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Preface to the Second Edition

For the present edition the concept of the book and of INTERQUANTA, the
accompanying Interactive Program of Quantum Mechanics, (IQ, for short),
was left unchanged. However, the physics scope of the text and the capabili-
ties of the program were widened appreciably.

The most conspicuous addition to IQ is the capability to produce and dis-
play movies of quantum-mechanical phenomena. So far, IQ presented time
dependence as a series of graphs in one frame. While such plots (which can,
of course, still be shown) lead to a good understanding of the phenomenon un-
der study and can be examined quantitatively at leisure, the new movies give
a more direct impression of what happens as time passes. For such movies,
as for the conventional simulations, the parameters defining the physical phe-
nomenon and the graphical appearance can be changed interactively. Movies
can be produced and also stored for many quantum-mechanical problems such
as bound states and scattering states in various one-dimensional potentials,
wave packets in three dimensions (free or in a harmonic-oscillator potential),
and two-particle systems (distinguishable particles, identical fermions, iden-
tical bosons).

Concerning the physics scope, these are the main additions: One-dimen-
sional bound and scattering states are now discussed and computed also for
piecewise linear potentials. These, as opposed to the usual step potentials
(which are piecewise constant), allow for much better approximations of ar-
bitrary smooth potentials. Another interesting addition to one-dimensional
quantum mechanics is the juxtaposition of quantum-mechanical wave packets
with classical phase-space distributions. The treatment of quantum mechan-
ics in three dimensions is extended by the hybridization of bound states and
by the simulation of magnetic resonance.

In the present edition the number of data sets (we call them descriptors),
defining a complete simulation – either presented as conventional plot or as
movie – is more than tripled. In this way users have a much richer choice of
ready-made examples from which to start their exploits. Moreover, solution
descriptors are now provided for the exercises.

Siegen, Germany Siegmund Brandt
May 2010 Hans Dieter Dahmen

Tilo Stroh
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Preface to the First Edition

This book can be regarded as a concise introduction to basic quantum mechan-
ics: free particle, bound states, and scattering in one and in three dimensions,
two-particle systems, special functions of mathematical physics. But the book
can also be seen as an extensive user’s guide for INTERQUANTA, the Inter-

active Program of Quantum Mechanics, which we will abbreviate henceforth
as IQ. The book also contains a large number of exercises. The program
can be used in two ways. By working through (at least a part of) these exer-
cises, the user of IQ explores a computer laboratory in quantum mechanics

by performing computer experiments. A simpler way to use IQ is to study
one or several of the ready-made demonstrations. In each demonstration the
user is taken through one chapter of quantum mechanics. Graphics illustrat-
ing quantum-mechanical problems that are solved by the program are shown,
while short explanatory texts are either also displayed or can be listened to.

INTERQUANTA has a user interface based on tools provided by the Java

programming language. With this interface using the program is essentially
self-explanatory. In addition, extensive help functions are provided not only
on technical questions but also on quantum-mechanical concepts. All in all
using INTERQUANTA is not more difficult than surfing the Internet.

The modern user interface is the main improvement over older versions of
IQ.1 Moreover, new physics topics are added and there are also new graphical
features.

The present version of INTERQUANTA is easily installed and run on
personal computers (running under Windows or Linux) or Macintosh (running
under Mac OS X).

We do hope that by using INTERQUANTA on their own computer many
students will gain experience with different quantum phenomena without hav-
ing to do tedious calculations. From this experience an intuition for this im-
portant but abstract field of modern science can be developed.

Siegen, Germany Siegmund Brandt
February 2003 Hans Dieter Dahmen

Tilo Stroh
1 S. Brandt and H. D. Dahmen, Quantum Mechanics on the Personal Computer, Springer,

Berlin 1989, 1992, and 1994; Quantum Mechanics on the Macintosh, Springer, New York
1991 and 1995; Pasocon de manebu ryoushi nikigacu, Springer, Tokyo 1992; Quanten-

mechanik auf dem Personalcomputer, Springer, Berlin 1993
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1. Introduction

1.1 Interquanta

The language of quantum mechanics is needed to describe nature at the atomic
or subatomic scale, for example, the phenomena of atomic, nuclear, or particle
physics. But there are many other fields of modern science and engineering in
which important phenomena can be explained only by quantum mechanics,
for example, chemical bonds or the functioning of semiconductor circuits in
computers. It is therefore very important for students of physics, chemistry,
and electrical engineering to become familiar with the concepts and methods
of quantum mechanics.

It is a fact, however, that most students find quantum mechanics difficult
and abstract, much more so than classical point mechanics. One easily detects
the reason for this by recalling how students learn classical mechanics. Be-
sides learning from lectures, they draw on experience from everyday life, on
experiments they perform in the laboratory, and on problems they solve on pa-
per. The important concept of a mass point is nothing but that of a very small
stone. The experience with throwing stones helps to understand mechanics.

problems that are easily solved.
All this is different with quantum mechanics. Although – for all we know

– elementary particles are point-like, the concept of the trajectory of a mass
point breaks down and has to be replaced by a complex probability amplitude.

indirectly from experiments involving optical spectra or counting rates, and
so forth.
difficulties and require approximative or numerical methods. Thus, students
can do only a few problems.

Many quantum-mechanical problems can, however, be quickly solved nu-
merically by computer. The answer is often very easy to analyze if presented
in graphical form. We have written an interactive program taking alphanu-

meric input defining quantum-mechanical problems and yielding graphical

S. Brandt et al., Interactive Quantum Mechanics: Quantum Experiments on the Computer, 

Additional experiments are very direct and simple and there is a wealth of

Finally, nearly all nontrivial problems pose severe computational

This function cannot be measured directly; its properties have to be inferred

1
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output to produce a large number of illustrations for an introductory textbook
on quantum mechanics.1

Here we present an improved and generalized version of this program,
which we call INTERQUANTA (IQ for short) – the interactive program
of quantum mechanics. The program has a convenient, essentially self-
explanatory user interface written in the Java programming language2 and
running on a Java virtual machine (VM). Moreover, there is extensive online
help. IQ can be used in two rather different ways. While studying ready-
made demonstrations, the user is only an interested onlooker. In the interac-

tive mode, on the other hand, the user determines what happens. He or she
can solve quantum-mechanical problems of his or her own choice. Users can
work through a complete computer laboratory in quantum mechanics. This
can be done at leisure at home on one’s own computer or on that of a friend.
Often it is more fun if two or three students join to define their problems,
solve them, and discuss the solutions. In the computer laboratory students de-
fine and solve a quantum-mechanical problem, analyze the result, change one
or several parameters of the original problem, study the next result, and so on.
Using the program on a large variety of problems of different types, students
gain experience in quantum mechanics because they performed computer ex-
periments and at the same time solved problems by numerical methods.

Of course, IQ can also be used in organized courses run by a tutor or for
demonstrations in lectures.

1.2 The Structure of This Book

This book consists of a main text and several appendixes. Chapters 2
through 10 of the main text are devoted to the various physics subjects covered
by IQ. Each chapter begins with a section “Physical Concepts” in which the
relevant concepts and formulae are assembled without proofs. Although this
book is in no way intended to be a textbook, this section is needed to allow
a precise definition of what the program does and also a clear formulation of
the exercises. The following sections of each chapter are devoted to specific
physics topics that can be tackled with IQ and give details on the user inter-
face as far as they are of particular interest for the physics topic at hand. Each
chapter is concluded by a collection of exercises. Chapter 11 is devoted to the
special functions of mathematical physics relevant to quantum mechanics. In
Chap. 2 there is in addition a section “A First Session with the Computer”,
which in an informal way provides a minimum of general knowledge of IQ.

1 S. Brandt and H. D. Dahmen, The Picture Book of Quantum Mechanics, 3rd edition,
Springer, New York 2001

2 Java is developed by Sun Microsystems, Inc. For details see http://java.sun.com.
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Chapter 12 contains hints for the solution of some exercises. It begins with a
section on the different possibilities for choosing units for physical quantities.
Its content is useful in many exercises for determining numerical values of
input parameters and for correctly interpreting the numerical results of com-
putations by IQ.

Appendix A is a systematic guide to IQ. Appendix B contains technical
information on the installation of the program.

1.3 The Demonstrations

IQ provides ready-made demonstrations for the following physics topics cor-
responding to Chaps. 2 through 11 of this book:

• free particle motion in one dimension,
• bound states in one dimension,
• scattering in one dimension,
• two-particle systems,
• free particle motion in three dimensions,
• bound states in three dimensions,
• scattering in three dimensions,
• spin and magnetic resonance,
• hybridization,
• functions of mathematical physics.

There are two further demonstrations which are meant to be tutorials on the
use of IQ. Their titles are

• Introduction,
• Creating and Using Movies.

Each demonstration contains many example plots and explanatory text (writ-
ten or spoken). See Appendix A.1.13 for information about how to run a
demonstration, and Appendix A.12 for how to prepare your own demonstra-
tion files.

1.4 The Computer Laboratory

The course itself consists in working through (some of) the exercises given
in the different chapters of this book. For most of the exercises an initial

descriptor is provided with properly chosen graphics and physical parameters.
The students are asked to run IQ with this descriptor, study the graphical
output, and answer questions for which they usually have to change some
parameter(s), run IQ again, and so on. At any stage they can store away
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their changed descriptors for later use. They can also take hardcopies of all
graphical output to perform measurements on or simply file them, preferably
with some comments. In many exercises it is intended to draw the attention
of the student to a particular feature of the plot. This is usually attempted by
asking a question that can in most cases be answered by qualitative arguments.
Most of these are answered in Chap. 12. Of course, students may define and
solve problems not contained in the lists of exercises given.

1.5 Literature

Because in the introductory sections “Physical Concepts” we present only a
very concise collection of concepts and formulae, the user of IQ is urged to
study the physics topics in more detail in the textbook literature. Under the
heading “Further Reading” at the end of our introductory sections we refer
the user to the relevant chapters in the following textbooks:

Abramowitz, M., Stegun, I. A. (1965): Handbook of Mathematical Func-

tions (Dover Publications, New York)
Alonso, M., Finn, E. J. (1968): Fundamental University Physics, Vols. 1–3
(Addison-Wesley, Reading, MA)
Kittel, C., Knight, W. D., Ruderman, M. A., Purcell, E. M., Crawford, F.

S., Wichmann, E. H., Reif, F. (1965): Berkeley Physics Course, Vols. I–IV
(McGraw-Hill, New York)
Brandt, S., Dahmen, H. D. (2001): The Picture Book of Quantum Mechanics

(Springer-Verlag, New York)
Feynman, R. P., Leighton, R. B., Sands, M. (1965): The Feynman Lectures

on Physics, Vols. 1–3 (Addison-Wesley, Reading, MA)
Flügge, S. (1971): Practical Quantum Mechanics, Vols. 1,2 (Springer-Verlag,
Berlin, Heidelberg)
Gasiorowicz, S. (2003): Quantum Physics (John Wiley and Sons, New York)
Hecht, E., Zajac, A. (1974): Optics (Addison-Wesley, New York)
Merzbacher, E. (1970): Quantum Mechanics (John Wiley and Sons, New
York)
Messiah, A. (1970): Quantum Mechanics, Vols. 1,2 (North-Holland Publish-
ing Company, Amsterdam)
Schiff, L. I. (1968): Quantum Mechanics (McGraw-Hill, New York)



2. Free Particle Motion in One Dimension

Contents: Description of a particle as a harmonic wave of sharp momentum and as
a wave packet with a Gaussian spectral function. Approximation of a wave packet as

phase-space description. Analogies in optics: harmonic light waves and light wave
packets. Discussion of the uncertainty principle.

2.1 Physical Concepts

2.1.1 Planck’s Constant. Schrödinger’s Equation

for a Free Particle

The fundamental quantity setting the scale of quantum phenomena is Planck’s

constant

h = 6.626× 10−34 J s , h̄ = h/2π .

A free particle of mass m and velocity v traveling in the x direction with mo-
mentum p = mv and kinetic energy E = p2/2m has a de Broglie wavelength

λ = h/p. The harmonic wave function

ψp(x, t) =
1

(2πh̄)1/2
exp

[

− i

h̄
(Et − px)

]

(2.1)

is called a Schrödinger wave. It has the phase velocity

vph = E/p = p/2m .

Schrödinger waves are solutions of the Schrödinger equation for a free parti-

cle

ih̄
∂

∂t
ψp(x, t) = −

h̄2

2m

∂2

∂x2
ψp(x, t) = T ψp(x, t) (2.2)

with

T = − h̄
2

2m

∂2

∂x2

being the operator of the kinetic energy.

S. Brandt et al., Interactive Quantum Mechanics: Quantum Experiments on the Computer, 5

a sum of harmonic waves. Probability-current density. Quantile motion. Classical
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6 2. Free Particle Motion in One Dimension

2.1.2 The Wave Packet. Group Velocity. Normalization

Since the equation is linear in ψp, a superposition

ψ(x, t) =
N
∑

n=1

wnψpn(x, t) (2.3)

of harmonic wavesψpn corresponding to different momenta pn each weighted
by a factor wn also solves the Schrödinger equation. Replacing the sum by an
integral we get the wave function of a wave packet

ψ(x, t) =
∫ ∞

−∞
f (p)ψp(x − x0, t) dp , (2.4)

which is determined by the spectral function f (p) weighting the different
momenta p. In particular, we consider a Gaussian spectral function

f (p) = 1

(2π)1/4
√
σp

exp

[

−(p − p0)
2

4σ 2
p

]

(2.5)

with mean momentum p0 and momentum width σp.
Introducing (2.5) into (2.4) we get the wave function of the Gaussian wave

packet

ψ(x, t) = M(x, t)eiφ(x,t) (2.6)

with the amplitude function

M(x, t) = 1

(2π)1/4
√
σx

exp

[

−(x − x0 − v0t)
2

4σ 2
x

]

(2.7)

and the phase

φ(x, t) = 1

h̄

[

p0 +
σ 2
p

σ 2
x

t

2m
(x − x0 − v0t)

]

(x−x0−v0t)+
p0

2h̄
v0t−

α

2
(2.8)

with group velocity

v0 = p0/m , (2.9)

localization in space given by

σ 2
x =

h̄2

4σ 2
p

(

1+
4σ 4
p

h̄2

t2

m2

)

,

and

tanα = 2

h̄

σ 2
p

m
t .
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The initial spatial width at t = 0 is thus σx0 = h̄/(2σp). In terms of σx0 the
time-dependent width becomes

σ 2
x (t) = σ 2

x0

(

1+ h̄2

4σ 4
x0

t2

m2

)

. (2.10)

The absolute square of the wave function, which is the product of the wave
function ψ with its complex conjugate ψ∗,

%(x, t) = ψ(x, t)ψ∗(x, t) = |ψ(x, t)|2 , (2.11)

is interpreted in quantum mechanics as the probability density for observing
the particle at position x and time t . It fulfills the normalization condition

∫ ∞

−∞
%(x, t) dx = 1 , (2.12)

which states that the probability of observing the particle anywhere is one.
Computing the probability density for the wave function (2.6) we find

%(x, t) = 1√
2πσx(t)

exp

[

−(x − 〈x(t)〉)
2

2σ 2
x (t)

]

. (2.13)

This is the probability density of a Gaussian distribution, Sect. 11.1.11, with
time-dependent mean or expectation value

〈x(t)〉 = x0 +
p0

m
t (2.14)

and the time-dependent width (2.10).
The widths σx and σp of the wave packet are connected by Heisenberg’s

uncertainty relation

σxσp ≥ h̄/2 , (2.15)

the equality holding for a Gaussian wave packet and t = 0 only.

2.1.3 Probability-Current Density. Continuity Equation

Although in this chapter we deal with a free particle, i.e., the motion of a
particle in the absence of any force, the concepts introduced in this and the
following sections can also be applied to the motion of a particle under the
influence of a force. We therefore generalize the Schrödinger equation to

ih̄
∂

∂t
ψ(x, t) = − h̄

2

2m

∂2

∂x2ψ(x, t)+ V (x)ψ(x, t) , (2.16)

where V (x) is the potential energy or simply the potential of the force F(x)
acting on the particle, F(x) = −dV (x)/dx.
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Because the total probability (2.12) does not change, the probability den-
sity %(x, t) has to be connected to a probability-current density j (x, t) by a
continuity equation

−∂%(x, t)
∂t

= ∂j (x, t)

∂x
. (2.17)

The probability-current density is

j (x, t) = h̄

2mi

(

ψ∗
∂ψ

∂x
− ψ ∂ψ

∗

∂x

)

. (2.18)

[This equation is derived by computing the left-hand side of (2.17) us-
ing (2.11) and taking the time derivatives of ψ and ψ∗ directly from the
Schrödinger equation (2.16) and its complex conjugate.]

If %(x, t) is known, then j (x, t) can be computed directly from (2.17).
For a Gaussian wave packet one obtains

j (x, t) =
[

d〈x(t)〉
dt

+ 1

σx(t)

dσx(t)

dt
(x − 〈x(t)〉)

]

%(x, t) . (2.19)

In relations (2.13) and (2.19) we considered a free Gaussian wave packet.
If a force acts on the packet, in general, it loses its Gaussian shape. For
two special forces, namely, the constant force, Sect. 4.1.19, and the harmonic
force, Sect. 3.1.8, their general form remains unchanged. Only the time de-
pendences of the mean 〈x(t)〉 and the width σx(t) change.

2.1.4 Quantile Position. Quantile Trajectory

In classical mechanics the position x(t) of a point particle is well-defined and
so is its time derivative v(t) = dx(t)/dt , the velocity. In quantum mechanics
only the probability density %(x, t) of the position x is known. From this
we have already derived the probability-current density. We will now show
that mathematical statistics allow us to define a position xP (t), the quantile

position, and its time derivative, the quantile velocity. [This section is based
on the following publication: S. Brandt, H. D. Dahmen, E. Gjonaj, T. Stroh,
Physics Letters A249, 265 (1998).]

For any probability density %(x) the quantile associated with the proba-
bility Q is defined by

Q =
∫ xQ

−∞
%(x) dx . (2.20)

For the time-dependent probability density %(x, t) and the time-independent
probability P , 0 ≤ P ≤ 1, we define the time-dependent quantile position by

∫ ∞

xP (t)

%(x, t) dx = P . (2.21)
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At the time t the probability to observe a particle described by %(x, t) to the

right of xP (t), i.e., at x > xP (t), is P . The probability to observe it to the left

of xP (t) is Q = 1− P .
The function

xP = xP (t) (2.22)

defines the quantile trajectory of the quantile position xP (t) in the x, t plane.
For a Gaussian wave packet (2.13) it can be easily calculated. Using the
complementary error function erfc(x), Sect. 11.1.11, we have

P =
∫ ∞

xP (t)

%(x, t) dx = 1

2
erfc

(

xP (t)− 〈x(t)〉√
2πσx(t)

)

.

This equation can be used to determine xP (t0) at a given time t0 for a given
probability P . At time t the quantile position is

xP (t) = 〈x(t)〉 +
σx(t)

σx(t0)
(xP (t0)− 〈x(t0)〉) . (2.23)

We consider the time derivative of (2.21). Taking into account the time
dependence of the lower limit and the time independence of the integral we
obtain

−dxP (t)

dt
%(xP (t), t)+

∫ ∞

xP (t)

∂%(x ′, t)

∂t
dx′ = dP

dt
= 0 .

The continuity equation (2.17) allows us to replace ∂%/∂t by −∂j/∂x. The
integration can then be performed yielding

dxP (t)

dt
= j (xP (t), t)

%(xP (t), t)
. (2.24)

This is the differential equation for the quantile trajectory. For a specific
solution an initial condition is needed. It is the initial quantile position xP (t0)
for a given probability P at time t0.

2.1.5 Relation to Bohm’s Equation of Motion

We differentiate (2.24) once more with respect to time and multiply it by the
particle mass m,

m
d2xP (t)

dt2
= m d

dt

j (xP (t), t)

%(xP (t), t)
= −∂U(x, t)

∂x

∣

∣

∣

∣

x=xP (t)
. (2.25)

By writing the right-hand side as the negative spatial derivative of a potential
U(x, t), we have given the equation the form of Newton’s equation of motion.
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The potential U(x, t) is determined by using the expressions for %, (2.11),
and j , (2.18), and making use of the Schrödinger equation (2.16) to eliminate
expressions of the type ∂ψ/∂t and ∂ψ∗/∂t . The result is

U(x, t) = V (x)+ VQ(x, t) .

Here V (x) is the potential appearing in the Schrödinger equation and

VQ(x, t) =
h̄2

4m%(x, t)

(

∂2%(x, t)

∂x2 − 1

2%(x, t)

(

∂%(x, t)

∂x

)2
)

(2.26)

is the time-dependent quantum potential introduced by David Bohm. For a
Gaussian wave packet (2.13) it is

VQ(x, t) = −
h̄2

2m

1

2σ 2
x (t)

[

(x − 〈x(t)〉)2
2σ 2
x (t)

− 1

]

. (2.27)

Bohm did not use the quantile concept. He wrote (2.25) in the form

m
d2x(t)

dt2
= −∂U(x, t)

∂x
(2.28)

and thus formally connected quantum mechanics with Newton’s equation of
classical mechanics. The price to pay for this connection is twofold. (i) The
existence of a quantum potential VQ(x, t) has to be assumed. (ii) For the
solution of (2.28) the two initial conditions, the particle’s position x0 = x0(t)

and velocity v0 = v(t0) at a time t0, have to be known. In quantum mechanics
this is impossible because of the uncertainty principle.

We would like to stress here that Bohm’s particle trajectories are iden-
tical to our quantile trajectories, which are defined within the conventional
framework of quantum mechanics.

2.1.6 Analogies in Optics

We now briefly consider also a harmonic electromagnetic wave propagating in
vacuum in the x direction. The electric field strength is (written as a complex
quantity – the physical field strength is its real part)

Ek(x, t) = E0 exp[−i(ωt − kx)] , (2.29)

where the angular frequency ω and the wave number k are related to the
velocity of light in vacuum c and the wavelength λ by

ω = c |k| , λ = 2πc/ω . (2.30)
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In analogy to (2.3) and (2.4) we can again form superpositions of harmonic
waves as a weighted sum

E(x, t) =
N
∑

n=1

wnEkn(x, t) (2.31)

or as a wave packet

E(x, t) =
∫ ∞

−∞
f (k)Ek(x, t) dk . (2.32)

As spectral function for the wave number k we choose a Gaussian function
that is slightly different from the form (2.5),

f (k) = 1√
2πσk

exp

[

−(k − k0)
2

2σ 2
k

]

. (2.33)

Integration of (2.32) yields

E = E0 exp

[

−
σ 2
k

2
(ct − x)2

]

exp[−i(ω0t − k0x)] (2.34)

and

|E|2 = E2
0 exp

[

−(ct − x)
2

2σ 2
x

]

, (2.35)

with the relation
σxσk = 1/2 (2.36)

between the spatial width σx and the width σk in wave number of the electro-
magnetic wave packet. The importance of (2.35) becomes clear through the
relation

w = ε0

2
|E|2 , (2.37)

where w is approximately the energy density of the electromagnetic field (av-
eraged over a short period of time) and ε0 is the electric field constant.1

2.1.7 Analogies in Classical Mechanics: The Phase-Space

Probability Density

In conventional classical mechanics the position x and the momentum p of a
mass point are assumed to be known exactly. In reality this is, of course, not
the case. There are experimental errors1x = σx and1p = σp. To take these

1 This statement only holds for short average wavelengths, λ0 � σx .
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into account we define a classical probability density %cl(x, p) in phase space
(spanned by x and p). For the initial time t = 0 we write it as an uncorrelated
bivariate Gaussian distribution (Sect. 11.14) with expectation values x0, p0

and widths σx0, σp0,

%cl
i (xi, pi) =

1√
2πσx0

exp

{

−(xi − x0)
2

2σ 2
x0

}

1√
2πσp0

exp

{

−(pi − p0)
2

2σ 2
p0

}

.

(2.38)
For a free particle the momentum stays unchanged, p = pi, whereas the

position changes linearly with time, x = xi + vit = xi + (pi/m)t . We can
also write

xi = x − (p/m)t , pi = p . (2.39)

Inserting these relations into (2.38) we obtain the time-dependent classi-
cal phase-space probability density

%cl(x, p, t) = %cl
i (x − pt/m, p)

= 1

2πσx0σp0
exp

{

−1

2

[

(x − x0 − pt/m)2

σ 2
x0

+ (p − p0)
2

σ 2
p0

]}

= 1

2πσx0σp0
expL . (2.40)

The exponent can be rewritten as

L = −1

2

{

(x − [x0 + p0t/m] − (p − p0)t/m)
2

σ 2
x0

+ (p − p0)
2

σ 2
p0

}

= −1

2

σ 2
x0 + σ 2

p0t
2/m2

σ 2
x0

{

(x − [x0 + p0t/m])2

σ 2
x0 + σ 2

p0t
2/m2

−2(x − [x0 + p0t/m])(p − p0)

(σ 2
x0 + σ 2

p0t
2/m2)m/t

+ (p − p0)
2

σ 2
p0

}

.

Comparing this expression with the exponent of the general form (11.59) of
a bivariate probability density we find that %cl(x, p, t) is a bivariate Gaussian
with the expectation values

〈x(t)〉 = x0 + p0t/m , 〈p(t)〉 = p0 , (2.41)

the widths

σx(t) =
√

σ 2
x0 + σ 2

p0t
2/m2 , σp(t) = σp = σp0 , (2.42)

and the correlation coefficient
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c = σp0t

σx(t)m
= σp0t/m
√

σ 2
x0 + σ 2

p0t
2/m2

. (2.43)

In particular, this means that the marginal distribution %cl
x (x, t), i.e., the spatial

probability density for the classical particle with initial uncertainties σx0 in
position and σp0 momentum, is

%cl
x (x, t) =

1√
2πσx(t)

exp

{

−(x − [x0 + p0t/m])2
2σ 2
x (t)

}

.

We now consider the classical probability density %cl(x, p, t) of a particle
with initial uncertainties σx0 in position and σp0 in momentum, satisfying the
minimal uncertainty requirement of quantum mechanics, σx0σp0 = h̄/2. In
that case the spatial width of the classical probability distribution is

σx(t) =
h̄

2σp0

√

1+
4σ 4
p0

h̄2

t2

m2

and therefore identical to the width of the corresponding quantum-mechanical
wave packet. Also the expectation values for x and p and the width in p are
identical for the classical and the quantum-mechanical case.

Thus it is demonstrated that the force-free motion of a classical particle
described by a Gaussian probability distribution in phase space of position and
momentum yields the same time evolution of the local probability density as
in quantum mechanics if the initial widths σx0, σp0 in position and momentum
fulfill the relation

σx0σp0 =
h̄

2
.

In the further development of the quantum-mechanical description of particles
we shall see that this finding does not remain true for particles under the action
of forces other than constant in space or linear in the coordinates.

We can generalize our considerations from the free motion of a Gaussian
phase-space distribution to that of an arbitrary distribution under the influence
of a potential energy V (x). A trajectory in phase space is described by

x = x(xi, pi, t) , p = p(xi, pi, t) . (2.44)

The point (xi, pi) is assumed at the initial time t = 0, i.e.,

xi = x(xi, pi, 0) , pi = p(xi, pi, 0) . (2.45)

The functions (2.44) satisfy the equations

dx

dt
= 1

m
p(xi, pi, t) ,

dp

dt
= −dV

dx
= F(x(xi, pi, t)) . (2.46)
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We denote by %cl
i = %cl

i (xi, pi) the classical phase-space probability density
at the initial time t = 0. Solving the equations (2.44) for xi and pi we obtain
the initial phase-space points

xi = xi(x, p, t) , pi = pi(x, p, t) (2.47)

in terms of x and p. The time-dependent phase-space probability density is
then obtained as

%cl(x, p, t) = %cl
i (xi(x, p, t), pi(x, p, t)) . (2.48)

For the force-free Gaussian distribution treated at the beginning of this
section the equations (2.47) take the form (2.39). In this case (2.40) is ob-
tained from (2.48) if the initial distribution is an uncorrelated Gaussian.

Since %cl
i (xi, pi) does not depend explicitly on t , its total time derivative,

i.e., its partial time derivative for fixed values xi, pi, vanishes,

d%cl(x, p, t)

dt
=
(

∂%cl(x(xi, pi, t), p(xi, pi, t), t)

∂t

)

xi,pi

=
∂%cl

i (xi, pi)

∂t
= 0 .

(2.49)
The explicit calculation of the total time derivative yields

d%cl(x, p, t)

dt
= ∂%

cl(x, p, t)

∂t

+ ∂x(xi, pi, t)

∂t

∂%cl(x, p, t)

∂x
+ ∂p(xi, pi, t)

∂t

∂%cl(x, p, t)

∂p
.

Because of (2.49) and (2.46) we obtain

−∂%
cl(x, p, t)

∂t
= p

m

∂%cl(x, p, t)

∂x
− ∂V
∂x

∂%cl(x, p, t)

∂p
, (2.50)

the Liouville equation for the classical phase-space probability density.
This equation remains correct also in quantum mechanics for a potential

that is a polynomial in x of up to second degree,

V (x) = V0 −mgx +
m

2
ω2x2 .

For ω = 0 this corresponds to the free fall of a particle of mass m in a gravi-
tational force field F(x) = mg. For g = 0 it describes the harmonic motion
with circular frequency ω of a particle in the force field F(x) = −mω2x of a
harmonic oscillator.



2.2. A First Session with the Computer 15

Further Reading

Alonso, Finn: Vol. 2, Chaps. 18, 19; Vol. 3, Chaps. 1, 2
Berkeley Physics Course: Vol. 3, Chaps. 4, 6; Vol. 4, Chaps. 5, 6, 7
Brandt, Dahmen: Chaps. 2, 3, 7
Feynman, Leighton, Sands: Vol. 3, Chaps. 1, 2
Flügge: Vol. 1, Chap. 2
Gasiorowicz: Chaps. 2, 3
Hecht, Zajac: Chaps. 2, 7
Merzbacher: Chaps. 2, 3
Messiah: Vol. 1, Chaps. 1, 2
Schiff: Chaps. 1, 2

2.2 A First Session with the Computer

In this section we want to give you a first impression of how the program is
used. For a systematic guide to IQ see Appendix A.

We assume that IQ is already installed on your computer. If it is not,
follow the Installation Guide in Appendix B. Also, most probably the IQ

symbol featuring the letter h̄ is displayed on the computer’s desktop.

2.2.1 Starting IQ

You simply start IQ by clicking (once or twice – depending on your operating
system) on the IQ symbol on the desktop. For the case that the IQ symbol
is not present on the desktop, the start-up procedure is described in the file
ReadMe.txt on the CD-ROM.

The IQ main frame, Fig. 2.1, appears on your desktop. It carries the main

toolbar, i.e., a row of buttons. In its title bar it carries the name of the currently
open descriptor file.

Fig. 2.1. IQ main frame with main toolbar

A descriptor is a set of data that completely defines a plot produced
by IQ. Each descriptor file contains several descriptors. (If the IQ main
frame displayed on your desktop does not contain the descriptor file name
1D_Free_Particle.des, then press the button Descriptor File. A file chooser

opens in which, with the mouse, you can select that file.)
Usually, a small frame is now displayed offering you an introductory

demonstration of how to use IQ. Just press the Start button.
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2.2.2 An Automatic Demonstration

Press the button Run Demo. A file chooser opens. Select the file

1D_Free_Particle(Sound).demo

if you have loudspeakers at your computer. Otherwise select

1D_Free_Particle(NoSound).demo.

Next, a dialog box is displayed giving you the choice between automatic or
step by step. Select automatic. Lean back, relax, and watch (and listen to) our
demonstration.

2.2.3 A First Dialog

2.2.3.1 Selecting a Descriptor Press the button Descriptor in the IQ main
frame. A descriptor selection panel opens containing a list of the titles of all
descriptors on the selected descriptor file. Move the mouse cursor to the first
line of the list and press the mouse button, i.e., select the first descriptor on
the descriptor file. A graphics frame opens. It contains the plot corresponding
to the descriptor, the descriptor title in the title bar, and six buttons.

2.2.3.2 Changing Parameters Press the button Parameters in the graphics
frame. A parameter panel appears that carries all the information contained
in the descriptor. It is composed of several subpanels. The plot corresponds
to Fig. 2.2. It shows the motion of a free quantum-mechanical wave packet.
That is the topic of Sect. 2.3. Here we just want to give an idea of the dia-
log. So, press the radio button Real Part of Wave Function near the bottom of
the parameter panel. Then press Plot either in the parameter panel or in the
graphics frame and observe the change in the plot.

Next, press again Descriptor in the IQ main frame and again select the first
descriptor from the list. You then have on your desktop two graphics frames,
one showing the time development of Reψ , the other showing that of |ψ |2,
and you can compare the two plots directly. You may discard the plot with
Reψ by pressing the close button in its title bar.

For the remaining graphics frame open the parameter panel and in it the
subpanel Wave Packet. Near the middle there is a field labeled p_0 carrying
the numerical value 1. Using mouse and keyboard change that to 3, press
Plot, and observe the change.

Now, for the third time, select the first descriptor on the descriptor file thus
opening another graphics frame. In its parameter panel press Graphics, then
Accuracy. In the field n_y replace 9 by 19 and plot. The function |ψ(x, t)|2
is now shown for 19 values of the time t . Then, in the parameter panel, press
Physics followed by Multiple Plot. There, set Number of Rows and Number of

Columns to 2 and plot again. The graphics frame contains four plots each with



2.3. The Free Quantum-Mechanical Gaussian Wave Packet 17

a different set of parameters for the mean momentum p0 and the momentum
width σp of the wave packet.

2.2.3.3 Creating and Running a Movie Select the second descriptor on the
descriptor file. On the graphics frame, which opens, you will find an addi-
tional bottom toolbar with four buttons under the heading Movie:. It signals
that the graphics frame has movie capability. Press Create to create a movie
which is stored in core. Once creation is completed you can start and stop the
movie by using the and buttons, respectively. You can change parame-
ters in the corresponding parameter panel and recreate the changed movie by
pressing Plot and then Create or simply Create.

Now again, select the first descriptor on the descriptor file. It has no bot-
tom toolbar. But its top toolbar contains a button Prepare for Movie, indicating
indirect movie capability. When it is pressed, another graphics frame with
direct movie capability is opened. This represents the same physics situation
but graphically adapted to be shown as a movie.

2.2.3.4 Help Press the button Help in the IQ main frame. A window is
opened in which a special version of the ‘Acrobat R© Reader’ displays the text
of this book. It is opened on the page with the beginning of Appendix A, A

Systematic Guide to IQ. Using the tools of the reader you can access all of
the information in the text.

2.2.3.5 Context-Sensitive Help The contents of the parameter panel depend
very much on the physics topic chosen. Therefore, special help is provided
for it. Select a subpanel of the parameter panel. (Selection is indicated graph-
ically in the tag field by a thin frame around the name of the subpanel, e.g.,
Physics or Comp. Coord..) Now, press the F1 key on the keyboard. (On some
keyboards press Fn plus F1.) A page relevant to the selected subpanel is
displayed.

2.2.3.6 Closing IQ Press the close button in the title bar of the IQ main
frame.

2.3 The Free Quantum-Mechanical

Gaussian Wave Packet

Aim of this section: Demonstration of the propagation in space and time of a
Gaussian wave packet of Schrödinger waves ψ , (2.6). Illustration of the probability-
current density j (x, t), (2.19), and Bohm’s quantum potential VQ(x, t), (2.27). Il-
lustration of quantiles xP (t), (2.21), and the quantile trajectory.

Because this is the first physics topic for which the use of the program is
explained, we will present the explanation in a rather detailed way.
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The parameter panel is displayed (once you press the button Parameters

in the graphics frame, see Sect. A.1.8) with the subpanel Physics—Comp.

Coord. visible. This subpanel is present for every physics topic chosen and
is always visible when the parameter panel is first displayed. Usually there
are more Physics subpanels (in the present case there is a total of four). All
of them are explained in sections like this one, devoted to the physics topic.
The other subpanels, Graphics, Background, and Format, are more or less the
same for all physics topics and are explained in Sects. A.6 through A.8.

Fig. 2.2. Plot produced with descriptor Free quantum−mechanical Gaussian wave
packet on file 1D_Free_Particle.des

2.3.1 The Subpanel Physics—Comp. Coord.

This subpanel contains three items:

• The meaning of the Computing Coordinates. There are three lines of text
explaining the meaning of the computing coordinates x, y, z in terms of
physics. (In our case x is position x, y is time t , and z a function of x and t
determined in the third item below.)
• The Ranges of Computing Coordinates. This item consists of six numbers.

Four of them, x_beg, x_end, y_beg, and y_end define the ranges of the com-
puting coordinates x and y, whereas z_beg and z_end (together with Z_beg
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and Z_end on the subpanel Graphics—Geometry) define scale and offset in
z, see Sect. A.2.
• Under the heading Function Shown is you find a set of radio buttons (i.e.,

buttons of which one and only one is on) allowing you to select one of the
following functions:
– Absolute Square of Wave Function |ψ(x, t)|2,
– Real Part of Wave Function Reψ(x, t),
– Imaginary Part of Wave Function Imψ(x, t),
– Probability-Current Density j (x, t),
– Bohm’s Quantum Potential VQ(x, t).
Immediately after selection, the selected function is shown as computing
coordinate z in the field Computing Coordinates. To produce a plot of the
selected function, you have to press the Plot button.

2.3.2 The Subpanel Physics—Wave Packet

The Gaussian wave packet is completely determined by three values charac-
terizing it at the initial time t = 0, the mean position x0, the mean momentum

p0, and the momentum width σp. Instead of p0, the energy E0 = p2
0/2m may

be given as input value. Instead of σp, the fraction frac = σp/p0 may be
given as input value if p0 6= 0.

The subpanel Physics—Wave Packet begins with two sets of radio buttons
allowing the choice of input quantities for p0 and σp as discussed above. Un-
der the heading Wave Packet you find the numerical values of five quantities.
The first is the mean position x0. It is followed by p0 and σp (or, possibly,
E0 and frac, depending on the choices of input variables). The next two, 1p0

(or 1E0) and 1σp (or 1frac), are used in a multiple plot only in which p0 is
incremented horizontally from plot to plot and σp is incremented vertically.

Under the heading Constants you many change the numerical values of
Planck’s constant h̄ and the particle mass m. Usually, they are best left at
their default values h̄ = 1, m = 1. Under the heading Graphical Items there
are two more numerical values, one for the dash length of the zero line drawn
for each function graph and one for the radius of the circle symbolizing the

position of the classical particle on that line. Both quantities are given in
world coordinates and are usually left at their default values.

2.3.3 The Subpanel Physics—Quantile

The contents of this subpanel are used only if the function Absolute Square

of Wave Function was chosen on the subpanel Physics—Comp. Coord.. Under
the heading Quantile Motion you can select either Not Shown or Shown. The
Quantile is defined by the probability P = 1−Q. If you choose to show the
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quantile motion, the area x > xP (t) under the curve %(x, t) = |ψ(x, t)|2 is
hatched and the quantile trajectory xP = xP (t) appears in the x, t plane.

2.3.4 The Subpanel Movie

The graphics frame created with some descriptors has movie capability. It
contains a bottom toolbar with movie buttons. Pressing the button Create on
the graphics frame results in the production of a movie. You can start and
stop its display by using the and buttons, respectively. The correspond-
ing parameter panel contains a subpanel Movie with parameters like the time
interval, over which the movie extends, and more technical details (Sect. A.4).

Other descriptors give rise to a graphics frame with indirect movie capa-

bility. Its top toolbar carries a button Prepare for Movie. An example is the
descriptor Free quantum−mechanical Gaussian wave packet which leads
to the plot shown in Fig. 2.2, where the time development is shown as a series
of graphs for different values of the time t . Technically, Fig. 2.2 is a plot of
the type “surface over Cartesian grid in 3D” (see Sect. A.3.1). For the presen-
tation of a movie, in which time really runs, we use the plot type “2D function
graph” (see Sect. A.3.3). The conversion to this plot type is done by pressing
the button Prepare for Movie. A new graphics frame with full movie capability
results, displaying the first frame of that movie. The corresponding descrip-
tor can be changed and/or appended to the descriptor file. Such an adapted
descriptor is Movie: Free quantum−mechanical Gaussian wave packet.

Example Descriptors on File 1D_Free_Particle.des

• Free quantum−mechanical Gaussian wave packet (see Fig. 2.2)
• Movie: Free quantum−mechanical Gaussian wave packet

2.4 The Free Optical Gaussian Wave Packet

Aim of this section: Demonstration in space and time of a Gaussian wave packet
of electromagnetic waves E, (2.34).

This section is the analog in optics to Sect. 2.3 and is therefore kept short.
On the subpanel Physics—Comp. Coord. you can select to display the Ab-

solute Square, the Real Part, or the Imaginary Part of the complex electric field
strength.

On the subpanel Physics—Wave Packet you find the parameters x0 (initial
mean position), k0 (mean wave number), and σk (width in wave number), as
well as the increments 1k0 and 1σk (used in a multiple plot only).
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Example Descriptors on File 1D_Free_Particle.des

• Free optical Gaussian wave packet (see Fig. 2.3)
• Movie: Free optical Gaussian wave packet

Fig. 2.3. Plot produced with descriptor Free optical Gaussian wave packet on file
1D_Free_Particle.des

2.5 Quantile Trajectories

Aim of this section: Illustration of the quantile trajectories xP = xP (t), (2.23), for
various values of the probability P as a set of 2D function graphs in the xP , t plane.

On the subpanel Physics—Quantiles you find the Range of P defined by the
two values P_beg and P_end and the Number of Trajectories defined by n_Traj.
Trajectories are drawn for P = Pbeg, for P = Pend, and for other values
of P placed equidistantly between these two limits. The subpanel offers the
possibility either to draw all trajectories in the same color or to draw one
trajectory, corresponding to a given value of P , in a special color.

The contents of the subpanel Physics—Wave Packet are as described in
Sect. 2.3.2.
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Fig. 2.4. Plot produced with descriptor Free wave packet, quantile trajectories on
file 1D_Free_Particle.des

Example Descriptor on File 1D_Free_Particle.des

• Free wave packet, quantile trajectories (see Fig. 2.4)

2.6 The Spectral Function

of a Gaussian Wave Packet

Aim of this section: Graphical presentation of the spectral wave function (2.5) and
(2.33) for both quantum-mechanical and optical Gaussian wave packets.

On the subpanel Physics—Comp. Coord. you can select to show the spectral
function f (p) of a quantum-mechanical or the spectral function f (k) of an
optical wave packet. The parameters defining the wave packet are given on
the subpanel Physics—Wave Packet. They were described in detail in Sect.
2.3.2 (for the optical wave packet the wave number k takes the place of the
momentum q).

Example Descriptor on File 1D_Free_Particle.des

• Spectral function (see Fig. 2.5)
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Fig. 2.5. Plot produced with descriptor Spectral function on file 1D_Free_Particle-
.des

2.7 The Wave Packet as a Sum

of Harmonic Waves

Aim of this section: Construction of both quantum-mechanical and optical wave
packets as a superposition of harmonic waves of the form (2.3) and (2.31), respec-
tively.

Figure 2.6 in the background shows a series of harmonic wavesψn of different
momenta pn and different weight factors wn. In the foreground the sum (2.3)
of all wave functions is shown. Technically, the figure is a plot of the type
surface over Cartesian grid in 3D, Sect. A.3.1. The grid is formed only by ny
lines along the x direction. (The number ny is given as n_y on the subpanel
Graphics—Accuracy.) Two of these lines are missing to clearly separate the
graph of the sum

∑

n ψn in the foreground from the graphs of the individual
terms ψn in the background. Accordingly, the values for pn are

pn = p0 − fσσp + n1p , n = 0, 1, . . . , N ,

with

1p = 2fσσp
N − 1

, N = ny − 3 .

(For an optical wave packet replace p by k.) Here fσ is a positive number of
reasonable size, e.g., fσ = 3.



24 2. Free Particle Motion in One Dimension

Fig. 2.6. Plot produced with descriptor Wave packet as sum of harmonic waves on file
1D_Free_Particle.des

The weight factor wn is chosen to be

wn = exp

[

−(pn − p0)
2

4σ 2
p

]

for the quantum-mechanical wave packet and

wn = exp

[

−(kn − k0)
2

2σ 2
k

]

for the electromagnetic wave packet, where p0 and σp are mean value and
width in momentum of a quantum-mechanical wave packet and k0 and σk the
mean value and width of the wave number for an optical wave packet.

On the subpanel Physics—Comp. Coord. you can choose between a quan-

tum-mechanical and an optical wave packet and ask to display either the Real

Part or the Imaginary Part of the wave functions.
The subpanel Physics—Wave Packet contains the parameters of the packet

and is essentially identical to the one explained in Sect. 2.3.2. It is different,
however, with respect to a multiple plot. Now the time is varied: For the
first plot the time is t = t0 = 0. It is increased by 1t for every successive
plot. Moreover, the subpanel Physics—Wave Packet carries the parameter
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fσ needed for the approximation of the Gaussian wave packet as a sum of
harmonic waves.

All waves ψn at t = t0 = 0 have the same phase at x = x0. These
points are marked by little circles of radius R. The waves ψn move with time
and so do the points of constant phase. Whereas quantum-mechanical waves
ψn have different velocities vn = pn/m, the electromagnetic waves all have
the velocity c. Therefore, the optical wave packet moves without dispersion,
whereas the quantum-mechanical one disperses.

Remarks: 1. The finite sum ψ =
∑N
n=0 ψn (E =

∑

En) is an approxi-
mation of a Gaussian wave packet if N is large and fσ is at least equal to 3.
No attempt has been made to normalize this wave packet. For very small N
it becomes evident that ψ (or E) is periodic in x. For larger N the period is
longer than the x interval plotted. 2. Do not use a scale in y because here it is
not meaningful.

Movie Capability: Direct. The time, over which the movie extends, is
T = 1t(NPlots−1); NPlots is the number of individual plots in a multiple plot
and 1t is the time interval between two plots. For a single plot T = 1t .

Example Descriptor on File 1D_Free_Particle.des

• Wave packet as sum of harmonic waves (see Fig. 2.6)

2.8 The Phase-Space Distribution

of Classical Mechanics

Aim of this section: Graphical presentation of the phase-space probability density
%cl(x, p, t) of Sect. 2.1.7 which initially (at time t = 0) is uncorrelated and fulfills
the condition σx0σp0 = h̄/2. The marginal distributions %cl

x (x, t) and %cl
p (p, t) are

also shown.

On the subpanel Physics—Comp. Coord. you have to select

• Linear (or constant) potential

and to set g equal to 0 (ensuring that the potential is constant, i.e., that there
is no force).

On the subpanel Physics—Phase-Space Distr. you enter the initial param-
eters x0, p0, σp0 as well as a time t0 (normally 0) and a time difference 1t .
The distribution %cl(x, p, t) is shown for t = t0. If you ask for a multiple plot,
it is shown for t = t0 in the first plot, t = t0 + 1t in the second, etc. At the
bottom of the subpanel there are 3 check boxes. By enabling them you may
show
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• the expectation value as a circle in the x, p plane for the times t = t0, t =
t0+1t, . . . including the time of the particular plot and the trajectory of the
expectation value,
• the covariance ellipse as a line %cl(x, p, t) = const,
• a rectangular frame enclosing the covariance ellipse (not normally wanted).

Movie Capability: Direct. The time, over which the movie extends, is
T = 1t(NPlots−1); NPlots is the number of individual plots in a multiple plot
and 1t is the time interval between two plots. For a single plot T = 1t .

Example Descriptor on File 1D_Free_Particle.des

• Classical phase−space distribution, free particle
(see Fig. 2.7)

Fig. 2.7. Plot produced with descriptor Classical phase−space distribution, free
particle on file 1D_Free_Particle.des

2.9 Classical Phase-Space Distribution:

Covariance Ellipse

Aim of this section: Graphical presentation of the covariance ellipse, characterizing
the phase-space probability density %cl(x, p, t) of Sect. 2.1.7, which initially (at time
t = 0) is uncorrelated and fulfills the condition σx0σp0 = h̄/2.

On the subpanel Physics—Comp. Coord. you have to select

• Linear (or constant) potential

and to set g equal to 0 (ensuring that the potential is constant, i.e., that there
is no force).
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Fig. 2.8. Plot produced with descriptor Covariance ellipse in classical phase
space, free particle on file 1D_Free_Particle.des

On the subpanel Physics—Phase-Space Distr. you enter the initial param-
eters x0, p0, σp0 as well as a time t0 (normally 0), a time difference 1t , and
an integer number Nt . The covariance ellipse is shown in the x, p plane for
the times t = t0, t = t0 +1t, . . . , t = t0 + (Nt − 1)1t .

At the bottom of the subpanel there are 3 check boxes. By enabling them
you may show

• the expectation value as a circle in the x, p plane for the times t = t0, t =
t0 +1t, . . . and the trajectory of the expectation value,
• the covariance ellipse,
• a rectangular frame enclosing the covariance ellipse.

Movie Capability: Direct. On the subpanel Movie (see Sect. A.4) of the
parameters panel you may choose to show or not to show the initial and inter-
mediate positions of the covariance ellipse.

Example Descriptor on File 1D_Free_Particle.des

• Covariance ellipse in classical phase space, free particle
(see Fig. 2.8)
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2.10 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by press-
ing Run Demo in the main toolbar and selecting one of the two demo files
1D_Free_Particle.

(ii) More example descriptors can be found on the descriptor file 1DFreePar-
ticle(FE).des in the directory FurtherExamples.

(iii) For the following exercises use descriptor file 1D_Free_Particle.des.

(iv) Some of the exercises contain input parameters in physical units. In exer-
cises with dimensionless input data the numerical values of the particle mass
and of Planck’s constant are meant to be 1 if not stated otherwise in the exer-
cise.

2.3.1 Plot the time development of the absolute square of a Gaussian wave
packet using descriptor 10: ‘Exercise 2.3.1’.

2.3.2 Increase the mean momentum p0 by a factor of 2 and describe the effect
on the change of the group velocity.

2.3.3 Repeat Exercise 2.3.1; plot (a) the real part and (b) the imaginary part
of the wave function. (c) Give a reason why after some time the wavelength
of the front part of the real and imaginary parts of the wave packet are shorter
than close to the rear end.

2.3.4 Repeat Exercise 2.3.2 for the real part of the wave function. Explain the
change of wavelength observed.

2.3.5 (a) Repeat Exercise 2.3.1 but increase the momentum width σp by a
factor of 2. Explain the change in shape of the wave packet as time passes.
(b) Repeat the exercise, halving the momentum width. (c) Study also the real
and imaginary parts.

2.3.6 Repeat Exercise 2.3.1. Show quantile positions and quantile trajectories
for (a) P = 0.8, (b) P = 0.5, (c) P = 0.2 for the wave packet of Exercise
2.3.1. Use descriptor 11: ‘Exercise 2.3.6’.

2.3.7 Repeat Exercise 2.3.6 for P = 0.001. Explain why the quantile trajec-
tory for large t runs backward in x, while 〈x(t)〉 runs forward.

For the following exercises study Sect. 12.1 ‘Units and Orders of Magnitude’.

2.3.8 Plot (a) the real part, (b) the imaginary part, and (c) the absolute square
of a wave packet of an electron with velocity 1 m s−1 and absolute width σp =
0.5 × 10−12 eV s m−1 moving from an initial position x0 = −2 mm for the
instants of time ti = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4 ms. Start from descriptor
12: ‘Exercise 2.3.8’, which already contains the correct time intervals.
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(d) Calculate the momentum p0 of the electron. (e) Why is the spreading of
the wave packet relatively small in time? (f) What is the physical unit along
the x axis?

2.3.9 Repeat Exercise 2.3.8 (a–d) with velocity 3 m s−1 for the instants of
time ti = 0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 ms. Start from descriptor 13:
‘Exercise 2.3.9’.

2.3.10 Plot (a) the real part, (b) the imaginary part, and (c) the absolute square
of the wave function of an electron of velocity 2.11 m s−1 and a relative width
of σp = 0.75p0 of the corresponding momentum p0 for a period 0 ≤ t ≤
2 ms in steps of 0.25 ms. The initial position is x0 = −2 mm. Start with
descriptor 13: ‘Exercise 2.3.9’. (d) Calculate the momentum p0 of the
electron. (e) What is the order of the magnitude along the x axis? (f) Why do
the real and imaginary parts look so different from the earlier exercises and
from the picture of the initial descriptor? (g) Why are there small wavelengths
to either side of the wave packet?

2.4.1 Plot the optical wave packet corresponding to the quantum-mechanical
one of Exercise 2.3.1. What is the essential difference between this plot and
the one obtained in Exercise 2.3.1? Start from descriptor 14: ‘Exercise
2.4.1’.

2.4.2 Double the mean wave number k0 of the optical wave packet.

2.4.3 Repeat Exercise 2.4.1; plot (a) the real part and (b) the imaginary part
of the optical wave packet.

2.4.4 Repeat Exercise 2.4.2 for the real part of the optical wave packet.

2.4.5 Adapt Exercise 2.3.5 to the optical wave packet.

2.5.1 For the wave packet of Exercise 2.3.1 draw a set of quantile trajectories
for P = 0.1, 0.2, . . . , 0.9 using descriptor 5: ‘Free wave packet, quantile
trajectories’.

2.5.2 Repeat Exercise 2.5.1 but for P = 0.001, 0.5, 0.999.

2.5.3 Extend Exercise 2.5.2 by creating a 2 × 2 multiple plot with 1p0 = 2,
1σp = 0.5. Note the values of p0 and σp for which the quantile trajectory
for P = 0.001 runs backward.

2.5.4 Determine the asymptotic behavior of xP (t) for t →∞ from (2.23) and
compare the result with the findings of Exercise 2.5.3.

2.5.5 Determine the asymptotic behavior of the quantum potential VQ(x, t)

for t →∞ and connect it to the result you obtained in Exercise 2.5.4.

2.6.1 Plot the spectral function corresponding to Exercise 2.3.1 using descrip-
tor 15: ‘Exercise 2.6.1’.

2.6.2 Perform the necessary changes to get the spectral function of the optical
wave packet of Exercise 2.4.1.
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2.6.3 Plot the spectral functions corresponding to Exercises 2.3.2, 2.4.2, 2.3.5,
2.4.5.

2.6.4 (a) Plot the Gaussian spectral function of an electron of velocity v0 =
1 m s−1 and v0 = 3 m s−1 for the two widths σp = 0.5× 10−12 eV s m−1 and
σp = 10−12 eV s m−1 in a multiple plot with four graphs. Start with descriptor
16: ‘Exercise 2.6.4’. (b) Calculate the corresponding momenta. (c) What
is the physical unit at the abscissa? (d) Calculate the corresponding kinetic
energies.

2.6.5 (a) Plot the Gaussian spectral function of an electron of kinetic energy
E = 1 eV and E = 3 eV for the two widths σp = 0.5 × 10−6 eV s m−1 and
σp = 10−6 eV s m−1 in a multiple plot with four graphs. Start with descriptor
17: ‘Exercise 2.6.5’. (b) Calculate the corresponding momenta. (c) What
is the physical unit at the abscissa? (d) Calculate the corresponding velocities
of the electron. (e) To what order is the use of the nonrelativistic formulas
still allowed?

2.6.6 Repeat Exercise 2.6.4 for a proton for the two widths σp = 0.5 ×
10−9 eV s m−1 and σp = 10−9 eV s m−1. Start with descriptor 18: ‘Exer−
cise 2.6.6’.

2.6.7 Repeat Exercise 2.6.5 for a proton for the two kinetic energies E =
1 keV and E = 3 keV and the two widths σp = 0.5 × 10−3 eV s m−1 and
σp = 10−3 eV s m−1. Start with descriptor 19: ‘Exercise 2.6.7’.

2.7.1 Plot a wave packet approximated by a finite sum of harmonic waves
using descriptor 7: ‘Wave packet as sum of harmonic waves’.

2.7.2 Study the time development of the harmonic waves and their sum by
doing plots for various times (you may do this by using the multiple plot
facility). Study the phase velocities of the different harmonic waves and the
group velocity of the wave packet.

2.7.3 Repeat Exercises 2.7.1 and 2.7.2 for electromagnetic waves.

2.7.4 Repeat Exercise 2.7.1. Now, gradually, decrease the number of terms in
the sum. Why is the resulting sum periodic in x?

2.8.1 Show the time dependence of a classical phase-space distribution using
descriptor 8: ‘Classical phase−space distribution, free particle’.
(a) Display again using σp0 = 0.5, 1, 2. Study and describe the changes
in the distribution %cl(x, p, t) and in the marginal distributions %cl

x (x, t) and
%cl
p (p, t). (b) By construction, our classical phase-space distribution is of

minimum uncertainty and has no correlation at the time t = 0. Study it also
for negative times by setting t0 = −1. In particular, pay attention to the
marginal distributions %cl

x and to the correlation.

2.9.1 (a) Repeat the preceding exercise studying only the covariance ellipse;
start from descriptor 9: ‘Covariance ellipse in classical phase space,
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free particle’. (b) For σp0 = 2 you will observe the point of smallest p on
the ellipse not to change with time. Why?

2.9.2 Study the time dependence of the covariance ellipse for a phase-space
distribution that, at average, is at rest (i.e., p0 = 0). Start from descriptor 9:
‘Covariance ellipse in classical phase space, free particle’ and
adapt the range of the computing coordinates to allow for negative p. Create
and watch a movie.



3. Bound States in One Dimension

Contents: Introduction of the time-dependent and stationary Schrödinger equa-
tions. Computation of eigenfunctions and eigenvalues in the infinitely deep square-
well potential, in the harmonic-oscillator potential, and in the general step and piece-
wise linear potential. Motion of a wave packet in the deep square-well potential and
in the harmonic-oscillator potential.

3.1 Physical Concepts

3.1.1 Schrödinger’s Equation with a Potential.

Eigenfunctions. Eigenvalues

is governed by the Schrödinger equation

ih̄
∂

∂t
ψ(x, t) = − h̄

2

2m

∂2

∂x2ψ(x, t)+ V (x)ψ(x, t) . (3.1)

With the Hamiltonian

H = T + V (3.2)

it reads

ih̄
∂

∂t
ψ(x, t) = Hψ(x, t) . (3.3)

Separation of the variables time t and position x by way of the expression for
stationary wave function

ψE(x, t) = e−iEt/h̄ϕE(x) (3.4)

leads to the stationary Schrödinger equation

− h̄
2

2m

d2

dx2
ϕE(x)+ V (x)ϕE(x) = EϕE(x) (3.5)

or equivalently
HϕE(x) = EϕE(x) (3.6)

for the eigenfunction ϕE(x) of the Hamiltonian belonging to the energy eigen-
value E.

S. Brandt et al., Interactive Quantum Mechanics: Quantum Experiments on the Computer, 32

The motion of a particle under the action of a force given by a potential V (x)

DOI 10.1007/978-1-4419-7424-2_3, © Springer Science+Business Media, LLC 2011



3.1. Physical Concepts 33

3.1.2 Normalization. Discrete Spectra. Orthonormality

The Hamiltonian H is a Hermitian operator for square-integrable functions

ϕ(x) only. These can be normalized to one, i.e.,
∫ +∞

−∞
ϕ∗(x) ϕ(x) dx = 1 . (3.7)

For normalizable eigenfunctions the eigenvalues E of H form a set {E1, E2,

. . .} of discrete real values. This set is the discrete spectrum of the Hamil-
tonian. The corresponding eigenfunctions are called discrete eigenfunctions

of the Hamiltonian. We will label the eigenfunction belonging to the eigen-
value E = En by ϕn(x). The eigenfunctions ϕn(x), ϕm(x) corresponding to
different eigenvalues En 6= Em are orthogonal:

∫

ϕ∗n(x) ϕm(x) dx = 0 . (3.8)

Together with the normalization (3.7) we have the orthonormality of the dis-
crete eigenfunctions

∫

ϕ∗n(x) ϕm(x) dx = δmn . (3.9)

For potentials V (x) bounded below, i.e., V0 ≤ V (x) for all x, the eigenvalues
lie in the domain E ≥ V0. For potentials bounded below, tending to infinity
at x →−∞ as well as x →+∞, all eigenvalues are discrete.

For potentials bounded below tending to a finite limit V (−∞) or V (+∞)
at either x → +∞ or x → −∞, the discrete eigenvalues can occur in the
interval V0 ≤ En ≤ Vc with Vc = min(V (+∞), V (−∞)).

3.1.3 The Infinitely Deep Square-Well Potential

V (x) =
{

0 , −d/2 ≤ x ≤ d/2
∞ , elsewhere

, (3.10)

d: width of potential.

This potential confines the particle to an interval of length d. The eigenfunc-
tions of the Hamiltonian with this potential are

ϕn(x) =
√

2/d cos(nπx/d) , n = 1, 3, 5, . . . ,

ϕn(x) =
√

2/d sin(nπx/d) , n = 2, 4, 6, . . . , (3.11)

belonging to the eigenvalues

En =
1

2m

(

h̄nπ

d

)2

, n = 1, 2, 3, . . . . (3.12)

The discrete energies En are enumerated by the principal quantum number n.
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3.1.4 The Harmonic Oscillator

V (x) = m

2
ω2x2 , (3.13)

m: mass of particle,
ω: angular frequency.

The eigenfunctions of the Hamiltonian of the harmonic oscillator are

ϕn(x) = (
√
π2nn!σ0)

−1/2Hn

(

x

σ0

)

exp

(

− x2

2σ 2
0

)

, n = 0, 1, 2, . . . ,

(3.14)
belonging to the eigenvalues

En =
(

n+ 1
2

)

h̄ω , (3.15)

n: principal quantum number n of the harmonic oscillator,
Hn(x): Hermite polynomial of order n,
σ0 =

√
h̄/mω: width of ground-state wave function.

3.1.5 The Step Potential

V (x) =



























V1 ≥ 0 , x < x1 = 0 region 1
V2 , x1 ≤ x < x2 region 2
...

VN−1 , xN−2 ≤ x < xN−1 region N − 1
VN = 0 , xN−1 ≤ x region N

. (3.16)

The potential possesses discrete eigenvalues El for E < 0, which can again
be enumerated by a principal quantum number l.

For an eigenfunction ϕl(x) belonging to the eigenvalue El the de Broglie

wave number in region m is

klm =
∣

∣

√
2m(El − Vm)/h̄

∣

∣ for El > Vm ,

klm = i κlm , κlm =
∣

∣

√
2m(Vm − El)/h̄

∣

∣ for El < Vm .
(3.17)

The wave function ϕl(x) is then given for all the N intervals of constant po-
tential by

ϕl(x) =



























ϕl1(x) , region 1
ϕl2(x) , region 2
...

ϕlN−1 , region N − 1
ϕlN , region N

. (3.18)

For E 6= Vm the piece ϕlm of the wave function,
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ϕlm(x) = Almeiklmx + Blme−iklmx , xm−1 ≤ x < xm , (3.19)

consists for El > Vm of a right-moving and a left-moving harmonic wave and
for Vm > El of a decreasing and an increasing exponential function. For
El = Vm the piece ϕlm is a straight line

ϕlm(x) = Alm + Blmx , xm−1 ≤ x < xm . (3.20)

Because of the normalizability (3.7), the bound-state wave function ϕl(x)
must decrease exponentially in the regions

m = 1 : ϕl1 = Bl1eκl1x , −∞ < x < x1 = 0 ,

m = N : ϕlN = AlNe−κlNx , xN−1 ≤ x <∞ , (3.21)

i.e., Al1 = 0, BlN = 0.
The requirement of exponential behavior stipulates E < 0. The co-

efficients Alm, Blm are determined from the requirement of the wave func-
tion being continuous and continuously differentiable at the values xm, m =
1, . . . , N − 1. For E 6= Vm, Vm+1, these continuity conditions read

Almeiklmxm + Blmeiklmxm = Alm+1eiklm+1xm + Blm+1e−iklm+1xm ,

klm(Almeiklmxm − Blme−iklmxm)

= klm+1(Alm+1eiklm+1xm − Blm+1e−iklm+1xm)
. (3.22)

If El = Vm or El = Vm+1, the left-hand or right-hand side has to be replaced
by using (3.20). The system represents a set of 2(N − 1) linear homogeneous
equations for 2(N − 1) unknown coefficients Alm, Blm. It has a non-trivial
solution only if its determinant D(E) vanishes. This requirement leads to a
transcendental equation for the eigenvalues El present in the wave numbers
klm. In general, its solution can be obtained numerically only and is calculated
by the computer by finding the zeros of the function

D = D(E) (3.23)

that coincide with the values El at which the determinant vanishes. Once the
eigenvalue El is determined as a single zero of the transcendental equation,
the system of linear equations can be solved yielding the coefficientsAlm, Blm
as functions of one of them. This undetermined coefficient is then fixed by
the normalization condition (3.7). The number of the eigenstates ϕl(x) of
step potentials is finite; thus, they do not form a complete set. In Chap. 4 we
present the continuum eigenfunctions that supplement the ϕl(x) to a complete
set of functions.
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3.1.6 The Piecewise Linear Potential

V (x) =



























V1 ≥ 0 , x < x1 = 0 region 1
V2,a + (x − x1)V

′
2 , x1 ≤ x < x2 region 2

...

VN−1,a + (x − xN−2)V
′
N−1 , xN−2 ≤ x < xN−1 region N − 1

VN = 0 , xN−1 ≤ x region N

,

V ′j =
Vj,b − Vj,a
xj − xj−1

, j = 2, . . . , N − 1 . (3.24)

The potential resembles the step potential of Sect. 3.1.5, where the constant
in each region is replaced by a linear function. In general, the potential is
discontinuous at the region boundaries; continuity at xj , j = 1, . . . , N − 1,
holds for Vj,b = Vj+1,a .

For a nonzero slope V ′m =
Vm,b−Vm,a
xm−xm−1

of a potential in regionm, xT
lm defines

a reference point for the eigenvalue El , the (extrapolated) classical turning
point, and αm represents a scale factor, see also Sect. 4.1.18:

xT
lm = xm−1 +

El − Va,m
V ′m

, αm =
(

h̄2

2m

1

V ′m

)− 1
3

. (3.25)

The eigenfunction ϕl(x) is represented as in (3.18), where for zero potential
slope in region m the solutions of Sect. 3.1.5 apply and for a nonzero slope
one obtains

ϕlm(x) = Alm Ai(αm(x−xT
lm))+Blm Bi(αm(x−xT

lm)) , xm−1 ≤ x < xm .

(3.26)
Here Ai and Bi are the Airy functions, representing the solution of the sta-
tionary Schrödinger equation for a linear potential, that are decreasing or in-
creasing in the classically forbidden region, respectively, see Sect. 11.1.7.

The outermost regions (1 andN ) are governed by constant potentials, thus
the restrictions to the exponential behavior (Al1 = 0, BlN = 0) of Sect. 3.1.5
also apply there. The continuity conditions, i.e., the wave function at the
boundaries xm has to be continuously differentiable, is also used, now reading

Alm Ai(αm(xm − xT
lm))+ Blm Bi(αm(xm − xT

lm))

= Alm+1 Ai(αm(xm − xT
lm+1))+ Blm+1 Bi(αm(xm − xT

lm+1)) ,

(3.27)

Almαm Ai′ (αm(xm − xT
lm))+ Blmαm Bi′ (αm(xm − xT

lm))

= Alm+1αm+1 Ai′ (αm+1(xm − xT
lm+1))

+ Blm+1αm+1 Bi′ (αm+1(xm − xT
lm+1)) .
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Here Ai′ and Bi′ are the derivatives of the Airy functions. For zero potential
slopes the form (3.22) for one or both sides of the equations are to be used.

As for the step potential the system of 2(N−1) equations for the 2(N−1)
unknown coefficients Alm, Blm has a non-trivial solution only for vanishing
determinantD(E), (3.23). Again the energy eigenvalues El coincide with the
zeros of the corresponding transcendental equation. The eigenfunction are
finally normalized according to (3.7).

3.1.7 Time-Dependent Solutions

Because the time-dependent Schrödinger equation (3.1) is linear, the time-de-
pendent harmonic waves, (3.4),

ψn(x, t) = e−iEnt/h̄ϕn(x) (3.28)

can be superimposed with time-independent spectral coefficients wn yielding
the solution

ψ(x, t) =
∑

n

wne−iEnt/h̄ϕn(x) (3.29)

of the Schrödinger equation. Because the eigenfunctions ϕn(x), with n be-
longing to the discrete spectrum, confine the particle to a bounded region in
space, the solutions ψ(x, t) do so for all times.

3.1.8 Harmonic Particle Motion. Coherent States.

Squeezed States

For the time t = 0 we choose an initial Gaussian wave packet:

ψ(x, 0) = 1

(2π)1/4σx0
exp

{

−(x − x0)
2

4σ 2
x0

}

, (3.30)

x0 : initial mean position,
σx0: initial width of wave packet.

The initial mean momentum is zero. We decompose ψ(x, 0) into a sum over
the complete set of real eigenfunctions ϕn(x) of the harmonic oscillator,

ψ(x, 0) =
∞
∑

n=0

wn ϕ(x) . (3.31)

The orthonormality condition (3.7) is used to determine the coefficients

wn =
∫ +∞

−∞
ϕn(x) ψ(x, 0) dx . (3.32)
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The time-dependent solution ψ(x, t) is then given with these coefficients by
(3.29). This expansion can be summed up. For brevity we present only its
absolute square explicitly:

%(x, t) = |ψ(x, t)|2 = 1√
2πσx(t)

exp

{

−(x − 〈x(t)〉)
2

2σ 2
x (t)

}

. (3.33)

It represents a Gaussian wave packet moving with a mean position

〈x(t)〉 = x0 cosωt (3.34)

oscillating harmonically in time and with an in-general time-dependent width

σx(t) =
σ0

2
√

2σr0
(4σ 4

r0 + 1+ (4σ 4
r0 − 1) cos(2ωt))1/2 , (3.35)

σr0 = σx0/σ0: relative initial width of wave packet,
σ0 =

√
h̄/mω: ground-state width.

The time-dependent width itself oscillates with double angular frequency 2ω
about an average width

σ̄ = σ0

2
√

2σr0
(4σ 4

r0 + 1)1/2 . (3.36)

The coherent state is distinguished by a time-independent width σ = σ0/
√

2.
It is of central importance in quantum optics and quantum electronics, e.g., in
lasers and quantum oscillations in electrical circuits. States with oscillating
widths are called squeezed states.

3.1.9 Quantile Motion in the Harmonic-Oscillator Potential

Equation (3.33) is identical to (2.13). Only the time dependences of mean
〈x(t)〉 and width σx(t) are different. Keeping this difference in mind all results
of Sects. 2.1.3 and 2.1.4 about the probability-current density j (x, t) and the
quantile trajectories xP = xP (t) remain valid for a Gaussian wave packet in
a harmonic-oscillator potential.

3.1.10 Harmonic Motion of a Classical

Phase-Space Distribution

As in Sect. 2.1.7 we consider a classical phase-space probability density
which at the initial time t = 0 is

%cl
i (xi, pi) =

1

2πσx0σp0
exp

{

−1

2

[

(xi − x0)
2

σ 2
x0

+ (pi − p0)
2

σ 2
p0

]}

. (3.37)
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Here x0, p0 are the initial expectation values and σx0, σp0 are the initial widths
of position and momentum, respectively. The covariance ellipse of this bivari-
ate Gaussian is characterized by the exponential being equal to −1/2,

(xi − x0)
2

σ 2
x0

+ (pi − p0)
2

σ 2
p0

= 1 . (3.38)

The ellipse is centered around (x0, q0) and has the semi-axes σx0 and σq0,
which are parallel to the x axis and the q axis, respectively.

The classical motion of a particle in phase space under the action of a
harmonic force is simply

x = xi cosωt + qi sinωt ,
(3.39)

q = −xi sinωt + qi cosωt ,

if one uses the notation

q(t) = p(t)

mω
, qi =

pi

mω
.

A classical particle rotates with angular velocity ω on a circle around the
origin in the x, q plane. For a given time t and given values x(t), q(t) the
initial conditions of a particle are then

xi = x cosωt − q sinωt ,

qi = x sinωt + q cosωt .

Introducing this result into the equation (3.38) for the initial covariance ellipse
yields

([x − 〈x(t)〉] cosωt − [q − 〈q(t)〉] sinωt)2

σ 2
x0

+ ([x − 〈x(t)〉] sinωt + [q − 〈q(t)〉] cosωt)2

σ 2
q0

= 1 .

This is again an equation of an ellipse with principal semi-axes of length σx0

and σq0. They are, however, no longer parallel to the coordinate directions
but rotated by an angle ωt with respect to these. The center of the ellipse is
the point (〈x(t)〉, 〈q(t)〉) to which the set of initial expectation values (x0, q0)

has moved at the time t according to (3.39).
The situation is summarized as follows:

• A classical phase-space distribution described by a bivariate Gaussian keeps
its Gaussian shape.
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• Its center, which is the center of the covariance ellipse, moves on a circle
around the center of the x, q plane with angular velocity ω.
• The covariance ellipse keeps its shape but rotates around its center with the

same angular velocity ω.

Rotation of the covariance ellipse implies a time dependence of the widths
σx(t) and σq(t) in x and q as well as a nonvanishing correlation coefficient
c(t), which also depends on time. We can rewrite the equation of the covari-
ance ellipse in the form known from Sect. 11.14,

1

1− c2(t)

{

(x − 〈x(t)〉)2
σ 2
x (t)

− 2c(t)
(x − 〈x(t)〉)(q − 〈q(t)〉)

σx(t)σq(t)

+ (q − 〈q(t)〉)
2

σ 2
q (t)

}

= 1

with

σx(t) =
√

σ 2
x0 cos2 ωt + σ 2

q0 sin2 ωt ,

σq(t) =
√

σ 2
x0 sin2 ωt + σ 2

q0 cos2 ωt ,

c(t) =
(σ 2
q0 − σ 2

x0) sin 2ωt
√

4σ 2
x0σ

2
q0 + (σ 2

x0 − σ 2
q0)

2 sin2 2ωt
.

In the particular case
σx0 = σq0

the covariance ellipse is a circle, σx and σq are independent of time, and the
correlation vanishes for all times. If we require the minimum-uncertainty
relation of quantum mechanics,

σx0σp0 =
h̄

2
,

to be fulfilled for our classical phase-space probability density, we have

σq0 =
σp0

mω
= h̄

2mωσx0
.

Together with the requirement σx0 = σq0 we get

σx0 =
1√
2

√

h̄

mω
= σ0√

2
, σ0 =

√

h̄

mω
.

For this particular value of the initial width, the width stays constant. For
σx0 6= σ0/

√
2 the spatial width of the classical phase-space density oscillates

exactly as the quantum-mechanical probability density does.
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3.1.11 Particle Motion in a Deep Square Well

For time t = 0 we choose an initial wave packet with a bell shape,

ψ(x, 0) =
N2
∑

n=N1

wn ϕn(x) , (3.40)

ϕn(x): eigenfunctions of infinitely deep square well,
wn: spectral weights.

The spectral weights wn are taken as the values of a Gaussian spectral dis-
tribution in momentum space at the discrete values kn = nπ/d of the wave
numbers allowed in the infinitely deep square well. The Gaussian is centered
at p0. Its complex phase factor puts at t = 0 the initial position expectation
value of the wave packet to x = x0. The result is a ‘Gaussian’ wave packet
inside the infinitely deep square well. The explicit formulae for the spectral
weights used are

wn = (2π)1/4
√
σr[e−σ

2
r (p0d/h̄+nπ)2einπx0/d

+ e−σ
2
r (p0d/h̄−nπ)2e−inπx0/d ] , n = 1, 3, 5, . . . ,

wn = −i(2π)1/4
√
σr[e−σ

2
r (p0d/h̄+nπ)2einπx0/d

− e−σ
2
r (p0d/h̄−nπ)2e−inπx0/d ] , n = 2, 4, 6, . . . , (3.41)

x0: expectation value of initial position,
p0: expectation value of initial momentum,
d: width of potential,
σx0: initial width of wave packet,
σr = σx0/d: relative initial width,
N1, N2: lower and upper limits of summation.

For reasonable localization of the wave packet within the deep well, the rela-
tive initial width σr must be small compared to one. The moving wave packet
is obtained from the time-dependent solution (3.29) with the spectral weights
(3.41). In the harmonic oscillator the expectation values of position and of
momentum of the wave packet coincide with its classical position and mo-
mentum.

For a wave packet in the infinitely deep square well, the motion of the
classical particle is after some time drastically different from the motion of
the position expectation value of the wave packet. The reason for this phe-
nomenon is the broadening of the wave packet. As soon as its width substan-
tially exceeds the width of the well, the probability density of the particle fills
the whole well and its position expectation value just rests at the center of the
well. Thus, the original amplitude of the oscillating expectation value within
some inner range of the well decreases to zero and the particle rests at the
center of the well.
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However, the broadening of the wave packet in the infinitely deep square
well cannot go on forever as in the case of the free motion of a particle. In the
infinitely deep square well, all time-dependent processes are periodic in time
with the period T1. This can be calculated with the following arguments. The
energy of the ground state of an infinitely deep square well is

E1 =
h̄2

2m

π2

d2 .

The corresponding angular frequency ω1 = E1/h̄ determines a period T1 for
all time-dependent processes in this system:

T1 = 2π/ω1 = 4md2/(πh̄) = 8md2/h .

This means, in particular, that after the time T1 a wave packet moving in the
well assumes its initial shape, i.e., the shape it had at t = 0. The classical
particle of momentum p0 and mass m bouncing back and forth between the
two walls of the well has the bouncing period

Tc = 2d/v0 = 2md/p0 .

At the time T1, the wave packet has regained its initial width so that its posi-
tion expectation values show again the bouncing behavior of the initial narrow
wave packet. However, its location coincides with the classical particle only
if the quantum-mechanical and classical periods T1 and Tc are compatible.
Actually, after half the quantum-mechanical period the wave packet already
assumes its original width, however with the opposite of the initial momen-
tum. Because the classical particle position and the expectation value of the
wave packet have to coincide at times 0, T1, 2T1, . . . , the initial momentum
p0 must be chosen so that

T1 = MTc , M = 1, 2, . . . ,

i.e.,

p0 = M
π

2d
h̄ = M h

4d
.

Further Reading

Alonso, Finn: Vol. 3, Chaps. 2, 6
Berkeley Physics Course: Vol. 4, Chaps. 7, 8
Brandt, Dahmen: Chaps. 4, 6, 7
Feynman, Leighton, Sands: Vol. 3, Chaps. 13, 14, 16
Flügge: Vol. 1, Chap. 2A
Gasiorowicz: Chaps. 3, 4
Merzbacher: Chaps. 3, 4, 5, 6
Messiah: Vol. 1, Chaps. 2, 3
Schiff: Chaps. 2, 3, 4
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3.2 Eigenstates in the Infinitely Deep

Square-Well Potential

and in the Harmonic-Oscillator Potential

Aim of this section: Computation and presentation of the eigenfunctions (3.11)
and eigenvalue spectrum (3.12) for the deep square-well potential (3.10) and of the
eigenfunctions (3.14) and eigenvalues (3.15) for the harmonic-oscillator potential
(3.13).

A plot similar to Fig. 3.1 or Fig. 3.2 is produced, which may contain the
following items in a plane spanned by the position coordinate x and the en-
ergy E:

• the potential V (x) shown as a long-stroke dashed line,
• the eigenvalues En shown as short-stroke horizontal dashed lines,
• the eigenfunctions ϕn(x) or their squares as 2D function graphs for which

the graphical representations of the eigenvalues serve as zero lines,
• the term scheme shown as a series of short lines at the positions En on the

right-hand side of the scale in E.

On the subpanel Physics—Comp. Coord. you can select either the Deep

Square Well or the Harmonic Oscillator potential and you can choose to plot

Fig. 3.1. Plot produced with descriptor Eigenstates in deep square well on file
1D_Bound_States.des
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Fig. 3.2. Plot produced with descriptor Eigenstates in harmonic oscillator on file
1D_Bound_States.des

the eigenfunctions ϕ(x) or their squares |ϕ(x)|2. Finally there is a maximum
energy E_max up to which the four items listed above are shown. (It is usually
best left at its default value.)

On the subpanel Physics—Variables you find

• the Potential Parameter, i.e., the width d of the square well or the frequency
ω of the harmonic oscillator,
• the numerical values of the Constants h̄ and m,
• as Graphical Item a parameter l_DASH determining the length of the dashes

in the graphical representation of the potential and the eigenvalues,
• a Scale Factor s for the graphical representation of the wave functions or

their absolute squares [because they are plotted in the x,E plane, techni-
cally speaking E = En + sϕn(x) is plotted],
• a choice of Items to be Plotted consisting of four check boxes allowing you

to select some or all of the items listed at the beginning of this section.

Example Descriptors on File 1D_Bound_States.des

• Eigenstates in deep square well (see Fig. 3.1)
• Eigenstates in harmonic oscillator (see Fig. 3.2)
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3.3 Eigenstates in the Step Potential

Aim of this section: Computation and presentation of eigenfunctions ϕl(x), (3.18),
and the corresponding eigenvalues of bound states in a step potential V (x), (3.16).
The value of the determinant D(E), (3.23), is also shown as a function of the en-
ergy E.

A plot similar to Fig. 3.3 is produced containing some or all of the items
potential, eigenvalues, eigenfunctions, and term scheme. Because the eigen-
values are found by a numerical search for the zeros in the determinant
D = D(E), a graph of the function D = D(E) can be shown as a further
item.

Fig. 3.3. Plot produced with descriptor Eigenstates in step potential on file 1D_-
Bound_States.des

On the subpanel Physics—Comp. Coord. you can choose to plot the eigen-
functions ϕ(x) or their squares |ϕ(x)|2. There are also four Search Parameters

needed by the program to perform the numerical search for the eigenvalues.
These are the energies E_min and E_max (defining the range of E in which
the search is done), the number of intervals N_Search into which this interval
is divided for a coarse search, and a parameter epsilon that is used for a fine
search within intervals in which the coarse search found a zero.
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On the subpanel Physics—Variables you find (as in Sect. 3.2) the numer-
ical values for the Constants h̄ and m, the Graphical Item used to determine
the dash lengths for eigenvalues and potential, the Scale Factor for the eigen-
function, and a choice of Items to be Plotted. In addition there is information
about the graphical representation of the Function D=D(E). It may be Shown

or Not Shown. Because it is plotted in the x,E plane, technically speaking the
function x = xD+fD sinh−1[sDD(E)] is presented. Here x_D is the position
in x corresponding to D = 0 and f_D and s_D are scale factors.

On the subpanel Physics—Potential the step potential is described. Here
the potentials V2, . . . , VN−1 and the region borders x2, . . . , xN−1 are set in-
dividually in the field Regions. The Number of Regions is N. Its maximum
value is 10. The Potential in Regions 1 and N (region 1: x < x1 = 0; region
N : x > xN−1) can also be set.

Example Descriptor on File 1D_Bound_States.des

• Eigenstates in step potential (see Fig. 3.3)

3.4 Eigenstates in the Step Potential –

Quasiperiodic

Aim of this section: Computation and presentation of eigenfunctions ϕl(x), (3.18),
and the corresponding eigenvalues of bound states as in Sect. 3.3 but for a step
potential which is quasiperiodic, i.e., in which parts are repeated several times.

To facilitate the input of variables we distinguish between the (arbitrary) step
potential of Sect. 3.3 and a quasiperiodic step potential consisting of a finite
number of periods, each consisting of a number of regions. A plot with such a
potential is shown in Fig. 3.4. On the subpanel Physics—Potential you select
the number of Regions within One Period, you specify the Potential in Regions

1 and N (the very first and the very last region of the complete potential)
and you define the Number of Periods NP. The different Regions within one
period are specified by pairs of variables (1x2, V2), . . . , (1xNR+1, VNR+1).
Here NR is the number of regions in each period; the regions have the widths
1x2, . . . and the potentials V2, . . ., respectively. Changes in the Last Period,
i.e., the rightmost period are sometimes helpful in the construction of the
overall potential. This can be done by omitting one or more (up to NR − 1)
regions beginning at the far right of the rightmost period.

Example Descriptor on File 1D_Bound_States.des

• Eigenstates in quasiperiodic potential (see Fig. 3.4)
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Fig. 3.4. Plot produced with descriptor Eigenstates in quasiperiodic potential on
file 1D_Bound_States.des

3.5 Eigenstates in the Piecewise Linear Potential

Aim of this section: Computation and presentation of eigenfunctions ϕl(x), ((3.18),
(3.26)), and the corresponding eigenvalues of bound states in a piecewise linear po-
tential V (x), (3.24). The value of the determinant D(E) is also shown as a function
of the energy E.

A plot similar to Fig. 3.5 is produced containing some or all of the items
potential, eigenvalues, eigenfunctions, and term scheme for a piecewise linear
potential. Since the eigenvalues are found by a numerical search for the zeros
in the determinant D = D(E), a graph of the function D = D(E) can be
shown as a further item.

For the input of parameters defining the potential you should picture the
graph of V = V (x) as a series of straight lines connecting the points (x1 =
0, V1), (x2, V2), . . . , (xN−1, VN−1), (xN−1, VN ). In region 1 (x < x1 = 0)
the potential has the constant value V1; in region N (x > xN−1) it has the
constant value VN . The slope in each region is constant, usually zero or finite;
but can be made infinite by two identical values of x with two different values
of V (x3 = 2, V3 = −2 and x4 = 2, V3 = −10 in Fig. 3.5). In this way verti-
cal walls can be included in the potential landscape. The subpanel Physics—
Potential has the same appearance as for the step potential (Sect. 3.3). Also the
subpanels Physics—Comp. Coord. and Physics—Variables are as in Sect. 3.3.
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Fig. 3.5. Plot produced with descriptor Bound states in piecewise linear potential
on file 1D_Bound_States.des

Example Descriptor on File 1D_Bound_States.des

• Bound states in piecewise linear potential (see Fig. 3.5)

3.6 Eigenstates in the Piecewise Linear Potential

– Quasiperiodic

Aim of this section: Computation and presentation of eigenfunctions ϕl(x), ((3.18),
(3.26)), and the corresponding eigenvalues of bound states as in Sect. 3.5 but for a
piecewise linear potential which is quasiperiodic, i.e., in which parts are repeated
several times.

We distinguish between the (arbitrary) piecewise linear potential of Sect. 3.5
and a quasiperiodic piecewise linear potential consisting of a finite number
of periods, each consisting of a number of regions, see, e.g., Fig. 3.6. On
the subpanel Physics—Potential you select the number of Regions within One

Period, you specify the Potential in Regions 1 and N (the very first and the very
last region of the complete potential) and you define the Number of Periods

NP. The different Regions within one period are specified by pairs of variables
(1x2, V2), . . . , (1xNR+1, VNR+1). Here NR is the number of regions in each
period. The regions have the widths 1x2, . . . ,1xNR+1. Over the width 1xj
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of region j the potential is linear, changing from Vj−1 to Vj . The leftmost
point of the first region 1x2 of the first period is x1 = 0 with the (outer)
potential V1. The rightmost point of the last region 1xNR+1 of the last period
is given the (outer) potential VN . Changes in the Last Period are sometimes
helpful in the construction of the overall potential. This can be done by adding
one region or by omitting one or more (up toNR−2) regions beginning at the
far right.

Example Descriptor on File 1D_Bound_States.des

• Bound states in quasiperiodic, piecewise linear potential
(see Fig. 3.6)

Fig. 3.6. Plot produced with descriptor Bound states in quasiperiodic, piecewise
linear potential on file 1D_Bound_States.des

3.7 Harmonic Particle Motion

Aim of this section: Demonstration of the motion of coherent states and squeezed
states in the harmonic-oscillator potential. Presentation of absolute square (3.33) of
the wave function and also of its real and imaginary part.

On the subpanel Physics—Comp. Coord. you can select one of the following
functions for plotting:
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• Absolute Square of Wave Function |ψ(x, t)|2,
• Real Part of Wave Function Reψ(x, t),
• Imaginary Part of Wave Function Imψ(x, t),
• Probability-Current Density j (x, t),
• Bohm’s Quantum Potential VQ(x, t).

On the subpanel Physics—Variables you find four groups of variables:

• The group Harmonic Oscillator contains only the circular frequency ω.
• The group Wave Packet contains the initial mean position x0 and a quantity
fσ . It expresses in a convenient way the initial width in x,

σx0 = fσσ0/
√

2 ,

with σ0 being the ground-state width.
• The group Constants contains the numerical values used for h̄ and m.
• The group Graphical Items contains quantities influencing the appearance of

the two additional graphical items in the plot:
– A zero line for the function is shown. It is a dashed line spanning the

range −x0 ≤ x ≤ x0. Its dash length is determined by l_DASH.
– The position of the classical particle corresponding to the wave packet is

shown as a little circle of radius R.

Fig. 3.7. Plot produced with descriptor Harmonic particle motion on file 1D_Bound_-
States.des
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The contents of the subpanel Physics—Quantiles are as described in Sect.
2.3.3.

Movie Capability: Indirect. After conversion to direct movie capability
the start and end times can be changed in the subpanel Movie (see Sect. A.4)
of the parameter panel.

Example Descriptors on File 1D_Bound_States.des

• Harmonic particle motion (see Fig. 3.7)
• Movie: Harmonic particle motion
• Harmonic particle motion, quantile shown
• Movie: Harmonic particle motion, quantile shown

3.8 Harmonic Oscillator: Quantile Trajectories

Aim of this section: Illustration of the quantile trajectories xP = xP (t), (2.23), for
the motion of a Gaussian wave packet in a harmonic-oscillator potential.

On the subpanel Physics—Variables you find the circular frequency ω of the
Harmonic Oscillator, the initial mean position x0 of the Wave Packet, and the

Fig. 3.8. Plot produced with descriptor Harmonic oscillator, quantile trajectories
on file 1D_Bound_States.des
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factor fσ (so that the initial width is fσ times the width of a wave packet
formed by the oscillator’s ground state).

The content of the subpanel Physics—Quantiles is as described in Sect.
2.5.

Example Descriptor on File 1D_Bound_States.des

• Harmonic oscillator, quantile trajectories (see Fig. 3.8)

3.9 Classical Phase-Space Distribution:

Harmonic Motion

Aim of this section: Graphical presentation of the phase-space probability density
%cl(x, p, t) described in Sect. 3.1.10, which initially (at time t = 0) is uncorrelated
and fulfills the condition σx0σp0 = h̄/2. The marginal distributions %cl

x (x, t) and
%cl
p (p, t) are also shown.

On the subpanel Physics—Comp. Coord. you have to select one of the follow-
ing:

• Harmonic-oscillator potential,
• Harm.-osc. pot., using q = p/mω instead of p.

If you select the second option, the phase space will be spanned by x, q rather
than x, p. As a result all trajectories become circles. You also have to choose
a value of ω characterizing the potential.

On the subpanel Physics—Phase-Space Distr. you enter the initial param-
eters x0, p0, σp0 as well as a time t0 (normally 0) and a time difference 1t .
The distribution %cl(x, p, t) is shown for t = t0. If you ask for a multiple plot,
it is shown for t = t0 in the first plot, t = t0 + 1t in the second, etc. At the
bottom of the subpanel there are 3 check boxes. By enabling them you may
show

• the expectation value as a circle in the x, p plane for the times t = t0, t =
t0+1t, . . . including the time of the particular plot and the trajectory of the
expectation value,
• the covariance ellipse as a line %cl(x, p, t) = const,
• a rectangular frame enclosing the covariance ellipse (not normally wanted).

Movie Capability: Direct. The time, over which the movie extends, is
T = 1t(NPlots−1); NPlots is the number of individual plots in a multiple plot
and 1t is the time interval between two plots. For a single plot T = 1t .

Example Descriptor on File 1D_Bound_States.des

• Classical phase−sp. density in harm. osc. (see Fig. 3.9)
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Fig. 3.9. Plot produced with descriptor Classical phase−sp. density in harm. osc.
on file 1D_Bound_States.des

3.10 Harmonic Motion of Classical Phase-Space

Distribution: Covariance Ellipse

Aim of this section: Graphical presentation of the covariance ellipse, characterizing
the phase-space probability density %cl(x, p, t) of Sect. 3.1.10 which initially (at
time t = 0) is uncorrelated and fulfills the condition σx0σp0 = h̄/2.

On the subpanel Physics—Comp. Coord. you have to select one of the follow-
ing:

• Harmonic-oscillator potential,
• Harm.-osc. pot., using q = p/mω instead of p.

If you select the second option, the phase space will be spanned by x, q rather
than x, p. As a result all trajectories become circles. You also have to choose
a value of ω characterizing the potential.

On the subpanel Physics—Phase-Space Distr. you enter the initial param-
eters x0, p0, σp0 as well as a time t0 (normally 0), a time difference 1t , and
an integer number Nt . The covariance ellipse is shown in the x, p plane for
the times t = t0, t = t0 +1t, . . . , t = t0 + (Nt − 1)1t .

At the bottom of the subpanel there are 3 check boxes. By enabling them
you may show
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Fig. 3.10. Plot produced with descriptor Covariance ellipse of class. phase−sp.
density in harm. osc. on file 1D_Bound_States.des

• the expectation value as a circle in the x, p plane for the times t = t0, t =
t0 +1t, . . . and the trajectory of the expectation value,
• the covariance ellipse,
• a rectangular frame enclosing the covariance ellipse.

Movie Capability: Direct. On the subpanel Movie (see Sect. A.4) of the
parameters panel you may choose to show or not to show the initial and inter-
mediate positions of the covariance ellipse.

Example Descriptor on File 1D_Bound_States.des

• Covariance ellipse of class. phase−sp. density in harm.
osc. (see Fig. 3.10)

3.11 Particle Motion in the Infinitely Deep

Square-Well Potential

Aim of this section: Study of the motion of a wave packet (3.40) in the deep
square-well potential.

The sum (3.40) extends over integer values n ranging from

N1 = N0 − 5σ0
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to
N2 = N0 + 5σ0

with N0 as the nearest integer in the neighborhood of the number |p0|d/(h̄π).
The number σ0 is the nearest integer of 1/σr. If N1 turns out to be less than
one, N1 is set to one.

On the subpanel Physics—Comp. Coord. you can select to compute either
the spatial probability density of the classical phase-space distribution or the
quantum-mechanical wave function. In the latter case you can choose to show
the absolute square of the wave function or its real or its imaginary part.

On the subpanel Physics—Variables there are four groups of parameters:

• The group Square Well contains the width d of the well.
• The group Wave Packet contains the initial mean position x0, the initial

mean momentum p0, and the initial spatial width σx0 of the packet.
• The group Constants contains the numerical values of h̄ and m.
• The group Graphical Items refers to the three additional items shown in the

plot.
– The potential V (x) is indicated by a dashed horizontal line indicating the

bottom and two dashed vertical lines indicating the walls of the potential.
The dash length is given by l_DASH, the height of the vertical lines by H.

Fig. 3.11. Plot produced with descriptor Particle motion in deep square well on file
1D_Bound_States.des
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– The position of the corresponding classical particle moving in the well
with initial conditions x0, p0 indicated by a circle of radius R.

– The position of the quantum-mechanical expectation value indicated by
a triangle. The extension of the triangle is also given by R.

Movie Capability: Indirect. After conversion to direct movie capability
the start and end times can be changed in the subpanel Movie (see Sect. A.4)
of the parameter panel.

Example Descriptors on File 1D_Bound_States.des

• Particle motion in deep square well (see Fig. 3.11)
• Movie: Particle motion in deep square well (This movie runs

over a whole quantum-mechanical period T1.)

3.12 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by press-
ing Run Demo in the main toolbar and selecting one of the demo files
1D_Bound_States.

(ii) More example descriptors can be found on the descriptor file 1DBound-
States(FE).des in the directory FurtherExamples.

(iii) For the following exercises use descriptor file 1D_Bound_States.des.

(iv) Some of the exercises contain input parameters in physical units. In exer-
cises with dimensionless input data the numerical values of the particle mass
and of Planck’s constant are meant to be 1 if not stated otherwise in the exer-
cise.

3.2.1 Plot (a) the eigenfunctions, (b) the probability densities of an infinitely
deep square-well potential of width d = 3 for the energy range 0 ≤ Ei ≤
Emax, Emax = 30. Start from descriptor 16: ‘Exercise 3.2.1’.

3.2.2 What are the expectation values of position and momentum of the eigen-
functions of Exercise 3.2.1?

3.2.3 Rewrite the eigenfunctions ϕn(x) of (3.11) in terms of the functions
ϕ(±)n (x) = (1/

√
d)e±inπx/d , n = 1, 2, 3, . . ., possessing nonvanishing mo-

mentum expectation values p(±)n = ±h̄π/d. (a) Why are the wave func-
tions ϕ(±)n (x) not among the eigenfunctions of the infinitely deep potential?
(b) What is the classical interpretation of the eigenfunctions ϕn(x) in terms of
the ϕ(±)n (x)?

3.2.4 Calculate the eigenfunctions and eigenvalues in the energy range 0 ≤
Ei ≤ Emax = 2 eV for an electron in the infinitely deep square-well potential
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of width (a) 3 nm, (b) 5 nm. Start from descriptor 17: ‘Exercise 3.2.4’.
(c) Calculate a rough estimate of the ground-state energy using Heisenberg’s
uncertainty relation.

3.2.5 Repeat Exercise 3.2.4 for a proton for the energy range 0 ≤ Ei ≤ Emax,
Emax = 1 meV. Start from descriptor 18: ‘Exercise 3.2.5’.

3.2.6 (a) Plot the wave functions and the energy levels Ei in the range 0 ≤
Ei ≤ Emax, Emax = 20 eV, for an electron (mass me) in an infinitely deep
potential of width d = 3a. Here, a = h̄c/(αmec

2) = 0.05292 nm is the Bohr
radius of the innermost orbit of the hydrogen atom. Read off the energy E1

of the lowest eigenfunction ϕ1. Start with descriptor 19: ‘Exercise 3.2.6’.
(b) Calculate the potential energy of an electron in Coulomb potential V (r) =
−αh̄c/r at the Bohr radius r = a. (c) Calculate the sum of the kinetic energy
E1 of the lowest eigenfunction ϕ1 as determined in (a) and the potential energy
as calculated in (b). Compare it to the binding energy of the electron in the
hydrogen ground state.

3.2.7 Plot the eigenfunctions of the harmonic oscillator for an electron with
the angular frequencies (a) ω = 1015 s−1, (b) ω = 1.5 × 1015 s−1, (c) ω =
2 × 1015 s−1, and (d–f) the corresponding probability densities. Start with
descriptor 20: ‘Exercise 3.2.7’. (g) What is the physical unit of the energy
scale? (h) Calculate the spring constants D = meω

2. (i) What is the physical
unit of the x scale? (j) Why is the probability density highest close to the wall
of the potential?

3.2.8 Plot (a,b) the eigenfunctions, (c,d) the probability density of a pro-
ton in the harmonic-oscillator potential V = Dx2/2 with the constants
D = 0.1 eV m−2 and D = 1 keV m−2, respectively. Start from descriptor
21: ‘Exercise 3.2.8’. (e) Calculate the angular frequency ω of the oscil-
lator. (f) Calculate the width of the ground state of the harmonic oscillator,
σ0 =

√

h̄m−1ω−1.

3.3.1 Plot (a) the eigenfunctions, (b) the probability distributions for a square-
well potential of width d = 4 and depth V0 = −6. Start from descriptor 22:
‘Exercise 3.3.1’. (c) Read the energy eigenvalues Ei off the screen and
calculate the differences ∆i = Ei − V0.

3.3.2 Repeat Exercise 3.3.1 for the widths (a,b,c) d = 2, (d,e,f) d = 6. Start
from descriptor 22: ‘Exercise 3.3.1’.

3.3.3 (a) Calculate the lowest energy eigenvalues E ′i in the infinitely deep
square well for the widths d = 2, 4, 6. (b) Compare the E ′i to the differences
∆i for the square-well potentials of Exercises 3.3.1, 3.3.2 of corresponding
widths. (c) Explain why the separation of the eigenvalues Ei is smaller than
that of the E′i .

3.3.4 Plot (a) the eigenfunctions, (b) the probability densities of a double-well
potential
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V (x) =























0 , x < 0
−4 , 0 ≤ x < 1.625

−1.33 , 1.625 ≤ x < 1.875
−4 , 1.875 ≤ x < 3.5

0 , 3.5 ≤ x

.

Start with descriptor 23: ‘Exercise 3.3.4’. (c) Why is the third eigenfunc-
tion a horizontal straight line in the central region? (d) Why have the two
lowest eigenfunctions energies close to each other? (e) Why are they sym-
metric and antisymmetric?

3.3.5 Plot (a) the eigenfunctions, (b) the probability densities of a double-well
potential

V (x) =























0 , x < 0
−4 , 0 ≤ x < 1

−1.33 , 1 ≤ x < 2
−4 , 2 ≤ x < 3.5

0 , 3.5 ≤ x

.

Start with descriptor 23: ‘Exercise 3.3.4’. (c) Why do the wave functions
exhibit no symmetric pattern?

3.3.6 Plot (a) the eigenfunctions, (b) the probability densities of an asymmet-
ric double-well potential

V (x) =























0 , x < 0
−5.72 , 0 ≤ x < 1
−1 , 1 ≤ x < 1.5
−4 , 1.5 ≤ x < 3.5

0 , 3.5 ≤ x

.

Start with descriptor 23: ‘Exercise 3.3.4’. (c) Why is the ground-state
wave function given by a straight line in the second well?

3.3.7 Plot the eigenfunctions in a set of asymmetric potential wells given by
the potentials

V (x) =























0 , x < 0
−4 , 0 ≤ x < 1

−1.33 , 1 ≤ x < 2
−4 , 2 ≤ x < d

0 , d ≤ x

,

where the right edge d is to be set to (a) d = 4, (b1) d = 4.7, (b2) d = 4.8,
(b3) d = 4.9, (b4) d = 5, (c) d = 6. Start from descriptor 23: ‘Exer−
cise 3.3.4’. In order to facilitate a direct comparison of the plots (b1–b4)
show them in a combined plot; see Appendix A.10. An example of a mother
descriptor is descriptor 24: ‘Exercise 3.3.7d’, which quotes the descrip-
tors 16: ‘Exercise 3.2.1’, 17: ‘Exercise 3.2.4’, 18: ‘Exercise 3.2.5’,
19: ‘Exercise 3.2.6’. Try it out. Now modify descriptor 23: ‘Exercise
3.3.4’ according to question (b1) and append the modified descriptor. Re-
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peat this procedure for (b2), (b3), (b4). By pressing the button Descriptor you
will get the list of titles of all descriptors and at its end the four descriptors
just stored away and their numbers. Enter these four numbers in the subpanel
Table of Descriptors of descriptor 23: ‘Exercise 3.3.4’. (d) Now plot de-
scriptor 23: ‘Exercise 3.3.4’ and thus the graphs corresponding to (b1–b4)
in a combined plot. (e) Explain the behavior of the second and third eigenstate
in terms of admixtures of eigenstates in the two single wells.

3.3.8 Repeat Exercise 3.3.7 for the probability densities.

3.4.1 We consider a quasiperiodic potential that consists of r equal potential
wells of width 1 and depth −15 with a separation of 0.5. Plot the wave func-
tions in an increasing number of equal wells (a) r = 1, (b) r = 2, (c) r = 3,
(d) r = 4, (e) r = 5, (f) r = 6, (g) r = 7, (h) r = 8, (i) r = 9, (j) r = 10.
Start from descriptor 25: ‘Exercise 3.4.1’. (k) Give a qualitative reason for
the occurrence of two bands of states in the quasiperiodic potential.

3.4.2 Repeat Exercise 3.4.1 for a quasiperiodic potential with 10 wells of
width 0.2 and depth −50 and separation of 0.15 between the wells for h̄ =
0.658 and m = 5.685. (a) Plot the term scheme. Start from descriptor 25:
‘Exercise 3.4.1’. (b) Plot the wave functions of the lowest band. (c) Plot
the wave functions of the second-lowest band. (d) Plot the wave functions of
the highest band. (e) Explain the symmetry structure of the wave functions
in a band. Start from the form of the wave functions in the wide square-well
potential that is obtained by taking all the walls out.

3.4.3 (a–d) Repeat Exercise 3.4.2 (a–d) for a quasiperiodic potential of a depth
of −40 and with the value −5 for the potential in the regions of the interme-
diate walls separating the narrow wells. Start from descriptor 25: ‘Exercise
3.4.1’. (e) Show the two highest states of the lowest band in a separate plot.
Switch off the plotting of the potential. (f) Why are the two highest states
separated from the lower eight by a somewhat larger energy gap?

3.5.1 (a) Determine the number of energy eigenvalues in a symmetric triangu-
lar potential with the following parameters: (x2, V2) = (20,−2), (x3, V3) =
(40, 0). (b) Consider one half of this potential by creating a steep fall at
x1 = 0 by setting x2 = 0 and x3 = 20 and determine the number of en-
ergy eigenvalues. (c) Set now V1 = ∞ and again determine the number of
energy eigenvalues. (d) Compare the spectrum and the eigenfunctions of (a)
and (c). Start from descriptor 26: ‘Exercise 3.5.1’ and adjust the x range
in computing coordinates appropriately.

3.5.2 Determine (a) the number and (b) the energy eigenvalues in the fol-
lowing piecewise linear potential (possessing steep rises and falls at x1 and
xN−1, respectively, and representing the potential of Fig. 4.3 for station-
ary scattering): (x2, V2) = (0, 5), (x3, V3) = (2.5,−5), (x4, V4) = (5, 5),
(x5, V5) = (5, 0). (c) How many bumps are expected for the absolute square
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of the scattering wave at the first resonance (inside the potential region)?
(d) What is the approximate minimum depth |V3| (V3 < 0), for all other
potential parameters unchanged, of such a potential to contain at least one
bound state? Start from descriptor 26: ‘Exercise 3.5.1’ and adjust the x
and y ranges in computing coordinates appropriately.

3.6.1 Consider a quasiperiodic piecewise linear potential with a double-well
structure and the following parameters containing four and five wells, re-
spectively, of different width and depth: NR = 4, NP = 5, (1x2, V2) =
(0.75, 0), (1x3, V3) = (0.25,−21.7), (1x4, V4) = (0.25, 0), (1x5, V5) =
(0.75,−10). Start from descriptor 27: ‘Exercise 3.6.1’. (a) Plot the eigen-
values and eigenfunctions and determine the average energy of the two sep-
arated bands. How many states are contained in the lower and upper band,
respectively? What band belongs to which set of repeated wells? (b) Now
change the depths of the potential wells by modifying the values of V3 and
V5. What values need to be assigned to these potential values in order to ex-
change the correspondence of the two bands to the repeated wells, where the
band centers should stay at the same positions in energy? How many states are
now contained in the lower and upper band, respectively? (c) Set the outside
potentials for both situations of (a) and (b) to infinity. You observe two states
separating from the two-band structure, forming so-called surface states that
more or less concentrate at the outer boundaries. Determine the numbers of
states in the remaining bands and the positions of the surface states in energy
for both cases. Explain the resulting structure.

3.7.1 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of a
wave packet initially at rest moving in a harmonic-oscillator potential. For h̄
and particle mass use the default values. The oscillator frequency is ω = π .
The initial data of the wave packet are the initial location x0 = −3 and the
relative initial width fσ = 0.5. Start from descriptor 28: ‘Exercise 3.7.1’.
(d) What is the period of the time evolution of the wave function? (e) What
is the period of the time evolution of the absolute square? (f) What is the
most general requirement for the periodicity of a wave function describing a
physical process periodic in time?

3.7.2 Plot the absolute square of the wave packets initially at rest at x0 = −6
moving in a harmonic-oscillator potential of angular frequency ω = π for the
three relative widths (a) fσ = 0.5, (b) fσ = 2, (c) fσ = 1 for two periods of
the oscillation. Start from descriptor 29: ‘Exercise 3.7.2’. (d) Explain the
oscillation of the widths observed in (a) and (b) in terms of a classical particle
with inaccurately known initial values of location and momentum.

3.7.3 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of a
wave packet initially at rest in the central position of the harmonic-oscillator
potential. Choose the relative initial width as fσ = 1.75. Start with descriptor
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29: ‘Exercise 3.7.2’. (d) Why does the wave packet periodically change
its width?

3.7.4 (a,b,c) Repeat Exercise 3.7.3 (a,b,c) for the relative width fσ = 1.
(d) Why does the wave packet not change its width over time?

3.7.5 Display the quantile motion for P = 0.5, 0.7, 0.9. Use descriptor 9:
‘Harmonic particle motion, quantile shown’.

3.8.1 Display quantile trajectories using descriptor 11: ‘Harmonic oscil−
lator, quantile trajectories’. For the wave-packet parameters used
in that descriptor the trajectories with P = 0.1 and P = 0.9 stay prac-
tically constant for half an oscillator period. (a) Explain this effect qual-
itatively. (b) Use descriptor 9: ‘Harmonic particle motion, quantile
shown’ with the wave-packet parameters of descriptor 11: ‘Harmonic os−
cillator, quantile trajectories’ to check your explanation. (c) Plot
the quantile trajectories for P = 0.05, 0.1, 0.15 to study the behavior for P
somewhat smaller and larger than the special case P = 0.1.

3.11.1 Plot the motion of a ‘Gaussian’ wave packet with initial values x0 = 0,
p0 = 5, σx0 = 0.75 in an infinitely deep square-well potential of width d =
10 for the time intervals given in time steps1t = 0.5. Choose (a) 0 ≤ t ≤ 10,
(b) 10 ≤ t ≤ 20, (c) 20 ≤ t ≤ 30. Start from descriptor 30: ‘Exercise
3.11.1’. (d) Why does the wave packet disperse in time? (e) Why does the
wave exhibit a wiggly shape when close to the wall?

3.11.2 Plot the motion of a ‘Gaussian’ wave packet with initial values x0 = 0,
p0 = 5, σx0 = 0.5 in an infinitely deep square-well potential of width d = 10
for the time intervals (a) 0 ≤ t ≤ 10, (b) 10 ≤ t ≤ 20, (c) 20 ≤ t ≤ 30,
(d) 30 ≤ t ≤ 40, (e) 40 ≤ t ≤ 50, (f) 50 ≤ t ≤ 60, (g) 60 ≤ t ≤ 70, (h) 70 ≤
t ≤ 80, (i) 80 ≤ t ≤ 90, (j) 90 ≤ t ≤ 100, (k) 100 ≤ t ≤ 110, (l) 110 ≤
t ≤ 120, (m) 120 ≤ t ≤ 130 in time steps 1t = 1. Start from descriptor
30: ‘Exercise 3.11.1’. (n) Calculate the time T1 in which the initial wave
packet is re-established. (o) Look at the wave packet at time T1/2. (p) Why
do the classical position of the particle and the position expectation value of
the wave packet coincide only at the beginning of the motion. (q) Why are
there long time intervals in which the position expectation value is almost at
rest?

3.11.3 Plot the motion of a ‘Gaussian’ wave packet in an infinitely deep square
well for the initial values x0 = 2, p0 = 5.184, σx0 = 0.5, for a particle of
mass 1 (h̄ = 1) in time steps of 1t = 0.5 for the intervals (a) 0 ≤ t ≤ 10,
(b) 58.66 ≤ t ≤ 68.66, (c) 122.32 ≤ t ≤ 132.32. Start from descriptor 30:
‘Exercise 3.11.1’. (d) Why does the expectation value of the wave packet
at t = 63.66 coincide with the position of the classical particle?

3.11.4 Plot the motion of a ‘Gaussian’ wave packet in the infinitely deep
square well with initial conditions x0 = 2, p0 = 1.09956, σx0 = 0.6. (a) Start
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with a plot of the motion of the position expectation value of the wave packet
during the time interval 0 ≤ t ≤ 127.32. Subdivide this interval into 40 time
steps. To make the wave function disappear set zend = 1. For the projection
angles choose ϑ = 60 and ϕ = −90. Start from descriptor 30: ‘Exercise
3.11.1’. One observes a time interval during which the expectation value of
the position of the wave packet is almost at rest. (b) What is the expectation
value of the energy of the wave packet during this interval? (c) What is the
approximate expectation value of the momentum of the wave packet during
this time interval? Plot the probability density of the ‘Gaussian’ wave packet
(set zend back to 0.001) for (d) 0 ≤ t ≤ 20, (e) 20 ≤ t ≤ 40, (f) 40 ≤ t ≤ 60,
(g) 60 ≤ t ≤ 80, (h) 80 ≤ t ≤ 100, (i) 100 ≤ t ≤ 120, (j) 120 ≤ t ≤ 140.

3.11.5 (a–g) Repeat Exercise 3.11.4 (a, d, e, . . . , j) with x0 = 0, p0 =
10.9956, σx0 = 0.6, for a particle of mass m = 10. Start from descrip-
tor 30: ‘Exercise 3.11.1’. (h) Why does the position expectation value of
the wave packet in this case follow the motion of the classical particle much
longer than in Exercise 3.11.4?



4. Scattering in One Dimension

Contents: Continuum eigenfunctions and continuous spectra. Boundary conditions
and stationary solutions of the Schrödinger equation for step and piecewise linear
potentials. Continuum normalization. Motion of wave packets in step and piecewise
linear potentials. Transmission and reflection coefficients. Unitarity and Argand

for the linear potential. Classical phase-space distribution for linear potential and for
reflection by a high potential wall.

4.1 Physical Concepts

4.1.1 Stationary Scattering States. Continuum Eigenstates

and Eigenvalues. Continuous Spectra

For a potential with at least one finite limit

V (+∞) = lim
x→∞

V (x) or V (−∞) = lim
x→−∞

V (x) (4.1)

there are normalized eigenstates ϕn only for energiesE < Vc = min(V (+∞),
V (−∞)). In addition to these discrete eigenvalues with normalizable eigen-
functions the Schrödinger equation with a potential satisfying (4.1) also pos-
sesses eigenvalues with eigenfunctions that are not normalizable. Their fall-
off for large values of |x| is not sufficiently fast for the integral of the absolute
square |ϕ|2 extended over the whole x axis to have a finite value. Therefore,
these eigenfunctions are not normalizable and do not represent actual physical
states. The eigenvalues E belonging to the non-normalizable eigenfunctions
are no longer discrete points but form continuous sets of values, e.g., intervals
or a half axis of energy values. The set of continuous eigenvalues is called the
continuous spectrum, the corresponding non-normalizable eigenfunctions are
called continuum eigenfunctions ϕ(E, x). They are solutions of the stationary
Schrödinger equation (3.6)

Hϕ(E, x) = (T + V )ϕ(E, x) = Eϕ(E, x) . (4.2)
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If a nonsingular potential fulfills the relation V (x) < Vc only for a finite
number of regions of finite lengths on the x axis, the continuous spectrum is
bounded by

Vc ≤ E . (4.3)

Normalizable solutions of the time-dependent Schrödinger equation can be
formed as linear superpositions of these continuum eigenfunctions.

4.1.2 Time-Dependent Solutions

of the Schrödinger Equation

Because the continuum eigenfunctions ϕ(E, x) are not normalizable, they
extend over the x axis to +∞ or −∞, depending on the values of V (+∞)
and V (−∞). Thus, the continuum eigenfunctions can be used to form moving
wave packets far away from the region where the potential actually exerts a
force on the particle, i.e., in regions of constant or almost constant potential:

ψ(x, 0) =
∫ ∞

Vc

w(E) ϕ(E, x) dE . (4.4)

The time-dependent solution of the Schrödinger equation having ψ(x, 0) as
initial state at t = 0 then takes the form

ψ(x, t) =
∫ ∞

Vc

w(E)e−iEt/h̄ϕ(E, x) dE . (4.5)

4.1.3 Right-Moving and Left-Moving Stationary Waves

of a Free Particle

Equation (2.1) describes the harmonic wave associated with a particle of mass
m and momentum p. Because E = p2/2m is quadratic in p, (2.1) represents

two solutions p = ±|p|, with |p| =
∣

∣

∣

√
2mE

∣

∣

∣
, for each energy value E.

Thus, the wave functions (2.1) can also be interpreted as belonging to one of
two sets,

ψ+(E, x, t) =
1

(2πh̄)1/2
exp

{

− i

h̄
(Et − |p|x)

}

,

ψ−(E, x, t) =
1

(2πh̄)1/2
exp

{

− i

h̄
(Et + |p|x)

}

. (4.6)

With a spectral function being different from zero for positive values of p
only, the superposition (2.4) formed with ψ+(E, x, t) represents a right-

moving wave packet, i.e., a wave packet propagating from smaller x values
to larger ones. For the same spectral function the wave packet formed with
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ψ−(E, x, t) is left moving, i.e., propagating from larger to smaller x values.
Actually, the two harmonic waves themselves propagate to the right and to
the left, respectively. In analogy to (3.4) they can be factorized:

ψ±(E, x, t) = e−iEt/h̄ϕ±(E, x) ,

ϕ±(E, x) = (2πh̄)−1/2e±i|p|x/h̄ ; (4.7)

that is, into a solely time-dependent exponential and eigenfunctions ϕ+(E, x),
ϕ−(E, x) of the kinetic energy T , i.e., the Hamiltonian H = T of a free
particle,

Hϕ±(E, x) = Eϕ±(E, x) . (4.8)

The time-dependent solutions ψ+(x, t), superpositions of the stationary
waves ϕ+(E, x),

ψ+(x, t) =
∫

w(p)e−iEt/h̄ϕ+(E(p), x) dp , (4.9)

only represent right-moving wave packets. Analogously, replacing ϕ+ by ϕ−
leads to left-moving wave packets. For t = 0 and real w(p) these wave
packets are centered around x = 0. If we want to place a right-moving wave
packet at t = t0 around x = x0, we have to substitute t with t − t0 and the
Gaussian spectral function f (p), (2.5), with

w(p) = f (p)e−ipx0/h̄ . (4.10)

This allows us to construct the wave packets incident on a step potential.
The eigenfunctions belonging to different energy eigenvalues E,E ′ are

orthogonal,
∫ ∞

−∞
ϕ∗±(E

′, x)ϕ±(E, x) dx = 0 , (4.11)

as are those for equal energy eigenvalues but different subscript signs, e.g.,
∫ ∞

−∞
ϕ∗+(E, x)ϕ−(E, x) dx = 0 . (4.12)

The stationary wave functions ϕ+,−(E, x) are two continuum eigenfunctions
to the same energy eigenvalue E, which is therefore called two-fold degener-

ate.

4.1.4 Orthogonality and Continuum Normalization

of Stationary Waves of a Free Particle. Completeness

Because the integral over the absolute squares |ϕ+|2 or |ϕ−|2 does not exist,
a normalization to unity is not possible. The normalization of discrete eigen-
functions is replaced by the continuum normalization
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∫ ∞

−∞
ϕ∗s ′(E(p

′), x)ϕs(E(p), x) dx = δss ′δ(p − p′) ,

s = ± , s ′ = ± .

(4.13)

This ensures that the normalization of the wave packet is equal to one if the
spectral function w(p) is correctly normalized to one,

∫ ∞

−∞
w∗(p)w(p) dp = 1 . (4.14)

The set of functions ϕs(E, x) is complete: any absolute-square-integrable
function ϕ(x) can be represented by an integral (Fourier’s theorem):

ϕ(x) =
∑

s=±

∫ ∞

0
ws(p) ϕs(E(p), x) dp . (4.15)

4.1.5 Boundary Conditions

for Stationary Scattering Solutions in Step Potentials

In the step potential, (3.16), the wave numbers kj , (3.17), determine the solu-
tions (3.18) for given E. The stationary solutions

ϕj (E, x) = ϕj+(E, x)+ ϕj−(E, x) (4.16)

are superpositions of two exponentials of opposite exponents in the region j ,
xj−1 ≤ x < xj :

ϕj+(E, x) = A′jeikjx , ϕj−(E, x) = B ′j e−ikjx . (4.17)

The scattering of a right-moving wave packet incident from −∞ is possible
for E ≥ V1 = 0. We have to distinguish two cases: E ≥ VN and E < VN .

i) For E ≥ VN , kN =
∣

∣

√
2m(E − VN )/h̄

∣

∣, an outgoing wave

ϕN (E, x) = A′NeikNx (4.18)

propagates inside the region x ≥ xN−1, i.e., to the right of the step potential.

ii) For E < VN , kN = iκN , κN =
∣

∣

√
2m(VN − E)/h̄

∣

∣, there is only an
exponentially decreasing wave function

ϕN (E, x) = A′Ne−κNx (4.19)

in the region x ≥ xN−1.
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The scattering of a left-moving wave packet incident from +∞ is possible
for E ≥ VN . Again, we have to distinguish two cases: E ≥ V1 = 0 and
E < V1 = 0.

i) For E ≥ V1 = 0, k1 =
∣

∣

∣

√
2mE/h̄

∣

∣

∣, there exists only an outgoing wave in

the region −∞ < x < x1 = 0:

ϕ1(E, x) = B ′1e−ik1x . (4.20)

ii) For E < V1 = 0, k1 = iκ1, κ1 =
∣

∣

√
2m|E|/h̄

∣

∣, there exists only a wave
function

ϕ1(E, x) = B ′1eκ1x (4.21)

decreasing exponentially toward −∞ in the region −∞ < x < x1 = 0.

In the following discussion we shall restrict ourselves to right-moving incom-
ing waves. For this scattering situation the boundary condition is given by
(4.18) or (4.19) depending either on the relation E ≥ VN or E < VN .

4.1.6 Stationary Scattering Solutions in Step Potentials

The stationary solutions of the Schrödinger equation for a right-moving in-
coming wave incident on a step potential (3.16) with N regions is of the form

ϕ1(E, x) = A′1eik1x + B ′1e−ik1x region 1
ϕ2(E, x) = A′2eik2x + B ′2e−ik2x region 2

...
...

...

ϕN (E, x) = A′NeikNx region N

. (4.22)

The (2N − 1) coefficients A′j , B
′
j are again determined from the requirement

of the wave function being continuous and continuously differentiable at the
values xm,m = 1, . . . , N − 1. This leads once more to the conditions (3.22)
for E 6= Vm, Vm+1. For E = Vm or E = Vm+1, (3.20) has to be used. Again
this yields 2(N − 1) linear algebraic equations, now, however, for (2N − 1)
coefficients A′j , B

′
j . Thus, for every value E ≥ V0 = 0, a number of 2(N−1)

coefficients can be determined as functions of one of them. We single out the
coefficient A′1 as the independent one. Its size determines the amplitude of the
right-moving wave coming in from −∞. Thus, it regulates the strength of the
incoming current. It will either be fixed in (4.25) below by a normalization,
or simply be set to one.

Because for any real value E ≥ V0 = 0 of the energy we find a stationary
solution in the step potential, all values E ≥ V0 form the continuous spectrum
of the Hamiltonian. All corresponding stationary solutions ϕ(E, x) are con-
tinuum eigenfunctions with right-moving outgoing waves. There is a further
set of eigenfunctions of E ≥ VN for scattering processes where the incoming
particles move in from +∞ which we do not further discuss.
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4.1.7 Constituent Waves

The pieces ϕj (E, x) in region j (xj−1 ≤ x < xj ) of the stationary wave
function ϕ(E, x) consist of a right-moving and a left-moving constituent wave

ϕj+(E, x) = A′jeikjx and ϕj−(E, x) = B ′je−ikjx , (4.23)

if E > Vj . For E < Vj the wave number becomes imaginary: kj = iκj , κj
real. In this case,

ϕj+(E, x) = A′je−κjx and ϕj−(E, x) = B ′jeκjx

represent a decreasing and an increasing exponential, respectively,

x : position variable,
kj = iκj , κj =

∣

∣

√

2m(Vj − E)/h̄
∣

∣ : wave vector for E < Vj ,
A′j , B

′
j : complex amplitudes.

4.1.8 Normalization of Continuum Eigenstates

As all eigenvectors of Hermitian operators the continuum eigenfunctions be-
longing to different eigenvalues E,E ′ are orthogonal,

∫ +∞

−∞
ϕ∗(E′, x)ϕ(E, x) dx = 0 . (4.24)

The normalization condition for continuum eigenfunctions for E = E ′ is in
analogy to (4.13) given by (E = p2/2m,E′ = p′2/2m)

∫ +∞

−∞
ϕ∗(E′, x)ϕ(E, x) dx = δ(p′ − p) . (4.25)

Again this ensures that the normalization of a right-moving wave packet is
unity if the spectral function w(p) is normalized as in (4.14). It is the nor-
malization (4.25) that fixes the independent coefficient A′1 in the stationary
scattering solution (4.22).

4.1.9 Harmonic Waves in a Step Potential

The time-dependent waves

ψ(E, x, t) = e−iEt/h̄ϕ(E, x) , (4.26)

ϕ(E, x): right-moving incident wave function (4.22),
E = p2/2m: energy eigenvalue,
x: position,
t : time,
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are solutions of the time-dependent Schrödinger equation. In the regions j
with E > Vj they are harmonic waves. Also the time-dependent stationary
waves can be decomposed into time-dependent right-moving and left-moving
constituent waves,

ψj+(E, x, t) = e−iEt/h̄ϕj+(E, x) ,

ψj−(E, x, t) = e−iEt/h̄ϕj−(E, x) .
(4.27)

4.1.10 Time-Dependent Scattering Solutions

in a Step Potential

If we want to describe a particle coming in from the left by a right-moving
Gaussian wave packet of spatial width σx , as in classical mechanics, we have
to set at the initial time t = 0 its position to x0 and its average momentum to
p0. This is accomplished with the time-dependent superposition

ψ(x, t) =
∫

w(p)e−iEt/h̄ϕ(E(p), x) dp (4.28)

of the continuum eigenfunctions ϕ(E, x) with the Gaussian spectral function

w(p) = 1

(2π)1/4
√
σp

exp

{

−(p − p0)
2

4σ 2
p

− ipx0/h̄

}

, (4.29)

E = p2/2m: energy,
p: momentum,
x: position,
t : time,
p0: momentum expectation value of incident wave packet,
x0: position expectation value of incident wave packet,
σp = h̄/2σx0 momentum width of incident wave packet,
σx0: spatial width of initial wave packet,
ϕ(E, x): right-moving stationary scattering wave.

The constituent waves ψj+(E, x, t), ψj−(E, x, t) of the wave packet can be
formed with the stationary constituent waves

ψj±(x, t) =
∫

w(p)e−iEt/h̄ϕj±(E(p), x) dp , (4.30)

which are right-moving or left-moving.

4.1.11 Generalization to Piecewise Linear Potentials

In analogy to the step potential in Sect. 4.1.6 the stationary solutions of the
Schrödinger equation for a right-moving incoming wave incident on a piece-
wise linear potential (3.24) with N regions is given by
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ϕ1(E, x) = A′1eik1x + B ′1e−ik1x region 1
ϕ2(E, x) = A′2 Ai(α2(x − xT

E2))+ B ′2 Bi(α2(x − xT
E2)) region 2

...
...

...

ϕN−1(E, x) = A′N−1 Ai(αN−1(x − xT
EN−1))

+ B ′N−1 Bi(αN−1(x − xT
EN−1)) region N − 1

ϕN (E, x) = A′NeikNx region N

.

(4.31)
Here the solutions in region m are written according to Sect. 3.1.6 with the
scale factor αm and the (extrapolated) classical turning point xT

Em, in this case
referring to the continuous energy E. The (2N − 1) coefficients A′j , B

′
j are

determined in analogy to Sect. 4.1.6. (The solutions in region m assume the
special from of that section for a zero potential slope.) As in Sect. 4.1.9 the
time-dependent solution is

ψ(E, x, t) = e−iEt/h̄ϕ(E, x) . (4.32)

Such solutions can be superimposed to form a wave packet as in Sect. 4.1.10.
For the case of piecewise linear potentials we restrict ourself to discuss

the full solution (4.31) only.
The continuum normalization is done according to Sect. 4.1.8; it is de-

termined by the solution for the potentials in the outermost regions, which
are the same for both cases. Harmonic waves (see Sect. 4.1.9) and their su-
perposition to a wave packet (see Sect. 4.1.10) for the full solution can be
constructed in exactly the same way as described there.

4.1.12 Transmission and Reflection. Unitarity.

The Argand Diagram

For E ≥ VN , i.e., kN =
∣

∣

√
2m(E − VN )/h̄

∣

∣, the solution (4.22) is interpreted
in the following way:

i) A′1eik1x is the right-moving harmonic wave coming in from −∞.
ii) A′NeikNx is the transmitted wave. It is right moving, going out to +∞.
iii) B ′1e−ik1x is the reflected wave. It is left moving, going out to −∞.

For E < VN , i.e., kN = iκN , κN =
∣

∣

√
2m(VN − E)/h̄

∣

∣, the solution
(4.22) contains the term

A′NeikNx = A′Ne−κNx , (4.33)

which represents an exponentially decreasing function in the region N . It
approaches zero for x → +∞. Thus, there is no transmission for E < VN .
The incoming wave A′1eik1x is totally reflected to produce the left-moving
reflected wave B ′1e−ik1x , which goes out to −∞.
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For E > VN the complex functions AN =
√
k1/kNA

′
N (E) and B1 =

B ′1(E) are called the transmission and reflection coefficients, respectively.
Their normalization is fixed by setting the independent coefficientA1 = A′1 =
1. They depend on the energy E of the incoming wave and fulfill the unitarity

relation

|AN |2 + |B1|2 = |A1|2 = 1 . (4.34)

This relation states that, for varying energy E, the complex quantities AN (E)
and B1(E) move inside a circle of radius 1 around the origin in the complex
plane. This representation of the coefficients AN , B1 in the complex plane is
known as the Argand diagram. The coefficients AN and B1 are also called
the scattering-matrix elements or S-matrix elements of transmission and re-
flection, respectively. Accordingly, (4.34) is called a unitarity relation of the
S matrix. A detailed discussion of the physical interpretation of the promi-
nent features of the Argand diagram, e.g., in relation to resonances, is given
in Sect. 12.2.

For E < VN the complex function B1(E) again is the reflection coeffi-
cient. There is no transmission of a wave that goes out to infinity. For the
normalization A′1 = 1 the reflection coefficient fulfills for E < VN the uni-
tarity relation

|B1|2 = |A1|2 = 1 . (4.35)

Thus, for E < VN , the complex reflection coefficient B1(E) moves for vary-
ing energy E on the unit circle in the complex plane.

Related quantities are the transition-matrix elements or T -matrix elements

TT, TR of transmission and reflection,

TT(E) = (AN (E)− 1)/2i and TR(E) = B1(E)/2i . (4.36)

The T -matrix elements fulfill the T -matrix unitarity relation

Im TT = |TT|2 + |TR|2 . (4.37)

This states that the element TT(E) moves for varying energy E inside a circle
of radius 1/2 with its center at the point i/2 in the complex plane. The element
TR(E) varies inside the circle of radius 1/2 around the origin of the complex
plane.

4.1.13 The Tunnel Effect

We consider a simple potential with three regions,

V (x) =







0 , x < x1 = 0 region 1
V0 , 0 ≤ x < d region 2
0 , d ≤ x region 3

, (4.38)
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x: position coordinate,
d: width of potential,
V0 > 0: potential height.

For energies 0 < E < V0 a classical particle will be reflected. Quantum
mechanics allows a nonvanishing transmission coefficient A3,

|A3|2 =
4E(V0 − E)

4E(V0 − E)+ V 2
0 sinh2 κd

, κ =
∣

∣

∣

√

2m(V0 − E)/h̄
∣

∣

∣
.

(4.39)
Thus, there is a nonvanishing probability of the particle being transmitted
from region 1 into the classically forbidden region 3, if E < V0. This phe-
nomenon is called the tunnel effect.

For general potentials, the tunnel effect means that penetration through a
repulsive wall is possible if the incident energy is larger than the potential on
the other side of the wall.

4.1.14 Resonances

In a step potential or in a piecewise linear potential with N regions and V1 =
0, transmission is possible for positive energies if E > VN . The transmission
coefficient AN varies with the energy E of the incident particle.

The maxima of the absolute square |AN |2 of the transmission coefficient
are called transmission resonances. The energies at which these maxima oc-
cur are the resonance energies. Because of the unitarity relation (4.34) the
absolute square |B1|2 of the reflection coefficient exhibits a minimum at the
resonance energy of transmission. Therefore, in a plot of the energy depen-
dence of the absolute square of the wave function, transmission resonances
can be recognized at energies where the interference pattern of the incoming
and reflected wave in the region 1 is least prominent or absent.

4.1.15 Phase Shifts upon Reflection at a Steep Rise

or Deep Fall of the Potential

We study the reflection and transmission in two adjacent regions l and l + 1
with large differences in the values Vl, Vl+1 of the potentials:

V (x) =
{

Vl , xl−1 ≤ x < xl region l
Vl+1 , xl ≤ x < xl+1 region l + 1

. (4.40)

A particle with the kinetic energy E is incident on the potential step at x = xl.
The wave function in the regions l and l + 1 is given by

ϕl(E, x) = A′leiklx + B ′le−iklx ,

ϕl+1(E, x) = A′l+1eikl+1x + B ′l+1e−ikl+1x . (4.41)
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The continuity conditions to be satisfied at x = xl are

A′le
iklxl + B ′le−iklxl = A′l+1eikl+1xl + B ′l+1e−ikl+1xl ,

A′le
iklxl − B ′le−iklxl = kl+1

kl
(A′l+1eikl+1xl − B ′l+1e−ikl+1xl ) . (4.42)

This leads to the solutions

A′le
iklxl = 1

2

(

1+ kl+1

kl

)

A′l+1eikl+1xl + 1

2

(

1− kl+1

kl

)

B ′l+1e−ikl+1xl ,

B ′le
−iklxl = 1

2

(

1− kl+1

kl

)

A′l+1eikl+1xl + 1

2

(

1+ kl+1

kl

)

B ′l+1e−ikl+1xl .

(4.43)

i) Reflection and transmission at a sudden increase in potential energy (Vl �
Vl+1).
For a particle with kinetic energy E ≥ Vl+1 closely above the potential value
Vl+1 in the region (l+1), the quotient of the wave numbers satisfies kl+1/kl �
1. In this case (4.43) yields

B ′le
−iklxl ≈ A′leiklxl for E ≥ Vl+1 . (4.44)

We conclude that the reflected wave, i.e., the left-moving constituent wave in
region l,

ϕl−(E, x) = B ′le−iklx , (4.45)

does not show a phase shift compared to the incident wave, i.e., to the right-
moving constituent wave in this region,

ϕl+(E, x) = A′leiklx . (4.46)

The analogous situation in optics is the reflection of light on an optically thin-
ner medium, which does not exhibit a phase shift either. The analogy rests on
the relation of the wave numbers kl and kl+1 in the two adjacent regions. In
optics and in quantum mechanics reflection on a ‘thinner medium’ requires
kl > kl+1. Actually, to obtain a vanishing phase shift in quantum mechanics
the relation has to be stronger, i.e., kl � kl+1.

ii) Reflection and transmission at a sudden decrease in potential energy (Vl �
Vl+1).
For a particle of kinetic energy E ≥ Vl close above the potential value Vl in
the region l, the quotient of wave numbers satisfies kl+1/kl � 1. For kinetic
energies E slightly larger than Vl, (4.43) then leads to the relation

B ′le
−iklxl ≈ −A′leiklxl for E ≥ Vl , (4.47)
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which is tantamount to a phase shift of π between the reflected wave, i.e., the
left-moving constituent wave in region l,

ϕl−(E, x) = B ′le−iklx ≈ −A′le2iklxl−iklx = A′le−i(klx−2klxl+π) , (4.48)

and the incident or right-moving constituent wave in this region,

ϕl+(E, x) = A′leiklx . (4.49)

This corresponds to the reflection of light on an optically denser medium
(Sect. 4.12, ‘Analogies in Optics’). Both the quantum-mechanical and the
optical situation are characterized by kl < kl+1. In quantum mechanics the
phase shift upon reflection on a ‘denser medium’ approaches the value π for
the limiting case kl � kl+1 only.

iii) Reflection at a high potential step.
A particle with a kinetic energy E satisfying Vl < E � Vl+1 is only reflected
at x = xl; there is vanishing transmission, i.e., A′l+1 = B ′l+1 = 0. In re-
gion (l + 1) the wave number is imaginary, kl+1 = iκl+1, and, furthermore,
κl+1/kl � 1. This leads to the relation

B ′le
−iklxl ≈ −A′leiklxl for Vl < E � Vl+1 . (4.50)

As under ii), we conclude that the reflected wave in region l suffers a phase
shift of π . This situation is analogous to the reflection at a fixed end.

4.1.16 Transmission Resonances upon Reflection

at ‘More- and Less-Dense Media’

We investigate a simple repulsive potential of three regions,

V (x) =







0 x < x1 = 0 region 1
V0 > 0 0 ≤ x < x2 = d region 2
0 x2 ≤ x region 3

. (4.51)

A particle of kinetic energy E slightly larger than V0 is incident on this po-
tential from the left. Reflection occurs at x = 0 and x = d. At x = 0 the
reflection occurs as in optics on a ‘thinner medium’; thus, the reflected wave
in region 1 suffers no phase shift. At x = d reflection occurs on a ‘denser
medium’ and thus with a phase shift of π for the reflected wave in region 2.
The left-moving constituent wave ϕ1−(E, x) in region 1 can be thought of as
consisting of two parts interfering with each other: the one reflected at x = 0
on a thinner medium and the other reflected at x = d on a denser medium
and transmitted into region 1 at x = 0. The phase difference of the two parts
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consists of the phase shift π upon reflection on the denser medium at x = d
and the phase shift due to the longer path k2(2d) of the wave in region 2. The
total phase shift amounts to

δ = 2k2d + π . (4.52)

For destructive interference of the two parts making up the reflected, i.e., left-
moving, constituent wave ϕ1−(E, x) in region 1, this phase difference has
to be equal to an odd multiple of π . Thus, a transmission resonance for the
potential (4.51) under the condition E − V0 � V0 occurs if

2k2d + π = (2l + 1)π or k2 = lπ/d for l = 1, 2, 3, . . . . (4.53)

For the corresponding wavelength we find

λ2 = 2π/k2 = 2d/l , l = 1, 2, 3, . . . , (4.54)

i.e., whenever the wavelength in region 2 is an integer fraction of twice the
width of the step potential, transmission is at a maximum. The largest wave-
length for which this happens is just twice the width of the potential region. It
should be remembered, however, that the validity of the simple formula (4.53)
hinges on the condition k2 � k1 at resonance energy El , i.e.,

lh̄
π

d
�
√

2mEl . (4.55)

Under this condition the resonance energies of the kinetic energy of the inci-
dent particles are

El = V0 + l2
1

2m

(

h̄π

d

)2

. (4.56)

The spacing of the resonances increases like l2 for not too large values of the
integer l.

4.1.17 The Quantum-Well Device

and the Quantum-Effect Device

Two developments in circuit elements based on the tunnel effect are the
quantum-well device and the quantum-effect device. For an introductory ar-
ticle we refer the reader to R. T. Bates “Quantum-Effect Device: Tomorrow’s
Transistor?” in Scientific American Vol. 258, No. 3, p. 78 (March 1988).

A quantum-well device (QWD) with one-dimensional confinement is an
arrangement of five layers of material, Fig. 4.1a. The two outer layers are
n-doped gallium arsenide, GaAs. The two slices to the left and right of the
middle layer are made of aluminum gallium arsenide, AlGaAs. The middle
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slice is gallium arsenide, GaAs. The band structure of AlGaAs is such that
no classical electron current flowing in the outer n-doped GaAs can pass it.
The middle layer acts like a potential well between the two AlGaAs layers,
which act like two barriers. Thus, the one-dimensional potential representing
the quantum-well device possesses five regions with V1 = 0, V2 > 0, V3 <

V2, V4 = V2, V5 = 0, Fig. 4.1b.
The electrons in the first region, usually called the emitter, can be trans-

mitted into the fifth region, the collector, only if their initial energy in region 1
matches a resonance energy in the well. In this case the tunnel effect through
the barrier (region 2) into the well (region 3) and from here through the sec-
ond barrier (region 4) into region 5 leads to a sizable transmission coefficient.
The adaptation of the resonance energy in the well can be facilitated by con-
necting the material in regions 1 and 5 to a battery. By varying the voltage
between emitter and collector, Fig. 4.1c, the potential can be changed and thus
the resonance energy. This effect can be used to steer the current through the
quantum-well device.

Another possible way to influence the current is to connect a third electri-
cal contact (base) to the middle layer (region 3) of the quantum-well device.
This contact can be used to change the potential V3 in the well for a fixed
voltage between emitter and collector. A circuit element of this kind is called
a quantum-effect device.

n-doped
GaAs

(emitter)
AlGaAs

GaAs
(base) AlGaAs

n-doped
GaAs

(collector)

x1 x2 x3 x4

(a)

(c)
V1

V3

x4

V2 V4

V5
(b)

x1 x2 x3 x4 x1 x2 x3

Fig. 4.1. Quantum-well device: (a) layers of different materials, (b) potential at zero voltage,
(c) potential with voltage between emitter and collector
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4.1.18 Stationary States in a Linear Potential

We consider the potential
V (x) = −mgx (4.57)

corresponding to a constant force F = mg. The stationary Schrödinger equa-
tion reads

(

− h̄
2

2m

d2

dx2
−mgx

)

ϕ(x) = Eϕ(x) . (4.58)

Introducing the classical turning point

xT = −E/mg

of a particle with total energy E and the dimensionless variable

ξ = x − xT

`0
, `0 =

(

h̄2

2m2g

)1/3

,

we give the Schrödinger equation the form

(

d2

dξ2 + ξ
)

φ(ξ) = 0 , φ(ξ) = ϕ(`0ξ + xT) .

It is solved by the Airy function Ai(ξ), Sect. 11.1.7, multiplied by a normal-
ization constant:

φ(ξ) = NAi(−ξ) , N =
(

2m1/2

g1/2h̄2

)1/3

.

Returning to the stationary wave function we find

ϕ(x) = NAi

(

−x − xT

`0

)

. (4.59)

Note that the wave function ϕ(x) is a real function of x.

4.1.19 Wave Packet in a Linear Potential

Also in the linear potential one can have a Gaussian wave packet with the
probability density

%(x, t) = |ψ(x, t)|2 = 1√
2πσx(t)

exp

[

−(x − 〈x(t)〉)
2

2σ 2
x (t)

]

, (4.60)
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familiar from the free Gaussian wave packet, Sect. 2.1.2, and from the Gauss-
ian wave packet in the harmonic-oscillator potential, Sect. 3.1.8. We denote
by x0 = 〈x(0)〉 the initial mean position, by p0 = 〈p(0)〉 the initial mean

momentum, and by σx0 = σx(0) the initial spatial width. The time-dependent
mean

〈x(t)〉 = x0 +
p0

m
t + g

2
t2 (4.61)

is identical to the position x(t) of a classical particle with the initial conditions
x0, p0. The time dependence of the spatial width σx(t) is the same as for the
free wave packet,

σ 2
x (t) = σ 2

x0

(

1+ h̄2

4σ 4
x0

t2

m2

)

= σ 2
x0

(

1+
4σ 4
p0

h̄2

t2

m2

)

. (4.62)

Remember that for t = 0 the widths in position and momentum are related by
σx0σp0 = h̄/2.

4.1.20 Quantile Motion in a Linear Potential

Equation (4.60) is identical to (2.13). Only the time dependence of the mean
〈x(t)〉 is different. Keeping this difference in mind all results of Sects. 2.1.3
and 2.1.4 about the probability-current density j (x, t) and the quantile tra-
jectories xP = xP (t) remain valid for a Gaussian wave packet in a linear
potential.

4.1.21 Classical Phase-Space Density in a Linear Potential

In Sects. 2.1.7 and 3.1.10 we saw that, for a free particle and a particle
under the influence of a harmonic force, there is a close analogy between
the quantum-mechanical treatment as a wave packet and the classical de-
scription as a phase-space probability density. Here we show that this anal-
ogy also holds for a constant force, i.e., the linear potential (4.57). In this
case the classical equations of motion for a point (x, p) in phase space are
x = xi + (pi/m)t + (g/2)t2, p = pi + gt . We proceed as in Sect. 2.1.7 by
solving the equations of motion for the initial position and momentum xi, pi

at t = 0,

xi = x − (pi/m)t − (g/2)t2 , pi = p − gt , (4.63)

and by inserting them into (2.38) describing an uncorrelated Gaussian phase-
space probability density at t = 0. The resulting time-dependent density is
also Gaussian. Its expectation values are

〈x(t)〉 = x0 +
p0

m
t + g

2
t2 , 〈p(t)〉 = p0 + gt . (4.64)



4.1. Physical Concepts 79

The widths and the correlation coefficients are identical to those of the force-
free case, they are given by (2.42) and (2.43), respectively. As in that case
we conclude: The classical considerations performed here and the quantum-
mechanical ones of Sect. 4.1.19 yield identical results, provided the initial
classical phase-space probability density fulfills the minimum uncertainty
condition σx0σp0 = h̄/2 of quantum mechanics.

4.1.22 Classical Phase-Space Density

Reflected by a High Potential Wall

The close analogy between the behaviors of a quantum-mechanical wave
packet and a classical phase-space probability density holds for potentials that
are constant, linear, or quadratic in x. As a drastic counterexample we study
the behavior of a classical phase-space density under the influence of a very
high potential step at x = 0. We assume that initially (at t = 0) the distribu-
tion is concentrated far left of the step and describe it by a Gaussian as given
in Sect. 2.1.7, characterized by the initial position and momentum expectation
values x0, p0 and their uncertainties σx0, σp,

%cl
+(x, p, t) =

1

2πσx0σp
exp

{

− 1

2(1− c2)

[

(x − [x0 + p0t/m])2
σ 2
x (t)

−2c
(x − [x0 + p0t/m])

σx(t)

(p − p0)

σp
+ (p − p0)

2

σ 2
p

]}

.

Its spatial width σx and correlation coefficient c,

σx(t) =
√

σ 2
x0 + σ 2

p t
2/m2 , c = σpt

σx(t)m
,

are time dependent. This distribution, traveling to the right, is a valid de-
scription of our problem as long as it stays well left of the step, i.e., as long as
x0+p0t/m� −σx(t). For much larger times, for which x0+p0t/m� σx(t),
complete reflection has taken place: the phase-space density moves towards
the left and behaves just as if it would have started at t = 0 with the expecta-
tion values (−x0,−p0), i.e., it is described by

%cl
−(x, p, t) =

1

2πσx0σp
exp

{

− 1

2(1− c2)

[

(x − [−x0 − p0t/m])2
σ 2
x (t)

−2c
(x − [−x0 − p0t/m])

σx(t)

(p + p0)

σp
+ (p + p0)

2

σ 2
p

]}

.
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For all times we can then describe the phase-space distribution under the
action of a reflecting force at x = 0 by the sum of %cl

+ and %cl
− left of the step

(vanishing, of course, to the right of it),

%cl(x, p, t) =
{

%cl
+(x, p, t)+ %cl

−(x, p, t) , x < 0 ,

0 , x > 0 .

The marginal distribution in x,

%cl
x (x, t) = %cl

x+(x, t)+ %cl
x−(x, t)

= 1√
2πσx(t)

exp

{

−(x − [x0 + p0t/m])2
2σ 2
x (t)

}

+ 1√
2πσx(t)

exp

{

−(x − [−x0 − p0t/m])2
2σ 2
x (t)

}

,

is simply the sum of the marginal distributions of %cl
+ and %cl

− for x < 0
and vanishes for x > 0. It is the classical spatial probability density.
For times long before or long after the reflection process it is identical to
the quantum-mechanical probability density. During the period of reflec-
tion, however, t ≈ m|x0|/p0, the quantum-mechanical probability density
%(x, t) = |ψ(x, t)|2 shows the typical interference pattern, whereas the clas-
sical density %cl

x (x, t) is smooth. This striking difference is due to the fact
that in the quantum-mechanical calculation the wave functions ψ1+(x, t) and
ψ1−(x, t) are added and the absolute square of the sum is taken to form
%(x, t) whereas in the classical calculation the marginal densities %cl

x+(x, t)
and %cl

x−(x, t) of the constituent phase-space distributions are added directly.

Further Reading

Alonso, Finn: Vol. 3, Chap. 2
Berkeley Physics Course: Vol. 4, Chaps. 7, 8
Brandt, Dahmen: Chaps. 4, 5, 7
Feynman, Leighton, Sands: Vol. 3, Chaps. 9, 16
Flügge: Vol. 1, Chap. 2A
Gasiorowicz: Chap. 4
Merzbacher: Chaps. 3, 4, 5, 6
Messiah: Vol. 1, Chaps. 2, 3
Schiff: Chaps. 2, 3, 4
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4.2 Stationary Scattering States

in the Step Potential

and in the Piecewise Linear Potential

Aim of this section: Computation and demonstration of the stationary solution
ϕ(E, x) of the Schrödinger equation for a right-moving incoming wave in a step
potential, (4.22), or in a piecewise linear potential, (4.31), as a function of position
x and energy E or momentum p. For the step potential the stationary constituent
solutions ϕj±(E, x), (4.23), can also be shown.

A plot similar to Fig. 4.2 or Fig. 4.3 is produced. It contains graphical repre-
sentations of

• the step or piecewise linear potential V (x) as long-stroke dashed line,
• the total energy E as short-stroke dashed line,
• the stationary wave function ϕ(E, x), displayed as |ϕ(E, x)|2, Reϕ(E, x),

or Im ϕ(E, x) for which the short-stroke line serves as zero line.

Technically, the plot is of the type surface over Cartesian grid in 3D. The
number of energies and wave functions shown is given by n_y on the subpanel
Graphics—Accuracy.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to
show either the Absolute Square or the Real Part or the Imaginary Part of the
wave function.

On the subpanel Physics—Wave, for the case of step potentials, you can
choose to show the solution valid in the full x range or the right-moving or the
left-moving constituent wave valid only in one of the potential regions. For
all cases you can choose whether the y coordinate represents momentum or
energy and you can set the position x0 for which the phase of the incident wave
vanishes. Here you may also choose whether the y Coordinate represents

energy (as in Fig. 4.2) or momentum.
On the subpanel Physics—Misc. you find under Constants the numerical

values of h̄ and m, under Graphical Item a variable `DASH that determines the
dash lengths used for the graphical representations of potential and energy,
and under Scale Factor the factor s used to scale the graphical representation
of the wave function.

On the subpanel Physics—Potential you can choose as Type of Potential

either the Step Potential or the Piecewise Linear Potential. On that panel you
also find all the parameters determining the potential, the number N of re-
gions, the boundaries xi between region i and region i + 1, and the potentials
Vi . Note:

• For the step potential Vi is the potential in region i.
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Fig. 4.2. Plot produced with descriptor Step pot.: stationary scattering on file 1D_-
Scattering.des

Fig. 4.3. Plot produced with descriptor Piecew. lin. pot.: stationary scattering
on file 1D_Scattering.des
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• For the piecewise linear potential V (x) = Vi at xi and V (x) = Vi+1 at
xi+1 with a linear variation in between. Vertical potential edges can be con-
structed by defining two points with identical positions but different poten-
tials. To give an explicit example: (x3 = 5, V3 = 0) and (x4 = 5, V4 = 10)
indicates a sudden rise from V = 0 to V = 10 at the point x = 5.

Movie Capability: Indirect. After conversion to direct movie capability
the start and end values of energy (or momentum) can be changed in the sub-
panel Movie (see Sect. A.4) of the parameter panel. In the resulting movie en-
ergy (or momentum) of the stationary state changes with time. Such a movie,
in particular, is useful for the demonstration of resonances.

Example Descriptors on File 1D_Scattering.des

• Step pot.: stationary scattering (see Fig. 4.2)
• Piecew. lin. pot.: stationary scattering (see Fig. 4.3)

4.3 Time-Dependent Scattering

by the Step Potential

and by the Piecewise Linear Potential

Aim of this section: Computation and demonstration of a time-dependent harmonic
wave ψ(E, x, t) coming in from the left and scattered by a step potential or by a
piecewise linear potential. For the step potential the right-moving and left-moving
constituent waves ψj±(E, x, t), (4.27), can also be displayed. Study of the time
development of a Gaussian wave packet ψ(x, t) scattered by a step potential or by a
piecewise linear potential.

A plot is produced showing for various instances in time either a harmonic
wave scattered by a step potential, Fig. 4.4, or by a piecewise linear poten-
tial, Fig. 4.5, or a wave packet, Figs. 4.6 and 4.7, scattered by one of these
potentials. For the step potential also the constituent solutions ψj± can be
displayed. Note that the constituent solutions ψj± have physical significance
only in region j although they are drawn in the complete x range determined
by the C3 window, unless you restrict the range to region j . Note also that
only the sum ψj is a solution of the Schrödinger equation.

As in Sect. 2.7, for the computation of the Gaussian wave packet, the
integration over p has to be performed numerically and is thus approximated
by a sum (fσ is a reasonably large positive number, e.g., fσ = 3):

Ψ (x, t) =
∫ ∞

−∞
f (p)ψp(x, t) dp → 1p

Nsum
∑

n=0

f (pn)ψpn(x, t) ,

pn = p0 − fσσp + n1p , 1p = 2fσσp
Nsum − 1

. (4.65)
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Fig. 4.4. Plot produced with descriptor Step pot.: time−dependent scattering: har−
monic wave on file 1D_Scattering.des

Again the solution obtained numerically as a sum with a finite number of
terms will be periodic in x. That is, only in a limited x region you will get
a good approximation to the true solution. The patterns for ψ(x) [or ψj+(x)
and ψj−(x)] will repeat themselves (quasi-)periodically along the x direction,
the period1x becoming larger asNsum increases. You will have to make sure
that the x interval of your C3 window is small compared to 1x.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to
show either the Absolute Square or the Real Part or the Imaginary Part of the
wave function.

On the subpanel Physics—Wave (Packet) you find the following items:

• Full/Constituent Solution – Here you can choose to plotψ or ψj+ or ψj−. In
the latter two cases, of course, the Region Number j has to be given. (This
field is available only for step potentials.)
• Incoming Wave – Here you can choose between Harmonic Wave and Wave

Packet. In the latter case the number Nint, 1 ≤ Nint ≤ 200, determines the
numberNsum = 2Nint+1 of terms in the sum approximating the momentum
integral for the wave packet and fσ is the other parameter needed for the
numerical approximation of the wave packet, see (4.65).
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Fig. 4.5. Plot produced with descriptor Piecew. lin. pot.: time−dependent scatter−
ing − harmonic wave on file 1D_Scattering.des

Fig. 4.6. Plot produced with descriptor Step pot.: time−dependent scattering: wave
packet on file 1D_Scattering.des
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Fig. 4.7. Plot produced with descriptor Piecew. lin. pot.: time−dependent scatter−
ing − wave packet on file 1D_Scattering.des

• Input for Momentum Expectation – You can choose to use either directly
the momentum expectation p0 as input or the corresponding energy E0 =
p2

0/2m. For the harmonic wave, of course, p0 is just the momentum.
• Width in Momentum is Given – As for the free Gaussian wave packet you

may choose to give the width either as Fraction of p_0, i.e., you enter
f = σp0/p0 or in Absolute Units, i.e., you enter σp0 directly. (This item
is available only if an incoming wave packet was chosen.)
• Harmonic Wave/Wave Packet – depending on the choice above. Here you

find the numerical values characterizing the incoming wave or wave packet.
They are
– a position x0 (For the wave packet, it is the initial position expectation

value, the phases of all waves in the sum are set to zero there. For the
harmonic wave, in the same way, it fixes the phase.),

– the momentum p0 (or the corresponding energy E0),
– for a wave packet only: the momentum width σp0 (or the corresponding

fraction f = σp0/p0).

The subpanel Physics—Misc. is as in Sect. 4.2 but there is an additional
entry in Graphical Items, namely, the radius R of a circle drawn at the position
of the classical particle. The circle is drawn only together with the absolute
square of the wave function of a packet.
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The subpanel Physics—Potential is as in Sect. 4.2.

Movie Capability: Indirect. After conversion to direct movie capability
the start and end times can be changed in the subpanel Movie (see Sect. A.4)
of the parameter panel.

Example Descriptors on File 1D_Scattering.des

• Step pot.: time−dependent scattering: harmonic wave
(see Fig. 4.4)
• Piecew. lin. pot.: time−dependent scattering − harmonic
wave (see Fig. 4.5)
• Step pot.: time−dependent scattering: wave packet

(see Fig. 4.6)
• Piecew. lin. pot.: time−dependent scattering − wave packet

(see Fig. 4.7)
• Movie: wave packet in step potential
• Movie: wave packet in piecew. lin. potential

4.4 Transmission and Reflection.

The Argand Diagram

Aim of this section: Presentation of the complex transmission coefficient AN (E)
and the complex reflection coefficient B1(E) and of the complex T -matrix elements
of transmission TT(E) and of reflection TR(E), see (4.36).

If C(E) is one of these quantities, we want to illustrate its energy dependence
by four different graphs,

• the Argand diagram Im {C(E)} vs. Re {C(E)},
• the real part Re {C(E)} as a function of E,
• the imaginary part Im {C(E)} as a function of E,
• the absolute square |C(E)|2 as a function of E.

Alternatively, these functions can also be plotted with momentum p (instead
of energy E) as independent variable.

It is customary to draw an Argand diagram (Im {C(E)} vs. Re {C(E)})
and graphs Im {C(E)} and Re {C(E)} in such a way that the graphs appear to
be projections to the right and below the Argand diagram, respectively. You
can do that by producing a combined plot using a mother descriptor, which
in turn quotes several individual descriptors (see Appendix A.10) as in the
example plots, Figs. 4.8 and 4.9.

All four plots in Fig. 4.8 and also those in Fig. 4.9 are of the type 2D

function graph. The Argand diagram (top left) is a parameter representation

x = x(α), y = y(α). The two plots on the right-hand side are Cartesian
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Fig. 4.8. Combined plot produced with descriptor Step pot.: Argand diagram − com−
bined plot on file 1D_Scattering.des. This descriptor quotes four other descriptors to
generate the individual plots

plots y = y(x). The plot in the bottom-left corner is an inverse Cartesian plot

x = x(y).
On the subpanel Physics—Comp. Coord. you can select to use as Indepen-

dent Variable the energy E (as in the formulae above) or the momentum p and
to compute one of the four functions

TT, TR, AN , B1 .

You can further choose the type of 2D function graph you want to produce:

• Argand diagram,
• y = y(x),
• x = x(y).
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Fig. 4.9. Combined plot produced with descriptor Piecew. lin. pot.: Argand diagram
− combined plot on file 1D_Scattering.des. This descriptor quotes four other descrip-
tors to generate the individual plots. The potential is the same as in Fig. 4.3.

For the latter two types of function graph you still can choose to present as
dependent variable the Absolute Square, the Real Part, or the Imaginary Part

of the function selected.

On the subpanel Physics—Variables you find three items:

• Phase-Fixing Position – At x0 the phase of the incoming wave is zero.
• Constants – the numerical values of h̄ and m.
• Range of Independent Variable in Argand Diagram – The variable is the en-

ergy E (or the momentum p). It is varied between the boundaries Ebeg and
Eend (or pbeg and pend).

The subpanel Physics—Potential is as in Sect. 4.2.
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Movie Capability (only for the Argand diagram proper): Direct. The tra-
jectory in the complex plane is seen to develop as the range of the independent
variable is increased proportional to time.

Example Descriptors on File 1D_Scattering.des

• Step pot.: Argand diagram: combined plot (see Fig. 4.8, this is a
mother descriptor quoting the four descriptors listed below, each
describing one of the four plots in the combined plot)
• Step pot.: Argand diagram − imaginary part vs. real part
• Step pot.: Argand diagram − imaginary part
• Step pot.: Argand diagram − real part
• Step pot.: Argand diagram − absolute square
• Piecew. lin. pot.: Argand diagram: combined plot (see Fig. 4.9,

this is a mother descriptor quoting the four descriptors listed below, each
describing one of the four plots in the combined plot)
• Piecew. lin. pot.: Argand diagram − imaginary part vs.
real part
• Piecew. lin. pot.: Argand diagram − imaginary part
• Piecew. lin. pot.: Argand diagram − real part
• Piecew. lin. pot.: Argand diagram − absolute square

4.5 Stationary Wave in a Linear Potential

Aim of this section: Presentation of the stationary wave function ϕ(x), (4.59), in a
linear potential V = −mgx.

A plot similar to Fig. 4.10 is produced showing the linear potential V =
−mgx as a long-stroke dashed line and, for various values of the energy E,
the wave function ϕ(x). In each case the energy E is shown as a short-stroke
dashed line, which also serves as a zero line for the wave function.

On the subpanel Physics—Comp. Coord. you can choose to show the ab-
solute square, the real part, or the imaginary part of ϕ(x). (Note that the latter
is always zero.)

On the subpanel Physics—Variables there are four items:

• Acceleration – Here you find the numerical value of the acceleration.
• Linear Potential – You can choose whether the potential is

– Shown (as in Fig. 4.10) or
– Not Shown.
In the former case the wave function is shown as z = E + sϕ(x) where s is
a scale factor, see below.
• Scale Factor – contains the scale factor s just mentioned.
• Constants – contains the numerical values of the constants h̄ and m.
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Fig. 4.10. Plot produced with descriptor Stationary wave in linear potential on file
1D_Scattering.des

Example Descriptor on file 1D_Scattering.des

• Stationary wave in linear potential (see Fig. 4.10)

4.6 Gaussian Wave Packet in a Linear Potential

Aim of this section: Illustration of the motion of a wave packet (4.60) in a linear
potential including quantile motion.

On the subpanel Physics—Comp. Coord. you can choose to plot one of five
different quantities as in Sect. 2.3.1.

The subpanel Physics—Wave Packet is as described in Sect. 2.3.2.
The subpanel Physics—Pot. contains three of the four items described in

Sect. 4.5 (for the subpanel Physics—Variables).
The subpanel Physics—Quantile is as described in Sect. 2.3.3.

Movie Capability: Indirect. After conversion to direct movie capability
the start and end times can be changed in the subpanel Movie (see Sect. A.4)
of the parameter panel.

Example Descriptor on file 1D_Scattering.des

• Wave packet in linear potential (see Fig. 4.11)
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Fig. 4.11. Plot produced with descriptor Wave packet in linear potential on file
1D_Scattering.des

4.7 Quantile Trajectories in a Linear Potential

Aim of this section: Presentation of quantile trajectories xP = xP (t), Sect. 4.1.20,
for the motion of a Gaussian wave packet in a linear potential.

On the bottom of the subpanel Physics—Comp. Coord. you find the Accelera-

tion g, the parameter of the linear potential V (x) = −mgx.
The subpanels Physics—Quantiles and Physics—Wave Packet are as de-

scribed in Sect. 2.5.

Example Descriptor on file 1D_Scattering.des

• Linear potential: quantile trajectories (see Fig. 4.12)

4.8 Classical Phase-Space Density

in a Linear Potential

Aim of this section: Graphical presentation of the phase-space probability density
%cl(x, p, t) of Sect. 4.1.21 under the influence of a linear potential V = −mgx. The
density initially (at time t = 0) is uncorrelated and fulfills the condition σx0σp0 =
h̄/2. The marginal distributions %cl

x (x, t) and %cl
p (p, t) are also shown.
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Fig. 4.12. Plot produced with descriptor Linear potential: quantile trajectories
on file 1D_Scattering.des

Fig. 4.13. Plot produced with descriptor Classical phase−space density in linear
potential on file 1D_Scattering.des
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On the subpanel Physics—Comp. Coord. you have to select

• Linear (or constant) potential

and to set g to some finite value.
On the subpanel Physics—Phase-Space Distr. you enter the initial param-

eters x0, p0, σp0 as well as a time t0 (normally 0) and a time difference 1t .
The distribution %cl(x, p, t) is shown for t = t0. If you ask for a multiple plot,
it is shown for t = t0 in the first plot, t = t0 + 1t in the second, etc. At the
bottom of the subpanel there are 3 check boxes. By enabling them you may
show

• the expectation value as a circle in the x, p plane for the times t = t0, t =
t0+1t, . . . including the time of the particular plot and the trajectory of the
expectation value,
• the covariance ellipse as a line %cl(x, p, t) = const,
• a rectangular frame enclosing the covariance ellipse (not normally wanted).

Movie Capability: Direct. The time, over which the movie extends, is
T = 1t(NPlots−1); NPlots is the number of individual plots in a multiple plot
and 1t is the time interval between two plots. For a single plot T = 1t .

Example Descriptor on File 1D_Scattering.des

• Classical phase−space density in linear potential
(see Fig. 4.13)

4.9 Classical Phase-Space Distribution:

Covariance Ellipse

Aim of this section: Graphical presentation of the covariance ellipse, characterizing
the phase-space probability density %cl(x, p, t) in a linear potential of Sect. 4.1.21,
which initially (at time t = 0) is uncorrelated and fulfills the condition σx0σp0 =
h̄/2.

On the subpanel Physics—Comp. Coord. you have to select

• Linear (or constant) potential

and to set g to some finite value.
On the subpanel Physics—Phase-Space Distr. you enter the initial param-

eters x0, p0, σp0 as well as a time t0 (normally 0), a time difference 1t , and
an integer number Nt . The covariance ellipse is shown in the x, p plane for
the times t = t0, t = t0 +1t, . . . , t = t0 + (Nt − 1)1t .

At the bottom of the subpanel there are 3 check boxes. By enabling them
you may show
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Fig. 4.14. Plot produced with descriptor Cl. phase−sp. density in linear poten−
tial: covariance ellipse on file 1D_Free_Particle.des

• the expectation value as a circle in the x, p plane for the times t = t0, t =
t0 +1t, . . . and the trajectory of the expectation value,
• the covariance ellipse,
• a rectangular frame enclosing the covariance ellipse.

Movie Capability: Direct. On the subpanel Movie (see Sect. A.4) of the
parameters panel you may choose to show or not to show the initial and inter-
mediate positions of the covariance ellipse.

Example Descriptor on File 1D_Scattering.des

• Cl. phase−sp. density in linear potential: covariance
ellipse (see Fig. 4.14)

4.10 Classical Phase-Space Density

Reflected by a High Potential Wall

Aim of this section: Graphical presentation of the phase-space probability density
%cl(x, p, t) of Sect. 4.1.22, which is reflected at a high potential wall at x = 0. The
density initially (at time t = 0) is uncorrelated and fulfills the condition σx0σp0 =
h̄/2. The marginal distributions %cl

x (x, t) and %cl
p (p, t) are also shown.
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Fig. 4.15. Plot produced with descriptor Cl. phase−sp. density, reflected at high
potential wall on file 1D_Scattering.des

On the subpanel Physics—Comp. Coord. you have to select

• High wall at x = 0.

On the subpanel Physics—Phase-Space Distr. you enter the initial param-
eters x0, p0, σp0 as well as a time t0 (normally 0) and a time difference 1t .
The distribution %cl(x, p, t) is shown for t = t0. If you ask for a multiple plot,
it is shown for t = t0 in the first plot, t = t0 + 1t in the second, etc. At the
bottom of the subpanel there are 3 check boxes. By enabling the first one you
may show

• the expectation value as a circle in the x, p plane for the times t = t0, t =
t0+1t, . . . including the time of the particular plot and the trajectory of the
expectation value.

(The other two check boxes have no meaning in the present case.)

Movie Capability: Direct. The time, over which the movie extends, is
T = 1t(NPlots−1); NPlots is the number of individual plots in a multiple plot
and 1t is the time interval between two plots. For a single plot T = 1t .

Example Descriptor on File 1D_Scattering.des

• Cl. phase−sp. density, reflected at high potential wall
(see Fig. 4.15)
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4.11 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo in the main toolbar and selecting one of the demo files
1D_Scattering.

(ii) More example descriptors can be found on the descriptor file 1DScatt-
(FE).des in the directory FurtherExamples.

(iii) For the following exercises use descriptor file 1D_Scattering.des.

(iv) If not stated otherwise in the exercises the numerical values of the mass
of the particle and of Planck’s constant are put to 1.

4.2.1 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of
the scattering wave function for the potential

V (x) =







0 , x < 0
2 , 0 ≤ x < 2
0 , 2 ≤ x

.

Start from descriptor 36: ‘Exercise 4.2.1’. (d) Why is the wave function a
linear function in the region of the potential for one of the energies? (e) Ex-
plain the trend of the transmission coefficient for increasing energies in the
plot.

4.2.2 (a,b,c) Repeat Exercise 4.2.1 (a,b,c) for the potential

V (x) =







0 , x < 0
2 , 0 ≤ x < 0.5
0 , 0.5 ≤ x

.

(d) Why does the tunnel probability increase in comparison with Exercise
4.2.1? (e) Why is the absolute square constant in the region beyond the po-
tential? (f) Why does the absolute square show a wave pattern in the region
to the left of the potential wall?

4.2.3 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of
the scattering wave function for the potential

V (x) =























0 , x < 0
2 , 0 ≤ x < 0.5
0 , 0.5 ≤ x < 1.5
2 , 1.5 ≤ x < 2
0 , 2 ≤ x

.

Start from descriptor 36: ‘Exercise 4.2.1’. (d) Why is the amplitude of the
wave pattern of the absolute square to the left of the double well very small
for one of the energies? At which energy does this phenomenon occur?

4.2.4 Study (a) the real part, (b) the imaginary part, (c) the absolute square
of the wave function in the potential of Exercise 4.2.3 in the neighborhood
of the particular energy determined in 4.2.3 (d). Choose in particular the
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energy interval 1.08 ≤ E ≤ 1.14. Start from descriptor 37: ‘Exercise
4.2.4’. (d) Why does the resonance phenomenon occur at the value 1.12 for
the energy? (e) Is there another resonance at lower energies?

4.2.5 Study the resonances of a repulsive double-well potential:

V (x) =























0 , x < 0
2.5 , 0 ≤ x < 0.5

0 , 0.5 ≤ x < 2.5
2.5 , 2.5 ≤ x < 3

0 , 3 ≤ x

.

(a) Plot the absolute square of the wave function in the energy region 0.4 ≤
E ≤ 2.4 in 10 intervals. In which energy regions do you see indications for
the occurrence of resonances? Determine their energies roughly by changing
the limits of the energy interval. Start from descriptor 37: ‘Exercise 4.2.4’.
(b) Plot the absolute square of the wave function in the neighborhood of the
first resonance as an interval of 0.04 in steps of 0.008 energy units. Place
the interval in such a way that the resonating wave function comes out best.
(c) Plot the real part of the wave function in the interval of (b). (d) Repeat
(b) for the neighborhood of the second resonance. Choose an interval of 0.5
energy units in steps of 0.1. (e) Plot the real part of the wave function in the
interval of (d). (f) What distinguishes the two resonances from each other?
How is the difference in the two wave functions correlated to their difference
in energy?

4.2.6 Study the resonances of an asymmetric triple-well potential:

V (x) =







































0 , x < 0
7 , 0 ≤ x < 0.5
0 , 0.5 ≤ x < 2.5
7 , 2.5 ≤ x < 3
0 , 3 ≤ x < 4.5
7 , 4.5 ≤ x < 5
0 , 5 ≤ x

.

Plot the absolute square of the wave function in the energy regions (a) 0.01 ≤
E ≤ 1.01, (b) 1.01 ≤ E ≤ 2.01, (c) 2.01 ≤ E ≤ 3.01, (d) 3.01 ≤ E ≤ 4.01,
(e) 4.01 ≤ E ≤ 5.01, (f) 5.01 ≤ E ≤ 6.01, (g) 6.01 ≤ E ≤ 7.01, in steps
of 1E = 0.1. Find the energies of the resonances in these regions. Start
from descriptor 37: ‘Exercise 4.2.4’. For (h–l) start from descriptors 38:
‘Exercise 4.2.6h’, 39: ‘Exercise 4.2.6i’, . . . , 42: ‘Exercise 4.2.6l’,
respectively. (h) Plot the first resonance in the left-hand well as one of the
center lines in a set of 10 lines with an energy resolution 0.01. (i) Plot the
second resonance in the left-hand well as the center line in a set of 10 lines
with an energy resolution 0.01. (j) Plot the third resonance in the left-hand
well as the center line in a set of 10 lines with an energy resolution 0.05.
(k) Plot the first resonance in the right-hand well in a set of 10 lines with an
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energy resolution of 0.02. (l) Plot the second resonance in the right-hand well
in a set of 10 lines with an energy resolution of 0.05.

4.2.7 Plot the transmission probability |AN |2 for the potential of Exercise
4.2.6. Start from descriptor 43: ‘Exercise 4.2.7’. Determine the energies
of the maxima of |AN |2 and compare them with the resonance energies of
Exercise 4.2.6.

4.2.8 Study the resonance behavior in a double-well potential corresponding
to the left-hand potential of Exercise 4.2.6:

V (x) =























0 , x < 0
7 , 0 ≤ x < 0.5
0 , 0.5 ≤ x < 2.5
7 , 2.5 ≤ x < 3
0 , 3 ≤ x

.

Plot the absolute square of the wave function in the energy regions (a) 0.01 ≤
E ≤ 1.01, (b) 1.01 ≤ E ≤ 2.01, (c) 2.01 ≤ E ≤ 3.01, (d) 3.01 ≤ E ≤ 4.01,
(e) 4.01 ≤ E ≤ 5.01, (f) 5.01 ≤ E ≤ 6.01, (g) 6.01 ≤ E ≤ 7.01, in steps of
1E = 0.1. Find the energies of the resonances in these regions. Start from
descriptor 37: ‘Exercise 4.2.4’. (h) Plot the first resonance as one of the
center lines in a set of 10 lines with an energy resolution 0.01. (i) Plot the
second resonance as one of the center lines in a set of 10 lines with an energy
resolution 0.01. (j) Plot the third resonance as one of the center lines in a set
of 10 lines with an energy resolution 0.05.

4.2.9 Plot the transmission probability |AN |2 for the potential of Exercise
4.2.8. Start from descriptor 43: ‘Exercise 4.2.7’. Determine the energies
of the maxima of |AN |2 and compare them with the resonance energies of
Exercise 4.2.8.

4.2.10 (a–i) Repeat Exercise 4.2.8 (a–i) for the double-well potential corre-
sponding to the right-hand potential of Exercise 4.2.6:

V (x) =























0 , x < 2.5
7 , 2.5 ≤ x < 3
0 , 3 ≤ x < 4.5
7 , 4.5 ≤ x < 5
0 , 5 ≤ x

.

Start from descriptor 37: ‘Exercise 4.2.4’. Choose as energy resolution in
(a–g) 1E = 0.1, (h) 1E = 0.02, (i) 1E = 0.05.

4.2.11 Plot the transmission probability |AN |2 for the potential of Exercise
4.2.10. Start from descriptor 43: ‘Exercise 4.2.7’. Determine the ener-
gies of the maxima of |AN |2 and compare them to the resonance energies of
Exercise 4.2.10.

4.2.12 We consider a potential with five steps (a model of the quantum-well
device)
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V (x) =























V1 , x < 0 region 1
V2 , 0 ≤ x < 0.5 region 2
V3 , 0.5 ≤ x < 1 region 3
V4 , 1 ≤ x < 1.5 region 4
V5 , 1.5 ≤ x region 5

.

For the potential values V1 = 0, V2 = 7, V3 = −0.5, V4 = 6.5, V5 = −1,
the energy Eres for a transmission resonance is Eres = 3.67. Plot the absolute
square of the wave function for (a) ‘zero voltage’, V1 = 0, V2 = 7, V3 = 0,
V4 = 7, V5 = 0, (b) a voltage below resonance, V1 = 0, V2 = 7, V3 =
−0.25, V4 = 6.75, V5 = −0.5, (c) resonance voltage, V1 = 0, V2 = 7,
V3 = −0.5, V4 = 6.5, V5 = −1, (d) a voltage above resonance, V1 = 0,
V2 = 7, V3 = −0.75, V4 = 6.25, V5 = −1.5. Start from descriptor 36:
‘Exercise 4.2.1’. (e) For comparison put the descriptors (a–d) into one
combined plot. Start from the mother descriptor 44: ‘Exercise 4.2.12’.
(f) The voltage U at the quantum well is given by the difference U = V1−V5.
The variation of the voltage is 1U = 1V1 − 1V5 = −1V5 because the
potential V1 is kept fixed in the cases (a–d). The electric current I through
the quantum-well device is proportional to the absolute square |A5|2 of the
coefficient A5: I = α|A5|2. Thus, the variation 1I of the electric current is
proportional to the variation 1|A5|2 of the absolute square of the coefficient
A5: 1I = α1|A5|2. For a given variation 1U = −1V5 of the voltage the
quotient R = 1U/1I = 1V5/1I of 1U and the corresponding variation
1I of the electric current is called the differential resistance. It is given by
R = (1/α)1U/1|A5|2. What is the trend of the differential resistance that
can be learned for1U = 0.5 from the comparison of the situations (ab), (bc),
(cd)?

4.2.13 Use the potential of Exercise 4.2.12 with the potential parameters at
resonance V1 = 0, V2 = 60, V3 = −2, V4 = 58, V5 = −4. There is
a lowest transmission resonance in this step potential at E1 = 8.464. Plot
the absolute square of the wave function in the neighborhood of the lowest
resonance for (a) a voltage below resonance, V1 = 0, V2 = 60, V3 = −1.95,
V4 = 58.05, V5 = −3.9, (b) a voltage close below resonance, V1 = 0,
V2 = 60, V3 = −1.993, V4 = 58.007, V5 = −3.986, (c) resonance voltage,
V1 = 0, V2 = 60, V3 = −2, V4 = 58, V5 = −4, (d) a voltage above
resonance, V1 = 0, V2 = 60, V3 = −2.007, V4 = 57.993, V5 = −4.014.
Start from descriptor 36: ‘Exercise 4.2.1’. (e) For comparison put the
graphs (a–d) into one combined plot. Start from the mother descriptor 44:
‘Exercise 4.2.12’. (f) Why is the variation of the differential resistance
much faster than in Exercise 4.2.12?

4.2.14 Repeat Exercise 4.2.13 for a much higher voltage between emitter and
collector so that the step potential has at Eres = 8.464 the parameters V1 = 0,
V2 = 60, V3 = −33.25, V4 = 26.75, V5 = −66.5. Plot the absolute square
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of the wave function in the neighborhood of (a) the voltage below resonance,
V1 = 0, V2 = 60, V3 = −33.1, V4 = 26.9, V5 = −66.2, (b) the voltage
below resonance, V1 = 0, V2 = 60, V3 = −33.2, V4 = 26.8, V5 = −66.4,
(c) the resonance voltage, V1 = 0, V2 = 60, V3 = −33.25, V4 = 26.75,
V5 = −66.5, (d) the voltage above resonance, V1 = 0, V2 = 60, V3 = −33.3,
V4 = 26.7, V5 = −66.6. Start from descriptor 36: ‘Exercise 4.2.1’. (e) For
comparison put the plots (a–d) into one combined plot. Start from the mother
descriptor 44: ‘Exercise 4.2.12’. (f) Why is the variation of the differential
resistance for this second resonance slower than for the lowest resonance as
studied in Exercise 4.2.13?

4.2.15 This exercise models a quantum-effect device. Make use of the po-
tential of five regions of Exercise 4.2.12. Plot the absolute square of the
wave function for different voltages at the base (region 3), i.e., for the dif-
ferent potential values V3 (a) below resonance, V3 = −1.9, (b) slightly be-
low resonance, V3 = −1.98, (c) at resonance, V3 = −2, (d) above reso-
nance, V3 = −2.03, whereas the potential values in the other regions re-
main unchanged at V1 = 0, V2 = 40, V4 = 38, V5 = −4. Start from
descriptor 36: ‘Exercise 4.2.1’. (e) Put the four plots (a–d) into one
combined plot. Start from the mother descriptor 44: ‘Exercise 4.2.12’.
(f) For the case of a quantum-effect device the variation of the potential
V3 leads to a change 1U = −1V3 in the voltage U = V1 − V3. Thus,
the differential resistance [see Exercise 4.2.12 (f)] is accordingly defined as
R = 1U/1I = −1V3/1I . What is the trend of the differential resistance
that can be learned from the comparison of the situations (ab), (bc), (cd)?

4.2.16 Make use of the potential of five regions as in Exercise 4.2.12. The
potential in four of the five regions is kept fixed to the values V1 = 0 , V2 =
10, V4 = 9.5, V5 = −1. In region 3 the potential values are changed. Plot the
absolute square of the wave function (a) below resonance, V3 = −0.2, (b) at
resonance, V3 = −0.5, (c) slightly above resonance, V3 = −0.8, (d) above
resonance, V3 = −1. Start from descriptor 36: ‘Exercise 4.2.1’. (e) Put
the four plots (a–d) into one combined plot. Start from mother descriptor 44:
‘Exercise 4.2.12’.

4.2.17 Use a potential of seven regions

V (x) =







































V1 , x < 0 region 1
V2 , 0 ≤ x < 0.5 region 2
V3 , 0.5 ≤ x < 1 region 3
V4 , 1 ≤ x < 1.5 region 4
V5 , 1.5 ≤ x < 2 region 5
V6 , 2 ≤ x < 2.5 region 6
V7 , 2.5 ≤ x region 7

.

The values V1 = 0, V2 = 10, V4 = 9.5, V6 = 9, V7 = −1 are kept fixed.
The values in the regions 3 and 5 are varied: (a) below resonance V3 = V5 =
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−0.35, (b) at resonance V3 = V5 = −0.5, (c) slightly above resonance V3 =
V5 = −0.65, (d) above resonance V3 = V5 = −0.75. Start from descriptor
36: ‘Exercise 4.2.1’. (e) Put the four plots (a–d) for the absolute square of
the wave function into one combined plot. Start from mother descriptor 44:
‘Exercise 4.2.12’. (f) Why is the variation of the differential resistance in
this case much faster than in Exercise 4.2.16?

4.2.18 Consider the piecewise linear potential (x2, V2) = (0, 5), (x3, V3) =
(2.5,−5), (x4, V4) = (5, 5), (x5, V5) = (5, 0) of Fig. 4.3. Switch the func-
tion to either real or imaginary part. (a) How can one determine the number
of bound states contained in a potential by watching the wave function at
small scattering energies or momenta? (b) Determine the number of bound
states for this potential. It is customary to restrict the x interval boundaries of
the plot to values of or slightly outside the potential region and to adjust the
scale factor of the wave function. (c) Determine the number of bound states
contained in the potential (x2, V2) = (20,−15), (x3, V3) = (40, 0) (i.e., the
potential parameters of Fig. 4.7) in the same way.

4.2.19 (a) Plot the absolute square of the scattering wave function of the at-
tractive triangular potential (x2, V2) = (2,−1), (x3, V3) = (4, 0) in the en-
ergy region 0.1 ≤ E ≤ 1 and keep the plot on the screen. Start from de-
scriptor 45: ‘Exercise 4.2.19’. (b) Consider now the following attractive
potential with 10 regions: (x2, V2) = (1.5,−0.07), (x3, V3) = (2.5,−0.4),
(x4, V4) = (3,−0.8), (x5, V5) = (3.5,−1), (x6, V6) = (4,−0.8), (x7, V7) =
(4.5,−0.4), (x8, V8) = (5.5,−0.07), (x9, V9) = (7, 0). Plot again the ab-
solute square of the scattering wave function. Start also from descriptor 45:
‘Exercise 4.2.19’. (c) What is the striking difference between these two
results? What is the physical interpretation?

4.2.20 (a) Repeat Exercise 4.2.19 (b) for the (approximately linearly scaled)
potential (x2, V2) = (1.5,−0.15), (x3, V3) = (2.5,−1.06), (x4, V4) =
(3,−2.4), (x5, V5) = (3.5,−3), (x6, V6) = (4,−2.4), (x7, V7) = (4.5,
−1.06), (x8, V8) = (5.5,−0.15), (x9, V9) = (7, 0). (b) Repeat Exer-
cise 4.2.19 (b) for the (approximately linearly scaled) potential (x2, V2) =
(1.5,−0.3), (x3, V3) = (2.5,−2.2), (x4, V4) = (3,−4.4), (x5, V5) =
(3.5,−6), (x6, V6) = (4,−4.4), (x7, V7) = (4.5,−2.2), (x8, V8) = (5.5,
−0.3), (x9, V9) = (7, 0).

4.3.1 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of a
harmonic wave of momentum p0 = 2.2 for the time range 0 ≤ t ≤ 6 in the
potential

V (x) =
{

0 , x < 0
32 , 0 ≤ x .

Start from descriptor 46: ‘Exercise 4.3.1’. (d) Why does the wave function
look similar to the reflection of a wave on a fixed end?
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4.3.2 (a,b,c) Repeat Exercise 4.3.1 (a,b,c) for the potential

V (x) =
{

0 , x < 0
−3000 , 0 ≤ x .

(d) Why does the wave function look similar to the reflection of a light wave
on a denser medium?

4.3.3 (a,b,c) Repeat Exercise 4.3.1 (a,b,c) for a potential

V (x) =
{

0 , x < 0
32 , 0 ≤ x

for a harmonic wave of momentum p0 = 8 for the time range 0 ≤ t ≤ 6. Start
from descriptor 46: ‘Exercise 4.3.1’. (d) Why does the reflection pattern
now look like one at a thinner medium?

4.3.4 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of
a harmonic wave of momentum p0 = 1.2 for the time range 0 ≤ t ≤ 6 in
the potential of Exercise 4.2.2. Start from descriptor 46: ‘Exercise 4.3.1’.
(d) Why do the plots of Exercise 4.2.2 (c) at p0 = 1.2 and 4.3.4 (c) look
alike?

4.3.5 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of
a harmonic wave of momentum p0 = 1.2 for the time range 0 ≤ t ≤ 6 in
the potential of Exercise 4.2.3. Start from descriptor 46: ‘Exercise 4.3.1’.
(d) Why is the amplitude of the real part of wave function to the right of the
potential barrier time independent? (e) Why is the amplitude of the real part
of the wave function to the left of the potential barrier time dependent?

4.3.6 Plot the motion of the wave packet incident on a step potential

V (x) =
{

0 , x < 0
6 , x ≥ 0

for the width σp = 0.3 and the energies (a) E = 2, (b) E = 6.5, (c) E = 8.
Start from descriptor 47: ‘Exercise 4.3.6’. (d) Describe the trend of the
reflection probability. (e) Why is the transmitted wave packet in (b) faster
than the classical particle?

4.3.7 Plot the motion of a wave packet incident on a down-step potential

V (x) =
{

0 , x < 0
−6 , x ≥ 0

for the width σp = 0.3 and the energies (a) E = 1, (b) E = 2, (c) E = 4.
The initial position expectation value of the wave packet is x0 = −6. Start
from descriptor 47: ‘Exercise 4.3.6’.

4.3.8 (a–c) Repeat Exercise 4.3.7 for the potential

V (x) =
{

0 , x < 0
−12 , x ≥ 0

.

(d) Why does the reflection probability increase with the height of the step
(see Exercise 4.3.7)?
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4.3.9 Plot the transmission probability |AN |2 for the potential

V (x) =







0 , x < 0
16 , 0 ≤ x < 4
0 , 4 ≤ x

for the energy range 15 ≤ E ≤ 22. Determine the energies of the four trans-
mission resonances (|AN | = 1) in this energy range. Start from descriptor 48:
‘Exercise 4.3.9’.

4.3.10 (a,b) Plot the scattering of the wave packet of width σp = 0.05 at the
repulsive square-well potential of Exercise 4.3.9 for the lowest two resonance
energies determined in Exercise 4.3.9. Choose eight intervals in the time
range 0 ≤ t ≤ 12. Start from descriptor 47: ‘Exercise 4.3.6’. (c) Explain
the occurrence of the resonance phenomena. Give a qualitative argument for
the energies at which they occur. (d) For the last four consecutive time instants
determine the ratios of the maxima of the wave functions within the range of
the barrier. Explain why these ratios are approximately equal.

4.3.11 (a) Plot the scattering of the wave packet of width σp = 0.05 at the
repulsive square-well potential of Exercise 4.3.9 for the third resonance en-
ergy determined in Exercise 4.3.9. Choose eight intervals in the time range
0 ≤ t ≤ 12. (b) Study the time range 8 ≤ t ≤ 12 in eight intervals. Start
from descriptor 47: ‘Exercise 4.3.6’.

4.3.12 (a) Repeat Exercise 4.3.11 (a) for the fourth resonance energy deter-
mined in Exercise 4.3.9. Choose eight intervals in the time range 0 ≤ t ≤ 8.
(b) Study the time range 6 ≤ t ≤ 8 in eight intervals. Start from descriptor
47: ‘Exercise 4.3.6’. (c) Why is the exponential decay faster with higher
resonance energy? Compare with the result of Exercises 4.3.7 and 4.3.8 and
look at the Argand diagram of Exercise 4.3.9.

4.3.13 In the energy range 0 ≤ E ≤ 40 study the energy dependence of
the complex transmission amplitude (a) |AN |2 (descriptor 49: ‘Exercise
4.3.13a’), (b) ReAN (descriptor 50: ‘Exercise 4.3.13b’), (c) ImAN (de-
scriptor 51: ‘Exercise 4.3.13c’), (d) ImAN vs. ReAN in an Argand plot
(descriptor 52: ‘Exercise 4.3.13d’) for the potential

V (x) =







0 , x < 0
−16 , 0 ≤ x < 4

0 , 4 ≤ x
.

(e) Put the above plots into one combined plot with the positioning (d) upper-
left field, (c) upper-right field, (b) lower-left field, (a) lower-right field. Start
from descriptor 53: ‘Exercise 4.3.13e’. (f) Relate the prominent features
of the absolute square and of the real and imaginary parts to the ones of the
Argand plot.

4.3.14 Study the energy dependence of the quantities (a) |TT|2, (b) Re TT,
(c) Im TT, (d) Im TT vs. Re TT in an Argand plot for the potential of Ex-
ercise 4.3.13. Use the same descriptors as in Exercise 4.3.13. (e) Put the
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above plots into one combined plot with the same positioning as in Exer-
cise 4.3.13 (e). Start from descriptor 53: ‘Exercise 4.3.13e’. (f) Relate the
behavior of this quantity to the complex transmission amplitude AN .

4.3.15 Repeat Exercise 4.3.14 for the complex reflection amplitude B1.

4.3.16 Repeat Exercise 4.3.14 for the quantity TR.

4.3.17 Repeat Exercise 4.3.13 with the energy range 0 ≤ E ≤ 1 for the
potential

V (x) =







0 , x < 0
−5 , 0 ≤ x < 1

0 , 1 ≤ x
.

Determine the energy of the lowest resonance.

4.3.18 Plot the bound states in the potential of Exercise 4.3.17 and determine
their energy eigenvalues, see Sect. 3.3. Start from descriptor 54: ‘Exercise
4.3.18’.

4.3.19 Plot the time development of a wave packet under the action of the po-
tential of Exercise 4.3.17. The wave packet comes in from the initial position
x0 = −6 at t = 0 with the energy E = 0.1 and the absolute width σp = 0.05.
The time ranges are (a) 0 ≤ t ≤ 40, (b) 40 ≤ t ≤ 80, (c) 80 ≤ t ≤ 120.
They should be subdivided into eight intervals each. Start from descriptor 55:
‘Exercise 4.3.19’. (d) Using also the result of Exercise 4.3.18 interpret the
behavior of the wave function inside the potential region.

4.3.20 (a–e) Repeat Exercise 4.3.13 (a–e) for the potential

V (x) =























0 , x < 0
16 , 0 ≤ x < 0.2
0 , 0.2 ≤ x < 2.2

16 , 2.2 ≤ x < 2.4
0 , 2.4 ≤ x

.

(f) Determine the four lowest resonance energies.

4.3.21 Plot the time development of the wave packet under the action of the
potential of Exercise 4.3.20 starting at t = 0 at x0 = −6 with the lowest
resonance energy and the relative width σp/p0 = 0.3. (a) Plot nine instants
in the time range 0 ≤ t ≤ 16. Start from descriptor 56: ‘Exercise 4.3.21a’.
(b) Plot 11 instants in the time range 8 ≤ t ≤ 24. Change the range in x to
−3 ≤ x ≤ 3. Start from descriptor 57: ‘Exercise 4.3.21b’.

4.3.22 Repeat Exercise 4.3.21 for the second resonance energy for the relative
width σ = 0.15. (a) 0 ≤ t ≤ 6, (b) 5 ≤ t ≤ 9.

4.3.23 Repeat Exercise 4.3.21 for the third resonance energy for the relative
width σp/p0 = 0.1. (a) 0 ≤ t ≤ 4, (b) 2 ≤ t ≤ 4.

4.3.24 Repeat Exercise 4.3.21 for the fourth resonance energy for the relative
width σp/p0 = 0.05. (a) 0 ≤ t ≤ 3, (b) 2.5 ≤ t ≤ 3.
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4.3.25 Study the behavior of a wave packet in a five-step potential modeling
a quantum-effect device

V (x) =























V1 , x < 0 region 1
V2 , 0 ≤ x < 0.5 region 2
V3 , 0.5 ≤ x < 1 region 3
V4 , 1 ≤ x < 1.5 region 4
V5 , 1.5 ≤ x < 2 region 5

.

The potential values V1 = 0, V2 = 10, V4 = 10.5, V5 = 1, remain unchanged.
The value in region 3 varies (a) below resonance, V3 = 1.5, (b) slightly below
resonance, V3 = 1, (c) at resonance, V3 = 0.5, (d) above resonance, V3 =
−0.5. For the above cases (a–d) plot the absolute square of the wave function
of a wave packet with the initial data at t = 0: E0 = 5.410, σp = 0.01p0,
x0 = −6, moving in the interval −50 ≤ x ≤ 50 during the time interval
0 ≤ t ≤ 20 in time steps of 1. Start from descriptor 47: ‘Exercise 4.3.6’.
(e) Put the four plots (a–d) into a combined plot. Start from mother descriptor
53: ‘Exercise 4.3.13e’.

4.3.26 (a) Plot the time development of the absolute square of a wave packet
(x0 = −20, E0 = 0.25, σp = 0.1p0) incident on a symmetric attractive
triangular potential x2 = 2, (x3, V3) = (4, 0) for values of 2.4 ≤ V2 ≤ 3.0 in
steps of 0.1. Start from descriptor 58: ‘Exercise 4.3.26’. For what value
of V2 is the wiggly pattern in the leftmost region (or the reflected part of the
wave packet) smallest? (b) For the resulting value of V2 in (a) plot the time
development of wave packets with increased energy values E0 = 0.35 and
E0 = 0.5. Interpret the result.

4.3.27 Consider the piecewise linear potential (x2, V2) = (1.5,−0.15),
(x3, V3) = (2.5,−1.06), (x4, V4) = (3,−2.4), (x5, V5) = (3.5,−3),
(x6, V6) = (4,−2.4), (x7, V7) = (4.5,−1.06), (x8, V8) = (5.5,−0.15),
(x9, V9) = (7, 0) and plot the time development of the scattering process
for the wave packet of Exercise 4.3.26 (a) in this potential. Start from de-
scriptor 58: ‘Exercise 4.3.26’. Plot also for the energies of Exercise 4.3.26
(b). Interpret the result. You may want to watch a movie for any of these
situations.

4.3.28 Repeat Exercise 4.3.27 for the potential (x2, V2) = (1.5,−0.3),
(x3, V3) = (2.5,−2.2), (x4, V4) = (3,−4.4), (x5, V5) = (3.5,−6), (x6, V6)

= (4,−4.4), (x7, V7) = (4.5,−2.2), (x8, V8) = (5.5,−0.3), (x9, V9) =
(7, 0).

4.4.1 In the range 0.1 ≤ E ≤ 40 study the energy dependence of the complex
transmission amplitude. Plot (a) |AN |2 (descriptor 49: ‘Exercise 4.3.13a’)
and read off the resonance energies, (b) ReAN (descriptor 50: ‘Exercise
4.3.13b’), (c) ImAN (descriptor 51: ‘Exercise 4.3.13c’), (d) ImAN vs.
ReAN in an Argand plot (descriptor 52: ‘Exercise 4.3.13d’) for the poten-
tial
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V (x) =







0 , x < 0
16 , 0 ≤ x < 1
0 , 1 ≤ x

.

(e) Put the above plots into one combined plot with the positioning (d) upper-
left field, (c) upper-right field, (b) lower-left field, (a) lower-right field. Start
from descriptor 53: ‘Exercise 4.3.13e’. (f) Relate the prominent features
of the absolute square and of the real and imaginary parts to the ones of the
Argand plot. (g) Calculate the resonance energies according to (4.56) and
compare them to the values read off |AN |2 in (a).

4.4.2 In the range 0.1 ≤ E ≤ 40 study the energy dependence of the quantities
(a) |TT|2, (b) Re TT, (c) Im TT, (d) Im TT vs. Re TT in an Argand plot for the
potential of Exercise 4.4.1. Use the same descriptors as in Exercise 4.4.1.
(e) Put the above plots into one combined plot with the same positioning as in
Exercise 4.4.1 (e). Start from descriptor 53: ‘Exercise 4.3.13e’. (f) Relate
the behavior of this quantity to the complex transmission amplitude AN .

4.4.3 Repeat Exercise 4.4.2 for the complex reflection amplitude B1.

4.4.4 Repeat Exercise 4.4.2 for the quantity TR.

4.4.5 Repeat Exercise 4.4.1 for the potential

V (x) =







0 , x < 0
16 , 0 ≤ x < 2
0 , 2 ≤ x

.

4.4.6 Repeat Exercise 4.4.2 for the potential of Exercise 4.4.5.

4.4.7 Repeat Exercise 4.4.6 for the complex reflection amplitude B1.

4.4.8 Repeat Exercise 4.4.6 for the quantity TR.

4.4.9 Explain qualitatively the differences in the behavior of the quantities
AN , TT, B1, TR for the two potentials used in Exercises 4.4.1–4.4.4 and Ex-
ercises 4.4.5–4.4.8, respectively. In particular, argue why the distances of the
energies at which |AN |2 = 1 vary with the potential the way it is observed in
Exercises 4.4.1 and 4.4.5.

4.4.10 Repeat Exercise 4.4.1 for the potential

V (x) =







0 , x < 0
16 , 0 ≤ x < 4
0 , 4 ≤ x

.

4.4.11 Repeat Exercise 4.4.2 for the potential of Exercise 4.4.10.

4.4.12 Repeat Exercise 4.4.11 for the complex reflection amplitude B1.

4.4.13 Repeat Exercise 4.4.11 for the quantity TR.

4.4.14 In the ranges (a) 0 ≤ E ≤ 60, (b) 0 ≤ E ≤ 15 plot the energy
dependence of the absolute square |AN |2 of the transmission amplitude for a
quasiperiodic potential of nine regions with four square wells of width 1 and
depth −44 and three separating walls of width 0.2 and depth 0. (c) Why do
the lowest transmission resonances form a band of four?
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4.4.15 (a) In the energy range 0.001 ≤ E ≤ 5 plot (a1) ImAN vs. ReAN ,
(a2) ImAN , (a3) ReAN , (a4) |AN |2 in an Argand plot for the symmetric at-
tractive triangular potential (x2, V2) = (2,−3), (x3, V3) = (4, 0). Start from
descriptors 15: ‘Piecew. lin. pot.: Argand diagram − imaginary part
vs. real part’, 16: ‘Piecew. lin. pot.: Argand diagram − imagi−
nary part’, 17: ‘Piecew. lin. pot.: Argand diagram − real part’, 18:
‘Piecew. lin. pot.: Argand diagram − absolute square’ for the individ-
ual plots and from 14: ‘Piecew. lin. pot.: Argand diagram − combined
plot’ for the mother descriptor. (The latter can be kept unchanged if the
single descriptors are placed directly behind it in the given order.) Describe
the behavior of AN . (b) Repeat part (a) for the piecewise linear potential
(x2, V2) = (1.5,−0.15), (x3, V3) = (2.5,−1.06), (x4, V4) = (3,−2.4),
(x5, V5) = (3.5,−3), (x6, V6) = (4,−2.4), (x7, V7) = (4.5,−1.06),
(x8, V8) = (5.5,−0.15), (x9, V9) = (7, 0). (c) Describe the differences be-
tween the cases (a) and (b). Plot also for both cases the quantity |AN |2 by
setting the lower bound of the y interval (ordinate) to 0.9.

4.5.1 Produce a plot with descriptor 19: ‘Stationary wave in linear po−
tential’. (a) Describe the difference between the curves of ϕ(E, x) shown
for different fixed values of E. (b) Leaving the plot on the screen produce a
second plot with descriptor 19: ‘Stationary wave in linear potential’
and, for this plot, change the sign of the acceleration g. Explain the symmetry
between the two plots.

4.5.2 Produce side by side (using descriptor 19: ‘Stationary wave in lin−
ear potential’) two plots of ϕ(E, x) for g = 3 and g = 1.5. Explain
the difference between them. [Compute the momentum p(E, x) of a classi-
cal particle with total energy E at a point x and translate it into a de Broglie
wavelength.]

4.6.1 Produce a plot with descriptor 20: ‘Wave packet in linear po−
tential’. (a) Show Reψ(x, t). (b) Show the probability-current density
j (x, t).

4.6.2 (a) Use descriptor 20: ‘Wave packet in linear potential’ to display
quantile positions for P = 0.8. (b) Turn the plot into a multiple plot with two
rows and two columns.

4.7.1 Produce a plot of quantile trajectories using descriptor 22: ‘Linear
potential: quantile trajectories’. The middle trajectory (for P = 0.5)
corresponds to the motion of a classical particle in a linear potential. Is that
true also for the other trajectories?



4.12. Analogies in Optics 109

4.12 Analogies in Optics

For a right-moving plane wave of light vertically incident on glass or other
dielectrics we study reflection and refraction. We choose the x axis normal to
the plane surface of the glass. The dielectric may consist of layers 1, 2, . . . , N
of different refractive indices n′1, . . . , n

′
N . This divides the x axis into N

regions:

n(x) =



























n1 = 1 , x < x1 = 0 region 1
n2 , x1 ≤ x < x2 region 2
...

nN−1 , xN−2 ≤ x < xN−1 region N − 1
nN , xN−1 ≤ x region N

. (4.66)

For simplicity we have set n1 = 1. Hereby, all the different ni are relative
refractive indices n` = n′`/n

′
1, with n′` (` = 1, . . . , N) being the absolute

refractive index. For all further considerations in this system we may suppress
the coordinates y and z so that we deal with a one-dimensional problem. The
complex electric field strength (2.29) can be factorized into time-dependent
and purely x-dependent factors

Ec(ω, x, t) = e−iωtEs(ω, x) , Es(ω, x) = Aeikx , k = ω/c .

(4.67)
The time-independent factor Es(ω, x) is called the stationary electric field

strength. For k > 0, the real part of Ec(ω, x, t),

ReEc(ω, x, t) = |A| cos(ωt − kx − α) , (4.68)

represents a right-moving harmonic wave. Here we have decomposed the
complex amplitude A into modulus |A| and phase α:

A = |A|eiα . (4.69)

Therefore, for k > 0 we call

Aeikx = Es+(ω, x) (4.70)

a ‘right-moving’ stationary electric field strength. By the same token, for
k > 0,

Ae−ikx = Es−(ω, x) (4.71)

is called a ‘left-moving’ stationary field strength.
If a right-moving incoming monochromatic light wave of angular fre-

quency ω and wave number k = ω/c falls onto the arrangement of dielectrics
(4.66), we have an outgoing wave in region N ,
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EN (ω, x, t) = A′NeikNx , kN = nNk1 , region N , (4.72)

only. For all other regions there is a reflected left-moving wave in addition
to the right-moving one. Thus, the stationary electric field in any region `,
1 ≤ ` ≤ N − 1, is a superposition:

E`(ω, x) = A′`eik`x + B ′`e−ik`x , k` = n`k1 , region ` . (4.73)

The complex electric field strength is given by

Ec(ω, x, t) = e−iωtEs(ω, x) (4.74)

with

Es(ω, x) =



















E1(ω, x) , x < x1 = 0
E2(ω, x) , 0 ≤ x < x2
...

EN (ω, x) , xN−1 ≤ x

, (4.75)

ω = c`k` : angular frequency (` = 1, . . . , N),
k` = n`k1 = n′`k : wave number in region `,
c` = c/n′` = c1/n` : speed of light in region `,
c : speed of light in vacuum,
n′` : absolute refractive index,
n` = n′`/n′1 : relative refractive index.

The expression (4.74) solves Maxwell’s equations if the coefficients A′`
and B ′` in (4.73) are determined such that the function Es(ω, x) is continuous
and continuously differentiable at the end points of the regions 1, . . . , N − 1,
i.e.,

E`(ω, x`) = E`+1(ω, x`)
dE`
dx

(ω, x`) =
dE`+1

dx
(ω, x`)

, ` = 1, . . . , N − 1 . (4.76)

This yields a system of equations

A′`e
ik`x` + B ′`e−ik`x` = A′`+1eik`+1x` + B ′`+1e−ik`+1x` ,

k`(A
′
`e

ik`x` − B ′`e−ik`x`) = k`+1(A
′
`+1eik`+1x` − B ′`+1e−ik`+1x`)

(4.77)

for ` = 1, . . . , N − 1. The condition (4.72) in region N is implemented by
setting BN = 0. The (2N − 1) coefficients A′`, B

′
` are determined by the

system (4.77) of (2N − 2) equations. Choosing again A′1 as the independent
variable, determining the incoming flux of light, (4.77) constitutes a system of
(2N − 2) inhomogeneous linear equations, the term with A′1 being the inho-
mogeneity. Its solution yields the coefficients A′2, . . . , A

′
N and B ′1, . . . , B

′
N−1

as functions of the wave number k = k1 of the incident wave.
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The energy density of the electromagnetic field of light in vacuum aver-
aged1 over one period T = 2π/ω is given by (2.37). In glass with refractive
index n` it is

w` = n2
`

ε0

2
E∗`E` . (4.78)

The average density of the energy flux in the wave in glass is

S` = w`c` = n`c
ε0

2
E∗`E` , (4.79)

where c` = c/n` is the speed of light in glass. Because of the discontinuity
of n when passing from one material to the other, neither of the two quantities
is continuous. Therefore, we plot in addition to ReEc and ImEc the absolute
square E∗cEc.

For stationary waves the current densities S of the electromagnetic energy
of right-moving and left-moving waves are proportional to the squares of the
transmission and reflection coefficients

A` =
√
n`A

′
` , B` =

√
n`B

′
` . (4.80)

Current conservation of the electromagnetic energy simply states that the sum
of the transmitted and reflected currents is equal to the incoming current. As
a conventional normalization we shall set A1 = 1. Then the conservation of
the current of electromagnetic energy leads to the unitarity relation

|AN |2 + |B1|2 = |A1|2 = 1 , (4.81)

which is of the same form as (4.34) for the transmission and reflection coeffi-
cients in one-dimensional quantum mechanics.

A transmission resonance occurs for those values of the wave number k
for which |AN | is at a maximum and |B1| therefore at a minimum. For three
regions with refractive indices n1, n2, n3, the resonant wave numbers can be
determined by simple arguments. In this arrangement there are two surfaces
at x1(= 0) and x2(= d) where reflection occurs. The coefficient |B1| is at a
minimum if the two waves reflected at x1 and x2 interfere destructively in the
region x < x1 = 0 to the left of x1 = 0. Because there is a phase shift of
π for reflection on an optically denser medium, we have to distinguish two
cases:

i)

1 = n1 < n2 < n3 or 1 = n1 > n2 > n3 . (4.82)

In these cases the relative phase shift of the two waves reflected at x1 and x2 is
simply given by δ = 2k2d, k2 = n2k. For maximally destructive interference
the phase shift δ has to be equal to odd multiples of π ,

1 See footnote on page 11.
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2k2d = (2m+1)π or k2 =
(2m+ 1)π

2d
, m = 0, 1, 2, . . . . (4.83)

For the wavelength λ2 in region 2 we find in terms of the thickness of the
material

λ2 = 4d/(2m+ 1) . (4.84)

The resonant wavelengths in region 2 are odd fractions of 4d . The longest
resonant wavelength (m = 0) is then four times the thickness of the middle
layer of material. This is the well-known d = λ/4 condition that ensures a
minimization of reflection for light of this wavelength in an optical system
with three different refractive indices. It is used to produce antireflex lenses,
etc., by coating the surface of the glass with a material transparent for visible
light and a thickness of d = λ/4 for an average wavelength of the visible
spectrum. In order to achieve the absence of reflection for this wavelength
– and therefore, little reflection for neighboring wavelengths – the refractive
indices have to be chosen suitably according to

n2 =
√
n1n3 . (4.85)

For coated lenses in air n1 is the refractive index of air, n2 that of the coating,
and n3 that of the glass.

ii)

1 = n1 < n2 > n3 or 1 = n1 > n2 < n3 . (4.86)

For these cases in addition to the relative phase shift δ = 2k2d caused by the
difference 2d in the length of the light path there is the phase shift of π from
the reflection at the denser medium. For maximally destructive interference
we find the condition

2k2d + π = (2m+ 1)π or k2 = mπ/d , m = 1, 2, . . . . (4.87)

For the wavelength λ2 in region 2 we find

λ2 = 2d/m . (4.88)

The longest resonant wavelength is 2d. All others are integer fractions of 2d.

The stationary waves can be superimposed to form a wave packet of finite
energy content in analogy to (2.32). Using the harmonic electric field strength
(4.74), with the stationary field strength (4.75), we find that

Ec(x, t) = E0

∫

f (k)e−ikx0Ec(ω, x, t) dk (4.89)

is a Gaussian wave packet centered at t = 0 around the initial position x = x0,
if we choose the Gaussian spectral function

f (k) = 1√
2πσk

exp

[

−(k − k0)
2

2σ 2
k

]

. (4.90)



4.13. Reflection and Refraction of Stationary Electromagnetic Waves 113

Further Reading

Alonso, Finn: Vol. 3, Chaps. 19, 20
Berkeley Physics Course: Vol. 3, Chaps. 4, 5, 6
Brandt, Dahmen: Chap. 2
Feynman, Leighton, Sands: Vol. 2, Chaps. 32, 33
Hecht, Zajac: Chaps. 4, 7, 8, 9

4.13 Reflection and Refraction

of Stationary Electromagnetic Waves

Aim of this section: Computation and demonstration of the stationary electric field
Es, (4.75), for a right-moving incoming wave in a system (4.66) of dielectrics as a
function of position x and wave number k.

This section is the analog in optics of Sect. 4.2. A plot similar to Fig. 4.16
is produced showing the stationary electric field strength Es(k, x) as a func-
tion of x for various values of the wave number k in the x, k plane. Zero
lines are shown as dashed lines. The vertical lines crossing them indicate the
boundaries between media with different refractive index.

Fig. 4.16. Plot produced with descriptor Stationary 1D scattering (optics) on file
1D_Scattering.des
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On the subpanel Physics—Wave you can choose to show the full solution
or the right-moving or left-moving constituent wave in one of the media. You
can also set the position x0 for which the phase of the incident wave vanishes.

On the subpanel Physics—Misc. there are two Graphical Items, the dash
length of the zero lines and the height of the vertical lines separating the re-
gions with different media.

On the subpanel Physics—Media you find the parameters defining the sys-
tems of media. These are the numberN of regions, the boundaries xi between
region i and region i + 1, and the refractive indices ni .

Movie Capability: Indirect. After conversion to direct movie capability
the start end end values of the wave number can be changed in the subpanel
Movie (see Sect. A.4) of the parameter panel. In the resulting movie the wave
number of the stationary state changes with time. Such a movie, in particular,
is useful for the demonstration of transmission resonances.

Example Descriptor on File 1D_Scattering.des

• Stationary 1D scattering (optics) (see Fig. 4.16)

4.14 Time-Dependent Scattering of Light

Aim of this section: Computation and demonstration of a time-dependent harmonic
wave (4.67) coming in from the left and reflected and refracted into right-moving and
left-moving constituent waves. Study of the time development (4.89) of a Gaussian
wave packet scattered by a system of different dielectrics. Study of the constituent
waves.

This section is the analog in optics of Sect. 4.3. A plot is produced showing for
various instances in time either a harmonic wave, Fig. 4.17, or a wave packet,
Fig. 4.18, of light scattering by a system of media with different refractive
index. Also the constituent solutions Ecj± can be displayed.

As in Sect. 2.7, for the computation of a wave packet, the integration over
k has to be performed numerically and is thus approximated by a sum of N
terms,

Ec(x, t) =
∫ ∞

−∞
f (k)Eck(x, t) dk → 1k

Nsum
∑

n=0

f (kn)Eckn(x, t) ,

kn = k0 − fσσk + n1k , 1k = 2fσσk
Nsum − 1

. (4.91)

Here fσ is a reasonably large positive number, e.g., fσ = 3.
Again the solution will be periodic in x. That is, only in a limited x re-

gion you will get a good approximation to the true solution. The patterns for
Ec(x, t) [or Ecj+(x, t) and Ecj−(x, t)] will repeat themselves periodically
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Fig. 4.17. Plot produced with descriptor Time−dependent 1D scattering (optics):
harmonic wave on file 1D_Scattering.des

along the x direction, the period 1x becoming larger as Nsum increases. You
will have to make sure that the x interval of your C3 window is small com-
pared to 1x.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to
show either the Absolute Square or the Real Part or the Imaginary Part of the
complex electric field strength.

The subpanel Physics—Wave (Packet) carries the following items:

• Full/Constituent Solution – You can choose to plot Ec or Ecj+ or Ecj−. If
you want to plot a constituent wave, you have to give the region j for which
it is valid.
• Incoming Wave – You can choose either a Harmonic Wave or a Wave Packet.

The numberNint, 1 ≤ Nint ≤ 200, determines the numberNsum = 2Nint+1
of terms and fσ is the other parameter needed in the numerical approxima-
tion of the wave packet, see (4.91).
• Width in Wave Number is Given – You may choose to give the width either

as Fraction of k_0, i.e., you enter f = σk0/k0, or in Absolute Units, i.e., you
enter σk0 directly. (This item is available only if an incoming wave packet
was chosen.)
• Harmonic Wave/Wave Packet – depending on the choice above. Here you

find the numerical values for the incoming wave or wave packet:
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Fig. 4.18. Plot produced with descriptor Time−dependent 1D scattering (optics):
wave packet on file 1D_Scattering.des

– a position x0 for which the phase of the incoming wave (for a packet: of
all waves in the sum) vanishes,

– the wave number k0,
– for a wave packet only: the width σk0 in wave number (or the correspond-

ing fraction f = σk0/k0).

The subpanel Physics—Misc. contains two Graphical Items, the dash
length of the zero lines and the height of the vertical lines separating different
media.

The subpanel Physics—Media is as in Sect. 4.13.

Movie Capability: Indirect. After conversion to direct movie capability
the start and end times can be changed in the subpanel Movie (see Sect. A.4)
of the parameter panel.

Example Descriptors on File 1D_Scattering.des

• Time−dependent 1D scattering (optics): harmonic wave
(see Fig. 4.17)
• Time−dependent 1D scattering (optics): wave packet

(see Fig. 4.18)
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4.15 Transmission, Reflection,

and Argand Diagram for a Light Wave

Aim of this section: Presentation of the complex transmission coefficient AN (k)
and the complex reflection coefficient B1(k), see (4.80).

If C(k) is one of these quantities, we want to illustrate its wave-number de-
pendence by four different graphs,

• the Argand diagram Im {C(k)} vs. Re {C(k)},
• the real part Re {C(k)} as a function of k,
• the imaginary part Im {C(k)} as a function of k,
• the absolute square |C(k)|2 as a function of k.

It is customary to draw an Argand diagram (Im {C(k)} vs. Re {C(k)}) and
graphs Im {C(k)} and Re {C(k)} in such a way that the graphs appear to be
projections to the right and below the Argand diagram, respectively. You can
do that by using a mother descriptor, which in turn quotes several individual
descriptors (see Appendix A.10) as in the example plot, Fig. 4.19.

All four plots in Fig. 4.19 are of the type 2D function graph. The Argand
diagram (top left) is a parameter representation x = x(p), y = y(p). The
two plots on the right-hand side are Cartesian plots y = y(x). The plot in the
bottom-left corner is an inverse Cartesian plot x = x(y).

On the subpanel Physics—Comp. Coord. you can select to compute one of
the two functions

AN (k), B1(k) .

You can further choose the type of 2D function graph you want to produce:

• Argand diagram,
• y = y(x),
• x = x(y).
For the latter two types of function graphs you still can choose to present as
dependent variable the Absolute Square, the Real Part, or the Imaginary Part

of the function selected.

On the subpanel Physics—Variables you find two items,

• Phase-Fixing Position – At x0 the phase of the incoming wave is zero.
• Range of Independent Variable in Argand Diagram – The variable is the wave

number k. It is varied between the boundaries kbeg and kend.

On the subpanel Physics—Media you find all parameters defining the sys-
tem of media, namely, the number N of regions, the boundaries xj between
the regions, and the constant refractive indices nj in the regions.
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Fig. 4.19. Combined plot produced with descriptor Argand diagram (optics): com−
bined plot on file 1D_Scattering.des. This descriptor quotes four other descriptors to
generate the individual plots situated in the top-left, top-right, bottom-left, and bottom-right
corners, respectively

Movie Capability (only for the Argand diagram proper): Direct. The tra-
jectory in the complex plane is seen to develop as the range of the independent
variable is increased proportional to time.

Example Descriptors on File 1D_Scattering.des

• Argand diagram (optics): combined plot (see Fig. 4.19, this is a
mother descriptor quoting the four descriptors listed below, each describ-
ing one of the four plots in the combined plot)
• Argand diagram (optics): imaginary part vs. real part
• Argand diagram (optics): imaginary part
• Argand diagram (optics): real part
• Argand diagram (optics): absolute square



4.16. Exercises 119

4.16 Exercises

Please note:

(i) For the following exercises use descriptor file 1D_Scattering.des.

(ii) In many exercises we use refractive indices with numerical values much
larger than available in ordinary dielectrics like glass.

4.13.1 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of
the stationary electric field strength in vacuum vertically incident on glass of
refractive index n2 = 2 extending from x = 0 to infinity. As the range for
the wave numbers choose 0.1 ≤ k ≤ 5. Start from descriptor 59: ‘Exercise
4.13.1’. (d) Why is the wavelength in region 2, x ≥ 0, shorter than in region
1, x < 0? (e) Why is the absolute square constant in region 2? (f) What is the
origin of the wiggly pattern in region 1?

4.13.2 (a,b,c) Repeat Exercise 4.13.1 (a,b,c) for n2 = 10. Start from descrip-
tor 59: ‘Exercise 4.13.1’. (d) Why is the transmission of light into region
2 close to zero?

4.13.3 (a,b,c) Repeat Exercise 4.13.1 (a,b,c) for n2 = 0.1. Start from de-
scriptor 59: ‘Exercise 4.13.1’. This case corresponds to the reflection and
refraction of a wave propagating inside an optically denser medium (n1 = 1)
incident on a ten-times-thinner medium (n2 = 0.1). (d) Why is the transmis-
sion into the thinner medium large?

4.13.4 Determine the phase shift between the incident and reflected wave for
(a) reflection at an optically denser medium n2 = 10, (b) reflection at an
optically thinner medium n2 = 0.1. To this end compare the phases of the
incoming and reflected constituent waves in region 1 with each other. Choose
a wave-number range 0.01 ≤ k ≤ 5 in six wave-number intervals of equal
length. Start from descriptor 59: ‘Exercise 4.13.1’.

4.13.5 Plot (a) the real part, (b) the imaginary part, (c) the absolute square of
the stationary electric field strength for a sheet of glass of thickness d = 1
and refractive index 2. In the domain behind the glass choose n = 1. Divide
the wave-number range 0.001 ≤ k ≤ 3π/2 into six intervals of length π/4.
Start from descriptor 59: ‘Exercise 4.13.1’. (d) What is the phenomenon
behind the absence of wiggles of the absolute square in region 1 for the wave
number k = π/2, π, 3π/2? (e) Why do the resonances in this case occur at
λ = 2d/m, m = 1, 2, 3, . . .?

4.13.6 (a,b,c) Repeat Exercise 4.13.5 (a,b,c), however, with a denser medium
with n = 4 behind the glass. Start from descriptor 59: ‘Exercise 4.13.1’.
(d) Why do the transmission resonances occur at values λ = 4d/(2m + 1)?
(e) Why is the square of the electric field in region 3 different from region 1?
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4.14.1 Plot the motion of (a) the real part, (b) the imaginary part, (c) the
absolute square of a harmonic light wave for different refractive indices in
three regions: n1 = 1, x < 0; n2 = 2, 0 ≤ x < 1; n3 = 1, 1 ≤ x for the
wave number k = 5π/4. Choose the time range 0.001 ≤ t ≤ 1 and the x
range −4 ≤ x ≤ 4. Start from descriptor 60: ‘Exercise 4.14.1’. (d) Why
are the amplitudes of the electric field strength time independent in region 3?
(e) Why is this not so in region 1?

4.14.2 Plot the real parts of the constituent waves for Exercise 4.14.1: (a)E1+,
(b) E1−, (c) E2+, (d) E2−, (e) E3+, (f) E3−. Start from descriptor 60: ‘Ex−
ercise 4.14.1’. (g) Why is there no constituent wave E3−?

4.14.3 Repeat Exercise 4.14.1 (a,b,c) for k = 3π/2.

4.14.4 (a–f) Repeat Exercise 4.14.2 (a–f) for k = 3π/2. (g) Why is there no
constituent wave E1−?

4.14.5 A light wave packet of k0 = 7.854 and relative width σk/k0 = 0.01 is
incident on glass of refractive index n = 4 and thickness d = 9.9 mounted
between x = 0.1 and x = 10. Its initial position is x0 = −15. Plot the
time dependence of the absolute square of the electric field strength of the
wave packet for 10 intervals between (a) 0 ≤ t ≤ 60 and (b) 60 ≤ t ≤ 120.
The interference pattern upon reflection is resolved only for sufficiently high
accuracy. Start from descriptor 61: ‘Exercise 4.14.5’. (c) By which factor
is the speed of the wave packet in the glass slower than in vacuum? (d) Why is
the amplitude of |Ec|2 inside the glass plate so much smaller than in vacuum?
(e) Why does the width of the wave packet shrink upon entering the glass?

4.14.6 (a,b) Repeat Exercise 4.14.5 (a,b), however, with two additional layers
of refractive index n = 2 for 0 ≤ x < 0.1 and the other for 10 ≤ x < 10.1.
Start from descriptor 61: ‘Exercise 4.14.5’. (c) Why does practically no
reflection occur at any of the surfaces of the regions of different refractive
index?

4.14.7 (a) Repeat Exercise 4.14.5 (a) for coated glass layer 1 (coating): 0 ≤
x < 0.1, n1 = 1.2247; layer 2 (glass): 0.1 ≤ x < 10, n2 = 1.5; layer
3 (coating): 10 ≤ x < 10.1, n3 = 1.2247. As the average wave number
k0 of the wave packet, choose 12.826. Start from descriptor 61: ‘Exercise
4.14.5’. (b) Calculate the thickness of a coating of the above refractive index
for visible light of a vacuum wavelength λ = 550 nm.

4.14.8 (a) Repeat Exercise 4.14.7 (a) without the coating. Start from descrip-
tor 61: ‘Exercise 4.14.5’. (b) Why is the reflected part of the wave packet
so much smaller than in Exercise 4.14.5?

4.14.9 (a) Repeat Exercise 4.14.7 (a) for a wave number 1.5 times larger.
(b) Explain why coatings of actual optical lenses often reflect bluish light.

4.15.1 Study the transmission and reflection coefficients of an arrangement
of dielectrics of three regions for a range in wave number, 0.001 ≤ k ≤ 30:
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region 1: n1 = 1; region 2: 0 ≤ x < 0.1, n2 = 2; region 3: 0.1 ≤ x, n3 = 4.
Start from descriptor 62: ‘Exercise 4.15.1’. Plot (a) the absolute square
|AN |2 of the transmission coefficient, (b) the absolute square |B1|2 of the
reflection coefficient, (c) the Argand diagram of AN , (d) the Argand diagram
ofB1. For (c) and (d) start from descriptor 63: ‘Exercise 4.15.1d’. (e) Read
the wave numbers of resonant transmission off the graph and compare them
with the values given by the (2m+ 1)λ/4 = d condition.

4.15.2 Repeat Exercise 4.15.1 for the choice of refractive indices n2 =
1.2247, n3 = 1.5.



5. A Two-Particle System:

Coupled Harmonic Oscillators

Contents: Wave function of two distinguishable particles. Hamiltonian of two
coupled oscillators. Separation of center-of-mass and relative coordinates. Station-
ary two-particle wave functions and eigenvalues. Initial Gaussian wave packet for
distinguishable particles. Time evolution of the Gaussian wave packet. Marginal
distributions. Wave functions for distinguishable particles. Symmetrization and an-
tisymmetrization. Pauli principle. Bosons and Fermions. Normal oscillations.

5.1 Physical Concepts

5.1.1 The Two-Particle System

The wave function of a two-particle system in one spatial dimension, ψ(x1,

x2, t), is a function of two coordinates x1, x2 and the time t . The Hamiltonian

H = T1 + T2 + V (x1, x2) (5.1)

consists of the two kinetic energies

Ti = −
h̄2

2mi

∂2

∂x2
i

, i = 1, 2 , (5.2)

and the potential energy V (x1, x2) of the two particles. The time-dependent
Schrödinger equation has the usual form

ih̄
∂

∂t
ψ(x1, x2, t) = Hψ(x1, x2, t) . (5.3)

With the separation of time and spatial coordinates

ψ(x1, x2, t) = e−iEt/h̄ϕE(x1, x2) (5.4)

we obtain the stationary Schrödinger equation

S. Brandt et al., Interactive Quantum Mechanics: Quantum Experiments on the Computer, 122
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HϕE(x1, x2) = EϕE(x1, x2) (5.5)

for the stationary wave function ϕE(x1, x2).
In the following we shall deal with two particles of equal mass m1 =

m2 = m throughout. These particles are bound to the origin by harmonic-
oscillator potentials

V1(x1) =
k

2
x2

1 , V2(x2) =
k

2
x2

2 (5.6)

with the same spring constants k > 0. In addition they are coupled to each
other through the harmonic two-particle potential

Vc(x1 − x2) =
κ

2
(x1 − x2)

2 (5.7)

with the coupling constant κ . Thus the Hamiltonian reads

H = T1 + T2 + V1(x1)+ V2(x2)+ Vc(x1 − x2) . (5.8)

With the total mass M and the reduced mass µ,

M = 2m , µ = m/2 , (5.9)

and center-of-mass coordinate R and relative coordinate r ,

R = (x1 + x2)/2 , r = x2 − x1 , (5.10)

the Hamiltonian can be separated into two terms,

H = HR +Hr , (5.11)

each depending on one coordinate only:

HR = −
h̄2

2M

d2

dR2 + kR
2 , Hr = −

h̄2

2µ

d2

dr2 +
1

2

(

k

2
+ κ

)

r2 . (5.12)

Both the center-of-mass motion and the relative motion are harmonic os-
cillations. They can be separated by factorizing the stationary wave function

ϕE(x1, x2) = UN (R)un(r) , (5.13)

where N and n are the quantum numbers of the center-of-mass and relative
motion, respectively. The factors fulfill the stationary Schrödinger equations

HRUN (R) =
(

N + 1
2

)

h̄ωR UN (R) ,

Hrun(r) =
(

n+ 1
2

)

h̄ωr un(r)
(5.14)
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with the angular frequencies

ω2
R = k/m , ω2

r = (k + 2κ)/m . (5.15)

The eigenvalue in (5.5),
E = EN + En , (5.16)

is the sum of the eigenvalues

EN =
(

N + 1
2

)

h̄ωR and En =
(

n+ 1
2

)

h̄ωr (5.17)

of the center-of-mass and relative motion. The eigenfunctions UN (R) and
un(r) are the eigenfunctions (3.14) of harmonic oscillators of single particles
with the angular frequencies ωR and ωr , respectively.

5.1.1.1 Entanglement If there is no coupling, i.e., for κ = 0, the eigenstates
(5.13) of the system of two oscillators are just products of two single-particle
oscillator eigenstates,

ϕE(x1, x2) = ϕE1(x1)ϕE2(x2) , E = E1 + E2 .

Such a simple factorization does not hold, however, for the eigenfunctions of
the system if the two oscillators are coupled, i.e., if they interact with each
other. The appearance of a two-particle wave function, which is not simply
the product of the single-particle wave functions of the two particles forming
the system, was called entanglement by Schrödinger who first discussed the
situation. For κ 6= 0 the wave function (5.13) are entangled states. Such
states could be used in possible future quantum computers.

5.1.2 Initial Condition for Distinguishable Particles

For the moment we assume that the two particles are distinguishable, e.g.,
that one is a proton and the other one a neutron. As the generalization of
the initial condition of the single-particle oscillator we take a Gaussian two-
particle wave packet

ψ(x1, x2, 0) = 1√
2πσ1σ2(1− c2)1/4

exp

{

− 1

4(1− c2)

×
[

(x1 − 〈x1〉)2

σ 2
1

− 2c
(x1 − 〈x1〉)

σ1

(x2 − 〈x2〉)
σ2

+ (x2 − 〈x2〉)2

σ 2
2

]}

,

(5.18)
x1, x2: coordinates of particles 1 and 2,
σ1, σ2: widths in x1, x2 of Gaussian wave packet,
c: correlation between x1 and x2, −1 < c < 1,
〈x1〉, 〈x2〉: position expectation values.
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5.1.3 Time-Dependent Wave Functions

and Probability Distributions

for Distinguishable Particles

The time evolution of the above initial wave function can be calculated by
expanding ψ(x1, x2, 0) into a sum over the complete set of eigenfunctions
UN (R)un(r),

ψ(x1, x2, 0) =
∞
∑

N=0

∞
∑

n=0

wNnUN (R)un(r) , (5.19)

which determines the coefficients wNn. The time-dependent solution of the
Schrödinger equation is given by

ψ(x1, x2, t) =
∞
∑

N=0

∞
∑

n=0

wNne−i(EN+En)t/h̄UN (R)un(r) . (5.20)

For brevity we discuss only the absolute square of the time-dependent wave
function:

%D(x1, x2, t) = |ψ(x1, x2, t)|2

= 1

2πσ1(t)σ2(t)(1− c2(t))1/2
exp

{

− 1

2(1− c2(t))

[

x1 − 〈x1(t)〉)2

σ 2
1 (t)

− 2c(t)
(x1 − 〈x1(t)〉)

σ1(t)

(x2 − 〈x2(t)〉)
σ2(t)

+ (x2 − 〈x2(t)〉)2

σ 2
2 (t)

]}

. (5.21)

It differs from the absolute square of ψ(x1, x2, 0) only through the time de-
pendence of the expectation values 〈x1(t)〉, 〈x2(t)〉, the widths σ1(t), σ2(t),
and the correlation c(t). For t = 0 they assume the values of the initial wave
packet (5.18). The quantity %D(x1, x2, t) is the joint probability density for
finding at time t the distinguishable particles 1 and 2 at the locations x1 and
x2, respectively.

5.1.4 Marginal Distributions for Distinguishable Particles

The probability distribution of particle 1, independent of the position of par-
ticle 2, is given by

%D1(x1, t) =
∫ +∞

−∞
%D(x1, x2, t) dx2 . (5.22)

Consequently, the probability density %D2(x2, t) of particle 2, independent of
the position of particle 1, is given by integrating %D(x1, x2, t) over x1:

%D2(x2, t) =
∫ +∞

−∞
%D(x1, x2, t) dx1 . (5.23)
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5.1.5 Wave Functions for Indistinguishable Particles.

Symmetrization for Bosons.

Antisymmetrization for Fermions

For indistinguishable particles (e.g., two protons) the Hamiltonian is symmet-
ric under permutations of the coordinates x1 and x2 of the particles 1 and 2:

H(x1, x2) = H(x2, x1) . (5.24)

Because the particles cannot be distinguished by measurement, all measurable
quantities are symmetric in the particles 1 and 2. To ensure the symmetry of
the expectation values, the two-particle wave functions of indistinguishable
particles are symmetric for bosons:

ψB(x1, x2, t) = ψB(x2, x1, t) ; (5.25)

or antisymmetric for fermions:

ψF(x1, x2, t) = −ψF(x2, x1, t) . (5.26)

The requirement of antisymmetrization is the Pauli principle. Its most impor-
tant physical implication is that two indistinguishable fermions cannot occupy
the same state or be at the same position:

ψF(x, x, t) = 0 . (5.27)

Because of the symmetry of the Hamiltonian (5.24), time-dependent wave
functions for bosons or fermions can be obtained by symmetrization or anti-
symmetrization of the time-dependent solution (5.20):

ψB,F(x1, x2, t) = NB,F
1√
2
[ψ(x1, x2, t)± ψ(x2, x1, t)] . (5.28)

The factor NB,F ensures the normalization of the boson or fermion wave func-
tion. The probability density for bosons and fermions is given by

%B(x1, x2, t) = |ψB(x1, x2, t)|2 = |NB|2[%S(x1, x2, t)+%I(x1, x2, t)] (5.29)

and

%F(x1, x2, t) = |ψF(x1, x2, t)|2 = |NF|2[%S(x1, x2, t)− %I(x1, x2, t)] ,

(5.30)
where

%S(x1, x2, t) = 1
2[%D(x1, x2, t)+ %D(x2, x1, t)] (5.31)

is the symmetrized probability density of distinguishable particles. The term
%I is the interference term

%I(x1, x2, t) = 1
2 [ψ
∗(x1, x2, t)ψ(x2, x1, t)+ ψ∗(x2, x1, t)ψ(x1, x2, t)] .

(5.32)
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Whereas %B, %F, %S ≥ 0, the interference term %I can assume positive and
negative values. The joint probability densities %B(x1, x2, t) and %F(x1, x2, t)

are both symmetric under permutation of x1 and x2.

5.1.6 Marginal Distributions of the Probability Densities

of Bosons and Fermions

Because the joint probability densities %B and %F are symmetric in x1 and x2,
there is only one marginal distribution for bosons and one for fermions:

%B(x, t) =
∫ ∞

−∞
%B(x, x2, t) dx2 (5.33)

and

%F(x, t) =
∫ ∞

−∞
%F(x, x2, t) dx2 . (5.34)

Their physical significance is that they give the probability for finding one
of the two particles at the position x independent of the position of the other
one. Of course it is possible to compute marginal distributions also for the
densities %S and %I although these have no direct physical significance:

%S,I(x, t) =
∫ ∞

−∞
%S,I(x, x2, t) dx2 . (5.35)

5.1.7 Normal Oscillations

In our system of two identical oscillators in one dimension, with a harmonic
coupling, the two normal oscillations of classical mechanics are:

i) the oscillations of the center of mass with a time-independent relative coor-
dinate, and
ii) the oscillation in the relative motion with the center of mass at rest.

The initial conditions (with the two particles initially at rest) that correspond
to the two normal oscillations are:

i) identical initial positions x10 = x20 for the two particles, and
ii) opposite initial positions x10 = −x20 for the two particles.

In quantum mechanics also, these initial positions lead to the corresponding
normal oscillations for the expectation values of the positions 〈x1(t)〉, 〈x2(t)〉
of the two particles.

Further Reading

Alonso, Finn: Vol. 3, Chap. 4
Brandt, Dahmen: Chaps. 8, 9
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Feynman, Leighton, Sands: Vol. 3, Chap. 4
Gasiorowicz: Chap. 13
Merzbacher: Chap. 20
Messiah: Vol. 2, Chap. 14
Schiff: Chap. 10

5.2 Stationary States

Aim of this section: Computation and presentation of the stationary wave function
ϕE(x1, x2) = UN (R)un(r), (5.13).

A plot like Fig. 5.1 is produced showing the eigenfunction of two coupled
harmonic oscillators as surface over the x1, x2 plane. Also shown as a dashed
line is an ellipse given by E = V (x1, x2). It is the boundary of the region
accessible in classical mechanics.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to
plot either ϕ or |ϕ|2.

On the subpanel Physics—Variables you find the three variables charac-
terizing the system of Coupled Oscillators:

• the spring constant k of the individual oscillators,

Fig. 5.1. Plot produced with descriptor Coupled harmonic oscillators: stationary
states on file Two_Particles.des
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• the spring constant κ of coupling,
• the mass m of the oscillators.

The quantum numbers N and n are determined by the position of an indi-
vidual plot within a multiple plot. The column index within a multiple plot is
N , the row index is n.

Example Descriptor on File Two_Particles.des

• Coupled harmonic oscillators: stationary states (see Fig. 5.1)

5.3 Time Dependence of Global Variables

Aim of this section: Illustration of the time dependence 〈x1(t)〉 and 〈x2(t)〉 of the
position expectation values, the time dependence σ1(t) and σ2(t) of the widths in x1
and x2, and of the time dependence c(t) of the correlation coefficient.

Fig. 5.2. Plot produced with descriptor Coupled harmonic oscillators: global vari−
ables on file Two_Particles.des
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The time dependence of the selected global variables is presented as a 2D

function graph. On the bottom of the subpanel Physics—Comp. Coord. you
can select to plot one of the five global variables. You may also choose to plot
all five in a multiple plot.

On the subpanel Physics—Variables you find eight parameters:

• the spring constant k of the individual oscillators, the spring constant κ of
coupling, and the mass m of the oscillators,
• the initial values (for t = 0) of the five global variables, i.e., 〈x10〉, 〈x20〉,
σ10, σ20, c0.

Example Descriptor on File Two_Particles.des

• Coupled harmonic oscillators: global variables (see Fig. 5.2)

5.4 Joint Probability Densities

Aim of this section: Illustration of the joint probability densities %D(x1, x2, t),
%B(x1, x2, t), %F(x1, x2, t) for a system of coupled harmonic oscillators composed
of two distinguishable particles, two identical bosons, or two identical fermions,
(5.21), (5.29), (5.30). [It is also possible to illustrate the functions %S(x1, x2, t) and
%I(x1, x2, t) given by (5.31) and (5.32).]

A plot similar to Fig. 5.3 is produced showing, in general for several times
t = t0, t0 +1t, t0 + 21t, . . ., a section of the x1, x2 plane with the following
items:

• the joint probability density as surface over the x1, x2 plane,
• the marginal distributions as curves over two of the edges of the x1, x2

plane,
• a trajectory in the x1, x2 plane showing the time development of the corre-

sponding classical system since the time t0 [the position for t0 is indicated
by a full circle, for t0 + 1t, . . . by an open circle; for the current time the
classical positions x1(t), x2(t) are also shown as circles on the margins].

On the bottom of the subpanel Physics—Comp. Coord. you can choose one
of the five probability densities %i(x1, x2, t), where i stands for the five indices
D (distinguishable particles), B (identical bosons), F (identical fermions), S
(symmetrized probability density), and I (interference term).

On the subpanel Physics—Variables there are four groups of variables:

• Coupled Oscillators – Here you find the dynamic variables k, κ , and m of
the system and the initial conditions 〈x10〉, 〈x20〉, σ10, σ20, and c0.
• Time – You can enter the time t0 for the first plot and the time interval 1t

between successive plots.
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Fig. 5.3. Plot produced with descriptor Coupled harmonic oscillators: joint prob−
ability density on file Two_Particles.des

• Graphical Item – This is the radius R of the circle indicating the classical
position of the system.
• For Distinguishable Particles Only – You can choose to show the covariance

ellipse because in that case the probability density is a Gaussian distribution
of x1 and x2.

Movie Capability: Direct. The time, over which the movie extends, is
T = 1t(NPlots−1); NPlots is the number of individual plots in a multiple plot
and 1t is the time interval between two plots. For a single plot T = 1t .

Example Descriptor on File Two_Particles.des

• Coupled harmonic oscillators: joint probability density
(see Fig. 5.3)

5.5 Marginal Distributions

Aim of this section: Illustration of the marginal distributions %D1(x1, t), %D2(x2, t),
%B(x, t), %F(x, t), %S(x, t), %I(x, t) discussed in Sect. 5.1, (5.22), (5.23), (5.33),
(5.34), (5.35).

A plot similar to Fig. 5.4 is produced, showing for various times t one of
the marginal distribution of a system of coupled harmonic oscillators. Also
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Fig. 5.4. Plot produced with descriptor Coupled harmonic oscillators: marginal
distribution on file Two_Particles.des

shown for every time are a dashed zero line, the positions of the corresponding
two classical particles as small circles, and a short vertical line indicating the
equilibrium position x = 0.

On the bottom of the subpanel Physics—Comp. Coord. you can choose
between the following six types of marginal distribution:

%D1(x1, t), %D2(x2, t), %B(x, t), %F(x, t), %S(x, t), %I(x, t) .

On the subpanel Physics—Variables there are two groups of variables:

• Coupled Oscillators – Here you find the dynamic variables k, κ , and m of
the system and the initial conditions 〈x10〉, 〈x20〉, σ10, σ20, and c0.
• Graphical Items – These are the dash length `DASH of the zero line (which

is also the length of the short vertical line) and the radius R of the circles
indicating the positions of the classical oscillators.

Movie Capability: Indirect. After conversion to direct movie capability
the start and end times can be changed in the subpanel Movie (see Sect. A.4)
of the parameter panel.

Example Descriptor on File Two_Particles.des

• Coupled harmonic oscillators: marginal distribution
(see Fig. 5.4)
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5.6 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo in the main toolbar and selecting one of the demo files
Two_Particles.

(ii) More example descriptors can be found on the descriptor file TwoParti-
cles(FE).des in the directory FurtherExamples.

(iii) For the following exercises use descriptor file Two_Particles.des.

(iv) The numerical value of Planck’s constant is put to 1.

5.2.1 Plot the stationary wave functions of two uncoupled oscillators with
k = 2, m = 1 for the quantum numbers N = 0, 1, n = 0, 1 in a multiple plot.
Start from descriptor 6: ‘Exercise 5.2.1’.

5.2.2 Plot the stationary wave functions of two uncoupled oscillators with
k = 2,m = 1, in four multiple plots for the quantum numbers (a) N = 0, 1,
n = 0, 1, (b) N = 0, 1, n = 2, 3, (c) N = 2, 3, n = 0, 1, (d) N = 2, 3,
n = 2, 3. Start from descriptor 6: ‘Exercise 5.2.1’. (e) What determines
the number and location of the node lines of the wave functions?

5.2.3 (a–d) Repeat Exercise 5.2.2 (a–d) with m = 2. (e) Which effect on the
wave functions does the doubling of the mass have?

5.2.4 (a–d) Repeat Exercise 5.2.2 (a–d) with nonvanishing coupling κ = 2.
(e) How does the coupling affect the wave function?

5.2.5 (a–d) Repeat Exercise 5.2.2 (a–d) with nonvanishing attractive coupling
κ = 5. (e) How does the coupling affect the wave function? (f) Which
correlation in the particle coordinates x1, x2 do you observe?

5.2.6 (a–d) Repeat Exercise 5.2.2 (a–d) with nonvanishing repulsive coupling
κ = −0.6. (e) How does the repulsive coupling affect the wave function?
(f) Which correlation in the particle coordinates x1, x2 do you observe?

5.2.7 (a) Plot in a multiple plot the probability density of two coupled oscil-
lators with k = 2, m = 1 for the quantum numbers N = 1, 2, n = 1, 2 for the
spring constant κ = 5 of the coupling. Start from descriptor 6: ‘Exercise
5.2.1’. (b) Why are the outer maxima in the plot for N = 2, n = 2 higher
than the inner ones? (c) Why are the widths of the inner maxima smaller than
the ones of the outer maxima? (d) Why does the region where the probability
density is essentially different from zero not in all plots evenly fill the region
of possible classical orbits given by the dashed ellipse?

5.2.8 (a) Repeat Exercise 5.2.7 (a) with repulsive coupling κ = −0.6.
(b) Why do the locations of the maxima of the probability density form a
rectangular grid in the x1, x2 plane?
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5.2.9 Plot in multiple plots the probability density of two coupled oscillators
with k = 1, m = 1, κ = 4 for the quantum numbers (a) N = 2, 3, n = 0, 1,
(b) N = 2, 3, n = 2, 3, (c) N = 4, 5, n = 0, 1, (d) N = 4, 5, n = 2, 3. Start
from descriptor 6: ‘Exercise 5.2.1’. (e) Calculate the total energies of the
coupled oscillators for the above quantum numbers. (f) Compare the plots for
N = 5, n = 0 with N = 2, n = 2. Explain why the graphs for high N and
small n extend mainly along one of the principal axes of the dashed ellipse.

5.3.1 Consider a system of two uncoupled harmonic oscillators with mass
m = 1 and spring constants k = 2, κ = 0. (a) Plot the time dependence of
i) the position expectation values 〈x1(t)〉, 〈x2(t)〉, ii) the widths σ1(t), σ2(t) in
x1 and x2, iii) the correlation coefficient c(t) for the initial values 〈x10〉 = 3,
〈x20〉 = 0, σ10 = 1.01, σ20 = 0.5, c0 = 0. Start from descriptor 7: ‘Exercise
5.3.1’. (b) Why is the expectation value 〈x2(t)〉 equal to zero? (c) Why do
the widths σ1(t), σ2(t) vary with time? (d) Why is the correlation c(t) equal
to zero?

5.3.2 (a) Repeat Exercise 5.3.1 for nonvanishing correlation c0 = 0.2. Start
from descriptor 7: ‘Exercise 5.3.1’. (b) Explain the time dependence of
the correlation.

5.3.3 Repeat Exercise 5.3.1 for nonvanishing 〈x20〉 = 3 and σ10 = σ20 =
σ0/
√

2, where σ0 =
√
h̄/mω is the ground-state width of the uncoupled os-

cillators. Start from descriptor 7: ‘Exercise 5.3.1’. (a) Calculate σ0/
√

2.
(b) Plot the global quantities 〈x1(t)〉, 〈x2(t)〉, σ1(t), σ2(t), c(t). (c) Why
are the widths σ1(t), σ2(t) time independent? (d) Do you expect time-
independent widths also for nonvanishing correlation?

5.3.4 (a) Repeat Exercise 5.3.3 for nonvanishing correlation c0 = 0.4. Start
from descriptor 7: ‘Exercise 5.3.1’. (b) Why do the widths σ1(t), σ2(t) no
longer remain time independent? (c) Why does the correlation c(t) change
periodically?

5.3.5 (a) Repeat Exercise 5.3.3 for the anticorrelation c0 = −0.4. Start from
descriptor 7: ‘Exercise 5.3.1’. (b) Explain the difference between the cor-
relation c(t) of this exercise and of Exercise 5.3.4.

5.3.6 (a) Repeat Exercise 5.3.1 for nonvanishing 〈x20〉 = 1.5 and σ10 = σ20 =
σ0/
√

2, where σ0 =
√
h̄/mω is the ground-state width of the uncoupled os-

cillators. Start from descriptor 7: ‘Exercise 5.3.1’. (b) Why is the result
qualitatively similar to that in Exercise 5.3.3?

5.3.7 Consider the system of two coupled oscillators. Choose the same initial
data as in Exercise 5.3.1, however, take a nonvanishing spring constant κ =
0.5 for the coupling of the two oscillators. Start from descriptor 7: ‘Exercise
5.3.1’. (a) Plot the global quantities. (b) Explain the behavior of the time-
dependent expectation values 〈x1(t)〉, 〈x2(t)〉. (c) Why does the correlation
c(t) become different from zero as time increases?
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5.3.8 Repeat Exercise 5.3.7, however, with equal initial widths σ10 = σ20 =
0.5. Start from descriptor 7: ‘Exercise 5.3.1’.

5.3.9 (a) Repeat Exercise 5.3.8, however, with initial positions 〈x10〉 = 3,
〈x20〉 = −3. Start from descriptor 7: ‘Exercise 5.3.1’. (b) What oscillation
do the expectation values 〈x1(t)〉, 〈x2(t)〉 perform?

5.3.10 (a,b) Repeat Exercise 5.3.9 (a,b), however, with strong initial anticor-
relation c0 = −0.95. Start from descriptor 7: ‘Exercise 5.3.1’.

5.3.11 Repeat Exercise 5.3.9 with strong positive correlation c0 = 0.95. Start
from descriptor 7: ‘Exercise 5.3.1’.

5.3.12 (a) Repeat Exercise 5.3.9 with initial position expectation values
〈x10〉 = 3, 〈x20〉 = 3 and vanishing initial correlation c0 = 0. Start from
descriptor 7: ‘Exercise 5.3.1’. (b) What kind of oscillation do the two
position expectation values perform?

5.4.1 Plot the joint probability density %D(x1, x2) for two uncoupled harmonic
oscillators of distinguishable particles of mass m = 1 and spring constant
k = 2 for the initial values 〈x10〉 = 3, 〈x20〉 = 0, σ1 = 1.0, σ2 = 0.5,
c0 = 0 in two 2× 2 multiple plots (a) for the times tn = n1t , n = 0, 1, 2, 3,
1t = 0.501, and (b) for the times tn = n1t , n = 4, 5, 6, 7, 1t = 0.501.
Start from descriptor 8: ‘Exercise 5.4.1’. (c) Why are the axes of the two-
dimensional Gauss distributions parallel to the coordinate axes?

5.4.2 (a,b) Repeat Exercise 5.4.1 (a,b) for 〈x20〉 = 3, c0 = 0.8, and the step
width 1t = 0.55536. Start from descriptor 8: ‘Exercise 5.4.1’. (c) Why
are the axes of the two-dimensional Gauss distribution no longer parallel to
the coordinate axes? (d) How does the positivity of the initial correlation c0

show in the plots?

5.4.3 Plot the joint probability density %D(x1, x2) for two uncoupled harmonic
oscillators of distinguishable particles of mass m = 1 and spring constant
k = 2 for the initial values 〈x10〉 = −2, 〈x20〉 = 3, σ10 = 1, σ20 = 0.5, c0 =
−0.8 in two 2 × 2 multiple plots (a) for the times tn = n1t , n = 0, 1, 2, 3,
1t = 0.501, and (b) for the times tn = n1t , n = 4, 5, 6, 7, 1t = 0.501.
Start from descriptor 8: ‘Exercise 5.4.1’. (c) How does the negative initial
correlation show in the plots?

5.4.4 (a,b) Repeat Exercise 5.4.1 (a,b) for a coupling spring constant κ = 0.8.
Start from descriptor 8: ‘Exercise 5.4.1’. (c) Which effect showing in the
plots is due to the coupling of the two oscillators?

5.4.5 (a,b) Repeat Exercise 5.4.1 (a,b) for a coupling spring constant κ = 1.5.
Start from descriptor 8: ‘Exercise 5.4.1’. (c) Why does the amplitude in
the variable x2 grow faster than in the plots of Exercise 5.4.4?

5.4.6 (a,b) Repeat Exercise 5.4.1 (a,b) for a coupling spring constant κ = 3.
Start from descriptor 8: ‘Exercise 5.4.1’. (c) What causes the change of
the initially uncorrelated Gauss distribution to a correlated one?
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5.4.7 (a,b) Repeat Exercise 5.4.1 (a,b) for a coupling spring constant κ = 5.
Start from descriptor 8: ‘Exercise 5.4.1’. (c) Why does the expectation
value (circle) in the x1, x2 plane oscillate more often than in the former exer-
cises?

5.4.8 (a,b) Repeat Exercise 5.4.1 (a,b) for a coupling spring constant κ =
10. Start from descriptor 8: ‘Exercise 5.4.1’. (c) Why is the Gaussian
distribution most narrow when its position expectation values 〈x1〉, 〈x2〉 are
close to zero?

5.4.9 Plot the joint probability density %D(x1, x2) for two coupled harmonic
oscillators of distinguishable particles of mass m = 1, spring constant k = 2,
and coupling spring constant κ = 20 for the initial conditions 〈x10〉 = 3,
〈x20〉 = −3, σ1 = 1.0, σ2 = 0.5, c0 = 0 in two 2 × 2 multiple plots (a) for
tn = n1t , n = 0, 1, 2, 3, 1t = 0.2, and (b) for tn = n1t , n = 4, 5, 6, 7,
1t = 0.2. Start from descriptor 8: ‘Exercise 5.4.1’. (c) What particular
kind of oscillation do you observe?

5.4.10 (a,b) Repeat Exercise 5.4.9 (a,b) for a coupling spring constant κ =
20 and a step width of 1t = 0.2. Take as initial values for the position
expectation values 〈x10〉 = 3, 〈x20〉 = 3. Start from descriptor 8: ‘Exercise
5.4.1’. (c) What particular kind of oscillation do you observe? (d) Why is
the motion so much slower than in Exercise 5.4.9?

5.4.11 (a,b) Repeat Exercise 5.4.1 (a,b) for a repulsive coupling spring con-
stant κ = −0.8 and step width 1t = 0.5. Start from descriptor 8: ‘Exercise
5.4.1’. (c) How does the repulsive coupling between the two oscillators
make itself felt in the plots?

5.4.12 (a,b) Repeat Exercise 5.4.1 (a,b) for a repulsive spring constant κ =
−0.95 and step width 1t = 2. Start from descriptor 8: ‘Exercise 5.4.1’.
(c) Why does the initially uncorrelated Gauss distribution develop a correla-
tion of the kind observed?

5.4.13 (a,b) Repeat Exercise 5.4.1 (a,b) for bosons. (c) Why do you initially
observe two humps? (d) What creates the very high peak in the plots where
the two bosons are close together?

5.4.14 (a,b) Repeat Exercise 5.4.2 (a,b) for bosons. (c) Why do you observe
only one hump in the plots?

5.4.15 (a,b) Repeat Exercise 5.4.3 (a,b) for bosons. (c) How does the correla-
tion show in the initial double humps?

5.4.16 (a,b) Repeat Exercise 5.4.4 for bosons.

5.4.17 (a,b) Repeat Exercise 5.4.8 (a,b) for bosons. (c) How does the strong
attractive coupling show in the plots?

5.4.18 (a,b) Repeat Exercise 5.4.9 (a,b) for bosons. (c) How is the difference
from the graphs for distinguishable particles explained?



5.6. Exercises 137

5.4.19 (a,b) Repeat Exercise 5.4.10 (a,b) for bosons. (c) Why do you observe
quick oscillations of the width in (x2 − x1) of the Gaussian hump?

5.4.20 Repeat Exercise 5.4.11 for bosons.

5.4.21 (a,b) Repeat Exercise 5.4.1 (a,b) for fermions. (c) Why is the joint
probability always exactly zero along the line x1 = x2?

5.4.22 Repeat Exercise 5.4.4 for fermions.

5.4.23 (a,b) Repeat Exercise 5.4.8 (a,b) for fermions.

5.4.24 (a,b) Repeat Exercise 5.4.9 (a,b) for fermions.

5.4.25 (a,b) Repeat Exercise 5.4.10 (a,b) for fermions, however, for σ10 =
σ20 = 1. (c) Why does the joint probability distribution vanish?

5.4.26 (a,b) Repeat Exercise 5.4.10 (a,b) for fermions and nonvanishing initial
correlation. (c) Why does the joint probability density still vanish?

5.4.27 (a,b) Repeat Exercise 5.4.10 (a,b) for fermions and vanishing correla-
tion c0 = 0 and different initial widths σ1 = 1, σ2 = 0.2. (c) Why does the
existence of a fermion wave function with identical expectation values for the
two fermions not contradict the Pauli principle?

5.5.1 Study the marginal distributions of two distinguishable particles of equal
mass m = 1 in two coupled oscillators (k = 2, κ = 0.8) with the initial
conditions 〈x10〉 = 3, 〈x20〉 = 0, σ10 = 1, σ20 = 0.5, c0 = 0. (a) Plot the
marginal distribution %D1(x1, t) of particle 1 for the time interval 0 ≤ t ≤ 4 in
ten steps. Start from descriptor 9: ‘Exercise 5.5.1a’. (b) Plot the marginal
distribution %D2(x2, t) of particle 2 for the same interval. Start from descriptor
10: ‘Exercise 5.5.1b’. (c) For simpler comparison plot both distributions
(a), (b) as a combined plot (a) above (b). Start from mother descriptor 11:
‘Exercise 5.5.1c’.

5.5.2 (a–c) Repeat Exercise 5.5.1 (a–c) for a longer time interval 0 ≤ t ≤ 10.

5.5.3 Study the marginal distributions of indistinguishable particles with the
same parameters as in Exercise 5.5.1. (a) Plot the marginal distribution for
bosons. (b) Plot the marginal distributions for fermions. (c) For comparison,
plot both distributions above each other in a double plot. (d) What are the
differences in the two plots? (e) Why are these differences so marginal?



6. Free Particle Motion in Three Dimensions

Contents: Description of the three-dimensional motion of a free particle of sharp
momentum by a harmonic plane wave. Schrödinger equation of free motion in three
dimensions. Gaussian wave packet. Angular momentum. Spherical harmonics as
eigenfunctions of angular momentum. Radial Schrödinger equation of free motion.
Spherical Bessel functions. Partial-wave decomposition of plane wave and Gaussian
wave packet.

6.1 Physical Concepts

6.1.1 The Schrödinger Equation of a Free Particle

in Three Dimensions. The Momentum Operator

Classical free motion in three dimensions can be viewed as three simultane-
ous one-dimensional motions in the coordinates x, y, z. In quantum mechan-
ics the situation is the same. Three-dimensional free motion is viewed as
three one-dimensional harmonic waves (2.1) propagating simultaneously in
the coordinates x, y, z of the position vector r:

ψp(r, t) =
1

(2πh̄)3/2
exp

[

− i

h̄

(

p2
x

2M
t − pxx

)]

× exp

[

− i

h̄

(

p2
y

2M
t − pyy

)]

exp

[

− i

h̄

(

p2
z

2M
t − pzz

)]

.

(6.1)

Because the kinetic energy E of the particle is given by

E = (p2
x + p2

y + p2
z)/2M = p2/2M , (6.2)

M: mass of particle,
p = (px, py, pz): momentum of particle.

The expression (6.1) can be rewritten in the form

ψp(r, t) =
1

(2πh̄)3/2
e−i(Et−p·r)/h̄ = 1

(2πh̄)3/2
e−i(ωt−k·r) , (6.3)
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ω = E/h̄: angular frequency of the wave function,
k = p/h̄: wave-number vector.

The phase velocity of this wave is

v = p/2M . (6.4)

The wave function (6.3) is the solution of the free Schrödinger equation in

three dimensions

ih̄
∂

∂t
ψ(r, t) = Tψ(r, t) (6.5)

having the same formal appearance as (2.2). However, the operator T of the
kinetic energy is now that of a particle in three dimensions,

T = − h̄
2

2M

(

∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2

)

. (6.6)

With the help of the gradient operator

∇ =
(

∂

∂x
,
∂

∂y
,
∂

∂z

)

(6.7)

it takes the form

T = − h̄
2

2M
∇

2 = − h̄
2

2M
1 , (6.8)

i.e., a multiple of the Laplacian 1.
The wave function (6.3) lends itself to the factorization

ψp(r, t) = e−iEt/h̄ϕp(r) (6.9)

into a time-dependent exponential and a stationary wave function

ϕp(r) =
1

(2πh̄)3/2
eip·r/h̄ = 1

(2πh̄)3/2
eik·r . (6.10)

If we choose the unit vector ez in the z direction parallel to the wave-number

vector k = p/h̄, we have k = kez, and the stationary wave assumes the
simple form

ϕp(r) =
1

(2πh̄)3/2
eikz . (6.11)

This is a complex function of the coordinate z only. It can be decomposed
into real and imaginary parts,

ϕp(r) = Re ϕp(r)+ i Im ϕp(r) , (6.12)

with
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Re ϕp(r) =
1

(2πh̄)3/2
cos kz , Im ϕp(r) =

1

(2πh̄)3/2
sin kz . (6.13)

On inserting (6.9) into the time-dependent equation (6.5) we obtain

T ϕp(r) = Eϕp(r) or − h̄2

2M
1ϕp(r) = Eϕp(r) (6.14)

as the stationary (time-independent) Schrödinger equation for the stationary
wave function ϕp(r). Equation (6.14) is also viewed as an eigenvalue equa-
tion, where E is the continuous eigenvalue of the kinetic energy and ϕp(r) a
continuum eigenfunction of the operator T of the kinetic energy.

In accordance with the classical relation for the kinetic energy, T =
p2/2M , of a single particle with momentum p we conclude from (6.8) that

p̂ = h̄

i
∇ , i.e., p̂x =

h̄

i

∂

∂x
, p̂y =

h̄

i

∂

∂y
, p̂z =

h̄

i

∂

∂z
, (6.15)

is the momentum operator. The stationary wave function (6.10) is a contin-
uum eigenfunction of the momentum operator

p̂ϕp(r) =
h̄

i
∇ϕp(r) = pϕp(r) (6.16)

or in components

p̂xϕp(r) =
h̄

i

∂

∂x
ϕp(r) = pxϕp(r) , etc. (6.17)

6.1.2 The Wave Packet. Group Velocity. Normalization.

The Probability Ellipsoid

The wave function (6.3) does not correspond to an actual physical situation,
because the norm of a plane wave diverges. A physical particle corresponds
to a wave packet formed with a spectral function as in (2.4),

ψ(r, t) =
∫

f (p)e−iEt/h̄ϕp(r− r0) d3p , (6.18)

r = (x, y, z): position vector,
r0 = (x0, y0, z0): initial position expectation value of wave packet at t = 0,
p = (px, py, pz): momentum vector,
f (p): spectral function of wave packet.
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We choose again a Gaussian spectral function in three dimensions as a prod-
uct

f (p) = fx(px)fy(py)fz(pz) (6.19)

of three Gaussians, one for every coordinate a = x, y, z,

fa(pa) =
1

(2π)1/4σ 1/2
pa

exp

{

−(pa − pa0)
2

4σ 2
pa

}

, (6.20)

pa: a coordinate of momentum, a = x, y, z,
pa0: expectation value of momentum,
σpa : width of Gaussian spectral function fa.

The factors in front of the exponential of (6.20) normalize the spectral func-
tion f (p) to one,

∫

f 2(p) d3p = 1 , (6.21)

and thus the wave packet (6.18):
∫

|ψ(r, t)|2 d3r = 1 . (6.22)

Because of the factorization of the time-dependent exponential and of the
stationary wave function ϕp into factors depending on one momentum com-
ponent only, the integral in (6.18) yields the wave function of the three-
dimensional Gaussian wave packet,

ψ(r, t) = Mx(x, t)e
iφx (x,t)My(y, t)e

iφy(y,t)Mz(z, t)e
iφz(z,t) , (6.23)

where the explicit expressions for the modulus Ma and the phase φa can be
derived easily from (2.7) and (2.8).

The absolute square of ψ(r, t) yields the probability density

%(r, t) = 1

(2π)3/2σxσyσz
exp

[

−(x − 〈x〉)
2

2σ 2
x

− (y − 〈y〉)
2

2σ 2
y

− (z− 〈z〉)
2

2σ 2
z

]

(6.24)
for a particle at the position r at time t . The position expectation value

〈r(t)〉 = (〈x(t)〉, 〈y(t)〉, 〈z(t)〉)

is given by
〈r(t)〉 = r0 + vt . (6.25)

This represents the motion of a particle with constant velocity

v = p0/M (6.26)
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along a straight line, starting at t = 0 with the initial position r0. The velocity
v is called the group velocity because it determines the propagation of a wave
packet or wave group. It is different from the phase velocity (6.4).

The width of the Gaussian is time dependent:

σ 2
a (t) = σ 2

a0 +
(

h̄t

2M

1

σa0

)2

, a = x, y, z , (6.27)

σa0 = h̄/2σpa : initial width of wave packet in the coordinate a = x, y, z.

The plots produced with IQ refer to the two-dimensional distribution

%(x, y, t) =
∫ +∞

−∞
%(x, y, z, t) dz , (6.28)

which represents the probability density for a particle having at time t the
coordinates x and y irrespective of z. The explicit result for %(x, y, t) is

%(x, y, t) = 1

2πσxσy
exp

{

−(x − 〈x〉)
2

2σ 2
x

− (y − 〈y〉)
2

2σ 2
y

}

. (6.29)

6.1.3 Angular Momentum. Spherical Harmonics

Angular momentum is a vector L = (Lx, Ly, Lz) of the form

L = r× p ; (6.30)

in components

Lx = ypz − zpy , Ly = zpx − xpz , Lz = xpy − ypx . (6.31)

In quantum mechanics the momentum p is a multiple of the del or nabla op-
erator, see (6.15), so that the operator of angular momentum L̂ is given by

L̂ = r̂× p̂ = h̄

i
r×∇ . (6.32)

Its three components

L̂x =
h̄

i

(

y
∂

∂z
− z ∂

∂y

)

, L̂y =
h̄

i

(

z
∂

∂x
− x ∂

∂z

)

,

L̂z =
h̄

i

(

x
∂

∂y
− y ∂

∂x

)

(6.33)

do not commute with each other. Instead, they satisfy the commutation rela-

tions
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[L̂x, L̂y] = ih̄L̂z , [L̂y, L̂z] = ih̄L̂x , [L̂z, L̂x] = ih̄L̂y . (6.34)

Each of these components does commute, however, with the square

L̂
2 = L̂2

x + L̂2
y + L̂2

z (6.35)

of the angular-momentum vector L̂,

[L̂2
, L̂a] = 0 , a = x, y, z . (6.36)

Polar coordinates (radius r , polar angle ϑ , azimuth ϕ) are related to Car-
tesian coordinates (x, y, z) by

x = r sinϑ cosϕ , y = r sinϑ sinϕ , z = r cosϑ . (6.37)

Using these polar coordinates the components and the square of L̂ have the
representations

L̂x = ih̄

(

sinϕ
∂

∂ϑ
+ cotanϑ cosϕ

∂

∂ϕ

)

,

L̂y = ih̄

(

cosϕ
∂

∂ϑ
− cotanϑ sinϕ

∂

∂ϕ

)

,

L̂z = −ih̄
∂

∂ϕ
, (6.38)

L̂
2 = −h̄2

[

1

sinϑ

∂

∂ϑ

(

sinϑ
∂

∂ϑ

)

+ 1

sin2 ϑ

∂2

∂ϕ2

]

. (6.39)

Thus, the eigenfunctions of L̂
2

and L̂z are the spherical harmonics Y`m(ϑ, ϕ)

depending on ϑ and ϕ only, with the two indices relating to the eigenvalues
of the square and the z component of angular momentum,

L̂
2
Y`m = `(`+ 1)h̄2Y`m , ` = 0, 1, 2, . . . , (6.40)

L̂zY`m = mh̄Y`m , −` ≤ m ≤ ` . (6.41)

The angular-momentum quantum number ` is interpreted as the modulus of
angular momentum andm – usually called magnetic quantum number – as its
z component. Together with (6.39), (6.40) is up to a factor h̄2 identical with
(11.15) of Chap. 11, which deals with mathematical functions. The details of
the spherical harmonics Y`m are given there.
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6.1.4 The Stationary Schrödinger Equation

in Polar Coordinates. Separation of Variables.

Spherical Bessel Functions.

Continuum Normalization. Completeness

The stationary Schrödinger equation (6.14) of a free particle can be expressed
in polar coordinates where the kinetic energy is

T ϕ(r) =
[

− h̄
2

2M

1

r

∂2

∂r2 r +
1

2Mr2 L̂
2
]

ϕ(r) = Eϕ(r) (6.42)

and where the square L̂
2

of angular momentum is given by (6.39). Separation
of the radial variable r and the angles ϑ and ϕ is achieved by factorization:

ϕ(r) = R`(r)Y`m(ϑ, ϕ) . (6.43)

Then, the radial wave function R`(r) satisfies the free radial Schrödinger

equation

− h̄
2

2M

[

1

r

d2

dr2
r − `(`+ 1)

r2

]

R` = ER` , r > 0 . (6.44)

It is equivalent to, k2 = 2ME/h̄2,

r2 d2

dr2R`(k, r)+ 2r
d

dr
R`(k, r)+ [k2r2 − `(`+ 1)]R`(k, r) = 0 . (6.45)

Choosing x = kr as a dimensionless variable and setting z`(x) ∼ R`(k, r),
we arrive at the differential equation (11.30) of Chap. 11 for the spherical
Bessel functions z`(x).

The kinetic energy of radial motion, T rad = −(h̄2/2M)r−1(d2/dr2)r , is a
Hermitian operator only for wave functions that are not singular at r = 0. This
requirement restricts the R`(k, r) to be proportional to the spherical Bessel

functions of the first kind j`:

R`(k, r) =
√

2

π
kj`(kr) . (6.46)

The factor in front of j` in (6.46) ensures a continuum normalization of the
kind

∫ ∞

0
R`(k, r)R`(k

′, r)r2 dr = δ(k′ − k) . (6.47)

The eigenfunctions ϕ`m(k, r) of the kinetic-energy operator T belonging to
the energy eigenvalue E = h̄2k2/2M and to the angular-momentum quantum
numbers `,m are called free partial waves,



6.1. Physical Concepts 145

ϕ`m(k, r) = R`(k, r)Y`m(ϑ, ϕ) . (6.48)

These eigenfunctions exhibit a continuum normalization in k,
∫

ϕ∗`′m′(k
′, r)ϕ`m(k, r) dV = δ(k′ − k)δ`′`δm′m . (6.49)

Their completeness relation (11.18) reads

∑

`,m

∫ ∞

0
ϕ∗`m(k, r′)ϕ`m(k, r)k2 dk = δ3(r′ − r) . (6.50)

It allows a decomposition of wave functions into free partial waves.

6.1.5 Partial-Wave Decomposition of the Plane Wave

The stationary plane wave of momentum p = h̄k has the form

eip·r/h̄ = eik·r = eikr cosϑ . (6.51)

In a system of polar coordinates with the z axis in the direction of k, the above
formula shows that there is no ϕ dependence. Thus, a decomposition into
free partial waves ϕ`0(k, r), (6.48), containing only the spherical harmonics
(11.16) with m = 0,

Y`0(ϑ, ϕ) =
√

2`+ 1

4π
P`(cosϑ) , (6.52)

is possible. Here P` is a Legendre polynomial. One obtains

eik·r = eikr cosϑ =
∞
∑

`=0

ϕ` =
∞
∑

`=0

i`(2`+ 1)j`(kr)P`(cosϑ) , (6.53)

r: radius vector,
k: wave vector of plane wave,
cosϑ = k · r/kr: cosine of polar angle,
`: angular-momentum quantum number,
P`(cosϑ): Legendre polynomial of order `,
j`(kr): spherical Bessel function of first kind of order `, (11.31).

6.1.6 Partial-Wave Decomposition

of the Gaussian Wave Packet

The Gaussian wave packet (6.18) at time t = 0 is decomposed into free partial
waves starting from the completeness relation (6.50):



146 6. Free Particle Motion in Three Dimensions

ψ(r, 0) = 2

π

∞
∑

`=0

∑̀

m=−`

∫

b`m(k)j`(kr)Y`m(ϑ, ϕ)k
2 dk . (6.54)

The probability W`m of finding a contribution of angular momentum `,m

irrespective of the wave number k is given by

W`m =
2

π

∫

b∗`m(k)b`m(k)k
2 dk . (6.55)

For a Gaussian wave packet with a probability sphere, i.e., σx = σy = σz =
σ(t), the probability W`m is given by

W`m = exp
{

−σ 2
0 λ

2
}

√

π

2σ 2
0 k

2
I`+ 1

2
(σ 2

0 k
2)(2`+ 1)

× (`− |m|)!
(`+ |m|)!

∣

∣Pm` (cosϕ′′)
∣

∣

2 |ζ |−2m , (6.56)

r0 = ak̂0 + bb̂: initial position expectation value,
k̂0: unit vector in the direction of wave-vector expectation value,
b̂: unit vector, perpendicular to k̂0, k̂0 · b̂ = 0,

k4 =
(

k2
0 − r2

0/4σ
4
0

)2 + (k0 · r0)
2/σ 4

0 ,
λ2 = k2

0 + r2
0/4σ

4
0 ,

Pm` : associated Legendre function with complex argument,
I`+ 1

2
: modified Bessel function.

The complex vector

κ = k0 − i
1

2σ 2
0

r0 (6.57)

is decomposed into

κ = κ{e1 cosϕ′ + e2 sinϕ′} . (6.58)

The quantity κ is the complex square root

κ =





(

k0 −
i

2σ 2
0

a

)2

− 1

4σ 4
0

b2





1/2

. (6.59)

The complex angle ϕ ′ is defined by

cosϕ′ = 1

κ
(e1 · κ) , sinϕ′ = 1

κ
(e2 · κ) . (6.60)
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So far m was the quantum number of the z component of angular momentum,
i.e., the quantization axis was the z axis. For an arbitrary quantization axis we
rotate the coordinate system

e1 = −k̂0 , e2 = b̂ , e3 = e1 × e2

into the system η1, η2, η3 with the transformation

ηj =
3
∑

i=1

eiRij .

The matrix Rij represents a rotation with the angle ϑ about the axis

α̂ = −e1 sinϕ + e2 cosϕ , (6.61)

i.e., ϑ and ϕ are the polar and azimuthal angles of the unit vector η3 in the
original system e1, e2, e3. With this we define the complex angle ϕ ′′ through
its cosine,

cosϕ ′′ = R13 cosϕ′ + R23 sinϕ′ ,

and the quantity

ζ = (R11 + iR12) cos ϕ′ + (R21 + iR22) sinϕ′

sinϕ′′
.

Here
R11 = cosϑ + (1− cosϑ) sin2 ϕ ,

R12 = R21 = −(1− cosϑ) cosϕ sinϕ ,

R22 = cosϑ + (1− cosϑ) cos2 ϕ ,

R13 = −R31 = sinϑ cosϕ ,

R23 = −R32 = sinϑ sinϕ ,

R33 = cosϑ .

The quantization axis with respect to which m is defined is η3. The marginal
distribution

W` =
∑̀

m=−`
W`m = e−σ

2
0 λ

2

√

π

2σ 2
0 k

2
I`+1/2(σ

2
0 k

2)(2`+ 1)P`

(

λ2

k2

)

(6.62)

describes the weight of the contribution of the angular momentum ` in the
wave packet.
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Further Reading

Alonso, Finn: Vol. 3, Chap. 3
Berkeley Physics Course: Chaps. 7, 8
Brandt, Dahmen: Chaps. 10, 11
Feynman, Leighton, Sands: Vol. 3, Chap. 18
Flügge: Vol. 1, Chaps. 2B, 2C
Gasiorowicz: Chaps. 6, 7, 8
Merzbacher: Chap. 9
Messiah: Vol. 1, Chap. 9, Vol. 2, Chap. 13
Schiff: Chaps. 2, 4

6.2 The 3D Harmonic Plane Wave

Aim of this section: Illustration of the stationary harmonic wave (6.11). The illus-
tration can be presented as a surface over a Cartesian grid or as a surface over a polar
grid.

A plot similar to Fig. 6.1 or Fig. 6.2 is produced. The type of plot (Cartesian
or polar grid) depends on the type of descriptor that you select. You cannot
change the plot type without changing the descriptor.

On the bottom of the subpanel Physics—Comp. Coord. you can select for
plotting one of the three functions

|eikz|2, Re eikz, Im eikz .

On the subpanel Physics—Variables you can choose whether the Input is

Taken directly as the Wave Number k or as the Energy E from which k is then
computed. The relation between the two quantities is

k =
√

2ME/h̄ .

The numerical value for k (or E) is found in a field labeled Wave Number /

Energy.

Please note: In all computations of quantum mechanics in 3D we set

h̄ = 1 , M = 1 .

For the present case that implies k =
√

2E.

Example Descriptors on File 3D_Free_Particle.des

• 3D harmonic wave: surface over Cartesian grid (see Fig. 6.1)
• 3D harmonic wave: surface over polar grid (see Fig. 6.2)
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Fig. 6.1. Plot produced with descriptor 3D harmonic wave: surface over Cartesian
grid on file 3D_Free_Particle.des

Fig. 6.2. Plot produced with descriptor 3D harmonic wave: surface over polar grid
on file 3D_Free_Particle.des
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6.3 The Plane Wave Decomposed

into Spherical Waves

Aim of this section: Decomposition (6.53) of a plane wave into spherical waves.

For r ≤ N/k the decomposition (6.53) can be approximated by a sum with a
finite number of terms,

eik·r = eikr cosϑ ≈
N
∑

`=0

ϕ` =
N
∑

`=0

i`(2`+ 1)j`(kr)P`(cosϑ) .

On the subpanel Physics—Comp. Coord. you can select to compute either
the term ϕ` or the finite sum

∑N
`=0 ϕ`. Moreover, you can choose to show

either the absolute square or the real part or the imaginary part of that function.

On the subpanel Physics—Variables there are four fields:

• a choice whether the Input is Taken as wave number k or energy E,
• the numerical value k (or E) for the Wave Number / Energy,
• an Angular Momentum – this is ` if you choose to compute a single term ϕ`.

It is N if you choose to plot the sum
∑N
`=0 ϕ`,

Fig. 6.3. Plot produced with descriptor Plane wave as sum of spherical waves on file
3D_Free_Particle.des
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• an explanation For Multiple Plot: The angular momentum (` or N ) is taken
for the first plot in a multiple plot. It is successively increased by one for
each subsequent plot.

Example Descriptor on File 3D_Free_Particle.des

• Plane wave as sum of spherical waves (see Fig. 6.3)

6.4 The 3D Gaussian Wave Packet

Aim of this section: Illustration of the probability density %(x, y, t), (6.29), and
the corresponding wave function ψ(x, y, t).

A plot similar to Fig. 6.4 is produced depicting various aspects of the wave
function (|ψ |2, Reψ , or Imψ) in the x, y plane for a Gaussian wave packet.
The expectation value of the packet moves freely in the x, y plane. In a mul-

tiple plot the situation is shown for times t = 0, 1t , 21t , . . .. If the display
of |ψ |2 is chosen, additional graphical items are displayed. These are

• the position of the classical particle (as full circle for t = 0, as open circle
for t = 1t , 21t , . . .),

Fig. 6.4. Plot produced with descriptor Free 3D wave packet: surface over Carte−
sian grid on file 3D_Free_Particle.des
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• the trajectory of the classical particle,
• the covariance ellipse of the Gaussian probability distribution.

On the subpanel Physics—Wave Packet you find five items:

• Initial Position – the coordinates x0, y0 of the position expectation value at
t = 0,
• Initial Velocity – the components vx0, vy0 of mean velocity at t = 0,
• Initial Width – the widths σx0, σy0 in x and y at t = 0,
• Graphical Item – the radius R of the circle indicating the position of the

classical particle,
• Time Step – the time difference 1t between the situation shown in succes-

sive plots.

Movie Capability: Direct. The time, over which the movie extends, is
T = 1t(NPlots−1); NPlots is the number of individual plots in a multiple plot
and 1t is the time interval between two plots. For a single plot T = 1t .

Example Descriptors on File 3D_Free_Particle.des

• Free 3D wave packet: surface over Cartesian grid (see Fig. 6.4)
• Dispersion of wave packet at rest, real part

6.5 The Probability Ellipsoid

Aim of this section: Drawing for times t0, t0+1t , . . ., t0+ (N−1)1t the ellipsoid
having the principal axes of lengths σx , σy , σz parallel to the coordinate axes, see
(6.27), which characterizes a 3D Gaussian wave packet with (uncorrelated) widths
σx , σy , σz.

A plot similar to Fig. 6.5 is produced. It is of the type probability-ellipsoid

plot, Sect. A.3.7. A 3D (uncorrelated) Gaussian packet can conveniently be
represented by its probability ellipsoid, which is centered at the position ex-
pectation value (〈x〉, 〈y〉, 〈z〉) and has the half-axes σx , σy , σz. The probability
density has a constant value % = c on the surface of the ellipsoid and is > c

inside and< c outside the ellipsoid. As the wave packet develops in time, the
ellipsoid changes its position and shape. In the plot it is drawn for the times
t = t0, t0 + 1t , . . .. Also drawn for these times is the position of the cor-
responding classical particle, i.e., the center of the ellipsoid as a small circle
(full for t = t0, open for later times) and the trajectory of the classical particle.

The subpanel Physics—Wave Packet contains three groups of parameters:

• Initial Position, Velocity, and Width – This group contains the components
x0, y0, z0 of the initial (time t = 0) position expectation value and the
components vx0, vy0, vz0 of the initial velocity expectation value as well as
the initial widths σx0, σy0, σz0.
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Fig. 6.5. Plot produced with descriptor Free 3D wave packet: ellipsoids on file
3D_Free_Particle.des

• Time – Here you find the time t0 for which the first ellipsoid is shown at the
time 1t , i.e., the time difference between ellipsoids adjacent to each other.
In total N ellipsoids are drawn.
• Graphical Item – This is the radius R of the circle indicating the position of

the classical particle.

Movie Capability: Direct. On the subpanel Movie (see Sect. A.4) of the
parameters panel you may choose to show or not to show the initial and inter-
mediate positions of the ellipsoid.

Example Descriptor on File 3D_Free_Particle.des

• Free 3D wave packet: ellipsoids (see Fig. 6.5)

6.6 Angular-Momentum Decomposition

of a Wave Packet

Aim of this section: Computation and presentation of the probabilitiesW`m andW`

that a particle represented by a wave packet of spherical symmetry has the angular-
momentum quantum numbers ` and m, respectively; see (6.55) and (6.62).



154 6. Free Particle Motion in Three Dimensions

Fig. 6.6. Plot produced with descriptor Free 3D wave packet: angular−momentum de−
composition on file 3D_Free_Particle.des

A plot similar to Fig. 6.6 is produced showing as a 3D column plot, Sect.
A.3.8. In an `,m plane the probabilitiesW`m and – at the highmmargin – the
probabilities W` are represented as columns. The wave packet has its initial
position expectation value (x0 = a, y0 = b, z0 = 0) in the x, y plane. The mo-
mentum expectation value (px = −p0, py = 0, pz = 0) has only an x compo-
nent. This configuration ensures that for b > 0, p0 > 0 the classical angular
momentum (Lx = 0,Ly = 0,Lz = bp0) points in z direction. The orientation
of the quantization axes is given by its polar angle ϑ and its azimuth ϕ.

On the subpanel Physics—Wave Packet there are three groups of parame-
ters:

• Wave Packet – Here you find the four parameters p0 (absolute value of the
momentum expectation value), σ0 (initial width of the spherically symmet-
ric packet), a (x component of initial position), b (impact parameter).
• Quantization Axis – This is given by its polar angle ϑ and its azimuth ϕ.
• Maximum Angular-Momentum Quantum Number – The W`m and W` are

shown in the range 0 ≤ ` ≤ `max.

Example Descriptor on File 3D_Free_Particle.des

• Free 3D wave packet: angular−momentum decomposition
(see Fig. 6.6)
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6.7 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo in the main toolbar and selecting one of the demo files
3D_Free_Particle.

(ii) More example descriptors can be found on the descriptor file 3DFreePar-
ticle(FE).des in the directory FurtherExamples.

(iii) For the following exercises use descriptor file 3D_Free_Particle.des.

(iv) The numerical values of the particle mass and of Planck’s constant are
put to 1.

6.2.1 Plot the three-dimensional plane wave in a Cartesian plot for the wave
number k = 2 for the interval 0 ≤ x ≤ 2π : (a) real part, (b) imaginary part,
(c) absolute square. Start from descriptor 1: ‘3D harmonic wave: surface
over Cartesian grid’.

6.2.2 Plot the three-dimensional plane wave in a polar plot for the wave num-
ber k = 2 for the radial interval 0 ≤ r ≤ 2π : (a) real part, (b) imaginary part,
(c) absolute square. Start from descriptor 2: ‘3D harmonic wave: surface
over polar grid’.

6.3.1 Study the partial waves for different ` appearing in the decomposition of
the plane harmonic wave for (a) ` = 0, (b) ` = 1, (c) ` = 2, . . . , (l) ` = 13,
(m) ` = 20. Start from descriptor 3: ‘Plane wave as sum of spherical
waves’. For even (odd) values of ` the real (imaginary) part of the partial
waves is nonvanishing. (n) Calculate the minimal classical angular momen-
tum in units of h̄ for a particle of wave number k = 2 that does not enter the
radial domain 0 ≤ r ≤ 2π . (o) Plot the partial wave for ` = 13. (p) Why
does the partial wave become more and more suppressed in the central region
(r close to zero) for increasing `?

6.3.2 Study the sums of partial waves for different N approximating the plane
harmonic wave for (a) N = 0, (b) N = 1, . . ., (k) N = 10, (l) N = 13,
(m) N = 20. Start from descriptor 3: ‘Plane wave as sum of spherical
waves’. (n) How fast does the region in which the plotted partial sum resem-
bles a plane harmonic wave grow in radius with increasing N?

6.4.1 A three-dimensional Gaussian wave packet in the x, y plane has the
initial position x0 = −2, y0 = −2, initial velocity vx0 = 4, vy0 = 4, initial
width σx0 = 0.5, σy0 = 0.5. Plot for the times t = 0 and t = 1 (a) the
absolute square, (b) the real part, (c) the imaginary part of the wave function.
Start from descriptor 4: ‘Free 3D wave packet: surface over Cartesian
grid’. (d) Calculate the spatial widening of the wave packet with time (M =
1, h̄ = 1).
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6.4.2 (a–d) Repeat Exercise 6.4.1 for the initial position x0 = −2, y0 = −2,
initial velocity vx0 = 4, vy0 = 2, initial width σx0 = 0.25, σy0 = 0.8.
(e) Calculate the vector of classical angular momentum of a particle with the
initial expectation values of the wave packet (M = 1, h̄ = 1).

6.4.3 (a,b,c) Repeat Exercise 6.4.1 (a,b,c) for the initial position x0 = −4,
y0 = −3, initial velocity vx0 = 4, vy0 = 3, initial width σx0 = 0.1, σy0 = 0.3
for 1t = 1.5. (d) Explain the different speeds by which the main axes of
the covariance ellipse grow. (e) Which direction do the ripples in the real and
imaginary part of the wave function possess?

6.4.4 A wave packet at rest is to be plotted with the initial parameters x0 = 0,
y0 = 0, vx0 = 0, vy0 = 0, σx0 = 1, σy0 = 1 for 1t = 2.5. Plot (a) the
absolute square, (b) the real part, (c) the imaginary part. Start from descriptor
4: ‘Free 3D wave packet: surface over Cartesian grid’. (d) Why does
this wave packet exhibit a rotationally invariant structure?

6.5.1 (a) Plot the probability ellipsoids of a particle with the initial conditions
x0 = −3, y0 = −2, z0 = −1, vx0 = 5, vy0 = 1.5, vz0 = 1, σx0 = 1.0, σy0 =
1.05, σz0 = 2 for three instants in time, t = 0, 1, 2. Start from descriptor 6:
‘Free 3D wave packet: ellipsoids’. (b) Calculate the angular-momentum
vector of the classical particle with the above initial data (M = 1, h̄ = 1).

6.5.2 Plot the probability ellipsoids of a particle with the initial conditions
x0 = −3, y0 = −2, z0 = −1, vx0 = 5, vy0 = 1.5, vz0 = 1, σx0 = 0.25,
σy0 = 0.35, σz0 = 0.5 for three instants in time, t = 0, 0.8, 1.6. Start from
descriptor 6: ‘Free 3D wave packet: ellipsoids’.

6.5.3 (a) Plot the probability ellipsoids of a particle with the initial conditions
x0 = −5, y0 = −2, z0 = −1, vx0 = 5, vy0 = 1.5, vz0 = 1, σx0 = 1.8, σy0 =
1.5, σz0 = 1 for the three instants in time, t = 0, 1, 2. Start from descriptor
6: ‘Free 3D wave packet: ellipsoids’. (b) Why does the ellipsoid enlarge
much more slowly in time relative to its initial size than in Exercise 6.5.2?

6.5.4 (a) Plot the probability ellipsoids for a spherical wave packet at rest
with the widths σx0 = σy0 = σz0 = 0.2 for four instants in time, t =
0, 0.2, 0.4, 0.6. Start from descriptor 6: ‘Free 3D wave packet: ellip−
soids’. (b) Why does the radius of the sphere grow almost linearly over time
only for later times?

6.6.1 (a) Plot the probabilitiesW`m,W` of the partial-wave decomposition for
the quantization axis n̂ pointing in the z direction of a wave packet with initial
conditions p0 = 1.5, σ0 = 1, a = 2, b = 0.6667. Start from descriptor 7:
‘Free 3D wave packet: angular−momentum decomposition’. (b) Calcu-
late the angular-momentum vector of a classical particle possessing the above
initial data (h̄ = 1). (c) Calculate the angular momentum for a particle with
the impact parameters b′ = b + σ0 and b′′ = b − σ0. (d) Interpret the results
of (b) and (c) in terms of the partial probabilities W`m as plotted in (a).
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6.6.2 (a) Plot the probabilities W`m,W` of the partial-wave decomposition
for the quantization axis n̂ pointing in the z direction for a wave packet with
initial conditions p0 = 3, σ0 = 0.5, a = 2, b = 0.3333. Start from descriptor
7: ‘Free 3D wave packet: angular−momentum decomposition’. (b) Why
does the plot look the same as in Exercise 6.6.1 (a)?

6.6.3 (a) Plot the probabilities W`m,W` of the partial-wave decomposition
for the quantization axis n̂ pointing in the z direction for a wave packet with
initial conditions p0 = 3, σ0 = 1, a = 2, b = 0.3333. Start from descriptor 7:
‘Free 3D wave packet: angular−momentum decomposition’. (b) Why are
theW`m = 0 form = `−1, `−3, . . . ,−`+1 for the wave packets investigated
so far? (c) Why has the distribution of theW`m and theW` widened compared
to Exercise 6.6.2?



7. Bound States in Three Dimensions

Contents: Introduction of the Schrödinger equation with potential. Partial-wave

dial Schrödinger equation. Centrifugal barrier. Normalization and orthogonality of
bound-state wave functions. Infinitely deep square-well potential. Spherical step
potential. Harmonic oscillator. Coulomb potential. Harmonic particle motion.

7.1 Physical Concepts

7.1.1 The Schrödinger Equation for a Particle

under the Action of a Force. The Centrifugal Barrier.

The Effective Potential

The Schrödinger equation (6.5) of a free particle of mass M introduced in
Sect. 6.1 contains the kinetic energy T as the only term in the Hamiltonian
operator. Under the action of a conservative force F(r) = −∇V (r) the Hamil-
tonian H contains both the kinetic energy T and the potential energy V (r),

H = T + V (r) = − h̄
2

2M
1+ V (r) . (7.1)

The Schrödinger equation for the three-dimensional motion under the action
of a force then reads

ih̄
∂

∂t
ψ(r, t) =

(

− h̄
2

2M
1+ V (r)

)

ψ(r, t) . (7.2)

With a separation of time and space coordinates,

ψ(r, t) = e−iEt/h̄ϕE(r) , (7.3)

the stationary Schrödinger equation is an eigenvalue equation,

HϕE(r) = EϕE(r)

S. Brandt et al., Interactive Quantum Mechanics: Quantum Experiments on the Computer, 158

decomposition. Spherical harmonics as eigenfunctions of angular momentum. Ra-

DOI 10.1007/978-1-4419-7424-2_7, © Springer Science+Business Media, LLC 2011



7.1. Physical Concepts 159

or
(

− h̄
2

2M
1+ V (r)

)

ϕE(r) = EϕE(r) . (7.4)

Again E is the energy eigenvalue, ϕE(r) the corresponding eigenfunction.
For a spherically symmetric potential

V (r) = V (r)
a further separation of radial and angular coordinates by means of an eigen-
function corresponding to the energy eigenvalueE and the angular-momentum
quantum numbers `,m,

ϕE`m(r) = RE`(r) Y`m(ϑ, ϕ) , (7.5)

is carried out along the same lines as in Sect. 6.1. We arrive at the radial

Schrödinger equation for the radial wave function RE`(r),
(

− h̄
2

2M

1

r

d2

dr2
r + V eff

` (r)

)

RE`(r) = ERE`(r) , r > 0 , (7.6)

with the effective potential

V eff
` (r) = h̄2

2M

`(`+ 1)

r2 + V (r) . (7.7)

The first term of the left-hand side of (7.6) represents the kinetic energy of the

radial motion

T rad = p̂2
r /2M , (7.8)

with the operator of radial momentum

p̂r =
h̄

i

(

1

r
+ ∂

∂r

)

. (7.9)

The first term of (7.7) is the centrifugal barrier. It corresponds to the rota-

tional energy relative to the origin of the coordinate frame,

T rot = L̂
2
/2Θ , (7.10)

of a particle with squared angular momentum L̂
2
Y`m = h̄2`(` + 1)Y`m and

a moment of inertia Θ = Mr2 with respect to the origin. The second term
is the spherically symmetric potential V (r) of the force F(r) = −∇V (r) =
−er dV (r)/dr acting on the particle. Because the centrifugal barrier is a re-
pulsive potential (for ` ≥ 1), it tends to push the particle away from the origin
r = 0.

The solutions of (7.6) are physical for r > 0. The radial kinetic energy is
a Hermitian operator, i.e., a physical observable, only for wave functions free
of singularities at r = 0. This requirement represents the boundary condition

for solutions of the Schrödinger equation at r = 0.
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7.1.2 Bound States. Scattering States.

Discrete and Continuous Spectra

We denote by V∞ the value of the spherically symmetric potential far out,

V∞ = lim
r→∞

V (r) . (7.11)

We consider potentials only for which the intervals in r , for which V (r) ≤
E < V∞ for any given energy value have a finite total length. Then there are
two types of solution:

i) bound states for E < V∞: there exist only solutions at discrete energy

eigenvalues En`; the integer n is the principal quantum number used to
enumerate the eigenvalue, ` is the quantum number of angular momentum;

ii) scattering states for E ≥ V∞: there is a continuous spectrum of eigenval-

ues E`(k); it fills the domain V∞ ≤ E`(k).
In this chapter we deal with bound states only.

The radial wave function for a bound state with energy eigenvalue En`
will be denoted by Rn`(r). It satisfies the radial Schrödinger equation

(

− h̄
2

2M

1

r

d2

dr2
r + V eff

` (r)

)

Rn`(r) = En`Rn`(r) . (7.12)

In the domains in r where V eff
` (r) > En` the integral over the absolute square

of the wave function must be finite, otherwise the contributions to the potential
energy coming from these domains would diverge. Thus, the integral over the
absolute square of the bound-state wave function over the range 0 ≤ r < ∞
must be finite so that the integral over the absolute square of the radial bound-
state function can be normalized to one:

∫ ∞

0
R∗n`(r)Rn`(r)r

2 dr = 1 . (7.13)

Because the radial kinetic energy and the effective potential energy in (7.12)
are Hermitian operators, the eigenfunctions Rn` are orthogonal for different
principal quantum numbers, so that together with (7.13) we have the orthonor-

mality relation for the radial bound-state wave functions:
∫ ∞

0
R∗n′`(r)Rn`(r)r

2 dr = δn′n . (7.14)

The total bound-state wave functions

ϕn`m(r) = Rn`(r)Y`m(ϑ, ϕ) (7.15)
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are orthonormal in all three quantum numbers n, `,m,
∫

ϕ∗n′`′m′(r)ϕn`m(r) dV = δn′n δ`′` δm′m , (7.16)

because of the orthonormality of the radial wave functions (7.14) and of the
spherical harmonics (11.18).

The probability density

%n`m(r) = |ϕn`m(r)|2 = |Rn`(r)|2|Y`m(ϑ, ϕ)|2 (7.17)

of a bound state described by the wave function ϕn`m(r) is a function of r
and ϑ only. Because of (11.16) and (11.17) the ϕ dependence vanishes upon
taking the absolute square of the spherical harmonics

|Y`m(ϑ, ϕ)|2 =
2`+ 1

4π

(`− |m|)!
(`+ |m|)!

(

P
|m|
` (cosϑ)

)2
. (7.18)

Moreover, the probability density is a function of the modulus |m| of the mag-
netic quantum number. Altogether we have

%n`m(r, ϑ) = |Rn`(r)|2
2`+ 1

4π

(`− |m|)!
(`+ |m|)!

(

P
|m|
` (cosϑ)

)2
, (7.19)

r: radial variable,
ϑ : polar angle,
Rn`(r): radial wave function,
P
|m|
` (cosϑ): associated Legendre function,
n: principal quantum number,
`: quantum number of angular momentum,
m: magnetic quantum number.

The zeros of the radial wave function, Rn`(ri) = 0, appear in a plot of
%n`m(r, ϑ) over the coordinate plane of r and ϑ as circular node lines of
radius ri . The zeros of the spherical harmonics, Y`m(ϑj , ϕ) = 0, appear as
node rays originating at the origin under the polar angles ϑj .

7.1.3 The Infinitely Deep Square-Well Potential

The infinitely deep square-well potential

V (r) =
{

0 , r ≤ a
∞ , r > a

confines the particle to a sphere of radius a. The solutions Rn`(r) of the radial
Schrödinger equation have to vanish for values r > a, otherwise they would
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give rise to infinite contributions of the potential energy for r > a. Thus, we
are looking for solutions of the radial Schrödinger equation

(

− h̄
2

2M

1

r

d2

dr2 r + V
eff
` (r)

)

Rn`(r) = En`(r) , 0 < r ≤ a , (7.20)

in the range 0 ≤ r ≤ a only. The solution has to be free of singularities
at r = 0 and has to vanish at r = a. This allows only for spherical Bessel
functions of the first kind j`(kr). The wave number k has to be determined
in accordance with the boundary condition at r = a. Thus, k = kn` has to be
chosen so that it is a zero of the Bessel function, i.e., j`(kn`a) = 0. With the
normalization to one the solution is given by

Rn`(r) =
{
[

a3

2 (j`+1(kn`a))
2
]−1/2

j`(kn`r) , 0 ≤ r ≤ a
0 , r > a

. (7.21)

The energy eigenvalue is determined by the wave number,

En` = h̄2k2
n`/2M . (7.22)

The principal quantum number n = 0, 1, 2, . . . is equal to the number
of nodes (zeros) of the spherical Bessel function j`(kn`r) in the domain 0 <
r < a. The wave numbers kn` increase monotonically with n, as does the
energy eigenvalue En`. A simple heuristic argument behind this is that the
radial kinetic-energy contribution increases with increasing curvature of the
wave function. The curvature itself grows monotonically with the number of
nodes.

7.1.4 The Spherical Step Potential

For many applications a potential with stepwise constant values with N re-
gions is a sufficient approximation:

V (r) =



























V1 , 0 ≤ r < r1 region 1
V2 , r1 ≤ r < r2 region 2
...

...

VN−1 , rN−2 ≤ r < rN−1 region N − 1
VN , rN−1 ≤ r region N

. (7.23)

The eigenfunction
ϕn`m(r) = Rn`(r)Y`m(ϑ, ϕ)

belonging to the energy eigenvalueEn` is determined by the radial wave func-
tion Rn`(r), which is a solution of the radial Schrödinger equation (7.12).
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Because the potential (7.23) is a stepwise constant function with N regions,
Rn`(r) consists of N pieces Rn`q(r), q = 1, . . . , N ,

Rn`(r) =



























Rn`1(r) , 0 ≤ r < r1 region 1
Rn`2(r) , r1 ≤ r < r2 region 2
...

...

Rn`N−1(r) , rN−2 ≤ r < rN−1 region N − 1
Rn`N(r) , rN−1 ≤ r region N

. (7.24)

The piece Rn`q(r) fulfills the free radial Schrödinger equation

(

− h̄
2

2M

1

r

d2

dr2 r +
`(`+ 1)h̄2

2Mr2

)

Rn`q(r) = (En` − Vq)Rn`q(r) . (7.25)

For the solution Rn`q three cases have to be distinguished:

i) In regions with En` > Vq we obtain a real wave number

kn`q =
∣

∣

∣

√

2M(En` − Vq)/h̄
∣

∣

∣
. (7.26)

The solution is a linear superposition of the two linearly independent spherical
Bessel functions j` and n`, (11.31), (11.32),

Rn`q(r) = An`qj`(kn`qr)+ Bn`qn`(kn`qr) . (7.27)

ii) In regions with En` < Vq the wave number is purely imaginary:

kn`q = iκn`q , κn`q =
∣

∣

∣

√

2M(Vq − En`)/h̄
∣

∣

∣
. (7.28)

The solution is a linear combination of the two linearly independent Hankel
functions h(±)` , (11.33), (11.34),

Rn`q(r) = An`qh(+)` (iκn`qr)+ Bn`qh(−)` (iκn`qr) . (7.29)

For the imaginary argument the Hankel functions are products of functions
C±` (iκn`qr), which are complex factors multiplied by real polynomials of r−1,
and of decreasing or increasing exponential functions,

h
(±)
` (iκn`qr) = C±`

exp(∓κn`qr)
κn`qr

, (7.30)

see (11.35), (11.36), (11.41).
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iii) The special case En` = Vq of vanishing wave number leads to the solution

Rn`q(r) = An`qr` + Bn`qr−(`+1) . (7.31)

The solution (7.24) has to satisfy two boundary conditions:

i) At the origin r = 0: there is an absence of singularities, as already discussed
in this section. Because the spherical Bessel function n` is singular at r = 0,
see (11.40), this requires

Bn`1 = 0 , i.e., Rn`1(r) = An`1j`(kn`1r) . (7.32)

ii) In region N , rN−1 ≤ r: for bound states the energy eigenvalue En` is
smaller than V∞, i.e., En` < VN , so that the wave function (7.29) in this
region is given by (7.30). The radial wave function has to vanish sufficiently
fast for r →∞ to allow for the normalization (7.13). This is taken care of by
putting

Bn`N = 0 , i.e., Rn`N (r) = An`Nh(+)(iκn`qr) . (7.33)

The remaining discussion runs very much parallel to Sect. 3.1. The continuity
of the function Rn`(r) and its derivative at the positions r1, . . . , rN−1 poses
2(N − 1) conditions analogous to (3.22),

Rn`q(rq) = Rn`q+1(rq) (7.34)

and
dRn`q

dr
(rq) =

dRn`q+1

dr
(rq) (7.35)

for the 2N − 2 unknown coefficients An`1, An`2, Bn`2, . . . , An`N−1, Bn`N−1,

An`N . For every value ` of angular momentum this is a homogeneous sys-
tem of 2N − 2 linear equations for an equal number of unknowns. It has a
nontrivial solution only if its determinant

D` = D`(E) (7.36)

vanishes. This leads to a transcendental equation for the energy eigenvalues
En`:

D`(En`) = 0 . (7.37)

In general, its solutions can only be found numerically; they are calculated
by the computer. Once the eigenvalue En` is determined as a single zero of
(7.37) the system of linear equations (7.34), (7.35) can be solved yielding the
coefficients An`q, Bn`q as a function of one of them. This last undetermined
coefficient is then fixed by the normalization condition (7.13).

The set of eigenfunctions of step potentials with VN < ∞ is finite, thus
they do not form a complete set. In Chap. 8 we present the continuum eigen-
functions supplementing the discrete ones to a complete set of functions.
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7.1.5 The Harmonic Oscillator

The three-dimensional harmonic oscillator is described by the spherically
harmonic potential

V (r) = 1

2
Mω2r2 , (7.38)

r: radius,
ω: angular frequency,
M: mass of particle.

The radial eigenfunctions of the harmonic oscillator are, see (11.52),

Rnr` = Nnr`

(

r2

σ 2
0

)`/2

exp

(

− r2

2σ 2
0

)

L`+1/2
nr

(

r2

σ 2
0

)

, (7.39)

σ 2
0 = h̄/(Mω): ground-state width of oscillator,
nr = (n− `)/2: radial quantum number,
n: principal quantum number,
`: angular-momentum quantum number,
L
`+1/2
nr : Laguerre polynomial, see (11.49),

Nnr` =
√

nr!2nr+`+2

√
π(2(nr + `)+ 1)!!σ 3

0

: normalization constant. (7.40)

The principal quantum number

n = 2nr + ` , n = 0, 1, 2, . . . , (7.41)

determines the energy eigenvalues of the bound states,

En` =
(

n+ 3
2

)

h̄ω . (7.42)

The eigenfunctions (7.39) form a complete set of functions of the radial vari-
able r . The full three-dimensional wave function is again obtained as a prod-
uct of the radial wave function Rnr` and the spherical harmonic Y`m:

ϕn`m(r) = Rnr`(r)Y`m(ϑ, ϕ) , n = 2nr + ` . (7.43)

They form a complete set of functions of the radius vector r.
Of course, the Hamiltonian of the three-dimensional harmonic oscillator

can be treated as a sum of three Hamiltonians of one-dimensional oscillators
(3.13) in the Cartesian coordinates x, y, and z. This leads to eigenfunctions

ϕ′n1n2n3
(r) = ϕn1(x)ϕn2(y)ϕn3(z) , (7.44)
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which are products of one-dimensional oscillator wave functions ϕn (3.14).
Clearly, they belong to energy eigenvalues

En =
(

n+ 3
2

)

h̄ω , n = n1 + n2 + n3 , (7.45)

determined by the principal quantum number n, which is now simply the
sum of the three principal quantum numbers n1, n2, n3 of the three one-
dimensional oscillators. Also the set (7.44) of eigenfunctions is complete.
In fact, the eigenfunctions ϕn`m(r), (7.43), to a given eigenvalue En` can be
superimposed as a linear combination of eigenfunctions ϕ ′n1n2n3

(r) belonging
to the same energy eigenvalue. Thus, their indices n1, n2, n3 have to satisfy
the relation n1 + n2 + n3 = n.

7.1.6 The Coulomb Potential. The Hydrogen Atom

In the hydrogen atom an electron of mass Me carrying elementary charge
(−e) moves under the attractive Coulomb force of a proton of a mass Mp

about 2000 times as heavy as the electron. The Coulomb potential

U(r) = e

4πε0

1

r
(7.46)

yields the potential energy of the electron upon multiplication with the charge
of the electron,

V (r) = −eU(r) = − e2

4πε0

1

r
, (7.47)

r: radial variable,
e: elementary charge,
ε0: electric-field constant.

The constant e2/(4πε0), having the dimension of action times velocity, can
be expressed in units h̄c having the same dimension:

e2

4πε0
= αh̄c , (7.48)

h̄ = h/2π : Planck’s constant,
c: velocity of light.

The proportionality factor
α = 1/137 (7.49)

is Sommerfeld’s fine-structure constant. The Coulomb potential energy now
reads

V (r) = −h̄cα
r

. (7.50)
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The bound-state solutions Rn`(r) of the radial Schrödinger equation (7.12),
fulfilling the boundary condition without singularities at r = 0 and sufficient
decrease for r →∞, are given by

Rn`(r) =
2

n2a3/2

√

(n− `− 1)!
(n+ `)!

(

2r

na

)`

exp
(

− r

na

)

L2`+1
n−`−1

(

2r

na

)

,

(7.51)
r: radial variable,
n: principal quantum number n = 1, 2, 3, . . . ,
`: angular-momentum quantum number ` = 0, 1, . . . , n− 1,
a = h̄/(αMc) = 0.5292× 10−10 m: Bohr radius,
M = MpMe/(Mp +Me) ≈ Me: reduced mass of electron,
Mp: proton mass,
Me: electron mass,
α = e2/(4πε0h̄c) = 1/137: Sommerfeld’s fine-structure constant,
e: elementary charge,
h̄: Planck’s constant,
ε0: electric-field constant,
Lkp: Laguerre polynomial, see (11.49), (11.54).

The energy eigenvalues depend solely on the principal quantum number n:

En = −
1

2
Mc2α

2

n2 . (7.52)

The factor in front of n−2 has the numerical value Mc2α/2 = 13.65 eV.

7.1.7 Harmonic Particle Motion

In Sect. 6.1 we introduced the three-dimensional Gaussian wave packet of mo-
mentum expectation value p0. Its probability distribution can be characterized
by the probability ellipsoid, as discussed in Chap. 6. We calculate the motion
of a Gaussian wave packet with uncorrelated initial widths σx0, σy0, σz0 of
initial momentum expectation value p0 under the action of a harmonic force
(7.38). The center of the probability ellipsoid, which is initially at rest, moves
like

x(t) = x0 cosωt + px0

Mω
sinωt ,

y(t) = y0 cosωt + py0

Mω
sinωt , (7.53)

z(t) = z0 cosωt + pz0

Mω
sinωt ,

which represents the motion on an ellipse about the origin in the plane con-
taining the point r = 0 and the initial position r0 = (x0, y0, z0) and being
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tangential to the initial momentum p0 = (px0, py0, pz0). As we have learned
in Sect. 3.1, (3.35), the width of a one-dimensional harmonic oscillator oscil-
lates with 2ω, twice the oscillator frequency.

Further Reading

Alonso, Finn: Vol. 3, Chap. 3
Berkeley Physics Course: Vols. 4, 8
Brandt, Dahmen: Chaps. 11, 13
Feynman, Leighton, Sands: Vol. 3, Chap. 19
Flügge: Vol. 1, Chap. 1D
Gasiorowicz: Chaps. 12, 17
Merzbacher: Chap. 10
Messiah: Vol. 1, Chaps. 9, 11
Schiff: Chaps. 3, 4

7.2 Radial Wave Functions in Simple Potentials

Aim of this section: Illustration of the radial wave function Rn`(r), the energy
eigenvalue spectrum En`, the potential V (r) and the effective potential V eff

` (r) for
four types of potential: the infinitely deep square well, (7.21), (7.22), the square
well of finite depth, (7.27) forN = 2, the harmonic oscillator, (7.39), (7.42), and the
Coulomb potential, (7.51), (7.52).

A plot similar to Figs. 7.1–7.4 is produced, which may contain the following
items in a plane spanned by the radial coordinate r and the energy E:

• the potential V (r) and the effective potential V eff
` (r) as dashed lines of dif-

ferent dash lengths,
• the eigenvalues En` shown as short-stroke horizontal dashed lines,
• the radial wave functions Rn`(r) (or simple functions of these) as 2D func-

tion graphs for which the graphical representations of the eigenvalues serve
as zero lines,
• the term scheme shown as a series of short lines at the positions En` on the

right-hand side of the scale in E.

On the subpanel Physics—Comp. Coord. you can select the Type of Po-

tential (deep square well, square well of finite depth, harmonic oscillator,
Coulomb) and the way the Eigenfunction is Shown (R2

n`, Rn`, r
2R2

n`, rRn`).

On the subpanel Physics—Variables there are four items:

• Graphical Item – The parameter `DASH determines the length of the dashes
in the graphical representation of the potentials and the eigenvalues.
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Fig. 7.1. Plot produced with descriptor Radial wave functions: deep square−well
potential on file 3D_Bound_States.des

Fig. 7.2. Plot produced with descriptor Radial wave functions: square well of fi−
nite depth on file 3D_Bound_States.des
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Fig. 7.3. Plot produced with descriptor Radial wave functions: harmonic oscillator
on file 3D_Bound_States.des

Fig. 7.4. Plot produced with descriptor Radial wave functions: Coulomb potential
on file 3D_Bound_States.des
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• Scale Factor – The factor s determines the scale for the graphical represen-
tation of the wave functions. [Because these are plotted in the r, E plane,
technically speaking E = En` + sRn`(r) is plotted.]
• Clipping Rectangle for Potential – The lines showing the potential and the

effective potential are normally drawn only inside the ‘box’ given by the
ranges of the world coordinates X and Y . You can extend that box to the
left by the fraction f_X- of its original length inX. Similarly, f_X+, f_Y-, f_Y+

extend the box to the right, bottom, and top, respectively.
• Items to be Plotted – Here you find four check boxes allowing you to select

some or all of the items listed at the beginning of this section.

The subpanel Physics—Potential contains three items:

• Angular-Momentum Quantum Number – For a multiple plot the value ` is
taken for the first plot and incremented by one successively from plot to
plot.
• Potential – Here you find the parameters for the chosen potential (the radius
a for the deep square well, the radius a and the depth V0 for the square well
of finite depth, the circular frequency ω for the harmonic oscillator, and the
fine-structure constant α for the Coulomb potential).
• Search Parameters – There are three parameters determining the display and

the accuracy in the computation of eigenvalues and eigenfunctions:
– A maximum number of N_max eigenvalues is displayed. (Counting be-

gins with the lowest eigenvalue for the given angular momentum `.)
– Eigenvalues are computed and shown only for energies smaller than

E_max.
– For the square-well potential of finite depth there is also the parameter

N_Search used for the numerical computation of the eigenvalues. The
range between the minimum of the potential and Emax is divided into
NSearch intervals. The algorithm can find at most one eigenvalue in an
interval. Thus, if eigenvalues are dense NSearch has to be large.

Example Descriptors on File 3D_Bound_States.des

• Radial wave functions: deep square−well potential
(see Fig. 7.1)
• Radial wave functions: square well of finite depth

(see Fig. 7.2)
• Radial wave functions: harmonic oscillator (see Fig. 7.3)
• Radial wave functions: Coulomb potential (see Fig. 7.4)
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Fig. 7.5. Plot produced with descriptor Radial wave functions in step potential on
file 3D_Bound_States.des

7.3 Radial Wave Functions in the Step Potential

Aim of this section: Computation and presentation of the radial wave function
Rn`, (7.27), the energy-eigenvalue spectrumEn`, the potential V (r) and the effective
potential V eff

` (r) for the spherical step potential (7.23).

A plot similar to Fig. 7.5 is produced. As in Sect. 7.2 it may contain in an r, E
plane:

• the potential V (r) and the effective potential V eff
` (r),

• the eigenvalues En`,
• the radial wave functions Rn` (or functions thereof),
• the term scheme next to the E axis.

On the subpanel Physics—Comp. Coord. you can select the way the Eigen-

function is Shown (R2
n`, Rn`, r

2R2
n`, rRn`).

The subpanel Physics—Variables is as described in Sect. 7.2.

The subpanel Physics—Potential contains five items:

• Angular-Momentum Quantum Number – Contains the value `. In a multiple
plot it is taken for first plot and incremented by one for every additional
plot.
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• Number of Regions – Contains the number N of different regions in the
spherical step potential (7.23), 2 ≤ N ≤ 5.
• Regions – Here you find the boundaries ri between regions and the potential

values Vi for the different regions of the potential (7.23).
• Search Parameters – As described in Sect. 7.2 N_max is the maximum

number of eigenvalues displayed. Eigenvalues are computed only for
E < E_max. The range between the minimum of the potential and Emax

is divided into N_Search intervals. The algorithm searching for eigenvalues
can find at most one eigenvalue in an interval.
• Function D=D(E) – The eigenvalues En` are found numerically as the zeros

of the functions D`(E) = 0, (7.36). The function D`(E) may be Shown

or Not Shown. Because it is plotted in the r, E plane, technically speaking
the function r = rD + fD sinh−1[sDD`(E)] is presented. Here r_D is the
position in r corresponding to D = 0 and f_D and s_D are scale factors.

Example Descriptor on File 3D_Bound_States.des

• Radial wave functions in step potential (see Fig. 7.5)

7.4 Probability Densities

Aim of this section: Illustration of the probability density (7.17) describing a par-
ticle in an eigenstate of a spherically symmetric potential.

A plot similar to Figs. 7.6 to 7.9 is produced. It shows the probability density
%n`m(r, ϑ) of the eigenstate with quantum numbers n, `, m in a simple spher-
ically symmetric potential. The plot is of the type surface over polar grid in

3D. In addition to the probability density the plot contains

• the radial nodes as dashed lines,
• the polar nodes as dashed lines,
• in the case of a square-well potential the edge of the potential r = a as a

continuous line.

On the subpanel Physics—Comp. Coord. you can select the Type of Po-

tential (deep square well, square well of finite depth, harmonic oscillator, or
Coulomb).

On the subpanel Physics—Autom. Scale you can switch on (or off) an Au-

tomatic Scale. If it is on, the range in the computing coordinate z is set auto-
matically to extend from zbeg = 0 to zend = s%max. Here s is a Scale Factor on
the bottom of the subpanel and %max is the maximum value which %n`m(r, ϑ)
can assume. This autoscale facility is particularly useful in multiple plots.
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Fig. 7.6. Plot produced with descriptor Probability density: deep square−well po−
tential on file 3D_Bound_States.des

Fig. 7.7. Plot produced with descriptor Probability density: square−well potential
of finite depth on file 3D_Bound_States.des
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Fig. 7.8. Plot produced with descriptor Probability density: harmonic oscillator
on file 3D_Bound_States.des

Fig. 7.9. Plot produced with descriptor Probability density: Coulomb potential on
file 3D_Bound_States.des
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On the subpanel Physics—Potential you find three items:

• the Quantum Numbers n, `, m of the bound state (in a multiple plot ` is
incremented by one for each row and m for each column),
• the parameters of the Potential (radius a for the deep square well, radius a

and depth V0 for the square well of finite depth; for the harmonic oscillator
the circular frequency is set to ω = 1; for the Coulomb potential the fine-
structure constant is set to α = 1),
• the Search Parameter which is used for the square well potential of finite

depth only. The total energy range between Emin = V0 and Emax = 0 is
divided into N_Search intervals. In the search for the eigenvalues En` at
most one eigenvalue can be found in an interval.

Example Descriptors on File 3D_Bound_States.des

• Probability density: deep square−well potential (see Fig. 7.6)
• Probability density: square−well potential of finite depth

(see Fig. 7.7)
• Probability density: harmonic oscillator (see Fig. 7.8)
• Probability density: Coulomb potential (see Fig. 7.9)

7.5 Contour Lines of the Probability Density

Aim of this section: Generation of a plot with a line of constant probability density,
%n`m(r, ϑ) = const, in the x, z plane for eigenstates in simple spherically symmetric
potentials.

In Sect. 7.4 plots of the complete functions %n`m(r, ϑ) are described. A quick
impression of the function is obtained by a contour-line plot in 2D, Sect.
A.3.4. This is a plot of the line %n`m = c in the x, z plane with c being a
suitably chosen constant. An example is Fig. 7.10. By ‘suitable’ we mean
the following: The x, z plane is divided into regions by node lines ri = const
and node rays ϑi = const, i.e., two families of lines on which %n`m = 0.
The constant c has to be so small that a contour line appears in each region.
In other words: Since % has a maximum in each region, c should be chosen
smaller than the smallest of all these maxima.

On the subpanel Physics—Comp. Coord. you can select the Type of Po-

tential (deep square well, square well of finite depth, harmonic oscillator, or
Coulomb) and set the Rho Value % = c corresponding to the contour line.

The subpanel Physics—Potential is as described in Sect. 7.4.

Example Descriptors on File 3D_Bound_States.des

• Contour lines: deep square well
• Contour lines: square well of finite depth
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Fig. 7.10. Plot produced with descriptor Contour lines: hydrogen atom on file 3D_-
Bound_States.des

• Contour lines: harmonic oscillator
• Contour lines: hydrogen atom (see Fig. 7.10)

7.6 Contour Surface of the Probability Density

Aim of this section: Generation of a plot with a surface of constant probability den-
sity %n`m = const, in x, y, z space for eigenstates in simple spherically symmetric
potentials.

The subject of Sect. 7.5 which was the construction of a line %n`m(r, ϑ) = c
in the x, z plane is extended to the construction of a surface %n`m(x, y, z) = c
in x, y, z space. For the choice of a suitable value of the constant c we refer to
Sect. 7.5. The plot produced is of the type contour-surface plot in 3D, Sect.
A.3.5. An example is Fig. 7.11.
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Fig. 7.11. Plot produced with descriptor Contour surface: hydrogen atom, rho321 on
file 3D_Bound_States.des

On the subpanel Physics—Comp. Coord. you can select the Type of Po-

tential (deep square well, square well of finite depth, harmonic oscillator, or
Coulomb). You can indicate the Parameter Held Constant. This is either %
itself or, often simpler to determine, %/%max, where %max is the maximum that
the probability density can take. Under Parameter Value the numerical value
of that parameter is entered.

The subpanel Physics—Potential is as described in Sect. 7.4.

Movie Capability: Direct. The value of % (or %/%max) is stepped up by an
increment from frame to frame. On the subpanel Physics—Movie (see Sect.
A.4) you find the increment 1% (or 1(%/%max)). (Attention: The creation of
the movie (and also its saving in animated GIF format) will take quite some
time. You may want to let the computer work on it while you do something
else.)

Example Descriptors on File 3D_Bound_States.des

• Contour surface: deep square well, rho321
• Contour surface: square well, rho321
• Contour surface: harmonic oscillator, rho321
• Contour surface: hydrogen atom, rho321 (see Fig. 7.11)
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Fig. 7.12. Plot produced with descriptor Harmonic particle motion (ellipsoids) on
file 3D_Bound_States.des

7.7 Harmonic Particle Motion

Aim of this section: Illustration of the motion (7.53) of a Gaussian wave packet
in a harmonic-oscillator potential by plotting the probability ellipsoid at times t0,
t0 +1t , . . .. (The illustration is restricted to wave packets with uncorrelated widths
σx , σy , σz. The probability density is then simply a product of three one-dimensional
densities as treated in Sect. 3.7.)

A plot similar to Fig. 7.12 is produced. It is of the type probability-ellipsoid

plot, Sects. A.3.7 and 6.5.
On the bottom of the subpanel Physics—Comp. Coord. you find the Period

of the Harmonic Oscillator.
The subpanel Physics—Wave Packet is as in Sect. 6.5.

Movie Capability: Direct. On the subpanel Movie (see Sect. A.4) of the
parameters panel you may choose to show or not to show the initial and inter-
mediate positions of the ellipsoid.

Example Descriptor on File 3D_Bound_States.des

• Harmonic particle motion (ellipsoids) (see Fig. 7.12)
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7.8 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo in the main toolbar and selecting one of the demo files
3D_Bound_States.

(ii) More example descriptors can be found on the descriptor file 3DBound-
States(FE).des in the directory FurtherExamples.

(iii) For the following exercises use descriptor file 3D_Bound_States.des.

(iv) The numerical values of the particle mass and of Planck’s constant are
put to 1.

7.2.1 Use a multiple 2× 2 plot to plot for the angular momenta ` = 0, 1, 2, 3,
the radial wave functions of the infinitely deep square-well potential of radius
a = 0.9. Plot (a) the radial wave function Rn`, (b) rRn`, (c) R2

n`, (d) r2R2
n`.

Start from descriptor 19: ‘Exercise 7.2.1’.

7.2.2 (a–d) Repeat Exercise 7.2.1 (a–d) for the values ` = 4, 5, 6, 7. Start
from descriptor 20: ‘Exercise 7.2.2’. (e) Why are the wave functions for
small values of r the more suppressed the higher the values ` of angular mo-
mentum?

7.2.3 (a–d) Repeat Exercise 7.2.1 (a–d) with a width a = 0.5 of the infinitely
deep potential for an energy range 0 ≤ E ≤ 200. Start from descriptor 19:
‘Exercise 7.2.1’. (e) Why are the energy eigenvalues bigger for a smaller
radius of the well?

7.2.4 (a–d) Repeat Exercise 7.2.3 (a–d) for the angular momenta ` = 4, 5, 6, 7
in the energy range 0 ≤ E ≤ 1000. Start from descriptor 20: ‘Exercise
7.2.2’.

7.2.5 (a–d) Repeat Exercise 7.2.1 (a–d) for a potential depth V0 = −100.
Start from descriptor 19: ‘Exercise 7.2.1’. (e) Why are the differences
∆i = Ei − V0 of the energy eigenvalues Ei and the potential depth V0 in
this potential in the range 0 ≤ E ≤ 100 smaller than the eigenvalues in the
infinitely deep square well of Exercise 7.2.1?

7.2.6 (a–d) Repeat Exercise 7.2.2 (a–d) for a potential of finite depth V0 =
−100. Start from descriptor 19: ‘Exercise 7.2.1’. (e) Why do the wave
functions exhibit for small r values the same behavior as those of the infinitely
deep square well?

7.2.7 Plot for a harmonic-oscillator potential V = Mω2r2/2 with the oscilla-
tor frequency ω = 1 in the energy range 0 ≤ E ≤ 15 for ` = 0, 1, 2, 3 (a) the
radial wave function Rn`, (b) rRn`, (c) R2

n`, (d) r2R2
n`. Start from descriptor



7.8. Exercises 181

3: ‘Radial wave functions: harmonic oscillator’. (e) Explain in clas-
sical terms why the probability density per radial shell, r2R2

n`, for large ` is
largest close to the maximal elongation of the radial oscillator.

7.2.8 (a–d) Repeat Exercise 7.2.7 (a–d) for the angular momenta ` = 4, 5, 6,
7. (e) Why do the lowest energy eigenvalues no longer occur for larger `?

7.2.9 (a–d) Repeat Exercise 7.2.7 (a–d) for the angular momenta ` = 20, 21,
22, 23 for the lowest energy eigenvalues.

7.2.10 Repeat Exercise 7.2.7 for the angular momenta ` = 40, 41, 42, 43.
Plot for the few lowest energy eigenvalues (a) the radial wave functions Rn`,
(b) rRn`, (c) R2

n`, (d) r2R2
n`. (e) Approximate the effective potential for

higher values ` of the angular momentum by an oscillator potential having its
minimum at the minimum of Veff(r). (f) Explain why the plotted wave func-
tions look very similar to one-dimensional oscillator wave functions. (g) What
is the effective oscillator frequency ωeff for the shifted approximate oscillator?
(h) How are the ` independence of ωeff and the equal spacing of the energy
levels related?

7.2.11 Plot for a Coulomb potential with α = 1 in the range 0 ≤ r ≤ 30 for
the lowest three energy levels (a) the radial wave function Rn`, (b) rRn`,
(c) R2

n`, (d) r2R2
n`. Start from descriptor 4: ‘Radial wave functions:

Coulomb potential’. Use double plots for the presentation of the angular
momenta ` = 0, 1. (e) Calculate the energies of the lowest three levels for the
two angular momenta.

7.2.12 (a–e) Repeat Exercise 7.2.11 (a–e) for ` = 2, 3.

7.2.13 (a–d) Repeat Exercise 7.2.11 (a–d) for ` = 20. (e) Calculate the equiv-
alent oscillator potential by an expansion of the effective potential about its
minimum. (f) Calculate the energy levels in the approximating oscillator po-
tential for nr � ` and compare them with the exact Balmer formula. (g) Com-
pare the position of the minimum with the value according to the formula for
the Bohr radii.

7.2.14 (a–d) Repeat Exercise 7.2.11 (a–d) for ` = 40.

7.3.1 The potential has the form

V (r) =















−20 , 0 ≤ r < 1.5
0 , 1.5 ≤ r < 2.5

−10 , 2.5 ≤ r < 3.5
0 , 3.5 ≤ r

.

Plot for ` = 0 (a) the wave function Rn`, (b) rRn`, (c) R2
n`, (d) r2R2

n`. Start
from descriptor 5: ‘Radial wave functions in step potential’. (e) Why
is the wave function of the third state essentially different from zero only in
the second well?

7.3.2 (a–d) Repeat Exercise 7.3.1 (a–d) for ` = 1.

7.3.3 (a–d) Repeat Exercise 7.3.1 (a–d) for ` = 2.
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7.3.4 For the potential

V (r) =







100 , 0 ≤ r < 0.5
−20 , 0.5 ≤ r < 1.5

0 , 1.5 ≤ r
plot in a 2 × 2 plot for the angular momenta ` = 0, 1, 2, 3 (a) the wave
function Rn`, (b) R2

n`. Start from descriptor 5: ‘Radial wave functions in
step potential’. (c) Why does the energy of the second state vary so much
less with increasing angular momentum than in a single potential well without
the repulsive hard core below r = 0.5?

7.4.1 (a) Plot the probability densities %n`m in an infinitely deep square well
of radius a = 0.9 with a multiple plot for n = 1, ` = 0, m = 0 and n = 1,
` = 1, m = 0, 1. Start from descriptor 21: ‘Exercise 7.4.1’. (b) Explain
the significance of the node lines in the polar angle ϑ .

7.4.2 Repeat Exercise 7.4.1 (a) for n = 2.

7.4.3 (a) Repeat Exercise 7.4.1 (a) for n = 3. (b) What are the node half-
circles correlated to?

7.4.4 Repeat Exercise 7.4.1 (a) for n = 1, ` = 2, m = 0, 1 and n = 1,
` = 3, m = 0, 1. Which is the correlation between ϑ node lines and quantum
numbers?

7.4.5 Repeat Exercise 7.4.1 (a) for n = 1, ` = 2, m = 2 and n = 1, ` = 3,
m = 2, 3.

7.4.6 Repeat Exercise 7.4.1 (a) for n = 1, ` = 15, m = 15 in a single plot.

7.4.7 (a) Repeat Exercise 7.4.1 (a) for n = 1, ` = 15, m = 0 in a single
plot. (b) Explain the difference in this plot and the one of Exercise 7.4.6 (a)
in terms of classical angular momenta.

7.4.8 (a) Plot the probability densities %n`m in a three-dimensional harmonic
oscillator with a multiple plot for nr = 1, ` = 0, m = 0 and nr = 1, ` =
1, m = 0, 1. Start from descriptor 8: ‘Probability density: harmonic
oscillator’. (b) Why is the decrease of the wave functions with growing r
slower than for Exercise 7.4.1?

7.4.9 Repeat Exercise 7.4.8 (a) for nr = 2.

7.4.10 Repeat Exercise 7.4.8 (a) for nr = 0, ` = 15, m = 15.

7.4.11 Repeat Exercise 7.4.8 (a) for nr = 0, ` = 15, m = 0.

7.4.12 (a) Plot the probability densities %n`m in a Coulomb potential for the
quantum numbers n = 1, ` = 0, m = 0. Start from descriptor 9: ‘Probabil−
ity density: Coulomb potential’. (b) Why do no states exist for n = 1,
` = 1, m = 1?

7.4.13 (a) Repeat Exercise 7.4.12 using a multiple plot for the probability
densities for the quantum numbers n = 2, ` = 0, m = 0 and n = 2, ` = 1,
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m = 0, 1. (b) How do the nodes and the quantum numbers correspond to
each other?

7.4.14 (a) Repeat Exercise 7.4.12 (a) for n = 15, ` = 14, m = 14. Make
sure you extend your plot to large values of r by changing the C3 window in
x and y. (b) Why do you need a very large scale factor in z (unless you use
the autoscale facility) to see the peak in the probability density? (c) Why does
the region of large values of ρn`m occur at large r?

7.4.15 Repeat Exercise 7.4.12 (a) for n = 15, ` = 14, m = 0.

7.5.1 (a) Plot the contour lines for the deep square-well eigenstate with prin-
cipal quantum number n = 3 using descriptor 10: ‘Contour lines: deep
square well’. (b) Keep that plot on the screen and produce the correspond-
ing plot for n = 2. (c) Now add the plot for n = 1. (d) Compare the plots in
terms of radial and polar nodes.

7.5.2 Repeat Exercise 7.5.1 for a square well of finite depth using descriptor
11: ‘Contour lines: square well of finite depth’.

7.5.3 Plot descriptor 10: ‘Contour lines: deep square well’ (deep square
well) and leave the plot on the screen. Now plot descriptor 11: ‘Con−
tour lines: square well of finite depth’ (square well of finite depth).
(a) Compare the radial extension of the contour lines. (b) Reduce the depth
of the well to V0 = −3. Discuss the slight change in radial extension (best
visible for %310). Why are there no plots for ` = 2?

7.5.4 Plot descriptor 12: ‘Contour lines: harmonic oscillator’ (har-
monic oscillator). You will get a plot for nr = 1. Produce the corresponding
plots for nr = 0, 2, 3. Describe the change in radial extension.

7.5.5 Plot descriptor 13: ‘Contour lines: hydrogen atom’ (Coulomb po-
tential). Produce similar plots for n = 1, 2, 3, 4.

7.6.1 Plot descriptor 17: ‘Contour surface: hydrogen atom, rho321’. Af-
ter a computing time of up to several minutes (!) you will get a contour-surface
plot of the state n = 3, ` = 2, m = 1 for the electron in the hydrogen atom.
(a) Switch off the hidden-line technique in the subpanel Graphics—Hidden

Lines and plot again. Plotting will be much faster. (b) Change to n = 3,
` = 2, m = 0. The surface does not fit into the range of computing co-
ordinates. Therefore, on the subpanel Physics—Comp. Coord. increase the
magnitudes of xbeg, xend, yend, zbeg, zend and plot again. (c) Change to n = 4,
` = 2, m = 0 and plot. Next, set % = 0.0005. If needed, again adapt
the range of computing coordinates. (d) Switch the hidden-line technique on
again and plot. (e) All plots displayed so far show the contour surface in the
half-space y > 0. To see it in full space set ybeg = −yend, Ybeg = −1,
ϕend = 360. (You find these quantities on the subpanels Physics—Comp. Co-

ord., Graphics—Geometry, and Graphics—Accuracy, respectively.) To check
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these settings you may first plot with hidden lines off and later, if satisfied,
with hidden lines on.

7.6.2 Plot (a) descriptor 14: ‘Contour surface: deep square well,
rho321’, (b) descriptor 15: ‘Contour surface: square well, rho321’,
(c) descriptor 16: ‘Contour surface: harmonic oscillator, rho231’.
With each of them you may perform a set of steps similar to those of Exercise
7.6.1. Note: For (b) begin with %321, proceed with %320, and then study %322;
the potential is too shallow to accommodate eigenstates with n = 4.

7.7.1 (a) Plot the motion of a three-dimensional Gaussian wave packet in a
spherically symmetric harmonic-oscillator potential. As initial conditions use
x0 = 3, y0 = 1, z0 = 2, px0 = 1, py0 = 2, pz0 = 3 for T = 1, t0 = 0,
1t = 0.1, N = 1. Start from descriptor 18: ‘Harmonic particle motion
(ellipsoids)’. (b) Calculate the classical angular momentum (h̄ = 1) for
the initial conditions under (a).

7.7.2 Repeat Exercise 7.7.1 (a) for T = 0.5.

7.7.3 (a) Repeat Exercise 7.7.1 (a) for the initial conditions x0 = 5, y0 = 0,
z0 = 0, px0 = −2, py0 = 0, pz0 = 0 for the time intervals 1t = 0.1667 for
N = 4 positions. (b) Calculate the classical angular momentum.

7.7.4 Repeat Exercise 7.7.1 (a) for the initial conditions x0 = 0, y0 = 0,
z0 = 0, px0 = 5, py0 = 0, pz0 = 0 and the time intervals 1t = 0.0833 for
N = 10 positions.

7.7.5 (a) Repeat Exercise 7.7.4 for a Gaussian wave packet at rest, x0 = 0,
y0 = 0, z0 = 0, px0 = 0, py0 = 0, pz0 = 0, σx0 = 0.2, σy0 = 0.3, σz0 = 1.4,
for the time interval 1t = 0.25 for two positions (N = 2). (b) Why does the
shape of the wave packet change from prolate to oblate?



8. Scattering in Three Dimensions

Contents: Radial scattering wave functions. Boundary and continuity conditions.
Solutions for step potentials. Scattering of plane harmonic waves. Scattering-matrix
element. Partial scattering amplitude.
Scattering amplitude as sum over partial scattering amplitudes. Differential cross
section. Total cross section. Partial cross sections. Scattering amplitude and phase.
Unitarity and the Argand diagram.

8.1 Physical Concepts

8.1.1 Radial Scattering Wave Functions

Besides the bound states as discussed in Chap. 7 there are continuum states for
potentials with V∞ < ∞, (7.11). These states will be studied in this chapter
for a spherically symmetric step potential

V (r) =



















V1 , 0 ≤ r < r1 region 1
V2 , r1 ≤ r < r2 region 2
...

...

VN , rN−1 ≤ r region N

. (8.1)

Scattering states are continuum eigenfunctions of the stationary Schrödinger
equation (7.12) for eigenvalues E ≥ V∞, i.e., in the case of the step potential
(8.1) for all the values E ≥ VN .

The wave number in the N regions is

i) if E > Vq :

kq =
∣

∣

∣

√

2M(E − Vq)/h̄
∣

∣

∣
, (8.2)

or

ii) if E < Vq :

kq = iκq , κq =
∣

∣

∣

√

2M(Vq − E)/h̄
∣

∣

∣
. (8.3)
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The radial wave function of angular momentum ` consists again of N pieces

R`(k, r) =



























R`1(k1, r) , 0 ≤ r < r1 region 1
R`2(k2, r) , r1 ≤ r < r2 region 2
...

...

R`N−1(kN−1, r) , rN−2 ≤ r < rN−1 region N − 1
R`N (kN , r) , rN−1 ≤ r region N

. (8.4)

Here we have put
k = kN , 0 ≤ k <∞ ,

as the wave number in the region N of incident and reflected wave.
The pieces R`q(kq, r), q = 1, . . . , N , of the wave function in the N re-

gions have the form

R`q(kq, r) = A`qj`(kqr)+ B`qn`(kqr) . (8.5)

For kq real, i.e., E > Vq , the spherical Bessel functions j` and n` are real so
that R`q(kq , r) is a real function if A`q and B`q are real coefficients, as will
turn out in the following. Alternatively, with the help of (11.38), (11.39) the
pieces R`q(kq , r), q = 1, . . . , N , of the wave function can be expressed in
terms of spherical Hankel functions, see Sect. 11.1.6,

R`q(kq , r) = D`qh(−)` (kqr)+ F`qh(+)` (kqr) (8.6)

with the coefficients

D`q = −
1

2i
(A`q − iB`q) and F`q =

1

2i
(A`q + iB`q) . (8.7)

For kq real, i.e., E > Vq ,

h
(−)
` (kqr) = C−`

e−ikqr

kqr
(8.8)

is an incoming spherical wave, i.e., a spherical wave propagating from large
values of the radial distance r in region q toward the origin r = 0. Analo-
gously, for kq real

h
(+)
` (kqr) = C+`

eikqr

kqr
(8.9)

is an outgoing spherical wave, i.e., a spherical wave propagating from small
values r in region q outward. Thus, in analogy to the one-dimensional case,
the wave function in a region q with kq real can be interpreted as a superposi-

tion of an incoming, h(−)` , and an outgoing, h(+)` , complex spherical wave.
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For scattering wave functions we have E > VN , so that in region N the
wave number kN is real and h(−)` (kNr) is the incident spherical wave, whereas

h
(+)
` (kN r) is the reflected spherical wave, of angular momentum `. For imag-

inary wave numbers kq = iκp, i.e., E < Vq , q 6= N , the scattering wave
R`q(iκq, r) in region q is a linear superposition of the real functions, see
(11.41),

i−(`−1)h
(−)
` (iκqr) = i−(`−1)C−`

eκqr

r
, i`+1h

(+)
` (iκqr) = i`+1C+`

e−κqr

r
.

(8.10)
Thus, for real coefficients (±i)−(`±1)i(A`q ± iB`q)/2 in

R`q(iκq , r) =
i

2

[

(A`q − iB`q)h
(−)
` (iκqr)− (A`q + iB`q)h

(+)
` (iκqr)

]

(8.11)
the radial wave functions R`q(iκq , r) are real. The physical interpretation of
R`q(iκq, r) in a region q with E < Vq is again the tunnel effect. Even though
the total radial energy of the particle is lower than the potential barrier the
wave penetrates the wall of height Vq .

8.1.2 Boundary and Continuity Conditions. Solution

of the System of Inhomogeneous Linear Equations

for the Coefficients

The two boundary conditions for scattering solutions are

i) At r = 0: R`1(k1, r) is free of singularities, Sect. 7.1. This requires

B`1 = 0 , i.e., R`1(k1, r) = A`1j`(k1r) , (8.12)

since the n`(k1r) possess a singularity at r = 0.

ii) At r →∞, i.e., in region N we have to have an incoming and an outgoing
spherical wave. This is fulfilled by (8.6) in region N . For given boundary
conditions for large r we may assume that the coefficients A`N of the Bessel
functions j`(kr) in region N are known quantities. Further below in this
section we shall discuss the choice of the A`N for the boundary condition
posed by an incoming plane wave.

As in Sect. 7.1, for the scattering solutions, the radial wave function
also has to be continuous and continuously differentiable at the points r1, r2,

. . . , rN−1 where the pieces R`q(kq, r) have to be matched. The continuity
conditions pose 2(N − 1) inhomogeneous linear algebraic equations for the
2(N − 1) coefficients A`1, A`2, B`2, . . ., A`N−1, B`N−1, B`N . The coef-
ficient A`N given by the boundary condition constitutes the inhomogeneity
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of the system. Thus the 2(N − 1) unknown coefficients are uniquely de-
termined by the inhomogeneous linear equations in terms of the coefficient
A`N . The coefficient A`N can be chosen to be real. The functions j` and
n` are real in the regions with real kq , i.e., E > Vq , and the (±i)`±1h

(±)
`

are real in the regions with imaginary kq = iκq , i.e., E < Vq . Because
the coefficients of the linear system of 2(N − 1) equations are real, the so-
lutions A`1, A`2, B`2, . . . , A`N−1, B`N−1, B`N are real coefficients and thus
real functions of the incoming wave number k. Thus, the radial wave function
R`(k, r) is a real function of k and r .

8.1.3 Scattering of a Plane Harmonic Wave

For the usual scattering experiment the particles possess a momentum p suffi-
ciently sharp to describe the incoming particles by a three-dimensional plane
harmonic wave with wave vector k = p/h̄. We choose the z direction ez of
the polar coordinate frame parallel to the momentum, i.e., p = h̄k = h̄kez.
The plane wave has the form (cosϑ = k · r/kr)

ϕ(k, r) = eik·r = eikz = eikr cosϑ . (8.13)

According to (6.53) it can be decomposed into partial waves,

ϕ(k, r) = eikr cosϑ =
∞
∑

`=0

(2`+ 1)i`j`(kr)P`(cosϑ) . (8.14)

This means that the incoming plane wave in region N is equivalently well
described by a set of partial waves of angular momentum ` and magnetic
quantum number m = 0. The radial wave function j`(kr) is a superposition
(11.38),

j`(kr) =
1

2i

[

h
(+)
` (kr)− h(−)` (kr)

]

, (8.15)

of incoming and outgoing spherical waves 1
2ih

(−)
` (kr) and 1

2ih
(+)
` (kr). The

incoming radial wave in region N is thus

Rin
`N (k, r) = −

1

2i
h
(−)
` (kr) , (8.16)

for the moment leaving aside the weight factor (2`+ 1)i` in the partial-wave
decomposition (8.14). To have the term (8.16) as the incoming spherical
wave in the solution of the Schrödinger equation we divide R`(k, r), (8.4),
by (A`N − iB`N ) and obtain for the `th radial wave function

R
(+)
` (k, r) = 1

A`N − iB`N
R`(k, r) . (8.17)
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Its piece in region N is then given by

R
(+)
`N (k, r) = −

1

2i
h
(−)
` (kr)+ 1

2i
S`(k)h

(+)
` (kr) . (8.18)

The coefficient

S`(k) =
A`N + iB`N
A`N − iB`N

, (8.19)

being a function of the incoming wave number k = p/h̄, is called the
scattering-matrix element S` of the `th partial wave. It is the angular-
momentum projection of the S matrix. The function R(+)`N (k, r) can also be
rephrased in terms of j`(kr):

R
(+)
`N (k, r) = j`(kr)+

1

2i
(S`(k)− 1)h(+)` (kr) . (8.20)

The coefficient

f`(k) =
1

2i
(S`(k)− 1) (8.21)

is called the partial scattering amplitude. It determines the effect of the po-
tential V (r) on the `th partial wave j`(kr) in the decomposition (8.14) of the
incoming plane wave. The representation (8.20) is the appropriate form for
the construction of the full three-dimensional stationary wave

ϕ(+)(k, r) =
∞
∑

`=0

ϕ`(k, r) (8.22)

with
ϕ`(k, r) = (2`+ 1)i`R(+)` (k, r)P`(cosϑ) (8.23)

being the partial stationary wave of angular momentum `. The stationary
wave is the superposition

ϕ(+)(k, r) = eik·r + η(k, r) (8.24)

of the incoming three-dimensional plane harmonic wave and the scattered

wave

η(k, r) =
∞
∑

`=0

η`(k, r) . (8.25)

The `th scattered partial wave η`(k, r) is given by

η`(k, r) = (2`+ 1)i`[R(+)` (k, r)− j`(kr)]P`(cosϑ) . (8.26)

In region N the piece of the scattered partial wave η`N (k, r) has the explicit
representation

η`N (k, r) = (2`+ 1)i`f`(k)h
(+)
` (kr)P`(cosϑ) . (8.27)



190 8. Scattering in Three Dimensions

For far out distances kr � 1 in region N , the function η`N (k, r), and
thus η`(k, r), is dominated by the asymptotically leading term of the Hankel
function

h
(+)
` (kr)→ i−`

eikr

kr
, kr →∞ . (8.28)

This leads to the asymptotic representation

η`(k, r)→ (2`+ 1)
1

k
f`(k)

eikr

r
P`(cosϑ) , kr →∞ . (8.29)

In region N the total scattered wave is given by (8.25) and (8.27):

η(k, r) =
∞
∑

`=0

η`(k, r)

=
∞
∑

`=0

(2`+ 1)i`f`(k)h
(+)
` (kr)P`(cosϑ) , rN−1 ≤ r . (8.30)

For asymptotic r values in region N , i.e., for kr � 1, the asymptotic
representation is again obtained from (8.28) yielding

η(k, r) ≈ f (k, ϑ)e
ikr

r
(8.31)

with the scattering amplitude read off (8.29):

f (k, ϑ) = 1

k

∞
∑

`=0

(2`+ 1)f`(k)P`(cosϑ) . (8.32)

This determines the modulation of the scattered spherical wave r−1 exp(ikr)
in the polar angle ϑ .

Because of the fall-off of (8.31) the infinite sum (8.32) can be approxi-
mated by a finite sum

η(k, r) ≈
L
∑

`=0

η`(k, r) , L ≥ krN−1 . (8.33)

Here L is a dimensionless index; the corresponding angular momentum is
h̄L. The stationary wave ϕ(+)(k, r) is best approximated by inserting (8.33)
in (8.24),

ϕ(+)(k, r) ≈ eik·r +
L
∑

`=0

η`(k, r) . (8.34)

The density of particles driven by the potential out of the original beam
into the direction ϑ is given by |η(k, r)|2, which is asymptotically (kr � 1)
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|η(k, r)|2 = |f (k, ϑ)|2/r2 . (8.35)

The current 1I of particles passing through a small area 1a vertical to the
ray from the scattering potential to the position of1a at angle ϑ and distance
r is

1I = |η(k, r)|2v1a = |f (k, ϑ)|2v1a
r2 = |f (k, ϑ)|

2v1Ω . (8.36)

The quantity

1Ω = 1a

r2 (8.37)

is the solid angle under which 1a appears, seen from the origin.
The incident current density is the incident particle density times its ve-

locity,
j = |eik·r|2v = v . (8.38)

Thus, the current 1I of particles scattered into the solid angle 1Ω can be
written as

1I = |f (k, ϑ)|21Ω j . (8.39)

The proportionality constant between the initial current density j and the cur-
rent through the solid-angle element 1Ω is the differential scattering cross

section dσ/dΩ:

1I = dσ

dΩ
1Ω j . (8.40)

Thus we identify
dσ

dΩ
= |f (k, ϑ)|2 (8.41)

as the differential cross section for particles of momentum p = h̄k on a scat-
terer described by the potential V (r). The scattering amplitude f (k, ϑ) is
given by (8.32).

The total scattering cross section is the integral of (8.41) over the total
solid angle 4π :

σtot =
∫

dσ

dΩ
dΩ = 2π

∫ +1

−1
|f (k, ϑ)|2 d cosϑ . (8.42)

Using the orthogonality (11.10) of the Legendre polynomials,
∫ +1

−1
P`′(cosϑ)P`(cosϑ) d cosϑ = 2

2`+ 1
δ`′` , (8.43)

we get, using (8.32),

σtot =
4π

k2

∞
∑

`=0

(2`+ 1)|f`(k)|2 =
∞
∑

`=0

σ` (8.44)
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with the partial cross section of angular momentum `:

σ` =
4π

k2 (2`+ 1)|f`(k)|2 . (8.45)

8.1.4 Scattering Amplitude and Phase. Unitarity.

The Argand Diagram

In Chap. 4 we derived current conservation as the basis for the conservation of
probability. In three dimensions the same chain of arguments is valid. How-
ever, simple physical arguments lead to the same conclusion without calcula-
tions. Elastic scattering of particles on a spherically symmetric potential con-
serves particle number, energy, and angular momentum. Thus the magnitude
of the velocity remains unaltered in the scattering process. Because the parti-
cle number and angular momentum are conserved, this leads to conservation
of the current density of the spherical waves of angular momentum `. Thus
the incoming current of a spherical wave is only reflected upon scattering but
keeps its magnitude. Therefore, the complex scattering-matrix element S` de-
termining the relative factor between incoming and outgoing spherical waves
in region N must have the absolute value one. This is the unitarity relation

for the scattering-matrix element S`:

S∗`S` = 1 . (8.46)

The scattering-matrix element can only be a complex phase factor, which is
conventionally written as

S` = e2iδ` (8.47)

with the scattering phase δ` of the `th partial wave. This is directly verified
by (8.19), which also shows that S` has modulus one:

S` = e2iδ` = A`N + iB`N
A`N − iB`N

. (8.48)

The phase itself is then given by

cos δ` =
A`N

√

A2
`N + B2

`N

, sin δ` =
B`N

√

A2
`N + B2

`N

. (8.49)

The partial scattering amplitude f`(k) is given by (8.21) in terms of the
scattering-matrix element S`. With (8.47) one easily expresses f`(k) in terms
of the scattering phase δ`:

f`(k) = eiδ` sin δ` . (8.50)
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Starting from (8.46), (8.21) yields the unitarity relation for the scattering am-

plitude

Im f`(k) = |f`(k)|2 . (8.51)

This relation is verified by using (8.50) directly. The unitarity relation is easily
interpreted in the complex plane spanned by the real and imaginary parts of
f`(k):

(Re f`(k))
2 +

(

Im f`(k)−
1

2

)2

= 1

4
. (8.52)

This represents a circle of radius 1/2 about the center (0, 1/2) in that plane.
This circle is again referred to as the Argand diagram of elastic potential
scattering. The analogy to Sect. 4.1 is obvious.

8.1.5 Coulomb Scattering

We consider the scattering of a particle of charge q = ±e by a Coulomb field
originating from a charge Q = ±e at the origin. The potential is

V (r) = ± e2

4πε0

1

r
= ±αh̄c1

r
, (8.53)

see Sect. 7.1.6. The potential is attractive, i.e., negative if q and Q carry dif-
ferent signs. Otherwise it is repulsive. The corresponding effective potential
is

V eff
` (r) = h̄2

2M

`(`+ 1)

r2 ± αh̄c
r

. (8.54)

The radial Schrödinger equation reads
[

− h̄
2

2M

1

r

d2

dr2
r + V eff

` (r)

]

R`(k, r) = ER`(k, r)

with k =
√

2ME/h̄. Solutions exist for all positive energies E,

R`(k, r) =
A`

r
eikr(kr)`+1F(`+ 1+ iη | 2(`+ 1) | z) . (8.55)

Here

F(a | b | z) = 1+ a
b

z

1! +
a(a + 1)

b(b + 1)

z2

2! + · · ·

is the confluent hypergeometric function. The series defining it converges for
all complex values of z. The factor A` is

A` =
2`

(2`+ 1)!e
− 1

2πη|0(`+ 1+ iη)|
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with 0(z) being Euler’s Gamma function. The dimensionless parameter η is

η = ± 1

kaB
, aB =

h̄

αMc
,

with aB the Bohr radius.
In analogy to (8.22) the stationary partial waves are

ϕ`(k, r) = (2`+ 1)i`eiδ`R`(k, r)P`(cosϑ) , (8.56)

where the so-called Coulomb scattering phase δ` resulting from the asymp-
totic behavior of R`(k, r) is

δ` =
1

2i
ln
0(`+ 1+ iη)

0(`+ 1− iη)
.

Here, as in Sect. 8.1.3, it is assumed that the incoming wave runs in z direc-
tion, k = kez.

The total stationary wave, the Coulomb wave function, is

ϕ(k, r) =
∞
∑

`=0

ϕ`(k, r) . (8.57)

Its asymptotic form is given by

ϕ(k, r)→ ei{kr cosϑ+η ln[kr(1−cosϑ)]} , |r(1− cosϑ)| → ∞ ,

and exhibits the long range of the Coulomb potential h̄cα/r through the log-
arithmic term in the exponent. The infinite sum (8.57) can be replaced by a
finite sum

ϕ(k, r) ≈
L
∑

`=0

ϕ`(k, r) (8.58)

for small r , r ≤ L/k. L, again, is a dimensionless index.

Further Reading

Alonso, Finn: Vol. 3, Chap. 7
Berkeley Physics Course: Vol. 4, Chaps. 8, 9
Brandt, Dahmen: Chaps. 11, 12, 14, 15
Feynman, Leighton, Sands: Vol. 3, Chap. 19
Flügge: Vol. 1, Chap. 1D
Gasiorowicz: Chaps. 11, 19
Merzbacher: Chaps. 11, 19
Messiah: Vol. 1, Chaps. 10, 11
Schiff: Chap. 5
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8.2 Radial Wave Functions

Aim of this section: Presentation of the spherical step potential V (r), (8.1), and of
the radial wave function R`(k, r), (8.4), in that potential.

A plot similar to Fig. 8.1 or Fig. 8.2 is produced displaying the spherical step
potential V (r) as a long-dash broken line, the total energy E as a short-dash
horizontal line, and the radial wave function R`(k, r) (or a simple function
thereof) as a continuous line.

On the subpanel Physics—Comp. Coord. you can select the way the Radial

Wave Function is Shown (as R2
E`, RE`, r

2R2
E`, or rRE`). Moreover, you can

choose to Plot the Result for

1. fixed energy E, various values of angular momentum ` (i.e., over an r, `
plane like in Fig. 8.1) or for

2. fixed angular momentum `, various values of energy E (i.e., over an r, E
plane like in Fig. 8.2).

Please note: If you choose option 1, make sure that you draw R`(r) for
every integer value of ` in your range of `: Choose integers for ybeg, yend (on
the subpanel Physics—Comp. Coord.) and set ny (on the subpanel Graphics—
Accuracy) equal to |ybeg − yend| + 1.

On the subpanel Physics—Variables there are seven items:

• You can choose whether the Input Below (in the next item) is Taken as wave
number k or energy E.
• Wave Number / Energy – Corresponding to the choice in the item above the

input field is labeled k or E. Input is enabled only if the option ‘fixed energy’
was chosen on the subpanel Physics—Comp. Coord..
• Angular-Momentum Quantum Number – Input for the quantum number ` is

enabled only if the option ‘fixed angular momentum’ was chosen on the
subpanel Physics—Comp. Coord.. In a multiple plot the value of ` is taken
for the first plot and incremented by one from plot to plot.
• Graphical Item – contains the quantity `DASH which determines the dash

length of the broken lines.
• Scale Factor – Because the wave function RE`(r) is plotted in an r, E plane

with the total energy Etot as zero line, technically speaking the function
E = Etot + sRE`(r) is shown. The scale factor s can be adjusted here.
• Clipping Region for Potential – The lines showing the potential and the ef-

fective potential are normally drawn only inside the range of the world co-
ordinate Y . You can extend that upwards by the fraction f_Y+ of its original
range in in Y . Similarly, f_Y-, extends the region downwards.
• Shown as Dashed Line – Here you can choose to display

– Potential and Effective Potential,



196 8. Scattering in Three Dimensions

Fig. 8.1. Plot produced with descriptor 3D scattering in step pot., R_El, E fixed,
l running on file 3D_Scattering.des

Fig. 8.2. Plot produced with descriptor 3D scattering in step pot., R_El, l fixed,
E running on file 3D_Scattering.des
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– Potential Only,
– None of the Above.

On the subpanel Physics—Potential you find the Number of Regions N of
the spherical step potential (8.1), 2 ≤ N ≤ 5. Under the heading Regions

you find the boundaries ri between regions and the potential values Vi for the
different regions.

Movie Capability (only for fixed `): Indirect. After conversion to direct
movie capability the start and end values of energy can be changed in the sub-
panel Movie (see Sect. A.4) of the parameter panel. In the resulting movie the
energy of the stationary state changes with time. Such a movie, in particular,
is useful for the demonstration of resonances.

Example Descriptors on File 3D_Scattering.des

• 3D scattering in step pot., R_El, E fixed, l running
(see Fig. 8.1)
• 3D scattering in step pot., R_El, l fixed, E running

(see Fig. 8.2)
• Movie: 3D scattering in step pot., R_El , l fixed, E
running

8.3 Stationary Wave Functions

and Scattered Waves

Aim of this section: Presentation of the stationary wave function ϕ(+)(r, ϑ), (8.22),
approximated as eikz +

∑L
`=0 η`(r, ϑ), (8.34), the partial waves ϕ`(r, ϑ), (8.23), the

scattered spherical wave η(r, ϑ), (8.30), approximated as
∑L
`=0 η`(r, ϑ), the partial

scattered waves η`(r, ϑ), (8.26), (8.29).

A plot is produced showing the function selected and in addition one or sev-
eral circular arcs corresponding to the step positions ri of the step potential.

On the subpanel Physics—Comp. Coord. you can select as the Function

Computed

• the partial stationary wave ϕ`,
• the stationary wave ϕ approximated by eikz +

∑L
`=0 η`,

• the scattered wave η approximated by
∑L
`=0 η`.

Moreover, you can choose the way the selected Function is Shown (absolute
square, real part, imaginary part).

On the subpanel Physics—Variables there are three items:

• You can choose whether the Input Below (in the next item) is Taken as wave
number k or energy E.
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Fig. 8.3. Plot produced with descriptor 3D scattering in step pot., |phi|**2 on file
3D_Scattering.des

Fig. 8.4. Plot produced with descriptor 3D scattering in step pot., phi_l on file
3D_Scattering.des

• Wave Number / Energy – Corresponding to the choice in the item above the
input field is labeled k or E.
• Angular-Momentum Quantum Number – This is the quantum number ` (if

you choose to plot a partial wave ϕ` or η`) or the upper index L in the sum
approximating ϕ or η (if you choose to plot one of these two functions). In
a multiple plot the input value of ` (or L) is taken for the first plot. It is
successively incremented by one from plot to plot.

The subpanel Physics—Potential is as described in Sect. 8.2.

Example Descriptors on File 3D_Scattering.des

• 3D scattering in step pot., |phi|**2 (see Fig. 8.3)



8.4. Differential Cross Sections 199

Fig. 8.5. Plot produced with descriptor 3D scattering in step pot., |eta|**2 on file
3D_Scattering.des

Fig. 8.6. Plot produced with descriptor 3D scattering in step pot., eta_l on file
3D_Scattering.des

• 3D scattering in step pot., phi_l (see Fig. 8.4)
• 3D scattering in step pot., |eta|**2 (see Fig. 8.5)
• 3D scattering in step pot., eta_l (see Fig. 8.6)

8.4 Differential Cross Sections

Aim of this section: Illustration of the differential cross section dσ/dΩ , (8.41).

A plot similar to Fig. 8.7 is produced showing, over a plane spanned by the
variables cosϑ and E, various curves dσ(cosϑ)/dΩ for equidistant fixed
values of E. For the same fixed values of E dashed lines dσ/dΩ = 0 are
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also shown. The differential cross section is computed according to (8.41).
The scattering amplitude f (k, ϑ) appearing in that equation is approximated
by replacing the infinite sum (8.32) by a finite sum in which the index ` runs
from ` = 0 to ` = L.

Fig. 8.7. Plot produced with descriptor 3D scattering in step pot., dsigma/dOmega
on file 3D_Scattering.des

On the subpanel Physics—Variables you find

• the Angular-Momentum Quantum Number L, i.e., the upper index of the sum
used in the approximation of dσ/dΩ (In a multiple plot this value of L is
used for the first plot and incremented by one for every following plot.),
• as Graphical Item the dash length `DASH of the zero lines.

The subpanel Physics—Potential is as described in Sect. 8.2.

Movie Capability: Indirect. After conversion to direct movie capability
the start and end values of the energy can be changed in the subpanel Movie

(see Sect. A.4) of the parameter panel. In the resulting movie the energy
changes with time.

Example Descriptor on File 3D_Scattering.des

• 3D scattering in step pot., dsigma/dOmega (see Fig. 8.7)
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8.5 Scattering Amplitude. Phase Shift.

Partial and Total Cross Sections

Aim of this section: Illustration of the complex partial scattering amplitude
f`, (8.21), (8.50), in the following graphs: the Argand diagram Im {f`(E)} vs.
Re {f`(E)}; Re {f`(E)} as function of energy E; Im {f`(E)} as function of energy
E; |f`(E)|2 as function of energy E as well as the phase shift δ`(E), (8.49), as a
function of energy E; the partial cross section σ`(E), (8.45), as a function of energy
E; and the total cross section σtot, (8.44), approximated by σtot ≈

∑L
`=0 σ`(E) as a

function of energy E.

On the bottom of the subpanel Physics—Comp. Coord. there are two fields
with choices to select from:

• Curve Shown is of Type. The type can be
– Argand diagram: Im f`(E) vs. Re f`(E),
– y = y(x) – normally chosen if Argand diagram is not selected,
– x = x(y) – only chosen to produce plot Re f`(E) as plot below Argand

diagram (bottom-left plot in Fig. 8.8).
• Function Computed is – This choice is enabled only if the Argand diagram

was not selected. You then choose to plot one of the six functions |f`(E)|2,
Re f`(E), Im f`(E), δ`(E), σ`(E),

∑L
`=0 σ`(E).

On the subpanel Physics—Variables you find the

• Angular-Momentum Quantum Number ` [or L if you chose to plot
∑L
`=0

σ`(E)], which, in case of a multiple plot, is taken for the first plot and
incremented by one for every successive plot, and the
• Range of E in Argand Diagram – input for the boundaries Ebeg, Eend of that

range is enabled only if Argand diagram was selected as curve to be shown.

The subpanel Physics—Potential is as described in Sect. 8.2.

Remarks: It is customary to draw an Argand diagram [Im {f`(E)} vs.
Re {f`(E)}] and graphs Im {f`(E)} and Re {f`(E)} in such a way that the
graphs appear to be projections to the right and below the Argand diagram,
respectively. You can do that by using a mother descriptor, which in turn
quotes several individual descriptors (see Appendix A.10) as in the example
plot, Fig. 8.8.

Movie Capability (only for the Argand diagram proper): Direct. The tra-
jectory in the complex plane is seen to develop as the range of the independent
variable is increased proportional to time.

Example Descriptors on File 3D_Scattering.des

• 3D scattering in step pot., Argand, combined plot
(see Fig. 8.8, this is a mother descriptor quoting the next four descriptors
listed below, each describing one of the four plots in the combined plot)
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Fig. 8.8. Combined plot produced with descriptor 3D scattering in step pot., Ar−
gand, combined plot on file 3D_Scattering.des. This descriptor quotes four other de-
scriptors which generate the four individual plots

Fig. 8.9. Part of plot produced with descriptor 3D scattering in step pot., delta_l
on file 3D_Scattering.des
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Fig. 8.10. Part of plot produced with descriptor 3D scattering in step pot., sigma_l
on file 3D_Scattering.des

Fig. 8.11. Plot produced with descriptor 3D scattering in step pot., sigma_tot on
file 3D_Scattering.des

• 3D scattering in step pot., Argand, imaginary part vs.
real part
• 3D scattering in step pot., Argand, imaginary part
• 3D scattering in step pot., Argand, real part
• 3D scattering in step pot., Argand, delta_l
• 3D scattering in step pot., delta_l (see Fig. 8.9)
• 3D scattering in step pot., sigma_l (see Fig. 8.10)
• 3D scattering in step pot., sigma_tot (see Fig. 8.11)
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8.6 Coulomb Scattering: Radial Wave Function

Aim of this section: Presentation of the Coulomb potential V (r), (8.53), and of the
radial wave functions R`(k, r), (8.55), in that potential.

A plot similar to Fig. 8.12 or Fig. 8.13 displaying the Coulomb potential V (r)
as a long-dash broken line, the total energy E as a short-dash horizontal line,
and the radial wave function (or a simple function thereof) as a continuous
line.

Please note: The numerical values of α, h̄, and M are set equal to one
and cannot be changed.

On the subpanel Physics—Comp. Coord. you can select the way the Radial

Wave Function is Shown (as R2
E`, RE`, r

2R2
E`, or rRE`). Moreover, you can

choose to Plot the Result for

1. fixed energy E, various values of angular momentum ` (i.e., over an r, `
plane like in Fig. 8.12) or for

2. fixed angular momentum `, various values of energy E (i.e., over an r, E
plane like in Fig. 8.13).

Please note: If you choose option 1, make sure that you draw RE`(r) for
every integer value of ` in your range of `: Choose integers for ybeg, yend (on

Fig. 8.12. Plot produced with descriptor Coulomb scattering, R_El, E fixed, l run−
ning on file 3D_Scattering.des
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Fig. 8.13. Plot produced with descriptor Coulomb scattering, R_El, l fixed, E run−
ning on file 3D_Scattering.des

the subpanel Physics—Comp. Coord.) and set ny (on the subpanel Graphics—
Accuracy) equal to |ybeg − yend| + 1.

On the subpanel Physics—Variables there are seven items:

• Under the heading Coulomb Potential is you can choose between Attractive

and Repulsive.
• You can choose whether the Input Below (in the next item) is Taken as wave

number k or energy E.
• Wave Number / Energy – Corresponding to the choice in the item above the

input field is labeled k or E. Input is enabled only if the option ‘fixed energy’
was chosen on the subpanel Physics—Comp. Coord..
• Angular-Momentum Quantum Number – Input for the quantum number ` is

enabled only if the option ‘fixed angular momentum’ was chosen on the
subpanel Physics—Comp. Coord.. In a multiple plot the value of ` is taken
for the first plot and incremented by one from plot to plot.
• Graphical Item – contains the quantity `DASH which determines the dash

length of the broken lines.
• Scale Factor – Because the wave function RE`(r) is plotted in an r, E plane

with the total energy Etot as zero line, technically speaking the function
E = Etot + sRE`(r) is shown. The scale factor s can be adjusted here.
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• Shown as Dashed Line – Here you can choose to display
– Potential and Effective Potential,
– Potential Only,
– None of the Above.

Movie Capability (only for fixed `): Indirect. After conversion to direct
movie capability the start and end values of energy can be changed in the
subpanel Movie (see Sect. A.4) of the parameter panel. In the resulting movie
the energy of the stationary state changes with time.

Example Descriptors on File 3D_Scattering.des

• Coulomb scattering R_El, E fixed, l running (see Fig. 8.12)
• Coulomb scattering R_El, l fixed, E running (see Fig. 8.13)
• Movie: Coulomb scattering, R_El, l fixed, E running

8.7 Coulomb Scattering: 3D Wave Function

Aim of this section: Presentation of the stationary Coulomb wave function ϕ(k, r),
(8.57), approximated as ϕ =

∑L
`=0 ϕ`, (8.58), and of the partial stationary waves

ϕ`(k, r), (8.56).

On the subpanel Physics—Comp. Coord. you can select as the Function Com-

puted:

• the partial stationary wave ϕ` or
• the Coulomb wave ϕ approximated as

∑L
`=0 ϕ`.

Moreover, you can choose the way the selected Function is Shown (absolute
square, real part, imaginary part).

On the subpanel Physics—Variables there are four items:

• Under the heading Coulomb Potential is you can choose between Attractive

and Repulsive.
• You can choose whether the Input Below (in the next item) is Taken as wave

number k or energy E.
• Wave Number / Energy – Corresponding to the choice in the item above the

input field is labeled k or E.
• Angular-Momentum Quantum Number – This is the quantum number ` (if

you chose to plot a partial wave ϕ`) or the upper index L in the sum approx-
imating ϕ (if you chose to plot ϕ). In a multiple plot the input value of `
(or L) is taken for the first plot. It is successively incremented by one from
plot to plot.

Please note: The numerical values of α, h̄, and M are set equal to one
and cannot be changed.
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Example Descriptor on File 3D_Scattering.des

• Coulomb scattering |phi|**2 (see Fig. 8.14)

Fig. 8.14. Plot produced with descriptor Coulomb scattering, |phi|**2 on file 3D_Scat-
tering.des

8.8 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo in the main toolbar and selecting one of the demo files
3D_Scattering.

(ii) More example descriptors can be found on the descriptor files 3DScatt-
(FE).des, 3DResonanceScatt(FE).des, and 3DCoulombScatt(FE).des
in the directory FurtherExamples.

(iii) For the following exercises use descriptor file 3D_Scattering.des.

(iv) The numerical values of the particle mass and of Planck’s constant are
put to 1.

8.2.1 Plot the free radial wave functions for the momentum p = 0.75 and the
angular momenta (a) ` = 0, 1, 2, . . . , 10, (b) ` = 11, 12, . . . , 20, (c) ` =
21, 22, . . . , 30. Start from descriptor 21: ‘Exercise 8.2.1’. (d) Why is the
wave function close to zero in a range adjacent to r = 0 and why does this
range grow with increasing `?

8.2.2 Plot the free radial wave functions for the energy range 0.01 ≤ E ≤ 10
for (a) ` = 0, (b) ` = 1, (c) ` = 2, (d) ` = 3, (e) ` = 10. Start from
descriptor 22: ‘Exercise 8.2.2’.
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8.2.3 Repeat Exercise 8.2.2 for the energy range 0.01 ≤ E ≤ 1 and for the
angular momenta (a) ` = 6, (b) ` = 8, (c) ` = 10. (d) Why does the range of
very small values of the wave function decrease with increasing energy if ` is
kept fixed?

8.2.4 Plot the radial wave functions with angular momentum ` = 0 for the
repulsive potential

V (r) =
{

10 , 0 ≤ r < 6
0 , 6 ≤ r

for 10 energy values for the range (a) 1 ≤ E ≤ 10, (b) 9 ≤ E ≤ 12. Start
from descriptor 22: ‘Exercise 8.2.2’.

8.2.5 (a) Plot the phase shift δ` for the repulsive potential of Exercise 8.2.4
for the energy range 0.001 ≤ E ≤ 30 for the angular momentum ` = 0. Start
from descriptor 23: ‘Exercise 8.2.5’. (b) Read the energy values of the
first two resonances off the plot.

8.2.6 Plot the radial wave functions for the angular momentum ` = 0 for an
energy range about (a) the first, (b) the second resonance as determined in
Exercise 8.2.5 (b) for the potential of Exercise 8.2.4. Start from descriptor 22:
‘Exercise 8.2.2’.

8.2.7 Repeat Exercise 8.2.5 for angular momentum ` = 1.

8.2.8 Repeat Exercise 8.2.6 for angular momentum ` = 1.

8.2.9 (a,b) Repeat Exercise 8.2.5 (a) and (b) for the lowest resonance in angu-
lar momentum ` = 2. (c) Why do the resonance energies for resonance wave
functions with the same number of radial nodes increase with increasing an-
gular momentum?

8.2.10 Repeat Exercise 8.2.6 for the lowest resonance in angular momentum
` = 2.

8.2.11 Plot the radial wave functions for the potential

V (r) =







0 , 0 ≤ r < 1.5
10 , 1.5 ≤ r < 2
0 , 2 ≤ r

in the energy range 0.01 ≤ E ≤ 20 for (a) ` = 0, (b) ` = 1, (c) ` = 2,
(d) ` = 10. Start from descriptor 22: ‘Exercise 8.2.2’.

8.2.12 Plot the radial wave functions for the potential of Exercise 8.2.11 for
the values 0 ≤ ` ≤ 10 for the energies (a) E = 0.1, (b) E = 1, (c) E = 9.9,
(d) E = 20. Start from descriptor 21: ‘Exercise 8.2.1’.

8.2.13 Plot the phase shift δ` for the potential of Exercise 8.2.11 for the energy
range 0.01 ≤ E ≤ 40 for the angular momenta (a) ` = 0, (b) ` = 1, (c) ` = 2,
(d) ` = 3, (e) ` = 6, (f) ` = 8 and for the energy range 0.01 ≤ E ≤ 60 for
the angular momenta (g) ` = 10, (h) ` = 13. Start from descriptor 23:
‘Exercise 8.2.5’.
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8.3.1 Plot the absolute square of the wave function, |ϕ(r, ϑ)|2, as a function
of the radial variable r and the polar angle ϑ for the repulsive potential

V (r) =
{

6 , 0 ≤ r < 2
0 , 2 ≤ r

for the energy values (a) E = 3, (b) E = 6.5, (c) E = 10. Start from
descriptor 24: ‘Exercise 8.3.1’.

8.3.2 Plot the absolute square of the wave function, |ϕ(r, ϑ)|2, for the potential
of Exercise 8.3.1 for the energy of the lowest resonance in (a) ` = 0 (Eres =
7), (b) ` = 1 (Eres = 8.5), (c) ` = 2 (Eres = 10), (d) ` = 3 (Eres = 11.9).
Start from descriptor 24: ‘Exercise 8.3.1’.

8.3.3 Plot the partial wave functions ϕ`(r, ϑ) for the potential of Exer-
cise 8.3.1 for the energyE = 3 and the angular momenta (a) ` = 0, (b) ` = 1,
(c) ` = 2, (d) ` = 3, (e) ` = 4, (f) ` = 5, (g) ` = 6, (h) ` = 7, (i) ` = 8.
Start from descriptor 24: ‘Exercise 8.3.1’.

8.3.4 Repeat Exercise 8.3.3 for a free particle [i.e., V (r) = 0 everywhere] and
compare the results with the ones of 8.3.3.

8.3.5 Repeat Exercise 8.3.3 for the energy E = 9 and compare the results
with the ones of 8.3.4.

8.3.6 Repeat Exercise 8.3.1 for the absolute square of the scattering wave
|η(r, ϑ)|2.

8.3.7 Repeat Exercise 8.3.2 for the absolute square of the scattering wave
|η(r, ϑ)|2.

8.3.8 Repeat Exercise 8.3.3 for the partial scattering waves η`(r, ϑ).

8.3.9 Repeat Exercise 8.3.5 for the partial scattering waves η`(r, ϑ).

8.3.10 Plot the partial scattering waves η`(r, ϑ) for the potential of Exer-
cise 8.3.1 for (a) ` = 0, E = 7, (b) ` = 1, E = 7, (c) ` = 2, E = 7,
(d) ` = 3, E = 7, (e) ` = 0, E = 8.5, (f) ` = 1, E = 8.5, (g) ` = 2, E = 8.5,
(h) ` = 3, E = 8.5, (i) ` = 0, E = 10, (j) ` = 1, E = 10, (k) ` = 2, E = 10,
(l) ` = 3, E = 10, (m) ` = 0, E = 11.9, (n) ` = 1, E = 11.9,
(o) ` = 2, E = 11.9, (p) ` = 3, E = 11.9. Start from descriptor 24: ‘Exer−
cise 8.3.1’.

8.4.1 For the repulsive spherically symmetric potential

V (r) =
{

3 , 0 ≤ r < 2
0 , 2 ≤ r

plot the differential cross section dσ/dΩ for the energy range 0.001 ≤ E ≤ 6
divided into 10 intervals for the summation of angular momenta up to (a) L =
0, (b) L = 1, (c) L = 2, . . . , (i) L = 8. Start from descriptor 8: ‘3D
scattering in step pot., dsigma/dOmega’. (j) Why is the differential
cross section obtained in (a) independent of cosϑ?

8.4.2 Repeat Exercise 8.4.1 for a summation up to L = 30 for the energy
ranges (a) 40 ≤ E ≤ 50 and (b) 4000 ≤ E ≤ 5000. Start from descriptor 8:
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‘3D scattering in step pot., dsigma/dOmega’. (c) Calculate the wave-
lengths (M = 1, h̄ = 1) for E = 50 and E = 5000. (d) How does the cross
section in the forward direction decrease for increasing energy?

8.4.3 For the attractive spherically symmetric potential

V (r) =
{

−3 , 0 ≤ r < 2
0 , 2 ≤ r

plot the differential cross section dσ/dΩ for the energy range 0.001 ≤ E ≤ 6
divided into 10 intervals for the summation of angular momenta up to (a) L =
0, (b) L = 1, (c) L = 2, . . . , (i) L = 8. Start from descriptor 8: ‘3D
scattering in step pot., dsigma/dOmega’.

8.4.4 Repeat Exercise 8.4.3 for a summation up to L = 30 for the energy
ranges (a) 40 ≤ E ≤ 50 and (b) 4000 ≤ E ≤ 5000. Start from descriptor 8:
‘3D scattering in step pot., dsigma/dOmega’. (c) Compare the results
with those in Exercise 8.4.2.

8.4.5 Compare the differential cross sections for the repulsive and attractive
potentials of Exercises 8.4.1 and 8.4.3 for low energies 0.001 ≤ E ≤ 0.1.
Plot for the repulsive potential (a) L = 0, . . . , (d) L = 3 and for the attractive
potential (e) L = 0, . . . , (h) L = 3. Start from descriptor 8: ‘3D scattering
in step pot., dsigma/dOmega’. (i) Why are the cross sections for the at-
tractive potential at low energies larger than those for the repulsive potential?

8.5.1 For the potential

V (r) =
{

3 , 0 ≤ r < 2
0 , 2 ≤ r

plot for ` = 0 and 0.001 ≤ E ≤ 6 (a) the Argand plot f0(E), (b) Im f0(E),
(c) Re f0(E), (d) δ0(E), (e) the combined plot of (a–d). Start from the de-
scriptors (a) 10: ‘3D scattering in step pot., Argand, imaginary part
vs. real part’, (b) 11: ‘3D scattering in step pot., Argand, imagi−
nary part’, (c) 12: ‘3D scattering in step pot., Argand, real part’,
(d) 13: ‘3D scattering in step pot., Argand, delta_l’, (e) 9: ‘3D scat−
tering in step pot., Argand, combined plot’. (f) Read the lowest reso-
nance energy off the plot of the phase δ0.

8.5.2 (a–e) Repeat Exercise 8.5.1 (a–e) for the energy range 0.001 ≤ E ≤ 20.
(f) Read the two lowest resonance energies E1, E2 and the corresponding
phase values δ01, δ02 off the plot for δ0. (g) Calculate the values f0(E1),
f0(E2) from the phases δ01, δ02.

8.5.3 (a–e) Repeat Exercise 8.5.2 (a–e) for ` = 1. (f) Read the lowest reso-
nance energy off the plot of the phase δ1.

8.5.4 (a–e) Repeat Exercise 8.5.2 (a–e) for ` = 2. (f) Read the lowest res-
onance energy off the plot of the phase δ2. (g) Explain the increase of the
lowest resonance energies as ` increases from 0 to 2.
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8.5.5 For the potential

V (r) =







0 , 0 ≤ r < 2
4 , 2 ≤ r < 2.5
0 , 2.5 ≤ r

plot for ` = 0 and 0.001 ≤ E ≤ 20 (a) the Argand plot f0(E), (b) Im f0(E),
(c) Re f0(E), (d) δ0(E), (e) the combined plot of (a–d). Start from the de-
scriptors (a) 10: ‘3D scattering in step pot., Argand, imaginary part
vs. real part’, (b) 11: ‘3D scattering in step pot., Argand, imagi−
nary part’, (c) 12: ‘3D scattering in step pot., Argand, real part’,
(d) 13: ‘3D scattering in step pot., Argand, delta_l’, and (e) 9: ‘3D
scattering in step pot., Argand, combined plot’. (f) Read the lowest
resonance energies off the plot of the phase δ0. (g) Give a rough estimate of
the resonance energies by calculating the bound-state energies of an infinitely
deep square well of width 2.

8.5.6 (a–e) Repeat Exercise 8.5.5 (a–e) for ` = 1.

8.5.7 (a–e) Repeat Exercise 8.5.5 (a–e) for ` = 2.

8.5.8 Plot for the potential of Exercise 8.5.5 in the energy range 0.001 ≤ E ≤
8 the partial cross sections σ` for (a) ` = 0, 1, 2, 3, (b) ` = 4, 5, 6, 7. Start
from descriptor 15: ‘3D scattering in step pot., sigma_l’.

8.5.9 Plot for the potential

V (r) =







0 , 0 ≤ r < 2
10 , 2 ≤ r < 2.5
0 , 2.5 ≤ r

in the energy range 0.001 ≤ E ≤ 20 the partial cross sections σ` for
(a) ` = 0, 1, 2, 3, (b) ` = 4, 5, 6, 7. Start from descriptor 15: ‘3D scat−
tering in step pot., sigma_l’. (c) What is the significance of the small
peaks in the plot? (d) For zero angular momentum calculate the first few en-
ergy eigenvalues of an infinitely deep square well of equal width. (e) Why
are the energy values of the peaks for ` = 0 in the plot (a) smaller than the
energies calculated under (d)?

8.5.10 (a) Plot for the potential of Exercise 8.5.5 in the energy range 0.001 ≤
E ≤ 8 the total cross section obtained by summation of angular momenta
up to L = 15. Start from descriptor 15: ‘3D scattering in step pot.,
sigma_l’. (b) Compare the value for E = 0.001 with the value of the partial
cross section σ0 at this energy. (c) Calculate the total classical cross section
for the scattering on a hard sphere of radius 2.5.

8.5.11 Plot for the repulsive square-well potential

V (r) =
{

V0 , 0 ≤ r < 2
0 , 2 ≤ r

in the energy range 10−5 ≤ E ≤ 0.01 the total cross section σtot for the
summation up to L = 3 for (a) V0 = 10, (b) V0 = 100, (c) V0 = 1000,
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(d) V0 = 10 000, (e) V0 = 100 000. Start from descriptor 15: ‘3D scatter−
ing in step pot., sigma_l’. Read the values of σtot at E = 10−5 off the
plots. (f) Compare the values with the limiting formula σtot(E = 0) = 4πd2

for an infinitely high repulsive square-well potential of width d.

8.6.1 Produce a plot with descriptor 17: ‘Coulomb scattering, R_El, E
fixed, l running’. Leave it on the screen. Produce a second plot and change
the potential from attractive to repulsive. The two plots on the screen look
rather similar but there are subtle differences. Explain them.

8.6.2 Produce a plot with descriptor 18: ‘Coulomb scattering, R_El, l
fixed, E running’. Set ` = 10. Explain the behavior of the radial position
r0(E) where the function rR10(k, r) starts to be significantly different from
zero.

8.7.1 Produce a plot with descriptor 20: ‘Coulomb scattering, |phi|**2’.
Study the contributions of the different partial waves ϕ` by setting the angular
momentum to zero and producing a multiple plot with 5 rows and 5 columns
(a) for ϕ`, (b) for

∑L
`=0 ϕ`.

8.7.2 Repeat Exercise 8.7.1 for an attractive potential.



9. Spin and Magnetic Resonance

Contents: Brief introduction of spin formalism. Spin and magnetic moment. Pauli
equation, describing behavior of spin in magnetic field. Motion in constant field
B0. 0 with
small field B1(t), rotating in the plane perpendicular to B0. Motion of spin in a
coordinate system which rotates with B1 (and in which the total field is constant) and
in a coordinate system which is at rest in the laboratory. At resonance the direction
of the spin expectation value is completely inverted. Rabi formula describing the
resonance form.

9.1 Physical Concepts

9.1.1 Spin Operators. Eigenvectors and Eigenvalues

In Sect. 6.1.3 we introduced the operator of orbital angular momentum, L̂ =
r̂ × p̂, as vector product of the position operator r̂ = r and the momentum
operator p̂ = (h̄/i)∇. We found the components L̂x, L̂y, L̂z of L̂ to fulfill the
commutation relations (6.34). Moreover, we found the eigenvalue equations

(6.40), (6.41) for the two operators L̂
2

and L̂z. The eigenfunctions of both
equations are the spherical harmonics Y`m.

Besides the operators L̂x, L̂y, L̂z there are also matrices Sx, Sy, Sz which
satisfy commutation relations of the type (6.34), i.e.,

[Sx, Sy] = ih̄Sz , [Sy, Sz] = ih̄Sx , [Sz, Sx] = ih̄Sy . (9.1)

In the simplest case, to which we confine ourselves, they are 2× 2 matrices,

Sx =
h̄

2
σ1 , Sy =

h̄

2
σ2 , Sz =

h̄

2
σ3 , (9.2)

which are the Pauli matrices,

σ1 =
(

0 1
1 0

)

, σ2 =
(

0 −i
i 0

)

, σ3 =
(

1 0
0 −1

)

, (9.3)

multiplied by h̄/2.
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The Sx, Sy, Sz are the operators of the intrinsic angular-momentum or spin

components of a particle and can be regarded as the components of the vector

S = Sxex + Syey + Szey . (9.4)

Its square is

S2 = 3

4
h̄σ0 , (9.5)

where

σ0 =
(

1 0
0 1

)

(9.6)

is the 2 × 2 unit matrix. The matrix operators S2 and Sz fulfill eigenvalue
equations analogous to (6.40), (6.41),

S2ηr =
3

4
h̄2ηr , Szηr =

1

2
rh̄ηr , r = 1,−1 . (9.7)

Here the eigenvectors – which correspond to the eigenfunctions Y`m in (6.40),
(6.41) – are

η1 =
(

1

0

)

, η−1 =
(

0

1

)

. (9.8)

They are orthogonal to each other and normalized to one. For later use we
already introduce here the notation

η+1 = (1, 0) , η+−1 = (0, 1) .

The eigenvalues in (9.7) can be written as s(s + 1)h̄2 and szh̄, respectively,
where s = 1/2 and sz = ±1/2 are the quantum number of spin and of its
z component, respectively.

The general spin state is the complex linear combination

χ = χ1η1 + χ−1η−1 , χ+ = χ∗1 η+1 + χ∗−1η
+
−1 (9.9)

of the two basic states η1, η−1. The normalization of χ requires

χ+ · χ = |χ1|2 + |χ−1|2 = 1 , (9.10)

so that the moduli |χ1|, |χ−1| can be parametrized as |χ1| = cos θ/2, |χ−1| =
sin θ/2. Since the phase can be chosen arbitrarily we may write

χ1 = e−iφ/2 cos θ/2, , χ−1 = eiφ/2 sin θ/2 .

The expectation value of the spin vector,

〈S〉 = 〈Sx〉ex + 〈Sy〉ey + 〈Sz〉ez , (9.11)

for a general spin state is the vector formed by the expectation values of the
three components

〈Sx〉 =
h̄

2
χ+σ1χ , 〈Sy〉 =

h̄

2
χ+σ2χ , 〈Sz〉 =

h̄

2
χ+σ3χ .



9.1. Physical Concepts 215

9.1.2 Magnetic Moment and Its Motion in a Magnetic Field.

Pauli Equation

The electron (charge −e, mass Me) possesses a magnetic moment related to
its spin. The magnetic-moment operator µ is proportional to the spin operator
S,

µ = −γS . (9.12)

The proportionality factor, also called the gyromagnetic ratio, is usually writ-
ten as

γ = geµB

h̄
. (9.13)

Here the constant
µB =

e

2Me
h̄ (9.14)

is the Bohr magneton. The gyromagnetic factor ge of the free electron can be
computed with high precision in the framework of quantum electrodynamics
and is (very nearly) equal to 2.

For the proton (charge +e, mass Mp) these relations are replaced by

µ = γS , γ = gpµN

h̄
, µN =

e

2Mp
h̄ ,

µN and gp being the nuclear magneton and the gyromagnetic factor of the
proton, respectively. The latter, dominated by the internal structure of the
proton, has to be determined experimentally.

If electrons (or protons) are not free but bound in matter, their gyromag-
netic factors appear to be slightly changed, the change providing valuable
information on the structure of that matter. It is obtained by precise mea-
surements of γ through magnetic resonance. The formulae below apply to
electrons. The change to protons only requires the replacement γ →−γ .

The potential energy operator describing a static magnetic moment in a
field of magnetic induction B is

H = −µ · B = γB · S . (9.15)

In analogy to the time-dependent Schrödinger equation (3.3) we write
down the Pauli equation

ih̄
d

dt
χ(t) = Hχ(t) = γB · Sχ(t) . (9.16)

From this we get the equation

d

dt

(

χ+(t)Sχ(t)
)

= i

h̄
χ+(t)(HS− SH)χ(t) .
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With (9.15) and (9.1) we obtain the equation of motion for the spin expecta-
tion vector (9.11),

d

dt
〈S〉 = d

dt

(

χ+(t)Sχ(t)
)

= γB×
(

χ+(t)Sχ(t)
)

= γB× 〈S〉 . (9.17)

The simplest case, described by this equation, is that of a constant field,
which we take to be oriented in z direction,

B = B0 = B0ez , � = γB0 = Ω0ez .

Initially, i.e., at t = 0, the vector 〈S〉 can be written as

〈S〉0 = 〈Sx〉0 ex + 〈Sz〉0 ez

by orienting ex and ez appropriately. The time dependence of 〈S〉 reads

〈S〉 = 〈Sx〉0 (ex cosΩ0t + ey sinΩ0t)+ 〈Sz〉0 ez , (9.18)

as is verified by inserting (9.18) into (9.17). Thus, in a constant field, the
vector 〈S〉 performs a Larmor precession around the direction of B0 with con-
stant angular frequency Ω0 = γB0. Both the absolute value of 〈S〉 and the
angle between 〈S〉 and B0 stay unchanged. This behavior can be pictured as
follows. If we construct a sphere of radius |〈S〉| = h̄/2 around the origin and
consider its north pole, i.e., the point where it is pierced by the z axis (which
is the direction of the field), then the tip of the vector 〈S〉 rotates with angular
frequencyΩ0 around the pole. Its trajectory is a circle of constant polar angle,
i.e., a parallel in geographic terms.

9.1.3 Magnetic Resonance

Magnetic-resonance experiments are performed in a magnetic field which
consists of a relatively large constant field B0 and a relatively small time-
dependent field B1(t),

B = B0 + B1(t) .

The field B0 points in z direction,

B0 = B0ez ,

the direction of the field B1(t) rotates with angular velocity ω in the x, y
plane,

B1 = B1(ex cosωt + ey sinωt) .

Besides the fixed coordinate system spanned by the unit vectors ex, ey, ez we
introduce a coordinate system, rotating with B1 and spanned by e′x, e′y, e′z.
The two are related by
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e′x = ex cosωt + ey sinωt , ex = e′x cosωt − e′y sinωt ,

e′y = −ex sinωt + ey cosωt , ey = e′x sinωt + e′y cosωt ,

e′z = ez , ez = e′z .

(9.19)

From classical mechanics we know that the time derivatives of an arbitrary
vector 〈S〉 differ if the differentiation of its coordinates are taken in the two
different frames. The two derivatives are related by

d〈S〉
dt
= d′〈S〉

dt
+ ω × 〈S〉 , (9.20)

with
ω = ωez .

By introducing (9.20) into (9.17) we get the equation of motion in the rotating
frame

d′〈S〉
dt
= (γB− ω)× 〈S〉 = γBeff × 〈S〉 . (9.21)

The effective field

Beff = B− ω

γ
=
(

B0 −
ω

γ

)

e′z + B1e′x

is, of course, constant in the rotating coordinate system.
From the discussion in Sect. 9.1.2 it is now clear, that, in the rotating

frame, 〈S〉 precesses around the direction of Beff with the angular frequency
Ω ′ = γBeff. In experiments the vector 〈S〉 is initially aligned along the field
B0, i.e., the z axis,

〈S〉0 = 〈S〉(t = 0) = h̄

2
ez =

h̄

2
e′z . (9.22)

Thus, on the sphere of radius |〈S〉| = h̄/2 around the origin which we
constructed in Sect. 9.1.2 the tip of 〈S〉 traces a circle through the north pole,
its initial position, around the direction of Beff, see Fig. 9.1. The circle has a
small radius as long as Beff is essentially parallel to the z direction (for small
ω) or antiparallel (to it for large ω), i.e., for |B0 − ω/γ | � B1. However, at
the resonance frequency of the rotating field,

ω = ωR = γB0 ,

the effective field points in the direction of e′x : The circle passes through both
north and south pole and reaches its maximum radius, that of the sphere itself.
This complete change of direction of 〈S〉 can be detected by the energy which
has to be provided to bring it about, i.e., the energy taken out of the rotating
field B1. The resonance frequency is measured with high precision and thus
is the gyromagnetic ratio γ .



218 9. Spin and Magnetic Resonance

Before presenting explicitely the time dependence of

〈S〉 = 〈S ′x〉e′x + 〈S′y〉e′y + 〈S′z〉e′z = 〈Sx〉ex + 〈Sy〉ey + 〈Sz〉ez (9.23)

we introduce the definitions

�0 = γB0 , �1 = γB1 , � = γB = γ (B+ B1) ,

�′ = �− ω = (Ω0 − ω)e′z +Ω1e′x , ∆ = ω −Ω0 , (9.24)

Ω ′ = |�′| =
√

(ω −Ω0)2 +Ω2
1 =

√

∆2 +Ω2
1 .

Using these we compute the vector product in the right-hand side of (9.21) in
the rotating frame and write down (9.21) in components,

d〈S′x〉
dt
= ∆〈S ′y〉 ,

d〈S ′y〉
dt
= −∆〈S ′x〉 −Ω1〈S′z〉 , (9.25)

d〈S ′z〉
dt
= Ω1〈S′y〉 .

Taking into account the initial conditions (9.22), we find the solutions

〈S′x〉 =
h̄

2

∆

Ω ′
Ω1

Ω ′
(cosΩ ′t − 1) ,

〈S ′y〉 = −
h̄

2

Ω1

Ω ′
sinΩ ′t , (9.26)

〈S ′z〉 =
h̄

2

(

∆2

Ω ′2
+ Ω2

1

Ω ′2
cosΩ ′t

)

.

Finally, using (9.23) and (9.19), we obtain the components of 〈S〉 in the
original coordinate frame,

〈Sx〉 =
h̄

2

Ω1

Ω ′

(

sinωt sinΩ ′t + ∆

Ω ′
cosωt cosΩ ′t − ∆

Ω ′
cosωt

)

,

〈Sy〉 = −
h̄

2

Ω1

Ω ′

(

cosωt sinΩ ′t − ∆

Ω ′
sinωt cosΩ ′t + ∆

Ω ′
sinωt

)

, (9.27)

〈Sz〉 =
h̄

2

(

∆2

Ω ′2
+ Ω2

1

Ω ′2
cosΩ ′t

)

.

For illustrations see Fig. 9.1.
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9.1.4 Rabi Formula

In 1937 Rabi published the theory of magnetic resonance, a field which
he also pioneered experimentally. The Rabi formula gives the probability
P−1/2(t) of finding at time t the state η−1 if the initial state at time t = 0 was
η1. With the formalism of Sect. 9.1.1 we find

P− 1
2
(t) = |η+−1χ(t)|2 = |χ−1(t)|2 . (9.28)

Using
χ+(t)σ0χ(t) = |χ1(t)|2 + |χ−1(t)|2 = 1

and

χ+(t)
2

h̄
Szχ(t) = χ+(t)σ3χ(t) = |χ1(t)|2 − |χ−1(t)|2

we obtain

1

2

(

1− 2

h̄
〈Sz〉

)

= 1

2
χ+(t)

(

σ0 −
2

h̄
Sz

)

χ(t) = |χ−1(t)|2 ,

so that with (9.27)

P− 1
2
(t) = 1

2

(

1− 2

h̄
〈Sz〉

)

=
Ω2

1

Ω ′2
sin2 Ω

′

2
t . (9.29)

We introduce the Rabi period

T = 2π

Ω ′
= 2π
√

∆2 +Ω2
1

, ∆ = ω −Ω0 . (9.30)

For t = T/2, 3T/2, . . . the probability (9.29) assumes its maximum value

A = P− 1
2

(

T

2

)

= Ω2
1

Ω ′2
= Ω2

1

Ω2
1 + (ω −Ω0)2

= (Ω1/Ω0)
2

(Ω1/Ω0)2 + (1− ω/Ω0)2
. (9.31)

As a function of the angular frequency ω the Rabi amplitude A is of the typ-
ical Breit–Wigner resonance form. At the resonance frequency ωR = Ω0 it
reaches its maximum value A = 1, see Fig. 9.4

Further Reading

Brandt, Dahmen: Chap. 16
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9.2 The Spin-Expectation Vector

near and at Resonance

Aim of this section: Illustration of the time dependences of the spin-expectation
vector in the rotating coordinate frame, (9.26), and in the fixed frame, (9.27). To this
end the trajectory of the tip of 〈S′〉 (or 〈S〉) is traced on a sphere of radius |〈S〉|.

On the subpanel Physics—Comp. Coord., under the heading Physics parame-

ters you enter 4 quantities:

• ω/Ω0, the frequency of the rotating field (in units of Larmor frequency Ω0

implied by the fixed field),
• Ω1/Ω0, the Larmor frequency of the rotating field (in units of Ω0),
• f , the fraction of the Rabi period T , defined in (9.30), for which the trajec-

tory is shown,
• an Increment δ, see below.

If you produce a Multiple Plot, then you can choose the individual plots to
show the spin trajectory on the unit sphere

• with one parameter incremented or
• in rotating and in fixed frame.

For the first case you can determine the Coordinate frame as either fixed

or rotating and, under the heading, Incremented in multiple plot you can select
one of the three parameters ω/Ω0,Ω1/Ω0, f to be incremented by δ from
plot to plot.

Fig. 9.1. Plot produced with descriptor Spin in rotating and in fixed frame, off
resonance on file Magnetic_Resonance.des. Left: Trajectory of the tip of the spin-
expectation vector in the rotating coordinate frame. The arrow, pointing away from the coor-
dinate origin, has the direction of the effective field Beff. Right: Same trajectory in the fixed
frame.
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Fig. 9.2. Plot produced with descriptor Spin in fixed frame, omega incremented on
file Magnetic_Resonance.des.

Fig. 9.3. Plot produced with descriptor Spin in fixed frame, Omega_1 decremented
on file Magnetic_Resonance.des.

Movie Capability: Direct. The trajectory on the unit sphere is seen to
develop from t = 0 to t = f T .

Example Descriptors on File Magnetic_Resonance.des

• Spin in rotating and in fixed frame, off resonance
(see Fig. 9.1)
• Spin in fixed frame, omega incremented (see Fig. 9.2)
• Spin in fixed frame, Omega_1 decremented (see Fig. 9.3)
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9.3 Resonance Form of the Rabi Amplitude

Aim of this section: Illustration of the resonance form of the Rabi amplitude A,
(9.4).

In a plot similar to Fig. 9.4 the Amplitude A is shown as a function of ω/Ω0,
the frequency of the rotating field (in units of Larmor frequency Ω0 implied
by the fixed field).

On the subpanel Physics—Comp. Coord. under the heading Variables you
enter a value for Ω1/Ω0, the Larmor frequency of the rotating field (in units
of Ω0). If n, the number of graphs, is chosen to be different from the default
value (n = 1), then Ω1/Ω0 is increased by the Increment δ from graph to
graph.

Fig. 9.4. Plot produced with descriptor Resonance form of the Rabi amplitude on file
Magnetic_Resonance.des

Example Descriptor on File Magnetic_Resonance.des

• Resonance form of the Rabi amplitude (see Fig. 9.4)
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9.4 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo in the main toolbar and selecting one of the demo files
Magnetic_Resonance.

(ii) More example descriptors can be found on the descriptor file MagRes-
(FE).des in the directory FurtherExamples.

(iii) For the following exercises use descriptor file Magnetic_Resonance.des.

9.2.1 Plot the time dependence of the spin-expectation vector in the rotating
frame for values of ω/Ω0 near and at resonance. Start from descriptor 5:
‘Exercise 9.2.1’.

9.2.2 Plot the time dependence of the spin-expectation vector in the fixed
frame for values of ω/Ω0 near and at resonance. Start from descriptor 6:
‘Exercise 9.2.2’.

9.2.3 Plot the time dependence of the spin-expectation vector in the fixed
frame at resonance the for valuesΩ1/Ω0 = 0.01, 0.02, 0.03. Use f = t/T =
0.5. Start from descriptor 7: ‘Exercise 9.2.3’

9.3.1 Adapt the descriptor 4: ‘Resonance form of the Rabi amplitude’ so
that you can produce a plot like Fig. 9.4 with several curves corresponding to
several values of Ω1/Ω0. Discuss the result.



10. Hybridization

Contents: Construction of hybrid wave functions as normalized superpositions
of stationary wave functions of the electron in the hydrogen atom with angular-
momentum quantum numbers ` = 0, m = 0 and ` = 1, m = 0. Qualitative discus-
sion of the hybridization model of chemical bonds.

10.1 Physical Concepts

10.1.1 Hybrid States in the Coulomb Potential

The stationary wave functions or eigenstates of an electron in the Coulomb
potential of the hydrogen nucleus (Sect. 7.1.6) can be written as

ψn,`,m = Rn,`Y`,m . (10.1)

dence is discussed in this chapter; we need the letter ϕ for angular vari-
ables.) Here n is the principal quantum number, ` the quantum number
of angular momentum, and m that of its z component; Rn,` = Rn,`(r) is
the radial wave function (7.51), which depends on the radial position r , and
Y`,m = Y`,m(ϑ, ϕ) the spherical harmonic (Sect. 11.1.4), which depends on
the angles ϑ and ϕ. The energy eigenvalues En, (7.52), depend on n only.
Accordingly, in general, there are several eigenstates of the same eigenvalue
(which are called degenerate) and therefore linear combinations of these are
again eigenstates.

In the following we consider exclusively the superposition of a state ` =
0,m = 0 (called an s state) with a state ` = 1,m = 0 (a p state) and introduce
the notation

sn = ψn,0,0 = Rn,0Y0,0 = 1√
4π
Rn,0 , (10.2)

pn = ψn,1,0 = Rn,1Y1,0 =
√

3
4π cosϑRn,1 . (10.3)

Both sn and pn are real functions; sn has no angular dependence whereas
pn is proportional to cosϑ , i.e., it is antisymmetric with respect to the equato-
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(Denoting a stationary state by ψ cannot be confusing, since no time depen-
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rial plane ϑ = π/2. There is no ϕ dependence. Because of the orthonormality
of the Rn,` and the Y`,m the states sn and pn are orthonormal, i.e.,

∫

|sn|2 dV = 1 ,

∫

|pn|2 dV = 1 ,

∫

snpn dV = 0 ,

where integration is performed over all space.
The normalized linear combination of sn and pn,

hn =
1√

1+ λ2
(sn + λpn) , (10.4)

is called a hybrid state with the hybridization parameter λ. Figure 10.3 shows,
in a plane containing the z axis, the functions s2, p2, h2, and |h2|2 for a
particular value of λ. Due to the different symmetry properties of s2 and p2 the
hybrid h2 is neither symmetric nor antisymmetric with respect to ϑ = π/2.
The square |h2|2, which is a probability density, extends much farther along
the negative z axis than along the positive one. This feature of hybrid states,
namely, to possess a single preferred direction, is used in some theories of
chemical bonds: An electron in a hybrid state in one atom reaches out to its
partner in another atom along that preferred direction and vice versa. The
hybrid state is rotationally symmetric around the z axis, which we call the
orientation axis. We denote it by the unit vector â; here â = ez. Since
the choice of the z axis was arbitrary, the orientation axis can be given any
direction. The direction â is then characterized by a polar angle ϑa and an
azimuthal angle ϕa with respect to the x, y, z coordinate frame.

We write the general form of a hybrid state as

hn(λ;ϑa, ϕa) =
1√

1+ λ2
(sn + λpn(ϑa, ϕa)) , (10.5)

where pn(ϑa, ϕa) is a p state of principal quantum number n with the sym-
metry axis

â = sinϑa cosϕa ex + sinϑa sinϕa ey + cosϑa ez . (10.6)

In (10.3), where the symmetry axis is the z axis, the angular dependence
shows up in the form of cosϑ or, written as scalar product, as r̂ · ez. Its
generalization reads r̂ · â, from which the general state pn(ϑa, ϕa) in (10.5)
can be written as

pn(ϑa, ϕa) =
√

3

4π
(r̂ · â)Rn,1 . (10.7)

All atoms other than hydrogen have more than one electron. Quantita-
tive discussion and computation of their properties is outside the scope of
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this book. Nevertheless, the study of the simple hybrid states (10.5) provides
insight into hybrid bonds. In the following we summarize the assumptions
made in the simplest model. In Sect. 10.1.2 we try to justify them by qualita-
tive arguments. In Sect. 10.1.3 we shall compute the hybridization parameter
and the orientations for some hybrid states in situations of particularly high
symmetry.

10.1.2 Some Qualitative Details of Hybridization

An atom with atomic number Z consists of a nucleus with electric charge Ze
and Z electrons, each of charge −e. The structure of the Periodic Table is ex-
plained by the Pauli principle, which states that there cannot be two electrons
in an atom with exactly the same set of quantum numbers n, `,m, sz. For a
given principal quantum number n there are 2n − 1 different values of the
angular-momentum quantum number ` (` = −n+ 1,−n+ 2, . . . , n− 1); for
each value of ` there are 2`+ 1 different values of the quantum number m of
the z component of angular momentum (m = −`,−` + 1, . . . , `); there are
two possible values, sz = ±1/2, of the quantum number of the z component
of spin for every electron. In all, for a given value of n there are 2n2 different
sets of quantum numbers `,m, sz.

For n = 1 there are 2 states. One is occupied in the hydrogen atom
(Z = 1), both are filled in the helium atom (Z = 2). In the case of the lithium
atom (Z = 3) there is no free place for an electron in the inner shell of low-
est energy. The third electron necessarily has the principal quantum number
n = 2. Its probability density is shifted further away from the nucleus. This
electron “sees” a potential similar to that of the hydrogen nucleus, because
the nuclear charge 3e is “shielded” by the charge −2e of the two electrons in
the inner shell. If the shielding were perfect, all states with n = 2 were de-
generate. Since it is not, the states with n = 2, ` = 0, called 2s states, are of
lowest energy. (For an illustration, in which we use a square-well rather than a
Coulomb potential, see Fig. 10.1.) For the lithium atom, one of these 2s states
is filled; in the beryllium atom (Z = 4) both are occupied. Boron (Z = 5), in
addition to the two 2s electrons, has one 2p electron (n = 2, ` = 1); carbon
(Z = 6) has two; nitrogen (Z = 7) has three. In all, there are 6 different
2p states. They are all filled in neon (Z = 10), which concludes the sec-
ond (n = 2) period of the Periodic Table. In the third period the states with
n = 3 are filled. In particular, we note that silicon (Z = 14), situated directly
below carbon in the Periodic Table, has in its outer shell two 3s and two 3p
electrons. Its situation is that of carbon but with n = 3 instead of n = 2.

As a first qualitative example we consider a molecule of lithium hydride
LiH, formed of an atom of lithium Li and one of hydrogen H. The single
electron of hydrogen is in the 1s state. Since there is no 1p state, there can
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Fig. 10.1. Radial wave functions and their eigenvalues in a 3D square-well potential. The
eigenvalues are systematically higher for states with ` = 1 (right) compared to the corre-
sponding states with ` = 0 (left).

be no question of hybridization in that atom. The outer electron of lithium is
in the 2s state, which is nearly degenerate with the 2p state, since shielding
in the atom with only one outer electron is nearly perfect. The electron can
be in a hybrid state formed by a superposition of the states 2s and 2p. There
are models in which the binding energy of the LiH molecule is computed
from the overlap of this hybrid wave function with the 1s wave function in
the hydrogen atom. The binding energy outweighs the slight extra energy of
the lithium hybrid state compared to its original 2s state. The hybrid state is
of the form (10.5); the orientation axis â points along the line connecting the
hydrogen nucleus with that of the lithium atom. The hybridization parameter
λ depends on the details of the model used.

In our computations of hybrid wave functions we do assume perfect
shielding: We simply compute the hydrogen wave functions for given quan-
tum numbers and then superimpose them to obtain the desired hybrid wave
function.

10.1.3 Hybridization Parameters and Orientations

of Highly Symmetric Hybrid States

In this section we concentrate on the atoms carbon C and silicon Si. Both have
four electrons in their outer shell with principal quantum number n = 2 for C
and n = 3 for Si. In a solitary C or Si atom there are two s electrons and two
p electrons in the outer shell. A diamond crystal is a symmetric arrangement
of carbon atoms. Every atom is in the center of a tetrahedron with carbon
atoms at its four corners. Because of the presence of the four neighbor atoms



228 10. Hybridization

Fig. 10.2. Eigenvalues and eigenfunctions in a 1D potential. For every state in a single well
(left), there are two states in the double well: one with lower, the other with higher energy
than in the single well. The state of lower energy is binding, that of higher energy is anti-

binding.

the electrons can assume “binding” states of lower energy, see Fig. 10.2. Part
of this energy is used to promote one of the two s electrons from the s state
to the p state; that is possible as long as the binding energy per atom exceeds
the promotion energy. With this promotion there are one s electron and three
p electrons in the outer shell. Other arrangements of atoms, leading to pro-
motion, are possible. In graphite, a hexagonal planar structure, each C atom
has three nearest neighbors to which it is tightly bound. In comparison, the
binding between planes is rather loose. In a linear molecule like carbon diox-
ide CO2 with the structure O–C–O the carbon atom is bound to two oxygen
atoms which are situated in exactly opposite positions.

The states sn and pn are normalized and all are orthogonal to each other.
We align the pn states along the coordinate directions z, x, y, i.e., we write
them in the form

pnz = pn(ϑa = 0) =
√

3

4π
Rn,1 cosϑ ,

pnx = pn(ϑa = 90◦, ϕa = 0) =
√

3

4π
Rn,1 sinϑ cosϕ , (10.8)

pny = pn(ϑa = 90◦, ϕa = 90◦) =
√

3

4π
Rn,1 sinϑ sinϕ ,

see Fig. 10.7.
We now consider superpositions of the three pn states (10.8) along the

Cartesian coordinate axes with coefficients az, ax, ay :

azpnz + axpnx + aypny =
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=
∑

f=x,y,z
afpnf =

∑

f=x,y,z
af

√

3

4π
Rn,1(r̂ · ef )

=
√

3

4π
Rn,1



r̂ ·
∑

f=x,y,z
af ef



 =
√

3

4π
Rn,1

(

r̂ · a
)

= |a|
√

3

4π
Rn,1

(

r̂ · â
)

= |a|pn(ϑa, ϕa) , (10.9)

where the coefficients ax, ay, az have been interpreted as those of an (unnor-
malized) vector a defining an orientation axis (10.6) of a general pn state

(10.7). With |a| =
√

a2
x + a2

y + a2
z and |a⊥| =

√

a2
x + a2

y the relations of

these coefficients to the spherical angles ϑa, ϕa defining the orientation axis
in (10.6) read

cosϑa =
az

|a| , sinϑa =
|a⊥|
|a| , cosϕa =

ax

|a⊥|
, sinϕa =

ay

|a⊥|
.

(10.10)
States resulting from hybridization again have to be normalized and to be

orthogonal to each other (and to those states which do not hybridize). With
these assumptions the following, particularly symmetric, situations are possi-
ble.

sp Hybridization The sn state and one of the pn states form two hybrid
states. We assume that pn state to be oriented in z. The other pn states stay
unchanged. We consider the most symmetric case, in which the two hybrids
are identical in form but oriented back to back. This is a picture for the bonds
(as far as they are due to hybrids of the carbon atom) in the carbon dioxide
molecule CO2.

We first construct two pn states oriented in z and in−z direction, i.e., with
ϑa = 0 and ϑa = 180◦, respectively. (We assign ϕa = 0 to these states even
though at the given values of ϑa the angle ϕa need not be specified.) From
(10.9) we get

pn1 = pn(ϑa = 0, ϕa = 0) = pnz ,

pn2 = pn(ϑa = 180◦, ϕa = 0) = −pnz .

Using these and the sn state we form the two orthonormal superpositions

h1 =
1√
2
(sn + pnz) , h2 =

1√
2
(sn − pnz) .

Written in the general form (10.5), these hybrids are determined by the fol-
lowing hybridization parameters and orientation axes:
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λ1 = 1 , ϑa1 = 0 , ϕa1 = 0 ,

λ2 = 1 , ϑa2 = 180◦ , ϕa2 = 0 .

The hybrids were constructed such that the term pn(ϑa, ϕa), in turn, is ori-
ented towards each of the neighboring atoms and that the hybridization pa-
rameter λ ensures orthonormalization. In the present case and the two cases
discussed below, because of the high symmetry, λ has the same value for all
hybrids.

sp2 Hybridization The sn state and two of the pn states form three hybrid
states. We assume these pn states to be oriented in x and in y. Again, we
consider a particularly symmetric case: The hybrid orientation axes lie in the
x, y plane, each forming angles of 120◦ with the other two. We begin by
constructing three pn states with this orientation, again using (10.9),

pn1 = pn(ϑa = 90◦, ϕa = 0) = pnx ,

pn2 = pn(ϑa = 90◦, ϕa = 120◦) = −1

2
pnx +

√
3

2
pny ,

pn3 = pn(ϑa = 90◦, ϕa = 240◦) = −1

2
pnx −

√
3

2
pny .

Superposition with sn and proper normalization yield the three hybrids

h1 =
1√
3

(

sn +
√

2pnx
)

,

h2 =
1√
3

(

sn −
1

2

√
2pnx +

1

2

√
6pny

)

,

h2 =
1√
3

(

sn −
1

2

√
2pnx −

1

2

√
6pny

)

.

They are determined by the parameters

λ1 =
√

2 , ϑa1 = 90◦ , ϕa1 = 0 ,

λ2 =
√

2 , ϑa2 = 90◦ , ϕa2 = 120◦ ,

λ3 =
√

2 , ϑa3 = 90◦ , ϕa3 = 240◦ .

An example for sp2 hybridization is graphite, which we mentioned above.
The rather strong bonds within a layer are explained by these hybrids. Re-
sponsible for the weaker binding between layers is the single electron in each
atom, remaining in the pnz state.

sp3 Hybridization The sn state and three pn states form four hybrid states.
We assume the pn states to be oriented in x, in y, and in z. Yet again, we
consider only the most symmetric case: The hybrid orientation axes point
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from the center to the corners of a tetrahedron. An equivalent formulation is
that they point from the coordinate origin to four out of the eight corners of
a cube surrounding it. Such hybrid states serve, for instance, to explain the
binding of carbon atoms in a diamond crystal and of silicon atoms in a crystal
with diamond structure. Again, with the help of (10.9), we construct pn states
with the desired orientations,

pn1 = pn(ϑa = 54.74◦, ϕa = 45◦) = 1√
3
(pnx + pny + pnz) ,

pn2 = pn(ϑa = 125.26◦, ϕa = 135◦) = 1√
3
(pnx − pny − pnz) ,

pn3 = pn(ϑa = 54.74◦, ϕa = 225◦) = 1√
3
(−pnx + pny − pnz) ,

pn4 = pn(ϑa = 125.26◦, ϕa = 315◦) = 1√
3
(−pnx − pny + pnz) .

Superposition with the sn state yields the hybrids

h1 =
1

2
(sn + pnx + pny + pnz) , h2 =

1

2
(sn + pnx − pny − pnz) ,

h3 =
1

2
(sn − pnx + pny − pnz) , h4 =

1

2
(sn − pnx − pny + pnz)

with the parameters

λ1 =
√

3 , ϑa1 = 54.74◦ , ϕa1 = 45◦ ,

λ2 =
√

3 , ϑa2 = 125.26◦ , ϕa2 = 135◦ ,

λ3 =
√

3 , ϑa3 = 54.74◦ , ϕa3 = 225◦ ,

λ4 =
√

3 , ϑa3 = 125.26◦ , ϕa3 = 315◦ .

10.2 Hybrid Wave Functions

and Probability Densities

Aim of this section: Illustration, as surface over a polar grid, of the wave functions
sn (10.2), pn (10.3), and hn (10.4) as well as their absolute squares.

A plot similar to those shown in Fig. 10.3 is produced. On the subpanel
Physics—Comp. Coord. you can select the Function Shown as either the wave
function ψ or the probability density % = |ψ |2. You can switch on (or off)
an Automatic Scale. If it is on, the range in the computing coordinate z is set
automatically to extend from zbeg = 0 to zend = |f |max. Here |f |max is the
maximum value which the absolute value of the function to be plotted (f = ψ
or f = |ψ |2) can assume.
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Fig. 10.3. Plot produced with descriptor Mother descriptor showing s, p, and hy−
brid wave functions on file Hybrid_States.des

The subpanel Physics—Hybrid allows you

• to enter the Principal Quantum Number n,
• to indicate the State Chosen as either s, or p, or hybrid,
• to enter the Hybridization Parameter λ.

Example Descriptors on File Hybrid_States.des

• Mother descriptor showing s, p, and hybrid wave functions
(see Fig. 10.3)
• Wave function s2 (see Fig. 10.3, top left)
• Wave function p2 (see Fig. 10.3, top right)
• sp3 hybrid wave function h2 (see Fig. 10.3, bottom left)
• Square of sp3 hybrid wave function h2

(see Fig. 10.3, bottom right)

10.3 Contour Lines of Hybrid Wave Functions

and Probability Densities

Aim of this section: Illustration, as contour lines in the x, y plane, of the wave
functions sn (10.2), pn (10.3), and hn (10.4) as well as their absolute squares.
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Fig. 10.4. Plot produced with descriptor Mother descriptor for contour lines of
sp3 hybrid on file Hybrid_States.des

A plot similar to either of those shown in Fig. 10.4 is produced. Contour lines
are lines of constant function value. On the subpanel Physics—Comp. Coord.

you can enter a Function value f and an Increment 1f . You may then either
choose to plot n lines for

f, f +1f, . . . , f + (n− 1)1f

or 2n+ 1 lines for

f − n1f, . . . , f, . . . , f + n1f .

(The number of lines is specified in the subpanel Graphics—Accuracy.) If the
latter possibility is chosen, lines f < 0, f = 0, and f > 0 are shown in
different colors. Finally, you can choose the Contour Lines to Correspond to

Constant Values of

• ψ (the wave function),
• |ψ |2 (the probability density),
• ψ/|ψ |max,
• |ψ |2/|ψ |2max.

Here |ψ |max and |ψ |2max are the maximum values the functions |ψ | and |ψ |2
can take, respectively.

The subpanel Physics—Hybrid allows you

• to enter the Principal Quantum Number n,
• to indicate the State Chosen as either s, or p, or hybrid,
• to enter the Hybridization Parameter λ.
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Example Descriptors on File Hybrid_States.des

• Mother descriptor for contour lines of sp3 hybrid
(see Fig. 10.4)
• sp3 hybrid, contour lines h2 (see Fig. 10.4, left)
• sp3 hybrid, contour lines |h2|**2 (see Fig. 10.4, right)

10.4 Contour Surfaces

of Hybrid Probability Densities

Aim of this section: Illustration, as a contour surface in space, of the hybrid prob-
ability density % = |hn|2 (10.4) and, for comparison, of the probability densities
% = |sn|2 (10.2) and % = |pn|2 (10.3). The functions can be given any orientation
in space.

A plot similar to those shown in Figs. 10.5 and 10.6 is produced. Shown
are surfaces of constant probability density %. On the subpanel Physics—
Comp. Coord. you indicate the Parameter Held Constant. This is either % itself
or, often simpler to determine, %/%max, where %max is the maximum which
the probability density can take. Under Parameter Value the numerical value
of that parameter is entered. You can also determine the Orientation of the

Symmetry Axis of a p state or a hybrid state by entering values (in degrees)
for the Polar Angle ϑa and the Azimuthal Angle ϕa of that axis.

The subpanel Physics—Hybrid allows you

• to enter the Principal Quantum Number n,
• to indicate the State Chosen as either s, or p, or hybrid,

Fig. 10.5. Plot produced with descriptor Mother descriptor for contour surface h2
(open and closed) on file Hybrid_States.des
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Fig. 10.6. Plot produced with descriptor Mother descriptor for contour surfaces s2
and p2, cut open on file Hybrid_States.des

• to enter the Hybridization Parameter λ.

Movie Capability: Direct. The value of % (or %/%max) is stepped up by an
increment from frame to frame. On the subpanel Physics—Movie (see Sect.
A.4) you find the increment 1% (or 1(%/%max)). (Attention: The creation of
the movie (and also its saving in animated GIF format) will take quite some
time. You may want to let the computer work on it while you do something
else.)

Example Descriptors on File Hybrid_States.des

• Mother descriptor for contour surface h2 (open and closed)
(see Fig. 10.5)
• Contour surface for sp3 hybrid, theta=0, phi=0, cut open

(see Fig. 10.5, left)
• Contour surface for sp3 hybrid, theta=0 (see Fig. 10.5, right)
• Mother descriptor for contour surfaces s2 and p2, cut open

(see Fig. 10.6)
• Contour surface of s2, cut open (see Fig. 10.6, left)
• Contour surface of p2, cut open (see Fig. 10.6, right)
• Mother descriptor for contour surfaces s2, p2(z), p2(x),
p2(y) (see Fig. 10.7)
• Contour surface of s2 (see Fig. 10.7, top left)
• Contour surface of p2 (see Fig. 10.7, top right)
• Contour surface of p2, theta=90, phi=0

(see Fig. 10.7, bottom left)
• Contour surface of p2, theta=90, phi=90

(see Fig. 10.7, bottom right)
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Fig. 10.7. Plot produced with descriptor Mother descriptor for contour surfaces
s2, p2(z), p2(x), p2(y) on file Hybrid_States.des

10.5 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo in the main toolbar and selecting one of the demo files
Hybrids.

(ii) More example descriptors can be found on the descriptor file Hybrids-
(FE).des in the directory FurtherExamples.

(iii) For the following exercises use descriptor file Hybrid_States.des.

10.2.1 Figure 10.3 shows the functions h2 and |h2|2 for an sp3 hybrid, i.e., for
the value λ =

√
3 ≈ 1.73 of the hybridization parameter. Produce such plots

for sp and sp2 hybrids.
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10.2.2 Plot the functions as shown in Fig. 10.3 for the principal quantum
number n = 3. Start out from the descriptors defining the constituent plots of
Fig. 10.3 and remember to adapt the computing coordinates.

10.3.1 Figure 10.4 shows contour plots of the functions h2 and |h2|2 for an
sp3 hybrid, i.e., for the value λ =

√
3 ≈ 1.73 of the hybridization parameter.

Produce such plots for sp and sp2 hybrids. Which of the three has the largest
extension in the direction −z?
10.3.2 Produce contour-line plots as shown in Fig. 10.4 for the principal quan-
tum number n = 3. Start out from the descriptors defining the constituent
plots of Fig. 10.4 and remember to adapt the computing coordinates.

10.4.1 The right-hand part of Fig. 10.5 shows the contour surface of an sp3

hybrid for n = 2, but oriented along the z direction, i.e., for ϑa = 0, ϕa = 0.
Produce such plots for the properly oriented sp, sp2, and sp3 hybrids as listed
in Sect. 10.1.3.

10.4.2 Produce contour-surface plots as shown in Fig. 10.5 for the principal
quantum number n = 3. Start out from the descriptors defining the constituent
plots of Fig. 10.5 and remember to adapt the computing coordinates.



11. Special Functions of Mathematical Physics

Contents: Discussion of the most important formulae and construction of plots
for some functions of mathematical physics relevant to quantum mechanics. These
functions are Hermite polynomials, Legendre polynomials and Legendre functions,
spherical harmonics, Bessel functions and spherical Bessel functions, Airy func-
tions, and Laguerre polynomials.
cussed are the eigenfunctions of the one-dimensional harmonic oscillator and the
radial eigenfunctions of the harmonic oscillator in three dimensions and of the hy-
drogen atom. From statistics the Gaussian distribution of one and two variables and
the error function as well as the binomial and Poisson distributions are described.

11.1 Basic Formulae

11.1.1 Hermite Polynomials

The Hermite polynomials are solutions of the differential equation

d2Hn

dx2
− 2x

dHn
dx
+ 2nHn = 0 , n = 0, 1, . . . . (11.1)

They can be computed from the recurrence relation

H0(x) = 1 , H1(x) = 2x ,

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x) , n = 2, 3, . . . , (11.2)

or from Rodrigues’ formula

Hn(x) = (−1)nex
2 dn

dxn
e−x

2
(11.3)

and satisfy the orthogonality relation
∫ ∞

−∞
Hn(x)Hm(x)e

−x2
dx = 0 , n 6= m . (11.4)
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Directly related to some of these and also dis-
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11.1.2 Harmonic-Oscillator Eigenfunctions

The eigenfunctions of the one-dimensional harmonic oscillator also known as
the Hermite–Weber functions are

ϕn(x) = (
√
π2nn!σ0)

−1/2Hn

(

x

σ0

)

exp

(

− x2

2σ 2
0

)

, n = 0, 1, 2, . . . ,

(11.5)
with

σ0 =
√

h̄/mω ,

where m and ω are the mass and angular frequency, respectively. The eigen-
functions are orthonormal,

∫ ∞

−∞
ϕn(x)ϕm(x) dx = δnm . (11.6)

11.1.3 Legendre Polynomials and Legendre Functions

The Legendre polynomials solve the differential equation

(1− x2)
d2P`(x)

dx2 − 2x
dP`(x)

dx
+ `(`+ 1)P`(x) = 0 , ` = 0, 1, 2, . . . .

(11.7)
They follow from the recurrence relation

P0(x) = 1 , P1(x) = x ,

(`+ 1)P`+1(x) = (2`+ 1)xP`(x)− `P`−1(x) , ` = 1, 2, . . . , (11.8)

or from Rodrigues’ formula

P`(x) =
1

2``!
d`

dx`

[

(x2 − 1)`
]

(11.9)

and satisfy the orthogonality relation

∫ 1

−1
P`(x)Pn(x) dx = 0 , ` 6= n . (11.10)

The associated Legendre functions are solutions of the differential equation

(1− x2)
d2Pm`

dx2 − 2x
dPm`
dx
+
[

`(`+ 1)− m2

1− x2

]

Pm` = 0 ,

` = 0, 1, 2, . . . , m = 0, 1, . . . , ` . (11.11)

With P 0
` (x) = P`(x) they can be obtained from the recurrence relation
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Pmm (x) = (−1)m
(2m)!
2mm! (1− x

2)m/2 ,

(2`+ 1)xPm` (x) = (`−m+ 1)Pm`+1(x)+ (`+m)Pm`−1(x) (11.12)

or from

Pm` (x) = (1− x2)m/2
dm

dxm
P`(x) . (11.13)

They are orthogonal:

∫ 1

−1
Pmn (x)P

m
` (x) dx = 0 , ` 6= n . (11.14)

11.1.4 Spherical Harmonics

The spherical harmonics solve the differential equation

1

sinϑ

∂

∂ϑ
sinϑ

∂Y`m

∂ϑ
+ 1

sin2 ϑ

∂2Y`m

∂ϕ2
+ `(`+ 1)Y`m = 0 (11.15)

and can be expressed by the associated Legendre functions,

Y`m(ϑ, ϕ) = (−1)m

√

2`+ 1

4π

(`−m)!
(`+m)!P

m
` (cosϑ)eimϕ , 0 ≤ m ≤ ` .

(11.16)
For negative m values one defines

Y`m = (−1)mY ∗`,|m| , m < 0 . (11.17)

The first few spherical harmonics are

Y0,0 = 1√
4π

, Y1,0 =
√

3
4π cosϑ ,

Y1,1 = −
√

3
8π sinϑ eiϕ , Y2,0 =

√

5
16π (3 cos2 ϑ − 1) ,

Y2,1 = −
√

15
8π sinϑ cosϑ eiϕ , Y2,2 =

√

15
32π sin2 ϑ e2iϕ .

The spherical harmonics are orthonormal,

∫ +1

−1

∫ 2π

0
Y ∗`′m′(ϑ, ϕ)Y`m(ϑ, ϕ) d cosϑ dϕ = δ`′`δm′m . (11.18)

The absolute square of a spherical harmonic is directly proportional to the
square of the associated Legendre function with the same indices, (11.16):

|Y`m(ϑ, ϕ)|2 =
2`+ 1

4π

(`−m)!
(`+m)! [P

m
` (cosϑ)]2 . (11.19)



11.1. Basic Formulae 241

11.1.5 Bessel Functions

Bessel’s differential equation

x2 d2Zν(x)

dx2 + x dZν(x)

dx
+ (x2 − ν2)Zν(x) = 0 (11.20)

is solved by the Bessel functions of the first kind Jν(x), of the second kind
(also called Neumann functions) Nν(x), and of the third kind (also called
Hankel functions) H (1)

ν (x) and H (2)
ν (x), which are complex linear combina-

tions of the former two. The Bessel functions of the first kind are

Jν(x) =
(x

2

)ν
∞
∑

k=0

(−1)kx2k

4kk!0(ν + k + 1)
, (11.21)

where 0(z) is Euler’s Gamma function

0(z+ 1) =
∫ ∞

0
tze−t dt . (11.22)

It fulfills the relations

0(1) = 1 , 0(1
2) =
√
π , 0(z+ 1) = z0(z) , (11.23)

which lead for integer arguments n ≥ 1 to the identification

0(n+ 1) = n! . (11.24)

The Bessel functions of the second kind are

Nν(x) =
1

sin νπ
[Jν(x) cos νπ − J−ν(x)] . (11.25)

For integer ν = n
J−n(x) = (−1)nJn(x) (11.26)

and Nn(x) has to be determined from (11.25) by the limit ν → n. The modi-

fied Bessel functions are defined as

Iν(x) = e−iπν/2Jν(e
iπ/2x) , −π < arg x ≤ π/2 . (11.27)

The Hankel functions are defined by

H (1)
ν (x) = Jν(x)+ iNν(x) , (11.28)

H (2)
ν (x) = Jν(x)− iNν(x) . (11.29)



242 11. Special Functions of Mathematical Physics

11.1.6 Spherical Bessel Functions

The differential equation

x2 d2z`(x)

dx2 + 2x
dz`(x)

dx
+
[

x2 − `(`+ 1)
]

z`(x) = 0 (11.30)

with integer ` is solved by the spherical Bessel functions of the first kind

j`(x) =
√

π

2x
J`+1/2(x) , (11.31)

the spherical Bessel functions of the second kind (also called spherical Neu-

mann functions)

n`(x) = −
√

π

2x
N`+1/2(x) = (−1)`j−`−1(x) , (11.32)

and the spherical Bessel functions of the third kind (also called spherical Han-

kel functions of the first and second kind)

h
(+)
` (x) = n`(x)+ ij`(x) = i[j`(x)− in`(x)] = i

√

π

2x
H
(1)
`+1/2(x) , (11.33)

h
(−)
` (x) = n`(x)− ij`(x) = −i[j`(x)+ in`(x)] = −i

√

π

2x
H
(2)
`+1/2(x) .

(11.34)
The spherical Hankel functions can be written in the form

h
(±)
` (x) = C±`

e±ix

x
, (11.35)

where

C±` = (∓i)`
∑̀

s=0

1

2ss!
(`+ s)!
(`− s)!(∓ix)−s (11.36)

is a polynomial in 1/x. Explicitly, the first few Hankel functions are

h
(±)
0 (x) = e±ix

x
, h

(±)
1 =

(

∓i+ 1

x

)

e±ix

x
. (11.37)

By inversion of (11.33) and (11.34) we obtain

j`(x) =
1

2i

[

h
(+)
` (x)− h(−)` (x)

]

(11.38)

and
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n`(x) =
1

2

[

h
(+)
` (x)+ h(−)` (x)

]

, (11.39)

of which the first few are simply

j0(x) =
sin x

x
, j1(x) =

sin x

x2 −
cos x

x
,

n0(x) =
cos x

x
, n1(x) =

cos x

x2 +
sin x

x
.

The behavior of the spherical Bessel and Neumann functions for small x is

j`(x)→
x`

(2`+ 1)!! , n`(x)→ (2`− 1)!! x−(`+1) , x → 0 ,

(11.40)
with

(2`+ 1)!! = 1× 3× 5× · · · × (2`+ 1) .

The h(±)` for purely imaginary argument x = iη can be expressed as

h
(±)
` (iη) = (∓i)`±1

∑̀

s=0

1

2ss!
(`+ s)!
(`+ s)!(±η)

−s e∓η

η
. (11.41)

Thus i`+1h
(+)
` (iη) is a real function of η. Its asymptotic behavior for large η

is

i`+1h
(+)
` (iη)→ e−η

η
, η→∞ . (11.42)

Introducing the result (11.41) into (11.38) and (11.39) we get for the spherical
Bessel and Neumann functions expressions which can be made explicitly real
by appropriate powers of the imaginary unit:

(−i)`j`(iη) , i`+1n`(iη) .

11.1.7 Airy Functions

Closely related to the Bessel functions are the Airy functions Ai(x) and Bi(x).
They are solutions of the differential equation

(

d2

dx2 − x
)

f (x) = 0

and are given by

Ai(x) =















√
x

3

{

I−1/3

(

2

3
x3/2

)

− I1/3

(

2

3
x3/2

)}

, x > 0
√
|x|
3

{

J−1/3

(

2

3
|x|3/2

)

+ J1/3

(

2

3
|x|3/2

)}

, x < 0

(11.43)
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and

Bi(x) =















√

x

3

{

I−1/3

(

2

3
x3/2

)

+ I1/3

(

2

3
x3/2

)}

, x > 0
√

|x|
3

{

J−1/3

(

2

3
|x|3/2

)

− J1/3

(

2

3
|x|3/2

)}

, x < 0
.

(11.44)
Their derivatives, denoted by Ai′(x) and Bi′(x), read

Ai′(x) =















−x
3

{

I−2/3

(

2

3
x3/2

)

− I2/3

(

2

3
x3/2

)}

, x > 0

−|x|
3

{

J−2/3

(

2

3
|x|3/2

)

− J2/3

(

2

3
|x|3/2

)}

, x < 0

(11.45)
and

Bi′(x) =















x√
3

{

I−2/3

(

2

3
x3/2

)

+ I2/3

(

2

3
x3/2

)}

, x > 0

|x|√
3

{

J−2/3

(

2

3
|x|3/2

)

+ J2/3

(

2

3
|x|3/2

)}

, x < 0
.

(11.46)

11.1.8 Laguerre Polynomials

The Laguerre polynomials solve the differential equation

x
d2Lαn(x)

dx2 + (α + 1− x)dL
α
n(x)

dx
+ nLαn(x) = 0 . (11.47)

They are given by the recurrence relation

Lα0 (x) = 1 , Lα1 = α + 1− x ,

(n+ 1)Lαn+1(x) = (2n+ α + 1− x)Lαn(x)− (n+ α)Lαn−1(x) (11.48)

or by the explicit formula

Lαn(x) =
n
∑

j=0

(−1)j
0(α + n+ 1)xj

0(n− j + 1)0(α + j + 1)j ! (11.49)

or by Rodrigues’ formula

Lαn(x) =
1

n!
ex

xα

dn

dxn
(xn+αe−x) (11.50)

and satisfy the orthogonality relation
∫ ∞

0
Lαn(x)L

α
m(x)x

αe−x dx = 0 , n 6= m . (11.51)
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11.1.9 Radial Eigenfunctions of the Harmonic Oscillator

The radial eigenfunctions of the three-dimensional harmonic oscillator are

Rn`(%) = Nn`%` exp
(

−%2/2
)

L`+1/2
nr

(

%2
)

(11.52)

with

Nn` =
√

(nr!2nr+`+2)/{[2(`+ nr)+ 1]!!√πσ 3
0 },

(2m+ 1)!! = 1× 3× 5× · · · × (2m+ 1),
% = r/σ0,
r: radial distance from origin,
σ0 =

√
h̄/Mω: ground-state width,

nr = (n− `)/2,
n: principal quantum number,
`: angular-momentum quantum number.

They are orthonormal:
∫ ∞

0
Rn`

(

r

σ0

)

Rm`

(

r

σ0

)

r2 dr = δnm . (11.53)

11.1.10 Radial Eigenfunctions of the Hydrogen Atom

The radial eigenfunctions of the electron in the hydrogen atom are

Rn`(r) = Nn`
(

2r

na

)`

exp
(

− r

na

)

L2`+1
n−`−1

(

2r

na

)

(11.54)

with

Nn` = 2
√
(n− `− 1)!/(n+ `)!/(a3/2n2),

n: principal quantum number,
`: angular-momentum quantum number,
a: Bohr’s radius,
r: radial distance from origin.

They are orthonormal:
∫ ∞

0
Rn`(r)Rm`(r)r

2 dr = δnm . (11.55)
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11.1.11 Gaussian Distribution and Error Function

The probability density of a Gaussian distribution with mean x0 and width σ

is

f (x) = 1

σ
√

2π
exp

{

−(x − x0)
2

2σ 2

}

. (11.56)

Its distribution function or cumulative probability distribution is the mono-
tonically increasing function

F(x) =
∫ x

−∞
f (x′) dx′ ; F(−∞) = 0 , F (∞) = 1 .

For the special values x0 = 0, σ = 1/
√

2 the probability density takes the
simple form

f (x) = 1√
π

e−x
2
.

Two integrals, closely related to the distribution function F(x) of this partic-
ular probability density, are the error function

erf(x) = 2√
π

∫ x

0
e−x

′2
dx ′ (11.57)

and the complementary error function

erfc(x) = 2√
π

∫ ∞

x

e−x
′2

dx′ . (11.58)

The joint Gaussian probability density of two variables x1 and x2, also
called the bivariate Gaussian probability density, is defined by

ρ(x1, x2) = A exp

{

− 1

2(1− c2)

[

(x1 − 〈x1〉)2

σ 2
1

(11.59)

− 2c
(x1 − 〈x1〉)

σ1

(x2 − 〈x2〉)
σ2

+ (x2 − 〈x2〉)2

σ 2
2

]}

.

The normalization constant

A = 1

2πσ1σ2
√

1− c2

ensures that the probability density is properly normalized:

∫ +∞

−∞

∫ +∞

−∞
ρ(x1, x2) dx1 dx2 = 1 .



11.1. Basic Formulae 247

The bivariate Gaussian is completely described by five parameters. They are
the expectation values 〈x1〉 and 〈x2〉, the widths σ1 and σ2, and the correlation

coefficient c. The marginal distributions defined by

ρ1(x1) =
∫ +∞

−∞
ρ(x1, x2) dx2 ,

(11.60)

ρ2(x2) =
∫ +∞

−∞
ρ(x1, x2) dx1

are for the bivariate Gaussian distribution simply Gaussians of a single vari-
able,

ρ1(x1) =
1√

2πσ1
exp

[

−(x1 − 〈x1〉)2

2σ 2
1

]

,

(11.61)

ρ2(x2) =
1√

2πσ2
exp

[

−(x2 − 〈x2〉)2

2σ 2
2

]

.

Each marginal distribution depends on two parameters only, the expectation
value and the width of its variable.

Lines of constant probability density in x1, x2 are the lines of intersection
between the surface ρ(x1, x2) and a plane ρ = a = const.

One particular ellipse, for which

ρ(x1, x2) = A exp

{

−1

2

}

,

i.e., the one for which the exponent in the bivariate Gaussian is simply equal
to −1/2, is called the covariance ellipse. Points x1, x2 on the covariance
ellipse fulfill the equation

1

1− c2

{

(x1 − 〈x1〉)2

σ 2
1

− 2c
(x1 − 〈x1〉)

σ1

(x2 − 〈x2〉)
σ2

+ (x2 − 〈x2〉)2

σ 2
2

}

= 1 .

(11.62)
Projected on the x1 axis and the x2 axis, it yields lines of lengths 2σ1 and 2σ2,
respectively.

11.1.12 Binomial Distribution and Poisson Distribution

We consider a simple experiment, e.g., the throwing of a coin, which yields
one of two possible results labeled

κ = 0 , κ = 1 .
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The probabilities to obtain these results are

P (κ = 1) = p , P (κ = 0) = 1− p .

If one performs n independent experiments, then the probability to obtain k
times the result κ = 1 is

P (k) = W n
k =

(

n

k

)

pk(1− p)n−k , k = 0, 1, . . . , n , (11.63)

with
(

n

k

)

= n!
k!(n− k)! , n! = 1× 2× 3× · · · × n , 0! = 1! = 1 .

The set of probabilities (11.63) is the binomial distribution. In the limit

n→∞ , λ = np = const

it turns into the Poisson distribution

P (k, λ) = λk

k! e
−λ . (11.64)

Further Reading

Messiah: Vol. 1, Appendix B
Abramowitz, Stegun, Chaps. 6, 7, 8, 9, 10, 14, 22, 26

11.2 Hermite Polynomials and Related Functions

Aim of this section: Illustration of the Hermite polynomials Hn(x), (11.2), and of
the eigenfunctions ϕn(x) of the one-dimensional harmonic oscillator, (11.5).

At the bottom of the subpanel Physics—Comp. Coord. you can select between

• Hermite Polynomials Hn(x) and
• Eigenfunctions of 1D Harmonic Oscillator ϕn(x).

On the subpanel Physics—Variables you find the Index n. If you ask for
a multiple plot, this value of n is taken only for the first plot. It is increased
successively by 1 for every further plot. If you choose the harmonic-oscillator
functions, you can decide to plot either ϕn(x) or (ϕn(x))2.

Example Descriptors on File Math_Functions.des

• Hermite polynomials (Fig. 11.1)
• Eigenfunctions of 1D harmonic oscillator
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Fig. 11.1. Plot produced with descriptor Hermite polynomials on file Math_Functions-
.des

11.3 Legendre Polynomials

and Related Functions

Aim of this section: Illustration of the Legendre polynomials P`(x), (11.8), the
associated Legendre functions Pm` (x), (11.12), and the absolute squares |Y`m|2,
(11.19), of the spherical harmonics.

At the bottom of the subpanel Physics—Comp. Coord. you can select between

• Legendre Polynomials P`(x),
• Associated Legendre Functions Pm` (x),
• Absolute Squares |Y`m|2 of the Spherical Harmonics.

On the subpanel Physics—Variables you find – for the choice P` – the
Index `. For the choices Pm` and |Y`m|2 you find the Indices ` and m. In a
multiple plot these values are taken for the first plot. For the choice P` the
index ` is incremented by 1 for each further plot. For the choices P m` and
|Y`m|2 the index ` is increased horizontally (from column to column) and the
index m vertically (from row to row).

Example Descriptors on File Math_Functions.des

• Legendre polynomials
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Fig. 11.2. Plot produced with descriptor Associated Legendre functions on file Math_-
Functions.des

• Associated Legendre functions (see Fig. 11.2)
• Absolute squares of spherical harmonics

11.4 Spherical Harmonics:

Surface over Cartesian Grid

Aim of this section: Illustration of the spherical harmonics Y`m(ϑ, ϕ), (11.16), as
surfaces over a Cartesian grid spanned by ϑ and ϕ.

At the bottom of the subpanel Physics—Comp. Coord. you can select to dis-
play one of three aspects of the function:

• the Absolute Square |Y`m(ϑ, ϕ)|2,
• the Real Part Re Y`m(ϑ, ϕ), or
• the Imaginary Part Im Y`m(ϑ, ϕ).

Under the heading Indices you find the two indices ` and m.
In a multiple plot the indexm is incremented by 1 from column to column.

In the first row the selected aspect of the function is shown, in the second
row the next aspect (i.e., the one following in the list above – if the list is
exhausted, the first in the list is taken), and so on.
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Fig. 11.3. Plot produced with descriptor Spherical harmonics as surfaces over Car−
tesian grid on file Math_Functions.des

Example Descriptor on File Math_Functions.des

• Spherical harmonics as surfaces over Cartesian grid
(see Fig. 11.3)

11.5 Spherical Harmonics: 2D Polar Diagram

Aim of this section: Illustration of the absolute value |Y`m| or the absolute square
|Y`m|2, (11.19), of the spherical harmonics as 2D polar diagram.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to plot

• |Y`m|2 or



252 11. Special Functions of Mathematical Physics

Fig. 11.4. Plot produced with descriptor Spherical harmonics as 2D polar diagrams
on file Math_Functions.des

• |Y`m|.
These two functions depend only on the polar angle ϑ and are non-negative
everywhere. They can therefore be illustrated as 2D function graph of the
type polar diagram, see Sect. A.3.3.

On the subpanel Physics—Variables you find the two Indices ` and m. In
a multiple plot ` is incremented by one from row to row and m from column
to column.

Example Descriptor on File Math_Functions.des

• Spherical harmonics as 2D polar diagrams (see Fig. 11.4).

11.6 Spherical Harmonics: Polar Diagram in 3D

Aim of this section: Illustration of the absolute value |Y`m| or the absolute square
|Y`m|2, (11.19), of the spherical harmonics as polar diagram in 3D.

On the bottom of the subpanel Physics—Comp. Coord. you can choose to plot

• |Y`m|2 or
• |Y`m|.
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Fig. 11.5. Plot produced with descriptor Spherical harmonics: polar diagram in 3D,
cut open on file Math_Functions.des

There you also find the values of the Indices ` and m. In a multiple plot ` is
incremented by one from row to row and m from column to column.

There is an Automatic Scale facility. If it is switched on, the scale factor
between world and computing coordinates is set automatically to a reason-
able value. (More precisely, the surface shown in world coordinates will just
touch a cube with a half-edge length which is the maximum of the absolute
values of Xbeg, Xend, Ybeg, Yend, Zbeg, Zend which define the ranges of world
coordinates.)

Example Descriptors on File Math_Functions.des

• Spherical harmonics: polar diagram in 3D
• Spherical harmonics: polar diagram in 3D, cut open

(see Fig. 11.5)

11.7 Bessel Functions and Related Functions

Aim of this section: Illustration of the Bessel function Jn(x), (11.21), and of
the modified Bessel function In(x), (11.27), for integer index n. Illustration of the
spherical Bessel functions j`(x), (11.31), and spherical Neumann functions n`(x),
(11.32), for purely real and purely imaginary arguments, and of the spherical Hankel
functions of the first kind h(+)` , (11.41), for purely imaginary arguments.
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On the bottom of the subpanel Physics—Comp. Coord. you can select one of
the following functions:

• Bessel Functions Jn(x),
• Modified Bessel Functions In(x),
• Spherical Bessel Functions j`(x),
• Spherical Neumann Functions n`(x),
• Spherical Hankel Functions of purely imaginary argument i`+1h

(+)
` (ix),

• Spherical Bessel Functions of purely imaginary argument (−i)`j`(ix),
• Spherical Neumann Functions of purely imaginary argument i`+1n`(ix).

On the subpanel Physics—Variables you find the Index n or ` which can
only be a non-negative integer. For a multiple plot it is incremented by one
from plot to plot.

Example Descriptors on File Math_Functions.des

• Bessel function (see Fig. 11.6)
• Modified Bessel function
• Spherical Bessel function
• Spherical Neumann function
• Spherical Hankel function of purely imaginary argument
• Spherical Bessel function of purely imaginary argument
• Spherical Neumann function of purely imaginary argument

Fig. 11.6. Plot produced with descriptor Bessel function on file Math_Functions.des
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11.8 Bessel Function

and Modified Bessel Function

with Real Index

Aim of this section: Illustration of the Bessel function Jν(x), (11.21), and of the
modified Bessel function Iν(x), (11.27), as surfaces over a Cartesian grid spanned
by the (real) argument x and the (real) index ν.

At the bottom of the subpanel Physics—Comp. Coord. you can choose one of
the two functions

• Bessel function Jν(x),
• Modified Bessel function Iν(x).

There is also a Cut-Off Facility, which, if On, limits the surface shown to the
Range of Computing Coordinates in z.

Example Descriptors on File Math_Functions.des

• Bessel function J(x,nu) (see Fig. 11.7)
• Modified Bessel function I(x,nu)

Fig. 11.7. Plot produced with descriptor Bessel function J(x,nu) on file Math_Func-
tions.des
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Fig. 11.8. Plot produced with descriptor Airy function Ai(x) on file Math_Functions-
.des

11.9 Airy Functions

Aim of this section: Illustration of the Airy functions Ai(x), (11.43), and Bi(x),
(11.44), and of the derivatives Ai′(x), (11.45), and Bi′(x), (11.46).

On the subpanel Physics—Comp. Coord. you can select one of the four func-
tions

• Airy function Ai(x),
• Airy function Bi(x),
• Derivative Ai′(x),
• Derivative Bi′(x).

Example Descriptors on File Math_Functions.des

• Airy function Ai(x) (see Fig. 11.8)
• Airy function Bi(x)
• Derivative of Airy function, Ai’(x)
• Derivative of Airy function, Bi’(x)
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11.10 Laguerre Polynomials

Aim of this section: Illustration of the Laguerre polynomials Lαn(x), (11.48). Illus-
tration of the radial eigenfunctions Rnr`(%), (11.52), of the three-dimensional har-
monic oscillator (σ0 = 1). Illustration of the radial eigenfunctions Rn`(%), (11.54),
of the electron in the hydrogen atom, where the Bohr radius is set equal to 1.

On the bottom of the subpanel Physics—Comp. Coord. you can select one of
the three functions:

• Laguerre Polynomials Lαn ,
• Radial Eigenfunctions of 3D Harmonic Oscillator Rnr`,
• Radial Eigenfunctions of Hydrogen Atom Rn`.

On the subpanel Physics—Variables you find the two Indices for the se-
lected function. In a multiple plot the first index is incremented by one from
column to column and the second index from row to row.

Example Descriptors on File Math_Functions.des

• Laguerre polynomials (see Fig. 11.9)
• Radial eigenfunctions of 3D harmonic oscillator
• Radial eigenfunctions of hydrogen atom

Fig. 11.9. Plot produced with descriptor Laguerre polynomials on file Math_Functions-
.des
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Fig. 11.10. Plot produced with descriptor Laguerre polynomial L(x,alpha) on file
Math_Functions.des

11.11 Laguerre Polynomials as Function of x

and the Upper Index α

Aim of this section: Illustration of the Laguerre polynomials Lαn(x), (11.48), as
surfaces over a Cartesian grid spanned by x and α.

On the bottom of the subpanel Physics—Comp. Coord. you find the lower
Index n (which in case of a multiple plot is incremented by one from plot to
plot). There is also a Cut-Off Facility, which, if On, limits the surface shown to
the Range of Computing Coordinates in z.

Example Descriptor on File Math_Functions.des

• Laguerre polynomial L(x,alpha) (see Fig. 11.10)

11.12 Gaussian Distribution

Aim of this section: Illustration of the probability density f (x), (11.56), of the
Gaussian distribution.

On the subpanel Physics—Comp. Coord. under the heading Variables you find
the mean x_0 and the width sigma_x of the distribution.
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Fig. 11.11. Plot produced with descriptor Gaussian distribution on file Math_Func-
tions.des

You may show a total of n graphs. The first has the width sigma_x. It is
incremented by Delta_sigma_x from graph to graph.

Example Descriptor on File Math_Functions.des

• Gaussian distribution (see Fig. 11.11)

11.13 Error Function and Complementary

Error Function

Aim of this section: Illustration of the error function erf(x), (11.57), and of the
complementary error function erfc(x), (11.58).

On the subpanel Physics—Comp. Coord. you can select one of the two func-
tions

• Error Function erf(x),
• Complementary Error Function erfc(x).

Example Descriptors on File Math_Functions.des

• Error function erf(x)
• Complementary error function erfc(x) (see Fig. 11.12)
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Fig. 11.12. Plot produced with descriptor Complementary error function erfc(x) on
file Math_Functions.des

11.14 Bivariate Gaussian Distribution

Aim of this section: Illustration of the bivariate Gaussian probability density
ρ(x1, x2), (11.59).

The function ρ(x1, x2) is shown as surface over the x1, x2 plane. The marginal
distributions ρ1(x1) and ρ2(x2), (11.61), are displayed over the high-x1 and
high-x2 margin of the x1, x2 plane, respectively.

On the subpanel Physics—2D Gaussian you can enter the variables x10 =
〈x1〉, x20 = 〈x2〉, σ1, σ2, and c. Moreover, you can choose (or not choose) to
show

• the expectation values x10, x20 as a filled circle in the x1, x2 plane,
• the covariance ellipse as a line ρ(x1, x2) = const,
• a “frame”, i.e., a rectangle enclosing the ellipse (not normally wanted).

Example Descriptor on File Math_Functions.des

• 2D Gaussian (see Fig. 11.13)

11.15 Bivariate Gaussian: Covariance Ellipse

Aim of this section: Illustration of the covariance ellipse (11.62).
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Fig. 11.13. Plot produced with descriptor 2D Gaussian on file Math_Functions.des

Fig. 11.14. Plot produced with descriptor 2D Gaussian: Covariance Ellipse on file
Math_Functions.des
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The covariance ellipse (11.62) is shown as line in the x1, x2 plane.
On the subpanel Physics—2D Gaussian you can enter the variables x10 =

〈x1〉, x20 = 〈x2〉, σ1, σ2, and c. Moreover, you can choose (or not choose) to
show

• the expectation values x10, x20 as a filled circle in the x1, x2 plane,
• the covariance ellipse as a line ρ(x1, x2) = const,
• the “frame” (rectangle enclosing the ellipse).

Example Descriptor on File Math_Functions.des

• 2D Gaussian: Covariance Ellipse (see Fig. 11.14)

11.16 Binomial Distribution

Aim of this section: Illustration of the binomial probability P (k) = W n
k , (11.63).

On the subpanel Physics—Comp. Coord. under the heading Variables you find
the parameter p which determines the binomial distribution for a given value
of n. The distribution is shown in one plot for all values of n between n = 0
and n = n_max. In a multiple plot the parameter p is increased by Delta p

from plot to plot.

Fig. 11.15. Plot produced with descriptor Binomial distribution on file Math_Func-
tions.des
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Example Descriptor on File Math_Functions.des

• Binomial distribution (see Fig. 11.15)

11.17 Poisson Distribution

Aim of this section: Illustration of the Poisson probability distribution P(k, λ),
(11.64).

For a fixed value of the parameter λ, the distribution P(k, λ) is represented
by a histogram, which is a set of columns of the height

P (0, λ), P (1, λ), . . . , P (kmax, λ) .

Fig. 11.16. Plot produced with descriptor Poisson distribution on file Math_Functions-
.des
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We show several such histograms for different values of λ by placing these
sets of columns in a plane spanned by k and λ, see Fig. 11.16.

In the subpanel Physics—Comp. Coord. you find the Range of the Param-

eter λ defined by the values λ_beg and λ_end and the number of histograms
n_HIST shown within that range. The Range in k extends between k = 0 and
k = k_max.

Example Descriptor on File Math_Functions.des

• Poisson distribution (see Fig. 11.16)

11.18 Simple Functions of a Complex Variable

Aim of this section: Illustration of simple complex functions of one complex vari-
able, i.e.,w = w(z). The complex variable z = x+iy = reiϕ has real part Re z = x,
imaginary part Im z = y, absolute value |z| = r , and argument arg z = ϕ. Presented
are plots of Rew, Imw, |w|, and argw as surfaces over the complex plane spanned
by x and y. Plots can be of type surface over Cartesian grid or surface over polar

grid. The functions are ez, log z, sin z, cos z, sinh z, cosh z, zn, and z1/n.

On the subpanel Physics—Comp. Coord. you can select one of the following
complex functions of the complex variable z = x + iy:

• w = ez,
• w = log z (≡ ln z, natural logarithm),
• w = sin z,
• w = cos z,
• w = sinh z (hyperbolic sine),
• w = cosh z (hyperbolic cosine),
• w = zn, n integer,
• w = z1/n, n positive integer.

As Aspect of the Function Plotted you can choose one of the four real
quantities derived from the complex quantity w:

• Rew, the real part of w,
• Imw, the imaginary part of w,
• |w|, the absolute value of w,
• argw, the argument of w.

In a multiple plot the aspect chosen is used for the first plot, the next
aspect in the list for the second plot, etc. If the list is exhausted the first aspect
is taken, etc.

There is a Cut-Off Facility, which, if switched On, limits the quantity shown
to the range of computing coordinates in z.

The subpanel Physics—Variables is needed only for the two functions
w = zn and w = z1/n. It contains the integer n in the exponent of these
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Fig. 11.17. Plot produced with descriptor Function of complex variable, surface
over Cartesian grid: w = exp(z) on file Math_Functions.des

Fig. 11.18. Plot produced with descriptor Function of complex variable, surface
over polar grid: w = z**3 on file Math_Functions.des
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functions. The function w = z1/n is not single-valued. One can ‘decompose’
it into n single-valued functions by plotting it separately over n different Rie-

mann sheets. The number n_Sheet which can take integer values between 1
and n labels the Riemann sheet chosen.

Plot Type For the graphical representation, the plot types surface over Car-

tesian grid in 3D and surface over polar grid in 3D are available. The plot
type depends on the descriptor you begin with.

Example Descriptors on File Math_Functions.des

• Function of complex variable, surface over Cartesian grid:
w = exp(z) (see Fig. 11.17)
• Function of complex variable, surface over polar grid: w =
z**3 (see Fig. 11.18)

11.19 Exercises

Please note:

(i) You may watch a demonstration of the material of this chapter by pressing
the button Run Demo in the main toolbar and selecting one of the demo files
Math_Functions.

(ii) For the following exercises use descriptor file Math_Functions.des.

11.2.1 Plot in a 2 × 2 multiple plot the Hermite polynomials Hn(x) for
(a) n = 9, 10, 11, 12, (b) n = 13, 14, 15, 16, (c) n = 20, 21, 22, 23. Start
from descriptor 1: ‘Hermite polynomials’. (d) How many zeros doesHn(x)
possess?

11.2.2 Plot in a 2× 2 multiple plot the eigenfunctions of the harmonic oscil-
lator for (a) n = 9, 10, 11, 12, (b) n = 13, 14, 15, 16, (c) n = 20, 21, 22, 23.
Start from descriptor 2: ‘Eigenfunctions of 1D harmonic oscillator’.

11.3.1 Plot in a 2 × 2 multiple plot the Legendre polynomials P`(x) for
(a) ` = 9, 10, 11, 12, (b) ` = 13, 14, 15, 16, (c) ` = 20, 21, 22, 23. Start
from descriptor 3: ‘Legendre polynomials’. (d) How many zeros does the
polynomial P`(x) possess?

11.3.2 Plot in a 4× 4 multiple plot the associated Legendre functions Pm` (x)
for (a) ` = 4,m = 0, . . ., ` = 7,m = 3, (b) ` = 4,m = 4, . . ., ` = 7,m = 7.
Start from descriptor 4: ‘Associated Legendre functions’. (c) How many
zeros does the function Pm` (x) exhibit?

11.4.1 Plot the real and imaginary part of the spherical harmonic functions for
` = 2 and its absolute square in a 3 × 3 multiple plot. Start from descriptor
6: ‘Spherical harmonics as surfaces over Cartesian grid’.
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11.5.1 Plot as polar diagrams in a 3 × 3 multiple plot the absolute square
|Y`m|2 of the spherical harmonic function for (a) ` = 4, m = 0 as plot in the
upper-left field; (b) ` = 4, m = 4 as plot in the upper-left field. Start from
descriptor 7: ‘Spherical harmonics as 2D polar diagrams’.

11.6.1 Repeat Exercise 11.5.1 but produce polar plots in 3D starting from
descriptor 8: ‘Spherical harmonics, polar diagram in 3D’.

11.6.2 Repeat Exercise 11.6.1, but start from descriptor 9: ‘Spherical har−
monics, polar diagram in 3D, cut open’.

11.7.1 Plot the Bessel functions Jn(x) in a 5 × 5 multiple plot for n =
0, 1, . . . , 24. Start from descriptor 10: ‘Bessel function’.

11.7.2 Repeat Exercise 11.7.1 for the modified Bessel functions In(x) starting
from descriptor 11: ‘Modified Bessel function’. (Adjust the scale in x by
setting xend to a suitable value.)

11.7.3 Plot in a 2× 2 multiple plot the spherical Bessel functions j`(x) in the
range 0 ≤ x ≤ 50 for (a) ` = 9, 10, 11, 12, (b) ` = 13, 14, 15, 16. Start from
descriptor 12: ‘Spherical Bessel function’.

11.7.4 Plot in a 2× 2 multiple plot the spherical Neumann functions n`(x) in
the range 0 ≤ x ≤ 50 for (a) ` = 9, 10, 11, 12, (b) ` = 13, 14, 15, 16. Start
from descriptor 13: ‘Spherical Neumann function’.

11.7.5 Plot in a 2 × 2 multiple plot the spherical modified Hankel functions
i`+1h(+)(i%) in the range 0 ≤ x ≤ 20 for (a) ` = 9, 10, 11, 12, (b) ` =
13, 14, 15, 16. Start from descriptor 14: ‘Spherical Hankel function of
purely imaginary argument’.

11.7.6 Plot in a 2 × 2 multiple plot the spherical modified Bessel functions
(−i)`j`(i%) in the range 0 ≤ x ≤ 20 for (a) ` = 9, 10, 11, 12, (b) ` =
13, 14, 15, 16. Start from descriptor 15: ‘Spherical Bessel function of
purely imaginary argument’.

11.7.7 Plot in a 2 × 2 multiple plot the spherical modified Neumann func-
tions i`+1n`(i%) in the range 0 ≤ x ≤ 20 for (a) ` = 9, 10, 11, 12,
(b) ` = 13, 14, 15, 16. Start from descriptor 16: ‘Spherical Neumann func−
tion of purely imaginary argument’.

11.9.1 Plot the Airy functions using descriptors 19: ‘Airy function Ai(x)’
and 20: ‘Airy function Bi(x)’.

11.10.1 Plot the Laguerre polynomials Lαn(x) in a 2 × 2 multiple plot for the
index values (a) n = 3, α = 0, 1; n = 4, α = 0, 1 in the range 0 ≤ x ≤ 11,
(b) n = 3, α = 2, 3; n = 4, α = 2, 3 in the range 0 ≤ x ≤ 13. Start from
descriptor 23: ‘Laguerre polynomials’.

11.10.2 Plot in a 3 × 3 multiple plot the radial eigenfunctions of a spheri-
cally symmetric harmonic oscillator in the range 0 ≤ x ≤ 8 for the angular
momenta ` = 1, 2, 3 for the principal quantum numbers (a) n = 3, 4, 5,
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(b) n = 6, 7, 8. Start from descriptor 24: ‘Radial eigenfunctions of 3D
harmonic oscillator’.

11.10.3 Plot in a 3× 3 multiple plot the radial eigenfunctions of the hydrogen
atom in the range 0 ≤ x ≤ 60 for the principal quantum numbers n = 3, 4, 5
and (a) ` = 0, 1, 2, (b) ` = 3, 4, 5. Start from descriptor 25: ‘Radial eigen−
functions of hydrogen atom’.

11.11.1 Plot the Laguerre polynomials Lαn(x) in a 2 × 2 multiple plot for
the range 0 ≤ x ≤ 10 with α as a running index in the range 0 ≤ α ≤ 5
and for n = 4, 5, 6, 7. Start from descriptor 26: ‘Laguerre polynomial
L(x,alpha)’.

11.12.1 Plot a Gaussian distribution using descriptor 27: ‘Gaussian dis−
tribution’. (a) Produce graphs for more values of σ by setting n equal to 5.
(b) Change x0 by setting it to 2, −3.

11.13.1 Plot the two error functions using descriptors 28: ‘Error function
erf(x)’, 29: ‘Complementary error function erfc(x)’.

11.14.1 Plot a bivariate Gaussian distribution using descriptor 30: ‘2D Gauss−
ian’. (a) Produce plots for c = −0.5, 0, 0.9. (b) Repeat (a) for σ1 =
0.5, σ2 = 1 and for σ1 = 1, σ2 = 1.

11.15.1 Plot the covariance ellipse of a bivariate Gaussian distribution using
descriptor 31: ‘2D Gaussian, Covariance Ellipse’. Produce additional
plots for the numerical values given in the preceding exercise.

11.16.1 Plot a binomial distribution using descriptor 32: ‘Binomial distri−
bution’. Produce a 3× 3 multiple plot for p = 0.1, 0.2, . . . , 0.9.

11.17.1 Produce a set of Poisson distributions for several values of λ using
descriptor 33: ‘Poisson distribution’. Change the range of λ to (a) 0 ≤
λ ≤ 1, (b) 9 ≤ λ ≤ 10. Observe the characteristic difference in the shape of
the distribution in these two domains of λ.

11.18.1 (a) Plot w = ez using descriptor 34: ‘Function of complex vari−
able, surface over Cartesian grid: w = exp(z)’. (b) Leave the plot
on the screen and produce additional plots for w = log z, sin z, cos z, sinh z,
cosh z. Compare them.

11.18.2 Plot w = z3 using descriptor 35: ‘Function of complex variable,
surface over polar grid: w = z**3’. Leave the plot on the screen and
produce additional plots for w = z0, z1, z2, z4, z5. Compare them.



12. Additional Material and Hints

for the Solution of Exercises

12.1 Units and Orders of Magnitude

12.1.1 Definitions

Every physical quantity q can be expressed as a product of a dimensionless
numerical value qNu and its unit qu,

q = qNuqu . (12.1)

The index u specifies the particular system of units used. We may factorize
the numerical value

qNu = qMu × 10qEu (12.2)

into a mantissa qMu and a power of ten with the integer exponent qEu. The fac-
torization (12.2) is by no means unique, but it is understood that the mantissa
is not too far from one, say 0.001 ≤ |qMu| ≤ 1000.

It is important that numerical values used in the computer all have simi-
lar exponents because, otherwise, the result of computation may have severe

typically |qEu| ≥ 38, cannot be represented at all with simple techniques. Nu-
merical values that we use as input in computer programs should therefore
have exponents close to zero, say |qEu| ≤ 5.

In mechanics and quantum mechanics one can choose three physical quan-
tities to be basic quantities, define units for them as basic units, and derive
the units of all other quantities from these basic units.

12.1.2 SI Units

In the international system of weights and measures (SI) the basic quantities
are length, mass, and time with the basic units meter (m), kilogram (kg), and
second (s), respectively.

The SI units of the more important physical quantities and the numerical
values of some constants of nature are given in Table 12.1.
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rounding errors. Moreover, numbers with very small or very large exponents,
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Table 12.1. SI units

SI Units (Based on m, kg, s)

Quantity Unit
Energy 1 ESI = 1 m2 kg s−2

Length 1 `SI = 1 m
Time 1 tSI = 1 s
Angular Frequency 1ωSI = 1 t−1

SI = 1 s−1

Action 1 ASI = 1 ESI tSI = 1 m2 kg s−1

Velocity 1 vSI = 1 `SI t−1
SI = 1 m s−1

Mass 1 MSI = 1 kg
Momentum 1 pSI = 1 MSI vSI = 1 m kg s−1

Constants

Planck’s Constant h̄ = h̄NSI ASI , h̄NSI = 1.055× 10−34

Speed of Light c = cNSI vSI , cNSI = 2.998× 108

Electron Mass Me = MeNSI MSI , MeNSI = 9.110× 10−31

Proton Mass Mp = MpNSI MSI , MpNSI = 1.673× 10−27

Bohr Radius a = aNSI `SI , aNSI = 0.5292× 10−10

Energy of Hydrogen E1 = E1NSI ESI , E1NSI = 2.180× 10−18

Ground State

12.1.3 Scaled Units

Unfortunately, the constants typical of quantum phenomena, listed at the bot-
tom of Table 12.1, all have very large or small exponents in SI units. A simple
way out of this problem is the use of scaled units, i.e., units multiplied by suit-
able powers of 10. We reformulate the factorization (12.1) and (12.2),

q = qNuqu = qMu × 10qEuqu = qMu × 10q
′
Eu × 10q̄Euqu

= qMu × 10q
′
Euq′u = q ′Nuq′u , (12.3)

by writing the exponent qEu as a sum of two integers,

qEu = q ′Eu + q̄Eu , (12.4)

where q ′Eu is chosen close to zero, and thus defining a scaled unit

q′u = 10q̄Euqu (12.5)

and the corresponding numerical value

q ′Nu = qMu × 10q
′
Eu . (12.6)

The decomposition (12.4) of the exponent is not unique. It has to be chosen
in such a way that the numerical values (12.6), multiplied by a scaled unit,
are not too far away from unity, i.e., that exponents q ′Eu are close to zero, say



12.1. Units and Orders of Magnitude 271

Table 12.2. Scaled SI units

Examples of Scaled SI Units

with a choice of scale factors with a choice of scale factors
for action, mass, velocity for action, mass, energy

E′SI = M′SI v′2SI = 10−14 m2 kg s−2 E′SI = 10−18 ESI = 10−18 m2 kg s−2

`′SI = A′SI/M
′
SI v′SI = 10−12 m `′SI = A′SI/

√

E′SI M′SI = 10−10 m

t′SI = A′SI/M
′
SI v′2SI = 10−20 s t′SI = A′SI/E

′
SI = 10−16 s

ω′SI = 1/t′SI = 1020 s−1 ω′SI = 1/t′SI = 1016 s−1

A′SI = 10−34 ASI = 10−34 m2 kg s−1 A′SI = 10−34 ASI = 10−34 m2 kg s−1

v′SI = 108 vSI = 108 m s−1 v′SI =
√

E′SI/M
′
SI = 106 m s−1

M′SI = 10−30 MSI = 10−30 kg M′SI = 10−30 MSI = 10−30 kg

p′SI = M′SI v′SI = 10−22 m kg s−1 p′SI =
√

E′SI M′SI = 10−24 m kg s−1

Constants
h̄ = 1.055 A′SI h̄ = 1.055 A′SI
c = 2.998 v′SI c = 299.8 v′SI
Me = 0.9110 M′SI Me = 0.9110 M′SI
Mp = 1673 M′SI Mp = 1673 M′SI
a = 52.92 `′SI a = 0.5292 `′SI
E1 = 0.000 218 E′SI E1 = 2.180 E′SI

|q ′Eu| ≤ 5. Since three basic units can be chosen, three scaling exponents q ′Eu
may also be chosen. All other scaling exponents are fixed by this choice.

As examples in Table 12.2 we give two sets of scaled SI units. The set in
the left column is based on the choice of scale factors for action, mass, and
velocity,

A′SI = 10−34 ASI , v′SI = 108 vSI , M′SI = 10−30 MSI ,

which ensures that h̄, c, and Me have numerical values close to unity. For the
set in the right column,

A′SI = 10−34 ASI , E′SI = 10−18 ESI , M′SI = 10−30 MSI

were chosen. Note that in this case the powers of 10 of the scale factors for
E′SI and M ′SI have to be chosen either even for both or odd for both to ensure
that the square roots appearing will again be integer powers of 10.

12.1.4 Atomic and Subatomic Units

Scaling factors, or at least scaling factors with large absolute powers of 10,
are unnecessary if one chooses units that are ‘natural’ to the system studied.
One selects three quantities typical for the system and sets their numerical
values equal to one. For questions of atomic physics it is most natural to
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Table 12.3. Atomic units

Atomic Units (Based on h̄Na = cNa = MeNa = 1)

1 Ea = 1 Ma v2
a = Me c

2 = 8.188× 10−14 m2 kg s−2

1 `a = 1 Aa/Ma va = h̄/Me c = λe = 3.863× 10−13 m
1 ta = 1 Aa/Ma v2

a = λe/c = 1.288× 10−21 s
1ωa = 1 t−1

a = 0.7764× 1021 s−1

1 Aa = h̄ = 1.055× 10−34 m2 kg s−1

1 va = c = 2.998× 108 m s−1

1 Ma = Me = 9.110× 10−31 kg
1 pa = 1 Ma va = Me c = 2.731× 10−22 m kg s−1

Constants
h̄ = h̄Na Aa = h̄NSI ASI , h̄Na = 1→ Aa = h̄NSI ASI

= 1.055× 10−34 m2 kg s−1

c = cNa va = cNSI vSI , cNa = 1→ va = cNSI ASI = 2.998× 108 m s−1

Me = MeNa Ma = MeNSI MSI , MeNa = 1→ Ma = MeNSI MSI

= 9.110× 10−31 kg
Mp = MpNa Ma = MpNSI MSI , MpNa = MpNSI MSI/Ma = 1836
a = aNa `a = aNSI `SI , aNa = aNSI `SI/`a = 137.0
E1 = E1Na Ea = E1NSI ESI , E1Na = E1NSI ESI/Ea = 2.662× 10−5

choose Planck’s constant, the velocity of light, and the electron mass as these
quantities. The so-defined atomic units are listed in Table 12.3. All actions
are expressed in multiples of h̄, all velocities in multiples of c, and all masses
in multiples of Me. The unit of length is

1 `a = h̄/Me c = λe = 3.863× 10−13 m ,

which is called the Compton wavelength of the electron. The Bohr radius is
137 λe. The unit of time is the time it takes for a light pulse to traverse one
unit of length.

Many phenomena in nuclear physics are best treated in subatomic units,
which are obtained by using h̄, c, and the proton mass Mp as basic units,
Table 12.4.

12.1.5 Data-Table Units

Often energies of atomic systems are given in electron volts,

1 eV = 1.602× 10−19 m2 kg s−2 .

A system of units based on the electron volt, the meter, and the second, which
we call data-table units (which we identify by an index d), is presented in
Table 12.5. You need scale factors in order to use this system. Table 12.6
contains two useful sets of scaled data-table units.



12.1. Units and Orders of Magnitude 273

Table 12.4. Subatomic units

Subatomic Units (Based on h̄Ns = cNs = MpNs = 1)

1 Es = 1 Ms v2
s = Mp c

2 = 1.504× 10−10 m2 kg s−2

1 `s = 1 Aa/Ma va = h̄/Mp c = λp = 2.103× 10−16 m
1 ts = 1Aa/Ma v2

a = λp/c = 7.015× 10−25 s
1ωs = 1 t−1

a = 1.426× 1024 s−1

1 As = h̄ = 1.055× 10−34 m2 kg s−1

1 vs = c = 2.998× 108 m s−1

1 Ms = Mp = 1.673× 10−27 kg
1 ps = 1 Ms vs = Mp c = 5.016× 10−19 m kg s−1

Constants
h̄ = h̄Ns As = h̄NSI ASI , h̄Ns = 1→ As = h̄NSI ASI

= 1.055× 10−34 m2 kg s−1

c = cNs vs = cNSI vSI , cNs = 1→ vs = cNSI ASI = 2.998× 108 m s−1

Me = MeNs Ms = MeNSI MSI , MeNs = MeNSI MSI/Ms = 5.445× 10−4

Mp = MpNs Ms = MpNSI MSI , MpNs = 1→ Ms = MpNSI MSI

= 1.673× 10−27 kg
a = aNs `s = aNSI `SI , aNs = aNSI `SI/`s = 2.516× 105

E1 = E1Ns Es = E1NSI ESI , E1Ns = E1NSI ESI/Es = 1.449× 10−8

Table 12.5. Data-table units

Data Table Units (Based on eV, m, s)

Quantity Unit
Energy 1 Ed = 1 eV
Length 1 `d = 1 m
Time 1 td = 1 s
Angular Frequency 1ωd = 1 t−1

d = 1 s−1

Action 1 Ad = 1 Ed td = 1 eV s
Velocity 1 vd = 1 `d t−1

d = 1 m s−1

Mass 1 Md = Ed v−2
d = 1 eV s2 m−2

Momentum 1 pd = 1 Md vd = 1 eV s m−1

Constants

Planck’s Constant h̄ = h̄Nd Ad , h̄Nd = 0.6582× 10−15

Speed of Light c = cNd vd , cNd = 2.998× 108

Electron Mass Me = MeNd Md , MeNd = 5.685× 10−12

Proton Mass Mp = MpNd Md , MpNd = 1.044× 10−8

Bohr Radius a = aNd `d , aNd = 0.5292× 10−10

Energy of Hydrogen E1 = E1Nd Ed , E1Nd = −13.61
Ground State

A different system of units still (which we identify by an index c) mea-
sures masses in units 1Mc = 1 eV/c2. It is obtained through the following
set of equations:
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Table 12.6. Scaled data-table units

Examples of Scaled Data-Table Units

with a choice of scale factors with a choice of scale factors
for energy, length, and mass for energy, length, and mass
suitable for problems of suitable for problems of
atomic physics nuclear physics

E′d = 1 eV E′d = 106 Ed = 1 MeV
`′d = 10−9 `d = 10−9 m `′d = 10−14 `d = 10−14 m

t′d = `′d
√

M′d/E
′
d = 10−15 s t′d = `′d

√

M′d/E
′
d = 10−21 s

ω′d = 1/t′d = 1015 s−1 ω′d = 1/t′d = 1021 s−1

A′d = `′d
√

M′d E′d = 10−15 eV s A′d = `′d
√

M′d E′d = 10−15 eV s

v′d =
√

E′d/M
′
d = 106 m s−1 v′d =

√

E′d/M
′
d = 107 m s−1

M′d = 10−12 Md = 10−12 eV m−2 s2 M′d = 10−8 Md = 10−8 eV m−2 s2

p′d =
√

E′d M′d = 10−6 eV m−1 s p′d =
√

E′d M′d = 10−7 eV m−1 s

Constants
h̄ = 0.6582 A′d h̄ = 0.6582 A′d
c = 299.8 v′d c = 29.98 v′d
Me = 5.685 M′d Me = 0.000 5685 M′d
Mp = 10 440 M′d Mp = 1.044 M′d
a = 0.052 92 `′d a = 0.5292× 10−4 `′d
E1 = −13.61 E′d E1 = −13.61× 10−6 E′d

M =MNd Md = MNd eV s2 m−2 = MNd
eV

c2
(c2 s−2 m−2)

=MNd(2.998× 108)2 eV/c2 = MNc eV/c2 ,

MNc = MNd × 8.988× 1016

or
1 eV/c2 = 8.988× 1016 eV s2 m−2 = 1.783× 10−36 kg .

In units eV/c2 the electron and proton mass are

Me = 0.5110× 106 eV/c2 , Mp = 938.3× 106 eV/c2 .

12.1.6 Special Scales

The Hydrogen Atom The energy spectrum in the hydrogen atom is given by
(7.52). In Sect. 7.2 we use atomic units but we allow a change of the input
value

√
α. What, then, is the meaning of the energy scale in Fig. 7.4 in the

default case α = 1? If the right-hand side of (7.52) is written with α2 replaced
by 1, it means that a factor α2 is missing in the equation. We absorb this factor
into the energy unit by defining a new unit

Eh = α2 Ea = 5.328× 10−5 Ea ,
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where Ea is the energy in atomic units. For the lowest eigenvalue in Fig. 7.4
(which has ` = 2 and then n = 3) we read off E3 = 0.0555 Eh =
2.957 × 10−6 Ea as expected since E3 = 1

9E1 and E1 = 2.662 × 10−5 Ea,
see Table 12.3.

The Harmonic Oscillator Similarly the energy scale of the harmonic-
oscillator eigenvalue spectrum described by (7.45) and shown in Fig. 7.3 for
the default value ofω = 1ωa in atomic units can be interpreted as the spectrum
of an oscillator with arbitrary angular frequency ω = ωNaωa if the numerical
values on the energy scale are given the units

Eo = Ea ωNa .

12.2 Argand Diagrams and Unitarity

for One-Dimensional Problems

12.2.1 Probability Conservation and the Unitarity

of the Scattering Matrix

Scattering processes in one spatial dimension offer a simple study of the prop-
erties of the S matrix. In stepwise constant potentials of the kind (3.16) the
wave function is of complex exponential form in the various regions. We rep-
resent the wave functions in the region 1 of vanishing potential far to the left
as

ϕ1(x) = A′1eik1x + B ′1e−ik1x (12.7)

and in the region N far to the right as

ϕN (x) = A′NeikNx + B ′Ne−ikNx . (12.8)

Here, we have also included the term B ′Ne−ikNx representing a wave com-
ing in from large values of x propagating to the left. Obviously, there are two
physical scattering situations:

i) incoming right-moving wave at negative x values represented by the term
A′1eik1x : the outgoing waves are the transmitted wave A′NeikNx and the
reflected wave B ′1e−ik1x ;

ii) incoming left-moving wave at large positive x values, represented by the
term B ′Ne−ikNx : the outgoing waves are the transmitted wave B1e−ik1x and
the reflected wave ANeikNx .

For real potentials V (x) every solution of the time-dependent Schrödinger
equation keeps the normalization at all times. Thus, the integral of the proba-
bility density over the whole x axis does not change with time. This is inter-
preted as probability conservation. It can also be expressed as the conserva-
tion of the probability-current density
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j (x, t) = h̄

2mi

(

ψ∗
∂

∂x
ψ − ψ ∂

∂x
ψ∗
)

(12.9)

through a continuity equation

∂%

∂t
+ ∂j

∂x
= 0 , (12.10)

where
%(x, t) = ψ∗(x, t)ψ(x, t) (12.11)

is the probability density. For stationary states

ψ(x, t) = e−
i
h̄
Et
ϕ(x) (12.12)

the probability density % and current density j are time independent and prob-
ability conservation is tantamount to

d

dx
j (x) = 0 , (12.13)

i.e., the probability-current density is constant in x.
For the wave functions (12.7), (12.8) this means

k1(|A′1|2 − |B ′1|2) = kN (|A′N |2 − |B ′N |2) (12.14)

or
∣

∣

∣

∣

∣

√

kN

k1
A′N

∣

∣

∣

∣

∣

2

+ |B ′1|2 = |A′1|2 +
∣

∣

∣

∣

∣

√

kN

k1
B ′N

∣

∣

∣

∣

∣

2

(12.15)

for arbitrary values of A′1 and B ′N . We associate the quantities on either side
of the above equation with the absolute squares of the components of two-
dimensional complex vectors

(

AN
B1

)

=
(√

kN
k1
A′N

B ′1

)

,

(

A1

BN

)

=
(

A′1
√

kN
k1
B ′N

)

. (12.16)

The equation (12.15) derived from current conservation then states the equal-
ity of the length of these two vectors. Thus, they may be related by a complex
2× 2 matrix

S =
(

S11 S12

S21 S22

)

defined by
(

AN
B1

)

= S
(

A1

BN

)

, (12.17)

which is unitary, i.e., S and its adjoint
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S† =
(

S∗11 S
∗
21

S∗12 S
∗
22

)

(12.18)

fulfill the relation
S S† = 1 , (12.19)

or
(

S11S
∗
11 + S12S

∗
12 S11S

∗
21 + S12S

∗
22

S21S
∗
11 + S22S

∗
12 S21S

∗
21 + S22S

∗
22

)

=
(

1 0
0 1

)

. (12.20)

The unitary matrix S is called the scattering matrix or S matrix. If we consider
the amplitudes A1 and BN given to be one or zero, we have two cases:

i) wave coming in from the left:

A1 = 1 , BN = 0 , AN = S11 , B1 = S21 , (12.21)

i.e., S11 is the transmission coefficient and S21 the reflection coefficient for a
right-moving incoming wave;

ii) wave coming in from the right:

A1 = 0 , BN = 1 , AN = S12 , B1 = S22 , (12.22)

i.e., S12 is the reflection coefficient and S22 the transmission coefficient for a
left-moving wave.

12.2.2 Time Reversal and the Scattering Matrix

Invariance under time reversal implies that ϕ∗(x) is also a solution of the sta-
tionary Schrödinger equation with the real potential V (x). Because of the
change of the sign of the exponents in the wave functions, incoming and out-
going waves are interchanged and we find that the scattering matrix also re-
lates the vectors

(

B∗N
A∗1

)

= S
(

B∗1
A∗N

)

=
(

S11 S12

S21 S22

)(

B∗1
A∗N

)

. (12.23)

By complex conjugation we find
(

BN
A1

)

= S∗
(

B1

AN

)

=
(

S∗11 S
∗
12

S∗21 S
∗
22

)(

B1

AN

)

(12.24)

or, by rearranging,
(

A1

BN

)

=
(

S∗22 S
∗
21

S∗12 S
∗
11

)(

AN
B1

)

. (12.25)

Putting this into the form of (12.17) we have
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(

AN
B1

)

=
(

S∗22 S
∗
21

S∗12 S
∗
11

)−1 (
A1

BN

)

. (12.26)

So, by comparison, we find the relation

(

S11 S12

S21 S22

)−1

=
(

S∗22 S
∗
21

S∗12 S
∗
11

)

. (12.27)

Because of the unitarity of the S matrix, we have S−1 = S† and thus
(

S∗11 S
∗
21

S∗12 S
∗
22

)

=
(

S∗22 S
∗
21

S∗12 S
∗
11

)

, (12.28)

so that time-reversal invariance is equivalent to

S11 = S22 . (12.29)

The time-reversal-invariant S matrix has the particular form

S =
(

S11 S12

S21 S11

)

. (12.30)

For real potentials, time-reversal invariance holds true. Thus (12.21), (12.22),
(12.29) show that the transmission coefficients for right-moving and left-mov-
ing incoming waves are equal in this case. Just as a side remark we note that
space-reflection symmetry reduces S further to

S12 = S21 (12.31)

so that the spatial-reflection invariance leads to

S =
(

S11 S12

S12 S11

)

. (12.32)

12.2.3 Diagonalization of the Scattering Matrix

We return to the time-reversal invariant form (12.30) and investigate the re-
strictions of unitarity (12.20):

S11S
∗
11 + S12S

∗
12 = 1 , S11S

∗
21 + S12S

∗
11 = 0 ,

S21S
∗
11 + S11S

∗
12 = 0 , S21S

∗
21 + S11S

∗
11 = 1 ,

(12.33)

which represent only two independent relations. The off-diagonal relations
yield

S21 = −
S11

S∗11
S∗12 , (12.34)
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i.e., the second off-diagonal element is determined by the first. Thus, the only
relation remaining besides (12.34) is

S11S
∗
11 + S12S

∗
12 = 1 , (12.35)

which can be solved by

S11 = e2is11 cos σ , S12 = e2is12 sin σ , (12.36)

yielding

S21 = e2is21 sin σ , s21 = 2s11 − s12 + π/2 , (12.37)

with real phases s11, s12, s21 and the real angle σ . Because S is a unitary
matrix, it can be diagonalized by a unitary transformation

SD = U† S U (12.38)

or, equivalently,
S = U SDU† . (12.39)

The diagonalized S matrix turns out to be

SD =
(

SD
1 0
0 SD

2

)

=
(

e2iδ1 0
0 e2iδ2

)

(12.40)

with the scattering phases δ1 and δ2 determined by

δ1 = s11 +
1

2
σ , δ2 = s11 −

1

2
σ . (12.41)

It is unitary itself, i.e.,

SD∗
1 SD

1 = 1 , SD∗
2 SD

2 = 1 . (12.42)

The unitary matrix U diagonalizing S has the form

U = 1√
2

(

−i e−2is11 i e−2is11

e−2is12 e−2is12

)

. (12.43)

The matrix elements of the S matrix can be expressed in terms of SD
1 and SD

2
by

S11 = 1
2(S

D
1 + SD

2 ) , S12 = 1
2ie
−2i(s11−s12)(SD

1 − SD
2 ) ,

S21 = − 1
2ie

2i(s11−s12)(SD
1 − SD

2 ) , S22 = S11 .

(12.44)
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12.2.4 Argand Diagrams

We decompose the S-matrix elements into real and imaginary parts,

Sik = %ik + i σik and SD
i = %D

i + i σD
i . (12.45)

From (12.42), (12.44), i.e.,

1

2
SD

1 = S11 −
1

2
SD

2 and SD
1 S

D∗
1 = 1 , (12.46)

we have
(

%11 −
1

2
%D

2

)2

+
(

σ11 −
1

2
σD

2

)2

= 1

4
. (12.47)

This represents the equation of the curve of S11(k) = %11(k) + i σ11(k) in an
Argand plot in the complex plane. Here, the wave number k of the incident
wave plays the role of the curve parameter.

Whenever the transmission amplitude S11 has the absolute square |S11|2 =
1, because of (12.35) the reflection amplitude S12 vanishes so that the wave
numbers ki of the intersections of the curve S12(ki) with the origin of the
Argand plot are the transmission resonances.

If %D
2 (k) and σD

2 (k) are slowly varying with k in a range where %11(k)

and σ11(k) are quickly varying functions,1 then the above equation describes
a circle of radius 1

2 about a center with the coordinates 1
2%

D
2 ,

1
2σ

D
2 . These

coordinates define a point on the circle

1

4

(

%D
2

)2 + 1

4

(

σD
2

)2 = 1

4
SD∗

2 SD
2 =

1

4
(12.48)

of radius 1
2 about the origin of the complex plane. By the same argument in a

range in which %D
1 (k), σ

D
1 (k) are slowly changing whereas %11(k), σ11(k) are

quickly varying, we have instead

(

%11 −
1

2
%D

1

)2

+
(

σ11 −
1

2
σD

1

)2

= 1

4
, (12.49)

i.e., a circle of radius 1
2 about the center 1

2%
D
1 , 1

2σ
D
1 . The center itself moves

slowly on a circle of radius 1
2 about the origin.

The absolute square of the off-diagonal element S21 is given by the uni-
tarity relation, see (12.33), (12.36),

S21S
∗
21 = 1− S11S

∗
11 = 1− cos2 σ = sin2 σ . (12.50)

In terms of the real and imaginary parts
1 In this range %D

1 (k), σ
D
1 (k) are quickly varying because of S11 = (1/2)(SD

1 + SD
2 ).
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S21 = %21 + i σ21 ; (12.51)

this is equivalent to
%2

21 + σ 2
21 = sin2 σ . (12.52)

The behavior of the reflection coefficient S21 is read off the equations (12.37),
(12.44),

S21 −
1

2
e2i(s21−s11+π/4)SD

2 =
1

2
e2i(s21−s11−π/4)SD

1 , (12.53)

which can be rewritten using the explicit form of SD
1 and SD

2 , (12.40),(12.41),

S21 −
1

2
ei(2s21−σ+π/2) = 1

2
ei(2s21+σ−π/2) (12.54)

or in terms of the real and imaginary parts (12.51) as (r21 = 2s21− σ + π/2)
[

%21 −
1

2

(

%D
2 cos 2r21 − σD

2 sin 2r21
)

]2

+
[

σ21 −
1

2

(

%D
2 sin 2r21 + σD

2 cos 2r21
)

]2

= 1

4
. (12.55)

Again, this is the equation of a circle in the complex %21, σ21 plane about a
center at exp[i(2s21−σ+π/2)] in the complex plane if this center only slowly
varies with k.

12.2.5 Resonances

The nonvanishing matrix elements (12.40), (12.41)

SD
1 = ei(2s11+σ) and SD

2 = ei(2s11−σ) (12.56)

of the diagonalized S matrix lie on the unit circle in the complex plane. For
varying wave number k the pointers represented by SD

1 (k) or SD
2 (k) move on

the unit circle.
A resonance phenomenon occurs whenever one of the two matrix ele-

ments SD
1 (k) or SD

2 (k) moves through a large part of the unit circle in a small
interval to both sides of the wave number kr at resonance. For the scattering
phases δ1, δ2 of the diagonalized S matrix, this means a fast increase by an
angle close to π .

For definiteness we assume that the element SD
1 (k) exhibits this fast vari-

ation in the interval
kr − κ < k < kr + κ (12.57)
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surrounding the resonance at kr, whereas the other element SD
2 (k) remains

practically unchanged in this region,

SD
2 (k) ≈ SD

2 (kr) = e2iδ2(kr) (12.58)

with

δ2(kr) = s11(kr)−
1

2
σ(kr) = δ2r . (12.59)

Here δ2r is the phase at the wave number kr.
Under these assumptions we find for

S11(k) =
1

2
SD

1 (k)+
1

2
SD

2 (kr) (12.60)

the behavior

S11 =
1

2
e2iδ1(k) + 1

2
e2iδ2r = e2is11 cos σ . (12.61)

This represents a circle of radius 1
2 about the center 1

2e2iδ2r , see Fig. 4.8. From
the condition of a constant phase δ2r we conclude that

σ(kr) = 2[s11(kr)− δ2r] (12.62)

and find that
S11 = e2is11 cos 2[s11(kr)− δ2r] . (12.63)

This shows that for s11(kr) = δ2r = δ2(kr) the circle of radius 1
2 about the

center exp(2iδ2r)/2 touches the unitarity circle of radius 1 about the origin of
the complex plane.

Thus, the wave number kr of the resonance of the diagonal element SD
1

also determines the resonance of the element S11.
The fast variation of the phase δ1 over the range 0 < δ1 < π in the

neighborhood of a resonance leads to a change of the phase s11 of the matrix
element S11 passing quickly through the value δ2r = δ2(kr). The size of
the jump at kr in the phase δ1 depends on how completely the curve SD

1 (k)

overlaps with the unit circle in the neighborhood of kr. For a full circle of
SD

1 (k) the phase δ1(k) increases by π/2 from δ2(kr)− π
4 to δ2(kr)+ π

4 . For a
half-circle of SD

1 (k) the phase s11(k) of S11(k) changes by π
4 from δ2r − π

8 to
δ2r + π

8 .
The reflection coefficient exhibits a resonance for minimal transmission.

According to (12.36)
|S21|2 = sin2 σ ;

this means σ ' π/2 and |S21|2 ≤ 1. For simple square-well potentials,
the approximate size of the phase s21 of S21 can be determined by coarse
arguments. As an example we take the single repulsive square well, already
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Fig. 12.1. Argand plot of the scattering-matrix element S21 = B1 for the physical situation of
Fig. 4.8

discussed in (4.51). For a kinetic energy low compared to the height V0 of
the repulsive potential, no transmission (A2 = 0), i.e., only reflection with
a phase shift π occurs. Thus, for A1 = 1, this means that the reflection
coefficient B1 = S21 starts at B1 = −1 in the Argand plot. As long as
transmission remains negligible, i.e., for E < V0, the coefficient B1 keeps the
absolute value |B1| = 1 and thus moves on the unit circle in the Argand plot.
For E = V0 reflection at a ‘thinner medium’ (see Sect. 4.1) occurs causing
no phase shift, (4.44), (4.45), so that S21 = B1 = 1. For growing energies
E > V0, the first transmission resonance at k2 = `π/d (4.54) is soon reached,
so that there is no reflection, i.e., S21 = B1 = 0. As soon as the energy is
further increased, transmission goes through a minimum before it reaches the
next resonance. This minimum occurs for reflection at a denser medium, so
that no phase shift occurs, s21 = 0 and S21 = B1 = sin σ , σ ≈ π/2, so that
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S21 ≈ 1. Further increasing the energy leads to a kind of spiral in the Argand
plot, Fig. 12.1.

The determination of the Argand plot of more complicated potentials re-
quires explicit calculation of the S-matrix elements from the solutions of the
Schrödinger equation.

Further Reading

Brandt, Dahmen: Chaps. 5,11
Gasiorowicz: Chaps. 24
Merzbacher: Chap. 6
Messiah: Vol. 1, Chap. 3

12.3 Hints and Answers to the Exercises

Hints and Answers to the Exercises in Chapter 2

Note: You find descriptor files with solution descriptors in the directory
Solutions/1D_Free_Particle_(Chap_2).

For those exercises of Chap. 2, in which physical quantities are given with
units, use the data-table units, see Sect. 12.1.5.

2.3.2 The group velocity of this wave packet is twice as high as in Exer-
cise 2.3.1.

2.3.3 (c) The square of the wave function is a probability distribution of the
position of the particle. Its expectation values 〈x〉 = x0+p01t/m follow the
trajectory of free motion with the velocity v0 = p0/m. If the particle position
after the time interval 1t is measured to be larger than its expectation value
〈x〉 = x0 + p01t/m at time 1t , its momentum p must have been larger than
the momentum expectation value p0. Thus, the wavelength λ = h/p in the
spatial region to the right of 〈x〉 must be smaller than λ0 = h/p0. For the
spatial region x < 〈x〉 the analogous arguments result in λ > λ0.

2.3.4 The wavelength is halved because of the doubling of the momentum.

2.3.5 The wave packet widens as time passes. The phase velocity of the
de Broglie waves is p/2m. Thus, the waves superimposed to form the wave
packet move with different phase velocities so that the width of the wave
packet spreads in time.

2.3.7 The behavior of 〈x(t)〉 for large t is determined by the asymptotic form
of (2.23), which is discussed in Exercise 2.5.4.

2.3.8 (d) p0 = 5.685 × 10−12 meV s m−1. (e) The momentum width σp =
0.5×10−12 eV s m−1 is relatively small compared to the momentum p0. Thus,
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the spreading of the phase velocities is small. Therefore, the dispersion of the
wave packet with time is small. (f) The unit at the x axis is mm.

2.3.9 (d) p0 = 17.06× 10−12 eV s m−1.

2.3.10 (d) p0 = 12 eV s m−1. (e) See Exercise 2.3.8 (f). (f) The momentum
expectation value is p0 = 12, the momentum width of the wave packet is
σp = 9. Thus, the Gaussian spectral function extends also significantly into
the range of negative momenta. Therefore, the wave packet contains contribu-
tions propagating to the left. (g) The small wavelengths to the right belong to
high momenta of a particle moving right. The large wavelengths to the left of
the center indicate that a particle found at these x values is at rest. The small
wavelengths to the left indicate a particle with some momentum pointing to
the left.

2.4.1 The quantum-mechanical wave packet widens as time passes, whereas
the optical wave packet keeps its initial width.

2.4.2 The group velocity of the optical wave packet remains unchanged. The
vacuum speed of light does not depend on the wave number.

2.4.5 As time passes the shape of the wave packet remains unaltered. The
phase velocity of electromagnetic waves in the vacuum is independent of their
frequencies. Therefore, all waves move with the same speed as light in vac-
uum and the wave packet does not change its shape.

2.5.3 The average momenta p0 and the momentum widths σp for quantile
trajectories with P = 0.001 running backward, from slow to fast, read: p0 =
3, σp = 1; p0 = 1, σp = 0.5; p0 = 1, σp = 1.

2.5.4 xP (t)→ x0+ (t/m){p0+ (2σ 2
p/h̄)(xP (t0)− x0)}. The sign of the term

in curly brackets determines whether xP (t) runs forward or backward in x.

2.5.5 The quantum potential (2.27) drops off as 1/t2 for large times and thus
approaches zero. The corresponding force vanishes like 1/t 3. Therefore,
asymptotically there is no force and the quantile trajectories become diverging
straight lines.

2.6.4 (b) p0 = 5.685 × 10−12 eV s m−1 and p0 = 17.06 × 10−12 eV s m−1.
(c) The physical unit at the abscissa is 10−12 eV s m−1. (d) E0 = 2.843 ×
10−12 eV, E0 = 25.58× 10−12 eV.

2.6.5 (b) p0 = 3.372 × 10−6 eV s m−1 and p0 = 5.84 × 10−6 eV s m−1.
(c) 10−6 eV s m−1. (d) v0 = 0.5932× 106 m s−1 and v0 = 1.027× 106 m s−1.
(e) The order of the quotient v2/c2 is equal to 10−4.

2.6.6 (b) p0 = 10.44 × 10−9 eV s m−1 and p0 = 31.32 × 10−9 eV s m−1.
(c) 10−9 eV s m−1. (d) E0 = 5.22× 10−9 eV and E0 = 93.96× 10−9 eV.

2.6.7 (b) p0 = 1.370 × 10−3 eV s m−1 and p0 = 2.373 × 10−3 eV s m−1.
(c) 10−3 eV s m−1. (d) v0 = 1.460× 106 m s−1 and v0 = 2.529× 106 m s−1.
(e) The order of magnitude of the quotient v2/c2 is 10−4.
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2.7.4 The sum (2.3) over the contributions of the harmonic waves ψpn(x, t),
(2.1), with the momentum vectors pn = p0− 3σp+ (n− 1)1p, see Sect. 2.7,
is a Fourier series. It is periodic in space. The wavelength of this periodicity is
Λ = 2πh̄/1p. The wave patterns constituting the wave packet reoccur along
the x axis at distances Λ. For more densely spaced pn, i.e., smaller 1p, the
reoccurrences are spaced more widely. Only the Fourier integral (2.4) yields
the Gaussian wave packet without periodic repetitions.

2.8.1 (a) For small times σx decreases as σp0 grows and for larger times it
increases. (b) p and x are uncorrelated for t = 0, correlated for t > 0, and
anticorrelated for t < 0.

2.9.1 (b) The point of smallest p for σp0 = 2 has p = 0 and therefore stays
at rest.

Hints and Answers to the Exercises in Chapter 3

Note: You find descriptor files with solution descriptors in the directory
Solutions/1D_Bound_States_(Chap_3).

For those exercises of Chap. 3 in which physical quantities are given in terms
of physical units use the data-table units, see Sect. 12.1.5.

3.2.2 For an infinitely deep square-well potential symmetrically placed with
respect to the origin of the coordinate frame, the expectation values of position
and momentum vanish.

3.2.3 (a) The values of the wave functions ϕ(±)n (−d/2) and ϕ±n (d/2) do not
vanish. Thus they violate the boundary conditions to be satisfied by solu-
tions of the Schrödinger equation with an infinitely deep square-well poten-
tial. (b) The eigenfunctions ϕn(x) are standing waves resulting as even and
odd superpositions of the right-moving and left-moving waves ϕ(±)n (x).

3.2.4 (c) Using 1p1x ≥ h̄/2 and E = (1p)2/2m for the kinetic energy of
the ground state we get E ≥ 1.06× 10−3 eV for (a).

3.2.5 (c) The estimate of E is reduced by the factor Me/Mp = 1/1836 with
respect to Exercise 3.2.4.

3.2.6 (a) The energy of the ground state is E1 = 14.9 eV. (b) The value of
the Coulomb potential at the Bohr radius a = h̄c/αc2 is V (a) = −α2c2 =
−27.2 eV. The sum of this value and E1 is −12.3 eV. The binding energy of
the hydrogen ground state is −13.65 eV. The order of magnitude of the true
ground-state energy in hydrogen and the rough estimate is the same.

3.2.7 (g) The unit of the energy scale is eV. (h) The spring constants are for (a)
5.685, (b) 12.97, (c) 22.74 eV nm−2. (i) The unit of the x scale is nanometers
(nm). (j) Close to the wall of the harmonic-oscillator potential the speed of
the particle is lowest; thus its probability density is largest here.
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3.2.8 (c) The angular frequencies for the two spring constants are ω =
0.3095 × 104 s−1 and ω = 0.3095 × 106 s−1. (f) σ0 = 0.4513 × 10−5 m
and σ0 = 0.4513× 10−6 m.

3.3.1 (c) The energy eigenvalues are E1 = −5.7, E2 = −5.1, E3 = −3.9,
E4 = −2.3, E5 = −0.6. The differences ∆i = Ei − V0 are ∆1 = 0.3,
∆2 = 0.9, ∆3 = 2.1, ∆4 = 3.7, ∆5 = 5.4.

3.3.2 (c) The energy eigenvalues for the width d = 2 are E1 = −5.3, E2 =
−3.2, E3 = −0.4; the differences ∆i are ∆1 = 0.7, ∆2 = 2.8, ∆3 = 5.6.
For the width d = 6 we find E1 = −5.9, E2 = −5.6, E3 = −5, E4 = −4.2,
E5 = −3.2, E6 = −2, E7 = −0.7; the differences ∆i are ∆1 = 0.1, ∆2 =
0.4, ∆3 = 1, ∆4 = 1.8, ∆5 = 2.8, ∆6 = 4, ∆7 = 5.3.

3.3.3 (a) The energy eigenvalues of the stationary wave functions in an in-
finitely deep square well are given by (3.12). For d = 2 the eigenvalues are
E′1 = 1.23, E′2 = 4.93, E′3 = 11.10, etc.; for d = 4 they are E ′1 = 0.31,
E ′2 = 1.23, E′3 = 2.78, E′4 = 4.93, E′5 = 7.71 etc.; for d = 6 they are
E′1 = 0.14, E′2 = 0.55, E′3 = 1.23, E′4 = 2.19, E′5 = 3.43, E′6 = 4.93,
E ′7 = 6.72. (b) The differences ∆i of the energy eigenvalues to the depth V0

of the potential are smaller than the eigenvalues of the stationary states in the
corresponding potential well of the same width. The separation of the energy
eigenvalues are also smaller than for the infinitely deep square well. (c) The
eigenfunctions in the infinitely deep square well vanish at the edges of the
potential well whereas the eigenfunctions in the well of finite depth extend
also into regions outside the well. Their curvature d2ϕ/dx2 is smaller than in
the infinitely deep square well, and thus the contribution of the kinetic-energy
term T = −(h̄2/2m)d2ϕ/dx2 is smaller for the well of finite depth. This
difference between the two potentials becomes the more prominent the larger
the eigenvalue Ei is.

3.3.4 (c) In the central region of the potential the eigenvalue is equal to the
value of the potential. Therefore, the contribution of the kinetic-energy term
T in the Schrödinger equation vanishes. Thus, the second derivative of the
wave function vanishes in the central region of the potential so that it has to
be a straight line. (d) The two lowest eigenfunctions in the double potential
well can be closely approximated by a symmetric and an antisymmetric su-
perposition of the two ground-state eigenfunctions of the two single potential
wells constituting the double well. The two ground-state wave functions of
the single wells have the same energy eigenvalues so that the difference in en-
ergy originates from the minor differences between the two wave functions.
This explains the narrow spacing of their energy eigenvalues. (e) The double-
well potential is symmetric about the point x = 1.75. Thus, the Hamilto-
nian H = T + V is symmetric under a reflection with respect to this point.
Therefore, the corresponding parity operator P commutes with H . As a con-
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sequence, the eigenfunctions of H to different eigenvalues have to be eigen-
functions of P as well, so that they have to be symmetric or antisymmetric.

3.3.5 (c) The potential of this exercise is no longer symmetric with respect to
a point x.

3.3.6 (c) The energy eigenvalue of the ground state is the same as the value
of the potential in the second well. The contribution of the kinetic energy T
vanishes in the second well so that the second derivative d2ϕ/dx2 vanishes in
this region. Therefore, the wave function in this region is a straight line.

3.3.7 (e) The behavior of the eigenstates of a double-well potential with dif-
ferent wells is most easily discussed in terms of the eigenstates of the single
wells. The lowest eigenvalues in the two single wells appear in the wide right
well. The ground-state eigenvalue in the narrower left well is much higher.
Thus the ground state of the double well is given by a wave function closely
resembling the ground state in the single right well and is very small in the left
well. The same argument is valid for the highest state. However, the ground
state in the narrow well to the left has an eigenvalue not very much different
from the first excited state with one node of the wide well to the right. Two
linear combinations can be formed out of them, one with a number of nodes
equal to the sum of the number of nodes of the two wave functions (in this
case altogether one) and one with an additional node located in the region
between the two wells (in this case altogether two nodes). The combination
with the lower number of nodes possesses a lower (average) curvature, i.e.,
at average a lower second spatial derivative. Thus its kinetic energy is lower
and so is the corresponding eigenvalue of the energy. The linear combination
with one more node has a higher kinetic energy and thus its energy eigen-
value is slightly higher. In the process of increasing the width of the second
well, the distance between the two eigenvalues of the single wells decreases.
The eigenvalues of the two eigenstates of the single wells cross each other.
For a narrower right well the nodeless eigenstate of the left well has a lower
eigenvalue. During the widening of the second well, the eigenvalue of its first
excited state with one node decreases so that, eventually, it becomes lower
than the eigenvalue of the nodeless ground state in the left well. This process
is called level crossing. However, because the eigenstate for the double well
with the lower number of nodes stays related to the lower energy eigenvalue,
there is no level crossing for this energy eigenvalue with the one of the state
with one more node. During the widening of the second well, the eigenvalues
of the two states of the double well at first approach each other up to a min-
imum distance. With further broadening of the right well, the eigenvalues of
the two states depart again from each other.

3.4.1 (k) The single potential well (a) contains two bound states. The assem-
bly of the nodeless degenerate ground states in the r single wells splits into
a band of the r nondegenerate states with no node within the single poten-
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tial wells. The assembly of the first excited states with one node within the
single potential wells analogously splits into a band of states with one node
within the single wells. The energy separation of the states within the bands
is small compared to the energy separation between the ground state and the
first excited state in a single well.

3.4.2 (e) The states in the r single wells constituting the quasiperiodic poten-
tial are degenerate. They are linearly independent and can be superimposed
into linear combinations that approximate the eigenstates of the quasiperiodic
potential. The superpositions follow the node structure of the eigenstates of
the wide single-well potential, which remains after all the inner walls have
been removed from the quasiperiodic potential. The eigenstates of the wide
potential well are narrowly spaced with energy eigenvalues becoming larger
as the number of nodes of the eigenstates grows. The nodeless ground states
of the single wells are combined to wave functions with 0, 1, . . . , r−1 nodes.
These states, if they have an even number of nodes, are symmetric with re-
spect to the center of the quasiperiodic potential. The ones with an odd num-
ber of nodes are antisymmetric. They form the lowest band of states in the
quasiperiodic potential. Their energy separation corresponds to the small en-
ergy difference between the states in the wide single-well potential that con-
tains all the narrow wells of the quasiperiodic potential. The eigenstates of
the quasiperiodic potential with r , r + 1, . . . , 2r − 1 nodes are composed
of the r one-node first excited states of the single wells and from the second
band. The separation in energy of the two bands corresponds to the energy
separation of the ground and first excited state of the single well and thus is
much larger than the separation of the states within the lowest band.

3.4.3 (e) The lowest band of 10 states splits into a set of eight states narrowly
spaced in energy and another of two states closely spaced. The reason for
the separation into two sets is that the states in the outermost wells possess a
somewhat larger energy since their curvature is larger because of the higher
walls at the right and left boundary of the quasiperiodic potential. Because
the states in the outer wells have a somewhat larger energy, their superposi-
tion with the ground states of the inner wells is less pronounced. Thus, the
two states locate the particle mainly close to the right and left boundary of the
potential. The two states are narrowly spaced because they are again superpo-
sitions of wave functions that are mainly different from zero close to the left
and right boundary. The lower one is the symmetric, the higher of the two the
antisymmetric superposition of the two wave functions that are mainly differ-
ent from zero either at the left or at the right boundary. The two eigenstates
correspond to the surface states in a crystal of finite extension.

3.5.1 The numbers of eigenstates are (a) 17, (b) 9, and (c) 8. (d) Because of the
infinitely high wall at the left-hand side in (c) the spectrum just contains the
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antisymmetric states (i.e., the ones with odd parity) of (a). On the right-hand
side these eigenfunctions are identical up to normalization.

3.5.2 (a) The potential possesses 2 eigenstates. (b) Their energies are E1 ≈
−2.962 and E2 ≈ −0.325. (c) Since two states are bound, the first resonance
is expected to possess three bumps. (d) The minimum value for |V3| turns out
to be approximately 1.535.

3.6.1 (a) The average energies of the two separated bands are −7.5 and −5,
respectively. (b) The lower band contains five states, the upper one four. The
lower band belongs to the five narrow (deep) wells, the upper band to the
four wider (less deep) wells. (b) The new potential values are V3 = −17.5,
V5 = −12.5. The lower band, now belonging to the four wide wells, has cor-
respondingly four states, and the upper one, now connected to the five narrow
wells, has thus five states. (c) Since the outer two of the narrow wells are
changed, the quasi-periodicity just holds for the three inner wells, resulting in
three states of the lower band for the first case and three states for the upper
band in the second case. The centers of the bands are only slightly changed.
But the emerging two surface states are, while near to each other, shifted from
the remaining bands to higher energies. Their energies are highest for the less
deep narrow wells of the second case (E ≈ −3.26 vs. E ≈ −2.18).

3.7.1 (d) The period of the wave function is T = 4. (e) The period of the
absolute square is T = 2. (f) ψ(x, t + T ) = eiαψ(x, t).

3.7.2 (d) The wave packets plotted are Gaussian so that for the initial state
we have 1x1p = h̄/2. A wave packet initially wide in x is thus narrow in
momentum. The period of a classical particle in a harmonic-oscillator poten-
tial is independent of its amplitude. Independent of its actual position in the
spatially wide initial state, the particle will reach the point of the potential
minimum after the same time interval, because its momentum spread about
the initial value p0 = 0 is small. Thus the width of the spatial distribution will
shrink and assume its minimal width at the center position in the oscillator.
While moving toward the other turning point, the distribution widens in space
to the same shape as in the initial state. An initially narrow Gaussian wave
packet has a wide momentum distribution. A classical particle the initial po-
sition of which is described by a probability distribution will reach the center
position of the oscillator after a time interval, in general, dependent on the
initial position and momentum. Because the original momentum probability
distribution is wide, the spatial probability distribution is wide at the center of
the harmonic oscillator. The wave packet shrinks to its original shape at the
other turning point. The wave function observed in (c) describes the coherent
state with an initial width equal to that of the ground state.

3.7.3 (d) The Gaussian wave packet, which is initially wide in space, pos-
sesses a narrow momentum distribution about p0 = 0. If the particle is at an
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off-center position, the harmonic force drives it back toward the center. In-
dependent of its initial position, the particle reaches the center after the same
time interval if its initial momentum is zero. Because there is a small initial
momentum spread, the probability distribution does not oscillate between its
initial width and zero width but between a maximum and a minimum value.

3.7.4 (d) The initial state at the center position of the oscillator has relative
width fσ = 1. It is therefore the ground state of the oscillator and is stationary.
Its probability distribution is time independent and so is its width.

3.8.1 (a) The motion of the mean position and the motion of the quantile
position away from the mean because of the widening of the wave packet
approximately compensate each other for nearly half a period.

3.11.1 (d) The phase velocity of a right-moving or left-moving wave in the
deep square well is vpi = h̄ki/2m. It depends on the wave number ki . A
wave packet being a superposition of stationary wave functions of different ki
is thus made up of waves of different phase velocity. Therefore, it widens as
time elapses. (e) The wiggly patterns occurring when the wave packet is close
to the wall are an interference effect between the incident and the reflected
wave. As soon as the wave packet becomes wide enough, the wiggly patterns
occur everywhere in the deep well.

3.11.2 (n) The wave number of the lowest state in the infinitely deep square
well is k = π/d = 0.31416 for d = 10. The corresponding temporal period
is T1 = 2π/ω with ω = E/h̄ and E = h̄2k2/2m. Thus we find T1 =
4πm/h̄k2 = 127.32. (o) At the time T = T1/2 the wave packet looks the
same as the initial wave packet. (p) At the beginning of the motion the wave
packet is so narrow that it does not touch the walls of the deep square well.
Therefore, the classical particle position and the expectation value of the wave
packet coincide as in a free wave packet. As soon as the wave packet hits the
wall it consists of incident and reflected parts. Its position expectation value
cannot reach the wall because of the width of the packet. Thus it stays behind
the classical expectation value. (q) Because of the dispersion, the wave packet
becomes so wide that both ends are reflected at the left-hand and right-hand
wall. It consists of right-moving and left-moving parts with equal probability.
Thus its momentum expectation value vanishes. It also spreads over the whole
width of the square well with – at average – equal probability density. Thus
the position expectation value equals zero.

3.11.3 (d) The wave function possesses the period T = T1 as calculated in
Exercise 3.11.2 (n). Thus the wave packet has reassumed its initial shape.
It represents a wave packet narrow compared to the width of the well. The
classical particle follows a periodic motion between the walls of the well with
a classical period 2d/v = 2dm/p = 3.858. After 33 classical periods the
time T1 has elapsed and the classical position and the expectation value are
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at the same point. Because the absolute square of the wave packet reassumes
its original well-localized shape after half the time T1, the coincidence of the
classical position and the expectation value occurs at T1/2.

3.11.4 (b) The system of a point particle in an infinitely deep square well is
conservative. Thus the expectation value of the energy is constant and thus all
the time equal to its initial value. (c) The momentum expectation value of the
particle is practically zero in periods where the wave packet fills the whole
well and its position expectation value is at rest.

3.11.5 (h) The momentum of the particle, as well as its mass, have been in-
creased by a factor of 10 leaving the velocity unchanged. However, because
of the larger mass, the wave packet disperses much more slowly than in Ex-
ercise 3.11.4. Thus it oscillates more periods as a localized wave packet be-
tween the two walls of the square well.

Hints and Answers to the Exercises in Chapter 4

Note: You find descriptor files with solution descriptors in the directory
Solutions/1D_Scattering_(Chap_4).

4.2.1 (d) The kinetic energy of the third wave function is zero in the region
of the repulsive square-well potential. Because the kinetic energy T is pro-
portional to d2ψ/dx2, only the first derivative of the wave function can be
different from zero in the region of the square well. (e) The trend of the trans-
mission coefficient A3 is most easily read off the plot of the absolute square
(c). The transmission coefficient increases with increasing energy. For kinetic
energies E < 2, the tunnel effect increases as the difference between the bar-
rier height and the kinetic energy decreases. For energies above the barrier
height, the reflection decreases.

4.2.2 (d) The tunnel probability increases exponentially as the barrier width
decreases. (e) There is only an outgoing wave of the type A′N exp(ikNx),
N = 3, in the region N beyond the potential, see (4.18). Its absolute
square is just the constant |AN |2. (f) In the region 1 the incident and re-
flected wave are superimposed, see (4.22). We use the representation A′1 =
|A′1| exp(iα1), B

′
1 = |B ′1| exp(iβ1). Then the absolute square of the superposi-

tion yields |A′1|2+|B ′1|2+2|A′1||B ′1| cos(2k1x+α1−β1). The third member is
the interference term between incident and reflected waves. It exhibits twice
the original wave number k1, i.e., half the wavelength of the incident wave.

4.2.3 (d) The energy at which the wave pattern in the absolute square is small-
est is E = 1.18. The wavelength of the incident wave is λ = 2π/k =
2πh̄/

√
2mE = 1.54, h̄ = 1. Thus, half a wavelength fits roughly into the

interval of the two walls forming the double barrier. Therefore, the reflected
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waves from the two barriers interfere destructively and the interference pat-
tern with the incident wave almost vanishes.

4.2.4 (d) The width of the region of the repulsive double-well potential is d =
2. A nodeless wave function fitting into the well exactly has a wave number
k = π/d = π/2. The corresponding kinetic energy is E = (h̄k)2/2m. With
the values h̄ = 1, m = 1 we get E = 1.2, a value very close to the observed
E = 1.18 of the resonance wave function without a node. (e) Any other wave
function fitting into the region of the double-well potential has one or more
nodes and thus a higher wave number and a higher kinetic energy. Thus there
is no resonance at an energy lower than the value E = 1.12.

4.2.5 (a) Resonances occur at E = 0.6 and E = 2.0. (f) The first resonance at
E = 0.53 has no node whereas the second resonance at E = 2.28 possesses
one node. Because the wave function with the node has a second derivative
much larger than the one of the lowest resonance, its kinetic energy – being
proportional to the second derivative – is larger. Thus, the total energy of
the second resonance (with one node) is larger than the one of the lowest
resonance. As a general rule one may say that the resonance energy increases
with the number of nodes in the resonance wave function between the two
barriers.

4.2.6 (a) First resonance at E1 = 0.73; large bump in the wave function in the
left potential well. (b) Second resonance at E2 = 1.2; large bump in the wave
function in the right potential well. (c) Third resonance at E3 = 2.9; wave
function with two bumps, i.e., one node, in the left potential well. (d) Fourth
resonance at E4 = 4.41; wave function with two bumps, i.e., one node, in
the right potential well. (e) Fifth resonance at E5 = 6.51, wave function with
three large bumps, i.e., two nodes, in the left potential well.

4.2.7 The maxima of the transmission coefficient occur at E1 = 0.73, E2 =
1.2, E3 = 2.95, E4 = 4.5, E5 = 6.52.

4.2.8 (a) First resonance at E1 = 0.72; no node. (c) Second resonance at
E2 = 2.82; one node. (g) Third resonance at E3 = 6.42; two nodes.

4.2.9 The maxima of the transmission coefficient occur at E1 = 0.75, E2 =
2.92, E3 = 6.35.

4.2.10 (b) First resonance at E1 = 1.1. (e) Second resonance at E2 = 4.3.

4.2.11 The maxima of the transmission coefficient occur at E1 = 1.15, E2 =
4.4.

4.2.12 (f) The trend of the differential resistance is understood as follows:
(i) For a voltage U � Ures far below the resonance voltage Ures = V1−V5 =
1, the tunnel effect is very small; thus, the square of the coefficient A5, |A5|2,
is small. Therefore, the current through the quantum-well device is small.
Also, the variation 1|A5|2 for the given increase 1U = 0.5 from (a) to (b)
is small. Thus, the variation of the current 1I associated with 1U is small.
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Therefore, the differential resistance R = 1U/1I = (1/α)1U/1|A5|2 is
large. (ii) In the region close below the resonance voltage the absolute square
|A5|2 grows quickly from (b) to (c) with the increase of the voltage1U = 0.5
and thus the current 1I ; the differential resistance R = 1U/1I decreases
quickly in the region close below the resonance region. (iii) In the region close
above the resonance voltage (c,d) Ures the square |A5|2 of the coefficient A5

decreases quickly from (c) to (d) for the given increase in voltage 1U =
0.5. Thus, the corresponding change in current 1I is negative, so that the
differential resistance R = 1U/1I becomes negative above the resonance
voltage. At the resonance voltage Ures the differential resistance goes through
zero.

4.2.13 (f) The potential walls (V2 = 60) are much higher in this case than
in Exercise 4.2.12 (V2 = 7). Therefore, the resonance region is much more
narrow than in Exercise 4.2.12. The variation of |A5|2 is much larger for the
potential of Exercise 4.2.12. Therefore, the differential resistance varies much
faster with increasing voltage.

4.2.14 (f) The second transmission resonance is much wider than the first
resonance. Thus, the variation of the differential resistance is much slower.

4.2.15 (f) The discussion of the differential resistance follows the same lines
of argument as in Exercise 4.2.12 (f).

4.2.17 (f) Because of the triple-wall structure of the potential, the transmission
resonance is much more narrow than in the case of a double-wall potential
as in Exercise 4.2.16 (f). Thus, the variation of the differential resistance
R = 1U/1I = −1V3/1I is much faster.

4.2.18 (a) The scattering wave functions outside the potential region with en-
ergies approaching the asymptotic minimum value Vc, see Sect. 4.1.1, i.e., for
momenta approaching zero, become constant or linear. Bound states are char-
acterized by their number of nodes (in the potential region), increasing from
zero toNbound−1, the maximum number of nodes. In the adjacent continuum
the (real or imaginary part of the) scattering states in this region begin with
Nbound zeros (nodes). (b) Both real and imaginary part show two nodes, hence
Nbound = 2. (c) For this case one obtains Nbound = 47.

4.2.19 (c) In the case of the triangular potential of part (a) one recognizes
significant interference patterns on the left half-axis for almost the complete
energy interval shown. In case (b), except for low energies, an interference
pattern is almost invisible. Also for lower energies the interference is less sig-
nificant for (b). This means that the bell-shaped potential from (b) shows very
low reflection for a wide energy range. The potential indeed is an approxima-
tion by piecewise linear functions of a so-called reflectionless potential of the
form A cosh−2(ax+b) with especially chosen strength A and proportionality
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factor a. Such potentials are discussed, e.g., in: B. N. Zakhariev, A. A. Suzko,
‘Direct and Inverse Problems’ (Springer, Heidelberg, 1990).

4.2.20 The two potentials discussed here are similar approximations of the
same spatial bell-shaped form as in Exercise 4.2.19 (b) but for two larger
values of A. For these parameters reflection is also largely suppressed.

4.3.1 (d) The answer is obvious from (4.50) and the accompanying text of
Sect. 4.1.

4.3.2 (d) The answer is obvious from (4.47) and the accompanying text of
Sect. 4.1.

4.3.3 (d) The answer is obvious from (4.44) and the accompanying text of
Sect. 4.1.

4.3.4 (d) Upon taking the absolute square of a harmonic wave (2.1), see
Sect. 2.1, the time-dependent factor exp(−iEt/h̄) yields 1. Thus, the ab-
solute square of a harmonic wave looks the same as the absolute square of a
stationary scattering wave function at the same momentum.

4.3.5 (d) To the right of the potential barrier there is an outgoing wave propa-
gating to the right. It possesses a time-independent amplitude A3. (e) To the
left of the potential barrier the time-dependent wave function is a superposi-
tion of the incident and reflected waves. The real part of the wave function
thus exhibits a time-dependent amplitude.

4.3.6 (d) The wave packet is reflected completely for E = 2, an energy
smaller than the height of the step potential. For E = 6.5 the reflection has
not ceased to occur even though the kinetic energy is larger than the height of
the step potential so that a classical particle would only be transmitted. For
E = 8 the transmission probability has grown. Upon increasing the energy
even further, the reflection disappears. (e) The transmitted part of the wave
packet is faster than the classical particle, because its average energy corre-
sponds to a value higher than the energy expectation value E = 6.5 of the
incident wave packet. The potential step acts like a discriminator threshold.

4.3.8 (d) At the potential step at x = 0 the continuity conditions (3.41)
are A1 + B1 = A2, k1(A1 − B1) = k2A2 . The solution is A2 =
2A1k1/(k1 + k2), B1 = A1(k1 − k2)/(k1 + k2), with k1 =

√
2mE/h̄ and

k2 =
√

2m(E − V2)/h̄ =
√

2m(E + |V2|)/h̄. The modulus |B1| of the re-
flection coefficient is a monotonically increasing function of |V2|.
4.3.9 E1 = 16.3, E2 = 17.25, E3 = 18.8, E4 = 20.95.

4.3.10 (c) In an analogy to optics, the resonances occur because the reflec-
tion at a step increase of the potential corresponds to a reflection at a thinner
medium whereas the subsequent reflection at a step decrease of the potential
corresponds to a reflection on a denser medium. Thus, according to (4.54),
resonances occur if the wavelength λ2 of the wave function in region 2 is
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approximately equal to λ2` = 2d/`, ` = 1, 2, 3, . . .. The corresponding
energies are E` = V2 + `2π2/2d2, see (4.56) with h̄ = 1, m = 1. The
numerical values are E1 = 16.308, E2 = 17.23, E3 = 18.78, E4 = 20.93.
(d) At resonance energy a large percentage of probability is stored in the re-
gion 0 ≤ x ≤ 4. The resonance wave function decays exponentially in time
after some time of the resonance formation. The exponential time dependence
of the amplitude is equivalent to constant ratios of the amplitudes of the wave
functions in the barrier region for equidistant instants in time.

4.3.12 (c) According to the formulae of Exercise 4.3.8 the reflection proba-
bility at the two descents of the potential at x = 0 and x = 4 decreases with
increasing energy E = h̄2k2

1/2m. Thus, the exponential decay is faster for
higher resonance energy. The uncertainty relation relates the lifetime τ and
the width Γ of the resonance energy by τ × Γ ≈ h. Thus, for the shorter-
lived higher resonance the energy width Γ increases. This is obvious from
the Argand diagram of Exercise 4.3.9.

4.3.13 (f) The low-lying transmission resonances occur as narrow maxima in
the absolute square |AN |2. They correspond to fast sweeps of the pointer AN
in the complex Argand plot through the regions at which the pointer AN has
its maximal length |AN | = 1.

4.3.14 (f) The relation of the prominent features of AN to the T -matrix ele-
ment TT is most easily understood using (4.36).

4.3.15 (f) Compare (4.34).

4.3.16 (f) Compare (4.36).

4.3.17 E = 0.08.

4.3.18 There is one bound state at E = −3.2.

4.3.19 (d) The wave function inside the potential region possesses one node.
The energy E = 0.1 corresponds to the lowest resonance energy (see Exer-
cise 4.3.17). There is no resonance without a node because of the existence
of one nodeless bound state in this potential, see Exercise 4.3.18.

4.3.20 (f) E1 = 0.9, E2 = 3.4, E3 = 7.8, E4 = 14.1.

4.3.26 (a) The least significant interference pattern or amount of reflected
probability of the wave packet occurs for V2 ≈ −2.8. (b) The interference
and thus the reflection becomes more pronounced for larger deviation of the
average energy of the wave packet from the initial one, E0 = 0.25, for which
the potential value V2 was chosen to minimize reflection. (The reflected parts
can be resolved better by increasing the scale factor for the probability den-
sity.)

4.3.27 In all cases interference patterns are almost invisible and therefore al-
most no reflection of probability occurs. Within the potential region, because
of the larger velocity there, a depression of the wave packet occurs. After
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the passage of the potential region the initially Gaussian wave packet rebuilds
without a visible distortion, where it again shows the usual dispersion. See
also Exercises 4.2.19 and 4.2.20.

4.3.28 The situation is similar to that of Exercise 4.3.27 but with larger poten-
tial strength.

4.4.1 (a) The resonance energies read off |AN |2 are E1 = 21, E2 = 35.0.
(f) See Exercise 4.3.13 (f) and Sect. 12.2. (g) E1 = 20.93, E2 = 35.74.

4.4.2 (f) See Exercise 4.3.14 (f) and Sect. 12.2.

4.4.3 (f) See (4.34) and Sect. 12.2.

4.4.4 (f) See (4.36) and Sect. 12.2.

4.4.5 (a) The resonance energies read off |AN |2 are E1 = 17, E2 = 21,
E3 = 27,E4 = 36. (f) See Exercise 4.3.13 (f) and Sect. 12.2. (g)E1 = 17.23,
E2 = 20.93, E3 = 27.10, E4 = 35.74.

4.4.6 (f) See Exercise 4.3.14 (f) and Sect. 12.2.

4.4.7 (f) See (4.34) and Sect. 12.2.

4.4.8 (f) See (4.36) and Sect. 12.2.

4.4.9 The potential barrier of Exercise 4.4.5 is twice as wide as the one of
Exercise 4.4.1. Thus, in Exercise 4.4.5 the low-lying resonances according to
the relation (4.56) occurring at the energy values E` = V2 + `2π2h̄2/(2md2)

show up at values (E`− V2) that are a quarter of the values of Exercise 4.4.1.
If we increase d again by a factor of 2, we expect the values (E` − V2) at
energies that are approximately another factor of 4 lower than the ones of
Exercise 4.4.1. The transmission resonances show up as minima in the re-
flection coefficient B1. The behavior of the coefficients TT and TR related to
the transmission resonances is easily understood with the help of the relations
(4.36).

4.4.10 (a) E1 = 16.2, E2 = 17.2, E3 = 18.8, E4 = 20.9, E5 = 23.7,
E6 = 27.1, E7 = 31.1, E8 = 35.9. (f) See Exercise 4.3.13 (f) and Sect. 12.2.
(g) E1 = 16.3, E2 = 17.23, E3 = 17.78, E4 = 20.93, E5 = 23.71, E6 =
27.10, E7 = 31.11, E8 = 35.74.

4.4.11 (f) See Exercise 4.3.14 and Sect. 12.2.

4.4.12 (f) See (4.34) and Sect. 12.2.

4.4.13 (f) See (4.36) and Sect. 12.2.

4.4.14 The potential consists of 4 wells. Therefore bound states form bands
of 4 states and so do resonances. Particularly pronounced are those at low
energies.

4.4.15 (a) AN for low energies has a modulus significantly smaller than 1 but
rapidly reaches the unitarity circle (E ≈ 0.15), then departs noticeably from
there, turns back, and from E ≈ 2 on it stays approximately at the unitarity
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circle. Except for the very it turns clockwise in increasingly smaller steps
asymptotically reaching 1. (b) Beginning at ≈ 1, AN stays very near the
unitarity circle, where it turns clockwise throughout in increasingly smaller
steps and also reaches 1 asymptotically. (c) See (a), (b). While |AN |2 for
case (a) has a minimum at ≈ 0.93 for E ≈ 0.6, for (b) it stays near 1 with a
maximum deviation of about 0.5%. The potential shows almost no reflection.
See also Exercises 4.2.19 and 4.2.20.

4.5.1 (b) follows from (4.59).

4.5.2 E = p2/2m − mgx, p = 2m(E + mgx)1/2 = h/λ. Therefore, with
rising x (and for g > 0) p rises and λ falls.

4.7.1 (b) No (only in the limit t →∞). In the language of Bohm in addition
to the constant force of the linear potential there is also the force caused by
the quantum potential.

4.13.1 (d) For a refractive index n2 of glass, the wavelength of light in the
glass is given by λ2 = λ/n2, where λ is the wavelength in vacuum. Thus,
the wavelength in region 2 is λ/2. (e) In region 2 there is only an outgoing
transmitted wave E2 = A2 exp(ik2x). Its absolute square is constant: |E2|2 =
|A2|2. (f) The superposition of incident and reflected waves in region 1 causes
the wiggly pattern. It indicates the contribution of the interference term of
incident and reflected wave, see Exercise 4.2.2 (f).

4.13.2 (d) For the boundary between regions 1 and 2 at x = 0 the continuity
equations (4.77) require A′1 + B ′1 = A′2 and k1(A

′
1 − B ′1) = k2A

′
2. With

k2/k1 = n2 we find A′2 = 2A′1/(1+n2) and B ′1 = (1−n2)A
′
1/(1+n2). Thus

the transmission coefficient A′2 is small for refractive index n2 � 1 of a much
denser medium in region 2.

4.13.3 (d) The expression A′2 = 2A′1/(1 + n2) obtained above in Exercise
4.13.2 (d) shows that for n2 � 1 the amplitude A′2 becomes larger than 1.

4.13.4 (a) The values of the physical electric field strength are the real parts
of the complex field strength. The real part ReE1+(0) at the surface at x = 0
of the glass has the opposite sign to ReE1− at x = 0. Thus, the phase shift
upon reflection at a denser medium is π , since cos(α+π) = − cosα. (b) The
real part ReE1+ at x = 0 has the same sign as the real part ReE1− at x = 0.
Thus, there is no phase shift upon reflection on a thinner medium.

4.13.5 (d) The absence of wiggles in the absolute square of the complex elec-
tric field strength in region 1 signals the vanishing or smallness of the interfer-
ence term and thus the absence or smallness of the reflected wave at the wave
numbers k = π/2, π , 3π/2. (e) At these wave numbers we observe trans-
mission resonances upon transmission through a denser medium, see (4.87)
of Sect. 4.12.

4.13.6 (d) The wavelengths of the resonances occurring now upon two-fold
transmission into denser media follow from (4.83), Sect. 4.12. (e) The speed
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of light in region 3 is only 1/4 of the speed in region 1. Because there is no
reflection at a resonant wavelength, the energy-current density of the trans-
mitted wave must be the same as the one of the incident wave. Therefore,
the energy density, and thus the absolute square of the complex electric field
strength, must change, see (4.78), (4.79) of Sect. 4.12.

4.14.1 (d) Only a transmitted outgoing harmonic wave propagates to the right
in region 3. Its complex form is given by (4.67), see Sect. 4.12. The am-
plitudes of real and imaginary part are time independent. (f) In region 1 the
superposition of incident and reflected waves leads to a time-dependent am-
plitude.

4.14.2 (g) Only the transmitted wave E3+ moving to the right propagates in
region 3.

4.14.4 (g) The incident wave number k = 3π/2 leads to k2 = n2k = 3π .
The corresponding wavelength in region 2 is λ2 = 2π/k2 = 2/3. Thus, the
thickness d of the region 2 fulfills λ2 = 2d/m form = 3. Thus, at the incident
wave number k = 3π/2 we find a transmission resonance, so that there is no
reflected wave moving to the left in region 1. Therefore there is no constituent
wave E1− in region 1.

4.14.5 (c) The speed of light in the glass of refractive index n = 4 is 1/4
of the vacuum speed of light. (d) See Exercise 4.13.6 (d). (e) The spa-
tial extension of the light wave packet shrinks upon entering the glass sheet
because the speed of light in glass is only 1/4 of the vacuum speed of
light. All wavelengths superimposed in the wave packet shrink according
to λ2 = λ/n = λ/4.

4.14.6 (c) The wave number of the incident wave packet, k0 = 7.854, leads
to a wave number k2 = 15.708 in the layer with n = 2. This wave number
fulfills the resonance condition 2k2d = (2m+ 1)π for the thickness d2 = 0.1
of the layer with n = 2 and for m = 0, see (4.83) and accompanying text
of Sect. 4.12. Thus, for light of wave number k0 = 7.854 there is maximal
destructive interference in region 1 between the waves reflected at the front
and rear boundaries of the layer with n = 2. The refractive indices n = 1,
n2 = 2, and n3 = 4 satisfy the condition (4.85) so that there is no reflection
at the front surfaces of the three glass layers. The corresponding arguments
hold true at the rear surfaces of the glass sheets.

4.14.7 (b) The wavelength in the region of the coating is given by λ1 =
λ/n1 = 449 nm. The thickness of the coating is d = λ1/4 = 112 nm.

4.14.8 (b) The modulus of the reflection coefficient B ′1 of light is larger for
larger refractive index n of the material, see Exercise 4.13.2 (d). We have
n = 1.5, in Exercise 4.14.1 we had n = 4. The reflection is smaller for
n = 1.5 than for n = 4.
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4.14.9 (b) The simple coating for a lens is adjusted to an average wavelength
within the spectrum of visible light. For larger and shorter wavelengths in the
spectrum, some reflections at the surface of the lens remain. This is the reason
for the bluish reflection of coated lenses.

4.15.1 (e) The resonant wave numbers read off |AN |2 are k1 = 7.85, k2 =
23.6. The resonant wave numbers calculated using (4.83) are k1 = 7.854,
k2 = 23.56.

4.15.2 (e) The resonant wave number read off |AN |2 is k1 = 12.8. The reso-
nant wave number calculated using (4.83) is k1 = 12.83.

Hints and Answers to the Exercises in Chapter 5

Note: You find descriptor files with solution descriptors in the directory
Solutions/Two_Particles_(Chap_5).

5.2.2 (e) The number of nodes in the center-of-mass coordinate R = (x1 +
x2)/2 is equal toN , in the relative coordinate r = x2−x1 it is equal to n. The
nodes in R lead to node lines in the x1, x2 plane parallel to the diagonal in the
first and third quadrant. The nodes in r show up as node lines parallel to the
diagonal in the second and fourth quadrant of the x1, x2 plane.

5.2.3 (e) The doubling of the mass reduces the spatial extension of the wave
function. The ground-state width σ0 =

√
h̄/mω is reduced by a factor of

√
2

upon the doubling of the mass. The same factor
√

2 reduces the spatial exten-
sion in x and y also for the wave function of the higher states. The classical
frequencies ωR =

√
k/m = ωr for uncoupled oscillators are also reduced

by a factor
√

2 upon doubling the mass. Thus, the energy eigenvalues are
reduced by

√
2. Therefore, for a particle with twice the mass the eigenfunc-

tions belonging to the same quantum numbers N, n are deeper down in the
harmonic-oscillator potential and thus their spatial extension has shrunk.

5.2.4 (e) The coupling κ is positive. The coupling spring pulls the two parti-
cles toward each other. The oscillator potential in the relative variable r be-
comes steeper, see (5.12). Thus, the spatial extension of the stationary wave
function in the direction of the diagonal r = x2 − x1 in the x1, x2 coordinate
system shrinks. This effect also shows in the dashed curve in the x1, x2 plane,
which marks the classically allowed region for the positions of the particles.
In contrast to Exercises 5.2.2 and 5.2.3 it is no longer a circle but an ellipse
with the shorter principal axis in r direction.

5.2.5 (e) The shrinking in the diagonal direction r = x2 − x1 becomes more
prominent. (f) The probability of particle 1 being close to particle 2 is larger
than the probability of it being far from particle 2. The particle coordinates
exhibit a positive correlation.
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5.2.6 (e) The coupling κ is negative, i.e., the coupling spring pushes the two
particles apart. The potential in the relative variable becomes shallower, see
(5.12). Thus, the spatial extension of the wave function in the diagonal direc-
tion r = x2 − x1 widens. This feature is also obvious from the dashed ellipse
in the x1, x2 plane. It is more likely to find particle 2 at a position distant from
that of particle 1 than close by. The particle coordinates exhibit a negative
correlation.

5.2.7 (b) At the outer maxima of the probability density, the potential energy
of the particles is larger than in the inner ones. Thus, the kinetic energy of
the particles is lower in the outer maxima than in the inner ones. Hence,
their speed is lower and therefore the time they need to pass the region of
the outer maxima is larger. The probability density of the particles being in
the outer maxima is larger than the probability density of being in the inner
ones. (c) The particle speed and thus the particle momentum close to the
origin in the x1, x2 plane is larger; thus, the wavelength of the wave function
is smaller than in the outer regions of the plot. Hence, the widths of the
inner maxima of the plot are smaller. (d) The system of two one-dimensional
coupled oscillators has two uncoupled degrees of freedom: the center-of-mass
motion and the relative motion. The energy remains constant in either degree
of freedom. Its values are given by EN and En, see (5.17). For the case
N = 0, n = 2 the motion of the center of mass has the ground-state energy
only. Its amplitude, or equivalently the spatial extension of the ground-state
wave function in the center-of-mass coordinate R, is small. Thus, in this
direction the classically allowed region is not completely exhausted by the
probability density and the wave function.

5.2.8 (b) The lines of the rectangular grid confining the areas of the maxima
in the plots of the probability density are the node lines in the center-of-mass
coordinate R and in the relative coordinate r .

5.2.9 (e) ωR = 1, ωr = 3. The energy values of the states with the quantum
numbers N, n are EN,n =

(

N + 1
2

)

+ 3
(

n+ 1
2

)

= N + 3n + 2. (f) The
graphs for N � n represent stationary probability densities of the coupled
oscillators where a large part of the total energy is in the degree of freedom
R of the center-of-mass motion. This causes the wide extension of the wave
function in the diagonal in the first and third quadrant of the x1, x2 plane.

5.3.1 (b) Because the two oscillators are uncoupled, the expectation value
〈x20〉 being zero initially remains zero at all times. (c) The widths of the
two uncoupled oscillators vary with time, since neither of the two initial
widths σ10, σ20 is equal to the ground-state width σ0 divided by

√
2, see Ex-

ercise 3.7.4 and (3.35). (d) The initial correlation c0 is equal to zero. Since
the oscillators are uncoupled, no correlation is produced during the motion of
the wave packet.
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5.3.2 (b) The time dependence of the correlation reflects the periodic change
of the widths in the two uncoupled oscillators, (3.35).

5.3.3 (a) σ0/
√

2 =
√
h̄/(2mω) =

√

h̄
√
m/2
√
k = k−1/4/

√
2 = 0.5946 for

h̄ = 1, m = 1. (c) The ground-state width of the two uncoupled oscillators is
σ0. The initial widths have been chosen equal to σ0/

√
2, the initial state is a

coherent state of the two uncoupled oscillators, see Exercise 3.7.4 and (3.35).
(d) For nonvanishing correlation the initial state is no longer a product of two
Gaussian wave packets in the variables x1, x2. Thus, it is not a product of
coherent states. The widths will no longer remain time independent.

5.3.4 (b) See Exercise 5.3.3 (d). (c) See Exercise 5.3.2 (b).

5.3.5 (b) Because of the positive initial correlation, the time dependence of
the correlation of Exercise 5.3.4 starts with a positive value and oscillates. In
this exercise the correlation is negative and thus the function c(t) starts with
the negative initial value. The time dependences of the two correlations differ
only by a phase shift.

5.3.6 (b) The initial conditions for the position expectation values do not in-
fluence the correlation or the widths. Thus, they exhibit no time dependence.

5.3.7 (b) The oscillation of the expectation values 〈x1(t)〉, 〈x2(t)〉 is the same
as for the position of classical particles. The two position expectation values
exhibit a beat because of the coupling of the two oscillators. (c) Even though
the initial correlation vanishes, a correlation emerges that is positive most of
the time because of the attractive coupling.

5.3.9 (b) The motion of the expectation value of one particle is a mirror image
of the motion of the other one. Thus, the center of mass of the two particles
is at rest, the oscillation takes place in the relative coordinate. The coupled
oscillator system is in a normal mode. Only one of the two uncoupled degrees
of freedom – the center of mass and the relative motion – oscillates.

5.3.10 (b) The system of the two coupled oscillators is still in the normal mode
of the relative motion. (c) Even though the initial correlation is negative, the
time average of the correlation is positive because of the positive coupling.

5.3.12 (b) The motion of the two particles is the same in x1 and x2. The rela-
tive coordinate is zero all the time. The oscillation takes place in the center-of-
mass coordinate R. The system of coupled oscillators is in the normal mode,
which refers to the center-of-mass motion.

5.4.1 (c) The initial correlation c0 = 0 vanishes. Thus, the initial Gaussian
wave packet has axes parallel to the coordinate axes. Because the coupling of
the two oscillators vanishes, no correlation is introduced during the motion.

5.4.2 (c) There is a positive initial correlation c0 = 0.8. It shows up in the first
graph of the multiple plot in which the orientation of the covariance ellipse
is not parallel to the axes. (d) The covariance ellipse in the plot of the initial
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wave packet has its large principal axis oriented under a small angle with the
diagonal direction x1 = x2. Thus, it is more likely than not that x1 is close to
x2.

5.4.3 (c) The large principal axis is oriented under a small angle to the diago-
nal direction x1 = −x2.

5.4.4 (c) The initial expectation value 〈x2〉 at t = t0 is zero. Without coupling
between the two oscillators, 〈x2〉 would remain zero while 〈x1〉 moves. The
attractive coupling pulls the particle 2 toward the position of particle 1, which
is at positive x1 values in the beginning. Thus, the expectation value 〈x2〉
takes on positive values for t > t0.

5.4.5 (c) The coupling κ is larger, so the force exerted on particle 2 by particle
1 is larger. Thus, the acceleration of particle 2 out of its original position is
bigger.

5.4.6 (c) The attractive coupling κ causes the appearance of a correlation in
the initially uncorrelated wave packet.

5.4.7 (c) The coupling κ is now larger than the coupling constants in the for-
mer exercises. Thus, the frequency of the oscillation in the relative coordinate
r = x2 − x1 is larger than before and there are more oscillations in r in the
same time interval.

5.4.8 (c) The initial wave packet is wide compared to the ground state of the
coupled oscillator. With the same arguments as in Exercise 3.7.2 we expect
the width of the wave packet to decrease as it moves close to the center.

5.4.9 (c) The oscillation observed is the normal oscillation taking place in the
relative coordinate r = x2 − x1.

5.4.10 (c) The oscillation observed is the normal oscillation taking place in the
center-of-mass coordinate R = (x1+ x2)/2. (d) The normal oscillation in the
relative motion in Exercise 5.4.9 is fast because of the large coupling κ = 20,
which means that the oscillator of relative motion has a high eigenfrequency.
The normal mode of the center-of-mass motion in this exercise has a spring
constant of only k = 2. The oscillator of the center-of-mass motion has a
much lower frequency.

5.4.11 (c) The repulsive coupling κ < 0 of the two oscillators pushes the par-
ticle 2 away from particle 1. Thus, particle 2 is accelerated into the negative
x2 direction instead of being pulled toward positive x2 values, as in the case
of an attractive coupling κ > 0.

5.4.12 (c) The effective spring constant in the oscillator of relative motion
is (k/2 + κ), see (5.12). For the values k = 2, κ = −0.95 the effective
spring constant of relative motion is 0.1. Thus, the oscillator potential in the
relative coordinate is very shallow. Therefore, the wave packet spreads into
the direction of the relative coordinate. This way it gets anticorrelated.
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5.4.13 (c) The wave function for bosons is symmetric, see (5.25). The sym-
metrization of the initial wave function of Exercise 5.4.1 with one hump with
a nonsymmetric expectation value 〈x1〉 6= 〈x2〉 leads to an x1, x2-symmetric
two-hump probability density. (d) The very narrow peak in plots where the
two humps almost completely overlap is due to the symmetrization of the
wave function.

5.4.14 (c) The initial Gaussian wave function is centered around a symmetric
position x1 = x2 = 3 in the x1, x2 plane. Thus, symmetrization does not
create a second hump.

5.4.15 (c) The direction of maximal width of the two humps in the initial
probability distribution forms a small angle with the diagonal x1 = −x2 in
the x1, x2 plane. Thus, the wave packet is anticorrelated.

5.4.17 (c) The oscillations in the relative coordinate r = x2 − x1 exhibit
a much higher frequency than the oscillation in the center-of-mass motion;
thus, the spring constant in the oscillator of the relative motion is larger, i.e.,
the coupling constant κ is large.

5.4.18 (c) The two-hump structure of the initial probability distribution says
that it is just as likely that particle 1 is at x1 = 3 and particle 2 at x2 = −3
(hump to the left) as it is that particle 1 is at x1 = −3 and particle 2 is at
x2 = 3 (hump to the right).

5.4.19 (c) The width in r = x2 − x1 is the width in the oscillator of relative
motion. It has a strong attractive spring constant since the coupling κ = 20
is large. Thus, the frequency of this oscillator is high. Therefore, the width
in the oscillator of relative motion changes very quickly. Even though we
are looking at the normal mode of the center-of-mass oscillator, which keeps
the expectation value of the relative coordinate time independent, the strong
coupling shows in the oscillation of the width in the relative coordinate.

5.4.20 (c) See Exercise 5.4.11 (c).

5.4.21 (c) The two-particle wave function for fermions is antisymmetric.
Therefore it has to vanish at x1 = x2. Hence, its absolute square, the proba-
bility distribution, vanishes.

5.4.22 (c) See Exercise 5.4.4.

5.4.25 (c) Because of vanishing correlation, equal widths, and equal initial
positions, the initial wave function is obtained through the antisymmetrization
of a product of two identical Gaussian wave packets, in x1 and x2, see (5.18).
Thus the result of the antisymmetrization vanishes. The two fermions cannot
be in the same state, as the Pauli principle requires.

5.4.26 (c) Also for nonvanishing correlation the initial wave function for dis-
tinguishable particles (5.18) remains symmetric in x1 and x2.
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5.4.27 (c) The Pauli principle states that two fermions cannot occupy the same
state. The different widths in the two coordinates allow for different states in
the wave packet to be occupied by the two particles.

5.5.3 (d) The dips between the humps are slightly more pronounced for the
fermions. (e) The marginal distributions are obtained as integrals in one vari-
able x1 (or x2) over the joint probability distributions. Because the zero line
x1 = x2 of the fermion probability distribution forms an angle of 45 degrees
with either the x1 axis or x2 axis, the effect of the zero line gets washed out
upon integration over x1 or x2.

Hints and Answers to the Exercises in Chapter 6

Note: You find descriptor files with solution descriptors in the directory
Solutions/3D_Free_Particle_(Chap_6).

6.3.1 (n) The minimal impact parameter b of the particle not entering the
region 0 ≤ r ≤ 2π is b = 2π . The minimal classical angular momentum
of the particle is L = kbh̄ = 4πh̄ = 12.57h̄. (o) The partial wave with
` = 13 starts becoming different from values close to zero only in the outer
region adjacent to r = 2π . (p) The radial dependence of the `th partial wave
is given by the spherical Bessel function j`(kr). Its behavior for kr � 1 is
proportional to (kr)`, see (11.40). Hence, the region in kr close to zero in
which the partial wave is very small grows with `.

6.3.2 (n) A partial sum up to N of the partial-wave decomposition (6.53) of
the plane wave approximates the plane wave in a radial region close to r = 0.
This region extends as far as the values of the partial wave of index N + 1
remain small compared to one. This is approximately the region r < b, where
b is the classical impact parameter determined by b = N/k. A particle of mo-
mentum p = h̄k and impact parameter b has the classical angular momentum
L = bkh̄ = Nh̄.

6.4.1 (d) The Gaussian wave packet of the form (6.24) widens independently
in all three space coordinates. The time dependence of the width in every
coordinate follows (2.10). The initial width is σx0 = 0.5 so that with h̄ = 1,
M = 1 we get σx(t) = σx0

(

1+ t2/4σ 4
x0

)1/2 = 0.5
(

1+ 4t2
)1/2

.

6.4.2 (e) The vector of the classical angular momentum is L = (0, 0, 4).

6.4.3 (d) The initial width in the x direction, σx0, is smaller than σy0 in the y
direction. The formula given in 6.4.1 (d) above shows that the coefficient of
t2 in σx(t) is much larger than the corresponding coefficient in σy(t). (e) The
ripples occur along the direction of the momentum.

6.4.4 (d) The wave packet is at rest, thus there is no special direction besides
the radial direction.

6.5.1 (b) The classical angular-momentum vector is L = (−0.5,−2, 5.5).
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6.5.3 (b) The initial widths in all three coordinates are larger than in Exer-
cise 6.5.2. Thus, the coefficients of t2 in the formulae (2.10) for the three
time-dependent widths σx, σy, σz are smaller than for the situation in Exer-
cise 6.5.2.

6.5.4 (b) Formula (2.10) can be rewritten to look like σx = h̄t
(

1+ 4σ 4
x0m

2/

h̄2t2
)1/2

/(2σx0m), i.e., for large t the width σx grows approximately linearly
in t .

6.6.1 (b) The classical angular momentum is L = bp0 = 1, it points along the
z direction. (c) The angular momentum for a particle with impact parameter
b′ = b + σ0 is L′ = 2.5; for b′′ = b − σ0 it is L′′ = −0.5. (d) The maximum
of the probabilities W` to find the angular momentum ` in the wave packet at
` = 1 corresponds to the classical angular momentum of the wave packet. Be-
cause of the spatial extension of the Gaussian wave packet, there is a nonzero
probability density for particles with larger and smaller impact parameters.
As typical values for the width of the distribution of impact parameters we
choose b′ = b+ σ0 = 1.6667 and b′′ = b− σ0 = −0.3333. The correspond-
ing angular momenta – as calculated above – are L′ = 2.5 and L′′ = −0.5.
Actually, the distribution of m values in the plot shows that the values ` = 3,
m = 3 and ` = 1, m = −1 have about half of the probability of the value
` = 1, m = 1. This explains the features of the distribution of the W`m.

6.6.2 (b) The average angular momentum of the distribution is the same as in
Exercise 6.6.1. The halving of the impact parameter b is compensated by the
doubling of the momentum p0. The distribution of the angular momenta in
the wave packet is the same as in Exercise 6.6.1 since the initial width σ0 is
halved in this exercise.

6.6.3 The Gaussian wave packet moves in the plane z = 0. It is an even
function in the z coordinate. In polar coordinates it is thus an even function
with respect to ϑ = π/2. The spherical harmonics of m = `− (2n+ 1), n =
0, 1, . . . , `−1, are odd with respect to ϑ = π/2. Thus, they do not contribute
to the partial-wave decomposition. The values W`m for m = ` − (2n + 1)
vanish.

Hints and Answers to the Exercises in Chapter 7

Note: You find descriptor files with solution descriptors in the directory
Solutions/3D_Bound_States_(Chap_7).

7.2.2 (e) The centrifugal barrier h̄2`(` + 1)/(2Mr2) is a steeply increasing
function as r goes to zero. It keeps the probability density low at small val-
ues of r . Because the barrier height at a given r grows with `(` + 1), the
suppression becomes the more apparent the higher the angular momentum `.
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7.2.3 (e) Heisenberg’s uncertainty principle 1x1p ≥ h̄/2 can be adapted to
the ground-state energy E0 in a potential well of radius R to yield R

√
2ME0

>' h̄. Thus the ground-state energy grows proportional to 1/R2, i.e., E0 >'
h̄2/(2MR2).

7.2.5 (e) The particle in a potential well of finite depth is not strictly con-
fined to the inside of the well as is the case in the infinitely deep square well.
Therefore, the curvature d2ϕ/dx2 of the wave functions ϕ(x) of stationary
states with the same number of nodes is smaller for the potential of finite
depth than for one with infinite depth. Thus, the contributions of the radial
energy and of the effective potential energy in a state with a given number of
nodes are smaller for the potential of finite depth.

7.2.6 (e) For spherical square-well potentials of finite depth the Schrödinger
equation is the same as for an infinitely deep square-well potential except for
the constant value of the potential depth. This value can be absorbed into the
energy eigenvalue of the stationary Schrödinger equation. Only the boundary
condition at the value of the radius of the potential well for bound states in
the infinitely deep well is different from the one for a potential well of finite
depth. At the origin of the coordinate frame the boundary conditions are the
same. Therefore, the wave functions look alike for small values of the radial
coordinate r .

7.2.7 (e) Under the action of a harmonic force in three dimensions a particle
of high angular momentum moves on an orbit far away from the center of the
force.

7.2.8 (e) In a three-dimensional harmonic oscillator, the relation between
energy and angular momentum is given by Enr` =

(

2nr + `+ 3
2

)

h̄ω, see
(7.41), (7.42). Thus, the lowest energy for fixed angular momentum ` is
E0` =

(

`+ 3
2

)

h̄ω. It is assumed for vanishing radial quantum number nr.
Except for the zero-point energy 3h̄ω/2, the energy is solely rotational and
potential energy E = Lω, L = `h̄.

7.2.10 (e) The effective potential is given by V eff(r) = Mω2r2/2+`(`+1)h̄2/

(2Mr2). Its minimum is at the value r0 =
[

`(`+ 1)h̄2/M2ω2
]1/4

of the ra-
dial variable. The potential at this value is V eff(r0) =

√
`(`+ 1)h̄ω. Its

curvature at r0 is d2V eff(r)/dr2
∣

∣

r=r0 = 4Mω2. Thus, the oscillator poten-

tial approximating the effective potential close to its minimum is V app
` (r) =√

`(`+ 1)h̄ω+ M
2 (2ω)

2(r − r0)2. (f) The wave functions in the approximat-
ing potential V app

` (r) are harmonic-oscillator eigenfunctions centered about
r0. (g) The angular frequency of the approximating oscillator is 2ω, twice the
frequency ω of the three-dimensional oscillator. It is independent of the an-
gular momentum. (h) For fixed ` the spacing of the energy levels in the three-
dimensional oscillator is 2h̄ω. The eigenvalues are Enr` =

(

2nr + `+ 3
2

)

h̄ω.
Because the approximating potential has the frequency 2ω, its level spac-
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ing is also 2h̄ω. The eigenvalues in the approximating oscillator are Eapp =
V (r0) + 2(n′ + 1/2)h̄ω =

(

2n′ +
√
`(`+ 1)+ 1

)

h̄ω. The two expressions
differ very little for large angular momentum `� 1.

7.2.11 (e) For vanishing angular momentum ` = 0 the three lowest energy
values are E = −1/2,−1/8,−1/18; for ` = 1 the lowest three eigenvalues
are E = −1/8,−1/18,−1/32.

7.2.12 (e) Eigenvalues for ` = 2 areE = −1/18,−1/32,−1/50; eigenvalues
for ` = 3 are E = −1/32,−1/50,−1/72.

7.2.13 (e) The effective potential for the Coulomb interaction is given by
V eff(r) = −αh̄c/r + `(`+ 1)h̄2/(2Mr2). The minimum occurs at the value
r0 = `(` + 1)h̄c/(αMc2). Here the effective potential has the value V eff(r0)

= −α2Mc2/[2`(`+1)]. The curvature at r0 has the value d2V eff(r)/dr2
∣

∣

r=r0
= α4(Mc2)3/[`3(` + 1)3h̄2c2]. The approximating oscillator potential cen-
tered about r0 is V app(r) = −α2Mc2/[2`(` + 1)] + (1/2)Mω2

`(r − r0)2
with the square of the effective angular frequency ω2

` = α4(Mc2)2/[`3(` +
1)3h̄2]. (f) The energy eigenvalues of the approximating oscillator are E`n′
= −α2Mc2/[2`(` + 1)] + (n′ + 1/2)h̄ω` = −α2Mc2[1 − 2(n′ + 1/2)/√
`(`+ 1)]/[2`(` + 1)]. The exact formula E = −α2Mc2/2n2 can be ex-

panded for large angular momentum ` if we use n = nr+`+1, the decomposi-
tion of the principal quantum number n into ` and the radial quantum number
nr. For large ` we arrive at the approximation E = −α2Mc2[1−2(n′+1/2)/
(` + 1/2)]/2(` + 1/2)2. Again for large ` the two expressions for E con-
verge to the same value. (g) The exact Bohr radii are an = n2a0, where
a0 = h̄c/(αMc2) is the innermost Bohr radius. For small nr � ` the above
value for r0 approaches the Bohr radius.

7.3.1 (e) In the neighborhood of the energy of the state, there are no eigenval-
ues of states in the first well. Therefore, there is no strong contribution of an
eigenstate of the first well to the third eigenstate of the double well. Thus, the
wave function is different from zero chiefly in the second well.

7.3.4 (c) Because of the strong repulsive potential in the innermost region
0 ≤ r < 0.5, the potential is a hard-core potential. It keeps the values of
the wave function in this region small as long as the energy of the state is
small compared to the height of the hard core. Therefore, the influence of the
repulsive centrifugal barrier on the wave functions and the energy eigenvalues
is much smaller than in a potential without a hard core.

7.4.1 (b) The number of node lines at fixed polar angles is equal to `−m.

7.4.3 (b) The node half-circles are the nodes of the radial wave functions.
With increasing number of node lines, the energy eigenvalue of the wave
function increases.

7.4.4 The number of ϑ node lines is equal to `−m.



12.3. Hints and Answers to the Exercises 309

7.4.7 (b) Exercise 7.4.6 shows the probability density of the eigenstate with
principal quantum number n = 1 and the angular-momentum quantum num-
bers ` = 15, m = 15. This corresponds to a classical angular-momentum
vector parallel to the quantization axis of angular momentum, which is the
z axis in this case. Exercise 7.4.7 (a) exhibits the probability density for the
angular-momentum quantum numbers ` = 15, m = 0. A state with these
quantum numbers is classically interpreted as representing an angular mo-
mentum in a direction perpendicular to the z axis. Because Lx and Ly do not
commute with Lz, no particular direction in the x, y plane can be assigned to
the classical vector of angular momentum in this case. In fact, the probabil-
ity distribution is cylindrically symmetric about the z axis. The probability
density is largest at the large values of z close to the wall of the spherically
symmetric potential well. This can be interpreted as an assembly of classical
orbits in the planes that contain the z axis. No particular one of these planes
is distinguished, so that no special direction of angular momentum in the x, y
plane can be assigned to the state with m = 0.

7.4.8 (b) The wall of the infinitely deep square well confines the wave function
strictly to the range r ≤ a. In the harmonic-oscillator potential, the wave
function falls off with exp(−r2/2σ 2

0 ). Thus, the decrease in the infinitely
deep square-well potential is much faster.

7.4.12 (b) For eigenstates in the Coulomb potential, the quantum number ` of
angular momentum satisfies the relation ` ≤ n− 1. Thus, no eigenstate exists
with the quantum numbers n = 1, ` = 1.

7.4.13 (b) The spherical harmonics Y`m(ϑ, ϕ) possess (` − m) nodes in the
polar angle ϑ . The number of nodes in the radial variable r is (n− 1− `).
7.4.14 (b) The normalization of the radial wave function is given by an integral
containing the measure r2 dr . The wave function with the quantum numbers
` = n−1 has its large values in a region about the value `(`+1)a of the radial
variable. Here r2 is large; thus, the normalization of the wave function to one
suppresses the height of the wave function. (c) For m = ` the wave function
represents a particle with the vector of angular momentum in the direction of
the axis of quantization, i.e., the z axis. This forces the particle to a far-out
Bohr orbit.

7.5.1 (d) number of radial nodes: n− 1; number of polar nodes `−m.

7.5.2 (d) number of radial nodes: n− 1; number of polar nodes `−m.

7.5.3 (a) The lines are shifted away from the origin. (b) The lines are shifted
still more to the outside. The potential is too shallow to accommodate states
with n = 3, ` = 2.

7.5.4 The radial extension increases as nr grows.

7.7.1 (b) The classical angular-momentum vector has the components Lx =
−1, Ly = −7, Lz = 5.
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7.7.3 (b) The classical angular-momentum vector has the componentsLx = 0,
Ly = 0, Lz = 0. The motion of the wave packet is an oscillation through the
center of the spherically symmetric potential.

7.7.5 (b) The ground-state width of the three-dimensional oscillator is σ0 =√
h̄/Mω. For T = 1 the angular frequency equals ω = 2π/T = 2π . Thus,

σ0 = (2π)−1/2 = 0.56. The initial widths σx0 and σy0 are smaller than
σ0/
√

2 = 0.4. In these directions the Gaussian wave packet is initially nar-
rower than σ0/

√
2. In the z direction the wave packet is initially wider than

σ0/
√

2. The probability ellipsoid of the initial state has prolate shape with the
large principal axis in the z direction. After a quarter period the widths σx and
σy have reached their maximum values, which are now larger than σ0/

√
2,

whereas σz is at its minimum, which is smaller than σ0/
√

2, see Sect. 3.1,
(3.35). After a quarter period T/4 the Gaussian wave packet possesses a
probability ellipsoid of oblate shape with the smallest principal axis in z di-
rection.

Hints and Answers to the Exercises in Chapter 8

Note: You find descriptor files with solution descriptors in the directory
Solutions/3D_Scattering_(Chap_8).

8.2.1 (d) The centrifugal barrier V`(r) = h̄2`(`+ 1)/(2Mr2) grows quadrat-
ically with `. For fixed energy of the incoming particle the wave function
becomes more and more suppressed in the region of small r because of the
r` behavior of the spherical Bessel functions j`(kr) for kr � 1. The range
in which the wave function is smaller than a given value widens with increas-
ing `. This way the contribution of the rotational energy represented by the
centrifugal barrier remains low enough to keep the total energy constant.

8.2.3 (d) The total energy contains three contributions, the radial, the rota-
tional, and the potential energy. For growing total energy and fixed angular
momentum the contribution of the rotational energy grows. This requires
larger values of the wave function at low values of r where the centrifugal
barrier is large.

8.2.5 (b) The energies of the first two resonances are E1 = 10.1 and E2 =
10.5.

8.2.9 For increasing ` the centrifugal barrier pushes the resonance wave func-
tion out of the region of small r , see Exercise 8.2.1. This increases the cur-
vature of the wave function in the region close to the range of the potential.
Thus, the kinetic-energy contribution grows and therefore so does the total
energy.

8.3.4 For distances r � rN large compared to the range rN of the potential,
the radial scattering wave function has the form R`(kr) ∼ exp(iδ`) sin(kr −
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`π/2 + δ`)/kr . For the scattering at a repulsive infinitely high potential of
radius d, the phase shift δ` is simply given by δ` = −kd , because the wave
function has to fulfill the condition R`(kd) = 0 at the wall of the potential
at r = d. For the scattering at a repulsive potential of finite height V0, the
wave function R` has the same form as above if r � d. However, the phase
shift δ` is given by δ` = −ka where the scattering length a replaces the
radius of the repulsive potential. We have a < d because the wave function
penetrates somewhat into the repulsive square well of finite height. The free
wave functions (V = 0) have the same form for the R`(kr) as above, however
for δ` = 0. This phase shift determines the partial scattering amplitude f`,
(8.50), and because of (8.41) and (8.45) both the differential cross section and
the partial cross section as well.

8.4.1 (j) Summation of the partial scattering amplitudes f` to the scattering
amplitude f (k, ϑ), (8.32), up toL = 0 includes the angular momentum ` = 0
only. Thus only the zeroth Legendre polynomial P0(cosϑ) = 1 contributes.
Hence, no ϑ dependence shows up for L = 0 in (a).

8.4.2 (c) For E = 50 the wavelength is λ = 0.6282, for E = 5000:
λ = 0.06282. (d) The decrease of the differential cross section in the for-
ward direction for energies increasing from the value E = 0 follows a 1/E
behavior, see (8.41), (8.32).

8.4.4 (c) The two differential cross sections for the high energy E = 5000
look alike. This can be easily understood by using the lowest-order Born
approximation, which is valid at high energies E � |V0|. The scattering
amplitude is given by a volume integral over a product of the free incoming
and outgoing waves and the potential. The differential cross section, being
proportional to the absolute square of the scattering amplitude, is in this high-
energy approximation independent of the sign of the potential.

8.4.5 (i) For low energies of the incident plane wave, the zeroth partial wave
yields the largest contribution to the differential cross section. The phase shift
δ0 for very low energies is determined by tan δ0 = −ka, where a is the scatter-
ing length of the potential. For repulsive potentials we have 0 < a ≤ d at low
energies, see Exercise 8.3.4. For an attractive square-well potential the wave

number κ within the range of the potential is κ =
√

2M|V0|/h̄2 + k2, where
|V0| is the depth of the square-well potential. For ` = 0, the radial wave func-
tion in region 1 has the formR01 = (1/κr) sin κr . Outside the range of the po-
tential, the radial wave function can be written as R02 = (1/kr) sin(kr + δ0),
where δ0 is the scattering phase for angular momentum zero. The continuity
conditions yield (1/k) tan δ0 = (1/κ) tan κd . For k → 0 the scattering phase
approaches zero, δ0 → 0. Thus, for k → 0 we get for the scattering length
a = −δ0/k ' −(1/k) tan δ0 the equation a = −(1/κ) tan κd . The numerical
value of κ for M = 1 and |V0| = 3 is κ = 2.45. For this value and d = 2
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the scattering length for the attractive potential is obtained to be a = 2.16.
For the repulsive potential we have a ≤ 2. The differential cross section for
low energies is given by dσ/dΩ = (1/k2) sin2 δ0 = a2. Thus, for low energy
the differential cross section for the repulsive potential of Exercise 8.4.3 is
smaller than for the attractive potential of Exercise 8.4.1.

8.5.1 (f) The energy of the lowest resonance with vanishing angular momen-
tum is E01 = 3.9.

8.5.2 (f) The two lowest resonances with angular momentum zero appear at
the energies E01 = 3.9, E02 = 8.2. The values of the scattering phase at these
resonances are δ01 = −π , δ02 = −π/2. (g) The partial scattering amplitudes
at the two lowest resonances with vanishing angular momentum are calculated
using (8.50). We get f01 = 0, f02 = i.

8.5.3 (f) The energy of the lowest resonance with angular momentum ` = 1
is E11 = 5.5.

8.5.4 (f) The energy of the lowest resonance with angular momentum ` = 2
is E21 = 7. (g) The energy of the lowest resonance increases with angular
momentum ` because of the positive energy contribution of the repulsive cen-
trifugal barrier V`(r) = h̄2`(` + 1)/(2Mr2) and the increase of the radial
energy with `.

8.5.5 (f) The energies of the lowest resonances of angular momentum zero are
E01 = 1, E02 = 3.6, E03 = 7.7. (g) In an infinitely deep square-well poten-
tial of radius 2 the energies of the lowest bound states of vanishing angular
momentum are E1 = 1.23, E2 = 4.93, E3 = 11.10.

8.5.9 (c) The small peaks in the plots of the partial cross sections σ` indicate
the existence of resonances of angular momentum ` at the energies at which
the peaks occur. (d) For vanishing angular momentum the energy eigenvalues
of an infinitely deep square-well potential of width 2 are E01 = 1.23, E02 =
4.93, E03 = 11.10. The resonance peaks showing up in σ0 are at E01 = 1.1,
E02 = 4.8, E03 = 8.6. (e) The eigenfunctions in the infinitely deep square-
well potential of radius d have to vanish at r = d. For the resonance wave
functions in the barrier potential of this exercise, this is not so. Thus, the
curvature of the eigenfunctions in the infinitely deep square well is larger
than that of the corresponding resonance energies in the barrier potential.

8.5.10 (b) For the energyE = 0.001 of the incoming particle, the partial cross
section σ0 has practically the same value as the total cross section. This has to
be so, because there are almost no contributions of higher angular momenta
` = 1, 2, . . . to the incoming wave function of the low energy E = 0.001.
(c) The classical total cross section for the elastic scattering of particles on
a hard sphere of radius d is equal to its geometrical area σcl = πd2. For
d = 2.5, we get σcl = 19.6.
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8.5.11 (a) σtot = 39.5, (b) σtot = 46.8, (c) σtot = 49.3, (d) σtot = 49.8,
(e) σtot = 50.2. (f) The total cross section for quantum-mechanical scattering
on a hard sphere is σtot = 4πd2. For d = 2 the numerical value comes out to
be σtot = 50.26. It represents the upper limit for the series of numbers for σtot

obtained in (a–e).

8.6.1 For the attractive potential the kinetic energy and therefore the momen-
tum is increased for small r . Correspondingly, the local wavelength is short-
ened.

8.6.2 Because the |V | � E near r0(E), we can use the following rough
estimate: r0(E) ≈ `/p = `/

√
2ME. For ` = 10, M = 1 we get r0(E) ≈

7(3) for E = 1(5).

8.7.1 Clearly, many terms need be superimposed in the approximation (8.58).
For the given energy E = 5 and the maximum radius rend = 5 a value of
` ≈ krend ≈ 22 is expected for a good approximation also at the outer radial
bound, which can be verified by inspecting the plots.

8.7.2 The situation is comparable to that of Exercise 8.7.1.

Hints and Answers to the Exercises in Chapter 9

Note: You find descriptor files with solution descriptors in the directory
Solutions/Magnetic_Resonance_(Chap_9).

9.3.1 The width of the resonance increases as Ω1/Ω0 does.

Hints and Answers to the Exercises in Chapter 10

Note: You find descriptor files with solution descriptors in the directory
Solutions/Hybrid_States_(Chap_10).

10.3.1 The hybrid state with the hybridization parameter of λ =
√

3, i.e., the
sp3 state, has the largest extension in the direction −z.

Hints and Answers to the Exercises in Chapter 11

Note: You find descriptor files with solution descriptors in the directory
Solutions/Math_Functions_(Chap_11).

11.2.1 (d) The Hermite polynomial Hn possesses n zeros.

11.3.1 (d) The Legendre polynomial P` possesses ` zeros.

11.3.2 (c) The associated Legendre function P m` possesses (`−m) zeros.

11.17.1 The distribution widens and shifts towards larger k as λ increases.

11.18.1 The plots are easily understood by using the rules of complex algebra,
in particular, z = x + iy = reiϕ and Euler’s formula eiα = cosα + i sinα.
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(a) w = ez = ex+iy = exeiy = ex(cos y + i sin y). From this follows Rew =
ex cos y, Imw = ex sin y, |w| = ex, argw = y. (b) Use log z = log(reiϕ) =
log r + iϕ, sin z = 1

2i(e
iz − e−iz), cos z = 1

2(e
iz + e−iz), sinh z = 1

2(e
z −

e−z), cosh z = 1
2(e

z + e−z).

11.18.2 From w = zn = (reiϕ)n = rneinϕ = rn(cos nϕ + i sin nϕ) one gets
Rew = rn cos nϕ, Imw = rn sinnϕ, |w| = rn, argw = nϕ.



A. A Systematic Guide to IQ

A.1 Overview

A.1.1 Starting IQ

We assume here that IQ is fully installed on your computer and that the IQ

symbol featuring the letter h̄ is displayed on the computer’s desktop. (See
Appendix B for installing IQ and the file
the case that the IQ symbol is not present on the desktop.) You start IQ

simply by clicking (once or twice – depending on your operating system) on
that symbol. The IQ main frame appears on the desktop. It contains the main

toolbar, Fig. A.1.

Fig. A.1. The IQ main frame with the main toolbar containing buttons to start different ac-
tions. In its title bar the IQ main frame shows the name of the currently open descriptor
file

A.1.2 Introductory Demonstration

Usually, right after the start of IQ a small frame, Fig. A.2, entitled Interquanta

Introduction is displayed offering you to start a demonstration on how to use
IQ. Before starting the demonstration you can choose between Automatic

mode (demonstration is run off like a movie) and Step-by-Step mode (you
have to press the button Next or the Enter key to go on to the next step). You
can choose the demonstration to be With Sound (graphics displayed, explana-
tions spoken) or Without Sound (graphics and explanations displayed on the
screen).

The frequent user of IQ may not want the presentation of the frame in Fig.
A.2 each time the program is started. It can be suppressed by customizing

IQ, see Sect. A.1.14. The introductory demonstration can always be shown

ReadMe.txt on the CD-ROM for

S. Brandt et al., Interactive Quantum Mechanics: Quantum Experiments on the Computer, 315
DOI 10.1007/978-1-4419-7424-2_13, © Springer Science+Business Media, LLC 2011
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Fig. A.2. Frame offering the introductory demonstration

by pressing the Run Demo button in the IQ main frame and selecting the
appropriate file, see Sect. A.1.13.

A.1.3 Selecting a Descriptor File

Each plot produced by IQ is completely defined through a set of parameters,
called a descriptor. Such a set forms a record on a descriptor file, which thus
contains a number of descriptors. A total of ten descriptor files forming the
descriptor library are distributed as part of IQ. Each of the ten files contains
descriptors corresponding to the physics topics treated in one of the ten chap-
ters 2 through 11. You can create your own descriptor files with your own
descriptors, see Sect. A.1.11.

Normally, IQ starts off with the default descriptor file open (see Sect.
A.1.14 for setting the default). The name of the descriptor file that is currently
open is shown in the title of the IQ main frame. Figure A.1 shows the name
you will see as long as the default has not been changed. If, for some reason,
IQ was unable to open the default descriptor file, no name is displayed and
you must open another descriptor file.

To open a descriptor file press the button labeled Descriptor File on the
main toolbar. A file chooser appears allowing you to select a descriptor file.

A.1.4 Selecting a Descriptor and Producing a Plot

To select a particular descriptor press the button Descriptor on the main tool-
bar. The descriptor-selection panel appears, which contains (in its upper part)
a list of all the descriptors in the current descriptor file, Fig. A.3. (For the
lower part – creation of a mother descriptor – see Sect. A.1.10.) Each line of
the list corresponding to one descriptor contains three items, the descriptor

number, the descriptor title, and the descriptor time stamp, which indicates
the last time when the descriptor was changed.

You select a descriptor by clicking on the corresponding line. The se-
lection panel vanishes and instead a graphics frame appears containing the
plot which IQ produces using the parameters of the descriptor, Fig. A.4. The
frame also contains at the top the descriptor title and below it a toolbar with
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Fig. A.3. Descriptor-selection panel with, in its upper part, the list of descriptors on the
current descriptor file. The lower part can be used to create a mother descriptor, see Sect.
A.1.10

Fig. A.4. Graphics frame containing the descriptor title, a toolbar, and the plot corresponding
to the descriptor

buttons. (The graphics frame does not show a plot if, while customizing, you
unselected the possibility plot graphics immediately, see Sect. A.1.14. In that
case you have to press the Plot button in the graphics frame.)

Within a descriptor you can change all parameters of the given physics
topic, Sect. A.1.8. You cannot, however, change the physics topic itself. A
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physics topic is chosen by selecting an existing descriptor for that topic. Its
parameters can then be adapted as needed.

The first five buttons on the toolbar at the top are always present. By
pressing them you invoke the following operations:

• Plot – producing of a plot (already mentioned),
• Parameters – preparing to change parameters (Sect. A.1.8),
• Save/Append – saving a changed descriptor or appending it to the descriptor

file (Sect. A.1.9),
• Print – printing a plot (Sect. A.1.6),
• Color – changing colors and/or line widths (Sect. A.1.7).

A possible sixth button on the top toolbar or an additional bottom toolbar
of the graphics frame indicate indirect or direct movie capability, respectively,
see Sect. A.1.5.

A.1.5 Creating and Running a Movie

For many physics topics movies can be created and run. Depending on the
physics topic the graphics frame may have one of three properties.

• No Movie Capability In this case the graphics frame carries only the top
toolbar with five buttons.
• Indirect Movie Capability The graphics frame has a top toolbar with six

buttons. If the sixth button, labeled Prepare for Movie, is pressed, another
graphics frame with movie capability appears. It carries an additional bot-
tom toolbar with buttons allowing the creation and running of a movie, see
below.
This detour to movie capability is necessary for some type of plots like the
one shown in Fig. A.4. It displays the quantity %(x, t) = |Ψ (x, t)|2 as a
function of the spatial coordinate x and the time t . Technically it is the
projection of the surface % = %(x, t) in a three-dimensional x, t, % space
onto the two-dimensional plane of the plot. Of this surface only a few lines
% = %(x, t0), % = %(x, t1), . . . are actually shown. While this type of plot
allows for a detailed quantitative study of the time dependence, it lacks
the qualities of a movie in which time really flows. An appropriate movie
is a series of plots of % = %(x, t) in the x, % plane for increasing values
of t , displayed one after the other in quick succession. By pressing the
button Prepare for Movie you create a descriptor and open a graphics frame
corresponding to the physics parameters of the original descriptor but being
of the plot type needed for movie capability. You can create and run movies
with this new descriptor, change all parameters, and, if you wish, append it
to the descriptor file of the original descriptor.
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• Direct Movie Capability The graphics frame for many physics topics di-
rectly has movie capability. That is immediately apparent from the fact that
it carries a top and a bottom toolbar as in Fig. A.5.

Fig. A.5. Graphics frame with movie capability. It carries an additional bottom toolbar with
buttons for the creation and running of a movie

Perform the following steps to create and run that movie, in a graphics
frame with direct movie capability:

• Press Create. All frames of the movie are produced and stored in memory.
Once the movie is complete, the remaining buttons are enabled.
• Press (run). The movie is shown and rerun until you press (stop).
• You may go forward or backward by a single frame pressing or ,

respectively. Hitting takes you back to the first frame.

You may change all parameters as described in Sect. A.1.8 and repeat
creating the movie. For all descriptors with direct movie capability the corre-
sponding parameter panel contains a subpanel Movie with physics information
and technical data specific to the movie, see Sect. A.4.

A movie can be stored for later use independent of IQ by clicking on the
Save button. This opens a standard file chooser in which you can assign the
movie a file name and store it in the directory of your choice. The file is stored
in the animated GIF format, a standardized format which allows viewing the
movie in practically any browser.

There is also a button Create and Save. If you press that, a file chooser
is opened. After you have entered a file name, the movie is computed and
directly stored under the chosen name in the animated GIF format. If Create
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and Save is used, each frame is directly stored away on disk and thus less
main memory is required.

A.1.6 Printing a Plot

Printing plots from IQ can be done in several ways and can be controlled
by quite a number of parameter settings. Here we just describe one way to
produce a printed copy of a plot. For details see Sect. A.11.

By pressing Print in the graphics frame you open a print panel, Fig. A.24.
Press the button Paper Dialog. A panel provided by your operating system
is displayed. Make sure that the paper format mentioned in this panel is the
format of the paper in your system printer, i.e., the printer connected to your
computer. Now press the button Print Dialog. Another panel provided by your
operating system is shown. Press OK in that panel. The plot will then be
printed on your system printer.

A.1.7 Changing Colors and Line Widths

A plot produced by IQ is composed of lines drawn on a surface of uniform
color, called background color. In one plot there may be up to eight different
line types, Table A.1. Each line type can have its own color and line width.
Colors and line widths for plots on the screen are determined by a screen item

record in the configuration file, see Sect. A.1.14. They can be changed as
follows.

Table A.1. The different line types and their numbers.

Number of Name
Line Type

1 3D surface (top side)
2D function graph

2 box, scales, numbers,
arrows with texts

3 caption
4 additional text
5 depends on physics topic
6 depends on physics topic
7 depends on physics topic
8 3D surface (bottom side)

A color-selection panel, Fig. A.6, is displayed once you press Color in the
graphics frame.

The essential field carries the header IQ Items: Colors and Line Widths. It
contains, in nine small rectangles, the colors of background and line types
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Fig. A.6. Color-selection panel

and, for the latter, also the widths. The Units for Line Widths are either Internal

Coordinates (i.e., the line widths grow with the size of the graphics frame
on the screen) or one Screen Pixel. To change a line width just change its
numerical value (and its unit, if needed). To change a color you have first to
select one of the nine colors by pressing on the corresponding rectangle. Next,
you choose a new color using the color chooser at the bottom of the panel.

Applying Changes to a Single Plot Just press Apply Items.

Keeping Changes as Session Default If you want to keep the changes so that
they are applied to plots produced later, you may press the Set button in the
field Session Default. In order to set the session default from already existing
records, use the customize panel, Sect. A.1.14.

Storing Changes in a Named Configuration Record Colors and line widths
are grouped in configuration records, Sect. A.1.14. You may store your
present setting by pressing Put in the field Item Record. Another panel opens
in which you can define a new record, give it a name, press Put to store it
in the memory (and, if you wish, press Save or Save As to also write it on a
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configuration file, see Sect. A.1.14). Rather than creating a new record, you
may also select replace, select the name of an existing record, and overwrite
that record with Put.

Getting the Default You may get the contents of the configuration named
default by pressing Get in the field Default.

Getting the Session Default Similarly you get the Session default, see above.

Getting or Loading a Named Configuration Record Press Get in the field
Item Record. In the panel that opens, select a record name and press Get

to get a record that is in memory. To load a configuration record from a
configuration file, press Load and select a file.

A.1.8 Changing Parameters

An essential feature of IQ is the ease of changing parameters and producing
the corresponding plot. Press the button Parameters in the graphics frame. A
parameter panel will appear, Fig. A.7.

The button Parameters acts as a toggle switch, i.e., upon pressing it again
and again the parameter panel is hidden, shown again, etc. It is always con-
nected to its graphics frame and exists as long as the latter exists.

The contents of the parameter panel are discussed in detail in Sects. A.5
through A.8. You may change one or several parameters in the panel. By
pressing the Plot button in the graphics frame or in the parameter panel,
you produce a plot corresponding to the changed set of parameters, i.e., the
changed descriptor. You may, of course, change again, plot again, and also
print the plots obtained in this way.

A.1.9 Saving a Changed Descriptor

Technically, all the changes are performed in a copy of the descriptor in the
computer memory, not in the original descriptor, which is part of the current
descriptor file residing on the hard disk. Therefore, if you simply close the
graphics frame, the changes are lost. If you want to save the changed descrip-
tor, press the button Save / Append in the graphics frame. A descriptor-save

panel appears, Fig. A.8.
By pressing one of the buttons Save or Append, you save the descriptor

in its original position on the file or you append it as an additional descriptor
at the end of the descriptor file, respectively. The original position is high-
lighted in the list of descriptors on the file. You may change the descriptor’s
title before saving or appending. At the moment of saving or appending, the
descriptor is given a new time stamp.
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Fig. A.7. Parameter panel. It contains all parameters of a descriptor. Most of them can be
changed. The parameters are arranged on several levels of subpanels, which are reached by
pressing the appropriate ‘tabs’ near the top

Fig. A.8. Descriptor-save panel. If the button Save is pressed, the descriptor in memory is
saved in its original position in the descriptor file highlighted in the list shown at the top of
the panel. Pressing the Append button results in appending the descriptor at the end of the
descriptor file. Before saving or appending, the descriptor title may be changed in the line
near the bottom
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A.1.10 Creating a Mother Descriptor

It is sometimes convenient to present several plots together in a combined plot

in which each individual plot is defined by its own descriptor. These individ-
ual descriptors are then referred to in a mother descriptor, which also con-
tains details about the placement of the individual plots within the combined
plot. To create a mother descriptor you use the bottom part of the descriptor-
selection panel, Fig. A.3 (opened with the Descriptor button on the main tool-
bar). By pressing the Append button, you create a new mother descriptor
and append it to the current descriptor file. It carries the title New Mother
Descriptor unless you change that title to a more meaningful one before
creation. The mother descriptor created in this way is a mere shell. You have
to edit it to make it fully functional. This is done in steps.

Opening Select the mother descriptor in the upper part of the descriptor-
selection panel. It is – if newly created – the last descriptor on the list. A
graphics frame is opened, which – for a newly created mother descriptor –
contains no plot.

Editing Press Parameters in the graphics frame. A mother-descriptor panel

appears that is a special version of the parameter panel, cf. Sect. A.1.8. Its
contents are described in detail in Sect. A.10. You edit the mother descriptor
in this panel.

Testing Press Plot in the graphics frame. A combined plot as described in the
mother descriptor will be created.

Saving Press Save / Append in the graphics frame. A descriptor-save panel

appears in which you simply press the Save button at the bottom. This re-
places the original empty mother descriptor in the descriptor file by the edited
one. (For more information in the descriptor-save panel see Sect. A.1.9.)

A.1.11 Editing Descriptor Files

It is often useful to work with a customized descriptor file containing a few
selected descriptors. You can produce such a file by

• starting out with a file that may be empty or may already contain descrip-
tors,
• inserting or appending descriptors selected from other files,
• deleting descriptors on the file,
• rearranging the ordering of the descriptors on the file.

We recommend that you close all graphics frames before starting a file-
editing session because only files not currently connected to a graphics frame
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can be edited. Then press the button Edit Descriptor Files on the main toolbar.
An essentially empty file-editing panel is opened. Within that panel you may
open two descriptor files, using the button Open File A and Open File B in the
two halves of the panel. Lists for the two files are displayed, Fig. A.9. By
entering a new name in the file chooser you may also open a hitherto nonex-
istent file, which does not yet contain descriptors. (Files for PC or Macintosh
have different formats but IQ recognizes and accepts both formats on both
types of computer. When you create a new file, you may select the format.)

Fig. A.9. File-editing panel

You can now perform the following operations:

Selecting Using the mouse (and, if you want to select several descriptors in
a file, also the Shift and Ctrl key), you select one or several descriptors.

Unselecting Pressing the unsel button you make the selection undone.

Deleting Pressing the del button deletes the selected descriptors.

Cutting Pressing the cut button copies the selected descriptors to a short-term
memory called clipboard and deletes them from their file.

Copying Pressing the copy button copies the selected descriptors to the clip-
board without deleting them. Note that the same clipboard is used for files
A and B. It always contains the descriptors from the last cutting or copying
operation irrespective of the file they belonged to originally.
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Inserting With the ins button you insert the contents of the clipboard just
before the first selected descriptor. If none is selected, insertion is done at the
beginning of the file.

Appending With the app button you append the contents of the clipboard
directly after the last selected descriptor. If none is selected, appending is
done at the end of the file.

Making a Change Undone By pressing the undo button you make the last
(and only the last) change to a descriptor file (i.e., the last action of the type
del, cut, ins, or app) undone.

Saving a Changed File By using one of the two buttons Save File A or Save

File B you may save a changed file either under its original name or under
a new name. The changes are lost if you do not save a file before opening
another one instead or before closing the file-editing panel.

A.1.12 Printing a Set of Plots

In Sect. A.1.6 we have described how to print a single plot. It is sometimes
convenient to print a set of plots corresponding to a set of descriptors on one
descriptor file. To do that select that descriptor file (see Sect. A.1.3). Then
press Print in the IQ main frame. A panel bearing the title Print Descriptors

appears containing a list of all descriptors in the descriptor file. With the
mouse (and Shift and Ctrl keys) select those descriptors in the list that you
want to print and press Print at the bottom of the panel. A print panel appears.
See Sect. A.1.6 for a short version of how to proceed with the print panel and
Sect. A.11 for details.

A.1.13 Running a Demonstration

To run a demonstration, press the button Demo on the main toolbar. A file
chooser opens allowing you to choose a demonstration file, i.e., a file with the
extension demo. For a first try we recommend to choose the file

1D_Free_Particle(NoSound).demo

Once a file is chosen, you are asked whether you want the demonstration
to be automatic or step by step. By pressing the button corresponding to
your choice, you start the demonstration. The demonstration is presented in
the demonstration frame, Fig. A.10. Plots produced by IQ and explanatory
text with a few formulae are shown one after another or side by side. Some
demonstration files make use of prerecorded sound files so that the user listens
to rather than reads the text and thus visually is fully focused on the plots.
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Fig. A.10. Demonstration frame containing an IQ plot and explanatory text

An automatic demonstration runs off from the beginning to the end fol-
lowing a predefined timing much like a movie or slide show. A step-by-step

demonstration is divided into small steps. You start each step by clicking on
the Next button or by simply pressing the Enter key. The button Prev. takes
you back to the previous step. If you want to listen again from the beginning
to the sound in the current step (if any), click on Replay. You may also pro-
ceed forward or backward to an arbitrary step by clicking on Go To. A pop-up
window appears in which you can select the desired step and then present it
by pressing the Enter key. (Double-clicking on the step reveals its substruc-
ture.) The pop-up window disappears with a mouse click anywhere outside it
or if the Escape key is pressed.

If you wish to create your own demonstrations, consult Sect. A.12.

A.1.14 Customizing

The IQ program can be configured in several ways. When the program is
started, the configuration is loaded into memory from the configuration file

iqini.cnf. You may change and extend the configuration in memory and
save it back to the file iqini.cnf or to some other configuration file.

The configuration information is summarized in Table A.2. It is structured
in configuration records on five different subjects. For each of the first two
subjects there is only one (unnamed) configuration record. For the other three
subjects there may be several records with different names. One of them,
bearing the name default, cannot be edited (and therefore stays unchanged).
The others are editable.

By pressing the button Customize, you display the customize panel, Fig.
A.11. Through this panel the configuration records are accessible and (at the
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Table A.2. Configuration information

Subject Number of records Record editable

Plot behavior 1 yes
Demonstration 1 yes
Documentation directory 1 yes
Initial descriptor file 1 yes
Paper items 1 or more default: no
(paper format for printing (distinguished others: yes
by IQ Export) by name)
Print items 1 or more default: no
(colors and line widths (distinguished others: yes
for printed plots) by name)
Screen items 1 or more default: no
(colors and line widths (distinguished others: yes
for plots on screen) by name)

bottom of the panel) tools are available to save an edited configuration file or
to load another configuration file.

Fig. A.11. Customize panel

Editing an Unnamed Configuration Record

• Plot behavior – There are two check boxes and a numerical field:
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– the check box plot graphics immediately is normally set on. (If it is not,
after selection of a descriptor an empty graphics frame appears. A plot is
created only after the plot button is pressed. This mode can be useful if
you want to change descriptors without plotting.)

– Also the check box tile windows on screen should normally be on. (If it
is not, all windows are created in the upper left corner of the screen if
not otherwise determined by the operating system. There are, however,
window managers under Linux that do not work well with Java, so that
for them the check box has to be off.)

– The integer number graphic border pixels is usually left zero. (If it is not,
then in the graphics frame pixels are added outside the border line of the
plot. If you print the graphics using a system printer, the additional area
forms part of the plot.)

– The integer number hidden-line accuracy is best left at 16. It is a pa-
rameter of the hidden-line procedure used for plots of types surface over

Cartesian grid (Sect. A.3.1) or polar grid (Sect. A.3.2) or of type 3D col-

umn plot (Sect. A.3.8). In very rare cases a value smaller than 16 may
yield better results.

• Demonstration – There is a check box and a field used to determine a direc-
tory:
– The check box carries the title offer introductory demo on start-up. If it is

on, the frame of Fig. A.1.2 will be shown when IQ is started.
– The field Demonstration directory indicates the directory in which IQ

looks for *.demo files, Sects. A.1.13, A.12. The default is the subdi-
rectory Demo in the main directory of IQ. By pressing Select you get
a directory chooser with which you can change the directory. With the
Clear button you can re-establish the default.

• Documentation directory – There is a number of documentation files, in par-
ticular those needed to provide answers to Help requests. These files are
stored in the documentation directory. The default is the subdirectory Doc
in the main directory of IQ. To change the directory or to re-establish the
default use the buttons Select or Clear, respectively.
• Initial descriptor file – The initial descriptor file is the file selected (appearing

in the title bar of the IQ main frame) at program start-up. By pressing Select

you can select an initial file. If Clear is pressed, no initial file is defined.

Editing a Named Configuration Record For the three types of named con-
figuration records, there are three similar areas on the customize panel con-
taining a combo box to select a configuration record and three buttons. With
these you can do the following:

• Editing an Existing Record: Select the record in the combo box. Press Edit.
Perform the desired changes in the panel that is opened. Close that panel.
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(If the record is named default instead of an Edit button, there is a View

button. You can inspect the panel but not change it.)
• Creating a New Record: Press New. A panel as described above but con-

taining an additional field for the name of the new record is opened. Enter
a name, perform the desired changes, and close the panel.
• Deleting an Existing Record: Select the record in the combo box. Press

Delete.

Saving a Changed Configuration The methods described so far yield
changes in the configuration in computer memory but are lost once IQ is
closed. To save them to the file iqini.cnf press Save. To save them to an-
other file press Save as, enter a file name (e.g., myConfig.cnf) in the panel
that opens, and then press Save in that panel.

Loading Information from a Configuration File You may overwrite or ex-
tend the configuration in memory by loading information from a configuration
file. To do this press Load and select the file. Records from the file with names
different from those in memory are added to the configuration. Records with
the same name and unnamed records may overwrite those in memory or be
ignored – you are asked what you wish for each type of record. (If you do
not want to be asked, you may select either overwrite or keep before pressing
Load.)

A.1.15 Help and Context-Sensitive Help

Press the button Help in the IQ main frame. A window is opened in which a
special version of the ‘Acrobat R© Reader’ displays the text of this book. It is
opened on the page with the beginning of Appendix A, A Systematic Guide to

IQ. Using the tools of the reader, you can access every bit of information in
the text.

The contents of the parameter panel depend very much on the physics
topic chosen. Therefore, special help is provided for it. Select a subpanel of
the parameter panel. (Selection is indicated graphically in the tag field by a
thin frame around the name of the subpanel, e.g., Physics or Comp. Coord..)
Now, press the F1 key on the keyboard. (On some keyboards press Fn plus
F1.) A page relevant to the selected subpanel is displayed.

A.2 Coordinate Systems and Transformations

A.2.1 The Different Coordinate Systems

A.2.1.1 3D World Coordinates (W3 Coordinates) Figure A.13 shows a
structure in three-dimensional space (3D space). Let us consider the whole
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structure to be built up of thin wires. We call the Cartesian coordinate system,
in which this wire structure is described, the 3D world coordinate system or
W3 coordinates and denote a point in W3 coordinates by (X, Y,Z).

A.2.1.2 3D Computing Coordinates (C3 Coordinates) Looking at the
scales in Fig. A.13, we observe that, although the x scale and the y scale have
approximately equal lengths in W3 coordinates (i.e., if regarded as two pieces
of wire suspended in space), their lengths are quite different if expressed by
the numbers written next to the scales. The latter lengths are 1x = 2 and
1y = 2π .

The plot illustrates the function

z = f (x, y) ,

where each point (x, y, z) is placed at the position (X, Y,Z) in W3 space.
The coordinates x, y, z are called 3D computing coordinates or simply C3

coordinates. They are connected to the W3 coordinates by a simple linear
transformation given in Sect. A.2.2.

A.2.1.3 2D World Coordinates (W2 Coordinates) Our three-dimensional
structure given in W3 coordinates must of course be projected onto the two-
dimensional display screen or on the paper in a printer. This is done in
two steps. We first project onto a plane placed in W3 space, and then (see
Sect. A.2.1.4) from that plane onto the display screen or paper.

Let us consider an observer situated at some point in W3 space looking
at the origin (X = 0, Y = 0, Z = 0). The unit vector n̂ pointing from
the origin to the observer is characterized by the polar angle ϑ (the angle
between n̂ and the Z direction) and the azimuthal angle ϕ (the angle between
the projection of n̂ onto the X, Y plane and the X axis). We now construct
a plane somewhere in space perpendicular to n̂ and a two-dimensional ξ, η
coordinate system in that plane. The ξ axis is chosen parallel to the X, Y
plane.

We call the coordinates ξ, η the system of 2D world coordinates or sim-
ply W2 coordinates. We can now perform a projection parallel to n̂ from
W3 to W2 coordinates. The projection transformation is given in detail in
Sect. A.2.2.

A.2.1.4 Device Coordinates (D Coordinates) A final transformation leads
us to the sensitive plane of the plotting device, which can be the display screen
or the paper. We call the system of u, v coordinates, used by the plotting
device to address a point in the sensitive plane, the system of device coordi-

nates or D coordinates. For the transformation from W2 to D coordinates see
Sect. A.2.2.
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A.2.2 Defining the Transformations

A.2.2.1 The Window–Viewport Concept A linear transformation from a
variable x to another variable X can be uniquely defined by specifying just
two points xbeg, xend and the corresponding points Xbeg, Xend, see Fig. A.12.
A general point x is transformed to

X = Xbeg + (x − xbeg)
Xend −Xbeg

xend − xbeg
.

If the range of the variable x is bounded, it is useful to choose the pairs
(xbeg, xend) and (Xbeg, Xend) as the bounds of the variables. The interval

xbeg ≤ x ≤ xend

is called the window in x, whereas the interval

Xbeg ≤ X ≤ Xend

is called the viewport in X.
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Fig. A.12. Linear transformation from x to X. The window in x is bounded by xbeg, xend, the
viewport in X by Xbeg, Xend

A.2.2.2 The Chain of Transformations C3→W3→W2→D We have just
seen that the transformation from C3 coordinates x to W3 coordinates X is

X = Xbeg + (x − xbeg)
Xend −Xbeg

xend − xbeg
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and therefore is completely defined once the window (xbeg, xend) and the
viewport (Xbeg, Xend) are given. Of course, completely analogous formulae
hold for the transformations y → Y and z→ Z.

The transformation from W3 coordinates (X, Y,Z) to W2 coordinates
(ξ, η) is a parallel projection and is given by

ξ = −X sinϕ + Y cosϕ ,

η = −X cosϕ cosϑ − Y sinϕ cosϑ + Z sinϑ .

It is completely determined by the polar angle ϑ and the azimuthal angle ϕ of
the direction n̂ from the origin of W3 space to the observer.

Finally, we define a window

ξbeg ≤ ξ ≤ ξend , ηbeg ≤ η ≤ ηend

in W2 space and a viewport

ubeg ≤ u ≤ uend , vbeg ≤ v ≤ vend

in D space and project that part of W2 space that falls inside the window onto
the viewport in D space (i.e., the sensitive plotting device surface).

A.2.2.3 Defining the Window and Viewport in C3 and W3 Coordinates

Figure A.13 is a plot of the type surface over Cartesian grid in 3D, cf. Sect.
A.3.1. Such plots are illustrations of the function

z = f (x, y) ,

in which x and y are varied over the ranges xbeg ≤ x ≤ xend and ybeg ≤ y ≤
yend of the windows x and y, respectively. The function z = f (x, y) is drawn
irrespective of the window (zbeg, zend). Viewport (Zbeg, Zend) and window
(zbeg, zend) are given to establish the relation between C3 and W3 coordinates.
Their use is convenient to magnify or reduce the plot in the Z direction. The
parameters xbeg, xend, . . . andXbeg,Xend, . . . are given in the parameter panel.
There they can be found under the heading Ranges of Computing Coordinates

and Ranges of World Coordinates on the subpanels Physics—Comp. Coord.

and Graphics—Geometry, respectively.

Exercise – Changing the Window in Computing Coordinates. Pro-
duce the plot of Fig. A.13. Open the parameter panel (by pressing the
Parameters button). Shown is the subpanel Physics—Comp. Coord..
Change the value of x_end to 1.5. The surface and the numbers at
the scale in x are changed accordingly, although the apparent length
of the scale (constructed in world coordinates) does not change.
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Exercise – Changing the Viewport in World Coordinates. Now
select the subpanel Graphics—Geometry and change X_end to 0. The
surface and the apparent length of the scale in x are shrunk to half the
original size.

Exercise – Scale and Offset in z. For the plot corresponding to Fig.
A.13 the window (zbeg, zend) in computing coordinates and the view-
port (Zbeg, Zend) in world coordinates are identical, namely (−1, 1).
Produce plots for

(a) (zbeg, zend) = (−2, 2); (Zbeg, Zend) = (−1, 1);
(b) (zbeg, zend) = (−1, 1); (Zbeg, Zend) = (−2, 2);
(c) (zbeg, zend) = (−1, 1); (Zbeg, Zend) = (0, 2).

The results are a reduction (a), a magnification (b), and a shifting (c)
in z direction of the surface compared to the original plot.

A.2.2.4 Projecting from W3 to W2 The polar angle ϑ and the azimuthal
angle ϕ, defining the position of the observer with respect to the origin of the
W3 coordinate system, are found under the heading Look-from Direction on
the subpanel Graphics—Geometry.

Exercise – Changing the projection. Produce the plot correspond-
ing to Fig. A.13. Then plot again for different values of (ϑ , ϕ), e.g.,
(30,−30), (80,−30), (60,−60).

A.2.2.5 Defining the Window in W2 Coordinates A window is defined
through four quantities, the width W and the coordinates

Xlook-at, Ylook-at, Zlook-at

of a target point or look-at point in W3 coordinates. The projection of that
point is taken as the center of the rectangular window in W2. The window has
the width W . The height of the window is chosen such that the window has
the same width-to-height ratio (aspect ratio) as the viewport in D coordinates;
see next section.

The four parameters of this section are displayed on the subpanel Graphics

—Geometry. Changing them allows you to do zooming and panning. To zoom

in you decrease W , to zoom out you increase W . Changing the look-at point
you may move about your window in the W2 plane.

Exercise – Zooming and Panning. In the plot corresponding to
Fig. A.13 change width to 25. (Result: zooming out.) Then change
Z_look_at to 3. (Result: Panning. Because the look-at point moves up,
the whole graphical structure moves down.)
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A.2.2.6 Defining the Viewport in D Coordinates To determine the view-
port

ua ≤ u ≤ ub , va ≤ v ≤ vb
in D coordinates the subpanel Format of the parameter panel is used. It defines
the format of the plot on the display screen or printer.

Exercise – Changing the Format. In the plot corresponding to Fig.
A.13 change from landscape to portrait format. Then produce a plot
of equal width and height.

A.3 The Different Types of Plot

The plots created by IQ can be classified by their physics contents and also
by the way they are shown graphically. The physics contents are mapped
onto a mathematical function. This function is then presented graphically.
Depending on the type of function, different forms of graphical representation
– called plot types – are used. The plot type is chosen together with the physics
topic. It cannot be changed directly.

Quantities influencing the graphical appearance are accessible in the three
Graphics subpanels of the parameter panel:

• Geometry This subpanel in the first line names the plot type. The name is
followed by
– the Ranges of World Coordinates, cf. Sect. A.2.2.3,
– the world coordinates of the Look-at Point and the Width of the Plot in

world coordinates, cf. Sect. A.2.2.5,
– the Look-from Direction, cf. Sect. A.2.2.4.
• Accuracy The parameters on this subpanel are discussed separately for each

type in the following sections.
• Hidden Lines This subpanel exists only for 3D plots, for details see Sect.

A.6.3.

A.3.1 Surface over Cartesian Grid in 3D

A function
z = f (x, y)

of two variables defines a surface embedded in three-dimensional x, y, z
space (or 3D space). Figure A.13 shows the graphical representation of such
a surface. In fact, only two sets of lines

z = f (xi, y) , i = 1, . . . , nx ,

z = f (x, yi) , i = 1, . . . , ny ,
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are drawn, where the xi or yi are constants for a given line. The two sets of
lines correspond to a Cartesian grid in the x, y plane. They are placed evenly
in the x, y window in C3 coordinates, which corresponds to theX, Y viewport
in W3 coordinates.

Fig. A.13. Plot produced with descriptor Example for plot type "surface over Car−
tesian grid in 3D" on file Math_Functions.des

The number of lines in each set can be changed in fields labeled n_x and
n_y on the subpanel Graphics—Accuracy.

Exercise – Changing the Number of Lines. In the plot correspond-
ing to Fig. A.13 try (a) nx = 11, ny = 0; (b) nx = 0, ny = 9; (c)
nx = ny = 41.

Within one line only a certain number of points z = f (x, y) is computed.
They are connected by straight lines. You can alter the number of points by
changing the value of the Step Width in the subpanel Graphics—Accuracy.
The step width 1X is the distance in the W3 coordinate X between two adja-
cent points. The corresponding quantity 1Y is set equal to 1X. The default
value for 1X is (Xend − Xbeg)/100, i.e., one hundredth of the width of the
viewport in W3. The values of 1X and 1Y are still somewhat modified by
IQ to match the grid defined by theX, Y viewport and the values of nx and ny .

Exercise – Changing the Step Width. In the plot corresponding to
Fig. A.13 change Step Width to 1.
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A.3.2 Surface over Polar Grid in 3D

So far we have used Cartesian coordinates only. We now introduce polar
coordinates r, ϕ in the x, y plane

x = r cosϕ , y = r sinϕ

and construct two sets of lines in the x, y plane,

rays ϕ = const ,
arcs r = const .

We call these two sets of lines a polar grid. The function

z = f (x, y) = g(r, ϕ)

is then illustrated by lines

z = g(ri, ϕ) , i = 1, . . . , nr ,

z = g(r, ϕi) , i = 1, . . . , nϕ .

We then again have a surface in 3D space on which two sets of lines are drawn.
The projection of these lines onto the x, y plane, however, forms a polar rather
than a Cartesian grid. An example is given in Fig. A.14. Of course, the polar
grid does not extend over the whole x, y plane.

For this plot type the Ranges of Computing Coordinates on the Physics—
Comp. Coord. subpanel are given in the variables (r, ϕ) rather than in (x, y).
The grid exists only within the ranges given.

Exercise – Changing of Ranges in r , ϕ. For the plot corresponding
to Fig. A.14 change r_beg to 0.5 and plot. Then change ϕ_end to
360 and plot again.

The number nr , nϕ of lines of the grid and the step widths of those lines
are given on the subpanel Graphics—Accuracy.

Exercise: In the plot corresponding to Fig. A.14 change n_ϕ to 5 and
plot. Then change step width in ϕ to 30 and plot again.

A.3.3 2D Function Graph

Once familiar with the way we present 3D graphics, it is convenient to think
of a 2D plot as a picture of an object in 3D with all elements in theX, Y plane
(Z = 0) and looked at from above, i.e., from the positive Z direction. Corre-
spondingly, the subpanels Physics—Comp. Coord. and Graphics—Geometry

contain only a subset of the parameters needed for 3D plots (see Sect. A.2.2,



338 A.3. The Different Types of Plot

Fig. A.14. Plot corresponding to descriptor Example for plot of the type "surface
over polar grid in 3D" on file Math_Functions.des

namely, the ranges of computing coordinates x and y, the ranges of the world
coordinates X and Y , the X, Y coordinates of the look-at point, and the width
of the plot).

There are various ways of plotting a function of a single variable in the
x, y plane. They differ in the choice of the independent variable. In IQ the
following four possibilities are implemented.

Cartesian Plot y = y(x). This is the usual case with x being the independent
and y the dependent variable.

Inverse Cartesian Plot x = x(y). Here y is the independent and x the depen-
dent variable.

Polar Diagram r = r(ϕ). This diagram uses polar coordinates r = (x2 +
y2)1/2 and ϕ = arctan(y/x) with ϕ as independent and r as dependent
variable.

Plot of Parameter Representation x = x(p), y = y(p). Here a parameter

p is the independent variable and both coordinates x and y depend on it.
The parameter is varied in small steps in the range pbeg ≤ p ≤ pend and
a trajectory is drawn in the x, y plane as a succession of straight lines
joining the points (x(p), y(p)).
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Fig. A.15. Plot produced with descriptor Example for plot of type "2D function
graph" on file Math_Functions.des

An example for a Cartesian plot is Fig. A.15. An example for a polar
diagram is Fig. 11.4. Figure 4.8 contains a plot of a parameter presentation
(top left) and an inverse Cartesian plot (bottom left).

The range of the independent variable

• for the Cartesian and inverse Cartesian plots is, of course, the range of
the corresponding computing coordinate and accessible on the subpanel
Physics—Comp. Coord.,
• for the polar diagram is 0 ≤ ϕ ≤ 2π and cannot be changed,
• for the parameter representation is given at the bottom of the subpanel

Physics—Variables.

On the subpanel Graphics—Accuracy you find some more items to influ-
ence the appearance of the plot.

Step Width of Independent Variable – The smaller this quantity Delta is chosen
the more accurate the plot will be.

Polymarkers – In some cases it is useful to have marks placed on the graph
that are equidistant in the independent variable. In particular, for the pa-
rameter representation this allows you to indicate the variation of the pa-
rameter p along the trajectory. In the jargon of computer graphics these
marks are called polymarkers. You can change the following quantities:
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• Delta_n: difference in n between two consecutive points on which poly-
markers are placed. The points are numbered n = 0, 1, 2, . . .,
• n_0: first point on which polymarker is placed,
• R: radius (in world coordinates) of polymarker.

Autoscale – Usually, the ranges of the computing coordinates are determined
by the user. Sometimes (in particular in a multiple plot) it can be useful
to have the program do it. The criterion is to choose the range of the
dependent variable (for Cartesian and inverse Cartesian plots) or of both
variables (for polar diagrams and parameter representations) so wide that
the complete graph is visible (if possible). There is triple choice:
• Autoscale Off – Use that for single plots or for multiple plots if you want

all individual plots in one scale.
• Autoscale On (x and y may be treated differently) – Use that for Cartesian

and inverse Cartesian plots.
• Autoscale On (x and y treated equally) – Use that for polar diagrams and

parameter representation.

A.3.4 Contour-Line Plot in 2D

Another type of 2D plot, Fig. A.16, is obtained by considering the function

z = f (x, y)

of the two independent variables x and y and requiring the function to have a
constant value c. The locus of all points (x, y) fulfilling this requirement,

c = f (x, y) ,

is called a contour line and can be thought of as projection onto the x, y plane
of the line resulting from the intersection of the surface z = f (x, y) and the
plane z = c. You may plot only one such line or a set of n lines for

z = c , z = c +1c , . . . , z = c + (n− 1)1c .

The values c and 1c are chosen at the bottom of the subpanel Physics—
Comp. Coord..

The contents of the subpanel Graphics—Geometry are as for 2D function
graphs, see Sect. A.3.3.

The subpanel Graphics—Accuracy contains the Number of Lines n and the
Accuracy Parameter 1x. The latter has the following meaning. The whole
viewport in world coordinates is divided into squares of the size 1X × 1X.
Within each square the contour line is approximated by a straight line. The
plot can become quite wrong if1X is too large. On the other hand, computing
time increases fast as 1X is decreased. In fact, it is proportional to (1X)−2.
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Fig. A.16. Plot produced with descriptor Example for plot of type "contour−line
plot in 2D" on file Math_Functions.des

A.3.5 Contour-Surface Plot in 3D

An extension of the contour-line concept, Sect. A.3.4, is a contour surface of
a function f (x, y, z) of three independent variables x, y, z, Fig. A.17. It is
defined by

f (x, y, z) = c = const .

Technically, the contour surface is computed and presented as a set of contour
lines, which themselves are obtained as intersections of the contour surface
and some planes

x = const , y = const , z = const , ϕ = const .

Here ϕ is the azimuth of spherical or cylindrical coordinates, i.e., the an-
gle that a half-plane bounded by the z axis forms with the x, z plane. The
subpanel Geometry—Accuracy contains the numbers nx , ny , nz, nϕ of these
planes. In practice only two (usually nz and nϕ) should be nonzero. The
planes z = const are chosen such that the first one is z = zbeg, the last
one z = zend, and the others are placed equidistantly in between. Here zbeg

and zend are the limits of the ranges of computing coordinates, Sect. A.2.2.3.
Analogous statements hold true for the planes x = const, y = const, and also
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for the planes ϕ = const. For the latter set ϕbeg and ϕend are given on the
subpanel Geometry—Accuracy.

Fig. A.17. Plot produced with descriptor Example for plot of type "contour−sur−
face plot in 3D" on file Math_Functions.des

Only that part of each plane that falls inside the rectangular box defined by
the ranges of the computing coordinates x, y, z is considered and the contour
line on that part of each plane is constructed. The accuracy of that construc-
tion is determined by the parameter 1X just as in the case of contour lines in
2D.

Note that the box defined by the ranges of computing coordinates need
not contain the contour surface completely. In such a case the surface appears
to be ‘cut open’.

It can be very time-consuming to produce a contour-surface plot. The
computing time is proportional to the total number of lines and to (1X)−2. If
the hidden-line technique, Sect. A.6.3, is used, it is increased by another large
factor.

A.3.6 Polar Diagram in 3D

A non-negative function
r = r(ϑ, ϕ)
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of the polar angle ϑ and the azimuth ϕ of a spherical coordinate system can
be visualized as a surface in 3D. A ray from the origin in the direction defined
by ϑ and ϕ intersects the surface at the distance r(ϑ, ϕ). We call the picture
of such a surface a polar diagram in 3D, Fig. A.18. In order not to distort the
angles, world coordinates and computing coordinates are kept proportional to
each other.

Fig. A.18. Plot produced with descriptor Example for plot of type "polar diagram
in 3D" on file Math_Functions.des

The quantities

ϑbeg, ϑend; ϕbeg, ϕend; nϑ , nϕ; ∆

on the subpanel Graphics—Accuracy determine in detail how the surface is
shown.

A total of nϑ lines

r = r(ϑi, ϕ) , i = 1, . . . , nϑ ,

is constructed where ϑi is kept constant and only ϕ is varied in the range

ϕbeg ≤ ϕ ≤ ϕend .

The variation of ϕ from point to point on one line is given by ∆. The constant
values ϑi are chosen as
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ϑ1 = ϑbeg , ϑnϑ = ϑend ,

and equidistantly in between. For the nϕ lines

r = r(ϑ, ϕi) , i = 1, . . . , nϕ ,

the same description holds but with ϑ and ϕ interchanged.
The appearance of the plot is also influenced by the hidden-line technique,

Sect. A.6.3.

A.3.7 Probability-Ellipsoid Plot

The probability density of a three-dimensional Gaussian wave packet can be
represented by a probability ellipsoid, Sect. 6.5. Graphically, this ellipsoid
can be shown as a polar diagram in 3D, see Sect. A.3.6, if the center of
the ellipsoid is taken as the origin. Figure A.19 is an example of such a
probability-ellipsoid plot.

Fig. A.19. Plot produced with descriptor Example for plot of type "probability−
ellipsoid plot" on file Math_Functions.des

In the subpanel Graphics—Accuracy the quantities

nϑ , nϕ, ∆

have the same meaning as for the polar diagram in 3D. The ranges of ϑ and
ϕ fixed at
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ϑbeg = 0◦, ϑend = 180◦; ϕbeg = 0◦, ϕend = 360◦ .

The hidden-line procedure is always used.

A.3.8 3D Column Plot

A quantity that is defined only for certain discrete values of x and y is best
represented by a set of columns placed on the x, y plane at those points where
the quantity is defined. The height of each column indicates the size of the
quantity, see Fig. A.20.

Fig. A.20. Plot produced with descriptor Example for plot of type "3D column
plot" on file Math_Functions.des

For this 3D column plot the ranges of computing coordinates in x and y
are set automatically depending on the user’s choice of physics parameters.
The scale in z is adjusted as usual by the ranges in computing and world
coordinates.

The subpanel Graphics—Accuracy allows you to adjust the lateral widths
(in x and y) of the columns. The Figs. 11.15 and A.15 contain exactly the
same information but the column widths are different.
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A.4 Parameters – The Subpanel Movie

Many descriptors have a movie capability; the graphics frame created with
such a descriptor carries a bottom toolbar with movie buttons, see Sect. A.1.5.
The corresponding parameter panel contains a subpanel Movie, which is sub-
divided into three regions:

• The top region contains information on the start and end values of the pa-
rameter which is changed from frame to frame in the movie. This parameter
mostly is the time t but may also be some other quantity, for instance, en-
ergy E, momentum p, or probability density %. These parameter values
are given in units defined by the physics problem to be simulated. In some
cases they are specified in that region itself, which then carries the title Start

and End Values. In other cases, under the title Note, the user is told where
to find that information in other parts of the parameter panel.
• The middle region, entitled Movie Parameters, contains technical informa-

tion describing the movie, namely, the number N_Frames of frames which
make up the movie (default 201), the Delay Time in milliseconds between
the presentation of one frame and the next (default 40), and the Pause Time

in milliseconds (default 1000) between the end of the movie presentation
and the beginning of its repetition.
• The bottom region is entitled Animated GIF Parameters. These parameters

are needed if a movie is to be written on disk in a standard format known
as animated GIF for later use outside the program IQ. The first two input
fields are the Frame Width and the Frame Height in pixels. The numbers
found in the input fields correspond to the size of the graphics frame when
it is first produced but can be changed by the user. The number N_Runs

(default 1) is the number of times the movie is presented if the file is opened
in a browser. The Color Quality (default 10) is an integer indicating the color
representation in the GIF standard.

A.5 Parameters – The Subpanel Physics

The subpanel Physics of the parameter panel itself contains one or more sub-
panels. Their contents depend on the physics topic chosen and is therefore
explained in detail in the corresponding physics section of the book. General
statements can be made about two of the subpanels. The name of the physics
topic is always visible in the first line of the parameter panel.
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A.5.1 The Subpanel Physics—Comp. Coord.

Under the heading Computing Coordinates the correspondence between com-
puting coordinates (e.g., x, y, z) and the physics quantities represented by
them is shown. An example is

x: Position Coordinate x,
y: Time t ,
z: |Ψ (x, t)|2.

Next, the Ranges of Computing Coordinates are given, see Sect. A.2.

A.5.2 The Subpanel Multiple Plot

For many (but not all) physics topics a multiple plot can be produced. This is
a set of plots arranged in a regular array of rows and columns. The individual
plots differ only in the values of one or two parameters that are incremented
from plot to plot. Which parameters are incremented and by how much is
indicated in the other subpanels of the Physics subpanel. On the subpanel
Multiple Plot there are two groups of parameters.

Under the heading Size of Multiple Plot you find the number of rows and
the number of columns of the multiple plot.

Under the heading First Indices you find two more quantities, First Row

Index and First Column Index. These, in most cases are left at their default
values zero. In some cases it may be useful to choose different values. Sup-
pose two parameters p and q can be stepped up with initial values p0, q0 and
increments 1p, 1q:

pi = p0 + i1p , i = 0, 1, . . . ,

qj = q0 + j1p , j = 0, 1, . . . .

Usually, the upper-left plot, i.e., the plot in the first row and the first column
of a multiple plot, corresponds to the parameter pair p0, q0. If the first indices
are chosen to be i = I , j = J , then it corresponds to pI , qJ .

A.6 Parameters – The Subpanel Graphics

The subpanel Graphics of the parameter panel contains two (sometimes three)
subpanels.

A.6.1 The Subpanel Graphics—Geometry

In its first line this subpanel carries the name of the plot type. It is followed
by several groups of parameters:
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• Ranges of World Coordinates, see Sect. A.2,
• Look-at Point, the world coordinates of a point which, after projection, will

be exactly the center of the plot, see Sect. A.2.2.5,
• Width of Plot in world coordinates, see Sect. A.2.2.5,
• Look-from Direction, see Sect. A.2.2.4 (this group is present only for 3D

plots).

A.6.2 The Subpanel Graphics—Accuracy

The contents of this subpanel depend very much on the type of plot. We list
them here under the names of the plot types. For further details consult Sect.
A.3.

• Surface over Cartesian grid in 3D, Sect. A.3.1:
– n_x – number of lines x = const,
– n_y – number of lines y = const,
– Step Width – distances (in world coordinates X or Y ) between two com-

puted points on a line.
• Surface over polar grid in 3D, Sect. A.3.2:

– n_r – number of lines r = const,
– n_ϕ – number of lines ϕ = const,
– Step Width in R – distance (in world coordinates) between two points com-

puted on a line ϕ = const,
– Step Width in ϕ – distance (in degrees) between two points computed on

a line r = const.
• 2D function graph, Sect. A.3.3:

– Delta – step width of the independent variable. The unit is world coor-
dinates for Cartesian and inverse Cartesian plots. It is radian for a polar
diagram and it is the unit of the parameter for a parameter representation.

For the features Polymarkers and Autoscale see Sect. A.3.3.
• Contour-line plot in 2D, Sect. A.3.4:

– 1X – resolution parameter (in world coordinates) for the algorithm find-
ing the contour lines.

• Contour-surface plot in 3D, Sect. A.3.5:
– n_x – number of contour lines on planes x = const,
– n_y – number of contour lines on planes y = const,
– n_z – number of contour lines on planes z = const,
– n_ϕ – number of contour lines on planes ϕ = const,
– ϕ_beg – azimuth (in degrees) for first plane ϕ = const,
– ϕ_end – azimuth (in degrees) for last plane ϕ = const,
– 1X – resolution parameter (in world coordinates) for the algorithm find-

ing the contour lines.
• Polar diagram in 3D, Sect. A.3.6:
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– n_ϑ – number of lines ϑ = const,
– n_ϕ – number of lines ϕ = const,
– ∆ – distance (in degrees) between points computed on a line ϑ = const

or ϕ = const,
– ϑ_beg – lower end (in degrees) of range in ϑ ,
– ϑ_end – upper end (in degrees) of range in ϑ ,
– ϕ_beg – lower end (in degrees) of range in ϕ,
– ϕ_end – upper end (in degrees) of range in ϕ.
• Probability-ellipsoid plot, Sect. A.3.7:

– n_ϑ – number of lines ϑ = const,
– n_ϕ – number of lines ϕ = const,
– ∆ – distance (in degrees) between points computed on a line ϑ = const

or ϕ = const.

A.6.3 The Subpanel Graphics—Hidden Lines

This subpanel is present for some 3D plot types. A hidden-line procedure is
a method not to show (i.e., to hide) lines on a surface in 3D space that are
hidden to the observer by the surface itself. The procedure is quite different
for the following two groups of plot types:

• Surface over Cartesian or polar grid in 3D – These surfaces have two
faces. One is oriented toward the positive z direction (we call it the top

face). The other one, the bottom face, is oriented toward the negative z di-
rection. Normally, top and bottom face are given different colors. The user
may choose one of the following possibilities for the hidden-line technique:
– On,
– On – Top and Bottom in Same Color,
– On – Only Top Shown,
– Off.
The latter two possibilities are sometimes useful, in particular for a surface

over Cartesian grid in 3D on which only lines y = const are shown. This
is done to present in one plot ny graphs

f (x, y = yi) , i = 1, 2, . . . , ny ,

of a function of x with y as a parameter. For an example see Fig. 3.7.
• Contour-surface plot in 3D and polar diagram in 3D – Also the surfaces

in these plots have two faces. In a polar diagram there is one face oriented
toward the origin, the other face is oriented away from it. A contour surface,
defined by f (x, y, z) = c, has a face toward the region of space where
f > c and one oriented toward f < c. The two faces are always shown in
different colors. For these plot types the hidden-line procedure can be very
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time-consuming. You can therefore switch the procedure On or Off. In the
Off state the program is much faster, no distinction can be made between
the two faces, which, therefore, are shown in the same color. In the On state
you may still influence the speed through the Accuracy Parameter. Both the
quality of the procedure and the time it takes increase with the parameter.
The default value 100 gives reasonable results. In particular, for contour-
surface plots we recommend that you switch off the hidden-line technique
(or at least reduce its accuracy) while you develop the plot and switch back
on only after you found your final set of parameters.

A.7 Parameters – The Subpanel Background

Besides the graph of the function to be illustrated, our example plots contain
a number of items that make them easier to understand, such as coordinate
axes, scales, arrows, and text. We say that the background of our plots is
made up of these items and discuss, in this section, how to control them. In
Fig. A.21 the function part and the background of the plot of Fig. A.13 are
shown separately.

Fig. A.21. The function part (left) and the background (right) of Fig. A.13

All background items are controlled on the different Background subpan-
els on the parameter panel.

A.7.1 The Subpanel Background—Box

It is often useful to draw a box indicating the range in theX, Y plane for which
a function is drawn. You may also wish to see the coordinate axes, i.e., the x
axis and the y axis of the C3 coordinate system. Boxes and coordinate axes
are controlled on the subpanel Background—Box.

For all plot types except surface over polar grid in 3D there are four sets of
radio buttons (i.e., groups of possibilities of which one is selected). Two sets
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apply to the box and two to the coordinate axes. First, for the box, you may
choose between

• No Box,
• Box as Continuous Line,
• Box as Dashed Line.

So far, the box is just a set of four lines. You can make these lines serve as
scales of computing coordinates using the next set of buttons.

• No Ticks – just the box is drawn,
• Ticks Pointing into Box – ticks are added to the lines of the box turning them

into scales,
• Ticks and Numbers – numbers are placed near some ticks on two sides of

the box, so that the scales can be read off quantitatively.

For the coordinate axes there are two similar sets of buttons. Figure A.21
contains a box of continuous lines and coordinate axes as dashed lines. Nei-
ther box nor coordinate axes carry ticks or numbers. In the figure there are
scales at some distance from the box, because for the figure shown they would
otherwise interfere with the function graph. They are discussed in Sect. A.7.2.

Details of dash length, ticks, and numbers of box and coordinate axes are
controlled on the subpanels of Background—Scales, see Sect. A.7.2.

For 2D function graphs the functions are clipped (if necessary) at the up-
per and lower edges of the box, if you ask for the box to be drawn.

For plots of the type surface over polar grid in 3D the subpanel is somewhat
different. The box given by the ranges of the computing coordinates r, ϕ is
not rectangular, because the range for which the function is drawn is limited
by rays and arcs. In the example of Fig. A.14 it is a semicircle.

We call it the box in r, ϕ. With the set of radio buttons in the field Style of

Box in r, ϕ it can be

• Not Shown,
• shown with Continuous Lines,
• shown with Dashed Lines.

In addition there is a box in X, Y that is never shown but which is needed as
a reference for the positioning of other background objects (coordinate axes,
scales, arrows). Its Extension in X can be chosen to be

• −Rend < X < Rend ,

• −Rend < X < 0 ,

• 0 < X < Rend ;
and similarly, its Extension in Y. There are two more sets of radio buttons
concerning the coordinate axes as for the other types of plot.
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A.7.2 The Subpanel Background—Scales

Figure A.21 contains a scale in x (Sect. A.7.2.1), a scale in y (Sect. A.7.2.2),
and a scale in z (Sect. A.7.2.3). These scales are available in all 3D plots. For
plots of the type surface over polar grid in 3D there can be in addition a scale

in ϕ. For 2D plots, of course, only scales in x and in y are available. Every
scale extends over the range of the corresponding coordinate.

A.7.2.1 The Scale in x The subpanel Background—Scales—Scale in x con-
tains two sets of radio buttons and a group of numerical parameters. The use
of the first set is obvious: It lets you choose between No Scale, Scale as Con-

tinuous Line, and Scale as Dashed Line. The second set defines the notation

of numbers at the scale, Decimal (e.g., 4500) or Exponential (e.g., 4.5× 103).

The numerical parameters are

• d_X – distance of scale from box (in W3 coordinates).
• ld_X – length of dashes (in W3 coordinates). Note that not only the dash

length of the scales is determined by this parameter but also the dash length
used for the box and the coordinate axes.
• x_0 – a value of x (in C3 coordinates) at which you want a tick on the scale

accompanied by a number.
• delta_x – a positive number δx (in C3 coordinates) defining the distance

between two ticks with numbers. You will get ticks with numbers at . . . ,
x0 − δx, x0, x0 + δx, . . ..
• n_Interv_x – the number of intervals between two numbered ticks, which

are marked off by additional ticks. Default is 1, i.e., no additional ticks.
• l_Ticks_X – length of ticks (in W3 coordinates). If this parameter is set larger

than the box size, it is restricted to the box size.

Note that these parameters also control the ticks and numbers on the x
coordinate axis and on the edges of the box parallel to that axis.

A.7.2.2 The Scale in y The subpanel Background—Scales—Scale in y is
completely analogous to the subpanel for the scale in x, Sect. A.7.2.1.

A.7.2.3 The Scale in z The subpanel Background—Scales—Scale in z con-
tains a set of radio buttons to choose the graphical appearance of the scale and
the notation of the numbers on the scale. In addition it carries two groups of
parameters.

The first group, Position in XY, contains the X and Y coordinates of the
scale, which itself is, of course, parallel to the Z axis.

The parameters in the second group, Details, are completely analogous to
the corresponding ones for the x axis, see Sect. A.7.2.1.
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A.7.2.4 The Scale in ϕ In plots of the type surface over polar grid in 3D you
may want a scale for the polar angle ϕ. It is controlled through the subpanel
Background—Scales—Scale in ϕ.

The scale is presented as a circle or circular arc around the origin in the
plane Z = 0 extending over the range ϕbeg ≤ ϕ ≤ ϕend. It will be placed
outside the range in R, usually at R = Rend + dϕ, where dϕ is a distance in
world coordinates. For Rbeg > 0 it may occasionally be useful to place it at
R = Rbeg − dϕ .

The subpanel consists of three parts distinguished below by their headings.

• Type of Scale, if Any – Here you choose the graphical appearance of the
scale and its positioning with respect to R, see above.
• Select Ticks and Notation of Numbers – Here you can choose whether the

ticks on the scale point outwards, i.e., away from the range in R, or inwards

and whether the numbers are in decimal or exponential notation.
• Details – The quantities under this heading are analogous to the ones for

the scale in x, Sect. A.7.2.1. For simplicity the numerical values for ld_ϕ,
ϕ_0, and delta_ϕ are given in degrees, although numbers at the scale will
be given in radians.

A.7.3 The Subpanel Background—Arrows

As part of the background up to four arrows may be shown, two (called arrow

1 and arrow 2) are straight arrows pointing in (or against) theX or Y direction
and are placed in theX, Y plane. The arrow in Z, available in 3D plots, points
in (or against) the Z direction. In plots of the type surface over polar grid in

3D an additional arrow in ϕ is available. It has the form of a circular arc in
the X, Y plane.

Beyond the arrow tip a text is shown. This text depends on the physics

topic chosen and cannot be set explicitly. The text size is controlled through
the subpanel Background—Texts, Sect. A.7.4. The arrow tip size is adjusted
to match the text size.

A.7.3.1 The Arrows 1 and 2 Each of the subpanels Background—Arrows—
Arrow 1 or 2 contains three items, Orientation of Arrow, Box Side, and Details.
(Only if you choose no arrow in the first item the other two are missing.)

The arrow, in general, is oriented with respect to the box, i.e., the viewport
in X, Y coordinates. A side of the box is chosen with the set of radio buttons
Chosen Box Side. The possible sides are, see Fig. A.22,

• Bottom (Low y),
• Right (High x),
• Top (High y),
• Left (Low x).
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Fig. A.22. Possibilities to orient an arrow. For the numbers see text. The arrows 2 through
5 are placed with respect to the side Right, the arrows 6 through 11 with respect to the side
Bottom

In the combo box Orientation of Arrow one of the following possibilities
can be chosen:

1. no arrow,
2. perpendicular to box in middle of side,
3. perpendicular to box at lower end of side,
4. perpendicular to box at upper end of side,
5. along coordinate axis,
6. parallel to box in the middle of side,
7. antiparallel to box in the middle of side,
8. parallel to box at the lower end of side,
9. antiparallel to box at the lower end of side,

10. parallel to box at the upper end of side,
11. antiparallel to box at the upper end of side,
12. in x direction at a chosen point,
13. in −x direction at a chosen point,
14. in y direction at a chosen point,
15. in −y direction at a chosen point.

The possibilities 2 through 11 are illustrated in Fig. A.22. If you choose
one of them under the heading Details, you find the length l of the arrow and
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its distance from the box d, both in world coordinates. An arrow of length
zero is not shown but its text is.

In very rare cases none of the possibilities 2 through 11 may satisfy you.
You can then place an arrow at a freely chosen point using one of the possi-
bilities 12 through 15. In that case the parameter group Details contains the
arrow length and the (world) coordinates (X, Y ) of the arrow’s base point.

A.7.3.2 The Arrow in the z Direction This arrow is controlled using the
subpanel Background—Arrows—Arrow in z. Under Type of Arrow you have
the choice between

• no arrow, no text,
• no arrow, but text at point (X, Y,Z),
• arrow in z direction,
• arrow in −z direction.

Under Details you find the length l_Z of the arrow (if any) and the world
coordinates X_Z, Y_Z, and Z_Z of the arrow’s base (or – if only text is wanted
– of the text).

A.7.3.3 The Arrow in ϕ In plots of the type surface over polar grid in 3D,
it can be useful to have an arrow in the x, y plane pointing in the azimuthal
direction. Graphically, the arrow is a section of a circle in the x, y plane
centered at the origin of the W3 coordinate system. It is controlled through
the subpanel Background—Arrows—Arrow in ϕ. Here, under Type of Arrow

you may choose between

• no arrow,
• arrow in ϕ direction,
• arrow in −ϕ direction.

Under Details you find

• the length of the arc forming the arrow (in degrees),
• the radius of the arc forming the arrow (in world coordinates),
• the azimuth (in degrees) of the arrow’s base.

A.7.4 The Subpanel Background—Texts

Four different types of alphanumeric texts may show up in a plot,

• the texts at arrows,
• the numbers at scales,
• a caption,
• a line of additional text.
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The texts at the arrows are determined by the physics topic chosen and
cannot be changed. The numbers at the scales are controlled through the
subpanels of Background—Scales, Sect. A.7.2.

Whereas the arrows and scales are part of the geometrical structure of the
plot and define the position of their associated texts and numbers, the position
of the caption and of the additional text has to be defined explicitly. This is
done in the parameter groups Caption and Additional Text where the horizontal

and vertical position of the (lower-left point of the rectangle circumscribing
the) text is given. The coordinates are given in percent of the (horizontal or
vertical) extension of the plot with respect to its lower-left corner. The fields
Caption and Additional Text may contain a field with the text itself, which then
can be edited. It may contain mathematical symbols and simple formulae,
see Sect. A.9 for how to code them. If there is no such field, the text is set

position to 200.

A.8 Parameters – The Subpanel Format

There you can choose between A Format-Landscape, A Format-Portrait, and
Free Format. In the case of A format you can still change the A Number. For
example, A5 (Landscape) corresponds to the format

0 ≤ u ≤ 21.0 cm , 0 ≤ v ≤ 14.8 cm .

For the free format width and height are given explicitly in centimeters.
The format is taken literally only for plots to be printed. (But before actu-

ally starting the print process further changes can be done.) Plots on a display
screen always make optimal use of the graphics frame.

In all cases the width-to-height ratio defined in the format is respected.

A.9 Coding Mathematical Symbols and Formulae

Text appearing in the plot may contain mathematical symbols and simple for-
mulae. To achieve this the characters in a text string are interpreted by IQ

before they are plotted. You have three different alphabets at your disposal:
Roman, Greek, and Math, see Table A.3. You choose the alphabet with special
characters called selection flags:

@ for Roman,
& for Greek,
% for Math.

automatically with the physics topic. In that case you may occasionally want
not to show the text at all. Just move it outside the frame by setting its vertical
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Table A.3. The three alphabets available for plotting text

Select Flags Select Flags
Roman Greek Math Roman Greek Math

Input @ & % Input @ & %
A A A(ALPHA) Ä a a α(alpha) ä
B B B(BETA) B b b β(beta) b
C C X(CHI) c c χ (chi) c
D D 1(DELTA) 1 d d δ(delta) d
E E E(EPSILON) E e e ε(epsilon) e
F F 8(PHI) F f f ϕ(phi) f
G G 0(GAMMA) 6= g g γ (gamma) g
H H H(ETA) H h h η(eta) h
I I I(IOTA)

∫

i i ι(iota) i
J J I(IOTA) J j j ι(iota) j
K K K(KAPPA) K k k κ(kappa) k
L L 3(LAMBDA) | l l λ(lambda) l
M M M(MU) ± m m µ(mu) m
N N N(NU) N n n ν(nu) n
O O �(OMEGA) Ö o o ω(omega) ö
P P 5(PI) P p p π (pi) p
Q Q 2(THETA) Q q q ϑ(theta) q
R R R(RHO) ◦ r r ρ(rho) r
S S 6(SIGMA) ß s s σ (sigma) s
T T T(TAU) t t τ (tau) t
U U O(OMICRON) Ü u u o(omicron) ü
V V Ü v v v
W W 9(PSI)

√
w w ψ(psi) w

X X 4(XI) X x x ξ (xi) x
Y Y ϒ(UPSILON) Å y y υ(upsilon) y
Z Z Z(ZETA) Z z z ζ (zeta) z
~ ∼ ∼ ∼ − − − −
! ! ! ! = = = ≡
$ $ $ $ { { { {
* * # × } } } }
( ( ↑ ← | | | |
) ) ↓ → [ [ & [
+ + + + ] ] @ ]
‘ ‘ ‘ ‘ \
1 1 1 1 : : : :
2 2 2 2 ; ; ; ;
3 3 3 3 ’ ’ ‘ ’
4 4 4 4 < < ⊂ ≤
5 5 5 5 > > ⊃ ≥
6 6 6 6 ? ? § ∼
7 7 7 7 , , , ,

8 8 8 8 . . . .
9 9 9 9 / / \ %
0 0 0 0
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The selection flag closest to, and on the left of, a character determines the
alphabet for that character. The default selection flag is @, i.e., characters not
preceded by any selection flag are interpreted as Roman.

Besides selection flags there are position flags:

^ for superscript,
_ for subscript,
# for normal line level,
" for backspace.

The default position flag is #, i.e., characters appear on the normal line level
if not preceded by any position flag. You can use up to two consecutive steps
of subscript or superscript leading you away from the normal line, e.g., Aαβ ,

Aαβ , Aα
β
, Aαβ . The backspace flag (") causes the character following it to

overwrite the preceding character rather than to be placed to the right of it. It
allows the writing of expressions like W k

n instead of Wn
k. For examples, see

the plots in Sect. A.3.

A.10 A Combined Plot and Its Mother Descriptor

It is sometimes useful to combine plots corresponding to different descriptors.
Such a combined plot is defined by a mother descriptor, which in turn quotes

individual descriptors. For creating a mother descriptor see Sect. A.1.10.
Here we discuss its contents and functionality.

Figure 4.8 is an example of a combined plot. You can display it
by selecting descriptor Argand diagram: combined plot on the file
1D_Scattering.des which is a mother descriptor. By pressing the but-
ton Parameters in the graphics frame you display its contents in a mother-

descriptor panel, Fig. A.23. It consists of two subpanels which are discussed
below.

A.10.1 The Subpanel Type and Format

This subpanel carries the following items:

• Arrangement of Individual Plots – a set of radio buttons. In practically all
cases you will want to select the first button Plots in Regular Matrix. For
other possibilities see Sect. A.10.3.
• Size of Combined Plot – a group of two numbers, namely, the Number of

Rows and the Number of Columns in which the individual plots are arranged
within the combined plot.
• Appearance – a check box determining whether the individual plots are sep-

arated by lines or not.
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Fig. A.23. Mother-descriptor panel corresponding to descriptor Argand diagram: com−
bined plot on file 1D_Scattering.des and to Fig. 4.8. Both subpanels, Type and Format

(left) and Table of Descriptors (right), are shown

• Format – The remaining items determine the format. You can choose be-
tween A Format-Landscape, A Format-Portrait, and Free Format. For A for-
mat you can still choose the A Number, e.g., A5. For free format the width
and height are given explicitly in centimeters.
Note: This format will be the format of each individual plot (the format
defined in its descriptor will be ignored) except for some of the special
cases discussed in Sect. A.10.3. The format of the combined plot itself is
therefore, in general, considerably larger.

A.10.2 The Subpanel Table of Descriptors

Here you find two items:

• Specification of Individual Plots – You may choose between
– Absolute Descriptor Numbers, i.e., the numbers appearing in the first col-

umn of the list of descriptors in the descriptor-selection panel, and
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– descriptor numbers Relative to the Mother Descriptor, i.e., the location on
the list taken relative to the location of the mother descriptor. (This is
useful, if a mother descriptor together with its daughters is moved within
the descriptor file or copied to some other descriptor file.)

• A table of Absolute / Relative Descriptor Numbers – This is an array of rows
and columns arranged as the combined plot itself, which, in each field, car-
ries the corresponding descriptor number. If that number is zero, the corre-
sponding position in the combined plot is left empty.

A.10.3 Special Cases

So far we have assumed that in the field Arrangement of Individual Plots you
have chosen Plots in Regular Matrix. In special cases you may want to use one
of the following three other possibilities.

• Plots Superimposed. The format of all individual plots is the same as that of
the combined plot in which all individual plots appear superimposed. Rows
and columns no longer exist.
• Plots Arranged in Rows. Contrary to the cases discussed before the individ-

ual plots retain the width-to-height ratio (but not the absolute size), given in
their descriptors. In the table of descriptors only those not containing 0 are
considered. All plots in one row are created in a size that together they fill
the row completely. Thus, rows may contain different numbers of plots and
plots may have different sizes. The resulting combined plot has at most the
size (width of plot × number of columns) × (height of plot × number of
rows) but will usually be smaller.
• Plots Arranged in Columns. As described just above with the words row and

column interchanged.

A.11 Details of Printing

The print panel, Fig. A.24, which appears when you want to print a single
plot, Sect. A.1.6, or a set of plots, Sect. A.1.12, has two subpanels called Sys-

tem Print and IQ Export. The former is used to produce a plot on a system

printer, i.e., a printer connected to your computer and known to your oper-
ating system. With the latter you can create a compact file in the PostScript
language representing a plot.

A.11.1 Preview. Colors and Line Widths

At the bottom of the print panel you can select the Units in which lengths are
given on the panel. You can also have a Preview of the printed plot in the
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Fig. A.24. The print panel

graphics frame. For the preview print colors and line widths are used (rather
than screen colors and line widths).

To change the print colors and line widths press Color. A color-selection

panel appears. Its use is as described for the selection of screen colors, Sect.
A.1.7. You may occasionally want to use screen colors and/or screen line
widths also for printing. You can do that using the check boxes in the bottom-
left corner of the print panel.

A.11.2 Using a System Printer

Paper Format Under Paper Size you find the dimensions of the paper. You
also find the Orientation of the plot on the paper. The size must be that of the
paper in your printer. If it is not, press Paper Dialog. You can then choose the
correct size and also change the orientation.

Plot Size A plot is always printed in the width-to-height ratio as defined in
its descriptor, see Sect. A.8. The size defined there is the predefined size. The
size of the plot on paper can be defined in three ways:

• by using the predefined size (this can be done only if the predefined size fits
on the area on the paper available for printing),



362 A.11. Details of Printing

• by maximizing it, i.e., by printing the plot as large as possible,
• by setting either its width or its height explicitly (the other dimension is

computed; if the plot would not fit on the printable area the size is reduced;
if you want to print a set of plots, Sect. A.1.12, you can set a maximal
width and a maximal height, thus defining a rectangle into which each plot
is fitted).

Print Dialog By pressing the button Print Dialog you get the familiar print-
dialog panel of your operating system in which you can start the actual print-
ing.

A.11.3 Creating PostScript Files: IQ Export

IQ supports two somewhat different file formats: PostScript (PS) and Encap-

sulated PostScript (EPS).1

The information on a PS file corresponds to a page carrying in its center a
plot produced with IQ (or set of consecutive pages, each carrying a plot in its
center). The information on an EPS file corresponds to a single plot without
any reference to a page. PS files are well suited for direct printing. EPS files
can easily be included into other files (encapsulation). The information in a
PS or EPS file can easily be displayed graphically and printed by a program
such as Ghostscript. (Plots in EPS then appear in the lower-left corner of a
page.)

On the top of the subpanel IQ Export you can choose between PS and EPS.
The subpanel carries itself three more subpanels which we describe in reverse
order.

Paper Size This subpanel (available for PS but not for EPS) contains the
contents of the paper configuration record. That information can be changed,
saved, and replaced as described for the color configuration record, Sect.
A.1.7. It is best set once and for all in a customizing session, Sect. A.1.7.

Plot Size You can set the plot size as described for system printing, Sect.
A.11.2. Moreover, you can indicate the orientation of the plot: If you allow

plot rotation, the plot is rotated by 90◦ if the plot will then fit better onto the
paper (i.e., it needs no or less demagnification). If, in addition, you allow
optimized rotation, the plot is always oriented such that the long edge of the
plot is parallel to the long edge of the paper.

Export If you want to create a set of plots on file in PS format, you can
choose to print them on Multiple files, i.e., one file per plot, or on a Single

file. After you made your choice, enter a File name, e.g., myPlot.ps or my−
Plot.eps. You may also change the directory into which the files are written.

1 PostScript Language Reference Manual, 3rd ed., Adobe Systems Inc., 1999
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Then press Save to create the file(s). In the case of multiple files these may,
for example, have the names myPlot3.ps, myPlot5.ps, . . . (or .eps). The
numbers appearing in the file names are the descriptor numbers in the list
from which you selected descriptors for printing. (You may also introduce
the two characters %d anywhere in the file name. They will then be replaced
by the descriptor number.)

If you want to create only a file for a single plot (i.e., you started out by
pressing Print in the graphics frame), simply enter a file name, select another
directory if you want, and press Save.

A.12 Preparing a Demonstration

In Sect. A.1.13 we have seen how to run a demonstration.

A demonstration consists of a set of events of the following types:

• the display of an IQ plot,
• the display of an HTML page,
• the display of an image or movie (e.g., in GIF, PNG, or animated GIF for-

mat),
• the playing of sound (spoken text).

The order in which events are started and the timing is controlled by a demo

file. Before editing your demo file you have to prepare the following files and
put them in one directory:

• a descriptor file on which the descriptors for the plots you want to show are
collected, Sect. A.1.11,
• a set of HTML files with explanatory information you want to display,
• a set of sound files, e.g., in WAV format, if you want to include sound.

The demo file is best understood as a simple computer program with one
command per line. The commands are executed consecutively. The demo
file is a text file, which can be created with any editor. We suggest that you
inspect one of the files *.demo in the Demo subdirectory.

There are 10 different commands:

• a command to open a descriptor file:
openDescriptorFile("descriptorFileName")

• commands to display a plot corresponding to descriptor n on the descriptor
file:
plot(n)
plotLeft(n)
plotRight(n)

• commands to display an HTML file:
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presentPage("htmlFileName")
presentPageLeft("htmlFileName")
presentPageRight("htmlFileName")

• commands to display an image file:
presentImage("imageFileName")
presentImageLeft("imageFileName")
presentImageRight("imageFileName")

• a command to start playing a sound file:
playSound("soundFileName")

• a command to wait a number m of milliseconds before executing the next
command:
wait(m)

• a command to terminate the demonstration:
stop

The commands plot, presentPage, and presentImage use the full dis-
play surface of the demo frame, Fig. A.10, whereas the corresponding com-
mands containing Left or Right use only the left or right part of that surface.

Lines beginning with // are ignored. They may serve as comments.
A sound file must not be started before the playing of the previous sound

file has ended. The wait command has to be used to ensure that.
If a demonstration is run in the step-by-step mode, then the wait com-

mand simply halts the demonstration. The next command is executed after
the button Next or the Enter key is pressed.

The HTML files and image files should be placed in the same directory
as the demo file, because then only the file name has to be given as command
argument. If a file is located in a different directory, the full path (either
absolute or relative to the location of the demo file) has to be included, for
instance

/.../htmfiles/demo.htm
pngfiles/demo.png

Note: If you work under Windows the backslash (\) has to be replaced by a
double backslash (\\). An example is

C:\\...\\htmfiles\\demo.htm
pngfiles\\demo.png



B. How to Install IQ

B.1 Contents of the CD-ROM

The CD-R

OM

essentially contains three items:

• It contains the program package INTERQUANTA, version 4.0.
• The program needs the Java Runtime Environment including Swing classes,

i.e., preferably version 1.3 or higher, which, most probably, is present on
your machine. If it is not, it can, in most cases, be installed on your ma-
chine from the CD-ROM as part of the installation of INTERQUANTA. For
details see Sect. B.2.2 below.
• To display help information INTERQUANTA uses a special version of the

Adobe Acrobat R© Reader which runs under Java. This particular reader is
also installed on your machine from the CD-ROM as part of the installation
of INTERQUANTA.

B.2 Computer Systems on which

INTERQUANTA Can Be Used

B.2.1 Computers and Operating Systems

INTERQUANTA can be installed and run on the following types of comput-
ers:

• Personal Computers running under Windows, Linux, and OpenSolaris,
• Macintosh Computers running under Mac OS X,
• workstations (IBM RISC under AIX).

[INTERQUANTA was tested on 32-bit systems under Windows 98, NT 4.0,
2000, ME, XP, Vista, and 7, under Linux Kernel 2.6.13, and under Mac OS X
10.4.11 for PowerPC and x86 processors, under OpenSolaris 09.06 (SunOS
5.11 for i86pc), and AIX 4.3.3. On 64-bit systems it was tested under Win-
dows 7, under Linux Kernel 2.6.28, and under Mac OS X 10.6.4 for x86_64
processors.]
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B.2.2 Java Runtime Environment (JRE)

If the JRE, version 1.3 or higher, is not present on your computer, then it is
brought there as part of the installation if you are working on a Personal Com-
puter under Windows or Linux. (System requirements imposed by the JRE are
listed in detail in http://java.sun.com/javase/6/webnotes/install/-
system−configurations.html.) For other systems you have to download
it from the web site of the manufacturer of your computer and install it before
installing INTERQUANTA.

B.3 Installation with Options.

The File ReadMe.txt

The installation procedure allows for various options. These are in particular

• the choice between single-user and multi-user installation (on operating sys-
tems supporting multiple users),
• the choice of directory names for program, documentation, and demo files.

(By choosing the drive and directory names of the CD-ROM you can leave
the spacious documentation and demo files there and save space on your
hard disk.)

If you want to make use of these choices, consult the file ReadMe.txt or
ReadMe.html placed in the top directory on the CD-ROM and proceed with
the installation as described there.

B.4 Quick Installation for the Impatient User

In the rather common case that

• you want to install INTERQUANTA for a single user,
• you work on a Personal Computer under Windows, Linux, or OpenSolaris

or on a Macintosh Computer under Mac OS X,
• you have 500 MB of free disk space,
• and you agree to the default directory names used by the installation pro-

gram,

you can proceed as follows.

Step 1 Take notice of the copyright and license conditions in Sect. 2 of the
file ReadMe.txt placed in the top directory on the CD-ROM. You must not
proceed with the installation if you do not agree to these conditions.
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Step 2 For Windows: With the Windows Explorer in the top directory of
the CD-ROM you find the file iqinst.bat. Double-click on it. For Linux,

OpenSolaris, or Mac OS X: There is a shell script install.sh, which you
start from a terminal shell. For the Macintosh you can also double-click on
install(MacOSX).command from the Finder.

Step 3 A panel will appear on your computer screen carrying four or five
subpanels. Click on the subpanel Install. Then click on the button Install in
that subpanel.

You can follow the progress of the installation in the text field of the panel.
As last line the words “Installation completed.” appear. The top of the
install panel now contains a Close button which you may press to make the
whole panel disappear.

Step 4 You will find an icon labeled InterQuanta and featuring the symbol h̄
(“hbar”) on your desktop. By (double-)clicking on it you start the program.

Possible Updates

For possible additional release notes and/or updates see the web site

http://www.springer.com/physics/quantum+physics/book/
978−1−4419−7423−5.
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Airy function, 36, 77, 243, 256
amplitude function, 6
angle
– azimuthal, 331
– polar, 331
angular
– frequency, 10, 34, 165
– momentum, 142, 153
angular-momentum quantum number,

143–145, 153, 159–161, 165, 167,
245

antisymmetry, 126
Argand diagram, 71, 87, 117, 193,

280
arrow, 353, 355
aspect ratio, 334
atomic units, 272
attractive Coulomb potential, 193
axes, coordinate, 350
axis of quantization, 147
azimuthal angle, 331

background, 350
– subpanel, 350
– – arrows, 353
– – box, 350
– – scales, 352
– – texts, 355
basic units, 269
Bessel function, 241, 253, 255
– modified, 146, 241
– spherical, 144, 145, 163, 186, 242,

253
binomial distribution, 247, 262
bivariate Gaussian, 260
Bohm’s trajectories, 10

Bohr
– magneton, 215
– radius, 167, 194, 245
bosons, 126
bound state
– one dimension, 32, 43, 45–48
– three dimensions, 158, 160, 168
boundary conditions, 66, 159, 187
boxes in plots, 350

Cartesian grid, 336
center of mass
– coordinate, 123
– motion, 123
centrifugal barrier, 158, 159
characters
– Greek, 356
– Math, 356
– Roman, 356
circular node line, 161
classical
– phase-space distribution
– – free motion, 12, 25
– – harmonic motion, 38
– – linear potential, 78
– – reflection by high potential wall,

79
– position, 8
– velocity, 8
clipping, 351
coherent state, 37, 38
colors, 320
– selection, 320, 321
combined plot, 87, 358
commutation relations of angular

momentum, 142
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complementary error function, 9, 246,
259

completeness, 65, 66, 144
complex function, 264
Compton wavelength, 272
configuration file, 327
confluent hypergeometric function,

193
conservation
– of electromagnetic energy, 111
– of probability, 8, 275
constituent wave, 68, 69
continuity
– conditions, 35, 36, 187
– equation, 8, 276
continuous spectrum, 63, 160
continuum
– eigenfunctions, 63, 68
– eigenstates, 63, 68
– normalization, 65, 68, 144
contour lines, probability density, 176
contour surface, probability density,

177
coordinate
– 2D world, 331
– 3D computing, 18, 331, 347
– 3D world, 330, 331
– axes, 350
– C3, 18, 331, 347
– center of mass, 123
– D (device), 331
– relative, 123
– W2, 331
– W3, 330, 331
correlation coefficient, 247
Coulomb
– potential, 166, 168, 173
– – attractive, 193
– – radial eigenfunctions, 168, 245
– – repulsive, 193
– scattering, 193, 204, 206
– – phase, 194
– wave function, 194, 206
covariance ellipse, 26, 53, 94, 247,

260

cross section
– differential, 191, 199
– partial, 192, 201
– total, 191, 201
cumulative probability distribution,

246
current conservation, 111
customize, 327
– panel, 327, 328

data-table unit, 272
de Broglie
– wave number, 34
– wavelength, 5
decomposition into partial waves,

145, 150, 153
demonstration, 3
– file, 326
– frame, 326, 327
– introductory, 315
– prepare, 363
– run, 16, 326
descriptor, 15, 316
– file, 15, 316
– – editing, 324
– mother, 324, 358
– quoting, 358
– save panel, 322, 323
– saving, 322
– selection, 16, 316, 317
diagonalization, scattering matrix,

278
differential cross section, 191, 199
discrete
– energy eigenvalue, 160
– spectrum, 33, 160
distinguishable particles, 124, 125
distribution
– binomial, 247, 262
– cumulative probability, 246
– function, 246
– Gaussian, 7, 246, 258
– marginal, 125, 127, 131
– Poisson, 247, 263
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effective
– field, 217
– potential, 158, 159
eigenfunction, 32
– continuum, 63, 68
– discrete, 33, 43
– in plot, 43, 45, 47, 168, 172
eigenstate, 45–48, 63, 68
eigenvalue, 32, 63, 160
– in plot, 43, 45, 47, 168, 172
electric field
– constant, 166
– strength, 10
– – stationary, 109
electromagnetic wave, 10, 20, 23
– reflection and refraction, 113
– scattering, 114
elementary charge, 166
energy
– density, 11, 111
– eigenvalue
– – continuum, 63
– – degenerate, 65
– – discrete, 160
– flux, 111
– kinetic, 5, 138
– – radial motion, 159
– potential, 7
– resonance, 72
– rotational, 159
entanglement, 124
error function, 9, 246, 259
expectation value, 7, 247
– position, 141
exponent, 269

fermions, 126
file
– configuration, 327
– demonstration, 326, 363
– descriptor, 15, 316
– – editing, 324
– editing panel, 325
fine-structure constant, 166
force, 7, 32
– constant, 77

– linear, 34, 123, 165
format of a plot, 356, 358
free particle motion
– one dimension, 5, 64
– three dimensions, 138
free Schrödinger equation
– one dimension, 5
– radial, 144
functions of complex variable, 264

Gamma function, 241
Gaussian
– bivariate, 246, 260
– – covariance ellipse, 260
– distribution, 7, 246, 258
– spectral function, 6, 11, 22, 69, 112,

141
– wave packet
– – one dimension, 6, 8–10, 17, 20,

37, 38, 41, 69, 77, 91, 112
– – partial-wave decomposition, 145,

153
– – three dimensions, 141, 151, 152,

167, 179
gradient operator, 139
graphics
– frame, 16, 316, 317
– subpanel, 347
– – accuracy, 348
– – geometry, 347
– – hidden lines, 349
grid
– Cartesian, 336
– polar, 337
group velocity, 6, 142
gyromagnetic
– factor, 215
– ratio, 215

Hamiltonian, 32, 122, 158
Hankel function, 241
– spherical, 163, 186, 242, 253
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harmonic
– oscillator
– – one dimension, 34, 37, 38, 43, 49,

51, 239
– – radial eigenfunction, 168, 245
– – three dimensions, 165, 167, 173,

179
– – units, 275
– oscillators, coupled, 122, 128, 129
– – normal oscillations, 127
– particle motion, 37, 49, 167, 179
– plane wave, 148, 188
– wave, 5, 6, 11, 23, 35, 68, 83, 275,

278
Heisenberg’s uncertainty relation, 7
help, 17, 330
– context-sensitive, 17, 330
Hermite
– polynomial, 34, 238, 248
– –Weber function, 239
Hermitian, 33
hidden lines, 349
hybridization, 224
– sp, 229
– sp2, 230
– sp3, 230
– parameter, 225
hydrogen atom, 166
– radial eigenfunction, 168, 245
– units, 274
hypergeometric function, confluent,

193

incoming spherical wave, 186
indistinguishable particles, 126, 127
infinitely deep square well
– one dimension, 33, 41, 43, 54
– three dimensions, 161, 168, 173
installation of IQ, 365
interference term, 126
Interquanta, 1, 16
– closing, 17
– customize, 327
– help, 330
– installation, 365
– main frame, 15, 315

– starting, 15, 315

joint probability density, 125, 130

kinetic energy, 5, 138
– radial motion, 159

Laguerre polynomial, 165, 167, 244,
257, 258

Laplacian, 139
Larmor precession, 216
left-moving
– constituent wave, 68, 69
– electric field strength, 109
– harmonic wave, 35, 275, 278
– wave packet, 65, 67
Legendre
– function, associated, 146, 161, 239,

249
– polynomial, 145, 239, 249
level crossing, 288
light
– scattering, 114
– transmission and reflection, 117
– velocity, 10, 110, 111
line widths, 320
linear potential, 77, 78, 90–92, 95
– piecewise, one dimension, 36, 47,

48, 69, 81, 83
Liouville equation, 14
literature, 4

magnetic
– moment, 215
– quantum number, 143, 144, 147,

153, 159, 161, 188
– resonance, 213, 220
mantissa, 269
marginal distribution, 125, 127, 131,

247
mass, 5
– reduced, 123
– total, 123
mathematical symbols, 356
mean
– momentum, 6
– value in position, 7
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medium, denser and thinner, 74
modified Bessel function, 146, 241
moment of inertia, 159
momentum, 5
– operator, 138, 140
– radial, 159
– width, 6
mother descriptor, 324, 358
movie, 17, 20, 318, 346
– capability, 17, 318
– creating, 318
– running, 318
multiple plot, 16, 19, 347

Neumann function, 241
– spherical, 242, 253
node
– circular (polar), 161, 173
– ray (radial), 161, 173
normal oscillations, 127
normalization, 6, 7, 33, 63, 141
– continuum, 65, 68, 144
numerical value, 269

operator
– gradient, 139
– Laplacian, 139
– of angular momentum, 142
– of kinetic energy, 5
– of momentum, 138, 140
– of radial momentum, 159
optics, 10, 109
orientation axis, 225
orthogonality, 33, 65
orthonormality, 33, 160
outgoing spherical wave, 186

panel
– background, 350
– – arrows, 353
– – box, 350
– – scales, 352
– – texts, 355
– color selection, 320, 321
– computing coordinates, 18, 347
– customize, 327, 328

– descriptor
– – save, 322, 323
– – selection, 16, 316, 317
– file editing, 325
– format, 356, 358
– graphics, 347
– – accuracy, 348
– – geometry, 347
– – hidden lines, 349
– movie, 20, 346
– multiple plot, 347
– parameter, 18, 322, 323
– physics parameters, 18, 19, 346
panning a plot, 334
parameter
– changing, 16, 322
– panel, 18, 322, 323
– – computing coordinates, 18, 347
– physics, 18, 19, 346
partial
– cross section, 192, 201
– scattering amplitude, 189
– wave, 144
– – scattered, 189, 197
– – unitarity relation, 193
partial-wave decomposition
– Gaussian wave packet, 145, 153
– plane wave, 145, 150
particle motion
– free, one dimension, 5, 64
– free, three dimensions, 138
– harmonic, one dimension, 37, 49
– harmonic, three dimensions, 167,

179
– in deep square well, 41, 54
particles
– distinguishable, 124, 125
– indistinguishable, 126, 127
Pauli
– equation, 215
– matrices, 213
– principle, 126, 226
Periodic Table, 226
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phase, 6
– scattering, 192
– – Coulomb, 194
– shift, 72–75, 111, 112, 201
– velocity, 5
phase-space distribution, classical
– free motion, 12, 25
– harmonic motion, 38, 52
– linear potential, 78
– reflection by high potential wall, 79
piecewise linear potential, one

dimension, 36, 47, 48, 69, 81, 83
Planck’s constant, 5
plane wave
– harmonic, 148, 188
– partial-wave decomposition, 145,

150
plot, 316
– 2D, 337
– – Cartesian, 338
– – contour line, 340
– – parametric, 338
– – polar diagram, 338
– 3D
– – Cartesian grid, 335
– – column, 345
– – contour surface, 341
– – polar diagram, 342
– – polar grid, 337
– – probability ellipsoid, 344
– changing parameter, 322
– colors, 320
– combined, 87, 358
– format, 356, 358
– line widths, 320
– multiple, 16, 19, 347
– printing, 320, 326, 360
– – PostScript export, 362
– – system printer, 361
– text, 355, 356
– types, 335
Poisson distribution, 247, 263
polar
– angle, 331

– coordinates, Schrödinger equation,
144

– grid, 337
position
– classical, 8
– expectation value, 141
– flags for text, 358
– quantile, 8, 9
potential
– effective, 158, 159
– energy, 7
– in plot, 43, 45, 47, 81, 168, 172,

195, 204
– one dimension, 32
– – harmonic oscillator, 34, 43
– – infinitely deep square well, 33, 41,

43, 54
– – linear, 77, 78, 90–92, 95
– – piecewise linear, 36, 47, 48, 69,

81, 83
– – square well, 34, 45, 46
– – steep rise or fall, 72
– – step, 34, 45, 46, 66–69, 81, 83
– quantum, 10
– three dimensions, 159
– – Coulomb, 166, 168, 173, 193
– – harmonic oscillator, 165, 167,

168, 173, 179
– – infinitely deep square well, 161,

168, 173
– – spherically symmetric, 159
– – square well, 162, 168, 172, 173
– – step, 162, 172
preparing a demonstration, 363
principal quantum number, 33, 34,

123, 160–162, 165–167, 245
printing a plot, 320, 326, 360–362
probability
– conservation, 8, 275
– current density, 8, 275
– density, 7, 125
– – contour lines, 176
– – contour surface, 177
– – joint, 125, 130
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– – marginal distribution, 125, 127,
131

– – symmetrized, 126
– – three dimensions, 141, 173
– distribution, cumulative, 246
– ellipsoid, 140, 152

quantile, 8, 38, 78
– position, 8, 9
– trajectory, 9, 21, 51, 92
– velocity, 8
quantity, basic, 269
quantization axis, 147
quantum number
– angular momentum, 143–145, 153,

159–161, 165, 167, 245
– magnetic, 143, 144, 147, 153, 159,

161, 188
– principal, 33, 34, 123, 160–162,

165–167, 245
– radial, 165
quantum potential, 10
quantum-effect device, 76
quantum-well device, 75
quoting descriptors, 358

Rabi
– amplitude, 222
– formula, 219
– period, 219
radial
– eigenfunction
– – harmonic oscillator, 168, 245
– – hydrogen atom, 168, 245
– – infinitely deep square well, 162,

168
– – square well, 162, 168
– – step potential, 162, 172
– momentum, 159
– quantum number, 165
– scattering wave function, 185
– Schrödinger equation, 144, 159
– wave function, 168, 172, 185, 195,

204
reduced mass, 123

reflection, 72, 74, 87, 117
– coefficient, 71
– electromagnetic wave, 113
– space, 278
– total, 70
refraction of electromagnetic wave,

113
refractive index, 109, 110
relative
– coordinate, 123
– motion, 123
repulsive Coulomb potential, 193
resonance, 72, 74, 281
– energy, 72
right-moving
– constituent wave, 68, 69
– electric field strength, 109
– harmonic wave, 35, 67, 69, 275, 278
– wave packet, 64, 66
Rodrigues’ formula, 238, 239, 244
rotational energy, 159
running a demonstration, 16, 326

S matrix, 277
S-matrix element, 71
scale, 352, 353
scaled units, 270
scattered wave, 189, 197
scattering
– amplitude, 190, 201
– – partial, 189
– Coulomb, 193, 204, 206
– matrix, 275, 277
– – diagonalization, 278
– – element, 71, 189
– of harmonic wave, 83
– of light, 114
– one dimension, 63
– phase, 192
– – Coulomb, 194
– plane harmonic wave, 188
– state
– – one dimension, 63, 81
– – three dimensions, 160
– three dimensions, 185
– wave function, radial, 185
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Schrödinger equation
– one dimension, 32, 63
– – free particle, 5
– polar coordinates, 144
– radial, 144, 159
– stationary, 32, 140
– three dimensions, 158
– – free particle, 139
– time-dependent solution, 37, 64, 69,

125
– two-particle system, 122
– with potential, 7, 32
selecting a descriptor, 16, 316, 317
selection flags, 356
separation of variables, 144
SI units, 269
space reflection, 278
spatial-reflection invariance, 278
special functions, 238
spectral function, 22, 140
– Gaussian, 6, 11, 22, 69, 112, 141
spectrum
– continuous, 63, 160
– discrete, 33, 160
spherical
– Bessel function, 144, 145, 163, 186,

242, 253
– Hankel function, 163, 186, 242, 253
– harmonics, 142, 143, 161, 165, 240,

249–252
– Neumann function, 242, 253
– wave, 150
– – incoming, 186
– – outgoing, 186
spin, 213, 214, 220
spring constant, 123
square well
– one dimension, 34, 45, 46
– – infinitely deep, 33, 41, 43, 54
– three dimensions, 162, 168, 172,

173
– – infinitely deep, 161, 168, 173
square-integrable functions, 33
squeezed state, 37, 38
stationary

– electric field strength, 109
– electromagnetic wave, 112
– scattering state, 63, 66, 67, 69, 81
– Schrödinger equation, 32, 140
– solution, 66, 67, 69
– state, 77, 128
– wave function, 32, 64, 65, 90, 139,

189, 197
step potential
– one dimension, 34, 45, 46, 66–69,

81, 83
– spherical, 162
– three dimensions, 162, 168, 172
subatomic unit, 272
superposition, 6, 11, 23
surface states, 289
symbols, mathematical, 356
symmetrized probability density, 126
symmetry, 126
system of two particles, 122

T -matrix element, 71
term scheme in plot, 43, 45, 47, 168,

172
text in plots, 355, 356
time
– development, 17
– reversal, 277
time-dependent
– scattering, 83
– – of light, 114
– solution, 37, 64, 69, 125
total
– cross section, 191, 201
– mass, 123
– reflection, 70
transmission, 87, 117
– coefficient, 71
– resonance, 72, 74, 111
tunnel effect, 72
two-particle system, 122

uncertainty relation, 7
unit, 269
– atomic, 272
– basic, 269
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– data table, 272
– harmonic oscillator, 275
– hydrogen atom, 274
– scaled, 270
– SI, 269
– subatomic, 272
unitarity relation
– one dimension, 71, 276, 277
– – optics, 111
– partial wave, 192, 193

velocity, 5, 141
– classical, 8
– group, 6, 142
– of light, 10, 110, 111
– phase, 5
– quantile, 8
viewport, 332, 333

wave
– constituent, 68, 69
– electromagnetic, 10, 20, 23, 113,

114
– function, 5
– – complex conjugate, 7
– – Coulomb, 194, 206
– – distinguishable particles, 125
– – indistinguishable particles, 126
– – radial, 159, 168, 172, 185, 195,

204
– – stationary, 32, 64, 65, 90, 139,

189, 197
– harmonic, 5, 6, 11, 23, 35, 68, 83,

275, 278

– number, 10, 110
– – de Broglie, 34
– – vector, 139
– packet
– – one dimension, 6, 8–10, 17, 20,

23, 37, 38, 41, 64–67, 69, 77, 91,
112

– – one dimension, sum of harmonic
waves, 23

– – three dimensions, 140, 141, 151,
152, 167, 179

– – three dimensions, partial-wave
decomposition, 145, 153

– partial, 144
– – unitarity relation, 193
– plane
– – harmonic, 148, 188
– – partial-wave decomposition, 145,

150
– scattered, 189, 197
– spherical, 150, 186
wavelength, 10
– Compton, 272
– de Broglie, 5
width, 7, 142
– momentum, 6
– of lines, 320
– of wave packet, 247
– spatial, 7
window, 332

zooming a plot, 334
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