�
e−β H

�
∑

s

∏
i

�pi�qi

2π�
(e−β H )

∣∣
s .

The index s here runs over the individual hypercubes which make up the states of
the system in this approximation, and the notation |s denotes that the corresponding
factors are evaluated on the state s.
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In this discrete formulation, we can now apply all our results about Markov pro-
cesses. States in our system are labeled by an index s. The equilibrium probability
for a state in a hypercube centered at s is given by

φs = Z−1
N e−β H

∣∣
s

∏
i

�pi�qi

2π�

and the detailed balance condition we need to impose on a Markov matrix to generate
this equilibrium probability is the standard one

M(t ← s)φs = M(s ← t)φt .

Here M(t ← s) is the probability that state s jumps to state t . In our discrete
approximation, state t is a hypercube, and we expect therefore that the probability
that s jumps to t should depend on the volume of the hypercube t . Thus we find
that M(t ← s) should have the form

M(t ← s) =
(∏

i

�pi�qi

2π�

)∣∣∣∣∣
t

M(t ← s)

where M is now a function. In deriving this formula, we have made explicit the
dependence of M on the hypercube volume, by factorizing it out. The new function
M so introduced is therefore a probability density function.

The correct generalization of the Markov method to systems with continuous
degrees of freedom is now clear. The equilibrium probability vector φi becomes a
probability density function φ(s). The Markov transition matrix M also becomes a
density function, M(t ← s) ≡M(t, s). The variables s and t here are continuous,
and take values in the phase space of the system. If d� is an infinitesimal volume
element in this phase space, then φ(s) d�s is the equilibrium probability density
that the system occupies an infinitesimal volume d�s about the point s in phase
space, and M(t, s)d�t represents the probability that the Markov transition matrix
generates a jump from a point s in phase space to an infinitesimal volume element
d�t about the point t .

The basic properties of the equilibrium probability vector φi and of a Markov
transition matrix M for the Lennard-Jones fluid are then obtained from those of a
discrete system in the following way.

φi ≥ 0 =⇒ φ(s) ≥ 0∑
i

φi = 1 =⇒
∫

d�φ = 1

M j i ≥ 0 =⇒ M(t, s) ≥ 0∑
j

M ji = 1 =⇒
∫

d�tM(t, s) = 1

M jiφi = Mi, jφ j =⇒ M(t, s)φ(s) =M(s, t)φ(t).
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Figure 5.3 Lennard-Jones potential

We will now consider how to apply our understanding of how Markov processes
are generated for systems with discrete state spaces to generate a Markov integration
process for a system with continuous degrees of freedom. The system which we will
analyze is that of a Lennard-Jones fluid. This is a system of N atoms or molecules
which interact pairwise. The momenta and positions of the atoms are pi , and xi

with i = 1, . . . , N . The Hamiltonian for the system is

H =
∑

i

1

2m
|p|2 +

∑
i< j

Vi j

with an interaction potential between the i th and j th atom

Vi j ≡ V (ri j ), ri j =
∣∣xi − x j

∣∣ .
A Lennard-Jones fluid is a fluid with potential

V (r ) = 4ε

((σ

r

)12
−
(σ

r

)6
)

.

The shape of this potential is of the form shown in Figure 5.3. It is a heuristic
potential to approximate the interatomic potential with repulsion between two atoms
at short distance and a weak attractive force at intermediate distances representing
the chemical binding energy. As mentioned in Chapter 4 this potential has the added
feature that the first virial coefficient can be computed exactly.

For the calculation of the partition function, the quantity β H will be relevant.
In all numerical calculation, it is useful to transform from dimensional quantities
like β, H , pi and xi to dimensionless quantities before generating any computer
programs. By so transforming we can arrange that the typical numbers which we
work with are quantities of O(1) rather than the very large or very small numbers
with which we had to deal if working in m-kg-s units. In the Lennard-Jones system,
we have four dimensional parameters, ε which has units of energy, σ which has
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units of length, m which has units of mass, and β which also has units of energy. The
standard approach to rescaling physical quantities is to define a numerical length
scale, Sx , a numerical time scale, St , and a numerical mass scale Sm , and re-express
all variables in these new scales, that is

x(n)
i = S−1

x xi , t (n) = S−1
t t, m(n) = S−1

m m

where x, t and m are expressed in m-kg-s units. Since momenta is defined in terms
of mass times velocity, it also scales and we find that momentum in time units, p(n)

i ,
is given by

p(n)
i = m(n) dx(n)

i

dt (n)
= St

Sm Sx
pi .

We can now apply these changes of units in β H and consider how we can best
choose the scale factors Sx , St , and Sm . A convenient choice is

Sx = σ, Sm = m, and
Sm S2

x

εS2
t
= 1.

With this choice, m(n) = 1, and the Lennard-Jones Hamiltonian takes the form,

βEL J = 1

T

(∑
i

1

2
|pi |2 +

∑
i< j

Vi j

)

where

Vi j = V (ri j ) = 4
(
r−12

i j − r−6
i j

)
and we have defined T ≡ 1/βε. This form of the Lennard-Jones system is the
standard form used in all numerical calculations, and we have dropped the suffixes
(n) on the coordinates and momenta here since we will presume that we are working
in numerical units from now on. Note the very important result, however, that the
Lennard-Jones system is defined by a single parameter T , which is known as
the reduced temperature. Further note that this parameter is dimensionless. The
apparently independent variables β, ε, m, and σ with which we began have been
reduced to just a single dimensionless variable T .

One further point about this Hamiltonian needs to be made. The canonical
ensemble integrations which we need to perform have the momenta degrees of
freedom completely unconstrained. The position degrees of freedom, however,
are constrained to lie within the volume V in which the system is confined. In
principle, it is quite simple to implement such a constraint in any numerical cal-
culation. In practice, numerical calculations are very computer intensive, and we
tend to work with only very small systems as a result. In a very small system,
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the edge effects resulting from the very small volumes in which the particles are
confined can be very large indeed. The normal approach is therefore to impose
periodic boundary conditions on the system rather than confining it directly in
a volume. Thus if we have N particles in a volume V , we view the system
as if there are infinitely many copies of this volume replicated over and over
in all three dimensions. An atom close to the edge of our original volume can
then interact with atoms within the replicated volumes surrounding the original
system.

Let us turn now to the problem of generating a Markov process which will allow
the calculation of expectation values of operators in the canonical ensemble of the
Lennard-Jones system. The basic problem is to find a Markov transition matrix
for this system. The phase space for the Lennard-Jones system is 6N -dimensional,
with N momenta, pi and N coordinates, xi . A state for the system is described
by giving values for all 6N momenta and coordinates, and a Markov transition for
the system must begin in some state and transit to another state with probability
which satisfies the detailed balance condition. Clearly, attempting a direct transition
in which all 6N coordinates and momenta change together is impossible. Our
experience with the Ising model however provides the solution. We shall build a
general Markov transition matrix as a product of simpler Markov matrices each of
which modify just a few of the degrees of freedom. In the Ising model, these simpler
transition matrices flipped only a single spin at a single site. This suggests that we
look for two basic kinds of transition matrix. The first kind should change a single
momentum degree of freedom, the second should change a single position degree of
freedom.

We consider first finding a transition matrix which changes a momentum degree
of freedom, pi , to a new value p′i . We denote this transition matrix, M(p′i ← pi ). In
designing this matrix, we need to make sure to satisfy detailed balance. This takes
the form

M(p′i ← pi )e
−β H =M(pi ← p′i )e

−β H ′

where H ′ denotes the value taken by the Hamiltonian after M has acted, and
H denotes the value taken by the Hamiltonian before M has acted. The action
of M here is simply to change the value of one momentum degree of freedom,
p′i ← pi . This momentum degree of freedom contributes to only one term in the
Hamiltonian. All other terms are left unchanged. Thus the detailed balance equation
can be reduced to a very simple form,

M(p′i ← pi )e
− 1

2T |pi |2 =M(pi ← p′i )e
− 1

2T |p′i |2 .
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The simplest implementation of a Markov which satisfies this detailed balance
condition is to choose

M(p′i ← pi ) = 1

z
e−

1
2T |p′i |2

where

z =
∫

d3 p′i e−
1

2T |p′i |2 .

Remember that M is a probability density function for systems with continuous
degrees of freedom. What this equation tells us to do is to generate p′i with the
Gaussian density function given by this last equation. There exist many ways to
generate Gaussian random numbers. Note that in generating p′i this way we do not
need to know the value of pi . It drops everywhere from the equations.

Let us turn now to the problem of finding a transition matrix which changes a
position degree of freedom, xi , to a new value, x′i . We denote this transition matrix
by M(x′i ← xi ). Again, this matrix is required to satisfy detailed balance,

M(x′i ← xi )e
−β H =M(xi ← x′i )e

−β H ′

where, as before, H ′ denotes the value taken by the Hamiltonian after M has
acted, and H denotes the value taken by the Hamiltonian before M has acted. The
action of M, now, is simply to change the value of one position degree of freedom,
x′i ← xi . This position degree of freedom contributes to only the potential term in
the Hamiltonian. The kinetic energy is left unchanged. Thus the detailed balance
equation can again be reduced to

M(x′i ← xi )e
− 1

2T

∑
j �=i

V (|xi−x j |) =M(xi ← x′i )e
− 1

2T

∑
j �=i

V (|x′ i−x j |)
,

but now the form is not so simple, since the potential energy terms are more com-
plicated than the kinetic energy terms. The ansatz we made for the momentum
Markov transition matrix is thus now not appropriate. In particular, although the
choice

M(x′i ← xi ) = 1

z
e
− 1

2T

∑
j �=i

V (|x′ i−x j |)
, z =

∫
d3x ′i e

− 1
2T

∑
j �=i

V (|x′ i−x j |)

is a valid Markov matrix, it is not the best choice since there does not exist any
direct way to generate new positions x′i according to this density function. In the
momentum case, the density function involved was a Gaussian. There exist many
ways to generate Gaussian random numbers, and we did not have this problem.
However, a simple form forM for the position update is found using the Metropolis
idea. This involves two steps. First we generate x′i by adding a random vector a to
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xi . Then we accept the new vector x′i with the probability A where

A =
{

1 e−�H > 1

e−�H e−�H < 1 ,

with

�H ≡ H ′ − H = 1

2T

∑
j �=i

(V (|x′i − x j |) − V (|xi − x j |)).

In order that this transition rule satisfies detailed balance, the random vector a must
be symmetrically distributed about the origin.

We have now defined two basic sets of transition matrices which implement tran-
sitions for momenta, and for coordinates. The generation of a sequence of states via
these Markov matrices is now straightforward. We begin by specifying some initial
state i0 in which we arbitrarily assign coordinates and momenta. Then we generate
a state i1 by applying in turn the transitions M(p′i ← pi ) for i = 1, . . . , N , and
M(x′i ← xi ) for i = 1, . . . , N . There are in all 2N applications of these transi-
tions required to change all 2N vector momenta pi and vector coordinates xi in
our starting configuration. After these 2N applications are made, a new state i1 is
generated.

This process is then repeated to generate states i2, i3, etc. Once we have a
sufficiently large set of different states we can begin to calculate expectations of
operators. These expectations are given by averaging the operators over the states
generated by the Markov transition we have defined.

Algorithm: Let us now describe how to implement the Metropolis algorithm
for the Lennard-Jones fluid numerically on a computer. First we set up an array of
2N vectors to parametrize the possible configurations in phase space. The program
then has to perform the following steps:

(1) Choose an initial configuration, that is, initial values for the N position vectors using a
random number generator and for the N momentum vectors using a Gaussian normal
distribution, f (p) with variance σ = T , and centered at the origin, that is

f (p) = 1√
2πT

e−
p2

2T .

(2) Evaluate the kinetic and potential energy separately for this configuration.
(3) Update the first position vector by a random vector symmetrically distributed about the

origin.
(4) Evaluate the difference in potential energy before and after the update. If the energy

difference is less than or equal to zero, then the update for this position vector is
accepted. If not, choose a random number, x , between 0 and 1, using the random number
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generator and update the position if exp(−β(Vnew − Vold)) ≥ x . Otherwise leave this
position vector unchanged.

(5) Repeat the previous step for all position vectors.
(6) Measure the quantity of interest for this configuration.
(7) Update the N momentum vectors using a Gaussian normal distribution, f (p).
(8) Return to step (3).

The comments made after the suggested algorithm in Section 5.4 could be repeated
here. In particular the concrete initial configuration is not important as long as it is
not in some completely irrelevant part of the phase space. Furthermore updating all
coordinates at once should be avoided since the resulting configuration is unlikely
to satisfy the Metropolis criterion.

Note that for many measurements, such as the total energy or the pair distribution
function, which is an order parameter for the melting transition (see Section 6.4),
step (7) can be omitted since the average of the kinetic energy is determined by
the temperature alone. Furthermore the momenta and the coordinates are updated
independently so that there is no correlation between the two updates.

Problems

Problem 5.1 If a computer can execute one function evaluation in 10−9 seconds,
how long would it take to evaluate a 600-dimensional integral when n = 10.

Problem 5.2 Calculate the probability that

( f̄ − 〈 f 〉)2 < ε(〈( f − 〈 f 〉)2〉)
for ε fixed.

Problem 5.3 Consider the Markov matrix

M =




a 0 0
1
2 (1 − a) 0 1
1
2 (1 − a) 1 0


 .

Show that Mnv approaches a periodic orbit exponentially fast and thus the
Markov process does not converge.

Problem 5.4 Prove that any transition matrix for a two-state system must satisfy
detailed balance.

Problem 5.5 Prove that for a system with three or more states, detailed balance is
a sufficient but not necessary condition for M to have φ as its equilibrium
probability distribution. (Hint: count degrees of freedom.)
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Problem 5.6 Prove that the tensor product of the single-spin Markov matrices
defined in Section 5.3 has the same equilibrium probability distribution as the
individual spin-flip matrices M(i, j).

Problem 5.7 Show that the compound Markov matrix M of Problem 5.6 does
not satisfy detailed balance. Suggest a modified Markov matrix which does satisfy
detailed balance.

Problem 5.8 Show that in the heat bath algorithm M satisfies the Markov
condition

∑
j M ji = 1.

Problem 5.9 Consider a circle of radius r = 1 centered on the origin which is
inscribed in a square with side length l = 2 also centered on the origin. The area
of the circle is π . The area of the square is 4. The ratio, π/4, of the two areas can
be expressed as an integral

π

4
=
∫
|x |<1,|y|<1 dxdy f (x, y)∫

|x |<1,|y|<1 dxdy

where f (x, y) takes the value 1 if (x, y) is within the circle, and the value 0
otherwise. Define a Monte Carlo integration algorithm to evaluate this ratio. How
many different pairs of points will you have to generate in order to have a 90%
probability of calculating π correctly up to 10 decimal places with your algorithm.

Problem 5.10 Following the rules for implementing the Metropolis algorithm
given in Section 5.4 write a program in your preferred language for a
two-dimensional Ising model on a lattice with 20 × 20 sites. The program should
have the following features

(1) It should allow for a variety of initial conditions.
(2) The temperature should be a controllable parameter in the program.
(3) It should be able to “measure” the spin-spin correlation function < si s j >.

Use this program to estimate the internal energy as well as the expectation value
of the magnetization as a function of the temperature for vanishing external field.
Plot these quantities as a function of temperature. Using the spin-spin correlator
estimate the magnetic susceptibility as a function of temperature and discuss the
existence and order of the phase transition. Estimate the critical temperature, Tc.

Further reading

The Metropolis algorithm was first published in 1953 by N. Metropolis, A. Rosen-
bluth, M. Rosenbluth, A. Teller and E. Teller. Since then a number of variations of
this approach have been suggested. A collection of articles on Monte Carlo methods
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is contained in K. Binder, Monte Carlo Methods in Statistical Physics, Springer
(1979). In particular, the first article by K. Binder presents a nice summary of Monte
Carlo methods. A good text on Monte Carlo methods together with sample codes
can be found in S. E. Koonin, Computational Physics, Benjamin-Cummings (1986).
For a recent graduate textbook see D. Landau and K. Binder, A Guide to Monte
Carlo Simulations in Statistical Physics, Cambridge University Press (2000). An
essential reference for numerical simulation of classical systems is M. P. Allen
and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press (1986). A
good and concise introduction to Monte Carlo methods in statistical physics can be
found in D. Chandler, Introduction to Modern Statistical Mechanics, Oxford Uni-
versity Press (1987) and also in J. Zinn-Justin, Quantum Field Theory and Critical
Phenomena, Clarendon Press (1993). The “cluster” algorithm is described in R. H.
Swendsen and J.-S. Wang, Phys. Rev. Letters 58, 86 (1987). The canonical sampling
using “demons” can be found in M. Creutz, Phys. Rev. Letters 50, 1411 (1983).
Finally, the exact solution of the two-dimensional Ising model, due to Onsager, can
be found, for instance, in C. J. Thompson, Mathematical Statistical Mechanics,
Princeton University Press (1972).
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Numerical molecular dynamics

In the last chapter, we described a numerical technique which allows us to calculate
canonical ensemble partition functions. We saw there that the canonical ensem-
ble required us to evaluate a large multidimensional integral, and our numerical
approach was to attempt to construct representative numerical sampling methods.
In this chapter we address the issue of how to evaluate expectation values in the
micro canonical ensemble. This often turns out to be a much more economical way
in actual numerical computations.

6.1 Equations of motion and the micro canonical ensemble

In the canonical ensemble we consider all possible states of the system when gen-
erating expectation averages. Different states are, however, weighted with different
exponential factors, exp(−β H ), which depend on their energy H . In the micro-
canonical ensemble, we limit our attention only to states which have fixed energy
(Figure 6.1). We saw in Chapter 3 that these two different ensembles produce the
same results when applied to macroscopic systems where the number of degrees of
freedom of the system is very large relative to the typical microscopic length scales.
The defining formula for expectations of operators A(p, q) in the micro canonical
ensemble is

〈A〉 =
∫

E<H<E+�
d�A∫

E<H<E+�
d�

.

As before, the calculation of 〈A〉 requires that we calculate a ratio of integrals. We
face however a fundamental problem in defining these integrals because we must
confine the integral to a shell of energy E and width � in phase space. For almost
all systems, defining this shell in a useful way is not possible. The perfect gas is
one of the few exceptions, and we have already discussed this exceptional case in
Chapter 5.

112
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Figure 6.1 Sketch of a micro canonical sampling.

Let us first consider applying the numerical techniques we developed in the
last chapter to the problem at hand. Monte Carlo methods require that we choose
some random starting state for our system, then continually make Markov tran-
sitions from that starting state to new states. In order that we generate a cor-
rectly weighted sequence of states we need to arrange that the Markov transi-
tion probability M(i ← j) from one state j to the next state i satisfies detailed
balance:

M(i ← j)e−β H | j = M( j ← i)e−β H |i .
Markov methods are as applicable to the calculation of the micro canonical expecta-
tions as to canonical expectations, since a ratio of integrals is required in both cases.
However, because we are in the micro canonical ensemble, the states involved, and
the detailed balance condition are changed somewhat. In the micro canonical ensem-
ble, we include only states with a fixed energy E . This means that the exponential
factors in the detailed balance equation are always given by exp(−βE) indepen-
dently of the state, and automatically cancel. For a system with a finite number of
discrete states of fixed energy E , therefore, a satisfactory Markov transition matrix
is one which is connected, and which is symmetric (Mi← j = M j←i ).

We have also applied Markov techniques to systems described by continuous
variables in the last chapter. Here states represent points in phase space, and we
define a state by specifying the coordinates of the corresponding phase space points,
(p, q) = (p1, . . . , pn, q1, . . . , qn). Markov transitions, which take states to new
states or equivalently take points to new points in phase space, are mappings on
phase space. A Markov transition matrix, M((p′, q ′) ← (p, q)) which generates a
micro canonical ensemble of states for a system with Hamilton H (p, q) must be a
mapping on phase space, which satisfies three conditions:

(1) M((p′, q ′) ← (p, q)) must preserve energy so that H (p′, q ′) = H (p, q). This condition
is necessary so that our transition probability only produces states with the correct energy
required in the integrals we have to perform.
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(2) M((p′, q ′) ← (p, q)) must be connected. If we start in a state with coordinates p, q
and energy E = H (p, q), then we must eventually be able to generate all other states
which have this same energy. This is a standard condition for all Markov processes if
they are to generate the correct equilibrium distribution for the full phase space being
studied.

(3) M((p′, q ′) ← (p, q)) must be symmetric, and satisfy the restricted micro canonical
form of detailed balance,

M((p′, q ′) ← (p, q)) = M((p, q) ← (p′, q ′)).

The first and the third condition suggest that we consider the natural energy-
conserving mapping on phase space generated by the Hamiltonian flow, that is, by
evolving any point for some time interval t under the equations of motion. Thus we
define (p′, q ′) = (P(t, p, q), Q(t, p, q)) where Pi (t) and Qi (t) satisfy Hamilton’s
equations of motion with initial conditions (P(0), Q(0)) = (p, q). We clearly get
a different mapping on phase space for each different choice of t .

We first recall some important properties of Hamiltonian flows. If A(p, q) is
some function of the coordinates and momenta, and if H is the Hamiltonian for the
system, then we have

d

dt
A =

∑
i

∂ A

∂qi

dqi

dt
+
∑

i

∂ A

∂pi

dpi

dt

= −
(∑

i

∂ H

∂qi

∂ A

∂pi
−
∑

i

∂ H

∂pi

∂ A

∂qi

)

= −
(∑

i

∂ H

∂pi

∂

∂qi
−
∑

i

∂ H

∂qi

∂

∂pi

)
A.

This equation involves two fundamental objects which play important roles in
classical mechanics. The first of these is the Poisson Bracket. The second is the Lie
derivative.

Definition 6.1 If A(p, q) and B(p, q) are functions of the coordinates and
momenta, then the Poisson bracket of A and B is denoted {A, B}, and is defined
to be

{A, B} =
∑

i

(
∂ A

∂qi

∂ B

∂pi
− ∂ A

∂pi

∂ B

∂qi

)
.

Definition 6.2 If A(p, q) and B(p, q) are functions of the coordinates and
momenta, then the Lie derivative of B with respect to A is denoted L(A)B, and is
defined by the relation,

L(A)B = {A, B}
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which immediately implies

L(A) =
(∑

i

∂ A

∂pi

∂

∂qi
−
∑

i

∂ A

∂qi

∂

∂pi

)
.

Inspection of these definitions immediately leads to the following properties

{A, B} = −{B, A}
L(λA + µB) = λL(A) + µL(B)

where A and B are functions of momenta and coordinates, and λ and µ are con-
stants. We will need one further important result about Poisson brackets and Lie
derivatives. We state it as a theorem.

Theorem 6.1 If A(p, q), B(p, q), and C(p, q) are functions of momenta and
coordinates, then

{A, {B, C}} + {B, {C, A}} + {C, {A, B}} = 0.

This result is known as the Jacobi identity.

Proof. The proof of this theorem is completely mechanical. We simply replace the
Poisson brackets in the statement of the theorem with their formula in terms of
derivatives as given in the definition of the Poisson bracket. Rearrangement of the
resulting expressions then gives the result. �

Corollary 6.2

[L(A),L(B)] = L({A, B})
In words, the commutator of the Lie derivatives with respect to two functions A
and B is equal to the Lie derivative with respect to the Poisson bracket of the two
functions A and B.

Proof. To prove this result we apply [L(A),L(B)] to a third function C .

[L(A),L(B)] C = (L(A)L(B) − L(B)L(A)) C

= L(A) (L(B)C) − L(B) (L(A)C)

= L(A) ({B, C}) − L(B) ({A, C})
= {A, {B, C}} − {B, {A, C}}
= {{A, B}, C} using Jacobi identity

= L({A, B})C
Since C is arbitrary, this establishes the corollary. �
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Poisson brackets and Lie derivatives allow us to write the equations defining the
time derivative of a function A in a compact form

d

dt
A = −{H, A} = −L(H )A.

This in turn leads us to define the exact time-stepping operator as

A|t+h = e−hL(H ) A|t .
This time-stepping operator represents exact evolution according to the Hamiltonian
H . Thus we expect that it should keep the Hamiltonian H constant. Indeed, we have

H |t+h = e−hL(H ) H |t
=
(

1 − hL(H ) + 1

2
h2L(H )L(H ) + . . .

)
H

∣∣∣∣
t

.

All terms except the first in the expansion of the exponential involve one or more
applications of L(H ) to H . But

L(H )H = {H, H} = 0

so we see immediately that, when acting on H , the time-stepping operator gives

H |t+h = H |t
proving that H remains constant.

Equations of motion therefore generate a mapping on phase space which is
energy conserving and satisfies the first condition needed for a mapping to be a
Markov mapping generating a micro canonical ensemble. The second condition
required is that the mapping be connected in the Markov sense. What we require
is that the trajectory generated by the equations of motion visit all points in phase
space which have energy E , before it returns to the point at which it starts. Systems
governed by equations of motion which have this property are said to be ergodic.
In Markov theory, connectedness and ergodicity are often used interchangeably as
the name describing this particular property. Proving connectedness or ergodicity
for classical mechanics systems is extremely difficult, and is the subject of much
research. Some classical systems are known definitely to be non-ergodic or non-
connected, and some are known to be ergodic or connected. In Figure 6.2 we give
a schematic picture of a phase space with non-ergodic time evolution. We will
consider this issue in a little more detail in Chapter 12. For the moment, we leave
the issue hanging, and accept that the ergodicity is a requirement which we cannot
determine simply, and which may or may not hold for any given system.

The final condition for a mapping to be a Markov transition which generates
a micro canonical ensemble of configurations is that of symmetry. In the current
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Figure 6.2 Sketch of a non-ergodic system. In an ergodic sytem all trajectories
would be different sections of a single, long trajectory.

context, this condition needs some care to implement. In normal Markov processes,
the detailed balance condition imposes a condition on the probability density that
a state i is mapped to some infinitesimal volume element about a state j . For
mappings generated by equations of motion, there is no probability at all involved.
A single initial state goes to a single final state, so the size of an infinitesimal
volume element about the state j seems to play no role. However, we can address
the question in a slightly different way. Rather than mapping states to states, we can
consider mapping volumes to volumes. A volume represents a collection of states.
Now, since the Hamiltonian flow is reversible the final volume will be mapped again
into the initial volume upon time reversion. If we furthermore accept that the size of
the volume being mapped is a count of the number of independent states contained
in that volume, then symmetry requires that the number of states remain unchanged
under the mapping (see Figure 6.3). Imposing symmetry of the Markov transition
matrix then implies that we must impose a condition of volume preservation on the
mapping on the phase space which is implementing the transition. This, however
is guaranteed by Liouville’s theorem.

Theorem 6.3 The mapping on phase space generated by time evolution under
Hamilton’s equations of motion preserves phase space volume. If D(0) is some
region in phase space which is mapped to a region D(t), then the volume in phase
space occupied by D(t) is equal to the volume occupied by D(0). Explicitly,∫

D(t)

∏
i

dPi (t)dQi (t) =
∫

D(0)

∏
i

dPi (0)dQi (0).
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Figure 6.3 Flow in phase space.

Proof. To prove the theorem we first consider the following lemma:

Lemma 6.4 If the points x in phase space satisfy the evolution equation

ẋi = fi (x) , i = 1, . . . , 6N

then we have

d

dt
D|t=0 =

∫
D

(
6N∑
i=1

∂

∂xi
fi (x)

)
dω

where dω = dx1 . . . dx6N is the infinitesimal volume element in phase space.

Proof. Let x(t) = gt (x) be the time evolution of x . Then

D(t) =
∫

D(t)

dωt

=
∫

D(0)

det

(
∂gt (x)i

∂x j

)
dω

where det(· · · ) is the Jacobian of the change of variable gt (x) → x . Now, for small
t we can expand

(gt (x))i = xi + fi (x)t + O(t2).

Thus

∂gt (x)i

∂x j
= δi j + ∂ fi

∂x j
t + O(t2)

= δi j + Ai j t + O(t2).

On the other hand expanding the determinant as

det (I + At) = 1 + tTr(A) + O(t2)
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we end up with

d

dt
D|t=0 =

∫
D

Tr(A) dω

=
∫
D

(
6N∑
i=1

∂

∂xi
fi (x)

)
dω.

�

To prove the theorem we then notice that for a Hamiltonian evolution

ẋi =
(

q̇α

ṗβ

)
=

 ∂ H

∂ pα

−∂ H
∂qα


 , α, β = 1, . . . , 3N .

Thus
6N∑
i=1

∂

∂xi
fi (x) =

3N∑
α=1

(
∂2 H

∂qα∂pα

− ∂2 H

∂pα∂qα

)
= 0.

It then follows from the lemma that

d

dt
D|t=0 = 0.

We can repeat this proof without modification for any t = t0 �= 0. This, however,
implies that d/dt D = 0 for all t so that

D(t) = D(0) for all t.

�

Mappings on phase space which preserve phase space volume are called sym-
plectic mappings. Mappings generated by evolution for any Hamiltonian func-
tion H (p, q) are symplectic. But the reverse is not true. Not all symplectic map-
pings can be generated by evolution according to the equations of motion for some
Hamiltonian.

What we have finally shown in the preceding analysis is that, so long as we
are dealing with an ergodic system, the mapping on phase space generated by
equations of motion satisfies all the conditions needed for it to be a Markov process
which generates a micro canonical ensemble. If we initiate the Markov process with
some state with coordinates (p(0), q(0)), and define the transition between states as
being evolution for a time interval h, then the sequence of states generated by this
Markov system is the set of states which occur along the evolution trajectory which
begins with (p(0), q(0)), and which are separated by time intervals h. The states so
included are therefore (p(ti ), q(ti )) where ti = ih and i is a zero or positive integer.
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The Monte Carlo formula for the expectation value of an operator A is then given
in the usual way,

lim
N→∞

1

N

N∑
i=1

A(p(ti ), q(ti )).

This formula does not place any constraints on h except that the resulting transitions
between states should be connected in the Markov sense. If the system is ergodic,
then the only condition we need to impose is that h is not a rational fraction of the
time taken for the trajectory in phase space which begins at state (p(0), q(0)) to
return to (p(0), q(0)). Since h is (almost) arbitrary, we can take the limit as h → 0.
To take this limit, we first rewrite our formula for the expectation value as a ratio
of two sums

〈A〉 = lim
Nh→∞

h
∑N

i=1 A(p(ti ), q(ti ))

hN
.

Taking the limit h → 0 is now straightforward,

〈A〉 → lim
T→∞

1

T

∫
dt A(p(t), q(t)) .

We find therefore that expectations in the micro canonical ensemble can be eval-
uated by averaging for a long time over a classical trajectory. Physically this is
not a surprising result. Our physical view of expectations is that they represent
values of macroscopic properties of statistical mechanics systems. These values
are measured in macroscopic time. The underlying dynamics of the system, how-
ever, evolves in microscopic time, so any operator measured in macroscopic time
must represent the average of that operator over a very long timescale relative to
the typical interaction times of the atomic constituents of the system. Qualitatively
therefore the expectation value of a macroscopic variable is given by the time
average of the instantaneous values that that variable takes due to the microscopic
motion of the system. If we assume that that microscopic motion is governed by
classical equations of motion, then we arrive at the time-averaging formula we have
just developed. Micro canonical ensemble averages become time averages.

6.2 Numerical integration

Let us turn now to the numerical problem of estimating time averages of operators
over trajectories. We want to evaluate

〈A〉 = lim
T→∞

1

T

∫
dt A(p(t), q(t)).
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Clearly the work involved here is to actually generate the trajectories themselves.
We need an algorithm which will allow us to find the momenta pi (t) and coordinates
qi (t) as a function of t over some time interval T which, in principle, needs to be
made infinitely large. Once we have these momenta and coordinate values, the
calculation of the average of A is quite straightforward.

The equations of motion which govern a trajectory are Hamilton’s equations. The
simplest algorithm to solve ordinary differential equations is Euler’s algorithm. This
is generated by replacing the time derivatives on the left-hand side of Hamilton’s
equations with finite differences. Introducing a small time interval h, we have

dpi (t)

dt
= pi (t + h) − pi (t)

h
+ O(h)

dqi (t)

dt
= qi (t + h) − qi (t)

h
+ O(h).

If we substitute these finite difference approximations into Hamilton’s equations
and rearrange slightly, we find

pi (t + h) = pi (t) − h
∂ H

∂qi
+ O(h2)

qi (t + h) = qi (t) + h
∂ H

∂pi
+ O(h2).

These approximate equations represent the Euler-discretized version of our equa-
tions of motion. The Euler numerical integration method now is to choose a value
of h which is sufficiently small so that the O(h2) contributions to these equations
are negligible. The time interval h is called the step size for the numerical integra-
tion algorithm. We then have a system of equations which is simple to implement
in a computer program. We initialize this system by choosing some random start-
ing configuration of the system. This involves fixing (p(0), q(0)) and corresponds
directly to choosing an initial configuration for a Markov integration in the canoni-
cal ensemble. The initial configuration and step size represent all the information we
need to calculate the right-hand sides of the Euler-discretized equations for t = 0,
and therefore allows us to calculate the left-hand side also. We generate a new
configuration (p(h), q(h)). This process is obviously repeatable, and we generate
a whole sequence of configurations at times t = ih for i = 0, 1, . . .

The Euler algorithm is only one of a large class of algorithms which can be used
to solve ordinary differential equations. Standard text books on numerical analysis
develop many other possibilities. However, all the various algorithms possible fol-
low basically the pattern of the Euler algorithm. We begin by choosing some starting
configuration. Then we evolve this configuration in some manner which approx-
imates the evolution generated by the exact equations of motion. This generates
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a second configuration, and we can repeat this process over and over to generate
a large sequence of configurations which should approximate the configurations
we would have generated if we had integrated the equations of motion exactly.
When attempting to generate a computer program to simulate the micro canonical
ensemble, the major problem we face therefore is to decide which of the different
algorithms we should adopt to implement the integration of the equations of motion.
Once we have decided on an algorithm, the mechanics of its implementation follows
almost exactly that pattern for the Euler algorithm.

6.3 Choices of algorithm

In order to choose between the various possible algorithms, we must develop some
understanding of what possibilities exist, and of the advantages and disadvantages
of each possibility. Let us consider therefore a generic set of coupled ordinary
differential equations for functions xi (t) where i = 1, . . . , n

d

dt
xi (t) = fi (x).

The usual applications in molecular dynamics involve Hamiltonians which have
no explicit time dependence, so the functions fi depend explicitly only on
(x1(t), . . . , xn(t)). The solution of these differential equations gives us the func-
tions xi (t).

Consider some function A(x) which depends explicitly on these solutions xi (t),
and therefore implicitly depends on t . At some time t the function A will have the
value

A(x)|t ≡ A(x(t))

and we can relate the values taken by A at different times by generating Taylor
expansions,

A(x)|t+h = A(x)|t + h
d

dt
A(x)

∣∣∣∣
t

+ 1

2!
h2 d2

dt2
A(x)

∣∣∣∣
t

+ · · ·

=
(

1 + h
d

dt
+ 1

2
h2 d2

dt2
+ · · ·

)
A(x)

∣∣∣∣
t

= eh d/dt A(x)
∣∣
t .

The last expression here is a formal expression only. The operator hd/dt acts on
functions of t . We define the exponential of this operator by specifying how it acts on
functions of t . This action is given by the power series expansion of the exponential
function. So long as we act on functions which are infinitely differentiable and for
which the series resulting from applying the exponential converges, then this formal
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definition is well defined. If, however, we act on non-differentiable functions, or if
the resulting series does not converge, then problems will arise, and our formula
for A(x)|t+h in terms of an exponential operator will not apply. For dynamical
systems satisfying Hamilton’s equations of motion, we will normally not have to
worry, since the coordinates and momenta defining a trajectory are almost always
infinitely differentiable, and the corresponding Taylor series expansions almost
always converge.

The formal Taylor series expansion we have just derived can be written in a
slightly different way by noticing that the differential equations defining the func-
tions xi (t) allow us to partially evaluate the action of d/dt on functions A. We
have

d

dt
A(x) =

∑
i

(
∂

∂xi
A(x)

)
d

dt
xi

=
∑

i

fi (x)
∂

∂xi
A(x)

=
(

f (x) · ∂

∂x

)
A(x).

Thus the action operator d/dt is seen to be equivalent to the action of the operator
f · ∂/∂x . If we now replace d/dt in our Taylor expansion formula, we find

A(x)|t+h = eh f ·∂/∂x A(x)
∣∣
t .

Functions xi on the left-hand side of this equation are evaluated at t + h. Functions
on the right-hand side are evaluated at t .

The operator exp(h f · ∂/∂x) is seen from these equations to be the time evolution
operator for our system. Acting with this operator on an arbitrary function A(x) at
time t gives us the same function at the later time t + h. We see therefore that this
operator is actually a time-stepping operator. It steps functions evaluated at time t
to the same functions evaluated at time t + h. Further, to actually execute this step,
we see that we need only the values of the functions xi (t) at t , the originating time.
The effects of multiple steps with the stepping operator is also calculable. We have
for example,

A(x)|t+h1+h2
= eh2 f · ∂

∂x A(x)
∣∣∣
t+h1

.

Note, however, that the right-hand side here is a function of xi (t + h1) evaluated at
time t + h1, so we can step this again to find,

A(x)|t+h1+h2
= eh2 f · ∂

∂x eh1 f · ∂
∂x A(x)

∣∣∣
t
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All functions xi on the right-hand side are evaluated now at time t , and we have
therefore generated an expression which gives us A(x)|t+h1+h2

as the action of two
stepping operators on the function A(x)|t .

Another important property of our stepping operator arises from the following
observation

A(x)B(x)|t+h = A(x)|t+h B(x)|t+h.

This immediately implies

eh f · ∂
∂x (A(x)B(x)) =

(
eh f · ∂

∂x A(x)
) (

eh f · ∂
∂x B(x)

)
.

This result can also be proved by expanding the exponential operator on the left in
a power series, and noting that

f · ∂

∂x
(A(x)B(x)) =

(
f · ∂

∂x
A(x)

)
B(x) + A(x)

(
f · ∂

∂x
B(x)

)
.

The result has an even more general form,

A(x)|t+h = A( x |t+h)

which implies

eh f · ∂
∂x A(x) = A

(
eh f · ∂

∂x x
)

.

It is important to note however that both of these results require that we include all
the terms in the infinite series expansion of the exponential stepping operator.

Let us turn now to the Euler numerical algorithm to integrate the coupled dif-
ferential equations for xi . This algorithm is defined by replacing the first-order
derivatives in the differential equations with approximate differences. We have
therefore that

dxi (t)

dt
→ 1

h
(xi (t + h) − xi (t)) + O(h).

This substitution followed by some rearrangement gives the Euler form of the
differential equations,

xi (t + h) = xi (t) + h fi (x(t)) + O(h2)

=
(

1 + h f (x(t)) · ∂

∂x

)
xi (t) + O(h2)

or rewriting in the notation we have developed,

xi |t+h =
(

1 + h f · ∂

∂x

)
xi

∣∣∣∣
t

+ O(h2).
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Comparison of the exact stepping formula and the Euler approximate stepping
formula now explains what is involved in the numerical integration of our system
of coupled first order equations. The exact stepping operator is

eh f · ∂
∂x = 1 + h f · ∂

∂x
+ 1

2!

(
h f · ∂

∂x

)2

+ · · ·

Note that there are an infinite number of terms in this series. The Euler stepping
operator is given by

1 + h f · ∂

∂x
.

Clearly, the Euler stepping formula is an approximation to the exact stepping oper-
ator. The steps in the Euler algorithm involve acting with this approximate stepping
operator on the fundamental functions xi ,

xi |t+h,Euler =
(

1 + h f · ∂

∂x

)
xi

∣∣∣∣
t

.

If A(x) is some function of these fundamental functions xi , then we have

A(x)|t+h,Euler �=
(

1 + h f · ∂

∂x

)
A(x)

∣∣∣∣
t

.

For example, consider A(x) =∑
i xi xi . If we execute an Euler step, then we find

∑
i

xi xi →
∑

i

((
1 + h f · ∂

∂x

)
xi

)((
1 + h f · ∂

∂x

)
xi

)

�=
(

1 + h f · ∂

∂x

)∑
i

(xi xi ).

We thus see that the truncations involved in generating the Euler algorithm do very
fundamental damage to the properties we would like a time-stepping operator to
have.

The problems we posed at the beginning of this section were to describe the
possible algorithms and to find a way to choose among those possibilities. The
first of these problems is now seen to break down into describing the various ways
in which we might approximate the exact stepping operator. There are two basic
possibilities. We can either approximate the exact stepping operator by truncat-
ing the power series at some point or we can approximate by writing the exact
operator as a product of simpler operators. Of course, we can combine the two
possibilities. The Euler algorithm is typical of the truncation possibility. The other
well-known differential equation algorithm, the Runge–Kutta method, is also of this
type.
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The splitting possibility we suggest here is to approximate the exponential of an
operator as a product of other operators. If a and b are commuting numbers then
we can split the exponential of their sum into a product of two exponentials,

ea+b = eaeb a, b commuting numbers.

If a and b are operators, then this result does not hold. The exponential of a sum
of operators is not, in general, equal to the products of the exponentials of the
individual operators.

ea+b �= eaeb a, b operators.

This is disappointing, since it precludes us making the obvious splitting of our step
operator,

eh f ·∂/∂x = eh
∑

i fi ∂/∂xi �= eh f1∂/∂x1 . . . eh fn∂/∂xn .

To illustrate the problems which arise when we replace commuting numbers with
operators, let us consider in detail the product of exponentials of two operators a
and b. In our current application these operators take the form:

a =
∑

i

fi (x)
∂

∂xi
b =

∑
j

gh(x)
∂

∂x j

where fi (x) and gi (x) are functions of xi . In evaluating the exponentials we will
need to take products of a and b. For example, we have

ab =
(∑

i

fi (x)
∂

∂xi

)(∑
j

g j (x)
∂

∂x j

)

=
∑

i j

(
fi g j

∂2

∂xi∂x j
+ fi

∂g j

∂xi

∂

∂x j

)

while

ba =
(∑

j

g j (x)
∂

∂x j

)(∑
i

fi (x)
∂

∂xi

)

=
∑

i j

(
fi g j

∂2

∂xi∂x j
+ g j

∂ fi

∂x j

∂

∂xi

)
.

Comparison shows that ab �= ba. This is the defining difference between opera-
tors and commuting numbers. Operators in general do not commute. Their non-
commutativity is encoded in commutation relations,

[a, b] = ab − ba
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which gives the differences which result when the operators act in different
orders.

The non-commutativity of the operators a and b is responsible for the fact that
the exponential of a sum is not equal to the product of exponentials for operators.
For operators a more complicated relationship results. The relationship is encoded
in the Baker–Campbell–Hausdorff relation which we state in the form of a theorem.

Theorem 6.5 If a and b are operators, then

eaeb = eK2(a,b)

K2(a, b) = a + b + 1

2
[a, b] + 1

12
[a, [a, b]] + 1

12
[b, [b, a]] + · · ·

The exact formula for K2 is an infinite series, but the terms listed here represent
all terms which have three or less powers of the operators a or b.

Proof. The proof of this relationship involves expanding the exponentials on the
left-hand side, and rearranging the resulting terms. To keep track of powers of
operators, we insert a commuting number factor h multiplying a and b on the
left-hand side. Thus,

ehaehb =
(

1 + ha + 1

2
h2a2 + O(h3)

)(
1 + hb + 1

2
h2b2 + O(h3)

)
= 1 + h (a + b) + h2(a2 + 2ab + b2) + O(h3)

= 1 + h (a + b) + 1

2
h2(a2 + 2ab + b2) + O(h3)

= 1 + h (a + b) + 1

2
h2 (a + b)2 + 1

2
h2(ab − ba) + O(h3)

= 1 + h (a + b) + 1

2
h2 (a + b)2 + 1

2
h2 [a, b] + O(h3).

This formula includes all terms up to O(h2). We can perform a similar expansion
for the right-hand side.

eK2(ha,hb) = 1 + K2(ha, hb) + 1

2
K2(ha, hb)2 + O(K2)3

= 1 + h (a + b) + 1

2
h2 (a + b)2 + 1

2
h2 [a, b] + O(h3).

Comparing these two expansions we see that the identity is exact to O(h2). Since
we have inserted h to keep track of powers of the operators a and b, we see that
the formula is exact up to all terms which contain two or fewer powers of these
operators. To show the exactness up to higher order, we need to keep track of more
powers of h in both equations. This is straightforward but tedious and thus we do
not repeat it here. �
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Corollary 6.6 If a and b are operators, then

e
1
2 aebe

1
2 a = eK3(a,b)

K3(a, b) = a + b − 1

24
[a, [a, b]] + 1

12
[b, [b, a]] + · · ·

This formula is similar to that for K2 in that it is an infinite series, but again the terms
listed here represent all terms which have three or less powers of the operators a or
b. An important point to note about this particular formula is that on the right-hand
side no quadratic term, [a, b], appears.

Proof. We have, according to our theorem,

e
1
2 aebe

1
2 a = e

1
2 aeK2(b, 1

2 a)

= eK2( 1
2 a,K2(b, 1

2 a)).

Evaluating K2( 1
2a, K2(b, 1

2a)) gives the formula listed here for K3(a, b). �

Of course, the usual commuting number formula for exponential products will
hold if the operators involved commute with each other. In particular if [a, b] = 0,
then K2(a, b) = a + b. All other terms in K2 involve commutators of a and b, and
so are zero. Since an operator always commutes with itself, we find that our time
evolution operator, exp(h f · ∂/∂x), can be arbitrarily split into multiple products
in at least one obvious way:

eh f · ∂
∂x =

(
e

h
n f · ∂

∂x

)n
.

Even though an operator f · ∂/∂x is involved here, we do not have to worry about
the ordering of the products on the right-hand side of this equation, since the result
is order independent because the operator commutes with itself.

Before leaving this generic formulation of the numerical solution of coupled
first-order differential equations, let us consider Liouville’s theorem once again. In
Hamiltonian dynamics, this theorem states that a volume in phase space is conserved
if points in phase space are evolved according to Hamilton’s equations of motion. In
our generic formulation, phase space coordinates are the functions x1(t), . . . , xn(t).
A region in this phase space is denoted by D(x(t)), and the volume occupied by
this region is

∫
D(x) dx1 . . . dxn . We now wish to ask what conditions are required on

these mappings so that volume in phase space is preserved. For this we consider
the mapping,

x ′i = (1 + h f · ∂x) xi .

This mapping will take the region D(x) to D(x ′), and the volume of this new region
in phase space is

∫
D(x ′) dx ′1 . . . dx ′n . Reviewing our previous proof of Liouville’s
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theorem, we see that this mapping will preserve volume in phase space if the
Jacobian, J , of the mapping has value one. We have seen in the proof of Liouville’s
theorem that

J = Det

(
∂x ′

∂x

)

with

∂x ′i
∂x j

= δi j + h
∂ fi

∂x j
.

The matrix ∂x ′/∂x is therefore of the form 1 + h A, where 1 is the identity
matrix, and A has elements Ai j = ∂ fi/∂x j . Expanding the determinant in terms of
h

Det(1 + h A) = 1 + h Tr(A) + 1

2
h2
(
Tr(A)2 − Tr(A2)

)+ O(h3)

we find

J = 1 + h

(∑
i

∂ fi

∂xi

)
+ 1

2
h2


(∑

i

∂ fi

∂xi

)2

−
(∑

i j

∂ fi

∂x j

∂ f j

∂xi

)+ O(h3).

If now we have ∑ ∂ fi

∂xi
= 0

then the term of order h here is zero, J = 1 + O(h2), and∫
D(x ′)

dx ′1 . . . dx ′n =
∫

D(x)
Jdx1 . . . dxn

=
∫

D(x)
dx1 . . . dxn + O(h2).

The O(h2) term in this formula shows immediately that the mapping generated
by the operator 1 + h f · ∂/∂x does not conserve phase space volume so long as
h is finite. Thus the Euler algorithm, which involves steps with finite h using this
operator, is not phase space volume conserving. However, the exact exponential
mapping exp(h f · ∂/∂x) is phase space volume conserving. This is so because we
can write this exponential mapping as a limit,

eh f · ∂
∂x = lim

n→∞

(
e

h
n f · ∂

∂x

)n
= lim

n→∞

(
1 + h

n
f · ∂

∂x

)n

.
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Each of the operators 1 + (h/n) f · ∂/∂x here conserves phase space to O(h2/n2)
according to our result above. In the limit n →∞, the total error we make in
ignoring terms of O(h2/n2) is nO(h2/n2) which goes to zero, and phase space
volume is exactly preserved, provided of course that

∑
i ∂ fi/∂xi = 0. Note that

this last condition is an essential requirement. If it did not hold, then the individual
terms would preserve phase space only to O(h/n) rather than O(h2/n2), which
does not go to zero fast enough to guarantee phase space conservation in the limit
n →∞.

We therefore have arrived at an important result about the varieties of numerical
integration algorithm possible. Algorithms involving stepping operators which are
exact exponential operators will preserve phase space volume if

∑
i ∂ fi/∂xi = 0.

The Euler stepping operator will not conserve phase space volume for any finite
h. More generally, any algorithm based on truncation of the infinite power series
of an exponential stepping operator will not preserve phase space volume. This
is because the Jacobian of such a mapping will have many terms in it involving
different orders of h, and it is usually not possible to arrange that all these terms
cancel. Higher-order Euler algorithms and Runge–Kutta algorithms fall into this
latter class, and generally do not preserve phase space volume as a result. Trun-
cation methods also fail to preserve energy. Under an Euler step for example, we
find

H ( p|t+h,Euler , q|t+h,Euler) = H ((1 − hL(H ))p, (1 − L(H ))q)

�= (1 − hL(H ))H (p, q) = H (p, q).

Thus the Euler step algorithm changes the value of H from step to step. More
generally, we expect that all approximations based on truncation will also fail to
preserve H .

The basic alternative we have suggested to truncation methods is to split the
exponential stepping operator into a product of terms which are also exponential.
Exponential stepping operators generate exact time transformations of our system
and generally evaluating this transformations exactly is impossible. In fact, this is
the very reason we are led to consider numerical integration techniques. However,
there are special cases when exact time transformations are simple to evaluate. Two
important cases occur. If H is a function of the momenta only, H (p, q) = T (p),
then Hamilton’s equations reduce to

dqi

dt
= d

dpi
T (p) =⇒ qi (t + h) = qi (t) + h

d

dpi
T (p(t))

dpi

dt
= 0 =⇒ pi (t + h) = pi (t).
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On the other hand, if H is a function of coordinates only, H (p, q) = V (q), then
Hamilton’s equations reduce to

dqi

dt
= 0 =⇒ qi (t + h) = qi (t)

dpi

dt
= − d

dqi
V (q) =⇒ pi (t + h) = pi (t) − h

d

dqi
V (q(t)).

Both of these sets of equations can be simply implemented in computer programs.
The first involves shifting the coordinates by a term proportional to the derivative of
T (p), while leaving the momenta fixed. The second involves shifting the momenta
by a term proportional to the force, while leaving the coordinates fixed. In terms of
stepping operators, we see therefore that exact computer implementations exist for
the two stepping operators

e−hL(T (p)) e−hL(V (q)).

Since these are exact rather than truncated approximations we immediately find that
these individual stepping operators preserve phase space volume, and also preserve
energy. This is in marked contrast to the situation for truncated step operators as
used in Euler’s algorithm.

Hamiltonians of the form H = T (p) or H = V (q) are of course quite atypical of
real physical systems. The more usual situation is that H (p, q) = T (p) + V (q), and
our problem is to find some numerical method to implement the stepping operator

e−hL(T+V ) = e−hL(T )−hL(V ).

Now, L(T ) and L(V ) are operators. If they commuted, we could write the expo-
nential of their sum as a product of exponentials, and we would be done. However,
they do not commute, but splitting the exponential into products should be a good
approximation if h is not too large. We therefore consider a numerical integration
scheme which uses exact operators to approximate the evolution according to the
true Hamiltonian H = T + V . Many possibilities occur. The simplest include

e−hL(T )e−hL(V )

e−hL(V )e−hL(T )

e−
h
2 L(V )e−hL(T )e−

h
2 L(V )

e−
h
2 L(T )e−hL(V )e−

h
2 L(T )

but clearly there are many other splittings possible also. Such operators can be
considered compound stepping operators, and are classified according to the num-
ber of stepping operators combined to make the compound stepping operator.
The first two examples here are two-step operators, the second two are three-step
operators.
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Let us analyze the first two-step operator, exp(−hL(T )) exp(−hL(V )). This
operator is implemented on the computer by first applying the operator
exp(−hL(V )) to evolve the coordinates and then by applying the operator
exp(−hL(T )) to evolve the momenta. Note the actual order in which the oper-
ations occur. We can analyze the effect of the combined operator by using the
Baker–Campbell–Hausdorff formula,

e−hL(T )e−hL(V ) = eK2(−hL(T ),−hL(V ))

where

K2(−hL(T ),−hL(V )) = −hL(T ) − hL(V ) + 1

2
[−hL(T ),−hL(V )] + O(h3)

= −h

(
L(T ) + L(V ) + 1

2
[L(T ),L(V )] + O(h2)

)
.

We can now recast this expression as

K2(−hL(T ),−hL(V )) = −hL(T + V + h{T, V } + O(h2)) ,

and we therefore find that

e−hL(T )e−hL(V ) = e−hL(He) ,

where

He(p, q, h) = T (p) + V (q) + 1

2
h{T (p), V (q)} + O(h2) .

Consequently, the product of our two stepping operators is actually equivalent
to a single stepping operator with a different Hamiltonian. This Hamiltonian is
He, and can be considered as an effective Hamiltonian. This effective Hamilto-
nian depends on the coordinates and momenta as usual, but it also depends on
h. In fact, because the Baker–Campbell–Hausdorff theorem generates an infinite
series for the function K2, the effective Hamiltonian involves an infinite series of
terms. We have only calculated the first few terms in the formula above. Other
terms arise from commutators involving more factors of L(T ) and L(V ). How-
ever, we can then appeal to the result that the commutator of two Lie deriva-
tives is equal to the Lie derivative of the corresponding Poisson bracket to show
that all these higher-order commutators simply add more terms to our effective
Hamiltonian.

If we consider our effective Hamiltonian more closely, we find that its leading h
independent contribution is T (p) + V (q). This particular term is the exact Hamil-
tonian for which we wanted an integration algorithm. The next term in the effective



Choices of algorithm 133

Hamiltonian is given by

1

2
h{T, V } = −1

2
h
∑

i

∂T

∂pi

∂V

∂qi
.

Since this term has a factor h multiplying it, we expect that we can make its effects
small by making h small.

We can repeat the analysis which produces the effective Hamiltonian for the
other suggested splittings in our list to see how changing the splitting effects the
resulting effective Hamiltonian. In all cases we find that the effective Hamiltonian
is given by the exact Hamiltonian, T + V , plus corrections of O(h) or O(h2). The
results are as follows,

e−hL(T )e−hL(V ) = e−hL(H (1)
e )

e−hL(V )e−hL(T ) = e−hL(H (2)
e )

e−
h
2 L(V )e−hL(T )e−

h
2 L(V ) = e−hL(H (3)

e )

e−
h
2 L(T )e−hL(V )e−

h
2 L(T ) = e−hL(H (4)

e )

where

H (1)
e (p, q, h) = T (p) + V (q) + 1

2
h{T, V } + O(h2)

H (2)
e (p, q, h) = T (p) + V (q) + 1

2
h{T, V } + O(h2)

H (3)
e (p, q, h) = T (p) + V (q) + 1

2
h2{T, V } + O(h3)

H (4)
e (p, q, h) = T (p) + V (q) + 1

2
h2{T, V } + O(h3).

Note that the last two of these stepping operators involve effective Hamiltonians
which have leading O(h2) corrections to the exact Hamiltonian rather than O(h)
corrections of the first two stepping operators. These are therefore better approxi-
mate stepping operators. In fact, it is possible to force the corrections to any given
power in h by further splitting the evolution operator, but we shall not follow this
route here. Effective Hamiltonians with leading O(h2) corrections have another
nice feature in that they are reversible. If we act with these operators to step back-
ward in time, we can undo an equivalent step forward. For example a forward step
of size h with

e−
h
2 L(T )e−hL(V )e−

h
2 L(T )

is canceled by a backward step of size −h with

e−
(−h)

2 L(T )e−(−h)L(V )e−
(−h)

2 L(T ).
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The backward step operator is identical to the forward step operator except that h
is replaced by −h. This result does not hold for

e−hL(T )e−hL(V ).

The reverse of this operator is given by

e−(−h)L(V )e−(−h)L(T )

which is not obtained by replacing h with −h.
Compound stepping operators of the form given in our list satisfy two important

properties not satisfied by truncated stepping operators such as the Euler stepping
operator. They preserve volume in phase space, and they act consistently on the
fundamental coordinates and momenta and on functions of those coordinates and
momenta. Furthermore, we have found that they generate evolution according to
an effective Hamiltonian which can be made as close to the true Hamiltonian as
liked by making h sufficiently small. In the general case, they represent the best
algorithm to generate classical trajectories.

6.4 The Lennard-Jones fluid

Let us consider now an application of the integration techniques which we have just
developed to the Lennard-Jones fluid defined in the last chapter. This is a system on
N atoms with momenta pi and coordinates xi for i = 1, . . . , N . The Hamiltonian
in numerical units is given by,

HL J = T + V

T =
∑

i

1

2
|pi |2

V =
∑
i< j

Vi j

where

Vi j = V (ri j ) = 4
(
r−12

i j − r−6
i j

)
and the temperature in numerical units is given by T . Momenta are considered
unconstrained, while coordinates satisfy periodic boundary conditions as we had
for the canonical system.

Our basic problem now is to generate classical trajectories for this Hamiltonian.
We begin by arbitrarily assigning initial values to coordinates and momenta. To
calculate classical trajectories we will adopt the integration method which uses
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exp(−hL(T )) and exp(−hL(V )) as time stepping operators. We therefore need to
calculate how these operators act on the coordinates and momenta. We define pia

to the ath component of the vector pi , and similarly we define xia to be the ath
component of the vector xi . We have

e−hL(T ) pia = pia

e−hL(T )xia = xia + hpia

while

e−hL(V ) pia = pia − h
∑

i

∂V

∂xia

= hFia

e−hL(V )xia = xia

where Fia = (Fi )a is the ath component of the force on atom i . These stepping
equations are seen to be quite simple. The operator exp(hL(T )) shifts xi by hpi

while leaving pi unchanged. The operator exp(hL(T )) shifts pi by hFi while leaving
pi unchanged. These two shifts can be implemented in separate computer routines.
The shift of the positions xi is completely trivial and involves only a few lines of
code. The shift of the momenta pi involves calculating the net force which acts on
atom i . This in turn involves a sum over all other atoms in the fluid, since each
atom exerts a force on each other atom. The code to calculate this force term is also
quite simple in principle. In practice, however, it is very expensive computationally.
Thus almost all the computer time in integrating equations of motion is spent in
calculating force terms.

Once the fundamental stepping operators have been designed, we need to choose
a combination of these operators to implement a compound step which is to approxi-
mate evolution according to the true Hamiltonian for the system. The normal choice
now is to select one of the three-step compound operators we have defined above.
These are

e−
h
2 L(V )e−hL(T )e−

h
2 L(V ) or e−

h
2 L(T )e−hL(V )e−

h
2 L(T ) .

Either of these step operators are acceptable integrators. The algorithm corre-
sponding to these two choices is often called the Leapfrog algorithm. The name
leapfrog comes from one of the ways to write this algorithm, where positions and
velocities “leap over” each other. Positions are defined at times t = ih, spaced
at constant intervals, while the velocities are defined at times halfway in-between,
t = (i + 1/2)h. Indeed consider for instance the repeated application of the operator
e−

h
2 L(V )e−hL(T )e−

h
2 L(V ) to an initial configuration (xi (0), pi (0)). This then generates
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Figure 6.4 Fluctuations of the uncorrected energy H in numerical units as a
function of time for a step size τ = 0.011. In this simulation the fluctuations
diverge eventually.

the sequence

pi (0) → pi (0) + h
2 Fi (qi (0)) ≡ pi

(
1

2

)
qi (0) → qi (0) + hpi

(
1
2

) ≡ qi (1)

pi

(
1

2

)
→ pi

(
1
2

)+ hFi (qi (1)) ≡ pi

(
3

2

)
qi (1) → qi (1) + hpi

(
3
2

) ≡ qi (2)

etc.

We have shown that this algorithm is a symplectic integrator, that is, it preserves
the volume in phase space.

There now remain two quantities which need to be determined before we can
proceed with useful calculation. First, we need to choose a step size h to use when
applying the compound stepping operator. Different choices of h lead to different
effective Hamiltonians, and the larger h is, the larger will be the difference between
the effective Hamiltonians and the true Hamiltonian which we want to approximate.
This difference between effective and true Hamiltonians leads to fluctuations in the
value of H = T + V when this quantity is calculated on the states generated by
our numerical integration algorithm. As h gets bigger, these fluctuations will also
increase. Thus we must choose h so that these fluctuations remain at a reasonable
level. Acceptable values for fluctuations are in the range ≤ 1%. In Figure 6.4 we
plotted the fluctuations of the energy as a function of time using a symplectic
integrator.
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The other parameter which needs to be fixed is the temperature T . Temperature
does not enter the equations of motion at any point. However, the trajectory of
states generated when we integrate these equations of motion represents a micro
canonical ensemble of states. We can therefore use our understanding of statistical
mechanics to help in finding T . In particular, we note that equipartition of energy
tells us that, in physical units, 〈

1

2m
|pi |2

〉
= 3

2β
.

In the numerical units which we are using for coordinates and momenta in the
Lennard-Jones system, this equation becomes〈

1

2
|pi |2

〉
= 3T

2
.

To determine the temperature T of our system therefore we measure 〈1/2 |pi |2〉
over a number of trajectories, and use the equipartition formula.

An important aspect of numerical molecular dynamics is the equilibration. The
algorithm outlined above does not allow the energy to adjust to a prescribed value.
In addition it will not immediately be in thermodynamic equilibrium. We can add or
subtract energy by scaling the momenta appropriately. After a few such adjustments,
we will arrive at a system which has the correct internal energy for the temperature
we wish to study and, thereafter, the states we generate by evolving with our com-
pound stepping operators will be states in the micro canonical ensemble for this
temperature. To bring the system to equilibrium we need the equilibration phase.
The equilibration phase is completed when the system has settled into definite mean
values of the kinetic and potential energy and no systematic drift in these quantities
can be observed anymore. In the case where the initial condition is a lattice, this
configuration corresponds to minimal potential energy. If furthermore the kinetic
energy is tuned to a temperature above the melting point, the potential energy will
rise from a large negative value to the value typical for a liquid. In Figures 6.5 and
6.6 we show the behavior of the kinetic energy during equilibration. The initial
temperature was chosen to be 2.7 in the numerical units introduced in Section 5.5.
This is well above the melting temperature of the lattice. At the beginning of the
simulation we observe a dramatic drop in the kinetic energy. This is due to the melt-
ing of the initial lattice. The simulation must at this stage transfer kinetic energy
into potential energy. This can be seen in Figure 6.5. After the kinetic energy has
reached a stable average, the momenta are scaled until the target temperature is
reached in Figure 6.6.

To ensure that the system has lost all memory of the initial condition certain
parameters can be followed. For instance, the degree of translational order can be
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Figure 6.5 The kinetic energy drops as a result of melting the initial lattice. A
sample simulation plotted in numerical units.

Figure 6.6 After the lattice has melted the kinetic energy is increased to match
the target temperature. A sample simulation plotted in numerical units.

measured by the translational order parameter

ρ(k) = 1

N

N∑
i=1

cos(k · qi ) ,

where qi is the position of the i th particle and k is a vector of the reciprocal lattice.
For a solid ρ(k) is of order unity while in the liquid phase ρ(k) will fluctuate around
zero with amplitude O(N−1/2).

Problems

Problem 6.1 Show that the set of mappings generated by evolution for all
possible times t , (both positive and negative) forms a group.
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Problem 6.2 Prove that reversibility of a compound stepping operator implies
that the corresponding effective Hamiltonian will contain terms with only even
powers of h.

Problem 6.3 Prove the equations

e−hL(T ) pia = pia

e−hL(V ) pia = pia − h
∑

i

∂V

∂xia

= hFia.

by expanding the exponential step operators in infinite power series, then
evaluating the action of each term in these series on pia and xia .

Problem 6.4 Show that the compound stepping operator e−
h
2 L(V )e−hL(T )e−

h
2 L(V )

leads to a leapfrog algorithm which is equivalent to the one described in the text.

Problem 6.5 Show that the leapfrog algorithm described in Section 6.4 is
mathematically equivalent to the Verlet algorithm which is defined by the
sequence

qi (t +�t) = 2qi (t) − qi (t −�t) + 1
m Fi (qi (t)) .

Note that the Verlet algorithm does not involve velocities!

Problem 6.6 Consider the following combination between leapfrog and
Metropolis algorithm which is used to sample the phase space of Lennard-Jones
fluids in the canonical ensemble. In this algorithm one chooses a random initial
configuration for pi and xi . In step two the positions and momenta are updated
using the leapfrog algorithm described in the text. This updating is then repeated
n times, where n is a number between 1 and 1000, say, determined randomly.
After that we do a Metropolis test, that is we evaluate �E = H (p′i , x′i )
− H (pi , xi ). If �E ≤ 0 the update is accepted, if �E > 0 it is accepted with
probability exp(−�E/T ). In case of rejection we return to step two. If the update
is successful the momenta p′i (but not the positions) are reconfigured using a
Gaussian normal distribution centered at zero with variance T . This update is
again subjected to a metropolis test. After that the program returns to step two.

As we have seen in the text the update using the leapfrog algorithm is volume
preserving and reversible. Show that the Markov matrix constructed in this way
ensures that detailed balance is satisfied. Note that detailed balance is satisfied for
any step size in the leapfrog process. However, the acceptance rate will be
decreased with increasing step size. In practical applications an acceptance rate of
approximately 50% should be aimed for. The algorithm described here presents
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an improvement of the naive Metropolis algorithm described in Chapter 5 in that
it has better decorrelation properties and converges faster to a new thermal
equilibrium. This is due to the fact that it explores more “distant” configurations
in phase space while keeping a high acceptance rate.

Program this algorithm on a computer for a Lennard-Jones fluid and plot the
internal energy as a function of temperature. Compare the result with that of the
Metropolis algorithm for the Lennard-Jones fluid in Chapter 5. Give a qualitative
discussion of the acceptance rate as a function of the step size.

Further Reading

For a good text on numerical simulations see M. P. Allen and D. J. Tildesley, Com-
puter Simulation of Liquids, Clarendon Press (1996). For a blend of tutorial and
recipe collection see D. C. Rapaport, The Art of Molecular Dynamics Simulation,
Cambridge University Press (2004). Various aspects of symplectic integrators are
reviewed by H. Yoshida, “Recent Progress in the Theory and Application of Sym-
plectic Integrators”. Celestial Mechanics and Dynamical Astronomy, 56 (1993) 27.
A discussion of alternative symplectic integrators can be found in M. P. Calvo and
J. M. Sanz-Serna, Numerical Hamiltonian Problems, Chapman & Hall (1994).



7

Quantum statistical mechanics

So far we have considered systems of molecules which are governed by the laws of
classical mechanics. On the other hand, we know that when the separation distance
between molecules becomes small, quantum effects become important. Thus for
molecules which are in a condensed state such as, for instance, electrons in a
metal or electrons in a white dwarf star, it is expected that quantum effects cannot
be ignored. We have thus to learn how to set up a statistical mechanics for such
systems. In this chapter we will develop statistical mechanics for a system of N
non-interacting identical quantum molecules of mass m. In Chapter 9 we will see
how the approach can be generalized to take interactions into account.

7.1 Quantum mechanics

In quantum mechanics, the properties of a system are encoded in the state vector
| ψ〉 of the system. This state vector satisfies the Schrödinger equation which in
vector form is given by

H | ψ(t)〉 = i�
∂

∂t
| ψ(t)〉

where the state vector is a vector in a complex Hilbert space H and the Hamiltonian
H is a linear self-adjoint operator in H. Let us first consider a single particle of
mass m and momentum p moving in a potential V (x), for instance. The quantum
mechanical Hamilton operator is given by

H = p · p
2m

+ V (x)

where [pa, xb] = �/i δab. The vector form of the Schrödinger equation has an
equivalent representation as a partial differential equation for the wave functions
ψ(x, t) ≡ 〈x | ψ(t)〉. Here the state vectors or kets {|x〉} form a complete set of
eigenvectors of the position operator x, normalized by the Dirac delta function. In

141



142 Quantum statistical mechanics

Dirac’s Bra and Ket notation

〈x | y〉 = δ(3)(x − y)∫
d3x | x〉〈x | = 1 .

The set {|x〉} thus forms a generalized basis of the Hilbert space H. The wave func-
tions ψ(x, t) are just the “components” of 〈x | ψ(t)〉 in this basis. The momentum
and position operators are represented on wave functions as

p →−i�∇
x → x .

The Schrödinger equation in our example is then the differential equation[
− �

2

2m
∇2 + V (x)

]
ψ(x, t) = i�

∂

∂t
ψ(x, t).

Solving it for ψ(x, t) with appropriate boundary conditions determines all observ-
able properties of the system. In particular, in the stationary regime H �= H(t) con-
sidered here we can separate the time dependence leading to the equation[

− �
2

2m
∇2 + V (x)

]
ψ(x, t) = Eψ(x, t)

which determines the possible energies of the quantum mechanical system.
The generalization of the Schrödinger equation to a system of N identical non-

interacting molecules of mass m then is simply

i�
∂

∂t
ψ(x1, x2, . . . , xN , t) = −

[
N∑

j=1

�
2

2m
∇2

x j

]
ψ(x1, x2, . . . , xN , t).

After separation of the time dependence we then obtain the time-independent many-
particle Schrödinger equation

−
(

N∑
j=1

�
2

2m
∇2

x j

)
ψE (x1, . . . , xN ) = E ψE (x1, . . . , xN )

where the energy is the sum of the energies of the individual particles, E =∑N
i=1 εi ,

where εi are the energy eigenvalues of the time independent, single particle
Schrödinger equation

− �
2

2m
∇2

i ψεi (xi ) = εi ψεi (xi ) .

There is, however, a subtlety due to the fact that the N molecules cannot be dis-
tinguished in quantum mechanics: the statement that one molecule is at x1 and has
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energy ε1 while a second molecule at x2 has energy ε2 is meaningless. If, for instance,
the i th and j th molecules are interchanged, the Hamiltonian H (p1, . . . , pN ) given
by

H =
N∑

j=1

p j
2

2m

remains unchanged. Let us assume that the energy eigenfunctions of the system are
non-degenerate. This means that the wave function corresponding to any energy
eigenvalue E is unique (up to a scale factor). Then the symmetry property under
exchange of any pair of identical molecules of the system can be summarized in
terms of the following operational statements.

(1) Introduce Pi j , the operator that interchanges the locations of the i th and j th molecules.
Then

(2) [H, Pi j ] = 0
(3) Pi j ψE (x1, . . . , xN ) = λ ψE (x1, . . . , xN ) .

Since P2
i j = 1, it follows that λ2 = 1, therefore λ = ±1. Thus the wave function

ψE (x1, . . . , xN ) is either a totally symmetric function of x1, . . . , xN , or it is a totally
antisymmetric function of x1, . . . , xN . Observe, further, that if two molecules are
placed in the same quantum state, i.e. ψεi (xi ) = ψε j (x j ) with εi = ε j , xi = x j then
the corresponding wave function must vanish in the case where the wave function
is totally antisymmetric. The N -particle wave function with these properties is
given by the product of the 1-particle wave functions ψεi (xi ) summed over all
permutations σ of the positions xi and multiplied by the signature of σ , that is

ψE (x1, . . . , xN ) = 1√
N !

∑
σ

sign(σ )ψε1

(
xσ (1)

) · · ·ψεN

(
xσ (N )

)
.

An immediate consequence is that a given, totally antisymmetric quantum state
can contain at most one molecule; a remarkable result. This result is known as the
Pauli exclusion principle and was originally discovered to be a property of elec-
trons by analyzing spectroscopic data. Systems for which this is true are known as
Fermi–Dirac systems. It has been established that the Fermi–Dirac system describes
the behavior of identical quantum molecules with half integer spin, in units of
�.

The situation where the wave function is totally symmetric places no restrictions
on the occupation number of any given quantum state. Systems for which this is
true are known as Bose–Einstein systems. Again it has been established that Bose–
Einstein systems describe the behavior of identical quantum molecules having
integer spin, in units of �. The N -particle wave function is again given by the
product of the 1-particle wave functions ψεi (xi ) summed over all permutations but
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without multiplying by the signature

ψE (x1, . . . , xN ) = 1√
N !

∑
σ

ψε1

(
xσ (1)

) · · ·ψεN

(
xσ (N )

)
.

This elegant characterization of the two theoretical possibilities is one of the deep
results of quantum mechanics. It is known as the spin statistics theorem and
was first established by Pauli using general ideas of relativity and causality in
the framework of quantum field theory. One intriguing aspect of Pauli’s result is
that it holds in three and higher space dimensions and is not true in two spatial
dimensions!

Finally note that from [H, Pi j ] = 0 and the observation that the Hamilton oper-
ator H is responsible for the time evolution of a wave function, it follows that a
wave function which is initially in a symmetric (antisymmetric) state will continue
to maintain its symmetry property for all time.

To complete our task we need to determine the possible energy eigenvalues εi .
Since we wish to study a statistical mechanics problem, we confine the N identical
molecules to a cubic box of side L and volume V = L3, and for simplicity we choose
periodic boundary conditions on ψ . Periodicity means that a shift of any molecule
coordinate by an integer multiple of L leaves ψ unchanged. Explicitly, if ri ≡
(ri,x , ri,y, ri,z), i = 1, . . . , N , are vectors with integer components, then periodicity
requires

ψ(x1 + Lr1, x2 + Lr2, . . . , xN + LrN , t) = ψ(x1, x2, . . . , xN , t) .

Other boundary conditions are also possible, such as for example requiring ψ = 0
at the boundary. But so long as the volume and number of particles is large, the
particular boundary conditions on the wave function are not important. We will
come back to this point in Chapter 12. The allowed energy levels εi of a single
molecule are obtained by solving the time independent equation

− �
2

2m
∇2 ψ (x) = ε ψ (x) ,

subject to periodic boundary conditions for ψ . This eigenvalue problem is then
easily solved with

ε =
(

p1
2

2m
+ p2

2

2m
+ p3

2

2m

)

where (i = 1, 2, 3)

pi = 2π�

L
mi , mi = 0, ±1, . . .
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Thus the momenta and energies take discrete values parameterized by L and integers
m1, m2, m3. Hence each quantum state can be characterized by a set of three integers
(m1, m2, m3) . Notice that the quantum states can also be characterized by the
physical momentum variables p1, p2, p3 and that the number of quantum states
between p1 +�p1, p2 +�p2, p3 +�p3, and p1, p2, p3 can be counted from

�pi = 2π�

L
�mi .

If the volume of the box containing the molecules is very big we can approximate
the sum over all possible quantum states by an integral for momenta as follows:

∑
m1,m2,m3

→ V

(2π�)3

∫
(�p1) (�p2) (�p3) ,

where V = L3 is the volume of the cubic box containing the molecules.
Since, by assumption, the molecules do not interact, we can write the energy

of our N molecule system as the sum over all possible energies of the individual
molecules times the number of molecules having this energy, i.e.

E =
∑

i

niεi , with
∑

ni = N .

Hence the total energy of a collection of N non-interacting molecules is given
by specifying how many molecules ni have energy εi . From our discussions we
know that ni = 0 or 1 for a Fermi–Dirac system, while ni = 0, 1, . . . ,∞ for a
Bose–Einstein system.

7.2 The quantum partition function

After this digression into quantum mechanics let us return to the way a statistical
mechanics description of such a system is to be carried out. We recall that the grand
canonical ensemble Z� was defined as

Z� = e−β�

=
∑

N

∑
EN

C(EN )e−β(En−µN ) , β = 1

kT

where N was the number of molecules, EN the energy of the N molecules and
C(EN ) the phase space factor counting the number of configurations with the same
energy EN (see Fig. 3.2).

For a quantum system all of these physical quantities are well-defined. Indeed
for the system of identical non-interacting molecules we can write, as we have just



146 Quantum statistical mechanics

shown

EN =
∑

i

niεi , N =
∑

i

ni

where the sum is over the possible energy eigenvalues εi that a single molecule can
have. Here C(EN ) counts the degeneracy of the energy eigenvalue EN . We note that∑

N

∑
EN

can be replaced by an unrestricted sum over {ni }. The grand canonical
partition function is thus just the sum over the occupation number of each possible
energy eigenstate

Z� = ∑
n1,n2,...

e−β
∑

i (εi−µ)ni

=∏
i

(∑
ni

e−β(εi−µ)ni

)
.

At this stage we have to distinguish the Fermi–Dirac statistics where ni = 0 or 1
and the Bose–Einstein statistics where ni = 0, 1, 2, . . . ,∞ ∀i. We begin with the
Fermi–Dirac statistics in the next section. Note also that the label i goes over all
possible quantum states, some of which may have the same energy εi but differ by
some other quantum number such as the spin. This takes into account the degeneracy
of the energy eigenvalues and therefore the phase space factor C(E) is already
included in this sum.

7.3 Fermi–Dirac system

As explained in the last section, in the case of Fermi–Dirac statistics each quantum
state can have occupation number either zero or one. This simplifies the expression
for the partition function since∑

ni

e−β(εi−µ)ni = 1 + e−β(εi−µ) .

Substitution into our expression for the partition function at the end of the last
section gives

Z F D
� =

∏
i

(
1 + e−β(εi−µ)

)
.

We then take the logarithm to arrive at the expression for the grand canonical
potential

�F D = − 1

β

∑
i

ln
(
1 + e−β(εi−µ)

)
.

Once this link with the thermodynamic function � has been made, it is possible to
calculate all thermal properties of the quantum system. Some of these properties
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e
eF = m (0)

n(e) T = 0

0

1

Figure 7.1 All energy levels up to the Fermi energy are filled at zero temperature.

are very different from the corresponding properties of the classical system. As an
immediate application of the above formula we compute the expectation value for
the occupation numbers 〈ni 〉 (see Fig. 7.1)

〈ni 〉 = ∂

∂εi

(−1

β
ln Z F D

�

)

= 1

1 + eβ(εi−µ)
.

Let us now determine the equation of state for a quantum mechanical system of
Fermi–Dirac particles. For this we first recall that for the present case

∑
i

· · · =
g∑

α=1

∑
p

· · · = g
∑

p

,

where the sum over α counts the additional quantum numbers which do not change
the energy and the second sum is over the momenta. We then have

�F D(T, V, µ) = − g

β

∑
p

ln
(
1 + e−β(ε(p)−µ)

)
.

To continue we use �F D = −PV which follows from the definition of � and
U − T S − µN . Thus

PV = g

β

∑
p

ln
(
1 + e−β(ε(p)−µ)

)
.

In order to obtain the equation of state we need to express the chemical potential µ

in terms of P, V, T , N . This can be done using

N = −
(

∂�F D

∂µ

)
V,T



148 Quantum statistical mechanics

The equation of state is thus implicitly contained in these two equations. We will
calculate the form of the equation of state in two limiting situations. First the
T →∞ limit and then the absolute zero T → 0. For a perfect classical gas we
know PV = NkT, hence as T → 0, PV → 0. The physical reason for this is
simple. The quantity NkT is a measure of the average kinetic energy of the system
and at low temperatures the kinetic energy is very small. Since the pressure is due
to molecules colliding against the boundary walls and transferring kinetic energy
to them, we expect that the pressure should decrease with temperature if the kinetic
energy falls with temperature.

We will now obtain a concrete expression in the thermodynamic limit; that is
we let the volume V and the number of particles tend to infinity in such a way
that the particle density remains finite. Recalling the formula for the continuum
approximation obtained at the end of Section 7.1

∑
p

→ V

(2π�)3

∫
d3 p ,

we then have

�F D = − g

β

V

(2π�)3

∫
d3 p ln

(
1 + e−βε(p)z

)
, z = eβµ.

The quantity z introduced here is the fugacity. Similarly,

N = g

β

V

(2π�)3

∫
d3 p

∂

∂µ
ln
(
1 + e−βε(p)z

)
.

For a non-relativistic Fermi–Dirac gas the one-particle energy is

ε (p) = |p|2
2m

.

Changing the variables |p| → ε(p) we get

�F D = −g
√

β
2V√
πλ3

∫
dε ε1/2 ln(1 + ze−βε) ,

where λ = h/
√

2πmkT is the thermal wavelength introduced in Chapter 2. Upon
integration by parts we then find

�F D = −2

3
A
∫ ∞

0

ε
3
2 dε

(eβεz−1 + 1)
,

N = A
∫ ∞

0

ε
1
2 dε

(eβεz−1 + 1)
,
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where

A = g
2Vβ

3
2√

πλ3
= g

V 2
5
2 m

3
2 π

h3
.

We note that the factor (eβε z−1 + 1)−1 represents the average number of molecules
of energy ε at temperature T . Furthermore A ε1/2 dε represents the density of states
with energies between ε and ε + dε. This provides a clear interpretation of the
integral representing the average number of molecules N at temperature T . With
this interpretation in mind we turn to the expression for �F D. Rewriting �F D as

�F D = −2

3

∫ ∞

0
A ε

1
2

(
ε

eβε 1
z + 1

)
dε ,

it becomes clear that �F D = − 2
3 U, where U is the average energy of the system.

But �F D = −PV so that we have the general result

PV = 2

3
U .

This result is valid for all values of the temperature. As we saw in Chapter 2 this
result also holds for a gas of non-interacting non-relativistic classical molecules,
so we have here an equation which is true for both a classical as well as a quantum
system. It represents the essential features of a non-interacting system. It is not hard
to see that the above identity also holds for a system with Bose–Einstein statistics.
We leave the verification of this to the reader.

7.3.1 High temperature, classical limit

As explained in the introduction to this chapter we expect quantum effects to be
small when the molecules are far from each other. For a quantum system this
condition means that the thermal wavelength is much smaller than the distance
between the molecules or λ3/(V/N ) � 1. We can achieve this either by increasing
the temperature for a given density or by reducing the density for given temperature.
In order to find the equation of state we once more change the integration variable
to x = βε. Let us start with the expression for N

N = g
2V√
πλ3

∫ ∞

0
x

1
2 z e−x

(
1

1 + z e−x

)
dx .

This integral can be evaluated as a power series in z

N = g
V

λ3

2√
π

∫ ∞

0
x

1
2 z e−x (1 − z e−x + · · · ) dx .
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The remaining x-integrals are then recognized as the integral representation of the
Gamma function

� (n) =
∫ ∞

0
dt tn−1 e−t ,

with �[ 3
2 ] = √

π/2. We thus end up with

N

V
= g

λ3
f 3

2
(z), f 3

2
(z) = −

∑
�≥1

(−z)�

�
3
2

.

In particular, we see that λ3/(V/N ) � 1 implies z � 1. The expansion in z is thus
meaningful in the classical limit. We can now repeat this procedure for �F D in an
analogous manner with the result

�F D = −g
V

βλ3
f 5

2
(z), f 5

2
(z) = −

∑
�≥1

(−z)�

�
5
2

.

Finally we need to express z in terms of V, T, N . Starting with the expression for
N we have, for small z (

N

V
λ3

)
1

g
� z − z2

2
3
2

.

For
(

N
V λ3

)� 1 we can then expand this equation perturbatively up to order z2.
This gives z = z0 + z1, where

z0 =
(

N

V
λ3

)
1

g
, z1 = 1

2
3
2

z2
0 .

Substituting this in �F D we then find

�F D = −g
V

βλ3

[
z0 + z2

0

2
5
2

]
.

Finally replacing z0 by the above expression and recalling that �F D = −PV we
find

PV = NkT

[
1 + 1

4
√

2g

(
Nλ3

V

)]
.

The pressure approaches the perfect gas law PV = NkT in the limit where
Nλ3/V → 0. This is the classical regime. Note that for a Fermi–Dirac system
the first quantum correction to the classical equation of state increases the pressure
compared to the perfect gas law.
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7.3.2 Equation of state at T → 0

Let us now consider the opposite limit when quantum effects are expected to become
important. We consider the quantum gas in the region T → 0. For this we note that
the average number of Fermi–Dirac molecules n (ε) in the energy state ε (p) as
T → 0, β →∞ has a rather simple structure, namely

n (ε) = 1

eβ(ε−µ) + 1
→

{
1 if ε < µ;
0 if ε > µ.

As a consequence of this, the expression for N becomes

N = A
∫ µ

0
ε

1
2 dε

= 2

3
A µ

3
2

while �F D takes the form

�F D = −2

3
A
∫ µ

0
ε

3
2 dε

= − 4

15
A µ

5
2 .

Let us now return to equation of state, PV = −�F D. We see that since �F D does
not vanish at zero temperature, neither does the pressure. More precisely

PV = 4

15
A

(
3N

2A

) 5
3

.

The reason for this is simple. Unlike a Bose–Einstein system where an arbitrary
number of molecules can settle down to the same lowest energy state, a Fermi–
Dirac system has to move up the energy ladder as more and more molecules are
introduced. As a consequence all the energy levels below µ are fully occupied as
T → 0 (Fig. 7.1). If the number of molecules in the system is large, µ can be large
(recall µ ∝ N

2
3 ), so that the Fermi–Dirac system, even at T → 0, may contain very

energetic molecules. It is for this reason that a Fermi–Dirac system has pressure
even in the limit T → 0. This phenomenon, which is a direct consequence of
the Pauli exclusion principle, has very important consequences for the stability of
matter. Indeed the world as we see it could not exist if electrons and protons were
not Fermi–Dirac particles satisfying the exclusion principle!

7.3.3 Thermal properties at low temperature

We now turn to the thermal properties of a Fermi–Dirac gas at low tempera-
tures. In order to do this we need to determine the chemical potential µ and the
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thermodynamic potential �F D for low (but non-zero) values of the absolute tem-
perature. We recall that in the thermodynamic limit

�F D = −2

3
A
∫ ∞

0

ε
3
2 dε

eβ(ε−µ) + 1

while

N = A
∫ ∞

0

ε
1
2 dε

eβ(ε−µ) + 1
·

In order to deal with these expressions for small values of the temperature we will
make use of the following mathematical result

Lemma 7.1 If I (µ) = ∫∞
0

f (ε)dε

eβ(ε−µ)+1 , with f (ε) a non-singular function and
µ > 0, then

I (µ) ∼=
∫ µ

0
dε f (ε) + 2 (kT )2 f ′ (µ)

∫ ∞

0

(
x

ex + 1

)
dx + O((kT )4).

Proof. Let us write

I (µ) =
∫ µ

0

f (ε) dε

eβ(ε−µ) + 1
+
∫ ∞

µ

f (ε) dε

eβ(ε−µ) + 1
.

In the first term we set x = β (µ− ε), so that

∫ µ

0

f (ε)

eβ(ε−µ) + 1
dε =

∫ µβ

0

dx

β

f
(
µ− x

β

)
e−x + 1

=
∫ µβ

0

dx

β
f

(
µ− x

β

)
ex

ex + 1

=
∫ µβ

0

dx

β
f

(
µ− x

β

)[
1 − 1

ex + 1

]
,

while in the second term we set x = β (ε − µ) to get

∫ ∞

µ

f (ε)

eβ(ε−µ) + 1
dε =

∫ ∞

0

f
(
µ+ x

β

)
ex + 1

dx

β
.

We now observe that ∫ µβ

0

dx

β
f

(
µ− x

β

)
=
∫ µ

0
f (ε) dε ,
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which is the first term on the right-hand side of I (µ). On the other hand, for large
β = 1/kT we have up to corrections of O((kT )4)

∫ ∞

0

f
(
µ+ x

β

)
ex + 1

dx

β
−
∫ µβ

0

f
(
µ− x

β

)
ex + 1

dx

β
=
∫ ∞

0

f
(
µ+ x

β

)
− f

(
µ− x

β

)
ex + 1

dx

β

= 2 (kT )2 f ′ (µ)
∫ ∞

0
dx

x

ex + 1
.

This then establishes the lemma. �

Using this result we can write

N = A
[∫ µ

0
ε

1
2 dε + 2 (kT )2

(
d

dµ
µ

1
2

)
π2

12
+ · · ·

]

where · · · denote higher orders in kT and we have used

∫ ∞

0
dx

x

ex + 1
= π2

12
.

Setting µ = µ0 + (kT )2 µ1 + O((kT )4) we can solve for µ0 and µ1. We get

µ0 =
(

3N

2A

) 2
3

, µ1 = −π2

12

1

µ0
.

Thus, the chemical potential decreases with increasing temperature (see Fig. 7.2).
We can now use the lemma again to the effect

�F D = −2

3
A
[∫ µ

0
ε

3
2 dε + 2 (kT )2

(
d

dµ
µ

3
2

)
π2

12
+ · · ·

]

= − 4

15
Aµ

5
2 + π2

4
(kT )2 µ

1
2

(
−2

3
A

)
+ · · ·

We then substitute the expression for µ obtained above to get

�F D = − 4

15
Aµ

5
2
0 −

π2

9
(kT )2 Aµ0

1
2 + · · ·

Having expressed�F D in terms of V and T we are now in a position to determine the
thermodynamic properties of the system. The equation of state of the gas is given by

PV = 4

15
A

(
3N

2A

) 5
3

+ π2

9
(kT )2 A

(
3N

2A

) 1
3

+ · · ·
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T > 0

e
m(T ) eF = m (0)

n(e)

0

1

Figure 7.2 Occupation number and chemical potential as a function of temperature.

Figure 7.3 Sketch of the equation of state PV (N , T ) for the classical ideal gas
(dashed) and the ideal Fermi gas (full line).

Combining this result with the first correction to the classical result obtained in
Section 7.3.1 we get an equation of state as sketched in Figure 7.3. On the other
hand, the entropy S given by

S = −
(

∂�F D

∂T

)
V,µ

= k2π2 Aµ
1
2
0

3
T ,

is found to vanish linearly in T as T → 0. Thus, by taking quantum effects into
account, statistical mechanics leads to results that are consistent with the third law
of thermodynamics. Finally the specific heat becomes

cV = T

(
∂S

∂T

)
V,N

� Nk2π2

2µ0
T

as T → 0, which is qualitatively different from the classical result cV = 3/2 Nk.
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7.3.4 Ultra-relativistic gas

A curious consequence of our result for the chemical potential µ is that it is possible
to have µ so that ε ≤ µ represents an extremely relativistic fermion, even though
the system has temperature close to the absolute zero. We are thus led to consider
an extremely relativistic Fermi–Dirac gas for which the relation between energy
and momentum is given by

ε (p) =
√
| p |2 c2 + m2

0c4

≈ |p|c.

The expression for the density of states is modified since p2dp = 1/c3ε2dε and we
get

N = g
V

(2π�)3

4π

c3

∫ ∞

0

ε2dε

eβ(ε−µ) + 1

= B
∫ ∞

0

ε2dε

eβ(ε−µ) + 1
,

with B a mass-independent constant. Similarly

�F D = −1

3
B
∫ ∞

0

ε3dε

eβ(ε−µ) + 1
.

We can clearly repeat the analysis for non-relativistic fermions for this situation,
examining in turn, high-temperature and low-temperature limits. For the sake of
future applications we determine the chemical potential for an ultra relativistic
system at T = 0. Recall that in this limit the occupation number n (ε) = (eβ(ε−µ) +
1)−1 becomes a step function, so that

N = B
∫ µ

0
ε2dε

= 1

3
Bµ3 .

Solving this equation for µ we find

µ (0) =
(

3N

B

) 1
3

.

Note that for extremely relativistic fermions the chemical potential is mass inde-
pendent at T = 0.
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Summary

Let us summarize some of our results. For a system of non-interacting molecules
which obey Fermi–Dirac statistics we found that the system continues to exert
pressure even at absolute zero. Equally, the system can contain extremely relativis-
tic particles at absolute zero. This is a dramatic example of the “strangeness” of
fermions. Furthermore, both the entropy and the specific heat of such a gas van-
ish as the temperature approaches zero. Finally, we found that quantum effects
decrease when the temperature of the system increases and when the density of
the system decreases. For non-interacting Fermi–Dirac particles in the classical
region we found that quantum effects led to an increase in the gas pressure from
the expected classical result. In Chapter 9 we will return to the problem of quantum
statistical mechanics for systems with interactions. We will find that a natural way
of analyzing such a system leads to quantum field theory.

7.4 Bose–Einstein systems

For a system of non-interacting, non-relativistic molecules (or particles) which obey
Bose–Einstein statistics the partition function is expressed in terms of the geometric
sum

Z B E
� =

∑
n1

e−β(ε1−µ)n1
∑

n2

e−β(ε2−µ)n2 · · · =
∏

i

(
1 − e−β(εi−µ)

)−1
,

since

∞∑
n=0

e−β(ε−µ)n = 1

1 − e−β(ε−µ)
,

which is valid if µ ≤ 0. Therefore,

�B E = g

β

∑
i

ln
(
1 − e−β(εi−µ)

)
.

Replacing
∑

i → V/(2π�)3
∫

d3 p using ε(p) = | p |2/2m and integrating by parts
we then find,

�B E = −2

3
A
∫ ∞

0

ε
3
2 dε

eβ(ε−µ) − 1
,

N = A
∫ ∞

0

ε
1
2 dε

eβ(ε−µ) − 1
.
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There is, however, a potential problem with these expressions. Let us examine the
expression for the total number of molecules N . We have

N = A
∫ ∞

0
dε ε

1
2 n (ε) ,

with

n (ε) = 1

eβ(ε−µ) − 1
.

Let us examine n (ε). First of all we notice that for positive chemical poten-
tial we immediately conclude that n(0) < 0 which is not physically meaning-
ful. This means that µ has to be negative for a Bose–Einstein system, or
equivalently,

z ≡ eβµ < 1

However, there is a further subtlety in the expression for the number density. For
ε → 0 and β → 0, the denominator goes to zero. The reason for this singular
behavior is easy to understand: for a Bose–Einstein system there is no limit to the
number of molecules that can occupy the lowest energy, i.e. the ε = 0 state. In
replacing the sum-over-states expression by an integral over a continuous energy
variable we implicitly assumed that the integrand is a regular function and thus
failed to count the presence of the ε = 0 state. This possibility, of a system at
low temperatures having a large proportion of its molecules in the ε = 0 state,
leads to a very interesting emergent phenomenon in Bose–Einstein systems. This is
known as Bose–Einstein condensation. It appears that phenomena like superfluidity
and superconductivity may have their origins in such an eventuality. The difficulty
is to understand how these properties are affected in realistic systems of Bose–
Einstein particles when interactions are included. We shall examine this problem
in Chapter 9. For the moment we consider the simpler model without interactions.
We have already seen that the fugacity z lies in the range 0 ≤ z ≤ 1. Writing the
average number of molecules in the energy state ε as

n (ε) = e−βεz

1 − e−βεz

n (0) = z

1 − z
,

we observe that the number of molecules in the zero energy state becomes large as
z → 1. On the other hand we expect molecules to settle in the lowest energy state
as T → 0. Thus we should expect that z → 1 (or µ → 0), as T → 0. This suggests



158 Quantum statistical mechanics

that we examine

N = A
∫ ∞

0

ε
1
2 dε(

eβε 1
z − 1

) ,

as a function of the temperature. Since 0 ≤ z ≤ 1, we have the inequality

N ≤ A
∫ ∞

0

ε
1
2 dε(

eβε − 1
)

= A
( 1

β

) 3
2

(∫ ∞

0

x
1
2 dx

ex − 1

)
.

This last integral can be expressed in terms of known mathematical functions. We
have ∫ ∞

0

x
1
2 dx

ex − 1
= ζ

(
3

2

) √
π

2
,

where

ζ (x) =
∞∑

n=1

1

nx

is the zeta function. The above inequality now becomes

( N

V g

)
≤ 1

λ3
ζ

(
3

2

)
.

We then conclude that for a given (N/V ) a critical temperature Tc can be defined
such that (λc = λ(Tc)) (

N (Tc)

V g

)
= 1

λ3
c

ζ

(
3

2

)
.

Indeed for T ≤ Tc we write

N (T ) =
(

V g

λ3

)
ζ

(
3

2

)
.

What happens to the N (Tc) molecules when the temperature is lowered below Tc?
From our discussions we conclude that N (T ) of the molecules occupy energy states
different from ε = 0 while the remaining N (Tc) − N (T ) molecules must condense
down to the ε = 0 state and are thus not taken into account by our integral formula
for N . This is an interpretation of how a Bose–Einstein system can appear at low
temperatures. For the argument to work for a real system it has to be shown that
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even in the presence of interactions such a condensation in momentum space can
occur. It is also necessary that the number of molecules present in the system be
well-defined.

Let us examine some experimentally measurable consequences of Bose–Einstein
condensation. In Chapter 10, we will study more carefully the suggestion that
the phenomenon of superfluidity observed in liquid helium at temperature below
2.2 K is due to Bose–Einstein condensation of the molecules of the system. There
we will take the interaction between helium molecules into account. For the moment
we remark that Tc for liquid helium obtained from the expression

N

V
= 1

λ3
c

ζ

(
3

2

)

by setting V/N = 2.76 × 10−5 m3/mol, m = 6.65 × 10−24 g is Tc = 3 K. This
result is close to the observed value for the onset of superfluidity in helium and
hence the possibility that Bose–Einstein condensation is indeed responsible for the
phenomenon of superfluidity seems plausible.

7.4.1 Equation of state and thermal properties

Let us proceed to examine a few features of this system. We determine the specific
heat as a function of the temperature and we also examine the equation of state for
temperatures T ≤ Tc. To reduce clutter in the formulas we will assume g = 1 in
this section. First we note that

� = −V kT

λ3
ζ 5

2
(z)

N = V

λ3
ζ 3

2
(z)

where ζs(z) =∑∞
1 zn/ns is plotted in Fig. 7.4. This is a consequence of the fol-

lowing mathematical result

Lemma 7.2 The integral

I (s, z) =
∫ ∞

0

xsdx
1
z eβx − 1

is given by

I (s, z) = �(s + 1)

βs+1
ζs+1(z)

where �(s) is the Euler Gamma function.
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Figure 7.4 Graph for the functions ζ 3
2
(z) and ζ 5

2
(z).

Proof. We first write

I (s, z) =
∫ ∞

0

ze−βx xsdx

1 − e−βx z

then using

1

1 − x
=

∞∑
n=0

xn

we get

I (s, z) =
∞∑

n=0

zn+1

(∫ ∞

0
e−(n+1)βx xsdx

)
·

Now ∫ ∞

0
e−(n+1)βx xsdx = 1

(β(n + 1))s+1

∫ ∞

0
e−y ysdy

with y = (n + 1)βx . Using

�(s + 1) =
∫ ∞

0
e−y ysdy

the result follows. �

Setting s = 3/2 and s = 1/2 and using �(5/2) = 3/2 �(3/2), the results stated
for � and N are established. For T ≤ Tc we have to set z = 1 in these expressions.
Using � = −PV , we have at T ≤ Tc

PV

N (T )
= kT

ζ 5
2
(1)

ζ 3
2
(1)

= 0.513(kT )
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P

VV

T2

c

P ~ V
5/3

T1

Figure 7.5 Equation of state for a non-interacting Bose–Einstein system.

where we have used ζ 5
2
(1) = 1.341 and ζ 3

2
(1) = 2.612. Note the pressure of helium

molecules at T ≤ Tc is less than the pressure of a corresponding perfect gas with
the same number of molecules. Note also that for T ≤ Tc, N (T ) is no longer a
constant but changes with temperature. Indeed, in this temperature range P(T ) =
kT /λ3 ζ 5

2
(1) and is independent of the volume (see Figure 7.5).

To study the specific heat of the system we first determine the internal energy.
We have seen in Section 7.3 that U = 3

2 PV , so that

U = 3V kT

2λ3
ζ 5

2
(z).

The specific heat for temperatures T < Tc is obtained by first setting z = 1 in this
expression for U and then using

cV =
(

∂U

∂T

)
·

This gives cV = 15/4 (V k/λ3) ζ 5
2
(1). Note that cV → 0 as T → 0, in contrast to

the classical ideal gas. Using our expression for N we can then write

cV (Tc) = 15

4
Nk

ζ 5
2
(1)

ζ 3
2
(1)

= 1.925Nk·
A result which is greater than the corresponding specific heat of a classical perfect
gas with the same number of molecules namely cV = 3/2Nk.
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For T > Tc we should not set z = 1 in the expression for U and we have

cV

Nk
= 3

2

∂

∂T

[
T

ζ 5
2
(z)

ζ 3
2
(z)

]

= 3

2

ζ 5
2
(z)

ζ 3
2
(z))

+ 3

2
T

∂

∂T

ζ 5
2
(z)

ζ 3
2
(z))

·

Now observe that ∂ζs(z)/∂z =∑∞
1 (nzn−1)/ns = 1/z ζs−1(z) so that

∂

∂T

ζ 5
2
(z)

ζ 3
2
(z)

= ∂z

∂T

∂

∂z

ζ 5
2
(z)

ζ 3
2
(z)

= ∂z

∂T

1

z


1 −

ζ 5
2
(z)ζ 1

2
(z)

ζ 2
3
2
(z)


 ·

To proceed we need to determine ∂z/∂T . This is done by using the expression

N = V

λ3
ζ 3

2
(z)

then

∂

∂T
(ζ 3

2
(z)) = − 3

2T
ζ 3

2
(z) ·

On the other hand,

∂

∂T
(ζ 3

2
(z)) = ∂z

∂T

∂ζ 3
2
(z)

∂z
= 1

z

∂z

∂T
ζ 1

2
(z)

so that

∂z

∂T
= − 3z

2T

ζ 3
2
(z)

ζ 5
2
(z)

.

Using this result we finally get

cV

Nk
= 15

4

ζ 5
2
(z)

ζ 3
2
(z)

− 9

4

ζ 3
2
(z)

ζ 1
2
(z)

.

valid for T > Tc. Note in the limit T →∞,

cV

Nk
→ (

15

4
− 9

4
) = 3

2
·

It is possible to show that (∂cV /∂T ) is not continuous at T = Tc. Thus a graph of
cV as a function of temperature would look like Fig. 7.6.
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1.925
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Figure 7.6 Specific heat for a Bose–Einstein gas.

7.5 Specific heat for a solid

We conclude our discussion of Bose–Einstein systems by discussing a historically
important puzzle. The puzzle for statistical mechanics was to explain why the
specific heat of a solid was temperature dependent. Experimentally it was found
that the specific heat approached zero at low temperatures while, as we shall see in a
simple example, classical statistical mechanics predicts that it should be a constant.

If we think of a solid as an assembly of molecules held in place by a short
range potential then the motion of this system near its equilibrium state can be
described as being equivalent to a collection of harmonic oscillators. The effective
Hamiltonian for small oscillations of the system about its classical equilibrium state
can be written as

H =
3N∑
i=1

(
p2

i

2mi
+ 1

2
ki q

2
i

)

where ωi =
√

ki/mi represents the frequencies of the normal modes of oscillation of
the system. The canonical ensemble partition function for this system is defined by

Z F = 1

(3N )!

1

h3N

∫ ∞

−∞
d3N p

∫ ∞

−∞
d3N q e−β

∑3N
i=1(p2

i /2mi+1/2ki q2
i ).

We simplify the model by setting mi = m, ki = l for i = 1, . . . , 3N . Then

Z F = 1

h3N

1

(3N )!

(
2πm

β

) 3N
2
(

2π

βl

) 3N
2

.

The internal energy U for the system is then

U = − ∂

∂β
ln Z F = 3NkT .
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Hence the specific heat cV = ∂U/∂T = 3Nk. Thus the prediction of classical
statistical mechanics for this system is that cV should be a constant. Such a
result was shown to be generally valid in the classical theory and is known as the
Dulong–Petit law. Experimentally, as we have said, it is found that cV → 0 as
T → 0. This was the classical puzzle.

Einstein realized that the experimental feature cV → 0 as T → 0 is natural in
a quantum treatment of the problem. From quantum mechanics we know that a
collection of 3N quantum oscillators of frequency ωi has energy

E =
3N∑
i=1

∑
ni

(
ni + 1

2

)
�ωi ,

ni = 0, 1, . . . ,∞. For our simple model, we set ωi = ω, ∀i . The grand canonical
partition function is then given by

Z� =
3N∏
i=1

∞∑
ni=0

e−β(ni+ 1
2 )�ω.

This is a geometric series which is easily summed. Using U = −∂/∂β(ln Z�) it
follows that

U = 3N�ω

(
1

2
+ 1

eβ�ω − 1

)

so that

cV = 3Nk(β�ω)2 eβ�ω

(eβ�ω − 1)2
.

Note for high temperatures cV → 3Nk in qualitative agreement with the classical
calculation, while for low temperatures we have

cV → 3Nk(β�ω)2e−β�ω

which predicts that cV → 0 as T → 0.
The assumption that all the normal mode frequencies of the system are the

same is an obvious over-simplification but Einstein’s example clearly demon-
strates the fact that cV → 0 as T → 0 is a natural feature of quantum statistical
mechanics.

By removing the simplifying assumption of Einstein regarding the equality of
all the normal modes, Debye was able to obtain an expression for cV which was
not just in qualitative but in excellent quantitative agreement with experimental
measurements of specific heat. We will describe this approach at the end of this
chapter.
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7.6 Photons

As we emphasized, the phenomena of Bose–Einstein condensation can only occur
if the number of molecules present in the system is well-defined. We shall see that
for an important class of Bose–Einstein particles, namely photons, the number of
particles is not well-defined and hence the kind of Bose–Einstein condensation
described cannot occur. Let us explain: photons, or the quanta associated with
light, can be described as massless particles which have energy E = �ω, where
ω is the circular frequency of the light. Photons have two states of polarization.
Furthermore for a system of photons in a cavity thermal equilibrium is achieved
by photons constantly being absorbed and emitted by the walls of the container.
Consequently, the number of photons in the cavity is not a well-defined concept.
Indeed we should regard the number as a variable which is to be adjusted to minimize
a thermodynamic function like the Gibbs function G, i.e. we require(∂G

∂ N

)
N=N0,T,P

= 0.

But (∂G

∂ N

)
T,P

= µ

which is the chemical potential. We thus must set the chemical potential associated
with a system of photons equal to zero. We also learn, from this example, that for
a thermodynamical system where the number of particles N is well-defined, the
chemical potential can be determined as a function of N from the equation

N =
(∂�

∂µ

)
while if the number of particles varies, as for instance for photons, then µ = 0.
Writing ε (p) = �ω = �|k|c and setting µ = 0, the thermodynamical properties
for a collection of photons can be determined from:

� = −1

3
B
∫

ω3dω

(eβ�ω − 1)

where

B = V �

π2c3

Recall that PV = 1
3U for such a system. Hence

U

V
=

∞∫
0

dω u(ω, T ) ,
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where

u(ω, T ) = �

π2c3

ω3

eβ�ω − 1

is Planck’s celebrated radiation formula for the energy density which led to quantum
theory. Carrying out the integrals using∫ ∞

0

x2n−1dx

ex − 1
= (2π )2n Bn

4n

where B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , B4 = 1

30 , · · · , Bn are Bernoulli numbers we
establish that

U

V
= π2

15

(kT )4

(�c)3

cV = 4π2k4T 3

15 (�c)3

S = 4π2

45

k4

(�c)3 T 3.

Note again that both cV and S → 0 as T → 0. Hence these expressions are consis-
tent with the third law of thermodynamics. These results when first obtained using
quantum theory were found to be consistent with earlier experimental measure-
ments. For instance, the internal energy density for photons had earlier been shown
to have the form

U

V
=
(

4σ

c

)
T 4

(with the coefficient σ determined experimentally) and was known as the Stefan–
Boltzmann law. The T 4 dependence can in fact be inferred from simple dimensional
analysis. The detailed quantum calculation is however necessary in order to predict
the correct value of σ .

7.7 Phonons

As an improvement on Einstein’s model for a solid, Debye proposed to replace the
3N harmonic oscillators in Einstein’s approach by phonons. Phonons are quanta of
sound waves in a material body. In a crystal they correspond to the normal modes
of lattice oscillations. There are two types of normal modes in a lattice. These
are the compression modes (sound waves) which satisfy the dispersion relation
ω = cs |k|, where cs is the velocity of sound and the shear modes with ω = ct |k|.
For a 3-dimensional lattice consisting of N sites Debye suggested to take the 3N
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lowest-lying normal modes with frequencies ω1, . . . , ω3N . This is in contrast to
Einstein’s model where all frequencies are assumed to be equal.

To simplify the calculation in this model one replaces the crystal as a continuum
of volume V . We then proceed in the same way as for photons but with two mod-
ifications. First, instead of two, the phonon has three polarizations; two transverse
and one longitudinal with velocities ct and cs respectively. We thus replace 2/c3 in
the coefficient B appearing in the grand canonical potential for photons by

3

c3
e f f

≡
(

2

c3
t
+ 1

c3
s

)
.

The second modification is to introduce a finite cutoff for the frequency ω, that is,
we write

U = V

ωD∫
0

dω u(ω, T ) ,

where ωD is chosen such that the total number of modes equals 3N , i.e.

3N = 3V

(2π )3
4π

kD∫
0

k2 dk .

This then leads to

kD =
(

6π2 N

V

) 1
3

, ωD = cef f kD .

For small T , i.e. �ωDβ � 1, we can ignore this cutoff due to the exponential
suppression in the integrand. We then have

U � V

∞∫
0

dω u(ω, T ) = 3π4 NkT

5

(
T

θD

)3

,

where θD = �cef f kD/k. The specific heat is then readily evaluated to give

cV

N
= 12π4

5
k

(
T

θD

)3

, T � θD .

Thus the specific heat vanishes like T 3 for low temperatures. This prediction is in
excellent agreement with experiment and was an early triumph of quantum theory.
Examples of experimental values for θD are

θD =
{

88 K lead

1860 K diamond.
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q

Figure 7.7 Specific heat as a function of T in the Debye model.

At high temperatures, T >> θD we can approximate eβ�ω − 1 � β�ω, so that the
internal energy becomes

U (T ) � V

2π2β

(
ωD

θD

)3

= 3NkT .

Thus cV = 3Nk in agreement with Einstein’s model.

Summary

Let us summarize our main findings. A Bose–Einstein system with conserved par-
ticle number has the possibility of condensing into the lowest energy (ε = 0) state
at low temperatures. This is a quantum effect. The temperature dependence of the
specific heat for a Bose–Einstein system at low temperatures is proportional to T 3

for photons and, as shown by Debye, for solids as well. For Fermi–Dirac systems the
specific heat is proportional to T . At high temperatures the non-interacting Bose–
Einstein and Fermi–Dirac systems both approach the perfect gas law. For Bose–
Einstein particles, the deviations from the perfect gas law due to quantum effects
lead to a lowering of the pressure, while for Fermi–Dirac particles the deviation
from the perfect gas law due to quantum effects leads to an increase of the pressure.
We shall return to discuss Bose–Einstein systems with interactions in Chapter 9.

7.8 Density matrix

In our treatment of the quantum statistical partition function we have chosen to
work in the grand canonical ensemble. However, just like in classical statistical
mechanics, other ensembles are possible. In quantum statistical mechanics the
different ensembles are best described in terms of the density matrix ρ.

Let us first recall that an isolated quantum mechanical system is described by a
state vector |ψ(t)〉. When expanded in terms of an eigenbasis {|ψi 〉} of the Hamilton
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operator the expectation value of an observable A in the state |ψ〉 takes the form

〈ψ(t)|A|ψ(t)〉 = 1∑
n
|cn|2

∑
n,m

c∗n(t)cm(t)〈ψn|A|ψm〉

where |ψ(t)〉 =∑
m cm(t)|ψm〉. This provides a deterministic description of the

observable A for an isolated system. The basic idea underlying equilibrium quan-
tum statistical mechanics is that, as a result of interactions with the environment
(reservoir), the coherent state |ψ(t) is replaced by an incoherent mixture of pure
states. The way this is thought to occur is that the coupling to the environment leads
to a randomization of the phases of the coefficient functions cn(t) so that either
averaging over time or averaging over an ensemble of independent systems leads to

c∗n(t)cm(t) = 0, for n �= m.

This postulated property is an expression of the postulate of random phases. This
postulate formalizes the transition from a pure state to a mixture of states suggested
above. What about c∗n(t)cn(t)? Since the basis vectors |ψn〉 are eigenstates of the
Hamiltonian we expect in analogy with the postulate of equal a priori probability
introduced in Chapter 2 that c∗n(t)cn(t) only depends on the energy. Thus

c∗n(t)cn(t) = ρ(En)

for some distribution function ρ(E).
For a given distribution function ρ(E) the quantum statistical system is then

completely determined by the values of |cn|2. This is conveniently described in
terms of the density matrix which is defined as follows:

Definition 7.1 The density matrix of a given equilibrium quantum statistical
system is defined as

ρ =
∑

n

|cn|2|ψn〉〈ψn|

where the sum is over all eigenstates of the Hamilton operator H of the system.

In terms of this density matrix the expectation value of any observable A of the
system can then be written as

〈A〉 = 1∑
n
|cn|2

∑
n

|cn|2〈ψn|A|ψn〉

=

∑
np
〈ψp|ψn〉|cn|2〈ψn|A|ψp〉∑

np
〈ψp|ψn〉|cn|2〈ψn|ψp〉

= 1

Trρ
Tr(ρA).
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The advantage of this formulation in terms of the density matrix ρ is that the
invariant of the choice of the basis is explicit.

We are now ready to discuss the different ensembles in quantum statistics. For
the canonical ensemble we argued in Chapter 2 that the distribution function ρ(E)
is given by

ρ(E) = e−βE .

Thus we have for the density matrix

ρ =
∑

n

|ψn〉e−βEn 〈ψn|

= e−βH

where we have used that the Hamilton operator can be expanded in terms of the
energy eigenbasis {|ψn〉} as

H =
∑

n

En|ψn〉〈ψn|.

Thus in the canonical ensemble the density matrix is just the exponential of −β

times the Hamilton operator.
Let us now consider the micro canonical ensemble. We recall from Chapter 4

that in this case the energy is fixed so that

|cn|2 =
{

1, E − ε ≤ En ≤ E + ε

0, otherwise.

In analogy with classical statistical mechanics we define the corresponding volume
in phase by counting the number of states with energy in this interval, that is

�� = TrHN ρ

where the trace is over a basis of the N -particle Hilbert space HN . The
corresponding entropy is then given by applying Boltzmann’s formula

S(E) = k ln (��(E)) .

With the entropy function defined the thermodynamical properties of the system
in question are then completely determined.

Finally we consider the grand canonical ensemble where, in addition to energy
exchange, exchange of particles with the reservoir is assumed. Following the pre-
scription given in Chapter 3 we generalize the canonical density matrix by including
a chemical potential, that is

ρ = e−β(H−µN)

where N is the particle number operator. Note that the operator ρ is now not defined
on the N -particle Hilbert space HN but on the direct sum

H = ⊕∞
N=0HN .
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Taking the trace TrH ρ we get

TrH (ρ) =
∑

N

∑
EN

C(EN )e−β(En−µN )

= Z�

in accordance with the grand canonical partition sum defined in Section 7.2. This
then completes the unified description of quantum statistical ensembles in terms of
the density matrix.

Problems

Problem 7.1 Compute the entropy for ideal, non-relativistic Fermi–Dirac
particles in the classical regime and show that Gibbs paradox is resolved
automatically.

Problem 7.2 Determine U/V, cV , S for an ultra relativistic Fermi–Dirac system
with µ = 0 using the identity∫ ∞

0

x2n−1dx

ex + 1
=
(

22n−1 − 1

2n

)
π2n Bn

with B1 = 1/6, B2 = 1/30.

Problem 7.3 Semiconductor
A semiconductor is characterized by an energy gap εg > 0 between the band of
valence electrons and the band of conducting electrons. As a result of thermal
fluctuations electrons can jump from the valence band to the conducting band
leaving behind a “hole” in the valence band.

Conduction band

Valence band

m(T )

ε

εg
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The fermion distribution functions for the electrons in the conducting band and
for the holes in the valence band are

ne(ε) = 2

eβ(ε−µ) + 1

nh(ε) = 2 − ne(ε) = 2

eβ(µ−ε) + 1

respectively. Near the edge of the two bands the electrons and holes behave
approximately like free particles with dispersion relations

εh = − p2

2mh
and εe = εg + p2

2me

respectively, where mh is the mass of the hole (which in realistic situations may
be different from the rest mass of the electron). Let n(T ) be the density of
conducting electrons and p(T ) the density of holes. We will assume that we are in
the classical regime kT � εg − µ and kT � µ.

(1) Using that n(T ) = p(T ), as a result of charge neutrality, find µ(T ).
(2) For mh = me and εg = 1 eV, compute n(T ) for T = 300 K and T = 1000 K.

Problem 7.4 Show that there is no Bose–Einstein condensation in two
dimensions.

Problem 7.5 Show that the correction to the perfect gas law for a Bose–Einstein
system at large T is of the form

PV = NkT

[
1 − 1

4
√

2

(
Nλ3

V

)]
.

Problem 7.6 Determine (∂cV /∂T ) for a Bose–Einstein system and show that it is
discontinuous at T = Tc.

Problem 7.7 Derive the equation for the transition line (dashed line) in the P–V
diagram in Fig. 7.5.

Problem 7.8 Compute the entropy of the blackbody radiation as a function of T .

Historical notes

After quantum mechanics was invented it was realized that systems of N identical
particles would have very different statistical properties depending on the symmetry
property of the wave function, namely, whether the wave function for such a system
remained the same or changed its sign when the coordinates of two particles are
interchanged. These two possibilities correspond, as we saw, to the Bose–Einstein



Density matrix 173

statistics and Fermi–Dirac statistics respectively. Historically the Bose–Einstein
case was developed before quantum mechanics was invented. In June 1924 S. N.
Bose sent Einstein a short paper in English on the derivation of Planck’s radiation
law asking him to arrange for its publication in Zeitschrift für Physik. Einstein
translated the paper into German and added a note stating that he considered the
new derivation an important contribution. The key new idea in Bose’s derivation
of Planck’s law was his method of counting the states of the photon. He implicitly
assumed that the photons were indistinguishable. Einstein immediately followed
up Bose’s approach by applying the idea of indistinguishability to an ideal gas of
mono atomic molecules. He found that there was a maximum possible value for the
total number N0 of particles of non-zero energy that the system could have. Thus if
the original number of particles N of the system was initially larger than this value
N0, the difference N − N0 would represent molecules that have condensed into the
lowest quantum state with zero energy. This was the phenomena of Bose–Einstein
condensation. The idea initially was not accepted as being physically important. It
was felt that the approximation of replacing a sum over states by an integration, used
by Einstein, was responsible for the result. This view was based on the Ph.D. work
of Uhlenbeck who was then a student of Ehrenfest. It was only much later that this
view was abandoned when London, in 1938, suggested Bose–Einstein condensation
as an explanation for the superfluid properties of helium at low temperatures.

The Fermi–Dirac statistics was invented separately by Fermi in a paper published
in Zeitschrift für Physik in March 26 1926, and by Dirac in a paper presented to
the Royal Society on August 26 1926. Dirac in his paper pointed out that the
difference between the Bose–Einstein and Fermi–Dirac statistics corresponded to
the difference between wave functions that are symmetric and antisymmetric with
respect to the interchange of particles. Fermi showed that a gas of such molecules
would continue to exert pressure at zero temperatures. It was immediately realized
that the Pauli exclusion principle discovered by analyzing spectral lines was a
consequence of Fermi–Dirac statistics.

The first physical application of Fermi–Dirac statistics was made by R. H. Fowler
who in 1926 suggested that properties of white dwarf stars could be understood
using these ideas.

There actually remains the possibility that any collection of Bose–Einstein
molecules which are sufficiently dilute, so that they do not liquify, could settle
down to their lowest energy state at low temperatures. The system would now be
in a macroscopic quantum state. This is a new state of matter with properties that
are actually being studied. For instance, if two condensates overlap, interference
fringes result. If light travels through a cluster of Bose–Einstein condensates in a
special way it can be slowed down by a factor of up to 20 (!) with the refraction index
being very high. E. Cornell, C. Wieman, and W. Ketterle were awarded the physics
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Nobel prize in 2001 for “Achievement of Bose–Einstein condensate in dilute gases
of alkali atoms and for their studies of the properties of the condensate.”

Further reading

There are many good introductory texts on quantum statistical mechanics. Here we
list a few of them:

(1) W. Greiner, L. Neise, H. Stocker, Thermodynamics and Statistical Mechanics, Springer-
Verlag (1995)

(2) L. D. Landau and E. Lifshitz, Statistical Physics, Pergamon Press (1959)
(3) K. Huang, Statistical Mechanics, J. Wiley (1987)
(4) L. E. Reichl, A Modern Course in Statistical Physics, Edward Arnold (1980)
(5) R. Balian, From Microphysics to Macrophysics, Springer-Verlag (1991)
(6) R. K. Pathria, Statistical Mechanics, Pergamon Press (1991)
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Astrophysics

In this chapter we will describe how statistical mechanics can be applied to obtain
some important results in astrophysics. As an application of classical statistical
mechanics we will discuss the Saha ionization formula which plays a role in
determining the surface temperature of a star and which will be shown to follow
from an analysis of chemical reactions involving ionized particles using statistical
mechanics.

We have already emphasized in the last chapter that quantum mechanics has
profound implications for the equations of state and, in particular, the stability
of matter. In this chapter we will illustrate this effect by considering the collapse
of stellar objects. A prominent example is that of white dwarf stars which are
stabilized by the Pauli exclusion principle. Understanding white dwarf stars will
involve Fermi–Dirac statistics. We will also briefly discuss the fact that neutron
stars contain more neutrons than protons and will show that this follows from the
analysis of a particular nuclear reaction process treated as a chemical reaction.

In order to present these examples in a suitable setting we start by reviewing a few
basic facts about the physics of stellar evolution and we outline the principles that are
used to model these objects. This is followed by a qualitative account of stellar evo-
lution. With this background in place the specific examples are considered. We then
close this chapter with a qualitative discussion of the cosmic background radiation.

8.1 Basic problem

The Sun is part of a galaxy of stars. The typical size of a galaxy is about 30 000 parsec
(1 parsec= 3.26 light years). Within a distance of 5 parsec from the Sun there are 44
known stars. Of the 44 there are 13 multiple stars. Counting multiplicity there are
59 stars in this region. It has been established by spectroscopic measurement that
the main constituent of a star is hydrogen. It is also found that a typical star contains
1057 or more nuclei. The source of stellar energy lies in a process of fusion which

175
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initially involves hydrogen. As the hydrogen fuel is burnt, other fusion processes
take over. For these to occur, the temperature of the system has to be hot enough for
the appropriate nuclear reactions to take place. If the temperature is not hot enough,
the process of nuclear burning stops and the star cools and dies.

It is a theoretically interesting problem to study these possibilities starting with
a simple model of a star, considered as a sphere of gases of known chemical
composition. The theoretical principles which one should use to study the evolution
of such a system include

(1) The conditions for the hydrostatic equilibrium of the system.
(2) The conditions for thermal equilibrium of the system.
(3) The mechanisms for energy transport within the system.
(4) The opacity of the gases in the system.
(5) The mechanisms of energy generation involving nuclear processes in the star.
(6) The equation of state of the system.

To simplify matters we can take our model system to be spherical and described
by variables which are dependent only on their distance r from the center of the
sphere of radius R which is the star. The variables of importance are the pressure
P(r ), the temperature T (r ), the luminosity L(r ) and the mass M(r ). These variables
may be taken to characterize the star. As r is changed to r + dr the changes in
these variables are to be determined using the principles listed above. Thus dP
is determined using conditions of hydrostatic equilibrium, dT from the energy
transport model considered, dL from the opacity of the gases and the method of
energy generation of the star while dM is determined in terms of the stellar density
which in turn is obtained from the equation of state of the star. There are obvious
boundary conditions, e.g. L(0) = 0, M(0) = 0.

Instead of following the procedure outlined we will resort to a qualitative account
of stellar evolution. This will provide a suitable framework for the applications we
will be considering.

We suppose that a star contains only hydrogen atoms and is a sphere of radius
R. Such a system is expected to contract due to gravitational forces. However, this
process of contraction is counteracted by the random motion of the atoms. This
random motion may be characterized by the temperature T of the system since the
temperature is a measure of the average kinetic energy, K , of the system. We have

K =
N∑

i=1

1

2
m < v2

i >� NkT

for a non-relativistic system of N identical atoms of mass m with the i th atom having
an average kinetic energy of 1

2 m < v2
i >. We will take this relationship between

kinetic energy and temperature to be true in general.
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The clumping due to gravitational forces leads to a gravitational potential energy
V given by (ignoring numerical factors of order one)

V = G M2

R

where G is the gravitational constant, M the mass and R the radius of the star. To
continue we use the virial theorem. Again ignoring numerical factors, this states
K � V .

Such a result between the time average of the kinetic and potential energies can
be easily proved if we assume that the motion of the system takes place in a finite
region of space and the potential energy is a homogeneous function of coordinates.
As this result is crucial for our discussions we give a quick proof. We take the kinetic
energy K to be a quadratic function of velocities, vi , then by Euler’s theorem on
homogeneous functions ∑

i

vi · ∂K

∂vi
= 2K .

Using ∂K/∂vi = pi , the momentum, we have

2K =
∑

i

pi · vi = d

dt

∑
i

(pi · xi ) −
∑

i

xi · dpi

dt
,

where vi = dxi/dt . Let us now average this equation with respect to time. Note that
for any function g = dG/dt of a bounded function G(t), the time averaged mean
value of g is zero. This is because

< g >= lim
T→∞

1

T

∫ T

0

dG

dt
dt = lim

T→∞
G(T ) − G(0)

T
= 0

Now we observe that if the system being considered executes motion in a finite
region of space with finite velocities then

∑
i pi · xi is bounded and by the result

just established the mean value of d/dt(
∑

i pi · xi ) is zero. Thus

2K =<
∑

i

xi · ∂V

∂xi
> ,

where we use Newton’s law in the form dpi/dt = −∂V /∂xi , with V the potential
energy of the system.

If the potential energy is a homogeneous function of degree k in the position
vector then using Euler’s theorem

∑
i xi · ∂V /∂xi = kV . Thus

2K = kV ,

which is the virial theorem. We will take K � V for our qualitative discussion.
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Consider now a gas of hydrogen atoms. From the virial theorem we have

G M2

R
� NkT ,

where Ndenotes the number of hydrogen atoms in the gas. This equation suggests
that the radius R of the system will continue to decrease and the temperature con-
tinue to increase without limit. Inevitably this rising temperature will lead to hydro-
gen atoms ionizing. As R continues to decrease the separation distance between
the electrons and protons will decrease. Eventually quantum effects will become
important and the expression for the NkT term which represents the classical gas
pressure will get modified. For a collection of electrons, which are Fermi–Dirac
particles, these quantum effects will lead to an increase in the gas pressure from
its classical value. In Chapter 7, an explicit expression for this modification was
calculated. Here we will estimate this term qualitatively. We note that the electron
and proton will both contribute to increasing the classical pressure term. However,
this quantum correction term is inversely proportional to the mass of the particle
and thus the proton’s contribution is expected to be 2000 times smaller than that of
the electron. Consequently we will neglect the proton term’s contribution for the
moment. To estimate the pressure increase due to quantum effects we proceed as
follows. We write

K = <
(pp +�pp)2

2m p
> + <

(pe +�pe)2

2me
>

� <
(pp)2

2m p
> + <

(pe)2

2me
> + <

(�pe)2

2me
> .

The first two terms represent the proton and electron’s classical kinetic energy while
the third represents the electron’s quantum fluctuation energy. We next estimate
the quantum energy. Let us assume that the average separation distance between
electrons is r then from the uncertainty principle it follows that r�p � �. Thus
< �p2 >/2me = �

2/2mer2.
We next relate R, the radius of the star, to r , the average separation distance

between electrons. We note that the average volume per constituent of the gas is
proportional to r3. Thus the volume of the gas is proportional to Nr3, but the gas
volume is proportional to R3 therefore R3 is proportional to Nr3. Hence we set
R � N

1
3 r . We also set M , the mass of the star, equal to Nm p where m p is the proton

mass. Thus the virial theorem including the quantum term gives

G M2

R
� NkT + N�

2

2mer2
.
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Rewriting this using M � Nm p, R � N
1
3 r we get

kT � A

r
− B

r2
,

where A = G N
2
3 m2

p and B = �
2/2me. This equation has several interesting conse-

quences. Without the quantum term the virial theorem expression gave a relationship
between the radius R and temperature T that did not lead to a stable value for R. It
predicted that R would decrease and T increase without limit. The new relationship
is very different. It predicts that T would increase to a maximum value:

kTmax = A2

4B
.

An interesting consequence of this result is the prediction that stars must have a
minimum mass. Indeed, for nuclear reactions to occur the temperature of the star
must be greater than a minimum value. This can conveniently be taken to be mec2/k.
Thus for a gas system to be a star, that is a system in which nuclear reactions take
place, we must have

kTmax > mec2 ,

which gives N > 1057. Putting in the value for the mass of the proton we get M =
Nm p > 1033g which is approximately the mass of the Sun! It is truly remarkable
that the mass of a gigantic object like the Sun is fixed not by classical but by quantum
considerations.

A second consequence of the modified virial theorem is that the system, after
reaching a maximum temperature, will cool, eventually reaching T = 0 and R �
N

1
3 B/A. This final state of a star represents a white dwarf. In the next section we

will present a quantitative analysis of this system.
In fact, our qualitative approach has even more to say. Suppose the mass of the

original system was such that by the time quantum effects become important the
electrons were highly relativistic particles with velocities close to the velocity of
light. Then the quantum term would have to be modified to take this into account.
We still have

K = Eproton + Eelectron + 〈�E〉electron

= NkT + 〈�E〉electron

but with �E � N 〈�p〉c, since E = √
p2c2 + m2

ec4 �| p |c for an extremely rel-
ativistic particle. Then using 〈�p〉 >� �/r we get 〈�E〉 � Nc�/r . The virial
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theorem now gives

G N 2m2
p

N
1
3 r

� NkT + Nc�

r
.

If G N
2
3 m2

p > �c in this equation then no quantum force due to electronic repul-
sion is strong enough to prevent the collapse of the system down to R = 0. Thus
G N

2
3 m2

p = �c represents a critical mass value for the star to reach a stable T = 0
configuration. This critical mass value is known as the Chandrasekhar limit. It is, in
this crude approximation, of the order of one solar mass. Thus the qualitative anal-
ysis suggests that stars much larger than the Sun cannot evolve into white dwarfs;
but what is their fate?

Let us examine such a star a bit more closely. Even though the electron might be
an extremely relativistic object, the proton being 2000 times more massive might
still continue to be a non-relativistic object. Introducing the previously neglected
proton contribution to the virial equation gives:

G N 2m2
p

N
1
3 r

� NkT + Nc�

r
+ N�

2

2m pr2
.

The system will now reach a stable T = 0 configuration with a size determined by
the proton quantum term. Such a system corresponds to a neutron star. We will
understand why it is called a neutron star once we analyze the system using the
statistical mechanics of chemical reactions. If the star is so massive that even the
proton is extremely relativistic when quantum effects become important then this
simple analysis suggests that the process of collapse does not stop and the star
evolves into a black hole. The limiting mass value, in this crude approximation, is
twice the Chandrasekhar limit. More refined calculations taking general relativistic
effects into account lead to a similar prediction of an upper limit on the mass of a star.

This concludes our qualitative account of stellar evolution. In the next section
we present a more quantitative account of the stability of white dwarfs and then
a review of chemical reactions in statistical mechanics and their application to
astrophysics.

8.2 White dwarf stars

We briefly consider the way a white dwarf star can be modeled. We will assume that
the star is spherical and consists of nuclei and electrons. For simplicity we further
assume that the system is at zero temperature. We will see that this simplification is
in fact justified due to the very high density in the star. The gravitational collapse of
the system is prevented by the quantum Fermi pressure of the electrons. Consider
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r

r + dr

dFg
dFp

Figure 8.1 Model of a white dwarf: the Fermi pressure dFp opposes gravity dFg .

now a thin shell of the star between radius r and r + dr . Hydrostatic equilibrium
of this shell means that the Fermi pressure term must balance the gravitational
attraction term. The gravitational attraction term gives rise to a force on the shell
directed inwards. The difference in the directed force dF between r and r + dr is
thus given by (Figure 8.1)

dFg = G M(r )

r2
4πr2ρ(r )dr ,

where

M(r ) =
∫ r

0
4πy2ρ(y)dy ,

with ρ(y) the density of the star and G the gravitational constant. The difference in
the force due to the pressure at r and r + dr in turn is given by

dFp = −4πr2dP ,

where dP = P(r + dr ) − P(r ). In order to have a local equilibrium for all r we
then must have

dFp − dF = 0 .

This gives

d

dr

(
r2

ρ(r )

dP

dr

)
= −G

dM

dr
= −G4πr2ρ(r ).
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In order to proceed we now need to relate the Fermi pressure P(r ) to the density
ρ(r ). Such a relationship is provided by the equation of state.

(1) Non-relativistic electrons From Chapter 7 we know that Pnr = 2/5 (N/V ) εF , or
expressed in terms of the mass density

Pnr = Knrρ
5
3 , Knr = (3π2)

2
3

5mem
5
3

�
2 .

Here N is the number of electrons in the system, me is the mass of the electron, and m
is the average mass per electron which takes into account the protons and neutrons as
well. We have also set the degeneracy g = 2 since the electrons can have up and down
spin.

(2) Ultra-relativistic electrons In this case we have Pur = 1/3 (U/V ) with U = 3/4 NεF .
Thus

Pur = Kurρ
4
3 , Kur = c�

m
4
3

(
3π2

4

) 1
3

.

To summarize, in both cases the equation of state of the system has the form

P = Kγ ργ

with γ = 5/3 for the non-relativistic and γ = 4/3 for the extremely relativistic
case. This equation is valid in each shell when the system is in equilibrium so that
we can write

P(r ) = Kγ [ρ(r )]γ .

Substituting this expression in the equation for hydrostatic equilibrium we get

Knr
d

dr

(
r2 5

3

1

ρ
1
3

dρ

dr

)
+ G4πr2ρ = 0 and

Kur
d

dr

(
r2 4

3

1

ρ
2
3

dρ

dr

)
+ G4πr2ρ = 0

respectively. The boundary conditions for ρ are ρ(R) = 0, where R is the radius of
the star and ρ is regular at the origin. The latter condition implies ρ ′(0) = 0. As in
Chapter 5 we then introduce dimensionless quantities for numerical integration of
these equations. The convenient choice is

ρ(r ) = ρ(0)�
1

γ−1 (ζ )

where ζ is related to r by

r =
[

Kγ γ

4πG(γ − 1)

] 1
2

[ρ(0)]
γ−2

2 ζ



Chemical reactions 183

so that �(ζ ) and ζ are both dimensionless variables. We then get

1

ζ 2

d

dζ

(
ζ 2 d�

dζ

)
+ [�]

1
γ−1 = 0

with boundary conditions �(0) = 1, d�/dζ (0) = 0. This is known as the Lane–
Emden equation. The numerical solution of this equation has a zero for some
positive value of ζ = ζ1. The value of ζ1 thus determines the radius of the star. The
solution for ρ is then integrated again to determine the total mass of the star with
the result

G M R3 = const ; non-relativistic

G M = const ≡ G M∗ ; ultra-relativistic

where M∗ � 1.5MSun . The interpretation of this result is clear: as long as not all of
the electrons are ultra-relativistic the star has a stable equilibrium with a radius that
shrinks as the mass M of the star increases with increasing density ρ. As ρ → ρc, a
critical density, the electrons in the system become relativistic with M approaching
M∗ a value which is independent of the density for ρ > ρc. This limiting mass
value M∗ is known as the Chandrasekhar limit. It represents the maximum mass
that a stable star supported by the Fermi pressure of electrons can have. Our brief
look at white dwarfs illustrates the important role the equation of state played in
the analysis.

8.3 Chemical reactions

In the first chapter we found that if a gas undergoes a thermodynamic transformation
at constant temperature and pressure then the Gibbs function, G, for the system
decreased. The equilibrium configuration for such a process in stellar evolution
then corresponds to a minimum value for G, that is

dG = 0 .

Let us generalize our system of interest to a gas consisting of different types of
molecule in which chemical reactions take place. These reactions can convert one
type of molecule in the gas to a different type of molecule. For example, in a process
involving hydrogen and chlorine the reaction

H2 + Cl2 � 2HCl

occurs. Here one hydrogen and one chlorine molecule combine to form two
molecules of hydrochloric acid. The reverse process also occurs. In order to deal
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with such situations the first law of thermodynamics has to be generalized. We have

dU = δQ − pdV +
∑

i

µi dNi

where dNi represents the change in the number and µi the chemical potential of
the i th molecule. From the definition of the Gibbs function, G = U − T S + PV
and using the first and second law of thermodynamics it follows that

dG = −SdT + V dP +
∑

i

µi dNi ,

with S = −(∂G/∂T ); V = (∂G/∂ P); µi = (∂G/∂ Ni ). Let us consider the equi-
librium configuration of this system under conditions of constant temperature and
pressure. In this situation the average number of molecules in each species is fixed
at some equilibrium value. Hence the Gibbs functions for each constituent molecule
type has reached its equilibrium minimum value. We therefore expect dG = 0 for
the entire system. This gives ∑

i

µi dNi = 0 ,

which is the key equation for analyzing chemical reactions. Note that µi is inde-
pendent of Ni when regarded as a function of temperature and pressure. This can
be verified to be true for the explicit expressions for the chemical potential we have
calculated in earlier chapters and can be understood to be a consequence of the
fact that the chemical potential represents the energy required to produce one extra
molecule, which we take to depend on the molecule itself, and not on the number
of molecules present. Then

G =
∑

i

µi Ni .

For a single molecular species G = µN , a result we have already used in
Chapter 1.

Suppose now we have a reaction represented by the equation∑
j

ν j A j = 0 ,

where ν j represents the number of molecules A j which participate in the chemical
reaction. The numbers ν j can be positive or negative. For example, in the reaction
involving hydrogen and chlorine to form hydrochloric acid, the ν values will be
+1,+1,−2 respectively. Taking into account that the variation in the number of
particle of type i is

dNi = νi dN
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the equilibrium condition dG = 0 becomes∑
j

ν jµ j = 0 .

In order to determine the equilibrium condition in chemical reactions it is then
necessary to determine µi . This can be done in the framework of the grand canonical
ensemble discussed in Chapter 3. There we found that

µ j = kT ln

(
N jλ

3
j

V

)
,

where λ j = h/
√

2πm j kT is the thermal wavelength of a particle with mass m j

and N j represents the number of the molecules of the j th type present in volume
V . Using P = NkT /V , we can now write

µ j = kT ln

(
c j Pλ3

j

kT

)
,

where c j = (N j/N ) is the concentration of molecules of the j th type. Substituting
this expression for µ j we end up with∏

j

c
ν j

j = e−
∑

j ν j ln
(

Pλ3
j /kT

)
≡ K (P, T ) ,

where K (P, T ) is known as the equilibrium constant for the reaction. We thus have
the result that, for a given temperature and pressure value, the product

∏
j c

ν j

j is
a constant. This is known as the law of mass action. This is a key result in the
statistical mechanical treatment of chemical reactions.

8.4 Saha ionization formula

Let us now apply the ideas of chemical equilibrium to determine the surface temper-
ature of a star. The equilibrium properties of a star depend on the thermodynamic
parameters such as the pressure P , temperature T , and density ρ of the gases in the
star.

Since stars are hot, thermal ionization is expected to occur. These effects will be
important when kT is comparable to the binding energy of the electrons in the star.
For hydrogen, this happens when T � 105 K, while for helium it happens above
temperatures of 4 · 105 K. At low temperatures the ionization will be incomplete
and the gas will be a mixture of atoms in their ground state, atoms in excited states
and ionized atoms. The processes which determine the specific mixture present for
a given temperature and pressure of the star are the ones involving the atom ionizing
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and recombining. These processes can be regarded as chemical reactions and hence
analyzed using the methods of statistical mechanics. It is then possible to determine
precisely the relative distribution of atoms in their ground state configurations
compared to their ionized state configurations as a function of the temperature
and pressure of the system. The presence of ionized atoms can be detected using
spectroscopy, hence from such measurements it is possible to measure the fraction
of atoms that are ionized in the star. With these results the temperature of the star
can then be determined.

The chemical reaction to be considered is

A � A+ + e + γ

where A denotes an atom, A+ the ionized states of the atoms, e an electron, and
γ one or more photons. Clearly A+ can similarly be involved in further reactions
which can also be analyzed as chemical processes.

The ionization reaction reaches an equilibrium state determined by the condition

µA = µA+ + µe + µγ

where µA, µA+ , and µe are the chemical potentials of the atom, the ionized atom,
and the electron respectively. The chemical potential of the photon vanishes as we
have seen in Chapter 7. If B is the binding energy of the electron we write the
energy of the atom as

E = | p |2
2m A

− B.

Treating A, A+, and e as a classical gas of non-interacting particles, the chemical
potentials can be read off from our results in Chapter 3, i.e.

µγ = 0

µA = − 1

β
ln

(
V gA

λ3
A NA

)
+ B

µA+ = − 1

β
ln

(
V gA+

λ3
A NA+

)

µe = − 1

β
ln

(
V ge

λ3
e Ne

)

where

λA = h√
2πm AkT

λe = h√
2πmekT
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and gA = (2SA + 1), gA+ = (2SA+ + 1), ge = (2Se + 1). These give

Ne NA+

NA
= gegA+

gA

(2πmekT )
3
2

h3
e−

B
kT .

This is the Saha ionization formula. Using Pe = NekT where Pe is the electron
pressure we can write this as

NA+

NA
= gegA+

gA

(2πme)
3
2

h3

(kT )
5
2

Pe
e−

B
kT .

If Pe is known, this equation can be used to determine the temperature of the star
by measuring NA+/NA by spectroscopic means.

In this calculation we have simplified the problem by considering only the atom
and the ionized atom neglecting all internal excitations of these systems. These
excitations can be incorporated by replacing the factors gA by Z A =

∑
dr e−β Êr

where Êr = B − Er , Er is the binding energy of the r th excited state, and dr is its
degeneracy. The difficulties with this approach are discussed in Chapter 12.

8.5 Neutron stars

In our qualitative account of stellar evolution, we concluded that if a star had
mass bigger than the Chandrasekhar limit then the final state of the star was not
determined by the electron but by the proton Fermi pressure. Furthermore, the mass
of such an object at T = 0 also had a limiting value. We would like to understand
the chemical composition of a star when its mass is close to this limiting value. We
will see that a simple analysis of the relevant chemical reactions will lead to the
result that the ratio of the number of neutrons to protons in such a system is 8 : 1.
The star is a neutron star.

To establish this result we realize that the electron and proton for the system close
to its limiting mass value are both extremely relativistic objects. The composition of
the star will be determined by analyzing the chemical reaction in which the electron
and proton interact to form neutrons and neutrinos. The reaction can be written as

e + p � n + νe.

The neutrino is an extremely weakly interacting particle and leaves the system
after it is formed. We now recall from Chapter 7 that the chemical potential of an
extremely relativistic particle at T = 0 is

µi = K (s)N
1
3

i ,

where K is a mass-independent constant which depends on the spin s of the i th
particle, and Ni is the number of particles of type i present in the system. We are
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now ready to analyze the chemical reaction involving the electron and the proton.
We have

µe + µp = µn + µνe .

As explained above the density of neutrinos is small so that µνe can be neglected.
There is an additional constraint present in the system. Namely the total charge of
the system has to be zero. This is because we started with a collection of neutral
hydrogen atoms and as charge conservation is respected throughout the evolution
of this system we must impose the constraint that the total charge of the system
is zero. For the system containing electrons, protons, neutrons, and neutrinos this
means that we must have

Ne = Np.

Now, the electron and proton have the same spin. Hence Ne = Np implies for
extremely relativistic electrons and protons that

µe = µp = K (s)N
1
3
p .

The neutron also has the same spin as the electron and the proton so that we get

2K (s)N
1
3
p = K (s)N

1
3

n , or
Nn

Np
= 8 .

A final comment is necessary. It is known that the neutron is an unstable particle
so that, even though the nuclear process just analyzed gives Nn/Np = 8, these
neutrons might be expected to ultimately decay and convert to protons and electrons.
This does not happen. The reason is that the decay of a neutron can only produce
an electron with Ee ≤ 1 MeV. This is a consequence of the energy available for
producing an electron which depends on the mass difference between the neutron
and the proton. However, the Fermi energy for the extremely relativistic system we
have considered leads to µe > 1 MeV. So that as a result of the Pauli exclusion
principle the neutron cannot decay. Energy states of electrons which could be
produced by the decay of the neutron are already occupied. The environment in
such a collapsed star thus makes the neutrons stable.

8.6 Blackbody spectrum of the Universe

In 1965, A. Penzias and R. Wilson accidentally discovered that there was radiation
coming from all directions in the sky and that it had a temperature of approxi-
mately 2.7 K. Subsequent measurements have established that this radiation has a
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Figure 8.2 Measured intensity of the background radiation by the COBE satellite
experiment. This data was adapted from J. C. Mather et al., Astro. Jour. 354, L37
(1990).

blackbody spectrum and that it is isotropic. Indeed recent satellite experiments
gave a curve which fit the blackbody spectrum with a temperature, T = (2.725 ±
0.001) K to an accuracy which is better than any blackbody spectrum measured in
a laboratory (see Figure 8.2). The isotropic nature of this microwave radiation is
better than one part in ten thousand. These experimental observations indicate that
the Universe started with a big bang.

It turns out that a background temperature today of the order of 10 K can be
motivated using a simple argument due to Gamov in 1948. This argument goes
as follows: at present the Universe consists mostly of helium which is formed
at very early stages of the evolution. After the temperature has dropped below
kT � 0.1 MeV, the number of helium molecules is conserved during the expansion,
that is

n(t)a3(t) = constant

where n(t) is the density of helium atoms and a(t) is the scale factor, measuring
the relative size of the Universe at different times.

The entropy, on the other hand, is dominated by the contribution from the light
particles. These are the photons and the light neutrinos which are ultra-relativistic.
Recalling our treatment of photons in Chapter 7 we thus have

S =
∫

dE

T
� κ

16σ

3
T 3,

where σ is the Stefan–Boltzmann constant introduced in Section 7.6 and κ is a
coefficient of order one which depends on the number of light degrees of freedom.
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If, during the period of interest, the Universe expands adiabatically and quasi-
statically we then have Sa3(t) = const . Combining these two formulas we can
eliminate the scale factor to get

n(t1)

n(t0)
= n(T1)

n(T0)
= T 3

1

T 3
0

.

The current particle density can be measured experimentally with the result n(T1) �
10−6cm−3. Thus if n(T0) was known for some temperature T0, then the present
day temperature T1 would be determined by the above equation. Indeed we then
have

T1 = T0

(
n(T1)

n(T0)

) 1
3

.

Gamov suggested to fix n(T0) by the following argument. Since helium, like all
matter, is built up by successive nuclear reactions, we first need to produce a suffi-
cient density of deuterium which is obtained by combining a neutron and a proton
through the reaction

n + p � d + γ.

However, deuterium has a small binding energy of approximately 2 MeV. Conse-
quently, the dissociation process of deuterium by energetic photons is very efficient
at kT ≥ 1 MeV. Below kT � 0.1 MeV, or T � 109 K, on the other hand, the pro-
duction of deuterium becomes inefficient. Thus, in order to explain the dominance
of helium in the Universe today we must assume that the fraction of protons that
have been transformed into deuterium by the time the temperature falls below
T0 = 109 K is of order one, that is (see also Chapter 9)

σtotv n(t0) t0 � 1,

where σtotv � 10−20cm3/s is the total cross-section for the above reaction times
v, the relative velocity between the protons and neutrons which we take to be
the thermal velocity v = √

2kT/m. Next, n(t) is the number density of protons
which, at t = t0, is of the same order of magnitude as the number density of
deuterium atoms. Finally, t0 is the time when the Universe has cooled down to
109 K.

We can determine t0 with the help of the following simple, non-relativistic physics
argument. Consider a particle of mass µ and velocity �v at the edge of the universe,
which is assumed to have a mass M . Using non-relativistic energy convervation we
have

E(r ) = 1

2
µv2 − GµM

r
= k.
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There are three possibilities: k > 0, representing an expanding universe, k < 0,
a universe which after expansion, slows down and then collapses, and finally k = 0
which just manages to expand to infinity. This is the case we consider. We also
assume that the mass of the Universe is dominated by rediation, that is

M = 4πρor3

3
= 4πr3

3
σ T 4c2.

The factor c2 is required to convert the energy density of radiation to its equivalent
mass. Also, since the entropy is constant we have Tr = constant. If we then write
the energy conservation law as

1

2
ṙ2 = G

4

3
π

σ T 4

c2

r3

r
,

we get

r2ṙ2 = 8Gπσ T 4r4

3c2
= α2,

where α is a constant as a consequence of the conservation of the entropy. Taking
the square root of both sides and integrating (

∫
rdr = α

∫
dt) we then end up with

t = 1

T 2

√
3c2

32πσ G
.

If we include the numerical values and set T = 0.1 MeV, we find t0 � 102 s as an
order of magnitude estimate. With t0 determined n(t0) follows and we therefore
have all ingredients. Substituting numbers we end up with T1 � 10 K, again as an
order of magnitude estimate.

Problems

Problem 8.1 Determine the equilibrium distribution of electrons and positrons at
very high temperatures (kT >> mec2) where me is the mass of the electron.

Problem 8.2 Show that the equilibrium ratio of α particles and neutrons, n, to
iron nuclei (Fe) in the reaction

γ + Fe � 13α + 4n

is given by

n13
α n4

n

nFe
= 243

(56)
3
2 (1.4)

(
mukT

2π�2

)2

4e−
Q

kT
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where Q = c2(13mα + 4mn − mFe) = 124.4 MeV and the mass of a nucleus of
atomic weight A is written as Amu .

Problem 8.3 Background radiation:

(1) Assuming that the energy of the Universe is dominated by radiation at all
times, estimate the present temperature of the background radiation given that
the age of the Universe today (determined by experimental value of the
Hubble constant) is t1 � 1018 s.

(2) In reality, the measured matter energy density of the Universe at present is
found to be about 104 times that of the radiation so that our simplifying
assumption about radiation domination is not justified. In a matter dominated
Universe the energy u(T ) is proportional to T 3. Assuming that matter
domination has set in after 1012 s, estimate the error made in the estimate for
t1 in the approximation at 1.

Historical notes

S. Chandrasekhar derived the existence of a limiting mass for a white dwarf star
while traveling by boat from Madras to Venice in 1930 to take up a Government
scholarship in Cambridge where he hoped to work for his doctoral degree under the
supervision of Fowler. With him he had a paper he had completed just before his
departure from Madras. In it he had developed Fowler’s theory of white dwarfs fur-
ther. Fowler had demystified the long-standing puzzle regarding the high densities
encountered in white dwarfs making use of the recently discovered Fermi–Dirac
statistics. Combining Fowler’s ideas with Eddington’s polytropic considerations for
a star, Chandrasekhar had found that in the center of a white dwarf the density could
be as high as one ton per cubic inch! It suddenly occurred to him that relativistic
effects could become important for such a high density.

According to Pauli’s exclusion principle no two electrons could be in the same
quantum state. Because of the high density one would thus invariably find electrons
with energies higher than their rest mass, so that relativistic effects would become
important. Chandrasekhar started his calculation on the boat journey expecting
to find a neat, relativistic generalization of Fowler’s theory. The calculation was
finished by the time the boat arrived in Venice. Much to his surprise he found
that the relativistic generalization led to a completely different result. Contrary to
Fowler’s theory, if the mass of the star exceeded a limiting mass for which essentially
all electrons had become relativistic, then the star could not evolve into a white
dwarf!
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Further reading

A good text on the physics of stars accessible at undergraduate level is R. Bowers
and T. Deeming, Astrophysics 1: Stars, Jones and Bartlett (1984). A more advanced,
but very readable account on astrophysics can be found in S. L. Shapiro and S. A.
Teukolsky, Black Holes, White Dwarfs and Neutron Stars, John Wiley (1983).
A self-contained text in which the properties of model stars are derived starting
from Carathedory’s approach to thermodynamics, with many interesting histori-
cal comments and notes, is S. Chandrasekhar, Introduction to the Study of Stellar
Structure, Chicago University Press (1939). A detailed discussion of the Saha ion-
ization formula is contained in S. Brush, Statistical Physics and the Atomic Theory
of Matter, Princeton University Press (1983) as well as L. D. Landau and E. Lifshitz,
Statistical Physics, Pergamon Press (1959). Finally, for a detailed discussion of big
bang cosmology see P. J. E. Peebles, Principles of Physical Cosmology, Princeton
(1993). A concise but very accessible popular book on cosmology is S. Weinberg’s
The First Three Minutes, Basic Books (1977).



9

Non-relativistic quantum field theory

In this rather technical chapter we develop an efficient tool to include interactions
in quantum statistical mechanics. We will provide the basic framework of quantum
field theory and perturbation theory. This will be formalized in terms of Wick’s
theorem and Feynman rules. We furthermore adapt these rules to include finite
temperature and density, in order to compute the grand canonical ensemble partition
function Z� for an interacting quantum system of identical molecules. This will
include, in particular, a discussion of temperature-dependent Green functions. The
ideas described in this chapter will play an essential role in our discussion of the
superfluidity properties of helium in Chapter 10.

9.1 The quantum field theory formulation

Let us begin by repeating the calculation of the quantum mechanical partition func-
tion for non-interacting particles in a notation which is adapted to the quantum field
theory formalism. In Chapter 7 we introduced the time-independent N -particle wave
function ψ(x1, . . . , xN ) for a system of N -identical particles. This wave function
will be symmetric or antisymmetric when exchanging two coordinates xi and x j

depending whether we describe Bose–Einstein particles or Fermi–Dirac particles
respectively. Now, just as we write the 1-particle wave function ψ(x) as

ψ(x) = 〈x|ψ〉
where |ψ〉 is the corresponding state vector, we can write

ψ(x1, . . . , xN ) = 〈x1, . . . , xN |k1, . . . , kN 〉
where |k1, . . . , kN 〉 is the state vector for an N -particle system with momenta
k1, . . . , kN , correctly symmetrized. However, instead of specifying the momentum
of each particle, we could specify the state vector by simply stating how many parti-
cles have momentum ki , for all allowed momenta ki . Since, in quantum mechanics

194
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we cannot distinguish between identical particles with the same quantum numbers,
these two ways of specifying a state vector are equivalent. We then write

|ψ〉 = |n1, . . . , ni , . . .〉
where ni is the occupation number of the state with momentum ki . If there are
further quantum numbers, such as the spin, then the set {nα} is enlarged such as
to specify the occupation number of each possible state with momentum ki and
spin j . Now, in the absence of interactions between the different particles, the total
energy of the state |ψ〉 is E =∑

i εi ni . Furthermore, for non-interacting particles
the occupation numbers ni do not change in time and we therefore conclude that
the state |ψ〉 is an eigenstate of the Hamilton operator H and that

H|n1, . . . , ni , . . .〉 =
∑

i

niεi |n1, . . . , ni , . . .〉.

Similarly, we can introduce a number operator, N, with the property

N|n1, . . . , ni , . . .〉 =
∑

i

ni |n1, . . . , ni , . . .〉.

With the use of these operators we can now write the grand canonical partition sum
Z�, introduced in Chapter 7 simply as a trace over the Hilbert space of states, i.e.

Z� =
∑

n1,n2,...

e−β
∑

i (εi−µ)ni

= Tr
(

e−β(H−µN)
)

.

The problem we consider below is whether for an interacting system a descrip-
tion of this kind is meaningful given that the energy of an N -particle system is
no longer just the sum of 1-particle energies. In such a description the notion of
“occupation number” in some form should be present and the energy eigenvalue
EN should, for the N -particle system, reduce to EN =∑

εi ni when interactions
are neglected. When interactions are included we would require that EN be an
eigenvalue corresponding to the N -body Schrödinger equation[

N∑
i=1

(
− �

2

2m
∇2

i

)
+
∑
i< j

V (| xi − x j |)
]

ψ(x1, . . . , xN ) = ENψ(x1, . . . , xN )

where V (|xi − x j |) is the potential energy representing the interaction between the
molecule at xi and the one at x j , while the N -body wave function ψ(x1, . . . , xN )
is totally symmetric in the location of the N molecules for Bose–Einstein particles
and is totally antisymmetric for Fermi–Dirac particles.

We will now show that such a description does indeed exist. To see how this works
we first give an explicit construction of the Hamilton and particle number operators
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defined above for non-interacting particles and subsequently include interactions
in the formalism. For this we have to distinguish between Fermi–Dirac and Bose–
Einstein systems.

9.1.1 Non-interacting bosons

As we will now argue, for bosons the Hamilton operator H and the particle num-
ber operator N can be expressed in terms of operators known from the quantum
mechanical harmonic oscillator. Concretely, we write

H =
∑

i

εi a
†
i ai

N =
∑

i

a†
i ai ,

where the a†
i , and ai represent a collection of harmonic oscillator raising and low-

ering operators which satisfy the commutation relations

[ai , a†
j ] = δi j

[ai , a j ] = 0

[a†
i , a†

j ] = 0 .

We assume, furthermore, that the vacuum, or zero-particle state is annihilated by
all lowering operators ai

ai |0, . . . , 0, . . . 〉 = 0 .

States with positive occupation numbers ni are then obtained by acting successively
with the raising operators a†

i on the vacuum, i.e.

a†
i | . . . , ni , . . .〉 =

√
ni + 1 | . . . , ni + 1, . . .〉

and similarly

ai | . . . , ni , . . .〉 = √
ni | . . . , ni − 1, . . .〉 .

Furthermore, applying the above commutation rules to the composite operator a†
i ai

we readily obtain the relations

[a†
i ai , ai ] = −ai and [a†

i ai , a†
i ] = a†

i ,

which in turn implies

a†
i ai | . . . , ni , . . .〉 = ni | . . . , ni , . . .〉 .
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Thus for each label i the operators ai acting on an eigenstate of the operator a†
i ai

with eigenvalue ni lowers the eigenvalue by 1 to ni − 1, while the operator a†
i acting

on such an eigenstate increases ni by one. The operators a+i and ai thus create and
destroy a particle of energy εi .

To complete the proof that the Hamilton operator defined above is the correct N -
particle Hamiltonian we need to show that H reproduces the N -particle Schrödinger
equation

N∑
i=1

(
− �

2

2m
∇2

i

)
ψEN ,N (x1, . . . , xN ) = ENψEN ,N (x1, . . . , xN ) .

We note that for free particles

EN =
∑

k

�
2|k|2
2m

n(|k|) ,

and

ψEN ,N (x1, . . . , xn) = 1√
N !

∑
σ

eik1·xσ (1)

√
V

. . .
eikN ·xσ (N )

√
V

,

where ki = 2πni/L , i = 1, 2, 3 when the N identical particles are in a cubic box
of side L and volume V = L3. The sum is over the N ! permutations of x1, . . . , xN .
The labels i1, . . . , iN range over 1, . . . , N . Comparing this with the form of our
proposed Hamiltonian we find

H =
∑

k

�
2|k|2
2m

a†
kak ,

and similarly for the particle number operator

N =
∑

k

a†
kak

where the raising and lowering operators are now labeled by the momentum k so
that

[ak, a†
k′] = δk,k′

with other commuators vanishing. To continue we introduce position-dependent
operators, �(x) and �†(x), by means of the Fourier transform

�(x) =
∑

k

ak
eik·x
√

V

�†(x) =
∑

k

a†
k

e−ik·x
√

V
.
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It is then not hard to see that these operators satisfy the commutation relations[
�(x), �†(y)

] = δ(3)(x − y)

[�(x), �(y)] = 0[
�†(x), �†(y)

] = 0 .

We now write H and N in terms of these new operators as

H =
∫

d3x �†(x)

(
− �

2

2m
∇2

x

)
�(x)

N =
∫

d3x �†(x)�(x) .

Note that H is expressed in terms of operators �†(x) and �(x) which carry the
continuum label x, and are thus quantum field operators. We are thus dealing, in
this formulation, with a quantum field theory. The expressions for H and N have a
simple intuitive meaning. The operator �†(x)�(x) simply represents the “number
density” operator at position x. The integral of this density is N, the particle number
operator. H is related to the product of the energy operator at x which is given by
−�

2/2m∇2 with the number density operator at x.
After this preparation we are now in position to make the connection with the N -

particle Schrödinger equation precise. Concretely, we will reproduce the N -particle
Schrödinger equation for the wave function

ψ(x1, . . . , xN ) = 1√
N !
〈0 | �(x1) . . . �(xN ) | EN , N 〉 ,

where the vacuum state | 0〉 is defined so that � | 0〉 = H | 0〉 = N | 0〉 = 0. For
this we first note that

1√
N !
〈0 | �(x1) . . . �(xN )H | EN , N 〉 = EN�(x1, . . . , xN ) .

In fact, since 〈0 | H = 0 we also have

1√
N !
〈0 | �(x1) . . . �(xN )H | EN , N 〉

= 1√
N !
〈0 | [�(x1) . . . �(xN ), H] | EN , N 〉 .

On the other hand the commutator above equals

[�(x1) . . . �(xN ), H] =
∑

i

�(x1) . . . �(xi−1)[�(xi ), H]�(xi+1) . . . �(xN ) .

This can be established by a simple inductive argument. Namely we observe that

[�(x1)�(x2), H] = [�(x1), H]�(x2) +�(x1)[�(x2), H] ,
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as can be checked from the definition of the commutator. Next we suppose this
result is true for n �(xi )’s and we show that it must then be true for (n + 1) �(xi )’s.

Let us now evaluate each commutator separately. Using the commutation rela-
tions between �(x) and �†(x) as well as the definition of H we have

[�(xi ), H] =
∫

d3 y

[
�(xi ), �

†(y)

(
− �

2

2m
∇2

y

)
�(y)

]

=
∫

d3 y
[
�(xi ), �

†(y)
] (− �

2

2m
∇2

y

)
�(y)

=
(
− �

2

2m
∇2

x

)
�(xi ) .

To continue we substitute this result into the equation for �(x1) . . . �(xN ) which
then gives

1√
N !
〈0 | [�(x1) . . . �(xN ), H] | EN , N 〉

=
N∑
i

(
− �

2

2m
∇2

1

)
1√
N !
〈0 | �(x1) . . . �(xN ) | EN , N 〉

=
N∑
i

(
− �

2

2m
∇2

i

)
�(x1 . . . xN ) ,

showing that ψ(x1, . . . , xN ) satisfies the N -body Schrödinger equation in the case
where the N particles do not interact. A pleasant feature of this approach is that
the total symmetry of the wave function ψ(x1, . . . , xN ) in the coordinate labels
x1, . . . , xN is manifest. This is because switching xi with x j is equivalent to inter-
changing �(xi ) with �(x j ) but since these operators commute for arbitrary labels
i and j this interchange symmetry holds.

9.1.2 Interacting bosons

We now turn to the problem of introducing interactions in this framework. From
our discussions it should be clear how this is to be done. Interactions represent
contributions to the energy due to pairs of particles, while for non-interacting par-
ticles the energy is due to each particle separately. For the case of non-interacting
particles we found that

H =
∫

d3 y �†(y)

(
− �

2

2m
∇2

y

)
�(y) ,

which we interpreted as an integration over the energy of a particle at y, represented
by the operator (−�

2/2m∇2
y ), and “multiplied” by the number density operator
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�†(y)�(y) at y. We thus expect the interaction energy term to involve the density
operator at y1, the density operator at y2, multiplied by the potential energy V (|y1 −
y2|) associated with this pair of particles. This suggests the ansatz

V = 1

2

∫
d3 y1d3 y2 �†(y1)�†(y2)V (|y1 − y2|)�(y1)�(y2) .

The factor 1/2 takes into account that we are dealing with identical molecules. It
should be clear how these ideas generalize. If energy was associated to collections
of three molecules which was different from the energy due to interactions V (|y1 −
y2|) between pairs of molecules, i.e. if a new V (yi , y j , yk) term or a “three-body
force” was present, then the corresponding V would include the number density
operators at y1, y2, and y3 and would have the form

V(3)= 1

3!

∫
d3 y1d3 y2d3 y3 �†(y1)�†(y2)�†(y3)V (y1, y2, y3)�(y1)�(y2)�(y3) .

We will now show that our expectations are indeed justified. We formulate this
result as a theorem

Theorem 9.1 If the Hamiltonian and number operator are defined as

H =
∫

d3 y �†(y)

(
− �

2

2m
∇2

y

)
�(y)

+ 1

2!

∫
d3 y1d3 y2 �†(y1)�†(y2)V (|y1 − y2|)�(y1)�(y2)

N =
∫

d3 y �†(y)�(y)

respectively, and if | EN , N 〉 satisfies

H | EN , N 〉 = EN | EN , N 〉
N | EN , N 〉 = N | EN , N 〉 ,

with H | 0〉 = N | 0〉 = � | 0〉 = 0, then the wave function

�(x1, . . . , xN ) = 1√
N !
〈0 | �(x1) . . . �(xN ) | EN , N 〉

satisfies the interacting N -particle Schrödinger equation(
N∑

i=1

(
− �

2

2m
∇2

i

)
+
∑
i< j

V (|xi − x j |)
)

�(x1, . . . , xN ) = EN�(x1, . . . , xN ) .

Before we proceed to the proof of this theorem a comment concerning the order
of the operators � and �† is appropriate. Instead of the order chosen above we
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could have written

V′ = 1

2

∫
d3 y1d3 y2�

†(y1)�(y1)V (|y1 − y2|)�†(y2)�(y2)

for example. How would this affect the result? This question is no sooner asked
than answered. Using the commutation relation of �† and � it follows immediately
that

V′ = V+ 1

2

∫
d3 y V (0)�†(y)�(y) .

Thus the alternative ordering is equivalent adding the constant 1/2V (0) to the
kinetic energy. However, for most potentials arising in practical applications, such
as for example the Coulomb potential, V (0) is infinite. It is thus preferable to choose
the order where all �†’s stand to the left of the �’s. This is a special instance of
the so-called normal ordering. Normal ordering is the order of operators where
all creation operators are to the left of the annihilation operators. Physically, this
means that no particles are created out of the vacuum by the Hamiltonian and that
the energy of the vacuum vanishes, which is what one intuitively expects.

Proof. It is convenient to define

H0 =
∫

d3 y �†(y)

(
− �

2

2m
∇2

y

)
�(y)

HI = 1

2

∫
d3 y1d3 y2 �†(y1)�†(y2)V (|y1 − y2|)�(y1)�(y2) .

We then observe that

EN�(x1, . . . , xN )

= 1√
N !
〈0 | �(x1) . . . �(xN )H | EN , N 〉

= 1√
N !
〈0 | [�(x1) . . . �(xN ), H] | EN , N 〉

where we have used that H | 0〉 = 0. To continue we then consider

[�(x1) . . . �(xN ), H]

=
N∑

i=1

�(x1) . . . �(xi−1)[�(xi ), H]�(xi+1) . . . �(xN ).

We now decompose the Hamiltonian into free and interaction parts

[�(x), H] = [�(x), H0] + [�(x), HI ].
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We have already seen that

[�(xi ), H0] =
(
− �

2

2m
∇2

i

)
�(xi ),

so we need only consider [�(x), HI ] for which we have

[�(xi ), HI ]

= 1

2

∫
d3 y1d3 y2 V (|y1 − y2|)[�(xi ), �

†(y1)�†(y2)�(y1)�(y2)]

= 1

2

∫
d3 y1d3 y2 V (|y1 − y2|)δ3(xi − y1)�†(y2)�(y1)�(y2)

+ 1

2

∫
d3 y1d3 y2 V (|y1 − y2|)δ3(xi − y2)�†(y1)�(y1)�(y2)

=
∫

d3 y V (|xi − y|)�†(y)�(y)�(xi ) .

Thus we have

EN�(x1, . . . , xN ) =
N∑

i=1

(
− �

2

2m
∇2

i

)
�(x1, . . . , xN )

+
N∑

i=1

1√
N !

∫
d3 yV (|xi − y|)

×〈0 | �(x1) . . . �†(y)�(y)�(xi ) . . . �(xN ) | EN , N 〉 .

The first term on the right-hand side of this equation comes from H0, the second
from HI . Let us examine the second term

N∑
i=1

1√
N !

∫
d3 yV (|xi − y|)

×〈0 | �(x1) . . . �(xi−1)�†(y)�(y)�(xi ) . . . �(xN ) | EN , N 〉.

Define

K = �†(y)�(y)�(xi ) . . . �(xN )

then this term is

N∑
i=1

1√
N !

∫
d3 yV (|xi − y|)〈0 | �(x1) . . . �(xi−1)K | EN , N 〉.
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Now, since 〈0 | K = 0 we can write the sum equivalently as

N∑
i=1

1√
N !

∫
d3 yV (|xi − y|)〈0 | [�(x1) . . . �(xi−1), K ] | EN , N 〉.

We are thus left with the evaluation of the commutator

[�(x1) . . . �(xi−1), K]

=
i−1∑
j=1

�(x1) . . . �(x j−1)[�(x j ), K]�(x j+1) . . . �(xi−1)

with

[�(x j ), K] = [�(x j ), �
†(y)�(y)�(xi+1) . . . �(xN )]

= δ3(x j − y)�(y)�(xi+1) . . . �(xN ) .

Therefore

[�(x1) . . . �(xi−1), K] =
i−1∑
j=1

�(x1) . . . �(x j−1)

×δ3(x j − y)�(y)

�(x j+1) . . . �(xN )

so that

N∑
i=1

1√
N !

∫
d3 y〈0 | [�(x1) . . . �(xi−1), K] | EN , N 〉

=
N∑

i=1

i−1∑
j=1

V (|xi − x j |) 1√
N !
〈0 | �(x1) . . . �(xN ) | EN , N 〉

=
∑
j<i

V (|xi − x j |)�(x1 . . . xN ) ,

which establishes the theorem. �

We have succeeded in setting up a formulation for N interacting identical bosons
in which the different states of the system are characterized by occupation numbers
that range over all integer values. In the process of doing so we have generalized the
quantum mechanical framework by introducing operator-valued fields, or quantum
fields, which individually create and annihilate particles in the system. Nevertheless,
the Hamilton operator we have constructed is such that the total particle number is
conserved, although a particle with a given quantum number may be replaced by a
particle with a different quantum number due to interactions. The identical nature
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of the particles is manifest in the symmetry of the N -body wave function

ψ(x1 . . . xN ) = 1√
N !
〈0 | �(x1) . . . �(xN ) | EN , N 〉.

9.1.3 Non-interacting fermions

In this section we describe the modifications that arise when dealing with Fermi–
Dirac particles instead of bosons. As we have seen already the crucial difference
with Fermi–Dirac particles is that the occupation number can only take the values
zero or one. The question is how this can be built into the present framework?
It turns out that all we have to do is to change the commutation relations of the
creation and annihilation operators. That is, we replace ai and a†

i by operators, bi

and b†
i with commutation relations{

bi , b†
j

}
≡ bi b

†
j + b†

j bi = δi, j{
bi , b j

} ≡ bi b j + b j bi = 0{
b†

i , b†
j

}
≡ b†

i b
†
j + b†

j b
†
i = 0 .

As before we define the number operator for the state i as

ni ≡ b†
i bi .

Making use of the associativity of the operator product as well as the commutation
relations above it is not hard to see that Ni is a projection operator, i.e.

n2
i = (b†

i bi )(b
†
i bi ) = b†

i (bi b
†
i )bi = b†

i (1 − b†
i bi )bi = b†

i bi = ni .

The eigenvalues of Ni are thus 0, 1. More precisely

ni | . . . ni . . .〉 = ni | . . . ni . . .〉
with ni = 0, 1. The vectors | . . . , ni , . . .〉 form a complete set of basis vectors in
the Hilbert space with Fermi–Dirac statistics.

Repeating the steps for the Bose–Einstein case we then introduce operators �(x)
and �†(x) and write

H =
∫

d3 y�†(y)

(
− �

2

2m
∇2

y

)
�(y) ,

where we now have {
�(y1), �†(y2)

} = δ3(y1 − y2)

{�(y1), �(y2)} = 0{
�†(y1), �†(y2)

} = 0
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i.e. the previous commutation relations are now replaced by anticommutation
relations. It remains to show that if

H | EN , N 〉 = EN | EN , N 〉
with H | 0〉 = � | 0〉 = 0, then the corresponding wave function satisfies the
Schrödinger equation, i.e.

EN�(x1, . . . , xN ) = EN
1√
N !
〈0 | �(x1) . . . �(xN ) | EN , N 〉

=
N∑

i=1

(
− �

2

2m
∇2

i

)
�(x1, . . . , xN ) .

The proof proceeds as follows. We observe, as before, that

EN�(x1, . . . , xN )

= 1√
N !
〈0 | �(x1) . . . �(xN )H | EN , N 〉

= 1√
N !
〈0 | [�(x1) . . . �(xN ), H] | EN , N 〉

= 1√
N !
〈0 | �(x1) . . . �(xi−1)

×[�(xi ), H]�(xi+1) . . . �(xN ) | EN , N 〉 .
We now consider

[�(xi ), H] =
∫

d3 y[�(x), �†(y)

(
− �

2

2m
∇2

y

)
�(y)].

It is at this stage that we have to take into account the fact that the anticommutators
rather than the commutators of the fields are known. To do so we use the following
identity, valid for any three operators A, B, C ,

[A, BC] = {A, B}C − B {A, C} .
Using this identity we can write[

�(xi ), �
†(y)

(
− �

2

2m
∇2

y

)
�(y)

]
= {�(x), �†(y)}

(
− �

2

2m
∇2

y

)
�(y)

−�†(y)

{
�(xi ),

(
− �

2

2m
∇2

y

)
�(y)

}

= δ3(xi − y)

(
− �

2

2m
∇2

y

)
�(y) .
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Therefore

[�(xi ), H] =
(
− �

2

2m
∇2

xi

)
�(xi )

so that

EN�(x1, . . . , xN ) =
N∑

i=1

(
− �

2

2m
∇2

i

)
�(x1, . . . , xN ) ,

and we again have Schrödinger’s equation.
The inclusion of interactions is then a straightforward (although instructive)

exercise which we will leave to the reader.

9.2 Perturbation theory

So far we have considered the time-independent Schrödinger equation H | �E〉 =
E | �E〉. However, we will also need to understand the time evolution of our system.
Therefore we now turn to the problem of determining the changes in a state vector
due to interactions. We recall that a state vector evolves with time according to
Schrödinger’s equations, namely

i�
∂

∂t
| �(t)〉S = H | �(t)〉S .

In this description the operator H is time independent. This is the Schrödinger
picture of quantum mechanics. We can integrate this equation to write

| �(t)〉S = exp

(
−i

Ht

�

)
| �(0)〉 .

The subscript S in both these equations draws attention to the fact that we are in the
Schrödinger picture. Of course, unless the molecules are non-interacting we can not
expect to be able to solve the evolution equation analytically. We will therefore have
to come up with some suitable perturbative method. For this we introduce | �(t)〉I ,
a state vector in the interaction picture. We define this vector to change with time
only if interactions are present. Writing H = H0 + H1, where H1 is the interaction
part of the Hamiltonian, we define

| �(t)〉I = exp

(
i
H0t

�

)
exp

(
−i

Ht

�

)
| �(0)〉.

Observe that if H = H0, then | �(t)〉I = | �(0)〉, i.e. | �〉I is time independent in
the absence of interactions. On the other hand, differentiating the above equation
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with respect to t gives

ih
∂

∂t
| �(t)〉I = exp

(
i
H0t

�

)
H1 exp

(
−i

H0t

�

)
| �(t)〉I

≡ HI (t) | �(t)〉I .

The operator HI just defined is the interaction Hamiltonian. These equations give
the time evolution of state vectors and operators in the interaction picture.

Alternatively we can write the time evolution of | �〉I in the form

| �(t2)〉I = U(t2, t1) | �(t1)〉I

where the evolution operator U(t2, t1) is the interaction picture analogue on the
operator exp

(−iH(t2 − t1)/�
)

in the Schrödinger picture. It is easy to see that

i�
∂

∂t2
| �(t2)〉I = HI (t2) | �(t2)〉I

= HI (t2)U(t2, t1) | �(t1)〉I .

This equation is valid for a complete set of vectors, | �(t2)〉I . Hence the operator
U(t2, t1) must satisfy the equation

i�
∂

∂t
U(t2, t1) = HI (t2)U(t2, t1)

with the boundary condition U(t1, t1) = I . This evolution equation for U (t2, t1) is
equivalent to the integral equation

U(t2, t1) = I − i

�

∫ t2

t1

dτ HI (τ )U(τ, t1) .

Once the operator U(t2, t1) is determined by solving this integral equation then the
time evolution of the interaction picture state | �〉I is determined. We now claim
that

U(t2, t1) =
∞∑

n=0

(
− i

�

)n 1

n!

∫ t2

t1

dτ1 . . .

∫ t2

t1

dτn T (HI (τ1) . . . HI (τn)) ,

where T is the time-ordering operator. For two bosonic operators A1(t1), A1(t2)
time ordering is defined as follows

T (A1(t1)A2(t2)) = θ (t1 − t2)A1(t1)A2(t2) + θ(t2 − t1)A2(t2)A1(t1)

where

θ (t) =
{

0, t < 0
1, t > 0

}
.
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For a monomial of n bosonic operators A1(τ1) . . . An(τn), the time-ordered prod-
uct T (A1(τ1) . . . An(τn)) consists of n! terms. Each term corresponds to an ordering
of the operators reflecting the ordering of the distinct time variables τ1 . . . τn . For
example

T (A1(τ1) . . . An(τn)) = A1(τ1) . . . An(τn) if τ1 > τ2 > · · · > τn.

For two fermionic operators the corresponding time ordered product is given by
B1(t1), B1(t2):

T (B1(t1)B2(t2)) = θ (t1 − t2)B1(t1)B2(t2) − θ (t2 − t1)B2(t2)B1(t1).

The fermionic expression can be derived from the bosonic one if an additional rule is
introduced, namely, whenever operator orderings are changed a factor (−1)π has to
be introduced, where π represents the number of permutations. In the example, the
second term involved one permutation of the operators relative to the first term. This
leads to the factor (−1). For a product of n fermionic operators, there will similarly
be n! terms. These can be obtained from the bosonic expression supplemented by
the rule just stated.

The proof of the claim which we provide is formal and does not consider ques-
tions of the convergence. Regarding the integral equation for U formally as a
Volterra integral equation, the lowest order approximation to U(t2, t1) is obtained
by substituting I for U(τ, t1), i.e.

U(t2, t1) ≈ I − i

�

∫ t2

t1

dτ HI (τ ).

Repeating this procedure we get

U(t2, t1) ≈ I − i

�

∫ t2

t1

dτ HI (τ )

+
(
− i

�

)2 ∫ t2

t1

dτ1 HI (τ1)
∫ τ1

t1

dτ2 HI (τ2).

Assuming this formal expansion in powers of the operator HI (τ ) converges to
U(t2, t1) we have

U(t2, t1) =
∞∑

n=0

(
− i

�

)n ∫ t2

t1

dτ1

∫ τ1

t1

dτ2 · · ·
∫ τn−1

t1

dτn HI (τ1) · · ·HI (τn).

Consider, as an example, the term∫ t2

t1

dτ1

∫ τ1

t1

dτ2 HI (τ1)HI (τ2)
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and observe that this term equals

1

2!

∫ t2

t1

dτ1

∫ t2

t1

dτ2 T (HI (τ1)HI (τ2)) .

This is easily seen to be true since

1

2!

∫ t2

t1

dτ1

∫ t2

t1

dτ2 T (HI (τ1)HI (τ2))

= 1

2!

∫ t2

t1

dτ1

∫ t2

t1

dτ2[θ (τ1 − τ2)HI (τ1)HI (τ2) + θ(τ2 − τ1)HI (τ2)HI (τ1)]

= 1

2!

∫ t2

t1

dτ2

∫ t1

t1

dτ1 HI (τ1)HI (τ2)

+ 1

2!

∫ t2

t1

dτ2

∫ t2

t1

dτ1HI (τ2)HI (τ1)

=
∫ t2

t1

dτ1

∫ t1

t1

dτ2 HI (τ1)HI (τ2) .

Similarly ∫ t2

t1

dτ1

∫ t1

t1

dτ2 . . .

∫ tn−1

t1

dτn HI (τ1) · · ·HI (τn)

= 1

n!

∫ t2

t1

dτ1 . . .

∫ t2

t1

dτnT (HI (τ1) · · ·HI (τn)) .

This then establishes our claim.

9.3 Wick’s theorem

From our result in the last section it is clear that, in order to determine the evolution
operator U(t2, t1) to any given order in perturbation theory, we must learn how to
evaluate vacuum expectation values of the form

〈0|T (A1(t1) . . . An(tn))|0〉
where A1(t1) . . . An(tn) are operators. Wick’s theorem provides an efficient algo-
rithm to compute such products to any order in perturbation theory. It does so by
establishing a relation between time-ordered products and normal-ordered products
which vanish when evaluated in the vacuum.

Theorem 9.2 If Ai (ti ) = A+
i (ti ) + A−

i (ti ), i = 1, . . . , n are bosonic operators
such that A−

i (ti ) | 0〉 = 〈0 | A+
i (ti ) = 0 and such that [Ai (ti ), A j (t j )] is a complex
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number valued function (or distribution), then

〈0|T (A1(t1) . . . An(tn))|0〉

=



0 n odd∑
σ

n−1∏
i=1,3,···

〈0 | T
(
Aσ (i)

(
tσ (i)

)
Aσ (i+1)

(
tσ (i+1)

)) | 0〉 n even

where the sum is over all permutations of 1, . . . , n which do not lead to identical
expressions. Identical expressions are obtained if the arguments within the same
time-ordered product are interchanged, i.e.

〈0 | T (A1(t1)A2(t2)) | 0〉 = 〈0 | T (A2(t2)A1(t1)) | 0〉 .

In other words, the sum on the right-hand side is over all possible pairings of the
integers (i, j) ∈ {1, . . . , n}.

Proof. For n = 1 there is nothing to prove. Before considering the case n > 2 we
note that the time-ordered product T (Ai (ti )A j (t j )) can alternatively be written as a
commutator. Indeed let us suppose ti > t j then

T (Ai A j ) = Ai A j

= (A+
i + A−

i )(A+
j + A−

j )

= A+
i A+

j + A+
i A−

j + A−
i A+

j + A−
i A−

j

= A+
i A+

j + A+
i A−

j + A+
j A−

i − A+
j A−

i + A−
i A+

j + A−
i A−

j

= : Ai A j : + [A−
i , A+

j ] ,

where, to simplify the notation, Ai stands for Ai (ti ). Here : : stands for the normal-
ordered product, i.e. the A+’s are placed to the left of the A−’s. Now, since
[A+

j , A−
i ] is not an operator but a function we have

〈0|T (Ai A j )|0〉 = 〈0| : Ai A j : |0〉 + [A+
j , A−

i ].

But A−
i |0〉 = 0, so that 〈0| : Ai A j : |0〉 = 0 and therefore [A−

i , A+
j ] =

〈0|T (Ai A j )|0〉 .
Let us now assume the result for n and n + 1 operators and consider the time-

ordered product of n + 2 operators,

T (A1 . . . AnAn+1A(t)).

Now, since for the time-ordered product we have

T (A1 . . . Ai A j · · ·AnAn+1A(t)) = T (A1 . . . A j Ai · · ·AnAn+1A(t)),
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let us therefore assume t1 > t2 > · · · > tn+1, that is, we assume the first n + 1 times
are already ordered so that

T (A1 · · ·Ai A j · · ·AnAn+1A(t)) =




A1 · · ·AnAn+1A(t) ; tn+1 > t

A1 . . . AnA(t)An+1 ; tn > t > tn+1

· · ·
· · ·
A(t)A1 . . . AnAn+1 ; t < t1

To continue we write A(t) = A+(t) + A−(t) and move A+ to the left and A− to
the right respectively. Each time we move A± past any of the Ai ’s we pick up a
commutator so that

T (A1 . . . · · ·An+1A(t)) = A+(t)A1 . . . An+1 + A1 . . . An+1A−(t)

+




n+1∑
i=1

[A−
i , A+(t)]A1 . . . Ai · · ·An+1 ; tn+1 > t

n∑
i=1

[A−
i , A+(t)]A1 . . . Ai · · ·An+1 ; tn > t > tn+1

· · ·
· · ·

[A−
1 , A+(t)]A2 · · · · · · · · ·An+1 ; t1 > t > t2

+




[A−(t), A+
n+1]A1 · · · · · · · · ·An ; tn > t > tn+1

· · ·
· · ·

n+1∑
i=2

[A−(t), A+
i ]A1 . . . Ai · · ·An+1 ; t1 > t > t2

n+1∑
i=1

[A−(t), A+
i ]A1 · · ·Ai · · ·An+1 ; t > t1

Here underlined operators do not appear in the product since they appear in the com-
muators with A+ and A− respectively. Re-introducing the time-ordering operator
the above equation becomes

T
(
A1 . . . · · ·An+1A(t)

) = A+(t)T (A1 . . . An+1) + T (A1 . . . An+1)A−(t)

+
n+1∑
i=1

〈0 | T (A(t), Ai ) | 0〉T (A1 . . . Ai · · ·An+1) .
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To complete the proof we then note that the remaining operator products are time-
ordered products of n + 1 and n operators respectively for which the result holds by

assumption. Note that
n+1∑
i=1
〈0 | T

(
A(t)Ai

) | 0〉 sums over all non-equivalent pairings

of A(t) with the other Ai ’s. This is just what is required to get the correct sum over
all pairings on the right-hand side of the theorem. �

Although the theorem just proved contains the basic result, it is not directly
applicable to perturbation theory in the form presented above. Indeed, the operators
appearing in the perturbative expansion of the evolution operator in the last section
are normal-ordered composite operators HI . These do not have a decomposition into
a sum of creation operators A+ + A− as assumed in the proof. However, there is a
straightforward generalization of Wick’s theorem which takes care of this situation
and which we state as a corollary without proof.

Corollary 9.3 Let : Ai : (ti ) be bosonic normal-ordered local products of
operators. Then

〈0 | T
(
: A1 : (t1) · · · : An : (tn)

) | 0〉
is again given by the product of all possible pairings of the fundamental operators
appearing in the normal-ordered products : Ai : (ti ) with the restriction that no
pairings of two operators within the same normal-ordered monomial : Ai : (ti )
appear. We leave the proof of this corollary as an exercise to the reader.

Wick’s theorem makes it clear that the correlation function 〈0|T (Ai (ti )A j (t j ))|0〉
plays a central role in perturbation theory. In particular, for

Ai (ti ) = �(xi , ti ) , or

Ai (ti ) = �+(xi , ti )

the corresponding correlator 〈0|T (
�(xi , ti )�+(x j , t j )

) |0〉 provides the building
block of perturbation theory. We will thus study this correlator in detail in the next
section.

9.4 Green functions

In this section we discuss the two-point correlation function

G(x, t1, y, t2) = 〈0|T (
�(x, t1)�+(y, t2)

) |0〉 .
We allow �(x, t) to be a bosonic or fermionic field operator. Instead of evaluat-
ing this correlator directly we will first derive a differential equation satisfied by
G(x, t1, y, t2) and then discuss the solutions of this equation in turn. For this we
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need the time evolution of the field operator �(x, t) which is determined by the
Heisenberg equation

i�
∂�

∂t
= −[H0, �] ,

where H0 =
∫

d3 y �+(y, t)

(
− �

2

2m
∇2

y

)
�(y, t) is the Hamilton operator for non-

interacting particles. This means that

i�
∂�

∂t
(x, t) =−

∫
d3 y

[
�+(y, t)

(
− �

2

2m
∇2

y

)
�(y, t), �(x, t)

]

=
∫

d3 yδ(3)(y − x)

(
− �

2

2m
∇2

y

)
�(y, t)

=− �
2

2m
∇2

x �(x, t)

and similarly for �†. On the other hand, when taking the time derivative of
G(x, t1, y, t2) we have to take into account the time-ordering operator, that is

i�
∂

∂t1
〈|T (�(x, t1)�+(y, t2))|0〉

= i�
∂

∂t1
{θ(t1 − t2)〈0|�(x, t1)�+(y, t2)|0〉

± θ(t2 − t1)〈0|�+(y, t2)�(x, t1)|0〉}
where the± corresponds to the definition of time ordering for bosonic and fermionic

operators respectively. Using
∂

∂t1
θ (t1 − t2) = δ(t1 − t2) we get

i�
∂

∂t1
G(x, t1, y, t2) = i�[�(x, t1), �+(y, t2)]±δ(t1 − t2) −

(
�

2

2m
∇2

x

)
G(x, t1, y, t2)

where [ , ]± stands for the commutator in the case of bosons and the anticommutator
for fermions. Recalling the commutation relations for � and �† we then get(

i�
∂

∂t1
+ �

2

2m
∇2

x

)
G(x, t1, y, t2) = i� δ3(x − y)δ(t1 − t2) .

This equation, which is valid for both bosonic and fermionic systems, simply states
that G(x, t1, y, t2) is a Green function for the Schrödinger equation. To continue, it
is convenient to change to the momentum representation, which is obtained by the
Fourier transform of G(x, t1 y, t2). Since the Schrödinger equation is independent
of the time t and the position x the Green function G(x, t1, y, t2) only depends on
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the difference t1 − t2 and x − y. We can thus write

G(x, t1, y, t2) =
∫

d3k

(2π )3

∫ ∞

−∞

dw

2π
eik·(x−y)e−iw(t1−t2)G̃(k, w) .

Upon substitution into the differential equation above we end up with an algebraic
equation for G̃(k, w) (

w − �|k|2
2m

)
G̃(k, w) = i .

We then obtain the coordinate representation by substitution of G̃(k, ω), that is

G(x, t) =
∫

d3k

(2π )3

∫ ∞

−∞

dw

2π
eik·xe−iwt

(
i

w − �|k|2
2m

)
,

where we set x = x − y, t = t1 − t2. The evaluation of this integral, however,
requires some care, since the integrand has a pole at w = �|k|/2m. The prescription
of how to deal with this pole depends on the boundary conditions imposed on
G̃(k, ω). For the time-ordered Green function the appropriate prescription is

w − �|k|2
2m

→ w − �|k|2
2m

+ iε, ε > 0,

i.e. we move the pole to the lower half plane. That this is the correct description
follows from the fact that, for t < 0, we have to close the contour above the real
line, leading the integral to vanish since there is no singularity present. This is as it
should be since for t < 0 the operators are ordered as �†� and since � | 0〉 = 0
the correlation function vanishes in this case. For t > 0 we close the contour below
the real line so that the contour now encircles the pole and the integral is non-zero.
Closing the contour in the upper half plane is not possible since e−itw → 0 only if
wI < 0. Closing the contour as shown we get

∫
dw

2π
e−iwt

(
i

w − �|k|2
2m + iε

)
= e−it �|k|2

2m .

Thus

G(x, t) = −
∫

d3k

(2π )3
eik·xe−i �|k|2

2m t .

Absorbing the i in t this is the Fourier transform of a Gaussian and is thus given by

G(x, t) = i

(2π )
3
2

( m

it�

) 3
2

e−
m|x|2

it� .
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Figure 9.1 The dashed contour is chosen for t < 0 and the full line for t > 0.

Both the momentum and coordinate representation of this Green function play a
key role in the systematic construction of perturbation theory as we will see in the
next section.

9.5 Feynman rules

In this section we formulate a set of graphical rules which represent the perturbation
series. These are the Feynman rules, to which we now turn.

To begin with, we consider the propagation of a single particle in the pres-
ence of an interaction term in the Hamiltonian. This is described by the matrix
element

〈0|�(x, T )U(T,−T )�+(y,−T )|0〉

with

U(T,−T ) ≈ I − i

�

∫ T

−T
dτ : HI (τ ) : +O

(
: H2

I :
)

where the : : means that we take HI to be normal ordered. Here we focus on the
leading correction to the free propagation, that is we neglect terms of O(H2

I ). The
first order part of U(T,−T ) is then

U(1)(T,−T ) = − i

�

∫ T

−T
dτ : HI : (τ ) ,
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where

: HI : (τ ) = 1

2

∫
d3 y1

∫
d3 y2 : �+(y1, τ )�+(y2, τ )V (|y1 − y2|)�(y1, τ )�(y2, τ ) :

The first-order contribution to the matrix element is thus given by

− i

�

∫ T

−T
dτ 〈0|T [�(x, T ) : HI (τ ) : �+(y,−T )]|0〉 .

Recalling the generalization of Wick’s theorem including normal-ordered products
we conclude that only pairings of �(x, T ) with �†(y, T ) or : HI : but no pairings of
operators within : HI : itself appear in the evaluation of this matrix element. Since
there are only two �’s outside : HI : we have, schematically

T [�(x, T ) : HI (τ ) : �+(y,−T )] = T [�(x, T )�+(y,−T )] : HI (τ ) : +
1

2

∫
V (|y1− y2|)T [�(x, T )�+(y1, τ )]T [�(y1, τ )�+(y,−T )] :�+(y2,τ )�(y2,τ ) :

plus similar terms with y1 and y2 interchanged. Here the integral is over y1 and y2.
We see that there will be at least two uncontracted �’s left in the normal-ordered
product. On the other hand, 〈0 |: O :| 0〉 vanishes for any operator O. Thus, this
matrix element vanishes altogether.

Let us now give a graphical representation of this calculation.

(1) A propagator 〈0|T (�, (x, t1)�+(y, t2))|0〉 = G(x − y, t1 − t2) is represented as a line
from y to x :

t1 t2x y

(2) An interaction term of the form

− i

2�

∫ T

−T
dt
∫

d3u
∫

d3v V (|u − v|)

has the graphical representation as a vertex

u t tv

The sum over pairings in Wick’s theorem is then represented graphically as sum
over all graphs obtained by combining propagators and vertices. For instance, in
the case at hand we could draw graphs like in Figure 9.2. Note, however, that all
of these graphs correspond to pairings of operators within : HI : which, according



Feynman rules 217

yy1 2
+

y1 y2

y1 y2 y1 y2+

Figure 9.2 Feynman graphs for the 1-boson propagator at first order in : HI :

to the generalized Wick’s theorem, do not appear. These are therefore precisely the
graphs which have to be left out in the presence of normal-ordered operators. We
will see, however, that in the finite temperature case, discussed in Section 9.8, such
graphs will contribute to the result.

Let us now consider a slightly more involved example, that is the scattering of
two bose particles. In this case the matrix element to first order in : HI : is given by

〈0|�(x1, T )�(x2, T )U(T,−T )�+(y1,−T )�+(y2,−T )|0〉

= − i

2�

T∫
−T

dt
∫

d3ud3v V (|u − v|) 〈0|T [�(x1, T )�(x2, T )

: �+(u, t)�+(v, t)�(u, t)�(v, t) : �+(y1,−T )�+(y2,−T )]|0〉 .
Wick’s theorem then instructs us to replace the above expression by all possible
pairings of �’s and �†’s outside the normal-ordered product with a �† and �†

inside the normal-ordered product. Since

〈0|T (�(x, t1)�(y, t2))|0〉 = 〈0|T (�+(x, t1)�+(y, t2))|0〉 = 0

this gives

− i

2�

T∫
−T

dt
∫

d3ud3v V (|u − v|)

× {
G(x1, T, u, t)G(x2, T, v, t)G(u, t, y1,−T )G(v, t, y2,−T )

+ (x1 ↔ x2) + (y1 ↔ y2) + (x1 ↔ x2, y1 ↔ y2)
}
.
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Figure 9.3 Feynman graphs for the 2-boson scattering at first order in : HI :

This has the graphical representation Figure 9.3. Let us now state the Feynman
rules for this graphical representation:

(1) Sum over all topologically non-equivalent graphs. In order to account for all equivalent
pairings appearing in Wick’s theorem we have to multiply each graph with a symmetry
factor which counts the number of permutations of internal lines that do not change the
topology of the graph. Internal lines are the lines that do not connect with any of the
coordinates xi , yi .

(2) In the case of fermions, each fermion loop comes with a factor (−1).

M

M

M

This is because in order to pair all fermion operators in a loop in the order �†� the
operator �α1 (x1) has to be moved through an odd number of fermionic operators thus
picking up a factor (−1). i.e.

〈0|�α1 (x1)Mα1β1�
†
β1

(x1)�α2 (x2) · · · Mαnβn �
†
βn

(xn)|0〉
= (−1)〈0|Tr(M�(x1)�†(x2)M . . . M�(xn)�†(x1))〉 .

(3) A global minus sign arises for each permutation of external fermions.
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9.5.1 Feynman rules in momentum space

It is often preferable to perform the computation of transition amplitudes in momen-
tum space. This is the case, for instance in a scattering experiment, where the
asymptotic momenta of the particles, rather than their positions, are fixed. Let us
now derive the momentum space Feynman rules.

To begin with we introduce a convenient shorthand notation for space and time
coordinates borrowed from the theory of special relativity. That is we write

x ≡ (x, t) , d4x ≡ d3x dt

k ≡ (k, ω) , d4k ≡ d3k dω ,

where ω is the frequency corresponding to the energy E = �ω. Also k · x ≡ k· x−
ωt . Finally we replace the instantaneous interaction potential V (|u − u′|) by

U (u, u′) ≡ V (|u − u′|)δ(t − t ′).

Let us now consider the interaction vertex which, in the new notation reads
−i/2�

∫
d4ud4v U (u − v). We focus on the left corner of the diagram for the vertex

with the two legs paired with external particles

2x

x1

u

Taking into account the integral over u only (u′ goes with the r.h.s.) we have∫
d4u G(x2, u)U (u, v)G(u, x1)

=
∫

d4u
d4k

(2π )4
eik·(x2−u)G̃(k)

d4q

(2π )4
eiq·(u−v)U (q)

d4 p

(2π )4
eip·(u−x1)G̃(p)

= 1

(2π )8

∫
d4 k d4q d4 p δ4(p − q − k) G̃(k)U (q)G̃(p)ei(k·x2−p·x1−q·v) .

To complete the transition into momentum space we Fourier transform with respect
to the coordinates of the external particles x1, x2, by the operation∫

d4x1eip1·x1

∫
d4x2eip2·x2 .
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This fixes k and p in terms of p1 and p2. The remaining exponential e−iq·v will be
absorbed by transforming the right-hand side of the interaction vertex. The left-hand
side of the vertex then has the momentum space representation∫

d4q

(2π )4
G̃(p2)U (q)G̃(p1)(2π )4δ4(p1 − p2 + q) .

The interpretation of the delta function is that it ensures the energy-momentum
conservation at each vertex. We are now ready to formulate the Feynman rules in
momentum space.

(1) External lines: each external line contributes a factor(
ω − �|k|2

2m

)
G̃(p) = i

and is represented graphically as in Figure 9.4a.
(2) Internal lines are represented graphically as in Figure 9.4b and give a contribution∫

d4q

(2π )4
G̃(q) .

(3) Interaction potentials are represented by a dashed line as in Figure 9.4c and contribute

− i

2�

∫
d4k

(2π)4
U (k) .

(4) Vertices are represented graphically as in Figure 9.4d and give a contribution

(2π )4δ4(p1 − p2 + q) .

(5) A minus sign for each fermion loop and a global minus sign for each permutation of
external fermions.

(6) Sum over all connected topologically non-equivalent diagrams.

9.6 Scattering cross-section for two helium atoms

As an application of the momentum space perturbation theory we compute the
scattering cross-section for two helium atoms to the lowest order in the interaction.
Let us consider two atoms whose initial state can be described by the initial energy
and momentum of each atom which we take to be (E1, p1) and (E2, p2) respectively.
We want to determine the probability that the final state of the two atoms after they
scatter is (E ′

1, q1) and (E ′
2, q2). where these represent the energy and momentum

values of the atoms respectively.
We will write | �(−T )〉 as the initial state, i.e.

| �(−T )〉 =| E1, p1; E2, p2〉 .
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Figure 9.4 Feynman rules in momentum space.

In the interaction picture this state evolves from time −T to T as

| �(T )〉 = U(T,−T ) | �(−T )〉 ,

where U(T,−T ) is the evolution operator in the interaction picture. The probability
for | �(T )〉 with the state | E ′

1, q1; E ′
2, q2〉 is given by | 〈E ′

1, q1; E ′
2, q2 | �(T )〉 |2.

We will take the limit T →∞ and assume that for large values of T the states
of the particles can be described as eigenstates of the non-interacting part of the
Hamiltonian which describes the dynamics of the system, i.e. if

H = H0 + HI

then lim | �(T ) >, T →±∞ are eigenstates of H0.
This assumption corresponds to the physical picture of the scattering process

which we have used. Namely that the initial and final states of the system can be
specified by the energy and momentum values of each of the atoms separately. To
first order in perturbation theory the scattering amplitude is given by

− i

�

∫ T

−T
dt〈E ′

1, q1 E ′
2, q2 |: HI (t) :| E1, p1, E2, p2〉 .

There are in total four Feynman diagrams that contribute to this amplitude (see
Figure 9.3) but only two of them give different contributions. In momentum space
these are the diagrams in Figure 9.5. Using rules (1) to (4) from Section 9.5.1, these
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Figure 9.5 Momentum space Feynman graphs for the helium–helium scattering
at first order in : H I :

two graphs add up to

A = 2

(−i

2�

)
(Ṽ (q1 − p1) + Ṽ (q2 − p1))(2π )3δ3(p1 + p2 − q1 − q2)

· (2π )δ(E1 + E2 − E ′
1 − E ′

2) .

From this result it is clear that the field theory description of this process automat-
ically takes the identical nature of the atoms into account. If we had considered
the problem of scattering involving two identical Fermi–Dirac particles then the
second diagram would come with a minus sign since it involves the permutation
of two external lines. As a result the scattering amplitude would get modified
to

A = 2

(−i

2�

)
(Ṽ (q1 − p1) − Ṽ (q2 − p1))(2π )3δ3(p1 + p2 − q1 − q2)

· (2π )δ(E1 + E2 − E ′
1 − E ′

2) .

To compare this result with experiment we need to compute the scattering cross-
section which is is a measure of the probability of detecting a scattering particle
within a given range of momentum values. The probability for this process to occur
is then obtained by taking the absolute value square of the probability amplitude,
| A |2. It is useful to define the transition rate R f←i as

R f←i = Probability of a transition from state i to state f

( Time )( Volume )
.

If we interpret the square of the delta function as

(2π )2 |δ(Ei−E f ) |2 = (2π )δ(Ei−E f )
∫ T/2

−T/2

dt

�
e−it(Ei−E f )/�

= (2π )δ(Ei−E f )(
T

�
) , (T large)
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and similarly

(2π )6 |δ3(p1+p2−q1−q2) |2 = (2π )3δ3(p1+p2−q1−q2)
∫
V

d3x e−ix·(p1+p2−q1−q2)

= (2π )3δ3(p1+p2−q1−q2)V, (V large)

then no squares of the delta functions appear in the transition rate. Let us temporarily
go to the coordinate frame where one of the particles is at rest, say p1 = 0. This
particle then plays the role of the target onto which the second particle is infalling.
The scattering cross-section σ f i , is then defined as

σ f i = R f←i

[ flux of incoming particles ]
· [ phase space volume of final states ] .

In a general coordinate system, the flux of incoming particles is simply the relative
velocity |v12|. The differential cross-section thus takes the form

dσ f i = Ri→ f

| v12 |
d3q1

(2π�)3

d3q2

(2π�)3
,

where d3qi/(2π�)3 is the phase space volume for outgoing particles with momenta
between q and q + dq. Substituting the transition probability and using our defini-
tion of the square of the delta function we then find

dσ f i = 2π

�
δ(E ′

1 + E ′
2 − E1 + E2) | Ṽ (q1 − p1) + Ṽ (q2 − p1) |2

· m

| p12 |
d3q1

(2π�)3

d3q2

(2π�)3
δ3(p1 + p2 − q1 − q2)(2π�)3 .

If we detect a particle with momentum q1 in the center of mass coordinate system
(p1 + p2 = 0) we have

dσ f i = 2π

�
δ(E ′

tot − Etot ) | Ṽ (q − p) + Ṽ (q + p) |2 m

| p |
d3q1d3q2

(2π�)3
δ3(q1 + q2)

where we set p1 = p and q1 = q. Integrating this expression with respect to d3q2

then removes the delta function for the momenta, i.e.

dσ f i = 2π

�
δ(E ′ − E) | Ṽ (q − p) + Ṽ (q + p) |2 1

| p |
m

(2π�)3
q2dqd�q .



224 Non-relativistic quantum field theory

Finally, the differential cross-section for finding an outgoing particle in a given
direction is then obtained by integrating over q , that is

dσ f i

d�q
= 2π

�

m

| p |
∫

δ

(
p2

2m
− q2

2m

)
| Ṽ (q − p) + Ṽ (q + p) |2 q2dq

(2π�)3
.

This is the result we were aiming for.

9.7 Fermions at finite density

In this section we extend the quantum field theory description to include interactions
in a degenerate Fermi gas, that is, we consider fermions at finite density but zero
temperature. As we have seen in Chapter 7 the Pauli exclusion principle implies that
all energy levels up to the Fermi energy εF are occupied even at zero temperature.
We expect this fact to have consequences for the way interactions are described
within quantum field theory since now the ground state of the system is no longer
the vacuum state | 0〉 but some state which we denote by | �〉 and in which all
energy levels up to εF are occupied.

Indeed, an immediate consequence is that | �〉 is no longer annihilated
by all destruction operators bk. In particular, it is therefore not annihilated
by �, i.e. � | �〉 �= 0. How will this affect the time-ordered Green function
G(x1, t1, x2, t2)? At finite density a convenient definition of G(x1, t1, x2, t2) is given
by

G(x1, t1, x2, t2) = 1

〈� || �〉
{
θ(t1 − t2)〈� | �†(x1, t1)�(x2, t2) | �〉
− θ (t2 − t1)〈� | �(x2, t2)�†(x1, t1) | �〉} .

The numerator is introduced as a convenient normalization of the correlation
function. At zero density, we have 〈� || �〉 = 〈0 || 0〉 = 1. In order to deter-
mine the momentum representation of G we substitute the momentum represen-
tation of the field operators � and �† into the above expectation value. Now,
since

〈k′, α′ || k, α〉 = δα′α(2π )3δ3(k′ − k)

where α = 1, 2 is the spinor index, only bα(k)b†
α(k), or b†

α(k)bα(k), but
not b†

α(k′)bα(k) with k �= k′ have non-vanishing expectation values. More
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precisely,

〈� | bα(k)b†
α′(k) | �〉

〈� || �〉 =
{

δα′α ; k > kF

0 ; k < kF

〈� | b†
α(k)bα′(k) | �〉
〈� || �〉 =

{
0 ; k > kF

δα′α ; k < kF

If we then substitute these expressions into the momentum space formula of G we
end up with

G̃αβ(ω, k) = iδαβ

[
θ (k − kF )

ω − �|k|2
2m + iε

+ θ (kF − k)

ω − �|k|2
2m − iε

]
.

The ε-prescription for the poles is again dictated by the choice of the contour. The
difference with the zero density situation is that now the correlation function is
non-vanishing even for t < 0 due to the contributions of the Fermi sea, i.e. the
states with energy E < εF and that are occupied at zero temperature.

Particles and holes There is an alternative interpretation of the Fermi sea which
consists of introducing a new type of particle which we call a hole. The idea is this:

� For k > kF we say that b†
α(k) creates a fermion with momentum k out of | �〉 while

bα(k) | �〉 = 0.
� For k < kF we say that bα(k) annihilates a fermion with momentum k out of | �〉 or,

equivalently, creates a hole with momentum k.

Therefore we can define creation and annihilation operators for particles and holes
respectively as follows:

� Particles: k > kF

c†α(k) ≡ b†
α(k)

cα(k) ≡ bα(k)

� Holes: k < kF

d†
α(k) ≡ bα(k)

dα(k) ≡ b†
α(k)

with cα(k) | �〉 = dα(k) | �〉 = 0 so that formally the structure is the same as in
the zero density case, in that | �〉 is annihilated by all annihilation operators. This
is the advantage of introducing holes as “particles”.

eF = m (0)

n(e)

e

T = 0

Hole

0

1



226 Non-relativistic quantum field theory

v u

y

v

y

T T T

T

y −T y −T

−T−T −T

y −T

y

Tx xTx

x x x

uu vv u v

vuu

Figure 9.6 Feynman diagrams for the first order correction to the finite density
propagator.

We can similarly expand the field operators

�α(x) =
∑
|k|≤kF

d†
α(k) eik·x +

∑
|k|>kF

cα(k) eik·x

≡ �+(x) +�−(x)

�†
α(x) = �

†
−(x) +�

†
+(x)

with �−(x) | �〉 = �
†
−(x) | �〉 = 0.

It is not hard to see that Wick’s theorem applies without modification to parti-
cles as well as holes since we have not assumed any specific interpretation of the
operators A and A† in the theorem. Note however that if : HI : is normal-ordered
with respect to | 0〉 it will not be normal-ordered with respect to | �〉. Conse-
quently, unlike in the zero-density case, pairings, or contractions within normal-
ordered products, will now appear in the expansion of time-ordered products. As
an example we consider the time-ordered fermion two-point function at first order
in HI .

− i

�

∫ T

−T
dt 〈�|T [�(x, T ) : HI (t) : �+(y,−T )]|�〉.

This is the same example as that at the beginning of the last section. There we
concluded that the first-order correction vanishes as a consequence of the presence
of non-contracted ψ’s in normal-ordered form. From what we have just said, at
finite density such terms do not vanish. The graphical representation is given in
Figure 9.6. All of these graphs give a non-vanishing contribution for kF > 0. The
physical interpretation of these corrections is that they represent the interactions of
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the particle with the Fermi sea. Note, however that not all of graphs in Figure 9.6
contribute to the normalized Green function Gαβ(x, T, y,−T ). Indeed the vacuum
graphs such as

u v

equally appear in the numerator 〈� || �〉. They get thus divided out. Concretely
we can write

〈�|T [�(x, T ) : HI (t) :�+(y,−T )]|�〉
〈� || �〉 = 〈�|T [�(x, T ) : HI (t) :�+(y,−T )]|�〉c

where c indicated that only connected graphs are taken into account. Thus only the
connected graphs appear in the expansion of Gαβ(x2, t2, x1, t1).

9.8 Finite temperature perturbation theory

In this section we develop a perturbative formalism for the computation of the grand
canonical partition sum Z�. This proceeds in close analogy with the perturbative
evaluation of the evolution operator U(T,−T ). Indeed, we recall from the beginning
of this chapter that the grand canonical partition sum Z� can be written as a trace
of an operator

Z� = Tr e−β(H−µN) ≡ Tr(ρ(β))

where ρ(β) = e−β(H−µN) is called the density operator and H = H0 + H1 is the
Hamilton operator with interaction H1. We will make use of the formal similarity
between the density operator and the evolution operator U(T, 0) introduced in
Section 9.2. Indeed, if we define the evolution operator in the Schrödinger picture
as

US(T, 0) ≡ exp

(
− iT

�
H
)

,

so that | �(T )〉S = US(T, 0) | �(0)〉, then we see that US(T, 0) and ρ are related
to each other by the substitution T →−iβ�, or

ρ(β) = US(−iβ�, 0).

We can change from the Schrödinger picture to the interaction picture by writing
US(T, 0) = U0(T, 0)U(T, 0), so that U(T, 0) satisfies the differential equation

i�∂tU(t, 0) = HI U(t, 0) .
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Repeating these steps for ρ we get

ρ(β) = ρ0(β)S(β) ,

with ρ0 = e−βK0 , K0 = H0 − µN and

∂τ S(β) = −HI (τ )S(τ ) ,

where 0 ≤ τ ≤ β and HI (τ ) = eτK0H1e−τK0 . We then solve this equation by the
formal series expansion

S(β) =
∑
n≥0

(−1)n

n!

β∫
0

dτ1 . . .

β∫
0

dτnT [HI (τ1) · · ·HI (τn)].

Note that T is now the ordering with respect to τ (or imaginary time). Finally, upon
substitution of this last expression into the grand canonical partition sum

Z� = Tr
(
e−βK0S(β)

)
we obtain a perturbative expansion of the partition sum in analogy with that of the
evolution operator U. Before we can apply this formalism to the computation of
Z� we need to analyze the finite temperature versions of the time-ordered Green
functions and Wick’s theorem.

Finite temperature Green functions and Wick’s theorem In analogy with
the finite density Green function we define the finite temperature version of
G(x1, t1, x2, t2) as

Gβ(x1, t1, x2, t2) = Tr(ρ0T [�+(x1, t2)�(x2, t1)])

Tr(ρ0)

or, in momentum space

G̃k1,k2 (τ1, τ2, β) = Tr[ρ0(β)T [a+k1
(τ1)ak2 (τ2)]]

Tr ρ0(β)
.

In analogy with the finite density case we have that the only non-vanishing matrix
elements are between states of the same quantum numbers, i.e.

Tr[ρo(β)a+k ak′] = Tr[ρo(β)aka+k′] = 0

unless k = k′. On the other hand a+k ak = n(k) is the number operator at momentum
k. Thus

G̃k1,k2 (τ1, τ2; β) = (2π )3δ(k1 − k2)G̃k(τ ; β)
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where k = k1 and

G̃k(τ ; β) = e+τ (ε(k)−µn(k))[θ (τ )nβ(k) + θ (−τ )(1 + nβ(k))]

nβ(k) =
(

1

eβ(ε(k)−µn(k) − 1

)
, −β ≤ τ = τ1 − τ2 ≤ β.

Finally we need to reconsider Wick’s theorem at finite temperature. It turns out
that there is no finite temperature version of Wick’s theorem for (imaginary) time-
ordered products. However, there is a weaker result which is sufficient for our
purpose.

Theorem 9.4 If Ai (τi ) ∈ {aki (τi ), a+ki
(τi ), bki (τi ), b+ki

(τi )}, then

1

Z0
Tr(ρ0T (A1(τ1) · · ·An(τn))) = sum over all completely contracted terms,

where each contraction is replaced by a temperature-dependent Green function.

Proof. The proof of this theorem proceeds along the same lines as that given for the
zero temperature version in Section 9.3. we will therefore leave it to the interested
reader. �

Let us now illustrate our formalism by computation of the first-order correction
to the grand canonical potential in the presence of a two-body interaction potential
V (|xi − x j |). We write

Z� = Z0 + Z1

where Z0 = Tr(ρ0) and

Z1 = −
β∫

0

dτ Tr(ρ0 HI (τ )).

For a two-body interaction potential V (|xi − x j |) we have already determined the
interaction Hamiltonian in Section 9.2. In the momentum space representation this
becomes for bosons

HI (τ ) = 1

2

∫
d3k1

(2π )3

d3k2

(2π )3

d3q

(2π )3

×Ṽ (|q|)a+(k1 + q, τ )a+(k2 − q, τ )a(k1, τ )a(k2, τ ) .

The two Feynman diagrams contributing to this trace are given in Figure 9.7.
Applying the Feynman rules we then end up with
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Figure 9.7 Feynman diagrams for the first-order correction to the grand canonical
potential.

Z1 = −Z0β

∫
d3k1

(2π )3

d3k2

(2π )3

d3q

(2π )3
Ṽ (|q|)

× {
(2π )3δ3(k1 + q − k2)(2π )3δ3(k2 − q − k1)n(k2)n(k1)

+ (2π )3δ3(q)(2π )3δ3(−q)n(k1)n(k2)
}
.

Using the integral representation to regularize the square of the delta functions we
end up with

Z1 = −Z0(βV )
∫

d3k1

(2π )3

d3k2

(2π )3
{Ṽ (|k2 − k1|) + Ṽ (0)}n(k2)n(k1) .

For Fermi–Dirac particles the only difference is that the sign in front of Ṽ (0)
changes. In particular, for a delta function potential (Ṽ = const.) the first-order
correction vanishes identically. The physical interpretation of this sign is clear:
due to the exclusion principle two spin particles cannot sit on top of each other.
Therefore this configuration does not contribute to the partition sum.

In closing this section we should recall that the perturbation expansion described
here is meaningful only if the interaction potential V (|yi − y j |) is small. If this
condition is not met any truncation of the infinite powers series expansion in HI

will in general not produce a reliable prediction. Furthermore, even when all terms
are summed up the power series expansion may not converge. In this case one
has to invent alternative approximation schemes. For example, if the potential is
short-ranged, then a quantum cluster expansion (see Chapter 4) may be applicable.

9.9 Relativistic effects

We have seen in Chapter 7 that in the statistical mechanical description of massless
particles such as photons one has to replace the non-relativistic dynamics by rela-
tivistic dynamics. Furthermore, massive fermions have to be treated relativistically,
even at low temperature, if the density is sufficiently high, as a result of Pauli’s
exclusion principle. This occurs, for example, for sufficiently massive white dwarf
stars as we have seen in Chapter 8.
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In this section we briefly discuss how this affects the quantum field theoretic
description of the system. Concretely this means that we have to replace the non-
relativistic dispersion relation ε(p) = p2/2m with the relativistic dispersion rela-
tion, ε2(p) = c2(p2 + m2c2), which, in the case of massless particles, becomes
ε(p) = c2p2. Let us consider the case of non-interacting bosons and discuss the
expansion of the field operator �(x, t). The key observation is then that due to
the presence of the square root in the dispersion relation, there is an ambiguity in
the sign of the energy, ε(p) = ±c

√
p2 + m2c2. It turns out that both signs have a

physical interpretation, the positive sign as annihilation of a state with energy ε and
the negative sign as creation of a state with energy−ε. This suggests the expansion
of �(x, t) in the infinite volume limit, as

�α(x, t) = 1

(2π )4

∫
d3k

2ω(k)

{
c†(k) eik·x + c(k) e−ik·x}

≡ �+(x, t) +�−(x, t)

�†(x, t) = �(x, t)

where k · x ≡ k · x − ωt as in Section 9.5.1 and the factor 2ω(k) in the integral
measure is to ensure relativistic covariance. Note the formal analogy with the
expansion of the field operator at finite density in terms of particles and holes.
Indeed if we set | �〉 =| 0〉, with �−(x, t) | 0〉 = 0, the vacuum for a relativistic
quantum field theory can be thought of as a “Fermi sea” in which all negative energy
states are filled. An immediate consequence is then that the finite density version of
Wick’s theorem stated in Section 9.7 applies without modification to the relativistic
case.

Another important modification in a relativistic quantum field theory is that
instantaneous two-body interactions described in terms of a potential V (|yi − y j |)
are not consistent with relativistic covariance, since the notion of simultaneity does
not exist for spacially separated points. Thus, in any relativistic quantum field theory
all interactions have to take place locally at a single point of interaction.

To close this chapter let us make a comment about higher-order effects in quan-
tum field theory. In generic calculations in which interactions are included pertur-
batively one encounters Feynman diagrams involving closed loops (see e.g. Fig-
ure 9.6). Such loops involve integrals over momenta which are typically divergent.
Mathematically there is a well-defined procedure to deal with such divergencies
in which the infinities are absorbed in a redefinition of the fields and coupling
constants parametrizing the interactions. This is known as renormalization. The
physical phenomenon behind renormalization is that interactions “polarize” the
vacuum in a similar fashion as is known, for instance, in the classical theory of
electromagnetism in a dielectric medium where the fields are “shielded” as a result
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of polarization. In analogy the observed couplings and fields in interacting quan-
tum field theory are the renormalized ones whereas the “bare” couplings which
are infinite are not physical. They are merely mathematical constructs to define the
theory. We will come back to to this point in Chapter 13.

Problems

Problem 9.1 Show that if �(x) and �†(x) satisfy anticommutation relations, then
for a Hamiltonian, H, of the form given in Section 9.1.2 and a given state,
| EN , N 〉 with

H | EN , N 〉 = EN | EN , N 〉 ,

the wave function �(x1, . . . , xN ) = 1/
√

N !〈0 | �(x1) . . . �(xN ) | EN , N 〉
satisfies the Schrödinger equation(

N∑
i=1

(
− �

2

2m
∇2

i

)
+
∑
i< j

V (|xi − x j )

)
�(x1, . . . , xN ) = EN�(x1, . . . , xN ) .

Problem 9.2 Show that the evolution operator in the Schrödinger picture

US(t2, t1) ≡ exp

(
− i(t2 − t1)

�
H
)

,

and in the interaction picture, U(t2, t1) defined in the text are related by
US(t2, t1) = U0(t2, t1)U(t2, t1).

Problem 9.3 Show that if : Ai : (ti ) be bosonic normal-ordered local products of
operators, then

〈0 | T
(
: A1 : (t1) · · · : An : (tn)

) | 0〉

is given by the product of all possible expectation values of time-ordered products
of pairs of the fundamental operators appearing in the normal-ordered products
: Ai : (ti ) with the restriction that no pairings of two operators within the same
normal-ordered monomial : Ai : (ti ) appear. This then proves Corollary 9.3.

Problem 9.4 Express the time-ordered three-point function T (A1(t1)A2(t2)A3(t3))
in terms of θ functions.

Problem 9.5 Draw all Feynman diagrams for the second-order contribution to
the helium scattering problem treated in Section 9.6. At this order the evolution
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operator is given by

U (2)(T,−T ) =
(

i

�

)2 1

2!

∫ T

−T
dτ1

∫ T

−T
dτ2T (HI (τ1)HI (τ2)) .

Problem 9.6 As an example of an interacting fermionic system, consider the
two-dimensional lattice Hamiltonian (Hubbard model)

H = −
∑

s,〈i, j〉
ti j b

†
isb js +U

∑
i

ni↑ni↓

where s =↑,↓, and b†
is creates an electron with spin s. The symbol nis ≡ b†

isb js

is the occupation number operator. The symbol 〈i, j〉 indicates summation over
nearest neighbors and ti j is given by

ti j =
{

t i, j nearest neighbours

0 otherwise

(1) Diagonalize H for weak coupling (U = 0) .
(2) In the strong coupling limit, (t = 0) the electrons have no dynamics and for U > 0 the

ground state will have no double occupancies. In particular, at “half filling” the
ground state will contain exactly one electron per site. Express the interaction term in
terms of the spin operators

Si ≡ 1

2

∑
ss ′

b†
isσss ′b

†
is ′

where σ = (σ1, σ2, σ3) are the Pauli matrices.

Problem 9.7 Show that for Ai (τi ) ∈ {aki (τi ), a+ki
(τi ), bki (τi ), b+ki

(τi )}, the thermal
n-point function

1

Z0
Tr(ρ0T (A1(τ1) · · ·An(τn))),

is given by the sum over all completely contracted terms, where each contraction
is replaced by a temperature-dependent Green function (Theorem 9.4).

Problem 9.8 Compute the first perturbative correction to the partition function
for fermions with a two-body interaction potential Vi j = V (|yi − y j |).

Further reading

A comprehensive text which is standard in solid state physics and accessible to
advanced undergraduate students is G. D. Mahan, Many-Particle Physics, Plenum
(1990). Another very good book with a thorough discussion of Green functions



234 Non-relativistic quantum field theory

and many applications including plasma physics is A. L. Fetter and J. D. Walecka,
Quantum Theory of Many-Particle Systems, McGraw-Hill (1971). Many applica-
tions of Feynman diagrams to condensed matter physics can be found in A. A.
Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinskii, Methods of Quantum Field
Theory in Statistical Physics, Dover (1975). Further classic texts which include
discussions of the renormalization group are L. E. Reichl, A Modern Course in
Statistical Physics, Edward Arnold (1980), and at a more advanced level, M. Le
Bellac, Quantum and Statistical Field Theory, Oxford University Press (1991);
J. W. Negele and H. Orland, Quantum Many-Particle Systems, Perseus, (1998) and
G. Parisi, Statistical Field Theory, Addison-Wesley (1988). A thorough discussion
of relativistic quantum field theory with a detailed discussion of renormalization
and applications to particle physics can be found in C. Itzykson and J. B. Zuber,
Quantum Field Theory, McGraw-Hill (1985) and in E. Peskin and D. V. Shroeder,
An Introduction to Quantum Field Theory, Addison-Wesley (1995).
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Superfluidity

The goal of this chapter will be to briefly describe the remarkable properties of
helium at low temperatures. After stating some of these properties we will see how
they can be understood in terms of the phenomenon of Bose–Einstein condensation
described in Chapter 7. We will give the main argument in two different formula-
tions, once using the quasi-particle method of Bogoliubov, and then using a Green
function approach.

We start with some experimental facts. Helium is a remarkable element. It was
predicted to exist from observations of the Sun before it was found on Earth. It is the
only element which remains a liquid at zero temperature and atmospheric pressure.
Experimentally the phase diagram of 4He is shown in Figure 10.1. Helium I is a
normal fluid and has a normal gas–liquid critical point. Helium II is a mixture of a
normal fluid and a superfluid. The superfluid is characterized by the vanishing of its
viscosity. Helium I and helium II are separated by a line known as the λ-transition
line. At Tλ = 2.18 K, Pλ = 2.29 Pa, helium I, helium II, and helium gas coexist. The
specific heat of liquid helium along the vapor transition line forms a logarithmic
discontinuity shown in Figure 10.2. The form of this diagram resembles the Greek
letter λ and is the reason for calling the transition a λ-transition.

The lack of viscosity of helium II leads to some remarkable experimental con-
sequences, one of which we briefly describe. Let two containers A and B be linked
by a thin capillary through which only a fluid with zero (or very low) viscosity can
pass freely. Originally TA, TB are both temperatures below Tλ. If the temperature
of A is raised, thereby decreasing the amount of helium II in it, then tank B now
contains a larger proportion of helium II. As a result, more liquid helium will flow
from B to A than from A to B leading to a difference in the level of liquids between
the two tanks.

The excitation spectrum E(p) of helium II can be measured experimentally
through elastic neutron scattering. It is found to consist of two parts, the phonon

235
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Figure 10.1 The phase structure of 4He at low temperature.
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Figure 10.2 The specific heat C of helium as a function of temperature.

region

E(p) = c|p|, when |p| � |p0|,
and the roton region:

E(p) = �+ 1

2µ
|p − p0|2, when |p| ∼ |p0|,

where c = 226 m/s is the velocity of sound, �/kB = 9 K are the roton parameters,
and µ = 0.25m He. There is another velocity parameter known as the critical veloc-
ity v0. It is only when helium II moves with velocity greater than v0 that viscous
effects arise. At low temperature the roton excitations are damped by the Boltzmann
factor e−�/kB T .

Our theoretical goal is to understand qualitatively the features of the excitation
spectrum described. We will show how the linear phonon region can be theoretically
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understood. We will also show how such a linear phonon spectrum can explain the
lack of viscosity of helium II. Our treatment will be qualitative. We will not explain
the roton part of the spectrum but merely state that such excitations represent
collective vortex excitations in helium II.

Before we turn to a systematic quantum field theory approach to the problem we
briefly state the physical picture of superfluidity that we want to develop. We first
note that the fact that helium is a liquid at low temperature can be understood to be
a consequence of the smallness of the inter-atomic potential between helium atoms
and the low mass of helium. Let us explain how this happens. Experimentally the
minimum energy of the interaction potential for helium is−9 K. The small mass of
helium means the energy uncertainty of helium atoms �E is large and is of order

�E � 1

2m

(
�

�x

)2

� 10 K

taking �x � 0.5 nm. Thus �E is comparable to the depth of the potential well
and therefore localization of helium atoms to form a solid is impossible. Since
localization of helium atoms is not possible the wave functions of individual atoms
overlaps and the symmetry features of the wave function become important. Thus
the quantum phenomenon of Bose–Einstein condensation, which we discussed in
Chapter 7, is expected to play an important role. Our qualitative reason for helium
remaining a liquid at low temperatures also explains why hydrogen, although
lighter than helium and hence with greater energy uncertainty, does not remain a
liquid at low temperatures. This is because the attractive force between hydrogen
atoms is much stronger than the attractive force between helium atoms. This allows
hydrogen to form a solid at low temperature with a consequent loss of quantum
coherence in its ground state wave function. Once we accept that 4He is a liquid
at low temperatures the dispersion relations for low energies can be inferred from
general considerations: for small momenta these excitations correspond to long
wave oscillations, i.e. sound waves. This explains the existence of the “phonon
region”. The roton region cannot be explained quite so easily. We now turn to a
quantum field theory formulation of the problem.

10.1 Quantum field theory formulation

Let us start by writing down the operator describing helium atoms in statistical
mechanics. We write the momentum space form for this Hamiltonian and assume
that the interatomic interactions are described by a two-body potential Ṽ (q)

H =
∑

k

E0(k)a†
kak + 1

2V

∑
k1,k2,q

Ṽ (q)a†
k1+qa†

k2−qak1ak2
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where E0(k) = (|k|2/2m) − µ, and µ is the chemical potential. To study the statis-
tical mechanics properties of the system we need to construct the grand canonical
partition function,

Z� = Tr[e−βK].

At low temperature, states with low energy value become dominant. These are
expected to be states with low values of momentum. Let us consider the system
close to T � 0 K. We can then assume that the state of lowest energy corresponds to
atoms of low momentum with a sizable fraction of molecules in the zero momenta
state, leading to Bose–Einstein condensation. Thus if the system has on average
N atoms then a significant number N0 of the atoms are in the lowest energy state.
More precisely we suppose that the ratio N0/N converges to a constant in the limit
N →∞. We can implement these observations as follows. Let us suppose that
|C ; N , N0 > is a superfluid state with a total of N helium atoms, N0 of which are in
the zero momentum plane wave state (which we take to be the lowest energy state
possible for a helium atom). If a†

0 and a0 are creation and destruction operators for
a state of zero momentum, we have

a0|C ; N , N0 > =
√

N0|C ; N , N0 − 1 >

a†
0|C ; N , N0 > =

√
N0 + 1|C ; N , N0 + 1 >,

so that

a†
0a0|C ; N , N0 > = N0|C ; N , N0 >

a0a†
0|C ; N , N0 > = (N0 + 1)|C ; N , N0 >.

For large N0 we can approximate N0 + 1 by N0 so that on the state |C ; N , N0 >

we can replace both the operators a0a†
0 and a†

0a0 by a single c-number, N0. This
introduces a natural large parameter in the problem. In particular the parameter
N0 will be present in the Hamiltonian operator when it is restricted to act on the
superfluid state |C ; N , N0 > where it can be utilized to introduce an appropriate
approximation scheme. This is the quasi-particle approach of Bogoliubov.

10.2 The quasi-particle approach

We ask what does the number operator N look like in the state |C ; N , N0 >. We have
N|C ; N , N0 >= N |C ; N , N0 >, where N =∑

a†
kak. We also have assumed that

a†
0a0|C ; N , N0 >= N0|C ; N , N0 > where N0 is the number of zero momentum
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states in |C >. Writing

N = a†
0a0 +

∑
k�=0

a†
kak.

We have for |C ; N , N0 >

N = N0 +
∑
k�=0

a†
kak

and

N2 =
(

N0 +
∑
k�=0

a†
kak

)2

.

Neglecting terms of order N 0
0 we have

N2 � N 2
0 + 2N0

∑
k�=0

a†
kak

as a constraint on the operator
∑

k �=0 a†
kak acting on the state |C ; N , N0 >. We next

examine the interaction part of H, that is

HI = 1

2V

∑
k1,k2,q

Ṽ (q)a†
k1+qa†

k2−qak1ak2

when restricted to |C >.
We proceed to isolate terms in HI which contain either a†

0 or a0 and to replace
these operators by

√
N 0. We order terms in HI according to the number of a0, a†

0

factors they contain. When all four operators in HI have zero momentum, we have
the term

H(0)
I = 1

2V
Ṽ (0)a†

0a†
0a0a0

= 1

2V
Ṽ (0)N 2

0

� 1

2V
Ṽ (0)

[
N2 − 2N0

∑
k �=0

a†
kak

]

where we have used the equation relating N to N0. The next term is of order N0

and is the part of HI containing two operators (carrying zero momentum). There
are six ways in which this can happen. These are displayed with the momentum
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variables which are set to zero as shown

k1 + q = k2 − q = 0 :
N0

2V

∑
q�=0

Ṽ (q)a−qaq

k1 + q = k1 = 0 :
N0

2V

∑
k2 �=0

Ṽ (0)a†
k2

ak2

k1 + q = k2 = 0 :
N0

2V

∑
q�=0

Ṽ (q)a†
−qa−q

k2 − q = k1 = 0 :
N0

2V

∑
q�=0

Ṽ (q)a†
qaq

k2 − q = k2 = 0 :
N0

2V

∑
k1 �=0

Ṽ (0)a†
k1

ak1

k1 = k2 = 0 :
N0

2V

∑
q�=0

Ṽ (q)a†
qa†

−q.

Now we make an additional assumption that, for |k| small, Ṽ (k) � Ṽ (0). Since
at low temperature we expect only small momenta excitations to be important we
replace Ṽ (k) by Ṽ (0) in HI . Therefore, on the state |C ; N , N0 >, the interacting
Hamiltonian, keeping terms of O(N0) is given by

HI � 1

2V
Ṽ (0)

[
N 2 − 2N0

∑
k �=0

a†
kak

]

+ N0

2V

∑
k�=0

Ṽ (0)[a†
ka†

−k + aka−k]

+ Ṽ (0)

2V
4N0

∑
k �=0

a†
kak ≡ HB

I ,

and the total Hamiltonian, H, can be approximated by the Bogoliubov Hamiltonian
HB given by

HB =
∑

k

( |k|2
2m

− µ

)
a†

kak + H B
I .

Observe that H originally had the property [H, N] = 0 so the system had a fixed
number of particles and a well-defined energy eigenvalue. But now H has an interac-
tion term HB

I which contains the operator [a†
ka†

−k + aka−k]. This operator changes
the particle number. Thus [HB

I , N] �= 0. Since the energy states of HB do not have
well-defined particle numbers we must then set µ = 0. The effective Hamiltonian
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we use is then, dropping non-operator parts of HB
I ,

HB =
∑
k�=0

( |k|2
2m

+ Ṽ (0)

V
N0

)
a†

kak + Ṽ (0)N0

2V

∑
k�=0

[a†
ka†

−k + aka−k] .

We turn next to the problem of determining the energy eigenvalues of this Hamil-
tonian. This we do by using the method of the Bogoliubov–Valatin transform. The
idea is this: HB is a quadratic function of the operators ak and a†

k. By taking appro-
priate linear combinations of these operators we can form new operators b̂k and b̂†

k
which “diagonalize” HB , i.e. which lead to

HB =
∑
k �=0

E(k)b†
kbk .

The function E(k) will then determine the different excitations of the system while
bk, b†

k will be destruction and creation operators for these excitations or “quasi-
particles”, provided they satisfy the commutation rules

[bk1, b†
k2

] = δk1,k2 .

We write

bk = α(k)ak − β(k)a†
−k

b†
k = α(k)a†

k − β(k)a−k

where α(k), β(k), are real valued functions of |k|. These functions are called Bogoli-
ubov coefficients. Note that ak acting on a state removes momentum k from the
system while a†

−k adds momentum −k to the system so that both terms influence
momentum states in the same way. Requiring

[bk1, b†
k2

] = δk1,k2

leads to the constraint

α(k)2 − β(k)2 = 1, for all k.

It is now easy to see that

ak = α(k)bk + β(k)b†
−k

a†
k = α(k)b†

k + β(k)b−k.

Substituting these expressions we get

HB =
∑
k �=0

[g(k)(β(k)2 + α(k)2) + 4h(k)α(k)β(k)]b†
kbk

+
∑
k �=0

[g(k)α(k)β(k) + h(k)(α(k)2 + β(k)2)][bkb−k + b†
kb†

−k]

+ terms not involving operators
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where

h(k) = N0Ṽ (0)

2V

g(k) = | k |2
2m

+ N0Ṽ (0)

V
.

In order to get HB =
∑

k �=0 E(k)b†
kbk we must set the coefficient of the operator

bkb−k + b†
kb−k equal to zero. Then we have

HB =
∑
k �=0

E(k)b†
kbk + non-operator terms.

with

E(k) = g(k)(β(k)2 + α(k)2) + 4h(k)α(k)β(k)

while

α(k)2 − β(k)2 = 1

g(k)α(k)β(k) + h(k)(α(k)2 + β(k)2) = 0.

Our problem is to determine the unknown functions α(k), β(k) in terms of the
known functions g(k), h(k) by solving these two equations. The solutions obtained
are

β(k)2 = 1

2



√

g2(k)

g2(k) − 4h2(k)
− 1




α(k)2 = 1

2



√

g2(k)

g2(k) − 4h2(k)
+ 1


 .

Thus

g(k)(α(k)2 + β(k)2) = g(k)2√
g2(k) − 4h2(k)

α(k)2β(k)2 = h2(k)

(g2(k) − 4h2(k))
.

To ensure the coefficient of bkb−k + b†
kb†

−k is zero we must choose

α(k)β(k) = − h(k)√
g2(k) − 4h2(k)

.
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We thus have

g(k)(α(k)2 + β(k)2) + 4h(k)α(k)β(k) =
√

g(k)2 − 4h2(k) ,

so that finally

HB =
∑
k �=0

E(k)b†
kbk

with

E =
√

k2

2m
(

k2

2m
+ 2N0Ṽ (0)

V
).

The energy E(k) is called the quasi-particle energy and the operators b†
k, and bk are

quasi-particle creation and destruction operators. Our analysis has thus confirmed
the picture presented at the beginning of this chapter and in which the excitations
of a system of bosons where a large number, N0, of particles are in the state with
k = 0 are quasi-particle excitation. Indeed, for small values of p = k we have

E(k) � |p|
m

√(
N0

V

)
Ṽ (0)m .

Observe that for E(k) to be real we must have Ṽ (0) > 0. Recall

Ṽ (q) =
∫

d3xeiq·xV (x),

so that the condition

Ṽ (0) =
∫

d3xV (x) > 0

implies that for a short range potential V (x), which represents the interaction
between the helium atoms, there is a repulsive region for V (x) which must dominate
the integral. Observe also that |k|/m = |v| is a velocity, and N0m/V = ρ, is the
density of the superfluid helium so that the quasi-particle energy can be written as

E(p = mv) � |v|
√

ρṼ (0) .

We now show that a system with such an energy spectrum represents a superfluid,
i.e. a system with no friction. Friction in a system represents dissipation of energy.
Consider a molecule of mass MA moving in a medium. If this molecule can change
its energy through collisions with the excitations of the medium, then the system
has friction. We will find that a molecule of mass MA and velocity VA moving
through a system consisting of quasi-particles of energy Ê(k) cannot change its
energy by scattering off quasi-particles if |VA| < |v0|where |v0| is a critical velocity
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k
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P

Figure 10.3 Scattering of a molecule with momentum P with a phonon.

determined by Ṽ (0) and ρ. Thus for |VA| < |v0| the system of quasi-particles
behaves as a frictionless superfluid.

To see this, let us consider the collision of a molecule of mass MA and velocity VA

with a quasi-particle at rest (see Fig. 10.3). If the final momentum of the molecule
is QA and that of the quasi-particle is k, we have, from momentum conservation,

PA = QA + k ,

where PA = MAVA. Conservation of energy gives on the other hand

|PA|2
2MA

= |QA|2
2MA

+ E(k) .

Taking the square of momentum conservation law gives

|QA|2 = |PA|2 + |k|2 − 2PA · k .

If we denote by θ the angle between P and k, we then have

| cos θ | = |PA|2 − |QA|2 + |k|2
2|PA||k| ,

so that, in particular,

|PA|2 − |QA|2
|PA||k| ≤ | cos θ | ≤ 1.

Combining this with the energy conservation condition we end up with

2MAE(k)

2 | PA || k | ≤ 1.
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Recalling now that

E(k) � | k |
m

√
Ṽ (0)N0m

V

we get

v0 = 1

m

√
Ṽ (0)N0m

V
≤ | PA |

MA
=| VA | .

Thus the process of changing energy for the molecule is not allowed if |VA| < v0

and the system of quasi-particles behaves like a superfluid.

10.3 Green function approach

We will now rederive the same result using the method of Green functions. The
purpose of this section is to illustrate how the spectrum of a theory can be extracted
from its Green functions.

Our starting point is the Bogoliubov Hamiltonian defined in the previous section.

HB =
∑

k

Ê(k)a†
kak + Ṽ (0)N0

2V

∑
k�=0

[a†
ka†

−k + aka−k] ,

with

Ê(k) =
(

k2

2m
+ Ṽ (0)N0

V

)
.

We can take all operators to be Heisenberg operators with time dependence governed
by HB , i.e. ak = ak(t). The Green function for this system is defined to be

Gk(t) = 〈0|T (a†
k(t)ak(0))|0〉.

The Green function Gk(t) contains in it, we claim, information regarding all the
excitations of the system. If we determine the Green function Gk(t) then we will
know what these excitations are. For this it is useful to consider its Fourier transform

Ĝk(w) =
∫ ∞

−∞

dt

2π
e−iwt Gk(t).

We will argue that the poles of G̃k(w) in w directly represent the excitations of
the system and we will show that, for operators evolving in time according to HB ,
the poles of G̃k(w) are precisely the quasi-particle excitations obtained in the last
section.
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Let us first proceed with our calculations of G̃k(w). Later we will argue why the
poles of G̃k(w) represent excitations of the system. We note that

∂Gk(t)

∂t
= 〈0|[a†

k(t), ak(0)]|0〉δ(t) + 〈0|T (
∂a†

k(t)

∂t
ak(0))|0〉.

Now

�
∂a†

k(t)

∂t
= i[HB, a†

k(t)]

= iÊ(k)a†
k(t) + i

Ṽ (0)

V
N0a−k(t)

therefore

�
∂Gk(t)

∂t
= −�δ(t) + iÊ(k)Gk(t) + i

Ṽ (0)N0

V
G(−)

k (t)

where

G(−)
k (t) ≡ 〈0|T (a−k(t)ak(0))|0〉 .

Differentiating G(−)
k (t) with respect to t similarly gives

�
∂G(−)

k (t)

∂t
= −iÊ(k)G(−)

k (t) − i
Ṽ (0)N0

V
Gk(t) .

Writing

Gk(t) =
∫ ∞

−∞

dw

2π
eiwt G̃k(w)

δ(t) =
∫ ∞

−∞

dw

2π
eiwt

G(−)
k (t) =

∫ ∞

−∞

dw

2π
eiwt G̃(−)

k (w)

we get

i�wG̃k(w) = �+ iÊ(k)G̃k(w) + i
Ṽ (0)N0

V
G̃(−)

k (w)

and

i�wG̃−
k (w) = −iÊ(k)G̃(−)

k (w) − i
Ṽ (0)N0

V
G̃k(w).

Solving for G̃k and G̃(−)
k we find,

G̃k(w) = �

(
(�w − Ê(k)) + (

Ṽ (0)N0

V
)2 1

�w + Ê(k)

)−1

.
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From this expression we see that G̃k(w) has a pole located at the point

�
2w2 = Ê2(k) −

(
N0Ṽ (0)

V

)2

.

This gives

E(k) =
√
|k|
2m

( |k|
2m

+ 2
N0Ṽ (0)

V

)

for the excitation energy spectrum of the system. But this is exactly the
quasi-particle energy spectrum we calculated previously with the Bogoliubov
method and thus supports our statement regarding the interpretation of the poles
of G̃k(a).

Let us now explain why the poles of Gk(w) are related to the excitations of
the system in a qualitative way. Our discussion will be within the framework of
perturbation theory. For a system governed by the Hamiltonian

H0 =
∑

k

E(k)a†
kak

the Green function

G0
k(t) = 〈0|T (a†

k(t)ak(0))|0〉
satisfies the equation:

�
∂

∂t
G0

k(t) = −�δ(t) + iE(k)G0
k(t).

Taking Fourier transforms this equation becomes:

i(�w − E(k))G̃0
k(w) = � .

Here we see clearly that the pole of G̃k(w) is at the point �w = E(k) which repre-
sents the energy of the excitations of the system.

Let us now consider an interacting theory with Hamiltonian

H =
∑

k

E(k)a†
kak + 1

2V

∑
k1,k2,q

Ṽ (q)a†
k1+qa†

k2−qakak2 .

The structure of the Green function

Gk(t) = 〈0|T (a†
k(t)ak(0))|0〉

can be studied using perturbation theory. We do so by using the graphical rules
discussed earlier. To simplify the analysis we set 1/2V Ṽ (q) = λ, a constant. Terms
which contribute to Gk(t) can be graphically represented. We give a few (random)
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X YX Y X Y

(a) (b)

Figure 10.4 Some Feynman diagrams contributing to Gk(t).

A BA BA BA B

X Y
= + + +

Figure 10.5 Sum of all one-particle irreducible graphs.

A B A B A B=BA ++ + ...
Figure 10.6 The full propagator.

examples in Figure 10.4. The graphs fall into two broad categories: those which split
into disjoint pieces when one line is cut, and those that do not. For instance, Figure
10.4 (a) splits into two pieces when the line joining the two bubbles is cut, while
Figure 10.4 (b) does not have this property. In our discussion the two lines joining
the rest of the graph to the end points (A, B) (i.e. the lines (A, X) and (Y, B)) are to
be left uncut. Graphs which remain as connected pieces when an internal line is cut
are called one-particle irreducible graphs. The strategy followed for determining G
is to first sum all possible graphs joining two points (A, B) which are one particle
irreducible, and then to sum all the one particle reducible graphs. The result of
the summation of all one particle irreducible graphs is represented in Figure 10.5.
Recalling the discussion of Feynman diagrams in Chapter 9, we interpret the lines
(A, X) and (Y, B) as the free propagators G0 of perturbation theory. Adding up all
the reducible graphs is represented in Figure 10.6.

Symbolically the sum of these graphs represents the Green function G as

G = G0 + G0�G0 + G0�G0�G0 + · · ·

This is a geometric series involving the matrices G and � which we can formally
sum to get

G = G0 1

1 −�G0
.
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When Fourier transformed, G0 and � both become functions of w, i.e. they become
proportional to the identity matrix, and we can write

G̃k(w) =
(

1

G̃0(w)
− �̃(w)

)−1

.

For a free theory we saw G̃0(w) = �(�w − E0(k))−1, and so we find

G̃k(w) = �(�w − (E0(k) + �̃(w)))−1 .

The effect of the interactions, in this perturbation theory approach, is thus to shift the
pole of G̃k(w) from its free value E0(k) to E0(k) + �̂k(w). This shifted energy value
represents the new spectrum of excitations present in the system which takes the
interaction of the system into account. It can happen that the sum of the one-particle
irreducible graph �̃k(w) is a complex quantity. Then the real part, Re(�̃k(w)),
added to E0(k) gives the energy of the excitations of the system (the quasi-particle
spectrum) while the imaginary part, Im(�̃k(w)), is interpreted as the inverse of the
quasi-particle lifetime. Such an interpretation is natural if we remember that e−iEt

is the characteristic time of oscillations associated with an energy state E . If E is
complex we write E = E0 − i� then e−i(E0−i�)t = e−iE0t e−t� represents a state of
energy E0 and an amplitude which decays in time with a lifetime τ = 1/�.

10.4 Summary

In this chapter we have made use of non-perturbative properties of non-relativistic
quantum field theory to derive an important emergent phenomenon, superfluidity.
This example nicely illustrates the power of quantum field theory. Our aim was to
present two useful approaches to the problem of determining the low-energy exci-
tations of interacting many-body systems. Both approaches, as we presented them,
involved reducing the problem to one involving quadratic functions of operators
and then studying this quadratic operator problem either directly, using a diago-
nalization method, or indirectly by looking at the poles of an associated Green
function. We restricted our discussion in this chapter to 4He which is a bosonic sys-
tem. Superfluidity has also been observed at very low temperature in 3He, which
is a fermionic system. This phenomenon can also be understood within the frame-
work of Bose–Einstein condensation in which a “pairing” of fermions first takes
place due, in this case, to a weak attractive force when two helium atoms both
have parallel spins. These correlated pairs (which are bosons) can now undergo
Bose–Einstein condensation. The reason very low temperatures are needed before
such superfluid states can be created is because the “binding energy”, B, of the
pairs is small and the pairs do not remain correlated unless kT < B. Although the
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Figure 10.7 Experimental set-up for the fountain effect.

theory of Bogoliubov is in qualitative agreement with experimental facts, in detail
it makes predictions which do not agree with experimental results. In particular, the
limiting velocity for frictionless flow is off by a factor of ten! The problem lies in
the restriction to two-body interactions made at the beginning. This amounts to the
assumption that the gas is dilute or weakly non-ideal. The present day conclusion
is that the Bogoliubov theory is not suitable for a quantitative description of the
excitation properties of superfluid 4He. The idea of Bose–Einstein condensation
is valid but implementing this at the level of the Hamiltonian operator labeled by
momentum states does not seem to work. The current theory of superfluidity in
4He treats the liquid as a highly correlated and strongly interacting system. In the
modern approach the ground state wave function has the form

�0(x1, . . . , xN ) = const × exp(−
∑
i< j

u(xi − x j )).

This approach is not based on plane waves, and is quite successful. We will not
pursue this theory any further at present but instead refer the interested reader to
the literature, in particular the book by Feynman.

Problems

Problem 10.1 Fountain effect: liquid helium shows some unusual properties at
low temperatures. Consider the experimental set-up in Figure 10.7, where a
container with two openings is immersed in liquid helium at T < 2 K. At the
bottom of the container there is a small hole covered by a powder preventing
viscous fluid from passing from the outside into the container. In order to analyze
this system we will assume that for 0 K < T < 2 K, He II consists in parts of a
normal liquid and a superfluid with vanishing entropy and viscosity. If the
temperature Ti inside the container is increased then the portion of superfluid
helium in the container will decrease. Then, to restore the equilibrium superfluid
helium will pass through the powder leading to an increase in pressure inside the
container which, in turn, will produce the fountain effect.
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Figure 10.8 Model for the fountain effect.

To analyze this system quantitatively we model it as in Figure 10.8.

(1) Show that, allowing for exchange of superfluid helium, the Gibbs potentials
inside and outside the container have to be equal at equilibrium.

(2) Derive a relation between the pressure and temperature differences.
(3) In a crude approximation we can take the entropy per unit mass to be

sn = 1600 J/kg K for the normal fluid. The density of the normal fluid is taken
to be ρn = ρ(T/Tλ)4, where ρ = 144 kg/m3 and Tλ = 2.2 K is the critical
temperature. Calculate the pressure difference for Ti = 1.2 K and Te = 1.1 K.

Problem 10.2 Pomeranchuk effect: if 3He in the solid phase is cooled at a
pressure P � 3 kPa below T � 1 K, then one observes a phase transition, at some
T0 < 1 K, from the solid to the liquid phase! In order to get a qualitative
understanding of this unusual behavior, compare the entropy of a crystal of spin
1/2 particles (3He nuclei) with that of a Fermi liquid (liquid 3He) at low
temperatures.

Problem 10.3 As we have explained in the beginning of this chapter, the
excitation spectrum of He II (super liquid 4He) consists of a phonon part and a
roton part. Compute the contribution of the rotons to the energy, entropy, and
specific heat of He II by treating them as an ideal gas of spin 0 bosons whose
particle number is not conserved and whose dispersion relation is given by
E(p) = �+ 1/2µ|p − p0|2.

Further reading

A Green function approach to the excitation spectrum of 4He can be found in A. A.
Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Methods of Quantum Field Theory
in Statistical Physics, Dover (1975), which also contains a qualitative derivation
of the roton part of the dispersion relation. R. P. Feynman’s book on Statistical
Mechanics, Perseus (1998) describes the modern theory of superfluidity indicated
in the text.
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Path integrals

In the chapter on quantum statistical mechanics we showed that the partition func-
tion can be written as a trace over the Hilbert space of the density matrix. In the
canonical ensemble this reads

Z = Tr e−βH ,

where H is the quantum mechanical Hamiltonian for our system and the trace is
over the N -particle Hilbert space. This formula is completely general as we have
seen, and can be applied to any quantum system. We have also seen that, in all but
the simplest cases, actually calculating this trace is very difficult. The problem is
that we must know the full spectrum of the operator H, and we must be able to
take the trace of the exponential of this operator over the full Hilbert space of the
system.

In this chapter, we will develop an alternative approach which allows us to
work with commuting numbers rather than operators. As we shall see, quantum
partition function calculations for Bose–Einstein systems will take a form which
is reminiscent of the classical partition function we have treated in Chapter 2. We
will then make use of this formalism extensively when discussing Landau theory
and renormalization group methods in Chapter 13.

11.1 Quantum mechanics

To derive the basic path integral formula for the partition function we first consider
the case of a quantum mechanical system confined to a one-dimensional box of
size L . The Hamiltonian for the system is taken to be

H = T (p) + V (q) = 1

2m
p2 + V (q).

252
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H, p and q are quantum mechanical operators, with p and q satisfying the usual
commutation relation

[p, q] = −i�.

In what follows we will work in the Heisenberg picture, where states are independent
of time. Since the partition function we seek to evaluate involves a trace over all
states of the system, we are at liberty to choose a basis for the operators and states
which will be convenient for our purpose. Finally, we impose periodic boundary
conditions on wave functions in our box. The basic idea underlying the path integral
approach to quantum mechanics is to replace a calculation involving operators
and states by an alternative but equivalent calculation involving just commuting
numbers. The fundamental operators in our current problem are the momentum
operator p and the coordinate operator q. We can always replace one of these
operators with a commuting number if we arrange that the operator acts on one of
its eigenvectors. For a particle confined to a one dimensional box of length L with
periodic boundary conditions, the possible eigenvalues of the coordinate operator,
q, are the continuous numbers q ∈ [−L/2, L/2], while the possible eigenvalues
of the momentum operator, p, are discrete, p = 2πn�/L , with n an integer, as we
have seen in Chapter 7. We have

q | q〉 = q | q〉 p | p〉 = p | p〉
with the following orthogonality and completeness relations,∫

dq | q〉〈q | = 1 〈q | q ′〉 = δ(q − q ′)

2π�

L

∑
p

| p〉〈p | = 1 〈p | p′〉 = L

2π�
δp,p′ .

The normalizations are chosen so that the discrete sum over p is correctly weighted
to become an integral in the limit L →∞. In this same limit, the discrete δ function
defining 〈p | p′〉 is also correctly weighted to become δ(p − p′). The transition
between complete basis vectors | q〉 and | p〉 is given by the scalar product

〈q | p〉 = 1√
2π�

eipq/�.

However, p and q do not commute, and it is thus not possible to have simultaneous
eigenvectors and eigenvalues of p and q.

Consider now applying H to a state | p〉 or a state | q〉. H is a sum of two terms.
The kinetic term depends on the operator p only, so when applied to | p〉 this term
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becomes a commuting number term

1

2m
p2 | p〉 = 1

2m
p2 | p〉.

Similarly the potential term depends on the operator q only, so when applied to | q〉
this term also becomes a commuting number term

V (q) | q〉 = V (q) | q〉.
The commutation relation for q and p however implies that it is not possible to find
a state which is simultaneously an eigenvector of both p and q. Thus although we
can arrange that either the kinetic or potential term can be made into a commuting
number term by acting either on | p〉or | q〉 it is not possible that both simultaneously
be made into commuting number terms.

11.1.1 Phase space path integral

To address the problem just described we adopt an approach in which we act first on
states | p〉 then on states | q〉. We begin by considering the operator exp(−ε(T+ V))
which is the fundamental object of interest. We anticipate a little here by replacing
β by ε which, as we shall see later, needs to be taken small. We would like now to
act with this operator on either a state | p〉 or | q〉 and replace respectively either
the operators p or q with their corresponding eigenvalues. This is not immediately
possible, however, since the exponential function is not a simple function as was
the Hamiltonian. We can replace an operator with its eigenvalue only so long as it
is the rightmost operator acting on the corresponding eigenvector. The exponential
function (when expanded in power series) will give us many different orderings of
operators, and only a few of the many terms which occur in this series will be in
the correct rightmost positions. The simplest solution to this problem is to use the
Baker–Campbell–Hausdorff formula which we generated in Chapter 6 to reorder
operators in the exponential. We express the result we require as a theorem

Theorem 11.1 The term e−ε(T+V) is given by

e−ε(T+V) = e−
ε
2 Ve−εTe−

ε
2 V + O(ε3).

Proof. The proof that follows is along the same lines as the theorem proved in
Chapter 6. We will thus not repeat it here. �

This theorem gives us a particular splitting of the exponential of the Hamiltonian
where terms depending only on p are cleanly separated from terms depending only
on q. The error we make in so separating terms is of O(ε3). In order to make this
error small we must make ε small. Our basic goal is to evaluate Z = Tr e−βH. A
direct splitting following the theorem is of no use since β is not necessarily small,
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and the error we make will also not necessarily be small. However, we can proceed
in steps. Define ε as

ε = β

n

where n is an integer. Then

Tr e−βH = Tr (e−εH)n

= Tr
(
e−

ε
2 Ve−εTe−

ε
2 V)n + nO(ε3)

= Tr
(
e−εTe−εV)n + nO(ε3).

These manipulations result in splitting the exponential e−βH into an interleaved
product of n factors exp(−εT) and n factors exp(−εV). The error we make in this
process is nO(ε3) = β3 O(n−2). Since n is a free parameter in this procedure, we
are free to take it as large as we like. In the limit n →∞ the error term will go to
zero, and we have achieved a splitting of the original exponential operator

Tr e−βH = lim
n→∞Tr

(
e−

β

n Te−
β

n V)n
.

At this point we are still working with operators, but we can now insert a complete
set of states between each term in the product, and convert the problem to one with
just commuting numbers. Immediately to the right of each factor exp(−εT) we
insert the complete set of states

2π�

L

∑
p

| p〉〈p |,

while immediately to the right of each factor exp(−εV) we insert the complete set
of states, ∫ L/2

−L/2
| q〉〈q | .

Since we actually have n factors of each kind, we have to be careful to label the
different insertions to the right of each different term,

Tr e−βH =
(

2π�

L

)n ∑
p1,··· ,pn−1

∫ L/2

−L/2
dq1 · · · dqn−1 Tr

(
e−εH | pn−1〉〈pn−1 | e−εV | qn−1〉

· 〈qn−1 | . . . e−εH | p0〉〈p0 | e−εV | q0〉〈q0 |
)
.

To simplify the notation at this point, we introduce the quantity
∫

[dpdq] as a
shorthand way of indicating the integrations over complete sets of states which we
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have to perform, ∫ [
dpdq

2π�

]
≡

n−1∏
k=0

(
1

L

∑
pk

∫ L/2

−L/2
dqk

)
.

The extra factor 1/2π� included here for each pair pk, qk produces a dimensionless
integration measure for that pair.

Consider now the integrand. This still involves operators, but now each operator
acts on an eigenstate immediately to its right. We can therefore replace each operator
with its corresponding eigenvalue.

Tr e−βH = (2π�)n
∫ [

dpdq

2π�

]
× Tr

(
e−εT (pn−1) | pn−1〉〈pn−1 | e−εV (qn−1) | qn−1〉〈qn−1 |

. . . e−εT (p0) | p0〉〈p0 | e−εV (q0) | q0〉〈q0 |
)
.

Since the exponentials in the integrand are now just numbers we can collect them
into a single exponential exp[

∑n−1
k=0 T (pk) + V (qk)]. In addition we substitute the

scalar product for the brakets 〈pi | q j 〉. This then leads to the simple expression

Tr e−βH =
∫ [

dpdq

2π�

]
e
−ε

n−1∑
k=0

(T (pk )+V (qk ))
e

i
�

pn−1(q0−qn−1) . . . e
i
�

p0(q1−q0).

The factor (2π�)n has cancelled with the denominator in the scalar product 〈pi | q j 〉.
It is convenient to introduce a new redundant variable qn ≡ q0, so that we can rewrite
the above expression in the compact form

Tr e−βH =
∫ [

dpdq

2π�

]
e

n−1∑
k=0

( i
�

pk (qk+1−qk )−εH (pk ,qk ))
.

In generating this form for the partition function we have fulfilled our basic aim
to replace a problem involving operators and states with a problem involving com-
muting numbers. Our calculation of the partition function is now seen to reduce to
that of evaluating a large multidimensional integral, and we find that the quantum
problem we began with is now reduced to a problem in the same basic form as that
of evaluating a canonical partition function for a classical system.

11.1.2 Feynman–Kac formula

If the volume of our quantum mechanical system tends to infinity, so that the sum
over the momenta pk can be replaced by integrals, we can further simplify the above
expression for the partition function. Indeed since T (p) = 1/2m p2, the pk integral
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is just a Gaussian integral of the form∫
dx

2π�
e−

a
2 x2−ixb = 1√

2π�2a
e−

b2

2a ,

for each pk , with a and b real numbers and a > 0. This formula follows directly
from the Gauss integral formula by a shift x → x + i

a b. Thus we can perform the
pk integral explicitly for each k leading to

Tr e−βH =
( m

2πε�2

) n
2

∫
[dq] e

−
n−1∑
k=0

(
m

2ε�2 (qk+1−qk

)2
+εV (qk ))

.

This is the celebrated Feynman–Kac formula for the path integral representation of
the partition sum.

To illustrate how the path integral works let us apply it to the by now familiar one-
dimensional harmonic oscillator with Hamiltonian H = (1/2m)p2 + (κ2/2)q2.
Substituting this Hamiltonian into the phase space path integral expression for
the partition sum and performing the Gaussian integral over the momenta pk we
end up with

Tr e−βH =
( m

2πε�2

) n
2

∫
[dq] e

− m
2

n−1∑
k=0

(
1

ε�2 (qk+1−qk )2+εω2q2
k

)
,

where ω2 = κ2/m. Since this action is quadratic in qk we can write it as a bilinear
form in a Rn. For this we introduce the vector q = (q0, . . . , qn−1) and a n × n
matrix

M = m

ε�2




a −1 0 · · · · · · · · · 0 −1
−1 a −1 0 · · · · · · 0 0
0 −1 a −1 0 · · · 0 0
·
·
·
0 0 · · · · · · 0 −1 a −1
−1 0 · · · · · · · · · 0 −1 a




with

a = 2 + ε2
�

2ω2.

The path integral representation of the partition sum of the one-dimensional har-
monic oscillator is thus just the multidimensional Gauss integral

Tr e−βH =
( m

2πε�2

) n
2

∫
dnq e−

m
2ε�2 (q,Mq).
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This integral can be evaluated in the same way as the usual Gauss integral. Here
we prove a slightly more general formula which will be used in the sequel.

Result 11.2

I (M, B) =
∫ ∞

−∞

dnx√
(2π )n

e−
1
2 (x,Mx)+(B,x)

= (det M)−
1
2 e

1
2 (B,MB)

where Mi j = M ji and Mi j is assumed to be real.

Proof. The integral is invariant under the substitution x → x′ = Rx, where the
matrix R satisfies the condition RT R = I where RT is the transpose of R. Since the
matrix M in the problem is symmetric there is a matrix R such that RT MR = D
with D diagonal. We suppose all the diagonal entries of D are non-zero. Then,

I (M, B) =
n∏

i=1

(∫
dx ′i√
2π

e−
λi
2 (x ′i )

2+B ′
i x ′i

)

where B ′
i =

∑
j Ri j B j , x ′i =

∑
j Ri j x j , and λi , = 1, . . . , n are the eigenvalues of

M. But we have already seen that∫ ∞

−∞
e−

1
2 x2λ+Bx dx√

2π
= 1√

λ
e

1
2 B2 1

λ .

Thus the result holds with
√

det M = √
λ1 . . . λn and (BM−1B) =∑N

i=1(Bi )2λ−1
i .

�

To complete our calculation we need to evaluate the determinant of M. For this
we expand the determinant in the first column

det M = a det In−1 − 2 det In−2 − 2 ,

where In−p is obtained from M by deleting the first p rows and columns. Let us begin
by calculating det Ik , k ≤ n − 1. For this we expand det Ik in the first row which
leads to the recursion relation det Ik = a det Ik−1 − det Ik−2 with initial conditions
det I0 = 1 and det I1 = a. This relation is solved by

det In−1 = sinh (nµ/2)

sinh (µ/2)
, where cosh

µ

2
= a

2
.

Substituting this result into the expression for det M and using the identity
2 cosh a sinh b = cosh(a + b) + sinh(b − a), we then end up with the simple
result

det M = 4 sinh2
(nµ

4

)
.
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Figure 11.1 A broken path for n = 6.

We are now ready to evaluate the path integral completely. Performing the Gaussian
integral it is not hard to see the factors of ε, �, m, and 2π all cancel out so that the
final result reads simply

Tr e−βH = 1

2 sinh (nµ/4)
.

However, we can bring this result into a more familiar form by expressing µ in
terms of a. We have

cosh
µ

2
� 1 + µ2

8
= 1 + ε2

�
2ω2

2

and thus

Tr e−βH = 1

2 sinh (�ωβ/2)

= e−
�ωβ

2

1 − e−�ωβ

=
∞∑

n=0

e−�ωβ

(
n+ 1

2

)
,

which is just the result we obtained for the harmonic oscillator in Chapter 7 by
explict evaluation of the trace.

In order to develop a geometric interpretation of the Feynman path integral we
recall that ε = β/n where n is the number of steps introduced to discretize the
1-parameter family of operator e−βH. We have seen in Section 9.8 that β can be
interpreted as “imaginary time” through the identification T = iβ�. If we carry
this interpretation over to our path integral expression we would identify ε� with
an infinitesimal imaginary time while qk is interpreted as the value of q(t) at tk =
−ikε�. The above representation of the partition sum can thus be interpreted as
integrating over all possible discretized periodic paths, q(t), in imaginary time (see
Fig. 11.1). This then explains the usage of the word path integral.
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We have seen in the example of the harmonic oscillator that although it is not
clear how to define the path integral measure in the continuum limit the final result
is perfectly well defined when n →∞ (or ε → 0). In what follows we will give
a formal definition of the continuum limit. To do so we first focus on the first
argument of the exponential. According to what we have just said the difference
(qk+1 − qk)/iε� becomes the derivative of q(t) with respect to imaginary time as
ε tends to zero (n →∞). Similarly ε�

∑
k →

∫
�β

0 dτ as ε → 0. Thus the path
integral expression for Tr e−βH takes the simple form

Tr e−βH = C
∫

[dq] e−
1
�

SE [q(τ )]

where

SE [q(τ )] =
�β∫

0

(m

2
q̇(τ )2 + V (q(τ ))

)
dτ

is the action of the point particle in imaginary time t = −iτ . As an illustration we
can again refer to the harmonic oscillator treated above. The Lagrange function for
this system is found as usual via the Legendre transform

L(q, q̇) = H (p, q) − pq̇

= m

2
(−q̇2 + ω2q2).

Note that we have defined the action with a global minus sign compared to the usual
convention. This is just for later convenience and does not affect the dynamics of the
system. Next we analytically continue the time variable to the negative imaginary
axis, t = −iτ . Using the identity d/dτ = −i d/dt , the imaginary time Lagrange
function is then given by

L(q, q̇) = m

2
(q̇2 + ω2q2),

where the dot now symbolizes the derivative with respect to τ which, in turn,
ranges for 0 to �β. In order to recover the discrete version of the path integral
we discretize the parameter τ into n steps with step size ε = �β/n. The action
functional SE [q] = ∫

dτL(q, q̇) then takes the form of a discrete sum

S[q] = m

2

n−1∑
k=0

(
1

ε�2
(qk+1 − qk)2 + εω2q2

k

)
.

The constant C in the continuum version of the path integral is formally infinite
but can be absorbed in the measure [dq] as we have seen in the example of the
harmonic oscillator.
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11.2 Quantum field theory

Let us turn now to the path integral formulation for a system of non-interacting
Bose–Einstein particles described by the field theory Hamiltonian,

H =
∫

d3 y �†(x)

(
− �

2

2m
∇2

)
�(y).

The fields �(x) and �†(x) are the quantum fields introduced in Chapter 9. They
satisfy the commutation relations

[�(x), �(y)] = 0 , [�(x), �†(y)] = δ3(x − y) , [�†(x), �†(y)] = 0.

The derivation of this Hamiltonian in Chapter 9 was based entirely on quantum
considerations. We never developed a classical view of this system. However, our
prescription to develop the path integral just needs us to identify the coordinates
and momenta in this system and we do this by finding operators which have the
appropriate set of commutation relations.

Instead of presenting the lengthy derivation of the path integral expression for
the quantum field theory partition sum we will try to guess the correct result. The
commutation relations for the fields �(x) and �†(x) give us the clue to proceed. For
a system with a finite number of discrete Cartesian coordinates qk and correspond-
ing discrete Cartesian momenta pk where k = 1, . . . , n, the fundamental quantum
commutation relations are

[qk, pl] = i�δk,l .

Systems described by fields rather than coordinates can be considered as the limiting
case which occurs when the coordinate indices k become continuous. In this limit,
the quantum commutation relations must be modified suitably. For example if
k → x, then qk → q(x), and pk → p(x), and we would correspondingly expect
that

[q(x), p(y)] = i�δ3(x − y).

Comparing to the commutation relations for ψ(x) and ψ†(x), this suggests that we
identify ψ(x) as the coordinate field in our Hamiltonian and i�ψ†(x) as the momen-
tum field. Our naive suggestion for the generalization of the quantum mechanical
path integral to quantum field theory is then simply to replace in the quantum
mechanical phase space integral

Tr e−βH =
∫ [

dpdq

2π�

]
e

n−1∑
k=0

( i
�

pk (qk+1−qk )−εH (pk ,qk ))
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the momentum pk by i�ψ†(x) and to replace the sum over the “continuous index”
x by an integration, that is

Tr e−βH =
∫

[dψdψ†] e
−

n−1∑
k=0

∫
[ψ†(x,τk )(ψ(x,τk+1)−ψ(x,τk ))+εH (ψ†(x,τk ),ψ(x,τk ))]d3x

.

In arriving at this form for the partition function, we have not at any time explic-
itly defined how to go from a discrete formulation in which the path integrals are
well-defined to the continuous formulation we have just written down. Mathemat-
ically, the continuous form is not well-defined. To be explicit, we must replace
all continuous variables by approximate discrete indices. The extra complication
that arises is that now that the coordinates and momenta describing our system
are labeled by two different continuous variables, x and τ . A simple discretization
which makes the integral well-defined is to confine x and τ to the sites of a discrete
four-dimensional cubic lattice. Let the spacing between adjacent points on this lat-
tice be a, then the discretization in the τ direction is to allow τ to take only the values
τ = kτ a for kτ = 0, . . . , Nτ with Nτ a = �β, and to allow x to take only the values
x = a(kx î + ky ĵ + kzk̂) for kx , ky, kz taking values 1, . . . , N with (Na)3 = V , the
volume in which the system is confined. With this discretization, the formal symbol
[dψdψ†] can be defined as

[dψdψ†] =
∏
x,τ

dψ†(x, τ )dψ(x, τ ).

To continue we then proceed as for the quantum mechanical particle and notice that
the difference (ψ(x, τk+1) − ψ(x, τk)) /ε approaches the derivative � d/dτψ(x, τ )
as ε → 0. In doing so the exponential in the previous expression for the path integral
will be multiplied with an overall factor ε allowing us to replace the sum over k by
an integral over τ , that is

Tr e−βH =
∫

[dψdψ†] e−
1
�

SE [ψ,ψ†]

where

SE [ψ, ψ†] =
�β∫

0

dτ

∫
V

d3x ψ†(x, τ )

(
�

d

dτ
− �

2

2m
∇2

)
ψ(x, τ ) d3xdτ,

where the x-integral is over the volume of the box. In order to reproduce the trace
over all states we must supplement this functional integral with periodic boundary
conditions on ψ(x, τ ),

ψ(x, τ + �β) = ψ(x, τ ) .
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Having arrived at a path integral representation of Tr e−βH we will now complete
the path integral representation of the partition sum by including the chemical
potential. This is now an easy matter. Recalling from Chapter 9 that the particle
number operator is given by N = ∫

d3x�†(x)�(x), we can include the chemical
potential simply by redefining the action as

SE [ψ, ψ†] =
∫

ψ†(x, τ )

(
�

d

dτ
− �

2

2m
∇2 − µ

)
ψ(x, τ ) d3xdτ.

Although our derivation of the path integral formula for the partition function in
quantum field theory was heuristic, this is the correct generalization of the quantum
mechanical expression as can be shown using an approach with coherent states. We
will not give a proof of this claim at present (see, however, the literature at the
end of this chapter) but instead will consider a concrete example, both as a test of
the proposed path integral formula and also in order to gain some familiarity with
the formalism. For this we consider the free non-relativistic particle with vanishing
chemical potential in a cube of length L , treated in Chapter 9.

We first consider the measure, [dψdψ†]. For this we expand ψ and ψ† in terms
of eigenfunctions of the momentum operator, that is

ψ(x, τ ) = 1√
V

∑
n,k

cn,k ei 2π
�β

nτ eik·x ,

and similarly for ψ†(x, τ ), where k = 2πn/L as explained in Chapter 9, and cn,k

are complex numbers. In terms of the cn,k we then define the measure simply as an
infinite-dimensional Lebesgue measure, i.e.

[dψdψ†] ≡
∏
n,k

dcn,kdc†n,k .

On the other hand, substituting this expansion in the action the path integral expres-
sion for the partition function then becomes

Tr e−βH =
∫ ∏

n,k

dcn,kdc†n,k e
−∑

n,k
c†n,k

(
2π in+β �

2k2

2m

)
cn,k

.

Performing these Gaussian integrals, remembering that dzdz̄ = 2dRe(z)dIm(z), we
end up with

Tr e−βH =
∏
n,k

(
in + β

ε(k)

2π

)− 1
2

= β
ε(k)

2π

∏
n≥0,k

(
n − iβ

ε(k)

2π

)− 1
2 ∏

n≥0,k

(
n + iβ

ε(k)

2π

)− 1
2

.
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Note that this result can only be formal, since the right-hand side is divergent.
However, we can define the right-hand side using analytic continuation. For this
we use the ζ -function definition of the determinant of an operator A. That is, we
use that if λn , n = 1, . . . are the eigenvalues of A, then the determinant of A is
given by det A = e−ζ ′A(0). The proof of this result is short but instructive. We leave
it as an exercise to the reader. In the present situation we will first keep k fixed and
consider

ζA(s) =
∞∑

n=0

(n + x)−s

≡ ζH (s; x) .

This series is known as the Hurwitz zeta function. It converges absolutely for
Re(s) > 1, and the function so defined may be analytically continued to the entire
complex plane. There is a single pole at s = 1. Furthermore, the derivative of the
Hurwitz zeta function at s is known to be

ζ ′H (0; x) = ln(�(x)/
√

2π ) .

Substituting this result in the ζ -function definition for determinants we have thus
succeeded in extracting a finite result from the formally infinite product over n.
This process is called zeta function regularization. It is commonly used to deal
with divergences in quantum field theory. Let us now substitute this result for the
right hand of the partition function. We then have

Tr e−βH =
∏

k

β
ε(k)

2π
eζ ′H

(
0;−iβ ε(k)

2π

)
+ζ ′H

(
0;+iβ ε(k)

2π

)

=
∏

k

β
ε(k)

2π

�
(− iβ ε(k)

2π

)
�
(
iβ ε(k)

2π

)
2π

.

On the other hand we have the identity �(iy)�(−iy) = π (y sinh(πy))−1, so
that

Tr e−βH =
∏

k

1

2 sinh
(
β ε(k)

2

)
=
∏

k

eβ ε(k)
2

1 − e−βε(k)
.

The latter form is convenient for comparison with our previous result for the partition
function for a non-interacting boson in Chapter 7. Indeed recalling that the grand
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canonical potential, � is given by − 1
β

ln Z , where Z = Tr e−βH, we have

� = 1

β

∑
k

ln
(
1 − e−βε(k)

)− 1

2
βε(k) .

Thus we reproduce the grand canonical potential found in Chapter 7 up to the extra
term

∑
k

1
2ε(k). This extra term is related to the ambiguity in the ordering of operators

in the Hamiltonian discussed in Chapter 9. Indeed, comparing our last two formulas
with the corresponding formulas for the Bose–Einstein system in Chapter 7, it is
easily seen that the two results are related by a shift n → n + 1

2 . Finally we recall
that we have set the chemical potential to zero the present calculation. However, it
is not hard to see how the different steps are modified for non-vanishing chemical
potential. We leave this calculation as an exercise to the reader.

Having successfully guessed the correct generalization of the quantum mechan-
ical path integral to quantum field theory we may now try to find the correct expres-
sion for fermions. Recalling our treatment of fermions in the quantum field theory
formulation we note that the basic modification when going from bosons to fermions
was to replace commutators by anticommutators. Explicitly,

{�(x), �(y)} = 0 {�(x), �†(y)} = δ3(x − y) {�†(x), �†(y)} = 0.

The rules developed in this section tell us that, to generate the path integral, we
should switch from quantum operators to classical coordinates, momenta or fields.
The simplest suggestion to obtain the functional integral expression for the par-
tition sum for fermions is replace the commuting integration variables ψ and ψ†

in the bosonic path integral by anticommuting variables ψ(x, τ ) and ψ†(x, τ ),
satisfying

{�(x, τ ), �(y, τ )} = {�(x, τ ), �†(y, τ )} = {�†(x, τ ), �†(y, τ )} = 0.

Again this turns out to be the correct generalization as can be shown by using a
fermionic version of coherent states. Note, however, that for fermions, the periodic
boundary conditions in τ have to be replaced by anti-periodic ones, i.e.

ψ(x, τ + �β) = −ψ(x, τ ).

Of course, the path integral obtained in this way is not defined until we give a
proper definition of the measure [dψdψ†] for anticommuting fields. Again we will
first assume that x and τ are discrete so that measure can be defined point wise.
To simplify the discussion we first consider the case of two anticommuting vari-
ables, α1 and α2, with {α1, α2} = 0. Such variables are called Grassman variables.
The algebra generated by linear combinations of products of the generating set of



266 Path integrals

Grassman variables is the Grassman algebra. A general element f (α1, α2) in the
algebra generated by the set {α1, α2}, for example, takes the form

f (α1, α2) = f (0) + f (1)
1 α1 + f (1)

2 α2 + f (2)α1α2

where the coefficients f (k) are complex numbers. Products can contain at most one
power of each different generator αi since the anticommutation relation {αk, αk ′ } =
0 implies, in particular, αkαk = 0. Furthermore, products which differ only in their
ordering are linearly dependent since we can reorder these products using the
anticommutation relations at the cost of multiplying by a commuting number ±1.
For example we have α1α2 = −α2α1. We find therefore that the algebra generated
by α1, α2 is four-dimensional since there are exactly four linearly independent
products of the generators.

A product containing an even number of Grassman variables is said to be even
while a product containing an odd number of Grassman variables is said to be odd.
Even products commute with even and odd products. Odd products anticommute
with odd products but commute with even products.

To define the path integral for Fermi–Dirac particles we first need to introduce the
concepts of differentiation and of integration on Grassman algebras. Differentiation
with respect to a Grassman variable αi is defined by the basic relation

∂

∂αi
α j = δi, j

while ∂/∂αi z = 0, if z is a complex number. When differentiation acts on prod-
ucts, then the rule is to allow it to act in turn on each factor in a product by
first anticommuting that factor to the leftmost position in the product. Thus, for
example,

∂

∂αi
(α j f (α)) =

(
∂

∂αi
α j

)
f (α) − α j

∂

∂αi
f (α).

Integration for classical functions is defined to be the inverse of differentiation.
For Grassman variables this is reversed as are so many other properties of these
variables. For Grassman variables therefore we formally define integration as the
linear functional ∫

dαi f (α) = ∂

∂αi
f (α).

The fundamental reason for doing it this way is simply, as we shall see presently,
that it allows us to define a useful path integral.

We shall be interested in defining the equivalent of multidimensional integrals
of elements of the Grassman algebra generated by the set of Grassman variables
{αi , α

†
i |i = 1, . . . , n}. To simplify the notation, we will adopt some conventions
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which we now define. A function (algebra element) f (α†) depending on the α†

variables only has the standard expansion:

f (α†) = f (0) +
∑

i

f (1)
i α†

i +
∑
i< j

f (2)
i j α†

iα
†

j + · · · + f (n)α†
1α

†
2 . . . α†

n.

A function g(α) depending on the α variables only has the standard expansion:

f (α†) = g(0) +
∑

i

g(1)
i αi +

∑
i< j

g(2)
i j α jαi + · · · + gnα1α2 . . . αn.

Note that the ordering of the Grassman variables in the individual terms in g(α) is
exactly opposite to that for f (α†). This convention makes Hermitian conjugation
straightforward. We have for example, that

(zα†
iα

†
j )
† = z∗α jαi

so that if g(α) = ( f (α†))†, then g(0) = ( f (0))∗, g(1)
i = ( f (1)

i )∗, etc. Here z∗ denotes
the complex conjugate of the complex number z.

A multidimensional Grassman integral I of a function g(α) and f (α†) is written
in the shorthand form as

I =
∫

[dα†dα]g(α) f (α†)

and defined explicitly as

n∏
i=1

(∫
dα†

i

∫
dαi

)
g(α) f (α†).

Note that we do not explicitly need to worry about the ordering of the pairs dα†
i dαi

in the product since the anticommutation relations imply(∫
dα†

i

∫
dαi

)(∫
dα†

j

∫
dα j

)
=
(∫

dα†
i

∫
dαi

)(∫
dα†

j

∫
dα j

)
.

We must however be careful to keep track of the ordering of dα†
i and dαi in an

individual term.
With these conventions, the fermionic path integral is now defined point wise

for a discrete set of points x and τ . For continuous variables the measure is then
defined formally in complete analogy with the bosonic case.

11.3 Real time path integral

So far we have presented the path integral representation of the finite temperature
partition sum Tr e−βH. On the other hand, in our presentation of quantum field theory
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we saw that the partition sum can be written as the trace of the evolution operator
U(T, 0) evaluated for imaginary time T = −i�β. The question which we will now
address is whether there is a path integral expression for this evolution operator for
real T . On a formal level this is easily seen to be the case. Indeed starting from the
phase space path integral expression we can implement evolution in real time simply
by “rotating” ε by a phase ei( π

2 −δ), where δ > 0 and small ensures the convergence
of the Gaussian integrals. It is clear that the transformed operator e−iεH describes
an infinitesimal evolution in real time. On the other hand we can substitute ε → iε
in the path integral formulas. This has the effect of multiplying the exponential by
an overall factor i and furthermore changes the sign of the kinetic term since this
term involves two time derivatives. Thus we end up with the expression

C
∫

[dq] e
i
�

S[q(τ )] ,

where S[q(τ )] = ∫
dt( m

2 q̇2 − V (q)) is the familiar classical action for a point par-
ticle. A new issue that arises in the real time path integral concerns the boundary
conditions for q(t). Indeed for a real time evolution periodic boundary conditions
are not a natural choice. Rather one would fix the initial and final position of the
particle, q(0) and q(T ). The interpretation of the path integral with these boundary
conditions is now clear: it corresponds to matrix elements of the evolution operator
U(T, 0), that is

〈q f |U(T, 0)|qi 〉 = C
q(T )=q f∫

q(0)=qi

[dq] e
i
�

T∫
0

dt L(q,q̇)
.

This analytic continuation in the time variable is then readily generalized to the
quantum field theory description. Indeed letting τ = it in our path integral formula
for the partition sum we get ∫

[dψdψ†] e
i
�

S[ψ,ψ†]

with

S[ψ, ψ†] =
∫

ψ†(x, t)

(
�

i

d

dt
− �

2

2m
∇2

)
ψ(x, t) d3xdt .

The boundary conditions for ψ and ψ† at t = 0 and t = T are dictated by the
physical set up of the system. For instance for a scattering experiment one would
impose that ψ and ψ† approach plane waves with wave vectors corresponding to
the momenta of the scattered particles.
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11.4 Relativistic scalar field

We close this short introduction to path integrals with a few comments on rel-
ativistic quantum field theory. To continue with our habit of using suggestive
arguments in this chapter we proceed heuristically referring the interested reader
to some of the many specialized books on this subject listed at the end of this
chapter. In order to guess the modifications arising when dealing with a relativis-
tic quantum field theory we recall from our discussion in Section 9.9 that there
are two key changes in a relativistic theory. First, the relativistic dispersion rela-
tion becomes ε2(p) = c2(p2 + m2c2) and second the relativistic field operator is
self-adjoint, i.e. �†(x, t) = �(x, t). Both of these modifications are easily imple-
mented in the path integral. This amounts simply to replacing the path integral
by ∫

[dψ] e
i
�

S[ψ]

with real time action

S[ψ] = 1

2

∫
ψ(x, t)

(
�

2d2

c2dt2
− �

2∇2 + m2

)
ψ(x, t) d3xdt.

Indeed, comparing this action with the last formula in the previous section and
recalling the expansion of the field operator in Section 9.9 confirms that this is the
correct modification.

In order to obtain the relativistic generalization of the partition sum we then have
to return to the imaginary time formalism, that is we let t = −iτ so that

Tr e−βH =
∫

[dψ] e−
1
�

SE [ψ]

with imaginary time action

SE [ψ] = 1

2

∫
ψ(x, τ )

(
− �

2d2

c2dτ 2
− �

2∇2 + m2

)
ψ(x, τ ) d3xdτ,

where the τ -integral ranges from 0 to �β. This is then the correct partition sum for
a relativistic boson without conserved number of particles, or, equivalently, with
vanishing chemical potential.

Problems

Problem 11.1 If Aun = λnun, λn �= 0, n = 1, . . . ,∞, show that formally
det A = e−ζ ′A(0). Here ζA(s) =∑

1/λs
n is the zeta function of the operator A and

ζ ′A(0) = dζA(s)/ds|s=0.
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Problem 11.2 Find the path integral representation of the partition function for a
bosonic non-relativistic scalar field with non-vanishing chemical potential.

Problem 11.3 Evaluate the Grassman integral

n∏
i=1

(∫
dα†

i

∫
dαi

)
e

n∑
i, j=1

α†
i Ai j α j

for a Hermitian matrix Ai j and compare the result with the corresponding Gauss
integral for commuting variables.

Problem 11.4 Explain the appearance of the anti-periodic boundary condition

ψ(x, τ + �β) = −ψ(x, τ ) .

for the fermionic path integral and compute the partition function for free,
non-relativistic fermions in the path integral formalism. Compare the result with
the corresponding result in Chapter 7.

Problem 11.5 Find the path integral representation of the matrix element
K (t, q, q ′) = 〈q|U(T, 0)|q ′〉 for a free, quantum mechanical particle in the path
integral representation and show that it satisfies the Schrödinger equation
i�∂t K (t, q, q ′) = HK (t, q, q ′).

Historical notes

The idea of introducing path integrals via the superposition principle in quantum
mechanics was suggested by Dirac in 1933 and later developed by Stueckelberg
and Feynman in the 1940s. At the same time Schwinger developed an equivalent
approach based on functional differentiation. The adaption of the formalism to sta-
tistical mechanics as presented in this chapter is due to Kac. Initially the functional
approach to quantum mechanics was regarded with some skepticism due to the
problem of defining a proper measure on the space of paths. However, nowadays
the use of path integrals is the most common approach in quantum field theory with
the additional advantage that it provides a unified and intuitive view of quantum
mechanics, field theory, and statistical mechanics.

Further reading

An expanded version of Feynman’s original derivation of the path integral for
quantum mechanics can be found in R. P. Feynman and A. R. Hibbs, Path Inte-
grals and Quantum Mechanics, McGraw-Hill (1965). The extension to Fermi–
Dirac particles is given in F. A. Berezin, The Method of Second Quantization,
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Academic Press (1966). An advanced text with applications of path integrals in
many-particle physics is J. W. Negele and H. Orland, Quantum Many-Particle Sys-
tems, Addison-Wesley (1987). Further applications of path integrals can be found
in H. Kleinert, Gauge Fields in Condensed Matter Vol I, World Scientific (1989).
A thorough presentation of path integrals in quantum mechanics and relativistic
quantum field theory can be found in C. Itzykson and J.-B. Zuber, Quantum Field
Theory, McGraw-Hill (1988). For a rigorous definition of the measure in functional
integrals see J. Glimm and A. Jaffe, Quantum Physics, a Functional Integral Point
of View, Springer (1981).
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A second look

It is time now to review the progress we have made so far. Our starting point was the
fundamental atomic nature of matter. We also assumed that interactions between
individual atoms and molecules are governed by the laws of mechanics, either
classical or quantum depending on the particular circumstances. In the first chapter
we developed a simple qualitative picture of the way molecules interact in a complex
system. This qualitative picture allowed us to describe classical thermodynamics. In
particular we were able to introduce the key concepts of equilibrium, temperature,
entropy, and we were able to point out that complex systems in equilibrium can
be well described with only a very small number of state variables. Given that
matter is made of very large numbers of independent atoms or molecules this is an
extraordinary result.

In the second chapter we began the process of formalizing the qualitative link
from mechanics to thermodynamics. The formal development starts of course with
mechanics. Mechanics on its own, however, is not enough, as it does not contain the
concept of thermal equilibrium. The solution we presented was to define thermal
equilibrium probabilistically, and the theory which results is statistical mechanics.
This solution requires a fundamentally new idea which is not present in mechanics.
Once this idea is accepted, the further development of the subject is straightforward
if perhaps technically challenging.

Statistical mechanics is a very successful physical theory. In this book, we have
applied it to a variety of systems including non-interacting and interacting gases,
paramagnetic and spin systems, quantum systems with both Bose and Fermi statis-
tics, astrophysics, helium superfluids and solids. These applications represent only
a very small fraction of all the systems which have been successfully analyzed
within statistical mechanics.

The success of statistical mechanics as a theory of nature, therefore raises the
question of whether the probabilistic postulate upon which it is based is funda-
mental, or can be understood as a consequence of the laws of mechanics. In this

272
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chapter we address this issue briefly. The particular puzzles we address will include
time reversibility, proofs of whether systems ever reach equilibrium, the meaning
of temperature and its molecular basis, and ergodicity and mixing which represent
attempts to understand statistical mechanics on a molecular basis.

Since we are reviewing progress we will also address some important techni-
cal issues which can arise. These include the possibility of negative temperature,
the subtleties in replacing sums by integrals in partition function calculations, the
intriguing question of zero-point energy in quantum systems, and the complications
which can arise when internal degrees of freedom are included in partition function
calculations.

12.1 The connection – reversibility

There is a profound difference between the laws of mechanics and the laws of
statistical mechanics. The underlying laws of mechanics are invariant under time
reversal. Given two states of a mechanical system there is no intrinsic way of
determining which is the earlier and which is the later configuration. This is not
the case in statistical mechanics. For an isolated system, the earlier state will have
smaller entropy compared to the later state. Statistical mechanics thus provides an
arrow for the direction of time. In order to understand the postulates of statistical
mechanics on a microscopic basis the emergence of this arrow of time has to be
understood.

The chaotic nature of complex systems is one possible explanation of irreversibil-
ity. In a chaotic system, very small changes in initial conditions cause very large
changes in the trajectories followed. Thus to arrange that a mechanical system
follows a prescribed time-reversed path, it is necessary to describe the initial con-
ditions defining that reversed path to infinite precision. Any slight deviation will
cause the system to follow a different path, and once generated, this difference will
diverge rapidly from the trajectory we would like it to follow. From this standpoint
the lack of reversibility present in complex systems is due to the impossibility of
specifying configurations with infinite precision. There is an “infinite information”
barrier, representing the infinite precision involved, which prevents complex sys-
tems from being time-reversal invariant. Deciding whether a given complex system
is governed by these ideas of “chaotic” dynamics is not easy. Indeed no working
mathematical formulation of these ideas as applied to statistical mechanics has even
been suggested, let alone been implemented.

However, the properties of complex systems in equilibrium are very well
described by statistical mechanics. It is therefore reasonable to think of this break-
down of time-reversal symmetry in complex systems as a law of nature as funda-
mental as the laws of mechanics themselves.
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12.2 Poincaré recurrence

An important obstacle to combining the laws of mechanics with statistical mechan-
ics consistently is encoded in the Poincaré recurrence, which is a property of
any generic classical and, in fact, quantum mechanical system. We will describe
Poincaré recurrence in this section.

12.2.1 Classical recurrence

Consider a system of N – possibly interacting – molecules in a box of finite volume
V . Assume that this system is in a given configuration at time t = 0, not necessarily
in thermal equilibrium. This configuration is then described by a point x(0) in the
phase space P of this system. The dynamics of the system, which is assumed to be
governed by some Hamiltonian is then described by the corresponding Hamiltonian
flow

gt : P → P
x(0) "→ x(t) ,

introduced in Chapter 8. Now, if there is a direction of time, we would not expect
the system to return to this initial configuration at any later time. However, this
expectation is contradicted by the following theorem of Poincaré.

Theorem 12.1 Let g(x) be a continuous, volume-preserving one-to-one mapping
which maps a bounded region D ∈ Rn to itself, gD = D. Then in any
neighborhood U of any point x ∈ D there is a point x ′ ∈ U which returns to U ,
i.e. gnx ∈ U for some n > 0.

This theorem applies to the present situation since, as we know from Liou-
ville’s theorem in Chapter 8, the Hamiltonian flow is volume-preserving. It is also
invertible since we can simple replace t by −t . Finally the phase space P for N
particles in a box is bounded since for any finite energy configuration the momenta
of the particles are bounded. Thus Poincaré’s theorem implies in particular that
any non-equilibrium configuration will eventually return to a configuration which
is arbitrarily close to this configuration. Note, however, that the time necessary for
this recurrence to occur can be rather long. As an estimate trec � eN . So if the
number of particles in the system is large enough this recurrence time can easily
be made comparable with the age of the Universe. The problem posed by Poincaré
recurrences is thus of a conceptual nature.

Proof. Consider the sequence U, gU, . . . , gmU, . . . All elements in this sequence
have the same volume. If all elements of this sequence were non-intersecting, then
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necessarily the volume of D would have to be infinite. Thus

gkU ∩ glU �= O/ some k, l

or, equivalently, gnU ∩U �= O/, n = k − l. If y is in this intersection, then y = gnx
for some x ∈ U . Thus x and gnx are both in U . �

12.2.2 Quantum recurrence

Let us now turn to Poincaré recurrence in quantum mechanics. Instead of the bound-
edness of the phase space in the classical system we require finiteness of the entropy.
In Section 3.4 we argued that the entropy, S, is related to the density of states w(E)
through S = k ln w(E). On the other hand, w(E) is inversely proportional to the
difference between energy levels, �E . Thus �E ∝ e−

1
k S .

Let us now consider the Schrödinger wave function of a quantum mechanical
system which, for simplicity, we take to be identical bosons with no extra quantum
numbers. Expanding the wave function in terms of eigenfunctions of the Hamilto-
nian we have

ψ(t, x1, . . . , xN ) =
∞∑

i=0

ψi (x1, . . . , xN ) e−
i
�

εi t ,

where it is assumed that the wave function is normalized, i.e.
∑

i ||ψi ||2 = 1. The
quantum recurrence is then a consequence of the following

Theorem 12.2 There exists a time t∗ such that ψ(t∗) is arbitrarily close to ψ(t),
that is

||ψ(t∗) − ψ(0)|| < η

for arbitrarily small η > 0.

Proof. To show this we expand the norm above in terms of the eigenmodes,

||ψ(t∗) − ψ(0)|| =
∞∑

i=0

2||ψi ||2
(

1 − cos
(εi

�
t∗
))

≤ 4.

Since all terms in this sum are non-negative there exists an integer I > 0 such that
∞∑

i=I+1

2||ψi ||2
(

1 − cos
(εi

�
t∗
))

≤ η

2
.

It is therefore enough to prove that

I∑
i=0

2||ψi ||2
(

1 − cos
(εi

�
t∗
))

≤ η

2
.
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This however follows from a classic theorem by Bohr and Wennberg. Indeed,
since the finite sum above is a quasi-periodic function, this theorem asserts that
for any δ > 0 there is a set of integers Ni and a dense set of values t∗(δ, Ni ) such
that ∣∣∣∣εi t∗

�
− Ni 2π

∣∣∣∣ < δ.

This then implies that

I∑
i=0

2||ψi ||2
(

1 − cos
(εi

�
t∗
))

≤
I∑

i=0

2||ψi ||2 δ2

2

which gives the desired bound for δ2 ≤ η

2 . �

In spite of this negative result attempts to put the foundations of statistical
mechanics on a molecular basis have persisted and have led to the emergence
of two key concepts. These are the concepts of ergodicity and of mixing to which
we now turn.

12.3 Ergodicity

Consider the following simple example. We have a particle moving on the surface
of a torus. The torus can be thought of as the constant energy surface in phase space.
The torus is described in terms of the phase space variables p, q of the particle with
0 < p < 1 and 0 < q < 1 and by imposing periodic boundary conditions. Now
suppose the equations of motion of the particle are given by

dp

dt
= α

dq

dt
= 1

Solving these equations, the phase trajectory of the particle is given by

p = p0 + α(q − q0).

If α is a rational number, α = m/n, the trajectory will be periodic and repeat
itself after a period of time T = n. If α is irrational the trajectory will never close.
Let us examine the case when α is irrational more closely. Since the phase space
is periodic any integrable function f (p, q) can be expanded in a Fourier series
as

f (p, q) =
∑
l,m

flm e2π i(pl+qm).
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We now claim that the time average of f (p, q) is the same as its phase space average
for this system. The time average is given by

< f >T= lim
T→∞

1

T

∫ t0+T

t0

dt
∑
l,m

flm e2π i(p(t)l+q(t)m).

From the equations of motion we have

q(t) = q0 + t

p(t) = p0 + αt

For α irrational this gives

< f >T= f00

On the other hand the phase space average of f (p, q) is given by

< f >s=
∫ 1

0

∫ 1

0
dpdq f (p, q).

Evaluating the integral using the Fourier series representation for f (p, q) we again
get

< f >s= f00

which establishes the claim.
A dynamical system which has the property that the time average of any function

of the phase space variables is equal to its phase space average, is said to be ergodic.
The example we have considered of a particle on a torus is thus an ergodic system.

The phase space trajectory of an ergodic system covers all of the available phase
space over time. It would seem that a dynamical system with such a property could
provide a basis for the postulates of statistical mechanics. For such a system, if
a probability distribution function over phase space can be chosen so that it is
constant on a subspace of constant energy then the phase space average of any
function using this probability distribution would be equal to the time average
of the same function. Such a picture would justify the postulates formulated for
the micro canonical ensemble. There would remain the problem of justifying why
a result involving an infinite time average is relevant for real systems studied in
statistical mechanics since statistical mechanics is only valid for systems over a
limited time range. For real systems we know that the time of observation must
be much greater than some microscopic timescale of the system and at the same
time be smaller than a timescale set by the macroscopic properties of the system
and its environment. For instance water in a container in a room can be thought
of as being in equilibrium with its environment for a few hours but after a few
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days the container will be empty. The water will have evaporated into the room. To
treat this problem by taking the limit as T →∞ can be justified only if the ratio
of the appropriate microscopic timescale τ of the system is much smaller than the
observation time T . In this case T = Nτ with N a very large number.

It is important to note that for ergodic systems a distribution in phase space will
not automatically tend to the uniform distribution assumed in statistical mechanics.
An example will make this clear. Consider the distribution in phase space

ρ(p0, q0, 0) = sin(πp0) sin(πq0)

in the example considered earlier. After time t this distribution will become

ρ(p0, q0, t) = sin (π (p0 − αt)) sin (π (q0 − t)) .

The distribution has not spread out. Its shape has not changed. All that has happened
is that it has been displaced in phase space. The example shows that an arbitrary
phase space distribution in an ergodic system does not always tend to a uniform
distribution in phase.

In order to get round this difficulty the concept of mixing has been suggested
by some authors. This property corresponds intuitively to requiring that any initial
distribution in phase space must ultimately spread throughout phase space as time
progresses. Systems with the mixing property are ergodic but as we saw in our
example the converse is not true.

12.4 Equipartition law and temperature

In Chapter 1 the argument was made that collisions between molecules would
result in the system reaching a state of equilibrium in which the entire system of
molecules would have a well-defined average kinetic energy. The fast molecules,
it was suggested, as a result of collisions would on average be slowed down while
the slow molecules would similarly be speeded up. This expectation provided a
molecular basis for the equipartition law of energy which in turn led to the concept
of thermal equilibrium formalized in the zeroth law of thermodynamics. In this
section we reconsider this argument critically. We also point out some peculiarities
about negative temperatures.

12.4.1 Equipartition law

Adapting the argument of Chapter 1 to a solid, one assumes that the equipartition
law of energy will hold for a system of harmonic oscillators, regarded as a model for
a solid. Here the molecular basis for equipartition was expected to follow from the
interaction between the harmonic oscillators. These interactions could be modeled
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by including non-linear terms. (Without such non-linear terms the harmonic oscil-
lators could never share their energies.) A redistribution of energy between the dif-
ferent modes could only result if non-linearities, representing interactions between
different modes, are present in the system. These “interaction terms” would lead
to “scattering” between different modes and thus lead to the equipartition law of
energy. A justification for the zeroth law of thermodynamics for a solid would then
have been achieved.

In 1955 Fermi, Pasta, and Ulam (FPU) proceeded to check if this was the case
by studying the vibrations of particles connected by non-linear springs in one
dimension. The solution of the non-linear problem was carried out on an electronic
computer which had just been developed.

Much to their surprise FPU found that the system did not approach an equilibrium
state with all modes of the system sharing energy. The energy was shared only
among a few low-energy modes of the system. This conclusion was tested by
varying the type of non-linearity introduced but no qualitative difference in the
result occurred.

The behavior discovered by FPU is now well understood in terms of a theorem
due to Kolmogorov, Arnold, and Moser (KAM). This theorem states that for a
system with weak anharmonic couplings most of the constant energy surface in
phase space will consist of confined regions known as invariant tori. The system
will remain in these regions even under small perturbations. As the perturbations
increase these invariant regions break down and, at some point, a transition to
chaotic behavior occurs. At this stage something similar to the equipartition law
emerges. Thus the justification for the zeroth law of thermodynamics on a molecular
basis is more involved than had originally been suspected.

12.4.2 Negative temperatures

We now turn to the curious possibility of the temperature being negative. As an
example of how this can happen let us consider the quantum version of the param-
agnetic model considered in Chapter 2. Each dipole can now be in one of two energy
states, namely E− = −µB and E+ = µB (µ > 0) so that the partition function is
simply

Z (β) = (e−µβ B + eµβ B)N .

The probability that the system is in the energy state E+ = µB is

P(E+) = e−µβ B

Z (β)
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while the probability of the dipole being in the energy state E− = −µβ is

P(E−) = eµβ B

Z (β)
.

Thus

P(E+)

P(E−)
= e−2µβ B .

This expression implies that the energy E+ > E− is less probable as the tempera-
ture is lowered. In particular, P(E+)/P(E−) → 0 as β →∞. This is the normal
situation.

There are situations, however, where population inversions can occur, that is,
where the higher energy states are more populated than the lower energy states.
An example of such a situation is a crystalline system with special nuclear spin
properties. The nuclear moments of the crystal have a relaxation time t1 for mutual
interaction of nuclear spins which is very small compared to the relaxation time t2
for interaction between the nuclear spins and the lattice. If such a crystal is placed
in a strong magnetic field which is then quickly reversed then the spins are unable
to follow the switch over. This leaves the system in a state in which the nuclear spin
states of high energy are more numerous than those of lower energy. The system
will remain in this state for a time of the order of t1. During this time, we can
say the system is in a negative temperature state since the anomalous population
inversion can be obtained by reversing the sign of temperature in the expression
above. Experimentally such systems have been observed.

It is amusing to work out the thermodynamic properties of our simple model for
both positive and negative temperatures. The free energy of the system is

F = − 1

β
ln Z (β)

= −NkT ln

[
2 cosh

(
µB

kT

)]

from which it follows that

S = Nk

[
ln

[
2 cosh

(
µB

kT

)]
− µB

kT
tanh

(
µB

kT

)]

U = F + T S = −NµB tanh

(
µB

kT

)

M = −
(

∂ F

∂ B

)
T

= Nµ tanh

(
µB

kT

)

where S, U and M represent the entropy, internal energy, and magnetization of the
system. Now observe at T = 0 the entropy is equal to zero and U = −NµB. As
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the temperature increases, both S and U increase monotonically. At T = ∞U = 0
and S reaches its maximum value Nk ln 2.

The temperature T = −∞ is physically identical to T = ∞. Both give identical
values for thermodynamic quantities. Finally, at T = 0−, we have U = NµB, its
maximum value. Thus the negative temperature region is not below absolute zero
but above infinite temperature!

Let us now review different arguments for allowing only positive temperatures
in statistical mechanics and thermodynamics. We will find that for systems with
a finite number of finite energy configurations none of these arguments apply. We
first consider the thermodynamic argument.

We recall that in the absolute temperature scale the relation

Q1

T1
= Q2

T2

holds for a reversible Carnot engine which absorbs heat Q1 from a reservoir of
temperature T1 and rejects heat Q2 to a reservoir of temperature T2 where T1 is
bigger than T2. The efficiency, η, of such an engine was defined to be

η = Q1 − Q2

Q1
= 1 − T2

T1
.

If we choose T1 positive then we must have T2 strictly positive. Otherwise the
second law of thermodynamics would be violated. This shows that the temperature
of a reservoir cannot be negative. It has nothing to say about a system with a finite
number of finite energy configurations.

Next we consider the statistical mechanics argument for positive temperature
using the canonical ensemble. We note that the partition function is defined to be

Z (β) =
∑

states

e−βE .

For any system where the sum over energy configurations is infinite, β < 0 would
lead to Z (β) diverging. This is not acceptable, hence we must have β strictly positive
for such systems.

Our final argument for positive temperature considers the entropy, S, of a closed
system in the micro canonical ensemble. We will show that the condition for equi-
librium does not allow the temperature T to be negative. However, as we saw states
of partial equilibrium of a system involving only a finite number of degrees of
freedom can be in a state of negative temperature. Let us now present the argument.

We divide a system in equilibrium into a large number of small (but macroscopic)
parts and let Mk, Ek, Pk denote the mass, energy, and the momentum of the kth
part. The entropy of this system is a function of the internal energy. The internal
energy depends only on the microscopic energy of the state. It cannot depend on
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the net macroscopic motion of the system since such motions can be eliminated
by a suitable coordinate transformation which takes the system from one inertial
coordinate system to another. Thus in the micro canonical ensemble the internal
energy of the kth part is given by

Uk = Ek −
( | Pk |2

2Mk

)

and

S =
∑

k

S(Uk).

If the system is taken to be closed with the total momentum, angular momentum,
and energy conserved then we must have∑

k

Pk = const

∑
k

rk × Pk = const

with rk the coordinate of the center of mass. In the equilibrium state the entropy as
a function of Pk must be a maximum subject to these conservation laws. Using the
method of Lagrange multipliers the condition for the entropy to be a maximum can
be obtained by maximizing

Ŝ =
∑

k

[Sk + λ · Pk + µ · (rk × Pk)]

with respect to Pk . Here λ and µ are the Lagrange multipliers. Using the thermo-
dynamic identity

∂S

∂U
= 1

T
we get

vk = Pk

Mk
= Tλ+ Tµ× rk .

Thus a system in equilibrium characterized by the entropy being maximum cannot
have internal macroscopic motion. The entire system can have an overall translation
velocity T λ and a velocity due to the entire system rotating with constant angular
velocity T µ.

If we now impose the sufficient condition for Ŝ to be a maximum with respect
to variations of Pk we must have

∂2 Ŝ

∂2Pk
< 0
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but

∂2 Ŝ

∂2Pk
= − 1

T Mk
,

and hence T is positive. Therefore a system with negative temperature cannot
be in thermodynamic equilibrium. However, negative temperatures can arise at
intermediate times when two timescales are involved in the approach to equilibrium.
As an illustration we describe, in the next subsection, a system in which mass motion
occurs at intermediate times and which results in negative temperature.

12.4.3 Negative temperatures and turbulence in two dimensions

In our presentation of statistical mechanics we have assumed throughout that the
system is governed by Hamiltonian dynamics. Turbulence on the other hand is dis-
sipative. However, in two dimensions, if the viscosity is small then so is the energy
dissipation. In this regime a statistical mechanics approach may be reasonable. In
this subsection we consider a simple model with negative temperature which could
represent a turbulent fluid in two dimensions. Turbulence is characterized by the
appearance of a large number of eddies or vortices with random chaotic properties.

In fluid dynamics the relevant equation is the Navier–Stokes equation. In the
absence of viscosity this equation reduces to Euler’s equation which, for an incom-
pressible fluid moving with a velocity field v(x, t) is given by

∂v
∂t

+ (v · ∇)v = f , ∇ · v = 0 ,

where f is the net force acting on the fluid of particles. We have also assumed that
the fluid has unit density. In the statistical approach to turbulence f is a random
force and the velocities are assumed to have statistical properties. A simple model
would be to replace v(x, t) by 〈v(x, t)〉 and similarly,

∂〈v〉
∂t

+ (〈v〉 · ∇)〈v〉 = 0 .

In this crude approximation correlations between velocities have been ignored.
Such correlations are an important feature of turbulent flows but the correlations
between velocities of neighboring points is weak and hence this approximation
seems reasonable. It simply states that the average velocity satisfies Euler’s equa-
tion. We have also set 〈 f 〉 = 0.

Motivated by the fact that a turbulent flow contains a large number of vortices
we consider a two-dimensional region D of finite area A containing N localized
vortices of strength ±1. Such a simple characterization of a vortex is possible in
two dimensions. The vorticity strength ξ (x, t) of a fluid of particles moving with
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velocity v(x, t) is defined by

ξ (x, t) = ∇ ∧ v(x, t) .

The kinetic energy of a fluid in two dimensions can also be written in terms of
vorticities since

E = 1

2

∫
D

(v · v)d2x

= 1

4π

∫ ∫
ξ (x)ξ (x′) log |x − x′| d2x d2x ′ + C ,

where C is a boundary term. The vorticity distribution for N localized vortices in
this model can be written as

ξ (x, t) =
N∑

i=1

�i δ(2)(x − xi (t)) , �i = ±1 .

We now describe this system using ideas from statistical mechanics. For this we
recall that in the canonical ensemble the probability for the occurrence of a state
with energy Es is given by

Ps = e−
Es
T

Z
,

where

Z =
∑

s

e−
Es
T = e−

U−T S
T , U =

∑
s

Ps Es

is the partition sum. It should also be stressed that the parameter T introduced here
is not related to the molecular temperature of the underlying fluid. To emphasize
this we have not introduced the Boltzmann constant k in the formula for the partition
function. The entropy is then given by

S = −
(

log Z + U

T

)
= −

∑
s

Ps

(
log Z + Es

T

)
, or

S = −
∑

s

Ps log Ps .

To model N vortices of strength �i = ±1, placed in a region D of finite area
A, we write Ps = f (x1, . . . , xN ), where xi is the location of the i th vortex.
Then

S =
∫

d2x1 · · ·
∫

d2xN f (x1, . . . , xN ) log f (x1, . . . , xN ) .
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The entropy is maximal for constant f (x1, . . . , xN ) = A−N , where A is the area of
the region D. Using this distribution the energy of the system becomes

〈Ec〉 = − 1

4π
N (N − 1)

∫
d2x

∫
d2x ′ log |x − x′| + C.

It is clear that higher values of 〈Ec〉 are possible simply by pushing the vortices closer
together. Hovever, this would mean that the distribution function f (x1, . . . , xN ) is
not uniform and hence represents a configuration with lower entropy. Thus

dS

d〈E〉 < 0

for 〈E〉 > 〈Ec〉. But, on the other hand, dS/d〈E〉 = 1/T . Thus in this model we
again encounter a negative temperature. This is, however, not in contradiction with
the general arguments presented above since this turbulent system is not in equi-
librium.

12.5 Density of states and surface effects

As we saw in Chapter 7, the wave function for a free non-relativistic quantum
particle which satisfies periodic boundary conditions is given by

�lmn(x, y, z) = N e
2π il

L x e
2π im

L ye
2π in

L z

where L is the period and N is a normalization constant. From this solution the
components of the momentum vector of the particle are found to be

k1 = 2π�l

L

k2 = 2π�m

L

k3 = 2π�n

L
.

The density of states in terms of the momentum variables ki = 2π�ni/L is then
given by

�l�m�n = V

(2π�)3
�k1�k2�k3

where V is taken to be the volume within which the particle is confined. We used this
expression to convert sums over states to integrals over momentum variables. We
now reexamine this prescription more carefully. This will lead us to the conclusion
that the density of states for this system includes in it contributions from the surface
of the volume V within which the particle is confined. First we clear up a conceptual
point. In order to identify V as the volume in which the particle is confined it seems
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in line with intuition to set the wave function �(x, y, z) = 0 for x = y = z = L
or 0 rather than require �(x, y, z) be a periodic function of its arguments. Such
boundary conditions correspond to a particle confined within a region by an infinite
potential and hence represent the physical system more accurately. We will call this
the box problem.

We now consider a particle in a box of sides a, b, c. The wave function for the
particle is

�lmn(x, y, z) = N sin

(
lπ z

a

)
sin

(mπ z

b

)
sin

(nπ z

c

)
.

The magnitude of the square of the momentum of this wave function can be deter-
mined by acting on it with the operator −�

2∇2. This gives

k2 =| k2 |= π2
�

2

[
l2

a2
+ m2

b2
+ n2

c2

]

with l, m, n restricted to positive non-zero integer values.
To determine the density of states ρ(k) for this system we proceed indirectly.

We first calculate g(k) which is the function that gives the number of states with
momentum less than or equal to k. Once g(k) is known, ρ(k) can be determined
from the equation ρ(k) = dg(k)/dk. Now

g(k) =
∑
l,m,n

′
f (l, m, n)

where f is the characteristic function on the set of positive integers,

f (l, m, n) =
{

1 where l, m, n = 1, 2, 3, . . .

0 otherwise ,

and
∑′ signifies that the natural numbers l, m, n over which the summation is

carried out must satisfy the inequality

l2

a2
+ m2

b2
+ n2

c2
≤ k2

π2�2
.

We note that g(k) is defined over the first quadrant in the space of integers excluding
zero. This restriction can be removed by writing

g(k) = 1

8

[∑
l,m,n

′
f ∗(l, m, n) −

(∑
l,m

′
f ∗(l, m, 0) +

∑
l,n

′
f ∗(l, 0, n) +

∑
m,n

′
f ∗(0, m, n)

)

+
(∑

l

f ∗(l, 0, 0) +
∑

m

f ∗(0, m, 0) +
∑

n

f ∗(0, 0, n)

)
− 1

]

where f ∗(l, m, n) = 1 for integral values of l, m, n and is zero otherwise.
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The first term is an overcount of the states in g(k) as it includes states with any
one of the labels l, m, n equal to zero. The second factor corrects for this but in
the process overcompensates since each factor in the second term contains terms
in which more than one of the labels is zero. The third and fourth terms can be
similarly understood.

The advantage of writing g(k) in this form is clear. The first term represents
the number of lattice points contained within and on an ellipsoid whose defining
equation is

x2

a2
+ y2

b2
+ z2

c2
= k2

π2�2
.

Similarly the second set of terms counts the number of lattice points on or within
an ellipse corresponding to the respective cross-sections of the ellipsoid. These are
all geometrical objects. For large values of ak/π�, bk/π�, ck/π� we can make
the asymptotic replacement

1

8

′∑
→ 1

8
V
∫ ′

dxdydz = V
k3

6π2�3

where the standard expression for the volume of the ellipsoid has been used. In a
similar manner the second set of terms become surface integrals over the area of an
ellipse and the third set of terms are approximated by line integrals. Thus for large
k values we have

g(k) = V
k3

6π2�3
− S

k2

16π�2
+ L

k

16π�
− 1

8
+ E(k)

where E(k) is the error made by replacing the sums by integrals. It is now a simple
matter to derive the density of states function ρ(k). We have

ρ(k) = V
k2

2π2�3
− S

k

8π�2
+ · · ·

The first term is precisely the expression for the density of states we had obtained
with periodic boundary conditions since V/(2π�)3d3k = V/(2π�)34πk2dk =
ρ(k)dk gives ρ(k) = V k2/2π2. Thus when the dimensions of the box are large
both types of boundary conditions lead to the same density of states.

12.6 Zero-point energy

Before the discovery of quantum mechanics Planck suggested on the basis of semi-
classical arguments to modify the expression for the energy of a harmonic oscillator
from nhν to (n + 1

2 )hν. It was subsequently realized by Stern and Pauli that the
presence of this extra term for a collection of molecules would have experimental
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consequences. The extra term 1
2 hν is the zero-point energy of the oscillator. It is

present even when the system is in its lowest energy configuration. If this term
was not present in the vibrational energy of a complex molecule then Pauli and
Stern showed that different isotopes of the molecule would have different high-
temperature vapor pressures. Indeed the difference in vapor pressures would be
so significant that a separation of the isotopes could be carried out in this way.
Experimentally there was no noticeable difference in the high-temperature vapor
pressures of isotopes. Thus experiments suggested that the zero-point energy term
should be introduced. With the discovery of quantum mechanics it was found that
the zero-point energy term was required by the theory. A particle confined to a region
of space �x was expected to have a momentum spread �p proportional to �/�x as
a consequence of the uncertainty principle of quantum mechanics. This momentum
fluctuation term contributes to the energy giving rise to the zero-point energy term.
For a harmonic oscillator, this mechanism is responsible for the presence of the
zero-point energy term 1

2 hν.
The presence of a zero-point energy term for radiation is a more delicate matter.

If we consider radiation confined within a box of sides (L1, L2, L3) then we can
think of the radiation as consisting of a superposition of oscillators with frequencies
given by

ω(n) = πc

√
n2

1

L2
1

+ n2
2

L2
2

+ n2
3

L2
3

with ni taking values from the natural numbers. The zero-point energy of this system
is then expected to be

E0(L) =
∑

n

1

2
�ω(n)

which is a divergent object. This result suggests that great care is needed in applying
ideas taken from the quantum theory of system with a finite number of degrees of
freedom to systems, such as radiation, which contain an infinite number of degrees
of freedom.

Let us, however, pursue the idea introduced at a qualitative level. We note that
E0 depends on the parameters (L1, L2, L3), which represent the sides of the box
within which the radiation is confined. This means that if these parameter values
are changed the energy will change. Such a change would represent the presence
of a force

F = −∂ E0

∂L
.
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Let us simplify the problem in order to understand the nature of this force. Suppose
our box is one-dimensional so that

ω(n) = πcn

L

then

E0(L) = 1

2

�πc

L

∞∑
n=1

n.

The divergent nature of this expression is now very clear. To continue we need
to regularize this divergent expression. For this we regard E0(L) as the analytic
continuation of E0(L; s) defined by

E0(L) = 1

2

�πc

L

∞∑
l=1

l−s

to the point s = −1. This seemingly ad hoc procedure is more natural in a complete
treatment of radiation. For the moment we continue with our calculation. We note
that

E0(L; s) = 1

2

�πc

L
ζ (s)

where ζ (s) is the Riemann zeta function. This function can be analytically continued
to the point s = −1 where ζ (−1) = −1/12. We can thus define the regularized
expression for E0(L) to be

E0(L) = − 1

24

(
�πc

L

)
.

From this well-defined expression we calculate the force between the ends of the
box due to quantum zero-point fluctuations to be

F = −
(

∂ E0

∂L

)
= − 1

24

�πc

L2
.

Such a force was first predicted by Casimir to exist between two parallel plates and
was subsequently experimentally measured. Nowadays the Casimir force is used
in microscopic electromechanical devices.

12.7 Internal degrees of freedom

In this section we sketch how internal degrees of freedom of a molecule are treated.
In the days before quantum theory, the absence of an equipartition law for dis-
tributing energy among the internal degrees of freedom of a molecule was a puzzle.
With the advent of quantum theory it was realized that internal degrees of freedom
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only showed up after certain energy thresholds were crossed. As an example let us
consider a diatomic molecule. Besides the kinetic energy of the center of mass of
the molecule, we expect the two atoms of the molecules to vibrate with respect to
each other and to rotate. In principle the corresponding energy eigenvalues of the
system have to be determined before the partition function can be calculated. In
practice approximate values for the eigenvalues have to be used. These approxi-
mate eigenvalues contain terms which can be identified with the different motions
such as relative vibrations and rotations of the constituent atoms of the molecule.
One way of obtaining such a structure is by using the Born–Oppenheimer approxi-
mation, which we briefly summarize. For more complicated molecules appropriate
approximation schemes must be introduced which allow us to determine the impor-
tant degrees of freedom of the system and the energies associated with them. The
energy eigenvalues of a diatomic molecule have the structure

En, j =
(

n + 1

2

)
�ω + j ( j + 1)

2I
�

2 + Ee + Ecenter of mass

where n = 0, 1, . . . ,∞ and j = 0, 1, . . . ,∞. The first term represents the vibra-
tional energy of the two nuclei with ω the vibrational energy. The second term
represents the rotational energy of the nuclei with I , the moment of inertia of the
two nuclei about the rotation axis. The third term represents the energy of the elec-
trons in the diatomic molecule. The structure presented is for illustration only. We
have neglected effects of anharmonicity and the interaction between the vibrational
and rotational modes of the molecule.

In this approximation, the canonical partition function can be written as

Z = Zv Zr Ze Zcm

with

Zcm = 1

N !

(
2π M

�2β

) 3N
2

V N

Ze =
∑

Ee

d(Ee) e−βEe

Zr =
∑

j

e−β
j( j+1)�2

2I

Zv =
∑

n

e−β(n+ 1
2 )�ω.

Once Z is determined, the thermal properties of the system can be calculated.
At this stage we would like to draw attention to an apparent paradox involved

in taking the internal structure into account. Let us consider the hydrogen atom
and take the binding energy of the electron into account, i.e. we take the energy
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eigenvalues of the system as

En = |P|2
2 (M + m)

− R

n2
,

n = 1, 2, . . . ,∞.

These eigenvalues are obtained by solving Schrödinger’s equation for the hydrogen
atom. The first term represents the center of mass energy of the proton–electron
system with M the proton mass and m the electron mass. The second term represents
the energy eigenstates of the bound electron. If we want to determine the partition
function for a collection of hydrogen atoms in volume V then we have to calculate

Z N =
∞∑

n=1

1

h3N N !

∫
d3N x

∫
d3N p e

−β
(

|P|2
2(M+m)− R

n2

)
dn

where dn = 2n2 is the number of levels in hydrogen which all have binding energy
−R/n2. Thus

Z N = V N

N !

(2π (M + m)

βh2

) 3N
2

∞∑
n=1

2n2eβ R
n2

with probability that at temperature T , the system is in a specific energy level En ,
given by

Pβ (En) = 1

Z N
e−βEn .

Now we have a problem. Consider
∑∞

n=1 2n2eβ R
n2 . This sum diverges which means

that the probability of the atom being in any one of its bound states is zero no matter
what the value of the temperature! One way of avoiding this difficulty is to observe
that for a system in volume V the sum over n cannot extend to infinity. The reason
is the Bohr radius Rn of the orbit associated with the state n is Rn = n2r0 where
r0 is the Bohr orbit. If we have the system in volume V ∼ L3 then Rn ≤ L , i.e.
n2r0 ≤ L , i.e. there is a maximum value n can take, namely n = n̄ ∼= √

L/r0. This
resolution is experimentally ruled out! If we allow β to be reasonably small then

n̄∑
n=1

2n2eβ R
n2 ∼

n̄∑
n=1

2n2 ∼
∫ n̄

1
2n2dn ∼ N 3

max ∼ V
1
2 .

This volume factor implies that the probability of the atom being in any one of
its bound states is still zero in the thermodynamic limit (V →∞, N →∞, V/N
finite) which is not acceptable. We then realize that the cutoff in the sum over the free
hydrogen atom eigenstates should be determined not by the size of the container but
by the mean free path of the atom. Roughly if λ is the mean free path then Nλ3 ∼ L3,
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λ ∼ (V/N )
1
3 and setting n̄ ∼ √

λ/r0 gives
∑n̄

n=1 2n2eβ R
n2 ∼ (V/N )

1
2 . This modifies

the equation of state from PV = NkT to PV = N (1 + 1/2N ) kT = NkT , for
large N and gives a non-zero value for the probability of the atom to be in one of
its bound states even in the thermodynamic limit. The paradox is thus resolved.

When we discuss chemical reactions we will suppose that it is sufficient to
consider atoms to be either in their ground state or to have been converted to an ion
and a free electron; the excitation probability is negligible.

Problems

Problem 12.1 Consider a container consisting of two compartments, separated
by a wall with a hole, and containing N particles with positive total kinetic
energy. Assume that at some initial time, t0, all N particles are in one of the two
compartments. Using Poincaré recurrence, show that there exists a time t1 � t0
such that at t = t1 all particles are again found in the same compartment. Why is
this behavior not observed experimentally?

Problem 12.2 As an illustration of the problem concerning the approach to
equilibrium, consider the following simple dynamical system proposed by Kac
(1956), consisting of a ring with equally spaced points s1, . . . , sq . Assume that
p < q of these points are marked. Between each two points there is a ball that can
be either black or white. We now consider a discrete time evolution by which each
ball moves clockwise past one of the points si with the ball changing its color if
and only if it passes a marked point.

(1) Write down the evolution equations for the number of black and white balls,
Nb(tk) and Nw(tk) respectively.

(2) Solve these equations making the assumption that the color of the ball is not
correlated with the fact of having a marked or unmarked point ahead of it.
Does the number of black and white balls converge to an equilibrium
configuration?

(3) Discuss the assumption made in (2) and give it a statistical interpretation.

Problem 12.3 A realistic application of statistical mechanical description of
two-dimensional turbulence is superfluid helium in a vertical cylinder (see
Figure 12.1). If angular momentum along the z-axis is injected into the system, a
normal fluid will undergo rigid body rotation due to its viscosity. A superfluid, on
the other hand, develops an array of quantized vortices.

We model this system by a collection of vortices subject to a central potential
V (r ). The central potential, which replaces the rigid walls of the cylinder, acts to
contain the vortices in a finite volume. Rewrite the kinetic energy for the fluid in
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Figure 12.1 Rigid rotation of viscous fluid (left) and quantized vortices in super-
fluid (right).

terms of a two-dimensional effective potential between the vortices and write a
program to find the configuration of lowest energy for this system. Describe the
geometry of this configuration.

Problem 12.4 Compute the density of states function, ρ(k), for a box in two
dimensions and compare with periodic boundary conditions.

Historical notes

The connection between the density of states and the geometry of a cavity which
we discussed in Section 12.5 is part of an extensive mathematical theory which
goes under the name of spectral geometry. Mathematical interest in this problem
can be traced to Lorentz who, in 1910 based on examining a few special cases,
conjectured that the density of state function’s dependence on volume was true for
a cavity of arbitrary shape. Lorentz challenged mathematicians in a lecture given
in Göttingen to prove this conjecture. It is said that the famous mathematician
Hilbert who attended Lorentz’s lecture predicted that the conjecture would not be
proved in his lifetime. Less than two years later Hilbert’s student Weyl provided
a proof, thereby opening a new and important chapter in mathematical analysis.
An interesting and readable account of this problem is contained in Kac’s article
“Can one hear the shape of a drum?” (Amer. Math. Monthly 73 1–23, 1966). This
question was resolved in 1991 when C. Gordon, D. Webb, and S. Wolpert showed
that two drums with different geometric shapes can have identical normal modes.
(“You cannot hear the shape of a drum”. Bull. Amer. Math. Soc. 27, 134–138, 1992.)

Further reading

A good text on the relation between ergodicity and statistical mechanics can be
found in L. Reichl, The Transition to Chaos, Springer-Verlag (1992) and N. S.
Krylov, Works on the Foundations of Statistical Physics, Princeton University Press
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(1979) who also discusses the importance of mixing to arrive at a statistical system.
For further discussions on the equipartition law and temperature see L. D. Landau
and E.Lifshitz, Statistical Physics, Pergamon Press (1959). A historical account
including a critique of the ergodicity ideas of Maxwell and Boltzmann based
on Poincaré recurrence is found in S. Brush, Statistical Physics and the Atomic
Theory of Matter, Princeton University Press (1983). A self-contained discussion
of turbulence including two-dimensional systems with many relevant references
can be found in U. Frisch, Turbulence, Cambridge University Press (1995). R.
Peierls, Surprises in Physics, Princeton University Press (1979) discusses aspects
of internal degrees of freedom in thermodynamic systems.



13

Phase transitions and the renormalization group

13.1 Basic problem

As the external conditions of a macroscopic system are changed the properties of
the system can sometimes change dramatically. A good example of such a phe-
nomenon is provided by a ferromagnet. When the temperature of a ferromagnet is
increased above a certain temperature, called the Curie temperature, then the fer-
romagnet loses its magnetism and changes into a paramagnet. Furthermore in the
neighborhood of the Curie temperature TC the susceptibility χ diverges. We recall
that if a ferromagnet is placed in an external magnetic field B its magnetization M
changes. If B is now changed to B + δB then M changes to M + δM . The suscep-
tibility χ is defined as χ = (∂ M/∂ B). The manner in which the magnetization of
a ferromagnet approaches zero as the temperature T of the system is increased to
the Curie temperature of the system can be studied experimentally. It is found that
in the absence of an external magnetic field and for T close to TC

M = M0

∣∣∣∣T − TC

TC

∣∣∣∣
β

with β ≈ 0.33 for many different ferromagnets. Similarly it has been found that
χ (T ) near T ∼ TC behaves as

χ (T ) ∝ 1

|T − TC|γ
with γ ≈ 1.25. Such behavior constitutes a second-order phase transition. The
transition is from the ferromagnetic phase at T < TC, characterized by M �= 0 for
B = 0 to the paramagnetic phase at T > TC where M = 0 for B = 0.

Let us now give a concrete definition of a phase transition. A given equilibrium
state of a macroscopic system can be described by an order parameter field. For
a ferromagnet the order parameter field is the magnetization density. The order
parameter field can be regarded as a mapping from the system (with coordinate x)

295
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to an order parameter space. In a model where the magnetization density is given
by a scalar function Mz (x) this is the space of real numbers $. In general the order
parameter space can be more complicated and the order parameter field need not
be a scalar function.

Definition 13.1 A phase transition corresponds to the order parameter field
changing qualitatively together with the emergence of singular behavior in the
system.

For instance the order parameter field in the case of a ferromagnet is non-zero
in the ferromagnetic phase, is zero in the paramagnetic phase, and the suscepti-
bility of the system diverges at the phase transition temperature. Determining a
suitable order parameter field to characterize a phase is part of the task of a theory
of phase transitions. If the order parameter field changes continuously from one
phase to another, as in the case of a ferromagnet, the transition is said to be a
continuous or second-order phase transition. If it is discontinuous the transition is
said to be first order. An example of a first order transition is when a solid melts
to a liquid. The density of the system, which can be taken as the order parameter,
changes discontinuously. A phase transition is a striking example of an emergent
phenomenon. Starting off with only short-range interactions between its micro-
scopic magnetic moments, the system realizes long-range correlations below TC .
We will now give an argument, based on a simple model of a ferromagnet, to show
that it is impossible to understand the singular behavior of the susceptibility as a
function of temperature. We will then give a second argument based on a simple
model for the susceptibility χ to conclude that it is easy to understand the physical
origin of the singular behavior of χ . Reconciling these two points of view will lead
us to understand that certain infinite limits are important in statistical mechanics
and to the renormalization group approach. On the way we will discuss an approach
to phase transitions due to Landau.

We start with a model for a ferromagnet. We regard a ferromagnetic solid as being
made out of a finite number of elementary magnets placed at locations throughout
the solid. We simplify our model by assuming that each of these elementary magnets
m can either point up (m = +1) or down (m = −1). Finally each elementary magnet
interacts only with its nearest neighbor. A Hamiltonian for this model could be

H = −g
∑
n,i

mi mi+n − B
∑

i

mi

where the first sum is over i as well as the nearest neighbors of i . Note H decreases
if mi , mi+n have the same sign for g > 0. There are altogether a large but finite
number of magnets in a ferromagnet. We are now ready to prove our theorem.

Theorem 13.1 In the model of a ferromagnet proposed the susceptibility cannot
diverge.
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Proof. In any statistical mechanics the partition function of a system once calcu-
lated determines the thermal properties of the system. For a magnetic system the
macroscopic variables are the magnetization of the system M , the external mag-
netic field B and the temperature T of the system. The canonical ensemble for this
system is defined by the partition function

Z =
∑
{c}

e−β H , β = 1

kT

where {c} denotes the set of all configurations of the individual magnetic moments.
We assume β �= ∞ and define the free energy as usual by F = −1/β ln Z . The
susceptibility χ of the system is defined as in Chapter 2. We now show that χ cannot
be a singular function of temperature. The proof is straightforward. Since our model
involves a finite number of elementary magnets each of which interacts with a finite
number of its neighbors and can exist in only two states, it follows that the number
of configurations which have to be summed over to determine the partition function
Z is finite. Each term of the sum is an analytic function of temperature and B. Since
a finite sum of analytic functions is again an analytic function, Z is an analytic func-
tion of the temperature and B. Furthermore each term e−β H is strictly positive. So
Z is also strictly positive. Thus F = −1/β ln Z is an analytic function of the tem-
perature and B. An analytic function of the temperature and the external magnetic
field will continue to be analytic in those variables no matter how many times the
function is differentiated. That is the definition of an analytic function. Therefore
χ = −∂2 F/∂ B2 is a non-singular function of temperature, which concludes the
proof. �

One response to this theorem might be to suggest that the theorem fails if we
allow the number of elementary magnets to tend to infinity. This is because an
infinite sum of analytic functions need not be analytic. An elementary example of
this is the series 1 + x + x2 + · · · + x N . If we let N →∞ then the series tends
to 1/1 − x which has a singularity at x = 1. In order to analyze this possibility
we will need to consider the statistical mechanics partition function in the limit in
which the number of configurations is infinite. It is only in this limit that the phase
transitions might be understood from this point of view.

Now for our second approach. This time we suppose that the external magnetic
field B is changed to B + δB (x) , i.e. the change δB is position dependent. We
expect that a change at x, δB (x), will produce a change in the magnetization δM
not just at the point x but at other points as well. Indeed we might expect

δM (y) ∝ CT (|x − y|) δB (x)

where CT (|x − y|) is a “correlation function” which determines the effect at y on
the magnetization due to a change in the external field δB at x. The total change
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δM (y) is then expected to be

δM (y) =
∫

d3x CT (|x − y|) δB (x) .

We have assumed that the correlation function depends only on temperature and on
the distance between the points x and y. This is our simple model. The formula we
have just guessed can be derived as a mathematical result within the framework of
linear response theory and is known as Kubo’s formula. For our own purpose the
equation provides a convenient starting point for understanding the physical origin
of the divergence of the susceptibility χ . Let us now suppose that δB is independent
of x and let us set y = 0. Then we have

χ (0) = δM (0)

δB
=
∫

d3x CT (|x|) .

If we suppose

CT (|x|) =
{

α, for |x| ≤ a (T ),

0, for |x| > a (T ),

that is, a disturbance only propagates a distance a (T ), then

χ (0) = 4πα

3
a3 (T ) .

Thus χ (0) will diverge if a (T ) diverges, that is, if correlations in the system
become infinite. From this point of view the divergence in this susceptibility is due
to the fact that near a phase transition disturbances propagate over large distances,
a (T ) →∞. Our task is to reconcile the two approaches described. This will lead
us to what is known as the renormalization group approach to phase transitions.

Let us start by verifying if, by allowing the number of configurations to go to
infinity, we can indeed recover ferromagnetism in our model with the associated
singular behavior. To check this we consider a situation where the partition function
can be exactly determined. The model we consider is the one-dimensional Ising
model discussed in Chapter 2. We recall that the model was defined by a Hamiltonian

H = −g
N∑

i=1

Si Si+1 − B
N∑

i=1

Si .

In our calculation in Chapter 2 we found that in the N →∞ limit the free energy
F for this system is given by

F = −N

β
ln
(
eβg

[
cosh β B +

√
cosh2

(
β B

)− 2e−2βg sinh
(
2βg

)])
.
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The magnetization M and the susceptibility χ are then given by

M = −∂ F

∂ B
, χ = −∂2 F

∂ B2
.

Using this expression for F it is clear that M = 0 if B = 0 for T = 0 and χ is not
singular. Thus our simple model fails to provide a model for a ferromagnet even in
the N →∞ limit, i.e. a system for which M �= 0, if B = 0, for some T . Our hope
of getting a system to become ferromagnetic for T < TC with singular behavior
for χ in the limit where the number of configurations was allowed to go to infinity
has failed for this model. What went wrong? We now give an argument due to
Peierls which explains why the model does not lead to ferromagnetism and why
if the model is extended to two dimensions it should work!

13.2 Peierls argument

The idea of Peierls was to start with an ordered phase of the system, that is, a phase
in which all the spins point in the same direction, say, S = +1, even in the absence
of an external magnetic field, and then to introduce a length L of “disordered” (i.e.
S = −1) spins. Peierls considered the change of the free energy F of the system for
different temperatures when this was done. If F increases it means that the original
ordered phase was stable so that the system could exist in a ferromagnetic phase
while if F decreases it means the ordered phase was thermodynamically unstable.
Indeed in Chapter 1 we established that the free energy F is minimal at equilibrium
at constant temperature and under conditions when no work is done. We have by
definition

F = U − T S.

Keeping T fixed if the system is changed in the way we described we have

�F = �U − T �S.

Now observe that the change in U can be regarded as due to the change in the
energy of the system. Setting B = 0 we note that if all Si = +1 or all Si = −1, the
Hamiltonian has the same value. Thus if a disordered element of Si = −1 of length
L is introduced in a one-dimensional system with (N − L) spins Si = +1 then the
energy of the system only changes at the boundaries. This is because it was assumed
that we only have nearest neighbors interact in our model. For a one-dimensional
system there are only two boundaries. Thus

�U = 2W,

where W is the energy change in replacing Si = 1, Si+1 = 1 by Si = 1, Si+1 = −1,
i.e. W = 2g.
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Next we have to calculate �S. To do this we recall that the entropy is given by
k ln N0 where N0 is the number of ways the configuration could be constructed. In
the case of the one-dimensional model N0 is given by the number of ways in which a
disordered length L can be introduced into the system. It is clear that the disordered
length can be made to start at i = 1, 2, . . . , N − L . Thus N0, the number of ways
the disordered configuration can be introduced is equal to N − L . Therefore

�F = 2W − kT ln(N − L).

We are to take the N →∞ limit in order to allow a phase transition to occur as we
saw. Thus �F < 0 when the disordered element is introduced. Hence no ordered
phase should be expected for the model. This is a reassuring result. It tells us that on
general grounds a one-dimensional model with nearest neighbor interactions cannot
undergo a phase transition and this explains our failure to get a phase transition for
the one-dimensional Ising model.

Let us consider a generalization of the Ising model to two dimensions and apply
Peierls’ ideas. We will see that a phase transition is now possible and the argument
gives a value for the critical (or Curie) temperature for the system. Our discussion
is not intended to be complete but only to explain clearly the essential difference
between the one- and two-dimensional models.

The model we now consider is given by

H = −g
∑
i, j

(Si, j Si+1, j + Si, j Si, j+1).

where the spins Si are placed on a N × N periodic lattice. We start with an ordered
phase of the system when all the spins Si = +1. We again introduce a line of length
L of disordered elements. A picture might be helpful.

L



Landau theory of phase transitions 301

In this case �U = (2W L) as introducing a line L disordered element in two dimen-
sions introduces a boundary of length L as well. Next we have to determine the
number of ways, N0, such a line can be introduced in the system. We note that

� The line can start at any one of the points on the N × N lattice.
� From the starting point the next disordered element can be chosen in three ways (for the

square lattice system we consider).

Thus

N0 = N 23L .

This simple way of counting does not take into account the fact that the defect line
has no orientation and we are thus over counting by a factor of two. This is, however,
not relevant for our purpose. For concreteness let us count only configurations which
are almost maximally disordered. For such configurations we have

L = f N 2

where f is a number between 0 and 1. Thus

�F = 2W f N 2 − kT ln
(
N 23 f N 2)

= 2W f N 2 − kT ( f N 2 ln 3 + ln N 2).

For large N the last term can be neglected so that

�F � f N 2(2W − kT ln 3).

Thus �F > 0 if 2W > kT ln 3 or kT < (2W/ln 3). In the two-dimensional case
even with a nearest neighbor model the argument of Peierls suggests that a phase
transition is allowed provided the temperature T of the system is less than 2W/k ln 3.
This expectation is justified for two reasons. First, the numerical study of the two-
dimensional Ising model in Chapter 5 confirms our expectations. Second, the two-
dimensional Ising model was solved exactly by Onsager and a phase transition with
singular behavior for its susceptibility is found in the limit where the number of
configurations is allowed to go to infinity.

Now that we know that statistical mechanics can indeed be used to study phase
transitions we turn to a simple phenomenological approach for understanding phase
transitions due to Landau.

13.3 Landau theory of phase transitions

We have already made use of the fact that for any change of a system in which the
temperature is kept fixed and no work is done by the system, the change of free
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energy, �F , is always negative so that a state of equilibrium must be a minimum of
F . Landau utilized this property of the free energy in his theory of phase transitions.
Let us examine this approach for the case of a ferromagnet. The basic idea is to
make a model for the free energy F near the Curie temperature TC when the system
is still a ferromagnet. We know that for T < TC long-range correlations are present,
that is, the spin at lattice site x must point in the same direction as that at site y
even when x and y are not adjacent. Otherwise the observed macroscopic magnetic
properties of the system would not exist. The basic assumption underlying Landau’s
theory is that, near the critical temperature TC, the properties of a ferromagnet can
be described in terms of a magnetization density function M (x). The function
M (x) can be defined by considering a volume element �V , large compared to the
lattice cell volume, but small compared to the volume of correlated spins centered
around the point x. The magnetization of the volume element �V is defined to be
M (x) �V . For this definition of M (x) to be useful it is important that M (x) should
not be a rapidly varying function of position. Near the Curie temperature TC we
also expect M (x) to be small in amplitude. Since we are implicitly assuming in
this approach that a spin-spin type of interaction is responsible for the phenomenon
of ferromagnetism it seems reasonable to expect the free energy density to be a
function of M (x) · M (x). On the basis of arguments of this kind Landau proposed to
introduce a functional FL [T, B, M] of the magnetization density M (x), temperature
T , and external magnetic field B (x) of the form

FL [T, B, M] = FL [T, B, M = 0]

+
∫

d3x

[
a (T ) M (x) · M (x) + b (T ) (M (x) · M (x))2

+ · · · + c(T )
∑
i, j

(∇ j Mi (x)) · (∇ j Mi (x)) + · · · − B · M(x)

]
.

The free energy FL (T, B) is then obtained by minimizing FL [T, B, M] with respect
to M. Note that the temperature dependent coefficients a (T ) , b (T ) , c (T ) , . . . are
assumed to be smooth functions of temperature. We will simplify the model function
by assuming B (x) acts along the z-direction and that M (x) only has components
in the z-direction. Then we have

FL [T, Bz, Mz] = FL [T, Bz, Mz = 0] +
∫

d3x [a (T ) M2
z (x) + b (T ) M4

z (x)

+ · · · + c (T ) (∇Mz (x)) · (∇Mz (x))

+ · · · − Bz (x) Mz (x)].

The expression for the Landau free energy FL is expected to be useful when T is
close to the Curie temperature TC. In this region Mz (x) is expected to be small and
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we also expect (∇Mz (x) · ∇Mz (x)) to be small. Because of these reasons we will
from now on ignore the effect of the higher powers of Mz (x) and higher gradient
terms. To determine the equilibrium configuration of the magnetization Mz (x) we
have to minimize the free energy with respect to Mz (x). Using

δFL =
∫

d3x
[
2a (T ) Mz (x) + 4b (T ) M3

z (x) − 2c (T )∇2 Mz (x) − Bz(x)
]
δMz (x)

we see that vanishing of δF for arbitrary δMz (x) requires

2a (T ) Mz (x) + 4b (T ) M3
z (x) − 2(c(T )∇2 Mz(x)) = Bz (x) .

Suppose now that Bz (x) does not depend on x and let us see if a solution for Mz (x)
independent of x is possible. Such an x independent solution must satisfy[

2a (T ) Mz + 4b (T ) M3
z

] = Bz.

Now we ask if it is possible to construct a solution with the property that Mz �= 0
when Bz = 0 and T < TC. Setting Bz = 0 we find three solutions

Mz = 0

Mz = ±
√
−a (T )

2b (T )
.

We would also like the solution to have the property

Mz = 0, when T > TC

Mz �= 0, when T < TC.

If such a solution is possible then the expression for F represents a model for a
ferromagnet. As we have stressed this model is constructed to represent a ferro-
magnet near its Curie temperature. We also assume that the coefficient functions
a (T ) , b (T ) , c (T ) are all smooth functions of temperature. We thus expect the
M4

z term to be small compared to the M2
z term. It is then reasonable to replace

b (T ) by b (TC) = b0, a constant. Finally, setting a (T ) � a0 (T − TC) we have as
our equilibrium x independent solution

Mz = 0 or

Mz = ±
√
−a0 (T − TC)

2b0
.

Let us now discuss the Landau free energy for arbitrary Mz (x) independent of x and
a (T ) = a0 (T − TC), b (T ) = b, Bz = 0 respectively. Ignoring the Mz independent
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contribution in FL , we find

FL (T, Mz) = V
[
a0 (T − TC) M2

z + b0 M4
z

]
.

Let us now discuss the choice of the constants a0 and b0 in turn. We distinguish
three cases, depending on the sign of the coefficients a0 and b0. In each case we
plot FL/V as a function of Mz .

(1) a0 > 0, b0 > 0 :

M

F
VT>Tc dashed T<Tc solid

M1 = −
√

a0 (TC − T )

b0
M2 = +

√
a0 (TC − T )

b0

Note that M1 and M2 have lower free energy than the solution Mz = 0. Thus according
to Landau’s theory the system would settle to M1 or M2 as its equilibrium magnetization
configuration. Observe also that for T > TC the free energy FL/V is a convex function
of Mz . Thus Mz = 0 is the minimum of the free energy for T > TC.

(2) a0 > 0, b0 < 0 :

M

F
VT>Tc dashed T<Tc solid
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In this case the equilibrium distribution Mz = 0 is unstable for any temperature. The
same situation arises for a0 < 0, b0 < 0 which simply amounts to interchanging the
two graphs for T < TC and T > TC.

(3) a0 < 0, b0 > 0 :

M

F
VT>Tc dashed T<Tc solid

This case is not physically reasonable since it leads to spontaneous magnetization above
the critical temperature!

To summarize, if Landau’s expression for the free energy is to represent a ferromag-
net we must choose a0 > 0, b0 > 0. The alert reader will have noticed that the free
energy plotted in the above figures is not a convex function. This appears to be in
contradiction with our result in Chapter 1 that the free energy F is a thermodynamic
potential and as such a convex function of its extensive variables. This puzzle is
resolved by noting that the true free energy is, in fact, the convex hull of the func-
tions plotted above. This is because the equilibrium states can be mixtures of pure
phases, rather than just pure phases which we have implicitly assumed by setting
Mz = constant , independent of the position. We consider a concrete example of
mixing in Problem 13.4 .

Having determined the signs of a0 and b0 we now want to explore the predictions
of the Landau theory. From the equation(

2a0 (T − TC) + 4b0 M2
z

)
Mz = Bz

it then follows that for Bz = 0 and T < TC

Mz = ±
√

a0

2b0
(TC − T )

1
2 .

Furthermore, for T = TC,

M3
z =

Bz

4b0
.
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Finally we note that if Bz is changed to Bz + δBz , the corresponding equilibrium
distribution Mz can be written as Mz + δMz . We thus get

2a0 (T − TC) δMz + 12b0 M2
z δMz = δBz.

Setting Bz = 0, we find

χ =
(

δMz

δBz

)
Bz=0

=




1

2a0(T − TC)
for T > TC

1

4a0(TC − T )
for T < TC.

where we have substituted Mz = 0 for T > TC and Mz =
√

a0/2b0 (TC − T )
1
2

for T < TC respectively. Comparing this with the critical behavior stated at the
beginning of this chapter we see that Landau’s theory qualitatively reproduces the
expected singular behavior although the precise nature of the singularity is not
reproduced exactly. We will come back to this point at the end of this section.

It is also possible to get a rather precise statement regarding long-range corre-
lations within the framework of Landau’s theory. To do this we recall our linear
response relation introduced in Section 13.1

δMz (x) =
∫

d3 y CT (|x − y|) δBz (y)

where we regard δMz as the change in the equilibrium magnetization density
brought about by changing the external magnetic field by δBz (y). From the
equations which describe the equilibrium magnetization density we have with
C(T ) = c0,

2a (T ) Mz (x) + 4b0 M3
z (x) − 2c0∇2 Mz (x) = Bz (x)

and

2a (T ) (Mz + δMz) + 4b0 (Mz + δMz)
3 − 2c0∇2 (Mz + Bz) = Bz + δBz.

From these two equations it follows that[
2a0 (T − TC) + 12b0 M2

z − 2c0∇2
]
δMz (x) = δBz (x) .

Substituting the linear response relation expression for δMz (x) we get(
2a0 (T − TC) + 12b0 M2

z − 2c0∇2
)

CT (|x − y|) = δ(3) (x − y)

where we have written δBz (x) = ∫
d3 yδ (x − y) δB (y). Setting Bz = 0 and rescal-

ing the coordinates as (u, v) = 2c0(x, y) we get

(2ā0(T − TC) − ∇2)CT (|u − v|) = δ(3) (u − v) ,
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where ā0 = a0/(2c0)3. This result is valid in the region T > TC. For T < TC we
get an analogous equation with ā0 →−2ā0. The solution of this equation can be
inferred from the following result.

Lemma 13.2 The differential equation

(m2 − ∇2)CT (|u|) = δ3 (u)

has the solution

CT (|u|) = 1

4π

e−m|u|

|u| ,

modulo solutions of the homogeneous equation.

Proof. To prove the lemma let us write the delta function in momentum space as

δ3 (u) =
∫

d3k

(2π )3 eik·u

and similarly

CT (|u|) =
∫

d3k

(2π )3 eik·u � (|k|) .

Substituting these expressions in the differential equation we get

(m2 + |k|2)� (|k|) = 1.

Then, performing the inverse Fourier transform we end up with

CT (|u|) =
∫

d3k

(2π )3 eik·u 1

|k|2 + m2
.

In order to evaluate this integral let us choose a coordinate system in which u points
along the z-axis. Changing to polar coordinates we have

CT (|u|) =
∫ ∞

0

dkk2

(2π )3

∫ 2π

0
dφ

∫ 1

−1
d cos(θ )eik cos θ |u|

(
1

k2 + m2

)

= 1

2π2

1

|u|
∫ ∞

0

dkk

k2 + m2
sin k|u|

= 1

4π2

1

|u| Im
(∫ ∞

−∞

dkk

k2 + m2
eik|u|

)
.

This integral can be evaluated by closing the contour of integration above and below
the real line respectively leading to

CT (|u|) = 1

4π

e−m|u|

|u|
which is the claimed solution. �
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To continue we restore the original coordinates (x, y) and introduce the correla-
tion length ξ 2 = c0/a(T ). Then

CT (|x − y|) = 1

4π

e−
|x−y|

ξ

|x − y| .

The corresponding result for T < TC is obtained simply by replacing a(T ) →
−2a(T ) in the correlation length. We notice that ξ →∞ as T → TC. Thus Landau’s
theory is in qualitative agreement with the intuitive idea, introduced earlier in
Section 13.1 that long-range correlations are generated in a ferromagnet as T → TC.
Another point to note is that if δBz were x independent, then as we saw before

χ (0) = δMz (0)

δBz

=
∫

d3 y CT (|y|) .

From the expression for CT (|y|) it then follows that

χ ∼ ξ 2 →∞ as T → TC.

Let us summarize the results obtained from Landau’s approach. The approach
focused on long-range correlations and suggested that the singular behavior of
the susceptibility was due to such correlations when T → TC. The approach also
predicts that the relation between different macroscopic parameters involves power
laws,

Mz ∼ (TC − T )β , T → TC

Mz ∼ B
1
δ
z , T = TC

χ ∼ 1

(TC − T )γ
, T → TC,

with β = 1
2 , γ = 1, and δ = 3. The parameters β, δ, γ are called critical exponents

and are measured experimentally. The experimental values for these parameters
β � 0.33, δ � 4.5, and γ � 1.2 are found for different ferromagnets with different
lattice structures and widely differing values for the Curie temperature TC. These
parameters thus are a universal property of the ferromagnetic phase transition.
This is also a feature of Landau’s theory. Thus Landau’s theory is in qualitative
agreement with experiment.

13.4 Renormalization group

Although Landau’s theory is in good qualitative agreement with experiment there is
room for improvement on the quantitative level concerning the critical exponents.
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This will lead us to the renormalization group. Our treatment will be rather brief as
our aim is to explain the basic ideas involved in the renormalization group approach
and not explore technical issues. The reader is referred to some of the books listed
at the end of the chapter for a more thorough treatment of this important topic.

The renormalization group can be approached in two different ways. There is
the real space approach and there is the field theory approach. In both approaches
the crucial physical input is the assumption that a certain length scale of the system
approaches infinity near a phase transition.

Let us start by looking at the real space approach. Instead of considering a
model for the free energy we now consider the partition function directly. Since
the dynamics of a physical system is completely determined by the Hamiltonian
we can think of the partition function as a function of the Hamiltonian H and the
temperature. Thus

Z = Z (β, H)

= Z (H), β = 1

kT
fixed .

If we now assume that there is a natural length scale ξ , the correlation length, which
should be used as the unit of length and that ξ →∞ as T → TC then Z better be
scale invariant, since in this limit there is no physical length left to set the scale.
To illustrate this we may consider a model for a ferromagnet in which elementary
magnets are present in a cubic lattice of size a0. Scale invariance then means that the
physics at scales of the order ξ should not change if the microscopic a0 is replaced
by aL = La0 as long as La0 << ξ . If the Hamiltonian H represents the dynamics
of the system when the scale of the system is a0 and HL represents the dynamics
when the scale is aL then the statement that the physical properties of the system
are scale invariant means in particular that

Z (H) = Z (HL ).

This is the key assumption of the real space renormalization group approach. Now,
since the correlation length ξ depends solely on the Hamiltonian of the system we
can write ξ = ξ (H). On the other hand, since ξ is a length, dimensional analysis
implies

ξ (HL ) = 1

L
ξ (H).

The intuitive picture behind this equation is simply that the same correlation length
is measured in different units namely a0 and aL = La0. As for the free energy
density for the system (which we will denote a gain by F) it is given by

F = − 1

βV
ln Z (H),
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and similarly

F(HL ) = − 1

βVL
ln Z (HL ).

We can repeat the argument we used for the correlation length. Since the volume
V is fixed and only the length scale is changed we must have VL = L−DV and
therefore

F(HL ) = L D F(H)

for a D-dimensional system. Of course, these equations acquire content only if we
know how HL and H are related or, in mathematical terms, if the transformation
function τ

τ (H) = HL ,

which relates H and HL is known. The function τ is the real space renormalization
group transformation. We will now sketch how in principle τ can be obtained given
a certain Hamiltonian and how once τ is known it is possible to calculate the actual
critical exponents. We shall find that our qualitative argument leads to the statement
that the free energy is a generalized homogeneous function. We will explain what
this means and point out that this has experimentally testable implications. Our aim
is to make the general strategy of the renormalization group approach clear. We will
not go into the details of how the critical exponents are actually determined in this
approach. We will learn how to calculate the critical exponents when we discuss the
field theory approach to the renormalization group. For concreteness let us consider
a two-dimensional ferromagnetic system described in terms of an Ising model. Let

H̃ ≡ βH

= −g (T )
∑
n,i

Si Si+n − B (T )
∑

i

Si

where g(T ) = βg0 and h(T ) = β B0 are the “coupling constants” and Sn = ±1.
The summation in the first term is over nearest neighbors. When the length scale
of the system is a0, the nearest neighbors of a given spin variable Sn are located
at a distance a0 from Sn . If the length scale is changed from a0 to La0 the nearest
neighbors of SL

n will be at a distance La0. This assumes, of course, that H and HL

have the same structure. In H, Sn took the value ±1. For HL we have to determine
the corresponding range of values of SL

n .
Since the total number of spin variables N is fixed by changing length scales from

a0 to La0 the number of degrees of freedom of the system are reduced. We can then
interpret SL

n as the value of the block of spins surrounding Sn and contained within
a cube of side La0. For T ∼ TC if ξ � La0 we might expect all the spins within the
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block to be correlated, that is, if one of the spins within the block takes on the value
+1 then so do all the other spins in the block. If there are NL spins in the block then
SL

n can take values ±NL . The picture leads us to expect that HL differs from H in
three ways. First the length scale aL is different from a0. Second, the magnitude of
the spin variables differs and finally the coupling constants differ. Thus

H̃L = −gL (T )
∑
n,i

SL
n SL

n+i − BL (T )
∑

i

SL
i .

The renormalization group transformation τ in this case corresponds to the set of
equations:

gL = UL (g, B)

BL = VL (g, B) .

Clearly this process can be repeated; we can start with HL and generate HL2 ,
from HL2 generate HL3 etc. All of these Hamiltonians form a class of “equivalent”
Hamiltonians. In particular, they lead to the same partition function. Note for
this argument to work it is necessary for the correlation length ξ to be such
that ξ � L N0 (N0 = 1, 2, 3, . . .). It is possible that the sequence H, HL , HL2, . . .

converges to a H∗ such that

τ (H∗) = H∗.

The Hamiltonian H∗ is then a fixed point of the renormalization group transforma-
tion τ . Note that the existence of a fixed point is a property of τ and hence will not
depend greatly on the starting Hamiltonian H. Of course, there could be several
fixed points so that one class of Hamiltonian which acted on by τ will converge to
H∗

1 , another class which converges to some other fixed point H∗
2 and so on.

Let us study qualitatively the implication of assuming that H∗ describes the
behavior of a physical system near the critical temperature. To keep things simple
we will first assume a vanishing external field, B = 0. The renormalization group
transformation of gL is then

gL = UL (g) .

We want to investigate the effect of repeated applications of the transformation τ .
For this we consider

gL ′L = UL ′ (gL ) .

We assume that UL ′ (gL ) is a smooth function of L ′ and gL . We then have

dgL

dL
= 1

L
lim
δ→0

g(1+δ)L − gL

�L
≡ 1

L
u(gL ).
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The characteristic property of H∗ is τ (H∗) = H∗. In terms of gL this implies g∗ =
UL ′(g∗) or

L
dg∗

dL
= 0

i.e. u(g∗) = 0. Furthermore, since we assume u(gL ) is a smooth function of gL we
have, for gL close to g∗,

u(gL ) = (gL − g∗)y , y =
(

∂uL

∂gL

)
gL=g∗

.

Near the critical point we therefore have

L
dgL

dL
= (gL − g∗)y.

What we have just done is known as the linearization of the renormalization group
equation near a critical point. Note that the right-hand side of this equation does
not explicitly depend on L .

Next we study the correlation length ξ . We have seen already that

Lξ (gL ) = ξ (g)

Since this relation is true for all L we have in particular, that (L +�L) ξ (gL+�L ) =
ξ (g) = Lξ (gL ) or, letting �L → 0,

ξ (gL ) +
(

L
dgL

dL

)
∂ξ

∂gL
= 0.

Substituting the expression for gL close to g∗ we then end up with

ξ (gL ) + (gL − g∗)y
∂ξ

∂gL
= 0.

The solution to this differential equation is easily found to be

ξ (gL ) ∼ (gL − g∗)−
1
y .

Since we identify scale invariance with the system being at critical temperature we
identify g∗ = g∗0/kTC and similarly, gL = g/kT . To continue it is convenient to
introduce the dimensionless variable

t =
(

TC − T

TC

)
.

Substitution into the equation for ξ then gives ξ (t) ∼ t−1/y . Thus, ξ →∞, provided
y > 0 as t → 0 with critical exponent γ = 2/y.
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We now want to study the scaling properties of the free energy F (tL , BL ), near
the critical temperature. Here, tL = (gL − g∗) measures the deviation away from
the fixed point. From the renormalization group equation for gL we then have
tL = L yt . As for the external field BL it is not hard to see that the linearization
of the renormalization group equation near the fixed point leads to the scaling
behaviour

BL = Lx B, with x =
(

∂VL (gL , BL )

∂ BL

)
g∗,B∗

.

Combining this with the scaling behavior of the free energy, F(HL ) = L D F(H),
we get

F (tL , BL ) = L D F (t, B) ,

or,

F(L yt, Lx B) = L D F(t, B).

If we define λ = L D, so that L = λ
1
D we have

F
(
λ

y
D t, λ

x
D B

)
= λF (t, B)

This is the definition of a generalized homogeneous function. If the function
UL ′ (gL , BL ) and VL ′ (gL , BL ) are known, then the coefficients x and y can be
calculated. These would determine the coefficients at = y/D, aB = x/D. Hence
all the critical properties of the system could be calculated as we now demonstrate.
We have

Theorem 13.3 If F(λat t, λaB B) = λF(t, B) with λ, a constant and at , aB two
parameters then:

M(t, 0) = t
1−aB

at M(1, 0)

M(0, B) = B
1−aB

aB M(0, 1)

χ = t
1−2aB

at χ (1, 0)

that is, we have the following expressions for the critical exponents
β = (1 − aB)/at , δ = aB/1 − aB and γ = (2aB − 1)/at .

Proof. We start with the thermodynamic identities:

M(t, B) = −
(

∂ F

∂ B

)
t

and χ (t, B) =
(

∂ M

∂ B

)
t
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Using the generalized homogeneous function structure of the free energy we have

M(λat t, λaB B) = ∂ F(λat t, λaB B)

∂(λaB B)

= λ−aB
∂ F(λat t, λaB B)

∂ B

= λ−aB
∂(λF(t, B))

∂ B
= λ1−aB M(t, B).

Thus

M(λat t, λaB B) = λ1−aB M(t, B).

If we set B = 0 and λat · t = 1 we obtain the first identity in the theorem:

M(t, 0) = t
1−aB

at M(1, 0).

In order to prove the second identity we set t = 0 and λaB B = 1 which gives

M(0, B) = B
1−aB

aB M(0, 1).

Finally, using χ (t, B) = ∂ M/∂ B leads to

χ (λat t, λaB B) = λ1−2aB χ (t, B).

Setting B = 0 and λat t = 1 gives

χ(t, 0) = t
1−2aB

aτ χ (1, 0)

which completes the proof. �

To summarize, we have three experimental parameters β, γ, δ expressed in terms
of two theoretical parameters, aB, at . Thus, an immediate corollary is the scaling
law γ = β(δ − 1). Putting in numbers γ = 1.25, β = 0.33, δ = 4.5, we see it is
approximately correct. This scaling law is just one of several relations that can be
obtained in this way. We leave the derivation of the other scaling laws as a guided
problem at the end of this chapter.

13.5 Critical exponent calculations

We now turn to the problem of calculating the various critical exponents that
appeared in the last section borrowing techniques developed in our exposé on
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quantum field theory. The method presented here will improve on Landau’s theory
while reducing to the latter in a certain limit. The idea is to represent Landau’s
model as a certain approximation to the partition function of some quantum field
theory for the order parameter. In analogy with our treatment of the path integral
approach to quantum field theory we would like to write the partition function Z
as a functional integral. As a guide to our intuition we use Landau’s ansatz for the
free energy. We thus write

Z =
∫

D� e−
1
�

S[�]

where

S[�(x)] =
∫

[�(x)(−∇2)�(x) + V (�)]dDx

is a functional of the order parameter field with V (�) yet to be determined. As we
will see below, this ansatz reproduces Landau’s ansatz for the free energy in a saddle
point approximation. A few comments are in order to justify these manipulations.

(1) The functional integral above is not derived from a concrete Hamiltonian as we did in
Chapter 11. The path integral should be understood rather as a statistical averaging
over different configurations of the order parameter �(x).

(2) We have redefined the order parameter field as
√

β��(x) → �(x). The parameter �

appearing in front of the action should thus not be interpreted as the fundamental Planck
constant. Rather is is an auxiliary counting parameter introduced for convenience.

(3) If � is viewed as a fundamental field, then, as indicated in Section 11.4, the above
expressions can be thought as the Euclidean path integral representation of a relativistic
quantum field theory with action S[�(x)].

Having made these comments we will now proceed by applying the usual pertur-
bative techniques from quantum field theory to the above functional integral, that
is, we approximate S[�] by its functional Taylor expansion about �0(x), which, in
turn, is defined by the condition δS/δ� = 0. Thus

S[�] = S[�0] + 1

2!

∫
(�−�0)x (�−�0)y

δ2S

δ�xδ�y
dDxdD y

where we use the notation (�−�0)x = �(x) −�0(x). We can think of the func-
tional derivatives introduced as generalizing the familiar notion of partial derivatives
to continuous variables. Let us explain: recall if � was a n-tuple, namely Φ with
components �i , i = 1, . . . , N and S was a function of �i then a Taylor expansion
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of S for Φ close to Φ0 = �0i would be

S(Φ) � S(Φ0) +
N∑

i=1

(�−�0)i

(
∂S

∂�i

)
Φ0

+ 1

2!

N∑
i=1

N∑
j=1

(�−�0)i )(�−�0) j

(
∂2S

∂�i∂� j

)
Φ0

+ · · ·

If we differentiate the components � j with respect to �i the result is simply

∂� j

∂�i
= δi j .

We now formally extend these ideas to �(x), where we think of �(x) as the com-
ponents �x of an “infinite-dimensional vector” �. Then the expansion of S[�(x)]
in a functional Taylor series about �0(x) should have the structure,

S[�(x)] � S[�0(x)] +
∫

x
(�−�0)x

(
δS

δ�x

)
�0(x)

+ 1

2!

∫
x
(�−�0)x (�−�0)y

(
δ2S

δ�xδ�y

)
�0(x)

+ · · ·

where
∫

dDx replaces
∑

i by analogy with the discrete case. Similarly, the basic
rule of “functional differentiation” should be

δ�(x)

δ�(y)
= δD(x − y)

that is the D-dimensional Dirac delta function replaces the Kronecker delta δi j for
the discrete case.

We recall that a stationary point (actually a function) of S[�] corresponds to
finding a solution to the classical equation,

δS = 0

which corresponds to solving the Euler–Lagrange equations:

∂L

∂�0
= ∂i

(
∂L

∂(∂i�0)

)
.

Such a �0(x) is the classical solution. A classical approximation would correspond
to replacing S[�] by S[�0] in Z . A semi-classical approximation would involve
replacing S[�] by

S[�0] + 1

2!

∫
dDx

∫
dD y(�−�0)x (�−�0)y

(
δ2S

δ�xδ�y

)
�0

.
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First let us consider the classical approximation to the partition function Z . Approx-
imating the functional integral by its saddle point we find

Z � e−
1
�

S[�0].

On the other hand we have in the canonical ensemble

Z = e−βF .

Thus we can identify the free energy of statistical mechanics with S[�0] of our
field theory

F = 1

β�
S(�0).

It is now clear how to generalize Landau’s theory. Instead of the saddle point, or
classical approximation, we consider the full path integral

Z (β, g, m) =
∫

D� e−
1
�

S[�]

with

S[�] =
∫

dDx

[
1

2
�(x)(−∇2)�(x) + V (�)

]

V (�) = 1

2
m2�2(x) + g

4!
�4(x),

that is, we take for S[�] Landau’s free energy FL , replacing Mz(x) by �(x). From
our discussion of the path integral approach to quantum field theory, we know that
a perturbation expansion for the partition function and correlation functions in the
coupling constant g can be constructed. Our aim is then to see if by choosing special
values for the coupling constants m2 and g the partition function Z can be made
scale invariant. The system then will be close to a phase transition configuration.
Using the Landau form for S(�) we will analyze the corresponding field theory and
see if for special values of the coupling constants the partition function Z can be
made scale invariant. We would like to study the above functional integral within
the framework of quantum field theory. To carry out this program a few results
about functional integrals are needed which we will present in the next section.

13.6 Correlation functions

In Section 13.1 we have emphasized the relevance of correlation functions for
explaining the singular behavior of the susceptibility near the critical tempera-
ture, TC. The following result shows how the two-point correlation functions are
related to the path integral representation of the partition function. To begin with
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we extend Result 11.2 for finite-dimensional integrals formally to the case of a field
�(x) as

Result 13.4 ∫
D� e−

1
2 (�,A�)+(J,�) = (det A)−

1
2 e

1
2 (J,A−1 J )

where

(�, A�) =
∫

dDx �(x)(−∇2 + m2)�(x)

(J, �) =
∫

dDx J (x)�(x).

The determinant of the operator A = (−∇2 + m2) has to be suitably defined in
terms of the non-zero eigenvalues of the differential operator (−∇2 + m2).

This is an important identity since it allows us to express the correlation functions
of an arbitrary number of fields in terms of derivatives of the partition sum with
respect to the “external field” J (x). We will show this explicitly for the case of the
two-point function.

Result 13.5 The two-point correlation function

CT (| x |) =
∫

D� e−(�,A�)�(x)�(0)∫
D� e−(�,A�)

, A = (−∇2 + m2)

satisfies the partial differential equation(− ∇2
x + m2

)
CT (| x |) = δ3(x).

This shows, in particular that CT (| x |) agrees with the correlation func-
tion introduced in Section 13.3 up to a solution of the homogeneous equation
(−∇2

x + m2) f (x) = 0.

Proof. In order to verify this claim we consider∫
D� e−

1
2 (�,A�)�(x)�(y).

Using Result 13.4 this becomes

(det A)−
1
2

δ

δ J (x)

δ

δ J (y)
e

1
2 (J,A−1 J ) |J=0

where

(J, A−1 J ) =
∫

dDx
∫

dD y J (x)A−1(x, y)J (y).
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After expanding the exponential we will have to evaluate

δ

δ J (x)

δ

δ J (y)

[
1 + 1

2
(J, A−1 J ) + 1

2!

1

4
(J, A−1 J )2 + · · ·

] ∣∣∣∣
J=0

To continue we recall the functional derivatives given in Section 13.5

δ J (z)

δ J (x)
= δD(x − z).

Since J is to be set equal to zero at the end, the only term which contributes to the
result is

δ

δ J (x)

δ

δ J (y)

1

2
(J, A−1 J ) |J=0

= 1

2
[A−1(x, y) + A−1(y, x)].

Since A−1(x, y) = A−1(y, x) is a Hermitian operator we then have∫
D�e−(�,A�)�(x)�(0)∫

D�e−(�,A�)
= A−1(x, y).

To conclude the proof we have to determine A−1(x, y) by solving the equation

AA−1 = I , or AA−1(x, y) = δD(x, y).

Upon substitution of A = (−∇2 + m2) the equation for A−1(x, y) is given by(− ∇2
x + m2

)
A−1(x, y) = δ(3)(x − y) ,

which, in turn, establishes the result. �

13.7 Epsilon expansion

Before we consider the corrections to the Landau approach let us recall how
CT (| x |) determines the singular behavior of the susceptibility χ . As explained
in Section 13.3 we have

χ =
∫

d3x CT (| x |) = (2π )3�(0)

where �(k) is the Fourier transform of CT (| x |). In particular if we ignore the
interaction term, g/4!

∫
dD�4(x), we have just seen that �g=0(0) = 1/m2 and thus

χ = (2π )3/m2. Setting m2 ∝ (TC − T ) Landau’s result is recovered. The singular
behavior of χ is thus determined by the way m2 → 0 as T → TC.
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The way to improve on Landau’s result is now clear. We should study the full
propagator

Cg
T (| x |) =

∫
D� e−(�,A�)− g

4!

∫
dD x�4

�(x)�(0)∫
D� e−(�,A�)− g

4!

∫
dD x �4

in the region where the parameters m and g of the theory are close to values which
lead to a scale invariant partition function. The susceptibility χ is then determined
by calculating �g(0) corresponding to

∫
Cg

T (| x |).
Let us evaluate the lowest-order modification to CT (| x |) brought about by the

interaction term g/4!
∫

dDx�4(x). To do this we expand the interaction in powers
of g

e−
g
4!

∫
�4(x)dD x � 1 − g

4!

∫
�4(x)dDx .

Then to O(g) :

CT (| x1 − x2 |) = C0
T (| x1 − x2 |) − g

4!

∫
D� e−(�,A�)�(x1)�(x2)

∫
dD y �4(y)∫

D� e−(�,A�)

+ g

4!

∫
D� e−(�,A�)�(x1)�(x2)

∫
D� e−(�,A�)

∫
dD y �4(y)( ∫

D� e−(�,A�)
)2 .

The first term on the right-hand side is just our result for the two point correlator
in the absence of interactions. The second and the third term can now be evaluated
in terms of C0

T using Results 13.4 and 13.5 leading to

CT (| x1 − x2 |) = C0
T (| x1 |) − 12g

4!

(∫
C0

T (| x1 − y |)C0
T (0)C0

T (| x2 − y |)dD y

)
.

The factor 12 is a combinatorial factor arising when applying Result 13.4. Just like
in our discussion in quantum field theory in Chapter 9 the above equation has a
simple graphical interpretation. The right-hand side can be represented by drawing
all connected graphs with two external lines corresponding to �(x1) and �(x2) and
one vertex corresponding to

∫
�4(x)dDx , that is

= +
12
4!

The combinatorial factor 12 then simply counts the number of ways to connect
the legs of the vertex with itself and the external lines, �(x1) and �(x2). Thus we
recover the Feynman rules established in Chapter 9. This is as it should be since as
we have already mentioned in the remarks above we are treating the path integral
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like a fictitious quantum field theory with action S[�]. The reason that we draw
only connected Feynman graphs is due to the fact that the disconnected, or vacuum
graphs, are cancelled by the last term in the equation for CT . Let us now rewrite
our result in terms of the momentum space correlators �(k) and �0(k). Defining

CT (| x |) =
∫

dDk

(2π )D
eik·x�(k)

C0
T (| x |) =

∫
dDk

(2π )D
eik·x�0(k)

we get

�(k) = �0(k) − 12�0(k)

(
g

4!

∫
dDq

(2π )D

1

(q2 + m2)

)
�0(k)

= �0(k) − 1

2
g�0(k)�(0)�0(k)

where

�(0) =
∫

dDq

(2π )D

1

(q2 + m2)
.

In fact this integral is logarithmically divergent for D = 3. This is a common feature
in quantum field theory which is addressed by adding suitable counter terms to the
actions S[�]. This process which is called renormalization is described extensively
in the literature. For our purpose we can avoid this complication since we will
only be interested in the m-dependent part of �(0). Since we are interested in the
susceptibility we may set k = 0. Then

�(0) � �0(0) − g

2
�0(0)�(0)�0(0)

= 1

m2
− g

2m4
�(0)

≡ 1

M2
.

From our result relating the susceptibility χ to �(0) we have χ = (2π )3/M2. Hence
the singular behavior of χ can be determined, as a function of temperature, once
we determine the way M depends on temperature. This in turn will follow from
the way M depends on m since we know that m2 ∝ T − TC. We shall look for a
dependence of M on m of the form M ∝ m1+c(g). This will change the singular
behavior of χ from that predicted by Landau theory.

At this stage, the singular behavior of χ seems to depend on the value of the cou-
pling constant g of the system. However, as we have emphasized at the end of Section
13.5, in order for our quantum field theory model to describe a physical system near
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a phase transition, the theory must be scale invariant. Now since m2 ∝ (TC − T )
scale invariance can be achieved at the critical temperature by setting g = 0. In this
case we recover the results from Landau theory. The question which we now want
to address is whether taking higher-order corrections into account we will find other
non-trivial values of g leading to a scale invariant theory. For this we first introduce
an effective coupling. This can be done by considering the four-point function

�(x1, x2, x3, x4) =
∫

Dφe−(φ,Aφ)− g
4!

∫
φ4

φ(x1)φ(x2)φ(x3)φ(x4).

Expanding the interaction term e−
g
4!

∫
φ4

we get∫
Dφe−(φ,Aφ)φ(x1)φ(x2)φ(x3)φ(x4)

[
1 − g

4!

∫
φ4(x)dDx

+
( g

4!

)2
(

1

2!

∫
φ4(x)dDx

)2

+ · · ·
]
.

Now we consider the term linear in the coupling constant g, that is∫
Dφe−(φ,Aφ)φ(x1)φ(x2)φ(x3)φ(x4)

(−g

4!

)∫
φ4(x)dDx .

Using Result 13.4 this gives

−g

4!

∫
C0(x1 − x)C0(x2 − x)C0(x3 − x)C0(x4 − x)dDx .

In momentum space this becomes

= −g

4!

∫ 4∏
i=1

dDki

(
1

k1
2 + m2

)(
1

k2
2 + m2

)(
1

k3
2 + m2

)(
1

k4
2 + m2

)
δD

(
4∑

i=1

ki

)

where k1, k2, k3, k4 represent the momenta of four particles. The coupling constant
−g/4! is obtained from this expression by picking the term from the integral with
ki = 0 and multiplying this expression by (m2)4. This term represents the strength
of the interaction between four zero-momentum particles. We will take this to be
the definition of the coupling constant of the theory.

Let us now look at the term which is of second order in g. We have

1

2

∫
Dφe−(φ,Aφ)φ(x1)φ(x2)φ(x3)φ(x4)

(−g

4!

)2 (∫
φ4(x)dDx

)2

.

Using Result 13.4 this can be easily evaluated. A typical term obtained by this
procedure is(−g

4!

)2 1

2!

∫
dDx

∫
dD yC0(x1 − x)C0(x2 − x)(C0(x − y))2C0(x3 − y)C0(x4 − y)
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and corresponds to the Feynman diagram

Writing this in momentum space, we get(−g

4!

)2 1

2!

∫ 4∏
i=1

dDki

(
1

k1
2 + m2

)(
1

k2
2 + m2

)(
1

k3
2 + m2

)(
1

k4
2 + m2

)

× δD

(
4∑

i=1

ki

)(∫
dDq

(2π )D

1

(q2 + m2)

1

((k1 + k2 − q)2 + m2)

)
.

Altogether there are 2(4C2)2 such terms. They correspond to the number of terms
generated by applying Result 13.4 to evaluate the integral. From the graphical
representation this factor can be understood as follows. There are (4C2)2 ways of
selecting two lines from the two vertices and there are two ways of joining these to
form the required graph. The contribution of these terms to the effective coupling
constant can be obtained by again picking the term with ki = 0 from the integral
and multiplying them by (m2)4. This gives

(4
C2
)2

2!

(−g

4!

)2 1

2!

(∫
dDq

(2π )D

1

(q2 + m2)2

)
.

If we ignore higher order terms we are led to define the effective coupling gR of
the field theory in terms of the linear and quadric contribution to the four-point
function. Graphically we can write this as

= + 36

Thus we have

1

4!
gR = 1

4!
g −

( g

4!

)2 1

2!

(
4C2

)2
2
∫

dDq

(2π )D

1

(q2 + m2)2

i.e.

gR = g − 3

2
g2
∫

dDq

(2π )D

1

(q2 + m2)2
.
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Observe that gR depends on m. Near a phase transition we would like gR to be a
scale invariant quantity and m to go to zero. This would lead to a scale invariant
partition function.

In order to implement these ideas we start by first determining the scale dimen-
sions of the different objects in the field theory. We observe that in units where the
Boltzmann constant and � are unity, S[�] must be a dimensionless quantity since
otherwise e−S[�] is ill-defined. By examining each term of S[�] we can establish the
dimension “d” of the different quantities appearing in S[�]. Introducing a length
scale L , we find that

d� = L
2−D

2

dm = L−1

dg = L D−4

We recall that the parameter m2 ∝ (TC − T ) and hence it is a variable. It is thus
convenient to select m2 as the length scale of our system. This allows us to study
∂ M2/∂m2 as a function of m2 keeping g fixed. The parameter g is to be fixed so
that the system is scale invariant. We have

∂ M2

∂m2
= 1 + g

2
(m2)

(
D−4

2

) (
A

D − 4

)

A = 2�(3 − D/2)

(2
√

π )D
,

where we have used the result∫
dDq

(2π )D

1

(q2 + m2)n
= 1

(2
√

π )D
m2
(

D
2 −n

)
�
(
n − D

2

)
�(n)

and

�

(
2 − D

2

)
= 2

�
(
3 − D

2

)
(D − 4)

to evaluate the integral ∫
dDq

(2π )D

1

(q2 + m2)
.

Similarly we have for the effective coupling

gR = g + 3

2
g2(m2)

D−4
2

A

(D − 4)
.

The method of evaluating integrals by treating the dimension D as a parameter is
known as the dimensional regularization method. It is very useful for regulating
potentially divergent integrals and is commonly used in quantum field theory. For
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problems in critical phenomena it is also convenient to regard (4 − D) = ε as
“small” and use it as an expansion parameter. This is known as the epsilon expansion.
Writing

gR = u Rm−2(D−4)/2 = xε/2u R

with ε = 4 − D, and x = m2, we have

xε/2u R = xε/2u + 3

2
u2xε/2 A

D − 4
.

We now implement our requirement that g∗R be scale invariant, that is independent
of x , or x∂g∗R/∂x = 0. This implies

ε

2

[
u∗ − 3

2
(u∗)2 A

ε

]
= 0.

There are two solutions u∗ = 0, u∗ = +2ε/3A. Let us now return to the expression
for

∂ M2

∂x

∣∣∣∣
g fixed

= 1 + g

2
(x)

D−4
2

(
A

D − 4

)
.

We want to determine the dependence of M2 on x due to interactions. If we write
M2 = Bx1+c(g) then

x
d

dx
ln

(
∂ M2

∂x

)
= c(g).

In our case

ln

(
∂ M2

∂x

)
= ln

(
1 + g

2
x

D−4
2

(
A

D − 4

))
.

So that

x
d

dx
ln

(
∂ M2

∂x

)
= +A

g

4
x

D−4
2 = +u A

4
.

Since gx
D−4

2 = u, we have c = +u A/4. We found that there were two values for
u which give rise to a scale invariant g∗R . Namely u∗ = 0. This gives c = 0 and
implies

χ ∼ 1

| T − TC |
which is Landau’s result. The second solution is u∗ = + 2ε

3A with ε = 4 − D. This
gives c = ε/6 and

χ ∼ 1

| T − TC |1+ ε
6
.
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Table 13.1. Critical exponents and scaling laws from ε-expansion (at O(ε)),
Landau theory, exact results in the 2D-Ising model, numerical results in the

3D-Ising model and a variety of experimental values to illustrate the universal
behavior. The exponent α is defined in Problem 13.1.

Exponent ε-expansion Landau 2D-Ising 3D-Ising Experiment

α 1/6 0 0 (log. div.) 0.12 0–0.14
β 1/3 0.5 1

8 0.31 0.32–0.39
γ 7/6 1 1.75 1.25 1.3–1.4
δ 4 3 15 5 4–5

(βδ−γ )
β

1/2 1 1 1 0.93 ± 0.08

In particular, for D = 3, we have ε = 1 so that the critical exponent γ is changed
from the Landau value of 1 to (1 + 1/6) � 1.2. Experimentally, for many systems,
as we stated earlier γ � 1.25. Thus choosing u∗ = +2ε/3a improves on Landau’s
original result. In Table 13.1 we compare the values for the critical exponents
of different calculations with some experimental values. This gives an idea of the
quality of the different approximate methods. Note that the predictions from Landau
theory improve as the dimensions of the system increases. This is due to the fact
that fluctuations which are important in low dimensions are neglected in the Landau
theory.

Of course, ε = 1 is not small and thus higher-order corrections should be taken
into account. Our aim in this section was to emphasize the physical ideas which
underlie the real space and field theory approaches to critical phenomena and to
give a flavor of the way a calculation of critical exponents is actually carried out.
In order to do these calculations to greater accuracy a more elaborate machinery
involving renormalizations is required. The specialized books listed at the end of
the section may be consulted for further details.

Problems

Problem 13.1 Consider the Landau model with

FL (T, �) = FL (T, 0) + r0(T )

2
�2 + u0�

4 ,

and let F(T ) ≡ FL (T, �)|�=〈�(T )〉 be the free energy. Here 〈�(T )〉 is determined
by requiring that it minimizes FL (T, �). We will assume that r0(T ) = a0(T − TC)
/TC with a0 > 0. In particular, r0(T ) changes sign at T = TC. Show that

(1) the entropy S is continuous at T = TC and that
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(2) cV is discontinuous. Compute the critical exponent α for cV defined through
cV ∝ ((T − TC)/TC)α. Hint: use that near TC we can approximate
cV � TC∂S/∂T (why?)

Problem 13.2 Discuss the consequences of a cubic term in the Landau model

FL (T, �) = FL (T, 0) + r0(T )

2
�2 + so�

3 + u0�
4.

Sketch FL (T, �) as a function of � for T > TC and T < TC and show that
〈�(T )〉 is a discontinous function of T . What is the interpretation of this jump?

Problem 13.3 Revisit the Landau theory in Section 13.3 from the second
viewpoint introduced in Problem 3.3. How will the corresponding formulas in
Section 13.3 be modified?

Problem 13.4 Convexity of the free energy: the free energy as a function of the
order parameter plotted in Section 13.3 is not convex. This is because in Section
13.3 we considered only the pure phase where the order parameter is constant. In
this problem we consider the possibility of a mixture of phases. For this we start
with the Landau free energy for fixed T0 < TC.

FL [T0, �, V ] = FL (T0, 0, V ) +
∫

d3x
[1

2
(∇�)2 − τ

2
�2 + λ

4!
�4
]
,

where τ, λ > 0, �(x) is the order parameter and F0(T0, V ) is the free energy for
� = 0. Assuming that � = �0, a constant, the free energy as a function �0 takes
the form of the first plot in Section 13.3 with two minima at �0 = ±√τ3!/λ.

(1) Show that if we allow � to depend on one coordinate, z say, then the free
energy has another extremum for

�1(z) = φ0 tanh
z − z0

ξ
,

where ξ = √
2/τ .

(2) Show that for −L/2 ≤ z ≤ L/2, with L � ξ the average value for the order
parameter is given by

〈�〉 = −�0
2z0

L
.

Thus 〈�〉 as a function of z0 interpolates between −�0 and �0.
(3) Show that for L →∞ the function FL [T0, �1, V ]/V is the convex hull of

FL [T0, �0, V ]/V between −�0 and �0.

In this concrete example we thus see explicitly that the free energy is convex if we
allow for mixing of the pure phases, −�0 and �0.
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Problem 13.5 The mean field approximation is a concrete procedure to
implement the ideas underlying the Landau theory in a specific model. Here we
consider the D-dimensional Ising model. Start with the expression for the energy
of the Ising model given in Section 13.1 and expand the energy in powers of
mi − 〈m〉, where 〈m〉 is the expectation value of mi (to be determined!). In the
mean field approximation one neglects all terms of order (mi − 〈m〉)2 and higher.
Compare the effective Hamiltonian obtained to that derived in Problem 2.5.

The partition function for the truncated expression for the energy can then be
calculated exactly. Minimizing the corresponding free energy leads to an implicit
equation for 〈m〉. Determine the critical temperature TC defined as the maximal
temperature for which this equation has a non-trivial solution for 〈m〉. Expand the
free energy in terms of 〈m〉 for (T − TC)/TC � 1 up to fourth order in 〈m〉.
Compare the resulting expression with the Landau free energy.

Problem 13.6 The purpose of this problem is to use dimensional arguments in
order to get a quick derivation of scaling laws of the type found at the end of
Section 13.4 relating the various critical exponents. The key assumption is that for
t = (TC − T )/TC, the correlation length, ξ (t) = ξ0t−ν , is the only scale in the
theory. Dimensional counting then implies that

β
F(T, V )

V
∝ ξ−D(t) ,

where D is the space dimension. Show that this implies that cV ∝ |t |Dν−2.
Combining this with cV ∝ |t |−α (see Problem 13.1 ) we end up with the
Josephson scaling law

2 − α = Dν.

Similarly using that for the magnetization

B〈m〉 = FL (T, 〈m〉, B) − FL (T, 0, 0)

V
,

show that β(1 + δ) = Dν. There are in total four scaling laws and six critical
exponents so that only two of them are independent.

Historical notes

The idea of the renormalization group was first introduced by Stueckelberg and
Petermann in 1953 and by Gell-Mann and Low in 1954 to cure ultraviolet diver-
gencies in the perturbative approach to relativistic quantum field theory. We have
encountered an example of such a divergence for �(0) in Section 13.7. Renormal-
ization is the procedure to remove such infinities order by order in perturbation
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theory by adding equally infinite counter terms to the action, that is, the infini-
ties are absorbed through a redefinition of the coupling constants and the fields.
The underlying physical intuition is that the original, or “bare”, theory, is merely a
mathematical construct while all physical observables which are expressed solely in
terms of renormalized couplings are finite. Generically this renormalization proce-
dure introduces a new scale in the theory. The renormalization group then expresses
the invariance of the physics of this new scale.

In critical phenomena the renormalization group was first formulated by Wilson
in 1971. The purpose here is not to cure divergencies but to reduce the number of
degrees of freedom in the effective description of critical phenomena by systemati-
cally integrating over short wavelength fluctuations. This is the philosophy that was
followed in this chapter. The physics at large scales should not be affected by this
procedure. Thus the sole effect should be a possible redefinition of the dimensional
coupling constants to take the change of scale into account. The renormalization
group transformation then relates the parameters of the theory at different steps of
this process. The key point in this approach is the existence of fixed points in the
renormalization group transformation. At these points the effective theory becomes
scale invariant and therefore can describe a physical system at a phase transition.

Since the 1970s there has been a gradual change in philosophy also in quan-
tum field theory as to the interpretation of the renormalized theory. Today one is
more inclined to think of the renormalized theory as a long distance approximation
to some yet-to-be-discovered unified theory. At long distances the details of this
unknown theory are irrelevant, the low energy theory being defined by but a few
coupling parameters that define the renormalized theory. The success of Wilson’s
interpretation of renormalization for critical phenomena surely has contributed to
this shift of emphasis.

Further reading

A classic text book on the theory of phase transitions is H. E. Stanley, Intro-
duction to Phase Transitions and Critical Phenomena, Oxford University Press
(1971). Boundary and surface effects in phase transitions are discussed in S. K. Ma,
Statistical Mechanics, World Scientific (1985). For further discussions of the scal-
ing laws see e.g. K. Huang, Statistical Mechanics, John Wiley (1987) or M. Le
Bellac, Quantum and Statistical Field Theory, Oxford University Press (1991).

Other useful texts on phase transitions and critical phenomena are listed below:
L. Landau and E. Lifshitz, Statistical Physics, Pergamon Press (1959); L. E. Reichl,
A Modern Course in Statistical Physics, Arnold (1980); S. K. Ma, Modern Theory
of Critical Phenomena, W. A. Benjamin (1976); N. Goldenfeld, Lectures on Phase
Transitions and the Renormalisation Group, Addison Wesley (1992), and at a more
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advanced level, J. Zinn-Justin, Quantum Field Theory and Critical Phenomena 2nd
ed., Oxford University Press (1993); G. Parisi, Statistical Field Theory, Addison-
Wesley (1988); J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman,
Theory of Critical Phenomena, Oxford University Press (1992). The experimental
values for the critical exponents in Table 13.7 were taken from A. Z. Patashinskii
and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions, Pergamon Press
(1979).
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